Symmetric Graphicahedra

Maria Del Río-Francos, Isabel Hubard, Deborah Oliveros
Instituto de Matemáticas
Universidad Nacional Autónoma de México, México

Egon Schulte
Department of Mathematics
Northeastern University, Boston, USA

May 2, 2014

Abstract

Given a connected graph G with p vertices and q edges, the G-
graphicahedron is a vertex-transitive simple abstract polytope of rank q
whose edge-graph is isomorphic to a Cayley graph of the symmetric group
S_p associated with G. The paper explores combinatorial symmetry prop-
nerties of G-graphicahedra, focussing in particular on transitivity proper-
ties of their automorphism groups. We present a detailed analysis of the
graphicahedra for the q-star graphs $K_{1,q}$ and the q-cycles C_q. The C_q-
graphicahedron is intimately related to the geometry of the infinite Eu-
clidean Coxeter group \tilde{A}_{q-1} and can be viewed as an edge-transitive tessel-
ation of the $(q-1)$-torus by $(q-1)$-dimensional permutahedra, obtained
as a quotient, modulo the root lattice A_{q-1}, of the Voronoi tiling for the
dual root lattice A_{q-1}^* in Euclidean $(q-1)$-space.
1 Introduction

In the present paper, we continue the investigation of [1] of an interesting class of abstract polytopes, called graphicahedra, which are associated with graphs. Any finite connected graph G determines a G-graphicahedron. When G has p vertices and q edges, this is a vertex-transitive simple abstract polytope of rank q whose edge-graph (1-skeleton) is isomorphic to the Cayley graph of the symmetric group S_p associated with a generating set of S_p derived from G. The graphicahedron of a graph is a generalization of the well-known permutahedron, which is obtained when G is a path. The study of the permutahedron has a rich history (see [8, 17, 21]), apparently beginning with Schoute [19] in 1911; it was rediscovered in Guilbaud & Rosenstiehl [11] and named “permutoédre” (in French).

In this paper, we explore combinatorial symmetry properties of graphicahedra, in particular focussing on graphicahedra with automorphism groups acting transitively on the faces of some given positive rank. We present a detailed analysis of the structure of the graphicahedra for the q-star graphs $K_{1,q}$ and the q-cycles C_q.

The $K_{1,q}$-graphicahedron, with $q \geq 3$, is a regular polytope of rank q with automorphism group $S_{q+1} \times S_q$, all of whose faces of a given rank j are isomorphic to $K_{1,j}$-graphicahedra; in fact, the $K_{1,q}$-graphicahedron is the universal regular polytope with facets isomorphic to $K_{1,q-1}$-graphicahedra and vertex-figures isomorphic to $(q-1)$-simplices. The structure of the C_q-graphicahedron displays a beautiful connection with the geometry of the infinite Euclidean Coxeter group \tilde{A}_{q-1} (see [14, Ch. 3B]), whose Coxeter diagram is the q-cycle C_q. The C_q-graphicahedron, with $q \geq 3$, can be viewed as an edge-transitive tessellation of the $(q-1)$-torus by $(q-1)$-dimensional permutahedra, obtained as a quotient, modulo the root lattice A_{q-1}, of the Voronoi tiling for the dual root lattice A_{q-1}^*, in Euclidean $(q-1)$-space.

The paper is organized as follows. In Section 2 we review basic definitions for polytopes and graphicahedra, and describe face-transitivity properties of G-graphicahedra in terms of subgraph transitivity properties of the underlying graph G. Then Sections 3.1 and 3.2 deal with the graphicahedra for the q-star $K_{1,q}$ and the q-cycle C_q.
2 Face-transitive graphicahedra

An abstract polytope of rank \(n \), or an \(n \)-polytope, is a partially ordered set \(\mathcal{P} \) equipped with a strictly monotone rank function with range \(\{-1, 0, \ldots, n\} \) (see McMullen & Schulte [14, Chs. 2A,B]). The elements of \(\mathcal{P} \) are called faces, or \(j \)-faces if their rank is \(j \). Faces of ranks 0, 1 or \(n-1 \) are also called vertices, edges or facets of \(\mathcal{P} \), respectively. Moreover, \(\mathcal{P} \) has a smallest face (of rank \(-1 \)) and largest face (of rank \(n \)), denoted by \(F_{-1} \) and \(F_n \), respectively; these are the improper faces of \(\mathcal{P} \). Each flag (maximal totally ordered subset) \(\Phi \) of \(\mathcal{P} \) contains exactly \(n+2 \) faces, one of each rank \(j \); this \(j \)-face is denoted by \((\Phi)_j\). Two flags are said to be adjacent if they differ in just one face; they are \(j \)-adjacent if this face has rank \(j \). In \(\mathcal{P} \), any two flags \(\Phi \) and \(\Psi \) can be joined by a sequence of flags \(\Phi = \Phi_0, \Phi_1, \ldots, \Phi_k = \Psi \), all containing \(\Phi \cap \Psi \), such that any two successive flags \(\Phi_{i-1} \) and \(\Phi_i \) are adjacent; this property is known as the strong flag-connectedness of \(\mathcal{P} \). Finally, \(\mathcal{P} \) has the following homogeneity property, usually referred to as the diamond condition: whenever \(F \leq F' \), with rank(\(F \)) = \(j-1 \) and rank(\(F' \)) = \(j+1 \), there are exactly two faces \(F'' \) of rank \(j \) such that \(F \leq F'' \leq F' \). Then, for each flag \(\Phi \) of \(\mathcal{P} \) and each \(j \) with \(j = 0, \ldots, n-1 \), there exists a unique \(j \)-adjacent flag of \(\Phi \), denoted \(\Phi_j \).

If \(F \) and \(F' \) are faces of \(\mathcal{P} \) with \(F \leq F' \), then \(F'/F := \{F'' \in \mathcal{P} \mid F \leq F'' \leq F'\} \) is a polytope of rank \(\text{rank}(F') - \text{rank}(F) - 1 \) called a section of \(\mathcal{P} \). If \(F \) is a vertex of \(\mathcal{P} \), then \(F_n/F \) is the vertex-figure of \(\mathcal{P} \) at \(F \). A chain (totally ordered subset) of \(\mathcal{P} \) is said to be of type \(J \), with \(J \subseteq \{0, \ldots, n-1\} \), if \(J \) is the set of ranks of proper faces contained in it. Flags are maximal chains and are of type \(\{0, \ldots, n-1\} \).

Following standard terminology for convex polytopes (see [10]), an abstract \(n \)-polytope is called simple if the vertex-figure at each vertex is isomorphic to an \((n-1) \)-simplex. (Note here that the terms “simple” in polytope theory and graph theory refer to different properties. An abstract polytope with an edge graph that is a “simple graph” is usually not a simple polytope. However, a simple polytope has a “simple” edge graph.)

A polytope \(\mathcal{P} \) is regular if its automorphism group \(\Gamma(\mathcal{P}) \) is transitive on the flags of \(\mathcal{P} \). We say that \(\mathcal{P} \) is \(j \)-face transitive if \(\Gamma(\mathcal{P}) \) acts transitively on the \(j \)-faces of \(\mathcal{P} \). Every regular polytope is \(j \)-face transitive for each \(j \); however, a polytope that is \(j \)-face transitive for each \(j \) need not be regular. Moreover, for \(J \subseteq \{0, \ldots, n-1\} \) we say that \(\mathcal{P} \) is \(J \)-transitive if \(\Gamma(\mathcal{P}) \) is transitive on the chains of \(\mathcal{P} \) of type \(J \). Note that, if \(\mathcal{P} \) is \(J \)-transitive, then \(\mathcal{P} \) is \(j \)-face transitive for each \(j \in J \); however the converse is not true in general.
We now briefly review the construction of the graphicahedron \mathcal{P}_G, an abstract polytope associated with a finite graph G (see [1] for details).

By a (p, q)-graph we mean a finite simple graph (without loops or multiple edges) that has p vertices and q edges. Let G be a (p, q)-graph with vertex set $V(G) := \{1, \ldots, p\}$ and edge set $E(G) = \{e_1, \ldots, e_q\}$, where $p \geq 1$ and $q \geq 0$ (if $q = 0$, then $E(G) = \emptyset$). If $e = \{i, j\}$ is an edge of G (with vertices i and j), define the transposition τ_e in the symmetric group S_p by $\tau_e := (i \ j)$. Let $T_G := \langle \tau_{e_1}, \ldots, \tau_{e_q} \rangle$; this is the subgroup of S_p generated by the transpositions determined by the edges of G. If G is connected, then $T_G = S_p$. More generally, if $K \subseteq E(G)$ we let $T_K := \langle \tau_e \mid e \in K \rangle$; this is the trivial group if $K = \emptyset$.

In defining \mathcal{P}_G, we initially concentrate on the faces of ranks $0, \ldots, q$ and simply append a face of rank -1 at the end. For $i \in I := \{0, \ldots, q\}$ define

$$C_i := \{(K, \alpha) \mid K \subseteq E(G), |K| = i, \alpha \in S_p\}.$$ \hspace{1cm} (1)

We say that two elements (K, α) and (L, β) of $\bigcup_{i \in I} C_i$ are equivalent, or $(K, \alpha) \sim (L, \beta)$ for short, if and only if $K = L$ and $T_K \alpha = T_L \beta$ (equality as right cosets in S_p). This defines an equivalence relation \sim on $\bigcup_{i \in I} C_i$. We use the same symbol for both, an element of $\bigcup_{i \in I} C_i$ and its equivalence class under \sim. Then, as a set (of faces, of rank ≥ 0), the graphicahedron \mathcal{P}_G is just the set of equivalence classes

$$\left(\bigcup_{i \in I} C_i\right)/\sim$$

for \sim. The partial order \leq on \mathcal{P}_G is defined as follows: when $(K, \alpha), (L, \beta) \in \mathcal{P}_G$ then $(K, \alpha) \leq (L, \beta)$ if and only if $K \subseteq L$ and $T_K \alpha \subseteq T_L \beta$. This gives a partially ordered set with a rank function given by $\text{rank}(K, \alpha) = |K|$. In [1, Section 4] it is shown that \mathcal{P}_G, with a (-1)-face appended, is an abstract q-polytope.

Note that, if (K, α) and (L, β) are two faces of \mathcal{P}_G with $(K, \alpha) \leq (L, \beta)$, then $(L, \beta) = (L, \alpha)$ in \mathcal{P}_G, so in representing the larger face we may replace its second component β by the second component α of the smaller face. This implies that a flag Φ of \mathcal{P}_G can be described by two parameters, namely a maximal nested family of subsets of $E(G)$, denoted by $\mathcal{K}_\Phi := \mathcal{K} := \{K_0, K_1, \ldots, K_q\}$, and a single element $\alpha \in S_p$ given by the second component of its vertex; that is,

$$\Phi = (\mathcal{K}, \alpha) := \{(K_0, \alpha), (K_1, \alpha), \ldots, (K_q, \alpha)\}.$$

By a maximal nested family of subsets of a given finite set we mean a flag in the Boolean lattice (power set) associated with this set. (Each K_i contains exactly i edges, so $K_0 = \emptyset$ and $K_q = E(G)$.)

