Prevalence of Non-Celiac Gluten Sensitivity in Patients with Refractory Functional Dyspepsia: a Randomized Double-blind Placebo Controlled Trial

Bijan Shahbazkhani1, Mohammad M. Fanaeian1*, Mohammad J. Farahvash1, Najmeh Aletaha1, Forough Alborzi1, Luca Elli2, Amirhossein Shahbazkhani1, Jayran Zebardast3 & Mohammad Rostami-nejad4

Refractory functional dyspepsia (RFD) is characterized by symptoms persistence in spite of medical treatment or \(H. pylori \) eradication. No study has yet investigated the presence of gluten-dependent RFD as a clinical presentation of Non-Celiac Gluten Sensitivity (NCGS). Patients with RFD, in whom celiac disease, wheat allergy and \(H. pylori \) infection had been ruled out, followed a six weeks long gluten-free diet (GFD). Symptoms were evaluated by means of visual analogue scales; patients with ≥30% improvement in at least one of the reported symptoms after GFD underwent a double-blind placebo controlled gluten challenge. Subjects were randomly divided in two groups and symptoms were evaluated after the gluten/placebo challenge. GFD responders were further followed on for 3 months to evaluate the relationship between symptoms and gluten consumption. Out of 77 patients with RFD, 50 (65%) did not respond to GFD; 27 (35%) cases showed gastrointestinal symptoms improvement while on GFD; after blind gluten ingestion, symptoms recurred in 5 cases (6.4% of patients with RFD, 18% of GFD responders) suggesting the presence of NCGS. Furthermore, such extra-intestinal symptoms as fatigue and weakness (\(P = 0.000 \)), musculo-skeletal pain (\(P = 0.000 \)) and headache (\(P = 0.002 \)) improved in NCGS patients on GFD. Because of the high prevalence of NCGS among patients with RFD, a diagnostic/therapeutic roadmap evaluating the effect of GFD in patients with RFD seems a reasonable (and simple) approach.

Dyspepsia is a common symptom and a diagnostic “dilemma” in daily clinical practice1 affecting roughly 25% of the general population. Circa 25% of patients with dyspepsia have an underlying organic or structural disease2–6. According to the Rome IV criteria, functional dyspepsia (FD) is defined as the presence of post-prandial fullness and/or early satiation and/or epigastric pain/burning, during the last three months with symptoms onset at least six months before diagnosis without any evidence of organic/structural disease. The prevalence of FD is about 10.6% of the general population7,8.

A detailed clinical history that considers heart burn, regurgitation or biliary pains suggestive for GERD, cholecystitis or NSAIDs use9,10, physical examinations and also upper endoscopy are all necessary to determine the underlying cause of dyspepsia11–15. Patients with a negative stool test for Helicobacter pylori (\(H. pylori \)) infection, as well as those with persistent symptoms after \(H. pylori \) eradication, are usually administrated with proton pump inhibitors (PPIs) for 8 weeks. Tricyclic antidepressants or prokinetics can be useful in patients unresponsive to

1Division of Gastroenterology and Liver Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. 2Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy. 3Cognitive Science Special Linguistics, Institute of Cognitive Sciences, Tehran, Iran. 4Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. *email: Mohammadfanaeian@gmail.com
PPI therapy. In case of unresponsiveness, upper endoscopy with biopsies should be performed, and psychological therapy should be considered as well16–20.

Refractory FD (RFD) is defined as FD presenting symptoms continuing for at least 6 months, unresponsive to at least two medical treatments such as PPIs, prokinetics, or H. pylori eradication21.

Non-celiac gluten sensitivity (NCGS) is a syndrome characterized by gastrointestinal and extra-intestinal symptoms related to the ingestion of gluten-containing products, in patients without wheat allergy (WA) or celiac disease (CD)22,23. According to recent studies, the prevalence of NCGS in Western populations is 0.6–10.6%24–27, and females are more frequently affected, with a female/male ratio ranging from 3:1 28,29 to 5.4:130. The onset of symptoms is usually rapid after gluten ingestion (from several hours up to a few days). In patients with suspected NCGS, CD and WA are usually excluded by means of serological tests (anti-tissue transglutaminase antibodies, anti-wheat IgE respectively)22,23 and duodenal histology31. Irritable bowel syndrome (IBS) is also excluded following the Rome IV clinical criteria32,33. Although no NCGS bio-markers have been proposed yet, high titers of anti- gliadin antibodies (AGA-IgG) are present in up to 56.4% of patients with NCGS, thus suggesting their potential use in clinical practice34.

