Stability of frozen waves in the Modified Cahn–Hilliard model

E.S. Benilov†, W.T. Lee‡ and R.O. Sedakov‡
(Dated: February 6, 2014)

We examine the existence and stability of frozen waves in diblock copolymers with local conservation of the order parameter, which are described by the modified Cahn–Hilliard model. It is shown that a range of stable waves exists and each can emerge from a ‘general’ initial condition (not only the one with the lowest density of free energy). We discuss the implications of these results for the use of block copolymers in templating nanostructures.

PACS numbers: 64.70.km, 81.07.-b, 82.35.Jk

I. INTRODUCTION

The Cahn–Hilliard equation (1) is often used to model microstructures arising from spinodal decomposition in, say, polymer mixtures. One of the simplest systems exhibiting this behavior would be a mixture of two polymers made from monomers, A and B, with distinct chemical properties – e.g., if A is hydrophilic whereas B is hydrophobic. In such cases, a monomer unit is attracted to units of the same type, while being repelled by the other type, implying that the most energetically favorable state is the one where A and B units are fully segregated. Such a tendency is indeed confirmed by numerical modelling of the Cahn–Hilliard equation (2) and is also in agreement with stability analysis of similar models (3).

One feature of the Cahn–Hilliard model is that the order parameter is conserved globally (reflecting the mass conservation law). The standard model, however, can be modified for microstructures where the order parameter is conserved locally (4). The modified model applies, for example, if chains of the A and B monomers are parts of the same polymer molecule, known as a ‘block copolymer’ (5), in which case they can never be separated by a distance larger than the size of a single molecule.

Systems with locally conserved order parameter are of particular interest in nanotechnology. In particular, block copolymers are used to template nanopatterns at surfaces, on scales that are too small for traditional top-down photolithography (6). Such patterns have to be chemically etched away and the remaining polymer used as an etch mask to facilitate pattern transfer to the substrate, creating nanowires on a scale too fine to be manufactured by conventional techniques (3, 10).

The lamellae used to template the nanowires correspond to frozen waves (i.e. periodic time-independent solutions) of the one-dimensional version of the modified Cahn–Hilliard equation. It is particularly important whether these solutions are unique or perhaps multiple stable solutions exist, as the latter would impede one’s control over the manufacturing process.

The present paper answers the above question by examining the existence and stability of frozen waves in the modified Cahn–Hilliard equation. In Sect. II we shall formulate the problem mathematically. In Sect. III the existence of frozen-wave solutions will be discussed. In Sect. IV we shall present the results of a stability analysis of frozen waves.

II. FORMULATION

Consider a one-dimensional diblock polymer, with the characteristic thickness l of the A/B interface and mobility M (the latter characterizes the diffusion of the order parameter φ). Using l and l²/M to non-dimensionalize the spatial coordinate x and time t respectively, we can write the one-dimensional version of the modified Cahn–Hilliard equation (MCHE) in the form

\[\phi_t + (\phi - \phi^3 + \phi_{xx})_{xx} + \alpha \phi = 0, \]

(1)

where \(\alpha \) determines the ratio of the characteristic size of the region over which the order parameter is conserved to \(l \).

As shown in Ref. [11], the MCHE admits frozen waves only if

\[0 \leq \alpha < \frac{1}{4}, \]

whereas the wavelength (spatial period) \(\lambda \) must satisfy

\[\frac{2\pi}{\sqrt{\frac{1}{2} (1 + \sqrt{1 - 4\alpha})}} < \lambda < \frac{2\pi}{\sqrt{\frac{1}{2} (1 - \sqrt{1 - 4\alpha})}} \]

(2)

(see Fig. 1). Ref. [11] also computed examples of frozen waves and the energy density \(E \) as a function of a frozen
where \(\tilde{\phi} \) describes a small disturbance. Substituting (5) into Eq. (1) and linearizing it, we obtain

\[
\tilde{\phi}_t + \left(\tilde{\phi} - 3\tilde{\phi}^2 + \tilde{\phi}_{xx} \right)_{xx} + \alpha \tilde{\phi} = 0. \quad (6)
\]

We confine ourselves to disturbances with exponential dependence on \(t \) (which are usually a reliable indicator of stability in general),

\[
\tilde{\phi}(x,t) = \psi(x) e^{st}, \quad (7)
\]

where \(s \) is the disturbance’s growth/decay rate. Substitution of (7) into (6) yields

\[
s\psi + (\psi - 3\tilde{\psi}^2 \psi + \psi_{xx})_{xx} + \alpha \psi = 0. \quad (8)
\]

Unlike the base wave \(\tilde{\phi} \), the disturbance \(\psi \) does not have to be periodic; it is sufficient that the latter is bounded at infinity. Given that \(\psi \) is determined by an ordinary differential equation with periodic coefficients [Eq. (8)], the assumption of boundedness amounts to the standard Floquet condition,

\[
\psi(x + \lambda) = \psi(x) e^{i\theta}, \quad (9)
\]

where \(\theta \) is a real constant. Physically, condition (9) implies that, if the disturbance propagates by one wavelength of the base solution, the disturbance’s amplitude remains the same, whereas its phase may change by a value of \(\theta \).

