Cytotoxic effects of alkaline tetrascodium EDTA irrigating solutions

Carmen Solana1), Carmen M. Ferrer-Luque1), Xu Wang2), Pilar Baca1), Matilde Ruiz-Linares1), and Teresa Cabrera2)

1) Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
2) Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, Granada, Spain

Abstract: The aim of this study is to determine the cytotoxic effects of tetrascodium ethylenediaminetetraacetic acid (EDTANa4) when used alone or when combined with sodium hypochlorite (NaOCl), with and without the addition of cetrimonide (CTR). Human pulmonary fibroblast cell line was exposed to the following irrigating solutions: group 1, 2.5% NaOCl; group 2, 10% EDTANa4; group 3, 20% EDTANa4; group 4, 2.5% NaOCl/5% EDTANa4; group 5, 2.5% NaOCl/10% EDTANa4; group 6, 2.5% NaOCl/5% EDTANa4/0.2% CTR; group 7, 2.5% NaOCl/10% EDTANa4/0.2% CTR; group 8, control, cells in Dulbecco’s modified Eagle’s medium. Methyl thiazol tetrazolium assay was used to determine the viability of cells after 1 and 24 h. Viability percentages were analyzed for global comparison using the Welch test followed by the Games-Howell test to determine groups with similar viability, and the Student’s t test was used to compare the two times. The lowest viability was obtained with a 2.5% NaOCl solution at both time periods. The association of NaOCl with EDTANa4 increased the cellular viability in direct relation with the concentration of the chelating agent. Globally, after 24 h of exposure, cell viability reduced. The solutions of EDTANa4 showed moderate cytotoxic effects when compared with NaOCl alone.

Keywords: alkaline EDTANa4, cetrimonide, cytotoxicity, irrigating solutions, NaOCl

Introduction

The conventional and alternating irrigation protocols applied in endodontics to dissolve organic matter, kill bacteria, and remove the smear layer involve the use of sodium hypochlorite (NaOCl) and calcium-chelating agents [1,2]. To simultaneously promote the elimination of organic and inorganic remains during root canal preparation and minimize the interaction between irrigating solutions [3], mixtures of alkaline chelating agents with NaOCl have recently been proposed. This new protocol permits a transition between irrigating solutions [3], mixtures of alkaline chelating agents [1,2]. To simultaneously promote the elimination of organic and inorganic remains during root canal preparation and minimize the interaction between irrigating solutions [3], mixtures of alkaline chelating agents with NaOCl have recently been proposed. This new protocol permits a continuous chelation [4] that also prevents the accumulation of inorganic residue in areas that are inaccessible to instruments [5,6]. Combined solutions of etidronate (HEDP) and alkaline tetrascodium EDTA (EDTANa4) with NaOCl maintain the protolytic and antibacterial effects of NaOCl [7,8] as well as the ability of NaOCl to remove the smear layer [5,9]. Incorporating surfactant agents with irrigating solutions improves the disinfecting efficacy [10,11] and wetting properties of the solutions [12,13].

The biocompatibility of endodontic materials can be characterized using many parameters including cytotoxicity. This is related to the degree of specific destructive action an agent has on cells [14]. NaOCl is more cytotoxic than EDTA in murine fibroblasts [15], human lung fibroblasts [16], and human peripheral blood mononuclear cells [17]. A recent publication [18] evaluated the cytotoxicity of mixtures containing etidronate powder (Dual Rinse HEDP) in NaOCl solutions on hamster lung fibroblasts. The mixtures of NaOCl and etidronate were not more toxic than NaOCl alone. However, the toxicity of alkaline EDTANa4 and NaOCl mixed solutions remains unknown.

Therefore, the aim of this study is to determine the cytotoxic effects of EDTANa4 solutions, alone and combined with NaOCl, with and without the addition of cetrimonide (CTR), on the human pulmonary fibroblast (HPF) cell line.

