Acinetobacter Baumannii: Researchers' Scientific Cooperation Network in Three Decades

Farshid Danesh*1, Somayeh Ghavidel2, Maryam Emami3

1. Information Management Research Department, Regional Information Center for Science and Technology (RiCeST), Shiraz, Iran
2. Department of Knowledge and Information Science, School of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran

ABSTRACT

Background: Acinetobacter baumannii is one of the most common challenging pathogens in causing serious infections in intensive care units of modern hospital systems around the world and poses a serious threat to public and patient health. This study aims to analyze the network of scientific and empirical collaborations of A. baumannii researchers in the last three decades.

Materials & Methods: The present study was performed using the Co-citation analysis technique. All A. baumannii publications indexed in the Web of Science Core Collection for the period 1990-2019 are the statistical population of the study. After an advanced search, 4473 documents were retrieved. A total of 18343 authors contributed to the publication of the retrieved documents. Ravar PreMap 1.0.0.0, NetDraw, and UCINET 6.528.0.0 software were utilized for data analysis.

Results: Data analysis showed that the global publication of A. baumannii has risen. "Clinical Infectious Diseases," was the best journal, and "Seifert, Harald," the most influential researcher, and "Seifert, Harald * Higgins, Paul G," were identified as the best co-citation pair. Top researchers in A. baumannii were "Beceiro," "Alejandro," "HSU Li Yang," and "Seifert, Harald," respectively, based on degree, betweenness and closeness centrality indicators.

Conclusion: Analysis of social networks A. baumannii presents an objective and realistic view to experts and planners in Medical Sciences. Also, the structure of A. baumannii's internal relationships and researchers' connections is determined objectively. Finally, researchers get acquainted with journals, scientists and organizations that are proliferated and effective and plan to collaborate with them in the future.

Keywords: Acinetobacter Baumannii; Co-citation analysis, Social network analysis; Scientometrics; Bibliometrics

Use your device to scan and read the article online

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to: Mendeley | Zotero | RefWorks

Introduction

Acinetobacter baumannii is one of the most common and effective pathogens in causing serious ICU infections in modern hospital systems around the world (1-5). This hospital pathogen has caused a wide range of infections, including Septicemia and Pneumonia, and has become a significant challenge in health care services, especially hospitals (3,6-8). A. baumannii researchers and specialists have always conducted extensive research in
various fields due to the challenges, crises, and global impact of this pathogen.

Co-citation analysis is one of the scientometric techniques that is used as a method in analyzing the intellectual structure of scientists and their publications and identifying principal authors and publications in different areas of research (15,14). Due to the importance of the scientometrics study of A. baumannii's international publications, the main issue of this article is to visualize the scientific collaboration network and the citations of A. baumannii's researchers using the methods of co-citation analysis and social network analysis from 1990 to 2019. Conducting such research and its practical results will be of great help to researchers and planners of the healthcare system in the field of strategic and heuristic planning, as well as the implementation of programs at the level of medical sciences organizations and countries (20).

Therefore, it seems necessary to conduct practical, comprehensive, and analytical research in this regard. Visualizing the researchers of A. Baumannii's scientific collaboration network is the primary goal of this study.

Materials and Methods

The method used in this paper is co-citation analysis. The statistical population is all A. Baumannii indexed publications from 1990 to 2019 in the Web of Science Core Collection (WOSCC). A total of 4473 records were retrieved after an advanced search for "A. Baumannii" with the "TI" tag using Ravar PreMap, UCINET 6.528.0.0, and Netdraw 1.0.0.0 for preprocessing and analyzing the data (18).

Results

The Growth Trend of Acinetobacter baumannii Publications

A. baumannii's number of Publications rose from 2 in 1990 to 475 in 2019. The data in Figure 1 showed that A. baumannii's publication trend has been growing in the last three decades.

Ranking of Acinetobacter baumannii's Top Journals Based on IF

The data in Table 1 showed that the best journal is "Clinical Infectious Diseases," with an impact factor of 9.05.

The Most Effective Acinetobacter baumannii Researchers

With 4365 citations, "Seifert, Harald" from Germany and affiliated with University Hospital of Cologne, ranked first among the most effective researchers in the A. Baumannii research domain (Table 2).

![Figure 1. The growth trend of Acinetobacter baumannii's publication in WOSCC (1990 to 2019)](image-url)
Table 1. Top *Acinetobacter baumannii*’s journals in WOSCC (1990-2019) Based on Impact Factor

Rank	Journal	No. of Highly cited papers	No. of Articles published	Country	Publisher	Quartile	Impact Factor	Self-Citation	Citations
1	Clinical Infectious Diseases	1	42	UK	Oxford University	Q1	9.05	47	4587
2	Clinical Microbiology and Infection	0	79		Elsevier	Q1	6.42	119	4162
3	Journal of Antimicrobial Chemotherapy	6	160		Oxford University	Q1	5.11	272	8068
4	Journal of Clinical Microbiology	0	111	USA	American Society for Microbiology	Q1	4.95	267	7173
5	Antimicrobial Agents and Chemotherapy	6	337	USA	American Society for Microbiology	Q1	4.71	1106	16227

