Treatment of *Helicobacter pylori* infection in the presence of penicillin allergy

Amit Kumar Dutta, Perminder Singh Phull

ORCID number: Amit Kumar Dutta 0000-0002-5111-7861; Perminder Singh Phull 0000-0002-1296-3803.

Author contributions: Dutta AK and Phull PS contributed equally to this work, jointly undertook the literature review; Phull PS had the idea for the review; Dutta AK wrote the first draft of the manuscript, which was revised by Phull PS; all authors have read and approved the final manuscript.

Conflict-of-interest statement: The authors have no conflicts of interest to declare

Country/Territory of origin: United Kingdom

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C, C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external experts.

Abstract
Therapy of *Helicobacter pylori* (*H. pylori*) requires a combination of antibiotics together with an acid suppressing agent; most treatment regimens include Amoxicillin as one of the antibiotics, which is an important constituent as resistance to it is low. However, allergies to the penicillin group of antibiotics are not uncommon, and treating *H. pylori* infection in such individuals can be challenging due to the restricted choice of regimens. The aim of this review is to summarise the evidence for therapeutic options in patients with *H. pylori* infection and penicillin allergy. A literature search was conducted in PubMed for English language publications using the key words ‘Helicobacter’ and ‘treatment’ or ‘therapy’ and ‘penicillin’ or ‘beta-lactam’ and ‘allergy’ or ‘anaphylaxis’. Eighteen studies were identified that specifically evaluated *H. pylori* treatment success in penicillin allergic patients. The number of subjects in most of them was low and many were retrospective, uncontrolled, single cohort studies. The most effective option for first-line treatment appears to be Bismuth-based quadruple therapy for 10-14 d. The evidence supports second-line treatment with Levoflaxacin-based triple therapy for 10 d. Patients with persistent *H. pylori* infection after 2 treatment courses should be considered for testing to confirm penicillin allergy. Further treatment should be guided by the results of *H. pylori* culture and sensitivity testing.

Key Words: *Helicobacter pylori*; Infection; Treatment; Penicillin-allergy; Stomach; Duodenum

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Penicillin allergy is a not uncommon occurrence and treating *Helicobacter pylori* infection in such individuals can be challenging. This review highlights the lack of high-quality studies to help guide management strategies. Recommendations have been made based on the limited data, but it would be important to monitor the success of treatment regimens and use what can be demonstrated to be effective locally.

Citation: Dutta AK, Phull PS. Treatment of *Helicobacter pylori* infection in the presence of penicillin allergy. *World J Gastroenterol* 2021; 27(44): 7661-7668

URL: https://www.wjgnet.com/1007-9327/full/v27/i44/7661.htm

DOI: https://dx.doi.org/10.3748/wjg.v27.i44.7661

INTRODUCTION

Infection with *Helicobacter pylori* (*H. pylori*) is prevalent worldwide with about half of world’s population estimated to be affected by this gram negative spiral bacterium[1]. The organism is causally implicated in the pathogenesis of peptic ulcer disease[2] and gastric adenocarcinoma[3]. Guidelines for the management of *H. pylori* infection have been published by a number of national societies and organisations[4-7].

Therapy of *H. pylori* requires a combination of antibiotics together with an acid suppressing agent (proton-pump inhibitor, PPI); most treatment regimens include Amoxicillin as one of the antibiotics, which is a particularly important constituent as resistance to it is low[8]. However, allergies to the penicillin group of antibiotics are reported in 5% to 15% of patients in developed countries[9] and, consequently, the treatment options in individuals allergic to penicillin are significantly restricted.

In this review we summarise the available evidence for therapeutic options in patients with *H. pylori* infection and penicillin allergy.

LITERATURE SEARCH

A literature search was conducted in PubMed using the key words ‘*Helicobacter*’ and ‘treatment’ or ‘therapy’ and ‘penicillin’ or ‘beta-lactam’ and ‘allergy’ or ‘anaphylaxis’ for English language publications from database commencement until January 31, 2021. Of the 77 publications identified, 18 studies were included in the review (48 were excluded as not relevant, and 11 were review articles)[10-27].

