FEDERATED DROPOUT LEARNING FOR HYBRID BEAMFORMING WITH SPATIAL PATH INDEX MODULATION IN MULTI-USER MMWAVE-MIMO SYSTEMS

Ahmet M. Elbir†, Sinem Coleri† and Kumar Vijay Mishra†

†Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkey
‡United States CDC Army Research Laboratory, Adelphi, MD 20783 USA

ABSTRACT

Millimeter wave multiple-input multiple-output (mmWave-MIMO) systems with small number of radio-frequency (RF) chains have limited multiplexing gain. Spatial path index modulation (SPIM) is helpful in improving this gain by utilizing additional signal bits modulated by the indices of spatial paths. In this paper, we introduce model-based and model-free frameworks for beamformer design in multi-user SPIM-MIMO systems. We first design the beamformers via model-based manifold optimization algorithm. Then, we leverage federated learning (FL) with dropout learning (DL) to train a learning model on the local dataset of users, who estimate the beamformers by feeding the model with their channel data. The DL randomly selects different set of model parameters during training, thereby further reducing the transmission overhead compared to conventional FL. Numerical experiments show that the proposed framework exhibits higher spectral efficiency than the state-of-the-art SPIM-MIMO methods and mmWave-MIMO, which relies on the strongest propagation path. Furthermore, the proposed FL approach provides at least 10 times lower transmission overhead than the centralized learning techniques.

Index Terms— Dropout learning, federated learning, manifold optimization, massive MIMO, spatial modulation.

1. INTRODUCTION

The millimeter wave multiple-input multiple-output (mmWave-MIMO) communications systems substantially improve the throughput in the fifth generation (5G) networks [1–2]. As an emerging 5G technology, index modulation (IM) is attractive primarily because it offers both improved energy efficiency and spectral efficiency over conventional modulations. The IM encodes additional information in the indices of the transmission media such as subcarriers [3–4], antennas [5–9], and spatial paths [7–9]. In this paper, we focus on spatial modulation (SM) in the context of mmWave-MIMO systems [10].

In mmWave-MIMO, hybrid analog-digital beamformers are employed, where the number of radio-frequency (RF) chains is much smaller than the antennas. While this saves cost and power, its multiplexing gain is limited [1]. The SM techniques have been shown to be helpful in addressing this problem [7–9]. In [5], an antenna grouping (AG) approach is proposed for point-to-point communication, wherein some antenna elements are (de)activated to provide SM in terms of active/passive antenna indices. This approach suffers from reduced array gain because it always uses a subarray. For a single-user scenario, [8] proposed beamspace-based approaches for spatial path index modulation (SPIM), which modulates the indices of the spatial paths to create different spatial patterns. The use of beamspace modulation is further exploited in [9] by employing lens arrays at both transmitter and receiver to improve the bit-error-rate (BER).

Apart from BER, spectral efficiency is utilized as a performance metric in [7] for SPIM-based transmitter design. Here, theoretical conditions for SPIM-MIMO to outperform mmWave-MIMO are introduced. The SPIM structure in [7] considers only analog beamformer design, for which the same baseband beamformers are used even if the structure of the analog beamformer is changed due to the selection of different spatial patterns. Analog-only beamformer design is also considered in [11] for uplink multi-user scenario with codebook design. A joint design for analog and baseband precoders for SPIM is performed in [12] by implementing zero-forcing baseband precoding and selecting the steering vectors as analog beamformer candidates. Similar to [12], [7, 8] also design the analog precoders with a predefined codebook of steering vectors, which entails a beam training task prior to the precoder design. Most of the aforementioned works investigate the single-user scenario. Their extension to the multi-user case remains a challenge. Although [11] considered the uplink multi-user SPIM architecture, it included the codebook of analog-only beamformers at the user end.

