Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders

Susan M. Hiatt,1 James M.J. Lawlor,1 Lori H. Handley,1 Ryne C. Ramaker,1 Brianne B. Rogers,1,2 E. Christopher Partridge,1 Lori Beth Boston,1 Melissa Williams,1 Christopher B. Plott,1 Jerry Jenkins,1 David E. Gray,1 James M. Holt,1 Kevin M. Bowling,1 E. Martina Bebin,3 Jane Grimwood,1 E. Christopher Partridge,1 Lori Beth Boston,1 Melissa Williams,1 Christopher B. Plott,1 Jerry Jenkins,1 David E. Gray,1 James M. Holt,1 Kevin M. Bowling,1 E. Martina Bebin,3 Jane Grimwood,1 Jeremy Schmutz,1 and Gregory M. Cooper1,*

Summary

Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these datasets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified multiple large de novo structural variants, including insertion-translocations affecting DGKB and MLLT3, which we show disrupt MLLT3 transcript levels. We consider this extensive structural variation likely pathogenic. The breadth and quality of variant detection, coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs, support the hypothesis that long-read genome sequencing can substantially improve rare disease genetic discovery rates.

Introduction

Neurodevelopmental disorders (NDDs) are a heterogeneous group of conditions that lead to a range of physical and intellectual disabilities and collectively affect 1%–3% of children.1 Many NDDs result from large-effect genetic variation, which often occurs de novo,2 with hundreds of genes known to associate with disease.3 Owing to this combination of factors, exome and genome sequencing (ES/GS) have proven to be powerful tools for both clinical diagnostics and research on the genetic causes of NDDs. However, while discovery power and diagnostic yield of genomic testing have consistently improved over time,4 most NDDs cannot be attributed to currently detectable genetic variation.5

There are a variety of hypotheses that might explain the fact that most NDDs cannot be traced to a causal genetic variant after ES/GS, including potential environmental causes and complex genetic effects driven by small-effect variants.6 However, one likely possibility is that at least some NDDs result from highly penetrant variants that are missed by typical genomic testing. ES/GS are generally performed by generating millions of “short” sequencing reads, often paired-end 150 bp reads, followed by alignment of those reads to the human reference assembly and detection of variation from the reference. Various limitations of this process, such as confident alignment of variant reads to a unique genomic location, make it difficult to detect many variants, including some known to be highly penetrant contributors to disease. Examples of NDD-associated variation that might be missed include low-complexity repeat variants,7 small to moderately sized structural variants (SVs),8,9 and mobile element insertions (MEIs).9,10 Indeed, despite extensive effort from many groups, detection of such variation remains plagued by high error rates, both false positives (FPs) and false negatives (FNs), and it is likely that many such variants are simply invisible to short-read analysis.11

One potential approach to overcome variant detection limitations in ES/GS is to use sequencing platforms that provide longer reads. Long reads allow for more comprehensive and accurate read alignment to the reference assembly, including within and near to repetitive regions, and de novo assembly.12 However, to date, the utility of these long reads has been limited for several reasons, including cost, requirements on size, quantity and quality of input DNA, and high base-pair-level error rates. Recently, Pacific Biosciences released an approach, called circular consensus sequencing (CCS), or “HiFi,” in which fragments of DNA are circularized and then sequenced repeatedly.13 This leads to sequence reads that are both long (>10 kb) and accurate at the base pair level (>99%). In principle, such an approach holds great potential for more comprehensive and accurate detection of human

1HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; 2Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35924, USA; 3Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
*Correspondence: gcooper@hudsonalpha.org
https://doi.org/10.1016/j.xhgg.2021.100023.
© 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
genetic variation, especially in the context of rare genetic disease.

We have used CCS to analyze six proband-parent trios affected with NDDs that we previously sequenced using a typical Illumina genome sequencing (IGS) approach but in whom no causal or even potentially causal genetic variant was found. The CCS data were used to detect variation within each trio and generate \textit{de novo} genome assemblies, with a variety of metrics indicating that the results are more comprehensive and accurate, especially for complex variation, than those seen in short-read datasets. In one proband, we identified an L1-mediated \textit{de novo} insertion within \textit{CDKL5} that leads to a duplicated coding exon and is predicted to lead to a frameshift and loss of function. Transcript analyses confirm that the duplicated exon is spliced into mRNA in the proband. We have classified this variant as likely pathogenic (LP) using American College of Medical Genetics (ACMG) standards.14 In a second proband, we found multiple large SVs that together likely disrupt at least seven protein-coding genes. Our observations support the hypothesis that long-read genome analysis can substantially improve success rates for the detection of variation associated with rare genetic conditions.

\textbf{Material and methods}

\textbf{Illumina sequencing, variant calling, and analysis}

Six probands and their unaffected parents were enrolled in a research study aimed at identifying genetic causes of NDDs,15 which was monitored by the Western Institutional Review Board (IRB) (20130675). All six of these families underwent trio IGS between 4 and 5 years ago, which was performed as described.15 Briefly, whole-blood genomic DNA was isolated using the QIAsymphony (QIAGEN), and sequencing libraries were constructed by canu (v1.8),29 Falcon unzip (falcon-kit 1.8.1),30 HiCanu (hi-canu _rc _+325 changes [r9818 86bb2e221546c76437887d3a0f-f59b954685317]),31 and hifiasm (v 0.5-dirty-r247).32 Hifiasm was used to create two assemblies. First, the default parameters were used, followed by two rounds of Racon (v1.4.10) polishing of contigs. Second, trio-binned assemblies were built using the same input CCS reads, in addition to kmers generated from a 36x paternal Illumina library and a 37x maternal Illumina library (singletones were excluded). The kmers were generated using yak(e55) using the suggested parameters for running a hifiasm trio assembly (kmer size = 31 and Bloom filter size of 2*37). Maternal and paternal contigs went through two rounds of Racon (v1.4.10) polishing. Trio-binned assemblies were built for the remaining probands in the same way. Individual parent assemblies were also built with hifiasm (v0.5-dirty-r247) using default parameters. The resulting contigs went through two rounds of Racon (v1.4.10) polishing.

