Herpes zoster correlates with increased risk of Parkinson’s disease in older people

A population-based cohort study in Taiwan

Shih-Wei Lai, MD, Chih-Hsueh Lin, MD, PhD, Hsien-Feng Lin, MD, MS, Cheng-Li Lin, MS, Cheng-Chieh Lin, MD, PhD, Kuan-Fu Liao, MD, PhD

Abstract

Little is known on the relationship between herpes zoster and Parkinson’s disease in older people. This study aimed to explore whether herpes zoster could be associated with Parkinson’s disease in older people in Taiwan. We conducted a retrospective cohort study using the claim data of the Taiwan National Health Insurance Program. There were 10,296 subjects aged 65 years and older with newly diagnosed herpes zoster as the herpes zoster group and 39,405 randomly selected subjects aged 65 years and older without a diagnosis of herpes zoster as the nonherpes zoster group from 1998 to 2010. Both groups were followed up until subjects received a diagnosis of Parkinson’s disease. This follow-up design would explore whether subjects with herpes zoster were at an increased risk of Parkinson’s disease. Relative risks were estimated by adjusted hazard ratio (HR) and 95% confidence interval (CI) using the multivariable Cox proportional hazards regression model.

The incidence of Parkinson’s disease was higher in the herpes zoster group than that in the nonherpes zoster group (4.86 vs 4.00 per 1000 person-years, 95% CI 1.14, 1.29). After adjustment for confounding factors, the multivariable Cox proportional hazards regression model revealed that the adjusted HR of Parkinson’s disease was 1.17 for the herpes zoster group (95% CI 1.10, 1.25), compared with the nonherpes zoster group.

Older people with herpes zoster confer a slightly increased hazard of developing Parkinson’s disease when compared to those without herpes zoster. We think that herpes zoster correlates with increased risk of Parkinson’s disease in older people. When older people with herpes zoster seek help, clinicians should pay more attention to the development of the cardinal symptoms of Parkinson’s disease.

Abbreviation: ICD-9 code = International Classification of Diseases 9th Revision Clinical Modification.

Keywords: herpes zoster, nonmotor, older people, Parkinson’s disease

1. Introduction

Parkinson’s disease is one of the most common neurodegenerative diseases in older people. As well established, the clinical diagnosis of Parkinson’s disease is always based on patients presenting with the traditional motor symptoms including bradykinesia, rigidity, tremor, and postural instability.[1,2] In addition to motor symptoms, recently nonmotor symptoms have been regarded as cardinal components of Parkinson’s disease. These nonmotor symptoms may include olfactory dysfunction,
sleep disorder, constipation, depression, irritable bowel syndrome, hearing loss, cataract, and others. Nonmotor symptoms may occur during the course of the disease and also may predate the development of motor symptoms.[3–9] Yet, herpes zoster remains unmentioned.

Herpes zoster always results from reactivation of latent varicella-zoster virus as a result of the decline of human cell-mediated immunity.[10,11] Increasing age has been known as a risk factor for herpes zoster.[10,11] Herpes zoster not only could cause functional decline, but also could increase death risk in older people.[12,13] In a mouse model of Parkinson’s disease, impairment of the central dopaminergic pathways can result in changes of some immune functions.[14] Increasing evidence has indicated that neuroinflammation and immunological changes play the significant roles in contributing to neuron death in Parkinson’s disease, in which microglia activation and other immune cells at sites of neuronal injury is detected.[15–17]

In the light of aforementioned review, we make a theoretical hypothesis that there could be a link between herpes zoster and Parkinson’s disease based on inflammation and immunological changes involved in both conditions. If herpes zoster is associated with Parkinson’s disease in older people, clinicians may consider the possibility of Parkinson’s disease when patients with herpes zoster concomitantly or gradually manifest with motor and/or nonmotor symptoms. This topic is not data mining because a clinical study by Ragozzino et al[18] has ever proposed such a potential link. However, no association could be detected between herpes zoster and Parkinson’s disease. The authors explained that the limited power of the study could hide such an association.[18] Therefore, using the database of the Taiwan National Health Insurance Program, we conducted a retrospective cohort study to understand this hypothesis.

