Key Issues Review

The challenge of spin–orbit-tuned ground states in iridates: a key issues review

Gang Cao1 and Pedro Schlottmann2

1 Department of Physics, University of Colorado at Boulder, Boulder, CO 80309, United States of America
2 Department of Physics, Florida State University, Tallahassee, FL 32306, United States of America

E-mail: gang.cao@colorado.edu

Received 20 April 2017, revised 14 December 2017
Accepted for publication 22 January 2018
Published 23 February 2018

Corresponding Editor Professor Piers Coleman

Abstract

Effects of spin–orbit interactions in condensed matter are an important and rapidly evolving topic. Strong competition between spin–orbit, on-site Coulomb and crystalline electric field interactions in iridates drives exotic quantum states that are unique to this group of materials. In particular, the \(J_{\text{eff}} = \frac{1}{2} \) Mott state served as an early signal that the combined effect of strong spin–orbit and Coulomb interactions in iridates has unique, intriguing consequences. In this Key Issues Review, we survey some current experimental studies of iridates. In essence, these materials tend to defy conventional wisdom: absence of conventional correlations between magnetic and insulating states, avoidance of metallization at high pressures, ‘S-shaped’ I–V characteristic, emergence of an odd-parity hidden order, etc. It is particularly intriguing that there exist conspicuous discrepancies between current experimental results and theoretical proposals that address superconducting, topological and quantum spin liquid phases. This class of materials, in which the lattice degrees of freedom play a critical role seldom seen in other materials, evidently presents some profound intellectual challenges that call for more investigations both experimentally and theoretically. Physical properties unique to these materials may help unlock a world of possibilities for functional materials and devices. We emphasize that, given the rapidly developing nature of this field, this Key Issues Review is by no means an exhaustive report of the current state of experimental studies of iridates.

Keywords: spin–orbit interaction, electron correlations, metal-insulator transitions, \(J_{\text{eff}} = \frac{1}{2} \) state, superconductivity, spin liquids, iridates

(Some figures may appear in colour only in the online journal)
1. Introduction

It is now apparent that novel materials, which often exhibit surprising or even revolutionary physical properties, are necessary for critical advances in technologies that affect the everyday lives of people. For example, a number of discoveries involving superconducting and magnetic materials, polymers and thin-film processing have underpinned the development of novel medical diagnostic tools, personal electronic devices, transition metal oxides have recently been the subject of enormous activity within both the applied and basic science communities. However, the overwhelming balance of interest was devoted to 3d- and 5d-elements and their compounds for many decades. Scientists, confronted with ever-increasing pace and competition in research, are beginning to examine the remaining ‘unknown territories’ located in the lower rows of the periodic table of the elements. Although the rare earth and light actinide elements have been aggressively studied for many decades, the heavier 4d- and 5d-elements and their oxides have largely been ignored until recently. The reduced abundance and increased production costs for many of these elements have certainly discouraged basic and applied research into their properties. What has not been widely appreciated, however, is that 4d- and 5d-elements and their compounds exhibit unique competitions between fundamental interactions that result in physical behaviors and empirical trends that markedly differ from their 3d counterparts.

Recently, iridium oxides or iridates have attracted growing attention, due to the influence of strong spin–orbit interactions (SOI) on their physical properties; these effects were justifiably ignored in theoretical treatments of 3d and other materials of interest (except for the rare earth and actinide classes). Traditional arguments suggest that iridates should be more metallic and less magnetic than materials based upon 3d and 4f elements, because 5d-electron orbitals are more extended in space, which increases their electronic bandwidth (figure 1(a)). This conventional wisdom conflicts with early observations of two empirical trends inherent in iridates such as the Ruddlesden–Popper phases, $Sr_{n+1}IrO_{3n+1}$ ($n = 1$ and 2; n defines the number of Ir–O layers in a unit cell) [1–5] and hexagonal BaIrO$_3$ [6]. First, complex magnetic states occur with high critical temperatures but unusually low ordered moments. Second, ‘exotic’ insulating states, rather than metallic states, are commonly observed [1–6] (see table 1).

The early observations during the 1990s and early 2000s [1–6], for example, signaled physics unique to the 5d-based materials and motivated extensive investigations in recent years, which eventually led to the recognition that a rare interplay of on-site Coulomb repulsion, U, crystalline fields and strong SOI has unique, intriguing consequences in iridates. The most profound manifestation of such an interplay is characterized by the $J_{\text{eff}} = 1/2$ Mott state in SrIrO$_3$, which was first identified in 2008 [7–9]. This quantum state represents novel physics and has since generated a surge of interest in this class of materials.

It is now recognized that the strong SOI along with U can drive novel narrow-gap Mott states in iridates. The SOI is a relativistic effect that is proportional to Z^2 (Z is the atomic number, e.g. $Z = 29$ and 77 for Cu and Ir, respectively) [10, 11]. It needs to be pointed out that for the outer electrons, the strength of SOI scales with Z^2, rather than Z^4 although the Z^4-dependence is more often cited in the literature [11]. This is because the screening of the nuclear charge by the core electrons renders the effective Z^2-dependence of SOI for the large Z outer electrons; the Z^4-dependence of SOI is for the unscreened hydrogenic wavefunctions. The SOI is approximately 0.4 eV in iridates (compared to ~20 meV in 3d materials), and splits the t_{2g} bands into states with $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$, the latter having lower energy [7] (figure 1(b) and table 2). Since Ir$^{5+}$ ($5d^2$) ions provide five 5d-electrons to bonding states, four of them fill the lower $J_{\text{eff}} = 3/2$ bands, and one electron partially fills the $J_{\text{eff}} = 1/2$ band, where the Fermi level E_F resides (figure 1(c)). A combined effect of the strong SOI and U opens an energy gap Δ of the Mott type in the $J_{\text{eff}} = 1/2$ band supporting the insulating state in the iridates (figure 1(b)) [7]. The splitting between the $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ bands narrows as the dimensionality (i.e. n) increases in $Sr_{n+1}IrO_{3n+1}$, and the two bands progressively broaden and contribute to the density of states (DOS) near the Fermi surface. In particular, the bandwidth, W, of the $J_{\text{eff}} = 1/2$ band increases from 0.48 eV for $n = 1$ to 0.56 eV for $n = 2$ and 1.01 eV for $n = \infty$ [8]. The ground state evolves with decreasing charge gap Δ, from a robust insulating state for SrIrO$_3$ (n = 1) to a metallic state for Sr$_2$IrO$_4$ (n = \infty) as n increases. While the electron hopping occurs via direct d–d overlap and/or through the intermediate oxygen atoms between Ir ions, it is emphasized that the lattice plays a critical role that is seldom seen in other materials in determining the ground state, as discussed below.
The SOI-driven $J_{\text{eff}} = 1/2$ model captures the essence of physics of many iridates with tetravalent Ir$^{4+}(5d^4)$ ions (see figure 1(c)). The $J_{\text{eff}} = 3/2$ states can accommodate four $5d$ electrons, leaving the fifth electron and one hole in the $J_{\text{eff}} = 1/2$ band because there are six states (figure 1(d)). This can lead to the opening of a Mott gap. For Ir$^{5+}(5d^3)$ ions, on the other hand, the $J_{\text{eff}} = 3/2$ band exhausts the available electrons and the $J_{\text{eff}} = 1/2$ states remain empty (see figure 1(d)). However, it is a single-particle approach that is limited to situations where Hund’s rule interactions among the electrons can be neglected and it may break down when non-cubic crystal fields, which are not taken into account in this model, become comparable to the SOI. This may result in a mixing of $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ states, altering isotropic wavefunctions that the model is based upon. Indeed, the Hund’s rule interactions are more critical for Ir$^{5+}(5d^3)$ ions, and can mix $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ states, resulting in a qualitatively different picture (more discussion in section 4). One such breakdown occurs in Sr$_3$CuIrO$_6$ due to strong non-octahedral crystal fields [12].

Nevertheless, a wide array of novel phenomena in iridates has been revealed in recent years (e.g. [13–25], and references therein). It has become apparent that materials with such a delicate interplay between SOI, U and other competing interactions offer wide-ranging opportunities for the discovery of new physics and development of new devices, and it is not surprising that the physics of iridates is one of the most important topics in contemporary condensed matter physics. A great deal of recent theoretical work has appeared in response to early experiments on iridates, such as spin liquids in hyper-kagome structures [20, 21], superconductivity [22–28], Weyl semimetals with Fermi arcs, axion insulators [29], topological insulators, correlated topological insulators [17], Kitaev modes, 3D spin liquids with Fermionic spinons, topological semimetals [13, 17, 30–38], etc. These and many other theoretical studies have advanced our understanding of $5d$-based materials and motivated enormous activity in search of novel states in iridates. It is particularly intriguing that many proposals have met limited experimental confirmation thus far, which makes iridates even more unique and challenging. We note that the SOI is a strong competitor with U and other interactions, which creates an entirely new hierarchy of energy scales (table 2); the lack of experimental confirmation underscores a critical role of subtle structural distortions that may dictate the low-energy Hamiltonian [13] and need to be more thoroughly addressed both experimentally and theoretically.

In this Review, we will discuss some underlying properties of certain representative iridates, namely, layered perovskite or Ruddlesden–Popper iridates (section 2), honeycomb and other geometrically frustrated lattices, all of which feature Ir$^{4+}(5d^3)$ ions (figure 1(c)) (section 3), and double perovskite iridates with Ir$^{3+}(5d^4)$ ions (figure 1(d)) (section 4). We review the current status of experimental studies of these materials and challenges that this class of materials presents. We conclude the Review with a list of outstanding issues and our outlook of the field, which hopefully could help stimulate more discussions (section 5). It is emphasized that this Review is intended to offer only a brief (thus incomplete) survey of some exemplary experimental observations and challenges, and it is by no means an exhaustive one. Given the nature of the broad and rapidly evolving field, it is inevitable that we may miss some important results in this field. In addition, this Review primarily focuses on properties of bulk single crystals, as a result, a large number of excellent studies of thin films and heterostructures of iridates, for example [39–46], are not included in this article. Since lattice properties are so critical to ground states of iridates, epitaxial thin films with varied strain and/or heterostructures offer a unique, powerful tool for tuning ground states of iridates. This is evidenced in [39–46] and many other recent publications. There are also excellent review articles emphasizing theoretical aspects of iridates [17, 18].

We tabulate a number of existing iridates in table 3. These iridates are grouped according to their underlying crystal structures. Exemplary phenomena along with valence states of the iridates are also listed. There are a few general remarks on these iridates: With a few exceptions (e.g. SrIrO$_3$, Bi$_2$Ir$_2$O$_7$, …
and Pr$_2$IrO$_2$), most iridates feature insulating and magnetic ground states; while the insulating states of these materials may vary in detail, they are due largely to the combined effect of SOI and U. Magnetic moments are in general weak, often a fraction of one Bohr magneton per Ir ion (The local moment for $J_{\text{eff}} = 1/2$ state has 1 μ_B but covalency of Ir–O bonding reduces the moment). Furthermore, no first-order transitions are discerned thus far, and insulator-metal transitions tend to be gradual and continuous in this class of materials. A rotation of the IrO$_6$-octahedra about the c-axis is commonplace but tilting of the IrO$_6$-octahedra is rare in layered perovskite iridates.

2. Survey of physical properties of Ruddlesden–Popper iridates, Sr$_{n+1}$IrO$_{3n+1}$ ($n = 1, 2, \infty$)

2.1. Sr$_2$IrO$_4$ ($n = 1$)

Sr$_2$IrO$_4$ is the archetype with a Néel temperature $T_N = 240$ K [1–4, 7, 9], an energy gap $\Delta \leq 0.62$ eV (see figure 2) [84–86] and a relatively small magnetic coupling energy of 60–100 meV [24, 85]. It is perhaps the most extensively studied iridate thus far. The distinct energy hierarchy featuring a strong SOI and its structural, electronic and magnetic similarities to those of the celebrated La$_2$CuO$_4$ (i.e. K$_2$NiF$_4$ type, one hole per Ir or Cu ion, pseudospin- or spin-1/2 AFM, etc) have motivated a large number of experimental and theoretical investigations on Sr$_2$IrO$_4$ in recent years.

2.1.1. Critical structural features.

A unique and important structural feature of Sr$_2$IrO$_4$, which has critical implications for the ground state, is a rotation of the IrO$_6$-octahedra about the c-axis by $\sim 11^\circ$, which results in a larger unit cell volume by a factor $\sqrt{2} \times \sqrt{2} \times 2$. It is commonly thought that Sr$_2$IrO$_4$ crystallizes in a tetragonal structure with space-group $I4_1/acd$ (No. 142) with $a = b = 5.4846$ Å and $c = 25.804$ Å at 13 K [1–3], as shown in figure 3. More recently, studies of neutron diffraction and second-harmonic generation (SHG) of single-crystal Sr$_2$IrO$_4$ [87, 88] reveal structural distortions and forbidden reflections such as $(1, 0, 2n + 1)$ for the group $I4_1/acd$ over a wide temperature interval, $4 \text{K} < T < 600 \text{K}$. These results indicate the absence of the c- and d-glide planes, leading to a further reduced structural symmetry with a space group $I4_1/a$ (No. 88). One defining characteristic of Sr$_2$IrO$_4$ and other iridates is that the strong SOI strongly couples physical properties to the lattice degrees of freedom [13, 50, 87, 89], which is seldom seen in other materials [90, 91].

The relationship between the rotation of the IrO$_6$ octahedra and magnetic moment canting in the iridates was first discussed in [13] in which a theoretical model proposed a strong magnetoelastic coupling in Sr$_2$IrO$_4$, and a close association between the magnetic moment canting and the ratio of the lattice parameter of the c-axis to the a-axis [13], as a consequence of the strong SOI. Indeed, the strong locking of the moment canting to the IrO$_6$-rotation (by $11.8(1)^\circ$) is experimentally manifest in studies of x-ray resonant scattering [92] and SHG [93]. In particular, the SHG study indicates that the $I4_1/a$ space group requires a staggering of the sign of the tetragonal distortion (Δ_1 and Δ_3), which helps explain the magnetoelastic locking, as illustrated in figure 4 [93].

As discussed below, the rotation of IrO$_6$ octahedra, which corresponds to a distorted in-plane Ir$_1$–O$_2$–Ir$_1$ bond angle, plays an extremely important role in determining the electronic and magnetic structures. The Ir$_1$–O$_2$–Ir$_1$ bond angle can be tuned via magnetic field [50], high pressure [94], electric field [89] and epitaxial strain [39]. The lattice properties not only make the ground state readily tunable but also provide a new paradigm for development of functional materials and devices.

Table 2. Comparison between 3d and 4d/5d electrons.

Electron type	U (eV)	λ (eV)	Spin state	Interactions	Phenomena
3d	5–7	0.01–0.1	High	$U > CF > \lambda$	Magnetism/HTSC
4d	0.5–3	0.1–0.3	Low/intermediate	$U \sim CF > \lambda$	p-wave SC
5d	0.4–2	0.1–1	Low	$U \sim CF \sim \lambda$	$J_{\text{eff}} = 1/2$ Mott State

Note: SC = superconductivity; Hund’s rule coupling is significant for 4d- and 5d-elections.

