Effects of Various Sintering Conditions on the Structural and Magnetic Properties of Zinc Ferrite (ZnFe$_2$O$_4$)

Poppy Puspitasari a,b,* , Ufsarah Anugrah Rizkia a, Sukarni Sukarni c,b , Avita Ayu Permanasari a,b, Ahmad Taufiq a,c , Andika Bagus Nur Rahma Putra a

aState University of Malang, Faculty of Engineering, Department of Mechanical Engineering, Semarang 5, Malang, 65145, East Java, Indonesia
bState University of Malang, Centre of Advanced Materials and Renewable Energy, Semarang 5, Malang, 65145, East Java, Indonesia
cState University of Malang, Department of Physics, Semarang St. No. 5, Malang, 65145, East Java, Indonesia

Received: July 07, 2020; Revised: October 22, 2020; Accepted: November 29, 2020

Zinc ferrite (ZnFe$_2$O$_4$) nanoparticles have attracted the attention of researchers because of their unique chemical properties and particle-size-dependent magnetic properties. High-surface-area spinel ferrites have numerous technical applications in areas such as high-density information storage, ferrofluids, and catalysis. The coprecipitation technique is the preferred method for preparing nanoscale ZnFe$_2$O$_4$ because it results in small crystals with a uniform size distribution. In this study, the synthesis was conducted in solution for 48 h, followed by sintering at 1000°C for 1.5–3.5 h. The smallest crystals (70.58 nm) were found in the sample sintered for 2.5 h. Fourier transform infrared spectroscopy (FTIR) functional-group analysis confirmed the presence of Fe–O and Zn–O bonds of cations in octahedral and tetrahedral sites. The ZnFe$_2$O$_4$ sintered for 3.5 h was superparamagnetic. The characterization results suggest that the obtained ZnFe$_2$O$_4$ could be used as a nanofluid in heat exchangers.

Keywords: Ferrite, Coprecipitation, Hysteresis, Sintering

1. Introduction

Studies on nanomaterials have become prevalent for several reasons, such as the need to produce new small-scale materials to reduce the cost and increase information transmission and storage speeds. Another reason is that nanomaterials exhibit enhanced properties compared with conventional materials, which provides an opportunity for new technological applications. Theoretically, a nanomaterial is an element with a grain size of one per million meters. Numerous authors have explored various aspects of nanomaterials, such as the possibility of controlling their size, defect concentration, solution concentration, atom interaction, and synthesis process.

ZnFe$_2$O$_4$ is a critical technology material commonly used as a photocatalyst, a sorbent for desulfurizing hot coal gas, and a magnetic material in devices such as radio-frequency cores, sensors, and magnetic resonance imaging devices. ZnFe$_2$O$_4$ adopts the cubic spinel structure. Cations occupy one-eighth of the interstitial tetrahedral (A) and one-half of the octahedral (B) sites.

Among numerous spinel ferrites, ZnFe$_2$O$_4$ nanoparticles have attracted particular attention because of their unique chemical properties and thermal stability, as well as their particle-size-dependent magnetic properties. Most spinel ferrites have a Curie temperature greater than room temperature, whereas ZnFe$_2$O$_4$ does not. Thus, ZnFe$_2$O$_4$ is compatible with most applications that require operating temperatures as high as 80°C.

Bulk ZnFe$_2$O$_4$ crystallizes in the standard spinel structure with diamagnetic Zn$^{2+}$ ions in the tetrahedral sites and magnetic Fe$^{3+}$ ions in the octahedral sites. As a result of super antiferromagnetic interactions among octahedrally coordinated Fe$^{3+}$ ions, bulk ZnFe$_2$O$_4$ becomes antiferromagnetic at its Néel temperature ($T_N = 10$ K). However, when prepared at the nanometer scale, the structure of ZnFe$_2$O$_4$ is substantially different, with Fe$^{3+}$ and Zn$^{2+}$ cations occupying both octahedral and tetrahedral sites. As a result, nanocrystalline ZnFe$_2$O$_4$ exhibits ferromagnetic properties.

The coprecipitation technique is the most appropriate approach for synthesizing ZnFe$_2$O$_4$ because it results in small crystals with a uniform distribution, is simple, and does not require a calcination step. On the basis of the theory underlying coprecipitation, several parameters (e.g., the counterions, ionic strength, pH, and precipitation temperature) can influence the structure and magnetic properties of the resultant ferrite. A previous investigation found that the chemical composition of ZnFe$_2$O$_4$ is influenced by the Zn/Fe molar ratio, pH, sintering temperature, and sintering duration. This previous study also showed that a Zn/Fe ratio of 1.2 resulted in main diffraction peaks of ZnFe$_2$O$_4$ as well as secondary peaks of Fe$_2$O$_3$ and ZnO. Varying the pH of the reaction solution resulted in different intensities of the main peak and in different amounts of precipitate.

