1. Introduction

The intention of semen processing is to preserve semen in fertilization capacity while diluting ejaculated semen lets us utilize maximum ability of high genetic potential sires[1]. Ejaculated semen is not free of microorganisms, some viral, bacterial, fungal and parasitic organisms have been identified in association with bull semen[2]. Some bacteria may behave as opportunistic pathogens and may be a potential risk to the inseminated female[2]. It has been established that pathogenic organisms companion to semen can hazard animal health inseminated by contaminated fresh or frozen semen[3]. Microorganisms might affect the male reproductive function, causing the agglutination of motile sperm[4], reducing the ability of acrosomal reaction[5] and changes in sperm morphology[6]. Moreover, bacteria can change seminal plasma characteristics such as pH, metabolic products, or free radicals[7]. Gram negative bacteria release lipopolysaccharide (LPS), acting as an endotoxin[8].

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

©2017 Asian Pacific Journal of Reproduction Produced by Wolters Kluwer - Medknow

How to cite this article: Mojtaba Rashedi, Mohammad Hashem Fazeli, Hamid Gholami, Mohammad Bahreini. Polymyxin B effects on motility parameters of cryopreserved bull semen. Asian Pac J Reprod 2017; 6(1): 35-42.
This LPS is a component of bacterial wall and is released from bacteria during bacteriolysis\cite{9}, inducing the apoptotic pathway\cite{10}. Electronic microscope scanning of sperm has shown adverse effects of gram negative outer membrane (endotoxin) in different parts of spermatozoa such as coiled tail, detachment of acrosome, knobbed acrosome\cite{11}, and ultrastructural morphological changes due to sperm immobilization\cite{4,6}. Bacterial contaminations are also dangerous for embryos because they can alter zona pellucida\cite{12}. Therefore, elimination of bacteria from bovine semen is the primary concern of artificial insemination (AI) industry and animal production, and it is necessary for the success of AI technique\cite{13}. The first step of effort to remove bacterial contamination in semen is dilution of ejaculates that provide appropriate concentration of sperm in each insemination dose. In addition, during this procedure, the contaminants of semen decrease, and dilution minimizes the risk of pathogens transmission\cite{14}. In general, antibiotics are used to prevent bacterial contaminations\cite{14}. Foote et al.\cite{15} first proposed that bacterial contaminants in bovine semen could be controlled by adding antibiotics. In other words, addition of antibiotics to semen extender was one of the first major advances to significantly improve the fertility potential of AI in bovine\cite{16}. Previous studies showed that the best antimicrobial agent in bull semen is the combination of gentamicin-tylosin-lincospectin (GTLS) to the raw semen against opportunistic pathogens such as mycoplasmas, ureaplasmas, Campylobacter fetus and Haemophilus somnus\cite{17}. It must be remembered that using antibiotics may increase the number of antibiotic-resistant bacterial strains\cite{18}. Furthermore, these antibiotics kill the bacteria especially gram negative bacteria; therefore, their endotoxins are released during bacteriolysis and bind to head region and midpiece of sperm\cite{19}.

Polymyxin B (PMB) is a bactericidal antibiotic against multidrug resistant gram-negative bacteria and can neutralize the toxic effects of released endotoxin\cite{20}. The polymyxin molecule inserts and disrupts the physical integrity of the phospholipid bilayer of the inner membrane via membrane thinning by straddling the interface of the hydrophilic head groups and fatty acyl chains\cite{21}. This study was planned to evaluate the effect of adding different values of PMB to bull semen on various motility parameters of post-thawed semen such as total motility (TM), progressive motility (PM) and velocity parameters using kinetic parameters of sperm by Computer Assisted Sperm Analysis (CASA). The aim of this study is to evaluate the effect(s) of PMB on sperm motility in the presence of GTLS.

2. Materials and methods

2.1. Animals

This study was performed on Taleshi (This Iranian cattle breed exists in north of Iran which is endangered of extinction). Bulls aged 3 years, maintained at Animal Interbreeding Center, Karaj, Iran. The bulls were routinely used for semen collection. The experimental bulls were maintained under naturally prevailing climatic conditions. Their fresh semen PM during last six months was always above 70%.

