Prescriptionless light-cone integrals

A. T. Suzuki∗ and A. G. M. Schmidt†

Instituto de Física Teórica, Universidade Estadual Paulista, R. Pamplona, 145 São Paulo - SP CEP 01405-900 Brazil (today)

Perturbative quantum gauge field theory seen within the perspective of physical gauge choices such as the light-cone entails the emergence of troublesome poles of the type \((k \cdot n)^{-\alpha}\) in the Feynman integrals, and these come from the boson field propagator, where \(\alpha = 1, 2, \cdots\) and \(n^\mu\) is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle to overcome in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research for over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes.

However, a more recent development in this front which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes attached to this new technique in that not only it renders the light-cone prescriptionless, but by the very nature of it, can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type \((k \cdot n)^{-\alpha}[(k - p) \cdot n]^{-\beta}\), \((\beta = 1, 2, \cdots)\).

In this work we demonstrate how all this can be done.

02.90+p, 11.15.Bt

I. INTRODUCTION.

Light-cone gauge for gauge field theories is probably one of the most widely used among the algebraic non-covariant gauges. Its popularity has known ups and downs along its history. Among the ups are that the emerging propagator has a deceivingly simple structure compared to other non-covariant choices, the decoupling of Fadeev-Popov ghosts from the physical fields, and the possibility of describing and modeling complex supersymmetric string theories in it. The ugly side of the coin is represented by the subtle \((k \cdot n)^{-\alpha}\) singularities present in all the physical amplitudes described within it. Such complication demanded ad hoc prescriptions to handle the singularity in a mathematically consistent way. Apart from the fact that such expedient has to be carried out by hand, it was soon realized that it was not enough to be mathematically well-defined, it had to be physically consistent as well. Thus, not any prescription is suitable, but only causal prescriptions are eligible for the light-cone gauge.

Probably the major breakthrough in recent years along this line is the realization that \(D\)-dimensional Feynman integrals can be analytically continued to negative dimensions and performed there and then brought back to positive dimensionality. Negative dimensional integration method (NDIM) is tantamount to the performing of fermionic integration in positive dimensions. This, can be applied to light-cone integrals with surprising effects. No prescription is called for the computation and moreover, as it can be shortly seen, it can dispense altogether with the necessity of partial fractioning products of gauge-dependent poles when one resorts to the use of prescriptions.

In this work we shall demonstrate the two surprising features of NDIM when employed in the light-cone context: no prescriptions and no partial fractionings are needed. Our lab-testing is performed taking the simplest scalar and tensorial structures for one-loop integrals.

II. ONE-LOOP LIGHT-CONE GAUGE LOOP INTEGRALS.

First of all, let us make things more concrete, by analysing the framework of vector gauge fields, e.g. the pure Yang-Mills fields, where, after taking the limit of vanishing gauge parameter, the propagator reads:

∗E-mail:suzuki@ift.unesp.br
†E-mail:schmidt@ift.unesp.br
where here \((a, b)\) are the gauge group indices, \(n\) is the arbitrary and constant light-like four-vector which defines the gauge, \(n \cdot A^\mu(x) = 0; \quad n^2 = 0\). This propagator generates \(D\)-dimensional Feynman integrals of the following generic form:

\[
I_{lc} = \int \frac{d^Dk_i}{A(k_j, p_t)} \frac{f(k_j, n^*; p_t, n_n^*)}{h(k_j \cdot n, p_t \cdot n)},
\]

where \(p_t\) labels all the external momenta, and \(n^*\) is a null four-vector, dual to \(n\). A conspicuous feature that we need to note first of all, is that the dual vector \(n^*\), when it appears at all, it does so always and only in the numerators of the integrands. And herein comes the first seemingly “misterious” facet of light-cone gauge. How come that from a propagator expression like (1), which contains no factors, can arise integrals of the form (2), with prominently seen \(n^*\) factors? Again, this is most easily seen in the framework of definite external vectors \(n\) and \(n^*\). An alternative way of writing the generic form of a light-cone integral is

\[
I_{lc}^{\mu_1 \ldots \mu_n} = \int \frac{d^Dk_i}{A(k_j, p_t)} \frac{g(k_j^\mu, p_t^\mu)}{h(k_j \cdot n, p_t \cdot n)},
\]

where the numerator \(g(k_j^\mu, p_t^\mu)\) defines a tensorial structure in the integral. For a vector, we have \(k^\mu = (k^+, k^-, k^z)\), where \(k^+ = 2^{-1/2}((0 + k D^{-1})\) and \(k^- = 2^{-1/2}((0 - k D^{-1})\). If we choose definite \(n\) and \(n^*\) such that \(n^\mu = (1, 0, \cdots, 1)\), and \(n^{*\mu} = (1, 0, \cdots, -1)\), this allows us to write \(k^+ \equiv k \cdot n\) and \(k^- \equiv k \cdot n^*\). We have therefore traced back the origin for the numerator factors containing \(n^*\). We would like to emphasize here that the presence of this \(n^*\) in the numerators of integrands has nothing whatsoever to do with some kind of prescription input. It is rather an intrinsic feature of the general structure of a Feynman integral in the light-cone gauge.

