Data Article

A geospatial dataset providing first-order indicators of wildfire risks to water supply in Canada and Alaska

François-Nicolas Robinne
Canadian Partnership for Wildland Fire Science, Renewable Resources, 751 General Services Building, University of Alberta, Edmonton, T6G 2H1, Alberta, Canada

A R T I C L E I N F O

Article history:
Received 5 December 2019
Received in revised form 7 January 2020
Accepted 15 January 2020
Available online 23 January 2020

Keywords:
Wildfires
Water supplies
Ecosystem services
Post-fire hydrology
Forest watershed
Watershed disturbance

A B S T R A C T

First-order, high level indicators of wildfire risk to water resources are paramount to understand growing wildfire-related water security challenges in Canada and Alaska. Information pertaining to forest cover, fire activity, water availability, and location of populated places was collected from multiple institutional sources. Manual and semi-automated processes were used to clean disparate source data and create four harmonized geospatial layers whose content was summarized for each of the 1468 existing sub-sub watersheds covering Alaska and Canada. The final dataset provides a master layer based on sub-sub-watershed boundaries that contains relevant information to create spatial indicators of wildfire risk to water security. These can be used to identify potentially at-risk regions in high-latitude watersheds of North America. The dataset can be further used within a larger, general risk assessment framework considering other environmental stressors to water security, including climate change and population growth. The dataset described herein was used to make a figure in the manuscript “Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review” by Robinne et al. [1].

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.jhydrol.2019.124360.
E-mail address: robinne@ualberta.ca.

https://doi.org/10.1016/j.dib.2020.105171
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table
Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location
Data accessibility
1. Data

This data descriptor refers to Fig. 1 (hereafter, the figure) in Robinne et al. [1] and the associated dataset that was created to make the figure. The figure displays four different indicators for sub-sub drainages (SSD, equivalent Hydrologic Unit Code level 8 (HUC-8) in USA) of Canada and Alaska that are covered by a minimum of 30% forest; namely, percent forest cover, area burned normalized by forest cover, snow water depth equivalent, and the number of populated places. The associated dataset (CanAlaska_SubSubDrainages_RiskIndicators.gdb) provided in an ESRI geodatabase format is the product of spatial data combination from different public sources involving a significant amount of time in manual and semi-automated quality checks, updates, and harmonization. The dataset provides the main feature class in vector format (HUC_SSD_CanAlaska_NAD83CSRS_Master), whose attribute table contains complete hydrologic information pertaining to Canadian and Alaskan SSDs. In other words, it means that each SSD can be traced back to higher hydrologic levels and hydrologic regions (sub-drainage and main drainage), the country(ies), and the state/province(s)/territory(ies) they belong to (Fig. 1). The attribute table also contains information on total area burned in hectares (CanAlaska_NAD83CSRS_FirePerimeters_Harmonized) per SSD (Fig. 2), the percent forest cover (CanAlaska_NAD83CSRS_ForestCover_Harmonized) per SSD (Fig. 3), the average snow depth water equivalent (CanAlaska_NAD83CSRS_SnowWaterEquivalent_Harmonized) per SSD in meters (Fig. 4), and the number of populated places (CanAlaska_NAD83CSRS_PopulatedPlaces_Harmonized) per SSD (Fig. 5). Main metadata for the dataset is contained at the root of the geodatabase.

2. Experimental design, materials, and methods

The creation of this dataset was fully based on the geoprocessing capabilities provided by ArcGIS 10.5 [10]. Considering the diversity of data sources and of their internal structure, it was not possible to...
Fig. 1. Sub-sub-drainages covering Alaska and Canada. The main feature class “HUC_SSD_CanAlaska_NAD83CSRS_Master” is projected in the NAD1983 CSRS Canada Atlas Lambert coordinate system. The layer contains 1468 polygons (single and multipart); 1235 are in Canada, 126 in USA (i.e. Alaska), and 107 are transboundary. Mean SSD size is ~7527 km², standard deviation is ~5860 km², and the range goes from ~104 km² to ~54 500 km².

Fig. 2. Area burned in hectares (ha) per sub-sub-drainages. The minimum value is 0; the maximum is 1 575 165.33; the average is 65408; the standard deviation is 162548; the sum is 96 020 371. Original information pertaining to fire perimeters is contained in the following feature class: CanAlaska_NAD83CSRS_FirePerimeters_Harmonized.
Fig. 3. Percent (%) forest cover per sub-sub-drainage, an information also available as an area in square kilometers (km²). The minimum value is 0; the maximum is 100; the average is 68.83; the standard deviation is 36.8. Original information pertaining to forest land cover is contained in the following raster dataset: CanAlaska_NAD83CSRS_ForestCover_Harmonized.