2.2. Semen collection, processing

Semen from the experimental bulls was collected twice a week for one month by using an artificial vagina. Before semen collection, sufficient time was given to each bull to peak sexual preparation, while one to two false mounts were allowed for sexual stimulation. Immediately after collection of semen, ejaculates were transferred to be kept in a water bath at 37 °C and were examined for semen volume (recorded by reading from graduated tubes), concentration (measured using a calibrated spectrophotometer (IMV, L’Aigle, France) and sperm motility. The fresh ejaculates showed at least 60% motility (evaluated by CASA); therefore, they were selected for further processing. semen was divided into 5 parts, then it was diluted in 5 groups pre-warmed to 37 °C commercial diluent (Andromed®, Minitube, Germany) containing 0, 50, 100, 500 and 1 000 μg per mL (μg/mL) PMB sulphate (P4932, Sigma, Germany), to a final concentration of 30×10⁶ spermatozoa/mL, allowing 10 min for interaction between semen and extender in room temperature. Thereinafter, diluted semen samples were packaged into 0.5 mL straws (Minitube, Germany) and before freezing, the straws were equilibrated over 2 h at 4 °C. Freezing was done by computer controlled freezing system (IMV, L’Aigle, France). After the freezing process, the straws were transferred to a liquid nitrogen tank until subsequent analysis (four weeks after processing) was carried out.

2.3. Post–thawed semen evaluation

2.3.1. Sample preparation

Semen samples were thawed at 37 °C for 1 min, and they were used for Computer Assisted Semen Analysis. All straws containing distinct values of PMB from a specific ejaculate (10 straws) were thawed at the same time and pooled in 3 microtubes (1.5 mL, minitube, Germany). Each microtube pertained to different post-thaw time (0 h, 1 h and 2 h) for semen evaluation in following parameters.

2.3.2. Assessment of post–thawed sperm motility by CASA

Samples were analyzed using a Hamilton Thorne Motility Analyzer (CASA; Animal Version 12.3H-CEROS, Hamilton Thorne Biosciences, Beverly, MA, USA). CASA systems permit the evaluation of sperm motility in a relatively non-biased manner. These systems also permit the velocities of spermatozoa to be determined. The percentages of motile sperm in bull sperm samples were determined using a computer assisted sperm motion analysis system, and a minimum of 200 spermatozoa per sample were evaluated. The settings of the CASA system included: 30 frames acquired at 60 Hz; minimum contrast 80; minimum cell size 6; medium threshold straightness 70; medium average path velocity cutoff =
50 m/s; low average path velocity cutoff=30 m/s; low straight line velocity cutoff=15.0 m/s; non-motile head size 5; non-motile head intensity 70. CASA system collected some data from each sample which included: (a) curvilinear velocity (VCL) (measured in µm/s), (b) average path velocity (VAP) (measured in µm/s), (c) straight line velocity (VSL) (measured in µm/s), (d) amplitude of lateral head displacement (ALH) (measured in µm), (e) beat cross frequency (BCF) (measured in Hz), (f) straightness (STR), (g) linearity (LIN).

After thawing and pooling the post-thaw samples (every group in each ejaculated alone), they were immediately evaluated, 1 h and 2 h after thawing by CASA, which involved locating 4 µL of semen between the slide and coverslip [22]. The TM, PM, VAP, VSL, VCL, ALH, BCF, STR, LIN and velocity distribution (rapid, medium, slow and static cell (%)) were analyzed.

3. Results

The obtained result showed beneficial effects on TM, PM, velocity parameter (especially VSL and VAP). The group of 100 µg PMB per mL of diluted semen had the most positive effects on sperm characteristics mentioned above, also in those sperms, characteristics had the lowest rate in the group of 1 000 µg PMB per mL. But in STR, BCF, medium, slow and static sperm, the group of 1 000 µg PMB had negative effects.
PMB per mL had the highest rate. In LIN, the control group was the highest and the group of 1 000 µg PMB per mL was the lowest rate; and in ALH, the groups of 100 and 500 µg PMB per mL were the highest and lowest rates, respectively.

