Activation of gab cluster transcription in Bacillus thuringiensis by γ-aminobutyric acid or succinic semialdehyde is mediated by the Sigma 54-dependent transcriptional activator GabR

Qi Peng1, Min Yang1, Wei Wang1,2, Lili Han1, Guannan Wang1,2, Pengyue Wang1,2, Jie Zhang1 and Fuping Song1*

Abstract

Background: Bacillus thuringiensis GabR is a Sigma 54-dependent transcriptional activator containing three typical domains, an N-terminal regulatory domain Per-ARNT-Sim (PAS), a central AAA+ (ATPases associated with different cellular activities) domain and a C-terminal helix-turn-helix (HTH) DNA binding domain. GabR positively regulates the expression of the gabT gene of the gab gene cluster, which is responsible for the γ-aminobutyric acid (GABA) shunt.

Results: Purified GabR was shown to specifically bind to a repeat region that mapped 58 bp upstream of the gabT start codon. The specific signal factors GABA and succinic semialdehyde (SSA) activated gabT expression, whereas GABA- and SSA-inducible gabT transcription was abolished in sigL and gabR mutants. GABA and SSA did not induce the expression of either SigL or GabR. Deletion of the PAS domain of GabR resulted in increased gabT transcriptional activity, both in the presence and absence of GABA.

Conclusions: This study identified the GabR-binding site on the gabT promoter; however, GabR does not bind to its own promoter. gabT transcription is induced by GABA and SSA, and inducible expression is dependent on SigL and activated by GabR. The PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced.

Keywords: GabR, Sigma 54, GABA, SSA, PAS domain

Background

The non-coded amino acid γ-aminobutyric acid (GABA) is found in a wide range of organisms, including bacteria, yeasts, plants and animals. In the adult brain, it is the predominant inhibitory neurotransmitter [1]. The GABA shunt, in which glutamate is converted to succinate, with GABA as an intermediate, is ubiquitous in most prokaryotic and eukaryotic organisms. Two important enzymes are involved in the GABA shunt: GABA transaminase (GABA-T, EC 2.6.1.19, encoded by gabT), which catalyzes the reversible conversion of GABA to succinic semialdehyde (SSA), and succinic semialdehyde dehydrogenase (SSADH, EC 1.2.1.16, encoded by gabD), which irreversibly oxidizes SSA to succinate [2]. Both gabT and gabD have been identified in Escherichia coli [3], Rhizobium leguminosarum [4] and Bacillus subtilis [5].

Bacillus thuringiensis (Bt) has been widely commercialized throughout the world because of the production by strains of this species of insecticidal crystal proteins. During sporulation, Bt produces large crystalline parasporal inclusions. Previous studies suggested that the GABA shunt was related to the formation of Bt crystals and spores [6]. Bt possess a modified tricarboxylic acid cycle (TCA) in which α-ketoglutarate dehydrogenase is absent. Instead, α-ketoglutarate is converted to glutamate and then to succinate via γ-aminobutyric acid [7]. The GABA shunt allows circumvention of the α-ketoglutarate dehydrogenase step. Enzymatic analyses

* Correspondence: fpsong@ippcaas.cn
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Full list of author information is available at the end of the article

© 2014 Peng et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
of Bt extracts suggested that a modified TCA operates during the sporulation phase of growth in conjunction with the glyoxylic acid cycle and the GABA pathway [6]. The Bt gab gene cluster is involved in GABA degradation. Previously, we proposed a model to explain the expression and regulation of the gab gene cluster in Bt strain HD73 [8]. In this model, three genes (gabT, gabR and gabD) form two transcriptional units. gabT is separately transcribed, while gabR and gabD are cotranscribed. Moreover, we found that Sigma 54 RNA polymerase holoenzyme transcribes gabT, with transcription activated by GabR.

Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active form, using ATP hydrolysis to modify the conformation of RNA polymerase containing the alternative sigma factor Sigma 54 [9]. bEBPs generally consist of three domains: the N-terminal regulatory domain plays a role in signal perception and modulates the activity of bEBP; the central AAA⁺ domain is responsible for nucleotide binding, ATP hydrolysis, and oligomerization, and is sufficient to activate Sigma 54-dependent transcription; and the C-terminal DNA-binding domain contains a helix-turn-helix (HTH) motif that enables enhancer site recognition by specific upstream activating sequences (UAS) [9]. The N-terminal or regulatory domains of many bEBPs respond to various environmental signals and thereby regulate the activity of the central AAA⁺ domain [9]. For example, NtrC, DctD, ZraR and FlgR bEBPs are part of two-component systems that couple an external stimulus to an internal response [10-13]. These bEBPs have response regulator domains that are phosphorylated by specific sensor kinases. Certain other Sigma 54 activators have a regulatory domain that binds to small effector molecules, such as FhIA, which contains two GAF domains that bind formate to activate transcription of the formate hydrogen lyase system [14]. PAS (Per-ARNT-Sim) domains have been shown to bind a diverse array of ligands, including heme, flavins, 4-hydroxyacinamic acid, carboxylic acids, and divalent metal ions [15]. However, very few of the signals sensed by PAS domains in bEBPs have been identified. This is the case of TyrR bEBP-like protein, which in the presence of phenylalanine, tyrosine, or tryptophan, proposed to be sensed by the PAS domain, interact with the alpha-subunit of RNA polymerase to activate transcription [16].