EVIDENCE FOR TREATMENT OF *H. PYLORI* INFECTION IN THE PRESENCE OF PENICILLIN ALLERGY

Data from studies specifically targeting penicillin allergic patients (Table 1). Considering the large volume of publications on *H. pylori* therapy, there is relatively little data on treatment of this bacterium in penicillin allergic individuals. A summary of data available from the 18 identified studies is shown in the Table. It should be noted that the number of subjects included in most of them is quite low and many are retrospective, uncontrolled, single cohort studies. All results discussed below are presented on an intention-to-treat basis.

First line therapy

Dual therapy: Prach et al[10] reported 100% treatment success with a 14 d combination of Omeprazole and Clarithromycin; however, this was only in 3 patients.

Triple therapy: The success rate with the 7 d PPI-Clarithromycin-Metronidazole regimen, has been reported as 50%-83.3% in retrospective studies[20,21] and 54-58% in prospective studies[11,14,18]. A longer 14 d regimen also resulted in a low success rate at 63.6%[23]. The European Registry on *H. pylori* management (Hp-EuReg) has provided the largest experience of treatment in penicillin allergic patients[25]. Although drug dose, frequency and duration details were not provided, the PPI-Clarithromycin-Metronidazole regimen achieved 69% success rate. Two studies from...
Ref.	Yr	Country	Study type	Treatment details	n	Success rate (PP, %)	Success rate (ITT, %)
Prach et al[10]	1998	United Kingdom	Prospective, single cohort	1st line O 20 mg b.d., C 500 mg t.d.s., 14 ds	3	100;	100;
Gisbert et al[11]	2005	Spain	Prospective, single cohort	1st line O 20 mg b.d., C 500 mg b.d., M 400 mg b.d., 7 d; 2nd line RBC 400 mg b.d., T 500 mg q.d.s., M 250 mg q.d.s., 7 d; 3rd line O 20 mg b.d., C 500 mg b.d.; RIF 150 mg b.d., 10 d; 4th line O 20 mg b.d., C 500 mg b.d.; LF 500 mg b.d., 10 d	12; 17; 9; 2	64; 53; 17; 100	58; 47; 11; 100
Rodriguez-Torres et al[12]	2005	Puerto Rico	Prospective, single cohort	1st line E 40 mg q.d.s., T 500 mg q.d.s., M 500 mg q.d.s., 10 d; 2nd line E 40 mg q.d.s., T 500 mg q.d.s., M 500 mg q.d.s., 10 d	17; 3	NA; NA	85; 100
Matsushima et al[13]	2006	Japan	Retrospective, single cohort	1st line PPI o.d., T 500 mg b.d., M 250 mg b.d., 7-14 d	5	100	80
Gisbert et al[14]	2010	Spain	Prospective, single cohort	1st line O 20 mg b.d., C 500 mg b.d., M 400 mg b.d., 7 d; 2nd line O 20 mg b.d., C 500 mg b.d., LF 500 mg b.d., 10 d	50; 15	55; 73	54; 73
Tay et al[15]	2012	Australia	Prospective, single cohort	2nd line R 20 mg t.d.s., B 240 mg q.d.s., RIF 150 mg b.d., CF 500 mg b.d., 10 d	69	94.2	94.2
Liang et al[16]	2013	China	Prospective, randomised	2nd line 109 pen allergic overall but results reported for whole group including non-allergic; I 30 mg b.d., B 220 mg b.d., T 500 mg t.d.s., F 100 mg t.d.s., 14 d; I 30 mg b.d., B 220 mg b.d., T 500 mg q.d.s., M 400 mg q.d.s., 14 d	108; 107	96.1; 93.1	91.7; 87.9
Furuta et al[17]	2014	Japan	Retrospective, single cohort	1st line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 1st line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 14 d; 2nd line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 2nd Line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 14 d; 3rd Line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 3rd line PPI b.d., SF 100 mg b.d., M 250 mg b.d., 14 d	7; 4; 9; 3; 2	100; 100; 100; 100; 100; 100; 100; 100	100; 100; 100; 100; 100; 100; 100; 100
Gisbert et al[18]	2015	Spain	Prospective, single cohort	1st line O 20 mg b.d., C 500 mg b.d., M 400 mg b.d., 7 d; 2nd line O 20 mg b.d., B 120 mg q.d.s., T 500 mg q.d.s., M 500 mg t.d.s., 10 d; 3rd line O 20 mg b.d., C 500 mg b.d., LF 500 mg b.d., 6 h; 4th line O 20 mg b.d., C 500 mg b.d., RIF 150 mg b.d., 10 d; 3rd line O 20 mg b.d., C 500 mg b.d., LF 500 mg b.d., 10 d; 4th line O 20 mg b.d., C 500 mg b.d., LF 500 mg b.d., 10 d; 2nd line O 20 mg b.d., C 500 mg b.d., LF 500 mg b.d., 10 d; 3rd line O 20 mg b.d., B 120 mg q.d.s., T 500 mg q.d.s., M 500 mg t.d.s., 10 d; 1st line O 20 mg b.d., B 120 mg q.d.s., T 500 mg q.d.s., M 500 mg t.d.s., 10 d; 2nd line O 20 mg b.d., C 500 mg t.d.s., T 500 mg q.d.s., M 500 mg b.d., 7 d	112; 24; 3; 2; 7; 2; 50; 3; 50; 14	20; 100; 75; 64; 100; 75; 64; 100; 74; 64	57; 37; 33; 50; 14; 100; 64; 100; 74; 64
Mori et al[19]	2017	Japan	Prospective, single cohort	1st line E 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 10 d; 2nd line E 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 10 d; 3rd line E 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 10 d	33; 19; 5	80; 84.2; 40	100; 84.2; 40
Ono et al[20]	2017	Japan	Retrospective, single cohort	1st line PPI b.d., C 200 mg b.d., M 250 mg b.d., 7 d; 1st line V 20 mg b.d., C 200 mg b.d., M 250 mg b.d., 7 d; 1st line V 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 1st line V 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 2nd line V 20 mg b.d., C 200 mg b.d., M 250 mg b.d., 7 d; 2nd line V 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 7 d; 2nd line V 20 mg b.d., SF 100 mg b.d., M 250 mg b.d., 7 d	10; 13; 20; 14; 3; 1; 24; 3	55.6; 92.3; 100; 100; 33.3; 100; 100; 66.7	50; 92.3; 100; 92.9; 33.3; 100; 100; 66.7
Sue et al[21]	2017	Japan	Prospective & retrospective, single cohort	1st line V 20 mg b.d., C 200 or 400 mg b.d., M 250 mg b.d., 7 d; 1st line PPI b.d., C 200 or 400 mg b.d., M 750 mg b.d., 7 d	20; 30	100; 86.2	100; 83.3
Osumi et al[22]	2017	Japan	Prospective, single cohort	1st line R 20 mg b.d., M 100 mg b.d, M 250 mg b.d., 7 d	5	100	100
Long et al[23]	2018	China	Prospective, randomised	1st line E 20 mg b.d., C 500 mg b.d., M 400 mg b.d., 14 d; 1st line E 20 mg b.d., B 600 mg b.d., C 500 mg b.d., M 400 mg b.d., 14 d	33; 33	70; 96	63.6; 84.8
Dutta AK et al. *H. pylori* treatment in penicillin allergy

