Approximation of plurifinely plurisubharmonic functions

Nguyen Van Traoa, Hoang Vietb, Nguyen Xuan Honga,1

aDepartment of Mathematics, Hanoi National University of Education, Hanoi, Vietnam
bVietnam Education Publishing House, Hanoi, Vietnam

Abstract

In this paper, we study the approximation of negative plurifinely plurisubharmonic function defined on a plurifinely domain by an increasing sequence of plurisubharmonic functions defined in Euclidean domains.

Keywords:
plurifinely pluri-potential theory, plurifinely plurisubharmonic functions

2010 MSC: 32U05, 32U15

1. Introduction

Approximation is one of the most important tools in analysis. Let Ω be an Euclidean open set of \mathbb{C}^n and let u be a plurisubharmonic function on Ω. The problem of finding characterizations of u and Ω such that u can be approximated uniformly on $\overline{\Omega}$ by a sequence of smooth plurisubharmonic functions defined on Euclidean neighborhoods of Ω is classical. The theorem of Fornæss and Wiegerinck \cite{11} asserts that it is always possible if Ω is bounded domain with C^1-boundary and u is continuous on $\overline{\Omega}$. Recently, Avelin, Hed and Persson \cite{3} extended this result to domains with boundaries locally given by graphs of continuous functions. Therefore, it makes sense not only to ask for which domains Ω such an approximation is possible, but to ask for a characterization of those plurisubharmonic functions u that can be monotonically approximated from outside. According to the results by \cite{5}, \cite{6}, \cite{9}, \cite{15} and the third author, this is possible if the domain Ω has the \mathcal{F}-approximation property and u belongs to the Cegrell’s classes in Ω.

The aim of this paper is to study approximation of \mathcal{F}-plurisubharmonic function. More specifically, let u be a negative \mathcal{F}-plurisubharmonic function in \mathcal{F}-domain Ω. We concern with sufficient conditions on u and Ω such that u can be approximated by an increasing sequence of plurisubharmonic functions defined on Euclidean neighborhoods of Ω. It is not surprising that we need some kind of Ω and u in analogy with the set up to make the approximation possible. Namely, we prove the following.

Theorem 1.1. Let Ω be a bounded \mathcal{F}-hyperconvex domain and let $\{\Omega_j\}$ be a decreasing sequence of bounded hyperconvex domains such that $\Omega \subset \Omega_{j+1} \subset \Omega_j$, for all $j \geq 1$. Assume that there exists $p \in \mathcal{E}_0(\Omega)$, $\rho_j \in \text{PSH}^{-}(\Omega_j)$ with $\rho_j \not\rightarrow p$ a.e. in Ω. Then, for every $p > 0$ and for every $u \in \mathcal{F}_p(\Omega)$, there exists an increasing sequence of functions $u_j \in \text{PSH}^{-}(\Omega_j)$ such that $u_j \rightarrow u$ a.e. in Ω.

The paper is organized as follows. In section 2 we recall some notions of (plurifine) pluripotential theory. In Section 3, we give the definition of bounded \mathcal{F}-hyperconvex domain Ω and the class $\mathcal{E}_0(\Omega)$ which is similar as the class introduced in \cite{7} for the case is a bounded hyperconvex domain. In Section 4, we introduce and investigate the class $\mathcal{F}_p(\Omega)$, $p > 0$. Section 5 is devoted to prove the theorem 1.1.

1This work is finished during the third author’s post-doctoral fellowship of the Vietnam Institute for Advanced Study in Mathematics. He wishes to thank this institutions for their kind hospitality and support.

Preprint May 31, 2016
2. Preliminaries

Some elements of pluripotential theory (plurifine potential theory) that will be used throughout the paper can be found in [1]–[7]. Let Ω be a Euclidean open set of \(\mathbb{C}^n \). We denote by \(PS^*H^*(\Omega) \) the family of negative plurisubharmonic functions in \(\Omega \). The plurifine topology \(\mathcal{F} \) on \(\Omega \) is the smallest topology that makes all plurisubharmonic functions on \(\Omega \) continuous. Notions pertaining to the plurifine topology are indicated with the prefix \(\mathcal{F} \) to distinguish them from notions pertaining to the Euclidean topology on \(\mathbb{C}^n \). Moreover, since \(\Omega \) is complete.

Proposition 2.1. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(u \in \mathcal{F} \)-\(PS^*H^*(\Omega) \). Assume that \(\chi : \mathbb{R}^- \to \mathbb{R}^- \) is increasing convex function. Then, \(\chi \circ u \in \mathcal{F} \)-\(PS^*H^*(\Omega) \).

Proof. By Theorem 2.17 in [24], there exists a \(\mathcal{F} \)-closed, pluripolar set \(E \subset \Omega \) such that for every \(z \in \Omega \setminus E \), there is an \(\mathcal{F} \)-open set \(O_z \subset \Omega \) and a decreasing sequence of plurisubharmonic functions \(\{\varphi_j\} \) defined in Euclidean open neighborhoods of \(O_z \) such that \(\varphi_j \searrow u \) on \(O_z \). Since \(\chi \circ \varphi_j \) is plurisubharmonic functions in Euclidean open neighborhoods of \(O_z \) and \(\chi \circ \varphi_j \searrow \chi \circ u \) on \(O_z \), by Theorem 3.9 in [22] we have \(\chi \circ u \in \mathcal{F} \)-\(PS^*H^*(\Omega) \). Therefore, \(\chi \circ u \in \mathcal{F} \)-\(PS^*H^*(\Omega \setminus E) \). Moreover, since \(\chi \circ u \) is \(\mathcal{F} \)-continuous on \(\Omega \), by Theorem 3.7 in [22] it implies that \(\chi \circ u \in \mathcal{F} \)-\(PS^*H^*(\Omega) \). The proof is complete.

Proposition 2.2. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(\varphi \) be strictly plurisubharmonic function in \(\mathbb{C}^n \). Assume that \(u, v \in \mathcal{F} \)-\(PS^*H^*(\Omega) \) such that
\[
\int_{\Omega \setminus \{0 < d\varphi \leq 1\}} (dd^c \varphi)^n = 0.
\]
Then, \(u \geq v \) on \(\Omega \).

