Tasawar Hayat, Inayat Ullah, Khursheed Muhammad*, and Ahmed Alsaedi

Gyrotactic microorganism and bio-convection during flow of Prandtl-Eyring nanomaterial

https://doi.org/10.1515/nleng-2021-0015
Received Mar 21, 2021; accepted Jun 17, 2021.

Abstract: Our main intension behind this work is to investigate Prandtl-Eyring nanomaterial in presence of gyrotactic microorganisms. Flow is generated via stretching sheet and is subject to melting heat effect. Radiation and dissipation are addressed. Entropy rate is also reported. Nanofluid effects are explored through Buongiorno model for nanofluid by considering Brownian motion and thermophoresis impacts. Problem related modelling is done by obtaining PDEs and these PDEs are then transmitted into ODEs by using appropriate similarity variables. Homotopic technique has been employed to obtain a convergent series solution of the considered problem. Graphical results have been presented to investigate the impact of different prominent variables over fluid velocity, temperature distribution, nanofluid concentration and microorganism concentration. Entropy analysis has been discussed and the physical quantities such as surface drag force, Nusselt number, local Sherwood number and microorganism density number for the current problem is obtained. Velocity boost against higher melting and fluid parameters. Temperature of the fluid reduces with an increment in melting and radiation parameters while it intensifies through Prandtl and Eckert number, Brownian motion and thermophoresis parameters. Decay in concentration is noticed against higher values of melting and thermophoresis parameters while it increases for higher Schmidt number and Brownian motion parameter. Microorganism field boosts with higher values of Peclet number and microorganism concentration difference parameter. Moreover entropy generation rate intensifies against higher radiation parameter and Brickman number.

Keywords: bio-convection, melting effect, nano-fluid, viscous dissipation, thermal radiation, entropy generation, Brownian motion, thermophoresis diffusion

1 Introduction

Recently advancements in nanotechnology got much attention from scientists and researchers due to its enormous applications in industrial and technological zones. The introduction of nanofluid brings a lot of its applications to the real world. In the beginning Choi [1] observed that the heat transportation capacity (thermal conductivity) of normal fluids can be improved by adding small nanosize particles with the characteristics of high thermal conductivity. He presented the idea of replacing normal/traditional fluids with these more advance fluids with high thermal efficiency. These advance fluids are known as nano fluids. Nano fluid plays a vital role in technological devices, heat-related equipment, nuclear reactor, space technology, processing of generic drugs, microelectronics, radiators, cooling system, bio-sensors and many more. Buongiorno [2] explained the transportation of mass and heat transfer in nanofluids. He presented the seven slip mechanism and concluded that out of all these thermophoresis and Brownian diffusion is of particular interest. Ahmad et al. [3] investigated the nanomaterial flow of magnetohydrodynamic non-Newtonian fluid. Turkyilmazoglu [4] studied the mass and heat transport of unsteady natural convective flow of nanoliquid with radiation past a vertical surface. MHD forced convection in nanofluid is reported to Sheikholeslami and bhatti [5]. Hayat et al. [6] considered melting effect in CNTs flow with stagnation point by variable thickness surface. Some recent investigations on nanofluid can be see through Refs. [7–17].

Bio-convection appears due to the up swimming of microorganisms in a particular direction since the density of microorganisms are higher than the base fluid. Therefore,
the upper surface of the fluid becomes denser due to the gathering of microorganism. Thus upper surface of fluid is unstable and eventually the microorganism falls down causing bioconvection. The up swimming of microorganisms back to the top carry on bioconvection process. The utilization of gyrotactic microorganism in different nanoliquid enhances mass transfer, microscale mixing and also enhances the stability of nanofluids. Khan et al. [18] studied bioconvection nanofluid flow considering gyrotactic microorganism. Mutuku and Makinde [19] explored MHD bioconvection nano/fluid flow considering gyrotactic enhancement of the stability of nano/fluids. Khan [20] utilized utilize the gyrotactic microorganism in different nanoisms back to the top carry on bioconvection process. The up swimming of microorganism. Thus upper surface of the fluid becomes denser due to the gathering of microorganism. Hence upper surface of the fluid becomes denser due to the gathering of microorganism. Hayat et al. [21] investigated the bioconvection nano/fluid flow with the suspension of both gyrotactic microorganism and nanoparticles.

