Determination of latent heat at the finite temperature phase transition of SU(3) gauge theory

Shinji Ejiri (Niigata Univ.)

WHOT-QCD Collaboration
Ryo Iwami (Niigata), Kazuyuki Kanaya (Tsukuba), Masakiyo Kitazawa (Osaka), Yusuke Taniguchi (Tsukuba), Hiroshi Suzuki (Kyushu), Mizuki Shirogane (Niigata), Takashi Umeda (Hiroshima), Naoki Wakabayashi (Niigata)

Phys. Rev. D94, 014506 (arXiv:1605.02997) + α

Lattice 2016, Southampton, UK, 24–30 July 2016
Introduction

• First order phase transitions are expected in many interesting systems of lattice field theories. e.g. high density QCD, many flavor etc..

 → important to study first order phase transitions.

• The latent heat (energy gap) the most basic quantity.

• The gap of pressure must be vanish.
 Reliability of the calculation can be confirmed.

In this talk,

• We study the equation of state at the first order phase transition of SU(3) gauge theory.

• Gaps of energy density and pressure are measured using the derivative method.
 • Volume dependence is investigated
 • Continuum extrapolation is performed. [H. Suzuki, 2013]

• We tested the gradient flow method for the calculation of EoS.
Thermodynamic quantities by the derivative method

energy density
\[\epsilon = -\frac{1}{V} \frac{\partial \ln Z}{\partial T^{-1}} \bigg|_V \]

pressure
\[p = T \frac{\partial \ln Z}{\partial V} \bigg|_T \]

temperature
\[\frac{1}{T} = N_t a_t \]

volume
\[V = (N_s a_s)^3 \]

\[Z = \int DU \ e^{-S} \]

For the SU(3) gauge theory,
\[S = -3N_{\text{site}}(\beta_s P_s + \beta_t P_t) \]
\[(P_{s(t)} \text{ space-like (time-like) plaquette}) \]

\[\epsilon = -\frac{3N_t^4 T^4}{\xi^3} \left\{ \left(a_t \frac{\partial \beta_s}{\partial a_t} - \xi \frac{\partial \beta_s}{\partial \xi} \right) \langle P_s \rangle - \langle P \rangle_0 \right\} - \left\{ a_t \frac{\partial \beta_t}{\partial a_t} - \xi \frac{\partial \beta_t}{\partial \xi} \right\} \langle P_t \rangle - \langle P \rangle_0 \right\} \]

\[p = \frac{N_t^4 T^4}{\xi^3} \left\{ \frac{\partial \beta_s}{\partial \xi} \langle P_s \rangle - \langle P \rangle_0 + \frac{\partial \beta_t}{\partial \xi} \langle P_t \rangle - \langle P \rangle_0 \right\} \]

Independent variables:
\[a_t, \ \xi = \frac{a_s}{a_t} \]

\[\langle P \rangle_0: \text{The expectation value at } T = 0 \]

\[\frac{\Delta \epsilon}{T^4} = -3N_t^4 \left\{ \left(a_t \frac{\partial \beta_s}{\partial a_t} - \frac{\partial \beta_s}{\partial \xi} \right) \langle P_s \rangle_{\text{hot}} - \langle P_s \rangle_{\text{cold}} + \left(a_t \frac{\partial \beta_t}{\partial a_t} - \frac{\partial \beta_t}{\partial \xi} \right) \langle P_t \rangle_{\text{hot}} - \langle P_t \rangle_{\text{cold}} \right\} \]

\[a_t \frac{\partial \beta_s}{\partial a_t}, a_t \frac{\partial \beta_t}{\partial a_t}, \frac{\partial \beta_s}{\partial \xi}, \frac{\partial \beta_t}{\partial \xi} \]

These 4 coefficients must be determined.
Determination of the anisotropy coefficients at $\xi = a_s / a_t = 1$

Isotropic lattice ($\beta = \beta_s = \beta_t$): $\left(a_t \frac{\partial \beta_s}{\partial a_t} \right)_{\xi=1} \left(a_t \frac{\partial \beta_t}{\partial a_t} \right)_{\xi=1} = a \frac{d\beta}{da}$

$a \frac{d\beta}{da}$ is determined by the data of the critical β ($\beta_c(N_t)$)

String tension is independent of $\xi = \frac{a_s}{a_t}$

$$\left(\frac{\partial \beta_s}{\partial \xi} + \frac{\partial \beta_t}{\partial \xi} \right)_{a_t: fixed, \xi=1} = \frac{3}{2} a \frac{d\beta}{da}$$

Data: Francis, Kaczmarek, Laine, Neuhaus, Ohno, Phys. Rev. D 91, 096002 (2015) and our data for $N_t = 4 \sim 22$

[F. Karsch, Nucl. Phys. B205 (1982) 285]
Ratio of the anisotropy coefficients

The slope of the phase transition line in the \((\beta_s, \beta_t)\) plane: \(r_t\)

[Ejiri, Iwasaki, Kanaya, Phys.Rev.D 58,094505 (1998)]

Along the phase transition line, \(a_t\) is constant because \(\frac{1}{T_c} = N_t a_t\).

