Comprehensive Sexuality Education to Reduce Pregnancy and STIs in Adolescents in the United States: A Systematic Review and Meta-Analysis

Amy L. Bordogna, Amanda C. Coyle, Rupa Nallamothu, Alina L. Manko, and Renata W. Yen

The Dartmouth Institute for Health Policy & Clinical Practice, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA

ABSTRACT

The United States has a higher rate of teen pregnancy than any other developed country with 30% of American girls becoming pregnant before the age of 20. Laws regarding the inclusion and content of sexuality education vary across the country, which are associated with differences in pregnancy and sexually transmitted infection (STI) rates between states. This systematic review aims to determine whether comprehensive sexuality education (CSE) is more effective than abstinence-only or no sexuality education at reducing teenage pregnancy. Secondary objectives include analyzing the effect of CSE on STI incidence, sexual activity, safe-sex behaviors, and social discomfort. We searched multiple databases for studies published from 1990 to 2021. Twenty-nine studies met our inclusion criteria. Seven included pregnancy as an outcome, with three fitting our meta-analysis criteria. There was a decrease in pregnancy rates for participants in the CSE intervention compared to the control ($n=3$, risk ratio = 0.89, 95%CI 0.79–1.00, $I^2 = 0\%$). We found that CSE is likely to reduce pregnancy rates; however, there was limited data available on this outcome. CSE increased safe-sex behaviors but did not have a notable impact on sexual activity or STIs. This review can serve as evidence for the implementation of CSE in the US.

KEYWORDS

Abstinence; adolescent; comprehensive sexuality education; pregnancy; sexually transmitted infections

Background

Among western developed countries, the United States (US) has one of the highest rates of teen pregnancy with persistent racial/ethnic, socioeconomic, and geographic disparities (Dumas et al., 2020; Mark & Wu, 2022). The birth rate in 2019 for Hispanic and non-Hispanic Black females aged 15–19 was 25.3 and 25.6 per 1000, respectively, compared to 11.4 for White
females (Explore Teen Births in the United States, 2022). Furthermore, low socioeconomic status is highly correlated with an increase in teenage pregnancies (About Teen Pregnancy, 2020; Penman-Aguilar et al., 2013). States clustered in the south and southwest regions with overall low socioeconomic status tend to report higher rates of teen pregnancy (About Teen Pregnancy, 2020; Penman-Aguilar et al., 2013). Seventy-five percent of these teenage pregnancies were unintended, and women who were non-Hispanic Black or whose income was below the poverty line were more likely to report an unintended pregnancy (Unintended Pregnancy, 2019). Unintended or mistimed pregnancies increase the risk of adverse outcomes for both the mother and baby for multiple reasons: the mother may not be in a position where she is able to financially or emotionally support a child, or she may delay getting prenatal care (Unintended Pregnancy, 2019). Teenagers have the highest rates of unintended pregnancies compared to other ages, which comes with many additional complications (Unintended Pregnancy, 2019). Teenage pregnancy is often associated with greater health risks, including eclampsia, postpartum endometritis, and systemic infections in the mother (Unintended Pregnancy, 2019). It can increase school dropout rates, limit future opportunities, and lead to rejection or violence from partners, guardians, or society (About Teen Pregnancy, 2020). There are also additional risks that are associated with adolescence and teenage years. More than half of incident sexually transmitted infections (STIs) are diagnosed in individuals aged 15–24 (Satterwhite et al., 2013). The disparities above shed light on the need for the US to provide successful interventions to reduce the rates of STIs and teenage pregnancy.

In 1991, SIECUS (Sexuality Information and Education Council of the United States) released the Guidelines for Comprehensive Sexuality Education: Kindergarten-12th Grade (The guidelines, 2018b). The Guidelines include a framework of the concepts, topics, skills, and messages young people should learn and the age-levels at which each should be introduced to them. These guidelines were the first national model for comprehensive sexuality education (CSE). Educators have used the Guidelines in evaluating existing programs and establishing new programs.

Since the publication of the Guidelines, several demographic and political changes have occurred in the field. In the late 1990s, the US government proposed a singular Abstinence Only Until Marriage (AOUM) approach to sex education (Leung et al., 2019). Forty-nine states implemented programs to encourage AOUM at schools (Leung et al., 2019). From 2008 to 2018, the largest decline in teen birth rates occurred among Asians and Pacific Islanders (74%), followed by Hispanic (65%), and Black teens (60%) (Leung et al., 2019). Despite these large declines, the birth rates of African American and Hispanic teens is still higher than that of white teens (Pew
Research Center, 2022). During President Obama’s administration, the government proposed that CSE programs should replace AOUM programs (Leung et al., 2019). The budget was increased to support comprehensive programs, such as the Teen Pregnancy Prevention Program, to provide sexually active young people with skills to ensure sexual health. For youth who are not sexually active, abstinence was still promoted. However, in the Trump administration, the government reverted to supporting AOUM, shifting most of funding toward programs that focus on abstinence (Leung et al., 2019).

Currently, adolescent sexuality education in the US varies by state, municipality, and school. Twenty-nine states mandate sexuality education in schools, 37 require sexuality education to cover abstinence, and 18 require information to be provided on birth control (Sex and HIV Education, 2016). Only 15 states require the education to be medically accurate (Sex and HIV Education, 2016). CSE involves the physical and psychosocial sides of sexuality to promote healthy and safe sexual behaviors (The guidelines, 2018a). It emphasizes bodily autonomy and the right to make choices about what adolescents do with their own bodies while teaching them practices that reduce the risk of sexual behaviors (Sex ed is a human right, 2022). CSE can also include information on the benefits of abstinence. Abstinence-only education focuses only on waiting until marriage to have sex (Kirby, 2001). It has not been shown to reduce sexual behavior or unplanned pregnancy rates, and some studies have seen an increase in teenage pregnancy rates resulting from an abstinence-only education (Kirby, 2001; Stanger-Hall & Hall, 2011). A positive correlation was found between states with the highest-emphasis on abstinence-only education and teen pregnancy rate (Stanger-Hall & Hall, 2011). Arkansas, which has the highest rate of teen pregnancy at 30.4 per 1000, requires sexuality education to stress abstinence (Sex and HIV Education, 2016). Conversely, Massachusetts, with the lowest rate at 7.2 per 1000, requires that sexuality education be culturally appropriate and unbiased, without a mandated stress on abstinence-only (Sex and HIV Education, 2016). A similar trend has been seen regarding STIs. Alaska, with the highest rate of chlamydia, one of the most common STIs in the US, at 832.5 per 100,000, has no requirements for sexuality education (Alaska State Profile, 2021; CDC, 2021; Sexually Transmitted Diseases by State, 2019). West Virginia, with the lowest rate of chlamydia at 198.2 per 100,000, takes a comprehensive approach and mandates that sexuality education covers contraception and condoms, in addition to abstinence (Sex and HIV Education, 2016; Sexually Transmitted Diseases by State, 2019). Prior research has focused primarily on school-based CSE interventions, but adolescents can learn in other settings, including at home or in the community. Books, animated
videos, and virtual workshops are among the most utilized tools in home-based sexuality education (SIECUS, 2020). Dramatic audio stories, games, and interactive activities have also been used by parents/guardians as more engaging approaches to teaching sexuality education at home (Human-Centered Design, 2022; O’Donnell & Fuxman, 2017). Community-based interventions are similar to those implemented in schools but occur in other settings, such as medical clinics, camps, or youth employment programs (Barbee et al., 2016; DiClemente et al., 2004; Jenner et al., 2016). These are especially important for adolescents in states where sexuality education is not a requirement in schools. Some communities have created these programs specifically because of the lack of structured school-based programs in hopes to improve the sexual and reproductive health of adolescents (Secor-Turner et al., 2017). This is the first systematic review comparing US-based CSE to abstinence-only education or no intervention.

The objective of this review was to determine the extent to which CSE during adolescence (ages 10–18) in the US is beneficial in reducing teen pregnancy and STIs compared to abstinence-only or no sexuality education. As an intermediary measure of behaviors that reduce teen pregnancy and STIs, we looked at how CSE programs impacted safe-sexual behaviors, such as male condom use, and sexual activity levels.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol (Moher et al., 2009). The study was registered within the Open Science Framework (OSF) platform prospectively (OSF: osf.io/t6yku) on March 2, 2021. The original protocol is available upon request, and a log of changes made after starting the formal review can be found in Supplemental Appendix 1.

Study eligibility

To be included, we required studies to meet the following criteria: (1) published in English, (2) randomized controlled trial (RCT) or cluster RCT, (3) adolescent population (10–18 years) or at least the majority (≥50%) of participants under 24 years, (4) published during or after 1990, (5) compared a CSE intervention to either no intervention or an abstinence-only intervention, and (6) reported outcomes on teen pregnancy prevention, STI prevention, safe-sex behaviors, sexual activity, or social discomfort.

Our primary population of interest, adolescents, is defined by the World Health Organization (WHO) as individuals 10–19 years (World Health Organization, 2022). Adolescence is when people are starting to become
sexually active, so it is a crucial time to intervene to prevent teen pregnancy and STI incidence. Education targeted at older individuals would not prevent teen pregnancy and some STIs are incurable, so early prevention is needed. Some authors have investigated the impact of CSE on young people, which is broader and includes individuals aged 10–24 years (World Health Organization, 2022). To be comprehensive, and in recognition that young people represent the majority of STI risk in the US rather than strictly adolescents, we opted to include studies with a primary focus on those under 24 years (Satterwhite et al., 2013). We only included studies published during or after 1990. The publication of the SIECUS Guidelines for CSE for school-aged children and adolescents in 1991 marks a shift in the field of sexuality education because this was the first national approach and framework indicating what should be taught at various ages regarding sexuality (The guidelines, 2018a). Prior to 1991, no national framework with recommendations regarding CSE existed. We therefore opted to focus on the modern era of CSE expecting that the SIECUS guidelines ensured some homogeneity amongst different CSE interventions.

To be included, the CSE intervention needed to go beyond abstinence-only education to provide accurate information on human sexuality, encourage a positive view of sexuality, and help individuals acquire skills to make healthy sexual decisions in their lives (The guidelines, 2018a). We required CSE interventions to promote smart choices regarding sexual activity by informing individuals on safe sex behaviors, such as condom and contraception use. The interventions could include abstinence education, but not be abstinence-only. We included home-, school-, community-, and virtual-based CSE interventions. We included abstinence-only education as a control because it can help address potential confounding variables by ensuring the groups had similar experiences except for the active ingredients of CSE. Abstinence-only education has a goal of teaching individuals about the importance of abstaining from sexual activity outside of marriage and does not provide information on pregnancy or STI prevention (Kirby, 2001).

We required studies to report at least one of the following outcomes: teen pregnancy prevention, STI prevention, safe-sex behaviors, sexual activity, or social discomfort. Pregnancy rate is an objective measure and reducing unwanted teenage pregnancy is a primary goal of CSE. CSE does not interfere with participants’ rights to engage in sexual activity or get pregnant if they choose to do so. Rather, it promotes safe behaviors and aims to empower participants to prevent unwanted pregnancies. Given the noted adverse impacts of teenage pregnancy, we focused on outcomes surrounding preventing teen pregnancy specifically. After adolescence, individuals are more likely to choose to get pregnant and preventing wanted pregnancies is not the goal of CSE. STI rates are also objective measures and
reducing them is a primary goal of CSE. Learning about the harm of STIs and how to prevent them may lead to lower STI incidence. We used incidence of human papillomavirus, herpes simplex virus, human immunodeficiency syndrome, hepatitis B, chlamydia, gonorrhea, syphilis, genital warts, and other STIs reported by authors to measure this outcome. Safe-sex behaviors are process measures that can be indicative of the potential for the intervention to reduce pregnancy and STI rates. More people will have values to report for safe sex behaviors than for teen pregnancy or STI incidence. Safe-sex behaviors include birth control (short- and long-acting reversible contraceptives), condom, dental dam, spermicidal lubricant, diaphragm, and cervical cap use. We assumed condom use to be male condom use unless otherwise specified by the author. We note that proponents of abstinence-only education may be concerned that CSE may increase sexual activity (Protect our children!, 2021). Therefore, we extracted data on whether increased sexual activity is observed and associated with CSE. Lastly, social discomfort was an outcome we were interested in because discomfort can prevent participants from enrolling or fully participating in the intervention, which may hinder its effectiveness. Specifically, when CSE is delivered by teachers, participants have reported feeling uncomfortable and embarrassed (Pound et al., 2016).

Search methods

Databases, search terms, and limits
In collaboration with a research librarian we developed a comprehensive search strategy that was executed in MEDLINE (PubMed), EMBASE (Ovid), Cochrane Central Register of Controlled Trials, and Scopus from 1990 to January 28, 2021. See Supplemental Appendix 2 for full information on our search strategy. We limited our search to (1) studies in English due to resource-restrictions, and (2) studies published after 1990 based on our inclusion criteria explained above.

Additional search methods
We also searched: (1) ClinicalTrials.gov from inception to January 21, 2021, (2) reference lists of included papers, and (3) the first 100 hits on Google Scholar from 1990 to 2021. The strategies and results for these additional search methods are outlined in Supplemental Appendix 2.