Eqs. (8)–(9) form an eigenvalue problem, where \(s \) and \(\psi \) are the eigenvalue and the eigenfunction. If, for some values of the phase shift \(\theta \), one or more eigenvalues exist such that \(\text{Re} s > 0 \), the corresponding base wave \(\tilde{\phi}(x) \) is unstable.

III. FROZEN WAVE SOLUTIONS

It turns out that a lot of physically meaningful information about frozen waves can be obtained in the limit of weak nonlinearity, i.e. under the assumption

\[
|\tilde{\phi}| \ll 1.
\]

In order to understand qualitatively what to expect in this case, one can simply omit the nonlinear term in Eq. (2) and seek a solution of the resulting linear equation in the form

\[
\tilde{\phi} = \varepsilon \cos (kx + p), \quad (10)
\]

where the wave’s amplitude \(\varepsilon \) and phase \(p \) are arbitrary, whereas the wavenumber \(k \) satisfies

\[
- k^2 \left(1 - k^2 \right) + \alpha = 0. \quad (11)
\]

Assuming \(k > 0 \) and recalling the relationship between the wavelength and the wavevector,

\[
\lambda = \frac{2\pi}{k}, \quad (12)
\]

one can see that, in the linear approximation, only two wavelengths are allowed – coincidentally, the same values which represent the upper and lower boundaries of the existence region (2), shown in Fig. 1). Under the weakly nonlinear approximation, in turn, one should expect the wavelength to be close, but not necessarily equal, to one of the above two values, with a deviation from them proportional to some degree of the wave’s amplitude \(\varepsilon \). Solutions similar to (10) are the ones computed in Ref. [11]; they will be referred to as ‘one-wave solutions’.

![Diagram showing the existence region of frozen waves](image-url)
Two-wave solutions exist only for those values of \(\alpha \) for which \(\lambda_2/\lambda_1 \) is a rational number (presented in the figure above the corresponding \(\lambda_2 \)). The wavelength of a two-wave solution as a whole equals the lowest common multiple of \(\lambda_1 \) and \(\lambda_2 \).

To understand the physical meaning of two-wave solutions, seek a solution of the linearized version of Eq. (3) in the form

\[
\tilde{\phi} = \varepsilon_1 \cos (k_1 x + p_1) + \varepsilon_2 \cos (k_2 x + p_2), \tag{13}
\]

where \(\varepsilon_{1,2} \) and \(p_{1,2} \) are arbitrary and \(k_{1,2} \) are the roots of Eq. (11) such that

\[
0 < k_1 < k_2. \tag{14}
\]

Physically, solution (13) represents a superposition of two periodic waves of zero frequency, with wavenumbers \(k_{1,2} \) and phases \(p_{1,2} \). Note that (13) is periodic only if \(k_2/k_1 \) (and, hence, \(\lambda_2/\lambda_1 \)) are both rational numbers, which occurs only for some values of \(\alpha \) (several examples of such are illustrated in Fig. 2).

The above linear analysis, however, leaves several important questions unanswered. On the \((\lambda, \alpha)\)-plane, for example, one-wave solutions seem to exist near curve [11, 12], whereas Ref. [11] found frozen waves only inside this curve, and not outside (see Fig. 1). This discrepancy – as well as the question of existence of two-wave solutions – will be clarified in Sects. III A, III B.

The case of strong nonlinearity will be examined numerically for both types of frozen waves in Sect. III C.

A. Asymptotic results: one-wave solutions

It is convenient to change the spatial coordinate \(x \) to

\[
\xi = k x,
\]

[where \(k \) is, again, the wavenumber determined by (12)]. In terms of \(\xi \), Eqs. (3) become

\[
k^2 \left(\tilde{\phi} - \tilde{\phi}^3 + k^2 \tilde{\phi} \xi \right) \xi + \alpha \tilde{\phi} = 0, \tag{15}
\]

We shall seek a solution as a series of the form

\[
\tilde{\phi} = \varepsilon \left(\tilde{\phi}^{(0)} + \varepsilon^2 \tilde{\phi}^{(2)} + \cdots \right), \tag{17}
\]

and also expand the wavenumber \(k \),

\[
k^2 = K^{(0)} + \varepsilon^2 K^{(2)} + \cdots. \tag{18}
\]

To leading order, Eqs. (15)–(16) reduce to

\[
K^{(0)} \left(\tilde{\phi}^{(0)} + K^{(0)} \tilde{\phi}^{(0)} \xi \right) \xi + \alpha \tilde{\phi}^{(0)} = 0, \tag{19}
\]

\[
\tilde{\phi}^{(0)}(x + 2\pi) = \tilde{\phi}^{(0)}(x).
\]

We seek a solution in the form

\[
\tilde{\phi}^{(0)}(x) = A \cos(n\xi + p),
\]

where \(A \) and \(p \) are real constants and \(n > 0 \) is an integer. It is sufficient to examine the case \(n = 1 \), as \(n \geq 2 \) corresponds to re-defining the solution’s spatial period by including more than one wavelengths in it, without changing anything physically. We also let \(A = 1 \) (as the wave’s physical amplitude still remains arbitrary due to the arbitrariness of \(\varepsilon \) and \(p = 0 \) (as a phase constant can always be included later). Thus, the leading-order solution becomes

\[
\tilde{\phi}^{(0)} = \cos \xi. \tag{20}
\]

