Generalized Confidence Interval for the Common Coefficient of Variation

J. Behboodian* and A. A. Jafari**

*Department of Mathematics, Shiraz Islamic Azad University, Shiraz, IRAN

email: Behboodian@stat.susc.ac.ir

**Department of Statistics, Shiraz University, Shiraz 71454, IRAN

Abstract

In this article, we consider the problem of constructing the confidence interval and testing hypothesis for the common coefficient of variation (CV) of several normal populations. A new method is suggested using the concepts of generalized p-value and generalized confidence interval. Using this new method and a method proposed by Tian (2005), we obtain a shorter confidence interval for the common CV. This combination method has good properties in terms of length and coverage probability compared to other methods. A simulation study is performed to illustrate properties. Finally, these methods are applied to two real data sets in medicine.

KeyWords: Common Coefficient of Variation; Generalized confidence interval; Generalized variable; Monte Carlo Simulation.

1 Introduction

The coefficient of variation (CV) of a random variable X, with mean $\mu \neq 0$ and standard deviation σ, is defined by the ratio $\frac{\sigma}{\mu}$. This ratio is an important measure of variation and it is useful in medicine, biology, physics, finance, toxicology, business, engineering, and survival analysis, because it is free from the unit of measurement and it can be used for comparing the variability of two different populations.
There are different methods for making inferences about the coefficient of variation. Lehmann (1996) proposed an exact method for a confidence interval of CV. Vangel (1996), and Wong and Wu (2002) obtained approximate confidence intervals. Verrill (2003) reviewed the exact approach that is appropriate for normally distributed data.

Let \(X_{ij}, i = 1, \ldots, k, j = 1, \ldots, n_i \), be independent normal random variables with means \(\mu_i \) and variance \(\sigma_i^2 \). Denote the CV of the \(i \)th population by \(\varphi_i = \frac{\sigma_i}{\mu_i} \). Consider the hypothesis \(H_0 : \varphi_1 = \varphi_2 = \ldots = \varphi_k \). Miller (1991) proposed an asymptotic test statistic for the \(H_0 \). Fung and Tsang (1998) reviewed several parametric and nonparametric tests for the equality of CV in \(k \) populations. Pardo and Pardo (2000) introduced a class of test statistics based on Rényi’s divergence for this problem. Nairy and Rao (2003) proposed three new tests based on the inverse sample CV, i.e. \(\bar{X}/S \), and discussed about the size and power comparison of eight tests.

The assumption of the equality of CV’s is common in biological and agricultural experiments (See Fung and Tsang, 1998). Feltz and Miller (1996) presented one reasonable estimate for the common CV. Ahmed (2002) proposed six asymptotic estimators for the common CV and discussed on the risk behavior of the estimators. The generalized \(p \)-value concept was introduced by Tsui and Weerahandi (1989) and the generalized confidence interval by Weerahandi (1993). By using these concepts, Tian (2005) proposed a generalized \(p \)-value and a generalized confidence interval for the common CV. Verrill and Johnson (2007) obtained confidence bounds on the common CV and a ratio of two CV’s.

In this article, we propose new methods for making inferences about the common CV. In Section 2, we look at the concepts of generalized \(p \)-value and generalized confidence interval. In Section 3, we will first review the method of Tian (2005) and Verrill and Johnson (2007), briefly, and then a new method is given to construct a confidence interval and hypothesis testing for the common CV by using the concept of generalized variable. Then by combining this new method and the proposed method by Tian (2005), we obtain a confidence interval for the common CV that has good properties with respect to other methods. Section 4 is devoted to a simulation study, to compare the lengths and coverage probabilities of the four methods that are given in Section 3. Two real medicine examples are given in Section 5.
2 Generalized \(p \)-value and generalized confidence interval

The concept of generalized \(p \)-value was first introduced by Tsui and Weerahandi (1989) to deal with some nontrivial statistical testing problems. These problems involve nuisance parameters in such a fashion that the derivation of a standard pivot is not possible. See also Weerahandi (1995).

Let \(X \) be a random variable with density function \(f(x \mid \zeta) \), where \(\zeta = (\theta, \eta) \) is a vector of unknown parameters, \(\theta \) is the parameter of interest, and \(\eta \) is possibly a vector of nuisance parameters.

