The purpose of the study – to find out the correlations between the intestinal microbiota and age, anthropometric indicators according to body mass index, immuno-biochemical indicators of the thyroid panel in patients with carbohydrate metabolism disorders and thyroid dysfunction.

Material and methods. The study included 89 patients with carbohydrate metabolism disorders (type 2 diabetes mellitus, prediabetes, obesity) and thyroid dysfunction.

Key words: carbohydrate metabolism disorders, thyroid dysfunction, anthropometric indicators, immuno-biochemical indicators of the thyroid panel, carbohydrate metabolism disorders.
of height and weight; laboratory determination of immuno-biochemical parameters of carbohydrate metabolism and thyroid hormone were determined. To analyze the composition of the intestinal microbiota, fecal samples were taken and the quantitative and qualitative composition was calculated using the principle of PCR sequencing. Statistical methods of comparison and correlation of variables were used.

Results. In patients, several significant correlations were found between the gut microbiota and the parameters studied. A negative correlation was found between body mass index and Bifidobacterium spp. and Escherichia coli and a positive correlation between body mass index and some opportunistic pathogens. Thus, with Shigella spp. and Staphylococcus aureus, there is a direct weak reliable relationship, while an inverse reliable relationship with Helicobacter pylori. Interestingly, Candida spp. showed an inverse correlation with TPOAb, while correlated with fT3 levels. Representatives of the phylum Bacteroidetes found a direct correlation between fT3 levels. Representaties of the phylum Bacteroidetes found a direct correlation with fT3, TgAb. Clostridium perfringens was directly correlated with TgAb, TgAb, and Fusobacterium nucleatum was directly correlated with TPOAb. Interestingly, Candida spp. showed an inverse correlation with TPOAb, while among this genus of fungi, only Candida krusei was characterized by the appearance of a correlation as a direct relationship with TgAb. Helicobacter pylori was directly correlated with TgAb and TgAb.

Conclusions. 1. There are direct and inverse correlations between individual representatives of the intestinal microbiota and body mass index. 2. Established correlations between individual representatives of the intestinal microbiome and the parameters studied. A negative correlation was found between body mass index and some opportunistic pathogens. Thus, with Shigella spp.

Вступ

Серед населення світу та України зокрема значно поширене хронічне захворювання — цукровий діабет (ЦД), яке потребує постійного контролю рівня глюкемії та регулювання його за допомогою інсуліну або інших пероральних цукронніжувальних препаратів. На 1 червня 2020 року на диспансерному обліку перебувало 214,4 тисяч осіб, які страждають на цукровий діабет і отримують інсулін, ця цифра не враховує дані пацієнтів, що проживають на непідконтрольній території України [1]. Цукровий діабет характеризується широким спектром ускладнень, а ефективність пероральних препаратів для його лікування залежить від стану шлунково-кишкового тракту. У зв’язку з цим інші увага дослідників зосереджена на вивченні ролі мікробіоти кишківника (МК) таких хворих, але це багато аспектів цього питання залишаються невідомими.

