Protein Models Comparator

Scalable Bioinformatics Computing on the Google App Engine Platform

Paweł Widera and Natalio Krasnogor

School of Computer Science, University of Nottingham, UK

Contact: natalio.krasnogor@nottingham.ac.uk

Background: The comparison of computer generated protein structural models is an important element of protein structure prediction. It has many uses including model quality evaluation, selection of the final models from a large set of candidates or optimisation of parameters of energy functions used in template-free modelling and refinement. Although many protein comparison methods are available online on numerous web servers, they are not well suited for large scale model comparison: (1) they operate with methods designed to compare actual proteins, not the models of the same protein, (2) majority of them offer only a single pairwise structural comparison and are unable to scale up to a required order of thousands of comparisons. To bridge the gap between the protein and model structure comparison we have developed the Protein Models Comparator (pm-cmp). To be able to deliver the scalability on demand and handle large comparison experiments the pm-cmp was implemented “in the cloud”.

Results: Protein Models Comparator is a scalable web application for a fast distributed comparison of protein models with RMSD, GDT_TS, TM-score and Q-score measures. It runs on the Google App Engine cloud platform and is a showcase of how the emerging PaaS (Platform as a Service) technology could be used to simplify the development of scalable bioinformatics services. The functionality of pm-cmp is accessible through API which allows a full automation of the experiment submission and results retrieval. Protein Models Comparator is a free software released under the Affero GNU Public Licence and is available with its source code at: http://www.infobiotics.org/pm-cmp

Conclusions: This article presents a new web application addressing the need for a large-scale model-specific protein structure comparison and provides an insight into the GAE (Google App Engine) platform and its usefulness in scientific computing.

Protein structure comparison seems to be most successfully applied to the functional classification of newly discovered proteins. As the evolutionary continuity between the structure and the function of proteins is strong, it is possible to infer the function of a new protein based on its structural similarity to known protein structures. This is, however, not the only application of structural comparison. There are several aspects of protein structure prediction (PSP) where robust structural comparison is very important.

The most common application is the evaluation of models. To measure the quality of a model, the predicted structure is compared against the target native structure. This type of evaluation is performed on a large scale during the CASP experiment (Critical Assessment of protein Structure Prediction), when all models submitted by different prediction groups are ranked by the similarity to the target structure. Depending on the target category, which could be either a template-based modelling (TBM) target or a free modelling (FM) target, the comparison emphasis is put either on local similarity and identification of well predicted regions or global distance between the model and the native structure [1–3].

The CASP evaluation is done only for the final models submitted by each group. These models have to be selected from a large set of computer generated candidate structures of unknown quality. The most promising models are commonly chosen with the use of clustering techniques. First, all models are compared against each other and then, split into several groups of close similarity (clusters). The most representative elements of each cluster (e.g. cluster centroids) are selected as final models for submission [4, 5].
The generation of models in the free modelling category, as well as the process of model refinement in both FM and TBM categories, requires a well designed protein energy function. As it is believed that the native structure is in a state of thermodynamic equilibrium and low free energy, the energy function is used to guide the structural search towards more native-like structures. Ideally, the energy function should have low values for models within small structural distance to the native structure, and high values for the most distinct and non-protein-like models. To ensure such properties, the parameters of energy functions are carefully optimised on a training set of models for which the real distances to the native structures are precomputed [6,9].

Model comparison vs. protein alignment

All these three aspects of prediction: evaluation of models quality, selection of the best models from a set of candidates and the optimisation of energy functions, require a significant number of structural comparisons to be made. However, this comparisons are not made between two proteins, but between two protein models that are structural variants of the same protein and are composed of the same set of atoms. Because of that, the alignment between the atoms is known a priori and is fixed, in contrast to comparison between two different proteins where the alignment of atoms usually has to be found before scoring the structural similarity.

Even though searching for optimal alignment is not necessary in model comparison, assessing their similarity is still not straightforward. Additional complexity is caused in practice by the incompleteness of models. For example, many CASP submitted models contain the atomic coordinates for just a subset of the protein sequence. Often even the native structures have several residues missing as the X-ray crystallography experiments not always locate all of them. As the model comparison measures operate only on the structures of equal length, a common set of residues have to be determined for each pair of models before the comparison is performed (see Figure 1). It should be noted that this is not an alignment in the traditional sense but just a matching procedure that selects the residues present in both structures.

