Paramagnonlike excitations and spin diffusion in magnetic resonance studies of copper oxide superconductors

Igor A. Larionov

Magnetic Radiospectroscopy Laboratory, Department of Physics, Kazan State University, 420008 Kazan, Russia

The relaxation function theory for a doped two-dimensional Heisenberg antiferromagnetic system in the paramagnetic state for all wave vectors through the Brillouin zone is presented in view of low frequency response of high-T_c, copper oxide superconductors. We deduced the regions of long lifetime [$T \lesssim 400 (1 - 4x)$ K] and "overdamped" [$T \gtrsim 700 (1 - 4x)$ K] paramagnonlike excitations in the temperature (T)-doping index (x) phase diagram from plane oxygen nuclear spin-lattice relaxation rate $^{17}(1/T_1)$ data in up to optimally doped La$_{2-x}$Sr$_x$CuO$_4$ thus providing the regimes for the spin wave concept and the "overdamped" mode.

I. INTRODUCTION

Plane copper oxide high-temperature superconductors (high-T_c) are the doped S=1/2 two dimensional Heisenberg antiferromagnetic (2DHAF) systems. In the carrier free regime, the elementary excitations are spin waves, magnons in the quasiparticle language, a concept widely known and thoroughly investigated in the past. Therefore it is tempting to consider the doped 2DHAF systems in terms of magnonlike excitations (strictly speaking, the paramagnon, a notation used for spin fluctuations in representation of damped spin waves) and the magnon lifetime is characterized by the damping of spin waves. Then the questions arise: what happens with spin waves when we dope the system? What are the elementary excitations – are they still paramagnonlike? The motion of charge carriers even in the optimally doped (maximum T_c) high-T_c is known to take place in the presence of strong AF fluctuations and spin waves in 2DHAF systems persist even without long range order in the paramagnetic state, so the questions make sense, but, finally, what one can say about the lifetime of these excitations when we dope the system?

From experimental point of view the spin-wavelike features have been revealed by neutron scattering (NS) even in the nearly optimally doped YBa$_2$Cu$_3$O$_{6.85}$ and, contrary to the predictions within the weak coupling theory, no isotope effect on the "resonance peak" (RP) frequency have been observed in YBa$_2$Cu$_3$O$_{6.89}$. The RP phenomenon disappears in the overdoped phase, thus raising questions about its appearance within the weak coupling theories and AF spin excitations disappear in overdoped La$_{1.7}$Sr$_0.3$CuO$_4$ leading to the conclusion that "the AF spin correlations in superconducting samples must be vestiges of the parent insulator". Moreover, NS data in underdoped YBa$_2$Cu$_3$O$_{6.35}$ with $T_c=$18 K shows the commensurate AF short range order, no well-defined resonant mode, and similarities between the low-energy magnetic excitations in YBa$_2$Cu$_3$O$_{6.35}$ and carrier free insulating 2DHAF, e.g., YBa$_2$Cu$_3$O$_{6.15}$ and La$_2$CuO$_4$. The spin diffusive contribution $^{17}(1/T_1)_{Diff}$ to plane oxygen nuclear spin-lattice relaxation rate $^{17}(1/T_1)$ cannot be excluded solely by failure to detect the changes in $^{17}(1/T_1)$ by varying the nuclear magnetic resonance (NMR) frequency ω since $^{17}(1/T_1)_{Diff}$ varies rather weakly with ω.

In this paper we use the Mori-Zwanzig projection operator procedure and thus we are unprejudiced regarding the role of $q \approx 0$ (spin diffusion) and $Q \approx (\pi, \pi)$ wave vectors in the imaginary part of dynamic spin susceptibility $\chi''(q, \omega)$ of doped 2DHAF system which is especially important for $^{17}(1/T_1)$. Spin diffusion is a spatial smoothing of heterogeneous spin polarization in a system of localized magnetic moments and in the presence of strong damping (short magnon lifetime) the spin dynamics changes from wavelike to diffusive. The approximations we use for the relaxation function are within the Markovian approximation and "by itself the Markovian situation can be valid even in the absence of any picture of the system in terms of well-defined excitations". We will emphasize the spin-wavelike features in $\chi''(q, \omega)$ of copper oxide high-T_c and extract the lifetime of spin-wavelike excitations from $^{17}(1/T_1)$ data.