Деякі дослідження вказують на зв’язок між змінами в складі кишкової мікробіоти і розвитком цукрового діабету. Наприклад, зміни в МК можуть впливати на рівень запальних маркерів, інсулінорезистентність та інші фактори, що сприяють розвитку цукрового діабету [1]. Однак, механізми, за допомогою яких кишкова мікробіота впливає на розвиток цукрового діабету, залишаються недостатньо вивченими. Дослідження таких механізмів включає вивчення взаємодії між кишковою мікробіотою та засвоєними харчовими речовинами, лікувальних засобів, а також її роль у функціонуванні імунної системи та інших органів і систем. Хворобицітотопідібної залози є найпоширенішими серед усіх ендокринних розладів, перевищуючи цукровий діабет. Вони також займають третє місце серед захворювань, які впливають на інші органи та системи. Частота первинного гіпотиреозу, що є найпоширенішою формою, становить від 1,4 % до 12 % серед населення. Субклінічний первинний гіпотиреоз виявляється у 7-10 % жинок та у 2-3 % чоловіків. [2,3]. Одним із небезпечних наслідків субклінічного первинного гіпотиреозу є можливість його переходу в клінічний гіпотиреоз. Вважається, що щороку 3-5 % випадків субклінічного гіпотиреозу розвиваються в клінічну форму хвороби [4]. Це означає, що без вчасного лікування субклінічний гіпотиреоз може прогресувати і призвести до серйозного порушення функції щитовидної залози. Значна поширеність гіпотиреозу в Україні може створювати ризик виникнення ендокринопатій, які пов’язані з недостатньою кількістю гормонів цітоподібної залози на організм, та може мати негативний вплив на функціонування інших органів і систем, включаючи затримку розумового розвитку [5].

Вже багато років вчені досліджують зв’язок між рівнем тироксіну (T4) та трийодтироніну (T3) та обміном глукози в організмі. Спочатку було помічен, що надлишкова кількість цих гормонів призводить до порушення обміну вуглеводів, що стало підставою для визнання зв’язку між гіпотиреозом та інсулінорезистентністю. Подальші дослідження показали, що інсулінорезистентність також спостерігається у людей із гіпертиреозом [6]. Пацієнтів із недостатністю функції щитовидної залози (ЩЗ) лікують зазвичай левотироксином, що є замісною гормонотерапією, натомість
Оригінальні дослідження

у пацієнтів із тиреотоксинозом, причиною якого зазвичай є хвороба Грейвеся, лікування базується на призначені тиреостатиків. Оскільки при порушеннях вуглеводного обміну основним препаратом першої лінії лікування є метформін, його часто призначене пацієнтам з інсулінерезистентністю, виявленою у хворих із дисфункцією ЦЗ. У літературі зазначається, що метформін, як лікарський препарат першої лінії при лікуванні цукрового діабету 2 типу, впливає на склад мікробіоти кишечника [6,7]. Метформін позбавлює зі збільшенням певних видів мікробіоти, зокрема, Bacteroidetes, що може сприяти його гіпоглікемічним ефектам [7]. Беручи до уваги зазначені властивості препаратів, що використовуються при дисфункції ЦЗ та інсулінерезистентності, можна думати про їх поєднаний вплив на кишечну мікробіоту. Однак взаємозв'язок антропометричних даних, віку, імунно-біохімічних показників із мікробіотою кишечника у пацієнтів із порушеннями вуглеводного обміну та дисфункцією щитоподібної залози не вивчений.

Мета дослідження

З'ясувати характер кореляційних зв'язків між кишковою мікробіотою та віком, антропометричними показниками, імунно-біохімічними показниками, антропометричною параметри і інсулінерезистентністю у пацієнтів з підібраним порожденим синдромом, який характеризується асоціацією існування антроцентричного дисфункційного синдрому із синдромом інсулінерезистентності.

Матеріали та методи дослідження

У дослідженні взяло участь 89 пацієнтів із порушеннями вуглеводного обміну (ожиріння, переддіабет, ІДД) та дисфункцією щитоподібної залози (автоімунний тиреоїдит, гіпотиреоз, хвороба Грейвеся) у віці 41,0 ± 1,54 роки (29 чоловік та 60 жонок), діагностованими на базі Львівського обласного ендокринологічного центру у проміжку 2019-2023 років. Дослідження проводили відповідно до основних положень Конвенції Європейського Союзу про права людини та біомедичену (1997), а також Гельсінської декларації про етичні принципи медичних досліджень із захисними людьрем (1964-2008), Директив ЄС № 609 (1986), Наказу МОЗ України № 690 від 23.09.2009 [8,9].

