Brief Definitive Report

p53 Prevents Maturation to the CD4+CD8+ Stage of Thymocyte Differentiation in the Absence of T Cell Receptor Rearrangement

By Di Jiang,* Michael J. Lenardo,* and Juan Carlos Zúñiga-Pflücker†

From the *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892; and †University of Toronto, Department of Immunology, Toronto, Ontario M5S 1A8, Canada

Summary

Rearrangement of the immunoglobulin (Ig) and T cell receptor (TCR) gene loci allows for the generation of B and T lymphocytes with antigen-specific receptors. Complete rearrangement and expression of the TCR-β chain enables immature thymocytes to differentiate from the CD4-CD8- to the CD4+CD8+ stage. Mice in which rearrangement is impaired, such as severe combined immunodeficient (SCID) mice or recombinase activating gene-deficient (RAG-/-) mice, lack mature B and T lymphocytes. Thymocytes from these mice are arrested at the CD4-CD8- stage of T cell development. We previously observed that thymocytes from RAG-2-/- mice exposed to γ radiation differentiate from CD4-CD8- into CD4+CD8+ without TCR-β chain rearrangement. We now report that irradiated RAG-2-/- thymocytes undergo direct somatic mutations at the p53 gene locus, and that p53 inactivation is associated with maturation of RAG-2-/- thymocytes to the CD4+CD8+ stage. Generation of RAG-2-/- and p53-/- double-deficient mice revealed that, in the absence of TCR-β chain rearrangement, loss of p53 function is sufficient for CD4-CD8- thymocytes to differentiate into the CD4+CD8+ stage of T cell development. Our data provide evidence for a novel p53-mediated checkpoint in early thymocyte development that regulates the transition of CD4-CD8- into CD4+CD8+ thymocytes.

A
daptive immunity requires the establishment of a large repertoire of lymphocytes, each bearing a unique antigen-specific receptor. Successful rearrangement of TCR gene loci is necessary for proper thymocyte development and for the generation of a mature T cell repertoire. Mice with recombination deficiencies, such as SCID and RAG-/-, display a differentiation arrest early in T cell development and lack receptor-bearing T cells in the periphery (1–3). In these mice, thymocyte development does not proceed further than the early immature CD4-CD8- (double-negative, DN) stage. Recent evidence supports the notion that signals derived from a pre-TCR chain and a fully rearranged TCR-β chain at the DN stage elicit thymocyte differentiation to the next point in development, the CD4+CD8+ (double-positive, DP) stage (4–6). This TCR-β chain-mediated differentiation event has been termed "β selection" (6–8). Once thymocytes reach the DP stage, TCR-α chain rearrangement occurs, allowing for the TCR-MHC interactions that result in the negative or positive selection of developing thymocytes (9, 10).

We recently reported that DN thymocytes from RAG-2-/- mice differentiate into DP thymocytes after exposure to γ radiation, and that this induced differentiation occurs in the absence of TCR-β rearrangement (11). Because of their inability to recombine their TCR gene loci, DN thymocytes from RAG-2-/- mice have a limited developmental potential and a shortened life span (4, 7). This limited life span may reflect a dominant programmed cell death (apoptosis) pathway that is normally suppressed by TCR-β signals. We hypothesized that thymocytes from irradiated RAG-2-/- mice acquire a novel phenotype that permits them to proceed with thymocyte development by superseding the required TCR-β differentiation signals. DP thymocytes induced by radiation may have failed to respond to the appropriate death signals that DN cells normally receive in the absence of TCR-β selection. To address this possibility, we investigated genes involved in the apoptosis pathway that may be responsible for inducing death of DN thymocytes that fail to rearrange TCR-β gene loci.

One of the key regulatory genes involved in the induction of apoptosis is p53 (12). Cells with mutant forms of p53 are resistant to several inducers of apoptosis, such as DNA damage (12, 13). This is most evident in the preponderance of human tumors known to have a mutated form of the p53 gene, which is thought to lead to a deregulated...