Coordinates of breakpoints were defined by a combination of assembly-assembly alignments using minimap213 (followed by use of bedtools bamToBed), visual inspection of CCS read alignments, and BLAT. Rearranged segments in the chromosome 6 region were restricted to those >4 kb. Dot plots illustrating sequence differences were created using Gepard.34

\textbf{QC statistics}

SNV and indel concordance and \textit{de novo} variant counts were calculated using bcftools v1.9 and rtg-tools vcf eval v3.9.1. “High-quality \textit{de novo}” variants were defined as PASS variants (IGS/GATK only) on autosomes (on primary contigs only) that were biallelic
Table 1. Probands selected for PacBio sequencing

Family ID	Proband gender	Race	Major phenotypic features	Previous genetic testing	PacBio CCS coverage (P/D/M)	Average insert size (bp) (P/D/M)
1	F	C	seizures, facial dysmorphism, hypotonia	Approximate counts of reads were recorded and grouped by mapping quality (MapQ ≥ 0 and MapQ ≥ 1), along with subjective descriptions of the reads. The total evidence across CCS and IGS reads was used to estimate truth and score each variant call as true positive (TP), false positive (FP), false negative (FN), or undetermined (UN).		

with total allele depth (DP) ≥ 7 and genotype quality (GQ) ≥ 35. Additional requirements were a proband genotype of 0/1, with ≥ 2 alternate reads and an allele balance ≥ 0.3 and ≤ 0.7. Required parent genotypes were 0/0, with alternate allele depth of 0. Mendelian error rates were also calculated using bcftools. "Rigorous" error rates were restricted to PASS variants (IGS/GATK only) on autosomes with GQ > 20, and DP > 5. Total variant counts per trio were calculated using Variant Effect Predictor (VEP, v98), counting multi-allelic sites as one variant. SV counts were calculated using bcftools and R. Counts were restricted to calls designated as “PASS,” with alternate allele depth (AD) ≥ 2. Candidate SV were de novo required proband genotype of 0/1 and parent genotypes of 0/0, with ≥ 6 alternate reads in the proband and 0 alternate reads and ≥ 5 reference reads in the parents. De novo MELT calls in IGS data were defined as isolated proband calls where the parent did not have the same type (ALU, L1, or SVA) of call within 1 kb as calculated by bedtools closest v.2.25.0. These calls were then filtered (using bcftools) for "PASS" calls and varying depths, defined as the number of read pairs supporting both sides of the breakpoint (left read pairs, LP; right read pairs, RP). To create a comparable set of de novo mobile element calls in CCS data, individual calls were extracted from the pbsv joint-called VCF using bcftools and awk and isolated proband calls were defined as they were for the IGS data and filtered (using bcftools) for PASS calls and varying depths, defined as the proband alternate allele depth (AD[1]).

Simple repeat and low-mappability regions

We generated a bed file of disease-related low-complexity repeat regions in 35 genes from previous studies. Most regions (25) include triplet nucleotide repeats, while the remainder include repeat units of 4–12 bp. Reads aligning to these regions were extracted from bwa-mem-aligned bams and visualized using the Integrated Genomics Viewer (IGV).[16] PacBio reads of MAPQ60 reads spanning each region were calculated using bedtools multi-cov v2.28.0. For the depth calculations, regions were expanded by 15 bp on either side (using bedtools slop) to count reads anchored into non-repeat sequence. The mean length of these regions was 83 bp, with a max of 133 bp.

Low-mappability regions were defined as the regions of the genome that do not lie in Umap k100 mappable regions.[2] Regions ≥ 100,000 nt long and those on non-primary contigs were removed, leaving a total of 242,222 difficult-to-map regions with average length of 411 bp. PacBio depths of MAPQ60 reads spanning each region were calculated using bedtools multicov v2.28.0. High-quality protein-altering variants in probands were defined using VEP annotations and counted using bcftools v1.9. Requirements included a heterozygous or homozygous genotype in the proband, with ≥ 4 alternate reads, an allele balance ≥ 0.3 and ≤ 0.7, GQ > 20, and DP > 5. Reads supporting 57 loss-of-function variants (high quality and low quality) in proband 5 were visualized with IGV and semiquantitatively scored to assess call quality. Approximate counts of reads were recorded and grouped by mapping quality (MapQ = 0 and MapQ ≥ 1), along with subjective descriptions of the reads. The total evidence across CCS and IGS reads was used to estimate truth and score each variant call as true positive (TP), false positive (FP), false negative (FN), or undetermined (UN).

CDKL5 cDNA amplicon sequencing

Total RNA was extracted from whole blood in PAXgene tubes using a PAXgene Blood RNA Kit version 2 (PreAnalytiX, #762164) according to the manufacturer’s protocol. cDNA was generated with a High-Capacity Reverse Transcription Kit (Applied Biosystems, #4368814) using 500 ng of extracted RNA from each individual as input. Primers were designed to CDKL5 exons 2, 5, and 6 to generate two amplicons spanning the potentially disrupted region of CDKL5 mRNA. Select amplicons were purified and sent to MCLAB (Molecular Cloning Laboratories, South San Francisco, CA, USA) for Sanger sequencing. See Supplemental methods for additional details, including primers.
Genomic DNA PCR to confirm relevant breakpoints in probands 4 and 6 and Alu insertions

We performed PCR to amplify products spanning junctions of various insertions and breakpoints, using the genomic DNA (gDNA) of the probands and parents as template. Select amplicons were purified and sent to MCLAB (Molecular Cloning Laboratories, South San Francisco, CA, USA) for Sanger sequencing. See Supplemental methods for additional details, including primers.

DGKB/MLLT3 qPCR

Total RNA was extracted from whole blood using a PAXgene Blood RNA Kit version 2 (PreAnalytiX, #762164), and cDNA was generated with a High-Capacity Reverse Transcription Kit (Applied Biosystems, #4368814) in an identical fashion as described for CDKL5 cDNA amplification sequencing. For qPCR, Two TaqMan probes targeting the MLLT3 exon 3–4 and exon 9–10 splice junctions (ThermoFisher, Hs00971092_m1 and Hs00971099_m1) were used with cDNA diluted 1:5 in dH2O to perform qPCR for six replicates per sample on an Applied Biosystems Quant Studio 6 Flex. Differences in CT values from the median CT values for either an unrelated family or the proband’s parents were used to compute relative expression levels. See Supplemental methods for additional details, including primers.

Results

Affected probands and their unaffected parents were enrolled in a research study aimed at identifying genetic causes of NDDs. All trios were originally subject to IGS and analysis using ACMG standards to find pathogenic or likely pathogenic variants, or VUSs. Within the subset of probands for which no variants of interest (pathogenic, likely pathogenic, VUS) were identified either originally or after subsequent reanalyses, six trios were selected for sequencing using the PacBio Sequel II CCS approach (Table 1). These trios were selected for those with a strong suspicion of a genetic disorder, in addition to diversifying with respect to gender and ethnicity. Parents were sequenced, at a relatively reduced depth, to facilitate identification of de novo variation.