Діагностика ІДД-2 проведена згідно з критеріями, що вказані в «Уніфікованому клінічному протоколі первинної та вторинної (спеціалізованої) медичної допомоги. Цукровий діабет 2 типу» (Наказ Міністерства охорони здоров'я 21 грудня 2012 року № 1118). Для діагностики первинного гіпотиреозу та ендокринного зобу користувалися «Стандартами діагностики та лікування ендокринних захворювань». Пацієнти отримували лікування згідно зі згаданими вітчизняними та міжнародними протоколами надання медичної допомоги. Усі обстежувані отримували лікування: з інсулінерезистентністю, з метформіном у дозі від 500 мг до 2000 мг на добу (відповідно до індивідуальної потреби), пацієнти з гіпогіперекзом – левотироксин в індивідуально підбраній дозі, що коливалася від 50 до 125 мкг, пацієнти з тиреотоксинозом (з попередньо встановленою хворобою Грейвеся) – тіамазол у дозі 10-30 мг на добу (відповідно до індивідуальної потреби).

Для обчислення індексу маси тіла пацієнтів проведено такі антропометричні вимірювання, як зрост та маса тіла. Також для оцінки вуглеводного обміну та тиреоїдного статусу визначали рівні глюкози, інсуліну, інсекти НОМА-ІР, НОМА-β, індекс Каро, тиреотропний гормон (ТТГ), вільній тироксин Т4 (вТ4) та вільній трийодтиронін (вТ3), титри антитіл до тиреоглобуліну (TA/ТГТ), титри антитіл до тиреопероксидази (TA/ТПО), титри антитіл до рецептора тиреотропного гормону (TA/ТрГТГ). В отриманих зразках калу проведено визначення мікробіомі бактеріїв методом севенування: кільцьовий носник Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus spp., Bifidobacterium spp., Escherichia coli, Bacteroides fragilis group, Bacteroides thetataomicron, Akkermansia muciniphila, Faecalibacterium prausnitzii, Clostridium difficile, Clostridium perfringens, Klebsiella pneumoniae, Klebsiella oxytoxace, Escherichia coli enteropathogenic, Enterococcus spp., Proteus spp., Enterobacter spp. / Citrobacter spp., Fusobacterium nucleatum, Parvimonas mira, Staphylococcus aureus, Salmonella spp., Shigella spp., Candida spp. та якісний аналіз навязності Candida albicans, Candida glabrata, Candida krusei, Helicobacter pylori. Також визначено співвідношення між Firmicutes і Bacteroidetes (F/B) та Bacteroides fragilis group і Faecalibacterium prausnitzii (B.fragilis/F.prausnitzii).

Статистичний аналіз даних проводили за допомогою програмного забезпечення Microsoft Excel (США) та STATISTICA 6.0 (Statsoft, США), які базувалися на літературних джерелах [10]. Проведено кореляційний аналіз методом Пірсона, який вважається найбільш точним для вивчення кореляції між досліджуваними параметрами (біохімічними та гормональними показниками, інсекти з інсулінерезистентністю). Розраховано коефіцієнт лінійної кореляції (r) та його надійність (p), які відображено в таблицях (кореляційних матрицях). Коефіцієнт кореляції вважали статистично значущим при r< 0,05. Для оцінки результатів також використовували ступені надійності (тенденції до значних змін при 0,05< p<0,1 [10]. Використовуючо коефіцієнт кореляції r, одночасно отримували інформацію про напрямок взаємодії (прямий +, обернений -) i силу зв'язку (від 0 до 1). Якщо r=0 вважається неспорідненим та відсутнім кореляційним зв'язком, то діапазон від 0 до 0,3 вказує на кореляцію слабкої сили, від 0,3 до 0,7 звідмічається більше відсутність середньої сили, а діапазон від 0,7 до 1,0 підтверджує сильну кореляцію [10].
Результати та їх обговорення
В обстежених пацієнтів, включених в наше дослідження, виявлено низку кореляцій. Такі взаємодії, як інсулін–HOMA-IR (r = 0.864; p < 0.05), глукоза–HbA1c натще (r = 0.680; p < 0.05), інсулін–Каро (r = −0.688; p < 0.05), інсулін–HOMA-β (r = 0.512; p < 0.05), ГГ4–ГГ3 (r = 0.481; p < 0.05) характеризувалися високим ступенем ємнівості, були очевидними й очікуванними.

