A case report and literature review of heterotopic mesenteric ossification

Raad M.M. Althaqafi, Sara Ahmad Assiri, Rawan Abdulrahman Aloufi, Fawaz Althobaiti, Budur Althobaiti, Mohammad Al Adwani

Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia

College of Medicine, Taif University, Taif, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 24 March 2021
Received in revised form 17 April 2021
Accepted 19 April 2021
Available online 27 April 2021

Keywords:
Case report
Abdominal surgery
Mesenteric ossification

A B S T R A C T

Introduction and importance: Heterotopic mesenteric ossification is a benign bony tissue growth in the mesentery that mostly follows repetitive or severe abdominal injuries leading to reactive bone formation in the mesentery. There are only 73 cases (51 publications) identified in the literature up to the beginning of 2020.

Case presentation: 45-year-old Saudi male underwent multiple laparotomies to manage complicated appendicitis which ended with a diverting ileostomy and a colostomy as a mucus fistula. After 9 months, the patient was admitted to the General Surgery department in Al-Hada Armed Forces Hospital for an open ileostomy and colostomy reversal surgery where several irregular bone-like tissues of hard consistency and sharp edges with some spindle-shaped structures resembling needles were found in the mesentery of the small intestine and histopathology revealed of trabecular bone fragments confirming the diagnosis.

Clinical discussion: The majority of cases occur mid to late adulthood with a predilection in the male gender, and usually present with bowel obstruction or an enterocutaneous fistula. Although it has no malignant potential, it may cause severe bowel obstruction that can lead to mortality, it’s a rare occurrence and, therefore, is difficult to diagnose among many common abdominal disturbances.

Conclusion: Here we report a rare case of heterotopic mesenteric ossification, which should be considered as one of the delayed complications of abdominal surgery or trauma. The time range of expecting the presentation of heterotopic mesenteric ossification following major abdominal trauma or surgery should be extended and continuously considered during differential diagnosis.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Heterotopic mesenteric ossification (HMO) is a benign bony tissue growth in the mesentery that mostly follows repetitive or severe abdominal injuries leading to reactive bone formation in the mesentery [1]. It is an abdominal catastrophe, and it requires multiple abdominal surgeries to manage. There are only 73 cases (51 publications) identified in the literature up to the beginning of 2020. The pathogenesis of the HMO is currently not well recognized, it is thought to be formed by the stimulation of mesenchymal osteoprogenitor stem cells to differentiate into osteoblasts due to mechanical trauma, ischemia, or intra-abdominal infection [2]. It is also assumed to be caused by implantation of bone periosteum into soft tissue [3].

The majority of cases occur mid to late adulthood with a predilection in the male gender, and usually present with bowel obstruction or an enterocutaneous fistula [4,5]. Although HMO has no malignant potential, it may cause severe bowel obstruction that can lead to mortality in already sick patients [6]. The usual time elapsed from the time of the predisposing trauma to operation ranged from 2 to 4 weeks. However, this might extend to 7 years after the initial insult [1]. Because HMO is a rare occurrence and, therefore, is difficult to diagnose among many common abdominal disturbances, here we present a case of a 45-year-old Saudi male with a typical HMO discovered 9 months after right hemicolecotomy in addition to a comprehensive literature review of similar published cases since it was first described in 1983 until 2020.

This work has been reported in line with the SCARE 2020 criteria [7].

2. Case presentation

A 45-year-old Saudi male presented to the emergency department of a local hospital in March of 2018 with a typical picture of acute appendicitis; he was admitted for an open appendectomy. Intraoperatively, they discovered a perforated appendix; histopathology revealed a severely inflamed perforated appendix. After 4 days, his first operation was complicated by a feculent discharge from the peritoneal drain due to a complicated cecal fistula with a septic clinical picture. He was admitted for an exploratory laparotomy, and segmental resection of the involved bowel with primary anastomosis was done. Two days after
the second operation, he had an anastomotic leak with peritonitis, and he had feculent discharge from the wound site and the peritoneal drain; he was shifted to the operating room for an exploratory laparotomy where a right hemicolectomy was done with primary anastomosis.

On the seventh day, and despite the two operative attempts, the patient had intraperitoneal dissemination of fecal material and generalized peritonitis for the third time; he was sent for an exploratory laparotomy where a diverting ileostomy and a colostomy as a mucus fistula was done.