![Figure 2. Sr$_2$IrO$_4$ the 620 meV energy gap. (a) The local density of states (LDOS) measured over the 2×2 nm2 area indicated by the square in the image (inset). The dashed lines are drawn to indicate the band edges at -150 mV and $+470$ mV. (b) and (c) LDOS taken at locations away from defects, (b) without and (c) with the gradual increase. (d) Diagram showing energy bands with two important features: the 620 meV insulating gap and the overlap between the lower Hubbard band (LHB) and the 6eV. (Reprinted with permission from [86], Copyright (2014) by the American Physical Society.)](image-url)
Table 3. Some existing iridates and exemplary phenomena.

Structure	Compound	Ir ion	Exemplary phenomena
Layered perovskite	1. Sr$_2$IrO$_4$	Ir$_{4+}$(5d^5)	1. $J_{\text{eff}} = 1/2$ insulator; $T_N = 240$ K [1–4], S-shaped IV curves [4]b
	2. Sr$_3$Ir$_2$O$_7$		2. $J_{\text{eff}} = 1/2$ or band insulator; $T_N = 285$ K [5], confined metal at 60 GPa [47]b
	3. SrIrO$_3$		3. Paramagnetic (semi-)metal (high pressure phase) [8, 48]
	4. Ba$_2$IrO$_4$		4. $J_{\text{eff}} = 1/2$ insulator; $T_N \sim 240$ K (high pressure phase) [49]
Hexagonal perovskite	1. BaIrO$_3$	Ir$_{4+}$(5d^5)	1. $J_{\text{eff}} = 1/2$ Mott insulator; $T_N = 183$ K; CDW, S-shaped IV curves [6]
	2. SrIrO$_3$		2. Nearly ferromagnetic metal [58]
	3. Ca$_2$IrO$_{12}$		3. Insulator; $T_N = 12$ K [59]
	4. Ca$_2$IrO$_3$		4. Insulator; $T_N = 6$ K [59]
	5. Ba$_2$IrTi$_2$O$_9$		5. Insulator; no long-range order [60]
	6. Ba$_2$NdIr$_2$O$_9$		6. Magnetic insulator; $T_N = 20$ K [61]
	7. Ba$_2$LiIr$_2$O$_8$		7. AFM order at $T_N = 75$ K [62]
	8. Ba$_2$NaIr$_2$O$_8$		8. AFM order at $T_N = 50$ K [62]
Honeycomb	1. Na$_2$IrO$_3$	Ir$_{4+}$(5d^5)	1. Zig-Zag Magnetic order; $T_N = 18$ K [32,33]
	2. α-Li$_2$IrO$_3$		2. Incommensurate order [63]
	3. β-Li$_2$IrO$_3$		3. Incommensurate order [64, 65]
	4. γ-Li$_2$IrO$_3$		4. Incommensurate order [66, 67]
	5. Na$_4$Ir$_2$O$_8$		5. Spin liquid state [20]
Pyrochlore	1. Bi$_2$Ir$_2$O$_7$	Ir$_{4+}$(5d^5)	1. Metallic states; strong magnetic instability, etc [68–70]
	2. Pb$_2$Ir$_2$O$_7$		3. Metal-insulator transition, insulating states, spin liquid, RE ionic size dependence [71, 72]
	3. RE$_2$Ir$_2$O$_7$, RE = rare earth ion		
Double Perovskite	1. Sr$_2$YIrO$_6$	Ir$_{4+}$(5d^5)	1. Weak AFM state, correlated insulator [73]
	2. Ba$_2$YIrO$_6$		2. Insulator [74, 75], AFM insulator [194]
	3. Sr$_2$REIrO$_6$		3. Magnetic insulator [73]
	4. Sr$_2$CoIrO$_6$		4. Magnetic metal, $T_N1 = 60$ K, $T_N2 = 120$ K [76]
	5. Sr$_2$FeIrO$_6$		5. Magnetic insulator, $T_N = 60$ K [76]
	6. La$_2$ZnIrO$_6$	Ir$_{4+}$(5d^5)	6. Weak ferromagnetic insulator, $T_N = 7.5$ K [77]
	7. La$_2$MgIrO$_6$		7. Weak ferromagnetic insulator, $T_N = 12$ K [77]
	8. RE$_2$MnIrO$_6$		8. Weak AFM ground state with canted spin [78]
	M = Mg, Ni		
Post-perovskite	NaIrO$_3$	Ir$_{5+}$(5d^5)	Paramagnetic insulator [79]
	CaIrO$_3$	Ir$_{5+}$(5d^5)	Quasi-one-dimensional antiferromagnet [80, 81]
Others	Ba$_5$AlIr$_2$O$_{11}$	Ir$_{4.5+}$(5d^5)	1. Spin-1/2 dimer chain, charge and magnetic orders [82]
	Sr$_2$NiIrO$_6$	Ir$_{4.5+}$(5d^5)	2. One-dimensional chains and large coercivity [83]

a Dopants.

b Dopants: K [50], Ca [51], Mn [52], Ru [53, 54], Rh [55], La [50], Eu [56], Tb [57].
Figure 3. The crystal structure of layered perovskites $\text{Sr}_n\text{Ir}_n\text{O}_3$ for $n = 1$, 2, and ∞. Note that the lower three panels illustrate the rotation of IrO$_6$ octahedra about the c-axis for Sr$_2$IrO$_4$ ($n = 1$), Sr$_3$Ir$_2$O$_7$ ($n = 2$) and SrIrO$_3$ ($n = \infty$), respectively.

Remarkably, the $13(1)^\circ$ canting of the moments away from the a-axis closely tracks the staggered rotation of the IrO$_6$ octahedra [92, 93] sharply contrasts the behavior of 3d oxides [95], in which structural distortions are noticeably decoupled with magnetic moment canting.

2.1.2. Magnetic properties. Early experimental studies suggested that Sr$_2$IrO$_4$ was a weak ferromagnet with a Curie temperature at 240K primarily because the temperature dependence of magnetization, along with a positive $\theta_{CW} = +236$K, appeared to be consistent with that of a weak ferromagnet (see figure 5(a)) [2-5]. It is now understood that the observed weak ferromagnetic behavior arises from an underlying canted antiferromagnetic (AFM) order [87]. This also raises a question as to why $\theta_{CW} = +236$K, which is extrapolated from the inverse susceptibility $\Delta\chi = \chi(T) - \chi_0$, where χ_0 is a T-independent contribution, is positive in the presence of the AFM ground state (figure 5(a)) [4, 50, 96]. Results of more recent x-ray scattering and neutron diffraction investigations of single-crystal Sr$_2$IrO$_4$ confirm that the system indeed undergoes a long-range AFM transition at 224(2) K with an ordered moment of 0.208(3) μ_B/Ir and a canted magnetic configuration within the basal plane [87]. The magnetic configuration illustrated in figures 6(b)-(d) shows that magnetic moments are projected along the b-axis with a staggered $\uparrow\uparrow\uparrow\downarrow$ pattern along the c-axis. Remarkably, these moments deviate $13(1)^\circ$ away from the a-axis (figure 6(c)), indicating that the magnetic moment canting rigidly tracks the staggered rotation of the IrO$_6$ octahedra discussed above. This strong coupling is a signature feature of the iridates in general and sharply contrasts to the situation in 3d oxides, such as Ca$_3$Mn$_2$O$_7$, where a collinear magnetic structure exists in a strongly distorted crystal structure [95]. Nevertheless, the magnetic canting results in 0.202(3) and 0.049(2) μ_B/Ir-site for the a-axis and the b-axis, respectively (figure 6) [87]. For comparison, the ordered moment extrapolated from the magnetization, which measures net magnetic moment, is less than $0.08 \mu_B$/Ir within the basal plane [96].

Indeed, a muon-spin rotation (μSR) study reports a low frequency mode that corresponds to the precession of weak ferromagnetic moments arising from a spin canting and a high frequency mode resulting from the precession of the antiferromagnetic sublattices [97]. Another study indicates a small energy gap for the AFM excitations, 0.83 meV, suggesting an isotropic Heisenberg dynamics [98]. Remarkably, a high-resolution inelastic light (Raman) scattering study of the low-energy magnetic excitation spectrum of Sr$_2$IrO$_4$ shows that the high-field (>1.5 T) in-plane spin dynamics is isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii–Moriya interaction. However, the spin dynamics of Sr$_2$IrO$_4$ at lower fields ($H < 1.5$ T) exhibits important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition in Sr$_2$IrO$_4$ that occurs either discontinuously or via a continuous rotation of the spins, depending on the in-plane orientation of the applied field. These results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr$_2$IrO$_4$ [56]. It is also found that Sr$_2$IrO$_4$ (as well as Sr$_3$Ir$_2$O$_7$) exhibits pronounced two-magnon Raman scattering features and that the SOI might not be strong enough to quench the orbital dynamics in the paramagnetic state [99].
A close examination of the low-field magnetization, $M(T)$, reveals two additional anomalies at $T_M \approx 100$ K and 25 K (not marked) in $M_a(T)$ and $M_c(T)$ (see figure 5(a)), suggesting a moment reorientation below 100 K. The existence of the reorientation is further corroborated by the μSR study of Sr$_2$IrO$_4$ in which two structurally equivalent muon sites experience distinct local magnetic fields below 100 K characterized by the development of a second precession signal that is fully established below 20 K [97]. This behavior, which is likely a result of the balance of competing energies that changes with temperature, correlates with a change in the Ir1–O2–Ir1 bond angle that leads to the gradual reorientation near 100 K. This reorientation of the moments may be at the root of the unusual magnetoresistivity [50] and giant magnetoelectric behavior [96] that does not depend on the magnitude and spatial dependence of the magnetization, as conventionally anticipated.

2.1.3. Transport properties.

The electrical resistivity of Sr$_2$IrO$_4$ for the a- and c-axis, ρ_a and ρ_c, exhibits insulating behavior throughout the entire temperature range measured up to 600 K, as shown in figure 5(b). The anisotropy, ρ_c/ρ_a, is significant, ranging from 10^2 to 10^3 although it is much smaller than 10^4–10^5 for La$_2$CuO$_4$ because of the extended nature of the 5d-electrons. Both ρ_a and ρ_c exhibit anomalies at T_M (\approx100 K) and 25 K, but conspicuously not at T_N (≈240 K), as shown in figures 5(a) and (b). It has now become clear that this is a signature behavior of Sr$_2$IrO$_4$ in which transport properties exhibit no discernable anomaly corresponding to the AFM transition at T_N = 240 K [4, 50, 96]. In addition, the observed specific heat anomaly $|\Delta C|$ is tiny, ~ 4 mJ mole$^{-1}$ K$^{-1}$ for Sr$_2$IrO$_4$ (figure 5(c)), in spite of its robust, long-range magnetic order at T_N = 240 K. It is worth mentioning that $C(T)$ below 10 K is predominantly proportional to T^3 at $\mu_0H = 0$ and 9 T (figure 5(c) inset), due to a Debye-phonon and/or magnon contributions from the AFM ground state. The field-shift $[C(T,H)/C(T,0)]/C(T,0) \sim 16\%$ at 9 T indicates a significant magnetic contribution to $C(T)$, which is absent near T_M. The weak phase transition signatures suggest that thermal and transport properties may not be driven by the same mechanisms that dictate the magnetic behavior. Indeed, the energy gap for the AFM excitations, 0.83 meV, is almost negligible compared to the charge gap, 0.62 eV (figure 2). The effect of the magnetic state on the transport properties is thus inconsequential near T_N but more
significant at low temperatures. This sharply contrasts with the behavior driven by strong couplings between the magnetic and charge gaps commonly observed in other correlated electron systems, particularly in 3d-transition metal oxides [90, 91].

In addition, the saturating resistivity at low temperatures (figure 5(b)) is interesting, and is commonly seen in Sr2IrO4. This behavior, whose origin is still unclear, raises a question as to whether it is due to impurity scattering or profound mechanism(s) such as surface Dirac cones in SmB6 [100].

In the following, we examine a few outstanding features of electrical and thermal transport properties that emphasize the importance of lattice degrees of freedom.

2.1.3.1. Magnetoresistance. The electrical resistivity is coupled to the magnetic field in a peculiar fashion and so far no available model can describe the observed magnetoresistivity shown in figure 7 [50]. We focus on a representative temperature $T = 35$ K. Both $\rho_a (H||a)$ (figure 7(b)) and $\rho_c (H||c)$ (figure 7(c)) exhibit an abrupt drop by $\sim 60\%$ near $\mu_0 H = 0.3$ T applied along the a-axis, where a metamagnetic transition occurs [4, 50, 96, 101]. These data partially track the field dependences of $M_a (H)$ and $M_c (H)$ shown in figure 7(a), and suggest a reduction of spin scattering. However, given the small ordered moment $< 0.08 \ \mu_B$/Ir, a reduction of spin scattering alone certainly cannot account for such a drastic reduction in $\rho(H)$. Even more strikingly, for $H||c$-axis, both $\rho_a (H||c)$ and $\rho_c (H||c)$ exhibit anomalies at $\mu_0 H = 2$ T and 3 T, respectively, which lead to a large overall reduction of resistivity by more than 50%. However, no anomalies corresponding to these transitions in $M_a (H)$ and $M_c (H)$ are discerned! In addition, dM/dH shows no slope change near $\mu_0 H = 2$ and 3 T. Such behavior is clearly not due to the Lorenz force because $\rho_c (H||c)$ exhibits the same behavior in a configuration where both the current and the field are parallel to the c-axis (figure 7(c)). Note that a small magnetic field along the c-axis can readily tilt the vectors out of the plane, as a result, the Dzyaloshinsky–Moriya (DM) product is nonzero for M_c. M_c would be zero without the applied magnetic field.

An essential contributor to conventional magnetoresistivity is spin-dependent scattering; negative magnetoresistance is often a result of the reduction of spin scattering due to spin alignment with increasing magnetic field. The data in figure 7 therefore raise a fundamental question: Why does the resistivity sensitively depend on the orientation of magnetic field H, but show no direct relevance to the measured magnetization when $H||c$-axis? While no conclusive answers to the question are yet available, such varied magneto-transport behavior with temperature underscores the temperature-dependent Ir1–O2–Ir1 bond angle [4, 19, 50, 87, 97].

Moreover, such magnetotransport properties on the nanoscale are also examined using a point-contact technique [101]. Negative magnetoresistances up to 28% are discerned at modest magnetic fields (250 mT) applied within the basal plane and electric currents flowing perpendicular to the plane. The angular dependence of the magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%, which is attributed to the crystalline component of anisotropic magnetoresistance and canted moments in the basal plane. The observed anisotropic magnetoresistance is large compared to that in 3d transition metal alloys or oxides (0.1%–0.5%) and is believed to be associated with the SOI [101].

