ON THE ZEROTH LAW OF TURBULENCE FOR THE
STOCHASTICALLY FORCED NAVIER-STOKES EQUATIONS

YAT TIN CHOW
Department of Mathematics, University of California, Riverside
Riverside, CA 92507, USA

ALI PAKZAD
Department of Mathematics, Indiana University Bloomington
Bloomington, IN 47405, USA

(Communicated by Björn Schmalfuss)

We dedicate this paper to the late Charlie Doering. He was an inspiring scientist
and a wonderful person.

Abstract. We consider the three-dimensional stochastically forced Navier–Stokes
equations subjected to white-in-time (colored-in-space) forcing in the absence
of boundaries. Upper bounds of the mean value of the time-averaged energy
dissipation rate are derived directly from the equations for weak (martingale)
solutions. This estimate is consistent with the Kolmogorov dissipation law.
Moreover, an additional hypothesis of energy balance implies the zeroth law of
turbulence in the absence of a deterministic force.

1. Introduction. The stochastic Navier-Stokes equations are used as a comple-
mentary model to the deterministic one to better understand the role of small
perturbations and randomness in turbulent flows. This paper is concerned with the
stochastically forced Navier–Stokes equations on $\mathbb{T}^3$:
\begin{equation}
\begin{aligned}
&du + (u \cdot \nabla u - \nu \Delta u + \nabla p) \, dt = f(x) \, dt + g(t) \, dw(t; \omega), \\
&\nabla \cdot u = 0,
\end{aligned}
\end{equation}
which describe the motion of a viscous, incompressible fluid in a periodic domain. In
(1) the stochastic process $u$ and $p$ are the velocity field and the pressure respectively,
and $\nu$ is the viscosity. The applied force is assumed to be a mean zero, white-in-
time and colored-in-space Gaussian process, including a deterministic part $f$, and
a stochastic part as a Wiener process on a separable Hilbert space given by,
\[
g(t) \, dw(t; \omega) := \sum_k g_k(t) \, e_k(x) \, dW_k(t; \omega).
\]
Here $\{W_k\}$ is a countable family of independent 3-dimensional Brownian motions
over a stochastic basis $(\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P})$, and $\{g_k\}$ is a family of given functions such
that $\sum_k |g_k(t)|^2 < \infty$, and $\{e_k\}$ is a countable family of orthonormal basis in that

2020 Mathematics Subject Classification. Primary: 76F02; Secondary: 35Q30, 60H30.
Key words and phrases. Kolmogorov’s turbulence theory, stochastic Navier-Stokes equations,
zereth law of turbulence, energy dissipation rate, zero viscosity limit.
*Corresponding author: Ali Pakzad.
particular Hilbert space. The goal of this paper is to study the effect of the noise on a key measurement of turbulent flow, namely the dissipation rate.

Adding a term representing the white noise to the basic governing equations is natural for both practical and theoretical applications. The stochastically-forced term can be used to account for both numerical and empirical uncertainties. In particular, in the context of fluid modeling, complex phenomena related to turbulence may be modeled by stochastic perturbation, considering the fact that the onset of turbulence is often related to the randomness of background movement (see Chapter 3 of [56]). In addition, there are many examples which support the stabilization of Navier-Stokes equations (and other PDEs) by noise (see, e.g. [9, 18, 31, 38]). The study of the connections between Navier–Stokes equations and stochastic evolution has a long history. This can be traced back to a work of Bensoussan and Temam [4] in 1973. Since then there have been a lot of studies on the stochastic Navier-Stokes equations in literature, see for example [8, 7, 6, 10, 15, 16, 19, 35, 40, 50, 51, 62] and the references therein. In the study of evolution equations of stochastic Navier-Stokes, one can consider weak solutions of martingale type or strong solutions (see [6] and [28] and the references therein for more details on the difference between strong and martingale solutions in this context). In this paper we consider martingale solutions (Definition 2.3), which are weak in both the sense of PDE theory and stochastic analysis. It is worth mentioning that martingale solutions exist and satisfy the energy inequality (11) [28, 57].

On the other hand, theoretical studies of turbulence usually employ a statistical description. Indeed, much of the classical turbulence theories, such as the famous Kolmogorov’s conventional turbulence theory, are presented in the statistical forms (see the book by Frisch [32]). The bulk (space and time-averaged) dissipation rate per unit mass $\langle \epsilon \rangle$ is one quantity of particular interest due to its production as a result of the turbulent cascade in the high Reynolds number vanishing viscosity limit [20]. Kolmogorov argued that in a turbulent fluid at large Reynolds number, the energy dissipation rate per unit volume is essentially independent of the viscosity [39]. Based on the concept of the energy cascade in turbulence, the rate of energy dissipation corresponds to the rate of transfer of energy from large to small scales. Hence, by a dimensional consideration, the energy dissipation rate per unit volume must take the form constant times $\frac{U^3}{L}$, where $U$ and $L$ are global velocity and length scale. Moreover, in the low Reynolds number, the rate of energy dissipation in laminar flow scaled as $\frac{1}{R e} \frac{U^3}{L}$. Therefore, the expectation is that as $R e$ increases, the flow will cross over from a laminar state to a turbulent one with overall dissipation independent of the viscosity [20, 32, 56], i.e.,

$$\langle \epsilon \rangle \sim (1 + \frac{1}{R e}) \frac{U^3}{L}.$$  \hfill (2)

**Zeroth law of turbulence.** The zeroth law of turbulence states that for fixed forcing, the rate of energy dissipation tends to a nonzero constant as the viscosity vanishes $\nu \to 0$.

The above is to say, in layman’s terms, that if in an experiment on turbulent flow all the control parameters are kept the same, except for viscosity, which is kept as low as possible, the energy dissipation per unit mass behaves in a way consistent with a finite positive limit. In other words, dissipation appears to exist independently of viscosity in zero limit, and this can be considered as a different approach to
mathematically understand the zero-viscosity limit and the Onsager’s conjecture [12, 17]. Up to now no rigorous proof of this fact has been given. A rigorous upper bound exhibiting this property has been found by Doering and Constantin [21] in 1992 for a shear boundary driven channel flow, and by Doering and Foias [23] in 2002 for body-force-driven steady-state turbulence directly from the incompressible Navier-Stokes equations. These works build on Busse [5], Howard [34], and others. Later, these approaches was substantially developed and extended by many authors (see, e.g., [3, 25, 22, 42, 43, 47, 48, 49, 53, 54, 55, 58, 63, 64, 65], etc.). For a good review on the recent results, including theoretical, computational and experimental, see the paper [60]. Other than the work of Flandoli, Gubinelli, Hairer, and Romito [29] on the K41 scaling law, to the best of our knowledge, there is no other work addressing the dissipation law of turbulence for the stochastic three-dimensional NSE.

1.1. Results in this paper. We provide a mathematically derivation of the zeroth law of turbulence for solutions to (1) with some hypotheses. We first focus on stochastically weak (martingale) solutions and provide upper bounds on the mean value of the dissipation rate for this class of solutions. We then obtain the zeroth law of turbulence when $f = 0$ under an additional assumption of an energy balance equality.

We immediately stress that mathematical derivation of the energy balance of the 3D Navier-Stokes equations is considered as difficult as the millennium problem, and we cannot prove the validity of it even for the deterministic case, but nevertheless we obtain a number of insights that seem worth to be noted. We would like to remark that there has been a number of papers studying conditions implying energy equality in the deterministic case, e.g., [24, 37, 59, 46]. Remarkably, Cheskidov and Luo in [13] establish energy equality for weak solutions of the 3D Navier-Stokes equation in a large class of function spaces. On the other hand, for the stochastic Navier-Stokes equations in a three-dimensional domain, many works are focused on local strong solutions satisfying the energy equality [6, 36, 10, 2, 19, 14, 51]. In particular, Kim [41] established the existence of global strong solutions in probability if the initial data are sufficiently small. With this in mind, we speculate our result could be extended to the strong solutions with sufficiently small data suggested in [41].

Organization of this paper. In Section 2, we define the problem with its boundary and data conditions, present definitions and the setting for the analysis. Then in Section 3, Theorem 3.2, we prove the upper bound results of these considerations. Next in Section 4, Theorem 4.2, we prove the central result of this paper, a lower bound on the mean value of the dissipation rate, with the extra assumption of energy balance. We show that the hypothesis of high Reynolds number independence of the turbulent energy dissipation rate and the viscosity holds as a lower and an upper bound for this setting. Finally in Corollary 2 the exact dissipation rate, the zeroth law of turbulence, is obtained in the absence of the deterministic force. In all these cases, a priori, the random force could pump up the energy in the system destroying the independence of the energy dissipation of the viscosity. We prove that this is not so. An estimate of the variance under further assumptions is also calculated in Section 5. The concluding Section 6 contains some open problems in this direction.
2. Preliminaries. We begin by considering some basic function spaces. Throughout this article, \( D = [0, T]^3 \) is a periodic box, i.e. we take the standard equivalent relationship \( \sim \) on \( \partial D \) such that \( D/ \sim \cong T^3 \). Now we denote,

\[
C_{\text{per, div}}^\infty (D) := \{ v \in C^\infty (D) : v \text{ periodic on } D, \nabla \cdot v = 0 \text{ in } D \}.
\]

For any \( \alpha \in \mathbb{R} \), consider the following sobolev space,

\[
H_{\text{per, div}}^\alpha (D) := \frac{C_{\text{per, div}}^\infty (D)}{H^\alpha (D)},
\]

where the standard \( H^\alpha (D) \) norm is given by,

\[
\| \phi \|^2_{H^\alpha (D)} := (2\pi)^3 \sum_{n \in \mathbb{Z}^3} (1 + \| n \|_p^2)^\alpha |\hat{\phi}(n)|^2.
\]