The patient did not have any remarkable family history, he is medically free, not a smoker or alcoholic and doesn’t have any significant medical history.

After 9 months, the patient was admitted to the General Surgery department in Al-Hada Armed Forces Hospital for an open ileostomy and colostomy reversal surgery. His abdominal examination revealed a normal soft and lax abdomen with a right ileostomy and left colostomy openings. On admission to Al-Hada Hospital, his white blood cell count was $6.12 \times 10^9/l$, mostly lymphocytes ($3.27 \times 10^9/l$). His hemoglobin was 146 g/l, platelet count was $370 \times 10^9/l$. C-reactive protein (CRP) was 1.5 mg/l, erythrocyte sedimentation rate (ESR) was 15 mm/h. Carcinoembryonic antigen (CEA) was 0.9 ng/ml.

White blood cell count normal range is 4 to $11 \times 10^9/l$, lymphocytes normal range is 0.1 to $1.1 \times 10^9/l$. Hemoglobin normal range is 135 to 180 g/l. Platelets normal range is 150 to $400 \times 10^9/l$, C-reactive protein normal range is 0.0 to 5.0 mg/l, erythrocyte sedimentation rate (ESR) normal range is 0.0 to 10.0 mm/h, and Carcinoembryonic antigen (CEA) normal range is 0.0 to 5.0 ng/ml.

Pre-operative abdominal computerized tomography (CT) with the contrast given intravenously, orally, rectally, and through the ileostomy. The axial CT view is shown in (Fig. 1). The coronal and sagittal CT views are shown in (Fig. 2).

Pre-operative abdominal CT insured a patent passage of the bowel. But the calcified densities and fat stranding opacities were thought to be related to post-operative changes. Intraoperatively, laparotomy under general anesthesia showed adhesions and several irregular

Abbreviations

Abbreviation	Description
HMO	Heterotopic mesenteric ossification
HO	Heterotopic ossification
CRP	C-reactive protein
ESR	Erythrocyte sedimentation rate
CEA	Carcinoembryonic antigen
CT	Computerized tomography
BMPs	Bone morphogenic proteins

Fig. 1. Abdominal computerized tomography (CT) with the contrast. (a) Axial view of the mesentery shows irregular dense calcified shadows (white arrow) not connected to the adjacent bowel surface. (b) Axial view shows ill-defined diffuse fat stranding opacities (white arrow).

Fig. 2. Abdominal computerized tomography (CT) with the contrast. (a) Coronal view of the mesentery shows diffuse focal fat opacification of the mesentery with intervening dense calcified densities (white arrow). (b) Sagittal view shows very thin dense shadows appear longitudinal in position (white arrow) with surrounding mesenteric focal stranding opacity at the site related to previous operations.
bone-like tissues of hard consistency and sharp edges with some spindle-shaped structures resembling needles were found on the mesentery of the small intestine (Fig. 3). All the bone-like tissues were carefully removed.

The bone-like tissues were examined histologically (Fig. 4). It showed trabecular bone fragments, suggestive of heterotopic ossification. Post-operatively, the patient was advanced slowly to a normal diet, and he improved gradually. The patient’s last follow-up was in January 2021; he showed complete recovery with no complications.

3. Discussion and conclusion

Heterotopic mesenteric ossification (HMO) was first reported in the literature in 1983, where three patients developed heterotopic mesenteric ossification after abdominal surgery [8,9]. Ectopic calcification is classified histologically into dystrophic calcification (where deposition of calcium happens without osteoblasts) and heterotopic ossification (which differs from dystrophic calcification by the presence of osteoblasts and lamellar bone) [2]. Before 1983, multiple reports of ossification in the abdominal wall due to scars from previous laparotomies were published, and in 1973 a theory was proposed to explain the pathogenesis of abdominal scars heterotopic ossification, which is the differentiation of multipotent embryonic cells [10]. The differentiation of multipotent mesenteric cells as a result of trauma or abdominal surgery can be applied in our case. To date, there is no strong evidence to prove this theory. Another theory was introduced in 1975 in which heterotopic bone formation of laparotomy scars was theorized to result from osteogenic cells deposition from bones adjacent to the scar [11]. Symphysis pubis or xiphoid process irritation during the vertical abdominal incision can lead to periosteal cell implantation, which can be supported by the fact that when horizontal and vertical incisions are made in one patient, the vertical incision is the one that develops calcification [12]. In our case, where the heterotopic ossification developed in the mesentery, this theory can be challenged due to the lack of pre-formed ossified bone around the mesentery.