There is no doubt that the phenomenon of melting heat transfer has been studied extensively due to its ever rising usages in industrial and technological processes. Melting heat transfer plays an essential role in coil exchanger, magma solidification, semiconductor material preparation, welding process, crystal growth, permafrost melting, thermocouple and heat engines. Krishnamurthy et al. [22] considered chemical reactions and radiation during nanofluid flow with melting heat. Prasannakumara et al. [23] investigated melting heat, thermal radiation, MHD and heat source effects doing flow in a porous vertical surface with gyrotactic microorganism. Hayat et al. [24] examined bioconvection in flow of Walter-B nanomaterials. Kuznetsov [25] examined bioconvection in flow of non-Newtonian fluids in presence of microorganism past a stretching sheet. Viscous dissipation is considered. Here we have considered melting effect in two dimensional Prandtl-Eyring nano/fluid flow containing gyrotactic microorganisms is considered by a stretched sheet. Sheet is subject to melting phenomena. Thermal radiation and viscous dissipation elaborates heat transport phenomena. Surface is stretched with the velocity \((u = ax)\), with constant \(a\). Flow geometry is given in Figure 1.

2 Mathematical formulation

Two dimensional Prandtl-Eyring nanofluid with motile gyrotactic microorganisms is considered by a stretched sheet. Sheet is subject to melting phenomena. Thermal radiation and viscous dissipation elaborates heat transport phenomena. Surface is stretched with the velocity \((u = ax)\), with constant \(a\). Flow geometry is given in Figure 1.

After executing aforementioned assumptions and boundary layer approximations we obtain [30, 31]:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)
\]

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{A}{\rho_f C_p} \frac{\partial^2 u}{\partial y^2} - \frac{A}{2 \rho_f C_p} \left(\frac{\partial u}{\partial y} \right)^2 \frac{\partial^2 u}{\partial y^2}, \quad (2)
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k_f}{\rho_f C_p} \frac{\partial^2 T}{\partial y^2} + \frac{1}{\rho_f C_p} \left[\frac{A}{C_p} \left(\frac{\partial u}{\partial y} \right)^2 - \frac{A}{C_p} \left(\frac{\partial v}{\partial y} \right)^2 \right], \quad (3)
\]

\[
\frac{\partial C}{\partial x} + \frac{\partial C}{\partial y} = D_B \left(\frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right), \quad (4)
\]

\[
u \frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} = \frac{b W_c}{(C_\infty - C_m)} \left[\frac{\partial}{\partial y} \left(N \frac{\partial C}{\partial y} \right) \right] = D_m \frac{\partial^2 N}{\partial y^2}, \quad (5)
\]

With boundary conditions

\[
\begin{aligned}
\begin{cases}
\left. u \right|_{x=0} = a x, & \left. T \right|_{x=0} = T_m, & \left. C \right|_{x=0} = C_m, \\
N = N_m, & v = 0, & a = 0,
\end{cases}
\end{aligned}
\]

\[
\begin{aligned}
\begin{cases}
u \to 0, & T \to T_\infty, & C \to C_\infty, & N \to N_\infty \text{ as } y \to \infty, \\
& k \left(\frac{\partial T}{\partial y} \right)_{y=0} = \rho_{nf} \left[c_1 + c_2 (T_m - T_0) \right] v(x, 0).
\end{cases}
\end{aligned}
\]
Consider the transformations [6, 12]:

\[
\begin{align*}
 u &= axf'(\eta), \quad v = -\sqrt{\nu}f(\eta), \quad \eta = \sqrt{\frac{\tau}{2}} y, \\
 \theta(\eta) &= \frac{T-T_m}{T_w-T_m}, \quad \phi(\eta) = \frac{C-C_m}{C_w-C_m}, \quad \chi(\eta) = \frac{N-N_m}{N_w-N_m},
\end{align*}
\]

