CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia

Lixiazi He¹,², Christian Arnold²,³, Judith Thoma⁴, Christian Rohde¹,², Maksim Kholmatov²,³, Swati Garg¹,²,⁵, Cheng-Chih Hsiao⁶, Linda Vio³⁷,⁸, Kaiqing Zhang⁹, Rui Sun⁹, Christina Schmidt¹, Maike Janssen¹, Tara MacRae¹⁰, Karin Huber³, Christian Thiede¹¹, Joseé Hébert¹²,¹³,¹⁴, Guy Sauvageau¹⁰,¹³,¹⁴, Julia Spratte¹⁵, Herbert Fluhr¹⁵, Gabriela Aust¹⁶, Carsten Müller-Tidow¹,², Christof Niehrs⁹,¹⁷, Gislene Pereira⁷,⁸, Jörg Hamann⁶, Motomu Tanaka¹⁴,¹⁸, Judith B Zaugg²,³,¹⁹ & Caroline Pabst¹,²,*,¹⁹

Abstract

The heterogeneous response of acute myeloid leukemia (AML) to current anti-leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)-enriched compartments with different self-renewal capacities. How these compartments self-renew remained unclear. Here, we show that GPR56⁺ LSC compartments are promoted in a complex network involving epithelial-to-mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56⁺/CD34⁺ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co-activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC-enriched subsets in vivo and synergize with the Bcl-2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56⁶⁺ AML and propose combined CDK7 and Bcl-2 inhibition as LSC-directed therapy in this disease.

Keywords AML; CDK7 inhibition; GPR56; leukemia stem cell; self-renewal

Subject Categories Cancer; Signal Transduction

DOI 10.15252/emmm.202114990 | Received 14 August 2021 | Revised 6 February 2022 | Accepted 7 February 2022 | Published online 7 March 2022

EMBO Mol Med (2022) 14: e14990

Introduction

Acute myeloid leukemia (AML) is a hematologic malignancy affecting both young and elderly patients, for whom intensive therapies are often not an option (Döhner et al, 2015). Assessment of cytogenetic and molecular genetic aberrations has become the gold standard for risk stratification and for guiding therapeutic decisions for AML patients harboring targetable mutations (Döhner et al, 2017). Targeting mutated proteins by small molecules such as IDH1/2 or...
FLT3 inhibitors has considerably broadened the therapeutic repertoir in AML and improved survival (reviewed in refs. Kindler et al., 2010; Chaturvedi et al., 2013). However, when given as monotherapy, they usually delay leukemia progression rather than permanently eradicate the disease (Kindler et al., 2010). Moreover, there is large heterogeneity in patient outcome even within previously defined genetic groups (Cancer Genome Atlas Research Network et al., 2013) demonstrating the need to better understand how targetable and non-targetable mutations together with the induced downstream pathways synergize to drive the disease. While RNA-seq is powerful in detecting global gene expression changes in homogeneous populations, it may miss subtle changes in lowly abundant mRNAs such as transcription factors (TFs), especially in heterogeneous populations such as primary AML samples. Furthermore, expression levels of TFs are not necessarily indicative of their activity, which is often regulated posttranslationally (Filtz et al., 2014). We and others have shown that epigenetic analyses are often more powerful in detecting differences between heterogeneous primary samples, as they also reveal the epigenetic potential (cell fates) rather than only events that have already happened (cell states; Assi et al., 2019; Berest et al., 2019). Besides genetic subtyping, AML can be characterized by shared signaling pathways and aberrant immunophenotypes such as co-expression of CD7, CD56 (Chang et al., 2004), or a CD34lowGPR56high profile, the latter of which we associated with co-mutations in NPM1, DNMT3A, and FLT3-ITD (Garg et al., 2019), and high LSC frequency (Pabst et al., 2016). In AML with an aberrant CD34lowGPR56high profile, both the CD34 positive and negative GPR56+ fractions contain LSCs. Besides establishing GPR56 as an LSC marker, we showed that high GPR56 expression is associated with poor prognosis in AML (Pabst et al., 2016). In line, GPR56 is part of a 17-gene stemness signature associated with poor prognosis in AML (Ng et al., 2016). GPR56 belongs to the adhesion G-protein coupled receptor (aGPCR) family characterized by a 7-transmembrane (7TM) domain, flanked by an intracellular C-terminus and a long extracellular N-terminus, which contains the GPCR proteolytic site (GPS) within the GPCR autoproteolysis-inducing (GAIN) domain (Chiang et al., 2011; Purcell & Hall, 2018). Splice variants have been described to possess overlapping but also non-redundant functions, which might explain why different knock-out strategies caused distinct phenotypes (Kim et al., 2010b; Rao et al., 2015; Li et al., 2020). The impact of GPR56 on Rho signaling and actin cytoskeleton regulation suggested a predominant role in adhesion as shown in the neuronal system (Iguchi et al., 2008) and certain solid tumors (Shashidhar et al., 2005). Despite the associations of GPR56 with poor prognosis in several different cancer entities (Shashidhar et al., 2005; Kausar et al., 2011) and endothelial-to-hematopoietic transition (Solaimani Kartalaei et al., 2015), it was unclear whether and how GPR56 was functionally involved in LSC activity in human AML and how its downstream pathways might be targeted.

Here, we explored chromatin accessibility and transcription factor activities through ATAC-seq profiling of 35 primary human AML samples followed by RNA-seq, functional assays, and preclinical models to dissect the role of GPR56 in the identified network. Our data suggest a model, in which GPR56 by co-activating reciprocally inhibitory signals promotes oscillation of signaling pathways that drive either towards the CD34 positive or negative GPR56+ LSC compartment, which differ by LSC frequency and cycling characteristics (Pabst et al., 2016). Moreover, we identify CDK7/12/13 inhibitors as novel compound class that targets diverse routes in this network and synergizes with the Bcl-2 inhibitor venetoclax to eradicate primary human AML cells.

Results

ATAC- and RNA-seq profiling link GPR56 to increased TF activities associated with EMT, Wnt and Hh signaling

We applied ATAC-seq to 35 primary human AML samples, which represented the full range from low to very high protein expression levels of the LSC marker GPR56, to identify leukemia-driving pathways in GPR56high AML (Fig 1A, Dataset EV1). We identified 247,442 unique chromatin peaks, of which 24,026 were differentially accessible in GPR56high versus (vs) GPR56low AML (false discovery rate, FDR < 5%, see Fig 1A legend for grouping criteria). The shared peaks (32,406 peaks found in at least 30 samples) were enriched in promoters, while more sample-specific peaks were enriched in intergenic/intronic regions (Fig 1B). As the latter often contain regulatory elements, we interrogated EnhancerAtlas 2.0 (Gao & Qian, 2020) and found enrichment for enhancers with known activity in CD34+, AML blasts, and CD8+ T-cells among the GPR56high-specific peaks, whereas enhancers associated with monocytes and macrophages were significantly enriched in the GPR56low group (Fig 1C). These results support previous observations that AML with high GPR56 expression represents a more immature, poorly differentiated type of AML (Pabst et al., 2016).

To assess the role of GPR56 in normal hematopoietic stem and progenitor cells (HPCs), we performed a knockdown (KD) of GPR56 in cord blood (CB) CD34+ cells using shRNAs against GPR56 or luciferase (shLuc) as negative control, followed by RNA-seq (Fig 1D and E). The CB CD34+ cells are hereafter called shGPR56weak and shGPR56strong according to the shRNA’s different efficiency to silence GPR56 (Gao & Qian, 2020) and found enrichment for enhancers with increased activity in GPR56low cells (Fig 1D, Appendix Fig S1A), which might be explained by the different shRNA target sequence localization (Appendix Fig S1B; Kim et al., 2010b). CB CD34+ cells were used as representative, non-mutated model cell type (Pabst et al., 2016) to avoid AML sample-specific results. GO term enrichment analysis of differentially expressed genes determined with Deseq2 revealed “GPCR signaling”, “adhesion” and “migration”, in line with the known role of GPR56 but also pointed toward platelet associated processes and phospholipase activity (Appendix Fig S1C and D, Dataset EV2).

We further explored the ATAC-seq data by applying our computational tool difFTT, which estimates differential TF activities on the basis that chromatin accessibility increases when TFs interact with chromatin at specific TF-binding sites and thus contribute to the ATAC-seq signal (Assi et al., 2019; Berest et al., 2019). In addition, we overlaid difFTT results with the RNA-seq data to assess whether gene expression of differentially active TFs or their respective target genes was affected by GPR56 KD, which would suggest that they act downstream of GPR56. To illustrate how differential TF activities were identified in difFTT, we visualized one example region upstream of the VWF gene locus (Fig 1E) using the integrative genome viewer (IGV). Two differential peaks with stronger ATAC-seq signal in GPR56high vs. GPR56low AML were identified upstream...
of and at the gene start site. These contained binding sites for TAL1, GLI2, RXF1-4, and ITF2, while binding motifs for GATA2 and REST were similarly accessible in GPR56high and GPR56low AML (Fig 1E, upper row). Moreover, VWF mRNA expression was higher in GPR56high vs GPR56low AML (RNA-seq from (Garg et al, 2019), Fig 1E, middle row). Finally, the shRNA-seq dataset revealed a downregulation of VWF in CD34+ cells after GPR56 suppression with both shRNAs (Fig 1E, lower row). Together, these observations indicated that GPR56 functionally upregulates WVF expression, potentially upstream of RXF1-4 and GLI2, which are known TFs in the HH pathway. When applying this approach on a genome-wide level using diffTF, we identified 166 TFs with significantly different activities in the GPR56high vs low group at an FDR of 10% (Fig 1F and Dataset EV3). These comprised several TFs related to Wnt and Hh pathways such as TCF7 (Stemmer et al, 2008), TFE2/TCF4 (Zha et al, 2019), and RXF1-4 (Piaseci et al, 2010) in the GPR56high group, while the GPR56low group was characterized by higher CEBPA activity (ATAC-seq), a TF essential for myeloid differentiation (Kandlci & Grosveld, 2009). The EMT-associated TFs SNAIL1, TWIST1 (Nieto et al, 2016), and TGIF2 (Du et al, 2019) were also more active in GPR56high samples (Fig 1F) but were not affected by GPR56 suppression (Dataset EV2) suggesting that they act upstream of GPR56. In support of this hypothesis, suppression of SNAIL1 and ITF2/TCF4 reduced GPR56 mRNA in external RNA-seq datasets (GSE70872, GSE38236, and Doostparastor Torshizi et al, 2019). We subsequently confirmed suppression of GPR56 upon ITF2 knockdown in our own qRT-PCR experiments (Appendix Fig S1E, Dataset EV4).

