AN ARITHMETIC VALUATIVE CRITERION FOR PROPER MAPS OF TAME ALGEBRAIC STACKS

GIULIO BRESCIANI AND ANGELO VISTOLI

ABSTRACT. The valuative criterion for proper maps of schemes has many applications in arithmetic, e.g. specializing \mathbb{Q}_p-points to \mathbb{F}_p-points. For algebraic stacks, the usual valuative criterion for proper maps is ill-suited for these kind of arguments, since it only gives a specialization point defined over an extension of the residue field, e.g. a \mathbb{Q}_p-point will specialize to an \mathbb{F}_{p^n}-point for some n. We give a new valuative criterion for proper maps of tame stacks which solves this problem and is well-suited for arithmetic applications. As a consequence, we prove that the Lang-Nishimura theorem holds for tame stacks.

1. INTRODUCTION

The well known and extremely useful valuative criterion for properness says, in particular, that if $X \to Y$ is a proper morphism of schemes, R is a DVR with quotient field K and residue field k, and we have a commutative diagram

$$
\begin{array}{ccc}
\text{Spec } K & \longrightarrow & X \\
\downarrow & & \downarrow \\
\text{Spec } R & \longrightarrow & S \\
\end{array}
$$

there exists a unique lifting $\text{Spec } R \to X$ of $\text{Spec } R \to Y$ extending $\text{Spec } K \to X$. This has many arithmetic applications: most of them use that the statement above ensures the existence of a lifting $\text{Spec } k \to X$ of the composite $\text{Spec } k \subseteq \text{Spec } R \to Y$.

If X and Y are algebraic stack, and $X \to Y$ is a proper morphism, then this fails, even in very simple examples, unless $X \to Y$ is representable. The correct general statement is that there exists a local extension of DVR $R \to R'$, such that if we denote by K' the fraction field of R', the composite $\text{Spec } R' \to \text{Spec } R \to Y$ has a lifting $\text{Spec } R' \to X$ extending the composite $\text{Spec } K' \to \text{Spec } K \to X$ (see for example [Sta21, Tag 0CLY]). For arithmetic applications this is problematic, because the extension $R \subseteq R'$ will typically induce a nontrivial extension of residue fields, so it does not imply that $\text{Spec } k \to Y$ lifts to $\text{Spec } k \to X$, as in the case of schemes.

When X and Y are Deligne–Mumford stacks over a field of characteristic 0 a substitute was found by the first author in [Bre21, Theorem 1]. In this note we we extend this, in a somewhat more precise form, to positive and mixed characteristic.

The second author was partially supported by research funds from Scuola Normale Superiore, project SNS19_B_VISTOLI, and by PRIN project “Derived and underived algebraic stacks and applications”. The paper is based upon work partially supported by the Swedish Research Council under grant no. 2016-06596 while the second author was in residence at Institut Mittag-Leffler in Djursholm.
In this context the correct generality is that of tame stacks, in the sense of AOV08. Tame stacks are algebraic stacks with finite inertia, such that the automorphism group scheme of any object over a field is linearly reductive. In characteristic 0 they coincide with Deligne–Mumford stacks with finite inertia, but in positive and mixed characteristic there are Deligne–Mumford stacks with finite inertia that are not tame, and tame stacks that are not Deligne–Mumford.

In our version the role of the DVR \(R' \) above is played by a root stack \(\sqrt[n]{\text{Spec } R} \); this is not a scheme, but a tame stack with a map \(\sqrt[n]{\text{Spec } R} \to \text{Spec } R \), which is an isomorphism above \(\text{Spec } K \subseteq \text{Spec } R \) (see the discussion at the beginning of §3). The statement of our main theorem 3.1 is that if \(X \to Y \) is a proper morphism of tame algebraic stacks and we have a commutative diagram as above, there exists a unique positive integer \(n \) and a unique representable lifting \(\sqrt[n]{\text{Spec } R} \to X \) of the composite \(\sqrt[n]{\text{Spec } R} \to \text{Spec } R \to Y \) extending \(\text{Spec } K \to X \). The key point for arithmetic applications is that the closed point \(\text{Spec } k \to \text{Spec } R \) lifts to \(\text{Spec } k \to \sqrt[n]{\text{Spec } R} \). This statement is much harder to prove in arbitrary characteristic than in characteristic 0.

