Turán number for odd-ballooning of trees

Xiutao Zhu | Yaojun Chen

Department of Mathematics, Nanjing University, Nanjing, China

Correspondence
Yaojun Chen, Department of Mathematics, Nanjing University, 210093 Nanjing, China.
Email: yaojunc@nju.edu.cn

Funding information
National Natural Science Foundation of China

Abstract
The Turán number $\text{ex}(n, H)$ is the maximum number of edges in an H-free graph on n vertices. Let T be any tree. The odd-ballooning of T, denoted by T_o, is a graph obtained by replacing each edge of T with an odd cycle containing the edge, and all new vertices of the odd cycles are distinct. In this paper, we determine the exact value of $\text{ex}(n, T_o)$ for sufficiently large n and T_o being good, which generalizes all the known results on $\text{ex}(n, T_o)$ for T being a star, due to Erdős, Füredi, Gould, and Gunderson (1995), Hou, Qiu, and Liu (2018), and Yuan (2018), and provides some counter-examples with chromatic number three to a conjecture of Keevash and Sudakov (2004), on the maximum number of edges not in any monochromatic copy of H in a 2-edge-coloring of a complete graph of order n.

KEYWORDS
decomposition family, odd-ballooning, tree, Turán number

1 | INTRODUCTION

Let $G = (V(G), E(G))$ be a graph and $e(G) = |E(G)|$. For $v \in V(G)$ and $S \subseteq V(G)$, define $N_S(v) = \{u : uv \in E(G) \text{ and } u \in S\}$ and $|N_S(v)| = d_S(v)$, and set $N_S(v) = N(v)$ and $|N(v)| = d(v)$ if $S = V(G)$. The maximum degree of G is $\Delta(G) = \max\{d(v) : v \in V(G)\}$. For $X \subseteq V(G)$, $G[X]$ denotes the subgraph of G induced by X. If $X, Y \subseteq V(G)$ and $X \cap Y = \emptyset$, then $G[X, Y]$ denotes the induced bipartite subgraph of G with bipartition (X, Y). Let G, H be two graphs. We use $G \cup H$ to denote the disjoint union of G and H. Let $G + H$ denote the join of G and H, which is obtained from $G \cup H$ by adding all edges between $V(G)$ and $V(H)$. A path, cycle, complete graph, empty graph and star on n vertices are denoted by P_n, C_n, K_n, E_n and S_{n-1}, respectively. For a family of graphs \mathcal{H}, G is called \mathcal{H}-free if G contains no member of \mathcal{H} as a subgraph. Write H-free for \mathcal{H}-free if $\mathcal{H} = \{H\}$. A covering of G is a set of vertices which
meet all edges. Let $\beta(G)$ denote the minimum number of vertices in a covering of G. Define $\nu(G)$ as the size of a maximum matching of G. Set

$$f(\nu, \Delta) = \max\{e(G) : \nu(G) \leq \nu \text{ and } \Delta(G) \leq \Delta\}.$$

The following is a celebrated theorem due to Chvátal and Hanson.

Theorem 1 (Chvátal and Hanson [3]).

$$f(\nu, \Delta) = \nu \Delta + \left\lfloor \frac{\nu}{\Delta} \right\rfloor \leq \nu(\Delta + 1).$$

The special case when $\nu = \Delta = k - 1$ was first determined by Abbott, Hanson, and Sauer [1]:

$$f(k - 1, k - 1) = \begin{cases} k^2 - k & \text{if } k \text{ is odd}, \\ k^2 - \frac{3k}{2} & \text{if } k \text{ is even}. \end{cases}$$

The Turán number of H, denoted by $\text{ex}(n, H)$, is the maximum size of an H-free graph on n vertices. Extremal graph theory dates back to the early 1940s when Turán [17] proved that $T_p(n)$ is the unique extremal graph of $\text{ex}(n, K_{p+1})$, where $T_p(n)$ is a complete p-partite graph on n vertices in which each partite set has $\lfloor n/p \rfloor$ or $\lceil n/p \rceil$ vertices, called Turán graph. The famous Erdős–Stone–Simonovits Theorem [5, 6] states if H is a graph with chromatic number $\chi(H) = p + 1 \geq 3$, then

$$\text{ex}(n, H) = e(T_p(n)) + o(n^2).$$

This means the Turán number $\text{ex}(n, H)$ is determined asymptotically for H being a nonbipartite graph. Moreover, Erdős and Simonovits [5] showed that the “asymptotic structure” of the extremal graphs for the Turán number $\text{ex}(n, H)$ is also determined by the chromatic number $\chi(H)$ of H. This is to say, the extremal graphs for a nonbipartite H are very similar to $T_p(n)$ when n is sufficiently large. For convenience to describe the “asymptotic structure” of the extremal graphs for $\text{ex}(n, H)$, Simonovits [16] defined the following decomposition family.

Definition 1.1. The decomposition family $\mathcal{M}(H)$ is the set of minimal graphs M such that if an M is embedded into one partite set of $T_p(n)$, then the resulting graph contains H as a subgraph, where the minimal means M missing any edge has no this property, $\chi(H) = p + 1$ and n is large enough.

This concept provides us an idea on how to consider the extremal graphs for $\text{ex}(n, H)$ via Turán graph $T_p(n)$, that is, one can embed a maximal $\mathcal{M}(H)$-free graph into one partite set of $T_p(n)$ to obtain the extremal graphs for $\text{ex}(n, H)$. Although it is still a challenging problem to determine the Turán number and all extremal graphs for many nonbipartite graphs, Simonovits' method is still a very useful tool for dealing with Turán problems. The following result, on the Turán number of friendship graph, denoted by F_k, consisting of k triangles intersecting in one common vertex, can be viewed as a classical example using this idea.
Theorem 2 (Erdős, Füredi, Gould, and Gunderson [4]). For any $k \geq 1$ and $n \geq 50k^2$,
\[
ex(n, F_k) = ex(n, K_3) + f(k - 1, k - 1).
\]

Note that the decomposition family of the friendship graph is $\{kK_2, S_k\}$ and the maximum number of edges in a $\{kK_2, S_k\}$-free graph is exactly $f(k - 1, k - 1)$. It was also shown in [4] that the only extremal graph in Theorem 2 is the one obtained from $T_2(n)$ by embedding a maximum $\{kK_2, S_k\}$-free graph into one partite set.

Theorem 2 was generalized in different ways. Since a triangle is a K_3, Chen et al. [2] considered the same problem by replacing each triangle with a K_p, $p \geq 2$, in Theorem 2, and obtained a generalization as follows.