Table 2. Effective researchers of *Acinetobacter baumannii* in WOSCC (1990 - 2019)

Rank	Author	Country	Affiliation	Highly cited papers	Self-Citation	H-index	Record	Citation
1	Seifert, Harald	Germany	University Hospital Cologne	2	168	24	50	4365
2	Bonomo, Robert A	USA	Case Western Reserve University	2	150	27	71	3021
3	Paterson, David L	Australia	University of Queensland	1	23	12	15	2791
4	Peleg, Anton Y	Australia	Monash University	0	42	14	20	2694
5	Nordmann, patrice	Switzerland	University of Fribourg	1	93	26	37	2449

Top co-citation pairs in *Acinetobacter baumannii*

"Seifert, Harald * Higgins, Paul G" are the authors who have had the most co-citation pairs in *A. baumannii* and ranked first place. The researchers are from Germany and have had 54 co-citation pairs in the last three decades.

Table 3. Top 10 co-citation pairs in *Acinetobacter baumannii* (1990-2019)

Rank	co-citation pairs	No. of Co-Citations	Countries of co-citation couples
1	Seifert, Harald * Higgins, Paul G	54	Germany * Germany
2	Nordmann, patrice * Poirel, Laurent	52	Switzerland * Switzerland
3	Hall, Ruth M. * Kenyon, Johanna J	29	Australia * Australia
4	Chen Te-Li * Kuo-Shu CHEN	28	Taiwan * Taiwan
5	Li Jian * Nation, Roger L.	27	Australia * Australia
6	Popova, Anastasiya V. * Schneider, Mikhail M.	27	USA * USA
7	Knirel, Yuriy A. * Shashkov Alexander S.	27	Russia * Russia
8	Chen Te-Li * Lee Yi-tzu	26	Taiwan * Taiwan
9	Popova, Anastasiya V. * Knirel, Yuriy A.	26	Russia * Russia
10	Knirel, Yuriy A. * Schneider, Mikhail M.	26	Russia * USA

Top *Acinetobacter baumannii* Researchers Based on Degree, Betweenness and Closeness centrality

"Beceiro, Alejandro" with 52-degree centrality, "HSU Li Yang" with 368/1734 betweenness centrality, and "Seifert, Harald" with 0.280 closeness centrality are ranked first in centrality indicators.
Acinetobacter baumannii research network based on centrality indicators

Figure 2. *Acinetobacter Baumannii* research network based on degree centrality

Figure 3. *Acinetobacter Baumannii* research network based on betweenness centrality

Figure 4. *Acinetobacter Baumannii* research network based on closeness centrality
Discussion

The trend of scientific publications of *A. Baumannii* researchers has been growing in the last three decades. The results of this part of the study are consistent with the results of research by Zeinoun (22), Liao (28), Sweileh (31). "Seifert, Harald" is the most influential researcher, and "Bonomo, Robert A" is the most proliferated one. These results are not consistent with the results of Figg (41) and Huamani (42) but are consistent with the research of Hassanzadeh et al. (30). "Seifert, Harald * Higgins, Paul G," is a co-citation pair who share common research interests.

"Beceiro, Alejandro" has more power in the knowledge flow of network and has a unique role in attracting new researchers to the scientific network (17). "HSU Li Yang," due to its central position in the network, has many relationships with other researchers and has an important strategic position in the overall structure of the collaboration network (17, 40). "Seifert, Harald," with the highest closeness centrality, is closer to other members of the network and has faster access to all researchers on the network than any other so that there can be more citations to his publications (17,39). From this perspective, the results of the present study are consistent with the research of Soheili et al. (37).

Conclusion

One of the most critical concepts and unique functions of social network analysis is the study of researchers’ scientific collaboration network with centrality indicators that determine the importance and effectiveness of researchers and their performance in the cooperation network. Based on this, it is suggested that detailed and independent research of the Iranian *A. baumannii* researchers’ collaboration network be conducted.

Acknowledgment

In this regard, we appreciate the experts for their valuable comments.

Conflict of Interest

Authors declared no conflict of interests.
استنیو/stynבקتر بومانی: شکب‌های همکاری علمی پژوهشگران در سه دهه

فرشید دانش، سمیه قویدال، مریم امامی

1. گروه پژوهشی مدیریت اطلاعات، مرکز منطقه‌ای اطلاع‌رسانی علمی و فناوری، شیراز، ایران
2. گروه علم اطلاعات و دانش‌نامه دانشگاهی، دانشکده روان‌شناختی و علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

چکیده

زمینه و اهداف: استنیو/stynبکتر بومانی که به عنوان یکی از پاتوژن‌های بیماری‌زا مطرح در تاریخ بهداشت جهانی، می‌تواند کلیه سیستم‌های بدن را در ناحیه پیشگیری، تشخیص، درمان و پیگیری عفونت‌ها تحت تأثیر قرار دهد.

