Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening

Dong Zhou1,2, Yanhong Shen3, Ping Zhou2, Mahpara Fatima2, Jishan Lin3, Jingjing Yue2, Xingtan Zhang2, Li-Yu Chen2 and Ray Ming2,3

Abstract

The ripening of papaya is a physiological and metabolic process associated with accumulation of carotenoids, alternation of flesh color and flavor, which depending on genotype and external factors such as light and hormone. Transcription factors regulating carotenoid biosynthesis have not been analyzed during papaya fruit ripening. RNA-Seq experiments were implemented using different ripening stages of papaya fruit from two papaya varieties. Cis-elements in lycopene β-cyclase genes (CpCYC-B and CpLCY-B) were identified, and followed by genome-wide analysis to identify transcription factors binding to these cis-elements, resulting in the identification of CpbHLH1 and CpbHLH2, two bHLH genes. The expressions of CpbHLH1/2 were changed during fruit development, coupled with transcript increase of carotenoid biosynthesis-related genes including CpCYC-B, CpLCY-B, CpPDS2, CpZDS, CpLCY-E, and CpCHY-B. Yeast one-hybrid (Y1H) and transient expression assay revealed that CpbHLH1/2 could bind to the promoters of CpCYC-B and CpLCY-B, and regulate their transcriptions. In response to strong light, the results of elevated expression of carotenoid biosynthesis-related genes and the changed expression of CpbHLH1/2 indicated that CpbHLH1/2 were involved in light-mediated mechanisms of regulating critical genes in the carotenoid biosynthesis pathway. Collectively, our findings demonstrated several TF family members participating in the regulation of carotenoid genes and proved that CpbHLH1 and CpbHLH2 individually regulated the transcription of lycopene β-cyclase genes (CpCYC-B and CpLCY-B). This study yielded novel findings on regulatory mechanism of carotenoid biosynthesis during papaya fruit ripening.

Introduction

Carotenoids are important structural and functional pigments existed in all plants, which are important for photosynthesis, plant growth and development. Many fleshy fruits, including papaya and tomato, have a dramatic flesh color change resulted from synthesized carotenoids accumulating in chromoplast during fruit ripening. The content of lycopene and β-carotene would have a significant increase from color-break stage to mature fruit, respectively, in red and yellow-fleshed papaya and tomato. As an adaptive characteristic, animals can be attracted by the changed pigments and disperse the matured seeds which are therefore able to germinate1,2.

During fruit ripening, carotenoid biosynthesis pathway is regulated by an genetically programmed mechanism that involves phytohormones and environmental factors such as, light, water, and temperature3. In papaya carotenoid biosynthesis pathway, with phytoene synthase (PSY) functioned, phytoene is synthesized by condensing two molecules of geranylgeranyl diphosphate (GGPP) in the plastids. Combining the phytoene desaturase (PDS)

Correspondence: Ray Ming (rayming@illinois.edu)

© The Author(s) 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
with ζ-carotene desaturase (ZDS), phytoene is further converted into lycopene which is the precursor of carotenene. In nature, carotenoids usually exist in trans-structure. Only trans-lycopene can be catalyzed by downstream cyclase. ZISO and CRTSO are key isomerases catalyzing the transformation of carotenoid cis-structure to trans-structure in plants. And the catalytic process also requires the participation of auxiliary factor flavin adenine dinucleotide (FAD). Afterward, one pathway lead to α-carotene via lycopene ε- and β-cyclase and the other result in β-carotene though chromoplast lycopene beta cyclase (CYC-B) or chloroplast lycopene beta cyclase (LCY-B) and further to zeaxanthin and lutein (Supplement Fig. S1). Meanwhile, recent studies have defined some transcription mechanisms required for the carotenoid biosynthesis-related genes during plant development. MADS-RIN, SPL-CNR, and NAC-NOR have been identified as crucial transcription factors (TFs) for regulating tomato fruit ripening resulting from mutations in these TF genes which inhibit fruit ripening process, such as softening and color development.

Ethylene related TFs (EIN3/EILs and ERFs) regulate fruit development via implementing a transcriptional domino effect associated with ethylene-responsive genes. Reduced expression of SLAPI2a and SIERF6 results in carotenoid accumulation and ethylene biosynthesis in tomato, suggesting that SLAPI2a and SIERF6 act as negative regulators for carotenogenesis. However, in Arabidopsis, these ethylene-responsive factors such as ERFs and RAP2.2 promote carotenoid biosynthesis by binding to PSY promoter. In NAC family, carotenoid accumulation and ethylene synthesis can be positively regulated since SINA4 actively regulate expression of the ripening regulator RIN and cannot be induced by ethylene. In Citrus, through directly binding to promoters, CsMADS6 upregulates the expression of PSY, PDS, and CCD1, implying CsMADS6 regulate the expression of multi-targeted carotenogenesis. Loss-of-function mutations in RCP1 belonging to MYB family led to downregulation of all carotenoid biosynthetic genes, suggesting RCP1 boosts carotenoid biosynthesis during flower development in Mimulus lewisi. Many other important TF families, including HD-ZIP HOMEBOX PROTEIN-1 (HB-1) and TAIL1, have been proven to play important roles in fruit development in many plant species.