2. Methods

2.1. Design and data source

Taiwan is an independent country with more than 23 million people. We conducted a retrospective cohort study using data retrieved from claim information of the Taiwan National Health Insurance Program. This insurance program implemented in March 1995 and has covered nearly 99% of 23 million people living in Taiwan.[19] Shortly speaking, the database contained information on patient encrypted identification number, sex, birth date, utilization of medical services, prescription International Classification of Diseases 9th Revision Clinical Modification codes, and disease classification codes, and so on. Diseases were coded according to the (ICD-9 code), 2001 edition. The details of the program have been well written in previous studies.[20–24] The study was approved by the Institutional Review Board of China Medical University and Hospital in Taiwan (CMUH-104-REC2-115).

2.2. Criteria and definition

The herpes zoster group consisted of subjects aged 65 years and older with newly diagnosed herpes zoster (ICD-9 code 053) from 1998 to 2010. The date of diagnosing herpes zoster was defined as the index date. The nonherpes zoster group consisted of randomly selected subjects aged 65 years and older who had never been clinically diagnosed with herpes zoster during the study period from 1998 to 2010 (herpes zoster group: nonherpes zoster group=1:4). Both groups were matched with sex, age (every 5 years), comorbidities, and index year of diagnosing herpes zoster. Both groups were followed up until subjects received a new diagnosis of Parkinson’s disease (ICD-9 code 332.0) or until December 31, 2011.

To diminish the biased analysis, subjects who had a previous diagnosis of Parkinson’s disease or secondary Parkinsonism (ICD-9 code 332.1) before the index date were excluded from the study.

2.3. Comorbidities assessment

Comorbidities potentially related to Parkinson’s disease were included as follows: alcohol-related diseases (ICD-9 codes 291, 303, 305.00, 305.01, 305.02, 305.03, 571.0-571.3, 790.3, and V11.3), cardiovascular diseases (ICD-9 codes 410–414, 428, 430–438, and 440–448), chronic kidney diseases (ICD-9 codes 585–586 and 588.8–588.9), chronic obstructive pulmonary diseases (ICD-9 codes 419, 492, 493, and 496), dementia (ICD-9 codes 290.0, 290.1, 290.2, 290.3, 290.4, 294.1, and 331.0), depression (ICD-9 codes 296.2, 296.3, 300.4, and 311), diabetes mellitus (ICD-9 code 250), head injury (ICD-9 codes 830-854 and 959.01), hyperlipidemia (ICD-9 codes 272.0, 272.1, 272.2, 272.3, and 272.4), and hypertension (ICD-9 codes 401–405). All comorbidities were diagnosed before the index date.

Some subjects could be mistakenly diagnosed, mistakenly coded by accident, or mistakenly coded by similar clinical features but without confirmed diagnosis. To ensure the validity of diagnosis, only subjects having at least 3 consensus same diagnoses in the ambulatory care and/or hospitalization records during the study period could be included. Principal diagnosis and secondary diagnosis were applied equally. Therefore, herpes zoster, Parkinson’s disease, and comorbidities were documented for 3 or more records in the ambulatory care and/or hospitalization.

2.4. Statistical analysis

The differences of sex, age, and comorbidities were compared between the herpes zoster group and the nonherpes zoster group using the chi-square test for categorical variables and the t-test for continuous variables. The incidence of Parkinson’s disease was estimated as the event number of Parkinson’s disease found during the follow-up period, divided by the total follow-up person-years for each group. At first, all variables were included in the univariable Cox proportional hazards regression model. Those found to be significant in the univariable model were further included in the multivariable Cox proportional hazards regression model to estimate the hazard ratio (HR) and 95% confidence interval (CI) of Parkinson’s disease associated with herpes zoster and comorbidities. The proportional hazard model assumption was examined by using a test of scaled Schoenfeld residuals. In the model evaluating the Parkinson’s disease risk throughout overall follow-up period, results of the test revealed a significant relationship between Schoenfeld residuals for herpes zoster and follow-up time, suggesting that the proportionality assumption was violated (P value=0.001). In the subsequent analyses, we stratified the follow-up period to deal with the violation of proportional hazard assumption. The statistical significance level was set at 2-sided probability value of <0.05. All analyses were used by SAS software version 9.2 (SAS Institute Inc., Cary, NC).