(7)

Making use of these transformations in Eqs. (1-6) we get

\[
a f''''(\eta) - \alpha \beta f''''(\eta) f''''(\eta) - f''''(\eta) + f(\eta) f''''(\eta) = 0,
\]

(8)

\[
\frac{\theta''(\eta)}{Pr} + Rd \theta''(\eta) + Pr Ec \left(a f''''(\eta) - \alpha \beta f''''(\eta) \right) + Pr f(\eta) \theta'(\eta) + Pr N_b \theta'(\eta) \phi'(\eta) + Pr N_t \theta''(\eta) = 0,
\]

(9)

\[
\phi''(\eta) + Sc f(\eta) \phi'(\eta) + \frac{N_c}{N_b} \theta''(\eta) = 0,
\]

(10)

\[
\chi''(\eta) + Lb f(\eta) \chi'(\eta) - Pe \left[\phi''(\eta) \left(\chi(\eta) + \Omega \right) + \phi'(\eta) \chi'(\eta) \right] = 0,
\]

(11)

with transformed boundary conditions

\[
\begin{align*}
 f'(0) &= 1, \quad \theta(0) = 0, \quad \chi(0) = 0, \\
 f'(\infty) &= 0, \quad \phi(\infty) = 1, \\
 \theta(\infty) &= 1, \quad \chi(\infty) = 1, \\
 Pr f(0) + Me \theta'(0) &= 0.
\end{align*}
\]

(12)

Related parameters are

\[
\begin{align*}
 Rd &= \frac{16 \sigma T^3}{3k k}, \quad N_b = \frac{\tau D_m(C_w-C_m)}{\nu}, \quad \alpha = \frac{A}{\mu c}, \\
 \beta &= \frac{\alpha \tau^2}{Ec \nu}, \quad N_t = \frac{\tau D_m(T_w-T_m)}{Pr C_m}, \quad Pe = \frac{b W}{D_m}, \\
 Pr &= \frac{\nu}{\alpha}, \quad Me = \frac{c_f(T_w-T_m)}{\nu}, \quad Sc = \frac{\nu}{D_m}, \\
 Lb &= \frac{\nu}{D_m}, \quad Ec = \frac{c_f(T_w-T_m)}{\nu}, \quad \Omega = \frac{N_b}{N_c}.
\end{align*}
\]

(13)

3 Quantities of interest

Skin friction, Nusselt, Sherwood and Microorganism density numbers \(C_{fx}, Nu_x, Sh_x, Nn_x\) are expressed as

\[
\begin{align*}
 C_{fx} &= \frac{\tau_w}{\frac{1}{2} \rho u_0^2}, \quad Nu_x = \frac{x q_w}{k T_w - T_m}, \\
 Sh_x &= \frac{S_h}{D_m(C_w-C_m)}, \quad Nn_x = \frac{x q_{sx}}{D_m(N_w-N_m)}.
\end{align*}
\]

(14)

Here \((\tau_w, q_w, J_w, J_n)\) are given by

\[
\begin{align*}
 \tau_w &= \left(\frac{A}{\nu} \left(\frac{\partial u}{\partial y} \right) - \frac{A}{Ec} \left(\frac{\partial u}{\partial \eta} \right) \right) \bigg|_{y=0}, \\
 q_w &= -k_f(1 + \frac{16 \sigma T^3}{3k k}) \left(\frac{\partial T}{\partial y} \right) \bigg|_{y=0}, \\
 J_w &= -D_B \left(\frac{\partial C}{\partial y} \right) \bigg|_{y=0}, \\
 J_n &= -D_m \left(\frac{\partial N}{\partial y} \right) \bigg|_{y=0}.
\end{align*}
\]

(15)