In this paper, we design both analog and digital beamformers for a downlink multi-user scenario using model-based and model-free techniques. We leverage the optimality of the manifold optimization (MO) [13–14] for the model-based approach. Then, taking advantage of the model-free structure of learning-based methods [15–17] to improve robustness and computational efficiency, we train a global model through federated learning (FL). All users contribute to the learning process by computing the model updates with respect to their local datasets. The model updates are then collected at the base station (BS) for model aggregation and then sent back to the users for the next communication round and the global model is iteratively updated. Once trained, the model parameters are shared with each user, which can estimate the beamformers by simply feeding the model with its downlink channel matrix. As a result, a non-linear data mapping is constructed between the channel data (input) and the beamformers (output), wherein a convolutional neural network (CNN) with dropout learning (DL) is designed [18]. The DL allows randomly selecting a fraction (up to 50%) of the model parameters, thus further reducing the communication cost during FL-based training.

Unlike the conventional centralized learning (CL) methods [19–21], where the BS collects all of the training datasets from users, our proposed FL-based approach is advantageous because of less
transmission overhead; it is further reduced by employing DL to send approximately half of the model parameters to the users. We validate this through extensive numerical experiments and demonstrate that the proposed model-based and model-free approaches have superior spectral efficiency than the state-of-the-art model-based SPIM techniques [7] as well as outperforming the conventional mmWave-MIMO [22]. Apart from maintaining satisfactory prediction performance, the model-free FL offers a communication-efficient training, which requires approximately 10 times lower communication exchange for model parameter transmission than the conventional CL-based techniques.

2. SYSTEM MODEL

Consider a multi-user MIMO scenario with SPIM (SPIM-MIMO), where the BS has N_F antennas to communicate with U users, each of which has N_R antennas, via a single data stream. Then, the vector of all data symbols are given by $\mathbf{s} = [s_1, \ldots, s_U]^T \in \mathbb{C}^U$. Additionally, the spatial path index information represented by s_0 is fed to the switching network (Fig. 1) to randomly assign the outputs of $N_{RF} = U \leq M$ RF chains to the M taps of the analog beamformer. Thus, the BS can process at most M spatial paths, for which $M = UM \leq N_T$, where M denotes the number of available spatial paths for each user. Compared to the conventional mmWave-MIMO, SPIM-MIMO has the advantage of transmitting additional data streams by exploiting the spatial pattern of the mmWave channel with limited RF chains, i.e., $N_{RF} \leq M$ [7]. If $M = 1$, i.e., $N_{RF} = M$, then SPIM-MIMO reduces to conventional mmWave-MIMO because there is only one choice of transmission [9].

Assume $\mathbf{F}_{RF}^{(i)} \in \mathbb{C}^{N_T \times U}$ and $\mathbf{F}_{BB}^{(i)} \in \mathbb{C}^{U \times U}$ be the analog and baseband beamformers corresponding to the i-th spatial pattern, respectively, for $i = 1, \ldots, M$, i.e., selecting one of the M paths for each user. The received signal vector transmitted by the N_T antennas is

$$\mathbf{x}^{(i)} = \mathbf{F}_{RF}^{(i)} \mathbf{F}_{BB}^{(i)} \mathbf{s} + \mathbf{n}_u,$$ \hspace{1cm} (1)

Note that (1) includes the design of both analog and baseband beamformers for each spatial pattern whereas the method in [7] designs only analog beamformers and uses a fixed baseband beamformer.

The RF precoders $\mathbf{F}_{RF}^{(i)}$, which are constructed by phase shifters, have constant-modulus elements, i.e., $|F_{RF}^{(i)}[m,n]| = 1 \sqrt{N_T}$. In addition, we have the power constraint $\|\mathbf{F}_{RF}^{(i)} \mathbf{F}_{BB}^{(i)}\|^2 = N_{RF}$ that is enforced by the normalization of $\mathbf{F}_{BB}^{(i)}$. Finally, the rate of received signal by the u-th user becomes

$$\mathbf{y}^{(i)}_u = \mathbf{H}_u \mathbf{F}_{RF}^{(i)} \mathbf{F}_{BB}^{(i)} \mathbf{s} + \mathbf{n}_u,$$ \hspace{1cm} (2)

where $\mathbf{H}_u \in \mathbb{C}^{N_R \times N_T}$ represents the mmWave channel matrix between the BS and the u-th user and $\mathbf{n}_u \sim \mathcal{CN}(0, \sigma_n^2 \mathbf{I}_{N_R})$ is temporally and spatially white zero-mean Gaussian noise with variance σ_n^2. The mmWave channel can be modeled as the contribution of \tilde{M} paths from the u-th user. Thus, \mathbf{H}_u can be given by