مواد و روش‌کار: مفاهیم و اعتای اطلاعاتی از طریق جستجوی پایگاه‌های دیجیتالی و سایر منابع معتبر عفونت‌های بخصوص مربوط به استنیو/stynبکتر بومانی، از سال 1990 تا 2019 بررسی و تحلیل شد.

نتایج: چکیده

کلید واژه‌ها: استنیو/stynبکتر بومانی، تحلیل هی‌سیندی، تحلیل شکب‌های همکاری علمی، پژوهشگران

مقدمه

استنیو/stynباکتر بومانی (Acinetobacter Baumannii) یکی از شایع‌ترین پاتوژن‌های مهم و مؤثر در ایجاد عفونت‌های جدی ICU است. این پاتوژن در بیمارستان‌های جهانی می‌تواند به عنوان یکی از بیماران بدتر در بیمارستان، ایجاد و در پی آن مرگ و میر قابل توجه را رقم زده است.

اهداف: این مقاله از طریق تحلیل شکب‌های همکاری علمی، اهداف و مفاهیم و اعتای علمی و وابسته به استنیو/stynباکتر بومانی در تاریخ بهداشت جهانی، می‌تواند کلیه سیستم‌های بدن را تحت تأثیر قرار دهد.
پژوهشگران و منصوبین قلمرو استیوانتاکتر با توجه به چالش‌ها، بحران‌ها و تأثیر جهانی مسائلی که پایتون‌سیستتر و پایتون‌یاب نسبت به دوره‌های مختلف نسبت به دشتهای علمی، باید منابع منعطف آکادمی از روند انتشارات و پیشرفت‌های بین‌المللی دانشجویان دانشجو و کشورهای دیگر استیوانتاکتر را در نظر بگیرند. در این راستا، بپردازی از این منابع در قلمرو برخی از انتشارات و ناشران نظامی علوم پزشکی، بسیار مؤثر در تحلیل به مسئولیت افتخار کرده‌اند. در این راستا، بپردازی از این منابع در قلمرو برخی از انتشارات و ناشران نظامی علوم پزشکی، بسیار مؤثر در تحلیل به مسئولیت افتخار کرده‌اند.

در ادامه این مقاله، برخی پیشنهادات متوفی در تحلیل‌های استیوانتاکتر و پژوهش‌های بررسی‌های دمنش‌های حاصل از تحقیقات، ناقل‌های صحرایی و تحقیقات در نظر گرفته می‌شود. در این راستا، بپردازی از این منابع در قلمرو برخی از انتشارات و ناشران نظامی علوم پزشکی، بسیار مؤثر در تحلیل به مسئولیت افتخار کرده‌اند.
برای استخراج روزه‌های هم‌استادی تاکنون فهرست منابع مقالات نیاز به فرمت‌هایی مانند مقالات چاپی که در پایگاه‌های جهانی موجود می‌باشند دارد. این، به یک سیستم بهینه‌سازی و پیش‌بینی می‌زند که در صورتی که نیاز به سیستم‌های مربوط به علمی‌سازی داریم، چاپی دست‌رسی به منابع قدیمی می‌تواند برای این‌طوری استفاده می‌شود.

یافته‌ها

روند رشد انتشارات پژوهشگران قلمرو/استیتوکریک بومیان

ناگهانی به داده‌های شکل ۱ حاکی از آن است که انتشارات پژوهشگران قلمرو/استیتوکریک بومیان در زمان ۱۹۹۰-۲۰۱۹ با رشد هم‌مرتبه است. نتایج جدول ۱ نشان می‌دهد که در سال ۱۹۹۰، پژوهشگران با ظرفیت بالا در زمینه‌های مختلفی از جمله پزشکی و علوم پزشکی، حضور داشته‌اند. در حال حاضر، این حضور به‌طور معنی‌دار و مثبت است و این مورد به اثبات از دیدگاه علمی می‌رسد.

به‌طور کلی، پژوهش‌ها و اجرای پژوهش در گام نخست، که در صورتی که نیاز به سیستم‌های مربوط به علمی‌سازی داریم، چاپی دست‌رسی به منابع قدیمی می‌تواند برای این‌طوری استفاده می‌شود.
فردی دانش و همکاران | اسینتوباکتر بومانی: شبکه همکاری علمی پژوهشگران در سه دهه

ضریب رشد انتشارات پژوهشگران قلمرو/اسینتوباکتر بومانی

به منظور محاسبه ضریب رشد انتشارات علمی ایرانی اسینتوباکتر بومانی از فرمول ضریب رشد (宪法)، استفاده شد. یافته‌ها نشان داد ضریب رشد انتشارات پژوهشگران ایرانی اسینتوباکتر بومانی در زمانی 1990 تا 2019 در بازه 1900/34 درصد بوده است. انتشارات ایرانی این قلمرو تا سال 2016 رو به صعود بوده است، اما در سال 2017 با کاهش تعداد شناخته شده گزارش 24/62 درصد بازگشت.

در جدول 1، مجموع استنادات، احتمال تأثیر، تعداد پرداختنها، مقالات منتشر شده و تعداد مقالات بر پایه استان و کشور قلمرو اسینتوباکتر بومانی استخراج و بر اساس مجموع استنادات دریافتی به رتبه‌بندی مقالات تخصصی قلمرو/اسینتوباکتر بومانی پرداخته شد.