Figure 1. Matching common residues between two structures. There are two common cases when number of residues differs between the structures: (A) some residues at the beginning/end of a protein sequence were not located in the crystallography experiment and (B) structure was derived from templates that did not cover the entire protein sequence. In both cases pm-cmp performs a comparison using the maximum common subset of residues.

Comparison servers

Although many protein structure comparison web services are already available online, they are not well suited for models comparison. Firstly, they do not operate on a scale needed for such a task. Commonly these methods offer a simple comparison between two structures (1:1) or in the best case, a comparison between a single structure and a set of known structures extracted from the Protein Data Bank (1:PDB). While what is really needed is the ability to compare a large number of structures either against a known native structure (1:N) or against each other (N:N).

An exception to this is the ProCKSI server [10] that uses several different comparison methods and provides 1:N and N:N comparison modes. However, it operates with methods designed to compare real proteins, not the models generated in the process of PSP, and therefore it lacks the ability to use a fixed alignment while scoring the structural similarity. Also the high computational cost of these methods makes large-scale comparison experiments difficult without a support of grid computing facilities (see our previous work on this topic [11,12]).

The only server able to perform a large-scale model-specific structural comparison we are aware of, is the infrastructure implemented to support the CASP experiments [13]. This service, however, is only available to a small group of CASP assessors for the purpose of evaluation of the predictions submitted for a current edition of CASP. It is a closed and proprietary system that is not publicly available neither as an online server nor in a form of a source code. Due to that, it cannot be freely used, replicated or adapted to the specific needs of the users. We have created the Protein Models Comparator (pm-cmp) to address these issues.

Google App Engine

We implemented pm-cmp using the Google App Engine (GAE) [14], a recently introduced web application platform designed for scalability. GAE operates as a cloud computing environment providing Platform as a Service (PaaS), and removes the need to consider physical resources as they are automatically scaled up as and when required. Any individual or a small team with enough programming skills can build a distributed and scalable application on GAE without the need to spend any resources on the setup and maintenance of the hardware infrastructure. This way, scientist freed from tedious configuration and administration tasks can focus on what they do best, the science itself.

GAE offers two runtime environments based on Python or Java. Both environments offer almost identical set of platform services, they only differ in maturity as Java environment has been introduced 12 months after first preview of the Python one. The environments are well documented and frequently updated with new features. A limited amount of GAE resources is provided for free and is enough to run a small application. This limits are consequently decreased with each release of the platform SDK (Software Development Kit) as the stability and
performance issues are ironed out. There are no set-up costs and all payments are based on the daily amount of resources (storage, bandwidth, CPU time) used above the free levels.

In the next sections we describe the overall architecture and functionality of our web application, exemplify several use cases, present the results of the performance tests, discuss the main limitations of our work and point out a few directions for the future.

Implementation

The pm-cmp application enables users to set up a comparison experiment with a chosen set of similarity measures, upload the protein structures and download the results when all comparisons are completed. The interaction between pm-cmp and the user is limited to four steps presented in Figure 2.

Application architecture

The user interface (UI) and most of the application logic were implemented in Python using the web2py framework [15]. Because web2py provides an abstraction layer for data access, this code is portable and could run outside of the GAE infrastructure with minimal changes. Thanks to the syntax brevity of the Python language and the simplicity of web2py constructs the pm-cmp application is also very easy to extend. For visualisation of the results the UI module uses Flot [16], a JavaScript plotting library.

The comparison engine was implemented in Groovy using Gaelyk [17], a small lightweight web framework designed for GAE. It runs in Java Virtual Machine (JVM) environment and interfaces with the BioShell java library [18] that implements a number of structure comparison methods. We decided to use Groovy for the ease of development and Python-like programming experience, especially that a dedicated GAE framework (Gaelyk) already existed. We did not use any of the enterprise level Java frameworks such as Spring, Stripes, Tapestry or Wicket as they are more complex (often require an sophisticated XML-based configuration) and were not fully compatible with GAE, due to specific restriction of its JVM. However, recently a number of workarounds have been introduced to make some of this frameworks usable on GAE.

