CYCLOTOMIC COMPLETIONS OF POLYNOMIAL RINGS

KAZUO HABIRO

Abstract. The main object of study in this paper is the completion
\(\mathbb{Z}[q]^N = \varprojlim_n \mathbb{Z}[q]/((1-q)(1-q^2) \cdots (1-q^n)) \) of the polynomial ring \(\mathbb{Z}[q] \),
which arises from the study of a new invariant of integral homology 3-
spheres with values in \(\mathbb{Z}[q]^N \) announced by the author, which unifies all
the \(sl_2 \) Witten-Reshetikhin-Turaev invariants at various roots of unity.
We show that any element of \(\mathbb{Z}[q]^N \) is uniquely determined by its power
series expansion in \(q - \zeta \) for each root \(\zeta \) of unity. We also show that
any element of \(\mathbb{Z}[q]^N \) is uniquely determined by its values at the roots
of unity. These results may be interpreted that \(\mathbb{Z}[q]^N \) behaves like a
ring of “holomorphic functions defined on the set of the roots of unity”.
We will also study the generalizations of \(\mathbb{Z}[q]^N \), which are completions
of the polynomial ring \(R[q] \) over a commutative ring \(R \) with unit with
respect to the linear topologies defined by the principal ideals generated
by products of powers of cyclotomic polynomials.

Contents

1. Introduction 2
2. Preliminaries 5
3. Monic completions of polynomial rings 6
 3.1. Definitions and basic properties 6
 3.2. Injectivity of the homomorphism \(\rho^R_{M,M'} \) 7
4. Injectivity of \(\rho^R_S \) 9
5. Expansions at roots of unity 10
6. Values at roots of unity 12
7. Remarks 14
 7.1. Units in \(\mathbb{Z}[q]^N \) 14
 7.2. A localization of \(\mathbb{Z}[q]^N \) 15
 7.3. Modules 16
 7.4. Non-surjectivity of \(\rho^R_{S,(n)} \) 16
 7.5. The ring \(\mathbb{Q}[q]^\infty \) 17
References 17

Date: September 6, 2002.
2000 Mathematics Subject Classification. Primary 13B35; Secondary 13B25, 57M27.
Key words and phrases. completion of polynomial rings, cyclotomic polynomials,
Witten-Reshetikhin-Turaev invariant.
1. Introduction

The main object of study in this paper is the completion
\[Z[q]^N = \lim_{n \to 0} Z[q]/(q)_n \]
of the polynomial ring \(Z[q] \) in an indeterminate \(q \), where we use the notation
\[(q)_n = (1 - q)(1 - q^2) \cdots (1 - q^n) \in Z[q], \quad n \geq 0. \]
Each element \(a \in Z[q]^N \) is expressed as an infinite sum
\[a = \sum_{n \geq 0} a_n(q)_n, \]
where \(a_n \in Z[q] \) for \(n \geq 0 \).

Some specific instances of the series (2) and some variants which can define elements of \(Z[q]^N \) can be found in the literature. Zagier [13] studied the series \(\sum_{n \geq 0} (q)_n \), which was introduced by Kontsevich, and observed that it can be expanded in \(q - \zeta \) for any root \(\zeta \) of unity. Clearly, this is the case also for any elements of \(Z[q]^N \). Some of the formulae given by Lawrence and Zagier [4] and by Le [5] for the values of the \(sl_2 \) Witten-Reshetikhin-Turaev invariants [9] [12] of some particular 3-manifolds, including the Poincaré homology sphere, were expressed as infinite series similar to (2), and have well-defined values at the roots of unity.

The ring \(Z[q]^N \) arises from the new invariant \(I(M) \) of an integral homology 3-sphere \(M \) that we announced in [1] (see also [8]). (The ring \(Z[q]^N \) is denoted \(\hat{Z}[q] \) in [1].) The invariant \(I(M) \) takes values in \(Z[q]^N \) and unifies all the \(sl_2 \) Witten-Reshetikhin-Turaev invariants \(\tau_\zeta(M) \) defined at various roots \(\zeta \) of unity; i.e., for any root \(\zeta \) of unity we have
\[I(M)|_{q=\zeta} = \tau_\zeta(M). \]
As we explained in [1], the existence of the invariant \(I(M) \) generalizes the previous integrality results [3] [6] [7] [10] on the Witten-Reshetikhin-Turaev invariant for integral homology spheres.

The present paper was at first intended to provide the results on the ring \(Z[q]^N \) announced in [1] and those necessary for the future papers [2] in which we will prove the existence of \(I(M) \). From purely algebraic interests, however, we will also study some generalizations of \(Z[q]^N \) as follows.

Let \(R \) be a commutative ring with unit, and let \(R[q] \) denote the polynomial ring over \(R \) in an indeterminate \(q \). For each \(n \in \mathbb{N} = \{1, 2, \ldots\} \) let \(\Phi_n(q) \) denote the \(n \)th cyclotomic polynomial
\[\Phi_n(q) = \prod_{(i,n)=1} (q - \zeta^i) \in Z[q], \]
where \(\zeta \) is a primitive \(n \)th root of unity. If \(S \subset \mathbb{N} \) is a subset, we set
\[\Phi_S = \{ \Phi_n(q) \mid n \in S \} \subset Z[q], \]
and let Φ_S^* denote the multiplicative set in $\mathbb{Z}[q]$ generated by Φ_S, which we will regard as a directed set with respect to the divisibility relation $|$. The principal ideals $(f(q)) \subset R[q]$ for $f(q) \in \Phi_S^*$ define a linear topology of the ring $R[q]$. Define a commutative R-algebra $R[q]^S$ by

$$(3) \quad R[q]^S = \varprojlim_{f(q) \in \Phi_S^*} R[q]/(f(q)),$$

which we will call the $(S\text{-})$cyclo
tomic completion of $R[q]$. Since the sequence $(-1)^n(q_n), n \geq 0,$ is cofinal to the directed set Φ_S^*, the definition (3) is consistent with (1). Note that if S is finite, then $R[q]^S$ is identified with the $\left(\prod \Phi_S\right)$-adic completion of $R[q]$, where $\prod \Phi_S = \prod_{f(q) \in \Phi_S^*} f = \prod_{n \in S} \Phi_n(q)$. In particular, we have $R[q]^{(1)} \simeq R[[q - 1]]$ and $R[q]^{(2)} \simeq R[[q + 1]]$. In general, we have a natural isomorphism

$$\mathbb{Z}[q]^S \simeq \varprojlim_{S' \subset S, |S'| < S} \mathbb{Z}[q]^{S'},$$

where S' runs through all the finite subsets of S.

We are interested in the behavior of natural homomorphisms among the cyclotomic completions $R[q]^S$ for various R and S, and also those among the $R[q]^S$ and some other rings. First of all, if $g: R \to R'$ is a ring homomorphism, then for each $S \subset \mathbb{N}$ the homomorphism $g_S: R[q] \to R'[q]$, induced by g, induces a ring homomorphism $g_S: R[q]^S \to R'[q]^S$. If g is injective (resp. surjective), then so is g_S (see Lemma [3.1]).

More interesting homomorphisms among cyclotomic completions are induced by inclusions $S' \subset S \subset \mathbb{N}$. In this case, Φ_S^* is a directed subset of Φ_S^*, and hence $\text{id}_{R[q]}$ induces an R-algebra homomorphism

$$\rho_{S,S'}^R: R[q]^S \to R[q]^{S'}.$$

The rings $R[q]^S$ for $S \subset \mathbb{N}$ and the homomorphisms $\rho_{S,S'}^R$ form a presheaf of rings over the set \mathbb{N} with the discrete topology; i.e., we have $R[q]^0 = \{0\}$ and $\rho_{S,S''}^R = \rho_{S'',S'}^R \cdot \rho_{S,S''}^R$ if $S'' \subset S' \subset S \subset \mathbb{N}$.

We will state a sufficient condition for $\rho_{S,S'}^R$ to be injective using a certain graph defined on the set S. For each subset $S \subset \mathbb{N}$, let $\Gamma_R(S)$ denote the graph (with loop-edges) whose set of vertices is S, and in which two elements $n, n' \in S$ are adjacent if and only if either

1. $n = n'$,
2. n/n' is an integer power of a prime p such that R is p-adically separated, i.e., $\bigcap_{j \geq 0} p^j R = \{0\}$, or
3. $R = \{0\}$.