Materials and Methods

This study protocol was approved by the Ethics Committee of the University of Granada, Spain (783/CEIH/2019).

Cell culture

HPFs were obtained from ScienCell Research Laboratories (CA, USA). Cells were grown in a 75-cm² culture flask in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Thermo Fisher Scientific, Paisley, UK) supplemented with 10% inactivated fetal bovine serum (FBS; Gibco), 2 mM glutamine, and antibiotics (100 U/mL penicillin and 100 Pg/mL streptomycin; Gibco). To avoid changes in the pH of the medium HEPS buffer (pH 7.2) was added at a final concentration of 2 mM. Cells were maintained at 37°C in a humidified atmosphere with 5% CO₂. The confluent cells were detached using EDTA solution (0.5 mM EDTA pH 8.0 in PBS), the supernatant was centrifuged (1,000 rpm for 10 min), and the pellet was resuspended in DMEM containing 10% FBS. Thereafter, the cells were counted in a Neubauer chamber (Brand GmbH + CO KG, Wertheim, Germany). Adherent cells in a logarithmic growth phase were seeded (100 µL cell well −1) in 96-well flat-bottom microtiter plates (Jet Biofil, Guangzhou, P. R. China) at a 10^4 cells/well concentration and incubated for 24 h at 37°C with 5% CO₂.

Irrigating solution

The solutions tested were NaOCl (PanreacQuimica SA, Castellar del Vallès, Spain), EDTANa4, (Sigma-Aldrich Chemie, Steinheim, Germany), and CTR (Sigma-Aldrich Chemie). The final irrigating solutions evaluated were as follows: group 1, 2.5% NaOCl; group 2, 10% EDTANa4; group 3, 20% EDTANa4; group 4, 2.5% NaOCl/5% EDTANa4; group 5, 2.5% NaOCl/10% EDTANa4; group 6, 2.5% NaOCl/5% EDTANa4/0.2% CTR; group 7, 2.5% NaOCl/10% EDTANa4/0.2% CTR; group 8, control, cells in DMEM. All solutions were freshly prepared before the experiments. For the 2.5% NaOCl/5% EDTANa4 and 2.5% NaOCl/10% EDTANa4 association, both irrigation solutions were prepared at double concentration and mixed in a 1:1 ratio. When CTR was added, the solutions were prepared at triple concentration and mixed in a 1:1:1 ratio.

Evaluation of cytotoxicity

Methyl thiazol tetrazolium (MTT) assay (Sigma-Aldrich Chemie) was used to determine the viability of cells in contact with the solutions. After 1 and 24 h of exposure to irrigating solutions and control (100 µL each), the solutions were removed and the cells were incubated with 10 µL of the MTT reagent (Sigma-Aldrich Chemie) added to each well, and the plates were incubated for 4 h. Then, 100 µL of dissolving agent (HCl: isopropyl alcohol, 0.04 N) was added to dissolve the formazan precipitate. The optical density (OD) was measured at 570 nm using a spectrophotometer (FLUOstar Optima, Ortenberg, Germany). The values of OD were expressed as the percentage of cell viability using the following formula:

Viability (%) = MeanOD (test)/MeanOD (control) × 100

The assay was performed in triplicate and repeated at three different
The data were exported and submitted for statistical analysis.

Statistical analysis
For analysis of the results, the percentages were converted into proportions by dividing them by 100, and then the transformation “logit” was performed on proportions P to normalize the variables: $P = \ln (P/(1-P))$.

The global comparison between groups for each time point was conducted using the Welch test due to the nonequality of the variances determined by the Levene test. To determine the statistical groupings at each time, the Games-Howell test was applied. For each of the groups, a comparison between times was performed using the Student’s t-test.

All analyses were performed using SPSS software 20.0 (SPSS Inc, Chicago, IL, USA).