GabR is a Sigma 54-dependent transcriptional activator that has three typical domains: an N-terminal PAS regulatory domain, a central AAA⁺ domain, and a C-terminal HTH DNA-binding domain. In this study, we demonstrated that GabR binds upstream and in close proximity to the Sigma 54 binding site in the gabT promoter. Our data also show that the PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced.

Methods

Bacterial strains, plasmids, and growth condition

The bacterial strains and plasmids used in this study are listed in Table 1. Bt strain HD73 was used throughout the study (accession numbers CP004069) [17]. E. coli strain TG1 was used as the host for cloning experiments. The Dam−/Dcm− E. coli ET12567 strain (laboratory stock) was used to generate unmethylated DNA for the electrophoresis assay. Bt strains were transformed by electroporation, as described previously [18,19]. E. coli and Bt strains were cultured in Luria-Bertani (LB) medium, with 220 rpm shaking, at 37 and 30°C, respectively. The antibiotic concentrations used for bacterial selection were as follows: 100 μg/ml kanamycin, 10 μg/ml erythromycin, and 10 μg/ml tetracycline for Bt, and 100 μg/ml ampicillin for E. coli. For β-galactosidase assays, bacteria were grown on Association of Official Analytical Chemists (AOAC) medium (Sigma, S5431, Saint-Quentin Fallavier, France) containing glucose (7 mM) and Schaeffer’s sporulation medium (SSM) [20]. Transcription from the Bt gabT promoter was induced by adding 0, 1, 2, or 5 mM of SSA and GABA to the AOAC culture medium.

DNA manipulation techniques

PCR was performed using Taq and KOD DNA polymerase (New England Biolabs Ltd., Beijing, China). Amplified fragments were purified using Axygen purification kits (New England BioLabs Ltd., Beijing, China). Restriction enzymes and T4 DNA ligase (TaKaRa Biotechnology, Dalian, China) were used according to the manufacturer’s instructions. Oligonucleotide primers (Table 2) were synthesized by Sangon (Shanghai, China). E. coli plasmid DNA was extracted using the Axygen Plasmid Extraction Kit. All constructs were confirmed by DNA sequencing (BGI, Beijing, China).

Total RNA isolation and 5′-RACE analysis

For total RNA purification, strain HD73 was grown as previously described in SSM medium until the T7 stage of stationary phase (corresponding to 7 h after the end of the exponential phase) [21]. cDNA synthesis and transcriptional start sites (TSSs) of the gabT gene were determined using the SMARTer RACE cDNA Amplification Kit (Clontech, Mountain View, CA, USA) according to the manufacturer’s instructions. Gene-specific primers, gabTRACE, and the universal primer mix (UPM) (Table 2) were used to amplify the 5′ end of gabT mRNA.
Expression and purification of GabR protein

The expression plasmid pETGabR containing gabR from Bt strain HD73 was constructed by cloning the amplified gabR gene, using primers GabR-F (with a 5′ BamHI restriction site) and GabR-R (with a 5′ SalI restriction site), into pET21b previously digested with BamHI and SalI. pETGabR was transferred into E. coli BL21(DE3). Transformant E. coli cells were grown to exponential phase in LB medium supplemented with ampicillin at 37°C. The expression of GabR-His protein was induced with 1 mM (final concentration) isopropyl-β-D-thiogalactopyranoside for 3 h at 37°C. Cells were harvested by centrifugation at 13,500 g for 10 min and suspended in 10 mM imidazole NPB buffer (10 mM imidazole, 1 M NaCl, 20 mM sodium phosphate, pH 7.4). Bacteria were lysed on ice by sonication using an ultrasonic cell disruption system (Mini-Beadbeater-96, Biospec). The bacterial lysate was centrifuged at 16,000 g for 10 min at 4°C, and supernatant containing solubilized GabR-His protein was recovered, filtered through a 0.45-μm membrane filter, and loaded onto a HiTrap chelating column (1 ml, Pharmacia). After binding the protein, the column was washed with 10 mM imidazole NPB solution and the target GabR-His protein was eluted with NPB solution containing a stepwise gradient of imidazole from 100 to 500 mM.

