Systemic treatment and targeted therapy in patients with advanced hepatocellular carcinoma

El Mehdi Tazi, MD, Ismail Essadi, MD, Hind M’rabti, MD, Anass Touyar, MD
Hassan Errihani PR

1Department of Medical Oncology, National Institute of Oncology, Rabat, Morocco.
2Department of Hepatology, CHU Hassan II, Fez, Morocco.

Citation: Tazi EM, Essadi I, M’rabti H, Touyar A, Errihani H. Systemic treatment and targeted therapy in patients with advanced hepatocellular carcinoma. North Am J Med Sci 2011; 3: 167-175.
Doi: 10.4297/najms.2011.3167
Availability: www.najms.org
ISSN: 1947 – 2714

Abstract
Background: Advanced hepatocellular carcinoma (HCC) is a malignancy of global importance: it is the sixth most common cancer and the third most common cause of cancer-related mortality worldwide. Despite decades of efforts by many investigators, systemic chemotherapy or hormone therapy has failed to demonstrate improved survival in patients with HCC. Ongoing studies are evaluating the efficacy and tolerability of combining Sorafenib with erlotinib and other targeted agents or chemotherapy. Aims: On the basis of placebo-controlled, randomized phase III trials, Sorafenib has shown improved survival benefits in advanced HCC and has set a new standard for future clinical trials. The successful clinical development of Sorafenib in HCC has ushered in the era of molecularly targeted agents in this disease, which is discussed in this educational review. Material and Methods: Many molecularly targeted agents that inhibit angiogenesis, epidermal growth factor receptor, and mammalian target of rapamycin are at different stages of clinical development in advanced HCC. Future research should continue to unravel the mechanism of hepatocarcinogenesis and to identify key relevant molecular targets for therapeutic intervention. Identification and validation of potential surrogate and predictive biomarkers hold promise to individualize patients’ treatment to maximize clinical benefit and minimize the toxicity and cost of targeted agents. Results: Systemic therapy with various classes of agents, including hormone and cytotoxic agents, has provided no or marginal benefits. Improved understanding of the mechanism of hepatocarcinogenesis, coupled with the arrival of many newly developed molecularly targeted agents, has provided the unique opportunity to study some of these novel agents in advanced HCC. Conclusions: The demonstration of improved survival benefits by Sorafenib in advanced HCC has ushered in the era of molecular-targeted therapy in this disease, with many agents undergoing active clinical development.

Keywords: Systemic treatment, Targeted therapy, Hepatocellular carcinoma, Sorafenib, Bevacizumab, Sunitinib, Erlotinib; Brivanib, ABT 869, Pazopanib.

Correspondence to: El Mehdi Tazi, Department of Medical Oncology, National Institute of Oncology, Rabat, Morocco. 55, Avenue Ibn Sina, Appt 12, Agdal, Rabat, Morocco. Zip Code: 10000. Tel.: 00212668479120, Fax: 00212537672970 Email: elmehditazi@yahoo.fr

Systemic therapy in hepatocellular carcinoma: Historical perspectives
Despite extensive efforts by many investigators, systemic therapy with many classes of agents for HCC has been ineffective, as evidenced by low response rates and no demonstrated survival benefit (Table 1) [1, 2]. The finding that various hormone receptors are present in HCC has led many investigators to examine the role of hormone manipulation in this disease. Several lines of evidence have suggested an association between estrogen and HCC [3, 4]. Estrogen receptors are expressed in normal human liver, in chronic hepatitis, in benign hepatic tumour tissues, and rarely in HCC at a low concentration [6]. In preclinical models, estrogens are involved in stimulating hepatocyte proliferation in vitro and may promote liver
tumour growth in vivo [7]. The persistent administration of estrogens, particularly in the form of oral contraceptives, has been associated with an increased incidence of hepatic adenomas and a small increased risk of HCC [6]. Tamoxifen, an antiestrogenic compound, has been shown to reduce the level of estrogen receptors in the liver [8]. Tamoxifen has been extensively studied in HCC. Six large randomized studies (four of which were double-blind trials) have failed to demonstrate improved survival with tamoxifen in advanced HCC [8-13]. Antiandrogen therapies have also failed to improve survival in randomized studies in patients with advanced HCC [12, 14]. Although a large number of controlled and uncontrolled studies have been performed with most classes of chemotherapeutic agents, no single or combination chemotherapy regimen is particularly effective in HCC [5]. The response rate tends to be low, and the response duration is short. The response criteria used in some of the earlier studies were poorly defined. Most of the earlier studies did not stratify patients on the basis of the severity of underlying cirrhosis or other factors, making comparison of study results difficult. More importantly, any survival benefit of systemic chemotherapy for HCC remains to be determined. Doxorubicin is perhaps the most widely used agent in HCC. Despite the initial encouraging reports from Uganda for single-agent Doxorubicin, subsequent studies have failed to confirm these data. In a large study of Doxorubicin in advanced HCC, no responses were noted among 109 patients [15]. Among 475 patients who received Doxorubicin in various studies, a 16% response rate was documented, with a median survival of 3 to 4 months [16].

