Neutron, electron and X-ray scattering investigation of Cr$_{1-x}$V$_x$ near Quantum Criticality.

D. A. Sokolov1, M. C. Aronson1,2, L. Wu1, Y. Zhu1,2, C. Nelson1, J. F. Mansfield3, K. Sun3, R. Erwin4, J. W. Lynn4, M. Lumsden5, and S. E. Nagler5.

1 Brookhaven National Laboratory, Upton, NY 11973, USA
2 Department of Physics and Astronomy, Stony Brook University, New York 11794, USA
3 Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48090, USA
4 NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899, USA
5 Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

(Dated: July 18, 2014)

The weakness of electron-electron correlations in the itinerant antiferromagnet Cr doped with V has long been considered the reason that neither new collective electronic states or even non Fermi liquid behaviour are observed when antiferromagnetism in Cr$_{1-x}$V$_x$ is suppressed to zero temperature. We present the results of neutron and electron diffraction measurements of several lightly doped single crystals of Cr$_{1-x}$V$_x$ in which the archtypal spin density wave instability is progressively suppressed as the V content increases, freeing the nesting-prone Fermi surface for a new striped charge instability that occurs at x_c=0.037. This novel nesting driven instability relieves the entropy accumulation associated with the suppression of the spin density wave and avoids the formation of a quantum critical point by stabilising a new type of charge order at temperatures in excess of 400 K. Restructuring of the Fermi surface near quantum critical points is a feature found in materials as diverse as heavy fermions, high temperature copper oxide superconductors and now even elemental metals such as Cr.

PACS numbers: 74.40.Kb, 71.45.Lr, 74.70.Ad., 75.30.Fv.

Introduction

A quantum critical point (QCP) is generated when matter undergoes a continuous transition from one state to another at zero temperature under the action of a nonthermal control parameter Γ_c such as external pressure, magnetic field, or chemical doping. The suppression of electronic order to zero temperature would ultimately lead to an entropy singularity at a QCP[1], but the violation of the third law of thermodynamics can be prevented by the formation of novel collective phases, including unconventional superconductivity in heavy fermion materials such as CeCu$_2$Si$_2$[2], CePd$_2$Si$_2$[3], and UGe$_2$[4], and ‘electron nematicity’ in Sr$_3$Ru$_2$O$_7$[5]. There is much interest in identifying new compounds that are naturally near QCPs. Materials of this class are important for their exquisite sensitivity to external fields, and the most extremal response occurs when the ordered state is tuned just to the verge of instability, i.e. at a QCP. A primary obstacle to designing materials based on this functionality is the inherent difficulty in connecting the physics of a parent material with that of the modified QC material where the underlying electronic structure is often vastly different.

There are few systems where a Fermi surface (FS) has been tracked from the ordered state to the QCP, and where the underlying electronic structure is simple enough to unambiguously identify the signatures of QC. A simple electronic structure, a well established experimental and theoretical understanding of the FS, and the itinerant nature of the d electrons all make Cr an ideal material for studies of QC. Elemental Cr undergoes a spin density wave (SDW) transition to antiferromagnetic (AF) order at 311 K that is driven by the nesting of large, parallel sections of the FS[6]. High pressures suppress the related charge density wave (CDW), which disappears continuously at the critical pressure $P_C \sim 10$ GPa[7]. Strong charge fluctuations transverse to the wave vector of the modulation were reported to destroy the Bardeen-Cooper-Schrieffer state of the SDW, whereas the FS nesting was even improved under pressure. Chemical doping introduces electrons or holes that can change the FS volume and reduce the SDW nesting[6]. We present here a comprehensive experimental study of Cr$_{1-x}$V$_x$ that uses V doping to tune the SDW to a QCP.

Neutron diffraction experiments that probe the static magnetic moment and electron diffraction measurements that probe the charge order connect variations in the order parameter and the wave vector of the coupled SDW/CDW instabilities to the electronic structure both near and far from the QCP.

