Decoding the Human Genetic and Immunological Basis of COVID-19 mRNA Vaccine-Induced Myocarditis

Alexandre Bolze1 · Trine H. Mogensen2,3 · Shen-Ying Zhang4,5,6 · Laurent Abel4,5,6 · Evangelos Andreakos7 · Lisa M. Arkin8 · Alessandro Borghesi9 · Petter Brodin10 · David Hagin11 · Giuseppe Novelli12 · Satoshi Okada13 · Jonny Peter14 · Laurent Renia15,16 · Karine Severe17 · Pierre Tiberghien18,19 · Donald C. Vinh20,21 · COVID human genetic effort · Elizabeth T. Cirulli1 · Jean-Laurent Casanova4,5,6,22,23 · Elena W. Y. Hsieh24,25

More than 10 billion doses of COVID-19 vaccines have been administered worldwide in the span of 18 months, providing an unprecedented opportunity to study and understand immunological responses and clinical reactions to vaccines. While severe adverse reactions to live-attenuated viral or bacterial vaccines have been successfully deciphered since the 1950s, with the discovery of a wide range of underlying inborn errors of immunity [1, 2], there is currently no...
molecular, cellular, and immunological explanation for life-threatening reactions to any other type of vaccine. COVID-19 mRNA vaccines are very effective at preventing hypoxemic COVID-19 pneumonia. For example, their efficacy for preventing invasive mechanical ventilation and in-hospital death has been estimated at 90% (95% CI = 88–91%) [3]. COVID-19 mRNA vaccines are also well tolerated by most people, with either no side effects or mild local/systemic reactions, such as pain at the injection site, fever, or chills in the days following vaccination [4]. However, rare but serious adverse events have been observed, including anaphylaxis, myocarditis, Guillain-Barré syndrome, transverse myelitis, Bell’s palsy, and multisystem inflammatory syndrome [4–7]. These adverse events have a combined prevalence of about 90 per million doses administered [4]. It is unknown whether they are triggered by the adjuvant (lipid nanoparticles for the mRNA vaccines), the vaccine antigen (the perfusion-stabilized spike protein translated by the human cells), the core components of the vaccine (the nucleoside-modified mRNA), or a combination thereof. Some possible mechanisms have been suggested [8–10], but the underlying immunopathology and, hence, the risk factors predisposing a minority of vaccinees to experience any of these severe reactions remain unknown.

Myocarditis (with or without pericarditis) following vaccination with COVID-19 mRNA vaccines is the serious adverse event most closely monitored by national agencies and vaccine producers [11]. Myocarditis is an inflammation of the heart muscle. Before the emergence of COVID-19, the estimated global incidence of acute myocarditis, regardless of its etiology, was 1–10 cases per 100,000 individuals per year [8]. Vaccine-induced myocarditis typically presents as chest pain within 10 days of vaccination. The diagnosis is confirmed by an abnormal electrocardiogram and echocardiogram and/or magnetic resonance imaging results and the presence of high troponin levels in the blood. Vaccine-induced myocarditis is usually milder than acute myocarditis following viral infection, with only a few deaths reported (overall survival rate of >99%), versus an estimated 4–5% risk of death or need for heart transplantation in the first year after viral-induced myocarditis [8]. In most cases, vaccine-induced myocarditis is treated with nonsteroidal anti-inflammatory drugs and resolves within a few days [11]. Studies around the world have shown that the frequency of myocarditis is approximately 1 per 100,000 doses of COVID-19 mRNA vaccines [12–14]. The risk is higher after the second dose, when the second dose is given less than six weeks after the first dose [15]. It is more frequent in male subjects between the ages of 12 and 30 years [12–14]. Another potential reported risk factor is intense physical activity just before or after vaccination, although it is harder to assess the risk of vaccine-induced myocarditis posed by exercise quantitatively. However, these risk factors alone cannot account for the rarity of these cases or shed light on the mechanism involved.

