Direct Oral Anticoagulant Therapy for Cancer-Associated Venous Thromboembolism in Routine Clinical Practice

Yutaka Ogino, MD; Tomoaki Ishigami, MD; Yugo Minamimoto, MD; Yuichiro Kimura, MD; Eiichi Akiyama, MD; Kozo Okada, MD; Yasushi Matsuzawa, MD; Nobuhiko Maejima, MD; Noriaki Iwashashi, MD; Kiyoshi Hibi, MD; Masami Kosuge, MD; Toshiaki Ebina, MD; Toshiyuki Ishikawa, MD; Kouichi Tamura, MD; Kazuo Kimura, MD, PhD

Background: The efficacy and bleeding complications of direct oral anticoagulant (DOAC) therapy for cancer-associated venous thromboembolism (VTE) in routine clinical practice remain unclear. Moreover, data on long-term outcomes in patients with cancer-associated VTE who received DOAC therapy are limited.

Methods and Results: This retrospective study enrolled 1,096 consecutive patients with acute VTE who received warfarin or DOAC therapy between April 2014 and May 2017. The mean follow-up period was 665±490 days. The number of cancer-associated VTE patients who received DOAC therapy was 334. Patients who could not be followed up and those prescribed off-label under-dose DOAC were excluded. Finally, 303 patients with cancer-associated VTE were evaluated. The number of cases of major bleeding and VTE recurrence was 54 (17.8%) and 26 (8.6%), respectively. In the multivariate analysis, the factors correlated with major bleeding were high cancer stage, high performance status, liver dysfunction, diabetes mellitus, and stomach cancer; those correlated with recurrent VTE were initial diagnosis of pulmonary embolism, uterine cancer, and previous cerebral infarction. Major bleeding was an independent risk factor of all-cause death. In the Kaplan-Meier analysis, those who received prolonged DOAC therapy had lower composite major bleeding and recurrent VTE risks than those who did not.

Conclusions: In DOAC therapy for cancer-associated VTE, major bleeding prevention is important because it is an independent risk factor of death.

Key Words: Cancer; Direct oral anticoagulants; Venous thromboembolism

Cancer is a major cause of venous thromboembolism (VTE). Cancer itself increases coagulability and, in addition, surgery, chemotherapy, and usage of central venous catheters for cancer therapy also increase the occurrence of VTE.1 In Japan, unfractionated heparin or warfarin is traditionally used for VTE, whereas in other Western countries, low-molecular-weight heparin is used. In September 2014, direct oral anticoagulant (DOAC) therapy was approved for VTE, and the Japan Circulation Society (JCS) recommended DOAC usage for VTE (Class I).2 Several randomized control trials (RCTs) revealed equivalent efficacy and safety between DOAC therapy and ordinary warfarin therapy.3,4 However, only a few patients with cancer-associated VTE were enrolled in those RCTs, and the efficacy and bleeding complications of DOAC therapy have not been fully elucidated. Moreover, few studies have reported the long-term outcomes of patients with cancer-associated VTE treated with DOACs. Herein, we aimed to evaluate the current state of DOAC therapy for cancer-associated VTE.

Methods
This physician-initiated retrospective study enrolled 1,096 consecutive patients with acute VTE who received oral anticoagulant therapy, comprising warfarin or DOAC, between April 2014 and May 2017 in Yokohama City University Hospital and Yokohama City University Medical Center. Patient data, including age, sex, VTE etiology, and other VTE-related factors, were collected from hospital charts. VTE was diagnosed on the basis of the patient’s symptoms and lower limb ultrasound, contrast-enhanced computed tomography, and ventila-
Major bleeding was defined by the International Society of Thrombosis and Hemostasis criteria: reduction in the hemoglobin level by at least 2 g/dL, transfusion of at least 2 units of blood, or symptomatic bleeding in a critical area or organ. In the present study, each physician ordinarily prescribed DOACs for 3 months and withdrew them after confirmation that the thrombus had disappeared. When the thrombus remained, prolonged therapy was considered. VTE recurrence was defined as the presence of a new thrombus confirmed by objective imaging examinations. The timing of evaluation for recurrent VTE depended on the judgment of each physician in the presence of the following symptoms: leg pain, leg swelling, and dyspnea. As for asymptomatic cases, an increased D-dimer level was considered an indication for objective imaging examinations to monitor for new thrombus formation.

