Modeling Quasi-elastic Form Factors for Electron and Neutrino Scattering

H. Budda, A. Bodeka and J. Arringtonb

aDepartment of Physics and Astronomy, University of Rochester, Rochester, New York 14618, USA
bArgonne National Laboratory, Argonne, Illinois 60439, USA

We calculate the total and differential quasielastic cross sections for neutrino and antineutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors G_E^p, G_E^n, G_M^p, G_M^n, and weak and pseudoscalar form factors. We find that using the updated non-zero value of G_E^n has a significant effect on both the total and differential neutrino quasielastic cross sections. Previous extractions of the weak axial form factor from neutrino scattering data are sensitive to the assumptions that were used for the vector form factors. We perform a re-analysis of previous neutrino data using updated form factors and obtain updated value of the axial vector mass. (Presented by Howard Budd at NuInt02, Dec. 2002, Irvine, CA, USA [1])

1. INTRODUCTION

Experimental evidence for oscillations among the three neutrino generations has been recently reported[2]. Since quasielastic (QE) scattering forms an important component of neutrino scattering at low energies, we have undertaken to investigate QE neutrino scattering using the latest information on nucleon form factors.

Recent experiments at SLAC and Jefferson Lab (JLab) have given precise measurements of the vector electromagnetic form factors for the proton and neutron. These form factors can be related to the form factors for QE neutrino scattering by conserved vector current hypothesis, CVC. These more recent form factors can be used to give better predictions for QE neutrino scattering.

2. EQUATIONS FOR QE SCATTERING

The hadronic current for QE neutrino scattering is given by \cite{3}

\[
\langle p(p_2)|J_\lambda^+(n(p_1)) = \nabla(p_2) \left[\gamma_\lambda F_1^\lambda(q^2) + \frac{i\sigma_\lambda q^\mu F^0_{\mu}(q^2)}{2M} + \gamma_\lambda \gamma_5 F_A(q^2) + \frac{q_\lambda q_\mu F_{\mu\nu}(q^2)}{M} \right] u(p_1),
\]

where $q = k_\nu - k_\mu$, $\xi = (\mu_p - 1) - \mu_n$, and $M = (m_p + m_n)/2$. Here, μ_p and μ_n are the proton and neutron magnetic moments. We assume that there are no second class currents, so the scalar form factor F_3^λ and the tensor form factor F_3^λ need not be included. Using the above current, the cross section is

\[
\frac{d\sigma^{\nu\nu}}{dq^2} = \frac{M^2 G_F^2 \cos^2 \theta_W}{8\pi E^2_{\nu}} \times \left[A(q^2) \mp (s - u)B(q^2) + C(q^2)(s - u)^2 \right],
\]

where

\[
A(q^2) = \frac{m^2 - q^2}{4M^2} \left[\left(4 - \frac{q^2}{M^2} \right) |F_A|^2 - \left(4 + \frac{q^2}{M^2} \right) |F_V|^2 - \frac{q^2}{M^2} |\xi F_{\mu
u}^0|^2 \frac{1}{2} \right],
\]

\[
B(q^2) = -\frac{q^2}{M^2} ReF_A^\dagger F_V^0 + \xi F_{\mu\nu}^0, \quad C(q^2) = \frac{1}{4} \left(|F_A|^2 + |F_V|^2 - \frac{q^2}{M^2} \frac{\xi F_{\mu\nu}^0|^2}{2} \right).
\]

Although we have not shown terms of order $(m_i/M)^2$, and terms including $F_{\mu\nu}(q^2)$ (which is multiplied by $(m_i/M)^2$), these terms are included in our calculations \cite{3}. The form factors $F_1^\lambda(q^2)$
Table 1
The most recent values of the parameters used in our calculations (Unless stated otherwise).