Suppose we have the following hypothesis to test:

\[
H_0 : \theta \leq \theta_0 \quad vs \quad H_1 : \theta > \theta_0,
\]

where \(\theta_0 \) is a specified value.

Let \(x \) be the observed value of random variable \(X \). \(T(X; x, \zeta) \) is said to be a generalized variable if the following three properties hold:

(i) For fixed \(x \) and \(\zeta = (\theta_0, \eta) \), the distribution of \(T(X; x, \zeta) \) is free of the nuisance parameters \(\eta \).

(ii) \(t_{obs} = T(x; x, \zeta) \) does not depend on unknown parameters.

(iii) For fixed \(x \) and \(\eta \), \(P(T(X; x, \zeta) \geq t) \) is either stochastically increasing or decreasing in \(\theta \) for any given \(t \).

If \(T(X; x, \zeta) \) is stochastically increasing in \(\theta \), the generalized \(p \)-value is defined as

\[
p = \sup_{\theta \leq \theta_0} P(T(X; x, \theta, \eta) \geq t^*) = P(T(X; x, \theta_0, \eta) \geq t^*),
\]

where \(t^* = T(x; x, \theta_0, \eta) \).

To derive a confidence interval for \(\theta \), let \(T_c(X; x, \theta, \eta) \) satisfies the following conditions:

(i) The distribution of \(T_c(X; x, \theta, \eta) \) does not depend on any unknown parameters.

(ii) The observed value of \(T_c(X; x, \theta, \eta) \) is free of nuisance parameters.

Then, \(T_c(X; x, \theta, \eta) \) is called a generalized pivotal variable. Further, if \(t_1 \) and \(t_2 \) are such that

\[
P(t_1 \leq T_c(X; x, \theta, \eta) \leq t_2) = 1 - \alpha,
\]

then, \(\Theta = \{ \theta : t_1 \leq T_c(X; x, \theta, \eta) \leq t_2 \} \) gives a \(100(1 - \alpha) \% \) generalized confidence interval for \(\theta \). For example, if the value of \(T_c(X; x, \theta, \eta) \) at \(X = x \) is \(\theta \), then \(\{T_c(x, \alpha/2), T_c(x, 1 - \alpha/2)\} \) is a \((1 - \alpha) \) confidence interval for \(\theta \), where \(T_c(x, \gamma) \) stands for the \(\gamma \)th quantile of \(T_c(X; x, \theta, \eta) \).
3 Inferences for φ

Consider k, ($k \geq 2$) independent random samples $(X_{i1}, ..., X_{in_i})$ from k normal populations with means μ_i and unequal variances σ_i^2, $i = 1, 2, ..., k$. For the ith population, let $\bar{X}_i = 1/n_i \sum_{j=1}^{n_i} X_{ij}$ and $S_i^2 = 1/(n_i - 1) \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2$ be the sample mean and sample variance, and let \bar{x}_i and s_i^2 be the observed value of the sample mean and sample variance, respectively.

Suppose that

$$\varphi_1 = \varphi_2 = ... = \varphi_k = \varphi$$

where $\varphi_i = \frac{\sigma_i}{\mu_i}$ and φ is the common CV parameter.

We are interested in developing a confidence interval and hypothesis test for the common CV, based on the sufficient statistics \bar{X}_i and S_i^2.

In this section, we first review the method of Tian(2005) and Verrill and Johnson (2007) for this problem. A new method is introduced for hypothesis test and confidence interval, regarding φ, by using the concept of generalized p-value and generalized confidence interval. At the end, by combining this method and the method of Tian (2005), we find a new method which gives a shorter confidence interval.

3.1 Method of Tian

Tian (2005) proposed a generalized pivotal variable of the common CV φ, by a weighted average of the generalized pivotal variables of CV based on individual samples as

$$T_1 = T_1(\bar{X}, S; \bar{x}, s, \omega) = \frac{\sum_{i=1}^{k} \bar{x}_i \sqrt{n_i - 1}}{\sum_{i=1}^{k} \bar{x}_i} \frac{n_i - 1}{\sqrt{n_i}} - \frac{Z_i}{\sum_{i=1}^{k} \bar{x}_i} s_i - \frac{X_i - \mu_i}{\sigma_i} = \frac{\sum_{i=1}^{k} \bar{x}_i S_i}{n_i - 1} \frac{X_i - \mu_i}{\sigma_i}$$

where $U_i = \frac{(n_i - 1)S_i^2}{\sigma_i^2} \sim \chi^2_{(n_i-1)}$ and $Z_i = \sqrt{n_i} (\bar{X}_i - \mu_i) / \sigma_i \sim N(0,1)$, $i = 1, 2, ..., k$, and $X = (\bar{X}_1, ..., \bar{X}_k)$ and $S = (S_1, ..., S_k)$ with the corresponding observed values \bar{x} and s, and $\omega = (\varphi, \sigma_1, ..., \sigma_k)$.

