Vibrio cholerae Persisted in Microcosm for 700 Days Inhibits Motility but Promotes Biofilm Formation in Nutrient-Poor Lake Water Microcosms

Mohammad Jubair1, Kalina R. Atanasova2, Mustafizur Rahman1, Karl E. Klose3, Mahmuda Yasmin4, Özlem Yilmaz2,5, J. Glenn Morris Jr.5, Afsar Ali1,5*

1 Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America, 2 Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America, 3 Department of Biology, The University of Texas at San Antonio, Texas, United States of America, 4 Department of Microbiology, University of Dhaka, Dhaka, Bangladesh, 5 Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America

Abstract

Toxigenic *Vibrio cholerae*, ubiquitous in aquatic environments, is responsible for cholera; humans can become infected after consuming food and/or water contaminated with the bacterium. The underlying basis of persistence of *V. cholerae* in the aquatic environment remains poorly understood despite decades of research. We recently described a “persister” phenotype of *V. cholerae* that survived in nutrient-poor “filter sterilized” lake water (FSLW) in excess of 700-days. Previous reports suggest that microorganisms can assume a growth advantage in stationary phase (GASP) phenotype in response to long-term survival during stationary phase of growth. Here we report a *V. cholerae* GASP phenotype (GASP-700D) that appeared to result from 700 day-old persister cells stored in glycerol broth at −80 °C. The GASP-700D, compared to its wild-type N16961, was defective in motility, produced increased biofilm that was independent of oxidative stress when grown specifically in FSLW (p<0.005). We propose that *V. cholerae* GASP-700D represents cell populations that may better fit and adapt to stressful survival conditions while serving as a critical link in the cycle of cholera transmission.

Citation: Jubair M, Atanasova KR, Rahman M, Klose KE, Yasmin M, et al. (2014) *Vibrio cholerae* Persisted in Microcosm for 700 Days Inhibits Motility but Promotes Biofilm Formation in Nutrient-Poor Lake Water Microcosms. PLoS ONE 9(3): e92883. doi:10.1371/journal.pone.0092883

Editor: Dongsheng Zhou, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China

Received November 15, 2013; Accepted February 26, 2014; Published March 25, 2014

Copyright: © 2014 Jubair et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a Department of Defense grant (C0654_12_UN) awarded to Afsar Ali, and National Institute of Health (NIH) grants R01 AI097405 awarded to J. Glenn Morris Jr. and R01 AI039129 awarded to R. Bradley Sack at Johns Hopkins University. Afsar Ali is the subcontract PI of R01 AI039129 grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aali@epi.ufl.edu

Introduction

Cholera is a major public health threat worldwide, particularly in countries where safe drinking water, adequate sanitation and hygiene are suboptimal [1]. Cholera toxin (CT)-producing *V. cholerae* strains, generally in serogroups O1 and O139, are the cause of epidemic cholera. *V. cholerae* has two life styles, including transient passage through the human intestine where it causes profuse diarrhea (i.e. cholera), and a second existence in aquatic environments, including fresh, estuarine and marine environments [1,2,3]. In aquatic reservoirs, the microorganisms can survive either in planktonic (free-living) form or in biofilms [2,3]. Available data suggest that the bacteria survive between epidemics in these environments, particularly during inter-epidemic period, is poorly understood.

In this context, it has been suggested that *V. cholerae* can enter into a viable but non-culturable state (VBNC) in response to nutrient starvation and/or cold temperature [4,5]; however, the resuscitation of VBNC, under laboratory conditions, is inconsistent, raising questions about the role of the VBNC state in cholera epidemiology [6,7]. *V. cholerae* can also switch from a smooth colony type to a “rugose” (wrinkled) variant characterized by copious production of exopolysaccharide conferring resistance to chlorine, osmotic and oxidative stresses [8,9,10]. However, the role(s) of rugose variant of *V. cholerae* in epidemic cholera is limited because not all *V. cholerae* strains are capable of switching to rugose variant even in a medium promoting high-frequency rugose production [9].

Amid this conundrum, we recently reported that a subset of culturable *V. cholerae* assume what we have termed a “persister” phenotype in a “filter sterilized” lake water (FSLW) microcosm model [11]. In that study we found that only 13% of the microcosms yielded cells that persisted in excess of 700 days while 87% of the microcosms resulted in the death of cells by 120 days. Furthermore, we observed that persisting cells in 700-day old microcosms expressed a small colony phenotype associated with very small rod shaped cells with peritrichous flagella and a high degree of cell aggregation. In contrast, cells persisting in microcosms for 24 h exhibited normal colony phenotype with heterogeneous mixtures of cells with predominantly long helical cells with bipolar flagella [11]. A “growth advantage in stationary phase” (GASP) phenotype describes microorganisms that survive...
long-term in a stationary growth phase under stressful conditions [12,13,14]. For further analysis of 700 day-old cells, we subcultured the cells from microcosms onto L-agar and subsequently stored them in glycerol broth at −80°C. As we were not certain if 700 day-old persister cells of microcosm origin will retain their genetic and phenotypic traits unchanged upon storage in glycerol broth, for our convenience, we refer this glycerol-stored cells to GASP-700D phenotype; in contrast, wild-type *V. cholerae* N16961S strain grown overnight statically in FSLW at room temperature will be henceforth termed as N16961S-24 (Table 1).