bHLH is a transcription factor family in fruit ripening because they can interact with environmental cues driving multiple aspects of downstream morphogenesis. In high-pigment tomato mutants, such as hp1 and hp2, exposing to stronger light, anthocyanin and carotenoid will be accumulated. Meanwhile, in Arabidopsis, homologs of DBR1 and DET1 genes of hp1 and hp2 mutants showed negative regulation in light-mediated signaling pathway. During tomato development, constitutive downregulation of PIF1 levels resulted in increased accumulation of carotenoids in the fruit because PIF1 directly repressed PSY gene expression. Other results also showed that PIF1 and other PIFs promote PSY gene expression and carotenoid accumulation through responding to light signals during daily cycles of light and dark in mature Arabidopsis.

Acting as transcriptional cofactors, bHLHs regulate target genes with other transcription regulators. Since bHLHs proteins are absent from an appropriate DNA-binding domain, they usually function as bHLH heterodimer. PARI and HFR1 interact with PIFs and keep them from matching the target genes’ promoters. In recent decades, papaya fruit flesh has gained increased attention from breeders and consumers. Due to carotenoids content and composition, flesh color and nutritional quality have become increasingly important for fruit crop improvement. CpCYC-B and CpLCY-B are crucial genes controlling flesh color and carotenoids profile in papaya. The red color of papaya flesh is from accumulating lycopene, while the yellow color is attributed to lycopene conversion to β-carotene and β-cryptoxanthin. Studying the regulatory mechanisms of CpCYC-B and CpLCY-B could lead to potential applications for improving fruit color and quality.

To unravel the molecular mechanism of papaya flesh color, we examined how bHLHs regulate CpCYC-B and CpLCY-B during papaya fruit development. To delineate the function of bHLHs on CpCYC-B and CpLCY-B, we conducted genome-wide identification of TFs targeting carotenogenesis by RNA-seq assay coupled with cis-element analysis and isolation for narrowing the numbers of TF families regulating CpCYC-B and CpLCY-B genes. More than 15 TF families were identified and 8 TFs were selected that may have positive or negative role in regulating CpCYC-B and CpLCY-B during fruit ripening. Yeast one-hybrid experiments and dual-luciferase transient expression assays demonstrated CpbHLH1 and CpbHLH2 can directly bind to the promoter upstream regions of CpCYC-B and CpLCY-B and individually inhibit or promote their transcription. Furthermore, we demonstrated that light might also involve in the regulation of CpbHLH1 and CpbHLH2 during fruits ripening.

Materials and Methods
Plant material and treatment
Red-fleshed papaya (Carica papaya L., cv. Hongling, SunUp, AU9) fruits at green, color break, and ripening stages were collected from experimental stations in Anxi and Yangzhong in Fujian, China. Two post-harvest treatments have been subjected: dark and light. During dark and light treatment, fruits were kept at 28 °C for
2 days. Fruits with the same morphology were selected, such as shape, maturity, weight, and without virus defects. All experiments will be biologically replicated with three samples after being frozen with liquid nitrogen or −80 °C.

RNA extraction, library construction, gene isolation, and sequence analysis

Through grinding frozen papaya flesh samples, total RNA was extracted from fruits according to RNA-prep pure Plant Kit (Huayueyang) protocol. The quality and concentration of total RNAs were checked on an Agilent 2100 Bioanalyzer. After matching the qualification, mRNA samples were synthesized as cDNA and further constructed into libraries according to NEBNext Ultra RNA library Pre Kit for Illumine (NEB, E7530). The cDNA libraries were sequenced using Illumina NovaSeq with paired-end 150nt read length. By analyzing the RNA-seq data, eight differentially expressed genes, named *CpNAC3; CpbZIP-1/2/3; CpERF1/2; CpbHLH-1/2* were identified from the database for different papaya-ripening stages.

Quantitative real-time PCR analysis

The experiments of qRT-PCR were performed with above RNA libraries. The primers applying to qRT-PCR analysis were designed as shown in Supplementary Table S2. The resulting qRT-PCR data were computed and analyzed using the formula 2−ΔΔCt 30. *CpTBP1* adopted as an internal standard in papaya 31. All experiments were implemented with three biological replications. The final values were presented with the mean of three biological replications.

DNA extraction and promoter isolation

Total genomic DNA of all samples was extracted according to the Plant DNA Isolation Reagent protocol (Takara). Genomic sequences in promoters of *CpZDS, CpPDS, CpLCY-E, CpCYC-B, CpLCY-B*, and *CpCHY-B* were amplified from papaya genomic DNA (ftp://ftp.jgipsf.org/pub/compgen/phytozome/v9.0/Cpapaya) (primers were listed in Supplementary Table S3).