T_1 is a generalized pivotal variable for φ and can be used to construct a confidence interval and hypothesis test about φ.

4
The $(1 - \alpha)$ confidence interval for φ is
\[\{ T_1(\bar{x}, s, \alpha/2), T_1(\bar{x}, s, 1 - \alpha/2) \}, \]
where $T_1(\bar{x}, s, \gamma)$ is the γth quantile of $T_1(\bar{X}, S; \bar{x}, s, \omega)$.

Tian (2005) evaluated the coverage properties of this confidence interval by simulation, and showed that the coverage probabilities are close to nominal level.

For testing $H_0 : \varphi \leq \varphi_0$ vs $H_1 : \varphi > \varphi_0$,
the generalized p-value based on (5) is
\[p = P(T_1(\bar{X}, S; \bar{x}, s, \omega) \leq \varphi_0), \] (5)
and for testing the hypothesis $H_0 : \varphi = \varphi_0$ vs $H_1 : \varphi \neq \varphi_0$,
the generalized p-value is
\[p = 2 \min \{ P(T_1(\bar{X}, S; \bar{x}, s, \omega) \leq \varphi_0), P(T_1(\bar{X}, S; \bar{x}, s, \omega) \geq \varphi_0) \}. \] (6)

3.2 Method of Verrill and Johnson

Under the hypothesis in (4) the log-likelihood function can be written as
\[\ln L(\theta) = \sum_{i=1}^{k} \left(-n_i \ln \sigma_i - \sum_{j=1}^{n_i} \left(x_{ij} - \frac{\sigma_i}{\varphi} \right)^2 / (2\sigma_i^2) \right) - \frac{n}{2} \ln 2\pi \]
\[= \sum_{i=1}^{k} \left(-n_i \ln \sigma_i - \sum_{j=1}^{n_i} \left((n_i - 1)S_i^2 + n_i(\bar{x}_i - \frac{\sigma_i}{\varphi})^2 \right) / (2\sigma_i^2) \right) - \frac{n}{2} \ln 2\pi, \] (7)
where $\theta^T = \omega = (\varphi, \sigma_1, \ldots, \sigma_k)$.

The Newton estimator of θ is given by
\[\theta_{\text{Newt}} = - \left[\frac{\partial^2 \ln L}{\partial \theta_l \partial \theta_m} \right]^{-1}_{\theta_{n,c}} \left(\begin{array}{c} \partial \ln L / \partial \theta_1 \\ \vdots \\ \partial \ln L / \partial \theta_{k+1} \end{array} \right)_{\theta_{n,c}} + \theta_{n,c}, \]
where $\theta_{n,c}$ is any \sqrt{n}-consistent estimator of θ (Lehmann, 1996).

Verrill and Johnson (2007) obtained an approximate $(1 - \alpha)$ confidence interval for φ as

$$
\hat{\varphi} \pm Z_{\alpha/2} \sqrt{\frac{\hat{\varphi}^4 + \hat{\varphi}^2 / 2}{n}}
$$

where $\hat{\varphi}$ is the first element of θ_{Newt} and $Z_{\alpha/2}$ is appropriate critical value from a standard normal distribution.

3.3 A New Method

Under the hypothesis in (4), we have $X_{ij} \sim N(\eta \sigma_i, \sigma_i^2)$, $i = 1, 2, ..., k$, where $\eta = \frac{1}{\varphi}$. We can show that if σ_i^2's are known, then the MLE for η

$$
\hat{\eta} = \frac{\sum_{i=1}^{k} \frac{n_i \bar{X}_i}{\sigma_i}}{n},
$$

where $\hat{\eta} \sim N(\eta, \frac{1}{n})$, and $n = \sum_{i=1}^{k} n_i$.

