Ethnicity and the association between anthropometric indices of obesity and cardiovascular risk in women: a cross-sectional study

Louise G H Goh, Satvinder S Dhaliwal, Timothy A Welborn, Andy H Lee, Phillip R Della

ABSTRACT

Objectives: The objectives of this study were to determine whether the cross-sectional associations between anthropometric obesity measures, body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR), and calculated 10-year cardiovascular disease (CVD) risk using the Framingham and general CVD risk score models, are the same for women of Australian, UK and Ireland, North European, South European and Asian descent. This study would investigate which anthropometric obesity measure is most predictive at identifying women at increased CVD risk in each ethnic group.

Design: Cross-sectional data from the National Heart Foundation Risk Factor Prevalence Study.

Setting: Population-based survey in Australia.

Participants: 4354 women aged 20–69 years with no history of heart disease, diabetes or stroke. Most participants were of Australian, UK and Ireland, North European, South European or Asian descent (97%).

Outcome measures: Anthropometric obesity measures that demonstrated stronger predictive ability are WHR and WC. WHR was the most predictive at identifying women at increased CVD risk and likelihood of being above the promulgated treatment thresholds of various risk score models.

Results: Central obesity measures, WC and WHR, were better predictors of cardiovascular risk. WHR reported a stronger predictive ability than WC and BMI in Caucasian women. In Northern European women, BMI was a better indicator of risk using the general CVD (10% threshold) and Framingham (20% threshold) risk score models. WC was the most predictive of cardiovascular risk among Asian women.

Conclusions: Ethnicity should be incorporated into CVD assessment. The same anthropometric obesity measure cannot be used across all ethnic groups. Ethnic-specific CVD prevention and treatment strategies need to be further developed.

INTRODUCTION

In Australia, approximately 63% of adults were overweight and obese in 2011–2012. The proportion of the Australian population who are overweight and obese is expected to increase to approximately 66% in the next 5 years. The National Health and Medical Research Council has developed Clinical Practice Guidelines for the Management of Overweight and Obesity for Adults, Adolescents and Children in Australia to provide guidance on assessing and managing obesity.

Overweight and obesity affects all socioeconomic groups in Australia, but it is more prevalent in some ethnic groups. Variations exist in the associations between excess weight and obesity-related conditions among different racial and ethnic groups. Ethnicity significantly affects the associations between anthropometric indices used to assess adiposity such as body mass index.
(BMI) and waist circumference (WC) and cardiovascular disease (CVD) risk factors.

Previous epidemiological studies which assessed the associations between anthropometric indices of obesity and CVD were mostly conducted in Western societies. It is thus not clear which anthropometric obesity measures are more strongly associated with CVD risk in different ethnic groups. To address this, it is necessary to examine the relationship between anthropometric obesity measures and CVD risk by ethnicity and this has been proposed in previous studies as well. These fundamental issues need to be addressed in order to recommend effective weight management and disease prevention strategies to reduce the burden associated with overweight and obesity in all population groups.

The objectives of this study were to determine whether the cross-sectional associations between anthropometric obesity measures (BMI, WC and waist-to-hip ratio (WHR)) and calculated 10-year CVD risk using the Framingham and general CVD risk score models are the same for women of Australian, UK and Ireland, North European, South European and Asian descent. This study would investigate which anthropometric obesity measure is most predictive at identifying women at increased CVD risk in each ethnic group.

METHODS
Study participants
Participants were selected from the third Risk Factor Prevalence Study conducted by the National Heart Foundation (NHF) of Australia in 1989. Residents on the federal electoral rolls of December 1988 in North and South Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart, Darwin and Canberra were invited for the Risk Factor Prevalence Study by systemic probability sampling of sex and 5-year age groups. Complete data were available on 4727 women. Country of birth was used as a surrogate for ethnicity and grouped into regions. Most participants were of Australian, UK and Ireland, North European, South European or Asian descent (97%). We selected a representative sample of 4354 women aged 20–69 years with no history of heart disease, diabetes or stroke for analysis. There were 3329 Australian women, 416 women from the UK and Ireland, 180 Northern European women, 234 Southern European women and 195 Asian women. Further details have been described in the third Risk Factor Prevalence Study and in a previous study.

