Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies

Balaraman Kalyanaramana,b,c, Gang Chenga,b, Micael Hardyd, Olivier Ouarid, Brian Bennette, Jacek Zielonkaa,b,c

A B S T R A C T

Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide using conventional probes as well as newly developed assays and probes, and the necessity of characterizing the diagnostic marker products with HPLC and LC-MS in order to rigorously identify the oxidizing species. The redox signaling roles of mitochondrial ROS, mitochondrial thiol peroxidases, and transcription factors in response to mitochondria-targeted drugs are highlighted. ROS generation and ROS detoxification in drug-resistant cancer cells and the relationship to metabolic reprogramming are discussed. Understanding the subtle role of ROS in redox signaling and in tumor proliferation, progression, and metastasis as well as the molecular and cellular mechanisms (e.g., autophagy) could help in the development of combination therapies. The paradoxical aspects of antioxidants in cancer treatment are highlighted in relation to the ROS mechanisms in normal and cancer cells. Finally, the potential uses of newly synthesized exomarker probes for in vivo superoxide and hydrogen peroxide detection and the low-temperature electron paramagnetic resonance technique for monitoring oxidant production in tumor tissues are discussed.

1. Introduction

“Nonetheless, from a biological point of view, it is beginning to look as if ROS are neither cellular heroes nor villains—but instead something that occupies in one’s favor, captivating and fertile middle ground.” Holmstrom and Finkel (Nature Reviews) [1]

Holmstrom and Finkel elucidated the dual nature of reactive oxygen species (ROS) that elicits both harmful and beneficial effects in cells and the state of the ROS in diseases including cancer [1]. Also, the authors emphasized the need to appreciate the differing chemistry of various ROS (e.g., superoxide radical anion (O_2^-) and hydrogen peroxide (H_2O_2)) in redox-dependent pathways, highlighting the importance of developing methods to detect oxidants in vivo. In the present article, we address some of the gaps in our knowledge concerning ROS and redox signaling in cancer biology. Further, we discuss state-of-the-art assays and probes for detecting O_2^-, H_2O_2, and other oxidants in tumor cells in response to treatment with OXPHOS-targeting drugs, and their potential applications for the detection of mitochondria-derived ROS during tumorigenesis and metabolic reprogramming. The paradoxical role of ROS in tumor proliferation and tumor suppression [2] is discussed in the context of redox signaling mechanisms. Similarly, the paradoxical effects of antioxidants in tumorigenesis and tumor progression are discussed. Understanding the roles of mitochondrial ROS and redox signaling pathways in cancer biology may help in the discovery of relatively nontoxic and targeted therapies.

2. ROS: The most cited, most popular, yet most ambiguous term

The term “ROS” does not relate to a single species; rather, it covers a range of small molecule oxidizing, nitrosating, nitrating, halogenating,
and thiol-reactive species, produced in biological systems. The use of ROS as an umbrella term for oxidants has been previously criticized because of its nonspecificity and ambiguity [3,4]. One of the authors of this article (BK) was also critical of using ROS as an umbrella term for all oxidants [3]. However, ROS as a term for small-molecule oxidants is now universally embraced and frequently used in novel biological settings by investigators in many areas of research, including cancer biology. Thus, it was decided that the same umbrella term, ROS, would be adapted for oxidants. That said, the lack of proper characterization of the structure of oxidants could seriously hamper our efforts to uncover new and novel oncogenic signaling pathways involved. In order to fully understand the signaling roles of ROS, it is essential to understand more about the nature and identity of the species, whether it is O_2^-, H$_2$O$_2$, lipid hydroperoxide, or an electrophile such as 4-hydroxyxynonenal derived from lipid oxidation. Proper identification of the structure of the ROS will also help us understand the mechanisms of action of drugs and drug resistance in cancer. In some ways, ROS levels and signaling are also modulated by other signaling molecules like nitric oxide (NO) via a nearly diffusion-controlled reaction between NO and O_2^- [5], generating a potent oxidizing and nitrating molecule, peroxynitrite (ONOO$^-$), also referred to as reactive nitrogen species (RNS). Although there is ample evidence for the occurrence of this type of mechanism and its biological relevance in cardiovascular and neurobiological systems [6,7], there is very little published data on the NO and O_2^- interaction and its signaling ramifications in cancer biology. Many probes (fluorescent and chemiluminescent) have been previously employed to identify ROS, but there is still a lot of confusion in this field due to a lack of mechanistic rigor and the artifacts generated from reductive/oxidative activation of the probes themselves [8,9]. Most of these limitations have, however, been previously addressed [10,11]. Irrespective of the methodology used to detect ROS, it is clear that oxidants are involved, either as a major player or as a bystander, in the underlying biology. On the positive side, there now exist more specific probes and assays for selective identification of various ROS. Published data from independent laboratories are in agreement that identification of specific products formed from ROS interaction with fluorescent probes is crucial for determining the identity of ROS [12,13]. A reaction between O_2^- and hydroethidine (HE) results in the formation of a very specific product, 2-hydroxyethidium (2-OH-E$^+$); this product is not formed from the reaction between HE and other biologically relevant oxidants such as H$_2$O$_2$, singlet oxygen, lipid hydroperoxides, peroxynitrite, HOCl, and NO_2^- [14,15]. This marker product derived from the O_2^- and HE reaction (2-OH-E$^+$) can be unambiguously detected by rapid high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS) methods [16]. However, numerous publications using HE-derived fluorescence still posit that ethidium (E$^+$) is the product of the O_2^- reaction with HE, whereas it has been clearly established by us and others that E$^-$ is not the product of the reaction between O_2^- and HE (Fig. 1) [17,18]. Evidence also exists that the reaction chemistry between O_2^- and other analogs of HE including Mito-SOX is similar to that of HE [19,20]. The lack of appreciation and the misconception of the chemistry and the mechanism of action of O_2^- with HE, Mito-SOX (a mitochondria-targeted HE), and other HE analogs are responsible for the multitude of publications in biomedical research, including cancer, that suggest or conclude the intermediacy of O_2^- formation [21,22].

Most assays to detect H$_2$O$_2$ are based on peroxidatic oxidation of probes such as Amplex Red in an extracellular milieu [23]. So far, very little information is available on chemical probes that react directly with H$_2$O$_2$ to form a diagnostic product. However, recently activity in this area has increased [24–26]. Boronate-based fluorescence probes react with H$_2$O$_2$ stoichiometrically (albeit very slowly, with the rate constant of 1–2 M$^{-1}$ s$^{-1}$) to form fluorescent products [27,28]. Boronates also react with peroxynitrite nearly a million times faster than with H$_2$O$_2$, forming a major product (90%) that is the same as the product derived from the boronate/H$_2$O$_2$ reaction and a very characteristic and diagnostic minor product (5–10%) [27,29]. If the product that is highly diagnostic for peroxynitrite is not detected, it is likely that the major product is not formed from peroxynitrite (Fig. 2). Mitochondria-targeted boronates (meta-MitoB) were used to detect H$_2$O$_2$ in vivo [30,31]. We used an isomer, ortho-MitoB, to detect H$_2$O$_2$ because of its ability to distinguish between peroxynitrite and H$_2$O$_2$ [28,32,33]. Predicting the cellular response (activation of signaling pathways) to specific ROS requires a thorough understanding of its chemical properties in a biological setting.

3. Mitochondria, Nox, and ROS

Two major sources of ROS in cancer are mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [34,35]. Mitochondrial respiratory chain complexes are generally thought to be responsible for generating ROS, O_2^-, and H$_2$O$_2$, in particular. Research in the early 1970s by Chance and collaborators provided the first evidence for mitochondrial generation of ROS [36]. Although O_2^- formation in mitochondria was not convincingly demonstrated, Chance and coworkers demonstrated mitochondrial generation of H$_2$O$_2$ using a sensitive spectrophotometric method [36]. H$_2$O$_2$ was measured in the cytosolic extracts derived from mitochondria using the absorption changes that occur during the catalytic cycle of cytochrome c peroxidase and H$_2$O$_2$. This is a fundamentally significant discovery revealing an aberrant oxygen metabolism (albeit less than 1%) during mitochondrial respiration [37].

Complex III in the mitochondrial respiratory chain could form O_2^- when mitochondria were treated with the inhibitor, antimycin. Mitochondrial complex I is another source of O_2^- generation in the presence of rotenone that inhibits complex I [38]. Superoxide from complex I is also formed under conditions of a high proton motive force and reduced coenzyme Q pool (i.e., a situation known as the reverse electron transport mechanism wherein electrons are driven back through complex I) [39].