Remark. If we use S_i^2 as an estimator for σ_i^2, then a reasonable estimator for φ, is

$$
\hat{\varphi} = \frac{n}{\sum_{i=1}^{k} \frac{n_i \bar{X}_i}{S_i}} = \frac{n}{\sum_{i=1}^{k} \frac{n_i}{\varphi_i}},
$$

which is a \sqrt{n}-consistent estimator for φ.

A generalized pivotal variable for estimating σ_i^2 can be expressed as

$$
R_i = \sigma_i^2 s_i^2 = \frac{(n_i - 1)s_i^2}{U_i}, \quad i = 1, 2, ..., k,
$$

where $U_i = \frac{(n_i - 1)s_i^2}{\sigma_i^2} \sim \chi^2_{(n_i - 1)}$ and s_i^2 is an observed value for S_i^2.

We define a generalized pivotal variable for the common CV, φ, based on (10) and (12) as

$$
T_2 = T_2(\bar{X}, S; \bar{x}, s, \omega) = \frac{n}{\sum_{i=1}^{k} n_i \bar{X}_i / s_i - n(\bar{\eta} - \eta)} = \frac{n}{\sum_{i=1}^{k} \frac{n_i \sqrt{U_i} \bar{x}_i}{s_i} - \sqrt{n}Z},
$$

where $\bar{X} = (\bar{X}_1, ..., \bar{X}_k)$ and $S = (S_1, ..., S_k)$ with the corresponding observed values \bar{x} and s and $Z = \sqrt{n}(\bar{\eta} - \eta) \sim N(0, 1)$.

Since $T_2(\bar{X}, S; \bar{x}, s, \omega)$ satisfies the two conditions (i) the distribution of $T_2(\bar{X}, S; \bar{x}, s, \omega)$ does not depend on any unknown parameters (ii) the observed value of $T_2(\bar{X}, S; \bar{x}, s, \omega)$ is free of the nuisance parameters, we can use (13) for constructing a generalized confidence interval for φ.

The $(1 - \alpha)$ confidence interval for φ is

$$\{T_2(\bar{x}, s, \alpha/2), T_2(\bar{x}, s, 1 - \alpha/2)\},$$

where $T_2(\bar{x}, s, \gamma)$ is the γth quantile of $T_2(\bar{X}, S; \bar{x}, s, \omega)$.

For testing

$$H_0 : \varphi \leq \varphi_0 \quad vs \quad H_1 : \varphi > \varphi_0,$$

we use (13) and define

$$T_2'(\bar{X}, S; \bar{x}, s, \omega) = T_2(\bar{X}, S; \bar{x}, s, \omega) - \varphi.$$ \hspace{1cm} (13)

The distribution of $T_2'(\bar{X}, S; \bar{x}, s, \omega)$ is free from nuisance parameters, the observed value of $T_2'(\bar{X}, S; \bar{x}, s, \omega)$, i.e. t'_obs is zero, and the distribution function of $T_2'(\bar{X}, S; \bar{x}, s, \omega)$ is an increasing function with respect to φ. Therefore $T_2'(\bar{X}, S; \bar{x}, s, \omega)$ is a generalized variable for φ and the generalized p-value is

$$p = P(T_2'(\bar{X}, S; \bar{x}, s, \omega) \leq t'_\text{obs}|\varphi = \varphi_0) = P(T_2(\bar{X}, S; \bar{x}, s, \omega) \leq \varphi_0),$$ \hspace{1cm} (14)

and for testing the hypothesis

$$H_0 : \varphi = \varphi_0 \quad vs \quad H_1 : \varphi \neq \varphi_0,$$

the generalized p-value based on (14) is

$$p = 2 \min \{P(T(\bar{X}, S; \bar{x}, s, \omega) \geq \varphi_0), P(T(\bar{X}, S; \bar{x}, s, \omega) \leq \varphi_0)\}.$$ \hspace{1cm} (15)

3.4 A Combined Method

For the generalized pivotal variable of φ, we consider a combination of the generalized pivotal variables in (5) and (13) as follows:

$$T_3(\bar{X}, S; \bar{x}, s, \omega) = 0.5T_1(\bar{X}, S; \bar{x}, s, \omega) + 0.5T_2(\bar{X}, S; \bar{x}, s, \omega).$$ \hspace{1cm} (16)

Since (i) the distribution of T_1 and T_2 does not on any unknown parameters (ii) the observed values of T_1 and T_2 are equal φ, therefore $T_3(\bar{X}, S; \bar{x}, s, \omega)$ is a generalized pivotal variable for
common CV φ, and we can use it to obtain a confidence interval for φ and for testing the hypothesis, we define the generalized variable as

$$T_3' = T_3 - \varphi.$$ \hspace{1cm} (17)

3.5 A Computing Algorithm

For given k independent sample from normal populations, let ith sample contains n_i observations with statistics x_i and s_i^2.

