Supporting Information for

Photoisomerization and Thermal isomerization of Ruthenium Aqua Complexes with Chloro Substituted Asymmetric Bidentate Ligands

Masanari Hirahara*,†, Hiroki Goto†, Rei Yamamoto†, Masayuki Yagi§, and Yasushi Umemura†

†Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
§Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
Figure S1A 1H NMR spectrum of 2-(2’-pyridyl)-4-chloroquinoline in CDCl$_3$.

Figure S1B 13C NMR spectrum of 2-(2’-pyridyl)-4-chloroquinoline in CDCl$_3$.
Figure S2A. 1H NMR spectrum of p-[2Cl]Cl in CD$_3$OD (10%) and CDCl$_3$ (90%).

Figure S2B. 13C NMR spectrum of p-[2Cl]Cl in CD$_3$OD (10%) and CDCl$_3$ (90%).
Figure S3A. 1H NMR spectrum of p-[3Cl]Cl in CD$_3$OD (10%) and CDCl$_3$ (90%).

Figure S3B. 13C NMR spectrum of p-[3Cl]Cl in CD$_3$OD (10%) and CDCl$_3$ (90%).
Figure S4A. 1H NMR spectrum of $\textit{p-}[\text{4Cl}]\text{Cl}$ in CD$_3$OD (10%) and CDCl$_3$ (90%).

Figure S4B. 13C NMR spectrum of $\textit{p-}[\text{4Cl}]\text{Cl}$ in CD$_3$OD (10%) and CDCl$_3$ (90%).
Figure S5A. 1H NMR spectrum of p-[2H$_2$O]Cl$_2$ in D$_2$O (80%) and CD$_3$OD (20%).

Figure S5B. 13C NMR spectrum of p-[2H$_2$O]Cl$_2$ in D$_2$O (80%) and CD$_3$OD (20%).
Figure S6A. 1H NMR spectrum of p-[3H$_2$O]Cl$_2$ in D$_2$O.
Figure S7A. 1H NMR spectrum of p-[4H$_2$O]Cl$_2$ in D$_2$O.

Figure S7B. 13C NMR spectrum of p-[4H$_2$O]Cl$_2$ in D$_2$O.
compounds	p-[2Cl]([PF$_6$])	p-[3Cl]([BF$_4$])	p-[4Cl]([PF$_6$]) · EtOH	p-[2OH]$_2$([PF$_6$]) · 2H$_2$O	p-[3OH]$_2$([CF$_3$SO$_3$]) · H$_2$O	p-[4OH]$_2$([NO$_3$]) · 2H$_2$O
empirical formula	RuPF$_6$Cl$_2$N$_5$C$_{29}$H$_{20}$	RuBF$_4$Cl$_2$N$_5$C$_{29}$H$_{20}$	RuPF$_6$Cl$_2$N$_5$C$_{29}$H$_{20}$	RuP$_2$F$_{12}$Cl$_2$N$_5$O$_3$C$_{31}$H$_{26}$	RuS$_2$F$_6$Cl$_2$N$_5$O$_8$C$_{31}$H$_{26}$	RuClN$_7$O$_9$C$_{29}$H$_{26}$
fw	755.45	697.30	801.51	919.01	909.19	753.09
radiation	Mo Kα					
crystal system	monoclinic	triclinic	monoclinic	triclinic	monoclinic	triclinic
space group	$P2_1/c$	$P1$	$P2_1/c$	$P1$	$P2_1/c$	$P1$
a, Å	20.524(4)	7.7286(12)	8.7151(13)	11.910(2)	16.770(6)	8.599(3)
b, Å	8.2372(14)	12.0747(18)	13.061(2)	11.910(3)	17.343(7)	8.943(3)
c, Å	25.346(5)	14.592(2)	27.254(4)	18.237(6)	11.916(5)	20.080(6)
$α$, deg	90	81.760(2)	90	102.237(5)	90	77.361(3)
$β$, deg	137.909(3)	89.511(2)	94.409(2)	97.412(5)	101.073(6)	79.622(3)
$γ$, deg	90	77.947(2)	90	111.015(3)	90	89.260(4)
V, Å3	2872.2(9)	1317.7(4)	3093.1(8)	1739.7(9)	3401(2)	1481.6(7)
Z	4	2	4	2	4	2
$μ$, mm$^{-1}$	0.858	0.858	0.804	0.724	0.755	0.682
T, K	293	100	100	100	100	100
d_{cal}, g/cm3	1.747	1.7574	1.721	1.7504	1.776	1.643
T_{min}, T_{max}	0.4333, 1	0.647301, 1	0.427, 1	0.620, 0.986	0.9493, 0.9870	0.623220, 1
N_{ref}	6426	12164	7136	7682	7623	5319
$R[F^2 > 2σ(F^2)]$	0.0483	0.0312	0.0709	0.0628	0.0843	0.0707
$wR[F^2 > 2σ(F^2)]$	0.1080	0.0728	0.1983	0.1530	0.1839	0.2041
GOF	0.972	1.0393	0.907	1.0143	0.930	1.080
Figure S8. Absorption spectra of ruthenium complexes having R-pyqu ligands in methanol. p-1Cl (black), p-2Cl (red), p-3Cl (blue), and p-4Cl (green).
Figure S9 DFT optimized structures of p-nH_2O ($n = 1$-4), which were optimized at the B3LYP level of DFT using LanL2DZ basis set in Gaussian 09.
Figure S10 Frontier molecular orbitals of a fully optimized p-H$_2$O. The structure was obtained by using B3LYP level of DFT and LANL2DZ basis set in Gaussian 09.
Figure S10 (Continued)