QC of CCS data

Variant calls from CCS data and IGS data were largely concordant (Table S1A). When comparing each individual’s variant calls in the Genome in a Bottle (GIAB) high-confidence regions between CCS and IGS, concordance was 94.63%, with higher concordance for SNVs (96.88%) than indels (75.96%). Concordance was slightly higher for probands only, likely due to the lower CCS read-depth coverage in parents. While CCS data showed a consistently lower number of SNV calls than IGS (mean = 7.0 M versus 7.45 M, per trio), more de novo SNVs at high QC stringency were produced in CCS data than IGS (mean SNVs = 89 versus 38; Tables S1B and S1C). CCS yielded far fewer de novo indels at these same thresholds (mean indels, 11 versus 148), with the IGS de novo indel count being much higher than biological expectation and likely mostly FP calls (Table S1C). In examining reads supporting variation that was uniquely called in each set, we found that CCS FP de novos were usually FN calls in the parent, due to lower genome-wide coverage in the parent and the effects of random sampling (i.e., sites at which there were 7 or more CCS reads in a parent that randomly happened to all derive from the same allele; Table S1C). Mendelian error rates in autosomes were lower in CCS data relative to IGS (harmonic mean of high-quality calls, 0.18% versus 0.34%; Table S1D), suggesting the CCS SNV calls are of higher accuracy, consistent with previously published data.

Each trio had an average of ~56,000 SVs among all three members, including an average of 59 candidate de novo SVs per proband (Table S1E). Trio SVs mainly represent insertions (48%) and deletions (43%), followed by duplications (6%), single breakends (BND) (3%), and inversions (<1%).

Trios were produced in CCS data than IGS (mean SNVs length, often by multiples of 3. It is unclear if this represents true somatic variation or if this represents inaccuracy of consensus generation in CCS processing.

Like that for FMR1, manual curation of 34 other disease-causal repeat regions in each proband indicated that alignment of CCS reads provides a more accurate assessment of variation in these regions compared to IGS. When looking at region-spanning reads with high-quality alignment (mapQ = 60), 97% (34 of 35) of the regions were covered by at least 10 CCS reads in at least 6 probands, as compared to 11% (4 of 35) of regions with high-quality IGS reads (Table S4A). While all query regions measured ≤144 bp
(which includes an extension of 15 bp on either end of the repeat region), seven query regions were ≥ 100 bp. When considering only regions of interest <100 bp, 14% (4 of 28 regions) are covered by at least 10 high-quality IGS reads in each proband. Mean coverage of high-quality, region-spanning reads across probands was higher in CCS data than in IGS (29 versus 11; Table S4A). Of all repeat regions studied, none harbored variation classified as pathogenic/likely pathogenic/VUS.

We also compared coverage of high-quality CCS and IGS reads in low-mappability regions of the genome, specifically those that cannot be uniquely mapped by 100 bp kmers.52 While over half of these regions (62.5%) were fully covered by at least 10 high-quality CCS reads (mapQ = 60) in all six probands, only 19.3% of the regions met the same coverage metrics in the IGS data (Table S4B). The average CCS read depth in these regions was 26 reads, versus 8 reads in IGS. Within these regions, CCS yielded twice as many high-quality, protein-altering variants in each proband when compared to IGS (182 in CCS versus 85 in IGS) (Table S4C). Outside of the low-mappability regions, counts of protein-altering variants were similar (6,627 in CCS versus 6,759 in IGS).

To assess the accuracy of the protein-altering variant calls in low-mappability regions, we visualized reads for 57 loss-of-function variants detected by CCS, IGS, or both in proband 5 and used the totality of read evidence to score each variant as TP, FP, TN, FN, or UN. Six of these were “high-quality” calls (see Material and methods), and all of these were correctly called in CCS (TPs, 100%); in IGS, two were correctly called (TPs, 33%) and four were undetected (FNs, 67%) (Table S4D). Among all 57 unfiltered variant calls, most CCS calls were correct (29 TP, 15 TN, total 77%), while most IGS calls were incorrect (16 FP, 22 FN, total 67%) (Table S4E).

MEIs

We searched for MEIs in these six probands within the IGS data using MELT (Tables S5A and S5B)24 and within CCS data using pbsv (Tables S1E, S5C, and S5D; see also Material and methods). Our results suggest that CCS detection of MEIs is far more accurate. For example, it has been estimated that there exists a de novo Alu MEIs among the 6 probands (Table S5D), an observation that is far closer to biological expectation. We retained 4 candidate de novo Alu MEIs after further inspection of genotype and parental reference read depth (Table S1E). One of these 4 appears genuine, while the other three appear to be correctly called in the proband but missed in the parents owing to low read-depth, such that the Alu insertion-bearing allele was not covered by any CCS reads (Figure S2). Three of these four were confirmed by PCR, with PCR at the fourth yielding unclear results, and amplification and results were consistent with observations in IGV (Figure S3; Supplemental methods).

A likely pathogenic de novo SV in CDKL5

Analysis of SV calls and visual inspection of CCS data in proband 6 indicated a de novo SV within the CDKL5 gene (MIM: 300203; Figure 1). Given the de novo status of this event, the association of CDKL5 with early infantile epileptic encephalopathy 2 (EIEE2, MIM: 300672), and the overlap of disease with the proband’s phenotype (see Supplemental note), which includes intellectual disability, developmental delay, and seizures, we prioritized this event as the most compelling candidate variant in this proband.

A trio-based de novo assembly in this proband identified a 45.3 Mb paternal contig and a 50.6 Mb maternal contig in the region surrounding CDKL5. While these contigs align linearly across the majority of the p arm of chromosome X (Figure S4), alignment of the paternal contig to GRCh38 revealed a heterozygous 6,993 bp insertion in an intron of CDKL5 (chrX: 18,510,871–18,510,872_ins6993 [GenBank: GRCh38]; Figure 1; Figure S5). Analysis of SNVs in the region surrounding the insertion confirm that it lies on the proband’s paternal allele. However, mosaicism is suspected, as there exist paternal haplotype reads within the proband that do not harbor the insertion (5 of 8 paternal reads without the insertion at the 5’ end of the event, and 7 of 16 paternal reads without insertion at the 3’ end of the event; Figure S6).

