Ciclosporin 10 years on: indications and efficacy

Peter Forsythe, Sue Paterson

Ciclosporin is a lipophilic cyclic polypeptide with powerful immunosuppressive and immunomodulatory properties that has been used in veterinary medicine for two decades. It is a calcineurin inhibitor whose principal mode of action is to inhibit T cell activation. The drug is principally absorbed from the small intestine and is metabolised in the intestine and liver by the cytochrome P450 enzyme system. Ciclosporin is known to interact with a wide range of pharmacological agents. Numerous studies have demonstrated good efficacy for the management of canine atopic dermatitis and this has been a licensed indication since 2003. In addition to the treatment of atopic dermatitis, it has been used as an aid in the management of numerous other dermatological conditions in animals including perianal fistulation, sebaceous adenitis, pododermatitis, chronic otitis externa and pemphigus foliaceus. This article reviews the mode of action, pharmacokinetics, indications for use and efficacy of ciclosporin in veterinary dermatology.

Mechanisms of action

Ciclosporin is a calcineurin inhibitor whose principal mode of action is to inhibit T cell activation. Ciclosporin achieves its immunosuppressive activity by binding to the intracellular receptor protein cyclophilin-1. The resulting ciclosporin-cyclophilin complex inhibits calcineurin, which prevents the dephosphorylation and activation of the transcription factor, nuclear factor of activated T cells (NF-AT), which plays a critical role in the activation and proliferation of T cells, that is thought to account for ciclosporin’s main mechanism of immunosuppression, although there is recent evidence that NF-AT also interacts with other transcriptional factors that regulate T helper cell differentiation, T cell tolerance and thymocyte development (Macian 2005). In addition to the effect on T cells, there is increasing evidence that the NF-AT signalling pathway is also involved in innate immunity and regulates the homeostasis of cells involved in innate immune mechanisms. Therefore, ciclosporin influences both innate and adaptive immune responses (Fric and others 2012) and there is an increasing list of other cells involved in inflammatory and immune responses that may be affected by ciclosporin including B cells, antigen presenting cells, keratinocytes, endothelial cells, mast cells, basophils and eosinophils. The principal effects are listed in Table 1. The overall effect of ciclosporin is a reduction in the number and activity of proinflammatory cells at sites of inflammation.

Table 1: Modes of action of ciclosporin

Cell type	Mode of action of ciclosporin	References
T cells	Inactivation of NF-AT and reduced IL-2 production which suppresses T cells and T cell cytokine production (IL-4, 5, 6, 8, 13, GM-CSF, TNF-α and IFN-γ)	Bunikowski and others 2001 Ho and others 1996, Matsuda and Koyasu 2000
B cells	Inhibits growth and activation of B cells, Minimal inhibition of antibody production or humoral response to vaccines in dogs	Brazis and others 2006 Brunner 2005 Guaguère and others 2004 Takaori and others 1992 Bussmann 2009
Antigen presenting cells (APCs)	Reduces both the number and activity of APCs, especially Langerhans cells	Cirillo and others 1990
Basophils	Reduces degranulation, cytokine secretion, chemotaxis and longevity	Cesal and Davila 2001 Sihra and others 1997
Eosinophils	Reduces degranulation, cytokine secretion, chemotaxis and longevity	Creagh and others 1995 Cockerill and others 1995
Endothelial cells	Reduces adhesion molecule expression	Baumer and Kietzmann 2007 Won and others 1994
Keratinocytes	Anti-proliferative effect and reduced cytokine production	Brazis and others 2006 Hatfield and Rothen 1992 Tran and others 1997
Mast cells	Reduces numbers, histamine release and cytokine production (IL-3, 4, 5, 8, TNF)	GM-CSF Granulocyte macrophage colony stimulating factor, IFN Interferon, IL Interleukin, NF-AT Nucleic factor of activated T cells, TNF Tumour necrosis factor

Veterinary Record (2014) 174 (supplement 2), 13-21

doi: 10.1136/vr.102484

E-mail for correspondence: peter.forsythe@btconnect.com

Provenance: not commissioned; externally peer reviewed

Peter Forsythe, BVM&S, DVD, MRCVS, The Dermatology Referral Service, 528 Paisley Road West, Glasgow G51 1RN, UK

Sue Paterson, MA, VetMB, DVD, MRCVS, Rutland House Referral Hospital, Abbotsfield Road, St Helens, Merseyside WA9 4HU, UK
Pharmacokinetics
Ciclosporin was first produced as a vegetable oil formulation (Sandimmune, Novartis). The drug is principally absorbed from the small intestine and the absorption of this early formulation was dependent on bile flow and other factors resulting in variable and poor bioavailability (Guaguère and others 2004). A microemulsified (ME) product was subsequently developed that improved oral bioavailability, that was not dependent on bile flow for absorption and had less variable absorption. This formulation is licensed for treatment of canine AD (Atopica; Novartis Animal Health) and is available in 10, 25, 50 and 100 mg soft gelatin capsules; the active product being identical to the human formulation (Neoral; Novartis Pharmaceuticals). Administration of the microemulsion formulation to healthy beagles with food decreased the bioavailability within the intestines (Whalen and others 1999). The bioavailability after oral administration of the ME formulation is 35 per cent in the dog (Guaguère and others 2004). The drug is metabolised mainly in the liver and intestine by cytochrome p450 3A (CYp3A) enzymes also within the intestines (Whalen and others 1999). There are numerous pharmacologically inactive metabolites (Fahr and others 1990) that are eliminated via the biliary system. The high margin of safety and the relatively long half-life of the drug (nine hours) mean once daily dosing is sufficient in the dog (Guaguère 2004). The drug is metabolised mainly within the intestines (Whalen and others 1999). The bioavailability of the drug by cytochrome P450 3A (CYP3A) enzymes also limited by the effects of p-glycoprotein efflux pumps present in the small intestine enterocytes (Wu and others 1995) and by metabolism of the drug by cytochrome P450 3A (CYP3A) enzymes also within the intestines (Whalen and others 1999).