Besides the original application to Grothendieck’s section conjecture in Bre21, this valuative criterion has been applied in BVb to give new proofs and stronger versions of the genericity theorem for essential dimension.

Recall that the Lang-Nishimura theorem states that the property of having a rational point is a birational invariant of smooth proper varieties. Another consequence of our version of the valuative criterion is that the Lang-Nishimura theorem generalizes to tame stacks, see 4.1. Our version of the Lang-Nishimura theorem has an immediate corollary, which we find surprising: if \(\mathcal{M} \) is a smooth tame stack which is generically a scheme and \(\mathcal{M} \to M \) is a resolution of singularities of the coarse moduli space \(\mathcal{M} \to M \), then a rational point of \(M(k) \) lifts to \(\mathcal{M} \) if and only if it lifts to \(M \). This gives a hint of the applications of the Lang–Nishimura theorem to fields of moduli, which will be the subject of the forthcoming papers BVa, Bre.

2. Notations and conventions

We will follow the conventions of Knu71 and LMB00; so the diagonals of algebraic spaces and algebraic stacks will be separated and of finite type. In particular, every algebraic space will be decent, in the sense of Sta21 Definition 03I8.

We will follow the terminology of AOV08: a tame stack is an algebraic stack \(X \) with finite inertia, such that its geometric points have linearly reductive automorphism group. This is equivalent to requiring that \(X \) is étale locally over its moduli space a quotient by a finite, linearly reductive group scheme AOV08 Theorem 3.2.

More generally, a morphism \(f : X \to Y \) of algebraic stacks is tame if the relative inertia group stack \(I_{X/Y} \to X \), defined as in Sta21 Section 050P, is finite and has linearly reductive geometric fibers. See AOV11 §3.

Using Sta21 Lemma 0CPK one can easily prove the following.

Proposition 2.1. Let \(f : X \to Y \) be a morphism of algebraic stacks. The following conditions are equivalent.

1. \(f \) is tame.
2. If \(Z \to Y \) is a morphism, and \(Z \) is a scheme, then \(Z \times_Y X \) is a tame stack.
3. If \(Z \to Y \) is a morphism, and \(Z \) a tame stack, then \(Z \times_Y X \) is also tame.

Furthermore, if \(X \) is tame, then the morphism \(f \) is also tame.
3. The valuative criterion

A basic example of tame stacks is root stacks (see [AGV08 Appendix B2]). We will need this in the following situation. Let R be a DVR with uniformizing parameter π and residue field $k \overset{\text{def}}{=} R/(\pi)$. If n is a positive integer, we will denote by $\sqrt[n]{\text{Spec } R}$ the n^{th} root of the Cartier divisor $\text{Spec } k \subseteq \text{Spec } R$. It is a stack over $\text{Spec } R$, such that given a morphism $\phi : T \to \text{Spec } R$, the groupoid of liftings $T \to \sqrt[n]{\text{Spec } R}$ is equivalent to the groupoid whose objects are triples (L, s, α), where L is an invertible sheaf on T, $s \in L(T)$ is a global section of L, and α is an isomorphism $L \otimes n \cong \theta_T$, such that $\alpha(s \otimes n) = \phi^*(\pi)$. Alternatively, $\sqrt[n]{\text{Spec } R}$ can be described as the quotient stack $[\text{Spec } R[\![t]\!]/(t^n - \pi)/\mu_n]$, where the action of μ_n on $\text{Spec } R[\![t]\!]/(t^n - \pi)$ is by multiplication on t. The morphism $\rho : \sqrt[n]{\text{Spec } R} \to \text{Spec } R$ is an isomorphism outside of $\text{Spec } k \subseteq \text{Spec } R$, while the reduced fiber $\rho^{-1}(\text{Spec } k)_{\text{red}}$ is non-canonically isomorphic to the classifying stack $\mathcal{B}_k \mu_n$. In particular the embedding $\text{Spec } k \to \text{Spec } R$ lifts to a morphism $\text{Spec } k \to \sqrt[n]{\text{Spec } R}$.

The following is our version of the valuative criterion for properness.