Annotation of the insertion indicated that it contains three distinct segments: 4,272 bp of a retrotransposed, 5’ truncated L1HS mobile element (including a poly[A] tail), 2,602 bp of sequence identical to an intron of the nearby PPEF1 gene (g.18738310_18740911 [GenBank: NC_000023.11]; [c.235+4502_235+7103 (GenBank: NM_006240.2)]), and a 119 bp target-site duplication (TSD) that includes a duplicated exon 3 of CDKL5 (35 bp) and surrounding intronic sequence (chrX: 18510753–18510871 [GenBank: GRCh38]; [c.65–67 (GenBank: NM_003159.2) to c.99+17 (GenBank: NM_003159.2)]; [119 bp total]) (Figure 1; Figure S7). The 2,602 bp copy of PPEF1 intronic sequence includes the 5’ end (1,953 bp) of an L1PA5 element that is 6.5% divergent from its consensus L1, an AluSx element, and additional
repetitive and non-repetitive intronic sequence. The size and identity of this insert in the proband, and absence in both parents, was confirmed by PCR amplification and partially confirmed by Sanger sequencing (see Supplemental methods; Figure S7).

Exon 3 of CDKL5, which lies within the target-site duplication of the L1-mediated insertion, is a coding exon that is 35 bp long; inclusion of a second copy of exon 3 into CDKL5 mRNA is predicted to lead to a frameshift (Thr35ProfsTer52; Figure 2). To determine the effect of this insertion on CDKL5 transcripts, we performed RT-PCR from RNA isolated from each member of the trio. Using primers designed to span from exon 2 to exon 5, all three members of the trio had an expected amplicon of 240 bp. However, the proband
had an additional amplicon of 275 bp (Figure 2A). Sanger sequencing of this amplicon indicated that a duplicate exon 3 was spliced into this transcript (Figure 2B). The presence of transcripts with a second copy of exon 3 strongly supports the hypothesis that the variant leads to a CDKL5 loss-of-function effect in the proband.

Multiple large de novo SVs in proband 4

Analysis of SV calls in proband 4 indicated several large, complex, de novo events affecting multiple chromosomes (6, 7, and 9). To assess the structure of the proband's derived chromosomes, we inspected the trio-binned de novo assembly for this proband.

Four paternal contigs were assembled for chromosome 6, which showed many structural changes compared to reference chromosome 6 (Figure 3). The proband harbors a pericentric inversion, with breakpoints at chr6: 16,307,569 (6p22.3) and chr6: 142,572,070 (6q24.2; Figures 3A and 3B; Table S6A). In addition, a 9.3 Mb region near 6q22.31–6q23.3 contained at least eight additional breakpoints, with local rearrangement of eight segments, some of which are inverted (ABCDEFGH in reference versus DCAGHFEH; Figure 3C; Table S6B). The median fragment size is just over 400 kb (range, 99 kb to 5.7 Mb; Table S6B). While the ends of several fragments do overlap annotated repeats, many do not. We were not able to identify microhomology at the junctions of these eight segments, the majority of which (7/8) were PCR confirmed in the proband (Table S6B; Figures S8 and S9; Supplemental methods). Together, the 10 breakpoints identified across chromosome 6 are predicted to disrupt at least six genes, five of which are annotated as protein coding (Table S6A). None of these have been associated with neurodevelopmental disease.

CCS reads and contigs from the de novo paternal assembly of proband 4 also support structural variation involving chromosomes 7 and 9, with five breakpoints (Figure 4). The proband has two insertional translocations in addition to an inversion at the 5' end of the chromosome 7 sequence within the derived 9p arm. Manual curation of SNVs surrounding all breakpoints confirmed that all variation lies on the paternal allele, and no mosaicism is suspected. Manual curation of the proband’s de novo assembly (specifically tig66) was required to resolve an assembly artifact (Figure S10; Supplemental methods).

The net effect of the translocations and inversion is likely disruption of two protein-coding genes: DGKB (MIM: 604070) on chromosome 7 and MLLT3 (MIM: 159558) on chromosome 9.

Human Genetics and Genomics Advances 2, 100023, April 8, 2021
chromosome 9, neither of which has been associated with disease (Table S6A). To determine if *MLLT3* transcripts are disrupted in this proband, we performed qPCR using RNA from each member of the trio, in addition to three unrelated individuals (family 3). Using two validated TaqMan probes near the region of interest (exons 3–4 and exons 9–10), we found that proband 4 showed a ~35%–39% decrease in *MLLT3* compared to her parents and a 38%–45% decrease.
relative to unrelated individuals (Figure S11; Table S7). Expression of DGKB was not examined, as the gene is not expressed at appreciable levels in blood.43

Analysis of CCS-detected SVs in IGS reads

None of the disease-associated variation described here and detected by CCS analysis was identified in our IGS analyses. We analyzed raw variant calls and IGS reads at each of the relevant breakpoints to determine why such variants were not detected (Figures S12–S15).

In the case of CDKL5, MELT did not call any L1, SVA, or Alu-mediated insertions with 1 Mb of CDKL5. This is likely, at least in part, because the insertion is L1-mediated but has a non-L1 sequence at one breakpoint. However, in retrospectively searching for structural variation near CDKL5 from our standard SV pipeline, we found that Delly and Manta both called a 230 kb duplication event in CDKL5. The call passed our frequency filters and was flagged as de novo. However, upon inspection, read depth and allele ratios clearly did not support a duplication event (Figure S16).

Retrospectively, it is clear that this “230 kb duplication” call resulted from the duplication and insertion of a segment of PPEF1 intronic sequence into the CDKL5 intron. However, the Delly and Manta calls are plainly not correct and at the time of initial IGS analysis were disregarded.

In the case of the multiple complex breakpoints identified in proband 4, most of the breakpoints were in fact called as BND or inversions by Manta (Table S6). However, Manta is the only tool capable of detecting such variation, and our pipeline requires concordance from at least two callers for small SVs (see Material and methods); thus, these events were disregarded. Furthermore, it is important to note that the proband had 814 potentially de novo BND/inversion calls from Manta, a number that is indicative of an untenably high number of false de novo calls (be they inherited or simply FP variants). In addition, typical strategies to curate and interpret candidate variation, including filtration using population frequencies, are unavailable for these categories of variation. The net result is that these variants were not evaluated in our routine analysis process. Lastly, even to the extent that individual breakpoints were flagged in IGS analysis, the lack of a coherent assembly of how the individual breakpoints and fragments relate to one another would have precluded meaningful evaluation.

Discussion

Here we describe CCS long-read sequencing of six probands with NDDs who had previously undergone extensive genetic testing with no variants found to be relevant
to disease. Generally, the CCS genomes appeared to be highly comprehensive and accurate in terms of variant detection, facilitating detection of a diversity of variant types across many loci, including those that prove challenging to analysis with short reads. Detection of simple-repeat expansions and variants within low-mappability regions, for example, was more accurate and comprehensive in CCS data than that seen in IGS, and many complex SVs were plainly visible in CCS data but missed by IGS.