При порівнянні у хворих кореляційних зв'язків між їхнім віком, індексом маси тіла та показниками основних типів МК, виявлено слабкий пряме кореляційний зв'язок між групою «Інші» (r = 0.261; p < 0.05) та іМТ та відсутність кореляційних зв'язків із віком пацієнтів.

При проведенні аналізу кореляційних зв'язків віку з облігатними представниками МК не виявлено достовірних зв’язків, проте з рівнями іМТ виявлено достовірні кореляції. Слабкий вірогідний обернений зв'язок виявлено між іМТ та Bifidobacterium spp. (r = −0.288; p = 0.05), а також з Escherichia coli (r = −0.298; p = 0.05). Привертає увагу також появ у тенденції до вірогідної відмінності щодо іМТ та його прямої кореляції з Bacteroides thetaiotaomicron слабкої сили (r = 0.257; p = 0.07) та оберненої з Faecalibacterium prausnitzii (r = −0.247; p = 0.07). Отримані результати щодо оцінки зв’язків облігатної МК наштовхують на думку, що на співвідношення маси пацієнта до його зросту має більший вплив мікробіом, ніж вік пацієнта. Виявлена кореляція між іМТ та Bifidobacterium та іншими компонентами МК дає підстави вважати, що метабіомірні зв’язки натискають на ці колонії, що співпрацює з результатами інших досліджень [1].

При оцінці кореляції між умово-патогенними представниками мікробіоти та іМТ кишечника в обстежених пацієнтів виявлено прямий слабкий достовірний зв’язок іМТ з Shigella spp. (r = 0.289; p = 0.05) та з Staphylococcus aureus (r = 0.277; p < 0.05), також помічене незначне прямого зв’язку зі змістом іМТ з Salmonella spp. (r = 0.258; p = 0.06). Аналіз кореляції умово-патогенних бактерій із віком пацієнтів не виявив достовірних зв’язків чи тенденції до достовірності.

Проводячи аналіз кореляції віку та іМТ з грибами роду Candida, а також із ДНК H. pylori у МК виявили низку зв’язків. Неочікувано виявлено появу між іМТ зворотного достовірного зв’язку з Helicobacter pylory (r = −0.320; p < 0.05) та тенденції до достовірності кореляції оберненого зв’язку з Candida spp. (r = −0.238; p = 0.07).

Під час аналізу наукових джерел виявлено непогодженості щодо впливу іМТ на мікробіом. Один із недавніх метааналізів 22-х досліджень [11] показав, що у лише шести з них спостерігаються значні асоціації між іМТ та Firmicutes, але менш значущі зв’язки з Bacteroidetes. Це свідчить про відсутність однозначних висновків. Отже, пошук патогеномічного маркера ожиріння на основі іМТ залишається актуальним.