2.1.3.2. The ‘S’-shaped I–V characteristic and switching effect. Early studies of iridates have also uncovered a distinct feature, namely, the non-ohmic behavior [4, 6]. The non-ohmic behavior exhibits current-controlled negative differential resistivity or NDR for both the a- and c-axis directions, as shown in figure 8. The I–V curve near the voltage threshold V_{th} (onset of negative differential resistivity) for all temperatures shows a hysteresis effect. As the current I increases further (much higher than 100 mA in this case), the ohmic behavior is restored and gives rise to an I–V curve characterized by an ‘S’ shape. The
The S-shaped effect is categorically different from the more commonly seen 'N'-shaped effect or the Gunn effect, which is referred to as voltage-controlled NDR and attributed to electrons transferred between multienery valleys [4, 6]. It has been reported previously that the S-shaped effect is observed in some materials with a metal-insulator transition such as CuI$_2$S$_{4-x}$Se$_x$, and is attributed to an electro-thermal effect [102]. A similar I–V characteristic has been found later in bulk single-crystal BaIrO$_3$ [6] and Ca$_3$Ru$_2$O$_7$ [6], and more recently in VO$_2$ [103]. The S-shaped I–V characteristic is restricted to the AFM insulating state. Its mechanism is still unclear, although it was suggested that the ‘S’ effect might be related to a small band gap associated with charge density waves (CDW) [4, 6]. In this case, the CDW is then pinned to the underlying lattice and slides relative to the lattice, giving rise to the NDR at $V > V_b$. Accordingly, one could assume a two-band model where the normal electrons and electrons in the CDW provide separate, independent channels for the conduction process [4, 6]. It is clear that ρ is current dependent and drastically decreases as I increases throughout the temperature range measured (see the inset of figure 8) [4]. A recent study using nanoscale contacts reports a continuous reduction of the resistivity of Sr$_2$IrO$_4$ with increasing bias, which is characterized by a reduction in the transport activation energy by as much as 16% [89]. This behavior, which is qualitatively consistent with that reported earlier [4], is essentially attributed to changes in the Ir1–O2–Ir1 bond angle induced by the electric field [89].

2.1.3.3. Thermal conductivity—pseudospin transport. Pseudospin excitations give rise to significant thermal conductivity despite the insulating state (see figure 9) [104]. The analysis of the thermal conductivity reveals a relaxation of the pseudospin excitations at low temperatures. However, the relaxation rate dramatically increases as temperature rises due to thermally activated phonon scattering. The comparison of the results with those for the cuprates with $S = 1/2$ spin excitations suggests a stronger coupling of the $J_{\text{eff}} = 1/2$ pseudospin excitations to the lattice [104]. This is consistent with the other experimental observations and the underlying characteristic of the iridates that physical properties are intimately associated with the lattice owing to the strong SOI. It is noteworthy that the anomaly near T_N is weak in κ_{ab} and absent in κ_c (figure 9).

2.1.4. Effects of high pressure. A rare avoidance of metalization at high pressures in all known iridates further highlights the novelty of these materials [47, 94, 105–109]. It is commonly anticipated that an insulating state collapses and a metallic state emerges at high pressures as the unit cell shrinks and the bandwidth broadens (e.g. [110, 111] and references therein). In sharp contrast, Sr$_2$IrO$_4$ [94, 108], along with other iridates (such as Sr$_2$Ir$_2$O$_7$ [47, 107, 108]), BaIrO$_3$ [105, 106], SrIrO$_3$, Na$_2$IrO$_3$, (Na$_{0.10}$Li$_{0.90}$)$_2$IrO$_3$ [112]), does not metalize at pressure up to 40 GPa (figure 10). In fact, pressure also destabilizes the ambient metallic state, resulting in an insulating state in iridates such as SrIrO$_3$ and Gd-doped BaIrO$_3$ [114]. A broad ‘U-shaped’ curve often characterizes the pressure dependence of the electrical resistance of these materials—the resistance drops initially, reaches a minimum (~20 GPa for Sr$_2$IrO$_4$) and then rises again as pressure increases (figure 10(b)). This distinct behavior defines a signature characteristic of the iridates. Moreover, an x-ray magnetic circular dichroism (XMCD) study at high pressures suggests a loss of the long-range magnetic order near 20 GPa (figure 11) but the insulating state remains (figure 10(a)) [94]. The nature of the insulating state above 20 GPa generates speculations that spin liquids may form in square lattices [113]. This behavior further emboldens that transport properties of Sr$_2$IrO$_4$ exhibit no discernable anomaly corresponding to the
AFM transition at $T_N (=240 \text{ K})$, indicating an unconventional correlation between the magnetic state and insulating gap. However, it is clear that structural distortions (such as directional bonding) play a role in the formation of an insulating gap that is much more critical than traditionally recognized. This is illustrated in many studies in which the electronic ground state of the iridates critically hinges on the bond angle Ir1–O2–Ir1 of IrO$_6$ octahedra [50, 55, 57, 114–116], which in turn dictates the low-energy Hamiltonian [13], thus the ground state. Indeed, the conspicuous absence of bulk superconductivity widely predicted in Sr$_2$IrO$_4$ is another testament to such an unconventional correlation despite structural, electronic and magnetic similarities between Sr$_2$IrO$_4$ and La$_2$CuO$_4$. This unusual character has helped revitalize discussions of Mott, Mott–Hubbard and Slater insulators, in particular, the dependence of the charge gap formation on magnetic interactions in Sr$_2$IrO$_4$ [52, 117, 118]. Remarkably, a time-resolved optical study indicates that Sr$_2$IrO$_4$ is a unique system in which Slater- and Mott–Hubbard-type behaviors coexist [117], which might help explain the absence of anomalies at T_N in transport and thermodynamic measurements discussed above. Clearly, a better understanding of the $J_{\text{eff}} = 1/2$ state and its correlation with the AFM state in Sr$_2$IrO$_4$ needs to be established. The unconventional correlation may ultimately change the notion of localization promoting Hund’s rule magnetic moment formation versus spin liquids or spin dimers.

2.1.5. Effects of chemical substitution. In stark contrast, a growing body of experimental evidence has shown that a metallic state can be readily realized via slight chemical doping, either electron (e.g. La doping [50, 119]) or hole doping (e.g. K [50] or Rh [55] or Ru [53, 54] doping, for either Sr or Ir or oxygen [114]) despite the sizable energy gap (~0.62 eV shown in figure 2). Electron doping adds extra electrons to the partially filled $J_{\text{eff}} = 1/2$ states, which is energetically favorable. Hole doping also adds additional charge carriers, resulting in a metallic state. However, because of the multi-orbital nature of the iridate, the mechanism of electron and hole doping in Sr$_2$IrO$_4$ may not be symmetrical [18]. An important distinction lies in the energy gap to the nearest $5d$ states [18, 52, 117, 118]. However, the same effect of both electron and hole doping, as suggested by some experimental evidence, is to reduce the structural distortions or relax the buckling of IrO$_6$ octahedra, independent of the ionic radius of the dopant. As illustrated in figure 12(a), a dilute doping of either La$^{3+}$ (electron doping) or K$^+$ (hole doping) ions for Sr$_2$IrO$_4$ leads to a larger Ir1–O2–Ir1 bond angle θ, despite the considerable differences between the atomic radii of Sr, La, and K, which are 1.18 Å, 1.03 Å and 1.38 Å, respectively. Empirical observations suggest that the reduced distortions, along with extra charge carriers, can effectively destabilize the $J_{\text{eff}} = 1/2$ state, leading to a metallic state, since hopping between active e_g orbitals is critically linked to θ. Indeed, ρ_c is reduced by a factor of 10^8 (10^{10}) at low temperatures for mere $x = 0.04$ and 0.02 for La and K doping, respectively (figures 12(b)–(d)) [50]. Another possible contribution to the reduction in the resistivity is the formation of an impurity band due to doping. Furthermore, for La doping of $x = 0.04$, there is a sharp downturn near 10 K, indicative of a
studies of La-doped Sr$_2$IrO$_4$ show similar effects of La doping on magnetic and electronic properties are different in detail, but in essence Ru or Rh doping results in a metallic state that coexists with the AFM excitations. For example, for Sr$_{1-x}$Ru$_x$O$_4$, the AFM excitations persist up to at least $x = 0.77$ and the maximum energy scale of the magnetic excitations at high dopings is comparable to that in undoped Sr$_2$IrO$_4$ [118]. Remarkably, mere 3% Tb$^{3+}$ substitution for Ir effectively suppresses T_N to zero but retains the insulating state, that is, the disappearance of the AFM state accompanies no emergence of a metallic state [57]. A recent theoretical study suggests that the interaction between the magnetic moments on the impurity Tb$^{3+}$ ion and its surrounding Ir$^{3+}$ ions can be described by a ‘compass’ model, i.e. an Ising-like interaction that favors the magnetic moments across each bond to align along the bond direction. This interaction quenches magnetic vortices near the impurities and drives a reentrant transition out of the AFM phase, leading to a complete suppression of the Néel temperature [57]. All this further highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays a nonessential role in the formation of the charge gap in the iridate. There is experimental evidence that suggests that isoelectronic doping such as Ca$^{2+}$ doping for Sr$^{2+}$, which adds no additional charge carriers to the $J_{el} = 1/2$ state, reduces electrical resistivity in Ca doped Sr$_2$IrO$_4$ [51]. More recent studies on Ca and Ba doped Sr$_2$IrO$_4$ and Sr$_3$Ir$_2$O$_7$ single crystals show an insulator-metal transition, which is attributed to reduced structural distortions [119]. In short, a central empirical trend points to an unusually critical role of the Ir1–O2–Ir1 bond angle that mostly dictates the ground state of the iridates.

2.1.6. Elusive superconductivity and odd-parity hidden order
Sr$_2$IrO$_4$ bears key structural, electronic and magnetic features similar to those of La$_2$CuO$_4$ [1–4, 7, 9, 13, 16, 23–25], as pointed out in the beginning of this section. In particular, the magnon dispersion in Sr$_2$IrO$_4$ is well-described by an AFM Heisenberg model with an effective spin one-half on a square lattice, which is similar to that in the cuprate. The magnon bandwidth in Sr$_2$IrO$_4$ is of 200 meV, as compared to ~300 meV in La$_2$CuO$_4$ [1–4, 7, 9, 24]. This smaller bandwidth is consistent with other energy scales, such as hopping t and U, which are uniformly smaller by approximately 50% in Sr$_2$IrO$_4$ than in the cuprate [22]. Largely because of these apparent similarities, a pseudo-spin-singlet d-wave superconducting phase with a critical temperature, T_C, approximately half of that in the superconducting cuprate is anticipated in electron-doped Sr$_2$IrO$_4$ whereas pseudo-spin triplet pairing may emerge in the hole-doped iridate so long as the Hund’s rule coupling is not strong enough to drive the ground state to a ferromagnetic state [18, 22–28]. A growing list of theoretical proposals has motivated extensive investigations both theoretically and experimentally in search of superconductivity in the iridates in recent years. Indeed, there is some experimental evidence signaling behavior parallel to that of the cuprates. Besides results of resonant inelastic x-ray scattering (RIXS) that indicate the similar magnon dispersion in Sr$_2$IrO$_4$ to that in La$_2$CuO$_4$ [24, 120], Raman studies also reveal excitations at 0.7 eV in Sr$_2$IrO$_4$, about 50% smaller than 1.5 eV observed in La$_2$CuO$_4$ [121]. Studies of angle-resolved photoemission spectroscopy (ARPES) reveal an evolution of Fermi surface with doping (e.g. pseudogaps, Fermi arcs) that is strikingly similar...
Figure 13. Fermi surface (FS) segments and pseudogaps in Sr$_3$Ir$_2$O$_7$ according to the ARPES results: (a) The FS spectral weight for $x = 15\%$, with a hole-like Fermi pocket centered around the $(\pi, 0)$ point of the unfolded (blue dashed) Brillouin zone. The FS pocket is separated into segments FS1 (yellow) and FS2 (blue), with FS1 facing Γ and FS2 facing Γ'. Q vectors (white arrows) are possible density wave nesting vectors. (b) and (c) Energy distribution curves (EDCs) from multiple locations along the FS1 and FS2 segments (yellow and blue, respectively) taken from $x = 4\%$ and $x = 15\%$. The leading edges of most EDCs do not reach E_F, suggesting an occurrence of pseudogaps. Gap sizes are shown in (b) and (c) and compiled in (d), with Δ_1 labelling the gaps from FS1 and Δ_2 the gaps from FS2. (e) EDCs from FS1 (dashed) and FS2 (solid) showing minimal temperature dependence across the magnetic phase transition for $x = 11\%$ [118]. Reprinted by permission from Macmillan Publishers Ltd: Nature Communication [118]. Copyright (2016).

to that in the cuprates and is observed in Sr$_2$IrO$_4$ with either electron-doping (e.g. La doping) or hole-doping (e.g. Rh doping) [118, 120]. For example, the Fermi surface segments and pseudogaps for Rh doped Sr$_2$IrO$_4$ (hole doing) are illustrated in figure 13. It is particularly interesting that a temperature and doping dependence of Fermi arcs at low temperatures is observed with in-situ K doping in the cleaved crystal surface of Sr$_3$IrO$_7$. This phenomenology is strikingly similar to that of the cuprates. The similarities to the cuprates are further signified in a more recent RIXS study of La-doped Sr$_2$IrO$_4$ [122]. This study uncovers well-defined dispersive magnetic excitations. The dispersion is almost intact along the anti-nodal direction but exhibits significant softening along the nodal direction, similar to those in hole-doped cuprates [122].

However, superconductivity, which is characterized by zero-resistivity and diamagnetism, remains markedly elusive, although a metallic state is a common occurrence in doped Sr$_2$IrO$_4$. The absence of superconductivity may be a manifestation of the particular importance of lattice properties which separates the iridates from the cuprates, in spite of all the similarities between these two classes of materials described herein and in literature. Indeed, the lattice-dependence of physical properties is much weaker in the cuprates, where the SOI is generally negligible. The spin and orbits are separated in the cuprates whereas they are strongly coupled by the SOI in the iridates. The Cooper pairs in the iridates would then be formed within pseudospin space, rather than with ordinary spins.

Interestingly, an optical second-harmonic generation (SHG) study of single-crystal Sr$_3$Ir$_2$O$_7$-RhO$_4$ has recently revealed an odd-parity hidden order that sets in at a temperature T_{Ω}, emerging prior to the formation of the AFM state, as shown in figure 14 [88] (a recent, detailed study confirms the existence of this odd-parity hidden order [123]). This order breaks both the spatial inversion and rotational symmetries of the underlying tetragonal lattice, which is expected from an electronic phase that has the symmetries of a magneto-electric loop-current order [124, 125]. The onset temperature of this phase is monotonically suppressed with hole doping, although much more weakly than is the Néel temperature, revealing an extended region of the phase diagram with purely hidden order (figure 14). Driving this hidden phase to its quantum critical point might open a new avenue toward realizing the widely anticipated superconducting state in Sr$_2$IrO$_4$ [88].