If either one of the above conditions holds, then we write $n \leftrightarrow_R n'$. For example, in $\Gamma_\mathbb{Z}(\mathbb{N})$ two vertices n, n' are adjacent if and only if n/n' is an integer power of a prime, and hence the graph $\Gamma_\mathbb{Z}(\mathbb{N})$ is connected; while the graph $\Gamma_\mathbb{Q}(\mathbb{N})$ is discrete, i.e., two distinct vertices are never adjacent. Theorem [4.2] states that if $S' \subset S \subset \mathbb{N}$ are subsets such that for any $n \in S$
there is a sequence $S' \ni n' \iff_R \cdots \iff_R n$ in S, then the homomorphism $\rho_{S,S'}^R$ is injective. A nonempty subset $S \subset \mathbb{N}$ is said to be \iff_R-connected if the graph $\Gamma_R(S)$ is connected. It follows that if $S \subset \mathbb{N}$ is \iff_R-connected, then for any nonempty subset $S' \subset S$ the homomorphism $\rho_{S,S'}^R$ is injective. In particular, since \mathbb{N} is $\iff\mathbb{Z}$-connected, for each $n \in \mathbb{N}$ the homomorphism

$$\rho_{\mathbb{N},\{n\}}^\mathbb{Z}: \mathbb{Z}[q]^\mathbb{N} \rightarrow \mathbb{Z}[q]^{\{n\}} (= \lim_{j \geq 0} \mathbb{Z}[q]/(\Phi_n(q)^j))$$

is injective.

If ζ is a primitive nth root of unity, then the homomorphism $\sigma_{\mathbb{N},\zeta}^\mathbb{Z}: \mathbb{Z}[q]^\mathbb{N} \rightarrow \mathbb{Z}[\zeta][[q - \zeta]],$

which is induced by the inclusion $\mathbb{Z}[q] \subset \mathbb{Z}[\zeta]_q$ and factors through $\rho_{\mathbb{N},\{n\}}^\mathbb{Z}$, is injective (Theorem 5.4). In other words, each element of $\mathbb{Z}[q]^\mathbb{N}$ is uniquely determined by its power series expansion in $q - \zeta$. In particular, the invariant $I(M)$ of an integral homology sphere M is completely determined by its expansion in $q - \zeta$ for one root ζ of unity, which in the case $\zeta = 1$ is the Ohtsuki series $[\bar{1}]$. Since $\mathbb{Z}[\zeta][[q - \zeta]]$ is an integral domain, it follows that so is $\mathbb{Z}[q]^\mathbb{N}$ (Corollary 5.3).

We are also interested in the homomorphism

$$\tau_{S,T}^R: R[q]^S \rightarrow P_T(R) = \prod_{n \in T} R[q]/(\Phi_n(q))$$

for $T \subset S \subset \mathbb{N}$, induced by the homomorphism $R[q] \rightarrow P_T(R), f(q) \mapsto (f(q) \mod (\Phi_n(q)))_{n \in T}$, where R is a subring of the field $\bar{\mathbb{Q}}$ of algebraic numbers. If S is \iff_R-connected, and for some $n \in S$ there are infinitely many elements $m \in T$ with $m \iff_R n$, then $\tau_{S,T}^R$ is injective (Theorem 6.1). In particular, if $T \subset \mathbb{N}$ contains infinitely many prime powers, then $\tau_{\mathbb{N},T}^R: \mathbb{Z}[q]^\mathbb{N} \rightarrow P_T(\mathbb{Z})$ is injective. Hence it follows that if Z is a set of roots of unity containing infinitely many elements of prime power order, then the homomorphism

$$\tau_{S,Z}^R: \mathbb{Z}[q]^S \rightarrow P_Z(\mathbb{Z}) = \prod_{\zeta \in Z} \mathbb{Z}[\zeta],$$

induced by $\mathbb{Z}[q] \rightarrow P_Z(\mathbb{Z}), f(q) \mapsto (f(\zeta))_{\zeta \in Z}$, is injective (Theorem 6.3). In other words, each element in $\mathbb{Z}[q]^\mathbb{N}$ is uniquely determined by its values at roots of unity in such a set Z. In particular, it follows that the invariant $I(M)$ of an integral homology sphere M is completely determined by the Witten-Reshetikhin-Turaev invariants $\tau_\zeta(M)$ with $\zeta \in Z$.

Recall that a holomorphic function defined in a region is determined either by the power series expansion at one point or by its values at any infinitely many points contained in a compact set in the region. The properties of $\mathbb{Z}[q]^\mathbb{N}$ described above may be interpreted that $\mathbb{Z}[q]^\mathbb{N}$ behaves like the ring of “holomorphic functions defined in the set of the roots of unity”. These properties are not as obvious as they might first appear; the ring $\bar{\mathbb{Q}}[q]^\mathbb{N}$, which
contains \(\mathbb{Z}[q]^N \) as a subring, is quite contrasting. We have an isomorphism
\[
\mathbb{Q}[q]^N \cong \prod_{n \in \mathbb{N}} \mathbb{Q}[q]^{\{n\}},
\]
see Section 7.3. It follows that \(\rho_{\mathbb{Q},\{n\}}^N \) for \(n \in \mathbb{N} \) and \(\tau_{\mathbb{Q},\mathbb{N}}^\mathbb{N} \) are not injective (but surjective), and that \(\mathbb{Q}[q]^\mathbb{N} \) is not an integral domain.

The results stated above are more or less generalized in the later sections.

The rest of the paper is organized as follows. In Section 2 we fix some notations. Section 3 deals with what we might call “monic completions” of \(R[q] \), which are generalizations of cyclotomic completions defined using monic polynomials instead of cyclotomic polynomials. In Section 4 we apply the results in Section 3 to cyclotomic completions, and study the conditions for the homomorphisms \(\rho_R^{R,S'} \) to be injective. In Section 5 we consider the power series expansion of the elements of \(R[q]^S \) in \(q - \zeta \) with \(\zeta \in R \) root of unity of order contained in \(S \). In Section 6 we study the homomorphisms \(\tau_{R,S,T}^R \) and \(\tau_{R,S,Z}^R \). In Section 7 we give some remarks.

2. Preliminaries

Throughout the paper, rings are unital and commutative, and homomorphisms of rings are unital. By “homomorphism” we will usually mean a ring homomorphism. Two rings that are considered to be canonically isomorphic to each other will often be identified. Also, if a ring \(R \) embeds into another ring \(R' \) in a natural way, we will often regard \(R \) as a subring of \(R' \).

If \(R \) is a ring and \(I \subseteq R \) is an ideal, then the \(I \)-adic completion of \(R \) will be denoted by
\[
R^I = \lim_{\leftarrow j} R/I^j,
\]
and if \(J \subseteq I \) is another ideal, then let
\[
\rho_{J,I}^R: R^J \to R^I
\]
denote the homomorphism induced by \(\text{id}_R \). These notation should not cause confusions with \(R[q]^S \) and \(\rho_{S,S'}^R \) defined in the introduction. We will further generalize these notations in the later sections. The ring \(R \) is said to be \(I \)-adically separated (resp. \(I \)-adically complete) if the natural homomorphism \(R \to R^I \) is injective (resp. an isomorphism). Recall that \(R \) is \(I \)-adically separated if and only if \(\bigcap_{j \geq 0} I^j = (0) \).

Let \(\mathbb{N} = \{1, 2, \ldots\} \) denote the set of positive integers. We regard \(\mathbb{N} \) as a directed set with respect to the divisibility relation \(| \). We will not use the letter \(\mathbb{N} \) for the same set \(\{1, 2, \ldots\} \) when it is considered as an ordered set with the usual order \(\leq \).

The letter \(q \) will always denote an indeterminate.
3. Monic completions of polynomial rings

3.1. Definitions and basic properties. For a ring R let \mathcal{M}_R denote the set of the monic polynomials in $R[q]$, which is a directed set with respect to the divisibility relation $|$. For a subset $M \subseteq \mathcal{M}_R$, let M^* denote the multiplicative set in $R[q]$ generated by M, which is a directed subset of \mathcal{M}_R. The principal ideals (f), $f \in M^*$, define a linear topology of the ring $R[q]$, and let

$$R[q]^M = \lim_{\substack{\longrightarrow \cr f \in M^*}} R[q]/(f)$$

denote the completion. (If $M = \{1\}$, then (4) implies $R[q]^{\{1\}} = R[q]/(1) = 0$, which notationally contradicts to the previous definition $R[q]^{\{1\}} = R[[q - 1]]$. In the rest of the paper, however, “$R[q]^{\{1\}}$ will always mean $R[[q - 1]]$.)

