The complete mitochondrial genome of the fall webworm, *Hyphantria cunea* (Lepidoptera: Arctiidae)

Fang Liao1,2, Lin Wang3, Song Wu4, Yu-Ping Li4, Lei Zhao1, Guo-Ming Huang2, Chun-Jing Niu2, Yan-Qun Liu4,5, Ming-Gang Li1,6

1. College of Life Sciences, Nankai University, Tianjin 300071, China
2. Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, China
3. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 101113, China
4. College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China

Corresponding author: Y. Q. Liu, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China; Tel: 86-24-88487163; E-mail: liuyanqun@syau.edu.cn. Or to: M. G. Li, College of Life Sciences, Nankai University, Tianjin 300071, China; Tel: 86-22-23508237; E-mail: mgl@nankai.edu.cn.

Received: 2010.02.03; Accepted: 2010.03.26; Published: 2010.03.29

Abstract

The complete mitochondrial genome (mitogenome) of the fall webworm, *Hyphantria cunea* (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of *tRNAMet*. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for *COI*, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for *tRNASer(AGN)*, the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between *tRNASer(AGN)* and *ND1* also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The *H. cunea* A+T-rich region of 357 bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream *tRNAMet*. The phylogenetic analyses support the view that the *H. cunea* is closely related to the *Lymantria dispar* than *Ochrogaster lunifer*, and support the hypothesis that Noctuoidea (*H. cunea*, *L. dispar*, and *O. lunifer*) and Geometroidea (*Pthonandria atrilineata*) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonioidea (*Aragoia melete*, *Acroea issoria*, and *Coreana raphaelis*) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification.

Key words: Fall webworm; *Hyphantria cunea*; Mitochondrial genome; Lepidoptera; Arctiidae; Phylogeny

1. Introduction

The fall webworm, *Hyphantria cunea* Drury (Lepidoptera: Arctiidae), is a severe invasive and quarantine pest which has a wide range of habitats. It is a polyphagous pest that feeds on about 160 species of broad leaf trees. The preferred host plants include mulberry, oak, hickory, pecan, walnut, elm, alder,
willow, sweetgum, and poplar. This insect has caused serious damage to forests throughout its range and appears to be continuing to spread. It also damages the roadside and garden trees around urban areas. The species was introduced from North America to Central Europe and Eastern Asia in the early 1940s [1, 2]. In China, this species was first found in Dandong (124°N/40°E) of Liaoning Province in 1979, and now has spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province. The southern populations in China may have spread southwards to Shanghai (129°N/31°E) and westwards to Xianyang (108°N/34°E) of Shanxi Province.

Many studies have been done on aspects of adaptability, sex pheromones, host preference and natural enemies of the fall webworm [3]. As *H. cunea* is a devastating invasive species, the mitochondrial genome (mitogenome) information of the species may provide fundamental information for future phylogenetic analyses and evolutionary biology.

Insect mitochondrial DNA (mtDNA) is a circular DNA molecule with 14-20 kb in size and has a remarkably conserved set of 37 genes, including 13 protein-coding genes (PCGs; subunits 6 and 8 of the F0 ATPase [ATP6 and ATP8]; cytochrome oxidase subunits 1-3 [COI–III]; cytochrome b [Cytb]; NADH dehydrogenase subunits 1-6 and 4L [ND1–6 and ND4L]), two ribosomal RNA genes (large and small ribosomal RNAs [18S rRNA and 16S rRNA]), and 22 tRNA genes [4, 5]. It additionally contains a control region of variable length, known as the adenine (A) + thymine (T)-rich region in insect mtDNA, which is involved in the regulation and initiation of mtDNA replication and transcription [6]. The mitochondrial genes and genomes have been widely used as an informative molecular marker for diverse evolutionary studies of animals, including phylogenetics and population genetics [7-9], with the development of long range PCR for amplification of partial sequence of mtDNA genes and whole mitochondrial genome [10].

At present, the complete or nearly complete mitogenome sequences from more than 100 species of insects have been determined. However, only 19 complete or nearly complete mitogenomes are currently available in the GenBank for lepidopteran species (Table 1). The *Ostrinia* sequences each lack the sequence information of the A+T-rich region, partial tRNA Met and srRNA sequence. The *L. chinensis* and *P. xuthus* sequences each lack the sequence information of the partial srRNA, A+T-rich region, tRNA Met-Ile-Glu, and partial ND2. Within the insects, the Lepidoptera order accounts for more than 160 000 species. Despite this huge taxonomic diversity the existing information on lepidopteran mtDNA is very limited and limited to six superfamilies among the 45-48 known and to 13 families of the recognized 120. Newly added lepidopteran mitogenomes can provide further insights into our understanding of diversity of lepidopteran mitogenomes and evolution.