Given the importance of de novo variation in rare disease diagnostics, especially for NDDs, it is also important to note the qualities of discrepant de novo calls between the two technologies. We found that most of the erroneously called de novo variants in the CCS data were correctly called as heterozygous in the proband but missed in the parents due to lower coverage and random sampling effects such that the variant allele was simply not covered by any reads in the transmitting parent. Such errors could be mitigated by sequencing parents more deeply. In contrast, de novo variants unique to IGS were enriched for systematic artifacts that cannot be corrected for with higher read-depth. Indels, for example, are a well-known source of error and heavily enriched among IGS de novo variant calls.

In one proband we identified a likely pathogenic, de novo L1-mediated insertion in CDKL5. CDKL5 encodes cyclin-dependent kinase-like 5, a serine-threonine protein kinase that plays a role in neuronal morphology, possibly via regulation of microtubule dynamics. Variation in CDKL5 has been associated with EIEE2 (MIM: 300672), an X-linked dominant syndrome characterized by infantile spasms, early-onset intractable epilepsy, hypotonia, and variable additional Rett-like features. CDKL5 is one of the most commonly implicated genes identified by ES/GS in individuals with epilepsy. SNVs, small insertions and deletions, copy-number variants (CNVs), and balanced translocations have all been identified in affected individuals, each supporting a haploinsufficiency model of disease. We also note that de novo SVs, including deletions and at least one translocation, have been reported with a breakpoint in intron 3, near the breakpoint identified here (Table S8; Figure S17). The variant observed here appears to be mosaic, and we note that a recent study found that 8.8% of previously reported CDKL5 mutations are also mosaic. While most such mutations have been identified in males rather than females, noting that pathogenic CDKL5 variation is often lethal in males, there is not an obvious relationship between phenotypic severity, gender, variant type, and mosaicism.

The variant harbors two classic marks of an L1HS insertion, including the preferred L1 EN consensus cleavage site (5’-TTTTT/G-3’), and a 119-bp TSD, which, in this case, includes exon 3 of CDKL5. Although TSDs are often fewer than 50 bp long, TSDs up to 323 bp have been detected. The variant appears to be a chimeric L1 insertion. The 3’ end of the insertion represents retrotransposition of an active L1HS mobile element, with a signature poly(A) tail. However, the 5’ portion of the L1 sequence has greater identity to an L1 sequence within an intron of PPEF1, which lies about 230 kb downstream of CDKL5. Additional non-L1 sequence at the 5’ end of the insertion is identical to an intronic segment of PPEF1. While transduction of sequences at the 3’ end of L1 sequence has been described, the PPEF1 intronic sequence here lies at the 5’ end of the L1. A chimeric insertion similar to that observed here has been described previously and has been proposed to result from a combination of retrotransposition and a synthesis-dependent strand annealing (SDSA)-like mechanism.

Using ACMG variant classification guidelines, we classified this variant as likely pathogenic. The variant was experimentally confirmed to result in frameshifted transcripts due to exon duplication and was shown to be de novo, allowing for use of both the PVS1 (loss of function) and PM2 (de novo) evidence codes. Use of likely pathogenic, as opposed to pathogenic, reflects the uncertainty resulting from the intrinsically unusual nature of the variant and its potential somatic mosaicism, in addition to the fact that its absence from population variant databases is not in principle a reliable indicator of true rarity. Identification of additional MEIs and other complex SVs in other individuals will likely aid in disease interpretation by both facilitating more accurate allele frequency estimation and by improving interpretation guidelines.

More generally, MEIs have been previously described as a pathogenic mechanism of gene disruption, but their contribution to developmental disorders has been limited to a modest number of individuals in a few studies, each of which report pathogenic/likely pathogenic variation lying within coding exons. However, the MEI observed here in CDKL5 would likely be missed by exome sequencing as the breakpoints are intronic, and in fact it was also missed in our previous short-read genome sequencing analysis. Global analyses of MEIs, such as our assessment of de novo Alu insertion rates (Table S5), also support the conclusion that MEI events are far more effectively detected within CCS data compared to that seen in short-read genomes. We find it likely that long-read sequencing will uncover MEIs that disrupt gene function and lead to NDDs in many currently unexplained cases.

CCS data also led to the detection of multiple large, complex, de novo SVs in proband 4, affecting at least three chromosomes. Both complex chromosomal rearrangements (CCRs), which involve at least three cytogenetically visible breakpoints on two or more chromosomes, and complex genomic rearrangements (CGRs), which are often on a smaller scale but more complex, have been reported in individuals with NDDs or other congenital anomalies. Proband 4 appears to have both a CGR and a CCR, the latter of which includes insertional translocations and an inversion on chromosomes 7 and 9. The CGR consists of local rearrangement of eight segments near 6q22.31–6q23.3 and appears to represent chromothripsis, as the segments are localized, do not have microhomology at their breaks, and show no significant copy gain or loss in
the region (Figure S18), all of which are characteristics of chromothripsis. The location of this cluster near one of the breakpoints of the pericentric inversion is consistent with observations that missegregated chromosomes can undergo micronucleus formation and shattering. However, we cannot rule out other related mechanisms under the umbrella term of chromoanagenesis.

One of the most compelling disease causal candidate genes affected in proband 4 is MLLT3, which is predicted to be moderately intolerant to loss-of-function variation (pLI = 1, o/e = 0 [0–0.13], RVIS = 21.19%[2]). MLLT3, also known as AF9, undergoes somatic translocation with the MLL gene, also known as KMT2A (MIM: 159555), in individuals with acute leukemia; pathogenicity in these cases results from expression of an in-frame KMT2A-MLLT3 fusion protein and subsequent deregulation of target HOX genes. Balanced translocations between chromosome 4 and chromosome 9, resulting in disruption of MLLT3, have been previously reported in two individuals, each with NDDs including intractable seizures. Although proband 4 does not exhibit seizures, she does have features that overlap the described probands, including speech delay, hypotonia, and fifth-finger clinodactyly.

While we cannot be certain of the pathogenic contribution of any one SV in proband 4, we consider the number, size, and extent of de novo structural variation to be likely pathogenic. ACMG recommendations on the interpretation of copy number variation were recently published, and although the events in proband 4 appear to be copy neutral, we attempted to apply modifications of these guidelines to these events.

The most compelling evidence for pathogenicity of these events is their de novo status (evidence code 5A); disruption of at least six protein-coding genes at the breakpoints (3A), at least one of which is predicted to be haploinsufficient (2H); and the total number and genomic extent of large SVs. While several of these can be captured by current evidence codes, they are weakened by the lack of affected disease-associated genes and the lack of a highly specific phenotype in the proband. Further, although the SVs are large events, including a shattering of a >9 Mb region of the genome, we do not know the molecular effect on genes that are nearby but not spanning the breakpoints. Identification of additional complex structural variation like that in this proband will aid in development of additional guidelines for classification of these events.