1923 The Journal of Experimental Medicine • Volume 183 • April 1996 • 1923–1928
neoplastic phenotype (12, 14). Furthermore, the *p53* gene contains several regions, known as "hot spots," that are highly susceptible to direct somatic mutations from exposure to radiation or DNA-damaging agents (15). In this report, we show that irradiated RAG-2−/− thymocytes acquire radiation-induced somatic mutations of the *p53* gene, which can enable DN thymocytes to advance to the DP stage in the absence of TCR-β survival/differentiation signals. We directly demonstrate the involvement of *p53* during DN-to-DP thymocytes differentiation by showing that DN thymocytes differentiate to the DP stage of T cell development in RAG-2−/−/*p53−/−* double-deficient mice. Thus, in the absence of TCR-β chain rearrangement, loss of *p53* function is sufficient for the transition of CD4−CD8− into CD4+CD8+ thymocytes.

**Materials and Methods**

*Mice.* RAG-2−/− mice were obtained from Dr. Fred Alt (Howard Hughes Medical Institute, Children’s Hospital, Boston, MA) (2) and bred in our animal facility. *p53−/−* mice were purchased from Taconic Farms, Inc. (Germantown, NY). Double-deficient RAG-2−/−/*p53−/−* mice were bred in our facility. Double-mutation homozygosity was determined by flow cytometry analysis for RAG-2−/− phenotype or by PCR analysis for *p53−/−* genotype. Adult RAG-2−/−/*p53−/−* mice (10–12 wk) were used for the flow cytometry analysis shown in Fig. 3; before analysis, mice were checked for the absence of any overt tumors. All other mice were obtained from the National Cancer Institute, Frederick Cancer Research and Development Center (Frederick, MD). Irradiation of mice was performed as previously described (16).

**Flow Cytometry.** Antibodies for flow cytometry were purchased from PharMingen (San Diego, CA). Staining of cells was performed as previously described (16).

**RNA and PCR Analysis.** Total RNA from thymocytes was prepared with RNAzol (Tel-Test Inc., Friendswood, TX) as indicated by the manufacturer. Reverse transcriptase (RT)-PCR analysis and cloning of *p53* were performed using standard techniques.Briefly, RT reactions were performed with total RNA from thymocytes of control or 2-wk postirradiation RAG-2−/− mice using random hexamer primers. The first-strand cDNA products were amplified by PCR using *p53* gene-specific primers (5’ CCT GTC ATC TTG TGT CCC TTC TCA 3’, for the upper primer at position 424, and 5’ ATA AGA CAG CAA GGA GAG GGG GAG 3’, for the lower primer at position 1361). The PCR product was analyzed by gel electrophoresis or cloned using the T/A cloning system (Invitrogen, San Diego, CA). Plasmids containing the *p53* gene were sequenced with several gene-specific primers using the Sequenase (Amersham Corp., Arlington Heights, IL) system. 

**Immunoprecipitation and Western Blot Analysis** Thymocyte nuclear extracts were prepared as previously described (17). Nuclear extracts were immunoprecipitated with either Pab-246 or Pab-240 mAb (Santa Cruz Biotechnology Inc., Santa Cruz, CA) for the wild-type or mutant forms of *p53*, respectively. SDS-PAGE was performed on immunoprecipitated material and electrotoblotted onto nitrocellulose membranes. ImmunobLOTS were hybridized using Pab-240 mAb, which recognizes both wild-type and mutant forms of denatured/membrane-bound *p53*. Polyclonal anti-mouse-κ/λ-HRP-labeled Ig (Southern Biotechnology Associates, Birmingham, AL) was used to detect the hybridizing antibody. The ECL system (Amerham Corp.) was used to detect the secondary antibody.