Study selection
We used EndNote (Clarivate Analytics) for deduplication then Rayyan for primary and secondary screening (Ouzzani et al., 2016). For the primary
screen, two independent screeners per reference (AB, AC, or RN) scanned identified studies’ titles and abstracts for inclusion. The two screeners discussed identified disagreements and brought in a third screener (AB, AC, or RN) for resolution when needed. The same process was followed for full-text review including documenting reasons for study exclusion.

Data extraction

Two blinded researchers per reference (AB, AC, or RN) independently extracted data for all included articles according to a predefined data collection form in Google Sheets. After extraction, a third author was used to discuss any discrepancies. We piloted the form using two included articles to ensure consistency amongst reviewers. Our data collection form captured the following variables: (1) first author last name, year of publication, (2) study design, (3) study period (month year-month year), (4) source of funding reporting, (5) funding source type, (6) study objective, (7) population, (8) age range of participants, (9) race/ethnicity of participants, (10) biological sex, (11) authors’ definition of intervention, (12) intervention delivery method, (13), comparator, (14) number enrolled, (15), number randomized, (16) number analyzed, (17) outcome category, (18) authors’ description of outcome, (19) length of follow-up, (20) intervention baseline, (21) intervention endpoint, (22) intervention change, (23) control baseline, (24) control endpoint, (25) control change, (26) type of effect estimate, (27) unadjusted effect estimate, \(p \)-value, and 95% confidence interval (CI) (28) adjusted effect estimate, \(p \)-value, and 95% CI, (29) qualitative results reported, (30) risk of bias (randomization process, deviations from intended interventions, missing outcomes, measurement of the outcome, selection of reported results, risk of bias judgment), and (31) notes. For all endpoint data, we extracted outcomes at one-year of follow-up. If one-year data was not reported, we extracted the last follow-up time point reported.

Quality assessment

We used the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach to assess the quality and strength of evidence across all included studies (Guyatt et al., 2013; Schünemann, 2013). This tool rates the level of certainty for outcomes of included studies as high, moderate, low, or very low (H/M/L/VL) for the following domains: risk of bias, inconsistency of results, indirectness of evidence, imprecision, publication bias, large magnitude of effect, dose-response gradient, and residual confounding. We used GRADE for the primary outcome of each
study. We did not exclude articles with poor methodological quality but
did take into account how these may have affected our results.

Assessment of bias

We reviewed the risk of bias of each study using Version 2 of the
Cochrane risk-of-bias tool for randomized trials (RoB 2) (Sterne et al.,
2019). Two authors per reference (AC and RN) conducted the risk of bias
assessment independently and discussed disagreements. We assessed the
risk of bias for the primary outcome of each study (Higgins & Green,
2011). If the primary outcome was not specified, we assessed bias using the
outcome authors based their power analysis on or the first outcome
reported in the results section. We did not exclude articles with high bias
but did take into account how these may have affected our results.

Statistical analysis

Measure of treatment effect

We used RevMan 5.4 for statistical analyses (The Cochrane Collaboration,
2020). For each included study reporting the primary outcome, pregnancy,
we calculated the relative risk (RR) and 95% CI and pooled the findings in
a forest plot. We used a random effects model because the studies included
were conducted by different researchers and used a variety of populations
within the US (Riley et al., 2011).

For all secondary outcomes, we qualitatively summarized the results. We
completed a narrative summary on how different features of CSE interven-
tions (CSE interventions that emphasized abstinence or were interactive)
impacted the reported findings. We characterized an intervention as
“emphasizing abstinence” if, in addition to teaching safe-sex practices, it
stressed the benefits of abstaining from or waiting to engage in any sexual
activity. We opted not to complete a meta-analysis for secondary outcomes
because these outcomes included a variety of measures. For example, safe-
sex behaviors included male condom use, dental dam use, birth control
use, and more.

Dealing with missing data

We treated missing outcome data for our primary outcome as “not missing
at random” because it may have been indicative of selective reporting bias
and/or attrition bias (Liberati et al., 2009). We therefore opted to impute
missing data with replacement values. These replacement values were either
the last observation carried forward or a presumed value, such as assuming
that the intervention had no impact. As the meta-analysis was only planned
for our primary outcome, we deemed it appropriate to treat missing data for our secondary outcomes as “missing at random” and analyzed only the available data.

Assessment of heterogeneity

We calculated the Higgins I^2 statistic to assess heterogeneity in sample estimates for the pregnancy outcome (Higgins & Thompson, 2002). Based on the Cochrane Handbook’s guidelines, we set our threshold of $I^2 = 50\%$ or higher as indicative of significant heterogeneity (Higgins & Thompson, 2002).

To assess for heterogeneity in our qualitative analysis, we examined and compared the number of positive, negative, and null findings per outcome domain (sexual activity, safe-sex behaviors, STI prevalence, and social discomfort). We assumed heterogeneity if there was a spread between positive, negative, and null findings. In addition, we addressed potential heterogeneity in CSE interventions by creating subgroups of CSE interventions based on identified features.

Assessment of publication bias

We created a funnel plot to assess publication bias for our meta-analysis. By plotting estimates from our study’s findings through the log odds ratio against sample size, we determined indirect evidence through the shape of the plot. We used the criteria in the GRADE handbook to assess publication bias for our qualitative analysis (Guyatt et al., 2013).

Subgroup analysis

We identified three variables *a priori* for our subgroup analysis to determine if certain groups yielded different results. These variables were sex (male and female), race/ethnicity (Black, Hispanic, Asian or Pacific Islander, White, and other), and method of CSE delivery (school-, community-, virtual-, and home-based). We also performed a subgroup analysis to provide data on the benefits of CSE over abstinence-only education or no intervention individually to see if the results differed by the type of control.

Sensitivity Analysis

We performed a sensitivity analysis based on our methodological quality assessment by excluding studies with some concerns or high risk of bias. To assess the impact of our decision to treat missing data as “not missing at random,” we performed a sensitivity analysis excluding studies where we imputed missing data.
Results

Description of studies

Results of search
As outlined in Figure 1, we identified 2,024 unique citations after deduplication. After screening titles and abstracts, 162 citations warranted full-text review and 29 citations met our inclusion criteria and were included in our analysis.

Included studies
Table 1 presents the characteristics of the 29 included RCTs. All were published between 1992 and 2018 in peer-reviewed journals. A total of 23,915 participants were analyzed. There were two RCTs with no intervention as

Figure 1. Study selection flow diagram. The flow diagram shows the number of studies included after each additional search method and subsequent screening processes, resulting in 29 studies total.
First author last name, year of publication	Study period	Age range	Race/ethnicity (%)	Biological sex (%)	Intervention delivery method	Comparator	Number enrolled	Number analyzed	
DiClemente et al., 2004	September 1995–August 2002	14–18	African American: 100%	Female: 100%	Other (specify)*	No intervention	1130	460	
Barbee et al., 2016	September 2011– March 2014	14–19	Non-Hispanic White: 7%	Female: 63%	Other (specify)*	No intervention	1448	1378	
DiClemente et al., 2010	April 1999–June 2000	14–20	African American: 100%	Female: 100%	Other (specify)*	No intervention	170	86	
Jenner et al., 2016	2012–2014	14–18	Non-Hispanic Black: 88%	Female: 52.6%	Other (specify)*	No intervention	1448	1378	
DiClemente et al., 2010	April 1999–June 2000	14–20	Intervention/Control: African American: 84.8%	Female: 59.8%	Other (specify)*	No intervention	170	86	
Jenner et al., 2016	2012–2014	14–18	Intervention/Control: African American: 52.6%	Female: 59.8%	Other (specify)*	No intervention	1448	1378	
DiClemente et al., 2004	September 1995–August 2002	14–18	African American: 100%	Female: 100%	Other (specify)*	No intervention	1130	460	
Barbee et al., 2016	September 2011– March 2014	14–19	Non-Hispanic White: 7%	Female: 63%	Other (specify)*	No intervention	1448	1378	
DiClemente et al., 2010	April 1999–June 2000	14–20	African American: 100%	Female: 100%	Other (specify)*	No intervention	170	86	
Jenner et al., 2016	2012–2014	14–18	Non-Hispanic Black: 88%	Female: 52.6%	Other (specify)*	No intervention	1448	1378	
DiClemente et al., 2010	April 1999–June 2000	14–20	Intervention/Control: African American: 84.8%	Female: 59.8%	Other (specify)*	No intervention	170	86	
Jenner et al., 2016	2012–2014	14–18	Intervention/Control: African American: 52.6%	Female: 59.8%	Other (specify)*	No intervention	1448	1378	
Jemmott et al., 1998	NR	Mean: 11.8	African American: 100%	Female: 53%	School-based CSE	Abstinence only and	NR	610	
Koo et al., 2011	2001–2003	Fifth–sixth grade	African American: 99%	Female: 54%	School-based CSE	No intervention	NR	928	
Markham et al., 2012	2006–2010	Mean (SD): 12.6 (0.76)	African American: 39.3%	Female: 59.8%	School-based CSE	No intervention	1742	794	
Morrison-Beedy et al., 2013	December 2004–August 2009	15–19	Black/African American: 69%	Girls: 100%	Other (specify)*	No intervention	738	484	
O’Donnell & Fuxman, 2017	2010–2014	Mean: 11.7	Latino: 100%	Female: 52.6%	Home-based CSE	No intervention	2621	3283	
Kerr et al., 2009	1997–2006	13–17	Caucasian: 74%	Female: 100%	Other (specify)*	No intervention	85	83	
Peskin et al., 2015	NR	Mean (SD): 14.32 (0.59)	Latin: 100%	Female: 59%	Other (specify)*	No intervention	4718	1374	
Oman et al., 2018	2012–2014	13–18	Non-Hispanic White: 20.6%	Male: 79%	Other (specify)*	No intervention	1037	881	
O’Donnell & Fuxman, 2017	2010–2014	Mean: 11.7	Caucasian: 74%	Female: 52.6%	Home-based CSE	No intervention	2621	3283	
Kerr et al., 2009	1997–2006	13–17	African American: 2%	Female: 100%	Other (specify)*	No intervention	85	83	
Peskin et al., 2015	NR	Mean (SD): 14.32 (0.59)	Latin: 100%	Female: 59%	Other (specify)*	No intervention	4718	1374	
Oman et al., 2018	2012–2014	13–18	Non-Hispanic White: 20.6%	Male: 79%	Other (specify)*	No intervention	1037	881	
(continued)									
First author last name, year of publication	Study period	Age range	Race/ethnicity (%)	Biological sex (%)	Intervention delivery method	Comparator	Number enrolled	Number analyzed	
---	--------------	-----------	-------------------	-------------------	-----------------------------	------------	----------------	----------------	
Sieving et al., 2011	April 2007– October 2008	13–17	Intervention/Control: American Indian/Native American: 3%/2% Asian/Asian American/Pacific Islander: 10%/13% Black/African/African American: 45%/38% Hispanic/Latina: 17%/8% White/European American: 6%/16% Mixed/Multiple: 19%/23%	Female: 100%	Other (specify)*	No intervention	253	239	
Tortolero et al., 2010	2004–2007	7th grade– 9th grade. Mean: 13.0	African American: 42.3% Hispanic: 44% Other: 13.7%	Female: 59.1%	School-based CSE	No intervention	1445	907	
LaChausse, 2016	October 2013–May 2014	Mean (SD): Intervention: 14.63 (0.50) Control: 14.63 (0.48)	Intervention/Control: White: 0.34/0.38 Black: 0.18/0.18 Asian: 0.08/0.09	Intervention: Female: 0.52 Control: Female: 0.56	School-based CSE	No intervention	4267	3490	
Kaufman et al., 2014	2006–2007	10–12	American Indian and Alaska Native: 100%	Intervention: Female: 48.79% Control: Female: 45.17%	School-based CSE	No intervention	NR	635	
Aarons et al., 2000	February 1996–May 1997	7th–8th graders	Females/Males: African American: 84.7%/82.3% Hispanic: 12.0%/14.1% Other: 1.8%/1.2%	Intervention: Female: 274 (of 522)	School-based CSE	No intervention	582	422	
Coyle et al., 2006	2000–2001	NR	Intervention/Control: African American: 29.0%/25.8% Asian American: 16.9%/12.8% Hispanic/Latino: 27.6%/31.5% White: 12.2%/12.3% Other or multi-ethnic: 14.2%/17.6%	Intervention: Male: 61.2% Female: 38.8% Control: Male: 65.0% Female: 35.0%	School-based CSE	No intervention	988	308	
Source	Years	Age Range	Intervention/Control	Gender	School-based CSE	NR	CSE Type	Intervention	No intervention
------------------------------	-------------------------	-----------	----------------------	--------	------------------	----	-------------	--------------	----------------
Milhausen et al., 2008	December 1996–April 1999	14–19	African American: 100%	Female: 100%	Other (specify)*	522	460	No intervention	
Sherr et al., 2013	NR	13–17	Intervention/Control: Black: 20.8%/26.8% Hispanic: 7.1%/68.4% White and other: 7.1%/7.8%	Boy: 48.0%	School-based CSE	973	966	No intervention	
Philliber et al., 2002	NR	13–15	Intervention/Control: Black: 100% Hispanic: 39%/49% Other: 1%/3%	Female: 55.4%	Other (specify)*	600	484	No intervention	
Jemmott et al., 1992	October 1988–January 1999	Mean: 14.64	Black: 100%	Male: 100%	School-based CSE	157	NR	No intervention	
Allen et al., 1997	1995–1995	9–12th grade	Intervention/Control: Black: 67.7%/66.6% Hispanic: 12.9%/9.6% Other: 2.4%/3.4%	Females: 86%	School-based CSE	NR	NR	No intervention	
Klein & Card, 2011	NR	14–18	African American: 100%	Female: 100%	Virtual CSE	178	162	No intervention	
Walter & Vaughan, 1993	1990–1991	12–20	Black: 36.7%	Male: 41.5%	School-based CSE	NR	1201	No intervention	
Scholes et al., 2003	June 1999–April 2000	18–24	White: 69%	Female: 100%	Other (specify)*	1210	1046	No intervention	
Coyle et al., 2004	1997–1999	Mean: 11.5	African American: 5.2%	Female: 50.1%	School-based CSE	2829	NR	No intervention	
Jemmott et al., 2010	February 1998-February 2002	13–18	Black or African American: 89.9%	Female: 56.2%	Other (specify)*	3445	1707	No intervention	
Jemmott et al., 2005	NR	12–19	African American: 463/682 Hispanic: 219/682	Female: 100%	Other (specify)*	682	682	No intervention	

NR: Not Reported; CSE: Comprehensive Sex Education; SD: Standard Deviation.