When \( \alpha = 0 \), we simplify the notation and denote \( L_{\text{div}}^2 (D) := H^0_{\text{per, div}} (D) \). We write the standard \( L^2 (D) \) norm and inner product \( \| \cdot \| \) and \( (\cdot , \cdot) \) and drop the \( H^0 (D) \) subscript. We also denote the \( L^p (D) \) norms by \( \| \cdot \|_p \). Let us also use the same notation \( (\cdot, \cdot) \) to denote the dual pairing between \( H_{\text{per, div}}^\alpha (D) \) and its dual \( (H_{\text{per, div}}^\alpha (D))^' \) via the \( L^2 \) pivoting,

\[
H_{\text{per, div}}^\alpha (D) \subset L_{\text{div}}^2 (D) \subset (H_{\text{per, div}}^\alpha (D))^',
\]

if no confusion arises. Moreover, we have \( D (A) = H^2 (D) \cap H^1_{\text{per, div}} (D) \), and the Stokes operator \( A \) is defined as,

\[
A(u) := -P_L \Delta u,
\]

\[
A : D (A) \subset L^2_{\text{div}} (D) \rightarrow L^2_{\text{div}} (D),
\]

where \( P_L : L^2 (D) \rightarrow L^2_{\text{div}} (D) \) is the Helmholtz–Leray projection. The operator \( A \) is a positive definite with a sequence of real eigenvalues \( \{ \lambda_k \}_{k \in \mathbb{N}} \), and \( \| A^{1/2}(\cdot) \|^2 \geq \lambda_1 \| \cdot \|^2 \), (see e.g. [27] for more details). We also notice \( H_{\text{per, div}}^1 (D) \) coincide with \( D (A^{1/2}) \), and we can endow \( H_{\text{per, div}}^1 (D) \) with the norm \( \| A^{1/2}(\cdot) \|^2 \).

We define the following bilinear operator:

\[
B : H_{\text{per, div}}^1 (D) \times H_{\text{per, div}}^1 (D) \rightarrow (H_{\text{per, div}}^1 (D) \cap L^d (D))^',
\]

\[
(B(u, v), z) = \int_D z(x) \cdot (u(x) \cdot \nabla) v(x) dx,
\]

for all \( z \in H_{\text{per, div}}^1 (D) \cap L^d (D) \). By incompressibility, and after using integration by part, one can show that,

\[
(B(u, v), z) = -(B(u, z), v).
\]

From [28, 61], \( B \) can be extended continuously to

\[
B : L^2_{\text{div}} (D) \times L^2_{\text{div}} (D) \rightarrow D (A^{-\alpha}),
\]

for some \( \alpha > 1 \).

Now given \( (\Omega, \mathcal{A}, F, P) \) a complete, filtered probability space equipped with the Brownian filtration satisfying usual condition, \( F = \{ F_t : t \in [0, T] \} \), which is a non-decreasing family of \( \sigma \)-algebras, i.e. \( F_t \subseteq F_s \) for any \( 0 \leq t \leq s \leq T \), with completeness and right continuity. Moreover, \( \{ W_k (t) : t \in [0, T] \}, k \in \mathbb{N} \) is a countable family of independent 3-dimensional Brownian motions defined on \( (\Omega, \mathcal{A}, F, P) \).
The expected (mean) value for any $X$-valued $\mathcal{A}$-measurable function $Y : \Omega \to X$ can be defined as,

$$E[Y] := \int_{\Omega} Y(\omega) d\mathbb{P}(\omega),$$

whenever the right-hand side exists as a Bochner integral. For a given Banach space $(X, \| \cdot \|_X)$, we also write the following space for $X$-valued random variable,

$$L^p(\Omega, X; \mathcal{A}, \mathbb{P}) := \{ X : \Omega \to X, \text{ $\mathcal{A}$-measurable and } E[\|X(\omega)\|_X^p] < \infty \},$$

$$L^\infty(\Omega, X; \mathcal{A}, \mathbb{P}) := \{ X : \Omega \to X, \text{ $\mathcal{A}$-measurable and ess-sup}_{\omega} [\|X(\omega)\|_X] < \infty \}.$$

Moreover, given the separable Hilbert space $L^2_{\text{div}}(D)$, we may consider a family of orthonormal basis over it, $\{e_k\}$, i.e. $(e_k, e_l) = \delta_{kl}$. With these notations in hand, we can now consider the following cylindrical Wiener process on $L^2_{\text{div}}(D)$ as,

$$w(t; \omega) := \sum_k e_k(x) W_k(t; \omega),$$

on the stochastic basis $(\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})$.

2.1. Equations and boundary conditions. Consider the stochastically forced Navier-Stokes equations (1) with the periodic boundary condition,

$$u(t, x + \ell e_j; \omega) = u(t, x; \omega) \quad \text{for any } j = 1, 2, 3, x \in \partial D, \text{ a.e. } \mathbb{P}. \quad (3)$$

We denote the stochastic forcing field $S$ as follows,

$$dS = f dt + g(t) dw(t; \omega) := f(x) dt + \sum_k g_k(t) e_k(x) dW_k(t; \omega),$$

where $f \in H^1_{\text{per}}(D)$ is the deterministic part of the force, and the stochastic noise process is given by a family of functions $\{g_k\} \in C^0([0, \infty))$ such that $\sum_k |g_k(t)|^2 < \infty$ for all $t \in (0, \infty)$. Therefore, in here, $g(t)$ is now a Hilbert–Schmidt operator given as,

$$g(t)(\cdot) := \sum_k g_k(t) e_k(x)(e_k, \cdot).$$

The stochastic process $S(t, \omega)$ can now be checked to be with mean $tf(x)$ and a trace-class co-variance operator (denoted by $g^*g(t)$) defined as follows,

$$(g^*g(t)u, v) := \sum_k |g_k(t)|^2 (e_k, u)(e_k, v), \text{ for all } u, v \in L^2(D),$$

$$\text{Tr}(g^*g(t)) := \sum_k |g_k(t)|^2 < \infty.$$
Definition 2.1. (Mean Value of the Dissipation Rate) We will consider time-averaged quantity with the following notation,

\[ \langle \psi \rangle := \lim sup_{T \to \infty} \frac{1}{T} \int_0^T \psi(t) \, dt, \]

whenever the integral exists for all \( t \). The time-averaged energy dissipation rate for (1), which includes dissipation due to the viscous forces, is now a stochastic process given by,

\[ \langle \varepsilon \rangle(\omega) = \langle \varepsilon(u(\cdot, \cdot, \omega)) \rangle := \lim sup_{T \to \infty} \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \| \nabla u(t, \cdot, \omega) \|^2 \, dt. \]

We call \( E[\langle \varepsilon \rangle] := \int_\Omega \langle \varepsilon \rangle \, dP \), the expected value (mean value) of the dissipation rate, which will be proven to be well-defined in Corollary 1.

Definition 2.2. With \( |D| \) the volume of the flow domain, we define,

\[ F := \left( \frac{1}{|D|} \| f \|^2 \right)^{\frac{1}{2}}, \quad G := \left( \frac{1}{|D|} \sum_k |g_k|^2 \right)^{\frac{1}{2}}, \quad U := \mathbb{E} \left( \left( \frac{1}{|D|} \| u \|^2 \right)^{\frac{1}{2}} \right), \]

and,

\[ L := \begin{cases} \min \left( \ell, \left( \frac{F}{\| \nabla f \|^2} \right)^{\frac{1}{2}} \right)^{F \| \nabla f \|^2_{L^\infty(0,T,L^\infty(D))}} & \text{if } F > 0 \\ \ell & \text{if } F = 0 \end{cases} . \]

We will refer to \( F \) as the amplitude of the deterministic force, and \( G^2 \) is the total energy rate supplied by the random force, which has a unit of \( \frac{\text{velocity}^2}{\text{time}} \). We only consider the case when \( G < \infty \). With \( U \) and \( L \) being the large scale velocity and length, the Reynolds number is,

\[ \mathcal{R}e = \frac{UL}{\nu}. \]

Remark 1. We will show in Corollary 1 that \( \langle \frac{1}{|D|} \| u \|^2 \rangle \) exists in \( L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P}) \).

2.2. Martingale solution. Martingale solutions to (1), which are probabilistically weak analogues to the Leray-Hopf weak solutions to the deterministic Navier–Stokes equations, were introduced first in [28]. Probabilistically weak means that the noise is part of the solution, along with stochastic process \( u(x, t; \omega) \) that satisfies (1) in the sense of distributions. A martingale solution can be defined as follow.

