Synthesis, Characterization and Acute Anti-inflammatory Evaluation of New Mefenamic Acid Derivatives Having 4-Thiazolidinone Nucleus

Mustafa H. Ali Alsafi * and Muthanna S. Farhan **

* Ministry of Health and Environment, Baghdad, Iraq
** Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq

Abstract

Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug’s potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetyl chloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the synthesized compounds was established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05). On the other hand compound IVc exhibited lower anti-inflammatory effect.

Keywords: Mefenamic acid, 4-thiazolidinone, Anti-inflammatory

نجحت مسلسلات الأدينون والمركب IVc في التأثير على كبح انزيم كوكس(I) والثيازوليدينون في زيادة الحجم و بالتالي تثبيط انزيم كوكس(I). تم اجراء العديد من الاختبارات لتحديد النسب ذات الصلة لحمض الميفينامك. حيث ان اضافة مجموعة الثيازوليدينون ربما يؤدي الى زيادة حجم المركب والثيوجليكولك لتصنيع حلقة حلقي بوجود مركب حمض الثيوجليكولك لتصنيع حلقة حلقي. تشمل هذه الاختبارات كمبيوترات النواة الهليوبوليكية والمركبات الوسطية تم تصميمها كنماذج

توضيح المفاهيم التي تم اجراها باستخدام نماذج الازثير البيولوجي يمكن أن تكون مالية لخدمات المستخدم للتأكد من أن المضافات فعالة. يتم في انتاج النموذج و نسب الفعاليةज्यादात्मक रूप से कार्य, जिसे अगला दो की होता है, और इसे नवीनता लगाता है.

1Corresponding author Email: alsafi_mh@yahoo.com
Received: 30/12/2018
Accepted: 26/3/2019
Introduction

NSAIDs have become important as an analgesic, antipyretic, and anti-inflammatory medications throughout the world. The main mechanism of NSAIDs action is inhibition both isoforms of the enzyme cyclooxygenase COX-1 and COX-2 which catalyzes the synthesis of PGH2 from arachidonic acid \(^{(1,2)}\). Since the gastrointestinal (GI) toxicity, as well as renal toxicity, were identified as the main adverse effect of the chronic use of the known (NSAIDs), which were mediated by COX-1 enzyme inhibition, attempt was made to develop COX-2 selective inhibitors (coxibs), which possess the therapeutic effect devoid of gastrointestinal (GI) and renal toxicity. \(^{(1-6)}\)

3-Dimensional structures analysis for the two isomers of COX enzyme demonstrated differences in the hydrophobic channel structure, as well as a rather larger orifice and the presence of an additional pocket lying away from the catalytic site, this makes the selective COX-2 inhibitors to require longer time to fit the COX-2 active site, but when they bind the enzyme, their bond may become permanent. They also may become competitive COX-1 inhibitors when given at high doses. \(^{(7)}\)

Well-known NSAIDs modification into more selective COX-2 inhibitors is considered an interesting maneuver. Yet, no general line is followed as a procedure for this purpose \(^{(8,9)}\). Thiazolidinones are thiazolidine derivatives possessing at position 1 a sulfur atom, at position 3 a nitrogen atom and at position 2, 4, or 5 a carbonyl group.

Derivatives of this compound constitute members of the widely investigated agents, and their presence was first documented in penicillin. Similarly, 1,3-thiazolidin-4-ones are heterocyclic nucleus that contain a sulfur atom and nitrogen at position 1 and 3, respectively and a carbonyl group at position 4, it has been studied extensively in recent years \(^{(10)}\). The 4-thiazolidinone skeleton is very flexible and has included in a variety of clinically important medications such as some anti-tubercular, antimicrobial, anti-inflammatory and antiviral especially anti-HIV agents \(^{(11)}\). Zarghi et al. reported a novel series of 2,3-diaryl-1,3-thiazolidine-4-ones showing COX-2 inhibition properties which was more selective than celecoxib \(^{(9)}\).

The aim of this work is synthesize and preliminary anti-inflammatory evaluation of 4-thiazolidinone derivatives of mefenamic acid in order to obtain a more potent mefenamic acid analogues.