2.2. Sr$_3$Ir$_2$O$_7$ ($n = 2$)

The splitting between the $J_{eff} = 1/2$ and $J_{eff} = 3/2$ bands narrows as the effective dimensionality (i.e. n) increases in $\text{Sr}_3\text{Ir}_2\text{O}_{3n+1}$, and the two bands progressively broaden and contribute a finite density of states near the Fermi surface. In particular, the bandwidth W of the $J_{eff} = 1/2$ band increases from 0.48 eV for $n = 1$, to 0.56 eV for $n = 2$, and 1.01 eV for $n = \infty$ [8, 84]. The ground state evolves with decreasing charge gap Δ as n increases, from a robust insulating state for Sr$_3$IrO$_4$ ($n = 1$) to a metallic state for SrIrO$_3$ ($n = \infty$). A well-defined, yet weak, insulating state exists in the case of Sr$_3$Ir$_2$O$_7$ ($n = 2$) [5]. Given the delicate balance between relevant interactions, Sr$_3$Ir$_2$O$_7$ is theoretically predicted to be at
2.2.1. Critical structural features. Sr$_3$Ir$_2$O$_7$ has strongly-coupled, double Ir–O layers separated from adjacent double layers along the c-axis by Sr–O interlayers, as shown in figure 3. The crystal structure features an orthorhombic cell with $a = 5.5221$ Å, $b = 5.5214$ Å, $c = 20.9174$ Å and Bbca symmetry [5] (although a recent study suggests a space group $C2/c$ [129]). The IrO$_6$ octahedra are elongated along the crystallographic c-axis. The average Ir–O apical bond distances along the c-axis are 2.035 Å and 1.989 Å in the IrO$_6$ octahedra in the double layers. Like those in Sr$_2$IrO$_4$, the IrO$_6$ octahedra are rotated about the c-axis by 11° at room temperature. It is found that within a layer the rotations of the IrO$_6$ octahedra alternate in sign, forming a staggered structure, with the two layers comprising a double-layer being out of phase with one another [5].

2.2.2. Magnetic properties. The onset of magnetic order is observed at $T_N = 285$ K in Sr$_3$Ir$_2$O$_7$ (figure 15) [5]. It is generally recognized that the magnetic ground state is AFM and closely associated with the rotation of the IrO$_6$ octahedra along the c-axis, which characterizes the crystal structure of both Sr$_2$IrO$_4$ and Sr$_3$Ir$_2$O$_7$ [1–5, 129]. Indeed, the temperature dependence of the magnetization $M(T)$ closely tracks the rotation of the octahedra, as reflected in the Ir–O–Ir bond angle θ (figure 15). Unlike Sr$_2$IrO$_4$, Sr$_3$Ir$_2$O$_7$ exhibits an intriguing magnetization reversal in the a-axis magnetization $M_a(T)$ below $T_D = 50$ K, which marks the turning point where $M(T)$ starts to decrease with temperature; both T_N and T_D can be observed only when the system is field-cooled (FC) from above T_N. This magnetic behavior is robust but not observed in the zero-field cooled (ZFC) magnetization, which instead remains positive and displays no anomalies that are seen in the FC magnetization [5]. It is also noteworthy that the signature of magnetic order is much weaker and not so well defined in the c-axis magnetization $M_c(T)$ (figure 15). It is unusual that all magnetic anomalies are absent in the case of ZFC measurements, implying that magnetostriiction may occur near T_N and ‘lock’ up a certain magnetic configuration.

This magnetic behavior of Sr$_3$Ir$_2$O$_7$ is distinctly different from that of Sr$_2$IrO$_4$. A number of experimental and theoretical studies indicate that magnetic moments are aligned along the c-axis [130, 131] but there may exist a nearly degenerate magnetic state with canted spins in the basal plane [132]. A transition to a collinear antiferromagnet via multiorbital Hubbard interactions is predicted within the mean-field approximation [18, 132]. Indeed, a resonant x-ray diffraction study reveals an easy collinear antiferromagnetic structure along the c-axis in Sr$_3$Ir$_2$O$_7$, rather than within the basal plane, as observed in Sr$_2$IrO$_4$. This study further suggests a spin-flop transition as a function of the number of IrO$_2$ layers, due to strong competition among intra- and inter-layer bond-directional, pseudodipolar interactions [131].

The magnetic configuration of Sr$_3$Ir$_2$O$_7$ is highly sensitive to the lattice structure. In particular, the staggered rotation of IrO$_6$ octahedra between adjacent layers plays a crucial role in both insulating and magnetic states [18, 132]. Sr$_3$Ir$_2$O$_7$ is a unique magnetic insulator, given its tiny magnetic moment [5] and is more prone to undergo a transition [18, 132]. It is not surprising that any slight perturbation such as magnetic field could induce a canted spin structure, as indicated in a magnetic x-ray scattering study [133]. In addition, a more recent RIXS study reveals that the magnon dispersion is comprised of two branches well separated in energy and gapped across the entire Brillouin zone, rather than a single dominant branch. It suggests dimerization induced by the Heisenberg...
charge gap Δ between Sr$_3$Ir$_2$O$_7$ ($\Delta \sim 0.18$ eV) and Sr$_3$IrO$_4$ ($\Delta \sim 0.62$ eV) and, thus, the relative effect of the AFM excitation energy on the charge gap. A Raman study also suggests different influence of frustrating exchange interactions on Sr$_3$IrO$_4$ and Sr$_3$Ir$_2$O$_7$ [99]. Finally, like those of Sr$_3$IrO$_4$, transport properties of Sr$_3$Ir$_2$O$_7$ can be tuned electrically [135].

2.2.4. Effects of chemical substitution. The effects of chemical doping in Sr$_1$Ir$_2$O$_7$ are similar to those in Sr$_3$IrO$_4$ discussed in section 2.1.5. For example, 5% La doping readily precipitates a metallic state reflected in the electrical resistivity ρ of single-crystal (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$, as shown in figure 17 [136]. The a-axis resistivity ρ_a (the c-axis resistivity ρ_c) is reduced by as much as a factor of 10^6 (10^5) at low temperatures as x evolves from 0 to 0.05, (see figures 17(a) and (b)). For $x = 0.05$, there is a sharp downturn in ρ_a near 10 K, indicative of a rapid decrease in inelastic scattering (figure 17(c)). Such low-temperature behavior is observed in oxygen-depleted Sr$_2$IrO$_4$–δ with $\delta = 0.04$, and La-doped Sr$_2$IrO$_4$, as discussed in section 2.1.5. La doping not only adds electrons to states but also significantly increases the Ir–O–Ir bond angle θ, which is more energetically favorable for electron hopping and superexchange interactions.

It should be stressed that the occurrence of the metallic state in this system is not accompanied by a complete disappearance of the magnetic order, although it is significantly weakened. A study of (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$ utilizing resonant elastic and inelastic x-ray scattering at the Ir-L 3 edge reveals that with increasing doping x, the three-dimensional long-range AFM order is gradually suppressed and evolves into a three-dimensional short-range order across the insulator-to-metal transition from $x = 0$ to $x = 0.05$, which is then followed by a transition to two-dimensional short range order between $x = 0.05$ and $x = 0.065$. Because of the interactions between the $J_{eff} = 1/2$ pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by spin–orbit excitons that are weakly dependent on doping (figure 18) [137]. It is also suggested that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$ into a correlated metallic state with two-dimensional short-range AFM order. Strong AFM fluctuations of the $J_{eff} = 1/2$ moments persist deep in this correlated metallic state, with the magnetic gap strongly suppressed [137]. More intriguing, a subtle charge-density-wave-like Fermi surface instability is observed in the metallic region of (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$ near 200 K which shows resemblance to that observed in cuprates [138]. The absence of any signatures of a new spatial periodicity below 200 K seems to suggest an unconventional and possibly short-ranged density wave order [138].

2.2.5. Effects of high pressure. Sr$_3$Ir$_2$O$_7$ responds to pressure in a fashion similar to that of Sr$_2$IrO$_4$ at lower pressures as discussed above. An early pressure study reveals an abrupt change in electrical resistivity along with an apparent second-order structural change near 13 GPa [107]. A more recent study using both RIXS and electrical resistivity indicates that

![Figure 17. (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$: temperature dependence of (a) the a-axis resistivity ρ_a; and (b) the c-axis resistivity ρ_c. (c) ρ_a and ρ_c for $x = 0.05$ [136]. Reprinted figure with permission from [136], Copyright (2013) by the American Physical Society.](image-url)
of the SOI and U is required for a metal-insulator transition \cite{139, 140}. A more recent theoretical study finds that an even larger critical U is required for a metal-insulator transition to occur in SrIrO$_3$, due to a combined effect of the lattice structure, strong SOI and the protected line of Dirac nodes in the $J_{\text{eff}} = 1/2$ bands near the Fermi level \cite{141}. In essence, small hole and electron pockets with low densities of states, which are present in SrIrO$_3$, render U less effective in driving a magnetic insulating state because of protected line node \cite{141}. We stress that tuning the relative strength of the SOI and U is highly effective in changing the nature of the ground state in the iridates. The rare occurrence of a semimetallic state in SrIrO$_3$ therefore provides a unique opportunity to closely examine the intricate interplay of the SOI, U and lattice degrees of freedom, as well as the correlation between the AFM state and the metal-insulator transition in iridates. Indeed, tuning the relative strength of the SOI and U effectively changes the ground state in the iridates.

A large number of experimental studies of the orthorhombic perovskite SrIrO$_3$ have been conducted in recent years \cite{8, 45, 139–149}. However, the bulk single-crystal SrIrO$_3$ forms only at high pressures and high temperatures \cite{48}, and almost all studies of this system are limited to samples in thin-film or polycrystalline form; little work on bulk single-crystal samples of this system has been done; critical information concerning magnetic properties and their correlation with the electronic state, corresponding anisotropies, etc., is still lacking. However, a recent study on bulk single-crystals of Ir-deficient, orthorhombic perovskite Sr$_{0.95}$Ir$_{0.70}$O$_{2.68}$ offers some insights \cite{150}. In essence, Sr$_{0.95}$Ir$_{0.70}$O$_{2.68}$ retains the very same crystal structure as stoichiometric SrIrO$_3$, albeit with a rotation of IrO$_6$ octahedra within the basal plane by about 9.54° \cite{150}, which is a structural signature for all layered perovskite iridates \cite{1–5, 87, 129}.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure19}
\caption{Sr$_{1-\delta}$Ir$_2$O$_7$: electrical resistance at high pressure as a function of temperature for (a) the basal plane and (b) the c-axis. (c) Four gold electric leads and the sample loaded into a symmetric diamond anvil cell. The inset shows two of the leads attached to the top of the single crystal, and the other two attached to the bottom. (d) Temperature dependence of the electrical resistances at 59.5 and 63.0 GPa. Note the metallic behavior in the basal plane, and the insulating behavior along the c-axis \cite{47}. Reprinted figure with permission from \cite{47}, Copyright (2016) by the American Physical Society.}
\end{figure}
The interest in frustrated iridates received a major boost when a theoretical analysis [13] showed that the oxygen-mediated superexchange processes between the Ir$^{4+}$ moments in the honeycomb iridates Na$_2$IrO$_3$ and Li$_2$IrO$_3$ can related to the celebrated Kitaev model applied to the $J_{eff} = 1/2$ degrees of freedom. The Kitaev model can be solved exactly, and its ground state is an exotic magnetically disordered quantum \textit{‘spin liquid’} [151]. However, the long-sought spin-liquid state has remained elusive. That both honeycomb lattices Na$_2$IrO$_3$ and Li$_2$IrO$_3$ (including β and γ phases) are magnetically ordered suggests that the Heisenberg interaction is still sizable. In addition, trigonal crystal fields also compete with the Kitaev interaction.

3. Magnetism of Honeycomb lattices and other geometrically frustrated iridates

3.1. Two-dimensional honeycomb lattices

3.1.1. Na$_2$IrO$_3$ and Li$_2$IrO$_3$. The honeycomb lattices feature IrO$_6$ octahedra that are edge-sharing with 90° Ir–O–Ir bonds. The magnetic exchange is anisotropically bond-dependent. Such a bond-dependent interaction gives rise to strong frustration when Ir ions are placed on a honeycomb lattice, and would seem to favor a Kitaev spin liquid [13, 151]. Theoretical treatments of the honeycomb lattices Na$_2$IrO$_3$ and Li$_2$IrO$_3$ have inspired a large body of experimental work that anticipates Kitaev physics [13, 15, 31–34, 38, 65, 67, 152–157]. If individual spins at the sites of a honeycomb lattice are restricted to align along any one of the 3 bond directions (six degrees of freedom for ‘up’ and ‘down’ spins), the Kitaev model predicts a quantum spin-liquid ground state [151]. This novel state features short-range correlations, and the spin degrees of freedom fractionalize into Majorana fermions and a Z$_2$ gauge field. The honeycomb iridates are often described in terms of competing Heisenberg and Kitaev interactions; the former favors an AFM order, and it is experimentally established that all known honeycomb iridates order magnetically [31–33, 65, 67, 152–159].

Na$_3$IrO$_3$ exhibits a peculiar ‘zig-zag’ magnetic order at $T_N = 15$ K with a Mott gap of ~ 0.42 eV [159]. The magnetic order was first reported in [30, 31] and later confirmed by neutron diffraction and other studies that indicate that Na$_2$IrO$_3$ orders magnetically below 18.1(2) K with Ir$^{4+}$ ions forming zig-zag spin chains within the layered honeycomb network with an ordered moment of 0.22(1)μ_B/Ir (figure 21) [33]. Inelastic neutron scattering on polycrystalline samples offers some insights into the magnetic state [32], whereasRIXS studies characterize a branch of magnetic excitations at high-energies near 30 meV [158]. The magnetic state of α-Li$_2$IrO$_3$ is not as well-characterized as that of Na$_2$IrO$_3$, partly due to the lack of large single-crystal samples needed for more...
Indeed, the magnetic ground state of Na₂IrO₃ and α-Li₂IrO₃ appear not to be related. Studies of single-crystal (Na₁₋ₓLiₓ)₂IrO₃ indicate that, as x is tuned, the lattice parameters evolve monotonically from Na to Li, and retain the honeycomb structure of the Ir⁴⁺ planes and Mott insulating state for all x. However, there is a non-monotonic, dramatic change in Tₙ with x, in which Tₙ initially decreases from 18 K at x = 0 to 1.2 K at x = 0.70, before it rises to 7 K at x = 0.90 (see figure 22) [153]. Indeed, the corresponding frustration parameter θCW/Tₙ (θCW is the Curie–Weiss temperature) peaks at x = 0.70 at a value of 31.6, which suggests strongly enhanced frustration. The complicated evolution of the magnetic behavior clearly demonstrates that the magnetic ground states attained at x = 0 and 1 are indeed not related linearly [153] as had been previously suggested [36]. X-ray structure data also show that the Ir⁴⁺ honeycomb lattice is minimally distorted at x ≈ 0.7, where the lowest Tₙ and highest frustration parameter are observed. In addition, the high-temperature anisotropy in the magnetic susceptibility is simultaneously reversed and enhanced upon Li doping. Another study of (Na₁₋ₓLiₓ)₂IrO₃ suggests a phase separation in the range 0.25 < x < 0.6 [161], which calls for more investigations. Nevertheless, the evolution of structural, thermodynamic, and magnetic properties of (Na₁₋ₓLiₓ)₂IrO₃ with x suggests two possible tuning parameters for the phase transition: The crystal field splitting and the anisotropy of the magnetic ordering. A relevant study of Ti-doped honeycomb lattices reveals the Curie–Weiss temperature decreases with increasing x in Na₂[Ir₁₋ₓTiₓ]O₃, which remains essentially unchanged in Li₂[Ir₁₋ₓTiₓ]O₃ [162], which further highlights the distinct differences between the magnetic ground states of Na₂IrO₃ and Li₂IrO₃.