Theorem 3 (Chen, Gould, Pfender, and Wei [2]). For any $p \geq 2$ and $k \geq 1$, when
\[
nK_p k K n K f k k ex(,) = ex(,) + (−1, −1),
\]

Inspired by these results, Glebov [7] considered the same extremal problem for many K_{p+1} intersecting in a different way: replace each edge of P_k with a K_{p+1}. Shortly after that, Liu [13] introduced the concept of edge blow-up graph. Let H be a graph and p be an integer, the edge blow-up of H, denoted by HP^{p+1}, is one obtained by replacing each edge in H with a clique K_{p+1}, where the new vertices are all different. Clearly, the graphs mentioned above are all special edge blow-up graphs: S_k^3, S_k^{p+1} and P_k^{p+1}. Liu [13] also determined the Turán number for the edge blow-up of some trees and all cycles. Recently, Wang, Hou, Liu, and Ma [18] determined the extremal graphs for the edge blow-up of a large family of trees and Yuan [20] got a tight bound for any G^{p+1} when $p \geq \chi(G)$.

Observe that a triangle is also a C_3, so Theorem 2 can be generalized in another direction: replace each C_3 with an odd cycle. Let H be any graph. The odd-ballooning of H is a graph obtained by replacing each edge of H with an odd cycle containing the edge, and all new vertices of the odd cycles are distinct. Obviously, the friendship graph is a special odd-ballooning of a star. Hou, Qiu, and Liu [10] and Yuan [19] studied the Turán number of any odd-ballooning of a star and got the following.

Theorem 4 (Hou, Qiu, and Liu [10] and Yuan [19]). Let $T = S_k$ be a star and T_o be an odd-ballooning of T. When n is large enough,
\[
ex(n, T_o) = \begin{cases} n^2/4 & \text{if } T_o \neq F_k, \\ (k - 1)^2/2 & \text{if } T_o = F_k. \end{cases}
\]

Later, Zhu, Kang, and Shan [21] determined the Turán number for the odd-ballooning of a path.

No matter a star or a path, it is a special tree. This motivates us to consider the Turán number for the odd-ballooning of a tree T in a more general situation. Before stating our result, we first introduce some additional notations. Throughout this paper, we use $T = T[A, B]$ to denote a tree T with unique bipartition A, B, and assume $a = |A| \leq |B|$ and $\delta(A) = \min\{d(v) : v \in A\}$. An edge uv is called a leaf-edge if at least one end of uv is of degree 1. The odd-ballooning of T is denoted by T_o. For any $uv \in E(T)$, we use $C(u, v)$ to denote the odd cycle containing uv in T_o and
P(u, v) = C(u, v) - uv. If C(u, v) is a triangle in To, then we say the edge uv is of Type I and \(uv\) is of Type II otherwise. An odd-ballooning \(T_0\) of \(T\) is good if all edges of Type I are leaf-edges and the leaf vertices of these leaf-edges are in \(B\).

We still use Simonovits’ idea to investigate the Turán number \(ex(n, T_0)\) and the extremal graphs. Let \(G(n, p, a) = E_{a-1} + T_p(n - a + 1)\), \(X = V(E_{a-1})\) and \(X_1, ..., X_p\) be the \(p\) partite sets of \(T_p(n - a + 1)\). We use \(G(n, p, a, F)\) and \(G(n, p, a, \mathcal{H}, F)\) to denote a graph obtained from \(G(n, p, a)\) by embedding a graph \(F\) into \(X_1\), and embedding a maximum \(\mathcal{H}\)-free graph into \(X\) and a graph \(F\) into \(X_i\), respectively. Moreover, we define a family of subgraphs \(B(T_0)\) based on the decomposition family \(\mathcal{M}(T_0)\) as follows.

Definition 1.2. If each \(M \in \mathcal{M}(T_0)\) has no covering with less than \(a\) vertices, then \(B(T_0) = \{K_a\}\) and otherwise,

\[B(T_0) = \{M[S] : M \in \mathcal{M}(T_0) \text{ and } S \text{ is a covering of } M \text{ with } |S| < a\}.\]

The main result of this paper is the following.

Theorem 5. Let \(T = T[A, B]\) be a tree with \(a = |A| \leq |B|\) and \(\delta(A) = k\), and \(T_0\) be a good odd-ballooning of \(T\). If \(n\) is sufficiently large, then

\[ex(n, T_0) = e(G(n, 2, a)) + ex(a - 1, B(T_0)) + \begin{cases} (k - 1)^2 & \text{if } T_0 \neq F_k, \\ f(k - 1, k - 1) & \text{if } T_0 = F_k. \end{cases}\]

Furthermore, if \(T_0 \neq F_k\), then \(G(n, 2, a, B(T_0), K_{k-1, k-1})\) is an extremal graph, and if \(T_0 = F_k\), then \(G(n, 2, 1, F)\) is an extremal graph, where \(F\) is the extremal graph of the function \(f(k - 1, k - 1)\).

Since a star \(S_k\) is a tree \(T[A, B]\) with \(|A| = a = 1\) and any odd-ballooning of \(S_k\) is good, one can see Theorem 5 generalizes the results obtained in [4, 9, 10, 19]. Moreover, let \(f(n, H)\) denote the maximum number of edges not in any monochromatic copy of \(H\) in a 2-edge-coloring of \(K_n\). As a by-product, Theorem 5 also provides some counterexamples with chromatic number 3 to the following conjecture:

Conjecture 1 (Keevash and Sudakov [12]). For any \(H\) and sufficiently large \(n\),

\[f(n, H) = ex(n, H).\]

The details will be presented in Section 5. The other parts of this paper are organized as follows. Section 2 is devoted to characterizing the decomposition family of \(T_0\); Section 3 contains some preliminaries; and the proof of Theorem 5 is given in Section 4.

2 DECOMPOSITION FAMILY OF \(T_0\)

In this section, our task is to characterize the decomposition family of \(T_0\) through two operations. Let \(G\) be a graph, \(u \in V(G)\) and \(N(u) = \{v_1, ..., v_d\}\). A splitting on \(u\) is to replace \(u\) with an independent set \(\{u_1, ..., u_d\}\) and \(uv_i\) with a new edge \(u_iv_i, 1 \leq i \leq d\), and write
Let \(u_v \) be a leaf-edge. If \(d(u) = 1 \) and \(d(v) \geq 2 \), then peeling off \(u_v \) is to delete \(u_v \) and add a new vertex \(v' \) and a new edge \(u_v' \), and write \(p(u_v) = u_v' \). If \(d(u) = d(v) = 1 \), then peeling off \(u_v \) is to do nothing and \(p(u_v) = u_v \).

For a given odd-ballooning \(T_0 \) of a tree \(T \), we use \(\mathcal{SP}(T) \) to denote the family of graphs, each of which can be obtained from \(T \) through splitting the vertices in some independent set first, say the resulting graph \(T' \). Then peeling off some leaf-edges of \(T' \) which satisfies \(u_v \) or \(s^{-1}(u_v) \) is of Type II.

We have the following lemma.