Ethics statement
Participation was entirely voluntary. Those who participated signed an informed consent form. Participant information was anonymised prior to analysis.

Anthropometry
A single record of height (to the nearest centimetre) and weight (to the nearest 10th of a kilogram) was taken in light summer clothes without shoes. BMI was calculated based on weight in kilograms divided by square of height in metres. Waist and hip circumferences were measured according to standardised methodologies by trained anthropometrists. The WC was measured from the front at the narrowest point between the rib cage and iliac crest after full expiration while the hip circumference (HC) was measured from the side at the maximal extension of buttocks by one observer using a metal tape. A second observer recorded another set of measurements and ensured that the metal tape was kept strictly horizontal at all times. The mean of two measurements was taken at each site to the nearest centimetre. The WHR was calculated based on WC divided by the HC. Information on demographic characteristics, medical conditions and smoking behaviour were collected. Mercury sphygmomanometers were used to record blood pressure levels on the right arm of seated participants 5 min apart. Two readings were taken and the average was used in the analysis. Fasting blood samples were collected in ethylene diamine tetraacetate acid tubes and despatched to the central laboratory at the Division of Clinical Chemistry, Institute of Medical and Veterinary Science, Adelaide each week for cholesterol levels to be assayed.

Risk score models
The Framingham risk score model predicts the 10-year CVD incidence. It was developed from the American Framingham Heart Study using participants aged 30–74 years who were free of CVD and cancer. Risk variables used to calculate the 10-year risk include: age, sex, systolic blood pressure (SBP), diastolic blood pressure, total cholesterol level, high-density lipoprotein (HDL) cholesterol level, smoking status, diabetes status and ECG-left ventricular hypertrophy (ECG-LVH). The most commonly used treatment threshold for the Framingham model was 20%; this denotes that an individual who has a risk score of more than 20% is considered to be at increased risk of experiencing a CVD event within the next 10 years and should be targeted for treatment.

Although the general CVD risk score model for predicting the 10-year CVD incidence and death was also developed based on data from the American Framingham Heart Study, it was developed from a larger cohort and consisted of participants without CVD only. The general CVD risk score model contains these variables: age, total cholesterol level, HDL cholesterol level, SBP, current antihypertensive treatment, smoking status and diabetes status. Treatment thresholds of 10% and 20% were reported for this model.

Statistical analysis
Demographic and clinical characteristics of the sample were described using mean±SD for continuous variables, while counts (percentages) were used for categorical variables. Comparisons between means of continuous
variables were conducted using Analysis of Variance, with age as a covariate and with Bonferroni adjustment for multiple comparisons. Means with different superscripts were significantly different at the 5% level of significance. Non-parametric Spearman’s rank correlation was used to assess the associations between BMI, WC and WHR and the 10-year predicted CVD risk calculated using Framingham and general CVD risk score models by ethnicity, due to the skewness in the distribution of risk variables. These measures were also converted to z-scores (original value subtracted by the mean and the result divided by the SD) to represent the number of SDs above and below the mean of each anthropometric obesity measure for each individual. Logistic regression was used to assess the effects of each standardised obesity measure of being above the recommended treatment threshold for the respective risk score models (10 and 20%), as a result of a 1 SD increment above the mean of each measure of obesity, by ethnicity. These effects were represented using ORs and associated 95% CIs. The predictive ability of these anthropometric obesity measures to identify individuals from different ethnic groups above the treatment threshold of 20% for the Framingham model for 10-year CVD incidence, and 10 and 20% for the general CVD risk score model for 10-year CVD incidence and death was assessed using the area under the receiver operating characteristic (ROC) curve. Ethnic-specific cut-off values of the anthropometric obesity measures and associated level of specificity to predict increased risk of CVD at 70% and 80% sensitivity were also presented. p Values of less than 0.05 were considered to be statistically significant. All statistical analyses were performed with IBM SPSS Statistics V.21.

