Title
Airway diffusing capacity of nitric oxide and steroid therapy in asthma

Permalink
https://escholarship.org/uc/item/6nm3r044

Journal
Journal of Applied Physiology, 96(1)

ISSN
8750-7587

Authors
Shin, Hye-Won
Rose-Gottron, Christine M
Cooper, Dan M
et al.

Publication Date
2004

DOI
10.1152/japplphysiol.00575.2003

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Airway diffusing capacity of nitric oxide and steroid therapy in asthma

Hye-Won Shin,1,2 Christine M. Rose-Gottrom,3 Dan M. Cooper,3,4 Robert L. Newcomb,3,5 and Steven C. George1,2

Departments of 1Biomedical Engineering, 2Chemical Engineering and Materials Science, and 4Pediatrics, 3General Clinical Research Center, and 5Center for Statistical Consulting, University of California, Irvine, California 92697-2575

Submitted 2 June 2003; accepted in final form 28 August 2003

Shin, Hye-Won, Christine M. Rose-Gottrom, Dan M. Cooper, Robert L. Newcomb, and Steven C. George.

Airway diffusing capacity of nitric oxide and steroid therapy in asthma. J Appl Physiol 96: 65–75, 2004. First published September 5, 2003; 10.1152/japplphysiol.00575.2003.—Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (±SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1.195 ± 0.836 pl/s and 143 ± 66 ppb compared with 2.693 ± 1.687 pl/s and 438 ± 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl/s·ppb−1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 ± 11.7, 8.71 ± 5.74, and 3.13 ± 1.57 pl/s·ppb−1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (% predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S. Am J Respir Crit Med 161: 1218–1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthmatic independent of steroid therapy and may reflect clinically relevant changes in airways.

model; airways; alveoli; inflammation

NITRIC OXIDE (NO) WAS FIRST detected in the exhaled breath of humans more than a decade ago (19) and remains a promising noninvasive index of lung pathophysiology. Substantial evidence suggests that both the airway and alveolar regions are significant sources of exhaled NO [fraction of exhaled NO (FeNO)] (8, 20, 37, 42, 44–46, 48, 52, 53). Thus, in contrast to a respiratory gas like CO2 that is evolved predominantly in the alveolar compartment and whose presence in the exhaled breath primarily reflects alveolar gas exchange, FeNO measurements might lead to specific insights about pathophysiology throughout the respiratory tract. Guidelines for characterizing FeNO by the American Thoracic Society (ATS) and the European Respiratory Society (ERS) include only the plateau concentration in phase III (CNO,plat) at a constant exhalation flow rate (V¢E) (2, 29). However, a single measurement of CNO,plat cannot distinguish airway and alveolar contributions and thus may not be the optimal parameter to describe pulmonary NO exchange.

The potential for greater clinical insight is accompanied by the need for new and robust analytic approaches to characterize NO in the exhaled breath. Because NO is produced throughout the respiratory tract, factors like expiratory flow rate substantially influence the NO concentration in the exhaled breath (Cexh) (21, 47, 54). To account for this and other determinants of NO concentration, we and others have described NO exchange using a biologically relevant two-compartment model (airway and alveolar compartments) and a series of flow-independent NO exchange parameters (20, 42, 48, 52). The flow-independent parameters potentially provide clinically relevant information about NO exchange. For example, the alveolar NO concentration is elevated in allergic alveolitis (alveolar inflammation), whereas airway wall NO flux is elevated in asthma (bronchial inflammation) (37).

Inflammation is characteristic of asthma and induces the expression of several steroid-sensitive enzymes, such as NO synthase (NOS) and glutaminase, which impact NO metabolism (3, 23, 43). Consequently, corticosteroids, which attenuate the inflammatory process, also reduce the concentration of NO in the exhaled breath (31, 41). This feature of corticosteroid therapy may be useful in monitoring the inflammatory status of the airways, but, by reducing the concentration of NO in the exhaled breath to near normal, may mask steroid-independent alterations in airway NO physiology that are of potential clinical significance.

The airway diffusing capacity of NO (Daw,NO) is the conductance for the transfer of NO between the airway wall and the gas stream (48, 52, 53). It depends on both the physical features of the airway wall (e.g., airway surface area or tissue thickness) and the rate of chemical consumption (4, 53), both of which may be altered in asthma. Recently, Silkoff et al. (48) demonstrated that Daw, NO was elevated in asthma independent of steroid therapy by measuring multiple CNO,plat at small flow rates (<50 ml/s). However, values for the flow-independent NO exchange parameters may depend on the breathing maneuver and analytic technique utilized. Thus the goal of the present study was to apply our alternate breathing and analytic technique (20-s preexpiratory breath hold followed by a decreasing flow-rate maneuver) in asthma to confirm the results of Silckoff et al. and potentially provide additional insight into the pathophysiology that marks chronic asthma.

METHODS

Subjects. Twenty-four healthy adults and 20 subjects with a clinical history of asthma (8 steroid naive and 12 steroid treated) participated in the study. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
this study. Inclusion criteria for the healthy subjects was a forced expiratory volume in 1 s (FEV₁)-to-forced vital capacity (FVC) ratio (FEV₁/FVC) >0.80; exclusion criteria were a history of smoking at any time, heart disease, or lung disease. Inclusion criteria for the asthma group were a clinical history of reversible bronchoconstriction and a current FEV₁/FVC <0.75, regardless of the use of corticosteroids; exclusion criteria were a history of smoking at any time, heart disease, and lung disease other than asthma. We then subdivided the adults with a clinical history of asthma into two groups: 1) steroid naive and 2) steroid treated. In addition, each of the adult subjects with asthma also completed a previously validated asthma control questionnaire (see Appendix A) to assess clinical symptoms of asthma over the past 7 days (27, 28). Subject characteristics are presented in Tables 1 and 2, including details of their clinical history. The Institutional Review Board at the University of California, Irvine approved the protocol, and written, informed consent was obtained from all subjects.

Experimental protocol.