Lemma 1. For any tree \(T \) and any odd-ballooning \(T_0, \mathcal{M}(T_0) = \mathcal{SP}(T) \). In particular, if \(T_0 \) is good, then a matching of size \(e(T) \) is in \(\mathcal{M}(T_0) \).

Proof. Let \(X, Y \) be two partite sets of \(T_0(n) \), where \(n \) is sufficiently large.

Let \(M \) be any graph in \(\mathcal{M}(T_0) \). We first show \(M \in \mathcal{SP}(T) \). Embed \(M \) into \(X \), then by the definition of \(\mathcal{M}(T_0) \), the resulting graph contains a copy of \(T_0 \). Color the vertices in \(X \) red and the vertices in \(Y \) blue, and call an edge red if its two ends are colored red. Clearly, \(E(M) \) are all red edges.

Because \(\chi(T_0) = 3 \) and \(\chi(T_0 - E(M)) = 2 \), hence \(|E(M) \cap E(C(u, v))| \geq 1 \). Suppose \(C(u, v) \) is an odd cycle in \(T_0 \) containing at least two red edges. Since \(X, Y \) are large enough, if \(u_v \) is a red edge, then we can replace \(P(u, v) = ua_1 \cdots a_v v \) by a new proper colored path \(ub_1 \cdots b_v v \) using vertices distinct with the original \(T_0 \), and if \(u \) is red and \(v \) is blue, then we can replace \(P(u, v) \) by a path which contains exactly one red edge of \(P(u, v) \). Obviously, the red edges in the new \(T_0 \) form a subgraph of \(M \), contradicting the minimality of \(M \). Therefore, \(C(u, v) \) contains exactly one red edge.

Now, consider the skeleton \(T \) of \(T_0 \). The blue vertices in \(T \) (if any) is an independent set. Split all blue vertices of \(T \). Suppose \(u \) is any blue vertex, \(N_T(u) = \{v_1, ..., v_d\} \) and \(u \) is split into \(\{u_1, ..., u_d\} \). Clearly, \(u_i v_i \) is a leaf-edge after splitting. Let \(w_1 w' \) be the only red edge in \(C(u, v_i) \). If \(w_1 w' \) is not incident \(v_i \), then \(C(u, v_i) \) is of order at least 5 and \(u_v \) is of Type II. In this case, we peel off \(u_i v_i \) and let \(p(u_i v_i) \) be the new edge. If \(w_1 w' \) is incident with \(v_i \), then we do not peel off \(u_i v_i \). Let \(T' \) be the resulting graph by peeling off all such edges. Then \(T' \in \mathcal{SP}(T) \). Now, let \(e \leftrightarrow e' \) if \(e \in E(M) \cap E(T'), w_1 w' \leftrightarrow p(u_i v_i) \) if \(w_1 w' \) is not incident with \(v_i \) and \(w_1 w' \leftrightarrow u_i v_i \) if \(w_1 w' \) is incident with \(v_i \). We can see that \(M \cong T' \), and so \(M \in \mathcal{SP}(T) \).

On the other hand, let \(T' \) be any graph in \(\mathcal{SP}(T) \), which is obtained from \(T \) by splitting some independent set \(U \) first, and then peeling off some leaf-edges satisfying \(u_v \) or \(s^{-1}(u_v) \) is of Type II, from the resulting graph. We will show \(T' \in \mathcal{M}(T_0) \).

For any \(u \in V(T) \), color \(u \) blue if \(u \in U \) or \(u_v \in E(T) \) is a leaf-edge with \(d(u) = 1 \) and \(v \notin U \), otherwise color \(u \) red. And then, color the vertices in \(V(T_0) - V(T) \) as follows. Let \(u_v \) be any edge of \(T \). If \(u_v \) is red, then give a proper red–blue coloring to \(P(u, v) \); If \(u \) is blue and \(v \) is red, then \(d_T(u) = 1 \) and \(v \notin U \), or \(u \in U \) is split and say \(s(uv) = u'v \). In this case, give \(P(u, v) \) a red–blue coloring such that it contains exactly one red edge \(w_1 w' \), and \(w_1 w' \) is incident with \(v \) if \(u_v \) or \(u'v \) is not peeled off and not incident \(v \) if \(u_v \) or \(u'v \) is peeled off. Because if \(u_v \) or \(u'v \) is peeled off, then \(u_v \) is of Type II and \(P(u, v) \) is an odd path of order at least 5, and so such a coloring exists and all blue vertices form an independent set. Assume that \(M' \) is the subgraph in \(T_0 \) induced by all red edges. Let \(e \leftrightarrow e' \) if \(e \in E(T) \cap E(M'), \ p(uv) \leftrightarrow w_1 w' \) if \(d_T(u) = 1 \) and \(u_v \) is peeled off, \(u'v \leftrightarrow w_1 w' \) if \(w_1 w' \) is incident with \(v \) and \(p(u'v) \leftrightarrow w_1 w' \) if \(w_1 w' \) is not incident with \(v \). We can see that \(T' \cong M' \).
Observe that each odd cycle in T_o contains exactly one red edge, we can see that $T_o - E(M')$ is proper red–blue colored. Thus, we can embed $T_o - E(M')$ into $T_2(n)$ such that all red vertices of T_o are in X and all blue vertices of T_o are in Y. Note that $T' \cong M'$ and $e(T') = e(T)$, we have $T' \in \mathcal{M}(T_o)$.

In particular, if T_o is a good odd-ballooning of $T = T[A, B]$, then apply vertex splitting on A first, the resulting graph is the disjoint union of stars and all edges of Type I become isolated edges. For any star other than a K_4 in the resulting graph, each edge uv of it satisfying uv or $s^{-1}(uv)$ is of Type II. Thus, peel off some edges from each such star, we can obtain a matching of size $e(T)$. Since $\mathcal{M}(T_o) = SP(T)$, this matching is in $\mathcal{M}(T_o)$.

3 | PRELIMINARIES

Lemma 2 (König [11]). Let G be a bipartite graph. Then $\beta(G) = \nu(G)$.

Lemma 3 (Hall [8]). Let $G = G[X, Y]$ be a bipartite graph. Then $\nu(G) \geq |X|$ if and only if $|N(S)| \geq |S|$ for all $S \subseteq X$.

Lemma 4 (Wang, Hou, Liu, and Ma [18]). Let $T[A, B]$ be a tree with $\delta(A) = k \geq 2$. If a vertex in A is split, then the resulting graph T' satisfies $\nu(T') \geq a - 1 + k$.

Lemma 5. Let $T = T[A, B]$ be a tree and T_o be any odd-ballooning of T. Then $B(T_o) = \{K_o\}$ if and only if $\beta(T) = a$. Furthermore, if $\delta(A) \geq 2$, then $\beta(T) = a$.

