Scientific Research Report

Age-Period-Cohort Analysis of Toothbrushing Frequency in Finnish Adults: Results From Annual National Cross-Sectional Surveys From 1978 to 2014

Eero Raittio a,1, Satu Helakorpi b, Anna Liisa Suominen a,c,d

a Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
b Department of Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
c Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
d Public Health Evaluation and Projection Unit, Finnish Institute for Health and Welfare (THL) Helsinki, Finland

ARTICLE INFO

Article history:
Available online 26 December 2019

ABSTRACT

Objectives: No previous study has analysed age-, period-, and cohort-related long-term trends in toothbrushing frequency among adults using a nationally representative data set. Our aim was to study age, period, and cohort effects on toothbrushing among 15- to 64-year-olds in Finland from 1978 to 2014.

Methods: Data were gathered by nationally representative random cross-sectional samples of 15- to 64-year-old Finns annually from 1978 to 2014, during which response rates decreased from 84% to 53%. The final pooled sample size was 119,665. An age-period-cohort model was used to separate the effects of age, period, and cohort on trends in men’s and women’s toothbrushing frequency.

Results: From 1978 to 2014, the proportion of respondents who brushed at least twice a day or once a day increased from 42% to 66% and from 83% to 95%, respectively. The proportion of respondents who brushed at least twice a day increased from 27% to 53% among men and from 60% to 75% among women. Increases in at least once-a-day toothbrushing were smaller in both sexes, and in women the increase was minimal over the study years. The increase in toothbrushing frequency occurred particularly among those older than 40 years of age. In men, toothbrushing frequency increased steadily cohort by cohort (cohort effect) and within a single cohort as men in the cohort got older (longitudinal age trend). Instead, in women the cohort effect and longitudinal age trend in toothbrushing were smaller at both frequency thresholds.

Conclusions: On the population level, favourable changes in toothbrushing habits occurred among adult Finns from 1978 to 2014, especially in men.

© 2020 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Key words:
Oral hygiene
Toothbrushing
Epidemiology
Trends

Introduction

Dental diseases represent a major economic burden for societies. For instance, in the European Union, dental disease costs were the third-highest after diabetes and cardiovascular diseases. 1 Regular daily toothbrushing with fluoride toothpaste has long been seen as an important measure at all ages to maintain oral health for a lifetime. Toothbrushing is a cornerstone of maintaining oral health in addition to a low-sugar or sugar-free diet and not smoking. 1,2 Recently, the regular daily or twice-a-day toothbrushing frequency has been found to be associated with a lower risk of cardiovascular diseases 3 and new onset of diabetes. 4 Among adults, prevalence of twice-a-day toothbrushing varies from population to population. For instance, in Australia, the proportion of those brushing their teeth at least twice a day was 51% in 2016, 5 whereas 75% of adults reported the same in the United Kingdom in 2009. 6 In 2013, in Jönköping, Sweden, even as high as 85% of 3- to 80-year-olds brushed their teeth at least twice a day. 7 However, there is a limited number of representative national population-based studies on toothbrushing frequency
in adult populations, especially with long follow-up periods. According to those few studies, toothbrushing frequency has increased in many countries.6-10 But that is not the same everywhere; in Australia and Finland, for instance, the proportion of people who brush their teeth at least twice a day has not increased from 2004 to 2016 or 2011 to 2017, and these national health surveys were cross-sectional and had long intervals between the surveys.

A small number of longitudinal studies on toothbrushing frequency among adults have been conducted in Norway and Sweden.11,12 They indicate relative stability of toothbrushing intervals between the surveys. National health surveys were cross-sectional and had long portions of people who brush their teeth at least twice a day have not increased from 2004 to 2016 or 2011 to 2017, and these intergenerational transmission in health-related habits and beliefs shape those of the next generation.13 A New Zealand study found that intergenerational oral health beliefs influence toothbrushing habits.14 However, we are unaware of any detailed analyses on age-, period-, or cohort-related long-term trends in toothbrushing frequency in adults in the existing literature. Therefore, it is not known whether there are generational differences in toothbrushing habits, whether there have been any time-related variations in toothbrushing frequency, or how toothbrushing habits tend to change with age at the population level. However, monitoring toothbrushing habits could provide valuable information for oral health care planning purposes, such as advancing toothbrushing habits and techniques that are essential parts of preventive oral health care visits and overall oral health promotion. For instance, if toothbrushing frequency tends to increase during adulthood as people get older, dental professionals can take this into account when working with children and adults or when planning, implementing, or promoting oral health actions.

