A TALE OF TWO HECKE ALGEBRAS

GORDAN SAVIN

Abstract. We use Bernstein’s presentation of the Iwahori-Matsumoto Hecke algebra to obtain a simple proof of the Satake isomorphism and, in the same stroke, compute the center of the Iwahori-Matsumoto Hecke algebra.

1. Introduction

Let G be a connected, split, reductive group over a non-archimedean local field F. Fix a maximal split torus T in G. Then T determines a root system Φ. Let W be the corresponding Weyl group. Let K be a hyper-special maximal compact subgroup of G. More precisely, the torus T preserves a unique apartment in the Bruhat-Tits building of G, and we pick K to be the stabilizer of a hyper special vertex in the apartment. Then $T \cap K$ is a maximal compact subgroup of T, and the quotient $X = T/T_K$ is isomorphic to the co-character lattice of T. Let $H_K = C_c(K\backslash G/K)$ be the Hecke algebra of K-bi-invariant, compactly supported functions on G. Let $B = TN$ be a Borel subgroup containing T. Let $f \in C_c(G/K)$. Define $S(f)$, a function on T/T_K, by

$$S(f)(t) = \delta^{1/2}(t) \int_N f(tn) \, dn$$

where δ is the modular character. A famous theorem of Satake [Sa] states that the map S is an isomorphism of H_K and $\mathbb{C}[X]^W$.

Let $I \subset K$ be the Iwahori subgroup such that $I \cap B = K \cap B$. Let $H_I = C_c(I\backslash G/I)$ be the Hecke algebra of I-bi-invariant, compactly supported functions on G. Let Z_I be the center of H_I. The space $C_c(I\backslash G/K)$ is naturally a left H_I-module and a right H_K-module. Using Bernstein’s description of H_I we show, in Theorem 1, that the map S gives an explicit isomorphism

$$S : C_c(I\backslash G/K) \to \mathbb{C}[X].$$

Then, as a simple consequence, we prove that the algebras Z_I, H_K and $\mathbb{C}[X]^W$ are isomorphic.

2. Some preliminaries

The measure on G is normalized so that the volume of I is one. The space $C_c(G)$ of locally-constant, compactly supported functions is an algebra with respect to the convolution $*$ of functions. The unit of the algebra is H_K is denoted by 1_K. It is a function supported on K such that $1_K(k) = \frac{1}{[K:F]}$ for all $k \in K$.

For every root α we fix a homomorphism $\varphi : SL_2(F) \to G$. The co-root α^\vee is an element of X represented in T by

$$\varphi_{\alpha} \begin{pmatrix} v & 0 \\ 0 & v^{-1} \end{pmatrix}$$

Partially supported by NSF grant DMS 0852429.
where \(v \in F \) has valuation 1. For every \(u \in F \), let
\[
x_\alpha(u) = \varphi_\alpha \begin{pmatrix}
1 & u \\
0 & 1
\end{pmatrix}.
\]
We view the root \(\alpha \) as a homomorphism \(\alpha : X \to \mathbb{Z} \) such that, if \(x \in X \) and \(t_x \in T \) is a representative of \(x \), then
\[
t_x x_\alpha(u) t_x^{-1} = x_\alpha(vu)
\]
where the valuation of \(v \) is \(\alpha(x) \). We say that \(x \) is dominant if \(\alpha(x) \geq 0 \) for all positive roots \(\alpha \).

3. Iwahori Matsumoto Hecke algebra

Let \(q \) be the order of the residue field of \(F \). We summarize first some results of [IM].

The \(I \)-double co-sets in \(G \) are parameterized by \(\bar{W} = \mathbb{N}_G(T_K)/T_K \). This group is a semi-direct product of the lattice \(X \) and the Weyl group \(W \). The length function \(\ell : W \to \mathbb{Z} \) is defined by
\[
q^{\ell(w)} = [IwI : I].
\]
Let \(T_w \) denote the characteristic function of the double coset \(IwI \). Then \(T_w T_v = T_{wv} \) if and only if \(\ell(w) + \ell(v) = \ell(wv) \), and \(\ell(w) + \ell(v) = \ell(wv) \) if and only if \(IwIvI = IwvI \).