The generalized confidence intervals for φ and the generalized p-value for testing, based on T_h’s, $h = 1, 2, 3$ can be computed by the Monte Carlo simulation (See Weerahandi (1995)). The following steps are given for the generalized variable T_3 which they are applicable for the generalized variables T_1 and T_2:

1. generate $U_i \sim \chi^2_{(n_i-1)}$, $i = 1, ..., k$.
2. generate $Z_i \sim N(0, 1)$, $i = 1, ..., k$.
3. generate $Z \sim N(0, 1)$.
4. compute T_1 and T_2 in (5) and (13).
5. Calculate $T_3 = 0.5T_1 + 0.5T_2$.
6. Repeat steps 1 to 5 for m times and obtain m values of T_3.

Let $T_{3(p)}$ denote the 100pth percentile of T_3’s in step 6. Then $[T_{3(\alpha/2)}, T_{3(1-\alpha/2)}]$ is a Monte Carlo estimate of $1 - \alpha$ confidence interval for φ.

The generalized p-value for testing $\varphi = \varphi_0$ vs $\varphi \neq \varphi_0$ is $2 \min \{ P(T_3 \geq \varphi_0), P(T_3 \leq \varphi_0) \}$ and the probability $P(T_3 \geq \varphi_0)$ can be estimated by the proportions of the T_3’s in step 6 that are greater than or equal to φ_0. Similarly, $P(T_3 \leq \varphi_0)$ can also be estimated.

4 Simulation Study

For comparing the coverage probability of the methods introduced in Section 3;

I) Method of Tian (2005)

II) Method of Verrill and Johnson (2007)

III) A method in (13)

IV) Combined method in (17)
a simulation study is performed for $k = 3$ populations. The data of size n_i, $i = 1,2,3$, were generated from normal distributions with mean μ_i and variance $\varphi^2 \mu_i^2$, such that all k populations have common CV φ. Using 10000 simulations, coverage (C) probability and average of length (L) estimated. Also we used the algorithm in Section 3 by $m = 5000$ for obtaining the generalized confidence intervals. The results are given in Tables 1, 2 and 3.

We observed that

i) The method in (13) and method in (17) produce comparable results to method of Tian (2005) and method of Verrilla and Johnson (2007). Therefore, we must apply the four methods to see which one is the best on the basis of coverage probability and the length of the interval.

ii) The coverage probabilities of Tian (2005) and the one obtained by (17) are close to nominal level.

iii) In some cases the coverage probabilities of the confidence intervals constructed by (13) are generally lower than the nominal level although having a slightly shorter average length for the confidence intervals.

iv) The coverage probabilities of the confidence intervals constructed by the method of Verrill and Johnson (2007) smaller than the nominal level when the sample sizes are small.

5 Two Real Examples

Example 1. This is the example used by Tian (2005). Actually Fung and Tsang (1998) showed that the coefficient of variation for MCV in 1995 is not significantly different from that of 1996. We are interested in making inferences about the common coefficient of variation of these data. The sample size, mean, standard deviation and coefficient of variation for MCV are 63, 84.13, 3.390, 0.0406 from 1995 survey; and 72, 85.68, 2.946, 0.0346 from 1996 survey. These results are derived and explained in detail in the above articles.
Table 4. The confidence intervals for the common CV

method	confidence interval	length
Tian (2005)	(0.0347 , 0.0447)	0.0100
Verrill and Johnson (2007)	(0.0324 , 0.0427)	0.0103
New Method in (13)	(0.0333 , 0.0423)	0.0091
Combined Method in (17)	(0.0333, 0.0425)	0.0092

The estimate of φ, by different methods, are: (i) Feltz and Miller (1996), 0.0374 (ii) new method (11), 0.0372 (iii) MLE, 0.0369.

The 95% confidence intervals for the common CV based on the four methods are given in Table 4.