To gain more insight into the pathways more active in GPR56high AML, we applied the tool ‘GREAT’ (McLean et al, 2010) to the ATAC-seq data, which identified enrichment for Rho signaling, a hallmark of AML, we applied the tool ‘GREAT’ (McLean et al, 2010). The EMT-associated TFs SNAIL1, TWIST1 (Nieto et al, 2016), and TGIF2 (Du et al, 2019) were also more active in GPR56high samples (Fig 1F) but were not affected by GPR56 suppression (Dataset EV2) suggesting that they act upstream of GPR56. In support of this hypothesis, suppression of SNAIL1 and ITF2/TCF4 reduced GPR56 mRNA in external RNA-seq datasets (GSE70872, GSE38236, and Doostparastor Torshizi et al, 2019). We subsequently confirmed suppression of GPR56 upon ITF2 knockdown in our own qRT-PCR experiments (Appendix Fig S1E, Dataset EV4).

To gain more insight into the pathways more active in GPR56high AML, we applied the tool ‘GREAT’ (McLean et al, 2010) to the ATAC-seq data, which identified enrichment for Rho signaling, a hallmark of AML, we applied the tool ‘GREAT’ (McLean et al, 2010). The EMT-associated TFs SNAIL1, TWIST1 (Nieto et al, 2016), and TGIF2 (Du et al, 2019) were also more active in GPR56high samples (Fig 1F) but were not affected by GPR56 suppression (Dataset EV2) suggesting that they act upstream of GPR56. In support of this hypothesis, suppression of SNAIL1 and ITF2/TCF4 reduced GPR56 mRNA in external RNA-seq datasets (GSE70872, GSE38236, and Doostparastor Torshizi et al, 2019). We subsequently confirmed suppression of GPR56 upon ITF2 knockdown in our own qRT-PCR experiments (Appendix Fig S1E, Dataset EV4).

GPR56 is required for in vitro and in vivo expansion of primary human AML cells

To further characterize the functional role of GPR56, we determined the effects of GPR56 KD on human CD34+ CB and AML cells. Both shRNAs significantly impaired CD34+ cell proliferation and colony formation capacity (Fig 2A, Dataset EV7). For the in vivo experiment, we used unsorted cells with comparable gene transfer in the three conditions prior to injection (40–50% GFP+, as shown in Fig 1D). Strong GPR56 suppression (shGPR56strong) significantly hampered short- (ST) and long-term (LT) HSC engraftment in NSG mice (Fig 2B, Dataset EV7). Analysis of hematopoietic subpopulations at 20 weeks revealed that shGPR56strong had depleted the HSPC compartment in most mice and significantly affected the B lymphoid lineage stronger than the myeloid lineage (Fig 2C, Appendix Fig S2A, Dataset EV7), resulting in an altered CD19+/CD33+ ratio (Fig 2D). ShGPR56weak only showed a trend towards lower engraftment at four weeks and had no disadvantage in overall human CD45+GFP+ engraftment at later time points. However, it also significantly reduced the rare HSPC compartment (CD34+CD33−CD19−SSClow) (Fig 2C) and significantly reduced the CD19+/CD33+ ratio similarly to shGPR56strong (Fig 2D). These results suggested that high expression levels of GPR56 are functionally important for the maintenance of the more primitive human HSPC compartments, while low levels are sufficient to maintain committed progenitors and their progeny in vivo.

To assess the effect of GPR56 suppression on leukemic cells, we transduced eight AML cell lines and observed that four of the five lines most sensitive to GPR56 suppression harbored mutations in either NPM1 (OCI-AML3), DNMT3A (OCI-AML2, OCI-AML3), FLT3-ITD (MV4-11), or had a MECOM/EVI1 overexpression (HNT34), which represent genetic groups that we had previously connected with high GPR56 expression (Pabst et al, 2016) (Appendix Fig S2B, Dataset EV8). To determine whether GPR56 suppression affected the leukemia initiating capacity, a hallmark of LSCs (Lapidot et al, 1994), we transplanted patient-derived xenograft cells in immuno-compromised mice after short overnight lentiviral transduction to avoid effects of GPR56 suppression before injection. We observed that both strong and weak GPR56 suppression significantly hampered leukemic engraftment in mice, while overall human CD45+ levels including non-transduced cells were similarly high in all mice and thus excluded technical issues during transplantation (Fig 2E, Appendix Fig S2C, Dataset EV9).

Given the established connection between GPR56 and Rho signaling, we determined the effects of GPR56 suppression on adhesive and migratory properties of leukemic cells by using microinterferometry. These assays were established by us before and proven to reflect the adhesion properties of hematopoietic and leukemic cells (Burk et al, 2015). To obtain a sufficient number of transfused cells with comparable viability, we selected the K562 cell line for this assay, as these cells were less affected by GPR56 KD within the first days post transduction compared to other cell types (Appendix Fig S2B). This assay revealed a significant reduction of the tight adhesion area on fibronectin-coated glass slides after GPR56 suppression (Fig 2F). Moreover, a high-throughput assay utilizing pressure waves induced by pico-second laser pulse (Yoshikawa et al, 2011; Burk et al, 2015) revealed a significant reduction of the critical pressure for detachment in GPR56 KD vs control conditions (Appendix Fig S2D). In addition, we estimated the active deformation of cells by tracing the cell periphery over time (Burk et al, 2015; Lamas-Murua et al, 2018), which was significantly reduced in GPR56 KD vs control cells (Fig 2G). In summary, these studies provided strong evidence for a functional role of GPR56 in healthy and leukemic HSPCs and confirmed a major impact of GPR56 on the adhesion and deformation capacity of human leukemic cells.

GPR56 enhances Wnt and Hedgehog pathways

As our ATAC- and RNA-seq data pointed towards a role of GPR56 in Wnt and Hh pathways, we next sought to investigate these
Figure 1.

ATAC-seq cohort

- **GPR56**
- **CD34+**
- **CD4+**
- **CD8+**
- **Macrophage**
- **Monocyte**
- **Enhancer cell type**
 - Promoter
 - Intron
 - Intergenic
 - Exon
 - Downstream
 - 5'UTR
 - 3'UTR

Enhancer cell type

- **Monocyte**
- **Macrophage**
- **CD8+**
- **CD4+**
- **CD34+**

- **More accessible in**
 - peaks shared by ≥30 AML ATAC-seq
 - found in at least 15 AML
 - found in at least 1 AML

ATAC-seq peak distribution

- **Promoter**
- **Intron**
- **Intergenic**
- **Exon**
- **Downstream**
- **5'UTR**
- **3'UTR**

Differential transcription factor activity (diffTF)

- **ZBT18**
- **RFX4**
- **MYOG**
- **RFX3**
- **MYF6**
- **FIGLA**
- **TBP**
- **MEF2D**
- **ITF2**
- **HEN1**
- **RFX1**
- **MEIS3**
- **SNAI1**
- **KAISO.S**
- **HOXA10**
- **TCF7**
- **RFX2**
- **TWST1**
- **TGIF2**
- **ELF3**
- **EPAS1**
- **THB.C**
- **RXRB**
- **NR4A3**
- **CEBPE**
- **NFIL3**
- **GMEB2**
- **DBPHLF**
- **CEBPB**
- **CEBPA**
- **CEBPD**
- **TAL1**
- **STFE2**
- **ZBT7B**
- **FLI1**
- **RORA**
- **RFX5**
- **GFI1**
- **XBP1**
- **RARB**

More active in GPR56low

- More active in GPR56high

RNA-seq

- **CD34+**
- **CB**
- **Differential ATAC peaks**
- **diffTF**
- **diffBind**
- **GREAT**
- **DESeq2**

GPR56

- **GPR56high**
- **GPR56low**
- **GPR56med**

Molecular genetics

- **Cytogenetics**
- **Sex**
- **NPM1c**
- **FLT3-ITD**
- **N/F**

Additional data

- **GFP+ GPR56+**
- **shLuc**
- **shGPR56**
- **shGPR56**

MSig Pathways

- **100**
- **200**
- **300**
- **400**

Figure 1.
interactions mechanistically. To test whether and how GPR56 may enter the Wnt pathway (Fig 3A illustrating potential scenarios), we generated full length (FL) and constitutively active C terminal fragment (CTF) versions of GPR56 (Kishore et al., 2016) and used a standard Wnt luciferase reporter assay ("SuperTop", modified Topflash) as readout (Fig 3B, Appendix Fig S3A). Adhesion GPCRs undergo autoproteolytic cleavage at the GPCR proteolytic site (GPS), after which the N-terminus stays non-covalently connected with the CTF. Conformational changes through ligand binding or mechanical stimuli can expose the most N-terminal part of the CTF, also referred to as Stachel-peptide, which may then act as a tethered agonist to cause bilateral frontoparietal polymicrogyria (Piao et al., 2004) (Appendix Fig S3A). All mutants reduced the signal in both, SRF and Wnt reporters. Highlighted are TFs whose RNA expression was positively or negatively affected by GPR56 KD in the RNA-seq dataset.

Pathway enrichment analysis for peaks that are more accessible in GPR56 KD. The GREAT algorithm was used to assign peaks to genes, the MSig database was used for pathway enrichment analysis (Pathway Interaction Database). Shown are all terms with adjusted P-value < 0.05. PW: pathway; (Co)-reg.: (Co-) regulation, act.: activity, NR: nuclear receptor, transcr.: transcription(al), netw.: network, signal.: signaling.

The original experimental and analytical setup. ATAC-seq was performed on 35 AML samples comprising the mutational groups N: NPM1 mutated, F: FLT3-ITD, NF: NPM1/FLT3-ITD, DN/F: DNMT3A/NPM1/FLT3-ITD. Indicated colors represent GPR56 protein expression grouped into high (>70% GPR56+ cells per sample, n = 13), medium (30%-70% GPR56+ n = 5), and low (<30% GPR56+, n = 17), cytogenetic and molecular genetic characteristics, and gender. ATAC-seq data were subjected to the computational pipelines diffTF, diffbind, and GREAT. RNA-seq was performed on cord blood (CB) CD34+ cells after GPR56 knockdown and analyzed by DESeq2. The combined information was used to identify differential TF and signaling pathway activities up- and downstream of GPR56.