Parameter	Value
g_A	-1.267
G_F	1.1803×10^{-5} GeV$^{-2}$
$\cos \theta_c$	0.9740
μ_p	2.793 μ_N
μ_n	-1.913 μ_N
ξ	3.706 μ_N
M^2_{ξ}	0.71 GeV2

and $\xi F^2_V(q^2)$ are given by:

$$F_1^V(q^2) = \frac{G_E^V(q^2) - \frac{q^2}{4M^2} G_M^V(q^2)}{1 - \frac{q^2}{4M^2}},$$

$$\xi F_2^V(q^2) = \frac{G_M^V(q^2) - G_E^V(q^2)}{1 - \frac{q^2}{4M^2}}.$$

We use the CVC to determine $G_E^V(q^2)$ and $G_M^V(q^2)$ from the electron scattering form factors $G_E^V(q^2), G_M^V(q^2)$, and $G_M^V(q^2)$:

$$G_E^V(q^2) = G_E^E(q^2) - G_E^E(q^2),$$

$$G_M^V(q^2) = G_M^E(q^2) - G_M^E(q^2).$$

Previously, many neutrino experiments have assumed that the vector form factors are described by the dipole approximation.

$$G_D(q^2) = \frac{1}{\left(1 - \frac{q^2}{M_V^2}\right)^2}, \quad M_V^2 = 0.71 \text{ GeV}^2$$

$$G_E^p = G_D(q^2), \quad G_E^n = 0,$$

$$G_M^p = \mu_p G_D(q^2), \quad G_M^n = \mu_n G_D(q^2).$$

We refer to the above combination of form factors as ‘Dipole Form Factors’. It is an approximation that is improved upon in this paper. We will refer to our updated form factors as ‘BBA-2003 Form Factors’ (Budd, Bodek, Arrington). Table 1 summarizes the most up to date values of the coupling constants and magnetic moments that we use in our calculations. Note that G_E^p, G_M^p, and G_E^n are positive, while G_M^n and the axial form factor F_A are negative.

The axial form factor is given by

$$F_A(q^2) = \frac{g_A}{\left(1 - \frac{q^2}{M_A^2}\right)^2};$$

This form factor needs to be extracted from QE neutrino scattering. However, at low Q^2, this form factor can also be extracted from pion electroproduction data.

Previous neutrino experiments used $g_A = -1.23$, while the best current value is -1.267. The world average from neutrino experiments for M_A is 1.026 ± 0.020 GeV. The value of M_A extracted from neutrino experiments depends on both the value of g_A and the values of the electromagnetic form factors which are assumed in the extraction process. Since we are updating these form factors, new values of M_A are extracted from previous neutrino data using the better known values for g_A and the vector form factors.

M_A can also be determined from pion electroproduction, which yields a world average value of 1.069 ± 0.016 GeV. This value should be reduced by 0.055 GeV when compared to M_A as...
measured in neutrino data because of additional corrections. Therefore, pion electroproduction experiments predict that M_A should be 1.014 ± 0.016 GeV in neutrino scattering.

In this communication, we show that the value of 1.026 ± 0.02 GeV as measured from the average of all neutrino scattering should also be reduced by 0.025 GeV to account for incorrect vector form factors used in the past. This corrected value of 1.001 ± 0.020 GeV is in good agreement with the theoretically corrected value from pion electroproduction of 1.014 ± 0.016 GeV.

From PCAC, the pseudoscalar form factor F_P is predicted to be

$$F_P(q^2) = \frac{2M^2F_A(q^2)}{M^2 - q^2}.$$

In the expression for the cross section, $F_P(q^2)$ is multiplied by $(m_l/M)^2$. Therefore, in muon neutrino interactions, this effect is very small except at very low energy, below 0.2 GeV. The effect is larger, about 5%, for tau neutrino interactions.

3. UPDATED FORM FACTORS

We have used an updated fit to the proton electromagnetic form factors. The fit is similar to the one described in Ref. [5], but using a slightly different fitting function (described below), and including additional data to constraint the fit at low Q^2 values. Form factors can be determined from cross sections using the standard Rosenbluth separation technique, which is sensitive to radiative corrections, or from polarization measurements using the newer polarization transfer technique. The polarization measurements do not directly measure the form factors, but measure the ratio G_E/G_M. Figures 1, 2, and 3 show the ratio of our fits divided by the dipole form, G_D.

