Biased signaling of protease-activated receptors

Peishen Zhao¹, Matthew Metcalf¹ and Nigel W. Bunnett¹,²*

¹ Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
² Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia

INTRODUCTION

With over 800 members in mammals, G protein-coupled receptors (GPCRs) are the largest family of cell-surface signaling proteins. They are receptors for an extraordinary range of structurally diverse agonists in the extracellular fluid, including endogenous hormones, neurotransmitters, and paracrine regulators, as well as multiple exogenous ligands (1,2). Due to their critical importance in the control of most patho-physiological processes, GPCRs are the primary target for over 30% of the clinically used drugs (3,4). The established mechanism of GPCR activation is that agonist binding results in conformational changes in the receptor that activate the Gα subunits of heterotrimeric G proteins, leading to the dissociation of Gβγ dimers from Gα. Activated Gα and Gβγ then initiate downstream signaling processes (5). To control the duration and magnitude of this signaling, activated receptors are phosphorylated by G protein-coupled receptor kinases (GRKs) or other kinases, and then interact with β-arrestins, which mediate receptor desensitization and endocytosis (6). Depending on the receptor and the agonist, internalized receptors are then sorted to lysosomes for degradation, or move to the plasma membrane for another cycle of activation (7,8). However, a common feature of GPCRs is that a single receptor can interact with multiple endogenous and exogenous ligands, each of which may activate the receptor in different ways. For example, a large number of endogenous opioid neuropeptides as well as many different opiate drugs interact with opioid receptors, and different opioids and opiates result in different processes of receptor activation and regulation (9). Thus, the simplistic view of receptor activation and regulation has been revised by the appreciation that different agonists of the same receptor can result in distinct patterns of signaling and regulation.

The early two-state model of receptor function suggested that a receptor adopts active conformation upon ligand binding. This model considered only one active state, leading to a single functional readout. However, increased understanding of receptor signaling has revealed that different ligands can initiate distinct signaling events through the same GPCR. The heterogeneity of signaling events by a single GPCR can include different maximum responses from a single pathway (i.e., full or partial agonism) or activation of distinctly different signaling pathways by different

Abbreviations: AP, activating peptide; APC, activated protein C; EPCR, endothelial protein C receptor; ERK, extracellular signal-regulated kinase; F, coagulation factor; GPCR, G protein-coupled receptor; GRK, G protein-coupled receptor kinase; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; PAR, protease-activated receptor; TF, tissue factor.

doi: 10.3389/fendo.2014.00067

*Correspondence: Nigel W. Bunnett, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville VIC 3052, Australia. e-mail: nigel.bunnett@monash.edu

Keywords: PARs, proteases, biased signaling, G proteins, β-arrestins, signal transduction

www.frontiersin.org
agonists. The capacity of different agonists to initiate signaling of
the same GPCR by distinct mechanisms is referred to as biased
agonism or signaling (10, 11), and has been described for many
GPCRs, including opioid receptors (12), angiotensin receptors
(13), and glutamate receptors (14). This phenomenon of signal-
ing bias is not surprising because GPCRs are flexible proteins that
interact with multiple ligands and regulatory proteins, all of which
may influence the capacity of the receptor to signal by particular
mechanisms. Indeed, recent advances in our understanding of the
structure of GPCRs in various activation states has revealed that a
single GPCR can exist in multiple active conformations that may
favor coupling to different signaling pathways (15, 16).

This review focuses on the capacity of different proteases and
synthetic ligands to induce biased signaling of protease-activated
receptors (PARs). The PARs are a family of four GPCRs (PAR1–4)
that belong to group A rhodopsin-like GPCR subfamily. The first
family member, PAR1, was identified as a receptor for thrombin,
a serine protease coagulation factor (17). PAR2 was subsequently
identified as a receptor for the serine protease trypsin (18), fol-
lowed by PAR3, another thrombin receptor (19), and PAR4, a
receptor for both thrombin and trypsin (20). PARs are expressed
in many tissues and cell types, where they regulate multiple patho-
physiological processes, including hemostasis, inflammation, pain,
cellular proliferation, and healing (21–23). However, in addition to
thrombin and trypsin, a large number of proteases have been iden-
tified that can cleave PARs. In some cases, these proteases cleave at
the same sites as thrombin or trypsin and thereby initiate common
signaling events. However, in other cases, proteases cleave PARs at
distinct sites, and either activate distinct signals (biased agonism),
or disarm the receptor by removing or destroying tethered ligand
domains (receptor antagonism). We will review mechanisms by
which various proteases and synthetic agonists activate PARs, and
will discuss the implications of protease-biased signaling of PARs
for patho-physiological control and therapeutic targeting.

MECHANISMS OF CANONICAL ACTIVATION AND
SIGNALING OF PARs

Unlike other GPCRs, the endogenous ligands for PARs reside
within the extracellular N-terminus of the receptors. Receptor
cleavage at the defined sites within the N-terminus by proteases
such as thrombin and trypsin reveals these tethered ligands that,
once exposed, can bind to regions in the second extracellular loops
of the cleaved receptors, initiating conformational changes in the
receptors that activate downstream signals (23). This is the canon-
ical mechanism of PAR activation (Figure 1A). There are subtle
differences in the mechanisms by which different proteases initi-
ate the canonical pathways of receptor activation, which depend
on the protease and PAR in question. For example, thrombin first
binds to PAR1 and PAR3; this action facilitates receptor cleav-
age and exposure of the tethered ligand sequence. Mutation of
the binding site reduces the efficacy with which thrombin acti-
vates these receptors, and mutation of the cleavage site prevents
activation of unique and biased signaling pathways. (C) APs are synthetic
peptides that mimic the tethered ligands revealed by proteases that
cleave at canonical or biased sites. APs can activate the same pathways
as proteases, although tethered ligand and soluble peptides may also
trigger different signaling pathways and generate biased signal. (D)
Some proteases such as elastase that cleave PARs to not appear to
reveal tethered ligands, suggesting that proteolysis alone may activate
the receptor. (E) Proteolytic disarming of PARs. Proteases such as
cathepsin G cleave PARs and remove or destroy tethered ligands,
thereby disarming proteolytic activation.
receptor activation (17, 19). On the other hand, trypsin activates PAR2 directly, without first binding to the receptor (18, 24). Accessory proteins can also influence the capacity of proteases to activate PARs. In particular, proteins that anchor proteases to the plasma membrane can enhance proteolytic activation. For example, during tissue damage and inflammation, tissue factor (TF) binds coagulation factors (F) VIIa, which in turn activates FX to FXa. FXa and its co-factor FVa promote conversion of prothrombin to thrombin, and subsequent PAR1 activation (25). Besides promoting thrombin activation, FVIIa and FXa both can signal directly through PAR1 and PAR2, although the efficiency and potency of receptor activation is substantially enhanced when they are coupled with TF (26). Similarly, the proteolytic activity of the anticoagulant activated protein C (APC) toward PARs is largely regulated by its association with the endothelial protein C receptor (EPCR) at the surface of endothelial cells (27, 28).

Support for the tethered ligand mechanism of PAR activation is provided by the observation that synthetic peptides, referred to as activating peptides (APs), that mimic the tethered ligand domain can also activate certain PARs directly, without the requirement for proteolysis (Figure 1C). Peptides mimicking the tethered ligands of PAR1, PAR2, and PAR4 can directly activate these receptors, although with a considerably lower potency than the activating proteases, especially in the case of PAR4 (17, 18, 20). The higher EC50 values of APs compared to those of proteases possibly reflect the differences between a tethered ligand and an un tethered ligand in solution. PAR3 is not activated by tethered ligand-derived peptides, and appears to be unable to signal directly, but rather to serve as a co-factor for other PARs, such as PAR1 and PAR4 (29, 30).

Activating peptides have been considered to mimic the effects of proteases and have been widely used to probe the functions of PARs without the use of proteases, which can cleave multiple other proteins that may influence outcomes. However, this is not always the case because in some circumstances proteases and APs agonists can exert different effects. For example, in human brain microvascular endothelial cells, thrombin activation of PAR1 triggers endothelial barrier permeability, whereas PAR1-AP (SFLLRN-NH2) has no significant effect (31). In addition, the signaling properties of a PAR2 mutant with substitutions within the trypsin-revealed tethered ligand domain differ from those of APs with the same substitutions, suggesting distinct activation modes by tethered versus soluble peptides (32). The divergent signaling effects of proteases and APs provide evidence for biased signaling of PARs.

TISSUE-SPECIFIC COMPLEXITY AND DIVERSITY OF PAR ACTIVATION AND SIGNALING

In addition to the diversity of signals that can originate from the same receptor after activation by proteases or synthetic agonists (i.e., biased signaling), many other factors also affect pathophysiological outcome of PAR activation. These factors include the availability of activated proteases as well as the existence of regulatory and accessory proteins in different tissues and cell types.

The availability of active, functional proteases is a key requirement of PAR signaling, and the predominant endogenous proteases that activate PARs may vary in different patho-physiological states. For instance, the compliment of available active proteases varies markedly during the course of inflammation and healing, depending on the presence of immune cells, which are the source of many proteases, and on the existence of endogenous inhibitors. The compliment of proteases of mast cells, neutrophils, eosinophils, and macrophages, which participate in different phases of inflammation, varies considerably. For example, as the first responders to microbial infection, neutrophils produce elastase, cathepsin G, and proteinase-3 (33), whereas macrophages, which mediate chronic inflammation, release plasmin, matrix metalloproteinases (MMPs), and cathepsin S (34).

