Relationship between survivin expression and recurrence, and prognosis in hepatocellular carcinoma

Chao-Ping Ye, Cheng-Zhi Qiu, Zhong-Xin Huang, Qi-Chen Su, Wei Zhuang, Rui-Lan Wu, Xin-Feng Li

AIM: To study the expression of the inhibitor of apoptosis protein survivin in hepatocellular carcinoma (HCC), and its correlation with clinicopathological factors, cell proliferation, recurrence and prognosis after hepatectomy.

METHODS: Immunohistochemical staining of survivin and Ki-67 was performed by the standard streptavidin-peroxidase technique on paraffin sections of 55 cases of HCC.

RESULTS: The positive rate of survivin in HCC was 52.7% (29/55). Significant correlation was found between survivin expression with portal vein thrombi and intrahepatic metastatic nodes (P < 0.05). The recurrent rate in survivin-positive HCC was significantly higher than that in survivin-negative HCC after hepatectomy, the 1- and 3-year survival rate in patients with survivin-positive tumors was significantly lower than that in patients with survivin-negative tumors (58.62 and 10.34% vs 76.92 and 30.77%, P < 0.05, log-rank test). The proliferation index (Ki-67) in survivin-positive HCC (33.83% ± 18.90%) was significantly higher than that in survivin-negative HCC (19.60% ± 19.35%) (P < 0.05).

CONCLUSION: Survivin may play an important role in progression of HCC by promoting cell proliferation, and may be positively correlated with high risk of disease recurrence and poor prognosis in HCC. Its expression may serve as a prognostic factor for patients with HCC after hepatectomy.

Key words: Hepatocellular carcinoma; Survivin; Proliferation index; Prognosis; Immunohistochemistry

INTRODUCTION

Although surgical resection is the most important method for hepatocellular carcinoma (HCC), the recurrent rates may be as high as 50% at 2 years after hepatectomy[1]. The recurrence of HCC may be related to a variety of factors, including biological markers. Molecular prognostic markers are likely to be of greatest benefit in the effective management of patients with HCC, however, these factors have not yet been sufficiently defined in patients with a high risk of cancer recurrence.

Survivin is a recently described member of the family of inhibitor of apoptosis proteins (IAPs). Recently, it has been shown that survivin is strongly associated with apoptosis, cell proliferation and cell-cycle control[2-5]. Survivin plays a crucial role in the genesis and progression of malignancy and is an important prognostic parameter in tumors[6-10]. This study investigated the expression of survivin in HCC and its correlation with clinicopathological factors, cell proliferation and prognosis.

MATERIALS AND METHODS

Materials

Tissue samples were obtained between December 2000 and December 2003 from 55 patients with HCC (41 men, 14 women; 24-74 years old, mean age, 48.65 years). There were 27 patients with stage I - II, and 28 with stage III-IV cancer. None of the patients received radiotherapy, chemotherapy or immunotherapy before surgery.

Reagents

Rabbit anti-human survivin polyclonal antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Mouse anti-human Ki-67 monoclonal antibody
Statistical analysis

The survival curves were assessed by the Kaplan-Meier method and compared by a log-rank test. The \(\chi^2 \) test was performed for enumeration data comparison, and the \(t \) test was used for comparison of measurement data. \(P < 0.05 \) was considered statistically significant. All data analysis was performed with commercially available statistical analysis software packages (SSPS 11.5, SSPS, Chicago, IL, USA).

RESULTS

Relationship between expression of survivin and clinical pathology

Survivin protein expressed as brown-yellow particles in the cytoplasm after staining, and only one expressed both in the cytoplasm and nucleus after staining. The positive staining rate for survivin in the cytoplasm and nuclei was 29/55 (52.7%) (Figure 1). There was a significant correlation between survivin expression and portal vein thrombi and intrahepatic metastatic nodes (\(P < 0.05 \)). However, it was not related to the following factors: age and sex of the patient, tumor location, tumor differentiation, tumor size, presence of tumor capsule, clinical stage, complicating liver cirrhosis, preoperative alpha fetoprotein (AFP) level, and hepatitis B surface antigen (HBsAg) (Table 1). These findings suggest that the expression of survivin may be significantly associated with metastasis.