جدول 1 براساس ضریب تأثیر مقالات رتبه‌بندی شده است. بر اساس مطالعات، برترین مقاله این قلمرو بر اساس ضریب تأثیر است که ضریب تأثیر متوسط و جزئی مقالات Q1 است.

نظر به همه استاندارد نشر در پژوهشگران قلمرو/اسینتوباکتر بومانی
توزیع فراوانی ۱۰ زوج های هم‌استندای در مقالات قلمرو اسینتوباکتر بومانی در جدول ۳ قابل مشاهده است.

جدول ۱. مجلات برتر قلمرو اسینتوباکتر بومانی در WOSCC (۱۹۹۰ تا ۲۰۱۹)

Rank	Journal	Publisher	Impact Factor	Self-Citation	Quarti	Citations
1	Clinical Infectious Diseases	Oxford University	Q1	9.05	47	4587
2	Clinical Microbiology and Infection	Elsevier	Q1	6.42	119	4162
3	Journal of Antimicrobial Chemotherapy	Oxford University	Q1	5.11	272	8068
4	Journal of Clinical Microbiology	American Society for Microbiology	Q1	4.95	267	7173
5	Antimicrobial Agents and Chemotherapy	American Society for Microbiology	Q1	4.71	1106	16227

جدول ۲. پژوهشگران اولیه‌تر قلمرو اسینتوباکتر بومانی در WOSCC (۱۹۹۰ تا ۲۰۱۹)

Rank	Author	Country	Affiliation	Highly cited papers	Self-Citation	H-index	Record	Citation
1	Seifert, Harald	Germany	University Hospital Cologne	2	168	24	50	4365
2	Bonomo, Robert A	USA	Case Western Reserve University	2	150	27	71	3021
3	Paterson, David L	Australia	University of Queensland	1	23	12	15	2791
4	Peleg, Anton Y	Australia	Monash University	0	42	14	20	2694
5	Nordmann, patrice	Switzerland	University of Fribourg	1	93	26	37	2449

جدول ۳. توزیع فراوانی زوج های هم‌استندای در مقالات قلمرو اسینتوباکتر بومانی

Rank	co-citation couples	No. of Co-Citations	Countries of co-citation couples
1	Seifert, Harald * Higgins, Paul G	54	Germany* Germany
2	Nordmann, patrice * Poirel, Laurent	52	Switzerland* Switzerland
3	Hall, Ruth M. * Kenyon, Johanna	29	Australia* Australia
4	Chen Te-Li * Kuo-Shu CHEN	28	Taiwan* Taiwan
5	Li Jian * Nation, Roger L.	27	Australia* Australia
6	Popova, Anastasiya V. * Schneider, Mikhail M.	27	United States* United States
7	Knirel, Yurii A. * Shashkov Alexander S.	27	Russia* Russia
8	Chen Te-Li * Lee Yi-tzu	26	Taiwan* Taiwan
9	Popova, Anastasiya V. * Knirel, Yurii A.	26	Russia* Russia
10	Knirel, Yurii A. * Schneider, Mikhail M.	26	Russia* United States
بر اساس تجزیه و تحلیل داده‌های مربوط به هم‌استند "Seifert, Harald * Higgins, Paul G" پژوهشگران مشخص گردید که جفت تکنیست‌های هم‌استند (45 مورد) را یکدیگر داشته و در رتبه نخست قرار دارند. سپس "Hall, Ruth M. " با 25 مورد هم‌استند در رتبه دوم و "Poirel, Laurent * Kenyon, Johanna J" با 24 مورد رتبه سوم هم‌استند در قلمرو اسینتوباکتر بومانی در زمانی 1990-2019 در WOSCC. این پژوهشگران به عنوان برترین پژوهشگران قلمرو اسینتوباکتر بومانی به‌شمار می‌آیند.

برترین پژوهشگران قلمرو اسینتوباکتر بومانی براساس شاخص مرکزیت رتبه

Rank	Author	Degree Centrality
1	Beceiro, Alejandro	52
2	Zander, Esther	50
3	Bonomo, Robert A	49
3	Poza, Margarita	49
4	Roca, Ignasi	48
4	Stefanik, Danuta	48
5	Seifert, Harald	47
5	Higgins, Paul G	47

با بررسی داده‌های جدول 4 مشاهده می‌شود که "Beceiro, Alejandro" با مرکزیت درجه 52 در رتبه نخست یک پژوهشگر قلمرو اسینتوباکتر بومانی بر اساس شاخص مرکزیت رتبه قرار گرفته است. سپس "Zander, Esther" با مرکزیت درجه 50 جایگاه دوم را به دست آورد. "Bonomo, Robert A" و "Poza, Margarita" با مرکزیت درجه 49 رتبه‌های 3 و 4 را کسب کردند. سپس "Roca, Ignasi" با مرکزیت درجه 48 در رتبه 4 قرار گرفت. سپس "Stefanik, Danuta" با مرکزیت درجه 48 در رتبه 5 قرار گرفت. سپس "Seifert, Harald" و "Higgins, Paul G" با مرکزیت درجه 47 در رتبه‌های 5 و 6 قرار گرفتند.

