PERSPECTIVE: Emergent phases in rare earth nickelate heterostructures

J. Chakhalian1, * and S. Middey2, †
1 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2 Department of Physics, Indian Institute of Science, Bengaluru 560012, India

The prediction of high T_c superconductivity in layers of LaNiO$_3$ through orbital engineering has led to extensive research efforts over the last fifteen years. During this period, a plethora of thin films and heterostructures based rare-earth nickelate family with perovskite structure has been synthesized and explored. In this short perspective, we briefly review the complexity of bulk RENiO$_3$, spotlighting several recent findings of emergent phenomena in heterostructures containing the interface between RENiO$_3$ and another transition metal oxide. Finally, we outline potentially interesting future directions linked to time-domain dynamics to harness new Mott and topological phases in artificial structures of RENiO$_3$.

INTRODUCTION

The famous volume titled "Magnetism and the Chemical bond" by John B. Goodenough was released in December 1964 [1] and rapidly earned a reputation of ‘Atlas Maior’ of quantum materials with correlated electrons. Somewhat surprisingly, this encyclopedic compendium contains no mention of rare-earth nickelates despite an early report on the synthesis [2]. However, two years later, in the series of insightful articles on complex oxides with perovskite structure, Goodenough et al., described the majority of structural, electronic, and magnetic properties of these compounds [3, 4]. During the 1970s and 80s, the investigation of rare-earth nickelates based on the chemical formula RENiO$_3$, where RE is a rare-earth ion, remained rather dormant until after the discovery of high T_c superconductivity in cuprate oxides with perovskite crystal structure [5]. Moreover, since in the periodic table Ni is located next to Cu, there was an active research for the nickel-based high T_c superconducting oxides [6], which is still ongoing [7, 8]. With the renewed interest in nickelates, a massive high-pressure synthesis effort was put forward, finally yielding the complete RENiO$_3$ family that spans from La to Lu (see Fig. 1), thus making the whole family available for the systematic exploration [9, 10].

We begin this perspective article with a brief introduction about the bulk RENiO$_3$ highlighting the complexity of their electronic and magnetic behavior. As shown in the phase diagram of bulk RENiO$_3$ (Fig. 1), the first member of the nickelate series, LaNiO$_3$ with rhombohedral $R3c$ structure remains metallic down to the lowest probed temperature. The intermediate members with RE = Pr and Nd undergo a first-order metal-to-insulator transition (MIT) from paramagnetic metallic (PMM) state with orthorhombic (Pbnm) structure to an antiferromagnetic insulating (AFI) state accompanied with a lowering of the symmetry to monoclinic ($P2_1/n$) [9, 10]. For even smaller RE ions (e.g., Sm...Lu), as the Ni-O-Ni bond angle decreases further away from the maximal value of $\sim 165^\circ$ in LaNiO$_3$, the MIT temperature (T_{MIT}) and magnetic transition (T_N) separate from each other (see Fig. 1). Within the insulating phase, the entire family has a monoclinic ($P2_1/n$) structure with two nonequivalent Ni sites in the unit cell. As for the spin structure, neutron diffraction measurements found the magnetic wave vector to be $(1/2, 0, 1/2)_{ortho}$ $[(1/4, 1/4, 1/4)$ in pseudo cubic notation] [11]. The spin arrangement of this E'-type antiferromagnetic (E'-AFM) phase can be visualized as a sequence of either $↑↑↓↓$ or $↑→↓←$ pseudo-cubic (1 1 1) planes. Resonant X-ray scattering (RXS) experiments on single crystalline thin film samples ruled out any orbital ordering [12, 13] even though the Ni$^{3+}$ ($t_{2g}^2e_g^1, S = 1/2$) is expected to be a Jahn-Teller active in a purely ionic picture. RXS experiments further confirmed the existence of spin noncollinearity within the E'-AFM phase [14].

From the electronic structure viewpoint, rare-earth nickelates are multi-band materials, as revealed by the Hall effect and thermopower measurements [16, 17]. Recent angle-resolved photoemission studies have also supported this multi-band character [18–20]. In the metallic phase, nickelates behave as a non Fermi liquid [21–23]. Tunneling measurement also claimed a pseudogap phase in metallic LaNiO$_3$ [24]. However, the simultaneous nature of the electronic and structural transitions still remains puzzling. The observation of a magnetic transition for NdNiO$_3$ and PrNiO$_3$ adds further complexity in understanding the mechanism of the MIT. For example, optical conductivity measurements find a gradual opening of a bandgap across the transition through...
the changes in the electrical resistivity. At the same time, lattice constants show a sharp jump in magnitude across the transition [25]. In addition, the optical band gap (∼ 1 eV) seems much larger than the gap, evaluated from electrical transport data [26].

