Directed Domination in Oriented Graphs

1Yair Caro and 2Michael A. Henning*

1Department of Mathematics and Physics
University of Haifa-Oranim
Tivon 36006, Israel
Email: yacaro@kvgeva.org.il

2Department of Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
Email: mahenning@uj.ac.za

Abstract

A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex $u \in V(D) \setminus S$ has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by $\gamma(D)$, is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted $\Gamma_d(G)$, which is the maximum directed domination number $\gamma(D)$ over all orientations D of G. The directed domination number of a complete graph was first studied by Erdős [Math. Gaz. 47 (1963), 220–222], albeit in disguised form. We extend this notion to directed domination of all graphs. If α denotes the independence number of a graph G, we show that if G is a bipartite graph, we show that $\Gamma_d(G) = \alpha$. We present several lower and upper bounds on the directed domination number.

Keywords: directed domination; oriented graph; independence number.

AMS subject classification: 05C69

*Research supported in part by the South African National Research Foundation
1 Introduction

An asymmetric digraph or oriented graph D is a digraph that can be obtained from a graph G by assigning a direction to (that is, orienting) each edge of G. The resulting digraph D is called an orientation of G. Thus if D is an oriented graph, then for every pair u and v of distinct vertices of D, at most one of (u,v) and (v,u) is an arc of D. A directed dominating set, abbreviated DDS, in a directed graph $D = (V,A)$ is a set S of vertices of V such that every vertex in $V \setminus S$ is dominated by some vertex of S; that is, every vertex $u \in V \setminus S$ has an adjacent vertex v in S with v directed to u. Every digraph has a DDS since the entire vertex set of the digraph is such a set. The directed domination number of a directed graph D, denoted by $\gamma(D)$, is the minimum cardinality of a DDS in D. A DDS of D of cardinality $\gamma(D)$ is called a $\gamma(D)$-set. Directed domination in digraphs is well studied (cf. [2, 3, 6, 7, 8, 12, 15, 19, 22, 23]).

We define the lower directed domination number of a graph G, denote $\gamma_d(G)$, to be the minimum directed domination number $\gamma(D)$ over all orientations D of G; that is,

$$\gamma_d(G) = \min \{ \gamma(D) \mid \text{over all orientations } D \text{ of } G \}.$$

The upper directed domination number, or simply the directed domination number, of a graph G, denoted $\Gamma_d(G)$, is defined as the maximum directed domination number $\gamma(D)$ over all orientations D of G; that is,

$$\Gamma_d(G) = \max \{ \gamma(D) \mid \text{over all orientations } D \text{ of } G \}.$$

1.1 Motivation

The directed domination number of a complete graph was first studied by Erdős [11] albeit in disguised form. In 1962, Schütte [11] raised the question of given any positive integer $k > 0$, does there exist a tournament $T_{n(k)}$ on $n(k)$ vertices in which for any set S of k vertices, there is a vertex u which dominates all vertices in S. Erdős [11] showed, by probabilistic arguments, that such a tournament $T_{n(k)}$ does exist, for every positive integer k. The proof of the following bounds on the directed domination number of a complete graph are along identical lines to that presented by Erdős [11]. This result can also be found in [23]. Throughout this paper, log is to the base 2 while ln denotes the logarithm in the natural base e.

Theorem 1 (Erdős [11]) For every integer $n \geq 2$, $\log n - 2\log(\log n) \leq \Gamma_d(K_n) \leq \log(n+1)$.

In this paper, we extend this notion of directed domination in a complete graph to directed domination of all graphs.
1.2 Notation

For notation and graph theory terminology we in general follow [18]. Specifically, let $G = (V, E)$ be a graph with vertex set V of order $n = |V|$ and edge set E of size $m = |E|$, and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. If the graph G is clear from context, we simply write $N(v)$ and $N[v]$ rather than $N_G(v)$ and $N_G[v]$, respectively. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. If A and B are subsets of $V(G)$, we let $[A, B]$ denote the set of all edges between A and B in G. We denote the diameter of G by $\text{diam}(G)$.

We denote the degree of v in G by $d_G(v)$, or simply by $d(v)$ if the graph G is clear from context. The minimum degree among the vertices of G is denoted by $\delta(G)$, and the maximum degree by $\Delta(G)$. The maximum average degree in G, denoted by $\text{mad}(G)$, is defined as the maximum of the average degrees $\text{ad}(H) = |E(H)|/|V(H)|$ taken over all subgraphs H of G.

The parameter $\gamma(G)$ denotes the domination number of G. The parameters $\alpha(G)$ and $\alpha'(G)$ denote the (vertex) independence number and the matching number, respectively, of G, while $\chi(G)$ and $\chi'(G)$ denote the chromatic number and edge chromatic number, respectively, of G. The hitting number of G, denoted by $\beta(G)$, is the minimum number vertices that covers all the edges of G. The clique number of G, denoted by $\omega(G)$, is the maximum cardinality of a clique in G.

A vertex v in a digraph D out-dominates, or simply dominates, itself as well as all vertices u such that (v, u) is an arc of D. The out-neighborhood of v, denoted $N^+(v)$, is the set of all vertices u adjacent from v in D; that is, $N^+(v) = \{u \mid (v, u) \in A(D)\}$. The out-degree of v is given by $d^+(v) = |N^+(v)|$, and the maximum out-degree among the vertices of D is denoted by $\Delta^+(D)$. The in-neighborhood of v, denoted $N^-(v)$, is the set of all vertices u adjacent to v in D; that is, $N^-(v) = \{u \mid (u, v) \in A(D)\}$. The in-degree of v is given by $d^-(v) = |N^-(v)|$. The closed in-neighborhood of v is the set $N^-\{v\} = N^-(v) \cup \{v\}$. The maximum in-degree among the vertices of D is denoted by $\Delta^-(D)$.

A hypergraph $H = (V, E)$ is a finite set V of elements, called vertices, together with a finite multiset E of subsets of V, called edges. A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform if every edge of H is a k-edge. A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or hitting set in many papers) if T has a nonempty intersection with every edge of H. The transversal number $\tau(H)$ of H is the minimum size of a transversal in H. For a digraph $D = (V, E)$, we denote by H_D the closed in-neighborhood hypergraph, abbreviated CINH, of D; that is, $H_D = (V, C)$ is the hypergraph with vertex set V and with edge set C consisting of the closed in-neighborhoods of vertices of V in D.
2 Observations

We show first that the lower directed domination number of a graph is precisely its domination number.

Observation 1 For every graph G, $\gamma_d(G) = \gamma(G)$.

Proof. Let S be a $\gamma(G)$-set and let D be an orientation obtained from G by directing all edges in $[S, V \setminus S]$ from S to $V \setminus S$ and directing all other edges arbitrarily. Then, S is a DDS of D, and so $\gamma_d(G) \leq \gamma(D) \leq |S| = \gamma(G)$. However if D is an orientation of a graph G such that $\gamma_d(G) = \gamma(D)$, and if S is a $\gamma(D)$-set, then S is also a dominating set of G, and so $\gamma(G) \leq |S| = \gamma_d(G)$. Consequently, $\gamma_d(G) = \gamma(G)$. \square

In view of Observation 1 it is not interesting to ask about the lower directed domination number, $\gamma_d(G)$, of a graph G since this is precisely its domination number, $\gamma(G)$, which is very well studied. We therefore focus our attention on the (upper) directed domination number of a graph. As a consequence of Theorem 1 we establish a lower bound on the directed domination number of an arbitrary graph.