In this article of JoCI, Nishibayashi et al. report the first case of vaccine-induced myocarditis in monochorionic diamniotic twins [5]. The 13-year-old male twins developed myocarditis one day after receiving their second dose of the Pfizer-BioNTech BNT162b2 vaccine. The authors also noted that only one other vaccine-induced case was diagnosed at their hospital, which showed that the overall frequency of vaccine-induced myocarditis diagnosed at their hospital was similar to what has been observed around the world [5]. This case report suggests the hypothesis that only a very small fraction of vaccinated individuals develop post-vaccine myocarditis because these individuals carry rare germline genetic variants predisposing to myocarditis. Three additional arguments support the formulation of this hypothesis: (i) Rare inborn errors of immunity have been associated with rare adverse events following vaccination with live-attenuated vaccines [1]. Such inborn errors are the most frequent etiology of adverse events following administration of the bacille Calmette-Guérin (BCG) or oral poliovirus vaccines [1]. (ii) Rare variants of genes encoding sarcomeric proteins and associated with cardiomyopathy have been reported to increase the risk of acute myocarditis after viral infection [16, 17]. (iii) Human leukocyte antigen (HLA) alleles have been associated with adverse events following the oral administration or injection of drugs or vaccines (including inactivated or recombinant vaccines) [18–21]. For example, HLA-C*07:01 has been shown to be associated with clozapine-induced myocarditis in patients with schizophrenia [22]. Another HLA class I allele, HLA-A*03:01, has been associated with a higher frequency of side effects, such as fever and chills, following the administration of COVID-19 mRNA vaccines [23].

These previous studies provide a strong rationale for a genetic study. Importantly, testing this hypothesis requires access to hundreds of vaccine-induced myocarditis patients and COVID-19-induced myocarditis patients of diverse ethnicities, together with healthy controls matched for ethnicity, age, and sex. Because of the rarity of these serious adverse events following mRNA vaccination, we think that the problem is best tackled by an international consortium. We initially launched the COVID Human Genetic Effort to decipher the genetic and immunological basis of the various clinical manifestations of SARS-CoV-2 infection, starting with critical COVID-19 pneumonia (www.covidhge.com). We have deciphered the pathogenesis of this condition in a significant proportion of unvaccinated and vaccinated individuals carrying inborn errors of type I interferon (IFN) immunity or autoantibodies against type I IFNs [24, 25]. We present here our efforts to leverage and expand our existing COVID HGE infrastructure to investigate the
genetic and immunological determinants of myocarditis following COVID-19 vaccination.

We will test this hypothesis by enrolling patients from around the world via our network of clinicians. We will focus on myocarditis cases that occurred within 10 days of the first, second, or booster dose of the Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273 vaccines. Given the strong enrichment of vaccine-induced myocarditis relative to viral-induced myocarditis in the population of individuals under the age of 40 years, we will prioritize the recruitment of patients in this age group. The healthy age- and sex-matched controls will be individuals who have received at least two doses of COVID-19 mRNA vaccines who experienced no adverse event or serious side effect. We will sequence the exome or full genome of cases and controls, making it possible to perform two types of genetic analyses (Fig. 1). We will first perform unbiased rare-variant gene-collapsing analyses. For each gene, we will compare the number of cases carrying one or more qualifying variants with the number of controls carrying these variants. We will use a range of variant filters based on the predicted functional impact of the variants, and the allele frequency of the variants in the population, and we will test dominant, co-dominant, and recessive models. Candidate genetic variants will be functionally tested and validated in relevant cell line systems and in cells from the patients (such as leukocytes, or human induced pluripotent stem cell-derived cardiomyocytes) where possible [16]. We will also perform an HLA-wide association study. For each HLA allele, we will test for significant enrichment in cases relative to controls. To decipher the underlying mechanism at the molecular and cellular level, we will begin by searching for the immunological basis of HLA allele associations. For example, HLA class I molecules can interact with many receptors, including T cell receptors on CD8+ T cells, inhibitory and activating killer immunoglobulin-like receptors (KIRs) on natural killer cells and some T cells, and leukocyte immunoglobulin-like receptors on myeloid cells.