Figure 4 shows our fits to $G_M^p/\mu_p G_D$. The fit including only cross section data is roughly flat versus Q^2 ($Q^2 = -q^2$), while ratio decreases with Q^2 in the combined fit to cross section and polarization transfer data. Although the polarization transfer measurement is believed to have smaller systematic error, especially at high Q^2, the origin of this disagreement is not known. If this disagreement comes from radiative corrections to the electron, in particular two-photon exchange terms, then the polarization transfer extraction will give the correct ratio, but the overall scale of G_E^p at low Q^2 would be shifted down by $\approx 3\%$. Because the fit is constrained as $Q^2 \rightarrow 0$, there will not be an overall shift in G_E^p at low Q^2, but there will be some uncertainty in the low Q^2 behavior. Current experiments at JLab aim to better understand the source of the disagreement by looking at the recoil proton in elastic electron-proton scattering, thus minimizing the sensitivity to the dominant sources of uncertainty in previous Rosenbluth separations. However, since this discrepancy is most prominent at high Q^2, and the fit is constrained at low Q^2, it has only a rel-
Table 2

The coefficients of the inverse polynomial fits for the G_{E}^{p}, G_{M}^{p}, and G_{M}^{n}. Fits using cross section data only, and using both cross section data and the Hall A polarization transfer data are shown separately. Note that these different polynomials replace G_{D} in the expression for G_{E}^{p}, G_{M}^{p}, and G_{M}^{n}. The first three rows of the table along with the fit of G_{M}^{p} Krutov et al. [7] (see text) will be referred to as ‘BBA-2003 Form Factors’.

	data	a_2	a_4	a_6	a_8	a_{10}	a_{12}
G_{E}^{p}	CS + Pol	3.253	1.422	0.08582	0.3318	-0.09371	0.01076
G_{M}^{p}	CS + Pol	3.104	1.428	0.1112	-0.006981	0.003705	-0.7063E-05
G_{M}^{n}	CS	3.043	0.8548	0.6806	-0.1287	0.008912	
G_{E}^{p}	CS	3.226	1.508	-0.3773	0.6109	-0.1853	0.01596
G_{M}^{p}	CS	3.188	1.354	0.1511	-0.01135	0.0005330	-0.9005E-05

Table 2 shows the parameters of our fit. We have done fits using cross section data only (for the proton) and fits using both both cross section data and polarization transfer data from JLab Hall A. For G_{E}^{p}, the parameters in Table 2 are used for $Q^{2} < 6$ GeV2. For $Q^{2} > 6$ GeV2, the ratio of G_{E}^{p}/G_{M}^{p} is assumed to be constant:

$$G_{E}^{p}(Q^2) = G_{M}^{p}(Q^2) \frac{G_{E}^{p}(6 \text{ GeV}^2)}{G_{M}^{p}(6 \text{ GeV}^2)}$$

Since the neutron has no charge, G_{E}^{n} must be zero at $q^{2}=0$, and previous neutrino experiments assumed $G_{E}^{n}(q^{2})=0$ for all q^{2} values. However, it is non-zero away from $q^{2}=0$, and its slope at $q^{2}=0$ is known precisely from neutron-electron scattering. At intermediate Q^{2}, recent polarization transfer data give precise values of $G_{E}^{n}(q^{2})$. Our analysis uses the parameterization of Krutov et al. [7]:

$$G_{E}^{n}(Q^2) = -\mu_n \frac{a\tau}{1+b\tau} G_{D}(Q^2), \quad \tau = \frac{Q^2}{4M^2},$$

with $a = 0.942$ and $b = 4.61$. This parameterization is very similar to that of Galster et al. [8], as shown in Figure 5.
Figure 6. Ratio versus energy of predicted neutrino (antineutrino) QE cross section using BBA-2003 Form Factors to the prediction using the dipole approximation with $G_{E}^{n}=0$.

The first three rows of Table 2, along with the fit of G_{E}^{p} of Krutov et. al. [7], will be referred to as ‘BBA-2003 Form Factors’. For BBA-2003 Form Factors, both the cross section and polarization data are used in the extraction of G_{E}^{p} and G_{M}^{p}.