The hypothesis that FD can be caused by underlying NCGS is not fully elucidated. Furthermore, according to the Salerno criteria, the diagnosis of NCGS should be considered in patients with persistent intestinal (e.g. dyspepsia) and/or extra-intestinal symptoms triggered by the ingestion of gluten-containing food35.

Because of the lack of data investigating the presence of NCGS in patients with RFD, we performed a double-blind placebo-controlled gluten-challenge trial in Iranian patients with RFD with the aim to evaluate any presence of gluten-related dyspepsia.

Methods

Study population. Between February 2017 and April 2018, evaluation was carried out on patients referred for dyspepsia to the outpatient clinic of the Medical Departments, Division of Gastroenterology (Imam Khomeini Hospital Complex and Dr. Shariati Hospital, Tehran (Iran) and to the private gastroenterology clinic. FD was diagnosed accordingly to the Rome IV criteria4. The presence of diseases leading to dyspeptic symptoms (i.e celiac disease, wheat allergy, irritable bowel syndrome, lactose intolerance, diabetes mellitus, hypercalcemia, thyroid disease, biliary causes and H. pylori infection) were excluded by means of physical examination, serologic tests, breath tests, upper and/or lower endoscopy, abdominal ultrasound and stool tests. Patients with unremarkable tests, unresponsive to medical therapy including H. pylori eradication, eight weeks on PPIs, four weeks on amitriptyline and domperidone prescription, were defined as RFD (Fig. 1). AGA IgG serological titers were evaluated according to the ELISA method.

Study protocol. Patients with RFD followed a 6 weeks long GFD. All pharmacologic agents were discontinued and the trial design was carried out according to the Salerno Experts criteria35 (Fig. 2).
Each patient received nutritional counseling about GFD from a dietician. Symptoms were weekly evaluated using a standard 10 cm long visual analogue scale (VAS). According to the Salerno Experts criteria, the patients who did not recover from their symptoms after 6 weeks on GFD were excluded from the gluten challenge. Responsiveness was defined as a 30% decrease in one to three VAS reporting the main gastrointestinal and/or extra-intestinal symptoms or at least one with no worsening of others, for at least 50% of the observation times. GFD-responders joined the second study phase (DBPC gluten challenge phase). In this study, the patient-recruiting investigator contacts a center by telephone or secure computer after a patient’s enrollment. The Step 2 consisted in a DBPC gluten challenge with crossover. The GFD was maintained and GFD responders were randomly divided into two separate groups and blindly challenged with gluten. Finally, patients were followed for further three months in Step 3. DBPC = Double blind placebo controlled; GFD = Gluten-free diet; GCM = Gluten-containing muffin; PM = Placebo muffin (i.e gluten-free muffin as placebo); NCGS = Non-celiac gluten sensitivity. The evaluation is performed weekly during Steps 1, 3 and daily during Step 2.

Table 1. The baseline characteristics of the study groups. In the first week, group A received gluten-containing muffins and group B received gluten-free (GF) muffins as placebos; in the third week, group A received placebos and group B received gluten-containing muffins.

Variables	Overall	Group A	Group B
Number	n = 27	n = 14	n = 13
Gender	Male = 11 Female = 16	Male = 6 Female = 8	Male = 5 Female = 8
Age range	18–55 yrs	18–55 yrs	18–55 yrs
Ethnic	White	White	White
Symptom recurrence with gluten re-introduce	Yes n = 5 (18.5%)	n = 3 (21.5%)	n = 2 (15.4%)
	No n = 22 (81.5%)	n = 11 (78.5%)	n = 11 (84.6%)

Figure 2. Flowchart of the trial. 77 patients with refractory functional dyspepsia entered a 6-week gluten-free diet (GFD) period and they were evaluated weekly by VAS score. The peer questionnaires were filled. 50 patients (65%) did not show any appropriate response to GFD and did not enter into the challenge phase. 27 patients (35%) showed symptoms improvement (responders) and thus they underwent a DBPC challenge. GFD was maintained for at least three more weeks. In Step 2, the GFD responders, were divided into two separate groups and blindly challenged with gluten. Finally, patients were followed for further three months in Step 3. DBPC = Double blind placebo controlled; GFD = Gluten-free diet; GCM = Gluten-containing muffin; PM = Placebo muffin (i.e gluten-free muffin as placebo); NCGS = Non-celiac gluten sensitivity. The evaluation is performed weekly during Steps 1, 3 and daily during Step 2.
components of the questionnaire were designed based on the study by Salerno et al. Then, the questionnaire was evaluated by experts and Cronbach’s alpha was calculated to be approximately 0.8.

