Cardiac sarcoidosis: A long term follow up study

Patrice Cacoub, Catherine Chapelon-Abric, Matthieu Resche-Rigon, David Saadoun, Anne Claire Desbois, Lucie Biard

1 UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Universités, Paris, France, 2 INSERM, UMR_S 959, Paris, France, 3 CNRS, FRE3632, Paris, France, 4 Department of Internal Medicine and Clinical Immunology, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France, 5 Department of Biostatistics and Medical Information, AP-HP Hôpital Saint Louis, Paris, France, 6 INSERM, UMRS 1153, ECSTRA Team, Paris, France, 7 Paris Diderot, Paris 7 University, Paris, France

*patrice.cacoub@aphp.fr

Abstract

Background
Prognostic factors are lacking in cardiac sarcoidosis (CS), and the effects of immunosuppressive treatments are unclear.

Objectives
To identify prognostic factors and to assess the effects of immunosuppressive drugs on relapse risk in patients presenting with CS.

Methods
From a cohort of 157 patients with CS with a median follow-up of 7 years, we analysed all cardiac and extra-cardiac data and treatments, and assessed relapse-free and overall survival.

Results
The 10-year survival rate was 90% (95% CI, 84–96). Baseline factors associated with mortality were the presence of high degree atrioventricular block (HR, 5.56, 95% CI 1.7–18.2, \(p = 0.005\)), left ventricular ejection fraction below 40% (HR, 4.88, 95% CI 1.26–18.9, \(p = 0.022\)), hypertension (HR, 4.79, 95% CI 1.06–21.7, \(p = 0.042\)), abnormal pulmonary function test (HR, 3.27, 95% CI 1.07–10.0, \(p = 0.038\)), areas of late gadolinium enhancement on cardiac magnetic resonance (HR, 2.26, 95% CI 0.25–20.4, \(p = 0.003\)), and older age (HR per 10 years 1.69, 95% CI 1.13–2.52, \(p = 0.01\)). The 10-year relapse-free survival rate for cardiac relapses was 53% (95% CI, 44–63). Baseline factors that were independently associated with cardiac relapse were kidney involvement (HR, 3.35, 95% CI 1.39–8.07, \(p = 0.007\)), wall motion abnormalities (HR, 2.30, 95% CI 1.22–4.32, \(p = 0.010\)), and left heart failure (HR 2.23, 95% CI 1.12–4.45, \(p = 0.023\)). After adjustment for cardiac involvement severity, treatment with intravenous cyclophosphamide was associated with a lower risk of cardiac relapse (HR 0.16, 95% CI 0.033–0.78, \(p = 0.024\)).
Conclusions
Our study identifies putative factors affecting morbidity and mortality in cardiac sarcoidosis patients. Intravenous cyclophosphamide is associated with lower relapse rates.

Introduction
Sarcoidosis is a multi-system granulomatous disease of unknown origin with an overall prevalence from 10 to 20 per 100,000 in white American and European patients to 35 per 100,000 in African American patients [1–3]. Clinically manifest cardiac involvement—known as cardiac sarcoidosis (CS)—occurs in 5% to 11% [4–6] whereas cardiac involvement was found in 25% of patients with sarcoidosis on autopsies [7, 8]. Such findings are consistent with data using late gadolinium enhancement on cardiac magnetic resonance imaging (MRI) [9, 10]. Between 16% and 35% of patients presenting with complete atrioventricular block [11, 12] or ventricular tachycardia of unknown etiology [12–14] have previously undiagnosed CS. Core left ventricular biopsies at the time of left ventricular assist device implantation found undiagnosed CS in 3.4% of patients [15], and 3% of explanted hearts had undiagnosed CS [16]. Congestive heart failure is a common presenting feature, as is sudden death. More rarely, CS has been associated with atrial arrhythmias and valvulopathy, coronary vasculitis, acute myocarditis, and arrhythmogenic right ventricular cardiomyopathy [17].

Cardiac involvement has been reported to account for 25% of all deaths from sarcoidosis in the United States and 85% in Japanese series [7]. There is controversy as to the prognosis of patients with clinically silent CS. In patients with clinically manifest disease, the extent of left ventricle dysfunction has been reported as a predictor of survival [18–24]. Despite the lack of randomized controlled trials, the use of moderate to high dose glucocorticosteroids is widely accepted [23–28], with the highest quality data related to atrioventricular block [18], left ventricular dysfunction and ventricular arrhythmias [6, 25–27]. Immunosuppressant are used as a second-line agent in refractory cases of CS and/or if there are significant steroid side effects [4, 29].

In this retrospective study of a large cohort of CS patients with a long follow up, we aimed to: 1) identify baseline prognostic factors influencing overall survival and relapses; and 2) assess the effects of immunosuppressive drugs on relapse risk.