If $M' \subset M \subseteq \mathcal{M}_R$, then $(M')^*$ is a directed subset of M^*, and hence $\text{id}_{R[q]}$ induces a homomorphism

$$\rho_{M,M'}^R : R[q]^M \to R[q]^{M'}$$

We also extend the notation in the obvious way to $\rho_{M,I}^R : R[q]^M \to R[q]^I$ for $M \subseteq \mathcal{M}_R$ a subset and $I \subseteq R$ an ideal, etc., if it is well defined. (The general rule is that $\rho_{X,Y}^R : R[q]^X \to R[q]^Y$ is a homomorphism induced by $\text{id}_{R[q]}$.)

If $M \subseteq \mathcal{M}_R$ is finite, then the directed set M^* is cofinal to the sequence $(\prod M)^j$, $j \geq 0$. Hence $R[q]^M$ is naturally isomorphic to the $(\prod M)$-adic completion $R[q](\prod M)$ of $R[q]$. In particular, if $f \in \mathcal{M}_R$, then we have

$$R[q]^{\langle f \rangle} \simeq R[q]^{(f)} = \lim_{\substack{\longrightarrow \cr j}} R[q]/(f)^j.$$

If $M \subseteq \mathcal{M}_R$ is infinite, then $R[q]^M$ is not an ideal-adic completion in general, see for example Proposition 6.2.

If $M \subseteq \mathcal{M}_R$, then the rings $R[q]^{M'}$ for finite subsets M' of M and the natural homomorphisms $\rho_{M',M''}^R$ for finite M', M'' with $M'' \subset M' \subset M$ form an inverse system of rings, of which the inverse limit is naturally isomorphic to $R[q]^M$; i.e., we have

$$R[q]^M \simeq \lim_{\substack{\longrightarrow \cr M' \subseteq M, \ |M'| < \infty}} R[q]^{M'}.$$

Let $h : R \to R'$ be a ring homomorphism. Note that if h is injective (resp. surjective), then so is the induced homomorphism $h_q : R[q] \to R'[q]$.

Lemma 3.1. Let $h : R \to R'$ be a ring homomorphism and let $M \subseteq \mathcal{M}_R$ be at most countable. If h is injective (resp. surjective), then so is the homomorphism

$$h_M : R[q]^M \to R'[q]^{h(M)}$$

induced by h_q.

Similarly, we first show that if \(\rho \) is a homomorphism from some ideal \(I \) to \(M \), then \(\rho \) is cofinal to \(M \). Note that the sequence \(h(g_0)h(g_1) \cdots \) is cofinal to \(h(M^*) = h(M)^* \). Since each \(g_n \) is monic, each \(a \in R[q]^M \) is uniquely expressed as an infinite sum

\[
a = \sum_{n \geq 0} a_n g_n,
\]

where \(a_n \in R[q] \), \(\deg a_n < \deg g_{n+1} - \deg g_n \) for \(n \geq 0 \). From this presentation of elements of \(R[q]^M \), the result follows immediately. \(\square \)

3.2. Injectivity of the homomorphism \(\rho_{M,M}^R \)

Let \(R \) be a ring, \(I \subset R \) an ideal, and \(f, g \in M \). Let \(\sqrt{I} \) denote the radical of \(I \). We write \(f \not\supseteq_R g \), or simply \(f \not\Rightarrow g \), if \(f \in \sqrt{\langle g \rangle + I[q]} \), i.e., if \(f^m \in \langle g \rangle + I[q] \) for some \(m \geq 0 \).

For \(f, g \in M \), we write \(f \not\Rightarrow_R g \), or simply \(f \not\Rightarrow g \), if we have \(f \not\Rightarrow_R g \) for some ideal \(I \subset R \) with \(\bigcap_{j \geq 0} I^j = \{0\} \). Then \(\Rightarrow_R \) defines a relation on the set \(M \). Obviously, \(g|f \) implies \(f \Rightarrow g \). Note also that if \(f \Rightarrow g \), \(f|f' \), and \(g'|g \), then \(f' \Rightarrow g' \).

Proposition 3.2. Let \(R \) be a ring, and \(f, g \in M \) with \(f \Rightarrow_R g \). Then the homomorphism \(\rho_{(f,g),(f)}^R : R[q](f) \rightarrow R[q](f) \) is injective.

Proof. We first show that if \(f \not\Rightarrow g \) and \(R \) is \(I \)-adically complete, then \(\rho_{(f,g),(f)}^R \) is an isomorphism. Since \(R \simeq R^I \) and \(f \) is monic, we have

\[
R[q](f) \simeq R^I[q](f) = \lim_{\leftarrow i} (\lim_{\rightarrow j} R/I^j)[q]/(f^i) \\
\simeq \lim_{\leftarrow i} (\lim_{\rightarrow j} R[q]/((f^i) + I^j[q])) \simeq R[q](f + I[q]).
\]

Similarly, \(R[q](f,g) \simeq R[q](f,g) + I[q] \). Since \(f \not\Rightarrow g \), we have \(((f^m) + I[q]) \subset (f^m) + I[q] \subset (f,g) + I[q] \) for some \(m \geq 1 \), while we obviously have \((f,g) + I[q] \subset (f) + I[q] \). Hence the \(((f^m) + I[q]) \)-adic topology and the \(((f,g) + I[q]) \)-adic topology of \(R[q] \) are the same. Hence \(\rho_{(f,g),(f)}^R : R[q](f + I[q]) \rightarrow R[q](f) \) is an isomorphism.

Now consider the general case, where we have \(f \not\Rightarrow_R g \) and \(R \) is \(I \)-adically separated. We have a commutative diagram

\[
\begin{array}{ccc}
R[q](f,g) & \xrightarrow{\rho_{(f,g),(f)}^R} & R[q](f) \\
\downarrow & & \downarrow \\
R^I[q](f,g) & \xrightarrow{\rho_{(f,g),(f)}^R} & R^I[q](f)
\end{array}
\]
where vertical arrows are induced by the inclusion \(R \subset R' \), and hence are injective. Let \(\bar{I} \) denote the closure of \(I \) in \(R' \). Since \(R' \) is \(\bar{I} \)-adically complete and clearly \(f \overset{\bar{I}}{\to} R' g \), the above-proved case implies that \(\rho^{R'}_{(fg),t} \) is an isomorphism. Hence \(\rho^R_{(fg),t} \) is injective. \(\Box \)

For two subsets \(M, M' \subset M_{\bar{R}} \), we write \(M' \prec M \) if \(M' \subset M \) and for each \(f \in M \) there is a sequence \(M' \ni f_0 \Rightarrow f_1 \Rightarrow \cdots \Rightarrow f_r = f \) in \(M \).

Suppose that \(M_0 \prec M \subset M_{\bar{R}} \). Set

\[
\mathcal{F}(M, M_0) = \{ M' \subset M \mid M_0 \subset M', |M' \setminus M_0| < \infty \},
\]

and

\[
\mathcal{F}^\prec(M, M_0) = \{ M' \in \mathcal{F}(M, M_0) \mid M_0 \prec M' \} \subset \mathcal{F}(M, M_0).
\]

We will regard \(\mathcal{F}(M, M_0) \) as a directed set with respect to \(\subset \), and \(\mathcal{F}^\prec(M, M_0) \) as a partially-ordered subset of \(\mathcal{F}(M, M_0) \). Note that if \(M', M'' \in \mathcal{F}^\prec(M, M_0) \) and \(M'' \subset M' \), then we have \(M'' \prec M' \).

Lemma 3.3. If \(M_0 \prec M \subset M_{\bar{R}} \), then \(\mathcal{F}^\prec(M, M_0) \) is a cofinal directed subset of \(\mathcal{F}(M, M_0) \).