Proof. Let \(z \in \Omega \cap \{ u > -\infty \} \) and \(\lambda > 0 \) with \(u(z) > -\lambda \). Choose \(r > 0 \) and \(\psi \in PS^*H^*(B(z, r)) \) such that \(\psi(z) > -\frac{1}{r} \) and \(B(z, r) \cap \{ \psi > -1 \} \subset \Omega \). Put
\[
f := \begin{cases}
\max(-4\lambda, u + 4\lambda \psi) & \text{in } \Omega \\
-4\lambda & \text{in } B(z, r) \setminus \Omega
\end{cases}
\]
and
\[
g := \begin{cases}
\max(-4\lambda, v + 4\lambda \psi) & \text{in } \Omega \\
-4\lambda & \text{in } B(z, r) \setminus \Omega
\end{cases}
\]
By Proposition 2.3 in [23] and Proposition 2.14 in [22] it follows that \(f, g \in PS^*H^*(B(z, r)) \). From the hypotheses we have
\[
0 \leq \int_{B(z, r) \setminus \{0 < d\psi \leq \epsilon\}} (dd^c \psi)^n \leq \int_{\Omega \setminus \{0 < d\varphi \leq 1\}} (dd^c \varphi)^n \leq 0.
\]
This implies that \(f \geq g \) in \(B(z, r) \). Hence, \(u(z) \geq v(z) \), and therefore, \(u \geq v \) in \(\Omega \cap \{ u > -\infty \} \). Since \(u, v \) are \(\mathcal{F} \)-continuous, by Theorem 3.7 in [22] we obtain that \(u \geq v \) in \(\Omega \). The proof is complete.

Definition 2.3. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(QB(\Omega) \) be the trace of \(QB(\mathbb{C}^n) \) on \(\Omega \), where \(QB(\mathbb{C}^n) \) is denoted the measurable space on \(\mathbb{C}^n \) generated by the Borel sets and the pluripolar subsets of \(\mathbb{C}^n \). Assume that \(u_1, \ldots, u_n \in \mathcal{F} \)-\(PS^*H(\Omega) \) be finite. Using the quasi-Lindelöf property of plurifine topology and Theorem 2.17 in [24], there exist a pluripolar set \(E \subset \Omega \), a sequence of \(\mathcal{F} \)-open subsets \(\{O_k\} \) and the plurisubharmonic functions \(f_{j,k}, g_{j,k} \) defined in Euclidean neighborhoods of \(O_k \) such that \(\Omega = E \cup \bigcup_{k=1}^{\infty} O_k \) and \(u_j = f_{j,k} - g_{j,k} \) on \(O_k \). We define \(O_0 := \emptyset \) and
\[
\int_A dd^c u_1 \wedge \ldots \wedge dd^c u_n := \sum_{j=1}^{\infty} \int_{A \cap (O_j \cup \bigcup_{k=0}^{j-1} O_k)} dd^c(f_{j,k} - g_{j,k}) \wedge \ldots \wedge dd^c(f_{j,k} - g_{j,k}), \quad A \in QB(\Omega). \tag{2.1}
\]
By Theorem 3.6 in [24], the measure defined by (2.1) is independent on \(E, \{O_k\}, \{f_{j,k}\} \) and \(\{g_{j,k}\} \). This measure is called the complex Monge-Ampère measure.
Proposition 2.4. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(u_1, \ldots, u_n \in \mathcal{F} \)-PS H(\(\Omega \)) be finite. Then, \(dd^c u_1 \wedge \ldots \wedge dd^c u_n \) is non-negative measure on \(QB(\Omega) \).

Proof. The statement follows from [4], Theorem 2.17 in [24] and Lemma 4.1 in [24]. \(\square \)

Proposition 2.5. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(\mu \) be non-negative measure on \(QB(\Omega) \). Assume that \(u, v \in \mathcal{F} \)-PS H(\(\Omega \)) are finite such that \((dd^c u)^n \geq \mu \) and \((dd^c v)^n \geq \mu \) in \(\Omega \). Then \((dd^c \max(u, v))^n \geq \mu \) in \(\Omega \).

Proof. Put \(v_j \coloneqq \max(u, v - \frac{1}{j}) \), where \(j \in \mathbb{N}^* \). By Theorem 4.8 in [24] we have

\[
(dd^c v_j)^n \geq 1_{[\mu \geq 0]}(dd^c u)^n + 1_{[\mu \geq \frac{1}{j}]}(dd^c v)^n \geq 1_{[\mu \geq \frac{1}{j}]} \mu.
\]

Since \(v_j \not\to \max(u, v) \) on \(\Omega \), by Theorem 4.5 in [23] we obtain \((dd^c \max(u, v))^n \geq \mu \) in \(\Omega \). The proof is complete. \(\square \)

Proposition 2.6. Let \(\Omega \) be an \(\mathcal{F} \)-open set in \(\mathbb{C}^n \) and let \(u \in \mathcal{F} \)-PS H(\(\Omega \)) be finite. Assume that \(\{u_j\} \) is a monotone sequence of negative, finite, \(\mathcal{F} \)-plurisubharmonic functions such that \(u_j \to u \) a.e. on \(\Omega \). Then

\[
\int_{\Omega} f(dd^c u)^n \leq \liminf_{j \to +\infty} \int_{\Omega} f(dd^c u_j)^n,
\]

for every non-negative, bounded, \(\mathcal{F} \)-continuous function \(f \) on \(\Omega \).