4. CROSS SECTIONS AND FITS TO M_{A}

Figure 7 shows the ratio versus neutrino energy of the predicted neutrino (antineutrino) QE cross section using our BBA-2003 Form Factors to the prediction using the Dipole Form Factors. The same comparison was performed using the proton form factor extractions that included only the cross section data (i.e. excluding the polarization results). The results were nearly identical: the maximum difference between the cross sections is less then 0.3%. This is because the form factors extracted from the polarization transfer data and from the electron scattering cross section data are different only at high Q^{2}, while the neutrino cross sections are mostly sensitive to the form factors at low Q^{2}.

There is a large difference in the predicted neutrino (antineutrino) cross section between using the BBA-2003 Form Factors and using the Dipole Form Factor approximation. The difference is 3% at high energy and can become as much as 6%.

Figure 8. Ratio versus energy of predicted neutrino (antineutrino) QE cross section using our BBA-2003 Form Factor fits for G_{E}^{p}, G_{M}^{p}, and G_{N}^{p} to the prediction using the dipole approximation. In both cases, we use $G_{E}^{n}=0$.
at 1 GeV. As seen in Figure 7, which shows the difference between $G_E^\nu = \text{Krutov} \text{ and } G_E^\nu = 0$, all the difference at high energy and most of the difference at low energy is due to G_E^ν. At the low energy region which is of interest for neutrino oscillation experiments, both a non-zero G_E^ν and the deviations from the dipole form are important. This is also the case for the extraction of the axial form factor from neutrino data, since most of the neutrino differential cross section data are at low Q^2.

A 1% increase in either M_A or $|g_A|$ increases the cross section about 1%. Replacing the old value of $g_A = -1.23$ with the more precise value of $g_A = -1.267$ increases the cross section by about 2.5%. Using the more recent value of M_A of 1.02 instead of the older value of 1.032 decreases the predicted cross section about 1%. F_P has almost no effect on the cross section except at very low E_ν. Therefore, even a very conservative error on F_P of 50% has very little effect.

Previous neutrino measurements, mostly bubble chamber experiments, extracted M_A using the best known assumptions at the time. Changing these assumptions changes the extracted value of M_A. Hence, M_A needs to be updated using new form factors and up-to-date couplings. In this communication we will attempt to update the results from three previous deuterium bubble chamber experiments. These are Baker et al. [9], Barish et al. [10], Miller et al. [11], and Kitagaki et al. [12]. Barish et al. and Miller et al. are the same experiment, with the analysis of Miller et al. including the full data set, roughly three times the statistics included in the original analysis.

We start by calculating the shape of the Q^2 distribution using the same form factors and couplings as used in the original extractions (including M_A). The flux is extracted from the flux figures shown in the original papers, which we parameterize using a spline fit. We extract the data and curves from their publications by picking points off the plots, and fitting the points on the curves to a spline fit. These experiments did not use a pure dipole approximation, but included a correction to the dipole form as parameterized by Olsson et al. [13]. They use $g_A = -1.23$, $M_V = 0.84 \text{ GeV (yielding } M_V^2 = 0.7056 \text{ GeV}^2)$ in-
Figure 11. Q^2 distribution from Miller et al. [11]. The dotted curve is their calculation taken from their Q^2 distribution histogram. The dashed curve is our calculation using their assumptions.

Figure 12. Q^2 distribution from Kitagaki et al. [12]. The dotted curve is their calculation taken from their Q^2 distribution histogram. The dashed curve is our calculation using their assumptions.

$\nu_\mu + n \to p + \mu^-$, Miller 1982

$\nu_\mu + n \to p + \mu^-$, Kitagaki 1983

\[M^2_{\nu} + n - p + \mu^-, \text{ Miller 1982} \]

\[M^2_{\nu} + n - p + \mu^-, \text{ Kitagaki 1983} \]

Instead of $M^2_{\nu}=0.71$ GeV2, and a D_2 Pauli-suppression correction from Singh et al. [13]. Our calculations and their calculations are compared in Figures 9, 10, 11, and 12. In these figures, our curves are normalized such that they match the previous curves at one point in the low Q^2 region, so that we can compare the Q^2-dependence of the spectra. The y-axis is weighted events/bin (corrected for efficiencies). We reproduce the shape (Q^2-dependence) of the calculations of Baker et al. [9], Barish et al. [10], and Kitagaki et al. [12], but not Miller et al. [11]. As Miller et al. gives an updated result of Barish et al., they should be using the same calculation. Therefore, we do not understand the origin of the curve shown in Miller et al.