There are many theoretical proposals for interactions supplementary to the Kitaev model which would cause magnetic ordering, including additional exchange processes, strong trigonal fields, or weak coupling instabilities. A consensus is yet to be reached. It is recently suggested that the Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-nearest-neighbor Kitaev coupling, which is a dominant perturbation beyond the nearest-neighbor model in Na₂IrO₃ [157]. It is thought that this coupling accounts for the zig-zag ordering observed in Na₂IrO₃ [157].

Finally, it is worth mentioning that chemical doping cannot induce a metallic state in the honeycomb iridates, despite extensive experimental efforts [61]. This behavior contrasts with that in the perovskite iridates, in which chemical doping can readily prompt a metallic state, as discussed in section 2, may be due to the multi-orbital nature of the honeycomb lattices (It is noted that Na or Li ions are out of plane in the unit cell, thus chemical substitution for Na or Li might only lead to a small impurity potential.). On the other hand, like the perovskite iridates, the honeycomb iridates do not metallize up to 40 GPa [163].

3.1.2. Ru-based Honeycomb lattices Na₂RuO₃, Li₂RuO₃, and α-RuCl₃. The investigations of the honeycomb iridates have also spread to their ruthenate counterparts, Na₂RuO₃.
and Li$_2$RuO$_3$, and, more recently, Ru based α-RuCl$_3$ (with Ru$^{3+}$($4d^3$) ions and a weaker or ‘intermediate strength’ SOI (∼0.16 eV, compared to ∼0.4 eV for Ir ions) (see table 2). The different d-shell filling and contrasting hierarchy of energy scales between the ruthenates and iridates provide a unique opportunity to gain a deeper understanding of the fundamental problem of interacting electrons on the honeycomb lattices. The magnetism of Ru$^{4+}$ ions as well as other ‘heavy d’ ions (such as Rh$^{3+}$($4d^4$), Re$^{3+}$($5d^4$), Os$^{3+}$($5d^4$) and Ir$^{3+}$($5d^4$)) is interesting in their own right, as emphasized recently [164–169]. Materials with heavy d3 ions tend to adopt a low-spin state because larger crystal fields often overpower the Hund’s rule coupling. On the other hand, SOI with the intermediate strength may still be strong enough to impose a competing singlet ground state or a total angular momentum $J_{\text{eff}} = 0$ state. Novel magnetic states may thus emerge when the singlet-triplet splitting (0.05-0.20 eV) becomes comparable to exchange interactions (0.05–10 eV) and/or non-cubic crystal fields [164].

Both Na$_2$RuO$_3$ and Li$_2$RuO$_3$ adopt a honeycomb structure. Na$_2$RuO$_3$ features a nearly ideal honeycomb lattice with space group C2/m, and orders antiferromagnetically below 30 K [168]. On the other hand, single-crystal Li$_2$RuO$_3$ adopts a less ideal honeycomb lattice with either C2/m or more distorted P2$_1$/m space group below 300 K; these two phases are denoted as Li$_2$RuO$_3$ (C) and Li$_2$RuO$_3$ (P) for C2/m P2$_1$/m space group, respectively. Both phases exhibit a well-defined, though different, magnetic state. It is interesting that the magnetic state in single-crystal Li$_2$RuO$_3$ contrasts with the nonmagnetic state or singlet ground state due to dimerization observed in polycrystalline Li$_2$RuO$_3$ (denoted as Poly Li$_2$RuO$_3$ in figure 23) [170]. Careful examinations of structural details reveal that these honeycomb lattices feature two bond distances (long and short, L_l and L_s, respectively), which, to a large extent, dictate the ground state of the honeycomb lattice Na$_2$RuO$_3$ and Li$_2$RuO$_3$ (see figure 23), as discussed below.

A study of these materials [168] show that the magnetic ordering temperature systematically decreases with increasing (L_l/L_s) and eventually vanishes at a critical value where dimerization emerges, which leads to the singlet ground state observed in polycrystalline Li$_2$RuO$_3$. A phase diagram generated in this study uncovers a direct correlation between the ground state and basal-plane distortions (lattice-tuned magnetism) in the honeycomb ruthenates, as shown in figure 23 [168]. In addition, a few other observations are remarkable: (1) Both Li$_2$RuO$_3$ and Li$_2$IrO$_3$ are more structurally distorted and behave with more complexities than their Na counterparts. (2) Although the SOI is expected to impose a singlet $J_{\text{eff}} = 0$ state for Ru$^{4+}$($4d^5$) ions (and a $J_{\text{eff}} = 1/2$ state for Ir$^{4+}$($5d^5$) ions), the observed magnetic states in the honeycomb ruthenates as in many other ruthenates [19] indicate that the SOI is not sufficient to induce a $J_{\text{eff}} = 0$ state. (3) All honeycomb ruthenates and iridates magnetically order in a similar temperature range despite the different role of the SOI in them [168].

A Ru-based honeycomb lattice, α-RuCl$_3$, with Ru$^{3+}$($4d^3$) (rather than the commonplace Ru$^{4+}$ state for ruthenates) [171, 172] has recently drawn a great deal of attention as a candidate for the spin liquid state [173–177]. α-RuCl$_3$, with space group P3$_1$2 (C2/m was also reported), supports a Mott state with an AFM order below $T_N = 7$ K [177] (T_N is sample dependent in early reports; it is now recognized that $T_N = 7$ K is intrinsic). The magnetic structure is determined to be zigzag, similar to that of Na$_2$IrO$_3$ [177]; but α-RuCl$_3$ adopts a more ideal honeycomb lattice without the distortions found in Na$_2$IrO$_3$. This simplified structure, combined with the weaker neutron absorption cross-section of Ru compared to Ir, favors α-RuCl$_3$ for further experimental studies of Kitaev physics. On the other hand, the weaker SOI in the 4d shell might result in a large overlap between the $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ bands, thereby reducing the signature of the J_{eff} states in experimental data. This issue is addressed in recent studies [18, 175, 177].

3.2. β-Li$_2$IrO$_3$ and γ-Li$_2$IrO$_3$

Two derivatives of the two-dimensional honeycomb lattices discussed above are the hyper-honeycomb Li$_2$IrO$_3$ and iridene honeycomb Li$_2$IrO$_3$, formally termed, β-Li$_2$IrO$_3$ and γ-Li$_2$IrO$_3$, respectively. They are a result of strong, mainly trigonal and monoclinic distortions of networks of edge-shared octahedra similar to those found in Na$_2$IrO$_3$ and α-Li$_2$IrO$_3$. With a $J_{\text{eff}} = 1/2$ state, both β-Li$_2$IrO$_3$ and γ-Li$_2$IrO$_3$ antiferromagnetically order at 38 K into incommensurate, counterrotating spirals. But unlike the in-plane moments in α-Li$_2$IrO$_3$, the β- and γ-phase moments are non-coplanar, forming three-dimensional honeycomb lattices [65, 67]. There are some subtle differences in magnetic moments, but the two distorted honeycomb lattices are strikingly similar in terms of incommensurate propagation vectors (0.57,0,0) [64, 66], which implies a possible common mechanism drives the ground state. A burgeoning list of theoretical proposals emphasize a
combined effect of the ferromagnetic Kitaev limit, structural distortions and exchange interactions between nearest neighbors (or even next-nearest neighbors), which may account for the stability of the incommensurate order on the three-dimensional honeycomb lattice [157, 178–182].

3.3. Hyperkagome Na₄Ir₃O₈ and pyrochlore iridates

A large number of theoretical and experimental studies on other frustrated iridates, such as the hyper-kagome Na₄Ir₃O₈ [20, 183, 184] and the pyrochlore iridates [17, 71, 72, 185], have been conducted [17].

Na₄Ir₃O₈ with a frustrated hyperkagome lattice was first reported in 2007 [20]. It features magnetic and thermal properties appropriate for a spin-liquid state (e.g. no long-range magnetic order above 2 K and no magnetic field dependence of the magnetization and heat capacity) [20]. More recent studies confirmed the absence of long-range magnetic order down to \(T = 75 \) mK [183]. This work [20] has helped generate a great deal of interest in geometrically frustrated iridates.

The pyrochlore iridates, \(R_2\text{Ir}_2\text{O}_7 \) (\(R = \text{Y}, \text{rare earth ion or Bi or Pb} \)), are mostly magnetic insulators, except for \(\text{Pr}_2\text{Ir}_2\text{O}_7 \), which exhibits correlated metallic behavior [186–189], \(\text{Bi}_2\text{Ir}_2\text{O}_7 \) and \(\text{Pb}_2\text{Ir}_2\text{O}_7 \) [68–70], which also present a metallic ground state. Many of these iridates have been intensively studied as potential platforms for exotic states such as spin liquids, Weyl semimetals, axion insulators, topological insulators, etc [17, 29]. A recent study using scanning microwave imaging reveals one-dimensional metallic channels along all-in-all-out (AIAO)/all-out-all-in magnetic domain walls [185]. A rich phase diagram has been predicted for the pyrochlore iridates (see figure 24) [29]. It is established that the ground state of these materials sensitively depends on the relative strengths of competing SOI and U, and a hybridization interaction that is controlled by the Ir–O–Ir bond angle [17, 29, 189, 190]; and therefore, small perturbations can easily tip the balance between the competing energies and ground states [17, 189]. This is perfectly illustrated in a phase diagram presented in [189], in which the ground state of \(\text{R}_2\text{Ir}_2\text{O}_7 \) \((R = \text{rare earth ion}) \) sensitively depends on the ionic radius of the rare earth ion [17, 189]. However, the nature of the magnetic state is yet to be conclusively determined, in part due to experimental challenge of synthesizing large, high-quality single crystals of the pyrochlore iridates.

A relevant, but less studied pyrochlore iridate is \(\text{Bi}_2\text{Ir}_2\text{O}_7 \) \((\text{where the Bi}^{3+} \text{ion substitutes for a rare-earth ion}) \) [68]. Investigations of single-crystal \(\text{Bi}_2\text{Ir}_2\text{O}_7 \) indicate a significantly enhanced hybridization between the Bi-6s/6p and Ir-5d electrons, which overpowers the SOI and U, and drives the material into a metallic state with the Fermi energy residing near a sharp peak in the density of states, despite the large \(Z \) (thus SOI) for both Bi and Ir [69, 70, 191]. Muon spin relaxation \((\mu\text{SR}) \) measurements show that \(\text{Bi}_2\text{Ir}_2\text{O}_7 \) undergoes a bulk magnetic transition at 1.84(3) K (figure 25(a)) [70]. This is accompanied by increases in the muon spin relaxation rate and the amplitude of the nonrelaxing part of the signal (figure 25(b)). The magnetic field experienced by muons is estimated to be 0.7 mT at low temperature, around two orders of magnitude smaller than that observed in other pyrochlore iridates [70]. These results suggest that the low-temperature state involves exceptionally small static magnetic moments, 0.01
Reproduced from [69]. © IOP Publishing Ltd. All rights reserved.

ρ vs T for $\mu\text{H}/\text{Ir}$. The relaxation rate increases further below 0.23(4) K, consistent with an upturn in the specific heat, suggesting the existence of a second low-temperature magnetic transition. Indeed, the coefficients (γ and β) of the low-temperature and existence of a second low-temperature magnetic transition. Consistent with an upturn in the specific heat, suggesting the existence of a second low-temperature magnetic transition.

Figure 26. Bi$_2$Ir$_2$O$_7$: the temperature dependence of (a) the a-axis electrical resistivity ρ, and (b) the Hall resistivity at 3 T and 5 T. Inset: the a-axis ρ versus T^2 for 1.7 K < T < 10 K [69]. Reproduced from [69]. © IOP Publishing Ltd. All rights reserved.

$\lambda << U, J_H$ $\lambda \sim U - J_H$ $\lambda >> U, J_H$

$J_{\text{eff}}=1/2$ $J_{\text{eff}}=3/2$ $J_{\text{eff}}=0$

Figure 27. The ground state of 4d or 5d ions: (a) the low spin state $S = 1$, and (c) the singlet $J_{\text{eff}} = 0$ state and (b) an intermediate state between $S = 1$ and $J_{\text{eff}} = 0$ states.

4. Double-perovskite iridates with Ir$^{5+}$(5d^4) ions: nonmagnetic singlet $J_{\text{eff}} = 0$ state?

The strong SOI limit is expected to lead to a nonmagnetic singlet ground state, which can be simply understood as a $J_{\text{eff}} = 0$ state arising from four electrons filling the 4d quadruplet in materials with 5d^4 ions, such as Ru$^{4+}$(4d^4), Rh$^{5+}$(4d^4), Re$^{5+}$(5d^4), Os$^{5+}$(5d^4), as well as Ir$^{5+}$(5d^4) (see the schematic in figure 1(d), and 27(c)) [17, 73–75, 79, 164–169, 192]. Indeed, the $J_{\text{eff}} = 0$ state has been used to explain the absence of magnetic ordering in the pentavalent post perovskite NaIrO$_3$ [80], although it has also been attributed to structural distortions [167]. On the other hand, a low-spin $S = 1$ state is expected large crystalline fields when U and the Hund’s rule coupling J_H are much greater than the SOI λ, which can be condition commonly seen in ruthenates (figure 27(a)) [19]. In this case only the t_{2g}-orbitals are relevant, which are all singly occupied except for the one with lowest energy, yielding an effective $S = 1$.

Nevertheless, theoretical and experimental studies suggest that novel states in these materials can emerge when exchange interactions (0.05–0.10 eV), J_H, singlet-triplet splitting (0.050–0.20 eV) and the SOI are comparable, and therefore compete. Exotic states are expected in d^5-Mott insulators that support ‘intermediate-strength’ SOI and U [165–169, 193].