HMO is extremely difficult to diagnose in patients presenting with abdominal pain and discomfort due to its rare occurrence and very low frequency worldwide. The diagnosis of mesenteric heterotopic ossification can be challenging: abdominal CT scans can help in identifying it preoperatively; however, the differentiation between dystrophic calcification, bone neoplasms, a leakage of contrast, foreign material, or extra-skeletal osteosarcoma from mesenteric heterotopic ossification can be difficult [13]. The only way to reach the definitive diagnosis is through excision and histopathological analysis [14].

We performed an extensive literature search of the Medline and Embase databases for articles published from 1983 up to 2020. No language restrictions were applied, and reference lists of all included studies were manually searched for other potentially eligible studies. We identified only 51 published case reports, including a total of 73 cases. One of whom was an 11-year-old child (Table 1). About (90%) of all the reported cases of mesenteric ossification were males, with a mean age of 48.38 ± 18.27; the most common presenting symptom was bowel obstruction (41%). About (16.4%) of the cases were discovered incidentally by imaging, while (13.7%) of the cases were discovered during surgery. Most (80%) of the reported cases had a surgical history of laparotomy, and (71.2%) of the ossification developed in the mesentery. Detailed statistical analysis of all reported cases is shown in (Table 2). The current case is in line with the majority of HMO cases, with a history of abdominal surgery that has preceded the formation of HMO.

The time that passed from the last surgical operation to the intra-operative discovery of HMO in the current case was 9 months. The time required for the formation and appearance of HMO clinical
symptoms is not exactly known but ranged from 2 weeks to 2 years [15]. Although HMO is rarely encountered, due to the increased cases reported in the last decade, it should be considered in the differential diagnosis in patients presenting with intestinal obstruction or if dense calcified shadows were observed on abdominal CT in patients who underwent previous abdominal trauma or surgeries.

Bone morphogenic proteins (BMPs) are multifunctional cytokines that are a part of the transforming growth factor-β family released from inflammatory cells at the site of inflammation, injury, wounds, or sepsis, and have been reported to stimulate the formation of abnormal cartilage and bone tissues [16,17]. BMP and its signalling were observed to be increased in experimental models of trauma-induced heterotopic ossification (HO); meanwhile, BMP antagonism has been shown to decrease HO expansion. Anticipated HO formation after abdominal surgical operations was prevented by the use of anti-inflammatory [18]. Interestingly, rapamycin, which decreases inflammatory signalling through inhibition of the mTOR mechanism of activation, was reported to alleviate HO formation [19]. Moreover, the levels of both local and systemic inflammatory markers were suggested to be increased in traumatic HO as there is a positive correlation between inflammatory cytokines levels and the likelihood of HO formation [20].

In our case, the patient was admitted with severe abdominal pain that reoccurred with each complication and necessitated multiple surgeries. This pain is sensed by substance P, a member of the tachykinin peptide family, that was demonstrated to transmit nociceptive sensation via primary sensory fibres to the spine and brainstem [21]. This substance P was demonstrated to increase and mediate BMP-dependent HO formation [22]. The serum level of substance P is elevated in HO patients, and serum from neurogenic HO mice was demonstrated to induce osteogenic transformation of mesenchymal progenitor cells in vitro [23].

Mesenteric ossification can recur after the removal of the mesenteric bony fragments surgically; calcium and alkaline phosphatase levels can predict the recurrence. If the patient had a low calcium level and a high alkaline phosphatase level, which might indicate an ongoing process of osteogenesis and an active osteoblast [2]. Our patient had normal calcium and alkaline phosphatase levels preoperatively (Fig. 5), suggesting that mature ossified bones has already been formed, which is confirmed by histopathology.