RESULTS
The demographic and clinical characteristics of the multi-ethnic sample of 4354 women without heart disease, diabetes or stroke are presented in Table 1. Southern European women generally had higher BMI, WC and WHR compared to other ethnic groups, and Asian women had lower anthropometric obesity measures.

All Spearman’s rank correlations were statistically significant (p<0.0005). Overall, WC appeared to have a stronger association with the 10-year predicted risk calculated using the general CVD and Framingham risk score models across all ethnic groups except in European women (table 2). BMI appeared to be more associated with CVD risk calculated using both models in Northern European women, while WHR was more associated with the predicted risk in Southern European women.

The recommended treatment thresholds for the general CVD risk score model at 10% and 20%, and the Framingham risk score model at 20%, were identified from a review of the literature. Table 3 presents the effects of a 1 SD increment in BMI, WC and WHR above the mean on the likelihood of being above the recommended threshold in each ethnic group. Increase in anthropometric measurements was generally associated with an increased likelihood of being above the treatment thresholds for all models. A 1 SD change in all obesity measures in Asian women did not have a significant effect on the CVD risk as calculated using the general CVD model both at the 10% and 20% thresholds. BMI was not effective in predicting the likelihood of being above the treatment threshold across all models for Southern European women.

Table 4 summarises the results in table 3 by presenting only statistically significant anthropometric obesity measures which increase the likelihood of individuals being above the treatment threshold, with measures of obesity ordered corresponding to ORs, from the highest to the lowest. WHR generally recorded higher ORs than WC and BMI and increased the likelihood of individuals of different ethnicity being above the respective treatment thresholds of the respective models. Only BMI presented higher ORs and increased the likelihood of Northern European women being indicated for treatment based

| Table 1 Characteristics of the sample of 4354 women without heart disease, diabetes or stroke by ethnicity |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Count | N | Australia | UK and Ireland | Northern Europe | Southern Europe | Asia |
| Age (years) | Mean±SD | 41.9±13.5 | 45.7±12.5 | 49.0±11.7 | 47.8±10.6 | 40.5±10.9 |
| Current smoker (Yes) | n (%) | 751 (22.6) | 91 (21.9) | 39 (21.7) | 32 (13.7) | 19 (9.7) |
| Weight (kg) | Mean±SD | 65.4±12.6 | 65.2±12.0 | 66.5±12.6 | 66.9±11.8 | 58.6±11.6 |
| Height (cm) | Mean±SD | 162.8±6.0 | 162.3±6.2 | 161.9±6.2 | 161.8±6.1 | 156.8±6.1 |
| BMI (kg/m²) | Mean±SD | 24.7±4.8 | 24.7±4.2 | 25.4±4.6 | 27.2±4.4 | 23.8±4.3 |
| WC (cm) | Mean±SD | 75.9±11.0 | 76.2±10.5 | 78.4±11.9 | 81.2±11.0 | 73.9±10.4 |
| WHR | Mean±SD | 0.76±0.06 | 0.76±0.06 | 0.77±0.07 | 0.79±0.06 | 0.77±0.06 |
| SBP (mm Hg) | Mean±SD | 122±18 | 123±18 | 126±19 | 127±19 | 116±19 |
| HDL (mmol/L) | Mean±SD | 1.5±0.4 | 1.5±0.4 | 1.5±0.4 | 1.4±0.3 | 1.4±0.4 |
| TC (mmol/L) | Mean±SD | 5.4±1.1 | 5.6±1.2 | 5.7±1.3 | 5.7±1.1 | 5.2±1.0 |
| Ratio: HDL to TC | Mean±SD | 3.9±1.3 | 4.0±1.4 | 4.0±1.4 | 4.3±1.4 | 3.9±1.2 |

Means with different superscripts were significantly different at the 5% level of significance, after adjusting for age.