Statistical analysis. The results and VAS mean scores were analyzed by χ^2 and Mann-Whitney U tests, respectively using SPSS rel. 16. Progressions of symptoms and carry-over effects for both groups were examined by Repeated Measures Using Mixed Test. In this study a p value less than 0.05 was recognized significant. A repeated measurements mixed design in analysis was applied for carry-over effects.

Informed consent statement. All the study participants provided their written informed consent prior to their study enrolment.

CONSORT 2010 statement. The CONSORT 2010 Statement has been adopted.

Ethical approval and informed consent. The study was performed in accordance with appropriate guidelines and reviewed and approved by the Local Ethics Committee of the Imam Khomeini Hospital (approval no.: IR.TUMS.IKHC.REC.1395.1675) and every enrolled patient gave his/her consent to the study participation (Supplementary File 3). Also, the clinical trial was registered as “The effect of gluten-free diet on gastrointestinal symptoms of individuals with idiopathic dyspepsia who referred to the gastroenterology clinics of Imam Khomeini Hospital complex and Dr. Shariati Hospital in 2017–2018” under the following number: IRCT2017031833112N1 (22-04-2017). The methods were carried out in accordance with the relevant guidelines and regulations; and also, for nocebo effect reduction a “contextualized informed consent” was also used.

Results

452 patients aged between 18 and 55 years (36.5 ± 7.3 years) with dyspepsia were evaluated: 259 were excluded because of the presence of an underlying disorder related to the clinical picture (16 patients with drug-related dyspepsia, 2 with celiac disease, 28 with IBS, 19 with GERD, 268 with other diseases). 115 patients were left with no apparent causes and 78 patients with positive H. pylori test reported symptoms permanence despite H. pylori eradication; these subjects were defined as affected by FD (n = 193).

193 FD patients were treated with proton pump inhibitors (PPIs) for at least 8 weeks ± Tricyclic anti-depressants (TCAs) and prokinetics for 12 weeks. 116 patients presented symptoms relief after medical treatment and were excluded; however, 77 patients had persistent symptoms despite H. pylori eradication and medical therapy and were defined as RFD (Fig. 1).

Seventy-seven patients with RFD underwent the 6 weeks long GFD. Fifty (65%) patients did not report any clinical improvement while on GFD and were excluded from the blind gluten challenge; 27 (35%) patients showed a symptomatic improvement (GFD responders) and they joined the DBPC phase, according to the Salerno criteria. At the end of Step 2 (i.e DBPC gluten challenge), 5 patients reported intestinal (i.e dyspepsia) and/or extra-intestinal symptoms’ recurrence after blind gluten ingestion (18.5% of the GFD responders and 6.4% of the patients with RFD) (Fig. 2). The sequence of gluten/placebo administration did not influence the result of the gluten challenge. NCGS was more frequent in women than men (4:1) and the mean age of the patients was 29 years (18–40 years). The most common GI symptoms were post-prandial fullness (in all patients) and epigastric pain/burning (80%). Furthermore, fatigue/headache (80%), musculo-skeletal pain and menstrual disorders (60%) were the most common extra-intestinal symptoms in NCGS patients. The serum AGA-IgG titer was high in one patient (20%) with NCGS. The overall characteristics of NCGS vs. non-NCGS patients are presented in Table 2. Moreover, the comparison of common extra-GI symptoms for patients before and after GFD is presented in Table 3. Figs. 3 and 4; these data show that several extra-GI symptoms, such as fatigue and weakness (P = 0.000), musculo-skeletal pain (P = 0.000) and headache (P = 0.002) improved in NCGS patients on GFD.

All 27 GFD responders were followed up for three months after the DBPC challenge and questionnaires were filled in on a weekly basis. In addition to 5 patients with NCGS, other 3 reported symptoms improvement on GFD and recurrence after ingesting gluten-containing food, despite they had shown “negative” at the DBPC challenge.