Since the insulating phase with monoclinic symmetry consists of two inequivalent Ni, charge disproportionation (CD) \([\text{Ni}^{3+}\text{Ni}^{+3} \rightarrow \text{Ni}^{3+3/2}\text{Ni}^{3+3/2}]\) driven insulating phase would have been a natural explanation as the origin of the MIT [27–30]. The observation of two distinct magnetic moments (1.4 \(\mu_B\) and 0.7 \(\mu_B\)) in highly distorted YNiO\(_3\) supports the CD scenario [27]. However, this conclusion is in contradiction with the magnetic moments of all Ni sites, which are almost identical across the series of \(\text{RENiO}_3\) with \(\text{RE}=\text{Sm}, \text{Eu}, \text{Pr}\) and \(\text{Nd}\) [11, 31, 32]. Complimentarily, the findings of the similar energy dependence of the pseudocubic (1/4 1/4 1/4) magnetic peak across the Ni \(L_{3,2}\) edges, observed in RXS experiments across the series with different transition temperatures and structural distortions, is also inconsistent with a conventional CD phase [33]. While a spin density wave (SDW) transition can capture the simultaneous MIT and magnetic transition of NdNiO\(_3\) and PrNiO\(_3\) and the CD can be a simple consequence of a site-centered CD transition [34, 35], the appearance of the simultaneous structural transition cannot be accounted for by this mechanism. Though the importance of the electron-electron correlation effect behind the MIT was demonstrated [36], a pure Mott transition does not require either magnetic or structural transition.

The strong O-Ni covalency and the effective negative charge energy lead to the ground state of Ni ions to be more of \(3d^8 L\) character (\(L\) denotes a ligand hole antiferromagnetically coupled with the Ni \(e_g\) electrons), instead of the ionic \(3d^7\) configuration [37, 38]. This electronic configuration can easily explain the absence of any orbital ordering with one electron in each \(e_g\) state. Considering the dominant contribution of this \(3d^8 L\) configuration, a new CD mechanism has been suggested where the charge redistribution occurs on the oxygen sub-lattice across the MIT [39]. This has been named a bond disproportionation (BD) transition. Furthermore, this process \(3d^8 L + 3d^8 L \rightarrow 3d^8\) (ionic, \(S=1\)) + \(3d^8 L^2\) (covalent, \(S=0\)) became known as a site-selective Mott transition [40–43]. Considering the proposed BD scenario, the spin-configuration of \(E'\)-AFM phase should be thought as a sequence of \(\gamma^{-}\) or \(0-\gamma^{-}\) planes. Remarkably, based on the extensive bond-angle vs. bond-length analysis shown in Fig. 1, Goodenough and collaborators proposed an analogous picture of the bond disproportionation into a periodic pattern of ionic and covalent Ni sites starting around Y-Lu [15].

EPITAXIAL STABILIZATION OF \(\text{RENiO}_3\)

The continuous advancement in various physical vapor deposition techniques have enabled stabilization of various complex oxides in a single crystalline thin film form with atomic precision, [44–51]. This in turn offers a new set of control knobs such as quantum confinement, epitaxial strain, interfacial charge transfer, geometrical lattice engineering etc., to realize a plethora of emergent phenomena [44–51]. The stabilization of single crystalline \(\text{RENiO}_3\) thin films are highly non-trivial due to the requirement of the +3 high oxidation state of Ni. Moreover, the synthesis of stoichiometric \(\text{RENiO}_3\) in bulk form requires high oxygen pressure at elevated temperature. As a consequence, only LaNiO\(_3\) could be grown as a large single crystal [27, 28, 52–54]. During the initial synthesis work on nickelate films, it was demonstrated that even though thin films of LaNiO\(_3\) can be grown without high oxygen pressure [55, 56], the bulk-like metal-insulator transition could be observed only in NdNiO\(_3\) films post annealed under high oxygen pressure [57]. The explanation for the low pressure film growth was attributed to a coherent film/substrate interface that dramatically lowers the free energy [58, 59]. Utilizing this heteroepitaxial stabilization, high quality single crystalline \(\text{RENiO}_3\) films with \(\text{RE}=\text{La}, \text{Pr}, \text{Nd}, \text{Sm}\), Eu on perovskite substrates have been grown under low oxygen partial pressure by pulsed laser deposition [22, 26, 60–65], sputtering [66–69] and oxide molecular beam epitaxy [70–72].