Let \(\rho \) be the sum of all positive roots. Then \(\ell(x) = \rho(x) \) for a dominant \(x \in X \). It follows that \(T_x \cdot T_y = T_{x+y} \) for any two dominant \(x \) and \(y \). Any \(x \in X \) can be written as \(x = y - z \) where \(y \) and \(z \) are two dominant elements in \(X \). Following Bernstein, let
\[
\theta_x = q^{(\ell(x) - \ell(y))/2} \cdot T_y T_x^{-1}.
\]

Proposition 1. Let \(x \in X \), and \(s \in W \) a reflection corresponding to a simple root \(\alpha \). Then
\[
T_s \theta_x - \theta_{s(x)} T_s = (1 - q) \frac{\theta_x - \theta_{s(x)}}{1 - \theta_{-\alpha^\vee}}.
\]

Lusztig [Lu] derives this proposition from [IM]. It can be also verified by a direct calculation in \(\varphi_\alpha(\text{SL}_2(F)) \), see [S2].

Corollary 1. Let \(x \in X \), and \(s \in W \) a simple reflection, as in Proposition 1. Then
\[
T_s (\theta_x + \theta_{s(x)}) = (\theta_x + \theta_{s(x)}) T_s.
\]

Proposition 2. (Bernstein’s basis) Elements \(\theta_x T_w \), where \(x \in X \) and \(w \in W \), form a basis of \(H_I \).

Proof. Since \(T_w, w \in W \) and \(T_x \), with \(x \) dominant generate \(H_I \), Proposition 1 implies that \(\theta_x T_w \) span \(H_I \). Thus it remains to prove the linear independence. We follow an argument from [S1]. Assume that
\[
\sum_{i,j} c_{i,j} \theta_{x_i} T_{w_j} = 0.
\]
Let \(x_0 \in X \) be dominant such that \(x_0 + x_i \) is dominant for all \(x_i \) appearing in the sum. Then, after multiplying by \(\theta_{x_0} \) from the left,
\[
\sum_{i,j} c_{i,j} \theta_{x_0 + x_i} T_{w_j} = 0.
\]
However, if \(x \) is dominant then \(T_x \cdot T_w = T_{x+w} \). In particular, \(\theta_{x_0+x_i} T_{w_j} \) are linearly independent. Thus \(c_{i,j} = 0 \). \(\square \)
Let A be the sub algebra of H_I generated by θ_x. Then $A \cong \mathbb{C}[X]$ via the isomorphism $\theta_x \mapsto [x]$. (We shall write an element in the group algebra $\mathbb{C}[X]$ as $\sum_{x \in X} c_x [x]$, where $c_x \in \mathbb{C}$, in order to distinguish $[x - y]$ from $[x] - [y]$.)

Proposition 3. The centralizer of A in H_I is A.

Proof. Let $z \in H_I$. Express z in the Bernstein’s basis, and let $\theta_x T_w$ be a term in the expression such that $\ell(w)$ is maximal. If $w = 1$, then $z \in A$. Otherwise, there exists $y \in X$ such that $w(y) \neq y$. Now notice that $\theta_y \cdot \theta_x T_w = \theta_{y+x}$, while

$$\theta_x T_w \cdot \theta_y = \theta_{x+w(y)} T_w + \sum_{z,v} c_{z,v} \theta_z T_v$$

where $\ell(v) < \ell(w)$. As $y - w(y)$ can be made arbitrarily large, z does not commute with all elements in A. \hfill \Box

4. **Satake Map**

We fix the measure on N so that the volume of $(N \cap K)$ is $[K : I]$. We identify $C_c(T/T_K)$ with $\mathbb{C}[X]$ by $f \mapsto \sum_{x \in X} f(x)[x]$. The Satake map $S : C_c(G/K) \to C_c(T/T_K) = \mathbb{C}[X]$ is defined by

$$S(f)(t) = \delta(t)^{1/2} \int_N f(tn) \, dn.$$

It is a formal check (see [Ca]) that S, when restricted to $H_K = C_c(K \setminus G/K)$, is a homomorphism and the image of H_K is contained in $\mathbb{C}[X]^W$.

Proposition 4. Let 1_K be the identity element of H_K. Then $\theta_x * 1_K$, $x \in X$, form a basis of $C_c(I \setminus G/K)$.