Experimental

Single crystals of Cr$_{1-x}$V$_x$, $x=0.0$, 0.02, and 0.037, were grown by the arc zone melting method at the Materials Preparation Center at the Ames National Laboratory. Neutron diffraction measurements were carried out on these single crystals of Cr$_{1-x}$V$_x$ using the BT-9 triple-axis spectrometer at the National Institute for Standards and Technology Center for Neutron Research, using a fixed final energy $E_F=14.7$ meV. The measurements were performed...
using a 40°-47°-42°-82° configuration. Data were collected near the (1,0,0) and (0,1,0) reciprocal lattice positions in the (HK0) plane. Some of our early results were obtained using the HB3 triple-axis spectrometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. X-ray diffraction measurements were performed using X-16B instrument at the National Synchrotron Light Source at the Brookhaven National Laboratory. Electron microprobe measurements were made at a 20 kV accelerating voltage on a CAMECA SX100 electron microprobe analyzer using Cr and V X-ray lines calibrated with Cr and V standards. TEM measurements were carried out on single crystals of Cr$_{1-x}$V$_x$, $x=0$, 0.02, and 0.37 using JEOL 2010F and JEOL 3000F transmission electron microscopes. A GATAN liquid helium holder was used for low temperature TEM measurements. Cr$_{1-x}$V$_x$ samples were electropolished for TEM experiments using a methanol:perchloric acid solution (90:10 by volume) at T=260 K.

Results and Discussion

The SDW in pure Cr is stabilised by the Coulomb attraction between holes and electrons, reinforced by the strong nesting of large parallel parts of their respective FS [6,8,11]. In a neutron diffraction experiment, the appearance of satellites, FIG1a near the bcc h+k+l=odd peaks marks SDW onset at the Neél temperature, T_N. Substituting V for Cr shrinks the electron FS relative to the hole FS, making a smaller fraction of the FS nestable [9,11]. The result is a SDW with a smaller moment and lower T_N. As the mismatch between the hole and electron FS becomes larger, the SDW wave vector Q_{SDW} in the doped Cr$_{1-x}$V$_x$ becomes increasingly incommensurate with the lattice.

SDW formation is accompanied by charge modulation, since electron-phonon coupling can drive a lattice distortion that reduces the energy cost of the purely electronic part of the SDW. This CDW was previously detected in both X-ray and neutron diffraction experiments [7,12-15] on pure Cr as additional superlattice peaks with $Q_{CDW}=2Q_{SDW}$ that appear with the SDW superlattice peaks at T_N. Our X-ray diffraction experiments confirmed CDW in Cr with $Q_{CDW}=2\pi/a(2.09,0,0)$, FIG1a. We have used transmission electron microscopy (TEM) experiments to study CDW formation in Cr, FIG1b, confirming that $Q_{CDW}=2Q_{SDW}$ (FIG1b) and that the CDW is present at 300 K but absent at 350 K, as expected given that $T_N=311$ K in bulk Cr. Taken together, the neutron, X-ray and TEM experiments confirm that corresponding CDW and SDW modulations are present in pure Cr, arising from the same nesting-driven FS instability.

The aim of the experiments presented here is to determine whether this scenario is still appropriate when the SDW instability is driven to very low temperatures by replacing Cr by nonisoelectronic V in Cr$_{1-x}$V$_x$. High pressures suppress the SDW by increasing the breadth of the nested bands [17], while V doping reduces the volume of the Γ-centered electron FS, while increasing the volume of the hole FS that is centered at H, FIG1a. Electrical transport and specific heat measurements [18,19] showed that $T_N\rightarrow 0$ for a critical V doping $x_C\approx 0.04$. Only recently [17] have neutron diffraction experiments begun to probe the vicinity of the doping-induced QCP, and our measurements show that both the SDW wavevector and or-
ordered moment continue to decrease smoothly with T_N as $x \rightarrow x_C$.

We have performed neutron diffraction measurements on Cr$_{1-x}$V$_x$ with x=0, 0.02, and 0.037, FIG. 2. The superlattice peak for the sample with x=0.037 occurs with Q_{SDW}=0.922±0.001 r.l.u., and is only present below the same $T_N=19$ K (inset, FIG. 2b) found in electrical resistivity measurements [20], while its breadth indicates that SDW order persists over a length scale that exceeds 34 Å. FIG. 2b shows that the ordered moment decreases and the SDW becomes increasingly incommensurate as V-doping drives $T_N \rightarrow 0$, consistent with the shrinking of the Γ electron FS and the H hole FS with doping represented in FIG. 1a. Powder and single crystal neutron diffraction and other techniques such as electrical resistivity, thermal expansion, and magnetic susceptibility all agree that T_N vanishes approximately linearly at $x_C=0.040±0.001$ (FIG. 2b). The amount of nested FS can be modified by electron (Mn) or hole (V) doping, and our results extend earlier measurements [10, 24] into the QC region (FIG. 2c), confirming that a QCP occurs when the electron FS in Cr drops below a critical size.