Superfamily	Family	Species	Acc. number	Reference
Noctuoidea	Arctiidae	*Hypanthria cunea*	GU592049	This study
	Lymnantriidae	*Lymatia dispar*	FJ617240	Zhu et al. unpublished
	Notodontidae	*Ochrogaster lunifer*	AM946601	[11]
Geometroidea	Geometridae	*Philonandra atrilineata*	EU569764	[12]
Bombycoidea	Saturniidae	*Antheraea pernyi*	AY242996	[13]
	Saturniidae	*Antheraea yamamai*	EU726630	[14]
	Saturniidae	*Caligula boisduvalii*	EF622227	[15]
	Saturniidae	*Erigoyna pyretorum*	FJ685653	[16]
	Bombycidae	*Bombyx mori*	AY700764	[17]
	Bombycidae	*Bombyx mandarina*	AY301620	[18]
	Bombycidae	*Chinese Bombyx mandarina*	NC_003395	[19]
	Sphingidae	*Manduca sexta*	EU286785	[20]
Pyraloidea	Crambidae	*Diaatraea saccharalis*	FJ240227	Li and Yue, unpublished
	Crambidae	*Ostrinia furnacalis*	NC_003680	[21]
	Crambidae	*Ostrinia nubilalis*	NC_003670	[22]
Tortricoidea	Tortricidae	*Adoxophyes honmii*	DQ073916	[23]
Papilionoidea	Nymphalidae	*Acraea issoria*	NC_013604	[24]
	Pieridae	*Artogeia melete*	EU597124	[25]
	Lycaenidae	*Coreana raphelides*	DQ102703	[26]
	Papilionidae	*Luehdorfia chinensis*	EU622524	[27]
	Papilionidae	*Papilio xuthus*	EF621724	Feng et al. unpublished
The *H. cunea* mitochondrial COI, COIII and Cytb have been utilized for biological identification as DNA barcode and phylogenetic studies [25, 26], but the genetic information on the complete mtDNA of the species remains largely unknown. In this study, we describe the complete mitogenome sequence of the fall webworm, *H. cunea*, and compare its sequence with other available lepidopteran mitogenomes. Furthermore, the mitogenome sequence of *H. cunea* was used to provide further insight into the phylogenetic relationships among lepidopteran superfamilies.

2. Materials and Methods

Insect and total DNA extraction

The *H. cunea* larvae were collected on the mulberry trees on the campus of the Shenyang Agricultural University, Shenyang, China. The larvae were then fed on the leaves of mulberry trees in room until pupation. The fresh pupae were directly frozen and kept in the laboratory at ~80 °C. A single pupa was used to extract the total DNA using the TIANamp Genomic DNA Kit (TIANGEN, Beijing, China) according to the manufacturer’s instruction.

PCR amplification and sequencing

The full mitogenome of *H. cunea* was amplified in four overlapping fragments by PCR amplification using universal primers and specific primers designed for this study (Fig. 1; Table 2). All PCR reactions were performed in a 50 μl volume with 1 U of LA Taq (TaKaRa Co., Dalian, China), 1 μl (about 20 ng) of DNA, 5 μl 10 × LA Taq buffer (Mg²⁺ plus), 200 μM dNTPs, and 10 pmol each primer. Initially, the *H. cunea* COI gene of ~600 bp was amplified using the primer set LYQ1/LYQ2 as previously reported [25], and the Cytb gene of ~400 bp was amplified using the primer set LYQ5/LYQ6 as previously reported [27]. The PCR amplification was performed under the following procedure: 2 min at 94 °C, followed by 35 cycles of 1 min at 94 °C, 30 sec at 50 °C, and 1 min at 72 °C, with a subsequent 10 min final extension at 72 °C. After purification with TIANgel Midi Purification Kit (TIANGEN, Beijing, China), the PCR fragments were directly sequenced with the PCR primers.

![Fig. 1 Linear map of the mitogenome of *Hyphantria cunea*. The tRNAs are labeled according to the IUPAC-IUB single letter amino acid codes above the bar indicating coding sequence on major strand or below the bar showing on minor strand. One-letter symbol L, L*, S and S* denote codon tRNA^{leu(UUR)}, tRNA^{leu(CUN)}, tRNA^{ser(AGN)} and tRNA^{ser(UCN)}, respectively. Underlined PCGs or rRNA genes are located on minor strand and PCGs that are not underlined are located on major strand. Overlapping lines (F1-F4) under the map denote four overlapping PCR fragments amplified for sequencing. The line at the lower left represents the map scale.](#)

Table 2 Primers used to amplify the *Hyphantria cunea* mitogenome

Primer	Sequence (5'-3')	Fragment	Reference
LYQ1	CGTCAACAAATCTATAAGATATTGG	F1	[25]
LYQ2	TAAACTTCAGGGTGACCAAAAAATCA	F2	[27]
LYQ5	TATGTACTACCATGAGGACAAATATC	F3	This study
LYQ6	ATTACACCCTCATATTATTAGAACAT	F4	This study
On the basis of the information from the determined fragments, two new primer pairs LYQ29/LYQ32 and LYQ30/LYQ31 were designed to amplify the remaining longer fragments of the mitogenome of *H. cunea* (F3 and F4 in Fig. 1 and Table 1). The two fragments were amplified with denaturation at 94 °C for 2 min, followed by 35 cycles of 1 min at 94 °C, 10 min at 65 °C, with a subsequent 10 min final extension at 72 °C. These PCR products were then utilized to construct a shotgun sequencing library. In brief, DNAs were sheared into 1-3 kb fragments using DNase I, and the DNA fractions were collected with a Chromaspin TE 1000 column. The DNA fractions were then cloned into the pGEM-T easy vector (Promega, USA), and each of the resultant plasmid DNAs was isolated with a Wizard Plus SV Minipreps DNA Purification System (Promega, USA). DNA sequencing was conducted using the ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit and the ABI PRISM 3100 Genetic Analyzer (PE Applied Biosystems, USA). All fragments were sequenced from both strands. The number of clones sequenced was sufficient to fulfill the six times coverage of the mitogenome.

