Nuclear structure of 122Xe studied via high-statistics β^+/EC-decay

B. Jigmeddor1,8, P. E. Garrett1, C. Andreoiu2, G. C. Ball9, T. Bruhn3,2, D. S. Cross2, A. B. Garnsworthy3, G. Hackman3, B. Hadinia1, M. Moukaddam3, J. Park3, J. L. Pore2, A. J. Radich1, M. M. Rajabali3, E. T. Rand1, U. Rizman9, C. E. Svensson1, P. Voss2, Z. M. Wang9, J. L. Wood9, and S. W. Yates5

1University of Guelph, Guelph, ON, Canada
2Simon Fraser University, Burnaby, BC, Canada
3TRIUMF, Vancouver, BC, Canada
4Georgia Institute of Technology, Atlanta, GA, USA
5University of Kentucky, Lexington, KY, USA

Abstract. The nuclear structure of 122Xe has been investigated with measurements of the β^+/EC decay of 122Cs with the 8σ γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled the determination of relative $B(E2)$ values of some low-energy transitions, and the in-band transitions of the excited 0$^+$ bands have been observed. As a result, the 2$^+$ rotational band members for the 0$^+_2$ and 0$^+_3$ states have been firmly identified.

1 Introduction

Nuclei in the $Z > 50$, $N < 82$ region exhibit a very smooth evolution of collectivity; however, collectivity in this region is poorly characterized because of a general lack of high-quality spectroscopic data for low-spin states. It is the characterization of low-spin states, e.g., relative and absolute $B(E2)$ decay strengths and the occurrence of $E0$ decays, that are essential is describing the collective nature of these nuclei.

The excited 0$^+_2$ states in $^{124-132}$Xe isotopes [1] are very strongly populated in $(^{3}$He, $n)$ reactions, suggesting that there are important proton subshell gaps influencing the low-lying structure of these isotopes. The strongly populated 0$^+_2$ states, which are candidates for the main fragments of the proton pairing vibration, appear to have a similar deformation as the ground state band based on the similarity of the spacing of their possible rotational band members. The assigned band members, however, are generally based on energy considerations since, in most cases, the in-band transitions have remained unobserved. In nuclei with $Z \leq 50$, there is ample evidence for shape coexistence [2, 3] of the bands that are also strongly populated in the $(^{3}$He, $n)$ reactions. Shape coexistence with mixing of the configurations would lead to strong $E0$ transitions, and $E0$ transitions are observed in $^{118-124}$Xe [4] and in $^{114-126}$Te [5], but they are not fully characterized. To date, no evidence for shape coexistence in the Xe isotopes has been found, but it remains an interesting question if the Xe isotopes might manifest shape coexistence given their proximity to the $Z = 50$ closed shell.

The Xe isotopes were thought to be γ-soft nuclei or, in the language of the IBM, possess $O(6)$ symmetry. However, recent Coulomb excitation work, in particular 124Xe [6] showed that $O(6)$ was badly broken while on 128Xe [7] showed that 128Xe is not an $E(5)$ nucleus as previously suggested. The $B(E2)$ values determined in Ref. [6] were refined with highly sensitive γ-ray measurements with the 8σ spectrometer following 124Cs β decay [8]. The 0$^+_2$ level identified as the proton pairing vibration based on previous $(^{3}$He, $n)$ work [6] was shown to have a nearly identical absolute value of deformation, β_2 as the ground state band. Key observations that enabled this determination in the β-decay measurement were the in-band $2^+ \rightarrow 0^+$ transitions that established firmly the 2^+ rotational band members.

The systematics of the excited 0$^+_2$ bands are shown in Fig. 1, where in 120Xe and 122Xe there are no candidates for the 2$^+_4$ members of the 0$^+_3$ bands. This deficiency makes characterizing their behaviors difficult, and thus they need to be investigated further. In order to provide detailed spectroscopic data, especially of weak low-energy decay branches and possible key $E2$ transitions, a high-statistics 122Cs β^+/EC-decay experiment was performed at the TRIUMF-ISAC facility.

2 Experimental detail

The experiment to study the β^+/EC of 122Cs was performed at the TRIUMF-ISAC facility located in Vancouver, B.C., Canada. A 65-μA, 500-MeV proton beam was delivered to the ISAC facility and bombarded a thick 187Ta foil target. Products of the spallation reaction diffused to the surface of the Ta target foils, were ionized with a Re surface-ion source, and passed through a magnetic mass separator that was set to select singly-charged $A = 122$ ions. The high-intensity beam of 1.1×10^7 ions/s of 122Cs in the 1$^+$ ground state with a 21.18 s half life, and 2.1×10^6 ions/s...
of 122Cs in the 8^- isomeric state with a 3.7 minute half life was delivered to the center of the 8π γ-ray spectrometer [9–12] and implanted into a FeO-coated mylar tape. The 8π spectrometer consisted of 20 high-purity Ge detectors surrounded by bismuth-germanate (BGO) Compton-suppression shields. The average source-to-Ge-detector distance was approximately 14 cm. A BC-422Q fast plastic scintillator with a solid angle of approximately 20% of 4π was located immediately behind the beam deposition point, while the 5 Si(Li) detectors of the PACES array for conversion-electron detection were positioned upstream and aligned to the beam-spot position. The average source-to-Si-detector distance was 3 cm. More details of the 8π spectrometer are given in Refs. [10, 12], and PACES is described in Refs. [12, 13]. Two sets of data were collected for short- and long-half-life decays in repeated cycles. Each set of data was collected in a mixed trigger mode involving scaled-down γ-rays and e$^-$ singles, and γ − γ and γ − e$^-$ coincidences. The 8π Ge efficiency was measured using standard radioactive sources of 133Ba, 152Eu, 56Co, and 60Co. The data were sorted into γ-ray and e$^-$ spectra, and γ − γ and γ − e$^-$ random-background-subtracted coincidence matrices. Analyses of the matrices and fitting of the spectra were performed with the Radware package [14].