Observation 2 For every graph G on n vertices, $\Gamma_d(G) \geq \log n - 2 \log(\log n)$.

Proof. Let D be an orientation of the edges of a complete graph K_n on the same vertex set as G such that $\Gamma_d(K_n) = \gamma(D)$. Let D_G be the orientation of D induced by arcs of D corresponding to edges of G. Then, $\Gamma_d(G) \geq \gamma(D_G) \geq \gamma(D) = \Gamma_d(K_n)$. The desired lower bound now follows from Theorem 1. \square

Observation 3 If H is an induced subgraph of a graph G, then $\Gamma_d(G) \geq \Gamma_d(H)$.

Proof. Let $G = (V, E)$ and let $U = V(H)$. Let D_H be an orientation of H such that $\Gamma_d(H) = \gamma(D_H)$. We now extend the orientation D_H of H to an orientation D of G by directing all edges in $[U, V \setminus U]$ from U to $V \setminus U$ and directing all edges with both ends in $V \setminus U$ arbitrarily. Then, $\Gamma_d(G) \geq \gamma(D) \geq \gamma(D_H) = \Gamma_d(H)$. \square

Observation 4 If H is a spanning subgraph of a graph G, then $\Gamma_d(G) \leq \Gamma_d(H)$.

Proof. Let D be an arbitrary orientation of G, and let D_H be the orientation of H induced by D. Since adding arcs cannot increase the directed domination number, we have that $\gamma(D) \leq \gamma(D_H)$. This is true for every orientation of G. Hence, $\Gamma_d(G) \leq \Gamma_d(H)$. \square

Hakimi [17] proved that a graph G has an orientation D such that $\Delta^+(D) \leq k$ if and only if $\text{mad}(G) \leq 2k$. This implies the following result.

Observation 5 ([17]) Every graph G has an orientation D such that $\Delta^+(D) \leq \lceil \text{mad}(G)/2 \rceil$.
3 Bounds

In this section, we establish bounds on the directed domination number of a graph. We first present lower bounds on the directed domination number of a graph.

Theorem 2 Let G be a graph of order n. Then the following holds.
(a) $\Gamma_d(G) \geq \alpha(G) \geq \gamma(G)$.
(b) $\Gamma_d(G) \geq n/\chi(G)$.
(c) $\Gamma_d(G) \geq \lceil(diam(G) + 1)/2\rceil$.
(d) $\Gamma_d(G) \geq n/(\lceil\text{mad}(G)/2\rceil + 1)$.

Proof. Since every maximal independent set in a graph is a dominating set in the graph, we recall that $\gamma(G) \leq \alpha(G)$ holds for every graph G. To prove that $\alpha(G) \leq \Gamma_d(G)$, let A be a maximum independent set in G and let D be the digraph obtained from G by orienting all arcs from A to $V \setminus A$ and orienting all arcs in $G[V \setminus A]$, if any, arbitrarily. Since every DDS of D contains A, we have $\gamma(D) \geq |A|$. However the set A itself is a DDS of D, and so $\gamma(D) \leq |A|$. Consequently, $\alpha(G) \geq \gamma(D) = |A| = \alpha(G)$. This establishes Part (a).

Parts (b) and (c) follow readily from Part (a) and the observations that $\alpha(G) \geq n/\chi(G)$ and $\alpha(G) \geq \lceil(diam(G) + 1)/2\rceil$. By Observations 5, there is an orientation D of G such that $\Delta^+(D) \leq \lceil\text{mad}(G)/2\rceil$. Let S be a $\gamma(D)$-set. Then, $V \setminus S \subseteq \cup_{v \in S} N^+(v)$, and so $n - |S| = |V \setminus S| \leq \sum_{v \in S} d^+(v) \leq |S| \cdot \Delta^+(D)$, whence $\gamma(D) = |S| \geq n/(\Delta^+(D) + 1) \geq n/(\lceil\text{mad}(G)/2\rceil + 1)$. This establishes Part (d). □

We remark that since $\text{mad}(G) \leq \Delta(G)$ for every graph G, as an immediate consequence of Theorem 2(d) we have that $\Gamma_d(G) \geq n/(\lceil\Delta(G)/2\rceil + 1)$.

Next we consider upper bounds on the directed domination number of a graph. The following lemma will prove to be useful.

Lemma 3 Let $G = (V, E)$ be a graph and let V_1, V_2, \ldots, V_k be subsets of V, not necessarily disjoint, such that $\cup_{i=1}^k V_i = V(G)$. For $i = 1, 2, \ldots, k$, let $G_i = G[V_i]$. Then,
$$\Gamma_d(G) \leq \sum_{i=1}^k \Gamma_d(G_i).$$

Proof. Consider an arbitrary orientation D of G. For each $i = 1, 2, \ldots, k$, let D_i be the orientation of the edges of G_i induced by D and let S_i be a $\gamma(D_i)$-set. Then, $\Gamma_d(G_i) \geq \gamma(D_i) = |S_i|$ for each i. Since the set $S = \cup_{i=1}^k S_i$ is a DDS of D, we have that $\gamma(D) \leq |S| \leq \sum_{i=1}^k |S_i| \leq \sum_{i=1}^k \Gamma_d(G_i)$. Since this is true for every orientation D of G, the desired upper bound on $\Gamma_d(G)$ follows. □
As a consequence of Lemma 3, we have the following upper bounds on the directed domination number of a graph.

Theorem 4 Let G be a graph of order n. Then the following holds.
(a) $\Gamma_d(G) \leq n - \alpha'(G)$.
(b) If G has a perfect matching, then $\Gamma_d(G) \leq n/2$.
(c) $\Gamma_d(G) \leq n$ with equality if and only if $G = K_n$.
(d) If G has minimum degree δ and $n \geq 2\delta$, then $\Gamma_d(G) \leq n - \delta$.
(e) $\Gamma_d(G) = n - 1$ if and only if every component of G is a K_1-component, except for one component which is either a star or a complete graph K_3.

Proof. (a) Let $M = \{u_1v_1, u_2v_2, \ldots, u_tv_t\}$ be a maximum matching in G, and so $t = \alpha'(G)$. For $i = 1, 2, \ldots, t$, let $V_i = \{u_i, v_i\}$. If $n > 2t$, let $(V_{t+1}, \ldots, V_{n-2t})$ be a partition of the remaining vertices of G into $n - 2t$ subsets each consisting of a single vertex. By Lemma 3, $\Gamma_d(G) \leq \sum_{i=1}^{n} \Gamma_d(G_i) = t + (n - 2t) = n - t = n - \alpha'(G)$. Part (b) is an immediate consequence of Part (a) and the observation that $\alpha'(G) = 0$ if and only if $G = K_n$.