Each subject performed two types of expiration maneuvers: one necessary to estimate the flow-independent NO exchange parameters, and the other according to the ATS guidelines (2). The first maneuver was five repetitions of a 20-s preexpiratory
parts/million in N₂; Sievers, Boulder, CO). The zero-point calibration was calibrated on a daily basis by using a certified NO gas (45 ppb). The exhalation maneuver was a vital capacity maneuver performed in triplicate to assess several independent NO exchange parameters. A positive pressure of 1% of vital capacity per second) maneuver (53) to estimate several flow-independent NO exchange parameters: 1) maximum flux of NO from the airways (\(J_{aw,NO}^{peak}\); pl/s); 2) \(D_{aw,NO}\) [pl/s × parts per billion (ppb)⁻¹]; 3) steady-state alveolar concentration (\(C_{aw,NO}; ppb\); and 4) mean airway tissue NO concentration (\(C_{aw,NO}; ppb\); equal to the ratio of \(J_{aw,NO}\) to \(D_{aw,NO}\)). A simple schematic of the two-compartment model and flow-independent parameters is presented in Fig. 2, and a detailed description of the mathematical estimation of the parameters has been previously described (53).

The source of NO from the airways can be described by the instantaneous flux of NO from the airways (\(J_{aw,NO}; pl/s\)). \(J_{aw,NO}\) depends on the flow-independent parameters and is expressed as a linear function of the airway gas-phase concentration (\(C_{aw}\)) by the following

\[J_{aw,NO} = J_{aw,NO}^{peak} - D_{aw,NO}C_{aw} \]

or

\[J_{aw,NO} = D_{aw,NO}(C_{aw,NO} - C_{aw}) \]

\(J_{aw,NO}\) is equal to the product \(D_{aw,NO} \times C_{aw,NO}\) (Eq. 2). Conceptually, \(J_{aw,NO}\) approaches \(J_{aw,NO}^{peak}\) as the product \(D_{aw,NO} \times C_{aw}\) approaches zero. \(D_{aw,NO}\) is the conductance for mass transfer (transfer factor or airway diffusing capacity) of NO between the airway tissue and the gas phase. The alveolar region is characterized by \(C_{aw,NO}\), which is equivalent to the alveolar tissue concentration (25, 52). Fig. 3 illustrates the independence (i.e., all other parameters are held constant) impact of \(D_{aw,NO}\), \(J_{aw,NO}\), and \(C_{aw,NO}\) on the single-exhalation profile with a 20-s preexpiratory breath hold and a decreasing exhalation flow rate.

Once the flow-independent parameters are known, the two-compartment model can be used to predict \(C_{NO,plat}\) at any constant exhalation flow, and thus there is no loss of information in characterizing NO exchange with the flow-independent NO parameters (53)

\[C_{NO,plat}^{ss} = C_{aw,NO} + (C_{aw,NO} - C_{aw,NO}^{ss}) \exp(-D_{aw,NO}/V_{E}t) \]

where \(C_{NO,plat}^{ss}\) is the plateau concentration of NO predicted by the model using the flow-independent parameters. Our laboratory (44, 53) has previously demonstrated that \(C_{NO,plat}^{ss}\) is not different than the experimentally measured \(C_{NO,plat}\) in healthy adults, with the advancement of the \(J_{aw,NO}\) technique with a preexpiratory breath hold and a decreasing exhalation flow rate.

Table 2. Clinical history of adults with asthma

Subject No.	Questionnaire Score	Therapies
Steroid naive	2.17	Albuterol, Salmeterol, Beclomethasone
1	2.00	Albuterol, Triamcinolone, Prednisone
2	1.33	Fluticasone, Albuterol, Loratadine
3	0.67	Beclomethasone, Flonase, Loratadine, Salmeterol
4	0.00	Fluticasone
5	1.50	Triamcinolone, Albuterol
6	0.33	Salmeterol, Fluticasone
7	1.00	Albuterol, Fluticasone
8	2.17	Albuterol, Fluticasone
9	1.83	Flunisoldex, Albuterol
10	3.67	Montelukast sodium, Fluticasone/almtrol, Albuterol
Mean ± SD	1.51 ± 1.11	

breath hold followed by a decreasing flow rate (from ~6 to ~1% of vital capacity per second) maneuver (53) to estimate several flow-independent NO exchange parameters. A positive pressure of >5 cmH₂O was maintained to prevent nasal contamination during the breath hold (2), and a Starling resistor (Hans Rudolph, Kansas City, MO) with a variable resistance was used to progressively decrease the flow rate during the exhalation. After breath hold, the exhalation valve was opened, allowing the patient to expire. A schematic of the experimental apparatus has been previously presented (53). The second maneuver was a vital capacity maneuver performed in triplicate to collect plateau NO concentration based on the ATS guidelines (2). We also included an exhalation flow rate of 250 ml/s (ATS guideline is 50 ml/s) consistent with the guidelines of the ERS (29). After measuring the indexes of NO exchange dynamics, general spirometry, such as vital capacity (VC), and FEV₁, normalized by VC (FVC/FEV₁) were measured in all subjects (Vmax229; Sensormedics, Yorba Linda, CA) by using the best performance (see Table 1) from three consecutive maneuvers.

Airstream analysis. A chemiluminescence NO analyzer (NOA280, Sievers, Boulder, CO) was used to measure the \(C_{exh}\). The instrument was calibrated on a daily basis by using a certified NO gas (45 parts/million in N₂; Sievers, Boulder, CO). The zero-point calibration was performed with a NO filter (Sievers) immediately before the collection of a profile. The flow rate and pressure signals were measured by using a pneumotachometer (RSS100, Hans Rudolph, Kansas City, MO). The pneumotachometer was calibrated daily and was set to provide the flow in units of STPD.

Data analysis and parameter estimation. Experimental single-exhalation profiles with the 20-s preexpiratory breath hold were characterized by the peak concentration in phases I and II (\(C_{NO,peak}\)); the peak width (\(W_{50}\)) in phases I and II, defined as the exhaled volume in which the NO concentration was >50% of \(C_{NO,peak}\); and the total volume of phases I and II (\(V_{I+II}\)), defined as the point zero slope (\(dC_{exh}/dV = 0\), where \(V\) is volume) in the exhalation profile (53) (Fig. 1). The constant-flow-rate single exhalations were characterized by the \(C_{NO,plat}\), as previously described by the ATS and the ERS (2, 29).