4
We next investigate face transitivity properties of the automorphism group $\Gamma(P_G)$ of the graphicahedron. We know from [1] that, for $q \neq 1$,
\[\Gamma(P_G) = S_p \rtimes \Gamma(G) \]
the semidirect product of S_p with the graph automorphism group $\Gamma(G)$ of G. In particular, if $\gamma \in S_p$, $\kappa \in \Gamma(G)$, and (K, α) is a face of P_G, then the actions of γ and κ on P_G are given by
\[(K, \alpha) \xrightarrow{\gamma} (K, \alpha \gamma^{-1}) \]
and
\[(K, \alpha) \xrightarrow{\kappa} (\kappa(K), \alpha^\kappa) \]
with $\alpha^\kappa := \kappa \alpha \kappa^{-1}$. Note here that every graph automorphism κ of G is an incidence-preserving permutation of the p vertices and q edges of G and hence determines two natural mappings: first, κ acts on the subsets of $E(G)$ via its action on the edges of G; and second, κ induces a group automorphism of S_p via its action on the vertices of G, namely through conjugation in S_p by κ. In (3), the actions of κ on both the edges and the vertices of G are employed. The subgroup S_p of $\Gamma(P_G)$ acts simply transitively on the vertices of P_G. The stabilizer of the vertex (\emptyset, ϵ) of P_G in $\Gamma(P_G)$ is the subgroup $\Gamma(G)$.

Lemma 1 When $j \geq 1$ the graphicahedron P_G is j-face transitive if and only if P_G is $\{0, j\}$-transitive.

Proof. Clearly, a $\{0, j\}$-transitive polytope P_G is also j-face transitive. Now suppose P_G is j-face transitive and consider two $\{0, j\}$-chains $\{(\emptyset, \alpha), (K, \alpha)\}$ and $\{(\emptyset, \beta), (L, \beta)\}$ of P_G, where $\alpha, \beta \in S_p$ and $|K| = |L| = j$. Then there exists an element $\rho \in \Gamma(P_G)$ such that $\rho(K, \alpha) = (L, \beta)$. Writing $\rho = \gamma \kappa$, with $\gamma \in S_p$ and $\kappa \in \Gamma(G)$, we then obtain
\[(L, \beta) = \rho(K, \alpha) = \gamma \kappa(K, \alpha) = (\kappa(K), \alpha^\kappa \gamma^{-1}) \]
and therefore $\kappa(K) = L$ and $T_L \beta = T_L \alpha^\kappa \gamma^{-1}$. It follows that $\alpha^\kappa \gamma^{-1} = \tau \beta$ for some $\tau \in T_L$. Then $\sigma := \beta^{-1} \tau \beta$ lies in S_p and can be viewed as an automorphism of P_G. In particular,
\[\sigma(\rho(K, \alpha)) = \sigma(L, \beta) = \sigma(L, \tau \beta) = (L, \tau \beta \sigma^{-1}) = (L, \beta) \]
and
\[\sigma(\rho(\emptyset, \alpha)) = \sigma(\emptyset, \alpha^\kappa \gamma^{-1}) = \sigma(\emptyset, \tau \beta) = (\emptyset, \tau \beta \sigma^{-1}) = (\emptyset, \beta). \]
Hence the automorphism $\sigma \rho$ of P_G maps $\{(\emptyset, \alpha), (K, \alpha)\}$ to $\{(\emptyset, \beta), (L, \beta)\}$. Thus P_G is $\{0, j\}$-transitive. \hfill \Box
A spanning subgraph of a graph \(G \) is a subgraph containing all the vertices of \(G \). It is completely characterized by its edge set. By a \(j \)-subgraph of \(G \) we mean a spanning subgraph of \(G \) with exactly \(j \) edges. If \(H \) is a \(j \)-subgraph of \(G \) with edge set \(E(H) \) for some \(j \), then the \((q-j)\)-subgraph \(H^c \) with edge set \(E(G) \setminus E(H) \) is the complement of \(H \) in \(G \).

We call a graph \(G \) \(j \)-subgraph transitive if its graph automorphism group \(\Gamma(G) \) acts transitively on the \(j \)-subgraphs of \(G \). Thus \(G \) is \(j \)-subgraph transitive if and only if, for every \(K, L \subseteq E(G) \) with \(|K| = j = |L|\), there exists an automorphism \(\kappa \) of \(G \) such that \(\kappa(K) = L \). Note that \(G \) is \(j \)-subgraph transitive if and only if \(G \) is \((q-j)\)-subgraph transitive. A 1-subgraph transitive graph is just an edge transitive graph. Every graph, trivially, is \(j \)-subgraph transitive for \(j = 0 \) and \(j = q \), since the trivial graph (with vertex set \(V(G) \)) and \(G \) itself are the only \(j \)-subgraphs for \(j = 0 \) or \(q \), respectively. A \(j \)-subgraph transitive graph need not be \(k \)-subgraph transitive for \(k < j \).

Lemma 2 When \(j \geq 1 \) the graphicahedron \(P_G \) is \(j \)-face transitive if and only if \(G \) is \(j \)-subgraph transitive.

Proof. Suppose \(P_G \) is \(j \)-face transitive. Let \(K, L \subseteq E(G) \) with \(|K| = |L| = j \). Then, by Lemma 1, since \(P_G \) is also \(\{0,j\}\)-transitive, there exists an automorphism \(\rho \) of \(P_G \) that maps the chain \(\{(\emptyset, \epsilon), (K, \epsilon)\} \) of type \(\{0,j\} \) to \(\{(\emptyset, \epsilon), (L, \epsilon)\} \). By our previous discussion, since \(\rho \) fixes the vertex \((\emptyset, \epsilon) \), we must have \(\rho \in \Gamma(G) \), \(\rho = \kappa \) (say), and hence \(\kappa(K) = L \). Thus \(G \) is \(j \)-subgraph transitive.

For the converse, let \((K, \alpha), (L, \beta)\) be two \(j \)-faces of \(P_G \), so in particular \(|K| = |L| = j \). Since \(G \) is \(j \)-subgraph transitive, there exists a graph automorphism \(\kappa \) of \(G \) with \(\kappa(K) = L \). Let \(\gamma \in S_p \) such that \(\alpha^\gamma = \beta \gamma \), and let \(\rho \) be the automorphism of \(P_G \) defined by \(\rho := \gamma \kappa \). Then, \(\rho(K, \alpha) = (\kappa(K), \alpha^\gamma \gamma^{-1}) = (L, \beta) \). Hence \(P_G \) is \(j \)-face transitive.

Now bearing in mind that \(G \) is \(j \)-subgraph transitive if and only if \(G \) is \((q-j)\)-subgraph transitive, we immediately have the following consequence.

Lemma 3 When \(j \geq 1 \) the graphicahedron \(P_G \) is \(j \)-face transitive if and only if \(P_G \) is \((q-j)\)-face transitive.

It is immediately clear from Lemma 2 that a graphicahedron \(P_G \) is edge-transitive if and only if the underlying graph \(G \) is edge-transitive. There is a wide variety of interesting edge-transitive graphs, but except for the \(q \)-cycles \(C_q \).
we will not further investigate them here. However, as we will see in Theorem 5 when $2 \leq j \leq q - 2$ (and hence $q \geq 4$) there is just one connected j-subgraph transitive graph with q edges, namely the q-star $K_{1,q}$ (with $p = q + 1$); this is k-subgraph transitive for $k = 0, \ldots, q$. Note that the two connected graphs with three edges, $K_{1,3}$ and C_3, both are j-transitive for $j = 0, 1, 2$.

The proof of Theorem 5 requires the following lemma. For a finite graph H and a vertex v of H, we let $d_H(v)$ denote the degree of v in H.

Lemma 4 Let G be a finite connected graph with q edges, let $2 \leq j \leq q$, let $q \geq 4$ when $j = 2$, and let G be j-subgraph transitive. If G has a j-subgraph (with a connected component) isomorphic to $K_{1,j}$, then G is isomorphic to $K_{1,q}$.

Proof. Let H be a j-subgraph of G (with a connected component) isomorphic to $K_{1,j}$, let v_0 denote the vertex of H of degree j, and let e_0 be an edge of H with vertex v_0. Then each vertex of H adjacent to v_0 has degree 1 in H; and all other vertices of H distinct from v_0 are isolated vertices of H, of degree 0 in H. By the j-subgraph transitivity, if e is an edge of G not belonging to H, then the new j-subgraph $H(e) := (H \setminus e_0) \cup e$ (obtained by replacing e_0 by e) must be equivalent to H under $\Gamma(G)$ and hence must have the same set of vertex degrees.

We need to show that v_0 is a vertex of every edge of G. This trivially holds for the edges of H. If e is an edge of G not belonging to H. We want to prove that v_0 is a vertex of e. The case $j \geq 3$ is easy; in fact, if v_0 is not a vertex of e, then v_0 has a degree, namely $j - 1$, in $H(e)$ distinct from 0, 1 and j, contradicting the fact that H and $H(e)$ have the same set of vertex degrees.

The case $j = 2$ is slightly different. Let e_1 denote the (unique) edge of H distinct from e_0. Now suppose v_0 is not a vertex of e. Then e must join the two vertices of H distinct from v_0; otherwise, at least one of the two 2-subgraphs $H(e)$ and $(H \setminus e_1) \cup e$ is not connected and hence cannot be equivalent to H under $\Gamma(G)$. But since $q \geq 4$ when $j = 2$, there is an edge e' of G distinct from e_0, e_1 and e. In particular, e' has no vertex in common with at least one edge from among e_0, e_1, e; together with this edge, e' forms a 2-subgraph which is not connected. Again this is impossible and shows that v_0 must be a vertex of e. Hence, in either case, v_0 is a vertex of every edge of G. Thus G is isomorphic to $K_{1,q}$. ■

The following theorem is of interest in its own right, independent of the study of graphicaledra.

Theorem 5 Let G be a finite connected graph with q edges, let $2 \leq j \leq q - 2$, and let G be j-subgraph transitive. Then G is isomorphic to the q-star $K_{1,q}$. 7
Proof. Our theorem follows directly from Lemma 4 if we can show that G has a j-subgraph (with a connected component) isomorphic to $K_{1,j}$; note here that $q \geq 4$, by our assumptions on j. Clearly, G has a j-subgraph of this kind if and only if G has a vertex of degree at least j. Hence, since G is also $(q-j)$-transitive, it suffices to find a vertex in G of degree greater than or equal to j or $q-j$.

To this end, let H be any connected j-subgraph of G; this j-subgraph exists since G is connected. Let v_0 be a vertex of H of minimum positive degree in H, let v_1 be a vertex adjacent to v_0 in H, and let $e_0 := \{v_0, v_1\}$. By the j-subgraph transitivity, if e is any edge of G not belonging to H, then $H(e) = (H \setminus e_0) \cup e$ is a j-subgraph equivalent to H under $\Gamma(G)$ and in particular must have the same number of isolated vertices and the same set of vertex degrees as H. Moreover, if u is any vertex of G, then its degrees in $H(e)$ and H are related as follows: if $u \neq v_0, v_1$ then

$$d_{H(e)}(u) = \begin{cases}
 d_H(u) + 1 & \text{if } u \text{ is a vertex of } e, \\
 d_H(u) & \text{if } u \text{ is not a vertex of } e;
\end{cases}$$

and if $u \in \{v_0, v_1\}$ then

$$d_{H(e)}(u) = \begin{cases}
 d_H(u) & \text{if } u \text{ is a vertex of } e, \\
 d_H(u) - 1 & \text{if } u \text{ is not a vertex of } e.
\end{cases}$$

Now there are two possibilities for the minimum (positive) degree of H, that is, for $d_H(v_0)$.