Definition 2.3. (Martingale Solution) A martingale solution to (1) on \([0, T]\) consists of a stochastic basis \((\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})\), with a cylindrical Wiener process \( w \) over the basis, and a progressively measurable process \( u : [0, T] \times \Omega \to L^2_{\text{div}}(D) \), with \( \mathbb{P}\)-a.e. paths,

\[ u(\cdot, \cdot; \omega) \in C([0, T], D(A^{-\alpha})) \cap L^\infty([0, T], L^2_{\text{div}}(D)) \cap L^2([0, T], H^1_{\text{per,div}}(D)), \]
for some $\alpha < 0$, such that, for all $t \in [0, T]$ and $\varphi \in D(A^\alpha)$, the following holds $\mathbb{P}$-almost surely,
\[
(u(t, \cdot; \omega), \varphi) + \int_0^t (u(t, \cdot; \omega) \cdot \nabla u(t, \cdot; \omega), \varphi) \, dt + \nu \int_0^t (\nabla u(t, \cdot; \omega), \nabla \varphi) \, dt
\]
\[= (u(0, \cdot; \omega), \varphi) + t(f, \varphi) + \sum_k \int_0^t g_k(t) (e_k, \varphi) \, dW_k(t; \omega),
\]
and moreover $u$ satisfying the following energy inequality for every $t > s$,
\[
\mathbb{E} [\|u(t)\|^2] + 2\mathbb{E} \left[ \int_s^t \nu \|\nabla u(r)\|^2 \, dr \right]
\]
\[\leq \mathbb{E} [\|u(s)\|^2] + \int_s^t \text{Tr}(g^* g(r)) \, dr + 2\mathbb{E} \left[ \int_s^t (f, u(r)) \, dr \right].
\]

**Remark 2.** Generalization of the result of existence of weak solutions to the stochastic case, with different types of noise, are now well-known, see for instance [1] and references therein. In particular, the existence of martingale solution with Dirichlet boundary condition is shown in [28] under very general hypotheses on the diffusion term which is independent of $t$, with the choice of filtration $\mathcal{F} = \{\mathcal{F}_t; t \in [0, T]\}$ as,
\[
\mathcal{F}_t = \sigma \{u(s); s \leq t\},
\]
the history of $u(s)$ for $s \leq t$. Moreover, for $\beta > \max\{\frac{3}{2}, \alpha\}$, we have that $A^{-\beta/2} M(t, \cdot; \omega)$ is a square integrable martingale with respect to the above choice of filtration, where,
\[
M(t, \cdot; \omega) := u(t, \cdot; \omega) - u(0, \cdot; \omega) + \int_0^t u(t, \cdot; \omega) \cdot \nabla u(t, \cdot; \omega) \, dt - \nu \int_0^t \Delta u(t, \cdot; \omega) \, dt - tf,
\]
for $\mathbb{P}$-almost surely pathwise in $C([0, t]; D(A^{-\beta/2}))$. The existence argument in Theorem 3.1 in [28], with the Galerkin approximation, as well as compact embedding (Theorem 2.2 in [28]), weak convergences, Skorohod embedding theorem and martingale representation theorem, follows identically in our case when $g$ is $t$-dependent but smooth and periodic boundary condition is employed instead of Dirichlet boundary condition (e.g. Theorem 2.2 in [28] is valid with our choice of spaces).

**Definition 2.4.** We call a progressively measurable function $u : [0, T] \times \Omega \rightarrow L^2_{\text{div}}(D)$ w.r.t. $\mathcal{F}$ a martingale solution to (1) on $[0, \infty)$ if $u(\cdot, x; \omega) |_{[0, T]}$ is a martingale solution to (1) on $[0, T]$ for all $T > 0$.

3. **Upper bounds on dissipation rate.** In this section, we will derive the basic relationships used to establish the fundamental results, and then prove the key theorems providing the upper bounds on $\mathbb{E}[\langle \varepsilon \rangle]$ in terms of $U, L, G$ and $\Re e$. To a great extent, the analysis for the stochastic NSE (1) will be considered a refinement of the approach in [23] with careful treatment of the white noise term.

First consider (weak) martingale solutions to (1) on $[0, \infty)$ given in Definition 2.4. Following [4], we consider the process $z := u - \Upsilon$, where $d\Upsilon = g(t) \, dw(t; \omega)$, with $w$ being a cylindrical Wiener process on $L^2_{\text{div}}(D)$. We quickly notice that $z$ satisfies
\[
dz = (-u \cdot \nabla u + \nu \Delta u - \nabla p + f(x)) \, dt
which shows that $z$ is now an absolute continuous process. Moreover, following Corollary 3.1 (which comes as a direct consequence of Theorem 3.2 in [4]), we have
\[ \partial_t z \in L^2([0,T], D(A^{-\alpha})) \text{ a.e. } P, \]
and furthermore, the following energy inequality holds a.e. $P$ (upon an integration by part of (3.13) in [4] with respect to $t$ and applying the Ito’s product formula
\[
\|u(t)\|^2 + 2 \int_0^T \nu \|\nabla u(t)\|^2 dt \\
\leq \|u_0\|^2 + \int_0^T \text{Tr}(g^* g(t)) dt + 2 \int_0^T (f(x), u(t)) dt + 2 \sum_k \int_0^T g_k(t)(e_k, u(t)) dW_k(t).
\]
(10)
The above integral inequality can be formally short-handed as the following stochastic differential inequation:
\[
d\|u(t)\|^2 + 2\nu \|\nabla u(t)\|^2 dt \leq \text{Tr}(g^* g(t)) dt + 2(f(x), u(t)) dt + 2 \sum_k g_k(t)(e_k, u(t)) dW_k(t).
\]
(11)
The above inequality makes sense with the right hand side a $P$-almost surely non-negative. The above inequalities (10) and (11) are the starting points for the calculation of the upper bound. To move forward rigorously, we first prove in Proposition 1 the boundedness of the kinetic energy, and then in Corollary 1 that $U$ given in Definition 2.2 and $E[\langle\varepsilon\rangle]$ are well-defined.

**Proposition 1.** The mean value of the kinetic energy of a mean-zero martingale solution to (1) on $[0, \infty)$ is uniformly bounded in time,
\[
\sup_t E[\|u(t)\|^2] \leq C(\text{data}) < \infty.
\]

**Proof.** From Definitions 2.3 and 2.4, a martingale solution to (1) on $[0, \infty)$ is in $L^2(\Omega, L^2([0,t], H^1_{\text{per,div}}(D)); A, P)$ for all $t > 0$. (Notice that one may obtain this conclusion either directly from (7), or from the weak lower semicontinuity of norm together with Fatou’s Lemma and the inequality before (12) on P.377 of [28], that
\[
E \left[ \int_0^t \|u(s)\|^2 ds \right] \leq \liminf_{n \to \infty} E \left[ \int_0^t \|u_n(s)\|^2 ds \right] \leq C_2 < \infty.
\]
Therefore, we have $E[\int_0^t \|u(s)\|^2 ds] < \infty$ for all $t > 0$. With the given fact that $\sum_k \|g_k(t)\|^2 < \infty$ for all $t \in (0, \infty)$, together with the independence of $W_k$, orthogonality of $\{e_k\}_k$ in $L^2_{\text{div}}(D)$, and Itô’s Isometry [26] we have, for each $t > 0$,
\[
E \left[ \sum_k \int_0^t g_k(s)(e_k, u(s)) dW_k(s) \right]^2 = E \left( \sum_k \int_0^t |g_k(s)|^2 |(e_k, u(s))^2| ds \right) \\
\leq E \left( \int_0^t \sup_k \{g_k(s)^2\} |u(s)|^2 ds \right) \leq \sup_{s \in [0,t]} \left\{ \sum_k |g_k(t)|^2 \right\} \left( \int_0^t |u(s)|^2 ds \right) < \infty.
\]
Hence, we realize (with our simple and specific choice of $g$) that $M(t, \cdot; \omega)$ in (9) is square integrable martingale (without the necessity of the application of $A^{-\beta/2}$),
and therefore with the standard property of Itô integral [26], we have,
\[ E \left[ \sum_k \int_0^T g_k(t)(e_k, u(t)) \, dW_k(t) \right] = 0. \] (12)

Now taking conditional expectation of the inequality (10) with respect to \( \mathcal{F}_s \), and using Poincaré inequalities twice, we have,
\[
E[\|u(t)\|^2|\mathcal{F}_s] \\
\leq \|u(s)\|^2 + \left( 2G^2 + \frac{F^2}{C_D\nu} \right) |D| (t-s) - E \left[ \int_s^t \nu \|\nabla u(r)\|^2 \, dr |\mathcal{F}_s \right].
\]

for large enough \( t \) and \( s \), where \( C_D \) is a constant depending on \( D \). Now considering \( \mathbb{Y}(t) = \exp(C_D^{-1}vt)\|u(t)\|^2 \), and then using Itô’s formula gives,
\[
E[\mathbb{Y}(t)|\mathcal{F}_s] \leq \mathbb{Y}(s) + \left[ \exp(C_D^{-1}vt) - \exp(C_D^{-1}vs) \right] (2\nu^{-1}G^2C_D + \nu^{-1}F^2) |D|.
\]

for large enough \( t \) and \( s \). We hence have by submartingale convergence theorem [26] that \( \mathbb{Y}(t) \) converges and,
\[
\sup_{0 < t < T} E[\mathbb{Y}(t)] < C \exp(C^{-1}_{\Omega}\nu T).
\]

Therefore, we proved the proposition. \( \Box \)

**Corollary 1.** For a given martingale solution to (1) on \([0, \infty)\), we have \( \langle \varepsilon \rangle \) and \( \langle \frac{1}{|D|}\|u\|^2 \rangle \) both exist in \( L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P}) \).