Among the 52 HMO cases presented in the literature, only five cases showed elevated levels of alkaline phosphatase, of which four cases presented 3 weeks after the predisposing trauma or surgery while the patient in the current case was admitted 9 months after the inciting operation. This might indicate the vast variation in the speed of the HMO pathogenesis from case to case, which might be attributed to the levels of inflammation during and after the surgeries, amount of released cytokine, and the ability of the body to control and adjust the orchestra of inflammation. Moreover, the pathogenesis of the HMO might be accelerated or delayed depending on the post-operative management of the case, as precise management through proper anti-inflammatory drugs might prevent or delay the pathogenesis course of the HMO. Additionally, the delayed formation of the HMO, as we encountered in the current case, might indicate the need for long-time management with continuous monitoring of the serum inflammatory cytokines even after the subside of the pain associated with the surgical operation as to continue controlling the inflammatory milieu to avoid delayed HMO formation.

4. Conclusion

In summary, here we report a rare case of HMO, which should be considered as one of the delayed complications of abdominal surgery or trauma. The time range of expecting the presentation of HMO following major abdominal trauma or surgery should be extended and continuously considered during differential diagnosis, especially when there is a history of previous surgery or trauma. Diagnosis of HMO should be based mainly on the characteristic radiographic findings without relying on the level of alkaline phosphatase, which is elevated only in the period of active osteogenic stag. Continuous monitoring and controlling of the inflammatory cytokines not only for a short time post-operatively but for an extended period may prevent or delay the HMO formation.

Sources of funding

No funding was received.

Ethical approval

The study was approved by the Research Ethics Committee at Al-Hada Armed Forces Hospital and is available upon request from the corresponding author. (reference number, 19200).
Table 1

Year	Authors	Age	Gender	Surgical History	Presenting symptoms	Site
1983	Hanes et al. [8]	55	Male	Coloprotectomy for severe ulcerative colitis	Bowel obstruction	Mesentery & omentum
1989	Lemeshov et al. [9]	44	Male	Laparotomy for small bowel obstruction	Bowel obstruction	Mesentery & omentum
1992	Yannopoulos et al. [24]	63	Male	Aortic bifemoral bypass & and two laparotomies	Bowel obstruction	Mesentery & omentum
1999	Wilson et al. [25]	75	Male	Repair of an abdominal aortic aneurysm	Bowel obstruction	Mesentery & omentum
2000	Marucci et al. [26]	25	Male	Laparotomy	Bowel obstruction	Mesentery & omentum
2001	Hakim et al. [27]	50	Male	Nephrectomy and left colon resection with a colostomy	Bowel obstruction	Mesentery & omentum
2003	Lai et al. [28]	60	Male	Emergent laparotomy with total colectomy and end ileostomy	Mass & discomfort in the peri-ileostomy region	Mesentery & omentum
2004	Bovo et al. [29]	76	Male	No Surgical History	Bowel obstruction	Mesentery & omentum
2005	Tonino et al. [13]	39	Male	Abdominal gunshot injury managed Laparotomy with partial resection of small bowel and colon, and construction of a temporary ileostomy followed by Laparotomy for enterocutaneous fistulae reconstruction of an umbilical hernia and cholecystectomy and Proctectomy	Bowel obstruction & mild renal failure	Mesentery & omentum
2006	Goullo et al. [30]	26	Male	Blunt abdominal Trauma followed by 50-cm distal ileum resections and a temporary ileostomy	Bowel obstruction	Mesentery & omentum
2007	Jacob et al. [37]	26	Male	Post Blunt abdominal trauma and Laparotomy for abdominal compartment syndrome, distal ileum and ascending colon were resected due to intestinal ischemia.	Bowel obstruction + peritonitis	Mesentery & omentum
2009	Vlachos et al. [38]	42	Male	Two Laparotomies due to massive hematemeses with total gastrectomy with a Roux-en-Y oesophagogaestroduodenal anastomosis	Uncontrollable septic fever,	Omentum
2010	Abensur et al. [39]	67	Female	Uterine leiomyoma removal	Dysuria, urinary incontinence and nocturia	Mesentery
2011	Hayashi et al. [40]	40	Male	Exploratory laparotomy twice for suspect intraperitoneal hemorrhage and small bowel resection	Bowel obstruction	Mesentery
2012	Shi et al. [42]	39	Male	Left hemicolectomy was performed for the treatment of descending colon adenocarcinoma	Bowel obstruction	Omentum
2012	Reynoso et al. [43]	59	Female	Complicated gynecologic laparoscopic oophorectomy, abdominal sepsis, multiple small-bowel resections, and skin grafting for an open abdomen	Persistent enterocutaneous fistulae	Mesentery
2013	Baker et al. [44]	29	Female	Abdominal gunshot wound managed by right hemicolectomy, right nephrectomy, Whipple procedure with pancreatic and duodenal resection, repair of inferior vena cava, and provisional ostomy in the midline abdominal wound	Bowel obstruction	Mesentery & omentum
2014	Androulaki et al. [31]	74	Male	Reconstruction of an umbilical hernia and cholecystectomy and Proctectomy	Bowel obstruction	Mesentery & omentum
2015	Kao et al. [32]	60	Male	Hartmann procedure with ileostomy for treatment of diverticulitis	Bowel obstruction	Mesentery & omentum
2016	Zamolyi et al. [34]	43	Male	Almost all had previous abdominal surgery	Bowel obstruction	Mesentery & omentum
2017	Como et al. [36]	51	Male	Abdominal gunshot injury managed Laparotomy and transverse colon resection with end colostomy, then re-explored again due to extensive necrosis then developed and abdominal fistula	Bowel obstruction	Mesentery & omentum