Persister cells in other human pathogens exhibited biofilm formation conferring resistance to environmental stresses [15,16,17,18]. In *V. cholerae* the positive association of polar flagellum to biofilm formation has been demonstrated [19]. To better understand the GASP-700D phenotype of *V. cholerae* and to compare the differences, if any, between N16961S-24 and GASP-700D, we investigated the role(s) of novel flagella elicited by N16961S-24 and GASP-700D, respectively [11], in motility and biofilm formation. Here, we provide evidence that GASP-700D showed no motility in soft agar; produced biofilm only in nutrient-poor FSLW; and conferred resistance to oxidative stress when compared to N16961S-24.

Materials and Methods

Bacterial Strains and Growth Conditions

Bacterial strains, including *V. cholerae* wild-type strain N16961S and its isogenic mutants (obtained either natural selection and/or

Strain or Plasmid	Description	Reference
V. cholerae strains		
N16961S	A wild-type, smooth, O1 El Tor strain isolated in Bangladesh in 1971	[9]
N16961S-24	A growth of N16961S in nutrient-poor “filter sterilized” lake water incubated overnight statically at room temperature	This study
N16961R	A rugose variant of N16961S strain	[24]
N16961R-24	A growth of N16961R in nutrient-poor “filter sterilized” lake water incubated overnight statically at room temperature	This study
GASP-700D	700 days-old N16961S culture persisting in nutrient-poor FSLW was grown on L-agar and subsequently stored in FSLW supplemented with 30% glycerol at −80°C	[11]
AA212	A ΔflaA null mutation in the background of N16961S strain	This study
AA215	A ΔvpsR (420 bp internal in-frame deletion) created in the N16961S strain	This study
AA216	A ΔvpsR (420 bp internal in-frame deletion) created in the N16961R	This study
AA217	A GASP-700DΔvpsR (420 bp internal in-frame deletion) created in the background of GASP-700D strain	This study
AA218	A ΔvpsA (VC_0917) in-frame null mutation was created in N16961S strain	This study
AA219	A ΔvpsA (VC_0917) in-frame null mutation was created in N16961R strain	This study
AA220	A GASP-700DΔvpsA (VC_0917) in-frame null mutation was created in the background of GASP-700D strain	This study
E. coli strains		
DH5α	recA ΔlacZ169 prophage lacZΔM15	Gibco, BRL
S17-1 λ pir	Pro hsdR hsdM’ Tmp’ Str’	[41]
Plasmids		
pWSK29	Low-copy-number vector, Amp’, ori pSC101	[23]
pCVD442	Suicide vector, ori R6K, Amp’, sacB	[42]
pKEK93	ΔfluA-Cm in pCVD442	[20]
pAA69	A 560-bp PCR fragment (SacII/XbaI) containing the 5’-end of vpsR gene of N16961 cloned into similarly digested pWSK29, Amp’	This study
pAA72	A 540-bp PCR fragment (SacII/SpeI) fragment upstream of vpsA gene of N16961 cloned into similarly digested pWSK29, Amp’	This study
pAA73	A 520-bp PCR fragment (XbaI-BamH1) was cloned into similarly digested pAA69, resulting in a plasmid (pAA73) containing 420-bp internal in-frame deletion. Amp’	This study
pAA74	A 360-bp PCR fragment (SpeI-EcoR1) downstream of vpsA was cloned into similarly digested pAA72, resulting in a plasmid (pAA74), Amp’	This study
pAA77	A 900-bp PCR fragment (SacII-SalI) from pAA74 was cloned into similarly digested pCVD442, Amp’	This study
pAA78	A 1080-bp PCR fragment (SacII-SalI) from pAA73 was cloned into similarly digested pCVD442, Amp’	This study
created by defined genetic mutations) used in this study are listed in Table 1. As reported earlier, we generated *V. cholerae* N16961 persisters (in excess of 700 days) in “filter sterilized” lake water microcosm model. Briefly, aliquots (500 ml) of lake water were sterilized using Nalgene 0.22 μm membrane filter units (Nalgene), and the microcosms were prepared as follows: 50 ml of “filter sterilized” lake water (FSLW) was transferred into a sterile 250 ml Erlenmeyer flask; for inoculum preparation a single colony of *V. cholerae* N16961 strain, obtained from L-agar grown overnight at 37°C, was inoculated into 3 ml L-broth. The culture was incubated overnight at 37°C with a shaking speed of 250 rpm, spun down and the resulting pellet was washed 2X in saline (0.85% NaCl), reconstituted in 3 ml saline, appropriately diluted, and 50 μl of diluted culture was inoculated into the microcosm flasks containing 50 ml FSLW. As confirmed by plate counts, the microcosms were prepared as follows: 50 ml of FSLW was transferred into a sterile 250 ml Erlenmeyer flask; for inoculum preparation a single colony of *V. cholerae* N16961 strain, obtained from L-agar grown overnight at 37°C, was inoculated into 3 ml of L-broth. The culture was incubated overnight at 37°C with a shaking speed of 250 rpm, spun down and the resulting pellet was washed 2X in saline (0.85% NaCl), reconstituted in 3 ml saline, appropriately diluted, and 50 μl of diluted culture was inoculated into the microcosm flasks containing 50 ml FSLW. As confirmed by plate counts, initial *V. cholerae* concentrations in the microcosms ranged from 10^3 to 10^6 cfu/ml. The culturable cells from microcosm were determined at intervals using standard plate counts. The 700 day-old cells were subcultured on L-agar and stored in glycerol broth at −80°C. While we cannot be certain that this is true for all GASp-700D cells, we observed that GASp-700D exhibited small colony phenotypes on L-agar for at least four consecutive days of subculture both at room temperature and at 37°C. However, when the cells were inoculated into L-broth and incubated overnight at 37°C with a shaking speed of 250 rpm, a mixture of small and large colonies were observed on L-agar upon plating. All the strains used in this study were subcultured from glycerol stock at −80°C onto L-agar and incubated overnight at 37°C before being used for specific experiments. As needed, antibiotic was added to the bacterial cultures as follows: ampicillin (100 μg/ml) and polymyxin B (50 U/ml).

