Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens

Grégory Hoff, Claire Bertrand, Lingli Zhang, Emilie Piotrowski, Ludovic Chipot, Cyril Bontemps, Fabrice Confalonieri, Stephen T McGovern, François Lecointe, Annabelle Thibessard, et al.

To cite this version:
Grégory Hoff, Claire Bertrand, Lingli Zhang, Emilie Piotrowski, Ludovic Chipot, et al.. Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Frontiers in Microbiology, 2016, 7, pp.1901. 10.3389/fmicb.2016.01901 . hal-01521993

HAL Id: hal-01521993
https://hal.univ-lorraine.fr/hal-01521993
Submitted on 12 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in *Streptomyces ambofaciens*

Grégory Hoff, Claire Bertrand, Lingli Zhang, Emilie Piotrowski, Ludovic Chipot, Cyril Bontemps, Fabrice Confalonieri, Stephen McGovern, François Lecointe, Annabelle Thibessard and Pierre Leblond

1 UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de Lorraine, Vandœuvre-lès-Nancy, France, 2 UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation Microbienne, Vandœuvre-lès-Nancy, France, 3 Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France, 4 Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France

Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. *In silico* analyses performed in the 38 sequenced genomes of *Streptomyces* species revealed the existence of a large panel of NHEJ-like genes. Indeed, *ku* genes or *ligD* domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the “core” NHEJ gene set constituted of conserved loci and the “variable” NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In *Streptomyces ambofaciens* ATCC23877, not only the deletion of “core” genes but also that of “variable” genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of *ku*, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that *ku*-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

Keywords: Streptomyces, non-homologous end joining, DNA repair, double strand breaks (DSBs), ligases, Ku protein, DNA damage

INTRODUCTION

Double strand breaks (DSB) are the most detrimental genomic lesions and their repair constitutes a major challenge for cell viability. In eukaryotes and prokaryotes, two main repair machineries have evolved to repair these DSBs, namely homologous recombination (HR) and non-homologous end joining (NHEJ) (Alonso et al., 2013; Deriano and Roth, 2013; Glickman, 2014). In contrast
to HR which needs an intact template to ensure repair of the break, NHEJ can bind DNA ends together without any template after a facultative DNA ends remodeling step. In multicellular eukaryotes, the NHEJ mechanism represents the predominant DSB repair pathway and requires the intervention of the end tethering heterodimer Ku70/80 as well as diverse end processing proteins (for review: Deriano and Roth, 2013). In prokaryotes, NHEJ is not ubiquitous and the minimal NHEJ machinery first described in *Mycobacterium* consists of two actors: a Ku homolog and an ATP dependent ligase LigD (Weller et al., 2002; Della et al., 2004; Gong et al., 2005). The latter one is a multifunctional protein that carries three distinct enzymatic domains conferring nuclease, polymerase and ligase activities (Pitcher et al., 2005). Unlike DSB repair through HR, DSB repair carried out by NHEJ is mutagenic. Nucleotide addition and/or deletion are scars frequently left after DNA ends ligation (Stephanou et al., 2007; Aniuwu et al., 2008; Gupta et al., 2011). The initial model involving two unique actors is now renewed by the discovery of alternative actors. When the ligase domain of LigD (LigDom) is defective, a back-up ligation activity is provided by LigC, another ATP dependent ligase (Della et al., 2004; Bhattarai et al., 2014). In the same way, *Mycobacterium smegmatis* possesses two additional polymerases which share the same in vitro activity than the polymerase domain of LigD (PolDom) (Zhu et al., 2012).

Streptomyces are filamentous bacteria mainly found in soils, sediments and seawater as well as symbionts with plants, fungi and animals (Seipke et al., 2012). Soil is a complex and changing environment where *Streptomyces* have to adapt to the heterogeneity of the niche (moisture, nutrients, temperature...) and to cope with biotic competition. Their rich and varied secondary metabolism such as signaling molecules or chemical weapons is assumed to mediate their relationships with other organisms (Davies and Davies, 2010; Abrudan et al., 2015). Under limited nutritive conditions, their hyphae differentiate into long chains of exospores providing an efficient way for resistance and dissemination until suitable conditions for another growth cycle are met (Chater, 1993). While hyphae are large multi-genomic compartments, spores are known to include a single genome (Hopwood, 2006). In contrast to the vast majority of bacteria, *Streptomyces* possess a linear chromosome whose size is ranging from 5.96 to 11.94 Mb with a central replication origin and terminally inverted repeats that are covalently bound to specific telomere proteins (Lin et al., 1993). The *Streptomyces* genome presents a high plasticity and their chromosome is highly compartmented, with a conserved central region including mostly housekeeping genes whereas the dispensable genes are predominantly located in the chromosomal arms (Bentley et al., 2002; Ikeda et al., 2003; Kim et al., 2015). The loss of synteny at the ends of the chromosome results from horizontally acquired DNA insertion or deletion events (Choulet et al., 2006; Thibessard and Leblond, 2014). This terminal variability reveals the strong recombination activity taking place at the ends of the genome which is reminiscent of the DNA rearrangements reported several decades ago (Leblond et al., 1990; Volff and Altenbuchner, 1998). Hence, *Streptomyces* are also subject to a high level of genetic instability which is directly linked to major genome rearrangements. Characterization of some of these rearrangements revealed large deletions, chromosome circularization, (Fischer et al., 1997; Inoue et al., 2003), arm replacement (Fischer et al., 1998; Uchida et al., 2003), chromosome end-to-end fusion (Wenner et al., 2003) or large DNA amplifications (Yanai et al., 2006).

Molecular analyses showed that chromosome circularization and end-to-end fusion events especially rely on illegitimate recombination whereas chromosome arm replacement or DNA amplifications is dependent on HR. This terminal recombination pattern may result from higher recombination frequencies triggered by the preferential formation of DSBs in these regions. On the other hand, genome rearrangements could also be more tolerated if formed in these dispensable regions.

Nevertheless, little is known about DSB repair in *Streptomyces*. Like the other bacteria, *Streptomyces* possess a RecA homologue involved in HR (Aigle et al., 1997; Muth et al., 1997; Vierling et al., 2001; Huang and Chen, 2006). However, recent studies that we performed suggest that *Streptomyces* has an atypical HR pathway. In fact, in contrast to bacterial models like *Escherichia coli*, *Bacillus subtilis* or *Mycobacterium*, deletion of genes encoding a potential helicase-nuclease complex supposed to be involved in the initial end resection step during HR is not viable in *S. ambofaciens* (Zhang et al., 2014). On the other hand, deletion of *nuvABC* and *recG*, two loci encoding factors that have a redundant role in migration and resolution of Holliday junction during late steps of HR, has only a mild effect on recombination efficiency (Hoff et al., 2016). Early bioinformatics studies showed that the two model species, *S. coelicolor* and *S. avermitilis*, both possess a ku ortholog suggesting also the existence of a NHEJ pathway in *Streptomyces* (Rocha et al., 2005). Here, we performed *in silico* analyses in the fully sequenced *Streptomyces* genomes leading to the identification of a large panel of conserved and variable genes suspected to be involved in a NHEJ pathway. Construction of single and multiple NHEJ-like genes mutant strains in *S. ambofaciens* allowed us to study the impact of these different genes in DNA damage repair. All the results we obtained suggest the existence of a complex and atypical bacterial NHEJ pathway in *Streptomyces*.

MATERIALS AND METHODS

Phylogenetic Analyses

A total of 38 sequenced *Streptomyces* genomes, including that of *S. ambofaciens* ATCC23877 was scanned to identify genes putatively encoding NHEJ Ku-like or LigD-like proteins based on BLAST similarity search against the non-redundant database. A preliminary BLASTP search (e-value cut-off 10^{-30}; identity threshold 30%) using *M. tuberculosis* Rv0937c and Rv0938 (Ku and LigD respectively) protein sequences as a query allow to identify and numerate the candidates. Secondly, BLASTP were performed using *S. ambofaciens* ATCC23877 NHEJ-like genes and reciprocal best hits allowed to organize them into groups of orthologs.
For the phylogeny of Ku-like proteins, the tree was built using a maximum-likelihood method based on a GTR + G + I model. Phylogenetic trees were built and edited with Mega6 (Tamura et al., 2013). Support of the tree branches was estimated with 100 bootstrap replicates and all positions with <80% site coverage were eliminated. A total of 295 and 309 positions were respectively used for the Ku-like and the LigC/LigD protein phylogenetic trees.