*See Supplemental Appendix 5 for additional information on intervention delivery method.
their control group and one RCT with both no intervention and abstinence-only education control groups. Outcomes varied by timeframe (e.g., past 3 weeks, 30 days, 6 months, ever) and metric (i.e., frequency of the event or percent reporting the event).

Included interventions
The CSE interventions analyzed were not homogenous in content or delivery style. Twelve CSE interventions were school-based (Aarons et al., 2000; Allen et al., 1997; Coyle et al., 2004, 2006; Jemmott et al., 1998; Kaufman et al., 2014; Koo et al., 2011; LaChausse, 2016; Markham et al., 2012; Sherr et al., 2013; Tortolero et al., 2010; Walter & Vaughan, 1993), one was virtual (Klein & Card, 2011), one was home-based (O'Donnell & Fuxman, 2017), and the remaining 15 were delivered in various settings (see Table 2 for additional information on the study authors’ definitions of CSE interventions). There were nine studies with CSE interventions emphasizing abstinence (Barbee et al., 2016; Jemmott et al., 1998, 2010; Kaufman et al., 2014; Koo et al., 2011; LaChausse, 2016; Markham et al., 2012; O'Donnell & Fuxman, 2017; Sherr et al., 2013). Nine studies had interactive CSE interventions (Coyle et al., 2004; Jemmott et al., 1992, 2005; Kerr et al., 2009; Klein & Card, 2011; LaChausse, 2016; Markham et al., 2012; Morrison-Beedy et al., 2013; Scholes et al., 2003), for example, utilizing computer-based activities with virtual exercises (Markham et al., 2012).

Risk of bias and methodological quality of included studies
Supplemental Table 1 in Appendix 3 presents our assessment of risk of bias. Studies with the outcomes of pregnancy, STI, safe sex behaviors, and sexual activity had a moderate level of risk of bias based on the domains of randomization process, deviations from intended interventions, missing outcomes, measurement of the outcome, and selection of reported results.

Similarly, some of these outcomes (safe-sex behaviors, pregnancy, and STI rates) had a moderate overall level of methodological quality based on the GRADE assessment and did not report a dose-gradient relationship. In contrast with the other outcomes, studies with the primary outcome of sexual activity had a high level of inconsistency due to a large amount of variation in point estimates and confidence intervals. Out of 16 studies, only one showed evidence of a dose-gradient relationship (O'Donnell & Fuxman, 2017). This outcome had an overall rating of low for the quality of studies. Further information about the methodological quality of included studies can be found in Supplemental Table 2 in Appendix 3 with rating criteria in Supplemental Appendix 4.
First author last name, year of publication	Authors' definition of intervention	Intervention delivery method	Subgroup
DiClemente et al., 2004	Tailored HIV prevention programme that emphasized ethnic and gender pride, HIV knowledge, communication, condom use skills, and healthy relationships.	Other: Family Medicine Clinic	N/A
Barbee et al., 2016	Reduce the risk (RTR) addressed risk behaviors, abstinence, HIV and STI prevention, skills development; Love Notes (LN) educated on healthy relationships and reducing dating violence and unprotected sex.	Other: Camp	Abstinence emphasized (RTR only)
DiClemente et al., 2010	Enhancing self-concept and worth, HIV/STD prevention skills, and safer sex practices.	Other: Prenatal Clinic	N/A
Jenner et al., 2016	Becoming a Responsible Teen is a group-level sociocognitive and skills training sexual education course.	Other: Summer Employment Program	N/A
Jemmott et al., 1998	Indicates abstinence is the best choice but emphasizes condom use to prevent pregnancy and STDs.	School-based CSE	Abstinence emphasized
Koo et al., 2011	Curricula focused on the importance and benefits of abstaining from sexual intercourse, provided age-appropriate information about developmental changes associated with puberty and adolescence, and encouraged values clarification and the development of effective decision-making and communication skills as strategies for avoiding early sexual involvement. The sixth-grade curriculum introduced additional information on media influences, stages of sexual intimacy, sexually transmitted and HIV infections, and use of contraceptive methods. Classroom curriculum and workshop for parents.	School-based CSE	Abstinence emphasized
Markham et al., 2012	Risk reduction (RR) is an abstinence-plus approach. Targeted beliefs about the benefits of abstinence-until-older, promoted self-respect and responsibility, and included activities addressing knowledge and self-efficacy regarding condom and contraceptive use.	School-based CSE	Abstinence emphasized; interactive
Morrison-Beedy et al., 2013	Sexual risk-reduction (SRR) provides HIV information, increases motivation to reduce risk behaviors, and allows girls to participate in skills facilitating SRR and condom use.	Other: Community-based	Interactive
O’Donnell & Fuxman, 2017	Salud-100: all families receive dramatic audio stories used to model positive parenting practices and delay sexual initiation and pregnancy. The intervention consists of community-informed, dramatic, sex-, and developmentally crafted audio stories, each no longer than 3–5 minutes, in which fictional parents are heard monitoring and setting rules for their children’s behaviors, communicating proactively about the importance of delaying sexual initiation and pregnancy, and encouraging youths’ positive relationships and prosocial attachments.	Other: Virtually delivered in school environment	N/A
Kerr et al., 2009	Intervention component that targeted HIV-risk behaviors. The girls were provided with information on dating and sexual behavior norms and on HIV-risk behaviors and were taught strategies for being sexually responsible, including decision making and refusal skills. Role play exercises were conducted using the Virtual Date program.	Other: Out of Home/ Foster Care	Interactive
Peskin et al., 2015	This paradigm teaches youth to select their personal rules (or limits) regarding their behaviors (sexual and non-sexual) ahead of time, detect signs and situations that could challenge their rules, and protect their rules with refusal skills (use a clear no or alternative action). Other topics covered in the It's Your Game (ITYG)-Tech curriculum include the characteristics of healthy and unhealthy friendships and dating relationships; anatomy and reproduction; social, emotion, and physical consequences of sex; communication skills; Internet communication and safety; consequences of teen pregnancy and STIs; knowledge and skills for condom and contraception use; and condom negotiation.	Other: Virtually delivered in school environment	N/A
First author last name, year of publication	Author’s definition of intervention	Intervention delivery method	Subgroup
---	-----------------------------------	-----------------------------	----------
Oman et al., 2018	Power Through Choices (PTC) is an age-appropriate and medically accurate sexual health education intervention for youths living in group-home foster care settings and other out-of-home placements.	Other: Group-Home Foster-Care and Other Out-of-Home-Placement-Based CSE	N/A
Sieving et al., 2011	Prime Time is a youth development intervention that aims to reduce pregnancy risk among adolescent girls seeking clinic services who are at high risk for pregnancy. The intervention employed a combination of case management and peer leadership programs.	Other: School and Community-Based Clinics	N/A
Tortolero et al., 2010	An HIV, STI, and pregnancy prevention program, It’s Your Game: Keep it Real (IYG). Consists of 12 seventh-grade and 12 eighth-grade, 45-minute lessons delivered by trained facilitators.	School-based CSE	N/A
LaChausse, 2016	The 11-lesson curriculum includes lessons on the benefits of abstinence, assertive communication, refusal skills, accessing reproductive health services, condom negotiation, and condom use. Students practice communication about abstinence and risk reduction skills through scripted role play and other interactive activities.	School-based CSE	Abstinence emphasized; interactive
Kaufman et al., 2014	HIV- and STI-prevention intervention developed specifically for middle-school American Indian and Alaskan Native youths. The curriculum is not abstinence-only, but presents safer sex material in age-appropriate ways with flexibility for parent and school modification.	School-based CSE	Abstinence emphasized
Aarons et al., 2000	Reproductive health classes, the Postponing Sexual Involvement Curriculum, health risk screening, and "booster" educational activities during the following (eighth grade) school year.	School-based CSE	N/A
Coyle et al., 2006	A84You! is a theoretically based curriculum designed to reduce sexual risk behaviors associated with HIV, other STDs, and unintended pregnancy among students in alternative schools.	School-based CSE	N/A
Milhausen et al., 2008	Four four-hour group sessions taught by health educators and peer educators who modeled skills and created group norms supportive of HIV prevention.	Other: Family Medicine Clinic	N/A
Sherr et al., 2013	Comprehensive sex education program offered by certified abstinence educators with professional training in social work or counseling. Educators teach youth to recognize the benefits, boundaries, and behaviors of healthy relationships, in conjunction with providing medically accurate information about STDs and contraception. The purpose of the program is a two-part message that choosing abstinence is best but if one chooses to have sex, contraception should be used every time.	School-based CSE	Abstinence emphasized
Philliber et al., 2002	A sexuality education and pregnancy prevention program for high-risk adolescents in Harlem. Weekly sessions emphasizing sexual knowledge given at age-appropriate and developmentally appropriate levels by an educator-reproductive health counselor.	Other: Community-based	N/A
Jemmott et al., 1992	AIDS reduction condition received a 5-hour intervention designed to increase their knowledge of AIDS and STDs to weaken problematic attitudes toward risky behaviors. The participants also engaged in role-playing situations depicting potential programs in trying to implement safer sex practices, including abstinence.	Other: Community-based	Interactive
Allen et al., 1997	A program that engages young people in a high level of structured volunteer community service and classroom-based discussions on various topics, such as sexuality, to reduce rates of teen pregnancy, school failure, and school suspension.	School-based CSE	N/A
Klein & Card, 2011	The four sessions build HIV risk reduction knowledge to enhance communication, condom use, and relationship skills through behavioral skills practice, group discussions, lectures, role-playing and take-home exercises.	Virtual CSE	Interactive

(continued)
First author last name, year of publication	Authors’ definition of intervention	Intervention delivery method	Subgroup
Walter & Vaughan, 1993	They focused on correct facts about AIDS transmission and prevention, misperceptions regarding the commonness of AIDS risk behaviors among peers, and empowering students with necessary skills for consistent condom use and obtaining condoms.	School-based CSE	N/A
Scholes et al., 2003	Tailored minimal self-help intervention based in social science theory. Participants received a tailored 12 page self-help magazine-style booklet entitled Insights. The intervention packet also included a “safe sex kit” that contained male and female condoms, a condom carrying case, and instructions in using condoms.	Other: Clinic-based CSE	Interactive
Coyle et al., 2004	Curriculum based on social cognitive theory and social inoculation theory that assisted students in developing their personal sexual limits and practicing the skills needed to maintain those limits even when they are challenged.	School-based CSE	Interactive
Jemmott et al., 2004	The intervention is designed to give adolescents the knowledge, motivation, and skills necessary to reduce their risk for STDs, including HIV. It covers information about STDs, including etiology, detection, transmission, prevention, and the possibility of asymptomatic infection. The intervention teaches that abstinence is the most effective way to prevent STDs, but it emphasizes that if adolescents do have sex they should use condoms.	Other: Community-based CSE	Abstinence emphasized
Jemmott et al., 2005	Information-based HIV/STD risk-reduction intervention addressed the elevated risk of HIV and STD among inner-city African American and Latino young women, personal vulnerability to HIV and STD, HIV transmission, the diverse messages about sex to which adolescents are exposed, responsibility for sexual risk reduction in romantic relationships, and the importance of using condoms. It also addressed the belief that condoms interfere with sexual enjoyment. The skill-based HIV/STD risk-reduction intervention addressed beliefs relevant to HIV/STD risk reduction, illustrated correct condom use, and depicted effective condom-use negotiation. It differed from the information intervention in that participants practiced the skills needed to use condoms. It addressed the elevated HIV and STD risk among inner-city African American and Latino young women and personal vulnerability to HIV.	Other: Clinic-based CSE	Skill-based intervention: Interactive

N/A: Not Applicable; HIV: Human Immunodeficiency Virus; STD: Sexually Transmitted Disease; CSE: Comprehensive Sexuality Education; STI: Sexually Transmitted Infection.
Primary outcome—pregnancy

Seven studies reported pregnancy as an outcome (Table 3) (Allen et al., 1997; Coyle et al., 2006; DiClemente et al., 2004; Kerr et al., 2009; LaChausse, 2016; Oman et al., 2018; Philliber et al., 2002), three could be included in our meta-analysis (DiClemente et al., 2004; Kerr et al., 2009; Oman et al., 2018), with a total of 1424 subjects analyzed. Our analysis yielded a RR of 0.89 (95% CI: 0.79, 1.00) with a *p*-value of .05 and an I^2 of 0% (Figure 2). The results favor CSE but are not statistically significant. We determined that our results may be susceptible to publication bias due to the asymmetry of the funnel plot, which likely can be explained by the small number of studies (Figure 3). However, the three studies we included cover a wide range of sample sizes, which is beneficial for reducing the risk of publication bias.