In TM, PM and rapid and medium sperm, the maximum and minimum were at 2 h and immediately after thawing, respectively. But in velocity parameter, LIN, STR, ALH, BCF and slow sperm, it was the reverse. The maximum and minimum in static sperm were at 1 h and immediately after thawing, respectively. For details, significant differences and more information refer to segments listed below and Figures 1-6.

Figure 3. Effect of on post thawed bull semen on LIN and STR.
*: There are no statistically significant differences between all groups.
**: There are statistically significant differences between 3-1, 3-2 (P<0.05).

Figure 4. Effect of PMB on post thawed bull semen on motility type.
*: There are statistically significant differences between AB, AC, AE, BC, BD, BE, CD, CE, DE [P=0.003] in different times and A1(B1,C1); A1(B1,C1,E1); A3(B3,C3,E3); B1(C1,D1,E1); B2(D2,E2); B3(C3,D3,E3); C1(D1,E1); C2(D2,E2); C3(D3,E3); D1(E1); D2(E2); D3(E3) [P=0.05-0.000 1] in dose time interactions.
**: There are statistically significant differences between AB, AC, AD, AE, BD, BE, CD, CE [P=0.02-0.000 1] in different doses, 3-1; 3-2 [P<0.01] in different times and A1(B1,C1,D1,E1); A2(B2,C2); A3(B3,C3); B2(D2,E2); C2(D2,E2); D1(D3) [P=0.04-0.000 1] in dose time interaction.
***: There are statistically significant differences between AC, AE, BC, BD, BE, CD, CE [P=0.03-0.000 1] in different times and A1(A3,C1,E1); A2(E2); A3(C3,E3); B1(E1); B2(E2); B3(E3); C1(C3,D1,E1); C2(C3,D2,E2); C3(D3,E3); D1(E1); E1(E2,E3) (P=0.040-0.000 1) in dose time interaction.
****: There are statistically significant differences between AB, AC, BC, BD, BE, CD, CE [P=0.05] and A1(B1,C1); A2(B2,C2); A3(B3,C3); B1(C1,D1,E1); B2(E2); B3(D3,E3); C1(D1,E1); C2(D2,E2); C3(D3,E3) [P=0.03-0.001] in dose time interaction. There are no statistically significant differences between various times (P>0.05).