Gel mobility shift assays

The PgabT DNA fragment was obtained by PCR of strain HD73 genomic DNA using primers PgabT-F and PgabT-R, which were previously labeled according to a fluorescent
Table 2 Primers used in this study

oligonucleotides	sequence (5’ - 3’)
PgabT-F	GATGTGATGCTAATGGTTC
PgabR-T	CTTTCTTACTATGTGGTC
gabTRACE	CGAAGGATCTTACACCGTGTC
UPM	AAGCACGTTGTAACGCAAGATTCAG
GabR-F	CGGAGTGATGTTGAGAAGAAGG
GabR-R	GGGTCGACCTCAAGTGTGTTTC
PgabTDR-F	AACTGGAGACAAGCCTTGATGTAAG
PgabTDR-1	CTATAAAGACTTTAAAAAGAAGGTC
PgabTDR-2	TGCCACACTTCTTTTTAAGAAGTCTTTAG
PgabTDR-R	CCAGGACCCCTTCTTTTCTTTTCTTT
PgabT1I-1	GTCTAATGTGTAAGTATAAGTATAAGT
PgabT1I-2	ATTAGAAGCTACACACTAATAG
PsigL-F	CCCAAGCTTATTAGCAGCTGTTGTTCTCAAG
PsigL-R	CCGAGGATCCTAATCTTCCCTTTTCTTTTAG
PgabRD-F	AAGCGTTGCTGTTGGACAGAAG
PgabRD-R	CAGGAGGTCCGTCCATCATCCTACCTT
CgabR-1	CGGAGGATCCTGTTGGACAGAAG
CgabR-2	CGGAGGATCCTAGTTGAAGTATAAG
DPAS-F	GGGATGCTGTTGATCAGCATAAGAATCA
DPAS-R	GGGATGCTGTTGATCAGCATAAGAATCA

*Restriction enzyme sites are italics.

5’-end 6-FAM modification and confirmed by DNA sequencing. Electrophoresis mobility shift assays (EMSA) were performed as previously described [22] to analyze the binding of purified GabR protein to PgabT DNA. Briefly, the PgabT DNA probe (0.1 µg) was incubated with different concentrations of purified GabR at 25°C for 20 min in binding buffer (10 mM Tris HCl, 0.5 mM dithiothreitol (DTT), 50 mM NaCl, 50 ng poly (dl-dC), pH 7.5 and 4% (v/v) glycerol) in a total volume of 20 µl. The DNA-protein mixtures were applied to non-denaturing 5% (w/v) polyacrylamide gels in TBE buffer (90 mM Tris-base, 90 mM boric acid, 2 mM EDTA, pH 8.0) for resolution of the complexes, using a Mini-PROTEAN system (Bio-Rad) at 160 V for 1 h.Signals were visualized directly from the gel with the FLA Imager FLA-5100 (Fujifilm). The specificity of the shift was confirmed using poly (dl-dC), and GST protein, bovine serum albumin (BSA), and as negative controls, the cry1Ac and gerE promoters (which do not bind to GabR protein; data not shown). Increasing concentrations (0.1-50 µM) of SSA or GABA were incubated with the PgabT probe and GabR to analyze the effect of SSA and GABA on the binding of GabR and PgabT.

DNase I footprinting assays

DNase I footprinting assays were performed based on a fluorescent labeling procedure [23]. Briefly, gabT promoter DNA was PCR-amplified using the fluorescently-labeled primers PgabT-F and PgabT-R (Table 2) and purified from an agarose gel. The labeled PgabT DNA probe (120 ng) was incubated for 20 min at 25°C with the indicated concentrations of purified GabR and BSA in a total volume of 50 µl of binding buffer (described above for EMSA). DNase I digestion was then carried out for 1 min at 25°C and stopped with stop buffer (Promega). After phenol-chloroform extraction and ethanol precipitation, the samples were loaded on an Applied Biosystems 3730 DNA genetic analyzer together with an internal-lane size standard (ROX-500, Applied Biosystems). A dye primer-based sequencing kit (Thermo) was used to precisely determine the sequences after their alignment with the capillary electrophoresis results from the reactions. Electropherograms were analyzed with GeneMarker v1.8 (Applied Biosystems).

Construction of the PgabT-lacZ fusion bearing a deletion of GabR-binding site

A fragment containing the gabT promoter bearing with the GabR-binding site deleted was cloned in fusion with the lacZ gene. The construct was obtained as follows: The downstream and upstream regions of the gabT promoter were amplified in two PCR reactions, using strain HD73 DNA as the template, and PgabTDR-F/PgabTDR-2 and PgabTDR-1/PgabTDR-R primers, respectively. These DNA fragments were fused by overlapping PCR using the primer pair PgabTDR-F/PgabTDR-R. The resulting PCR products were digested with PsiI and BamHI, purified, and ligated into the low-copy-number vector pHT304-18Z [24], which harbors a promoterless lacZ gene. The recombinant plasmid named pHT-PgabTDR, which has a deletion of 60 bp corresponding to the GabR-binding site, was introduced into Bt strain HD73, yielding the transformant strain HD (PgabTDR-lacZ). Another recombinant plasmid, pHT-PgabTDL, which has a deletion of the first 21-bp repeat located in the GabR-binding site region, was constructed by a similar method. The downstream and upstream regions of the gabT promoter were amplified in two PCR reactions, using strain HD73 DNA as the template, and PgabTDR-F/PgabTDL-2 and PgabTDL-1/PgabTDR-R primers, respectively. These DNA fragments were fused by overlapping PCR using the primer pair PgabTDR-F/PgabTDR-R. The PCR products were digested with PsiI and BamHI, purified, and ligated into the vector pHT304-18Z. The resulting plasmid, pHT-PgabTDL, was introduced into Bt strain HD73 yielding the transformant strain HD (PgabTDL-lacZ).