That mitochondria also generate O_2^- and H$_2$O$_2$ under in vivo conditions is supported by the existence of manganese superoxide dismutase (MnSOD) and other antioxidant enzymes (peroxidases and peroxiredoxins) in the mitochondrial matrix, and by the pathological consequences (e.g., mitochondrial oxidative stress including DNA damage) resulting from their deficiency.

Nox enzymes are emerging as a promising target for anticancer drug development due to mounting evidence that suggests that NADPH/Nox-derived ROS inhibit tumor apoptosis and stimulate tumor proliferation [40,41]. Several Nox isoforms (e.g., Nox2 and Nox4) have been proposed as potential therapeutic targets in the treatment of cancer and other diseases [42]. Unlike other redox enzymes for which ROS generation is an “accidental” byproduct of their primary catalytic function, the only known function of Nox enzymes (Nox1-5, Duox1-2) is generation of ROS (e.g., O_2^- and H$_2$O$_2$) [43]. Nox2 forms both O_2^- and H$_2$O$_2$ (via dismutation of O_2^-); however, published reports suggest that Nox4 primarily generates H$_2$O$_2$ (90%) [44,45]. A major impediment to advancing Nox research in cancer biology is the lack of availability of selective inhibitors of Nox isoforms [46]. This, in turn, had been due to the lack of assays selective for O_2^- and H$_2$O$_2$ using specific probes, but this hurdle has been largely overcome with recent discoveries of new probes and sensitive assays for detection of ROS and RNS [47].

Oncogenic KRAS was reported to promote ROS/RNS generation by increasing the expression and activity of Nox enzymes at the tumor cell membrane [48]. However, it is likely that Nox activity is modulated by changes in mitochondrial bioenergetics. Although there are reports in the vascular biology literature of potential “cross-talk” between mitochondrial ROS and Nox activation [49], there is no information, to our knowledge, on the modulatory role of mitochondrial metabolism on Nox/ROS metabolism and oxidative signaling in cancer biology. Although, this particular aspect is outside the scope of the present review, understanding how modifications of cancer cell bioenergetics and
metabolism affect the NADPH/Nox/ROS pathway or phosphorylation of the upstream target in Nox activation could be highly significant in metabolism-based drug therapeutics.

4. Assays and probes for intracellular detection of ROS (O$_2$•– and H$_2$O$_2$)

Most publications concerning ROS production in biology, including cancer biology, involve the use of redox dyes—dichlorodihydro-fluorescein (DCFH), HE, and Mito-SOX (Fig. 3)—and their oxidation products were detected by fluorescence. Neither O$_2$•– nor H$_2$O$_2$ was reported to react at any appreciable rate with DCFH [50]. Measuring the oxidation of redox dyes by fluorescence is definitely not the same as measuring cellular ROS. This is an important and significant distinction that is validated by a thorough understanding of the chemistry (kinetics, stoichiometry, and analyses of intermediates and products) established for these dyes in the presence of various biologically relevant reactive oxygen and nitrogen species. Investigators have used DCFH-derived green fluorescence for detecting intracellular H$_2$O$_2$ and HE•–, and Mito-SOX-derived red fluorescence for detecting intracellular and mitochondrial generation of O$_2$•– [51,52]. However, most likely the investigators were monitoring the oxidation of the redox dyes (DCFH, HE•–, and Mito-SOX) through a similar peroxidatic mechanism (iron, heme iron, or cytochrome c-catalyzed) in the presence of O$_2$•– and H$_2$O$_2$ (Fig. 3) [20]. Enhanced fluorescence was related to tumorigenesis and metabolic reprogramming in tumor cells [53,54]. However, enhanced fluorescence from oxidation of redox dyes cannot be equated to enhanced O$_2$•– formation. As reiterated earlier, it is essential to separate and identify the specific products derived from the O$_2$•– reaction with HE and Mito-SOX under these conditions before implicating the intermediacy of O$_2$•– and/or H$_2$O$_2$ in redox-dependent processes (Fig. 4).

We and others have shown that inhibition of complex I in mitochondria results in increased production of O$_2$•– and other one-electron oxidants [55]. We used HPLC-based analyses to determine...
Corresponding O$_2^-$ formed during redox processes in tumor cells, it is essential to separate and detect the respective phenolic product, MitophB(OH)$_2$. Radish peroxidase may be used to measure extracellularly released Met10 followed by monitoring of cellular oxidant using Mito-SOX. As shown in Fig. 5B, the intracellular levels of both the probe and the product were quantitated. Mito-Met10 induced an increase in the fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65]. As with HE, the only way to detect mitochondrial O$_2^-$ using Mito-SOX is to measure the marker product, 2-OH-Mito-E$^+$. Thus, the fluorescence obtained using Mito-SOX does not measure mitochondrial O$_2^-$ but simply indicates the oxidation of Mito-SOX. Unfortunately, a multitude of publications claim to have detected mitochondrial O$_2^-$ on the basis of increased fluorescence intensity from cancer cells using Mito-SOX as the ROS detection probe [64,65].
different from MitoSOX in that oxidation products derived from it do not intercalate into DNA, thereby preventing amplification of the red fluorescence due to the binding of the oxidation product to DNA [68]. MitoNeoD contains a reduced phenanthridinium moiety (modified to prevent DNA intercalation) that reacts with O$_2^•$– to form the hydroxylated product, MitoNeoOH (Fig. 7), with the intermediacy of the radical cation of MitoNeoD (formed from one-electron oxidation of the probe). MitoNeoD contains a carbon-deuterium bond that inhibits some pathways of nonspecific oxidation, thereby enhancing selectivity toward O$_2^•$–. Finally, this probe possesses a triphenylphosphonium lipophilic cation that facilitates its uptake into mitochondria. It should be emphasized, however, that even the deuterated probe is not selective toward O$_2^•$–, and chromatographic analyses are required for specific monitoring of the superoxide product (MitoNeoOH). MitoNeoD and mito-paraquat (a mitochondria-targeted redox cycling agent) were administered to mice, and the hydroxylated product, MitoNeoOH, was

Fig. 5. Mito-metformin induces increased O$_2^•$– and H$_2$O$_2$ formation in pancreatic cancer cells. O$_2^•$–-dependent oxidation of the HE probe (A) and H$_2$O$_2$-dependent oxidation of the probe, o-MitoPhB(OH)$_2$ (B) in MiaPaCa-2 cells treated for 24 h with Mito-Met10. (Obtained from Refs. [55,59]. Reprinted from Cancer Research, 76, G. Cheng, J. Zielonka, O. Ouari, M. Lopez, D. McAllister, K. Boyle, C.S. Barrios, J.J. Weber, B.D. Johnson, M. Hardy, M.B. Dwinell, B. Kalyanaraman, Mitochondria-targeted analogs of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells, 3904-15, Copyright 2016, and from Interface Focus, 7, B. Kalyanaraman, G. Cheng, M. Hardy, O. Ouari, A. Sikora, J. Zielonka, M. Dwinell, Mitochondria-targeted metformins: anti-tumor and redox signaling mechanisms, 20160109, Copyright 2017.).
detected in the mitochondria isolated from the liver [68]. In the presence of mito-parquat, the yield of the hydroxylated product was increased, indicating the feasibility of detecting mitochondrial O$_2^\cdot$ - in vivo settings, when combined with LC-MS-based analyses of the extracts. Because of the deuterium isotope effect and the bulky substituent attached next to the amino group, it is likely that direct two-electron oxidation of the probe to the E$^+\cdot$ -type product (MitoNeo cation) is minimized as compared with HE or Mito-SOX [68].

6. Redox signaling, drug resistance, and metabolic reprogramming in cancer cells: The role of mitochondrial ROS

As described previously, to better understand the role of ROS in redox (reduction-oxidation) signaling and vice versa, it is important to determine the identity of ROS (O$_2^\cdot$ -, H$_2$O$_2$, lipid, or protein oxidation products). Previously, it was thought that ROS are always cytotoxic to both cancer and normal cells. This has been the basis for cytotoxic chemotherapy and radiation therapy, and the therapeutic goal has been to increase the therapeutic window, enhancing tumor cytotoxicity and decreasing toxicity normal cells. So, an effective therapeutic strategy was to inhibit ROS levels in normal cells through enhanced antioxidant pathways actually enhanced tumor survival [69,70]. A major limitation of the newly proposed role is that there is very little quantitative information on ROS (modest and high levels) and their effect on cancer cell proliferation/cancer cell apoptosis. As reported previously, ROS formation and metabolic changes are intertwined in cancer cells [1]. The redox status of various cancer cells appears to be dependent on the metabolic reprogramming that occurs during tumorigenesis, progression, and metastasis of cancer cells. Metabolic reprogramming also induces endogenous antioxidant machinery [71]. Increased detoxification of ROS has also been shown to promote tumorigenesis [72]. Furthermore, low levels of ROS activate signaling pathways for cell proliferation and survival [73]. Thus, it is difficult to predict cancer cell response to ROS modulation based on in vitro cell culture studies. With radiation therapy, however, tumors are irradiated using a focused X-ray beam, and the tumor cell killing is enhanced and the damage to collateral tissue is minimized. Radiation therapy induces ROS (e.g., hydroxyl radical)-mediated DNA damage in tumor cells. However, cancer tissues are more hypoxic than normal tissues, so the lack of oxygen is one of the major limitations of radiation therapy.