Theorem 3.1. Let $f : X \to Y$ be a tame, proper morphism of algebraic stacks, R a DVR with quotient field K. Suppose that we have a 2-commutative square

$$
\begin{array}{ccc}
\text{Spec } K & \longrightarrow & X \\
\downarrow & & \downarrow f \\
\text{Spec } R & \longrightarrow & \text{Spec } Y
\end{array}
$$

Then there exists a unique positive integer n and a representable lifting $\sqrt[n]{\text{Spec } R} \to X$ of the given morphism $\text{Spec } R \to Y$, making the diagram

$$
\begin{array}{ccc}
\text{Spec } K & \longrightarrow & X \\
\sqrt[n]{\text{Spec } R} & \longrightarrow & \text{Spec } R & \longrightarrow & \text{Spec } Y
\end{array}
$$

2-commutative. Furthermore, the lifting is unique up to a unique isomorphism.

Corollary 3.2. In the situation above, if k is the residue field of R, the composite $\text{Spec } k \subseteq \text{Spec } R \to Y$ has a lifting $\text{Spec } k \to X$.

As one would expect, these statements fail without the tameness hypothesis, even when Y is a scheme and X is a separated Deligne–Mumford stack.

Example 3.3. Let p be a prime, R a DVR whose fraction field K has characteristic 0 and contains a p-th root of 1, denoted by ζ_p, while its residue field k has characteristic p and is not perfect. An example would be the localization of $\mathbb{Z}[\zeta_p][[t]]$ at a prime ideal of height 1 containing p.

Choose an element $a \in R^\times$ whose image in k is not a p-th power, and set $R' \overset{\text{def}}{=} R(\sqrt{a})$. Then R' is a DVR, since the $R' \otimes_R k = k(\sqrt{a})$ is a field (here π is the class of a in k). Write $K' = K(\sqrt{a})$ for its fraction field and $k' = k(\sqrt{a})$ for its residue field.

Call C_p the cyclic group of order p generated by $\zeta_p \in K^\times$. The extension K'/K is Galois with cyclic Galois group C_p acting by $\sqrt{a} \mapsto \zeta_p \sqrt{a}$. The action of C_p on K' naturally extends to R'.
Let X be the quotient stack $[\text{Spec } R'/C_p]$; this is a separated Deligne–Mumford stack, but it is not tame. Since $(R')^{C_p} = R$ the moduli space of X is $\text{Spec } R$, and we have we have a natural map $X \to \text{Spec } R$, which is an isomorphism over $\text{Spec } K \subseteq \text{Spec } R$. Since k'/k is purely inseparable, then $X_{k'}(k)$ is empty: such a k-rational point would correspond to a C_p-torsor $\text{Spec } A \to \text{Spec } k$ with an equivariant morphism $\text{Spec } A \to \text{Spec } k'$ and thus an embedding of k' in the étale k-algebra A, which is clearly absurd. In particular, there is no map $\sqrt[n]{\text{Spec } R} \to X$ for any n.

Definition 3.4. In the situation of Theorem 3.1, we call the integer n the *loop index* of the morphism $\text{Spec } K \to X$ at the place associated with $R \subseteq K$. If the loop index is 1, we say that $\text{Spec } K \to X$ is *untangled*.

Lemma 3.5. Let $R \subseteq R'$ be an extension of DVRs with ramification index e, and let $K \subseteq K'$ be the fraction fields of R and R' respectively. If X is a tame stack proper over R and $\text{Spec } K \to X$ is a morphism with loop index n, the composite $\text{Spec } K' \to \text{Spec } K \to X$ has loop index equal to $n/gcd(n, e)$.

Proof. Write $m \overset{\text{def}}{=} n/gcd(n, e)$; the statement follows from the fact that there is a natural representable morphism $\sqrt[n]{\text{Spec } R'} \to \sqrt[n]{\text{Spec } R}$ inducing the given morphism $\text{Spec } K' \to \text{Spec } K$.

We spend the rest of this section proving Theorem 3.1. Given a DVR R and $\pi \in R$ a uniformizing parameter, write $R^{(n)} = R[t]/(t^n - \pi)$. $K^{(n)} = K[t]/(t^n - \pi)$. We have $\sqrt[n]{\text{Spec } R} = [\text{Spec } R^{(n)}/\mu_n]$.