A previously described two-compartment model was used to estimate four flow-independent NO exchange parameters: 1) maximum flux of NO from the airways (\(J_{aw,NO}^{peak}\); pl/s); 2) \(D_{aw,NO}\) [pl/s × parts per billion (ppb)⁻¹]; 3) steady-state alveolar concentration (\(C_{aw,NO}; ppb\); and 4) mean airway tissue NO concentration (\(C_{aw,NO}; ppb\); equal to the ratio of \(J_{aw,NO}\) to \(D_{aw,NO}\)). A simple schematic of the two-compartment model and flow-independent parameters is presented in Fig. 2, and a detailed description of the mathematical estimation of the parameters has been previously described (53).

The source of NO from the airways can be described by the instantaneous flux of NO from the airways (\(J_{aw,NO}; pl/s\)). \(J_{aw,NO}\) depends on the flow-independent parameters and is expressed as a linear function of the airway gas-phase concentration (\(C_{aw}\)) by the following

\[J_{aw,NO} = J_{aw,NO}^{peak} - D_{aw,NO}C_{aw} \]

or

\[J_{aw,NO} = D_{aw,NO}(C_{aw,NO} - C_{aw}) \]

\(J_{aw,NO}\) is equal to the product \(D_{aw,NO} \times C_{aw,NO}\) (Eq. 2). Conceptually, \(J_{aw,NO}\) approaches \(J_{aw,NO}^{peak}\) as the product \(D_{aw,NO} \times C_{aw}\) approaches zero. \(D_{aw,NO}\) is the conductance for mass transfer (transfer factor or airway diffusing capacity) of NO between the airway tissue and the gas phase. The alveolar region is characterized by \(C_{aw,NO}\), which is equivalent to the alveolar tissue concentration (25, 52). Fig. 3 illustrates the independence (i.e., all other parameters are held constant) impact of \(D_{aw,NO}\), \(J_{aw,NO}\), and \(C_{aw,NO}\) on the single-exhalation profile with a 20-s preexpiratory breath hold and a decreasing exhalation flow rate.

Once the flow-independent parameters are known, the two-compartment model can be used to predict \(C_{NO,plat}\) at any constant exhalation flow, and thus there is no loss of information in characterizing NO exchange with the flow-independent NO parameters (53)

\[C_{NO,plat}^{ss} = C_{aw,NO} + (C_{aw,NO} - C_{aw,NO}^{ss}) \exp(-D_{aw,NO}/V_{E}t) \]

where \(C_{NO,plat}^{ss}\) is the plateau concentration of NO predicted by the model using the flow-independent parameters. Our laboratory (44, 53) has previously demonstrated that \(C_{NO,plat}^{ss}\) is not different than the experimentally measured \(C_{NO,plat}\) in healthy adults, with the advancement of the \(J_{aw,NO}\) technique with a preexpiratory breath hold and a decreasing exhalation flow rate.

Fig. 1. Definition of \(C_{NO,peak}\), \(W_{50}\), and \(V_{I+II}\) are presented by a schematic of a representative exhalation nitric oxide (NO) profile using the single-breath technique with a preexpiratory breath hold and a decreasing exhalation flow rate. \(C_{NO,peak}\) is the maximum concentration of NO in phases I and II; \(W_{50}\) is the width of the phase I and II peak calculated by taking the volume (V) at which the exhaled concentration (\(C_{exh}\)) is >50% of \(C_{NO,peak}\) and \(V_{I+II}\) is the volume of phases I and II. The distinction between phases I and II and phase III is the point of zero slope in the exhalation profile, as previously described (53). ppb, Parts per billion.
and all results were produced by using the GLM procedure of SAS. Finally, a correlation coefficient was considered statistically significant, a result that intergroup and interpopulation variations in flow rate can be accounted for by calculating C_{NO,NO_2} at a precise desired flow rate (e.g., 50 ml/s).

Statistics. To detect differences among the three groups of subjects, data were analyzed by using ANOVA and post hoc paired comparisons of treatment means. In those instances in which Levene’s test rejected homogeneity of variance, tests for group differences relied on Welch’s ANOVA or Satterthwaite’s method to adjust the test to account for this problem. To detect significant relationships between the parameters that characterize NO exchange and either asthma symptoms or standard indexes of lung function (e.g., FEV$_1$), we utilized first- and second-order partial correlation coefficients, respectively. For example, to determine the relationship between NO exchange and lung function for all subjects, the second-order partial correlation coefficient factors out the effect of having asthma or being treated with steroids by subtracting the group mean from each individual score. As to the question of normality, in addition to screening variables for excessive skewness, all tests of group differences were rerun by using a log transformation of the dependent variables. Because the log transformation of each variable did not impact the results, all statistical tests were reported by using the untransformed data. Finally, a P value $<$0.05 was considered statistically significant, and all results were produced by using the GLM procedure of SAS.

RESULTS

FVC, FEV$_1$, FEV$_1$/FVC, and the clinical history of the subjects with asthma are presented in Tables 1 and 2, respectively. FEV$_1$/FVC was more reproducible than FEV$_1$ alone. The mean maximum variability (defined as the difference between the maximum and minimum value normalized by the mean of the three repeated maneuvers) for FEV$_1$/FVC was 5.8% (range 1.5–10.2%) and 2.9% (range 0–10.2%) for steroid-naive and steroid-treated asthma subjects, respectively. For FEV$_1$ alone, the mean maximum variability was slightly higher for each group: 8.9% (range 0.7–20.6%) and 5.2% (range 1.5–17.9%) for steroid-naive and steroid-treated asthma subjects, respectively. FEV$_1$/FVC was significantly lower in both groups of subjects with asthma compared with healthy adults. However, there was no difference in FEV$_1$/FVC or clinical symptoms (as assessed by the composite score on the

![Fig. 2. Schematic of 2-compartment model used to describe NO exchange dynamics. $C_{alv,ss}$ is the sum of two contributions, the alveolar region and the airway region, which depends on 3 flow-independent parameters: maximum total volumetric flux of NO from the airway wall ($J_{aw,NO}$; pl/s), diffusing capacity of NO in the airways ($D_{aw,NO}$; pl/s-1•ppb$^{-1}$), and steady-state alveolar concentration ($C_{alv,ss}$; ppb). $J_{aw,NO}$ is the total flux (pl/s) of NO between the tissue and gas phase in the airway and is an inverse function of the exhalation flow rate (V_e) and is the sum of two terms: $J_{aw,NO} = D_{aw,NO} * C_{aw}$ (airway gas phase concentration). If $D_{aw,NO}$ increases while $J_{aw,NO}$ is held constant (note that this necessitates a decrease in the wall concentration, $C_{aw,NO}$ as $J_{aw,NO}$ is the product of $D_{aw,NO} * C_{aw,NO}$), then $J_{aw,NO}$ decreases (see text for details). If exhalation flow rate is held constant (i.e., 50 ml/s as suggested by the American Thoracic Society), then C_{aw} approaches a constant value in phase III of the exhalation profile and is equivalent to C_{NO,NO_2} (NO plateau concentration in phase III). t, Time.