If FS survives once the SDW is destabilized, and it is interesting to ask whether it persists well into the paramagnetic phase with $x \geq x_C$, where we have carried out TEM experiments on Cr$_{1-x}$V$_x$ (x=0.037). Since we have no a priori reason to expect any sort of charge ordering for $T \gg T_N$, the results are very surprising. New diffraction peaks are found (FIG. 3a) at all temperatures from 88 K - 400 K, corresponding to a superlattice peak with Q_{SL}=1.661±0.001 r.l.u, as well as its second harmonic with 2Q_{SL}, indicating that the corresponding charge modulation is not purely sinusoidal, but somewhat flat-topped, FIG. 3b.

To establish the origin of the missing satellite reflections near T10, 1T0 and 0T0, in FIG. 3 we have calculated the electron diffraction patterns for samples with increasing thickness using dynamical Bloch wave method for a 3x1x1 superstructure of Cr, FIG. 4. A cosine wave displacement modulation was introduced for superlattice reflections (SLR). The patterns were convoluted with a Lorentzian spread function. At small sample thickness, e.g. in FIG. 4a, the dynamical coupling among the reflections was weak and the electron diffraction was similar to the X-ray diffraction. The intensities of the superlattice reflections SLR at left (SLR$_{200L}$) and right (SLR$_{200R}$) of the 200 reflection were almost the same, though both intensities were very weak. For a thicker sample, e.g. in FIG. 4b, the dynamical effect multiplying the intensity was stronger than in FIG. 4a. Some SLRs are enhanced more strongly than the others due to their different excitation errors or deviations from the Ewalds sphere, resulting in strong asymmetry of the SLRs at left and right of the main reflections FIG. 4a. At large thickness, e.g. in FIG. 4c, the SLR$_{200R}$ was not observed. We conclude that the relative intensities of the SLRs strongly depend on the sample thickness and differ considerably as the thickness increases as shown in FIG. 4d.

A real space image of the charge modulation shown in FIG. 3 is depicted in FIG. 5. The image shows a striplike modulation with a wave length $\lambda_{SL} \simeq 3\pm 0.3a$. The SDW modulation in this $x=0.037$ sample has $Q_{SDW}=(0.922±0.001,0,0)$ r. l. u., and its corresponding CDW would have $Q_{CDW}=2Q_{SDW}=(1.844,0,0)$ r.l.u., yielding $\lambda_{CDW} \simeq 6.4a$, which is about twice the wave-length of the new striped modulation. Both are considerably shorter than the CDW wavelength of $\approx 13a$ found in pure Cr at 300 K. This new striped modulation is unrelated to the SDW/CDW found for $T \leq T_N=19$ K, or from the Cr inclusions found in this sample. Similarly the absence of an SDW with $Q_{SDW}=0.5Q_{SL}$ indicates that the striped instability affects only the charge and not the magnetic moment.

FIG. 5a shows that the striped phase is not spatially ho-
FIG. 3. (Color online) Charge Modulation in $\text{Cr}_{0.963}\text{V}_{0.037}$: a, (h,k,0) reciprocal plane at 300 K, where the characteristic splitting of the bcc Bragg peaks corresponds to a new charge modulation. Dashed line is the direction of the line cut shown in fig.3b. B. Line cut in [h00] direction in the reciprocal plane, showing the (2,0,0) and ($\overline{2}$,0,0) r. l. u. bcc Bragg peaks, each with superlattice peaks with Q_{SL}=1.661±0.001 r. l. u., and their second harmonics with 2Q_{SL}. Solid line is a simulation of the line scan, where the lattice Bragg peaks, as well as the first and second harmonics of the charge modulation are modeled as Lorentzian-shaped peaks.

FIG. 4. (Color online) (a-c) Calculated [001] electron diffraction patterns with (a) thickness=5 nm, (b) thickness=100 nm and (c) thickness=134 nm. The embedded lines in (a-c) are the intensity line scan from -200 to 200. (d) Schematics of Ewald’s sphere in the vicinity of 200 reflection, showing that the excitation error, S_g, of SLR$_{200L}$ is smaller than that of SLR$_{200R}$. (e) Intensities of SLR$_{200L}$ and SLR$_{200R}$ as a function of thickness.

