A SMALL GENERATING SET FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NON-ORIENTABLE SURFACE BY DEHN TWISTS

GENKI OMORI

Abstract. We give a small generating set for the twist subgroup of the mapping class group of a non-orientable surface by Dehn twists. The difference between the number of the generators and a lower bound of numbers of generators for the twist subgroup by Dehn twists is one. The lower boundary is obtained from an argument of Hirose [5].

1. Introduction

Let $\Sigma_{g,n}$ be a compact connected oriented surface of genus $g \geq 0$ with $n \geq 0$ boundary components and we put $\Sigma_g := \Sigma_{g,0}$. The mapping class group $\mathcal{M}(\Sigma_{g,n})$ of $\Sigma_{g,n}$ is the group of isotopy classes of orientation preserving self-diffeomorphisms on $\Sigma_{g,n}$ fixing the boundary pointwise. Dehn [2] proved that $\mathcal{M}(\Sigma_g)$ is generated by $2g(g - 1)$ Dehn twists. The generating set includes Dehn twists along separating simple closed curves. Mumford [10] showed that $\mathcal{M}(\Sigma_g)$ is generated by Dehn twists along non-separating simple closed curves, and Lickorish [8] gave a finite generating set for $\mathcal{M}(\Sigma_g)$ by $3g - 1$ Dehn twists along non-separating simple closed curves. By an argument in Proof of Theorem 4.13 in [4], $\mathcal{M}(\Sigma_{g,1})$ is also generated by $3g - 1$ Dehn twists along non-separating simple closed curves. After that, Humphries [6] proved that $\mathcal{M}(\Sigma_{g,n})$ is generated by a subset of Lickorish’s generating set whose cardinality is $2g + 1$ for $g \geq 2$ and $n \in \{0, 1\}$, and he also proved that the generating set is minimal in generating sets for $\mathcal{M}(\Sigma_{g,n})$ by Dehn twists.

Let $N_{g,n}$ be a compact connected non-orientable surface of genus $g \geq 1$ with $n \geq 0$ boundary components. The surface $N_g := N_{g,0}$ is a connected sum of g real projective planes. The mapping class group $\mathcal{M}(N_{g,n})$ of $N_{g,n}$ is the group of isotopy classes of self-diffeomorphisms on $N_{g,n}$ fixing the boundary pointwise. For $n \in \{0, 1\}$, $\mathcal{M}(N_{1,n})$ is the trivial group (see [3, Theorem 3.4]). For $g \geq 2$, Lickorish proved that $\mathcal{M}(N_g)$ is not generated by Dehn twists in [7], and $\mathcal{M}(N_{g,n})$ is generated by Dehn twists and a “Y-homeomorphism” in [7, 9]. The Y-homeomorphism is introduced by Lickorish in [7]. Lickorish [7] also showed that $\mathcal{M}(N_2)$ is generated by a Dehn twist and a Y-homeomorphism. In generally, Chillingworth [11] gave a finite generating set for $\mathcal{M}(N_g)$ which consists of $\frac{3g - 5}{2}$ (resp. $\frac{3g - 6}{2}$) Dehn twists and a Y-homeomorphism for odd (resp. even) g. After that, Szepietowski [13] proved that $\mathcal{M}(N_g)$ is generated by a subset of Chillingworth’s generating set which consists of g Dehn twists and a Y-homeomorphism, and Hirose [5] showed that the generating set is minimal in generating sets for $\mathcal{M}(N_g)$ by Dehn twists and Y-homeomorphisms. By Stukow’s finite presentation for $\mathcal{M}(N_{g,1})$ in [12] and an argument in [5] (see...
Remark 3.3, \(\mathcal{M}(N_{g,1}) \) also has a minimal generating set by Dehn twists and \(Y \)-homeomorphisms which consists of \(g \) Dehn twists and a \(Y \)-homeomorphism.

The twist subgroup \(\mathcal{T}(N_{g,n}) \) of \(\mathcal{M}(N_{g,n}) \) is the subgroup of \(\mathcal{M}(N_{g,n}) \) which is generated by all Dehn twists. \(\mathcal{T}(N_{g,n}) \) is an index 2 subgroup of \(\mathcal{M}(N_{g,n}) \) (see [9] and [11, Corollary 6.4]). In particular, \(\mathcal{T}(N_{g,n}) \) is finitely generated. Chillingworth [1] showed that \(\mathcal{T}(N_{g}) \) is generated by a Dehn twist for \(g = 2 \), two Dehn twists for \(g = 3 \), \(3g - 1 \) Dehn twists for the other odd \(g \) and \(3g - 2 \) Dehn twists for the other even \(g \). By an argument as in [6], we can reduce the number of Chillingworth's generators to \(g + 2 \) for odd \(g > 3 \) and \(g + 3 \) for even \(g > 3 \). For \(n \in \{0, 1\} \), Stukow [13] gave a finite presentation for \(\mathcal{T}(N_{g,n}) \) whose generators are \(g + 2 \) Dehn twists essentially by relations of the presentation (see Proof of Theorem 3.1).

