Type 2 diabetes mellitus affects eradication rate of Helicobacter pylori

Mehmet Sargyn, Oya Uygur-Bayramici, Haluk Sargyn, Resat Dabak, Ekrem Orbay, Dilek Yavuzer, Ali Yayla

MATERIALS AND METHODS

Patients

Diabetic patients with dyspeptic complaints from Diabetes Outpatient Clinic were referred for upper gastrointestinal endoscopies in the Gastroenterology Department. Upper gastrointestinal endoscopies were performed in a standard fashion with a videoendoscope (Pentax G-2940, Japan) by the same endoscopist. Endoscopic findings were noted and Hp infection was assessed using 2 gastric antrum and 2 gastric corpus biopsy specimens, which were evaluated with the rapid urease test and the pathological examination (Haematoxylin-Eosin staining and Giemsa if the first stain was negative). Only patients with positive results for Hp infection were included in the study. The study population consisted of 40 patients with type 2 diabetic (21 females and 19 males; mean age 56±7 years) and 40 non-diabetic dyspeptic patients (20 females, 20 males; mean age 54±9 years) matched for sex and age (Table 1). All patients had detailed information about the study and written informed consent.

METHODS: 40 diabetic patients (21 females, 19 males; mean age 56±7 years) and 40 non-diabetic dyspeptic patients (20 females, 20 males; mean age 54±9 years) were evaluated. Diabetic patients with dyspeptic complaints were referred for upper gastrointestinal endoscopies; 2 corpus and 2 antral gastric biopsy specimens were performed on each patient. Patients with positive Hp results on histopathological examination comprised the study group. Non-diabetic dyspeptic patients seen at the Gastroenterology Outpatient Clinic and with the same biopsy and treatment protocol formed the control group. A triple therapy with amoxicillin (1 g b.i.d), clarithromycin (500 mg b.i.d) and omeprazole (20 mg b.i.d) was given to both groups for 10 days. Cure was defined as the absence of Hp infection assessed by corpus and antrum biopsies in control upper gastrointestinal endoscopies performed 6 weeks after completing the antimicrobial therapy.

RESULTS: The eradication rate was 50 % in the diabetic group versus 85 % in the non-diabetic control group (P<0.001).

CONCLUSION: Type 2 diabetic patients showed a significantly lower eradication rate than controls which may be due to changes in microvasculature of the stomach and to frequent antibiotic usage because of recurrent bacterial infections with the development of resistant strains.

INTRODUCTION

Helicobacter pylori (Hp) is the most prevalent infection all over the world and has been considered as the causative agent of many gastrointestinal diseases[1,2]. Type 2 diabetes mellitus can present with many protean gastrointestinal symptoms and Hp can play a role in this context[3,4].

Although a number of studies has been performed on the association of Hp and diabetes mellitus, the results have been controversial. In a large study performed by Xia et al., the seroprevalence of Hp infection was not statistically different in patients with diabetes mellitus and non-diabetic controls[5]. In earlier studies, the prevalence of Hp was reported to be 62 % versus 21 %, but according to Xia et al., the prevalence of Hp should be corrected for age and gender and there are no differences if an adjustment has been done for these variables[6].

The literature is even scarce about treatment regimens of Hp infection in diabetes mellitus. We also know that the eradication of Hp shows great differences between different ethnic groups and in patients with some chronic conditions[1,7]. Therefore we proposed that the eradication rate of Hp may be also different in type 2 diabetics in comparison to non-diabetic controls and we planned a prospective study to elucidate the eradication rate of Hp infection in type 2 diabetic subjects.

Abstract

AIM: To study the eradication rate of Helicobacter pylori (Hp) in a group of type 2 diabetes and compared it with an age and sex matched non-diabetic group.