Discussion

Our findings show that, among patients with RFD, 6.5% present a symptomatic relapse during a blind gluten challenge and therefore could be categorized as with NCGS. Moreover, during the follow-up period, some patients responding to GFD without a positive result at the DBPC gluten challenge, reported symptomatic relief after gluten ingestion increasing the prevalence of patients with suspected “gluten-related RFD”.

Recently, general practitioners and professionals have to deal with a large number of patients following some GFD, often without any medical reasons or indications. As a result, the diagnosis of NCGS becomes essential for the appropriate management of such patients and avoidance of unnecessary and expensive diets. In addition, if a large number of patients with unexplained GI symptoms or IBS could be correctly treated with dietary modifications, this would reduce the need for medication with resulting direct and indirect economic benefits.

According to previous studies, gluten is a relevant factor in the development of GI symptoms in patients with FD, such as in RFD. Elli et al. in their multi-center DBPC gluten challenge study evaluated the prevalence of NCGS in patients with functional GI symptoms. In their study, out of 134 patients, including 77 (57%) IBS and 22 (16.4%) dyspeptic patients, completing a three weeks long period on GFD, 98 patients reported significant symptoms improvement: 53 (54.1%) IBS and 17 (17.3%) dyspeptic patients. They underwent a gluten challenge; finally, NCGS was confirmed in 28 subjects: 18 (64.3%) with IBS and 4 (14.3%) with dyspepsia. Compared with the study by Elli et al., our results show higher prevalence of NCGS (18.5%) among the GFD responders.

Conversely, Dale et al. have shown that gluten challenges and controlled food challenges with a DBPC design are unable to detect most of the patients with suspected NCGS; these findings, as well as those from other
Table 2. The overall characteristics comparison of NCGS vs. non-NCGS GFD responders. Epigastric pain or burning plus post-prandial fullness have been reported as the most common GI symptoms among NCGS patients; on the other hand, fatigue, weakness and musculo-skeletal pain were the most common extra-intestinal symptoms. AGA (IgG) = Anti gliadin antibody (IgG); GI = gastro-intestinal; NCGS = Non-celiac gluten sensitivity; GFD = Gluten-free diet.

Variables	Overall (n = 27)	NCGS (n = 5, 18.5%)	No NCGS (n = 22, 81.5%)
Mean age (s.d.)	36.5 (18-55 y/o)	29 (18-40 y/o)	36.5 (18-55 y/o)
Gender			
Male	11 (40.7%)	1 (20%)	10 (45.5%)
Female	16 (59.2%)	4 (80%)	12 (54.5%)
GI symptoms			
Epigastric pain/burning + post-prandial fullness + early satiation	1 (3.7%)	1 (20%)	0
Epigastric pain/burning + post-prandial fullness	14 (51.8%)	3 (60%)	11 (50%)
Epigastric pain/burning + early satiation	0	0	0
Post-prandial fullness + early satiation	1 (3.7%)	0	1 (4.5%)
Epigastric pain/burning	9 (33.3%)	0	9 (41%)
Concurrent autoimmune disease	0	0	0
Family history of celiac disease	1 (3.7%)	1 (20%)	0
Fatigue and weakness	9 (33.3%)	4 (80%)	5 (22.7%)
Musculo-skeletal pain	6 (22.2%)	3 (60%)	3 (13.6%)
Headache	6 (22.2%)	4 (80%)	2 (9%)
Asthma	0	0	0
Allergic rhinitis	2 (7.4%)	1 (20%)	1 (4.5%)
Depression	4 (14.8%)	2 (40%)	2 (9%)
Menstrual disorders	3 (11.1%)	3 (60%)	0
Disturbed sleep pattern	2 (7.4%)	2 (40%)	0
Ataxia	2 (7.4%)	2 (40%)	0
High serum AGA(IgG) level	4 (14.8%)	1 (20%)	3 (13.6%)

Table 3. Comparison of extra-intestinal symptoms of NCGS vs. non-NCGS patients at different phases according to the questionnaire score. NCGS = Non-celiac gluten sensitivity; GI = Gastrointestinal symptoms; MS = Musculo-skeletal.
studies, suggest that, in addition to gluten, other factors (such as, fructans and amylase trypsin inhibitors) are involved in a complex mechanism at the basis of GI functional symptoms.\(^{36}\)