The communication between the UI module and the comparison engine is done with the use of HTTP request. The request is sent when all the structures have been uploaded and the experiment is ready to start (see Figure 3). The comparison module organises all the computational work required for the experiment into small tasks. Each task, represented as HTTP request, is put into a queue and later automatically dispatched by GAE according to the defined scheduling criteria.

Distribution of tasks

The task execution on GAE is scheduled with a token bucket algorithm that has two parameters: a bucket size and a bucket refill rate. The number of tokens in the bucket limits the number of tasks that could be executed at a given time (see Figure 3). The tasks that were executed in parallel run on the separate instances of the application in the cloud. New instances are automatically created when needed and deleted after a period of inactivity which enables the application to scale dynamically to the current demand.

Our application uses tasks primarily to distribute the computations, but also for other background activities like deletion of uploaded structures or old experiments data. The computations are distributed as separate structure vs. structure comparison tasks. Each task reads the structures previously written to the datastore by the UI module,
performs the comparison and stores back the results. This procedure is slightly optimised with a use of the GAE memcache service and each time a structure is read for the second time it is served from a fast local cache instead of being fetched from the slower distributed datastore. Also to minimise the number of datastore reads all selected measures are computed together in a single task.

The comparison of two structures starts with a search for the common C_α atoms. Because the comparison methods require both structures to be equal in length, a common atomic denominator is used in the comparison. If required, the total length of the models is used as a reference for the similarity scores, so that the score of a partial match is proportionally lower than the score of a full length match. This approach makes the comparison very robust, even for models of different size (as long as they share a number of atoms).

Results

The pm-cmp application provides a clean interface to define a comparison experiment and upload the protein structures. In each experiment the user can choose which measures and what comparison mode (1:N or N:N) should be used (see Figure 5). Currently, four structure comparison measures are implemented: RMSD, GDT_TS [19], TM-score [20] and Q-score [21]. These are the main measures used in evaluation of CASP models.

Additionally, a user can choose the scale of reference for GDT_TS and TM-score. It could be the number of matching residues or the total size of the structures being compared. It changes the results only if the models are incomplete. The first option is useful when a user is interested in the similarity score regardless of the number of residues used in comparison. For example, she submits incomplete models containing only coordinates of residues predicted with high confidence and wants to know how good these fragments are alone. On the other hand, a user might want to take into account all residues in the structures being compared, not just the matching ones. For that, she would use the second option where the similarity score is scaled by the length of the target structure (in 1:N comparison mode) or by the length of the shorter structure from a pair being compared (in N:N comparison mode). This way a short fragment with a perfect match will have a lower score than a less perfect full-length match.

After setting up the experiment, the next step is the upload of models. This is done with the use of Flash to allow multiple file uploads. The user can track the progress of the upload process of each file and the number of files left in the upload queue. When the upload is finished a user can start the computations, or if needed, upload more models.

The current status of recently submitted experiments is shown on a separate page. Instead of checking the status there, a user can provide an e-mail address on experiment setup to be notified when the experiment is finished. The results of the experiment are presented in a form of interactive histograms showing for each measure the distribution of scores across the models (see Figure 6). Also a raw data file is provided for download and possible further analysis (e.g. clustering). In case of errors the user is notified by e-mail and a detailed list of problems is given. In most cases errors are caused by inconsistencies in the set of models, e.g. lack of common residues, use of different chains, mixing models of different proteins or non-conformance to the PDB format. Despite the errors, the partial results are still available and contain all successfully completed comparisons.

There are three main advantages of pm-cmp over the existing online services for protein structure comparison. First of all, it can work with multiple structures and run experiments that may require thousands of pairwise com-
Application Programming Interface (API)

As Protein Models Comparator is built in the REST (Representational State Transfer) architecture, it is easy to access programmatically. It uses standard HTTP methods (e.g., GET, POST, DELETE) to provide services and communicates back the HTTP response codes (e.g., 200 - OK, 404 - Not Found) along with the content. By using the RESTful API summarised in Table 1, it is possible to set up an experiment, upload the models, start the computations, check the experiment status and download the results file automatically. We provide `pm-cmp-bot.py`, an example of a Python script that uses this API to automate the experiment submission and results retrieval. As we wanted to keep the script simple and readable, the handling of connection problems is limited to the most I/O intensive upload part and in general the script does not retry on error, verify the response, etc. Despite of that, it is a fully functional tool and it was used in several tests described in the next section.