Clinical aspects of drug interactions
Ciclosporin is known to interact with a wide range of pharmacological agents. These interactions have been well researched in people but only limited information is available in dogs. The two main mechanisms of drug interaction involve the CYP3A enzyme system and/or competition with the ATP binding transport protein P-glycoprotein (P-gp) (Steffan 2004). Commonly used veterinary medicines and other pharmacologically active compounds that may interact with ciclosporin include azole antifungals, metoclopramide, cimetidine, erythromycin, clindamycin, phenobarbital, vitamin E, grapefruit juice and St John’s wort.

Table 2: Evidence for efficacy of ciclosporin (CsA) in canine atopic dermatitis

Type of study	Control group (number of dogs)	Treatment group (number of dogs)	Efficacy – lesions	Efficacy – pruritus	Level of evidence	References	
Open	CsA 5 mg/kg (14)	Median lesion reduction 60% (after 2 weeks)	Median pruritus reduction 100% (after 2 weeks)	C3	Fontaine and Olivry 2001		
RCT-DB	Prednisolone 0.5 mg/kg (15)	CsA 5 mg/kg (15)	Significant improvement in CsA treated group P=0.001 >50% improvement in 69% cases No difference between CsA and prednisolone treated groups	Significant improvement in CsA treated group P=0.003 >50% improvement in 77% cases No difference between CsA and prednisolone treated groups	A3	Olivry and others 2002b	
RCT-DB	Placebo (30) CsA 2.5 mg/kg sid (30)	CsA 5 mg/kg (31)	Significant improvement in CsA (5 mg/kg sid) treated group compared to both control groups P=0.002 ≥50% reduction in lesion scores 22/31 cases treated with CsA 5 mg/kg after 6 weeks	Significant improvement in treatment group compared to placebo P value not given ≥50% reduction in pruritus 15/31 cases treated with CsA 5 mg/kg after 6 weeks	A2	Olivry and others 2002b	
RCT-SB	Methylprednisolone (MP) (0.5 mg/kg (59)	CsA 5 mg/kg (117)	Improvement over baseline after 8 weeks CsA group (53%), MP group (45%)	No difference between groups	Owner pruritus scores improvement over baseline after 8 weeks CsA (59%), MP (38%)	A1	Steffan and others 2003
RCT-NB	CsA 5 mg/kg for 4 weeks (30) then either decreasing dosage to 2.5 and 1.25 mg/kg sid (15) or increasing intervals (CsA 5 mg/kg given every second or fourth day) (15)	37% of dogs with ≥50% reduction in CADERI scores after 4 weeks No difference between groups after 12 weeks	50% dogs with ≥50% reduction in pruritus after 4 weeks (owner assessments) No difference between groups after 12 weeks	B3	Olivry and others 2003b		
Open	CsA 5 mg/kg (41)	Significant improvement in 41/41 dogs P=0.001 after 6 weeks	Significant improvement in 36/41 dogs P=0.00 after 6 weeks	C2	Burton and others 2004		
Open	CsA 5 mg/kg (15)	20% dogs showed ≥50% reduction in lesion scores after 4 weeks (investigators assessment)	Overall 27% reduction in pruritus over baseline scores after 4 weeks (owners assessment)	C3	Besnognor and Guaguère 2004 (from Steffan and others 2006)		
MET	Placebo (164) CsA (165)	50% CsA treated vs 12% placebo treated dogs achieved ≥50% reduction in lesion scores after 6 weeks 44% CsA treated and 53% glucocorticoid-treated dogs achieved ≥50% reduction in lesion scores after 6 weeks	38% CsA treated vs 19% placebo treated dogs achieved a level of mild pruritus (<3/5 pruritus score) after six weeks 38% CsA treated and 49% glucocorticoid-treated dogs achieved ≥50% reduction in pruritus after 6 weeks	A1	Olivry 2004		
Glucocorticoids (74)	CsA (132)	50% reduction in pruritus 15/31 cases treated with CsA 5 mg/kg after 6 weeks	After at least 6 months 28/55 dogs still treated with CsA. 8/28 (15%) 2 to 3 days per week; 10 (20%) 4 to 5 days per week; 10 (20%) daily 12/55 treatment discontinued due to remission 11/55 CsA discontinued due to poor response (6) and cost (5)	D1	Radwicz and Power 2005		
CS	CsA 5 mg/kg for at least six months (51)						
Research

The technical aspects of these drug interactions are discussed in the article on pp 3-11 of this supplement (Nuttall and others 2014), so this section will be limited to discussion of the effect on clinical applications.