Although PARs can be activated by distinct proteases under different conditions, proteases that cleave PARs at the same sites would be expected to activate the same canonical signaling pathway and to induce common patho-physiological outcomes. However, the consequences of PAR cleavage could vary considerably if the activated proteases cleave PARs at distinct sites and are biased agonists or even antagonists, as discussed below. Indeed, at any one time multiple proteases would likely be activated and capable of cleaving PARs at distinct sites with unique outcomes. Thus, the active conformation of PARs may vary depending on the milieu of available proteases, which may differ between health and disease conditions. For example, during the initial stages of inflammatory processes such as inflammatory bowel diseases or chronic obstructive pulmonary disease, infiltration of neutrophils leads to increased level of elastase (35, 36), a biased agonist of both PAR1, and PAR2 (37, 38) (discussed below). Further complexity is provided by the presence of endogenous protease inhibitors that control the activity of proteases (39).

The outcome of PAR activation by the same protease or synthetic agonist can also vary between tissues and cell types. For example, thrombin and PAR1-AP cause relaxation of the intact coronary artery but contraction when the endothelium is removed, indicating distinct outcomes of PAR1 activation in endothelial versus vascular smooth muscle cells, possibility due to formation of different signaling complexes (40).

MECHANISMS OF BIASED ACTIVATION AND SIGNALING OF PARs

Compared to other GPCRs, the N-terminal domains of PARs are particularly susceptible to proteolysis. Although the reasons for this susceptibility are not fully understood, they probably relate to the presence of protease binding sites on the receptors, the existence of multiple scissile bonds, and the lack of groups that would sterically hinder proteolysis. However, the outcome of PAR activation depends on the site of proteolytic cleavage. Those proteases that cleave PARs at the conserved activating sites reveal tethered ligands that trigger the canonical signaling pathways (Figure 1A). Proteases that cleave PARs at distinct sites can act as biased agonists by triggering signals that are distinct from those activated by the canonical pathways (Figures 1B,D). In some cases, these alternative signaling mechanisms appear to involve exposure of distinct tethered ligands (Figure 1B). However, in other instances receptor cleavage per se may generate a conformational change that is sufficient to activate the receptor (Figure 1D). Alternatively, proteases can destroy or remove tethered ligand domains, forming N-terminally truncated receptors that are unresponsive to further activation by other proteases (Figure 1E).
Table 1 | Activation of PAR₁ by different proteases, their cleavage sites, synthetic activating peptide sequence, signaling pathways, and physiological effects.

Receptor	Protease	Cleavage site	Activating peptide	Signaling pathways	Physiological response	Reference
PAR₁	Thrombin	R₃8DPDL₄SFLL₄₅	SFLLRN-NH₂	Gαq/Ca²⁺, Gα₁₂/₁₃-Rho, β-arrestin/ERK1/2	Platelet aggregation, endothelial barrier disruption, vascular smooth muscle cell proliferation	[17, 41, 42]
	Factor Xa	R₃₈LDPR↓SFLL₄₅	SFLLRN-NH₂	Gαq/Ca²⁺, Gα₁₂/₁₃-Rho, β-arrestin/ERK1/2	Pro-inflammation, endothelial barrier protection, inhibition of cancer cell migration, fibroblast proliferation	[43–45]
	Plasmin	R₃₆ATLD↓PRSF₄₃	PRSFLLRN-NH₂	Gα₁₂/₁₃-Rho, MAPK	Platelet thrombogenesis and clot retraction, disruption of barrier function, matrix remodeling, vascular angiogenesis	[47–49]
	MMP1	R₃₆ATLD↓PRSF₄₃	PRSFLLRN-NH₂	Gα₁₂/₁₃-Rho, MAPK	Platelet thrombogenesis and clot retraction, disruption of barrier function, matrix remodeling, vascular angiogenesis	[47–49]
	MMP13	R₃₉DPRS↓FLLR₄₆	Not studied	Gα₁₂/₁₃-Rho, ERK1/2	Participate in β-AR over activation-dependent cardiac dysfunction	[50]
	Elastase	R₄₂SFLL↓RNPN₄₀	RNPNDKYEPF-NH₂	Gαi/MAPK	Stress fiber formation and endothelial barrier permeability	[57]
	APC	R₄₃FLLR↓NPND₄₀	NPNDKYEFP-NH₂	β-arrestin/Rac1, Akt	Cytoprotective, endothelial barrier protection	[61–54]
	Proteinase-3	R₃₃ATNA↓TLDP₄₀	TLDPRSF-NH₂	Gαi/MAPK	Stress fiber formation and endothelial barrier permeability	[37]
	Granzyme K	N.D.	N.D.	ERK1/2, p38 MAPK	Cytokine secretion and fibroblast proliferation	[55]

Activated PARs can couple to multiple G protein-dependent (Gαq, Gα₁₂/₁₃, Gαi, Gαs, and Gβγ) and β-arrestin-dependent pathways. Although in many instances a particular protease or synthetic agonist can activate more than one of these pathways, in some cases proteases and synthetic agonists activate a single pathway. By comparing and categorizing the signaling pathways that are initiated by different proteases and synthetic agonists with the overall outcome of receptor activation, it is possible to identify the primary signaling pathways responsible for PAR-mediated patho-physiological responses (Tables 1–3). Moreover, a comprehensive understanding of the mechanisms and outcomes of PAR signaling by different proteases and synthetic agonists can guide the development of agonists and antagonists that may selectively activate or inhibit disease-relevant pathways. This approach has implications for development of pathway-specific therapies.

PAR₁, ACTIVATION AND SIGNALING

CANONICAL ACTIVATION OF PAR₁

As the first identified PAR, the canonical mechanisms of PAR₁ activation and signaling have been extensively investigated. An interaction between thrombin’s anion-binding exosite I and a negatively charged region in the extracellular N-terminus of PAR₁ (⁵¹DKYEFP³⁶) increases the affinity of thrombin for the receptor and facilitates cleavage (17). Binding of thrombin enables the enzyme to cleave the receptor at position R⁴¹/S⁴², which reveals the tethered ligand domain beginning with SFLLRN in human PAR₁, and initiates downstream signaling cascades (Figure 2). After cleaving PAR₁, thrombin may remain associated with the receptor to facilitate its action on other thrombin receptors, such as PAR₄ (83). Thrombin-activated PAR₁ can trigger multiple G protein-dependent and -independent signaling pathways, including Gαq, Gαi, and Gα₁₂/₁₃. A region spanning the thrombin cleavage sites...
Table 2 | Activation of PAR₂ by different proteases, their cleavage sites, synthetic activating peptide sequence, signaling pathways, and physiological effects.

Receptor	Protease	Cleavage site	Activating peptide	Signaling pathways	Physiological response	Reference
PAR₂	Trypsin	Pro-inflammation, induction of hypotension, mechanical and thermal hyperalgesia, cardio protective (reduced infarct size)	(42, 56–58)			
	Trypsin	Pro-inflammatory and hyperalgesia; increase paracellular permeability of intestine; mast cell degranulation; cell proliferation	(59–61)			
	Factor VIIa	Cancer cells migration and invasion	(62)			
	Factor Xa	Cancer cells migration and invasion	(62)			
	KLKs	Cell proliferation	(63, 64)			
	Elastase	Not active	Rho/ERK1/2	N.D.	(38, 65)	
	Proteinase-3	Not active	N.D.	N.D.	(38)	
	Cathepsin G	Not active	N.D.	N.D.	(38, 65)	
	Cathepsin S	Not active	N.D.	N.D.	(38, 65)	
	Other proteases	Not active	N.D.	N.D.	(38, 65)	
	Gingipain-R	Not active	N.D.	N.D.	(38, 65)	
	KLK 14	Not active	N.D.	N.D.	(38, 65)	

act as a “hot spot” for many proteases, including granzyme A, plasmin, and FXa, that cleave at the same site as thrombin and trigger similar cellular responses (Table 1). Proteases that cleave at other sites can induce biased signaling of PAR₁.

BIASED ACTIVATION OF PAR₁

Several proteases have been identified that cleave PAR₁ at sites different from the canonical thrombin site, leading to distinct patho-physiological outcomes.

Activated protein C

Activated protein C is a natural anticoagulant with powerful anti-inflammatory and cytoprotective activities (84). In many cases, APC exerts its protective effect via EPCR and PARs. On the surface of endothelial cells, binding of protein C to EPCR promotes its activation by thrombin, and EPCR-bound APC in turn exerts its cytoprotective effect by cleaving and activating PAR₁ (51). Different from thrombin-mediated PAR₁ activation, APC activation of PAR₁ requires colocalization of PAR₁ with EPCR in caveolae microdomains in the form of a signaling complex with caveolin-1 (85, 86). Besides subcellular localization, the differential PAR₁-dependent cellular responses induced by thrombin and APC may also be explained by their distinct cleavage sites. APC cleaves PAR₁ at the canonical cleavage site R₄₁/S₄₂, as well as at an alternate site R₄₆/N₄₇, with the latter being the primary cleavage site that is responsible for its cytoprotective effect (51, 52) (Figure 2). A synthetic AP corresponding to the tethered ligand that would be revealed by this alternate cleavage (N₄₇PNDKYEYPFWEDEEKNESGL₆₆-NH₂) mimics the protective effects of APC both in vitro and in vivo. Cleavage of PAR₁ at R₄₆/N₄₇ by APC leads to β-arrestin 2-mediated Racl-activation independent of G protein (53). Both APC and its AP stimulate PAR₁-dependent phosphorylation of glycogen synthase kinase 3 β and Akt (51). In contrast to thrombin-activated PAR₁, APC-cleaved PAR₁ fails to activate extracellular signal-regulated kinase (ERK)₁/₂. Thus, APC and thrombin cleave PAR₁ at different sites leading to the exposure of distinct tethered ligand agonists that activate different signaling pathways.