First suppose $d_H(v_0) \geq 2$. Then H cannot have any isolated vertices; otherwise, if u is an isolated vertex of H and e' an edge of G with vertex u, then $d_{H(e')}(u) = 1$, so the j-subgraph $H(e')$ has a vertex of degree 1 while H does not have any such vertex. Now we can argue as follows. If e is any of the $q-j$ edges of G not belonging to H, then v_0 must be a vertex of e; otherwise, $d_{H(e)}(v_0)$ is one less than the minimum positive degree, $d_H(v_0)$, of $H(e)$, which is impossible. Therefore $d_G(v_0) \geq q-j$, so we have found a vertex of G with a degree at least $q-j$, as desired.

Now suppose $d_H(v_0) = 1$. If H happens to have no isolated vertices, then each of the $q-j$ edges e of G not belonging to H must again have v_0 as a vertex; otherwise, the j-subgraph $H(e)$ does have an isolated vertex, namely v_0. Thus $d_G(v_0) \geq q-j$, so again we found the desired vertex in this case. If H does have an isolated vertex, we proceed as follows. Let u be an isolated vertex of H, and let e be an edge of G joining u to a vertex of positive degree in H. We claim that then each vertex in H adjacent to the neighbor v_1 of v_0 must have degree 1. In fact, if v_1 is joined by an edge e_1 to a neighbor v with $d_H(v) > 1$, then $v \neq v_0$.

8
and \((H \setminus e_1) \cup e\) is a \(j\)-subgraph of \(G\) with one less isolated vertex than \(H\), which is impossible; note here that the isolated vertices of this subgraph are just those of \(H\), except \(u\). Hence each vertex in \(H\) adjacent to \(v_1\) must have degree 1 in \(H\), and in particular cannot be a neighbor of any vertex other than \(v_1\). But since \(H\) is connected, the edges of \(H\) with vertex \(v_1\) then must comprise all \(j\) edges of \(H\). Thus \(d_H(v_1) \geq j\), so now we found a vertex of degree at least \(j\). This completes the proof.

\section{The graphicahedra for \(K_{1,q}\) and \(C_q\)}

In this section we determine the structure of the graphicahedron for the \(q\)-star \(K_{1,q}\) (with \(q + 1\) vertices and \(q\) edges, all emanating from a “central” vertex) and the \(q\)-cycle \(C_q\), in each case with \(q \geq 3\). These graphs have graph automorphism groups isomorphic to \(S_q\) and \(D_q\) (the dihedral group of order \(2q\)), so their graphicahedra (of rank \(q\)) have polytope automorphism groups \(S_{q+1} \rtimes S_q\) and \(S_q \rtimes D_q\), respectively. We also know from \[1,\ Cor. 5.1\] that \(\mathcal{P}_{K_{1,q}}\) is a regular \(q\)-polytope.

It is convenient to use an alternative description of a graphicahedron \(\mathcal{P}_G\) based on the line graph \(\mathcal{L}(G)\) of the underlying graph \(G\) rather than on \(G\) itself. The line graph \(\mathcal{L}(G)\) of a given graph \(G\) is the graph whose vertices, referred to as nodes, are in one-to-one correspondence with the edges of \(G\), and whose edges, referred to as branches, connect two nodes of \(\mathcal{L}(G)\) precisely when the corresponding edges of \(G\) have a vertex of \(G\) in common. In particular, \(\mathcal{L}(K_{1,q}) = K_q\), the complete graph on \(q\) vertices, and \(\mathcal{L}(C_q) = C_q\).

The construction of the graphicahedron \(\mathcal{P}_G\) for a given \((p,q)\)-graph \(G\) proceeded from a Cayley-graph for the symmetric group \(S_p\) determined by the generating set \(\mathcal{T}_G\) of \(S_p\) consisting of the transpositions associated with the edges of \(G\); more explicitly, each edge \(e = \{i,j\}\) of \(G\) gave rise to the transposition \(\tau_e := (i\ j)\) in \(\mathcal{T}_G\). When we transition from \(G\) to its line graph \(\mathcal{L}(G)\), these transpositions are naturally associated with the nodes of \(\mathcal{L}(G)\). Thus \(\mathcal{L}(G)\) can be viewed as a diagram for the symmetric group \(S_p\), in which the nodes are labeled by transpositions in \(S_p\), and in which the branches represent pairs of non-commuting transpositions (their product necessarily has period 3). Hence, the transpositions associated with a pair of nodes of \(\mathcal{L}(G)\) commute if and only if these nodes are not joined by a branch of \(\mathcal{L}(G)\).
3.1 The $K_{1,q}$-graphicalahedron

Let $G = K_{1,q}$, where $q \geq 3$, and let $1, \ldots, q + 1$ denote the vertices of G such that $q + 1$ is the central vertex. Let e_1, \ldots, e_q denote the edges of G such that $e_i = \{i, q + 1\}$ for $i = 1, \ldots, q$. We begin by constructing a certain regular q-polytope \mathcal{P} and then establish that this actually is the $K_{1,q}$-graphicalahedron.

Now the underlying diagram $L(G)$ is the complete graph K_q on q nodes. Label each node of $L(G)$ with the label, i, of the corresponding edge e_i of G that defines it. Thus the nodes receive the labels $1, \ldots, q$. Then associate with each node i the transposition in S_{q+1} defined by $	au_i := (i \quad q+1)$; this is just the transposition e_i in T_G, renamed. It is straightforward to check that $	au_1, \ldots, \tau_q$ generate S_{q+1}.

In terms of the generating transpositions τ_1, \ldots, τ_q, the group S_{q+1} is abstractly defined by the relations

$$\tau_i^2 = (\tau_i \tau_j)^3 = (\tau_i \tau_j \tau_k \tau_j)^2 = \epsilon, \quad (1 \leq i, j, k \leq q; \ i, j, k \text{ distinct})$$

(4)

This follows from [14, Theorem 9G4], applied here with $N = \{1, \ldots, q\}$, $s = 2$, and \mathcal{E} and \mathcal{F}, respectively, given by the set of all 2-element or 3-element subsets of N, and with generators τ_1, \ldots, τ_q for the corresponding group Γ. Since this presentation is completely symmetric in the generators, it is immediately clear that S_{q+1} admits involutory group automorphisms $\omega_1, \ldots, \omega_{q-1}$ acting on the generators τ_1, \ldots, τ_q according to

$$\omega_j(\tau_j) = \tau_{j+1}, \quad \omega_j(\tau_{j+1}) = \tau_j, \quad \omega_j(\tau_i) = \tau_i \text{ for } i \neq j, j + 1. \quad (5)$$

In fact, these ω_j are actually inner automorphisms and can be realized in S_{q+1} by conjugation with the transposition $\widetilde{\omega}_j := (j \quad j+1)$, for $j = 1, \ldots, q - 1$. Note that $\omega_1, \ldots, \omega_{q-1}$ generate a group of automorphisms of S_{q+1} isomorphic to S_q.

Figure 1 illustrates the situation when $q = 4$. The nodes $1, \ldots, 4$ of the diagram K_4 correspond to the generators τ_1, \ldots, τ_4 of S_5, respectively; a mark 2 on a triangle $\{i, j, k\}$ of the diagram represents the corresponding non-Coxeter type relation (the last kind of relation) in [4] involving the generators τ_i, τ_j, τ_k. The automorphism ω_j then is associated with the branch connecting nodes j and $j + 1$.

Thus we have an underlying group, S_{q+1}, whose distinguished generators are permuted under certain group automorphisms. This is the typical situation where the twisting technique of [14, Ch. 8A] enables us to construct a regular polytope by extending the underlying group by certain of its group automorphisms. More specifically, in the present situation we find our regular q-polytope \mathcal{P} by extending
Figure 1: The group S_5 obtained when $q = 4$.

S_{q+1} by S_q as follows (see [14, 11H3] for the case $q = 4$). Apply the “twisting operation”

$$(\tau_1, \ldots, \tau_q; \omega_1, \ldots, \omega_{q-1}) \mapsto (\tau_1, \omega_1, \ldots, \omega_{q-1}) =: (\sigma_0, \ldots, \sigma_{q-1})$$

on $S_{q+1} = \langle \tau_1, \ldots, \tau_q \rangle$, in order to obtain the distinguished involutory generators $\sigma_0, \ldots, \sigma_{q-1}$ of the group $\Gamma(\mathcal{P})$ and hence the polytope \mathcal{P} (of Schläfli type $\{6,3,\ldots,3\}$) itself. Thus

$$\Gamma(\mathcal{P}) = \langle \sigma_0, \ldots, \sigma_{q-1} \rangle = \langle \tau_1, \ldots, \tau_q \rangle \rtimes \langle \omega_1, \ldots, \omega_{q-1} \rangle = S_{q+1} \rtimes S_q,$$

a semi-direct product. In particular, when $q = 4$ we have $\Gamma(\mathcal{P}) = S_5 \rtimes S_4$ (see Figure 1). Note here that the generators $\sigma_0, \ldots, \sigma_{q-1}$ indeed make $S_{q+1} \rtimes S_q$ a string C-group in the sense of [14, Ch. 2E]; in particular, the proof of the intersection property boils down to observing that, for each $j \leq q-1$,

$$\langle \sigma_0, \ldots, \sigma_{j-1} \rangle = \langle \tau_1, \ldots, \tau_j \rangle \rtimes \langle \omega_1, \ldots, \omega_{j-1} \rangle = S_{j+1} \rtimes S_j,$$

and hence that

$$\langle \sigma_0, \ldots, \sigma_{j-1} \rangle \cap \langle \sigma_1, \ldots, \sigma_{q-1} \rangle = (\langle \tau_1, \ldots, \tau_j \rangle \rtimes \langle \omega_1, \ldots, \omega_{j-1} \rangle) \cap \langle \omega_1, \ldots, \omega_{q-1} \rangle$$

$$= \langle \omega_1, \ldots, \omega_{j-1} \rangle$$

$$= \langle \sigma_1, \ldots, \sigma_{j-1} \rangle.$$

Note that \mathcal{P} is a simple polytope since its vertex-figures are isomorphic to $(q-1)$-simplices; in fact, the vertex-figure group is just $\langle \omega_1, \ldots, \omega_{q-1} \rangle = S_q$, with
ω₁, ..., ω₉₋₁ occurring here as the distinguished generators for the group of the (q − 1)-simplex. As for any regular polytope, the vertices of ℋ can be identified with the left cosets of its vertex-figure group, which here just means with the (q + 1)! elements of $S_{q+1} = \langle τ₁, ..., τ₉ \rangle$.

Finally, we need to prove that ℋ is in fact the desired graphicalhedron $ℋ_G$. Now, since both ℋ and $ℋ_G$ are known to be regular, we can verify isomorphism on the level of regular polytopes where more techniques are available. In particular it suffices to establish an isomorphism between their groups that maps distinguished generators to distinguished generators.