$$\mathbf{H}_u = \mathbf{A}_R^{(u)} \mathbf{\Sigma}_u \mathbf{A}_T^{(u)}$$ \hspace{1cm} (3)

where the steering matrices $\mathbf{A}_R^{(u)} = [a_R^{(u)}(\phi_1), \ldots, a_R^{(u)}(\phi_M)] \in \mathbb{C}^{N_R \times M}$ and $\mathbf{A}_T^{(u)} = [a_T^{(u)}(\varphi_1), \ldots, a_T^{(u)}(\varphi_M)] \in \mathbb{C}^{N_T \times M}$ correspond to the angle-of-arrival/angle-of-departure (AoA/AoD) angles ϕ_m and φ_m for $m = 1, \ldots, M$, respectively. For a uniform linear array (ULA), the n-th element of $a_R^{(u)}(\phi)$ and $a_T^{(u)}(\varphi)$ can be defined as $a_R^{(u)}(\phi)[n] = \frac{1}{\sqrt{N_R}} \exp\{-j\pi (n-1) \sin(\phi)\}$ and $a_T^{(u)}(\varphi)[n] = \frac{1}{\sqrt{N_T}} \exp\{-j\pi (n-1) \sin(\varphi)\}$.

The received signal $\mathbf{y}^{(i)}_u$ is then processed by analog combiner $\mathbf{w}_{RF}^{(i)} \in \mathbb{C}^{N_R}$ as

$$\hat{\mathbf{y}}^{(i)}_u = \mathbf{w}_{RF}^{(i)} \mathbf{H}_u \mathbf{F}_{RF}^{(i)} \mathbf{F}_{BB}^{(i)} \mathbf{s} + \bar{\mathbf{n}}_u,$$ \hspace{1cm} (4)

where $\bar{\mathbf{n}}_u = \mathbf{w}_{RF}^{(i)} \mathbf{n}_u$. Similar to the analog precoders, the analog combiner $\mathbf{w}_{RF}^{(i)}$ also has constant-modulus elements, i.e., $|w_{RF}^{(i)}[n]| = 1/\sqrt{N_R}$, $n = 1, \ldots, N_R$.

Our goal is to design the beamformers, $\mathbf{F}_{RF}^{(i)}$, $\mathbf{F}_{BB}^{(i)}$ and $\mathbf{w}_{RF}^{(i)} = [w_{RF}^{(i,1)}, \ldots, w_{RF}^{(i,M)}]$ by exploiting SPIM. The downlink channel \mathbf{H}_u is available for all $u \in U = \{1, \ldots, U\}$ and used to design the beamformers with FL-based training, in which a learning model is trained to provide a mapping from the channel matrix to the beamformers.

3. BEAMFORMING VIA MODEL-BASED APPROACH

We construct the analog beamformers via simultaneously incorporating all of the M spatial paths, in which the analog beamformers corresponding to all spatial paths $\mathbf{F}_{RF}^{(u)} = [\mathbf{F}_{RF}^{(u,1)}, \ldots, \mathbf{F}_{RF}^{(u,M)}] \in \mathbb{C}^{N_R \times M}$ per user and $\mathbf{F}_{BB}^{(u)} = [\mathbf{F}_{BB}^{(u,1)}, \ldots, \mathbf{F}_{BB}^{(u,M)}] \in \mathbb{C}^{M \times M}$ are designed for $u \in U$. Then, we design the baseband precoder after taking into account the interference among the users. Given \mathbf{H}_u, the analog beamformer $\mathbf{F}_{RF}^{(u)} \in \mathbb{C}^{N_R \times M}$ is designed by minimizing the distance between the beamformer $\mathbf{F}_{RF}^{(u)} \mathbf{F}_{BB}^{(u)} \in \mathbb{C}^{N_R \times N_T}$ and the optimal digital precoder $\mathbf{r}_{opt}^{(u)} \in \mathbb{C}^{N_R \times N_T}$, available from singular value decomposition (SVD) of \mathbf{H}_u [23]. Thus, the maximizing the spectral efficiency [20] is equivalent to solve