Construction of vectors and plant transformation

Deletion constructs of *CpCYC-B* and *CpLCY-B 5′* promoter sequences were amplified based on the annotated papaya genome at positions −0.5, −1.0, −1.5 kb (including −0.2/−0.3/−0.4/[0.5-absent element] and cloned into pDNOR207 vector using Gateway technology (Invitrogen). The targeting promoter fragments were then sub-cloned into pMDC162 and pGWB633 vectors using the Gateway conversion system. The *Agrobacterium tumefaciens*-mediated transformation system was implemented to transform pMDC162 and pGWB633-deletion promoters’ constructs into Arabidopsis Columbia (Col-0) ecotype.

Dual-luciferase transient expression assay

The transcription activity of *CpbHLH1* and *CpbHLH2* was analyzed through the double luciferase reporter gene system in tobacco (*N. benthamiana*). As effectors the CDS sequences of *CpbHLH1* and *CpbHLH2* were cloned into the pGreenII 62-SK vectors, including a CaMV35S-Rluc and internal reference REN regulated by the 35S promoters (pG62-CpbHLH1 and pG62-CpbHLH2). Meanwhile, the promoters of *CpCYC-B* and *CpLCY-B* genes were cloned into the pGreenII 0800-LUC double-reporter vectors 32. Through co-transforming the *Agrobacterium*, respectively, containing effector and reporter constructs into tobacco leaves, the luciferase activities of LUC and REN were obtained using luciferase assay kit (Promega). At least eight biological replications were performed. Luminoskan Ascent Microplate Luminometer (Thermo Fisher Scientific) was used to collect data.

Yeast one-hybrid (Y1H) and yeast two-hybrid (Y2H) assays

Y1H experiments were completed according to the Matchmaker Gold Y1H System protocol (Clontech). The CDS sequence of *CpbHLH1* and *CpbHLH2* were cloned into pGADT7 to fuse with the activation domain in the vector. The promoter fragments and short repeat promoter elements of *CpCYC-B* and *CpLCY-B* were cloned into pHis2 vector. Co-transforming PGADT7 vectors containing transcription factors and pHis2 vectors embodying promoters into yeast strain Y187. Yeasts were cultivated on SD basic medium without Leu and Trp for 3 days. After successfully growing on double dropout plate, the yeast colonies were picked to plate onto triple dropout minimal medium (SD/-Leu/-Trp/-His). Using positive and negative controls, the possible interactions between *CpbHLH1/2* and *CpCYC-B/CpLCY-B* were defined by their growth status. Y2H experiment protocol was followed. Yeast cells co-transformed PGADT7-*CpbHLH1* + PGBK7-CpbHLH2 and PGADT7-*CpbHLH2* + PGBK7-CpbHLH1 were grown on triple-dropout and four-dropout minimal medium that basic medium lacks Leu, Trp, His, and Ade.

Results

Expression pattern of carotenoid biosynthesis genes during papaya fruit development

The fruit color of papaya is determined by accumulation of different types of carotenoid compositions and content, and the expression level of the carotenoid biosynthesis genes play important roles in papaya flesh color, fruit firmness, and nutritional profile during papaya fruit development. To understand carotenoid biosynthesis genes’ expression pattern during papaya fruit ripening, RNA-Seq analysis was performed to detect carotenoid-related genes’ expression level during five stages of fruit development (Supplement Fig. S2). *CpCYC-B, CpCHY-B,* and...
and \(\text{CpLCY-B} \) were significantly upregulated during fruit ripening; \(\text{CpZDS} \), \(\text{CpPDS} \), and \(\text{CpLCY-E} \) were also upregulated from stage 3 (50% ripening stage) to stage 5 (100% ripening stage) (Fig. 1).

Identification and characterization of putative transcription factors involved in \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) regulation

To further analyze the potential transcription factors regulating carotenoid biosynthesis genes involved in papaya fruit ripening, RNA-Seq analysis was implemented using libraries constructed from papaya varieties SunUp (from S1 to S5) and AU9 (GRN, CB, and RP) fruit at different developmental stages. To calculate reads per kilo bases per million reads (RPKM), significant expressed tags in different samples were identified. The differentially expressed transcription factors in SunUp and AU9 samples were identified based on the following criteria: \(P < 0.01 \), FDR < 0.01, and fold change > 2. Expression profiles of different TFs were classified as bHLH, GRAS, SBP, and bZIP between the first stage and the final stage in SunUp and AU9 cultivars. In total, 23 and 27 different expressed TFs were identified in SunUp and AU9, respectively. Most TFs were downregulated in two cultivars. Of the 23 TFs in Sunup, 17 TFs, including bHLHs, C2H2s, and GRFs, were downregulated, and 5 TFs, including bZIP and B3, were upregulated. Of the 27 TFs in AU9, 21 TFs, including BES1, WRKY, and TCP, were downregulated, and 6 TFs, including bZIP and AP2, were upregulated (Fig. 2). Some of transcription factors were selected for further analysis.

