Cyclic fatigue resistance of different continuous rotation and reciprocating endodontic systems

Fabio de Almeida-Gomes, Humberto Ramah Menezes de Matos¹, Rodrigo Ferreira Lopes Arrais Nunes, Ariel Moura Arrais, Claudio Ferreira-Maniglia, Marcelo de Morais Vitoriano, Eduardo Diogo Gurgel-Filho

ABSTRACT

Objective: The objective of this study is to compare the cyclic fatigue resistance of nine types of endodontic instruments of nickel–titanium.

Materials and Methods: Five files of 25 mm of length of each group: Reciproc (RC) R25; WaveOne (WO) Primary; Unicone (UC) L25 25/0.06; K3XF 25/0.06; ProTaper Universal F2 (PTF2); ProTaper Next X2 (PTX2); Mtwo 25/0.06; BioRaCe 25/0.06; One Shape L25 25/0.06 were subjected to a cyclic fatigue resistance test on a mechanical apparatus. The mean fracture time was analyzed statistically by one-way analysis of variance and Tukey’s honest significant difference post hoc test, with significance set at \(P < 0.05 \).

Conclusion: It was observed that the groups PTX2, RC, R25, UC L25 25/0.06, and WO Primary presented greater cyclic fracture resistance than the other groups \(P < 0.001 \).

Key words: Cyclic fatigue resistance, endodontic, instrumentation, Reciproc, reciprocating motion

The nickel–titanium (NiTi) rotary instruments are known for their root canal cleaning and shaping effectiveness, for its high cutting efficiency and fastness. Despite these advantages, a major concern among professionals is the fracture of these instruments, which may occur during clinical practice.[1–3]

The files fracture mechanisms are classified into two types in literature, fracture caused by cyclic fatigue (flexural) fracture or by torsion.[3,4] The cyclic fatigue fracture occurs when the instrument is subjected to repetitions of cyclical tension and compression, causing microcracks to form in its structure and finally resulting in file separation. These repeated cycles of tension and compression caused by the rotation of curved instruments increase cyclic fatigue failure over time, and may be an important factor for fracture.[5] Fracture caused by torsion occurs when a part of the metal is fixed in position, whereas the rest of the instrument continues to rotate around its longitudinal axis.[6,7]

The cyclic fracture is a major cause of fractures and currently one of the most studied topics with respect to NiTi rotary instruments.[8]

There are on the market a variety of these instruments-driven motor with different kinematics, compositions, and shapes, which are gaining increasing acceptance and popularity among specialists.

Considering these information and the importance to know more about the existing endodontic files on the market, the purpose of the present study was to evaluate the cyclic fatigue resistance of different endodontic instruments of reciprocating movement and continuous rotary motion.

MATERIALS AND METHODS

To conduct this experiment, a total of 45 NiTi rotary files, ISO tip size of 25 were used, taper 0.06% or 0.08% and
length of 25 mm. These were divided into nine experimental groups (n = 5 each) of different types of endodontic files. Each endodontic file of a specific group is named according to the type of file and used a number from 1 to 5, where Group 1 was ProTaper Next X2 (PTX2) (Dentsply Maillefer, Ballaigues, Switzerland), Group 2 Reciproc (RC) R25 (VDW, Munich, Germany), Group 3 WaveOne (WO) Primary (Dentsply Maillefer, Ballaigues, Switzerland), Group 4 Unicone (UC) L25 25/0.06 (MEDIN SA, Nové Město na Moravě, Czech Republic), Group 5 One Shape (OS) L25 25/0.06 (Micro-Mega SA, Besançon, France), Group 6 K3XF 25/0.06 (Sybron Dental Specialties, Orange, CA, USA), Group 7 Mtwo 25/0.06 (VDW, Munich, Germany), Group 8 ProTaper Universal F2 (PTF2) (Dentsply Maillefer, Ballaigues, Switzerland), and Group 9 BioRaCe (BR3) (FKG Dentaire SA, La Chaux de Fonds, Switzerland). The groups were provided in Table 1.