برترین پژوهشگران قلمرو اسینتوباکتر بومانی بر اساس شاخص مرکزیت رتبه در ادامه برای تعیین پژوهشگرانی که هم‌استند اهمیت را در زمینه هم‌استند از لحاظ همبستگی اعدادی که با سایر اعدادی که با هم از نقاط مشترک رتبه‌های زیر به استادیت مشترک و رابطه‌های استفاده شده گردد با موجودت مورد مطالعه در این پژوهش، پژوهشگران قلمرو اسینتوباکتر بومانی است. پژوهشگرانی که دارای دایره‌های بزرگتر هستند نشان‌دهنده پیوندهای برقرار در شبکه و تاثیرگذاری بیشتر در شبکه اسینتوباکتر بومانی هستند و همانطور که مشاهده می‌شود این پژوهشگران دارای دایره‌های بزرگتر در شبکه اسینتوباکتر بومانی هستند. پژوهشگرانی که دارای دایره‌های بزرگتر هستند نشان‌دهنده پیوندهای برقرار در شبکه اسینتوباکتر بومانی هستند و همانطور که مشاهده می‌شود این پژوهشگران دارای دایره‌های بزرگتر در شبکه اسینتوباکتر بومانی هستند. پژوهشگرانی که دارای دایره‌های بزرگتر هستند نشان‌دهنده پیوندهای برقرار در شبکه اسینتوباکتر بومانی هستند و همانطور که مشاهده می‌شود این پژوهشگران دارای دایره‌های بزرگتر در شبکه اسینتوباکتر بومانی هستند. پژوهشگرانی که دارای دایره‌های بزرگتر هستند نشان‌دهنده پیوندهای برقرار در شبکه اسینتوباکتر بومانی هستند و همانطور که مشاهده می‌شود این پژوهشگران دارای دایره‌های بزرگتر در شبکه اسینتوباکتر بومانی هستند. پژوهشگرانی که دارای دایره‌های بزرگتر هستند نشان‌دهنده پیوندهای برقرار در شبکه اسینتوباکتر بومانی هستند و همانطور که مشاهده می‌شود این پژوهشگران دارای دایره‌های بزرگتر در شبکه اسینتوباکتر بومانی هستند.
در جدول ۵ نام پژوهشگران برتر قلمرو اسینتوباکتر بومانی بر مبنای شاخص مرکزیت بینابینی نشان داده شده است. مرکزیت بینابینی، سنجه‌ای است که به شناسایی گره‌ای می‌برند که در کوناتین فاصله میکوند و گره دیگر قرار دارد (۱۷). به عبارتی میزان قدرت و تأثیر کلیاز یک پژوهشگر در شبکه را نشان می‌دهد. این پژوهشگران دارای قدرت ایزوئل کردن یا افزایش ارتباط هستند. گره‌های دارای بینابینی بالا، نقاط مهمی در اتصال شبکه ایفا می‌کنند و از یکی یا دو مرکزی در شبکه برخورد هستند.

Rank	Author	Betweenness centrality
1	HSU Li Yang	1734.368
2	Adams, Mark D	1296.017
3	van den Broek, Peterhans J	1136.114
4	Turton, Jane F	867.635
5	Thamlikitkul, Visanu	710.517
فرشید دانش و همکاران | اسینتوباکتر بومانی: شبکه همکاری علمی پژوهشگران در سه دهه

در این شکل بزرگ‌ترین دانش‌پژوهان به مناسبت "HSU Li Yang" است. که دارای مرکزیت بینابینی بیشتری نسبت به سایر پژوهشگران اسینتوباکتر بومانی است و "Adams, Mark D" و "Van den Broek, Peterhans J" در جایگاه دوم و سوم قرار دارند. همچنین پژوهشگرانی همچون "Ling Baodong"، "Chaiyen, Pimchai" و "Ono, Yasuo" با مرکزیت بینابینی صفر قدرت و تأثیرگذاری در شبکه پژوهشگران اسینتوباکتر بومانی بر مبنای شاخص مرکزیت بینابینی شناخته شدند. این پژوهشگران قدرت و تأثیرگذاری در شبکه دارند.