A variety of combination chemotherapy regimens has been studied in HCC. Although a few of them have shown improved response rates, most of these have not been studied in large randomized phase III studies. The most impressive results from phase II studies are from the chemotherapeutic regimen that uses the combination of cisplatin, interferon Alfa, Doxorubicin, and 5-fluorouracil (PIAF) [17]. This regimen produced a partial response (PR) rate of 26%. In 9 of the 50 patients, the initially unresectable tumours became resectable after chemotherapy. In four of these patients, the resected specimens had a pathologic complete response and the Alfa-fetoprotein (AFP) levels fell to within the reference range. Unfortunately, this regimen was also associated with marked hematoletic and gastrointestinal toxicity. Yeo and colleagues subsequently examined the efficacy of this regimen in a randomized phase III study comparing PIAF with single-agent Doxorubicin [18]. A total of 188 patients with unresectable HCC were enrolled. The median survival of the Doxorubicin and PIAF groups was 6.83 months (95% confidence interval [95% CI], 4.80–9.56) and 8.67 months (95% CI, 6.36–12.00), respectively (P = 0.83), which failed to reach statistical significance for the study primary end point.

The difficulty of developing effective chemotherapy in HCC may in part be due to the inherent resistance in the tumour conferred by the multidrug-resistant gene MDR-1 [19, 21]. In addition, the underlying cirrhosis present in most patients may lead to portal hypertension with hypersplenism, platelet sequestration, varices and gastrointestinal bleeding, hepatic encephalopathy, hypoalbuminemia, differential drug binding and distribution, and altered pharmacokinetics, limiting the selection and adequate dosing of most cytotoxic agents.

Table 1 Systemic therapies that have not demonstrated improved overall survival benefits in advanced hepatocellular carcinoma.

Therapy Type	Description
Hormones agents	tamoxifen, antiandrogen
Chemotherapy (single agent or combination)	Octreotide, Interferon, Thalidomide, Arginine deiminase

Sorafenib Improves Survival In Advanced HCC

Sorafenib is an oral multikinase inhibitor that blocks tumour cell proliferation by targeting the Raf/MEK/ERK signalling pathway and exerts an antiangiogenic effect by targeting the tyrosine kinases of vascular endothelial growth factor receptor (VEGFR)-2, VEGFR-3, and platelet-derived growth factor receptor (PDGFR)-beta [22]. In preclinical models, Sorafenib exhibited antitumor activity in HCC cells and xenograft models [22, 23]. In a phase II study of 137 patients with advanced HCC, Sorafenib provided orally at 400 mg twice daily induced a PR in 2.2% of patients, a minor response in 5.8%, and stable disease lasting C4 months in 34% [24]. Median time to progression (TTP) was 4.2 months, and median overall survival (OS) was 9.2 months. The international, phase III, placebo-controlled Sorafenib HCC Assessment Randomized Protocol (SHARP) trial evaluated 602 patients with advanced HCC who had not undergone prior systemic therapy to receive either Sorafenib at 400 mg twice daily (299 patients) or placebo (303 patients) [25]. The primary end point of the study was OS. Patients with underlying Child-Pugh A cirrhosis accounted for 95% and 98% in the Sorafenib and placebo groups, respectively. Median OS was 10.7 months in the Sorafenib group and 7.9 months in the placebo group (hazard ratio of death in the Sorafenib group, 0.69; P = 0.001). The median TTP was 5.5 months in the Sorafenib group and 2.8 months in the placebo group (P = 0.001). In another Asian-Pacific randomized phase III study, Sorafenib also demonstrated improved OS in patients with advanced HCC, mostly in patients with hepatitis B virus infection [26]. OS was 6.5 months in the Sorafenib group versus 4.2 months in the placebo group (hazard ratio in the Sorafenib group, 0.68; P = 0.014). The safety profiles of Sorafenib seem favorable; however, grade III diarrheal, hand-and-foot skin reaction, and fatigue were observed. The successful development of Sorafenib has validated the use of molecularly targeted agents in HCC. This is the first agent ever to have shown improved survival benefits in this disease. It highlights the importance of selecting the right patient population (good
performance status and preserved hepatic function) for clinical trial design. The major benefits of Sorafenib are mainly manifested as disease stabilization rather than radiologic response. However, many questions remained unanswered: what is the mechanism of action mediating the clinical benefits of Sorafenib? Who are at risk for developing toxicities? What is the escape and resistance mechanism of Sorafenib failure? Will Sorafenib benefit patients with worsening underlying cirrhosis? Will Sorafenib prove to be beneficial in patients in earlier stages of disease that is, after surgical resection, high-risk transplantation, or radiofrequency ablation, as well as transarterial chemoembolization? Some of these questions are addressed in ongoing and planned clinical trials.

Sorafenib-Based Regimens Under Development

Abou-Alfa and colleagues reported their experience from a randomized, double-blinded, phase II study comparing Doxorubicin in combination with Sorafenib versus Doxorubicin with placebo in patients with advanced HCC [27]. Patients had Eastern Cooperative Oncology Group performance status of 0–2, Child-Pugh A cirrhosis, and no prior systemic therapy. They received Doxorubicin at 60 mg/m² intravenously every 21 days (cycle) plus either Sorafenib at 400 mg orally twice daily or placebo, for a maximum of six cycles of Doxorubicin. Patients could continue with single-agent Sorafenib or placebo afterward. The primary end point was TTP by independent review. Ninety-six patients were randomized in this study. The median OS and TTP were 13.7 and 8.6 months for the Doxorubicin? Sorafenib arm and 6.5 and 4.8 months for the Doxorubicin ? Placebo arm, respectively. Of note, the response rate was only 4% in the Doxorubicin? Sorafenib arm and 2% for the Doxorubicin? Placebo arm. Despite the encouraging results, the control arm was Sorafenib making the relative contribution of Doxorubicin, if any, difficult to assess in the Sorafenib/Doxorubicin arm. The safety profiles seemed to be comparable, including approximately 50% grade 3-4 neutropenia events in both arms. Because of the lack of consensus on the best chemotherapeutic agents/regimens in HCC and the safety concerns including cardiac toxicity for Doxorubicin, other investigators are investigating the efficacy and tolerability of combining Sorafenib with Capecitabine and Oxaliplatin or Gemcitabine and Cisplatin in advanced HCC. Given the complexity of hepatocarcinogenesis and heterogeneity of HCC, targeting HCC by means of a combination of Sorafenib and another agent inhibiting a distinct pathway represents an appealing strategy. On the basis of this rationale, preclinical data, phase I experience, and single-agent activity and tolerability in HCC, a randomized international phase III study comparing Sorafenib plus erlotinib versus Sorafenib plus placebo as first-line treatment in advanced HCC is ongoing. The primary end point of the study is OS. Other Sorafenib-based combinations, including mTOR inhibitors and insulin growth factor receptor (IGF-R) inhibitors, are at an early stage of development.