Proof. Note that $C_c(I/G/K) = C_c(I \setminus G/I) * 1_K$. Since $1_K = \frac{1}{[K:I]} \sum_{w \in W} T_w$, the proposition follows from Proposition 2. \hfill \Box

Lemma 1. Let (π, V) be a smooth G-module and (π', V') a smooth B-module with the trivial action of N. Let $S : V \to V'$ be a map such that $S(\pi(b)v) = \delta^{-1/2}(b) \pi'(b) S(v)$ for every $b \in B$. Then, for every $x \in X$ and $v \in V'$, $S(\pi(\theta_x)v) = \pi'(t_x)v$.

This lemma appears in the literature in a special case when $V' = V_N$, the normalized Jacquet functor. The proof is the same and therefore omitted.

Theorem 1. The map S induces an isomorphism of left $A \cong \mathbb{C}[X]$-modules

$$C_c(I \setminus G/K) \rightarrow \mathbb{C}[X]$$

which sends the basis elements $\theta_x * 1_K$ to the basis elements $[x]$.

Proof. We apply Lemma 1 to $V = C_c(G/K)$, $V' = C_c(T/T_K)$ (considered as left G and T-modules) and S the Satake map. Then, for every $f \in C_c(I \setminus G/K)$, $S(\theta_x * f)(t) = S(f)(t_x^{-1} t)$. Thus $S(\theta_x * f) = [x] \cdot S(f)$. In particular, $S(\theta_x * 1_K) = [x] \cdot S(1_K) = [x]$, and the theorem follows. \hfill \Box

Let Z_I be the center of H_I. Let A^W be the span of $\sum_{w \in W} \theta_{w(x)}$ for $x \in X$. Corollary 1 implies that $A^W \subseteq Z_I$. Let $Z : Z_I \to H_K$ be a homomorphism defined by $Z(z) = z * 1_K$.

Theorem 2. The maps Z and S induce isomorphisms of algebras

$$A^W \cong Z_I \cong H_K \cong \mathbb{C}[X]^W.$$

Proof. Theorem 1 implies that S, restricted to H_K, is injective. Proposition 3 implies that $Z_I \subseteq A$. This and Theorem 1 imply that the map $S \circ Z$ is injective. Thus, we have the injections

$$A^W \subseteq Z_I \subseteq H_K \subseteq \mathbb{C}[X]^W.$$

Since $(S \circ Z)(\sum_{w \in W} \theta_w(x)) = S(\sum_{w \in W} \theta_{w(x)} \ast 1_K) = \sum_{w \in W} [w(x)]$, the above injections are isomorphisms. □

Final Remarks. A proof of the isomorphism $Z_I \cong [X]^W$ can be found in [Da] and [HKP]. Both approaches are based on the explicit description of the Bernstein component of the category of smooth G-modules containing the trivial representation. Dat also shows that the map Z gives an isomorphism of Z_I and H_K. On the other hand, Lusztig [Lu] considers a version of the algebra H_I over the ring $\mathbb{Z}[q^{\pm1/2}]$ where q is considered a formal variable. He shows that the center is isomorphic to $\mathbb{Z}[q^{\pm1/2}][X]^W$ by specializing $q^{1/2} = 1$. No claim is made as to what the center is when q is specialized to a power of a prime number.

References

[Ca] P. Cartier, *Representations of p-adic groups: a survey*. Automorphic Forms, Representations and L-functions, Proc. Symp. Pure Math., vol 33, part 1, AMS, Providence, RI, 1979, 111-155.

[Da] J.-F. Dat, *Caractères à valeurs dans le centre de Bernstein*. J. reine angew. Math. 508 (1999), 61-83.

[HKP] T. Haines, R. Kottwitz, A. Prasad, *Iwahori-Hecke algebras*. J. Ramanujan Math. Soc. 25, No 2 (2010), 113-145.

[Lu] G. Lusztig, *Singularities, character formulas, and a q-analog of weight multiplicities*. Astérisque 101-102 Soc. Math. France, Paris, 1983, 208-229.

[IM] Iwahori, H. Matsumoto, *On some Bruhat decompositions and the structure of the Hecke ring of a p-adic Chevalley group*. Publ. Math. IHES 25 (1965), 5-48.

[Sa] I. Satake, *Theory of spherical functions on reductive algebraic groups over p-adic fields*. Publ. Math. IHES 18 (1963), 1-69.

[S1] G. Savin, *Local Shimura correspondence*. Math. Ann. 280 (1988), 185-190.

[S2] G. Savin, *On unramified representations of covering groups*. J. reine angew. Math. 566 (2004), 111-134.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112

E-mail address: savin@math.utah.edu