Methods
Patients
Data from 690 patients with systemic sarcoidosis diagnosed and followed in a single national referral centre at La Pitié-Salpêtrière University Hospital, Paris, France, between January 1980 and February 2016 were collected. All patients who met the World Association for Sarcoidosis and Other Granulomatous Disorders (WASOG) criteria for cardiac sarcoidosis [28, 29] and whose cardiac symptoms had appeared in 1980 or later were selected. Even in the presence of suggestive manifestations, cardiac biopsy is rarely realized because of its own risk and its poor diagnostic performance. In the present series, 5 out of 157 patients had had a cardiac biopsy with typical pathological features of sarcoidosis found in 3 of them. Of note, as for the present study we aimed to analyse the effect of steroid or immunosuppressant therapy, we did not include sarcoidosis patients who presented only the criteria “steroid ± immunosuppressant-responsive cardiomyopathy or heart block” [28, 29].
Any new cardiac (e.g. dyspnoea, syncope, heart failure, troubles of cardiac rhythm or conduction...) or non-cardiac symptoms attributed to sarcoidosis by the patient’s referral physician defined a relapse [5]. When appropriate, the relapse was confirmed by either radiological (echocardiography, cardiac MRI, cardiac FDG-PET scan, brain and/or spine MRI etc...) or pathological evidence. Ventricular extrasystoles were considered as a cardiac sarcoidosis manifestation when > 1000/24 hours. Hypertension was defined as either diastolic blood pressure > 90 mmHg or systolic blood pressure > 140 mmHg. Whenever a biopsy was performed, a relapse was confirmed if the histopathological analysis revealed a well-defined non-caseating granuloma. Outcomes were assessed by the vital and relapse-free survivals. Patients with one or more-than-one relapse were considered as relapers.

A switch or an adjustment of the dose of immunosuppressant was done within the following ranges: methotrexate 0.3–0.4 mg/kg/week; mycophenolic acid 2.0 to 3.0 g/day; azathioprine 50 to 150 mg/day. Intravenous cyclophosphamide was administered at the dose of 1g monthly, and infliximab at 5 mg/kg at 0, 2, 6 and then every 8 weeks.

The institutional review board of the Assistance Publique-Hôpitaux de Paris approved this observational retrospective study, and informed consent was not required.

Patient and Public Involvement: it was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

Statistical analyses
Continuous variables are presented with the median and interquartile range (IQR); categorical variables are presented with counts and proportions.

The date of the CS diagnosis was considered to be either the sarcoidosis diagnosis date (if the cardiac signs occurred concomitant with or prior to the sarcoidosis diagnosis), or the date of the first cardiac signs. Overall (OS) and relapse-free survival (RFS), as defined previously [5], were estimated using the Kaplan-Meier method. Survival functions were compared using the log rank test. Univariate analyses were performed in Cox regression models to identify baseline factors associated with OS and RFS. For RFS and cardiac-RFS analyses, multivariate models were selected by backward stepwise selection on p-values, using variables that were significant at a 5% level in univariate analysis. The association between recurrent relapse (any localization and cardiac) and sequences of CS treatments was examined in the subgroup of patients with at least one clinical Birnie’s criterion other than therapeutic response (see methods), using the Andersen-Gill Cox approach; this accounted for potential intra-patient correlation across observations. These recurrent events analyses were adjusted for New York Heart Association (NYHA) status (class 3–4 vs. 1–2), presence of cardiac rhythm disorders (yes vs. no), and presence of atrioventricular or ventricular conduction abnormalities (yes vs. no) during the follow-up.

All tests were two-sided, and a p-value below 0.05 was considered significant. Analyses were performed using R statistical platform software, version 3.2.2.

Patient and public involvement in research
We acknowledge that patient and public involvement is of importance. However, this appears not appropriate for the present papers.

Results
Characteristics of cardiac sarcoidosis patients
One hundred and seven patients [92 (59%) men, 77 (50%) Caucasians] met the new WASOG criteria for CS (median age 40 years, IQR 32–49) [29], with a median follow-up of 7 years (6
months–32 years), 1 to 16 follow up visits, and a 60 months follow up in 67%. The cardiac signs occurred either prior to \(n = 15, 10\% \), concomitant with \(n = 54, 34\% \) or after \(n = 88, 56\% \) the sarcoidosis diagnosis.

The main demographic data and extra-cardiac features are summarized in Table 1. Constitutional symptoms were observed in 43% of CS patients and 135/157 (86%) patients had two or more extra-cardiac sites, including mediastinal lymph nodes and/or lungs (89%), nervous system (42%), skin (31%), peripheral lymph nodes (30%), eyes (29%), and joints (24%). Elevated serum angiotensin-converting enzyme was noted in 86 (55%) patients.

The main clinical cardiac features are detailed in Table 2. Clinical manifestations of heart involvement were noted in all 157 (100%) patients, including ventricular block in 48/157 (31%), atrioventricular block in 27/157 (17%), ventricular arrhythmia in 27/157 (17%), left heart failure in 15/157 (10%), syncope in 10/157 (6%), and class 3 or 4 NYHA dyspnoea in 10/

Table 1. Main extra-cardiac features of 157 cardiac sarcoidosis patients.