A Pie charts showing the distribution of ATAC-seq peaks shared by most samples (top), by at least 15 samples (middle), and those present in at least one sample. Colors indicate the different genomic regions. Chromatin regions that are rather differentially accessible (bottom) are enriched for introns and intergenic regions, which often contain regulatory elements, while shared peaks are more often located in promoter regions (top).

C ATAC-seq peaks more accessible in GPR56 (turquoise) or GPR56 (blue) against the background (gray) are enriched for enhancers associated with specific hematopoietic cell types. P-values and odds ratios are given for a pairwise, two-sided Fisher’s Exact test comparing each category (GPR56 (turquoise)) against the background. Enhancer annotations are taken from EnhancerAtlas 2.0. ***P < 0.0005, **P < 0.005, *P < 0.05.

D Knockdown efficiency of two shRNAs against GPR56 (shGPR56(A) and shGPR56(B)) versus shLuc as negative control measured on protein level by flow cytometry in CD34+ CB cells. Shown are representative FACS plots (left) and the percentage of GPR56+ cells of transduced GFP− cells on day 5 (right panel). Biological replicates N = 4, unpaired t-test, bars and error bars represent mean and SD. ***P < 0.0005, **P < 0.005, *P < 0.05.

E Integrative Genome Viewer (IGV) snapshot showing ATAC-seq peaks along and upstream of the WNT gene in GPR56 KD vs. WT samples (top, average peak size of 10 GPR56 (turquoise) and 15 GPR56 (samples (blue)). RNA-seq reads of the same location in AML samples with high (n = 9) versus low (n = 11) GPR56 expression (two middle tracks), and RNA-seq reads of shLuc versus GPR56 knockdown CD34+ cells (3 bottom tracks, one of two replicates shown for each condition). Track height was group-scaled. Dashed vertical lines indicate binding sites for the annotated TFs. TFBS: transcription factor-binding site derived from the HOCOMOCO V10 database. TSS: transcription start site. TFs in blue bind to differentially accessible chromatin regions.

F Volcano plot of differential TF motif accessibility (activity) in GPR56 KD (turquoise) vs. GPR56 (blue) samples and their corresponding adjusted P-values determined with diffTF. Highlighted are TFs whose RNA expression was also positively or negatively affected by GPR56 KD in the RNA-seq dataset.

Figure 1. ATAC- and RNA-seq profiling positions GPR56 within a Rho/Wnt/Hh network.
Figure 2.
early after serum-starvation with both shRNAs (Appendix Fig S3J, K), significantly reduced overall human CD45+ engraftment, while incomplete KD (shGPR56^{weak}) showed a trend toward lower engraftment at 4 weeks, but no difference at later time points indicating that low GPR56 surface levels might be sufficient for LT-HSC engraftment. Unpaired t-test of log₁₀-transformed values, symbols represent individual mice, horizontal bars represent geometric means, BM: bone marrow.

C Violin plots showing geometric mean (horizontal line) and individual values (circles) of the engraftment levels of different hematopoietic cell types in the bone marrow of NSG mice 20 weeks after transplantation of CB CD34⁺ cells following overnight-infection with shGPR56^{strong} (turquoise) and shGPR56^{weak} (gray) versus shLuc control (violet). Shown are percentages of indicated populations, which are also co-positive for human CD34⁺ cells. HSPC: CD34⁺SC[−]T[−]D[−] CD3⁺ B precursor: CD34⁺CD19⁺CD3⁺ myeloid progenitor (myelo: prog.): CD34⁺CD3⁺CD19⁺, mature B cells: CD19⁺CD3⁺ mature myeloid cells: CD33⁺CD19⁺CD34⁺. Multiple unpaired t-tests of log-transformed values, P-values were Benjamini and Hochberg corrected (P_{adj} < 0.05), **P_{adj} < 0.005, ***P_{adj} < 0.0005. See Appendix Fig S2A for gating strategy.

D Log₁₀-fold changes (log₁₀(%GFP⁺)) of the CD10⁺ (lymphoid) versus CD33⁺ (myeloid) cell ratios within the human CD45⁺ CD34⁺ fractions at final analysis 20 weeks after transplantation. Both shRNAs change the lymphoid/myeloid ratio in favor of myeloid cells. Unpaired t-test of log₁₀(FC) represents individual mice, horizontal bars represent average log₁₀(FC), *P < 0.05.

E GPR56 KD results in highly reduced engraftment of AML-491 in mice. Left: Cells from two independent infections with shGPR56^{strong} were injected in 4 NSG mice. Shown are fractions of GPR56⁺ cells before and after transplantation (Tx). Unpaired t-tests of log₁₀(%GFP⁺) before versus after transplantation. Right: Weak GPR56 KD results in highly reduced engraftment of AML-491 in NSGW41 mice. Cells were injected in 4 recipient NSGW41 mice. Shown are fractions of positively transduced Ametrine (AM)⁺ cells before and 32 weeks after Tx. Unpaired t-tests of log₁₀(%AM⁺) before versus after transplantation. No difference in overall leukemic engraftment (including non-transduced cells) was observed excluding technical issues with injections (Appendix Fig S2C).

F Adhesion of control and GPR56 KD K562 cells on fibronectin-functionalized substrates (Left: Overlay of phase contrast and microinterferometry images of control (above) and GPR56 KD cells (below). The area of tight adhesion extracted by microinterferometry is highlighted in turquoise and violet, respectively. Right: Comparison of adhesion areas extracted by microinterferometry, reduction of adhesion area by factor 1.9 in GPR56 KD cells (P = 1.0 × 10^{−10}), two-sided Mann-Whitney test, box plots showing medians, quartiles, and outliers according to the Tukey method). Technical replicates N_{technical} = 71, Technical replicates N_{replicates} = 104, scale bar 10 μm.

G Active deformation of control and GPR56 KD cells. Left: Cell periphery of control (top) and GPR56 KD (bottom) K562 cells tracked over 60 min. Right: Comparison of deformation power of control and GPR KD cells, showing a reduction of deformation power by factor 1.8 (P < 0.05, two-sided Mann-Whitney test, white triangles of the violin plot represent mean). Technical replicates N_{technical} = 40, Technical replicates N_{replicates} = 40, scale bar 10 μm.

TGFβ, HH, and Wnt pathway activity determine the balance between the GPR56^{CD34} [−] and GPR56^{CD34} ⁺ LSC compartments

Wnt, HH, and EMT regulators had been associated with self-renewal in AML before (Diersk et al, 2008; Wang et al, 2010; Carmichael et al, 2020). To better understand why GPR56 enhances all three processes in parallel, we compared the GPR56 knockdown RNA-seq results with our previously published gene expression study comparing ten sorted CD34⁺GPR56⁻ and CD34⁺GPR56⁺ LSC compartments, which we showed before contain slowly versus more rapidly cycling LSCs, respectively (Pabst et al, 2016; Garg et al, 2019). This combined analysis revealed that key drivers of the three networks, which are all enhanced by GPR56, have divergent expression patterns in the two LSC compartments: While TGFβ1, SRC, and the Hh targets GLI1/GLI2 are overexpressed in the CD34⁺GPR56[−] fraction, the Wnt targets MYC and TNNKS2 are more highly expressed in the CD34⁺GPR56⁺ compartment (Fig 4A, Appendix Fig S4C, summarized in Fig 4B). To gain insight into the mechanism that maintains the differential expression patterns in the two GPR56⁺ compartments, we used small molecule inhibitors and agonists to modulate the pathways in primary bulk and sorted AML cells. We found that Wnt/β-catenin/CBP inhibition by the molecules PRI-724 or iCRT3, increased the phenotypic CD34⁺GPR56[−] LSC fraction in the PDX sample AML-661 (Appendix Fig S4B).

Conversely, the Wnt agonist CHIR99021 or exposure to Wnt3a conditioned media caused a significant loss of this compartment (Appendix Fig S4B and C). In line, PRI-724 increased SRC, TGFβ1, and SNAI1 mRNA expression in AML-661 (Appendix Fig S4D).

In further support of our hypothesis that Wnt antagonizes EMT associated genes in AML, we found that TGFβ1, TWIST1, and SNAI1 were exclusively suppressed by the Wnt/AhR agonist 6-Bio, but not by the pure AhR agonist MeBIO, indicating that the suppression was predominantly caused by the Wnt agonist activity of 6-Bio and not by AhR activation (Appendix Fig S4E).

To test whether modulation of the different pathways caused a real reciprocal shift between the compartments rather than enrichment of one over the other fraction, we performed several sorting experiments. When sorted CD34⁺GPR56[−] cells from AML E218974
Figure 3.
were stimulated with CHIR99021 for 5 days, the CD34+GPR56+ fraction was significantly reduced compared with the differentiation that naturally occurs in standard culture conditions (Fig 4C). Next, we sorted CD34+GPR56+ and CD34 GPR56+ cells from two other primary AML samples and cultured the cells with Wnt antagonist PRI-724, Hh agonist SAG, and TGFβ. The combination of all three molecules was most efficient in maintaining GPR56 expression during the 5-day culture and even generated CD34+GPR56+ cells (Fig 4E, Appendix Fig 4F and G, Dataset EV11).

Together, these results suggest a scenario, in which the Wnt-enhancing activity of GPR56 in the CD34+GPR56+ compartment supports the transition to the more differentiated and more rapidly cycling MYChiPTGFBIlo GPR56+CD34+ compartment. In turn, suppression of Wnt activity and activation of SMO/Hh- and EMT-associated genes replenish the slowly proliferative MYCloTGFBIhi CD34+ fraction (scenario outlined in Fig 4F). This model provides an explanation why specific Wnt and Hh inhibitors are inefficient to eradicate LSCs.