The azole antifungals inhibit CYP3A and therefore have the potential to reduce the dosage of ciclosporin required to achieve therapeutic concentrations. Ketoconazole, itraconazole and fluconazole have been shown to produce these dose sparing effects in both people and dogs. One study in healthy beagles showed that ketoconazole at one study in healthy beagles showed that ketoconazole at 5 mg/kg sid for 7 days then 1 mg/kg eod for 35 days (7) No difference between two groups after 6 weeks

Table 2: condt

Type of study	Control group (number of dogs)	Treatment group (number of dogs)	Efficacy – lesions	Efficacy – pruritus	Level of evidence	References
RCT-DB	Placebo (soybean oil) (134)	CsA 5 mg/kg (134)	Mean CADESI score CsA treated group after 4 weeks significantly lower than baseline and placebo group P=0.001 ≥50% reduction in CADESI in 45% CsA and 7% placebo cases after 8 weeks	Mean owner pruritus score CsA treated group after 4 weeks significantly lower than baseline and placebo group P=0.001 % dogs with severe pruritus scores decreased from 67% to 16% after 4 weeks	A1	Stefan and others 2005
Open	CsA 5 mg/kg (266)		≥50% reduction in CADESI scores in 68% cases after 8 weeks	% dogs with severe pruritus scores decreased from 64% to 15% after 8 weeks	C1	Stefan and others 2005
MET	Placebo (160) Oral glucocorticoids (74) Antihistamines (23)	672 CsA treated (672): 5 mg/kg (642), 2.5 mg/kg (30)	Lesion scores improved from baseline by 53 to 84% after 6 weeks Meta-analysis confirmed highly significant effects of CsA over placebo but not over glucocorticoids	After 4 to 6 weeks treatment ≥50% reduction in pruritus over baseline in 35% to 67% of cases Owner assessment of success in 48 to 67% of pets	A1	Stefan and others 2006
RCT-NB	CsA 5 mg/kg administered with food (15) CsA 5 mg/kg 2 hours before or after feeding (10)	799 dogs in total	No difference between two groups at any time point to 6 months	No difference between two groups	B3	Thelen and others 2006
RCT-DB	Virbagen Omega (V0) 10 injections of Rituxan (1 to 5 million units according to bodyweight) over 6 months and placebo CsA-like capsules (18)	CsA 5 mg/kg sid for 2 months and then twice weekly for 4 months placebo injections of V0 expipient (8)	Significant reduction in lesions over baseline in both groups P=0.0001 ≥50% reduction in CADESI scores in 87.5% CsA treated cases after 8 weeks	Significant reduction in pruritus in both groups over baseline after 8 weeks (PICAD scoring) P=0.001 ≥50% reduction in pruritus (PICAD) in 87.5% CsA treated cases after 8 weeks	A4	Carlotti and others 2009
RCT-DB	Prednisolone 1 mg/kg for 7 days then 1 mg/kg eod for 35 days (7)	CsA 5 mg/kg sid (human generic form) (13)	11/13 CsA treated and 6/7 prednisolone treated dogs had a ≥50% reduction in CADESI score after 6 weeks	No difference between groups after 6 weeks	A4	Kovalk and others 2011
RCT-DB	Hydrocortisone in capsules 0.585% (HCA) applied topically once daily (25)	CsA 5 mg/kg (23)	Significant improvement in both groups P=0.0001 ≥50% reduction in CADESI-03 after 84 days in 86.7% CsA and 75% HCA groups No difference between groups	Significant improvement in both groups P=0.0001 ≥50% reduction in pruritus after 84 days in 57.1% CsA and 66.6% HCA groups No difference between groups	A2	Nuttall and others 2012
RCT-NB	CsA 5 mg/kg sid and prednisolone 1 mg/kg sid for 7 days then eod for 14 days (23)	CsA 5 mg/kg sid (25)	Mean reduction in CADESI-03 in CsA and CsA + prednisolone treated groups after 28 days was 56.52% and 57.9% respectively The difference between groups was not significant	Mean reduction in pruritus in CsA and CsA + prednisolone treated groups after 28 days was 42.4% and 65.1% respectively The difference between groups was not significant	B2	Dip and others 2013
RCT-DB	Placebo spray (15) Nanoparticles CsA spray on formulation (17)	Leslie score significantly lower in treatment compared baseline after 21 and 45 days P=0.01 No significant improvement in placebo group after 21 and 45 days	64% of treatment group had a ≥50% reduction in pruritus compared to 11% in placebo group after 45 days	Owner assessment of success in 48 to 67% of pets	A3	Pugdemont and others 2013

Open Clinical trial with no control, RCT-DB Randomised control trial – double blind, RCT-SB RCT – single blind, RCT-NB RCT – not blind, MET Meta-analysis, CS Retrospective case series, sid Once a day, eod Every other day, CADESI Canine atopic dermatitis extent and severity index, PICAD Pruritus index for canine atopic dermatitis

Clinicians should be aware that macrolide antibiotics such as erythromycin are highly metabolised by the hepatic CYP system and therefore have the potential to increase ciclosporin bioavailability. In people, erythromycin has been shown to increase bioavailability of ciclosporin from 75% per cent to 215.5 per cent (Campana and others 1996). A similar effect has been demonstrated in the dog with clarithromycin and erythromycin, whereas clindamycin and lincomycin did not increase ciclosporin availability (Steffan 2004, Katayama and others 2013). The interaction between ciclosporin and cimetidine, an H2 receptor antagonist and a potent inhibitor of the CYP 3A system, has been studied in dogs (Daigle and others 2001). This work demonstrated that cimetidine delayed but did not decrease the rate of absorption of ciclosporin. Metoclopramide has been shown to have no effect on the pharmacokinetic parameters of ciclosporin in healthy dogs (Radwanski and others 2011).