When one changes \((\beta_s, \beta_t) \rightarrow (\beta_s + d\beta_s, \beta_t + d\beta_t)\),

\[
d\alpha_t = \frac{\partial \alpha_t}{\partial \beta_t} d\beta_s + \frac{\partial \alpha_t}{\partial \beta_t} d\beta_t = 0
\]

The slope of the transition line

\[
r_t = \frac{d\beta_s}{d\beta_t} = - \frac{\left(\frac{\partial \alpha_t}{\partial \beta_t}\right)_{\xi=1}}{\left(\frac{\partial \alpha_t}{\partial \beta_s}\right)_{\xi=1}} = \frac{\left(\frac{\partial \beta_s}{\partial \beta_t}\right)_{\xi=1}}{\left(\frac{\partial \beta_s}{\partial \beta_t}\right)_{\xi=1}}
\]

Using the reweighting method, \((\beta_s, \beta_t)\)-dependence of the Polyakov loop susceptibility is measured.
Anisotropy coefficients

From

\[
\left(\frac{\partial \beta_s}{\partial \xi} + \frac{\partial \beta_t}{\partial \xi} \right)_{a_t:\text{fixed}, \xi=1} = \frac{3}{2} a \frac{d\beta}{da}
\]

\[
r_t = \left(\frac{\partial \beta_s}{\partial \xi} \right)_{\xi=1} = \frac{3}{2(1 + r_t)} a \frac{d\beta}{da}
\]

Conventional combinations of the energy density and pressure

\[
\frac{\Delta(\epsilon + p)}{T^4} = 3N_t^4 a \frac{d\beta}{da} \frac{r_t - 1}{r_t + 1} \left\{ (\langle P_s \rangle_{\text{hot}} - \langle P_s \rangle_{\text{cold}}) - (\langle P_t \rangle_{\text{hot}} - \langle P_t \rangle_{\text{cold}}) \right\}
\]

\[
\frac{\Delta(\epsilon - 3p)}{T^4} = 3N_t^4 a \frac{d\beta}{da} \left\{ (\langle P_s \rangle_{\text{hot}} - \langle P_s \rangle_{\text{cold}}) - (\langle P_t \rangle_{\text{hot}} - \langle P_t \rangle_{\text{cold}}) \right\}
\]
Simulation details

Pure SU(3) gauge theory

Standard plaquette action is used.

Pseudo-heat bath algorithm + over-relaxation.

Lattice size	# β	No. of Conf.
$48^3 \times 6$	1	201200
$64^3 \times 6$	4	442000
$48^3 \times 8$	6	1220000
$64^3 \times 8$	5	4585000
$64^3 \times 12$	3	624000
$96^3 \times 12$	5	1558000

Parts of the results in Ejiri, Iwasaki, Kanaya, Phys.Rev.D 58,094505 (1998) are used in this analysis.

Simulations are performed at 1–6 β points near transition point.

High statistics data: \(\sim O(10^6) \)

The multi-point reweighting method is used for the measurements.
Measurement of the slope of the transition line r_t

We used the reweighting method. The slope r_t can be determined with sufficient accuracy.

Order parameter: Polyakov loop $\Omega(x, t)$

Transition point:
Peak position of Polyakov loop susceptibility

$$
\chi_\Omega(\beta_s, \beta_t) = N_s^3 (\langle \Omega^2 \rangle_{(\beta_s, \beta_t)} - \langle \Omega \rangle^2_{(\beta_s, \beta_t)})
$$

Lattice size	r_t
$48^3 \times 6$	-1.2020(39)
$64^3 \times 6$	-1.2022(52)
$48^3 \times 8$	-1.209(33)
$64^3 \times 8$	-1.255(37)
$64^3 \times 12$	-1.16(61)
$96^3 \times 12$	-1.204(53)
Separation of the hot and cold phases

- We identify the phase by the Polyakov loop.
- Two peaks in the histogram.
- Flip-flops between two phases.
- Mixed configurations are rare. (We omit mixed configurations.)
Vanishing pressure gap $\Delta p = 0$

$$\frac{\Delta p}{T^4} = N_t^4 \left\{ \frac{\partial \beta_s}{\partial \xi} ((P_s)_{\text{hot}} - (P_s)_{\text{cold}}) + \frac{\partial \beta_t}{\partial \xi} ((P_t)_{\text{hot}} - (P_t)_{\text{cold}}) \right\} = 0$$