Variables	Number (%) or Median (IQR)
General features	
Age at cardiac sarcoidosis diagnosis (yrs)	40 (32; 49)
Male gender	92/157 (59)
Ethnic background	
Caucasian	77 (50)
African / Caribbean	43 (28)
North African	34 (22)
Other	3 (2)
Active smoking habit	20 (13)
Extra-cardiac involvement	
Number of extra-cardiac sites	
0	2 (1)
1	20 (13)
2	45 (29)
3	39 (25)
> 3	51 (32)
Abnormal chest X-ray	130/146 (89%)
Class 0	16 (11)
Class I	38 (26)
Class II	67 (46)
Class III	25 (17)
General symptoms	67 (43)
Skin	48 (31)
Lymph node	47 (30)
Central nervous system	45 (29)
Eye	45 (29)
Joints	37 (24)
Liver or spleen	36 (23)
Exocrine gland	27 (17)
Ear, nose and throat	8 (5)
Kidney	8 (5)
Peripheral nervous system	5 (3)
Bones	4 (3)
Digestive tract	3 (2)

https://doi.org/10.1371/journal.pone.0238391.t001
Of note, similar rates of NYHA class of dyspnoea were present whatever the results of pulmonary function tests, suggesting that most dyspnoea were related to cardiac dysfunction (S1 Table).

Table 3 summarizes the main cardiac imaging results. Echocardiography found abnormalities in 98/157 (62%) patients, including wall motion abnormalities in 20/157 (13%), thick interventricular septum in 18/156 (12%), and LVEF below forty percent in 15/152 (10%). Cardiac thallium scintigraphy showed localized or diffuse perfusion defects in a pattern consistent with CS in 107/133 (80%). Cardiac MRI was abnormal in 68/91 (75%) patients including early 12/88 (14%) or late 39/88 (44%) gadolinium enhancement, and low LVEF in 28/88 (32%). Cardiac FDG PET scan showed a patchy uptake in 12/37 (32%).

Patients were given steroids either alone (n = 92) or in association with immunosuppressive drugs (n = 120, including intravenous cyclophosphamide (n = 79), methotrexate (n = 59), mycophenolic acid (n = 45), hydroxychloroquine (n = 29), infliximab (n = 14) and...
azathioprine (n = 8) ([S2 Table]). The median (Q1–Q3) daily dose of steroids at entry and the end of follow-up was 53 mg (30–75) and 5 mg (3–10), respectively. Main steroids-related adverse effects were hypertension (24/157, 15%), diabetes (19/157, 12%), obesity (15/157, 11%), infections (13/157, 8%), osteoporosis (9/157, 6%), and tuberculosis (1/157, <1%). All patients also received conventional cardiac treatments, i.e. diuretics, ACE inhibitors, beta-blockers, anti-arrhythmic drugs, etc. Other cardiac treatments included a pace maker (7 patients), an implantable cardioverter defibrillator (2 patients), a pace maker plus an implantable cardioverter defibrillator (2 patients), a radio-ablation (3 patients), and a heart transplantation (2 patients).

Prognostic factors

Survival. Thirteen out of 157 patients died during the follow-up. Overall survival rate at 5 and 10 years from CS diagnosis was 93.6% [95% CI, 89.5–97.8] and 89.6% [95% CI, 83.8–95.8], respectively ([Fig 1A]). Deaths were related to CS in four cases, i.e. two cases of refractory cardiac insufficiency, one post-heart transplant, and one unexplained sudden death. The other
deaths were due to cerebral events (n = 4), severe asthma (n = 1), lymphoma (n = 1), suicide (n = 1), cardiac surgery not related to CS (n = 1) and unknown cause (n = 1). Univariate analysis found factors associated with fatal outcomes to be older age, LVEF below forty percent, hypertension, abnormal pulmonary function test, and the presence of delayed hypersignal enhancement on cardiac MRI (Table 4, S3 Table).

Relapses. A hundred and one patients had at least one sarcoidosis-related event, i.e. 63 cardiac relapses and 88 non-cardiac relapses. No death without prior relapse was noted. After 10 years of follow up, the overall RFS rate (cardiac and non-cardiac) was 27.4% (95% CI, 20.2–37.3) (Fig 1B). The cardiac RFS rate was 52.9% (95% CI, 44.1–63.4). Cumulative incidences of cardiac and non-cardiac relapses at 1, 3, 5 and 10 years were 6% (95% CI 10–21) and 24% (95% CI 17–30), 32% (21–35) and 50% (43–58), 40% (31–48) and 64% (55–71), and 47% (37–56) and 73% (63–80), respectively (Fig 1C).

Univariate analysis showed factors associated with cardiac relapse to be baseline kidney involvement, high degree atrioventricular block, and the presence of late gadolinium enhancement on cardiac MRI (Table 4, S3 Table). The presence of skin involvement was associated with a lower risk of cardiac relapse.

In multivariate analysis, factors associated with cardiac relapse were baseline kidney involvement, left heart failure and wall motion abnormalities on echocardiography, whereas skin involvement was inversely associated.