Study	Year	Country	Design	Treatment Regimen	Success Rate
Song et al[24]	2019	China	Prospective, single cohort	1st line E 20 mg b.d, B 220 mg b.d, LF 500 mg o.d., Cef 500 mg b.d, 14 d	152
Nyssen et al[25]	2020	Europe	Retrospective, multi-centre registry	1st line PPI, C, M; 2nd line PPI, B, T, M; 3rd line PPI, B, T, M, 4th line PPI, B, T, M; 5th line PPI, B, T, M	285; 54; 250; 20; 10; 11; 59; 1
Luo et al[26]	2020	China	Prospective, single cohort	1st & 2nd line E 20 mg b.d, C 500 mg b.d, M 400 mg b.d, 14 d; 1st & 2nd line E 220 mg b.d, B 220 mg b.d, 14 d; 1st & 2nd line L 220 mg b.d, T 500 mg q.d.s, M 400 mg b.d, 14 d; 1st & 2nd line E 20 mg b.d, B 220 mg b.d, T 500 mg q.d.s, M 400 mg q.d.s, 14 d	5; 22; 1; 90; 1; 100; 100; 100; 100
Sue et al[27]	2021	Japan	Prospective, single cohort	2nd line V 20 mg b.d, SF 100 mg b.d, M 250 mg b.d, 7 d	17

PP: Per protocol analysis; ITT: Intention to treat analysis; B: Bismuth compound; C: Clarithromycin; Cef: Cefuroxime; CF: Ciprofloxacin; E: Esomeprazole; F: Furazolidone; LF: Levofloxacin; M: Metronidazole; Mi: minocycline; O: Omeprazole; PPI: proton pump inhibitor; R: Rabeprazole; RBC: ranitidine bismuth subcitrate; RIF: Rifabutin; SF: Sitafloxacin; T: Tetracycline; V: Vonoprazan.