Bacterial Strains and Plasmids

All strains used in this study are listed in Table 1. The DH5α *E. coli* strain is used as conservation host for BACs and plasmids. For biochemical analyses, plasmid constructions were done in *E.coli* MC1061 (Casadaban and Cohen, 1980). ER2566 (NEB) was used for *kuB* gene expression and Rosetta (DE3) P lysS (Stratagene) for *kuA* and *kuC* gene expression. *E.coli* strains were grown in Luria-Bertani (LB) medium at 37°C except for the BW25113 pKD20 thermostensitive strain used for PCR targeting, which was grown at 30°C. *S. ambofaciens* strains were grown at 30°C on Soya flour maninitol (SFM) plates except for phenotypical analyses and for liquid cultures which were performed on solid Hickey Tresner (HT) medium. All *Streptomyces* mutants derive from our reference strain *S. ambofaciens* ATCC23877 (Pinnert-Sindico, 1954). Mutant strains were constructed by PCR targeting as described by Gust et al. (2003). To summarize, a recombinant BAC containing the locus of interest was transformed in the highly recombinogenic *E. coli* BW25113/pKD20 strain in order to replace the target gene by an oriT- *aac(3)IV* resistance disruption cassette (Raynal et al., 2006). The ET12567 non-methylating strain containing the mobilizing pUZ8002 plasmid was used as donor for intergeneric conjugation of the modified BAC between *E. coli* and *S. ambofaciens* Double-crossover (CO) events leading to the replacement of the target gene by the cassette were selected by the sensitivity to kanamycin (loss of the BAC vector part) along with the resistance to apramycin (insertion of the resistance cassette). The disruption cassette flanked by *attL* and *attR* sites was excised in the newly obtained mutant strains thanks to the introduction of pOSV508 a plasmid allowing the expression of *int* and *xis* genes from pSAM2 (Raynal et al., 2006). Strains expressing translational EGFP fusions were also constructed by *in vivo* recombination. The egfp gene with the transcription terminator from phage λ was cloned from plasmid pJJ8660 (Sun et al., 1999) into an oriT *aac(3)IV* disruption cassette (Raynal et al., 2006). This cassette was then used as the source to make *kuA-egfp*, *kuB-egfp* and *kuC-egfp* fusions. PCR was performed using egfp-oriT-aac(3)IV as the template with specific oligonucleotides which anneal to the linker sequence at the 5’ end of egfp and downstream of the 3’ end of aac(3)IV and introduce 40 bases of homology to the 3’ ends of *kuA*, *kuB*, or *kuC*, as well as removing the stop codons. PCR products were introduced into *E. coli* BW25113/pKD20 containing the cognate BACs with either *kuA*, *kuB*, or *kuC*, and the following steps of the procedure are described above. In these recombinant strains, the fusion genes (kuA-egfp, kuB-egfp or kuC-egfp, respectively) are the only copies of *kuA*, *kuB*, or *kuC*.

Electron Beam Irradiation (EBI)

An amount of 10⁸ spores of different *Streptomyces* strains was diluted in sterile water in 96 well microplates and exposed to 0, 0.1, 0.3, 0.5, 0.7, and 1 kGy of radiation doses. Processing was carried out in a Van de Graaf electron accelerator (VIVIRAD, Handschuheim, France) in the technological resource center Aéro (Illkirch-Graffenstaden, France) on SFM Petri dishes and the number of colonies was counted after 3 days incubation at 30°C. For each genetic context, at least two independent mutant strains were exposed in two independent experiences.

Fluorescent Microscopy

Strains for microscopic observations were inoculated in the acute-angle junction of standard-sized microscope coverslips inserted with an angle of 45° in SFM agar, and grown for 48 h. The coverslips were then carefully pulled from the medium and directly mounted in a drop of sterile water on a microscope slide. Fluorescent microscopy observations were carried out using an Axiowert 200M MOT device (Carl Zeiss Micro imaging) equipped with a mercury vapor lamp and a FITC filter set (470/40 excitation, 540/50 emission). Both contrast phase and fluorescent observations were made with an X100 objective.

DNA Preparation

To verify the mutant strains, *Streptomyces* genomic DNA was extracted by low binding sulfate salt method as described by Kieser et al. (2000). Liquid HT medium was used for growth of mycelium before DNA extraction. For biochemical analyses, the

TABLE 1	Streptomyces ambofaciens strains used in this study.	
Strains	Characteristics	Sources
ATCC23877	Used as a WT strain	Pinnert-Sindico, 1954
ΔkuA	ΔSAM23877_5082	This study
ΔkuB	ΔSAM23877_6929	This study
ΔkuC	ΔSAM23877_6942	This study
ΔkuABC	ΔSAM23877_5082	This study
ΔlgC	ΔSAM23877_6361	This study
ΔlgD	ΔSAM23877_0862	This study
ΔlgCD	ΔSAM23877_6361	This study
ΔpolR	ΔSAM23877_6362	This study
ΔpolK	ΔSAM23877_5081	This study
ΔpolRK	ΔSAM23877_6362	This study
ΔrecA	ΔSAM23877_5473	This study
ΔkuABC ΔrecA	ΔSAM23877_5082	This study
	ΔSAM23877_6929	This study
	ΔSAM23877_6942	This study
	ΔSAM23877_5473	This study
gene coding for KuA was amplified from the BAC 16ZB5. KuB and KuC genes were amplified from the BAC 27ZF1. Primers used for amplification were designed to flank the open reading frames with the coding sequence of a His6-tag followed by a Ndel site on their 5’ side, and by a XhoI site on their 3’ side. The resulting ORFs were cloned under the T7 promoter of the pJ411 vector (DNA2.0) giving the plasmids pSMG258, 259, 260 allowing expression of the proteins 6His-KuA, 6His-KuB, 6His-KuC, respectively (named hereafter KuA, KuB, and KuC). Sequences of the primers used in this study are available upon request.

RNA Extraction and RT-qPCR Analyses
For RNA extraction from cultures on solid medium, streaks were harvested after growth (from 24 to 60 h depending of the experiment) at 30°C on HT solid medium covered with cellophanes membranes. For RNA extraction after a genotoxic stress, pre-germinated spores of S. ambofaciens were grown at 30°C in 2 l of LB medium supplemented with 25 mg/mL thymine, 30 µg/mL kanamycin and 25 µg/mL chloramphenicol to OD600 = 0.7. Production of protein was induced with 0.5 mM IPTG for 15 h at 20°C. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL lysis buffer A (50 mM Tris-HCl pH 8, 0.25 M NaCl). Cells were broken by a freeze/thaw step in liquid N2 at 37°C and then centrifuged 1 h at 100 000 g at 4°C. The pellet was resuspended with 40 mL of a 20 mM Tris pH 7.5, 2.5 mM MgCl2, 0.5 mM CaCl2, 1 mg/mL DNaseI buffer. After 1 h at 20°C, the mixture was centrifuged 20 min at 100 000 g at 4°C. All subsequent steps were carried at 4°C. The pellet was washed with 40 mL buffer P1 (50 mM Tris-HCl, pH 8, 1 M NaCl), and then solubilized with 40 mL of buffer P2 (50 mM Tris pH 8, 8 M urea). After 1 h the mixture was centrifuged 20 min at 100 000 g and 3 mL of Ni2+ affinity column (Ni-NTA agarose, Qiagen) was added to the supernatant which was transferred onto an Econo-Column (BioRad). The flow through was discarded and the resin was washed with series of 25 mL of buffer P3 (50 mM Tris pH 8, 1% sucrose, 0.5 M NaCl) with urea concentration decreasing from 8 M to 0 M by steps of 0.5 M. The Ni-NTA column was washed with buffer P3, then with buffer W (50 mM Tris pH 8.0, 0.5 M NaCl) supplemented with 20 mM imidazole. KuA protein was eluted in buffer W supplemented with 250 mM imidazole and then dialysed against buffer D (50 mM Tris-HCl pH 8, 0.4 M NaCl, 50% glycerol, 1 mM DTT) prior to storage at −20°C.

Purification of KuC
The expression of KuC gene was induced in E. coli Rosetta PLYsS cells transformed with pSMG260 as described for KuA. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL lysis buffer B (50 mM Tris-HCl pH 8, 0.25 M NaCl, 0.2 mg/mL lysozyme) supplemented with Complete Antiprotease (Roche) and incubated 1 h at 20°C. The mixture was then centrifuged and the pellet was treated with DnaseI, as described for KuA purification. Purification procedure of KuC at this step is the same as the one described for KuA.

Purification of KuB
ER2566 cells transformed with pSMG259 were grown at 30°C in 2 l of LB medium supplemented with 25 mg/mL thymine and 30 µg/mL kanamycin and kub gene expression was induced as for kuA and kuc genes. Cells were harvested by centrifugation, the pellet was resuspended in 40 mL of lysis buffer B and incubated 1 h at 20°C. All subsequent steps were carried at 4°C. Cell lysis mixture was supplemented with 0.5 M NaCl, 0.1% Triton and 0.1% Non-i dent P40 and incubated 1 h. Two mL of polyethyleneimine (PEI) 10%, pH 8 was added to precipitate nucleic acids; the mixture was stirred for 1 h and then centrifuged 1 h at 100 000 g. The soluble phase was next precipitated by raising the concentration of ammonium sulfate (AS) firstly to 50% of saturation, KuB was mainly found in the supernatant at this step and secondly to 80% of saturation to precipitate KuB. The corresponding pellet was resuspended in 25 mL of buffer P1 and 3 mL of Ni-NTA agarose, pre-equilibrated in buffer P1, were added. The Ni-NTA agarose was washed with buffer P1, then with buffer W supplemented with 20 mM imidazole and KuB was eluted in buffer W supplemented with 250 mM imidazole.