Proof. From Theorem 3.9 in [22], there exists a \(\mathcal{F} \)-closed, pluripolar set \(E \subset \Omega \) such that \(u_j \to u \) on \(\Omega \backslash E \). By Theorem 4.5 in [23] we have the sequence of measures \((dd^c u_j)^n \) converges \(\mathcal{F} \)-locally vaguely to \((dd^c u)^n \) on \(\Omega \backslash E \). Using the quasi-Lindelöf property of plurisubharmonic topology, there exist a pluripolar set \(F \subset \Omega \backslash E \), a sequence of \(\mathcal{F} \)-open subsets \(\{O_k\} \) and non-negative \(\mathcal{F} \)-continuous functions \(\chi_k \) in \(\mathbb{C}^n \) with compact support on \(O_k \) such that \(\Omega \backslash E = F \cup \bigcup_{k=1}^{\infty} O_k \), \(0 \leq \chi_k \leq 1 \), \(\sum_{k=1}^{\infty} \chi_k = 1 \) on \(\Omega \backslash (E \cup F) \) and

\[
\int_{O_k} f\chi_k(dd^c u)^n = \lim_{j \to +\infty} \int_{O_k} f\chi_k(dd^c u_j)^n, \text{ for all } k \geq 1.
\]

It follows that

\[
\int_{\Omega} f(dd^c u)^n = \int_{\bigcup_{k=1}^{\infty} O_k} f(dd^c u)^n = \sup_{k \geq 1} \sum_{j=1}^{k} \int_{O_k} f\chi_k(dd^c u)^n
\]

\[
= \sup_{k \geq 1} \lim_{j \to +\infty} \int_{\Omega} f\left(\sum_{k=1}^{j} \chi_k \right)(dd^c u)^n \leq \liminf_{j \to +\infty} \int_{\Omega} f(dd^c u_j)^n.
\]

The proof is complete. \(\square \)

3. The class \(E_0(\Omega) \)

Definition 3.1. Let \(\Omega \) be bounded \(\mathcal{F} \)-domain in \(\mathbb{C}^n \). Then, \(\Omega \) is called \(\mathcal{F} \)-hyperconvex if there exist a negative bounded plurisubharmonic function \(\gamma_\Omega \) defined in a bounded hyperconvex domain \(\Omega' \) such that \(\Omega = \Omega' \cap \{\gamma_\Omega > -1\} \) and \(-\gamma_\Omega \) is \(\mathcal{F} \)-plurisubharmonic in \(\Omega \).

We say that a bounded negative \(\mathcal{F} \)-plurisubharmonic function \(u \) defined on bounded \(\mathcal{F} \)-hyperconvex domain \(\Omega \) belongs to \(E_0(\Omega) \) if \(\int_{\Omega} (dd^c u)^n < +\infty \) and satisfy for every \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(\Omega \cap \{u < -\varepsilon\} \subset \Omega \cap \{\gamma_\Omega > -1 + \delta\} \).

Remark 3.2. If \(\Omega \) is bounded hyperconvex domain then it is \(\mathcal{F} \)-hyperconvex. Moreover, there exists a bounded \(\mathcal{F} \)-hyperconvex domain that has no Euclidean interior point.

Proposition 3.3. Let \(\Omega \) be a bounded \(\mathcal{F} \)-hyperconvex domain in \(\mathbb{C}^n \). Then \(E_0(\Omega) \neq \emptyset \).
Proof. Let Ω' be a bounded hyperconvex domain in \mathbb{C}^n and let $\gamma_\Omega \in PS H^-(\Omega') \cap L^\infty(\Omega')$ such that $\Omega = \Omega' \cap \{\gamma_\Omega > -1\}$ and $-\gamma_\Omega \in \mathcal{F}^{-}PS H(\Omega)$. Let $\psi \in E_0(\Omega') \cap C(\Omega')$ such that $-1 \leq \psi < 0$ in Ω'. Choose $\varepsilon_0 > 0$ such that

$$G := (\psi < -2\varepsilon_0) \cap \{\gamma_\Omega > -1 + 2\varepsilon_0\} \neq \emptyset.$$

We define

$$\rho := \sup \{\psi \in \mathcal{F}^{-}PS H^-(\Omega) : \psi \leq \max(-1 - \gamma_\Omega, \psi) \text{ on } G\}.$$

Since $\max(-1 - \gamma_\Omega, \psi) \in \mathcal{F}^{-}PS H^-(\Omega)$ and G is \mathcal{F}^{-}-open set, we have $\rho \in \mathcal{F}^{-}PS H^-(\Omega)$. Let $\varepsilon > 0$. Choose $\delta \in (0, \varepsilon)$. Because

$$-1 \leq \max(-1 - \gamma_\Omega, \psi) \leq \rho < 0 \text{ in } \Omega,$$

and γ_Ω is upper semi-continuous on Ω', it follows that

$$\frac{\rho}{\varepsilon} \in \Omega' \cap \{\gamma_\Omega > -1 + \delta\}.$$

It remains to prove that $\int_\Omega (dd^c \rho)^n < +\infty$. Put

$$u := \begin{cases} \max\left(-\frac{1}{\varepsilon_0}, \rho + \frac{\rho}{\varepsilon_0} \gamma_\Omega\right) & \text{in } \Omega; \\ -\frac{1}{\varepsilon_0} & \text{in } \Omega' \setminus \Omega. \end{cases}$$

From Proposition 2.3 in [23] and Proposition 2.14 in [22] we get $u \in PS H(\Omega')$. By Proposition 3.2 in [23] we have ρ is \mathcal{F}^{-}-maximal in $\{\psi > -2\varepsilon_0\} \cup \{-1 < \gamma_\Omega < -1 + 2\varepsilon_0\}$. Moreover, since $\rho = u - \frac{1}{\varepsilon_0} \gamma_\Omega$ in $\{\gamma_\Omega > -1 + \varepsilon_0\}$ and $\{\psi < -\varepsilon_0\} \subseteq \Omega'$, by Theorem 4.8 in [23] it follows that

$$\int_\Omega (dd^c \rho)^n = \int_{\Omega' \cap \{\psi < -\varepsilon_0\} \cup \{\gamma_\Omega > -1 + \varepsilon_0\}} (dd^c \rho)^n$$

$$\leq \int_{\Omega' \cap \{\psi < -\varepsilon_0\}} (dd^c (u - \frac{1}{\varepsilon_0} \gamma_\Omega))^n < +\infty$$

(because $\Omega' \cap \{\psi < -\varepsilon_0\} \subseteq \Omega'$). Therefore, $\rho \in E_0(\Omega)$, and hence, $E_0(\Omega) \neq \emptyset$. The proof is complete.