The impact of immunosuppressive treatments on the relapse risk over a treatment course (any localization or cardiac) is detailed in Table 5. Only the administration of intravenous cyclophosphamide was associated with a significant decrease of cardiac relapse risk (HR 0.16, 95% CI 0.03–0.75, p = 0.020) compared with the absence of treatment. The HR was 0.37 (0.13–1.08, p = 0.069) for the risk of recurrent relapse, including all localization. The administration of glucocorticoids alone, methotrexate or mycophenolic acid were all associated with a non-statistically significant decrease of cardiac relapse rate. Detailed description of treatment sequences included in this analysis is available in S4 Table.

Discussion

In the present study, one of the largest published cohort of patients that has met the new criteria for CS and has had a long follow up, we found that: 1) the 10-year mortality rate was low and associated with older age at CS diagnosis, hypertension, abnormal pulmonary function test, low LVEF, and areas of late gadolinium enhancement on cardiac MRI; 2) the 10-year relapse-rate was high and associated to baseline kidney involvement, left heart failure and the presence wall motion abnormalities on echocardiography; and 3) of the immunosuppressant used, only intravenous cyclophosphamide was associated with a significant decrease in cardiac relapse rates.

Although recent data are reassuring [6, 11, 24], patients with CS have a poorer prognosis than patients without cardiac involvement. The extent of left ventricle dysfunction has been reported as a major predictor of survival [18, 19]. In the study by Chiu et al. at 10 years, all patients with normal ejection fraction were alive whereas patients with severe left ventricular dysfunction had a survival rate of 19% [19]. Some studies found that patients with clinically silent CS have a benign course [25, 30–32]; however contrasting results have been reported.
In the present series, most deaths were not due to cardiac sarcoidosis, suggesting that CS might be also a marker of an aggressive sarcoidosis. Death was associated with areas of late gadolinium enhancement on cardiac MRI, a sign of myocardium fibrosis/scar reported as a.

Table 4. Main features associated with overall and relapse-free survivals (all relapses), and cardiac relapses in cardiac sarcoidosis patients (univariate analysis).

Variable	Overall survival	Relapse-free survival	Cardiac relapses†	
	Deaths/patients	HR (95% CI)	P	
		Relapses/patients	HR (95% CI)	P
		Relapses/patients	HR (95% CI)	P
General features				
Age at diagnosis (HR per 10 years)	1.69 (1.13–2.52)	**0.010**	1.11 (0.95–1.29)	0.18
Male gender	5/92	0.47 (0.15–1.45)	0.19	
Ethnic Background				
Caucasian	8/78	1.11 (0.95–1.29)	0.67	
African/Carib	4/43	0.81 (0.24–2.68)	0.19	
North African	1/34	0.26 (0.032–2.08)	0.67	
Smoking	0/20	-	0.95 (0.57–1.57)	0.83
Hypertension	2/8	4.79 (1.06–21.7)	**0.042**	
Extra-cardiac involvement				
> 2 sites involved	6/90	0.57 (0.19–1.70)	0.31	
General symptoms	5/67	0.96 (0.31–2.94)	0.94	
CNS	3/45	0.70 (0.19–2.56)	0.59	
Lung	13/130	0.17‡	0.19‡	
Abnormal pulmonary test	8/50	3.27 (1.07–10.0)	**0.038**	
Eye	1/45	0.21 (0.027–1.61)	0.13	
Lymph nodes	1/47	0.17 (0.022–1.30)	0.88	
Skin	6/48	1.95 (0.66–5.81)	0.23	
Liver or spleen	3/36	0.88 (0.24–3.22)	0.85	
Joints	1/37	0.25 (0.033–1.95)	0.19	
Exocrine glands	2/27	0.84 (0.19–3.80)	0.84	
ENT	0/8	-	0.34‡	
Kidney	0/8	-	0.37‡	
NYHA class	2/10	2.80 (0.62–12.6)	0.18	
Left heart failure	3/15	2.45 (0.67–8.99)	0.18	
Right heart failure	1/3	3.29 (0.42–25.9)	0.26	
AV block	5/27	3.62 (1.18–11.1)	**0.025**	
High degree AV block	4/15	5.56 (1.70–18.2)	**0.005**	
Left bundle branch block	3/10	5.13 (1.41–18.7)	**0.013**	
LVET < 40%	3/10	4.88 (1.26–18.9)	**0.022**	
Septal hypertrophy	1/18	0.59 (0.08–4.51)	0.61	
Wall motion abnormalities	4/20	2.51 (0.77–8.20)	0.13	
Delayed MRI hypersignal	5/39	2.26 (0.25–20.4)	**0.003**	

Note: Carib, Caribbean; CNS, central nervous system; ENT, ear, nose, throat; NYHA, New York Heart Association; AV, atrio-ventricular; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; ENT, Ear, nose and throat.