Proteins Purification

Purification of KuA
Escherichia coli Rosetta PLYsS cells transformed with pSMG258 were grown at 30°C in 2 l of LB medium supplemented with 25 mg/mL thymine, 30 µg/mL kanamycin and 25 µg/mL chloramphenicol to OD600 = 0.7. Production of protein was induced with 0.5 mM IPTG for 15 h at 20°C. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL lysis buffer A (50 mM Tris-HCl pH 8, 0.25 M NaCl). Cells were broken by a freeze/thaw step in liquid N2 at 37°C and then centrifuged 1 h at 100 000 g at 4°C. The pellet was resuspended with 40 mL of a 20 mM Tris pH 7.5, 2.5 mM MgCl2, 0.5 mM CaCl2, 1 mg/mL DNaseI buffer. After 1 h at 20°C, the mixture was centrifuged 20 min at 100 000 g at 4°C. All subsequent steps were carried at 4°C. The pellet was washed with 40 mL buffer P1 (50 mM Tris-HCl, pH 8, 1 M NaCl), and then solubilized with 40 mL of buffer P2 (50 mM Tris pH 8, 8 M urea). After 1 h the mixture was centrifuged 20 min at 100 000 g and 3 mL of Ni2+ affinity column (Ni-NTA agarose, Qiagen) was added to the supernatant which was transferred onto an Econo-Column (BioRad). The flow through was discarded and the resin was washed with series of 25 mL of buffer P3 (50 mM Tris pH 8, 1% sucrose, 0.5 M NaCl) with urea concentration decreasing from 8 M to 0 M by steps of 0.5 M. The Ni-NTA column was washed with buffer P3, then with buffer W (50 mM Tris pH 8.0, 0.5 M NaCl) supplemented with 20 mM imidazole. KuA protein was eluted in buffer W supplemented with 250 mM imidazole and then dialysed against buffer D (50 mM Tris-HCl pH 8, 0.4 M NaCl, 50% glycerol, 1 mM DTT) prior to storage at −20°C.

Purification of KuC
The expression of KuC gene was induced in E. coli Rosetta PLYsS cells transformed with pSMG260 as described for KuA. Cells were harvested by centrifugation and the pellet was resuspended in 40 mL lysis buffer B (50 mM Tris-HCl pH 8, 0.25 M NaCl, 0.2 mg/mL lysozyme) supplemented with Complete Antiprotease (Roche) and incubated 1 h at 20°C. The mixture was then centrifuged and the pellet was treated with DnaseI, as described for KuA purification. Purification procedure of KuC at this step is the same as the one described for KuA.

Purification of KuB
ER2566 cells transformed with pSMG259 were grown at 30°C in 2 l of LB medium supplemented with 25 mg/mL thymine and 30 µg/mL kanamycin and kub gene expression was induced as for kuA and kuc genes. Cells were harvested by centrifugation, the pellet was resuspended in 40 mL of lysis buffer B and incubated 1 h at 20°C. All subsequent steps were carried at 4°C. Cell lysis mixture was supplemented with 0.5 M NaCl, 0.1% Triton and 0.1% Non-i dent P40 and incubated 1 h. Two mL of polyethyleneimine (PEI) 10%, pH 8 was added to precipitate nucleic acids; the mixture was stirred for 1 h and then centrifuged 1 h at 100 000 g. The soluble phase was next precipitated by raising the concentration of ammonium sulfate (AS) firstly to 50% of saturation, KuB was mainly found in the supernatant at this step, and secondly to 80% of saturation to precipitate KuB. The corresponding pellet was resuspended in 25 mL of buffer P1 and 3 mL of Ni-NTA agarose, pre-equilibrated in buffer P1, were added. The Ni-NTA agarose was washed with buffer P1, then with buffer W supplemented with 20 mM imidazole and KuB was eluted in buffer W supplemented with 250 mM imidazole.
The eluted fraction was dialyzed against buffer D and stored at −20°C.

Final purification step analyzed by SDS PAGE showed that purified KuA, KuB, and KuC were obtained at 90% purity and were a mix of full length and truncated forms (Supplementary Figure S1). Their concentration was determined by UV absorption at λ = 280 nm on a NanoDrop 1000 Spectrophotometer (Thermo Scientific).

Purification of LigD_{Sub}

LigD from Bacillus subtilis fused in C-terminal to a His₆ tag was purified as previously described McGovern et al. (2016).

T5 Protection Assay

Fifty nanograms (∼75 fmol) of a 1001 bp linear DNA substrate with 5’-phosphorylated blunt-ends were preincubated with raising concentrations of KuA, KuB, or KuC in 19 µL of buffer T5 (50 mM Tris-HCl pH 8, 1 mM DTT, 5 mM MgCl₂, 40 mM NaCl and 5% glycerol) for 30 min at 37°C. One µL of T5 exonuclease (0.5 U/µL, Biolabs) was added to the reaction mixture and reactions were incubated for 30 min at 37°C. Reactions were stopped by adding 4 µL of stop buffer (5 mg/mL proteinase K, 2% SDS and 0.1 M EDTA) and incubated at 37°C for 30 min. Four microliter of DNA loading buffer (33% glycerol and 0.25% xylene cyanol) were added, and the reactions were loaded on a 0.7% agarose gel in TBE Buffer. After electrophoresis, DNA was stained by the SYBR Gold reagent (Invitrogen) and the gel was photographed using a Chemidoc apparatus (Biorad).

Ligation Assay

In a final reaction volume of 20 µL in the T4 DNA ligase ligation buffer (NEB, 50 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 10 mM DTT, 1 mM ATP), 50 nanograms (∼75 fmol) of the 1001 bp linear DNA substrate were preincubated with 0.25 or 1 µM of KuA, KuB, or KuC for 30 min at 30°C. Then, raising concentrations of LigD_{Sub} were added to reactions. Ligation reactions were stopped after 2 h at 37°C by adding 4 µL of stop buffer and analyzed as described above.

RESULTS

A “Core” and a “Variable” NHEJ Gene Set in Streptomyces

Genes homologous to the bacterial NHEJ factors ku and ligD were sought in the genome of our model strain Streptomyces ambofaciens ATCC23877 (Thibessard et al., 2015). To do so, the M. tuberculosis Rv0937c and Rv0938 (Ku_{Mtub} and LigD_{Mtub} respectively) protein sequences were used as query in a BLASTP search. The first observation was that the LigD_{Mtub} protein had no full length homologue in S. ambofaciens, but that each candidate protein matched only with one single domain at a time. Therefore, the 759 amino acid sequence of LigD_{Mtub} was split into 3 slightly overlapping parts (1–300, 271–459, and 451–759) corresponding to the polymerase (PolDom), the nuclease (NucDom) and the ligase (LigDom) domains, respectively. In this way, 3 Ku-like encoding genes (sharing 36, 39, and 40% of protein identity with Ku_{Mtub}), 3 LigDom-like encoding genes (sharing 30, 32, and 41% of protein identity with the LigDom of LigD_{Mtub}) and 3 PolDom-like encoding genes (sharing 29, 34, and 41% of protein identity with the PolDom of LigD_{Mtub}) were identified in S. ambofaciens ATCC23877 genome (Figure 1).

No NucDom-like encoding gene was detected. The 3 ku-like genes (SAM23877_5082, SAM23877_6929 and SAM23877_6942) were named kuA, kuB, and kuC respectively. Two of the 3 LigDom-like genes (SAM23877_6361 and SAM23877_0862) were named ligC and ligD, respectively. Indeed, SAM23877_6361 appeared to share more amino-acid identity to M. tuberculosis LigC (LigC_{Mtub}), i.e., 60% than to the LigDom of LigD_{Mtub} i.e., 30% and was therefore considered as LigC_{Mtub} ortholog. Similarly, SAM23877_0862 appeared to be the closest relative of the LigDom of LigD_{Mtub}. The third ATP-dependent DNA ligase encoding gene detected (SAM23877_1283) would encode a LigB protein known to exhibit a strong nick sealing activity in vitro and whose defect would not alter mycobacterial NHEJ (Gong et al., 2004). Therefore, this third ligase was not included in our further investigations. The 3 PolDom-like genes (SAM23877_5081, SAM23877_6202, and SAM23877_6362) were named polK, polO, and polR, respectively. It was noticeable that 2 of the 3 PolDom like genes (polK and polR) colocalized with kuA and ligC.