**Proof.** We first show \( \langle \frac{1}{|D|}\|u\|^2 \rangle \in L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P}) \). We notice that
\[
0 \leq \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|u(t, \cdot, \omega)\|^2 \, dt \leq \frac{1}{|D|} \sup_{0 \leq t} \|u(t, \cdot, \omega)\|^2,
\]
where the latter sits in \( L^1(\Omega; \mathbb{R}; \mathcal{F}; \mathbb{P}) \) after applying Doob’s inequality on \( \|u(t, \cdot, \omega)\|^2 \):
\[
E \left( \frac{1}{|D|} \sup_{0 \leq t} \|u(t, \cdot, \omega)\|^2 \right) \leq C \left( \frac{1}{|D|} \sup_{0 \leq t} E[\|u(t, \cdot, \omega)\|^2] \right) < \infty
\]
in the proof of Proposition 1. Hence we have by dominated convergence theorem that,
\[
\left( \frac{1}{|D|}\|u\|^2 \right)(\omega) := \lim_{T \to \infty} \frac{1}{|D|} \frac{1}{T} \int_0^T \|u(t, \cdot, \omega)\|^2 \, dt,
\]
exists in \( L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P}) \) and
\[
U = \limsup_{T \to \infty} E \left[ \frac{1}{|D|} \frac{1}{T} \int_0^T \|u(t, \cdot, \omega)\|^2 \, dt \right] < \infty.
\]

We next show \( \langle \varepsilon \rangle \in L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P}) \). In fact, from (10) and Cauchy inequality, for large enough \( T \), we have,
\[
\frac{2}{T} \int_0^T \nu \|\nabla u(t)\|^2 \, dt \leq 10 \sup_{0 \leq t} \|u(t, \cdot, \omega)\|^2 + 2|D|G^2 + F^2
\]
\[
+ \frac{2}{T} \sum_k \int_0^T g_k(t)(e_k, u(t, \cdot, \omega)) \, dW_k(t; \omega),
\]
where
Proposition 1. Hence we have by dominated convergence theorem that,

\[
E\left(\chi_A^2(\omega) \left| \frac{2}{T} \sum_k \int_0^T g_k(t)(e_k, u(t, \cdot; \omega))dW_k(t, \omega) \right|^2 \right) 
\]

\[
\leq \frac{4}{T^2} E\left( \sum_k \int_0^T |g_k(s)|^2 \chi_A^2(\omega)|\langle e_k, u(s, \cdot; \omega) \rangle|^2 ds \right) 
\]

\[
\leq \frac{4}{T^2} E\left( \chi_A^2(\omega) \int_0^T \sup_k |g_k(s)|^2 \|u(s, \cdot; \omega)\|^2 ds \right) 
\]

\[
\leq \frac{4}{T^2} \int_0^T \sup_k |g_k(s)|^2 ds \left( E\left( \chi_A^2(\omega) \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 \right) \right) 
\]

\[
\leq \frac{4}{T^2} \int_0^T \sum_k |g_k(s)|^2 ds \left( E\left( \chi_A^2(\omega) \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 \right) \right) 
\]

\[
\leq \frac{8}{T} D|G^2 \left( E\left( \chi_A^2(\omega) \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 \right) \right) \leq E\left( \chi_A^2(\omega) \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 \right), 
\]

therefore for large enough \( T > 0 \), we have,

\[
E\left(\chi_A(\omega) \left( \frac{2}{T} \sum_k \int_0^T g_k(t)(e_k, u(t, \omega))dW_k(t, \omega) \right)^2 - \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 \right) < 0. 
\]

Since \( A \) is an arbitrary measurable set, we have, for large enough \( T \), that \( \mathbb{P} \)-a.e.,

\[
\left| \frac{2}{T} \sum_k \int_0^T g_k(t)(e_k, u(t, \omega))dW_k(t, \omega) \right| \leq \sup_{0 \leq t} \|u(t, \cdot; \omega)\| \leq 2 + 2 \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2. 
\]

Therefore, we now have \( \mathbb{P} \)-a.e. that,

\[
\frac{2}{T} \int_0^T \nu \| \nabla u(t) \|^2 dt \leq 20 \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2 + 2 D|G^2 + F^2 + 1, 
\]

where the latter again sits in \( L^1(\Omega, \mathbb{R}; \mathcal{F}, \mathbb{P}) \) by Doob’s inequality on \( \|u(t, \cdot; \omega)\| \) from Proposition 1. Hence we have by dominated convergence theorem that,

\[
\langle \varepsilon \rangle(\omega) := \limsup_{T \to \infty} \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \| \nabla u(t, \cdot; \omega) \|^2 dt,
\]

exists in \( L^1(\Omega, \mathbb{R}; \mathcal{A}, \mathbb{P}) \). Hence,

\[
E[\langle \varepsilon \rangle] = \limsup_{T \to \infty} E\left[ \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \| \nabla u(t, \cdot; \omega) \|^2 \right] dt < \infty. 
\]

\[\square\]

Now we have all the preliminaries ready to derive the upper bound on \( E[\langle \varepsilon \rangle] \). First notice that,

\[
\left| \frac{\|u(T, \cdot; \omega)\|^2 - \|u_0\|^2}{T} \right| \leq \frac{2}{T} \sup_{0 \leq t} \|u(t, \cdot; \omega)\|^2, 
\]
where again, the right hand side is in \( L^1(\Omega, \mathcal{F}, \mathbb{P}) \) by Doob’s inequality on \( \|u(t, \cdot, \omega)\| \), and therefore,

\[
\mathbb{E} \left[ \frac{\|u(T, \cdot, \omega)\|^2}{T} - \|u_0\|^2 \right] = O\left( \frac{1}{T} \right).
\]

Averaging (10) over \([0, T]\), applying Cauchy–Schwarz inequality, taking expected value and using Proposition 1 yields,

\[
\mathbb{E}\left[ \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|\nabla u(t)\|^2 dt \right] \leq \mathcal{O}\left( \frac{1}{T} \right) + \frac{1}{2} \frac{1}{|D|} \frac{1}{T} \int_0^T \text{Tr}(g^*g(t))dt
\]

\[
+ \frac{1}{|D|} \frac{1}{T} \int_0^T \|f\|^2 dt \frac{1}{2} \mathbb{E}\left[ \left( \frac{1}{T} \int_0^T \|u(t)\|^2 dt \right)^{\frac{1}{2}} \right],
\]

after taking into account that \( \sum_k \int_0^t (g_k(s), u(s)) \, dW_k(s) \) is now itself square integrable (as show in the proof of Proposition 1) and the standard property of Itô integral. Take the limit superior as \( T \to \infty \), which exists by Corollary 1, and use the scaled defined in Definition (2.2) to obtain,

\[
\mathbb{E}[\varepsilon] \leq \frac{1}{2} G^2 + FU.
\]

Hence, we proved the following lemma,

**Lemma 3.1.** For a given mean-zero martingale solution to (1) on \([0, \infty)\), the following inequality holds,

\[
\mathbb{E}[\varepsilon] \leq \frac{1}{2} G^2 + FU.
\]

Next we find an upper bound on \( F \) to get a bound on (16). Taking the inner product of (1) with \( f(x) \) and integrating by parts gives,

\[
d(u(t), f) + (u \cdot \nabla u, f) dt + (\nu \nabla u, \nabla f) dt = (f(x), f(x)) dt + \sum_k g_k(t)(e_k, f) dW_k(t).
\]

Averaging the above equality over \([0, T]\) yields,

\[
\frac{(u(T) - u_0, f(x))}{T |D|} + \frac{1}{|D|} \frac{1}{T} \int_0^T (u \cdot \nabla u, f) dt + \frac{1}{|D|} \frac{1}{T} \int_0^T \nu (\nabla u, \nabla f) dt
\]

\[
= \frac{1}{|D|} \frac{1}{T} \int_0^T \|f\|^2 dt + \frac{1}{|D|} \frac{1}{T} \sum_k \int_0^T g_k(t)(e_k, f(x)) dW_k(t).
\]

Again, notice that,

\[
\frac{\|u(T) - u_0, f(x)\|}{T |D|} \leq \frac{1}{T} \left( \sup_{0 \leq t} \|u(t, \cdot, \omega)\|^2 + \|f\|^2 \right),
\]

where the right hand side now sits in \( L^2(\Omega, \mathbb{R}; \mathcal{F}, \mathbb{P}) \) by applying Doob’s inequality on \( \|u(t, \cdot, \omega)\| \), then,

\[
\mathbb{E} \left[ \frac{(u(T) - u_0, f(x))}{T |D|} \right] = \mathcal{O}\left( \frac{1}{T} \right) \to 0 \quad \text{as} \quad T \to 0.
\]

Moreover, from \( F < \infty \) and \( \sum_k |g_k(t)|^2 < \infty \) for all \( t \in (0, \infty) \), together with the independence of \( \{W_k\} \) and orthogonality of \( \{e_k\} \), we have by Itô’s Isometry that,

\[
\mathbb{E} \left[ \left( \sum_k \int_0^t g_k(s)(e_k, f) \, dW_k(s) \right)^2 \right] \leq \sup_{s \in [0, t]} \left\{ \sum_k |g_k(t)|^2 \right\} \mathbb{E} \left( t \|f\|^2 \right) < \infty
\]
The standard property of Itô integral again implies that,

\[ E \left[ \sum_k \int_0^T g_k(t)(e_k, f) \, dW_k(t) \right] = 0. \]

Therefore, considering above identity, and taking expected value in (19), and passing to the limit superior as \( T \to \infty \) gives,

\[ F^2 = \limsup_{T \to \infty} \mathbb{E} \left[ \frac{1}{|D|} \frac{1}{T} \int_0^T (u \cdot \nabla u, f) \, dt + \frac{1}{|D|} \frac{1}{T} \int_0^T \nu(\nabla u, \nabla f) \, dt \right]. \tag{20} \]

