NO WAY TO CROP: ON ROBUST IMAGE CROP LOCALIZATION

Qichao Ying*, Xiaoxiao Hu*, Hang Zhou*, Xiangyu Zhang*, Zhengxin You* and Zhenxing Qian*

* Fudan University, China. † Simon Fraser University, Canada

ABSTRACT

Previous image forensics schemes for crop detection are only limited on predicting whether an image has been cropped. However, cropping different areas in a same image leads to different semantic changes. This paper presents a novel scheme for image crop localization using robust watermarking. We train an anti-crop processor (ACP) that embeds a watermark into a target image. The visually indistinguishable protected image is then posted on the social network instead of the original image. During data sharing, the cloud users may tamper, crop or benignly attack the image using JPEG compression, scaling, etc. At the recipient’s side, ACP extracts the watermark from the attacked image, and we conduct feature matching on the original and extracted watermark to locate the position of the crop in the original image plane. We further extend our scheme to detect tampering attack on the attacked image. We demonstrate that our scheme is the first to provide high-accuracy and robust image crop localization. Besides, the accuracy of tamper detection is comparable to many state-of-the-art methods.

Index Terms— image crop localization, image tamper detection, robustness, image forensics

1. INTRODUCTION

To fight against daily-world image forgery, researchers have developed a number of schemes which detect various kinds of digital attacks, e.g., against tampering [24] [13] [12], DeepFake [18] and cropping [22] [21] [19]. Among them, cropping is a simple yet powerful way to maliciously alter the message of an image. This kind of forgery has historically been less investigated by the forensic community than other image manipulations. The main difficulty is that much less semantic or statistical clue of cropping can be discovered. The existing crop detection algorithms [21] [19] mainly focus on predicting whether an image is cropped. They are represented by detecting the exposing evidences of asymmetrical image cropping. However, cropping different areas in a same image will definitely result in different semantic changes, and therefore we need to locate the position of the crop in the original image plane.

There is little previous arts for image crop localization. Van et al. [22] proposes to investigate the impact that cropping has on the image distribution, featured by chromatic aberration and vignetting. However, there are certain limitations. First, it requires the images to be untouched and uncompressed so that the camera pipeline artefacts and photography patterns are preserved. Otherwise the scheme cannot be applied. Second, the clues from the camera pipeline artefacts are usually not enough to ensure high-accuracy localization results. Therefore, the real-world application of [22] is rather limited. Motivated by the short-comings of the previous schemes, we propose the first image crop localization scheme using robust watermarking.

Since the original clues are weak, we propose to hide crafted clues into a targeted image to protect them in the first place. We further observe that besides cropping, there are also benign attacks, e.g., JPEG compression, scaling, etc. These usually cause a significant drop in performance of many other computer vision tasks such as data hiding [62] or tamper detection [13]. It requires the scheme to be robust against these typical attacks. We further extend our work to localize tamper on the protected image before crop localization. The proposed scheme is efficient in revealing misleading photojournalism or copyright violation. Fig. 1 shows two examples of malicious image cropping, where our scheme accurately localizes the cropped area on receiving the ambiguous cropped images.

We train a normalizing-flow-based anti-crop processor (ACP) to embed a watermark into a targeted image. The watermark is shared with the recipient. ACP produces a visually indistinguishable protected image, which is then posted on the social network instead of the unprotected version. On receiving the attacked version of the protected image, we use ACP again to extract the watermark, and conduct a feature matching algorithms (SURF [1]) between the original and extracted watermark to determine where the crop was positioned in the original image plane. We further extend our work to detect tamper on the doubted image by introducing a tamper detector to predict the tamper mask. The features within the predicted tamper mask is disabled to prevent mismatching. We test our scheme by introducing man-made hybrid attacks. The results demonstrate that our scheme can accurately localize the cropped region. We also show the effectiveness of tamper detection by comparison with some state-of-the-art schemes [12] [13].

The highlights of this paper are three-folded. 1) This paper presents the first high-accuracy robust image crop localization scheme. 2) With the embedded watermark, the proposed scheme can also conduct high-accuracy tamper detection, which is comparable with the state-of-the-art works. 3) We use normalizing flows to build an efficient invertible function for image forensic problems.

Fig. 1. Examples of crop localization. (a) Given an image to be protected, (b) we conduct imperceptible data hiding on the targeted image. (c) The social network users redistribute, crop, and even modify the image. (d) The recipient identifies the cropped-out area.
Robust Watermarking and its Application on Forensics.

and image rescaling [32], INNs are also used for various low-level computer vision tasks such as image colorization [31] and image inversion [16].