KuA, KuB, and KuC proteins are composed of 365, 383, and 302 amino-acids, respectively. All these proteins harbor the conserved Ku core domain at their N-terminal side, the conserved minimal C-ter domain (red in Supplementary Figure S2), that has been shown to be required for the interaction with LigD in B. subtilis (McGovern et al., 2016), and a basic extended C-terminal domain, which is of 114, 128, and 47 aa, respectively. The pIs of these extended domains (11.64, 10.97, and 10.65) are consistent with those described for the majority of bacterial Ku proteins. This suggests that their roles in DNA binding as well as in the modulation of the ability to thread inward the DNA molecule are conserved in Streptomyces (Kushwaha and Grove, 2013; McGovern et al., 2016). Interestingly, a SAP domain, previously predicted in the S. coelicolor KuB homologue (SCO0601) by Aravind and Koonin (2001) is also detected in S. ambofaciens KuB (at position 337–370, Supplementary Figure S2). This SAP domain is assumed to be also involved in nucleic acid binding (Aravind et al., 2000) and could modify the DNA binding abilities of KuB compare to KuA and KuC. Further experiments are required to highlight the roles and the differences of the extended C-terminal domains of these three Ku proteins.

Once this list of genes potentially involved in a Streptomyces NHEJ pathway established, the question of their conservation in the Streptomyces genus was addressed by seeking their homologues in 37 other Streptomyces complete genome sequences available at http://www.ncbi.nlm.nih.gov/genome. Therefore, S. ambofaciens KuA, KuB, KuC, LigC, LigD, PolK, PolO and PolR were used as query in BLASTP searches. A wide variety of situations were encountered and a few of them are illustrated in Figure 1. The homologues identified in 38 Streptomyces genomes are listed by their locus tag in Supplementary Table S1 and their presence or absence is
Hoff et al. NHEJ-Like Genes in S. ambofaciens

Figure 1 | Organization of the NHEJ-like genes in several Streptomyces genomes. The two conserved loci kuA-polK and ligC-polR are framed in dotted lines.

summarized in Figure 2. The number and position of NHEJ-like genes varied from one species to another. However, two loci are widely shared among Streptomyces: ligC-polR which is present in all the investigated genomes and kuA-polK which is present in all the tested strains but Streptomyces vietnamensis.

Focusing on the main function expected from a functional NHEJ system, we analyzed further the Ku-like and LigDom-like encoding genes and extended our interest to the PolDom-like genes colocalizing with them.

All but S. vietnamensis possess at least one kuA gene. In contrast, kuB was detected in only 8 out of the 38 analyzed genomes. Regarding kuC, the copy number varies from 0 to 2. Indeed, in the case of S. coelicolor, two identical copies of kuC are included in the terminal inverted repeats of the SCP1 linear plasmid. A few Streptomyces strains carry several copies of kuA genes leading us to make a distinction according to their vicinity of polK: the neighbors of polK were called kuA primary genes while standalone kuA genes were called secondary kuA genes. All the ku-like genes (43 kuA, 8 kuB and 17 kuC) were aligned and submitted to a Maximum Likelihood phylogenetic analysis. The tree topology (Figure 3), together with the fact that the primary kuA gene is almost ubiquitous, suggested that KuA was probably present in the Streptomyces common ancestor and evolved along with Streptomyces. The secondary kuA gene carried by Streptomyces sp. 769, S. albulus ZPM, S. albulus NK660, and S. lydicus shares an average nucleotide identity ranging from 67 to 72% with their respective primary copy. For these species, the primary and secondary KuA phylogenies are congruent, suggesting that their common ancestor gained a second kuA copy either by gene duplication or by gene transfer. Regarding the kuC gene, it was present in 17 out of 38 analyzed genomes, 7 of which were plasmid-borne. It was closely related to KuA and formed a sister group of KuA within a large KuA-KuC monophyletic group that excluded KuB. In fact kuB genes formed a strong monophyletic group and appeared much more scattered in Streptomyces genera.

Regarding the distribution of LigC and LigD ligases, LigC encoding genes were found in all genomes and always in the close vicinity of polR as in M. tuberculosis (Figure 1). In contrast, LigD was detected in 29 out of the 38 cases (Figure 2). In 6 of them the encoding gene colocalized with
Organism name	Strain	Size (Mb)	kuA	kuB	kuC	ligC	ligD	polK	polO	polR
S. xiamenensis	318	5.96								
S. albus	J1074	6.84								
S. sp. Tu6071	Tu6071	7.36								
S. sp. Sirex AA-E	Sirex AA-E	7.41								
S. glaucescens	GLA-O	7.62								
S. sp. PAMC26508	PAMC26508	7.63								
S. pratensis	ATCC 33331	7.66								
S. cyanogriseus subsp. noncyanogenus	NMWT 1	7.76								
S. globisporus	C-1027	7.78								
S. fulvissimus	DSM 40593	7.91								
S. sp. CN5-509	CN5-509	8.04								
S. sp. 4F	4F	8.05								
S. castella	NRRL 8057*	8.09								
S. leuvenhoekii	C34*	8.12								
S. sp. CFMR 7	CFMR 7	8.31								
S. lividans	TK24	8.35								
S. collinus	Tu 365	8.38								
S. ambofaciens	ATCC 23877	8.39								
S. pristinespiralis	HCCB 10218	8.53								
S. griseus subsp. griseus	NBRC 13350	8.55								
S. coelicolor	A3(2)	8.67								
S. sp. Mg1	Mg1	8.72	2*							
S. venezuelae	ATCC 15439	9.03								
S. avermitilis	MA-4680*	9.12								
S. vietnamensis	GIM4.0001	9.15								
S. lydicis	A02	9.30	2							
S. reticuli	TUE45	9.34								
S. albus	NK660	9.37	2							
S. dawawensis	JCM4913	9.47								
S. albus	ZPM	9.78	2							
S. hygroscopicus subsp. jinggangensis	TL01	10.08								
S. scabiei	87.22	10.15								
S. sp. CdtB01	CdtB01	10.19								
S. sp. 769	769	10.34	2							
S. hygroscopicus subsp. jinggangensis	5008	10.38								
S. hygroscopicus subsp. limoneus	KCTC 1717	10.54								
S. violaceusniger	Tu 4113	11.14	3							
S. binchugennensis	BCW-1	11.94								

*NRRL 8057 = DSM 46488; C34 = DSM 42122 = NRRL B-24963; MA-4680 (= NBRC 14893)

* plasmidic
** close to kuC
*** partial (35% of cover)

FIGURE 2 | Distribution of NHEJ-like genes in 38 complete genomes of *Streptomyces*. The presence of a homolog is mentioned by a black box and the absence of a homolog by an empty box. The number inside the boxes indicates when several homologs were identified; plasmidic; close to kuC; partial (cover of 35%).
kuC, and in S. cattleya, it colocalized with kuA-polK (see Figure 1). Phylogenetic analysis by Maximum Likelihood method (Supplementary Figure S3) showed that the LigC proteins branched together with M. tuberculosis LigC with a topology that seemed quite congruent with the species relations, suggesting a vertical inheritance of this conserved locus. LigD proteins also...
branched together and together with LigDom of *M. tuberculosis* LigD.

Altogether, two NHEJ-like gene categories were delineated: (i) those that are conserved among the *Streptomyces* and were considered as “core” putative NHEJ factors (i.e., *kuA* and the colocalized *polK*, *ligC* and the colocalized *polR*) and (ii) those that are sporadically represented among the *Streptomyces* and were considered as “variable” putative NHEJ factors (i.e., *kuB*, *kuC* and *ligD*).

NHEJ-Like Genes Are Not Essential in *S. ambofaciens*

After *in silico* identification of the “core” and “variable” NHEJ putative factors in *Streptomyces*, we constructed deleted mutant strains by replacing the chromosomal locus with an excisionable antibiotic resistance cassette (Raynal et al., 2006) by the use of PCR targeting (Gust et al., 2003). The whole selection procedure was performed several times simultaneously in order to select at least two independent mutant lineages for each genetic context. Table 1 summarizes the different genotypes constructed for this study. The mutations were checked by PCR amplification of the mutated locus. The maintenance of the chromosomal linearity of the mutants was checked by PCR amplification of the telomeres and of some loci scattered along the chromosome (not shown).

All the mutations, simple or multiple, were obtained with classical frequencies indicating that none of the targeted genes (“core” or “variable”) was essential. In addition, there was no significant difference between the wild-type reference strain and any of mutants in colonial morphology and sporulation under normal growth conditions (not shown).