Genetic Manipulations

A ΔflaA mutant (AA212; Table 1) was created in the background of N16961S strain (Table 1) using a ΔflaA gene targeting vector described previously [20]. For creating in-frame mutation in *hydrD*/*vpsR* [8,21] and in a rugosity-associated gene, *vpsA* (VC0917, encoding UDP-N-acetylgalactosamine 2-epimerase [sevC]) [22] in the back ground of N16961S, N16961R and GASp-700D (Table 1), a two-step PCR cloning strategy was used. Briefly, two PCR products flanking an internal deletion (420-bp) in *vpsR* were engineered. Each PCR product carries a restriction endonuclease site at its 5’ end; however, 3’ ends of the forward and reverse PCR products carried a common restriction site to facilitate deletion mutation. For *vpsR*, *SacII* and *XbaI* sites were introduced at 5’ and 3’ ends, respectively, of the forward PCR product amplicon (560-bp) while 5’ and 3’ ends of reverse PCR product (520-bp) were introduced with *XbaI* and *BamHI* sites, respectively. Primers aa212 and aa213 (Table S1) were used to amplify forward PCR fragment using N16961S chromosomal DNA as a template with standard PCR conditions. The PCR product was purified using Qiaquick PCR purification kit (Qiagen, Valencia, CA). The purified PCR product was digested with *SacII* and *XbaI*, the digested product was purified, and the PCR product was ligated with a similarly digested vector, pWSK29, [23] resulting in a plasmid (pAA69). The plasmid was transformed into *Escherichia coli DH5α* as described previously [24]. Next, two convergent PCR primers, including aa214 and aa215 (Table S1) were used to amplify the reverse PCR product; the amplicon was purified and digested with *XbaI* and *BamHI*. The digested products were purified and ligated into a similarly digested plasmid (pAA69), resulting in a plasmid pAA73 containing a 420-bp internal deletion of *vpsR*. The plasmid was transformed into DH5α. Subsequently, plasmid pAA73 was digested with *SacII* and *SalI* to retrieve a 1080-bp fragment and the fragment was gel purified. The purified fragment was ligated into a similarly digested suicide vector, pCVD442, [23] and transformed into an *E. coli* S17 λ pir resulting in a plasmid pAA78 (Table 1). *E. coli* S17 λ pir carrying pAA78 was conjugated to *V. cholerae* N16961S, N16961R and GASp-700D. Selection of transconjugants, counter selection, and chromosomal mutation using homologous recombination of *vpsR* was performed as described previously [21,24]. Mutants sustained an internal in-frame deletion in *vpsR* (SΔvpsR, mutation in smooth background [AA215, Table 1], RΔvpsR, mutation in rugose background [AA216] and GASp-700DΔvpsR, mutation in GASp-700D background [AA217]) were verified by PCR and DNA sequencing as described previously [24]. A similar approach was also used for creating a null mutation in the *vpsA* gene in the background of N16961S, N16961R and GASp-700D, resulting in the mutants AA218, AA219 and AA220, respectively. Primers (aa264 and aa265, aa266 and 267) used to create null mutation in *vpsA* are listed in Table S1.

Motility Assay

Motility of *V. cholerae* strains was determined using motility agar plates as described previously [24] with minor modifications. The experiment was performed with cells grown both in L-broth and FSLW. Briefly, N16961S, N16961R, GASp-700D and ΔflaA mutant were grown in L-broth and incubated overnight statically at room temperature. As for FSLW, the strains were first subcultured onto L-agar; a single colony from L-agar was grown in 3 ml L-broth and incubated overnight statically at room temperature. Subsequently, the cultures were spun down at 7,000 rpm for 5 min in a table top centrifuge; the pellet was washed 2X with FSLW and resuspended into 3 ml FSLW and the culture was incubated overnight statically at room temperature. An inoculating wire was dipped into each culture and then stabbed into the motility agar plate. The plates were incubated for 8 h and overnight at 37°C. Zones of migration of bacterial strains around the inoculating sites were measured at 8 h and after overnight incubation of the plates. If no zone was detected, a block of agar was cut around the inoculating site, homogenized in saline (0.85% NaCl), appropriately diluted in saline, and then plated on L-agar to determine if any culturable cells were survived in the inoculation site.