![Fig. 3. The 2-compartment model prediction of the exhaled NO profile is shown for the single-exhalation maneuver with a 20-s preexpiratory breath hold. Representative values for lung volumes of a healthy adult have been used, and the “control” values for the flow-independent parameters are as follows: $D_{aw,NO}$ = 5 pl/s$^{-1}$$^\cdotppb^{-1}$ (A); $J_{aw,NO}$ = 750 pl/s$^{-1}$ (B); $C_{aw,ss}$ = 3 ppb (C). In each panel, the control profile (solid line) is shown together with the exhaled profile when one of the flow-independent parameters is doubled (dashed line). A: the decreasing V_t is also shown on the y-axis. This informal sensitivity analysis demonstrates graphically which part of the profile is impacted by each parameter. It can be seen that each parameter uniquely impacts the exhaled profile and can thus be uniquely determined. Note that $D_{aw,NO}$ primarily impacts phases I and II, $C_{aw,ss}$ impacts primarily phase III, whereas $J_{aw,NO}$ impacts all 3 phases. In addition, note that an increase in $D_{aw,NO}$ (while holding $J_{aw,NO}$ and $C_{aw,ss}$) decreases the NO concentration in phases I and II if $J_{aw,NO}$ (Eq. 2) and $C_{aw,ss}$ are held constant, but would increase the concentration in phases I and II if $C_{aw,ss}$ (Eq. 2) and $C_{aw,ss}$ were held constant (Eq. 2). In the former case, $C_{aw,ss}$ must be decreased to hold $J_{aw,NO}$ constant (product of $D_{aw,NO} * C_{aw,NO}$), whereas, in the latter case, $J_{aw,NO}$ would increase as $C_{aw,ss}$ is constant.](https://www.jap.org)
asthma control questionnaire) between the two groups of subjects with asthma.

Of the 20 subjects with asthma, three of the steroid treated (subjects 2, 10, and 12) were not able to complete the 20-s breath hold, and thus we utilized a 10-s breath hold, which may increase the confidence interval of Daw,NO (44, 53). To highlight differences among groups in exhaled concentrations, a composite exhalation profile for each group was attained (Fig. 4) by taking the mean exhaled concentration at equivalent exhaled volume intervals for each of the three groups. The three asthmatic subjects who were not able to complete the 20-s breath hold were excluded from the composite exhalation profile. Steroid-naive subjects with asthma had an increased concentration of NO in all phases of the exhalation profile compared with both steroid-treated subjects with asthma and healthy controls. Although the NO exhalation profile for steroid-treated subjects with asthma and healthy controls is similar (Fig. 4B), there are important differences that reflect alterations in the flow-independent NO parameters. Steroid-treated subjects with asthma have elevated NO in phase III that is reflected in a steeper phase III slope. This steeper slope reflects a greater airway wall effect a greater airway wall

\[J \] [H11032]

J Appl Physiol • VOL 96 • JANUARY 2004 • www.jap.org

\[J \] [H11032]

\[J \] [H11032]
was elevated in both groups of asthmatic subjects and was independent of the use of corticosteroids. These findings are in good agreement with previously published data by Silkoff et al. (48), despite using a different breathing maneuver and analytic technique to estimate the flow-independent NO exchange parameters. In addition, we found that D_{aw,NO} is inversely correlated with both FEV1 and FVC (%predicted), independent of the presence of asthma and steroid use. Thus we confirm that D_{aw,NO} may reflect physiological changes in the lungs that impact lung function independent of the use of corticosteroids.

Because the initial reports that FENO in asthma was elevated (1, 30), subsequent studies have focused on exploring the correlation between C_{exh} and other inflammatory markers (i.e., eosinophils), clinical interventions such as corticosteroids, and standard indexes of lung function (i.e., FEV1/FVC). Corticosteroid treatment significantly decreases C_{NO,plat} in subjects with asthma (31, 40, 41), and the dose of steroid is inversely related to C_{NO,plat} (32). In addition, an increase in C_{NO,plat} has recently been shown to be equally effective as sputum eosinophils and airway hyperresponsiveness to hypertonic saline as a predictor for loss of asthma control (26). However, the present study, as well as that of Silkoff et al. (48), demonstrates the presence of steroid-independent factors (i.e., D_{aw,NO}) that can also contribute to the elevated levels of NO in the exhaled breath of asthmatic subjects.

We are also now aware of disease states in which exhaled concentration of NO is in the normal range only because abnormalities in the flow-independent determinants of NO concentration balance each other. For example, in scleroderma, the alveolar concentration of NO is elevated, whereas the airway wall concentration is reduced, leading to an C_{exh} that is similar to that of healthy controls (45).

Silkoff et al. (48) first reported that D_{aw,NO} is fourfold higher in subjects with asthma and that this increase is independent of steroid treatment, whereas J_{aw,NO} decreases. Lehtimaki et al. (38) then demonstrated that steroid treatment reduces J_{aw,NO} in newly diagnosed asthma subjects (previously steroid naive) by utilizing multiple constant-flow rate maneuvers (52, 54). Most recently, Hogman et al. (22) also recently demonstrated that D_{aw,NO} is increased 1.5-fold in a group of atopic asthmatic subjects. Although we utilized a different breathing maneuver and technique to estimate the flow-independent NO parameters, our results are consistent with previously reported trends (22, 38, 48) and also demonstrate that D_{aw,NO} is inversely correlated with FEV1 and FVC (%predicted) and C_{aw,NO} is positively correlated with FVC. The positive correlation of C_{aw,NO} with FVC is likely due to the fact that it is inversely related to D_{aw,NO} (i.e., C_{aw,NO} = J_{aw,NO}/D_{aw,NO}). Of note is the fact that Silkoff et al. (48) reported that values of J_{aw,NO}, D_{aw,NO}, and C_{aw,NO} after steroid use in asthmatic subjects were all positively correlated with FEV1/FVC (%predicted). These important differences may be due to differences in study design and the technique used to estimate the flow-independent NO parameters. Nonetheless, future studies will need to continue to
investigate the relationship between NO flow-independent parameters and lung function.