Two other chemicals that have been shown to affect ciclosporin blood levels are St John’s wort and grapefruit juice. St John’s wort is a herb that can affect the pharmacokinetics of many different
drugs through induction of cytochrome P450 (CYP 2C and CYP 3A). It is this mechanism which is thought to decrease ciclosporin levels in people (Bauer and others 2003). A similar effect was demonstrated when St John’s wort was given orally at a dose of 300 mg with ciclosporin at a dose of 5 mg/kg daily to dogs (Fukunaga and others 1998) and dogs (Radwanski and others 2011) when grapefruit juice and ciclosporin are administered together. A single dose of freeze-dried or liquid grapefruit juice significantly increased the bioavailability of orally administered ciclosporin in dogs (Amatori and others 2004). Radwanski (2011) used powdered whole grapefruit juice, which is expensive but has the potential to reduce the required orally administered dose of ciclosporin, although the amount required (at least 10 g) means this is currently not cost-effective (Radwanski and others 2011).

Phenobarbital is known to induce CYP enzymes leading to an increased elimination of ciclosporin. As a result of this phenobarbital has been shown to produce a significant reduction of up to 40 per cent in ciclosporin blood levels (Steinberg 2004). Indications for ciclosporin

Canine atopic dermatitis

Numerous studies have been published over the past 13 years that have demonstrated the safety and efficacy of ciclosporin in the management of canine AD (Table 2). Clinical experience has further supported the value of this drug. Published studies vary from case series to open, unblinded and uncontrolled studies, to high-quality, double-blinded randomised controlled trials (RCTs). The studies listed in Table 2 comprise some 727 dogs treated with ciclosporin. Overall results from the trials show that around one- to two-thirds of dogs will show a 50 per cent or more reduction in pruritus and lesion scores within four to eight weeks. A recent systematic review of RCTs for treatments of canine AD concluded that there were now multiple, high-quality RCTs that show the efficacy of oral ME ciclosporin given at a starting dose of 5 mg/kg for the management of canine AD (Olivry and others 2015). There was no difference demonstrated in efficacy between oral ciclosporin and prednisolone and oral ciclosporin and methylprednisolone for the management of canine AD with both lesional scores and pruritus responding to treatment (Olivry and others 2002a, Steffan and others 2004a, Kovalik and others 2011).

Ciclosporin is a relatively large molecule with poor dermal penetration but very recently, a nanocapsule ciclosporin spray-on formu-
ation has been developed to enhance penetration with the view to topical therapy. The use of this product in a six-week RCT of 32 dogs showed an 87.5% reduction in pruritus in the treatment group compared to 28.6% in the placebo group. The authors concluded that this was a safe and effective therapy for the control of pruritus in canine AD (Puigdemont and others 2013), but this is a relatively small number of cases and larger scale trials are required.

Dosage and dosage reduction in canine atopic dermatitis

The recommended induction dosage rate of ciclosporin for the treatment of canine AD is 5 mg/kg every 24 hours. In many cases, once maximal response has been achieved generally after four weeks of treatment, it is possible to reduce the amount of drug administered without reducing efficacy. This may be by either reducing the daily dosage or increasing the interval between doses and there seems to be no difference between these two methods (Olivry and others 2003b). In one retrospective study of 51 dogs with AD treated long term with ciclosporin (Radowicz and Power 2005), 36% per cent required daily treatment, 36% per cent required treatment for four or five days per week and 28% per cent required treatment for two or three days per week. In this study, dosage reductions were decreased by drug withdrawal on one day per week if there was beneficial response. Dosage was not changed more frequently than once every four weeks. The rationale behind this is that some dogs may be maintained on a dosage somewhere between daily and alternate day therapy, and one of the authors (PF) uses this approach. Another RCT reported that ultimately 50% per cent of cases required every other day therapy, 25% per cent twice weekly and 25% per cent daily therapy (Steffan and others 2003).

Reduction in the dosage is based on the clinical response to therapy rather than the measurement of serum levels of ciclosporin. In people serum ciclosporin levels are measured routinely in organ transplantation cases. In dogs the methodology is available to undertake routine monitoring and can be performed by a variety of different techniques. Those most commonly used include high-pressure liquid chromatography, fluorescence polarisation immunoassay and radioimmunoassay (Guaguère and others 2004). However, the interpretation of serum levels of ciclosporin in cases of canine AD is difficult because of the lack of clinical data correlating concentrations with response to therapy. Nevertheless, because the dosages of ciclosporin required in canine AD are much lower than the anti-rejection levels used in humans and because the safety margin is much greater in dogs, routine monitoring does not seem to be justified in general practice (Steffan and others 2004b). Blood levels measurement may, however, be useful when animals have failed to respond to appropriate levels of medication or if there is concern about toxicity when ciclosporin has been given over a prolonged period with another drug that is known to enhance bioavailability.