In addition, because sex-related differences in toothbrushing are common,15,16 this study aims to investigate the long-term trends of toothbrushing frequency among Finns of working age from 1978 to 2014 and assess the influences of age-, period-, and cohort effects on toothbrushing frequency separately for men and women. The age effects represent whether the toothbrushing frequency differs by age; the period effects represent variations in the toothbrushing frequency over time that influence all age groups simultaneously; and the cohort effects represent toothbrushing frequency changes across those with the same year of birth (ie, birth cohort).18-20

To conduct the APC analysis with the Age-period-cohort Web Tool21 (Biostatistics Branch, National Cancer Institute), the toothbrushing frequency (both at least once a day and twice a day thresholds) and total population data were arranged using a 2-year period (ie, 1978-1980, 1981-1982, and so on) and age (ie, 15-16, 16-17, and so on) intervals. We focused on the following estimable functions from the Age-period-cohort Web Tool:21 net drift (ie, estimated annual percentage change of the expected age-adjusted rates of toothbrushing frequency over time); local drifts (ie, annual percentage change of the expected age-specific rates of toothbrushing frequency over time); longitudinal age curve (ie, expected age-specific rates of toothbrushing frequency in a reference cohort adjusted for period effects); period rate ratios (ie, ratio of age-specific rates of toothbrushing frequency in each period relative to the reference period); and cohort rate ratios (ie, the ratio of age-specific rates of toothbrushing frequency in each cohort relative to a reference cohort).21 Results of the APC analysis were exported from the Age-period-cohort Web Tool to RStudio statistical software.22 Figures on period rate ratios, cohort rate ratios, longitudinal

Statistical analyses

The APC model is a descriptive tool to analyse how age, period, and cohort are related to an outcome. The aim of our APC analysis was to estimate the contributions of age, period, and cohort effects on toothbrushing frequency separately for men and women. The age effects represent whether the toothbrushing frequency differs by age; the period effects represent variations in the toothbrushing frequency over time that influence all age groups simultaneously; and the cohort effects represent toothbrushing frequency changes across those with the same year of birth (ie, birth cohort).18-20

To conduct the APC analysis with the Age-period-cohort Web Tool21 (Biostatistics Branch, National Cancer Institute), the toothbrushing frequency (both at least once a day and twice a day thresholds) and total population data were arranged using a 2-year period (ie, 1978-1980, 1981-1982, and so on) and age (ie, 15-16, 16-17, and so on) intervals. We focused on the following estimable functions from the Age-period-cohort Web Tool:21 net drift (ie, estimated annual percentage change of the expected age-adjusted rates of toothbrushing frequency over time); local drifts (ie, annual percentage change of the expected age-specific rates of toothbrushing frequency over time); longitudinal age curve (ie, expected age-specific rates of toothbrushing frequency in a reference cohort adjusted for period effects); period rate ratios (ie, ratio of age-specific rates of toothbrushing frequency in each period relative to the reference period); and cohort rate ratios (ie, the ratio of age-specific rates of toothbrushing frequency in each cohort relative to a reference cohort).21 Results of the APC analysis were exported from the Age-period-cohort Web Tool to RStudio statistical software.22 Figures on period rate ratios, cohort rate ratios, longitudinal
age curve, and local drifts with net drifts for men and women were plotted using the ggplot2 package.23

We also ran the described analyses with poststratification weights, which were computed using official age-sex distributions of the total Finnish adult population aged 15 to 64 years as the reference population.24 However, the poststratification weighted results were identical to those generated without the weights. We decided to represent the unweighted results only because of the smoother calculation process with the unweighted data.

