Increased dephasing length in heavily doped GaAs

Juanmei Duan\(^1\)\(^,\)\(^\ast\), Changan Wang\(^1\)\(^,\)\(^\ast\), Lasse Vines\(^1\)\(^,\) Lasse Rebohle\(^1\), Manfred Helm\(^1\), Yu-Jia Zeng\(^1\)\(^,\) Shengqiang Zhou\(^1\)\(^,\) and Slawomir Prucnal\(^1\)\(^,\)\(^\ast\)

1 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden, Germany
2 Technische Universität Dresden, D-01062 Dresden, Germany
3 Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou 510650, People’s Republic of China
4 Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
5 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China

\(^\ast\) Authors to whom any correspondence should be addressed.

E-mail: juanmei.duan@hzdr.de and s.prucnal@hzdr.de

Keywords: heavily doped GaAs, positive magnetoconductance, ion implantation, flash lamp annealing, plasmonic

Abstract

Ion implantation of S and Te followed by sub-second flash lamp annealing with peak temperature about 1100 °C is employed to obtain metallic \(n^{++}\)-GaAs layers. The electron concentration in annealed GaAs is as high as \(5 \times 10^{19} \text{cm}^{-3}\), which is several times higher than the doping level achievable by alternative methods. We found that heavily doped \(n^{++}\)-GaAs exhibits positive magnetoconductance in the temperature range of 3–80 K, which is attributed to the magnetic field suppressed weak localization. By fitting the magnetoconductance results with the Hikami–Larkin–Nagaoka model, it is found that the phase coherence length increases with increasing carrier concentration at low temperature and is as large as 540 nm at 3 K. The temperature dependence of the phase coherence length follows \(l_\eta \propto T^\eta (\eta \sim 0.3)\), indicating defect-related scattering as the dominant dephasing mechanism. In addition, the high doping level in \(n\)-type GaAs provides the possibility to use GaAs as a plasmonic material for chemical sensors operating in the infrared range.

1. Introduction

In disordered electron systems, the electrons can be localized, which leads to weak localization (WL) and eventually Anderson insulators [1]. WL is a quantum mechanical effect where the constructive interference occurs between two electron waves traveling along a closed path in an opposite direction, leading to a suppression of conductivity. Under the action of a magnetic field, the two waves acquire a phase difference and the interference conditions are violated and causing a positive magnetoconductance (PMC, or negative magnetoresistance (NMR)). The theory of PMC in doped semiconductor was proposed decades ago [2] and explained by WL on the metallic side of the insulator–metal transition (IMT) [3, 4]. PMC has already been reported in \(\delta\)-doped layers in GaAs [5], GaAs quantum wells [6] and GaAs/Al\(_{x}\)Ga\(_{1-x}\)As heterostructures [7]. In the above-mentioned cases, the large amount of carriers are confined within a thin layer. However, unlike heavily doped Si and Ge epilayers [4, 8], PMC in GaAs epilayers has not yet been reported in metallic-like \(n\)-type GaAs with carrier concentration above \(10^{19} \text{cm}^{-2}\), due to the \(n\)-type doping limitation. Moreover, although PMC effect has been reported in \(n\)-type GaAs film in the IMT regime with carrier concentration in the order of \(10^{18} \text{cm}^{-3}\), it is highly dependent on electron–electron interaction effect including orbital and Zeeman contributions [3, 9]. Specifically, Monsterle et al, have showed a PMC effect in \(n\)-GaAs close to the metal–insulator transition, in which the electron concentration is \(2.9 \times 10^{19} \text{cm}^{-3}\) [3]. In addition, Gilbertson et al, have reported a WL with a 2D to 3D crossover in \(n\)-type GaAs with the doping level of \(4 \times 10^{17} \text{cm}^{-2}\) as temperature increases from 2 to 50 K [9]. The reason for the doping limitation in GaAs is mainly due to the compensating effect. Si is the most common \(n\)-type dopant for GaAs. Unfortunately, Si in GaAs is an amphoteric dopant, which limits the effective electron concentration to the
level of about $5 \times 10^{18} \text{cm}^{-3}$ [10, 11]. Specifically, for high doping level, Si occupies both Ga and As sites, donating both electrons and holes simultaneously, which causes compensation effect and decreases the effective carrier concentration.

A reasonable alternative for n-type doping in GaAs is choosing shallow donors from group VI, i.e. chalcogens like S, Se or Te [12–15]. Chalcogens in GaAs are located at the substitutional positions replacing As and donate electrons. But it is rather surprising that the limit of the electron concentration of around 10^{19}cm^{-3} is a universal feature existing in group VI donors as well, although it is higher than in Si-doped GaAs. The saturation of the electron concentration for chalcogen doped GaAs is due to intrinsic defects, mainly triple negatively charged gallium vacancies (V_{Ga}^-) bonded with donors [16]. With increasing doping level, the Fermi energy shifts up toward the conduction band, reducing the formation energy of V_{Ga}. This effect increases the number of V_{Ga}, which compensates the donors and leads to a saturation of the electron concentration [12].