URL	Method	Parameters	Return
/experiments/setup	POST	label - string	303 Redirect
		measures - subset of [RSMD, GDT.TS, TM-score, Q-score]	
		mode - first against all or all against all	
		scale - match length or total length	
/experiments/structures/[id]	POST	file - multipart/form-data encoded file	HTML link to the uploaded file
/experiments/start/[id]	GET	-	200 OK
/experiments/status/[id]	GET	-	status in plain text
/experiments/download/[id]	GET	-	results file

Performance tests

To examine the performance of the proposed architecture we ran a 48h test in which a group of beta testers ran multiple experiments in parallel at different times of a day. As a benchmark we used the models generated by I-TASSER [22], one of the top prediction methods in the last three editions of CASP.

From each set containing every 10th structure from the I-TASSER simulation timeline we selected the top *n* models, i.e. the closest to the native by means of RMSD. The number of models was chosen in relation to the protein length to obtain one small, two medium and one large size experiment as shown in Table 2. The smallest experiment was four times smaller the the large one and two times smaller than the medium one.

protein	1b72A	1kviA	1egxA	1fo5A
total size	(350x49)	(500x68)	(300x115)	(800x85)
Table 2. Four sets of protein models used in the performance benchmark (available for download on the pm-cmp website).				

We observed a very consistent behaviour of the application, with a relative absolute median deviation of the total experiment processing time smaller than 10%. The values reported in Table 3 show the statistics for 15 runs per each of the four sets of models. The task queue rate was set to 4/s with a bucket size of 10. Whenever execution of two experiments overlapped, we accounted for this overlap by subtracting the waiting time from the execution time, so that the time spent in a queue while the other experiment was still running was not counted. Using GAE 1.2.7 we were able to run about 30 experiments per day staying within the free CPU quota.

protein	models	length	processing time[s]			
	median	mad*	min	max		
1b72A	350	49	178	17	108	272
1egxA	300	115	195	17	125	274
1kviA	500	68	236	16	203	406
1fo5A	800	85	369	33	307	459

*) mad (median absolute deviation) = median(|x – median(X)|)

Table 3. Results of the performance benchmark.

Figure 6. Example of distribution plots. For a quick visual assessment of models diversity the results of comparison are additionally presented as histograms of the similarity/distance values.
To test the scalability of pm-cmp we ran additional two large experiments with approximately 2500 comparisons each (using GAE 1.3.8). We used the models generated by I-TASSER again: 2500 models for [PDB:1b4hA] (every 5th structure from the simulation timeline) and 70 models for [PDB:2rebA2] (top models from every 10th structure sample set). The results of 11 runs per set are summarised in Table 4. All runs were separated by a 15 minutes inactivity time, to allow GAE to bring down all active instances. Thus each run activated the application instances from scratch, instead of reusing instances activated by the previous run. Because the experiments did not overlap and due to the use of more mature version of the GAE platform, the relative absolute median deviation was much lower than in the first performance benchmark and did not exceed 3.5%.

experiment	models	length	processing time[s]
1b4hA (1:N 2501 cmp)	2500	71	838.89 25.00 746.00 903.00
2reb_2 (N:N 2415 cmp)	70	60	854.00 29.00 731.00 958.00

Table 4. Performance for large number of comparisons.

To relate the performance of our application to the performance of the comparison engine executed locally we conducted another test. This time we followed a typical CASP scenario and we evaluated 308 server submitted models for the CASP9 target T0618 ([PDB:3nrhA]). The comparison against the target structure was performed with the use of the pm-cmp-bot and two times were measured: experiment execution time (as in previous test) and the total time used by pm-cmp-bot (including upload/download times). The statistics of 11 runs are reported in Table 5. As the experiments were performed in 1:N mode the file upload process took a substantial 30% of the total time. The local execution of the comparison engine on a machine with Intel P8400 2.26GHz (2 core CPU) was almost 5 times slower than the execution in the cloud. We consider this to be a significant speed up, especially having in mind the conservative setting of the task queue rate (4/s while GAE allows a maximum of 100/s). Our preliminary experiments with GAE 1.4.3 showed that the speedup possible with the queue rate of 100 tasks per second is at least an order of magnitude larger.

platform	time	processing time[s]
GAE	total	135 4 127 146
GAE	execution	89 2 86 97
local	execution	413 8 394 422

Table 5. Performance compared to local execution.