Proposition 3.4. Let Ω be a bounded \mathcal{F}^{-}-hyperconvex domain in \mathbb{C}^n. Assume that $u \in E_0(\Omega)$ and $v \in \mathcal{F}^{-}PS H(\Omega)$ such that $u \leq v < 0$ in Ω. Then, $v \in E_0(\Omega)$ and

$$\int_\Omega (-\rho)(dd^c v)^n \leq \int_\Omega (-\rho)(dd^c u)^n,$$

for every $\rho \in \mathcal{F}^{-}PS H^-(\Omega) \cap L^\infty(\Omega)$. Moreover, if $u = v$ in $[u > -\varepsilon_0]$ for some $\varepsilon_0 > 0$ then

$$\int_\Omega (dd^c v)^n = \int_\Omega (dd^c u)^n.$$

Proof. Let Ω' be a bounded hyperconvex domain in \mathbb{C}^n and let $\gamma_\Omega \in PS H^-(\Omega') \cap L^\infty(\Omega')$ such that $\Omega = \Omega' \cap \{\gamma_\Omega > -1\}$ and $-\gamma_\Omega \in \mathcal{F}^{-}PS H(\Omega)$. Fix $\varepsilon > 0$. Choose $\delta > 0$ such that

$$\Omega \cap \{u < -\varepsilon\} \subseteq \Omega' \cap \{\gamma_\Omega > -1 + \delta\}.$$

Since $u \leq v < 0$ in Ω, we get

$$\Omega \cap \{v < -\varepsilon\} \subseteq \Omega \cap \{u < -\varepsilon\} \subseteq \Omega' \cap \{\gamma_\Omega > -1 + \delta\},$$

and hence,

$$\int_\Omega (dd^c v)^n \leq \int_\Omega (dd^c u)^n.$$
It remains to prove that
\[\int_{\Omega} (-\rho)(dd^c v)^n \leq \int_{\Omega} (-\rho)(dd^c u)^n, \]
for every \(\rho \in F^{PS H^c}(\Omega) \cap L^\infty(\Omega)\). We consider two cases follows.

Case 1. \(u = v \) in \(\Omega \cap \{ u > -\varepsilon_0 \} \) for some \(\varepsilon_0 > 0 \). Let \(\psi \in E_0(\Omega') \cap C(\Omega') \). Choose \(\delta_0 > 0 \) such that
\[\Omega \cap \{ \psi > -2\delta_0 \} \cup \{ \gamma_\Omega < -1 + 2\delta_0 \} \subset \Omega \cap \{ u > -\varepsilon_0 \}. \]
Without loss of generality we can assume that \(-1 \leq u \leq v < 0 \) and \(-1 \leq \rho \leq 0 \) in \(\Omega \). Put
\[f := \begin{cases} \max(-\frac{1}{\varepsilon_0}, u + \frac{1}{\varepsilon_0}\gamma_\Omega) & \text{in } \Omega \\ \max(-\frac{1}{\varepsilon_0}, v + \frac{1}{\varepsilon_0}\gamma_\Omega) & \text{in } \Omega' \setminus \Omega \end{cases}, \]
and
\[\varphi := \begin{cases} \max(-\frac{1}{\varepsilon_0}, \rho + \frac{1}{\varepsilon_0}\gamma_\Omega) & \text{in } \Omega \\ \max(-\frac{1}{\varepsilon_0}, \rho) & \text{in } \Omega' \setminus \Omega \end{cases}. \]
From Proposition 2.3 in [23] and Proposition 2.14 in [22] we get \(f, g, \varphi \in PS H(\Omega') \). By Theorem 4.8 in [24] we have
\[(dd^c u)^n = (dd^c v)^n \text{ in } \Omega \cap \{ \gamma_\Omega < -1 + 2\delta_0 \}. \]
Since \(\rho = h - \frac{1}{\varepsilon_0}\gamma_\Omega \), \(u = f - \frac{1}{\varepsilon_0}\gamma_\Omega \), \(v = g - \frac{1}{\varepsilon_0}\gamma_\Omega \) in \(\{ \gamma_\Omega > -1 + \delta_0 \} \) and \(f = g \) in \(\{ \psi > -2\delta_0 \} \cup \{ \gamma_\Omega < -1 + 2\delta_0 \} \), by integration by parts yields
\[\int_{\Omega} \rho((dd^c v)^n - (dd^c u)^n) = \int_{\{ \gamma_\Omega > -1 + \delta_0 \}} \rho((dd^c v)^n - (dd^c u)^n) \]
\[= \int_{\{ \gamma_\Omega > -1 + \delta_0 \}} (\varphi - \frac{1}{\delta_0}\gamma_\Omega)(dd^c(g - \frac{1}{\delta_0}\gamma_\Omega))^n - (dd^c(f - \frac{1}{\delta_0}\gamma_\Omega))^n \]
\[= \int_{\Omega} (\varphi - \frac{1}{\delta_0}\gamma_\Omega)(dd^c(g - \frac{1}{\delta_0}\gamma_\Omega))^n - (dd^c(f - \frac{1}{\delta_0}\gamma_\Omega))^n \]
\[= \int_{\Omega} (\varphi - \frac{1}{\delta_0}\gamma_\Omega)dd^c(g - f) \wedge \sum_{j=0}^{n-1} (dd^c(f - \frac{1}{\delta_0}\gamma_\Omega))^j \wedge (dd^c(g - \frac{1}{\delta_0}\gamma_\Omega))^{n-1-j} \]
\[= \int_{\Omega} (\varphi - \frac{1}{\delta_0}\gamma_\Omega)dd^c(g - f) \wedge \sum_{j=0}^{n-1} (dd^c(f - \frac{1}{\delta_0}\gamma_\Omega))^j \wedge (dd^c(g - \frac{1}{\delta_0}\gamma_\Omega))^{n-1-j} \]
\[= \int_{\Omega} (v - u)dd^c\rho \wedge \sum_{j=0}^{n-1} (dd^c u)^j \wedge (dd^c v)^{n-1-j} \geq 0. \]
This follows that
\[\int_{\Omega} (dd^c u)^n = \int_{\Omega} (dd^c v)^n \]
and
\[\int_{\Omega} (-\rho)(dd^c v)^n \leq \int_{\Omega} (-\rho)(dd^c u)^n. \]

Case 2. The general case. Fix \(\lambda \in (0, 1) \) and define
\[v_j = \max(u, \lambda v - \frac{1}{j}), \text{ where } j \in \mathbb{N}^+. \]
Since \(u = v_j \) in \(\{ u > -\frac{1}{j} \} \), by the case 1 and Theorem 4.8 in [24] we get
\[\int_{\Omega} (-\rho)(dd^c u)^n \geq \int_{\Omega} (-\rho)(dd^c v_j)^n \]
\[
\geq \int_{\{u < v\}} (-p)(dd^c v)^{p} = \mathcal{A}^{p} \int_{\{u < \frac{1}{4}\}} (-p)(dd^c v)^{p}.
\]