$$\minimize_{\mathbf{F}_{RF}^{(u)}, \mathbf{F}_{BB}^{(u)}} \|\mathbf{r}_{opt}^{(u)} - \mathbf{F}_{RF}^{(u)} \mathbf{F}_{BB}^{(u)}\|^2$$

subject to $\|\mathbf{F}_{RF}^{(u)}[m,n] = \frac{1}{\sqrt{N_T}} \mathbf{F}_{RF}^{(u)} \mathbf{F}_{BB}^{(u)}\|^2 = M$ \hspace{1cm} (5)

which is solved for $u \in U$ to obtain the analog precoders $\mathbf{F}_{RF}^{(u)} \in \mathbb{C}^{N_R \times U}$.
where $w^{(u)}_{RF} = (f^{(u)}_{RF}H_u, f^{(u)}_H, \sigma^2_u)^{-1}f^{(u)}_{RF}H_u$ is the $N_R \times 1$ optimum combiner using minimum-mean-squared-error (MMSE) estimation, which is used to obtain unconstrained combiner [23].

\[
\mathbf{w}^{(u)}_{BB}(\mathbf{A}_u, \mathbf{w}^{(u)}_{RF}) = (\mathbf{w}^{(u)}_{RF}A_y, \mathbf{w}^{(u)}_{RF}) - 1(\mathbf{w}^{(u)}_{RF}A_y, \mathbf{w}^{(u)}_{RF}) \mathbf{MSE} \in \mathbb{C}^M \text{ is used to compute all analog combiners. Once } \mathbf{w}^{(u)}_{RF} \text{ is found, the receiver only uses a single column of } \mathbf{w}^{(u)}_{RF} \text{ as a combiner vector. The covariance matrix of the received signal in (4), for which the analog-}
\]

The optimization problems in [5] and [6] are effectively solved via alternating minimization techniques, such as manifold optimization (MO) or “Manopt” algorithm [13] [4] [24]. This is optimal in the sense that it achieves the minimum Euclidean distance between the unconstrained and hybrid beamformers.

To exploit SPIM, only one column of $\mathbf{F}^{(u)}_{RF}$ and $\mathbf{w}^{(u)}_{RF}$ is selected for the i-th spatial pattern as $f^{(u)}_{RF}(i) = f^{(u)}_{RF}(a(i, u))$ and $w^{(u)}_{RF}(i) = w^{(u)}_{RF}(a(i, u))$. Denote $B(i) = \{b^{(u)}(u, i) \} \in \mathbb{R}^M$ to be the set of selected paths for all possible path configurations of the u-th user for $i = 1, \ldots, M$. Then, the entries of $b^{(u)}(i) \in \mathbb{R}^M$ are all zeros except the i-th element, which is unity and denotes selection of the i-th spatial path for the u-th user.

In order to mitigate interference among the users, the baseband beamformer needs to be updated by computing the effective channel

\[
\mathbf{H}_{RF}^{(i)} = \begin{bmatrix} h_{RF}^{(i)}(1) \\ \vdots \\ h_{RF}^{(i)}(U) \end{bmatrix} \in \mathbb{C}^{U \times 1}, \text{ where } h_{RF}^{(i, u)} = \mathbf{w}^{(u)}_{RF}(i) \mathbf{H}_{RF}^{(i)} \in \mathbb{C}^{U \times 1} \text{ where } \mathbf{F}^{(i)}_{RF} = \{f^{(i)}_{RF}(1), \ldots, f^{(i)}_{RF}(U)\}. \text{ Finally, the baseband pre-}
\]