II. BASIC RELATIONS

We start from the t-J Hamiltonian known as the minimal model for the electronic properties of high-T_c cuprates

$$H_{t-J} = \sum_{i,j,\sigma} t_{ij} X_i^{\sigma} X_j^{\sigma \sigma} + J \sum_{i>j} (S_i S_j - \frac{1}{4} n_i n_j),$$

written in terms of the Hubbard operators X_i^{σ} that create an electron with spin σ at site i and S_i are spin-1/2 operators. Here, the hopping integral $t_{ij}=t$ between the nearest neighbors (NN) describes the motion of electrons causing a change in their spins and J=0.12 eV is the NN AF coupling constant. The spin and density operators are defined as follows: $S_i^{\sigma}=X_i^{\sigma \sigma}$, $S_i^{\tau}=(1/2) \sum_{\sigma=\pm} \sigma X_i^{\sigma \sigma}$, $n_i=\sum_{\sigma=-\sigma} X_i^{\sigma \sigma}$, with the standard normalization $X_i^{\sigma \sigma} + X_i^{\tau +} + X_i^{\tau -}=1$.

We formulate our study of the spin fluctuations following Mori who showed it’s efficiency for both the classical (and essential equivalence to Brownian motion) and quantum (e.g., Heisenberg systems of arbitrary dimension) many body systems. The time evolution of a dynamical

Journal Ref.: Physical Review B, accepted, in press
variable $S_k^z(\tau)$, say, is given by the equation of motion,
\[\dot{S}_k^z(\tau) \equiv \frac{dS_k^z(\tau)}{d\tau} = i \mathcal{L} S_k^z(\tau) - [\mathcal{H}_{\text{int}}, S_k^z(\tau)], \] (2)
where the Liouville operator \mathcal{L} in the quantal case represents the commutator with the Hamiltonian. The projection of the vector $S_k^z(\tau)$ onto the $S_k^z=S_k^z(\tau=0)$ axis, $P_0 S_k^z(\tau) = \mathcal{R}(k,\tau) S_k^z$, defines the linear projection Hermitian operator P_0. One may separate $S_k^z(\tau)$ into the projective and vertical components $S_k^z(\tau) = \mathcal{R}(k,\tau) S_k^z + (1 - P_0) S_k^z(\tau)$ with respect to the S_k^z axis, where $\mathcal{R}(k,\tau) \equiv \langle S_k^z(\tau), (S_{-k}^z)^* \rangle S_k^z/(\langle S_k^z, (S_{-k}^z)^* \rangle)^{-1}$ is the relaxation function in the inner-product notation: $(S_k^z, (S_{-k}^z)^*) \equiv k_B T \int_{-\infty}^{\infty} dt e^{i\omega t} \langle S_k^z(\tau)e^{-i\omega t}(S_{-k}^z)^* \rangle$, and the angular brackets denote the thermal average.

One may construct a continued fraction representation for the Laplace transform of the relaxation function, for which Lovesey and Meserveva20 used a three pole approximation, $\mathcal{R}(k,s) = \int_{0}^{\infty} d\omega \omega^s \mathcal{F}(k,\omega) = \left(1/\omega_4^2\right) \left(1/\omega_5^2\right) \left(1/\omega_6^2\right)$, with cutoff characteristic time ω_4, by arguing that $S_k^z(\tau)$ fluctuations are weakly affected by higher order random forces. For the relaxation shape function $\mathcal{F}(k,\omega) = \text{Re}[\mathcal{R}(k,\omega)]/\pi$, this gives
\[\mathcal{F}(k,\omega) = \frac{\omega \Delta k^2}{\omega_4^2 - \Delta k^2 < \Delta k^2_0 >^2 + (\omega^2 - \Delta k^2_0)^2}, \] (3)
where Δk_0^2 and Δk_0^2 are related to the frequency moments, $\langle \omega_k^4 \rangle = \int_{-\infty}^{\infty} d\omega \omega^4 \mathcal{F}(k,\omega)$, $\langle \omega_k^2 \rangle = \left(1/\omega_4^2\right)$, with $\mathcal{R}(k,\tau)$ as $\Delta k_0^2 = \langle \omega_k^2 \rangle$, $\Delta k_2 = \langle \omega_k^4 \rangle - \langle \omega_k^2 \rangle^2$ for $\tau \gg \xi_k$. Note that $\mathcal{F}(k,\omega)$ is normalized to unity $\int_{-\infty}^{\infty} d\omega \mathcal{F}(k,\omega) = 1$ and is even in both k and ω. The expression for the second moment, $\langle \omega_k^4 \rangle = i\langle [S_k^z, S_{-k}^z] \rangle/\chi(k) = (8Jc_1 - 4t_{eff} T_1)(1 - \gamma_k)/\chi(k)$, is compact, while $\langle \omega_k^2 \rangle = i\langle [S_k^z, S_{-k}^z] \rangle/\chi(k)$ is cumbersome and is not reproduced here (see Ref.17 for details).