Patients with cancer-associated VTE included those receiving treatment for cancer, such as chemotherapy or radiotherapy, those scheduled to undergo cancer surgery, those with metastasis to other organs, and those with terminal cancer (expected life expectancy ≤6 months) at the time of diagnosis according to a previous study. We confirmed the specific tumor types, performance status (PS), cancer stage, and performance of chemotherapy at the time of VTE diagnosis. The cancer stage was determined using the TNM classification. Cancers with distal metastasis or the highest malignant grade were classified as stage 4. Liver dysfunction was defined as the presence of a chronic hepatic disease (e.g., cirrhosis) or biochemical evidence of significant hepatic derangement (e.g., bilirubin level >2× upper limit or aspartate aminotransferase/alanine aminotransferase/alkaline phosphatase level >3× the upper limit). This definition was derived from the HAS-BLED score.

We evaluated the incidence and characteristics of VTE recurrence, major bleeding, and all-cause death. We also evaluated the composite risk of major bleeding and recurrent VTE between patients who received prolonged therapy and those with non-prolonged therapy. Prolonged therapy was defined as anticoagulant therapy with DOAC and/or initial intravenous anticoagulant for >3 months (90 days).

This study was approved by the Ethics Committee of Yokohama City University Hospital and was conducted in accordance with the Declaration of Helsinki. Written informed consent was given by all of the patients.

Statistical Analysis

All continuous variables are reported as mean±SD and all categorical variables as frequency (percentage). An unpaired t-test was used to compare the continuous variables, and the chi-square test was used to test the difference in the qualitative variables between groups. For all comparisons, P<0.05 was considered statistically significant.

For the factors that were significantly associated with major bleeding, recurrent VTE, and all-cause death by unpaired t-test or chi-square test, a univariate Cox regression analysis was performed. Thereafter, factors with a P-value <0.05 were validated in a multivariate Cox regression analysis. The Kaplan-Meier method was used to compare the composite risk of major bleeding and recurrent VTE between patients receiving prolonged or non-prolonged therapy. SPSS ver. 21 (IBM, NY, USA) was used for the statistical analysis.
Results

Between April 2014 and May 2017, 1,096 patients with acute VTE were treated with OAC therapy in our institutions. Among them, 780 and 316 patients were treated with DOACs and warfarin, respectively. In the DOAC group, there were 334 patients with cancer-associated VTE; 7 patients could not be followed up, and 24 patients were prescribed with off-label under-dose DOAC. Finally, 303 patients with cancer-associated VTE were evaluated in this study (Figure 1). The mean follow-up period was 665±490 days.

Table 1 shows the characteristics of the 303 patients with cancer-associated VTE. As for the primary site of cancer, digestive organ cancers had the greatest number of cases. The number of blood cancer cases was as follows: malignant lymphoma (n=4), multiple myeloma (n=2), myelodysplastic syndrome (n=1), and leukemia (n=1). The number of head and neck cancer cases was as follows: thyroid cancer (n=3), pharyngeal cancer (n=2), nose cancer (n=1), oral cavity cancer (n=1), and submaxillary cancer (n=1). As for the treatment in the acute phase, single-drug therapy with 15mg rivaroxaban BID or 5mg apixaban BID was used. The intravenous anticoagulants used were unfractionated heparin in 63 patients and argatroban in 5 patients. Patients not examined for the presence of pulmonary embolism (PE) included those not examined for the presence of PE according to the judgment of the attending physicians at the time of initial diagnosis of deep vein thrombosis (DVT). The number of patients with PE only was 29. The number of patients with PE and
Table 2. Comparison Between Patients With and Without Major Bleeding

