Endothelin-1-Induced Phosphorylation of the 20-kDa Myosin Light Chain and Caldesmon in Porcine Coronary Artery Smooth Muscle

Yoichiro Abe1, Yoshitoshi Kasuya2, Michiyo Kudo1, Kamejiro Yamashita1, Katsutoshi Goto3, Tomoh Masaki2 and Yoh Takuwa1.*

Departments of 1Internal Medicine and 2Pharmacology, University of Tsukuba School of Medicine, Tsukuba, Ibaraki 305, Japan

ABSTRACT — Endothelin-1 (ET), a potent vasoconstrictor, induces a sustained increase in the phosphorylation level of the 20-kDa myosin light chain (MLC) in porcine coronary artery strips. ET also induces late phosphorylation of caldesmon, which is mimicked by 12-deoxyphorbol 13-isobutyrate, but not by 60 mM KCl. Nitroglycerin, a vasorelaxant, completely reverses the ET-induced phosphorylation of MLC, but not that of caldesmon. These results suggest an important regulatory role of MLC phosphorylation in ET-induced contraction.

Endothelin-1 (ET) is one of the most potent vasoconstrictors to be discovered (1). Our previous studies (2–4) as well as observations by other investigators (5) demonstrate that ET receptor activation in vascular smooth muscle leads to the activation of phospholipase C and Ca2+ channels, resulting in an increase in the intracellular free Ca2+ concentration and the activation of protein kinase C. However, it is not known how ET-1 activates the contractile mechanism following the generation of the second messengers. To understand in more detail the mechanism of the ET-induced contraction of vascular smooth muscle, phosphorylation changes of the proteins thought to be involved in the regulation of contraction were explored in porcine coronary smooth muscle. Particularly, we studied the time-dependent changes in the extent of the Ca2+- and calmodulin-dependent phosphorylation of 20-kDa myosin light chain (MLC), which is known to serve as a specific signal for initiating cross bridge cycling (6), and phosphorylation of caldesmon, a calmodulin-binding, thin filament-associated protein (7, 8).

Porcine right coronary arteries were dissected and carefully cleared of adhering connective tissue (2, 4). Transverse arterial strips of approximately 2-mm width were prepared for the experiments. Strips were mounted in 10-ml static muscle chambers and equilibrated in modified Krebs-Henseleit bicarbonate buffer containing 10−5 M phentolamine and 10−6 M atropin (9) aerated with 95% O2/5% CO2 at 37°C. Tension was isometrically measured with a Nihon Kohden TB-611T force-displacement transducer and displayed on a Nihon Kohden WT-647G recorder. The tension in response to agonist stimulation was expressed as a percent of the maximal response to KCl (110 mM). To measure the phosphorylation of 20-
kDa MLC, isometrically contracting muscle strips were rapidly frozen by immersing them in an acetone-dry ice slurry containing 10% trichloroacetic acid and 20 mM dithiothreitol (DTT) (10). The strips were then homogenized in a homogenization buffer consisting of 10% glycerol, 20 mM DTT, 1% sodium dodecyl sulfate (SDS), 75 mM NaF, 10 mM EGTA and 10 mM Tris/HCl (pH 7.0). The phosphorylated and unphosphorylated 20-kDa MLCs were separated by two-dimensional gel electrophoresis as described previously (9). The area of each spot of MLC was determined by a Shimadzu scanning densitometer. The phosphorylation level of MLC was calculated by dividing the area of phosphorylated MLC by the total area of both phosphorylated and unphosphorylated MLC (10). For the measurements of caldesmon phosphorylation, arterial strips were labelled for a total of 4 hr by incubating them in 1 ml of physiological salt solution (PSS) containing 200 μCi/ml [32P]PO43 of the following composition: 140 mM NaCl, 4 mM KCl, 1 mM MgSO4, 1.25 mM CaCl2, 0.3 mM Na2HPO4, 11 mM glucose and 20 mM Hepes (pH 7.4). The strips were quickly homogenized in a homogenization buffer consisting of 0.3 M KCl, 2 mM EGTA, 0.5 mM MgCl2, 50 mM NaF, 1 mM phenylmethylsulfonyl fluoride and 50 mM imidazole (pH 6.9) (11). Caldesmon was extracted by immediate heating at 100°C for 5 min, followed by the centrifugation at 47,000 × g for 30 min (11). The resulting supernatant was analyzed by 10% SDS polyacrylamide gel electrophoresis. Caldesmon was identified by immunoblotting using anti-chicken gizzard caldesmon antibody and the comigration with purified caldesmon. The band corresponding to caldesmon was excised from the gel, and the radioactivity was counted. Statistical analysis was performed by Student’s t-test. Statistical significance was defined as P < 0.05. The values are expressed as the means ± S.E. 12-Deoxyphorbol 13-isobutyrate (DPB) (8 × 10^-7 M), an active phorbol ester, also stimulates late phosphorylation of caldesmon (76 ± 20% increase (n = 4) (Fig. 2, A and D). Histamine (10^-4 M) tends to stimulate phosphorylation at 60 min (0.05 < P < 0.1) (Fig. 2, B and D). However, 60 mM KCl does not have any stimulatory effect on the caldesmon phosphorylation (Fig. 2, C and D).