4. BEAMFORMING VIA FEDERATED LEARNING

The learning model accepts \mathbf{H}_u as input and yields $\mathbf{F}^{(i)} = \mathbf{F}^{(i)}_{RF} \mathbf{F}^{(i)}_{BB} \in \mathbb{C}^{NT \times U}$ and $w^{(u)}_{RF}$ at the output. Define D_u as the local dataset of the u-th user, in which the l-th element is $D_l = (\mathbf{X}^{(i)}_l, \mathbf{y}^{(i)}_l)$, where $\mathbf{X}^{(i)}_l$ and $\mathbf{y}^{(i)}_l$ are the input and output for $l = 1, \ldots, D_u$. Then $D_u = [D_u]$ is the size of the local dataset. The input $\mathbf{X}_l \in \mathbb{R}^{N_R \times N_T \times 3}$ can be constructed by “three-channel” data, whose the first and second “channel” can be designed as the element-wise real and imaginary part of \mathbf{H}_u, as $[\mathbf{X}^{(i)}_l]_1 = \text{Re}(\mathbf{H}_u)$ and $[\mathbf{X}^{(i)}_l]_2 = \text{Im}(\mathbf{H}_u)$, respectively. The third channel can be constructed as $[\mathbf{X}^{(i)}_l]_3 = \mathbb{I}(\mathbf{H}_u)$, which is demonstrated to improve the feature extraction performance [19] [27]. Then, the output $\mathbf{y}_l \in \mathbb{R}^{(2N_TU+N_T) \times 1}$ is constructed as $\mathbf{y}_l = \text{vec} \{ \text{vec}(\text{Re}(\mathbf{F}^{(i)})), \text{Im}(\mathbf{F}^{(i)})) \text{T} \}$, $\mathbf{w}^{(u)}_{RF}$. If $\mathbf{F}^{(i)}$ solves the problem for the i-th communication round of the model training, i.e., minimize $\frac{1}{C} \sum_{i=1}^{C} \mathcal{L}(f^{(i)}(\bar{\Theta}_{t-1}), t^{(i)})$, with the use of the local gradient $g_u(\bar{\Theta}_t)$, where $\bar{\Theta}_t$ denotes the model parameters at the t-th iteration and $\mathcal{L}()$ is the loss function. Then, the u-th user transmits $g_u(\bar{\Theta}_t)$ to the BS. Once the gradient data from all users are collected, the BS finally incorporates $g_u(\bar{\Theta}_t)$ for $u \in U$ to update $\bar{\Theta}_t$ by $\bar{\Theta}_{t+1} = \bar{\Theta}_t - \eta \frac{1}{U} \sum_{u=1}^{U} g_u(\bar{\Theta}_t)$, where $g_u(\bar{\Theta}_t) = \frac{1}{N_u} \mathbb{E} \sum_{i=1}^{N_u} \mathcal{L}(f^{(i)}(\bar{\Theta}_t), t^{(i)})$ for learning rate η. After model aggregation, the BS returns the updated model parameters $\bar{\Theta}_{t+1}$ to the users, which will be used for the computation of the gradients in the next iteration.

The proposed network architecture is a CNN comprised of 10 layers. The first layer is the input layer, which accepts the input data of size $N_M \times N_T \times 3$. The convolutional layers with $N_{SF} = 128$ filters, each of which employs a 3×3 kernel for 2-D spatial feature extraction. The [3, 5, 7]-th layers are the normalization layers. The eighth layer is a fully connected layer with $N_{FCL} = 1024$ units, whose main purpose is to provide feature mapping. The ninth layer is a dropout layer with $\kappa = 1/2$ probability. The dropout layer applies an $N_{FCL} \times 1$ mask on the weights of the fully connected layer, whose elements are uniform randomly selected from $[0, 1]$. As a result, at each iteration, DL randomly selects different set of weights in the fully connected layer, thereby reducing the size of $\bar{\Theta}_t$ and $g_u(\bar{\Theta}_t)$, thereby, reducing model transmission overhead. Finally, the last layer is output regression layer, yielding the output channel estimate of size $(2N_TU + N_T) \times 1$. Once the training is completed, each user feeds the model with \mathbf{H}_u and obtains its beamformer $f^{(i)}_{RF}$ and $\mathbf{F}^{(i)}$, which is fed back to the BS.