Pentavalent iridates attracted attention when experimental and theoretical studies showed evidence that contradicted the anticipated $J_{\text{eff}} = 0$ state [75, 164–167]. One surprising experiment addressed a distorted double-perovskite Sr$_2$YIrO$_6$ that exhibits an exotic magnetic state below 1.3 K rather than an expected $J_{\text{eff}} = 0$ state or a $S = 1$ state (figure 27(b)) [73]. Sr$_2$YIrO$_6$ adopts a monoclinic structure essentially derived from the SrIrO$_3$ perovskite by replacing every other Ir by non-magnetic Y, the remaining magnetic Ir$^{5+}$ ions form a network of edge-sharing tetrahedra or a face centered cubic (FCC) structure with lattice parameters elongated compared to the parent cubic structure, as shown in figure 28. Because of the differences in valence state and ionic radius between Y$^{3+}$ and Ir$^{5+}$ ions, no significant intersite disorder is expected. This and other related double perovskite iridates have two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir$^{5+}$(5d^4) ions which are anticipated to have $J_{\text{eff}} = 0$ singlet ground states in the strong SOI limit, and geometric frustration in a FCC structure formed by the Ir$^{5+}$ ions (figure 28).

The emergence of the unexpected magnetic ground state was initially attributed to effects of non-cubic crystal fields on the $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ states because such effects were not included in the original model [7, 8]. However, there are other possible origins for a magnetic moment in pentavalent Ir systems: As the hopping of the t_{2g} electrons increases, the width of the bands increases and the $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$ bands may overlap so that the $J_{\text{eff}} = 1/2$ state is partially filled and the $J_{\text{eff}} = 3/2$ state has a corresponding number of holes. This may result in a magnetic moment. Interactions, in particular, the Hund’s rule exchange, J_H, and U couple the different orbitals. Recent theoretical studies [165–167, 169, 193] predict a quantum phase transition with increasing hopping of the electrons from the expected $J_{\text{eff}} = 0$ state to a novel magnetic state with local 5d^4 moments. Furthermore, a band
structure study of a series of double-perovskite iridates with \(\text{Ir}^{5+} \) (5d\(^4\)) ions shows that the \(\text{eg} \) orbitals play no role in determining the ground state. It confirms the observed magnetic state in distorted \(\text{Sr}_2 \text{YIrO}_6 \) \([167]\) and also predicts a breakdown of the \(J_{\text{eff}} = 0 \) state in undistorted, cubic \(\text{Ba}_2 \text{YIrO}_6 \) because the magnetic order is a result of band structure, rather than of non-cubic crystal fields in these double-perovskites.

Indeed, a low-temperature magnetic ground state is recently observed in the entire series of \((\text{Ba}_{1-x}\text{Sr}_x)_2 \text{YIrO}_6 \) \([194]\). This observed magnetic state, which is similar to that in \(\text{Sr}_2 \text{YIrO}_6 \), evolves gradually with changes of the lattice parameters while retaining the underlying AMF characteristics (see figure 29).

However, the small value of the ordered magnetic moment and small magnetic entropy removal associated with heat capacity anomalies imply that this magnetic state is weak and barely stable compared to either the \(S = 1 \) state that is commonly observed among heavy \(d^5 \) transition element ions, or the \(J_{\text{eff}} = 0 \) state driven by strong SOI \([194]\). These circumstances make this magnetic state unique and intriguing. Indeed, a recent resonant inelastic x-ray scattering (RIXS) reveals that the Hund’s rule coupling \(J_H = 0.25 \text{ eV} \) for \(\text{Ir}^{5+} \) in the double perovskite iridates, suggesting that \(J_H \) should be treated on equal footing with the SOI in these materials \([195]\). A more commonly accepted argument is that the SOI competes with a comparable exchange interaction \(J_H \) and a generically large electron hopping (because of the extended nature of 5d-orbitals) that suppresses the singlet \(J_{\text{eff}} = 0 \) ground state. At the same time, the SOI breaks down the low-spin \(S = 1 \) state. This ‘simultaneous’ destabilization of the \(S = 1 \) and \(J_{\text{eff}} = 0 \) states leads to a magnetic state that resides somewhere between the other two. The above picture is not without controversy. There are also theoretical and experimental studies that suggest a non-magnetic state in the double-perovskite iridates \([74, 75, 192, 196]\).

While the \(J_{\text{eff}} = 1/2 \) insulating state model successfully captures the new physics observed in many iridates, recent studies suggest that it may not be adequate to describe new phenomena when the relative strength of the SOI critically competes with the strength of electron hopping and exchange interactions. It is worth mentioning once again that the \(J_{\text{eff}} = 1/2 \) model is a single-particle approach that assumes that SOI is greater than Hund’s rule interactions among the electrons. Its validity needs to be closely examined when the Hund’s rule interactions among the electrons are comparable to SOI in \(d^4 \)-electron systems \([195]\). Nevertheless, the anticipated magnetic ground state \([165–167, 169, 193]\) may indicate that the SOI may not be as dominating as initially anticipated, thus leading to magnetic order rather than a singlet ground state in the double perovskite iridates. This magnetic state could be extraordinarily fragile as evidenced in the varied magnetic behavior reported in both experimental and theoretical studies \([74, 75, 192, 194]\). It is clear that the stability limits of the spin–orbit-coupled \(J_{\text{eff}} \) states in heavy transition metal materials must be investigated.

5. Future challenges and outlook

The SOI is a strong competitor with \(U \) and other interactions, and creates an entirely new hierarchy of energy scales in iridates (table 2), which provides fertile ground for the discovery
of novel physics. Indeed, a burgeoning list of theoretical proposals and predictions of exotic states, such as the spin liquid state, superconductivity, Weyl semimetals, correlated topological insulators, etc is truly remarkable and stimulating. It is perhaps even more intriguing that these predictions have met only limited experimental confirmation thus far. The physics of iridates clearly presents urgent intellectual challenges both theoretically and experimentally, and this field is still in its infancy.

Iridates tend to be magnetic insulators, chiefly because of the combined effect of SOI and U; and they also display a number of interesting empirical trends that defy conventional wisdom. In particular, iridates rarely metalize at high pressures, regardless of their crystal structures; however, when they do, the induced metallic state is extraordinary, such as that in Sr$_2$IrO$_4$ near 60 GPa. On the other hand, a metallic state can be readily induced via slight chemical doping in layered perovskite and hexagonal iridates, but remarkably not in honeycomb iridates. The charge gap and the magnetic state do not necessarily track each other. There are seldom first-order phase transitions in iridates, if any at all: all known transitions induced by temperature, magnetic field, pressure, or chemical doping are gradual and continuous (the sharp transitions in the ‘S’-shaped IV curves may be a rare exception). Moreover, non-linear Ohmic behavior and/or switching effects are also commonplace in iridates. While all these curious properties pose tantalizing prospects for unique functional materials and devices, they also pose a series of intriguing questions that may provide the impetus for advancing our understanding of this class of materials:

- Is the $J_{\text{eff}} = 1/2$ insulating state ubiquitous in other 5d-materials (even in non-cubic crystal fields and/or with non-negligible Hund’s rule interactions between the electrons)?
- Why do iridates seldom metallize at high pressures?
- In contrast, why can even small chemical doping readily induce a metallic state in most insulating iridates (except for honeycomb iridates)?
- Why does superconductivity remain elusive in Sr$_2$IrO$_4$ despite its similarities to the cuprates, and extensive theoretical and experimental efforts addressing superconductivity in this model material?
- Will driving the hidden non-dipolar magnetic order to its quantum critical point provide a path toward generating the elusive superconducting state in Sr$_2$IrO$_4$?
- Why do all honeycomb iridates and ruthenates magnetically order in a similar temperature range, despite their different SOI?
- Can we go beyond discussions of Mott, Mott-Hubbard and Slater insulators to better understand the role of the magnetic transition in the formation of an insulating state in iridates?
- A metallic state is rare in iridates, but when it does happen it has extraordinary properties. How do we describe it?
- How do we explain current-sensitive transport properties or non-linear Ohmic behavior, in particular, the S-shaped I–V characteristic?

- Does the nonmagnetic singlet $J_{\text{eff}} = 0$ state exist in iridates with Ir$^{2+}(5d^5)$ ions?
- More generally, how do we describe the Mott insulating state with ‘intermediate-strength’ or strong SOI in materials with d4 ions, such as Ru$^{4+}(4d^4)$, Rh$^{5+}(4d^4)$, Re$^{3+}(5d^5)$, Os$^{4+}(5d^5)$ and Ir$^{5+}(5d^5)$?

It needs to be reiterated that one defining characteristic of iridates is that the strong SOI renders a strong coupling of physical properties to the lattice degrees of freedom, which is seldom seen in other materials. The wide range of novel phenomena and the limited experimental confirmation for many predicted ground states imply a critical role of subtle, local lattice properties that control ground states, and needs to be more adequately addressed both experimentally and theoretically.

Because of the unique distortions of the Ir–O–Ir bond in iridates, the lattice properties, and therefore physical properties, can be readily tuned via perturbations such as magnetic field, electric field, pressure, epitaxial strain or chemical doping. That transport properties sensitively change with electrical current or electric field (e.g. the S-shaped IV curves) is particularly promising in terms of fundamental research and development of potential functional devices, since the application of an electric field is much more convenient than the application of a magnetic field or pressure.

Of course, the nature of the extraordinary structural sensitivity of iridates also calls for extraordinarily high-quality single crystals and epitaxial thin-films. Moreover, the strong neutron absorption caused by the high atomic number of iridium, 77, requires not only high-quality but also large and preferably plate-like, bulk single crystals for more definitive magnetic studies such as inelastic neutron scattering. This is particularly urgent for a number of iridates such as pyrochlore iridates, Li$_2$IrO$_3$, Sr$_3$Ir$_2$O$_7$ and double perovskites with Ir$^{5+}$ ions, whose magnetic structures are yet to be conclusively determined. This is a daunting experimental challenge because iridates tend to have both high melting points and high vapor pressure, which require sophisticated techniques for single-crystal synthesis.

Finally, we would like to reiterate that it is impossible to review such a broad and rapidly evolving field in a single article. We can only provide a basic introduction, some general remarks and observations, and a number of hopefully instructive examples.

Acknowledgments

This work is supported by the US National Science Foundation via grants DMR-1265162 and DMR-1712101. PS is supported by the US Department of Energy (Basic Energy Sciences) under grant No. DE-FG02-98ER45707. GC is deeply indebted to Drs. Lance De Long, Feng Ye, Daniel Haskel, Hae Young Kee and David Hsieh for their insightful comments and suggestions, which significantly improve this Review.
References

[1] Huang Q, SoubeYROUX J L, Chmaissem O, Natalisou L, Santoro A, Cava R J, Krajewski J J and Peck W J Fr 1994 Neutron powder diffraction study of the crystal structures of SrRuO3 and Sr3Ir2O7 at room temperature and at 10 K J. Solid State Chem. 112 355

[2] Cava R J, Batlogg B, Kiyono K, Takagi H, Krajewski J J, Peck W Jr, Rupp L W and Chen C H 1994 Localized-to-itinerant electron transition in Sr3Ir2−xRu2xO7 Phys. Rev. B 49 11890

[3] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z B and Johnston D C 1994 Structural and magnetic studies of Sr3Ir2O7 Phys. Rev. B 9 49198

[4] Cao G, Bolivar J, McCall S, Crow J E and Guertin R P 1998 Weak ferromagnetism, metal-to-nometal transition, and negative differential resistivity in single-crystal Sr2IrO4 Phys. Rev. B 57 R11039

[5] Cao G, Xin Y, Alexander C S, Crow J E, Schlottmann P, Crawford M K, Harlow R L and Marshall W 2002 Anomalous magnetic and transport behavior in the magnetic insulator Sr2Ir2O7 Phys. Rev. B 66 214412

[6] Cao G, Crow J E, Guertin R P, Henning P F, Homes C C, Strongin M, Basov D N and Lochner E 2000 Charge density wave formation accompanying ferromagnetic ordering in quasi-one-dimensional Ba0.5Sr0.5IrO3 Solid State Commun. 113 657

[7] Kim B J et al 2008 Novel J_eff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4 Phys. Rev. Lett. 101 076402

[8] Moon S J et al 2008 Dimensionality-controlled insulator-metal transition and correlated metal state in 5d transition metal oxides Sr2-xIr2O4+δ (n = 1, 2, and ∞) Phys. Rev. Lett. 102 226402

[9] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Phase-sensitive observation of a spin–orbit Mott state in Sr2IrO4 Science 323 1329

[10] Landau L D and Lifshitz E M 1977 Quantum Mechanics 3rd edn (New York: Pergamon) p 268

[11] Shanavas K V, Popovic Z S and Sapathy S 2014 Theoretical model for Rashba spin–orbit interaction in d electrons Phys. Rev. B 90 165108

[12] Liu X et al 2012 Testing the validity of the strong spin–orbit-coupling limit for octahedrally coordinated iridate compounds in a model system SrCuIrO4 Phys. Rev. Lett. 109 157401

[13] Jackeli G and Khaliullin G 2009 Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models Phys. Rev. Lett. 102 017205

[14] Chern G W and Perkins N 2009 Large J approach to strongly coupled spin-orbital systems Phys. Rev. B 80 180409

[15] Chaloupka J, Jackeli G and Khaliullin G 2010 Kitaev–Heisenberg model on a Honeycomb lattice: possible exotic phases in iridium oxides A3IrO3 Phys. Rev. Lett. 105 027204

[16] Shitade A, Katsuha Y, Kunes J, Qi X L, Zhang S C and Nagaosa N 2009 Quantum spin Hall effect in a transition metal oxide Na2IrO3 Phys. Rev. Lett. 102 256403

[17] Witecz-Krempa W, Chen G, Kim Y B and Balents L 2014 Correlated quantum phenomena in the strong spin–orbit regime Annu. Rev. Condens. Matter Phys. 5 57

[18] Rau J G, Lee E K H and Kee H Y 2016 Spin–orbit physics giving rise to novel phases in correlated systems: iridates and related materials Annu. Rev. Condens. Matter Phys. 7 195

[19] Cao G and DeLong L 2013 Frontiers of 4d- and 5d-Transition Metal Oxides (Singapore: World Scientific) 328 p

[20] Okamoto Y, Nohara M, Aruga-Katori H and Takagi H 2007 Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na3Ir2O7 Phys. Rev. Lett. 99 137207

[21] Takayama Y, Yaresko A, Matsumoto A, Nuss J, Ishii K, Yoshida M, Mizuki J and Takagi H 2014 Spin–orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir2O7 Sci. Rep. 4 6818

[22] Wang F and Senthil T 2011 Twisted Hubbard model for Sr3Ir2O7: magnetism and possible high temperature superconductivity Phys. Rev. Lett. 106 136402

[23] Watanabe H, Shirakawa T and Yunoki S 2013 Monte Carlo study of an unconventional superconducting phase in iridium oxide J_eff = 1/2 Mott insulators induced by carrier doping Phys. Rev. Lett. 110 027002

[24] Kim J et al 2012 Magnetic excitation spectra of Sr3Ir2O7 probed by resonant inelastic x-ray scattering: establishing links to cuprate superconductors Phys. Rev. Lett. 108 177003

[25] Khaliliullin G, Koshiba W and Maekawa S 2004 Low energy electronic states and triplet pairing in layered cobaltate Phys. Rev. Lett. 93 176401