Lemma 3.6. Let R be a DVR, m, n integers. A morphism $\sqrt[n]{\text{Spec } R} \to \sqrt[m]{\text{Spec } R}$ over R exists if and only if $n|m$, and in this case it is unique up to equivalence.

Proof. This follows from the fact that a section $\text{Spec } R^{(m)} \to \sqrt[m]{\text{Spec } R}$ exists if and only if $n|m$, and in this case it is unique up to equivalence.

Lemma 3.7. Let R be a DVR, $D \subseteq \text{Spec } R$ the divisor corresponding to the closed point, m_i, n_i, r_i for $i = 1, \ldots, m$ positive integers, with $n_i \geq 2$ for every i. The fibered product

$$X = \prod_{i=1}^{m} \sqrt[n_i]{\text{Spec } R, r_i D}.$$

is normal if and only if $m = 1$ and $r_1 = 1$.

Proof. Let $V_{n, r}$ be the scheme $\text{Spec } R[t, s]/(t^n s - \pi^r)$, there is an action of \mathbb{G}_m on $V_{n, r}$ given by $(\lambda, t, s) \mapsto (\lambda t, \lambda^{-n}s)$ and $\sqrt[n]{\text{Spec } R, r D} \simeq [V_{n, r}/\mathbb{G}_m]$, see [AGV08 Appendix B]. Consider the fibered product

$$Y = \prod_{i} V_{n_i, r_i} = R[t_1, s_1, \ldots, t_m, s_m]/(t_1^{n_1} s_1 - \pi^{r_1}).$$

The prime ideal $p = (t_1, \ldots, t_m, \pi)$ is the generic point of the special fiber and has height 1. Since $V_{n, r} \to \sqrt[n]{\text{Spec } R, r D}$ is smooth, then $Y \to X$ is smooth and hence X is normal if and only if Y is normal at p.

Now consider the prime ideal $p_0 = (t_1, \ldots, t_m, \pi) \subseteq R[t_1, s_1, \ldots, t_m, s_m]$, p and p_0 have equal residue fields and there is a natural surjective linear map $p_0/p_0^2 \to p/p^2$. We have that p_0/p_0^2 has dimension $m+1$ generated by the classes of $[t_i], [\pi]$. If $m = 1$ and $r_1 = 1$, then p_0/p_0^2 has dimension 2 and $[\pi]$ is in the kernel of $p_0/p_0^2 \to p/p^2$, hence Y is normal at p.

On the other hand, assume that Y is normal at p, so that p/p^2 has dimension 1. Since $n_i \geq 2$ for every i, the kernel of $p_0/p_0^2 \to p/p^2$ is generated by the classes $[\pi^{n_i}]$ and hence has dimension 1 if $r_i = 1$ for some i, and dimension 0 otherwise. Since p_0/p_0^2 has dimension $m + 1$ and p/p^2 has dimension 1, this implies that $m = 1$ and $r_1 = 1$.

Lemma 3.8. Let A be a Dedekind domain with fraction field K, $D \subset \text{Spec } A$ an effective, reduced divisor. Let $f : X \to \sqrt[n]{(\text{Spec } A, D)}$ be a representable, proper morphism. Every generic section $\text{Spec } K \to X$ of f extends uniquely to a global section $\sqrt[n]{(\text{Spec } A, D)} \to X$.

Proof. Let $Y \subset X$ be the schematic image of a generic section $\text{Spec } K \to X$, we want to prove that $Y \to \sqrt[n]{(\text{Spec } A, D)}$ is an isomorphism. Since the problem is local, we may assume that $A = R$ is a DVR and D is either empty or the closed point. If D is empty, then $\sqrt[n]{\text{Spec } R, D} = \text{Spec } R$ and this is simply the valuative criterion of properness. Suppose that D is the closed point. Consider the flat morphism $\text{Spec } R^{(n)} \to \sqrt[n]{\text{Spec } R}$ and write $X' = X \times_{\sqrt[n]{\text{Spec } R}} \text{Spec } R^{(n)}$, $Y' = Y \times_{\sqrt[n]{\text{Spec } R}} \text{Spec } R^{(n)}$. Thanks to [Sta21, Lemma 0CMK](#) we have that $Y' \subset X'$ is the schematic image of the induced generic section $\text{Spec } K^{(n)} \to X'$. By the valuative criterion of properness, there is a section $\text{Spec } R^{(n)} \to X'$ which is a closed immersion since X' is representable, this implies that $Y' \to \sqrt[n]{\text{Spec } R}$ is an isomorphism. It follows that $Y \to \sqrt[n]{\text{Spec } R}$ is an isomorphism, too.