The CDK712/13 inhibitor THZ1 suppresses both GPR56+ LSC compartments in vitro and in vivo

The search for small molecules that might act upstream of the GPR56-associated network led us to the CDK712/13 inhibitor THZ1, as it had been shown to overcome resistance to SMO antagonists in medulloblastoma by acting upstream and independent of SMO (Liu et al, 2019). We therefore tested its activity in primary AML cells and found that it transcriptionally repressed GPR56, as well as Hh, Wnt, and EMT-associated genes (Appendix Fig SSA–C). The CDK7 inhibitor (CDK7i) LDCA297 caused similar, but weaker effects, and had higher half-inhibitory concentrations (IC50) in different AML cell lines and primary AML cells (Appendix Fig 5D). We therefore used THZ1 for in vivo treatment of a GPR56+hi human PDX AML sample (04H112) and found that the molecule significantly suppressed leukemia development during the four-week treatment period (Fig 5B and C). Immunophenotyping of the human cells engrafted in NSG mice revealed a significant reduction of both GPR56+ LSC-enriched compartments (Fig 5D). These effects were still visible after two-week drug withdrawal (Fig 5E). However, the CD34+GPR56+ compartment was replenished in some mice in which this compartment was completely suppressed before drug withdrawal, suggesting that the CD34+GPR56+ fraction was specifically vulnerable to THZ1. In support of this, there was an anti-correlation between the CD34+GPR56+ percentage in eight normal karyotype AML specimens and corresponding half-inhibitory concentrations (IC50) for THZ1, suggesting that THZ1 affected pathways active in this compartment more than pathways in other fractions (Fig 5F). To dissect whether the activity of THZ1 against the GPR56+ compartment was caused by CDK7 or CDK12/13 inhibition, we treated the GPR56+ AML cell line HEL (Fig 5G, Appendix Fig 5E) and healthy CB CD34+ cells (Appendix Fig 5F) with specific CDK7i (YKL5-124) and CDK12/13i (THZ531) (Kwiatkowski et al, 2014; Zeng et al, 2018; Olson et al, 2019). These experiments revealed that only CDK7i, but not CDK12/13i, suppressed GPR56 in these cell types. Further characterization of the compounds revealed that only CDK7i (THZ1, YKL-5-124), but not CDK12/13i (THZ531), suppressed the GPR56 CTI-induced SRF signal in the luciferase reporter assay (Fig 5H, Appendix Fig 5G), while only THZ1 and THZ531, but not YKL-5-124, suppressed the baseline and GPR56-enhanced Wnt reporter signals (Appendix Fig 5H).
Figure 4.
These in vivo and in vitro results suggested that additional compounds are required to more efficiently eradicate both LSC compartments.

CDK7 inhibition synergizes with the Bcl-2 inhibitor venetoclax in vitro and in vivo

As previous studies had already revealed a synergistic effect of THZ1 with venetoclax in other cancers (Cayrol et al., 2017), we tested the synergistic effect of THZ1 and the more specific CDK7i YKL-5-124 alone and in combination with 10 nM, 50 nM, and 500 nM of venetoclax in eleven primary AML samples (Fig 6A, Dataset EV12, Appendix Fig 6A). These included samples of different genotypic groups, as well as patients refractory to salvage chemotherapy, such as 5-azacytidine with venetoclax, or quizartinib with high-dose cytarabine and mitoxantrone. Samples not reaching a half-maximum cell reduction at 500 nM venetoclax were considered venetoclax-resistant. Normalized IC50s for THZ1 were significantly lower with increasing concentrations of venetoclax (Fig 6A, Dataset EV12). As synerigism between drugs is not well reflected by individual IC50s, we used the R package ‘synergyfinder’ (He et al., 2018) to calculate different synergy scores including BLISS and ZIP scores (Bliss, 1939; Yadav et al., 2015; Fig 6A; Dataset EV12). There was in general strong synergism with venetoclax, however, BLISS scores for THZ1 were higher compared with the specific CDK7i YKL-5-124 in most samples. This might be because of the strong MCL1-suppressive activity of THZ1, which is also observed with CDK12/13i, which is weaker or absent with CDK7i and not recapitulated by GPR56 KD (Appendix Fig 6B–D).

Because of the pleiotropic effects of THZ1 including very strong MCL1 suppression, more specific CDK7i have been developed for clinical trials. To assess synergism of CDK7i and venetoclax in vivo, we therefore selected the more specific CDK7i CT7001, an orally active drug, which has entered clinical trials for solid cancers (NCT03363893), after confirming synergism with venetoclax in vitro in two different primary AML samples (Fig 6B, Appendix Fig 6E). The combinatory treatment of CT7001 and venetoclax significantly reduced AML expansion more than venetoclax alone (Fig 6C and D). The low efficacy of CT7001 as monotherapy might be because of the low dosage applied by gavage to reduce side effects (40 mg/kg instead of 100 mg/kg as reported elsewhere (Clark et al., 2017)). While both drugs as monotherapy significantly reduced the CD34+GPR56− compartment within total mouse bone marrow when assessed at the end of the 4-week treatment, only the combination therapy was able to significantly suppress the CD34+GPR56− compartment by the end of the experiment (Fig 6E). FACS profiles assessed at four weeks confirmed that CT7001 affected the CD34+GPR56− more than the CD34+GPR56+ fraction similar to what we had observed with THZ1 (Fig 5D), while venetoclax significantly suppressed overall GPR56+ expression (Fig 6F).

In summary, our data suggest that combined CDK7i/venetoclax treatment might represent an efficient strategy to suppress both GPR56+ LSC compartments in AML (Fig 6G).

Discussion

The rationale for applying ATAC-seq profiling to primary human AML samples was the aim to detect subtle changes in low abundant TF activities that might not be detectable by RNA-seq to identify the network underlying the very poor outcome of AML with high GPR56 expression (Pabst et al., 2016; Garg et al., 2019) including TEs upstream of GPR56. Our combined ATAC-/RNA-seq approach pointed towards EMT regulators, Wnt, Hh, and Rho signaling. Although these pathways have been linked to self-renewal in AML, to target them with small molecule inhibitors has not been proven sufficient to permanently eradicate the disease neither in pre-clinical models (Fukushima et al., 2016; Jiang et al., 2018), nor in the clinical setting (e.g. FDA approved Hh inhibitor glasdegib; Savona et al., 2018; Norsworthy et al., 2019). The inability of these inhibitors to induce durable complete remissions raises the question why targeting bona fide self-renewal pathways seems to rather have transient effects on LSCs, but fails to eliminate them. Here, we propose a model that provides an explanation on how LSCs might escape pathway-specific LSC-directed therapies while attributing GPR56 a pivotal role in this process.

We first dissected in individual functional assays including luciferase reporter assays, IF imaging, and xenotransplantation that...
Figure 5.
GPR56 is functionally important for engraftment of human AML cells in immunocompromised mice and activates not only RhoA signaling, as described before (Piao et al., 2004; Singer et al., 2013; Kishore et al., 2016), but also regulates Wnt and Hh signaling, and EMT-associated gene expression. In particular, our mechanistic studies revealed that GPR56 enhances Wnt signaling in dependence of the co-receptor LRP6. Another example of an aGPCR that modulates Wnt signaling at the co-receptor level is GPR124, which facilitates binding of Wnt7 to Frizzled and thereby promotes Wnt signaling at the co-receptor level is GPR124, which facilitates binding of Wnt7 to Frizzled and thereby promotes Wnt signaling in in vivo. Evidence for reciprocal transition between the two LSC compartments exists: we previously showed that CD34+GPR56+ cells expanded more slowly than CD34+GPR56- cells and were capable of generating all other fractions in vitro and in vivo (Pabst et al., 2016). Here, we provide evidence that the CD34+GPR56- compartment can be regenerated by CD34+ cells from sorted in vitro cells and also in mice, in which the CD34+GPR56+ compartment was completely depleted during THZ1 treatment, further corroborating that the two GPR56+LSC compartments can replenish each other. In line with this scenario, GPR56-regulated genes comprised CCNE1, which has been described to enable quiescent cells to re-enter cell cycle (Campaner et al., 2013).

Reciprocal transition between slowly and rapidly cycling GPR56+ LSCs would also explain how GPR56+ high AML escapes standard chemotherapy treatment. Moreover, the interactions of multiple signaling pathways suggest that inhibiting one of these pathways individually, e.g. as tried with Hh inhibitors will be insufficient to fully block the GPR56-associated network. Our data suggest that combined CDK7/12/13 inhibitors such as THZ1 might be required to overcome these issues. As observed in other cancers (Cayrol et al., 2017), THZ1 synergized with the Bcl-2 inhibitor venetoclax most likely in part by suppressing MCL-1. However, we also observed synergism of venetoclax with more specific CDK7i in vitro and in vivo, which had no or only a weak effect on MCL-1 protein levels suggesting that the synergism between CDK7i and venetoclax was mediated also by other mechanisms than MCL-1 suppression. The precise molecular processes underlying synergism of CDK7i and venetoclax will have to be addressed in future studies. Importantly, synergism of THZ1 and the more specific CDK7i YKL-5-124 occurred also in samples, which were highly resistant to venetoclax alone, and also in FLT3-ITD samples from patients, who were refractory to FLT3-inhibitors, and might therefore offer additional benefits compared to currently available venetoclax-based combination regimens. Together, these results propose combinatorial treatment of venetoclax with CDK7i as promising therapeutic approach to suppress the GPR56+ associated network in AML.

Lixiazi He et al
EMBO Molecular Medicine

Figure 5. CDK7/12/13 inhibitors suppress the GPR56+ LSC compartment in vitro and in vivo.

A Gene expression of GPR56, SMO (left), and TGFβ targets SRC, ZEB1, and ZEB2 (right) normalized to GAPDH in AML-491 cells determined by q-RT-PCR 4 h after treatment with THZ1 0.5 μM or LDC4297 2 μM. Unpaired t-test. Mean, SD, and individual values from three individual treatments. ***P < 0.0005, **P < 0.005, *P < 0.05.

B Setup of in vivo drug treatment. NSG mice were injected with 10^5 AML 04H112 cells. Four weeks post injection, bone marrow (BM) was analyzed for human leukemic engraftment by BM aspiration. Treatment with either THZ1 or vehicle was started in the following week as indicated. BM was analyzed again after the end of the 4-week treatment period.

C Overall percentage of human (huCD34+) leukemic cells in mice before and at the end of the 4-week treatment period. Individual mouse and mean engraftment are shown. Unpaired t-test. ***P < 0.0005. N = 10 mice for each group.