To test whether these transcription factors can bind promoters of \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) during papaya fruit development, we analyzed the promoter sequences in silico and constructed a series of chimeric genes containing truncated fragments of \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) promoters and GUS reporter gene. Promoters were analyzed for potential TFs binding sites using the PlantCare database. The potential regulatory elements in upstream \(-1.5\) kb promoters of \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) have been summarized in Table 1. Most of them are responsive to hormones and light. CGTCA-motif and ERF, bHLH boxs were the consensus \(\text{cis}\)-elements of \(\text{CpCYC-B} \) and

![Fig. 1 qRT-PCR expression patterns of six carotenoid genes were shown during papaya fruit ripening. S1, 10% ripening; S2, 30% ripening; S3, 50% ripening; S4, 70% ripening; S5, 100% ripening. Value presented as mean ± SE of three replicates.](image-url)
CpLCY-B promoters. For example, bHLH binding site (-CANNTG-), was found at −113 and −164, respectively, in CpCYC-B and CpLCY-B promoters. The distribution of different regulatory elements in different region of promoters implied that some special elements played special function at different developmental stages.

Reporter gene GUS expression was analyzed to check the activity of these cis-elements in transgenic

Table 1 Putative cis-regulatory elements related to specific expression present in CpCYC-B and CpLCY-B

Motif	Sequence	Function	CpCYC-Promoter	CpLCY-Promoter
TCA-element	-GAGAAGAATA-	Responsive to salicylic acid	−506, −536	−506, −536
CGTCA-motif	-CGTCA-	Responsive to MeJA	−191, −1137, −1249	−426, −451
ERE	-ATTTCAAA-	Ethylene-responsive element	−356, −865	−763, −2985
GARE-motif	-AAACAGA-	Gibberellin-responsive element	−382	−1281
P-box	-CCTTTTG-	Gibberellin-responsive element	−1208	−1208
EIRE	-ATTTCAAA-	Elicitor-responsive element	−627	−627
ELI-box3	-AAACCAATT-	Elicitor-responsive element	−751	−751
TGA-element	-AAGGAC-	Responsive to auxin	−1108	−1108
Bhlh element	-CACCTG/CATTG-	Light-responsive element	−113	−113
B-zip element	-AGACGT-	Involvement of abscisic acid, light signal	−574	−574
NAC-element	-CGTG/CATG-	Involvement diverse biological processes, such ripening	−449, −382	−449, −382
Arabidopsis. Higher expression level of GUS gene was detected at -1.5 and 0.5 kb segments of $CpCYC-B$ (Fig. 3a). Deletion from -1.5 to -1.0 kb decreased expression compared with the other two deletion promoter segments. The -1.0 kb promoter segment of $CpLCY-B$ showed a higher expression level than -1.5 and 0.5 kb promoters. Transgenic plants with pMDC162 alone did not show any GUS expression level (data not shown). These results indicated that -0.5 kb fragment of $CpCYC-B$ and $CpLCY-B$ promoter, respectively, can activate or inactivate the regulation of GUS gene expression. To further verify GUS gene expression patterns in transgenic lines, Arabidopsis transformed with $CpCYC-B/CpLCY-B$-GUS fusion gene were analyzed by histochemical staining (Fig. 3c–h). The GUS activity with -0.5 kb region of $CpCYC-B$ and $CpLCY-B$ promoter was, respectively, stronger and weaker than another two types of transgenic plants with -1.0 and -1.5 promoters. These results were identical to the relative expression results of different length promoters (Fig. 3a, b), implying that -0.5 kb promoters of $CpCYC-B$ and $CpLCY-B$ were corresponding to chromoplast- and chloroplast-specific expression patterns, respectively.

We further deleted the -0.5 kb promoters of $CpCYC-B$ and $CpLCY-B$ into -0.2, -0.3, and -0.4 kb fragments. We discovered that $Pro-CpCYC-B::GUS$ had a relatively higher expression level with -0.2 kb promoter than other forms of transgenic Arabidopsis. However, $Pro-CpLCY-B::$
GLIS showed similar relative expression levels driven by different promoters fragments (Supplement Fig. S3). In addition, we mutated two elements, -GAAAGAA-(311 bp) and -ATTTCAAA-(ERF-responsive element) in −0.5 kb of CpLCY-B and CpCYC-B promoters, respectively, and the results indicated that −0.5 kb of Pro-CpLCY-B:GLIS without -GAAAGAA-element exhibited a relatively higher expression level compared with those containing this element, suggesting -GAAAGAA-element might act as a suppressor in CpLCY-B promoter. Without ERF element in −0.5 kb Pro-CpCYC-B:GLIS T1 transgenic plants, there was no obvious expression difference with other transgenic promoter fragment in Arabidopsis (Supplement Fig. S3A and B). However, when we treated the transgenic Arabidopsis containing −1.0 kb CpCYC-B and −1.0 kb CpLCY-B promoter with 80 mg/L ethephon, GUS activity appeared to be weaker (Supplement Fig. S3C-H). This result implied that ERF element might act as a negative cis-element.

By in silico analysis and experimental validation, we identified that −0.5 kb promoter of CpCYC-B and CpLCY-B played important regulatory roles and included some fruit-specific elements, e.g., ERF-responsive element, bHLH-box, in addition to the novel negative regulatory element (-GAAAGAA-) in CpLCY-B promoter.