	Bleeding (n=54)	No bleeding (n=249)	P value
Age (years)	72.8±9.0	72.1±10.4	0.64
Female sex	28 (51.9%)	113 (45.4%)	0.39
Body weight (kg)	53.5±11.8	54.7±11.8	0.52
Body mass index (kg/m²)	21.7±4.3	21.7±4.0	0.95
≥30 kg/m²	4 (7.4%)	7 (2.8%)	0.10
PE	29 (53.7%)	116 (46.6%)	0.34
Not examined for presence of PE	5 (9.3%)	15 (6.0%)	0.39
Proximal DVT	15 (27.8%)	66 (26.5%)	0.85
Distal DVT	39 (72.2%)	190 (76.3%)	0.53
Symptomatic VTE	23 (42.6%)	87 (34.9%)	0.29
Primary site of cancer			
Stomach	13 (24.1%)	31 (12.4%)	0.028
Colorectum	13 (24.1%)	68 (27.3%)	0.63
Pancreas	4 (7.4%)	26 (10.4%)	0.5
Esophagus	2 (3.7%)	4 (1.6%)	0.32
Bile duct	3 (5.6%)	15 (6.0%)	0.89
Gallbladder	0 (0.0%)	4 (1.6%)	0.35
Liver	2 (3.7%)	4 (1.6%)	0.32
Lung	6 (11.1%)	18 (7.2%)	0.34
Breast	1 (1.9%)	12 (4.8%)	0.33
Uterus	4 (7.4%)	12 (4.8%)	0.44
Ovary	3 (5.6%)	11 (4.4%)	0.72
Prostate	1 (1.9%)	7 (2.8%)	0.69
Urinary bladder	0 (0.0%)	7 (2.8%)	0.21
Kidney	0 (0.0%)	4 (1.6%)	0.35
Blood	1 (1.9%)	7 (2.8%)	0.69
Head and neck	1 (1.9%)	7 (2.8%)	0.69
Nerve	0 (0.0%)	5 (2.0%)	0.29
Skin	0 (0.0%)	3 (1.2%)	0.42
Bone	0 (0.0%)	1 (0.4%)	0.64
Unknown origin	0 (0.0%)	3 (1.2%)	0.42
Cancer stage			
1–3	19 (35.2%)	163 (65.5%)	<0.001
4	35 (64.8%)	86 (34.5%)	
Performance status			
0	7 (13.0%)	112 (45.0%)	<0.001
1	32 (59.3%)	109 (43.8%)	0.038
2–4	15 (27.8%)	28 (11.2%)	0.0016
Chemotherapy	40 (74.1%)	133 (53.4%)	0.0054
Hypertension	28 (51.9%)	94 (37.8%)	0.055
Diabetes mellitus	15 (27.8%)	27 (10.8%)	0.001
Previous stroke	4 (7.4%)	8 (3.2%)	0.15
Liver dysfunction	11 (20.4%)	17 (6.8%)	0.0018
Laboratory results at diagnosis			
D-dimer level (μg/mL)	12.6±12.9	10.3±13.9	0.26
eGFR (mL/min/1.73m²)	68.1±23.5	70.4±19.8	0.48
Hemoglobin level (g/dL)	10.8±1.79	11.4±1.91	0.035
Platelet count (×10⁴/dL)	25.5±12.1	23.5±9.7	0.18
Treatment in the acute phase			
Single-drug therapy	7 (13.0%)	41 (16.5%)	0.52
Intravenous anticoagulant	19 (35.2%)	49 (19.7%)	0.013
Medications at diagnosis			
Antiplatelet agents	6 (11.1%)	20 (8.0%)	0.46
Non-steroidal antiinflammatory drugs	10 (18.5%)	24 (9.6%)	0.061
Corticosteroids	3 (5.6%)	11 (4.4%)	0.72
Median duration of anticoagulant therapy (days)	86	188	<0.001

Abbreviations as in Table 1.
Table 3. Comparison Between Patients With and Without VTE Recurrence