در جدول ۶ نام پژوهشگران برتر قلمرو اسینتوباکتر بومانی بر مبنای شاخص مرکزیت نزدیکی نشان داده شده است. مرکزیت نزدیکی مجموع طول کل وابستگی پژوهشگان با سایر پژوهشگران را مشخص می‌کند. به عبارت دیگر می‌توان گفت پژوهشگرانی که از مرکزیت نزدیکی بالایی برخوردارند شناسان بالاتری در هیپستهندی با دیگر پژوهشگران دارند. در جدول ۶، "Seifert, Harald" با مرکزیت نزدیکی ۹۱/۰۰ در رتبه اول بر اساس شاخص محبوبیت قلمرو اسینتوباکتر بومانی، شناخته شد.
جدول 6 پژوهشگران برتر قلمرو/اسینتوباکتر بومانی بر مبنای شاخص مرکزیت نزدیکی

Rank	Author	Closeness Centrality
1	Seifert, Harald	0/280
2	Dijkshoorn, Lenie	0/279
3	Higgins, Paul G	0/276
4	Bou, German	0/273
5	Bonomo, Robert A.	0/272

شکل 1. شبکه پژوهشگران قلمرو/اسینتوباکتر بومانی بر مبنای شاخص مرکزیت نزدیکی

بحث
پژوهش‌های حاضر، شبکه همکاری علمی پژوهشگران قلمرو/اسینتوباکتر بومانی، را با دنیه مورد بررسی قرار داد. نتایج پژوهش، حاکی از رشد صعودی روند تولید انتشارات علمی پژوهشگران قلمرو/اسینتوباکتر بومانی این بازه زمانی از تعداد ژپوهش در سال 1990 به 475 مورد در 2019 است (شکل 1). افزایش انتشارات علمی و اعکاس آنها در مجلات معتبر علمی، نشان‌دهنده وجود دفعه‌های منحصر به فرد در مقاله‌های مربوط به مورد پژوهش است که بازتاب آن در قالب مقالات علمی نسبی به رسيده است. این حیث، نتایج این پژوهش به نتایج پژوهش‌های

Sweilah (22)، Liao (28) Zeinoun (31) و Bou (47) همین‌جنس است.
بنابراین، نویسندگان بر اساس نتایج ارزیابی آزمونی در جامعه علمی خود، می‌توانند تمکین‌های مناسبی در زمینه نوآوری و توانمندی‌نورزی، جهت بهبود آزمون‌های علمی و ارتقاء آن، اقداماتی بیشتری ارائه دهند. این امر به دلیل این است که نویسندگان باید به‌کارگیری ابزارهای علمی بیشتری را در صورتی که آزمون‌های علمی بهبود یافت، انجام دهند. به این ترتیب، نویسندگان می‌توانند از دهه‌های علمی بیشتری استفاده کنند.

نکته سوم: دانشگاه‌های علمی باید به‌کارگیری ابزارهای علمی بیشتری را در صورتی که آزمون‌های علمی بهبود یافت، انجام دهند. به این ترتیب، نویسندگان می‌توانند از دهه‌های علمی بیشتری استفاده کنند.

نکته چهارم: دانشگاه‌های علمی باید به‌کارگیری ابزارهای علمی بیشتری را در صورتی که آزمون‌های علمی بهبود یافت، انجام دهند. به این ترتیب، نویسندگان می‌توانند از دهه‌های علمی بیشتری استفاده کنند.
چگونگی مشارکت بین پژوهشگران و انتشارات علمی آن را در سطح بین‌المللی قابل قبول و باشی می‌نماید. با توجه به این مطالعه، پژوهشگران باید از این دیدگاه جهت گسترش و بهبود ارتباطات جاری و توجه ارتباط بین انتشارات در این قالب را نمایش داده و در ارتباط با همکاران خود به‌وکالتان کوشیده‌اند.

برای کسب اصلیت‌های مناسب، مطالعه دقیق بر روی شکه همکاری پژوهشگران ایرانی در بیماری‌های با کارکردی مشابه و درمان اسینتوبکتر بومانی و درمان اسینتوبکتر بومانی، گروهی‌پذیری جامعه پژوهشگران علم پزشکی و ابزار بست و مناسب ضمن گسترش شکه همکاری‌های بین‌المللی، فرصت‌های فناوری و پژوهش نوینی جهت آسانی در برخورداری از خدماتی ارائه می‌دهند و با پژوهشگران برتر، مجلات برتر، سازمان‌های برتر این قالب و رای همکاری‌های مبتنی بر هماهنگی ایجاد خواهد شد.

نتیجه‌گیری

یکی از مهم‌ترین کلیه‌های کاربردهای منحصر به فرد تحلیل شبکه‌های اجتماعی بررسی شبکه‌های اجتماعی علمی پژوهشگران با سنجش الگوریتم‌های مختلف باعث شده است که اهمیت و تاثیرگذاری پژوهشگران و عملکرد آن را در شبکه‌های علمی مشخص می‌نماید. توجه به تحلیل شبکه‌های علمی و چگونگی ارتباطات در قالب اسینتوبکتر بومانی می‌تواند به درک‌گیری و تشخیص مسائلی که مربوط به ارتباط و همکاری در این سطح کلیه‌ای می‌باشد، کنترل و ترویج همکاری‌های علمی در زمینه‌های مختلف به عنوان است برای شناسایی مشکلات و بخصوص مشکلاتی که باعث ایجاد اختلافات و در برخورد با اپیدمی‌ها و پدیده‌های جهانی، همکاری‌های علمی بین پژوهشگران و درمان‌های موجود بهبود و ارتقاء دریافت استنادات و توجه به مشکلات و فرصت‌های موجود در این زمینه اهمیت دارد.