It follows that
\[
\int_{\Omega} (-p)(dd^c u)^{p} \geq \sup_{\lambda \in (0,1)} \left[\mathcal{A}^{p} \sup_{j \geq 1} \int_{\{u < \lambda\}} (-p)(dd^c v)^{p} \right]
\]
\[
= \sup_{\lambda \in (0,1)} \left[\mathcal{A}^{p} \int_{\Omega} (-p)(dd^c v)^{p} \right] = \int_{\Omega} (-p)(dd^c v)^{p}.
\]

The proof is complete. \(\square\)

4. The class \(\mathcal{F}_p(\Omega)\)

Definition 4.1. Let \(\Omega\) be a bounded \(\mathcal{F}\)-hyperconvex domain in \(\mathbb{C}^n\) and let \(p > 0\). Denote by \(\mathcal{F}_p(\Omega)\) is the family of negative \(\mathcal{F}\)-plurisubharmonic functions \(u\) defined on \(\Omega\) such that there exist a decreasing sequence \(\{u_j\} \subset \mathcal{E}_0(\Omega)\) that converges pointwise to \(u\) on \(\Omega\) and
\[
\sup_{j \geq 1} \int_{\Omega} (1 + (-u_j)^p)(dd^c u_j)^p < +\infty.
\]

Remark 4.2. If \(u \in \mathcal{F}_p(\Omega)\) then \(u \in \mathcal{F}_q(\Omega)\) for all \(q \in (0, p)\).

Proposition 4.3. Let \(\Omega\) be a bounded \(\mathcal{F}\)-hyperconvex domain in \(\mathbb{C}^n\) and let \(p > 0\). Assume that \(u \in \mathcal{F}_p(\Omega)\) and \(\{u_j\} \subset \mathcal{E}_0(\Omega)\) such that \(u_j \searrow u\) on \(\Omega\) and
\[
\sup_{j \geq 1} \int_{\Omega} (1 + (-u_j)^p)(dd^c u_j)^p < +\infty.
\]

Then,
\[
\int_{\{u > -\infty\}} (dd^c u)^p = \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^p.
\]

Moreover, if \(u\) is bounded then
\[
\int_{\Omega} (-v)(dd^c u)^p = \sup_{j \geq 1} \int_{\Omega} (-v)(dd^c u_j)^p,
\]
for every \(v \in \mathcal{F}\cdot PS H^*(\Omega) \cap L^\infty(\Omega)\).

Proof. We consider two cases.

Case 1. \(u\) is bounded. First, we claim that if \(v \in \mathcal{E}_0(\Omega)\) then
\[
\int_{\Omega} (-v)(dd^c u)^p = \sup_{j \geq 1} \int_{\Omega} (-v)(dd^c u_j)^p. \tag{4.1}
\]

Indeed, without loss of generality we can assume that \(-1 \leq u \leq u_j < 0\) in \(\Omega\). Let \(\Omega'\) be a bounded hyperconvex domain in \(\mathbb{C}^n\) and let \(\gamma \in PS H^*(\Omega') \cap L^\infty(\Omega')\) such that \(\Omega = \Omega' \cap \{\gamma > -1\}\) and \(-\gamma \in \mathcal{F}\cdot PS H(\Omega)\). Let \(\{\delta_k\}\) be a decreasing sequence of positive real numbers such that \(\delta_k \searrow 0\) and
\[
\Omega \cap \{v < -\frac{2}{k}\} \subset \Omega' \cap \{\gamma > -1 + 2\delta_k\} \text{ for all } k \geq 1.
\]

Define
\[
\chi_k := \begin{cases}
\max(-k(v - 1), \frac{1}{\delta_k}(1 + \gamma), 0) & \text{in } \Omega; \\
0 & \text{in } \mathbb{C}^n \setminus \Omega.
\end{cases}
\]

6
It is clear that χ_k is \mathcal{F}-continuous function with compact support on Ω'. Fix $k \geq 1$. Put

$$f := \begin{cases}
\max(-\frac{1}{\delta_k} u + \frac{1}{\delta_k} \gamma \Omega) & \text{in } \Omega \\
-\frac{1}{\delta_k} u & \text{in } \Omega' \setminus \Omega
\end{cases}$$

and

$$f_j := \begin{cases}
\max(-\frac{1}{\delta_k} u_j + \frac{1}{\delta_k} \gamma \Omega) & \text{in } \Omega \\
-\frac{1}{\delta_k} u_j & \text{in } \Omega' \setminus \Omega
\end{cases}$$

By Proposition 2.3 in [23] and Proposition 2.14 in [22] it follows that $f, f_j \in PSH^-(\Omega') \cap L^\infty(\Omega')$. Since $u = f - \frac{1}{\delta_k} \gamma \Omega$, $u_j = f_j - \frac{1}{\delta_k} \gamma \Omega$ in $\{\gamma \Omega > -1 + \delta_k\}$ and $\{\gamma \Omega \neq 0\} \subset \{\gamma \Omega > -1 + \delta_k\}$, by [4] we get

$$\int_{\Omega} \chi_k(-v)(dd^c u)^n = \int_{\Omega'} \chi_k(-v)(dd^c(f - \frac{1}{\delta_k} \gamma \Omega))^n$$

$$= \lim_{j \to +\infty} \int_{\Omega} \chi_k(-v)(dd^c(f_j - \frac{1}{\delta_k} \gamma \Omega))^n$$

$$= \lim_{j \to +\infty} \int_{\Omega} \chi_k(-v)(dd^c u_j)^n.$$

Moreover, since $\{\gamma \Omega \neq 1\} \subset \{v \geq -\frac{1}{2}\}$, we get

$$\limsup_{j \to +\infty} \int_{\Omega} (-v)(dd^c u_j)^n \geq \int_{\Omega} \chi_k(-v)(dd^c u)^n$$

$$\geq \liminf_{j \to +\infty} \int_{\Omega} (-v)(dd^c u_j)^n - \limsup_{j \to +\infty} \int_{\Omega} (1 - \chi_k)(-v)(dd^c u_j)^n$$

$$\geq \liminf_{j \to +\infty} \int_{\Omega} (-v)(dd^c u_j)^n - \limsup_{j \to +\infty} \int_{\{\gamma \Omega \geq -\frac{1}{2}\}} (-v)(dd^c u_j)^n$$

$$\geq \liminf_{j \to +\infty} \int_{\Omega} (-v)(dd^c u_j)^n - \frac{2}{k} \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n.$$