Making use in Eq. (13) we get

\[
\begin{align*}
 \frac{1}{2} Re_x^{1/2} C_{fx} &= a f''''(0) - \frac{1}{2} \alpha \beta f''''(0) \bigg|_{y=0}, \\
 Re_x^{1/2} Nu_x &= -1 + Rd \theta'(0), \\
 Sh_x Re_x^{1/2} &= -\phi'(0), \\
 Nn_x Re_x^{1/2} &= -\chi'(0).
\end{align*}
\]

(16)
3.1 Entropy analysis

Entropy is given by [29]

\[E_G = \frac{k}{T^2} \left[1 + \frac{16\phi^3}{3\pi} \frac{\eta^3}{T^3} \right] \left(\frac{\partial T}{\partial \eta} \right)^2 + \frac{\partial T}{\partial \eta} \left(\frac{6\phi}{\pi} \right)^2 + \frac{\partial T}{\partial \eta} \left(\frac{\partial N}{\partial \eta} \right)^2 \right] \] (17)

In non-dimensional form

\[S_G = \alpha_1 (1 + Rd)\theta^2(\eta) + L_1 \frac{\partial}{\partial \eta} \phi^2(\eta) + L_2 \frac{\partial}{\partial \eta} \chi^2(\eta) + L_1 \theta'(\eta)\phi'(\eta) + L_2 \chi'(\eta)\theta'(\eta) \] (18)

Bejan number is given as

\[Be = \frac{\text{Entropydutomassandheattransfer}}{\text{Totalentropyofthesystem}} \] (19)

or

\[Be = \frac{\alpha_1 (1 + Rd)\theta^2(\eta) + L_1 \frac{\partial}{\partial \eta} \phi^2(\eta) + L_2 \frac{\partial}{\partial \eta} \chi^2(\eta) + L_1 \theta'(\eta)\phi'(\eta) + L_2 \chi'(\eta)\theta'(\eta)}{\alpha_1 (1 + Rd)\theta^2(\eta) + L_1 \frac{\partial}{\partial \eta} \phi^2(\eta) + L_2 \frac{\partial}{\partial \eta} \chi^2(\eta) + L_1 \theta'(\eta)\phi'(\eta) + L_2 \chi'(\eta)\theta'(\eta)} \] (20)

Where

\[L_1 = \frac{RD(C_a - C_{in})}{E}, \quad L_2 = \frac{RD(N_e - N_{in})}{E}, \quad L_3 = \frac{RD(N_e - N_{in})}{E}; \quad \text{Bejan number} \]

4 Solution procedure

Obtained non-linear ODEs with BCs are tackled analytically through homotopy analysis method (HAM). This technique is very helpful for solving highly non-linear ODEs. This method works on basis of defining appropriate initial guesses and linear operators. Thus initial guesses and linear operators are [32–34]:

\[f_0(\eta) = (1 - e^{-\eta}) - \frac{Me}{T^2}, \quad \theta_0(\eta) = 1 - e^{-\eta}, \quad \phi_0(\eta) = 1 - e^{-\eta}, \quad \chi_0(\eta) = 1 - e^{-\eta}, \] (22)

\[L_f = \frac{\partial^3}{\partial \eta^3} - \frac{3}{\pi} \frac{\partial}{\partial \eta}, \quad L_\theta = \frac{\partial^3}{\partial \eta^3} - 1, \quad L_\phi = \frac{\partial^3}{\partial \eta^3} - 1, \quad L_\chi = \frac{\partial^3}{\partial \eta^3} - 1, \] (23)

which has the property

\[L_f = [c_0 + c_1 e^\eta + c_2 e^{-\eta}], \quad L_\theta = [c_3 e^\eta + c_4 e^{-\eta}], \quad L_\phi = [c_5 e^\eta + c_6 e^{-\eta}], \quad L_\chi = [c_7 e^\eta + c_8 e^{-\eta}], \] (24)

Here \(c_i \) \((i = 1, 2, 3..., 8) \) are all positive constants. where \(c_1 = c_3 = c_5 = c_7 = 0 \)