Of course, for practical reasons we illustrate the NDIM methodology picking up only few of the scalar, vector and second-rank tensor one-loop integrals. So, we shall be considering the following:

\[
T_1(i, j, l) = \int d^Dq \; \mathbf{N}(q),
\]

\[
T_1^\mu(i, j, l) = \int d^Dq \; q^\mu \; \mathbf{N}(q),
\]

\[
T_1^{\mu
u}(i, j, l) = \int d^Dq \; q^\mu q^\nu \; \mathbf{N}(q),
\]

where

\[
\mathbf{N}(q) \equiv [(q - p)^2][(q \cdot n)^3][(q \cdot n^*)].
\]

and

\[
T_2(i, j, l, m) = \int d^Dq \; \mathbf{R}(q),
\]

\[
T_2^\mu(i, j, l, m) = \int d^Dq \; q^\mu \; \mathbf{R}(q),
\]

\[
T_2^{\mu\nu}(i, j, l, m) = \int d^Dq \; q^\mu q^\nu \; \mathbf{R}(q),
\]

where

\[
\mathbf{R}(q) \equiv [(q - p)^2][(q \cdot n)^3][(q - p - n)^3][(q \cdot n^*)]^m.
\]
In the first three type T_1 integrals, after they are computed in NDIM, only the exponents (i, j) will be analytically continued to allow for negative values, since the original structure of the Feynman integral demands exponent $l \geq 0$. Similarly, for the last three type T_2 integrals only the exponents (i, j, l) will be analytically continued to negative values whereas $m \geq 0$. We strongly emphasize this point in view of the fact that we must respect the very nature of the original structure for the light-cone integrals, where factors of the form $(q-n)^i$ never appears in denominators.

Observe that we are not invoking any kind of prescription for the $(q-n)^i$ factors to solve the integrals in NDIM, since before analytic continuation j is strictly positive and there are no poles to circumvent! This is the beauty and strength of NDIM! Neither are the $(q-n)^i$ numerator factors due to some sort of prescription input as they are, e.g., in the Mandelstam-Leibbrandt (ML) treatment, where one makes the substitution \[\int \frac{d^D q}{(q-p)^2(q-n)^i} \] analytically continued.

Let us then evaluate the integrals using the NDIM approach. In fact, our first integral T_1 has already been calculated with great details in our previous paper whose result is, \[T_1^{AC}(i, j, l) = \pi^\omega \chi^{i+\omega} (p\cdot n)^j (p\cdot n^*)^l \frac{(i-1)j+\omega(-j-i-\omega)}{(1+|l+i+\omega|)}, \] where \[\chi \equiv \frac{2p\cdot n \cdot p\cdot n^*}{n\cdot n^*}, \] and the superscript “AC” means that the exponents (i, j) were analytically continued to allow for negative values, $\omega = D/2$ and we use the Pochhammer symbol, \[(a|b) \equiv (a)_b = \frac{\Gamma(a+b)}{\Gamma(a)}. \]

Observe that l must take only positive values or zero since the Pochhammer symbol containing $\Gamma(1+l)$ was not analytically continued.

Consider now the second integral, vectorial, given in (5). For this case, let, \[G^\mu = \int d^D q \ q^\mu \exp\left[-\alpha(q-p)^2 - \beta(q-n) - \gamma(q\cdot n^*) \right]. \] Introducing the standard trick of substituting the q^μ factor for a derivative in p_μ, we obtain, \[G^\mu = \left(\frac{\pi^\omega}{\alpha} \right) e^{-\alpha p^2} \frac{\partial}{\partial p_\mu} \exp\left[\alpha p^2 + \frac{\beta}{2\alpha}(n\cdot n^*) - \beta p^+ - \gamma p^- \right] \]
\[= \left(p^\mu - \frac{\beta}{2\alpha} n^\mu - \frac{\gamma}{2\alpha} n^* \mu \right) G_0, \] where $p^+ = p\cdot n$ and $p^- = p\cdot n^*$, as usual in the light-cone notation, and define
\[G_0 \equiv \left(\frac{\pi^\omega}{\alpha} \right) \exp\left[\frac{\beta}{2\alpha}(n\cdot n^*) - \beta p^+ - \gamma p^- \right]. \]