Results

The proportion of respondents who brushed their teeth at least twice a day increased from 42% to 66% (Table 1), and the proportion who brushed at least once a day increased from 83% to 95% during the study period from 1978 to 2014 (Table 2). More women than men brushed their teeth at least once or twice a day in every study year. From 1978 to 2014, the proportion of those who brushed at least twice a day increased from 27% to 53% among men and from 60% to 75% among

Table 1 – Proportion of respondents who brushed their teeth at least twice a day by sex, age group, and birth cohort from 1978 to 2014.

Total	Sex	Age group	Birth cohort								
		15-24	25-34	35-44	45-54	55-64	1914-1940	1941-1950	1951-1960	1961-1970	1971-1999
1978-1980		42		27			60				
1981-1982	45	29		64			40				
1983-1984	47	31		63			50				
1985-1986	50	32		66			52				
1987-1988	49	32		65			50				
1989-1990	50	33		65			50				
1991-1992	52	36		66			52				
1993-1994	52	36		67			48				
1995-1996	52	36		67			51				
1997-1998	53	38		66			50				
1999-2000	54	37		68			52				
2001-2002	54	39		67			48				
2003-2004	55	40		68			52				
2005-2006	57	42		69			54				
2007-2008	59	45		70			56				
2009-2010	64	49		75			60				
2011-2012	64	49		75			63				
2013-2014	66	53		75			61				

Table 2 – Proportion of respondents who brushed their teeth at least once a day by sex, age group, and birth cohort from 1978 to 2014.

Total	Sex	Age group	Birth cohort								
		15-24	25-34	35-44	45-54	55-64	1914-1940	1941-1950	1951-1960	1961-1970	1971-1999
1978-1980		83		71		96	86				
1981-1982	85	75		96			88				
1983-1984	87	76		97			88				
1985-1986	89	80		97			90				
1987-1988	89	80		97			90				
1989-1990	89	81		97			90				
1991-1992	91	83		98			91				
1993-1994	91	83		98			92				
1995-1996	91	84		98			92				
1997-1998	92	85		98			92				
1999-2000	92	86		98			92				
2001-2002	93	86		98			91				
2003-2004	94	89		98			93				
2005-2006	94	88		99			93				
2007-2008	94	89		98			93				
2009-2010	95	90		98			93				
2011-2012	95	90		98			94				
2013-2014	95	91		98			95				
women. During the years 1978-1984, proportions of those who brushed at least once or twice a day was higher in younger than in the 2 oldest age groups. An increase in toothbrushing frequency occurred in all age groups but most occurred in the 2 oldest groups. Therefore, in the 2010s, the proportions of those brushing their teeth at least once or twice a day were equal in the oldest and youngest age groups, whereas the proportions were highest in the 35 to 44 age group. The oldest birth cohort (those born in 1914-40) had the lowest proportion of those who brushed their teeth at least once or twice a day. Increases in toothbrushing frequency occurred in all birth cohorts. Since the late 1990s, birth cohort-related differences have been small (Tables 1 and 2).

Total annual percentage change in proportion of those with at least twice-a-day toothbrushing frequency (net drifts) and annual percentage changes in each age (local drifts) are shown in Figure 1A. The net drift was 1.89% (95% CI 1.75%-2.02%) per year for men and 0.60% (95% CI 0.50%-0.70%) per year for women. Among women, local drifts were above zero except those around age 25, among whom annual percentage changes were close to zero. Among women, the highest annual percentage increases (around 1%) occurred among those older than 55 years of age. Among men, at least twice-a-day toothbrushing frequency increased more than 1% annually in all age groups. The highest average annual increase occurred in men aged 45 to 55, and the smallest in men around age 25.