Quantitative Real-time Reverse Transcription PCR (qRT-PCR)

For qRT-PCR, *V. cholerae* strains, including N16961S-24, N16961R-24 and GASp-700D (Table 1) were grown in FSLW overnight statically at room temperature. Total RNA was extracted and purified from each culture using the RNasy kit (Qiagen, Valencia, CA); the contaminating DNA in the preparation was eliminated on-column by DNase digestion. Total RNA (10 ng) was converted to cDNA, and the RT-PCR assay were performed using iScript one-step RT-PCR kit with SYBR green (Bio-Rad, Hercules, CA) and CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA) following manufacturer’s instructions. Primers used in this study are listed in Table S1. For each sample, the mean cycle threshold of the test transcript was normalized to that of *toxR* (*toxR* was equally expressed both in L-broth and in FSLW) and presented relative to *V. cholerae* N16961S-24 strain that has arbitrarily been taken as 1 (Figure S1). Values above 1 or less than 1of a selected gene indicate that the transcript was present in higher or lower numbers, respectively, than that of control strain. Data are based on three independent experiments. Previous report using qPCR demonstrated that *V. cholerae* expressed *phoB* and Pvt system genes while repressed *lp* genes when grown in “filter
sterilized pond water microcosms compared to its growth in nutrient-rich L-broth [7]. To validate our qRT-PCR data, we compared the differential gene expression by growing V. cholerae N16961S strain in nutrient-rich L-broth incubated overnight statically, and in nutrient-deficient FSLW under identical growth conditions. Expression of transcripts was determined as described above except that the threshold of transcript was presented relative to V. cholerae N16961S strain grown in L-broth.

Biofilm Assays

Quantitative assessment of biofilm produced by V. cholerae strains grown both in L-broth and in FSLW was measured as described previously [19] with modifications. Twenty-four well polystyrene plastic plates (Corning Incorporated, Corning, NY) were used as the surface for bacterial attachment. For assessment of biofilm produced in L-broth, V. cholerae strains, including N16961S, ΔvpsR, ΔvpsA, N16961R, ΔvpsR, ΔvpsA, GASP-700D, GASP-700D ΔvpsR and GASP-700DΔvpsA (Table 1) were examined. Biofilm assay was performed as described previously [19]. For measurement of biofilm produced in FSLW, V. cholerae strains, including N16961S-24, ΔvpsR, ΔvpsA, N16961R-24, ΔvpsR, ΔvpsA, GASP-700D, GASP-700D ΔvpsR and GASP-700DΔvpsA (Table 1) were investigated. Briefly, a single colony of each strain grown overnight on L-agar was inoculated into 3 ml L-broth and the cultures were incubated overnight with shaking (250 rpm) at 37°C. The culture was spun down and the pellet was washed 2X with FSLW and subsequently reconstituted into 3 ml FSLW. Fifty µl culture was then mixed to 450 µl fresh FSLW (ca. 10^8 cfu/ml) in a well of plastic plate; the culture was incubated for measurement of biofilm produced in FSLW, V. cholerae vpsA and GASP-700D strains grown both in L-broth and in FSLW was measured as described previously [19] with modifications. Twenty-four well polystyrene plastic plates (Corning Incorporated, Corning, NY) were used as the surface for bacterial attachment. For assessment of biofilm produced in L-broth, V. cholerae strains, including N16961S, ΔvpsR, ΔvpsA, N16961R, ΔvpsR, ΔvpsA, GASP-700D, GASP-700D ΔvpsR and GASP-700DΔvpsA (Table 1) were examined. Biofilm assay was performed as described previously [19]. For measurement of biofilm produced in FSLW, V. cholerae strains, including N16961S-24, ΔvpsR, ΔvpsA, N16961R-24, ΔvpsR, ΔvpsA, GASP-700D, GASP-700D ΔvpsR and GASP-700DΔvpsA (Table 1) were investigated. Briefly, a single colony of each strain grown overnight on L-agar was inoculated into 3 ml L-broth and the cultures were incubated overnight with shaking (250 rpm) at 37°C. The culture was spun down and the pellet was washed 2X with FSLW and subsequently reconstituted into 3 ml FSLW. Fifty µl culture was then mixed to 450 µl fresh FSLW (ca. 10^8 cfu/ml) in a well of plastic plate; the culture was incubated for measurement of biofilm produced in FSLW, V. cholerae vpsA and GASP-700D strains grown both in L-broth and in FSLW was measured as described previously [19] with modifications. Twenty-four well polystyrene plastic plates (Corning Incorporated, Corning, NY) were used as the surface for bacterial attachment. For assessment of biofilm produced in L-broth, V. cholerae strains, including N16961S, ΔvpsR, ΔvpsA, N16961R, ΔvpsR, ΔvpsA, GASP-700D, GASP-700D ΔvpsR and GASP-700DΔvpsA (Table 1) were examined. Biofilm assay was performed as described previously [19].
to the culture before supplementing the culture with stress ingredient, and then multiplying the result by 100.

Statistical Analysis

One-way ANOVA was performed in STATA v 12 (StataCorp, College Station Texas, USA) to determine the significant differences in diverse traits assessed in the study. Equal variance within groups was assessed using Bartlett’s test, and a Bonferroni correction was implemented to control type I error for multiple comparisons between the wild-type and its isogenic mutants or variants. A p-value of <0.005 was considered as statistically significant.