Matrix metalloproteinases

Matrix metalloproteinases are a family of 28 zinc-dependent proteases that play important roles in regulating platelet and
Table 3 | Activation of PAR3 and PAR4 by different proteases, their cleavage sites, synthetic activating peptide sequence, signaling pathways, and physiological effects.

Receptor	Protease	Cleavage site	Activating peptide	Signaling pathways	Physiological response	Reference	
PAR3	Canonical cleavage	Thrombin	LPIK35-	TFRGAP-NH2 (for PAR1 and PAR2)	ERK1/2	IL-8 production	(19, 72, 73)
	Non-canonical cleavage	APC	KTFR38-GAPP45-	GAPPNSFEFPFS-	N.D.	Cytoprotective	(27, 74)
PAR4	Canonical cleavage	Thrombin	PAPR44-GYPG51-	GYPGQV-NH2-	Ca2+-	Platelet activation and aggregation; platelet endostatin release	(75–77)
	Trypsin			GYPGQV-NH2-		Neutrophil recruitment	(78)
	Plasmin					Platelet activation and aggregation	(79, 80)
	Cathepsin G					Platelet activation and aggregation	(81)
Other proteases	MASP1	N.D.	N.D.	Ca2+- NF-kB, p38 MAPK	N.D.		(62)

ENDOTHelial FUNCTION (87). Two human MMPs, MMP1 and MMP13, and one murine MMP, MMP1a, exhibit activity toward PAR1. Both MMP1 and MMP13 cleave PAR1 at non-canonical sites (D39/P40 for MMP1, S42/F43 for MMP13, Figure 2), which either generate an extended tethered ligand with two more amino acids or a truncated tethered ligand lacking the first serine residue compared to the tethered ligand exposed by thrombin (Figure 2). Similar to thrombin, MMP1-cleaved PAR1 activates the Gα12/13-Rho-GTPase pathway, and also leads to mitogen-activated protein kinase (MAPK) signaling and platelet shape changes (47). However, MMP1-activated PAR1 is a weak agonist of Ca2+ signaling and platelet aggregation (47, 48). The biased cellular response between thrombin- and MMP1-activated PAR1 has also been studied in vascular smooth muscle cells. Thrombin activation of PAR1 leads to a supercontractile, differentiated phenotype that is pertussis toxin-sensitive, suggesting the involvement of Gαi activation, whereas MMP1 activation of PAR1 results in a dedifferentiated phenotype via a Gαi-independent mechanism (49). These differences in signaling in vascular smooth muscle cells may account for the opposite effects of thrombin and MMP1 on the development of arterial stenosis following arterial injury (49).

Whereas MMP1 is mostly expressed in vascular endothelial cells, platelets, and macrophages, MMP13 is prominently expressed in cardiac fibroblasts and cardiomyocytes. Expression of MMP13 is increased in cardiac fibroblasts after β2-adrenergic receptor activation (50). MMP13 cleaves PAR1 one amino acid downstream from the thrombin site at S42/F43. In ventricular myocytes of neonatal rats, MMP13-activated PAR1 leads to phosphorylation of ERK1/2 and p38 MAPK. However, when compared to thrombin, MMP13 elicits similar levels of ERK1/2 activation but only modestly stimulates inositol phosphate formation (50). Due to the close proximity of the thrombin and MMP13 cleavage sites, it is likely that MMP13 activates PAR1 by a tethered ligand mechanism. Whether this single amino acid difference in the tethered ligands is sufficient to generate biased signaling of PAR1 remains to be determined.

Neutrophil proteases

During acute inflammation, neutrophils are the first cells infiltrate to the inflammatory site and are important mediators of inflammatory response. Elastase and proteinase-3 are stored in
large quantities within secretory granules and are activated and released into the extracellular environment during inflammation (88). Recent studies show that both proteases are biased agonists released into the extracellular environment during inflammation large quantities within secretory granules and are activated and

PAR ACTIVATION BY SYNTHETIC LIGANDS

Several synthetic APs corresponding to the tethered ligands exposed by proteolytic activation of PAR$_1$ have been evaluated in vitro or in vivo. These include AP corresponding to tethered ligands revealed by thrombin (SFLLRN-NH$_2$), neutrophil elastase (RNPNKYEFP-NH$_2$), neutrophil proteinase-3 (TLDPRSF-NH$_2$), MMP1 (PRSFLLRN-NH$_2$), and APC (PNPDNYEFP-NH$_2$) (Figure 2). Since these proteases cleave PAR$_1$ between residues 35 and 45, the APs share considerable homology. For example, the thrombin and MMP1 APs differ by only two amino acids, whereas the APC AP is only one amino acid shorter than the elastase-AP. However, regardless of their sequence homology, different APs display considerable signaling bias. For instance, the thrombin AP SFLLRN-NH$_2$ activates Gq$_12$-mediated signaling (89), whereas the MMP1 AP PRSFLLRN-NH$_2$ is a weak agonist of Gq$_12$ signaling and preferentially activates the Gq$_12$/13 pathway (47). In addition, elastase-AP RNPNKYEFP-NH$_2$ stimulates ERK1/2 phosphorylation via Gai but the APC AP PNPDNYEFP-NH$_2$ activates ERK by a β-arrestin-dependent but G protein-independent mechanism (37, 51).

The differences in AP-induced signals lead to distinct physiological outcomes. For example, in human umbilical vein endothelial cells, elastase-AP and APC-AP suppress thrombin-stimulated increase in endothelial barrier permeability, whereas proteinase-3-AP and MMP1-AP have the opposite effect (37).

Other structurally distinct synthetic peptides can also activate PAR$_1$, YFLLRN-NH$_2$, a peptide that differs from the thrombin AP by a single amino acid, is able to cause platelet shape changes by a Ca$^{2+}$-independent mechanism (90) that may involve Gq$_{12/13}$-dependent activation of Rho kinase (91). TFRRRL-NH$_2$, a peptide derived from the C-terminus of P2Y receptor, can activate PAR$_1$ on human platelets and stimulate Gq$_{12/13}$-mediated MAPK signaling (92). These observations suggest the importance of the serine residue at position 1 of the peptide for Gq$_2$ activation, whereas either replacing it with another residue or extending the peptide with additional N-terminal residues both result in a reduction in Gq$_2$ activation. The precise mechanisms of how these peptides interact with cleaved PAR$_1$ to induce these divergent signals remains to be determined.

PAR$_2$ ACTIVATION AND SIGNALING

CANONICAL ACTIVATION OF PAR$_2$

The canonical mechanism of activation of PAR$_2$ by trypsin involves hydrolysis at position R$_{36}^3$/S$_{37}^3$, which reveals the tethered ligand SLIGKV (human) (24) or SLIGRL (mouse) (18) (Figure 3). This exposed tethered ligand then interacts with the second extracellular domain of the cleaved receptor and trigger multiple G protein-dependent and -independent signaling pathways (93). Trypsin-activated PAR$_2$ leads to the activation of Gq$_{12/13}$-mediated Ca$^{2+}$ mobilization (94), G$_{q_1}$-dependent formation of cAMP (95), Gq$_{12/13}$-mediated increasing in Rho-Kinase activity (95), recruitment of β-arrestin-1 and -2 (96), ERK1/2 phosphorylation (97, 98), and subsequent receptor internalization and degradation (94, 99).

Several other proteases cleave PAR$_2$ at the canonical site (Table 2). Serine proteases that activate canonical PAR$_2$ signaling include trypsin I/II (18, 94), trypsin IV (100, 101), trypsin (59, 102), coagulation factors VIIa and Xa (26), acrosin (103), granzyme A (104), and kallikrein 2, 4, 6, and 14 (63, 64, 105). Proteases that cleave PAR$_2$ at the canonical activation site would be expected to reveal the conserved tethered ligand domain and to activate the same compliment of signaling pathways as trypsin. Despite the fact that these proteases cleave PAR$_2$ at the same site as trypsin, the potency with which they activate PAR$_2$ shows considerable variability. This variability may be due to different rate and efficiency of cleavage between different proteases. Although not all the K_{cat} values for proteases cleaving PAR$_2$ have been reported, published in vitro peptide protelytic assays show marked differences in the kinetics of cleavage. Cleavage at sites that disable the receptor may also contribute to the variable potency of proteases-mediated signaling. Compared to trypsin, trypsin is a partial agonist of PAR$_2$-dependent Ca$^{2+}$ signaling, which may be related to a second cleavage site at R$_{37}^3$/S$_{38}^3$, which would deactivates the receptor and limit its potential to induce further Ca$^{2+}$ signals (102). Post-translational modification of PAR$_2$s may also affect their susceptibility to proteolytic activation. Although mast cell tryptase can activate PAR$_2$s, its ability to do so is limited by receptor glycosylation, which presumably sterically hinders hydrolysis at R$_{36}^3$/S$_{37}^3$ (106). Other proteases such as kallikrein-related peptidase 14 and gingipain-R have been shown to signal by PAR$_2$-dependent mechanism, although the cleavage sites need to be confirmed (70, 71).

BIASED ACTIVATION OF PAR$_2$

As is the case for PAR$_1$, several proteases have been identified that cleave PAR$_2$ at distinct sites, leading to signaling bias.