Figure 5. Effect of PMB on post thawed bull semen ALH.
*: There is statistically significant difference between CD (P<0.05). There are no statistically significant differences between various times (P>0.05).
There are statistically significant differences between C1(C3,D1,E1) (P=0.010-0.003). (Repetitious data are omitted).
fertility of bull semen measured based on field trials with dihydrostreptomycin, penicillin and PMB sulphate with or without lincospectin. In this study, breeds, assessing in field or laboratory, and types of microbial contamination (gram negative or positive bacteria). In this study, PMB was added to GTLS combination but in Foote and Bratton’s experiment, PMB acted as an anti-endotoxin supplement in semen. Anti-endotoxin activity of PMB in boar semen was demonstrated by Okazaki et al[19]. They also showed improving sperm motility due to the use of PMB, in agreement with our results. Moreover, our results indicated that PMB is harmful for bull sperm motility. It has been suggested that PMB induces nephrotoxic events by increasing membrane permeability resulting in an increased influx of cations, anions, and water, and leading to cell swelling and lysis[27]. Sodium citrate may trigger the toxic effects of polymyxins[28]. According to these facts, it can be suggested that an increase in free values of PMB (polymyxin without participating in antimicrobial and anti-endotoxin activity) and existence of sodium citrate (buffer in diluent of semen) let PMB bind living sperms and increase their permeability. Sodium citrate was used in previous literature in extender[24,25]; and in our study, citric acid was used. Logically, free values of polymyxin depend on contamination rate of semen and presence of other antibiotics; therefore, in Foote and Bratton’s experiment[25], in which there were no antibiotics with combinations of polymyxins to act against bacteria, the levels of free values of polymyxins were decreased; therefore, negative effects were seen at high levels of polymyxin at the end of the period. A previous study showed the beneficial effect of 100 µg of PMB per mL of boar semen[19], in agreement with our results in bull semen, but we suggest that the beneficial effect of PMB on semen quality especially depends on the levels of semen contamination. We also think that in our study, higher performance of PMB would be observed if we used more than 100 µg/mL of polymyxin, and less than 500 µg/mL of polymyxin. The scrutiny in the present study showed an agreement with Leite et al[29] about the effects of equilibration time on post-thaw motility. In both studies, TM and PM significantly increased over time. This increase, observed in all groups, may be due to passing over the thawing shock and an improvement in anti-endotoxin activity of PMB over the time. There are other studies which are consistent to ours[30–32]. Amalgamating the effects of lapse of time and dosages on TM and PM, clarified that in all dosages during lapse of time, improvement occurred in both TM and PM. Based on the results of passing of the time or dosage separately, this scheme was predictable for 50 µg/mL and 100 µg/mL, but the results of 500 µg/mL and 1 000 µg/mL were surprising. In these groups, in which the toxic effects were seen, we expected the negative effect of PMB to increase by lapse of time, but unexpectedly, the scheme was reverse; and by passing the time, the toxic effect was significantly reduced. Although the result was significantly lower than that in the control group, inside each group, the toxic effect was significantly reduced. Probably, by lapse of time, the substrate consumption of PMB (bacterial LPS) increased because of effects of other antibiotics and disintegration of agglutinated spots.
of sperms and bacteria. This substrate for free PMB reduces the free
mount of PMB; therefore, toxic effects are decreased. Furthermore,
disintegration of agglutination sites released the trapped sperms and
increased TM and PM significantly. The results of rapid, medium,
slow and static percentage of sperms corroborates this hypothesis.
By lapse of time in all dosages, the number of sperms with rapid,
medium and static movement was increased and the slow movement
sperm was decreased. In toxic dosage, the above-mentioned note
was more important to justify no increase in toxicity of PMB
because it promoted the hypothesis of trapped sperms. On the other
hand, with regard to the increase in the number of static sperms,
which were probably dead, and also releasing of intracellular content
of dead sperms, there were changes in PH and free radicals released
in environment. To repair this situation, the buffering system of
extender was involved and sodium citrate and citric acid were
utilized; thus, toxicity of PMB was reduced. Besides, polymyxins
are inhibited by divalent cations; therefore, during the release of
intracytoplasmic content, especially Ca$^{2+}$ and Mg$^{2+}$, the toxic effect
of PMB was neutralized. In velocity parameters of sperm, the best
records were obtained at 100 µg/mL of PMB and the lowest were at
1 000 µg/mL. It means that using PMB in semen at sufficient levels
due to its bacterial contamination will improve velocity parameters
(VSL, VCL, VAP), but it is not significant. Therefore, more studies
are required to find out which amount of PMB (more than 100 µg/
ML and less than 500 µg/ML) has significantly a better rate. On the
other hand, in the group of 1 000 µg/mL of PMB, a significant
decrease was obtained, which is perhaps according to the toxic
effects of free values of PMB by changing in permeation of sperm;
subsequently, infirmity in plasma membrane function, and finally