With this approach, we intend to identify genes and alleles predisposing individuals to vaccine-induced myocarditis. Even if our hypothesis is validated in only a few individuals, it may point to mechanismically related causes in other patients, such as auto-antibodies, as exemplified by our study of critical COVID-19 pneumonia [24]. It may also

Genetic predisposition	Immunological trigger	Phenotype	Plan to test the genetic hypothesis
Rare inborn errors of immunity (Pöyhönen et al.)	Live-attenuated vaccines	Disseminated and severe infections	Experiment 1: rare variant gene-based collapsing tests
Rare coding variants in sarcomere-encoding genes (Belkaya et al.)	Viral infection	Myocarditis	Identifying rare and damaging variants
HLA-C*07:01 (Lacaze et al.)	Clozapine	Myocarditis	Collapsing
HLA-A*03:01 (Bolze et al.)	COVID-19 mRNA vaccines	Fever and chills	Test association

Fig. 1 Decoding the human genetic and immunological basis of COVID-19 mRNA vaccine-induced myocarditis. Left panel: examples of germline genetic variants conferring a predisposition to adverse events following a spectrum of immunological triggers. Right panel: schematic diagram of the two main genetic analyses that will be performed. Cases are patients with COVID-19 mRNA vaccine-induced myocarditis. Created with BioRender.com
help increase our understanding of the pathogenesis of acute myocarditis in general. One advantage of studying vaccine-induced myocarditis rather than acute myocarditis generally is that the immunological trigger (antigen and exposure timeline) is known with certainty and is the same for all cases. This increases the likelihood of detecting genetic homogeneity. It is also the first time that mRNA vaccines have been administered so widely, providing the first opportunity to study their rare adverse events, the pathogenesis of which may be common to other yet-to-be-developed mRNA vaccines.

The success of a genetic study to understand the cause of mRNA vaccine-induced myocarditis or other rare adverse events is dependent on the patients and families who consent to participate. The article by Nishibayashi et al. in JoCI highlights the importance of reporting cases of rare and atypical responses to mRNA vaccines, particularly familial cases such as monochorionic diamniotic twins [5]. The authors also discussed the necessity to create an international registry of patients with vaccine-induced myocarditis [5]. We hope that the article from Nishibayashi et al. and this commentary will inspire other teams of clinicians and scientists around the world to publish case reports of mRNA vaccine-induced myocarditis and refer their patients to an international consortium such as the COVID Human Genetic Effort to disentangle this mystery.

Consortium COVID human genetic effort

Alessandro Aiuti57,6, Saleh Al-Mulhem27, Fahd Al-Mulla28, Ali Amara29, Mark S. Anderson30, Andrés A. Arias31,32, Hagit Baris Feldman33, Paul Bastard34,6, Alexandre Belot33, Catherine M. Biggs34, Dusan Bogunovic35, Ahmed A. Boushifa36, Manish J. Butte37,7, John Christodoulou38, Aurelie Cobot5,6, Roger Colobran39, Antonio Condino-Neto40, Stefan N. Constantinescu41, Clifton L. Dalgaard42, Xavier Duval43, Philippe Elloy44, Sara Espinosa-Padilla45, Jacques Fellay46, Carlos Flores47, José Luis Franco31, Antoine Froidure48, Guy Gorochov49, Peter K. Gregersen50, Filomena Haerynck31, Rabih Halwani5,6, Lennart Hammarström52, Yuval Itan46, Emmanuelme Jouanguy5,6, Timokratis Karamitros53,54, Yu-Lung Lau55, Davood Mansouri56, France Mentre57, Isabelle Meyts58, Kristina Mironski59, Tomohiro Morito50, Lisa F.P. Ng10,15,16, Antonio Novelli60, Cliona O’Farrelly61, Keisuke Okamoto62, Tayfun Ozcelik63, Qiang Pan-Hammerström5,6, Rebeca Perez de Diego64, Jordi Perez-Tur65, David S. Perlin66, Graziano Pese80,69,98, Carolina Prando70,98, Aurora Pujol71, Lluis Quintana-Murci72, Igor Resnick73, Carlos Rodriguez-Gallego74, Vanessa Sancho-Shimizu75, Anna Sediva76, Mikko R.J. Seppänen77, Mohammed Shoresho78, Anna Shcherbina79, Ondrej Slaby80, Pere Soler-Palacín81, Vassili Soumelis82, Andrés N. Spaan83, Ivan Tancevski84, Stuart G. Tangye85, Ahmad Abu Tayoun86, Sehime Gülsün Temel87, Christian Thorball88, Sophie Trouillet-Assam88, Stuart E. Turvey89, K M Furkan Uddin90, Diederik van de Beek91, Horst von Bernuth92, Qian Zhang9

26San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, and Vita Salute San Raffaele University, Milan, Italy

27Immunology Research Lab, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia

28Dasman Diabetes Institute, Department of Genetics and Bioinformatics, Dasman, Kuwait

29Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR 7212, Université de Paris, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France

30Diabetes Center, University of California San Francisco, San Francisco, CA, USA

31Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antoquia, Medellín, Colombia; School of Microbiology, University of Antioquia UdeA, Medellín, Colombia

32The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

33Pediatric Nephrology, Rheumatology, Dermatology, HFME, Hospitals Civils de Lyon, National Referee Centre RAISE, and INSERM U1111, Université de Lyon, Lyon, France

34Department of Pediatrics, BC Children’s and St. Paul’s Hospitals, University of British Columbia, Vancouver, BC, Canada.