	Recurrence (n=26)	No recurrence (n=277)	P value
Age (years)	67.0±16.4	72.5±9.8	0.058
Female sex	14 (53.8%)	127 (45.8%)	0.43
Body weight (kg)	55.6±15.6	54.1±11.6	0.11
Body mass index (kg/m²)	21.8±5.4	21.6±4.0	0.17
≥30 kg/m²	2 (7.7%)	9 (3.2%)	0.25
PE	18 (69.2%)	127 (45.8%)	0.022
Not examined for PE	0 (0.0%)	20 (7.2%)	0.16
Proximal DVT	8 (30.8%)	73 (26.4%)	0.63
Distal DVT	20 (76.9%)	209 (75.5%)	0.87
Symptomatic VTE	12 (46.2%)	98 (35.4%)	0.27
Primary site of cancer			
Stomach	1 (3.8%)	43 (15.5%)	0.11
Colorectum	8 (30.8%)	73 (26.4%)	0.63
Pancreas	1 (3.8%)	29 (10.5%)	0.28
Esophagus	0 (0.0%)	6 (2.2%)	0.45
Bile duct	2 (7.7%)	16 (5.8%)	0.69
Gallbladder	0 (0.0%)	4 (1.4%)	0.53
Liver	0 (0.0%)	6 (2.2%)	0.45
Lung	3 (11.5%)	21 (7.6%)	0.47
Breast	2 (7.7%)	11 (4.0%)	0.37
Uterus	4 (15.4%)	12 (4.3%)	0.015
Ovary	1 (3.8%)	13 (4.7%)	0.84
Prostate	0 (0.0%)	8 (2.9%)	0.4
Urinary bladder	1 (3.8%)	6 (2.2%)	0.59
Kidney	1 (3.8%)	3 (1.1%)	0.24
Blood	1 (3.8%)	7 (2.5%)	0.69
Head and neck	1 (3.8%)	7 (2.5%)	0.69
Nerve	0 (0.0%)	5 (1.8%)	0.49
Skin	0 (0.0%)	3 (1.1%)	0.59
Bone	0 (0.0%)	1 (0.36%)	0.76
Unknown origin	0 (0.0%)	3 (1.1%)	0.59
Cancer stage			
1–3	13 (50.0%)	169 (61.0%)	0.27
4	13 (50.0%)	108 (39.0%)	0.27
Performance status			
0	11 (42.3%)	108 (39.0%)	0.74
1	13 (50.0%)	128 (46.2%)	0.71
2–4	2 (7.7%)	41 (14.8%)	0.32
Chemotherapy	16 (61.5%)	157 (56.7%)	0.63
Hypertension	14 (53.8%)	108 (39.0%)	0.14
Diabetes mellitus	4 (15.4%)	38 (13.7%)	0.81
Previous stroke	3 (11.5%)	9 (3.2%)	0.038
Liver dysfunction	4 (15.4%)	24 (8.7%)	0.26
Laboratory results at diagnosis			
D-dimer level (µg/mL)	10.6±8.5	10.7±14.1	0.98
eGFR (mL/min/1.73m²)	67.9±23.0	70.0±20.4	0.99
Hemoglobin level (g/dL)	10.8±2.55	11.3±1.9	0.89
Platelet count (×10⁶/dL)	22.7±5.8	24.0±10.5	0.64
Treatment in the acute phase			
Single-drug therapy	4 (15.4%)	44 (16.1%)	0.95
Intravenous anticoagulant	4 (15.4%)	64 (23.1%)	0.37
Medications at diagnosis			
Antiplatelet agents	2 (7.7%)	24 (8.7%)	0.87
Non-steroidal antiinflammatory drugs	4 (15.4%)	30 (11%)	0.48
Corticosteroids	1 (3.8%)	13 (4.7%)	0.84
Prolonged therapy	14 (53.8%)	186 (67.1%)	0.17
Median duration of anticoagulant therapy (days)	211	427	0.76

Abbreviations as in Table 1.
Table 4. Comparison Between Patients Who Survived or Died