Pioneering research on INN-based operations are in the same network. Yu [37] is the first to ensure robustness and large capacity at training. Fanfani et al. [21] exploits the camera principal point insensitive to image processing operations. Yershulmy et al. [19] detects whether there are vanishing points and lines on structured image content. Many tamper detection schemes [12] are developed upon the classic U-Net architecture. Ying et al. [24] not only detects tampers, but also proposes to conduct image self recovery. Besides, Mantra-Net [13] significantly improves the detection and localization performance by using self-supervised learning of the robust image manipulation traces.

Invertible Neural Networks (INN). Invertible neural network learns a stable invertible mapping from the source distribution P_s to a targeted distribution P_t, and the forward and back propagation operations are in the same network. INNs are also used for various low-level computer vision tasks such as image colorization [31] invertible data hiding network (ISN) [36], and image rescaling [32].

Robust Watermarking and its Application on Forensics. Nowadays, several robust watermarking schemes [42] are proposed where a differentiable attacking layer is proposed for adversarial training. Yu [27] is the first to ensure robustness and large capacity at the same time. Previously, robust watermarking has been introduced to aid preventing images from being inpainted [27] or reconstructed by super-resolution [25].

2. RELATED WORKS

Detection on Image Cropping and Tampering. Fanfani et al. [21] exploits the camera principal point insensitive to image processing operations. Yershulmy et al. [19] detects whether there are vanishing points and lines on structured image content. Many tamper detection schemes [12] are developed upon the classic U-Net architecture. Ying et al. [24] not only detects tampers, but also proposes to conduct image self recovery. Besides, Mantra-Net [13] significantly improves the detection and localization performance by using self-supervised learning of the robust image manipulation traces.

Invertible Neural Networks (INN). Invertible neural network learns a stable invertible mapping from the source distribution P_s to a targeted distribution P_t, and the forward and back propagation operations are in the same network. INNs are also used for various low-level computer vision tasks such as image colorization [31] invertible data hiding network (ISN) [36], and image rescaling [32].

Robust Watermarking and its Application on Forensics. Nowadays, several robust watermarking schemes [42] are proposed where a differentiable attacking layer is proposed for adversarial training. Yu [27] is the first to ensure robustness and large capacity at the same time. Previously, robust watermarking has been introduced to aid preventing images from being inpainted [27] or reconstructed by super-resolution [25].

3. METHOD

3.1. Overview

Fig. 2 shows an overview of our scheme. The pipeline of our method is composed of an Anti-Cropping Processor (ACP) P, an attack layer A, a tamper detector V, a discriminator D and a feature matcher M. The proposed scheme consists of five stages: watermark embedding, image redistribution, tamper detection, watermark extraction and crop localization. We regard the embedding and extraction of the watermark W as the inverse problem, even if the protected image is cropped and attacked. It comes from the observation that many data hiding schemes embed the secret image into the host image according to the spatial order [62]. We formulate the inverse problem of the ACP as:

$$\hat{I}_M = \mathcal{P}^{-1}(A(I_M, R), R),$$

where R and \hat{R} are the pseudo-random output and input to keep the consistency of the channel number. For the invertibility, W and the ground-truth cropped watermark W_C should be as close as possible. W_C is obtained by cropping out the same region from W as on I_M. Besides, I_M should be visually indistinguishable from I.

First, we embed the watermark W into the targeted image I using the ACP. The protected image I_M is generated and we upload it onto the social cloud instead of the unprotected targeted image. We simulate the image redistribution stage and generate the attacked image I_A by freely adding three kinds of attacks (benign attacks, cropping, tampering) on the protected images. On the recipient’s side, the tamper detector V predicts the tamper mask M on the attacked image to see which parts of the image are tampered. We inversely run the ACP and feeds the attacked image to extract the watermark \hat{W}. Afterwards, we rectify the extracted water by $\hat{W} = W \cdot (1 - M)$ to discard the tampered contents. Finally, with the original watermark W as reference, we uses the feature matcher M to locate the position of the crop in the original image plane.

In the training stage, the pipeline is slightly modified in order to properly train the networks. We let the ACP focus on the learning of robust data hiding and extraction by feeding it with non-tampered attacked images. We further add tampering attacks on the non-tampered attacked images to train the tamper detector.