Substitution of (20) into (19) yields

\[
K^{(0)} = \frac{1}{2} \left(1 \pm \sqrt{1 - 4\alpha} \right). \tag{21}
\]

In the next-to-leading order, Eq. (15) yields

\[
K^{(2)} \left(\tilde{\phi}^{(2)} + K^{(0)} \tilde{\phi}^{(0)} \xi \right) \xi + K^{(0)} \left(\tilde{\phi}^{(0)} - \tilde{\phi}^{(0)3} + K^{(2)} \tilde{\phi}^{(2)} \xi \right) \xi + \alpha \tilde{\phi}^{(0)} = 0,
\]

which, upon substitution of (20), becomes

\[
K^{(0)} \left(\tilde{\phi}^{(0)} + K^{(0)} \tilde{\phi}^{(0)} \xi \right) \xi + \alpha \tilde{\phi}^{(2)} = \left(K^{(2)} - 2K^{(2)}K^{(0)} - \frac{3K^{(0)}}{4} \cos \xi - \frac{9K^{(0)}}{4} \cos 3x \right) \xi, \tag{22}
\]

This equation can have a \(2\pi \)-periodic solution only if the term involving \(\cos \xi \) on the right-hand side vanishes, which implies

\[
K^{(2)} = \frac{3K^{(0)}}{4 \left(1 - 2K^{(0)} \right)}. \tag{23}
\]
after which (22) yields

\[\tilde{\phi}^{(2)} = \frac{9K^{(0)}}{36K^{(0)}(1 - 9K^{(0)}) - 4\alpha} \cos 3\xi. \]

(24)

Recalling that \(K \) is related to the wavenumber \(k \) by (18) – and \(k \) is, in turn, related to the wavelength \(\lambda \) by (12), one can use expressions (21) and (23) to obtain

\[\lambda_{1,2} = \frac{2\sqrt{2\pi}}{\sqrt{1 \pm \sqrt{1 - 4\alpha}} \left(1 \pm \frac{3\epsilon^2}{8\sqrt{1 - 4\alpha}} \right)} + O(\epsilon^4), \]

(25)

where \(1 \) and \(2 \) correspond to + and – respectively. For \(\epsilon = 0 \) (i.e., in the linear limit), \(\lambda_1 \) and \(\lambda_2 \) are the lower and upper boundaries of the existence interval in Fig. 1, whereas an increase in \(\epsilon \) causes an increase in \(\lambda_1 \) and a decrease in \(\lambda_2 \). This means that one-wave solutions do not exist above \((\lambda_2)_{\epsilon=0} \) and below \((\lambda_1)_{\epsilon=0} \) – which agrees with the conclusions of Ref. [11].

Observe that expansion (25) fails in the limit \(\alpha \to \frac{1}{4} \).

This case should be examined separately, by assuming \(\alpha = \frac{1}{4} + \epsilon^2\alpha^{(2)}. \) (26)

An expansion similar to the one above yields (technical details omitted)

\[k^2 = \frac{1}{2} \pm \frac{-\epsilon^2\alpha^{(2)} - \frac{3\epsilon^2}{8} + O(\epsilon^2)}{\sqrt{1 \pm \sqrt{1 - 4\alpha}}}, \]

(27)

from which \(\lambda \) can be readily found. The corresponding expansion of the solution is (technical details omitted)

\[\tilde{\phi} = \epsilon \left[\cos \xi - \frac{9\epsilon^2}{128} \cos 3\xi + O(\epsilon^4) \right]. \]

(28)

Formulas (27) – (28) describe the one-wave solution near the ‘tip’ \((\alpha \to \frac{1}{4}, \lambda \to 2\sqrt{2}\pi) \) of the existence region shown in Fig. 1. Formula (25), in turn, describes the solution near the boundary of the region, but not too close to its tip.

Finally, note that substitution of expression (21) for \(K^{(0)} \) into expression (24) shows that \(\tilde{\phi}^{(2)} \) becomes infinite for

\[\alpha = \frac{9\epsilon^2}{128}, \quad \lambda = 2\sqrt{10}\pi. \]

This is another example where the straightforward expansion for the one-wave solution is inapplicable (in addition to the ‘tip point’, \(\alpha = \frac{1}{4}, \lambda = 2\sqrt{2}\pi \)). The unbounded growth of the first-order term involving \(\cos 3\xi \) suggest that, in this case, \(\tilde{\phi}^{(0)} \) should include both \(\cos \xi \) and \(\cos 3\xi \) – and not just the former term, as solution (20) does.

This case will be examined in the next section.