Після проведення аналізу виявлені зв’язки між віком та іМТ з певними грибами, зокрема роду Candida, а також із ДНК H. pylori у мікробіомі кишечника. Здивувала появ аберденого достовірного зв’язку між H. pylori та іМТ, а також кореляційної тенденції між іМТ та Candida spp. Однак дослідження, яке включало ідентифікацію та характеристизацію чотирьох ентеротипів мікробіому на основі IGS-профілювання понад 3 тис зразків із 16 когорт показало посилення запалення, пов’язане з ентеротипом Candida, яке може бути частково опосередковано мутаційними взаємодіями між Candida spp. та різними бактеріальними патогенами, такими як Escherichia coli та Clostridium difficile [12]. Автори цього ж дослідження також зауважили, що мікробіом у європейській популяції характеризувався збільшенням грибів родів Saccharomyces і Penicillium, але зменшенням грибів роду Candida, тоді як у популяції Азії спостерігалось відносно більша кількість Candida і менша – Saccharomyces. Однак, дані цього дослідження наголошують, що європейська популяція демонструє меншу різноманітність грибів загалом порівняно із іншими континентами. Відповідно, у нашому дослідженні зі зразками 89 осіб мешканців Львівщини (європейської групи), було виявлено слабку, але статистично достовірну кореляцію між віком та різними видами грибів роду Candida. Це може бути пов’язано з особливостями харчування осіб середнього віку, а також із вживанням молочних продуктів, а також із різноманітністю кишкового мікробіому. Аналіз, до якого було залучено майже півтора тисячі учасників, підтверджує це припущення, дослідники також виявили, що бактеріальна різноманітність кишкового мікробіому була позитивно пов’язана з родом Saccharomyces і негативно – з родом Candida [13]. Аналізичний зв’язок був помічений щодо споживання молочних продуктів, яке, на думку авторів, сприяє здоровому кишковому середовищу, змінюючи відносність кишковому кишечнику.

Наши наукові дослідження підтвердили наявність зв’язку між іМТ та джерелами бактерій, зокрема Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Shigella spp., Staphylococcus aureus та Salmonella spp. За результатами дослідження, збільшення іМТ має негативний вплив на різноманітність бактерій, зокрема зменшуючи кількість видів, які вважаються маркерами здоров’я. Нації дані також підтверджують результати інших досліджень, які зазначають, що мікробіом кишечника містить функціональні маркери, які корелюють з індивідуальними особливостями, зокрема, віком та іМТ. Важливо зазначити, що ці маркери не є специфічними для певної нації чи континенту. Окремий, але із одного з досліджень виявлено, що дванадцять геномів мікробіоти мають статистично достовірну залежність від віку, а три – від іМТ [14].

При аналізі кореляції МК з біохімічними показниками функціонального стану цитогенетичної залози, що відображено в табл. 1, виявили низку особливих взаємозв'язків.
Привертає увагу відсутність кореляцій рівня ТТГ з показниками основних представників МК, проте виявлено декілька їх достовірних кореляцій із гормонами ЩЗЗ. З’ясувалося, що існує обернений зв’язок в ТТГ з групою “Інші” (r = −0,310; p < 0,05) а також в ТЗ з Firmicutes (r = −0,271; p < 0,05) і пряма достовірна кореляція в ТЗ з Bacteroidetes (r = 0,268; p < 0,05). Не виявлено достовірних зв’язків між показниками основних типів МК з ТА/рТГГ і з ТА/ТПО, хоча помічена пряма та достовірна кореляція між ТА/ТГ та Bacteroidetes (r = 0,294; p < 0,05), як і низка тенденція до достовірності щодо Firmicutes (r = −0,248; p = 0,06) та Actinobacteria (r = −0,235; p = 0,09) за принципом оберненого зв’язку.

Кореляційні зв’язки між облігатними представниками МК та параметрами функціонального стану щитоподібної залози в обстежених пацієнтів не засвідчили достовірних зв’язків. Вважаємо, що отриманий результат пов’язаний з особливістю вибірки хворих, адже всі пацієнти на момент збору МК вже отримували лікування. Відтак, дослідження сироватки крові не могли містити критичних порушень які б забезпечили маніфестацію виразних кореляційних взаємодій із представниками облігатної МК. Проте, як відображено у табл. 2, кореляційні зв’язки між умоно-патогенними представниками мікробіоти кишківника та імунно-біохімічними показниками щитоподібної залози в обстежених пацієнтів були, на відміну від облігатних представників МК, навпаки. А саме, виразним виявився пряме достовірний зв’язок Clostridium perfringens з показниками тиреоідної панелі: в Т4 (r = 0,383; p < 0,05), з в ТЗ (r = 0,473; p < 0,05), з ТА/рТГГ (r = 0,829; p < 0,05), з ТА/ТГ (r = 0,509; p < 0,05).