35Icahn School of Medicine at Mount Sinai, New York, NY, USA

36Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco

37Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA

38Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia

39Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Catalonia, Spain

40Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

41de Duve Institute and Ludwig Cancer Research, Brussels, Belgium

42Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

43Université de Paris, IAMÉ UMR-S 1137, INSERM, Paris, France; INSERM CIC 1425, Paris, France

44Hôpital Bichat, Paris, France

45Instituto Nacional de Pediatría (National Institute of Pediatrics), Mexico City, Mexico

46School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

47Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid; Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain

48Pulmonology Department, Cliniques Universitaires Saint-Luc ; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.

49Sorbonne Université, Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI PARIS), Assistance Publique-Hôpitaux de Paris (AP-HP) Hôpital Pitié-Salpêtrière, Paris, France

50Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA

51Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPFG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium

52Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates

53Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Bioinformatics and Applied Genomics Unit, Helenic Pasteur Institute, Athens, Greece

Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong, China

Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRTLD), Masih Daneshvari Hospital, Shahid Beheshti, University of Medical Sciences, Tehran, Iran

Department of Pediatrics, University Hospitals Leuven; KU Leuven, Department of Microbiology, Immunology and Transplantation; Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium

University Clinic for Children’s Diseases, Department of Pediatric Immunology, Medical Faculty, University “St. Cyril and Methodij” Skopje, North Macedonia

Tokyo Medical & Dental University Hospital, Tokyo, Japan

Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy

Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland

Tokyo Medical and Dental University, Tokyo, Japan

Department of Molecular Biology and Genetics, Bilkent University, Bilkent—Ankara, Turkey

Institute of Biomedical Research of IdiPAZ, University Hospital “La Paz”, Madrid, Spain

Institut de Biomedicina de València-CSIC, CIBERNED, Unitat Mixta de Neurologia i Genètica, IIS La Fe, Valencia, Spain

Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA

Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari, Italy

IIBB-CSIC, IDIBAPS, Barcelona, Spain

Facultades Pequeno Príncipe, Instituto de Pesquisa Pequeno Príncipe, Curitiba, Brazil

Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitala de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain

Human Evolutionary Genetics Unit, CNRS U2000, Institut Pasteur, Paris, France; Human Genomics and Evolution, Collège de France, Paris, France

University Hospital St. Marina, Varna, Bulgaria

Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain

Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK

Department of Immunology, Second Faculty of Medicine Charles University, V Uvalu, University Hospital in Motol, Prague, Czech Republic

Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Specialized Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran; Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium

Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

Central European Institute of Technology & Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic

Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain

Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, Paris, France; AP-HP, Hôpital Saint-Louis, Laboratoire d’Immunologie, Paris, France

Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands

Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria

Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia

Al Jalila Children’s Hospital, Dubai, UAE

Departments of Medical Genetics & Histology and Embryology, Faculty of Medicine; Department of Translational Medicine, Health Sciences Institute, Bursa Uludağ University, Bursa, Turkey

Hospices Civils de Lyon, Lyon, France; International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France

BC Children’s Hospital, The University of British Columbia, Vancouver, Canada

Centre for Precision Therapeutics, Genetics & Genomic Medicine Centre, NeuroGen Children’s Healthcare and Lecturer, Holy Family Red Crescent Medical College Dhaka, Bangladesh

Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Department of Pediatric Pneumology, Immunology and Intensive Care, Charité Universitätsmedizin, Berlin University Hospital Center, Berlin, Germany; Labor Berlin GmbH, Department of Immunology, Berlin, Germany; Berlin Institutes of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany

Author Contribution All authors wrote and reviewed the manuscript.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest A. Bolze and E.T.C. are employees of Helix. The other authors declare no competing interests.