BMI, body mass index; HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure; TC, total cholesterol; WC, waist circumference; WHR, waist-to-hip ratio.
on the predicted risk calculated from the general CVD model at the 10% threshold but not 20% threshold and Framingham model at the 20% threshold. WC recorded higher ORs in Asian women using the Framingham model at the 20% threshold. WC recorded higher ORs in Asian women using the Framingham model at the 20% threshold. WHR, however, was the better indicator of CVD risk using the general CVD risk score model with a 20% threshold in Northern European women. In Asian women, WC reported a consistently higher area under the ROC curve, sensitivity and specificity across all CVD models and thresholds. The area under the ROC curve values ranged from 0.630 to 0.688 and specificity values ranged from 50.5% to 53.3% at 80% sensitivity in Asian women. The cut-off values for BMI, WC and WHR are also presented in Table 5. A WHR value of 0.75 would indicate increased CVD risk for women from Australia and the UK and Ireland, while a value of 0.78 would indicate increased risk for Southern European women. In Asian women, a WC of 71.8 cm would indicate increased CVD risk. A BMI of 24.4 kg/m² would indicate increased risk in Northern European women. The diagnostic abilities of the various anthropometric obesity measures to identify women as being above the threshold and hence identified for treatment vary according to ethnic groups.

DISCUSSION

Our study found anthropometric measures of central obesity (WC and WHR) to be better indicators of CVD risk as they measure ectopic body fat (fat stored in the abdominal region), which is associated with decreased...
glucose tolerance, reduced insulin sensitivity, adverse lipid profiles and other metabolic abnormalities, which are risk factors for CVD and diabetes. Stronger associations were also reported between WC and the 10-year predicted CVD risk calculated using the general CVD and Framingham risk score models compared with BMI and WHR across most ethnic groups, while WHR recorded higher ORs than WC and BMI and increased the likelihood of women being above the respective treatment thresholds of the models. WHR also presented higher area under the ROC curve, sensitivity and specificity values. Our findings are consistent with previous studies which have shown that WC and WHR, measures of central adiposity, are superior to BMI in predicting CVD and other obesity-related risk. WC has already been incorporated in the diagnosis of the metabolic syndrome, a cluster of risk factors for CVD and diabetes.

WHR should also be incorporated into CVD risk assessment. Our study provided evidence that WHR is a better diagnostic predictor of CVD than BMI and WC. It is also suitable for assessing adiposity and CVD risk in multiethnic cohorts as it has low measurement error, high precision and no bias over a wide range of ethnic groups. Equivalence tests across ethnic groups showed WHR to be independent of ethnicity. Similar cut-off values for WHR could also be applied across ethnic groups; a value of 0.75 and 0.78 would indicate increased CVD risk for women of Australia and UK and Ireland, and of Southern Europe descent, respectively. A study conducted on Latin Americans, non-Hispanic Whites and Blacks and Hispanics to estimate the accuracy and optimal cut points for BMI, WC and WHR also found that a cut point of 0.91 for WHR and 94 cm for WC could be used among women of different ethnicity to identify those at high coronary heart disease (CHD) risk. WHR also reported the highest area under the ROC curve across all ethnic groups, ranging from 0.75 to 0.82. It was also the most accurate measure to screen for high CHD risk individuals. Another large case–control study of markers of obesity and myocardial infarction confirmed that WHR is a stronger indicator of myocardial infarction than BMI and increased the population attributable risk of obesity by more than threefold in all ethnic groups. The superiority of WHR over BMI and WC in predicting CVD risk is also demonstrated in prospective studies.

The measurement of WHR, however, may pose some challenges. For example, it may be inappropriate to measure HC in certain cultures, but this can be overcome with same sex observers. Some studies reported that WHR is imprecise while others reported that it is a precise measure. The differing results could be related to the rigour of the techniques used; standardised techniques need to be adopted when measuring WHR.