3. Results

3.1. Baseline characteristics of the study population

Table 1 reveals the baseline information of the study population. There were 10,296 subjects in the herpes zoster group and 39,405
subjects in the nonherpes zoster group, with a similar distribution of sex. The mean ages (standard deviation) were 74.4 (6.4) years in the herpes zoster group and 73.7 (6.6) years in the nonherpes zoster group (t-test, \(P < 0.001 \)). The herpes zoster group was more likely to have a history of alcohol-related diseases, chronic kidney diseases, dementia, depression, and head injury (chi-square test, \(P = 0.001 \)).

3.2. Incidence density of Parkinson’s disease stratified by sex, age, and follow-up period

At the end of the study period, there were 256 events of Parkinson’s disease and 52,679 person-years in the nonherpes zoster group. There were 808 events of Parkinson’s disease and 202,207 person-years in the nonherpes zoster group. Table 2 reveals that a higher incidence of Parkinson’s disease in the herpes zoster group than that in the nonherpes zoster group (4.86 vs 4.00 per 1000 person-years, incidence rate ratio 1.22, 95% CI 1.14, 1.29). The incidence rates of Parkinson’s disease, as stratified by sex, age, and follow-up period, were all higher in the herpes zoster group than those in the nonherpes zoster group. The incidence rate of Parkinson’s disease decreased with the follow-up period in the herpes zoster group, with the highest in the first 3 months (8.22 per 1000 person-years). The incidence rate ratio of Parkinson’s disease was higher in the first 3 months (incidence rate ratio 2.87, 95% CI 2.68, 3.08). The risk of Parkinson’s disease persisted for

Table 1	Baseline characteristics between the herpes zoster group and the nonherpes zoster group.						
Variable	Herpes zoster	Nonherpes zoster					
	No	N = 39,405	%	n	N = 10,296	%	P
Sex							
Female	19,739	50.1	5156	50.1	0.98		
Male	19,666	49.9	5140	49.9	0.02		
Age group, y							
65–74	23,146	58.7	5950	57.8	<0.001		
75–84	13,781	35.0	3624	35.2			
≥85	2478	6.3	722	7.0			
Age, y, mean, standard deviation†	73.7	6.6	74.4	7.0			
Baseline comorbidities							
Alcohol-related diseases	788	2.00	292	2.84	0.001		
Cardiovascular diseases	21429	54.4	5648	54.9	0.39		
Chronic kidney diseases	1928	4.99	612	5.94	0.001		
Chronic obstructive pulmonary diseases	14583	37.0	3885	37.7	0.18		
Dementia	802	2.04	331	3.21	0.001		
Depression	1803	4.58	597	5.80	0.001		
Diabetes mellitus	7369	18.7	2011	19.6	0.06		
Head injury	1032	2.62	385	3.74	0.001		
Hypertension	11317	28.7	3015	29.3	0.26		
Hypertension	27863	70.7	7261	70.5	0.71		

Data are presented as the number of subjects in each group, with percentages given in parentheses, or mean with standard deviation given in parentheses.

† Chi-square test

‡ t-test comparing subjects with herpes zoster and without herpes zoster.