To begin with, choose

$$Φ := (ℒ, ϵ) = \{(L₀, ε), (L₁, ε), ..., (L₉, ε)\},$$

with $L_i := \{e₁, ..., e₁\}$ for $i = 0, ..., q$ and with $ℒ := \{L₀, L₁, ..., L₉\}$, as the base flag of $ℋ_G$ and compute the distinguished generators $ρ₀, ..., ρ₉₋₁$ of $Γ(ℋ_G)$ with respect to $Φ$. Since $Γ(ℋ_G) = S_p × Γ(G)$ (with $p = q + 1$ and $Γ(G) ∼ S_q$), we can write any isomorphism $ρ$ of $ℋ_G$ in the form $ρ = γκ$ with $γ ∈ S_p$ and $κ ∈ Γ(G)$; then $ρ$ maps a face $(K, α)$ of $ℋ_G$ to $(κ(K), ακγ⁻¹)$, with $ακ := κακ⁻¹$. Hence, if $ρ$ fixes each face of $Φ$ except the j-face, then $κ(L_i) = L_i$ and $γ ∈ T_{L_i} for each i with i ≠ j$. Now, if $j = 0$, then $γ = τ₁$ (since $γ ∈ T_{L₁} = \langle τ₁ \rangle$) and $κ$ must be the trivial graph automorphism of G (since it must fix every edge and $q ≥ 2$). Thus $ρ₀ = τ₁$. Moreover, if $j ≥ 1$, then $γ$ is the trivial element in S_p (since $γ$ lies in the trivial group $T_{L₀}$) and $κ$ must be the graph automorphism $κ_j$ (say) of G that interchanges the edges e_j and $e_{j + 1}$ while keeping all other edges of G fixed. Thus $ρ_j = κ_j$ for $j = 1, ..., q − 1$.

Now we are almost done. Since $Γ(G)$ acts transitively on the edges of G (while fixing the central vertex), the set of conjugates of $τ₁ = (1 q + 1)$ under $Γ(G)$ (now acting on the vertices of G) consists precisely of the transpositions $τ_j = (j q + 1)$ for $j = 1, ..., q$. These transpositions generate the group S_p, with $p = q + 1$. It is straightforward to check that they also satisfy the relations in [4], which are known to form the relations in a presentation for S_p; as explained earlier, the latter follows from [44, Theorem 9G4]. Thus the generators $τ₁, ..., τ_q$ and the relations in [4] determine a presentation for S_p, in just the same way as $τ₁, ..., τ_q$ and [4] do. Moreover, conjugation in S_p by the graph automorphism $κ_j$ (acting on vertices) of G is a group automorphism of S_p, again denoted by $κ_j$, that permutes the generators $τ₁, ..., τ_q$ in just the same way as $ω_j$ permuted $τ₁, ..., τ_q$; that is,

$$κ_j(τ_{e_j}) = τ_{e_{j+1}}, \quad κ_j(τ_{e_{j+1}}) = τ_{e_j}, \quad κ_j(τ_{e_i}) = τ_{e_i} \quad for \quad i ≠ j, j + 1.$$

It follows that the distinguished generators $ρ₀, ..., ρ₉₋₁$ of $Γ(ℋ_G)$ can be identified with those of $Γ(ℋ)$, in the sense that $ρ_i$ corresponds to $σ_i$ of [6] for each i. Since
the distinguished generators of the group of a regular polytope determine the polytope up to isomorphism, it now follows that \mathcal{P}_G is isomorphic to \mathcal{P}.

It is interesting to look at small values of q. The case $q = 2$ had been excluded in the above; the 2-star $K_{1,2}$ is a path of length 2 and its graphicahedron $\mathcal{P}_{K_{1,2}}$ is just a hexagon $\{6\}$. When $q = 3$ the resulting graphicahedron $\mathcal{P}_{K_{1,3}}$ is the toroidal regular map $\{6,3\}_{(2,2)}$ (see Coxeter & Moser [6]). For $q = 4$ we obtain the universal locally toroidal regular 4-polytope $\{\{6,3\}_{(2,2)}, \{3,3\}\}$ (see [14, Cor. 11C8]), which was first discovered in Grünbaum [9].

The graphicahedra $K_{1,3}$ and $K_{1,4}$ are the first two members in an infinite sequence of polytopes linked inductively by amalgamation, as described in Theorem 7. We first require a lemma.

Lemma 6 Suppose $q \geq 4$ and \mathcal{R} is the $(q-1)$-simplex with group $\Gamma(\mathcal{R}) = \langle \eta_1, \ldots, \eta_{q-1} \rangle \cong S_q$, where $\eta_1, \ldots, \eta_{q-1}$ are the distinguished generators of $\Gamma(\mathcal{R})$, with the labeling starting at 1 deliberately. Define the elements $\theta_i := \eta_i \eta_{i-1} \ldots \eta_1$ for $i = 1, \ldots, q-1$, as well as $\theta_0 := \epsilon$, the identity element. Then

$$\eta_j \theta_i = \theta_i \eta_{j+1}, \theta_{i-1}, \theta_{i+1}, \theta_i \eta_j$$

according as $j \leq i - 1$; $j = i$; $j = i + 1$; $j \geq i + 2$.

Proof. One way to prove this lemma is to represent the generators η_i by the transposition $(j j + 1)$ of S_q for each j and then simply verify the statement on the level of permutations.

Alternatively we can use the defining relations of $\Gamma(\mathcal{R})$ as a Coxeter group (of type A_{q-1}). When $j = i, i + 1$ the statement is immediately clear from the definitions, and when $j \geq i + 2$ it follows directly from the standard commutation relations for the generators of $\Gamma(\mathcal{R})$. Now when $j = i - 1$ the relation $\eta_{i-1} \eta_i \eta_{i-1} = \eta_i \eta_{i-1} \eta_i$, combined with the commutation relations, gives

$$\eta_j \theta_i = \eta_{i-1} \eta_i \eta_{i-1} \theta_{i-2} = \eta_i \eta_{i-1} \eta_i \theta_{i-2} = \eta_i \eta_{i-1} \theta_{i-2} \eta_i = \theta_i \eta_i.$$

Finally, when $j \leq i - 2$ we similarly have

$$\eta_j \theta_i = \eta_j \eta_i \ldots \eta_{j+2} \eta_{j+1} \eta_j \eta_{j-1} \eta_{j-2} \ldots \eta_1$$

$$= \eta_i \ldots \eta_{j+2} \eta_{j+1} \eta_j \eta_{j-1} \eta_{j-2} \ldots \eta_1$$

$$= \eta_i \ldots \eta_{j+2} \eta_{j+1} \eta_j \eta_{j-1} \eta_{j-2} \ldots \eta_1 \eta_j$$

$$= \theta_i \eta_{j+1}.$$
This completes the proof.

Recall that if two regular \(n \)-polytopes \(P_1 \) and \(P_2 \) are the facets and vertex-figures, respectively, of a regular \((n + 1)\)-polytope, then there is also a universal such \((n + 1)\)-polytope, denoted \(\{ P_1, P_2 \} \), of which any other regular \((n + 1)\)-polytope with facets \(P_1 \) and vertex-figures \(P_2 \) is a quotient (see [14, p.97]). The locally toroidal 4-polytope mentioned earlier is an example of a universal regular polytope, with facets \(\{6, 3\}_{(2,2)} \) and vertex-figures \(\{3, 3\} \).

Theorem 7 The graphicahedron \(P_{K_1,q} \), with \(q \geq 4 \), is the universal regular \(q \)-polytope with graphicahedra \(P_{K_{q-1}} \) as facets and with \((q-1)\)-simplices \(\{3^{q-2}\} \) as vertex-figures. Thus \(P_{K_1,q} = \{ P_{K_{q-1}}, \{3^{q-2}\} \} \). Moreover, \(\Gamma(P_{K_1,q}) = S_{q+1} \times S_q \), a direct product.

Proof. Any graphicahedron is a simple polytope, and hence \(P_{K_1,q} \) has \((q-1)\)-simplices \(\{3^{q-2}\} \) as vertex-figures. (Recall from Section 2 that an abstract polytope is simple precisely when each vertex-figure is isomorphic to a simplex.) The subgraphs of \(K_{1,q} \) with \(q - 1 \) edges are obtained from \(K_{1,q} \) by the deletion of a single edge and in particular are subgraphs isomorphic to \(K_{1,q-1} \). On the other hand, the facets of \(P_{K_1,q} \) are precisely determined by such subgraphs and hence are \(K_{1,q-1} \)-graphicahedra. Thus \(P_{K_1,q} \) is a regular polytope with graphicahedra \(P_{K_{q-1}} \) as facets and \((q-1)\)-simplices \(\{3^{q-2}\} \) as vertex-figures. In particular, \(P_{K_1,q} \) is a quotient of the universal polytope \(Q := \{ P_{K_{q-1}}, \{3^{q-2}\} \} \). We need to establish that \(P_{K_1,q} \) and \(Q \) are isomorphic when \(q \geq 4 \). (Note that the universality fails when \(q = 3 \). Still, \(P_{K_{1,3}} = \{6, 3\}_{(2,2)} \) is a 3-polytope with facets \(P_{K_{1,2}} = \{6\} \) and vertex-figures \(\{3\} \), and group \(\Gamma(P_{K_{1,3}}) = S_4 \times S_3 \).)

To this end, let \(\Gamma := \Gamma(Q) = \langle \eta_0, \ldots, \eta_{q-1} \rangle \), where \(\eta_0, \ldots, \eta_{q-1} \) are the distinguished generators of \(\Gamma(Q) \). Then \(\Gamma_0 := \langle \eta_1, \ldots, \eta_{q-1} \rangle \) is the group of the vertex-figure \(\{3^{q-2}\} \) of \(Q \) and is isomorphic to \(S_q \). Now let \(N_0 \) denote the normal closure of \(\eta_0 \) in \(\Gamma \), that is,

\[N_0 := \langle \phi \eta_0 \phi^{-1} \mid \phi \in \Gamma \rangle. \]