128 (LUMO) -2.911 eV
129 (LUMO+1) -2.865 eV
130 (LUMO+2) -2.637 eV

131 (LUMO+3) -1.789 eV
132 (LUMO+4) -1.747 eV
133 (LUMO+5) -1.700 eV

134 (LUMO+6) -1.558 eV
135 (LUMO+7) -0.919 eV
136 (LUMO+8) -0.794 eV
Figure S11 Frontier molecular orbitals of a fully optimized p-$2\text{H}_2\text{O}$. The structure was obtained by using B3LYP level of DFT and LANL2DZ basis set in Gaussian 09.
Figure S11 (Continued)

131 (LUMO) -3.082 eV
132 (LUMO+1) -2.862 eV
133 (LUMO+2) -2.628 eV

134 (LUMO+3) -1.974 eV
135 (LUMO+4) -1.881 eV
136 (LUMO+5) -1.698 eV

137 (LUMO+6) -1.639 eV
138 (LUMO+7) -1.132 eV
139 (LUMO+8) -0.917 eV
Figure S12 Frontier molecular orbitals of a fully optimized p-$3\text{H}_2\text{O}$. The structure was obtained by using B3LYP level of DFT and LANL2DZ basis set in Gaussian 09.
Figure S12 (Continued)

131 (LUMO) -3.018 eV 132 (LUMO+1) -2.922 eV 133 (LUMO+2) -2.660 eV

134 (LUMO+3) -1.979 eV 135 (LUMO+4) -1.851 eV 136 (LUMO+5) -1.720 eV

137 (LUMO+6) -1.631 eV 138 (LUMO+7) -0.940 eV 139 (LUMO+8) -0.841 eV
Figure S13 Frontier molecular orbitals of a fully optimized \(p-4\text{H}_2\text{O} \). The structure was obtained by using B3LYP level of DFT and LANL2DZ basis set in Gaussian 09.
Figure S13 (Continued)

131 (LUMO) -3.032 eV
132 (LUMO+1) -2.921 eV
133 (LUMO+2) -2.658 eV
134 (LUMO+3) -1.996 eV
135 (LUMO+4) -1.817 eV
136 (LUMO+5) -1.718 eV
137 (LUMO+6) -1.599 eV
138 (LUMO+7) -0.937 eV
139 (LUMO+8) -0.833 eV
Figure S14 The calculated absorption spectra of \(p-\text{H}_2\text{O} \) (A), \(p-\text{H}_2\text{O} \) (B), \(p-\text{H}_2\text{O} \) (C), and \(p-\text{H}_2\text{O} \) (D) by using the time-dependent DFT calculations in PCM method (solvent: water). The singlet excitations, simulated with Gaussian functions, are shown as vertical bars with heights equal to oscillator strength.
Table S2. Selected list of TD-DFT energies of \(p-1\text{H}_2\text{O} \) (in water)

Excited State	\(\lambda / \text{nm} \)	\(f \)	Major contributions
6	462.35	0.1392	H-1->LUMO (13%), H-1->L+1 (49%), HOMO->L+2 (28%)
27	309.80	0.1606	H-5->LUMO (12%), H-4->L+1 (16%), H-3->L+2 (10%), H-2->L+6 (20%), H-1->L+6 (10%)
30	308.06	0.5005	H-5->LUMO (34%), H-5->L+1 (12%), H-4->L+1 (12%)
31	305.56	0.3438	H-5->L+1 (46%), H-4->L+1 (12%)
32	299.85	0.0589	H-2->L+6 (21%), H-1->L+6 (35%), HOMO->L+6 (16%)
35	278.33	0.0703	H-5->L+2 (53%), HOMO->L+7 (25%)
36	277.91	0.0524	H-5->L+2 (31%), H-2->L+11 (14%), HOMO->L+7 (38%)
39	262.53	0.372	H-3->L+3 (14%), H-3->L+4 (39%), HOMO->L+9 (10%)
42	257.37	0.0828	H-3->L+3 (63%), H-3->L+4 (14%), HOMO->L+9 (11%)
44	253.20	0.2267	H-6->LUMO (33%), H-6->L+1 (17%), H-2->L+7 (16%)