Methods

Table 1 Characteristics of the patients in diabetic and control groups

	Diabetics	Control	P
n (F/ M)	40 (21/ 19)	63 (25/ 40)	>0.05
Age (y)	56±7	54±9	>0.05
Diabetes duration (y)	7.2±5	-	
HbA1c (%)	7.4±1.3	-	-

Methods

At enrolment and at the end of the treatment, each patient completed a dyspepsia questionnaire proposed by Buckley et al., which has been slightly modified[8]. A triple therapy with amoxicillin (1 g b.i.d), clarithromycin (500 mg b.i.d) and omeprazole (20 mg b.i.d) was given for 10 days. After 10 days, the patients received 20 mg omeprazole for 5 weeks if a gastric or duodenal ulcer was identified in the initial endoscopy or 40 mg of famotidin if there was gastritis. Cure was defined as the...
gastrointestinal diseases and is linked to the development of

DISCUSSION

Hp infection is responsible for up to 90% of upper gastrointestinal diseases and is linked to the development of gastric carcinoma, MALT associated lymphoma and has to be eradicated whenever it’s possible[9,10].

Standard triple therapy (Omeprazole, Clarithromycin and Amoxicillin) has been shown to be highly effective in the eradication of Hp in non-diabetic subjects in many previous studies (91%)[11,12]. In our control group, we found an eradication rate of 85%, which was compatible with the results in the literature.

Many authors have extensively explored the relationship between Hp and diabetes mellitus. There has been controversial results in previous studies but in a larger, well-designed study of Xia et al., there was no difference of the seroprevalence of Hp infection between patients with diabetes mellitus and non-diabetic controls[13]. But there were no studies which explored the efficacy of anti Hp protocols in type 2 diabetics, whereas in a study of Gabbarini et al. in type 1 diabetics, the Hp eradication rate was 65% in comparison to 92% in controls[13]. In another study performed on type 1 diabetics, the eradication rate was 62% with different triple antibiotic regimens and this could be increased by quadruple regimen to 88%[14]. In the present study performed on type 2 diabetics, a much lower eradication rate of Hp (50%) was found. Histopathological examination was used in this study for the detection of pre and post treatment Hp and as the gold standard, it was more reliable and reproducible than the 13C urea breath test, which has been used in the studies by Gabbarini et al.[13,14].

Immunosuppression in diabetes might predispose to the low eradication rate of Hp infection but other mechanisms may also explain the low eradication rate of Hp in type 2 diabetics. Type 2 diabetics are more susceptible to many bacterial and mycotic infections, which may lead to frequent use of antibiotics, and to the development of resistance[15-18].

Due to absorption problems in gastric mucosa, the extent of antibiotic absorption may be less[19]. This study showed a high rate of pathological endoscopic findings in type 2 diabetics, which may lead to disorders in gastrointestinal motility and to insufficient absorption of the drugs. Autonomic neuropathy has also been accused as a culprit. But studies in the literature suggested that there was no correlation between Hp positivity and delay in gastric emptying.

A standard 10 days triple therapy with conventional antibiotics seems not to be warranted in diabetics. Due to problems of absorption and motility, alternative regimens with longer duration seem to be necessary for a higher eradication rate. In particular, if we take into consideration that gastrointestinal symptoms, which are quite frequent in diabetics, are significantly improving when it is possible to eradicate Hp, we should try to eradicate Hp in diabetic subjects. But this is a new area of research and the larger prospective studies with different anti Hp regimens for type 2 diabetics are needed.

ACKNOWLEDGEMENT

The authors thank endoscopy assistants Aygün İpşük, RN and Elvan Ymıırı, RN for their assistance.

REFERENCES

1. Dunn BE, Cohen H, Blaser MJ. Epidemiology of H. Pylori Infection. Clinical Microbiology Reviews 1997; 10: 720-741
2. D’Ellios MM, Andersen LP, Prete GD. Inflammation and host response. Current Opinion in Gastroenterology: The year in Helicobacter pylori 1998; 14 (Suppl 1): 15-19
3. Güvener N, Akcan Y, Paksoy I, Soylu AR, Aydıny M, Arslan O. Helicobacter pylori associated gastric pathology in patients with type 2 diabetes mellitus and its relationship with gastric emptying: The Ankara study. Exp Clin Endocrinol Diab 1999; 107: 172-176
4. Gentile S, Turco S, Olivero B, Torrella R. The role of autonomic

Table 1

	Before (%)	After (%)	P
Age, duration of time	56.2±8	55.8±8	>0.05
Diabetes duration (y)	7.3±5	7.2±5	>0.05
HbA1c (%)	7.2±1.2	7.2±1.2	>0.05