Table 2	Incidence density of Parkinson’s disease associated with herpes zoster stratified by sex, age, and follow-up period.								
Variable	Herpes zoster	Nonherpes zoster							
	N	Event	Person-years	Rate†	N	Event	Person-years	Rate†	IRR (95% CI)
All	39,405	202,207	10,296	52,679	4.86	1.22 (1.14, 1.29)			
Sex									
Female	19,739	102,949	5156	26,738	4.41	1.16 (1.06, 1.27)			
Male	19,666	99,258	5140	25,941	5.32	1.27 (1.16, 1.38)			
Age group, y									
65–74	23,146	130,803	5950	33,431	4.28	1.28 (1.19, 1.39)			
75–84	13,781	63,142	3624	16,852	5.67	1.11 (0.98, 1.23)			
≥85	2478	8173	722	2396	5.84	1.36 (1.07, 1.74)			
Follow-up period									
<3 months	39,405	9794	10,296	2556	8.22	2.87 (2.68, 3.08)			
3–6 months	38,939	9890	10,143	2520	5.16	1.39 (1.26, 1.50)			
6–12 months	38,498	4940	10,063	1940	4.66	1.40 (1.30, 1.52)			
≥12 months	37,314	163,735	9724	42,663	4.66	1.12 (1.05, 1.20)			

† Incidence rate: per 1000 person-years

CI = confidence interval, IRR = herpes zoster to nonherpes zoster incidence rate ratio and 95% confidence interval
between herpes zoster and Parkinson disease using the population database to reveal such an association. To diminish the biased results, subjects who had a diagnosis of Parkinson disease before the index date were excluded from the study. All study subjects were followed up until subjects received a new diagnosis of Parkinson’s disease or until 2011. Therefore, we really examined the first reported diagnosis of Parkinson’s disease for the study subjects. That is, patients with herpes zoster were included in the study before the confirmed diagnosis of Parkinson’s disease. However, whether herpes zoster could be a nonmotor manifestation of Parkinson’s disease in older people needs further research to confirm.

The pathogenetic basis between herpes zoster and Parkinson’s disease cannot be explored in our observation. Although infection could be a risk factor for Parkinson’s disease, such as herpes simplex, no research has conclusively shown a link between herpes zoster and Parkinson’s disease. Increasing evidence has indicated that neuroinflammation and immunological changes play the significant roles in contributing to neuron death in Parkinson’s disease, in which microglia activation and other immune cells at sites of neuronal injury is detected.

During the natural course of Parkinson’s disease, these cells can cause chronic inflammation and thereby lead to the progressive degeneration and death of dopaminergic neurons in the substantia nigra. Finally, the resulting dopamine depletion reflects the pathological abnormalities and clinical manifestations of Parkinson’s disease. In addition, the animal study has revealed that peripheral T lymphocytes and B lymphocytes could be decreased in rate model of Parkinson’s disease. Therefore, we rationally hypothesize that peripheral T lymphocytes and B lymphocytes could be decreased in patients with Parkinson’s disease.

4. Discussion

In this retrospective cohort study, we noticed that the incidence rate of Parkinson’s disease in the herpes zoster group seems to be slightly higher than that in the nonherpes zoster group (4.86 vs. 4.00 per 1000 person-years, Table 2). We also noticed that the incidence rate of Parkinson’s disease was the highest during the first 3 months (8.22 per 1000 person-years, Table 2). After adjustment for confounding factors, we also noticed that patients with herpes zoster were associated with increased hazard of Parkinson’s disease (adjusted HR 1.17, Table 3). Ragozzino et al. have ever proposed such a potential link, but no association could be detected between herpes zoster and Parkinson’s disease. The authors explained that the limited power of the study could hide such an association. To the best of our knowledge, this present study was the first cohort study using the population database to reveal such an association between herpes zoster and Parkinson’s disease. To diminish the biased results, subjects who had a diagnosis of Parkinson’s disease before the index date were excluded from the study. All study subjects were followed up until subjects received a new diagnosis of Parkinson’s disease or until 2011. Therefore, we really examined the first reported diagnosis of Parkinson’s disease for the study subjects. That is, patients with herpes zoster were included in the study before the confirmed diagnosis of Parkinson’s disease. However, whether herpes zoster could be a nonmotor manifestation of Parkinson’s disease in older people needs further research to confirm.