Results

Comparison of Motility between N16961S-24 and GASP-700D of *V. cholerae*

Vibrio cholerae carries a single polar flagellum required for its motility. Since we are the first to describe that *V. cholerae* can switch, in response to nutrient-starvation in FSLW, from a canonical single polar flagellum to bipolar and peritrichous flagella in N16961S-24 and GASP-700D, respectively [11], we were interested to investigate the role(s) of bipolar and peritrichous flagella, if any, in motility using motility agar. We also included a ΔflaA mutant strain that is non-motile because it lacks the major flagellin subunit [20], and a (motile) rugose variant of *V. cholerae* (N16961R). When the bacterial strains were grown in L-broth before inoculating into motility agar, both N16961S (smooth variant) and N16961R (rugose variant) were motile (Figure 1, #1 and #2), with the rugose variant exhibiting approximately 2.5-fold reduced motility, which is consistent with previous reports described by our group and others [9,28]. To our surprise GASP-700D was non-motile (Figure 1, #3). As expected, the ΔflaA mutant was non-motile (Figure 1, #4). When grown in nutrient-poor FSLW, both N16961S-24 and N16961R-24 strains demonstrated motility, with N16961S-24 exhibiting increased motility compared to the rugose variant (Figure 1, #5 and #6) further corroborating that the rugose variant is less motile than its smooth counterpart. Interestingly, GASP-700D, in contrast to N16961S-24, did not move from the point of inoculation, even after 24 h of growth in motility agar (Figure 1, #7). As expected, the ΔflaA mutant was non-motile (Figure 1, #8). Our data suggest that unlike the bipolar flagella of N16961S-24, GASP-700D did not facilitate productive motility both in L-broth and FSLW. To ensure that GASP-700D was viable at the inoculation site, we examined a block of agar consisting of the entire inoculation site as described in methods section. We obtained ca. 1×10⁶ cfu, confirming that GASP-700D was surviving inside the agar but defective in motility.

As GASP-700D exhibited no motility in soft agar, we further investigated using qRT-PCR to determine whether flagellar genes, including flaA (encodes critical flagellin), βCF (encodes regulator of Class III flagellar genes), motL and motB (encode flagellar motor) and flaC (encodes master regulator of all flagellar genes) were repressed in GASP-700D relative to N16961S-24. A previous study reported that phoB and Pst system genes of *V. cholerae* were expressed in nutrient-poor FSLW compared to nutrient-rich L-broth, whereas ctxA and tcp genes were repressed under the same conditions [7].

We first compared the relative expression of phoB, Pst-system genes, ctxA and tcp genes by N16961S-24 and GASP-700D grown in nutrient-poor FSLW to that of wild-type *V. cholerae* N16961S grown in nutrient-rich L-broth in otherwise identical growth conditions (Figure S1). The phoB and Pst-system genes were highly expressed, while tcp genes and ctxA were repressed, by N16961S-24 and GASP-700D grown in FSLW relative to N16961S grown in nutrient-rich L-broth, confirming the results of the previous study [7]. Additionally, expression of the flagellar genes, except βCF, was also down-regulated in GASP-700D, as well as in the rugose N16961R-24 variant, compared to their expression in N16961S-24 when grown in FSLW. Strikingly, βA, the master flagellar regulatory gene, was 1,000-fold down-regulated (p<0.005) in GASP-700D compared to N16961S-24, suggesting that flagellar synthesis is down-regulated in GASP-700D (Figure 2). Taken together, our results suggest that GASP-700D may have lost peritrichous flagella and/or some flagellar gene(s) might have sustained mutation(s) in GASP-700D resulting in the defect of productive motility. Indeed, microorganisms surviving for long-time in stressful stationary growth cultures can result in the selection of mutants that express GASP phenotype [12].

Comparative Assessment of Biofilm Formation between N16961S-24 and GASP-700D of *V. cholerae*

We previously reported that 700 days-old persister cells showed a high degree of cell to cell aggregation compared to N16961S-24 [11]. Furthermore, the flagella of N16961S-24 allow motility, whereas GASP-700D does not facilitate productive motility. Because *V. cholerae* motility and the polar flagellum contribute to biofilm formation [19,29], we were interested in determining the role(s) of the novel bipolar and possible non-productive/deleted peritrichous flagella elicited by N16961S-24 and GASP-700D, respectively, in biofilm formation when grown in nutrient-poor FSLW. As *V. cholerae* biofilm is produced and positively regulated by vps genes and vpsR gene, respectively, we created vpsR and vpsA in-frame deletion mutations in the background of N16961S, N16961R and GASP-700D. As expected, vpsR and vpsA mutants inhibited rugose colony phenotype (Figure 3A) [8,24]. We initially
measured biofilm production by *V. cholerae* strains, including N16961S-24, N16961R-24 and GASP-700D, and in-frame deletion mutants of the *vpsR* and *vpsA* biofilm genes, in the background of N16961S (Δ*vpsR* and Δ*vpsA*), N16961R (Δ*vpsR* and Δ*vpsA*) and GASP-700D (GASP-700DΔ*vpsR* and GASP-700DΔ*vpsA*). Figure 4B shows the quantitative analysis of biofilm formation which indicates that all strains except SAΔ*vpsR* produced increased biofilm (p<0.005) compared to N16961S-24. We stained biofilms formed by N16961S-24, N16961R-24 and GASP-700D in FSLW with ruthenium red, and examined the biofilm matrix using transmission electron microscopy (TEM) (Figure 5). Copious amounts of exopolysaccharide matrix could be detected surrounding the N16961R-24 cells, whereas very little exopolysaccharide matrix could be seen in the biofilm of N16961S-24. Likewise, GASP-700D biofilms appeared to contain very little exopolysaccharide matrix, suggesting that GASP-700D forms VPS-independent biofilms. Taken together, our data support the idea that GASP-700D produced biofilm specific to FSLW and that this biofilm is independent of VPS-mediated biofilm.