Zeroth order deformation equation is defined as

\[L_f \left[F(\eta; \rho) - f_0(\eta) \right] (1 - \rho) = p\hbar_f N_f \left[F(\eta; \rho), \right], \] (25)

\[L_\theta \left[\theta(\eta; \rho) - \theta_0(\eta) \right] (1 - \rho) = p\hbar_\theta N_\theta \left[\theta(\eta; \rho), \right], \] (26)
Convergence analysis

Convergence of solution is highly dependent on auxiliary variables \((h_f, h_\theta, h_\phi, h_\chi)\). These variables have great role in obtaining a convergent series solution. For this sketches of \(h\)-curves have been presented in Figure 2. Convergence regions are \(-1.4 \leq h_f \leq -0.2, -1.5 \leq h_\theta \leq -0.5, -1.5 \leq h_\phi \leq -0.1, \) and \(-1.5 \leq h_\chi \leq -0.2\).

Figure 2: Combine \(h\)-curves.
6 Discussion

The investigations of different influential parameters over velocity field, temperature distribution, mass concentration, microorganism concentration and on entropy rate is the main aim behind this section

6.1 Velocity

Variations of melting and fluid parameters \((Me, \alpha)\) for velocity field \((f'(\eta))\) are depicted in Figures 3-4. Figure 3 displays outcomes of melting parameter for velocity. Velocity enhances against higher melting variable \((Me)\). Physically with an increment in melting \((Me)\) the heat transfer enhances due to high convection from hot fluid to cold melting surface and as a result velocity boosts. Figure 4 elucidate impact of material parameter \((\alpha)\) for velocity \((f'(\eta))\). Clearly an augmentation in velocity occurs against higher material parameter \((\alpha)\). It is quite clear that absolute viscosity and fluid parameter \((\alpha)\) are related inversely. Hence higher fluid parameter \((\alpha)\) leads to intensification in velocity of fluid \((f'(\eta))\).

6.2 Temperature field

Influences of different prominent variables on temperature are displayed in Figures 5-10). Figure 5 depicts melting parameter \((Me)\) variations for temperature distribution. Higher melting parameter decays temperature distribution. Physically for higher melting \((Me)\) convective flow enhances which cause more heat transfer from hot fluid towards melting surface and as a result the temperature decays. Figure 6 illustrates variation of Brownian motion parameter against temperature. Temperature rises for higher \((N_b)\). Outcomes of radiation \((Rd)\) for temperature is displayed in Figure 7. A reduction in temperature occurs against larger radiation parameter. Figure 8 elucidate temperature variations for thermophoresis parameter \((N_t)\). An augmentation in thermophoresis variable results in temperature enhancement. Figure 9 presents Prandtl number \((Pr)\) outcomes for temperature. Temperature boosts against higher Prandtl number. Decline in thermal diffusivity occurs for higher Prandtl number and temperature enhances against higher \((Pr)\). Figure 10 depict Schmidt number \((Sc)\) variations for temperature. Clearly temperature augmentation occurs for higher Schmidt number.
Table 1: Convergence of $f''(0), \theta'(0), \phi'(0), \chi'(0)$ when $\alpha = \beta = Pr = Pe = 0.5, N_t = N_b = Rd = 0.01, Me = Sc = 0.1, Lb = 0.2$ at various approximations.

Order of approximation	$-f''(0)$	$\theta'(0)$	$\phi'(0)$	$\chi'(0)$
1	0.8125	0.6664	0.4833	0.667
5	0.8284	0.2883	0.2039	0.3045
10	0.8329	0.2063	0.1691	0.2161
15	0.8304	0.1839	0.1504	0.1909
20	0.8304	0.1839	0.1504	0.1803
22	0.8304	0.1839	0.1504	0.1803

Figure 6: $\theta(\eta)$ versus N_b.

Figure 7: $\theta(\eta)$ versus Rd.

Figure 8: $\theta(\eta)$ versus N_t.

Figure 9: $\theta(\eta)$ versus Pr.