D Left: Representative FACS plots showing the typical CD34highGPR56high profile of sample 04H112 before injection and after the 4-week treatment with THZ1. Right: both LSC compartments, the CD34 GPR56+ and the CD34 GPR56- fractions were significantly reduced in vivo in the THZ1 treatment group. Individual mice and mean engraftment are shown. Unpaired t-test. ***P < 0.0005, **P < 0.005, *P < 0.05. N = 10 mice for each group.

E Left: Overall percentage of human (huCD34+) leukemic cells and the fraction of CD34+GPR56+ among human cells (mean, individual mice) two weeks after drug withdrawal. Right: FACS plot visualizing that the CD34+GPR56+ is re-established upon drug removal. Unpaired t-test, ***P < 0.0005, **P < 0.005, *P < 0.05.

F Correlation plot showing an anti-correlation between the percentage of CD34+ GPR56+ cells in AML samples and the corresponding IC50s for THZ1 determined in the respective samples. Pearson correlation. Each dot represents one sample. See Dataset EV12 for sample characteristics.

G FACS histogram plot (left) and summary bar graph from three replicate wells (right) showing reduction of GPR56 surface expression on the GPR56-positive AML cell line HEL only in conditions that contain the more specific CDK7 inhibitor YKL-5-124, but not those that contain only the specific CDK12/13 inhibitor THZ531. Unpaired t-test, bars and error bars represent mean and SD of three individual treatments, ***P < 0.0005, **P < 0.005, *P < 0.05.

H SRF reporter assay showing dose-dependent suppression of the GPR56-CTF-induced SRF signal by the CDK7 inhibitor YKL-5-124, but not by the CDK12/13 inhibitor THZ531. Four technical replicates. One of the four individual experiments. Unpaired t-test, bars and error bars represent mean and SD, ***P < 0.0005, **P < 0.005, *P < 0.05.
Figure 6.
Materials and Methods

Patient and cord blood samples

Patient samples and cord blood units were collected after obtaining written informed consent in accordance with the Declaration of Helsinki and the Department of Health and Human Services Belmont Report. Cryopreserved AML patient samples were provided by the Medical Department V, Heidelberg University Hospital, Germany, the Department of Internal Medicine I, University Hospital of Dresden Carl Gustav Carus, Germany, the Department of Internal Medicine III, Ludwig-Maximilians-University, Munich, Germany, and the Leukemia Cell Bank of Quebec, Maisonneuve Rosemont Hospital, Montreal, Canada. Samples were provided according to ethically approved protocols by several biobanks. The project was approved by the Research Ethics Board of the Medical Faculty of Heidelberg University. Cord blood units were collected after obtaining written informed consent at the CHU Sainte-Justine, Montreal, Canada, and the Department of Obstetrics at University Hospital Heidelberg, Germany. Patient-derived xenograft AML-491 and AML-661 cells were generated as described before (Vick et al., 2015) and were kindly provided by J. Jeremias and B. Vick.

In vivo experiments

NOD.Cg-PrkdcscidIl2rgnull-Wj/J (NSG) and NOD. Rag1-/-;γcnull-SGM3 (NRGS) mice were purchased from Jackson Laboratories. NOD.Cg-Kitw41Crl PrkdcscidIl2rgnull+W/Was/J (NSGW41) mice were kindly provided by Dr. Claudia Waskow (Cosgun et al., 2014). Female or male mice aged 6–20 weeks were used in our study. They were bred and housed in the specific pathogen-free animal facility at the German Cancer Research Center (DKFZ), Heidelberg. All animal experiments were approved and performed in accordance with the regulatory guidelines of the official committee (Regierungspräsidium Karlsruhe). For xenotransplantation assays, cells were injected in the mice via the tail vein after sublethal irradiation (1.75 Gy for NSG, 2 × 2.5 Gy for NRGS). Engraftment levels were analyzed at indicated time points by bone marrow aspiration, and total marrow was analyzed at final sacrifice. For CB CD34+ experiments, cells were injected after overnight transfusion, and gene transfer was determined by flow cytometry in the remaining cultured cells 48 h later. For Fig 2E, 5 × 10⁵ and 1 × 10⁵ transduced AML-491 cells were injected in NRGS and NSGW41 mice, respectively, after overnight transfusion. Gene transfer was determined by flow cytometry 72 h post transduction. For the THZ1 in vivo treatment, 1 × 10⁵ patient-derived xenograft (PDX-04H112) AML cells were suspended in 200 μl phosphate buffer solution and injected intravenously (i.v.) in NSG mice. Successful engraftment levels were confirmed at week 4 post injection. Intrapерitoneal (i.p.) treatment was started subsequently with either vehicle (1% DMSO + 20% PEG300 + 30% corn oil in water) or THZ1 (10 mg/kg, twice daily, Monday to Friday) for 4 weeks. For the CT7001 and venetoclax in vivo treatment, 1 × 10⁵ patient-derived xenograft PDX AML-661 cells were injected intravenously (i.v.) in sublethally irradiated NSG mice. At 3 weeks post injection, mice were randomly sorted into 4 treatment groups: vehicle (1% DMSO + 20% PEG300 + 30% corn oil in water), 85 mg/kg venetoclax, 40 mg/kg CT7001, or a combination of 85 mg/kg venetoclax and 40 mg/kg CT7001. Mice were dosed orally, once daily, 5 days a week, for 4 weeks. Bone marrow was analyzed by aspiration from one femur in the following week, and treatment was restarted for another two weeks, after which bone marrow was analyzed again.

RNA- and ATAC-seq analyses

ATAC-seq library preparation details

We followed the Omni-ATAC method outlined previously (Buenrostro et al., 2015) for sample preparation. The library was optimized for enrichment for 100–1,000 bp fragments using SPRI beads based size-selection, and the quality of the purified DNA library was analyzed on a Bioanalyzer (2100 Expert software, Agilent Technologies) using High Sensitivity DNA Chips (Agilent Technologies Inc #5067-4626). The appropriate concentration of sample was determined using the Qubit Fluorometer (Molecular Probes). Ten 40 nM samples were pooled and run on a NextSeq 500/550 High Output Kit (Illumina, Inc. San Diego, CA #20024907) and the NextSeq 500 Illumina Sequencer to obtain paired end reads of 75 bp.
ATAC-seq data processing

The processing of ATAC-seq data has been described in detail in a previous study by (Berest et al., 2019). Briefly, we used an in-house Snakemake (Köster & Rahmann, 2012) pipeline that starts with raw fastq files and integrates multiple steps for quality control (FastQC), adaptor trimming (Trimmomatic (Bolger et al., 2014)), alignment (Bouttie2; Langmead & Salzberg, 2012), as well as general and ATAC-Seq specific post-alignment filtering and processing steps (Berest et al., 2019). Noteworthy, the filtering steps include: (i) removing mitochondrial reads and reads from non-assembled contigs or alternative haplotypes, (ii) filtering reads with a mapping quality below 10, (iii) marking and removing non-assembled contigs or alternative haplotypes, (iv) adjusting read start sites as described previously (Buenrostro et al., 2013); and (v) removing reads with insertions or deletions using samtools. Finally, peak calling is done with MACS2 (parameters: - q 0.01 -g hg19 --nomodel --keep-dup all) followed by filtering using bedtools subtract against the publicly available blacklist regions. Last, for quality control, we also obtained various summary statistics and additional files and plots (e.g., coverage files for visualization, transcription start site enrichment, sample-specific fragment length distributions, library complexity measures, PCA, sample correlations).

Differential peak analysis and consensus peak generation

To identify differentially bound peaks between GPR56 high and GPR56 low samples, we used the DiffBind Bioconductor R package (Ross-Innes et al., 2012) with the mutational status as a blocking factor. Consensus peaks were generated with the function dba.peakset using the parameter minOverlap to define the number of samples within which a peak should be present based on all 35 samples, therefore, also including the GPR56 middle ones that were not used further subsequently except for consensus peak generation. We used different values for minOverlap and generated a consensus peakset out of the individual peak files as generated by the ATAC-seq pipeline as outlined above for values of 1, 10, 15, and 30. The consensus peakset based on minOverlap = 10 consists of 109,803 (used as default for all subsequent analyses), for minOverlap = 1 247,442 (used as background for the GREAT analysis), for minOverlap = 15 87,410 and for minOverlap = 30 32,406 peaks.

ATAC-seq PCA

We performed a principal-component analysis (PCA) based on the top 500 variable peaks from the consensus peak (based on the variance using rowVars) based on the variance-stabilized data (see below for details). To summarize and quantify the contribution of each covariate to the overall variability, we then ran a linear regression for each covariate and each of the first 5 PCs and extracted the adjusted R-squared value.

Enrichment analysis of differential ATAC-seq peaks

For annotating the differentially bound peaks, we used multiple methods. First, we used three different consensus peaksets (based on minOverlap = 1, 10, and 30) as well as the differentially bound peaks only and overlapped them with known annotation categories (e.g., promoter, downstream, intragenic, UTR, etc) with the annotatePeak function of the ChIPseeker R/Bioconductor package using the default parameters. For overlaps with the enhancer annotation, we used the human data from the EnhancerAtlas 2.0 (http://www.enhanceratlas.org/; Gao & Qian, 2020).

Last, we also used GREAT (McLean et al., 2010) v3 via the rGREAT Bioconductor package with the consensus peakset based on minOverlap = 1 (see above) as background and as foreground all differentially bound peaks (FDR < 0.05) with either a positive or a negative fold-change.

Differential TF activity analysis

We ran diffTF (Berest et al., 2019) in permutation mode with 1,000 permutations for 640 TFs based on in silico predicted TFBS (using PWMScan, see (Berest et al., 2019) for full details) using TF-binding models from the HOCOMOCO v10 database (Kulakovskiy et al., 2013) with the consensus peakset for minOverlap = 10 as described above and the same design as for DiffBind (i.e., including the mutational status as covariate).

GPR56 KD RNA-seq experiment

Frozen cord blood (CB) MNC from two female donors were thawed, CD34+ cells were isolated by magnetic bead separation as described above, pooled, and transduced with lentiviral particles at multiplicity of infection (MOI) 30 after 48 h pre-stimulation in culture media at a density of 150,000 cells per well in a 12-well plate, 1 ml volume, 2 individual infections per condition. Cells were washed on the next day and sorted for GFP positivity 72 h post infection. Cells were resuspended in Trizol for RNA isolation directly after sorting, and RNA was isolated according to the manufacturer’s instructions followed by an additional purification step on RNaseasy Mini columns. High RNA quality was confirmed by nanodrop and bioanalyzer (RIN between 9.8 and 10). Ovation human FFPE RNA-Seq Library Systems (Nugen) was used for library preparation. Libraries were prepared using random and poly(T) priming, and unstranded, RNA-depleted cDNA libraries were sequenced on an Illumina NextSeq platform.