Then, by [14, Lemma 4E7(c,d)] (applied with \(k = 0 \) and \(N_0^- = N_0 \)),

\[N_0 = \langle \phi \eta_0 \phi^{-1} \mid \phi \in \Gamma_0 \rangle \]

and \(\Gamma = N_0 \Gamma_0 = \Gamma_0 N_0 \) (as a product of subgroups in \(\Gamma \)). Our goals are to show that \(N_0 \cong S_{q+1} \) and the product of subgroups is semi-direct.
Consider the following involutory elements μ_1, \ldots, μ_q of N_0 defined by

$$\mu_{i+1} := \theta_i \eta_0 \theta_i^{-1} \quad (i = 0, \ldots, q - 1),$$

where $\theta_0 := \epsilon$ and $\theta_i := \eta_i \eta_{i-1} \cdots \eta_1$ for $i = 1, \ldots, q - 1$. Then $\mu_1 = \eta_0$ and $\mu_{i+1} = \eta_i \mu_i \eta_i$ for $i \geq 1$. We claim that N_0 is generated by μ_1, \ldots, μ_q. Clearly it suffices to show that the vertex-figure subgroup Γ_0 acts, by conjugation, as a permutation group on the set $\{\mu_1, \ldots, \mu_d\}$; more precisely, the conjugate of an element μ_{i+1} by a generator η_j of Γ_0 is again a generator μ_k for some k. Now, by Lemma 6,

$$\eta_j \mu_{i+1} \eta_j = (\eta_j \theta_i) \eta_0 (\eta_j \theta_i)^{-1} \quad (i = 0, \ldots, q - 1; j = 1, \ldots, q - 1),$$

with $\eta_j \theta_i = \theta_i \eta_{j+1}, \theta_{i-1}, \theta_{i+1}, \theta_i \eta_j$ according as $j \leq i - 1; j = i; j = i + 1; j \geq i + 2$. Bearing in mind that η_l and η_0 commute if $l \geq 2$, then this immediately implies

$$\eta_j \mu_{i+1} \eta_j = \mu_i, \mu_{i+2}, \mu_{i+1}$$

(7)

according as $j = i, j = i + 1$, or $j \neq i, i + 1$. Thus

$$N_0 = \langle \mu_1, \ldots, \mu_q \rangle.$$

Next we establish that N_0 is isomorphic to the symmetric group $S_{q+1} = \langle \tau_1, \ldots, \tau_q \rangle$, where as before the generators are given by $\tau_i := (i \ q + 1)$ for $i = 1, \ldots, q$. In particular we show that the map that takes μ_i to τ_i for each i defines an isomorphism. As S_{q+1} is abstractly defined by the presentation in [4], it suffices to prove that the involutory generators μ_1, \ldots, μ_q of N_0 also satisfy the relations in [4]. We already know at this point that, since Q covers $P_{K_{1,4}}$, the particular subgroup N_0 of $\Gamma(Q)$ must cover the analogously defined subgroup of $\Gamma(P_{K_{1,q}})$; however, this latter subgroup is just $S_{q+1} = \langle \tau_1, \ldots, \tau_q \rangle$.

The key is to exploit the action of Γ_0 on N_0 in conjunction with the structure of the facet of Q as the $K_{1,q-1}$-graphicaledron. The latter allows us to proceed inductively. In fact, the subgroup $\langle \mu_1, \ldots, \mu_{q-1} \rangle$ of N_0 is just the subgroup, analogous to N_0, of the facet subgroup $\langle \eta_0, \ldots, \eta_{q-2} \rangle$ of Γ. (This is also true when $q = 4$, since then $P_{K_{1,3}} = \{6,3\} \times (2,2)$ and $\Gamma(P_{K_{1,3}}) = S_4 \times S_3$.) Thus, by induction hypothesis, we can take for granted all relations of [4] that involve only the generators μ_1, \ldots, μ_{q-1}. Now if a relator of [4] involves the last generator μ_q of N_0, we first find a conjugate relator by an element of Γ_0 that does not contain μ_q, and then simply refer to the validity of the corresponding relation for this conjugate.

The Coxeter type relations $(\mu_i \mu_q)^3 = \epsilon$ for $i = 1, \ldots, q - 1$ can be verified as follows. We indicate conjugacy of elements by \sim. If $i \leq q - 2$ then

$$\mu_i \mu_q \sim \eta_{q-1} \mu_i \eta_{q-1} \cdot \eta_{q-1} \mu_q \eta_{q-1} = \mu_i \mu_{q-1},$$

15
where now the element on the right is known to have order 3. Similarly, by (7),

$$\mu_q^{-1} \mu_q \sim \eta_q^{-1} \eta_q^{-2} \mu_q^{-1} \eta_q^{-2} \eta_q^{-1} \eta_q^{-1} \eta_q^{-2} \mu_q \eta_q^{-2} \eta_q^{-1} \sim \mu_q^{-2} \mu_q^{-1},$$

where again the element on the right is known to have order 3.

Since the pairwise products of the generators of N_0 all have order 3, the six relators $\mu_i \mu_j \mu_k \mu_j$ of the remaining relations that only involve the suffices i, j, k (in some order) turn out to be mutually conjugate, for any distinct i, j, k (see [14, p. 295]). Hence we may assume that $i < k < j = q$. Now when $k \leq q - 2$ we have

$$\mu_i \mu_q \mu_k \mu_q \sim \eta_q^{-1} \mu_i \mu_q \mu_k \mu_q \eta_q^{-1} = \mu_i \mu_q^{-1} \mu_k \mu_q^{-1};$$

and when $i \leq q - 3$ and $k = q - 1$

$$\mu_i \mu_q \mu_k \mu_q \sim \eta_q^{-1} \mu_i \mu_q \mu_k \mu_q \eta_q^{-2} \eta_q^{-1} = \mu_i \mu_q^{-1} \mu_k \mu_q^{-1}.$$

Finally, when $i = q - 2$ and $k = q - 1$ we similarly obtain

$$\mu_q^{-2} \mu_q \mu_q^{-1} \mu_q \sim \eta_q^{-1} \eta_q^{-2} \eta_q^{-3} \mu_q^{-2} \mu_q \mu_q^{-1} \mu_q \eta_q^{-3} \eta_q^{-2} \eta_q^{-1} = \mu_q^{-3} \mu_q^{-1} \mu_q^{-2} \mu_q^{-1};$$

the proof of this last equation uses the fact that $\eta_q^{-1} \eta_q^{-2} \eta_q^{-3}$ has period 4 (since the 3-simplex $\{3, 3\}$ has Petrie polygons of length 4), so that

$$\eta_q^{-1} \eta_q^{-2} \eta_q^{-3} \mu_q \eta_q^{-3} \eta_q^{-2} \eta_q^{-1} \sim \left(\eta_q^{-1} \eta_q^{-2} \eta_q^{-3}\right)^2 \mu_q^{-3} \left(\eta_q^{-3} \eta_q^{-2} \eta_q^{-1}\right)^2 = \left(\eta_q^{-3} \eta_q^{-2} \eta_q^{-1}\right)^2 \mu_q^{-3} \left(\eta_q^{-1} \eta_q^{-2} \eta_q^{-3}\right)^2 = \eta_q^{-3} \eta_q^{-2} \eta_q^{-1} \eta_q^{-1} \eta_q^{-2} \eta_q^{-3} \mu_q^{-3} \eta_q^{-3} \eta_q^{-1} \eta_q^{-2} \eta_q^{-3} = \eta_q^{-2} \eta_q^{-3} \eta_q^{-2} \eta_q^{-1} \eta_q^{-1} \eta_q^{-2} \eta_q^{-3} \mu_q^{-3} \eta_q^{-3} \eta_q^{-2} \eta_q^{-3} \eta_q^{-2} = \mu_q^{-3} \eta_q^{-3} \eta_q^{-2} = \eta_q^{-3} \eta_q^{-2}.$$

In either case, the conjugate of the original relator $\mu_i \mu_q \mu_k \mu_q$ is a relator of the same kind that only involve suffices from among $1, \ldots, q - 1$ and hence must have period 2, as desired. Thus N_0 is isomorphic to S_{q+1} under the isomorphism that takes μ_i to τ_i for each i.

We now apply a simple counting argument to prove that Q and $P_{K_1,q}$ are isomorphic polytopes. In fact, since $\Gamma = N_0 \Gamma_0$, $N_0 \cong S_{q+1}$ and $\Gamma_0 \cong S_q$, the order of Γ is at most $(q + 1)!q!$. On the other hand, the group of $P_{K_1,q}$ has order $(q + 1)!q!$ and is a quotient of Γ. Hence, $\Gamma \cong \Gamma(P_{K_1,q})$, $\Gamma \cong N_0 \times \Gamma_0$, and Q is isomorphic to $P_{K_1,q}$.

Finally, Γ is also isomorphic to a direct product $S_{q+1} \times S_q$ (with a new second factor). The proof follows the same line of argument as the proof for $q = 4$
described in [14, p. 405]. To this end, we embed the semi-direct product $S_{q+1} \rtimes S_q$ into the symmetric group S_{2q+1} by taking $\tau_i = (i \ q+1)$ for $i = 1, \ldots, q$ and $\omega_i = (i \ i+1)(q+i+1 \ q+i+2)$ for $i = 1, \ldots, q-1$, the latter viewed as acting on $\langle \tau_1, \ldots, \tau_q \rangle$ by conjugation; thus this subgroup of S_{2q+1} is isomorphic to $S_q \times S_q$. This completes the proof.

\[\blacksquare\]

3.2 The C_q-graphicahedron

The main goal of this section is to prove Theorem 8 below, which says in particular that the C_q-graphicahedron can be viewed as a tessellation by $(q-1)$-dimensional permutahedra on the $(q-1)$-torus.

For the q-cycle $G = C_q$ we again employ the diagram $L(G)$ rather than G itself. Clearly, as graphs, G and $L(G)$ are isomorphic in this case, but in $L(G)$ the nodes, rather than the edges, are associated with transpositions. As before, the vertices of G are labeled $1, \ldots, q$ (now $p = q$), in cyclic order; the edges of G are labeled e_1, \ldots, e_q, with $e_i = \{i, i+1\}$ for $i = 1, \ldots, q$ (labels are considered modulo q); and each node of $L(G)$ receives the label, i, of the edge e_i of G that defines it. Thus the nodes are also labeled $1, \ldots, q$.

Now the transposition associated with the node i is given by $\tau_i := (i \ i+1)$; as before, this is just τ_{e_i} in T_G, renamed. Then it is straightforward to verify that τ_1, \ldots, τ_q generate S_q and also satisfy the Coxeter relations

$$\tau_i^2 = (\tau_i \tau_{i+1})^3 = (\tau_i \tau_j)^2 = \epsilon \quad (1 \leq i, j \leq q; j \neq i, i \pm 1; \text{subscripts mod } q), \quad (8)$$

as well as the extra relation

$$\tau_1 \tau_2 \ldots \tau_{q-1} \tau_q \tau_{q-1} \ldots \tau_2 = \epsilon \quad (9)$$

(which expresses τ_1 or τ_q in terms of the other generators and shows redundancy in the generating set). We explain later why the combined relations in (8) and (9) form a complete presentation for the group S_q, although we will not actually require this fact.

The key idea of the proof of Theorem 8 is to exploit the geometry of the infinite Euclidean Coxeter group \tilde{A}_{q-1}, whose Coxeter diagram, usually also denoted \tilde{A}_{q-1}, is the q-cycle C_q (see [314] and [14 Ch. 3B]). Thus \tilde{A}_{q-1} is the group with generators r_1, \ldots, r_q (say) abstractly defined by the Coxeter relations in equation (8); as we will see later, its element

$$r_1 r_2 \ldots r_{q-1} r_q r_{q-1} \ldots r_2$$

17
corresponding to the element on the left side of (9) has infinite order and represents a translation. Each (maximal parabolic) subgroup of \(\tilde{A}_{q-1} \) generated by all but one generator \(r_i \) is a finite Coxeter group of type \(A_{q-1} \) and is isomorphic to \(S_q \). Clearly, since the generators \(\tau_1, \ldots, \tau_q \) of \(S_q \) also satisfy the relations in (8), there exists an epimorphism

\[
\pi : \tilde{A}_{q-1} \rightarrow S_q
\]

that maps \(r_j \) to \(\tau_j \) for each \(j \). Moreover, for each \(i \), the restriction of \(\pi \) to the Coxeter subgroup \(\langle r_j \mid j \neq i \rangle \) is an isomorphism onto \(S_q \).