The remaining four studies either did not provide enough information to calculate the RR or did not include a 12-month follow-up point (Allen et al., 1997; Coyle et al., 2006; LaChausse, 2016; Philliber et al., 2002). In each of these four studies, there was a consistent trend toward fewer pregnancies reported in the CSE intervention group. Two studies yielded statistically significant results (Allen et al., 1997; Philliber et al., 2002). Across all seven studies reporting pregnancy, all favored CSE with three (42.9%) being statistically significant (Allen et al., 1997; Oman et al., 2018; Philliber et al., 2002). Two did not provide enough data to determine significance (Coyle et al., 2006; Kerr et al., 2009).

CSE delivery method

We did not have enough studies reporting our primary outcome to perform the planned quantitative subgroup analyses, so we summarized these findings qualitatively. Of the seven studies that reported pregnancy as an outcome, three were school-based (Allen et al., 1997; Coyle et al., 2006; LaChausse, 2016), two were home-based (Kerr et al., 2009; Oman et al., 2018), and two were community-based (DiClemente et al., 2004; Philliber et al., 2002). None of the interventions were conducted virtually. One found significantly lower pregnancy rates in the school-based delivery subgroup (Allen et al., 1997), one found significantly lower pregnancy rates in the home-based delivery subgroup (Oman et al., 2018), and one found significantly lower pregnancy rates in the community-based CSE interventions (Philliber et al., 2002). Results from these studies can be seen in Table 3.

Race and biological sex

We defined the race and sex subgroups as studies with African-American only vs mixed race participants and female only vs mixed sex participants,
Table 3. Summary of pregnancy outcome for adolescents provided with a comprehensive sexuality education versus an abstinence-only education or no sexuality education.

First author last name, year	Authors' description of outcome	Length of follow-up	CSE Baseline n(%) or mean (SD)	CSE Endpoint n(%) or mean (SD)	Change	Abstinence-only or no intervention Baseline n(%) or mean (SD)	Abstinence-only or no intervention Endpoint n(%) or mean (SD)	Change	Difference between groups
Kerr et al., 2009	Pregnancy since baseline.	12 months	0	9.1% (of 44)	N/A	0	17.9% (of 39)	N/A	NR
Oman et al., 2018	Ever been or gotten someone pregnant	12 months	177	34.6%	220	50.5%	185	250	NR
DiClemente et al., 2010	Self-reported pregnancy	12 months	NR	6.00%	0.02	NR	0.60%	0.03	NR
LaChausse, 2016	Ever been pregnant or gotten someone pregnant	6 months	NR	0.60%	0.12	NR	0.60%	0.03	NR
Coyle et al., 2006	Pregnancy since baseline (among sub-sample reporting sexual activity previous 3 months)	12 months	NR	NR	NR	NR	NR	NR	OR: 1.15 (p = .66)
Philliber et al., 2002	Became pregnant or caused pregnancy	3 years	NR	10	NR	NR	17	NR	p < .05
Allen et al., 1997	Pregnancy (ever)	9 months	6.10%	4.20%	NR	10%	9.8%	NR	p < .05

CSE: Comprehensive Sexuality Education; N: Number; SD: Standard Deviation; CI: Confidence Interval; N/A: Not Applicable; NR: Not Reported; AOR: Adjusted Odds Ratio; OR: Odds Ratio.
respectively, since many studies did not report race- or sex-specific data. Only one study reporting on pregnancy had all African-American participants (DiClemente et al., 2004), and the remaining six had mixed-race participants. The African-American-only study results were not statistically significant, but favored CSE (DiClemente et al., 2004), while three of the six mixed-race studies had statistically significant results, favoring CSE (Allen et al., 1997; Oman et al., 2018; Philliber et al., 2002). The mixed-race studies did not stratify outcomes by race, making it difficult to analyze the impact of race any further. The two studies reporting pregnancy outcomes with female only participants favored the CSE intervention (DiClemente et al., 2004; Kerr et al., 2009), but were not statistically significant, whereas three of the five mixed-sex studies were statistically significant in favor of CSE (Allen et al., 1997; Oman et al., 2018; Philliber et al., 2002). Results from these studies can be seen in Table 3.

Figure 2. Forest plot of meta-analysis results for pregnancy outcome risk ratio. This forest plot shows the results of the analysis using the pooled RRs and 95% CI for studies included in the meta-analysis reporting on pregnancy.

Figure 3. Funnel plot for pregnancy outcome. This figure shows the funnel plot used to assess publication bias for studies included in our meta-analysis for the outcome of pregnancy.
Intervention type. There was one study that reported on pregnancy and had a CSE intervention that emphasized abstinence (LaChausse, 2016). This study did not find a statistically significant difference between the intervention and control groups. Of the six studies with a CSE intervention that did not emphasize abstinence and reported pregnancy outcomes, three (50.0%) found a statistically significant difference in favor of the CSE intervention (Allen et al., 1997; Oman et al., 2018; Philliber et al., 2002). Among studies with an interactive CSE intervention that reported on pregnancy (n = 2) (Kerr et al., 2009; LaChausse, 2016), none found a statistically significant difference between the intervention and control groups. There were five studies without an interactive CSE intervention that reported on pregnancy. Three (60%) found a statistically significant difference in favor of the CSE intervention (Allen et al., 1997; Oman et al., 2018; Philliber et al., 2002). Results from these studies can be seen in Table 3.

Sensitivity analysis
We were unable to complete our planned sensitivity analyses due to having only three studies in our meta-analysis. We calculated missing data in one of the three studies, which had the largest number of participants, so removing this study likely would have an impact on the findings (Oman et al., 2018). Two of the three studies in our meta-analysis had some concerns for bias (DiClemente et al., 2004; Oman et al., 2018), and one had low concerns (Kerr et al., 2009). None of these studies reported statistically significant results. They all favored CSE, but we could not determine whether or not the bias risk had an impact on the results due to the small number of studies. Results from these studies can be seen in Table 3 and the Risk of Bias analysis can be seen in Supplemental Table 1 in Appendix 3.

Secondary outcomes—STI rates, safe-sex behaviors, sexual activity, and social discomfort
Twenty-eight studies reported at least one of our secondary outcomes. Twenty-one reported safe-sex behavior outcomes, 24 reported sexual activity outcomes, and three reported STI outcomes. No studies reported outcomes on social discomfort.

STI rates
None of the three studies reporting this outcome yielded statistically significant results, however, the results all favored CSE (Jemmott et al., 2005; Scholes et al., 2003; Walter & Vaughan, 1993). None of the three studies
reporting on STI rates had a CSE intervention that emphasized abstinence. Studies with and without an interactive component had results that favored CSE intervention. Many other studies specified objectives directly related to reduction in STIs, but they did not include any results on their prevalence post-intervention.

Safe-sex behaviors

Of the 21 studies reporting outcomes related to safe-sex behaviors, 13 (61.9%) reported at least one statistically significant result, favoring CSE (Table 4) (Aarons et al., 2000; Barbee et al., 2016; DiClemente et al., 2004, 2010; Jemmott et al., 1992, 1998, 2005, 2010; LaChausse, 2016; Markham et al., 2012; Scholes et al., 2003; Sieving et al., 2011; Walter & Vaughan, 1993). The most commonly reported outcomes were related to male condom use (18 out of 21 studies). Twelve of these 18 studies reported results that were statistically significant in favor of CSE (Aarons et al., 2000; Barbee et al., 2016; DiClemente et al., 2004, 2010; Jemmott et al., 1992, 1998, 2005, 2010; Markham et al., 2012; Scholes et al., 2003; Sieving et al., 2011). Of these statistically significant results, the majority were related to consistency and frequency of male condom use. Male condom use was often the study’s primary outcome. Three studies reported outcomes related to unprotected sex, with two finding that unprotected sex was significantly lower for those who received CSE (DiClemente et al., 2004; Markham et al., 2012). Seven studies reported an outcome related to birth control use, and four of these studies found that birth control use was significantly higher in the CSE intervention group (Aarons et al., 2000; Barbee et al., 2016; LaChausse, 2016; Sieving et al., 2011). We categorized frequency of STI testing as a safe-sex behavior. The study reporting this outcome did not yield significant results, although it did favor CSE (Coyle et al., 2006).

One study used abstinence-only as a comparison group in addition to no intervention (Jemmott et al., 1998). The outcome, “frequency of condom use,” was statistically significant when comparing CSE to no intervention, but not to the abstinence-only intervention. Among studies with CSE interventions that emphasized abstinence and reported safe-sex behaviors (n = 6) (Barbee et al., 2016; Jemmott et al., 1998, 2010; Kaufman et al., 2014; LaChausse, 2016; Markham et al., 2012), five (83.3%) reported findings that were statistically significant and in favor of the CSE intervention (Barbee et al., 2016; Jemmott et al., 1998, 2010; LaChausse, 2016; Markham et al., 2012). The remaining study reported condom use at last sex and did not find a statistically significant difference (Kaufman et al., 2014). For studies of CSE interventions that did not emphasize abstinence (n = 15), seven (46.7%) reported positive and statistically significant outcomes.
(Aarons et al., 2000; DiClemente et al., 2004, 2010; Jemmott et al., 1992; Scholes et al., 2003; Sieving et al., 2011; Walter & Vaughan, 1993). For studies with an interactive CSE intervention and reporting safe-sex behaviors ($n = 7$) (Jemmott et al., 1992, 2005; Klein & Card, 2011; LaChausse, 2016; Markham et al., 2012; Morrison-Beedy et al., 2013; Scholes et al., 2003), five (71.4%) reported positive and statistically significant outcomes (Jemmott et al., 1992, 2005; LaChausse, 2016; Markham et al., 2012; Scholes et al., 2003). Of the remaining studies without an interactive CSE intervention reporting on safe-sex behaviors ($n = 14$), eight (57.1%) found a statistically significant difference in favor of the CSE intervention group (Aarons et al., 2000; Barbee et al., 2016; DiClemente et al., 2004, 2010; Jemmott et al., 1998, 2010; Sieving et al., 2011; Walter & Vaughan, 1993).

Sexual activity

Of the 24 studies reporting outcomes related to safe-sex behaviors, 11 (45.8%) reported at least one statistically significant result, favoring CSE (Table 4) (Aarons et al., 2000; Barbee et al., 2016; Coyle et al., 2004; Jemmott et al., 1992, 2005; LaChausse, 2016; Markham et al., 2012; O’Donnell & Fuxman, 2017; Philliber et al., 2002; Tortolero et al., 2010; Walter & Vaughan, 1993). The most commonly reported outcomes were related to engaging in any type of sex or sexual behaviors (e.g., ever had sex, frequency of sexual activity, and number of sexual partners), with 17 out of 24 studies reporting outcomes in this category. Six of these 17 studies reported results that were statistically significant, favoring CSE (Barbee et al., 2016; Coyle et al., 2004; Markham et al., 2012; O’Donnell & Fuxman, 2017; Philliber et al., 2002; Tortolero et al., 2010). Of these statistically significant results, the majority were related to ever having sex or the number of sexual partners. These were common primary outcomes as well. Seven studies reported an outcome related specifically to engaging in vaginal sex, with two of these studies reporting statistically significant results in favor of CSE (Jemmott et al., 1992; Markham et al., 2012). There were four studies that reported outcomes related to engaging in anal or oral sex specifically, three found that these instances were significantly lower in the CSE intervention group (Jemmott et al., 1992; Markham et al., 2012; Tortolero et al., 2010). Four studies reported outcomes related to sexual initiation, three found that sexual initiation was significantly lower for those who received CSE (Markham et al., 2012; O’Donnell & Fuxman, 2017; Tortolero et al., 2010). Finally, ten studies reported outcomes related to abstaining from sex, e.g., chose not to have sex under pressure, ever had sex, and virginity rates. Seven were statistically significant, favoring CSE (Aarons et al., 2000; Barbee et al., 2016; Coyle et al., 2004; LaChausse, 2016; O’Donnell & Fuxman, 2017; Philliber et al., 2002; Walter & Vaughan, 1993). One study
Table 4. Summary of secondary outcomes for adolescents provided with a comprehensive sexuality education versus an abstinence-only education or no sexuality education.