The longitudinal age curves for men and women are shown in Figure 1B. Men in the same birth cohort had a strong increase in at least twice-a-day toothbrushing frequency with age, with the strongest increasing from ages 15 to 30. Among women in the same birth cohort, a relatively weak and steady increase in at least twice-a-day toothbrushing frequency occurred with age.

The estimated period and cohort rate ratios of at least twice-a-day toothbrushing frequency are displayed in Figure 1C and D, respectively. Period rate ratios showed that increase in at least twice-a-day toothbrushing frequency during study from 1978 to 2014 occurred in both sexes but were clearly stronger for men than for women. In both sexes, the increase was most rapid from 2000 to 2014. Cohort rate ratios showed that among men at least twice-a-day toothbrushing frequency increased strongly and steadily from the oldest cohort to youngest birth cohort. Among women, toothbrushing frequency increased strongly from the 1914 cohort to the 1957 cohort (reference); however, since then toothbrushing frequency remained at that level in the more recent birth cohorts.

Figure 2A-D shows similar plots for toothbrushing at least once a day. Average annual percentage increases were 0.70% (95% CI 0.60-0.79) in men and 0.08% (95% CI 0.00-0.16) in women and, thus, smaller than in the at least twice-a-day toothbrushing. However, similar shape but weaker (closer to 1) longitudinal age curve, period, and cohort rate ratios occurred in at least once-a-day toothbrushing in both men and women.

Table 3 shows the results of hypothesis tests. In the case of toothbrushing at least twice a day, local drifts were not equal to the net drift, the net drifts differed from 0, and cohort and period rate ratios for men and women were statistically significantly different from 1. Age and period deviations were slightly smaller in magnitude than the cohort deviations in both sexes. In the case of toothbrushing at least once a day, only the net drift was statistically significantly different from 0 in women, and the hypothesis tests were not statistically significant. In men, the net drift differed from 0, but the drift was similar in all age groups. In addition, the period and cohort rate ratios differed from 1 which were statistically significantly in men.

Supporting material (Supplementary Files 1-4) including full sets of APC result output from the Age-period-cohort Web Tool can be found online.21

Discussion

A significant increase in the proportion of those who brushed their teeth at least twice a day occurred among 15- to 64-year-old Finns between 1978 and 2014. Toothbrushing at least twice a day increased in both sexes but more so in men. The increase was smaller in at least once-a-day toothbrushing, and among women the average annual increase in percent-age was close to zero (0.08% per year). Our APC analysis revealed that: (1) cohort-related deviations were slightly stronger than age- or period-related deviations in at least twice-a-day toothbrushing; (2) the increase in toothbrushing frequency occurred particularly among those older than 40 years of age; (3) follow-up of the same birth cohorts showed that the proportion of those who brushed their teeth at least once or twice a day increased with age, especially in men; (4) among men, toothbrushing frequency increased cohort by cohort at both frequency thresholds; and (5) in women, at least twice-a-day toothbrushing frequency increased from the 1914 birth cohort to the 1957 birth cohort and remained at that level in more recent cohorts, whereas cohort-related differences in toothbrushing at least once-a-day were minimal.

To our knowledge, this is first detailed analysis of trends in toothbrushing frequency using the APC framework. This study has several strengths. First, the study had a relatively long study period and was conducted with the same questions to preserve comparability between the study years. Second, we used well-established and standardised APC methods and their representations.21 The main weakness of our study was significantly decreased response rate over the study period. Nonresponse analysis of the Health Behaviour and Health Among the Finnish Adult Population surveys 1978–2002 revealed that nonresponse had increased faster among younger than older people, faster in men than women, and also faster among people with less education.25 In addition, the nonrespondents in this kind of survey also have clearly higher mortality rates than people who tend to respond to this kind of survey.26 It is possible that the increased nonresponse over the study period has somewhat increased our estimates of toothbrushing frequency in later study years. However, the proportions of those who brushed their teeth at least twice a day were similar in nationally representative Finnish health surveys with higher response rates.23,10