Antiangiogenic Agents

HCCs are vascular tumours, and increased levels of vascular endothelial growth factor (VEGF) and microvessel density have been observed [28-31]. High VEGF expression has been associated with worse survival [32-34]. Therefore, inhibition of angiogenesis represents a potential therapeutic target in HCC, and several antiangiogenic agents have entered clinical studies in HCC.

Bevacizumab

Bevacizumab is a recombinant humanized monoclonal antibody that targets VEGF. In addition to its direct antiangiogenic effects, Bevacizumab may enhance chemotherapy administration by “normalizing” tumour vasculature and lowering the increased interstitial pressure in tumours [35, 36]. Several studies have explored the use of Bevacizumab either as a single agent or in combination with cytotoxic or molecularly targeted agents in patients with advanced HCC (Table 2). Siegel et al. reported their experience using single-agent bevacizumab in HCC in a phase II study [37]. Two dosages of Bevacizumab, 5 mg/kg and 10 mg/kg administered intravenously once every 2 weeks, were tested in patients with HCC with no overt extrahepatic metastases or invasion of major blood vessels. Of the 46 patients with data available for efficacy, 6 had objective responses (13%; 95% CI, 3–23), and 65% were progression free at 6 months. Median progression-free survival (PFS) time was 6.9 months (95% CI, 6.5–9.1), and median survival was 12.4 months (95% CI, 9.4–19.9). Malka and colleagues also reported their early experience using Bevacizumab as a single agent in HCC in a phase II study [38]. The combination of Bevacizumab with cytotoxic agents was also evaluated in three phase II studies. Zhu and colleagues completed a phase II study that used Bevacizumab in combination with Gemcitabine and Oxaliplatin (GEMOX-B) in advanced HCC [39]. This regimen had moderate antitumor activity in HCC with an overall response rate of 20% in evaluable patients. An additional 27% of patients had stable disease with a median duration of 9 months (range, 4.5 to 13.7 months). The median OS was 9.6 months and the median PFS was 5.3 months. The combination of Bevacizumab with Capecitabine and Oxaliplatin or with Capecitabine alone in patients with advanced HCC was also reported (Table 3) [40, 41]. Thomas and colleagues reported their single-center phase II experience using the combination of Bevacizumab and Erlotinib in patients with advanced HCC [42]. Bevacizumab was provided at 10 mg/kg intravenously once every 14 days and Erlotinib at 150 mg orally daily. Of the 40 patients with efficacy data available, a 25% response rate was observed. The median PFS was 9 months and OS was 15 months. The above studies demonstrated early evidence of antitumor activity of Bevacizumab in HCC. Despite the overall good tolerability profiles, the risk of bleeding, hypertension, and thromboembolic events remain to be further characterized. Moreover, as a result of the nonrandomized nature, small sample size, and patient selection bias inherent in single-arm studies, the relative contributions, if any, from
any chemotherapy regimens or erlotinib remain unknown and warrant further investigations.

Table 2 Phase II studies of bevacizumab-based regimens in hepatocellular carcinoma.

Study	Regimen	patient No.	RR (%)	Median PFS/TTP (months)	Median survival (months)
Siegel [37]	B	46	13	6.9	12.4
Malka [38]	B	24	12.5	NR	NR
Zhu [39]	Gemox-B	33	20	5.3	9.6
Sun [40]	Capox-B	30	10	5.4	NR
Hsu [41]	Cap-B	25	16	4.1	10.7
Thomas [42]	Erlotinib-B	40	25	9.0	15.6

RR: Response rate, PFS: Progression free survival, TTP: Time to progression, B: Bevacizumab, Gemox-B: Gemcitabine-oxaliplatin-bevacizumab, Capox-B: Capcitabine-oxaliplatin-bevacizumab, NR: Not reported.

Table 3 Phase II trials of epidermal growth factor receptor inhibitors in hepatocellular carcinoma.

Drug	Year	Patient No.	RR (%)	Median PFS (months)	Median OS (months)
Erlotinib	2005	38	9	3.2	13
Erlotinib	2007	40	0	3.1	6.3
Lapatinib	2009	40	5	2.3	6.2
Cetuximab	2007	32	0	2	_
Cetuximab	2007	30	0	1.4	9.6
GEMOX + Cetuximab	2008	45	20	4.7	9.5
CAPOX + Cetuximab	2008	25	10	4.3	_

RR: Response rate, PFS: Progression free survival, OS: Overall survival, GEMOX: Gemcitabine-oxaliplatin, CAPOX: Capcitabine-oxaliplatin.