Sequence analysis

The sequence alignment was carried out using Clustal X [28]. The PCGs and rRNA genes were determined by BLAST on NCBI Entrez Database and by comparing them with homologous regions in other lepidopteran mitogenome sequences. The PCG nucleotide sequences were translated on the basis of the Invertebrate Mitochondrial Genetic Code. The tRNA genes and its secondary structure were predicted using the tRNAscan-SE Search [29]. The two tRNA\(^{5'\prime}\) secondary structure not found by tRNAscan-SE Search was developed using the constraints proposed by Steinberg and Cedergren [30]. Composition skew analysis was carried out to describe the base composition of nucleotide sequences, which measures the relative number of As to Ts (AT skew=[A-T]/[A+T]) and Gs to Cs (GC skew=[G-C]/[G+C]) [31]. Codon usage was calculated using the Countcodon program version 4 (http://www.kazusa.or.jp/codon/countcodon.html). The entire A+T-rich region was subjected to a search for the tandem repeats using Tandem Repeats Finder program [32]. The sequence data has been deposited in GenBank under accession No. GU592049.

Phylogenetic analysis

To illustrate the phylogenetic relationship of Lepidoptera, the other complete mitogenomes were obtained from GenBank. The *L. chinensis* and *P. xuthus* sequences lacking more sequence information were excluded. The mitogenomes of *Drosophila yakuba* (NC_001322) [33] and *Anopheles gambiae* (NC_002084) [34] were used as outgroups. The alignment of the amino acid sequences of each 13 mitochondrial PCGs was aligned with Clustal X [28] using default settings and concatenated. As for the ND4 genes, the insertion of A nucleotide in *O. furnacalis* (position 8211 bp) and *O. nubilalis* (position 8206 bp) resulted in transcript framenshifts [13], the amino acid sequences of which were therefore revised for further phylogenetic analyses. The concatenated set of amino acids sequences from the 13 PCGs was used in phylogenetic analyses, which was performed using maximum parsimony (MP) and Neighbor-joining (NJ) methods by using MEGA ver 4.0 [35].

3. Results and Discussion

Genome organization

The *H. cunea* mitogenome presents the typical gene content observed in metazoan mitogenomes (Table 3, Fig. 1): 13 PCGs, 22 tRNA genes, two rRNA subunits, and a major non-coding region known as the A+T-rich region in insects [5]. The complete mitogenome of *H. cunea* consists of 15 481 bp, which is well within the range observed in the completely sequenced lepidopteran insects, with size ranging from 15 140 in *A. melete* to 15 928 in Japanese *B. mandarina* (Table 4). The gene order and orientation of the *H. cunea* mitogenome are identical to the completely sequenced lepidopteran mitogenomes. By the translocation of tRNA\(^{tet}\) to a position 5′ upstream of tRNA\(^{trp}\), the lepidopteran arrangement differs from that of *D. yakuba*, the hypothesized ancestral gene order of insects [36]. This suggests that the mitochondrial gene arrangement in lepidopteran insects evolved independently after splitting from its stem lineage [24].

Genome composition and skewness

The genome composition of the major strand of the *H. cunea* mitogenome is heavily biased toward As and Ts, accounting for 80.38%: A 40.58%, G 7.55%, T 39.80% and C 12.07%, as is the case with other insect sequences (Table 4). The bias value is similar to the completely sequenced lepidopteran insects, with the range from 77.84% in *O. lunifer* to 82.66% in *C. raphae- lis*. The A+T content in the sequence of the A+T-rich region is 94.96%, also within the range observed in the completely sequenced lepidopteran insects, with the value from 89.17% in *A. melete* to 98.25% in *P. atrili- neata*.

http://www.biolsci.org
Table 3 Annotation and gene organization of the Hyphantria cunea mitogenome

Gene	Strand	Nucleotide no.	Size(bp)	Anticodon	Non	OL	Start codon	Stop codon
tRNA^Met	J	1-67	67	CAT	11			
tRNA^Ala	J	68-136	69	GAT				
tRNA^C^Glu	N	148-216	69	TTG	50			
ND2	J	267-1277	1011	ATC	18		ATT	TAA
tRNA^Trp	J	1 296-1 364	69	TCA	8			
tRNA^C^Ser	N	1 357-1 419	63	GCA	4			
tRNA^Trp	N	1 424-1 489	66	GTA	11			
COI	J	1 501-3 034	1534	CGA			T-tRNA	
tRNA^1+2(UIUR)	J	3 035-3 100	66	TAA				
COII	J	3 101-3 782	682	ATG			T-tRNA	
tRNA^Ala	J	3 783-3 853	71	CTT	1			
tRNA^Arg	J	3 853-3 918	66	GTC				
ATP8	J	3 919-4 080	162	7			ATA	TAA
ATP6	J	4 074-4 750	677	5			ATG	TA-COII
COIII	J	4 756-5 547	792	9			ATG	TAA
tRNA^C^Glu	J	5 557-5 621	65	TCC				
ND3	J	5 622-5 975	354	ATT			TAA	
tRNA^Ala	J	5 976-6 042	67	TGC	7			
tRNA^Arg	J	6 050-6 116	67	TCG	5			
tRNA^Arg	J	6 122-6 188	67	GTT	9			
tRNA^Ser(AGN)	J	6 198-6 263	66	GCT	21			
tRNA^C^Glu	J	6 285-6 352	68	TTC				
tRNA^Phe	N	6 351-6 418	68	GAA	3			
ND5	N	6 422-8 167	1746	ATA			TAA	
tRNA^Ala	N	8 168-8 235	68	GTG				
ND4	N	8 236-9 574	1339	ATG			T-tRNA	
ND4L	N	9 575-9 862	288	5			ATG	TAA
tRNA^Tyr	J	9 868-9 932	65	TGT				
tRNA^Phe	N	9 933-9 997	65	TGG	7			
ND6	J	10 005-10 535	531	13			ATT	TAA
Cyth	J	10 549-11 697	1149	17			ATT	TAA
tRNA^Ser(UCN)	J	11 715-11 782	68	TGA	34			
ND1	N	11 817-12 755	939	1			ATG	TAA
tRNA^1+2(UCN)	N	12 757-12 824	68	TAG				
lrRNA	N	12 825-14 250	1426					
lrRNA	N	14 251-14 316	66	TAC				
srRNA	N	14 317-15 124	808					

J-strand, majority-coding strand; N-strand, minority-coding strand; Non, non-coding region; OL, overlapping region.