Findings of this study indicated that on the population level there has been favourable changes in toothbrushing habits from 1978 to 2014, especially in men. The increase in at
Fig. 1 – Graphical display of age-period-cohort analysis of at least twice-a-day toothbrushing frequency among 15- to 64-year-old Finns from 1978 to 2014. A, Net drift is annual percentage change of the expected age-adjusted rates of toothbrushing frequency over time, and local drifts are annual percentage change of the expected age-specific rates of toothbrushing frequency over time. B, Expected age-specific rates of toothbrushing frequency in a reference cohort adjusted for period effects. C, Ratio of age-specific rates of toothbrushing frequency in each period relative to a reference period. D, Ratio of age-specific rates of toothbrushing frequency in each cohort relative to a reference cohort. The shaded areas represent the 95% confidence intervals.
Fig. 2 – Graphical display of age-period-cohort analysis of at least once-a-day toothbrushing frequency among 15- to 64-year-old Finns from 1978 to 2014. A, Net drift is annual percentage change of the expected age-adjusted rates of toothbrushing frequency over time, and local drifts are annual percentage change of the expected age-specific rates of toothbrushing frequency over time. B, Expected age-specific rates of toothbrushing frequency in a reference cohort adjusted for period effects. C, Ratio of age-specific rates of toothbrushing frequency in each period relative to a reference period. D, Ratio of age-specific rates of toothbrushing frequency in each cohort relative to a reference cohort. The shaded areas represent the 95% confidence intervals.
least twice-a-day toothbrushing over the years was much stronger than in the at least once-a-day toothbrushing because the initial level in previous study years was much lower in the at least twice-a-day toothbrushing. APC analysis revealed that, first, there was a positive cohort effect that was slightly stronger than the age or period effects because toothbrushing frequency has increased cohort by cohort, indicating that younger generations have been more likely to adopt at least twice-a-day or once-a-day toothbrushing habits than previous cohorts. This cohort effect is at least partly explained by the intergenerational transmission of health habits. Unfortunately, the positive cohort effect occurred only in men throughout the study years, which had clearly lower toothbrushing frequency than women in the early study years. Secondly, despite smaller than the cohort effects, it seems that there is a positive period effect and that is there are some factors increasing toothbrushing frequency in all individuals during the period. This is likely related to improvements in the general standard of living and to greater awareness and interest in issues related to oral health. Perhaps the marketing of oral self-care products has increased along with support of the dental research community, in addition to, the dental and sugary food and drinks industries. Additionally, strong national focus on public health promotion practices and policies emerged in in the 1970s in Finland which seem to have had considerable positive effects on oral health, as well as, for instance, on cardiovascular diseases. Third, it appears that within a single cohort, toothbrushing frequency increased steadily from age 15 to 64 years, and thus, it seems that at least at the population level a birth cohort can improve its toothbrushing habits throughout adulthood (ie, longitudinal age trend). However, this longitudinal age trend was clearly stronger in men than in women. Traditionally, oral health promotion and services have focused on children and adolescents and have not focused on adults. Fortunately, higher priority has been given to adult oral health care and promotion in recent decades. For instance, all age-related restrictions on subsidized oral health care were abolished in Finland in the early 2000s. However, compared to the other Western European countries, the proportion of those brushing their teeth twice a day was still rather low among Finnish men in the 2010s. Internationally, Finnish boys’ low toothbrushing frequency is seen in their adolescence. This may be linked with the wide sex-related differences in health in Finland. Finnish men smoke more, drink more alcohol, eat less healthfully, have higher cholesterol, higher blood pressure levels, more cardiovascular diseases, more diabetes, less social contacts, and trust other people less than Finnish women do. Thus, promoting twice-a-day toothbrushing habits should be connected to general health promotion of Finnish men, which must also address cultural factors behind their too-common health-harming lifestyles. In particular, as (oral) health behaviours tend to transfer intergenerationally, it is important to support children, adolescents, and their families, including fathers, to ensure that sex-related health differences will be smaller in the future.