Retrospective analysis of the disease-associated events described here did identify reads in the IGS data that support the majority of the breakpoints (Figures S12–S15; Table S6). However, there are multiple reasons why these events were not originally identified by our standard IGS analyses, including discrepancies among calling algorithms, incorrect or incomplete descriptions of the sizes and natures of the events, and filtration steps that are required to make IGS interpretation pipelines effective and sustainable.

We note that our sample size, with only six total trios and two individuals with clinically relevant discoveries, is clearly too small to make precise predictions about the diagnostic yield of long-read sequencing. However, we believe the yield will be substantial. As a baseline, it is likely to be at least as high as that from short reads, given that there is no evidence of a sensitivity loss for short-read-detectable variation (e.g., SNVs and short indels). The key unknown is thus the additional yield from long-read sequencing in cases that harbor no clinically relevant variation detected by short-read sequencing. In that light, our observations are inconsistent with a very low yield. If we were to assume, as an example, that the true yield for long reads in unsolved cases is only 1%, it is unlikely that we would have observed 2 successes in 6 individuals (p = 0.0015, binomial test). Of course, the 6 unsolved probands were not randomly sampled from the set of all unsolved probands, and small counts are always intrinsically uncertain. Thus, studies of larger cohorts are necessary to estimate the magnitude of increased diagnostic yield from long-read genome sequencing.

In addition to the need for larger studies, it is also important to consider factors like costs and DNA input requirements, which remain obstacles to widespread adoption of long-read genome sequencing. Additionally, refining and optimizing computational pipelines and establishing benchmarks and quality-control metrics will also be necessary. That said, there have been considerable improvements, especially recently, on cost and DNA input requirements, and the computational and analytical challenges, while non-trivial, are tractable.

Considering the evidence supporting the superior variant detection ability of long reads presented here and elsewhere, we believe that the overall diagnostic yield for long reads will prove to be substantially better than current yields and that long-read genome analysis will supplant short-read analysis of individuals with rare disease in the coming years.

Data and code availability

All relevant variant data are supplied within the paper or in supporting files. Complete IGS data for probands 1–5 are available via dbGAP (dbGAP: phs001089.v3.p1). CCS data for these proband will also be available via dbGAP under the same project. Complete IGS and CCS data for proband 6 are not available due to privacy and IRB reasons.

Supplemental information

Supplemental Information can be found online at https://doi.org/10.1016/j.xhgg.2021.100023.

Acknowledgments

This work was supported by a grant from the National Human Genome Research Institute (UM1HG007301). Some reagents
were provided by PacBio as part of an early-access testing program. We thank our colleagues at HudsonAlpha who provided advice and general support, including Amy Nesmith Cox, Greg Barsh, Kelly East, Whitley Kelley, David Bick, and Elaine Lyon, in addition to the HudsonAlpha Genomic Services Laboratory and Clinical Services Laboratory. We also thank the clinical team at North Alabama Children’s Specialists. Finally, we are grateful to the families who participated in this study.

Declaration of interests

The authors declare no competing interests.

Web resources

Bcftools, https://samtools.github.io/bcftools/
Bedtools2, https://github.com/arq5x/bedtools2
Burrows-Wheeler Aligner (bwa), http://bio-bwa.sourceforge.net/
Canu, https://github.com/marlincanu
CNVnator, https://github.com/abyzovlab/CNVnator
dbGAP, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study. cgi?study_id=phs001089.v3.p1
dbVAR, https://www.ncbi.nlm.nih.gov/dbvar/
DeepVariant, https://github.com/google/deepvariant
Delly, https://github.com/dellytools/delly
Ensembl Variant Effect Predictor (VEP), https://useast.ensembl.org/software/igv/
ERDS, https://github.com/igm-team/ERDS
Genome Analysis Toolkit (GATK), https://gatk.broadinstitute.org/
Genome Pair Rapid Dotter (Gepard), https://github.com/univieCUBE/gepard
GLNexus, https://github.com/dnanexus-ndl/GLNexus
gnomAD Genome Aggregation Database, https://gnomad.broadinstitute.org/
Integrative Genomics Viewer (IGV), http://software.broadinstitute.org/software/igv/
Manta, https://github.com/Illumina/manta
Mobile element locator tool (MELT), https://melt.igs.umanym.edu/
NCBI Genome Decoration Page, https://www.ncbi.nlm.nih.gov/genome/tools/gdp
OMIM, https://www.omim.org
Pacific Biosciences/CCS, https://github.com/PacificBiosciences/ccs
Pacific Biosciences/pbmm2, https://github.com/PacificBiosciences/pbmm2
Pacific Biosciences/pbsv, https://github.com/PacificBiosciences/pbsv
RealTimeGenomics/rtg-tools, https://github.com/RealTimeGenomics/rtg-tools
Sentieon, https://github.com/Sentieon
The R Project for Statistical Computing (R), http://www.r-project.org
Umap k100 mappable regions, https://bismap.hoffmanlab.org/