Proof. By Lemma 1, $\mathcal{M}(T_o) = SP(T)$. Let T' be any graph in $SP(T)$. Since splitting vertices and peeling off leaf-edges do not decrease the size of maximum matching, we have $\nu(T') \geq \nu(T)$. If $\beta(T) = a$, then by Lemma 2, $\beta(T') = \nu(T') \geq \nu(T) = \beta(T) = a$. That is, T' has no covering S with $|S| < a$. By Definition 1.2, we have $B(T_o) = \{K_o\}$. On the other hand, if $B(T_o) = \{K_o\}$, then since $T \in \mathcal{M}(T_o)$, we get $\beta(T) = a$.

Furthermore, if $\delta(A) \geq 2$, then since $T[S, N(S)]$ is a forest for any $S \subseteq A$, we have

$$2|S| \leq e(T[S, N(S)]) \leq |S| + |N(S)| - 1,$$

which implies $|N(S)| \geq |S| + 1$. By Lemma 3, we have $\beta(T) = \nu(T) = a$.

Lemma 6. Let G be an $\{S_k, kK_2, S_{k-1} \cup K_3\}$-free graph without isolated vertices. Then $e(G) \leq (k - 1)^2$ with equality if and only if $G = K_{k-1,k-1}$, or $G = 3K_3$ and $k = 4$.

Proof. Let G be an $\{S_k, kK_2, S_{k-1} \cup K_3\}$-free graph with $e(G) \geq (k - 1)^2$. Obviously, $\Delta(G) \leq k - 1$. If $\Delta(G) \leq k - 2$, then G is $\{kK_2, S_{k-1}\}$-free and hence we have

$$(k - 1)^2 \leq e(G) \leq f(k - 1, k - 2) = (k - 1)(k - 2) + \left|\frac{k - 2}{2}\right|\left|\frac{k - 1}{2(k - 2)/2}\right|,$$

which implies $k = 4$ and $G = 3K_3$. If $\Delta(G) = k - 1$, let v be a vertex with $d(v) = k - 1$. Since G is $S_{k-1} \cup K_2$-free, $G - N(v)$ has no edges, and so $e(G) \leq (k - 1)^2$, with equality if
and only if all vertices in \(N(v) \) have degree \(k - 1 \) and \(N(v) \) is an independent set. Moreover, all vertices in \(N(v) \) have the same neighborhoods for otherwise we can find an \(S_{k-1} \cup K_2 \) in \(G \). Therefore, \(G = K_{k-1,k-1} \).

Lemma 7 (Erdős, Füredi, Gould, and Gunderson [4]). Let \(\Delta \) and \(b \) be two nonnegative integers such that \(b \leq \Delta - 2 \). If \(\Delta(G) \leq \Delta \), then

\[
\sum_{v \in V(G)} \min\{d(v), b\} \leq \nu(G)(b + \Delta).
\]

Suppose \(G \) is a graph with partition \(V(G) = V_0 \cup V_1 \), let \(G_0 = G[V_0], G_1 = G[V_1], G_{cr} = G[V_0, V_1], \) and \(d_{cr}(v) \) be the degree of the vertex \(v \) in \(G_{cr} \). We have the following.

Lemma 8. Let \(k \geq k_i \) be two nonnegative integers. If the following hold,

1. \(G_i \) is \(\{S_{k-\ell} \cup \ell K_2 : 0 \leq \ell \leq \min\{k - k_i, k - 2\}\} \)-free for \(i = 0, 1 \),
2. \(d_{cr}(v) + \nu(G_{1-i}[N_{V_i}(v)]) \leq k - 1 \) for any \(v \in V_i \),
3. If \(k > k_i \), then \(N_{V_{1-i}}(v) \) are isolated in \(G_{1-i} \) for any \(v \in V_i \) with \(d_{V_i}(v) = k - 1 \), then

\[
e(G_0) + e(G_1) - (|V_0||V_1| - e(G_{cr})) \leq \begin{cases} (k - 1)^2 & \text{for } k > k_i, \\ f(k - 1, k - 1) & \text{for } k = k_i. \end{cases}
\]

Proof: As it is shown in [4] that (1) holds for \(k = k_i \), we may assume that \(k > k_i \).

Choose a graph \(G \) with partition \(V(G) = V_0 \cup V_1 \) satisfying (1)–(3), such that \(e(G_0) + e(G_1) - (|V_0||V_1| - e(G_{cr})) \) is as large as possible, and subject to this, \(|G| \) is as small as possible.

If there is some \(v \in V_0 \) such that \(d_{V_0}(v) - (|V_1| - d_{cr}(v)) \leq 0 \), then since \(G - v \) with partition \(V(G - v) = (V_0 - \{v\}) \cup V_1 \) still satisfies (1)–(3), we have \(|G - v| < |G| \) and

\[
e(G_0) + e(G_1) - (|V_0 - \{v\}||V_1| - e(G_{cr} - v)) \\
\geq e(G_0) + e(G_1) - (|V_0||V_1| - e(G_{cr})),
\]

this contradicts the choice of \(G \). Thus, we have \(d_{V_0}(v) - (|V_1| - d_{cr}(v)) > 0 \) for any \(v \in V_1 \) by the symmetry of \(V_0 \) and \(V_1 \). Moreover, because \(d_{V_0}(v) + \nu(G_1[N_{V_1}(v)]) \leq k - 1 \), we have \(d_{V_0}(v) - (|V_1| - d_{cr}(v)) \leq k - 1 - \nu(G_1[N_{V_1}(v)]) \leq k - 1 - \nu(G_1) \). The second inequality holds since any matching in \(G_1 \) has at most \(\nu(G_1[N_{V_1}(v)]) \) edges in \(N_{V_1}(v) \) and at most \(|V_1| - d_{cr}(v) \) additional edges. Therefore, for any \(v \in V_i, i = 0, 1, \) we have

\[
0 < d_{V_i}(v) - (|V_{1-i}| - d_{cr}(v)) \leq k - 1 - \nu(G_{1-i}).
\]

By (2), we can deduce that

\[
\nu(G_i) \leq k - 2 \quad \text{for } i = 0, 1.
\]
If \(\nu(G_i) = 0 \) for some \(i \in \{0, 1\} \), then \(e(G_i) = 0 \). Observe that \(|V_0||V_i| - e(G_{cr}) = e(G[V_0, V_i]) \geq 0 \), we get \(e(G_0) + e(G_1) - (|V_0||V_i| - e(G_{cr})) \leq e(G_{1-i}) \leq (k - 1)^2 \) by Lemma 6, and hence (1) holds.