**Results and Discussion**

Thymocytes from recombination-deficient (RAG-2−/−) mice are blocked at the DN stage of T cell development (Fig. 1). Thymocytes from RAG-2−/− mice exposed to sublethal doses of γ radiation show the appearance of DP cells 2 wk after treatment (Fig. 1). Surprisingly, DN thymocytes reach the DP stage in the absence of TCR gene rearrangement (11, 18). This finding provides evidence for a DN-to-DP differentiation event independent of rearranged TCR-β chain and pre-Tcα signals. Thus, thymocytes from irradiated RAG-2−/− mice must overcome the requirement for survival/differentiation signals normally provided by TCR-β and pre-Tcα chains (4–6). We hypothesized that γ radiation may be affecting genes that normally control cell death or survival events during thymocyte development. Therefore, we investigated the potential role of *p53* in the generation of DP cells in irradiated RAG-2−/− mice. We chose *p53* as a candidate gene because of its involvement in controlling cell cycle and apoptosis after exposure to DNA-damaging agents (12–14). Furthermore, *p53* has been shown to readily undergo somatic mutation in cells after exposure to radiation (15).

We isolated mRNA from normal RAG-2−/− thymocytes or from RAG-2−/− thymocytes 2 wk after irradiation (IR-RADRAG; 8.5 Gy). After RT with random hexamer primers, PCR with gene-specific primers was used to amplify mRNA transcripts from the *p53* gene. The RT-PCR product was generated using *Pfu* polymerase to avoid PCR-mediated errors in the DNA sequence. The RT-PCR product was cloned, and plasmids containing *p53* from several different colonies were sequenced. The *p53* sequence derived from normal RAG thymocytes was identical to the previously reported sequence (12). By contrast, several *p53* gene sequences derived from irradiated RAG thymocytes revealed various nucleotide changes that would result in an altered *p53* protein (Table 1). Thus, thymocytes that developed 2 wk after radiation exposure may express mutated *p53* genes. However, not all of the *p53* cDNAs derived from irradiated thymocytes showed genetic alterations. This may be due to the use of total thymus rather than isolated DP thymocytes to prepare the mRNA. Nonetheless, mutated cDNAs of *p53* were obtained in 42% of the colonies we analyzed from irradiated thymuses but in none of the thymuses from nonirradiated RAG-2−/− mice (Table 1). These findings demonstrated that treatment with γ radiation can directly mutate the *p53* gene.

Our analysis of *p53* protein expression revealed the presence of mutant forms of *p53* in thymocytes from irradiated RAG-2−/− but not from control RAG-2−/− mice. Fig. 2 shows a Western blot analysis of immunoprecipitated *p53* from irradiated or control RAG-2−/− thymocyte nuclear extracts using wild-type or mutant form–specific mAbs. As a positive control for the immunoprecipitation and Western blot, we used nuclear extracts from A431 cells (Santa Cruz Biotechnology Inc.).
Cruz Biotechnology), which express a mutant form of p53 (19) (data not shown). Consistent with our DNA sequence analysis, the immunoblot shows that thymocytes from irradiated RAG-2^-/- mice express mutant and wild-type p53. Thus, our analysis provides direct evidence that exposure to radiation can cause the emergence of a cell population in which the p53 gene is mutated and an altered p53 protein is expressed. Therefore, we hypothesized that mutant p53 may allow DN thymocytes from RAG-2^-/- mice to escape apoptosis and progress to the DP stage.