As a geometric group, \(\tilde{A}_{q-1} \) acts on Euclidean \((q-1)\)-space \(\mathbb{E}^{q-1} \) as an infinite discrete group of isometries generated by \(q \) hyperplane reflections, for simplicity again denoted \(r_1, \ldots, r_q \). The \(q \) hyperplane mirrors are the “walls” bounding a fundamental \((q-1)\)-simplex (fundamental chamber) \(S \) for \(\tilde{A}_{q-1} \) in its action on \(\mathbb{E}^{q-1} \). The vertex of \(S \) opposite to the reflection mirror of \(r_i \) naturally receives the label \(i \) in this way. The images of \(S \) under \(\tilde{A}_{q-1} \) are the \((q-1)\)-simplices (chambers) of the Coxeter complex \(C := C(\tilde{A}_{q-1}) \) of \(\tilde{A}_{q-1} \), which is a \((q-1)\)-dimensional simplicial complex tiling the entire space \(\mathbb{E}^{q-1} \). The Coxeter group \(\tilde{A}_{q-1} \) acts simply transitively on the chambers of \(C \); so in particular, each chamber of \(C \) can be identified with an element of \(\tilde{A}_{q-1} \) and then labeled, via \(\pi \), with a permutation from \(S_q \). Moreover, \(C \) has the structure of a \((vertex-) labeled simplicial complex\), with a vertex-labeling which is induced by the action of \(\tilde{A}_{q-1} \) on \(C \) and is compatible with the vertex labeling on the fundamental simplex \(S \) described above; that is, if an element of \(\tilde{A}_{q-1} \) maps \(S \) to a chamber \(S' \), then for each \(i \) the vertex of \(S \) labeled \(i \) is mapped to the vertex of \(S' \) labeled \(i \). (Note that the vertex-labeling on \(C \) also induces a labeling of the entire Coxeter complex where a face of \(C \) receives, as its label, the subset of \(\{1, \ldots, q\} \) consisting of the labels of its vertices. However, we will not require this labeling.)

For example, for the 3-cycle \(C_3 \) (that is, when \(q = 3 \)), the corresponding Coxeter group \(\tilde{A}_2 = \langle r_1, r_2, r_3 \rangle \) is the Euclidean reflection group in \(\mathbb{E}^2 \) generated by the reflections in the walls (edges) of an equilateral triangle, \(S \), such that \(r_i \) is the reflection in the wall of \(S \) opposite to the vertex labeled \(i \) (see Figures 2 and 3). Now the corresponding Coxeter complex \(C \) is just the standard regular tessellation of \(\mathbb{E}^2 \) by equilateral triangles (chambers), and any such triangle can serve as fundamental chamber. Each triangle of \(C \) is marked with a permutation in \(S_3 \) derived from the epimorphism \(\pi : \tilde{A}_2 \rightarrow S_3 \). The mark on a triangle \(S' \) of \(C \) is the image under \(\pi \) of the unique element of \(\tilde{A}_2 \) that maps \(S \) to \(S' \), as illustrated in Figure 3. In particular, the mark on \(S \) is the identity permutation, denoted \((1)\). Note that the chambers in \(C \) are not regular simplices when \(q > 3 \).

In order to describe the general case it is convenient to let \(\tilde{A}_{q-1} \) and its reflec-
Figure 2: The case $q = 3$, illustrated in \mathbb{E}^2. Shown are the Coxeter complex (triangle tessellation) C for the Coxeter group $\tilde{A}_2 = \langle r_1, r_2, r_3 \rangle$, with fundamental triangle S; as well as the shortest vectors of the root lattice A_2 and its dual lattice A_2^*. The vertex of S labeled 3 is taken to be the origin. The generator r_i of \tilde{A}_2 is the reflection in the line through the edge (wall) of S opposite the vertex of S labeled i, for $i = 1, 2, 3$.

The action generators r_1, \ldots, r_q act on the $(q - 1)$-dimensional linear hyperplane

$$E^{q-1} := \{(x_1, \ldots, x_q) \mid x_1 + \ldots + x_q = 0\}$$

of Euclidean q-space \mathbb{E}^q. In particular, we take the mirror of r_i to be the intersection of E^{q-1} with the hyperplane of \mathbb{E}^q defined by the equation $x_i = x_{i+1}$ if $i < q$, or $x_1 = x_q - 1$ if $i = q$ (see [3, p. 456]). The Coxeter subgroup (of type) A_{q-1} generated by r_1, \ldots, r_{q-1} is the symmetric group S_q (permuting the q axes of \mathbb{E}^q when considered on \mathbb{E}^q). This subgroup A_{q-1} naturally has a root system (of type) A_{q-1} associated with it, consisting of the root vectors $\pm(b_j - b_k)$ of E^{q-1} with $1 \leq j < k \leq q$, where here b_1, \ldots, b_q denote the canonical basis vectors of \mathbb{E}^q; the root vectors are precisely the normal vectors of length $\sqrt{2}$ of the mirrors of the reflections in A_{q-1}. The corresponding root lattice (of type) A_{q-1} is the lattice in E^{q-1} spanned by the roots, with a lattice basis given by the (fundamental root) vectors

$$a_i := b_{i+1} - b_i \quad (i = 1, \ldots, q - 1).$$

If we also set

$$a_q := -(a_1 + \ldots + a_{q-1}) = b_q - b_1,$$
Figure 3: Shown is the graphicahedron \mathcal{P}_{C_3} for the 3-cycle C_3, viewed as a tessellation of the 2-torus \mathbb{E}^2/A_2 with three hexagonal (2-permutahedral) tiles. The three tiles are the Voronoi regions in \mathbb{E}^2 for the lattice A_2^*, taken at the vertices (labeled 1, 2 and 3) of the fundamental triangle S and considered modulo A_2. The triangles in the Coxeter complex \mathcal{C} of \tilde{A}_2 are marked in an A_2-invariant manner by permutations in S_3. The vertices of the Voronoi tessellation \mathcal{V} for A_2^* are the centers of the triangles of \mathcal{C} and can be labeled with the marks of the triangles of which they are the center. In this way, the vertices of the hexagonal tiles of the torus tessellation receive as marks the permutations α of S_3 that correspond to them in their representation (\emptyset, α) as vertices of the graphicahedron \mathcal{P}_{C_3}.

then a_1, \ldots, a_q are the outer normal vectors of the walls of the fundamental region S of the infinite Coxeter group \tilde{A}_{q-1} on E^{q-1}. The vertex v_i of S with label i (opposite to the mirror of r_i) is given by

$$v_i := \frac{i}{q}(b_1 + \ldots + b_q) - (b_1 + \ldots + b_i) \quad (i = 1, \ldots, q),$$

so in particular, $v_q = o$, the origin.

The infinite group \tilde{A}_{q-1} is obtained from the finite group A_{q-1} by adjoining the translations by root vectors from the root system A_{q-1}; more precisely, the translation subgroup of \tilde{A}_{q-1} consists of the translations by vectors of the root lattice A_{q-1}. The element $r_1r_2 \ldots r_{q-1}r_q r_{q-1} \ldots r_2$ of \tilde{A}_{q-1} (corresponding to the
left side of (9) is just the translation by \(-a_1\); the translation vectors of its conjugates by elements of \(A_{q-1}\) generate the root lattice.

The dual lattice \(A^*_{q-1}\) of the root lattice \(A_{q-1}\) consists of the vectors \(v\) in \(E^{q-1}\) whose inner products \(\langle u, v \rangle\) with the vectors \(u\) in the root lattice \(A_{q-1}\) are integers (see Figure 2 for an illustration of the case \(q = 3\)). A lattice basis of \(A^*_{q-1}\) is given by the vectors

\[a_1, a_1 + a_2, \ldots, a_1 + \ldots + a_{q-1}, v_1, \]

with \(v_1\) as in (11) above (see [3, p. 115]); an alternative basis is \(a_1, \ldots, a_{q-1}, v_1\). The original lattice \(A_{q-1}\) is a sublattice of \(A^*_{q-1}\) of index \(q\).

For us it is important to note that the vectors in \(A^*_{q-1}\) are just the vertices of the Coxeter complex \(C\) of the infinite Coxeter group \(\tilde{A}_{q-1}\). In fact, the vectors \(v_1, \ldots, v_{q-1}\), which are vertices of the fundamental chamber \(S\), form the lattice basis of \(A^*_{q-1}\) dual to the basis \(a_1, \ldots, a_{q-1}\) of the root lattice \(A_{q-1}\); note here that when \(i, j \leq q - 1\) we have \(\langle v_i, a_j \rangle = 1\) or 0 according as \(j = i\) or \(j \neq i\) (recall that \(a_1, \ldots, a_{q-1}\) are the outer normal vectors of the walls of \(S\) that contain \(o\)). Now, since the dual lattice \(A^*_{q-1}\) is invariant under the Coxeter group \(\tilde{A}_{q-1}\) and this group acts transitively on the chambers of \(C\), it follows in particular that all the vertices of \(C\) must belong to \(A^*_{q-1}\). Conversely, suppose there is a vector \(v\) of \(A^*_{q-1}\) which is not a vertex of \(C\). By replacing \(v\) by its image under an element of \(\tilde{A}_{q-1}\) (if need be), we may assume that \(v\) lies in \(S\) but is not a vertex of \(S\); in particular, \(v \neq o\). But then there must be \(q - 2\) vectors \(v_{j_1}, \ldots, v_{j_{q-2}}\) (say) among \(v_1, \ldots, v_{q-1}\) which, together with \(v\), span a sublattice of \(A^*_{q-1}\) whose determinant is smaller than the determinant of \(A^*_{q-1}\) (and hence has a fundamental parallelepiped with smaller volume than the fundamental parallelepiped for \(A^*_{q-1}\)). However, this is impossible, since a sublattice of a lattice cannot have a smaller determinant than the lattice itself. Thus the dual lattice \(A^*_{q-1}\) is just the vertex-set of the Coxeter complex \(C\) of the Coxeter group \(\tilde{A}_{q-1}\).

The Voronoi cells (regions) of the dual root lattice \(A^*_{q-1}\) are the tiles in the Voronoi tessellation \(\mathcal{V} = \mathcal{V}(A^*_{q-1})\) of \(E^{q-1}\) for \(A^*_{q-1}\) and are known to be \((q - 1)\)-dimensional permutahedra; see [3, p. 115]. (Recall that the Voronoi cell associated with a point \(u\) of a lattice consists of all points of the ambient space whose distance from \(u\) is shorter than, or equal to, the distance from any other point in the lattice. The Voronoi cells are the tiles in the Voronoi tessellation of the lattice.) This tessellation \(\mathcal{V}\) is invariant under \(\tilde{A}_{q-1}\) (since \(A^*_{q-1}\) itself is invariant), and in particular, under the translations by the vectors from the root lattice \(A_{q-1}\). Moreover, the lattice \(A^*_{q-1}\) acts tile-transitively on \(\mathcal{V}\) by translations. The \(q\) permutahedra centered at the vertices of a chamber of \(C\) share the center of this chamber as a common vertex, and are the only tiles of \(\mathcal{V}\) that meet at
this vertex. The vertex-set of \mathcal{V} is precisely the set of centers of chambers of \mathcal{C}, and the vertex-figures of \mathcal{V} at its vertices are $(q-1)$-simplices. Thus \mathcal{V} is a tiling of E^{q-1} by $(q-1)$-dimensional permutahedra, each labeled with the label (from among $1, \ldots, q$) of the vertex of \mathcal{C} that is its center, and each with its vertices labeled with the labels (from S_q, via π) of the chambers of \mathcal{C} of which they are the center.