The rest of analysis requires to approximate the two term on the right-hand side in the above equality. Since \( \nabla \cdot u = 0 \) we have \( (u \cdot \nabla u, f) = (\nabla \cdot (u \otimes u), f) \), and using integration by part we obtain,

\[ \frac{1}{|D|} \frac{1}{T} \int_0^T (u \cdot \nabla u, f) \, dt \leq \frac{1}{|D|} \frac{1}{T} \int_0^T |(u \otimes u, \nabla f)| \, dt \leq \|\nabla f\|_{L\infty} \frac{1}{|D|} \frac{1}{T} \int_0^T \|u\|^2 \, dt, \]

then using Definition (2.2), the first term in (20) can be estimated with dominated convergence theorem as,

\[ \mathbb{E} \left[ \frac{1}{|D|} \frac{1}{T} \int_0^T (u \cdot \nabla u, f) \, dt \right] \leq \frac{F}{L} \mathbb{E} \left[ \frac{1}{|D|} \frac{1}{T} \int_0^T \|u\|^2 \, dt \right] = \frac{F}{L} U + o(1), \quad \text{as} \quad T \to \infty. \tag{21} \]

To estimate the second term in (20), by using the Cauchy-Schwarz-Young inequality and Definition (2.2) we have,

\[ \left| \frac{1}{|D|} \frac{1}{T} \int_0^T \nu(\nabla u, \nabla f) \, dt \right| \leq \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu\|\nabla u\|^2 \, dt \right) \frac{1}{2} \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu\|\nabla f\|^2 \, dt \right) \frac{1}{2} \]

\[ \leq \sqrt{\nu} \frac{F}{L} \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu\|\nabla u\|^2 \, dt \right)^{\frac{1}{2}}. \]

Hence the second, viscosity, term is estimated using Jensen’s inequality (P. 30 [26]) as follows,

\[ \left| \frac{1}{|D|} \frac{1}{T} \mathbb{E} \left[ \int_0^T \nu(\nabla u, \nabla f) \, dt \right] \right| \leq \sqrt{\nu} \frac{F}{L} \mathbb{E} \left[ \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu\|\nabla u\|^2 \, dt \right)^{\frac{1}{2}} \right] \]

\[ \leq \sqrt{\nu} \frac{F}{L} \left( \mathbb{E} \left[ \frac{1}{|D|} \frac{1}{T} \int_0^T \nu\|\nabla u\|^2 \, dt \right] \right)^{\frac{1}{2}} \]

\[ \leq \sqrt{\nu} \frac{F}{L} \left( \mathbb{E} \left[ \langle \varepsilon \rangle \right] \right)^{\frac{1}{2}} + o(1), \quad \text{as} \quad T \to \infty. \tag{22} \]

Inserting (21) and (22) in (20), after passing \( T \) to infinity, yields,

\[ F \leq \frac{U^2}{L} + \frac{\sqrt{\nu}}{L} \left( \mathbb{E} \langle \varepsilon \rangle \right) \frac{1}{2}. \]

Insert multipliers of \( U^\frac{1}{2} \) and \( U^{-\frac{1}{2}} \) in the two terms

\[ F \leq \frac{U^2}{L} + \frac{\sqrt{\nu}}{L} \frac{1}{U} \left( \mathbb{E} \langle \varepsilon \rangle \right) \frac{1}{2}. \]

Finally applying the Young’s inequality on the above inequality yields to an estimate on \( F \)

\[ F \leq \frac{U^2}{L} + \frac{1}{2} \frac{U \nu}{L^2} + \frac{1}{2} \frac{\left( \mathbb{E} \langle \varepsilon \rangle \right)}{U}. \tag{23} \]
Using the above estimate (23) for $F$ in (17) gives,

$$E[\langle \varepsilon \rangle] \leq \frac{1}{2} G^2 + \frac{U^3}{L} + \frac{1}{2} \frac{U^2 \nu}{L^2} + \frac{1}{2} (E[\langle \varepsilon \rangle]).$$

Therefore we have the following bound,

$$E[\langle \varepsilon \rangle] \leq G^2 + \frac{2}{L} U^3 \nu + \frac{1}{2} U^2 \nu L + \frac{1}{2} (E[\langle \varepsilon \rangle]).$$

We have thus estimated the upper bound which we summarize as,

**Theorem 3.2.** Let $D = [0, \ell]^3$ denote the periodic box in $3d$, and $u(x, t; \omega)$ be a mean-zero martingale solution of the Stochastic Navier-Stokes equations on $[0, \infty)$:

$$du = (-u \cdot \nabla u + \nu \Delta u - \nabla p + f(x)) dt + \sum_k g_k(t) e_k(x) dW_k(t; \omega) \quad \text{in } D,$$

$$\nabla \cdot u = 0 \quad \text{in } D,$$

$$u(x, 0) = u_0(x) \quad \text{in } D,$$

with boundary and data conditions given by (4) and (3). Then the mean value of time-averaged energy dissipation rate per unit mass,

$$E[\langle \varepsilon \rangle] := \int_\Omega \left[ \lim_{T \to \infty} \frac{1}{|\Omega|} \int_0^T \nu \|\nabla u(t, \cdot, \omega)\|^2 dt \right] dP,$$

satisfies,

$$E[\langle \varepsilon \rangle] \leq G^2 + \left(2 + \frac{1}{Re} \right) \frac{U^3}{L},$$

where $U$ is the mean value of the root-mean-square (space and time averaged), $L$ is the longest length scale in the applied forcing function, and $G^2$ is the total energy rate supplied by the random force defined in Definition 2.2.

The result in Theorem 3.2 provides an upper bound for the mean of the dissipation rate. This estimate is consistent with both phenomenology (2) and the rate proven the Navier-Stokes equations in [23].

4. **Exact dissipation rate under a further assumption.** To obtain lower bounds on $E[\langle \varepsilon \rangle]$, in this section, let us make a further assumption to the martingale solution to (1) on $[0, \infty)$ as follows:

**Assumption (A).** Energy equality on a martingale solution to (1) on $[0, \infty)$:

$$\mathbb{E} \left[ \|u(T)\|^2 \right] + 2\mathbb{E} \left[ \int_0^T \nu \|\nabla u(t)\|^2 dt \right] = \mathbb{E} \left[ \|u_0\|^2 \right] + \int_0^T \text{Tr}(g^*g(t)) dt$$

$$+ 2\mathbb{E} \left[ \int_0^T (f(x), u(t)) dt \right].$$

**Remark 3.** However, “measurements in all flows of real fluid in the three dimensions satisfies the energy equality,” in concert with the basic conservation laws of physics” (page 47 of [27]), a priori, one only has an energy inequality for the weak solutions. We would like to emphasize that the mathematical derivation of (25) is an outstanding open problem, and as difficult as the millennium problem. In this direction, there has been some progress in understanding the types of potential finite-time singularities of the solutions, as we mention some below.
In the deterministic case, there has been a number of papers studying conditions implying energy equality e.g., [12, 17, 24, 37, 59, 46]. Reader may refer to [13], and the references therein, for the most recent progress in this direction.

Different versions of locally strong/weak pathwise solutions with respect to the Brownian filtration, e.g. as defined in [6, 36], are shown to exist up to a maximal stopping time $\tau: \Omega \to [0, \infty)$ which is $\mathcal{A}$-measurable and $\mathbb{P}$-a.e. positive [36]. Moreover, in that case, energy equality up to $\tau(\omega)$ holds $\mathbb{P}$-a.e. In particular, under such a regularity assumption of $u$, one will be allowed to directly application of Itô’s Lemma and the momentum equation (1) of $u$ to obtain via a product rule that for all $t > 0$, that $\mathbb{P}$-a.e. and $t < \tau(\omega)$,

$$
d\|u(t)\|^2 + 2\nu\|\nabla u(t)\|^2 dt = \text{Tr}(g^*g(t))dt + 2(f(x), u(t))dt + 2\sum_k g_k(t)(e_k, u(t))dW_k(t)
$$

Upon a further checking of the stochastic part being square integrable, standard property of Itô integral then quickly implies for all $t > 0$,

$$
\mathbb{E} \left[ \|u(t \wedge \tau(\omega))\|^2 \right] + 2\mathbb{E} \left[ \int_0^{t \wedge \tau(\omega)} \nu\|\nabla u(s)\|^2 ds \right] = \mathbb{E} \left[ \|u_0\|^2 \right] + \int_0^{t \wedge \tau(\omega)} \text{Tr}(g^*g(s))ds + 2\mathbb{E} \left[ \int_0^{t \wedge \tau(\omega)} (f(x), u(s))ds \right],
$$

where $t \wedge \tau(\omega) := \min\{t, \tau(\omega)\}$. It is also shown that when $d = 2$, one can choose $\tau(\omega) = \infty$ $\mathbb{P}$-a.e. We would like to remind that, recently in [41], the existence of global strong solutions in probability is proven if the initial data are sufficiently small. This ensures energy equality to hold globally in probability with sufficiently small initial data.

Whether Assumption (A) holds or not heavily depends on the regularity of the martingale solution, and the singularity type that the solution may carry. It is shown in [30] that at every time the set of singularities of a class of the martingale solutions of (1) is empty with probability one. This fact means that at every time it is not possible to see the singularities (and possibly blow-up): only a negligible set of paths may have singularities at a fixed time.