Proof. It suffices to show that if \(M' \in \mathcal{F}(M, M_0) \), then there is \(M'' \in \mathcal{F}^\prec(M, M_0) \) with \(M' \subset M'' \). For each \(g \in M' \setminus M_0 \) choose a sequence \(M_0 \ni g_0 \Rightarrow \cdots \Rightarrow g_r = g \) in \(M \) and set \(U_g = \{ g_1, \ldots, g_r \} \). Set \(M'' = M_0 \cup \bigcup_{g \in M' \setminus M_0} U_g \). Then we have \(M'' \in \mathcal{F}^\prec(M, M_0) \) and \(M' \subset M'' \). \(\Box \)

Theorem 3.4. If \(R \) is a ring and \(M_0 \prec M \subset M_{\bar{R}} \), then the homomorphism \(\rho^R_{M,M_0} : R[q]^M \to R[q]^{M_0} \) is injective.

Proof. By (3.3) and Lemma 3.3 we have

\[
R[q]^M \simeq \varprojlim_{M' \in \mathcal{F}(M, M_0)} R[q]^{M'} \simeq \varprojlim_{M' \in \mathcal{F}^\prec(M, M_0)} R[q]^{M'}.
\]

Hence it suffices to prove the theorem assuming that \(|M \setminus M_0| = 1 \). Let \(g \in M \setminus M_0 \) be the unique element.

First we assume that \(M_0 = \{ f_1, \ldots, f_n \} \ (n \geq 1) \) is finite. Set \(f = f_1 \cdots f_n \). Since \(f_i \Rightarrow g \) for some \(i \in \{ 1, \ldots, n \} \), we have \(f \Rightarrow g \). By Proposition 3.2, \(\rho^R_{(fg),t} \) is injective. Since \(R[q]^{M_0} = R[q]^{(f)} \) and \(R[q]^M = R[q]^{(fg)} \), it follows that \(\rho^R_{M,M_0} \) is injective.

Now assume that \(M_0 \) is infinite. Choose an element \(g_0 \in M_0 \) with \(g_0 \Rightarrow g \). We have \(R[q]^{M_0} \simeq \varprojlim_{U \in \mathcal{F}(M_0, \{ g_0 \})} R[q]^U \) and \(R[q]^M \simeq \varprojlim_{U \in \mathcal{F}(M_0, \{ g_0 \})} R[q]^{U \cup \{ g \}} \).

For each \(U \in \mathcal{F}(M_0, \{ g_0 \}) \) we have \(U \prec U \cup \{ g \} \). Hence it follows from the above-proved case that the homomorphism \(\rho^R_{U \cup \{ g \},U} : R[q]^{U \cup \{ g \}} \to R[q]^U \) is injective. Since \(\rho^R_{M,M_0} \) is the inverse limit of the \(\rho^R_{U \cup \{ g \},U} \) for \(U \in \mathcal{F}(M_0, \{ g_0 \}) \), it is injective. \(\Box \)
A subset $M \subseteq \mathcal{M}_R$ is said to be \Rightarrow^R-connected if M is not empty and for each $f, f' \in M$ there is a sequence $f = f_0 \Rightarrow_R f_1 \Rightarrow_R \cdots \Rightarrow_R f_r = f'$ ($r \geq 0$) in M. Note that if M is \Rightarrow^R-connected, then for any nonempty subset $M' \subseteq M$ we have $M' \prec M$. The following follows immediately from Theorem 3.4.

Corollary 3.5. If R is a ring, and $M \subseteq \mathcal{M}_R$ is a \Rightarrow^R-connected subset, then for any nonempty subset $M' \subset M$ the homomorphism $\rho^R_{M,M'}$: $R[q]^M \to R[q]^M'$ is injective.

4. Injectivity of $\rho^R_{S,S'}$

If R a ring, and $S \subset \mathbb{N}$ is a subset, then we have $R[q]^S = R[q]^S$. If $S' \subset S$, then we have

$$\rho^R_{S,S'} = \rho^R_{\Phi_S,\Phi_{S'}}: R[q]^S \to R[q]^S'.$$

We will use the following well-known properties of cyclotomic polynomials.

Lemma 4.1. (1) Let $n \in \mathbb{N}$, p a prime, and $e \geq 1$. Then we have

$$\Phi_{p^n}(q) \equiv \Phi_n(q)^d \pmod{(p)},$$

in $\mathbb{Z}[q]$, where $d = \deg \Phi_{p^n}(q)/\deg \Phi_n(q)$. (We have $d = (p - 1)p^{e-1}$ if $(n,p) = 1$ and $d = p^e$ if $p|n$.)

(2) If $m,n \in \mathbb{N}$, and $n/m \in \mathbb{Q}$ is not an integer power of a prime, then we have $(\Phi_n(q), \Phi_m(q)) = (1)$ in $\mathbb{Z}[q]$.

For $m,n \in \mathbb{N}$, we define $c_{m,n} \in \{0,1\} \cup \{p \mid p \text{ prime}\}$ by

1. $c_{n,n} = 0$,
2. $c_{m,n} = p$ if p is a prime and $n/m = p^j$ for some $j \in \mathbb{Z} \setminus \{0\}$, and
3. $c_{m,n} = 1$ if n/m is not an integer power of a prime.

Note that $c_{m,n} = c_{n,m}$ for all $m,n \in \mathbb{N}$. It is straightforward to see that $m \Rightarrow_R n$ if and only if R is $(c_{m,n})$-adically separated.

Lemma 4.3 implies that for each $m,n \in \mathbb{N}$ we have $\Phi_m(q) \in \sqrt{(\Phi_n(q), c_{m,n})}$ in $R[q]$, i.e., $\Phi_m(q) \Rightarrow^R \Phi_n(q)$. It follows that if $m \leftrightarrow_R n$, then we have $\Phi_m(q) \Rightarrow_R \Phi_n(q)$. Note also that if $S \subset \mathbb{N}$ is \leftrightarrow^R-connected, then Φ_S is \Rightarrow^R-connected. The following follows immediately from Theorem 3.4 and Corollary 3.5.

Theorem 4.2. Let R be a ring and let $S' \subset S \subset \mathbb{N}$. Suppose that each connected component of the graph $\Gamma_R(S)$ contains at least one vertex of $\Gamma_R(S')$. (In other words, for each element $n \in S$, there is a sequence $S' \ni n' \leftrightarrow_R \cdots \leftrightarrow_R n$ in S.) Then the homomorphism $\rho^R_{S,S'}$ is injective.

In particular, if $S \subset \mathbb{N}$ is \leftrightarrow^R-connected, then for any nonempty subset $S' \subset S$ the homomorphism $\rho^R_{S,S'}$: $R[q]^S \to R[q]^S'$ is injective. More particularly, for any nonempty subset $S' \subset \mathbb{N}$ the homomorphism $\rho^\mathbb{Z}_{S',S'}$: $\mathbb{Z}[q]^{S'} \to \mathbb{Z}[q]^{S'}$ is injective.
We remark that the special case of Theorem 4.2 where \(R = \mathbb{Z}, S = \mathbb{N}, \) and \(S' = \{1\} \) is obtained also by P. Vogel. Another proof of a special case of Theorem 4.2 is sketched in Remark 5.3.

For each \(n \in \mathbb{N} \) set \(\langle n \rangle = \{ m \in \mathbb{N} \mid m|n \} \). Since \(\prod_{n|n} \Phi_m(q) = q^n - 1 \), we have
\[
R[q]\langle n \rangle = R[q]^{(q^n-1)} = \lim_{j \to n} R[q]/(q^n - 1)^j.
\]

Note that the set \(\langle n \rangle \) is \(\iff \)-connected if and only if for each prime factor \(p \) of \(n \) the ring \(R \) is \(p \)-adically separated. A subset \(S \subset \mathbb{N} \) will be called \(R \)-admissible if \(S \) is a \(\iff \)-connected, directed subset of \(\mathbb{N} \) such that \(n \in S \) implies \(\langle n \rangle \subset S \). Note that a subset \(S \subset \mathbb{N} \) is finite and \(R \)-admissible if and only if there is \(n \in \mathbb{N} \) such that \(S = \langle n \rangle \) and \(R \) is \(p \)-adically separated for each prime factor \(p \) of \(n \). Note also that an \(R \)-admissible subset \(S \subset \mathbb{N} \) satisfies \(S = \bigcup_{n \in S} \langle n \rangle \), and hence we have \(R[q]^S \cong \lim_{\leftarrow n \in S} R[q]\langle n \rangle \). The following easily follows from Theorem 4.2.