GPR56 KD RNA-seq data processing

We first performed initial quality control before and after adaptor trimming (cutadapt, -m 30) (Martin, 2011) with FastQC. We then aligned the samples to hg38 using STAR (Dobin et al., 2013) with the parameters --alignSlovelhangMtn 8 --alignSIVDoverhangMin 1 --alignMatesGapMax 1000000 --alignIntronMin 20 --alignIntronMax 1000000 --outFilterType BySamout --outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLenMax 0.04. For gene annotation, we used the Gencode (Harrow et al., 2012) v28 annotation. We then quantified gene counts using featureCounts from the Subread (Liao et al., 2014) package with the parameters -p -B -C -Q 10 -O -s 2 -t exon -g gene_id. For differential expression, we employed DESeq2 (Love et al., 2014) with the design formula “condition,” and size factor normalization to compare both the weak and the strong KD versus control. Finally, we computed and subsequently used the shrunken log2 fold-changes via lfcShrink from DESeq2 (Love et al., 2014) with the apeglm (Zhu et al., 2019) method.

Visualization of ATAC-seq and RNA-seq data

For all heatmaps as well as the PCA, we variance-stabilized the shown data using the vst function from DESeq2.
Cell culture

Frozen cryotubes were briefly thawed in a 37°C water bath and resuspended in warm thawing media containing Iscove’s modified Dulbecco’s medium (IMDM) (Thermo Scientific #21908065) supplemented with 20% Fetal bovine serum (FBS) (Sigma #F7524) and 100 µg/ml DNase I (Sigma #DN25). Primary AML cells were cultured in IMDM supplemented with 15% BIT (bovine serum albumin, insulin, transferrin, Stem Cell Technologies #09500), SCF 100 ng/ml (Shenandoah #100-04), FLT3L 50 ng/ml (Shenandoah #100-21), IL-3 20 ng/ml (Shenandoah #100-80), G-CSF 20 ng/ml (Shenandoah #100-72), β-mercaptoethanol (10⁻⁴ M), Gentamicin (50 µg/ml), and Ciprofloxacin (10 µg/ml). Fresh cord blood samples were subjected to mononuclear cell (CB-MNCs) isolation by Ficoll Hypaque (Thermo # GE17-1440-02) density gradient. CD³4⁺ cells were isolated from CB using MACS microbeads (Miltenyi #130-100-453) for 1–2 rounds and checked for CD³4⁺ purity by FACS. CD³4⁺ cells were cultured in IMDM supplemented with 20% BIT (Stem Cell Technologies #09500), SCF 100 ng/ml (Miltenyi #130-096-695), FLT3L 100 ng/ml (Miltenyi #130-096-479), TPO 50 ng/ml (Miltenyi #130-095-752), β-mercaptoethanol 10⁻⁴ M (Gibco #21985023), Gentamicin 50 µg/ml (Thermo #15750060), and UM171 35 mM (Stem cell technologies #72912). For large-scale cultures, cells were cultured in T25 flasks (Sarstedt #833.920.500), 12-well plates (Sarstedt #833.921.300) at a density of 3.5 × 10⁵ per ml. Wnt3a and control conditioned media were generated as described (Willert et al., 2003).

Cell lines

MV4-11 cells (#ACC 102), OCI-AML2 (#ACC 99), OCI-AML3 (#ACC 582), HL-60 (#ACC 3), Kasumi1 (#ACC 220), KG62 (#ACC 10), KG1a (#ACC 421), U937-AML1 (#ACC 691), HEL (#ACC 11), and HNT34 (#ACC 600) were purchased from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, and cultured according to the company’s recommendations. hTERT-immortalized retinal pigment epithelial cells (RPE-1, ATCC CRL-4000) were maintained in DMEM, 10% FBS prior to serum starvation. RPE-1 cells carrying murine SMO-eGFP were generated as described (Willert et al., 2003).

Reporter assays and reporter cell lines

Wnt and SRF reporter assays

WT or LRP6 KO (LRP6⁻⁻) (Berger et al., 2017) HEK293T cells were cultured in DMEM supplemented with 10% FBS. For the SuperTop Wnt reporter assay, cells were plated in 96-well plates in 3–4 replicates and transfected with 50 ng SuperTop reporter plasmid and 2.5 ng pTκ-Renilla control (Promega) as previously described (Cruciat et al., 2010) together with 50 ng of plasmid DNA carrying either shRNA against GPR56 or cDNA of GPR56 FL, GPR56 CTF, or GPR56 CTF mutants (pcDNA3.1) as indicated using TurboFect transfection reagent (Thermo #R0532) following the supplier’s protocol. Cells were stimulated with Wnt3a-conditioned media overnight one day post transfection when indicated in figures. For detection of Rho pathway activation, the previously described 3DA. Luc SRF reporter system was used together with MAL/MKL1 (Megakaryocytic Acute Leukemia) expression plasmid (Miralles et al., 2003) as positive control and pTκ-Renilla (Promega) for normalization. For bioluminescence detection, which was performed 48-h post transfection, cells were lysed in a 96-well plate format using 1 × passive lysis buffer provided in Dual-Luciferase Reporter Assay System (Promega #E1910), and 25 µl of lysates were transferred into white 96-well plates (Thermo #9502887). Firefly and Renilla luminescence were measured in a Tecan Microplate reader (SPARK). To normalize for transfection efficiency, Firefly luciferase activity was divided by Renilla luciferase activity to obtain Relative Luminescence Units (RLU).

Lentivirus production and transduction

The production of high-titer lentiviral particles was carried out following previously described protocols (Garg et al., 2019). In brief, TurboFect transfection reagent (Thermo #R0532) was used to transiently package 7.5 µg lentiviral vector with 15 µg psPAX2 packaging plasmid and 4.5 µg VSV-G plasmid. psPAX2 was a gift from Didier Trono (Addgene plasmid #12260; http://n2t.net/adding:12260; RRID:Addgene_12260). HEK293T cells were transduced, cultured in DMEM supplemented with 3% heat-inactivated FBS, and lentiviral supernatant was harvested 48 and 72 h post transfection. Ultracentrifugation was performed through a 20% sucrose cushion to concentrate viral supernatants using a Sorvall WX Ultra 100 ultracentrifuge for 2 h at 4°C and 29,000 rpm. The high-titer lentiviral particles were reconstituted in Opti-MEM and stored at ~80°C until use. For transduction of shRNAs, cells were first incubated with protamine sulfate for 30 min, followed by adding lentiviral particles directly into culture media for 12–16 h. Forty-eight to 72 h post infection, gene transfer was checked using flow cytometry.

Colonies assays

After lentiviral transduction, CB CD34⁺ cells were sorted into methycellulose (Methocult, Stem Cell Technologies #4035) supplemented with EPO 3 IU/ml (Cedarlane #102-04-2000 IU) and gentamicin 50 µg/ml (Thermo #15750060) 72 h post infection and plated at 2 ml per well in 12-well plates (Sarstedt #833.921.300). Colonies were analyzed 10–14 days after plating using an inverted microscope and 10× and 20× magnification.

Flow cytometry and cell sorting

Cells were stained using the following antibodies: CD45-Pacific blue (Biolegend #304029), GPR56-PE (Biolegend #358204), CD11b-PECy5 (Biolegend #301308), CD34-APC (BD biosciences #555824), CD14-APC-Cy7 (Biolegend #325620), CD45RA-PE (BD biosciences #555489), CD11b-PECy5 (Biolegend #301308), CD38-PECy7 (BD...
biosciences #560677), in vivo engraftment levels were analyzed with anti-human CD45-APC (BD biosciences #555485), CD33-PECy5 (BD biosciences #551377) and CD19-PECy7 (BD biosciences #557835). Cell sorting was performed on BD FACS Aria II. Data were acquired on a BD LSRII or BD Celesta flow cytometer equipped with a High throughput sampler (HTS) device and analyzed using BD FACS Diva 4.0 and Flowjo X (Treestar Inc.) software.

Quantitative real-time polymerase chain reaction (q-RT-PCR)

Total RNA was extracted using Trizol reagent (Invitrogen/Life Technologies) according to the manufacturer’s instructions. cDNA was obtained from total RNA by reverse transcription using M-MLV RT (Thermo #28025103) in 25 µl reactions. Subsequently, q-RT-PCR was performed on a Biorad q-RT-PCR machine (CFX96 Touch Real Time PCR detection system). GAPDH was used as endogenous control. The q-RT-PCR primers used in the study are listed in Appendix Table S1.

Immunofluorescence and microscopy

The antibodies used were mouse anti-γ-tubulin (Sigma #T6557), rabbit polyclonal anti-Arl13b (Proteintech #17711-1AP), rabbit polyclonal anti α-tubulin (MBL #PM054). For cilia analysis, RPE cells were grown on coverslips coated with fibronectin, followed by lentiviral transduction of shRNAs 24 h post plating. Forty-eight hours were grown on coverslips coated with fibronectin, followed by lentivirus transduction of shRNAs 24 h post plating. Forty-eight hours were grown on coverslips coated with fibronectin, followed by lentiviral transduction of shRNAs 24 h post plating. Forty-eight hours were grown on coverslips coated with fibronectin, followed by lentiviral transduction of shRNAs 24 h post plating.

Compound testing and calculation of synergism

The CDK12/13 inhibitor THZ531 (Selleckchem #S6595), the CDK7/12/13 inhibitor THZ1 (Selleckchem #S7549), and the CDK7 inhibitors YKL-5-124 (Selleckchem #S8863) and LDC4297 (Selleckchem #S7992) were dissolved in DMSO at 50 mM stock concentration and diluted in media so that final DMSO concentration was 0.1% in all conditions. SAG (Selleckchem #S7779) was dissolved in water at 20 mM stock concentration. PRI-724 (#S8968), CHIR-99021 (#S2924), iCRT3 (#S8647), and venetoclax (#S8048) were purchased from Selleckchem and dissolved in DMSO. For in vivo THZ1 treatment, THZ1 (#HY-80013) was purchased from MedChemExpress and dissolved in DMSO at 300 mg/ml stock concentration. For the in vivo combinatorial treatment, CT7001 (Chemietek #CT-CT7001) and venetoclax (Hycultec #HY-15531) were dissolved in vehicle solution (1% DMSO + 20% PEG300 + 30% corn oil in water).

