Analytical Method Used to Calculate Pile Foundations with the Widening Up on a Horizontal Static Impact

N V Kupchikova¹, E N Kurbatskiy²

¹Department of Technology, Organization and Construction Expertise, Property Management, Astrakhan Institute of Civil Engineering, 18, Tatishcheva Str., Astrakhan 414056, Russia
²Department of Bridges and Tunnels, Moscow State University of Railway Engineering, 9b9 Obrazcova Street, Moscow 127994, Russia

E-mail: kupchikova79@mail.ru

Abstract: This paper presents a methodology for the analytical research solutions for the work pile foundations with surface broadening and inclined side faces in the ground array, based on the properties of Fourier transform of finite functions. The comparative analysis of the calculation results using the suggested method for prismatic piles, piles with surface broadening prismatic with precast piles and end walls with precast wedges on the surface is described.

1. Introduction

In a disjointed waterlogged soils becomes relevant the use of piles with inclined side faces or surface caps, which in practice greatly increases the effectiveness of pile Foundation in solving unusual design problems. However, their use is limited due to the lack of reliable methods for determining the stress-strain state in soils composed of different physical-mechanical characteristics changing along the length with consideration of plastic properties [1-4]. Photographs of the experiments with the pile with surface broadening in the form of prefabricated wedges on a construction site in Astrakhan are presented in Figure 2.

Experience of application of the finished piles with the broadening at the top or corners of the taper helped to reveal that the bearing capacity of such structures is increasing not only due to the increase in the square at the tip, but due to the changes of the work conditions of the soil on the lateral surface of pile and friction forces, which is implemented to a greater extent.

In works [5-9] the authors developed a calculation method for beams and piles with piecewise-constant parameters based on the properties of Fourier transforms of finite functions, which have shown good convergence of calculation results with the results obtained experimentally in the course of conducting field studies and numerical simulations in MIDAS GTS NX and the system solver FEMAP with NE/NASTRAN [10-13].

2. Solution method based on properties of Fourier transforms of finite functions

For solving problems represented by differential equations with piecewise constant parameters it is most convenient to use a solution method based on properties of Fourier transforms of finite functions.
However, in the methods not the task of the joint work of the soil massif at the site of construction of piles with complex geometry widenings located at the top end [14-20].

Consider a pile with surface broadening Figure 1, prismatic piles with precast cap, piles with prefabricated wedges, step piles, immersed in the soil of length L and divide it into four sections with corresponding lengths l_1, l_2, l_3, l_4, with piecewise constant bending stiffness EI_1, EI_2, EI_3, EI_4 and hardness of the base k_1, k_2, k_3, k_4. Take the origin of coordinates in the upper section of each area of the pile, marking them with dots [1-4].

![Diagram of the pile with surface broadening](image)

Figure 1. Diagram of the pile with surface broadening, prismatic piles with precast cap pile with modular wedges, speed of the pile.

Write the differential equation of the bending area of the pile with surface broadening in l_1 generalized finite functions

$$EI_1 \frac{d^4 u}{dx^4} + k_1 u = EI_1 u(0) \delta'(x - l_1) - EI_1 u'(0) \delta''(x - l_1) + EI_1 u''(l_1) \delta''(x - l_1) +$$

$$+ M(0) \delta'(x + l_1) - M \delta'(x - l_1) + Q(0) \delta(x + l_1) - Q(l_1) \delta(x - l_1) \quad (1)$$