If \(\nu(G_i) = 1 \) for some \(i \in \{0, 1\} \), we assume that \(\nu(G_i) = 1 \) by symmetry. Clearly, \(G_1 \) is a star or a triangle with some isolated vertices and \(e(G_k) \leq \max \{ -1, 3 \} \leq 0 \). Since \(G_0 \) is \(S_k \)-free, \(G_k \Delta 0 \leq 0 \). If \(G_k \Delta 0 \leq -1 \), then \(e(G_k - 2) \leq 0 \) by (3) and Lemma 1. Let \(v \in V_0 \) with \(d_{V_i}(v) = k - 1 \). By the assumption (3), \(N_{V_i}(v) \) are isolated vertices of \(G_1 \), which implies the vertices of the star or the triangle in \(G_1 \) are nonadjacent to \(v \), and hence \(|V_0||V_i| - e(G_{cr}) \geq e(G_1) \). Thus, we have

\[
e(G_0) + e(G_1) - (|V_0||V_i| - e(G_{cr})) \leq (k - 2)k + e(G_1) - e(G_1) < (k - 1)^2.
\]

If \(\Delta(G_0) \leq k - 2 \), then \(e(G_0) \leq f(k - 2, k - 2) \) by Lemma 1 and

\[
e(G_0) + e(G_1) - (|V_0||V_i| - e(G_{cr})) \leq f(k - 2, k - 2) + k - 1 \leq (k - 1)^2.
\]

Now, assume that \(2 \leq \nu(G_i) \leq k - 2 \) for each \(i \). By (2), we have

\[
2e(G_i) - (|V_0||V_i| - e(G_{cr})) = \sum_{v \in V_i} [d_{V_i}(v) - (|V_i - 1| - d_{cr}(v))]
\leq \sum_{v \in V_i} \min\{d_{V_i}(v), k - 1 - \nu(G_{1-i})\}.
\]

Applying Lemma 7 on \(G_i \) with \(\Delta = k - 1 \) and \(b = k - 1 - \nu(G_{1-i}) \leq \Delta - 2 \), we have

\[
2e(G_i) - (|V_0||V_i| - e(G_{cr})) \leq \nu(G_i) (2(k - 1) - \nu(G_{1-i})),
\]

and then

\[
2e(G_0) + 2e(G_1) - 2(|V_0||V_i| - e(G_{cr}))
\leq \nu(G_0)(2(k - 1) - \nu(G_1)) + \nu(G_1)(2(k - 1) - \nu(G_0))
= 2(k^2 - 2k + 1) - (k - 1 - \nu(G_0))(k - 1 - \nu(G_1)) < 2(k - 1)^2,
\]

the last inequality follows from (3). Thus, we finish the proof of Lemma 8.

\[\square\]

4 | Proof of Theorem 5

Let \(u \in A \) be any vertex with \(d(u) = \delta(A) = k \), and \(d_i(u) = k_i \) denote the number of edges of Type I incident with \(u \) in \(T \). It should be noted that \(d(u) = k = k_i = d_i(u) \) if and only if \(T_o = F_k \) by the definition of good odd-ballooning.

4.1 | Lower bound of \(\text{ex}(n, T_o) \)

It is not difficult to check the sizes of the two graphs described in Theorem 5 is the expected value of \(\text{ex}(n, T_o) \). So it suffices to show each of the two graphs is \(T_o \)-free to get the lower bound for \(\text{ex}(n, T_o) \).
As we have mentioned, if \(d_t(u) = k_t = k \), then \(T = S_k \) and \(T_0 = F_k \). By Lemma 1, \(\mathcal{M}(T_0) = \{ S_k, kK_2 \} \). Let \(F \) be an extremal graph of the function \(f(k - 1, k - 1) \). So \(F \) is \(\{ S_k, kK_2 \} \)-free. Note that embedding an \(F \) into one partite set of \(T_2(n) \) is \(G(n, 2, 1, F) \), by the definition of decomposition family, it is \(T_0 \)-free. Hence we may assume \(d_t(u) < k \).

It remains to show \(G = G(n, 2, a, B(T_0), K_{k-1,k-1}) \) is \(T_0 \)-free. Since \(G \) is obtained by embedding a \(K_{k-1,k-1} \) into the partite set \(X_i \) and a maximum \(B(T_0) \)-free graph into the partite set \(X \) of \(G(n, 2, a) \), by the definition of decomposition family, we need only to prove \(G[X \cup X_i] = G[X] + G[X_i] \) is \(\mathcal{M}(T_0) \)-free.

If \(k = 1 \), then \(e(G[X_i]) = 0 \). Since \(G[X] \) is \(B(T_0) \)-free, by the definition of \(B(T_0) \), we know \(G[X \cup X_i] \) is \(\mathcal{M}(T_0) \)-free, and so we may assume \(k \geq 2 \). In this case, we have \(G[X] = K_{a-1} \) by Lemma 5.

Suppose to the contrary that \(G[X \cup X_i] \) contains a \(T' \in \mathcal{M}(T_0) \). Choose \(T' \) such that \(T' \) is minimum. By Lemma 1, \(T' \in SP(T) \). Assume that \(T' \) is obtained from \(T \) by splitting an independent set \(U \) and then peeling off some leaf-edges satisfying \(uv \) or \(s^{-1}(uv) \) is of Type II. Clearly, \(T' \) is bipartite. Let \(A', B' \) be two partite sets of \(T' \) such that if \(u \in A \) or \(u \) is split from a vertex in \(A \), then \(u \in A' \), and the same is for \(B \) and \(B' \). Such a bipartition \(A', B' \) is unique. Let \(A'_1 = X \cap A', A'_2 = X \cap A', B'_1 = X \cap B', B'_2 = X \cap B' \) and \(T'[A'_2, B'_2] \) be the subgraph of \(T' \) induced by \(A'_2 \cup B'_2 \).

If some vertex in \(A \) is split, then \(\nu(T') \geq a - 1 + k \) by Lemma 4. Since \(A'_1 \cup B'_1 \) is a vertex covering of \(T' - E(T'[A'_2, B'_2]) \), \(\nu(T' - E(T'[A'_2, B'_2])) \) \(|A'_1 \cup B'_1| \leq a - 1 \) by Lemma 2. Note that \(\nu(T'[A'_2, B'_2]) \leq k - 1 \) since only \(K_{k-1,k-1} \) is in \(X_i \), we have

\[
\nu(T') \leq \nu(T' - T'[A'_2, B'_2]) + \nu(T'[A'_2, B'_2]) \leq a + k - 2,
\]
a contradiction. Thus, no vertex in \(A \) is split.