Construction of sigL and gabR promoters with lacZ gene fusion

In strain HD73, Sigma 54 is encoded by the sigL gene. 313 bp fragment from the sigL gene was amplified from strain HD73 DNA using primers PsigL-F (with 5’-
HindIII) and PsigL-R (with 5′-BamHI) (Table 2). The HindIII-BamHI restriction fragment of the sigL promoter was cloned into the vector pHT304-18Z. The recombinant plasmid, pHT-PsigL, was introduced into Bt strain HD73 yielding the transformant strain HD (PsigL-lacZ).

A fragment containing 633 bp of the gabR promoter was previously cloned [8]. Here, a truncated gabR promoter fragment of 580 bp was constructed, deleting the −12/−24 conserved element. The 580-bp gabR promoter fragment was amplified from strain HD73 DNA using PgabRD-F (with 5′-PstI) and PgabRD-R (with 5′-BamHI) primers (Table 2). The PstI-BamHI fragment of gabR promoter was then ligated into the vector pHT304-18Z [24]. The recombinant plasmid pHT-PgabRD was introduced into Bt strain HD73, and the resulting strain was named HD (PgabRD-lacZ).

Complementation of the gabR mutant and deletion of PAS domain

A DNA fragment containing gabR and the gabR promoter was amplified with CgabR-1 and CgabR-2 primers (Table 2) using Bt strain HD73 DNA as template. The PCR product (1,974 bp) was digested with BamHI and EcoRI and ligated into plasmid pHT1618 [25]. The resulting plasmid (pHT1618-gabR) was amplified in E. coli and introduced into the Bt mutant strain ΔgabR (PgabT-lacZ). This plasmid complements the gabR strain, with a gabR gene where the PAS domain (amino acids 33–128 of GabR) was deleted, and allows evaluation of the expression of the gabT promoter-lacZ fusion. A similar plasmid carrying the gabR promoter and gabR gene but without the PAS domain encoded sequence, was constructed by amplifying two DNA fragments using strain HD73 DNA as the template and CgabR-1/DPAS-R and DPAS-F/CgabR-2 primers, respectively (Table 2). The amplified fragments were fused by an overlapping PCR using CgabR-1 and CgabR-2 primers. The final PCR product (1,689 bp) was digested with EcoRI and BamHI, purified and ligated into plasmid pHT1618. The resulting plasmid (pHT1618-DPAS) was amplified in E. coli and introduced into the Bt mutant strain ΔgabR (PgabT-lacZ). This plasmid complements the gabR strain, with a gabR gene where the PAS domain (amino acids 33–128 of GabR) was deleted, and allows evaluation of the expression of the gabT promoter-lacZ fusion in β-galactoside activity assays. The resulting strains CgabR(PgabT) and DPAS(PgabT) were selected based on their erythromycin and tetracycline resistance and identified by PCR.

β-galactosidase assays

Bt strains containing lacZ transcriptional fusions were cultured in AOAC medium (supplemented with 7 mM glucose) at 30°C and 220 rpm. GABA or SSA at concentrations of 0, 0.2, 1 and 5 mM was added to the cultures when the OD₆₀₀ reached 1.0 (mid-exponential phase, defined as A₀). For PgabT and PgabR activity assay without GABA or SSA, T₀ is the end of the exponential phase (OD₆₀₀ = 2.0–2.2), and Tn is n hours after the end of the exponential phase. Samples of 2.0 ml were taken at 1-h intervals after induction. Cells were harvested by centrifugation for 1 min at 12,000 g, and the supernatant was discarded. The β-galactosidase-specific activities were determined as previously described [26] and expressed as Miller units. The values reported represent averages from at least three independent assays.