Table 4 Composition and skewness in the major strand of lepidopteran mitogenomes

Species	size (bp)	A %	G %	T %	C %	A+T %	AT	GC
Whole genome								
Hyphantria cunea	15 481	40.58	7.55	39.80	12.07	80.38	0.010	−0.230
Lymantria dispar	15 569	40.58	7.57	39.30	12.55	79.88	0.016	−0.247
Ochrogaster lunifer	15 593	40.09	7.56	37.75	14.60	77.84	0.030	−0.318
Phthornotria atrilineata	15 499	40.78	7.67	40.24	11.31	81.02	0.007	−0.192
Antheraea pernyi	15 566	39.22	7.77	40.94	12.06	80.16	−0.021	−0.216
Antheraea yamamai	15 338	39.26	7.69	41.04	12.02	80.29	−0.022	−0.219
Caligula boisduvalii	15 360	39.34	7.58	41.28	11.79	80.62	−0.024	−0.217
Eriogyna pyretorum	15 327	39.17	7.63	41.65	11.55	80.82	−0.030	−0.204
Bombyx mori	15 656	43.06	7.31	38.30	11.33	81.36	0.059	−0.216
Chinese Bombyx mandarina	15 682	43.11	7.40	38.48	11.01	81.59	0.057	−0.196
Japanese Bombyx mandarina	15 928	43.08	7.21	38.60	11.11	81.68	0.055	−0.213

http://www.biolsci.org
The lepidopteran AT skewness values vary from −0.047 in *C. rhyphasis* to 0.059 in *B. mori* (Table 4). The AT skewness for the major strand of the *H. cunea* mitogenome is slightly positive (0.010), indicating the occurrence of more As than Ts. This case is also found in *L. dispar* (0.016), *O. lunifer* (0.030), *P. atrilineata* (0.007), *B. mori* (0.059), Japanese *B. mandarina* (0.055), Chinese *B. mandarina* (0.057), *A. melete* (0.012), *D. saccharalis* (0.021), *O. nubilalis* (0.031), and *O. furnicalis* (0.032). In contrast, the AT skewness values are negative in the other lepidopteran mitogenomes. When considering the A+T-rich region, however, the bias toward the use of Ts over As is more obvious. In analyzed lepidopteran mitogenomes with the A+T-rich region, however, the bias toward the use of Ts over As is more obvious in the A+T-rich region, however, the bias toward the use of Ts over As is more obvious in the A+T-rich region.

In all sequenced lepidopteran mitogenomes, the GC skewness values vary from −0.158 in *C. rhyphasis* to −0.318 in *O. lunifer* with the *H. cunea* mitogenome exhibiting a moderate skewness value (−0.230), referring to the occurrence of more Cs than Gs in the lepidopteran mitogenomes.

Protein-coding genes

All of the PCGs in the *H. cunea* mitogenome are initiated by typical ATN codons (six with ATG, three with ATT, and three with ATA), except for COI (Table 3). The open reading frame of the *H. cunea COI* gene also starts at a CGA codon for arginine as found in all lepidopteran insects (Fig. 2). The typical ATN initiator for mitochondrial PCGs is also not found at the start site for *H. cunea COI* or near the *tRNA*^{Tyr}. The plausible translation initiator for *H. cunea COI* is ATA, located within the *tRNA*^{Tyr} gene, overlapping 19 bp with the *tRNA*^{Tyr}; however, a codon following this triplet has a TAG-stop codon before the CGA codon. This ATA triplet has been designated as an initiator for *H. cunea COI*. The open reading frame of the *H. cunea COI* gene must use an atypical start site for *H. cunea COI*, and there are no other probable start codons for *H. cunea COI*. Thus, the COI gene must use an atypical start site.

In the previous studies, some tetrancleotide (ATAA, TTAA, GTAA and ATTA) and a hexancleotide (ATTTAA) have been proposed as an initiator for *COI* for Diptera insects including mosquitoes and *Drosophila* [34, 37-41]. Among the completely sequenced lepidopteran insects, including *A. pernyi*, *A. yamamai*, *B. mori*, *B. mandarina*, and *C. rhyphasis*, the TAG has been designated as an initiator for *COI* [13, 14, 17, 18], however, *Ostrina* species were designated...
as ATTTAG [20], and A. issoria and C. boisduvalii were designated as TTG [15, 22], and six species (A. honmai, A. melete, E. pyretorum, M. sexta, P. atrilineata, and O. lunifer) were designated as CGA [11, 12, 16, 19, 21, 23]. A recent study by analysis of the transcript information from the cDNA sequence of the mtDNA-encoded protein gene revealed that the translation initiation codon for the COI gene is TCG (Serine), rather than those atypical and longer codons in Diptera [41]. Therefore, we tentatively designated the CGA as the COI start codon although no mRNA expression data for H. cunea are available until now.

Nine of 13 PCGs in H. cunea harbor the usual termination codon TAA, but the remaining four possess the incomplete termination codons T for COI, COII, ND4, and TA for ATP6 (Table 3). The COI, COII, and ND4 terminate with T exactly adjacent to tRNAs, and ATP6 terminate with TA immediately followed by the ATG translation initiation codon of COIII. These incomplete stop codons are commonly found in metazoan mitochondrial genes [33]. The common interpretation of this phenomenon is that TAA termini are created via posttranscriptional polyadenylation [42].