Having reproduced the calculations under the same assumptions as in the original extractions, we perform our own extraction of M_A, using our calculation of the cross sections, but using the same input (g_A and form factors) as assumed in the original extractions. Due to inefficiencies in reconstruction for very low Q^2 events, they do not use the first bin for fitting. Hence, we do not use the first bin for fitting or normalization either. We perform a binned maximum likelihood using a formula from the Particle Data Group [16]. The experiments performed an unbinned likelihood fit, which we cannot reproduce since we do not have the individual events. Table 3 gives the results of these fits. Using the same assumptions, we reproduce the fitted value of M_A from Baker et al., while disagreeing somewhat with the values from Barish et al., Miller et al., and Kitagaki et al. The difference may come from the fact that we are forced to use a binned likelihood fit, rather than being able to reproduce their unbinned fit.

Figures 13 and 14 show the difference between using their value of M_A and our value of M_A for Kitagaki et al. and Barish et al. The plot for Kitagaki et al. appears to show that our value of $M_A=1.19$ GeV is a better fit than their value of M_A. For Barish et al. its not clear which is a better fit. As previously stated, our Q^2 distribution is slightly different than that of Miller et al. for the same M_A. Figure 15 shows their calculation for their best fit M_A versus our calculation using our best fit M_A. The two shapes agree very
Figure 13. Q^2 distribution from Kitagaki et al. [12]. The dash curve is our calculation using our fit value of $M_A=1.19$ GeV. The solid curve is our calculation using their fit value of $M_A=1.05$ GeV.

Figure 14. Q^2 distribution from Barish et al. [10]. The dash curve is our calculation using our fit value of $M_A=1.075$ GeV. The solid curve is our calculation using their fit value of $M_A=1.01$ GeV.

well. Hence, we are able to reproduce the best fit shape of Miller et al. fit, but not with their value of M_A.

Finally, we extract M_A for each of these experiments using our calculations with the updated BBA-2003 Form Factors and g_A value. Comparing this to our extraction with their input parameters, we obtain change in M_A due to using updated values for g_A and the form factors. Because we sometimes obtain slightly different values of M_A, even with the same input parameters, we take the difference between our extraction with old and new form factors as the modification that should be applied to the previous extractions, which were able to do a more detailed comparison to their data. Table 3 gives the results of these fits, which indicate that we should shift the value of M_A determined from deuterium by -0.025 GeV from the value quoted by these experiments. We also show that a shift in M_A of -0.050 GeV is required in going from the Dipole Form Factors to BBA-2003 Form Factors, keeping g_A constant. If only cross section data were used for the form factor fits (Table II rows 4 and 5), the value of M_A would go up by 0.002 GeV, a
Table 3
Published and updated extractions of M_A (GeV) from deuterium experiments. The first value of M_A is the values extracted in the original publications. For Barish and Miller, we give their ‘shape fit’ value, since this value most closely reflects how we can calculate their M_A. The second value of M_A is from the analysis presented here, using the same input parameters (form factors and g_A) as in the publications, while the third uses the updated parameters from tables 2 and 1. The last two columns show the change in M_A between the new and old input parameters, and the change when comparing the BBA-2003 and Dipole Form Factors (with g_A fixed).

	M_A (published)	updated M_A	updated M_A	ΔM_A	ΔM_A
		old params.	new params.	new–old	Dipole
Baker	1.07 ± 0.06	1.079 ± 0.056	1.055 ± 0.055	−0.024	−0.049
Barish	1.01 ± 0.09	1.075 ± 0.10	1.049 ± 0.099	−0.026	−0.046
Miller	1.05 ± 0.05	1.117 ± 0.055	1.090 ± 0.055	−0.027	−0.046
Kitagaki	1.05±0.12	1.194±0.11	1.175±0.10	−0.019	−0.050

Figure 16. A comparison of the Q^2 distribution using 2 different sets of form factors. The data are from Baker et al. [9]. The dotted curve uses Dipole Form Factors with $M_A=1.10$ GeV. The dashed curve uses BBA-2003 Form Factors with $M_A=1.05$ GeV.