3.2. Network Design

Considering the efficiency of the invertible U-Net proposed in [32], we build our ACP on top of this architecture. The network consists of six invertible blocks each of which contains a Haar wavelet transformation and a double-side affine coupling. The network ends with a conditional split layer. The number of the input and output channels are four. The sizes of R and \hat{R} are of the same as W. R and \hat{R} are not required to be the same.

In the attacking layer A, we first use a differentiable quantization layer to transfer the data type of the protected image from float to 8-bit integer. Then, we build differentiable methods to simulate the benign attacks B, the cropping attack C and the tampering attack T. In B, we take the implementation from [42] except that we build our own JPEG simulator J. In C, we randomly crop a portion of the protected image I_M. In T, we first randomly select random areas using a binary matrix M inside I_M, and generate the tampered image by $I_A = I_{rrr} \cdot M + I_M \cdot (1 - M)$. I_{rrr} refers to the source of the tamper.

For JPEG simulation J, there are already many scheme which include a carefully-designed JPEG simulator, e.g., JPEG-SS [62], JPEG-Mask [43], MBRS [63]. However, the real-world JPEG robustness of these schemes is still limited. We believe it mainly attribute to that the networks are over-fitted to a fixed compression mode. For example, [62][42] uses a fixed quantization table to mimic JPEG compression while in the real world the quantization table greatly varies. Luo [69] proposes a trainable attack network that competes with the baseline network during training, but previous works have reported that it usually makes the training very hard and unstable. In this paper, we propose to apply the Mix-Up strategy [70] to conduct an instance-agnostic interpolation by:

$$I_{jpg} = \theta \cdot I_M + (1 - \theta) \cdot \sum_{J_k \in J} \sum_{QF \in [100]} \epsilon \cdot J_k(I_M, QF),$$

where θ and ϵ are the mixing fractions and the parameter of the Mix-Up strategy, respectively.
where $\theta \in (0, 1)$, $\sum_{b \in B} \epsilon = 1$ and $\mathcal{F} \in \{\text{JPEG-SS, JPEG-Mask, MBRS}\}$. QF stands for the quality factor. The first part of QF is to prevent the image recovery from being too hard under simulated JPEG compression at the beginning of the training stage. Thus, we slowly decline θ to zero.

We accept the implementation of the edge generator and the PatchGAN-based discriminator proposed in [54] as our tamper detector \mathcal{V} and discriminator \mathcal{D}. We use the SURF algorithm [1] to implement the feature matcher \mathcal{M}. SURF is an efficient local feature detector and descriptor widely used to extract points of interest. The crop localization is realized by applying linear weighted fusion algorithms on the SURF descriptors of the two images.

3.3. Objective Loss Function

For the ACP, we encourage the protected image I_M and the extracted watermark I to respectively resemble the targeted image I and the ground-truth cropped watermark W_C. $L_{\text{rec}} = \mathcal{F}(I, I_M) + \mathcal{F}(W_C, W)$, where \mathcal{F} is the L_2 distance. Owing to the invertibility of the ACP, we do not use the perceptual loss. We also need to randomize the extra output by $L_{\text{ran}} = \mathcal{F}(R, \hat{R})$. The adversarial loss is to further control the introduced distortion by fooling the discriminator. We accept the least squared adversarial loss (LS-GAN) [57]. The total loss for ACP is $L_{\text{ACP}} = L_{\text{rec}} + \alpha \cdot L_{\text{ran}} + \beta \cdot L_{\text{ran}}$, where α and β are hyper-parameters. For the tamper detector, we minimize the binary cross entropy (BCE) loss between the estimated tamper mask M and the ground-truth mask \hat{M}. $L_{\mathcal{V}} = BCE(M, \hat{M})$.

4. EXPERIMENTAL RESULTS

4.1. Experiment Setup

We train the scheme on the COCO training/test set [38] with automatically generated attacks. The scheme is tested with human-participated attacks. We resize the images to the size of 256×256. The hyper-parameters are set as $\alpha = 1, \beta = 8$. The batch size is set as 16. We use Adam optimizer [35] with the default parameters. The learning rate is 1×10^{-4}. We provide the volunteers with some generated protected image, which are then cropped and processed by benign attacks such as lossy compression, scaling, etc. The volunteers may add, modify or delete some important image contents at their free will using typical image processing tools like Adobe Photoshop. The crop rate is roughly $\delta \in [0.25, 1]$. During training, we arbitrarily and evenly perform one kind of benign attacks. Sometimes the benign attack is skipped to simulate lossless communication. Also, to avoid over-fitting, we sometimes skip the tampering attack, in which case we force the tamper detector to predict a zero matrix. We adaptively convert the predicted tamper mask \hat{M} into a binary matrix.