Looking at the clinical features of NCGS patients, our results show that the presence of fullness and epigastric pain/burning, as GI symptoms, and fatigue/headache, as extra-GI symptoms, are more frequent in NCGS patients than in other study groups. Conversely, Carroccio et al. have shown that anemia, weight loss and a history of food allergy were more frequently reported in patients with a gluten-related disorder.\(^{39}\) This dissimilarity among studies may be due to both self-imposed dietary restrictions and unbalanced diets started by patients and the heterogeneity of the enrolled patients. Comparable to our results, Biesiekierski et al.\(^{23}\) have reported a recurrence of symptoms in the group undergoing a re-challenge with gluten as compared to those receiving placebo.

Based on the studies recently available, about 56% of NCGS cases present high serum AGA-IgG titers.\(^{34}\) Indeed, these markers may provide a diagnostic clue for NCGS among patients with RFD. In our study, the AGA (IgG) titer was high in 20% of NCGS patients. Although, the AGA (IgG) titer was not reported as a specific serologic marker for the diagnosis of NCGS, it may be a diagnostic tool for NCGS diagnosis in patients with RFD.

Recent studies have indicated the role of eosinophils in the pathogenesis of functional dyspepsia. Eosinophil infiltration in the duodenal mucosa with >22/5 high power fields (HPF) indicates an inflammatory response leading to persistence of gastrointestinal symptoms.\(^{42-45}\) Eosinophils may cause sensory nerves stimulation and visceral symptoms through granules release, cytokines secretion such as interleukin IL-5, IL-4, IL-13 and mast cell activation in the duodenal mucosa of patients with FD.\(^{43,47,48}\)

Figure 3. The frequency of extra-intestinal symptoms before and after GFD in 5 patients with NCGS. There were no changes in allergic rhinitis, depression, menstrual disorder, disturbed sleep patterns and ataxia. On the other hand, the patients reported impressive improvement in some symptoms such as fatigue and weakness (\(P\) value = 0.000, \(P\) value = 0.002) and musculo-skeletal pain (\(P\) value = 0.000, \(P\) value = 0.002) in more than half the time of the DBPC trial period. GFD = Gluten-free diet.

Figure 4. Comparison of extra-intestinal symptoms between NCGS vs. non-NCGS patients at different phases according to the questionnaire score. NCGS = Non-celiac gluten sensitivity; MS = Musculo-skeletal.
Furthermore, eosinophil infiltration in the duodenal and rectal mucosa of NCGS patients has been recently described.

As our study focused on the symptomatic/clinical response of the patients, we could not unfortunately define any histological characteristics.

According to our findings, RFD may be linked to gluten ingestion. Although intervention with fermentable oligo-/di-/mono-saccharides and polyols (FODMAPs) could not be ruled out in our trial, we did not find any identifiable reasons for the extra-intestinal symptoms decrease in GFD responders. On the other hand, the patients had no limitations for use of FODMAPs-containing products during all the study steps and they had to be on GFD. Thus, symptoms improvement could result from gluten exposure. Moreover, we followed the patients up for three months after the gluten challenge. During this phase, in addition to the 5 NCGS patients, we found 3 patients who reported symptoms recurrence after the ingestion of gluten-containing products and symptoms relief with GFD. The presence of these “late” responders possibly suggests that the Salerno criteria miss some NCGS patients.

Since NCGS is uncommon in the general population and a small sample size may influence the results of our study, multi-center studies with larger sample sizes are needed to clarify this point.

Conclusions
Because of the high prevalence of NCGS among patients with RFD (6.5%), a gluten challenge or, at least, the evaluation of symptomatic responsiveness to GFD in RFD patients seems a reasonable (and simple) approach.