death of sperm occur. The velocity parameters were significantly
decreased by passing time, which is probably due to scale down of
nutrient. In addition, along with the increasing number of rapid and
medium sperms by lapse of time, the decline of nutrient and decrease
of energy level were augmented. Hu et al.[33] stated the sufficient
level of ascorbic acid increased the VSL and VAP, but did not affect
VCL. This result and our results showed that velocity parameters are
less impresible due to pre-capacitation environmental changes than
motility. Different studies indicated that VSL and VAP had a positive
correlation to fertilization rate, ability to penetrate oocyte and
cervical mucus[34-42]. According to our results, adding 100 µg/mL
PMB improved the velocity parameters and probably may increase
the fertilization rate, but it needs more investigation to prove.
Decrease in velocity parameter by lapse of time, seen in this study,
was in agreement with some previous studies[43], but not similar to
other studies, adding ascorbic acid did not affect velocity by passing
the time[33]. Similarly, this situation is caused by free radicals and
oxidants released from dead sperms, bacteria and reaction between
PMB and LPS during lipid oxidation. Therefore, an antioxidant
agent like ascorbic acid could neutralize it and is able to stop
reduction in velocity. Severe correlations between velocity
parameters and motility parameters were reported immediately after
thawing[39], in agreement with our results. Since the velocity
parameters had correlation with sperm penetrating oocyte and
cervical mucus, probably decrease in this parameter according
to lapse of time (seen in all groups even the control) was because of
negative effects on apical structure of sperm (acrosome). Apart from
that, this decrease was caused by oxidant agents or PMB. But
whereas by lapse of time, the PM was significantly improved even in
toxic mounts, it did not seem that the cause of a decrease in velocity
parameter was due to PMB. In LIN and STR, no significant positive
or negative effects were noticed, neither were they, in BCF.
Moreover, lapse of time could not significantly change the LIN,
STR, and BCF. Although it decreased, it was not significant, in
agreement with others’ finding[29,44]. Changes in ALH were
exclusive because neither the maximum nor the minimum between
different amounts of PMB had significant differences from the
control group -but the maximum (100 µg/mL) was significantly
different from the minimum (500 µg/mL), and also in various times
(although it decreased during lapse of time, it was not significant),
but in dose-time reaction, both the maximum (immediately after
thawing) and the minimum (2 h after thawing) were in the group of
100 µg/mL of PMB, which was significant; but compared to the
control group, it was not significant. This result could happen for
three reasons: first, with regard to the lapse of time, the levels of
nutrient material in semen would decrease; therefore, there isn’t
enough energy for sperm to move over. This probability will be
intensified by increasing the rate of TM and PM (because the
motility generator is located in tail); second, because junction
between endotoxin and sperm happens at head region, immediately
after thawing, the complex of sperm, endotoxin and PMB increases
the ALH; but after two hours, this complex will be separated and
ALH will decrease. Third, according to an increase in slow and static
sperm, by lapse of time, it could intrinsically increase the ALH in
100 µg/mL at 2 h after thawing treatment. It had been reported that
high ALH correlates with deficiency of capacitation, and deficiency
of capacitation correlates with low fertilization[37]. On the other
hand, motility correlates with high fertilization; therefore, the 100
µg/mL PMB at 2 h after thawing (the highest PM and velocity
parameter and the lowest ALH) potentially had the most fertilization.
Besides, maximum of ALH was 100 µg/mL at the time of thawing.
This may be the cause of sperm agglutination decay by PMB, which
decreased the total number of static and slow sperms and increased
the motility. Therefore, by increasing the number of motile sperms,
the motility and subsequently ALH normally increased and it did not
seem that the increase in ALH was caused by negative effect of
PMB. In addition, in high level of polymyxin, its toxic effects may
cause disintegration of plasma membrane and release of intra-
cellular components such as divalent cations (calcium and
magnesium) especially calcium, which will emulate PMB for binding to complex of lipopolysaccharides (endotoxin) and head of sperm. It means 100 µg/mL of PMB can be potentially effective for fertilization. According to our results, the authors bring up the hypothesis that suggested the observed negative effect of free PMB on motility will not affect capacitation (according to ALH). Therefore, PMB did not affect acrosomal region, but probably it affected everywhere except apical ridge. This place may be cytoplasmic membrane of tail and especially middle piece, which impresses the motility. This hypothesis needs more investigation to set an opportunity to provide much better cryopreserved semen. Observing high rate in rapid sperm and low rate in medium, slow and static sperms in the group of 100 µg/mL of PMB can confirm the positive effect of PMB on motility and velocity parameters of sperm. It seemed that PMB could reduce the static sperm, and by converting the slow and medium sperms to rapid sperm, due to the mechanism mentioned above for PM, high dose of PMB probability changed the permeability of sperm because it had reduced the rate of rapid to medium and slow sperms.