4.2. Real-World Performance of Crop Localization

Quality of the protected images. In Fig. 3, we randomly sample different pairs of images as the targeted and watermark. In the first two groups, we use a shared watermark. From the figures, we can observe that the difference D is imperceptible. Little detail of the watermark can be found. We have conducted more embedding experiments over 1000 images from the test set, and the average PSNR between the protected images and the targeted images is 36.23dB, and the average SSIM [51] is 0.983.

Accuracy of the Crop Localization. Fig. 4 shows the results of watermark extraction, feature matching and crop localization on the protected images in Fig. 3. In the first row, we only crop the protected image. We see that the crop mask is accurately predicted. As a result, even without the prior knowledge of the original image, we know the relative position of the attacked image in the original image plane. We suggest the readers not using images with too much repetitive patterns as watermark where SURF may find multiple matching patterns as watermark where SURF may find multiple matching

![Fig. 3. Illustration of watermark embedding. Row 1-4: targeted images I, watermark W, protected images I_M, Augmented difference $D = 5 \times \text{abs}(I - I_M)$](image)

![Fig. 4. Results of watermark extraction and crop localization of the protected images in Fig. 3. The attacks are respectively (a) crop, (b) crop & scaling, (c) crop & JPEG and (d) crop & JPEG & tamper.](image)
Table 1. Average performance of cropping localization measured by IoU and SSIM between the extracted and ground-truth watermark.

Rate	Method	IoU	SSIM	Scaling	Blur		
90%	NoAttack	0.919	0.949	0.895	0.903	0.957	0.953
70%	JPEG	0.858	0.892	0.813	0.927	0.878	0.915
50%	JPEG	0.821	0.914	0.706	0.603	0.7223	0.540

The scheme is proven to be agnostic to the crop size in that the performance does not degrade significantly with larger crop rate.

Robustness in the Real-World Application.

In the second and third row of Fig. 4, we test the robustness of our scheme by conducting different benign attack on the cropped protected image. In the fourth row, tampering attack is further introduced. We subtract the extracted contents within the predicted tamperea areas (Fig. 5) and prohibit the feature matcher M from using the features inside. In Table 1, we can observe that our scheme provides high-accuracy crop localization despite the presence of the attacks other than cropping. The results promote the practical application of the proposed scheme. Thanks to the robustness of feature matching of SURF, the experiments show that in most cases our scheme do not require a precise watermark extraction.

Comparison with Crop Dissection.

In Fig. 7 of [22], Van et al. discusses their application on crop localization. However, it requires that the targeted image should not have been cropped and must maintain a constant fixed aspect ratio and resolution. Otherwise, the scheme cannot be applied. In contrast, the proposed scheme does not have any restriction on the targeted image. Therefore, we only compare our scheme with [22] on crop classification. The crop classification accuracy is 86% on high-quality untouched images, while the accuracy of our scheme is 91% on normal images, as long as the users avoid using inappropriate images as watermark.

Table 2. F1 score comparison for tamper detection among our scheme and the state-of-the-art methods.

Method	NoAttack	JPEG	Blur	Scaling
Proposed	0.773	0.736	0.695	0.745
Mantra-Net [13]	0.566	0.480	0.557	0.540
RRU-Net [12]	0.435	0.273	0.244	0.417

The performance of Mantra-Net on JPEG images is much worse than that on plain-text images. We believe the reason is that less statistical clue is preserved in the compressed version. In contrast, the embedded watermark signal serves as the alternative clue for tamper detection, which is designed to resist benign attacks. The performance on JPEG images does not drop too much.

4.4. Ablation Study

We study the effectiveness of the network design. In Test 1, we train two individual hiding network and revealing network to replace the normalizing-flow-based ACP. In Test 2, we implement the JPEG attack with that proposed in [68, 42, 67]. The JPEG QF and the crop ratio are kept the same for fair comparison. We train the implementations together with the baseline under the same losses and batch size. Fig. 6 shows the detailed comparison results. First, the baseline results outperform the encoder-decoder network design. Second, while MBRS [68] can provide decent robustness, the extraction performance is even better using our JPEG simulator. Specifically, the average SSIM between W and W_c using MBRS [68] is 0.797 compared to 0.878 reported in Table 1. The Mix-Up strategy prevents the networks from being over-fitted to any single JPEG simulator, which helps the scheme significantly improve its real-world robustness. In Test 3, we do not use the discriminator D. The results show that it leads to visible artifacts in the protected image. The extraction result is also worse than the baseline.