In this work, ion implantation followed by sub-second annealing, in particular millisecond (ms)-range flash lamp annealing (FLA) is used to achieve high doping levels in GaAs. The ultra-doped GaAs layers are prepared by implanting S and Te (as donors), and Zn (as acceptors) ions into intrinsic GaAs wafers. After ion implantation, samples are annealed by FLA for 20 ms with a peak temperature of around 1100 °C. n^{++} doping for GaAs in the range of 10^{19}cm^{-3} has been realized for both S and Te dopants. The highest obtained electron concentration for S doped GaAs reaches $5 \times 10^{19} \text{cm}^{-3}$, which is much above the equilibrium solid solubility of S in GaAs ($\sim10^{19} \text{cm}^{-3}$) [12], and it is three orders of magnitude higher than the room-temperature critical carrier concentration of $1.6 \times 10^{19} \text{cm}^{-3}$ required for the IMT in GaAs [17]. The n^{++}-GaAs (100) layer of around 100 nm thickness exhibits PMC. The magnetoconductance can be well fitted with the Hikami–Larkin–Nagaoka (HLN) model, which allows for the estimation of the phase coherence length (l_ϕ). At 3 K l_ϕ is estimated as large as 540 nm for both S and Te doped GaAs, which is substantially longer than the previously reported values in other semiconductors, e.g. $\sim325 \text{nm}$ in Ge at 1.6 K and $\sim100 \text{nm}$ in ZnO at 5 K [4, 18, 19]. In addition, this unprecedented high electron concentration expectedly meets the requirement for GaAs as a plasmonic material with lower material losses due to a smaller effective mass compared with other heavily doped semiconductors [20].

2. Experimental details

Semi-insulating (100) GaAs wafers were implanted at room temperature with S, Te and Zn ions with energies of 55, 160 and 100 keV, respectively. The wafers were tilted by 7° with respect to the ion beam to avoid channeling effect. Before ion implantation, the required ion fluences and the implantation energies, which determine the dopant concentration and distribution in the implanted layer, were calculated using stopping range of ions in matter (SRIM) simulations [21]. Figure 1 shows the concentration profiles of Zn, S and Te with the highest fluence in GaAs obtained by SRIM-code simulation. We assumed that the heavily doped layer has the average thickness of about 100 ± 10 nm, which corresponds to the ion distribution where the dopant concentration decreases to 10% of the maximum concentration (marked with gray area). The peak concentrations of the implanted dopants are in the range of $3 \times 10^{19}–2 \times 10^{20} \text{cm}^{-3}$. The detailed information about the sample parameters is listed in table 1. After ion implantation but prior to FLA, a 100 nm thick SiO$_2$ layer was deposited by plasma enhanced chemical vapor deposition at 200 °C. The SiO$_2$ capping layer was used to prevent the decomposition of GaAs during the high temperature annealing process. After annealing, the capping layer was removed by wet etching in 10% HF:H$_2$O solution. GaAs samples were annealed by FLA at an energy density of 115 J·cm$^{-2}$ for 20 ms, which corresponds to a peak temperature of about 1100 °C. The details about the FLA system used to anneal implanted samples and the calculation of the temperature during FLA process can be found in reference [22]. Note that millisecond-range annealing can suppress the dopant diffusion in GaAs, which is reported in our previous work [23]. It means that the thickness of doped layer after FLA remains at around 100 nm. The energy difference between the Fermi level and the conduction band (n-type) or the valence band (p-type) resulting from the band filling in degenerated GaAs is deduced from equation (6).

The Rutherford backscattering spectrometry (RBS) measurements were performed with a collimated 1.7 MeV He$^+$ beam of the Rossendorf van de Graaff accelerator with a 10–20 nA beam current at a backscattering angle of 170°. The crystalline quality of heavily doped GaAs layers before and after FLA were estimated from random and channeling RBS spectra. The channeling spectra were collected by aligning the sample to make the impinging He$^+$ beam parallel to the GaAs [001] axes. The structural properties of implanted and annealed samples were also investigated by micro-Raman spectroscopy. The Raman spectra were collected in a backscattering geometry in the range of 100 to 600 cm$^{-1}$ with the resolution of 0.1 cm$^{-1}$ using a 532 nm Nd:YAG laser and a liquid nitrogen cooled silicon based charge-coupled device camera.
The laser power was 3.2 mW and the diameter of the laser spot was 0.8 μm. The spectra are taken in Z(YY)Z configuration. The optical properties were investigated by PL under a continuous wave green laser (532 nm) excitation with a maximum excitation power up to 10 mW with the diameter of the laser spot of 0.8 μm. The PL signal was collected with a liquid nitrogen cooled InGaAs detector and optical spectrometer with the resolution of 0.2 nm. The focal length of the spectrometers for both Raman and PL is 800 mm. Electrical properties were measured in van der Pauw geometry using a commercial Lakeshore Hall system with a magnetic field perpendicular to the sample plane and swept from −4 T to 4 T in the temperature range of 3–300 K. The electrical contacts for Hall effect measurements were made by indium. According to current–voltage curves, all contacts were confirmed to be ohmic.

3. Results and discussion

3.1. Structural properties

Figure 2 shows the RBS random and channeling (RBS/R and RBS/C) spectra for Zn, S and Te implanted GaAs samples with the highest doses before and after annealing. A non-implanted virgin GaAs is included as the reference. Since RBS/R spectra for all the samples including virgin GaAs are overlapping, only one representative spectrum is shown. The RBS/C spectra for as-implanted samples exhibit a broad damage peak with higher backscattering yields at the sample surface (from 1260 to 1370 keV), which is attributed to lattice damage introduced by the ion implantation. After FLA, the RBS/C of Te-doped sample reveals a minimum backscattering yield \(\chi_{\text{min}} \) (the ratio of the aligned to random yields) of about 11.0%, which is comparable to the value of 7.8% determined for the virgin GaAs samples. The slightly higher yield \(\chi_{\text{min}} \) can be due to a bit lower crystal quality than the virgin one. The RBS/C spectra obtained from samples doped with S and Zn after annealing overlap with the spectrum of the virgin GaAs in the near surface region, indicating a complete recrystallization of the implanted layer. For virgin GaAs and implanted samples after
annealing, in all RBS/C spectra the Ga (1320 keV) and As (1350 keV) related surface peaks are well-separated, which confirms the formation of high quality layers. The presented results show that the non-equilibrium millisecond-range FLA can effectively recrystallize the ion implanted GaAs without surface decomposition which is otherwise commonly observed after conventional high temperature annealing (above 800 °C) [24].