6.3 Concentration

Variations of concentration for different variables are presented in Figures 11-14. Figure 11 display outcome of melting parameter for concentration ($\phi(\eta)$). An augmentation in melting parameter result in concentration decay. Figure 12 depict variations of Brownian motion parameter on concentration. Concentration boosts against higher (N_b). Physically molecular diffusivity decreases with augmentation in Brownian motion parameter which results in concentration enhancement. Figure 13 display thermophoresis outcome on concentration ($\phi(\eta)$). A decline in concentration is observed for larger values of thermophoresis (N_t). Figure 14 elucidate outcome of Schmidt number for concentration ($\phi(\eta)$). With an increment in Schmidt number concentration boosts. Basically mass transfer decays form hot fluid to cold surface which is responsible for concentration enhancement.
6.4 Microorganism

Influences of bio convection lewis number \((Lb)\), microorganism concentration difference \((\Omega)\), Peclet number \((Pe)\) and melting parameter \((Me)\) on microorganism field are displayed in Figures 15-18. Figure 15 displays impact of bio convection Lewis number on microorganism field. A decline in microorganism field occurs for higher values bio convection Lewis number. Influence of Peclet number on microorganism field is plotted in Figure 16. Higher Peclet number results in microorganism field enhancement. Figure 17 illustrates the impact of \((\Omega)\) on microorganism field. An augmentation in microorganism field occurs against higher \((\Omega)\). Figure 18 depict outcomes of melting parameter for microorganism field. Microorganism field reduces against higher melting variable \((Me)\).

6.5 Entropy rate

Variations of radiation \((Rd)\) and Brinkman number \((Br)\) on entropy rate are presented in Figures 19-20. Figure 19 depicts outcomes of Brinkman number for entropy rate \((S_G(\eta))\). An augmentation in entropy rate occurs against higher Brinkman number. Since viscous forces increases for higher Brinkman number which causes disturbance in the system and consequently entropy rate boosts against Brinkman number. Figure 20 shows outcome of radiation.
for entropy rate ($S_G(\eta)$). Clearly entropy rate boosts against higher radiation variable (R_d).

7 Conclusion

Presented work deals with flow of Prandtl fluid in the presence of microorganisms. Surface is subjected to melting heat. Bougiorno model for nanofluid describes nanofluid characteristics while heat transfer character-
istics are explored via thermal radiation and viscous dissipation. It is concluded that velocity increases with an increase in fluid and melting parameters. Decline in temperature of the fluid is noticed for both radiation and melting parameters while it intensifies for larger Brownian motion and thermophoresis parameters. Higher melting parameter causes reduction in concentration while it increases with higher Brownian motion parameter and Schmidt number. Higher Peclet number leads to intensification in microorganism field while it decays against bio-concentration Lewis number. Entropy production rate is higher for Brinkman number and radiation parameter. In future this work can be extended for cavity problems and can be handled by finite element method.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Choi SU. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995;231:99–106.

[2] Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240–50.

[3] Ahmad S, Khan MI, Hayat T, Alsaedi A. Inspection of Coriolis and Lorentz forces in nanomaterial flow of non-Newtonian fluid with activation energy. Phys A Statt Mech App. 2020;54015:123057. https://doi.org/10.1016/j.physa.2019.123057.

[4] Turkyilmazoglu M, Pop I. Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int J Heat Mass Transf. 2013;59:167–71.

[5] Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

[6] Hayat T, Muhammad K, Farooq M, Alsaedi A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 2016;6(1):015214.

[7] Abbas N, Nadeem S, Saleem S, Issakhov A. Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: exponentially stretching. Ain Shams Eng J. 2018;8:552–8.

[8] Alharbi SO. Influence of wall slip and jump in wall temperature on transport of heat energy in hybrid nanofluid. J Therm Anal Calorim. 2021;144:847–54.

[9] Rabbi KM, Sheikholeslami M, Karim A, Shafiee A, Li Z, Tlili I. Prediction of MHD flow and entropy generation by artificial neural network in square cavity with heater-sink for nanomaterial. Physica A. 2020;541:123520.