Fig. 4. Mean snow water equivalent, in kilogram per square meter (kg/m²), per sub-sub-drainage. The minimum value is 0.55; the maximum is 4323; the average is 74.4; the standard deviation is 255; the sum is 108144.2. Original information pertaining to SWE cover is contained in the following raster dataset: CanAlaska_NAD83CSRS_SnowWaterEquivalent_Harmonized.
fully automate data cleaning and aggregation; therefore, the preparation of the dataset described herein relied exclusively on manual editing and semi-automated updates using native tools available with an “advanced” ArcGIS license. Importantly, the level of methodological details provided below (i.e., type of processing tools and what they achieve) supposedly makes this dataset reproducible using any GIS freeware, such as QGIS.

2.1. Drainages

The creation of a seamless SSD layer started with the modification of the attribute table structure for both Alaskan and Canadian watershed layers [2,3], thereby facilitating their merging. Relevant information pertaining to the state/province/territory, the country, the administrative code and the name of the different drainage levels, and the ocean the SSD drains into were kept and updated if necessary (e.g., adding missing information). Sub-drainage and drainage information were originally missing for HUC-8 watersheds in Alaska, and a spatial join was used to update the attribute table with the necessary details from higher hydrologic level layers (HUC-6 and HUC-4).

After merging both watershed layers, the attributes related to administrative location (i.e., country and province/state) were updated in a semi-automated way so the code of the administrative entity with the largest area covered by the SSD was added to the field “Administrative Entity — First”, in a decreasing fashion so “Administrative Entity — Fourth” would display the entity with the least area in the SSD. No SSD overlapped more than four administrative entities. In the case of an SSD overlapping international borders and existing in both source layers, the Canadian information was kept. For those drainages overlapping with the contiguous USA, administrative location attribute was left to ‘US’. In total, 451 polygons needed their attributes to be manually updated with administrative information.

Further updates to the geometry were also necessary after merging. First, the SSD layer was clipped to the coastline, and the Great lakes were removed, as well as Great Slave Lake, Lake Winnipeg, Lake Athabasca, Great Bear Lake, and Lesser Slave Lake as those SSDs only displayed water. The layer was cleaned for slivers, gaps, micro-polygons, empty geometries, and self-intersections. The Integration
Tool available in ArcGIS was used to make SSD boundaries snap to each other where minimal mismatches existed. Adjacent drainages with sizeable border mismatches were fixed manually. The Repair Geometry and Eliminate tools helped with empty geometries ($n = 7$) and micro-polygons ($n = 3515$).

Then a topology layer was created to manually check and fix remaining overlap and gap errors. The layer had nearly 3800 overlap errors and 3400 gap errors to be cleaned. In some cases, discontinuities among adjacent SSD boundaries were impossible to fix without reprocessing drainage borders using GIS tools and thus were left as is (Fig. 6). Finally, a flag field was added; if coded 1, it would inform the user that there are doubts regarding the validity of the polygon geometry and/or the validity of its attributes. The final layer (HUC_SSD_CanAlaska_NAD83CSRS_Master) contained 1468 polygons.

2.2. Fire perimeters

Fire perimeters for Alaska were extracted from the whole MTBS dataset for USA, and all fire data available, from 1984 to 2016, was kept [4]. For Canada, only fire perimeters from 1980 to 2018 were kept, as fire data before this date are considered highly uncertain [5,6]. It yielded 11,485 fire perimeters.

![Fig. 6. Example of boundary mismatch among several watersheds for which the province border between British Columbia and Alberta was not corrected to account to hydrologic continuity, thus displaying a straight line. In this case, the mismatch was left as is and the watersheds were flagged as erroneous in the database.](image)
in Canada (out of 20,966) and 1,386 perimeters for Alaska. Data structure was simplified then perimeter data was merged and spatial statistics were compiled per SSD to compute and store total area burned in hectares in the field “Total area burned (Ha)”.

2.3. Forest cover

Forest and woodland/shrubland land cover types from FAO land cover data [7] were merged into a single layer with a single coded value (i.e., 1). Using the Zonal Statistics tool in ArcGIS, the sum of forest cover was computed per SSD; as the pixel resolution of the source data equals 1 km, a sum automatically provides an area in square kilometers, information that was added to the attribute table in the field “Forest cover (km²)”. Then percent forest cover was computed using SSD area and added to the field “Forest cover (%).” SSDs without forest cover were assigned an area value of 0, and SSDs with a percentage slightly over 100 (due to mismatches between 1km-sized pixels and SSD vector boundaries) were recoded to 100.