B. Asymptotic results: two-wave solutions

As mentioned above, two-wave solutions exist near those values of \(\alpha \) for which the ratio of the wavenumbers of the two individual waves is a rational number. Let \(\alpha^{(0)} \) be one of such values, with \(\alpha^{(2)} \) being a small deviation from it,

\[\alpha = \alpha^{(0)} + \epsilon^2\alpha^{(2)}. \]

(29)

Substitution of this expression, together with expansions (14) – (16), in Eq. (15) yields, to leading order,

\[K^{(0)} \left(\tilde{\phi}^{(0)} + K^{(0)}\tilde{\phi}^{(0)}_{\xi\xi} \right)_{\xi\xi} + \alpha^{(0)}\tilde{\phi}^{(0)} = 0. \]

(30)

We assume that the two waves of which a two-wave solution consists have wavenumbers \(K^{(0)}n_1 \) and \(K^{(0)}n_2 \), where \(n_1,2 \) are integers (without loss of generality, they can be assumed to be coprime and such that \(n_1 > n_2 > 0 \)). Accordingly, we shall seek a solution of Eq. (30) in the form

\[\tilde{\phi}^{(0)} = a \cos(n_1\xi + \theta) + \cos n_2\xi \]

(31)

(the fact that the second wave’s amplitude is unity and its phase is zero does not reduce generality). Substituting (31) into (30), we obtain

\[\alpha^{(0)} = \frac{n_1^2n_2^2}{n_1^2 + n_2^2}, \quad K^{(0)} = \frac{1}{n_1^2 + n_2^2}. \]

(32)

Recalling that \(K \) is related to the wavelength \(\lambda \), one can see that these equalities determine the points in the \((\alpha, \lambda) \)-plane near which two-wave weakly-nonlinear solutions are localized (they are illustrated in Fig. 2).

To the next-to-leading order, (15) yields
whereas the latter case yields terms involving \(\cos(n_1 x + \theta) \) and \(\cos(n_2 x) \) can be viewed as parametric expressions (with \(n \) representing \(\alpha, \lambda \)) of the \((\alpha, \lambda) \)-plane. It can be shown that, for all \(n_{1,2} \), this region is a 'semi-infinite sector' (see an example in Fig. 3). However, since we assumed weak nonlinearity, this conclusion can only be trusted near the vertices of the sectors. Effectively, we have found the tangent lines to the boundaries of the 'true' region of the existence interval.

\[
K^{(0)} \left(\frac{\partial}{\partial t} + K^{(0)} \frac{\partial}{\partial x} \right) + \alpha^{(0)} \bar{\phi} = K^{(0)} \left(\frac{3a}{2} \cos(n_1 x + \theta) + \frac{a^3}{4} [3 \cos(n_1 x + \theta) + \cos 3(n_1 x + \theta)] + \frac{3a^2}{4} \{ \cos [(2n_1 - n_2) x + 2\theta] + \cos [(2n_1 + n_2) x + 2\theta] \} + \frac{3a^2}{2} \cos n_2 x + \frac{1}{4} (3 \cos n_2 x + \cos 3n_2 x) \right)_{\xi \xi} - a \left[K^{(2)} n_1^2 \left(2K^{(0)} n_1^2 - 1 \right) + \alpha^{(2)} \right] \cos(n_1 x + \theta) - \left[K^{(2)} n_2^2 \left(2K^{(0)} n_2^2 - 1 \right) + \alpha^{(2)} \right] \cos n_2 x.
\]

This equation has a periodic solution for \(\bar{\phi} \) only if the terms involving \(\cos(n_1 x + \theta) \) and \(\cos(n_2 x) \) cancel out, but the specifics depend on whether \((n_1, n_2) = (3, 1) \) or not. In the former case, straightforward calculations yield

\[
K^{(2)} = -\frac{3 (7a^3 - a^2 + 17a + 3)}{340a}, \quad \alpha^{(2)} = -\frac{9 (9a^3 + 3a^2 + 9a + 1)}{420a} \quad \text{if} \quad (n_1, n_2) = (3, 1),
\]

whereas the latter case yields

\[
K^{(2)} = -\frac{3 \left(n_1^2 - 2n_2^2 \right) a^2 + 2n_1^2 - n_2^2}{4 (n_1^2 + n_2^2) (n_1^2 - n_2^2)}, \quad \alpha^{(2)} = -\frac{9n_1^2n_2^2 (a^2 + 1)}{4 (n_1^2 + n_2^2)^2} \quad \text{if} \quad n_1 \neq 3n_2.
\]

Now, using expressions (17)–(18), (20), (12), (31)–(32) and to relate \(\bar{\phi}^{(2)}, K^{(2)} \), and \(\alpha^{(2)} \) to the 'physical' quantities, we can summarize the two-wave solution in the form

\[
\bar{\phi} = \varepsilon [a \cos(n_1 x + \theta) + \cos n_2 x] + O(\varepsilon^3), \quad (33)
\]

\[
\alpha = \frac{9}{100} - \varepsilon^2 \frac{9 (9a^3 + 3a^2 + 9a + 1)}{420a} + O(\varepsilon^4), \quad \lambda = 2 \sqrt{10\pi} + \varepsilon^2 \frac{3 \pi \sqrt{10} (7a^3 - a^2 + 17a + 3)}{34a} + O(\varepsilon^4), \quad \text{if} \quad (n_1, n_2) = (3, 1), \quad (34)
\]

or

\[
\alpha = \frac{n_1^2 n_2^2}{(n_1^2 + n_2^2)^2} - \varepsilon^2 \frac{9n_1^2n_2^2 (a^2 + 1)}{4 (n_1^2 + n_2^2)^2} + O(\varepsilon^4), \quad \lambda = 2 \pi \sqrt{n_1^2 + n_2^2} + \varepsilon^2 \frac{3 \pi \left((n_1^2 - 2n_2^2) a^2 + 2n_1^2 - n_2^2 \right) \sqrt{n_1^2 + n_2^2}}{4 (n_1^2 - n_2^2)} + O(\varepsilon^4), \quad \text{if} \quad n_1 \neq 3n_2, \quad (35)
\]