Increased ROS formation and metabolic reprogramming were shown to occur in cis-platin resistant cells [74,75]. The resistance to antitumor drugs is a major impediment in chemotherapy [76,77]. Generally, widely used antitumor drugs like cis-platin elicit positive response in lung cancer patients, but with continued use, the patients develop resistance to cis-platin therapy and this treatment fails. Most chemotherapeutic drugs are subjected to chemotherapy. Studies using cis-platin-resistant cell lines derived from patients who failed cis-platin chemotherapy revealed metabolic reprogramming [78]. These resistant cells relied exclusively on oxidative metabolism and exhibit increased OXPHOS (mitochondrial respiration) as determined by using the Agilent Seahorse Extracellular Flux Analyzer [79]. However, the signaling pathway responsible for enhanced OXPHOS in cis-platin-resistant lung cancer cells was not determined.

As described earlier, increased fluorescence due to using redox dyes simply points to their enhanced oxidation; it does not provide evidence in support of enhanced ROS (O$_2^\cdot$ -, H$_2$O$_2$, or lipid hydroperoxides) formation. Although ROS detection and identification remain questionable, the investigators report a novel role for the drug riluzole’s ability to counteract cis-platin’s resistance in lung cancer cells using the oxidation of redox probes [75].

7. Oxidative phosphorylation-inhibiting drugs: Mitochondria-targeted agents and antiproliferative effects

Cancer cells use multiple metabolic pathways to acquire nutrients to support their ever-increasing energetic needs. These include glycolysis, glutaminolysis, and fatty acid oxidation. Treatment with antiglycolytic drugs induces a compensatory increase in OXPHOS. In addition, inhibitors of kinase drugs (which often decrease glycolysis) enhance drug resistance and the OXPHOS mechanism [80]. Cancer-cell-specific OXPHOS inhibitors are needed to counteract this compensatory response, and currently available mitochondrial inhibitors are not very selective.

Cancer cells expressing oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) showed increased dependence on oxidative metabolism and are more sensitive to pharmacological inhibition of OXPHOS. Mutant IDH1 cells exhibited higher sensitivity to electron transport chain inhibition under hypoxia [81]. Results indicate that IDH1 mutant cells are more dependent on complex I of the electron transport chain and, consequently, are more susceptible to complex I inhibition. Anti-OXPHOS drugs (mitochondria-targeted drugs) are likely to exhibit enhanced antiproliferative effects in mutant IDH1 cells under hypoxic conditions.

Oxidative phosphorylation-inhibiting (anti-OXPHOS) drugs refer to mitochondria-targeted or mitochondrial drugs that decrease the rate of mitochondrial respiration through inhibition of electron transport chain proteins such as complex I. Delocalized cations (e.g., rhodamine dye) accumulate into mitochondria and inhibit mitochondrial respiration of cancer cells. Molecules conjugated to the TPP$^+$ moiety (e.g., Mito-Q, Mito-CP, Mito-chromanol or Mito-vitamin-E, Mito-metformin; Fig. 8 and Fig. 9) accumulate preferentially into mitochondria driven by an increased negative membrane potential [82-84]. Because of the increased mitochondrial membrane potential in cancer cells as compared...
with normal, non-transformed cells, TPP⁺-containing molecules accumulate in tumor mitochondria to a higher extent and longer than in normal cell mitochondria. Both Mito-CP and Mito-vitamin E potently and selectively inhibit complex I-mediated mitochondrial respiration or oxygen consumption. These molecules are also retained in cancer cell mitochondria more than in normal cell mitochondria and, therefore, cause decreased mitochondrial respiration in cancer cells for a prolonged period of time. Although Mito-SOX and mito-boronates are used as ROS probes, it should be noted that these probes contain a TPP⁺ moiety and can inhibit OXPHOS like other TPP⁺-containing mitochondria-targeted compounds [67,85].

Metformin and Mito-metformin inhibit cancer cell proliferation through the inhibition of complex I, ROS generation, activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR function. Anti-OXPHOS drugs are different from rapamycin, which directly blocks mTOR leading to AMPK activation. Mito-metformin₁₀ is the most potent of all Mito-metformin analogs tested in inhibiting complex I-mediated oxygen consumption [59]. The IC₅₀ values for inhibiting oxygen consumption decrease with increasing carbon-carbon side chain length. Inhibition of pancreatic cancer cell proliferation measured under these conditions follows the same pattern, pointing to the causative role of complex I inhibition in the antiproliferative effects of Mito-metformins.

8. Establishing the mechanism using the right control: An example using a mitochondria-targeted nitroxide

Anti-OXPHOS drugs containing TPP⁺ typically stimulate ROS formation in cancer cells [86,87]. At the same time, these drugs inhibit cancer cell proliferation [84]. H₂O₂ generated by oncogene activation enhanced tumor cell proliferation via stimulation of mitogen-activated protein kinase (MAPK) [88], as discussed in a subsequent section. Mito-CP containing the 10-carbon side chain is paradoxical in that it contains a nitroxide group that can function as a superoxide mimetic (SOD) mimetic while stimulating mitochondrial ROS through inhibition of complex I. We had previously used Mito-CP to mimic mitochondrial SOD activity and protect endothelial cells from oxidant-induced damage [89]. Nitroxides such as carboxy proxyl (CP) and Tempol have previously been used as SOD mimetics (like the SOD enzyme, CP catalytically dismutates O₂⁻ to H₂O₂ and O₂) [90]. Mito-CP is a CP analog that is synthesized by conjugating a TPP⁺ group to CP via an 11-carbon alkyl chain (Fig. 9). Mito-CP protected endothelial cells from oxidative injury induced by exposure to a steady flux of H₂O₂ and lipid hydroperoxides [89]. Mito-CP prevented the inactivation of mitochondrial aconitase (an endogenous marker of O₂⁻ production) in endothelial cells, and this effect was attributed to dismutation of O₂⁻ by Mito-CP. The “untargeted” nitroxide, CP (as a control), did not protect against endothelial cell damage or inactivation of aconitase.

In studies using cancer cells, Mito-CP was found to significantly inhibit cancer cell proliferation [91–95]. This finding supported the view that mitochondria-generated O₂⁻ plays a role in cancer cell proliferation and that Mito-CP inhibits cell proliferation by removing O₂⁻. In control experiments, an alkyl TPP⁺ and CP were used. This combination did not selectively inhibit cancer cell growth, suggesting that CP (containing the nitroxide moiety) should be conjugated to TPP⁺ for efficacy.

More recently, a Mito-CP analog, Mito-CP-Ac, that contains an acetamide group in place of the nitroxide of Mito-CP, was used [94]. The Mito-CP-Ac is nearly the same as Mito-CP except for the replacement of the nitroxide group by an acetamide group (Fig. 9). Mito-CP-Ac does not possess the O₂⁻ scavenging ability so it was an ideal control molecule. Mito-CP-Ac inhibited cancer cell proliferation as effectively as did Mito-CP. Mito-CP-Ac was not metabolized to Mito-CP intracellularly [94]. This finding challenged our original interpretation that Mito-CP inhibited cancer cell proliferation by dismutating O₂⁻. We subsequently revised our original proposal that the antiproliferative effect of Mito-CP is caused by its ability to dismute O₂⁻ or scavenge ROS and that a likely mechanism for the antiproliferative effects of Mito-CP and Mito-CP-Ac in cancer cells might be linked to their abilities to induce mitochondrial stress and activate redox signaling mechanisms rather than the SOD mechanism [94].