‡P-value of Log-Rank test; Estimation of hazards ratio using a Cox regression model was not performed due to the absence of event in one subgroup of interest.

https://doi.org/10.1371/journal.pone.0238391.t004
pejorative factor [11, 21–23, 25, 30, 37–39]. Interestingly, repeat FDG PET scan may help to determine the extent of disease activity and to assess the cardiac response to therapy [40–42]. Promising technologies using cardiac FDG PET scan plus MRI might enable concurrent imaging of the two stages of the disease, i.e. inflammation and fibrosis [43].

For patients with extra-pulmonary i.e. cardiac, ocular, neurological, or renal sarcoidosis or hypercalcemia, treatment is recommended [44]. Non-randomized studies have suggested that steroids should be proposed as soon as possible, with good efficacy on ventricular arrhythmia, acute cardiac insufficiency and atrioventricular block [6, 24, 27, 45]. No prognostic difference was found in patients treated with high or moderate doses of prednisone [46]. Immunosuppressant, often used in refractory cases and/or if steroid side effects, included methotrexate [6, 22, 24, 25], azathioprine [22, 47], cyclophosphamide [6, 48], mycophenolate mofetil [22, 24] and more recently infliximab [49–53]. In the present study, only intravenous cyclophosphamide was associated with a significant decrease in cardiac relapse rates. Other immunosuppressive drugs used were also associated with a lower cardiac relapse risk (i.e. glucocorticoid alone, methotrexate or mycophenolic acid). Probably due to the lack of sufficient power and/or insufficient efficacy and/or use as second-line therapies in refractory CS, the latter results were not statistically significant. In the present series, the number of patients who received infliximab was too small to draw firm conclusions [49–53]. Of note, analyses on treatments should be interpreted with caution as treatments were not randomised (possible confounding factors), and sample sizes of some treatment were small (under power). Despite a widespread use of steroids and immunosuppressant drugs, the adverse effect rate remained low. This is probably related to the low dose of steroids patients received at the end of follow up. This highlights a benefit/risk balance in favour of long-term immunosuppression in CS patients, particularly if patients show factors predictive of poor outcome or cardiac relapse.

Limitations

Due to the rarity of the disease, we analysed retrospective data. A referral centre bias may explain some of the characteristics of our cohort (multi-systemic severe forms of sarcoidosis, rarity of atrio-ventricular block). The clinical variety of CS required the use of complex statistical models. A multivariate analysis was not feasible for overall survival due to the small number of events. Due to the long enrollment period, we cannot exclude possible implications of change in backward cardiovascular therapies or diagnostic tools on outcomes. Only a part of

Treatment	All relapses /therapeutic sequences	HR (95%CI)†	P	Cardiac relapses /therapeutic sequences	HR (95%CI)†	P
None	10/13	1	-	8/13	0.48 (0.18–1.31)	0.15
Glucocorticoid alone	17/77	0.51 (0.20–1.31)	0.16	11/77	0.62 (0.17–2.19)	0.46
Methotrexate	24/74	1.28 (0.43–3.75)	0.66	9/74	0.47 (0.15–1.47)	0.19
Mycophenolic acid	9/54	0.60 (0.21–1.69)	0.33	5/54	1	-
Intravenous cyclophosphamide	6/48	0.37 (0.13–1.08)	0.069	2/48	0.16 (0.033–0.75)	**0.020**
Other*	9/26	0.76 (0.22–2.61)	0.67	5/26	0.48 (0.16–1.41)	0.18

*Hydroxychloroquine alone (n = 16), infliximab (n = 4), azathioprine alone (n = 3), other immunosuppressant (n = 3)
†Analysis was performed including sequences of treatments between follow-up visits, excluding patients with a clinical therapeutic response as part of their diagnosis Birnie criteria and excluding periods of disease persistence.
‡ Analysis was adjusted on NYHA status (class 3–4 vs. 1–2), presence of cardiac rhythm disorders (yes vs. no), and presence of atrioventricular or ventricular conduction abnormalities (yes vs. no) during follow-up (time-dependent).

https://doi.org/10.1371/journal.pone.0238391.t005
the patients did cardiac MRI and cardiac FDG-PET scan, both fundamental in relapse and prognostic evaluation. Also, as mentioned above, immunosuppressive treatments were not randomised.

Conclusion
In patients with cardiac sarcoidosis, more frequent relapses were found to be associated with baseline kidney involvement, left heart failure and the presence of wall motion abnormalities on echocardiography. Mortality rate was low and associated to older age, arterial hypertension, abnormal pulmonary function tests, low LVEF and the presence of areas of late gadolinium enhancement on cardiac MRI. Immunosuppressive therapy with intravenous cyclophosphamide is associated with lower relapse rates and might be especially of interest when predictive factors of poor outcome or relapses are present. Such results should be confirmed in randomized controlled trials.