Combining the result of the expression of TF family members during different fruit ripening stages and TF family motif in −0.5 kb promoters of CpCYC-B and CpLCY-B, we obtained four types of transcription factor families as shown in Fig. 4a. According to their distribution in promoters of CpCYC-B and CpLCY-B, all of their binding sites existed in −0.5 kb CpCYC-B promoter, while, bHLH and ERF binding sites existed in −0.5 kb CpLCY-B promoter. The characterization of four TF families were shown in Table 2. Eight TFs belonging to four types of TF families were selected from database (Fig. 2). The eight differentially expressed transcription factors were named as CpbHLH1 (evm.model.supercontig_131.7), CpbHLH2 (evm.model.supercontig_8.253), CpbZIP1 (evm.model.supercontig_81.160), CpbZIP2 (evm.model.supercontig_9.75), CpNAC3 (evm.model. Supercontig_594.1), CpbERF1 (evm.model.supercontig_131.83), CpbERF2 (evm.model.supercontig_13.250), and CpbZIP3 (evm.model.supercontig_244.3). The transcription of the eight TFs was validated by RNA-Seq and qRT-PCR. The expression levels of CpbHLH1 and CpbERF1/2 were decreased from the initial stage. As shown in Fig. 4b, the expression level of CpNAC3 had been decreased from stage 2; the expression patterns of CpbZIP1/2/3 were random, and for example, the expression level of CpbZIP1 first increased, then decreased and finally increased again. For CpbHLH2, expression level first increased at color break stage, decreased from stage 2, and then increased significantly from stage 4. These results were further demonstrated by RNA-Seq data (Supplement Fig. S4).

CpbHLH-1/2 binds to CpCYC-B and CpLCY-B promoters and regulates their expression

In view of the expression pattern of eight TFs, it is reasonable to assume that they could regulate the expression of CpCYC-B and CpLCY-B. To test whether these TFs can bind to the promoters of CpCYC-B/CpLCY-B, yeast one-hybrid (Y1H) experiment was performed. Yeast cells were co-transformed with the pGADT7-CpbHLH1 + CpCYC-B190bp promoter, pGADT7-CpbHLH1 + CpCYC-B190bp promoter mutant, pGADT7-CpbHLH1 + target repeated element, pGADT7-bHLH1 + repeated target mutation element, positive control and negative control would be cultured on basic SD medium lacking Leu and Trp element (Fig. 5c). However, yeast cells co-transformed with the positive control, pGADT7-bHLH1 + CpCYC-B190bp promoter, pGADT7-bHLH1 + target element repetition, could grow on triple dropout minimal medium. These results were similar to yeast cells co-transformed with pGADT7-bHLH2 + CpCYC-B promoter, pGADT7-bHLH2 + CpCYC-B promoter, pGADT7-bHLH1 + CpCYC-B promoter. These results indicate that CpbHLH1/2 can bind to CANNTG motifs in CpCYC-B and CpLCY-B promoters in yeast cells (Fig. 5). However, other six TFs (including CpbZIP1/2/3, CpNAC3, and CpbERF1/2) failed to act with promoters of CpCYC-B/CpLCY-B (Supplement Fig. S5). We also preliminarily proved that CpbHLH1/2 could bind to CANNTG motif in CpZDS, CpCYC-E, and CpCHY-B promoters though Y1H but fail to bind the promoter of CpPDS. Thus, a co-expression pattern existed between CpbHLH1/2 and CpZDS, CpLCY-B, and CpCHY-B, indicating that CpbHLH1/2 may act as a suppressor in CpbHLH1/2 expression activities (Fig. 6c, d). In contrast, the LUC/REN ratio of CpbHLH2-CpCYC-B/CpLCY-B was higher than the negative control (CpbHLH1/Empty) when previous promoters-LUC reporter constructs was co-transfected with the CaMV35S-CpbHLH2 effectors, indicating that CpbHLH2 may involve the activated regulation of CpCYC-B and CpLCY-B (Fig. 6e, f). Besides, LUC/REN ratios of four types of experimental groups were found to
Fig. 4 Binding sites and expression pattern of the putative transcription factors were shown during papaya ripening. a Different TF families binding sites existed in −0.5k CpCYC-B and CpLCY-B promoters; b qRT-PCR expression patterns of eight transcription factors. The abscissa represents different stages of fruit development and the ordinate represents qRT-PCR expression levels. Value was shown as mean ± SE of three replications.
be similar to the empty vector controls. We have not performed the transient expression analysis on the other carotenogenesis genes, e.g., CpZDS, CpCHY-B, and CpLCY-E, although bHLH binding sites existed in their promoters (Supplement sequence1). Collectively, these results indicate that CpbHLH1 and CpbHLH2 could individually repress and promote CpCYC-B and CpLCY-B genes during papaya fruit ripening.