Stress Resistance

We and others have previously reported that *V. cholerae* rugose variants, that produce copious amounts of exopolysaccharide and biofilm, can resist chlorine, oxidative, and osmotic stresses [8,9,10]. As GASP-700D produced FSLW-specific biofilm, we investigated whether this phenotype, like rugose phenotype can resist diverse stresses [31,32]. To this context, we subjected GASP-700D to H₂O₂, chlorine, and NaCl stresses. We note that there were no obvious growth differences among *V. cholerae* strains grown in L-broth and examined in this study (data not shown). Interestingly, we observed that, like N16961R-24, GASP-700D was more resistant to H₂O₂ in FSLW (p<0.005) compared to N16961S-24 (Figure 6). However, unlike N16961R-24, GASP-700D was as susceptible as N16961S-24 when exposed to chlorine and osmotic stresses (data not shown).

Discussion

Recently, we reported a *V. cholerae* “persister” phenotype which is a key step in the understanding of the long-term survival of *V. cholerae* in the environment. However, substantial work still needs to be done to understand this phenotype, and to assess its role in cholera transmission. In the current study, we provide evidence...
that glycerol stored persister cells (700 days-old cells) have transitioned to what appeared to be a growth advantage in stationary phase (GASP) phenotype. Compared to its wild-type strains (N16961S-24 and N16961S), GASP-700D phenotype of *V. cholerae* exhibited: (i) non-motile phenotype, (ii) enhanced exopolysaccharide production and biofilm formation that are specific to

Figure 3. Colony morphology and associated biofilms (measured quantitatively) produced by each *V. cholerae* strain.

(A) Colony morphology: each *V. cholerae* strain was subcultured on L-agar and incubated overnight at 37°C before images were acquired; (B) Quantitative measurement of biofilm produced by each *V. cholerae* strain in nutrient-rich L-broth; and (C) Quantitative measurement of biofilm produced by each *V. cholerae* strain in nutrient-poor FSLW. All the values are expressed as means ± standard deviation (SD) from at least triplicate experiments. P-values are computed by comparing the biofilm formation of each strain with that of N1961S-24 using one-way ANOVA test. A p-value of <0.005 was considered statistically significant.

Figure 4. Topography and architecture of *V. cholerae* biofilms.

Each strain was grown in a 4-well cell culture plate containing 500 µl FSLW. A glass cover slip was dipped into each culture well and incubated overnight statically at room temperature. The glass cover slips were stained with SYTO 9 and the images were obtained using a laser scanning confocal microscopy with an excitation and emission wavelengths of 484 and 500 nm, respectively. (A) Images of x–y sections (top panels) and x–z projections of the same biofilms (bottom panels) were analyzed with DAIME software; magnification, x200. (B) Average biofilm heights (µm) for each strain measured across five random x–z sections. (C) Total volume of biofilm (µm³) for each strain calculated by x–y and x–z projections. A p-value of <0.005 was considered statistically significant.
FSLW, and independent of θφ, (iii) resistance to oxidative stress, and (iv) small colony phenotype. The storage and subculture of persister cells in glycerol broth at −80 °C may have influenced the observed phenotype seen with GASP-700D as described above.

We hypothesize that, during long-term survival (700 days) in stressful stationary culture, *V. cholerae* may have adopted two responses, including: (i) assume “persister” phenotype [11], and (ii) select GASP mutants that successfully adapt to stressful growth conditions [12]. Although we currently have no supporting evidence to conclude that GASP-700D genome has any mutation, we did observe that GASP-700D is defective in productive motility implying that GASP-700D may have possible mutation(s)/alteration in its genome. We propose that GASP-700D represents a GASP phenotype. Indeed, previous reports demonstrated that GASP phenotypes with genetic mutations are common in microorganisms surviving long-term in stressful and stationary growth phase.