The static spin susceptibility has been derived within the t-J model in the overall temperature and doping range22
\[\chi(k) = \frac{4|c_1|}{Jg_g (g_+ + \gamma_k)}, \] (4)
and has the same structure as in the isotropic spin-wave theory.23 The parameter g_g is related to correlation length ξ via the expression $\xi/a = 1/(2\sqrt{g_g - 1})$, where $a = 3.8$ Å is a lattice unit. The amplitude between the NN is given by: $T_1 = -(1/4) \sum_p \langle X_i^0 X_{i+p}^0 \rangle_p = 1/2 \sum_k \epsilon_k j_k^h$, the index p runs over NN, $\gamma_k = (1/4) \sum_p \exp(i k p) = (1/2)(\cos k_x a + \cos k_y a)$, and $j_k^h = \exp(-E_k + \mu)/k_B T + 1^{-1}$ is the Fermi function of holes. The number of extra holes, due to doping, δ, per one plane Cu$^{2+}$, can be identified with the Sr content x in La$_{2-x}$Sr$_x$CuO$_4$. The chemical potential μ is related to δ by $\delta = \sum_k j_k^h$, with $p = (1+\delta)/2$. The excitation spectrum of holes is given by $E_k = 4t_{eff} g_k$, where the hops t, are affected by electronic and AF spin-spin correlations c_1, resulting in effective values,20,24,25 for which we set $t_{eff} = \delta J/0.2$ in order to match the insulator-metal transition.

For low temperature behavior we use the expression, resulting in effective correlation length ξ_{eff}, given by17,24,26
\[\xi_{eff}^{-1} = \xi_0^{-1} + \xi^{-1}. \] (5)
Here, ξ is affected by doped holes, in contrast with the Keimer et al.26 empirical equation, where ξ is given by the Hasenfratz-Niedermayer formula and there was no influence of the hole subsystem on ξ. Thus from now on we replace ξ by ξ_{eff}. For doped systems we use the explicit expression22 for ξ which is much more complicated compared with simple relation $\xi/a \approx (J\sqrt{g_g}/k_B T)(\exp(2\pi\rho_S/k_B T), valid for carrier free or lightly doped systems.17,22 In the best fit of ξ_{eff} to experimental data,26,27 the relation $\xi_0 = a/n_\infty$ is most suitable,11,17 which one may attribute to stripe picture, where $n_\infty = 2$ for $x \leq 0.05$ and $n_\infty = 1$ near optimal ($x = 0.15$) doping. The results of the calculations are summarized in Table I. We consider here the case of La$_{2-x}$Sr$_x$CuO$_4$ with the simplest crystalline structure for brevity and luck to thorough experimental data set.

III. PLANE OXYGEN NUCLEAR SPIN-LATTICE RELAXATION

The plane oxygen nuclear spin-lattice relaxation rate of $^{17}(T_1)$ has three contributions:
\[17(1/T_1) = 17(1/T_1)_{sw} + 17(1/T_1)_{Korr} + 17(1/T_1)_{diff}. \] (6)
The contribution from spin-wavelike excitations is given by
\[17(1/T_1)_{sw} = \frac{2k_B T}{\omega_0} \sum_{|k| > 1/\xi_{eff}} 17F(k)^2 \chi''(k,\omega_0), \] (7)
where $\omega_0 = 2\pi\times52$ MHz $\approx 2.15 \times 10^{-4}$ meV ($\ll T, J$), is the measuring NMR frequency at 9 Tesla. The quantization axis is along the crystal c axis and the wave vector dependent hyperfine form factor for plane 17O sites is given by $17F(k)^2 = 2C^2(1 + \gamma_k)$, with $C = 2.8 \times 10^{-7} eV$.28