Lemma 3.9. Let R be a DVR, n, m positive integers. Assume that n is prime with the residue characteristic of R. Consider the μ_n-torsor $\text{Spec } R^{(n)} \to \sqrt[n]{\text{Spec } R}$. There exists a unique way of extending the action of μ_n to $\sqrt[n]{\text{Spec } R^{(n)}}$, and the quotient $\sqrt[n]{\text{Spec } R^{(n)}/\mu_n}$ is isomorphic to $\sqrt[n]{\text{Spec } R}$.

Proof. We have a natural action $\rho : \sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n \to \sqrt[n]{\text{Spec } R^{(n)}}$ induced by the action on $\text{Spec } R^{(n)}$. The action ρ gives a structure of μ_n-torsor to the natural morphism $\sqrt[n]{\text{Spec } R^{(n)}} \to \sqrt[n]{\text{Spec } R}$. Let $\eta : \sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n \to \sqrt[n]{\text{Spec } R^{(n)}}$ be an action such that the diagram

$$
\begin{array}{ccc}
\sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n & \xrightarrow{\eta} & \sqrt[n]{\text{Spec } R^{(n)}} \\
\downarrow & & \downarrow \\
\text{Spec } R^{(n)} \times_R \mu_n & \longrightarrow & \text{Spec } R^{(n)}
\end{array}
$$

is 2-commutative, we want to show that ρ and η are equivalent.

Let $D \subset \text{Spec } R^{(n)} \times_R \mu_n$ be the pullback of the closed point of $\text{Spec } R^{(n)}$, since μ_n is finite étale over R we have that D is a reduced divisor. Since μ_n is étale, the natural morphism $\sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n, D \to \sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n$ is an isomorphism. The scheme $\text{Spec } R^{(n)} \times_R \mu_n$ is finite étale over $\text{Spec } R^{(n)}$, hence it is a disjoint union of Dedekind domains, and $\sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n = \sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n, D$ is a disjoint union of root stacks over Dedekind domains.

The stack $\text{Isom}(\rho, \eta)$ has a proper, representable morphism $\text{Isom}(\rho, \eta) \to \sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n$, and for every connected component of $\sqrt[n]{\text{Spec } R^{(n)}} \times_R \mu_n$ there is a generic section. By Lemma 3.8 these generic sections extend to global sections, hence $\eta \simeq \rho$.
Corollary 3.10. Let R be a DVR, n, m positive integers. Assume that n is prime with the residue characteristic of R. Let $X \to \sqrt[2n]{\text{Spec } R}$ be a morphism, and assume that the base change of X to $\text{Spec } R^{(n)}$ is isomorphic to $\sqrt[2n]{\text{Spec } R}$. Then $X \simeq \sqrt[2n]{\text{Spec } R}$.

Lemma 3.11. Let R'/R be a local, quasi-finite étale extension of DVRs and X a tame stack over R, $X' \overset{\text{def}}{=} X_{R'}$. If $X' \simeq \sqrt[n]{\text{Spec } R'}$, then $X \simeq \sqrt[n]{\text{Spec } R}$.

Proof. Let K be the residue field of R, clearly we have that $X_K \to \text{Spec } K$ is an isomorphism. Write $A = \text{Spec } R' \otimes_R R'$, since R' is quasi-finite étale over R then A is a product of Dedekind domains with a finite number of closed points. Let $D \subset \text{Spec } A$ be the effective, reduced divisor of all closed points and $S \overset{\text{def}}{=} \sqrt[n]{\text{Spec } R'} \times_{\sqrt[n]{\text{Spec } R}} \sqrt[n]{\text{Spec } R}$, it is easy to see that $S \simeq \sqrt[n]{\text{Spec } A}$.