A blinded, prednisolone RCT (Olivry and others 2002a) looking at the reduction of pruritus produced by ciclosporin, at a dose of 5 mg/kg orally once daily, compared to prednisolone, at a dose of 0.5 mg/kg orally once daily, showed no significant difference in the reduction in pruritus in both groups. This suggested that the excellent reduction in pruritus score achieved within three weeks of starting ciclosporin therapy should make it a valuable alternative to glucocorticoid therapy in dogs with AD. However, as many dogs with AD exhibit severe pruritus accompanying self-inflicted trauma, more recent work has focussed on combinations of drugs, especially using glucocorticoids with ciclosporin, to try and improve its speed of action. Concurrent administration of ciclosporin with methylprednisolone has been shown in people to have variable effects. Some studies have shown a decrease in blood concentrations of ciclosporin, others have shown no change (Campana and others 1996). In dogs methylprednisolone was given at a dose of 1 mg/kg daily with ciclosporin at a high dose rate of 20 mg/kg daily without resulting in any interaction or adverse effects (Guaguère and others 2004). Concurrent administration of prednisolone with ciclosporin has been investigated as a means of accelerating the reduction in pruritus (Dip and others 2013). In a comparison of therapeutic response in two groups of atopic dogs given either ciclosporin alone at a dose of 5 mg/kg orally once daily or with prednisolone at a dose of 1 mg/kg orally once daily for 14 days then on an alternate day basis both owners and investigators agreed that concurrent therapy with prednisolone resulted in a quicker improvement in the dogs’ overall skin condition and reduction in pruritus.

Long-term remission of clinical signs of dogs with non-seasonal AD has been recorded in animals treated with both glucocorticoids and ciclosporin. In a comparative study using methylprednisolone and ciclosporin (Steffan and others 2004a), workers demonstrated that although 87% per cent of dogs treated with methylprednisolone relapsed within two months of cessation of therapy only 62 per cent of dogs treated with ciclosporin showed a similar deterioration. Similarly, in a retrospective study of long-term management of canine AD with ciclosporin (Radowicz and Power 2005), in 12 out of 51 cases (24 per cent) it was possible to reduce and ultimately withdraw ciclosporin therapy without recurrence of clinical signs. These dogs remained in remission for a mean duration of 12 months following treatment withdrawal.

Use with allergen-specific immunotherapy

Allergen-specific immunotherapy (ASIT) offers an alternative to either glucocorticoids or ciclosporin therapy where either the cost or side effects of medication are a problem. Identification of putative allergens is required for the formulation of ASIT and ciclosporin has been shown to have no statistically significant effects on either intradermal or serum IgE allergy tests when administered at therapeutic dose rates of 5 mg/kg orally once daily for 30 days (Goldman and others 2010). It has therefore proved to be a useful drug to use for short-term control of AD to facilitate glucocorticoid withdrawal, allergy testing and the institution of ASIT. No work has been undertaken on the effect of ciclosporin on ASIT. However, many veterinary dermatologists routinely use ciclosporin during the induction and maintenance phase of ASIT.
The page contains a table titled **Table 5: Evidence for efficacy of ciclosporin (CsA) in miscellaneous skin diseases**. The table lists various skin diseases along with the type of study, treatment, and level of evidence. The table is structured as follows:

Disease	Type of study (number of dogs)	Treatment	Efficacy – lesions	Level of evidence
Canine cutaneous and systemic histiocytosis	CS (44)	3 dogs with systemic histiocytosis treated with CsA. Dosage not given	Good therapeutic success in 3/3 dogs treated with CsA	D4
Cutaneous reactive histiocytosis	CS	1 dog treated with ketoconazole 10 mg/kg sid and CsA 4 mg/kg sid in one dog, dosage not given for other dog	Complete resolution of lesions in 67 days for one dog; not given for the other dog; Both dogs maintained on combination of ketoconazole/CsA	D4
Juvenile cellulitis	CR (1)	Refractory to topical and systemic dexamethasone	Marked improvement after 4 weeks. Lymphadenopathy persisted and CsA increased to 10 mg/kg sid Dexamethasone reduced to once weekly then withdrawn after 4 weeks when complete resolution of all signs CsA tapered and withdrawn after further 3-4 months. Dog remained in remission.	D4
Sterile nodular panniculitis and vasculitis	CR (1)	Prednisolone 0.5 mg/kg sid CsA 5 mg/kg sid	Excellent response after 20 weeks	D4
Sterile nodular panniculitis	CS (2)	CsA 5 mg/kg	80% improvement after 2 weeks Complete resolution after 6 weeks	D4
Focal metatarsal sinus tracts	CR (1)	CsA 5 mg/kg for 2 months	Complete resolution after 2 months. Recurrence when dosage reduced to 5 mg/kg eod then further resolution increased to daily therapy.	D4
Pemphigus foliaceus	CS (5)	CsA 5 to 10 mg/kg/sid for 1 to 3 months	Lesion scores worsened in 4/5 dogs. CsA was ineffective as a sole agent when used at these doses to treat canine pemphigus foliaceus.	D4
Vascular cutaneous lupus erythematosus	CS (5)	Prednisolone 1 to 2.6 mg/kg/sid tapered over 20 to 36 weeks to 0.5 mg/kg/sid CsA 5 to 18 mg/kg/sid for 6 to 39 months then tapered to 3 to 4 mg/kg/sid after resolution of lesions. CsA administered as maintenance for 1 to 18 months.	Complete resolution in 4/5 and partial to 1/5 Lesions recurred in 3/5 cases after cessation of CsA. Further resolution when CsA restarted CsA reduced prednisolone dosage required.	D4
Exfoliative cutaneous lupus erythematosus	CS (6)	Four dogs treated with CsA 5 to 10 mg/kg/sid	Improvement in lameness and erythema in 1 to 2 weeks but did not slow overall progression of disease.	D4
Alopecia areata	CR (1)	CsA 5 mg/kg/sid for one month then 5 mg/kg eod for 2 months	Complete remission of clinical lesions	D4
Uveodermatologic syndrome	CR (1)	CsA 4.7 mg/kg/sid Prednisolone 0.2 mg/kg bid (22 days)	Skin lesions controlled over 10 month period	D4
Pyoderma gangrenosum	CR (1)	CsA 5 mg/kg/sid Prednisolone 0.2 mg/kg bid (22 days)	Complete resolution after 8 weeks	D4
Proliferative infundibular mural folliculitis and dermatitis (Labrador retrievers)	CS (4)	CsA 5 to 6.2 mg/kg/sid in 3 dogs Prednisolone 0.65 to 2 mg/kg/sid, AZA 1.6 mg/kg/sid, CsA 3.2 mg/kg/sid	Rapid response to ciclosporin in all cases. Two dogs remained in remission for at least 7 and 8 months after discontinuation of therapy.	D4
Idiopathic chronic pododermatitis	Open (13) (7)	Prednisolone 2 mg/kg sid CsA 5 mg/kg sid	Marked clinical improvement over 2 to 8 weeks	C4
End stage proliferative otitis externa	CS (5)	CsA 5 mg/kg bid for at least 12 weeks	Significant clinical improvement and improved quality of life	D4

*See footnote to Table 2

CS Retrospective case series, CR Case report, Open Clinical trial with no control, bid Twice a day, sid Once a day, eod Every other day, bid Twice a day

Canine perianal fistulae

Canine perianal fistulae (PAF) is a chronic, progressive disease characterised by the development of cutaneous and retrocutaneous fistulae with associated ulceration around the perianal tissues. The condition is mainly confined to German shepherd dogs but can affect other breeds as well. Clinical signs include perineal pain, dyschezia, tenesmus, constipation and perineal discharge. The condition is

without any apparent reduction in efficacy. Successful ASIT in dogs has been shown to be linked to an increase in the T regulatory cell population (Keppel and others 2008). In atopic humans, low dose ciclosporin therapy has been shown to significantly increase the T regulatory cell populations (Brandt and others 2009) suggesting that ciclosporin therapy may be synergistic with ASIT. Obviously this link needs further investigation.
Chronic proliferative otitis externa

Chronic proliferative otitis externa (CPOE) is also a common clinical presentation, particularly in the cocker spaniel (Angus and others 2002). Underlying primary causes of inflammation may be identified, but addressing these is unlikely to resolve the proliferative disease and most cases require total ear canal ablation. One small pilot study found that ciclosporin was useful in the management of CPOE and ear infections and infection persisted, the dogs’ quality of life greatly improved with therapy and this is worth considering where surgical therapy is not an option for whatever reason.

Pemphigus foliaceus

Pemphigus foliaceus is a pustular and crusty autoimmune disease, usually treated using systemic immunosuppressive therapy with glucocorticoids with or without additional immunosuppressive agents (Rosenkrantz 2004). In one small pilot study, ciclosporin as a sole agent was ineffective in controlling skin lesions (Olviry and others 2002a), but in another study lesion remission was induced in all cases when ciclosporin was administered along with prednisolone. It was possible to reduce maintenance dosage of prednisolone to 0.5 mg/kg every other day suggesting a possible glucocorticoid sparing effect of ciclosporin (Maeda and others 2008). Furthermore, it was possible to withdraw glucocorticoid therapy and maintain remission in three refractory cases of canine pemphigus foliaceus that had not responded to a combination of azathioprine and prednisolone following the addition of ciclosporin (Rosenkrantz and Aniya 2007).

Summary

Over the past 10 years, ciclosporin, a calcineurin inhibitor, has proven to be a very safe and effective therapy for the management of a variety of dermatological conditions in dogs. In particular, its use in the treatment of canine AD is well documented. Its relatively slow onset of action can beameliorated by the additional use of glucocorticoid therapy for the first two to three weeks of therapy. Once maximal therapeutic effect has been achieved, a very slow reduction in dosage is advisable to identify those cases that can be managed on treatment levels somewhere between daily and alternate day, or alternate day and twice weekly administration. There is also variable evidence that ciclosporin is useful in the management of many other immune-mediated skin diseases.