The Relative Synonymous Codon Usage (RSCU) in PCGs was investigated and the results are summarized in Table 5. In PCGs of the H. cunea mitogenome, the codons CCG, GCC, TGC, CGC, AGC, and AGG are not represented. The genome-wise A+T bias is also reflected in the codon usage of H. cunea mitogenome. The codons TTA (Leu), ATT (Ile), TTT (Phe), and ATA (Met) are the four most frequently used codons in the H. cunea mitogenome, accounting for 39.2%. These codons are all composed of A or T nucleotides, thus indicating the biased usage of A and T nucleotides in the H. cunea PCGs. These four codons were also most frequently used in the sequenced lepidopteran insects. Leucine (14.82%), isoleucine (11.99%), phenylalanine (9%), and serine (8.52%) are the most frequent amino acids in H. cunea mitochondrial proteins, accounting for 44.33%. These amino acids are also the most frequently represented in other insects, averaging 45.08% [43].

Fig. 2 Alignment of initiation region for the cytochrome oxidase subunit I (COI) genes of lepidopteran insects. The Diptera insect Anopheles funestus was included due to fact that the translation initiation codon for the COI gene was determined by analysis of the transcript information analysis [41]. The first four or five codons and their amino acids are shown on the right-hand side of the figure. Boxed nucleotides are the presumed translation initiators, which have been postulated as the initiation codon for COI in each species. Underlined nucleotides indicate the adjacent partial sequence of tRNA^Tyr. Arrows indicate the direction of transcription.
rRNA genes and tRNA genes

As in all other insect mitogenome sequences, two rRNA genes are present in *H. cunea*. They are located between \(tRNA^{16S} \) and \(tRNA^{12S} \), and between \(tRNA^{26S} \) and the A+T-rich region, respectively. The length of the *H. cunea* 16S rRNA is 1 426 bp, which is the longest among the available completely sequenced lepidopteran insects, with the size range from 1 412 bp in *D. saccharalis* to 1 319 bp in *A. melete*. The length of the *H. cunea* 12S rRNA is 808 bp, which is well within the range observed in the available completely sequenced lepidopteran insects, with the size range from 806 bp in *O. lunifer* to 774 bp in *C. boisduvalii*.

The *H. cunea* mitogenome harbors 22 tRNA genes, which are scattered around the molecule (Table 2; Fig. 1). The predicted secondary structure of the *H. cunea* tRNAs are shown in Fig. 3. Twenty tRNA genes were identified by tRNAscan Search [29]. Twenty tRNA genes vary from 63 bp \((tRNA^{Cys}) \) to 71 bp \((tRNA^{16S}) \) in size, and present a typical clover-leaf secondary structure of previously published mitochondrial tRNA genes. The *H. cunea* \(tRNA^{Cys} \) and \(tRNA^{UCN} \) genes not identified by tRNAscan-SE Search were determined to be 66 bp and 68 bp in size, respectively. Their sizes were determined by comparing the conserved relative genome position and sequence similarity with other lepidopteran mitogenome sequences. The \(tRNA^{Cys} \) also shows a typical clover-leaf secondary structure. However, the \(tRNA^{UCN} \) presents an unusual secondary structure lacking a stable stem-loop structure in the DHU arm, which has been observed in several other metazoan species including insects [4]. The anticodons are identical to those observed in other lepidopteran insects.

A total of 23 unmatched base pairs occurred in the *H. cunea* tRNA genes. Twelve of 22 tRNA genes, including \(tRNA^{Cys} \), \(tRNA^{Glu} \), \(tRNA^{Cys} \), \(tRNA^{Phe} \), \(tRNA^{Glu} \), \(tRNA^{Asp} \), \(tRNA^{Leu} \), \(tRNA^{Leu}(CUN) \), \(tRNA^{Leu}(ULL) \), \(tRNA^{His} \), \(tRNA^{Pro} \), \(tRNA^{Thr} \), and \(tRNA^{Val} \), were found to have 18 G-U mismatches in their secondary structures, which forms a weak bond. Three U-U mismatches were found in the amino acid acceptor stem of \(tRNA^{Ala} \), \(tRNA^{Leu}(CUN) \), and \(tRNA^{Leu}(ULL) \). The \(tRNA^{Thr} \) gene was proposed to contain an A-A mismatch in the TψC stem, and the \(tRNA^{Ser}(AGN) \) gene contained an A-A mismatch in the anticodon stem. Moreover, the \(tRNA^{His} \) and \(tRNA^{Leu} \) genes were found to contain an extra nucleotide A in the TψC stem, respectively. Mismatches observed in tRNAs can be corrected through RNA-editing mechanisms that are well known for arthropod mtDNA [44]. The number of mismatches in the *H. cunea* is similar to those observed in other available lepidopteran insects: 24 in *A. pernyi* [13], and 24 in *E. pyriformis* [16]; but lower than in *O. lunifer* where 35 mismatches were found [11]. No mechanism, however, has been deduced for such high numbers of mismatches in insect mitochondrial tRNAs.