Expressions (31) and (32) can be viewed as parametric representations (with \(\varepsilon \) and \(a \) being the parameters) of the existence region of two-wave solutions with \(n_{1,2} \) on the \((\alpha, \lambda) \)-plane. It can be shown that, for all \(n_{1,2} \), this region is a 'semi-infinite sector' (see an example in Fig. 3).
Observe that ε^2 can be eliminated from \eqref{34} and \eqref{35}, which yields

\[
\frac{\alpha - \frac{9}{100}}{\lambda - 2\sqrt{10}\pi} = -\frac{6 (9a^3 + 3a^2 + 9a + 1)}{27\sqrt{10}\pi (7a^3 - a^2 + 17a + 3)} + O(\varepsilon^2), \quad \text{if} \quad (n_1, n_2) = (3, 1),
\]

or

\[
\frac{\alpha - \frac{n_1^2 n_2^2}{(n_1^2 + n_2^2)^2}}{\lambda - 2\pi \sqrt{n_1^2 + n_2^2}} = -\frac{9n_1^2 n_2^2 (a^2 + 1) (n_1^2 - n_2^2)}{3\pi (n_1^2 + n_2^2)^{5/2} (n_1^2 - 2n_2^2) a^2 + 2n_1^2 - n_2^2] + O(\varepsilon^2), \quad \text{if} \quad n_1 \neq 3n_2.
\]

For given $n_{1,2}$ and (α, λ), \eqref{36} and \eqref{37} can be treated as equations for a [it is, essentially, the ratio of the amplitudes of the waves which constitute the two-wave solution – see \eqref{33}]. Observe that, \eqref{37} admits two roots for a (with equal magnitudes and opposite signs), which means that two-wave solutions with $n_1 \neq 3n_2$ exist in pairs. In some cases these solutions can be obtained from each other by shifting $x \to x + \text{const}$ (for the 2:1 case, for example, const = π) – but in other cases, the solutions with positive and negative a seem to be genuinely different.

For the case $(n_1, n_2) = (3, 1)$, in turn, it follows from \eqref{37} that three roots exist for a. One of the three, however, corresponds to the one-wave solution. Indeed, recall that the expansion derived for those failed near $\alpha = \frac{9}{100}$, $\lambda = 2\sqrt{10}\pi$, i.e. precisely where the asymptotic theory for two-wave solutions predicts existence of those with $(n_1, n_2) = (3, 1)$. In fact, one- and two-wave solutions cannot be distinguished in this region, as, in both cases, the coefficients of $\cos 3x$ and $\cos x$ are of the same order.

C. Numerical results

In this section, we shall present examples of strongly-nonlinear one- and two-wave solutions and the existence region for the latter. Two numerical methods have been used: the shooting method (which turned out to be insufficient for large wavelengths) and the method of Newton relaxation (which worked marginally better).

Figs. 4a and 4b show examples of increasingly nonlinear one- and two-wave solutions respectively, for a fixed wavelength λ and decreasing α. In Fig. 4a, observe the increase of the wave’s amplitude as α is moving away from the boundary of the existence region (for this value of λ, the boundary is located at $\alpha \approx 0.131$). Fig. 4b, in turn, illustrates the fact that the margins of the existence region for two-wave solutions correspond to the cases where the amplitude of one of the two waves vanishes (which is how they bifurcate from one-wave solutions).
IV. THE STABILITY OF FROZEN WAVES

A. Asymptotic results

We shall first examine the stability of frozen waves asymptotically, under the same assumption of weak nonlinearity used to find the frozen waves themselves.

We shall start by re-writing the stability problem (8)–(9) in terms of \(\xi = kx \), which yields

\[
sv + k^2 (\psi - 3s^2 \psi + k^2 \psi_{\xi\xi})_{\xi\xi} + \alpha \psi = 0,
\]

where \(q \) is an order-one constant. Note that the smallness of the phase shift \(\theta \) implies that the instability occurs at wavelengths close to that of the base solution.

It is also convenient to introduce

\[
\psi_{\text{new}} = \psi e^{-i\varepsilon qx}.
\]

Using (40)–(41) to replace \(\theta \) and \(\psi \) in Eqs. (38)–(39) with \(q \) and \(\psi_{\text{new}} \), we obtain (subscript \(\text{new} \) omitted):

\[
sv + k^2 (\psi - k^2 \psi_{\xi\xi} - 3s^2 \psi_{\xi})_{\xi\xi} + i\varepsilon qk^2 (2\psi_{\xi} + 4k^2 \psi_{\xi\xi}) - \varepsilon^2 q^2 k^2 (\psi + 6k^2 \psi_{\xi})_{\xi\xi} + O(\varepsilon^3)
\]

\[
+ \alpha \psi = 0,
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.

It can be demonstrated that no instability occurs if \(s = O(1) \) – hence, only small \(s \) need to be examined.

