Genetic analysis of variations in the sugar chain composition at the C-3 position of soybean seed saponins

Yoshitake Takada*,1, Ippei Tayama3, Takashi Sayama1, Hiroko Sasama2,3, Masayasu Saruta1, Akio Kikuchi4, Masao Ishimoto3 and Chigen Tsukamoto2

1) NARO Western Region Agricultural Research Center, 1-3-1 Senyu, Zentsuuji, Kagawa 765-8508, Japan
2) Graduate School of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
3) National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
4) NARO Tohoku Agricultural Research Center, 297 Uenodai, Kariwano, Daisen, Akita 019-2112, Japan

Saponins are sterols or triterpene glycosides that are widely distributed in plants. The biosynthesis of soybean saponins is thought to involve many kinds of glycosyltransferases, which is reflected in their structural diversity. Here, we performed linkage analyses of the Sg-3 and Sg-4 loci, which may control the sugar chain composition at the C-3 sugar moieties of the soybean saponin glycones soyasapogenols A and B. The Sg-3 locus, which controls the production of group A saponin Af, was mapped to chromosome (Chr)-10. The Sg-4 locus, which controls the production of DDMP saponin βA, was mapped to Chr-1. To elucidate the preference of sugar chain formation at the C-3 and C-22 positions, we analyzed the F2 population derived from a cross between a mutant variety, Kinusayaka (sg-1), for the sugar chain structure at C-22 position, and Mikuriya-ao (sg-3), with respect to the segregation of the composition of the group A saponins, and found that the formation of these sugar chains was independently regulated. Furthermore, a novel saponin, predicted to be A0-γg, 3-O-[β-D-galactopyranosyl (1→2)β-D-glucuronopyranosyl]-22-O-α-L-arabinopyranosylsoyasapogenol A, appeared in the hypocotyl of F2 individuals with genotype sg-1/0/sg-1/0 sg-3/sg-3.

Key Words: genetic analysis, Glycine max (L.) Merrill, Glycine soja Sieb. et Zucc., DDMP saponin, group A saponin, sugar chain composition, mapping.

Introduction

Soybeans are used as raw materials for foods, domestic animal feed, and soybean oil because of the abundant proteins and fats in their seeds. Recently, there has been interest in the composition of soybeans for preventing and treating chronic diseases. Some saponins show functional properties, such as antilipidemic effects (Topping et al. 1980), anti-proliferative effects on human colon cancer cells (Ellington et al. 2005, 2006), and a reduction in hepatic lipid peroxidation through the secretion of thyroid hormones (Ishii and Tanizawa 2006). Because these properties depend on the chemical structure and concentration of the saponin, the presence of different saponin components at high levels in seeds could confer different health-promoting activities (Tsukamoto and Yoshiki 2006).

Many different triterpenoid saponins have been isolated and characterized in soybean seeds (Burrows et al. 1987, Kikuchi et al. 1999, Kitagawa et al. 1982, 1988, Kudou et al. 1992, 1993, Shiraiwa et al. 1991a, 1991b, Taniyama et al. 1988, Tsukamoto et al. 1993). The soybean saponins are divided into two groups, group A saponins and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins, according to their aglycone components. DDMP saponins and their degradation products, groups B and E saponins, possess functional properties; group A saponins, which have an acetylated sugar, cause a bitter and astringent taste (Okubo et al. 1992).

Group A saponins, detected only in seed hypocotyls (Shimoyamada et al. 1990), are bisdesmosidic saponins with a soyasapogenol A (3β, 21β, 22β, 24-tetrahydroxyolean-12-ene) aglycone that bears two sugar chains, one on the C-3 and one on the C-22 hydroxyl group (Shiraiwa et al. 1991a). A mutant line, Mikuriya-ao, accumulates saponin Af (Fig. 1), which lacks the terminal sugar at C-3, instead of saponin Ab (Shiraiwa et al. 1991b). DDMP saponins are found in both seed hypocotyls and cotyledons. They are monodesmosidic saponins with one carbohydrate at the C-3 of soyasapogenol B (3β, 22β, 24-trihydroxyolean-12-ene) as well as the DDMP moiety at C-22. In hypocotyls, DDMP saponins are composed of 6 components, αg, βg, γg, αa, βa and γa, by the combination of sugar in the C-3 sugar chains; however, only a few soybean varieties have αa, βa and γa, which have an arabinose in the sugar chain at the C-3 (Tsukamoto et al. 1993). In cotyledons, four saponin components, βg, γg, βa and γa are detected.