The nutrient-poor growth conditions in FSLW affect the motility of *V. cholerae* even before its transition to GASP-700D in a phase-dependent manner. The smooth variant exhibited reduced motility in soft agar after 24 h growth in FSLW in contrast, the rugose variant, which normally shows reduced motility in comparison with the smooth variant, was unaltered for motility after 24 h growth in FSLW. Once the bacteria have transitioned into GASP-700D, however, they appear non-motile in this assay (Figure 1). qRT-PCR revealed a dramatic down-regulation (1000-fold) of flaA expression in GASP-700D (Figure 2). FlrA is the “master regulator” of the flagellar transcription hierarchy [33]. It is the sole Class I flagellar factor that activates σ^54^-dependent transcription of Class II flagellar genes, thus initiating flagellar synthesis. It is not known how flaA transcription is itself controlled in *V. cholerae*, but expression of the FlrA homologue FleQ in *Pseudomonas aeruginosa* has been shown to be negatively regulated by the alternate sigma factor AlgP, which results in loss of motility that is simultaneous with increased polysaccharide expression and biofilm formation [34]. It is not clear whether the reduction in flaA transcription is responsible for the non-motile phenotype, because interestingly, transcription of other flagellar genes within the transcription hierarchy, including the Class III regulator flcC, the motor genes motB and motE, and the major core flagellin, flaA, were not dramatically reduced in GASP-700D. It has been shown previously that mutation of flhG leads to the expression of multiple polar flagella, and the flaA* V. cholerae* strain appears non-motile in soft agar, possibly due to an inability to effectively coordinate flagellar function [35].

Previous studies of *V. cholerae* biofilm formation have mostly focused on nutrient-rich growth conditions either in static and/or in flow-cell methods [9,36]. Under these conditions, the rugose variant produces robust biofilms with three dimensional pillars and columns [36]. Here, we studied biofilms formed in nutrient-poor FSLW conditions that more closely mimic the natural environment of *V. cholerae* [4,37]. We found that nutrient-poor conditions promote much less biofilm formation than the nutrient-rich conditions; even with the rugose variant (Figures 3B and 3C). Our previous study demonstrated that a number of sugars, including sucrose and glucose, inhibited *V. cholerae* exopolysaccharide expression [38]. In contrast, glucose promoted biofilm production by *Staphylococcus aureus* [39,40]. Our observations suggest that physical and chemical parameters, including nutrient composition, pH, and attachment surfaces, can influence the outcome of biofilm formation by *V. cholerae*.

GASP-700D produces a well-developed biofilm in FSLW that appears predominantly coalesced rather than scattered. In contrast, the rugose variant forms well-developed but scattered biofilms (Figure 4A). However, in the absence of the VPS genes...
Δψr or ΔψdA, the rugose variant forms biofilms with similar coalesced characteristics to GASP-700D in this medium, as does a ΔψdA, GASP-700DΔψr and GASP-700DΔψdA mutants (Figures 4A and 4B). This suggests that GASP-700D and the strains lacking ψr genes form biofilms that are independent of V. cholerae 14. Zinser ER, Kolter R (2004) Evolution of microbial diversity during prolonged V. cholerae 13. Finkel SE, Kolter R (1999) Oxidative stress resistance may be due to the alternative biofilms resistant to oxidative stress than either smooth or rugose variants.

GASP-700D using qRT-PCR. N16961S was grown both

in contrast to the abundant exopolysaccharide in the rugose variant biofilms, suggesting that the GASP-700D biofilms may contain yet to be defined biofilm matrix. Such a putative extracellular matrix could drive the development of the alternative, coalescing biofilms seen in the GASP-700D which is more resistant to oxidative stress than either smooth or rugose variants. Oxidative stress resistance may be due to the alternative biofilm matrix. Ruthenium red staining failed to detect exopolysaccharide in the GASP-700D biofilms in FSLW (Figure 6), in

Supporting Information

Figure S1 Comparative analysis of the differential gene expression among V. cholerae strains N16961S and GASP-700D using qRT-PCR. N16961S was grown both in nutrient-rich L-broth and in nutrient-poor FSLW (N16961S-24) (ca. 10^8 cfu/ml), and the cultures were incubated overnight statically at room temperature. GASP-700D was grown (ca. 10^6 cfu/ml) in FSLW only. Expression of each gene was normalized to that of toxR, and subsequently compared to that of the wild-type N16961S grown in L-broth. Data represent the average results of three independent experiments and error bars indicate as means ± standard deviation (SD).

(TIF)

Table S1 Oligonucleotide primers used in this study. (DOCX)

Acknowledgments

We would like to thank Meera T. Alam for his help with antibiotic susceptibility assay. We also like to thank Mohammed H. Rashid of Emerging Pathogens Institute for his technical support, and Byung-Ho Kang and Karen Kelly of Interdisciplinary Center for Biotechnology Research (ICBRR), University of Florida at Gainesville for helping us with transmission electron microscopy. We would also like to thank Yang Yang and Alex Weppelmann of Department of Biostatistics and Environmental and Global Health, respectively, of the University of Florida at Gainesville for their help with Statistical analyses.

Author Contributions

Conceived and designed the experiments: AA. Performed the experiments: MJ KR AA. Analyzed the data: MJ KR AA. Contributed reagents/materials/analysis tools: KEK MY OA AA. Wrote the paper: JGM AA.