In this subsection, we always assume that Assumption A holds. Dividing (25) by $2T|D|$ and applying Proposition 1 (which leads to

$$
\mathbb{E} \left[ \left\|u_0\|^2 - \|u(T)\|^2 \right\|^2 \right] \leq \frac{2C(\text{data})}{2T|D|} = O \left( \frac{1}{T} \right),
$$

via triangle inequality), we obtain that

$$
\mathbb{E} \left[ \frac{1}{|D|} \int_0^T \nu\|\nabla u(t)\|^2 dt \right] = O \left( \frac{1}{T} \right) + \frac{1}{2} \frac{1}{|D|} \frac{1}{T} \int_0^T \text{Tr}(g^*g(t))dt + \mathbb{E} \left[ \left( \frac{1}{T} \frac{1}{|D|} \int_0^T (f, u(t))dt \right) \right],
$$

(26)
Therefore, rearranging the terms and by Cauchy–Schwarz inequality,
\[
\frac{1}{2} \frac{1}{|D|} \frac{1}{T} \int_0^T \text{Tr}(g^* g(t)) dt
\]
\[
= O\left(\frac{1}{T}\right) + \mathbb{E}\left[\frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|\nabla u(t)\|^2 dt\right] + \mathbb{E}\left[\left(\frac{1}{T} \frac{1}{|D|} \int_0^T (-f, u(t)) dt\right)\right]
\]
\[
\leq O\left(\frac{1}{T}\right) + \mathbb{E}\left[\frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|\nabla u(t)\|^2 dt\right]
\]
\[
+ \left(\frac{1}{T} \frac{1}{|D|} \int_0^T \|f\|^2 dt\right) \frac{1}{2} \mathbb{E}\left[\left(\frac{1}{T} \frac{1}{|D|} \int_0^T \|u(t)\|^2 dt\right)\right]^{-2}.
\]

Therefore passing to the limit superior as \( T \to \infty \), and by dominated convergence theorem again, we have,
\[
\frac{1}{2} G^2 \leq \mathbb{E}[\langle \varepsilon \rangle] + FU.
\] (27)

With this inequality as above, we are motivated to define the following.

**Definition 4.1.** The stochastically forced NSE (1) is stochastically dominated if
\[
G^2 > 2FU.
\]

This means the stochastic term given by the random force
\[
g(t) dw(t; \omega) = \sum_k g_k(t; x) dW_k(t; \omega)
\]
dominates the behaviour of the solutions, and therefore, if Assumption (A) holds,
\[
0 < \frac{1}{2} G^2 - FU \leq \mathbb{E}[\langle \varepsilon \rangle].
\]

Moreover, applying the upper bounds (27) on \( F \), it is then straightforward to see that
\[
\frac{1}{3} G^2 - \left(\frac{2}{3} + \frac{1}{3} \frac{U^3}{L}\right) \leq \mathbb{E}[\langle \varepsilon \rangle].
\]

Considering Theorem 3.2 and the above lower bound, we obtain the following.

**Theorem 4.2.** Consider assumptions in Theorem 3.2. In addition suppose Assumption (A) and that
\[
G^2 > 2FU,
\]
where \( U, F \) and \( G \) are defined in Definition 2.2. Then \( \mathbb{E}[\langle \varepsilon \rangle] \) satisfies
\[
\frac{1}{2} G^2 - FU \leq \mathbb{E}[\langle \varepsilon \rangle] \leq \frac{1}{2} G^2 + FU,
\] (28)
and moreover,
\[
\frac{1}{3} G^2 - \left(\frac{2}{3} + \frac{1}{3} \frac{U^3}{L}\right) \leq \mathbb{E}[\langle \varepsilon \rangle] \leq G^2 + \left(2 + \frac{1}{3} \frac{U^3}{L}\right).
\]

The result in Theorem (4.2) is remarkable, showing a stochastically dominated stochastically forced NSE has its dissipation rate precisely behaving as a function of the Reynolds number, (2), as it is discussed in introduction.

**Corollary 2.** Considering the conditions of Theorem 4.2, and in absence of deterministic force, i.e. \( f = 0 \), we obtain the exact dissipation rate as,
\[
\mathbb{E}[\langle \varepsilon \rangle] = \frac{1}{2} G^2.
\]
Proof. Let $F = 0$ in (28).

5. Variance estimate of energy dissipation. We now estimate the variance,

$$\text{Var}(\langle \varepsilon \rangle) := \mathbb{E}(\langle \varepsilon \rangle^2) - [\mathbb{E}(\langle \varepsilon \rangle)]^2$$

if the right handside is well-defined. In order to have the right hand side well-defined and to establish a bound, let us consider further assumptions,

**Assumption (B)** An energy bound of martingale solution to (1):

$$\mathbb{E} \left( \int_0^T \|u(t)\|^6 dt \right) < C(T) < \infty.$$  
(29)

for all $T \in [0, \infty)$.

**Assumption (C)** A bound on the noise term $dG := g(t) dw(t; \omega)$:

$$\left\langle \left( \sum_k |g_k|^2 \right) \right\rangle := K_G^4 < \infty.$$  
(30)

With the above two assumptions, applying (11) and Itô’s Lemma [26] to $(\|u(t)\|)^2$, we obtain

$$d\|u(t)\|^4 \leq (3\|u(t)\|^2 \text{Tr}(g^* g(t)) + 4\|u(t)\|^2 (f(x), u(t)) - 4\nu\|u(t)\|^2 \|\nabla u(t)\|^2) dt$$
$$+ 4 \sum_k \|u(t)\|^2 g_k(t)(e_k, u(t))dW_k(t).$$

where we used $||g(t)|| u(t)||^2 \leq \text{Tr}(g^* g(t))||u(t)||^2$. The above is equivalent to, for all $T > 0$,

$$\|u(T)\|^4 + 4 \int_0^T \nu\|u(t)\|^2 \|\nabla u(t)\|^2 dt$$
$$\leq \|u_0\|^4 + 3 \int_0^T \|u(t)\|^2 \text{Tr}(g^* g(t)) dt + 4 \int_0^T \|u(t)\|^2 (f(x), u(t)) dt$$
$$+ 4 \sum_k \int_0^T \|u(t)\|^2 g_k(t)(e_k, u(t))dW_k(t).$$

(31)

**Proposition 2.** Suppose Assumptions (B) and (C) hold. For a given martingale solution to (1) on $[0, \infty)$, we have

$$\sup_t \mathbb{E}[\|u(t)\|^4] \leq C(\text{data}) < \infty.$$  

Proof. Now with $\mathbb{E}[\int_0^t \|u(s)\|^6 ds] < C(t) < \infty$ for all $t > 0$ and $\sum_k |g_k(t)|^2 < \infty$ for all $t \in (0, \infty)$, together with the independence of $W_k$ and orthogonality of $\{e_k\}_k$, we have by Itô’s Isometry [26] that for each $t > 0$,
Corollary 3. Suppose Assumptions (B) and (C) hold. For a given martingale solution to (1) on $[0, \infty)$, we have $\langle \varepsilon \rangle^2$ exists in $L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P})$.

Proof. From (13), we have

\[
\mathbb{E} \left[ \left( \sum_k \int_0^t \|u(t)\|^2 g_k(s)(e_k, u(s)) \, dW_k(s) \right)^2 \right] = \mathbb{E} \left( \sum_k \int_0^t \|u(s)\|^4 \|g_k(s)\|^2 \|(e_k, u(s))\|^2 \, ds \right) \leq \mathbb{E} \left( \int_0^t \sup_k \{\|g_k(s)\|^2\} \|u(s)\|^4 \sum_k \|(e_k, u(s))\|^2 \, ds \right) \leq \mathbb{E} \left( \int_0^t \sup_k \{\|g_k(s)\|^2\} \|u(s)\|^6 \, ds \right) \leq \sup_{s \in [0, t]} \left\{ \sum_k \|g_k(t)\|^2 \right\} \mathbb{E} \left( \int_0^t \|u(s)\|^6 \, ds \right) \leq C(\text{data}) < \infty.
\]

Therefore by the standard property of Itô integral [26],

\[
\mathbb{E} \left[ \sum_k \int_0^T \|u(t)\|^2 (g_k(t), u(t)) \, dW_k(t) \right] = 0.
\]

With this, from (31), and via Young’s and inequalities and Poincare inequalities twice, we have for large enough $t, s$

\[
\mathbb{E}[\|u(t)\|^4 | \mathcal{F}_s] \leq \|u(s)\|^4 + C_{D, \nu} (K_D^4 + F^4) (t - s) - \frac{2}{C_D} \mathbb{E} \left[ \int_s^t \|u(r)\|^4 \, dr \right] \mathcal{F}_s
\]

where $C_D$ is the Poincare constant of $D$ and $K_{D, \nu}$ depends on $D$ and $\mu$. Again, via Itô’s formula [26] and submartingale convergence theorem [26], we have

\[
\sup_t \mathbb{E}[\|u(t)\|^4] \leq C(\text{data}) < \infty.
\]

\[\square\]

Corollary 3. Suppose Assumptions (B) and (C) hold. For a given martingale solution to (1) on $[0, \infty)$, we have $\langle \varepsilon \rangle^2$ exists in $L^1(\Omega; \mathbb{R}; \mathcal{A}; \mathbb{P})$.
with the last inequality coming from Propositions 1 and 2. We have, by dominated convergence theorem,

\[
\langle \varepsilon \rangle^2(\omega) := \lim_{T \to \infty} \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|\nabla u(t, \cdot, \omega)\|^2 \right),
\]

exists in \( L^1(\Omega; \mathbb{R}; \mathcal{A}, \mathbb{P}) \) and,

\[
\mathbb{E}[\langle \varepsilon \rangle^2] = \lim_{T \to \infty} \mathbb{E} \left[ \left( \frac{1}{|D|} \frac{1}{T} \int_0^T \nu \|\nabla u(t, \cdot, \omega)\|^2 \right) \right] dt < \infty.
\]