The contribution from itinerant holes, of Korringa type, $17(1/T_1)_{Korr} = KK T$, should grow with doping x and will be the adjustable parameter. The contribution from spin diffusion (small wave vectors $k < 1/\xi_{eff}$) may be calculated from general physical grounds, namely, the linear response theory, hydrodynamics, and fluctuation-dissipation theorem22 (see also Ref.17).

\[17(1/T_1)_{diff} = \frac{17F(0)^2 k_B T a^2 \chi(k = 0)}{\pi\hbar D} \Lambda, \] (8)
where $\Lambda = [1/(4\pi)] \ln[1 + D^2/(\omega_0^2\xi_{eff}^2)]$ and the calculated values of spin diffusion constant, D, are given in Table I. Since the relaxation function can be understood within the spin-wave framework,8 the temperature and doping...
dependence of the damping of the spin-wavelike excitations may be studied further. The spin-wavelike dispersion, renormalized by interactions, is given by the relaxation function:

$$\omega_{sw}^2 = 2 \int_0^\infty d\omega \, \mathcal{F}(k, \omega),$$

(9)

where the integration over \(\omega\) in Eq. (9) has been performed analytically and exactly. We assume the Lorentzian form of the imaginary part of the dynamic spin susceptibility,

$$\chi''_L(k, \omega) = \frac{\chi(k) \omega_0^2 \Gamma_k}{(\omega - \omega_{sw}^2)^2 + \Gamma_k^2} + \frac{\chi''_0 \omega_0}{(\omega + \omega_{sw}^2)^2 + \Gamma_k^2},$$

(10)

for \(k\) around (\(\pi, \pi\)). We accept to the leading order the cubic temperature dependence \[^{30,31}\] for the damping of spin-wavelike excitations \(\Gamma_k = \Gamma_k T^3 \eta_k\), where the wave vector dependence is given by \(\eta_k = \sqrt{\omega_{sw}^2 - (\omega_{sw}^0)^2}\).

IV. RESULTS AND DISCUSSION

Figure 4 shows the plane oxygen \(^{17}(1/T_1)\) fitted by Eq. (4) with two adjustable parameters: \(K_K\) and \(\Gamma_r\), which values are given in Table I. The quality of the fit is very good, which we treat as the validity of our theory. The importance of \(^{17}(1/T_1)_{corr}\) and \(^{17}(1/T_1)_{diff}\) in plane oxygen \(^{17}(1/T_1)\), in contrast \[^{12,14}\] with plane copper \[^{63}(1/T_1)\], is due to the filtering of the \((\pi, \pi)\) contribution by the plane oxygen hyperfine form factor. Obviously, in the absence of \(^{17}(1/T_1)_{corr}\) and \(^{17}(1/T_1)_{diff}\), it is hard to explain the measured \(^{17}(1/T_1)\) at large \(x\) with any form of the damping function. In general, the damping grows with doping \(x\), as it should. It should be emphasized that the increase of \(^{17}(1/T_1)\) with temperature is caused by the increase of the damping, \(\Gamma_k\). The low \(T\) region of lightly damped paramagnonlike excitations, where the data may be explained by the theory that neglects the damping \[^{17}\], is quantified through the relation \(\Gamma_k T^3 \ll 0.2\).

Figure 2 shows the temperature \((T)\)-doping index \((x)\) phase diagram with the spin-wavelike damping regimes deduced from plane oxygen nuclear spin-lattice relaxation rate \(^{17}(1/T_1)\) data. It is tempting to speculate that the doping and temperature behavior of these curves resembles the characteristic "pseudo-gap" temperatures.

The form of \(\chi''_L(k, \omega)\) in Eq. (10) gives the commensurate response at low \(\omega\) and the incommensurate response at high \(\omega\) in agreement with NS studies in the lightly doped regime \[^{13,14}\]. Very recently, Stock et al. \[^{13,14}\] reported the evidence for spin waves from NS studies of underdoped \(YBa_2Cu_3O_6.35\) with \(T_c = 18\) K, where the magnetic excitations are very similar to that of carrier free 2DHF systems. These observations, together with the undoubtful evidence for disappearance of AF spin excitations in the overdoped regime \[^{12}\] show that AF spin excitations in the overall doping range of copper oxide high-\(T_c\) emananate from those of the parent insulator, i.e., the spin waves.