All experimental groups were subjected to cyclic fatigue resistance test. They were activated by a contra-angle of 6:1 (Sirona Dental Systems GmbH, Bensheim, Germany) coupled to an electric motor handpiece (VDW Silver, VDW Dentsply International Inc., GmbH, Munich, Germany) and adjusted to the torque and speed recommended by the file manufacturer. The instrument rotated freely in a stainless steel metal in angled manner, under constant pressure, with no sliding when activated on the metal. The bumps on the metal were used to mark their position and reduce vibration [Figures 1 and 2].

Through the AutoCAD (Autodesk Inc., San Rafael, CA, USA) software and using the method to determine the curvature of the root canal described by Pruett et al.,[3] it was set an angle of approximately 30° and 23 mm radius of curvature. Using the calculation to determine the curvature described by Schneider in 1971,[9] we obtained a curvature angle of approximately 18° [Figure 3].

Similar to other studies, a synthetic oil (White Lub Multiuso, Orbi Química Ltda., São Paulo, Brazil) was used to reduce friction of the endodontic instrument to the metal after each use.[10,11] All files were driven until fracture. The timing of fracture of each instrument was recorded by a stopwatch (HS-80TW, Casio Computer Co., Inc., Tokyo, Japan) to the thousandth of a second and tabulated. Data were evaluated by analysis of variance (ANOVA) with one factor and

Table 1: Experimental groups

Group	Kinematics	Length/ISO	n
PTX2	Continuous rotation at 300 rpm	25 mm/25/0.06	5
RC	Reciprocation at RC ALL mode (variable taper)	25 mm/25/0.08	5
WO	Reciprocation at WO ALL mode (variable taper)	25 mm/25/0.08	5
UC	Reciprocation at RC ALL mode (variable taper)	25 mm/25/0.06	5
OS	Continuous rotation at 350 rpm (variable taper)	25 mm/25/0.06	5
K3XF	Continuous rotation at 350 rpm (variable taper)	25 mm/25/0.06	5
Mtwo	Continuous rotation at 280 rpm (variable taper)	25 mm/25/0.06	5
PTF2	Continuous rotation at 300 rpm (variable taper)	25 mm/25/0.08	5
BR3	Continuous rotation at 600 rpm (variable taper)	25 mm/25/0.06	5

PTX2=ProTaper Next X2, RC=Reciproc, WO=WaveOne, UC=Unicone, OS=One Shape, PTF2=ProTaper Universal F2, BR3=BioRaCe

Indian Journal of Dental Research, 27(3), 2016
followed by Tukey’s honest significant difference (HSD) post hoc test in software (SPSS 20.0 for Windows, SPSS Inc., Chicago, IL, USA). Statistical significance was set at $P < 0.05$.

RESULTS

Descriptive statistics for the experimental groups are listed in Table 2.

PTX2 had the longest cyclic fatigue resistance mean time, followed by the files RC, WO, UC, OS, K3XF, Mtwo, PTF2, and BR3.

Using ANOVA, the results showed that the groups PTX2, RC, WO, and UC were significantly more resistant to cyclic fatigue than the other experimental groups ($P < 0.001$) but with a mean difference of no significant time with each other. The groups OS and K3XF showed no statistical difference between them ($P > 0.05$) but were shorter cyclic fatigue resistance mean time than the groups PTX2, RC, WO, and UC, however, higher than the groups BR3, PTF2, and Mtwo ($P < 0.01$). The average time of fracture of the Groups 1–3 had no statistically significant difference between them although they were significantly less resistant to cyclic fatigue than the other groups ($P < 0.01$) [Table 3].

DISCUSSION

The purpose of this study was to compare the cyclic fatigue resistance among nine NiTi files, under continuous rotation and reciprocating motion, in each group using the manufacturer’s recommendations. These instruments are commonly used in endodontic practice today because they offer many advantages over conventional stainless steel files; they are more flexible and have increased cutting efficiency.\[12\]

However, despite these advantages, NiTi instruments appear to have a high risk of separation during use,\[13\] which can be by cyclic or torsional fatigue.\[3,4\] Considering the cyclic fatigue fracture, the resistance of these instruments is smaller when their diameter is larger;\[2\] so the diameter of the instruments was standardized in this study.