	Died (n=173)	Survived (n=130)	P value
Age (years)	72.2±10.9	72.3±9.0	0.94
Female sex	73 (42.2%)	68 (52.3%)	0.08
Body weight (kg)	52.6±11.5	57.0±11.8	0.0013
Body mass index (kg/m²)	21.0±4.1	22.6±3.8	<0.001
≥30kg/m²	6 (3.5%)	5 (3.8%)	
PE	88 (50.9%)	57 (43.8%)	0.23
Not examined for presence of PE	13 (7.5%)	7 (5.4%)	0.46
Proximal DVT	55 (31.8%)	26 (20%)	0.02
Distal DVT	122 (70.5%)	107 (82.3%)	0.018
Symptomatic VTE	67 (38.7%)	43 (33.1%)	0.31
Primary site of cancer			
Stomach	28 (16.2%)	16 (12.3%)	0.34
Colorectum	39 (22.5%)	42 (32.3%)	0.057
Pancreas	23 (13.3%)	7 (5.4%)	0.023
Esophagus	5 (2.9%)	1 (0.77%)	0.19
Bile duct	9 (5.2%)	9 (6.9%)	0.53
Gallbladder	4 (2.3%)	0 (0.0%)	0.08
Liver	2 (1.2%)	4 (3.1%)	0.23
Lung	17 (9.8%)	7 (5.4%)	0.16
Breast	7 (4.0%)	6 (4.6%)	0.8
Uterus	11 (6.4%)	5 (3.8%)	0.33
Ovary	7 (4.0%)	7 (5.4%)	0.58
Prostate	3 (1.7%)	5 (3.8%)	0.26
Urinary bladder	3 (1.7%)	4 (3.1%)	0.44
Kidney	0 (0.0%)	4 (3.1%)	0.02
Blood	5 (2.9%)	3 (2.3%)	0.75
Head and neck	3 (1.7%)	5 (3.8%)	0.26
Nerve	4 (2.3%)	1 (0.77%)	0.3
Skin	1 (0.58%)	2 (1.5%)	0.4
Bone	0 (0.0%)	1 (0.77%)	0.25
Unknown origin	2 (1.2%)	1 (0.77%)	0.74
Cancer stage			
1–3	64 (37%)	118 (90.8%)	<0.001
4	109 (63%)	12 (9.2%)	
Performance status			
0	28 (16.2%)	91 (70%)	<0.001
1	107 (61.8%)	34 (26.2%)	
2–4	38 (22%)	5 (3.8%)	
Chemotherapy	113 (65.3%)	60 (46.2%)	<0.001
Hypertension	66 (38.2%)	56 (43.1%)	0.39
Diabetes mellitus	27 (15.6%)	15 (11.5%)	0.31
Previous stroke	11 (6.4%)	1 (0.77%)	0.014
Liver dysfunction	24 (13.9%)	4 (3.1%)	0.0013
Laboratory results at diagnosis			
D-dimer level (µg/mL)	11.5±12.5	9.6±15.1	0.25
eGFR (mL/min/1.73 m²)	69.6±20.6	70.5±20.5	0.7
Hemoglobin level (g/dL)	11.0±1.9	11.6±1.8	0.0055
Platelet count (×10⁴/dL)	25.0±10.5	22.4±9.5	0.03
Treatment in the acute phase			
Single-drug therapy	27 (15.6%)	21 (16.2%)	0.89
Intravenous anticoagulant	39 (22.5%)	29 (22.3%)	0.56
Medications at diagnosis			
Antiplatelet agents	16 (9.2%)	10 (7.7%)	0.63
Non-steroidal antiinflammatory drugs	26 (15%)	8 (6.2%)	0.015
Corticosteroids	11 (6.4%)	3 (2.3%)	0.096
Major bleeding	51 (29.5%)	3 (2.3%)	<0.001
Recurrent VTE	15 (8.7%)	11 (8.5%)	0.95
Median duration of anticoagulant therapy (days)	141	232	<0.001

Abbreviations as in Table 1.
DVT was 116, and that of patients with DVT only was 138. The number of cases not examined for the presence of PE was 20.

Figure 2 shows the Kaplan-Meier curve estimates for the rate of discontinuation of anticoagulation. In the follow-up period, 264 patients discontinued DOAC, and of them 103, 103, 54, 2, 1, and 1 patients discontinued DOAC because of difficulty with oral intake due to progression of cancer, disappearance of thrombus, bleeding complication, difficulty of oral intake due to cerebral infarction, bowel perforation, and suicide, respectively.