The wavevector dependence of spin-wavelike dispersion \(\omega_{sw}^2\) and damping \(\eta_k\) is shown in Figs. 3(a) and 3(b), respectively, for various doping levels. Both \(\omega_{sw}^2\) and \(\eta_k\) show negligible temperature dependence below \(T < J/2\) except the region around \((\pi, \pi)\). For \(x=0\), our calculated magnon energy, \(\omega_{sw}^2\), at \((\pi,0)\) is 3% lower than at \((\pi/2, \pi/2)\) in qualitative agreement with Monte Carlo simulations and series expansion calculations \[^{16}\] and is similar to that in \(Sr_2Cu_3O_6\) \[^{14}\]. However, it is a bit different from NS data in \(La_2CuO_4.2\) \[^{12}\]. The dispersion of \(\omega_{sw}^2\) remains approximately the same and the wave vector dependence of the damping function, \(\eta_k\), in contrast, possesses significant changes with doping. We emphasize that below \(T \approx 400(1-4x)\) K, where \(\Gamma_k T^3 < 0.2\), the damping \(\Gamma_k\) is much smaller compared with \(\omega_{sw}^2\), thus the spin-wavelike excitations are indeed well defined (long lifetime). Above \(T \approx 700(1-4x)\) K, where \(\Gamma_k T^3 > 1\), the damping, \(\Gamma_k\), becomes compatible with \(\omega_{sw}^2\), and grows further with \(T\) and

TABLE I. The calculated in the \(T \rightarrow 0\) limit NN AF spin-spin correlation function \(c_i = (1/4) \sum_{j} (S_i^z S_{i+j}^z)\), the parameter \(g_\perp\), the spin stiffness constant \(\rho_{\perp}\) using the expressions and the procedure as described in Refs. 22 and 24, the calculated spin diffusion constant, \(D\), following Ref. 13, together with the values of Korringa-type contribution constant \(K_K\) and the spin-wavelike damping renormalization constant \(\Gamma_r\) as extracted from comparison with \(^{17}(1/T_1)\) NMR data.

\(x\)	\(c_1\)	\(g_\perp\)	\(2 \rho_{\perp} / J\)	\(D / J a^2\)	\(K_K\), (sK)\(^{-1}\)	\(\Gamma_r\), (K)\(^{-3}\)
0.025	-0.1133	4.102	0.36	2.60	0.023	4.1 \times 10^{-9}
0.035	-0.1115	4.060	0.35	2.54	0.024	5.5 \times 10^{-9}
0.05	-0.1018	3.827	0.285	2.47	0.051	7.5 \times 10^{-9}
0.115	-0.0758	3.252	0.2	3.51	0.147	32 \times 10^{-9}
0.15	-0.0617	2.947	0.13	3.81	0.215	41 \times 10^{-9}

FIG. 1: (Color online) Temperature and doping behavior of plane oxygen \(^{17}(1/T_1)\) for \(La_{2-x}Sr_xCuO_4\). Dashed lines show the spin diffusive contribution. Thin solid curves are the fits by Eq. (6) to NMR data \[^{16,12}\] as described in the text. Thick solid lines separate schematically the regions of lightly damped (low \(T\) region), damped, and overdamped magnon-like excitations.

FIG. 2: (Color online) La$_{2-x}$Sr$_x$CuO$_4$ phase diagram. Solid curves show the Neel temperature (T_N), the superconducting dome (T_c), and dR/dT=0 curve indicates the gradual crossover from insulating to metallic behaviour from resistivity measurements. Lower and upper shaded lines with circles have been extracted from $^{17}(1/T_1T)$ data shown in Fig. 1 with the conditions $\Gamma_r T^4=0.2$ and $\Gamma_r T^4=1$, where Γ_r is given in Table I, may be approximated by $T \approx 400(1-4x)$ and $T \approx 700(1-4x)$, respectively, and separate the regions of lightly damped (long lifetime, well defined), damped, and overdamped paramagnon-like excitations. The asterisks mark approximately the corresponding temperatures as extracted from the data analysis10 for Sr$_2$CuO$_2$Cl$_2$.

ω FIG. 3: (Color online) (a) Spin-wavelike dispersion ω_k^{sw} and (b) damping function η_k at various dopings along $k=(\frac{1}{2},\frac{1}{2})-(1,1)-(0,0)-(1,0)-(\frac{1}{2},\frac{1}{2})-(0,0)-(1,0)$ route in the Brillouin zone.