Discussion

The pm-cmp application is a convenient tool performing a comparison of a set of protein models against a target structure (e.g. in model quality assessment or optimisation of energy functions for PSP) or against each other (e.g. in selection of the most frequently occurring structures). It is also an interesting showcase of a scalable scientific computing on the Google App Engine platform. To provide more inside on the usefulness of GAE in bioinformatics applications in general, we discuss below the main limitations of our approach, possible workarounds and future work.

Response time limit

A critical issue in implementing an application working on GAE was to keep the response time to each HTTP request below the 30s limit. This is why the division of work into small tasks and extensive use of queues was required. However, this might be no longer critical in the recent releases of GAE 1.4.x which allow the background tasks to run 20 times longer. In our application, where a single pairwise comparison with all methods never took longer than 10s, the task execution time was never an issue. The bottleneck was the task distribution routine. As it was not possible to read more than 1000 entities from a datastore within the 30s time limit, our application was not able to scale up above the 1000 comparisons per experiment. However, GAE 1.3.1 introduced the mechanism of cursors to tackle this very problem. That is, when a datastore query is performed its progress can be stored in a cursor and resumed later. Our code distribution routine simply call itself (by adding self to the task queue) just before the time limit is reached and continue the processing in the next cycle. This way our application could scale up to thousands of models. However, as it currently operates within the free CPU quota limit, we do not allow very large experiments online yet. For practical reasons we set the limit to 5000 comparisons. This allows us to divide the daily CPU limit between several smaller experiments, instead of having it all consumed by a single large experiment. In the future we would like to monitor the CPU usage and adjust the size of the experiment with respect to the amount of the resources left each day.

Native code execution

Both environments available on GAE are build on interpreted languages. This is not an issue in case of a standard web applications, however in scientific computing the efficiency of the code execution is very important (especially in the context of response time limits mentioned above). A common practice of binding these languages with fast native modules written in C/C++ is unfortunately not an option on GAE. No arbitrary native code can be run on the GAE platform, only the pure Python/Java modules. Although Google extends the number of native modules available on GAE it is rather unlikely that we will see anytime soon modules for fast numeric computation such as NumPy. For that reason we implemented the comparison engine on the Java Virtual Machine, instead of using Python.

Bridging Python and Java

Initially we wanted to run our application as a single module written in Jython (implementation of Python in Java) that runs inside a Java Servlet and then bridge it with...
web2py framework to combine Python’s ease of use with the numerical speed of the JVM. However, we found that this is not possible without mapping all GAE Python API calls made by web2py framework to its Java API correspondents. As the amount of work needed to do that exceeded the time we had to work on the project we attempted to join these two worlds differently. We decided to implement it as two separate applications, each in its own environment, but sharing the same datastore. This was not possible as each GAE application can access only its own datastore. We had to resort to the mechanism of versions. It was designed to test a new version of an application while the old one is still running. Each version is independent from the others in terms of the used environment and they all share the same datastore. This might be considered to be a hack and not a very elegant solution but it worked exactly as intended; we end up with two separate modules accessing the same data.

Handling large files

There is a hard 1MB limit on the size of a datastore entity. The dedicated Blobstore service introduced in GAE 1.3.0 makes the upload of large files possible but as it was considered experimental and did not provide at first an API to read the blob content, we decided not to use it. As a consequence we could not use a simple approach of uploading all experiment data in a single compressed file. Instead, we decided to upload the files one by one directly to the datastore, since a single protein structure file is usually much smaller than 1MB. To make the upload process easy and capable of handling hundreds of files, we used the Uploadify library [23] which combines JavaScript and Flash to provide a multi-files upload and progress tracking. Although since GAE 1.3.5 it is now possible to read the content of a blob, the multiple file decompression still remains a complex issue because GAE lacks a direct access to the file system. It would be interesting to investigate in the future if a task cycling technique (used in our distribution routine) could be used to tackle this problem.