Communicated by T. Anai
Received August 29, 2011. Accepted November 14, 2011.
*Corresponding author (e-mail: yottake@affrc.go.jp)
Group A saponins Aa, Ab, and A0-αg have different sugar chain sequences at the C-22 position even though they have the same sugar chain sequence at the C-3 position in all soybean varieties tested. The sugar chain sequence at the C-22 of Aa, Ab and A0-αg is acetylxylosyl-arabinose, acetylglucosyl-arabinose and arabinose, respectively. The phenotypes of saponins Aa and Ab are controlled by a co-dominant allele at a single locus named Sg-1 (Shiraiwa et al. 1990, Tsukamoto et al. 1993); saponin A0-αg is controlled by a recessive allele, named sg-1, at the same locus (Kikuchi et al. 1999). The Sg-1 locus was mapped near the simple sequence repeat marker Satt336 on chromosome (Chr-) 7 (Takada et al. 2010). The phenotype of saponin Af is controlled by a recessive allele at a single locus called Sg-3, whereas the presence of saponin βa in seed hypocotyls is controlled by a dominant allele at a single locus called Sg-4 (Tsukamoto et al. 1992, 1993). However, there is no genetic information concerning the locations and interactions of the Sg-3 and Sg-4 loci.

The aim of this study is to obtain genetic information on the accumulation of saponins Af and βa in seed hypocotyls, and to develop molecular markers linked to the Sg-3 and Sg-4 loci. This information will be valuable for breeding new cultivars through marker-assisted selection and will help clarify the mechanisms that determine the sugar chain structure at the C-3 position of soybean saponins.

Materials and Methods

Plant materials

Five Japanese varieties were used to develop segregating populations for the genetic analyses. The cultivar names, together with the characteristic constituents of their group A or DDMP saponins, are listed in Table 1. Cross 1 (described below) was carried out at the NARO Western Region Agricultural Research Center, Zentsuuji, Kagawa, Japan, and segregating populations were also developed there. Crosses 2 and 3 were carried out at the NARO Tohoku Agricultural Research Center, Daisen, Akita, Japan, and a segregating population was also developed there. An F₂ population (188

Fig. 1. Predicted glycosylation pathway of C-3 position of group A saponin Ab (A) and DDMP saponin βa (B) in soybean seed hypocotyls. The sugar chain positions of C-3 and C-22 are indicated in each chemical structure. GmSGT2 and GmSGT3 are glycosyltransferases reported by Shibuya et al. (2010). Sg-3 and Sg-4 control glycosylation of second and third sugar moieties.
Cross 1

F$_2$ seeds) derived from Mikuriya-ao (sg-3) × Fukuyutaka (Sg-3) (Cross 1) and a population of 142 recombinant inbred lines (RILs) in the F$_2$ generation derived from Ibarakimame 7 (Sg-4) × Suzuyutaka (sg-4) (Cross 2) were used to construct genetic linkage maps of the loci that control saponins. Cross 3 was developed from crosses between Ibarakimame 7 (Sg-3) and Mikuriya-ao (Sg-4) to analyze the mode of inheritance of DDMP saponins by using HPLC analysis, which was previously described (Hwang et al. 2009). Genotyping was carried out with polymorphic SSR markers that were used previously (Hwang et al. 2009). MAPMAKER/EXP v. 3.0 software was used to analyze the linkage between markers. Genetic distances (cM) were calculated with Kosambi’s mapping function (Kosambi 1944). Linkage maps were drawn with MapChart software (Voorrips 2002).