Sunitinib

Sunitinib is an oral multikinase inhibitor that targets receptor tyrosine kinases (RTKs) including VEGFR-1, VEGFR-2, PDGFR-a/b, c-KIT, FLT3, and RET kinases [43-45]. Zhu and colleagues performed a study in patients with advanced HCC that used sunitinib at 37.5 mg orally once daily on a standard 4-weeks-on, 2-weeks-off regimen (6 weeks per cycle) [46]. The primary end point of the study was PFS. Of the 34 patients enrolled, one patient had a PR of 20 months duration, and an additional 10 patients (38.5%) had stable disease of at least 12 weeks duration. The median PFS was 3.9 months and OS was 9.8 months. In another European/Asian phase II study, sunitinib was administered at 50 mg daily for 4 weeks every 6 weeks to patients with unresectable HCC [47]. The primary end point of the study was overall response rate according to Response Evaluation Criteria in Solid Tumours criteria. Of the 37 patients enrolled, one patient (2.7%) experienced PR, and 13 patients (35%) had stable disease as their best response. The median OS was 8.0 months and PFS was 3.7 months. Preliminary results from two other phase II studies were also presented, one that used 37.5 mg for a 4-weeks-on, 2-weeks-off schedule, and the other with 37.5 mg continuous daily dosing.

In terms of toxicity, the studies that used the lower dose (37.5 mg) reported acceptable safety profiles. The most common adverse events included hematologic toxicities, fatigue, and an increase in transaminase [46, 47]. Grade 3 or 4 adverse events occurred in no more than 20% of the patients in any category. At the higher dose of 50 mg daily, sunitinib treatment led to more pronounced grade 3-4 toxicities and a higher death rate of 10% in this patient population [47].

Although the lower dose at 37.5 mg seems to be more tolerable, it remains uncertain whether the continuous or intermittent schedule is better. A randomized phase III study comparing sunitinib at 37.5 mg continuous daily dosing versus Sorafenib at 400 mg twice daily in advanced HCC (clinical trial identifier: NCT00699374) is ongoing.

Brivanib

Brivanib alinate is a dual inhibitor of VEGFR and fibroblast growth factor receptor (FGFR)-signaling pathways that can induce tumour growth inhibition in mouse HCC xenograft model [48]. A phase II study was conducted to assess the efficacy and safety of brivanib in patients with unresectable locally advanced or metastatic HCC who had received either no prior systemic therapy (cohort A) or one prior regimen of angiogenesis inhibitor (cohort B) [49]. The treatment schedule consisted of continuous daily dosing of brivanib at 800 mg. Of the 96 patients enrolled, 55 patients were in cohort A and 41 in cohort B, including 38 whose disease failed to respond to Sorafenib. In cohort A, median OS was 10 months and TTP was 2.8 months (95% CI, 1.4–3.9). PR was seen in 5% of patients, and disease control rate was 47%. Interestingly, a 50% decrease in serum AFP from baseline was seen in 40% of patients in both cohorts A and B. Most frequently observed grade 3-4 adverse events included fatigue (16%), high levels of AST (7.3%), diarrhea (4.9%), and headache (4.9%) in cohort B. Brivanib is undergoing additional evaluation in phase III studies in both the first-line setting in comparison with Sorafenib and in the Sorafenib-refractory setting in comparison with best supportive care in advanced HCC.

ABT-869

ABT-869 is an orally active, potent, and selective inhibitor of VEGFR and PDGFR. Preliminary results from an open-label, multicenter phase II study of ABT-869 in advanced HCC were reported [50]. ABT-869 was provided at 0.25 mg/kg daily in Child-Pugh A or once every other day in Child-Pugh B patients until disease progressed or toxicity became intolerable. The primary end point was the progression-free rate at 16 weeks. Of the 44 patients enrolled, 34 had data available for analysis (28 with Child A and 6 with Child B cirrhosis). The estimated response rate was 8.7% (95% CI, 1.1–28) for the 23 patients with Child A cirrhosis. For all 34 patients, median TTP was 112 days (95% CI, 110–not estimable), median PFS was 112 days (95% CI, 61–168), and median OS was 295 days (95% CI, 182–333). The most common adverse events for
all patients were hypertension (41%), fatigue (47%), diarrhea (38%), rash (35%), proteinuria (24%), vomiting (24%), cough (24%), and oedema peripheral (24%). The most common grade 3-4 adverse events were hypertension (20.6%) and fatigue (11.8%). The early evidence of efficacy and tolerable safety profiles has encouraged further development of ABT-869 in HCC.

Pazopanib

Pazopanib is an oral angiogenesis inhibitor targeting VEGFR, PDGFR, and c-Kit. Reports from a phase I study to determine the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and efficacy of pazopanib in patients with locally unresectable and/or advanced HCC were presented [51]. Eligibility criteria included unresectable and/or metastatic HCC with at least one target lesion, recovery from prior systemic regimens, Eastern Cooperative Oncology Group performance status of 0 or 1, Child Pugh A, and adequate organ function. Doses of pazopanib were escalated from 200 mg once daily to 800 mg daily in a 3 + 3 design. In the 27 Asian patients enrolled, MTD was determined to be 600 mg once daily. PR was observed in two patients (7%; one at 800 mg, one at 600 mg) and stable disease of 4 months in 11 patients (41%). Median TTP at the MTD was 137.5 days (range, 4–280 days). Changes in tumour dynamic contrast-enhanced magnetic resonance imaging parameters were seen after repeated dose pazopanib administration.