Окрім зазначених вище кореляцій титрів антитіл, ТА/ТПО проявили пряме достовірний зв’язок лише з Fusobacterium nucleatum (r = 0,441; p < 0,05). Також слід зауважити, що ТА/ТГ виявив тенденцію до достовірного пряме зв’язку з Klebsiella oxytoca (r = 0,248; p = 0,07). За наявності таких різноманітних взаємозв’язків між групою умоно-патогенных бактерій та показниками гормонів ЩЗЗ і антитіл тиреоїдної панелі, не поміченого жодної кореляції з ТТГ.

При аналізі отриманих результатів виявлено відсутність кореляційних зв’язків ТТГ та в Т4 з досліджуваними грибами роду Candida та Helicobacter pylory. Проте, виразним виявився пряний достовірний зв’язок ТА/рТГГ з Candida kruisae (r = 0,341; p < 0,05) та з Helicobacter pylory (r = 0,297, p < 0,05). Пряме достовірний зв’язок встановили і між ТА/ТГ та Helicobacter pylory (r = 0,469; p < 0,05). А щодо оберненого достовірного зв’язку, то його засвідчили між ТА/ТПО та Candida spp. (r = −0,308, p < 0,05). Зафіксовано між в ТЗ та Candida kruisae тенденцію до вірогідного слабкого зв’язку (r = 0,243; p = 0,07). Цікаво, що автоімунна реакція, спрямована проти ЩЗ, корелює з наростанням колоній грибів Candida, Helicobacter pylory, Clostridium perfringens та Fusobacterium nucleatum.

Таблиця 1

Показник	Ступінь кореляції, r					
Заг.бак. маса, Kbrero/см³	ТТГ, мМО/л	в Т4, нг/дл	в ТЗ, пг/мл	ТА/рТГГ, МО/л	ТА/ТГ, МО/мл	ТА/ТПО, МО/мл
Заг.бак. маса, Kbrero/см³	-0.092	-0.117	0.003	0.018	0.017	-0.012
Firmicutes, %	p = 0.501	p = 0.390	p = 0.983	p = 0.983	p = 0.989	p = 0.933
Bacteroidetes, %	-0.028	0.062	-0.271*	-0.142	-0.248*	0.169
p = 0.832	p = 0.648	p = 0.039	p = 0.296	p = 0.063	p = 0.212	
Actinobacteria, %	0.063	0.003	0.268*	0.171	0.294*	-0.140
p = 0.645	p = 0.982	p = 0.049	p = 0.207	p = 0.026	p = 0.305	
Inii, %	-0.096	0.061	-0.033	-0.068	-0.235*	-0.054
p = 0.483	p = 0.655	p = 0.807	p = 0.619	p = 0.095	p = 0.693	
F/B, ум. од	-0.045	-0.310*	-0.056	-0.116	-0.150	0.303
p = 0.740	p = 0.024	p = 0.681	p = 0.396	p = 0.271	p = 0.808	
B.fragilis/ F.prausnitzii ум. од	-0.073	0.024	-0.068	-0.103	-0.195	-0.001
p = 0.591	p = 0.861	p = 0.617	p = 0.448	p = 0.149	p = 0.997	
p = 0.034	-0.021	-0.047	-0.037	-0.085	-0.090	
p = 0.804	p = 0.879	p = 0.733	p = 0.785	p = 0.534	p = 0.512	

Прикмети: * – достовірна різниця між середніми значеннями (p < 0,05); # – тенденція до достовірної різниці між середніми значеннями (0,05 < p < 0,1)
Таблиця 2