Implication of NHEJ-Like Genes in DNA Damage Response

Electronic beam irradiation (EBI) was shown to induce loss of viability of *Bacillus* spores by damaging spore coat, by altering membrane permeability or by DNA fragmentation (Fiester et al., 2012). High level energy beam such as those used in this work (2.2 MeV) is likely to trigger DSB as the most significant lesions in the spore embedded DNA. In order to test the involvement of the NHEJ-like factors to DNA damage response, spores of the wild-type *S. ambofaciens* reference strain as well as spores of at least two independent mutants for each genetic context were irradiated by EBI from 0.1 to 1 kGy and their survival was assessed after growth on SFM medium. The results are represented in Figure 4.

Two ATP Dependent Ligases Involved in DNA Damage Response

In *Mycobacterium*, LigD is the main NHEJ ligase whereas LigC only provides a back-up activity (Della et al., 2004). In contrast to *Mycobacterium* where a single ligC mutation does not impact survival rate to DNA damage, the defect of both the conserved ligC and the variable ligD of *S. ambofaciens* conferred a significant sensitivity to EBI. Surprisingly, the deletion of ligD conferred an even higher sensitivity than the mutation of ligC (Figure 4B). Furthermore, the ΔligCD double mutant showed an aggravated phenotype in the same proportions as a Δ*kuABC* triple mutant (Figure 4B). These data clearly show that the two ligase activities participate to DNA repair in response to EBI.

PolDom Genes Are Involved in DNA Damage Response

Single deletion of *polK* or *polR*, the two conserved homologues of *Mycobacterium* PolDom colocalized respectively with *kuA* and *ligC* led to a weak sensitivity to electronic beam exposure. For both single mutants, increase of sensitivity in comparison to the wild-type does not exceed 1.5 fold for each dose (Figure 4C). On the other hand, double *polRK* mutant strains are approximately twice more sensitive than the single mutants (Figure 4C). Both loci are therefore involved in DNA damage response.

The ku Genes Are Differentially Expressed during Development

In order to investigate the spatial and temporal expression of NHEJ-like genes during development, a time-course of RT-PCR experiments was performed and translational fusions with EGFP were observed by fluorescent microscopy. First of all, the results showed that NHEJ-like genes are weakly expressed throughout the development. For instance, the expression of *ligC*, *ligD*, *polK* and *polR* was too low to be monitored by qPCR whereas the expression of *ku* genes was 10 to 50 fold lower than *hrdB* expression (Figure 5A). Secondly, *kuA* expression was clearly growth-phase dependent with a 10 fold increase between 24 and 60 h after germination. It is important to indicate that sporulation began to be observable after 48 h of development in these growth
FIGURE 4 | Electronic beam irradiation of *S. ambofaciens* strains deficient in NHEJ-like genes. Spores of mutants of NHEJ-like genes, namely single and multiple *ku* (A), ligase (B) and polymerase (C) mutants, were exposed to 0.1, 0.3, 0.5, 0.7, and 1 kGy of electronic beam irradiation. (D) In the same way, a Δ*ku*-like Δ*recA* mutant also affected in HR was exposed to the same irradiation doses. In this latter case, a logarithmic scale was used for survival rate representation. Survival rates were calculated as the number of clones for a given dose relative to the number of clones unexposed to radiation. For each graph, wild-type strain is represented as a control. Each curve corresponds to data obtained from an individual mutant strain. Error bars indicate standard error of a minimum of three replicates.

There was no difference throughout the time-course for *kuB* and *kuC* expression. Both of them were less expressed than *kuA* at the late stages of development. The WT strain was also grown to OD600 of 0.2 in HT liquid medium and then exposed to MMC (1.5 µg·ml⁻¹) for 30 min. RNAs were extracted and reverse-transcribed to assess by PCR the regulation of NHEJ-like genes during a genotoxic stress. No induction or repression of NHEJ-like genes was noticeable, while the positive induction control (*recA*) was up-regulated up to 20 fold (not shown).

To observe the cellular localization of Ku proteins in physiological conditions, *egfp* translational fusions were constructed at *kuA*, *kuB*, and *kuC* chromosomal loci. Fusion strains were inoculated on SFM agar plates and grown for 48 h before observations by fluorescent microscopy along with a negative control strain without any *egfp* gene. A positive control strain constitutively expressing *egfp* gene exhibited a strong green fluorescence signal in all cells throughout the developmental stages of the bacteria, proving the reporter gene to be functional in *S. ambofaciens* (not shown). For KuA fusion, the green fluorescence signal was significant in spores and segmenting aerial hyphae but not in vegetative mycelium (Figure 5B), showing a specific accumulation of KuA in spores. This result corroborates the phase dependent expression pattern of *kuA* observed in the previous qPCR analysis. For KuB and KuC fusions, although the signals were weaker than for KuA fusion, they also revealed the accumulation of KuB and KuC in spore chains. Since no significant modulation of gene expression was detected for *kuB* and *kuC* along the growth cycle (Figure 5A), this protein accumulation pattern suggests a translational (and/or a post-translational) regulation level.
The Ku Proteins Protect Linear dsDNA from the T5 Exonuclease and Stimulate the Ligase Activity of LigD$_{Bsub}$

To assess which proteins are required in a putative *S. ambofaciens* NHEJ, we tried to purify all the proteins putatively implicated in this pathway. Among them, we succeeded to express and purified *S. ambofaciens* KuA, KuB and KuC proteins (39.1, 42.4, and 33.6 KDa respectively). To evaluate the oligomeric state of the three Ku proteins, we performed gel filtration experiments. KuA and KuB were eluted in fractions corresponding to a molecular weight of 160 and 100 kDa, respectively, strongly suggesting that KuA and KuB are multimeric (Supplementary Figure S1 and Supplementary Data Sheet S1). To date, characterized bacterial Ku are dimers. However, the elongated shape of the *B. subtilis* Ku (Ku$_{Bsub}$) dimer (McGovern et al., 2016) led to the elution of this protein with apparent molecular weight corresponding to a tetramer. Then KuA and KuB could also be dimers displaying elongated shape, as for Ku$_{Bsub}$. KuC was clearly purified in different oligomeric states ranging from 70 to more than 600 kDa. The main elution peak, corresponding to a protein of apparent molecular weight around 160 kDa, was similar to the one observed for KuA.

KuA, KuB, and KuC were able to protect a linear dsDNA molecule from the T5 exonuclease (Figure 6A), a property shared by the Ku$_{Bsub}$ Protein (McGovern et al., 2016) and the *Pseudomonas aeruginosa* Ku against different exonucleases (Zhu and Shuman, 2010). This result suggests that these proteins are able to bind DNA ends. Another role of Ku in the bacterial...
NHEJ is to recruit the LigD at DNA ends and to stimulate its ligase activity. Remarkably, KuA, KuB, and KuC were able to stimulate the ligation activity of the *B. subtilis* LigD protein (Figure 6B), even if they were less efficient than KuBsub. However, we observed a different concentration-dependent stimulation of the ligase by the *S. ambofaciens* Ku proteins. Raising the concentration of KuA and KuC from 0.25 to 1 µM in the ligation assay seemed to slightly increase ligation efficiency. At the opposite, the stimulation activity observed with 0.25 µM of KuB appeared to be reduced when its concentration was raised to 1 µM. A similar inhibitory effect was observed with KuBsub.
DISCUSSION

Streptomyces NHEJ-Like Gene Organization Is Atypical

The presence of a NHEJ pathway in prokaryotes appears to be limited to some phyla representing about 20% of the species (estimated on a sample of 2645 complete bacterial genomes) (McGovern et al., 2016). The minimal set of NHEJ gene encodes a two partner system including the homodimeric Ku protein and a ligase polypeptide composed of the ligase enzymatic domain (LigDom) to a nuclease (NucDom) and a polymerase (PolDom) domain. The latter enzymatic activities process DNA ends before ligation. The NHEJ gene repertoire ranges from the simplest in P. aeruginosa with a single Ku and a ligase (ligase D) to the more complex with those described in Agrobacterium (Zhu and Shuman, 2007) or Sinorhizobium (Kobayashi et al., 2008) and Streptomyces as described in this work. Hence, while B. subtilis and Mycobacterium possess a single Ku, a single LigD and one or two LigC, A. tumefaciens possesses three Ku, two LigD and three LigC (Zhu and Shuman, 2007). Sinorhizobium melliloti and other rhizobia possess up to 4 Ku, 5 LigD and one LigC (Kobayashi et al., 2008); the ligase, nuclease and polymerase domains are present in different organizations, sometimes (i) fused together in a single polypeptide or (ii) encoded by distinct genes. This situation is similar in archaea where the putative ligase, nuclease and polymerase domains are encoded by distinct genes, however, kept into an operonic organization assumed to ensure the co-regulation of the activities (Bartlett et al., 2013). However, among actinobacteria, Streptomyces appears as an exception, since other main phyla (Nocardia, Frankia, Rhodococcus, and Corynebacterium) seem to possess a multidomain LigD homologue (not shown).