Results

Variations in group A saponins and DDMP saponin βa

Hypocotyl extracts of Fukuyutaka gave group A saponin Ab at a relative mobility (R_f) of 0.52, whereas the extracts of Mikuriya-ao yielded group A saponin Af at $R_f = 0.55$ (Fig. 2A). The extracts of Ibarakimame 7 gave DDMP saponin βa at a retention time of 52.0 min, whereas the βa peak was not detected in extracts of Suzuyutaka (Fig. 2B).

Segregation patterns of saponin phenotypes

The F$_2$ population derived from Cross 1 showed the phenotypic segregation for saponins Ab and Af (Table 1: Mikuriya-ao [Af phenotype, sg-3] × Fukuyutaka [Ab phenotype, Sg-4]). The segregation ratio (Ab : Af = 138 : 50, $\chi^2 = 0.26$, p > 0.05) fitted well with the 3 : 1 ratio, showing that the accumulation of saponin Af is controlled by a single recessive allele, as previously reported (Tsukamoto et al. 1993). The mode of inheritance of the DDMP saponin βa phenotype was examined in the RIL population derived from Cross 2 (Ibarakimame 7 [βa presence, Sg-4] × Suzuyutaka [βa absence, sg-3]) and in the F$_2$ population derived from

Table 1. Segregation of saponin components in two F$_2$ populations and a population of recombinant inbred lines (RILs)

Parents and their progeny (predicted genotype)	Saponin phenotypea	Number of seeds observed	Number of seeds expected	χ² value	Probability
Cross 1b					
Mikuriya-ao (sg-3) × Fukuyutaka (Sg-3)	Af	138 (141)		0.26	p > 0.05
F$_2$ population	Ab	50 (47)			
Cross 2b					
Ibarakimame 7 (Sg-4) × Suzuyutaka (sg-4)	βa	67 (71)		0.45	p > 0.05
Population of RILs in F$_2$ generation	βa	75 (71)			
Cross 3					
Ibarakimame 7 (Sg-4) × Ohsuzu (sg-4)	βa	69 (70.5)		0.13	p > 0.05
F$_2$ population	βa	25 (23.5)			

a Structures of saponins are represented in Fig. 1.

b Cross 1 and Cross 2 were also used to construct genetic linkage maps that appear in Fig. 3.
Cross 3 (Ibarakimame 7 [βa presence, Sg-4] × Ohsuzu [βa absence, sg-4]). The segregation ratio of Cross 2 (67 : 75, $\chi^2 = 0.45, p > 0.05$) fitted well with the 1 : 1 ratio, and that of Cross 3 (69 : 25, $\chi^2 = 0.13, p > 0.05$) fitted well with the 3 : 1 ratio (Table 1). These results show that the accumulation of DDMP saponin βa in seed hypocotyls is controlled by a single dominant allele. The gene symbols Sg-3 and Sg-4 were used to represent the genes that control the presence of the glucose residue as the third sugar at the C-3 of soyasapogenols and the addition of an arabinose residue as the second sugar at the C-3 position, respectively, following a previous report (Tsukamoto et al. 1993).

Linkage analysis and mapping of loci that control sugar chain composition at the C-3 position of soybean saponins

To clarify in detail the genetic relationships between the two phenotypes of sugar chain composition at the C-3 position of saponins, we performed linkage analyses with SSR markers (Fig. 3). The Sg-3 locus mapped between the SSR markers Satt633 and Satt241 on Chr-10 (linkage group [LG] O) in the segregating population of Cross 1 (Fig. 3A). Both SSR markers were located 0.9 cM from Sg-3. On the other hand, the Sg-4 locus mapped between GMES0626 and AG77 on Chr-1 (LG D1a) in the RILs derived from Cross 2 (Fig. 3B). GMES0626 and AG77 were 18.0 and 6.1 cM, respectively, from Sg-4.