TRFs	Motif	Function description of transcript-on factor family
bHLH	CANNTG	Stress response and jasmonic acid signaling, salt stress and cold stress, fruit development, light responsive
bZIP	AGACGT	Involvement of abscisic acid, light signal, environmental stress and seed organ development
AP2/ERF	GCCGCC/GCCG	The response of plants to hormones (ethylene and ABA), pathogens and stresses (low temperature, drought and high salinity) and so on
NAC	CGTG/CATG	Involvement in various biological process such as development, senescence, pigmentation of fruits, stress responses

Table 2 Characterization of identified transcription factors

Fig. 5 Yeast one-hybrid interactions were tested between CpbHLH1/2 and CpCYC-B/CpLCY-B. a Schema charts of CpbHLH1/2 acting with promoters of CpCYC-B in different control. b Schema chart of CpbHLH1/2 acting with promoters of CpLCY-B in different control. c Yeast one-hybrid interactions between CpbHLH1/CpbHLH2 and CpCYC-B/CpLCY-B. CpbHLH1/2 interacted with CpCYC-B/CpLCY-B in Leu-/Trp- and Leu-/Trp-/His-medium with different controls. Interactions were indicated by the ability of yeast cells to grow on a synthetic medium lacking tryptophan, leucine, histidine. Yeast cells transformed with pGADT7-53m + p53HIS were used as a positive control, while those transformed with Phis2 + pGADT7-53m, Phis2-Pro-Mutant element in CYC/LCY + AD-CpbHLH1/2, Phis2-repeat mutant element + AD-CpbHLH1/2 as negative controls. p53m:Pgad53m; p53:p53HIS; Pro-CYC/LCY: selected about 190 bp promoters, including bHLH elements of CpCYC-B/CpLCY-B; Pro-mutant element in CYC/LCY: mutant bHLH element in 190 bp promoters of CpCYC-B/CpLCY-B; Repeated target element: five repetitions of bHLH element sequence; Repeated mutant target element: five repetitions of mutant bHLH element sequence
CpbHLH1/2 involved in expression regulation of \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) responded to light

To investigate if CpbHLH1/2 could regulate gene expression on carotenoid biosynthesis pathway (including \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \)) in response to light, we collected SunUp fruit from S1 to S3 stage (green, color break, and ripe). Under 28 °C, papaya fruits of each stage were divided into two parts, one part was exposed to strong white light for 2 days, another part was kept in dark. After 2 days of treatment, expression levels of CpbHLH1/2, \(\text{CpCYC-B} \), and \(\text{CpLCY-B} \) were examined by qRT-PCR. In Fig. 7, the expression levels of \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) in light were higher than in dark. In contrast, the expression levels of CpbHLH1/2 were much lower in light than in dark.

Especially, at stages S1 and S2 when the carotenoids have not been accumulated, the expression levels of \(\text{CpCYC-B} \) and CpbHLH2 were twice in light and in dark, respectively. At ripe stage S3, there was no obvious expression difference for CpbHLH1/2, \(\text{CpCYC-B} \), and \(\text{CpLCY-B} \). In conclusion, CpbHLH1/2 may be among the factors regulating \(\text{CpCYC-B} \) and \(\text{CpLCY-B} \) in response to light.

Discussion

Carotenoids are very important pigments for plant growth and development, contributing to fruit flesh color and nutritional properties, and protecting the photosynthetic apparatus. In fruit, carotenoid accumulation could be promoted by light, but also could be harmed by
excess light. The way their production is regulated by light is common21,33–35. Lycopene conversion into carotenoids in ripening papaya flesh was regulated by \textit{CpbHLH1/2} based on a molecular mechanism that is similar in \textit{Arabidopsis} leaves or other plants in response to light24. In red grapefruit, lycopene content in shaded fruits is 49-fold than fruit exposing to light, implying shading-promoted carotenoid accumulation36. During papaya fruits ripening, transcription factors play a significant role in carotenoid biosynthesis and enhance carotenoid accumulation (Fig. 1). In order to identify TFs related to papaya carotenoids biosynthesis, we analyzed RNA-Seq data of different papaya fruit in SunUp and AU9, especially the period during color break stage when the content of carotenoids changes sharply. More than 40 TF genes were identified that are positively or negatively regulated during papaya fruit development (Fig. 2). These TF genes belong to NAC, bHLH, ERF, bZIP, Dof, MYB, SBP, and C2H2. To find the possible TF families binding to the \textit{CpCYC-B} and \textit{CpLCY-B} promoters, these promoters were identified and isolated. By analysis of promoter fragments, \textendash{}0.5 kb promoter sequences of \textit{CpCYC-B} and \textit{CpLCY-B} were considered as the effective region in response to fruit ripening (Fig. 3). Binding sites of NAC, bHLH, bZIP, and ERF were found in \textendash{}0.5 kb promoter of \textit{CpCYC-B}, while binding sites of bHLH and bZIP were found in \textendash{}0.5 kb in \textit{CpLCY-B} (Table 2). In previous studies, all of these TF families are involved in light response. In \textit{Arabidopsis}, responding to light, \textit{bZIP16} both negatively inhibit the cell elongation and positively promote seed germination37. In tomato transgenic plants containing the main ORFs of \textit{SlbZIP1} and \textit{SlbZIP2}, the sugar content (sucrose/glucose/fructose) was 1.5-fold higher than non-transgenic fruits because \textit{SlbZIP} trans-activates the asparagine synthase and proline dehydrogenase genes38. In Citrullus colocynthis, higher transcripts of \textit{CcNAC1} and \textit{CcNAC2} following red light imply that NAC genes might function in light signaling pathway39. Besides, \textit{CpNAC1} was found to play a positive regulatory role in carotenoid accumulation through boosting \textit{CpPDS2/4} transcription by direct binding to their promoters34. When transferring \textit{Arabidopsis} thaliana triose phosphate/phosphate translocator (\textit{tpt}) mutants from low light to high light, transcripts expression level of four AP2/ERF genes, \textit{ERF6}, \textit{RRTF1}, \textit{ERF104}, and \textit{ERF105} will absolutely and quickly decreased within 10 min, implying that AP2/ERF-TFs were responsive to strong light40. Through Y1H experiments, \textit{CpbHLH1/2} could bind to \textit{CpCYC-B} and \textit{CpLCY-B} promoters (Fig. 5). This suggested that \textit{CpbHLH1/2} are required to regulate the expression of \textit{CpCYC-B} and \textit{CpLCY-B}.