Relationship between expression of survivin and proliferation index

Ki-67 showed as brown-yellow particles in the nuclei after

![Figure 1 A: Positive expression of survivin in HCC (SP, × 200); B: Positive expression of survivin in HCC (SP, × 400).](image)
staining. Ki-67 labeling index in survivin-positive cancer was 33.83% ± 18.90%, while it was 19.60% ± 19.35% in negative tumor. The difference was significantly different $(P < 0.05)$. This suggests that the expression of survivin may promote the proliferation of HCC.

Relationship between expression of survivin and recurrence and prognosis of HCC

The 1- and 3-year recurrence rates in survivin-positive HCC were 55.17% and 96.55%, respectively, while the rates were 26.91% and 73.08%, respectively, in survivin-negative HCC after hepatectomy. The recurrent time of survivin-positive HCC was significantly advanced $(P < 0.05$, Figure 2). Furthermore, the 1- and 3-year survival rates in survivin-positive HCC were 58.62% and 10.34% after hepatectomy, respectively, but for survivin-negative HCC, the rates were 76.92% and 30.71%, respectively. The 1- and 3-year survival rates were significantly lower in patients with survivin-positive HCC than in survivin-negative HCC $(P < 0.05$, Figure 3). The expression of survivin may be used as an indicator for prognosis of HCC.

DISCUSSION

Among the recently described IAP family, survivin is characterized by a unique structure with a single BIR and no zinc-binding domain, and is undetectable in terminally differentiated adult tissues, but becomes notably expressed in the most common human cancers, including esophageal, stomach, colorectal, breast and pancreatic carcinoma. Survivin has also been implicated in the control of cell-cycle kinetics and inhibition of apoptosis. Survivin may also play a role in the development of HCC. Compared to survivin-negative HCC, survivin-positive HCC had a higher recurrent rate and lower 1- and 3-year survival rates. Survivin expression may play an important role in tumor progression. The survivin expression in HCC was significantly correlated with portal vein thrombi and intrahepatic metastatic nodes. Therefore, survivin may play an important role in the development of HCC.
which leads to a high rate of cell proliferation. Therefore, survivin may play an important role in the progression of HCC and may facilitate metastatic spread via the bloodstream.

In conclusion, survivin expression in HCC was significantly correlated with portal vein thrombi and intrahepatic metastatic nodes. There was a significant positive correlation between survivin expression and proliferation index. Survivin plays an important role in HCC progression through promoting cell proliferation, and may be a prognostic marker for HCC.