Now, Taylor expanding the exponential in equation (13), \[G^\mu = \sum_{i,j,l=0}^{\infty} \frac{(-1)^{i+j+l} \alpha^i \beta^j \gamma^l}{i!j!l!} \ T_1^{\mu}(i, j, l), \] and following the steps for NDIM calculation we get finally, \[T_1^{\mu, AC}(i, j, l) = V_1^{\mu} T_1^{AC}(i, j, l), \] where
\[V_1^\mu \equiv p^\mu - \left[\frac{(i + \omega)p^-}{(1 + i + l + \omega)(n \cdot n^*)} \right] n^\mu - \left[\frac{(i + \omega)p^+}{(1 + i + j + \omega)(n \cdot n^*)} \right] n^*\mu. \] (18)

This result is in Euclidean space and valid for positive dimension \((D = 2\omega > 0)\), negative exponents \((i, j)\) and \(l \geq 0\).

The second-rank tensor integral in (18) can be evaluated in a similar way. The only thing that need to be taken into account is that now a second derivative is called for and the calculation becomes lengthier. We only quote the final result:

\[T_1^{\mu\nu, AC}(i, j, l) = V_1^{\mu\nu} T_1^{AC}(i, j, l), \] (19)

where

\[V_1^{\mu\nu} = p^\mu p^\nu - \left[\frac{(i + \omega)p^+ p^-}{(1 + i + j + \omega)(1 + i + l + \omega)(n \cdot n^*)} \right] g^{\mu\nu} \]
\[- \left[\frac{(i + \omega)p^-}{(1 + i + l + \omega)(n \cdot n^*)} \right] (p^\mu n^\nu + p^\nu n^\mu) \]
\[- \left[\frac{(i + \omega)p^+}{(1 + i + j + \omega)(n \cdot n^*)} \right] (p^\mu n^*\nu + p^\nu n^*\mu) \]
\[+ \left[\frac{(i + \omega)(1 + i + j + \omega)(1 + i + l + \omega)(n \cdot n^*)^2}{(2 + i + l + \omega)(1 + i + l + \omega)(n \cdot n^*)^2} \right] (n^\mu n^\nu + n^\nu n^\mu) \]
\[+ \left[\frac{(i + \omega)(1 + i + l + \omega)(p^+)^2}{(2 + i + j + \omega)(1 + i + j + \omega)(n \cdot n^*)^2} \right] n^\mu n^\nu \]
\[+ \left[\frac{(i + \omega)(1 + i + \omega)(p^-)^2}{(2 + i + j + \omega)(1 + i + j + \omega)(n \cdot n^*)^2} \right] n^*\mu n^*\nu. \] (20)

It can be noted that for the particular case of \(i = j = -1\) the pole piece for \(\omega \to 2\) only arises in the scalar integral factor \(T_1^{AC}(i, j, l)\), equation (11).

Now, let us consider the integrals \(\{T_2\}\). These contain two scalar products with \(n_\mu\), but again they are harmless in NDIM approach because their exponents, before analytic continuation, are positive. However, in the usual positive dimensional approach, such factors can become singular and prescriptions become a necessity. Yet prescriptions cannot handle products; one needs to use partial fractioning first. Thus, the recourse is to use the so-called “decomposition formulas” such as (see, for example, (21)).

\[\frac{1}{(k \cdot n)(p - k) \cdot n} = \frac{1}{p \cdot n} \left[\frac{1}{(p - k) \cdot n} + \frac{1}{k \cdot n} \right], \quad p \cdot n \neq 0, \] (21)

NDIM does not require any of such partial fractionings; it can handle products at the same time. Not only that, NDIM can handle any power of these products simultaneously, i.e., factors of the form \((k \cdot n)^{-\alpha}(p - k) \cdot n)^{-\beta}\), with \((\alpha, \beta = 2, 3, \cdots)\) which, of course, becomes the more strenuously difficult to handle by partial fractioning the higher the power we have.