Conflict of interests

Peter Forsythe has received consultancy and lecture fees from Novartis Animal Health.

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

References

AFFILOTER, V. K. & MOORE, P. F. (2000) Canine cutaneous and systemic histiocytosis: reactive histiocytosis of dermal dendritic cells. American Journal of Dermatopathology 22, 40-44.

AMATORI, F. M., GIUSIANI, V. M. M., SOLDANI, G., CORAZZA, M. & GIORGI, M. (2004) Effect of grapefruit juice on the pharmacokinetics of cyclosporine in dogs. Journal of Veterinary Pharmacology and Therapeutics 27, 346-350.

BENIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.

BENSIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.

BENSIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.

BENSIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.

BENSIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.

BENSIGNOR, E. & GUAGUÈRÉ, E. (2004) Utilisation de la ciclosporine pour le traitement des formes rebelles de dermatite atopique canine. Pratique Médicale et Chirurgicale de l’animal 48, 229-232.

BAUER, S., STORMER, E., JOHNNE, A., KRUCER, H., BUDDE, K., NEUMAYER, H. H., ROOTS, I. & MAL, I. (2002) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. British Journal of Clinical Pharmacology 53, 203-211.

BAUMER, W. & KETTLEHANN, M. (2007) Effects of cyclosporin A and colchicin on activated canine, murine and human keratinocytes. Veterinary Dermatology 18, 107-114.
hydrocortisone aceponate spray and oral ciclosporin in treating canine atopic dermatitis. Veterinary Dermatology 23, 4-10, e11-e12
NUTTALL, T., REECE, D. & ROBERTS, E. (2014) Life-long diseases need life-long treatment: long-term safety of ciclosporin in canine atopic dermatitis. Veterinary Record 174(suppl 2), S11
O’NEILL, T., EDWARDS, G. A. & HOLLOWAY, S. (2014) Efficacy of combined ciclosporine A and ketoconazole treatment of anal furunculosis. Journal of Small Animal Practice 45, 238-243
OLIVEIRA, A. M., OBWONO, M. J., VAN DEN BROEK, A. H. & THODAY, K. L. (2007) Focal metanatal sinus tracts in a Weimaraner successfully managed with ciclosporin. Journal of Small Animal Practice 48, 161-164
OLIVRY, T. (2004) A systematic review and meta-analysis of the efficacy of ciclosporine for treatment of canine atopic dermatitis. 5th World Congress of Veterinary Dermatology. Proceedings of the Atopica Symposium. Vienna. pp 4-14
OLIVRY, T. & BIZIKOVA, P. (2013) A systematic review of randomized controlled trials for prevention or treatment of atopic dermatitis in dogs: 2008-2011 update. Veterinary Dermatology 24, 97-117
OLIVRY, T., RIVIERE, C., JACKSON, H. A., MURPHY, K. M., DAVIDSON, C. S. & SOUSA, C. A. (2002a) Ciclosporine decreases skin lesions and pruritus in dogs with atopic dermatitis: a blinded randomized prednisolone-controlled trial. Veterinary Dermatology 13, 77-87
OLIVRY, T., RIVIERE, C., MURPHY, K. M. (2003a) Efficacy of ciclosporine for treatment induction of canine pemphigus foliaceus. Veterinary Record 152, 53-54
OLIVRY, T., RIVIERE, C., MURPHY, K. M., JACKSON, H. A. & CHAVEZ, F. (2003b) Maintenance treatment of canine atopic dermatitis with ciclosporin: decreasing dosages or increasing intervals? Veterinary Dermatology 14, 220
OLIVRY, T., STEFFAN, J., FISCH, R. D., PRELAUD, P., CUGUERÈ, E., FONTAINE, J. & CARLOTTI, D. N. (2002b) Randomized controlled trial of the efficacy of ciclosporine in the treatment of atopic dermatitis in dogs. Journal of the American Veterinary Medical Association 220, 370-377
ORAN, A., MARSHALL, J. S., KONDO, S., PAGLIA, D. & MCKENZIE, R. C. (1997) Ciclosporin inhibits intercellular adhesion molecule-1 expression and reduces mast cell numbers in the asebia mouse model of chronic skin inflammation. British Journal of Dermatology 137, 91-96
PALMEIRIO, B. S., MORRIS, D. O., GOLDSCHMIDT, M. H. & MAULDIN, E. A. (2007) Cutaneous reactive histiocytosis in dogs: a retrospective evaluation of 32 cases. Veterinary Dermatology 18, 332-340
PATRICELLI, A. J., HARDIE, R. J. & MCANULTY, J. E. (2002) Ciclosporine and ketoconazole for the treatment of perianal furunculosis in dogs. Veterinary Record 150, 1009-1016
PUCDEMONT, A., BRAZIS, P., OREIDE, L., DALMAU, A., FUERTES, E., OLIVAR, A., PEREZ, C. & RAVERA, I. (2013) Efficacy of a new topical ciclosporine A formulation in the treatment of atopic dermatitis in dogs. Veterinary Journal 197, 280-285