Interaction between the sg-10 and sg-3 alleles

The interaction of another mutant harboring sg-10, which lacks the ability to add an acetylated sugar residue at the terminal position of the C-22 of soyasapogenol A, was examined in the F2 population derived from Cross 4 (Kinusayaka [A0-αg] × Mikuriya-ao [Af]). A novel saponin (X) at $R_f = 0.22$ was detected by using TLC analysis (Fig. 4). The segregation ratio of Cross 4 (Ab : Af : A0 : X = 96 : 39 : 44 : 13, $\chi^2 = 3.44, p > 0.05$) fitted well with a 9 : 3 : 3 : 1 ratio. This result indicates that Kinusayaka and Mikuriya-ao harbor sg-10/Sg-3 and Sg-10.sg-3, respectively, and that these two loci independently regulate the sugar chain structure of group A saponins. The type of SSR marker Sat_276 located near Sg-1 locus in F2 individual with saponin X was Kinusayaka [sg-10] type, and that of Satt241 located near Sg-3 locus was Mikuriya-ao [sg-3] type. Saponin X at $R_f = 0.22$ could be distinguished from saponin A0-αg at $R_f = 0.16$ (Fig. 4). The structure of the novel saponin appears to be saponin A0-γg, 3-O-[β-D-galactopyranosyl (1→2)-β-D-glucuronopyranosyl]-22-O-α-L-arabinopyranosyl-soyasapogenol A (Fig. 4), based on the integration of the mutant phenotypes of sg-10 and sg-3.
The biosynthesis of soybean saponins is complex, and many kinds of glycosyltransferases are thought to be involved in the sugar chain structural diversity of soybean saponins. Group A saponins and DDMP saponins contain six different kinds of sugar chains, which are composed of glucuronic acid as the first sugar, arabinose or galactose as the second, and glucose, rhamnose, or no sugar as the terminal third, at the C-3 position of aglycone (Tsukamoto et al. 1993). A comparison of the chemical structures of group A saponins Ab and Af shows that saponin Af lacks the third sugar residue, glucose, at the C-3 position, which is present in saponin Ab (Fig. 1A). The Sg-3 gene is thought to encode a glucosyltransferase that catalyzes the glucosylation of a galactosyl moiety of saponin Af (Shimoyamada et al. 1991). The Sg-4 gene is thought to be an arabinosyltransferase that catalyzes the arabinosylation of a glucuronic acid residue attached at the C-3 of soyasapogenols (Tsukamoto et al. 1993). However, these glycosyltransferases have not yet been identified.

Kurosawa et al. (2002) reported that UDP-glucuronic acid:soyasapogenol glucuronosyltransferase is a specific enzyme for UDP-glucuronic acid as a donor and soyasapogenols as an acceptor, and that this enzyme is involved in the biosynthesis of sugar chains in soybean saponins. However, there is, as yet, no information about the structure or the gene of this partially purified enzyme. Recently, two glycosyltransferases from soybean, GmSGT2 and GmSGT3, were identified and characterized (Shibuya et al. 2010). GmSGT2 transfers a galactosyl group from UDP-galactose to soyasapogenol B monoglucuronide, and GmSGT3 transfers a rhamnosyl group from UDP-rhamnose to soyasaponin III, which has two sugars at the C-3 position of soyasapogenol B. Thus, GmSGT2 would transfer a galactosyl group from UDP-galactose not only to soyasaponogenol B monoglucuronide but also to soyasapogenol glycosides, such as the precursor of saponin Af since there is a glucuronic acid residue at the C-3 position of soyasapogenols A and B (Fig. 1A). Similarly, GmSGT3 would transfer a rhamnosyl group from UDP-rhamnose not only to soyasaponin III but also to soyasapogenol glycosides such as saponin γ since there is an arabinose residue at the C-3 position of soyasapogenol A and B (Fig. 1B). Thus, although some glycosyltransferases of soybean have been identified recently, little is known regarding the molecular basis of the glycosylation events that are involved in the biosynthesis of soybean saponins. Therefore, spontaneous and induced mutations in saponin components in wild and cultivar germplasms and other mutant populations should be further explored. This type of genetic approach may reveal key enzymes involved in the
production of the diverse sugar chain structures of soybean saponins and pave the way for agricultural uses of these mutants.