A study which evaluated the precision of measuring WHR, WC and HC with comparison across ethnic groups using data from the third Risk Factor Prevalence Study found that the coefficients of variation were 0.91% for WHR, 0.78% for WC and 0.57% for HC, less than 1%, indicating good precision in females. The measurement error was 0.02 for WHR, 1.66 cm for WC and 1.59 cm for HC between two successive measurements in females. In addition, the absolute difference between two WHR measurements for females was not significantly associated with the size of the participants. WHR is not suitable for assessing central adiposity in the elderly due to laxity of their abdominal muscles, which would undermine the predictive value of abdominal circumferences. In addition, WHR may remain constant during weight change and is not suitable for monitoring weight loss. Finally, there are technical difficulties in accurately measuring the HC of severely obese individuals (BMI ≥ 40 kg/m²). Measurements may be made in the supine position to overcome this problem. In clinical settings, it may be more feasible to assess adiposity using WC while WHR could be measured in research studies as it is more informative.

Although WHR was the best anthropometric obesity measure in relation to identifying individuals at increased CVD risk, this did not apply to Northern European women. BMI was a better indicator of CVD risk using the general CVD risk score model at the 10% threshold but not 20% threshold and the Framingham risk score model at the 20% threshold, with higher correlations, higher ORs, higher area under the ROC

Ethnicity	General CVD (threshold=10%)	General CVD (threshold=20%)	Framingham (threshold=20%)
OR criterion	WHR, WC, BMI	WHR, WC, BMI	WHR, WC, BMI
Australia	WHR, WC, BMI	WHR, WC, BMI	WHR, WC, BMI
UK and Ireland	WHR, WC, BMI	WHR, WC, BMI	WHR, WC, BMI
Northern Europe	BMI, WC, WHR	WHR, WC, BMI	BMi, WHR, WC
Southern Europe	WHR, WC	WHR, WC, BMI	BMi, WHR, WC
Asia	–	WC, WHR, BMI	

*p=0.054.

Each cell represents statistically significant anthropometric measures of obesity ordered corresponding to ORs, from the highest to lowest. BMi, body mass index; WC, waist circumference; WHR, waist-to-hip ratio.
Table 5 Area under the curve and cut points for anthropometric measurements of general and central obesity to predict increased risk of CVD using risk score models at different thresholds for various levels of sensitivity and specificity by ethnicity

