Supplementary Information

AgBr/g-C₃N₄ Nanocomposites for Enhanced Visible-light-driven Photocatalytic Inactivation of Escherichia coli

Sihui Zhan¹, Qianlei hou¹, Yi Li², Shuanglong Ma¹, Pengfei Wang¹, Yanan Li², Haitao Wang*¹

¹Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China;

²Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China;

*Corresponding authors. E-mail:envwang@gmail.com; envwang@nankai.edu.cn
Figure S1. (a) XPD patterns and (b) FTIR spectra of AgBr/g-C$_3$N$_4$ photocatalysts. The percentage of AgBr from bottom to the up is 5, 10, 20, 30, and 40 %.

Figure S2. (a) TEM and (b) SEM image of pristine g-C$_3$N$_4$; (c) SEM image of AgBr nanoparticles prepared without the presence of g-C$_3$N$_4$.
Figure S3. XPS survey spectra of the g-C$_3$N$_4$ (red) and AgBr/g-C$_3$N$_4$ (blue) photocatalysts.

Figure S4. PL spectra of AgBr/g-C$_3$N$_4$ photocatalysts. The percentage of AgBr from bottom to the up is 30, 40, 20, 10, and 5 %.