REFERENCES

1. Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. *J Clin Oncol* 2005; 23: 2892-2899
2. Altieri DC, Marchisio PC. Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. *Lab Invest* 1999; 79: 1327-1333
3. Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Toggin S, Marchisio PC, Symons M, Altieri DC. Regulation of microtubule stability and mitotic progression by survivin. *Cancer Res* 2002; 62: 2462-2467
4. Wakana Y, Kasuya K, Katayangi S, Tsuchida A, Aoki T, Kotake Y, Ishii H, Ebitani Y. Effect of survivin on cell proliferation and apoptosis in gastric cancer. *Oncol Rep* 2002; 9: 1213-1218
5. Lu M, Kwan T, Yu C, Chen F, Freedman B, Schaefer JM, Lee EJ, Jameson JL, Jordan VC, Cryns VL. Peroxisome proliferator-activated receptor gamma agonists promote TRAIL-induced apoptosis by reducing survivin levels via cyclin D3 repression and cell cycle arrest. *J Biol Chem* 2005; 280: 6742-6751
6. Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T, Tanaka K, Tenjo T, Tanigawa N. Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. *Cancer* 2001; 91: 2026-2032
7. Salz W, Eisenberg D, Plescia J, Garlick DS, Weiss RM, Wu XR, Sun TT, Altieri DC. A survivin gene signature predicts aggressive tumor behavior. *Cancer Res* 2005; 65: 3531-3534
8. Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tokuda M. Survivin expression and its correlation with cell proliferation and prognosis in epithelial ovarian tumors. *Int J Oncol* 2002; 21: 315-320
9. Caldas H, Jaynes FO, Boyer MW, Hammond S, Alta RA. Survivin and Granzyme B-induced apoptosis, a novel anti-cancer therapy. *Mol Cancer Ther* 2006; 5: 693-703
10. Ryan BM, Konency GE, Kahler S, Wang HJ, Untch M, Meng G, Pegram MD, Podratz KC, Crown J, Slamon DJ, Duffy MJ. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. *Ann Oncol* 2006; 17: 597-604
11. Span PN, Tjan-Heijnen VC, Heulev JJ, de Kok JB, Fokkens JA, Sweep FC. Do the survivin (BIRC5) splice variants modulate or add to the prognostic value of total survivin in breast cancer? *Clin Chon* 2006; 52: 1693-1700
12. Ikeuchi M, Kaibara N. survivin messenger RNA expression is a good prognostic biomarker for oesophageal carcinoma. *Br J Cancer* 2002; 87: 883-887
13. Miyachi K, Sasaki K, Onodera S, Taguchi T, Nagamachi M, Kaneko H, Sunagawa M. Correlation between survivin mRNA expression and lymph node metastasis in gastric cancer. *Gastric Cancer* 2003; 6: 217-224
14. Sarela AI, Scott N, Ramsdale J, Markham AF, Guilaj PJJ. Immunohistochemical detection of the anti-apoptosis protein, survivin, predicts survival after curative resection of stage II colorectal carcinomas. *Ann Surg Oncol* 2001; 8: 305-310
15. Ryan B, O’Donovan N, Browne B, O’Shea C, Crown J, Hill AD, McDermott E, O’Higgins N, Duffy MJ. Expression of survivin and its splice variants survivin-2B and survivin-DeltaEx3 in breast cancer. *Br J Cancer* 2005; 92: 120-124
16. Sarela AI, Verbeke CS, Ramsdale J, Davies CL, Markham AF, Guilaj PJJ. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. *Br J Cancer* 2002; 86: 886-892
17. O’Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, Marchisio PC, Altieri DC. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. *Proc Natl Acad Sci USA* 2000; 97: 13103-13107
18. Fukuda S, Mantel CR, Pelus LM. Survivin regulates hematopoietic progenitor cell proliferation through p21/WAF1/Cip1-dependent and -independent pathways. *Blood* 2004; 103: 120-127
19. Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. *Mol Cell Biol* 2006; 17: 1483-1493
20. Morinaga S, Nakamura Y, Ishiiwa N, Yoshikawa T, Noguchi Y, Yamamoto Y, Rino Y, Imaida T, Takanashi Y, Akaike M, Sugimasa Y, Takemiyia S. Expression of survivin mRNA associates with apoptosis, proliferation and histologically aggressive features in hepatocellular carcinoma. *Oncol Rep* 2004; 11: 1189-1194
21. Itou T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. Survivin promotes cell proliferation in human hepatocellular carcinoma. *Hepatology* 2000; 31: 1080-1085
22. Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara I. Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma. *Clin Cancer Res* 2002; 8: 3131-3136
23. Ikeguchi M, Ueda T, Sakatani T, Hirooka Y, Kaibara N. Expression of survivin messenger RNA correlates with poor prognosis in patients with hepatocellular carcinoma. *Diagn Mol Pathol* 2002; 11: 33-40
24. Bao ST, Gui SQ, Lin MS. Relationship between expression of Smac and Survivin and apoptosis of primary hepatocellular carcinoma. *Hepatobiliary Pancreat Dis Int* 2006; 5: 580-583

www.wignet.com
25 Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. *Mod Pathol* 2004; 17: 1378-1385

26 Ikeguchi M, Ueta T, Yamane Y, Hirooka Y, Kaibara N. Quantitative analysis of heparanase messenger RNA expression in hepatocellular carcinoma. *J Surg Oncol* 2002; 81: 148-154; discussion 154

27 Beardmore VA, Ahonen LJ, Gorbsky GJ, Kallio MJ. Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. *J Cell Sci* 2004; 117: 4033-4042

28 Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. *Biochemistry* 2001; 40: 1117-1123

29 Dai DJ, Lu CD, Lai RY, Guo JM, Meng H, Chen WS, Gu J. Survivin antisense compound inhibits proliferation and promotes apoptosis in liver cancer cells. *World J Gastroenterol* 2005; 11: 193-199

30 Rödel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T, Sauer R, Rödel C. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. *Cancer Res* 2005; 65: 4881-4887

S- Editor Zhu LH L- Editor Kerr C E- Editor Yin DH