Japan, have shown higher success rates (92.3%-100%) for this 7 d triple therapy when combined with Vonoprazan (a potassium-competitive blocker that inhibits gastric H+K+ATPase) instead of a PPI[20,21]. In a prospective study, Rodriguez-Torres et al reported a success rate of 85% with a 10 d triple therapy combining Esomeprazole, Tetracycline and Metronidazole[12]. A small retrospective study from Japan also reported a similar success rate of 80% when this regimen was used for 7-14 d[13]. Osumi et al achieved a 100% success rate using a modified 7 d regimen, substituting Minocycline for Tetracycline in a small study of 5 patients[22].

Levofloxacin in combination with Clarithromycin and PPI has been reported to achieve an 80% success rate[25]. Recent studies from Japan have evaluated treatment regimens utilising the fluoroquinolone, Sitafloxacin, which has a lower minimum inhibitory concentration for *H. pylori* than Levofloxacin and is effective in strains with the gyrA mutation, which denotes resistance to Levofloxacin[19]. Remarkably high success rates of 100% were reported for 7-14 d treatment regimens combining Sitafloxacin with Metronidazole and PPI, in two retrospective[17,20] and one prospective study[19].

Quadruple therapy: Retrospective data has demonstrated a 91% success rate for the PPI-Bismuth-Tetracycline-Metronidazole quadruple therapy[25]. Three prospective studies have reported success rates of 74% with a 10 d PPI-Bismuth-Tetracycline-Metronidazole combination[18], 84.8% with a 14 d PPI-Bismuth-Clarithromycin-Metronidazole regimen[23] and 85.5% with a 14 d PPI-Bismuth-Levofloxacin-Cefuroxime treatment[24].
Second line therapy

In view of the attrition of successfully treated patients with each course of treatment, patient course numbers for studies evaluating second line therapies tend to be low, often in single digits\[12,17,20\].

Triple therapy: Gisbert et al\[14,18\] have treated a relatively large number of patients with a 10 d combination of PPI-Clarithromycin-Levofloxacin, demonstrating success rates of 64%-73%. Levofloxacin based triple therapy using Clarithromycin or Metronidazole appears to achieve similar success rates, of 75% and 76.5%, respectively\[25\]. Sitafloxacin-based triple therapy has shown success rates of 100% in 2 small retrospective studies evaluating a 7 d regimen\[17,20\], whilst a prospective study investigating a 10 d treatment course reported a lower success rate of 84.2%\[19\]. Sue et al\[27\] demonstrated a success rate of 88.2% in a prospective study of a 7 d Sitafloxacin regimen using Vonoprazan instead of a PPI.

Quadruple therapy: An early study from Spain reported a low success rate of 47% using a 7 d regimen of Ranitidine Bismuth citrate-Tetracycline-Metronidazole, which has been considered as quadruple therapy due to an acid-suppressing agent and bismuth being combined into one tablet\[11\]. The same group of investigators also reported a low success rate of 37% for 10 d PPI-Bismuth-Tetracycline-Metronidazole quadruple therapy\[18\]. However, the European Registry has demonstrated a success rate of 78.3% for this regimen\[25\]. In a large prospective study, Liang et al\[16\] included 109 penicillin allergic patients randomised to 2 wk quadruple therapy with either PPI-Bismuth-Tetracycline-Metronidazole or PPI-Bismuth-Tetracycline-Furazolidine; success rates were 87.9% and 91.7%, with no difference between penicillin allergic and non-allergic patients\[16\].

A relatively large study from Australia reported on 69 patients with penicillin allergy, who had all failed prior therapy with PPI-Clarithromycin-Metronidazole. Treatment with a 10 d regimen of PPI-Bismuth subcitrate-Rifabutin-Ciprofloxacin achieved a success rate of 94.2%\[15\].