The results obtained from using both Mito-CP and Mito-CP-Ac have implications in understanding the effects of other mitochondria-targeted nitroxides including Mito-Tempol and Mito-Tempo [96]. Tempol, amino Tempol, and other Tempol/Tempo analogs are six-membered nitroxides whereas the CP family consists of a five-membered nitroxide. Mitochondria-targeted Tempol or Tempo analogs synthesized via attachment to the TPP⁺ moiety using linkers such as varying alkyl chain lengths are typically used to test the involvement of mitochondrial O₂⁻ (also referred to as MROS) and O₂⁻-induced redox signaling in cancer cells [65]. It is also likely that Mito-Tempo is acting as a chain-breaking antioxidant via its hydroxylamine form. On the basis of Mito-CP and Mito-CP-Ac results in cancer cells, it is clear that one has to use the most appropriate control (i.e., Mito-Tempo-Ac) (Fig. 10) to absolutely verify the role of O₂⁻. Mito-Tempo-Ac lacks the nitroxide moiety needed to
dismutate O_2^- but will accumulate in mitochondria stimulating other stress-induced redox signaling mechanisms (such as Mito-Tempol) in cancer cells.

Investigators recently showed that lipid electrophiles generated endogenously during the inflammatory response form adducts with mitochondrial proteins [97]. In the presence of Mito-Tempo, a marked decrease in lipid electrophile addition to proteins was observed. It was concluded that O_2^- generated in the mitochondrial electron transport chain is a precursor responsible for lipid electrophile generation. This is indeed a novel mechanism that should be further corroborated using a more appropriate control (e.g., Mito-Tempo-Ac) that is similar to Mito-Tempo but devoid of the nitroso moiety and its superoxide dismutating ability.

9. Peroxiredoxin enzymes: A family of thiol peroxidases

Peroxiredoxins are a family of redox sensing thiol peroxidase enzymes that detoxify H_2O_2 in combination with thioredoxin (Trx) and thioredoxin reductase (TrxR). Mitochondria typically contain two peroxiredoxin isoenzymes (Prx3 and Prx5). Although low molecular weight thiols such as cysteine and glutathione and redox-regulated proteins with low pK_a cysteines react with H_2O_2 rather slowly ($k = 1\text{--}10 \text{ M}^{-1}\text{s}^{-1}$), protein thiol peroxidases (e.g., peroxiredoxins and glutathione peroxidases) react rapidly with H_2O_2 ($k = 10^2\text{--}10^4 \text{ M}^{-1}\text{s}^{-1}$) [98,99]. The antioxidant potency of peroxiredoxins is vastly enhanced due to redox-coupled processes with the Trx/TrxR system (Fig. 11). Prx3 is present in mitochondria at a fairly high concentration ($60 \mu\text{M}$) and reacts with H_2O_2 very rapidly ($k = 10^7\text{ M}^{-1}\text{s}^{-1}$) compared with catalase. Although the enzyme glutathione peroxidase-1 (GPx1) also reacts with H_2O_2 rapidly ($k = 6 \times 10^7\text{ M}^{-1}\text{s}^{-1}$), its concentration in mitochondria is relatively low (~2 μM). Thus, Prx3 is the major H_2O_2 detoxifying enzyme (~90% of H_2O_2) in mitochondria [100].

In the first step of the reaction, the cysteine residue of Prx3 reacts with H_2O_2 to form a protein sulfenic acid (Cys-SOH) that combines with another Prx3 cysteine to form an intermolecular disulfide bond. In the second step, the oxidized Prx3 is converted back to its reduced state by Trx and TrxR2. In the presence of excess H_2O_2, Prx3 cysteine sulfenic acid undergoes hyperoxidation to form an inactive Prx3 cysteine sulfonic acid (Cys-SOOH) [101,102].

Because of its relative stability and selective reactivity with cellular components, intracellularly generated H_2O_2 may diffuse over large distances (several microns) and participate in signal transduction. Thus, any involvement of ROS (H_2O_2 in particular) in tumorigenesis needs to be considered in the context of the presence and reactivity of peroxiredoxins and glutathione peroxidases and other redox partners involved (Fig. 11). Emerging studies in cancer are recognizing the role of transcription factors such as STAT3 in the redox signaling pathway and cell proliferation [103], as discussed in a subsequent section.

10. How does oxidative stress regulate cell signaling and proliferation of tumor cells?

One of the mechanisms by which tumor cells maintain non-cytotoxic levels of ROS is through upregulation of antioxidant enzyme expression (e.g., controlled via the nuclear factor erythroid 2 [Nrf2] pathway) and reductive cofactors (NADPH and GSH). At nontoxic levels, H_2O_2 can regulate cancer cell signaling through oxidation of cysteine residues. For example, H_2O_2 inactivates the PTEN molecule, a tumor suppressor, by oxidizing the active site cysteine to a disulfide, which prevents inactivation of the PI3 pathway [104]. Endogenous oncogene-mediated generation of ROS (H_2O_2 in particular) enhances tumor cell proliferation by stimulating MAPK/extracellular signal regulated kinase (ERK) pathways by inhibiting the action of MAPK phosphatases (via oxidation of the active site cysteines). ROS therefore can modulate/regulate cellular signaling factors. For example, ROS generated from mitochondria are required for KRAS lung cancer growth resulting from MAPK/ERK activation [95]. Increased ROS can also activate transcription factors like the nuclear factor kappa B (NF-kB), which enhances cancer cell proliferation [105].

Alternatively, ROS levels can be increased to a cytotoxic level in breast cancer cells and breast cancer models by using inhibitors of GSH and Trx pathways. Inhibiting the antioxidant enzyme, glutathione peroxidase, through suppression of fumarate in the Krebs cycle, enhanced ROS levels and cancer cell growth [106]. As a result of the paradoxical role of ROS in cancer cells, both pro- and antioxidant approaches have shown tumor enhancing and tumor regressing effects [107]. Similar to autophagy and mitophagy, which have been shown to be both pro- and antitumorigenic, mitochondria-generated ROS can exert tumor promoting and tumor suppressing effects. These are also dependent on tumor stage. The good and bad aspects of ROS have previously been addressed in relation to aging [108]. The signaling aspects of ROS (induction of host defense pathway via a horrmetic mechanism) are considered to be good/pro-survival, whereas ROS-induced oxidative damage to DNA, proteins, and lipids is considered bad/pro-death. Because antioxidants could inhibit both the good and bad aspects of ROS activities, the clinical interventions using antioxidants could be problematic in the absence of the right balance [109]. It is likely that we face the same type of ROS conundrum in cancer biology research as well. In addition, reports suggest that a subset of melanoma tumor cells exhibit metabolic reprogramming heterogeneity with different bioenergetic and ROS detoxification capabilities [110]. Clearly, a more detailed understanding of how cancer cells reprogram metabolism to combat oxidative damage is vital prior to clinical intervention with antioxidants.

Recent literature suggests that reprogramming of cellular metabolism plays a crucial role in tumorigenesis [111]. Cancer cells acquire energy to proliferate through metabolic reprogramming as follows: altered glucose utilization, glutamine addiction or glutaminolysis, and lipid metabolism. Modulating the pathway generating cellular redox-sensitive, NADPH, GSH) can affect ROS formation/scavenging and tumorigenesis. Elevation of glutamine utilization (increased catabolism of glutamine, glutamine addiction) is one of the hallmarks of metabolic reprogramming in tumors. Glutamine is converted to glutamate by glutaminase (also upregulated by transcription factor cmyc) and glutamate is oxidized to α-ketoglutarate that enters into the TCA cycle. Transaminases use α-ketoglutarate to support redox homeostasis.

Sirtuin 3 (SIRT3) is a major deacetylase in mitochondria that is also considered as a ROS mitigator in cells. SIRT3 targets MnsOD and isocitrate dehydrogenases. Reports suggest that SIRT3 could have a dual role in cancer, both as an oncogene and tumor suppressor [112]. Tumor suppressors, such as p53, regulate glutaminase, an enzyme involved in the formation of glutamate required for synthesis of glutathione [113,114]. Loss of p53 results in increased levels of ROS and oxidative damage in cancer cells [115].

PPARγ coactivator-1α (PGC1α) is a transcription factor that is
involved in mitochondrial biogenesis, oxidative metabolism, and metabolic reprogramming [116,117]. The role of PGC1α in tumorigenesis, progression, and metastasis appears to be dependent on cancer type, reflecting the influence of microenvironment (nutrient status and tissue hypoxia) and genetic perturbations on the metabolic state of cancer cells [118]. PGC1α exhibits both pro- and antitumor function in cancer cells [119,120]. PGC1α increases mitochondrial respiration and biogenesis and helps cancer cells cope with enhanced metabolic and oxidative stress through enhanced expression of ROS detoxification enzymes and increased resistance to cancer therapy. PGC1α reportedly decreases mitochondria-generated ROS [110]. Inhibiting PGC1α activity or its expression has been shown to enhance ROS levels and increase stabilization of the HIF1α protein, inducing a switch in metabolism from OXPHOS to glycolysis [121]. PGC1α-positive melanoma cells are more sensitive to disruption of mitochondrial respiration as they depend on PGC1α for survival. Conversely, PGC1α-negative melanoma cells with compromised antioxidant enzyme activity are more susceptible to ROS-generating drugs and oxidative stress (Fig. 12).