AUC	Sensitivity=70%	Sensitivity=80%	
General CVD 10-year predicted risk for CVD incidence and death (threshold=10%)			
Australia			
BMI	0.691 (0.666 to 0.716)	24.2 (60.1%)	23.0 (46.1%)
WC	0.750 (0.727 to 0.772)	77.3 (69.6%)	74.3 (57.9%)
WHR	0.759 (0.736 to 0.783)	0.77 (70.1%)	0.75 (58.0%)
UK and Ireland			
BMI	0.655 (0.584 to 0.726)	23.7 (50.6%)	22.8 (41.2%)
WC	0.676 (0.611 to 0.741)	75.3 (58.5%)	73.3 (51.2%)
WHR	0.729 (0.671 to 0.787)	0.77 (65.6%)	0.75 (52.4%)
Northern Europe			
BMI	0.770 (0.695 to 0.845)	25.8 (71.4%)	24.4 (58.7%)
WC	0.761 (0.682 to 0.840)	77.8 (66.7%)	75.3 (57.1%)
WHR	0.730 (0.642 to 0.817)	0.77 (59.5%)	0.75 (50.8%)
Southern Europe			
BMI	0.618 (0.536 to 0.699)	26.5 (52.8%)	25.5 (44.9%)
WC	0.686 (0.604 to 0.768)	81.8 (62.4%)	78.8 (53.4%)
WHR	0.702 (0.619 to 0.785)	0.80 (61.8%)	0.79 (57.9%)
Asia			
BMI	0.564 (0.411 to 0.717)	21.9 (38.2%)	21.8 (37.6%)
WC	0.651 (0.524 to 0.778)	73.3 (60.0%)	71.8 (52.4%)
WHR	0.614 (0.490 to 0.739)	0.76 (56.5%)	0.76 (54.7%)
General CVD 10-year predicted risk for CVD incidence and death (threshold=20%)			
Australia			
BMI	0.725 (0.677 to 0.772)	25.5 (68.8%)	24.3 (58.1%)
WC	0.782 (0.743 to 0.821)	79.8 (72.3%)	77.8 (66.4%)
WHR	0.784 (0.745 to 0.823)	0.79 (76.3%)	0.77 (65.7%)
UK and Ireland			
BMI	0.550 (0.414 to 0.685)	23.0 (40.2%)	21.7 (25.4%)
WC	0.589 (0.472 to 0.706)	74.8 (52.2%)	73.8 (48.3%)
WHR	0.682 (0.572 to 0.791)	0.77 (61.3%)	0.75 (47.3%)
Northern Europe			
BMI	0.818 (0.727 to 0.908)	28.7 (82.4%)	26.3 (67.3%)
WC	0.861 (0.785 to 0.936)	85.3 (81.1%)	84.3 (79.2%)
WHR	0.866 (0.784 to 0.947)	0.84 (86.8%)	0.83 (84.9%)
Southern Europe			
BMI	0.578 (0.437 to 0.719)	26.8 (51.9%)	26.7 (50.9%)
WC	0.711 (0.562 to 0.859)	84.8 (69.6%)	84.8 (69.6%)
WHR	0.725 (0.553 to 0.897)	0.80 (62.1%)	0.79 (55.6%)
Asia			
BMI	0.555 (0.303 to 0.807)	25.4 (73.1%)	21.9 (37.9%)
WC	0.630 (0.466 to 0.795)	78.3 (73.6%)	71.8 (50.5%)
WHR	0.440 (0.306 to 0.573)	0.76 (52.2%)	0.74 (35.7%)
Framingham 10-year predicted risk for CVD incidence (threshold=20%)			
Australia			
BMI	0.682 (0.657 to 0.707)	24.0 (57.9%)	22.9 (43.8%)
WC	0.745 (0.723 to 0.768)	76.8 (67.5%)	73.8 (55.8%)
WHR	0.759 (0.736 to 0.781)	0.77 (69.7%)	0.75 (58.1%)
UK and Ireland			
BMI	0.656 (0.586 to 0.726)	23.7 (50.6%)	22.5 (37.5%)
WC	0.682 (0.620 to 0.745)	75.3 (58.6%)	73.3 (51.8%)
WHR	0.735 (0.679 to 0.791)	0.77 (65.8%)	0.75 (54.2%)
Northern Europe			
BMI	0.783 (0.710 to 0.856)	26.3 (75.2%)	24.9 (65.1%)
WC	0.770 (0.691 to 0.850)	78.8 (71.3%)	76.3 (60.5%)
WHR	0.742 (0.652 to 0.832)	0.77 (62.8%)	0.75 (51.2%)

Continued
Further, the CVD risk was estimated using risk score models that were assessed in our study. Other risk score models were excluded either because they could not be determined due to the requirement for variables not being assessed in our study (QRISK) or due to the low number of participants above the respective recommended treatment thresholds (SCORE). Finally, the 10-year CVD risk for young adults is very rarely elevated, even in the presence of significant risk factors.

Table 5 Continued

Ethnicity	AUC	Sensitivity=70%	Sensitivity=80%
Southern Europe			
BMI	0.597 (0.514 to 0.680)	25.8 (47.1%)	25.1 (40.1%)
WC	0.680 (0.601 to 0.760)	80.8 (57.6%)	78.3 (53.5%)
WHR	0.711 (0.633 to 0.789)	0.79 (61.6%)	0.78 (51.7%)
Asia			
BMI	0.647 (0.524 to 0.770)	23.5 (55.1%)	21.9 (39.5%)
WC	0.688 (0.586 to 0.790)	73.3 (60.5%)	71.8 (53.3%)
WHR	0.645 (0.530 to 0.759)	0.76 (56.9%)	0.75 (44.3%)

AUC, area under the curve; BMI, body mass index; WC, waist circumference; WHR, waist-to-hip ratio.

CONCLUSIONS

Our study confirms that ethnicity influences the association between anthropometric obesity measures and CVD risk. Central obesity measures such as WC and WHR are better indicators of CVD risk compared to BMI across ethnic groups. WHR is the best anthropometric measure for predicting CVD risk in women except Northern European and Asian women. The treatment threshold used for a risk score model affects the predictive ability of anthropometric obesity measures and the same cut point may not be suitable across ethnic groups.