Corollary 4.3. Let \(R \) be a ring, and let \(S \subset \mathbb{N} \) be \(R \)-admissible. Then for each \(m, n \in S \) with \(m|n \) the homomorphism \(\rho_{(n), (m)}^R : R[q]^{(n)} \to R[q]^{(m)} \) is injective. Hence \(R[q]^S \) can be regarded as the intersection \(\bigcap_{n \in S} R[q]\langle n \rangle \), where the \(R[q]^{(n)} \), \(n \in S \), are regarded as \(R \)-subalgebras of \(R[q]^{(1)} = R[[q-1]] \).

In particular, if \(m, n \in \mathbb{N} \) and \(m|n \), then \(\rho_{(n), (m)}^\mathbb{Z} : \mathbb{Z}[q]^{(n)} \to \mathbb{Z}[q]^{(m)} \) is injective. We have \(\mathbb{Z}[q]^\mathbb{N} = \bigcap_{n \in \mathbb{N}} \mathbb{Z}[q]\langle n \rangle \).

We will see in Proposition 7.7 that if \(m|n \) and \(m \neq n \), then \(\rho_{(n), (m)}^\mathbb{Z} \) is not surjective.

5. **Expansions at roots of unity**

For an integral domain \(R \) of characteristic 0 let \(Z^R \) denote the set of the roots of unity in \(R \). If \(S \subset \mathbb{N} \), then set \(Z^S_R = \{ \zeta \in Z^R \mid \text{ord} \zeta \in S \} \). For a subset \(Z \subset Z^R \) set
\[
R[q]^Z = R[q]^{M_Z},
\]
where \(M_Z = \{ q - \zeta \mid \zeta \in Z \} \subset \mathcal{M}_R \). If \(Z' \subset Z \), then set
\[
\rho_{Z, Z'}^R = \rho_{M_Z, M_{Z'}}^R : R[q]^Z \to R[q]^{Z'}.
\]
(Although we have \(1 \in Z \) and \(1 \in \mathbb{N} \), the notation \(R[q]^{\{1\}} \) is not ambiguous because 1 is the unique primitive 1st root of unity.)

For a subset \(Z \subset Z^R \) set \(N_Z = \{ \text{ord} \zeta \mid \zeta \in Z \} \), and in particular set \(N_R = N_{Z^R} \). If \(S \subset N_R \), then we have
\[
R[q]^S \cong R[q]^{Z^S_R}.
\]

Lemma 5.1. Let \(R \) be an integral domain of characteristic 0, and let \(\zeta, \zeta' \in Z^R \). Then the following conditions are equivalent.

1. \((q - \zeta) \Rightarrow_R (q - \zeta') \),
(2) R is $(\zeta - \zeta')$-adically separated,
(3) $\text{ord}(\zeta^{-1}\zeta')$ is a power of some prime p such that R is p-adically separated.

Proof. If (1) holds, then we have $(q - \zeta)^m \in (q - \zeta') + I[q]$ for some $m \geq 0$ and R is I-adically separated. It follows that $(\zeta' - \zeta)^m \in I$, and hence R is $(\zeta' - \zeta)$-adically separated. Hence we have (2).

The other implications (2) \Rightarrow (1) and (2) \Leftrightarrow (3) are straightforward. □

Let \Leftrightarrow_R denote the relation on Z^R such that for $\zeta, \zeta' \in Z^R$ we have $\zeta \Leftrightarrow_R \zeta'$ if and only if either one of the conditions in Lemma 5.1 holds. The following follows immediately from Corollary 3.4.

Theorem 5.2. Let R be an integral domain of characteristic 0 and let $Z \subset Z^R$ be an \Leftrightarrow_R-connected subset. Then for any nonempty subset $Z' \subset Z$ the homomorphism $\rho_{Z,Z'}^R : R[q]^Z \to R[q]^Z'$ is injective.

If $\zeta, \zeta' \in Z^R$, then $\zeta \Leftrightarrow_R \zeta'$ implies $\text{ord} \zeta \Leftrightarrow_R \text{ord} \zeta'$. (The converse, however, does not holds.) It follows that if $Z \subset Z^R$ is \Leftrightarrow_R-connected, then N_Z is \Leftrightarrow_R-connected.

Remark 5.3. We sketch below another proof using Theorem 5.2 of the special case of Theorem 1.2 where S is \Leftrightarrow_R-connected and R is an integral domain of characteristic 0 such that R is p-adically separated for any prime p. Let k be the quotient field of R and let \bar{k} be the algebraic closure of k. Let $\tilde{R} \subset \bar{k}$ be the R-subalgebra generated by the elements of $Z_S^\tilde{R}$. In view of Lemma 3.1, it suffices to see that $\rho_{S,S'}^\tilde{R}$ is injective. Since \Leftrightarrow_R-connectivity of S implies that of Z_S, the homomorphism $\rho_{S,S'}^\tilde{R}$ is injective by Theorem 5.2.

Theorem 5.4. Let R be an integral domain of characteristic 0, $S \subset N$ a \Leftrightarrow_R-connected subset, and $n \in S$. Assume that R is p-adically separated for each odd prime factor p of n, and also that if $4|n$, then R is 2-adically separated. Let ζ be a primitive nth root of unity, which may or may not be contained in R. Then the homomorphism

$$\sigma_{S,\zeta}^R : R[q]^S \to R[\zeta][q - \zeta]$$

induced by $R[q] \subset R[\zeta][q]$ is injective.

In particular, for any root ζ of unity the homomorphism $\sigma_{N,\zeta}^N : Z[q]^N \to Z[\zeta][q - \zeta]$ is injective.

Proof. The homomorphism $\sigma_{S,\zeta}^R$ is the composition of the following three homomorphisms

$$R[q]^S \xrightarrow{\rho_{S,(n)}^\tilde{R}} R[q]^{\{n\}} \xrightarrow{i} R[\zeta][q]^{\{n\}} \xrightarrow{\rho_{\{n\},(q-\zeta)}^R} R[\zeta][q - \zeta],$$

the first two arrows of which are injective by Theorem 1.2 and Lemma 3.1, respectively. Hence it suffices to prove that $\rho_{\{n\},(q-\zeta)}^R$ is injective. We may assume $\zeta \in R$, hence $R = R[\zeta].$
For each m with $m|n$, set $Z_m = Z_{m,n}^R = \{ \zeta \in Z^R : \text{ord}_m \zeta = m \}$. By $R[q]^{(n)} \simeq R[q]^n$ and Theorem [5.2], it suffices to prove that the set Z_n is \iff-connected. The case $n = 1$ is trivial, so we assume not. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be a factorization into prime powers, where p_1, \ldots, p_r are distinct primes and $e_1, \ldots, e_r \geq 1$. There is a bijection

$$Z_{p_1^{e_1}} \times \cdots \times Z_{p_r^{e_r}} \cong Z_n, \quad (\xi_1, \ldots, \xi_r) \mapsto \xi_1 \cdots \xi_r.$$

It suffices to show that if $(\xi_1, \ldots, \xi_r), (\xi_1', \ldots, \xi_r') \in Z_{p_1^{e_1}} \times \cdots \times Z_{p_r^{e_r}}$ satisfies $\xi_j = \xi_j'$ for all $j \in \{1, \ldots, r\} \setminus \{i\}$ and $\xi_i \neq \xi_i'$ for some i, then we have $\xi_1 \cdots \xi_r \iff \xi_1' \cdots \xi_r'$, which is equivalent to that $\xi_i \iff \xi_i'$. Since $Z_2 = \{-1\}$ contains only one element, the case $p_1 = 2$ and $e_1 = 1$ does not occur. We have $(\xi_i - \xi_i') \in \sqrt{(p_1)}$, and hence $\xi_i \iff \xi_i'$.

Corollary 5.5. Let R be an integral domain of characteristic 0, and $S \subset \mathbb{N}$ a \iff_R-connected subset. Suppose that there is $n \in S$ such that R is p-adically separated for each odd prime factor p of n, and if $4|n$, then R is also 2-adically separated. Then the ring $R[q]^S$ is an integral domain.

In particular, $Z[q]^S$ is an integral domain for any nonempty subset $S \subset \mathbb{N}$.