$\nu_\mu + n \rightarrow p + \mu^-$, Baker 1981

Figure 16 shows the Q^2 distribution for Dipole Form Factors and $M_A=1.10$ GeV with the distribution for BBA-2003 Form Factors and $M_A=1.050$ GeV. When we modify the electromagnetic form factors, the modification in M_A not only reproduces the original yield, it also produces the Q^2 distribution. Because there is no modification of the Q^2 dependence when strength is shifted between the electromagnetic and axial form factors, we conclude that the use of Dipole Form Factors will lead to an error in M_A of 0.050 GeV, independent of the details of the experiment.

Figures 17 and 18 show the QE cross section for ν and $\bar{\nu}$ using our most up to date assumptions. The normalization uncertainty in the data is approximately 10%. We have used BBA-2003 Form Factors, and have scaled down M_A from the old best fit of $M_A=1.026 \pm 0.021$ GeV to $M_A=1.00$ GeV (which would have been obtained with the best vector form factors known today). The solid curve uses no nuclear correction, while the dotted curve uses a NUANCE calculation of a Smith and Moniz based Fermi gas model for carbon. This nuclear model includes Pauli blocking and Fermi motion, but not final state interactions. The Fermi gas model was run with a 25 MeV binding energy and 220 MeV Fermi momentum. The updated form factors improve the agreement with neutrino QE cross section data and give a reasonable description of the cross sections from deuterium. However, the data from heavy targets, including all of the antineutrino data, are systematically below the calculation, even with the Fermi gas nuclear corrections. The only experiment on heavy nuclei which agrees with the calculation is SKAT [18] with neutrinos. The Fermi gas nuclear correc-
Figure 17. The QE neutrino cross section along with data from various experiments. The calculation uses $M_A=1.00$ GeV, $g_A=-1.267$, $M^2_V=0.71$ GeV2 and BBA-2003 Form Factors. The solid curve uses no nuclear correction, while the dotted curve uses a Fermi gas model for carbon with a 25 MeV binding energy and 220 Fermi momentum. The lower plot is identical to the upper plot with the E_ν axis limit changed to 2 GeV. The data shown are from FNAL 1983 [12], ANL 1977 [10], BNL 1981 [9], ANL 1973 [17], SKAT 1990 [18], GGM 1979 [19], LSND 2002 [20], Serpukov 1985 [21], and GGM 1977 [22].
Figure 18. The QE antineutrino cross section along with data from various experiments. The calculation uses $M_A=1.00$ GeV, $g_A=-1.267$, $M_V^2=0.71$ GeV2 and BBA-2003 Form Factors. The solid curve uses no nuclear correction, while the dotted curve [24] uses a Fermi gas model for carbon with a 25 MeV binding energy and 220 MeV Fermi momentum. The data shown are from SKAT 1990 [18], GGM 1979 [23], Serpukov 1985 [21], and GGM 1977 [22].

Figure 19. Ratio of cross section versus energy using BBA-2003 Form Factors with $M_A=1.00$ GeV versus Dipole Form Factors with $M_A=1.05$ GeV.
the ‘Q^2 shape’ as well as the correct form factors do. The effects can be even larger than in this example, especially if the Q^2-dependence is not required to be identical. As shown by Y. Itow’s at NUINT02 talk on the results from K2K [11], the initial K2K analysis (on a water target) assumed Dipole Form Factors. They obtained a value of $M_A=1.11$ GeV and saw a low Q^2 suppression with respect to the predicted distribution with Dipole Form Factors and $M_A = 1.023$. Figure 20 shows the ratio vs. energy of cross sections predicted using BBA-2003 Form Factors with $M_A=1.00$ GeV to the prediction with Dipole Form Factors with $M_A=1.11$ GeV. The figure shows differences as large as 12%. This will clearly be important for future neutrino experiments at Fermilab and elsewhere: Even if the form factors which are used in the model are adjusted to describe the Q^2 distribution measured in a near detector neutrino experiment, one would be predicting an incorrect energy dependence of the QE cross section. Therefore, using the correct combination of form factors is important for determining the neutrino cross section and its energy dependence. An accurate measurement of QE scattering cross sections requires an accurate measurement of both the normalized cross section versus energy as well as the shape of the Q^2 distribution.