Conclusions

Our findings indicate that the proportion of those who brushed their teeth at least once or twice a day increased among 15- to 64-year-old Finns from 1978 to 2014. APC analysis revealed age, period, and cohort effects in the trends of toothbrushing in men and women during the study period. The increase in toothbrushing frequency occurred particularly among those older than 40 years of age and was more pronounced in men than in women. The increase in at least once-a-day toothbrushing was smaller, and in women even minimal, over the study years compared with the increase in at least twice-a-day toothbrushing. In men, toothbrushing frequency increased steadily cohort by cohort (cohort effect)
and within a single cohort as men in the cohort got older (longitudinal age trend) at both frequency thresholds. In women, at least twice-a-day toothbrushing increased cohort by cohort only until the 1957 birth cohort, whereas the cohort effect in at least once-a-day toothbrushing was trivial. In addition, the longitudinal age trends were modest in women at both frequency thresholds. In our view, the detected increasing toothbrushing frequency with age, the positive cohort effects on toothbrushing (with likely intergenerational transmission), and the sex-related differences in age-period-cohort trends in toothbrushing habits should be considered in planning and implementing actions that promote oral health.

Funding

This study was supported by a personal research grant to Eero Raittio from the Finnish Dental Society Apollonia (20200050).

Conflicts of interest

None disclosed.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.identj.2020.12.002.