3 Results and discussions

The data collected enables the observation of hundreds of new transitions including those that feed the 0^+_1 and 0^+_2 states. As an example of data quality, a portion of the level scheme of the low-lying states of 122Xe is presented in Fig. 2. Newly observed transitions are indicated in blue colored numbers. Examples of coincidence γ-ray spectra that clearly show newly observed transitions are given in Figs. 3, 4, and 5. The peaks in the spectra are labelled with γ-ray energies and newly observed γ rays are presented with blue colored numbers. Examples of coincidence γ-ray spectra that clearly show newly observed transitions are given in Figs. 3, 4, and 5. The peaks in the spectra are labelled with γ-ray energies and newly observed γ rays are presented with blue colored numbers. The relative $B(E2)$ values for transitions draining the 2^+_3 and 2^+_4 levels were determined via

$$\frac{B(E2)}{\langle E2 \rangle_{\text{ref}}} = \frac{E_2}{E_2^{\text{ref}}} \frac{BR}{BR_{\text{ref}}}$$

where the subscript ref denotes the reference transition, and BR refers to the branching ratio. Branching ratios
sitions. This fact, together with the energies of the 2 band members suggests that the excited 0 rotation is similar that of the ground state band. The analysis is going on and, to date, we have observed more than 160 new transitions and more than 100 new levels that expands dramatically the level scheme for 122Xe. The analysis has been concentrated on the γ-ray data but the conversion electron data will be also analyzed to provide a comprehensive picture of the low-lying states of 122Xe.

4 Conclusions

This work is part of a systematic study of the Xe isotopes with high-statistics β decay. We have firmly identified for the first time the 2 rotational band members of the 0 and 0 states in 122Xe. The rotational spacing is similar that of the ground state band. The analysis is going on and, to date, we have observed more than 160 new transitions and more than 100 new levels that expands dramatically the level scheme for 122Xe. The analysis has been concentrated on the γ-ray data but the conversion electron data will be also analyzed to provide a comprehensive picture of the low-lying states of 122Xe.

References

[1] W.P. Alford, R.E. Anderson, P.A. Batay-Csorba, R.A. Emigh, D.A. Lind, P.A. Smith, and C.D. Zafiratos, Nucl. Phys. A 323, 339 (1979)
[2] J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van Duppen, Phys. Rep. 215, 101 (1992)
[3] K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)
[4] W.B. Walters, J. Rikovska, T.L. Shaw, P. Walker, and I.S. Grant, Hyperfine Interact. 43, 343 (1988)
[5] H.W. Fielding, R.E. Anderson, P.D. Kunz, D.A. Lind, C.D. Zafiratos, and W.P. Alford, Nucl. Phys. A 304, 520 (1978)
[6] G. Rainovski, N. Pietralla, T. Ahn, L. Coquard, C.J. Lister, R.V.F. Janssens, M.P. Carpenter, S. Zhu, L. Bettermann, J. Jolie, W. Rother, R.V. Jolos, and V. Werner, Phys. Lett. B683, 11 (2010)
[7] L. Coquard, N. Pietralla, T. Ahn, G. Rainovski, L. Bettermann, M. P. Carpenter, R.V.F. Janssens, J. Leske, C.J. Lister, O. Moller, W. Rother, V. Werner, and S. Zhu, Phys. Rev. C 80, 061304 (2009)
[8] A.J. Radich, P.E. Garrett, J.M. Allmond, C. Andreoiu, G.C. Ball, L. Bianco, V. Bildstein, S. Cha-
[9] P.E. Garrett et al., Nucl. Instrum. Meth. B 261, 1084 (2007)

[10] A.B. Garnsworthy and P.E. Garrett, Hyperfine Interact. 225, 121 (2014)

[11] A.B. Garnsworthy et al., EPJ 93, 01032 (2015)

[12] P.E. Garrett, A.J. Radich, J.M. Allmond, C. Andreoiu, G.C. Ball, P.C. Bender, L. Bianco, V. Bildstein, H. Bidaman, R. Braid, C. Burbadge, S. Chagnon-Lessard, D.S. Cross, G. Deng, G.A. Demand, A. Diaz Varela, M.R. Dunlop, R. Dunlop, P. Finlay, A.B. Garnsworthy, G.F. Grinyer, G. Hackman, B. Hadinia, S. Ilyushkin, B. Jigmeddorj, D. Kisliuk, K. Kuhn, A.T. Laffoley, K.G. Leach, A.D. MacLean, J. Michetti-Wilson, D. Miller, W. Moore, B. Olaizola, J.N. Orce, C.J. Pearson, J.L. Fore, M.M. Rajabali, E.T. Rand, F. Sarazin, J.K. Smith, K. Starosta, C.S. Sumithrarachchi, C.E. Svensson, S. Triambak, J. Turko, Z.M. Wang, J.L. Wood, J. Wong, S.J. Williams, S.W. Yates, and E.F. Zganjar, J. Phys. Conf. Ser. 639, 012006 (2015)

[13] B. Jigmeddorj, P.E. Garrett, A. Diaz Varela, G.C. Ball, J.C. Bangay, D.S. Cross, G.A. Demand, A.B. Garnsworthy, K.L. Green, K.G. Leach, W.D. Kulp, E. T. Rand, C. Sumithrarachchi, C. E. Svensson, S. Triambak, J. Wong, J.L. Wood, and S.W. Yates, JPS Conf. Proc. 6, 030014 (2015)

[14] D.C. Radford, RadWare software repository maintained at http://radware.phy.ornl.gov