(d) It is well known (see, for example, Bollobás [4], pp. 87) that if G has n vertices and minimum degree δ with $n \geq 2\delta$, then $\alpha'(G) \geq \delta$. Hence by Part (a) above, $\Gamma_d(G) \leq n - \delta$.

(e) Suppose that $\Gamma_d(G) = n - 1$. Then by Part (a) above, $\alpha'(G) = 1$. However every connected graph F with $\alpha'(F) = 1$ is either a star or a complete graph K_3. Hence, either G is the vertex disjoint union of a star and isolated vertices or of a complete graph K_3 and isolated vertices. □

We establish next that the directed domination number of a bipartite graph is precisely its independence number. For this purpose, recall that König [21] and Egerváry [10] showed that if G is a bipartite graph, then $\alpha'(G) = \beta(G)$. Hence by Gallai’s Theorem [13], if G is a bipartite graph of order n, then $\alpha(G) + \alpha'(G) = n$.

Theorem 5 If G is a bipartite graph, then $\Gamma_d(G) = \alpha(G)$.

Proof. Since G is a bipartite graph, we have that $n - \alpha'(G) = \alpha(G)$. Thus by Theorem 2(a) and Theorem 3(b), we have that $\alpha(G) \leq \Gamma_d(G) \leq n - \alpha'(G) = \alpha(G)$. Consequently, we must have equality throughout this inequality chain. In particular, $\Gamma_d(G) = \alpha(G)$. □

4 Relation to other Parameters

The following result establishes an upper bound on the directed domination of a graph in terms of its independence number and chromatic number.
Theorem 6 For every graph G, we have $\Gamma_d(G) \leq \alpha(G) \cdot \lceil \chi(G)/2 \rceil$.

Proof. Let G have order n. If $\chi(G) = 1$, then G is the empty graph, \overline{K}_n, and so $\Gamma_d(G) = n = \alpha(G)$, while if $\chi(G) = 2$, then G is a bipartite graph, and so by Theorem 5, $\Gamma_d(G) = \alpha(G)$. In both cases, $\alpha(G) = \alpha(G) \cdot \lceil \chi(G)/2 \rceil$, and so $\Gamma_d(G) = \alpha(G) \cdot \lceil \chi(G)/2 \rceil$. Hence we may assume that $\chi(G) \geq 3$. If $\chi(G) = 2k$ for some integer $k \geq 2$, then let V_1, V_2, \ldots, V_{2k} be the color classes of G. For $i = 1, 2, \ldots, k$, let G_i be the subgraph $G[V_{2i-1} \cup V_{2i}]$ of G induced by V_{2i-1} and V_{2i}, and note that G_i is a bipartite graph. By Theorem 5, $\Gamma_d(G_i) = \alpha(G_i) \leq \alpha(G)$ for all i. Hence, by Lemma 8, $\Gamma_d(G) \leq \sum_{i=1}^k \Gamma_d(G_i) \leq k\alpha(G) = \alpha(G) \cdot \lceil \chi(G)/2 \rceil$, as desired. If $\chi(G) = 2k + 1$ for some integer $k \geq 1$, then let $V_1, V_2, \ldots, V_{2k+1}$ be the color classes of G. For $i = 1, 2, \ldots, k$, let H_i be the subgraph of G induced by V_{2i-1} and V_{2i}, and note that H_i is a bipartite graph. Further let $H_{k+1} = G[V_{2k+1}]$, and so H_{k+1} is an empty graph on $|V_{2k+1}| \leq \alpha(G)$ vertices. By Lemma 8, $\Gamma_d(G) \leq \sum_{i=1}^{k+1} \Gamma_d(H_i) \leq (k+1)\alpha(G) = \alpha(G) \cdot \lceil \chi(G)/2 \rceil$. \Box

As shown in the proof of Theorem 6, the upper bound of Theorem 6 is always attained if $\chi(G) \leq 2$. We remark that if $\chi(G) = 3$ or $\chi(G) = 4$, then the upper bound of Theorem 6 is achievable by taking, for example, $G = rK_t$ where $t \in \{3, 4\}$ and r is some positive integer. In this case, $\chi(G) = t$ and $\Gamma_d(G) = 2r = \alpha(G) \cdot \lceil \chi(G)/2 \rceil$.

Theorem 7 If G is a graph of order n, then $\Gamma_d(G) \leq n - \lfloor \chi(G)/2 \rfloor$.

Proof. If $\chi(G) = 1$, then the bound is immediate since $\Gamma_d(G) \leq n$ by Theorem 4(c). Hence we may assume that $\chi(G) = k \geq 2$. Let V_1, V_2, \ldots, V_k be the color classes of G. By the minimality of the coloring, there is an edge between every two color classes. In particular for $i = 1, 2, \ldots, \lfloor k/2 \rfloor$, there is an edge between V_{2i-1} and V_{2i}, and so $\alpha'(G) \geq \lfloor k/2 \rfloor$. Hence by Theorem 4(a), $\Gamma_d(G) \leq n - \alpha'(G) \leq n - \lfloor k/2 \rfloor$. \Box

We remark that the bound of Theorem 7 is achievable for graphs with small chromatic number as may be seen by considering the graph $G = \overline{K}_{n-k} \cup K_k$ where $1 \leq k \leq 4$ and $n > k$. We show next that the directed domination of a graph is at most the average of its order and independence number. For this purpose, we recall the Gallai-Milgram Theorem 14 for oriented graphs which states that in every oriented graph $G = (V, E)$, there is a partition of V into at most $\alpha(G)$ vertex disjoint directed paths.

Theorem 8 If G is a graph of order n, then $\Gamma_d(G) \leq (n + \alpha(G))/2$.

Proof. Let D be an orientation of G. By the Gallai-Milgram Theorem for oriented graphs, there is a partition $P = \{P_1, P_2, \ldots, P_t\}$ of $V(D)$ into t vertex disjoint directed paths where $t \leq \alpha(G)$. For $i = 1, 2, \ldots, t$, let $|P_i| = p_i$, and so $\sum_{i=1}^t p_i = n$. By Lemma 8, $\Gamma_d(G) \leq \sum_{i=1}^t \Gamma_d(P_i) = \sum_{i=1}^t [p_i/2] \leq \sum_{i=1}^t (p_i + 1)/2 = (\sum_{i=1}^t p_i/2) + t/2 = (n + \alpha(G))/2$. \Box

That the bound of Theorem 8 is best possible, may be seen by considering, for example, the graph $G = rK_3 \cup sK_1$ of order $n = 3r + s$ with $\alpha(G) = r + s$ and $\Gamma_d(G) = 2r + s = (n + \alpha(G))/2$.

7
The following result establishes an upper bound on the directed domination of a graph in terms of the chromatic number of its complement.

Theorem 9 If G is a graph of order n, then $\Gamma_d(G) \leq \chi(G) \cdot \log \left(\left\lceil \frac{n}{\chi(G)} \right\rceil + 1 \right)$.