Received: 7 May 2019; Accepted: 30 January 2020;
Published online: 12 February 2020

References
1. Talley, N. J. & Ford, A. C. Functional Dyspepsia. *N Engl J Med* **373**, 1853 (2015).
2. Bytzer, P. & Talley, N. J. Dyspepsia. *Ann Intern Med* **134**, 815 (2001).
3. Koch, K. L. & Stern, R. M. Functional disorders of the stomach. *Semin Gastrointest Dis* **7**, 185 (1996).
4. Malagelada, J. R. Functional dyspepsia. Insights on mechanisms and management strategies. *Gastroenterol Clin North Am* **25**, 103 (1996).
5. Hallas, J. & Bytzer, P. Screening for drug related dyspepsia: an analysis of prescription symmetry. *Eur J Gastroenterol Hepatol* **10**, 27 (1998).
6. Talley, N. J. Dyspepsia. *Gastroenterology* **125**, 1219 (2003).
7. Aziz, I. et al. The Prevalence and Impact of Overlapping Rome IV-Diagnosed Functional Gastrointestinal Disorders on Somatization, Quality of Life, and Healthcare Utilization: A Cross-Sectional General Population Study in Three Countries. *Am J Gastroenterol* **113**(1), 86–96 (2018).
8. Stanghellini, V. et al. Gastrointestinal Disorders. *Gastroenterology* **150**, 1380 (2016).
9. Moayyedi, P. & Axon, A. T. The usefulness of the likelihood ratio in the diagnosis of dyspepsia and gastroesophageal reflux disease. *Am J Gastroenterol* **94**, 3122 (1999).
10. Thistle, J. L. et al. Factors that predict relief from upper abdominal pain after cholecystectomy. *Clin Gastroenterol Hepatol* **9**, 891 (2011).
11. Williams, B. et al. Do young patients with dyspepsia need investigation? *Lancet* **2**, 1349 (1998).
12. Wiklund, I. et al. Does endoscopy have a positive impact on quality of life in dyspepsia? *Gastroint Endosc* **47**, 449 (1998).
13. Vakil, N. et al. Cost of detecting malignant lesions by endoscopy in 2741 primary care dyspeptic patients without alarm symptoms. *Clin Gastroenterol Hepatol* **7**, 756 (2009).
14. Adang, R. P. et al. Appropriateness of indications for upper gastrointestinal endoscopy: association with relevant endoscopic disease. *Gastroint Endosc* **42**, 390 (1995).
15. Ford, A. C. et al. What is the prevalence of clinically significant endoscopic findings in subjects with dyspepsia? Systematic review and meta-analysis. *Clin Gastroenterol Hepatol* **8**, 830 (2010).
16. Moayyedi, P. M. et al. ACG and CAG Clinical Guideline: Management of Dyspepsia. *Am J Gastroenterol* **112**, 988 (2017).
17. Wang, W. H. et al. Effects of proton-pump inhibitors on functional dyspepsia: a meta-analysis of randomized placebo-controlled trials. *Clin Gastroenterol Hepatol* **5**, 178 (2007).
18. Moayyedi, P. et al. The efficacy of proton pump inhibitors in non-ulcer dyspepsia: a systematic review and economic analysis. *Gastroenterology* **127**, 1329 (2004).
19. Moayyedi, P. et al. Pharmacological interventions for non-ulcer dyspepsia. *Cochrane Database Syst. Rev* **18**(4), CD001960 (2006).
20. Talley, N. J. et al. Effect of Amitriptyline and Escitalopram on Functional Dyspepsia: A Multicenter, Randomized Controlled Study. *Gastroenterology* **149**, 340 (2015).
21. Jiang, S. et al. Incidence and psychological-behavioral characteristics of refractory functional dyspepsia: A large, multi-center, prospective investigation from China. *World J Gastroenterol* **21**(6), 1932–1937 (2015).
22. Sapone, A. et al. Differential mucosal IL-17 expression in two gluten-induced disorders: Gluten sensitivity and the autoimmune enteropathy celiac disease. *Int. Arch. Allergy Immunol* **152**, 75–80 (2010).
23. Biesiekierski, J. R. et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. *Am J Gastroenterol* **106**, 508–514 (2011).
24. Catassi, C. et al. Non-celiac gluten sensitivity: The new frontier of gluten related disorders. *Nutrients* **5**, 3839–3853 (2013).
25. Choung, R. S. et al. Trends and racial/ethnic disparities in gluten sensitive diseases in the United States: findings from the National Health and Nutrition Examination Surveys from 1988 to 2012. *Am J Gastroenterol* **110**, 455–461 (2015).
26. Di Giacomo, D. V. et al. Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: Results from the continuous national health and nutrition examination survey 2009–2010. *Scand. J Gastroenterol* **48**, 921–925 (2013).