Materials and Methods

Chemicals used during the synthesis were supplied by hyper-chem (China). Completion of reactions and the purity of compounds were monitored by thin-layer chromatography (TLC), using silica gel GF254 (type 60) pre-coated aluminum sheets, Merck (Germany) exposed to UV-254 nm light, five solvent systems were used which include: ethyl acetate:hexane(4:6) \(^{(12,13)}\) , ethyl acetate:hexane (6:4) , ethyl acetate: hexane (3:7),ethyl acetate: petroleum ether(5:5) and ethyl acetate: petroleum ether(4:6). Melting points were detected by using Stuart SMP3 melting point apparatus in open capillary tubes, and are uncorrected. The infrared spectra were performed in thin film techginge, \((\nu, \text{cm}^{-1})\), on Shimadzu FTIR spectrophotometer, (Japan). \(^{1}H\)NMR spectra were obtained on BRUKER model Ultra shield 300 MHz spectrophotometer, and BRUKER model Ultra shield 400 MHz spectrophotometer, using deuterated DMSO-d6 as solvents and TMS as an internal standard, at Al-ulbayt University, Amman-Jordan.

Chemical synthesis

Synthesis of 2-(2-chloro-N-(2,3-dimethylphenyl) acetamido)benzoic acid (I) \(^{(14-15)}\)

Mefenamic acid (2.0 g, 8.29 mmol) was dissolved in dichloromethane (DCM) 20 ml and in the presence of triethylamine (1.4 mL, 9.97 mmol) the mixture were stirred at 0 °C for 10 min. Then Chloroacetyl chloride (1.4 mL,17.6 mmol) was added dropwise. After that stirring at 0°C for 15 min and at room temperature for one hour. The end of reaction was detected by TLC. After end of reaction aqueous K2CO3 (2 eq.)(2.5 g) was added to the mixture and the mixture were stirred for 30 min was washed with Dichloromethane and water. The aqueous layer was extracted with 3 × 30 mL of CH2Cl2. The organic layers were washed and concentrated. The remaining residue was purified by recrystallization from benzene.

The percent yield and physical data are given in Table (2).

Synthesis of 2-(N-(2,3-dimethylphenyl)-2-hydrazinylacetamido)benzoic acid (II) \(^{(16)}\)

A mixture of compound (I) (0.98 g, 3.1 mmol) and hydrazine hydrate 80% (9.4 mmol) in ethanol (20 mL) was heated under reflux for six hours, then cooled and poured on to crushed ice (30 g), then the solid product which formed was filtered off, washed with water and recrystallized from ethanol to give compound (II).

The percent yield and physical data are given in Table (2).

139
carboxylic acid). ¹HNMR (400 MHz; DMSOd₆) H: 2.17(3H, s, Ar-CH₃(ortho mefenamic)); 4.8(2H, s, CO-CH₂-NH group); 6.49-7.77(7H, m, Ar-H)

Synthesis of Schiff base (2-(2-(benzylidenehydrazineyl)-N-(2,3-dimethyl phenyl)acetamido)benzoic acid compound III a-g)

A mixture of 1.9 mmol of Compound II and 1.9 mmol of the corresponding aldehyde derivatives that mentioned in table (1) in 20 ml of absolute ethanol was stirred at room temperature for 0.5 to 1h, with addition of two to three drops of hydrochloric acid as a catalyst. The end of the reaction was observed by TLC, and the benzylidene hydrazines were isolated by concentrating of the crude product at reduced pressure, the resulting precipitate was filtered, washed with 10 ml water and recrystallized from ethanol. The percent yield and physical data are given in Table (2)

No.	Aromatic aldehyde’s name	Product No.	R	Quantity(gm)
a	4-hydroxybenzaldehyde	IV a	![OH](image)	0.231
b	4-nitrobenzaldehyde	IV b	![NO₂](image)	0.286
c	4-chlorobenzaldehyde	IV c	![Cl](image)	0.266

Table (1) Aromatic aldehydes name and products no.