AZD2171

AZD2171 (cediranib) is a potent oral pan-VEGFR tyrosine kinase inhibitor with activity against platelet-derived growth factor receptors and c-Kit. AZD2171 is a potent inhibitor of both KDR (IC50=0.002 IM) and Flt-1 (IC50=0.005 IM), and shows activity against c-kit, platelet-derived growth factor receptor beta (PDGFRb) and Flt-4 at nanomolar concentrations [52]. Alberts and colleagues reported their early experiences of toxicity and efficacy of AZD2171 from a phase II study in patients with advanced HCC [53]. AZD2171 was provided at 45 mg orally once daily on a 28-day treatment cycle. Twenty-eight patients have been accrued, and 19 patients had toxicity data available for assessment. Of these, 16 patients (84%) developed grade 3 toxicity. Fatigue, hypertension, and anorexia accounted for most adverse events. Despite a lack of grade 4 events, a high rate of refusal of further treatment was encountered and seemed to be related to the high rate of grade 3 fatigue. Patients received a median of one cycle of treatment (range, 1–8 cycles) while on the study. We are currently conducting a single-arm phase II study that uses AZD2171 at 30 mg daily to assess the tolerability and safety in advanced HCC.

PTK787

PTK787/ZK 222584 (Vatalanib) is an oral angiogenesis inhibitor targeting all known VEGFR tyrosine kinases, including VEGFR-1/flt-1, VEGFR-2/KDR, and VEGFR-3/ Flt-4, PDGFR, and the c-kit with a higher selectivity for VEGFR-2 [54, 55]. Koch and colleagues reported the early experience of an open-label, multicenter phase I study to characterize the safety, tolerability, and pharmacokinetic profile of PTK787 administered once daily at a dose of 750 mg to 1250 mg in patients with unresectable HCC [56]. Patients were stratified into three groups with mild, moderate, and severe hepatic dysfunction, respectively, on the basis of total bilirubin and AST (aspartate aminotransferase)/alanine aminotransferase levels. The maximal tolerated dose of PTK787 was defined as 750 mg daily. Of patients in all groups, 18 had efficacy data available. No complete response or PR was observed. Nine patients had a best response of stable disease, and nine had progressive disease. There are no studies planned to develop this agent in the treatment of HCC at this time.

Epidermal Growth Factor Receptor (EGFR) Inhibitors

The expression of several EGF family members, specifically EGF, TGF-α, and heparinbinding epidermal growth factor, as well as EGFR, has been described in several HCC cell lines and tissues [57-62]. Multiple strategies to target EGFR signaling pathways have been developed, and two classes of anti-EGFR agents have established clinical activity in cancer: monoclonal antibodies that competitively inhibit extracellular endogenous ligand binding, and small molecules that inhibit the intracellular tyrosine kinase domain. (Table 3) summarizes phase II studies with EGFR inhibitors. Other than the modest activity with erlotinib, the rest of the EGFR inhibitors failed to show any activity as single agents in advanced HCC.

EGFR Tyrosine Kinase Inhibitors

Two phase II clinical studies have evaluated the safety and efficacy of Erlotinib (Tarceva) provided at 150 mg daily in patients with advanced HCC [63, 64]. In the study by Philip and colleagues, 3 (9%) of 38 patients experienced PR, and 12 patients (32%) were free of progression of disease at 6 months [63]. Median OS time for this cohort was 13 months. In another report by Thomas et al. 17 (43%) of 40 patients achieved PFS at 16 weeks, and the PFS rate at 24 weeks was 28% (64). No PR or complete response was observed in this study. The median time to failure, defined as either disease progression or death, was 13.3 weeks. The median time of OS was 25.0 weeks (95% CI, 17.9–42.3) from the date of Erlotinib therapy initiation. In the Eastern Cooperative Oncology Group’s E1203 study, Gefitinib provided at 250 mg daily was examined in a single-arm phase II study [65]. A two-stage design was used, and 31 patients were accrued to the first stage. One patient had PR and seven patients had stable disease. The median PFS was 2.8 months (95% CI 1.5–3.9) and median OS was 6.5 months (95% CI, 4.4–8.9). The criterion for secondstage accrual was not met, and the authors concluded that gefitinib as a single agent was not active in advanced HCC. Lapatinib, a selective dual inhibitor of both EGFR and HER-2/NEU tyrosine kinases, also demonstrated modest activity in HCC [66]. Among the
40 patients with advanced HCC, the response rate was 5%, PFS 2.3 (95% CI, 1.7–5.6) months, and OS of 6.2 (95% CI, 5.1–infinity) months.