Assume that \(uv \) is a leaf-edge with \(d(v) = 1 \), which is peeled off after splitting \(U \), and \(p(uv) = u'v \). Because \(\delta(A) = k \geq 2 \) and no vertex in \(A \) is split, we have \(u \in A \) and \(u' \in A' \). Suppose that we get \(T' \) by peeling off \(uv \) from \(T'_* \). Then \(T'_* \in SP(T) \). We now show \(T'_* \subseteq G[X \cup X_i] \). If \(u \in A'_1 \) or \(u \in A'_2 \) and one of \(u' \), \(v \) is in \(X \), then \(uv \) or \(uuv \) is an edge of \(G[X \cup X_i] \). Add \(uv \) or \(uuv \), and delete \(u'v \), we can find a \(T'_* \) in \(G[X \cup X_i] \). If \(u, u' \in A'_2 \) and \(v \in B'_2 \), then since \(G[X_i] \) is a \(K_{k-1,k-1} \) with some isolated vertices, one of \(u' \), \(v \) is adjacent to all \(N_T(u) \). Replace \(u \) with \(u' \) or \(v \), we can find a \(T'_* \) in \(G[X \cup X_i] \). By Lemma 1, \(T'_* \in \mathcal{M}(T_0) \), which contradicts the choice of \(T' \) since \(|T'_*| < |T'| \). Thus, no edge is peeling off after splitting \(U \).

By the argument above, \(A = A' = A'_1 \cup A'_2 \). Since \(a = |A'_1| + |A'_2| \geq |A'_1| + |B'_1| + 1 \) and \(T'[A'_2, B'_2] \) is a forest, we have

\[
e(T'[A'_2, B'_2]) \geq k |A'_2| - (|A'_2| + |B'_1| - 1) \geq (k - 2)|A'_2| + 2.
\]

If \(k = 2 \), then \(e(T'[A'_2, B'_2]) \geq 2 \), which contradicts that \(e(G[X_i]) = 1 \), and hence \(k \geq 3 \). Because \(\Delta(G[X_i]) = k - 1 \), by the inequality above, \(A'_2 \) has two vertices of degree \(k - 1 \) in \(T'[A'_2, B'_2] \), that lie in the same partite set of \(K_{k-1,k-1} \). Thus, the two vertices have the same neighbors in \(B'_2 \), and so \(T'[A'_2, B'_2] \) has cycles, a contradiction.

Therefore, \(G[X] + G[X_i] \) is \(\mathcal{M}(T_0) \)-free, and so \(G \) is \(T_0 \)-free.
4.2 Upper bound of \(\text{ex}(n, T_0) \)

To establish the upper bound for \(\text{ex}(n, T_0) \), we need a result of Simonovits.

Definition 4.1. Denote by \(\mathcal{D}(n, p, r) \) the family of \(n \)-vertex graphs \(G \) satisfying the following symmetry condition:

- It is possible to omit at most \(r \) vertices of \(G \) so that the remaining graph \(G' \) is a join of graphs of almost equal order: \(G' = G_1 + \cdots + G_p \), where \(\left| V(G_i) \right| - \frac{n}{p} \leq r \) for all \(i \leq p \).
- For each \(i \leq p \), there exist connected graphs \(H_i \) such that \(G_i = k_i H_i \), where \(k_i = \frac{|V(G_i)|}{|V(H_i)|} \), and any two copies \(H'_i, H''_i \) of \(H_i \) in \(G_i \), are symmetric subgraphs of \(G \): there exists an isomorphism \(\phi : V(H'_i) \to V(H''_i) \) such that for any \(u \in V(H'_i) \) and \(v \in V(G) - V(G') \), \(uv \in E(G) \) if and only if \(\phi(u)v \in E(G) \).

The graphs \(H_i \) (\(1 \leq i \leq p \)) will be called the *blocks* and the vertices in \(V(G) - V(G') \) will be called *exceptional vertices*.

Theorem 6 (Simonovits [16]). For a given graph \(H \) with \(\chi(H) = p + 1 \), if \(\mathcal{M}(H) \) contains a linear forest, then there exist \(r = r(H) \) and \(n_0 = n_0(r) \) such that \(\mathcal{D}(n, p, r) \) contains an extremal graph of \(H \) for all \(n \geq n_0 \). Furthermore, if this is the only extremal graph in \(\mathcal{D}(n, p, r) \), then it is the unique extremal graph for every sufficiently large \(n \).

We now begin to show the upper bound of \(\text{ex}(n, T_0) \).

Let \(T_0 \) be any good odd-ballooning of a tree \(T = [A, B] \) with \(a = |A| \leq |B| \). By Lemma 1, \(\mathcal{M}(T_0) \) contains a linear forest \(e(T) \cdot K_2 \). By Theorem 6, \(\mathcal{D}(n, 2, r) \) contains an extremal graph \(G \) for sufficiently large \(n \). Omit at most \(r = r(T_0) \) exceptional vertices from \(G \), then it is the unique extremal graph for every sufficiently large \(n \).

Let \(A_i \) be the sets of vertices in \(A_1 \cup A_2 \), or to all vertices in \(A_3 \), but no vertices in \(A_3 \), or to no vertices in \(A_3 \). Let \(W \) and \(W' \) be the sets of vertices in \(V(G) - V(G') \) that are adjacent to all vertices and to no vertex in \(G' \), respectively, and \(B_i \) be the set of vertices in \(V(G) - V(G') \) that are adjacent to all vertices in \(A_3 \) but not any vertex in \(A_i \), \(i = 1, 2 \). If \(W' = \emptyset \), say \(v \in W' \), then we can delete the edges between \(v \) and all other exceptional vertices, and then add all edges between \(v \) and \(A_2 \). This does not decrease the number of edges because \(r \) is a constant and \(A_2 \sim \frac{n}{2} \). Also \(G \) still contains no \(T_0 \), for otherwise replace \(v \) with some vertex in \(A_1 \), we can find a \(T_0 \) in the original graph \(G \). Hence, \(W' = \emptyset \).

Claim 1. \(|W| = a - 1 \) and \(G[W] \) is \(B(T_0) \)-free.

Proof. If \(|W| \geq a \), then we can find a copy of \(T \) in \(G[W \cup A_1] \). By Lemma 1, \(T \in \mathcal{M}(T_0) \) and hence \(T_0 \subseteq G[W \cup A_1 \cup A_2] \), a contradiction. If \(|W| \leq a - 2 \), then
\[e(G) \leq e(G(n, 2, a - 1)) + \left(\frac{|W|}{2} \right) + \left(\frac{|B_1|}{2} \right) + \left(\frac{|B_2|}{2} \right) \]
\[= e(T_2(n - a + 2)) + (a - 2)(n - a + 2) + o(1) \]
\[< e(T_2(n - a + 1)) + (a - 1)(n - a + 1) = e(G(n, 2, a)), \]
a contradiction. Therefore, \(|W| = a - 1 \).

If \(G[W] \) is not \(B(T_o) \)-free, then there is some \(T' \in \mathcal{M}(T_o) \) such that \(T' \subseteq G[W \cup A_1] \) by the definition of \(B(T_o) \), and hence \(T_o \subseteq G[W \cup A_1 \cup A_2] \), a contradiction. □

Let \(G^* = G - W, X_i = A_i \cup B_i \) and \(G^*_i = G[X_i] \) for \(i = 1, 2 \), and \(G^*_{cr} = G[X_1, X_2] \). Moreover, let \(T = T[A, B] \) be a tree with \(\delta(A) = k, u \in A \) with \(d(u) = k \) such that \(d(u) = k_1 \) is maximum. Let \(N(u) = \{u_1, u_2, ..., u_k\} \) and \(uu_i \) is of Type I for \(i \leq k_1 \). Obviously, \(k \geq k_1 \). We now show the graph \(G^* \) with partition \(V(G^*) = X_i \cup X_2 \) satisfying the conditions of Lemma 8 by the following three claims.