References

1. Pihlönen L, Bustamante J, Casanova J-L, Jouanguy E, Zhang Q. Life-threatening infections due to live-attenuated vaccines: early manifestations of inborn errors of immunity. J Clin Immunol. 2019;39:376–90.
Gothe F, Howarth S, Duncan CJ, Hambleton S. Monogenic susceptibility to live viral vaccines. Curr Opin Immunol. 2021;72:167–75.

Tenforde MW, Self WH, Gaglani M, Ginde AA, Douin DJ, Talbot HK, et al. Effectiveness of mRNA vaccination in preventing COVID-19-associated invasive mechanical ventilation and death - United States, March 2021-January 2022. MMWR Morb Mortal Wkly Rep. 2022;71:459–65.

Rosenblum HG, Gee J, Liu R, Marquez PL, Zhang B, Strid P, et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: an observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect Dis. 2022;30:802–12. Available from: https://doi.org/10.1016/s1473-3099(22)00054-8.

Nishibayashi H, Kishimoto S, Sekiguchi K, Okada S, Ibara K. Myocarditis in 13-year-old monochorionic diamniotic twins after COVID-19 vaccination. J Clin Immunol. 2022. Available from: https://10.1007/s10875-022-01360-z.

Toledo-Salinas C, Scheffler-Mendoza SC, Castano-Jaramillo LM, Ortega-Martell JA, Del Rio-Navarro BE, Santibañez-Copado AM, et al. Anaphylaxis to SARS-CoV-2 vaccines in the setting of a nationwide passive epidemiological surveillance program. J Clin Immunol. 2022. Available from: https://doi.org/10.1007/s10875-022-01350-1.

Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021;326:1390–9.

Heymans S, Cooper LT. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol. 2022;19:75–7.

Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022. Available from: https://doi.org/10.1016/j.trendsmolmed.2022.04.007.

Ko HL, Zhuo N, Chang ZW, Santosia A, Kalimuddin S, Lim XR, et al. In vitro vaccine challenge of PBMCs from BNT162b2 anaphylaxis patients reveals HSP90α-NOD2-NLRP3 nexus. Allergy. 2022. Available from: https://doi.org/10.1111/all.15503.

Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol. 2022;30:802–12. Available from: https://doi.org/10.1016/j.nrrcv.2021.100059-5.

Le Vu S, Bertrand M, Jabagi M-J, Botton J, Weill A, Dray-Spira R, et al. Risk of myocarditis after covid-19 mRNA vaccination: impact of booster dose and dosing interval. bioRxiv. 2022. Available from: https://www.medrxiv.org/content/10.1101/2022.07.31.22278064v1.

Belkaya S, Kontorovich AR, Byun M, Mulero-Navarro S, Bajolle F, Cobat A, et al. Autosomal recessive cardiomyopathy presenting as acute myocarditis. J Am Coll Cardiol. 2017;69:1653–65.

Kontorovich AR, Patel N, Moscati A, Richter F, Peter I, Purejav E, et al. Myopathic cardiac genotypes increase risk for myocarditis. IACC Basic Transl Sci. 2021;6:584–92.

Stasiak M, Zawadzka-Starczewska K, Lewiński A. Significance of HLA Haplotypes in two patients with subacute thyroiditis triggered by mRNA-based COVID-19 vaccine. Vaccines (Basel). 2022;10. Available from: https://doi.org/10.3390/vaccines10020280.

Whitaker JA, Osvyannikova IG, Poland GA. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines. 2015;14:935–47.

Mitchell LA, Tingle AJ, MacWilliam L, Horne C, Keown P, Gaur LK, et al. HLA-DR class II associations with rubella vaccine-induced joint manifestations. J Infect Dis. 1998;177:5–12.

Klein NP, Zerbo O, Goddard K, Wang W, Fohner AE, Wiesner A, et al. Genetic associations with a fever after measles-containing vaccines. Hum Vaccin Immunother. 2021;17:1763–9.

Lacaze P, Ronaldson KJ, Zhang EJ, Altfridic A, Shah H, Newman L, et al. Genetic associations with clozapine-induced myocarditis in patients with schizophrenia. Transl Psychiatry. 2020;10:37.

Bolze A, Neveux I, Schiabor Barrett KM, White S, Isaksson M, Dabe S, et al. Myocarditis following COVID-19 vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol. 2022;19:75–7.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.