3.2. Optical properties

Figures 3(a) and (b) show the normalized Raman spectra from virgin, as-implanted and annealed GaAs samples. The Raman spectra of as-implanted samples (cyan curves) exhibit a broad phonon band, which indicates that the doped layers are totally amorphized. This is in good agreement with RBS results. After FLA, the transverse optical (TO) and longitudinal optical (LO) phonon modes clearly appear for all samples. Due to the selection rules of the Raman scattering, only the LO phonon mode should be detected in (100) GaAs [25, 26], as shown for virgin GaAs in the lower panel of figure 3(a). However, for annealed samples, the observed phonon mode located at the position of the TO phonon (about 268 cm$^{-1}$) is more prominent than the peak at the LO phonon mode position. This is due to the coupling between the LO phonon mode and the carrier-related plasmon mode, i.e. the coupled LO-phonon plasmon mode (CLOPM) [27–29]. In polar semiconductors like GaAs, the LO phonon couples strongly with the collective oscillations of the free-carrier system (plasmons). Figure 3(a) shows the experimental and fitting results using Gaussian deconvolution for Zn-doped GaAs samples. The broadening and the increase of the intensity of the CLOPM mode were observed with increasing doping/carrier concentration. The Stokes Raman scattering rate by the CLOPM mode can be written in the long-wavelength limit by taking into account both the allowed deformation potential and electro-optical contribution as follows [27, 30]:

\[
I_s(\omega) = A \left(n_\omega + 1 \right) \frac{\left[\omega_{\text{TO}}^2 \left(1 + C \right) - \omega^2 \right]^2}{\left(\omega_{\text{TO}}^2 - \omega^2 \right)} \times \text{Im} \left[\frac{-1}{\varepsilon(\omega)} \right],
\]

where A is an ω-independent constant factor, n_ω is the Bose–Einstein distribution, C is the Faust–Henry coefficient, ω is the angular frequency, ω_{TO} is the frequency of the TO mode, and $\varepsilon(\omega)$ is the dielectric function, which is given by [30]:

\[
\varepsilon(\omega) = \varepsilon_{\infty} \left[1 + \frac{\omega_{\text{LO}}^2 - \omega_{\text{TO}}^2}{\omega_{\text{TO}}^2 - \omega^2 - i\gamma\omega} \right] \frac{\omega_{\text{P}}^2}{\omega^2 + i\Gamma P \omega},
\]

where ε_{∞} is the high-frequency dielectric constant, ω_{LO} is the frequency of the LO mode, γ is the LO damping factor, and ΓP is the plasma damping constant. ω_{P} is the plasma (screened) frequency, which can be obtained by:

\[
\omega_{\text{P}}^2 = \frac{ne^2}{m^*_e \varepsilon_{\infty} \varepsilon_0},
\]
Figure 3. (a) and (b) Show the Raman spectra obtained from virgin, as-implanted and annealed GaAs samples. (c) Shows the Raman shift of the phonon mode and the plasma frequency ω_p versus concentration for heavily doped p-type and n-type GaAs calculated using equations (3) and (4): green circles—upper branch of the CLOPM phonon mode; blue squares—lower branch of the CLOPM phonon mode; black diamonds—plasma frequency for p-type GaAs; red triangles—plasma frequency for n-type GaAs.

where ε_0 is the vacuum permittivity, m_e^* is the average electron effective mass, and n is the electron concentration. For p-type samples, n is replaced by p (hole concentration) and m_e^* is replaced by the heavy hole effective mass m_{hh}^*.

According to the equations (1)–(3), $I_s(\omega) \propto p$, which explains the increase of the intensity of the CLOPM with increasing dopant concentration. Moreover, the weak TO phonon mode (blue curves)
observed in Zn-doped samples is due to the disorder effect originating from the high dose implantation. It causes the breakdown of the Raman selection rules [25, 26].

In the n-type GaAs case, see figure 3(b), the lower branch of the CLOPM mode is located exactly at the TO phonon mode position and is insensitive to the change of the carrier concentration. n-type III–V semiconductors are characterized by high carrier mobilities and low carrier effective masses. In this case, the lower branch (ω_{L-}) and upper branch (ω_{L+}) of CLOPM should be observed. A theoretical model applying for $\omega_{L\pm}$ can be described by equation (4) [31]

$$\omega_{L\pm}^2 = \frac{1}{2} \left(\omega_{LO}^2 + \omega_p^2 + \Gamma_p \gamma \right) \pm \frac{1}{2} \sqrt{\left(\omega_{LO}^2 + \omega_p^2 + \Gamma_p \gamma \right)^2 - 4\omega_p^2 \omega_{LO}^2},$$

where the damping constant Γ_p of the plasma oscillation can be written as follows [24]:

$$\Gamma_p = \frac{e}{\mu m^* \tau},$$

where μ is the mobility of the free carriers, and τ is the momentum relaxation time. We assume that the phonon mode observed at the position of the TO phonon mode originates from ω_{L-}, since ω_{L-} reaches the TO phonon energy at high carrier concentration. The upper-frequency mode (ω_{L+}) evolves from a phonon-like to a plasmon-like character with increasing carrier concentration [31, 32], see figure 3(c). The calculated plasma frequencies, using equation (3), for p-type and n-type GaAs are also shown in figure 3(c). For Zn-doped GaAs, the CLOPM peak is much broader than for n-type GaAs, due to the higher plasmon damping Γ_p (\sim700 cm$^{-1}$) in p-type GaAs. Therefore, in p-type GaAs only one overdamped CLOPM mode is found [29]. Due to the lower effective mass for electrons than for holes, with an identical carrier concentration, the plasma frequency (ω_p) for n-type GaAs is higher than that for p-type GaAs. Hence, the tuning of the plasma frequency is easier in the n-type GaAs. This makes n-type GaAs a potential material for mid-infrared plasmonic chemical sensors [20, 33].