Dividing by the Flexural rigidity and using common designation $4 \beta_1 u = k / EI_1$ get

$$\frac{d^4 u}{dx^4} + 4 \beta_1^4 u = u(0) \delta'(x - l_1) - u'(0) \delta''(x - l_1) + u''(0) \delta''(x - l_1) +$$

$$+ \frac{M(0)}{EI_1} \delta'(x - l_1) - \frac{M(l_1)}{EI_1} \delta'(x - l_1) + \frac{Q(0)}{EI_1} \delta(x) - \frac{Q(l_1)}{EI_1} \delta(x - l_1) \quad (2)$$

$$\tilde{u}_1(v) = \frac{1}{\nu^4 + 4 \beta_1^4} \tilde{Q}(v) \quad (3)$$

In accordance with the theorem of Wiener-Paley-Schwartz function $\tilde{u}_1(v)$ must be an integer, because it is a picture of Fourier, finite functions. Therefore, the numerator $\tilde{Q}(v)$ must be divisible by the denominator $\nu^4 + 4 \beta_1^4$, which corresponds to the condition of divisibility of the function $\tilde{Q}(v)$ in terms $(\nu - \nu_j)$, where $\nu_j, (j = 1, 2, 3, 4)$ are the roots of the denominator:

$$\nu^4 + 4 \beta_1^4 = 0 \quad (4)$$
Get:

$$\tilde{Q}(v_j) = 0; (j = 1, 2, 3, 4)$$

$$\tilde{Q}(v) = \frac{Q(0)}{E_1} + \frac{M(0)}{E_1}(-iv) + u'(0)(-iv)^2 + u(0)(-iv)^3 - \frac{Q(l_j)}{E_1} - \frac{M(l_j)}{E_1}(-iv)e^{\phi_i} - u'(l_j)(-iv)^2 e^{\phi_i} - u(l_j)(-iv)^3 e^{\phi_i};$$

$$Q(0) M(0) u'(0) u(0) Q(l_j) M(l_j) u'(l_j) u(l_j)$$

$$[\begin{array}{cccccccc}
1 / E_1 & -iv / E_1 & -v_1^j & -iv_1^j & -1 / E_1 & iv_1^j e^{\phi_1} / E_1 & -v_1^j e^{\phi_1} / E_1 & -iv_1^j e^{\phi_1} / E_1 \\
1 / E_1 & -iv / E_1 & -v_2^j & -iv_2^j & -1 / E_1 & iv_2^j e^{\phi_2} / E_1 & -v_2^j e^{\phi_2} / E_1 & -iv_2^j e^{\phi_2} / E_1 \\
1 / E_1 & -iv / E_1 & -v_3^j & -iv_3^j & -1 / E_1 & iv_3^j e^{\phi_3} / E_1 & -v_3^j e^{\phi_3} / E_1 & -iv_3^j e^{\phi_3} / E_1 \\
1 / E_1 & -iv / E_1 & -v_4^j & -iv_4^j & -1 / E_1 & iv_4^j e^{\phi_4} / E_1 & -v_4^j e^{\phi_4} / E_1 & -iv_4^j e^{\phi_4} / E_1
\end{array}]$$

$$Q(0) + \frac{M(0)}{E_1}(-iv) - \frac{Q(l_j)}{E_1}(-iv) + v_j^j u'(0) - iv_j^j u(0) - v_j^j u'(l_j) e^{\phi_j} = 0;$$

$$Q(l_j) = \tilde{q}_j(v) + Q(l)e^{\phi_i} + M(l)(-iv)e^{\phi_i} + Elu'(l)(-iv) - Eu(l)(-iv^3) e^{\phi_i};$$

$$Q(0) M(0) u'(0) u(0) Q(l_j) M(l_j) u'(l_j) u(l_j)$$

$$[\begin{array}{cccccccc}
1 / E_1 & -iv(1 + i) / E_1 & -2\beta^2 e^{\phi_1} = 2\beta^2 i; & v_1^j & 2\sqrt{2}\beta e^{\phi_1} = 2\beta^3(1 + i); \\
1 / E_1 & -iv(-1 + i) / E_1 & -2\beta^2 e^{\phi_2} = 2\beta^3 i; & v_2^j & 2\sqrt{2}\beta e^{\phi_2} = 2\beta^3(1 + i); \\
1 / E_1 & -iv(-1 - i) / E_1 & -2\beta^2 e^{\phi_3} = 2\beta^3 i; & v_3^j & 2\sqrt{2}\beta e^{\phi_3} = 2\beta^3(1 - i); \\
1 / E_1 & -iv(1 - i) / E_1 & -2\beta^2 e^{\phi_4} = 2\beta^3 i; & v_4^j & 2\sqrt{2}\beta e^{\phi_4} = 2\beta^3(1 - i);
\end{array}]$$

$$Q(l_j) = \tilde{q}_j(v) + Q(l)e^{\phi_i} + M(l)(-iv)e^{\phi_i} + Elu'(l)(-iv) - Eu(l)(-iv^3) e^{\phi_i};$$