In the hypocotyl extracts of the seeds obtained from the cross between Kinusayaka (A0-αg) and Mikuriya-ao (A1), a novel saponin (saponin X) was detected by use of TLC analysis. The blue-violet color strongly suggested that saponin X was a group A saponin. However, there is no information about soybean saponins with this Rf. The genotype producing saponin X would be αg-1/αg-1 at the SG-I locus and αg-3/αg-3 at the SG-3 locus based on the segregation frequency in F2 seeds. We predict that saponin X would be saponin A0-αg, containing a β-D-galactopyranosyl (1→2)-β-D-glucuronopyranosyl sugar chain at the C-3 position and an α-1-arabinofuranosyl residue at the C-22 position of soyasapogenol A, because the αg-1/αg-1 and αg-3/αg-3 genotypes could not put a terminal sugar at the C-22 and C-3 positions, respectively. To determine the chemical structure of the novel saponin component, purification and nuclear magnetic resonance analysis are required. Combining mutated genes not only changes the saponin composition but also creates a novel saponin component. Because saponin functionality depends heavily on the structure of the sugar chains (Hayashi et al. 1997, Kinjo et al. 1998), combinations of mutated genes could be used to produce profitable saponins with enhanced or novel functionalities.

Here, we excised hypocotyls from seeds to analyze saponin phenotypes. This process requires an immense amount of time and effort, and disrupts seed germination. In this study, we revealed that the SG-3 and SG-4 loci are located on Chr-10 and Chr-1, respectively. This positional information might accumulate profitable saponins with health benefits and improved taste for soybean food processing. In addition, it provides useful information regarding the identities of the SG-3 and SG-4 genes.

Acknowledgments

This work was supported by the Research Project for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries (18063) and in part by the Research Project for Genomics for Agricultural Innovation (DD-3260) of the Ministry of Agriculture, Forestry and Fisheries of Japan.

Literature Cited

Burrows, J.C., K.R.Price and R.G.Fenwick (1987) Soyasaponin IV, and additional monodesmosidic saponin isolated from soybean. Phytochemistry 26: 1214–1215.

Ellington, A.A., M.A.Berhow and K.W.Singletary (2005) Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 26: 159–167.

Ellington, A.A., M.A.Berhow and K.W.Singletary (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27: 298–306.

Hayashi, K., H.Hayashi, N.Hiraoa and Y.Ikeshiro (1997) Inhibitory activity of soyasapogenol II on virus replication in vitro. Planta Med. 63: 102–105.

Hwang, T.Y., T.Sayama, M.Takahashi, Y.Takada, Y.Nakamoto, H.Funatsuki, H.Hisano, S.Sasamoto, S.Sato, S.Tabata et al. (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Res. 16: 213–225.

Ishii, Y. and H.Tanizawa (2006) Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones. Biol. Pharm. Bull. 29: 1759–1763.

Kikuchi,A., C.Tsukamoto, K.Tabuchi, T.Adachi and K.Okubo (1999) Inheritance and characterization of a null allele for group A acetyl saponins found in a mutant soybean (Glycine max (L.) Merrill). Breed. Sci. 49: 167–171.

Kinjo, J., M.Imagire, M.Udayama, T.Arao and T.Nohara (1998) Structure-hepatoprotective relationships study of soyasaponins I–IV having soyasapogenol B as aglycone. Planta Med. 64: 233–236.

Kita gawa, I., M.Yoshikawa, K.H.Wang, M.Saito, V.Torisuk, T.Fujisawa and T.Tomita (1982) Revised structures of soyasapogenol A, B and E, oleanene-sapogenols from soybean. Structures of soyasaponins I, II and III. Chem. Pharm. Bull. 30: 2294–2297.

Kita gawa, I., T.Taniyama, Y.Nagahama, K.Okubo, F.Yamauchi and M.Yoshikawa (1988) Sapogenol and sapogenin. XLII. Structures and acetyl-soyasaponins A, A2 and A3, astringent partially acetylated bisdesmosides of soyasapogenol A, from American soybean, the seeds of Glycine max Merrill. Chem. Pharm. Bull. 36: 2819–2828.