To evaluate \(T_2\) using NDIM, let us then consider the Gaussian-like integral,

\[G_2 = \int d^Dq \exp \left[-\alpha(q - \bar{p})^2 - \beta q \cdot n - \gamma(q - \bar{p}) \cdot n - \delta q \cdot n^* \right], \] (22)

which yields

\[G_2 = \left(\frac{\pi}{\alpha} \right)^{D/2} \exp \left(-\beta p^+ - \delta p^- + \frac{\beta \delta}{2\alpha} n \cdot n^* + \frac{\gamma \delta}{2\alpha} n \cdot n^* \right). \] (23)

On the other hand, direct Taylor expansion of \(G_2\) yields

\[G_2 = \sum_{i,j,l,m=0}^{\infty} (-1)^{i+j+l+m} \frac{\alpha^i \beta^j \gamma^l \delta^m}{i!j!l!m!} T_2(i, j, l, m). \] (24)

Comparing both expressions and solving for \(T_2(i, j, l, m)\) we get a unique solution for a system of \(4 \times 4\) linear algebraic equations (21) which analytically continued to positive dimension and negative values for \((i, j, l)\) finally gives
\[
T^{AC}_{2}(i,j,l,m) = \pi^{\omega} \chi^{i+\omega} (p^{+})(p^{-})^{m} \frac{(-i[2i+l+\omega](-j-i-l-\omega)}{(1+m)[i+\omega]).}
\] (25)

Again, superscript “AC” means \((i,j,l)\) strictly negative and \(m \geq 0\).

With help of equation (23) it is easy to solve the two remaining integrals, whose final results we quote here:
\[
T^{\mu,AC}_{2}(i,j,l,m) = V^{\mu}_{2} T^{AC}_{2}(i,j,l,m),
\] (26)
where
\[
V^{\mu}_{2} \equiv p^{\mu} - \left[\frac{(i+\omega)p^{-}}{(1+i+m+\omega)(n.n^{*})} \right] n^{\mu} - \left[\frac{(i+l+\omega)p^{+}}{(1+i+j+l+\omega)(n.n^{*})} \right] n^{*\mu},
\] (27)
and
\[
T^{\mu\nu,AC}_{2}(i,j,l,m) = V^{\mu}_{2} T^{AC}_{2}(i,j,l,m),
\] (28)
where
\[
V^{\mu\nu}_{2} \equiv p^{\mu}p^{\nu} - \left[\frac{(i+l+\omega)p^{+}p^{-}}{(1+i+j+l+\omega)(1+i+m+\omega)(n.n^{*})} \right] g^{\mu\nu}
\]
\[- \left[\frac{(i+\omega)p^{-}}{(1+i+m+\omega)(n.n^{*})} \right] (p^{\mu}n^{\nu} + p^{\nu}n^{\mu})
\[- \left[\frac{(i+l+\omega)p^{+}}{(1+i+j+l+\omega)(n.n^{*})} \right] (p^{\mu}n^{*\nu} + p^{\nu}n^{*\mu})
\[+ \left[\frac{(i+l+\omega)(1+i+\omega)p^{+}p^{-}}{(1+i+m+\omega)(1+i+j+l+\omega)(n.n^{*})^{2}} \right] (n^{\mu}n^{*\nu} + n^{*\nu}n^{*\mu})
\[+ \left[\frac{(i+\omega)(1+i+\omega)(p^{-})^{2}}{(2+i+m+\omega)(1+i+m+\omega)(n.n^{*})^{2}} \right] n^{\mu}n^{\nu}
\[+ \left[\frac{(i+l+\omega)(1+i+l+\omega)(p^{+})^{2}}{(2+i+j+l+\omega)(1+i+j+l+\omega)(n.n^{*})^{2}} \right] n^{*\mu}n^{*\nu}.\] (29)

Finally, before closing this section, let us analyse (8) with momentum shift \(q = p - k\), so that
\[
T_{2}(i,j,l,m) = (-1)^{j+l+m} \tau^{2}_{2}(i,j,l,m) \quad \text{or} \quad \tau^{2}_{2}(i,j,l,m) = (-1)^{-j-l-m} T_{2}(i,j,l,m),
\] (30)
where
\[
\tau^{2}_{2}(i,j,l,m) = \int d^{D}k \ k^{2i}[(k-p)\cdot n]^{j}(k\cdot n)^{l}[(k-p)\cdot n^{*}]^{m}.
\] (31)

Then, we can easily write down the following results
\[
\tau^{\mu}_{2} = p^{\mu} \tau^{2}_{2} - (-1)^{-j-l-m} T^{\mu}_{2},
\] (32)
and
\[
\tau^{\mu\nu}_{2} = -p^{\mu}p^{\nu} \tau^{2}_{2} + p^{\mu} \tau^{\nu}_{2} + p^{\nu} \tau^{\mu}_{2} + (-1)^{-j-l-m} T^{\mu\nu}_{2}.
\] (33)

Particular cases for \(T_{1}, T_{2}\) and \(\tau_{2}\) such as \(T_{1}(-1,-1,0), T_{2}(-1,-1,-1,0)\), etc., can be worked out from the general expressions. All the above results are in agreement with the ones tabulated in (6,7,14).