In this paper we proved that \(\mathcal{T}(N_{g,n}) \) is generated by \(g + 1 \) Dehn twists for \(g \geq 4 \) (Theorem 3.1). The generating set is a proper subset of the generating set of Stukow’s finite presentation in [13]. By applying Hirose’s argument in [5], the difference between the number of the generators in Theorem 3.1 and a lower bound of numbers of generators for \(\mathcal{T}(N_{g,n}) \) by Dehn twists is one (see Remark 3.3). The author does not know whether the generating set for \(\mathcal{T}(N_{g,n}) \) in Theorem 3.1 is minimal in generating sets for \(\mathcal{T}(N_{g,n}) \) by Dehn twists or not.

2. Preliminaries

For a two-sided simple closed curve \(c \) on \(N_{g,n} \), we take an orientation of the regular neighborhood of \(c \) in \(N_{g,n} \). Then we denote by \(t_c \) the right-handed Dehn twist along \(c \) with respect to the orientation. In particular, for a given explicit two-sided simple closed curve, an arrow on a side of the simple closed curve indicates the direction of the Dehn twist (see Figure 1).

![Figure 1. The right-handed Dehn twist \(t_c \) along a two-sided simple closed curve \(c \) on \(N_{g,n} \).](image)

Let \(e_i : D \hookrightarrow \Sigma_0 \) for \(i = 1, 2, \ldots, g + 1 \) be smooth embeddings of the unit disk \(D \) to a 2-sphere \(\Sigma_0 \) such that \(D_i := e_i(D) \) and \(D_j \) are disjoint for distinct \(1 \leq i, j \leq g + 1 \). Then we take a model of \(N_g \) (resp. \(N_{g,1} \)) as the surface obtained from \(\Sigma_0 - \text{int}(D_1 \sqcup \cdots \sqcup D_g) \) (resp. \(\Sigma_0 - \text{int}(D_1 \sqcup \cdots \sqcup D_{g+1}) \)) by identifying antipodal points of the boundary components of \(D_1, \ldots, D_g \) and we describe the identification of \(\partial D_i \) by the x-mark as in Figure 2.

For \(n \in \{0, 1\} \), we denote by \(\alpha_1, \ldots, \alpha_{g-1} \) and \(\beta \) two-sided simple closed curves on \(N_{g,n} \) as in Figure 2 and denote by \(\gamma, \varepsilon, \zeta \) and \(\psi \) two-sided simple closed curves on \(N_{g,n} \) as in Figure 3 respectively. Then we define \(a_i := t_{\alpha_i} \) (\(i = 1, \ldots, g - 1 \)), \(b := t_{\beta}, c := t_\varepsilon, f := t_\zeta, y^2 := t_\psi \) and \(e := t_\gamma \).

3. Main result

The main theorem in this paper is as follows.
For $g \geq 4$ and $n \in \{0,1\}$, $\mathcal{T}(N_{g,n})$ is generated by a_1, \ldots, a_{g-1}, b and e. In particular, $\mathcal{T}(N_{g,n})$ is generated by $g+1$ Dehn twists along non-separating simple closed curves.

Proof. Assume $g \geq 4$ and $n \in \{0,1\}$. Stukow's presentation for $\mathcal{T}(N_{g,n})$ in [13] has the following generating set:

- $X := \{a_1, \ldots, a_{g-1}, b, c, f, y^2, e\}$ for odd g and $n = 0$ or $g = 4$ and $n = 1$,
- $X := X \cup \{b_0, b_1, \ldots, b_{g-2}, b_{g-4}, \ldots, b_{2g-2}\}$ for even $g \geq 6$ and $n = 1$,
- $X \cup \{\rho\}$ for odd g and $n = 0$,
- $X \cup \{\bar{\rho}\}$ for $g = 4$ and $n = 0$,
- $X' \cup \{\bar{\rho}\}$ for even $g \geq 6$ and $n = 0$.

$b_0, b_1, \ldots, b_{g-2}, \bar{b}_{g-2}, \bar{b}_{g-4}, \ldots, \bar{b}_{2g-2}$, ρ and $\bar{\rho}$ are products of elements in X by the relations (A7), (A8), (A7a)-(A8b), (C1a) and (C4) in Theorem 2.1, Theorem 2.2, Theorem 3.1 and Theorem 3.2 of [13]. Thus $\mathcal{T}(N_{g,n})$ is generated by X. By the relation (B21) in Theorem 3.1 of [13], y^2 is a product of elements in $X - \{y^2\}$, and by the relation (B61) in Theorem 3.1 of [13], c is a product of $a_1, \ldots, a_{g-1}, b, e$ and f.

Finally, we can check $a_3^{-1}a_2^{-1}ba_1^{-1}a_2^{-1}a_3^{-1}(\varepsilon) = \zeta$ and the orientation of the regular neighborhood of $a_3^{-1}a_2^{-1}ba_1^{-1}a_2^{-1}a_3^{-1}(\varepsilon)$ is different from one of ε as in Figure 4. Hence we have $f = (a_3^{-1}a_2^{-1}ba_1^{-1}a_2^{-1}a_3^{-1})\varepsilon^{-1}(a_3^{-1}a_2^{-1}ba_1^{-1}a_2^{-1}a_3^{-1})^{-1}$. Therefore $\mathcal{T}(N_{g,n})$ is generated by a_1, \ldots, a_{g-1}, b and c, and we have completed the proof of Theorem 3.1.