Vendor lock-in

Although the GAE code remains proprietary, the software development kit (SDK) required to run the GAE stack locally is a free software licensed under the Apache Licence 2.0. Information contained in the SDK code allowed the creation of two alternative free software implementations of the GAE platform: AppScale [24] and TyphoonAE [25]. The risk of vendor lock-in is therefore minimised as the same application code could be run outside of the Google’s platform if needed.

Comparison to other cloud platforms

GAE provides an infrastructure that automates much of the difficulties related to creating scalable web applications and is best-suited for small and medium-sized applications. Applications that need high performance computing, access to relational database or direct access to operating system primitives might be better suited for more generic cloud computing frameworks.

There are two major competitors to the Google platform. Microsoft’s Azure Services are based on the .NET framework and provide a less constrained environment, but require to write more low level code and do not guarantee scalability. Amazon Web Services are a collection of low-level tools that provide Infrastructure as a Service (IaaS), that is storage and hardware. Users can assign a web application to as many computing units (instances of virtual machines) as needed. They also receive complete control over the machines, at the cost of requiring maintenance and administration. Similarly to Microsoft’s cloud, it does not provide automated scalability, so it is clearly a trade-off between access at a lower and unconstrained level and the scalability that has to be implemented by the user. Additionally, both these platforms are fully paid services and do not offer free/start-up resources.

Conclusions

Protein Models Comparator is filling the gap between commonly offered online simple 1:1 protein comparison and the non-public proprietary CASP large-scale evaluation infrastructure. It has been implemented using Google App Engine platform that offers automatic scalability on the data storage and the task execution level.

In addition to a friendly user web interface, our service is accessible through REST-like API that allows full automation of the experiments (we provide an example script for remote access). Protein Models Comparator is a free software, which means anyone can study and learn from its source code as well as extend it with his own modifications or even set up clones of the application either on GAE or using one of the alternative platforms such as AppScale or TypoonAE.

Although GAE is a great platform for prototyping as it eliminates the need to set up and maintain the hardware, provides the resources on demand and automatic scalability, the task execution limit makes it suitable only for highly parallel computations (i.e. the ones that could be split into small independent chunks of work). Also a lack of direct disk access and inability to execute the native code restricts the possible uses of GAE. However, looking back at the history of changes it seems likely that in the future GAE platform will become less and less restricted. For example, the long running background tasks had been on the top of the GAE project roadmap [26] and recently the task execution limit was raised in GAE 1.4.x making the platform more suitable for scientific computations.

Acknowledgements

We would like to thank the fellow researchers who kindly devoted their time to testing the pm-cmp: E. Glaab, J. Blakes, J. Smaldon, J. Chaplin, M. Franco, J. Bacardit, A.A. Shah, J. Twycross and C. García-Martínez.

This work was supported by the Engineering and Physical Sciences Research Council [EP/D061571/1]; and the Biotechnology and Biological Sciences Research Council [BB/F01855X/1].

P. Widera and N. Krasnogor • Protein Models Comparator
References

[1] Y. Zhang, “Progress and challenges in protein structure prediction,” Current Opinion in Structural Biology, vol. 18, pp. 342–348, Jun 2008. doi:10.1016/j.sbi.2008.02.004

[2] D. Cazzetto, A. Giorgetti, D. Raimondo, and A. Tramontano, “The Evaluation of Protein Structure Prediction Results,” Molecular Biotechnology, vol. 39, no. 1, pp. 1–8, 2008. doi:10.1007/s12033-007-9023-6

[3] A. Kryshtafovych and K. Fidelis, “Protein structure prediction and model quality assessment,” Drug Discovery Today, vol. 14, pp. 386–393, Apr. 2009. doi:10.1016/j.drudis.2008.11.010

[4] D. Shortle, K. T. Simons, and D. Baker, “Clustering of low-energy conformations near the native structures of small proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 11158–11162, Sept. 1998 [cited 2010-09-21].