Synthesis of 4-thiazolidione derivatives of mefenamic acid

2-(2-(2-(4-chlorobenzylidene)hydradineyl)-N-(2,3-dimethylphenyl)acetamido)benzoic acid (IIc)

FTIR: 3210 cm⁻¹ (NH hydrazine); 1743 cm⁻¹ (C=O amide); 1597 cm⁻¹ (C=N) and 1083 cm⁻¹ (C-Cl).

2-(N-(2,3-dimethylphenyl)-2-(2-(4-fluorobenzylidene)hydrazinyl)acetamido)benzoic acid (IIIId)

FTIR: 3210 cm⁻¹ (NH hydrazine); 1743 cm⁻¹ (C=O amide); 1647 cm⁻¹ (C=O of carboxylic acid) and 1600 cm⁻¹ (C=N) and 1095 cm⁻¹ (C-F).

2-(2-(2-(4-dimethy)aminobenzylidene)hydradineyl)-N-(2,3-dimethylphenyl)acetamido)benzoic acid (IIId)

FTIR: 3210 cm⁻¹ (NH hydrazine); 1743 cm⁻¹ (C=O amide); 1651 cm⁻¹ (C=O of carboxylic acid) and 1600 cm⁻¹ (C=N) and 1095 cm⁻¹ (C-F).

2-(2-(2-(3-chlorobenzylidene)hydradineyl)-N-(2,3-dimethylphenyl)acetamido)benzoic acid (IIIf)

FTIR: 3210 cm⁻¹ (NH hydrazine); 1743 cm⁻¹ (C=O amide); 1647 cm⁻¹ (C=O of carboxylic acid) and 1604 cm⁻¹ (C=N) and 1080 cm⁻¹ (C-Cl).

2-(2-(2-(3,4-dimethy)benzylidene)hydradineyl)-N-(2,3-dimethylphenyl)acetamido)benzoic acid (IIIg)

FTIR: 3210 cm⁻¹ (NH hydrazine); 1743 cm⁻¹ (C=O amide); 1651 cm⁻¹ (C=O of carboxylic acid) and 1600 cm⁻¹ (C=N).
Synthesis of 4-thiazolidine derivatives of mefenamic acid

d	4-fluorobenzaldehyde	IV d
e	4-dimethylaminobenzaldehyde	IV e
f	3-chlorobenzaldehyde	IV f
g	3,4-dimethylbenzaldehyde	IV g

A mixture of benzyleidine hydrazine IIIa-g (1 mmol) and excess of thioglycolic acid (0.071 mmol) (5 ml) was heated at 60 °C until reaction complete, as shown by TLC (about 6 h). Ethyl acetate (5 ml) was added, the organic layer was washed with water (1 × 10 ml), dried with MgSO₄, and concentrated to give an oily product, and the final compound was washed with diethyl ether.

The percent yield and physical data are given in Table (2)

2-(N-(2,3-dimethylphenyl)-2-((4-oxo-2-phenylthiazolidin-3-yl)amino)acetamido)benzoic acid (IVa)

FTIR: 3236 cm⁻¹ (N-H hydrazine); 1782 cm⁻¹ (C=O thiazolidinone); 1732 cm⁻¹ (C=O amide); 1670 cm⁻¹ (C=O of carboxylic acid) and 1238 cm⁻¹ (C-O).

1HNMR (300 MHz, : DMSOd₆) H: 3.8-3.9 (2H, d, CH₂ thiazolidinone); 4.9 (2H, s, CH₂ NH-N); 6.7-7.79 (11H, m, Ar-H); and 10.1 (1H, s, Ar-OH).

2-(N-(2,3-dimethylphenyl)-2-((2-(4-nitrophenyl)-4-oxothiazolidin-3-yl)amino)acetamido)benzoic acid (IVb)

FTIR: 3236 cm⁻¹ (N-H hydrazine); 1728 cm⁻¹ (C=O thiazolidinone); 1681 cm⁻¹ (C=O of carboxylic acid); 1346 cm⁻¹ (NO₂ stretching) and 1238 cm⁻¹ (C-O). ¹HNMR (300 MHz, : DMSO) H: 3.7-3.9 (2H, d, CH₂ thiazolidinone); 4.9 (2H, s, CH₂ NH-N); 5.93 (1H, s, N-CH - S) (thiazolidinone); 6.7-8.25 (11H, m, Ar-H).