[10] Khan M, Ahmad L, Yasir M, Ahmed J. Numerical analysis in thermally radiative stagnation point flow of Cross nanofluid due to shrinking surface: dual solutions. Appl Nanosci. 2021. https://doi.org/10.1007/s13230-021-01861-0.

[11] Ghahremanian A, Abbassi A, Mansoori Z, Toghraie D. Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena. J Mol Liq. 2020;3111:113310.

[12] Hayat T, Khan SA, Ijaz Khan M, Alsaedi A. Theoretical investigation of Ree-Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks. Comput Methods Programs Biomed. 2019 Aug;177:57–68.

[13] Hayat T, Shah F, Khan MI, Alsaedi A. Numerical simulation for aspects of homogeneous and heterogeneous reactions in forced convection flow of nanofluid. Results Phys. 2018;8:206–12.

[14] Rasool G, Shafiq A, Alqarni MS, Wakil A, Khan I, Bhutta MS. Numerical Scratnitzation of Darcy-Forchheimer Relation in Convective Magnetohydrodynamic Nanofluid Flow Bounded by Nonlinear Stretching Surface in the Perspective of Heat and Mass Transfer. micromach. 2021;12: https://doi.org/10.3390/ mi12040374.

[15] Khan WA, Rashad AM, Abdou MM, Tlili I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur J Mech B Fluids. 2019;75:133–42.

[16] Mutuku WN, Makinde OD. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comput Fluids. 2014;95(22):88–97.

[17] Khan MI, Waqas M, Hayat T, Khan MI. Alsaedi, Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. Int J Mech Sci. 2017;131-132:426–34.

[18] Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37(10):1421–5.

[19] Farooq S, Hayat T, Alsaedi A, Ahmad B. Numerically framing the features of second order velocity slip in mixed convective flow of Sisko nanomaterial considering gyrotactic microorganisms. Int J Heat Mass Transf. 2017;112:521–32.

[20] Krishnamurthy MR, Gireesha BJ, Prasannakumara BC, Gorla RS. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. Nonlinear Eng. 2016;5(3):147–59.

[21] Prasannakumara BC, Gireesha BJ, Manjunatha PT. Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink. Int J Comput Methods Eng Sci Mech. 2015;16(5):265–74.

[22] Das K. Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Eng J. 2014;5(4):1207–14.

[23] Siddiqui BK, Batool S, Hassan QM, Malik MY. Irreversibility analysis in the boundary layer MHD two dimensional flow of Maxwell nanofluid over a melting surface. Ain Shams Eng J.
[24] Qi R, Wang Z, Ren J, Wu Y. Numerical investigation on heat transfer characteristics during melting of lauric acid in a slender rectangular cavity with flow boundary condition. Int J Heat Mass Transf. 2020;157:119927.

[25] Hayat T, Shah F, Alsaedi A, Ahmad B. Entropy optimized dissipative flow of effective Prandtl number with melting heat transport and Joule heating. Int Commun Heat Mass Transf. 2020;111:104454.

[26] Duan J, Li F. Transient heat transfer analysis of phase change material melting in metal foam by experimental study and artificial neural network. J Energy Storage. 2021;33:102160.

[27] Hayat T, Inayatullah, Alsaedi A. Inayatullah, Alsaedi A. Development of bioconvection flow of nanomaterial with melting effects. Chaos Solitons Fractals. 2021;148:111015.

[28] Rehman KU, Malik AA, Malik MY, Tahir M, Zehra I. On new scaling group of transformation for Prandtl-Eyring fluid model with both heat and mass transfer. Results Phys. 2018;8:552–8.

[29] Samal SK, Moharana MK. Second law analysis of recharging microchannel using entropy generation minimization method. Int J Mech Sci. 2021;193(1):106174.

[30] Bilal M, Sagheer M, Hussain S. Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex Eng J. 2018;57(4):3281–9.

[31] Farooq U, Zhao YL, Hayat T, Liao SJ. Application of the HAM-based mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nanofluid. Comput Fluids. 2015;111:64–75.