We further examine the transmission overhead which can be defined as the size of the transmitted data during model training. Let T_{FL} and T_{CL} denote the transmission overhead of FL and CL, respectively. Define $D = \sum_{u \in U} D_u$ so that $T_{FL} = (3N_T N_R + 2N_T U + N_T) D$, which includes the number of symbols in the uplink transmission of the training dataset D from the users to the BS. In contrast, the transmission overhead of FL includes the transmission of $g_u(\bar{\Theta}_t)$ and \mathbf{H}_u in uplink and downlink communication for $t = 1, \ldots, T$, respectively. Finally, T_{FL} is given by $T_{FL} = 2 P T U$. We can see that the dominant terms are D and P, which are the number of training data pairs and the number of CNN parameters, respectively. While D can be adjusted according to the amount of data at the users, P is usually unchanged during model training. Here, $P = N_{FCL}(C N_{SF} W_x W_y) + C N_{SF} W_x W_y N_{FCL}$, where $N_{FCL} = 3$ is the number of convolutional layers and $C = 3$ is the number of spatial “channels”. $W_x = W_y = 3$ are the 2-D kernel sizes. As a result, we have $P = 600, 192$ whereas $P = 1, 190, 016$ if dropout layer is removed.

5. NUMERICAL SIMULATIONS

We compared the performance of FL-based SPIM-MIMO with mmWave-MIMO and the state-of-the-art model-based SPIM-MIMO [7] in terms of spectral efficiency averaged over 1000 Monte Carlo trials. The local dataset of each user includes $N = 200$ different channel realizations for $U = 8$ users. The number of antennas at the BS and the users are $N_T = 128$ and $N_R = 9$, respectively. We select the number of available spatial paths for each user as $M = 2$. The location of each user is selected as $\phi_m \in \Phi_u$ and $\varphi_m \in \Psi_u$, for $m = 1, \ldots, M$, where Φ_u and Ψ_u are the equally-divided subregions of the angular domain $\Theta = \bigcup_{u \in U} \Phi_u = \bigcup_{u} \Psi_u$, $\Theta \in [30^\circ, 150^\circ]$ as [16]. During training, each channel realization
We note from both Fig. 2 and Fig. 3 that our proposed FL approach
performs better than its labels. As a result, mmWave-MIMO becomes favorable.

Once the training is completed, the labels of the validation data (i.e.,
480,000 blocks) are used in prediction stage. Since FL cannot
perform better than the model-based method due to the loss
during model training. It is worth noting that the performance of
FL is upper bounded by the model-based technique since FL cannot
adapt its beamformer design in multi-user SPIM-MIMO systems. Whereas the for-
mer leverages MO for beamformer design, the latter employs FL to
efficiently train the learning model. Our experiments showed that
the proposed approach has superior performance than the state-of-
the-art SPIM techniques as well as outperforming the conventional
mmWave-MIMO systems in terms of spectral efficiency. Further-
more, the proposed FL approach exhibits a more communication-
efficient learning method than conventional CL for model training.

We demonstrated that FL with (without) DL enjoys approximately
(3 · 128 · 9 + 2 · 128 · 8 + 9) · 960,000 ≈ 5.3 × 10⁹, respectively. This
clearly shows the effectiveness of FL over CL, i.e., approximately
10 times lower transmission overhead. In Fig. 4 we visualize the
number of transmitted symbols with respect to transmission blocks,
each of which carries 1000 symbols. We see that FL completes model
training quicker than CL after approximately 480,000 and 952,000
transmission blocks with and without DL, respectively.

6. SUMMARY

We presented both model-based and model-free frameworks for beam-
former design in multi-user SPIM-MIMO systems. Whereas the for-
ermer leverages MO for beamformer design, the latter employs FL to
efficiently train the learning model. Our experiments showed that
the proposed approach has superior performance than the state-of-
The proposed CNN model is realized and trained in MATLAB on
a PC with a 2304-core GPU. For CL, we use the stochastic gradient
descent (SGD) algorithm with momentum of 0.9 and the mini-batch
size \(M_B = 128 \), and update the network parameters with learning
rate 0.001. For FL, we train the CNN for \(T = 50 \) iterations/rounds.
Once the training is completed, the labels of the validation data (i.e.,
20% of the whole dataset) are used in prediction stage.