First author last name, year	Authors’ description of outcome	Length of follow-up	CSE	Abstinence-only or no intervention	Difference between groups					
			Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change		Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	
Safe-sex behaviors										
DiClemente et al., 2004	Consistent condom use in last 30 days	12 months	60 (40.3)	73.30% NR			75 (43.4)	56.50% NR		
	Consistent condom use in last 6 months	12 months	101 (43.5)	58.10% NR			119 (48.6)	45.30% NR		
	Condom use during last sex	12 months	74 (31.9)	72.30% NR			79 (32.1)	53.90% NR		
	Percent that used condom in last 30 days	12 months	79.23 (38)	79.97 (36.64) NR			77.47 (38)	62.82 (45.28) NR		
	Percent that used condom in past 6 months	12 months	72.44 (37)	73.49 (37.86) NR			70.38 (38)	57.58 (43.21) NR		
	Episodes of unprotected vaginal sex in last 30 days	12 months	1.12 (2.84)	1.15 (3.03) NR			0.84 (2.01)	2.04 (4.47) NR		
	Episodes of unprotected vaginal sex in last 6 months	12 months	4.81 (16.01)	5.77 (16.41) NR			4.23 (10.25)	10.25 (24.66) NR		
	Frequency of applying condoms on sex partner	12 months	NR	1.97 (1.28) NR			NR	1.59 (1.09) NR		
Barbee et al., 2016	Sex without condom in past 3 months	6 months	RTR: 317 (13.56%)	RTR: 317 (12.30%) NR			RTR: 317 (13.56%)	RTR: 317 (12.30%) NR		
	Sex without birth control	6 months	RLR: 317 (11.04%)	RLR: 317 (9.10%) NR			RLR: 317 (11.04%)	RLR: 317 (9.10%) NR		
DiClemente et al., 2010	Condom use at last intercourse	6–9 months	28.40% NR	NR			28.20% NR	NR		
	Consistent condom use over the past 30 days	6–9 months	NR	NR			NR	NR		
Jenner et al., 2016	Inconsistency of condom use	6 months	10.40% (SD: 25.57) Mean: 9.05	NR			12.79% (SD: 27.14) Mean: 6.74	NR		
Jemmott et al., 1998		12 months	NR	20 (62.5%) NR			NR	NR		
Reporting consistent condom use

Frequency of condom use	12 months	NR	4.15 (1.21)	NR	AO: 14 (41.2%)	AO: p = .09
					Ne: 21 (51.2%)	Ne: p = .35
Frequency of unprotected sexual intercourse	12 months	NR	0.17 (2.26)	NR	AO: 0.29 (2.25)	AO: p = .17
Percent reporting unprotected sexual intercourse	12 months	NR	9 (5.4%)	NR	AO: 16 (9.8%)	AO: p = .13

Frequency of condom use

12 months	NR	4.15 (1.21)	NR	AO: 14 (41.2%)	AO: p = .09
Ne: 21 (51.2%)	Ne: p = .35				

Frequency of unprotected sexual intercourse

12 months	NR	0.17 (2.26)	NR	AO: 0.29 (2.25)	AO: p = .17
Ne: 0.51 (2.26)	Ne: p = .13				

Percent reporting unprotected sexual intercourse

12 months	NR	9 (5.4%)	NR	AO: 16 (9.8%)	AO: p = .13
Ne: 18 (10.8%)	Ne: p = .16				

Markham et al., 2012

Unprotected sex at last vaginal intercourse

26 months	NR	NR	NR	AO: 3.94 (1.28)	AO: 0.67 (p < .05, 95% CI 0.47–0.96)
Ne: 3.16 (1.69)	Ne: p = .004				

Number of times having vaginal sex in the last 3 months without a condom: one or more vs. zero

| 26 months | NR | NR | NR | AO: 0.96 (p < .05, 95% CI 0.45–2.06) |
|-----------|----|----|----|----------------|-----------------|
| Ne: 18 (10.8%) | Ne: p = .16 |

Number of times having anal sex in the last 3 months without a condom: one or more vs. zero

| 26 months | NR | NR | NR | AO: 0.59 (p < .05, 95% CI 0.36–0.96) |
|-----------|----|----|----|----------------|-----------------|
| Ne: 0.51 (2.26) | Ne: p = .004 |

Morrison-Beedy et al., 2013

Any episodes of unprotected vaginal sex

| 12 months | 216 (66.7%) | 170 (68.3%) | NR | 211 (68.3%) | 171 (72.8%) | NR | AO: 0.92 (95% CI 0.67–1.25) |
|-----------|-------------|-------------|----|-------------|-------------|----|----------------|-------------|
| Ne: 206 (63.6%) | Ne: p = 0.10 |

Any episodes of unprotected vaginal sex with steady partner

| 12 months | 206 (63.6%) | 154 (63.4%) | NR | 190 (61.5%) | 160 (69.3%) | NR | AO: 0.92 (95% CI 0.67–1.25) |
|-----------|-------------|-------------|----|-------------|-------------|----|----------------|-------------|
| Ne: 0.10 |

Any episodes of unprotected vaginal sex with non-steady partner(s)

| 12 months | 41 (12.8%) | 29 (11.9%) | NR | 47 (15.3%) | 36 (15.3%) | NR | AO: 0.92 (95% CI 0.67–1.25) |
|-----------|-------------|-------------|----|-------------|-------------|----|----------------|-------------|
| Ne: 0.10 |

Oman et al., 2018

Had sex without using birth control in past 3 months

| 12 months | 131 (27.2%) | 158 (37.9%) | NR | 133 (26.8%) | 165 (38.0%) | NR | AO: 0.92 (95% CI 0.67–1.25) |
|-----------|-------------|-------------|----|-------------|-------------|----|----------------|-------------|
| Ne: 0.10 |

Sieving et al., 2011

Condom use consistency

12 months	Never: 14%	Mean score: 0.96	Never: 9%	Mean score: 0.66	AOR: 1.45 (p = 0.95 CI 1.26–1.67)
≤ 1/2 time: 32%	> 1/2 time: 23%	Every time: 31%	≤ 1/2 time: 33%	> 1/2 time: 26%	Every time: 32%

Hormonal use consistency

12 months	No use: 36%	Mean score: 4.27	No use: 45%	Mean score: 2.91	AOR: 1.46 (p = 0.95 CI 1.13–1.89)					
1 month: 21%	2 months: 12%	3 months: 5%	1 month: 7%	2 months: 14%	3 months: 8%					
First author last name, year	Authors’ description of outcome	Length of follow-up	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Difference between groups	
-----------------------------	---------------------------------	---------------------	-----------------------------	-----------------------------	--------	-----------------------------	-----------------------------	--------	----------------------------	
Tortolero et al., 2010	Condom at last sex (for vaginal sex only)	12 months	Dual method use consistency	NR	Mean score: 0.83	NR	NR	Mean score: 0.53	NR	AOR: 1.58 (p = .01, 95%CI 1.03–2.42)
	Number of times having vaginal sex in the last 3 months without a condom: 1 or more versus 0	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 1.04 (95%CI 0.87–1.25)	
	Number of times having anal sex in the last 3 months without a condom: 1 or more versus 0	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 0.92 (95%CI 0.71–1.19)	
	Number of vaginal sex partners in the last 3 months without a condom: 1 or more versus 0	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 0.86 (95%CI 0.63–1.18)	
	Number of times having sex in the last 3 months without effective pregnancy prevention	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 0.59 (95%CI 0.51–1.35)	
LaChausse, 2016	Ever had sexual intercourse without using birth control in the past 3 months	6 months	NR	2%	0.04 (0.18)	NR	3%	0.06 (0.23)	NR	Mean difference: −0.02 (p = .01)
Kaufman et al., 2014	Condom use at last sex	12 months	NR	80.65%	NR	NR	76.19%	NR	NR	Girls: B: −0.498 (p = .736, 95%CI −3.391 to 2.394)
Study (Year)	Measure	Timeframe	Females: % (of Sample)	Males: % (of Sample)	OR (95% CI)	Ratio of adjusted means	p-Value	95% CI		
---------------------	---	-----------	------------------------	----------------------	------------------------------	-------------------------	---------	--------		
Aarons et al., 2000	Used birth control/condoms last time had sex	12 months	39.1% (of 139)	79.7% (of 123)						
Coyle et al., 2006	Frequency of intercourse without a condom in previous 3 months	12 months								
	Use of condom at last intercourse	12 months								
	Number of partners without a condom in previous 3 months	12 months								
	Use of effective pregnancy prevention method at last intercourse	12 months								
	Frequency of intercourse without a condom in previous 3 months with steady partners	12 months								
	Frequency of intercourse without a condom in previous 3 months with non-steady partners	12 months								
	Number of partners without a condom in previous 3 months	12 months								
	Number of non-steady partners without a condom previous 3 months	12 months								
	Number of times tested for HIV	12 months								
	Number of times tested for other STD	12 months								
Phillip et al., 2002	Used condom and hormonal method at last sex	3 years	21% (of 135)	83% (of 125)						
	Used condom at last sex	3 years	86% (of 135)	83% (of 125)						
First author last name, year	Authors' description of outcome	Length of follow-up	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Difference between groups	
-----------------------------	--------------------------------	---------------------	---------------------------	---------------------------	--------	---------------------------	---------------------------	--------	--------------------------	
Jemmott et al., 1992	Rated frequency of condom use	3 months	NR	Mean (SD): 4.25 (22)	NR	NR	Mean (SD): 3.50 (21)	NR	Mean difference: 0.85 (95%CI 0.14–1.56)	
	Number of days the respondent did not use a condom during coitus	3 months	NR	Mean (SD): 0.64 (38)	NR	NR	Mean (SD): 2.38 (48)	NR	Mean difference: 1.73 (95%CI –2.86 to –0.60)	
Klein & Card, 2011	Number of vaginal sex acts with condom last 90 days	3 months	2.67	5.53	2.86 (p = .05, 95%CI 0.02–5.71)	4.79	4.67	–0.13 (p = .95, 95%CI –4.02 to 3.76)	NR	NR
	Proportion of vaginal sex acts with condoms last 90 days (sexually initiated who have had vaginal sex in the last 90 days only)	3 months	0.51	0.71	0.2 (p = .05, 95%CI 0.00–0.40)	0.72	0.57	–0.16 (p = .12, 95%CI –0.36 to 0.05)	NR	NR
Walter & Vaughan, 1993	Percentage of students who changed for high-risk partners	3 months	NR	NR	NR	NR	NR	NR	p < .05	
	Percentage of students who changed for monogamy	3 months	NR	NR	NR	NR	NR	NR	p < .05	
	Percentage change of students with consistent condom use	3 months	NR	NR	NR	NR	NR	NR	p < .05	
Scholes et al., 2003	Any use of condoms in prior 3 months with: any partner	6 months	71%	72.8%	NR	73%	63.00%	NR	OR: 1.86 (p = .0005, 95%CI 1.32–2.65)	
	Any use of condoms in prior 3 months with: a primary partner	6 months	67%	69.10%	NR	68%	57.90%	NR	OR: 1.97 (p = .003, 95%CI 1.37–2.86)	
	Any use of condoms in prior 3 months with: a non-primary partner	6 months	79%	87.50%	NR	73%	76.90%	NR	OR: 2.25 (p = .09, 95%CI 0.91–6.07)	
	Average percentage of time condoms used with any partner	6 months	NR	52.70%	NR	NR	47.90%	NR	OR: 5.2 (p = .05, 95%CI 0.4–10.4)	
Consistent use of condoms in prior 3 months with all partners

Jemmott et al., 2010

Time	Consistent Use	OR (95% CI)
6 months	36.80%	NR
12 months	56.9%	NR

Consistently use condoms in prior 90 days

Jemmott et al., 2010

Time	Consistent Use	OR (95% CI)
6 months	56.9%	NR
12 months	70.2%	NR

Frequency of condom use in prior 90 days

Time	Mean (SE)	OR (95% CI)
6 months	3.81 (0.08)	NR
12 months	3.60 (0.08)	NR

Used condom at last sexual intercourse

Jemmott et al., 2005

Time	Used Condom	OR (95% CI)
6 months	70.2%	NR
12 months	71%	NR

Proportion of condom-protected sexual intercourse in prior 90 days

Time	Mean (SE)	OR (95% CI)
6 months	0.72 (0.02)	NR
12 months	0.72 (0.02)	NR

Sexual activity

DiClemente et al., 2004

Activity	Frequency	OR (95% CI)
New vaginal sex partner	4.4%	NR

Barbee et al., 2016

Activity	Frequency	OR (95% CI)
Number of partners	0.82	0.9%
Ever had sex	90.3%	0.7%

Jenner et al., 2016

Activity	Frequency	OR (95% CI)
Frequency of sexual activity	0.98	1.40

Jemmott et al., 1998

Activity	Frequency	OR (95% CI)
Percent who had sexual intercourse	16.5%	NR
Frequency of intercourse	5.29*	NR

Koo et al., 2011

Activity	Frequency	OR (95% CI)
Ever had sex	25 (18%)	NR

Markham et al., 2012

Activity	Frequency	OR (95% CI)
Any sexual initiation	6 months	NR
Oral sex initiation	6 months	NR
Vaginal sex initiation	6 months	NR