[26] Yang Y, Wang W S, Liu J G, Chen H, Dai J H and Wang Q H 2014 Superconductivity in doped Sr3Ir2O7: a functional renormalization group study Phys. Rev. B 89 094518

[27] You Y Z, Kimchi I and Vishwanath A 2012 Doping a spin–orbit Mott insulator: topological superconductivity from the Kitaev–Heisenberg model and possible application to (Na2/Li2)IrO3 Phys. Rev. B 86 085145

[28] Meng Z Y, Kim Y B and Kee H Y 2014 Odd-parity triplet superconducting phase in multiorbital materials with a strong spin–orbit coupling: application to doped Sr3Ir2O7 Phys. Rev. Lett. 113 177003

[29] Wang X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Topological semimetal and Fermi–arc surface states in the electronic structure of pyrochlore iridates Phys. Rev. B 83 205101

[30] Singh Y and Gegenwart P 2010 Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3 Phys. Rev. B 82 064412

[31] Liu X, Berlijn T, Yin W G, Ku W, Tsvetelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Long-range magnetic ordering in Na2IrO3 Phys. Rev. B 83 220403

[32] Choi S K et al 2012 Spin waves and revised crystal structure of honeycomb iridate Na2IrO3 Phys. Rev. Lett. 108 227204

[33] Ye F, Chi S X, Cao H B, Chakoumakos B C, Fernandez-Baca J A, Custelecan R, Qi T F, Korneta O B and Cao G 2012 Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and x-ray diffraction investigation of single-crystal Na2IrO3 Phys. Rev. B 85 180403

[34] Price C C and Perkins N B 2012 Critical properties of the Kitaev–Heisenberg model Phys. Rev. Lett. 109 187201

[35] Chaloupka J, Jackeli G and Khaliullin G 2013 Zigzag magnetic order in the iridium oxide Na2IrO3 Phys. Rev. Lett. 110 097204

[36] Kim C H, Kim H S, Jeong H, Jin H and Yu J 2012 Topological quantum phase transition in 5d transition metal oxide Na2IrO3 Phys. Rev. Lett. 108 106401

[37] Bhattacharjee S, Lee S S and Kim Y B 2012 Spin-orbital locking, emergent pseudo-spin and magnetic order in honeycomb lattice iridates Rev. J. Phys. 14 073015

ORCID iDs

Gang Cao https://orcid.org/0000-0001-9779-430X
[38] Mazin I I, Jeschke H O, Foyevtsova K, Valenti R and Khomskii D I 2012 Na2IrO3 as a molecular orbital crystal Phys. Rev. Lett. 109 197201

[39] Serrao C R et al 2013 Epitaxy-distorted spin–orbit Mott insulator in Sr3IrO5 thin films Phys. Rev. B 87 085121

[40] Nichols J, Korneta O B, Terzic J, De Long L E, Cao G, Brill J W and Seo S S A 2013 Anisotropic electronic properties of a-axis-oriented Sr3IrO5 epitaxial thin-films Appl. Phys. Lett. 103 131910

[41] Lupascu A et al 2014 Tuning magnetic coupling in Sr3IrO5 thin films with epitaxial strain Phys. Rev. Lett. 112 147201

[42] Yang B J and Nagaosa N 2014 Emergent topological phenomena in thin films of pyrochlore iridates Phys. Rev. Lett. 112 246402

[43] Uchida M, Nie Y F, King P D C, Kim C H, Fennie C J, Yuan S J, Aswartham S, Terzic J, Zheng H, Zhao H D, Okabe H, Isobe M, Takayama-Muromachi E, Koda A, Nie Y F, Lupascu A, Calder S, Cao G, Durairaj V, Chikara S, DeLong L E, Parkin S and Wang J C Chen X and Wilson S D 2016 Structural evolution and growth of new perovskite and perovskite related iridates: BaLiIrO5, Ba2NaIrO3, and Ba3AlK1.5IrO10 J. Solid State Chem. 177 1493

[44] Williams S C et al 2016 Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li2IrO3, Phys. Rev. B 93 195158

[45] Bilffin A, Johnson R D, Choi S, Freund F, Manni S, Bombardi A, Manuel P, Gegenwart P and Coldea R 2014 Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in α-Li2IrO3: full solution via magnetic resonant x-ray diffraction Phys. Rev. B 90 205116

[46] Takayama T, Kato A, Dinnehier R, Nuss J, Kono H, Veiga L S I, Fabbri G, Haskel D and Takagi H 2015 Hyperhoneycomb iridate, β-Li2IrO3 as a platform for Kitaev magnetism Phys. Rev. Lett. 114 077202

[47] Bilffin A, Johnson R D, Kimchi I, Morris R, Bombardi A, Analytis J G, Vishwanath A and Coldea R 2014 Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li2IrO3, Phys. Rev. Lett. 113 197201

[48] Modic K A et al 2014 Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate Nat. Commun. 5 4203

[49] Kennedy B J 1996 Oxygen vacancies in pyrochlore oxides: powder neutron diffraction study of Pb2Ir2O6.5 and PbIrO3 J. Solid State Chem. 123 14

[50] Qi T F, Korneta O B, Wan X G, DeLong L E, Schlooftann P and Cao G 2012 Strong magnetic instability in correlated metallic Ba3Ir2O7 J. Phys.: Condens. Matter 24 345601

[51] Baker P J, Moller J S, Pratt F L, Hayes W, Blundell S J, Lancaster T, Qi T F and Cao G 2013 Weak magnetic transitions in pyrochlore Bi2Ir2O7 Phys. Rev. B 87 180409

[52] Canals B and Lacroix C 1998 Pyrochlore antiferromagnet: a three-dimensional quantum spin liquid Phys. Rev. Lett. 80 2933

[53] Ginges M J P and McClarty P A 2014 Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets Rep. Prog. Phys. 77 086501

[54] Cao G, Qi T F, Li L, Terzic J, Yuan S J, DeLong L E, Murthy G and Kaul R K 2014 Novel magnetism of Ln2MIrO6 (Ln = Mg, Ni) Cryst. Growth Des. 16 2795
Ye F, Chi S X, Chakoumakos B C, Fernandez-Baca J A, Terzic J, Wang J C, Ye F, Song W H, Yuan S J, Aswartham S, Lobanov M V, Greenblatt M, Caspi E N, Jorgensen J D, Singleton J, Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Wang Q, Cao Y, Waugh J A, Park S R, Qi T F, Korneta O B, Dai J X, Calleja E, Cao G and McElroy K 2014 Local density functional theory calculations of Sr3NiIrO6 and Sr3CoIrO6: magnetic hysteresis with coercive fields of up to 55 T. Phys. Rev. B 94 224408.

Wang Q, Cao Y, Waugh J A, Park S R, Qi T F, Korneta O B, Cao G and Dessau D S 2013 Dimensionality-controlled Mott transition and correlation effects in single-layer and bilayer perovskite iridates. Phys. Rev. B 87 245109.

Fujiyama S, Ohsumi H, Komesu T, Matsuno J, Kim B J, Takata M, Arima T and Takagi H 2012 Two-dimensional Heisenberg behavior of J_eff = 1/2 isospins in the paramagnetic state of the spin-orbital Mott insulator Sr3IrO6. Phys. Rev. Lett. 108 247212.

Dai J X, Calleja E, Cao G and McElroy K 2014 Local density functional study of a spin–orbit-coupled induced Mott insulator Sr3IrO6. Phys. Rev. B 90 041102.

Ye F, Chi S X, Chakoumakos B C, Fernandez-Baca J A, Qi T F and Cao G 2013 Magnetic and crystal structures of Sr3IrO6: a neutron diffraction study. Phys. Rev. B 87 140406.

Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Flint R, Qi T, Cao G and Hsieh D 2016 Evidence of an odd-parity hidden order in a spin–orbit-coupled correlated iridate Nat. Phys. 12 32.

Wang C, Seinige H, Cao G, Zhou J S, Goodenough J B and Tsoi M 2015 Electrically tunable transport in the antiferromagnetic Mott insulator Sr3IrO4. Phys. Rev. B 92 115136.

Mott N 1990 Metal-Insulator Transitions (London: Taylor and Francis).

Imada M, Fujimori A and Tokura Y 1998 Metal-insulator transitions Rev. Mod. Phys. 70 1039.

Bozeghia S, Walker H C, Vale J, Springell R, Feng Z, Perry R S, Moretti Sala M, Rannow H M, Collins S P and McMorrow D F 2013 Locking of iridium magnetic moments to the correlated rotation of oxygen octahedra in Sr3IrO6 revealed by x-ray resonant scattering J. Phys.: Condens. Matter 25 422202.

Torchinsky D H, Chu H, Zhao L, Perkins N B, Siziyuk Y, Qi T, Cao G and Hsieh D 2015 Structural distortion-induced magnetoelectric locking in Sr3IrO6 revealed through nonlinear optical harmonic generation Phys. Rev. Lett. 114 096404.

Haskel D, Fabbris G, Zherenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Pressure tuning of the spin–orbit-coupled ground state in Sr3IrO6 Phys. Rev. Lett. 109 027204.

Lobanov M V, Greenblatt M, Caspi E N, Jorgensen J D, Sheptyakov D V, Toby B H, Botez C E and Stephens P W 2004 Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden–Popper phase: neutron and synchrotron x-ray diffraction study J. Phys.: Condens. Matter 16 5339.

Chikara S, Korneta O, Crummett W P, DeLong E L, Schlottmann P and Cao G 2009 Giant magnetoelectric effect in the J_eff = 1/2 Mott insulator Sr3Ir2O6 Phys. Rev. B 80 140407.

Franke I, Baker P J, Blundell S J, Lancaster T, Hayes W, Pratt F L and Cao G 2011 Measurement of the internal magnetic field in the correlated iridates Ca3Ir2O6, Cs2Ir2O7, Sr3Ir2O7 and Sr3Ir2O6 Phys. Rev. B 83 094416.

Bahr S, Alfonsov A, Jackeli G, Khaliullin G, Matsumoto A, Takayama T, Takagi H, Buchner B and Kataev V 2014 Low-energy magnetic excitations in the spin–orbital Mott insulator Sr3Ir2O6 Phys. Rev. B 89 180401.

Gretarsson H, Sun G H, Hoppern M, Kim B J, Keimer B and Le Tacon M 2016 Two-magnon Raman scattering and pseudospin-lattice interactions in Sr3Ir2O6 and Sr3Ir2O7 Phys. Rev. Lett. 116 136401.

Kim D J, Xia J and Fisk Z 2014 Topological surface state in the Kondo insulator samarium hexaboride Nat. Mater. 13 466.

Wang C, Seinige H, Cao G, Zhou J S, Goodenough J B and Tsoi M 2014 Anisotropic magnetoresistance in antiferromagnetic Sr3Ir2O6 Phys. Rev. X 4 041034.

Chudnovskii F A, Olynynets L L, Pergament A L and Stefanovich G B 1996 Electroforming and switching in oxides of transition metals: the role of metal–insulator transition in the switching mechanism J. Solid State Chem. 122 95.

Okimura K, Ezreena N, Sasakawa Y and Sakai J 2009 Electric-field-induced multistep resistance switching in planar VO2-xAl2O3 structure Japan. J. Appl. Phys. 48 065005.

Steckel F, Matsumoto A, Takayama T, Takagi H, Buchner B and Hess C 2016 Pseudospin transport in the J_eff = 1/2 antiferromagnet Sr3Ir2O6 Europhys. Lett. 114 57007.

Korneta O B, Chikara S, Parkin S, DeLong E L, Schlottmann P and Cao G 2010 Pressure-induced insulating state in Ba3−xRbxIr2O6 (R = Gd, Eu) single crystals Phys. Rev. B 81 045101.

Laguna-Marco M A, Fabbris G, Souza-Neto N M, Chikara S, Schilling J S, Cao G and Haskel D 2014 Different response of transport and magnetic properties of BaIr2O6 to chemical and physical pressure Phys. Rev. B 90 014419.

Zhou Z et al 2014 Pressure induced second-order structural transition in Sr3Ir2O6 J. Phys.: Condens. Matter 26 215402.

Zocco D A, Hamlin J J, White B D, Kim B J, Jefferis J R, Weir S T, Vohra Y K, Allen J W and Maple M B 2014 Persistent non-metallic behavior in Sr3Ir2O6 and Sr3Ir2O7 at high pressures J. Phys.: Condens. Matter 26 255503.

Donnerer C et al 2016 Pressure dependence of the structure and electronic properties of Sr3Ir2O6 Phys. Rev. B 93 174118.

Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 New high-pressure phases of lithium Nature 408 174.

Snow C S, Cooper S L, Cao G, Crow J E, Fukazawa H, Nakatsuji S and Maeno Y 2002 Pressure-tuned collapse of the Mott-like state in Ca6+1Ru6O16+1 (n = 1,2): Raman spectroscopic studies Phys. Rev. Lett. 89 226401.

Jin C Q and Cao G unpublished.

Yang X and Wang F 2016 Schwinger boson spin-liquid states on square lattice Phys. Rev. B 94 035160.

Korneta O B, Qi T F, Chikara S, Parkin S, De Long E L, Schlottmann P and Cao G 2010 Electron-doped Sr3Ir2O6 (0 ≤ δ ≤ 0.04): evolution of a disordered J_eff = 1/2 Mott insulator into an exotic metallic state Phys. Rev. B 82 115117.