In Streptomyces, several levels of complexity are also noticeable. First, the activities putatively involved in NHEJ are encoded by standalone genes that are scattered along the genome. Consequently the repertoire is rather expanded: the number of genes ranging from none up to 4 for ku, from one to two LigDom encoding genes (ligC, ligD), from 2 to 3 PolDom encoding genes, from none to one NucDom encoding gene. The total number of NHEJ-like genes ranges from 4 in S. bingchengensis and S. venezuelae to 8 in S. ambofaciens and S. reticuli: 3 ku (kuA, kuB, kuC), one LigD and one ligC, and 3 polymerase genes (polK, polR, polO). These genes can fall into two groups. On one hand, the “core” set includes kuA, ligC, polK and polR which are present in almost all Streptomyces species and organized in two loci of rather conserved organization (i.e., kuA-polK, ligC-polR). The only exception appears to be in S. vietnamiensis which lacks the couple kuA-polK and the other ku genes. On the other hand, the rest of the genes constitute the “variable” gene set. An interesting feature to highlight is a gene duplication event involving kuA or kuC. The duplicated copies are either located in the variable region of the genome or present within the terminal inverted repeats of the linear replicons. This phenomenon is interesting since duplicated copies can evolve through gene divergence to raise new function. This mechanism is rather rare in bacteria but gene duplication seems frequent in Streptomyces, notably with large terminal duplication probably resulting from DSBR repair by a mechanism related to break-induced replication.

Involvement of the “Core” and “Variable” NHEJ-Like Gene Sets in DNA Repair

The large number of NHEJ-like genes in Streptomyces as well as their variability questions their implication in DNA repair mechanisms. It is tempting to imply the “core” NHEJ gene set in a classical NHEJ pathway with a Ku (i.e., kuA) and an ATP-dependent DNA ligase (i.e., LigC). In addition to being the conserved ku gene, kuA is the more expressed of the 3 ku-like genes in the late growth phases, its defect conferred the most marked sensitivity to EBI and finally, KuA is the most efficient of the 3 Ku-like proteins in stimulating LigD

It might be surprising that the NHEJ ligase could be LigC rather than LigD which is the canonical NHEJ ligase in other bacterial species. However, it should be reminded that in Streptomyces, LigD carries the only ligase domain, as does LigC. Both ligases are devoid of the PolDom domain known to be involved in its recruitment by Ku. Therefore LigD and LigC may ensure similar functional roles in Streptomyces. One could hypothesize that a gene rearrangement split the ligase domain from the two others (i.e., PolDom and NucDom) in a Streptomyces common ancestor. The two ligase genes would have then provided an equivalent contribution to the bacterium, finally resulting in the replacement of LigD by LigC in the “core” NHEJ set by a founder effect.

In S. ambofaciens, in which both ligC and ligD cohabits, single mutants displayed a sensitive phenotype to EBI and the double mutant displayed an aggravated phenotype. In this context, at least two hypotheses can be drawn. First, both LigC and LigD could participate to the same repair pathway; in that case, the sensitivity of single mutants and the aggravated phenotype of double mutants could be explained by a dose effect that is the need for a certain amount of ligases to cope for the induced DNA damage. In that case, both ligase genes would contribute to achieve the required level of ligase. Alternatively, they could participate to different repair pathways required to take over varied DNA damage (see below).

If the “core” NHEJ gene set indeed establishes a functional NHEJ pathway, the presence of two PolDoms in the “core” NHEJ gene set constitutes another intriguing feature, especially considering that they do not seem to have redundant functions. Hence, the sensitivity of both polK and polR simple mutants was aggravated in the double mutant. As shown in M. tuberculosis NHEJ, the role of the PolDom domain of LigD would be less to provide a polymerase activity than to recruit LigD to Ku (Pitcher et al., 2005). Then PolK and/or PolR may play a role of linker/adapter to recruit a ligase; the more likely being that PolK and PolR recruit LigC, however, on different types of DNA extremities (e.g., blunt, 3’ or 5’ overhanging ends). In the case of the presence of LigD (as in S. ambofaciens for example), the two PolK and PolR may recruit both LigC and LigD.

It is particularly noticeable that the “variable” genes (i.e., ligD but also kuB, kuC) were involved in the response to EBI. The exposure to EBI is assumed to trigger DSBRs. However, different
types of lesions can result from direct transmission of energy to the DNA structure and from secondary oxidative stress (e.g., oxidized bases). In consequence, damage induced by EBV requires NHEJ but may also require other DNA repair pathways. Thus, these “variable” genes would (i) support the NHEJ encoded by the “core” gene set in an opportunistic way, (ii) constitute an alternative NHEJ pathways or (iii) constitute a repair pathway dedicated to other DNA damage single strand gaps or abasic sites. The first hypothesis would imply a dose effect of the Ku as well as the ligase proteins to explain the aggravated phenotype of the multiple mutants (i.e., ΔkuABC and ΔligCD). In this first hypothesis, considering that prokaryote Ku act as dimers (McGovern et al., 2016), we can speculate that these three Ku proteins could act as homodimers as well as heterodimers. A data in favour of the second hypothesis (an alternative NHEJ pathway) is the colocalization of the kuC and ligD genes in 6 Streptomyces species clustering with S. griseus (Supplementary Table S1; Figure 3). However, no clear trend toward the co-occurrence of these two “variable” genes can be noticed in the 38 analysed genomes. In B. subtilis, the recent involvement of LigDBsub and Kugsub in base excision repair along with their major role in NHEJ supports the third hypothesis (de Ory et al., 2014, 2016).

In order to evaluate the question of the involvement of these genes in a NHEJ pathway, a forward-looking approach could be to specifically induce DSB formation at targeted chromosomal loci and assessed the sensitivity of the NHEJ-candidate genes to identify those truly involved in DSB repair per se.

A Late Growth Phase Role for NHEJ in Streptomyces

The presence of a NHEJ pathway in bacteria is usually assigned to DSB repair in low rate growth phases characterizing bacterial species involved in pathogenic processes or exposed to harsh environmental living conditions. When bacteria replicate such as in laboratory conditions, sister chromosomes providing an intact template are preferentially used to ensure faithful DSB repair by HR. However, when replication is slowing down (i.e., stationary phases) or stopping (e.g., in resistance forms such as spores), DSB repair strongly relies on NHEJ. This is consistent with the fact that NHEJ genes are expressed preferentially when DSB repair cannot be ensured by a faithful process. Hence, in B. subtilis as well as in Streptomyces, the NHEJ genes were shown to be expressed in stationary phase and to accumulate in spores. The forespore-specific sigma factor σG in B. subtilis directly regulates ykoU (coding for LigD) and ykv (coding for Ku), inducing their expression during the forespore development (Wang et al., 2006). In addition, B. subtilis Ku protein specifically localizes to the nucleoid of germinating spores while it disappears at later stages of germination. In Streptomyces, gene transcription analyses showed in this work an expression of the ku in stationary phase with an increase of kuA expression during sporulation. Moreover, GFP fusions showed a predominant localization of the Ku proteins in spores. Furthermore, mutations in ku and ligase genes confer sensitivity to genotoxic agents to B. subtilis as well as Streptomyces spores. Sensitivity to heat and desiccation which are biotic parameters known to trigger DSB is also associated to the NHEJ mutations in B. subtilis and Mycobacterium smegmatis (Moeller et al., 2007; Pitcher et al., 2007; Stephanou et al., 2007). The presence of multiple ku genes (and of other NHEJ-like genes) in Sinorhizobium meliloti is assumed to correspond to the need for DNA repair at different steps of the cell cycle. Although no induction of the NHEJ pathways was observed under genotoxic conditions (i.e., IR exposure), the expression patterns of the sku genes suggest that each Ku protein has a distinct role under different conditions (free bacterial form, bacteroids). In contrast, NHEJ would not be required during the establishment of symbiosis since a strain lacking all four sku genes was shown to establish functional nodules (Kobayashi et al., 2008). As in S. meliloti, it was shown that each of the S. ambofaciens ku genes is functional since their deletion conferred a phenotype of sensitivity toward genotoxic agents. Mutant strains lacking kuA, kuB, and kuC genes showed an aggravated phenotype suggesting that each participated to the response to DNA damage. We can therefore suppose that like in S. meliloti, intervention of the Streptomyces ku genes is done under specific conditions.

Recently in Pseudomonas putida, the NHEJ was shown to participate to another late growth phase phenomenon (Paris et al., 2015). Hence, bacteria frequently encountered nutrient starvation during late-growth phase. Populations starving display a phenomenon called stationary-phase mutagenesis (also known as adaptive mutations) from which emerge mutants able to overcome the shortage and initiate new vegetative cycles. The underlying mechanisms notably involve unfaithful DNA polymerases during HR events (Shee et al., 2012). Although the involvement of NHEJ in late mutagenesis remains unknown, deficiency of each of the NHEJ activities triggered an altered pattern of mutations (Paris et al., 2015). The authors speculate on ability to bypass DNA lesions of the LigD polymerase domain.