![Figure 1 Nucleotide sequence of the gabT upstream region](image)

Figure 1 Nucleotide sequence of the gabT upstream region. Transcriptional start sites (TSSs, indicated by asterisks) are located 16 and 19 bp upstream from the start codon of the gabT gene (underlined). The putative ribosome-binding-site (RBS) is indicated by an upper line. The −12, −24 sequences are double underlined. The GabR binding site (boxed region) maps 58 bp upstream of the start codon of gabT. A 21-bp repeat region (underlined, gray and arrow) maps 105 bp upstream of the gabT start codon.
Figure 2 Identification of the GabR-binding site in the \textit{gabT} promoter. Panel A, SDS-PAGE analysis of GabR (57 kDa) expressed in \textit{E. coli} (pET21b-gabR) and purified by nickel affinity column chromatography. M, protein marker. Panel B, Electrophoresis mobility shift assay (EMSA) of the \textit{gabT} promoter fragment (286 bp) after interaction with GabR. Lane 1, FAM-labeled \textit{PgabT} probe; lanes 2–8, incubation of the probe with increasing concentrations of purified GabR indicated at the top of the figure. Each lane contained 0.1 μgo f probe. Lane 9, incubation of a five-fold greater amount of unlabeled \textit{PgabT} probe mixed with labeled \textit{PgabT} probe and 8 μM GabR. Panel C, protection of a 96-bp sequence in the \textit{gabT} promoter by GabR, as revealed in a DNase I footprinting protection assay. The fluorograms correspond to the control DNA (10 μM BSA) and to the protection reactions (with 3.2, 4.8 and 8 μM of GabR). Panel D, β-galactosidase activity assay of the \textit{gabT} promoter with the GabR-binding site (●), without the 60-bp GabR-binding site (▲), and without the first 21-bp repeat region of the GabR-binding site (◊). The deletion sequence is that underlined in Figure 2C. T0 is the end of exponential phase, and Tn is n hours after T0.
Results

Determination of the transcriptional start site of gabT

To determine the transcriptional start site (TSS) of gabT, 5′-RACE analysis was performed as described in the Materials and Methods. According to the sequences of 16 random clones, a G located 19 bp upstream from the start codon was identified in eight, and an A residue located 16 bp upstream of the start codon in the remaining eight. Thus two TSSs were located 16 and 19 bp upstream of the start codon of gabT (Figure 1). The typical ribosome binding site (RBS) sequence (−AGGATG−) was identified at an appropriate distance upstream from the start codon of gabT. The sequence TGGCATACTTT GCA was identified upstream of the promoter, GabR-His protein was expressed in fragment gabT DR. To determine whether GabR is able to bind the promoter regions of gabT were incubated with different amounts of GabR and assayed for the formation of protein-DNA complexes. Slower-migrating probe-protein complexes were observed upon incubation with increasing amounts of GabR (Figure 2B). A five-fold molar excess of unlabeled PgabT probe competed with the labeled PgabT probe, indicating specific binding (Figure 2B, lane 9). GabR did not bind to other labeled promoters from strain HD73, such as cry1Ac and gerE (data not shown). These results indicate that GabR recognizes and specifically binds to sequences within the gabT promoter fragment.

To precisely determine the GabR-binding site in the gabT promoter, DNase I footprinting assays were carried out using the same gabT promoter fragment used in the EMSA. A 96-bp fragment was protected by GabR binding (Figure 2C) (corresponding to the boxed sequence in the gabT region shown in Figure 1). Moreover, a 21-bp repeat region mapped 105 bp upstream of the start codon of gabT (Figure 1), with the 21-bp inverted repeat separated by 5 bp (shaded gray in Figure 1).

To determine whether the proposed 96-bp sequence is the GabR binding site in vivo, a 60-bp fragment of the binding site was deleted from the gabT promoter and the promoter carrying the deletion was fused to lacZ (PgabTDR-lacZ). The deleted sequence is underlined in Figure 2C. Another deletion fragment, in which the first 21-bp repeat located at the GabR-binding site region was removed, was similarly fused to lacZ (PgabTDI-lacZ). The deleted sequence is double-underlined in Figure 2C. The β-galactosidase assay showed that the activities of HD(PgabTDR-lacZ) and HD(PgabTDI-lacZ) strains were sharply decreased compared with that of wild-type strain HD73 carrying the gabT promoter fused to lacZ (PgabT-lacZ) (Figure 2D). This result shows that disruption of the proposed GabR-binding site prevents GabT expression in vivo.

Figure 3 Induction of gabT transcription by GABA and SSA. Bt strains containing a PgabT-lacZ transcriptional fusion were cultured in AOAC medium. At OD$_{600}$ = 1.0 (A0), GABA and SSA were added at different concentrations. Samples were collected at 1-h intervals for 6 h after induction and β-galactosidase activity was assayed. Panel A, GABA was added to strain HD(PgabT-lacZ) at a final concentration of 0 mM (●), 0.2 mM (○), 1 mM (□) and 5 mM (▲). Panel B, SSA was added to strain HD(PgabT-lacZ) at a final concentration of 0 mM (●), 0.2 mM (○), 1 mM (□) and 5 mM (▲). A0 is mid-exponential phase (OD$_{600}$ = 1.0), and An is n hours after A0.
GABA and SSA induce \textit{gabT} expression

The \textit{PgabT-lacZ} fusion showed lower activity in AOAC medium (Figure 3) than in SSM (Figure 2D). To analyze the inducible activity of the \textit{gabT} promoter, cells were cultured in AOAC medium. The addition of 0.2, 1 and 5 mM GABA or SSA induced the expression of a \textit{PgabT-lacZ} fusion (Figure 3A and B), confirming the induction of \textit{gabT} expression by these two signaling molecules. However, they differed in their \textit{gabT} transcription induction patterns: GABA caused induction after A3 (3 hours after the mid-exponential phase), whereas SSA caused nearly immediate induction. These results might be explained if we hypothesize that SSA is the direct signal, while GABA is the precursor of SSA signal synthesis.