In the follow-up period, 54 (17.8%) patients developed major bleeding, and 26 (8.6%) patients developed recurrent VTE. A total of 20, 20, 4, 3, 2, 2, 1, and 1 patients had major bleeding in the upper digestive tract, lower digestive tract, brain, urinary bladder, genitals, nasopharynx, hemothysis, spleen, and heart (rupture), respectively. The number of fatal bleeding complications under DOAC therapy was only 2 (hemoptysis and heart rupture). Among the patients with recurrent VTE, 1, 1, 13, 5, and 6 had massive PE, sub-massive PE, non-massive PE, proximal DVT, and distal DVT, respectively. No patients with recurrent VTE died from VTE. Table 2 shows the comparison between patients with and without major bleeding. Table 3 shows the comparison between patients with and without recurrent VTE. The median duration of anticoagulant therapy for patients with and without recurrence was not significantly different. Table 4 shows the comparison between patients who survived and those who died. In the present study, 173 patients died. A total of 160, 4, 1, 1, 1, and 1 patients died because of progression of cancer, cerebral infarction, pneumonia, hemothysis, heart rupture, rupture of a thoracic aortic aneurysm, bowel perforation, and suicide. Table 5 indicates the independent factors that correlated with major bleeding, recurrent VTE, and all-cause death after adjustments in the Cox regression analysis. In the multivariate analysis, high cancer stage, high PS, stomach cancer, diabetes mellitus, and liver dysfunction correlated with major bleeding. Initial diagnosis of PE, uterine cancer, and previous cerebral infarction correlated with recurrent VTE. Conversely, high cancer stage, high PS, pancreatic cancer, liver dysfunction, and major bleeding independently correlated with all-cause death.

Figure 3 shows the Kaplan-Meier curve estimates for the composite outcome of major bleeding and recurrent VTE between patients who received prolonged therapy or non-prolonged therapy. The patients who received prolonged therapy had significantly lower composite risks than those who received non-prolonged therapy (log-rank P<0.001).

Discussion

Some studies have reported the incidence of major bleeding after DOAC therapy for cancer-associated VTE. The SELECT-D study reported that the 6-month cumulative incidence of major bleeding was 6% for rivaroxaban.10 The Hokusai VTE Cancer study revealed that major bleeding occurred in 32 of 522 (6.1%) patients administered with

Major bleeding	Univariate HR (95% CI)	P value	Multivariate HR (95% CI)	P value
Stomach cancer	2.168 (1.16-4.05)	0.015	2.515 (1.306-4.844)	0.006
Stage 4	3.466 (1.957-6.08)	<0.001	1.948 (1.047-3.625)	0.035
Performance status	2.363 (1.677-3.33)	<0.001	2.01 (1.306-3.093)	0.001
Chemotherapy	2.109 (1.146-3.878)	0.016	1.132 (0.589-2.178)	0.71
Diabetes mellitus	2.771 (1.526-5.031)	0.001	1.968 (1.011-3.83)	0.046
Liver dysfunction	4.325 (2.217-8.44)	<0.001	2.759 (1.301-5.853)	0.008
Hemoglobin level	0.824 (0.712-0.954)	0.010	0.926 (0.786-1.092)	0.36
Intravenous anticoagulant usage	1.643 (0.909-2.969)	0.10		
Recurrent VTE				
PE	2.519 (1.095-5.796)	0.030	2.417 (1.029-5.677)	0.043
Uterine cancer	3.629 (1.238-10.63)	0.019	3.276 (1.083-9.910)	0.036
Previous stroke	5.183 (1.536-17.50)	0.008	6.511 (1.876-22.60)	0.003
All-cause death				
Body mass index (kg/m²)	0.929 (0.89-0.971)	0.001	0.966 (0.926-1.008)	0.113
Proximal DVT	1.407 (1.021-1.938)	0.037	0.942 (0.674-1.315)	0.724
Pancreatic cancer	2.152 (1.373-3.372)	0.001	3.207 (1.958-5.180)	<0.001
Stage 4	5.703 (4.121-7.892)	<0.001	4.063 (2.755-5.991)	<0.001
Performance status	2.541 (2.111-3.058)	<0.001	1.907 (1.487-2.445)	<0.001
Chemotherapy	1.624 (1.185-2.226)	0.003	0.776 (0.550-1.094)	0.148
Previous stroke	2.157 (1.169-3.980)	0.014	1.126 (0.572-2.218)	0.731
Liver dysfunction	3.157 (2.042-4.882)	<0.001	1.703 (1.064-2.726)	0.026
Hemoglobin level	0.874 (0.805-0.949)	0.001	1.032 (0.939-1.134)	0.512
Platelet count	1.015 (1.001-1.030)	0.038	1.006 (0.991-1.021)	0.434
Non-steroidal antiinflammatory drug usage	1.685 (1.109-2.561)	0.015	1.059 (0.659-1.702)	0.811
Major bleeding	3.158 (2.257-4.418)	<0.001	1.677 (1.143-2.461)	0.008

CI, confidence interval; HR, hazard ratio. Other abbreviations as in Table 1.
Ogin O Y et al.