We assume (and shall eventually justify by obtaining a consistent asymptotic expansion) that

\[
\psi_{\text{new}} = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots
\]

while the eigenfunction is

\[
\psi = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots.
\]

To leading order, Eqs. (42)–(43), (26)–(28) reduce to

\[
\left. \frac{1}{2} \left(\psi_{\text{old}} + \frac{1}{2} \psi_{\text{old}2} \right)_{\xi\xi} \right\} + \frac{1}{4} \psi_{\text{old}} = 0,
\]

which yield

\[
\psi_{\text{old}}(\xi + 2\pi) = \psi_{\text{old}}(\xi),
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.

It can be demonstrated that no instability occurs if \(s = O(1) \) – hence, only small \(s \) need to be examined.

We assume (and shall eventually justify by obtaining a consistent asymptotic expansion) that

\[
\psi_{\text{new}} = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots
\]

while the eigenfunction is

\[
\psi = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots.
\]

To leading order, Eqs. (42)–(43), (26)–(28) reduce to

\[
\frac{1}{2} \left(\psi_{\text{old}} + \frac{1}{2} \psi_{\text{old}2} \right)_{\xi\xi} + \frac{1}{4} \psi_{\text{old}} = 0,
\]

which yield

\[
\psi_{\text{old}}(\xi + 2\pi) = \psi_{\text{old}}(\xi),
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.

It can be demonstrated that no instability occurs if \(s = O(1) \) – hence, only small \(s \) need to be examined.

We assume (and shall eventually justify by obtaining a consistent asymptotic expansion) that

\[
\psi_{\text{new}} = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots
\]

while the eigenfunction is

\[
\psi = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots.
\]

To leading order, Eqs. (42)–(43), (26)–(28) reduce to

\[
\frac{1}{2} \left(\psi_{\text{old}} + \frac{1}{2} \psi_{\text{old}2} \right)_{\xi\xi} + \frac{1}{4} \psi_{\text{old}} = 0,
\]

which yield

\[
\psi_{\text{old}}(\xi + 2\pi) = \psi_{\text{old}}(\xi),
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.

It can be demonstrated that no instability occurs if \(s = O(1) \) – hence, only small \(s \) need to be examined.

We assume (and shall eventually justify by obtaining a consistent asymptotic expansion) that

\[
\psi_{\text{new}} = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots
\]

while the eigenfunction is

\[
\psi = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots.
\]

To leading order, Eqs. (42)–(43), (26)–(28) reduce to

\[
\frac{1}{2} \left(\psi_{\text{old}} + \frac{1}{2} \psi_{\text{old}2} \right)_{\xi\xi} + \frac{1}{4} \psi_{\text{old}} = 0,
\]

which yield

\[
\psi_{\text{old}}(\xi + 2\pi) = \psi_{\text{old}}(\xi),
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.

It can be demonstrated that no instability occurs if \(s = O(1) \) – hence, only small \(s \) need to be examined.

We assume (and shall eventually justify by obtaining a consistent asymptotic expansion) that

\[
\psi_{\text{new}} = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots
\]

while the eigenfunction is

\[
\psi = \psi_{\text{old}} + \varepsilon^2 \psi_{\text{old}2} + \cdots.
\]

To leading order, Eqs. (42)–(43), (26)–(28) reduce to

\[
\frac{1}{2} \left(\psi_{\text{old}} + \frac{1}{2} \psi_{\text{old}2} \right)_{\xi\xi} + \frac{1}{4} \psi_{\text{old}} = 0,
\]

which yield

\[
\psi_{\text{old}}(\xi + 2\pi) = \psi_{\text{old}}(\xi),
\]

where the specific form of the terms \(O(\varepsilon^3) \) will not be needed.
\[
\frac{1}{2} \left(\psi^{(2)}_{\xi \xi} + \frac{1}{2} \psi^{(2)}_{\xi \xi \xi \xi} \right) + \frac{1}{4} \psi^{(2)} + \frac{3}{4} \left[S \sin x + C \cos x + \frac{1}{2} S (3 \sin 3x - \sin x) + \frac{1}{4} C (3 \cos 3x + \cos x) \right] \\
+ \left(s^{(2)} + q^2 - \frac{3}{8} \right) (S \sin x + C \cos x) - 2iq \sqrt{-\alpha^{(2)} - \frac{3}{8} (S \cos x - C \sin x)} = 0,
\]

\[
\psi^{(2)}(\xi + 2\pi) = \psi^{(2)}(\xi).
\]

This boundary-value problem has a solution for \(\psi^{(2)}\) only if

\[
\frac{3}{8} S + \left(s^{(2)} + q^2 - \frac{3}{8} \right) S + 2iq \sqrt{-\alpha^{(2)} - \frac{3}{8} C} = 0,
\]

\[
\frac{3}{8} C + \left(s^{(2)} + q^2 - \frac{3}{8} \right) C - 2iq \sqrt{-\alpha^{(2)} - \frac{3}{8} S} = 0,
\]

which, in turn, has a solution for \(S\) and \(C\) only if

\[
s^{(2)2} + (2q^2 + \frac{9}{4}) s^{(2)} + q^2 \left[q^2 + \frac{3}{4} - 4 \left(-\alpha^{(2)} - \frac{3}{8} \right) \right] = 0.
\]

This equation determines the eigenvalue \(s^{(2)}\). It can be readily shown that \(s^{(2)}\) is stable (i.e. \(\Re s^{(2)} < 0\)) for all \(q\) only if

\[
\alpha^{(2)} < -\frac{9}{16}.
\]

Finally, using (26–27) to express \(\alpha^{(2)}\) in terms of the ‘physical’ parameters \(\alpha\) and \(\lambda\), we obtain the following stability criterion for a frozen wave with parameters \((\alpha, \lambda)\):

\[
\left(\lambda - 2\sqrt{2\pi} \right)^2 \lesssim \frac{8}{9} \pi^2 \left(\frac{1}{4} - \alpha \right).
\]

(45)

Observe that, for any \(\alpha < \frac{1}{4}\), there exists an interval of stable wavelengths, not just a single value of \(\lambda\).

