Free dihedral actions on Abelian varieties

Bruno Aguiló Vidal

Abstract
We give a simple construction for hyperelliptic varieties defined as the quotient of a complex torus by the action of a dihedral group that contains no translations and fixes no points. This generalizes a construction given by Catanese and Demleitner for D_4 in dimension three.

MSC codes: 14K99, 14L30.
Key words: Abelian varieties, dihedral group, free action.

Introduction

A Generalized Hyperelliptic Manifold X is defined to be a quotient $X = T/G$ of a complex torus T by the free action of a finite group G which contains no translations. We say that X is a Generalized Hyperelliptic Variety if moreover the torus T is projective, i.e., it is an Abelian variety A.

Uchida and Yoshihara showed that the only non Abelian group that gives such an action in dimension three is the dihedral group D_4 of order 8 \[3\]. Later, Catanese and Demleitner gave a simple and explicit construction for that action \[2\] and completed the characterization of three-dimensional hyperelliptic manifolds \[1\].

The purpose of this note is to generalize Catanese and Demleitner’s construction to bigger dihedral groups acting in higher dimension. Specifically, for every $n \in \mathbb{N}$ we give a Generalized Hyperelliptic Variety of dimension $2n + 1$ defined by the action of the dihedral group D_{4n} of order $8n$ acting on a family of Abelian varieties, from which the construction by Catanese and Demleitner remains as the particular case for $n = 1$.

We end with a simple corollary that explains how this allows us to create Generalized Hyperelliptic Varieties using any dihedral group.

The construction
Let E, E' be any two elliptic curves,

$$E = \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau), \quad E' = \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau').$$
Now, for \(n \in \mathbb{N} \) set \(A' := E^{2n} \times E' \), \(A := A'/\langle w \rangle \), where \(w := (1/2, 1/2, ..., 1/2, 0) \).

Theorem. The Abelian Variety \(A \) admits a free action with no translations of the dihedral group \(D_{4n} \) of order \(8n \).

Proof. First, let us recall that for \(k \in \mathbb{N} \), the dihedral group of order \(2k \) is defined as

\[
D_k := \langle r, s \mid r^k = 1, s^2 = 1, (rs)^2 = 1 \rangle.
\]

Now, set, for \(z := (z_1, z_2, ..., z_{2n}, z_{2n+1}) \in A' \):

\[
r(z) := (-z_{2n}, z_1, z_2, ..., z_{2n-1}, z_{2n+1} + \frac{1}{4n})
\]

\[
= R(z) + (0, ..., 0, \frac{1}{4n}),
\]

\[
s(z) := (-z_{2n} + b_1, -z_{2n-1} + b_2, ..., -z_1 + b_{2n}, -z_{2n+1})
\]

\[
= S(z) + (b_1, b_2, ..., b_{2n}, 0),
\]

where, for \(i = 1, ..., n, b_{2i-1} := 1/2 + \tau/2 \) and \(b_{2i} := \tau/2 \).

Step 1. It is easy to verify that \(r \) and \(R \) have order exactly \(4n \) on \(A' \), and that \(R(w) = w \), so that \(r \) descends to an automorphism of \(A \) of order exactly \(4n \). Moreover, any power \(r^j, 0 < j < 4n \), acts freely on \(A \) since the \((2n+1)\)-th coordinate of \(r^j(z) \) equals \(z_{2n+1} + \frac{1}{4n} \), and clearly none of this powers is a translation.

Step 2. \(s^2(z) = z + w \), since for \(i = 1, ..., 2n, b_i - b_{2n+1-i} = 1/2 \); moreover, \(S(w) = w \), hence \(s \) descends to an automorphism of \(A \) of order exactly \(2 \).

Step 3. We have

\[
rs(z) = r(-z_{2n} + b_1, -z_{2n-1} + b_2, ..., -z_1 + b_{2n}, -z_{2n+1})
\]

\[
= (z_1 - b_{2n}, -z_{2n} + b_1, ..., -z_2 + b_{2n-1}, -z_{2n+1} + \frac{1}{4n}).
\]

hence

\[
(rs)^2(z) = (z_1 - 2b_{2n}, z_2 + b_1 - b_{2n-1}, ..., z_i + b_{i-1} - b_{2n-(i-1)}, ..., z_{2n} + b_{2n-1} - b_1, z_{2n+1})
\]

\[
= z,
\]

and we have an action of \(D_{4n} \) on \(A \), since the orders of \(r \), \(s \) and \(rs \) are precisely \(4n \), \(2 \) and \(2 \).

Step 4. We claim that also the symmetries in \(D_{4n} \) act freely on \(A \) and are not translations. Since there are exactly two conjugacy classes of symmetries,
those of s and rs, it suffices to observe that these two transformations are not translations. In the next step we show that they both act freely.

Step 5. It is rather immediate that rs acts freely, since $rs(z) = z$ in A is equivalent to

$$(−b_{2n}, −z_{2n} − z_2 + b_1, ..., −z_2 − z_{2n} + b_{2n−1}, −2z_{2n+1} + \frac{1}{2n})$$

being a multiple of w in A', but this is absurd since $2w = 0$ and $−b_{2n} = \tau/2 \neq 0, 1/2$.

On the other hand, s acts freely in A because $s(z) = z$ is equivalent to

$$(−z_{2n} − z_1 + b_1, −z_{2n−1} − z_2 + b_2, ..., −z_1 − z_{2n} + b_{2n}, −2z_{2n+1})$$

being a multiple of w in A', but the first and $2n$-th coordinate of multiples of w are equal, while here the difference between them is $1/2 \neq 0$.

\[\square\]

Using any dihedral group

Notice that, although the previous construction is somewhat restrictive because it works with very specific dihedral groups, since it is true that $D_n \subseteq D_{nk}$ for all $n, k \in \mathbb{N}$, we have the following corollary:

Corollary. For all $n \in \mathbb{N}$, there exists a free action of the dihedral group D_n of order $2n$ on some Abelian variety of dimension $\frac{mcm(4,n)}{2} + 1$ that contains no translations.

Acknowledgements: I would like to thank professors Robert Auffarth and Giancarlo Lucchini Arteche for introducing me to this topic and for dedicatedly guiding me into getting this result as an undergraduate student.

References

[1] Fabrizio Catanese and Andreas Demleitner. The classification of hyperelliptic threefolds. Preprint (2018), arXiv:1812.09754.

[2] Fabrizio Catanese and Andreas Demleitner. Hyperelliptic threefolds with group D_4, the dihedral group of order 8. Preprint (2018), arXiv:1805.01835.

[3] Kôji Uchida and Hisao Yoshihara. Discontinuous groups of affine transformations of \mathbb{C}^3. *Tohoku Math. J.* (2), 28(1):89–94, 1976.