سپاسگزاری

بدیوپولوسه، از تعداد همکاران متخصصانی که در انجام این پژوهش مهم‌ترین دستیابی به کار کرده‌اند، سپاسگزاری می‌کنیم.

تعارض در منافع

این مقاله پژوهش مستقل است که به‌بدون حمایت مالی سازمانی انجام شده است. در انجام مطالعه‌های خود بحث و نظارت به‌روش‌های مربوط به این موضوع پرداخته‌اند. هرگونه تداوم منافعی نداشته‌اند.

Reference

1. Saleh, NM, Hesham MS, Amin MA, Samir Mohamed R. Acquisition of Colistin Resistance Links Cell Membrane Thickness Alteration with a Point Mutation in the lpxD Gene in Acinetobacter Baumannii. Antibiotics, 2020; 9, 164. [DOI:10.3390/antibiotics9040164] [PMID] [PMCID]

2. Nurtop E, Baylndlr Bilman F, Menekse S, Kurt Azap O, Gonen M, Ergonal O, Can F. Promoters of Colistin Resistance in Acinetobacter Baumannii Infections. Microbial Drug Resistance, 2019; 25(7): 997-1002. [DOI:10.1089/mdr.2018.0396] [PMID]

3. Lee C-R, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha C-J, Jeong BC and Lee SH Biology of Acinetobacter Baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol, 2017; 7:55. [DOI:10.3389/fcimb.2017.00055]

4. Pormohammad A, Mehidinejadkian K, Gholizadeh P, et al. Global prevalence of colistin resistance in clinical isolates of Acinetobacter Baumannii: A systematic review and meta-analysis. Microbial Pathogenesis, 2020; 139:103887. [DOI:10.1016/j.micpath.2019.103887] [PMID]

5. Wang X, Qin LJ. A review on Acinetobacter Baumannii. J Acute Dis, 2019; 8: 16-20. [DOI:10.4103/2221-6189.250373]
6. Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter Baumannii: from bench to bedside. World J. Clin. Cases. 2014; 2: 787-814. [DOI:10.12998/wjcc.v2.i2.787] [PMID] [PMCID]

7. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna BM, Spellberg BJ. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clinical microbiology reviews, 2016; 30 1, 409-447. [DOI:10.1128/CMR.00058-16] [PMID] [PMCID]

8. Levi I, Rubinstein E. Acinetobacter infections-overview of clinical features. In: Bergogne-Berezin E, Joly-Guillou M L, Towner K J, editors. Acinetobacter: microbiology, epidemiology, infections, management, 1996, New York, N.Y: CRC Press; 1996. pp. 101-115.

9. Karyne R, Curty Lechuga G, Almeida Souza AL, Rangel da Silva Carvalho JP, Simões Villas Bôas MH, De Simone SG. Pan-Drug Resistant Acinetobacter Baumannii, but Not Other Strains, Are Resistant to the Bee Venom Peptide Mellitin. Antibiotics, 2020; 9, 178. [DOI:10.3390/antibiotics9040178] [PMID] [PMCID]

10. Da Silva GJ, Domingues S. Interplay between Colistin Resistance, Virulence and Fitness in Acinetobacter Baumannii. Antibiotics, 2017; 6, 28. [DOI:10.3390/antibiotics6040028] [PMID] [PMCID]

11. World Health Organization (WHO). WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017.

12. Hoang Quoc C, Nguyen Thi Phuong, T, Nguyen Duc H, Tran Le T, Tran Thi Thu H, Nguyen Tuan S, Phan Trong L. Carbapenemase Genes and Multidrug Resistance of Acinetobacter Baumannii: A Cross Sectional Study of Patients with Pneumonia in Southern Vietnam. Antibiotics, 2019; 8, 22. [DOI:10.3390/antibiotics8030048] [PMID] [PMCID]

13. Aybar Türköğlu M, Topeli Iskit A. Ventilator associated pneumonia caused by high risk microorganisms: a matched case-control study. Tuberk Toraks, 2008; 56(2): 139-49.

14. Maccain KW, Whitney PJ. Contrasting assessments of interdisciplinarity in emerging specialties. Knowledge. Creation, Diffusion, Utilization, 1994; 15(3): 285-306. [DOI:10.1177/107554709401500303]

15. Chen C, Chen Y, Horowitz M, Hou H, Liu Z, Pellegrino D. Towards an Explanatory and Computational Theory of Scientific Discovery 1 Introduction. Journal of Informetrics Special Issue on Science of Science, 2009: 1-32.