Proof. Let $t = \chi(G)$ and consider a $\chi(G)$-coloring of the complement \overline{G} of G into t color classes Q_1, Q_2, \ldots, Q_t, where $|Q_i| = q_i$ for $i = 1, 2, \ldots, t$. For each $i = 1, 2, \ldots, t$, the subgraph $G[Q_i]$ of G induced by Q_i is a clique. We now consider an arbitrary orientation D of G, and we let $D_i = D[Q_i]$ denote the orientation of the edges of the clique $G[Q_i]$ induced by D. Then,

$$\gamma(D) \leq \sum_{i=1}^{t} \gamma(D_i) \leq \sum_{i=1}^{t} \Gamma_d(Q_i) = \sum_{i=1}^{t} \Gamma_d(K_{q_i}).$$

This is true for every orientation D of G, and so, by Theorem 1, we have that $\Gamma_d(G) \leq \sum_{i=1}^{t} \log(q_i + 1)$, where $\sum_{i=1}^{t} q_i = n$. By convexity the right hand side attains its maximum when all summands are as equal as possible; that is, some of the summands are $\lceil n/t \rceil$ and some are $\lfloor n/t \rfloor$. Hence, $\Gamma_d(G) \leq t \log(\lceil n/t \rceil + 1)$. \hfill \Box

As a consequence of Theorem 9, we have the following result on the directed domination number of a dense graph with large minimum degree.

Theorem 10 If G is a graph on n vertices with minimum degree $\delta(G) \geq (k - 1)n/k$ where k divides n, then $\Gamma_d(G) \leq n \log(k + 1) / k$.

Proof. Since $k | n$, we note that $n = kt$ and $\delta(G) \geq (k - 1)t$ for some integer t. By the well-known Hajnal-Szemerédi Theorem [16], the graph G contains t vertex disjoint copies of K_k. Further, $\chi(G) \leq t$. Thus applying Theorem 9 we have that $\Gamma_d(G) \leq t \log(k + 1) = n \log(k + 1) / k$. \hfill \Box

5 Special Families of Graphs

In this section, we consider the (upper) directed domination number of special families of graph. As remarked earlier, the directed domination number of a complete graph K_n is determined by Erdős [11] in Theorem 1 while the directed domination number of a bipartite graph is precisely its independence number (see Theorem 5).

5.1 Regular Graphs

For each given $\delta \geq 1$, applying Theorem 2(a) to the graph $G = K_{k,n-\delta}$ yields $\Gamma_d(G) \geq n - \delta$. Hence without regularity, we observe that for each fixed $\delta \geq 1$, there exists a graph G of
order \(n \) and minimum degree \(\delta \) satisfying \(\Gamma_d(G) \geq n - \delta \). With regularity, the directed domination number of a graph may be much smaller. For a given \(r \), let \(n = k(r + 1) \) for some integer \(k \) and let \(G \) consist of the disjoint union of \(k \) copies of \(K_{r+1} \). Let \(G_1, G_2, \ldots, G_k \) denote the components of \(G \). Each component of \(G \) is \(r \)-regular, and by Theorem 4(c), \(\Gamma_d(G) = \sum_{i=1}^{k} \Gamma_d(G_i) = \sum_{i=1}^{k} \Gamma_d(K_{r+1}) \leq k \log(r + 2) = n \log(r + 2)/(r + 1) \). Hence there exist \(r \)-regular graphs of order \(n \) with \(\Gamma_d(G) \leq n \log(r + 2)/(r + 1) \). In view of these observations it is of interest to investigate the directed domination number of regular graphs.

In 1964, Vizing proved his important edge-coloring result which states that every graph \(G \) satisfies \(\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1 \). As a consequence of Vizing’s Theorem, we have the following upper bound on the directed domination number of a regular graph.

Theorem 11 For \(r \geq 2 \), if \(G \) is an \(r \)-regular graph of order \(n \), then

\[
\Gamma_d(G) \leq n(r + 2)/(r + 1).
\]

Proof. By Vizing’s Theorem, \(\chi'(G) \leq r + 1 \). Consider an edge coloring of \(G \) using \(\chi'(G) \)-colors. The edges in each color class form a matching in \(G \), and so the matching number of \(G \) is at least the size of a largest color class in \(G \). Hence if \(G \) has size \(m \), we have \(\alpha'(G) \geq m/\chi'(G) \geq m/(r + 1) = nr/2(r + 1) \). Hence by Theorem 4(a), \(\Gamma_d(G) \leq n - \alpha'(G) \leq n/nr/2(r + 1) = n(r + 2)/(r + 1) \). \(\Box \)

As a special case of Theorem 11 we have that \(\Gamma_d(G) \leq 2n/3 \) if \(G \) is a 2-regular graph. We next characterize when equality is achieved in this bound.

Proposition 1 Let \(G \) be a 2-regular graph on \(n \geq 3 \) vertices. Then the following holds.

(a) If \(G \) is connected, then \(\Gamma_d(G) = \lceil n/2 \rceil \).

(b) \(\Gamma_d(G) \leq 2n/3 \) with equality if and only if \(G \) consists of disjoint copies of \(K_3 \).

Proof. (a) Suppose that \(G \) is a cycle \(C_n \). If \(n \) is even, \(G \) has a perfect matching, and so, by Theorem 4(c), \(\Gamma_d(G) \leq n/2 \). If \(n \) is odd, then \(\alpha'(G) = (n - 1)/2 \). By Theorem 4(b), \(\Gamma_d(G) \leq n - \alpha'(G) = n - (n - 1)/2 = (n + 1)/2 \). In both cases, \(\Gamma_d(G) \leq \lceil n/2 \rceil \). To show that \(\Gamma_d(G) \geq \lceil n/2 \rceil \), we note that if \(D \) is a directed cycle \(C_n \), then every vertex out-dominates itself and exactly one other vertex, and so \(\Gamma_d(G) \geq \gamma(D) = \lceil n/2 \rceil \). This proves part (a).

(b) To prove part (b), let \(G_1, G_2, \ldots, G_k \) be the components of \(G \), where \(k \geq 1 \). For \(i = 1, 2, \ldots, k \), let \(G_i \) have order \(n_i \). Since each component of a cycle, \(n \geq 3k \). Applying the result of part (a) to each component of \(G \), we have

\[
\Gamma_d(G) = \sum_{i=1}^{k} \Gamma_d(G_i) \leq \sum_{i=1}^{k} \left(\frac{n_i + 1}{2} \right) = \frac{n + k}{2} \leq \frac{2n}{3},
\]

with equality if and only if \(n = 3k \), i.e., if and only if \(G_i = C_3 \) for each \(i = 1, 2, \ldots, k \). \(\Box \)
We remark that the upper bound of Theorem 11 can be improved using tight lower bounds on the size of a maximum matching in a regular graph established in [20]. Applying Theorem 4(a) to these matching results in [20], we have the following result. We remark that the \((n + 1)/2\) bound in the statement of Theorem 12 is only included as it is necessary when \(n\) is very small or \(r = 2\).

Theorem 12 For \(r \geq 2\), if \(G\) is a connected \(r\)-regular graph of order \(n\), then

\[
\Gamma_d(G) \leq \begin{cases}
 \max \left\{ \left(\frac{r^2 + 2r}{r^2 + r + 2} \right) \times \frac{n}{2}, \frac{n+1}{2} \right\} & \text{if } r \text{ is even} \\
 \frac{(r^3 + r^2 - 6r + 2)n + 2r - 2}{2(r^3 - 3r)} & \text{if } r \text{ is odd}
\end{cases}
\]

We close this section with the following observation. Graphs \(G\) satisfying \(\chi'(G) = \Delta(G)\) are called class 1 and those with \(\chi'(G) = \Delta(G) + 1\) are class 2.