(continued)
First author last name, year	Authors’ description of outcome	Length of follow-up	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Abstinence-only or no intervention		
						CSE		
Anal sex initiation		26 months	NR	NR	NR	AOR: 0.83 (p < 0.10, 95%CI 0.434–0.421)		
Number of times having oral sex in the past 3 months: 2 or more vs. 1 or none	26 months	NR	NR	NR	NR	AOR: 0.715 (p < 0.01, 95%CI 0.359–0.421)		
Number of times having vaginal sex in the past 3 months: 2 or more vs. 1 or none	26 months	NR	NR	NR	NR	AOR: 0.53 (p < 0.05, 95%CI 0.33–0.84)		
Number of times having anal sex in the past 3 months: 2 or more vs. 1 or none	26 months	NR	NR	NR	NR	1.15 (p < 0.05, 95%CI 0.60–2.22)		
# of vaginal sex partners in past 3 months (2+ vs one or none)	26 months	NR	NR	NR	NR	NR** (Sample size too small)		
# of anal sex partners in past 3 months (2+ vs one or none)	26 months	NR	NR	NR	NR			
Morrison-Beedy et al., 2013	Any episodes of vaginal sex	12 months	292 (90.1%)	206 (82.7%)	NR	p > 0.10		
Number of girls with 0 sexual partners	12 months	25 (7.7%)	31 (12.4%)	NR	14 (4.5%)	23 (9.7%)		
Number of girls with 1 sexual partner	12 months	207 (63.7%)	173 (69.5%)	NR	197 (63.8%)	164 (69.5%)		
O’Donnell & Fuxman, 2017	Touched/been touched	12 months	NR	NR	NR	AOR: 0.69 (p < .001, 95%CI 0.56–0.84)		
Sex initiation	12 months	NR	NR	NR	NR	AOR: 0.74 (p < .01, 95%CI 0.61–0.98)		
Peskin et al., 2015	Ever had sex (any)	12 months	153 (19.9%)	NR	NR	AOR: 1 (95%CI 0.70–1.41)		
Oral sex	12 months	102 (13.3%)	NR	NR	NR	AOR: 1.09 (95%CI 0.67–1.76)		
	12 months							
----------------	-----------	--------	--------	--------	--------	--------	--------	--------
Sieving et al., 2011								
Number of male sex partners, past 6 months	12 months	1.54 (0.21)	Mean score: 1.55	NR	1.76 (0.07)	Mean score: 1.44	NR	AOR: 1.08 \((p = .44, 95\%CI 0.89-1.31) \)
Tortolero et al., 2010								
Initiated sex (among those who reported no experience at seventh-grade baseline but reporting having initiated at ninth-grade follow-up)	Ninth grade follow-up	0	308 (23.4%)	NR	0	509 (29.9%)	NR	ARR: 1.29 \((p < .05, 95\%CI 1.02-1.64) \)
Initiated oral sex (among those who reported no experience at seventh-grade baseline but reporting having initiated at ninth-grade follow-up)	Ninth grade follow-up	0	319 (10.0%)	NR	0	512 (17.6%)	NR	AOR: 1.76 \((p < .01, 95\%CI 1.21-2.56) \)
Initiated vaginal sex (among those who reported no experience at seventh-grade baseline but reporting having initiated at ninth-grade follow-up)	Ninth grade follow-up	0	305 (22.3%)	NR	0	499 (26.9%)	NR	AOR: 1.26 \((95\%CI 0.98-1.61) \)
Initiated anal sex (among those who reported no experience at seventh-grade baseline but reporting having initiated at ninth-grade follow-up)	Ninth grade follow-up	0	321 (3.7%)	NR	0	514 (9.9%)	NR	AOR: 2.67 \((p < .01, 95\%CI 1.45-4.94) \)
Number of times having oral sex in the last 3 months: 2 or more versus 1	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 0.93 \((95\%CI 0.69-1.28) \)
Number of times having vaginal sex in the last 3 months: 2 or more versus 1	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 1.3 \((p < .05, 95\%CI 1.02-1.66) \)
Table 4. Continued.

First author last name, year	Authors’ description of outcome	Length of follow-up	CSE	Abstinence-only or no intervention							
		n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Baseline n(%) or mean (SD)	Endpoint n(%) or mean (SD)	Change	Difference between groups			
		Baseline	Endpoint	n(%) or mean (SD)	Change	Baseline	Endpoint	n(%) or mean (SD)	Change	Arr: 27.14 (95% CI 0.10–7693)	
		3 months: 2 or more versus 1									
		Number of times having anal sex in the last 3 months: 2 or more versus 1	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 1.17 (95% CI 0.82–1.68)	
		Number of lifetime oral sex partners (2 or more versus 1)	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 1.05 (95% CI 0.89–1.24)	
		Number of lifetime vaginal sex partners (2 or more versus 1)	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 0.89 (95% CI 0.15–4.81)	
		Number of lifetime anal sex partners in the last 3 months: 2 or more versus 1	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	ARR: 1.31 (95% CI 0.83–2.07)	
		Number of anal sex partners in the last 3 months: 2 or more versus 1	Ninth grade follow-up	NR	NR	NR	NR	NR	NR	Unable to estimate	
LaChausse, 2016	Ever had sexual intercourse	6 months	12%	0.14 (0.34)	NR	12%	0.18 (0.38)	NR	Mean difference:	−0.04 (p = .01)	
Kaufman et al., 2014	Ever had sex	12 months	12.80%	NR	NR	17.67%	NR	NR	Mean difference:	0.413 (p = .321, 95% CI −0.402 to 1.229)	
	Had sex in last 12 months	12 months	7.72%	NR	NR	10.29%	NR	NR	Mean difference:	0.664 (p = .223, 95% CI −0.405 to 1.733)	
Study	Outcome	Timeframe	Females: % (of n)	Males: % (of n)	Females: AOR (95%CI)	Males: AOR (95%CI)	Ratio of adjusted means:	Ratio of adjusted means:			
-----------------------	--	-----------	------------------	------------------	----------------------	----------------------	--------------------------	--------------------------			
Aarons et al., 2000	Virginity rates	12 months	Females: 83.7% (of 139)	Males: 44.9% (of 123)							
Coyle et al., 2006	Frequency of sexual intercourse previous 3 months	12 months	NR	NR	NR	NR	0.12 (p = .24)				
	Number of sexual partners previous	12 months	NR	NR	NR	NR		0 (p = .57)			
	Sexual initiation among sexually inexperienced at baseline	12 months	NR	NR	NR	NR		N/A			
Milhausen et al., 2008	Frequencies (number of events in previous six months) of Vaginal Sex	12 months	NR	16.67*	NR	17.94*	Relative change: −7.07% (p = .65, 95%CI −35.09 to 49.29)				
Sherr et al., 2013	Sexual intercourse within the last three weeks	6 months	NR	NR	NR	NR	B = −0.15 (p ≥ .05, 95%CI −0.33 to 0.03)				
Philliber et al., 2002	Chose not to have sex under pressure	3 years	NR	NR	NR	NR		NR			
Jemmott et al., 1992	Coitus in the last 3 months	3 years	26%	63	NR	25%	72	NR			
	Number of days respondent had coitus	3 months	NR	Mean (SD): 0.48 (62)	NR	Mean (SD): 0.60 (53)	Mean difference: −0.12 (95%CI −0.27 to 0.3)	Mean difference: −3.32 (95%CI −5.78 to −0.89)			
	Number of coital partners	3 months	NR	Mean (SD): 2.15 (53)	NR	Mean (SD): 5.48 (47)	Mean difference: −0.93 (95%CI −1.53 to −0.33)	Mean difference: −1.55 (95%CI −2.67 to −0.43)			
	Number of coital partners involved with other men	3 months	NR	Mean (SD): 0.19 (60)	NR	Mean (SD): 1.75 (48)	Mean difference: −0.19 (95%CI −0.32 to −0.06)	Mean difference: −0.53 (95%CI −1.17 to 0.7)			
	Heterosexual anal sex	3 months	NR	Mean (SD): 0.07 (68)	NR	Mean (SD): 0.27 (49)					
	Number of days respondent had heterosexual anal sex	3 months	NR	Mean (SD): 0.36 (64)	NR	Mean (SD): 0.92 (46)					

(continued)
First author last name, year	Authors’ description of outcome	Length of follow-up	CSE	Abstinence-only or no intervention					
	Authors’ description of outcome		Baseline	Endpoint	Change	Baseline	Endpoint	Change	Difference between groups
			n(%) or mean (SD)	n(%) or mean (SD)	Change	n(%) or mean (SD)	n(%) or mean (SD)	Change	
	Number of female sex partners	3 months	NR	Mean (SD): 0.13 (65)	NR	Mean (SD): 0.61 (49)	NR	Mean difference: −0.47 (−0.96 to 0.08)	
Klein & Card, 2011	Number of vaginal sex acts in last 90 days	3 months	Mean: 7.33	Mean: 8.51	1.18 (p = .43, 95%CI −1.78 to 4.12)				
Walter & Vaughan, 1993	Percentage change of students with abstinence	3 months	NR	NR	NR	NR	NR	p < .60	
Coyle et al., 2004	Ever had sex	36 months	Boys: 4.7%	Boys: 19.3%	NR	Boys: 3.6%	Boys: 27.2%	NR	Boys: p = .02
	Had sex in the past 12 months	36 months	Boys: 2.8%	Boys: 17.3%	NR	Boys: 2.9%	Boys: 24.5%	NR	Boys: p = .03
	Ever had sex	36 months	Boys: 4.7%	Boys: 19.3%	NR	Boys: 3.6%	Boys: 27.2%	NR	Girls: p = .52
	Had sex in the past 12 months	36 months	Girls: 2.7%	Girls: 20.3%	NR	Girls: 2.2%	Girls: 22.1%	NR	Girls: p = .53
Jemmott et al., 2010	Frequency of sexual intercourse in prior 90 days	12 months	Mean (SE): 2.78 (0.26)	Mean (SE): 3.68 (0.34)	NR	Mean (SE): 3.15 (0.34)	Mean (SE): 4.25 (0.41)	NR	Event rate ratio: 1.06 (p = .56, 95%CI 0.88–1.28)
Jemmott et al., 2005	Number of partners in past 3 months	12 months	Mean (SE): 1.06 (0.05)	Information: 1.06 (0.05)	NR	Mean (SE): 1.10 (0.05)	Information: 1.06 (0.06)	NR	Information: p = .51
	Percentage reporting multiple partners in the past 3 months	12 months	Mean (SE): 15.1 (2.6) Information: 15.1 (2.6)	Skills: 12.4 (2.3)	NR	Mean (SE): 15.3 (2.6) Information: 15.3 (2.6)	Skills: 12.4 (2.3)	NR	Information: p = .09
Sexually Transmitted Infections	Percentage change of students with STI incidence	3 months	NR	NR	NR	NR	NR	p < .10	
Walter & Vaughan, 1993	STD diagnosis in prior 3 months	6 months	NR	3.50%	NR	3.60%	NR	OR: 0.97 (p = .93, 95%CI 0.49–1.96)	
Scholes et al., 2003	Percentage testing positive for an STD	12 months	Mean (SE): 24.7 (33) Information: 24.7 (33)	Skills: 23.6 (3.5)	NR	Mean (SE): 14.3 (2.8) Information: 14.3 (2.8)	Skills: 10.8 (2.6)	NR	Information: p = .04

CSE: Comprehensive Sexuality Education; N: Number; SD: Standard Deviation; CI: Confidence Interval; NR: Not Reported; AOR: Adjusted Odds Ratio; RTR: Reduce the Risk; LN: Love Notes; PTC: Power Through Choice; IRR: Incidence Rate Ratio; ARR: Adjusted Risk Ratio; B: Linear Estimate; AO: Abstinence-Only; NI: No Intervention.
had consistently significant results, favoring CSE, for the males in the study but not for the females when looking at ever having sex and having sex in the past 12 months (Coyle et al., 2004). This was different from other studies that reported separate male and female results and did not see a drastic difference.

Among studies of CSE interventions that emphasized abstinence and reported on sexual activity \((n = 9) \), three (33.3\%) studies reported outcomes that were statistically significant and in favor of the CSE intervention compared to control (Barbee et al., 2016; LaChausse, 2016; O’Donnell & Fuxman, 2017). There were 15 studies that had CSE interventions that did not emphasize abstinence and reported outcomes on sexual activity. Of these, eight (53.3\%) found a statistically significant difference in favor of the CSE intervention compared to control (Aarons et al., 2000; Coyle et al., 2004; Jemmott et al., 1992, 2005; Markham et al., 2012; Philliber et al., 2002; Tortolero et al., 2010; Walter & Vaughan, 1993). Among studies with an interactive CSE that reported on sexual activity \((n = 7) \), 5 (71.4\%) reported outcomes with a statistically significant difference in favor of the CSE intervention (Coyle et al., 2004; Jemmott et al., 1992, 2005; LaChausse, 2016; Markham et al., 2012). There were 17 studies without interactive CSE interventions that reported on sexual activity. Six (35.3\%) found a statistically significant difference in favor of the CSE intervention (Aarons et al., 2000; Barbee et al., 2016; O’Donnell & Fuxman, 2017; Philliber et al., 2002; Tortolero et al., 2010; Walter & Vaughan, 1993).

Discussion

Summary of main findings

There is sufficient evidence to address the objectives of this review. The data we gathered from RCTs show that adolescents who received CSE were less likely to experience pregnancy and more likely to practice safe-sex behaviors, particularly male condom use. Although there were 11 studies that reported statistical significance for reductions in sexual activity, we decided that this was insufficient evidence to conclude that CSE impacted sexual activity (Aarons et al., 2000; Barbee et al., 2016; Coyle et al., 2004; Jemmott et al., 1992, 2005; LaChausse, 2016; Markham et al., 2012; O’Donnell & Fuxman, 2017; Philliber et al., 2002; Tortolero et al., 2010; Walter & Vaughan, 1993). The data also did not provide evidence for changes in STI incidence. Additionally, the lack of studies measuring pregnancy prevented us from making meaningful conclusions about various CSE delivery methods, race, and sex. Only one included study used abstinence-only education as the comparison condition (Jemmott et al., 1998). Therefore, our results suggest that CSE decreases pregnancy rates and increases male condom use when compared to no intervention, but there is
insufficient data to make any conclusions regarding CSE compared to an abstinence-only education.