References

1. Ropers, H.H. (2008). Genetics of intellectual disability. Curr. Opin. Genet. Dev. 18, 241–250.
2. Vissers, L.E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts, P., Wieskamp, N., del Rosario, M., et al. (2010). A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112.
3. Welcome Sanger Institute. D.D.D. Development Disorder Genotype - Phenotype Database. https://decipher.sanger.ac.uk/dd/dgdgenes
4. Hiatt, S.M., Amaral, M.D., Bowling, K.M., Finnila, C.R., Thompson, M.L., Gray, D.E., Lawlor, J.M.J., Cochran, J.N., Bebin, E.M., Brothers, K.B., et al. (2018). Systematic reanalysis of genomic data improves quality of variant interpretation. Clin. Genet. 94, 174–178.
5. Clark, M.M., Stark, Z., Farnaes, L., Tan, T.Y., White, S.M., Dimmock, D., and Kingsmore, S.F. (2018). Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom. Med. 3, 16.
6. Niemi, M.E.K., Martin, H.C., Rice, D.L., Gallone, G., Gordon, S., Kelemen, M., McAloney, K., McRae, J., Radford, E.J., Yu, S., et al. (2018). Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271.
7. McMurray, C.T. (2010). Expansions in simple DNA repeats underlie ~20 severe neuromuscular and neurodegenerative disorders. Nat. Publ. Gr. 11, 786–799.
8. Asadolahi, R., Oneda, B., Jost, P., Azzarello-Burri, S., Bartholdi, D., Steindl, K., Vincent, M., Cobilanschi, J., Stcht, H., Baldinger, R., et al. (2014). The clinical significance of small copy number variants in neurodevelopmental disorders. J. Med. Genet. 51, 677–688.
9. Torene, R.L., Galens, K., Liu, S., Arvai, K., Borroto, C., Scuffins, J., Zhang, Z., Friedman, B., Stoka, H., Heeley, J., et al. (2020). Mobile element insertion detection in 89,874 clinical exomes. Genet. Med. 22, 974–978.
10. Gardner, E.J., Prigmore, E., Gallone, G., Danecek, P., Samocha, K.E., Handsaker, J., Gerety, S.S., Ironfield, H., Short, P.J., Sifrim, A., et al. (2019). Contribution of retrotransposition to developmental disorders. Nat. Commun 10, 4630.
11. Mahmoud, M., Gobet, N., Cruz-Dávalos, D.L., Mounier, N., Dessimoz, C., and Sedlazeck, F.J. (2019). Structural variant calling: the long and the short of it. Genome Biol. 20, 246.
12. Mantere, T., Kersten, S., and Hoischen, A. (2019). Long-Read Sequencing Emerging in Medical Genetics. Front. Genet. 10, 426.
13. Wenger, A.M., Peluso, P., Rowell, W.J., Chang, P.C., Hall, R.J., Concepcion, G.T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N.D., et al. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162.
14. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al.; ACMG Laboratory Quality Assurance Committee (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424.
15. Bowling, K.M., Thompson, M.L., Amaral, M.D., Finnila, C.R., Hiatt, S.M., Engel, K.L., Cochran, J.N., Brothers, K.B., East, K.M., Gray, D.E., et al. (2017). Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med. 9, 43.
16. Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., and Korbel, J.O. (2012). DELLY: structural variant discovery by
17. Abyzov, A., Urban, A.E., Snyder, M., and Gerstein, M. (2011). CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984.

18. Zhu, M., Need, A.C., Han, Y., Ge, D., Maia, J.M., Zhu, Q., Heinzen, E.L., Cirulli, E.T., Pelak, K., He, M., et al. (2012). Using ERDS to infer copy-number variants in high-coverage genomes. Am. J. Hum. Genet. 91, 408–421.

19. Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, E., Källberg, M., Cox, A.J., Kruglyak, S., and Saunders, C.T. (2015). Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 31, 1220–1222.

20. Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., Abecasis, G.R.; and 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature 526, 68–74.

21. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al.; Exome Aggregation Consortium (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.

22. Coke, B.P., Witherspoon, K., Rosenfeld, J.A., van Bon, B.W.M., Vulto-van Silfhout, A.T., Bosco, P., Friend, K.L., Baker, C., Buono, S., Vissers, L.E.M., et al. (2014). Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071.

23. Cooper, G.M., Coke, B.P., Girirajan, S., Rosenfeld, J.A., Vu, T.H., Baker, C., Williams, C., Stalker, H., Hamid, R., Hannig, V., et al. (2011). A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846.

24. Gardner, E.J., Lam, V.K., Harris, D.N., Chuan, N.T., Scott, E.C., Pittard, W.S., Mills, R.E., Devine, S.E.; and 1000 Genomes Project Consortium (2017). The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929.

25. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., and Chen, W.M. (2010). Robust relationship inference with developmental delay. Nat. Genet. 42, 1063–1071.

26. Kendig, K.I., Baheti, S., Bockol, M.A., Drucker, T.M., Hart, S.N., Heldenbrand, J.R., Hernaæz, M., Hudson, M.E., Kalmbach, M.T., Klee, E.W., et al. (2018). Computational performance and accuracy of Senteion DNASEq variant calling workflow. bioRxiv. https://doi.org/10.1101/396325.

27. Poplin, R., Chang, P.C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T., et al. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987.

28. Lin, M.F., Rodeh, O., Penn, J., Bai, X., Reid, J.G., Krashenina, O., and Salerno, W.J. (2018). GLNexus: joint variant calling for large cohort sequencing. bioRxiv. https://doi.org/10.1101/343970.

29. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736.

30. Chin, C.S., Peluso, P., Sledzakez, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054.

31. Nurk, S., Walenz, B., Rhee, A., Vollger, M., Logsdon, G., Grothe, R., Miga, K., Eichler, E., Phillippy, A., and Koren, S. (2020). HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. bioRxiv, 2020.03.14.992248.

32. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2020). Haplotype-resolved de novo assembly with phased assembly graphs. arXiv, 2008.01237v1. https://arxiv.org/abs/2008.01237.

33. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100.

34. Krumsiek, J., Arnold, R., and Rattie, T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028.

35. Kristich, A.N., and Mirkin, S.M. (2020). On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 295, 4134–4170.

36. Robinson, J.T., Thorvaldsdóttir, H., Wenger, A.M., Zehir, A., and Mesirov, J.P. (2017). Variant review with the integrative genomics viewer. Cancer Res. 77, e31–e34.

37. Karimzadeh, M., Ernst, C., Kundaje, A., and Hoffman, M.M. (2018). Umap and Bismap: quantifying genome and methylome mappability. Nucleic Acids Res. 46, e120.

38. Zook, J.M., McDaniel, J., Olson, N.D., Wagner, J., Parikh, H., Heaton, H., Irvine, S.A., Trigg, L., Truty, R., McLean, C.Y., et al. (2019). An open resource for accurately benchmarking small variant and reference calls. Nat. Biotechnol. 37, 561–566.

39. Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., Kosmicki, J.A., Rehnström, K., Mallick, S., Kirby, A., et al. (2014). A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950.

40. Rousseau, E., Rouillard, P., Morel, M.L., Khandjian, E.W., and Morgan, K. (1995). Prevalence of carriers of premutation-size alleles of the FMRI gene–and implications for the population genetics of the fragile X syndrome. Am. J. Hum. Genet. 57, 1006–1018.

41. Xing, J., Zhang, Y., Han, K., Salem, A.H., Sen, S.K., Huff, C.D., Zhou, Q., Kirkness, E.F., Levy, S., Batzer, M.A., and Jorde, L.B. (2019). Pedigree-based estimation of typical and atypical CNVs from family and population genomes. Genome Res. 29, 1516–1526.

42. Feusier, J., Watkins, W.S., Thomas, J., Farrell, A., Witherspoon, D.J., Baird, L., Ha, H., Xing, J., and Jorde, L.B. (2019). Manta: rapid detection of structural variants and sensitive tool for creating dotplots on genome scale. Bioinformatics 36, 1220–1222.

43. Barbiero, I., Peroni, D., Siniscalchi, P., Rusconi, L., Tramarin, M., De Rosa, R., Motta, P., Bianchi, M., and Kilstrup-Nielsen, A. (2016). HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. bioRxiv, 2020.03.14.992248.