Results

The mean and standard deviation of OD of the controls at 1 and 24 h were 0.6145 (0.0457) and 0.7194 (0.0816), respectively. Afterwards, the viability percentages of the groups were calculated; these results and the comparisons are shown in Table 1. For both time periods the lowest viability was obtained by the 2.5% NaOCl solution with statistically significant differences. After 1 h of exposure, the highest percentage of viability was obtained by the 2.5% NaOCl solution with statistically significant differences from the 2.5% NaOCl/10% EDTANa4 solution. The solution of 2.5% NaOCl/5% EDTANa4 showed the second lowest percentage of cell viability, and it was the only one that did not show differences from 2.5% NaOCl. The solutions of 10% EDTANa4, 2.5% NaOCl/10% EDTANa4, and 2.5% NaOCl/5% EDTANa4/0.2% CTR showed similar viability percentages (60.62%, 55.42%, and 55.95%, respectively).

After 24 h, cell viability was reduced in all study groups with the exception of the 2.5% NaOCl/5% EDTANa4 group, which was the most cytotoxic mixture at both time points after NaOCl (Fig. 1). The 20% EDTANa4 group obtained the lowest values, but without significant differences from the other groups, except NaOCl. The addition of CTR to the solutions tended to improve cell viability at both study time points.

Discussion

The biocompatibility of irrigating solutions is important because the solutions can come in contact with periradicular tissues and hinder the healing process of the apical region. _In vitro_ tests offer the possibility of studying the effects of the materials in cellular systems [19]. Cell-culture studies have been performed for decades to investigate the cytotoxic reactions induced by endodontic materials [20]. Cell lines such as mouse embryonic and primary human cells, mainly fibroblasts, may be involved in these experiments [21].

In this study, the undiluted irrigating solutions were used as well as at concentrations that are used in clinical practice. This allowed the determination of possible cell damage caused by the solutions when in direct contact with periapical tissues because when reach the apical region, the amount and concentration are uncertain [22]. Time periods of 1 and 24 h made it possible to evaluate the cytotoxicity during short and medium terms.

The irrigating solutions were applied to the HPF cell line and cytotoxicity was measured using MTT assay [23] because this method evaluates the
ability of viable cells to convert water-soluble tetrazolium salts to insoluble formazan crystals through the activity of mitochondrial dehydrogenase enzyme. In addition to its speed, accuracy, and reproducibility, an additional advantage is that it does not require a washing step, which could cause variations in the sample [24].

In the short term, the results of the present study were not surprising; the results confirmed the greater cytotoxicity of a 2.5% NaOCl solution (27% cellular viability) when compared with 10% and 20% EDTANA4 solutions (60% and 73%, respectively). Studies with these solutions have shown coincident results in terms of the greater cytotoxicity of NaOCl with respect to EDTA solutions, regardless of the method and cell population used for its determination [15-17,25]. Recent studies on cytotoxicity with a 5.25% NaOCl solution report a viability percentage of approximately 30% in 4 h on human gingival fibroblasts [26] and 22% in 10 min on human periodontal ligament cells [27]. Such variability in percentages could be due, in the same way, to the use of different cell lines, times, and/or concentrations.

The combined solutions of EDTAna4 with NaOCl were less cytotoxic than 2.5% NaOCl. The caustic potential of NaOCl is affected by available chlorine rather than pH or osmolarity [28]. The mixture of EDTAna4 solutions with NaOCl causes a reduction in the available amount of free chlorine [9]. This loss, which is also concentration-dependent, is responsible for the lower toxicity seen when EDTAna4 is combined with NaOCl. Such a finding suggests an extra advantage in using this combination because the antibiotic activity is not reduced with respect to 2.5% NaOCl alone [8].

The greater viability obtained by the 20% EDTA/NaCl solution (either alone or in combination with NaCl) with respect to the 10% EDTA/NaCl solution could be related to the amount of sodium ions present in the chelating agent. The exposure of organic samples, such as bovine muscle [9] or the biofilm of E. faecalis [8], to these solutions favors hydration by deposition on the surface of sodium ions in a concentration-dependent manner, which could be linked to the lower toxicity found for the 20% EDTA/NaCl solution.