2-(2-((2-((4-chlorophenyl)-4-oxothiazolidin-3-yl)amino)-N-((2,3-dimethyl phenyl)acetamido)benzoic acid (IVc)

FTIR: 3236 cm⁻¹ (N-H hydrazine); 1782 cm⁻¹ (C=O thiazolidinone); 1728 cm⁻¹ (C=O amide); 1670 cm⁻¹ (C=O of carboxylic acid); 1087 cm⁻¹ (C-Cl stretching) and 1280 cm⁻¹ (C-O). ¹HNMR (300 MHz, : DMSO) H: 3.7-3.8 (2H, d, CH₂ thiazolidinone); 4.9 (2H, s, CH₂ NH-N); 5.8 (1H, s, N-CH - S) (thiazolidinone); 6.7-7.79 (11H, m, Ar-H).
2-(N-(2,3-dimethylphenyl)-2-((2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)amino)acetamido)benzoic acid (IVd)

FTIR: 3251 cm\(^{-1}\) (N-H hydrazine); 1782 cm\(^{-1}\) (C=O thiazolidinone); 1724 cm\(^{-1}\) (C=O amide); 1670 cm\(^{-1}\) (C=O of carboxylic acid) and 1222 cm\(^{-1}\) (C-O).

\(^{1}\)H NMR (300 MHz, DMSO\(_6\)) H: 3.7-3.8 (2H, d, CH\(_2\) thiazolidinone); 4.1 (1H, s, CH\(_2\)-NH-N); 4.9 (2H, s, CO-CH\(_2\)-NH); 5.8 (1H, s, N-CH-S)(thiazolidinone); 6.7-7.79 (11H, m, aromatic CH).

2-(2-((2-(4-dimethylamino)phenyl)-4-oxothiazolidin-3-yl)amino)-N-(2,3-dimethylphenyl)acetamido)benzoic acid (IVe)

FTIR: 3251 cm\(^{-1}\) (N-H hydrazine); 1782 cm\(^{-1}\) (C=O thiazolidinone); 1724 cm\(^{-1}\) (C=O amide); 1670 cm\(^{-1}\) (C=O of carboxylic acid); 1076 cm\(^{-1}\) (C-Cl stretching) and 1242 cm\(^{-1}\) (C-O).

\(^{1}\)H NMR (300 MHz, DMSO\(_6\)) H: 3.7-3.8 (2H, d, CH\(_2\) thiazolidinone); 4.1 (1H, s, CH\(_2\)-NH-N); 4.9 (2H, s, CO-CH\(_2\)-NH); 5.8 (1H, s, N-CH-S)(thiazolidinone); 6.7-7.79 (11H, m, Ar-CH).

2-(N-(2,3-dimethylphenyl)-2-((2-(3-chlorophenyl)-4-oxothiazolidin-3-yl)amino)acetamido)benzoic acid (IVf)

FTIR: 3232 cm\(^{-1}\) (N-H hydrazide); 1782 cm\(^{-1}\) (C=O thiazolidinone); 1724 cm\(^{-1}\) (C=O amide); 1280 cm\(^{-1}\) (C-O).

\(^{1}\)H NMR (300 MHz, DMSO\(_6\)) H: 3.7-3.8 (2H, d, CH\(_2\) thiazolidinone); 4.1 (1H, s, CH\(_2\)-NH-N); 4.9 (2H, s, CO-CH\(_2\)-NH); 5.7 (1H, s, N-CH-S)(thiazolidinone); 6.7-7.79 (10H, m, Ar-H).

