Studying Dynamics of the South West Monsoon in Indian Sub-Continent through Geospatial Correlation of Isotopes in Air Moisture

Gopal Krishan1,*, AK Lohani1, MS Rao1, CP Kumar1, Bhishm Kumar2, YRS Rao1, RK Jaiswal1, Renoj J Thayyen1 and Shivam Tripathi1

1National Institute of Hydrology, Roorkee - 247 667 Uttarakhand, India
2I.A.E.A, Vienna, Austria
3Dept. of Civil Engineering, IIT-Kanpur, India

Abstract

The isotopic data of atmospheric air moisture collected from Kakinada in coastal region (Andhra Pradesh), Sagar in Central India (Madhya Pradesh), Kanpur in Indo-Gangetic plains (Uttar Pradesh), Roorkee in foot hills of Shiwalik (Uttar Pradesh), Jammu in Sub-Himalayan region (Jammu & Kashmir) and Manali in Himalayan region (Himachal Pradesh) measured in Isotope Laboratory of NIH, Roorkee and has been analyzed using Matlab to find out the local/ regional component of atmospheric moisture. The isotopic analysis confirms the continental and altitude effects which were earlier deciphered by the precipitation. Further, the isotopic data analysis validates the impact of local moisture on rainfall and help in resolving the moisture sources in different seasons. This analysis further concludes that the isotopic composition of air moisture can be applied for finding the onset of monsoon.

Keywords: Air moisture; Isotopes; Southwest monsoon; Geospatial correlation; Indian sub-continent

Introduction

Atmospheric moisture is an important component in the water cycle and its major flux on the Indian subcontinent comes through southwest monsoon that arrives through Arabian Sea and Bay of Bengal branches [1]. The process of tracking the journey of water molecules using stable isotopes of oxygen and hydrogen can lead to quantitative understanding of the associated physical processes because of the isotopic fractionation being proportional to the extent the process has advanced. Monsoon is a large scale wind circulation phenomenon that brings large amount of moisture on the Indian sub-continent. Earlier some studies [2-4] were carried out using conventional meteorological parameters on monsoon dynamics except timing of onset and withdrawal of monsoon due to the complexity between mixing of sub-regional moisture with continental scale moisture arising directly from Arabian Sea and/or Bay of Bengal and/or Indian Ocean. Datta et al. [5], Bhattacharya et al. [6], and Peng et al. [7] characterized isotopes in precipitation which is an event based phenomenon and that too mainly during monsoon; the results of these works could not be used for modelling and prediction. The role of isotopes in air moisture was not mentioned in the above studies and observation of stable isotope variation of atmospheric water vapour, which is not same in all regions, has an important significance to indicate the moisture origins and its transport. Using the isotopic signatures of water molecules, it is possible to track the movement of air moisture and hence the southwest monsoon transect. This is due to fact that with the onward movement of the air moisture heavy isotopes get systematically depleted [8] and the recycling of moisture due to condensation and subsequent evaporation cause a difference in relative enrichment in deuterium and oxygen isotopic composition. A few case studies on this philosophy were examined in coastal China [9,10]. In India, the studies on isotopic composition of air moisture were carried out at National Institute of Hydrology, Roorkee (i) to identify the air moisture sources [11] to study the climatological conditions [12]; to find the correlations between isotopic composition of air moisture at Roorkee with Hyderabad [13], Sagar [14], Kanpur [15], Jammu [16] and Manali [17]. Department of Science and Technology, Government of India, initiated a National Programme on Isotope Fingerprinting of Waters in India (IWIn) in 2007 to collect groundwater, surface water and atmospheric waters to get the first level nationwide data on isotopic signatures of water resources of India. Under this, a network of stations have been established in the southwest monsoon transect by National Institute of Hydrology (NIH), Roorkee for collection of atmospheric moisture samples at Kakinada in 2010 at coastal region (Andhra Pradesh), Sagar in 2008 in Central India (Madhya Pradesh), Kanpur in 2011 in Indo-Gangetic plains (Uttar Pradesh), Roorkee in 2008 at foot hills of Shiwalik (Uttar Pradesh), Jammu in 2010 in Sub-Himalayan region (Jammu & Kashmir) and Manali in 2011 in Himalayan region (Himachal Pradesh) and the correlation is termed as southwest monsoon transect. In the present study, an effort has been made for the first time to examine change in isotopic composition of atmospheric moisture at the stations located from coastal to Himalayas.

Study Area

The samples were collected at Kakinada, Sagar, Kanpur, Roorkee, Jammu and Manali and the detail of the meteorological parameters of these stations is given in Table 1 and Figure 1.