The role of PGC1α in tumorigenesis is paradoxical and is dependent on the type of cancer and its phenotype. PGC1α is reported to be pro- and antitumorigenic. In contrast with melanoma cells, PGC1α suppresses prostate cancer metastasis and inhibits renal cell carcinoma [117]. PGC1α overexpression impaired renal cancer cell growth by enhancing ROS and oxidative stress. PGC1α also enhances the susceptibility of renal carcinoma cells, RCC4, to cytotoxic therapy (radiation or doxorubicin) [121]. PGC1α enhanced mitochondrial content, ROS formation, and oxidative damage leading to impaired tumor growth [117,120]. Thus, measurement of PGC1α levels in tumor subsets could help design appropriate anticancer drug therapy.

11. Do antioxidants enhance tumorigenesis and tumor metastasis?

It is well known that ROS (hydroxyl radical, H₂O₂, and O₂⁻ and redox metal ions) can cause oncogenic mutations, and that treatment with antioxidants and antioxidant enzymes (ebselen, catalase, SOD, and SOD mimetics) inhibits the initiation and progression of some cancers [122]. However, several studies report the opposite results. The cancer biology field shares the same concerns (as the cardiovascular field) with respect to antioxidant supplementation. Antioxidant supplementation shows both beneficial and deleterious effects [123]. Of significance was the report demonstrating that antioxidant supplementation enhanced lung cancer progression in mouse models of BRAF- and KRAS-induced lung cancer. Two functionally different compounds were used to test the effect of antioxidants on cancer: a lipid-soluble vitamin E (a *bona fide* lipid peroxidation inhibitor and a chain-breaking antioxidant that terminates lipid peroxidation by scavenging ROS, lipid peroxyl radical) and a water-soluble drug, N-acetylcysteine (NAC), that is not a conventional antioxidant that reacts with ROS (O₂⁻ and H₂O₂) at an appreciable rate compared with the endogenous antioxidant enzymes. However, NAC supplementation enhances the intracellular glutathione levels that will decrease ROS levels through enhanced activity of antioxidant enzymes. Despite limitations and problems in data interpretation with respect to ROS, this study is clearly provocative and questions the indiscriminate supplementation of antioxidants such as isoflavones, beta-carotenes, vitamin E, and NAC for suppressing tumor progression [124]. Oxidative stress was reported to inhibit melanoma metastasis [125]. Supplementation with antioxidants (NAC) promoted metastasis by inhibiting oxidative stress.

The paradoxical behavior of ROS and antioxidants in cancer is not unique in that similar effects have been observed in other fields of research including aging and cardiovascular diseases [108,126]. Several years ago, it was shown that beta-carotene may have an adverse effect on the incidence of lung cancer and cardiovascular disease in a clinical trial involving smokers [127]. Although the pro-oxidant mechanism of action is not known, this study pointed out the inadequacy in our understanding of the pro- and antioxidant mechanisms of action in humans.

12. Therapeutic targeting of signaling pathways

ROS-mediated signaling pathways, elevated in many tumors, are involved in cell growth and proliferation, differentiation, survival, and metabolism. ROS, in particular H₂O₂, may act as second messengers in cell signaling. H₂O₂ regulates protein activity via direct or indirect reversible oxidation of protein tyrosine phosphatases, protein and receptor tyrosine kinases, and transcription factors [128,129].

12.1. PI3/Akt signaling pathway

One of the hallmarks of cancer is the hyperactivation of the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and is an attractive target for antitumor therapy. Akt is a proto-oncogene that is activated in many cancers. In addition to growth factors, ROS (possibly H₂O₂) are involved in the mechanisms responsible for PI3K signaling [130]. The activated PI3K subsequently phosphorylates phosphatidylinositol-4,5-biphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) that acts as a signaling molecule to recruit phosphoinositide-dependent kinase-1 (PDK1) and protein kinase B (PKB, also known as Akt). The tumor suppressor phosphatase, PTEN, downregulates the PI3K/Akt signaling pathway by dephosphorylation of PIP3 back to PIP2 [131]. ROS (importantly H₂O₂) oxidize the cysteinyln in PTEN molecules such that PTEN is inactivated, thereby resulting in activation of the PI3K/Akt signaling pathway and tumor progression. Akt is hyper-activated by other mechanisms as well, and is involved in the regulation of multiple cellular activities. Akt inhibits the forkhead box O (FOXO) transcription factor and subsequently regulates apoptosis, leading to enhanced tumor growth [132,133].

12.2. MAPK/Erk1/2 pathway

ROS such as H₂O₂ can oxidatively modify the cysteinyl residue of proteins (*e.g.*, protein tyrosine phosphatases [PTPs], protein tyrosine kinases [PTKs], and protein kinase C [PKC]) and subsequently activate downstream kinase cascade (*e.g.*, MAPKs). One of the most extensively studied MAPK pathway is the ERK1/2 signaling pathway. ERK1/2 activation is linked to regulation of cancer cell survival, proliferation, and metastasis [134]. Mutations in genes encoding RAS and RAF modulate cancer development through the RAS-RAF-MEK-ERK kinases axis.

12.3. AMPK/mTOR

Mitochondria-targeted therapeutics (*e.g.*, Mito-metformin) activate AMPK [59]. AMPK is a master energy sensor within the cell. AMPK...
activation is initiated by the enhanced intracellular ratio of AMP to ATP. AMPK activation results in the upregulation of ATP-generating pathways and decreased ATP-consuming pathways. AMPK regulates the redox state by mitigating the NADPH depletion that occurs via increased fatty acid oxidation and decreased fatty acid pathways. The relationship between AMPK activation and cancer cell proliferation became evident in light of the protective effects induced by AMPK inhibitors. Inhibiting AMPK signaling by dorsomorphin (compound C) reversed the antiproliferative effect of mitochondria-targeted therapeutics such as Mito-metformin [59]. Mito-metformin stimulated O$_2^-$ and H$_2$O$_2$ formation in pancreatic cancer cells (Fig. 5) [55,59,87]. Mito-metformin-induced inhibition of complex I was thought to be responsible for formation of O$_2^-$ and H$_2$O$_2$. We proposed that H$_2$O$_2$ derived from complex I inhibition was responsible for the AMPK activation and mTOR inhibition that are related to the inhibition of proliferation (Fig. 13). A recent report also suggested that mitochondrial ROS were responsible for the AMPK activation that was linked to oxidation of calmodulin kinase II [135]. Inhibiting calmodulin kinase II suppressed AMPK activation. Additional experiments using AMPK knockout cells and xenografts are needed to gain a complete understanding of the role of ROS in the AMPK signaling mechanism.

12.5. Keap1 mutations, Nrf2-targeted gene activation, ROS, and glutamine uptake in tumor cells

Tumor cells are metabolically hyperactive during tumorigenesis in order to meet and sustain their energy and building-blocks requirements for enhanced growth. Enhanced metabolism results in ROS generation during tumorigenesis [136]. Tumor cells activate the Nrf2 pathway via metabolic reprogramming to stimulate the expression of antioxidant enzymes, leading to decreased ROS levels [137]. Glutathione synthesis was elevated in Keap1 or Nrf2-mutant lung cancers through enhanced glutaminolysis.

The Keap1 (Kelch-like ECH-associated protein 1) gene is one of the most frequently mutated genes in KRAS-mutant lung adenocarcinoma. It is estimated that approximately 20% of KRAS-mutant lung cancer cells carry the mutated Keap1 gene. Keap1 is a negative regulator of Nrf2, the master transcriptional regulator of the endogenous antioxidant response, and thus is critical for maintaining the redox homeostasis in cells.

Keap1-Nrf2 is a redox regulating system that plays a critical role in oxidative stress and cytoprotection. Under basal conditions or non-oxidative stress conditions, the Keap1/Nrf2 complex is constantly degraded by the ubiquitin-proteasome pathway. Increased levels of ROS or electrophiles (4-HNE formed from oxidized lipids) result in modulation of the cysteiny1 residues of Keap1 and stop the negative regulation of Nrf2 by Keap1. Consequently, Nrf2 is stabilized and migrates to the nucleus and activates the expression of target genes that include antioxidative stress genes (heme oxygenase 1, peroxiredoxin 1, MnSOD), detoxifying enzyme genes (NADPH quinone oxidoreductase, glutathione S-transferases), and ABC transporter genes (Fig. 15).