(continued on next page)
Table 1 (continued)

Year	Authors	Age	Gender	Surgical History	Presenting symptoms	Site
2013	Ioannidis et al. [45]	31	Male	Splenic, diaphragmatic, colonic, and small bowel injuries	No symptoms discovered	Mesentry and Omentum
				sustained in a motor vehicle collision, requiring partial colectomy		
				Spleenectomy and open cholecystectomy	Esophagotracheal fistula	Peritoneum
					Bowel obstruction	Mesentry
	Jhanwar et al. [46]	25	Male	No Surgical History	Entero-cutaneous fistula	Mesentry
				Intestinal resection due to perforated diverticulitis, then the		
				patient developed an enterocutaneous fistula		
	Torgersen et al. [14]	11	Male	No Surgical History	No symptoms discovered	Mesentry
				Intestinal resection due to perforated diverticulitis, then the	Esophagotracheal fistula	Peritoneum
				patient developed an enterocutaneous fistula	Bowel obstruction	Mesentry
	Ma et al. [12]	53	Male	Emergency temporary ileostomy for the hemorrhagic Meckel's diverticula	Discovered incidentally in the OR	Mesentry
				with anastomotic fistula following right		
	Nabulyato et al. [47]	47	Male	Emergency cecectomy and loop ileostomy procedures for	Discovered incidentally in the OR	Mesentry
				peritonitis secondary to “spontaneous” sigmoid colon		
				perforation		
2014	Honjo et al. [48]	88	Male	Abdominal aortic repair, followed by a second operation for an	Bowel obstruction	Mesentry
				ileus tube insertion into the jejunum		
	Caitlin et al. [49]	32	Male	Stab wound to the abdomen requiring exploratory laparotomy	Intermittent abdominal pain	Mesentry
				with small bowel resection		
	Obeid et al. [57]	36	Male	Bullet injury to the abdomen and multiple subsequent	Vague abdominal discomfort and foul-smelling discharge	Mesentry
				laparotomies, complicated by a complex abdominal wall hernia	from abdominal wall defect	
				with enterocutaneous fistula		
	Nerus et al. [50]	64	Male	Blunt abdominal trauma, colectomy with primary anastomosis	Discovered incidentally in the OR	Mesentry
2015	Bakoš et al. [51]	30	Male	Four Abdominal Surgeries	No symptoms discovered incidentally by imaging	Mesentry
	Schiergens et al. [52]	34	Male	Colonic perforation with severe fecal peritonitis followed by a	No symptoms discovered incidentally by imaging	Facia and mesentry
				Hartmann procedure		
	Christopher Vytlačil et al. [53]	58	Male	Sigmoid colectomy for stage 2 colon adenocarcinoma	Bowel obstruction	Mesentry
	Nashed et al. [1]	24	Male	Sigmoid resection followed by another surgery of transverse colostomy	Entero-cutaneous fistulas	Mesentry
	Penve et al. [54]	49	Male	Numeral exploratory laparotomies performed after a blunt abdominal trauma	No symptoms discovered incidentally by imaging	Mesentry
2016	Herrera-Toro et al. [55]	14	Male	Neonatal colostomy and then posterior sagittal anorectoplasty.	No symptoms discovered incidentally by imaging	Mesentry
				In addition to a Surgical decompression of tethered spinal cord		
				syndrome.		
	Musatto et al. [56]	55	Male	Sigmoid colon resection and washout due to perforated sigmoid	Discovered incidentally in the OR	Mesentry
				diverticulitis and fecal peritonitis		
	Sapalidis et al. [57]	60	Male	Exploratory laparoscopy for intestinal obstruction,	Discovered incidentally in the OR	Mesentry
				Sigmoidectomy		
	Georgios Sahsamanis et al. [58]	55	Male	Hartmann’s colostomy	Discovered incidentally in the OR	Mesentry & peritoneum
	Sun et al. [59]	35	Male	Hartmann’s procedure followed by delayed abdominal closure	Discovered incidentally in the OR	Mesentry & peritoneum
2017	Ferreira et al. [5]	45	Male	Segmental enterectomy and temporary ileostomy and	No symptoms discovered incidentally by imaging	Mesentry and abdominal wall
				subsequent multiple surgeries with small bowel resection		
						Mesentry and abdominal wall
2018	Matthew Amalfitano et al. [60]	70	Male	Hemicolectomy for adenocarcinoma	Post-mortem examination	Mesentry
	Michael et al. [61]	34	Male	Laparotomy for Grade III liver injury and pancreas-c-tail	No symptoms discovered incidentally by imaging	Mesentry
				laceration complicated with transverse colon perforation and		
				duodenal stump leak		
	Bosaily et al. [62]	52	Male	Ileostomy	Discovered incidentally in the OR	Stomal site
	Célik et al. [63]	41	Male	Emergency right nephrectomy, right hemicolecotomy with end	No symptoms discovered incidentally by imaging	Mesenteric, omental, and peritoneal
				ileostomy, and applications of intraabdominal vacuum-assisted		
	2020 Andrea Aurelio et al. [64]	28	Male	No surgical history, patient had a history of blunt thoracic and	Bowel obstruction	Mesentry
				abdominal trauma		