FIG. 5. (Color online) Charge Stripes in Quantum Critical $\text{Cr}_{0.963}\text{V}_{0.037}$. a, Direct space image with atomic resolution showing long vertical fringes that extend over length scales of \approx5 nm. Region inside the red circle has charge stripe modulation, region inside the green circle represents the unmodulated matrix. b, The diffraction patterns obtained from the fast Fourier transform (FFT) of the real space image are different for the stripe regions (red circle) and for the matrix in which they are embedded (green circle). FFT of striped area encircled in red shows 2 incommensurate superlattice satellites near (0,0,0). c, FFT of green encircled area shows no satellites, only the bcc Bragg peaks. d, 300 K dark field image where the bright regions indicate parts of the sample with enhanced intensity at Q=Q_{SL}.

mogeneous, but is restricted to regions whose average size is \approx5 nm, where Q_{SL} is virtually identical in every region measured. The FFT of the striped regions (FIG5b) produced clear incommensurate satellites at the same wave vector Q_{SL} in each region tested. No superlattice peaks were observed in the matrix (FIG5c), which we conclude is simply the paramagnetic metal expected for this composition and temperature. The dark field image (FIG5d) shows that about 20-25% of the imaged area is in the striped phase having Q_{SL} parallel to the indicated [h00] direction. Assuming that there is some angular distribution of Q_{SL} that prohibits all striped regions from being imaged simultaneously, the actual volume fraction may be considerably larger.

The general morphology revealed in FIG5 where regions with charge order are embedded in a matrix with exemplary crystalline order but no charge superlattice, is reminiscent of the phase separation that accompanies first order transitions. One source may be the spinodal decomposition of a binary alloy that occurs on cooling from the melt, producing regions that are V-deficient and V-rich, relative to the average V concentration x_C. In this scenario, the V concentration in the matrix x_C \leq x_C, and so a SDW would be present for T \leq T_N=19 K. Conversely, the absence of a second SDW in the temperature range 19 K \leq T \leq 400 K implies that the striped regions would have a V concentration x_C^+ that is larger than x_C. We have used electron microprobe (FIG6a) and electron energy loss spectroscopy (FIG6b) to demonstrate that the V concentration varies by no more than 1000 ppm on any length scale larger than \approx58 nm, and the lack of variability in λ_{SL} among different striped regions suggests that this is likely also true for length scales that approach the average 5 nm size of the striped regions themselves. Indeed, the binary phase diagram [25] implies continuous solubility of V in Cr, arguing against compositional phase separation. It is more likely [26, 27] that the droplets of charge ordered phase in a uniform SDW matrix represent the coexistence region of
a first order transition that separates the SDW/CDW found for \(x \leq x_C \) from an instability that affects only the charge that is found for \(x \geq x_C \).

What is the nature of the striped charge modulation that replaces the familiar SDW in Cr for \(x \geq x_C \)? We observe that the magnitude of \(q_{SL} \) is very similar to that of a wave vector \(q_{SDW,H} \) that connects the parallel surfaces of the H-centered hole FS, suggesting the following scenario. Initially the FS nesting wave vector in pure Cr connects two different sheets of the FS. The number of nested states decreases with V doping, and eventually is not sufficient to make this SDW/CDW energetically favorable when \(x \geq x_C \). The failure of the original SDW/CDW leaves the FS ungapped. The electronic structure calculations for paramagnetic Cr suggest that the FS nesting can occur at multiple vectors either along [011] or [111] \(^{28}\). Indeed, the inelastic neutron scattering reported multiple Kohn anomalies in the phonon spectrum of pure Cr, which can soften in doped Cr, stabilizing CDW \(^{29}\). More recently, inelastic X-ray scattering experiments with a superior wavevector resolution found softening of phonons in pure chromium that occur far from the established wavevectors of the Fermi surface \(^{30}\). The study suggests that the strong electron-phonon coupling alone can drive the phonon softening without invoking Fermi surface nesting. We note, however that \(q_{SL} \) is parallel to [h00] in FIG 3a and FIG 5, whereas wavevector of the soft phonon occurs at \(q=(0.5,0.5,0) \) suggesting either change of the topology of the electron balls and hole lenses or rotation of the electron jack relative to undoped Cr. Whether charge modulation in \(\text{Cr}_{0.963}\text{V}_{0.037} \) originates from hidden Fermi Surface nesting or due to soft phonon remains an open question.