Advance Publication

bleeding while on anticoagulant therapy. Studies report that liver dysfunction is a risk factor of dysfunction have been excluded in several RCTs. Some function is not fully elucidated because patients with liver dysfunction also need to use DOACs carefully. In Japan. A higher prevalence of stomach cancer suggests the current study might reflect well the routine clinical practice of stomach cancer than other Western populations; thus, the incidence of stomach cancer in the current study. In the SELECT-D study, the incidence was 14.5%. It is well known that the Japanese population has a higher prevalence of stomach cancer than other Western populations; thus, the current study might reflect well the routine clinical practice in Japan. A higher prevalence of stomach cancer suggests individuals need to use DOACs carefully.

The relationship between DOAC usage and liver dysfunction is not fully elucidated because patients with liver dysfunction have been excluded in several RCTs. Some studies report that liver dysfunction is a risk factor of bleeding while on anticoagulant therapy. However, all those studies mainly evaluated ordinary warfarin therapy. The present study revealed that liver dysfunction also influenced the incidence of major bleeding in DOAC therapy in routine clinical practice. Two other studies support this result and reported that the pharmacokinetics and pharmacodynamics of DOACs were influenced by hepatic impairment.

Regarding recurrent VTE, only 1 massive PE and 1 submassive PE were observed in our study than in those previous studies, which may be mainly attributed to the higher incidence of stomach cancer in the current study. In the SELECT-D study, the incidence of stomach cancer was only 3%, and in the Hokusai VTE Cancer study, the incidence was 1.9%. In the current study, the incidence was 14.5%. It is well known that the Japanese population has a higher prevalence of stomach cancer than other Western populations; thus, the current study might reflect well the routine clinical practice in Japan. A higher prevalence of stomach cancer suggests individuals need to use DOACs carefully.

The relationship between DOAC usage and liver dysfunction is not fully elucidated because patients with liver dysfunction have been excluded in several RCTs. Some studies report that liver dysfunction is a risk factor of bleeding while on anticoagulant therapy. However, all those studies mainly evaluated ordinary warfarin therapy. The present study revealed that liver dysfunction also influenced the incidence of major bleeding in DOAC therapy in routine clinical practice. Two other studies support this result and reported that the pharmacokinetics and pharmacodynamics of DOACs were influenced by hepatic impairment.

Regarding recurrent VTE, only 1 massive PE and 1 submassive PE were observed in our study than in those previous studies, which may be mainly attributed to the higher incidence of stomach cancer in the current study. In the SELECT-D study, the incidence of stomach cancer was only 3%, and in the Hokusai VTE Cancer study, the incidence was 1.9%. In the current study, the incidence was 14.5%. It is well known that the Japanese population has a higher prevalence of stomach cancer than other Western populations; thus, the current study might reflect well the routine clinical practice in Japan. A higher prevalence of stomach cancer suggests individuals need to use DOACs carefully.
Conclusions

In DOAC therapy for cancer-associated VTE, prevention of major bleeding is important because it is an independent risk factor of death.

Acknowledgments

We sincerely thank the members of the departments of Medical Science and Cardiorenal Medicine of Yokohama City University Hospital.

Data Availability

The deidentified participant data will not be shared.

Institutional Review Board Information

Yokohama City University, Center for Novel and Exploratory Clinical Trials (reference no. B160401015).

Disclosure

K.K., M.K. are members of Circulation Journal Editorial Team.