27. Sapone, A. et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. *BMJ Med** **10**, 13 (2012).
28. Cain, G. et al. Pathophysiology of non-celiac gluten sensitivity: where are we now? *Minerva Gastroenterol Dietol* **63**, 16–21 (2017).
29. Fasano, A. et al. Nonceliac gluten sensitivity. *Gastroenterology* **148**, 1195–1204 (2015).
30. Volta, U. et al. Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders. *Best Pract Res Clin Gastroenterol* **29**, 477–491 (2015).
31. Oberhuber, G., Granditsch, G. & Vogelhang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. *Eur J Gastroenterol Hepatol* **11**, 1185 (1999).
32. Longstreth, G. F. et al. Functional bowel disorders. *Gastroenterology* **130**, 1480 (2006).
33. Mearin, F. et al. Bowel Disorders. *Gastroenterology* **150**, 1393–1407 (2016).
34. Volta, U. et al. Serological tests in gluten sensitivity (non celiac gluten intolerance). *J. Clin. Gastroenterol* **46**, 680–685 (2012).
35. Catassi, C. et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. *Nutrients*. 7, 4966–4977 (2015).
36. Catassi C. et al. The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. *Nutrients*. 9(11) (2017).
37. Lionetti, E. et al. Gluten Psychosis: Confirmation of a New Clinical Entity. *Nutrients*. 7(7), 5532–9 (2015).
38. Ellì, L. et al. Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge. *Nutrients*. 8(2), 84 (2016).
39. Carroccio, A. et al. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. *Am J Gastroenterol* 107, 1898–1906 (2012).
40. Shahbazi Khani, B. et al. Non-Celiac Gluten Sensitivity Has Narrowed the Spectrum of Irritable Bowel Syndrome: A Double-Blind Randomized Placebo-Controlled Trial. *Nutrients*. 7(6), 4542–54 (2015).
41. Dale, H. F. et al. The effect of a controlled gluten challenge in a group of patients with suspected non-coeliac gluten sensitivity: A randomized, double-blind placebo-controlled challenge. *Neurogastroenterol. Motil.* 15, https://doi.org/10.1111/nmo.13332 (2018).
42. Talley, N. J. et al. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study. *Clin Gastroenterol Hepatol* 5, 1175–1183 (2007).
43. Friesen, C. A., Schurman, J. V., Colombo, J. M. & Abdel-Rahman, S. M. Eosinophils and mast cells as therapeutic targets in pediatric functional dyspepsia. *World Journal of Gastrointestinal Pharmacology and Therapeutics* 4, 86–96 (2015).
44. Walker, M. M., Warwick, A., Ung, C. & Talley, N. J. The role of eosinophils and mast cells in intestinal functional disease. *Current Gastroenterology Reports* 13, 323–330 (2011).
45. Walker, M. M. et al. Implications of eosinophilia in the normal duodenal biopsy - an association with allergy and functional dyspepsia. *Aliment Pharmacol Ther* 31, 1229–36 (2010).
46. Walker, M. M. et al. Duodenal mastocytosis, eosinophilia and intraepithelial lymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia. *Aliment Pharmacol Ther* 29(7), 765–773 (2009).
47. Hogan, S. P. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. *Nat Immu*n 2, 353 (2001).
48. Jacoby, D. B., Gleich, G. J. & Fryer, A. D. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. *J Clin Invest* 91, 1314–8 (1993).
49. Carroccio, A. et al. Duodenal and Rectal Mucosa Inflammation in Patients With Non-celiac Wheat Sensitivity. *Clinical Gastroenterology and Hepatology* 17, 682–690 (2019).
50. De Punder, K. & Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. *Nutrients* 5, 771–787 (2013).

Acknowledgements

We received part-funding from the Tehran University of Medical Sciences, Tehran, Iran.

Author contributions

B.S.H. and M.M.F.: study concept, drafting of the manuscript and acquisition of data and writing of the main manuscript text, tables and figures; M.J.F., N.A., F.A. and A.S.H.: interpretation of data and drafting of the manuscript text, tables and figures; M.R.N.: drafting and critical revision of the manuscript; L.E.: critical revision of the manuscript for important intellectual content and material support; M.R.N.: drafting and critical revision of the manuscript; J.Z.: statistical analysis for the study.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-59532-z.

Correspondence and requests for materials should be addressed to M.M.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020