Get the coefficient matrix of the boundary element (pile i)

$$Q(0) M(0) u'(0) u(0) Q(l_j) M(l_j) u'(l_j) u(l_j)$$

$$[\begin{array}{cccccccc}
1 / E_1 & -i\beta(1 + i) / E_1 & -2\beta^2 e^{\phi_1} = 2\beta^3 i; & v_1^j & 2\sqrt{2}\beta e^{\phi_1} = 2\beta^3(1 + i); \\
1 / E_1 & -i\beta(-1 + i) / E_1 & -2\beta^2 e^{\phi_2} = 2\beta^3 i; & v_2^j & 2\sqrt{2}\beta e^{\phi_2} = 2\beta^3(1 + i); \\
1 / E_1 & -i\beta(-1 - i) / E_1 & -2\beta^2 e^{\phi_3} = 2\beta^3 i; & v_3^j & 2\sqrt{2}\beta e^{\phi_3} = 2\beta^3(1 - i); \\
1 / E_1 & -i\beta(1 - i) / E_1 & -2\beta^2 e^{\phi_4} = 2\beta^3 i; & v_4^j & 2\sqrt{2}\beta e^{\phi_4} = 2\beta^3(1 - i);
\end{array}]$$

$$Q(l_j) = \tilde{q}_j(v) + Q(l)e^{\phi_i} + M(l)(-iv)e^{\phi_i} + Elu'(l)(-iv) - Eu(l)(-iv^3) e^{\phi_i};$$

However, the Flexural rigidity at the area of the pile l_i (of surface widening) value is not piecewise constant, and piecewise variable and depends on the geometry of the broadening. The stiffness of the piles in the area of broadening depends on the angle of inclination of the side faces α and width broadening b_i Figure 2. Therefore, for the pile with surface broadening Figure 1 and piles of modular wedges Figure 1. Flexural rigidity on the i-th section of the broadening can be determined from the design scheme presented in figure 2 according to the formulas:

$$EI_{li} = E \left[\frac{b_i l_i^3}{12} - \frac{b_i A_i}{36} \right]; E I_{li} = E \left[\frac{b_i l_i^3}{12} - \frac{b_i A_i}{36} \right].$$
Figure 2. Calculation scheme for determining the Flexural rigidity of the piecewise-variable plots of the upper end of the piles with broadening and sloping of the side piles.

Therefore, the matrix (10) coefficients of the boundary element (piles l_1) due to changes in bending stiffness along the height of the pile's cross-section will look like:

$$
\begin{bmatrix}
Q(0) & M(0) & u'(0) & u(0) & Q(l_i) & M(l_i) & u'(l_i) & u(l_i) \\
1/El & -i\beta(1+ i)/El & -2\beta i & -i2\beta(-1+ i) & -1/El & i\beta(1+ i)e^{\pi/2} / El & -2\beta ie^{\pi/2} & -i2\beta(-1+ i)e^{\pi/2} \\
1/El & -i\beta(-1+ i)/El & 2\beta i & -i2\beta(1+ i) & -1/El & i\beta(-1+ i)e^{\pi/2} / El & 2\beta ie^{\pi/2} & -i2\beta(1+ i)e^{\pi/2} \\
1/El & -i\beta(-1- i)/El & -2\beta i & -i2\beta(-1- i) & -1/El & i\beta(-1- i)e^{\pi/2} / El & -2\beta ie^{\pi/2} & -i2\beta(-1- i)e^{\pi/2} \\
1/El & -i\beta(1- i)/El & 2\beta i & -i2\beta(-1- i) & -1/El & i\beta(1- i)e^{\pi/2} / El & 2\beta ie^{\pi/2} & -i2\beta(1- i)e^{\pi/2}
\end{bmatrix}
$$

(12)

By analogy, calculate the differential equation of bending sections of the pile l_3 of the generalized finite functions.