The influence of cross-section, alloy type, and type of driving motion on the cyclic fatigue strength of NiTi instruments has been the object of several recent studies.\[14,15\] Nevertheless, how and why the design of the instrument might influence its behavior under cyclic fatigue stress remains unclear. Cheung and Darvell\[16\] showed, in various instruments, that fatigue strength does not appear to be affected by instrument design, suggesting that neither the cross-sectional area nor the shape of an instrument is the primary determinant of its fatigue life.

However, other studies have suggested that difference in cross section appears to be an important determinant of cyclic fatigue strength across different files.\[8,17,18\] In a study conducted by Plotino et al.,\[14\] RC instruments exhibited significantly greater fatigue strength than WO instruments, which suggests that this difference may be related to the differences in cross-sectional area and reciprocating motion between the two systems. Earlier studies also demonstrated the superiority of RC instrumentation over the WO system in fatigue strength testing\[14,19,20\] and have shown that the angles employed in instrument motion have a direct influence on cyclic fatigue.\[21\] Kiefner et al.\[22\] believe another factor that enhances strength in RC and WO instruments is the type of alloy used in their manufacture. The authors showed that a synergistic effect between the M-Wire alloy and reciprocating motion provides a significant increase in cyclic fatigue strength.

Dagna et al.\[23\] compared the cyclic fatigue resistance to RC R25 (VDW), WO Primary (Dentsply), OS (Micro-Mega), and ProTaper F2 (Dentsply), testing 40 instruments of each group. According to the authors, RC R25 (VDW) showed greater resistance to cyclic fatigue, followed by OS (Micro-Mega) and WO (Dentsply) with similar values, and ProTaper F2 (Dentsply), respectively. These results conflict with those of the present study, which did not show significant differences between RC R25 (VDW) and WO Primary (Dentsply), but they performed better than the other two groups, which also obtain no significant difference between them; however, Dagna et al.\[23\] did their experiment simulating different curvatures, and their results

Table 2: Descriptive statistics with mean time values in hundredth of a second

Group	n	Mean	SD	SE	95% CI for mean Lower bound	Upper bound	Minimum	Maximum
PTX2	5	1254.770	313.777	140.325	865.165	1644.376	947.646	1596.810
RC	5	1130.601	192.760	86.205	891.258	1369.944	963.055	1453.082
WO	5	1029.462	116.215	51.973	885.162	1173.763	917.564	1190.563
UC	5	1003.998	264.552	118.311	675.514	1332.482	725.682	1369.944
OS	5	468.104	29.628	13.250	431.316	504.893	426.476	504.148
K3XF	5	414.315	206.560	92.377	157.836	670.794	234.445	650.348
Mtwo	5	215.198	31.557	14.113	176.014	254.381	170.625	254.009
PTF2	5	187.935	24.460	10.939	157.564	218.306	150.063	211.285
BR3	5	159.508	20.980	9.383	133.457	186.558	139.776	186.725
Total	45	651.543	453.463	67.598	515.308	787.779	139.776	1596.810

PTX2=ProTaper Next X2, RC=Reciproc, WO=WaveOne, UC=Unicone, OS=One Shape, PTF2=ProTaper Universal F2, BR3=BioRaCe, SD=Standard deviation, SE=Standard error, CI=Confidence interval
Cyclic fatigue resistance of endodontic systems

Table 3: Mean times and statistical differences between each group

Group	n	Mean time (thousandth of a second)
PTX2	5	1254.770
RC	5	1130.601
WO	5	1029.462
UC	5	1003.998
OS	5	468.104
K3XF	5	414.315
Mtwo	5	215.198
PTF2	5	187.935
BR3	5	159.508

Groups with the same letter do not significantly differ (level of significance=5%).
PTX2=ProTaper Next X2, RC=Reciproc, WO=WaveOne, UC=Unicone, OS=One Shape, PTF2=ProTaper Universal F2, BR3=BioRaCe