Claim 2. \(G^*_i \) is \(\{S_{k-\ell} \cup \ell K_2 : 0 \leq \ell \leq \min\{k - k_1, k - 2\}\} \)-free, \(i = 1, 2 \).

Proof: Suppose to the contrary that \(G^*_i \) contains an \(S_{k-\ell} \cup \ell K_2 \) for some \(\ell \).

If \(\ell = k - 1 \), then \(S_{k-\ell} \cup \ell K_2 = kK_2 \). Let \(T' \) be the forest obtained from \(T \) by splitting \(u \) first and then peeling off the leaf-edges of Type II which are incident with \(u \) in \(T \). Then \(T' \) is the union of \(kK_2 \) and a forest \(T'[A - \{u\}, B] \). Embed \(A - \{u\} \) into \(W \) and \(B \) into the vertices other than that of the \(kK_2 \) in \(A_1 \subseteq X_i \), we can find a \(T' \) in \(G^*[W \cup X_i] \). By Lemma 1, \(T' \in \mathcal{M}(T_o) \), a contradiction. Hence, \(G^*_i \) is \(kK_2 \)-free.

Assume that \(0 \leq \ell \leq \min\{k - k_1, k - 2\} \). Let \(T' \) be the forest obtained from \(T \) by splitting the set \(\{u_1, u_2, ..., u_k\} \), and then peeling off \(\ell \) edges of Type II from the star \(S_{k-\ell} \) with center \(u \). Then \(T' \) is the union of \(S_{k-\ell} \cup \ell K_2 \) and a forest \(T'[A - \{u\}, B'] \). Embed \(A - \{u\} \) into \(W \) and \(B' \) into the vertices other than that of the \(S_{k-\ell} \cup \ell K_2 \) in \(A_1 \subseteq X_i \), we can get a \(T' \) in \(G^*[W \cup X_i] \). By Lemma 1, \(T' \in \mathcal{M}(T_o) \), a contradiction. So, \(G^*_i \) is \(S_{k-\ell} \cup \ell K_2 \)-free. □

Claim 3. For each \(i = 1, 2 \) and any vertex \(v \in X_i \),
\[d_{X_i}(v) + \nu(G^*[N_{X_{-i}}(v)]) \leq k - 1. \]

Proof: By symmetry, we assume \(i = 1 \). Let \(N_{X_1}(v) = \{v_1, ..., v_t\} \) and \(\{x_1 y_1, ..., x_\ell y_\ell\} \) be a maximum matching in \(G[N_{X_1}(v)] \). If \(t + \ell \geq k \), then note that \(G^*[W, A_2] \) is a complete bipartite graph and \(|A_2| \) is sufficiently large, we can find a copy of \(T \) in \(G^* \) by embedding \(A - u \) into \(W \), \(u \) into \(v_1, ..., u_k \) into \(\{v_1, ..., v_t\} \cup \{x_1, ..., x_\ell\} \) and all other vertices of \(B \) into \(A_2 \).

For each \(xy \in E(T) \) with \(x \in W \) and \(y \in A_2 \), since \(G^*[A_1, A_2] \) is a complete bipartite graph and \(|A_2| \) is sufficiently large, we can use some vertices in \(\mathcal{A}_1 \cup \mathcal{A}_2 \) to form an odd cycle \(C(x, y) \). For each \(vv' \in E(T) \), if \(v \in \{v_1, ..., v_t\} \), then choose a vertex \(y' \in A_2 \), and if \(y = x_1 \) for some \(j \in [1, \ell] \), then let \(y' = y_j \), we can get a triangle \(C(v, y, y') \); If \(y \in \{u_k, ..., u_k\} \), then since both \(G^*[A_1, X_2] \) and \(G^*[A_2, X_1] \) are complete bipartite graphs and \(|A_2| \) is sufficiently large, we can get an odd cycle \(C(v, y) \) by using one of the \(t + \ell - k_1 \geq k - k_1 \) edges in \(\{vv_1, ..., vv_t, x_1 y_1, ..., x_\ell y_\ell\} \), which are not used to form a triangle \(vyy' \), together with some vertices in \(A_1 \cup A_2 \). Thus, \(G^* \) contains a \(T_o \), a contradiction. □
Claim 4. If \(k > k_1 \), then \(N_{X_3}(v) \) are isolated in \(G^*_3 \) for any \(v \in X_3 \) with \(d_{X_3}(v) = k - 1 \).

Proof. By symmetry, we assume \(i = 1 \). Let \(N_{X_3}(v) = \{v_1, \ldots, v_{k-1}\} \) and \(z \in N(v) \). Since \(k > k_1 \) implies \(k_1 \leq k - 1 \), \(G^*[W, A_2] \) is a complete bipartite graph and \(|A_2| \) is sufficiently large, we can find a copy of \(T \) in \(G^* \) by embedding \(A - \{u\} \) into \(W, u \) into \(v, \{u_1, \ldots, u_{k_1}\} \) into \(\{v_1, \ldots, v_{k-1}\} \) and all other vertices of \(B \) into \(A_2 \).

For each \(xy \in E(T) \) with \(x \in W \) and \(y \in A_2 \), since \(G^*[A_1, X_3] \) and \(G^*[A_2, X_3] \) are complete bipartite graphs and \(|A_i| \) is sufficiently large, we can get an odd cycle \(C_{xy}(,) = (,) \) by using one of the \(k - k_1 \) edges in \(\{vv_{k+1}, \ldots, vv_{k-1}, zz\} \) and some other vertices in \(A_1 \cup A_2 \). Hence, \(G^* \) contains a \(T_o \), a contradiction. \(\square \)

By the structure of \(G \), we have

\[
e(G) \leq e(G[W]) + |W||G^*| + e(G^*) = e(G[W]) + |W||G^*| + e(G^1) + e(G^2) + e(G^cr).
\]

By Claims 2–4, and applying Lemma 8 on \(G^* \), we have

\[
e(G^1) + e(G^2) + e(G^cr) \leq |X_1||X_2| + \begin{cases} (k - 1)^2, & \text{if } k > k_1, \\ f(k - 1, k - 1), & \text{if } k = k_1. \end{cases}
\]

By Claim 1, \(e(G[W]) \leq \text{ex}(a - 1, B(T_o)) \). Moreover, \(|W||G^*| + |X_1||X_2| \leq e(G(n, 2, a)) \) by the definition of the graph \(G(n, 2, a) \). Therefore, we have

\[
e(G) \leq e(G(n, 2, a)) + \text{ex}(a - 1, B(T_o)) + \begin{cases} (k - 1)^2, & \text{if } k > k_1, \\ f(k - 1, k - 1), & \text{if } k = k_1. \end{cases}
\]

The proof of Theorem 5 is complete.