Monoclonal Antibodies Against EGFR

Cetuximab, a chimeric monoclonal antibody against EGFR, was tested in two phase II studies in patients with advanced HCC. In our study, 30 patients with advanced HCC were enrolled [67]. The initial dose of cetuximab was 400 mg/m^2^ provided intravenously, followed by weekly intravenous infusions at 250 mg/m^2^. No responses were seen. Five patients had stable disease (median time, 4.2 months; range, 2.8–4.2 months). The median OS was 9.6 months (95% CI, 4.3–12.1) and the median PFS was 1.4 months (95% CI, 1.2–2.6). Cetuximab trough concentrations were not notably altered in patients with Child-Pugh A and B cirrhosis. Gruenwald and colleagues reported their preliminary experience of cetuximab in a similarly designed study in HCC [68]. Of the 32 patients enrolled, 27 patients had efficacy data available. No responses were seen, and the median TTP for all patients was 8.0 weeks. The combination of cetuximab with gemcitabine and oxaliplatin (GEMOX) was evaluated in a phase II study [69]. All patients received cetuximab at an initial dose of 400 mg/m^2^ followed by 250 mg/m^2^ weekly, gemcitabine 1000 mg/m^2^ on day 1, and oxaliplatin at 100 mg/m^2^ on day 2, repeated every 14 days until disease progression or limiting toxicity. Of the 45 patients enrolled, the confirmed response rate was 20% and disease stabilization rate was 40%. The median PFS and OS were 4.7 months and 9.5 months, respectively. The 1-year survival rate was 40%. Given the reported antitumor activity of GEMOX in prior phase II studies and the lack of activity of cetuximab as single agents, the relative contribution of cetuximab to this regimen remains to be defined. The combination of cetuximab with capecitabine and oxaliplatin was evaluated in a single-arm phase II study [70]. Patients received capecitabine at 850 mg/m^2^ twice daily for 14 days, oxaliplatin on day 1 at 130 mg/m^2^ intravenously, and cetuximab at 400 mg/m^2^ on day 1 followed by 250 mg/m^2^ weekly in a 21-day cycle. Of the 25 patients enrolled, data for efficacy were available for 20 patients. Response rate was 10% (95% CI, 1–33), and TTP was 4.3 months (95% CI, 2.3–5.0). Although most patients tolerated the treatment well, diarrheal and electrolyte abnormalities including hypoglycemia and hypocalcemia were more pronounced in this population.

mTOR Inhibitors

mTOR functions to regulate protein translation, angiogenesis, and cell-cycle progression in many cancers, including HCC. Preclinical data have demonstrated that mTOR inhibitors were effective in inhibiting cell growth and tumour vascularization in HCC cell lines and HCC tumour models. The importance of the mTOR pathway in HCC was examined in a comprehensive study with 314 HCC and 37 nontumoral tissues that used a series of molecular techniques to assess mutation, DNA copy number changes, messenger RNA and gene expression, and protein activation [71]. Aberrant mTOR signalling (p-RPS6) was present in half of the cases and chromosomal gains in rapamycin-insensitive companion of mTOR (RICTOR) (25% of patients), and positive p-RPS6 staining correlated with HCC recurrence after resection.

A number of mTOR inhibitors (sirolimus, temsirolimus, and everolimus) are available clinically. Retrospective studies in patients who underwent liver transplantation for HCC have shown that patients who received sirolimus for immunosuppression had a much lower rate of tumour recurrence than those who received calcineurin inhibitors. Clinical studies with mTOR inhibitors alone and in combination with either targeted agents or chemotherapeutic agents in advanced HCC are at an early stage of clinical development. Chen and colleagues recently reported their early experience of a randomized phase I pharmacokinetic study of everolimus in advanced HCC [72]. Two different schedules were tested: continuous daily dosing and once-weekly dosing. A total of 36 patients were enrolled. Dose-limiting toxicities observed included hyperbilirubinemia, high levels of alanine aminotransferase, thrombocytopenia, infection, diarrheal, and cardiac ischemia. The MTD for weekly and daily dosing schedules was determined to be 70 and 7.5 mg, respectively. Interestingly, reactivation of hepatitis B and C virus was observed in four and one patients, respectively. The disease control rate of 31 evaluable patients was 61% (10 of 16) and 46.7% (7 of 15, including one case of PR) of patients receiving daily and weekly treatment, respectively. Another phase I/II study that evaluated everolimus with a continuous daily dosing schedule in advanced HCC is ongoing.

MEK Inhibitor

HCC is characterized by frequent MEK/ERK activation in the absence of RAS or RAF mutation. A multicenter, singlearm phase II study with a two-stage design was conducted with AZD6244, a specific inhibitor of MEK, in advanced HCC [73]. The primary end point was response rate. AZD6244 was administered orally at a dose of 100 mg twice a day. Of the 19 patients enrolled, 16 had response data available. Despite the good tolerability of AZD6244, it showed minimal activity in advanced HCC. No response was observed, and stable disease was observed in 37.5% of the patients. The median TTP was only 8 weeks (95% CI, 6.6–11.1).

Other Molecularly Targeted Agents Under Development In HCC

Many genetic and epigenetic changes occur during hepatocarcinogenesis. These pathways include the PI3 K/Akt/mTOR pathway, hepatocyte growth factor/c-Met pathway, and IGF and IGF-R, as well as the Wnt-b-catenin pathway. Multiple agents targeting these key pathways are under early-stage evaluation in HCC.
Conclusions
Despite decades of efforts by many investigators, no studies with systemic chemotherapy or hormone therapy have demonstrated improved survival in patients with advanced HCC. Sorafenib has emerged as the new standard treatment for advanced HCC. Ongoing studies are evaluating the efficacy and tolerability of combining Sorafenib with Erlotinib and other targeted agents or chemotherapy. Many molecularly targeted agents are at different stages of clinical development in HCC, and several agents, including Sunitinib and Brivanib, are being tested in phase III studies. Combining targeted agents that inhibit different pathways in hepatocarcinogenesis is an area of active investigation. Future research should continue to unravel the mechanism of hepatocarcinogenesis and to identify key relevant molecular targets for therapeutic intervention. While we are developing other antiangiogenic and targeted agents in HCC, it is imperative that we continue our efforts to identify and validate surrogate and predictive biomarkers that would be helpful to predict clinical efficacy, toxicity, and resistance to these agents. We hope that we will continue to improve the efficacy of systemic therapy in advanced HCC in the coming years.

Acknowledgement
El Mehdi Tazi, Ismail Essadi and Touyar Anass analyzed, interpreted the oncological features, and has been involved in drafting the manuscript; Hind M’rabit and Hassan Errihani has given final approval of the version to be published. All authors read and approved the final manuscript.