[32] Khan NA, Khan H. A Boundary layer flows of non-Newtonian Williamson fluid. Nonlinear Eng. 2014;3(2):107–15.

[33] Ali N, Khan SU, Abbas Z. Unsteady flow of third grade fluid over an oscillatory stretching sheet with thermal radiation and heat source/sink. Nonlinear Eng. 2015;4(4):223–36.

[34] Naveed M, Abbas Z, Sajid M. Hydromagnetic flow over an unsteady curved stretching surface. Eng Sci Technol Int J. 2019;19:841-45.
Table 2: Nomenclature for the considered problem.

Expression	Name	Unit
Pe	Peclet number	Dimensionless
Sc	Schmidt number	Dimensionless
N_t	Thermophoresis parameter	Dimensionless
W_C	Swimming cell speed	$m.s^{-1}$
T	Temperature	K
Br	Brinkman number	Dimensionless
U_w	Stretching velocity	$m.s^{-1}$
α	Fluid material coefficient	$kg.m^{-1}.s^{-1}$
k	Thermal conductivity	$s^{-1}.kg.m.K^{-1}$
a_1, a_2	Temperature and concentration difference parameters	Dimensionless
Me	Melting parameter	Dimensionless
Pr	Prandtl number	Dimensionless
C_{fx}	Skin friction coefficient	Dimensionless
c_s	Heat capacity	$m^2.s^{-1}.K^{-1}$
b	Chemotaxis constant	M
Re_x	Local Reynold number	Dimensionless
T_m	Reference temperature	K
c_p	Specific heat	$m^2.s^{-1}.K^{-1}$
Sh_x	Sherwood number	Dimensionless
Nu_x	Nusselt number	Dimensionless
$(\rho c_p)_{fl}$	Fluid heat capacity	$kg.m^{-1}.s^{-2}.K^{-1}$
ρ_f	Density of fluid	$kg.m^{-3}$
Ec	Eckert number	Dimensionless
f	Dimensionless velocity profile	Dimensionless
D_T	Thermophoresis diffusion coefficient	$m^2.s^{-1}$
C, N	(Concentration, Microorganisms) fluid	$mol.m^{-3}$
ϕ	Dimensionless concentration profile	Dimensionless
$\phi'(0)$	(Concentration, Microorganisms) surface	$mol.m^{-3}$
a	Dimensional constant (positive)	s^{-1}
θ	Dimensionless temperature profile	Dimensionless
(ν_f)	Kinematic viscosity	$m^2.s^{-1}$
u, v	Components of velocity along x, y direction	$m.s^{-1}$
$(\rho c_p)_{nf}$	Nanofluid heat capacity	$kg.m^{-1}.s^{-2}.K^{-1}$
D_m	Microorganism diffusion coefficient	$m^2.s^{-1}$
N_b	Brownian motion parameter	Dimensionless
N_{m}	Microorganism density number	Dimensionless
k^*	Mean absorption coefficient	m^{-1}
h_f	Coefficient of heat transfer	$W.m^{-2}.K^{-1}$
S_0	Entropy rate	Dimensionless
Ω	Microorganism concentration difference parameter	Dimensionless
Rd	Radiation parameter	Dimensionless
L_1	Concentration diffusion parameter	Dimensionless
L_2	Microorganism diffusion parameter	Dimensionless
D_B	Brownian motion coefficient	$m^2.s^{-1}$
α, β	Material parameters	Dimensionless
C_{∞}, N_{∞}	(Concentration, Microorganisms) ambient	$mol.m^{-3}$
τ	Ratio of heat capacities	Dimensionless
T_w, T_{∞}	Surface and ambient temperature	K
χ	Dimensionless microorganism profile	Dimensionless
$\theta'(0)$	Stefan-Boltzmann constant	$kg.s^{-2}.K^{-4}$
λ_1	Latent heat	$kJ.kg^{-1}$
L_b	Bioconvection Lewis number	Dimensionless
a_3	Microorganism difference parameter	Dimensionless