5. Conclusion

This paper presents a novel scheme of image crop localization using robust watermarking. We produces a visually indistinguishable protected image for a targeted image using the ACP. We simulate typical attacks in the pipeline where we propose an improved JPEG simulator. On receiving the attacked image, we extracts the watermark. We then conduct tamper detection on the image and use the SURF algorithm to locate the position of the crop. The results proves that our method provides high-accuracy and robust image crop localization. Besides, the accuracy of tamper detection is also promising.
6. REFERENCES

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “Surf: Speeded up robust features,” in European conference on computer vision. Springer, 2006, pp. 404–417.

[2] David G Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the seventh IEEE international conference on computer vision. Ieee, 1999, vol. 2, pp. 1150–1157.

[3] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros, “Cnn-generated images are surprisingly easy to spot... for now,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8695–8704.

[4] Hongtao Lu, Ruiming Shen, and Fu-Lai Chung, “Fragile watermarking scheme for image authentication,” Electronics Letters, vol. 39, no. 12, pp. 890–900, 2003.

[5] Hongjie He, JiaShu Zhang, and Heng-Ming Tai, “A wavelet-based fragile watermarking scheme for secure image authentication,” in International Workshop on Digital Watermarking. Springer, 2006, pp. 422–432.

[6] Xinpeng Zhang, Shuozhong Wang, Zhenxing Qian, and Guorui Feng, “Self-embedding watermark with flexible restoration quality,” Multimedia Tools and Applications, vol. 54, no. 2, pp. 385–395, 2011.

[7] Xinpeng Zhang and Shuozhong Wang, “Fragile watermarking with error-free restoration capability,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp. 1490–1499, 2008.

[8] Xinpeng Zhang and Shuozhong Wang, “Fragile watermarking scheme using a hierarchical mechanism,” Signal processing, vol. 89, no. 4, pp. 675–679, 2009.

[9] Xinpeng Zhang, Shuozhong Wang, Zhenxing Qian, and Guorui Feng, “Reference sharing mechanism for watermark self-embedding,” IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 485–495, 2010.

[10] Xinpeng Zhang, Zhenxing Qian, Yanli Ren, and Guorui Feng, “Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 4, pp. 1223–1232, 2011.

[11] Luisa Verdoliva, “Media forensics and deepfakes: an overview,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 5, pp. 910–932, 2020.

[12] Xiuli Bi, Yang Wei, Bin Xiao, and Weisheng Li, “Ru-net: The ringed residual u-net for image splicing forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[13] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan, “Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9543–9552.

[14] Xiuli Bi, Yanbin Liu, Bin Xiao, Weisheng Li, Chi-Man Pun, Guoyin Wang, and Xinbo Gao, “D-unet: A dual-encoder u-net for image splicing forgery detection and localization,” arXiv preprint arXiv:2012.01821, 2020.

[15] Fan Chen, Hongjie He, and Yaoran Huo, “Self-embedding watermarking scheme against jpeg compression with superior imperceptibility,” Multimedia Tools and Applications, vol. 76, no. 7, pp. 9681–9712, 2017.

[16] RO Preda and DN Vizireanu, “Watermarking-based image authentication robust to jpeg compression,” Electronics Letters, vol. 51, no. 23, pp. 1873–1875, 2015.

[17] Min-Jen Tsai and Chih-Cheng Chien, “Authentication and recovery for wavelet-based semifragile watermarking,” Optical Engineering, vol. 47, no. 6, pp. 067005, 2008.

[18] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo, “Face x-ray for more general face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5001–5010.

[19] Ido Yerushalmiy and Hagit Hel-Or, “Digital image forgery detection based on lens and sensor aberration,” International journal of computer vision, vol. 92, no. 1, pp. 71–91, 2011.

[20] Arcangelo Ranieri Bruna, Giuseppe Messina, and Sebastiano Battiato, “Crop detection through blocking artefacts analysis,” in International Conference on Image Analysis and Processing. Springer, 2011, pp. 650–659.