Neutrophil proteases

Neutrophil elastase, proteinase-3, and cathepsin G can all cleave PAR$_2$. Neutrophil elastase and cathepsin G were first considered
to be deactivating proteases due to their ability to cleave downstream from the canonical trypsin site and thereby disarm PAR2 and attenuate trypsin-dependent Ca\(^{2+}\) signals (104). However, a recent study suggests that these cleavage events may also induce PAR2 signaling bias.

Elastase cleaves PAR2 between S\(^{68}/V\(^{69}\) (38) (Figure 3). Treatment of KNRK-PAR2 cells with elastase does not induce Ca\(^{2+}\) signals but does trigger PAR2-dependent ERK phosphorylation by a pathway that involves Ga12/13-mediated activation of Rho kinase. In contrast to trypsin, elastase does not trigger β-arrestin recruitment or receptor internalization. A synthetic peptide corresponding to a tethered ligand domain that would be revealed by elastase (VLTGKTVTVFL-NH\(_2\)) fails to mimic the action of elastase and to activate ERK or to stimulate Ca\(^{2+}\) signals in KNRK-PAR2 cells, suggesting that elastase could activate PAR2 by a mechanism that does not require tethered ligand binding to the cleaved receptor. Indeed, the elastase cleavage site is close to the first transmembrane domain of PAR2, which would suggest that a tethered ligand mechanism is unlikely. Presumably, cleavage per se may allow PAR2 to adopt an active conformation that favors activation of certain signaling pathways. Although the functional relevance of elastase activation of PAR2 is uncertain, it may contribute to inflammatory diseases in which this protease-receptor pair is involved. For example, neutrophil elastase activity is elevated in patients with ulcerative colitis as well as dextran sulfate sodium-induced colitis in mice (107), and the elastase inhibitor serpin B1 (107) and PAR antagonist and deletion protect against colitis (108). Therefore, it will be important to determine whether elastase triggers PAR2-dependent inflammatory signaling in colonocytes or immune cells that express PAR2.

Similar to elastase, neutrophil cathepsin G and proteinase-3 both cleave PAR2 downstream of the canonical trypsin site (cathepsin G: P\(^{65}/S\(^{66}\) and proteinase-3 V\(^{62}/D\(^{63}\) (38) (Figure 3). However, neither cathepsin G nor proteinase-3 stimulate PAR2-dependent Ca\(^{2+}\) signals or activate ERK phosphorylation or receptor internalization (38). Although these proteases can disarm PAR2 by removing the trypsin-exposed tethered ligand, it remains to be determined whether they also induce biased signaling or they act as antagonists for the receptor. The functional relevance of PAR2 cleavage by cathepsin G and proteinase-3 is unknown.

Cathepsin S

Cathepsin S, a lysosomal cysteine protease of the papain family, is expressed by antigen-presenting cells, including macrophages, microglial cells, B-lymphocytes, and dendritic cells, and contributes to antigen presentation and adaptive immunity (109). Inflammatory mediators promote cathepsin S secretion from macrophages and microglial cells (66, 110), and there is increased cathepsin S activity in inflamed tissues, including synovial fluid from patients with rheumatoid arthritis (111) and colonic secretions from mice with colitis (67). Cathepsin S is active at both lysosomal acidic pH and extracellular pH (66), and may thus be able to activate PARs. When administered into the colonic lumen of wild-type mice to replicate the increased luminal cathepsin S detected in mice with colitis, cathepsin S causes visceral pain (67). This hyperalgesia is absent from PAR2 knockout mice, suggesting that cathepsin S can activate PAR2. Current studies are investigating whether cathepsin S can activate biased PAR2 signaling and to determine the functional relevance of this process for PAR2-mediated inflammation and pain.

PAR2 ACTIVATION BY SYNTHETIC LIGANDS

In addition to proteases, synthetic peptides that mimic the trypsin-exposed tethered ligand can also activate PAR2. The hexapeptides SLIGRL-NH\(_2\) and SLIGKV-NH\(_2\) corresponding respectively to the mouse and human trypsin-revealed tethered ligands for PAR2 have been extensively used as tools to study PAR2 function despite their relatively low potency. Both peptides have been shown to induce a Goq-dependent increase in [Ca\(^{2+}\)]\(_i\) (26, 32, 94, 104, 112–114), ERK1/2 activation (62, 98, 115), as well as β-arrestin recruitment and subsequent internalization (98, 112).

FIGURE 3 | PAR2 N-terminus with major cleavage sites identified. N-terminus of human PAR2 (1–84). The residues in red denote the canonical tethered ligand and a corresponding AP that is revealed by trypsin cleavage. The corresponding APs for each protease are indicated in the boxes. Gray shading represents membrane.
The effect of SLIGRL-NH2 on cellular cAMP levels is controversial. In rabbit smooth muscle cells, SLIGRL-NH2 decreases forskolin-induced accumulation of cAMP in a pertussin toxin-sensitive manner (114). On the other hand, in HEK293 cells and human keratinocytes, SLIGRL-NH2 increases cAMP formation (95, 116). In keratinocytes, SLIGRL-NH2 stimulates a pertussis toxin-insensitive and cAMP/PPKA-independent activation of Rho kinase (95). Thus, activated PAR3 may trigger different G protein pathways depending on the cellular context and the availability of other components of the signaling complex.

Although these APs can cause robust PAR2 signaling, mutagenesis studies have highlighted that different residues within the activating ligand domain may determine the preference of the receptor to activate certain signaling pathways such as Ca2+ versus MAPK. These studies not only support the idea that PAR2 can initiate biased signaling, they also provide important information on the mechanisms of PAR2 activation. Mutagenesis of rat PAR2 has revealed that the first two residues (S37L38) from the AP are critical for PAR2 activation. Both mutated PAR2 receptor with substitution of these two residues to alanine and its corresponding soluble peptide ligand (AAIAGRL-NH2) exhibit little or no activity (117). Notably, a subsequent study found that another analog peptide of SLIGRL-NH2, SIIAAAA-NH2, also showed minimum Ca2+ signaling activity but was able to induce ERK1/2 phosphorylation via a Rho-kinase-dependent mechanism (32). Although the PAR2 binding pocket for APs has yet to be fully identified, the importance of extracellular loop 2 in PAR2 activation by soluble peptides has been studied, leading to the suggestion that the glutamic acid residues (E232E233) in rat PAR2, and E232Q233 in human PAR2 may interact with the basic arginine residue at position 5 of the AP. This residue is required for activity since mutation of either receptor or the peptide results in loss of Ca2+ signal (118). It will be important to examine whether distinct or overlapping clusters of residues of PAR2 are responsible for binding to different regions of the AP, thereby triggering different signaling events.

PAR2 ACTIVATION BY SMALL MOLECULES
Recent advances in our understanding of the structure-activity relationships of various PAR2 ligands have facilitated the development of small molecule PAR2 agonists, albeit of limited potencies. The potential for these compounds to exhibit signaling bias has not been fully investigated, since most studies have only examined their ability to affect PAR2-dependent Ca2+ signals. AC-98170 is a partial agonist of PAR2-dependent Ca2+ signaling (30% efficacy of SLIGRL-NH2), but with a lower EC50 than AC-55541, another small molecule agonist for PAR2 (119). Whether these compounds are biased agonists of different PAR2 signaling pathways remains to be investigated.

Small molecule PAR2 antagonists have also been developed. One such compound, GB88, is a competitive antagonist for both trypsin- and AP-induced Ca2+ signaling, although GB88 can selectively activate other PAR2-dependent pathways, including cAMP formation, Rho-kinase stimulation, and ERK1/2 phosphorylation (120). Thus, rather than acting as an antagonist for PAR2, GB88 may act as a biased agonist for this receptor. However, the antagonistic activity of GB88 is sufficient to attenuate PAR2-induced paw edema and acute inflammation, as well as collagen-induced arthritis in rats (121, 122), suggesting that relative contribution of PAR2 in these disease conditions might be primary via Ca2+-dependent pathways.

Like GB88, K-14585 also has a complex pharmacology. In human skin epithelial cells, K-14585 is able to block SLIGKV-NH2-induced inositol phosphate accumulation and p38 MAPK phosphorylation without affecting PAR2-mediated ERK1/2 activation (123). However, although not significant, K-14585 alone does induce a modest IP3 formation. Moreover, at a higher concentration, K-14585 triggers PAR2-dependent p38 MAPK kinase phosphorylation (123). Taken together, K-14585 may actually act as a PAR2 agonist with relatively low potency.

PAR3 ACTIVATION AND SIGNALING
Although thrombin cleaves PAR3 at K38/T39, there is little evidence that the cleaved receptor is capable of signaling. Thrombin and a synthetic peptide corresponding to the putative tethered ligand failed to generate PAR3-dependent Ca2+ signals (19). However, this PAR3-derived AP is able to activate PAR1 and PAR3 (72). Instead of signaling in its own right, PAR3 appears to be a co-factor for the activation of other PARs, including PAR4 and PAR6 (27, 29, 30). Co-expression of PAR3 with PAR4 in COS-7 cells leads to over 10-fold increase in the efficiency of thrombin cleaving PAR3 compared to PAR4 expressed alone (EC50 from 0.3 to 0.05 nM) (29). However, with the appreciation of PAR biased signaling, further studies are warranted to examine the full repertoire of potential PAR3 signals.