References

1. Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: a global public health challenge. Lancet 2019;394:249–60.
2. Watt RG, Daly B, Allison P, et al. Ending the neglect of global oral health: time for radical action. Lancet 2019;394:261–72.
3. Park SY, Kim SH, Kang SH, et al. Improved oral hygiene care attenuates the cardiovascular risk of oral health disease: a population-based study from Korea. Eur Heart J 2019;40:1138–45.
4. Chang Y, Lee JS, Lee KJ, et al. Improved oral hygiene is associated with decreased risk of new-onset diabetes: a nationwide population-based cohort study. Diabetologia 2020;63:924–33.
5. Manton DJ, Foley M, Gikas A, et al. Australia’s oral health tracker. Technical Paper 2018-02. Melbourne, Australia: Australian Health Policy Collaboration & Victoria University, 2018.
6. Chadwick BL, White D, Lader D, Pitts N. Preventive behaviour and risks to oral health—a report from the adult dental health survey 2009. London, UK: Health and Social Care Information Centre; 2011.
7. Norderyd O, Kochi G, Papias A, et al. Oral health of individuals aged 3-80 years in Jonkoping, Sweden, during 40 years (1973-2013). I. Review of findings on oral care habits and knowledge of oral health. Swed Dent J 2015;39:57–68.
8. Sogaard AJ, Grytten J, Holst D. Recent changes in health related dental behaviors in Norway. Community Dent Oral Epidemiol 1991;19:241–5.
9. Suominen-Taipale I, Nordblad A, Vehkalahti M, editors. Oral health in the Finnish adult population. Health 2000 survey. Publications of the National Public Health Institute 825/2008. Helsinki, Finland: National Public Health Institute; 2008.
10. Suominen A I, Raittio E, et al. Suunterveys (Oral health). In: Koponen P, Borodulin K, Lundqvist A, editors. Terveys, toimintakyky ja hyvinvointi suomessa: finterveys 2017 - tutkimus (health, functional capacity and welfare in Finland – fin health 2017 study). Helsinki, Finland: National Institute for Health and Welfare; 2018. p. 93–7.
11. Astrom AN, Wold B. Socio-behavioural predictors of young adults’ self-reported oral health: 15 years of follow-up in the Norwegian Longitudinal Health Behaviour study. Community Dent Oral Epidemiol 2012;40:210–20.
12. Astrom AN, Gulcan F, Ekback G, et al. Long-term healthy lifestyle patterns and tooth loss studied in a Swedish cohort of middle-aged and older people. Int J Dent Hyg 2015;13:292–300.
13. Wickrama K A, Conger RD, Wallace LE, et al. The intergenerational transmission of health-risk behaviors: adolescent lifestyles and gender moderating effects. J Health Soc Behav 1999;40:258–72.
14. Broadbent J M, Zeng J, Foster Page L A, et al. Oral health-related beliefs, behaviors, and outcomes through the life course. J Dent Res 2015;94:808–13.
15. Honkala S, Vereecken C, Niclasen B, et al. Trends in toothbrushing in 20 countries/regions from 1994 to 2010. Eur J Public Health 2015;25(Suppl 2):20–3.
16. Koponen P, Borodulin K, Lundqvist A, editors. Terveys, toimintakyky ja hyvinvointi suomessa: finterveys 2017 - tutkimus (health, functional capacity and welfare in Finland – fin health 2017 study). Helsinki, Finland: National Institute for Health and Welfare; 2018.
17. Helldan A, Helakorpi S. Suomalaisien aikuisvaieston terveyskattayttymisen ja terveys, kevat 2014 (health behaviour and health among the Finnish adult population, spring 2014). Helsinki, Finland: National Institute for Health and Welfare; 2015.
18. Wang Z, Yu C, Xiang H, et al. Age-period-cohort analysis of trends in mortality from drowning in China: data from the global burden of disease study 2015. Sci Rep 2018;8:5829.
19. Yang Y, Land K C. Age-period-cohort analysis. Boca Raton, FL: CRC Press; 2013.
20. Carstensen B. Age-period-cohort models for the Lexis diagram. Stat Med 2007;26:3018–45.
21. Rosenberg PS, Check D P, Anderson W F. A web tool for age-period-cohort analysis of cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev 2014;23:2296–302.
22. RStudio Team. RStudio: integrated development for R. Boston, MA: RStudio, Inc; 2019.
23. Wickham H. Ggplot2: elegant graphics for data analysis. New York, NY: Springer-Verlag; 2016.
24. Population according to age (5-year) and sex, 1865-2018. Statistics Finland’s PX-web databases. Available from: http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__vrm__vaerak/statfin_vaerak_pxl_11rc.px?/rxid=da2c3e98-9a02-4871-8cd1-cb2670c2723. Accessed 15 May 2019.
25. Tolonen H, Helakorpi S, Talala K, et al. 25-year trends and socio-demographic differences in response rates: Finnish adult health behaviour survey. Eur J Epidemiol 2006;21:409–15.
26. Jousilahti P, Salomaa V, Kuulasmaa K, et al. Total and cause specific mortality among participants and non-participants of population based health surveys: a comprehensive follow up of 54 372 Finnish men and women. J Epidemiol Community Health 2005;59:310–5.
27. Watt RG, Daly B, Allison P, et al. The lancet oral health series: implications for oral and dental research. J Dent Res 2020;99:8–10.
28. Vehkalahti M, Tarkkonen I, Varsio S, et al. Decrease in and polarization of dental caries occurrence among child and youth populations, 1976-1993. Caries Res 1997;31:161-5.
29. Puska P, Virtanen E, Tuomilehto J, et al. Changes in premature deaths in Finland: successful long-term prevention of cardiovascular diseases. Bull World Health Organ 1998;76:419–25.
30. Gift H C, Anderson R M. The principles of organisation and models of delivery of oral health care. In: Pine C, Harris R, editors. Community oral health. London, UK: Quintessence Publishing Co Ltd; 2007. p. 423–54.
31. Widstrom E, Ekman A, Aandahl L S, et al. Developments in oral health policy in the Nordic countries since 1990. Oral Health Prev Dent 2005;3:225.
32. Melo P, Marques S, Silva O M. Portuguese self-reported oral-hygiene habits and oral status. Int Dent J 2017;67:139–47.
33. Kosonen R, Waller M. Tackling the gender dimension of health inequalities Ministry of Social Affairs and Health, 2011. Available from: https://stm.fi/en/article/-/asset_publisher/tackling-the-gender-dimension-of-health-inequalities. Accessed 30 March 2020.