Table 5 Codon usage of the protein-coding genes in *Hyphantria cunea* mitogenome*

Codon (aa)	n	% RSCU	Codon (aa)	n	% RSCU	Codon (aa)	n	% RSCU
UUU(F)	332	8.95	UCU(S)	113	3.05	UAU(Y)	180	4.85
UUC(F)	2	0.59	UCC(S)	10	0.27	UAC(Y)	18	0.49
UUA(L)	449	10.80	UCA(S)	81	2.18	UAA(*)	—	—
UUG(L)	35	0.94	UCG(S)	2	0.05	UAG(*)	—	—
CUU(L)	43	1.16	AGU(S)	28	0.75	CAU(H)	56	1.51
CUC(L)	1	0.03	AGC(S)	0	0	CAC(H)	12	0.32
CUA(L)	20	0.54	AGA(S)	82	2.21	CAA(Q)	60	1.62
CGU(L)	2	0.05	AGG(S)	0	0	CAG(Q)	1	0.03
AUU(T)	410	11.05	ACA(U)	73	1.97	AAA(N)	215	5.79
AUC(T)	35	0.94	ACC(U)	14	0.38	AAC(N)	39	1.05
AUA(M)	265	7.14	ACA(U)	62	1.68	AAA(K)	100	2.69
AUG(M)	12	0.32	ACG(U)	2	0.05	AAG(K)	10	0.27
GUU(V)	90	2.43	GCU(A)	84	2.26	GGU(G)	68	1.83
GUC(V)	5	0.13	GCC(A)	6	0.16	GGC(G)	3	0.08
GUA(V)	50	1.35	GCA(A)	38	1.02	GGA(G)	108	2.91
GUG(V)	7	0.19	GCG(A)	14	0.38	GGG(G)	23	0.62
UGU(C)	28	0.75	CGU(R)	14	0.38	CCC(P)	11	0.30
UGC(C)	0	0	CGC(R)	0	0	CCG(P)	0	0
UGA(W)	92	2.48	CGA(R)	36	0.97	CCA(P)	41	1.10
UGG(G)	6	0.16	CCG(R)	2	0.05	CCG(P)	0	0
GUA(D)	59	1.59	GAA(E)	66	1.78	GAG(E)	10	0.27
GAC(D)	5	0.13	GAG(E)	10	0.27	GAG(E)	10	0.27

A total of 3711 codons were analyzed excluding the initiation and termination codons. RSCU, relative synonymous codon usage.
The *H. cunea* mitogenome harbors a total of 230 bp intergenic spacer sequences, which are spread over 18 regions ranging in size from 1 to 50 bp (Table 3). The largest intergenic spacer sequence is present between tRNA^{Gln} and ND2 gene, with an extreme richness in A and T nucleotides (92%). This spacer is not found in non-lepidopteran insect species [19], but is found to be a feature common to the 21 lepidopteran mitogenomes which have been sequenced to date. By alignment analysis, whilst invariant between each of the congeneric species-pairs which have been examined (*O. furnicalis* and *O. nubilalis*; *B. mori* and *B. mandarina; A. pernyi* and *A. yamamai*), this region showed limited sequence conservation between even closely related lepidopteran groups such as within Bombycoidea or between bombycoids and other macrolepidopterans [11, 19], indicating it would imply no functional significance or might not serve as another origin of replication [15].

Eighteen base pairs were identified as overlapping sequences varying from 1 to 8 bp in four regions (Table 3). The longest overlap is 8 bp between tRNA^{Trp} and tRNA^{Cys}. Similarly sized overlaps are also observed in other sequenced lepidopteran species [14]. The 7 bp overlap with the reading frame involving the ATP8/ATP6 genes was found. This feature is common to other sequenced lepidopteran mitogenomes, and was found in many animal mitogenomes [5]. As for the two remaining overlaps, one is 1 bp between tRNA^{Lys} and tRNA^{Asp}, the other is 2 bp between tRNA^{Glu} and tRNA^{Phe}.
Fig. 4 Alignment of the intergenic spacer region between tRNASer(UCN) and ND1 of lepidopteran insects. The shaded ATACTAA motif [19] was conserved across the Lepidoptera order.

A+T- rich region

The H. cunea A+T-rich region is located between the srRNA gene and tRNAMet (Table 3; Fig. 1), which includes the origin sites for transcription and replication [45]. This region was identified to be 357 bp in length, which is well within the range observed in the completely sequenced lepidopteran insects, with size ranging from 319 bp in O. lunifer to 747 bp in Japanese B. mandarina (Table 4). The A+T-rich region shows the highest A+T content (94.96%) of any region of the H. cunea mitogenome.

The presence of extra tRNA-like structures in the A+T-rich region has been reported in the lepidopteran insects. In the case of Chinese B. mandarina, one tRNASer(TGA)-like sequence is located within the A+T-rich region forming a structure with four stem-loops and one big loop [18]. In A. yamamai A+T-rich region, two tRNA-like structures are present: tRNASer(UCN)-like sequence and tRNAPhe-like sequence, which possess the proper anticodon and form a clover-leaf structure, indicating they may be functional although there are many mismatches in both aminoacyl and anticodon stem regions [14]. However, no tRNA-like structure was detected in the H. cunea A+T-rich region.