\textbf{Induction of \textit{gabT} promoter activity by GABA and SSA depends on Sigma 54 and GabR}

In a previous study, we demonstrated that \textit{gabT} expression is controlled by Sigma 54, via the transcription activator GabR [8]. Here, we analyzed the effect of 1 mM GABA or SSA on \textit{PgabT} transcription activity in \textit{sigL} (Sigma 54 coding gene in \textit{Bt}) or \textit{gabR} mutants. Neither GABA nor SSA induced activation of the \textit{gabT} promoter in \textit{ΔsigL} or \textit{ΔgabR} (Figure 4A and B). These data showed that GabR and Sigma 54 are absolutely necessary for \textit{gabT} expression.

\textbf{Figure 4} Analysis of the transcriptional activation of \textit{gabT}, \textit{gabR} and \textit{sigL} promoters. Panel A, analysis of β-galactosidase activity induced by the \textit{gabT} promoter in strain HD73, the \textit{sigL} mutant and the \textit{gabR} mutant with or without GABA, Strain HD(PgabT-lacZ) without (●) and with (■) 1 mM GABA, strain ΔsigL(PgabT-lacZ) without (▲) and with (▼) 1 mM GABA. Panel B, analysis of β-galactosidase activity induced by the \textit{gabT} promoter in strain HD73, the \textit{sigL} mutant and the \textit{gabR} mutant with or without SSA, Strain HD(PgabT-lacZ) without (●) and with (■) 1 mM SSA, strain ΔsigL(PgabT-lacZ) without (▲) and with (▼) 1 mM SSA. Panel C, analysis of β-galactosidase activity induced by the \textit{gabR} promoter in strain HD73 with or without GABA and SSA, Strain HD(PgabR-lacZ) without GABA or SSA (●), with 1 mM GABA (■), and with 1 mM SSA (▲). Panel D, analysis of β-galactosidase activity induced by the \textit{sigL} promoter in strain HD73 with or without GABA and SSA, Strain HD(PsigL-lacZ) without GABA or SSA (●), with 1 mM GABA (■), and with 1 mM SSA (▲). A0 is mid-exponential phase (OD600 = 1.0), and An is n hours after A0.
transcription and that GABA- or SSA-induced \(\text{gabT}\) transcription is controlled by Sigma 54 and activated by GabR bEBP.

\textbf{PgabT induction is not caused by GABA or SSA enhancement of the transcriptional activity of \(\text{gabR}\) or \(\text{sigL}\).}

To determine whether GABA and SSA induced transcription of the \(\text{gabT}\) promoter by affecting \(\text{sigL}\) and \(\text{gabR}\) transcription, strains carrying \(\text{sigL}\) and \(\text{gabR}\) promoter fusions with \(\text{lacZ}\) were used [HD(\text{sigL-lacZ}) and HD(\text{PgabR-lacZ})]. The addition of GABA and SSA had no effect on either \(\text{PgabR}\) or \(\text{PsigL}\) transcriptional activities (Figure 4C and D), suggesting that the GABA- and SSA-induced transcription from the \(\text{gabT}\) promoter is not due to the increased expression of \(\text{sigL}\) or \(\text{gabR}\). Increasing concentrations of GABA and SSA did not enhance the binding of GabR to the \(\text{gabT}\) promoter (Additional file 1: Figure S1). Thus, the induction of \(\text{PgabT}\) by GABA and SSA is not caused by activating GabR and DNA binding.