Luo et al\[26\] prospectively evaluated an antibiotic susceptibility approach using a variety of 14 d quadruple therapies, and demonstrated high success rates of 80%-100%. However, the results were not presented separately for first-line and rescue treatments\[26\].

Salvage (third-line) therapy

The published data for salvage therapy after failure of second-line treatment is very limited with 4 studies reporting on patient numbers in single figures\[11,17-19\]. Details are provided in the Table but it is difficult to draw any meaningful conclusions from the results.

Evidence from non-penicillin combination regimes in unselected groups of patients:

Meta-analyses of trials on the efficacy of non-penicillin regimes in treating \textit{H. pylori} infection are an alternate source of useful information when making treatment decisions about penicillin allergic individuals. These trials generally included unselected group of individuals without considering penicillin allergy status. The meta-analysis by Gisbert et al\[28\] demonstrated a success rate of 81% with 7 d triple therapy regimen of PPI-Clarithromycin-Nitroimidazole, similar to the success rate with the regimen containing amoxicillin instead of nitroimidazole.

Two meta-analyses of randomised controlled trials on first line therapy of \textit{H. pylori} with quadruple therapy of PPI-Bismuth-Tetracycline-Metronidazole have shown success rates of 77%\[29,30\]. A longer duration (10-14 d) of quadruple therapy was more effective than the 7 d triple therapy of PPI-Clarithromycin-Amoxicillin\[30\].

SUMMARY AND RECOMMENDATIONS

The triple therapy regimen of PPI-Clarithromycin-Metronidazole is still frequently used as first line therapy for penicillin allergic subjects\[25\]. However, whilst it demonstrates an acceptable success rate of approximately 80% in unselected patients\[28\], it does not perform well in penicillin allergic patients\[11,14,18,20,21,23,25\]. The reasons for this discrepancy are unclear, but it is possible that the studies of unselected patients may only have had small numbers of penicillin allergic individuals, or the study design may have excluded individuals with antibiotic allergy. Whilst there is a paucity of recent data for this specific regimen, the efficacy of Clarithromycin-based triple therapy has been shown to be significantly impaired in
Dutta AK et al. *H. pylori* treatment in penicillin allergy

the presence of Clarithromycin resistance, which is an increasingly encountered issue [29]. Whilst increasing the duration of PPI-Amoxicillin-Clarithromycin triple therapy has been shown to improve success rates, this has not been demonstrated convincingly for the PPI-Clarithromycin-Metronidazole regimen[31]. If available, Vonoprazan could be considered as a substitute for PPI in clarithromycin-based triple therapy to improve its efficacy[20,21]. Sitafloxacin-based triple therapy is an alternative option, although this antibiotic is not widely available[17,19,20]. Bismuth-based quadruple therapy, lasting 10-14 d, is the most attractive option for first-line treatment of *H. pylori*, with a high success rate in patients with penicillin allergy[18,23,24,25], matching that in unselected patients[29,30]. In order to optimise the success of first line treatment, a detailed history of prior antibiotic use could aid the choice of regimen prescribed.

In the event of treatment failure, the published evidence suggests that second-line therapy should be instituted with the 10 d PPI-Levofloxacin-Clarithromycin regimen [14,18], a Sitafloxacin-based triple therapy is an alternative option[17,19,20,27]. If Bismuth-based quadruple therapy has not been used as first-line treatment, then this regime could be considered for subsequent treatment, although there is variable evidence for the efficacy of PPI-Bismuth-Tetracycline-Metronidazole quadruple therapy[16,18,23]. Alternative antibiotic combinations may be more successful such as PPI-Bismuth-Tetracycline-Furazolidine[16] or PPI-Bismuth-Rifabutin-Ciprofloxacin [15], although there are concerns about the potential for side-effects with rifabutin, especially myelotoxicity[32]. It is not possible to provide any evidence-based recommendations for salvage therapy after failure of two treatment courses. It is generally recommended that in this situation, further treatment should be guided by the results of *H. pylori* culture and sensitivity testing[5,6,26]. Another approach is to confirm penicillin allergy at this stage, as many patients with this label turn out not to be truly allergic[5,6,9]. A negative penicillin skin test allows the safe use of amoxicillin-containing salvage regimens, as recommended for non-allergic patients.