The pathogenetic basis between herpes zoster and Parkinson’s disease cannot be explored in our observation. Although infection could be a risk factor for Parkinson’s disease, such as herpes simplex, no research has conclusively shown a link between herpes zoster and Parkinson’s disease. Increasing evidence has indicated that neuroinflammation and immunological changes play the significant roles in contributing to neuron death in Parkinson’s disease, in which microglia activation and other immune cells at sites of neuronal injury is detected. During the natural course of Parkinson’s disease, these cells can cause chronic inflammation and thereby lead to the progressive degeneration and death of dopaminergic neurons in the substantia nigra. Finally, the resulting dopamine depletion reflects the pathological abnormalities and clinical manifestations of Parkinson’s disease. In addition, the animal study has revealed that peripheral T lymphocytes and B lymphocytes could be decreased in rate model of Parkinson’s disease. Therefore, we rationally hypothesize that peripheral T lymphocytes and B lymphocytes could be decreased in patients with Parkinson’s disease.

We noticed that patients with herpes zoster seemed to have more comorbidities, such as alcohol-related diseases, chronic kidney diseases, dementia, depression, and head injury (Table 1). Therefore, these patients could frequently seek medical care and consequently would have more chances to be diagnosed with Parkinson’s disease. Clinically, not all patients acquiring herpes zoster would develop Parkinson’s disease. It is unlikely that patients acquiring herpes zoster would be immediately diagnosed with Parkinson’s disease. It needs to take time to make the right diagnosis. Based on neuroinflammation and immunological

Table 3

Cox model measured hazard ratio and 95% confidence interval of Parkinson’s disease associated with herpes zoster and comorbidities.

Variable	Crude HR (95%CI)	Adjusted† HR (95%CI)
Sex, male vs female	1.13 (1.00, 1.28)	1.17 (1.03, 1.32)
Age, per 1 year	1.04 (1.03, 1.05)	1.03 (1.02, 1.04)
Herpes zoster, yes vs no	1.22 (1.14, 1.29)	1.17 (1.10, 1.25)
Baseline comorbidities (yes vs. no)		
Alcohol-related diseases	0.87 (0.52, 1.45)	–
Cardiovascular diseases	1.68 (1.48, 1.90)	1.37 (1.19, 1.57)
Chronic kidney diseases	1.09 (0.80, 1.48)	–
Chronic obstructive pulmonary diseases	1.20 (1.06, 1.36)	1.00 (0.88, 1.13)
Dementia	3.05 (2.27, 4.10)	2.12 (1.57, 2.68)
Depression	1.81 (1.43, 2.28)	1.55 (1.22, 1.96)
Diabetes mellitus	1.19 (1.02, 1.38)	1.10 (0.94, 1.29)
Head injury	1.51 (1.09, 2.09)	1.36 (0.98, 1.88)
Hyperlipidemia	1.05 (0.92, 1.20)	–
Hypertension	1.63 (1.41, 1.88)	1.33 (1.14, 1.56)

† Variables found to be significant in the univariable analysis were further included in the multivariable Cox proportional hazards regression analysis.

HR was additionally adjusted for sex, age, cardiovascular diseases, chronic obstructive pulmonary diseases, dementia, depression, diabetes mellitus, head injury, and hypertension.

CI = confidence interval, HR = hazard ratio.
changes involved in both conditions mentioned on the above
discussion, patients acquiring herpes zoster might concomitantly
or gradually manifest with cardinal symptoms of Parkinson’s
disease during their follow-up period. Patients who concomitantly
manifested with cardinal symptoms could be diagnosed with
Parkinson’s disease more quickly, maybe less than 3 months.
Patients who gradually manifested with cardinal symptoms could
be diagnosed with Parkinson’s disease more later, maybe longer
than 3 months. Therefore, these accompanied cardinal symptoms
can alert clinicians about the possibility of Parkinson’s disease.
Therefore, we suggest that clinicians should take a thorough
history on motor or nonmotor symptoms when patients presented
with herpes zoster, particularly in the first 3 months after
diagnosing herpes zoster. Thus, Parkinson’s disease can be
detected more earlier.