Cexh necessarily reflects both the chemical and physical properties of the airway wall and alveoli, as well as the endogenous production rate from NOS isoforms in the airway and alveoli. Our ability to estimate the flow-independent NO parameters, which depend on these properties from the exhaled concentration signal, can be illustrated by using the composite
exhalation profile (Fig. 4A). Our laboratory (53) has previously demonstrated that only phases I and II are sensitive to changes in Da(NO) (if Da(NO) increases, less NO is exhaled in phases I and II), only phase III is sensitive to Calv,ss (if Calv,ss increases, there is a uniform increase across exhaled volume in phase III), and all three phases are sensitive to Jaw,NO (if Jaw,NO increases, there is more NO exhaled in all phases, and the impact on phase III is a steeper slope) (see Fig. 3). Thus the observed

Table 3. Model-predicted and experimental CNO,plat of subjects

Subject No.	V˙E and CNO,plat Experimental Data	CNO,plat Model Predicted				
	ml/s	ppb	ml/s	ppb	50 ml/s	250 ml/s
Healthy adults						
1	47.9	12.9	251	4.03	13.0	4.60
2	57.6	20.8	269	6.67	19.9	7.04
3	63.8	1.87	230	0.65	3.73	1.20
4	49.2	13.0	248	3.44	13.1	4.76
5	45.2	5.14	197	1.74	4.02	1.53
6	58.8	2.17	254	0.92	2.75	0.93
7	54.1	17.9	254	6.64	17.9	7.62
8	NC	NC	NC	NC	NC	6.79
9	NC	NC	NC	NC	8.07	3.83
10	NA	NA	259	10.5	23.4	12.9
11	63.8	1.87	230	0.65	3.73	1.20
12	59.2	14.8	NA	NA	17.2	9.82
13	57.4	17.0	244	5.35	16.4	5.46
14	59.5	8.16	244	3.17	9.57	3.10
15	56.0	24.8	217	12.4	24.6	11.0
16	63.2	8.64	271	3.29	6.78	2.35
17	58.5	9.67	231	4.31	12.5	4.13
18	50.3	8.89	251	4.14	11.0	4.38
19	92.5	9.25	266	2.52	14.6	5.03
20	55.9	15.5	192	5.30	16.3	5.48
21	64.4	13.1	249	4.34	17.5	5.22
22	60.0	14.2	253	4.58	13.9	5.00
23	55.8	19.4	208	6.94	17.8	6.93
24	62.7	14.4	253	7.66	12.7	5.91
Mean	58.2	12.3	243	4.80	13.0	5.17
Steroid-naïve adults with asthma						
1	58.7	96.0	258	26.2	100	28.2
2	58.6	92.9	273	23.3	93.6	27.0
3	55.8	38.8	221	11.2	41.8	15.6
4	NA	NA	NA	NA	32	8.23
5	66.3	36.7	253	7.41	38.9	11.1
6	61.1	21.0	234	7.03	20.2	6.92
7	71.9	17.5	260	4.5	21.2	5.77
8	58.0	91.6	274	22.6	83.2	25.4
Mean	61.5	56.3*	253	14.6*	53.9*	16.1‡
Steroid-treated adults with asthma						
1	66.3	15.9	230	5.56	18.5	5.34
2	54.1	7.35	211	2.69	7.43	2.18
3	57.1	7.74	254	2.55	8.14	2.67
4	48.9	59.7	237	16.0	49.9	17.7
5	53.2	16.6	249	6.15	16.1	7.73
6	52.8	19.7	273	5.16	20.8	5.45
7	45.2	38.8	262	11.6	38.9	13.2
8	50.3	11.7	239	2.58	11.8	3.42
9	53.4	8.61	270	1.90	8.95	2.13
10	54.5	34.1	197	17.8	38.7	13.7
11	55.4	22.1	171	6.34	23.4	6.34
12	73.3	31.5	271	11.0	35.7	13.2
Mean	55.4	22.8†	239	7.44†	23.2‡†	7.76‡†

V˙E, constant exhalation flow rate; CNO,plat, nitric oxide plateau concentration in phase III; CNO,plat, plateau concentration of nitric oxide predicted by the model; ppb, parts per billion; NC, data not collected; NA, not able to complete the maneuver. Statistically different from *healthy controls, †steroid-naïve asthmatic subjects, and ‡CNO,plat at 250 ml/s (t-test with P<0.05).
changes in the composite profile of each group are consistent with our reported values of the flow-independent parameters. For example, steroid-treated subjects with asthma have a steeper slope in phase III and a higher concentration (necessitating a larger $J_{aw,NO}$), yet a similar amount of NO in phases I and II (necessitating a larger $D_{aw,NO}$ to balance the increased $J_{aw,NO}$). Of note is the fact that, among the parameters characterizing phases I and II of the exhalation profile, only $C_{NO,peak}$ differs among the groups (W_{50} and $V_{1.1H}$ are not different among the three groups). This is consistent with altered NO production and transport in the airway wall during the breath hold, but also suggests that the volume accumulating NO during the breath hold and subsequently eliminated during exhalation is similar among the three groups.

Our laboratory has previously reported analytic expressions for the flow-independent parameters that approximate the functional dependence on the surface area emitting NO (A_i, where i is either airways (aw) or alveoli (alv); cm2], solubility [partition coefficient (A_{air})], molecular diffusion [molecular diffusivity ($D_{i,NO}$); cm2/s], chemical consumption (lumped first-order rate reaction constant k; s$^{-1}$), thickness of the tissue layer (L_t, i; cm), and chemical production [airway ($S_{aw,NO}$) and alveolar ($Salv,NO$) production rate per unit volume; ml NO-s$^{-1}$.cm$^{-3}$] (45, 52). The analytic expressions are summarized in APPENDIX B and provide a level of quantitative insight into the mechanism of the observed changes in the flow-independent parameters.