Supporting information
S1 Table. NYHA class of dyspnea at baseline and during the follow up, according to baseline pulmonary function tests.
(DOCX)

S2 Table. Associations of immuno-suppressive or immuno-modulatory treatments in the entire database [associations are grouped according to the main active molecule received (bold characters)].
(DOCX)

S3 Table. Univariate analyses of corresponding Main Table 1 (S1), Table 2 (S2) and Table 3 (S3).
(DOCX)

S4 Table. Detailed description of sequences of treatment (associations of immuno-suppressive or immuno-modulatory treatments), included in the analysis of the association of treatment with recurrent relapses.
(DOCX)

Author Contributions
Conceptualization: Patrice Cacoub, Catherine Chapelon-Abric, Lucie Biard.

Data curation: Patrice Cacoub, Catherine Chapelon-Abric, Matthieu Resche-Rigon, Lucie Biard.

Formal analysis: Patrice Cacoub, Matthieu Resche-Rigon, David Saadoun, Anne Claire Desbois, Lucie Biard.

Investigation: Patrice Cacoub, Catherine Chapelon-Abric, David Saadoun.

Methodology: Patrice Cacoub, Matthieu Resche-Rigon, Anne Claire Desbois, Lucie Biard.

Writing – original draft: Patrice Cacoub, Lucie Biard.

Writing – review & editing: Patrice Cacoub, Catherine Chapelon-Abric, Matthieu Resche-Rigon, David Saadoun, Anne Claire Desbois, Lucie Biard.
References

1. Ungprasert P, Carmona EM, Utz JP, Ryu JH, Crowson CS, Matteson EL. Epidemiology of Sarcoidosis 1946–2013: A Population-Based Study. Mayo Clin Proc. 2016; 91(2):183–188. https://doi.org/10.1016/j.mayocp.2015.10.024 PMID: 26727158

2. Hillerdal G, Nòu E, Osterman K, Schmekel B. Sarcoidosis: epidemiology and prognosis. A 15-year European study. Am Rev Respir Dis 1984; 130:29–32. https://doi.org/10.1164/arrd.1984.130.1.29 PMID: 6742607

3. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Müller-Quernheim J. Sarcoidosis. Lancet 2014; 383:1155–67. https://doi.org/10.1016/S0140-6736(13)60680-7 PMID: 24090799

4. Birnie DH, Nery PB, Ha AC, Beanlands RS. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016 Jul 26; 68(4):411–21. https://doi.org/10.1016/j.jacc.2016.03.605 PMID: 27443438

5. Joubert B, Chapelon-Abric C, Biard L, Saadoun D, Demeret S, Dormont D, et al. Association of Prognostic Factors and Immunosuppressive Treatment With Long-term Outcomes in Neurosarcoidosis. JAMA Neurol. 2017 Nov 1; 74(11):1336–1344. https://doi.org/10.1001/jamaneurol.2017.2492 PMID: 29052709

6. Chapelon-Abric C, Sene D, Saadoun D, Cluzel P, Vignaux O, Costeau-Chalumeau N, et al. Cardiac sarcoidosis: Diagnosis, therapeutic management and prognostic factors. Arch Cardiovasc Dis. 2017 Aug–Sep; 110(8–9):456–465. https://doi.org/10.1016/j.acvd.2016.12.014 PMID: 28566197

7. Iwai K, Tachibana T, Takemura T, Matsui Y, Kitaichi M, Kawabata Y. Pathological studies of sarcoidosis autopsy. Epidemiological features of 320 cases in Japan. Acta Pathol Jpn 1993; 43:437–46. https://doi.org/10.1111/j.1440-1827.1993.tb01148.x PMID: 8372682

8. Perry A, Vuitich F. Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations. Arch Pathol Lab Med 1995; 119:167–72. PMID: 7848065

9. Stanton KM, Ganigara M, Corte P, Celermajer DS, McGuire MA, Torzillo PJ, et al. The Utility of Cardiac Magnetic Resonance Imaging in the Diagnosis of Cardiac Sarcoidosis. Heart Lung Circ. 2017 Nov; 26(11):1191–1199. https://doi.org/10.1016/j.hlc.2017.02.021 PMID: 28901519

10. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol 2011; 4:303–9. https://doi.org/10.1161/CIRCEP.110.959254 PMID: 21427276

11. Nery PB, Beanlands RS, Nair GM, Green M, Yang J, McArdle BA, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol 2014; 25:875–81. https://doi.org/10.1111/jice.12401 PMID: 24602015

12. Tung R, Bauer B, Schelbert H, Lynch JP, Auerbach M, Gupta P, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm 2015; 12:2488–98. https://doi.org/10.1016/j.hrthm.2015.08.014 PMID: 26272522

13. Nery PB, McArdle BA, Redpath CJ, Redpath C, Leung E, Lemery R, et al. Prevalence of cardiac sarcoidosis in patients presenting with monomorphic ventricular tachycardia. Pacing Clin Electrophysiol 2014; 367:364–74.