A number of limitations should be discussed. First, the lag
period between the onset of cardinal symptoms of Parkinson’s
disease and the date of confirmed diagnosis of this disease really
exists. Therefore, whether herpes zoster developed before or after
the onset of cardinal symptoms of Parkinson’s disease cannot be
definitely determined in this observational study. Second,
although the diagnoses of herpes zoster, Parkinson’s disease,
and comorbidities were based on ICD-9 codes, the diagnosis
accuracy based on ICD-9 codes has been thoroughly examined in
previous studies.[11–17] To ensure the validity of diagnosis, only
patients having at least 3 consensus same diagnoses in the
ambulatory care and/or hospitalization records during the
follow-up period could be included in the study. Therefore,
herpes zoster, Parkinson’s disease, and comorbidities were
documented for 3 or more records in the ambulatory care
and/or hospitalization. Third, some risk factors for Parkinson’s
disease such as alcoholism, smoking, exposure to pesticides, or
use of well water, were not recorded in this database due to the
inherent limitation. However, alcohol-related diseases were used
instead of alcoholism and chronic obstructive pulmonary
diseases were used instead of smoking. These points have been
described in previous studies.[17,31]

Fourth, herpes zoster and Parkinson’s disease are 2 common diseases found in older people. The purpose of the study was to explore this issue in older people. Youger population was not included. We noticed that age was
The purpose of the study was to explore this issue in older people.

Parkinson's disease is a common neurodegenerative disorder
characterized by the loss of dopaminergic neurons in the sub
stantia nigra, resulting in symptoms such as tremor, rigidity,
bradykinesia, and postural instability. The prevalence of Parkinson’s
disease increases with age, and it is more common in older people.

The incidence of herpes zoster in older people is higher than in younger populations. This is because the immune system weakens with age, making older people more susceptible to infections.

Herpes zoster, also known as shingles, is a viral disease caused by the Varicella-Zoster virus, which is the same virus that causes chickenpox. After a primary infection, the virus remains dormant in the body and may reactivate later in life, especially in older people. The incidence of herpes zoster in older people is 10-20 times higher than in younger people.

The reactivation of varicella-zoster virus can lead to a new episode of chickenpox in older people who have not had the disease before. However, the most common presentation of herpes zoster in older people is as a painful rash with blisters on the skin. The rash usually appears on one side of the body and may last for several weeks.

Herpes zoster has been linked to a higher risk of developing Parkinson’s disease. Several studies have shown a higher incidence of Parkinson’s disease in older people who have had herpes zoster compared to those without it. This association between herpes zoster and Parkinson’s disease has been observed in studies from different countries and populations.

There are several potential mechanisms that could explain the association between herpes zoster and Parkinson’s disease. One hypothesis is that herpes zoster can trigger an inflammatory response in the nervous system, which may increase the risk of developing Parkinson’s disease. Another possibility is that herpes zoster can induce changes in gene expression that may predispose individuals to developing Parkinson’s disease.

This association between herpes zoster and Parkinson’s disease is important because it may help clinicians identify at-risk populations and take preventive measures. However, more research is needed to fully understand the underlying mechanisms and to confirm the clinical significance of this association.