References

1. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol 2009; 27: 4839–4847.
2. JCS Joint Working Group. Guidelines for diagnosis, treatment and prevention of pulmonary thromboembolism and deep vein thrombosis (JCS 2017). http://www.j-circ.or.jp/guideline/pdf/JCS2017_jo_h.pdf (accessed December 10, 2018).
3. Raskob GE, van Es N, Segers A, Angchaisuksiri P, Oh D, Boda Z, et al; Hokusai-VTE investigators. Edoxaban for venous thromboembolism in patients with cancer: Results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol 2016; 3: e379–e387.
4. Prins MH, Lensing AW, Brighton TA, Lyons RM, Rehm J, Trajanovic M, et al. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): A pooled subgroup analysis of two randomised controlled trials. Lancet Haematol 2014; 1: e37–e46.
5. Agnelli G, Buller HR, Cohen A, Gallus AS, Lee TC, Pak R, et al. Oral apixaban for the treatment of venous thromboembolism in cancer patients: Results from the AMPLIFY trial. J Thromb Haemost 2015; 13: 2187–2191.
6. Ohgi S, Kanaoka Y. Ultrasound diagnosis of deep vein thrombosis as embolic sources. Jpn J Med Ultrasonics 2004; 31: 337–346.
7. Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients. J Thromb Haemost 2005; 3: 692–694.
8. Yamashita Y, Morimoto T, Amano H, Takase T, Hiramori S, Kim K, et al. Anticoagulation therapy for venous thromboembolism in the real world: From the COMMAND VTE Registry. Circ J 2018; 82: 1562–1570.
9. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest 2010; 138: 1093–1100.
10. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer and venous thromboembolism: Results of a randomized trial (SELECT-D). J Clin Oncol 2018; 36: 2017–2023.
11. Kraaipoen N, Di Nisio M, Mulder FI, van Es N, Beyer-Westendorf J, Carrier M, et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: Results from the Hokusai VTE Cancer study. Thromb Haemost 2018; 118: 1439–1449.
12. Douketis JD, Arneklev K, Goldhaber SZ, Spandorfer J, Halperin F, Horro J. Comparison of bleeding in patients with nonvalvular atrial fibrillation treated with ximelagatran or warfarin: Assessment of incidence, case-fatality rate, time course and sites of bleeding, and risk factors for bleeding. Arch Intern Med 2006; 166: 855–859.
13. Palariti G, Leali N, Coccheri S, Poggi M, Manotti C, D’Angelo A, et al. Bleeding complications of oral anticoagulant treatment: An inception-cohort, prospective collaborative study (ISCOAT): Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 1996; 348: 423–428.
14. Gage BF, Yan Y, Milligan PE, Waterman AD, Culverhouse R, Rich MW, et al. Clinical classification schemes for predicting hemorrhage: Results from the National Registry of Atrial Fibrillation (NRAF). Am Heart J 2006; 151: 713–719.
15. Graft J, Harder S. Anticoagulant therapy with the oral direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban and the thrombin inhibitor dabigatran etexilate in patients with hepatic impairment. Clin Pharmacokinet 2013; 52: 243–254.
16. Mendell J, Johnson L, Chen S. An open-label, phase 1 study to evaluate the effects of hepatic impairment on edoxaban pharmacokinetics and pharmacodynamics. J Clin Pharmacol 2015; 55: 1395–1405.
17. Sakamoto J, Yamashita Y, Morimoto T, Amano H, Takase T, Hiramori S, et al; COMMAND VTE Registry Investigators. Cancer-associated venous thromboembolism in the real world: From the COMMAND VTE Registry. Circ J 2019; 83: 2271–2281.
18. Nakamura M, Miyata T, Ozeki Y, Takayama M, Komori K, Yamada N, et al. Current venous thromboembolism management and outcomes in Japan. Circ J 2014; 78: 708–717.
19. Murin S, Romano PS, White RH. Comparison of outcomes after hospitalization for deep venous thrombosis or pulmonary embolism. Thromb Haemost 2002; 88: 407–414.
20. Prandoni P, Lensing AWA, Piccioli A, Bernardi E, Simioni P, Girolami B, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002; 100: 3484–3488.
21. Yamashita Y, Shiono H, Morimoto T, Yoneda T, Yamada C, Makiyama T, et al. Asymptomatic lower extremity deep vein thrombosis: Clinical characteristics, management strategies, and long-term outcomes. Circ J 2017; 81: 1936–1944.