Let $k \not\to +\infty$, by Proposition 3.4 we obtain that

$$\int_{\Omega} (-v)(dd^c u)^n = \lim_{j \to +\infty} \int_{\Omega} (-v)(dd^c u_j)^n = \sup_{j \geq 1} \int_{\Omega} (-v)(dd^c u_j)^n. $$

This proves the claim. Now, fix $\rho \in \mathcal{E}_0(\Omega)$ and define $v_k := \max(v, k \rho)$, where $k \in \mathbb{N}^+$. By Proposition 3.4 it implies that $v_k \in \mathcal{E}_0(\Omega)$. Hence, by [4.1] and Proposition 3.4 we get

$$\int_{\Omega} (-v)(dd^c u)^n = \sup_{k \geq 1} \int_{\Omega} (\chi_k(dd^c u)^n)$$

$$= \sup_{k \geq 1} \left[\sup_{j \geq 1} \int_{\Omega} (v_k(dd^c u_j)^n) \right] = \sup_{j \geq 1} \int_{\Omega} (-v)(dd^c u_j)^n. $$

Case 2. The general case. Let $k \in \mathbb{N}^+$. Since $u_j \leq \max(u_j, -k) < 0$ in Ω, by Proposition 3.4 we have $\max(u_j, -k) \in \mathcal{E}_0(\Omega)$ and

$$\sup_{j \geq 1} \int_{\Omega} [1 + \max(u_j, -k)](dd^c \max(u_j, -k))^n$$

$$\leq (1 + k\rho) \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n < +\infty.$$
Therefore, \(\max(u, -k) \in \mathcal{F}_p(\Omega) \). Hence, by (4.2) and Proposition 3.4 we get
\[
\int_{\Omega} (dd^c \max(u, -k))^n = \sup_{j \geq 1} \int_{\Omega} (dd^c \max(u_j, -k))^n = \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n.
\]
Moreover, by Proposition 2.1 we have \(-(u_m)^{\min(p,1)} \in \mathcal{F}^{-PS H}(-\Omega)\) for all \(m \geq 1 \). Hence, again by Proposition 3.4 it implies that
\[
\int_{\Omega} (-u)^{\min(p,1)} (dd^c \max(u, -k))^n = \sup_{m \geq 1} \int_{\Omega} (-u_m)^{\min(p,1)} (dd^c \max(u, -k))^n
\[
= \sup_{m \geq 1} \left[\sup_{j \geq 1} \int_{\Omega} (-u_m)^{\min(p,1)} (dd^c u_j)^n \right]
\[
\leq \sup_{m \geq 1} \int_{\Omega} (-u)^{\min(p,1)} (dd^c u_j)^n
\[
\leq \sup_{j \geq 1} \int_{\Omega} (1 + (-u_j)^p) (dd^c u_j)^n.
\]
It follows that
\[
\int_{\{u \leq 0\}} (dd^c \max(u, -k))^n \leq \frac{1}{k^{\min(p,1)}} \sup_{j \geq 1} \int_{\Omega} (1 + (-u_j)^p) (dd^c u_j)^n.
\]
Therefore, by Theorem 4.8 in [24] we get
\[
\int_{\{u \geq 0\}} (dd^c u)^n = \lim_{k \to +\infty} \int_{\{u \geq 0\}} (dd^c \max(u, -k))^n
\[
= \lim_{k \to +\infty} \int_{\Omega} (dd^c \max(u, -k))^n = \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n.
\]
The proof is complete.

\[\square\]

Proposition 4.4. Let \(\Omega \) be a bounded \(\mathcal{F} \)-hyperconvex domain in \(\mathbb{C}^n \) and let \(p > 0 \). Assume that \(u \in \mathcal{F}_p(\Omega) \) and \(v \in \mathcal{F}^{-PS H}(\Omega) \) with \(u \leq v < 0 \) then \(v \in \mathcal{F}^{-min(p,1)}(\Omega) \) and
\[
\int_{\{u \geq -\infty\}} (dd^c v)^n \leq \int_{\{u \geq -\infty\}} (dd^c u)^n.
\]

Proof. Let \(\{u_j\} \subset \mathcal{E}_0(\Omega) \) such that \(u_j \searrow u \) in \(\Omega \) and
\[
\sup_{j \geq 1} \int_{\Omega} (1 + (-u_j)^p) (dd^c u_j)^n < +\infty.
\]
Put \(v_j := \max(u_j, v) \). By Proposition 3.4 we have \(v_j \in \mathcal{E}_0(\Omega) \). Moreover, by Proposition 2.1 we have \(-(v_j)^{\min(p,1)} \in \mathcal{F}^{-PS H}(\Omega)\). Hence, again by Proposition 3.4 it implies that
\[
\sup_{j \geq 1} \int_{\Omega} (1 + (-v_j)^{\min(p,1)}) (dd^c v_j)^n \leq \sup_{j \geq 1} \int_{\Omega} [1 + (-v_j)^{\min(p,1)}] (dd^c u_j)^n
\[
\leq \sup_{j \geq 1} \int_{\Omega} [2 + (-u_j)^p] (dd^c u_j)^n < +\infty.
\]
Since \(v_j \downarrow v \) in \(\Omega \), it implies that \(v \in \mathcal{F}_{\min(p,1)}(\Omega) \). Therefore, by Proposition 3.3 and Proposition 4.3, we obtain

\[
\int_{[0,\infty)} (dd^c v)^n = \sup_{j \geq 1} \int_{\Omega} (dd^c v_j)^n \\
\leq \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n = \int_{[0,\infty)} (dd^c u)^n.
\]

The proof is complete.

Proposition 4.5. Let \(\Omega \) be a bounded \(\mathcal{F} \)-hyperconvex domain in \(\mathbb{C}^n \) and let \(p > 0 \). Assume that \(u \in \mathcal{F}_{\min(p,1)}(\Omega) \) and \(v \in \mathcal{F}^{-PS H^+}(\Omega) \) such that \((1 + (-v)^p)(dd^c u)^n \leq (1 + (-v)^p)(dd^c v)^n \) in \(\Omega \cap [u > -\infty] \cap [v > -\infty] \). Then \(u \geq v \) in \(\Omega \).