The prediction of potential high \(T_c\) superconductivity via orbital engineering [73, 74] has resulted in a massive research drive for the growth of various artificial structures (e.g., thin-film, heterostructure, superlattice, etc.) of \(\text{RENiO}_3\), and have been summarized in recent review articles [75, 76]. This Perspective article focuses on several recent developments concerning the \(\text{RENiO}_3/\text{A}_{n''/n'''}\text{B}_{n'''}\text{O}_{n''''}\) heterostructure, where \(\text{A}_{n''/n'''}\text{B}_{n'''}\text{O}_{n''''}\) represents another transition metal oxide.

EMERGENT PHASES OF \(\text{RENiO}_3\) THROUGH OCTAHEDRAL ENGINEERING

When a hetero-interface between two perovskite oxides is formed, there can be a mismatch in lattice constants, octahedral rotational pattern, lattice symmetry, number of electrons on the transition metal site, \(d\) orbital configuration, spin ordering pattern, and so on. Collectively, they may lead to novel emergent phenomena. The first group of examples that we describe here, consists of an interface between two members of the \(\text{RENiO}_3\) series to illustrate how pure structural effects can introduce new phases of matter. From a structural viewpoint, \(\text{LaNiO}_3\) (LNO) is a special member of the \(\text{RENiO}_3\) series as it has a different octahedral rotational pattern \(\{a^-a^-a^-\}\) compared to the other members \(\{a^-b^-c^-\}\) [71, 79, 80]. Since \(\text{RENiO}_3\) members have a strong tendency to retain their bulk-like symmetry even in thin-film form [80], a strong structural competition is anticipated at the interface between LNO and other members of \(\text{RENiO}_3\). This effect has been indeed observed in ultrathin \(n\) uc \(\text{EuNiO}_3/m\) uc \(\text{LaNiO}_3\) [\(n\text{ENO}/m\text{LNO}\)] superlattices (here \(uc\) is unit cell in pseudocubic notation, \(n\) and \(m\) =1, 2) [78, 81–83]. The 1ENO/2LNO SL having rhombohedral
EMERGENT PHASES OF RENiO_3 DUE TO INTERFACIAL CHARGE TRANSFER

The phenomena due to charge transfer across the interface between two different semiconducting layers remain at the forefront of condensed matter physics. The interesting effects include a $p-n$ junction, two-dimensional electron gas hosting quantum Hall effect, etc. Similar charge transfer physics is being investigated in the case of complex oxide heterostructures. However, the underlying process is more complex due to electron-phonon coupling, strong electron interaction, strong anisotropy of d orbitals, diverse spin orders,
etc. Broadly speaking, charge transfer in oxide heterostructures is controlled by two factors: equalization of chemical potential across the interface and the stability of a certain redox pair. For example, in $AB^{+n}O_3/AB_1^{+n}O_3$ heterostructures, an electron transfer from ABO_3 to AB_1O_3 can be expected if the pair $B^{+(n+1)}/B_1^{+(n+1)}$ is more stable than the B^{+n}/B_1^{+n}. Such redox pair-driven charge transfer is short-range and typically limited within the interface’s first one/two unit cells.

Since the most stable oxidation state of Ni is $+2$ and Ni^{3+} is extremely rare, electron doping into the $RENiO_3$ layers is possible through a sharp interface with other purposely selected perovskites. As a result, such electron transfer can alter orbital and spin configurations, and structural parameters (Ni-O bond lengths and Ni-O-Ni bond angles), resulting in new electronic and magnetic states. Considering the interface between LaNiO$_3$ and Mott insulating LaTiO$_3$ (LTO), Chen et al. [88] predicted electron transfer into LaNiO$_3$ would strongly enhance correlation effects on Ni sites. The follow-up experimental work on 2LTO/2LNO superlattice confirmed the interfacial electron transfer ($Ni^{3+}Ti^{3+} \rightarrow Ni^{2+}+2+Ti^{3+}$, see Fig. 3) with overall insulating ground state [87]. The charge excitation gap ($E_g/2$ in Fig. 3) was found to be around 0.2 eV. X-ray absorption spectroscopy measurement determined a charge gap of 1.3 eV between Ti 3d and Ni upper Hubbard band (UHB) state [87]. From these, the correlated gap between UHBs and LHBs (lower Hubbard band) for Ni was deduced to be 1.5 eV. Detailed experimental work on a series of $RENiO_3$/GdTiO$_3$ heterostructures (RE = La, Nd, Sm) further revealed that the hybridization effect of $RENiO_3$ has a major impact on the electron transfer process [89]. Incorporating polar electric fields along with the charge transfer, a large orbital polarization of Ni was reported using LaTiO$_3$/LaNiO$_3$/LaAlO$_3$ heterostructures [90, 91]. Since Ti$^{4+}$ with an empty 3d^0 shell can not donate any electron, no charge transfer has been found in SrTiO$_3/RENiO_3$ heterostructures [92, 93]. Similarly, no charge transfer has been seen in LaFeO$_3$/SmNiO$_3$ heterostructures [94]. This can be readily understood from the fact that Fe$^{+5}$ ($3d^0$) is in a half-filled state and thus highly stable. In both cases [93, 94], the modulation of T_{MIT} has been linked with the change in the octahedral rotational pattern of NiO$_6$ octahedra near the interfaces.