Показник	Ступінь кореляції, r					
	ТГГ, мМО/л вТ4, нг/дл вТ3, нг/мл ТА/рТГГ, МО/дл ТА/ТГ, МО/мл ТА/ТПО, МО/мл					
Clostridium difficile	-0,040	-0,016	0,055	-0,042	-0,091	0,005
p = 0,768	p = 0,905	p = 0,690	p = 0,757	p = 0,505	p = 0,969	
Clostridium perfringens	-0,060	0,383*	0,473*	0,829*	0,590*	-0,051
p = 0,658	p = 0,003	p = 0,000	p = 0,000	p = 0,000	p = 0,708	
Klebsiella pneumonia	0,118	-0,006	0,048	-0,056	-0,068	-0,094
p = 0,386	p = 0,964	p = 0,727	p = 0,684	p = 0,620	p = 0,489	
Klebsiella oxytoca	-0,029	-0,020	-0,069	-0,046	0,248*	-0,072
p = 0,831	p = 0,883	p = 0,615	p = 0,738	p = 0,070	p = 0,596	
Fusobacterium nucleatum	0,082	-0,008	0,052	-0,030	-0,088	0,441*
p = 0,547	p = 0,952	p = 0,703	p = 0,824	p = 0,518	p = 0,001	
Escherichia coli	-0,032	-0,073	-0,019	-0,052	-0,079	0,151
p = 0,817	p = 0,591	p = 0,891	p = 0,706	p = 0,563	p = 0,266	
Enterococcus spp.	-0,084	0,011	0,132	0,021	-0,048	-0,097
Shigella spp.	-0,009	-0,114	-0,022	-0,051	-0,059	-0,041
p = 0,946	p = 0,404	p = 0,873	p = 0,709	p = 0,666	p = 0,762	
Proteus spp.	-0,044	-0,088	-0,113	-0,043	-0,089	-0,062
p = 0,747	p = 0,518	p = 0,406	p = 0,754	p = 0,512	p = 0,652	
Enterobacter spp.	-0,030	-0,077	-0,026	-0,059	-0,090	-0,065
p = 0,829	p = 0,571	p = 0,852	p = 0,664	p = 0,510	p = 0,635	
Staphylococcus aureus	-0,051	-0,069	0,090	-0,023	-0,075	-0,104
p = 0,712	p = 0,615	p = 0,511	p = 0,867	p = 0,585	p = 0,445	
Salmonella spp.	-0,023	-0,082	0,018	-0,052	-0,081	-0,064
p = 0,866	p = 0,550	p = 0,893	p = 0,706	p = 0,551	p = 0,639	
Parvimonas micra	-0,070	-0,046	-0,084	-0,041	-0,110	-0,101
p = 0,607	p = 0,739	p = 0,536	p = 0,764	p = 0,419	p = 0,458	

Примітки: * – достовірна різниця між середніми значеннями (p<0,05); # – тенденція до достовірної різниці між середніми значеннями (0,05< p<0,1)

Таблиця 3

Показник	Ступінь кореляції, r					
	ТГГ вТ4 вТ3 ТА/рТГГ ТА/ТГ ТА/ТПО					
Candida spp.	-0,008	0,139	0,175	0,036	-0,028	-0,308*
p = 0,956	p = 0,307	p = 0,197	p = 0,790	p = 0,835	p = 0,024	
Candida krusei	-0,125	0,146	0,243*	0,341*	0,076	-0,138
p = 0,360	p = 0,282	p = 0,065	p = 0,007	p = 0,579	p = 0,311	
Helicobacter pylori	-0,081	0,165	0,160	0,297*	0,469*	-0,096
p = 0,554	p = 0,224	p = 0,240	p = 0,029	p = 0,000	p = 0,480	

Примітки: * – достовірна різниця між середніми значеннями (p<0,05); # – тенденція до достовірної різниці між середніми значеннями (0,05< p<0,1)

Наші дослідження підтверджують цей зв’язок, оскільки у хворих на гіпертиреоз показники вТ4, вТ3, ТА/рТГГ та титр антитіл зростають. Створено нашої роботи, новим є те, що ми виявили подібну кореляцію з іншим видом Clostridium – Clostridium perfringens.