Proof. Let \(\varphi \) be smooth strictly plurisubharmonic function in \(\mathbb{C}^n \) such that \(\Omega \subset \{ \varphi < 0 \} \). Put \(v_j := \max(u, v + \frac{1}{j} \varphi) \) on \(\Omega \), where \(j \in \mathbb{N}^* \). First, we claim that

\[
(dd^c v_j)^n \geq (dd^c u)^n \text{ in } \Omega \cap [u > -\infty] \cap [v > -\infty].
\]

Indeed, by the hypotheses it implies that

\[
(dd^c (v + \frac{1}{j} \varphi))^n \geq (dd^c v_j)^n \geq \frac{1 + (-v)^p}{1 + (-v)^p} (dd^c u)^n \geq 1_{[u \leq \varphi + \frac{1}{j} \varphi]} (dd^c u)^n
\]

in \(\Omega \cap [u > -\infty] \cap [v > -\infty] \). Hence, by Proposition 2.5 we get

\[
1_{[u \leq \varphi + \frac{1}{j} \varphi]} (dd^c v_j)^n \geq 1_{[u \leq \varphi + \frac{1}{j} \varphi]} (dd^c u)^n \text{ in } \Omega \cap [u > -\infty] \cap [v > -\infty].
\]

Moreover, by Theorem 4.8 in [24] we have \((dd^c v_j)^n = (dd^c u)^n \) in \(\Omega \cap [u > \varphi + \frac{1}{j} \varphi] \cap [u > -\infty] \cap [v > -\infty] \). Therefore,

\[
(dd^c v_j)^n \geq (dd^c u)^n \text{ in } \Omega \cap [u > -\infty] \cap [v > -\infty].
\]

This proves the claim. Since \(v_j \geq u \) in \(\Omega \), by Proposition 4.3 we have

\[
\int_{[0,\infty)} (dd^c u)^n \leq \int_{[0,\infty)} (dd^c v_j)^n \leq \int_{[0,\infty)} (dd^c u)^n < +\infty.
\]

It follows that \(1_{[v > -\infty]}(dd^c v_j)^n = 1_{[u > -\infty]}(dd^c u)^n \) in \(\Omega \). Therefore, by Theorem 4.8 in [24] we get

\[
\int_{[u < \varphi < v]} (dd^c \varphi)^n \leq \int_{[u < \varphi < v]} [(dd^c (v + \frac{1}{j} \varphi))^n - (dd^c v_j)^n] \leq \int_{[u < \varphi < v]} [(dd^c v)^n - (dd^c u)^n] = 0.
\]

Thus,

\[
\int_{[u < \varphi < v]} (dd^c \varphi)^n = \sup_{j \geq 1} \int_{[u < \varphi < v]} (dd^c \varphi)^n = 0.
\]

From Proposition 2.3 we have \(u \geq v \) on \(\Omega \). The proof is complete.

5. Proof of theorem 1.1

Proof. Let \(\{ \varphi_j \} \subset \mathcal{E}_0(\Omega) \) such that \(\varphi_j \downarrow u \) on \(\Omega \) and

\[
\sup_{j \geq 1} \int_{\Omega} (1 + (-\varphi_j)^p)(dd^c \varphi_j)^n < +\infty.
\]
By Proposition 2.6 we have
\[
\int_{\{u > -\infty\}} (1 + (-u)^p)(dd^c u)^n \leq \sup_{k \geq 1} \int_{\Omega \cap \{u > -\infty\}} (1 + (-\varphi_k)^p)(dd^c u)^n
\]
\[
\leq \sup_{k \geq 1} \liminf_{j \to +\infty} \int_{\Omega} (1 + (-\varphi_k)^p)(dd^c \varphi_j)^n
\]
\[
\leq \sup_{j \geq 1} \int_{\Omega} (1 + (-\varphi_k)^p)(dd^c \varphi_j)^n < +\infty.
\]
Moreover, since the measure \(1_{\Omega \cap \{u > -\infty\}}(1 + (-u)^p)(dd^c u)^n\) vanishes on all pluripolar subsets of \(\Omega_j\), by Theorem 4.10 in \([12]\) there exists \(u_j \in \mathcal{F}_p(\Omega_j)\) such that
\[
(1 + (-u_j)^p)(dd^c u_j)^n = 1_{\Omega \cap \{u > -\infty\}}(1 + (-u)^p)(dd^c u)^n \quad \text{in } \Omega_j.
\]
By Theorem 4.8 in \([12]\) we have \(u_j \geq u_{j+1}\) in \(\Omega_{j+1}\). Moreover, since \(u \in \mathcal{F}_{\min(p,1)}(\Omega)\), by Proposition 4.5 it implies that \(u \geq u_j\) in \(\Omega\) for all \(j \geq 1\). Let \(v\) be the least \(\mathcal{F}\)-upper semi-continuous regularization of \(\lim_{j \to +\infty} u_j\) on \(\Omega\). By Theorem 3.9 in \([23]\) we get \(u_j \to v\) a.e. in \(\Omega\).