Kosambi, D.D. (1944) The estimation of map distance from recombination values. Ann. Eugen. 12: 172–175.

Kudou, S., M.Tonomura, C.Tsukamoto, M.Shimoyamada, T.Uchida and K.Okubo (1992) Isolation and structural elucidation of the major genuine soybean saponin. Biosci. Biotechnol. Biochem. 56: 142–143.

Kudou, S., M.Tonomura, C.Tsukamoto, T.Uchida, T.Sakabe, N.Tamura and K.Okubo (1993) Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soybean seeds. Biosci. Biotechnol. Biochem. 57: 546–550.

Kurosawa, Y., H.Takahara and M.Shiraiwa (2002) UDP-glucuronic acid: soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds. Planta 215: 620–629.

Okubo, K., M.Iijima, Y.Kobayashi, M.Yoshikoshi, T.Uchida and S.Kudou (1992) Components responsible for the undesirable taste of soybean seeds. Biosci. Biotech. Biochem. 56: 99–103.

Shibuya, M., K.Nishimura, N.Yasu yama and Y.Ebizuka (2010) Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett. 584: 2258–2264.

Shimoyamada, M., S.Kudo, K.Okubo, F.Yamauchi and K.Harada (1990) Distribution of saponin constituents in some varieties of soybean plant. Agric. Biol. Chem. 54: 77–81.

Shimoyamada, M., K.Harada and K.Okubo (1991) Saponin composition in developing soybean seed (Glycine max (L.) Merrill, cv. Mikuriyaaa). Agric. Biol. Chem. 55: 1403–1405.

Shiraiwa, M., F.Yamauchi, K.Harada and K.Okubo (1990) Inheritance of “Group A saponin” in soybean seed. Agric. Biol. Chem. 54: 1347–1352.

Shiraiwa, M., S.Kudo, M.Shimoyamada, K.Harada and K.Okubo (1991a) Composition and structure of “group A saponin” in soybean seed. Agric. Biol. Chem. 55: 315–322.

Shiraiwa, M., K.Harada and K.Okubo (1991b) Composition and content of saponins in soybean seed according to variety, cultivation
Genetic variation in sugar chains at C-3 of soybean saponins

Takada, Y., T. Sayama, A. Kikuchi, S. Kato, N. Tatsuzaki, Y. Nakamoto, A. Suzuki, C. Tsukamoto and M. Ishimoto (2010) Genetic analysis of variation in sugar chain composition at the C-22 position of group A saponin in soybean, Glycine max (L.) Merrill. Breed. Sci. 60: 3–8.

Taniyama, T., Y. Nagahama, M. Yoshikawa and I. Kitagawa (1988) Saponin and sapogenol. XLIII. Acetyl-soyasaponins A4, A5, and A6, new astringent bisdesmosides of soyasapogenol A, from Japanese soybean, the seeds of Glycine max Merrill. Chem. Pharm. Bull. 36: 2829–2839.

Topping, D.L., G.B. Storer, G.D. Calvert, R.J. Illman, D.G. Oakenfull and R.A. Weller (1980) Effect of dietary saponins on fecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig. Am. J. Clin. Nutr. 33: 783–786.

Tsukamoto, C., A. Kikuchi, S. Kudou, K. Harada, K. Kitamura and K. Okubo (1992) Group A acetyl saponin-deficient mutant from the wild soybean. Phytochemistry 31: 4139–4142.

Tsukamoto, C., A. Kikuchi, K. Harada, K. Kitamura and K. Okubo (1993) Genetic and chemical polymorphisms of saponins in soybean seed. Phytochemistry 34: 1351–1356.

Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo and K. Kitamura (1995) Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43: 1184–1192.

Tsukamoto, C. and Y. Yoshiki (2006) Soy saponin. In: Sugano, M. (ed.) Soy in Health and Disease Prevention, CRC Press, Taylor & Francis Group, New York, USA, pp. 155–172.

Voorrips, R.E. (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77–78.