Although the binary phase diagram for Cr-V may argue otherwise, it is even possible that the striped regions form in a new binary compound \(\text{Cr}_{100x}\text{V}_{38} \) and that this new chemical periodicity is amplified by nesting to result in the formation of the CDW gap, analogous to the FS-driven superstructures seen in other binary compounds such as Cu-Au or Au-Mn, in which a substantial element substitution stabilizes a new charge modulation \(^{31}\). Why is this instability, which affects only the charge and not the magnetic moment, absent in pure Cr? It has been suggested \(^{19}\) that it may exist dynamically, as a pseudo-gap akin to those discussed in more complex systems such as dichalcogenides\(^{32}\) and cuprates\(^{33}\), only becoming a static and incommensurate CDW once the SDW is completely suppressed. The most powerful evidence for the electronic transformation of \(\text{Cr}_{1-x}\text{V}_x \) at the QCP comes from Hall effect measurements\(^{19, 34}\), which find that the number of carriers approximately doubles with the demise of the SDW at \(x_C \), giving a \(T \rightarrow 0 \) Hall number \(R_H^{-1} = 0.35 \) electrons/Cr for \(x < x_C \) that is in reasonable agreement with the value \(R_H^{-1} = 0.54 \) electrons/Cr deduced from electronic structure calculations\(^{35}\), assuming the complete absence of gapping for both \(\Gamma \) and H FS.

Conclusion

Our results underscore the powerful role that nesting plays in the different phases of \(\text{Cr}_{1-x}\text{V}_x \), initially driving the SDW/CDW instabilities familiar from pure Cr, but ultimately replacing them at a critical concentration \(x_C \) with a new charge instability. While this system shares many of the common features of correlated electron systems with competing orders, such as FS volume changes and the adoption of novel ordered states near the QCP, the perennial value of Cr as a benchmark system is that a detailed and experimentally verified understanding of the electronic structure is available, and our studies of the magnetic and charge modulation advance this understanding into a new regime.

Acknowledgements

DAS and MCA would like to thank A. M. Tsvelik, J. Tranquada, T. M. Rice and S. M. Shapiro for useful discussions. Work at BNL was carried out under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences under Contracts No. DE-AC02-98CH18866 (MCA and DAS) and DE-AC02-98CH10886 (YZ and CN). Work at ORNL (ML and SEN) was carried out under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. The electron microprobe at the University of Michigan used in this study was partially funded by grant EAR-99-11352 from the National Science Foundation. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce in providing the neutron research facilities used in this work. Identifica-
References

[1] A. W. Rost, R. S. Perry, J. -F. Mercure, A. P. Mackenzie, S. A. Grigera, Entropy landscape of phase formation associated with quantum criticality in Sr$_3$Ru$_2$O$_7$, Science 325, 1360-1363 (2009).

[2] W. Assmus, et al., Superconductivity in CeCu$_2$Si$_2$ single crystals, Phys. Rev. Lett. 52, 469-472 (1984).

[3] N. D. Mathur, et al., Magnetically mediated superconductivity in heavy fermion compounds, Nature 394, 39-43 (1998).

[4] S. S. Saxena, et al., Superconductivity on the border of itinerant-electron ferromagnetism in UGe$_2$, Nature 406, 587-592 (2000).

[5] R. A. Borzi, et al., Formation of a nematic fluid at high fields in Sr$_3$Ru$_2$O$_7$, Science 315, 214-217 (2007).

[6] E. Fawcett, Spin-density-wave antiferromagnetism in chromium, Rev. Mod. Phys. 60, 209-283 (1988).

[7] R. Jaramillo, et al., Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition, Nature 459, 405-409 (2009).

[8] A. W. Overhauser, Spin density waves in an electron gas, Phys. Rev. 128, 1437-1452 (1962).

[9] E. Fawcett, H. L. Alberts, V. Yu. Galkin, D. R. Noakes, J. V. Yakhi, Spin-density-wave antiferromagnetism in Cr alloys, Rev. Mod. Phys. 66, 25-127 (1994).

[10] W. C. Koehler, R. M. Moon, A. L. Trego and A. R. Mackintosh, Antiferromagnetism in chromium alloys. I. Neutron diffraction, Phys. Rev. 151, 405-413 (1966).

[11] S. Komura, Y. Hamaguchi, and M. Kunitomi, Experimental test of rigid band model for Cr by means of Cr-V-Mn ternary dilute alloys, J. Phys. Soc. Jpn. 23, 171-179 (1967).

[12] Y. Tsunoda, M. Mori, N. Kunitomi, Y. Teraoka, Y. Kanamori, Strain wave in pure chromium, Solid State Commun. 14, 287-289 (1974).