As mentioned before, condition (45) applies only if \(\alpha\) is close to \(\frac{1}{4}\). In the next subsection, it will be extended numerically to arbitrary values of \(\alpha\).

B. Numerical results

The eigenvalue problem (35–39) was solved numerically for \(\psi(x)\) and \(s\) with the base wave \(\phi(x)\) computed using problem (3)–(4).

The general features of the dispersion relation [the dependence \(s(\theta)\)] of the eigenvalue problem (35–39) is described in the Appendix, whereas here we shall only present the stability diagram on the \((\alpha, \lambda)\) plane – see in Fig. 5. Evidently, for all values of \(\alpha\), an interval of \(\lambda\) exists where one-wave solution are stable – which confirms and extends the asymptotic \((\alpha \to \frac{1}{4})\) stability criterion (45). We have not found any stable two-wave solutions, which suggests they are either unstable or perhaps their regions of stability are small and difficult to locate.

To illustrate that any solution from the range of stable frozen waves (not necessarily the wave with the minimum free-energy density) can emerge from a ‘general’ initial condition, we have carried out the following numerical experiment. The time-dependent MCHE (11) was simulated using finite differences with a fully implicit backwards Euler method, and the results of the simulations presented below are for \(\alpha = 0.1\).

In this case, the energy minimizing wavelength is \(\lambda_0 = 11.31\) (calculated from the interpolation formula of Ref. (11), with the corresponding frozen-wave solution denoted by \(\phi_0(x)\). According to our analysis, however, a solution \(\phi_1(x)\) with the commensurate wavelength \(\lambda_1 = 14.13\) (\(\lambda_0/\lambda_1 = 4/5\)) should also be stable.

To verify this, Eq. (11) was simulated in a domain of size \(L = 5\lambda_0 = 4\lambda_1\) which accommodates both solutions. The initial condition was chosen as a ‘mixture’ of the frozen waves \(\phi_0(x)\) and \(\phi_1(x)\), i.e.

\[
\phi(x, 0) = \beta \phi_0(x) + (1 - \beta) \phi_1(x),
\]

where \(\beta \in (0, 1)\) is the ‘mixing ratio’. The timestep was 0.1 and 400 gridpoints per period were used, and it has
been verified that the results were mesh and timestep independent.

If $\phi_0(x)$ was the only stable solution, the system would evolve towards ϕ_0 for all β. Our simulations nevertheless show that, for $\beta = 0.2$, the system evolves back to ϕ_1 (see Fig. 6), which confirms our conclusion about the existence of multiple stable states.

V. CONCLUDING REMARKS

The main result of the present paper is illustrated in Fig. 5, which shows the stability region of (one-wave) frozen solutions of the modified Cahn–Hilliard equation (1). We have also found a new class of frozen waves – the ‘two-wave solutions’, but these seem to be unstable and, thus, less important than the usual, one-wave type.

We have also made a more general – and potentially more important – conclusion regarding the energy approach to studies of stability. If a family of solutions exists and one of them minimizes the energy functional, this does not necessarily mean that all other solutions are unstable. Furthermore, the stability of the minimizer solution cannot be guaranteed either: even though it is stable with respect to the perturbation of ‘shifting along the family of solutions’, another perturbation can still destabilize it.

Physically, our results imply that when lamellar microstructures of block copolymers are used to template nanowires, one must ensure that only the desired state is created. This may become more of a critical concern as larger numbers of nanowires are to be created within a single trench. In practice, some control over this can be exerted via the annealing schedule. It should also be noted that a kinetically stable quenched state may be selected rather than a true time independent solution to the modified Cahn–Hilliard equation.

Finally, it would be interesting to extend the present results to steady states with two spatial dimensions, similar to those found in Ref. [12] for an equation similar to the two-dimensional MCHE (but with a slightly different nonlinearity).

Acknowledgments

The authors acknowledges the support of the Science Foundation Ireland (RFP Grant 08/RFP/MTH1476 and Mathematics Initiative Grant 06/MI/005)

Appendix A: The structure of the dispersion relation and the eigenfunctions of the eigenvalue problem (8)–(9)

First of all, it can be readily shown (and has been confirmed numerically) that the eigenvalue s of problem (8)–(9) is real.

