FINITE EXTENSION OF GROUP WITH INFINITE CONJUGACY CLASSES

JEAN-PHILIPPE PRÉAUX

Abstract. We give a characterization of the group property of being with infinite conjugacy classes (or icc, i.e. $\neq 1$ and of which all conjugacy classes except 1 are infinite) for finite extensions of group.

Introduction

A group is said to be with infinite conjugacy classes (or icc) if it is non trivial, and if all its conjugacy classes except $\{1\}$ are infinite. This property is motivated by the theory of Von Neumann algebra, since for any group Γ, a necessary and sufficient condition for its Von Neumann algebra to be a type II_1 factor is that Γ be icc (cf. [ROIV]).

The property of being icc has been characterized in several classes of groups: 3-manifolds and PD(3) groups in [HP], groups acting on Bass-Serre trees in [Cô] and wreath product of groups in [Pr]. We will focus here on groups defined by a finite extension or containing a proper finite index subgroup.

Towards this direction particular results are already known. In [HP] have been proved the following results:

– Let G be defined by a finite exact sequence:

\[1 \rightarrow K \rightarrow G \rightarrow \mathbb{Z}_2 \rightarrow 1 \]

Then G is icc if and only if K is icc and $G \neq K \times \mathbb{Z}_2$. It is easily seen that the condition can be rephrased as K icc and the natural homomorphism $Q \rightarrow \text{Out}(K)$ is injective.

– Let G be a finite extension of K, with G torsion-free. Then G is icc if and only if K is icc.

We give generalizations of these results. We propose the following characterization of finite extensions of groups with infinite conjugacy classes. A refined and more general version will also be given in §2.

Main theorem. Let G be a group defined by a finite extension:

\[1 \rightarrow K \rightarrow G \rightarrow Q \text{ (finite)} \rightarrow 1 \]

Then G is icc if and only if K is icc and the natural homomorphism $\theta : Q \rightarrow \text{Out}(K)$ is injective.

1Centre de recherche de l’Ecole de l’air, Ecole de l’air, F-13661 Salon de Provence air
2Centre de Mathématiques et d’informatique, Université de Provence, 39 rue F.Joliot-Curie, F-13453 marseille cedex 13
E-mail : preaux@cmi.univ-mrs.fr
Mathematical subject classification : 20E45, 20E22.
1. Proof of the main result

Let us first fix some notations: if G is a group and u,v are element of G, then u^v is the element of G defined by $u^v = v^{-1}uv$. If H is a subgroup of G, then $u^H = \{ u^v \mid v \in H \}$; in particular u^G denote the conjugacy class of u in G. Note that the cardinal of u^G equals the index of $Z_G(u)$ in G so that $G \neq 1$ is icc if and only if for any $u \neq 1 \in G$, $Z_G(u)$ has an infinite index in G.

Let $\pi : G \longrightarrow Aut(K)$ be the homomorphism defined by $\pi(g)(k) = k^g$ for any $k \in K$. It makes the following diagram commute:

$$
\begin{array}{cccc}
1 & \longrightarrow & K & \longrightarrow & G & \longrightarrow & Q & \longrightarrow & 1 \\
\pi & \downarrow & & & & \phi & \downarrow & & \\
1 & \longrightarrow & Inn(K) & \longrightarrow & Aut(K) & \longrightarrow & Out(K) & \longrightarrow & 1
\end{array}
$$

Proof of the main theorem. We proceed in several steps.

Step 1 : G icc \implies K icc.

Suppose K is not icc, that is there exists $u \neq 1$ in K such that $Z_K(u)$ has a finite index in K. Since K has finite index in G, $Z_K(u)$ has a finite index in G, and hence $Z_G(u)$ which contains $Z_K(u)$ also has a finite index in G, so that G is not icc.

Step 2 : G icc \implies θ injective.

Suppose that $\theta : Q \longrightarrow Out(K)$ is non injective, that is there exists $g \in G \setminus K$ and $h \in K$ such that $\forall k \in K$, $g^{-1}kg = h^{-1}kh$. Then K is contained in $Z_G(gh^{-1})$ and hence $Z_G(gh^{-1})$ has a finite index in G, so that G is not icc.

Step 3 : G not icc \implies K not icc or θ non injective.

We can suppose $G \neq 1$ in G such that $Z_G(g)$ has a finite index in G, it must exist since $G \neq 1$ is not icc. If g lies in K then $Z_K(g) = Z_G(g) \cap K$ has a finite index in K, so that K is not icc. So suppose in the following that g lies in $G \setminus K$. Let $H = Z_G(g) \cap K$, it is a finite index subgroup of K, and let k_0, k_1, \ldots, k_n be a set of representative of K mod H. Let $N = \bigcap_{i=1}^n k_i^{-1}Hk_i$, the normalized of H in K; N is a finite index normal subgroup of K lying in $Z_G(g)$. Consider the centralizer $Z_K(N)$ of N in K. If $Z_K(N) \neq 1$ let u be a non trivial element of $Z_K(N)$. Since u^N is a singleton and N has a finite index in K it follows that u^K is finite so that K is not icc. If $Z_K(N) = 1$, once have been noted that $\pi(g)$ restricted to N is the identity, the following lemma applies to show that $\pi(g)$ is the identity of K, so that θ is non injective.