Figure 4 shows the normalized room-temperature PL spectra obtained from GaAs samples doped with 0.32% S, 0.42% Te or 0.34% Zn after green laser excitation. The PL spectrum of virgin GaAs is shown for reference. The penetration depth of the green laser in GaAs is deeper than the thickness of the doped layer, therefore the presented PL spectra are a superposition of the PL emission collected from the top implanted layer and from the undoped substrate. The PL emission from the undoped substrate is expected to be located at the same position as that observed from virgin GaAs. After deconvolution of the PL spectra with two Gaussian peaks, the PL emission from the doped and undoped layers can be distinguished, as visualized with shadow areas and green dash-dot lines (see figure 4). Note that the peak at about 900 nm from the n-type GaAs layer is attributed to defect-related emission [34]. It is clearly visible that the peak positions of the 0.32% S- and 0.42% Te-doped samples exhibit a blue shift with respect to the virgin GaAs (see the violet area in figure 4). On the contrary, the 0.34% Zn doped sample shows a red shift (see the red area in figure 4). The blue shift in n-type GaAs is mainly due to the filling of the conduction band with carriers leading to the Fermi level upshift above the conduction band minimum. Likewise, in p-type GaAs, the Fermi level downshifts below the valence band maximum. The energy difference between the Fermi level and the conduction band (or valence band) follows the equation (6) [35]

$$E_F - E_C(E_V) = \frac{\hbar^2}{2m^*_e}(3\pi^2 n)^{2/3},$$

where n is the free carrier density and m^*_e is the electron effective mass. For p-type samples, n is replaced by p (hole concentration) and m^*_e is replaced by the heavy hole effective mass m^*_h. The calculation results are listed in table 1. Taking into account the position of the Fermi level, all the doped samples are degenerate semiconductors expecting to show metallic-like behavior.

High-level doping can also induce bandgap narrowing, which lowers the electron energies as compared to a non-interacting carrier system. The spatially redistributed electrons reduce the long-range Coulombic interaction energy. As a result, the interaction energy reduces the total energy of the electron system. The change in energy gap follows a $1/3$ power law of the doping concentration, $\Delta E_g \propto n^{1/3}$ [36]. The bandgap narrowing causes the downshift of the conduction band minimum. However, the band filling effect in n-type GaAs prevails causing the blue shift of the PL peak position [37, 38]. The red shift of the PL emission in heavily doped p-type GaAs (the radiative recombination of heavy holes and free electrons) is dominantly attributed to the bandgap narrowing effect, leading to the decrease of emitted photons energy [35, 36, 39–42].
Figure 4. Normalized room-temperature PL spectra obtained from 0.32% S, 0.42% Te or 0.34% Zn samples. The PL spectrum of virgin GaAs is shown for comparison.

Figure 5. (a) The carrier concentration and (b) the Hall mobility at 300 K as a function of dopant concentration obtained from implanted GaAs followed by FLA. (c) Temperature-dependence of the sheet resistance of doped GaAs in the temperature range of 3 K to 300 K.

3.3. Transport properties
Figure 5(a) shows the carrier concentration at 300 K as a function of dopant concentration obtained from Zn, S and Te implanted GaAs followed by FLA. In the case of p-type GaAs (Zn doped), the highest hole concentration is $10.9 \times 10^{19} \text{ cm}^{-3}$, while the maximum electron concentration for n-type GaAs doped with S is as high as $5.2 \times 10^{19} \text{ cm}^{-3}$. High p-type doping of GaAs is easier than n-type doping. On one hand, this is due to the higher solid solubility of acceptors than donors in GaAs. On the other hand, the higher formation energy for VAs in p-type GaAs than VGa in n-type GaAs decreases the probability for the formation of acceptor-vacancy (e.g. Zn-VAs) complexes compared with the formation of donor-vacancy complexes (e.g. S-VGa) [12, 43]. This is in agreement with previous reports that high hole concentrations can be relatively easily achieved in GaAs. For example, using Be as the acceptor in GaAs, hole concentration as high as 10^{21} cm^{-3} is possible [44]. Therefore, the much higher hole concentration obtained from Zn-doped GaAs compared to the electron concentration measured from S or Te doped GaAs is not surprising.

The effective Bohr radius of shallow-donor bound electrons in n-type GaAs with effective mass of 0.067 m_e is $a_B = 103 \text{ Å}$ and the critical concentration of donors for IMT in GaAs at room temperature is $n_c = 1.6 \times 10^{16} \text{ cm}^{-3}$ [17]. That means that all the investigated n-type GaAs samples are highly degenerate semiconductors and supposed to exhibit metallic behavior. Since the larger effective mass leads to smaller Bohr radii ($m^* \propto \frac{1}{m}$), for the Zn-doped p-type GaAs, the effective Bohr radius is about 15.6 Å. The critical
hole concentration for IMT at room temperature in p-type GaAs is around 4.1×10^{18} cm$^{-3}$, based on the Mott theory of the IMT as described by equation (7) [36, 45]

$$n_c^{1/3} a_B = 0.26 \pm 0.05,$$

where a_B is effective Bohr radius, and n_c is the critical electron concentration. Therefore, the presented p-type GaAs samples are expected to be also degenerate semiconductors like n-type GaAs.

Figure 5(b) shows the carrier mobility at 300 K as a function of dopant concentration. The mobility for n-type GaAs and p-type GaAs is in the range of 283–733 and 42–28 cm2 (V$^{-1}$s$^{-1}$), respectively. The decrease of the carrier mobility with increasing carrier concentration is mainly attributed to electron–electron scattering and carrier scattering by the impurities, which is typical for heavily doped semiconductors [46]. Figure 5(c) shows the temperature-dependence of the sheet resistance obtained from implanted GaAs followed by FLA. p-type GaAs with the lowest Zn concentration (0.07% Zn) exhibits a different behavior from other samples. This is due to the lower hole concentration. The other samples show nearly temperature-independent sheet resistivity as expected for degenerate semiconductors.