Scheme 1. Synthesis of the target compounds (IV a-g)
Table (2) The characterization and physical parameters of the target compounds and their intermediates

No.	Molecular Formula	Molecular Weight	Description	% Yield	Melting Point °C
I	C₁₁H₁₀ClNO₃	317	Pale yellow crystals	81	156-159
II	C₁₁H₁₀N₂O₃	313	White powder	80	138-141
III a	C₂₄H₂₃N₂O₄	417	Orange crystals	69	164-166
III b	C₂₄H₂₃N₂O₄	466	Deep yellow crystals	67	170-172
III c	C₂₄H₂₂ClN₃O₃	435	Off white powder	45	155-158
III d	C₂₄H₂₂FN₃O₃	419	Yellow powder	63	110-112
III e	C₂₆H₂₆N₂O₃	444	Orange powder	67	105-108
III f	C₂₆H₂₂ClN₃O₃	435	Pale yellow powder	85	102-105
III g	C₂₆H₂₂N₃O₃	451	Pale yellow powder	80	125-128
IV a	C₂₆H₂₅N₃O₃S	491	Orange oil	71	-
IV b	C₂₆H₂₄N₂O₃S	520	Yellow oil	60	-
IV c	C₂₆H₂₄ClN₂O₃S	510	Yellow to orange oil	57	-
IV d	C₂₆H₂₃FN₃O₂S	493	Yellow to orange oil	61	-
IV e	C₂₆H₂₃N₂O₃S	518	Brown oil	68	-
IV f	C₂₆H₂₃ClN₃O₃S	510	Yellow to orange oil	64	-
IV g	C₂₆H₂₃N₃O₃S	503	Yellow to orange oil	62	-
M.A	C₁₃H₈NO₂	241	White powder	230	230-233

Preliminary pharmacological studies

Anti-inflammatory evaluation study

The inflammatory model that used to evaluate final compounds (IVa-g) for the *In-vivo* acute anti-inflammatory effects exploited egg-white induced rat paw edema, for comparison with anti-inflammatory activity of mefenamic acid. The decrease of paw thickness is the basis of screening of the newly synthesized compounds for their anti-inflammatory activity.

Methods

Animals

Albino rats of either sex weighing (250 ± 50 gm) were supplied by Biotechnology Research Center, AL-Nahrain University, and were housed under standardized conditions in the Biotechnology Research Center, AL-Nahrain University animal house. Commercial chaw was used to feed the animals and they had free access to water ad libitum. Animals were brought to the laboratory, one hour before the experiment; animals were divided into nine groups (six rats per group) as follow:

Group A: injected with the vehicle (dimethyl sulfoxide 10% v/v) and served as a control group.

Group B: injected with mefenamic acid as reference substance with a dose of 50mg/kg \(^{(19)}\), dissolved in dimethyl sulfoxide 10% v/v).

Group C-I: injected with the tested compounds (IVa-g) by doses that are determined below. (dissolved in dimethyl sulfoxide 10% v/v).

Calculations for dose determination\(^{(20)}\)

Dose of reference compound /Mwt. of reference compound = dose of tested compound/ Mwt. of tested compound.
Table (3) Compounds with their molecular weight and dose

Compounds	Molecular weight	Dose mg/kg
Mefenamic acid	241	50
IV a	491	86.5
IV b	520	94
IV c	510	107
IV d	493	103
IV e	518	93
IV f	510	107
IV g	503	105

Experimental design

Egg albumin was used to induce rat paw edema as acute inflammatory model for studying of the final compounds activity\(^{(21)}\). 0.05mL of undiluted ovalbumin was subcutaneously injected into the rats’ planter side of the hind paw; preceded by a half hour of intraperitoneal injection of the drugs or their vehicle.

Electronic LCD Digital vernier gauge stainless steel ruler was used for measuring paw thickness at 7 time periods (0, 30, 60, 120, 180, 240, and 300 minutes) after the Compounds injection.

Statistical analysis

The mean ± SEM was used to report data of this work then student t-test (Two Sample Assuming Equal Variances) used to calculate data statistical significance between means. ANOVA (Two factors without Replication) is used to compare between different groups. P-value < 0.05 was assumed significant.

Results and Discussion

The anti-inflammatory activity of the tested compounds has been evaluated in comparison with their vehicle (control group) and mefenamic acid. Table (4) explains the effect of tested compounds (IVa-g) in comparison to control and mefenamic acid. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). All tested compounds significantly limited the inflammation in paw edema, the onset of mefenamic acid and compounds IVa,c,e started at time 120 min but IVc became comparable to control at 180 min until the end of the study. While compound IVg started at 180 min and Compounds IVb,f started at 240 min. compound IVe exhibited more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) at 240-300 min., while compounds IVa,d exhibited higher anti-inflammatory effect at time 300 min. However, the effect of all tested compound continued till the end of experiment with statistically significant (P<0.05) reduction in paw edema thickness as shown in figure (1).