Origin of the “Core” and “Variable” NHEJ Gene Sets in Streptomyces

While the origin of the NHEJ “core” gene set is likely to result from vertical inheritance from a common Streptomyces ancestor, the origin of the “variable” set is questionable. The sporadic distribution of the “variable” genes may reflect either the existence of NHEJ in a bacterial common ancestor and its subsequent sporadic loss during genus/species separation. Reciprocally, it may reflect the acquisition of NHEJ genes through horizontal gene transfer in some phyla. Both hypotheses can also be combined and result in the observed complexity. The most explicit argument about their origin is their localization in the variable regions of the chromosome or in plasmids. While plasmids can be mobilized and even self-transmitted, the terminal regions of the Streptomyces chromosome is known to be targeted by recombination phenomena leading to insertions of acquired DNA and further losses (Choulet et al., 2006).

Impact of NHEJ on Genome Evolution

Whatever the evolutionary past of the NHEJ gene sets, the presence of a conserved “core” gene set enriched by additional functional “variable” genes may confer some advantage. In all
bacteria studied so far, NHEJ is not essential (Ku/LigD) for growth, at least under laboratory conditions. Mutants of NHEJ in Mycobacterium, Pseudomonas, or Bacillus are not affected although they show sensitivity to environmental stress (Weller et al., 2002; Jacobs et al., 2003; Gong et al., 2004, 2005). We came to the same conclusion in S. ambofaciens although it was particularly interesting to note that a part of the “variable” genes (i.e., kuB, kuC and ligD) was involved in response to genotoxic agents. Hence the aggravated phenotype observed in double or multiple mutant strains (i.e., kuABC, ligCD) revealed the cooperative actions of the multiple alleles. The “variable” genes in Streptomyces may increase the flexibility and/or efficiency of the DSB repair mechanism and influence evolution of the genome. Lessons about the role of NHEJ in genome evolution can be drawn from organisms lacking NHEJ. Hence, the only eukaryote lacking NHEJ is the yeast Lachancea kluyveri (Gordon et al., 2011). Compared to other species of the Saccharomycetaceae family, this species showed a significantly low number of genomic rearrangements and the lack of telomere-to-telomere fusions. The authors suggest that the loss of the NHEJ and an alternative end joining pathway [named microhomology-mediated end joining (MMEJ) or alternative end joining (A-EJ)] is responsible for the low recombination rate assessed in this phylum. In this way, we can hypothesize that in Streptomyces the presence/absence of NHEJ genes in addition to the “core” NHEJ (the “variable” genes participating to a unique NHEJ or other alternative pathways) may modulate the frequency of DNA rearrangements and DNA acquisition through horizontal gene transfer and confer different evolution rates to Streptomyces species. These genes being themselves subject to transfer, the recombinant phenotype (i.e., hyperrecombinant) could be variable within a population and favor genetic diversification and adaptation to the environment. This situation could be reminiscent of mutator strains identified in E. coli (for review: Giraud et al., 2001) but applied to the capacity to recombine DNA including incoming genetic information.

Future Perspectives
A key question is the relative contribution of HR and NHEJ to the evolution and the remarkable compartmentalization of the linear Streptomyces chromosome. Is there any regulation between the two pathways during the development of the bacteria? In S. avermitilis, the deletion of the ku homologues (ku1 and ku2 corresponding to kuA and kuC respectively) was associated to an increased efficiency of HR (Zhang et al., 2012). This may reveal the existence of a balance resulting from the competition between HR and NHEJ repair mechanisms, and that both repair pathways co-exist at least during replicating phases. Is there any spatial regulation of the DSB repair mechanisms? DSB could be healed by different mechanisms depending of their chromosomal location leading to either faithful repair or possible integration of foreign information.

AUTHOR CONTRIBUTIONS
Investigation: GH, CB, LZ, EP, LC, and SM; Computer analysis: AT and CyB; Methodology: CyB, FC, and FL; Conceptualization: CB, AT, FL, and PL; Writing original draft: GH, CB, AT, and PL; Writing-review and editing: FL, FC, CyB, CB, AT, and PL; Resources: FC, FL, and PL; Funding acquisition: CB, AT, and PL; Supervision: AT and PL.

FUNDING
This work was supported by the French National Research Agency program Streptoflux (ANR Blanc 0096_01), by ANR through the Laboratory of Excellence ARBRE (ANR-12-LABXARBRE-01) and by the Région Lorraine.

ACKNOWLEDGMENTS
We would like to thank Sébastien Riegler and Florian Kuntz from the Technological Resource center Aérial (Illkirch-Graffenstaden, France) for their technical support and their warm welcome.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.01901/full#supplementary-material

REFERENCES
Abrudan, M. I., Smakman, F., Grimbergen, A. J., Westhoff, S., Miller, E. L., van Wezel, G. P., et al. (2015). Socially mediated induction and suppression of antibiotic during bacterial coexistence. Proc. Natl. Acad. Sci. U.S.A. 112, 11054–11059. doi: 10.1073/pnas.1504076112
Aigle, B., Holl, A., Angulo, J. F., Leblond, P., and Decaris, B. (1997). Characterization of two Streptomyces ambofaciens recA mutants: identification of the RecA protein by immunoblotting. FEMS Microbiol. Lett. 149, 181–187. doi:10.1111/j.1574-6968.1997.tb10326.x
Alonso, J. C., Cardenas, P. P., Sanchez, H., Hejna, J., Suzuki, Y., and Takeyasu, K. (2013). Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst.) 12, 162–176. doi: 10.1016/j.dnarep.2012.12.005
Aniukwu, J., Glickman, M. S., and Shuman, S. (2008). The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev. 22, 512–527. doi: 10.1101/gad.1631908
Aravind, L., and Koonin, E. V. (2001). Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11, 1365–1374. doi:10.1101/gr.181001
Aravind, L., Makarova, K. S., and Koonin, E. V. (2000). Holliday junction resolvases and related nucleases: identification of new families, phylogenetic distribution and evolutionary trajectories. Nucleic Acids Res. 28, 3417–3422. doi:10.1093/nar/28.18.3417
Bartlett, E. J., Brissett, N. C., and Doherty, A. J. (2013). Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates. Proc. Natl. Acad. Sci. U.S.A. 110, E1984–E1991. doi: 10.1073/pnas.1302616110
Gordon et al., 2001) but applied to the capacity to recombine DNA including incoming genetic information.