CONCLUSION

This review of the evidence for treating *H. pylori* in penicillin-allergic individuals has highlighted the lack of high-quality studies to help guide management strategies. Whilst recommendations have been made based on the limited data, it would be important to monitor the success of treatment regimens and use what can be demonstrated to be effective locally[33]. Regional differences in drug availability will influence the choice of regimen, and patterns of antibiotic resistance rates will influence treatment success.

REFERENCES

1. Peleteiro B, Bastos A, Ferro A, Lunet N. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. *Dig Dis Sci* 2014; 59: 1698-1709 [PMID: 24563236 DOI: 10.1007/s10620-014-3063-0]
2. NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. *JAMA* 1994; 272: 65-69 [PMID: 8007082]
3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 2012; 100: 1-441 [PMID: 23189750]
4. NICE clinical guideline. Gastro-oesophageal reflux disease and dyspepsia in adults: investigation and management (2014). [cited 20 February 2021]. Available from: https://www.nice.org.uk/guidance/cg184/chapter/1-recommendations
5. Chey WD, Leonitiadis GI, Howden CW, Moss SF. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. *Am J Gastroenterol* 2017; 112: 212-239 [PMID: 28071659 DOI: 10.1038/ajg.2016.563]
6. Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Suerbaum S, Sugano K, El-Omar EM; European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. *Gut* 2017; 66: 6-30 [PMID: 27707777 DOI: 10.1136/gutjnl-2016-312288]
7. Liu WZ, Xie Y, Lu H, Cheng H, Zeng ZR, Zhou LY, Chen Y, Wang JB, Du YQ, Lu NH; Chinese Society of Gastroenterology, Chinese Study Group on Helicobacter pylori and Peptic Ulcer. Fifth Chinese National Consensus Report on the management of Helicobacter pylori infection.
Dutta AK et al. *H. pylori* treatment in penicillin allergy