Table 2

	Before (%)	After (%)	P
Age, duration of time	56.2±8	55.8±8	>0.05
Diabetes duration (y)	7.3±5	7.2±5	>0.05
HbA1c (%)	7.2±1.2	7.2±1.2	>0.05

Table 3

	H+/(-) at control endoscopy	H+/(-) at control endoscopy	P
Female sex (%)	53	47	>0.05
Age (y)	56.2±8	55.8±8	>0.05
Diabetes duration (y)	7.3±5	7.2±5	>0.05
HbA1c (%)	7.2±1.2	7.2±1.2	>0.05
neuropathy as a risk factor of Helicobacter pylori infection in dyspeptic patients with type 2 diabetes mellitus. Diab Res Clin Pract 1998; 42: 41-48

5 Xia HX, Talley JN, Kam EPY, Young LJ, Hammer J, Horowitz M. Helicobacter pylori infection is not associated with diabetes mellitus, nor with upper gastrointestinal symptoms in diabetes mellitus. Am J Gastroenterol 2001; 96: 1039-1046

6 Simon L, Tomoczky J, Toth M, Jambor M, Sudar Z. The significance of Campylobacter pylori infection in gastroenterologic and diabetic practice. Orvosi Hetilap 1989; 130: 1325-1329

7 Uygur-Bayramiçli O, Köyüş D, Yavuzer D, Telatar B, Kavakly B. Helicobacter pylori colonization and immunological disease. Eur J Gastroenterol Hepatol 2001; 13: 301-302

8 Buckley MJ, Scanlon C, McGurgan P, O’Morain CA. A validated dyspepsia symptom score. Ital J Gastroenterol Hepatol 1997; 29: 495-500

9 Delclier JC, Ebert M, Maltfertheiner P. Helicobacter pylori in gastric lymphoma and carcinoma. Current Opinion in Gastroenterology: The year in Helicobacter pylori 1998; 14 (Suppl 1): 41-45

10 Eslick GD, Lim LL-Y, Byles JE, Xia HH, Talley NJ. Association of Helicobacter pylori infection with gastric carcinoma: A meta analysis. Am J Gastroenterol 1999; 94: 2373-2379

11 Wurzer H, Rodrigo L, Stamler D, Archambult A, Rokkas T, Skandalis N, Fedorak R, Bazzoli F, Hentschel E, Mora P, Archmandritis A, Megraud F. For the ACT-10 Study Group. Short course therapy with amoxycillin-clarithromycin triple therapy for 10 days (ACT-10) eradicates Helicobacter pylori and heals duodenal ulcer. Aliment Pharmacol Ther 1997; 11: 81-87

12 Viara D, Ali A, Gatta L, O’Morain C. Treatment of Helicobacter pylori. Current Opinion in Gastroenterology: The year in Helicobacter pylori 1998; 14 (Suppl 1): 71-78

13 Gasbarrini A, Ojetti V, Pitocco D, Franceschi F, Candelli M, Torre EL, Gabrielli M, Canmarota G, Armuzzi A, Pola P, Ghirlanda G, Gasbarrini G. Insulin-dependent diabetes mellitus affects eradication rate of Helicobacter pylori infection. Eur J Gastroenterol Hepatol 1999; 11: 713-716

14 Gasbarrini A, Ojetti V, Pitocco D, Armuzzi A, Silveri NG, Pola P, Ghirlanda G, Gasbarrini G. Efficacy of different Helicobacter pylori eradication regimens in patients affected by insulin-dependent diabetes mellitus. Scand J Gastroenterol 2000; 35: 260-263

15 Zwet VAA, Megraud F. Diagnosis. Current Opinion in Gastroenterology: The year in Helicobacter pylori 1998; 14 (Suppl 1): 27-33

16 Gwilt PR, Nahas RR, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet 1991; 20: 477-490

17 Megraud F. Resistance of Helicobacter pylori to antibiotics. Aliment Pharmacol Ther 1997; 11 (Suppl 1): 43-53

18 Bessman AN, Sapico FL. Infections in the diabetic patient: the role of immune dysfunction and pathogen virulence factors. J Diabetic Complications 1992; 6: 258-262

19 Jaap AJ, Shore AC, Tooker JE. Relationship of insulin resistance to microvascular dysfunction of subjects with fasting hyperglycaemia. Diabetologia 1997; 40: 238-243

Edited by Xu XQ