Observe also that, for the boundary points of the existence region (see Fig. 1), frozen waves have zero amplitude, i.e. $\bar{\phi} = 0$. In this case, the eigenfunction of problem (8)–(9) can be readily found,

$$\psi = \exp \frac{i\lambda x}{\lambda},$$

as well as the dispersion relation (i.e. the dependence of the eigenvalue s on the phase shift θ),

$$s = -\alpha + \left(\frac{\theta}{\lambda}\right)^2 - \left(\frac{\theta}{\lambda}\right)^4.$$
FIG. 8: Examples of eigenfunctions of problem (8)–(9) with \(\alpha = 0.24, \lambda = 8.886 \). The eigenfunctions marked with “U” and “L” correspond to the upper and lower branches, respectively, of the dispersion relation illustrated in Fig. 6.

Observe that, as follows from (A1), the eigenfunction becomes more and more oscillatory with increasing \(\theta \).

In the general case, (i.e. for interior points of the existence region of frozen waves, where \(\bar{\phi} \neq 0 \)), one would expect that (A2) is somehow perturbed, but still keeps its structure as a single curve on the \((\theta, s)\) plane. Furthermore, the large-\(\theta\) part of the ‘general’ dispersion relation should not differ much from that of (A2) – as, for rapidly oscillating \(\psi\), the term involving \(\bar{\phi}\) in equation (5) is negligible.

Our computations show, however, that, no matter how small \(\bar{\phi}\) is, the dispersion relation splits into two branches – see Fig. 7.

The following properties of the two branches have been observed:

- The upper branch is periodic with a period of \(4\pi\).
- Both branches are symmetric with respect to \(\theta = 2\pi\) (provided they are extended to negative \(\theta\)).

As a result, the only ‘original’ part of the upper branch is the segment \(\theta \in [0, 2\pi]\), whereas the ‘original’ part of the lower branch is that for \(\theta = [2\pi, \infty)\). Not surprisingly, the unperturbed dispersion relation (A2) ‘switches’ from the upper branch to the lower one near the point \(\theta = 2\pi\) (see Fig. 7).

Fig. 8 shows typical behavior of the eigenfunctions: for \(\theta = 0\), \(\psi(x)\) does not oscillate at all; for \(\theta = 2\pi\), it oscillates once; for \(\theta = 4\pi\), it oscillates twice, etc.

Fig. 9, in turn, shows the onset of instability brought by a change of the period of the base wave. One can see that the waves with \(\theta \approx 2\pi\) are first to lose stability (which agrees with our asymptotic analysis of the case \(\alpha \to \frac{1}{4}\)).

Finally, we mention that two exact solutions were found for the eigenvalue problem (8)–(9):

\[
s = -\alpha \quad \text{for} \quad \theta = 0, \quad (A3)
\]
\[
s = 0 \quad \text{for} \quad \theta = 2\pi. \quad (A4)
\]

In the latter case the disturbance can be found analytically, \(\psi = \bar{\phi}\), and it corresponds to infinitesimal shift of the base wave. The former solution does not seem to have an obvious physical meaning (nor does it admit an obvious analytical expression for the eigenfunction, as equality (A1) has been established numerically).

FIG. 9: The dispersion curves (upper branches) for \(\alpha = 0.24\) and (1) \(\lambda = 8.886\) (stability for all \(\theta\)), (2) \(\lambda = 9.786\) (instability for sufficiently small \(\theta\)).

[1] W. G. Carter, J. E. Taylor, and J. W. Cahn, JOM-J. Miner. Met. Mater. Soc. 49, 30–36 (1997).
[2] E. V. L. de Mello and O. T. S. Filho, Physica A 347, 429–443 (2005).
[3] E. S. Benilov and M. Chugunova, Phys. Rev. E 81, 036302 (2010).
[4] T. Ohta and K. Kawasaki, Macromolecules 19, 2621-2632 (1986).
[5] N. Hadjichristidis, S. Pispas, and G. Floudas, Block copolymers: synthetic strategies, physical properties, and applications (Wiley, New Jersey, 2003).
[6] T. G. Fitzgerald, R. A. Farrell, N. Petkov, C. T. Bolger, M. T. Shaw, J. P. F. Chargin, J. P. Gleeson, J. D. Holmes and M. A. Morris, Langmuir 25, 13551–60 (2009).
[7] K. O. Stuen, F. A. Detcheverry, G. S. W. Craig, C. S. Thomas, R. A. Farrell, M. A. Morris, J. J. de Pablo and Paul F Nealey, Nanotechnology 21, 495301 (2010).

[8] R. A. Farrell, N. Petkov, M. A. Morris and J. D. Holmes. Journal of Colloid and Interface Science 349:449–472 (2010).

[9] D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, and M. A. Morris, J. Phys. D: Appl. Phys. 44, 174012 (2011).

[10] R. A. Farrell, N. T. Kinahan, S. Hansel, K. O. Stuen, N. Petkov, M. T. Shaw, L. E. West, V. Djara, R. J. Dunne, O. G. Varona, P. G. Gleeson, S. J. Jung, H. Y. Kim, M. M. Kolesnik, T. Lutz, C. P. Murray, J. D. Holmes, P. F. Nealey, G. S. Duesberg, V. Krstic, and M. A. Morris, Nanoscale 4, 3228–3236 (2012).

[11] F. Liu and N. Goldenfeld, Phys. Rev. A 43, 4805–4810 (1989).

[12] R. Choksi, M. Maras, and J. F. Williams. SIAM J. App. Dyn. Sys. 10, 1344–1362 (2011).