The cytotoxicity results after 24 h of exposure to the solutions demonstrated a global reduction in the percentage of cell viability compared with the results after the exposure time of 1 h. This effect can be explained by a lack of nutrients, given that the solutions, unlike in other studies [17], were not prepared in culture medium. Therefore, all the study groups show similar viability, without statistically significant differences among them. NaOCl also reduced viability over time (from 27.75% to 20.97%), although in this case, the effect can be attributed to its powerful and direct cytotoxic action.

The incorporation of CTR to EDTAna4/NaOCl solutions showed a tendency, without statistically significant differences, to improve cell viability at both study time periods. The addition of surfactants to the preparations of NaOCl accelerated the degradation of free available chlorine [29], most likely because of the reaction between NaOCl and the surfactants that are organic compounds [30]. These combined solutions did not modify the antibiotic activity [8], which could be explained by the action of CTR disrupting the biofilms in addition to its antimicrobial activity.

The use of new irrigating solutions for root canal preparation calls for testing any possible undesirable effects as a prerequisite for the recommendation of these solutions [25]. Although the results obtained in this investigation cannot be extrapolated to the clinical setting, one might expect a reduction in the cytotoxicity of the solutions because of the dilution of these solutions by the periapical tissues [31]. Future studies are needed to evaluate the outcomes on inflammatory host response.

In conclusion, within the limitations of the present study, the EDTAna4 irrigating solutions used alone and combined with NaOCl, with and without CTR, showed moderate cytotoxic effects when compared with NaOCl alone.

Acknowledgments
This study was supported by Research Group CTS-167 of the Junta de Andalucía, Spain. The authors thank Francisca Castillo Pérez for their technical assistance.

Conflict of interest
The authors declare that they have no conflict of interest.