References

[1] Ziemssen T, Reichmann H. Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 2007;13:323–32.
[2] Maas A, Reichmann H. Sleep and non-motor symptoms in Parkinson’s disease. J Neural Transm (Vienna) 2013;120:563–9.
[3] Chaudhuri KR, Naidu Y. Early Parkinson’s disease and non-motor issues. J Neurol 2000;253(suppl 5):S3–8.
[4] Wolters E. Non-motor extragalgal signs and symptoms in Parkinson’s disease. Parkinsonism Relat Disord 2009;15(suppl 3):S6–12.
[5] Reichmann H, Schneider C, Lohle M. Non-motor features of Parkinson’s disease: depression and dementia. Parkinsonism Relat Disord 2009;15(suppl 3):S87–92.
[6] Lohle M, Storch A, Reichmann H. Beyond tremor and rigidity: non-motor features of Parkinson’s disease. J Neural Transm (Vienna) 2009;116:1483–92.
[7] Lai SW, Liao KF, Lin CL, et al. Irritable bowel syndrome correlates with increased risk of Parkinson’s disease in Taiwan. Eur J Epidemiol 2014;29:57–62.
[8] Lai SW, Liao KF, Lin CL, et al. Hearing loss may be a non-motor feature of Parkinson’s disease in older people in Taiwan. Eur J Neurol 2014;21:752–7.
[9] Lai SW, Lin CL, Liao KF, et al. Increased risk of Parkinson’s disease in cataract patients: a population-based cohort study. Parkinsonism Relat Disord 2015;21:68–71.
[10] Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis 2004;4:26–33.
[11] Weinberg JM. Herpes zoster: epidemiology, natural history, and common complications. J Am Acad Dermatol 2007;57:S130–5.
[12] DeLaGarza VW, Arbogast JG, Podolinski CF, et al. Reactivation of herpes zoster (shingles) infection associated with an increased risk of death in immunocompetent older persons. W V Med J 2008;104:22–4.
[13] Attal N, Debey G, Gavazzi G, et al. Functional decline and herpes zoster in older people: an interplay of multiple factors. Aging Clin Exp Res 2015;27:757–65.
[14] Bieganska K, Czlonkowska A, Bidzinski A, et al. Immunological changes in the MPTP-induced Parkinson’s disease mouse model. J Neuroimmunol 1993;42:33–7.
[15] Lee JK, Tran T, Tansey MG. Neuroinflammation in Parkinson’s disease. J Neuroimmune Pharmacol 2009;4:419–29.
[16] Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 2010;117:971–9.
[17] Joers V, Tansey MG, Mulas G, et al. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 2016;pii: S0301–0082(15)30053-8. [doi: 10.1016/j.pneurobio.2016.04.006].
[18] Raguram M, Kurland L, Rajput A. Investigation of the association between Herpes zoster and Parkinson’s disease. Neuroepidemiology 1983;2:89–92.
[19] National Health Insurance Research Database. Taiwan. Available at: http://nhird.nhri.org.tw/en/index.html. Accessed October 1, 2016, English version.
Lai et al. Medicine (2017) 96:7

[20] Lai SW, Liao KF, Liao CC, et al. Polypharmacy correlates with increased risk for hip fracture in the elderly: a population-based study. Medicine 2010;89:295–9.

[21] Chen HY, Lai SW, Muo CH, et al. Ethambutol-induced optic neuropathy: a nationwide population-based study from Taiwan. Br J Ophthalmol 2012;96:1368–71.

[22] Lai HC, Chang SN, Lin CC, et al. Does diabetes mellitus with or without gallstones increase the risk of gallbladder cancer? Results from a population-based cohort study. J Gastroenterol 2013;48:856–65.

[23] Hung SC, Lai SW, Tsai PY, et al. Synergistic interaction of benign prostatic hyperplasia and prostatitis on prostate cancer risk. Br J Cancer 2013;108:1778–83.

[24] Yang SP, Muo CH, Wang IK, et al. Risk of type 2 diabetes mellitus in female breast cancer patients treated with morphine: a retrospective population-based time-dependent cohort study. Diabetes Res Clin Pract 2015;110:285–90.

[25] Howard JS3rd. Tic douloureux, Parkinson’s disease and the herpes connection. Integr Physiol Behav Sci 1997;32:257–64.

[26] Vlajinac H, Dzoljic E, Maksimovic J, et al. Infections as a risk factor for Parkinson’s disease. J Neuroimmunol 2001;113:146–52.

[27] Baba Y, Kuroiwa A, Uitti RJ, et al. Alterations of T-lymphocyte populations in Parkinson’s disease. Parkinsonism Relat Disord 2005;11:493–8.

[28] Niwa F, Kuriyama N, Nakagawa M, et al. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson’s disease. Geriatr Gerontol Int 2012;12:102–7.