To test the participation of p53 in the prevention of DP thymocyte differentiation in RAG-2^-/- mice, we bred RAG-2^-/- mice with p53-deficient mice (p53^-/-). Although T cell development appears to occur normally in p53^-/-/mice (20), thymocytes from these mice are resistant to certain forms of induced programmed cell death (20). Analysis of thymocytes from p53^-/-/RAG-2^-/- (p53/RAG) mice demonstrated the presence of CD4^+CD8^+ thymocytes (Fig. 3), whereas thymic cellularity did not increase by >50% from that observed in RAG-2^-/- mice (1-3 \times 10^6 cells/thymus). Further analysis showed that the emergence of DP cells is not simply an aberrant expression of CD4 and CD8, but rather a progression to the next differentiation stage (7). Fig. 3 shows that, in several aspects of their developmental status, the new population of DP thymocytes in p53/RAG mice displayed a phenotype normally associated with the CD4^+CD8^+ stage of development, including loss of IL-2R expression, decreased MHC class I expression, and smaller cell size (Fig. 3, a-d) (11). We failed to detect TCR-\beta chain rearrangement or cell surface expression of CD3 on DP thymocytes from p53/RAG mice (Fig. 3 e and data not shown). Therefore, lack of p53 function is sufficient to allow for the differentiation of CD4^-CD8^- into CD4^+CD8^+ thymocytes in RAG-2^-/- mice in the absence of TCR rearrangement. Although DP thymocytes develop in p53/RAG mice, the lack of TCR-\alpha/\beta rearrangement and expression precludes positive selection on self-MHC from occurring and prevents further thymocyte differentiation. Thus, positive selection of CD4^+CD8^- and CD4^-CD8^+ thymocytes is apparently controlled by a p53-independent pathway.

Table 1. p53 Mutations in RAG-2^-/- Thymocytes after Sublethal \gamma radiation

| Clone  | Nucleotide change | Codon location | Amino acid change |
|-------|------------------|----------------|------------------|
| Clone 2 | CAG->TAG          | 164            | gln->stop        |
| Clone 10 | ATC->GTC         | 157            | ile->val         |
| Clone 6  | TAC->TTTC        | 160            | tyr->phe         |
| Clone 6  | ATG->ATT         | 165            | met->ile         |
| Clone 6  | CGC->TGC         | 175            | arg->cys         |
| Clone 5  | TCT->CCT         | 124            | ser->pro         |
| Clone D2 | AAC->AGC         | 237            | ser->asn         |

Mutation frequency in p53 cDNAs from irradiated RAG-2^-/- thymocytes is 42% (5/12), and from thymocytes of control RAG-2^-/- mice is 0% (6/6).
of lck (23). Furthermore, the ability to generate DP cells in RAG$^{-/-}$ mice treated with anti-CD3ε mAb was recently shown to involve lck-mediated signals (24).

TCR-β chain lck-derived signals in DN cells may influence the survival potential of DN cells by activating the bcl-2 gene and/or by preventing p53-mediated apoptosis. Involvement of the bcl-2 survival-promoting oncogene at the DN-to-DP transition stage was shown by the ability to generate DP cells in bcl-2-transgenic RAG-1$^{-/-}$ mice (25). Thus in the absence of TCR-β (lck) signals, bcl-2 was sufficient to block apoptosis and allow DN cells to differentiate to the DP stage (25). Importantly, the bcl-2 survival signals can be countered by the bax gene (26–28). In this context, it is interesting that p53 has been shown to promote apoptosis by repressing bcl-2 expression and by upregulating bax transcription (29, 30). Taken together with our findings, we suggest that the progression to the DP stage in the absence of TCR-β can be normally prevented by a p53-regulated programmed cell death pathway. TCR-β/pre-TCR chains most likely coordinate the signals that lead to the survival of DN cells to the DP stage by mediating lck-derived signals and regulating bcl-2/bax activation and p53 inactivation in order to allow further thymic differentiation to proceed unhindered.