The following theorem describes the structure of the graphicahedron for C_q. See Figure 3 for an illustration of the case $q = 3$, when \mathcal{P}_{C_3} is just the regular toroidal map $\{6,3\}_{1,1}$ (see [1]). When $q \geq 4$ the graphicahedron \mathcal{P}_{C_q} is not a regular polytope.

Theorem 8 Let $q \geq 3$. Suppose the Coxeter group \tilde{A}_{q-1}, the root lattice A_{q-1}, the dual root lattice A^*_{q-1}, and the Voronoi tiling $\mathcal{V} = \mathcal{V}(A^*_{q-1})$ for A^*_{q-1} in the Euclidean $(q-1)$-space E^{q-1} are defined as described above. Then the quotient tessellation \mathcal{V}/A_{q-1} of \mathcal{V} by A_{q-1} is a face-to-face tessellation of the $(q-1)$-torus E^{q-1}/A_{q-1} by $(q-1)$-dimensional permutahedra, with q such tiles, and the face poset of \mathcal{V}/A_{q-1} is isomorphic to the C_q-graphicahedron \mathcal{P}_{C_q}.

Proof. Since the tessellation \mathcal{V} in E^{q-1} by permutahedra is invariant under the translations by the vectors from the root lattice A_{q-1}, it is immediately clear that the quotient \mathcal{V}/A_{q-1} is a face-to-face tessellation of the $(q-1)$-torus E^{q-1}/A_{q-1}, with tiles that are again permutahedra. Since A^*_{q-1} contains A_{q-1} as a sublattice of index q and the tiles of \mathcal{V} are centered at the points of A^*_{q-1}, the tessellation \mathcal{V}/A_{q-1} on E^{q-1}/A_{q-1} has exactly q tiles, centered (in a sense) at the points of A^*_{q-1}/A_{q-1}. This completes the first part of the theorem.

Note that the number of flags of \mathcal{V}/A_{q-1} is $(q!)^2$, which is also the number of flags of \mathcal{P}_{C_q}. In fact, there are q tiles in \mathcal{V}/A_{q-1}, each a permutahedron with $q!$ vertices; moreover, each vertex of a tile has a vertex-figure which is a $(q-2)$-simplex. This gives a total of $q \cdot (q!) \cdot (q-1)! = (q!)^2$ flags.

For the second part of the theorem we employ the epimorphism $\pi : \tilde{A}_{q-1} \to S_q$ of (10) to construct an isomorphism between the face posets of \mathcal{V}/A_{q-1} and \mathcal{P}_{C_q}. We first describe an epimorphism (incidence preserving surjective mapping) from the face poset of \mathcal{V} to the face poset of \mathcal{P}_{C_q} which maps any two faces of \mathcal{V} equivalent under the root lattice A_{q-1} to the same face of \mathcal{P}_{C_q}, and which is a local isomorphism, meaning that it maps the face poset of every tile of \mathcal{V} isomorphically to the face poset of a facet of \mathcal{P}_{C_q}.

To this end, recall that every vector u of A^*_{q-1} is the center of a tile P_u of \mathcal{V}; and vice versa, that all tiles of \mathcal{V} are obtained in this way from vectors in
as a vertex of the Coxeter complex C of \tilde{A}_{q-1}, the vector u naturally carries a label i_u (say) from among 1, \ldots, q. If u happens to be a vertex of the fundamental chamber S of C, then the vertex-stabilizer of u in the Coxeter complex is the finite Coxeter subgroup $\langle r_j \mid j \neq i_u \rangle$ of type A_{q-1} isomorphic to $\langle \tau_j \mid j \neq i_u \rangle = \langle \tau_j \mid j \neq i_u \rangle = S_q$. Thus in this case the permutahedron P_u is naturally associated with this Coxeter subgroup; in fact, P_u is the graphicahedron for this subgroup, or rather for the path C^u_q of length $q-1$ obtained from C_q by deleting the edge e_{i_u} from C_q. If u is an arbitrary vertex of C, then u is equivalent under \tilde{A}_{q-1} to a unique vertex of S, namely the vertex u' (say) of S with the same label, i_u. In this case P_u still is associated with the Coxeter subgroup $\langle r_j \mid j \neq i_u \rangle$ of \tilde{A}_{q-1} (or rather a subgroup of \tilde{A}_{q-1} conjugate to it); hence, since $i_u = i_{u'}$ and P_u is equivalent under \tilde{A}_{q-1} to $P_{u'}$, the tile P_u still is the graphicahedron for C^u_q.

The construction of the epimorphism from the face poset of V to the face poset of P_{C_q} proceeds in two steps: we first define its effect locally on the face lattices of the tiles P_u, and then we establish that these “local isomorphisms” fit together globally to give the desired epimorphism.

To begin with, consider a tile P_u of V for some u in A^*_q. Identifying the three groups

$$\langle r_j \mid j \neq i_u \rangle, \quad \langle \tau_j \mid j \neq i_u \rangle, \quad \langle \tau_{\epsilon j} \mid j \neq i_u \rangle$$

with each other in an obvious way, we can express (up to equivalence under A^*_q) a typical face of P_u in the form (K, α), where $K \subseteq \{ j \mid j \neq i_u \}$ and $\alpha \in \langle r_j \mid j \neq i_u \rangle$. If (K, α) and (L, β) are two faces of P_u with $K, L \subseteq \{ j \mid j \neq i_u \}$ and $\alpha, \beta \in \langle r_j \mid j \neq i_u \rangle$, then $(K, \alpha) \leq (L, \beta)$ in P_u if and only if $K \subseteq L$ and $T_K \alpha = T_L \beta$ (with $T_K = \langle r_j \mid j \in K \rangle$ and $T_L = \langle r_j \mid j \in L \rangle$). We now employ the group epimorphism $\pi : \tilde{A}_{q-1} \to S_q$ of [10], or more exactly, its restriction to the subgroup $\langle r_j \mid j \neq i_u \rangle$. Consider the mapping from the face poset of P_u to the face poset of P_{C_q} defined by

$$(K, \alpha) \rightarrow (\hat{K}, \pi(\alpha)) \quad (K \subseteq \{ j \mid j \neq i_u \}, \alpha \in \langle r_j \mid j \neq i_u \rangle),$$

where

$$\hat{K} := \{ e_k \mid k \in K \}.$$

Now, if

$$(K, \alpha) \leq (L, \beta)$$

in P_u, then $K \subseteq L$ and $T_K \alpha = T_L \beta$, so also $\hat{K} \subseteq \hat{L}$ and $T_{\hat{K}} \pi(\alpha) = T_{\hat{L}} \pi(\beta)$ (here with $T_{\hat{K}} = \langle \tau_e \mid e \in \hat{K} \rangle$ and $T_{\hat{L}} = \langle \tau_e \mid e \in \hat{L} \rangle$) and therefore

$$(\hat{K}, \pi(\alpha)) \leq (\hat{L}, \pi(\beta))$$

23
in \mathcal{P}_{C^u}. Thus the mapping in (12) preserves incidence. Moreover, its image in \mathcal{P}_{C^q} consists of all faces of \mathcal{P}_{C^q} of the form (M, γ) with

$$M \subseteq \{e \mid e \neq e_{i_u}\} = E(C^u_{i_q}),$$

the edge set of $C^u_{i_q}$, and $\gamma \in \langle \tau_e \mid e \neq e_{i_u}\rangle$; hence this image is just the face poset of the permutahedral facet $\mathcal{P}_{C^u_{i_q}}$ of \mathcal{P}_{C^q}. In particular, since π induces an isomorphism between $\langle r_j \mid j \neq i_u\rangle$ and $\langle \tau_e \mid e \neq e_{i_u}\rangle$, the resulting mapping between the face posets of P_u and $\mathcal{P}_{C^u_{i_q}}$ must actually be an isomorphism.

It remains to show that these local isomorphisms fit together coherently. First recall that the vertices of V lie at the centers of the chambers of \mathcal{C} and hence can be identified with the elements of the Coxeter group \tilde{A}_{q-1} that are associated with their respective chamber. Now suppose we have a common (non-empty) face of the tiles P_u and P_v of \mathcal{V}, where again $u, v \in \tilde{A}_{q-1}^*$. Then u and v must necessarily be adjacent vertices of a chamber of \mathcal{C}, and since \tilde{A}_{q-1} acts transitively on the chambers, we may assume that this is the fundamental chamber S of \mathcal{C}. The common face of P_u and P_v has two representations, namely as (K_u, α_u), with

$$K_u \subseteq \{j \mid j \neq i_u\}, \quad \alpha_u \in \langle r_j \mid j \neq i_u\rangle,$$

and as (K_v, α_v), with

$$K_v \subseteq \{j \mid j \neq i_v\}, \quad \alpha_v \in \langle r_j \mid j \neq i_v\rangle.$$

Our goal is to show that this forces $K_u = K_v$ and also allows us to assume that $\alpha_u = \alpha_v$. Then clearly this would imply $K_u = \hat{K}_u$ and $\pi(\alpha_u) = \pi(\alpha_v)$, so the local definition of the mapping in (12) would not depend on the representation of a face of \mathcal{V} as a face of $P(u)$ or $P(v)$, as desired. Note that we already know at this point that K_u and K_v have the same cardinality, which is just the dimension (rank) of the face.

First observe that, if need be, we may replace α_u and α_v by any suitable group element for which the vertices (\emptyset, α_u) of P_u and (\emptyset, α_v) of P_v are vertices of the common face (K_u, α_u) of P_u and (K_v, α_v) of P_v, respectively. In E^{q-1}, these vertices are just the centers of the chambers corresponding to the elements α_u and α_v of \tilde{A}_{q-1}. Hence, by choosing the same vertex in the two representations of the common face, we may, and will, assume that $\alpha_u = \alpha_v =: \alpha$. Then also

$$\alpha \in \langle r_j \mid j \neq i_u\rangle \cap \langle r_j \mid j \neq i_v\rangle = \langle r_j \mid j \neq i_u, i_v\rangle,$$

by the intersection property for the distinguished (parabolic) subgroups of \tilde{A}_{q-1} (see [14, Ch. 3A]).
Suppose for a moment that the common face is actually a facet of P_u and P_v in \mathcal{V}, so that P_u and P_v are adjacent tiles. Then this facet, and in particular its vertex identified with α, must lie in the perpendicular bisector of u and v in E^{q-1}. The stabilizer of the edge $\{u,v\}$ of the fundamental chamber S of C in \tilde{A}_{q-1} is just the subgroup $\langle r_j \mid j \neq i_u, i_v \rangle$ of \tilde{A}_{q-1}, which acts irreducibly on the perpendicular bisector. Now

$$((\{ j \mid j \neq i_u, i_v \}, \alpha))$$

is a common facet of P_u and P_v (when viewed in either representation of faces). On the other hand, the vertex-set of this facet must necessarily coincide with the orbit of the vertex α under the edge stabilizer subgroup $\langle r_j \mid j \neq i_u, i_v \rangle$. Thus

$$K_u = K_v = \{ j \mid j \neq i_u, i_v \}.$$

This settles the case when the common face is a facet.