Methodology

Sample collection

The condensed air moisture samples for isotopic analyses were collected on daily basis at all the stations from 9.30 am to 10.30 am by condensation method [18]. In this method, the air moisture sample is collected using the conical condensation device. After setting up the conical condensation device the date, time, temperature and relative humidity are recorded using thermo-hygrometer [18]. The samples are collected at Kakinada in 2010 to 2012, Sagar in 2008 to 2012, Received December 09, 2013; Accepted December 31, 2013; Published January 03, 2014

Citation: Krishan G, Lohani AK, Rao MS, Kumar CP, Kumar B, et al. (2013) Studying Dynamics of the South West Monsoon in Indian Sub-Continent through Geospatial Correlation of Isotopes in Air Moisture. J Geol Geosci 3: 139. doi: 10.4172/2329-6755.1000139

Copyright: © 2013 Krishan G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Kanpur in 2011 to 2012, Roorkee in 2008 to 2012, Jammu in 2010 to 2012 and Manali in 2011 to 2012. The samples at Manali could not be collected during the period December to April due to heavy snow fall. Data concerning daily meteorological variables, including surface air temperature (minimum temperature, maximum temperature and mean temperature) and relative humidity was also recorded at all the stations.

Sample analysis

Stable isotopes (1H or D) in water were analysed using GV-Isoprime Dual Inlet Isotope Ratio Mass Spectrometer. For δD analysis, 400 µl of the water sample is equilibrated with H2 along with Pt catalyst at 40°C for 3 hrs, and then the equilibrated gas is introduced into the mass spectrometer. The measured values are reported as delta (δ) values [19]. The precision of measurement for δD was within ± 1%.

Data analysis

Before carrying out the statistical analysis processing of isotopic values of air moisture obtained for various stations has been carried out. The period of collected samples of air moisture varies from 2 to 5 years and there is a variation of data collection dates in each year. Therefore, a programme is developed in Matlab to compute average values of the isotopic composition (δD) on different dates from the observed data. Further, the isotopic data was statistically analysed by computing the cumulative isotopic values (δD) of all the stations using Matlab software.

Results and Discussion

The cumulative isotopic composition (δD) of air moisture of all the stations (Manali, Sagar, Kakinada, Kanpur, Jammu and Roorkee) is shown in Figure 2. It is observed that the slope of all the stations changes with time except Kakinada station where it remains constant whole year due to the continuous air moisture supply received from the Bay of Bengal. On the basis of change in slope, the equations were developed for all the stations (Tables 2 and 3), which are different in the Bay of Bengal. Since no change in slopes is observed in Kakinada (whole year) and pre & post monsoon months in Manali due to recycling of air moisture. On the basis of data and change in slope, the dates where the slope is changing can be recorded which is helpful in finding the onset and withdrawal dates of the monsoon for all the stations. The dates

![Figure 1: Stations established by NIH, Roorkee for collection of air moisture.](Image)

The most depleted values for cumulative δD were observed at Roorkee which is followed by Kanpur, Jammu and Sagar which may be deciphered due to the Continental effect. In Manali, the depletion is found only in the monsoon season due to the air moisture [17]. However, no depletion was found in the pre (May-June) and post monsoon (October-December) seasons.

No change in slopes is observed in Kakinada (whole year) and pre & post monsoon months in Manali due to recycling of air moisture. The values in parentheses are date of start of sample collection, altitude above mean sea level and aerial distance from ocean.

Sr. No.	Station Name	Altitude (m)	Coordinates	Monthly Average Temperature (°C)	Normal rainfall (mm)	Average relative humidity (%)		
		Latitude (N)	Longitude (E)	Min.	Max.			
1	Kakinada	02	16°59’	82°15’	18.7-24.9	29.5-37.2	1113.0	91
2	Sagar	527	23°50’	78°50’	11.6-24.5	24.5-40.7	1234.8	52
3	Kanpur	128	26°26’	80°24’	8.5-28.5	23.0-41.3	850.9	66
4	Roorkee	268	29°52’	77°53’	6.1-24.9	20.4-39.2	1156.4	78
5	Jammu	292	32°42’	74°51’	7.8-26.9	18.6-39.8	1193.0	58
6	Manali	3000	32°19’	77°10’	-1.7-15.3	10.8-27.2	1363.8	67

Table 1: Meteorological parameters of all the sample collecting stations.

Sources	Manali	Sagar	Kanpur	Jammu	Roorkee	
Local	δD=0.77x	δD=-3.41x	δD=-33.78x	δD=-13.79x	δD=-18.33x	δD=-22.26x
SW Monsoon	δD=43x+7685	δD=54x+7596	δD=34x+3378	δD=65x+7487	δD=71x+8838	δD=88x+11445
Local/ Regional	δD=5x+3267	δD=42x+4380	δD=34x+3378	δD=38x+64.2	δD=58x+4830	δD=50x+1240

Table 2: Sources of air moisture at all the sample collecting stations received from the SW monsoon, clearly indicating Continental and altitude effect as air moisture in other seasons is mostly received due to the sublimation of snow.

Sources	Manali	Sagar	Jammu	Kanpur	Roorkee
Local	May 1 to Jul 2	Jan 1 to May 31	Jan 1 to May 31	Jan 1 to Jun 15	Jan 1 to Jun 20
Monsoon	Jul 3 to Oct 18	Jun 1 to Sep 20	Jun 01 to Sep 24	Jun 16 to Oct 05	Jun 21 to Sep 21
Local/ Regional	Oct 19 to Dec 31	Sep 09 to Dec 31	Sep 25 to Dec 31	Oct 06 to Dec 31	Sep 22 to Dec 31

Table 3: Dates for change in slopes at all the sample collecting stations.
of air moisture originating from local/regional sources can be easily
differentiated from the air moisture received through the SW monsoon.
As per IMD, New Delhi the normal dates for onset of monsoon in
Kanpur, Roorkee and Jammu are observed between 25th June to 1st
week of July but as per the isotopic data the dates observed ranged
from 26th May to 3rd July indicating that the air moisture arrives earlier
than the actual precipitation, which is helpful in predicting the onset
of monsoon.