In contrast to other PARs, fewer proteases have been identified that can cleave PAR3. Besides thrombin, APC is the only protease to be identified that exhibits proteolytic activity toward PAR3 (27, 74). In immortalized human and mouse podocytes, which have higher expression of PAR2 and PAR3 than PAR1 and PAR4, the maximum inhibitory effect of APC-dependent podocyte apoptosis requires cleavage of N-terminal domain of PAR3 by APC at the same position as thrombin (27). Cleavage of PAR3 by APC promotes dimerization between PAR2 and PAR3, and this is required for APC-dependent cytotoxic effect. A recent study reported a novel mechanism of APC activation of PAR3 via a cleavage at a non-canonical site (R41G42 X instead of K38/T39) (74). Peptide hydrolysis experiments revealed a slow kinetics of APC cleavage of PAR3 (50% peptide cleavage reached after ~5 h), suggesting that other modulators may facilitate APC clearing PAR3 in cells; indeed, the efficiency of this cleavage increased proportional to the expression of EPCR (74). This novel cleavage by APC generates a new tethered ligand domain starting with G42APPNS. Consistent with a tethered ligand activating mechanism, APC-AP (G42APPNSFEFPFS45-NH2) is able to prevent thrombin-induced endothelial barrier disruption. Interestingly, an extended peptide generated from thrombin cleavage site (40TGFAPPNSFEFPFS45-NH2) fails to do so. This suggests that APC and thrombin activation of PAR3 mediates different signaling profile, and thus is involved in different cellular response, respectively. However, similar to thrombin activation of PAR3, existence of another receptor, such as PAR1 is necessary for APC/PAR3-mediated signaling (74).
PAR4 Activation and Signaling

PAR4 was identified by a homology search using amino acid query sequence derived from known sequences of PAR1, PAR2, and PAR3 (20). The putative protease cleavage site was identified (R^47^G^48^), and the EC_{50} of thrombin toward PAR4 was much higher compared to other thrombin sensitive receptors PAR1 and PAR3 (5 nM for PAR4, and 0.2 nM for PAR1 and PAR3) (17, 19, 20). Further investigation suggests that this may be due to the lack of the thrombin binding site within the amino terminus of the receptor. Consistent with this observation, γ-thrombin, another isof orm of thrombin that lacks a receptor binding site exhibits similar affinity on PAR4 compared to α-thrombin (20). Different from other PARs that can be cleaved preferentially by trypsin or thrombin, PAR4 exhibits similar sensitivity toward both enzymes. Both thrombin and trypsin activities toward PAR4 can be abolished by R^47^A mutation of the receptor, suggesting that both enzymes cleave the receptor at the same site (20).

Compared to PAR1 and PAR2, little is known about biased signaling of PAR4, and to date no additional activating cleavage sites have been identified. However, although proteases such as plasmin can activate PAR4 by cleaving the receptor at the canonical site, thrombin and plasmin cleave PAR4 with different kinetics, possibility due to different mechanisms of action or the affinity of the proteases for the receptor (20). In mouse platelets, PAR4 binds to thrombin and thereby acts as a co-factor to facilitate thrombin cleavage and activation of PAR4 (29). However, in both transfected cell lines as well as platelet, instead of acting as a co-factor, the presence of PAR3 inhibits plasmin-mediated PAR4 activation leading to a decrease in intracellular Ca^{2+} mobilization and platelet aggregation (79). The mechanism that underlies these findings is not clear. However, since thrombin cleaves both PAR3 and PAR4 whereas plasmin can only cleave PAR4, the conformation of the PAR3–PAR4 receptor pair might be different after plasmin or thrombin cleavage. In addition, difference in binding affinities and kinetics of plasmin and thrombin for PAR4 may also result in distinct receptor-protease complex formation and lead to variation in downstream responses.

Cathepsin G is a neutrophil serine protease that plays an important role in inflammation. Cathepsin G can evoke PAR4-dependent Ca^{2+} signals in human platelets and in PAR4-transfected fibroblasts (81). Cathepsin G and PAR4 are upregulated in ulcerative colitis patients, and inhibition of cathepsin G and PAR4, but not PAR1 or PAR2, is protective (124). Although no direct evidence suggests that PAR4 is the target for cathepsin G in colitis, this study highlights the possibility of targeting cathepsin G or PAR4 as novel therapeutic approach.

Recently, mannose-binding lectin-associated serine protease-1 has been shown to cleave PAR4 but not PAR1 or PAR2 in endothelial cells, and to induce PAR4-dependent Ca^{2+} responses and activation of NF-kB and p38 MAPK pathways. However, the exact cleavage site remains to be determined (82).

Signaling by PAR Dimers

Although most studies have examined signaling by monomeric PARs, considerable evidence suggests that PARs may form homo- or hetero-dimers and function as a complex. Dimerized PARs could adopt unique conformations and activate different signaling pathways compared to monomer (125).

As a receptor that exhibits little or no activity when expressed alone, PAR3 has been examined as a co-factor for other PARs. PAR3 can modulate the activity of PAR1 by potentiating its response to thrombin, thereby increasing endothelial barrier permeability without altering Ca^{2+} responses (30). This receptor dimer pair favors coupling to Gα13 over Gαq, whereas both pathways are similarly activated by PAR1 monomer (30). Thus, PAR1 may exhibit distinct signaling profiles in response to the same ligand when coupled to PAR3.

In mouse platelets, dimerization between PAR3 and PAR4 leads to negative regulation of PAR4-mediated Ca^{2+} mobilization and PKC activation without affecting Gα12/13 and Gαi activation, suggesting that PAR4 signaling is biased away from Gαq activation when coupled to PAR3 (126).

In human podocytes, APC cleavage of PAR4 leads to the formation of PAR3 and PAR4 heterodimers, which is essential for the anti-apoptotic actions of APC (127). Although the signaling pathways that regulate this activity remain to be defined, the observation that both PAR3 and PAR4 activating peptides were able to produce similar effects suggest that the formation of this heterodimer may stimulate signaling pathways that are similar to those activated by PAR3 monomers.

Another example of the contribution of receptor dimerization to biased PAR signaling is dimerization between PAR4 and PAR2. PAR1–PAR2 dimerization has been demonstrated in both overexpression system and endogenous expression system (128, 129). When PAR1 forms dimer with PAR2, the thrombin-revealed PAR1 tethered ligand can trans-activate PAR2 and trigger PAR2-dependent Gαi/Rac signaling, while PAR1-mediated Gαq and Gα12/13 signaling is switched off (130). In addition, recruitment of β-arrestin to the PAR1–PAR2 dimer exhibits distinct kinetic compared to each protomer, suggesting a potential alteration in β-arrestin-dependent ERK1/2 signaling (128). During the early development of sepsis, the effect of thrombin is vascular disruption whereas at the later phase of sepsis, with increasing expression of PAR2, thrombin induces a vascular protective effect that is mediated by PAR2/Rac1 activation (130).

Protease-activated receptors may act as co-factors or may dimerize either constitutively or in a ligand-dependent manner. The formation of dimers may play a role in organization of receptors at the cell surface, and may allosterically modulate the activation of either monomer or act as a complex that generates unique signaling outcomes.

Regulation of PAR Signaling by Different G Protein Coupling

Different proteases can lead to biased PARs activation, and PAR signaling can also be modulated by co-factors and receptor dimerization. In addition, the interaction of PARs with different G proteins also has marked influence on the outcome of protease signals. In response to a single protease, PARs are able to couple to multiple G proteins. Although how this occur is not clear, recent studies using bioluminescence resonance energy transfer (BRET) approach suggest dynamic regulation of PAR1 and PAR2 coupling with multiple G proteins. In Cos-7 cells, both receptors
A growing number of proteases have been identified that can cleave PARs at distinct sites, leading to diverse signals. One striking observation is the capacity of different proteases to stimulate PAR signaling profile, thereby contributing to bias signaling. This mechanism may also account for the tissue specificity of PAR signaling.

TERMINATION OF PAR BIASED SIGNALING

A growing number of proteases have been identified that can cleave PARs at distinct sites, leading to diverse signals. One striking observation is the capacity of different proteases to stimulate PAR endocytosis. It is well established that cleavage of PARs at canonical activation site leads to rapid receptor internalization in a β-arrestin-dependent manner (96, 134). Receiver endocytosis not only contributes to signaling, but is also the first step in the degradation of activated PARs, which irrevocably terminates their ability to signal. Thus, if cleaved PARs remain at the cell surface, how is signaling regulated?

PHOSPHORYLATION

Most information about the regulation of PARs has been derived from studies of the canonical mechanisms of PAR activation. After cleavage by thrombin or trypsin, both PAR1 and PAR2 are rapidly phosphorylated by protein kinases, including GRKs, and second messenger kinases such as PKA and PKC (135–137). Phosphorylation within the C-terminal tail of the receptor serves as the primary mechanism to shut down G protein coupling and signaling. PAR1 is phosphorylated by GRK3 in *Xenopus laevis* oocytes and GRK5 in human endothelial cells (135, 137). Although the specific GRKs that phosphorylate PAR2 in native systems have not been identified, it is clear that PAR2 activation by trypsin recruits multiple GRKs in overexpression system (138). In terms of selectivity of certain GRKs over others, in endothelial cells GRK5 is the critical isoform that mediates thrombin-induced desensitization of PAR1 (137). GRK5 overexpression inhibits thrombin-induced Ca²⁺ signaling whereas GRK3 and GRK6 have no such effect (137). Whether proteases that cleave PARs at other sites also induce GRK recruitment and differential receptor phosphorylation remains to be determined. However, given the inability of many of these alternatively cleaved receptors to recruit arrestins, alterations in receptor phosphorylation are likely to occur. Studies of other GPCRs, such as β-adrenergic receptors (139) and opioid receptors (140), suggest that receptor phosphorylation occurs in an agonist-selective manner. For example, different biased agonists for β-adrenergic receptor trigger distinct patterns of receptor phosphorylation by different GRKs, which may establish a “barcode” that determines β-arrestin recruitment and functional responses (139). Whether this is also the case for PARs remains to be explored.