*e-mail address: poppy@um.ac.id
Sintering is the compaction process of powders at high temperatures below the melting point until there is a change in microstructure such as a reduction in the number and size of pores, grain growth, shrinkage, or increased density. In the present work, sintered ZnFe$_2$O$_4$ is characterized using several methods: phase identification by X-ray diffraction (XRD) analysis, morphological analysis by scanning electron microscopy (SEM), and elemental composition analysis by energy-dispersive X-ray spectroscopy in conjunction with SEM (SEM-EDX). The functional groups are analyzed by Fourier transform infrared (FTIR) spectroscopy, and the magnetic properties are characterized using an Oxford 1.2H VSM.

2. Method

The coprecipitation synthesis method was used in the present work. In the first step, ZnO and Fe$_2$O$_3$ (2 g each) were dissolved into 40 mL of ethylene glycol using a magnetic stirrer at room temperature; the resultant solution was stirred for 48 h at 200 rpm to ensure homogeneity. To neutralize the acidic solution, the obtained solution was titrated with NaOH until its pH was 12. The solution was then heated at 70–80°C to form a gel. The sedimented material was washed three times with 1500 mL distilled water. The gel was then dried in an oven at 1100°C until it turned into a dry powder. The dried gel was crushed for 1 h and then sintered at 1000°C for 1.5, 2.5, or 3.5 h. The sintered powder was then characterized by XRD (PANalytical) with Cu Kα ($\lambda = 1.54$ Å) radiation to determine its phase and crystal size. The morphology was characterized by SEM (Phenom). The functional groups were characterized by FTIR analysis (IRPrestige21), and the magnetic properties were characterized using an Oxford 1.2H VSM.

3. Results and Discussion

Figure 1 shows SEM images of the ZnFe$_2$O$_4$ synthesized using the coprecipitation method and sintered at 1000°C for 1.5, 2.5, and 3.5 h. The micrographs show that the materials tend to have cubic crystallites. Figure 1a and 1c show changes in the material structure, with greater agglomeration than observed in Figure 1b. The sintering time at 1000°C strongly influenced the change in morphology. The heat treatment induces bonding between among particles and increases the strength of the obtained product. The sintering process strongly affects the formation of the crystalline phase of the material. The phase fraction formed generally depends on the sintering time and temperature.

Figure 2 shows the XRD patterns of ZnFe$_2$O$_4$ sintered at 1.5–3.5 h. The XRD patterns show diffraction peaks corresponding to the (220), (311), (400), (422), (511), and (440) planes of the spinel structure. The observed peaks were...
compared with those specified in the ICDD PDF (22-1012) reference pattern and were concluded to correspond to a single-phase cubic spinel-structured material. No additional peaks were observed in the patterns, indicating that the synthesized product was free of impurities. The samples exhibited similar particle sizes (smaller than 90 nm) irrespective of the sintering duration (1.5, 2.5, or 3.5 h). The sample sintered for 2.5 h exhibited the smallest grain size of 70.58 nm; thus, the sintering duration strongly influenced the grain size. The particles shrank with increasing sintering time, resulting in the gradual removal of water from the crystal lattice. The samples sintered for 1.5, 2.5, and 3.5 h exhibited particle sizes of 84.72, 70.58, and 84.72 nm, respectively, and main peak heights of 836.72, 767.80, 609.98 counts in their XRD patterns, respectively (Table 1). These results are attributed to an increase in the growth activity of nanoparticles with increasing temperature because of the influence of heat during the synthesis process. Particle size depends on numerous factors, including the synthesis conditions, sintering temperature, time, and the rate of heating and cooling. The lattice parameter of the synthesized nanoparticles was greater than that of bulk ZnFe$_2$O$_4$ ($a = 8.441$ Å) (JCPDS No. 22-1012). This sample is an example of ZnFe$_2$O$_4$ nanoparticles with a mixture of normal and inverse spinel structures. The substitution of several Fe$^{3+}$ cations for Zn$^{2+}$ cations, whose ionic radius (0.74 Å) is larger than that of Fe$^{3+}$ (0.64 Å), results in an expansion of the spinel lattice, with a concomitant increase in the corresponding lattice parameter.