Fig. 6. Individual and population mean (solid bar) values of the plateau exhaled concentration for nitric oxide as predicted by the model ($C_{NO,plat}$; Eq. 3) using the flow-independent parameters for each subject. A: exhalation flow rate of exactly 50 ml/s; B: exhalation flow rate of exactly 250 ml/s. ●, SN; ○, ST; △, HA. Statistically different from *HA and *SN subjects with asthma: $P < 0.05$.

Fig. 7. Second-order partial correlation analysis demonstrates a significant inverse relationship between $D_{aw,NO}$ and forced expiratory volume in 1 s (FEV$_1$; %predicted) (A), $D_{aw,NO}$ and forced vital capacity (FVC; %predicted) (B), and a positive relationship between $C_{aw,NO}$ and FVC (%predicted) (C) in a total of 44 subjects. Δ, Difference between the individual score of each subject and the group mean value to which each subject belongs. +, HA ($n = 24$); ○, ST ($n = 12$); ●, SN ($n = 8$).
airways of subjects with asthma has been demonstrated (12, 36, 50), which could potentially increase A_{aw}; however, this possible mechanism would likely be sensitive to corticosteroid therapy, which is not the observation.

$J_{\text{aw,NO}}$ has a similar functional dependence on the physical and chemical parameters of the airways ($A_{\text{aw}}, D_{\text{aw,NO}},$ and L_{aw}) (see APPENDIX B) as $D_{\text{aw,NO}}$. However, in contrast to $D_{\text{aw,NO}}, J_{\text{aw,NO}}$ is inversely related to k and is a positive function of an additional parameter, $S_{\text{aw,NO}}$. An increase in $S_{\text{aw,NO}}$ by an increase in neuronal NOS expression from nonadrenergic noncholinergic nerves (6, 7, 16, 17, 39, 55) or prokaryotic denitrification (13) may increase the exhaled concentration of NO and thus contribute to the observed increase in $J_{\text{aw,NO}}$ for both steroid-naive and steroid-treated subjects with asthma. Other enzymatic and nonenzymatic chemical events in the airways, such as increased iNOS expression in the epithelium (18), nitrite reduction to NO at lower pH (23, 24, 35), and S-nitrosoglutathione catalysis (5, 11, 14, 49), could also increase $S_{\text{aw,NO}}$ and contribute to the increase in $J_{\text{aw,NO}}$ for steroid-naive subjects with asthma.

Steroid treatment dramatically decreases the C_{exh} (see Fig. 5), which corresponds to observed decreases in $J_{\text{aw,NO}}$ and $C_{\text{aw,NO}}$ as well as $C_{\text{NO,plat}}$ at both 50 and 250 ml/s flow rates. As previously discussed, steroid therapy decreases superoxide production, which would correspond to a reduced consumption rate and an increase in $J_{\text{aw,NO}}$, which is not observed. The decrease in $J_{\text{aw,NO}}$ in steroid-treated subjects with asthma may be related to 1) the reduced iNOS activity in the epithelial and inflammatory cells in the airways (12, 34, 36, 50, 57); 2) reduced nitrite to NO reduction due to normalized airway pH (23, 24, 35); 3) decreased prokaryotic colonization (13); and 4) inhibition of arginine upregulation (33). The decrease in $C_{\text{aw,NO}}$ (a ratio of $J_{\text{aw,NO}}$ over $D_{\text{aw,NO}}$) for steroid-treated subjects with asthma is due to the decrease in $J_{\text{aw,NO}}$, whereas $D_{\text{aw,NO}}$ is not changed.

In summary, we have estimated both flow-independent NO exchange parameters and plateau C_{exh} following ATS guidelines, in subjects with low FEV1/FVC and a clinical history of asthma. $D_{\text{aw,NO}}$ is elevated independent of corticosteroid use, whereas $J_{\text{aw,NO}}, C_{\text{aw,NO}},$ and $C_{\text{NO,plat}}$ (at both 50 and 250 ml/s) are all reduced by the use of steroids. In addition, $D_{\text{aw,NO}}$ is inversely correlated with pulmonary function, independent of the presence of asthma and steroid use. In agreement with Silkoff et al. (48), we conclude that $D_{\text{aw,NO}}$ may reflect changes in the lungs that impact function and that are not impacted by steroid therapy and thus may provide clinical information not available from C_{exh} alone.

APPENDIX A: ASTHMA CONTROL QUESTIONNAIRE

The following six questions are from a previously published and validated asthma control questionnaire (27, 28).

1) On average, during the past week, how often were you woken by your asthma during the night?

2) On average, during the past week, how bad were your asthma symptoms when you woke up in the morning?

3) In general, during the past week, how limited were you in your activities because of your asthma?

4) In general, during the past week, how much shortness of breath did you experience because of your asthma?

5) In general, during the past week, how much of the time did you wheeze?
6) On average, over the past week, how many puffs of short-acting bronchodilator (e.g., Ventolin) have you used each day?

Each question is answered by the subject on a scale of 0 to 21, representing the absence of symptoms (score of 0) to severe symptoms (score of 6). The composite score is then the mean of the six scores. Thus a higher composite score reflects more asthmatic symptoms. The questionnaire has been shown to have improved discriminative and evaluative measurement properties than an asthma control questionnaire. The following analytic expressions for the steady-state values of $J_{aw,NO}$, $D_{aw,NO}$, and $C_{alv,aw}$ have been previously derived (52) and presented in a slightly different form (45, 51)

$$D_{aw,NO} = \frac{A_{aw}\xi_{aw}}{L_{aw}} \tanh(\xi_{aw})$$

$$J'_{aw,NO} = S_{aw,NO}A_{aw}L_{aw} \left[1 - \exp(-\xi_{aw}) - \tanh(\xi_{aw}) \exp(-\xi_{aw}) \right]$$

$$C_{alv,aw} = S_{alv,NO}D_{aw} \left[1 - \exp(-\xi_{alv}) - \tanh(\xi_{alv}) \exp(-\xi_{alv}) \right]$$

where $\xi = L/k$ is the first-order rate constant that characterizes the rate of chemical consumption by substrates such as superoxide. The ξ represents the ratio of the rate of chemical consumption (k) to the rate of molecular diffusion (D_{NO}) for NO. The hyperbolic tangent is bounded between -1 and 1 and is a monotonically increasing function of its argument. Eq. B1 provides units of milliliters per second for $D_{aw,NO}$ that are equivalent in magnitude to picoliters per second per ppb.