\textbf{The \(\text{gabR}\) promoter is not a Sigma 54-dependent promoter}

In the following, we provide additional evidence that transcription from the \(\text{gabR}\) promoter is not dependent on SigL, nor is it activated by GabR, which differs from the conclusion reached in our previous study [8]. EMSA performed to analyze the binding of GabR to the \(\text{PgabR}\) promoter showed that GabR did not bind to its own \(\text{gabR}\) promoter (Figure 5B). The β-galactosidase activity of the \(\text{gabR}\) promoter was tested again in the \(\text{sigL}\) and \(\text{gabR}\) mutants. The results failed to show significant difference in the \(\text{gabR}\) promoter activities of wild-type strain HD73 and the \(\text{sigL}\) and \(\text{gabR}\) mutants (Figure 5C). Furthermore, deletion of a Sigma 54-like −12/−24 conserved region in the \(\text{gabR}\) promoter (\(\text{PgabRD}\) highlighted in Figure 5A) had no effect on \(\text{PgabR}\) transcription (Figure 5D). It should be noted that several reports have shown that deletion of one or more nucleotides in the stretch included in the −24/−12 elements of Sigma 54-dependent promoters abolishes promoter function [31,32].
Those studies proposed that there is a stringent requirement for these motifs to be positioned on the same face of the DNA helix as a necessary condition for the binding of RNA polymerase and Sigma 54 [28]. Since there are only 11 nt in –24/–12 elements of the gabR promoter, it is not a typical Sigma 54-dependent promoter. Furthermore, GABA and SSA had no effect on the binding of GabR to the gabT promoter, as judged by EMSA assays (data not shown), suggesting that GABA and SSA activation of PgabT is not caused by enhanced GabR-binding to DNA.

The PAS domain of GabR plays a role in the GABA-inducible transcription of gabT
GabR is a Sigma 54-dependent transcriptional activator containing three typical domains, similar to those in other bEBPs, including a PAS domain in the N-terminal region (Figure 6A). To determine the role of PAS domain in GABA-induced transcription of gabT, a PAS domain deletion in GabR was constructed and its capacity to induce the gabT promoter was compared with that of wild-type GabR. The GabR ΔPAS mutant (DPAS) and GabR wild-type (CgabR) proteins were then used to complement a GabR mutant. The transcriptional activity of gabT was determined by measuring β-galactosidase activity of the fusion protein (see Methods). As shown in Figure 6B, gabT promoter activity in strain DPAS(PgabT) was higher than that of strain CgabR(PgabT) without the addition of GABA. Interestingly, GABA had no effect on the transcriptional activity of DPAS (PgabT) (Figure 6B). These data suggest that the PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced.

Discussion
The structure of the gab gene cluster in Bt is different from those found in E. coli and B. subtilis [8]. We confirmed that expression of gabT in Bt is positively regulated by GabR, which is a Sigma 54-dependent transcriptional activator, and that GabR specifically binds to the gabT promoter. Transcriptional activation of gabT by GabR is mediated by the signal molecules GABA and SSA. In Bt, GabR is not involved in gabR transcriptional activation and GABA and SSA had no effect on sigL or gabR transcription. By contrast, in B. subtilis, gabD and gabT form a GABA-inducible operon, with GabR, encoded by a divergent gene, gabR, acting as a transcriptional regulator of both the gabTD operon and its own gene [33]. In B. subtilis, the presence of both GABA and pyridoxal 5′-phosphate (PLP) is required for GabR-dependent activation of the gabT promoter. The efficiency of the GabR-dependent repression of the gabR transcript is not affected by the addition of PLP or GABA [33]. In this work we showed that the GABA-inducible mechanism in Bt is different from that in B. subtilis.

These different induction mechanisms can be attributed to the different GabR structures found in Bt and B. subtilis. GabR of B. subtilis is a member of the understudied MocR/GabR subfamily of the GntR family of transcription regulators [34]. GabR in B. subtilis has a short N-terminal HTH-containing domain and a long C-terminal domain that is similar to full-length aminotransferases or to the PLP-binding domain of aminotransferases [33]. The GabR structure provides a model for DNA binding at the gabR-gabT locus by one or more GabR homodimers. GabR aminotransferase-like activity involving GABA and PLP is not essential to its primary function as a transcriptional regulator [34]. However, GabR in Bt is a Sigma 54-dependent transcriptional activator, also referred to as a bacterial enhancer binding protein (bEBP). GabR comprises three domains (Figure 6A), including an N-terminal PAS domain. Here, we showed that the PAS domain of GabR is not caused by enhanced GabR-binding to DNA.

Figure 6 Analysis of the role of the PAS domain of GabR in gabT transcription. Panel A, Domain organization of GabR. GabR is a Sigma 54-dependent activator that has three typical domains, the N-terminal regulatory domain (PAS domain, amino acids 22 119), the central AAA+ domain (amino acids 149 320) and C-terminal DNA-binding domain (HTH, amino acids 408–447). In the PAS domain deletion strain DPAS, the PAS domain from amino acids 33 to 128 is deleted from GabR. The GabR promoter region (606 bp) was used to construct the pHT1618-gabR and pHT1618-DPAS plasmids. Panel B, analysis of β-galactosidase activity induced from the gabT promoter in the Bt strain complemented with GabR or with the PAS deletion mutant in the presence or absence of GABA. Strain CgabR without (●), and with (●) 5 mM GABA, strain DPAS without (○), and with (▲) 5 mM GABA. A0 is mid-exponential phase (OD600 = 1.0), and An is n hours after A0.
GabR, which is the signal sensor domain, is required for the regulation of GABA-inducible transcriptional activity of the gabT promoter.