Nrf2 has a dual mechanism of action in cancer therapies, exhibiting chemotherapeutic and radiotherapy resistance and proliferative capacity, and promoting host defense against cancer cells. Nrf2 protects against oxidative stress in normal cells, and Nrf2 activation in cancer cells induces drug and radiation resistance. Patients bearing Nrf2-activated tumors exhibit poor prognoses. Activation of Nrf2 is associated with tumor resistance to anticancer drugs via detoxification of ROS and electrophiles induced by the drugs. Inhibitors of the Keap1-Nrf2 pathway enhanced chemosensitivity in lung cancer cells [138].

12.6. ROS and autophagy

Autophagy or “self-eating” is a highly regulated process of removing modified or damaged intracellular proteins that are presumably required to maintain redox homeostasis [139]. Its functional role (cytoprotective or cytotoxic) in normal and cancer cells is different and context-dependent [140]. Enhancement or mitigation of autophagy in tumorigenesis depends on the tissue, the stage, and the type of tumor [141]. It is becoming more evident that ROS generated from mitochondria (and probably from Nox activation) and the resulting oxidative stress is responsible for increasing autophagic flux, which, in

Fig. 13. Mito-metformin and activation of AMPK: Potential signaling role of H$_2$O$_2$. (Obtained from Ref. [59]. Reprinted from Cancer Research, 76, G. Cheng, J. Zielonka, O. Ouari, M. Lopez, D. McAllister, K. Boyle, C.S. Barrios, J.J. Weber, B.D. Johnson, M. Hardy, M.B. Oehler, T. Ruppert, A.N.D. Scharf, T.P. Dick, Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nature Chemical Biology 11(1) (2015) 64-70, copyright 2015.)

Fig. 14. Redox signaling of H$_2$O$_2$ via peroxiredoxin/Trx redox relay including STAT3 transcription factor. (Obtained from Ref. [101]. Reprinted by permission from Macmillan Publishers Ltd: Nature Chemical Biology, M.C. Sobotta, W. Liu, S. Stöcker, D. Talwar, M. Oehler, T. Ruppert, A.N.D. Scharf, T.P. Dick, Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nature Chemical Biology 11(1) (2015) 64-70, copyright 2015.)
turn, decreases ROS levels. Thus, autophagy can play an antitumoral and protumoral role during cancer development [142]. ROS were proposed to serve as intracellular messengers to regulate autophagosome formation. During the initiation phase, where ROS-induced DNA damage is the key event, autophagy plays an antitumoral role. However, during the propagation, progression, and metastatic phases of cancer development, autophagy may play a protumoral role because of decreased ROS-mediated oxidative stress and increased production of nutrients provided by autophagic activation.

Starvation or nutrient deprivation triggers autophagy. Pharmacologically, mitochondria-targeted drugs can promote autophagy through stimulation of bioenergetic stress, increased ROS formation, AMPK activation, and mTOR inhibition [142]. Alternatively, enhanced PI3K-1/Akt and MAPK/ERK1/2 signaling activate mTOR and regulate autophagy [144]. It is clear that the balance between ROS levels and ROS-induced autophagy is critical for tumor progression or regression. Antioxidants and their paradoxical effects in cancer may be linked to the cytoprotective or cytotoxic mechanisms of autophagy.

Antimalarial drugs, chloroquine and hydroxychloroquine, inhibit autophagy and are undergoing clinical trials as antitumor drugs [145]. However, reports also indicate the potentially deleterious adverse effects of inhibiting autophagy in kidney and other organs [146]. Combining chloroquine with the standard-of-care chemotherapies (cis-platin and doxorubicin) was reported to exacerbate nephrotoxicity and possibly cardiotoxicity [147].

12.7. ROS and the tumor microenvironment

T cells in the tumor microenvironment (TME) are effective in recognizing and killing malignant cells. The TME, especially in pancreatic tumors, has been shown to be immunosuppressive, and granulocytic myeloid-derived suppressor cells (MDSC) have been identified as suppressors of the immunoresponse to tumor cells [148]. Previously, Corzo et al. showed that ROS generated from Nox2 were responsible for T cell inactivation or suppression by granulocytic MDSC [149]. The defective T cell reactivity against the tumor is a prominent feature of tumor suppressive microenvironment in PDAC. Because MDSC deficient in Nox2 do not suppress T cell reactivity, it was rationalized that Nox2-generated ROS caused the inactivation of T cells. Inhibiting Nox signaling using small molecular weight compounds could potentially enhance tumor-specific T cell responses.

The role of Nrf2 in the tumor microenvironment is intriguing. MDSC consisting of macrophages, dendritic cells, and neutrophils support tumor development and metastasis by inhibiting innate and adaptive immunity. ROS generated by MDSC in the tumor microenvironment facilitate immunosuppression by MDSC. Nrf2 activation regulates the immunosuppressive action of MDSC by modulating ROS levels [150,151].

13. In vivo measurements of ROS in tumor tissues

Typically, either protein carbonyls or protein tyrosyl nitrate products are used as in vivo markers of oxidant (ROS/RNS) formation [152]. DMPO has been used to trap protein radicals, and an antibody to DMPO has been used to detect this adduct using an immunospin-trapping method [153]. Some other newly developed probes and techniques for assessing in vivo oxidants are described below.

13.1. MitoB

MitoB (a boronate probe attached to a TPP+ moiety) was used to detect mitochondria-generated H2O2 in a living organism [30,31]. This probe reacts stoichiometrically with H2O2 to form a diagnostic exomarker, MitoP. One of the advantages of the TPP+ cation is that the positive charge enhances the sensitivity of detection (pmol/g levels) by LC-MS. The MitoP/MitoB ratio was used as a specific marker of H2O2-generated within mitochondria. The investigators used a meta-substituted boronate probe (meta-MitoB). Because peroxynitrite reacts with this probe a million-fold faster than H2O2 (yielding the same product for assessing -platin and doxorubicin) was reported to exacerbate nephrotoxicity and possibly cardiotoxicity [147].

13.2. Mito-NeoD

Recently, Hartley, Murphy, and colleagues synthesized a phenan-thridinium-based mitochondria-targeted superoxide probe, MitoNeoD, that is more robust than the existing probes for detecting O2− formed in animals [68]. As discussed, the chemistry between MitoNeoD and O2− and other oxidants is similar to that described for HE and Mito-SOX (Fig. 7) [59]. Reaction with O2− results in the formation of MitoNeoOH from MitoNeoD as a diagnostic marker product. In contrast to HE and Mito-SOX, MitoNeoD was shown to be more robust because of the presence of bulky neopentyl groups and incorporation of deuterium at carbon-6 position [68]. These modifications decrease the extent of nonspecific oxidation to the E− analog product (MitoNeo) and its DNA.

![Figure 15. Schematic of the Keap1–Nrf2–ARE pathway.](https://example.com/fig15.png)
intercalation. MitoNeoOH, the superoxide-specific product, is typically detected by LC-MS/MS (after extraction from the tissue) relative to deuterated internal standards [68].

13.3. Low-temperature EPR

Electron paramagnetic resonance (EPR) spectroscopy detects unpaired electrons, including those in free radicals and in many electronic states of transition ions (e.g., Fe^{III}, Cu^{II}, Mn^{II/III/IV}) and in metal clusters (e.g., [2Fe2S]^{+}, [3Fe4S]^{0/+}, [4Fe4S]^{+}). EPR is often diagnostic for individual paramagnetic species, and 12–16 of the approximately 20 signals expected from mitochondria can be assigned depending on the tissue and redox status [154]. EPR is also quantitative and amounts of species in the paramagnetic state can be estimated by computer fitting. EPR of mitochondrial redox centers requires cryogenic temperatures (5–40 K). At such low temperatures, unpaired electrons remain free to migrate between redox centers with appreciable exchange interactions and adopt statistical distributions according to the centers’ midpoint potentials. However, diffusion and active transport of molecules ceases. Therefore, low-temperature EPR of flash-frozen intact tissue or cell samples provides a snapshot of the redox status of the various mitochondrial respiratory chain complexes at the time of freezing, and reports on the midpoint potentials of the individual redox centers and the integrity of their intramolecular electron transfer pathways. EPR also reports on oxidative stress history, most conveniently through interrogation of the oxidative partial disassembly of the mitochondrial aconitase EPR-silent [4Fe4S]^{2+} to the characteristically EPR-active [3Fe4S]^{+} center [155,156]. The use of low-temperature EPR in mitochondrial diseases [154], neurodegeneration and neuroprotection [6,155], and chromium toxicity [155] has been reported, and the potential for use in tumor investigation appears high.