The author(s) declare that they have no competing interests.

References
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. Cancer J Clin 2005; 55:74–108.
2. Kim SR, Kudo M, Hino O, et al. Epidemiology of hepatocellular carcinoma in Japan and Korea. A review. Oncology 2008; 75(Suppl 1): 3–16.
3. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 2009; 27:1485–1491.
4. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.
5. Zhu AX. Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist 2006; 11:790–800.
6. Clavière C, Bronowicki JP, Hudziak H, Bigard MA, Gaucher P. Roles of sex steroids and their receptors in the pathophysiology of hepatocellular carcinoma. Gastroenterol Clin Biol 1998; 22: 73–86.
7. Francavilla A, Polimeni L, DiLeo A, et al. The effect of estrogen and tamoxifen on hepatocyte proliferation in vivo and in vitro. Hepatology 1989; 9: 641–620.
8. Jiang SY, Shyu RY, Yeh MY, Jordan VC. Tamoxifen inhibits hepatoma cell growth through an estrogen receptor independent mechanism. J Hepatol 1995; 23:712–719.
9. Tamoxifen in treatment of hepatocellular carcinoma: a randomised controlled trial. CLIP Group (Cancer of the Liver Italian Programme). Lancet 1998;352:17–20.
10. Chow PK, Tai BC, Tan CK, et al. High-dose tamoxifen in the treatment of inoperable hepatocellular carcinoma: a multicenter randomized controlled trial. Hepatol 2002; 36: 1221–1226.
11. Liu CL, Fan ST, Ng IO, et al. Treatment of advanced hepatocellular carcinoma with tamoxifen and the correlation with expression of hormone receptors: a prospective randomized study. Am J Gastroenterol 2000; 95:218–222.
12. Manesis EK, Giannoulis G, Zouboulis P, et al. Treatment of hepatocellular carcinoma with tamoxifen and the correlation with expression of sex hormones: a randomized, controlled trial. Hepatology 1995; 21:1535–1542.
13. Riestra S, Rodriguez M, Delgado M, et al. Tamoxifen does not improve survival of patients with advanced hepatocellular carcinoma. J Clin Gastroenterol 1998; 26:200–203.
14. Grimaldi C, Bleiberg H, Gay F, et al. Evaluation of antiandrogen therapy in unresectable hepatocellular carcinoma: results of a European Organization for Research and Treatment of Cancer multicentric double-blind trial. J Clin Oncol 1998; 16:411–417.
15. Sciarrino E, Simonetti RG, Le Moli S, Pagliaro L. Adriamycin treatment for hepatocellular carcinoma. Experience with 109 patients. Cancer 1985; 56:2751–2755.
16. Nerenstone SR, Ihde DC, Friedman MA. Clinical trials in primary hepatocellular carcinoma: current status and future directions. Cancer Treat Rev 1988; 15:1–31.
17. Leung TW, Patt YZ, Lau WY, et al. Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res 1999; 5: 1676–1681.
18. Yeo W, Mok TS, Zee B, et al. A randomized phase III study of Doxorubicin versus cisplatin/interferon alpha-2b/Doxorubicin/fluorouracil (PLAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst 2005; 97: 1532–1538.
19. Huang M, Liu G. The study of innate drug resistance of human hepatocellular carcinoma Bel7402 cell line. Cancer Lett 1999; 135:97–105.
20. Kato A, Miyazaki M, Ambru S, et al. Multidrug resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J Surg Oncol 2001; 78:110–115.
21. Kuo MT, Zhao JY, Teeter LD, et al. Activation of multidrug resistance (P-glycoprotein) mrdr3/mdr1a gene during the development of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell Growth Differ 1992; 3:531–540.

22. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

23. Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006; 66:11851–11858.

24. Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of Sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24: 4293–4300.

25. Llovet JM, Ricci S, Mazzaferrro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359:378–390.

26. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of Sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25–34.

27. Abou-Alfa GK, Johnson P, Knox J, et al. Final results from a phase II (PhII), randomized, double-blind study of Sorafenib plus Doxorubicin (S + D) versus placebo plus Doxorubicin (P + D) in patients (pts) with advanced hepatocellular carcinoma (AHCC) (abstract 128), Orlando, FL. Presented at 2008 gastrointestinal cancers symposium.

28. Messerini L, Novelli L, Comin CE. Microvessel density and clinicopathological characteristics in hepatitis C virus and hepatitis B virus related hepatocellular carcinoma. J Clin Pathol 2004; 57: 867–871.

29. Miura H, Miyazaki T, Kudo M, et al. Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J Hepatol 1997; 27:854–861.

30. Yamaguchi R, Yano H, Iemura A, et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 1998; 28: 68–77.

31. Yamaguchi R, Yano H, Nakashima Y, et al. Expression and localization of vascular endothelial growth factor receptors in human hepatocellular carcinoma and non-HCC tissues. Oncol Rep 2000; 7: 725–729.

32. Chao Y, Li CP, Chau GY, et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 2003; 10:355–362.

33. Jeng KS, Sheen IS, Wang YC, et al. Prognostic significance of preoperative circulating vascular endothelial growth factor messenger RNA expression in resectable hepatocellular carcinoma: a prospective study. World J Gastroenterol 2004; 10: 643–648.

34. Poon RT, Ho JW, Tong CS, et al. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg 2004; 91: 1354–1360.

35. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7:987–989.

36. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10:145–147.

37. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 2008; 26:2992–2998.

