Estimation of Dirichlet distribution parameters with bias-reducing adjusted score functions

V. GIOIA1 and E. C. KENNE PAGUI2

1University of Udine, Department of Economics and Statistics
2University of Padova, Department of Statistical Sciences
gioia.vincenzo@spes.uniud.it, eulogeclovis.kennepagui@unipd.it

Abstract

The Dirichlet distribution, also known as multivariate beta, is the most used to analyse frequencies or proportions data. Maximum likelihood is widespread for estimation of Dirichlet’s parameters. However, for small sample sizes, the maximum likelihood estimator may show a significant bias. In this paper, Dirichlet’s parameters estimation is obtained through modified score functions aiming at mean and median bias reduction of the maximum likelihood estimator, respectively. A simulation study and an application compare the adjusted score approaches with maximum likelihood.

Some key words: Compositional data, likelihood, bias reduction.

1 Introduction

Proportions data, also referred as compositional data, are very pervasive in many disciplines, ranging from natural sciences to economics. Dirichlet distribution, that is a multivariate generalization of the beta distribution and belongs to the exponential family, is the simplest choice to handle with proportions. Inference on parameters is easily carried out with maximum likelihood (ML). However, for small sample size and large number of parameters, the ML estimator exhibits a relevant bias, as is apparent in simulation results of Narayanan (1992).

This paper aims to improve the ML estimates by using modified score functions. Following Firth (1993), the mean bias reduced (mean BR) estimator is obtained as solution of a suitable modified score equation.
alternative modified score function, proposed by Kenne Pagui et al. (2017),
aims at median bias reduction (median BR). Mean BR estimator has smaller
mean bias than ML and equivariant under linear transformations of the pa-
rameters, whereas median BR estimator is componentwise third-order me-
dian unbiased in the continuous case and equivariant under componentwise
monotone reparameterizations. We study the proposed adjusted score meth-
ods through a simulation study and an application, comparing their perfor-
ance with respect to ML.

2 Dirichlet distribution

Let \(y_i = (y_{i1}, \ldots, y_{im})^\top, i = 1, \ldots, n \), be independent realizations of the \(m \)-dimensional Dirichlet random vectors parameterized by \(\alpha = (\alpha_1, \ldots, \alpha_m)^\top \),
with \(\alpha_k > 0, k = 1, \ldots, m \). The probability density function of \(Y_i \sim \text{Dir}(\alpha) \)
is
\[
 f_{Y_i}(y_i; \alpha) = \frac{\Gamma(s)}{\prod_{j=1}^m \Gamma(\alpha_j)} \prod_{j=1}^m y_{ij}^{\alpha_j - 1}
\]
with \(y_{ik} > 0, k = 1, \ldots, m \), and \(\sum_{j=1}^m y_{ij} = 1 \). The log-likelihood is
\[
 \ell(\alpha) = n \left\{ \log \Gamma(s) - \sum_{j=1}^m \log \Gamma(\alpha_j) + \sum_{j=1}^m \alpha_j z_j \right\},
\]
where \(z_j = (\sum_{i=1}^n \log y_{ij})/n \). The log-likelihood is globally concave and the
ML estimate needs to be obtained numerically. Parameter estimation is
usually carried out through a Fisher scoring-type algorithm with a sensible
choice of the starting value. Wicker et al. (2008)’s proposal seems to be a
stable initialisation.

3 Modified score functions

For a general parametric model with \(m \)-dimensional parameter \(\alpha \) and log-
likelihood \(\ell(\alpha) \), based on a sample of size \(n \), let \(U_r = U_r(\alpha) = \partial \ell(\alpha)/\partial \alpha_r \)
be the \(r \)-th component of the score function \(U(\alpha) \), \(r = 1, \ldots, m \). Let
\(j(\alpha) = -\partial^2 \ell(\alpha)/\partial \alpha \partial \alpha^\top \) be the observed information and \(i(\alpha) = E_\alpha \{ j(\alpha) \} \)
the expected information.

In order to reduce the bias of the ML estimator, Firth (1993) proposes a
suitable modified score aiming at mean BR, of the form
\[
 \tilde{U}(\alpha) = U(\alpha) + A^*(\alpha),
\]
where the vector $A^*(\alpha)$ has components $A^*_r = \frac{1}{2} \text{tr}\{i(\alpha)^{-1}[P_r+Q_r]\}$, with $P_r = E_{\alpha}\{U(\alpha)U(\alpha)^\top U_r\}$ and $Q_r = E_{\alpha}\{-j(\alpha)U_r\}$, $r = 1, \ldots, m$. The resulting estimator, $\hat{\alpha}^*$, has a mean bias of order $O(n^{-2})$, less than $O(n^{-1})$ of the ML estimator.