For IC50 calculation and synergism calculation, cells were plated in 384-well plates and incubated with the combinations of different drugs for 3–5 days as indicated in figures. Each treatment condition was performed in at least 3 replicates. Cell viability was measured based on propidium iodide (PI) staining using a BD LSRII or BD Celesta flow cytometer equipped with a High throughput sampler (HTS) device. The resulting dose-response matrix data and Bliss scores were analyzed with the synergfinder R package (Yadav et al, 2015; He et al., 2018). IC50s were calculated with GraphPad Prism v09.

Western blot

For isolation of total lysates, cells were pelleted after 1× PBS wash and lysed in RIPA lysis buffer (Thermo #89900) supplied with protease inhibitor cocktail (Sigma #11836170001). Lysates were collected in new pre-chilled tubes and protein concentration was measured using Bradford reagent (Bio-Rad #500-025) and BSA standards (Bio-Rad #500-027). Equal amount of protein was mixed with 4× gel loading dye (Thermo #NP007) and analyzed by pre-casted gel (Thermo #NP0036) and Western blotting. Final western blots were detected on a GE Healthcare Life Sciences, Amersham Imager 600, followed by analyzing band intensities with ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA).

Antibodies used for western blotting were as follows: anti-LRP6 (#S2560) primary antibody was purchased from Cell Signaling.
Technology, antibody against anti-GAPDH (#GTX627408) was from GeneTex, anti-Vinculin (sc-736914) primary antibody was from Santa Cruz, antibody against β-catenin (#610153) was from BD Biosciences, anti-MCL-1 (#ab32087), anti-BCL-2 (#ab692) primary antibodies were from Abcam.

Cloning procedures

Small hairpin (sh)-oligos against GPR56, Luciferase, or scrambled were cloned into the piko.1 system (Sigma), in which the puromycin resistance cassette had been replaced by eGFP (pLKO-U6-shOligo-hPGK-eGFP) or Atemrine (pLKO-U6-shOligo-hPGK-Atemrine), the shRNA oligos used are listed in Appendix Table S2.

GPR56 full-length cDNA was obtained from OriGene Technologies (NM_005682.4) and cloned into pcDNA3.1 and the previously described pCCL-c-MNDU3-eGFP backbone (Garg et al, 2019). The primers used for generating GPR56 CTF and mutant constructs are listed in Appendix Table S3.

Statistical analyses

For the RNA- and ATAC-seq analyses, statistical tests are described in each of the relevant analyses and p-values are given in text or Figures. Individual assays were analyzed with Graph Pad Prism 8 in each of the relevant analyses and p-values are given in text or Statistical analyses listed in Appendix Table S3.

P-values were Benjamini Hochberg corrected. Asterisks indicate the following P-value levels if not otherwise specified in the text: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001.

Data availability

Sequencing data generated for this study are accessible through GEO database (https://www.ncbi.nlm.nih.gov/geo/browse/) with the accession numbers: GSE150175 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150175) for the GPR56 KD RNA-seq data, GSE150868 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150868) for the ATAC-seq data.

GPR56 expression following KD of TCF4 via shRNA in neuronal progenitors derived from iPSC was derived from Dataset EV4 of PMID31535015 (Doostparast Torshizi et al, 2019). For the integration with our human data, we created a mapping between the Ensembl IDs from human and mouse using biomaRt (Durinck et al, 2009). Public datasets used in this study were downloaded from GEO and comprise GSE147727 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147727), GSE38236 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38236), GSE70872 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70872), and GSE48843 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48843). We used the raw data whenever available (GSE111669; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111669) and processed them through DESeq2, in analogy to what has been described above. If no raw data were available or the data were also analyzed with DESeq2 (all other), we used the processed data (i.e., log2 fold-changes and adjusted P-values).

Expanded View for this article is available online.

Acknowledgments

We thank V. Eckstein for support with cell sorting, R. Schneider for helping with cell culture experiments, and M. Frechette for assistance with in vivo experiments. We thank the teams of the Banque de Cellules Leucémiques du Québec (BCLQ), the Biomaterial banks of Medical Department V, Heidelberg University Hospital, the Department of Internal Medicine I, University Hospital of Dresden Carl Gustav Carus, Germany, the Department of Internal Medicine III, Ludwig-Maximilians-Universität, Munich, Germany, the Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Canada, the CHU Sainte-Justine, Montreal, Canada, the Department of Obstetrics at University Hospital Heidelberg, Germany, and all donors for providing primary human cells. We thank G. Posern for providing the SRF reporter system and positive control plasmids. We thank I. Jeremias and B. Vick, Helmholtz Zentrum München, for providing PDX AML-491 cells. The work of G.P. and L.V. was supported by the collaborative SFB873 (project A14) and Heisenberg (PE1883-3/4) programs of the DFG. This work was supported by Deutsche Forschungsgemeinschaft (DFG) FOR2149 grants PA 2815/2-1 and HA-4663/1-1 to C.P. and J.H., respectively and by SFB1324 (project 33135173). C.P. is supported by a Max-Eder-Grant of German Cancer Aid (70111531) and by the Olympia-Morata-Program of the Medical Faculty of Heidelberg. The authors gratefully acknowledge the data storage service SDS@hd supported by the Ministry of Science, Research and the Arts Baden-Württemberg (MKW) and the German Research Foundation (DFG) through grant INST 35/2314-1 FUGG and INST 35/2303-1 FUGG. Open Access funding enabled and organized by Projekt DEAL.

Author contributions

Caroline Pabst: Conceptualization; Formal analysis; Supervision; Funding acquisition; Visualization; Writing—original draft; Writing—review and editing. Lixiazi He: Data curation; Formal analysis; Validation; Visualization; Writing—original draft; Writing—review and editing. Christian Arnold: Data curation; Formal analysis; Methodology. Judith Thoma: Formal analysis; Writing—review and editing. Christian Rohde: Software; Formal analysis; Methodology. Maksim Khokmatov: Formal analysis. Swati Garg: Data curation; Formal analysis; Validation. Cheng-Chih Hsiao: Data curation; Formal analysis. Linda Viol: Data curation; Formal analysis; Visualization; Writing—original draft. Kaqing Zhang: Data curation; Formal analysis. Rui Sun: Formal analysis. Christina Schmidt: Formal analysis; Visualization. Maike Janssen: Software; Formal analysis; Writing—original draft. Tara MacRae: Data curation; Formal analysis. Karin Huber: Data curation; Writing—original draft. Christian Thiede: Resources. Joséé Hébert: Resources. Guy Sauvageau: Resources; Writing—original draft. Julia Spratte: Resources. Herbert Fluhr: Resources; Supervision. Gabriela Aust: Resources; Writing—original draft. Carsten Müller-Tidow: Resources; Writing—original draft. Christof Niehrs: Resources; Writing—original draft. Gislene Pereira: Resources; Supervision. Jörg Hamann: — Resources; Supervision. Motomu Tanaka: Supervision; Writing—original draft; Writing—review and editing. Judith B Zazsg: Supervision; Writing—original draft.

In addition to the CRediT author contributions listed above, the contributions in detail are: LH performed experiments, analyzed data, generated figures, and wrote the manuscript. CA performed computational analyses, generated figures, and wrote the manuscript. LH and CA contributed equally to this work. JT performed dynamic phenotyping experiments and analyses, MK analyzed data and generated figures, SG

©2022 The Authors

EMBO Molecular Medicine 14: e14990 | 2022 19 of 22
contributed to in vivo experiments, C-CH generated plasmids, LV performed IF imaging and provided reagents, KZ and RS performed Wnt reporter assays, CS and MJ performed synergism experiments and analyses, TM performed and analyzed in vivo experiments, CR performed computational analyses, KH helped with in vivo experiments and edited the manuscript, CT, JH, and GS provided primary AML samples and edited the manuscript, JS and HF generated CB units and edited the manuscript, GA supported SRF reporter assays, CM-T edited the manuscript, CN provided reporter assays and supported Wnt experiments, GP provided expertise and reagents for primary cilium detection and analyses, JH provided plasmids and expertise on structure-function analyses, MT supervised and analyzed dynamic phenotyping experiments and edited the manuscript, JBS supervised all computational analyses, wrote the manuscript, and co-supervised the project, CP directed the project, performed analyses, and wrote the manuscript.

Disclosure and competing interests statement
The authors declare that they have no conflict of interest.