When nitroglycerin (10^-5 M) is added to strips precontracted with ET (10^-7 M) at 60 min, the strips fully relax with a complete return of the phosphorylation level of MLC to the basal level (0.07 ± 0.01 (n = 4) in ET and nitroglycerin-treated strips vs. 0.06 ± 0.01 moles P/mole MLC (n = 4) in control strips) at 80 min. However, the administration of nitroglycerin does not significantly inhibit the caldesmon phosphorylation (48 ± 15% increase (n = 4) in ET-stimulated strips vs. 30
± 7% increase (n = 4) in ET and nitroglycerin-treated strips).

The present results demonstrate that ET induces a slowly developing and sustained increase in the phosphorylation level of MLC, the change of which slightly precedes but closely resembles the time course of the contractile response, in porcine coronary strips (Fig. 1). When strips precontracted with ET are induced to relax by the addition of nitroglycerin, a concomitant reduction in the phosphorylation level of MLC is found. These results indicate a close correlation between the MLC phosphorylation and the isometric tension, suggesting an important regulating role of the MLC phosphorylation in the ET-induced vasoconstriction of coronary artery smooth muscle.

One characteristic of the responses of coronary strips to ET shown in the present study is initial slow kinetics in both the phosphorylation of MLC and the tension as compared to histamine and 60 mM KCl. A similar initial gradual rise in the intracellular Ca2+ concentration is also found in ET-1-stimulated coronary strips (4). The molecular characterization of the initial signal transduction pathway does not clearly distinguish ET from
other vasoactive agonists (3, 12, 13). Further investigations are required to resolve the mechanisms for the slow kinetics of these parameters in ET-stimulated vascular smooth muscle.

The present study demonstrates that ET induces a time-dependent phosphorylation of caldesmon (Fig. 2). DPB, a protein kinase C activator, but not 60 mM KCl has a similar effect on caldesmon phosphorylation. Since ET stimulates phospholipase C to produce 1,2-diacylglycerol, leading to protein kinase C activation (2, 3, 5, 14), these results suggest that ET-induced caldesmon phosphorylation may be mediated directly or indirectly through protein kinase C. Recent studies (15) suggested that the regulatory function of caldesmon might be altered by its phosphorylation state. Adam et al. (8, 15) reported that in intact porcine carotid artery stimulated with phorbol 12,13-dibutyrate (PDB), the phosphorylation level of caldesmon increased with a rather slow time course, consistent with the present results. They showed that KCl also stimulated caldesmon phosphorylation in the carotid artery. The reason for the difference between the present results and those by Adam et al. (8) concerning the effect of KCl on caldesmon phosphorylation is not known. One possible explanation is that vasoactive substances released from nerve termini in the arterial wall in response to KCl stimulation

Fig. 2. Phosphorylation of caldesmon (CaD) in porcine coronary artery strips stimulated with 10^{-7} M ET-1, 8×10^{-7} M 12-deoxyphorbol 13-isobutyrate, 10^{-4} M histamine or 60 mM KCl. A–C: Autoradiograms of gels. Arrows denote the migration position of caldesmon (CaD). Coronary strips were stimulated for 60 min. D: A quantitative summary of caldesmon phosphorylation. Coronary strips were stimulated for 5 or 60 min. The data are the means ± S.E. of 4 to 6 determinations. *: P < 0.05.
acted on smooth muscle to cause caldesmon phosphorylation because receptor antagonists were not included in the buffer in the study by Adam et al. (8).