Highlight

- **Helicobacter* 2018; 23: e12475 [PMID: 29512258 DOI: 10.1111/hel.12475]
- **Thung** I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, Valasek MA. Review article: the global emergence of Helicobacter pylori antibiotic resistance. *Aliment Pharmacol Ther* 2016; 43: 514-533 [PMID: 26694080 DOI: 10.1111/apt.13497]
- **Blumenthal** KG, Peter JG, Trubiano JA, Phillips EJ. Antibiotic allergy. *Lancet* 2019; 393: 183-198 [PMID: 30588782 DOI: 10.1016/S0140-6736(18)32216-9]
- **Prach** AT, Malek M, Tavakoli M, Hopwood D, Senior BW, Murray FE. H2-antagonist maintenance therapy vs Helicobacter pylori eradication in patients with chronic duodenal ulcer disease: a prospective study. *Aliment Pharmacol Ther* 1998; 12: 873-880 [PMID: 9768530 DOI: 10.1046/j.1365-2036.1998.00391.x]
- **Gisbert** JP, Gisbert JL, Marcos S, Olivares D, Pajares JM. Helicobacter pylori first-line treatment and rescue options in patients allergic to penicillin. *Aliment Pharmacol Ther* 2005; 22: 1041-1046 [PMID: 16268980 DOI: 10.1111/j.1365-2036.2005.02067.x]
- **Rodriguez-Torres** M, Salgado-Mercedo R, Rios-Bedoya CF, Aponte-Rivera E, Marxuach-Cuétara AM, Rodriguez-Orengo JF, Fernández-Carbia A. High eradication rates of Helicobacter pylori infection with first- and second-line combination of esomeprazole, tetracycline, and metronidazole in patients allergic to penicillin. *Dig Dis Sci* 2005; 50: 634-639 [PMID: 15844694 DOI: 10.1007/s10620-005-2549-1]
- **Matsushima** M, Suzuki T, Kurumada T, Watanabe S, Watanabe K, Kobayashi K, Deguchi R, Masui A, Takagi A, Shirai T, Muraoka H, Kobayashi I, Mine T. Tetracycline, metronidazole and amoxicillin-metronidazole combinations in proton pump inhibitor-based triple therapies are equally effective as alternative therapies against Helicobacter pylori infection. *J Gastroenterol Hepatol* 2006; 21: 232-236 [PMID: 16460479 DOI: 10.1111/j.1440-1746.2006.04171.x]
- **Gisbert** JP, Pérez-Aisa A, Castro-Fernández M, Barrio J, Rodrigo L, Cosme A, Gisbert JL, Marcos S, Moreno-Otero R. Helicobacter pylori first-line treatment and rescue option containing levofloxacin in patients allergic to penicillin. *Dig Liver Dis* 2010; 42: 287-290 [PMID: 19632166 DOI: 10.1016/j.dld.2009.06.007]
- **Tay** CY, Windsor HM, Thirriot F, Lu W, Conway C, Perkins TT, Marshall BJ. Helicobacter pylori eradication in Western Australia using novel quadruple therapy combinations. *Aliment Pharmacol Ther* 2012; 36: 1076-1083 [PMID: 230702648 DOI: 10.1111/apt.12089]
- **Liang** X, Xu X, Zheng Q, Zhang W, Sun Q, Liu W, Xiao S, Lu H. Efficacy of bismuth-containing quadruple therapies for clarithromycin-, metronidazole-, and fluoroquinolone-resistant Helicobacter pylori infections in a prospective study. *Clin Gastroenterol Hepatol* 2013; 11: 802-7.e1 [PMID: 23736604 DOI: 10.1016/j.cgh.2013.01.008]
- **Furuta** T, Sugimoto M, Yamade M, Uotani T, Sahara S, Ichikawa H, Kagami T, Yamada T, Osawa S, Sugimoto K, Watanabe H, Umemura K. Eradication of H. pylori infection in patients allergic to penicillin using triple therapy with a PPI, metronidazole and sitafloxacin. *Intern Med* 2014; 53: 571-575 [PMID: 24633026 DOI: 10.2169/internalmedicine.53.1677]
- **Gisbert** JP, Barrio J, Modolelli I, Molina-Infante J, Aisa AP, Castro-Fernández M, Rodrigo L, Cosme A, Gisbert JL, Fernández-Bermejo M, Marcos S, Marín AC, McNicholl AG. Helicobacter pylori first-line and rescue treatments in the presence of penicillin allergy. *Dig Dis Sci* 2015; 60: 458-464 [PMID: 25236423 DOI: 10.1007/s10620-014-3365-2]
- **Mori** H, Suzuki H, Matsuizki J, Masaoka T, Kanai T. Antibiotic resistance and gyrA mutation affect the efficacy of 10-day sitafloxacin-metronidazole-esomeprazole therapy for *Helicobacter pylori* infection in penicillin allergic patients. *United European Gastroenterol J* 2017; 5: 796-804 [PMID: 29026593 DOI: 10.1177/1050661616688995]
- **Ono** S, Kato M, Nakagawa S, Mabe K, Sakamoto N. Vonoprazan improves the efficacy of Helicobacter pylori eradication therapy with a regimen consisting of clarithromycin and metronidazole in patients allergic to penicillin. *Helicobacter* 2017; 22 [PMID: 28098408 DOI: 10.1111/hel.12374]
- **Sue** S, Suzuki N, Shibata W, Sasaki T, Yamada H, Kaneko H, Tamura T, Ishii K, Kondo M, Maeda S. First-Line *Helicobacter pylori* Eradication with Vonoprazan, Clarithromycin, and Metronidazole in Patients Allergic to Penicillin. *Gastroenterol Res Pract* 2017; 2017: 2019802 [PMID: 29181022 DOI: 10.1155/2017/2019802]
- **Osumi** H, Fujisaki J, Sugaanuma T, Horisuchi Y, Omne M, Yoshio T, Ishiyama A, Tsuchida T, Miki K. A significant increase in the pepspogen i/I ratio is a reliable biomarker for successful Helicobacter pylori eradication. *PLos One* 2017; 12: e0183980 [PMID: 2885476 DOI: 10.1371/journal.pone.0183980]
- **Long** X, Chen Q, Yu L, Liang X, Liu W, Lu H. Bismuth improves efficacy of proton-pump inhibitor clarithromycin, metronidazole triple Helicobacter pylori therapy despite a high prevalence of antimicrobial resistance. *Helicobacter* 2018; 23: e12485 [PMID: 29696736 DOI: 10.1111/hel.12485]
- **Song** Z, Fu W, Zhou L. Cefuroxime, levofloxacin, esomeprazole, and bismuth as first-line therapy for eradicating Helicobacter pylori in patients allergic to penicillin. *BMC Gastroenterol* 2019; 19: 132 [PMID: 31345165 DOI: 10.1186/s12876-019-1056-3]
- **Nyssten** OP, Pérez-Aisa Á, Tepes B, Rodríguez-Sáez L, Romero PM, Lucondo A, Castro-Fernández M, Phull P, Barrio J, Bujanda L, Ortuño A, Areia M, Brglez Jurecic N, Huguet JM, Alcaide N, Vojnovan I, Maria Botargues Bote J, Modejoll I, Pérez Lasala J, Arriño I, Jonaitis L, Domínguez-Cajal M, Buza G, Lerang F, Perona M, Bordin D, Axon T, Gasbarrini A, Marcos Pinto R, Niv Y, Kupcinetskas L, Tomkic A, Leja M, Rokkas K, Boyanova L, Shvets O, Venerito M, Bytzer P, Goldis A, Simsek I, Peter JG, Trubiano JA, Phillips EJ. Antibiotic allergy. *Lancet* 2019; 393: 183-198 [PMID: 30588782 DOI: 10.1016/S0140-6736(18)32216-9]