Розуміння ролі кишкової мікробіоти в патогенезі порушень вуглеводного обміну та дисфунції циتوподібної залози може відкрити можливості для розробки нових стратегій профілактики та лікування широкої ювіорги пов’язаних захворювань.

Клінічна та експериментальна патологія, 2024. Т.23, № 2 (88) ISSN 1727-4338 https://www.bsnu.edu.ua
12. Lai S, Yan Y, Pu Y, Lin S, Qiu JG, Jiang BH, et al. Enterotypes of the human gut mycobiome. Microbiome [Internet]. 2023[cited 2024 Jun 29];11(1):179. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416509/pdf/40168_2023_Article_1586.pdf doi: 10.1186/s40168-023-01586-y

13. Shuai M, Fu Y, Zhong H, Gou W, Jiang Z, Liang Y, et al. Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut. 2022;71(9):1812-20. doi: 10.1136/gutjnl-2021-326298

14. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. doi: 10.1038/nature09944

15. Cao J, Wang N, Luo Y, Ma C, Chen Z, Chenzhao C, et al. A cause–effect relationship between Graves’ disease and the gut microbiome contributes to the thyroid–gut axis: A bidirectional two-sample Mendelian randomization study. Front Immunol [Internet]. 2023[cited 2024 Jun 25];14:977587. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974146/pdf/fimmu-14-977587.pdf doi: 10.3389/fimmu.2023.977587

Відомості про авторів:
Москва Х. А. – к.мед.н., доцент кафедри ендокринології Львівського національного медичного університету імені Данила Галицького, м. Львів, Україна.
E-mail: moskva_khrystyna@outlook.com
ORCID ID: https://orcid.org/0000-0003-3366-1975

Кіхтяк О. П. – д.мед.н., професор кафедри ендокринології Львівського національного медичного університету імені Данила Галицького, м. Львів, Україна.
E-mail: olesya66k@gmail.com
ORCID ID: https://orcid.org/0000-0002-1261-1939

Лаповець Л. Є. – д.мед.н., професор, завідувач кафедри клінічної лабораторної діагностики ФПДО Львівського національного медичного університету імені Данила Галицького, м. Львів, Україна.
E-mail: lapovets@ukr.net
ORCID ID: https://orcid.org/0000-0001-7933-3948

Кіхтяк Т. А. – судинний хірург, Комунальне некомерційне підприємство Львівської обласної ради «Львівська обласна клінічна лікарня», м. Львів, Україна.
E-mail: kikhtiatk_official@ukr.net,
ORCID ID: https://orcid.org/0009-0001-9619-684X

Information about the authors:
Moskva Kh. A. – PhD, associate professor of the Endocrinology department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
E-mail: moskva_khrystyna@outlook.com
ORCID ID: https://orcid.org/0000-0003-3366-1975

Kikhtyak O. P. – D. Med. Sci., Professor of the Endocrinology department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
E-mail: olesya66k@gmail.com
ORCID ID: https://orcid.org/0000-0002-1261-1939

Lapovets L. Ye. – D. Med. Sci., Professor, Head of the Department of Clinical Laboratory Diagnostics of the Faculty of Postgraduate Education Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
E-mail: lapovets@ukr.net
ORCID ID: https://orcid.org/0000-0001-7933-3948

Kikhtiak T. A. – vascular surgeon, Communal noncommercial enterprise of Lviv regional council «Lviv Regional Clinical Hospital», Lviv, Ukraine.
E-mail: kikhtiak_official@ukr.net,
ORCID ID: https://orcid.org/0009-0001-9619-684X