In the present study, nitroglycerin induced a complete relaxation of ET-treated porcine coronary strips without significant dephosphorylation of caldesmon. These results suggest that if caldesmon phosphorylation is involved in the biochemical mechanism for the force maintenance of vascular smooth muscle, it is not the sole determinant. Alternatively, it might be possible that nitroglycerin inhibits the contractile mechanisms at a site distal to the phosphorylation of caldesmon. Further studies are required to reveal the functional role of caldesmon phosphorylation.

Acknowledgments

We wish to thank Dr. H. Rasmussen and Dr. Y. Nonomura for reading the manuscript and kindly donating anticaldesmon antibody, respectively. This work supported by grants from the Ministry of Science and Education in Japan, the University of Tsukuba Project Research, the Fujisawa Foundation, the Mochida Memorial Foundation for Medical and Pharmacological Research and the Kowa Foundation for Life Science.

REFERENCES

1 Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsu, Y., Yazaki, Y., Goto, K. and Masaki, T.: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988)
2 Kasuya, Y., Takuwa, Y., Yanagisawa, M., Kimura, S., Goto, K. and Masaki, T.: Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem. Biophys. Res. Commun. 161, 1049–1055 (1989)
3 Takuwa, Y., Kasuya, Y., Takuwa, N., Kubo, M., Yanagisawa, M., Goto, K., Masaki, T. and Yamashita, K.: Endothelin receptor is coupled to phospholipase C via a pertussis toxin-insensitive guanine nucleotide-binding regulatory protein in vascular smooth muscle cells. J. Clin. Invest. 85, 653–658 (1990)
4 Goto, K., Kasuya, Y., Matsui, N., Takuwa, Y., Kurihara, H., Ishikawa, T., Kimura, S., Yanagisawa, M. and Masaki, T.: Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca\(^{2+}\) channel in vascular smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 86, 3915–3918 (1989)
5 Resink, T.J., Scott-Burden, T. and Bühler, F.R.: Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 157, 1360–1368 (1988)
6 Kamm, K.E. and Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle cell. Annu. Rev. Pharmacol. Toxicol. 25, 593–620 (1985)
7 Sobue, K., Morimoto, K., Inui, M., Kanda, K. and Kakiuchi, S.: Control of action-myosin interaction of gizzard smooth muscle by calmodulin and caldesmon linked flip-flop mechanism. Biomed. Res. 3, 188–196 (1982)
8 Adam, L.P., Heaberle, J.R. and Hathaway, D.R.: Phosphorylation of caldesmon in arterial smooth muscle. J. Biol. Chem. 264, 7698–7703 (1989)
9 Takuwa, Y., Kelley, G., Takuwa, N. and Rasmussen, H.: Protein phosphorylation changes in bovine carotid artery smooth muscle during contraction and relaxation. Mol. Cell. Endocrinol. 60, 71–86 (1988)
10 Jiang, M.J. and Morgan, K.G.: Agonist-specific myosin phosphorylation and intracellular calcium during isometric contraction of arterial smooth muscle. Pflügers Arch. 413, 637–643 (1989)
11 Bretscher, A.: Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J. Biol. Chem. 259, 12873–12880 (1984)
12 Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K. and Masaki, T.: Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735 (1990)
13 Arai, H., Hori, S., Aramori, I., Ohkubo, H. and Nakashima, S.: Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732 (1990)
14 Haller, H., Smallwood, J.I. and Rasmussen, H.: Protein Kinase C translocation in intact vascular smooth muscle strip. Biochem. J. 270, 375–381 (1990)
15 Adam, L.P., Muñio, L., Brengle, B. and Hathaway, D.L.: Myosin light chain and caldesmon phosphorylation in arterial muscle stimulated with endothelin-1. J. Mol. Cell. Cardiol. 22, 1017–1023 (1990)