Example 2. The data in Appendix D of Fleming and Harrington (1991) refer to survival times of patients from four hospitals. These data and their descriptive statistics are given in Table 5.

Table 5. Data and descriptive statistics for survival times of patients from four hospitals

Hospital	Data	\bar{x}_i	s_i^2	$\hat{\varphi}_i$
Hospital 1	176 105 266 227 66	168.0	6880.5	0.4937
Hospital 2	24 5 155 54	59.5	4460.3	1.1224
Hospital 3	58 64 15	45.7	714.3	0.5853
Hospital 4	174 42 305 92 30 82 265 237 208 147	154.6	8894.7	0.6100

Nairy and Rao (2003) tested homogeneity of CV’s for the hospitals and they showed that all tests give the same conclusion of accepting the null hypothesis. Therefore we have common coefficient of variation for these data.

The estimate of φ, by different methods, are: (i) Feltz and Miller (1996), 0.6734 (ii) new method (11), 0.6248 (iii) MLE, 0.6015. The estimate of φ based on (11) is close to MLE.

The 95% confidence intervals for the common CV based on four methods are given in Table 6. We observe that the length of the interval based on combined method is shorter than Tian’s method. Also the length of the interval based on the Verrill and Johnson’s method is shorter than other methods but we showed that the coverage probability of this method for small sample size, is less than nominal level.
Table 6. The confidence intervals for the common CV

method	confidence interval	length
Tian (2005)	(-1.7855 , 3.6561)	5.4416
Verrill and Johnson (2007)	(0.4134 , 1.0613)	0.6479
New Method in (13)	(0.4568 , 1.1759)	0.7191
Combined Method in (17)	(-0.5457 , 2.2563)	2.8020

Acknowledgement: The authors thank the editor and referee for their helpful comments and suggestions. They are also grateful to Islamic Azad University, Shiraz Branch, Research Council for the support of this work.

References

[1] Ahmed, S. E. (2002), Simultaneous estimation of coefficient of variation, *Journal of Statistical Planning and Inference*, 104, 31-51.

[2] Feltz, C. J. and Miller, G. E.(1996), An asymptotic test for the equality of coefficients of variation from k populations, *Statistics in Medicine*, 15, 647-658.

[3] Fleming, T. R. and Harrington, D. P. (1991), *Counting processes and survival analysis*, New York; John Wiley.

[4] Fung, W. K. and Tsang, T. S. (1998), A simulation study comparing tests for the equality of coefficients of variation, *Statistics in Medicine*, 17, 2003-2014

[5] Lehmann, E. L. (1996), *Testing Hypothesis* (2nd edn), New York; John Wiley.

[6] Miller, G. E. (1991), Asymptotic test statistics for coefficients of variation, *Commun. Statist. Theor. Meth*, 20, 3351-3363.

[7] Nairy, K. S. and Rao, K. A. (2003), Tests of coefficient of variatin of normal population, *Comm. Stat., Simulation and Computation*, 32, 641-661.

[8] Pardo, M. C. and Pardo, J. A. (2000), Use of Rényi’s divergence to test for the equality of the coefficient of variation, *Journal of Computational and Applied Mathematics*, 116, 93-104.
[9] Tian, L. (2005), Inferences on the common coefficient of variation, *Statistics in. Medicine*, 24, 2213-2220.

[10] Tsui, K. W. and Weerahandi, S. (1989), Generalized p-values in significance testing of hypothesis in the presence of nuisance parameters, *J. Am. Statist. Assoc.*, 84, 602-607.

[11] Vangel M. G. (1996), Confidence interval for a normal coefficient of variation, *The American Statistician*, 50, 21-26.

[12] Verrill, S. (2003), Confidence bounds for normal and lognormal distribution coefficients of variation, *USDA Forest Products Laboratory Research Paper* FPL-RP-609.

[13] Verrill, S. and Johnson, R. A. (2007), Confidence bounds and hypothesis tests for normal distribution coefficients of variation. *USDA Forest Products Laboratory Research Paper* FPL-RP-638.

[14] Verrill, S. and Johnson, R. A. (2007), Confidence bounds and hypothesis tests for normal distribution coefficients of variation, *Commun. Statist., Theory and Methods*, 36, 2187-2206.