In the normal AB_2O$_4$ spinel structure, A is generally a divalent cation that occupies tetrahedral sites, whereas B is a trivalent cation that occupies octahedral sites. Bulk ZnFe$_2$O$_4$ is a completely normal spinel structure with Zn$^{2+}$ ions at the tetrahedral (A) sites and Fe$^{3+}$ ions at the octahedral (B) sites. In fact, when ZnFe$_2$O$_4$ is prepared at the nanoscale, the high surface energy associated with the small particle size leads to the distribution of mixed cations, where Zn$^{2+}$ ions and Fe$^{3+}$ ions are distributed among A and B sites, giving rise to mixed spinel structures. This difference is attributed to cation distribution defects.

Figure 3 displays the FTIR spectra of ZnFe$_2$O$_4$ in the wavenumber region 4000–400 cm$^{-1}$. The functional groups of ZnFe$_2$O$_4$ sintered for various times are similar except in the case of the sample sintered for 2.5 h, whose spectrum shows additional peaks in the 0–500 cm$^{-1}$ range. The main peaks of ZnFe$_2$O$_4$ are observed in the range 400–600 cm$^{-1}$, representing Fe–O and Zn–O bonds involved in metal–oxygen vibration stretching in octahedral and tetrahedral sites. The strong absorption peak at ~1508 cm$^{-1}$ corresponds to the C=C stretching vibration and indicates the presence of surface hydroxyl groups or moisture. The peak at ~2300 cm$^{-1}$ represents stretching vibrations of ether groups with C=O and N–H or O–H bending mode group indicates the conversion of water to steam in the ZnFe$_2$O$_4$ nanoparticles. A decrease in intensity of the lower-frequency peaks might be caused by the formation of a H bridge on the precursor, which subsequently disappears upon thermal treatment.

The hysteresis curve of ZnFe$_2$O$_4$ sintered at 1000°C for 1.5, and 2.5 h indicates a nonmagnetic material; no hysteresis curve with an apparent magnetic saturation (M_s) or coercivity (H_c) was observed (Figure 4). Table 2 shows that the sample

Table 1. ZnFe$_2$O$_4$ Crystal Characteristics Obtained from XRD Analysis

Sintering Duration	2θ (degree)	Height (cts)	d-Spacing [Å]	FWHM (º)	Crystal Size (nm)
1.5	35.28	836.72	2.54	0.0984	84.72
2.5	35.25	767.80	2.54	0.1181	70.58
3.5	35.28	609.98	2.54	0.0984	84.72

Figure 3. ZnFe$_2$O$_4$ functional-group identification of samples sintered for different durations.
Puspitasari et al.

Materials Research

sintered for 3.5 h exhibits an M_s value of 52 emu/g and a H_c of 0.0708 T. An S-shape hysteresis curve and a H_c value close to zero indicates a superparamagnetic material. Such an increase in the H_c value can be achieved with single-domain crystallites because of the magnetization process due to spin–orbit rotation without domain wall movement. These results indicate that the sintering duration greatly influenced the magnetic properties of the ZnFe$_2$O$_4$. The longer sintering duration of 3.5 h for ZnFe$_2$O$_4$ caused spin–orbit coupling with various hyperfine structures and superexchange interactions between the spin electron in ZnO and Fe$_3$O$_4$. The magnetization of spinel ferrite is given by super-exchange interaction of side A and B. In bulk zinc ferrites, Zn$^{2+}$ ions of zero moment and Fe$^{3+}$ ions fill A and B sites respectively. Few Fe$^{3+}$ ions may occur A site and has possibility of AB interaction. In the probability distribution of magnetic hyperfine fields, the superparamagnetic behaviour at 3.5 h samples because there is an occupancy of some Fe$^{3+}$ ions migrates from B to A side. Therefore, it will disturb the antiparallel ordering of B site and enhance the saturation magnetization and magnetic moment.

At room temperature, the magnetic properties arise due to the formation of superparamagnetic domains. The absence of hysteresis, immeasurable magnetic remenance, coercivity, and the non-attainment of saturation indicate the presence of superparamagnetic behaviour.

Figure 4 displays the calculated magnetization data in charts that compare particle size (D_m) with the M_s, M_r with the remanence ratio (M_r/M_s), and D_m with the H_c. The results show that, on the basis of the average particle size obtained from the SEM images, longer sintering times led to smaller particles and more substantial M_s values. These results are attributed to a decrease in cationic disorder, which in turn decreased the D_m. Similarly, a smaller D_m led to greater H_c. This variation is related to a favorable particle size as a result of the cation distribution between sites. The relationship between the D_m and the M/M_s ratio, which was inversely proportional to the particle size, is consistent with the relationship between the D_m and the M_s. The substantial magnetization values show that the cation distribution changed from normal spinel type to mixed spinel type.