Phosphorylation of GPCRs often leads to β-arrestin recruitment and receptor internalization. However, this is not always the case. The morphine-activated µ-opioid receptor is phosphorylated by GRK5 at Ser³⁷⁵, which is sufficient for receptor desensitization but not β-arrestin recruitment or receptor internalization. On the other hand, DAMGO, another agonist for the same receptor, leads to phosphorylation at both Ser³⁷⁵ and Thr³⁷⁹, which leads to both receptor desensitization and internalization (141). Thus, biased protease signaling might be terminated by phosphorylation without necessary internalization. It will be of interest to determine whether different proteases induce specific patterns of receptor phosphorylation, and to determine the functional relevance of these events.

INTRACELLULAR TRAFFICKING AND SIGNALING

β-Arrestins not only act as chaperone proteins that direct receptor trafficking, but also are active participants of signaling by internalized receptors. β-arrestins mediate multiple steps of PAR signaling, including PAR1-mediated Akt activation, and PAR1 and PAR2-dependent ERK1/2 activation (96). After activation by trypsin, PAR2 stably couples to β-arrestin and together they co-transport to early endosomes where they generate a second wave of intracellular signals (96). As an important scaffolding protein, β-arrestin is essential for the formation of the signaling complex including PAR2-Raf1 and activated ERK. This complex will ensure the appropriate subcellular localization of PAR2-mediated ERK activity. Thus, the stability between activated receptor and β-arrestin is essential for determining the duration of this activation. It has been pointed out that PAR2 may induce distinct cellular response from Gq_x-pathway via a β-arrestin-mediated mechanism (96, 142, 143). However, proteases such as elastase and cathepsin S are unable to induce β-arrestin recruitment, suggesting their lack of ability to further promote β-arrestin-dependent signals. In contrast to PAR2, where both β-arrestins have similar effects, PAR1-mediated Akt signaling is differentially mediated by different β-arrestins, depending on the mechanism of proteolytic activation. For example, β-arrestin 1 is required for rapid activation of Akt induced by thrombin, whereas APC cleavage leads to β-arrestin 2-dependent Akt activation (53, 134, 144). Although the underlying mechanism is not established, it may relate to different receptor conformations.

Besides desensitization, receptor trafficking to different subcellular compartments also plays an important part in regulation of GPCR signaling. For both PAR1 and PAR2, activation by trypsin or thrombin leads to receptor trafficking to endosomes, followed by lysosome sorting and receptor down-regulation. (145). However, many proteases such as elastase and APC failed to induce PARs endocytosis. The regulatory machinery for biased protease-signaling remains unknown. The potential involvement of compartmentalization and redistribution of the receptors to membrane subdomains seems to be an attractive area to explore. As mentioned earlier, APC-induced PAR1 signals require localization of the signalosome to caveolae, a specific lipid rich plasma membrane microdomain. Caveolae has also been suggested to be involved in TF-mediated PAR1 signaling. In breast carcinoma
cells, both TF and PAR2 are observed co-localized in cholesterol-rich caveolae, and depletion or sequestration of plasma membrane cholesterol significantly impaired TF-VIIa induced cell signaling (146). It would be interesting to see if different proteases prefer targeting PARs at certain membrane microdomains or there is PARs redistribution upon activation by different proteases.

TRANSLATIONAL RELEVANCE OF PROTEASE-BIASED SIGNALING OF PARs

The contribution of PARs to important patho-physiological processes, including hemostasis, inflammation, pain, and proliferation, has been extensively investigated through studies of PAR-deficient mice and by use of proteases and synthetic agonists/antagonists of the canonical signaling pathways (21, 22). The capacity of certain proteases to act as biased PAR agonists or even antagonists adds further complexity to this system, and the relevance of protease-biased signals to complex patho-physiological processes is far from clear. A major difficulty relates to the identities of the proteases that activate PARs under physiological conditions and during disease. Since proteases are regulated through post-translational control of activity (e.g., by zymogen processing and endogenous inhibitors), studies should include assessment of enzymatic activity rather than gene or protein expression. A major advance in this regard is the use of activity-based probes that covalently interact with activated proteases, allowing their localization by whole animal or cellular imaging and identification by proteomic approaches (99). This approach has been used to detect activated cathespin S in macrophages of tumors and the inflamed colon, as well as in spinal microglial cells during colitis (67, 147). However, the use of probes is likely to reveal that multiple proteases become activated during physiological and pathological events, many of which could activate or disarm PARs. Additional information can be provided by studies of protease knockout mice or through use of selective inhibitors. However, a detailed understanding of the importance of biased signaling of PARs would probably require genetic or pharmacological strategies to selectively disrupt particular biased pathways, and such tools are currently lacking.

Although the patho-physiological importance of biased signaling of PARs is not fully understood, biased agonism could explain certain paradoxes about the patho-physiological contribution of PARs. For example, PARs can have both pro-inflammatory and anti-inflammatory roles, which may depend on the animal models, species, tissues, or the protease that drive the response. In an ovalbumin-induced model of allergic inflammation of the mouse airway, PAR2 deletion is protective, suggesting that PAR2 contributes to the development of immunity and to allergic inflammation of the airway (148). However, in a lipopoly saccharide-induced pulmonary neutrophilia model, PAR2 shows a protective effect (149, 150). The underlying mechanism of these observed differences is unclear. However, differences in the repertoire of proteases that are activated in acute versus chronic inflammation, leading to distinct mechanisms of PAR signaling, could be one explanation. Lipopoly saccharide-induced pulmonary neutrophilia is an acute inflammation characterized by influx of neutrophils and activation of elastase and proteinases 3, biased agonists of PAR1 and PAR2. On the other hand, ovalbumin-induced inflammation is characterized by infiltration of eosinophil and macrophages, leading to activation of distinct proteases (151). Thus, the predominant active proteases for PAR2 may be different in these two models, which could potentially activate different signaling pathways that lead to opposite responses. The contrasting pro-inflammatory and cytoprotective actions of thrombin and APC, respectively, may also be attributed to PAR1 biased signaling. In this instance, the relative concentration of the proteases as well as the occupancy of EP CR by its ligand are critical in determining the PAR1 signaling pathways (28).

CONCLUSION AND FUTURE DIRECTIONS

Considerable progress has been made in defining the mechanisms by which proteases and synthetic agonists activate PARs. Proteases, peptides, and small molecules have been identified that can activate PARs by distinct mechanisms, leading to the stimulation of divergent pathways of receptor signaling and trafficking. The information derived from these studies has provided insights into the signaling pathways that are responsible for certain patho-physiological processes.

However, there are many unanswered questions about biased signaling of PARs. The ability of a PAR cleaved by different proteases or bound to various synthetic agonists to differentially signal probably arises from distinct receptor conformations. However, the structures of PARs in these different stabilized states remain to be determined. Although some proteases activate PARs by exposure of a tethered ligand, this is not always the case and the mechanism by which proteolysis per se can activate signaling is unknown. There is tantalizing evidence to suggest that biased signaling may underlie contrasting patho-physiological consequences of PAR activation, depending on the available proteases and the nature of PAR signaling. However, the proteases that are responsible for PAR activation in particular cell types in different conditions remain to be identified, and the signaling pathways that give rise to particular patho-physiological outcomes are not fully defined. Finally, very little is known about the mechanisms that regulate protease-biased signaling of PARs, particularly by those proteases that fail to promote the recruitment of β-arrestins and endocytosis of the activated receptors.

Whether protease-biased signaling of PARs can be exploited therapeutically remains an open question. The development of receptor antagonists or agonists that target disease-relevant PAR signaling pathways without affecting beneficial signaling events could provide a route for enhanced selectivity, with fewer on target side-effects. Future challenges will be to identify the primary pathways that mediate PAR-dependent physiological and patho-physiological events, and to develop receptor agonists and antagonists that selectively target these pathways. A deeper understanding of the mechanisms of initiation, regulation, and termination of protease-signaling will have profound implication in developing therapeutics for many critical conditions, including sepsis, thrombosis, inflammation, and pain processes.