Let $\phi : \sqrt[n]{\text{Spec } R'} \simeq X' \to X$ be the composite, and consider the two projections $p_1, p_2 : S \to \sqrt[n]{\text{Spec } R'}$. Since $X_{R'}$ is separated, then X is separated, too, and hence $\text{Isom}(p_1^*\phi, p_2^*\phi)$ is an algebraic stack with a proper, representable morphism to S. There is a generic section $S_K \to \text{Isom}(p_1^*\phi, p_2^*\phi)$ which extends to a global section thanks to Lemma 4.4. This gives descent data for a morphism $f : \sqrt[n]{\text{Spec } R'} \to X$ (the cocycle condition can be checked on the generic point, where it is obvious). Since the base change to R' of f is an isomorphism, we have that f is an isomorphism, too.

Proposition 3.12. Let X be a normal, tame stack of finite type over a DVR R, and assume that there is a generic section $\text{Spec } K \to X$ which is an open, scheme-theoretically dense embedding. Then $X \simeq \sqrt[n]{\text{Spec } R}$ for some n.

Proof. Since X is of finite type over R, there exists a DVR $R_0 \subset R$ which is the localization of a \mathbb{Z}-algebra of finite type and a stack X_0/R_0 such that $X \simeq X_0/R_0$. Furthermore, we may assume that the uniformizing parameter of R_0 maps to a uniformizing parameter of R, so that $\sqrt[n]{\text{Spec } R_0 \times_{R_0} \text{Spec } R} \simeq \sqrt[n]{\text{Spec } R}$. Up to replacing R, X with R_0, X_0 we may assume that R is Nagata. Let k be the residue field of R and p its characteristic.

By [AOV08, Theorem 3.2], there exists a DVR R' quasi-finite and étale over R and a finite, flat, linearly reductive group scheme G/R' with an action on a scheme U finite over R' such that $X_{R'} \simeq [U/G]$. Up to enlarging R', by [AOV08, Lemma 2.20] there exists a diagonalizable flat, closed subgroup $\Delta \subset G$ such that $H \overset{\text{def}}{=} G/\Delta$ is constant and tame. We may furthermore assume that the degree of Δ is a power of p. Thanks to Lemma 3.11 we may assume $R' = R$.

Case 1. X is tame and Deligne-Mumford. Since Δ_k is connected and X is Deligne-Mumford and generically a scheme, the action of Δ is free (because otherwise X would have ramified inertia), hence up to replacing U with U/Δ we may assume that G is constant and tame. Since X is normal and G is constant and tame, then U is normal, too. If $u \in U$ is a geometric point, the stabilizer G_u acts faithfully on the tangent space, hence the automorphism groups of the points of X are cyclic and tame. By [Ryd11, Lemma 8.5] and Lemma 3.7 since X is normal we have $X \simeq \sqrt[n]{\text{Spec } R}$ for some n.

Case 2. X is tame. Let $V \overset{\text{def}}{=} U/\Delta$ and $Y_0 \overset{\text{def}}{=} [V/H]$, we have that Y_0 is Deligne-Mumford and there is a natural birational morphism $X \to Y_0$ whose relative inertia is diagonalizable. Let $Y \to Y_0$ be the normalization, it is finite over Y_0 since R is Nagata and since X is normal the morphism $X \to Y_0$ lifts to a morphism $X \to Y$.
By case 1, there exists an \(n \) prime with \(p \) and an isomorphism \(Y \cong \sqrt[n]{\text{Spec} R} \). Consider the morphism \(\text{Spec} R^{(n)} \to \sqrt[n]{\text{Spec} R} \), it is a \(\mu_n \)-torsor and hence finite étale since \(n \) is prime with \(p \), it follows that the base change \(X \times \sqrt[n]{\text{Spec} R} \) is normal with diagonalizable inertia. By [Ryd11, Lemma 8.5] and Lemma 3.7, we have \(X \times \sqrt[n]{\text{Spec} R} \cong \sqrt{m} \text{Spec} R^{(n)} \) for some integer \(m \), hence \(X \cong \sqrt{m} \text{Spec} R \) thanks to Corollary 3.10.

\[\diamondsuit \]

Proof of Theorem 3.1. By base change, we may assume that \(Y = \text{Spec} R \) and that \(X \) is a tame stack proper over \(R \). With an argument similar to the one in the proof of Proposition 3.12 we may reduce to the case in which \(R \) is Nagata.