Observation 6 Let \(G\) be an \(r\)-regular graph of order \(n\). Then the following holds.
(a) If \(G\) is of class 1, then \(\Gamma_d(G) \leq n/2\).
(b) If \(r \geq n/2\), then \(\Gamma_d(G) \leq \lceil n/2 \rceil\).

Proof. (a) Consider a \(r\)-edge coloring of \(G\). The edges in each color class form a perfect matching in \(G\), and so, by Theorem 4(c), \(\Gamma_d(G) \leq n/2\).

(b) If \(n = 2\), then the result is immediate. Hence we may assume that \(n \geq 3\). By Dirac’s theorem, \(G\) is hamiltonian, and so \(\alpha'(G) \geq \lceil n/2 \rceil\). By Theorem 4(b), \(\Gamma_d(G) \leq n - \alpha'(G) \leq n - \lceil n/2 \rceil = \lceil n/2 \rceil\). \(\square\)

5.2 Outerplanar Graphs

Let \(\mathcal{OP}_n\) denote the family of all maximal outerplanar graphs of order \(n\). We define \(\text{Mop}(n) = \max\{\Gamma_d(G)\}\) where the maximum is taken over all graphs \(G \in \mathcal{OP}_n\).

Theorem 13 \(\text{Mop}(n) = \lceil n/2 \rceil\).

Proof. Let \(G \in \mathcal{OP}_n\). Since every maximal outerplanar graph is hamiltonian, we observe by Observation 4 and Proposition 11(a), that \(\Gamma_d(G) \leq \Gamma_d(C_n) = \lceil n/2 \rceil\). Since this is true for an arbitrary graph \(G\) in \(\mathcal{OP}_n\), we have \(\text{Mop}(n) \leq \lceil n/2 \rceil\). Hence it suffices for us to prove that \(\text{Mop}(n) \geq \lceil n/2 \rceil\). If \(n = 3\), then by Observation 3, \(\Gamma_d(G) \geq \Gamma_d(C_n) = \lceil n/2 \rceil\), as desired. Hence we may assume that \(n \geq 4\), for otherwise the desired result follows.
For $n \geq 4$ even, we take a directed cycle \overrightarrow{C}_n on $n \geq 4$ vertices and a selected vertex v on the cycle, and we add arcs from every vertex u, where u is neither the in-neighbor nor the out-neighbor of v on \overrightarrow{C}_n, to the vertex v. The resulting orientation D of the underlying maximal outerplanar graph has $\gamma_d(D) = n/2$. Hence for $n \geq 4$ even, we have $\text{Mop}(n) = n/2$.

It remains for us to show that for $n \geq 5$ odd, $\text{Mop}(n) = (n + 1)/2$. For $n \geq 5$ odd, we take a directed cycle \overrightarrow{C}_n: $v_1v_2 \ldots v_nv_1$ on n vertices. We now add the arcs from v_i to v_1 for all odd i, where $3 \leq i \leq n - 2$, and we add the arcs from v_1 to v_i for all even i, where $4 \leq i \leq n - 1$. Let G denote the resulting underlying maximal outerplanar graph and let D denote the resulting orientation of D. We now consider an arbitrary DDS S in D.

Suppose first that $v_1 \in S$. In order to dominate the $(n - 1)/2$ vertices v_{2i+1}, where $1 \leq i \leq (n - 1)/2$, in D we must have that $|S \cap \{v_{2i}, v_{2i+1}\}| \geq 1$ for all $i = 1, 2, \ldots, (n - 1)/2$. Hence in this case when $v_1 \in S$, we have $|S| \geq (n + 1)/2$.

Suppose next that $v_1 \notin S$. Then, $v_2 \in S$. In order to dominate the $(n - 3)/2$ vertices v_{2i}, where $2 \leq i \leq (n - 1)/2$, in D we must have that $|S \cap \{v_{2i}, v_{2i-1}\}| \geq 1$ for all $i = 2, \ldots, (n - 1)/2$. In order to dominate v_1, there is a vertex $v_j \in S$ for some odd j, where $3 \leq j \leq n$. Let j be the largest such odd subscript for which $v_j \in S$. If $j = n$, then $v_n \in S$ and $|S| \geq (n + 1)/2$, as desired. Hence we may assume that $j < n$. In order to dominate the vertex v_i for i odd with $j < i \leq n$, we must have $v_{i-1} \in S$. In particular, we have that $v_{j+1} \in S$ to dominate v_{j+2}, implying that $|S \cap \{v_j, v_{j+1}\}| = 2$ while for i odd where $i \neq j$ and $3 \leq i \leq n - 2$, we have $|S \cap \{v_i, v_{i+1}\}| \geq 1$, implying that $|S| \geq (n + 1)/2$.

In both cases, $|S| \geq (n + 1)/2$. Since S is an arbitrary DDS in D, we have $\gamma(D) \geq (n + 1)/2$. Hence, $\Gamma_d(G) \geq (n + 1)/2$, implying that $\text{Mop}(n) = (n + 1)/2$. □

5.3 Perfect Graphs

Recall that a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. Characterization of perfect graphs was a longstanding open problem. The first breakthrough was due to Lovsz in 1972 who proved the Perfect Graph Theorem.

Perfect Graph Theorem A graph is perfect if and only if its complement is perfect.

Let $\alpha \geq 1$ be an integer and let \mathcal{G}_α be the class of all graphs G with $\alpha \geq \alpha(G)$. We are now in a position to present an upper bound on the directed domination number of a perfect graph in terms of its independence number.

Theorem 14 If $G \in \mathcal{G}_\alpha$ is a perfect graph of order $n \geq \alpha$, then

$$\Gamma_d(G) \leq \alpha \log \left(\lceil n/\alpha \rceil + 1\right).$$
Proof. By the Perfect Graph Theorem, the complement \overline{G} of G is perfect. Hence, $\chi(\overline{G}) = \omega(\overline{G}) = \alpha(G)$. The desired result now follows from Theorem 9. \square

6 Interplay between Transversals and Directed Domination

In this section, we present upper bounds on the directed domination number of a graph by demonstrating an interplay between the directed domination number of a graph and the transversal number of a hypergraph. We shall need the following upper bounds on the transversal number of a uniform hypergraph established by Alon [1] and Chvátal and McDiarmid [9]. Applying probabilistic arguments, Alon [1] showed the following result.

Theorem 15 (Alon [1]) For $k \geq 2$, if H is a k-uniform hypergraph with n vertices and m edges, then $\tau(H) \leq (m + n)(\ln k)/k$.

Theorem 16 (Chvátal, McDiarmid [9]) For $k \geq 2$, if H is a k-uniform hypergraphs with n vertices and m edges, then $\tau(H) \leq (n + \lfloor k/2 \rfloor m)/\lfloor 3k/2 \rfloor$. bound is sharp.