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Guarantor

Sara Ahmad Assiri
Taif University School of Medicine Taif, Saudi Arabia
saraassiriiii@gmail.com
Al Qutbiyyah AT TAF Kingdom of Saudi Arabia

Provenance and peer review

Not commissioned, externally peer-reviewed.
Table 2
Statistical analysis of all reported cases in the literature.

Parameters	Total reported cases (73)
Age mean (SD)	48.38 ± 18.27
Gender	
Male n (%)	66 (90.4)
Female n (%)	5 (6.8)
Not mentioned n (%)	2 (2.7)
Surgical/trauma history	
Laparotomy n (%)	59 (80.8)
Laparotomy due to gunshot wound n (%)	4 (5.5)
Laparotomy due to trauma n (%)	3 (4.1)
Trauma n (%)	2 (2.7)
No surgical history n (%)	5 (6.8)
Clinical presentation	
Bowel obstruction n (%)	30 (41.1)
Mass n (%)	2 (2.7)
Peritonitis n (%)	1 (1.4)
Enterocutaneous fistula n (%)	5 (6.8)
UTI symptoms n (%)	1 (1.4)
Fever n (%)	1 (1.4)
Esophagotracheal fistula n (%)	1 (1.4)
Abdominal pain n (%)	1 (1.4)
Incidental in the OR n (%)	10 (13.7)
Incidental in the imaging n (%)	12 (16.4)
Incidental in the postmortem autopsy n (%)	1 (1.4)
Ossification site	
Mesentery n (%)	52 (71.2)
Omentum n (%)	5 (6.8)
Mesentery and omentum n (%)	8 (11)
Mesoappendix n (%)	1 (1.4)
Colon n (%)	1 (1.4)
Mesentery and peritoneum n (%)	1 (1.4)
Mesentery and abdominal bowel n (%)	3 (4.1)
Mesentery and peritoneum and omentum n (%)	1 (1.4)
Stomal site n (%)	1 (1.4)

CRediT authorship contribution statement

Sara Assiri and Raad Althaqfi led the writing of the case report and literature review, Rawan Alouf, Fawaz Althobaiti, Budur Althobaiti, and Mohammad Al Adwani assisted with writing and revision of the manuscript. All authors read and approved the final manuscript.