WJG | https://www.wjgnet.com 7667 November 28, 2021 | Volume 27 | Issue 44
Lamy V, Przytulski K, Kunovský L, Capelle L, Milosavljevic T, Caldas M, Garre A, Méraud F, O’Morain C, Gisbert JP; Hp-EuReg Investigators. Helicobacter pylori first-line and rescue treatments in patients allergic to penicillin: Experience from the European Registry on H.pylori management (Hp-EuReg). *Helicobacter* 2020; **25**: e12686 [PMID: 32173974 DOI: 10.1111/hel.12686]

Luo L, Huang Y, Liang X, Ji Y, Yu L, Lu H. Susceptibility-guided therapy for Helicobacter pylori-infected penicillin-allergic patients: A prospective clinical trial of first-line and rescue therapies. *Helicobacter* 2020; **25**: e12699 [PMID: 32428369 DOI: 10.1111/hel.12699]

Sue S, Sasaki T, Kaneko H, Irie K, Kondo M, Maeda S. Helicobacter pylori rescue treatment with vonoprazan, metronidazole, and sitafloxacin in the presence of penicillin allergy. *JGH Open* 2021; **5**: 307-311 [PMID: 33553672 DOI: 10.1002/jgh3.12492]

Gisbert JP, González L, Calvet X, García N, Roqué M, Gabriel R, Pajares JM. Proton pump inhibitor, clarithromycin and either amoxicillin or nitroimidazole: a meta-analysis of eradication of Helicobacter pylori. *Aliment Pharmacol Ther* 2000; **14**: 1319-1328 [PMID: 11012477 DOI: 10.1046/j.1365-2036.2000.00844.x]

Luther J, Higgins PD, Schoenfeld PS, Moayyedi P, Vakil N, Chey WD. Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: Systematic review and meta-analysis of efficacy and tolerability. *Am J Gastroenterol* 2010; **105**: 65-73 [PMID: 19755966 DOI: 10.1038/ajg.2009.508]

Venerito M, Krieger T, Ecker T, Leandro G, Malfertheiner P. Meta-analysis of bismuth quadruple therapy vs clarithromycin triple therapy for empiric primary treatment of Helicobacter pylori infection. *Digestion* 2013; **88**: 33-45 [PMID: 23880479 DOI: 10.1159/000350719]

Yuan Y, Ford AC, Khan KJ, Gisbert JP, Forman D, Leontiadis GI, Tse F, Calvet X, Fallone C, Fischbach L, Oderda G, Bazzoli F, Moayyedi P. Optimum duration of regimens for Helicobacter pylori eradication. *Cochrane Database Syst Rev* 2013; CD008337 [PMID: 24338763 DOI: 10.1002/14651858.CD008337.pub2]

Gisbert JP, Calvet X. Review article: rifabutin in the treatment of refractory Helicobacter pylori infection. *Aliment Pharmacol Ther* 2012; **35**: 209-221 [PMID: 22129228 DOI: 10.1111/j.1365-2036.2011.04937.x]