Figure 6 shows the magnetoconductance of n-type and p-type GaAs samples. The conductance data is described by equation (8) and shows the change in the conductivity of measured sample under magnetic field $(G(B))$ relative to the zero field $(G(0))$ conductivity

$$\Delta G = G(B) - G(0) = \frac{1}{\rho(B)} - \frac{1}{\rho(0)},$$

where $\rho(0)$ and $\rho(B)$ are the resistivity of measured samples without and with magnetic field. Obviously, at low temperature, the n-type GaAs samples show PMC at low magnetic field (0.3 T), while p-type GaAs exhibits negative MC in the whole magnetic field range. The theory of PMC is extensively studied for heavily doped semiconductors [8, 47]. In weakly disordered semiconductors, it is explained that the multiple random elastic scattering of electrons from impurities leads to the quantum interference phenomena [1, 18]. Quantum interference can introduce the WL effect, which significantly influences the temperature dependent electron transport mechanisms. WL arises because of the self-interference of time-reversed electronic waves backscattered from impurities. It leads to an enhanced probability of carrier backscattering, and therefore results in an enhanced resistivity. The magnetic field applied normal to the plane of carrier motion breaks the time reversal symmetry, and suppresses the WL, leading to a PMC or named negative magnetoresistance. Note that in n-type GaAs, the WL corrections were first developed in the limit of weak disorder, when $k_f l \gg 1$ (k_f is the Fermi wave length, and l is the mean free-path). For our n-type GaAs shown in this manuscript, $k_f l = 11–26$ (estimated from the free-electron theory, $k_f l = h(3\pi^2)^{2/3}e^2/\rho m^*\hbar$) [48].

There are alternative two- and three-dimensional fitting models for n-type GaAs. The 3D model can be written as [1]:

$$\frac{\Delta \rho}{\rho} = -\alpha e^2 \frac{c^2}{2\pi^2 \hbar} \frac{eB}{\hbar} F(x),$$

where $\Delta \rho/\rho$ is the fractional change in resistivity due to the applied magnetic field, α is a coefficient between 0 and 1 that is thought to represent the Coulomb screening, e is the elementary electronic charge, \hbar is Planck’s constant, B is the applied magnetic field, and ρ is the resistivity. $F(x)$ is the Hurwitz zeta function given by [49]:

$$F(x) = \sum_{n=0}^{\infty} \left[2(n + 1 + 1/x)^{1/2} - 2(n + 1/x)^{1/2} - (n + 1/2 + 1/x)^{-1/2}\right],$$

where x is a dimensionless quantity defined by $x = 4eD\tau^* B/\hbar$, D is the electron diffusion constant, τ^* is the electron inelastic-scattering lifetime, and the phase coherence length $l_\phi = \sqrt{D\tau^*}$. In the high magnetic field regime (> 0.3 T), MC is dominated by the parabola-like B^2 dependence, originating from the Lorentzian deflection of carriers under perpendicular magnetic field. The electron executes cyclotron orbits, thereby shortening the mean free path, and thus decreasing the conductance [50]. We accounted for this by fitting the transport data. However, the fitting quality provides a worse description to experimental results, as exemplarily shown in figure 6(b) with the orange line for 0.42% Te. Using the HLN 2D model [4, 51, 52]:

$$\Delta G(B) = \frac{\beta e^2}{\pi \hbar} \left[\Psi\left(\frac{1}{2} + \frac{B_x}{B}\right) - \ln \left(\frac{B_0}{B}\right) + 2 \ln \left(\frac{B_0 + B_{SO}}{B}\right) - 2\Psi\left(\frac{1}{2} + \frac{B_0 + B_{SO}}{B}\right) \right. - \left. \Psi\left(\frac{1}{2} + \frac{B_0 + 2B_{SO}}{B}\right) + \ln \left(\frac{B_0 + 2B_{SO}}{B}\right) \right],$$

(11)
Figure 6. Magneto-transport properties in heavily doped GaAs samples. (a)–(c) Show the MC measured at 3 K for GaAs:S, GaAs:Te and GaAs:Zn samples with different doping concentrations. Symbols are experimental points and solid lines are fitting results based on WL theory using the HLN model, equation (12). The orange line in figure (b) shows the 3D model fitting result for 0.42% Te. (d) and (f) Show the phase coherence length l_ϕ and the spin–orbit length l_{so} at 3 K for n-type GaAs as a function of carrier concentration. (e) and (g) Show the temperature dependent phase coherence length l_ϕ and spin–orbit length l_{so}, respectively.

where $\Psi(x)$ is the digamma function of a physical variable x [53] and β is a constant of 1 (or $-1/2$) corresponding to WL (weak anti-localization). $B_\phi = \frac{\hbar}{4\beta e l_\phi}$ is a magnetic field defined by a phase coherence length l_ϕ ($l_\phi = \sqrt{D/\tau_{\phi}}$). $B_{so} = \frac{\hbar}{4\beta e l_{so}}$ is the characteristic magnetic field defined by the spin–orbit length l_{so}, which can lead to weak anti-localization effect. Since at high magnetic field the conductance is dominated by the large quadratic background (B^2 dependence) from the Lorentz force, the final fitting of the conductivity was performed using equation (12)

$$\Delta G(B)_{FIT} = \Delta G(B)_{HLN} + CB^2,$$

(12)
where C is a measurement temperature related parameter [4], while in the fitting process of temperature range of 3–80 K, it keeps nearly constant.