References

1. Morris JG Jr (2011) Cholera - Modern pandemic disease of ancient lineage. Emerg Infect Dis 17: 2099–2104.
2. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiology and Molecular Biology Reviews 62: 1301–1314.
3. Kaper JB, Morris Jr. JG, Levine MM (1995) Cholera. Clinical Microbiology Reviews 8: 48–86.
4. Colwell RR, Hsueh A (1994) Vibrios in the environment: viable but nonculturable Vibrio cholerae. In: Wachsmuth IK, Blake PA, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington: American Society for Microbiology.
5. Colwell RR, Brayton PR, Grimes DJ, Roszk DR, Hsueh SA, et al. (1985) Viable, but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3: 817–820.
6. Reidl J, Klose KE (2002) Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26: 125–129.
7. Nelson KJ, Chowdhury A, Flynn J, Schild S, Bourassa L, et al. (2000) Transmission of Vibrio cholerae is antagonized by lyphage and phage into aquatic environment. PLoS pathogens 4: 1–15.
8. Yildiz FH, Schooink GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96: 4028–4033.
9. Ali A, Rashid MH, Karalis DKK (2002) High-Frequency Rugsue Exopolysaccharide Production by Vibrio cholerae. Appl Environ Microbiol 68: 5773–5778.
10. Wai NN, Minnouc Y, Takade A, Kawabata SI, Yoshiida SI (1998) Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Applied and Environmental Microbiology 64: 3648–3655.
11. Jubbair M, Morris GJ, Ali A (2012) Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel ‘ promising ’ phenotype. PLoS ONE 7: e43187.
12. Finkel SE (2006) Long-term survival during stationary phase: evolution and the GASP phenotype. Nature reviews Microbiology 4: 113–120.
13. Finkel SE, Kolter R (1999) Evolution of microbial diversity during prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America 96: 4023–4027.
14. Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Research in microbiology 155: 328–336.
15. Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotype variability. Current Opinion in Genetics and Development 21: 768–775.
16. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999–1007.
17. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
18. Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signalling molecules. J Bacteriol 192: 1946.
19. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34: 596–595.
20. Klose KE, Mekalanos JJ (1998) Differential regulation of multiple flagellins in Vibrio cholerae J Bacteriol 170: 303–316.
21. Ali A, Mahmud ZH, Morris JR, JG, Sohmanmann S, Johnson J (2000) Sequence analysis of TnpA4 insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production. Infect Immun 68: 6837–6846.
22. Gong JG, Nied KA, Klose KE, Yildiz FH (2010) Role of Vibrio polysaccharide type III genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156: 2757–2769.
23. Wang RF, Kushner SR (1999) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 185–190.
24. Ali A, Johnson JA, Franco AA, Metzger DJ, Connell TD, et al. (2000) Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae. Infect Immun 68: 1967–1974.
25. Donnenberg MS, Tacket CO, James SP, Rosonsky G, Nataro JP, et al. (1993) Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. Journal of Clinical Investigation 92: 1412–1417.
26. Daims H, Lucker S, Wagner M (2006) dnapK, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8: 200–213.
27. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. Journal of microbiological methods 59: 395–413.
28. Casper-Lindley C, Yildiz FH (2004) VpsT Is a Transcriptional Regulator Required for Expression of vps Biosynthesis Genes and the Development of Rugose Colonial Morphology in Vibrio cholerae O1 El Tor. Journal of Bacteriology 186: 1574–1583.
29. Watnick PI, Luriano CM, Klose KE, Cosal O, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Molecular Microbiology 39: 223–235.
30. Yildiz FH, Dolganov NA, Schooink GK (2003) VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS, associated phenotypes in Vibrio cholerae O1 El Tor. Journal of Bacteriology 185: 1716–1726.

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e92883
31. Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and
tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.
Environ Microbiol 7: 981–994.
32. Banning N, Toze S, Mee BJ (2003) Persistence of biofilm-associated Escherichia
coli and Pseudomonas aeruginosa in groundwater and treated ef fluent in a laboratory
model system. Microbiology 149: 47–55.
33. Prouty MG, Correa NE, Klose KE (2001) The novel sigma54- and sigma28-
dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol
39: 1595–1609.
34. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and
niche biology. FEMS Microbiol Rev 36: 891–916.
35. Correa NE, Peng F, Klose KE (2003) Roles of the regulatory proteins FlhF and
FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 185: 6324–
6332.
36. Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2004) Molecular analysis of
rugosity in a Vibrio cholerae O1 Eltor phase variant. Molecular Microbiology 53:
497–513.
37. Pruzzo C, Tarsi R, Lleo MdM, Signoretto C, Zampini M, et al. (2003) Persistence of adhesive properties in Vibrio cholerae after long-term exposure to sea
water. Environ Microbiol 5: 850–855.
38. Ali A, Morris JG, Jr., Johnson JA (2005) Sugars Inhibit Expression of the Rugose
Phenotype of Vibrio cholerae. J Clin Microbiol 43: 1426–1429.
39. Boles BR, Horwoll AR (2008) Agr-mediated dispersal of Staphylococcus aureus
biofilms. PLoS Pathog 4: 1000052.
40. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, et al. (2008) A
new Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding
proteins, FnBPA and FnBPB. J Bacteriol 190: 3835–3850.
41. Simon R, Prieler U, Puhler A (1983) A broad host range mobilization system for
in vivo genetic engineering:transposon mutagenesis in Gram negative bacteria.
Biotechnology 1: 784–791.
42. Donnenberg MS, Kaper JB (1993) Construction of an aae deletion mutant of
enteropathogenic Escherichia coli by using a positive-selection suicide vector.
Infect Immun 59: 4310–4317.