RADOWICZ, S. N. & POWER, H. T. (2005) Long-term use of ciclosporine in the treatment of canine atopic dermatitis. Veterinary Dermatology 16, 81-86
RADOWANSKI, N. E., CERENDOLO, R., SHOFER, F. S., HANLEY, M. J. & COURT, M. H. (2011) Effects of powdered whole grapefruit and metoclopramide on the pharmacokinetics of ciclosporine in dogs. American Journal of Veterinary Research 72, 687-693
ROSENKRANTZ, W. S. (2004) Pemphigus: current therapy. Veterinary Dermatology 15, 95-98
ROSENKRANTZ, W. S. & ANIYA, J. S. (2007) Ciclosporine, ketoconazole and azathioprine combination therapy in three cases of refractory canine pemphigus foliaceus. Veterinary Dermatology 18, 192
ROSENKRANTZ, W. S., GRIFFIN, C. E. & BARR, R. J. (1989) Clinical evaluation of ciclosporine in animal models with cutaneous immune-mediated disease and epitheliotropic lymphoma. Journal of the American Animal Hospital Association 25, 377-384
RYBNICZEK, J., AFFOLTER, V. K. & MCOORE, P. F. (1998) Sebaceous adenitis: an immunohistological examination. In Advances in Veterinary Dermatology. Vol 3. Eds K. W. Rovochka, T. Willemsen, C. Von Tschamer Butterworth Heinemann. pp 599-540
SANTORO, D. & CAMPBELL, K. L. (2011) Use of ciclosporin in a dog with canine juvenile sterile granulomatous dermatitis and lymphadenitis. Veterinary Dermatology 22, 287-288
SHRA, B. S., KON, O. M., DURHAM, S. R., WALKER, S., BARNES, N. C. & KAY, A. B. (1997) Effect of cyclosporin A on the allergen-induced late asthmatic reaction. Thorax 52, 447-452
STEFFAN, J. (2004) Ciclosporine interactions in veterinary medicine: an update. 5th World Congress of Veterinary Dermatology. Proceedings of the Atopica symposium. Vienna. pp 29-32
STEFFAN, J., ALEXANDER, D., BROVEDANI, F. & FISCH, R. D. (2003) Comparison of ciclosporine A with methylprednisolone for treatment of canine atopic dermatitis: a parallel, blinded, randomized controlled trial. Veterinary Dermatology 14, 11-22
STEFFAN, J., BAVIOT, C. & MÜLLER, R. (2006) A systematic review and meta-analysis of the efficacy and safety of ciclosporine for the treatment of atopic dermatitis in dogs. Veterinary Dermatology 17, 3-16
STEFFAN, J., HORNIS, J., GRIET, F., STREHLAU, G., FONDATI, A., FERRER, L. & NOU, C. (2004a) Remission of the clinical signs of atopic dermatitis in dogs after cessation of treatment with ciclosporin A or methylprednisolone. Veterinary Record 154, 681-684
STEFFAN, J., MAURER, M. & ROHLS, A. (2003) Ciclosporin concentration in the skin following oral administration. Veterinary Dermatology 14, 245
STEFFAN, J., PARKS, C. & SEEWALD, W. (2005) Clinical trial evaluating the efficacy and safety of ciclosporin in dogs with atopic dermatitis. Journal of the American Veterinary Medical Association 226, 1855-1863
STEFFAN, J., STREHLAU, G., MAURER, M. & ROHLS, A. (2004b) Ciclosporin A pharmacokinetics and efficacy in the treatment of canine atopic dermatitis. Journal of Veterinary Pharmacology and Therapeutics 27, 231-238
TAKAOKI, K., NIO, Y., INOUE, K., TUN, T., FUKUMOTO, M., HASHIDA, T., YASUHARA, M., HON, R. & TOBE, T. (1992) A comparative study on immunosuppressive effects of ciclosporin A and FK 506 on peripheral blood lymphocytes in dogs. Biometrie 4, 129-137
TAYLOR, A. L., WATSON, C. J. & BRADLEY, J. A. (2005) Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Critical Reviews in Oncology/Hematology 56, 23-46
THELEN, A., MÜLLER, R. S., LINKE, M., PETERS, S., STECHMANN, K. & STEFFAN, J. (2006) Influence of food intake on the clinical response to ciclosporin A in canine atopic dermatitis. Veterinary Record 159, E54-E56
WHALEN, R. D., TAYA, F. N., BURCKART, C. J. & VENKATARAMANAN, R. (1999) Species differences in the hepatic and intestinal metabolism of ciclosporin. Xenobiotica 29, 3-9
WISSELINK, M. A. & WILLEMSE, T. (2009) The efficacy of ciclosporine A in cats with presumed atopic dermatitis: a double blind, randomised prednisolone-controlled study. Veterinary Journal 180, 55-59
WON, Y. H., SAUER, D. N. & MCKENZIE, R. C. (1994) Ciclosporin A inhibits keratinocyte cytokine gene expression. British Journal of Dermatology 130, 312-319
WU, C. Y., BENET, L. Z., HERBERT, M. F., GUPTA, S. K., ROWLAND, M., GOMEZ, D. Y. & WACHER, V. J. (1995) Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with ciclosporine. Clinical Pharmacology and Therapeutics 58, 492-497