Finally, it can be subsumed that adding adequate amounts of PMB to bull’s semen is an economic executive job because of its positive effects on TM, PM, rapid sperm and velocity parameters of sperm, which provide better fertilization and fertility, indirectly due to the roles of different CASA parameters on fertilization and fertility.

In conclusion, we propound some studies which seem to be necessary to promote our knowledge about the effects of PMB on semen quality, fertilization and fertility such as: some similar studies in other breeds especially high yield breeds; studies at different bull ages and different seasons for ejaculating and not using PMB slavishly. We advise using it after measuring endotoxin concentration; In vitro, In vivo and in field fertilization, adding other sperm evaluation factors such as acrosomal integrity, DNA integrity, mitochondrial function to PMB treated semen.

Conflict of interest statement
The authors declare that they have no conflict of interest.

Acknowledgments
The authors gratefully acknowledge the management of Animal Interbreeding Center, Karaj, Iran. Moreover, they thank Dr. Mirtorabi, Dr. Eskafi and technicians of embryology laboratory of Interbreeding Center, Karaj, Alborz Province, Iran.

References
[1] Kommisrud E, Graffer T, Steine T. Comparison of two processing systems for bull semen with regard to post thaw motility and nonreturn rates. Theriogenology 1996; 45(8): 1515-1521.
[2] Wierzbowski S. Bull semen opportunistic pathogen and ubiquitary microflora. In: Disease Control in Semen and Embryos, FAO, Editor. Rome: FAO Animal and Health Paper; 1981, p. 21-28.
[3] Bielanski A, Bielanski A, Bergeron H, Lau PC, Devenish J. Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 2003; 46(2): 146-152.
[4] Diemer T, Weidner W, Michelmann HW, Schiefer HG, Mayer F. Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int J Androl 1996; 19(5): 271-277.
[5] Köhn F, Erdmann I, Oeda T, el Mulla KF, Schiefer HG, Schill WB. Influence of urogenital infections on sperm functions. Andrologia 1998; 30(1): 73-80.
[6] Sanocka-Maciejewska D, Ciupi ska M, Kurpisz M. Bacterial infection and semen quality. J Reprod Immunol 2005; 67(1-2): 51-56.
[7] Althouse GC, Kuster CE, Clark SG, Weisger RM. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 2000; 53(5): 1167-1176.
[8] Osborn MJ, Rosen SM, Rothfield L, Zeleznick LD, Horecker BL. Lipopolysaccharide of the gram-negative cell wall. Science 1964; 45(3634): 783-789.
[9] Ginsburg I. The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS 2002; 110(11): 753-770.
[10] Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13(11): 460-469.
[11] Sokkar SM, Darwiesh G, Madbooly A. Study of the pathological effect of Escherichia coli endotoxin in rams. J Vet Med B Infect Dis Vet Public Health 2003; 50(5): 226-230.
[12] Guerin B, Brigitte L, Thibier MA. Secure health status associated with the production and trade of in vitro derived cattle embryo. Livestock Prod Sci 2000; 62(3): 271-285.
[13] Kaern IH, Son DS. Bacteria in semen used for IVF affect embryo viability but can be removed by stripping cumulus cell vortexing. Theriogenology 1998; 50(2): 293-299.
[14] Bielanski A. Disinfection procedures for controlling microorganisms in the semen and embryos of humans and farm animals. Theriogenology 2007; 68(1): 1-22.
[15] Foote RH, Salisbury GW. The effect of sulfonamides upon the livability of spermatozoa and upon the control of bacteria in diluted bull semen. J Dairy Sci 1948; 31(9): 769-778.
[16] de Jarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH. Sustaining the fertility of artificially inseminated dairy cattle: The role of the artificial insemination industry. J Dairy Sci 2004; 87(4): E93-E104.
[17] Shin SJ, Lein DH, Patten VH, Ruhnke HL. A new antibiotic combination for frozen bovine semen. 1: Control of Mycoplasmas, Ureaplasmas, Campylobacter fetus subsp. venerealis and Haemophilus somnus. *Theriogenology* 1988; 29(3): 577-591.