Frontiers in Microbiology | www.frontiersin.org 15 November 2016 | Volume 7 | Article 1901
Casadaban, M. J., and Cohen, S. N. (1980). Analysis of gene control signals by
Hoff et al. NHEJ-Like Genes in
Chater, K. F. (1993). Genetics of differentiation in
Streptomyces
de Ory, A., Nagler, K., Carrasco, B., Raguse, M., Zafra, O., Moeller, R., et al. (2016).
Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance.
de Ory, A., Zafra, O., and de Vega, M. (2014). Efficient processing of abasic sites
Fiester, S. E., Helfinstine, S. L., Redfearn, J. C., Uribe, R. M., and Woolverton,
Deriano, L., and Roth, D. B. (2013). Modernizing the nonhomologous end-joining
Della, M., Palmbos, P. L., Tseng, H., Tonkin, L. M., Daley, J. M., Topper,
Gong, C., Martins, A., Bongiorno, P., Glickman, M., and Shuman, S. (2004).
Gong, C., Bongiorno, P., Martins, A., Stephanou, N. C., Zhu, H., Shuman, S., et al.
Giraud, A., Radman, M., Matic, I., and Taddei, F. (2001). The rise and fall
Galet, J., Deveau, A., Hôtel, L., Frey-Klett, P., Leblond, P., and Aigle, B.
DNA fusion and cloning in
Mycobacterium smegmatis
mediates the LigD-independent nonhomologous end-joining pathway of
417141a
actinomycete
Mol. Biol. Evol.
et al. (2006). Evolution of the terminal regions of the
Streptomyces linearity of the chromosomal DNA.
J. Bacteriol.
7:e1002190. doi: 10.1371/journal.pgen.
Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol. Microbiol. 79, 316–330. doi: 10.1111/j.1365-2958.2010.07463.x
Gust, B., Challis, G. L., Fowler, K., Kieser, T., and Chater, K. F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. U.S.A. 100, 1541–1546. doi: 10.1073/pnas.0337537100
Hoff, G., Bertrand, C., Piotrowski, E., Thibessard, A., and Leblond, P. (2016). Implication of RuvABC and RecG in homologous recombination in Streptomyces. Res. Microbiol. doi: 10.1016/j.resmic.2016.07.003 [Epub ahead of print]
Hopwood, D. A. (2006). Soil to genomics: the Streptomyces chromosome. Annu. Rev. Genet. 40, 1–23. doi: 10.1146/annurev.genet.40.100905.096939
Huang, T.-W., and Chen, C. W. (2006). A recombination null mutation may be generated in Streptomyces coelicolor. J. Bacteriol. 188, 6771–6779. doi: 10.1128/JB.00951-06
Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Ikushiki, H., Shiba, T., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531. doi: 10.1038/nbt820
Inoue, S., Higashiyama, K., Uchida, T., Hirasaku, T., and Kinashi, H. (2003). Chromosomal circularization in Streptomyces griseus by nonhomologous recombination of deletion ends. Biosci. Biotechnol. Biochem. 67, 1101–1108. doi: 10.1271/bbb.671101
Jacobs, M. A., Alwood, A., Thaipsuttikul, I., Spencer, D., Haugen, E., Ernst, S., et al. (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 100, 14339–14344. doi: 10.1073/pnas.2036282100
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation
Kim, J.-N., Kim, Y., Jeong, Y., Roe, J.-H., Kim, B.-G., and Cho, B.-K. (2015). Comparative genomics reveals the core and accessory genomes of Streptomyces species. J. Microbiol. Biotechnol. 25, 1599–1605. doi: 10.4104/jmb.1504.04008
Kobayashi, H., Simmons, L. A., Yuan, D. S., Broughton, W. J., and Walker, G. C. (2008). Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium melloti. Mol. Microbiol. 67, 350–363. doi: 10.1111/j.1365-2958.2007.06036.x
Kushwaha, A. K., and Grove, A. (2013). C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Kmu modulate DNA binding. Biosci. Rep. 33:e00016. doi: 10.1042/BSR20120105
Leblond, P., Demuyter, P., Simonet, J. M., and Decaris, B. (1990). Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity. Mol. Microbiol. 4, 707–714. doi: 10.1111/j.1365-2958.1990.tb00641.x
Lin, Y.-S., Kieser, H. M., Hopwood, D. A., and Chen, C. W. (1993). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol. Microbiol. 10, 923–933. doi: 10.1111/j.1365-2958.1993.tb00964.x
Martínez-Burgos, Y., Álvarez-Álvarez, R., Rodríguez-García, A., and Liras, P. (2015). The pathway-specific regulator ClaR of Streptomyces clavuligerus has a global effect on the expression of genes for secondary metabolism and differentiation. Appl. Environ. Microbiol. 81, 6637–6648. doi: 10.1128/AEM.07916-15
McGovern, S., Baconnais, S., Robin, P., Nicolas, P., Drevet, P., Simonson, H., et al. (2016). C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair. Nucleic Acids Res. 44, 4785–4806. doi: 10.1093/nar/gkw149
Moeller, R., Stackebrandt, E., Reitz, G., Berger, T., Retberg, P., Doherty, A. J., et al. (2007). Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J. Bacteriol. 189, 3306–3311. doi: 10.1128/JB.00018-07
Muth, G., Frese, D., Kleber, A., and Wohlleben, W. (1997). Mutational analysis of the Streptomyces lividans recA gene suggests that only mutants with residual activity remain viable. Mol. Gen. Genet. 255, 420–428. doi: 10.1007/s004380050514
Paris, U., Mikkel, K., Tavita, K., Saumaa, S., Teras, R., and Kivisaar, M. (2015). NHEJ enzymes LgD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair (Amst.) 31, 11–18. doi: 10.1016/j.dnarep.2015.04.005
Pfalz, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–2007. doi: 10.1093/nar/29.9.e45

Frontiers in Microbiology | www.frontiersin.org
16 November 2016 | Volume 7 | Article 1901
Pinnert-Sindico, S. (1954). Une nouvelle espèce de Streptomyces productrice d’antibiotiques: Streptomyces ambofaciens n. sp. caractères culturaux. Ann. Inst. Pasteur. 87, 702–707.

Pitcher, R. S., Green, A. J., Brzostek, A., Korycka-Machala, M., Dziadek, J., and Doherty, A. J. (2007). NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst.) 6, 1271–1276. doi: 10.1016/j.dnarep.2007.02.009

Pitcher, R. S., Tonkin, L. M., Green, A. J., and Doherty, A. J. (2005). Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis. J. Mol. Biol. 351, 531–544. doi: 10.1016/j.jmb.2005.06.038

Raynal, A., Karray, F., Tuphile, K., Darbon-Rongere, E., and Pernodet, J.-L. (2006). Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl. Environ. Microbiol. 72, 4839–4844. doi: 10.1128/AEM.00167-06

Rocha, E. P. C., Cornet, E., and Michel, B. (2005). Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 1:e15. doi: 10.1371/journal.pgen.0010015

Seipke, R. F., Kaltenpoth, M., and Hutchings, M. I. (2012). Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol. Rev. 36, 862–876. doi: 10.1111/j.1574-6976.2011.00313.x

Shee, C., Gibson, J. L., and Rosenberg, S. M. (2012). Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep. 2, 714–721. doi: 10.1016/j.celrep.2012.08.033

Stephanou, N. C., Gao, F., Bongiorno, P., Ehrt, S., Schnappinger, D., Shuman, S., et al. (2007). Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol. 189, 5237–5246. doi: 10.1128/JB.00332-07

Sun, J., Kelemen, G. H., Fernández-Abalos, J. M., and Bibb, M. J. (1999). Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3 (2). Microbiology 145, 2221–2227. doi: 10.1099/00221287-145-9-2221

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. doi: 10.1093/molbev/mst197

Thibassard, A., Haas, D., Gerbaud, C., Aigle, B., Lautru, S., Pernodet, J.-L., et al. (2015). Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. J. Biotechnol. 214, 117–118. doi: 10.1016/j.jbiotec.2015.09.020

Thibassard, A., and Leblond, P. (2014). “Subtelomere plasticity in the bacterium Streptomyces,” in Subtelomeres, eds E. J. Louis and M. M. Becker (Berlin: Springer), 243–258.

Uchida, T., Miyawaki, M., and Kinashi, H. (2003). Chromosomal arm replacement in Streptomyces griseus. J. Bacteriol. 185, 1120–1124. doi: 10.1128/JB.185.3.1120-1124.2003

Vierling, S., Weber, T., Wohlleben, W., and Muth, G. (2001). Evidence that an additional mutation is required to tolerate insertion inactivation of the Streptomyces lividans recA gene. J. Bacteriol. 183, 4374–4381. doi: 10.1128/JB.183.14.4374-4381.2001

Volf, J.-N., and Altenbuchner, J. (1998). Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27, 239–246. doi: 10.1046/j.1365-2958.1998.00652.x

Wang, S. T., Setlow, B., Conlon, E. M., Lyon, J. L., Imamura, D., Sato, T., et al. (2006). The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358, 16–37. doi: 10.1016/j.jmb.2006.01.059

Weller, G. R., Kysela, B., Roy, T., Tonkin, L. M., Scanlan, E., Della, M., et al. (2002). Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689. doi: 10.1126/science.1074584

Wenner, T., Roth, V., Fischer, G., Fourrier, C., Aigle, B., Decaris, B., et al. (2003). End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens. Mol. Microbiol. 50, 411–425. doi: 10.1046/j.1365-2958.2003.03698.x

Yanai, K., Murakami, T., and Bibb, M. (2006). Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc. Natl. Acad. Sci. U.S.A. 103, 9661–9666. doi: 10.1073/pnas.0603251103

Zhang, L., Nguyen, H. C., Chipot, L., Piotrowski, E., Bertrand, C., Thibassard, A., et al. (2014). The adnAB locus, encoding a putative helicase-nuclease activity, is essential in Streptomyces. J. Bacteriol. 196, 2701–2708. doi: 10.1128/JB.01513-14

Zhang, X., Chen, W., Zhang, Y., Jiang, L., Chen, Z., Wen, Y., et al. (2012). Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis. J. Ind. Microbiol. Biotechnol. 39, 917–925. doi: 10.1007/s10295-012-1097-x

Zhu, H., Bhattacharai, H., Yan, H.-G., Shuman, S., and Glickman, M. S. (2012). Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 51, 10147–10158. doi: 10.1021/bi301202e

Zhu, H., and Shuman, S. (2007). Characterization of Agrobacterium tumefaciens DNA ligases C and D. Nucleic Acids Res. 35, 3631–3645. doi: 10.1093/nar/gkm145

Zhu, H., and Shuman, S. (2010). Gap filling activities of Pseudomonas DNA ligase D (LigD) polymerase and functional interactions of LigD with the DNA end-binding Ku protein. J. Biol. Chem. 285, 4815–4825. doi: 10.1074/jbc.M109.073874

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Hoff, Bertrand, Zhang, Piotrowski, Chipot, Bontemps, Confaloni, McGovern, Leconte, Thibassard and Leblond. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.