Substitute the roots, squares and cubes of the roots, which will need for further algebraic transformations:

$$
v_1 = \sqrt{2}\beta e^{\pi/2} = \beta(1+ i); \quad v_2 = 2\beta^2 e^{\pi/2} = 2\beta^2 i; \quad v_3 = 2\sqrt{2}\beta e^{\pi/2} = 2\beta^3(1+ i);$$

$$
v_1 = \sqrt{2}\beta e^{3\pi/2} = \beta(-1+ i); \quad v_2 = 2\beta^2 e^{3\pi/2} = -2\beta^2 i; \quad v_3 = 2\sqrt{2}\beta e^{3\pi/2} = 2\beta^3(1- i);$$

$$
v_1 = \sqrt{2}\beta e^{5\pi/2} = \beta(-1- i); \quad v_2 = 2\beta^2 e^{5\pi/2} = 2\beta^2 i; \quad v_3 = 2\sqrt{2}\beta e^{5\pi/2} = 2\beta^3(-1- i);$$

(13)

Get the coefficient matrix of the boundary element (pile l_3), but also piecewise constant Flexural rigidity:
\[
\begin{bmatrix}
Q(0) & M(0) & u'(0) & u(0) & u'(l_z) & u(l_z)
\end{bmatrix}
\begin{align*}
1 / EI_3 & -i \beta (1 + i) / EI_3 & -2 \beta^2 i & -i2 \beta^3 (1 + i) & -2 \beta^2 i & -i2 \beta^3 (1 + i) e^{i \omega t / \eta z}, \\
1 / EI_3 & -i \beta (-1 + i) / EI_3 & 2 \beta^2 i & -i2 \beta^3 (1 + i) & 2 \beta^2 i & -i2 \beta^3 (1 + i) e^{i \omega t / \eta z}, \\
1 / EI_3 & -i \beta (-1 - i) / EI_3 & -2 \beta^2 i & -i2 \beta^3 (-1 - i) & -2 \beta^2 i & -i2 \beta^3 (-1 - i) e^{i \omega t / \eta z}, \\
1 / EI_3 & -i \beta (1 - i) / EI_3 & 2 \beta^2 i & -i2 \beta^3 (-1 - i) & 2 \beta^2 i & -i2 \beta^3 (-1 - i) e^{i \omega t / \eta z},
\end{align*}
\] (14)

Table 1. Initial data for calculation.

Design of piles	The size and shape of the broadening (mm)	Soil conditions
1 2 3 4		
1 Prismatic pile \((L_{ca}=8000, \text{cross section } 300x300) \)	L_{sw} =	the modulus of elasticity \(E = 3.24 \times 10^7 \) kN/m²,
2 Pile with surface broadening \((L_{ca}=8000, \text{cross section } 300x300) \)	B=	the ratios of base: \(k_1 = 1 \times 10^5 \) kN/m², \(k_2 = 2 \times 10^6 \) kN/m², \(k_3 = 4.5 \times 10^7 \) kN/m², \(k_4 = 8 \times 10^8 \) kN/m²
3 Prismatic piles with precast cap \((L_{ca}=8000, \text{cross section } 300x300) \)	L_{sw} =	
4 Pile with modular wedges on the surface. \((L_{ca}=8000, \text{cross section } 300x300) \)	L_{sw} =	

3. Conclusion
The calculation results present on the chart Figure 3.

Figure 3. the displacement Values of the upper end of the pile with surface broadening and normal prismatic piles horizontal static loading is obtained analytically by the method of Fourier transforms of finite functions: 1 - pile with precast wedges on the surface; 2 - prismatic piles with precast cap; 3 - pile with surface broadening.
Photographs of the experiments with the pile with surface broadening in the form of prefabricated wedges on a construction site in Astrakhan are presented in Figure 4-6.