We proceed further with two lemmas. For this purpose, we shall need the Szekeres-Wilf Theorem.

Theorem 17 (Szekeres-Wilf [24]) If G is a k-degenerate graph, then $\chi(G) \leq k + 1$.

Lemma 18 If G is a graph and D is an orientation of G such that $\Delta^-(D) \leq k$ for some fixed integer $k \geq 0$, then $\chi(G) \leq 2k + 1$.

Proof. It suffices to show that G is $2k$-degenerate, since then the desired result follows from the Szekeres-Wilf Theorem. Assume, to the contrary, that G is not $2k$-degenerate. Then there is a subset S of $V(G)$ such that the subgraph $G_S = G[S]$ induced by S has minimum degree at least $2k + 1$ and hence contains at least $(2k + 1)|S|/2$ edges. Let $D_S = D[S]$ be the orientation of D induced by S. Since $\Delta^-(D) \leq k$, we have that $\Delta^-(D_S) \leq k$ and

$$k|S| \geq \sum_{v \in V(D_S)} d^-(v) = |E(G_S)| \geq (2k + 1)|S|/2 > k|S|,$$

a contradiction. \square

Lemma 19 Let D be an orientation of a graph G. If G contains n_k vertices with in-degree at most k in D for some fixed integer $k \geq 0$, then $n_k \leq (2k + 1)\alpha(G)$.

Proof. Let V_k denote the set of all vertices of G with in-degree at most k in D, and so $n_k = |V_k|$. Let $G_k = G[V_k]$ and let $D_k = D|V_k|$. Then, D_k is an orientation of G_k.
such that $\Delta^-(D_k) \leq k$, and so by Lemma 18 $\chi(G_k) \leq 2k + 1$. Since every color class of G_k is an independent set, and therefore has cardinality at most $\alpha(G)$, we have that

$$n_k = |V_k| \leq \chi(G_k)\alpha(G) \leq (2k + 1)\alpha(G). \square$$

Let $f(n, k)$, $g(n, k)$, and $h(n, k)$ be the functions of n and k defined as follows.

$$f(n, k) = 2n \ln(k + 2)/(k + 2) + (2k + 1)\alpha(G)$$
$$g(n, k) = n(k + 2)/3k + 2(2k + 1)\alpha(G)/3$$
$$h(n, k) = n(k + 1)/(3k - 1) + 2k(2k + 1)\alpha(G)/(3k - 1)$$

Theorem 20 If G is a graph on n vertices, then

$$\Gamma_d(G) \leq \begin{cases}
\min\{f(n, k), g(n, k)\} & \text{if } k \text{ is even} \\
\min\{f(n, k), h(n, k)\} & \text{if } k \text{ is odd}
\end{cases}$$

Proof. Let D be an arbitrary orientation of the graph G and let $k \geq 0$ be an arbitrary integer. Let V_k denote the set of all vertices of G with in-degree at most k in D and let $n_k = |V_k|$. Let $V_{>k} = V(G) \setminus V_k$, and so all vertices in $V_{>k}$ have in-degree at least $k + 1$ in D. Let $H_{>k}$ be the hypergraph obtained from the CINH H_D of D by deleting the n_k edges corresponding to closed in-neighborhoods of vertices in V_k. Each edge in $H_{>k}$ has size at least $k + 2$.

We now define the hypergraph H as follows. For each edge e_v in $H_{>k}$ corresponding to the closed in-neighborhood of a vertex v in $V_{>k}$, let e'_v consist of v and exactly $k + 1$ vertices from $N^-(v)$. Thus, $e'_v \subseteq e_v$ and e'_v has size $k + 2$. Let H be the hypergraph obtained from $H_{>k}$ by shrinking all edges e_v of $H_{>k}$ to the edges e'_v. Then, H is a $(k + 2)$-uniform hypergraph with n vertices and $n - n_k$ edges.

Every transversal T in H contains a vertex from the closed in-neighborhood of each vertex from the set $V_{>k}$ in D, and therefore $T \cup V_k$ is a DDS in D. In particular, taking T to be a minimum transversal in H, we have that $\gamma(D) \leq \tau(H) + n_k$. By Lemma 19 $n_k \leq (2k + 1)\alpha(G)$. Applying Theorem 15 to the hypergraph H, we have that

$$\tau(H) \leq (n + n - n_k)\ln(k + 2)/(k + 2) \leq 2n\ln(k + 2)/(k + 2),$$

and so $\gamma(D) \leq \tau(H) + n_k \leq 2n\ln(k + 2)/(k + 2) + \alpha(G)(2k + 1) = f(n, k)$. Applying Theorem 16 to the hypergraph H for k even, we have that

$$\tau(H) \leq (2n + k(n - n_k))/3k = n(k + 2)/3k - n_k/3,$$

and so $\gamma(D) \leq \tau(H) + n_k \leq n(k + 2)/3k + 2n_k/3 \leq n(k + 2)/3k + 2(2k + 1)\alpha(G)/3 = g(n, k)$. Thus for k even, we have that $\Gamma_d(G) \leq \min\{f(n, k), g(n, k)\}$. Applying Theorem 16 to the hypergraph H for k odd, we have that

$$\tau(H) \leq (2n + (k - 1)(n - n_k))/(3k - 1) = n(k + 1)/(3k - 1) - (k - 1)n_k/(3k - 1),$$

13
and so \(\gamma(D) \leq \tau(H) + n_k \leq n + k \leq n(k+1)/(3k-1) + 2kn_k/(3k-1) \leq n(k+1)/(3k-1) + 2k(2k+1)\alpha(G)/(3k-1) = h(n,k) \). Thus for \(k \) odd, we have that \(\Gamma_d(G) \leq \min\{f(n,k), h(n,k)\} \). \(\square \)

Let \(f_n(\alpha), g_n(\alpha), \) and \(h_n(\alpha) \) be the functions of \(n \) and \(\alpha \) defined as follows.

\[
\begin{align*}
 f_n(\alpha) &= \sqrt{2n\alpha} \left(\ln\left(\sqrt{2n/\alpha} \right) + 2 \right) - 2\alpha \\
 g_n(\alpha) &= \frac{1}{3} \left(n + 2\alpha + 4\sqrt{2n\alpha} \right) \\
 h_n(\alpha) &= \frac{1}{3} \left(n + \frac{14}{3}\alpha + \frac{2\alpha(27n + 20\alpha)}{3\sqrt{3\alpha + 6n}} \right)
\end{align*}
\]

As a consequence of Theorem 20 we have the following upper bound on the directed domination of a graph.