13.4. Complexes I and II EPR signals as redox status markers

Complexes I and II together generally exhibit up to seven signals due to reduced FeS clusters (complex I: N1b, N2, N3, and N4; complex II: S1, S2, and Rieske cluster) and an additional signal due to oxidized complex II S3. The \(g_2 \) resonance positions of each of the reduced [2Fe2S] and [4Fe4S] clusters overlap considerably, giving rise to an intense and characteristic EPR line at \(g = 1.94 \) in most tissues under normal physiological conditions. Reduced intensity of this signal indicates a global increase in the redox potential. Two centers, N3 and N4, have very low midpoint potentials, close to the NADH/NAD\(^+\) couple, and exhibit weak but well-separated respective \(g_2 \) EPR resonances with \(g < 1.9, i.e., \) well upfield of the other signals. The relative intensities of the N3 and N4 signals and the \(g = 1.94 \) signal are, therefore, very sensitive markers for subtle changes in redox status. Computer fitting can reliably separate the complex II signals S1 and S2 from the complex I signals, though not from each other; this provides a way to distinguish global from local phenomena. The signal intensities of the reduced clusters may also be compared with the intensity of the oxidized S3 signal. The S3 signal overlaps substantially with the aconitase [3Fe4S]^{+} signal but is readily differentiated by a markedly different temperature dependence. Thus, a wealth of information on redox status is available from which various inferences can be made, though complementary techniques may well be required to elucidate the underlying mechanisms of dysfunction [154].

13.5. Aconitase inactivation: EPR detectable biomarker of mitochondrial oxidation

Aconitase inactivation is used as an EPR marker of oxidative stress as \(\cdot O_2^- \) produced from mitochondrial electron transport chain dysfunction reacts with the iron-sulfur centers. Aconitase is converted from the enzymatically active, EPR-silent, [4Fe4S]^{2+}–containing form to the enzymatically inactive, but EPR-active, [3Fe4S]^{+} form [156,158] (Fig. 16). The EPR signals from the distinct mitochondrial and cytosolic forms of aconitase are easily distinguishable with the isolated enzymes [159] but may be difficult to differentiate in the complex spectra of tissue and cells unless present at very high levels. Nevertheless, the aconitase signal, with a maximum at around \(g = 2.02 \), has been successfully used as a marker for oxidative stress in biological materials [6,154,155,157].

14. Conclusions and future perspectives

In this review, we discussed the use of specific chemical probes and analytical methods in the detection of ROS formed in tumor cells in vitro and in vivo as well as the use of the low-temperature EPR technique to monitor oxidants formed from the endogenous redox-sensing protein, aconitase, in tumor cells. This technique can be translated to the clinic in that the surgically removed tumor tissues from patients can be monitored by EPR at low temperatures. This may be the only technique that will enable detection of the endmarkers of mitochondrial oxidants in isolated human tumors. Monitoring changes in ROS formation in an in vivo setting following drug resistance and metabolic reprogramming in tumors can aid in the development of a precise and effective antitumor drug regimen. The newly discovered in vivo mitochondrial \(\cdot O_2^- \) and \(H_2O_2 \) probes can be used in patient-derived mouse xenograft models. The metabolic reprogramming that occurs in hypoxia and drug resistance likely favors mitochondrial OXPHOS and possibly ROS stimulation. An increased understanding of ROS in cancer biology will help us better interpret the redox signaling and therapeutics, and it will help reveal the paradoxical role of ROS and autophagy in tumor growth and antitumor treatments.

Acknowledgements

This research was supported by NIH NCI U01 CA178960 to Michael Dwinell and BK (MPIs), NIH NCI R01 CA208648 to Ming You and BK (MPIs), and the Quadracci Endowment. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This teaching review is the third in a series of publications in this journal and is based on the lectures on cancer biology that BK presented as part of Anna University’s Global Initiative Academic Networks (GIAN) program, Chennai, India.
B. Kalyanaraman et al.

M. M. Shchepinova, A. G. Cairns, T. A. Prime, A. Logan, A. M. James, A. R. Hall, P. E. Porporato, V. L. Payen, J. Perez-Escuredo, C. J. De Saedeleer, P. Danhier, B. Kalyanaraman, B. P. Dranka, M. Hardy, R. Michalski, J. Zielonka, HPLC-based G. Saretzki, T. Walter, S. Atkinson, J. F. Passos, B. Bareth, W. N. Keith, R. Stewart, L. W. Finley, A. Carracedo, J. Lee, A. Souza, A. Egia, J. Zhang, J. Teruya-Feldstein, G. Cheng, J. Zielonka, D. McAllister, S. Tsai, M. B. Dwinell, B. Kalyanaraman, Alterations in J. Zielonka, J. Joseph, A. Sikora, B. Kalyanaraman, Real-time monitoring of re-

[2010] 479

R. C. Hartley, MitoNeoD: a mitochondria-targeted superoxide probe, Cell Chem. P. Yadav, J. N. Cobley, T. P. Bright, H. M. Senn, R. F. Anderson, M. P. Murphy, S. Vidoni, S. Arndt, S. T. Caldwell, H. A. Prag, V. R. Pell, T. Krieg, J. F. Mulvey, B. Gallez, P. Sonveaux, A. mitochondrial switch promotes tumor metastasis, Cell

in cellular systems: a unique marker product of superoxide and hydroethidine, Rep. 8 (3) (2014) 754

B. Kalyanaraman, A. G. Thomas, P. Gao, L. Sun, L. Song, B. Yan, B. S. Slusher, J. Zhuo, J. J. Weber, B. D. Johnson, M. Hardy, M. B. Dwinell, B. Kalyanaraman, Global pro

fi

pecies in biological systems: high-throughput real-time analyses, J. Biol. Chem. 287 (5) (2012) 2984–2995,

B. P. Dranka, J. Zielonka, A. G. Kanthasamy, B. Kalyanaraman, Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation, J. Neurochem. 132 (2) (2012) 941–951,

G. Cheng, J. Zielonka, O. Ouar, M. Lopez, D. McAllister, K. Boyle, C. S. Barrios, J. R. Retamal, B. D. Johnson, M. Hardy, M. B. Dwinell, B. Kalyanaraman, Mitochondria-targeted analogues of metformin exhibit enhanced anti proliferative and radiosensitizing effects in pancreatic cancer cancer, Cancer Res. 76 (13) (2016) 3904–3915,

B. P. Dranka, J. Zielonka, A. G. Kanthasamy, B. Kalyanaraman, Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation, J. Neurochem. 132 (2) (2012) 941–951,

G. Cheng, J. Zielonka, O. Ouar, M. Lopez, D. McAllister, K. Boyle, C. S. Barrios, J. R. Retamal, B. D. Johnson, M. Hardy, M. B. Dwinell, B. Kalyanaraman, Mitochondria-targeted analogues of metformin exhibit enhanced anti proliferative and radiosensitizing effects in pancreatic cancer cancer, Cancer Res. 76 (13) (2016) 3904–3915,

B. G. Cheng, J. Zielonka, D. McAllister, S. T. Ma, B. D. Johnson, M. Hardy, M. B. Dwinell, B. Kalyanaraman, Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation and migration by Mito-CP, Cancer Cell. 11 (1) (2011) 95–105,

R. Michalski, J. Zielonka, E. Gaya, A. Maricnek, J. Joseph, B. Kalyanaraman, Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid, J. Biol. Chem. 289 (32) (2014) 22536–22555,

B. Kalyanaraman, M. Hardy, P. Podsiadly, G. Cheng, J. Zielonka, Recent development in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling, Arch. Biochem. Biophys. 617 (2017) 38–47,

B. P. Dranka, J. Zielonka, B. Kalyanaraman, IHC-based monitoring of products formed from hydrothidinum-fluorogenic probes—the ultimate approach for intra- and extracellular superoxide detection, Biochim. Biophys. Acta 1840 (2014) (2014) 799–814,

A. S. Tan, J. W. Baty, L. F. Dong, A. Bezawork-Geleta, B. Endaya, J. Goodwin, M. Bajzikova, J. Kovarova, M. Peterka, B. Yan, E. A. Pesar, M. Sobol, A. Filimonenko, S. Stuart, M. Vondrusova, K. Khokova, K. Sachapibulkit, J. Rohnila, P. Hozak, J. Trubka, D. Eccles, I. M. Haupt, L. R. Griffiths, J. Neuall, M. V. Berriedge, Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA, Cell Metab. 23 (1) (2011) 81–94,