5. CONCLUSION

We have made an updated extraction of nucleon electromagnetic form factors electron scattering, and have shown these have as much as a 6% effect for neutrino-nucleon QE scattering when compared with the standard dipole approximation. Inclusion of the new form factors yields to a reduction in the value of M_A extracted from neutrino scattering of 0.025 GeV. The agreement between the calculated neutrino and antineutrino free nucleon cross section and data is improved using the updated form factors, but is not spectacular, especially for data taken on heavy targets. We have shown that for a fixed Q^2 dependence, the neutrino cross section and its energy dependence can be affected by more than 10% if the input shapes of the electromagnetic form factors used are not correct. Hence, a complete understanding of QE scattering requires an accurate measurement of both the normalized cross section versus energy as well as the shape of the Q^2 distribution. In addition, nuclear effects such as Pauli blocking and modification of nucleon form factors in bound nuclei need to be included. These effects are currently under investigation. For example, the simple Fermi gas model can be modified to include a high momentum tail [28] or more sophisticated spectral functions.

6. ACKNOWLEDGMENTS

This work is supported in part by the U. S. Department of Energy, Nuclear Physics Division, under contract W-31-109-ENG-38 (Argonne) and High Energy Physics Division under grant DE-FG02-91ER40685 (Rochester).

REFERENCES

1. http://www.ps.uci.edu/~nuint/
2. Y. Fukada et al., Phys. Rev. Lett. 81 (1998) 1562.
3. C.H. Llewellyn Smith, Phys. Rep. 3C (1972).
4. V. Bernard, L. Elouadrhiri, U.G. Meissner, J.Phys.G28 (2002), hep-ph[0107088].
5. J. Arrington, nucl-ex[0305009].
6. M. K. Jones et al., Phys. Rev. Lett, 84, (2000)
13. O. Gayou et al., Phys. Rev. Lett, 88 (2002) 092301.
7. A.F. Krutov, V.E. Troitsky, Eur. Phys. J. A16 (2003) 285, hep-ph[0202183].
8. S. Glaster et al., Nucl. Phys. B32 (1971) 221.
9. N.J. Baker et al., Phys. Rev. D23 (1981) 2499.
10. S.J. Barish et al., Phys. Rev. D16 (1977) 3103.
11. K.L. Miller et al., Phys. Rev. D26 (1982) 537.
12. T. Kitagaki et al., Phys. Rev. D26 (1983) 436.
13. T. Kitagaki et al., Phys. Rev. Lett. 49 (1982) 98.
14. M.G. Olsson, E.T. Oyspyoreski and E.H. Monsay, Phys. Rev. D17 (1978) 2938.
15. S.K. Singh, Nucl. Phys. B36 (1972) 419.
16. Particle Data Group, Eur. Phys. J C15 (2000) 196.
17. W.A. Mann et al., Phys. Rev. Lett. 31 (1973) 844.
18. J. Brunner et al., Z. Phys. C45 (1990) 551.
19. M. Pohl et al., Lett. Nuovo Cimento 26 (1979) 332.
20. L.B. Auerbach et al., Phys. Rev. C66 (2002) 015501.
21. S.V. Belikov et al., Z. Phys. A320 (1985) 625.
22. S. Bonetti et al., Nuovo Cimento 38 (1977) 260.
23. N. Armenise et al., Nucl. Phys. B152 (1979) 365.
24. G. Zeller, private communication.
25. R.A. Smith and E.J. Moniz, Nucl. Phys. B43 (1972) 605.
26. D. Casper, Nucl. Phys. Proc. Suppl. 112 (2002) 161.
27. K. Tsushima, Hungchong Kim, K. Saito, nucl-th[0307013].
28. A. Bodek and J. L. Ritchie, Phys. Rev. D23 (1981) 1070; ibid Phys. Rev. D24 (1981) 1400.