The solid curves in figures 6(a) and (b) correspond to the fits with equation (12). The theory of WL in two-dimensional provides an excellent description of the transport results. Figure 6(c) shows the magneto-transport data obtained from p-type GaAs exhibiting the negative MC. This phenomenon is commonly explained by weak anti-localization originating from spin–orbit coupling (SOC), which has already been reported in heavily doped p-type Ge [4], and in some topological insulator materials [54]. However, by fitting the transport curve of the p-type GaAs using equation (12), we found that l_0 is negligibly small compared to l_ϕ, which excludes the assumption that the negative MC in p-type GaAs can be attributed to the strong SOC. Here, the negative magnetoconductivity in p-type GaAs is attributed to the Lorentzian force instead of a weak-antilocalization.

Figures 6(d) and (f) show the phase coherence length and spin–orbit length as a function of carrier concentration at 3 K. As expected, the phase coherence length is comparable or larger (80–540 nm) than the thickness of the doped layer (100 nm), confirming that the system is quasi-two dimensional and justifies the use of HLN model.

The electron dephasing time τ_ϕ corresponds to 0.5–38 ns with l_ϕ varying from 80 to 540 nm. The error bars for the phase coherence length and the spin–orbit length in figure 6 indicate the 95% confidence intervals of the fits. The 10% percent inaccuracy of the carrier concentration is due to the inaccuracy in determining the thickness of the doped layer. For the 0.07% S sample, we are unable to extract a proper phase coherence length and spin-diffusion length owing to the bad quality of the experimental data fittings, thus the discussion will focus on the rest of the n-type GaAs samples.

Figure 6(d) shows that l_ϕ increases from 80 to 540 nm with increasing the electron concentration from 5×10^{18} to 5×10^{19} cm$^{-3}$. Similarly, an enhancement of l_ϕ with increasing carrier concentration by applying back gating voltage is reported in low dimensional systems. Koester et al have reported that in Si/Sl$_{0.7}$Ge$_{0.3}$ quantum wells, at 1.3 K the phase coherence length can be tuned from 170 to 690 nm by increasing sheet electron concentration from 4.15×10^{11} to 4.85×10^{11} cm$^{-2}$ [55]. Premasiri et al have shown that for a multilayer indium monoselenide (InSe), at 2.2 K l_ϕ increases from 40 to 65 nm as the back gating voltage increases from 23 to 48 V, corresponding to an increase in sheet electron concentration from 3×10^{12} to 13×10^{12} cm$^{-2}$ [56]. The increase of l_ϕ is commonly attributed to the enhanced diffusion parameter and the increased Fermi velocity [57]. Figure 6(e) illustrates temperature dependent l_ϕ, which decreases with increasing temperature and follows $l_\phi \propto T^n$ power law. The reported value $n = -1/2$ is ascribed to the dephasing mechanism being related to electron–electron collision with small energy transfer (or the ‘Nyquist dephasing’) in 2D systems [57, 58]. Since the electron–phonon scattering also plays a role in the inelastic scattering mechanism in heavily doped n-type GaAs, it could explain the value of n between -0.24 and -0.38 as shown in figure 6(e). Moreover, the phase coherence length of about 540 nm for samples 0.42% Te and 0.32% S at 3 K could not fit with this power law, which may be related to the stronger screening of charged impurities at electron concentration reaching 5×10^{19} cm$^{-3}$ [19]. It means electrons can obtain a longer phase memory before they are scattered by impurities, leading to an enhanced weak-localization for samples 0.42% Te and 0.32% S at 3 K. The l_ϕ as large as 540 nm at 3 K in this study is comparable with the values obtained in Si/Sl$_{0.7}$Ge$_{0.3}$ quantum well systems [55], which is desirable for quantum device applications.

Figure 6(f) show the extracted l_ϕ in the range of 29–48 nm for five heavily doped n-type GaAs samples. For Te doped GaAs, it shows a decreased l_ϕ with increasing the electron concentration. This is due to the reduced spin relaxation time τ_{so} since $l_\phi = \sqrt{D_{so}}$. Dzhioev et al have studied the spin relaxation time in GaAs by the optical orientation method [59]. It was found that τ_{so} decreases with increasing electron concentration in the metallic regime. With increasing the donor concentration from 10^{16} to 10^{19} cm$^{-3}$, the spin relaxation time decreases from 100 to 0.04 ns. Using $l_{so} = \sqrt{D_{so}}/\tau_{so}$, we have estimated τ_{so} in our Te-doped GaAs in the range of 0.06 and 0.18 ns. The decrease of τ_{so} was explained by Dyakonov–Perel (DP) spin dephasing mechanism [59]. It applies to materials without the inversion symmetry, like groups III–V (such as GaAs) and II–VI (ZnSe) compound semiconductors, where the inversion symmetry is broken by the presence of two distinct atoms in the Bravais lattice. However, in our case figure 6(g) illustrates that at temperature range of 3–80 K, l_ϕ for n^{++} GaAs is insensitive to temperature, which suggests spin precession is due to carrier collisions with phonons or impurities named Elliott–Yafet (EY) spin relaxation mechanism instead of DP mechanism [60]. Kikkawa and Awschalom also reported that the EY mechanism dominates the spin precession process in n-type GaAs below 30 K [61]. For S doped GaAs, l_{so} is generally larger at a similar electron concentration. Since heavier elements have stronger SOC, GaAs:Te gives rise to a shorter spin relaxation time than in GaAs:S. This explains the different behavior of l_{so} for GaAs:Te and GaAs:S samples.
4. Conclusion

In summary, heavily doped GaAs samples synthesized by ion implantation followed by non-equilibrium annealing process are systematically investigated regarding their electrical and optical properties. We have shown that WL is responsible for the PMC in n-type GaAs samples. By fitting the magnetotransport data with the HLN model, the extracted phase coherence length and the spin–orbit length are as large as 540 and 48 nm, respectively, implying heavily doped GaAs as a potential material for quantum devices and spintronic application. Moreover, the unprecedented high electron concentration ($5 \times 10^{19} \text{ cm}^{-3}$) extends the possibilities of using GaAs as chemical sensors based on plasmonic effect.