Although thymocyte development in RAG$^{-/-}$ mice is blocked at the DN stage, six different experimental manipulations in RAG$^{-/-}$ mice show that this impediment can be overcome: (a) transgenic expression of a rearranged TCR-β chain (4); (b) anti-CD3 mAb treatment (24); (c) transgenic expression of a constitutively active lck (23); (d) transgenic Figure 3. Two-parameter flow cytometry analysis of thymocytes from C57Bl/6, RAG-2$^{-/-}$ mice, or from double-deficient RAG-2$^{-/-}$×p53$^{-/-}$ mice (>8 wk old). Thymocyte single-cell suspensions were stained with (a) CD8-FITC versus CD4-PE, (b) IL-2Rα-FITC versus CD4-PE, (c) MHC-Kb-FITC versus CD4-PE, (d) forward side scatter (FSC), and (e) TCR-α/β-FITC for FACS$^+$ analysis, as indicated.
overexpression of bel-2 (25); (e) sublethal γ radiation treatment (11, 18); and (f) inactivation of the p53 gene (this report). In the first three settings, DP thymocyte differentiation results from lck-mediated signals, which allow DN thymocytes to differentiate and expand (up to a 100-fold increase in thymic cellularity) into the next stage. Thus, positive signals from lck drive differentiation and proliferation. In the last three settings, DP thymocyte differentiation is observed without a dramatic increase in thymic cellularity. In these situations, where the programmed cell death pathway is inhibited, differentiation without proliferation into DP stage is observed. Therefore, DN-to-DP thymocyte differentiation can occur in the absence of proliferation, and these processes are molecularly distinct. Thus, TCR-β selection may achieve two critical functions, differentiation and thymocyte expansion, in causing the emergence of DP thymocytes.

We thank James R. Carlyle, Cindy Gudos, and Michael Julius for critical reading of the manuscript and Carol Trageser for technical assistance.

This work was supported in part by the Medical Research Council of Canada. J.C. Zúñiga-Pflücker is the recipient of a Medical Research Council of Canada Scholarship Award. D. Jiang is in partial fulfillment of a Ph.D. dissertation from George Washington University, Washington, DC.

Address correspondence to J.C. Zúñiga-Pflücker, Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada, or D. Jiang, Laboratory of Immunology, NIAID, Building 10, Room 11D09, Bethesda, MD 20892.

Received for publication 8 December 1995 and in revised form 23 January 1996.

References

1. Bosma, G.C., R.P. Custer, and M.J. Bosma. 1983. A severe combined immunodeficiency mutation in the mouse. Nature (Lond.). 301:527–530.
2. Shinkai, Y., G. Rathbun, K.-P. Lam, E.M. Oltz, V. Stewart, M. Mendelsohn, J. Charron, M. Datta, F. Young, A.M. Stall, and F.W. Alt. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 68:855–867.
3. Mombaerts, P., J. Iacomini, R.S. Johnson, K. Herrup, S. Tonegawa, and V.E. Papoianonnou. 1992. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68:869–877.
4. Shinkai, Y., S. Koyasu, K.-I. Nakayama, K.M. Murphy, D.Y. Loh, E.L. Reinherz, and F.W. Alt. 1993. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science (Wash. DC). 259:822–825.
5. Mombaerts, P., A.R. Clarke, M.A. Rudnicki, J. Iacomini, S. Itohara, J.J. Lafaille, L. Wang, Y. Ichikawa, R. Jaenisch, M.L. Hooper, and S. Tonegawa. 1992. Mutations in the T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature (Lond.). 360:225–231.
6. Saint-Ruf, C., K. Ungewiss, M. Groettrup, L. Bruno, H.J. Fehling, and H. von Boehmer. 1994. Analysis and expression of a cloned pre-T cell receptor gene. Science (Wash. DC). 266:1208–1212.
7. Godfrey, D.L., and A. Zlotnik. 1993. Control points in early T cell development. ImmunoL Today. 14:547–553.
8. Levelt, C.N., P. Mombaerts, A. Iglesias, S. Tonegawa, and K. Eichmann. 1993. Restoration of early thymocyte differentiation in T cell receptor β-chain-deficient mutant mice by transmembrane signalling through CD3ε. Proc. Natl. Acad. Sci. USA. 90:11401–11405.
9. Kisielow, P., and H. von Boehmer. 1990. Negative and positive selection on immature thymocytes: timing and the role of ligand for α/β T cell receptor. Semin. Immunol. 2:35–44.
10. Zúñiga-Pflücker, J.C., L.A. Jones, L.T. Chin, and A.M. Kruisbeek. 1990. CD4 and CD8 act as co-receptors during thymic selection of the T cell repertoire. Semin. Immunol. 3:167–172.
11. Zúñiga-Pflücker, J.C., D. Jiang, P.L. Schwartzberg, and M.J. Lenardo. 1994. Sublethal γ-irradiation induces differentiation of CD4+/CD8− into CD4+/CD8+ thymocytes without T cell receptor β rearrangement in recombinase activation gene 2−/− mice. J. Exp. Med. 180:1517–1521.
12. Vogelstein, B., and K.W. Kinzler. 1992. p53 function and dysfunction. Cell. 70:523–526.
13. Lee, J.M., and A. Bernstein. 1993. p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA. 90:5742–5746.
14. Livigneue, A., V. Malthby, D. Mock, J. Rossant, T. Pawson, and A. Bernstein. 1989. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol. 9:3982–3991.
15. Brathwaite, O., W. Bayona, and E.W. Newcomb. 1992. p53 mutations in C57BL/6j murine thymic lymphomas induced by γ-irradiation and N-methyl-N-nitrosourea. Cancer Res. 52:3791–3795.
16. Zúñiga-Pflücker, J.C., and A.M. Kruisbeek. 1990. Intrathymic radioresistant stem cells follow an IL-2/IL-2R pathway during thymic regeneration after sublethal irradiation. J. Immunol. 144:3736–3740.
17. Zúñiga-Pflücker, J.C., H.L. Schwartz, and M.J. Lenardo. 1993. Gene transcription in differentiating immature T cell receptorαβ thymocytes resembles antigen-activated mature T cells. J. Exp. Med. 178:1139–1149.
18. Guidos, C.J., C.J. Williams, G.E. Wu, C.J. Page, and J.S. Danska. 1995. Development of CD4+CD8+ thymocytes in RAG-deficient mice through a T cell receptor β chain–independent pathway. J. Exp. Med. 181:1187–1195.
19. Reiss, M., D.E. Brash, T. Munoz-Antonio, J.A. Simon, A. Ziegler, V.F. Vellucci, and Z.L. Zhou. 1992. Status of the


20. Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. *Nature (Lond.)* 362:847–849.

21. Levin, S.D., S.J. Anderson, K.A. Forbush, and R.M. Perlmutter. 1993. A dominant-negative transgene defines a role for p56lk in thymopoiesis. *EMBO (Eur. Mol. Biol. Organ.) J.* 12:1671–1680.

22. Molina, T.J., K. Kishihara, D.P. Siderovski, W. van Ewijk, A.W. Navendran, E. Timms, A. Wakeham, C.J. Paige, K.U. Hartmann, A. Veillette, et al. 1992. Profound block in thymocyte development in mice lacking p56lk. *Nature (Lond.)* 357:161–164.

23. Mombaerts, P., S.J. Anderson, R.M. Perlmutter, T.W. Mak, and S. Tonegawa. 1994. An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. *Immunity.* 1:261–267.

24. Levelt, C.N., P. Mombaerts, B. Wang, H. Kohler, S. Tonegawa, K. Eichmann, and C. Terhorst. 1995. Regulation of thymocyte development through CD3: functional dissociation between p56lk and CD3g in early thymic selection. *Immunity.* 3:215–222.

25. Linette, G.P., M.J. Grusby, S.M. Hedrick, T.H. Hansen, L.H. Glimcher, and S.J. Korsmeyer. 1994. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. *Immunity.* 1:197–205.

26. Oltvai, Z.N., C.L. Milliman, and S.J. Korsmeyer. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. *Cell.* 74:609–619.

27. Oltvai, Z.N., and S.J. Korsmeyer. 1994. Checkpoints of dueling dimers foil death wishes. *Cell.* 79:189–192.

28. Yin, X.M., Z.N. Oltvai, and S.J. Korsmeyer. 1994. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. *Nature (Lond.)* 369:321–323.

29. Mayshita, T., S. Krajewski, M. Krajewska, H.G. Wang, H.K. Lin, D.A. Liebermann, B. Hoffman, and J.C. Reed. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. *Oncogene.* 9:1799–1805.

30. Mayshita, T., and J.C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. *Cell.* 80:293–299.