III. DISCUSSION AND CONCLUSION.

NDIM is a technique wherein the principle of analytic continuation plays a key role. We solve a “Feynman-like” integral, i.e., a negative dimensional loop integral with propagators raised to positive powers in the numerator and then analytically continue the result to allow for negative values of those exponents and positive dimension.
In positive dimensions, Feynman integrals for covariant gauge choices can be worked out with a variety of methods. However, when we work in the light-cone gauge things become more complicated in virtue of the presence of unwieldy gauge dependent singularities. And herein comes the help of NDIM with surprising effect: propagators raised to positive powers in the “Feynman-like” integrals does not have poles of any kind to trouble us. Therefore no prescription is needed in the NDIM approach, and moreover, no partial fractioning is necessary. The beauty and the strength of NDIM to deal with light-cone integrals is revealed and demonstrated in a marvelous way.

So, we can summarize all this by enumerating the outstanding features of NDIM: i) No prescription at all is required to deal with gauge dependent poles of the usual Feynman integrals; ii) The overall structure of the Feynman integrals in the light-cone gauge is preserved, i.e., there is no need to introduce factors of the form \(q \cdot n \) in denominators as prescription input; iii) There is no need to use parametrization of any kind, so that there are no parametric integrals to solve; iv) There is no need to perform integration with split components such as in [4], where the integration in space-time is performed by decomposing \(d^2q \rightarrow d^2q - dq^4 \); v) There is no need to resort to partial fractionings such as [21]; vi) The final result comes out for arbitrary negative exponents of propagators, so that special cases of interest are all contained therein; vii) The final result is already within the dimensional regularization context.

In this work we calculated integrals — scalar, vector, and second-rank tensor — pertaining to light-cone gauge with arbitrary exponents of propagators and dimension. Our results given in (11), (17), (19), (25), (26), (28), (30), (32), and (33) can be worked out for particular values for the exponents and compared to those existing in the literature and checked that they are all in agreement.

But, with no doubt, the most outstanding conclusion that we can draw from this exercise is that no prescription was required to tackle the light-cone singularities. Of course, it is a matter of straightforward generalization that all other non-covariant gauge choices will follow suit.

ACKNOWLEDGMENTS

A.G.M.S. gratefully acknowledges FAPESP (Fundaçåo de Amparo à Pesquisa do Estado de São Paulo, Brasil) for financial support.

[1] I.G.Halliday, R.M.Ricotta, Phys.Lett. B193 (1987) 241.
[2] A.T.Suzuki, A.G.M.Schmidt, JHEP 09 (1997) 002; A.T.Suzuki, A.G.M.Schmidt, Eur.Phys.J.C5 (1998) 175; A.T.Suzuki, A.G.M.Schmidt, J.Phys.A31 (1998) 8023; A.T.Suzuki, A.G.M.Schmidt, Phys.Rev. D58 (1998) 047701.
[3] G.V.Dunne, I.G.Halliday, Phys.Lett. B193 (1987) 247.
[4] A.T.Suzuki, A.G.M.Schmidt, Nucl.Phys. B537 (1999) 549.
[5] A.T.Suzuki, A.G.M.Schmidt, eprint hep-th/9904004.
[6] G.Leibbrandt, Rev.Mod.Phys. 59 (1987) 1067. G.Leibbrandt, Non-covariant gauges: Quantization of Yang-Mills and Chern-Simons theory in axial type gauges, World Scientific (1994).
[7] A.Bassetto, G.Nardelli, R.Soldati, Yang-Mills theories in algebraic non-covariant gauges, World Scientific (1991)
[8] A.Bassetto, in Lecture notes in Physics, 61, P.Gaigg, W.Kummer, M.Schweda (Eds.), Springer-Verlag (1989).
[9] S.Mandelstam, Nucl.Phys.B 213 (1983) 149.
[10] G.Leibbrandt, Phys.Rev.D 29 (1984) 1699.
[11] H.C.Lee, in Lecture notes in Physics, 127, P.Gaigg, W.Kummer, M.Schweda (Eds.), Springer-Verlag (1989).
[12] N.N.Bogoliubov, D.V.Shirkov, Introduction to the theory of quantized fields, Interscience (1959).
[13] G.Leibbrandt, S.Nyeo, J.Math.Phys. 27 (1986) 627.
[14] M.S.Milgram, H.C.Lee, J.Comp.Phys. 71 (1987) 316.