Cao G, Lin X N, Chikara S, Durairaj V and Elhami E 2004 High-temperature weak ferromagnetism on the verge of a metallic state: impact of dilute Sr doping on BaIr2O6 Phys. Rev. B 69 174418.
[116] Moon S J, Jin H, Choi W S, Lee J S, Seo S S A, Yu J, Cao G, Noh T W and Lee Y S 2009 Temperature dependence of the electronic structure of the $J_{\text{eff}} = 1/2$ Mott insulator Sr$_3$IrO$_4$ studied by optical spectroscopy Phys. Rev. B 80 195110

[117] Hsieh D, Mahmood F, Torchinsky D H, Cao G and Gedik N 2012 Observation of a metal-to-insulator transition with both Mott–Hubbard and Slater characteristics in Sr$_3$IrO$_4$ from time-resolved photocarrier dynamics Phys. Rev. B 86 125128

[118] Cao Y et al 2016 Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr$_3$IrO$_4$ Nat. Commun. 7 11367

[119] Chen X et al 2015 Influence of electron doping on the ground state of Sr$_3$Ir$_{1-x}$Rh$_x$O$_4$ Phys. Rev. B 92 075125

[120] Clancy J P, Lupascu A, Gretarsson H, Islam Z, Hu Y F, Casa D, Nelson C S, LaMarra S C, Cao G and Kim Y J 2014 Dilute magnetism and spin-orbital percolation effects in Sr$_3$Ir$_{1-x}$Rh$_x$O$_4$ Phys. Rev. B 89 054409

[121] Yang J A, Huang Y P, Hermele M, Qi T F, Cao G and Reznik D 2015 High-energy electronic excitations in Sr$_3$IrO$_4$ observed by Raman scattering Phys. Rev. B 91 195140

[122] Liu X et al 2016 Anisotropic softening of magnetic excitations in lightly electron-doped Sr$_3$IrO$_4$ Phys. Rev. B 93 235102

[123] Jeong J, Sidis Y, Louat A, Brouet V and Bourges P 2017 Time-reversal symmetry breaking hidden order in Sr$_3$IrRhO$_4$ Nat. Commun. 8 15119

[124] Varma C M 1997 Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals Phys. Rev. B 55 14554

[125] Fauque B, Sidis Y, Hinkov V, Pailhes S, Lin C T, Chaud X and Bourges P 2008 Magnetic order in the pseudogap phase of high-Tc superconductors Phys. Rev. Lett. 96 197001

[126] Carter J M, Shankar V V, Zeb M A and Kee H Y 2012 Semimetal and topological insulator in perovskite iridates Phys. Rev. B 85 115105

[127] Kim J, Said A H, Casa D, Upton M H, Gog T, Daghofer M, Jackeli G, van den Brink J, Khalilullin G and Kim B J 2012 Large spin-wave energy gap in the bilayer iridate Sr$_3$Ir$_2$O$_4$: evidence for enhanced dipolar interactions near the most-metall-insulator transition Phys. Rev. Lett. 109 157402

[128] Liu C et al 2014 Spin-correlated electronic state on the surface of a spin–orbit Mott system Phys. Rev. B 90 045150

[129] Hogan T, Bjaalie L, Zhao L, Belvin C, Wang X P, Van de Walle C G, Hsieh D and Wilson S D 2016 Probing the spin–orbit Mott state in Sr$_3$Ir$_2$O$_4$ by electron doping Phys. Rev. B 93 134410

[130] Lovesey S W, Khalyavin D D, Manuel P, Chapon L C, Cao G and Qi F T 2012 Magnetic symmetries in neutron and related Pbmm perovskite oxides Phys. Rev. B 86 085149

[131] Carter J M and Kee H Y 2015 Topological crystalline metal in orthorhombic perovskite iridates Nat. Commun. 6 6393

[132] Zhao J G, Yang L X, Yu Y, Li F Y, Yu R C, Fang Z, Chen L C and Jin C Q 2008 High-pressure synthesis of orthorhombic SrIrO$_3$ perovskite and its positive magnetoresistance J. Appl. Phys. 103 074301

[133] Brebels M, Yim C K, Hirai D, Climent-Pascual E, Xu Q, Zandbergen H W, Ali M N and Cava R J 2012 Destabilization of the 6H-SrIrO$_3$ polymorph through partial substitution of zinc and lithium J. Mater. Chem. A 22 16341

[134] Qasim I, Kennedy B J and Avdeev M 2013 Stabilizing the orthorhombic perovskite structure in SrIrO$_3$ through chemical doping. Synthesis, structure and magnetic properties of Sr$_{1-x}$Mg$_x$O$_{2.5}(0.20 \leq x \leq 0.33)$ J. Mater. Chem. A 1 A 13357

[135] Qasim I, Kennedy B J and Avdeev M 2013 Synthesis, structures and properties of transition metal doped SrIrO$_3$ J. Mater. Chem. A 1 A 3127

[136] Blanchard P E R, Reynolds E, Kennedy B J, Kimpton J A,积木 J, Cao G, Brill J W and related Pbnm perovskite oxides Phys. Rev. B 86 085149

[137] Chen Y G, Lu Y M and Kee H Y 2015 Topological crystalline metal in orthorhombic perovskite iridates Nat. Commun. 6 6393

[138] Zhao J G, Yang L X, Yu Y, Li F Y, Yu R C, Fang Z, Chen L C and Jin C Q 2008 High-pressure synthesis of orthorhombic SrIrO$_3$ perovskite and its positive magnetoresistance J. Appl. Phys. 103 074301

[139] Brebels M, Yim C K, Hirai D, Climent-Pascual E, Xu Q, Zandbergen H W, Ali M N and Cava R J 2012 Destabilization of the 6H-SrIrO$_3$ polymorph through partial substitution of zinc and lithium J. Mater. Chem. A 22 16341

[140] Qasim I, Kennedy B J and Avdeev M 2013 Stabilizing the orthorhombic perovskite structure in SrIrO$_3$ through chemical doping. Synthesis, structure and magnetic properties of Sr$_{1-x}$Mg$_x$O$_{2.5}(0.20 \leq x \leq 0.33)$ J. Mater. Chem. A 1 A 13357

[141] Qasim I, Kennedy B J and Avdeev M 2013 Synthesis, structures and properties of transition metal doped SrIrO$_3$ J. Mater. Chem. A 1 A 3127

[142] Blanchard P E R, Reynolds E, Kennedy B J, Kimpton J A,积木 J, Cao G, Brill J W and related Pbnm perovskite oxides Phys. Rev. B 86 085149

[143] Nie Y F, Di Sante D, Chatterjee S, King P D C, Uchida M, Ciuchi S, Schlom D G and Shen K M 2015 Formation and observation of a quasi-two-dimensional d_{xy} electronic liquid in epitaxially stabilized Sr$_{2-x}$La$_x$TiO$_4$ thin films J. Mater. Res. 29 2491

[144] Gruenewald J H, Nichols J, Terzic J, Cao G, Brill J W and Seo S S A 2014 Compressive strain-induced metal–insulator transition in orthorhombic SrIrO$_3$ thin films J. Mater. Res. 26 2410

[145] Zheng H, Terzic J, Ye F, Fan X G, Wang D, Wang J C, Wang X P, Schottmann P, Yuan S J and Cao G 2016 Simultaneous metal-insulator and antiferromagnetic transitions in orthorhombic perovskite iridate Sr$_{0.94}$Ir$_{0.78}$O$_{2.68}$ single crystals Phys. Rev. B 93 235157

[146] Kataev A 2006 Anyons in an exactly solved model and beyond Ann. Phys. 321 2

[147] Singh Y, Manni S, Reuther J, Berlijn T, Thomale R, Ku W, Trebst S and Gegenwart P 2012 Relevance of the Heisenberg–Kitaev model for the honeycomb lattice iridates A$_2$IrO$_3$ Phys. Rev. Lett. 108 127203

[148] Cao G, Qi F, Li L, Terzic J, Cao V S, Yuan S J, Tovar M, Murthy G and Kaul R K 2013 Evolution of magnetism
in the single-crystal honeycomb iridates (Na1−xLi)xIrO3

Chun S H et al 2015 Direct evidence for dominant bond-
directional interactions in a honeycomb lattice iridate
NaIrO3 Nature. Phys. 11 462

Pratt F L, Baker P J, Blundell S J, Lancaster T, Ohira-
Kawamura S, Baines C, Shimizu Y, Kanoda K, Watanabe I
and Saito G 2011 Magnetic and non-magnetic phases of a
quantum spin liquid Nature 471 612

Gegenwart P and Trebst S 2015 Spin–orbit physics: Kitaev
matter Nat. Phys. 11 444

Roussochatzakis I, Reuther T, Thomale R, Rachel S and
Perkins N B 2015 Phase diagram and quantum order by
disorder in the Kitaev K1, − K2 honeycomb magnet Phys.
Rev. X 5 041035

Gretarsdottir H et al 2013 Magnetic excitation spectrum of
NaIrO3 probed with resonant inelastic x-ray scattering
Phys. Rev. B 87 220407

Comin R et al 2012 NaIrO3 as a novel relativistic Mott
insulator with a 340 meV gap Phys. Rev. Lett. 109 266406

Felnzer I and Bradaric I M 2002 The magnetic behavior of
Li2M03 (M = Mn, Ru and Ir) and Li2(Mn1−xRu0)x
Physica B 311 195

Manni S, Choi S, Mazz I, Coldea R, Altmeyer M, Jescske H O, Valenti R and Gegenwart P 2014 Effect of
isoelectronic doping on the honeycomb-lattice iridate
A3IrO4 Phys. Rev. B 89 245113

Manni S, Tokiwa Y and Gegenwart P 2014 Effect of
nonmagnetic dilution in the honeycomb-lattice iridates
NaIrO3 and Li3IrO4 Phys. Rev. B 89 241102

Jin C Q and Cao G unpublished

Khalilullin G 2013 Excitonic magnetism in Van Vleck–type d4
Mott insulators Phys. Rev. Lett. 111 197201

Chen G, Bai L and Schnyder A P 2009 Spin–orbit
singlet and quantum critical point on the diamond lattice:
Fe3Sc3X, Phys. Rev. Lett. 102 096406

Meetei O N, Cole W S, Randeria M and Trivedi N 2015
Novel magnetic state in d4 Mott insulators Phys. Rev. B 91 054412

Bhowal S, Baidya S, Dasgupta I and Saha-Dasgupta T
2015 Breakdown of J = 0 nonmagnetic state in d4 iridate
double perovskites: a first-principles study Phys. Rev. B 92 121113

Wang J C, Terzic J, Qi T F, Ye F, Yuan S J, Aswartham S, Streltsov S V, Khomskii D I, Kaul R K and Cao G 2014
Lattice-tuned magnetism of Ru4+ (d4) ions in single
crystals of the layered honeycomb ruthenates Li3RuO3 and
Na2RuO3 Phys. Rev. B 90 161101

Kim A J, Jeschke H O, Werner P and Valenti R 2017 Freezing
and Hund’s rules in spin–orbit-coupled multiorbital
Hubbard models J. Phys. Rev. Lett. 118 086401

Miura Y, Yasui Y, Sato M, Igawa N and Kakurai K 2007
New-type phase transition of Li2RuO3 with Honeycomb
structure J. Phys. Soc. Japan. 76 033705

Binotto L, Polini I and Spinolo G 1971 Optical and transport
properties of the magnetic semiconductor α-RuCl3 Phys.
Status Solidi b 44 245

Kobayashi Y, Okada T, Asai K, Katada M, Sano H and
Ambe Mössbauer P 1992 Spectroscopy and magnetization
studies of α- and β-RuCl3 Inorg. Chem. 31 4570

Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhou Y, Parshall D and Kim Y J 2015 Magnetic order in
α-RuCl3: a honeycomb-lattice quantum magnet with
strong spin–orbit coupling Phys. Rev. B 91 144420

Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y and Kim Y J 2014 α-RuCl3:
a spin–orbit assisted Mott insulator on a honeycomb lattice
Phys. Rev. B 90 041112

Kubota Y, Tanaka H, Ono T, Narumi Y and Kindo K 2015
Successive magnetic phase transitions in α-RuCl3: XY-like
frustrated magnet on the honeycomb lattice Phys. Rev. B 91 094422

Majumder M, Schmidt M, Rosner H, Tsiulin A A, Yasuoka H
and Baenitz M 2015 Anisotropic Ru3+ 4d4 magnetism in the
α-RuCl3 honeycomb system: susceptibility, specific
heat, and zero-field NMR Phys. Rev. B 91 195801

Banerjee A et al 2016 Proximate Kitaev quantum spin
liquid behaviour in a honeycomb magnet Nat. Mater. 15 733

Lee E K H, Schaffer R, Bhattacharjee S and Kim Y B 2014
Heisenberg–Kitaev model on the hyperhoneycomb lattice
Phys. Rev. B 89 045117

Kimchi I, Analysis J G and Vishwanath A 2014 Three-
dimensional quantum spin liquids in models of harmonic-
honeycomb iridates and phase diagram in an infinite-D
approximation Phys. Rev. B 90 205126

Lee E K H, Bhattacharjee S, Hwang K, Kim H S, Jin H and
Kim Y B 2014 Topological and magnetic phases with
strong spin–orbit coupling on the hyperhoneycomb lattice
Phys. Rev. B 89 205132

Lee S, Lee E K H, Paramekanti A and Kim Y B 2014
Order-by-disorder and magnetic field response in the
Heisenberg–Kitaev model on a hyperhoneycomb lattice
Phys. Rev. B 89 014424

Lee E K H and Kim Y B 2015 Theory of magnetic phase
diagrams in honeycomb and harmonic–honeycomb iridates
Phys. Rev. B 91 064407

Singh Y, Tokiwa Y, Dong J and Gegenwart P 2013 Spin
liquid close to a quantum critical point in Na4Ir3O8 Phys.
Rev. B 88 220403

Podolsky D and Kim Y B 2011 Spin–orbit coupling in the
metallic and spin-liquid phases of Na4Ir3O8 Phys. Rev. B 83 054401

Ma E Y, Cui Y T, Ueda K, Tang S, Chen K, Tamura N,
Wu P M, Fujikoba J, Tokura Y and Z X Shen 2015 Mobile
metallic domain walls in an all-in-all-out magnetic
insulator Science 350 538

Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T,
vand Duijn J, Balicas L, Millican J N, Macaluso R T and
Chan J Y 2006 Metal–spin-liquid behavior of the
geometrically frustrated Kondo lattice Pr3Ir2O7 Phys. Rev.
Lett. 96 087204

Machida Y, Nakatsuji S, Onoda S, Tayama T and
Sakakibara T 2010 Time–reversal symmetry breaking and
spontaneous Hall effect without magnetic dipole order
Nature 463 210

Yamagishina D and Maeno Y 2001 Metal–nonmetal changeover
in pyrochlore iridates J. Phys. Soc. Japan. 70 2880

Matsuhira K, Wakeshima M, Nakanishi R, Yamada T,
Nakamura A, Kawano W, Takagi S and Hinatsu Y
2007 Metal–insulator transition in pyrochlore iridates
La2Ir2O7 (Ln = Nd, Sm, and Eu) J. Phys. Soc. Japan. 76 043706

Yang B J and Kim Y B 2010 Topological insulators and
metal–insulator transition in the pyrochlore iridates Phys.
Rev. B 82 085111

Wang Q, Cao Y, Wan X G, Denlinger J D, Qi T F, Korneta O B, Cao G and Dessau D S 2015 Experimental
electronic structure of the metallic pyrochlore iridate
Bi2Ir4O7 J. Phys.: Condens. Matter 27 015502

Pajskr K, Novak P, Pokorny V, Kolorec J, Arita R and
Kunes J 2016 On the possibility of excitonic magnetism in
Ir double perovskites Phys. Rev. B 93 035129
[193] Svoboda C, Randeria M and Trivedi N 2017 Effective magnetic interactions in spin–orbit coupled d^9 Mott insulators Phys. Rev. B 95 014409

[194] Terzic J, Zheng H, Feng Ye, Schlottmann P, Zhao H D, DeLong L, Yuan S J and Cao G 2017 New evidence for a magnetic state in double-perovskite iridates with Ir$^{3+}$(5d^4) ions Phys. Rev. B 96 064436

[195] Yuan B et al 2017 Determination of Hund’s coupling in 5d oxides using resonant inelastic x-ray scattering Phys. Rev. B 95 235114

[196] Ranjbar B, Reynolds E, Kayser P, Kennedy B J, Hester J R and Kimpton J A 2015 Structural and magnetic properties of the iridium double perovskites Ba$_2$–Sr$_x$YIrO$_6$ Inorg. Chem. 54 10468