14. Segura AM, Radovancevic R, Demirozu ZT, Frazier OH, Buja LM. Granulomatous myocarditis in severe heart failure patients undergoing implantation of a left ventricular assist device. Cardiovasc Pathol. 2014 Jan-Feb; 23(1):17–20. https://doi.org/10.1016/j.carpath.2013.06.005 PMID: 23928368

15. Roberts WC, Chung MS, Ko JM, Capehart JE, Hall SA. Morphologic features of cardiac sarcoidosis in native hearts of patients having cardiac transplantation. Am J Cardiol 2014; 113:706–12. https://doi.org/10.1016/j.amjcard.2013.11.015 PMID: 24393258

16. Philips B, Madhavan S, James CA, te Riele AS, Murray B, Tichnell C, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy and cardiac sarcoidosis: distinguishing features when the diagnosis is unclear. Circ Arrhythm Electrophysiol 2014; 7:230–6. https://doi.org/10.1161/CIRCEP.113.000932 PMID: 24585727

17. Sadek MM, Yung D, Birnie DH, Beanlands RS, Nery PB. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol 2013; 29:1034–41. https://doi.org/10.1016/j.cjca.2013.02.004 PMID: 23623644

18. Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol 2005; 95:143–6. https://doi.org/10.1016/j.amjcard.2004.08.083 PMID: 15619415
20. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015 Feb 17; 131(7):624–32. https://doi.org/10.1161/CIRCULATIONAHA.114.011522 PMID: 25527698

21. Patel N, Kalra R, Doshi R, Arora H, Bajaj NS, Arora G, et al. Hospitalization Rates, Prevalence of Cardiovascular Manifestations, and Outcomes Associated With Sarcoidosis in the United States. J Am Heart Assoc. 2018 Jan 22; 7(2).

22. Nordenswan HK, Lehtonen J, Ekström K, Kandolin R, Simonen P, Mäyryänä M, et al. Outcome of cardiac sarcoidosis presenting with high-grade atrioventricular block. Circ Arrhythm Electrophysiol 2018; 11:e006145

23. Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiosarcoidosis treated with prednisone. Am J Cardiol. 2001 Nov 1; 88(9):1006–10. https://doi.org/10.1016/s0002-9149(01)01978-6 PMID: 11703997

24. Zhou Y, Lower EE, Li HP, Costea A, Attari M, Baughman RP. Cardiac Sarcoidosis: The Impact of Age and Implanted Devices on Survival. Chest. 2017 Jan; 151(1):139–148. https://doi.org/10.1016/j.chest.2016.08.1457 PMID: 27614001

25. Nagai S, Yokomatsu T, Tanizawa K, Ikezoe K, Handa T, Ito Y, et al. Treatment with methotrexate and low-dose oral corticosteroids in sarcoidosis patients with cardiac lesions. Intern Med 2014; 53:2761. https://doi.org/10.2169/internalmedicine.53.3120 PMID: 25447669

26. Okabe T, Yakushiji T, Hiroe M, Oyama Y, Igawa W, Ono M, et al. Steroid pulse therapy was effective for cardiac sarcoidosis with ventricular tachycardia and systolic dysfunction. ESC Heart Fail 2016; 3 (4): 288–292. https://doi.org/10.1002/ehf2.12095 PMID: 27867531

27. Padala SK, Peaslee S, Sidhu MS, Steckman DA, Judson MA. Impact of early initiation of corticosteroid therapy on cardiac function and rhythm in patients with cardiac sarcoidosis. Int J Cardiol 2017 15; 227: 565–570.

28. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014 Jul; 11(7):1305–23. https://doi.org/10.1016/j.hrthm.2014.03.043 PMID: 24819193

29. Birnie DH, Kandolin R, Nery PB, Kupari M. Cardiac manifestations of sarcoidosis: diagnosis and management. Eur Heart J. 2017 Sep 14; 38(35):2663–2670. https://doi.org/10.1093/eurheartj/ehw328 PMID: 27469375

30. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008 Jun; 133 (6):1426–1435. https://doi.org/10.1378/chest.07-2784 PMID: 18339784

31. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Cheriex EC, Gorgels AP, et al. Cardiac involvement in patients with pulmonary sarcoidosis assessed at two university medical centers in the Netherlands. Chest 2005; 128:30–5. https://doi.org/10.1378/chest.128.1.30 PMID: 16002912

32. Vignaux O, Dhote R, Duboc D, Blanche P, Dussler D, Weber S, et al. Detection of myocardial involvement in patients with sarcoidosis applying T2-weighted, contrast enhanced, and cine magnetic resonance imaging: initial results of a prospective study. J Comput Assist Tomogr 2002; 26:762–7. https://doi.org/10.1097/0002-9149(200209000-00017 PMID: 12439312

33. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Prognosis of cardiac sarcoidosis with ventricular tachycardia and systolic dysfunction. ESC Heart Fail 2016; 3 (4): 565–570. https://doi.org/10.1093/eurheartj/ehw328 PMID: 27469375

34. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zürn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. J Am Coll Cardiol Imaging 2013; 6:501–11. https://doi.org/10.1097/HCM.0b013e318288b93f PMID: 23890057

35. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008 Jun; 133 (6):1426–1435. https://doi.org/10.1378/chest.07-2784 PMID: 18339784