44. Bahi-Buisson, N., Nectoux, J., Rosas-Vargos, H., Milh, M., Boddaert, N., Girard, B., Cances, C., Ville, D., Afenjar, A., Rio, M., et al. (2008). Key clinical features to identify girls with CDKL5 mutations. Brain 131, 2647–2661.
46. Kadam, S.D., Sullivan, B.J., Goyal, A., Blue, M.E., and Smith-Hicks, C. (2019). Rett syndrome and CDKL5 deficiency disorder: From bench to clinic. Int. J. Mol. Sci. 20, 5098.

47. Symonds, J.D., and McClure, A. (2020). Epilepsy and developmental disorders: Next generation sequencing in the clinic. Eur. J. Paediatr. Neurol. 24, 15–23.

48. Erez, A., Patel, A.J., Wang, X., Xia, Z., Bhatt, S.S., Craigien, W., Cheung, S.W., Lewis, R.A., Fang, P., Davenport, S.L.H., et al. (2009). Alu-specific microhomology-mediated deletions in CDKL5 in females with early-onset seizure disorder. Neurogenetics 10, 363–369.

49. Bartnik, M., Derwińska, K., Gos, M., Obersztyn, E., Kołodziej ska, K.E., Erez, A., Szpecht-Potocka, A., Fang, P., Tercyńska, I., Mierzewska, H., et al. (2011). Early-onset seizures due to mosaic exonic deletions of CDKL5 in a male and two females. Genet. Med. 13, 447–452.

50. Córdova-Fletes, C., Rademacher, N., Müller, I., Mundo-Ayala, J.N., Morales-Jeanhs, E.A., García-Ortiz, J.E., Leon-Gil, A., Rivera, H., Domínguez, M.G., and Kalscheuer, V.M. (2010). CDKL5 truncation due to a t(X;2)(p22.1;p25.3) in a girl with X-linked infantile spasm syndrome. Clin. Genet. 77, 92–96.

51. Sanchis-Juan, A., Stephens, J., French, C.E., Gleadall, N., Méguy, K., Penkert, C., Shamardina, O., Stirrups, K., Delon, I., Dewhurst, E., et al. (2018). Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 10, 95.

52. Stosser, M.B., Lindy, A.S., Butler, E., Retterer, K., Piccirillo-Stosser, C.M., Richard, G., and McKnight, D.A. (2018). High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genet. Med. 20, 403–410.

53. Demarest, S.T., Olson, H.E., Moss, A., Pestana-Knight, E., Stosser, M.B., Lindy, A.S., Butler, E., Retterer, K., Piccirillo-Stosser, C.M., Richard, G., and McKnight, D.A. (2018). CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia 60, 1733–1742.

54. Gilbert, N., Lutz, S., Morrish, T.A., and Moran, J.V. (2005). Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795.

55. Goodier, J.L., Ostertag, E.M., and Kazazian, H.H., Jr. (2000). Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657.

56. Abou Tayoun, A.N., Pesaran, T., DiStefano, M.T., Oza, A., Rehm, H.L., Biesecker, L.G., Harrison, S.M.; and ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI) (2018). Recommendations for interpreting the loss of function PSV1 ACMG/AMP variant criterion. Hum. Mutat. 39, 1517–1524.

57. Sequence Variant Interpretation Working Group (2018). ClinGen Sequence Variant Interpretation Recommendation for de novo Criteria (PS2/PMD)-Version 1.0. https://clinicalgenome.org/working-groups/sequence-variant-interpretation/.

58. Middelkamp, S., Vlaar, J.M., Giltay, J., Korzelius, J., Besslink, N., Boymans, S., Janssen, R., de la Fonteijne, L., vanBinsbergen, E., van Roosmalen, M.J., et al. (2019). Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants. Genome Med. 11, 79.

59. Plesser Duivdevani, M., Pettersson, M., Eisfeldt, J., Avraham, O., Dagan, J., Frumkin, A., Lupski, J.R., Lindstrand, A., and Harel, T. (2020). Whole-genome sequencing reveals complex chromosome rearrangement disrupting NIPBL in infant with Cornelia de Lange syndrome. Am. J. Med. Genet. A. 182, 1143–1151.

60. Lei, M., Liang, D., Yang, Y., Mitsuhashi, S., Katoh, K., Miyake, N., Frith, M.C., Wu, L., and Matsumoto, N. (2020). Long-read DNA sequencing fully characterized chromothripsis in a patient with Langer-Giedion syndrome and Cornelia de Lange syndrome-4. J. Hum. Genet. 65, 667–674.

61. Zhang, F., Carvalho, C.M.B., and Lupski, J.R. (2009). Complex human chromosomal and genomic rearrangements. Trends Genet. 25, 298–307.

62. Hattori, A., and Fukami, M. (2020). Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline. Cytogeten. Genome Res 160, 167–176.

63. Ly, P., Teitz, L.S., Kim, D.H., Shoshani, O., Skaletsky, H., Facchinnetti, D., Page, D.C., and Cleveland, D.W. (2017). Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75.

64. Zhang, C.Z., Leibowitz, M.L., and Diller, P. (2013). Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 27, 2513–2530.

65. Petrovski, S., Wang, Q., Heinen, E.L., Allen, A.S., and Goldstein, D.B. (2013). Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709.

66. Kvitovs, A.V., and Armstrong, S.A. (2007). MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833.

67. Pramparo, T., Grosso, S., Messa, J., Zatterale, A., Bonaglia, M.C., Chessa, L., Balestri, P., Rocchi, M., Zuffardi, O., and Giorda, R. (2005). Loss-of-function mutation of the AF9/MLLT3 gene in a girl with neuromotor development delay, cerebellar ataxia, and epilepsy. Hum. Genet. 118, 76–81.

68. Striano, P., Elia, M., Castiglia, L., Galesi, O., Pelligrina, S., and Striano, S. (2005). A t(4;9)(q34;p22) translocation associated with partial epilepsy, mental retardation, and dysmorphism. Epilepsia 46, 1322–1324.

69. Riggs, E.R., Andersen, E.F., Cherry, A.M., Kantarci, S., Kearney, H., Patel, A., Raca, G., Ritter, D.I., South, S.T., Thordardottir, E., et al. (2020). Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257.

70. Logsdon, G.A., Vollger, M.R., and Eichler, E.E. (2020). Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614.

71. Cretu Stancu, M., van Roosmalen, M.J., Renkens, I., Nieboer, M.M., Middelkamp, S., de Ligt, J., Pregno, G., Giachino, D., Mandrile, G., Espejo Valle-Inclan, J., et al. (2017). Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun. 8, 1326.