CONCLUSION

Following the methodology employed, it can be concluded that the instruments PTX2 (Dentsply), RC R25 (VDW), WO Primary (Dentsply), and UC L25 25/0.06 (Medin) are more resistant to cyclic fatigue than OS L25 25/0.06 (Micro-Mega), K3XF 25/0.06 (Sybro), Mtwo 25/0.06 (VDW), PTF2 (Dentsply), and BR3 (FKG), when using the manufacturers recommendations to speed and torque.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Iqbal MK, Kohil MR, Kim JS. A retrospective clinical study of incidence of root canal instrument separation in endodontics graduate program: A PennEndo database study. J Endod 2006;32:1048-52.
2. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 2004;30:722-5.
3. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85.
4. Berutti E, Chiandussi G, Paolino DS, Scotti N, Cantatore G, Castellucci A, et al. Canal shaping with WaveOne primary reciprocating files and ProTaper system: A comparative study. J Endod 2012;38:505-9.
5. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161-5.
6. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031-43.
7. Peters OA, Barbakow F. Dynamic torque and apical forces of ProFile. 04 rotary instruments during preparation of curved canals. Int Endod J 2002;35:379-89.
8. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e106-14.
9. Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;35:271-5.
10. Capar ID, Ertas H, Arslan H. Comparison of cyclic fatigue resistance of nickel-titanium coronal flaring instruments. J Endod 2014;40:1182-5.
11. Pedullà E, Grande NM, Plotino G, Pappalardo A, Rapisarda E. Cyclic fatigue resistance of three different nickel-titanium instruments after immersion in sodium hypochlorite. J Endod 2011;37:1139-42.
12. Kim HC, Kwak SW, Cheung GS, Ko DH, Chung SM, Lee W. Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 2012;38:541-4.
13. Arens FC, Hoen MM, Steinman HR, Dietz GC Jr. Evaluation of single-use rotary nickel-titanium instruments. J Endod 2003;29:666-4.
14. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigue of reciproc and WaveOne reciprocating instruments. Int Endod J 2012;45:614-8.
15. Pedullà E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod 2013;39:258-61.
16. Cheung GS, Darvell BW. Low-cycle fatigue of NiTi rotary instruments of various cross-sectional shapes. Int Endod J 2007;40:626-32.
17. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from...
two nickel-titanium rotary systems. Int Endod J 2006;39:755-63.
18. Ray JJ, Kirkpatrick TC, Rutledge RE. Cyclic fatigue of EndoSequence and K3 rotary files in a dynamic model. J Endod 2007;33:1469-72.
19. Pedullà E, Franciosi G, Ounsi HF, Tricarico M, Rapisarda E, Grandini S. Cyclic fatigue resistance of nickel-titanium instruments after immersion in irrigant solutions with or without surfactants. J Endod 2014;40:1245-9.
20. Higuera O, Plotino G, Tocci L, Carrillo G, Gambarini G, Jaramillo DE. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals. J Endod 2015;41:913-5.
21. Saber Sel D, Abu El Sadat SM. Effect of altering the reciprocation range on the fatigue life and the shaping ability of WaveOne nickel-titanium instruments. J Endod 2013;39:685-8.
22. Kiefner P, Ban M, De-Deus G. Is the reciprocating movement per se able to improve the cyclic fatigue resistance of instruments? Int Endod J 2014;47:430-6.
23. Dagna A, Poggio C, Beltrami R, Colombo M, Chiesa M, Bianchi S. Cyclic fatigue resistance of OneShape, Reciproc, and WaveOne: An in vitro comparative study. J Conserv Dent 2014;17:250-4.
24. Gavini G, Caldeira CL, Akisue E, Candeiro GT, Kawakami DA. Resistance to flexural fatigue of Reciproc R25 files under continuous rotation and reciprocating movement. J Endod 2012;38:684-7.
25. Saber SE, Nagy MM, Schäfer E. Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int Endod J 2015;48:131-6.
26. Paqué F, Musch U, Hülsmann M. Comparison of root canal preparation using RaCe and ProTaper rotary Ni-Ti instruments. Int Endod J 2005;38:8-16.