Theorem 21 If \(G \) is a graph on \(n \) vertices with independence number \(\alpha \), then

\[\Gamma_d(G) \leq \min\{f_n(\alpha), g_n(\alpha), h_n(\alpha)\}. \]

Proof. By Theorem 20 we need to optimize the functions \(f(n,k), g(n,k) \) and \(h(n,k) \) over \(k \) to obtain an upper bound on \(\Gamma_d(G) \). To simplify the notation, let \(\alpha = \alpha(G) \). Optimizing the function \(g(n,k) \) over \(k \) (treating \(n \) as fixed), we get \(g(n,k) \leq g_n(\alpha) \), while optimizing the function \(h(n,k) \) over \(k \) (treating \(n \) as fixed), we get \(h(n,k) \leq h_n(\alpha) \). Optimization of the function \(f(n,k) \) is complicated. Hence to simplify the computations, we choose a value \(k^* \) for \(k \) and show that \(f(n,k^*) \leq f_n(\alpha) \). Suppose \(\alpha \geq n/2 \). Then, \(\alpha = cn \) with \(1 \leq c \leq 1/2 \). Substituting this into \(f_n(\alpha) \) we get

\[
\begin{align*}
 f_n(\alpha) &= n\sqrt{2c}\left(\ln(2/c) + 2 \right) - 2cn = n\left(\sqrt{2c}\left(\ln(2/c) + 2 \right) - 2c \right) \geq n ,
\end{align*}
\]

and so the inequality \(\Gamma_d(G) \leq f_n(\alpha) \) holds trivially. Hence we may assume that \(\alpha \leq n/2 \). We now take \(k = \sqrt{2n/\alpha} - 2 \geq 0 \). Substituting into

\[
\begin{align*}
 f(n,k) &= 2n \ln(\sqrt{2n/\alpha})/\sqrt{2n/\alpha} + (2\sqrt{2n/\alpha} - 3)\alpha \\
 &= \sqrt{2n\alpha} \ln(\sqrt{2n/\alpha}) + 2\alpha\sqrt{2n/\alpha} - 3\alpha \\
 &= \sqrt{2n\alpha} \left(\ln(\sqrt{2n/\alpha}) + 2 \right) - 3\alpha \\
 &< f_n(\alpha),
\end{align*}
\]

as desired. \(\square \)

If every edge of a hypergraph \(H \) has size at least \(r \), we define an \(r \)-transversal of \(H \) to be a transversal \(T \) such that \(|T \cap e| \geq r \) for every edge \(e \) in \(H \). The \(r \)-transversal number \(\tau_r(H) \) of \(H \) is the minimum size of an \(r \)-transversal in \(H \). In particular, we note that \(\tau_1(H) = \tau(H) \). For integers \(k \geq r \) where \(k \geq 2 \) and \(r \geq 1 \), we first establish general upper bounds on the \(r \)-transversal number of a \(k \)-uniform hypergraph. Our next result generalizes that of Theorem 15 due to Alon [1, as well as generalizes results due to Caro [5].
Theorem 22 For integers \(k \geq r \) where \(k \geq 2 \) and \(r \geq 1 \), let \(H \) be a \(k \)-uniform hypergraph with \(n \) vertices and \(m \) edges. Then, \(\tau_r(H) \leq n \ln k/k + rm(2 \ln k)^r/k \).

Proof. Pick every vertex of \(V(H) \) randomly with probability \(p \) to be determined later but such that \((1 - p) > 1/2 \). Let \(X \) be the set of randomly picked vertices and let \(E_X \) be the set of edges of \(E(H) \) whose intersection with \(X \) is at most \(r - 1 \). For every fixed edge \(e \in E(H) \), the probability that \(e \) is in \(E_X \) is exactly

\[
\Pr(e \in E_X) = \sum_{i=0}^{r-1} \binom{k}{i} p^i (1 - p)^{k-i} = (1 - p)^k \sum_{i=0}^{r-1} \binom{k}{i} \left(\frac{p}{1 - p} \right)^i.
\]

We now choose \(p = \ln k/k \). With this choice of \(p \), we have that \((1 - p) > 1/2 \). Hence, \(1/(1 - p)^i < 2^i \) for all \(i \geq 1 \). Since \(1 - x \leq e^{-x} \) for all \(x \in R \), we note that \((1 - p)^k \leq e^{-pk} = e^{-\ln k} = 1/k \). Substituting \(p = \ln k/k \) into Equation (1) we therefore get

\[
\Pr(e \in E_X) \leq \frac{1}{k} \sum_{i=0}^{r-1} \binom{k}{i} \cdot \frac{p^i}{(1 - p)^i} \leq \frac{1}{k} \sum_{i=0}^{r-1} \frac{(2kp)^i}{i!} \leq \frac{1}{k} \sum_{i=0}^{r-1} (2 \ln k)^i \leq \frac{1}{k} (2 \ln k)^r,
\]

since \(1 + q + q^2 + \cdots + q^{r-1} = (q^r - 1)/(q - 1) \leq q^r \) for \(q > 1 \) and \(r \geq 1 \). For each edge \(e \in E_X \), we add \(r - |e \cap X| \) (which is at most \(r \) vertices from \(e \setminus X \) to a set \(Y \). Then, \(T = X \cup Y \) is a \(r \)-transversal in \(H \) and \(|Y| \leq r|E_X| \). By the linearity of expectation, \(E(T) = E(X) + E(Y) \leq E(X) + r E(E_X) = n \ln k/k + rm(2 \ln k)^r/k \). \(\square \)

Using \(r \)-transversals in hypergraphs, we obtain the following bound on the directed \(r \)-domination number of a graph.

Theorem 23 For \(r \geq 1 \) an integer, if \(G \) is a graph on \(n \) vertices, then

\[
\Gamma_d(G, r) \leq \min_{k \geq r} \left\{ (2k - 1)\alpha(G) + n \ln (k + 1)/(k + 1) + rn(2 \ln (k + 1))^r/(k + 1) \right\}.
\]

Proof. Let \(D \) be an arbitrary orientation of the graph \(G \) and let \(k \geq r \) be an arbitrary integer. Let \(V_{<k} \) denote the set of all vertices of \(G \) with in-degree at most \(k - 1 \) in \(D \) and let \(n_{<k} = |V_{<k}| \). Let \(G_{<k} \) be the subgraph of \(G \) induced by the set \(V_{<k} \) and let \(D_{<k} \) be the orientation of \(G_{<k} \) induced by \(D \). Then, \(\Delta^-(D_{<k}) \leq k - 1 \), and so, by Lemma [13]

\(\chi(G_{<k}) \leq 2k - 1 \), implying that \(n_{<k} \leq (2k - 1)\alpha(G) \).

Let \(V_k = V(G) \setminus V_{<k} \), and so all vertices in \(V_k \) have in-degree at least \(k \) in \(D \). Let \(H_k \) be the hypergraph obtained from the CINH \(H_D \) of \(D \) by deleting the \(n_{<k} \) edges corresponding to closed in-neighborhoods of vertices in \(V_{<k} \). Each edge in \(H_k \) has size at least \(k + 1 \). We now define the hypergraph \(H \) as follows. For each edge \(e_v \) in \(H_k \) corresponding to the closed in-neighborhood of a vertex \(v \) in \(V_k \), let \(e'_v \) consist of \(v \) and exactly \(k \) vertices from
Problem 2. Find good lower and upper bounds on \min_{G}

Thus, $\ell'_v \subseteq e_v$ and e'_v has size $k + 1$. Let H be the hypergraph obtained from H_k by shrinking all edges e_v of H_k to the edges e'_v. Then, H is a $(k + 1)$-uniform hypergraph with n vertices and $n - n_{<k}$ edges.