ω FIG. 4: (Color online) The calculated field (frequency) dependence of $^{17}(1/T_1T)$ (solid curve). The dashed curve shows the spin diffusive contribution. The error bar shows the size of the symbol (error bar) in Fig. 1. Short solid horizontal lines indicate the calculated values of $^{17}(1/T_1T)$ at the fields 9 T and 14.1 T.

\[x \] thus providing the "overdamped" mode region.35,36

It should be mentioned that the so-called anomalous "1/8" doping problem can be viewed as a consequence of the particular parameter set at $x \approx 1/8$ within an extended t-J model with the Coulomb repulsion between the NN and taking into account the polarization of NN copper spins around copper-oxygen singlet that gives the in-phase domain structure for the "stripe" picture. The in-phase domain is favorable, also in view of the experimental data38,39 compared with the anti-phase domain model.40 This particular case is beyond our present consideration because of its narrowness.

Figure 4 and Eq. 8 show that in doped 2DHAF system the spin diffusive contribution $^{17}(1/T_1)_{Diff}$ scales with the NMR frequency ω as $\ln(const J/\omega)$, which is very weak in view of the extraordinary large superexchange coupling constant J. We argue that at low doping level ($x \approx 0.03$ per Cu site in La$_{2-x}$Sr$_x$CuO$_4$) and temperature $T<300$ K, $^{17}(1/T_1)$ is strongly affected by $^{17}(1/T_1)_{Diff}$, which is mainly due to the filtering of (π,π) contribution by the oxygen formfactor. Only a new accurate NMR experiments at very low and very high magnetic fields may uncover $^{17}(1/T_1)_{Diff}$ contribution to $^{17}(1/T_1)$.

V. CONCLUSION

We applied the relaxation function theory for doped 2DHAF system in the magnetic state and deduced the lifetime of spin-wavelike excitations, its evolution with doping, from plane oxygen $^{17}(1/T_1)$ NMR data in the underdoped high-T_c layered copper oxides. It is shown that the spin-wavelike theory is able to reproduce the main features of low frequency spin dynamics in the normal state of high-T_c cuprates as observed experimentally. We identified the regions of long lifetime [$T \lesssim 400(1-4x)$ K] and "overdamped" [$T \gtrsim 700(1-4x)$ K] paramagnon-like excita-
tions in the temperature (T)-doping index (x) phase diagram in up to optimally doped $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$. The results indicate that spin-wavelike excitations are indeed a good description of the quasiparticle excitations even for strongly doped high-T_c layered cuprates at low temperatures, $T \lesssim 400(1-4x)$ K.

VI. ACKNOWLEDGMENTS

It is a pleasure to thank Peter Fulde and numerous colleagues for discussions and hospitality at MPI-PKS, Dresden, Germany, and Takashi Imai for providing with $1/(T_1)$ NMR data in the electronic form.

* e-mail: iL@ksu.ru

1 M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).

2 S. Chakravatty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988); Phys. Rev. B 39, 2344 (1989).

3 M. Takahashi, Phys. Rev. B 40, 2494 (1989).

4 D. W. Hone and P. M. Richards, Annu. Rev. Mater. Sci. 4, 337 (1974).

5 T. Moriya and K. Ueda, Adv. Phys. 49, 555 (2000); Rep. Prog. Phys. 66 1299 (2003).

6 U. Balucani, M. H. Lee, and V. Tognotti, Phys. Rep. 373, 409 (2003).

7 S. Paillis, Y. Sidis, P. Bourges, V. Hinkov, A. Ivanov, C. Urlich, L. P. Reginault, and B. Keimer, Phys. Rev. Lett. 93, 167001 (2004).

8 I. Eremin, O. Kamaev, and M. V. Eremin, Phys. Rev. B 69, 094517 (2004).

9 S. Paillis, P. Bourges, Y. Sidis, C. Bernhard, B. Keimer, C. T. Lin, and J. L. Tallon, Phys. Rev. B 71, 220507(R) (2005).

10 J. Hwang, T. Timusk, and G. D. Gu, Nature (London) 427, 714 (2004); M. Norman, Nature (London) 427, 692 (2004).

11 I. A. Larionov, Phys. Rev. B 72, 094505 (2005).

12 S. Wakimoto, K. Yamada, J. M. Tranquada, C. D. Frost, R. J. Birgeneau, and H. Zhang, Phys. Rev. Lett. 98, 247003 (2007).