[13] Y. Tsunoda, Y. Nakai, N. Kunitomi, Phase relation between SDW and strain wave in chromium, Solid State Commun. 16, 443-445 (1975).

[14] R. Pynn, W. Press, S. M. Shapiro. Second and third harmonics of the spin density wave in chromium metal, Phys. Rev. B 13, 295-297 (1976).

[15] J. P. Hill, G. Helgesen, D. Gibbs. X-ray-scattering study of charge- and spin-density waves in chromium, Phys. Rev. B 51, 10336-10344 (1995).

[16] An early TEM report appears in A. F. Prekul and S. V. Sudareva, Electron diffraction investigation of deformation waves coupled with spin density waves in chromium, Phys. Met. Metallogr. 5, 46-53 (1979).

[17] R. Jaramillo, et al., Chromium at high pressures: weak coupling and strong fluctuations in an itinerant antiferromagnet, Phys. Rev. B 77, 184418 (2008).

[18] J. Takeuchi, H. Sasakura and Y. Masuda, Spin fluctuations in itinerant electron antiferromagnet Cr$_{1-x}$V$_x$ system, J. Phys. Soc. Jpn. 49, 508-513 (1980).

[19] A. Yeh et al., Quantum phase transition in a common metal, Nature 419, 459-462 (2002).

[20] D. A. Sokolov, M. C. Aronson, G. L. Strycker, M. D. Lumsden, S. E. Nagler, R. Erwin, Elastic neutron scattering in quantum critical antiferromagnet Cr$_{0.963}$V$_{0.037}$, Physica B 403, 1276-1278 (2008).

[21] D. R. Noakes, E. Fawcett, T. M. Holden, Concentration dependence of critical scattering from Cr(V) alloys above the Néel temperature, Phys. Rev. B 55, 12504-12509 (1997).

[22] A. J. A. de Oliveira, O. F. de Lima, P. C. de Camargo, W. A. Ortiz, and E. Fawcett, Suppression of the Curie-Weiss paramagnetism seen above the Néel transition in dilute CrV alloys, J. Phys.: Condens. Matter 8, L403-L407 (1996).

[23] R. G. Barnes, T. P. Graham, Néel temperatures of chromium-vanadium alloys from NMR measurements, J. Appl. Phys 36, 938-939 (1965).

[24] B. J. Sternlieb, E. Lorenzo, G. Shirane, S. A. Werner, E. Fawcett, Magnetism in the spin-density-wave alloy Cr$_{1-x}$Mn$_x$ (x>0.007), Phys. Rev. B 50, 16438-16443 (1994).

[25] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams vols. 1-3, ASM International 1990/1991.

[26] J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Colossal effects in transition metal oxides caused by intrinsic inhomogeneities, Phys. Rev. Lett. 87, 277202 - 277204 (2001).

[27] Y. J. Uemura et al., Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr$_{1-x}$Ca$_x$)RuO$_3$, Nature Phys. 3, 29-35 (2007).

[28] D. G. Laurent, J. Callaway, J. L. Fry and N. E. Brener, Band structure Compton profile, and optical conductivity of paramagnetic chromium, Phys. Rev. B. 23, 4977 (1981).

[29] W. M. Shaw and L. D. Muhlestein, Investigation of the Phonon Dispersion Relations of Chromium by Inelastic Neutron Scattering, Phys. Rev. B. 4, 969 (1971).

[30] D. Lamago et al., Measurement of strong phonon softening in Cr with and without Fermi-surface nesting by inelastic x-ray scattering, Phys. Rev. B. 82, 195121 (2010).

[31] M. Tachiki, K. Teramoto, Long period superlattice in the CuAu alloy, J. Phys. Chem. Solids 27, 335-348 (1966).

[32] S. V. Borisenko et al., Pseudogap and charge density waves in two dimensions, Phys. Rev. Lett. 100, 196402 (2008).

[33] W. D. Wise et al., Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy, Nature Phys. 4, 696-699 (2008).

[34] M. Lee, A. Husmann, T. F. Rosenbaum, and G. Aeppli, High resolution study of magnetic ordering at absolute zero, Phys. Rev. Lett. 92, 187201 (2004).

[35] M. R. Norman, Q. Si, Y. B. Bazaliy, and R. Ramazashvili, Hall effect in nested antiferromagnets near the quantum critical point, Phys. Rev. Lett. 90, 116601 (2003).