ACKNOWLEDGMENTS

Supported by NHMRC 63303, 1049682, 1031886, and Monash University (Nigel W. Bunnett).
REFERENCES

1. Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Biochemistry (2011) 40(9):943–71. doi:10.1021/bi101772w

2. Zhao P, Cladman W, Van Tol HMM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. Prog Mol Biol Transl Sci (2013) 115:421–53. doi:10.1016/B978-0-12-49587-7.00010-5

3. Jacoby E, Bouchéral R, Gerspacher M, Seuwen K. The 7 TM G-protein-coupled receptor target family. ChemMedChem (2006) 1(6):760–82. doi:10.1002/cmdc.200600134

4. McNeely PM, Naranjo AN, Robinson AS. Structure-function studies with G protein-coupled receptors as a paradigm for improving drug discovery and development of therapeutics. Biotechnology J (2012) 7(12):1451–61. doi:10.1002/biot.201200076

5. Neves SR, Ram PT, Iyer R. G protein pathways. Science (2002) 296(5573):1636–9. doi:10.1126/science.1071550

6. Moore CAB, Milano SK, Benovic JL. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci (1998) 62(17–18):1356–5. doi:10.1016/S0024-3205(98)00107-6

7. Marchese A, Paing MM, Temple BRS, Trejo J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol (2008) 48:601–29. doi:10.1146/annurev.pharmtox.48.113006.094666

8. Ferguson SS, Zhang J, Barak LS, Caron MG. Molecular mechanisms of G-protein-coupled receptor agonism. Curr Opin Cell Biol (2008) 20(1):664–7. doi:10.1016/j.cell.2007.11.014

9. Kenakin T. Functional selectivity and biased receptor signaling. Curr Opin Pharmacol (2009) 9(1):57–64. doi:10.1016/j.coph.2008.11.001

10. Neves SR, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a protease-activated receptor-1. Proc Natl Acad Sci U S A (1997) 94(28):15062–7. doi:10.1073/pnas.94.28.15062

11. Ku DD, Dai J. Expression of thrombin receptors in human atherosclerotic coronary arteries leads to an exaggerated vasoconstrictory response in vitro. J Pharmacol Exp Ther (2004) 309(3):1207–13. doi:10.1124/jpet.103.052525

12. McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A (2007) 104(15):6207–12. doi:10.1073/pnas.0610031104

13. Kim YD, Di Cello F, Hillaire CS, Kim KS. Differential Ca2+ signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells. Am J Physiol Cell Physiol (2004) 286(6):C31–42. doi:10.1152/ajpcell.01037.2003

14. Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, DeFea K, et al. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. Mol Pharmacol (2009) 76(4):791–801. doi:10.1124/mol.109.055509

15. Rimnac CS, Adler KB. Airways inflammation and COPD: epithelial-neutrophil interactions. Chest (2002) 121(5 Suppl):1425–50. doi:10.1378/chest.121.5_suppl.1425

16. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, et al. Neutrophil-mediated activation of epithelial protease-activated receptors 1 and 2 regulates barrier function and transepithelial migration. J Immunol (2008) 181(8):5702–10. doi:10.4049/jimmunol.181.8.5702

17. McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A (2007) 104(15):6207–12. doi:10.1073/pnas.0610031104

18. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, et al. Neutrophil-mediated activation of epithelial protease-activated receptors 1 and 2 regulates barrier function and transepithelial migration. J Immunol (2008) 181(8):5702–10. doi:10.4049/jimmunol.181.8.5702

19. Ku DD, Dai J. Expression of thrombin receptors in human atherosclerotic coronary arteries leads to an exaggerated vasoconstrictory response in vitro. J Pharmacol Exp Ther (2004) 309(3):1207–13. doi:10.1124/jpet.103.052525

20. McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A (2007) 104(15):6207–12. doi:10.1073/pnas.0610031104

21. Kim YD, Di Cello F, Hillaire CS, Kim KS. Differential Ca2+ signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells. Am J Physiol Cell Physiol (2004) 286(6):C31–42. doi:10.1152/ajpcell.01037.2003

22. Ramachandran R, Mihara K, Mathur M, Rochdi MD, Bouvier M, DeFea K, et al. Agonist-biased signaling via proteinase activated receptor-2: differential activation of calcium and mitogen-activated protein kinase pathways. Mol Pharmacol (2009) 76(4):791–801. doi:10.1124/mol.109.055509

23. Rimnac CS, Adler KB. Airways inflammation and COPD: epithelial-neutrophil interactions. Chest (2002) 121(5 Suppl):1425–50. doi:10.1378/chest.121.5_suppl.1425

24. Nystedt S, Emilsson K, Larson AK, Strombeck B, Sundelin J. Molecular cloning and functional expression of the gene encoding the human protease-activated receptor 2. Eur J Biochem (1995) 232(1):84–9. doi:10.1111/j.1432-1033.1995.tb20784.x

25. Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care (2003) 7(2):123–9. doi:10.1186/cc2012

26. Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor Vila. Proc Natl Acad Sci U S A (2000) 97(10):5255–60. doi:10.1073/pnas.97.10.5255

27. Madhusudhan T, Wang H, Straub BK, Grone E, Zhou Q, Shahzad K, et al. Cyto-protective signaling by activated protein C requires protease-activated receptor 3 in podocytes. Blood (2012) 119(3):874–83. doi:10.1182/blood-2011-07-365973

28. Rezaie AR. The occupancy of endothelial protein C receptor by its ligand modulates the par-1 dependent signaling specificity of coagulation proteases. JUBMB Life (2011) 63(3):390–6. doi:10.1002/biot.201100076

29. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, et al. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A (1997) 95(12):6642–6. doi:10.1073/pnas.95.12.6642

30. Adams MN, Ramachandran R, You M-K, Suen JY, Fairlie DP, Hollenberg MD, et al. Structure, function and pathophysiology of protease activated receptors. Pharmacotherapy (2011) 31(3):248–82. doi:10.1516/ph Eur.2011.01.003

31. Ossovskaya VSV, Bunnell NWN. Protease-activated receptors: contribution to physiology and disease. Physiol Rev (2004) 84(2):579–621. doi:10.1152/physrev.00028.2003

32. Soh UJK, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol (2010) 160(2):191–203. doi:10.1111/j.1476-5381.2010.00705.x
Zhao et al. Protease-biased signaling

45. Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. *J Thromb Haemost* (2010) 8(2):379–88. doi:10.1111/j.1538-7836.2009.03682.x

46. Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE. Plasminogen desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. *Biochemistry* (1999) 38(14):4572–85. doi:10.1021/bi9824792

47. Trivedi V, Batzela A, Tschachter B, Kaniezer NC, Leger AJ, Callaghan K, et al. Platelet matrix metalloproteinase-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. *Cell* (2009) 137(2):332–43. doi:10.1016/j.cell.2009.02.018

48. Tressel SL, Kaniezer NC, Kasuda S, Foley C, Koukos G, Austin K, et al. A matrix metalloproteinase-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. *EMBO Mol Med* (2011) 3(7):379–84. doi:10.1002/emmm.201001145

49. Austin KM, Nguyen N, Javid G, Covic L, Kuliopulos A. Noncanonical matrix metalloproteinase-1–protease-activated receptor-1 signaling triggers vascular smooth muscle cell dedifferentiation and arterial stiffness. *J Biol Chem* (2013) 288(32):23105–15. doi:10.1074/jbc.M113.467109

50. Jaffré F, Friedman AE, Hu Z, Mackman N, Blaxall BC. β-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. *Circulation* (2012) 125(24):2993–3003. doi:10.1161/CIRCULATIONAHA.111.066787

51. Mosnier LOL, Sinha RKR, Burnier LL, Bouwens EAE, Griffin JHJ. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg66. *Blood* (2012) 120(26):4527–33. doi:10.1182/blood-2012-08-452169

52. Schuepbach RA, Madon J, Endler M, Gill P, Riewald M. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. *J Thromb Haemost* (2012) 10(8):1675–84. doi:10.1111/j.1538-7836.2012.04825.x

53. Sob UTJ, Trejo J. Activated protein C promotes protease-activated receptor 1 cytoprotective signaling through β-arrestin and deshevelled-2 scaffolds. *Proc Natl Acad Sci U S A* (2011) 108(50):E1372-80. doi:10.1073/pnas.1124821108

54. Schuepbach RA, Feistritzer C, Fernandez JA, Griffin JH, Riewald M. Protection of vascular barrier integrity by activated protein C in murine models depends on protease-activated receptor-1. *Thromb Haemost* (2009) 101(4):724–33. doi:10.1160/TH08-08-0732

55. Cooper DM, Pechkovsky DV, Hackett TL, Knight DA, Granville DJ. Granzyme B cleavage of PAR1 thrombin receptor system for platelet activation. *J Biol Chem* (2013) 288(7):5005–17. doi:10.1074/jbc.M112.433075

56. Meyer-Hoffert U, Rogalski C, Seifert S, Schmeling G, Wingertszahn J, Hahn A, et al. Activation of protease-activated receptor-4 (PAR-4) by human kallikrein-related peptidase-13 in cardiac cells. *J Biol Chem* (2013) 288(23):16850–60. doi:10.1074/jbc.M113.481472

57. Ogilvie SK, Stiff G, Finegold MJ, Priban B, Xue Z, et al. Activation of protease-activated receptor-2 by human kallikrein-related peptidase 14 induces aggregation-dependent PAR2 co-operativity and mediates signaling dependent on binding to the endothelial protein C receptor. *EMBO Mol Med* (2011) 3(3):507–18. doi:10.1002/emmm.201100145

58. Cicala C, Pinto A, Bucci M, Sorrentino R, Walker B, Harriot P, et al. Protease-activated receptor-3 can signal autonomously to induce interleukin-8 release. *Cell Mol Life Sci* (2008) 65(5):970–81. doi:10.1007/s00018-007-7555-y

59. Burnier L, Mosnier LO. Novel mechanisms for activated protein C: cytoprotective activities involving noncanonical activation of protease-activated receptor-1. *Blood* (2013) 122(5):807–16. doi:10.1182/blood-2013-03-488957

60. Mao Y, Jin J, Daniel JL, Kunapuli SP. Regulation of plasmin-induced protease-activated receptor-4 activation in platelets. *J Biol Chem* (2010) 130(5):480–7. doi:10.1160/TH09-09-0930

61. Vargnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. *Mol Pain* (2009) 5:20–30. doi:10.1186/1744-8069-5-20

62. Cattaruzza F, Lyo V, Jones E, Pham D, Hanskins J, Kirkwood K, et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. *Gastroenterology* (2011) 141(5):e1–13. doi:10.1053/j.gastro.2011.07.035