P. E. Porporato, V. L. Payen, J. Perez-Escuredo, C. J. De Saedeleer, P. Danhier, T. Copetti, S. Dhop, M. Tardy, T. Vazeille, C. Bouzin, O. Feron, C. Michiels, B. Galiez, P. Sonveaux, A. mitochondrial switch promotes tumor metastasis, Cell Rep. 8 (3) (2014) 754–766,

J. Zielonka, J. Varela, N. C. Glorioso, B. Kalyanaraman, Detection of 2-hydroxyethylidamine in cellular systems: a unique marker product of superoxide and hydroxide, Nat. Protoc. 3 (1) (2008) 8–21,

G. Cheng, J. Zielonka, B. Kalyanaraman, Modulatory effects of MitoSOX on cellular bioenergetics: a cautionary note, Free Radic. Biol. Med. 51 (Suppl.) (2011) S37–S38,

M. M. Schepinova, A. G. Cairns, T. A. Prime, A. Logan, A. M. James, A. R. Hall, S. Vidoni, S. Arndt, S. T. Caldwell, H. A. Prag, V. R. Pell, T. Krieg, J. F. Mulvey, P. Yadav, J. N. Gobley, T. P. Bright, H. M. Semm, R. F. Anderson, M. Murphy, R. C. Hartley, MitoNeo2: a mitochondria-targeted superoxide probe, Cell Chem. Biol. 24 (10) (2017) 1285–1292 (e12),

J. Wang, J. Yi, Cancer cell killing via ROS: to increase or decrease, that is the question, Cancer Biol. Ther. 7 (12) (2008) 1875–1880,

H. E. Seifried, S. S. McDonald, D. A. Anderson, P. Greenwald, J. A. Milner, The antioxidant comendrum in cancer, Cancer Res. 63 (15) (2003) 4295–4298,

Y. Xie, Y. Z. Ene, J. Xia, Y. Lu, R. S. O’Connor, B. J. Altman, A. L. Hsieh, A. M. Gouw, A. K. J. Pao, S. Li, L. Song, B. Yan, B. S. Shinower, J. Zhu, L. L. Ooi, C. G. Lee, A. Mancuso, A. S. McCallion, A. Le, M. C. Milone, S. Rayport, D. W. Felscher, C. V. Dang, Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis, J. Clin. Invest. 125 (6) (2015) 2929–2936,

P. Stor, K. Ros, RAS and the initiation of pancreatic cancer, Small GTPases 8 (1) (2017) 38–42,

L. P. Liu, P. Stor, Reactive oxygen species in cancer, Free Radic. Res. 45 (5) (2011) 479–496,

M. Wangpaichitr, H. Kandermin, Y. L. Li, C. Wu, D. Nguyen, L. G. Fein, M. T. Kuo, N. Savaraj, Relationship of metabolic alterations and PD-L1 expression in cisplatin resistant lung cancer, Cell Dev. 6 (2) (2017) 85–93,

M. Wangpaichitr, C. Wu, Y. L. Li, D. J. M. Nguyen, H. Kandermin, S. Shah, S. Chen, L. G. Fein, J. S. Prince, M. T. Kuo, N. Savaraj, Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer, Oncotarget 8 (30) (2017) 49275–49292.
metabolism: 10 years later, biochemistry, Biochim Biophys Acta 80 (5) (2015) 517–531.

101. M. Gutscher, M.C. Sobotta, G.H. Wambis, S. Balluikya, A.J. Meyer, Y. Samstag, P.T. Dick, Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases, J. Biol. Chem. 284 (46) (2009) 31552–31560.

102. R.M. Jarvis, S.M. E.F. Leggewood, Peroxidoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med. 53 (7) (2012) 1522–1530.

103. M.C. Sobotta, W. Liu, S. Stocker, D. Talwar, M. Oehler, T. Ruppert, A.N.D. Scharf, M. Gutscher, M.C. Sobotta, G.H. Wabnitz, S. Ballikaya, A.J. Meyer, Y. Samstag, MnSOD upregulation sustains the Warburg effect and progressive neurodegeneration in mitopark transgenic mice, Antioxid. Redox Signal. 25 (4) (2016) 3786–3803.

104. C.U. Lee, G. Ganhe, J. Hanks, T. Bange, D. Rieger, C. Rademacher, S. Hennig, T.N. Grossmann, Redox modulation of PTEN phosphatase activity by hydrogen peroxide and biexponentialoxidum complexes, Angew. Chem. (Int. Ed. Engl.) 54 (26) (2015) 13796–13800.

105. M.J. Morgan, Z.G. Liu, Crosstalk of reactive oxygen species and NF-kappaB signaling: an overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels, Front. Physiol. 4 (2013) 246.

106. Y.H. Tong, B. Zhang, Y. Fan, N.M. Lin, Keap1-Nrf2 pathway: a promising target towards lung cancer prevention and therapeutics, Chronic Dis. Transl. Med. 1 (5) (2015) 175–186.

107. Y. Yan, T. Finkel, Autophagy as a regulator of cardiovascular redox homeostasis, Free Radic. Biol. Med. 109 (2017) 108–113.

108. S. Yang, X. Wang, G. Wang, J. Liu, J. Tian, S. Zhang, A. Okamatsu-Ogasa, Y. Bae, X. Jin, S. Wang, X. Jia, J. Sun, J.H. Kim, D. Duong, R.H. Widlund, E.R. Wright, D. Duong, N.T. Seyfried, R. Egnatchik, R.J. DeBerardinis, R.M. Jarvis, S.M. Hughes, E.C. Ledgerwood, Peroxiredoxin 1 functions as a signal transducer of cell death-induced by ROS, Cell Death Di. 20 (11) (2013) 1465–1474.

109. L. Mainz, M.T. Rosenfeldt, Autophagy and cancer - insights from mouse models, Redox Rep. 18 (6) (2013) 269–275.

110. L. Mainz, M.T. Rosenfeldt, Autophagy and cancer - insights from mouse models, Redox Rep. 18 (6) (2013) 269–275.

111. B. Kong, C. Qia, M. Eran, J. Kleeff, C.W. Moelsch, Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels, Front. Physiol. 4 (2013) 246.

112. S.K. Biswas, Metabolic reprogramming of immune cells in cancer progression, Immunol. Cell Biol. 93 (3) (2015) 345–449.

113. D. Hu, S. Cao, G. Zhang, X. Xiao, S. Liu, Y. Shang, Florfenicol-induced mitochondrial dysfunction suppresses cell proliferation and autophagy in fibroblasts, Exp. Cell. Res. 7 (7) (2017) 13554.

114. S. Kim, K.I. Park, Y.W., S.S. Yoo, S.G. Park, Y.W. Yim, S.E. Jeo, M.S. Ahn, Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells, Int. J. Mol. Sci. 18 (5) (2017) 1539.

115. M. Torrens-Mas, J. Oliver, P. Roca, J. Sastre-Serra, SRT3033: oncogene and tumor suppressor in cancer, Cancers 9 (7) (2017) 90.

116. M.H. Kim, H. Kim, A. Markar, M. Tozzi, and tumor suppressor genes regulate glutathione metabolism in cancer cells, J. Cancer Prev. 18 (3) (2013) 221–226.

117. W. Lu, H. Peluciano, P. Huang, Cancer metabolism: is glutamine sweeter than glucose? Cancer Metab. 4 (2015) 19–20.

118. J. Montero, C. Datta, D. van Bodegom, Peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med. 53 (7) (2012) 1522–1530.

119. Z. Tan, X. Luo, L. Xiao, M. Tang, A.M. Bode, Z. Dong, Y. Cao, The role of PGCP1alpha in cancer metabolism and its therapeutic implications, Mol. Cancer Ther. 15 (5) (2016) 774–782.

120. S. Vyas, E. Zaganjar, M.C. Haigis, Mitochondria and Cancer, Cell 166 (3) (2016) 555–566.

121. L. D’Errico, L. Salvatore, S. Murzilli, G. Lo Sasso, D. Latorre, N. Martelli, S. Gorgo, I. Zaccari, A. Giordano, S. Trotta, A. Gabbrielli, S. Raffaello, S. Constantino, D. Latorre, G. Villani, A. Moschetta, Peroxoxis proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1alpha) is a metabolic regulator of intestinal epithelial cell fate, