LETTER TO THE EDITOR

Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines

S. Cuadrado¹, P. Salas², J. R. Goicoechea¹, J. Cernicharo¹, A. G. G. M. Tielens², and A. Báez-Rubio³

1 Instituto de Física Fundamental (IFF-CSIC), Calle Serrano 121-123, 28006 Madrid, Spain
E-mail: javier.r.goicoechea@csic.es
2 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
3 Centro de Astrobiología (CSIC-INTA), Ctra. de Torrejón a Ajalvir, km 4, 28850, Torrejón de Ardoz Madrid, Spain

Received 27 March 2019 / Accepted 16 April 2019

ABSTRACT

Context. A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (n_e) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules.

Aims. We determine n_e in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR 13C$^+$ hyperfine line observations.

Methods. We detect 12 mmCRLs (including α, β, and γ transitions) observed with the IRAM 30 m telescope, at ~25″ angular resolution, toward the H$_2$ dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR.

Results. These lines trace the C$^+$/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent H$_2$ region. This is readily seen from their narrow line profiles ($Δν = 2.6 ± 0.4$ km s$^{-1}$) and line peak velocities ($v_{LSR} = +10.7 ± 0.2$ km s$^{-1}$). Optically thin 13C$^+$ hyperfine lines and molecular lines – emitted close to the DF by trace species such as reactive ions CO$^+$ and HOC$^+$ – show the same line profiles. We use non-LTE excitation models of 13C$^+$ and mmCRLs and derive $n_e = 60–100$ cm$^{-3}$ and $T_e = 500–600$ K toward the DF.

Conclusions. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain $P_{th} ≥ (2–4)×10^6$ cm$^{-3}$ K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.

Key words. astrochemistry – photon-dominated region – HII regions – ISM: clouds

1. Introduction

Much of the mass and most of the volume occupied by molecular gas in star-forming regions lies at low visual extinction ($A_V < 6$, e.g., Pety et al. 2017). This means that, in the vicinity of OB-type massive stars, a significant fraction of the molecular gas is irradiated by relatively intense UV photon fluxes (e.g., Goicoechea et al. 2019). The interface layers between the hot ionized gas and the cold molecular cloud are photodissociation regions (PDRs; Hollenbach & Tielens 1999). PDRs host the critical H$^+$/H$_2$ and C$^+$/CO transition layers of the interstellar medium (ISM). Far-UV (FUV) photons with $E < 13.6$ eV permeate molecular clouds, ionizing atoms, molecules, and dust grains of lower ionization potential (IPs). One signature of FUV-irradiated gas is an ionization fraction, defined as the abundance of electrons with respect to H nuclei ($x_e = n_e/n_H$), higher than about 10$^{-6}$. Cold molecular cores shielded from external FUV radiation show much lower ionization fractions, $x_e < 10^{-8}$, as the abundance of electrons is driven by the gentle flux of cosmic-ray particles rather than penetrating stellar FUV photons (Guelin et al. 1982; Caselli et al. 1998; Maret & Bergin 2007; Goicoechea et al. 2009).

Electrons play a fundamental role in the chemistry and dynamics of the neutral interstellar gas (meaning neutral atomic or molecular hydrogen, but not ionized). The electron density (n_e) controls the preponderance of ion-neutral reactions, i.e., the main formation route for many ISM molecules (Herbst & Klemperer 1973; Oppenheimer & Dalgarno 1974). The ionization fraction also controls the coupling of matter and magnetic fields. In addition, in high x_e environments, the large cross sections for inelastic collisions of electrons with certain high-dipole molecules such as HCN provide an additional source of rotational excitation (Goldsmith & Kauffman 2017). In these cases, the observed molecular line emission is no longer controlled by the most abundant collisional partner, H$_2$. Hence, the actual value of n_e affects how gas densities are estimated.

A direct determination of n_e in molecular clouds is usually not possible and we have to rely on indirect methods such as the observation of molecular ions and chemical modeling. In FUV-illuminated environments, electrons are supplied by the photoionization of abundant elements such as carbon and sulfur (both with IP < 13.6 eV), and also by the photoelectric effect on dust grains and polycyclic aromatic hydrocarbon (PAH) molecules (Bakes & Tielens 1994). In diffuse and translucent clouds, and at the FUV-irradiated edges of dense molecular clouds, most electrons arise from the ionization of carbon atoms. Carbon recombination lines (CRLs), in which a free
electron recombines with carbon ions (C+) and cascades down from Rydberg electronic states to the ground while emitting photons, are expected to arise from neutral gas close to the C+/C/CO transition layer (e.g., Natta et al. 1994) and not from the hot (electron temperature $T_e \approx 10,000$ K) ionized gas in the adjacent Hii region. This is readily seen from the narrower CRLs profiles compared to the broad H and He recombination lines ($\Delta v \approx 20\text{Km}\text{s}^{-1}$, e.g., Churchwell et al. 1978). This conclusion is also in line with photoionization models where, in Hii regions, carbon is mainly in the form of higher ionization states (e.g., C++ (Rubin et al. 1991; Kaufman et al. 2006). The $^2P_{3/2}\rightarrow^2P_{1/2}$ fine-structure emission of singly ionized carbon (IP=11.3 eV), the famous [CII]158μm line, is bright and often shows an intensity linearly proportional to the C^+ column density (the so-called effectively thin emission regime; Goldsmith et al. 2012). However, the line reaches moderate opacities toward bright and dense PDRs such as the Orion Bar (e.g., Ossenkopf et al. 2013; Goicoechea et al. 2015). Carbon recombination lines are optically thin (see Sect. 4) with an intensity proportional to $n_p^2 T_e^{-2.5}$. Although much fainter, mmCRLs can be observed from ground-based telescopes and can be used to infer n_e and T_e in UV-irradiated neutral gas (Pankonin & Walmsley 1978; Salgado et al. 2017; Salas et al. 2018). CRLs have historically been detected at very low radio frequencies (e.g., at ∼43 MHz for C539α or ∼8.6 GHz for C91α). Pushing to higher frequencies (i.e., lower principal quantum numbers) greatly improves the angular resolution of the observation even with single-dish telescopes. This allows us to access much smaller spatial scales and, potentially, to spatially resolve the narrow C+/C/CO gas transition layer.

In this work we present the detection of several $\alpha (\Delta n = 1, \beta (\Delta n = 2)$, and $\gamma (\Delta n = 3$) mmCRLs (Cn/α) observed from ∼85 GHz to ∼115 GHz toward the strongly UV-irradiated (G0 $\geq 10^6$) PDR, the Orion Bar. This is near the edge-on interface of the Orion molecular cloud (OMC-1) with the “Huygens” dense Hii region, photoionized by young massive stars in the Trapezium cluster (e.g., Tielens et al. 1993; O’Dell 2001; Goicoechea et al. 2016; Pabst et al. 2019). Using the Effelsberg 100 m telescope, Natta et al. (1994) previously detected the C91α line toward several positions of the irradiated surface of OMC-1. The same line was mapped with the VLA along the Bar by Wyrowski et al. (1997). They showed that the C91α emission basically coincides with the emission in the $v = 1\rightarrow 0 S(1)$ line from vibrationally excited molecular hydrogen (H2). Most models of the Bar use $n_e = 10^3$ cm$^{-3}$ for the edge of the PDR (e.g., van der Tak et al. 2012, 2013). This value implies relatively low gas densities ($\eta_{H1} \approx 10^5$ cm$^{-3}$) and thermal pressures in the CRL emitting layers, and through the PDR if the classical constant-density PDR model is adopted. The newly detected mmCRLs allow us to determine n_e and T_e, and to independently estimate the gas thermal pressure. This provides additional insights into the PDR structure and dynamics.

2. Observations and data reduction

We used the IRAM 30 m telescope at Pico Veleta (Sierra Nevada, Spain) to observe the Orion Bar in the mm band. We employed the E0 EMIR receiver (80 GHz–116 GHz) and fast Fourier transform spectrometer (FFTS) backend at 200 kHz spectral resolution (0.7 km s$^{-1}$ at 90 GHz). These observations are part of a complete line survey (80 GHz–360 GHz; Cuadrado et al. 2015, 2016, 2017) toward a position close to the H2 dissociation front (DF; the H/H2 transition layer), almost coincident with what is known as the CO emission peak (Stoerzer et al. 1995). Here we present results obtained from deep observations in the 3 mm band toward three positions across the PDR (see Fig. 1). Their offsets with respect to $a_{2000} = 05^h 35^m 20^s$, $\delta_{2000} = -05^\circ 25' 07''$ are (+10'', −10''), DF, (+30'', −30''), and (+35'', −55''). In order to avoid the extended emission from OMC-1, we employed the position switching observing procedure with a reference position at offset (−600'', 0'').

The half power beam width (HPBW) at 3 mm ranges from ∼31'' to ∼21'' (see Table A.1). We reduced and analyzed the data using the GILDAS software1, as described in Cuadrado et al. (2015). The rms noise obtained after 4–5 h integrations is typically ∼1 mK–5 mK per resolution channel. The antenna temperature, T_A^*, was converted to the main beam temperature, T_{MB}, through the $T_{MB} = T_A^*/\eta_{MB}$ relation, where η_{MB} is the antenna efficiency, which is defined as the ratio between main beam

1 http://www.iram.fr/IRAMFR/GILDAS/
efficiency, B_{eq}, and forward efficiency, F_{eq}. All line intensities in figures and tables are in units of main beam temperature.

The intensities of the Cα lines were extracted from a two-Gaussian fit to each observed feature: one narrow Gaussian for the Cα lines, and a broader one for the Hα lines (see fits in Fig. A.1). With these fits we determined the contribution, $\approx 40\%$, of the Hα line wings to the observed emission at Cα velocities. We used this value to estimate the contribution of the putative Her and He line wings to the faint Cα and Cγ lines. We conclude that the uncertainty (calibration and line overlap) of our mmCRL intensities is $\approx 15\%$. The resulting mmCRL spectroscopic parameters are given in Table A.1.

We also made use of the 13CII $F = 2 \rightarrow 1$ hyperfine emission component at 1900.466 GHz (red contours in Fig. 1). To make a comparison with the mmCRLs, we smoothed the map to an angular resolution of $\approx 25^\prime$ and extracted the 13CII ($F = 2 \rightarrow 1$) integrated line intensity, $20 \pm 3 \text{K km s}^{-1}$, toward the DF.

3. Results

Figure 1 shows the observed positions over a map of the optically thin 13CO ($J = 3 \rightarrow 2$) and 13CII ($^2P_{1/2} \rightarrow ^2P_{1/2}$, $F = 2 \rightarrow 1$) emission lines along the Bar. We detect 12 mmCRLs toward the DF: C42α, C38α, C52β, C48β, and C60γ, C59γ. All lines are shown in Fig. A.1. The emission from these lines gets fainter as we go from the DF to the more shielded molecular gas, thus mmCRLs trace the FUVE-radiated edge of the molecular cloud. The Cα lines show an emission shoulder shifted by $\approx +10 \text{K km s}^{-1}$. This feature is produced by He recombination lines ($IP = 24.6$ eV). Helium lines do not arise from the neutral PDR; they are emitted from the surrounding “Huygens” H II region and from foreground layers of ionized gas that extend all the way to the edge of Orion’s Veil (see e.g., Rubin et al. 2011; O’Dell et al. 2017; Palbst et al. 2019).

The observed mmCRLs have line profiles that are very different from those of H and He recombination lines (Fig. 2). The H and He recombination lines show much broader line widths ($\Delta v_{\text{LSR}} = 10 - 30 \text{K km s}^{-1}$) produced by the high electron temperatures and pressures of the fully ionized gas. They peak at $\Delta v_{\text{LSR}} = -2 \text{K km s}^{-1}$, consistent with ionized gas that flows toward the observer. Carbon recombination lines, however, peak at $\Delta v_{\text{LSR}} = +10.7 \pm 0.2 \text{K km s}^{-1}$ and show narrow line profiles, $\Delta v_{\text{LSR}} = 2.6 \pm 0.4 \text{K km s}^{-1}$. These values are nearly identical to those displayed by 13CII and by molecular lines observed toward the DF position at comparable angular resolution (e.g., Cuadrado et al. 2015). In particular, mmCRLs and 13CII line profiles are analogous to those of HOC$^+$ and CO$^+$ (Fig. 2). These reactive molecular ions form by chemical reactions involving C$^+$ with H$_2$O and OH, respectively (e.g., Fuente et al. 2003; Cuadrado et al. 2017). Hence, they likely trace the same gas component.

For optically thin emission, line widths are determined by thermal broadening ($\propto \sqrt{T_e}$) and by nonthermal broadening produced by gas turbulence and macroscopic motions in the PDR. Adopting a nonthermal velocity dispersion σ_{nth}, the observed mmCRL widths imply a beam-averaged gas temperature of $T_e = 450 \pm 280 \text{K}$. The [CII] 158 μm line shows a broader line width, $\Delta v_{\text{LSR}} = 4.1 \pm 0.1 \text{K km s}^{-1}$, toward the DF. Because the line emission is moderately optically thick ($\tau_{\text{CII}} \approx 1 \rightarrow 2$; see Ossenkopf et al. 2013; Cuadrado et al. 2015), these line width differences are, at least in part, produced by opacit-broadening of the [CII] 158 μm line. However, Ossenkopf et al. (2013) pointed out that opacity-broadening alone does not fully explain the broader [CII] line profile compared to 13CII. These line width differences may suggest that, in comparison to 13CII and mmCRLs, the [CII] 158 μm emission has a significant contribution from hotter gas in the mostly atomic PDR ($x_H > x_{\text{th}}$), thus closer to the ionization front (the PDR/H interface).

4. Analysis

Our 3 mm-wave observations have allowed us to detect several α, β, and γ CRIs toward the Bar. The observed n dependence of their line strengths is determined by the level populations. These can be modeled and used to derive n_e and T_e (see theory in e.g., Walmsley & Watson 1982; Salgado et al. 2017).

Figure 3 shows results of a grid of non-LTE excitation models for n_e ranging from 1 cm^{-3} to 500 cm^{-3}, and T_e ranging from 100 K to 1000 K. Our models use non-LTE level populations computed by Salgado et al. (2017) without a background radiation field. Models assume that the observed lines are optically thin (for the conditions prevailing in the Bar, we determine that the opacity of the Cα line is $\tau \approx 10^{-5}$). Our models also compute the 13CII $^2P_{1/2} \rightarrow ^2P_{1/2}$ excitation, and use the [C3/C4] $= 67$ isotopic abundance ratio inferred in Orion (Langer et al. 1984). The colored area in Fig. 3 shows the best models fitting line intensity ratios that include all observed α, β, and γ mmCRLs and 13CII. The black line shows where the gas thermal pressure ($P_{\text{th}} = n_e \cdot T_e$) is 2×10^8 cm$^{-3}$ K. To plot this line we assume $x_H = x_{\text{th}} = [\text{CII}]$; in other words, all free electrons come from the ionization of carbon atoms, with a gas-phase abundance of [C/H] $= 1.4 \times 10^{-4}$ with respect to H nuclei in Orion (Sofia et al. 2004). Absolute line intensity predictions depend on the assumed path-length l along the line

2. http://www.iram.es/IRAMES/mainWiki/Iram30Efficiencies
3. Calculated from detailed nonlocal radiative transfer models of the molecular line emission toward the DF (Cuadrado et al. 2016, 2017).

L3, page 3 of 6
of sight. The $\sim 25''$ beam-averaged C$^+$ column density, N(C$^+$), estimated from $[^{13}\text{C}]$ is N(C$^+$) = 1019 cm$^{-2}$ (Goicoechea et al. 2015). Assuming a representative density of $n_i = 10^5$ cm$^{-3}$ in the atomic PDR (Tielens et al. 1993), the inferred N(C$^+$) is equivalent to $l = 0.2$ pc. This is consistent with other estimations based on the infrared dust emission ($l = 0.28 \pm 0.06$ pc, Salgado et al. 2016). If the gas density is a factor of ten higher (e.g., Andre-Labsch et al. 2017) then $l \approx 0.02$ pc.

Our absolute intensity and line ratio models restrict n_e toward the DF position to 60–100 cm$^{-3}$ and 500–600 K, respectively. The inferred electron temperatures in the colored area of Fig. 3 fall within the thermal line widths derived from the observed mmCRL profiles (see previous section). Assuming $x_e \leq 1.4 \times 10^{-4}$, the derived electron densities are equivalent to gas densities of $n_i \geq (4-7) \times 10^5$ cm$^{-3}$. Thus, gas thermal pressures of $P_{th} \geq (2-4) \times 10^6$ cm$^{-3}$ K toward the DF.

5. Discussion and prospects

Using mmCRL observations and models, we inferred $n_e = 60-100$ cm$^{-3}$ at the H/H$_2$ dissociation front of the Orion Bar PDR. These electron densities are higher than the ~ 10 cm$^{-3}$ values typically used in molecular excitation models of the region (e.g., van der Tak et al. 2012, 2013). In addition, by assuming $x_e \leq 1.4 \times 10^{-4}$, we estimated a lower limit6 to P_{th} in the DF. The high inferred gas thermal pressures confirm earlier estimations based on the analysis of ALMA images of the molecular gas emission (Goicoechea et al. 2016, 2017) and of Herschel observations of specific tracers of the DF (e.g., high-J CO and CH$^+$ rotational lines; Nagy et al. 2013; Joblin et al. 2018). Nonstationary photoevaporating PDR models (e.g., Bertoldi & Draine 1996; Bron et al. 2018) predict such high pressures in PDRs. In these time-dependent models, the strong stellar UV field heats, compresses, and gradually evaporates the molecular cloud edge if the pressure of the surrounding medium (the adjacent H ii region) is not significantly higher. The derived thermal pressure toward the DF, $P_{th} \geq 2 \times 10^6$ cm$^{-3}$ K, is indeed higher than that of the ionized gas at the ionization front ($\approx 6 \times 10^7$ cm$^{-3}$ K, Walmsley et al. 2000) and, in contrast to previous indirect studies of the pressure in the Bar (Pellegrini et al. 2009), leaves little room for magnetic pressure support. This conclusion is in line with the relatively modest plane-of-the-sky magnetic field strength reported from far-IR polarimetric observations with SOFIA/HAWC+ (Chuss et al. 2019).

Unfortunately, the $\sim 25''$ resolution of our single-dish observations does not allow us to spatially resolve the $[^{13}\text{C}]$ and mmCRLs emitting layers. We note that $A_V = 1$, roughly the width of the H/H$_2$ transition layer, implies $3.2''-1.6''$ for $n_i = 10^3$ and 10^6 cm$^{-3}$, respectively. The $\sim 10''$ resolution VLA map of the C91α line (Wyrowski et al. 1997) shows that the C$^+$ gas layer seen in this CRL is spatially coincident with the IR emission from H$_2$ that traces the H/H$_2$ dissociation front (shown in Fig. 1). This result is somewhat surprising because constant-density stationary PDR models have long predicted that the C$^+$/CO transition in the Bar should be located deeper inside the cloud, and separated from the DF by several arcsec (e.g., Tielens et al. 1993). In addition, single-dish observations show that the [Cα] 492 GHz emission spatially correlates with that of [C$^+$] 1996 GHz emission (Goicoechea et al. 2016). All these new observations thus suggest that we still do not fully understand the properties and exact location of the C$^+$/CO transition in interstellar clouds.

In this work we provided evidence that the electron density at the edge of the Orion Bar PDR is quite high, and this may have consequences for the coupling of matter with the magnetic field and the excitation of certain molecules. Much higher resolution ALMA observations of mmCRLs and of neutral atomic carbon [C$\text{\textit{I}}$] fine-structure lines are clearly needed to spatially resolve these critical interface layers of the ISM.

Acknowledgements. We thank the Spanish MICIU for funding support under grant AYA2017-85111-P and the ERC for support under grant ERC-2013-Syg-610256-NANOCOSMOS. A.-R. also acknowledges support by the MICIU and FEDER funding under grants ESP2015-65597-C4-1-R and ESP2017-56582-C4-1-R. P.S. and A.G.G.M.T. acknowledge financial support from the Dutch Science Organisation through TOP grant 614.001.351.