The role of the N-terminal regulatory domain of bEBPs has been documented in many Sigma 54-dependent transcriptional activators, whereas little is known about the function of the PAS domain, even though PAS domain is present in many bEBPs. Indeed, only the PAS domain of the bEBP-like protein TyrR has been investigated [16]. TyrR contains both a PAS domain and an ACT domain present in many bEBPs. Indeed, only the PAS domain of GabR functions in a similar way, i.e., by repressing bEBPs in modulating GabR activity. The data suggest that the PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced.

Conclusions

The data presented here improve our understanding of the regulation of the gab gene cluster in Bt and form the basis of a new regulatory model is proposed herein (Figure 7). Two transcriptional units, gabT and gabRD, in the gab gene cluster are involved in the GABA shunt. GABA and SSA are the signals involved in gabT transcription, via the PAS domain of GabR. Transcription of gabT is controlled by Sigma 54, and activated by GabR, through binding to a 96 bp region on the gabT promoter. The PAS domain of GabR acts as a signal sensor domain, modulating GabR activity. The data suggest that the PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter.

Additional file

Additional file 1: Figure S1. EMSA for GabR-PgabT with different concentration of SSA (A) or GABA (B). Lane 1, FAM-labeled PgabT probe; Lane 2-6, incubation of PgabT probe and 2.5 μM GabR with the increasing concentrations of SSA or GABA indicated at the top of the figure. Each lane contained 0.1 μg of probe.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

QP and FS designed the research. QP performed the experimental work and drafted the manuscript. MY and LH purified the protein and performed the EMSA. WW performed the S-RACE analysis and inducible activity. GW and PW constructed the PAS domain deletion strain and carried out β-galactosidase assay. FS and JZ critically revised the manuscript for intellectual content. All authors read and approved the final version of the manuscript.

Acknowledgements

This work was supported by grant from the National Natural Science Foundation of China (Nos. 31270111 and 31300085) and the National High Technology Research and Development Program of China (863 Program; 2011AA10A203). We thank Dr. Mario Soberon and Dr. Alejandra Bravo from Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, and Dr. Didier Lerche from the Institut National de la Recherche Agronomique for their critical suggestions.

Author details

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
2. College of Life Sciences, Northeast Agriculture University, Harbin, China.

Received: 30 June 2014 **Accepted:** 24 November 2014 **Published online:** 20 December 2014

References

1. Varju P, Katarzka Z, Madarasz E, Szabo G: GABA signalling during development: new data and old questions. Cell Tissue Res 2001, 305(2):239-246.
2. Shep SJ, Bown AW, McLean MD: Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 1999, 4(11):446-452.
3. Bartsch K, von Johani-Marteville A, Schulz A: Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamatesuccinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J Bacteriol 1990, 172(2):703-704.
5. Belitsky BR, Sonenshein AL: Effector-mediated stimulation of ATPase activity by the Ligand-binding PAS domains in a genomic, cellular, and structural context. J Mol Biol 2005, 351(1):16-26.

7. Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F:Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announcements 2013, 1(2):e000813.

9. Hopper S, Bock A: Catabolic repression of bacterial PlcR-regulated gene transcription, protein expression. J Bacteriol 2012, 194(4):704-711.

11. Lereclus D, Arantes O, Chaufaux J, Lecadet M: Complete genome sequence of Bacillus thuringiensis subsp. kurstaki. J Bacteriol 2004, 186(14):4535-4542.

13. Prell J, Bourdes A, Karunakaran R, Lopez-Gomez M, Poole P: DNA bases of a DNase I footprint by the use of dye primer sequencing and structural context. FASEB J 2012, 26(2):704-711.

15. Henry JT, Crosson S: The TyrR regulon. Mol Microbiol 2005, 55(1):16-26.

17. Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F: Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announcements 2013, 1(2):e000813.

19. Lereclus D, Arantes O, Chaufaux J, Lecadet M: Complete genome sequence of Bacillus thuringiensis subsp. kurstaki. J Bacteriol 2004, 186(14):4535-4542.

21. Du L, Qiu L, Peng Q, Lereclus D, Zhang J, Song F, Huang D: Identification of the promoter in the integric region between orf1 and cry8Ea1 controlled by sigma H factor. Appl Environ Microbiol 2012, 78(12):4164-4168.

23. Zianni M, Tessanne K, Meriggi M, Laguna R, Tabita FR: Identification of the DNA bases of a DNAs I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomed Tech 2006, 17(2):103-113.

25. Lereclus D, Arantes O: spbA locus ensures the segregational stability of pTH1030, a novel type of gram-positive replicon. Mol Microbiol 1992, 6(13):35-46.

27. Franke C, Groot Kormelink T, Hagemejer Y, Overman L, Sluijter V, Moezelar R, Siezen R: Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011, 12:385.