Acknowledgments

Support by the Ion Beam Center (IBC) at HZDR is gratefully acknowledged. The author J M Duan thanks China Scholarship Council (File No. 201706890037). C A Wang would like to thank the financial support from the GDAS’ Project of Science and Technology Development 2021GDASYL-20210103075. Y J Zeng thanks the Shenzhen Science and Technology Project under Grant No. JCYJ20180507182246321.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Juanmei Duan https://orcid.org/0000-0003-0168-665X
Lasse Vines https://orcid.org/0000-0001-5759-7192
Yu-Jia Zeng https://orcid.org/0000-0001-5673-3447
Shengqiang Zhou https://orcid.org/0000-0002-4885-799X
Slawomir Prucnal https://orcid.org/0000-0002-4088-6032

References

[1] Patrick A L and Ramakrishnan T V 1985 Disordered electronic systems Rev. Mod. Phys. 57 287–337
[2] Kawabata A 1980 Theory of negative magnetoresistance I. Application to heavily doped semiconductors J. Phys. Soc. Japan 49 628
[3] Monsteerlee J M, Capoen B and Biskupski G 1997 The importance of electron interaction to the negative magnetoresistance of metallic n-GaAs close to the metal–insulator transition J. Phys.: Condens. Matter 9 8657
[4] Newton P J, Mansell R, Holmes S N, Myronov M and Barnes C H W 2017 Weak localization and weak antilocalization in doped germanium epilayers Appl. Phys. Lett. 110 062101
[5] Ye Q-y, Shklovskii B I, Zrenner A, Koch F and Ploog K 1990 Hopping transport in δ-doping layers in GaAs Phys. Rev. B 41 8477
[6] Xu J et al 2019 Negative longitudinal magnetoresistance in gallium arsenide quantum wells Nat. Commun. 10 287
[7] Hansen J E, Taboryski R and Lindelof P E 1993 Weak localization in a GaAs heterostructure close to population of the second subband Phys. Rev. B 47 16040
[8] Sernelius B and Berggren K-F 1979 Origin of negative magnetoresistance in heavily doped n-type silicon and germanium Phys. Rev. B 19 6390
[9] Gilbertson A M, Newaz A K M, Chang W-J, Bashir R, Solin S A and Cohen L F 2009 Dimensional crossover and weak localization in a 90 nm n-GaAs thin film Appl. Phys. Lett. 95 012113
[10] Wolfe C M and Stillman G E 1975 Self-compensation of donors in high-purity GaAs Appl. Phys. Lett. 27 564
[11] Deppe D G, Holonyak N Jr and Baker J E 1988 Sensitivity of Si diffusion in GaAs to column IV and VI donor species Appl. Phys. Lett. 52 129
[12] Walukiewicz W 2001 Intrinsic limitations to the doping of wide-gap semiconductors Physica B 302–303 123
[13] Hurle D T J 1979 Solubility and point defect-dopant interactions in GaAs I J. Phys. Chem. Solids 40 627
[14] Szymd M, Porro P, Majerfeld A and Lagomarsino S 1990 Heavily doped GaAs:Se I. Photoluminescence determination of the electron effective mass J. Appl. Phys. 68 2367
[15] Andrews D A, Heckingbottom R and Davies G J 1983 The influence of growth conditions on sulfur incorporation in GaAs grown by molecular beam epitaxy J. Appl. Phys. 54 4421
[16] Walukiewicz W 1989 Amphoteric native defects in semiconductors Appl. Phys. Lett. 54 2094
[17] Benzaquen M, Walsh D and Mazuruk K 1987 Conductivity of n-type GaAs near the Mott transition Phys. Rev. B 36 4748
[18] Sahai D, Misra P, Ajimsha R S, Joshi M P and Kukreja L M 2014 Phase-coherent electron transport in (Zn, Al)O thin films grown by atomic layer deposition Appl. Phys. Lett. 105 212102
[19] Likovich E M, Russell K J, Petersen E W and Narayananamurti V 2009 Weak localization and mobility in ZnO nanostructures Phys. Rev. B 80 245318
[20] Naik G V, Shalaev V M and Boltasseva A 2013 Alternative plasmonic materials: beyond gold and silver Adv. Mater. 25 3264
New J. Phys. 23 (2021) 083034
J Duan et al

[21] Ziegler J F, Ziegler M D and Biersack J P 2010 Sr—-the stopping and range of ions in matter (2010) Nucl. Instrum. Methods Phys. Res. B 268 1818

[22] Rebohle L, Prucnal S and Reichel D 2019 Flash Lamp Annealing—From Basics to Applications (Berlin: Springer)

[23] Duan J, Wang M, Vines L, Böttger R, Helm M, Zeng Y J, Zhou S and Prucnal S 2019 Formation and characterization of shallow junctions in GaAs made by ion implantation and ms-range flash lamp annealing Phys. Status Solidi a 216 1800618

[24] Haynes T E, Chu W K, Tangle T L and Picraux S T 1986 Initial decomposition of GaAs during rapid thermal annealing Appl. Phys. Lett. 49 466

[25] Zardo I, Conesa-Boj S, Peiro F, Morante J I, Arbiol J, Uccelli E, Abstreiter G and Fontcuberta i Morral A 2009 Raman spectroscopy of wurzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects Phys. Rev. B 80 245324

[26] Steele J A, Puech P and Lewis R A 2016 Polarized Raman backscattering selection rules for (hhl)-oriented diamond- and zincblende-type crystals J. Appl. Phys. 120 055701

[27] Miyah A, Carles R, Landau G, Bedel E and Mudouh-Yaqou A 1991 Raman study of longitudinal optical phonon—plasmon coupling and disorder effects in heavily Be-doped GaAs J. Appl. Phys. 69 4046