References
1. Pérez-Heredia M, Ferrer-Laque CM, González-Rodríguez MP (2006) The effectiveness of different acid irrigating solutions in root canal cleaning after hand and rotary instrumentation. J Endod 32, 993-997.
2. Soares JA, Roque de Carvalho MA, Cunha Santos SM, Mendonça RM, Ribeiro-Sobrinho AP, Brito-Júnior M et al. (2010) Effectiveness of chemotherapy preparation with alternative use of sodium hypochlorite and EDTA in eliminating intracanal Enterococcus faecalis biofilm. J Endod 36, 894-908.
3. Rossi-Fedele D, Drogarmaci E, Guastalli AR, Steier L, de Figueiredo JA (2012) Antagonistic reactions between sodium hypochlorite, chlorhexidine, EDTA, and citric acid. J Endod 38, 426-431.
4. Neelakantan P, Varughese AA, Sharma S, Subbarao CV, Zehnder M, De-Deus G (2012) Continuous chelation irrigation improves the adhesion of epoxy resin-based root canal sealer to root dentine. Int Endod J 45, 1097-1102.
5. Lottanti S, Gauthie H, Sener B, Zehnder M (2009) Effects of ethylenediaminetetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer. Int Endod J 42, 334-343.
6. Paqui F, Rechenberg DK, Zehnder M (2012) Reduction of hard-tissue debris accumulation during rotary root canal instrumentation by etidronic acid in a sodium hypochlorite irrigant. J Endod 38, 692-695.
7. Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Ferrer-Laque CM (2014) Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution. J Endod 40, 1999-2002.
8. Soltón G, Pizón CW, Cunha Santos SM, Baca P, Valderrama MI, Arias-Moliz MT, Ferrer-Laque CM (2017) Antibiofilm activity of sodium hypochlorite and alkaline tetrasodium EDTA solutions. J Endod 43, 2093-2096.
9. Tartar T, Oda DF, Zancon RA, da Silva TL, de Moraes IG, Duarte MA et al. (2017) Mixture of alkaline tetrasodium EDTA with sodium hypochlorite promotes in vitro smear layer removal and organic matter dissolution during biomechanical preparation. Int Endod J 50, 106-114.
10. Ferrer-Laque CM, Conde-Ortiz A, Arias-Moliz MT, Valderrama MI, Baca P (2012) Residual activity of chelating agents and their combinations with cetrimide on root canals infected with Enterococcus faecalis. J Endod 38, 826-828.
11. Giardino L, Del Fabro S, Mennini N, Fernandes FS, Andrade FB (2018) Antimicrobial effectiveness of combinations of oxygen and chelating agents in infected dentine: an ex vivo confocal laser scanning microscopy study. Int Endod J 51, 448-456.
12. Yilmaz Z, Baguh B, Buzuglu HD, Gümüşdrelorglu M (2011) Effect of low-surface-tension EDTA solutions on the wettability of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111, 109-114.
13. Palazzi F, Morra M, Mohammadi Z, Grandini S, Giardino L (2012) Comparison of the surface tension of 5.25% sodium hypochlorite solution with three new sodium hypochlorite-based endodontic irrigants. Int Endod J 45, 129-135.
14. Peters OA (2013) Research that matters - biocompatibility and cytotoxicity screening. Int Endod J 46, 195-197.
15. Marins JS, Sassoene LM, Fidel SR, Ribeiro DA (2012) In vitro genotoxicity and cytotoxicity in marine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid. Braz Dent J 23, 527-533.
16. Vougas T, Koulouzidou E, Ziozi E, Economides N (2016) Combined and independent cytotoxicity of sodium hypochlorite, ethylenediaminetetraacetic acid and chlorhexidine. Int Endod J 49, 764-773.
17. Botton G, Pires CW, Cadoná FC, Machado AK, Azzolin VF, Cruz IB et al. (2016) Toxicity of irrigating solutions and pharmaceutical associations used in pulpectomy of primary teeth. Int Endod J 49, 746-754.
18. Balliu VN, Dan S, Rao R, Zehnder M, Mohd D (2019) Chemical, cytotoxic and genotoxic analysis of etidronate in sodium hypochlorite solution. Int Endod J do: 10.1111/ iiej.13110.
19. Pettow WJ, Sindre SV, Szekeres G, Prount JP (1997) Model for quantitative immunohistochemical assessment of pulpal response to biomaterials. J Biomed Mater Res 45, 147-162.
20. Rappaport HM, Lilly GE, Kapsimalis P (1964) Toxicity of endodontic filling materials. Oral Surg Oral Med Oral Pathol 40, 1999-2002.
21. Kioussides EA, Margelos J, Beltes P, Kortsariss AH (1999) Cytotoxic effects of different concentrations of neutral and alkaline EDTA solutions used as root canal irrigants. J Endod 25, 21-23.
22. Ugur Aypin Z, Akpinar KE, Hepokur C, Erdömez D (2018) Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells. Braz Oral Res 32, e119.
23. Karabulhali H, Yousufkahir H, Zadserjan S (2018) Cytotoxicity of endodontic irrigants on human periodontal ligament cells. Iran Endod J 13, 390-394.
24. Zehnder M, Kosicki D, Luder H, Sener B, Wahlto T (2002) Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99, 756-762.
25. Guastalli AR, Clarkson MM, Rossi-Fedele G (2015) The effect of surfactants on the stability of sodium hypochlorite preparations. J Endod 41, 1344-1348.
26. Raturia WA, Cole EC, Thomam CA, Weber DJ (1998) Stability and bactericidal activity of chlorine solutions. Infect Control Hosp Epidemiol 19, 323-327.
27. Malheiros CF, Marques MM, Gavini G (2005) In vitro evaluation of the cytotoxic effects of acid solutions used as canals irrigants. J Endod 31, 746-748.