It was shown in [2] that SPIM-MIMO outperforms mmWave-
MIMO for \(M = 2 \) with \(\gamma_1 \leq 4\gamma_2 \), where \(\gamma_m = \gamma_{u,m} \) for \(u \in U \)
and \(m = 1, 2 \). Figure 2 shows the spectral efficiency with respect
to SNR when the spatial path gains for all users are selected as
\(\gamma_1 = \gamma_2 = 0.5 \). Note that both SPIM-MIMO and mmWave-MIMO
use the same number of RF chains while SPIM-MIMO exploits the
spatial distribution of the paths. In contrast, mmWave-MIMO designs
the precoders in accordance to the largest path gains, i.e., \(\gamma_1 \), in our
case. We observe that Wang et al. provides less spectral efficiency
than the proposed model-based approach because it employs a single
baseband beamformer for all spatial patterns whereas the proposed
model-based approach updates the baseband beamformer \(\mathbf{F}^{[u]}_{bb} \) in
accordance to the different spatial patterns as well as suppressing
the interference among the users. The proposed FL approach has
slight performance loss than the model-based method due to the loss
during model training. It is worth noting that the performance of
FL is upper bounded by the model-based technique since FL cannot
perform better than its labels.

In Fig. 3 we compare SPIM-MIMO and mmWave-MIMO with
respect to \(\gamma_1 \) when \(\gamma_2 = 1 - \gamma_1 \). We observe that both techniques
meet when \(\gamma_1 = 4\gamma_2 \) for \(\gamma_1 = 0.8 \). This clearly shows that the usage
of SPIM is appropriate if the path gain are close. The SPIM-MIMO
performance degrades as long as the difference between the path
gains are large. As a result, mmWave-MIMO becomes favorable.
We note from both Fig. 2 and Fig. 3 that our proposed FL approach
closely follows the model-based technique.

Next, we present the effectiveness of FL-based model training
by comparison to the CL-based training. According to the analysis
in Sec. 5, the transmission overhead of FL and CL are
\(2PTU = 2 \cdot 600, 192 \cdot 50 \cdot 8 \approx 480 \times 10^6 \) and
\((3N_T N_R + 2N_T U + N_R) \cdot D = 952,000 \) blocks.

We note from both Fig. 2 and Fig. 3 that our proposed FL approach
closely follows the model-based technique.
7. REFERENCES

[1] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” *IEEE J. Sel. Topics Signal Process.*, vol. 10, no. 3, pp. 436–453, 2016.

[2] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large arrays,” *IEEE Signal Process. Mag.*, vol. 30, no. 1, pp. 40–60, 2013.

[3] E. Basar, “Index modulation techniques for 5G wireless networks,” *IEEE Commun. Mag.*, vol. 54, no. 7, pp. 168–175, 2016.

[4] J. A. Hodge, K. V. Mishra, and A. I. Zaghloul, “Intelligent Time-Varying Metasurface Transceiver for Index Modulation in 6G Wireless Communications,” *IEEE Antennas and Wireless Propagation Letters*, 2020, in press.

[5] L. He, J. Wang, and J. Song, “Spatial Modulation for More Spatial Multiplexing: RF-Chain-Limited Generalized Spatial Modulation Aided MM-Wave MIMO With Hybrid Precoding,” *IEEE Trans. Commun.*, vol. 66, no. 3, pp. 986–998, 2018.

[6] J. A. Hodge, K. V. Mishra, and A. I. Zaghloul, “Reconfigurable metasurfaces for index modulation in 5G wireless communications,” in *IEEE Int. Appl. Comput. Electromagn. Soc. Symp.*, 2019, pp. 1–2.

[7] J. Wang, L. He, and J. Song, “Towards Higher Spectral Efficiency: Spatial Path Index Modulation Improves Millimeter-Wave Hybrid Beamforming,” *IEEE J. Sel. Topics Signal Process.*, vol. 13, no. 6, pp. 1348–1359, 2019.

[8] Y. Ding, V. Fusco, A. Shitov, Y. Xiao, and H. Li, “Beam Index Modulation Wireless Communication With Analog Beamforming,” *IEEE Trans. Veh. Technol.*, vol. 67, no. 7, pp. 6340–6354, 2018.