[18] Viallancourt D, Guay P, Higgins R. The effectiveness of gentamicin or polymyxin B for the control of bacterial growth in equine semen stored at 20 °C or 5 °C for up to forty-eight hours. *Can J Vet Res* 1993; 57(4): 277-280.

[19] Okazaki T, Mihara T, Fujita Y, Yoshida S, Teshima H, Shimada M. Polymyxin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. *Theriogenology* 2010; 74(9): 1691-1700.

[20] Cardoso LS, Araujo MI, Góes AM, Pacífico LG, Oliveira RR, Oliveira SC. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. *Microb Cell Fact* 2007; 68(1): 1-6.

[21] Velkov T, Thompson PE, Nation RL, Li J. Structure-activity relationships of polymyxin antibiotics. *Med Chem* 2010; 53(5): 1898-1916.

[22] Coëleghini EC, de Arruda RP, de Andrade AF, Nascimento J, Raphael CF, Rodrigues PH. Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin. *Anim Reprod Sci* 2008; 104(2-4): 119-131.

[23] Eaglesome MD, Garcia MM, Stewart RB. Microbial agents associated with bovine genital tract infections and semen. Part II. Haemophilus somnus, Mycoplasma spp and Ureaplasma spp, Chlamydia; Pathogens with bovine genital tract infections and semen. Part II. Haemophilus somnus, Mycoplasma spp and Ureaplasma spp, Chlamydia; Pathogens with bovine genital tract infections and semen. *J Clin Anesth* 1997; 9(3): 212-215.

[24] Berg JR, Spilker CM, Lewis SA. Modulation of polymyxin B effects on bovine spermatozoa, in Physiology of Reproduction and Artificial Insemination of Cattle. In: GW Salisbury, NL Vandemark, JR Lodge, editors. San Francisco: WH Freeman and Company; 1978, p. 494-589.

[25] Hu JR, Tian WQ, Zhao XL, Zan LS, Wang H, Li QW, et al. The cryoprotective effects of ascorbic acid supplementation on bovine semen quality. *Anim Reprod Sci* 2010; 121(1-2): 72-77.

[26] Cseh S, T Polichronopoulos, L Solti. Prediction of bull fertility by computer-assisted semen analysis. *Reprod Fertil Dev* 2004; 16(2): 128-129.

[27] Fetterolf PM, BJ Rogers. Prediction of human sperm penetrating ability using computerized motion parameters. *Mol Reprod Dev* 1990; 27(4): 326-331.

[28] Garrett C, Liu DY, Clarke GN, Rushford DD, Baker HW. Automated semen analysis: ‘Zona pellucida preferred’ sperm morphometry and straight-line velocity are related to pregnancy rate in subfertile couples. *Hum Reprod* 2003; 18(8): 1643-1649.

[29] Gillan L, Kroetsch T, Maxwell WM, Evans G. Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. *Anim Reprod Sci* 2008; 103(3-4): 201-214.

[30] Holt C, Holt WV, Moore HD, Reed HC, Curnock RM., Objectively measured boar sperm motility parameters correlate with the outcomes of on farm inseminations: Results of two fertility trials. *J Androl* 1997; 18(3): 312-323.

[31] Farrel PB, Presicce GA, Brockett CC, Foote RH. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. *Theriogenology* 1998; 49(4): 871-879.

[32] Moce E, Graham JK. In vitro evaluation of sperm quality. *Anim Reprod Sci* 2008; 105(1-2): 104-118.