References

Andre-Labsch, S., Ossenkopf-Okada, V., & Röllig, M. 2017, A&A, 598, A2
Bakes, E. L. O., & Tielens, A. G. G. M. 1994, ApJ, 427, 822
Bertoldi, F., & Draine, B. T. 1996, ApJ, 458, 222
Boulesteix, A., Goldsmith, P. F., & Kaufl, H. M. 2017, AJ, 841, 25
Churchwell, E., Smith, L. F., Mathis, J. S., Mezger, P. G., & Huchtmeier, W. 1978, A&A, 70, 719
Chuss, D. T., Anderson, B.-G., Bally, J., et al. 2019, ApJ, 872, 187
Cuadrado, S., Goicoechea, J. R., Pety, J., & Cernicharo, J., 2018, A&A, submitted [arXiv:1801.01547]
Goicoechea, J. R., Teyssier, D., Etxaluze, M., et al. 2015, ApJ, 812, 75
Goicoechea, J. R., Pety, J., Gerin, M., et al. 2009, A&A, 498, 771
Goicoechea, J. R., & Cernicharo, J. 2017, A&A, 603, A124
Goicoechea, J. R., Pety, J., Cernicharo, J., et al. 2017, A&A, 603, A124
Goicoechea, J. R., Cernicharo, J., Martín-Pintado, J., & Black, J. H. 2003, A&A, 406, 899
Goicoechea, J. R., Pety, J., Gerin, M., et al. 2009, A&A, 498, 771
Goicoechea, J. R., Teyssier, D., Etxaluze, M., et al. 2015, ApJ, 812, 75
Goicoechea, J. R., Pety, J., Cuadrado, S., et al. 2016, Nature, 537, 207
Goicoechea, J. R., Cuadrado, S., Pety, J., et al. 2017, A&A, 601, L9
Goldsmith, P. F., & Kauffmann, J. 2017, ApJ, 841, 25

\[13C\text{\textit{II}}]/C\alpha 3\sigma\]

\[x_e \geq 1.4 \times 10^{-4}\]

\[n_e = 60-100\text{ cm}^{-3}\]

\[P_{th} \geq 2 \times 10^6\text{ cm}^{-3}\text{ K}\]

\[n_e \geq (4-7) \times 10^5\text{ cm}^{-3}\]

\[P_{th} \geq (2-4) \times 10^6\text{ cm}^{-3}\text{ K}\]

\[x_e \geq 1.4 \times 10^{-4}\]

\[x_e \geq 1.4 \times 10^{-4}\]
Goldsmith, P. F., Langer, W. D., Pineda, J. L., & Velusamy, T. 2012, ApJ, 203, 13
Guelin, M., Langer, W. D., & Wilson, R. W. 1982, A&A, 107, 107
Herbst, E., & Klemperer, W. 1973, ApJ, 185, 505
Hollenbach, D. J., & Tielens, A. G. G. M. 1999, Rev. Mod. Phys., 71, 173
Joblin, C., Bron, E., Pinto, C., et al. 2018, A&A, 615, A129
Kaufman, M. J., Wolfire, M. G., & Hollenbach, D. J. 2006, ApJ, 644, 283
Langer, W. D., Graedel, T. E., Frerking, M. A., & Armantroft, P. B. 1984, ApJ, 277, 581
Maret, S., & Bergin, E. A. 2007, ApJ, 664, 956
Nagy, Z., Van der Tak, F. F. S., Ossenkopf, V., et al. 2013, A&A, 550, A96
Natta, A., Walmsley, C. M., & Tielens, A. G. G. M. 1994, ApJ, 428, 209
O'Dell, C. R. 2001, ARA&A, 39, 99
O'Dell, C. R., Kollatschny, W., & Ferland, G. J. 2017, ApJ, 837, 151
Oppenheimer, M., & Dalgarno, A. 1974, ApJ, 192, 29
Ossenkopf, V., Röllig, M., Neufeld, D. A., et al. 2013, A&A, 550, A57
Pabst, C., Higgins, R., Goicoechea, J. R., et al. 2019, Nature, 565, 618
Pankonin, V., & Walmsley, C. M. 1978, A&A, 67, 129
Pellegrini, E. W., Baldwin, J. A., Ferland, G. J., et al. 2009, ApJ, 693, 285
Pety, J., Guzmán, V. V., Orkisz, J. H., et al. 2017, A&A, 599, A98
Rubin, R. H., Simpson, J. P., Haas, M. R., & Erickson, E. F. 1991, ApJ, 374, 564
Rubin, R. H., Simpson, J. P., O’Dell, C. R., et al. 2011, MNRAS, 410, 1320
Salas, P., Oonk, J. B. R., van Weeren, R. J., et al. 2018, MNRAS, 475, 2496
Salgado, F., Bernet, O., Adams, J. D., et al. 2016, ApJ, 830, 118
Salgado, F., Morabito, L. K., Oonk, J. B. R., et al. 2017, ApJ, 837, 141
Sofia, U. J., Lauroesch, J. T., Meyer, D. M., & Cartledge, S. I. B. 2004, ApJ, 605, 272
Stoerzer, H., Stutzki, J., & Sternberg, A. 1995, A&A, 296, L9
Tauber, J. A., Lis, D. C., Keene, J., Schilke, P., & Bütgenbach, T. H. 1995, A&A, 297, 567
Tielens, A. G. G. M., Meixner, M. M., van der Werf, P. P., et al. 1993, Science, 262, 86
van der Tak, F. F. S., Ossenkopf, V., Nagy, Z., et al. 2012, A&A, 537, L10
van der Tak, F. F. S., Nagy, Z., Ossenkopf, V., et al. 2013, A&A, 560, A95
Walmsley, C. M., & Watson, W. D. 1982, ApJ, 260, 317
Walmsley, C. M., Natta, A., Oliva, E., & Testi, L. 2000, A&A, 364, 301
Wyrowski, F., Schilke, P., Hofner, P., & Walmsley, C. M. 1997, ApJ, 487, L171
Appendix A: Additional table and figure