[5] Y. Zhang and J. Skolnick, “SPICKER: A clustering approach to identify near-native protein folds,” J. Comput. Chem., vol. 29, no. 6, pp. 865–871, 2004. doi:10.1002/jcc.20031

[6] Y. Zhang, A. Kolinski, and J. Skolnick, “TOUCHSTONE II: A New Approach to Ab Initio Protein Structure Prediction,” Biophys. J., vol. 85, pp. 1145–1164, Aug. 2003. doi:10.1016/S0006-3495(03)74551-2

[7] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker, “Protein Structure Prediction Using Rosetta,” in Numerical Computer Methods, Part D (L. Brand and M. L. Johnson, eds.), vol. Volume 383 of Methods in Enzymology, pp. 66–93, Academic Press, Jan. 2004. doi:10.1016/S0076-6879(04)83004-0

[8] P. Widera, J. Garibaldi, and N. Krasnogor, “GP challenge: evolving energy function for protein structure prediction,” Genetic Programming and Evolvable Machines, vol. 11, pp. 61–88, March 2010. doi:10.1007/s10710-009-9087-0

[9] J. Zhang and Y. Zhang, “A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction,” PLoS ONE, vol. 5, p. e15386, Oct. 2010. doi:10.1371/journal.pone.0015386

[10] D. Barthel, J. D. Hirst, J. Blazewicz, and N. Krasnogor, “ProCKSI: A Decision Support System for Protein (Structure) Comparison, Knowledge, Similarity and Information,” BMC Bioinformatics, vol. 8, no. 1, p. 416, 2007. doi:10.1186/1471-2105-8-416

[11] G. Folino, A. Shah, and N. Krasnogor, “On the storage, management and analysis of (multi) similarity for large scale protein structure datasets in the grid,” in 22nd IEEE International Symposium on Computer-Based Medical Systems (CBMS 2009), pp. 1–8, aug 2009. doi:10.1109/CBMS.2009.5255328

[12] A. Shah, G. Folino, and N. Krasnogor, “Toward High-Throughput, Multicriteria Protein-Structure Comparison and Analysis,” IEEE Transactions on NanoBioscience, vol. 9, pp. 144–155, jun 2010. doi:10.1109/TNBS.2010.2043851

[13] A. Kryshtafovych, O. Krysko, P. Daniluk, Z. Dmytriv, and K. Fidelis, “Protein structure prediction center in CASP8,” Proteins, vol. 77, no. 59, pp. 5–9, 2009. doi:10.1002/prot.22517

[14] “Google App Engine,” [online, cited 2009-11-06].

[15] M. D. Pierro, “web2py web framework,” [online, cited 2009-11-06].

[16] O. Laursen, “Flot - Javascript plotting library for jQuery,” [online, cited 2011-02-18].

[17] M. Overdijk and G. Laforge, “Gaelyk - lightweight Groovy toolkit for Google App Engine,” [online, cited 2009-11-06].

[18] “Google App Engine,” [online, cited 2009-11-06].

[19] A. Zemla, “LGA: a method for finding 3D similarities in protein structures,” Nucl. Acids Res., vol. 31, no. 13, pp. 3370–3374, 2003. doi:10.1093/nar/gkg571

[20] Y. Zhang and J. Skolnick, “Scoring function for automated assessment of protein structure template quality,” Journal of Computational Chemistry, vol. 23, no. 1, pp. 138–146, 2002. doi:10.1002/jcc.10182

[21] S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small proteins by iterative TASSER simulations,” BMC Biol, vol. 5, p. 17, May 2007. doi:10.1186/1741-7007-5-17

[22] R. Garcia and T. Nickels, “[Uploadify - a multiple file upload plugin for jQuery],” [online, cited 2009-11-06].

[23] C. Krintz, C. Bunch, N. Chohan, J. Chohan, N. Garg, M. Hubert, J. Kupferman, P. Lakhina, Y. Li, G. Mehta, N. Mostafa, Y. Nomura, and S. H. Park, “AppScale - open source implementation of the Google App Engine Engine,” [online, cited 2010-09-21].

[24] T. Rodaeel and F. Glauner, “TyphoonAE - environment to run Google App Engine (Python) applications,” [online, cited 2010-09-21].