By [Ryd11, Theorem B], we may assume that \(\text{Spec} K \to X \) is an open, scheme theoretically dense embedding. Since \(R \) is Nagata, the normalization \(X \) is finite and representable over \(X \). By Proposition 3.12 we have \(X = \sqrt[n]{\text{Spec} R} \), hence an extension exists. If \(m \) is another integer with a representable extension \(\sqrt[n]{\text{Spec} R} \to X \), it factors through \(X = \sqrt[n]{\text{Spec} R} \) since \(\sqrt[n]{\text{Spec} R} \) is normal by Lemma 3.7. We conclude the proof of Theorem 3.1 by Lemma 3.6.

\[\diamondsuit \]

4. The Lang–Nishimura theorem

Here is our version of the Lang–Nishimura theorem for tame stacks.

Theorem 4.1. Let \(S \) be a scheme and \(X \to Y \) a rational map of algebraic stacks over \(S \), with \(X \) locally noetherian and integral and \(Y \) tame and proper over \(S \). Let \(k \) be a field, \(s : \text{Spec} k \to S \) a morphism. Assume that \(s \) lifts to a regular point \(\text{Spec} k \to X \); then it also lifts to a morphism \(\text{Spec} k \to Y \).

In the standard version of the Lang–Nishimura theorem (see for example [Poo17, Theorem 3.6.11]), which is a standard tool in arithmetic geometry, \(X \) and \(Y \) are schemes, and \(S = \text{Spec} k \). In the applications that we have in mind, the additional flexibility of having a base scheme is important.

Proof. According to [LMB00, Théorème 6.3] we can find a smooth morphism \(U \to X \) with a lifting \(\text{Spec} k \to U \) of \(\text{Spec} k \to X \); hence we can replace \(X \) by \(U \), and assume that \(X \) is scheme. Furthermore, if \(x \) denotes the image of \(\text{Spec} k \to X \) and \(k(x) \) its residue field, we have a factorization \(\text{Spec} k \to \text{Spec} k(x) \to X \), and we may assume \(k = k(x) \). If \(x \) has height 0, then \(\text{Spec} k \) dominates \(X \), and the composite \(\text{Spec} k \to X \to Y \) is well defined.

Otherwise, call \(U \subseteq X \) the open subset where \(f \) is defined. By [BVb, Lemma 4.3] there exists a DVR \(R \) with residue field \(k = k(x) \) and a morphism \(\text{Spec} R \to X \) that maps the generic point \(\text{Spec} K \) of \(\text{Spec} R \) into \(U \). Thus we get a morphism \(\text{Spec} K \to U \), and we apply Corollary 3.2 to the diagram

\[
\begin{array}{ccc}
\text{Spec} K & \longrightarrow & U \\
\downarrow & & \downarrow \scriptstyle{f} \\
\text{Spec} R & \longrightarrow & X \\
\downarrow & & \downarrow \\
& & \text{Spec} S
\end{array}
\]

thus getting the desired morphism \(\text{Spec} k \to Y \).

\[\diamondsuit \]

The Lang–Nishimura theorem fails for non-tame separated stacks. Let us give two examples, one in mixed characteristic, the other in positive characteristic.
Example 4.2. Let \(X \to \text{Spec} \, R \) be the stack constructed in \([33]\) it is a non-tame regular Deligne-Mumford stack. Let \(k \) be the residue field of \(R \). There is a rational map \(\text{Spec} \, R \dashrightarrow X \) and \(\text{Spec} \, R \) has a \(k \) rational point, but \(X \) has no \(k \)-rational points.

Example 4.3. Let \(C_0 \) be a smooth, projective curve of positive genus over a finite field \(F \) of characteristic \(p \) with \(C_0(F) \neq \emptyset \). Let \(a \) be an indeterminate, write \(k \overset{\text{def}}{=} F(a) \) and \(C \overset{\text{def}}{=} C_0,k \); since \(C_0 \) has positive genus \(C(k) = C_0(F) \) is finite. Let \(f \in k(C) \) be a rational function such that each rational point is a zero of \(f \) (this can be easily found using Riemann-Roch). Consider the ramified cover \(D \to C \) given by the equation