Condition for $\Delta p = 0$

$$\frac{\partial \beta_s}{\partial \xi} = r_t = - \frac{(P_t)_{\text{hot}} - (P_t)_{\text{cold}}}{(P_s)_{\text{hot}} - (P_s)_{\text{cold}}}$$

lattice	r_t	$\frac{(P_t)_{\text{hot}} - (P_t)_{\text{cold}}}{(P_s)_{\text{hot}} - (P_s)_{\text{cold}}}$
$48^3 \times 6$	-1.2020(39)	1.216(50)
$64^3 \times 6$	-1.2022(52)	1.2053(38)
$48^3 \times 8$	-1.209(33)	1.204(14)
$64^3 \times 8$	-1.255(37)	1.2344(66)
$64^3 \times 12$	-1.16(61)	1.324(84)
$96^3 \times 12$	-1.204(53)	1.283(53)

The pressure gap is zero on each finite lattice.
Volume-dependence of $\Delta \varepsilon$

Because the correlation length is finite at the first order transition, $\Delta \varepsilon$ should be constant for large volume (> correlation length). We did a constant fit as a function of N_s/N_t for each N_t.
Continuum extrapolation of the latent heat

Fit the data at $N_t = 6, 8, 12$ with a linear function of $1/N_t^2$ assuming $O(a^2)$ error.

\[
\frac{\Delta \epsilon}{T^4} = 0.75 \pm 0.17
\]

\[
\frac{\Delta \epsilon - 3 \Delta \rho}{T^4} = 0.623 \pm 0.056
\]
EoS by the Gradient Flow (H. Suzuki, 2013)

[H. Suzuki, Prog. Theor. Exp. Phys. 2014, 083B03 (2013); FlowQCD, Phys. Rev. D90, 011501(2014)]

• Smeared field strength: \(F_{\mu\nu} \xrightarrow{\text{Gradient Flow}} G_{\mu\nu} \)

• Dim. 4 operators:
 \[
 E(t, x) = \frac{1}{4} \delta_{\mu\nu} G_{\rho\sigma}(t, x) G_{\rho\sigma}(t, x) \\
 U_{\mu\nu}(t, x) = G_{\mu\rho}(t, x) G_{\nu\rho}(t, x) - \frac{1}{4} \delta_{\mu\nu} G_{\rho\sigma}(t, x) G_{\rho\sigma}(t, x)
 \]

• Energy momentum tensor
 \[
 T_{\mu\nu}^R = \lim_{t \to 0} \left\{ \frac{1}{\alpha_U(t)} U_{\mu\nu}(t, x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} \left[E(t, x) - \langle E(t, x) \rangle_0 \right] \right\}
 \]
 \[
 \alpha_U(t) = g^2 [1 + 2b_0 s_1 g^2 + \cdots] \\
 \alpha_E(t) = \frac{1}{2b_0} [1 + 2b_0 s_2 g^2 + \cdots]
 \]
 \(g \): running coupling constant with \(\overline{\text{MS}} \) scheme based on the 4-loop beta function.

• Energy density and Pressure
 \[
 \epsilon = \langle T_{00} \rangle \\
 p = \frac{1}{3} \sum_i \langle T_{ii} \rangle
 \]
EoS by gradient flow method (preliminary)

- $\Delta \varepsilon / T^4$ becomes constant at long flow time.
- As flow time proceeds, $\Delta \rho$ vanishes. ($\Delta \varepsilon - 3\Delta \rho \approx \Delta \varepsilon + \Delta \rho$)

$G_{\mu \nu}^2$ defined by plaquette

$G_{\mu \nu}^2$ defined by clover tem
EoS by the gradient flow method (preliminary)

• In the $t=0$ limit, the results by the gradient flow method and the derivative method are consistent within the error.

are the results by the derivative method on $96^3 \times 12$ lattice.
Conclusions and Outlook

• We study the equation of state at the first order phase transition of SU(3) gauge theory.

• Gaps of energy density and pressure are measured using the derivative method.
 • We confirmed that the pressure gap is zero on each finite lattice.
 • The result of the latent heat in the continuum limit is
 \[\frac{\Delta \varepsilon}{T^4} = 0.75 \pm 0.17 \quad \frac{\Delta (\varepsilon - 3p)}{T^4} = 0.623 \pm 0.056 \]

• We tested the gradient flow method for the calculation of EoS.
 • As flow time increases, \(\Delta \varepsilon / T^4 \) becomes constant and \(\Delta p \) vanishes.
 • In the \(t=0 \) limit, the latent heat is consistent with that by the derivative method on the finite lattice.