Conclusions

The isotopic analysis confirms the continental and altitude effects
which were earlier deciphered by the precipitation. Further, the
isotopic data analysis validates the impact of local moisture on rainfall
and help in resolving the moisture sources in different seasons. This
analysis further concludes that the isotopic composition of air moisture
can be applied for finding the onset of monsoon.

Acknowledgement

This work was carried out under the project “National Program on Isotope
Fingerprinting of Waters of India” and authors are thankful to DST-SERC (funded
by DST vide IR/54/ESF/05-2004 dated July17, 2007) for sponsoring the study.
Authors thank Director, National Institute of Hydrology for his kind support and
encouragement.

References

1. Gupta SK, Deshpande RD (2005) The need and potential applications of a
network for monitoring of isotopes in waters of India. Current Science 88: 107-
118.
2. Ajaya Mohan RS, Goswami BN (2003) Potential Predictability of the Asian
Summer Monsoon on Monthly and Seasonal Time Scales. Meteorology
Atmosphere Physics.
3. Gadgil S, Sajari S (1998) Monsoon precipitation in the AMIP runs. Climate
Dynamics 14: 659-689.
4. Shukla J (1987) Inter-annual variability of monsoon, in Monsoons. Wiley and
Sons, New York 399-464.
5. Datta PS, Tyagi SK, Chadrasekharan H (1991) Factors controlling stable
isotope composition of rainfall in New Delhi, India. Journal of Hydrology 128:
223-236.
6. Bhattacharya SK, Froehlich K, Aggarwal PK, Kulkarni KM (2003) Isotopic
variation in Indian Monsoon precipitation. Geophysical Research Letters 30:
2285.
7. Peng H, Mayer B, Norman AL, Krouse HR (2005) Modelling of hydrogen and
oxygen isotope compositions for local precipitation. Tellus 57B: 273-282.
8. Krishan G, Rao MS, Garg P, Kumar CP (2012a) An investigation on continental
scales and altitude effect on isotopic composition (δD) of ground level vapour
(GLV).
9. Xue Fa W, Shi-Chun Z, Xiao-Min S, Gui-Rui Y, Xuhui L (2010) Water vapor and
precipitation isotope ratios in Beijing, China. Journal of Geophysical Research
115.
10. Liu WJ, Liu WY, Li PJ, Gao L, Shen YX, et al, (2007) Using stable isotopes to
determine sources for fog drip in a tropical seasonal rain forest of
Xishuangbanna, SW China. Agriculture Forest Meteorology 143: 80-91.
11. Krishan G, Rao MS, Garg P, Kumar CP (2012b) Application of isotopic
signature of atmospheric vapor for identifying the source of air moisture-An
Example from Roorkee, Uttarakhand, India. Journal of Earth Science and
Climate Change 3: 126.
12. Krishan G, Rao MS, Garg P, Kumar B (2012c) Study of climatological conditions
using isotopic signature of air moisture at Roorkee, Uttarakhand, India.
13. Rao MS, Krishan G, Kumar B, Anitha M, Kumar Kiran B et al, (2012) Stable
Isotope Systematics of Atmospheric Vapour at Hyderabad and Roorkee.
International Journal of Earth Sciences and Engineering 5: 1123-1128.
14. Krishan G, Rao MS, Jaiswal RK, Kumar B, Kumar CP (2013a) Southwest (SW)
monsoon dynamics in Indo-Gangetic plains using isotopic techniques. Journal
of Geology and Geosciences.
15. Rao MS, Krishan G, Kumar CP, Tripathi S, Kumar B (2013) A Pre feasibility
study of isotopes for investigation of monsoon dynamics. NDC-WWC Journal
2: 5-9.
16. Krishan G, Rao MS, Kumar CP, Kumar B and Thayyen, Renoj J (2012d) Stable
Isotope technique to identify South West monsoon at Roorkee and Jammu. In:
National Symposium on “Progress in Electronics and Allied Sciences” (PEAS-
2012) during 03-04 November, 2012 at Gurukul Kangri University, Haridwar,
India 65.
17. Krishan G, Rao MS, Kumar CP, Kumar B (2013b) Comparison of isotopic
composition of atmospheric moisture within and outside Himalaya-An
implication in studying monsoon dynamics. In: Proceedings of an International
conference “India Water Week 2013- Efficient Water Management: Challenges
and Opportunities” 271-272.
18. Krishan G, Rao MS, Kumar B (2011) Instrumentation for measurement of
isotopic composition of air moisture. Journal of Instrument Society of India 41:
217-220.
19. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and
oxygen isotope-ratio data. Geochim Cosmochim Acta 60: 3359-3360.