Now, squaring (10), we have

\[
\left( \frac{1}{T} \int_0^T \nu dt \right)^2 \leq \left( \frac{\|u_0\|^2 - \|u(T)\|^2}{2T|D|} + \frac{1}{|D|T} \int_0^T \text{Tr}(g^*g(t))dt + \frac{1}{|D|T} \int_0^T (f(x), u(t))dt \right.
\]

\[+ \frac{1}{|D|T} \sum_k \int_0^T g_k(t)(e_k, u(t))dW_k(t) \right)^2.
\]

Therefore Cauchy-Schwarz inequality gives, for any \( a, b, c, d > 0 \),

\[
\mathbb{E} \left[ \left( \frac{1}{T} \int_0^T \nu dt \right)^2 \right] \leq (a^{-2} + b^{-2} + c^{-2} + d^{-2}) \left\{ a^2 \mathbb{E} \left[ \left( \frac{\|u_0\|^2 - \|u(T)\|^2}{2T|D|} \right)^2 \right] \right.
\]

\[+ b^2 \left( \frac{1}{|D|T} \int_0^T \text{Tr}(g^*g(t))dt \right)^2 + c^2 \mathbb{E} \left[ \left( \frac{1}{|D|T} \int_0^T (f(x), u(t))dt \right)^2 \right]
\]

\[+ d^2 \mathbb{E} \left[ \left( \frac{1}{|D|T} \sum_k \int_0^T g_k(t)(e_k, u(t))dW_k(t) \right)^2 \right] \right\}
\]

\[=: (a^{-2} + b^{-2} + c^{-2} + d^{-2}) \left( a^2 (I) + b^2 (II) + c^2 (III) + d^2 (IV) \right).
\]

Now,

\[
\frac{\|u_0\|^2 - \|u(T)\|^2}{4T^2|D|^2} \leq \frac{1}{2T^2|D|^2} \sup_{0 \leq t} \|u(t, \cdot, \omega)\|^4,
\]

where again the right hand side of the inequality is in \( L^1(\Omega, \mathbb{R}; \mathcal{F}, \mathbb{P}) \) by Doob’s inequality. Therefore we have,

\[
(I) \leq O \left( \frac{1}{T^2} \right).
\]

Then by definition,

\[
(II) = G^4.
\]

Next, using Jensen’s inequality we have,

\[
(III) \leq F^2 \mathbb{E} \left[ \left( \frac{1}{T|D|} \int_0^T \|u(t)\|dt \right)^2 \right] \leq F^2 U^2.
\]
Lastly, by Itô’s Isometry [26], together with $\mathbb{E}[\int_0^T \|u(t)\|^2 ds] < \infty$ for all $t > 0$ and $\sum_k |g_k(t)|^2 < \infty$ for all $t \in (0, \infty)$, independence of $W_k$ and orthogonality of $\{\epsilon_k\}_k$, we get for $T$ large enough,

$$(IV) = \mathbb{E} \left[ \frac{1}{|D|^2 T^2} \sum_k \int_0^T |g_k(t)(\epsilon_k, u(t))|^2 dt \right]$$

$$\leq \mathbb{E} \left[ \frac{1}{|D|^2 T^2} \int_0^T \sup_k |g_k(t)|^2 \sum_k |(\epsilon_k, u(t))|^2 dt \right]$$

$$\leq \mathbb{E} \left[ \frac{1}{|D|^2 T^2} \int_0^T \sup_k |g_k(t)|^2 \|u(t)\|^2 dt \right]$$

$$\leq \mathbb{E} \left[ \frac{1}{|D|^2 T^2} \int_0^T \left( \sum_k |g_k(t)|^2 \right) \|u(t)\|^2 dt \right]$$

$$\leq \mathbb{E} \left[ \sup_t \|u(t)\|^2 \right] \leq \frac{4G^2}{|D|^2 T^2} \mathbb{E} \left[ \sup_t \|u(t)\|^2 \right] = \mathcal{O}(1/T),$$

where the last inequality comes from Doob’s inequality once again. Now combining the above four estimates, and passing to the limit superior as $T \to \infty$, together with Corollary 5.1, we have, taking also infrimum over $T$ the above four estimates, and passing to the limit superior as $T \to \infty$,

$$\mathbb{E} [\langle \epsilon \rangle]^2 \leq \inf_{a,b,c,d>0} (a^{-2} + b^{-2} + c^{-2} + d^{-2})(b^2 G^4 + c^2 F^2 U^2) \leq 2G^4 + 2F^2 U^2.$$

Therefore we obtain the following estimate, combining with Theorem 3.2 and Theorem 4.2.

**Lemma 5.1.** Suppose Assumptions (B) and (C) hold. For a given martingale solution to (1) on $[0, \infty)$, we have

$$\mathbb{E} [\langle \epsilon \rangle^2] - (\mathbb{E} [\langle \epsilon \rangle])^2 \leq 2G^4 + 2F^2 U^2 - \left( \max \left\{ \frac{1}{2}G^2 - FU, 0 \right\} \right)^2.$$

Now we combine the above with (27) and Theorem 3.2 to have

$$\text{Var}(\langle \epsilon \rangle) \leq 2G^4 + 2 \left( \frac{U^3}{L} + \frac{1}{2} \frac{U^2 \nu}{L^2} + \frac{1}{2} \mathbb{E}[\langle \epsilon \rangle])^2 - (\mathbb{E}[\langle \epsilon \rangle])^2 \right.$$}

$$\leq 2G^4 + \frac{1}{2} \left( 2 + \frac{1}{Re} \frac{U^3}{L} \right) \mathbb{E}[\langle \epsilon \rangle])^2 - (\mathbb{E}[\langle \epsilon \rangle])^2$$

$$\leq 2G^4 + \frac{1}{2} (2 + \frac{1}{Re} U^2 L^2) + (2 + \frac{1}{Re} \frac{U^3}{L}) \mathbb{E}[\langle \epsilon \rangle] - \frac{1}{2} (\mathbb{E}[\langle \epsilon \rangle])^2$$

$$\leq 2G^4 + (2 + \frac{1}{Re}) G^2 \frac{U^3}{L} + \frac{3}{2} (2 + \frac{1}{Re})^2 U^6 \frac{1}{L^2}$$

**Theorem 5.2.** Consider Theorem 3.2. Suppose further that Assumptions (B) and (C) hold. For a given martingale solution to (1) on $[0, \infty)$, we have the variance of the time averaged energy dissipation rate,

$$\text{Var}(\langle \epsilon \rangle) := \mathbb{E}[\langle \epsilon \rangle^2] - (\mathbb{E}[\langle \epsilon \rangle])^2,$$
well-defined and satisfying the following bounds:

\[ \text{Var}(\langle \varepsilon \rangle) \leq 2G^4 + 2F^2U^2 - \left( \max \left\{ \frac{1}{2}G^2 - FU, 0 \right\} \right)^2, \]

and,

\[ \text{Var}(\langle \varepsilon \rangle) \leq 2G^4 + (2 + \frac{1}{Re})G^2 \frac{U^3}{L} + \frac{3}{2}(2 + \frac{1}{Re})^2 \frac{U^6}{L^2}. \]

**Remark 4.** If \( F = 0 \), then we have \( \text{Var}(\langle \varepsilon \rangle) \leq \frac{7}{4}G^4 \).

6. **Discussion.** Two basic factors would affect the accuracy of simulations of fluid dynamics: model error, and resolution. A priori model error can be addressed to some extent by the introduction of noise, while the spatial resolution required to achieve the expected accuracy can be gauged in terms of the dissipation rate of the energy. It is therefore important to investigate and have a more thorough understanding of the effect of noise on the dissipation rate. The effects of the randomness on solutions of the equations of motion have been studied in [33] when noise is added on a boundary of shear flow. In this work, we considered another case when noise is additive in the body force.

In particular, we proved the zeroth law of turbulence for three dimensional stochastically forced Navier-Stokes equation in the absence of the deterministic force, assuming the energy balance. First, we showed that for a weak (martingale) solution to the stochastically forced Navier–Stokes equations,

\[ \mathbb{E}[\langle \varepsilon \rangle] \leq G^2 + (2 + \frac{1}{Re}) \frac{U^3}{L}, \]

where \( G^2 \) is the total energy rate supplied by the random force, \( U \) is the root-mean-square velocity, \( L \) is the longest length scale in the applied forcing function given in Definition 2.2, and \( Re \) is the Reynolds number. The above estimate is consistent with the Kolmogorov dissipation law, recovering an upper bound as in [23] for the deterministic case. Under an additional assumption of energy equality (25), we also derived a lower bound if the energy rate given by the random force dominates the deterministic behavior of the flow in the sense that \( G^2 > 2FU \), where \( F \) is the amplitude of the deterministic force. We obtained,

\[ \frac{1}{3}G^2 - \frac{1}{3}(2 + \frac{1}{Re}) \frac{U^3}{L} \leq \mathbb{E}[\langle \varepsilon \rangle] \leq G^2 + (2 + \frac{1}{Re}) \frac{U^3}{L}. \]

In particular, under such assumptions, we obtained the zeroth law of turbulence in the absence of the deterministic force as,

\[ \mathbb{E}[\langle \varepsilon \rangle] = \frac{1}{2}G^2. \]

Besides, we also obtained variance estimates of the dissipation rate for the model. We speculate that our calculation can be generalized to global strong solutions in probability assuming small data condition, e.g. in the construction of [41], without any further assumption on regularity of the solutions.