Remark 3.2. The regular neighborhood N of the union of $\alpha_1, \ldots, \alpha_{g-1}$ is an orientable subsurface of $N_{g,n}$ and $\{a_1, \ldots, a_{g-1}, b\}$ is the minimal generating set for $\mathcal{M}(N)$ by Dehn twists which is given by Humphries [6]. Remark that $N_{g,n} - \text{int}N$ is not a disjoint union of disks, and an element of the subgroup of $\mathcal{T}(N_{g,n})$ which is generated by a_1, \ldots, a_{g-1} and b is represented by a diffeomorphism of $N_{g,n}$ whose restriction to $N_{g,n} - \text{int}N$ is the identity map. However, e does not fix
Figure 4. Proving that $a_3^{-1}a_2^{-1}ba_1^{-1}a_2^{-1}a_3^{-1}(\varepsilon) = \zeta$.

$N_{g,n} = \text{int}N$ up to ambient isotopies of $N_{g,n}$. Hence $T(N_{g,n})$ is not generated by a_1, \ldots, a_{g-1} and b. Define $X_0 := \{\alpha_1, \ldots, \alpha_{g-1}, b, \varepsilon\}$. For $x_0 \in \{\alpha_4, \ldots, \alpha_{g-1}, \varepsilon\}$, the complement $N_{g,n} - \bigcup_{x \in X_0 \setminus \{x_0\}} x$ has a non-disk component. Thus $T(N_{g,n})$ is not also generated by $X_0 - \{x_0\}$ for $x_0 \in \{\alpha_4, \ldots, \alpha_{g-1}, \varepsilon\}$.

Remark 3.3. We can apply Hirose’s argument in [5] to $M(N_{g,1})$ and $T(N_{g,n})$ for $g \geq 4$ and $n \in \{0, 1\}$. However, we should note that he take $\phi_j \in M(N_{g,n})$ such that $\phi_j(c_1) = \gamma_j$ in the proof of Lemma 6 in [5]. To apply Hirose’s argument in [5] to $T(N_{g,n})$, we must take such ϕ_j as an element of $T(N_{g,n})$. By using Lemma 7.2 in [11], we can take ϕ_j as an element of $T(N_{g,n})$. Therefore the minimum number of generators for $T(N_{g,n})$ by Dehn twists is at least g for $g \geq 4$ and $n \in \{0, 1\}$, and the difference between the number of the generators for $T(N_{g,n})$ in Theorem 3.1 and the lower bound of numbers of generators for $T(N_{g,n})$ by Dehn twists is one.

Finally we raise the following problem.

Problem 3.4. Which of g and $g + 1$ is the minimum number of generators for $T(N_{g,n})$ by Dehn twists when $g \geq 4$ and $n \in \{0, 1\}$?

Acknowledgements: The author would like to express his gratitude to Hisaaki Endo, for his encouragement and helpful advices. The author also wish to thank Susumu Hirose for his comments and helpful advices. The author was supported by JSPS KAKENHI Grant number 15J10066.

References

[1] D. R. J. Chillingworth, *A finite set of generators for the homeotopy group of a non-orientable surface*, Math. Proc. Camb. Philos. Soc. 65 (1969), 409–430.
[2] M. Dehn, *Papers on group theory and topology*, Springer-Verlag, New York, 1987. Translated from the German and with introductions.
[3] D. B. A. Epstein, *Curves on 2-manifolds and isotopies*, Acta Math. 115 (1966), 83-107.
[4] B. Farb, D. Margalit, *A primer on mapping class groups*, Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.
[5] S. Hirose, Generators for the mapping class group of the nonorientable surface, arXiv:1602.07419
[6] S. P. Humphries, Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 44–47, Lecture Notes in Math., 722, Springer, Berlin, 1979.
[7] W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Camb. Philos. Soc. 59 (1963), 307–317.
[8] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Camb. Philos. Soc. 60 (1964), 769–778.
[9] W. B. R. Lickorish, On the homeomorphisms of a non-orientable surface, Proc. Camb. Philos. Soc. 61 (1965), 61–64.
[10] D. Mumford, Abelian quotients of the Teichmüller modular group, J. Analyse Math., 18 (1967), 227–244.
[11] M. Stukow, The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), no. 3, 717–738.
[12] M. Stukow, A finite presentation for the mapping class group of a nonorientable surface with Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), no. 12, 2226–2239.
[13] M. Stukow, A finite presentation for the twist subgroup of the mapping class group of a nonorientable surface, Bull. Korean Math. Soc. 53 (2016), no. 2, 601–614.
[14] B. Szepietowski, A finite generating set for the level 2 mapping class group of a nonorientable surface, Kodai Math. J. 36 (2013), no. 1, 1–14.