Comparison analysis

The comparison explains that at 0-60 min., there are no differences among all groups. Compounds (IV a,d,e,f) at time 120-240 minutes show comparable effect to mefenamic acid except IV e which becomes more potent at 240-300 min. at time 300 min compounds IV a,d exhibit more potent effect than mefenamic acid, while IVf remains comparable until the end of the study. Although; compounds IVb,g significantly limited the increase in paw edema in comparison to control group, but they are significantly less effective than mefenamic acid and other tested compounds at interval of 120 minutes and after that they exhibit comparable effect to mefenamic acid until the end of the experiment.

Figure (1) Effect of mefenamic acid, dimethyl sulfoxide, compounds IVa-g on egg-white induced paw edema in rats. Results are expressed as mean ± SEM (n = 6 for each group).
Table (4) The anti-inflammatory effect of control, mefenamic acid and compounds IVa-g on egg-white induced paw edema in rats:

compounds	Time	Paw thickness (mm), n = 6					
	0	30	60	120	180	240	300
Control	3.98±0.1	5.05±0.2	6.06±0.1	6±0.1	5.8±0.1	5.6±0.1	5.4±0.1
mefenamic	3.89±0.2	4.97±0.2	5.83±0.2	5.5±0.2“	5.1±0.1“	4.8±0.05“	4.43±0.06“
IVa	3.75±0.2	4.9±0.1	6.3±0.1	5.5±0.14“	5.2±0.15“	4.7±0.1“	4.2±0.08“
IVb	3.75±0.06	5.1±0.1	5.55±0.2	6±0.1	6±0.1	4.8±0.1“	4.5±0.1“
IVc	3.6±0.1	5±0.2	6.2±0.2	5.4±0.2“	5.3±0.2	4.8±0.3	5±0.3
IVd	3.5±0.04	5.1±0.2	6.3±0.14	5.8±0.2	5.3±0.14“	4.7±0.1“	4.1±0.04“
IVe	3.5±0.07	5.1±0.2	5.9±0.15	5.5±0.1“	4.8±0.14“	4.35±0.1“	4±0.05“b
IVf	3.6±0.1	5±0.1	5.9±0.25	5.7±0.2	5.4±0.2	4.9±0.2“b	4.3±0.1“
IVg	3.5±0.1	4.7±0.1	6±0.1	5.9±0.1	5.3±0.1“	4.9±0.1“	4.6±0.1“

*a*significantly different compared to control (P<0.05). Data are expressed in mm paw thickness as mean ± SEM. n= number of animals. Time (0) is the time of i.p. injection of mefenamic acid and dimethyl sulfoxide. Time (30) is the time of injection of egg white (induction of paw edema). Non-identical superscripts (a, b) among different groups are considered significantly different (p<0.05).

Conclusions

A new derivatives of mefenamic acid were successfully synthesized by conventional method and tested for anti-inflammatory activity, acute anti-inflammatory study using egg white induced edema model of inflammation revealed that the incorporation of 4-thiazolidinone moiety into a mefenamic acid maintained or enhanced its anti-inflammatory activity and also the anti-inflammatory study show that compounds (IVa, IVd, IVe) contain [OH,F,N(CH3)2] groups respectively which are electron donating groups showed superior anti-inflammatory activity to mefenamic acid probably due to formation of hydrogen bonding with the target receptor in the body.

Acknowledgments

The authors greatly thankful the College of Pharmacy, University of Baghdad, for their help and support.