[15] Weerahandi, S. (1993), Generalized confidence intervals, *J. Am. Statist. Assoc.*, 88, 899-905.

[16] Weerahandi, S. (1995), *Exact statistical methods for data analysis*, Springer, New York.

[17] Wong, A. C. M. and Wu, J. (2002), Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models, *Journal of Statistical Planning and Inference*, 104, 73-82.
$\varphi = 0.05$	I	II	III	IV					
μ_1, μ_2, μ_3	n_1, n_2, n_3	C	L	C	L	C	L	C	L
5, 5, 5	9.50 0.0679	0.920 0.0421	0.938 0.0441	0.952 0.0529					
5, 5, 10	0.966 0.0487	0.934 0.0336	0.931 0.0358	0.958 0.0403					
5, 10, 30	0.946 0.0255	0.926 0.0218	0.930 0.0223	0.948 0.0233					
10, 10, 10	0.953 0.0331	0.939 0.0242	0.942 0.0279	0.951 0.0295					
1, 1, 1	10, 20, 20	0.955 0.0228	0.947 0.0218	0.957 0.0207	0.952 0.0214				
1, 1, 2	10, 20, 30	0.952 0.0203	0.951 0.0194	0.940 0.0188	0.953 0.0193				
20, 20, 30	0.948 0.0185	0.950 0.0181	0.939 0.0173	0.952 0.0177					
30, 30, 30	0.953 0.0158	0.953 0.0152	0.959 0.0151	0.954 0.0153					
1, 1, 1	5, 5, 5	0.964 0.0687	0.933 0.0442	0.935 0.0446	0.969 0.0535				
1, 1, 2	5, 5, 10	0.950 0.0504	0.931 0.0380	0.928 0.0366	0.948 0.0415				
1, 5, 10	5, 10, 30	0.953 0.0254	0.940 0.0241	0.938 0.0223	0.949 0.0232				
1, 5, 10	10, 10, 10	0.955 0.0333	0.941 0.0273	0.943 0.0281	0.951 0.0297				
1, 5, 10	10, 20, 20	0.958 0.0228	0.946 0.0201	0.948 0.0206	0.953 0.0213				
1, 5, 10	10, 20, 30	0.947 0.0203	0.950 0.0185	0.942 0.0188	0.948 0.0192				
1, 5, 10	20, 20, 30	0.946 0.0185	0.954 0.0179	0.944 0.0173	0.946 0.0176				
1, 5, 10	30, 30, 30	0.947 0.0159	0.949 0.0150	0.947 0.0151	0.947 0.0153				
Table 2: Simulated coverage probability (C) and average length (L) of 95% two sided confidence interval for φ (based on 10000 simulation)

$\varphi = 0.3$	I	II	III	IV					
μ_1, μ_2, μ_3	n_1, n_2, n_3	C	L	C	L	C	L	C	L
5, 5, 5	0.967	0.6581	0.930	0.3712	0.926	0.2956	0.956	0.4371	
5, 5, 10	0.965	0.4333	0.932	0.2523	0.931	0.2405	0.964	0.3091	
5, 10, 30	0.959	0.1842	0.930	0.1371	0.932	0.1451	0.946	0.1556	
10, 10, 10	0.955	0.2404	0.936	0.1726	0.941	0.1831	0.954	0.1971	
1, 1, 1	10, 20, 20	0.948	0.1581	0.948	0.1421	0.935	0.1358	0.946	0.1383
10, 20, 30	0.953	0.1239	0.952	0.1226	0.946	0.1127	0.949	0.1122	
20, 20, 30	0.955	0.1237	0.949	0.1247	0.943	0.1125	0.948	0.1120	
30, 30, 30	0.964	0.1057	0.953	0.0980	0.951	0.0861	0.956	0.0972	
5, 5, 5	0.968	0.6535	0.933	0.3562	0.925	0.2942	0.966	0.4337	
5, 5, 10	0.961	0.4285	0.938	0.2141	0.927	0.2395	0.961	0.3072	
5, 10, 30	0.956	0.1876	0.928	0.1252	0.933	0.1449	0.947	0.1558	
10, 10, 10	0.960	0.2398	0.948	0.1736	0.949	0.1831	0.958	0.1969	
1, 1, 2	10, 20, 20	0.955	0.1582	0.953	0.1398	0.946	0.1358	0.947	0.1386
10, 20, 30	0.956	0.1385	0.951	0.1147	0.944	0.1225	0.947	0.1232	
20, 20, 30	0.947	0.1243	0.957	0.1421	0.940	0.1130	0.945	0.1225	
30, 30, 30	0.952	0.1059	0.953	0.1149	0.946	0.0984	0.948	0.1037	
5, 5, 5	0.961	0.6462	0.914	0.2301	0.927	0.2932	0.960	0.4305	
5, 5, 10	0.966	0.4319	0.922	0.2415	0.928	0.2382	0.964	0.3079	
5, 10, 30	0.948	0.1910	0.928	0.1453	0.929	0.1462	0.948	0.1576	
10, 10, 10	0.956	0.2433	0.936	0.1722	0.948	0.1844	0.946	0.1986	
1, 5, 10	10, 20, 20	0.949	0.1569	0.943	0.1251	0.945	0.1352	0.948	0.1376
10, 20, 30	0.952	0.1381	0.952	0.1326	0.942	0.1220	0.952	0.1357	
20, 20, 30	0.952	0.1237	0.960	0.1362	0.950	0.1126	0.953	0.1230	
30, 30, 30	0.955	0.1064	0.953	0.1106	0.948	0.0988	0.956	0.1022	
Table 3: Simulated coverage probability (C) and average length (L) of 95% two sided confidence interval for φ (based on 10000 simulation)