Several manganite-nickelate heterostructures have been also extensively investigated. In bulk, CaMnO$_3$ is an insulator and undergoes an antiferromagnetic transition around 125 K [95]. As argued before, an interfacial charge distribution would be very unlikely in LaNiO$_3$/CaMnO$_3$ heterostructure since in CaMn$^{+3}$O$_3$, Mn has highly stable half-filled t_{2g} orbitals. This simple consideration is consistent with the experiment [96]. The most surprising observation in n uc LaNiO$_3$/m uc CaMnO$_3$ is ferromagnetism within the first interfacial unit cell of CaMnO$_3$ when the thickness of LNO layers is thick enough to make it metallic [96]. In the absence of any charge transfer, the origin of the unexpected ferromagnetism was explained in terms of double exchange among interfacial Mn ions in the presence of an itinerant electron in the adjacent LNO layers. In contrast, interfacial charge transfer (ICT) is expected in LaNiO$_3$/LaMn$^{+3}$O$_3$ (LNO/LMO) interface as the pair Mn$^{4+}$/Ni$^{2+}$ is more stable than Mn$^{+3}$/Ni$^{3+}$. XAS measurements performed on 2 uc LNO/2 uc LMO SL indeed found Ni with $+2$ and Mn with $+4$ charge states [97].

LNO/LMO SLs grown along [111] direction exhibit exchange bias, which is absent in [001]-oriented SLs [98]. Follow-up XAS measurements revealed that the charge transfer effect is stronger in [111]-oriented case [99]. Ferromagnetic coupling between Ni and Mn has been confirmed by XMCD (x-ray magnetic circular dichroism) study [97, 99]. ICT has been also reported at the interface of nickelates with mixed-valent manganite [100–103]. Among several reports, the most notable observation is the existence of helical spin arrangements within LNO layers, containing atomic-like Ni$^{+2}$ with 3d^0 electron configuration [100, 101].

Wrobel et al. investigated a series of La$_2$CuO$_4$/LaO/LaNiO$_3$ heterostructures to separate the dopant and doped layers from each other [104]. The doped electrons in LaNiO$_3$ result in interfacial charge disproportionation that strongly influences electrical transport behaviors.

All the compounds discussed so far are 3d transition metal...
oxides (TMOs), where the effect of spin-orbit coupling (SOC) is usually disregarded in the determination of the ground state as the crystal field (CF) splitting Δ_{CF} is approximately an order of magnitude larger than the intrinsic SOC λ. However, in 4d and 5d TMOs, the enhancement of λ makes it comparable to Δ_{CF}. As a result of the competing interactions dominated by SOC, several unusual quantum states, including topological insulators, quantum spin liquids, Weyl semimetals, and Kitaev magnets, have been recently predicted [105]. A prototypical example of this class of compounds is the Ruddlesden-Popper (RP) series $(\text{Sr}_{n+1}\text{Ir}_n\text{O}_{3n+1})$ of iridium oxides (Ir$^{4+}$, 5d6). In the layered perovskite Sr$_2$IrO$_4$ ($n = 1$), the t_{2g} band is split by the strong SOC leading to the formation of $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ subbands. A modest value of the Hubbard U further opens a gap and splits the narrow $J_{\text{eff}} = 1/2$ band into LHB and UHB, giving rise to a unique spin-orbit entangled Mott-insulating ground state with antiferromagnetic long-range ordering [106]. On the other hand, for the perovskite SrIrO$_3$ ($n = \infty$), the increased Ir 5d bandwidth W, together with comparable λ and U, eventually prevents a Mott gap opening and results in an intriguing correlated semimetallic ground state [107]. To validate this idea, Liu et al. investigated SrIrO$_3$/LaNiO$_3$ superlattices, where a full electron transfer from Ir to Ni was observed, resulting in $S=1$ spin configurations of interfacial Ni sites [108]. Moreover, the crystal field splitting for the interfacial IrO$_6$ octahedra was dominant over the SOC, which, together with the Hund’s coupling, results in $S=1$ state of Ir sites. Such suppression of SOC effects through ICT warrants careful checks and reinterpretations of SOC-driven effects in thin films and heterostructures of 5d oxides.