ACKNOWLEDGMENTS

We thank Dr. Philip Silkoff at the National Jewish Medical and Research Center for insightful comments during the preparation of this manuscript, and the General Clinical Research Center at the University of California, Irvine, and Dr. Arthur Gelb for assistance in recruiting subjects with asthma.

GRANTS

This work was supported by National Institutes of Health Grants HL-60636, HD-23969, and RR-00827.

REFERENCES

1. Alving K, Weitzberg E, and Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. *Eur Respir J* 6: 1368–1370, 1995.

2. American Thoracic Society. Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children. Am J Respir Crit Care Med 160: 2104–2117, 1999.

3. Ardawi MS. Glutamine metabolism in the lungs of glucocorticoid-treated rats. *Clin Sci (Lond)* 81: 37–42, 1991.

4. Bird RB, Stewart WE, and Lightfoot EN. *Transport Phenomena*. New York: Wiley, 1960.

5. Corradi M, Montuschi P, Donnelly LE, Pesci A, Karlssonov SA, and Barnes PJ. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. *Am J Respir Crit Care Med* 163: 854–858, 2001.

6. De Sanctis GT, MacLean JA, Hamada K, Mehta S, Scott JA, Jiao A, Yandava CN, Kobzik L, Wolnycie WW, Fabian AJ, Venugopal CS, Grasemann H, Huang PL, and Drazen JM. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. *J Exp Med* 189: 1621–1630, 1999.

7. De Sanctis GT, Mehta S, Kobzik L, Yandava C, Jiao A, Huang PL, and Drazen JM. Contribution of type I NOS to expired gas NO and bronchial responsiveness in mice. *Am J Physiol Lung Cell Mol Physiol* 273: L883–L888, 1997.

8. Dubois AB, Kelley PM, Douglas JS, and Mohsenin V. Nitric oxide production and absorption in trachea, bronchi, bronchioles, and respiratory bronchioles of humans. *J Appl Physiol* 86: 159–167, 1999.

9. Dweik RA, Comhair SA, Gaston B, Thunnissen FB, Farver C, Thomasens MJ, Kavuru M, Hamnel J, Abu-Soud HM, and Erzurum SC. Nitric oxide chemical events in the human airway during the immediate and late antigen-induced asthmatic response. *Proc Natl Acad Sci USA* 98: 2622–2627, 2001.

10. Dweik RA, Lewis M, Kavuru M, Buhrow L, Erzurum SC, and Thomasen MJ. Inhaled corticosteroids and beta-agonists inhibit oxidant production by bronchoalveolar lavage cells from normal volunteers in vivo. *Immunopharmacology* 37: 163–166, 1997.

11. Fang K, Johns R, Macdonald T, Kinter M, and Gaston B. S-nitroso-gluthatione breakdown prevents airway smooth muscle relaxation in the guinea pig. *Am J Physiol Lung Cell Mol Physiol* 279: L716–L721, 2000.

12. Gaston B, Drazen JM, Loscalzo J, and Stamler JS. The biology of nitric oxide in the airways. *Am J Respir Crit Care Med* 149: 538–551, 1994.

13. Gaston B, Ratjen F, Vaughan JW, Malhotra NR, Canady RG, Snyder AH, Hunt JF, Gaertig S, and Goldberg JB. Nitrogen redox balance in the cystic fibrosis airway: effects of antisudomotoral therapy. *Am J Respir Crit Care Med* 165: 387–390, 2002.

14. Gaston B, Sears S, Woods J, Hunt J, Ponaman M, McMahon T, and Stamler JS. Bronchodilator S-nitrosothiol deficiency in asthmatic respiratory failure. *Lancet* 351: 1317–1319, 1998.

15. Girgis RE, Gugnani MK, Abrams J, and Mayes MD. Partitioning of alveolar and conducting airway nitric oxide in scleroderma lung disease. *Am J Respir Crit Care Med* 165: 1587–1591, 2002.

16. Grasemann H, Yandava CN, and Drazen JM. Neuronal NO synthase (NOS1) is a major candidate gene for asthma. *Clin Exp Allergy* 29 Suppl 4: 39–41, 1999.

17. Grasemann H, Yandava CN, Storm van’s Gravesande K, Deykin A, Pillari A, Ma J, Sonna LA, Lilly C, Stamper MJ, Israel E, Silverman EK, and Drazen JM. A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma. *Biochem Biophys Res Commun* 272: 1–3, 2000.

18. Guo FH, Comhair SA, Zheng S, Dweik RA, Eissa NT, Thomasen MJ, Calhoun W, and Erzurum SC. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. *J Immunol* 164: 5957–5960, 2000.

19. Gustafsson LE, Leone AM, Persson MG, Wijkund NP, and Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. *Biochem Biophys Res Commun* 181: 852–857, 1991.

20. Hogman M, Drca N, Ehrstedt C, and Merilainen P. Exhaled nitric oxide partitioned into alveolar, lower airways and nasal contributions. *Respir Med* 94: 985–991, 2000.

21. Hogman M, Hjoberg J, Mork AC, Rooms GM, and Anderson SD. Dry gas hypernea changes airway reactivity and ion content of rabbit tracheal wall. *Respir Physiol* 109: 65–72, 1997.

22. Hogman M, Holmkvist T, Wegener T, Emtner M, Andersson M, Hogman M, Holmkvist T, Wegener T, Emtner M, Andersson M, Merilainen P. Exhaled nitric oxide partitioned into alveolar, lower airways and nasal contributions. *Respir Med* 94: 985–991, 2000.

23. Hyde RW, Geigel EJ, Olszowka AJ, Krasney JA, Forster RE 2nd, Utell MJ, and Frampton MW. Determination of production of nitric oxide by lower airways of humans—theory. *J Appl Physiol* 82: 1290–1296, 1997.

24. Jones SL, Kittelson J, Cowan JO, Flannery EM, Hancox RJ, Juniper EF, O’Byrne PM, Guyatt GH, Ferrie PJ, and King DR. Development and validation of a questionnaire to measure asthma control. *Eur Respir J* 14: 902–907, 1999.
29. Kharitonov S, Alving K, and Barnes PJ. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. *Eur Respir J* 10: 1683–1693, 1997.

30. Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shamebourne EA, and Barnes PJ. Increased nitric oxide in exhaled air of asthmatic patients. *Lancet* 343: 133–135, 1994.

31. Kharitonov SA, Yates DH, and Barnes PJ. Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients. *Am J Respir Crit Care Med* 153: 454–457, 1996.

32. Kharitonov SA, Yates DH, Chung KF, and Barnes PJ. Changes in the dose of inhaled steroid affect exhaled nitric oxide levels in asthmatic patients. *Eur Respir J* 9: 196–201, 1996.

33. Klasen S, Hammermann R, Fuhrmann M, Lindemann D, Beck KF, Pfeilschifter J, and Rake K. Glucocorticoids inhibit lipopolysaccharide-induced up-regulation of arginase in rat alveolar macrophages. *Br J Pharmacol* 132: 1349–1357, 2001.

34. Knowles RG, Salter M, Brooks SL, and Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. *Biochem Biophys Res Commun* 172: 1042–1048, 1990.

35. Kostikas K, Papatheodorou G, Psathakis K, Panagou P, and Loukides S. pH in expired breath condensate of patients with inflammatory airway diseases. *Am J Respir Crit Care Med* 165: 1364–1370, 2002.

36. Kotaru C, Skowrons M, Coreno A, and McFadden ER Jr. Inhibition of nitric oxide synthesis attenuates thermally induced asthma. *J Appl Physiol* 91: 703–708, 2001.

37. Lehtimaki L, Kankaanranta H, Saarelainen S, Hahtola P, Jarvenpaa R, Koivula T, Turjanmaa V, and Moilanen E. Extended exhaled NO measurement differentiates between alveolar and bronchial inflammation. *Am J Respir Crit Care Med* 163: 1557–1561, 2001.

38. Lehtimaki L, Kankaanranta H, Saarelainen S, Turjanmaa V, and Moilanen E. Inhaled fluticasone decreases bronchial but not alveolar nitric oxide output in asthma. *Eur Respir J* 18: 635–639, 2001.

39. Lilly CM, Stamler JS, Gaston B, Meckel C, Loscalzo J, and Drazen JM. Modulation of vasoactive intestinal peptide pulmonary relaxation by NO in tracheally superfused guinea pig lungs. *Am J Physiol Lung Cell Mol Physiol* 265: L410–L415, 1993.

40. Lim S, Jatakanon A, John M, Gilhey T, O’Connor BJ, Chung KF, and Barnes PJ. Effect of inhaled budesonide on lung function and airway inflammation. Assessment by various inflammatory markers in mild asthma. *Am J Respir Crit Care Med* 159: 22–30, 1999.

41. Massaro AF, Gaston B, Kita D, Fanta C, Stamler JS, and Drazen JM. Expired nitric oxide levels during treatment of acute asthma. *Am J Respir Crit Care Med* 152: 800–803, 1995.

42. Pietropaoli AP, Perillo IB, Torres A, Perkins PT, Frasier LM, Utell MJ, Frampton MW, and Hyde RW. Simultaneous measurement of nitric oxide production by conducting and alveolar airways of humans. *J Appl Physiol* 87: 1532–1542, 1999.

43. Redington AE, Meng QH, Springall DR, Evans TJ, Creminon C, Maclouf J, Holgate ST, Howarth PH, and Polak JM. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. *Thorax* 56: 351–357, 2001.

44. Shin HW, Rose-Gottron CM, Perez F, Cooper DM, Wilson AF, and George SC. Flow-independent nitric oxide exchange parameters in healthy adults. *J Appl Physiol* 91: 2173–2181, 2001.

45. Shin HW, Rose-Gottron CM, Sufi RS, Perez F, Cooper DM, Wilson AF, and George SC. Flow-independent nitric oxide exchange parameters in cystic fibrosis. *Am J Respir Crit Care Med* 165: 349–357, 2002.

46. Silkoff PE, McLean PA, Caramori M, Slutsky AS, and Zamel N. A significant proportion of exhaled nitric oxide arises in large airways in normal subjects. *Respir Physiol* 113: 33–38, 1998.

47. Silkoff PE, Sylvester JT, Zamel N, and Permutt S. Airway nitric oxide diffusion in asthma. Role in pulmonary function and bronchial responsiveness. *Am J Respir Crit Care Med* 161: 1218–1228, 2000.

48. Snyder AH, McPherson ME, Hunt JF, Johnson M, Stamler JS, and Gaston B. Acute effects of aerosolized S-nitrosogluthathione in cystic fibrosis. *Am J Respir Crit Care Med* 165: 922–926, 2002.

49. Springall D, Meng Q, Redington A, Howarth PH, Evans TJ, and Polak JM. Inducible nitric oxide synthase in asthmatic airway epithelium is reduced by corticosteroid therapy (Abstract). *Am J Respir Crit Care Med* 151: A533, 1995.

50. Tsoukias NM and George SC. Impact of volume-dependent alveolar diffusing capacity on exhaled nitric oxide concentration. *Ann Biomed Eng* 29: 731–739, 2001.

51. Tsoukias NM and George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. *J Appl Physiol* 85: 653–666, 1998.

52. Tsoukias NM, Shin HW, Wilson AF, and George SC. A single-breath technique with variable flow rate to characterize nitric oxide exchange dynamics in the lungs. *J Appl Physiol* 91: 477–487, 2001.

53. Tsoukias NM, Tannous Z, Wilson AF, and George SC. Single-exhalation profiles of NO and CO2 in humans: effect of dynamically changing flow rate. *J Appl Physiol* 85: 642–652, 1998.

54. Wechsler ME, Graesemann H, Deykin A, Silverman EK, Yandava CN, Israel E, Wand M, and Drazen JM. Exhaled nitric oxide in patients with asthma: association with NOS1 genotype. *Am J Respir Crit Care Med* 162: 2043–2047, 2000.

55. West JB. *Pulmonary Pathophysiology—The Essentials*. Baltimore, MD: Williams & Wilkins, 1995.

56. Yates DH, Kharitonov SA, Thomas PS, and Barnes PJ. Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase. *Am J Respir Crit Care Med* 154: 247–250, 1996.