We claim that \(v \in \mathcal{F}_{\min(p,1)}(\Omega)\). Indeed, put \(v_k := \max(v, k\rho)\), where \(k \in \mathbb{N}^*\). By Proposition 3.4 we have \(v_k \in \mathcal{E}_0(\Omega)\). Since \(\max(u_j, k\rho) \not\nearrow v_k\) a.e. in \(\Omega\), by Proposition 2.6 and Lemma 3.3 in \([1]\) we get
\[
\int_{\Omega} [1 + (-\varphi_k)^\min(p,1)](dd^c v_k)^n \leq \liminf_{j \to +\infty} \int_{\Omega} [1 + (-\varphi_k)^\min(p,1)](dd^c \max(u_j, k\rho))^n
\]
\[
\leq \liminf_{j \to +\infty} \int_{\Omega} [1 + (-\max(u_j, k\rho))^\min(p,1)](dd^c \max(u_j, k\rho))^n
\]
\[
\leq \liminf_{j \to +\infty} \int_{\Omega} [1 + (-u_j)^\min(p,1)](dd^c u_j)^n
\]
\[
\leq 2 \liminf_{j \to +\infty} \int_{\Omega} [1 + (-u_j)^p](dd^c u_j)^n
\]
\[
= 2 \int_{\Omega \cap \{u > -\infty\}} (1 + (-u)^p)(dd^c u)^n.
\]
Hence,
\[
\sup_{k \geq 1} \int_{\Omega \cap \{u > -\infty\}} [1 + (-\varphi_k)^\min(p,1)](dd^c v_k)^n \leq 2 \int_{\Omega \cap \{u > -\infty\}} (1 + (-u)^p)(dd^c u)^n < +\infty.
\]
It follows that \(v \in \mathcal{F}_{\min(p,1)}(\Omega)\). This proves the claim. Since \(v \geq u_j\) in \(\Omega\), so
\[
(1 + (-v)^p)(dd^c v)^n \leq (1 + (-u_j)^p)(dd^c u_j)^n \quad \text{in } \Omega \cap \{u > -\infty\}.
\]
Moreover, since \(u_j \not\nearrow v\) a.e. in \(\Omega\), by Theorem 4.5 in \([23]\) we have
\[
(1 + (-v)^p)(dd^c v)^n \leq (1 + (-u)^p)(dd^c u)^n \quad \text{in } \Omega \cap \{u > -\infty\} \cap \{v > -\infty\}.
\]
Hence, by Proposition 4.5 it implies that \(v \geq u\) in \(\Omega\), and therefore, \(u = v\) in \(\Omega\). Thus, \(u_j \to u\) a.e. in \(\Omega\). The proof is complete.

References

[1] P. Åhag, U. Cegrell, R. Czyż and P. H. Hiep, *Monge-Ampère measures on pluripolar sets*, J. Math. Pures Appl., 92 (2009), 613–627.

[2] P. Åhag, R. Czyż and P. H. Hiep, *Concerning the energy class \(E_p\) for \(0 < p < 1\)*, Ann. Polon. Math., 91 (2007), 119–130.

[3] B. Avelin, L. Hed and H. Persson, *Approximation of plurisubharmonic functions*, Complex Var. Elliptic Equ., 61 (2016), no. 1, 23–28.

[4] E. Bedford and B. A. Taylor, *Fine topology, Siciak boundary and \((dd^c)\)-Ray*, J. Funct. Anal., 72 (1987), 225–251.
[5] S. Benelkourchi, *A note on the approximation of plurisubharmonic functions*, C. R. Acad. Sci. Paris, **342** (2006), 647–650.
[6] S. Benelkourchi, *Approximation of weakly singular plurisubharmonic functions*, Int. J. Math., **22** (2011), 937–946.
[7] U. Cegrell, *Pluricomplex energy*, Acta Math., **180** (1998), 187–217.
[8] U. Cegrell, *The general definition of the complex Monge-Ampère operator*, Ann. Inst. Fourier (Grenoble), **54**, 1 (2004), 159–179.
[9] U. Cegrell and L. Hed, *Subextension and approximation of negative plurisubharmonic functions*, Michigan Math. J., **56** (2008), no. 3, 593–601.
[10] B. Fuglede, *Finely harmonic functions*, Lecture Notes in Math., vol. **289**, Springer, Berlin (1972).
[11] J. E. Fornæss and J. Wiegerinck, *Approximation of plurisubharmonic functions*, Ark. Math., **27** (1989), 257–272.
[12] L. M. Hai and P. H. Hiep, *Some weighted energy classes of plurisubharmonic functions*, Potential Anal., **34** (1) (2011), 43–56.
[13] L. M. Hai, N. X. Hong and T. V. Dung, *Subextension of plurisubharmonic functions with boundary values in weighted pluricomplex energy classes*, Complex Var. Elliptic Equ., **60**, Issue 11 (2015), 1580–1593.
[14] L. M. Hai, N. V. Trao and N. X. Hong, *The complex Monge-Ampère equation in unbounded hyperconvex domains in \(C^n \)*, Complex Var. Elliptic Equ., **59** (2014), no. 12, 1758–1774.
[15] L. Hed, *Approximation of negative plurisubharmonic functions with given boundary values*, Internat. J. Math., **21** (2010), no. 9, 1135–1145.
[16] L. Hed and P. Persson, *Plurisubharmonic approximation and boundary values of plurisubharmonic functions*, J. Math. Anal. Appl., **413** (2014), no. 2, 700–714.
[17] N. X. Hong, *The locally \(f \)-approximation property of bounded hyperconvex domains*, J. Math. Anal. Appl., **428** (2015), 1202–1208.
[18] N.X. Hong, *Monge-Ampère measures of maximal subextensions of plurisubharmonic functions with given boundary values*, Complex Var. Elliptic Equ., **60** (3) (2015), 429–435.
[19] N. X. Hong and H. Viet, *Local property of maximal plurifinely plurisubharmonic functions*, J. Math. Anal. Appl., **441** (2016), 586–592.
[20] P. H. Hiep, *The comparison principle and Dirichlet problem in the class \(E_p(f) \), \(p > 0 \)*, Ann. Polon. Math., **88** (2006), no. 3, 247–261.
[21] M. E. Kadiri, *Fonctions finement plurisousharmoniques et topologie plurifine*, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) **27** (2003), 77–88.
[22] M. E. Kadiri, B. Fuglede and J. Wiegerinck, *Plurisubharmonic and holomorphic functions relative to the plurifine topology*, J. Math. Anal. Appl., **381** (2011), 107–126.
[23] M. E. Kadiri and I. M. Smit, *Maximal plurifinely plurisubharmonic functions*, Potential Anal., **41** (2014), 1329–1345.
[24] M. E. Kadiri and J. Wiegerinck, *Plurifinely plurisubharmonic functions and the Monge-Ampère operator*, Potential Anal., **41** (2014), 469–485.
[25] M. Klimek, *Pluripotential Theory*, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications.
[26] S. E. Marzguioui and J. Wiegerinck, *Continuity properties of finely plurisubharmonic functions*, Indiana Univ. Math. J., **59** (5), 1793–1800 (2010).
[27] J. Wiegerinck, *Plurifine potential theory*, Ann. Polon. Math., **106**, 275–292 (2012).