Fig. A.1. Carbon recombination lines between 80 GHz and 116 GHz detected with the IRAM 30 m telescope toward the Orion Bar (DF position). The dashed lines indicate the LSR velocity (10.7 km s\(^{-1}\)) of the molecular gas in the PDR. The red and green curves show Gaussian fits to the \(\text{C}^{42}\alpha \) and \(\text{He}^{42}\alpha \) lines, respectively. We use these fits to determine the contribution of He recombination line wings to the emission observed in the velocity range of the \(\text{C}^{41}\beta \) and \(\text{C}^{41}\gamma \) lines. We note the different abscissa and ordinate axis scales.

Table A.1. Line spectroscopic parameters obtained from Gaussian fits to the observed mmCRLs (see Sect. 2).

Line	Frequency (MHz)	\(\int T_{MB}\ dv^{(a),(b)} \) (mK km s\(^{-1}\))	\(v_{LSR}^{(b)} \) (km s\(^{-1}\))	\(\Delta v^{(b)} \) (km s\(^{-1}\))	\(T_{MB}^{(a)} \) (mK)	\(S/N^{(c)} \)	HPBW \((d)\) (arcsec)
\(\text{C}^{42}\alpha \)	85731.14	226.8 (10.5)	10.6 (0.1)	2.6 (0.1)	83.1	21	28.7
\(\text{C}^{41}\alpha \)	92080.35	248.9 (14.2)	10.8 (0.1)	2.7 (0.1)	85.6	17	26.7
\(\text{C}^{40}\alpha \)	99072.36	172.6 (7.2)	10.7 (0.1)	2.5 (0.1)	63.6	23	24.8
\(\text{C}^{39}\alpha \)	106790.61	190.9 (13.3)	10.7 (0.1)	2.9 (0.2)	53.5	12	23.0
\(\text{C}^{38}\alpha \)	115331.91	163.9 (19.6)	10.9 (0.2)	2.4 (0.3)	65.4	5	21.3
\(\text{C}^{52}\beta \)	88449.80	53.8 (9.4)	10.7 (0.2)	2.9 (0.5)	24.5	6	27.8
\(\text{C}^{51}\beta \)	93654.02	55.2 (8.3)	10.5 (0.2)	2.9 (0.6)	24.8	6	26.3
\(\text{C}^{50}\beta \)	99274.72	47.7 (6.0)	10.7 (0.1)	2.7 (0.3)	23.6	8	24.8
\(\text{C}^{49}\beta \)	105354.40	42.4 (8.5)	10.6 (0.2)	2.6 (0.5)	21.5	4	23.3
\(\text{C}^{48}\beta \)	111940.89	36.9 (11.0)	10.6 (0.2)	2.3 (0.6)	21.8	4	22.0
\(\text{C}^{60}\gamma \)	84956.76	27.8 (8.2)	10.5 (0.2)	1.7 (0.5)	22.3	5	29.0
\(\text{C}^{59}\gamma \)	89243.05	35.1 (8.3)	10.9 (0.3)	3.0 (0.6)	15.4	4	27.6

Notes. \(^{(a)}\)Intensities in main beam temperature (in units of mK). \(^{(b)}\)Parentheses indicate the uncertainty obtained by the Gaussian fitting routine. \(^{(c)}\)Signal-to-noise ratio with respect to the peak line temperature in velocity resolution channels of 0.7 km s\(^{-1}\). \(^{(d)}\)The half power beam width (HPBW) of the IRAM 30 m telescope is well described by HPBW[arcsec] \approx 2460/Frequency[GHz].