A competitor estimator, $\tilde{\alpha}$, with accurate median centering property is obtained as solution of the estimating equation based on the modified score (Kenne Pagui et al., 2020)

$$\tilde{U}(\alpha) = U(\alpha) + \tilde{A}(\alpha),$$

with $\tilde{A}(\alpha) = A^*(\alpha) - i(\alpha)F(\alpha)$. The vector $F(\alpha)$ has components $F_r = [i(\alpha)^{-1}]^r F_r$, where F_r has elements $F_{rt} = \text{tr}\{h_r[(1/3)P_t + (1/2)Q_t]\}$, $r, t = 1, \ldots, m$, with the matrix h_r obtained as $h_r = \{[i(\alpha)^{-1}]_r[i(\alpha)^{-1}]_r^\top\}/i r^r(\alpha)$, $r = 1, \ldots, m$. Above, we denoted by $[i(\alpha)^{-1}]_r$ the r-th column of $i(\alpha)^{-1}$ and by $i r^r(\alpha)$ the (r, r) element of $i(\alpha)^{-1}$.

In the continuous case, each component of $\tilde{\alpha}$, $\tilde{\alpha}_r$, $r = 1, \ldots, m$, is median unbiased with error of order $O(n^{-3/2})$, i.e. $\Pr_{\alpha}(\tilde{\alpha}_r \leq \alpha_r) = \frac{1}{2} + O(n^{-3/2})$, compared with $O(n^{-1/2})$ of ML estimator. Both $\hat{\alpha}^*$ and $\tilde{\alpha}$ have the same asymptotic distribution as that of the ML estimator, that is $\hat{\alpha} \sim N_m(\alpha, i(\alpha)^{-1})$.

4 Bias reduction in Dirichlet regression models

Mean and median bias reduction have been extended to Dirichlet regression models. Following Maier (2014), we obtained the needed quantities for the adjusted score equations considering two parameterization of the Dirichlet’s distribution, referred as common and alternative parameterization. Extensive simulation studies and applications will appear in a subsequent work.

5 Simulation study

Through a simulation study, with small sample size settings, we compared the performance of the ML, mean and median BR estimators, $\hat{\alpha}$, $\hat{\alpha}^*$ and $\tilde{\alpha}$, respectively. The estimators are compared in terms of empirical probability of underestimation (PU), estimated relative mean bias (RB), and empirical coverage of the 95% Wald-type confidence interval (WALD). The three performance measures are expressed in percentages.

We consider the sample sizes $n = 10, 20, 40$, and, for each of 10000 replications, we draw samples of independent observations from 3-dimensional
Table 1: Estimation of parameter $\alpha = (\alpha_1, \alpha_2, \alpha_3)$. Simulation results for ML ($\hat{\alpha}$), mean BR ($\hat{\alpha}^*$) and median BR ($\tilde{\alpha}$) estimators.

n	PU	RB	WALD	n	PU	RB	WALD	n	PU	RB	WALD
α_1	40.89	20.89	96.34	43.19	9.23	95.69	44.40	4.39	95.63		
α_2	60.87	-0.17	90.25	56.75	0.01	92.75	54.30	0.05	94.09		
α_3	50.26	10.39	94.31	49.54	4.69	94.75	49.11	2.27	95.04		

S1

α_1	40.77	21.08	96.12	43.21	9.39	95.79	45.16	4.48	95.48
α_2	60.32	-0.03	89.67	57.29	0.16	92.92	55.09	0.13	94.11
α_3	50.04	10.56	94.07	50.19	4.84	94.76	49.96	2.35	95.03

S2

α_1	38.22	33.48	96.57	40.27	14.68	96.11	44.13	6.70	95.84
α_2	63.91	-0.61	86.97	58.66	0.40	91.61	56.60	0.15	93.70
α_3	49.94	16.12	93.30	49.16	7.51	94.53	50.24	3.43	95.11

S3

α_1	40.40	23.22	96.23	42.71	10.15	95.88	44.03	4.92	95.23
α_2	61.35	-0.08	89.16	57.35	0.13	92.94	54.38	0.22	93.90
α_3	50.20	11.27	93.73	50.24	5.04	95.08	49.34	2.54	94.77

S4

α_1	33.06	26.14	96.03	38.48	11.28	95.47	42.29	5.37	95.40
α_2	59.07	0.25	89.37	56.72	-0.14	92.14	54.32	-0.03	93.67
α_3	49.75	9.06	93.34	49.16	7.51	94.53	50.01	1.80	94.61

S5

α_1	33.88	25.49	95.79	38.46	11.05	95.62	42.69	5.26	95.29
α_2	58.98	0.16	89.29	56.15	-0.13	92.31	54.24	-0.02	93.52
α_3	50.28	8.91	93.13	49.98	3.73	94.15	50.21	1.80	94.49

S6

α_1	35.06	23.68	96.05	39.47	10.19	95.58	42.96	4.79	95.32
α_2	58.61	0.26	89.79	56.26	-0.13	92.39	54.55	-0.10	93.90
α_3	49.31	8.81	93.52	49.96	3.66	94.38	50.02	1.70	94.50

S7

α_1	33.22	25.32	96.32	38.12	10.92	95.54	41.66	5.19	95.69
α_2	58.13	0.32	89.37	56.70	-0.12	92.27	53.96	-0.04	94.04
α_3	49.43	8.78	93.34	50.34	3.61	94.06	49.75	1.73	94.70