5 Remark on Conjecture 1

It is clear that in a complete graph \(K_n \), if we color the edges of an extremal graph for \(\text{ex}(n, H) \) red and color the other edges blue, then any red edge is not in monochromatic \(H \), which implies \(f(n, H) \geq \text{ex}(n, H) \) for any \(H \). Keevash and Sudakov [12] proved that if \(H \) has an edge \(e \) such that \(\chi(H - e) = \chi(H) - 1 \) or \(H = C_4 \), then \(f(n, H) = \text{ex}(n, H) \). Later, Ma [15] and Liu, Pikhurko, and Sharifzadeh [14] confirmed Conjecture 1 for a large family of bipartite graphs, including cycles and some complete bipartite graphs. Recently, Yuan [20] found some counterexamples to Conjecture 1 with large chromatic number. However, it remains unknown if Conjecture 1 holds for all bipartite graphs or other graphs with a small chromatic number. In particular, is it true \(f(n, H) = \text{ex}(n, H) \) for \(\chi(H) = 3 \)?

Let \(T_o \) be a good odd-ballooning of \(T \). By Theorem 5, \(\text{ex}(n, T_o) \) is the sum of three terms, and if \(T_o \neq F_k \), then \(G(n, 2, a, B(T_o), K_{k-1,k-1}) \) is an extremal graph. Note that the size of the
maximum $B(T_o)$-free graph embedded into the set X is the middle term $\text{ex}(a - 1, B(T_o))$. For a complete graph K_n, we divide the edges into two sets R and B. The edges in R induce the extremal graph for $\text{ex}(n, T_o)$ and the remaining edges are in the set B. Then we color the edges in R red and the edges in B blue. One can see the blue edges in the set X are not covered by any monochromatic T_o, either. Hence, we have

$$f(n, T_o) \geq e(G(n, 2, a)) + \begin{cases} a - 1 \choose 2 & \text{if } T_o \neq F_k, \\ (k - 1)^2 & \text{if } T_o = F_k. \end{cases}$$

Compare the right-hand side of this inequality with $\text{ex}(n, T_o)$ in Theorem 5, we can see if $\text{ex}(a - 1, B(T_o)) \neq \begin{pmatrix} a - 1 \\ 2 \end{pmatrix}$, then Conjecture 1 is not true for T_o. By Lemma 5, we know if $\beta(T) < a$, then $B(T_o) \neq [K_a]$ and hence $\text{ex}(a - 1, B(T_o)) \neq \begin{pmatrix} a - 1 \\ 2 \end{pmatrix}$. It is easy to see there are many trees $T = T[A, B]$ with $\beta(T) < a$, for example, a double star. Let $T = S_{a,b}$ be a double star and u, v two centers of T with $d(u) = a, d(v) = b$ and $a \leq b$. For any good odd-balooning T_o, because $S_{a,b} \in \mathcal{M}(T_o)$ by Lemma 1 and $\{u, v\}$ is a covering of $S_{a,b}$, we have $uv \in B(T_o)$ by the definition of $B(T_o)$. Therefore, $\text{ex}(a - 1, B(T_o)) = 0$ and

$$\text{ex}(n, T_o) = e(G(n, 2, a)).$$

That is to say, any good odd-balloonning of a double star $S_{a,b}$ is a counterexample to Conjecture 1, and so $f(n, H) > \text{ex}(n, H)$ for many H with $\chi(H) = 3$.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their very careful comments. This research was supported by NSFC under grant numbers 12161141003, 11871270, and 11931006.

ORCID

Yaojun Chen http://orcid.org/0000-0002-4718-5677

REFERENCES

1. H. L. Abbott, D. Hanson, and N. Sauer, Intersection theorems for systems of sets, J. Combin. Theory Ser. A. 12 (1972), 381–389.
2. G. Chen, R. Gould, F. Pfender, and B. Wei, Extremal graphs for intersecting cliques, J. Combin. Theory Ser. B. 89 (2003), 159–171.
3. V. Chvátal and D. Hanson, Degrees and matchings, J. Combin. Theory Ser. B. 20 (1976), 128–138.
4. P. Erdős, Z. Füredi, R. Gould, and D. Gunderson, Extremal graphs for intersecting triangles, J. Combin. Theory Ser. B. 64 (1995), 89–100.
5. P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51–57.
6. P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
7. R. Glebov, Extremal graphs for clique-paths, arXiv:1111.7029v1.
8. P. Hall, On representatives of subsets, J. Lond. Math. Soc. 10 (1935), 26–30.
9. X. Hou, Y. Qiu, and B. Liu, Extremal graph for intersecting odd cycles, Electron. J. Combin. 29 (2016), 29.
10. X. Hou, Y. Qiu, and B. Liu, Turán number and decomposition number of intersecting odd cycles, Discrete Math. 341 (2018), 126–137.
11. D. König, Graphs and matrices, Mat. Fiz. Lapok. 38 (1931), 41–53.
12. P. Keevash and B. Sudakov, On the number of edges not covered by monochromatic copies of a fixed graphs, J. Combin. Theory Ser. B. 108 (2004), 41–53.
13. H. Liu, Extremal graphs for blow-ups of cycles and trees, Electron. J. Combin. 20 (2013), 65.
14. H. Liu, O. Pikhurko, and M. Sharifzadeh, Edges not in any monochromatic copy of a fixed graph, J. Combin. Theory Ser. B. 135 (2019), 16–43.
15. J. Ma, On edges not in monochromatic copies of a fixed bipartite graph, J. Combin. Theory Ser. B. 132 (2017), 240–248.
16. M. Simonovits, Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions, Discrete Math. 7 (1974), 349–376.
17. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok. 48 (1941), 436–452.
18. A. Wang, X. Hou, B. Liu, and Y. Ma, The Turán number for the edge blow-up of trees, Discrete Math. 12 (2021), 112627.
19. L. T. Yuan, Extremal graphs for the k-flower, J. Graph Theory. 89 (2018), 26–39.
20. L. T. Yuan, Extremal graphs for edge blow-up of graphs, J. Combin. Theory Ser. B. 152 (2022), 379–398.
21. H. Zhu, L. Kang, and E. Shan, Extremal graphs for odd-ballooning of paths and cycles, Graphs Combin. 89 (2018), 26–39.

How to cite this article: X. Zhu and Y. Chen, Turán number for odd-ballooning of trees, J. Graph Theory. 2023;104:261–274. https://doi.org/10.1002/jgt.22959