All studies that reported on pregnancy only included participants under the age of 18. We believe this is important because pregnancy prevention beyond adolescence may no longer be a goal for a female or couple. In line with more recent views, the goal of CSE is reproductive autonomy, so evaluating CSE based on pregnancy prevention in older populations is inappropriate (The guidelines, 2018a). Even within the adolescent population, we cannot conclude that all pregnancies were unintended. Future research should look specifically at unintended pregnancies or unintended teen pregnancies to ensure reproductive autonomy is what is being evaluated.

There was heterogeneity in the secondary outcomes reported and CSE interventions across the studies. Additionally, the populations of the included studies were diverse, with respect to race, sex, and setting. Outcomes varied by timeframe and metric; however most were similar enough for us to determine which outcomes were most impacted by CSE. Studies with CSE interventions that emphasized abstinence or were interactive yielded more positive and statistically significant differences in safe-sex behaviors and sexual activity outcomes compared to CSE interventions that did not emphasize abstinence or were not interactive (Barbee et al., 2016; Coyle et al., 2004; Jemmott et al., 1992, 1998, 2005, 2010; Kaufman et al., 2014; Kerr et al., 2009; Klein & Card, 2011; Koo et al., 2011; LaChausse, 2016; Markham et al., 2012; Morrison-Beedy et al., 2013; O’Donnell & Fuxman, 2017; Scholes et al., 2003; Sherr et al., 2013). Too few studies reported pregnancy and STI incidence outcomes to look at results by intervention design. However, the diversity in populations studied, timeframes, and metrics increased the generalizability of our findings.

We were surprised to see so few results on STI rates, as many of the interventions were tailored toward HIV/AIDS reduction or STI reduction in general. Testing for STIs before and after the intervention would be another helpful outcome to measure in the future. Despite no studies reporting outcomes related to social discomfort, many adolescents experience social discomfort when learning about or discussing sexual health topics, as this area is inherently uncomfortable; therefore, the degree of social discomfort that the participants felt could affect their ability to learn from the interventions and impact other outcomes (Leung et al., 2019).

Quality of the evidence

Based on the GRADE assessment tool, the general methodological quality of the included studies is moderate. The methodological quality of included
studies with pregnancy, safe-sex behaviors, and STI rates as the primary outcomes was moderate while that of studies with sexual activity as the primary outcome was low. These results did not have a high level of quality.

Both the safe-sex behavior and sexual activity outcomes were similar in certain domains of GRADE. Most studies in both outcomes had a high number of participants, so the publication bias risk was low for both groups. Also, the point estimates for these studies were small, so these studies did not have a large magnitude of effect and had inconsistent findings with differences in these point estimates and confidence intervals. Two studies in both groups addressed the potential effects of residual confounding. Both tools (Cochrane RoB and GRADE) did not assess the presence of detrimental confounding variables in studies, so the levels of methodological quality for each outcome could be lower than the reported levels from the GRADE assessment.

Impact of political changes on the effects of CSEs

The impact of the political changes in the field on the effects of CSEs documented in the included studies is complex. The majority of the included studies occurred during the Obama administration (2009–2017) (Barbee et al., 2016; DiClemente et al., 2010; Jemmott et al., 2010; Jenner et al., 2016; Kaufman et al., 2014; Kerr et al., 2009; Klein & Card, 2011; Koo et al., 2011; LaChausse, 2016; Markham et al., 2012; Morrison-Beedy et al., 2013; Peskin et al., 2015; Sherr et al., 2013; Sieving et al., 2011; Tortolero et al., 2010). During this time period, the government supported CSE programs. In these studies, there was an increase in safe sex behaviors in the CSE intervention group. Similarly, among the studies that reported pregnancy as an outcome during this time period, there was a trend toward fewer pregnancies in the CSE intervention group. The supportive political environment may have positively impacted the effects of the CSEs documented in these studies. Only one of the included studies occurred during the Trump administration (2017–2021) (Oman et al., 2018). Although this administration did not support the implementation of CSE programs, this study reported fewer pregnancies in the CSE intervention group than those of the no intervention group. Therefore, the impact of the political change from the Obama to Trump administrations on the effects of CSEs in the included studies may not be significant, but more studies occurring during the Trump administration should be analyzed before making this conclusion.
Strengths and limitations of this review

The prospective registration of our protocol and tracking of changes (Supplemental Appendix 1) prevented the authors from imposing bias to the results reported. The changes made to the initial protocol did not alter our findings or the overall objective of this review. Our study employed a comprehensive search strategy to identify potentially eligible studies. Each step of our review was double blinded to ensure validity. We used standardized and empirically supported tools to assess risk of bias and methodological quality for each included study. Although our search strategy was comprehensive, we did not search some databases that might have been relevant but did not focus primarily on randomized trials (e.g., CINAHL). While we included referenced protocols and trial registrations, we did not request uncited protocols or missing data from authors. This could have led to undetected publication and reporting bias of included studies due to omitted information. Another potential limitation is that we did not conduct a subgroup analysis between studies that had control groups with an active intervention (e.g., healthy eating intervention) compared to no intervention. The latter studies may have suffered from confounding variables. While the overall results were robust, only three studies were included in our meta-analysis. Statistical significance may have been achieved in our primary outcome if more studies met our eligibility criteria for the meta-analysis. Furthermore, with more studies reporting our primary outcome, we could have completed the desired subgroup analyses quantitatively rather than qualitatively.

Agreements and disagreements with other studies or reviews

A prior systematic review published in 2016 analyzed RCTs comparing CSE interventions to no intervention (Mason-Jones et al., 2016). This review only looked at school-based CSE and studies completed outside the US. In contrast to our review, they found no change in pregnancy or STI prevalence, except for one study that found a decrease in the prevalence of HSV. US-based studies may have different priorities than studies in other regions. We included more outcomes than the prior review, including safe-sex behaviors and sexual activity. These outcomes can be process measures for reducing STI incidence. We did find CSE to be advantageous at increasing safe-sex behaviors, which, although is not a definite conclusion, could be related to a decrease in STIs. Furthermore, state-level data indicates a relationship between CSE and STI rates with lower STI incidence in states where CSE is mandated.
Conclusions

Implications for practice

Data from this review can serve as evidence for implementing CSE into schools, homes, or community-based platforms. Future research should look at the impact that race has on the effectiveness of CSE interventions, as many studies that we included had African American-only participants. This group has been studied more often and has been said to be at a higher risk for unintended pregnancy and STIs, so determining whether CSE is more or less effective for this group would be notable (The Cochrane Collaboration, 2019).

Our results fit into the context of current practice by providing evidence and information about the benefits of CSE interventions, which can promote safe-sex behaviors like male condom use. We identified that certain features, such as having an interactive intervention, may increase the efficacy of CSE interventions. Also, this review provides evidence for the benefits of teaching adolescents about the harms of unsafe sexual activity. US states without current sexuality education requirements should assess the evidence provided to note the benefits of a policy change regarding implementation of CSE. Additionally, there are potential cost-saving incentives for states mandating CSE based on the results showing improvements in teen pregnancy rates. Adolescent pregnancies cost the US at least $9.1 billion annually (Brace et al., 2008). There are additional social costs too (Brace et al., 2008). Further studies comparing CSE to abstinence-only will be needed before determining whether or not states that require abstinence-only could benefit from a policy change to CSE.

Implications for research

The results and conclusions of this review may be different if additional research had been conducted. When we reviewed articles, we found that some studies did not explicitly explain the control condition and/or describe aspects of the standard sexuality education, so we excluded these. In the future, an RCT comparing CSE to abstinence-only education should be conducted. Most studies we included did not involve this comparison. Also, more studies should be conducted that analyze CSE interventions that are highly effective for at-risk groups (e.g., African American, Hispanic). Looking at CSE interventions for different genders rather than biological sex would also be valuable information. The medical field is going in a direction where it is just as important to analyze gender as it is biological sex. Also, the stigma surrounding people who are transgender puts them more at risk for risky sexual behaviors and STIs, so finding out
the best ways to educate all genders would be beneficial (Health considerations for LGBTQ youth, 2021). Looking at differences in outcome based on when programs were implemented would also shed light on whether older or newer programs are more beneficial. Finally, studies including social discomfort as an outcome could assess to what degree social discomfort could potentially mediate the effectiveness of CSE.

Abbreviations

CSE: Comprehensive Sexuality Education
STI: Sexually transmitted infections
US: United States
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
OSF: Open Science Framework
RCT: Randomized controlled trial
GRADE: Grading of Recommendations, Assessment, Development and Evaluations
RoB: Cochrane risk-of-bias
RR: Relative risk
CI: Confidence interval

Author contributions

AB, AC, and AM conceptualized the idea for the study. Search methods and data extraction were performed by AB, AC, and RN. Data analysis was conducted by AB and Risk of Bias analysis was conducted by AC and RN. All authors contributed to the first draft of the manuscript and commented on subsequent manuscript versions. RY, the supervisor, critically revised the work, and all authors read and approved the final manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Amy L. Bordogna http://orcid.org/0000-0002-0742-5816
Amanda C. Coyle http://orcid.org/0000-0002-8577-8561
Renata W. Yen http://orcid.org/0000-0002-6856-7631

References

Aarons, S. J., Jenkins, R. R., Raine, T. R., El-Khorazaty, M. N., Woodward, K. M., Williams, R. L., Clark, M. C., & Wingrove, B. K. (2000). Postponing sexual intercourse among urban junior high school students-a randomized controlled evaluation. The
About Teen Pregnancy. (2020). Published October 28, 2020. Retrieved June 15, 2021, from https://www.cdc.gov/teenpregnancy/about/index.htm

Alaska State Profile. (2021). Published March 29, 2021. Retrieved June 15, 2021, from https://siecus.org/state_profile/alaska-fy21-state-profile/

Allen, J. P., Philliber, S., Herrling, S., & Kuperminc, G. P. (1997). Preventing teen pregnancy and academic failure: Experimental evaluation of a developmentally based approach. Child Development, 68(4), 729–742. https://doi.org/10.2307/1132122

Barbee, A. P., Cunningham, M. R., van Zyl, M. A., Antle, B. F., & Langley, C. N. (2016). Impact of two adolescent pregnancy prevention interventions on risky sexual behavior: A three-arm cluster randomized control trial. American Journal of Public Health, 106(S1), S85–S90. https://doi.org/10.2105/AJPH.2016.303429

Brace, A. M., Hall, M., & Hunt, B. P. (2008). Social, economic and health costs of unintended teen pregnancy: The circle of care intervention program in Troup County, Georgia. Journal of the Georgia Public Health Association, 3(1), 33–46. https://doi.org/10.20429/jgpha.2008.030104

CDC. (2021). STI prevalence, incidence, and cost estimates infographic. Published January 25, Retrieved June 29, 2021, from https://www.cdc.gov/std/statistics/prevalence-2020-at-a-glance.htm

Coyle, K. K., Kirby, D. B., Marín, B. V., Gómez, C. A., & Gregorich, S. E. (2004). Draw the line/respect the line: A randomized trial of a middle school intervention to reduce sexual risk behaviors. American Journal of Public Health, 94(5), 843–851. https://doi.org/10.2105/ajph.94.5.843

Coyle, K. K., Kirby, D. B., Robin, L. E., Banspach, S. W., Baumler, E., & Glassman, J. R. (2006). All4You! A randomized trial of an HIV, other STDs, and pregnancy prevention intervention for alternative school students. AIDS Education and Prevention, 18(3), 187–203. https://doi.org/10.1521/aep.2006.18.3.187

DiClemente, R. J., Wingood, G. M., Harrington, K. F., Lang, D. L., Davies, S. L., Hook III, E. W., Oh, M. K., Crosby, R. A., Hertzberg, V. S., Gordon, A. B., Hardin, J. W., Parker, S., & Robillard, A. (2004). Efficacy of an HIV prevention intervention for African American adolescent girls: A randomized controlled trial. JAMA, 292(2), 171–179. https://doi.org/10.1001/jama.292.2.171

DiClemente, R. J., Wingood, G. M., Rose, E., Sales, J. M., & Crosby, R. A. (2010). Evaluation of an HIV/STD sexual risk-reduction intervention for pregnant African American adolescents attending a prenatal clinic in an urban public hospital: Preliminary evidence of efficacy. Journal of Pediatric and Adolescent Gynecology, 23(1), 32–38. https://doi.org/10.1016/j.jpag.2009.05.003

Dumas, S. A., Chu, S., & Horswell, R. (2020). Analysis of pregnancy and birth rates among black and white medicad-enrolled teens. Journal of Adolescent Health, 67(3), 409–415. https://doi.org/10.1016/j.jadohealth.2020.04.026

Explore Teen Births in the United States. (2022). America’s Health Rankings. Retrieved March 7, 2022, from https://www.americashealthrankings.org/explore/health-of-women-and-children/measure/TeenBirth_MCH

Guyatt, G., Oxman, A. D., Sultan, S., Brozek, J., Glasziou, P., Alonso-Coello, P., Atkins, D., Kunz, R., Montori, V., Jaeschke, R., Rind, D., Dahm, P., Akl, E. A., Meerpohl, J., Vist, G., Berliner, E., Norris, S., Falck-Ytter, Y., & Schünemann, H. J. (2013). GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome
and for all outcomes. *Journal of Clinical Epidemiology, 66*(2), 151–157. https://doi.org/10.1016/j.jclinepi.2012.01.006