SUMMARY AND OUTLOOK

Starting with a brief description about bulk RENiO_3 and principle of epitaxial stabilization, we have discussed emergent behavior of RENiO_3 heterostructures, focusing primarily on octahedral engineering and interfacial charge transfer. In each of these examples, Ni remains in six fold coordination with oxygen. Interestingly, the local symmetry of Ni can be converted to pyramidal environment through interface engineering and topotactic reduction of RENiO_3-based heterostructure, leading to the observation of large orbital polarization of Ni [109, 110]. It would be very interesting to probe electronic and spin reconstruction of such pyramidal NiO$_3$-units utilizing different members of RENiO_3 series. Apart from interfacial charge doping, additional carriers (either electron or hole) can be introduced in RENiO_3 by chemical substitution [111–114] and external electric field [115–118]. While the modulation of MIT of RENiO_3 has been demonstrated using both routes, the underlying mechanism and the effect of carrier doping on BD phase is still missing. Another new direction would be exploring high entropy rare-earth nickelate combining at least five members of the series in equimolar portion [65, 119].

Due to the presence of simultaneous transitions in RENiO_3, it is highly non-trivial to discern a key order-parameter responsible for specific physical properties. This problem has been addressed by the recently developed ultrafast pump-probe technique that explores dynamics of these coupled transitions within a broad time window spanning from femto- to nanoseconds [121]. Taking NdNiO$_3$ as a prototypical system, Stoica et al. optically excited the spin and charge degrees of freedom away from the equilibrium and then used femtosecond soft x-ray pulses to simultaneously probe the recovery dynamics of magnetic and electronic orders including their characteristic timescale (see Fig. 4) [120]. In this experiment the authors observed that after the excitation by an optical pump pulse, the magnetism collapses markedly faster than the time scale over which the insulator-to-metal transition occurs. This observation allowed to exclude magnetism as the prime driver of the MIT. In another experiment, Abreu et. al. investigated the THz conductivity dynamics in NdNiO$_3$ following an optical thermal pump from the insulating ground state into a metastable metallic phase [122]. The application of the THz probe revealed a remarkable contrast between the first (in NdNiO$_3$) and second (in EuNiO$_3$) order dynamics. These early experiments clearly demonstrate the importance of pump-probe experiments to investigate nickelates in the time domain and shed light on controversial or unsolved questions in the equilibrium. Notably, by tracking the characteristic timescales, one can acquire a definitive picture of how charge, magnetic, orbital, and lattice degrees emerge and evolve. Moreover, by recording the time evolution of the signals in multiple detection channels, one can figure out the key progenitor for driving the complex transitions. In the future, it would be interesting to examine if dynamic strain engineering can tune the quantum phases. Furthermore, probing and controlling entwined orders can develop into an alternative venue to control these phases with optical stimulation either above or below the band-gap (i.e., electronic versus phonon excitation). For example, it would be intriguing to verify if coherent phonon coupling to spin order during the photo-induced insulator-to-metal transition can substantiate coherence between lattice and magnetic degrees.
of freedom on picoseconds timescales and at THz speeds.

Overall, it is truly impressive how this particular materials system highlighted by John Goodenough and collaborators almost 60 years ago went through several incarnations only to continue carrying more fascinating stories for future generations of physicists. We believe many more surprises remain hidden in the structures based on rare-earth nickelate, only to be unraveled with the advancement of experimental techniques.

ACKNOWLEDGEMENT

This paper is written on the monumental occasion of the centennial birthday of Professor John Goodenough.

JC was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0022160. SM acknowledges financial support of a DST Nanomission grant (Grant No. DST/NM/NS/2018/246) and a SERB Early Career Research Award (Grant No. ECR/2018/001512). JC thanks John W. Freeland (Argonne National Laboratory) and Richard Averitt (University of California, San-Diego) for numerous fruitful discussions on ultra-fast physics of nickelates. We thank Ranjan Kumar Patel and Nandana Bhattacharya for their help during the preparation of the manuscript.