Lemma 1. Let K be a group, N a normal subgroup of K and $\varphi \in Aut(K)$ which is the identity once restricted to N. If $Z_K(N) = 1$ then φ is the identity on K.

Proof. Let $k \in K$, then for any $h \in N$,

$$khh^{-1} = \varphi(khh^{-1}) = \varphi(k)h\varphi(k^{-1})$$

so that $k^{-1}\varphi(k) \in Z_K(N)$. Hence if $Z_K(N) = 1$, for any $k \in K$, $\varphi(k) = k$. \qed
2. Finite index subgroups in icc groups

Let H be a subgroup of the group G; the normalized $N(H)$ of H is defined to be $N(H) = \bigcap_{g \in G} H^g$. It is a normal subgroup both in H and G, and $N(H) = H$ exactly when H is normal in G. If H has a finite index in G, let g_1, g_2, \ldots, g_n be a finite set of representatives of $G \mod H$, then $N(H) = \bigcap_{i=1}^n H^{g_i}$, and $N(H)$ has a finite index both in H and in G. Pay attention that the normalizeR has nothing to do with the normalizeR.

Denote by π the homomorphism $\pi : G \to \text{Aut}(N(H))$ defined by $\forall g \in G, k \in N(H), \pi(g)(k) = k^g$.

Theorem 1. Let G be a group, H a finite index subgroup of G and $N(H)$ the normalized of H. Then G is not icc if and only if at least one of the conditions (i), (ii) or (iii) is satisfied:

(i) H is not icc

(ii) $\exists g \neq 1 \in G \setminus H$ with finite order such that $\pi(g)$ is the identity,

(iii) $\exists g \neq 1 \in G \setminus H$ with finite order such that $\pi(g)$ is inner.

Moreover on the one hand (ii) \implies (iii) and on the other (iii) \implies (i) or (ii), so that:

G is not icc \iff (i) or (ii) \iff (i) or (iii).

Proof of theorem 1. We proceed in several steps:

Step 1. (i) \implies G not icc.
Since H has a finite index in G, if H is not icc then G is clearly also not icc.

Step 2. (ii) \implies G not icc.
If $\exists g \neq 1 \in G \setminus H$ with finite order n such that $\pi(g)$ is the identity, then G contains $N(H) \times \mathbb{Z}_n$ which is obviously not icc and has a finite index in G, so that G is not icc.

Step 3. (iii) \implies (i) or (ii).
Let $g \neq 1 \in G \setminus H$ be a finite order element such that $\exists k \in N(H), \forall h \in H, \pi(g)(h) = h^k$. Then $\pi(gk^{-1})$ is the identity on $N(H)$. Let $n \in \mathbb{Z}$ be the order of g, then $(gk^{-1})^n$ lies in the center of $N(H)$. Hence either $N(H)$ has a non trivial center and condition (i) follows, or $(gk^{-1})^n = 1$ so that condition (ii) is satisfied.

Step 4. G not icc \implies (i) or (ii).
Suppose G is not icc; G is a finite extension of $N(H)$. Either H is not icc or $\exists g \in G \setminus H$ with g^G finite. For some $n > 1$, $g^a \in N(H)$; if $g^a \neq 1$ then $N(H)$ is not icc and it follows that condition (i) is satisfied. So suppose in the following that $g^a = 1$. The same argument as in the step 3 of the proof of the main theorem—with $N(H)$ instead of K—shows that either $N(H)$ is not icc, so that condition (i) is satisfied, or $\pi(g)$ is the identity, so that condition (ii) is satisfied.

Corollaire 1. G is icc if and only if H is icc and $G \not\cong N(H) \times \mathbb{Z}_n$.

Corollaire 2. If $G \setminus H$ contains no torsion element (in particular when G is torsion-free) then G is icc if and only if H is icc.
References

[Co] Y.de Cornulier, *Infinite conjugacy classes in groups acting on trees*, preprint (2005).

[HP] P.de la Harpe et J.-P.Préaux, *Groupes fondamentaux des variétés de dimension 3 et algèbres d’opérateurs*, preprint arXiv:math.GR/0509449 v1 (2005).

[Pr] J.-P.Préaux, *Wreath product of groups with infinite conjugacy classes*, preprint arXiv:math.GR/0612685 (2006).

[ROIV] F.J.Murray et J.von Neumann, *On rings of operators*, IV, Annals of Math. 44 (1943), 716–808.