Every r-transversal T in H contains at least r vertices from the closed in-neighborhood of each vertex from the set V_k in D, and therefore $T \cup V_{<k}$ is a DrDS in D. In particular, taking T to be a minimum r-transversal in H, we have that $\gamma_r(D) \leq \tau_r(H) + n_{<k}$. By Lemma 19, $n_{<k} \leq (2k - 1)\alpha(G)$. Noting that $k + 1 \geq r + 1 \geq 2$, we can apply Theorem 22 to the hypergraph H yielding $\tau_r(H) \leq n \ln(k + 1)/(k + 1) + r(n - n_{<k})(2 \ln(k + 1))r/(k + 1)$, and so $\gamma_r(D) \leq \tau_r(H) + n_{<k} \leq (2k - 1)\alpha(G) + n \ln(k + 1)/(k + 1) + rn(2 \ln(k + 1))r/(k + 1)$. Since this is true for every integer $k \geq r$, the desired upper bound on $\Gamma_d(G, r)$ follows. □

7 Open Questions

We close with a list of open questions and conjectures that we have yet to settle. Let \mathcal{R}_n denote the family of all r-regular graphs of order n. We define $m(n, r) = \min\{\Gamma_d(G)\}$ and $M(n, r) = \max\{\Gamma_d(G)\}$, where the minimum and maximum are taken over all graphs $G \in \mathcal{R}_n$. Then, $m(n, 1) = M(n, 1) = n/2$. By Proposition 1, $m(n, 2) = n/2$ while $M(n, 2) = 2n/3$. We remark that by Theorem 11 for $r \geq 2$, we know that

$$\frac{n}{2} \leq M(n, r) \leq \left(\frac{r + 2}{r + 1}\right) \cdot \frac{n}{2}$$

(and this upper bound on $M(n, r)$ can be improved slightly by Theorem 12).

Conjecture 1. For $r \geq 3$, $M(n, r) = n/2$.

By Theorem 2(a), we know that if $G \in \mathcal{R}_n$, then $\Gamma_d(G) \geq \alpha(G) \geq n/(r + 1)$, and so $n/(r + 1) \leq m(n, r)$. Moreover taking $n/(r + 1)$ copies of K_{r+1}, we have by Theorem 1 that $m(n, r) \leq n \log(r + 2)/(r + 1)$. We pose the following question.

Question 1. For $r \geq 3$, does there exists a constant c such that $m(n, r) \leq cn/(r + 1)$?

Let \mathcal{OP}_n denote the family of all maximal outerplanar graphs of order n and define $\text{mop}(n) = \min\{\Gamma_d(G)\}$, where the minimum is taken over all graphs $G \in \mathcal{OP}_n$. Since outerplanar graphs are 3-colorable, we note by Theorem 2(b) that for every graph $G \in \mathcal{OP}_n$, $\Gamma_d(G) \geq n/3$, implying that $\text{mop}(n) \geq n/3$. By Theorem 13, we know that $\text{mop}(n) \leq \lfloor n/2 \rfloor$. Thus, $n/3 \leq \text{mop}(n) \leq \lfloor n/2 \rfloor$.

Problem 1. Find good lower and upper bounds on $\text{mop}(n)$.

Let \mathcal{P}_n denote the family of all maximum planar graphs of order n. We define $\text{mp}(n) = \min\{\Gamma_d(G)\}$ and $\text{Mp}(n) = \max\{\Gamma_d(G)\}$, where the minimum and maximum are taken over all graphs $G \in \mathcal{P}_n$.

Problem 2. Find good lower and upper bounds on $\text{mp}(n)$ and $\text{Mp}(n)$.
References

[1] N. Alon, Transversal numbers of uniform hypergraphs. *Graphs Combin.* **6** (1990), 1–4.

[2] S. Arumugam, K. Jacob, and L. Volkmann, Total and connected domination in digraphs. *Australas. J. Combin.* **39** (2007), 283–292.

[3] A. Bhattacharya and G. R. Vijayakumar, Domination in digraphs and variants of domination in graphs. *J. Combin. Inform. System Sci.* **30** (2005), 19–24.

[4] B. Bollobás, *Extremal Graph Theory*. Reprint of the 1978 original. Dover Publications, Inc., Mineola, NY, 2004. xx+488 pp.

[5] Y. Caro, On k-domination and k-transversal numbers of graphs and hypergraphs. *Ars Combin.* **29C** (1990), 49–55.

[6] G. Chartrand, P. Dankelmann, M. Schultz, and H.C. Swart, Twin domination in digraphs. *Ars Combin.* **67** (2003), 105–114.

[7] G. Chartrand, F. Harary, and B. Quan Yue, On the out-domination and in-domination numbers of a digraph. *Discrete Math.* **197/198** (1999), 179-183.

[8] G. Chartrand, D. W. VanderJagt and B. Quan Yue, Orientable domination in graphs. *Congr. Numer.* **119** (1996), 51-63.

[9] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. *Combinatorica* **12** (1992), 19–26.

[10] E. Egerváry, On combinatorial properties of matrices. *Mat. Lapok* **38** (1931), 16–28.

[11] P. Erdős, On Schütte problem. *Math. Gaz.* **47** (1963), 220–222.

[12] Y. Fu, Dominating set and converse dominating set of a directed graph. *Amer. Math. Monthly* **75** (1968), 861-863.

[13] T. Gallai, Über extreme Punkt- und Kantenmengen. *Ann. Univ. Sci. Budapest, Eötvös Sect. Math.* **2** (1959), 133–138.

[14] T. Gallai and A. N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei. *Acta Sci. Math. Szeged* **21** (1960), 181–186.

[15] J. Ghosal, R. Laskar and D. Pillone, Domination in digraphs. In: *Domination in Graphs, Advanced Topics*. (T.W. Haynes, S.T. Hedetniemi and P.J. Slater, eds.). Marcel Dekker, New York (1998), 401-437.

[16] A. Hajnal and E. Szemerédi, Proof of a Conjecture of Erdős. In *Combinatorial Theory and Its Applications*, II (Proc. Colloq., Balatonford, 1969), pp. 601–623. North-Holland, Amsterdam, 1970.

[17] S. L. Hakimi, On the degrees of the vertices of a directed graph. *J. Franklin Inst.* **279** (1965), 290–308.
[18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc. New York, 1998.

[19] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc. New York, 1998.

[20] M. A. Henning and A. Yeo, Tight lower bounds on the size of a matching in a regular graph. *Graphs Combin.* 23 (2007), 647–657.

[21] D. König, Graphen und Matrizen. *Math. Riz. Lapok* 38 (1931), 116–119.

[22] C. Lee, Domination in digraphs. *J. Korean Math. Soc.* 35 (1998), 843–853.

[23] K. B. Reid, A. A. McRae, S. M. Hedetniemi, and S. T. Hedetniemi, Domination and irredundance in tournaments. *Australas. J. Combin.* 29 (2004), 157–172.

[24] G. Szekeres and H. S. Wilf, An inequality for chromatic number of a graph. *J. Combin. Theory Ser. B* 4 (1968), 1–3.

[25] D. West, *Introduction to Graph Theory: Second edition*. Prentice Hall (2001), 588 pp.