Proof. The result follows from Theorem 5.4 and the fact that the formal power series ring $R[\zeta][[q - \zeta]]$ is an integral domain. \qed

6. **VALUES AT ROOTS OF UNITY**

Theorem 6.1. Let R be a subring of the field $\overline{\mathbb{Q}}$ of algebraic numbers, $S \subset \mathbb{N}$ a \iff_R-connected subset, and $T \subset S$ a subset. Suppose that for some $n \in S$ there are infinitely many elements $m \in T$ with $m \iff_R n$. Then the homomorphism $\tau_{S,T}^R: R[q]^S \to P_T(R)$ is injective.

In particular, if R is a subring of the ring of algebraic integers, then, for any subset $T \subset \mathbb{N}$ containing infinitely many prime powers, $\tau_{S,T}^R: R[q]^S \to P_T(R)$ is injective.

Proof. Suppose for contradiction that there is a nonzero element $a \in R[q]^S$ with $\tau_{S,T}^R(a) = 0$. By Theorem [1.2], $\rho_{S,\{n\}}^R(a) \neq 0$. Hence we can write $\rho_{S,\{n\}}^R(a) = \sum_{j=1}^{\infty} a_j \Phi_n(q)^j$, where $l \geq 0$ and $a_j \in R[q]$ for $j \geq l$ with $a_j \not\in (\Phi_n(q))$. There are infinitely many elements $m_1, m_2, \ldots \in T$ with $m_i \iff_R n$ and n/m_i. For each i, m_i/n is a power of a prime p_i such that R is p_i-adically separated. It follows from $\tau_{S,T}^R(a) = 0$ that $\Phi_{m_i}(q)^{a_i}$ in $R[q]^S$ for each i. Since R is an integral domain of characteristic 0, we can show by induction that $\Phi_{m_1}(q) \cdots \Phi_{m_k}(q)a$ in $R[q]^S$ for each $k \geq 0$, and hence we have $\Phi_{m_1}(q) \cdots \Phi_{m_k}(q)|\rho_{S,\{n\}}^R(a)$ in $R[q]^S$. By (3) we have $\Phi_{m_i}(q) \in (p_i, \Phi_n(q))$ for each i. Hence we have $\Phi_{m_1}(q) \cdots \Phi_{m_k}(q) \in (p_1 \cdots p_k, \Phi_n(q))$. In other words, for each $k \geq 0$, $a_i = a_i \text{ mod } (\Phi_n(q)) \in R[q]/(\Phi_n(q))$ is divisible by $p_1 \cdots p_k$. Note that $R[q]/(\Phi_n(q)) = R \oplus Rq \oplus \cdots \oplus Rq^{d-1}$ with $d = \deg \Phi_n(q)$, and a_i is expressed as a polynomial in q of degree $< d$, each coefficient of which is divisible by $p_1 \cdots p_k$ in R for $k \geq 0$. \qed
Since \(R \) is a subring of \(\mathbb{Q} \) and each \(p_i \) is a non-unit in \(R \), it follows that the coefficients of \(\bar{a}_i \) are zero. Consequently, we have \(a_i \in (\Phi_n(q)) \).

Proposition 6.2. Let \(R \) be a subring of \(\mathbb{Q} \), and \(S \subset \mathbb{N} \) an infinite subset. Then the completion \(R[q]^S \) of \(R[q] \) is not an ideal-adic completion, i.e., there is no ideal \(I \) in \(R[q] \) such that \(R \) is the direct product of the injective homomorphisms defined by \(\bar{a} \). Then \(\bar{a} \) is injective.

Proof. Let \(I \subset R[q] \) be a nonzero ideal, and \(f(q) \in I \) a nonzero element. Then there are only finitely many elements \(n \in S \) with \(\Phi_n(q) | f(q) \). For each \(n \in R \), the power \(f(q)^j \) for \(j \geq 1 \) is divisible by \(\Phi_n(q) \) if and only if \(f(q) \) is divisible by \(\Phi_n(q) \). It follows that \(f(q)^j \) does not converge to 0 as \(j \to 0 \) in \(R[q] \) with the topology defining the completion \(R[q]^S \). Hence we have \(R[q]^S \nless \lim_{\to} R[q]/P \).

Let \(R \) be a subring of \(\mathbb{Q} \), and let \(Z \subset Z^Q \) be a subset. Set \(P_Z(R) = \prod_{\zeta \in Z} R[\zeta] \), which generalizes the definition of \(P_Z(\mathbb{Z}) \). If \(S \subset \mathbb{N} \) is a subset and \(Z \subset Z^Q_S \), then let

\[
\tau_{S,Z}^R : R[q]^S \to P_Z(R)
\]

denote the homomorphism induced by \(R[q] \to P_Z(R) \), \(f(q) \mapsto (f(\zeta))_{\zeta \in Z} \).

Theorem 6.3. Let \(R \) be a subring of \(\mathbb{Q} \), and let \(S \subset \mathbb{N} \) and \(Z \subset Z^Q \) be subsets. Suppose that there is an element \(n \in S \) such that for infinitely many \(\zeta \in Z \) we have \(\text{ord} \zeta \nless_R n \). Then the homomorphism \(\tau_{S,Z}^R : R[q]^S \to P_Z(R) \) is injective.

In particular, if \(R \) is a subring of the ring of algebraic integers, and \(Z \subset Z^Q \) is a subset containing infinitely many elements of prime power orders, then \(\tau_{S,Z}^R : R[q]^S \to P_Z(R) \) is injective.

Proof. Set \(N_Z = \{ \text{ord} \zeta | \zeta \in Z \} \subset \mathbb{N} \). Let \(\gamma : P_{N_Z}(R) \to P_Z(R) \) be the homomorphism defined by \(\gamma((f_n(q))_{n \in N_Z}) = (f_{n,\zeta}(\zeta))_{\zeta \in Z} \). Since \(\gamma \) is the direct product of the injective homomorphisms \(R[q]/(\Phi_n(q)) \to \prod_{\zeta \in Z \text{ord} \zeta = n} R[\zeta], f(q) \mapsto (f(\zeta))_{\zeta} \), it follows that \(\gamma \) is injective. We have \(\tau_{S,Z}^R = \gamma \tau_{S,N_Z}^R \), where \(\tau_{S,N_Z}^R : R[q]^S \to P_{N_Z}(R) \) is injective by Theorem 6.1. Hence \(\tau_{S,Z}^R \) is injective.

Conjecture 6.4. For any infinite subset \(Z \subset Z^Q \), the homomorphism \(\tau_{N,Z}^R : \mathbb{Z}[q]^N \to P_Z(\mathbb{Z}) \) is injective.

If \(Z' \subset Z \subset Z^R \), then we have a homomorphism \(\tau_{Z,Z'}^R : R[q]^{Z'} \to P_Z(R) \), induced by \(R[q] \to P_Z(R), f(q) \mapsto (f(\zeta))_{\zeta} \).
Theorem 6.5. Let R be a subring of \mathbb{Q}, let $Z \subset Z^R$ a \leftrightarrow_R-connected subset, and let $Z' \subset Z$. Suppose that for some $\zeta \in Z$ there are infinitely many elements $\xi \in Z'$ with $\xi \leftrightarrow_R \zeta$. Then the homomorphism $\tau_{Z,Z'}^R: R[q]^Z \to P_{Z'}(R)$ is injective.

Proof. The proof is similar to that of Theorem 6.1 with the cyclotomic polynomials replaced with the polynomials $q - \zeta$ with ζ a roots of unity. The details are left to the reader. \hfill \Box

7. Remarks

7.1. Units in $\mathbb{Z}[q]^S$. If R is a ring and $S \subset M_R$ is a subset consisting of monic polynomials with the constant terms being units in R, then the element q is invertible in $R[q]^S$. In particular, we have an explicit formula for $q^{-1} \in R[q]^N$ as follows.

Proposition 7.1. For any ring R the element $q \in R[q]^N$ is invertible with the inverse

$$q^{-1} = \sum_{n \geq 0} q^n(q)_n.$$

Proof. $q \sum_{n \geq 0} n(q)_n = \sum_{n \geq 0} q^{n+1}(q)_n = \sum_{n \geq 0}(1 - (1 - q^{n+1}))q_n = \sum_{n \geq 0}((q)_n - (q)_{n+1}) = (q)_0 = 1$. \hfill \Box

For each subset $S \subset \mathbb{N}$ the inclusion $\mathbb{Z}[q] \subset \mathbb{Z}[q,q^{-1}]$ induces an isomorphism

$$\mathbb{Z}[q]^S \simeq \lim_{\mathcal{F} \in \Phi_S^*} \mathbb{Z}[q,q^{-1}]/(\mathcal{F}),$$

via which we will identify these two rings. If $S \neq \emptyset$, then, since $\bigcap_{f \in \Phi_S} (f) = (0)$ in $\mathbb{Z}[q,q^{-1}]$, the natural homomorphism $\mathbb{Z}[q,q^{-1}] \to \mathbb{Z}[q]^S$ is injective and regarded as inclusion.