Now, to deal with the general case recall that any two tiles of \mathcal{V} centered at vertices of S are adjacent in \mathcal{V}. Hence, if a face of dimension d (say) is common to both tiles P_u and P_v, then this face is the intersection of precisely $q-d$ (mutually adjacent) tiles $P_{u_1}, \ldots, P_{u_{q-d}}$ (say), where

$$u = u_1, u_2, \ldots, u_{q-d-1}, u_{q-d} = v$$

are vertices of the same chamber. This gives $q-d$ representations (K_{u_j}, α_{u_j}) of this common face, one for each j. Now comparing any two such representations as above, we first observe that we may choose the same element α as α_{u_j} for each $j; \text{ in particular,}$

$$\alpha \in \langle r_j \mid j \neq i_{u_1}, \ldots, i_{u_{q-d}} \rangle,$$

again by the intersection property of \tilde{A}_{q-1}. Further, by viewing $(K_{u_k}, \alpha_{u_k}) = (K_{u_k}, \alpha)$ as a face of a facet (L_{u_k}, α) of P_{u_k} which is shared by another tile P_{u_l} (say) among $P_{u_1}, \ldots, P_{u_{q-d}}$, we find that

$$K_{u_k}, K_{u_l} \subseteq L_{u_k} = L_{u_l} = \{ j \mid j \neq i_{u_k}, i_{u_l} \}.$$

It follows that

$$K_{u_k} \subseteq \{ j \mid j \neq i_{u_1}, \ldots, i_{u_{q-d}} \}.$$

Finally, since K_{u_k} has cardinality d, we must actually have

$$K_{u_k} = \{ j \mid j \neq i_{u_1}, \ldots, i_{u_{q-d}} \},$$

independent of k. Thus $K_u = K_v$.

25
At this point we have a homomorphism from the face poset of \mathcal{V} to the face poset of \mathcal{P}_{C_q} that is defined by (12). Clearly, this is an epimorphism, since the face poset of every facet of \mathcal{P}_{C_q} is the image of the face poset of a suitable tile of \mathcal{V} (every label from 1,\ldots, q occurs as a label of a vertex of \mathcal{C}). Moreover, this epimorphism is invariant under the translations by vectors from the root lattice A_{q-1}, as these translations lie in \tilde{A}_{q-1} and the action of \tilde{A}_{q-1} on \mathcal{C} preserves the labels of vertices of \mathcal{C}.

Finally, then, by the invariance under A_{q-1}, the above epimorphism from the face poset of \mathcal{V} to the face poset of \mathcal{P}_{C_q} also determines an epimorphism from the face poset of \mathcal{V}/A_{q-1} to the face poset of \mathcal{P}_{C_q} that is again a local isomorphism. Under this induced epimorphism, the equivalence class of a face of \mathcal{V} modulo A_{q-1} is mapped to the image of any representative of this equivalence class under the original epimorphism. On the other hand, since the face posets of \mathcal{V}/A_{q-1} and \mathcal{P}_{C_q} have the same number of flags, this induced epimorphism must actually be an isomorphism between the face posets of \mathcal{V}/A_{q-1} and \mathcal{P}_{C_q}. This completes the proof.

Theorem 8 rests on the geometry of the Euclidean Coxeter group \tilde{A}_{q-1} and on the observation that the symmetric group S_q, via (10), is an epimorphic image of \tilde{A}_{q-1}. This quotient relationship between \tilde{A}_{q-1} and S_q can be seen as a degenerate case, obtained when $s = 1$, among similar quotient relationships between \tilde{A}_{q-1} and the groups in a certain family of unitary reflection groups. In fact, when the single extra relation

$$(r_1 r_2 \ldots r_{q-1} q r_{q-1} \ldots r_2)^s = 1,$$ \hspace{1cm} (13)$$

for any $s \geq 2$, is added to the Coxeter relations of \tilde{A}_{q-1}, we obtain a presentation for the finite unitary group $W_q(s) := [1 1 \ldots 1]^s$ (with q entries 1) generated by involutory unitary reflections in unitary complex q-space (see [14, 9A17]). Following [5], a convenient circular diagram representation for $W_q(s)$ is obtained by adding a mark s inside the standard circular Coxeter diagram for \tilde{A}_{q-1} given by C_q (see [14, Figure 9A4]). As explained in [14, 9A16, 9A17], the same group $W_q(s)$ also has an alternative representation (based on new generators r'_1, \ldots, r'_q) by a diagram consisting of a triangle with a tail, in which the triangle, with nodes 1, 2, 3 (say), has a mark s inside and the branch $\{1, 2\}$ opposite the tail is marked s. This new diagram encodes an alternative presentation for $W_q(s)$ consisting of the standard Coxeter relations for the (new) underlying Coxeter diagram and the single extra relation

$$(r'_1 r'_2 r'_3 r'_2)^3 = 1.$$ \hspace{1cm} (13)$$

(Of course, we could avoid complex reflection groups altogether by directly rewriting \tilde{A}_{q-1} as a group represented by a triangle with a tail, now with a mark ∞ on
branch \{1, 2\}. Now allow the degenerate case \(s = 1 \). Then the same change of generators that transformed the circular diagram of \(W_q(s) \) to the diagram given by a triangle with a tail works in this case as well. On the other hand, when \(s = 1 \) the mark \(s \) on the branch \{1, 2\} identifies the generators \(s_1 \) and \(s_2 \) (there is no impact from the mark inside the triangle or from other Coxeter relations), to give the desired conclusion that

\[
W_q(1) = \langle r'_2, \ldots, r'_q \rangle = S_q.
\]

Thus the circular diagram with a mark 1 inside also represents the symmetric group \(S_q \).

Now, since the original symmetric group \(S_q \) with its generating transpositions \(\tau_1, \ldots, \tau_q \) also satisfies the relations represented by the circular diagram with a mark 1 inside (that is, relations (8) and (9)), it must actually be isomorphic to the group abstractly defined by these relations. Thus (8) and (13), with \(s = 1 \), abstractly define \(S_q \).

Concluding we remark that the graphicahedron \(\mathcal{P}_{C_4} \) (of rank 3) for the 4-cycle \(C_4 \) also permits an alternative representation based on a different description of the corresponding Coxeter group \(\tilde{A}_3 \). In fact, the 3-dimensional Coxeter group \(\tilde{A}_3 \) can also be viewed as a subgroup of index 4 in the symmetry group \([4, 3, 4]\) of a regular cubical tessellation \{4, 3, 4\} in \(\mathbb{E}^3 \), which also is a discrete reflection (Coxeter) group in \(\mathbb{E}^3 \). Recall that the Coxeter complex for \([4, 3, 4]\) is built from the barycentric subdivisions of the cubical tiles of \{4, 3, 4\}. In this Coxeter complex, the four tetrahedra that surround a common edge of type \{1, 2\} fit together to form a larger tetrahedron. The four reflections in the walls of any such larger tetrahedron \(S \) (say) can be seen to generate a discrete reflection group in \(\mathbb{E}^3 \) with \(S \) as its fundamental tetrahedron. This group is a representation of \(\tilde{A}_3 \) as a reflection group on \(\mathbb{E}^3 \). Its index as a subgroup of \([4, 3, 4]\) is 4, since \(S \) is dissected into 4 smaller tetrahedra of the Coxeter complex for \([4, 3, 4]\). For figures illustrating the structure of the graphicahedron \(\mathcal{P}_{C_4} \) as a tessellation of a 3-torus with 4 permutahedral tiles arising from this alternative description of \(\tilde{A}_3 \), see [7].

Acknowledgements. We are grateful to the referee for a careful reading of the original manuscript and various helpful comments.
References

[1] G. Araujo-Prado, M. Del Río-Francos, M. López-Dudet, D. Oliveros, E. Schulte: *The graphicaedron*, European Journal of Combinatorics 31 (2010), 1868–1879.

[2] G. Chartrand and L. Lesniak: *Graphs and Digraphs, Third Edition*, Chapman and Hall, London, UK, 1996.

[3] J.H. Conway and N.J.A. Sloane, *Sphere Packings, Lattices and Groups*, Springer-Verlag, New York, 1988.

[4] H.S.M. Coxeter: *Regular Polytopes, Third Edition*, Dover, New York, 1973.

[5] H.S.M. Coxeter, *Groups generated by unitary reflections of period two*, Canad. J. Math. 9 (1957), 243–272.

[6] H.S.M. Coxeter and W.O.J. Moser, *Generators and Relations for Discrete Groups, Fourth Edition*, Springer, New York, 1980.

[7] M. Del Río-Francos, *Simetrias Y Visualizaciones Del Graficaedro* (Undergraduate Thesis), Universidad Nacional Autónoma de México, Mexico City, 2009.

[8] S. Fomin and N. Reading, *Root systems and generalized associahedra*, In: Geometric Combinatorics (E. Miller, V. Reiner and B. Sturmfels, eds.), IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, pp. 63–131.

[9] B. Grünbaum, *Regularity of graphs, complexes and designs*, In: Problèmes combinatoires et théorie des graphes, Coll. Int. C.N.R.S. 260, Orsey (1977), 191–197.

[10] B. Grünbaum, *Convex Polytopes* (2nd edition), Graduate Texts in Mathematics, Springer-Verlag, 2003.

[11] G.-Th. Guilbaud, P. Rosenstiehl, *Analyse algébrique d’un scrutin*, Mathématiques et Sciences Humaines 4 (1963), 9–33.

[12] J.E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge University Press, 1990.

[13] P. McMullen and E. Schulte, *Hermitian forms and locally toroidal regular polytopes*, Advances in Math. 82 (1990), 88–125.
[14] P. McMullen and E. Schulte: *Abstract Regular Polytopes*, Cambridge University Press, 2002.

[15] P. McMullen: *Space-tiling zonotopes*, Mathematika 22 (1975), 202–211.

[16] B.R. Monson and A.I. Weiss, *Cayley graphs and symmetric 4-polytopes*, Ars Mathematica Contemporanea 1 (2008), 185–205.

[17] A. Postnikov, *Permutahedra, associahedra, and beyond*, International Mathematics Research Notices 2009 (2009), 1026–1106.

[18] D. Pellicer, *CPR graphs and regular polytopes*, European Journal of Combinatorics 29 (2008), 59–71.

[19] P.H. Schoute: *Analytic treatment of the polytopes regularly derived from the regular polytopes*, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 11, No. 3, Johannes Müller, Amsterdam, 1911, 87 pages.

[20] E. Schulte, *Regular incidence-polytopes with euclidean or toroidal faces and vertex-figures*, J. Combin. Theory, Ser. A, 40 (1985), 305–330.

[21] G. Ziegler: *Lectures on Polytopes*, Springer-Verlag, New York, 1994.