References

1. Bothara KG. Synthesis and investigation of anti-inflammatory activity of novel nitric oxide donating hybrid drugs. Med Chem Res 2013;22:3510–3517.
2. Saravanan G, Alagarsamy V. Synthesis, analgesic, anti-inflammatory, and in vitro antimicrobial activities of some novel quinazolin-4 (3 H) -one derivatives. Med Chem Res 2013;22:340–350.
3. Pereira-leite C, Nunes C, Reis S. Progress in Lipid Research Interaction of Nonsteroidal anti-inflammatory drugs with membranes: In vitro assessment and relevance for their biological actions. Prog Lipid Res. 2013;52(4):571–84.
4. Labib MB, Sharkawi SMZ, El-daly M. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: anti-inflammatory, analgesic activities and docking study. Bioorg Chem. 2018;80:70–80.
5. Abdellatif KRA, Abdelgawad MA, Elshemy HAH, Alsayed SSR. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem. 2016;64:1–12.
6. Kim HS, Park T, Ren WX, Gwan S, Seung J, Won M, Heo JS. COX-2 targeting indomethacin conjugated fluorescent probe. Dye and Pigment. 2018;150:261–6.
7. Lipsky PE, Brooks P, Crofford LJ, DuBois R, Graham D, Simon LS, Putte LBA van de, Abramson SB. Unresolved Issues in the Role of Cyclooxygenase-2 in Normal Physiologic Processes and Disease. Arch Intern Med. 2000;160:913–20.
8. Buschmann H, Christoph T, Friderichs E, Maul C, Sundermann B, Ed JL. Analgesics from Chemistry and Pharmacology to Clinical Application. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2002; p.32.
9. Zarghi A, Arfaei S. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. Iran J Pharm Res. 2011;10: 655–83.
10. Kumar A, Vaidya A, Ravichandran V, Kumar S, Kishore R. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg Med Chem. 2012;20(11):3378–95.
11. Li Z, Zhu A, Yang J. One-Pot Three-Component
Mild Synthesis of 2-Aryl-3-(9-alkylicarbazol-3-y)thiazolin-4-ones. J Heterocycl Chem. 2012;49(1):1458–61.
12. Kubba AAM, Rahim NAA. Synthesis, Characterization and Antimicrobial Evaluation with DFT Study of New Two-Amino-4-(4-Chlorophenyl) Thiazole Derivatives. Iraqi J Pharm Sci. 2018;27(1):79–88.
13. Abbas SS, Kubba AAM. Synthesis, Characterization and Antimicrobial Evaluation with DFT Study of New Two-Amino-4-(4-Chlorophenyl) Thiazole Derivatives. Iraqi J Pharm Sci. 2018;27(1):79–88.
14. Azéma J, Guidetti B, Dewelle J, Le Calve B, Mijatovic T, Korolyov A, Vaysse J, Malet-Martino M, Martino R, Kiss R. 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents. Bioorganic Med Chem. 2009;17(15):5396–407.
15. Harte AJ, Gunnlaugsson T. Synthesis of a -chloroamides in water. Tetrahedron Letters. 2006;47:6321–4.
16. Aly AA, Behalo MS. Efficient synthesis of thieno [2,3-d] pyrimidines and related fused systems. J Chem Res. 2010;1(1):571–5.
17. Almasirad A, Tajik M, Bakhtiari D. Synthesis and analgesic activity of N- aryldrazones derivatives of mefenamic acid. J Pharm Pharmaceut Sci. 2005;8(3):419–25.
18. Wardell SMS V, Flores AFC, Cunico W. Efficient solvent-free synthesis of thiazolidin-4-ones from phenylhydrazine. Tetrahedron Lett. 2010;51(23):3106–8.
19. Somchit MN, Sanat F, Hui GE, Wahab SI, Ahmad Z. Mefenamic acid induced nephrotoxicity: An Animal Model. Adv Pharm Bull. 2014;4(4):401–4.
20. Mahdi MF, Kadhim FAH. Design , Synthesis and Acute Anti-Inflammatory Evaluation of New Non-Steroidal Anti-Inflammatory Agents Having 4- Thiazolidinone Pharmacophore. J Nat Sci Res. 2015;5(6):21–9.
21. Okokon JE, Udoh AE, Frank SG, Amazu LU. Anti-inflammatory and analgesic activities of Melanthera scandens. Asian Pac J Trop Biomed. 2012;2(2):144–8.