For a ring R let $U(R)$ denote the (multiplicative) group of the units in R. If $S \neq \emptyset$, then we have

$$U(\mathbb{Z}[q,q^{-1}]) \subset U(\mathbb{Z}[q]^N).$$

It is well known that $U(\mathbb{Z}[q,q^{-1}]) = \{\pm q^i \mid i \in \mathbb{Z}\}$. If we regard $\mathbb{Z}[q]^N$ and the $\mathbb{Z}[q]^{(n)}$ as subrings of $\mathbb{Z}[q]^{(1)} = \mathbb{Z}[q - 1]$ as in Corollary 4.3, then we have

$$U(\mathbb{Z}[q]^N) = \bigcap_{n \in \mathbb{N}} U(\mathbb{Z}[q]^{(n)}).$$

Conjecture 7.2. We have $U(\mathbb{Z}[q]^N) = \{\pm q^i \mid i \in \mathbb{Z}\}$.

Remark 7.3. One might expect that Conjecture 7.2 would generalize to any infinite, \mathbb{Z}-admissible subset $S \subset \mathbb{N}$, but this is not the case. For odd $m \geq 3$ consider the element $\gamma_m = \sum_{i=0}^{m-1}(-1)^iq^i \in \mathbb{Z}[q]$, which is known to define a unit in the ring $\mathbb{Z}[q]/(q^n - 1)$ with $(n,2m) = 1$ and is called an “alternating unit”, see [11]. For such n, it follows that there are $u,v \in \mathbb{Z}[q]$ such that
\[\gamma_m u = 1 + v \Phi_n(q) \]. Since \(1 + v \Phi_n(q) \) is a unit in \(\mathbb{Z}[q]^{(n)} \), it follows that \(\gamma_m \) is a unit in \(\mathbb{Z}[q]^{(n)} \). Set \(S = \{ n \in \mathbb{N} \mid (n, 2m) = 1 \} \). Then it is straightforward to check that \(\gamma_m \) defines a unit in \(\mathbb{Z}[q]^S \) (hence also in \(\mathbb{Z}[q]^{S'} \) for any \(S' \subset S \)). Consequently, we have \(U(\mathbb{Z}[q]^S) \subseteq \{ \pm q^i \mid i \in \mathbb{Z} \} \).

7.2. A localization of \(\mathbb{Z}[q]^N \)

In some application \[\mathbb{Z}[q]^N \] will be natural to consider the following type of localization of \(\mathbb{Z}[q]^N \). Recall from Proposition 7.3 that \(\mathbb{Z}[q]^N \) is an integral domain. Let \(Q(\mathbb{Z}[q]^N) \) denote the quotient field of \(\mathbb{Z}[q]^N \). We will consider the the \(\mathbb{Z}[q]^N \)-subalgebra \(\mathbb{Z}[q]^N[\Phi^{-1}_N] \) of \(Q(\mathbb{Z}[q]^N) \) generated by the elements \(\Phi_n(q)^{-1} \) for \(n \in \mathbb{N} \). Alternatively, \(\mathbb{Z}[q]^N[\Phi^{-1}_N] \) may be defined as the subring of \(Q(\mathbb{Z}[q]^N) \) consisting of the fractions \(f(q)/g(q) \) with \(f(q) \in \mathbb{Z}[q]^N \) and \(g(q) \in \Phi_N^* \). Similarly, let \(\mathbb{Z}[q,q^{-1}][\Phi^{-1}_N] \) denote the \(\mathbb{Z}[q,q^{-1}] \)-subalgebra of the quotient field \(Q(q)(\subset Q(\mathbb{Z}[q]^N)) \) of \(\mathbb{Z}[q,q^{-1}] \) generated by the elements \(\Phi_n(q)^{-1} \) for \(n \in \mathbb{N} \), which may alternatively defined as the subring of \(Q(q) \) consisting of the fractions \(f(q)/g(q) \) with \(f(q) \in \mathbb{Z}[q,q^{-1}] \) and \(g(q) \in \Phi_N^* \).

Proposition 7.4. We have \(\mathbb{Z}[q]^N[\Phi^{-1}_N] = \mathbb{Z}[q]^N + \mathbb{Z}[q,q^{-1}][\Phi^{-1}_N] \).

Proof. The inclusion \(\supset \) is obvious; we will show the other inclusion. Since

\[
\mathbb{Z}[q]^N[\Phi^{-1}_N] = \bigcup_{f(q) \in \Phi_N^*} \frac{1}{f(q)} \mathbb{Z}[q]^N,
\]

it suffices to show that for each \(f(q) \in \Phi_N^* \) we have

\[
\frac{1}{f(q)} \mathbb{Z}[q]^N \subset \mathbb{Z}[q]^N + \frac{1}{f(q)} \mathbb{Z}[q,q^{-1}].
\]

By multiplying \(f(q) \), we need show that

\[
\mathbb{Z}[q]^N \subset f(q)^2 \mathbb{Z}[q]^N + \mathbb{Z}[q,q^{-1}],
\]

which follows from \(\mathbb{Z}[q]^N \simeq \lim_{\rightarrow_{g(q) \in \Phi_N^*}} \mathbb{Z}[q,q^{-1}]/(f(q)g(q)) \). \(\square \)

Proposition 7.5. We have

\[\mathbb{Z}[q]^N \cap \mathbb{Z}[q,q^{-1}][\Phi^{-1}_N] = \mathbb{Z}[q,q^{-1}] \).

Proof. The inclusion \(\supset \) is obvious; we will show the other inclusion. Suppose that \(f(q) = g(q)/h(q) \in \mathbb{Z}[q]^N \cap \mathbb{Z}[q,q^{-1}][\Phi^{-1}_N] \), where \(g(q) \in \mathbb{Z}[q,q^{-1}] \) and \(h(q) \in \Phi_N^* \) and \(g(q) \) and \(h(q) \) are coprime. We will show that \(f(q) \in \mathbb{Z}[q,q^{-1}] \), i.e., \(h(q)g(q) \) in \(\mathbb{Z}[q,q^{-1}] \). Assume for contradiction that \(h(q) \neq 1 \). Choose \(n \in \mathbb{N} \) such that \(\Phi_n(q)^h(q) \). We have \(g(q) = f(q)h(q) \). Since \(\Phi_n(q)^h(q) \), we have \(\Phi_n(q)^g(q) \), which is a contradiction. Hence we have \(h(q) = 1 \), and we obviously have \(h(q)g(q) \). \(\square \)
7.3. Modules. We can define cyclotomic completions also for any \(\mathbb{Z} \)-modules as follows. Let \(A \) be a \(\mathbb{Z} \)-module, and let \(A[q] \) denote the \(\mathbb{Z}[q] \)-module of polynomials in \(q \) with coefficients in \(A \). For each \(S \subset \mathbb{N} \) let \(A[q]^S \) denote the completion

\[
A[q]^S = \lim_{f \in \Phi_S} A[q]/fA[q].
\]

If \(A \) is a ring, then this definition of \(A[q]^S \) is compatible with the previous one. Some results in the present paper can be generalized to the \(A[q]^S \).

For example, Theorem 4.2 is generalized as follows. Let \(\iff_A \) denote the relation on \(\mathbb{N} \) such that \(m \iff_A n \) if and only if either we have \(A = 0 \), or \(m/n \) is an integer power of a prime \(p \) with \(A \) being \(p \)-adically separated.

Theorem 7.6. Let \(A \) be a \(\mathbb{Z} \)-module, and let \(S' \subset S \subset \mathbb{N} \) be subsets. Suppose that for each \(n \in S \) there is a sequence \(S' \ni n' \iff_A \cdots \iff_A n \) in \(S \). Then the homomorphism \(\rho_{S,S'}^A : A[q]^S \to A[q]^{S'} \) induced by \(\id_{A[q]} \) is injective.