63. Clark AK, Grist I, Al-Kashi A, Perretti M, Malcangio M. Single cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. *Arthritis Rheum* (2012) 66(4):2038–47. doi:10.1002/art.33451

64. Reddy VB, Shimada SG, Sikand P, Lamotte RH, Lerner EA. Cathepsin S elicits its rich signals via protease-activated receptors. *J Invest Dermatol* (2010) 130(5):1468–70. doi:10.1111/j.1974-9572.2009.00930.x

65. Dulon S, Cande C, Bunnell NW, Holford MG, Chignard M, Pidard D. Protease-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. *Am J Respir Cell Mol Biol* (2003) 28(3):339–46. doi:10.1165/rcmb.03-19908

66. Limas JP, Petacsek SS, Moscatelli D, Devi LA. Inflammatory mediators regulate cathepsin S in macrophages and microglia: a role in attenuating heparan sulfate interactions. *Mol Med* (1995) 5(5):320–33. doi:10.1016/1083-3796(94)90153-9

67. Stefansson K, Bratslund M, Roosterman D, Kempkes B, Bocheva G, Steinhoff M, et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. *Gastroenterology* (2011) 141(5):e1–13. doi:10.1053/j.gastro.2011.07.035
Zhao et al. Protease-biased signaling

102. Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, et al.
101. Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skaregarde A, Gedda K,
100. Cottrell GS, Amadesi S, Grady EF, Bunnett NW. Trypsin IV, a novel agonist
www.frontiersin.org
May 2014 | Volume 5 | Article 67 | 15
104. Böhm SKS, Khitin LML, Grady EFE, Aponte GG, Payan DGD, Bunnett NWN.
95. Scott G, Leopardi S, Parker L, Babiarz L, Seiberg M, Han R. The proteinase-
96. DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD, Bunnett NW.
90. Rasmussen UB, Gachet C, Schlesinger Y, Hanau D, Ohlmann P, Van Obberghen-
124. Dabek M, Ferrier L, Roka R, Gesc K, Annahazi A, Moreau J, et al. Lumi-
nal cathepsin g and protease-activated receptor 4: a duet involved in alter-
ations of the colonic epithelial barrier in ulcerative colitis. Am J Pathol (2009)
175(1):207–14. doi:10.2353/ajpath.2009.080986

125. Lin H, Liu AP, Smith TH, Trejo I. Cofactoring and dimerization of proteinase-
activated receptors. Pharmac Rev (2013) 65(4):1198–213. doi:10.1124/pr.111.
004747

126. Arachiche A, de la Fuente M, Nieman MT. Calcium mobilization and protein
kinase C activation downstream of protease activated receptor 4 (PAR4) is neg-
atively regulated by PAR3 in mouse platelets. PLoS One (2013) 8(2):e55740.
doi:10.1371/journal.pone.0055740

127. Madhusudhan T, Wang H, Straub BK, Groene E, Zhou Q, Shahzad K, et al. Cyto-
protective signaling by activated protein C requires protease-activated receptor
3 in podocytes. Blood (2012) 119(3):874–83. doi:10.1182/blood-2011-07-
365973

128. Lin H, Trejo I. Transactivation of the PAR1-PAR2 heterodimer by throm-
bin elicits β-arrestin-mediated endosomal signaling. J Biol Chem (2013)
288(16):11203–15. doi:10.1074/jbc.M112.439950

129. Sevigny LM, Zhang P, Bohm A, Lazarides K, Perides G, Covic L, et al. Interdict-
ion protease-activated receptor-2-driven inflammation with cell-penetrating
pepducins. Nat Immunol (2011) 12(8):1303–12. doi:10.1038/ni1313

130. Kaneider NC, Leger AJ, Agarwal A, Nguyen N, Perides G, Derian C, et al. ‘Role
reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat
Immunol (2007) 8(7):1230–12. doi:10.1038/nimi1525

131. Ayoub MA, Trinquet E, Pfleger KD, Pin JP. Differential association modes of the
thrombin receptor PAR1 with Gαq11, Gαq2, and β-arrestin 1. J Lipid
Res (2010) 24(9):3522–35. doi:10.1194/jlr.M110.094997

132. Ayoub MA, Pin JP. Interaction of protease-activated receptor 2 with G pro-
teins and β-arrestin 1 studied by bioluminescence resonance energy transfer.
Front Endocrinol (2013) 4:196. doi:10.3389/fendo.2013.00196

133. Patel HH, Murray F, Insel PA. G-protein-coupled receptor-signaling com-
ponents in membrane raft and caveolae microdomains. Handb Exp Pharmacol
(2008) 186:167–84. doi:10.1007/978-3-540-27843-6_7

134. Paing MM, Stutta AB, Kohout TA, Lefkowitz RJ, Trejo I. β -Arrestins regu-
late protease-activated receptor-1 desensitization but not internalization
or Down-regulation. J Biol Chem (2002) 277(2):1292–300. doi:10.1074/jbc.
M101962000

135. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, et al. Inhibi-
tion of thrombin receptor signaling by a G-protein coupled receptor kinase.
Functional specificity among G protein-coupled receptor kinases. J Biol
Chem (1994) 269(2):1125–30.

136. Ricks TK, Trejo J. Phosphorylation of protease-activated receptor-2 differen-
tially regulates desensitization and internalization. J Biol Chem (2009)
284(49):34444–57. doi:10.1074/jbc.M109.048942

137. Tiruppathi C, Yan W, Sandoval R, Naqui T, Pronin AN, Benovic JL, et al. G
protein-coupled receptor kinase-5 regulates thrombin-activated signaling
in endothelial cells. Proc Natl Acad Sci U S A (2000) 97(13):7440–5.
doi:10.1073/pnas.97.13.7440

138. Jensen DI, Godfrey CB, Niklass C, Canals M, Kocan M, Poole DP, et al. The
bile acid receptor TGR5 does not interact with β-arrestins or traffic to endo-
osomes but transmits signals from plasma membrane rafts. J Biol
Chem (2013) 288(32):22942–60. doi:10.1074/jbc.M113.455774

139. Nobles KN, Xiao K, Ahn S, Shulak AK, Larn CM, Rajagopal S, et al. Dist-
tinct phosphorylation sites on the beta(2)-adrenergic receptor establish a bar-
code that encodes differential functions of beta-arrestin. Sci Signal (2011)
4(185):ra21. doi:10.1126/scisignal.2001707

140. Johnson EA, Oldfield S, Braksator E, Gonzalez-Cuello A, Couch D, Hall KJ,
et al. Agonist-selective mechanisms of mu-opioid receptor desensitization in
human embryonic kidney 293 cells. Mol Pharmacol (2006) 70(2):867–85.
doi:10.1124/mol.106.022376

141. Doll C, Poll F, Peuker K, Locher A, Gluck L, Schulz S. Desensitization of
opioid receptor phosphorylation and dephosphorylation in HEK293 cells. Br
J Pharmacol (2012) 167(6):1259–70. doi:10.1111/j.1476-5381.2012.02080.x

142. Goel R, Baldassare JJ. beta-Arrestin 1 couples thrombin to the rapid activation
of the Akt pathway. Ann N Y Acad Sci (2002) 973:138–41. doi:10.1111/j.1749-
6632.2002.tb04622.x

143. Trejo I. Protease-activated receptors: new concepts in regulation of G protein-
coupled receptor signaling and trafficking. J Pharmacol Exp Ther (2003)
307(2):437–42. doi:10.1124/pep.103.052100

144. Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA. Beta-
arrestin-dependent regulation of the colilin pathway downstream of protease-
activated receptor-2. J Biol Chem (2007) 282(28):20634–46. doi:10.1074/jbc.
M701391200

145. Schmidlin F, Amadei S, Dabbagh K, Lewis DE, Knott P, Bunnell NW, et al.
Protease-activated receptor 2 mediates eosinophil infiltration and hyperreac-
tivity in allergic inflammation of the airway. J Immunol (2002) 169(9):5315–21.
doi:10.4049/jimmunol.169.9.5315

146. Knight DA, Lim S, Scaffidi AK, Roche N, Cheng KE, Stewart GA, et al. Protease-
activated receptors in human airways: upregulation of PAR-2 in respira-
tory epithelium from patients with asthma. J Allergy Clin Immunol (2001)
108(5):797–803. doi:10.1067/mcl.2001.119025

147. Moffatt JD, Jeffrey KL, Cocks TM. Protease-activated receptor-2 activating
peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of
polymorphonuclear leukocytes into the airways of mice. Am J Respir Cell Mol
Biol (2002) 26(6):689–4. doi:10.1165/rcmb.2002-00693

148. Cortez-Betanzos V, Swirski FK, Waterman P, Yuan H, Figueiredo JL, New-
ton AP, et al. Real-time assessment of inflammation and treatment response
in a mouse model of allergic airway inflammation. J Clin Invest (2008)
118(12):4058–66. doi:10.1172/JCI36335

Conflict of Interest Statement: The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.

Received: 17 March 2014; paper pending published: 07 April 2014; accepted: 22 April 2014;
published online: 13 May 2014. Citation: Zhao P, Metcalf M and Bunnett NW (2014) Biased
signaling of protease-activated receptors. Front. Endocrinol. 5:67. doi:10.3389/fendo.2014.00067

This article was submitted to Molecular and Structural Endocrinology, a section of the
journal Frontiers in Endocrinology. Copyright © 2014 Zhao, Metcalf and Bunnett. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s) or
license are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