Table S3. Selected list of TD-DFT energies of \(p-2\text{H}_2\text{O} \) (in water)

Excited State	\(\lambda / \text{nm} \)	\(f \)	Major contributions
3	503.42	0.0448	H-1->LUMO (44%), H-1->L+1 (48%)
5	475.58	0.1123	H-2->L+1 (14%), H-1->LUMO (45%), H-1->L+1 (31%)
22	322.78	0.0515	H-5->LUMO (16%), H-1->L+5 (36%)
25	315.78	0.3942	H-4->LUMO (33%), H-1->L+3 (13%)
27	311.38	0.0986	H-4->L+1 (36%), H-2->L+4 (23%)
28	309.63	0.1885	H-5->L+1 (20%), H-4->L+1 (39%), H-2->L+5 (11%)
29	306.79	0.1432	H-5->L+1 (21%), H-2->L+6 (29%), H-1->L+6 (23%)
30	301.97	0.2108	H-5->L+1 (16%), H-2->L+5 (60%), H-2->L+6 (12%)
35	277.70	0.1264	H-5->L+2 (82%)
37	271.89	0.0579	H-6->LUMO (46%), HOMO->L+8 (16%)
39	268.57	0.0749	H-7->LUMO (16%), H-6->LUMO (25%), H-3->L+3 (20%), H-3->L+4 (11%)
42	259.54	0.0658	H-3->L+4 (32%), HOMO->L+9 (41%)
47	251.02	0.1615	H-4->L+3 (15%), H-3->L+4 (20%), H-1->L+9 (26%)
48	250.12	0.0839	H-7->L+1 (36%), H-2->L+8 (44%)
Table S4. Selected list of TD-DFT energies of $p\text{-}3\text{H}_2\text{O}$ (in water)

Excited State	λ/nm	f	Major contributions
5	475.43	0.1669	H-2->L+1 (31%), H-1->LUMO (59%)
27	311.19	0.2242	H-5->LUMO (22%), H-4->LUMO (14%), H-4->L+1 (36%)
28	309.83	0.1149	H-4->L+1 (26%), H-2->L+6 (20%), H-1->L+6 (12%)
29	308.59	0.373	H-5->LUMO (18%), H-4->L+1 (13%), H-2->L+6 (10%)
31	305.61	0.3961	H-5->L+1 (61%)
35	278.02	0.12	H-5->L+2 (60%), H-4->L+2 (26%)
41	263.87	0.3776	H-3->L+3 (23%), H-3->L+4 (30%)
44	256.74	0.0848	H-7->LUMO (28%), H-4->L+3 (30%), H-1->L+9 (15%)
46	252.65	0.2194	H-6->L+1 (20%), H-5->L+3 (19%), H-2->L+7 (23%)
47	252.13	0.061	H-6->L+1 (19%), H-5->L+3 (38%), H-4->L+3 (23%)

Table S5. Selected list of TD-DFT energies of $p\text{-}4\text{H}_2\text{O}$ (in water)

Excited State	λ/nm	f	Major contributions
5	476.40	0.1841	H-2->L+1 (31%), H-1->LUMO (62%)
27	310.01	0.3371	H-5->LUMO (46%), H-1->L+6 (10%)
28	307.83	0.3976	H-4->L+1 (44%), H-2->L+5 (11%), H-1->L+5 (10%)
29	306.87	0.1609	H-4->L+1 (14%), H-2->L+6 (26%)
30	303.38	0.0903	H-5->L+1 (89%)
32	298.74	0.0594	H-2->L+6 (20%), H-1->L+6 (28%), HOMO->L+6 (27%)
35	278.06	0.1136	H-4->L+2 (79%)
39	266.32	0.4272	H-6->LUMO (12%), H-3->L+3 (51%)
40	265.54	0.0656	H-6->LUMO (83%)
45	252.43	0.2579	H-6->L+1 (42%), H-2->L+7 (33%)
46	251.63	0.062	H-7->LUMO (11%), H-3->L+4 (71%)
Figure S15. Energy level diagram of molecular orbitals of $d\text{H}_2\text{O}$ (n= 1-4). The energy level of Ru-N antibonding $d\sigma^*$ orbitals (LUMO+7) are marked in red.
Table S6. Energies of optimized distal and proximal isomers (in water)

Complex	Proximal isomer / Hartree	Distal isomer / Hartree	Differences / kcal mol⁻¹
1H₂O	-1561.059453	-1561.055725	-2.34
2H₂O	-1575.389636	-1575.389304	-0.21
3H₂O	-1575.404388	-1575.400461	-2.46
4H₂O	-1575.403173	-1575.399308	-2.43