Proof. One way to prove Theorem 7.6 is to modify Section 3 and the proof of Theorem 4.2. We roughly sketch the necessary modifications. Section 3 is generalized as follows. For two elements \(f, g \in M_R \) and an \(R \)-module, we write \(f \Rightarrow_A g \) if \(f \Rightarrow_A g \) for some ideal \(I \) with \(A \) being \(I \)-adically separated. Then Proposition 3.2 with \(R \) replaced with an \(R \)-module \(A \) holds. Generalizations of Theorem 3.4 and Corollary 3.5 to \(R \)-modules is straightforward. Theorem 7.6 follows immediately from the generalized version of Corollary 3.4.

Alternatively, we can use Theorem 4.2 as follows. Since the case \(A = 0 \) is trivial, we assume not. Let \(A' = \mathbb{Z} \oplus A \) be the ring with the multiplication \((m,a)(n,b) = (mn,mb+na) \) and with the unit \((1,0) \). Then for \(m, n \in \mathbb{N} \) we have \(m \iff_A n \) if and only if \(m \iff_{A'} n \). Hence we can apply Theorem 4.2 to obtain the injectivity of \(\rho_{S,S'}^{A'} \). We can identify \(\rho_{S,S'}^{A'} \) with the direct product

\[
\rho_{S,S'}^Z \oplus \rho_{S,S'}^A : \mathbb{Z}[q]^S \oplus A[q]^S \to \mathbb{Z}[q]^{S'} \oplus A[q]^{S'}.
\]

Hence \(\rho_{S,S'}^A \) is injective. \(\Box \)

7.4. Non-surjectivity of \(\rho_{\mathbb{N},\{n\}}^Z \).

Proposition 7.7.

(1) If \(m, n \in \mathbb{N} \), \(m \iff \mathbb{Z} n \), and \(m \not\equiv n \), then the homomorphism \(\rho_{\{m,n\},\{m\}}^Z : \mathbb{Z}[q]^{\{m,n\}} \to \mathbb{Z}[q]^{\{m\}} \) is not surjective.

(2) If \(m|n \) and \(m \not\equiv n \), then the homomorphism \(\rho_{\{n\},\{m\}}^Z : \mathbb{Z}[q]^{\{n\}} \to \mathbb{Z}[q]^{\{m\}} \) is not surjective.

(3) For each nonempty, finite subset \(S \subset \mathbb{N} \), the homomorphism \(\rho_{\mathbb{N},S}^Z : \mathbb{Z}[q]^\mathbb{N} \to \mathbb{Z}[q]^S \) is not surjective.
Proof. (1) We have $m/n = p^e$ for some prime p and an integer $e \neq 0$. Consider the following commutative diagram of natural homomorphisms.

$$
\begin{array}{ccc}
\mathbb{Z}[q]^{\{m,n\}} & \xrightarrow{\rho^{Z_{\{m,n\}}}} & \mathbb{Z}[q]^{\{m\}} \\
\downarrow & & \downarrow b \\
\mathbb{Z}[q]/(\Phi_n(q)) & \xrightarrow{c} & \mathbb{Z}_p[q]/(\Phi_n(q))
\end{array}
$$

It follows from $\mathbb{Z}_p[q]/(\Phi_n(q)) \simeq \varprojlim q^m z^m$, $\mathbb{Z}[q]/(\Phi_n(q), q^i)$, $\Phi_n(q) \in \sqrt{(\Phi_n(q), p)}$, and $p \in (\Phi_m(q), \Phi_n(q))$ that b is a well-defined, surjective homomorphism. Since c is not surjective, $\rho^{Z_{\{m,n\}}}$ is not surjective.

(2) We may assume that $n = pm$ for a prime p. The case $m = 1$ is contained in (1) above. There are isomorphisms $\mathbb{Z}[q]^{\langle m \rangle} \simeq \mathbb{Z}[q^m]^\langle 1 \rangle \otimes_{\mathbb{Z}[q^m]} \mathbb{Z}[q]$ and $\mathbb{Z}[q]^{\langle pm \rangle} \simeq \mathbb{Z}[q^m]^\langle p \rangle \otimes_{\mathbb{Z}[q^m]} \mathbb{Z}[q]$ induced by the isomorphism $\mathbb{Z}[q] \simeq \mathbb{Z}[q^m] \otimes_{\mathbb{Z}[q^m]} \mathbb{Z}[q]$. Then the case $m = 1$ implies the non-surjectivity of $\rho^{Z_{\{m,n\}}}$.

(3) This follows from (2) above, since $\rho^{Z_{\{n\}}}$ factors through $\rho^{Z_{\{n\},\langle m \rangle}}$ for some n, m with m/n and $m \neq n$.

\[\square\]

7.5. The ring $\mathbb{Q}[q]^S$. The structure of $\mathbb{Q}[q]^S$ for $S \subseteq \mathbb{N}$ is quite contrasting to that of $\mathbb{Z}[q]^S$. Note that $\mathbb{Z}[q]^S$ embeds into $\mathbb{Q}[q]^S$ by Lemma 3.1. (The following remarks holds if we replace \mathbb{Q} with any ring R such that each element of S is a unit in R.)

Note that if $m, n \in S, m \neq n$, then $\langle \Phi_m(q)^i, \Phi_n(q)^j \rangle = (1)$ in $\mathbb{Z}[q]$ for any $i, j \geq 0$. Consequently, for each $f(q) = \prod_{n \in S} \Phi_n(q)^{\lambda(n)} \in \Phi_S^*$ with $\lambda(n) \geq 0$ we have by the Chinese Remainder Theorem

$$
\mathbb{Q}[q]/(f(q)) \simeq \prod_{n \in S} \mathbb{Q}[q]/(\Phi_n(q)^{\lambda(n)}).
$$

Taking the inverse limit, we obtain an isomorphism

$$
\mathbb{Q}[q]^S \xrightarrow{\sim} \prod_{n \in S} \mathbb{Q}[q]^{\langle n \rangle}.
$$

Since each $\mathbb{Q}[q]^{\langle n \rangle}$ is not zero, it follows that $\mathbb{Q}[q]^S$ is not an integral domain if $|S| > 1$. It also follows that $\rho^{Q_{S/\emptyset}}: \mathbb{Q}[q]^S \to \mathbb{Q}[q]^{S'}$ is not injective (but surjective) for each $S' \subseteq S$. Since for each $n \in S$ the (surjective) homomorphism $\mathbb{Q}[q]^{\langle n \rangle} \to \mathbb{Q}[q]/(\Phi_n(q))$ is not injective, the homomorphism $\tau^{Q_{S/\emptyset}}: \mathbb{Q}[q]^S \to \mathbb{Q}[q]/(\Phi_n(q))$ is not injective.

\textbf{References}

[1] K. Habiro, \textit{On the quantum sl$_2$ invariant of knots and integral homology spheres}, preprint.

[2] in preparation.

[3] R. J. Lawrence, \textit{Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds}, J. Math. Phys. 36 (1995), no. 11, 6106–6129.
[4] and D. Zagier, *Modular forms and quantum invariants of 3-manifolds*, Asian J. Math. 3 (1999), no. 1, 93–107.

[5] T. T. Q. Le, *Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion*, preprint. [math.QA/0004099](http://arxiv.org/abs/math.QA/0004099).

[6] H. Murakami, *Quantum SU(2)-invariants dominate Casson’s SU(2)-invariant*, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 253–281.

[7] T. Ohtsuki, *A polynomial invariant of integral homology 3-spheres*, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 83–112.

[8] (ed.), *Problems on invariants of knots and 3-manifolds*, preprint, available at http://www.ms.u-tokyo.ac.jp/~tomotada/proj01.

[9] N. Reshetikhin and V. G. Turaev, *Invariants of 3-manifolds via link polynomials and quantum groups*, Invent. Math. 103 (1991), no. 3, 547–597.

[10] L. Rozansky, *On p-adic properties of the Witten-Reshetikhin-Turaev invariant*, preprint. [math.QA/9806075](http://arxiv.org/abs/math.QA/9806075).

[11] S. K. Sehgal, “Units in integral group rings”, Pitman Monogr. Surveys Pure Appl. Math., Longman, Essex, 1993.

[12] E. Witten, *Quantum field theory and the Jones polynomial*, Comm. Math. Phys. 121 (1989), no. 3, 351–399.

[13] D. Zagier, *Vassiliev invariants and a strange identity related to the Dedekind eta-function*, Topology 40 (2001), no. 5, 945–960.