The presence of varying copy numbers of tandemly-repeated elements has been reported to be one of the characteristics of the insect A+T-rich region [7]. Some lepidopteran insects have been observed to possess the repeat element in the A+T-rich region. In the case of Antherea, the A. pernyi A+T-rich region harbors a repeat element of 38 bp tandemly repeated six times [13], whereas the A. roylei A+T-rich region has five repeat elements [9, 13]. In Japanese B. mandarina, the A+T-rich region harbors a tandem tripllication of a 126 bp repeat unit, whereas in B. mori and Chinese B. mandarina the A+T-rich region has only one repeat element [17, 18]. It has also been reported that Arethusa arethusa (Nymphalidae: Satyrinae), Leptidea sinapis (Pieridae), and Parnassius apollo (Papilionidae) have a longer A+T-rich region (~500–700 bp), due mainly to an increase in the size and copy number of repeat units [46]. However, the H. cunea A+T-rich region is comprised of non-repetitive sequences, but harbors several features (Fig. 5) common to the Lepidoptera A+T-rich region [11, 19]. In B. mori, the ON (origin of minority or light strand replication) is located 21 bp downstream from srRNA gene, which contains the motif ATAGA followed by an 18 bp poly-T stretch [47]. A very similar pattern occurs in H. cunea where the ATAGA motif is located 20 bp downstream from srRNA gene and is followed by an 18 bp poly-T stretch. A microsatellite-like (AT)s element preceded by the ATTTA motif is present in the 3' end of the H. cunea A+T-rich region. The presence of a microsatellite preceded by the ATTTA motif is common in the control regions of insect mitogenomes, and
has been found in all other lepidopteran species which have been sequenced [19]. Finally, an 11 bp poly-A is present immediately upstream tRNA^{Met}. This poly-A element is still a common feature of the A+T-rich region in Lepidoptera [19, 46]. This sequence has been suggested to be involved in the control of transcription and/or replication initiation in other insects or have some other unknown functional role [7].

Phylogenetic relationships

To place the <i>H. cunea</i> mtDNA sequence in perspective relative to other lepidopteran insect mitogenomes and to probe into the phylogenetic relationships among the lepidopteran superfamilies, a data set containing the concatenated amino acid sequences of 13 PCGs was generated. The sequences of the 13 PCGs were concatenated, rather than analyzed separately, to reconstruct the phylogenetic relationships, which may result in a more complete analysis [48]. The final alignment resulted in 3838 amino acid sites for the 19 ingroup and two outgroup taxa, including gaps. Of these sites, 1606 were conserved, 2170 were variable, and 1555 were informative for parsimony. The MP and NJ analyses generate overall similar topology except for the branching superfamily among <i>A. honmai</i>, and Papillonoidea species (Fig. 6). The phylogenetic analyses support a close relationship between <i>H. cunea</i> and <i>L. dispar</i> with 100% bootstrapping value, which is consistent with the morphological classification. The phylogenetic analyses also support a sister relationship between Noctuoidea (<i>H. cunea</i>, <i>L. dispar</i>, and <i>O. lunifer</i>) and Geometroidea (<i>P. atrilineata</i>).

The <i>M. sexta</i> is sometimes placed in their own superfamily Sphingidea. However, phylogenetic analyses based on the complete mitogenome in this study strongly support the placement within the superfamily Bombycoidea, which is consistent with the previous findings by morphological analysis [49] and by molecular analysis based on some nuclear genes [50].

These 19 sequences represent six superfamilies within the lepidopteran suborder: Bombycoidea, Geometroidea, Noctuoidea, Papillonoidea, Pyraloidea, and Tortricidea. Based on morphological analysis, Bombycoidea, Noctuoidea, Papillonoidea and Geometroidea are designated as the Macrolepidoptera; Pyraloidea together with Macrolepidoptera are designated as Obtectornera; Tortricidea is the sister to the remaining lepidopteran superfamilies covered in the present study (Fig. 6A) [49].

In the phylogenetic trees constructed (Fig. 6B and C), the butterflies of Papillonoidea (<i>A. melete</i>, <i>A. issoria</i>, and <i>C. raphaelis</i>) are sisters to the remaining lepidopteran superfamilies, also showing a basal position within the monophyly of Lepidoptera [16]. This result is different to the traditional morphological analyses (Fig. 6A). Also, recent phylogenetic analyses of 123 species representing 27 superfamilies of Ditrysia based on five protein-coding nuclear genes (6.7 kb total) provide sufficient information to conclusively demonstrate that several prominent features of the current morphology-based hypothesis, including the position of the butterflies, need revision [51]. These results present in this study suggest that the complete insect mitogenome sequence has a power to resolve the majority of family relationships within superfamilies, however, the deeper nodes among superfamilies need more efforts.

Fig. 5 The features present in the A+T-rich region of <i>Hyphantria cunea</i>. The sequence is shown in the N strand.
Fig. 6 Phylogeny of lepidopteran insects. (A) Current hypothesis of lepidopteran superfamily relationships after Kristensen and Skalski (1999) [50]. Phylogenetic trees inferred from amino acid sequences of 13 PCGs of the mitogenome by using MP analysis (B) and NJ analysis (C). *Drosophila yakuba* [33] and *Anopheles gambiae* [34] were used as outgroups. The numbers above branches specify bootstrap percentages (1000 replicates).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant 30800803), the National 863 program of China (grant 2007AA06Z323), the National Key Technology R&D Program in the 11th Five year Plan of china (grant 2006BAK10B06), and the Key Technology R&D Program of Tianjin City (grant 06YFGZNC00700).

http://www.biolsci.org
Conflict of Interest

The authors have declared that no conflict of interest exists.