38. Malka D, Dromain C, Farace F, et al. Bevacizumab in patients with advanced hepatocellular carcinoma (HCC): preliminary results of a phase II study with circulating endothelial cell (CEC) monitoring. J Clin Oncol 2007; 25(Suppl):4570.

39. Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24:1898–1903.

40. Sun W, Haller DG, Mykulowycz K, et al. Combination of capectabine, oxaliplatin with bevacizumab in treatment of advanced hepatocellular carcinoma (HCC): a phase II study. J Clin Oncol 2007; 25(Suppl):4574.

41. Hsu C, Yang T, Hsu C, et al. Modified-dose capectabine + bevacizumab for the treatment of advanced/metastatic hepatocellular carcinoma (HCC): a phase II, single-arm study. J Clin Oncol 2007; 25(Suppl):15190.

42. Thomas MB, Morris JS, Chadha R, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009; 27: 843–850.

43. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005; 315:971–979.

44. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9:327–337.

45. Pawson T. Regulation and targets of receptor tyrosine kinases. Eur J Cancer 2002; 38(Suppl 5): S3–10.

46. Zhu AX, Sahani DV, Duda DG, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 2009; 27: 3027–3035.

47. Faivre S, Raymond E, Boucher E, et al. Safety and efficacy of sunitinib in patients with advanced
hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol 2009; 10: 794–800.

48. Huynh H, Chow PK, Palanisamy N, et al. Bevacizumab and rupamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol 2008; 49: 52–60.

49. Raouf JL, Finn RS, Kang YK, et al. An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol 2009; 27 (Suppl):4577.

50. Toh H, Chen P, Carr BI, et al. A phase II study of ABT-869 in hepatocellular carcinoma (HCC): interim analysis. J Clin Oncol 2009; 27 (Suppl):4581.

51. Yau CC, Chen PJ, Curtis CM, et al. A phase I study of pazopanib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2009; 27 (Suppl):3561.

52. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005; 65:4389–4400.

53. Alberts SR, Morlan BW, Kim GP, et al. NCCTG phase II trial (N044 J) of AZD2171 for patients with hepatocellular carcinoma (HCC), interim review of toxicity (abstract 186), Orlando, FL. Presented at 2007 Gastrointestinal Cancers Symposium.

54. Wood JM. Inhibition of vascular endothelial growth factor (VEGF) as a novel approach for cancer therapy. Medicina (B Aires) 2000; 60(Suppl 2):41–47.

55. Drevs J, Muller-Driver R, Wittig C, et al. PTK787/ZK 222584, a specific vascular endothelial growth factor–receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 2002; 62: 4015–4022.

56. Koch I, Baron A, Roberts S, et al. Influence of hepatic dysfunction on safety, tolerability, and pharmacokinetics (PK) of PTK787/ZK 222584 in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol 2007; 23 (Suppl):4134.

57. Carlin CR, Simon D, Mattison J, Knowles BB. Expression and biosynthetic variation of the epidermal growth factor receptor in human hepatocellular carcinoma-derived cell lines. Mol Cell Biol 1988; 8:25–34.

58. Harada K, Shiotai G, Kawasaki H. Transforming growth factoralpha and epidermal growth factor receptor in chronic liver disease and hepatocellular carcinoma. Liver 1999; 19:318–325.

59. Ito Y, Takeda T, Higashiyama S, et al. Expression of heparin binding epidermal growth factor–like growth factor in hepatocellular carcinoma: an immunohistochemical study. Oncol Rep 2001; 8: 903–907.

60. Kira S, Nakamichi T, Suemori S, et al. Expression of transforming growth factor alpha and epidermal growth factor receptor in human hepatocellular carcinoma. Liver 1997; 17:177–182.

61. Kiss A, Wang NJ, Xie JP, Thorgeransson SS. Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res 1997; 3:1059–1066.

62. Yeh YC, Tsai JF, Chuang LY, et al. Elevation of transforming growth factor alpha and its relationship to the epidermal growth factor and alpha-fetoprotein levels in patients with hepatocellular carcinoma. Cancer Res 1987; 47: 896–901.

63. Philip PA, Mahoney MR, Allmer C, et al. Phase II study of erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005; 23:6657–6663.

64. Thomas MB, Chadha R, Glover K, et al. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 2007; 110: 1059–1067.

65. O’Dwyer PJ, Giantonio BJ, Levy DE, et al. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the Eastern Cooperative Oncology Group’s Study E1203. J Clin Oncol 2006; 24(Suppl):4143.

66. Ramanathan RK, Belani CP, Singh DA, et al. A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol 2009; 64:777-783.

67. Zhu AX, Stuart K, Blaszkowsky LS, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer 2007; 110: 581–589.

68. Gruenwald V, Wilkens L, Gebel M, et al. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: final results. J Clin Oncol 2007; 25(Suppl):4598.

69. Louafi S, Boige V, Ducreux M, et al. Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC): results of a phase II study. Cancer 2007;109: 1384–1390.

70. O’Neil BH, Bernard SA, Goldberg RM, et al. Phase II study of oxaliplatin, capecitabine, and cetuximab in advanced hepatocellular carcinoma. J Clin Oncol 2008; 26(Suppl):4604.

71. Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterol. 2008; 135:1972–1983.

72. Chen L, Shiah HS, Chen CY, et al. Randomized, phase I, and pharmacokinetic (PK) study of RAD001, an mTOR inhibitor, in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2009; 27(Suppl):4587.

73. O’Neil BH, Williams-Goff LW, Kauh J, et al. A phase II study of AZD6244 in advanced or metastatic hepatocellular carcinoma. J Clin Oncol 2009; 27(Suppl):e15574.