In papaya, the transcriptional regulation mechanism of carotenogenesis mediated by bHLHs is unclear. In current research, three models of transcriptional regulation by bHLHs were proposed. First, in dark or etiolated seedlings, responding to shade or night, PIFs mainly act as constitutive transcriptional activators. Under diurnal conditions, reversely, light will weaken or remove the
activation of PIFs. A considerable portion of PIF-associated genes are upregulated in pif mutants, particularly during etiolation process, implying that PIFs repress the expression of those genes41,42. Second, during etiolation, PIFs also repress the constitutive transcription of a comparatively small subset of light-induced genes, which indicated that PIFs might have two function depending on the promoter sequences and environment cues. For example, PIF1 repressed the expression of PSY and CBF2 in dark or diurnal conditions34,43,44, and PIF1 and PIF3 also could inactivate the genes associated with chlorophyll biosynthesis and photosynthesis during etiolation45,46. In the third model, PIFs constitutively co-activate momently light-induced genes such as ELIP2 during de-etiolation, suggesting other undiscovered transcriptional co-activator may participate in this process. In the dark, PIFs do not repress early light-induced genes like ELIP1 and ELIP2, but PIFs are required for their rapid light induction47,48. Acting as a co-activator, PIFs respond to light positively and lead to decrease transient expression of ELIP2. This model may also conduct for a broader spectrum of genes, perhaps some light-responsive genes, SIGE and ELIP genes, which are not regulated by PIFs in dark or light. In our results, the regulatory mechanism of CpbHLH1-1/2 was similar to previous models. From results in Fig. 7, we propose two bHLH mediated-models: (1) light activate Pr phytochrome into Pfr, resulting in the degradation of CpbHLH1, thus there was no active CpbHLH1 to inhibit the expression of CpcYC-B and CpcLY-B during strong white light as in the first model; (2) CpbHLH2 might co-activate CpcYC-B and CpcLY-B expression with other activators. Protein–protein interaction assays suggested that CpbHLH1 could not physically interact with CpbHLH2, that they could not co-operatively regulate CpcYC-B and CpcLY-B (Supplement Fig. S7).

In previous studies, PSY was reported to be the only one gene that was controlled by PIF transcription factors involving light-mediated regulation in carotenoid pathway, because it is considered as the main-rate limiting enzyme of carotenoid pathway24. In current study, bHLH family members, CpbHLH1 and CpbHLH2 bind promoter regions of CpcYC-B and CpcLY-B and regulate their expression during papaya fruit development. Correlating with the decreased expression of CpbHLH1/2, expression level of the CpcYC-B and CpcLY-B was elevated during fruit ripening. We analyzed transcriptional regulation network and identified some potential family members regulating carotenoid biosynthesis genes in response to light or other factors during papaya fruit development in a genome scale. Our results first reported bHLH family members involved in the regulated network of carotenoid biosynthesis-related genes in papaya, which revealed two novel TFs of bHLHs and their regulation mechanism related to carotenoid biosynthesis genes in response to light. These findings contribute to uncover regulatory cascades, which could be directly or indirectly regulate fruit ripening in papaya responding to light.

Acknowledgements
We thank Haolong Quan and Menglu Deng for help in our experiments and the support from IMI (International Magnesium Institute). This work was supported by the grant 2015N20002-1 from the Department of Science and Technology of Fujian Province, US National Science Foundation (NSF) Plant Genome Research Program Award DBI-1546890, and the National Natural Science Foundation of China (Grant No. 31701889).

Author details
1College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350020, China. 2FAFU and UULC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350020, China. 3Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Compliance with ethical standards

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary Information accompanies this paper at (https://doi.org/10.1038/s41438-019-0162-2).