![Figure 4. Photographs of the experiments with the pile with surface broadening.](image)

![Figure 5. Photographs of the experiments with the pile with surface broadening dip the wedges around the piles.](image)

![Figure 6. The finished pile with wedges.](image)

References

[1] Kurbatskii E N 1979 *Guidelines for solving problems of mechanics using Fourier transformation* (Moscow: Moscow Institute of communications)

[2] Kurbatskii E N 1987 *The method of calculation of building designs using discrete Fourier transform* (Moscow: Central Research and Design Institute for Residential Construction)

[3] Kurbatskii E N and Kupchikova N 2010 The method of calculation of pile foundations with caps on the static and dynamic effects based on the properties of the image Fourier transform finite functions *Modernization of Russia: investing in innovation: collection of the conference papers* (Astrakhan) pp 3–6

[4] Kurbatskii E N and Kupchikova N 2011 The ratio between integral and Fourier spectra of the responses in the evaluation of seismic impacts on pile foundations *Energy saving...*
technology: Science. Education. Business. Production: collection of the conference papers (Astrakhan) pp 173–8

[5] Kupchikova N V 2012 Methods of calculation of pile foundations with caps on seismic effects, based on the properties of the image Fourier transform finite functions Industrial and civil engineering 8 pp 24–31

[6] Bondarenko V M and Fedorov V S 2014 Models in the solution of technical problems Prospects of development of construction complex: materials of the VIII int scientific-practical conf ed V A Gutman, D P Anufriev (Astrakhan: GAOU AO VPO "AISI") pp 262–267

[7] Luga A A 1947 Piling works : proc. allowance (Moscow: Transzheldorizdat)

[8] Dolmatov B I, Bronin V N and Golli A V 2001 Design of foundations of buildings and underground structures: proc. manual (Moscow: ACB) p 440

[9] Mangushev R A and Zakharov M S 2014 Engineering-geological and Engineering-geotechnical surveys for construction: proc. allowance (Moscow: ASV) p 176

[10] Mangushev R A, Ershov A V and Osokin A I 2007 Modern pile technology: proc. allowance (Moscow: ACB) p 160

[11] Konovalov P A 2000 Bases and foundations of the reconstructed buildings (Moscow: VNIINTPI) p 320

[12] Kosterin E V 1990 Foundations (Moscow: Higher school) p 431

[13] Silkin A M and Frolov N N 1987 Bases and foundations (Moscow: Agropromizdat) p 285

[14] Kupchikova N V 2010 Investigation of stress-strain state of pile foundations with end and surface caps within structurally unstable grounds (Moscow) p 200

[15] Rekunov S S, Voronkova G V and Doskovskaya M S 2017 The use of controlling-training software in civil engineering bachelors’ educational process MATEC Web of Conferences vol 106 p 09016

[16] Pshenichkina V A, Voronkova G V and Rekunov S S 2016 Research of the dynamical system “beam – stochastic base” Procedia engineering vol 150 pp 1721–8

[17] Idriss I M and Sun J I 1992 SHAKE91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits (Department of Civil and Environmental Engineering, University of California Davis)

[18] Ter-Martirosyan A Z, Ter-Martirosyan Z G and Sidorov V V 2016 The interaction of ground piles and surrounding soil with the expansion of the diameter of the pile The bases, foundations and soil mechanics 3 pp 10–5

[19] Ter-Martirosyan A Z and Ter-Martirosyan Z G 2015 Interaction between finite stiffness broadened heellong pile and the surrounding soil Procedia Engineering is 111 pp 756–62

[20] Bondarenko V M and Fedorov V S 2013 Models in theories of deformation and fracture of construction materials Academia. Architecture and construction 2 pp 103–5