References
Assi SA, Imperato MR, Coleman DJL, Pickin A, Potluri S, Ptasinska A, Chin PS, Blair H, Cauchi P, James SR et al (2019) Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet 51: 151–162
Bae B-I, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, Wang PP, Murayama AY, Im K, Lisgo SN et al (2014) Evolutionary dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343: 764–768
Berest I, Arnold C, Reyes-Palomares A, Palla G, Rasmussen KD, Giles H, Bruch P-M, Huber W, Dietrich S, Helin K et al (2019) Quantification of differential transcription factor activity and multiomics-based classification into activators and repressors: diffTF. Cell Rep 29: 3147–3159
Berger BS, Aebi SR, Herbst J, Koch S, Niehrs C (2017) Parkinson’s disease-associated receptor CPR37 is an ER chaperone for LRP6. EMBO Rep 18: 712–725
Bliss CI (1999) The toxicity of poisons applied jointly. Ann Appl Biol 26: 585–615
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10: 1213–1218
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109: 21.29.1–21.29.9
Burk AS, Monzel C, Yoshikawa HY, Wuchter P, Saffrich R, Eckstein V, Tanaka M, Ho AD (2015) Quantifying adhesion mechanisms and dynamics of human hematopoietic stem and progenitor cells. Sci Rep 5: 9370
Campaner S, Viale A, De Fazio S, Doni M, De Franco F, D’Artista L, Sardella D, Pelicic PP, Amati B (2013) A non-redundant function of cyclin E1 in hematopoietic stem cells. Cell Cycle 12: 3663–3672
Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson AG, Hoadley K, Triche TJ, Laird PW et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368: 2059–2074
Carmichael CL, Wang J, Nguyen T, Kolawole O, Benyoucef A, De Magiere C, Milne AR, Samuel S, Gilkinson K, Hediyeh-zadeh S et al (2020) The EMT modulator SNAI1 contributes to AML pathogenesis via its interaction with LSD1. Blood 136: 957–973
Caryol F, Praditsukavorn P, Fernando TM, Kwiatkowski N, Marullo R, Calvo-Vidal MN, Phillip J, Pera B, Yang SN, Takpradit K et al (2017) THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun 8: 14290
Chang H, Salma F, Yi Q, Patterson B, Brien B, Minden M (2004) Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res 28: 43–48
Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Görlich K, Wichmann M, Schwarzar A, Preller M, Tho F et al (2013) Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122: 2877–2887
Chen M-H, Wilson CW, Li Y-J, Law KKL, Lu C-S, Gacayan R, Zhang X, Hui C, Chuang P-T (2009) Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23: 1910–1928
Chiang N-Y, Hsiao C-C, Huang Y-S, Chen H-Y, Hsieh I-J, Chang G-W, Lin H-H (2011) Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J Biol Chem 286: 14215–14225
Clark K, Ainscow E, Peall A, Thomson S, Leishman A, Elaine S, Ali S, Coombes R, Barrett A, Bahl A (2017) CT7001, a novel orally Bio-available CDK7 inhibitor, is highly active in in vitro and in vivo models of AML. Blood 130 (Supplement 1): 2645
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier Dyr, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437: 1018–1021
Cortes JE, Heidel FH, Hellmann A, Fiedler W, Smith BD, Robak T, Montesinos P, Pollyea DA, Desjardins P, Ottmann O et al (2019) Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33: 379–389
Cosgun KN, Rahmig S, Mende N, Reinek S, Hauber J, Schäfer C, Petzold A, Weibisch H, Heidkamp G, Purbojo E et al (2014) Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15: 227–238
Cruciat C-M, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C (2010) Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327: 459–463
Dierks C, Beigi R, Guo G-R, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14: 238–249
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129: 424–447
Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373: 1136–1152

©2022 The Authors
Doostparast Torshizi A, Armoskus C, Zhang H, Forrest MP, Zhang S, Souaiaia T, Evgrafov O, Knowles JA, Duan J, Wang K (2019) Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Sci Adv 5: eaau4139
Du R, Shen W, Liu Y, Gao W, Zhou W, Li J, Zhao S, Chen C, Chen Y, Liu Y et al (2019) TGFβ2 promotes the progression of lung adenocarcinoma by bridging EGFR/RAS/ERK signaling to cancer cell stemness. Signal Transduct Target Ther 4: 60
Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4: 1184 – 1191
Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D, Stainier DYR et al (2018) A molecular mechanism for Wnt ligand-specific signaling. Science 361: eaat1178
Fitz TM, Vogel WK, Leid M (2014) Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 35: 76 – 85
Friesen WO (1994) Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci Biobehav Rev 18: 547 – 553
Fukushima N, Minami Y, Kakuchi S, Kuwatsuka Y, Hayakawa F, Jamieson C, Kiyo H, Naoe T (2016) Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci 107: 1422 – 1429
Gallicher AJ, Schieman WP (2008) Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8: R42
Gao T, Qian J (2020) EnhancerAtlas 2.0: an updated resource with enhancer annotation in S86 tissue/cell types across nine species. Nucleic Acids Res 48: DS8 – D64
Garg S, Reyes-Palomares A, He L, Bergeron A, Lavallée V-P, Lemieux S, Gendron P, Rohde C, Xia J, Jagdhane P et al (2019) Hepatic leukemia factor is a novel leukemic stem cell regulator in DNM3TA3, NPM1, and FLT3-ITD triple-mutated AML. Blood 134: 263 – 276
He L, Kuleskyy E, Saarella J, Turunen L, Wennerberg K, Aittokallio T, Tang J (2018) Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol 1711: 351 – 398
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509 – 1512
Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283: 14469 – 14478
Jiang X, Mak PY, Mu H, Tao W, Mak DH, Kornblau S, Zhang Q, Ruvolo P, Burks JK, Zhang W et al (2018) Disruption of Wnt/beta-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin Cancer Res 24: 2417 – 2429
Joksimovic M, Yun BA, Kittappa R, Anderegg AM, Chang WW, Taketo MM, McKay RDG, Awatramani R (2009) Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 12: 125 – 131
Joo K, Kim CG, Lee M-S, Moon H-Y, Lee S-H, Kim MJ, Kwoon H-S, Park W-Y, Kim C-H, Gleeson JG et al (2013) CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA 110: 5987 – 5992
Kandili A, Grosveld GC (2009) Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation. Blood 114: 1596 – 1606
Kausar T, Sharma R, Hasan MR, Tripathi SC, Saraya A, Chattopahdyay TK, Gupta SD, Rathian R (2011) Clinical significance of GPR56, transglutaminase 2, and NF-kB in esophageal squamous cell carcinoma. Cancer Invest 29: 42 – 48
Kim J-E, Han JM, Park CR, Shin K-J, Ahn C, Seong YJ, Hwang J-I (2010b) Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol 136: 47 – 53
Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Iderk T, Aza-Blanc P, Gleeson JG (2010a) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464: 1048 – 1051
Kindler T, Lipka DB, Fischer T (2010) FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116: 5089 – 5102
Kishore A, Purcell RH, Nassiri-Toosi Z, Hall RA (2016) Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRC1) and BAII (ADGRB1). J Biol Chem 291: 3385 – 3394
Koligs FT, Niemnt MT, Winer I, Hu G, Van Mater D, Feng Y, Smith IM, Wu R, Zhai Y, Cho KR et al (2002) TTF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 1: 145 – 155
Koster J, Rahmann S (2012) Snapmaker a scalable bioinformatics workflow engine. Bioinformatics 28: 2520 – 2522
Kulakovsiev IV, Medvedeva YA, Schafer U, Kasianov AS, Vorontsov IE, Bajic VB, Makeev VJ (2013) HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res 41: D195 – D202
Kwiatkowski N, Zhang T, Rahi PB, Abraham BJ, Reddy J, Ficcaro SB, Dastur A, Amzallag A, Ramaswamy S, Tesar B et al (2014) Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511: 616 – 620
Lamas Murua M, Stolp B, Kaw S, Thoma J, Tsopoulidis N, Trautz B, Ambiel I, Reif T, Arora S, Imle A et al (2018) HIV-1 Nef disrupts CDA4 T lymphocyte polarity, extravasation, and homing to lymph nodes via its Nef-Associated Kinase Complex Interface. J Immunol 201: 2731 – 2743
Langmead B, Saltzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357 – 359
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367: 645 – 648
Li T, Chioi B, Gilman CK, Luo R, Koshi T, Yu D, Oak HC, Giera S, Johnson Venkatesh E, Muthukumar AK et al (2020) A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidyserine binding. EMBO J 39: e104136
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923 – 930
Liebischer C, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM, Mogha A, Cöster M, Simon K-U, Rothmund et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9: 2018 – 2026
Liu F, Jiang W, Sui Y, Meng W, Hou L, Li T, Li M, Zhang L, Mo J, Wang J et al (2019) CDK7 inhibition suppresses aberrant hedgehog pathway and overcomes resistance to smoothened antagonists. Proc Natl Acad Sci USA 116: 12986 – 12995
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBIO J 17: 10
May-Simera HL, Wan Q, Jha BS, Hartford J, Khrystov V, Dejene R, Chang J,
Patnaik S, Lu Q, Banerjee P et al (2018) Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep 22: 189 – 205
McLean CY, Brister D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wengen AM,
Bejerano G (2010) GREAT improves functional interpretation of cis-
regulatory regions. Nat Biotechnol 28: 495 – 501
Miralles F, Posern G, Zaroymitou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Nature 428: 1374 – 1378
Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166: 21 – 45
Norsworthy KJ, By K, Subramaniam S, Zhuang L, Banerjee P,
Ottersbach K, Jang YC, Piao X, Kulkarni RN et al (2018) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481: 389 – 393
Salzman GS, Ackerman SD, Ding C, Koide A, Leon K, Luo R, Stoveken HM,
Fernandez CG, Tall GG, Piao et al (2016) Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91: 1292 – 1304
Shashidhar S, Lorente C, Nagavarapu U, Nelson A, Kuo J, Cummins J,
Nikolich K, Urfer R, Foehr ED (2005) GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24: 1673 – 1682
Shutmutian M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-
Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522 – 5527
Singer K, Luo R, Jeong S-J, Piao X (2013) GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. Mol Neurobiol 47: 186 – 196
Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, van der Sloot J, van den Hout M, Yokomizo T,
van Schaick-Solernó ML et al (2015) Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med 212: 93 – 106
Stemmer V, de Craene B, Berx C, Behrens J (2008) Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27: 5075 – 5080
Vick B, Rothenberg M, Sandhöfer N, Carlet M, Finkenzeller C, Krupka C,
Grunt M, Trumpp A, Corbacoguiu S, Ebinger M et al (2015) An advanced preclinical mouse model for acute myeloid leukaemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One 10: e0120925
Voel L, Hata S, Pastor-Peidro A, Neuner A, Murke F, Wuchter P, Ho AD, Giebel B, Pereira G (2020) Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. J Cell Biol 219: e201907136
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI,
Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327: 1650 – 1653
Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR,
Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448 – 452
Yadav B, Wennerberg K, Attokalio T, Teng J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13: 504 – 513
Yoshikawa HY, Rossetti FF, Kaufmann S, Kaindl T, Madsen J, Engel U, Lewis AL, Armes SP, Tanaka M (2011) Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J Am Chem Soc 133: 1367 – 1374
Zeng M, Kwiatkowski NP, Zhang T, Nabet B, Xu M, Liang Y, Quan C, Wang J,
Hao M, Palakurthi S et al (2018) Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Elife 7: e90030
Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36: 1461 – 1473
Zhao H, Zhao C, Li H, Zhang D, Liu G (2019) E2A attenuates tumor-initiating capacity of colorectal cancer cells via the Wnt/beta-catenin pathway. J Exp Clin Cancer Res 38: 276
Zhu A, Ibrahim JG, Love MI (2019) Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35: 2084 – 2092

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.