Table 2. Magnetic Properties of ZnFe$_2$O$_4$

Sintering Time	Magnetic Saturation (M_s) (emu/g)	Magnetic Remanence (M_r) (emu/g)	Remanence Ratio (M_r/M_s)	Coercivity (H_c)
1.5 h	1.12	-0.06	-0.054	0
2.5 h	1.15	-0.04	-0.035	0
3.5 h	52.52	14.42	0.028	0.0708

Figure 5. Correlation of the particle size of ZnFe$_2$O$_4$ with its (a) magnetic saturation, (b) remanence ratio, and (c) coercivity.
4. Conclusion

The morphological identification and SEM-EDX elemental analysis of ZnFe$_2$O$_4$ synthesized via the co-precipitation method showed that the sample sintered for 2.5 h exhibited less agglomeration than the samples sintered for 1.5 or 3.5 h. The elemental composition indicated that the samples were free of impurities, and the XRD phase identification showed that the sample sintered for 2.5 h crystallized in the cubic spinel structure with the smallest particle size (70.58 nm) among the investigated samples. The FTIR functional-group characterization confirmed the presence of vibrations due to Fe–O and Zn–O bonds of cations in the octahedral and tetrahedral sites in the 400–600 cm$^{-1}$ wavenumber range. The peak at 3400 cm$^{-1}$ indicated the presence of O–H groups of water steam due to sintering of the ZnFe$_2$O$_4$ material.

The hysteresis curves showed that ZnFe$_2$O$_4$ sintered for 3.5 h was superparamagnetic, with $M_r = 52$ emu/g and $H_c = 0.0708$ T, whereas the samples sintered for 1.5 and 2.5 h were nonmagnetic. According to these results, the sintering duration did not influence the magnetic properties of ZnFe$_2$O$_4$. The magnetization value in this research showed that the cation distribution changed from normal spinel type to mixed spinel type.

5. Acknowledgments

Our sincere thanks to the RISTEKBRIN for the research funding for PP.

6. References

1. Gajanan K, Tijare SN. Applications of nanomaterials. Mater Today Proc. 2018;5(1):1093-6.
2. Sasongko MIN, Puspitasari P, Sukarni, Yazirin C. Properties of MnO doped graphene synthesized by co-precipitation method. Funct Mater. 2018;25(4):802-8.
3. Milanović M, Moshopoulou EG, Stamopoulos D, Devlin E, Giannakopoulos KP, Kontos AG, et al. Structure and magnetic properties of Zn$_{1-x}$Co$_x$Fe$_2$O$_4$ and Zn$_{1-y}$Fe$_{1-y}$O$_y$ nanoparticles prepared by coprecipitation. Ceram Int. 2013;39(3):3235-42.
4. Asmin LO, Mutmainnah, Suharyadi E. Sintesis nanopartikel zine ferrite (ZnFe2O4) dengan metode koprospitas dan karakterisasi sifat kemagnetannya. J Fis dan April. 2015;16(3):62-6.
5. Zaaq PVD. Ferrites. Ref'Modul Mater Sci Mater Eng. 2015;2016:1-7.
6. Ping R, Junxi Z, Huyong D. Preparation and microstructure of spinel zinc ferrite ZnFe2O4 by co-precipitation method. J Wuhan Univ Technology-Mater. 2009;24(6):927-30.
7. Sri Manta Y, Raml, Darvina Y, Denita. Pengaruh suhu sintering terhadap sifat penyepit gelombang mikro dari nanopakomposit CoFe$_2$O$_4$/PVDF yang dipreparasi dengan metode sol gel. Pillar Phys. 2019;12:91-7.
8. German RM. Sintering: from empirical observations to scientific principles. USA: Elsevier; 2014. p. 413-32.
9. Suasana K, Astika IM, Sunu PW. Properties of thermal conductivity, density, and hardness of aluminum matricies with reinforcement of SiCw/Al2O3 hybrid after sintering process. IOP Conference Series Materials Science and Engineering. 2016;539:012016.
10. Sivagurunathan P, Sathiyamurthy K. Effect of temperatures on structural, morphological and magnetic properties of zinc ferrite nanoparticles. Can Chem Trans. 2016;4(2):244-54.
11. Yazirin C, Puspitasari P, Sasongko MIN, Tasnui DI, Risnarendra P. Phase identification and morphology study of hematite (Fe$_2$O$_3$) with sintering time variations. AIP Conf Proc. 2017;1887(1):020038.