13 C. Stock, W. J. L. Buyers, Z. Yamani, C. L. Broholm, J.-H. Chung, Z. Tun, R. Liang, D. Bonn, W. N. Hardy, and R. J. Birgeneau, Phys. Rev. B 73, 100504(R) (2006).

14 C. Stock, R. A. Cowley, W. J. L. Buyers, R. Coldea, C. Broholm, C. D. Frost, R. J. Birgeneau, R. Liang, D. Bonn, and W. N. Hardy, Phys. Rev. B 75, 172510 (2007).

15 R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perrin, C. D. Frost, T. E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5367 (2001).

16 K. R. Thumber, A. W. Hunt, T. Imai, F. C. Chou, and Y. S. Lee, Phys. Rev. Lett. 79, 171 (1997).

17 I. A. Larionov, Phys. Rev. B 69, 214525 (2004).

18 H. Mori, Prog. Theor. Phys. 34, 399 (1965).

19 R. Zwanzig, Phys. Rev. 124, 983 (1961); R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell, Phys. Rev. A 5, 2680 (1972).

20 P. W. Anderson, Science 235, 1196 (1987); G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973 (1987).

21 S. W. Lovesey and R. A. Meserve, J. Phys. C 6, 79 (1973).

22 A. Yu. Zavidonov and D. Brinkmann, Phys. Rev. B 58, 12486 (1998).

23 A. Sokol, R.R.P. Singh, and N. Elstner, Phys. Rev. Lett. 76, 4416 (1996).

24 A. Yu. Zavidonov, I. A. Larionov, and D. Brinkmann, Phys. Rev. B 61, 15462 (2000).

25 N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev. B 51, 16599 (1995).

26 B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Greven, M. A. Kastner, A. Aharony, Y. Endoh, R. W. Erwin, G. Shirane, Phys. Rev. B 46, 14034 (1992).

27 G. Aeppli, T. E. Mason, S. M. Hayden, H. A. Mook, J. Kulda, Science 278, 1432 (1997).

28 A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990); Y. Zha, V. Barzykin, and D. Pines, Phys. Rev. B 54, 7561 (1996).

29 Dieter Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Frontiers in Physics, Vol. 47, (Benjamin, Reading, MA, 1975).

30 P. Kopietz, Phys. Rev. B 41, 9228 (1990).

31 S. Tye and B. I. Halperin, Phys. Rev. B 42, 2096 (1990).

32 P. M. Singer, T. Imai, F. C. Chou, K. Hirota, M. Takaba, and T. Kakeshita, Phys. Rev. B 72, 014537 (2005).

33 A. W. Sandvik and R. R. P. Singh, Phys. Rev. Lett. 86, 528 (2001); R. R. P. Singh and M. P. Gelfand, Phys. Rev. B 52, 15695 (1995).

34 Y. J. Kim, A. Aharony, R. J. Birgeneau, F. C. Chou, O. Entin-Wohlman, R. W. Erwin, M. Greven, A. B. Harris, M. A. Kastner, I. Ya. Korenblit, Y. S. Lee, and G. Shirane, Phys. Rev. Lett. 83, 852 (1999).

35 P. Prelovsek, I. Sega, and J. Bonca, Phys. Rev. Lett. 92, 027002 (2004); I. Sega, P. Prelovsek, and J. Bonca, Phys. Rev. B 68, 054524 (2003).

36 D. K. Morr and D. Pines, Phys. Rev. Lett. 81, 1086 (1998); Phys. Rev. B 61, R6483 (2000).

37 I. A. Larionov and M. V. Eremin, J. Magn. Magn. Mater. 272-276, 181 (2004).

38 G. B. Teitelbaum, B. Buchner, and H. de Grongel, Phys. Rev. Lett. 84, 2949 (2000); T. Sawa, M. Matsumura, and H. Yamagata, J. Phys. Soc. Jpn. 70, 3503 (2001); M. Matsumura, T. Ikeda, and H. Yamagata, J. Phys. Soc. Jpn. 69, 1023 (2000).

39 Y. Ando, A. N. Lavrov, and K. Segawa, Phys. Rev. Lett. 83, 2813 (1999).

40 J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995); J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 78, 338 (1997); J. M. Tran-
quada, in *Neutron Scattering in Layered Copper-Oxide Superconductors*, ed. A. Furrer (Kluwer, Dordrecht, 1998), p. 225.