16. Shiffrin RM, Borner K. Introduction. In: Mapping knowledge domains. PNAS, 2004, 101, Suppl, 1: 5183-5185. [DOI:10.1073/pnas.0307852100] [PMID] [PMCID]

17. Tajediní O, Soheili F, Sadatmoosavi A. The Centrality Measures in Co-authorship Networks: Synergy or Antagonism in Researchers’ Research Performance. Iranian Journal of Information Processing & Management, 2019; 34 (3):1423-1452. (In Persian)

18. Soheili F, Osareh F. Concepts of Centrality and Density in Scientific and Social Networks. National Studies on Librarianship and Information Organization, 2013; 24(3): 92-108. (In Persian)

19. Leydesdorff L, Wagner CS, Bornmann L. Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield. Scientometrics, 2018; 114(2): 567-592. [DOI:10.1007/s11192-017-2528-2] [PMID] [PMCID]

20. Goltaji M, Behzadi Z. Citation Analysis and Histrographic Outline of Scientific Output in Pathology by the Middle East countries Using Science Citation Index during 2000-2009. National Studies on Librarianship and Information Organization, 2014; 25(2): 68-84. (In Persian)

21. Zou Lu-Xi, Sun L. Visualization analysis of health informatics research from 2001 to 2018. Current Science, 2020; 118, 5: 714-721.

22. Zeinoun P, Akh EA, Maalouf FT and Meho LI. The Arab Region’s Contribution to Global Mental Health Research (2009-2018): A Bibliometric Analysis. Front. Psychiatry, 2020; 11:182. [DOI:10.3389/fpsyt.2020.00182] [PMID] [PMCID]

23. Liu F, Wu TT, Lei G and et al. Worldwide tendency and perspectives in traumatic dental injuries: A bibliometric analysis over two decades (1999-2018). Dent Traumatol, 2020; 00: 1-9. [DOI:10.1111/dtt.12555] [PMID]

24. Künkoğlu O, Güven YÖ, Kelboz BB. Publication and Citation Analysis of Medical Doctors’ Residency Master’s Theses Involving Animal Experiments on Rats in Turkey. Alternatives to Laboratory Animals, 2020; 0261192992090722. [DOI:10.1177/0261192992090722] [PMID]

25. He S, Zhao Y, Fan Y, Zhao X, Yu J, Xie J, Wang C, Su J. Research Trends and Hotspots Analysis Related to Monocarboxylate Transporter 1: A Study Based on Bibliometric Analysis. Int. J. Environ. Res. Public Health, 2019; 16, 1091. [DOI:10.3390/ijerph16071091] [PMID] [PMCID]

26. Seo B, Kim J, Kim S, Lee E. Bibliometric analysis of studies about acute myeloid leukemia conducted globally from 1999 to 2018. Blood Res, 2020; 55(1): 1-9. [DOI:10.5045/br.2020.55.1.1] [PMID] [PMCID]

27. Zhou H, Tan W, Qiu Z, Song Y, Gao S. A bibliometric analysis in gene research of myocardial infarction from 2001 to 2015. Peerj, 2018; 6: e4354. [DOI:10.7717/peerj.4354] [PMID] [PMCID]

28. Liao H, Tang M, Luo LM, Li C, Chiclana F, Zeng X. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability, 2018; 10,166: 1-18. [DOI:10.3390/su10010166]
29. Xing D, Zhao Y, Dong S, Lin J. Global research trends in stem cells for osteoarthritis: a bibliometric and visualized study. Int J Rheum Dis, 2018; 21: 1372-1384. [DOI:10.1111/1756-185X.13327] [PMID]

30. Hasanzadeh, P., Isfandyari-Moghaddam, A., soheili, F. (2018). 'Co-authorship and the Relationship between Social Influence and the Extent of Effectiveness and Productivity of Re-searchers in Domain of Chronic Cardiovascular Failure'. Journal of Scientometrics, 2018; 4(8): 143-160. (In Persian)

31. Sweileh WM, Shraim NY, Al-Jabi SW, Sawalha AF, AbuTaha AS, Zyoud SH. Bibliometric analysis of global scientific research on carbapenem resistance (1986-2015), Annals of Clinical Microbiology and Antimicrobials, 2016; 15(1). [DOI:10.1186/s12941-016-0169-6] [PMID] [PMCID]

32. Analytics, C. Web of Science platform: Web of Science: Summary of Coverage, 2020; Available online: https://clarivate.libguides.com/webofscienceplatform/coverage (accessed on 18 March 2020).

33. Birkle C, Pendlebury DA, Schnell J, Adams J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 2020; 1(1): 363-376. [DOI:10.1162/qss_a_00018]

34. Danesh F, Ghavidel S. Coronavirus: Scientometrics of 50 Years of Global Scientific Productions. Iran J Med Microbiol, 2020; 14 (1):1-16. (In Persian) [DOI:10.30699/ijmm.14.1.1]

35. Soheili F, Sharif Moghaddam H, Mousavi Chelak A, Khasseh A A. An Evaluation of iMetric Studies through the Scholarly Influence Model. Iranian Journal of Information Processing & Management, 2016; 32 (1) :25-50. (In Persian)

36. Soheili F, Osareh F. ‘Concepts of Centrality and Density in Scientific and Social Networks’. National Studies on Librarianship and Information Organization, 2013; 24(3): 92-108. (In Persian)

37. Soheili F, Mansoori A. The Analysis of the Iranian Chemistry co-Authorship Network using Centrality Measure. Journal of Library and Information Science Studies, 2014; 21(Vol.6, No.13): 89-106. (In Persian)

38. Burt RS. Structural Holes: The Social Structure of Competition. Massachusetts: Harvard University Press, 1992.