$\varphi = 0.5$	μ_1, μ_2, μ_3	n_1, n_2, n_3	I	II	III	IV
	5, 5, 5	0.968 2.8818	0.921 0.7262	0.932 0.5887	0.966 1.5547	
	5, 5, 10	0.969 1.5770	0.930 0.6221	0.936 0.4699	0.959 0.9118	
	5, 10, 30	0.967 0.5152	0.926 0.2451	0.935 0.2775	0.954 0.3514	
	10, 10, 10	0.956 0.5907	0.942 0.3726	0.949 0.2331	0.953 0.4213	
1, 1, 1	10, 20, 20	0.951 0.2818	0.943 0.2471	0.948 0.2328	0.945 0.2302	
	10, 20, 30	0.954 0.3322	0.946 0.2658	0.944 0.2585	0.952 0.2768	
	20, 20, 30	0.959 0.2517	0.956 0.2217	0.951 0.2143	0.949 0.2088	
	30, 30, 30	0.957 0.2079	0.963 0.1923	0.947 0.1849	0.948 0.1764	
	5, 5, 5	0.969 2.8874	0.925 0.9531	0.928 0.5956	0.962 1.5651	
	5, 5, 10	0.955 1.5216	0.936 0.7216	0.925 0.4652	0.958 0.8846	
	5, 10, 30	0.967 0.4875	0.946 0.2741	0.945 0.2744	0.958 0.3391	
	10, 10, 10	0.960 0.5884	0.952 0.4651	0.938 0.3534	0.945 0.4170	
1, 1, 2	10, 20, 20	0.948 0.3416	0.953 0.2821	0.950 0.2584	0.952 0.2579	
	10, 20, 30	0.949 0.2951	0.946 0.2212	0.941 0.2328	0.953 0.2358	
	20, 20, 30	0.948 0.2487	0.956 0.2317	0.944 0.2127	0.946 0.2017	
	30, 30, 30	0.951 0.2083	0.952 0.1851	0.948 0.1852	0.952 0.1772	
	5, 5, 5	0.967 2.8634	0.930 0.6528	0.936 0.5888	0.964 1.5513	
	5, 5, 10	0.966 1.6602	0.928 0.6211	0.926 0.4633	0.964 0.9465	
	5, 10, 30	0.962 0.5244	0.940 0.3224	0.937 0.2772	0.959 0.3559	
	10, 10, 10	0.953 0.5979	0.937 0.3852	0.945 0.3549	0.949 0.4231	
1, 5, 10	10, 20, 20	0.958 0.3399	0.944 0.2634	0.942 0.2569	0.946 0.2663	
	10, 20, 30	0.953 0.2943	0.952 0.2471	0.945 0.2337	0.951 0.2362	
	20, 20, 30	0.950 0.2515	0.957 0.2716	0.947 0.2135	0.951 0.2084	
	30, 30, 30	0.953 0.2094	0.951 0.1928	0.952 0.1869	0.949 0.1784	