S8

α_1	32.36	25.32	96.34	38.43	10.98	95.34	41.50	5.18	95.17
α_2	58.25	0.32	89.46	56.33	-0.07	92.35	54.77	-0.05	93.81
α_3	49.16	8.78	93.31	50.15	3.67	94.08	50.21	1.72	94.59

S9

α_1	33.25	25.45	96.31	38.62	10.98	95.64	41.91	5.18	95.36
α_2	58.65	0.43	89.55	56.35	-0.07	92.65	54.85	-0.05	94.01
α_3	49.00	8.90	93.21	50.14	3.67	94.27	50.09	1.71	94.71
Dirichlet random vector, with true parameter value α_0. Combination of small and large true parameter values with equal and different values are considered. In particular, we perform the study under the settings $\alpha_0 = (0.25, 0.25, 0.25)$ (S1), $\alpha_0 = (0.6, 0.3, 0.1)$ (S2), $\alpha_0 = (12, 6, 2)$ (S3), and $\alpha_0 = (40/3, 40/3, 40, 3)$ (S4).

Table 1 shows the numerical results of the simulations. For all settings, mean and median BR estimators proved to be remarkably accurate in achieving their own goals, respectively, and are preferable to ML estimators. The poor coverage of the mean BR estimator is implied by the strong shrinkage effect of the estimator, whereas median BR shows empirical coverage closer to nominal values. The good performances of the ML estimator in terms of empirical coverages, especially when compared with mean BR, are overwhelmed by very large estimated relative mean bias and a noteworthy overestimation of the true parameter.

6 Application

We consider the serum-protein data of Pekin-ducklings analysed in Ng et al. (2011), coming from Mosimann (1962). Data concerns blood serum proportions of $n = 23$ sets of Pekin-ducklings, characterized by having the same diet in each set. For the i-th set, $i = 1, \ldots, 23$, the proportion of pre-albumin (y_{i1}), albumin (y_{i2}) and globulin (y_{i3}), are reported. Ternary plot, in Figure 1, shows in two-dimensions the distribution of $y_i = (y_{i1}, y_{i2}, y_{i3})^T$ on the simplex. Data shows that for a small amount of pre-albumina there is about a 50/50 composition of albumin and globulin.

![Figure 1: Serum-protein data of Pekin-ducklings. Ternary plot.](image-url)
Table 2 reports point and interval estimates of the parameters, by using ML, mean and median BR. It is noteworthy the shrinkage effect of the mean BR estimator. Median BR estimates are intermediate between those of mean BR and ML estimates, as well as for the estimated standard errors. As a result of the shrinkage effect of the mean and median BR estimators, the 95% Wald-type confidence intervals for mean BR and median BR are narrower than those of ML.

Table 2: Serum-protein data of Pekin-ducklings. Estimates of parameter $\alpha = (\alpha_1, \alpha_2, \alpha_3)$, estimated standard errors and 95% Wald-type confidence intervals (95% Wald CI) using ML, mean and median BR.

α	Estimate	Standard error	95% Wald CI
$\hat{\alpha}_1$	3.22	0.68	1.89 - 4.54
$\hat{\alpha}_1^*$	2.95	0.62	1.73 - 4.17
$\tilde{\alpha}_1$	3.04	0.64	1.79 - 4.30
$\hat{\alpha}_2$	20.38	4.32	11.91 - 28.86
$\hat{\alpha}_2^*$	18.59	3.95	10.84 - 26.33
$\tilde{\alpha}_2$	19.19	4.08	11.20 - 27.18
$\hat{\alpha}_3$	21.69	4.60	12.67 - 30.70
$\hat{\alpha}_3^*$	19.77	4.20	11.54 - 28.01
$\tilde{\alpha}_3$	20.41	4.34	11.92 - 28.91

References

Firth, D. (1993). Bias reduction of maximum likelihood estimates. *Biometrika*, **80**, 27 – 38.

Kenne Pagui, E. C., Salvan, A. and Sartori N. (2017). Median bias reduction of maximum likelihood estimates. *Biometrika*, **104**, 923 – 938.

Kenne Pagui, E. C., Salvan, A. and Sartori N. (2020). Efficient implementation of median bias reduction with applications to general regression
Maier, M. J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series / Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna.

Mosimann, J. E. (1962). On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions. Biometrika, 49, 65 – 82.

Narayanan, A. (1992). A note on parameter estimation in the multivariate beta distribution. Computers and Mathematics with Applications, 24, 11 – 17.

Ng, K. W., Tian, G. L., and Tang, M. L. (2011). Dirichlet and Related Distributions: Theory, Methods and Applications. Chichester: Wiley.

Wicker, N., Muller, J., Kalathur, R. K. R., and Poch, O. (2008). A maximum likelihood approximation method for Dirichlet’s parameter estimation. Computational statistics and data analysis, 52, 1315 – 1322.