[21] Marco Fanfani, Massimo Iuliani, Fabio Bellavia, Carlo Colombo, and Alessandro Piva, “A vision-based fully automated approach to robust image cropping detection,” Signal Processing: Image Communication, vol. 80, pp. 115629, 2020.

[22] Basile Van Hoorick and Carl Vondrick, “Dissecting image crops,” arXiv preprint arXiv:2011.11831, 2020.

[23] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial networks,” arXiv preprint arXiv:1406.2661, 2014.

[24] Qichao Ying, Zhenxing Qian, Hang Zhou, Haisheng Xu, Xinpeng Zhang, and Siyi Li, “From image to image: Immunized image generation,” in Proceedings of the 29th ACM international conference on Multimedia, 2021, pp. 1–9.

[25] Minghao Yin, Yongbing Zhang, Xi Li, and Shiqi Wang, “When deep fool meets deep prior: Adversarial attack on super-resolution network,” in Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 1930–1938.

[26] Seung-Min Mun, Seung-Hun Nam, Haneol Jang, Dongkyu Kim, and Heung-Kyu Lee, “Finding robust domain from attacks: A learning framework for blind watermarking,” Neurocomputing, vol. 337, pp. 191–202, 2019.

[27] David Khachaturov, Ilia Shumailov, Yiren Zhao, Nicolas Papernot, and Ross Anderson, “Markpainting: Adversarial machine learning meets inpainting,” arXiv preprint arXiv:2106.00660, 2021.

[28] Laurent Dinh, David Krueger, and Yoshua Bengio, “Nice: Non-linear independent components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[29] Laurent Dinh, Jascha Sohl-Dickstein, and Sany Bengio, “Density estimation using real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[30] Diederik P Kingma and Prafulla Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,” arXiv preprint arXiv:1807.03039, 2018.
[63] Jamie Hayes and George Danezis, “Generating steganographic images via adversarial training,” *arXiv preprint arXiv:1703.00371*, 2017.

[64] Weixuan Tang, Shunquan Tan, Bin Li, and Jiwu Huang, “Automatic steganographic distortion learning using a generative adversarial network,” *IEEE Signal Processing Letters*, vol. 24, no. 10, pp. 1547–1551, 2017.

[65] Pin Wu, Yang Yang, and Xiaoqiang Li, “Stegnet: Mega image steganography capacity with deep convolutional network,” *Future Internet*, vol. 10, no. 6, pp. 54, Jun 2018.

[66] K. A. Zhang, A. Cuesta-Infante, and K. Veeramachaneni, “Steganogan: Pushing the limits of image steganography,” 2019.

[67] Kunlin Liu, Dongdong Chen, Jing Liao, Weiming Zhang, Hang Zhou, Jie Zhang, Wenbo Zhou, and Nenghai Yu, “Jpeg robust invertible grayscale,” *IEEE Transactions on Visualization and Computer Graphics*, 2021.

[68] Zhaoyang Jia, Han Fang, and Weiming Zhang, “Mbrs: Enhancing robustness of dnn-based watermarking by mini-batch of real and simulated jpeg compression,” *arXiv preprint arXiv:2108.08211*, 2021.

[69] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar, “Distortion agnostic deep watermarking,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020, pp. 13548–13557.

[70] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz, “mixup: Beyond empirical risk minimization,” *arXiv preprint arXiv:1710.09412*, 2017.

[71] Eric Wengrowski and Kristin Dana, “Light field messaging with deep photographic steganography,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2019, pp. 1515–1524.

[72] Cheol Woo Park, Yong Ho Moon, and Il Kyu Eom, “Image tampering localization using demosaicing patterns and singular value based prediction residue,” *IEEE Access*, vol. 9, pp. 91921–91933, 2021.

[73] Nhan Le and Florent Retraint, “An improved algorithm for digital image authentication and forgery localization using demosaicing artifacts,” *IEEE Access*, vol. 7, pp. 125038–125053, 2019.

[74] Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, and Jong-Seok Lee, “Evaluating robustness of deep image super-resolution against adversarial attacks,” in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2019, pp. 303–311.

[75] Paarth Neekhara, Brian Dolhansky, Joanna Bitton, and Cristian Canton Ferrer, “Adversarial threats to deepfake detection: A practical perspective,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021, pp. 923–932.

[76] Tero Karras, Samuli Laine, and Timo Aila, “A style-based generator architecture for generative adversarial networks,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2019, pp. 4401–4410.