References

1. Warren LO, Tadic M. The fall webworm, Hyphantria cunea (Drury). Ark Agric Exp Stn Bull. 1970; 759: 1-106
2. Umeeya K, Itō Y. Invasion and establishment of a new insect pest in Japan. In: Hidaka T (ed) Adaptation and speciation in the fall webworm. Kodansha, Tokyo; 1977
3. Ji R, Xie BY, Li XH, et al. Research progress on the invasive species, Hyphantria cunea. Entomol Knowledge (China). 2003; 10: 13-18
4. Wolstenholme DR. Animal mitochondrial DNA: Structure and evolution. Int Rev Cytol 1992; 141: 213-261
5. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27: 1767-1780
6. Shadel GS, Clayton DA. Mitochondrial transcription initiation: Variation and conservation. J Biol Chem. 1993; 268: 16083-16086
7. Zhang DX, Szymura JM, Hewitt GM. Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol. 1995; 40: 382-391
8. Nardi F, Spinsanti G, Boore JL, et al. Hexapod origins: Monophyletic or paraphyletic? Science. 2003; 299: 1887-1889
9. Arunkumar KP, Metta M, Nagaraju J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea pernyi mitochondrial DNA. Mol Phylogenet Evol. 2006; 40: 419-427
10. Hwang UW, Park CJ, Yong TS, et al. One-step PCR Amplification of Complete Arthropod Mitochondrial Genomes. Mol Phylogenet Evol. 2001; 19: 345-352
11. Salvato P, Simonato M, Battisti A, et al. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Noctuidae). BMC Genomics. 2008; 9: 331
12. Yang L, Wei ZJ, Hong GY, et al. The complete nucleotide sequence of the mitochondrial genome of Philonthus atrilitellus (Lepidoptera: Geometridae). Mol Biol Rep. 2009; 36: 1441-1449
13. Liu Y, Li Y, Pan M, et al. The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Acta Biochim Biophys Sin (Shanghai). 2008; 40: 693-703
14. Kim SR, Kim M, Hong MY, et al. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Mol Biol Rep. 2009; 36: 1871-1880
15. Hong MY, Lee EM, Jo YH, et al. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvali (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene. 2008; 413: 48-57
16. Jiang ST, Hong GY, Yu M, et al. Characterization of the complete mitochondrial genome of the giant silkworm moth, Erionota pyretorum (Lepidoptera: Saturniidae). Int J Biol Sci. 2009; 5: 351-365
17. Yukihiro K, Szetszu H, Inoh M, et al. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mori, and its close relative, the domesticated silkmoth, Bombyx mandarina. Mol Biol Evol. 2002; 19: 1385-1389
18. Pan MH, Yu QY, Xia YL, et al. Characterization of mitochondrial genome of Chinese wild mulberry silkworm Bombyx mandarina (Lepidoptera Bombyciidae). Sci China Ser C-Life Sci. 2008; 51: 693-701
19. Cameron SL, Whiting MF. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene. 2008; 408: 112-113
20. Coates BS, Sumferov DV, Hellmich RL, et al. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnacalis. Int J Biol Sci. 2005; 1: 13-18
21. Lee ES, Shin KS, Kim MS, et al. The mitochondrial genome of the smaller tea tortix Adoxophyes honmaii (Lepidoptera: Tortricidae). Gene. 2006; 373: 52-57
22. Hu J, Zhang DX, Hao JS, et al. The complete mitochondrial genome of the yellow coaster, Acroa issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraini): sequence, gene organization, and a unique tRNA translocation event. Mol Biol Rep. 2010; In press
23. Hong G, Jiang S, Yu M, et al. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Argegia melete (Lepidoptera: Pieridae). Acta Biochim Biophys Sin (Shanghai). 2009; 41: 446-455
24. Kim I, Lee EM, Seol KY, et al. The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol Biol. 2006; 15: 217-225
25. Hebert PD, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci. 2003; 270: 313-321
26. Gomi T, Muraji T, Takeda M. Mitochondrial DNA analysis of the introduced fall webworm, showing its shift in life cycle in Japan. Entomol Sci. 2004; 7: 183-188
27. Simon C, Frait F, Bechenack A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequence and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994; 87: 651-701
28. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25: 4876-4882
29. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25: 955-964
30. Steinberg S, Cedergren R. Structural compensation in atypical mitochondrial tRNAs. Struct Biol. 1994; 1: 507-510
31. Perna NT, Kocher TD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 1995; 41: 353-358
32. Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999; 27: 573-580
33. Clary DO, Wolstenholme DR. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985; 22: 252-271
34. Beard CB, Mills D, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol. 1993; 2: 103-124
35. Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007; 24: 1596-1599
36. Boore JL, Lavin D, Brown WM. Gene translocation links insects and crustaceans. Nature. 1998; 393: 667-668
37. Clary DO, Wolstenholme DR. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res. 1983; 11: 6859-6872
38. de Bruijn MHL, Drosophila melanogaster mitochondrial DNA: A novel organisation and genetic code. Nature. 1983; 304: 234-241
39. Ballard JWO. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol. 2000; 51: 48-63
40. Nardi F, Carapelli A, Fanciulli PP, et al. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora.
bielanensis: Evidence for heteroplasmy and tRNA translocations. Mol Biol Evol. 2001; 18: 1293-1304

41. Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: An improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol. 2006; 39: 417-423

42. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981; 290: 470-474

43. Lessinger AC, Junqueira AC, Lemos TA, et al. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Mol Biol. 2000; 9: 521-529

44. Lavrov DV, Brown WM, Boore JL. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA. 2000; 97: 13738-13742

45. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999; 1410: 103-123

46. Vila M, Björklund M. The utility of the neglected mitochondrial control region for evolutionary studies in Lepidoptera (Insecta). J Mol Evol. 2004; 58: 280-290

47. Saito S, Tamura K, Aotsuka T. Replication origin of mitochondrial DNA in insects. Genetics. 2005; 171: 1695-1705

48. Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 2006; 38: 100-116

49. Kristensen NP, Skalski AW. Phylogeny and paleontology. In: Kristensen NP, ed. Lepidoptera: Moths and Butterflies, 1 Evolution, Systematics, and Biogeography, Handbook of Zoology Vol IV, Part 35. Berlin and New York: De Gruyter. 1999; 7-25

50. Kawahara AY, Mignault AA, Regier JC, et al. Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes. PLoS ONE. 2009; 4(5): e5719.

51. Regier JC, Zwick A, Cummings MP, et al. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol Biol. 2009; 9:280