[9] S. Gao, X. Cheng, and L. Yang, “Spatial Multiplexing With Limited RF Chains: Generalized Beamspace Modulation (GBM) for mmWave Massive MIMO,” *IEEE J. Sel. Areas Commun.*, vol. 37, no. 9, pp. 2029–2039, 2019.

[10] K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, and S. A. Vorobyov, “Toward millimeter wave joint radar-communications: A signal processing perspective,” *IEEE Signal Process. Mag.*, vol. 36, no. 5, pp. 100–114, 2019.

[11] W. Wang and W. Zhang, “Spatial Modulation for Uplink Multi-User mmWave MIMO Systems With Hybrid Structure,” *IEEE Trans. Commun.*, vol. 68, no. 1, pp. 177–190, 2020.

[12] J. Zhu, P. Yang, Y. Xiao, X. Lei, and Q. Chen, “Low RF-Complexity Receive Spatial Modulation for Millimeter-Wave MIMO Communications,” *IEEE Commun. Lett.*, vol. 22, no. 7, pp. 1338–1341, 2018.

[13] X. Yu, J. Shen, J. Zhang, and K. B. Letaief, “Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems,” *IEEE J. Sel. Topics Signal Process.*, vol. 10, no. 3, pp. 485–500, April 2016.

[14] A. M. Elbir, “A Deep Learning Framework for Hybrid Beamforming Without Instantaneous CSI Feedback,” *IEEE Trans. Veh. Technol.*, pp. 1–1, 2020.

[15] A. M. Elbir and K. V. Mishra, “Cognitive Learning-Aided Multi-Antenna Communications,” *arXiv preprint arXiv:2010.03131*, 2020.

[16] A. M. Elbir and S. Coleri, “Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO,” *IEEE Commun. Lett.*, pp. 1–1, 2020.

[17] A. M. Elbir and S. Coleri, “Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO,” *arXiv preprint arXiv:2008.10846*, 2020.

[18] “Expanding the reach of federated learning by reducing client resource requirements,” *arXiv preprint arXiv:1812.07210, year=2018*.

[19] A. M. Elbir and K. V. Mishra, “Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks,” *IEEE Trans. Wireless Commun.*, vol. 19, no. 3, pp. 1677–1688, March 2020.

[20] A. M. Elbir and A. Papazafeiropoulos, “Hybrid Precoding for Multi-User Millimeter Wave Massive MIMO Systems: A Deep Learning Approach,” *IEEE Trans. Veh. Technol.*, vol. 69, no. 1, pp. 552–563, 2020.

[21] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-learning-based millimeter-wave massive MIMO for hybrid precoding,” *IEEE Trans. Veh. Technol.*, vol. 68, no. 3, pp. 3027–3032, 2019.

[22] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” *IEEE Trans. Wireless Commun.*, vol. 14, no. 11, pp. 6481–6494, 2015.

[23] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” *IEEE Trans. Wireless Commun.*, vol. 13, no. 3, pp. 1499–1513, 2014.

[24] A. M. Elbir, K. V. Mishra, M. R. B. Shankar, and B. Ottersten, “Online and Offline Deep Learning Strategies For Channel Estimation and Hybrid Beamforming in Multi-Carrier mm-Wave Massive MIMO Systems,” *arXiv preprint arXiv:1912.10036*, 2019.

[25] A. M. Elbir, A. Papazafeiropoulos, P. Courtestis, and S. Chatzinotas, “Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems,” *IEEE Wireless Commun. Lett.*, vol. 9, no. 9, pp. 1447–1451, 2020.

[26] K. Venugopal, A. Alkhateeb, N. González Prelcic, and R. W. Heath, “Channel estimation for hybrid architecture-based wideband millimeter wave systems,” *IEEE J. Sel. Areas Commun.*, vol. 35, no. 9, pp. 1996–2009, 2017.

[27] A. M. Elbir, “CNN-based precoder and combiner design in mmWave MIMO systems,” *IEEE Commun. Lett.*, vol. 23, no. 7, pp. 1240–1243, 2019.