It is important to incorporate ethnicity in CVD risk assessment. Prevention and treatment efforts should be tailored to meet the needs of each ethnic group. Ethnic-specific CVD prevention strategies need to be developed to promote healthy eating and physical activity to curtail obesity. Continued population-based prospective research is necessary to elucidate the link between obesity and CVD by ethnicity.

Contributors LGHG was involved in drafting the manuscript, performing the analysis, interpretation of data and revising the manuscript critically for important intellectual content. SSD conceived the study, performed the analysis and data interpretation and revised the manuscript critically for important intellectual content. TAW participated in the study design, acquired the data and revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests Curtin University provided educational support to LGHG through the Curtin International Postgraduate Research Scholarship.

Patient consent Obtained.

Ethics approval We have ethics approval for the use of the National Heart Foundation data from the Australian Institute of Health Interim Ethics Committee, after consultation with the Commonwealth Privacy Commissioner, and approval from the Human Research Ethics Committee at Curtin University. This study was carried out in accordance with the Declaration of Helsinki.
REFERENCES

1. Australian Bureau of Statistics. 4364.0.55.001 – Australian Health Survey: First Results, 2011–12 Secondary 4364.0.55.001 – Australian Health Survey: First Results, 2011–12. 2012. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailedPage/4364.0.55.001/012011-12?OpenDocument

2. Sassi F, Devaux M, Cecchini M, et al. The obesity epidemic: analysis of past and projected future trends in selected OECD countries. OECD Health Working Papers, No. 45, OECD Publishing, 2009.

3. National Health and Medical Research Council. Clinical practice guidelines for the management of overweight and obesity in adults, adolescents and children in Australia. Melbourne: National Health and Medical Research Council, 2011.

4. Australian Bureau of Statistics. 4719.0 – Overweight and obesity in adults 2004–05. Canberra: ABS, 2008.

5. O’Dea JA. Gender, ethnicity, culture and social class influences on childhood obesity among Australian schoolchildren: implications for treatment, prevention and community education. Health Soc Care Community 2006;14:282–90.

6. Lear SA, Shu XO, Gao YT, et al. Anthropomorphic predictors of coronary heart disease in Chinese women. Int J Obes 2004;28:734–40.

7. Huxley R, Mends S, Zheleznyakov E, et al. Body mass index, waist circumference and waist/hip ratio as predictors of cardiovascular disease—a review. Eur J Clin Nutr 2010;64:16–22.

8. Razak F, Anand S, Vukan V, et al. Ethnic differences in the relationships between obesity and glucose-metabolic abnormalities: a cross-sectional population-based study. Int J Obes 2005;29:656–67.

9. Lee CMY, Huxley RR, Wildman RP, et al. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol 2008;61:646–53.

10. Obesity in Asia Collaboration. Ethnic comparisons of obesity in the Asia-Pacific region: protocol for a collaborative overview of cross-sectional studies. Obes Rev 2005;6:193–98.

11. Australian Risk Factor Prevalence Study Management Committee. Survey No. 3 1989. Canberra: National Heart Foundation of Australia and Australia Institute of Health, 1990.

12. Dhillawal SS, Welborn TA. Measurement error and ethnic comparisons of measures of abdominal obesity, Prev Med 2009;49:148–52.

13. Boyle CA, Dobson AJ, Egger G, et al. Waist-to-hip ratios in Australia: a different picture of obesity. Aust J Nutr Diet 1993;50:57–64.

14. Alexander H, Dugdale A. Which waist-hip ratio? Med J Aust 1990;153:367–8.

15. Anderson KM, Odel PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J 1991;121(1 Part 2):293–8.

16. Goh LGH, Dhillawal SS, Lee AH, et al. Utility of established cardiovascular disease risk score models for the 10-year prediction of disease outcomes in women. Expert Rev Cardiovasc Ther 2011;9:425–35.

17. D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular disease risk profile for use in primary care – The Framingham Heart Study. Circulation 2008;117:743–53.

18. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update a guideline from the American heart association. J Am Coll Cardiol 2011;57:1404–23.

19. Genest J, McPherson R, Frelich J, et al. Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can J Cardiol 2009;25:567–79.

20. Neil HAW, Perera R, Armitage JM, et al. Estimated 10-year cardiovascular risk in a British population: results of a national screening project. Int J Clin Pract 2008;62:1522–31.

21. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007;93:172–6.

22. Welborn TA, Dhillawal SS. Preferred clinical measures of central obesity for predicting mortality. Eur J Clin Nutr 2007;61:1373–9.

23. Wei M, Gaskill SP, Haffner SM, et al. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in Mexican Americans—a 7-year prospective study. Obes Res 1999;7:568–76.

24. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 2004;79:379–84.

25. Bigaard J, Frederiksen K, Tjonneland A, et al. Waist circumference and waist body composition in relation to all-cause mortality in middle-aged men and women. Int J Obes 2005;29:778–84.

26. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update. About 1. about these statistics.2. American Heart Association. Circulation 2011;123(4):e2–e26.

27. Anderson KM, Odell PM, Wilson PW, et al. Relationships between simple anthropometric indices and cardiovascular risk factors. Eur J Clin Nutr 2001;55:S55–S69.

28. Herrera VM, Casas JP, Miranda JJ, et al. Cardiovascular Risk Factor: Diabetes Mellitus/17. End-Stage Renal Disease and Chronic Kidney Disease/18. Nutrition/20. Quality of Care/21. Medical Procedure/22. Economic Cost of Cardiovascular Disease/23. A meta-Analysis Summary Tables/24. Glossary. Circulation 2011;123:e18–209.

29. Herrera VM, Casas JP, Miranda JJ, et al. Interehthnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease. Int J Obes 2009;33:564–76.

30. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. Lancet 2005;366:1640–9.

31. de Koning L, Merchant AT, Pogue J, et al. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 2007;28:850–6.

32. See R, Abdullah SM, McGuire DK, et al. The association of differing measures of overweight and obesity with prevalent atherosclerosis: the Dallas heart study. J Am Coll Cardiol 2007;50:752–9.

33. Welborn TA, Dhillawal SS, Bennett SA. Waist-to-hip ratio is the dominant risk factor predicting cardiovascular death in Australia. Med J Aust 2003;179:580–5.

34. Dhillawal SS, Welborn TA. Measurement error and ethnic comparisons of measures of abdominal obesity, Prev Med 2009;49:148–52.

35. Boyle CA, Dobson AJ, Egger G, et al. Waist-to-hip ratios in Australia: a different picture of obesity. Aust J Nutr Diet 1993;50:57–64.

36. Alexander H, Dugdale A. Which waist-hip ratio? Med J Aust 1990;153:367–8.

37. Anderson KM, Odel PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J 1991;121(1 Part 2):293–8.

38. Goh LGH, Dhillawal SS, Lee AH, et al. Utility of established cardiovascular disease risk score models for the 10-year prediction of disease outcomes in women. Expert Rev Cardiovasc Ther 2013;11:425–35.

39. D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular disease risk profile for use in primary care – The Framingham Heart Study. Circulation 2008;117:743–53.

40. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update a guideline from the American heart association. J Am Coll Cardiol 2011;57:1404–23.

41. Genest J, McPherson R, Frelich J, et al. Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can J Cardiol 2009;25:567–79.

42. Neil HAW, Perera R, Armitage JM, et al. Estimated 10-year cardiovascular risk in a British population: results of a national screening project. Int J Clin Pract 2008;62:1522–31.
43. Gill PS, Bhopal R, Wild S, et al. Limitations and potential of country of birth as proxy for ethnic group. BMJ 2005;330:196.
44. Bhopal R. Glossary of terms relating to ethnicity and race: for reflection and debate. J Epidemiol Community Health 2004;58:441–5.
45. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11.
46. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336:1475–82.
47. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:987–1003.
48. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults. Circulation 2010;122:e584–636.
49. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev 2007;29:6–28.