Health considerations for LGBTQ youth. (2021). Published April 15, 2021. Retrieved March 5, 2022, from https://www.cdc.gov/healthyyouth/disparities/health-considerations-lgbtq-youth.htm

Higgins J, Green S, Eds. (2011). *Cochrane Handbook for Systematic Reviews of Interventions.* 1st ed. John Wiley & Sons. Retrieved June 15, 2021, from https://training.cochrane.org/handbook

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine, 21*(11), 1539–1558. https://doi.org/10.1002/sim.1186

Human-Centered Design. (2022). Human-centered design in reproductive health. Retrieved March 6, 2022, from https://powertodecide.org/design-thinking

Jemmott, J. B., Jemmott, L. S., & Fong, G. T. (1992). Reductions in HIV risk-associated sexual behaviors among black male adolescents: Effects of an AIDS prevention intervention. *American Journal of Public Health, 82*(3), 372–377. https://doi.org/10.2105/ajph.82.3.372

Jemmott, J. B., Jemmott, L. S., Braverman, P. K., & Fong, G. T. (2005). HIV/STD risk reduction interventions for African American and Latino adolescent girls at an adolescent medicine clinic: A randomized controlled trial. *Archives of Pediatrics & Adolescent Medicine, 159*(5), 440–449. https://doi.org/10.1001/archpedi.159.5.440

Jemmott, J. B., Jemmott, L. S., Fong, G. T., & Morales, K. H. (2010). Effectiveness of an HIV/STD risk-reduction intervention for adolescents when implemented by community-based organizations: A cluster-randomized controlled trial. *American Journal of Public Health, 100*(4), 720–726. https://doi.org/10.2105/AJPH.2008.140657

Jemmott, J. I., Jemmott, L. S., & Fong, G. T. (1998). Abstinence and safer sex HIV risk-reduction interventions for African American adolescents: A randomized controlled trial. *JAMA, 279*(19), 1529–1536. https://doi.org/10.1001/jama.279.19.1529

Jenner, E., Jenner, L. W., Walsh, S., Demby, H., Gregory, A., & Davis, E. (2016). Impact of an intervention designed to reduce sexual health risk behaviors of African American adolescents: Results of a randomized controlled trial. *American Journal of Public Health, 106*(S1), S78–S84. https://doi.org/10.2105/AJPH.2016.303291

Kaufman, C. E., Whitesell, N. R., Keane, E. M., Desserich, J. A., Giago, C., Sam, A., & Mitchell, C. M. (2014). Effectiveness of Circle of Life, an HIV-preventive intervention for American Indian middle school youths: A group randomized trial in a Northern Plains tribe. *American Journal of Public Health, 104*(6), e106–e112. https://doi.org/10.2105/AJPH.2013.301822

Kerr, D. C. R., Leve, L. D., & Chamberlain, P. (2009). Pregnancy rates among juvenile justice girls in two randomized controlled trials of multidimensional treatment foster care. *Journal of Consulting and Clinical Psychology, 77*(3), 588–593. https://doi.org/10.1037/a0015289

Kirby, D. (2001). *Emerging answers: Research findings on programs to reduce teen pregnancy.* National Campaign to Prevent Teen Pregnancy.

Klein, C. H., & Card, J. J. (2011). Preliminary efficacy of a computer-delivered HIV prevention intervention for African American teenage females. *AIDS Education and Prevention, 23*(6), 564–576. https://doi.org/10.1521/aep.2011.23.6.564

Koo, H. P., Rose, A., El-Khorazaty, M. N., Yao, Q., Jenkins, R. R., Anderson, K. M., Davis, M., & Walker, L. R. (2011). Evaluation of a randomized intervention to delay sexual initiation among fifth-graders followed through the sixth grade. *Sex Education, 11*(1), 27–46. https://doi.org/10.1080/14681811.2011.538146
LaChausse, R. G. (2016). A clustered randomized controlled trial of the positive prevention PLUS Adolescent pregnancy prevention program. *American Journal of Public Health, 106*(S1), S91–S96. https://doi.org/10.2105/AJPH.2016.303414

Leung, H., Shek, D. T. L., Leung, E., & Shek, E. Y. W. (2019). Development of contextually-relevant sexuality education: Lessons from a comprehensive review of adolescent sexuality education across cultures. *International Journal of Environmental Research and Public Health, 16*(4), 621. https://doi.org/10.3390/ijerph16040621

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. *BMJ, 339*, b2700. https://doi.org/10.1136/bmj.b2700

Mark, N. D. E., & Wu, L. L. (2022). More comprehensive sex education reduced teen births: Quasi-experimental evidence. *Proceedings of the National Academy of Sciences of the United States of America, 119*(8), 119. https://doi.org/10.1073/pnas.2113144119

Markham, C. M., Tortolero, S. R., Peskin, M. F., Shegog, R., Thiel, M., Baumler, E. R., Addy, R. C., Escobar-Chaves, S. L., Reigner, B., & Robin, L. (2012). Sexual risk avoidance and sexual risk reduction interventions for middle school youth: A randomized controlled trial. *The Journal of Adolescent Health, 50*(3), 279–288. https://doi.org/10.1016/j.jadohealth.2011.07.010

Mason-Jones, A. J., Sinclair, D., Mathews, C., Kagee, A., Hillman, A., & Lombard, C. (2016). School-based interventions for preventing HIV, sexually transmitted infections, and pregnancy in adolescents. *The Cochrane Database of Systematic Reviews, 11*, CD006417. https://doi.org/10.1002/14651858.CD006417.pub3

Milhausen, R. R., DiClemente, R. J., Lang, D. L., Spitalnick, J. S., McDermott Sales, J., & Hardin, J. W. (2008). Frequency of sex after an intervention to decrease sexual risk-taking among African-American adolescent girls: Results of a randomized, controlled clinical trial. *Sex Education, 8*(1), 47–57. https://doi.org/10.1080/14681810701811803

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine, 6*(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Morrison-Beedy, D., Jones, S. H., Xia, Y., Tu, X., Crean, H. F., & Carey, M. P. (2013). Reducing sexual risk behavior in adolescent girls: Results from a randomized controlled trial. *The Journal of Adolescent Health, 52*(3), 314–321. https://doi.org/10.1016/j.jadohealth.2012.07.005

O’Donnell, L., & Fuxman, S. (2017). Effectiveness of a brief home parenting intervention for reducing early sexual risks Among Latino Adolescents: Salud y Éxito. *The Journal of School Health, 87*(11), 858–864. https://doi.org/10.1111/josh.12560

Oman, R. F., Vesely, S. K., Green, J., Clements-Nolle, K., & Lu, M. (2018). Adolescent pregnancy Prevention among youths living in group care homes: A cluster randomized controlled trial. *American Journal of Public Health, 108*(S1), S38–S44. https://doi.org/10.2105/AJPH.2017.304126

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. *Systematic Reviews, 5*(1), 210. https://doi.org/10.1186/s13643-016-0384-4

Penman-Aguilar, A., Carter, M., Snead, M. C., & Kourtis, A. P. (2013). Socioeconomic disadvantage as a social determinant of teen childbearing in the U.S. *Public Health Reports, 128*(Suppl 1), 5–22. https://doi.org/10.1177/00333549131282S102
Peskin, M. F., Shegog, R., Markham, C. M., Thiel, M., Baumler, E. R., Addy, R. C., Gabay, E. K., & Emery, S. T. (2015). Efficacy of it’s your game-tech: A computer-based sexual health education program for middle school youth. *The Journal of Adolescent Health, 56*(5), 515–521. https://doi.org/10.1016/j.jadohealth.2015.01.001

Pew Research Center. (2022). Why is the U.S. teen birth rate falling? *Pew Research Center*. Published August 2, 2019. Retrieved March 7, 2022, from https://www.pewresearch.org/fact-tank/2019/08/02/why-is-the-teen-birth-rate-falling/

Philliber, S., Kaye, J. W., Herrling, S., & West, E. (2002). Preventing pregnancy and improving health care access among teenagers: An evaluation of the children’s aid society-Carrera program. *Perspectives on Sexual and Reproductive Health, 34*(5), 244–251. https://doi.org/10.2307/3097823

Pound, P., Langford, R., & Campbell, R. (2016). What do young people think about their school-based sex and relationship education? A qualitative synthesis of young people’s views and experiences. *BMJ Open, 6*(9), e011329. https://doi.org/10.1136/bmjopen-2016-011329

Protect our children! (2021). Retrieved June 16, 2021, from https://www.comprehensivesexualityeducation.org/

Riley, R. D., Higgins, J. P. T., & Deeks, J. J. (2011). Interpretation of random effects meta-analyses. *BMJ, 342*, d549. https://doi.org/10.1136/bmj.d549

Satterwhite, C. L., Torrone, E., Meites, E., Dunne, E. F., Mahajan, R., Ocfemia, M. C. B., Su, J., Xu, F., & Weinstock, H. (2013). Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2008. *Sexually Transmitted Diseases, 40*(3), 187–193. https://doi.org/10.1097/OLQ.0b013e318286bb53

Scholes, D., McBride, C. M., Grothaus, L., Civic, D., Ichikawa, L. E., Fish, L. J., & Yarnall, K. S. (2003). A tailored minimal self-help intervention to promote condom use in young women: Results from a randomized trial. *AIDS, 17*(10), 1547–1556. https://doi.org/10.1097/00002030-200307040-00016

Schülemann, H. (2013). *The GRADE handbook*. Cochrane Collaboration.

Secor-Turner, M., Randall, B. A., Christensen, K., Jacobson, A., & Loyola Meléndez, M. (2017). Implementing community-based comprehensive sexuality education with high-risk youth in a conservative environment: Lessons learned. *Sex Education, 17*(5), 544–554. https://doi.org/10.1080/14681811.2017.1318273

Sex and HIV Education. (2016). Published March 14, 2016. Retrieved June 15, 2021, from https://www.guttmacher.org/state-policy/explore/sex-and-hiv-education

Sex ED is a human right. (2022). It’s time we start treating it like one. SIECUS. Published March 22, 2018. Retrieved March 7, 2022, from https://siecus.org/sex-ed-is-a-human-right-its-time-we-start-treating-it-like-one/

Sexually Transmitted Diseases by State. (2019). Published February 4, 2019. Retrieved June 15, 2021, from https://www.alarms.org/std-statistics/

Sherr, M. E., Pooler, D., Stamey, J., Jones, J., & Dyer, P. (2013). A randomized effectiveness trial of a sex education program for minority youth in Miami, Florida. *Journal of Evidence-Based Social Work, 10*(2), 53–62. https://doi.org/10.1080/15433714.2011.581533

SIECUS. (2020). Need some homeschool-style sex ed resources? We got you SIECUS. Published March 24, Retrieved March 6, 2022, from https://siecus.org/homeschool-style-sex-ed-resources/

Sievng, R. E., McMorris, B. J., Beckman, K. J., Pettingell, S. L., Secor-Turner, M., Kugler, K., Garwick, A. W., Resnick, M. D., & Bearinger, L. H. (2011). Prime time: 12-month sexual health outcomes of a clinic-based intervention to prevent pregnancy risk
behaviors. *The Journal of Adolescent Health*, 49(2), 172–179. https://doi.org/10.1016/j.jadohealth.2010.12.002

Stanger-Hall, K. F., & Hall, D. W. (2011). Abstinence-only education and teen pregnancy rates: Why we need comprehensive sex education in the U.S. *PLoS One*, 6(10), e24658. https://doi.org/10.1371/journal.pone.0024658

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., ... Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. *BMJ*, 366, i4898. https://doi.org/10.1136/bmj

The Cochrane Collaboration. (2019). African Americans Disproportionately Affected by STDs. Published April 24, 2019. Retrieved June 15, 2021, from https://www.cdc.gov/stdconference/2000/media/afamericans2000.htm

The Cochrane Collaboration. (2020). Review Manager (RevMan) [Computer program]. Version 5.4, The Cochrane Collaboration (2020).

The guidelines. (2018a). Published July 11, 2018. Retrieved June 15, 2021, from https://niecus.org/resources/the-guidelines/

The guidelines. (2018b). SIECUS. Published July 11, Retrieved March 7, 2022, from https://niecus.org/resources/the-guidelines/

Tortolero, S. R., Markham, C. M., Peskin, M. F., Shegog, R., Addy, R. C., Escobar-Chaves, S. L., & Baumler, E. R. (2010). It’s your game: Keep it real: Delaying sexual behavior with an effective middle school program. *The Journal of Adolescent Health*, 46(2), 169–179. https://doi.org/10.1016/j.jadohealth.2009.06.008

Unintended Pregnancy. (2019). Published September 13, 2019. Retrieved June 15, 2021, from https://www.cdc.gov/reproductivehealth/contraception/unintendedpregnancy/index.htm

Walter, H. J., & Vaughan, R. D. (1993). AIDS risk reduction among a multiethnic sample of urban high school students. *JAMA*, 270(6), 725–730.

World Health Organization. (2022). Adolescence: A period needing special attention – Recognizing-adolescence. Retrieved February 22, 2022, from https://apps.who.int/adolescent/second-decade/section2/page1/recognizing-adolescence.html