2.4. Populated places

Populated places data for Alaska was filtered so places with null population information were discarded, which left 280 locations out of 321 in the source data [8]. For Canada, populated places were extracted from a national dataset of points of interest, leading to a layer of 29,820 points out of 349,740 in the source data [9]. Data for Canada did not contain information regarding population count but a field provided enough detail to apply further filtering, so only places that were coded as permanently inhabited were kept and communities noted as “former” or “abandoned” were discarded, as well as non-community points such as post-offices, railway points, and resorts. The final layer for Canada contains a total of 23,811 points. Both data layers were then merged and point counts were computed per SSD using a spatial join and added to the field “Number of populated places”.

2.5. Snow water depth equivalent

Snow water depth equivalent (SWE) was computed for each grid cell from 2000 to 2019 using monthly averages in meters available over North America at 0.25°-pixel resolution [11]. The online application GIOVANNI was used for its capability to compile long-term averages from existing data hosted on NASA repositories [12]. Using the Zonal Statistics tool in ArcGIS, the mean SWE was computed per SSD and resulting information was added to the attribute table of the master layer to the field “Mean Snow Water Equivalent (m)”. Fifteen SSDs have <null> values due to their small size and the consequent mismatch with pixel centroids in the original SWE raster.

2.6. Limitations to usage

The dataset has three main limitations. Firstly, SSDs are not hydrologically connected, meaning that the layer cannot be used as is for hydrologic modeling purpose (e.g., downstream flow accumulation); however, both Canadian and Alaskan governments provide hydrographic networks whose information pertaining to upstream-downstream connectivity can be spatially connected to SSDs. Secondly, one can notice cases where area burned is greater than the forest in a given SSD (e.g., Central Souris - Moose mountain SSD), which is likely due to changes in land cover and/or the occurrence of prairie/rangeland fires that could have reached a significant size; therefore, working with those SSDs that have a forest cover greater than or equal to 30% is advised. Finally, the use of SSDs that were flagged for uncertainties in their name or boundaries should be avoided, or at least reported by the user.

Acknowledgments

Financial support for the publication of this work was provided by the Canadian Partnership for Wildland Fire Science as part of the project “Boreal Water Futures” funded by the Global Water Futures.
program, Canada First Research Excellence Fund. Additional information is available at www.globalwaterfutures.ca.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] F. Robinne, D.W. Hallema, K.D. Bladon, J.M. Buttle, Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: a scoping review, J. Hydrol. 581 (2020) 124360, https://doi.org/10.1016/j.jhydrol.2019.124360.

[2] National Resources of Canada, National Hydro Network (NHN), 2012 (accessed March 1, 2019), https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b57956c07977/activity_id—615b8473-5b6f-4046-b0f4-5d62337d7484.

[3] US Geological Survey, National Geospatial Program, 2019 (accessed March 12, 2019), https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

[4] US Geological Survey, Monitoring Trends in Burn Severity, 2005. https://www.mtbs.gov/. (Accessed 20 November 2018).

[5] Canadian Forest Service, Canadian National Fire Database — Agency Fire Data, 2018. http://cwfs.cfs.nrcan.gc.ca/en_CA/nfdh. (Accessed 10 September 2018).

[6] M.-A. Parisien, V.S. Peters, Y. Wang, J.M. Little, E.M. Bosch, B.J. Stocks, Spatial patterns of forest fires in Canada, 1980 - 1999, Int. J. Wildland Fire 15 (2006) 361, https://doi.org/10.1071/WF06009.

[7] FAO, United Nations, NGOs, Other Institutions, FAO GeoNetwork, 2004. http://www.fao.org/geonetwork/srv/en/main.home. (Accessed 29 May 2019).

[8] Alaska Department of Community and Regional Affairs, Populated Alaska Places, 1998 (accessed March 21, 2019), http://asgdc.alaska.gov/#14.

[9] Government of Canada, Canadian Geographical Names - CGN - GeoBase Series, 2017 (accessed March 21, 2019), https://open.canada.ca/data/en/dataset/e27c6eba-3c5d-4051-9db2-082dc6411c2c.

[10] Environmental Systems Research Institute, ArcGIS: Release 10.5 for Desktop, 2017.

[11] NASA, GSCF, HSI, GLDAS_NOAH025_M: GLDAS Noah Land Surface Model L4 Monthly 0.25 X 0.25 Degree V2.1, 2016, https://doi.org/10.5067/SXAVCZFAQLNO.

[12] J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA earth science data, Eos 88 (2007) 14, https://doi.org/10.1029/2007EO020003.