[28] Limmer W, Glunk M, Mascheck S, Koeder A, Klarer D, Schoch W, Thonke K, Thonke K, Sauer R and Waag A 2002 Coupled plasmon-LO-phonon modes in GaAs Phys. Rev. B 66 205209

[29] Irmer G, Wenzel M and Monecke J 1997 Light scattering by a multicomponent plasma coupled with longitudinal-optical phonons: Raman spectra of p-type GaAs Zn Phys. Rev. B 56 9524

[30] Goktas N I, Fiordaliso E M and LaPierre R R 2018 Doping assessment in GaAs nanowires Nanotechnology 29 234001

[31] Cada M, Blazek D, Pestova J, Postava K and Siroky P 2015 Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide Opt. Mater. Express 5 340

[32] Steele J A et al 2014 Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAs: optical determination of carrier concentration Opt. Express 22 11680

[33] Baldassarre L et al 2015 Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates Nano Lett. 15 7225

[34] Lum W Y and Wieder H H 1978 Photoluminescence of thermally treated n-type Si-doped GaAs J. Appl. Phys. 49 6187

[35] De-Sheng J, Makita Y, Ploog K and Queisser H 1982 Electrical properties and photoluminescence of Te-doped GaAs grown by molecular beam epitaxy J. Appl. Phys. 53 999

[36] Schubert E F 1993 Doping in III–V Semiconductors (Cambridge: Cambridge University Press)

[37] Casey H C Jr, Sell D D and Wecht K W 1975 Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV J. Appl. Phys. 46 250

[38] Pankove J 1975 Optical Processes in Semiconductors (Englewood Cliffs, NJ: Prentice-Hall)

[39] Hudait M K, Modak P, Hardikar S and Krupanidhi S B 1997 Zn incorporation and band gap shrinkage in p-type GaAs J. Appl. Phys. 82 4931

[40] Kundrotas J, Cerikus A, Valuizis G, Lachab M, Khanna S P, Harrison P and Linfield E H 2008 Radiative recombination spectra of p-type δ-doped GaAs/AlAs multiple quantum wells near the Mott transition J. Appl. Phys. 103 123108

[41] Kundrotas J, Cerikus A, Asimontas S, Valuizis G, Sherliker B, Halsall M P, Steer M I, Johannessen E and Harrison P 2005 Excitonic and impurity-related optical transitions in Be δ-doped GaAs/AlAs multiple quantum wells: fractional-dimensional space approach Phys. Rev. B 72 235322

[42] Climente I J, Segarra C, Rajadell F and Planelles J 2016 Electrons, holes, and excitons in GaAs polytype quantum dots J. Appl. Phys. 119 125705

[43] El-Mellouhi F and Mousseau N 2005 Self-vacancies in gallium arsenide: an ab initio calculation Phys. Rev. B 71 125207

[44] Yamada T, Tokumitsu E, Saito K, Akatsuka T, Miyachi M, Konagai M and Takahashi K 1989 Heavily carbon doped p-type GaAs and GaAlAs grown by metalorganic molecular beam epitaxy J. Cryst. Growth 95 145

[45] Motl N P 1968 Metal—insulator transition Rev. Mod. Phys. 40 677

[46] Saso T and Kasuya T 1980 Scattering mechanism in heavily doped semiconductors I. Maxima in resistivity and Hall coefficient J. Phys. Soc. Japan 48 1566

[47] Tufte O N and Stelter E L 1965 Magnetoresistance in heavily doped n-type silicon Phys. Rev. 139 A265

[48] Chiquito A J, Lanfredi A J C and Leite E R 2008 One-dimensional character of Sn doped In2 O3 nanowires probed by magnetotransport measurements J. Phys. D: Appl. Phys. 41 045106

[49] Mezo I and Dil A 2010 Hyperharmonic series involving Hurwitz zeta function J. Number Theory 130 360–9

[50] Kim Y S et al 2011 Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3 Phys. Rev. B 84 073309

[51] Druzhinin A, Ostrovskii I, Khovkerko Y, Schherban N and Lukianchenko A 2019 Spin-related phenomena in nanoscale Si whiskers J. Magn. Magn. Mater. 473 331

[52] HiKami S, Larkin A I and Nagaoka Y 1980 Spin—orbit interaction and magnetoresistance in the two dimensional random system Prog. Theor. Phys. 63 707

[53] Abramowicz M, Stegun I A and Romer R H 1988 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol 958 (Washington, DC: US Government Printing Office)

[54] Thomas S, Kim D J, Chung S B, Grant T, Fisk Z and Xia J 2016 Weak antilocalization and linear magnetoresistance in the surface state of SmB6 Phys. Rev. B 94 205114

[55] Koester S J, Ismail K, Lee K Y and Chu J O 1996 Weak localization in back-gated Si/Si0.7Ge0.3 quantum-well wires fabricated by reactive ion etching Phys. Rev. B 54 10604

[56] Premasiri K, Radha S K, Sucharitakul S, Kumar U R, Sanka R, Chou F C, Chen Y T and Gao X P 2016 Tuning Rashba spin—orbit coupling in gated multilayer InSe Nano Lett. 18 4403

[57] Liang D and Gao X P A 2012 Strong tuning of Rashba spin—orbit interaction in single InAs nanowires Nano Lett. 12 3263

[58] Liang D, Sakr M R and Gao X P A 2009 One-dimensional weak localization of electrons in a single InAs nanowire Nano Lett. 9 1709

[59] Dzhioev R I, Kavokin K V, Korenev V L, Lazarev M V, Melts M B Y, Stepanova M N, Zakharchenya B P, Garmon D and Katzer D S 2002 Phys. Rev. B 66 245204

[60] Elliott R J 1954 Theory of the effect of spin—orbit coupling on magnetic resonance in some semiconductors Phys. Rev. 96 266

[61] Kikkawa J M and Awschalom D D 1998 Resonant spin amplification in n-type GaAs Phys. Rev. Lett. 80 4313