With Remark (2) in mind, we realize the conclusion of our work can be extended to a more general diffusion term including assumptions in [28] that allows a state dependent noise term \( g(t, u)dw(t, \omega) \) satisfying more general hypotheses. However, for the sake of simplicity, we shall postpone the investigation along this direction to a future work.
Acknowledgments. The authors would like to thank the editor and anonymous referees for their helpful comments and suggestions which helped to improve the quality of the present paper. In addition, A. P. would also like to thank Andrea Giorgini for insightful discussions in the course of this work.

REFERENCES

[1] S. Albeverio, F. Flandoli and Y. Sinai, *SPDE in Hydrodynamic: Recent Progress and Prospects*, Lecture Notes in Mathematics, 1942. Springer-Verlag, Berlin; Fondazione C. I. M. E., Florence, 2008.

[2] A. Bensoussan and J. Frehse, Local solutions for stochastic Navier Stokes equations, *M2AN Math. Model. Numer. Anal.*, 34 (2000), 241–273.

[3] A. Biswas, M. S. Jolly, V. R. Martinez and E. S. Titi, Dissipation length scale estimates for turbulent flows: A wiener algebra approach, *J. Nonlinear Sci.*, 24 (2014), 441–471.

[4] A. Bensoussan and R. Temam, Équations stochastique du type Navier-Stokes, *J. Funct. Anal.*, 13 (1973), 195–222.

[5] F. H. Busse, Bounds for turbulent shear flow, *J. Fluid Mechanics*, 41 (1970), 219–240.

[6] H. Breckner, Galerkin approximation and the strong solution of the Navier-Stokes equation, *J. Appl. Math. Stochastic Anal.*, 13 (2000), 239–259.

[7] J. Bedrossian, A. Blumenthal and S. Punshon-Smith, The Batchelor spectrum of passive scalar turbulence in stochastic fluid mechanics, *Communications on Pure and Applied Mathematics*, 10.1002/cpa.22022 (2021).

[8] J. Bedrossian, M. Coti Zelati, S. Punshon-Smith and F. Weber, A sufficient condition for the Kolmogorov 4/5 law for stationary martingale solutions to the 3D Navier-Stokes equations, *Comm. Math. Phys.*, 367 (2019), 1045–1075.

[9] V. Barbu, *Stabilization of Navier-Stokes Flows*, Communications and Control Engineering Series. Springer, London, 2011.

[10] Z. Brzeźniak and S. Peszat, Infinite dimensional stochastic analysis, In *Verh. Afd. Natuurkd. I. Reeks. K. Ned. Akad. Wet.*, R. Neth. Acad. Arts Sci., Amsterdam, 52 (2000), 85–98.

[11] A. J. Chorin, Numerical study of slightly visous flow, *J. Fluid Mech.*, 57 (1973), 785–796.

[12] A. Cheskidov, P. Constantin and S. Friedlander, Energy conservation and Onsager’s conjecture for the Euler equations, *Nonlinearity*, 21 (2008), 1233–1252.

[13] A. Cheskidov and X. Luo, Energy equality for the Navier-Stokes equations in weak-in-time Onsager spaces, *Nonlinearity*, 33 (2020), 1388–1403.

[14] M. Capiński and S. Peszat, Local existence and uniqueness of strong solutions to 3-D stochastic Navier-Stokes equations, *NoDEA Nonlinear Differential Equations Appl.*, 4 (1997), 185–200.

[15] P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations, *Comm. Pure Appl. Math.*, 61 (2008), 330–345.

[16] P. Constantin and G. Iyer, A Stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary, *Ann. Appl. Probab.*, 21 (2011), 1466–1492.

[17] P. Constantin, E. Weinan and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, *Comm. Math. Phys.*, 165 (1994), 207–209.

[18] T. Caraballo, K. Liu and X. R. Mao, On stabilization of partial differential equations by noise, *Nagoya Math. J.*, 161 (2001), 155–170.

[19] A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, *Nonlinearity*, 25 (2012), 2093–2118.

[20] C. R. Doering, The 3D navier-stokes problem, *Annu. Rev. Fluid Mech.*, 41 (2009), 109–128.

[21] C. R. Doering and P. Constantin, Energy dissipation in shear driven turbulence, *Physical Review Letters*, 69 (1992), 1648.

[22] C. R. Doering and P. Constantin, Variational bounds on energy dissipation in incompressible flows. III. Convection, *Phys. Rev. E*, 53 (1996), 5957–5981.

[24] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, *Nonlinearity*, 13 (2000), 249–255.

[25] V. DeCaria, W. Layton, A. Pakzad, Y. Rong, N. Sahin and H. Zhao, On the determination of the grad-div criterion, *J. Math. Anal. Appl.*, 467 (2018), 1032–1037.
[26] L. C. Evans, *An Introduction to Stochastic Differential Equations*, American Mathematical Society, 2013.

[27] C. Foias, O. Manley, R. Rosa and R. Temam *Navier-Stokes Equations and Turbulence*, Encyclopedia of Mathematics and its Applications, 83. Cambridge University Press, Cambridge, 2001.

[28] F. Flandoli and D. Gopnik atarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, *Probab. Theory Related Fields*, **102** (1995), 367–391.

[29] F. Flandoli, M. Gubinelli, M. Hairer and M. Romito, Rigorous remarks about scaling laws in turbulent fluids, *Comm. Math. Phys.*, **278** (2008), 1–29.

[30] F. Flandoli and M. Romito, Partial regularity for the stochastic Navier-Stokes equations, *Trans. Amer. Math. Soc.*, **354** (2002), 2207–2241.

[31] K. Fellner, S. Sonner, B. Q. Tang and D. D. Thuan, Stabilisation by noise on the boundary for a Chaofe-Infante equation with dynamical boundary conditions, *Discrete Contin. Dyn. Syst. Ser. B*, **24** (2019), 4055–4078.

[32] U. Frisch, *Turbulence, The Legacy of A. N. Kolmogorov*, Cambridge University Press, Cambridge, 1995.

[33] W. L. Fan, M. Jolly and A. Pakzad Three-dimensional shear driven turbulence with noise at the boundary, *Nonlinearity*, **34** (2021), 4764–4786.

[34] L. N. Howard *Bounds on flow quantities*, *Annual Review of Fluid Mechanics*, **4** (1972), 473–494.

[35] N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, *J. Math. Phys.*, **55** (2014), 051504, 34pp.

[36] N. Glatt-Holtz and M. Ziane Strong pathwise solutions of the stochastic Navier-Stokes system, *Adv. Differential Equations*, **14** (2009), 567–600.

[37] N. Jiang and W. J. Layton, Algorithms and models for turbulence not at statistical equilibrium, *Comput. Math. Appl.*, **59** (2010), 1417–1450.

[38] A. Kwiecinska, Stabilization of partial differential equations by noise, *Stochastic Process. Appl.*, **79** (1999), 179–184.

[39] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Translated from the Russian by V. Levin; *Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on*, *Proc. Roy. Soc. London Ser. A*, **434** (1991), 9–13.

[40] R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, *SIAM J. Math. Anal.*, **35** (2004), 1250–1310.

[41] R. Mikulevicius and B. L. Rozovskii, Global $L^2$-solutions of stochastic Navier-Stokes equations, *Ann. Probab.*, **33** (2005), 137–176.
[52] W. S. Ożański and B. C. Pooley, Leray’s fundamental work on the Navier-Stokes equations: A modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”, preprint, \textit{arXiv:1708.09787}.

[53] A. Pakzad, Damping functions correct over-dissipation of the Smagorinsky model, \textit{Math. Methods Appl. Sci.}, \textbf{40} (2017), 5933–5945.

[54] A. Pakzad, Analysis of mesh effects on turbulence statistics, \textit{J. Math. Anal. Appl.}, \textbf{475} (2019), 839–860.

[55] A. Pakzad, On the long time behavior of time relaxation model of fluids, \textit{Phys. D}, \textbf{408} (2020), 132509.

[56] S. B. Pope, \textit{Turbulent Flows}, Cambridge University Press, Cambridge, 2000, xxxiv+771.

[57] M. Romito, Existence of martingale and stationary suitable weak solutions for a stochastic Navier–Stokes system, \textit{Stochastics}, \textbf{82} (2010), 327–337.

[58] K. R. Sreenivasan, An update on the energy dissipation rate in isotropic turbulence, \textit{Phys. Fluids}, \textbf{10} (1998), 528–529.

[59] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, \textit{Comm. Math. Phys.}, \textbf{55} (1977), 97–112.

[60] J. C. Vassilicos, Dissipation in turbulent flows, \textit{Annu. Rev. Fluid Mech.}, \textbf{47} (2015), 95–114.

[61] M. I. Vishik and A. V. Fursikov, \textit{Mathematical Problems of Statistical Hydrodynamics}, \textbf{9} Springer Science & Business Media, 2012.

[62] D. Wang and H. Wang, Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations, \textit{Differential Integral Equations}, \textbf{28} (2015), 1105–1154.

[63] X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization, \textit{Math. Compu.}, \textbf{79} (2010), 259–280.

[64] X. Wang, Effect of tangential derivative in the boundary layer on time averaged energy dissipation rate, \textit{Physica D: Nonlinear Phenomena}, \textbf{144} (2000), 142–153.

[65] X. Wang, Time-averaged energy dissipation rate for shear driven flows in \textit{R}^n, \textit{Phys. D}, \textbf{99} (1997), 555–563.

Received April 2021; revised September 2021; early access November 2021.

\textit{E-mail address:} yattinc@ucr.edu
\textit{E-mail address:} apakzad@iu.edu