36. Swigris JJ, Olson AL, Huie TJ, Fernandez-Perez ER, Solomon J, Sprunger D, et al. Sarcoidosis-related Mortality in the United States from 1988 to 2007. Am J Respir Crit Care Med. 2011; 183(11):1524–1530. https://doi.org/10.1164/rcrm.201010-167OC PMID: 21330454

37. Ise T, Hasegawa T, Morita Y, Yamada N, Funada A, Takahama H, et al. Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart. 2014 Aug; 100(15):1165–72. https://doi.org/10.1164/heartjnl-2013-305187 PMID: 24829369

38. Takaya Y, Kusano KF, Nakamura K, Ito H. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am J Cardiol. 2015 Feb 15; 115(4):505–9. https://doi.org/10.1016/j.amjcard.2014.11.028 PMID: 25529942
39. Crawford TC. Multimodality imaging in cardiac sarcoidosis: predicting treatment response. Heart Rhythm. 2015 Dec; 12(12):2486–7. https://doi.org/10.1016/j.hrthm.2015.07.035 PMID: 26232764

40. Pi Lee, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol 2017; 24 (1): 19–28. https://doi.org/10.1007/s12350-016-0682-1 PMID: 27813028

41. Shelke AB, Aurangabadkar HU, Bradfield JS, Ali Z, Kular KS, Narasimhan C. Serial FDG-PET scans help to identify steroid resistance in cardiac sarcoidosis Int J Cardiol 2017; 1; 228: 717–722. https://doi.org/10.1016/j.ijcard.2016.11.142 PMID: 27886616

42. Ohira H, Ardle BM, deKemp RA, Nery P, Juneau D, Renaud JM, et al. Inter- and intraobserver agreement of 18F-FDG PET/CT image interpretation in patients referred for assessment of cardiac sarcoidosis. J Nucl Med. 2017 Aug; 58(8):1324–1329. https://doi.org/10.2967/jnumed.116.187203 PMID: 28254873

43. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography—magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013 Jun 4; 127(22):e639–41. https://doi.org/10.1161/CIRCULATIONAHA.112.001217 PMID: 23733970

44. Grutters JC, van den Bosch JM. Corticosteroid treatment in sarcoidosis. Eur Respir J 2006; 28: 627–36. https://doi.org/10.1183/09031936.06.0015805 PMID: 16946094

45. Yodogawa K, Seino Y, Ohara T, Takayama H, Katoh T, Mizuno K. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann Noninvasive Electrocardiol 2011; 16 (2): 140–147. https://doi.org/10.1111/j.1542-474X.2011.00418.x PMID: 21496164

46. Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol 2001; 88:1006–10. https://doi.org/10.1016/s0002-9149(01)01978-6 PMID: 11703997

47. Müller-Quernheim J, Kienast K, Held M, Pfeifer S, Costabel U. Treatment of chronic sarcoidosis with an azathioprine/prednisolone regimen. Eur Respir J 1999; 14: 1117–22. https://doi.org/10.1183/09031936.99.1411179 PMID: 10596700

48. Demeter SL. Myocardial sarcoidosis unresponsive to steroids. Treatment with cyclophosphamide. Chest 1988; 94:202–3. https://doi.org/10.1378/chest.94.1.202 PMID: 3383636

49. Judson MA, Baughman RP, Costabel U, Flavin S, Lo KH, Kavuru MS, et al. Efficacy of infliximab in extrapulmonary sarcoidosis: results from a randomised trial. Eur Respir J 2008; 31:1189–96. https://doi.org/10.1183/09031936.00051907 PMID: 18256069

50. Puymirand-Zemmour D, Chapelon-Abric C, Saadoun D, Bouvry D, Ruiward M, Andrie M, et al. Efficacy and Tolerance of TNF Alpha Inhibitor (TNFI) Treatment in Cardiac Sarcoidosis (CS). 81st Annual Scientific Meeting of the American College of Rheumatology. San Diego. Abstract number 2904, November 2017.

51. Jamiloux Y, Cohen-Aubart F, Chapelon-Abic C, Maucort-Bouch D, Marquet A, Pérand L, et al. Efficacy and safety of tumor necrosis factor antagonists in refractory sarcoidosis: A multicenter study of 132 patients. Semin Arthritis Rheum. 2017 Oct; 47(2):288–294. https://doi.org/10.1016/j.semarthrit.2017.03.005 PMID: 28392046

52. Chapelon-Abic C, Saadoun D, Biard L, Sene D, Resche-Rigon M, Hervier B, et al. Long-term outcome of infliximab in severe chronic and refractory systemic sarcoidosis: a report of 16 cases. Clin Exp Rheumatol. 2015 Jul-Aug; 33(4):509–15. PMID: 26120779

53. Uthman I, Touma Z, Khoury M. Cardiac sarcoidosis responding to monotherapy with infliximab. Clin Rheumatol. 2007 Nov; 26(11):2001–3. https://doi.org/10.1007/s10067-006-0614-1 PMID: 17394036