\[
t^p - f^{p-1}t = a;
\]
in other words, \(D \) is the smooth projective curve associated with the field extension \(k(C)[t]/(t^p - f^{p-1}t - a) \). Let \(c \in C(k) \) be a rational point, and write \(R_c \overset{\text{def}}{=} \mathcal{O}_{C,c}[t]/(t^p - f^{p-1}t - a) \), it is a normal domain: if \(\overline{R}_c \) is the normalization, both \(R_c \otimes k(C) \to \overline{R}_c \otimes k(C) \) and \(R_c \otimes k \to \overline{R}_c \otimes k \) are isomorphisms for degree reasons since \(R_c \otimes k = k[t]/(t^p - a) \) is a field of degree \(p \) over \(k \). Hence, \(\overline{R}_c \) is a DVR with residue field \(k' \overset{\text{def}}{=} k[t]/(t^p - a) \). It follows that \(D \) has no \(k \)-rational points.

The cyclic group \(C_p \) acts on \(D \) by \(t \mapsto t + f \), the field extension \(k(D)/k(C) \) is a cyclic Galois cover and \(C \) is the quotient scheme \(D/C_p \). Let \(X \) be the quotient stack \([D/C_p] \), there is a natural birational morphism \(X \to C = D/C_p \). A rational point \(\text{Spec} \, k \to X \) corresponds to a \(C_p \)-torsor \(\text{Spec} \, A \to \text{Spec} \, k \) with an equivariant morphism \(\text{Spec} \, A \to D \): since the fibers of \(D \to C \) over rational points are isomorphic to \(k' \), a rational point of \(X \) gives an embedding of \(k' \) in an étale algebra \(A \), which is clearly absurd. It follows that \(X \) is a proper Deligne-Mumford stack over \(k \) with \(X(k) = \emptyset \) and a birational map \(C \dashrightarrow X \).

As a consequence of Theorem 4.4.1 we can decide whether a residual gerbe of a tame stack is neutral or not by looking at a resolution of singularities of the coarse moduli space. We find this rather surprising.

Corollary 4.4. Let \(X \) be a locally noetherian, regular and integral tame stack with coarse moduli space \(X \to M \), and \(\overline{M} \to M \) a proper birational morphism, with \(\overline{M} \) integral and regular. Assume that there is a lifting \(\text{Spec} \, k(M) \to X \) of the generic point \(\text{Spec} \, k(M) \to M \).

If \(k \) is a field and \(m : \text{Spec} \, k \to M \) a morphism, then \(m \) lifts to a morphism \(\text{Spec} \, k \to X \) if and only if it lifts to a morphism \(\text{Spec} \, k \to \overline{M} \).

So, for example, if \(M \) is regular all morphisms \(\text{Spec} \, k \to M \) lift to \(X \), and all residual gerbes are neutral.

REFERENCES

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398.

[AOV08] Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.

[AOV11] ________, Twisted stable maps to tame Artin stacks, J. Algebraic Geom. 20 (2011), no. 3, 399–477.

[Bre] Giulio Bresciani, The arithmetic of tame quotient singularities in dimension 2, in preparation.

[Bre21] Giulio Bresciani, On the birational section conjecture with strong birationality assumptions, arXiv:2108.13397, 2021.
[BVa] Giulio Bresciani and Angelo Vistoli, *Fields of moduli and the arithmetic of tame quotient singularities*, in preparation.

[BVb] ______, *The genericity theorem for the essential dimension of tame stacks*, arXiv:2111.01117. To appear in Pure and Applied Mathematics Quarterly.

[Knu71] Donald Knutson, *Algebraic spaces*, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971.

[LMB00] Gérard Laumon and Laurent Moret-Bailly, *Champs algébriques*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39, Springer-Verlag, Berlin, 2000.

[Poo17] Bjorn Poonen, *Rational points on varieties*, Graduate Studies in Mathematics, vol. 186, American Mathematical Society, Providence, RI, 2017.

[Ryd11] David Rydh, *Compactification of tame Deligne–Mumford stacks*, https://people.kth.se/~dary/tamecompactification20110517.pdf, 2011.

[Sta21] The Stacks Project Authors, *Stacks project*, http://stacks.math.columbia.edu, 2021.

SCUOLA NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7, 56126 PISA, ITALY

Email address, Vistoli: angelo.vistoli@sns.it

Email address, Bresciani: giulio.bresciani@gmail.com