Declaration of competing interest

No conflict of interest.

Acknowledgement

We are extremely grateful for the Research Ethics Committee, dr. Huma Aslam from Histology department and Hanady H. Kewan from radiology department at Al-Hada Armed Forces Hospital Taif city, Saudi Arabia. For facilitating obtaining required data.

References

[1] B. Nashed, W. High, S. Tahir, C. Quijano, S. Jones, Incidental heterotopic mesenteric ossifications, J. Curr. Surg. 5 (Sep. 2015) . Available at https://www.currentsurgery.org/index.php/jcs/article/view/273/228.
[2] M.A. Myers, J.P. Minton, Heterotopic ossification within the small-bowel mesentery, Arch. Surg. 124 (8) (1989) 982–983, https://doi.org/10.1001/archsurg.1989.0140080118020.
[3] E.F. McCarthy, M. Sundaram, Heterotopic ossification: a review, Skelet. Radiol. 34 (2005) 609–619.
[4] Caitlin W. Hicks, Catherine G. Velopulos, Justin M. Sacks, Mesenteric calcification following abdominal stab wound, Int. J. Surg. Case Rep. 5 (8) (2014) 476–479, https://doi.org/10.1016/j.ijscr.2014.05.017.
[5] C. Ferreira, C. Gomes, A. Melo, et al., Heterotopic mesenteric and abdominal wall ossification - two case reports in one institution, Int. J. Surg. Case Rep. 37 (2017) 22–25, https://doi.org/10.1016/j.ijscr.2017.06.004.
[6] R.M. Patel, S.W. Weiss, A.L. Folpe, Heterotropic mesenteric ossification: a distinctive pseudosarcoma commonly associated with intestinal obstruction, Am. J. Surg. Pathol. 30 (1) (2006 Jan) 119–122, https://doi.org/10.1097/01.pas.0000184820.71752.019.
[7] R.A. Agha, T. Franchi, C. Sohnh, G. Mathew, for the SCARE Group, The SCARE 2020 guideline: updating consensus Surgical Case Report (SCARE) guidelines, Int. J. Surg. (2020) 84 (article in press).
[8] O. Hanesc, F. Sim, P.F. Marton, O.P.N. Gruner, Heterotopic ossification of the intestinal mesentery, Pathol. Res. Pract. 176 (1983) 125–130.
[9] Y. Lemeshev, C.J. Lahr, J. Denton, S.P. Kent, A.G. Diethelm, Heterotopic bone formation associated with intestinal obstruction and small bowel resection, Ala. J. Med. Sci. 20 (3) (1983 Jul) 314–317 PMID: 6225346.
[10] A. Eidelman, M. Waron, Heterotopic ossification in abdominal operation scars, Arch. Surg. 107 (1973) 87–88.
[11] B.T.H. Marteinsson, J.E. Musgrove, Heterotropic bone formation in abdominal incisions, Am. J. Surg. 130 (1975) 23–25.
[12] Jin-ping Ma, Meng-fei Xian, Bing Liao, Gui-xun Hong, Yu-long He, Wen-hua Zhan, Postoperative heterotopic mesenteric and incision ossification, Chin. Med. J. 126 (10) (October 5, 2013) 3799–3800, https://doi.org/10.3760/cma.j.issn.0366-6999.20131348.
[13] B.A. Tonino, H.G. van der Meulen, K.C. Kuijpers, W.M. Mallens, A.P. van Gils, Heterotopic mesenteric ossification: a case report (2004:10b), Eur. Radiol. 15 (1) (2005 Jan) 195–197, https://doi.org/10.1007/s00330-004-2464-415709240.

Fig. 5. Calcium and alkaline phosphatase progression. The progression of calcium and alkaline phosphatase levels during our case’s admission and before discovering the ossified mesenteric bones intraoperatively. All readings were within normal suggesting that a mature ossified bone fragments are already formed.