Received: 26 November 2018 Revised: 22 April 2019 Accepted: 26 April 2019
Published online: 22 June 2019

References
1. Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41–59 (2011).
2. Martel, C. et al. Tomato whole genome transcriptional response to Tetra-nuchus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis. Mol. Plant-Microbe Inter. 28, 343–361 (2015).
3. Dumas, Y., Dadomo, M., Di Lucca, G. & Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83, 369–382 (2003).
4. Park, H., Kreunen, S. S., Cuttriss, A. J., Dellapenna, D. & Pogson, B. J. Identification of the carotenoid isomerase provides insight into carotenoid. Biosynth., Pro-lamellar Body Form., Photo. 14, 321–332 (2002).
5. Ono, K., Murillo, C. & Wurtzel, E. T. A maize Y9 encodes a product essential for APETALA2/ERF cis–trans–cis-carotene isomerization. Plant Physiol. 144, 1181–1189 (2007).
6. Previw, P. P. Isozyme and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. https://doi.org/10.1104/pp.110.153916 (2010).
7. Niar, N., Li, L., Lu, S., Khir, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 66–82 (2015).
8. Yuan, H., Zhang, J., Nageswaran, D. & Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2, 15036, https://doi.org/10.1038/hortres.2015.36 (2015).
9. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).
10. Martel, C., Vrebalo, J., Tafelmeyer, P. & Giovannoni, J. J. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 157, 1568–1579 (2011).
11. Chung, M. Y. et al. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SIAP2a, is a negative regulator of fruit ripening. Plant J. 64, 996–947 (2010).
12. Karlova, R. et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23, 923–941 (2011).
13. Lee, J. M. et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SIER6 plays an important role in ripening and carotenoid accumulation. Plant J. 70, 191–204 (2012).
14. Welsch, R., Maass, D., Voegel, T., DellaPenna, D. & Beyer, P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 145, 1073–1085 (2007).
15. Zhu, M. et al. A new tomato NAC (NAM ATAF1/2/CUC2) transcription factor, SINAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55, 119–135 (2014).
16. Lu, Swen et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol. 176, 01830.2017 (2018).
17. Sagawa, J. M. et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisi flowers. New Phytol. 209, 1049–1057 (2016).
18. Vrebakov, J. et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21, 3041–3052 (2009).
19. Zhao, T. et al. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening. Sci. Rep. 2, 1–7 (2012).
20. Leivar, P., Monte, E., Cohn, M. M. & Quail, P. Phytochrome signaling in green leaves provides stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 145, 1073–1085 (2007).
21. Zhu, M. et al. A new tomato NAC (NAM ATAF1/2/CUC2) transcription factor, SINAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55, 119–135 (2014).
22. Kilambi, H. V., Kumar, R., Sharma, R. & Sreebalkhimi, Y. Chromoplasmat-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits. Plant Physiol. 161, 2065–2101 (2013).
23. Llorente, B. et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85, 107–119 (2016).
24. Toledo-Ortiz, G., Huig, E. & Rodriguez-Concepcion, M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl Acad. Sci. USA 107, 11626–11631 (2010).
25. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O. & Fankhauser, C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 11626–11631 (2010).
26. Shi, H. et al. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25, 3770–3784 (2013).
27. Blas, A. L. et al. Cloning of the papaya chromoplast-specific lycopene–cyclohexanol synthase gene PpCYC-C, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol. 152, 2013–2022 (2010).
28. Lively, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408 (2001).
29. Zhu, X. et al. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7, e44052 (2012).
30. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 1–14 (2005).
31. Fraser, P. D. & Bramley, P. M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265 (2004).
32. Fu, C. C. et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. J. Agric. Food Chem. 64, 5454–5463 (2016).
33. Ruiz-Sola, M. Á. & Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis 10, e0158 (2012).
34. Lado, J. et al. Fruit shading enhances peel color, carotenones accumulation and chromoplast differentiation in red grapefruit. Physiol. Plant. 154, 469–484 (2015).
35. Hsieh, W.-P., Hsieh, H.-L. & Wu, S.-H. Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. Plant Cell 24, 3997–4011 (2012).
36. Saoró, G. H. M. et al. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J. 14, 1116–1126 (2016).
37. Wang, Z., Rashotte, A. M. & Dane, F. Citrullus colocynthis NAC transcription factors CoNAC1 and CoNAC2 are involved in light and auxin signaling. Plant Cell Rep. 33, 1673–1684 (2014).
38. Vögel, M. O. et al. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASEs, and AP2/ERF transcription factors in Arabidopsis. Plant Cell 26, 1151–1165 (2014).
39. Oh, E. et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-likes during seed germination in Arabidopsis. Plant Cell Online 21, 403–419 (2009).
40. Zhang, Y. et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet. 9, 11–13 (2013).
41. Kidokoro, S. et al. The Phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 151, 2046–2057 (2009).
42. Lee, C.-M. & Thomashow, M. F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 109, 15054–15059 (2012).
43. Chen, D. et al. An antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25, 1657–1673 (2013).
44. Liu, T., Carlson, J., Takeuchi, T., Newton, L. & Farré, E. M. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J. 76, 101–114 (2013).
45. Al-Sady, B., Kikis, E. A., Monte, E. & Quail, P. H. Mechanistic duality of transcription factor function in phytochrome signalling. Proc. Natl Acad. Sci. USA 105, 2232–2237 (2008).
46. Leivar, P. et al. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21, 3535–3553 (2009).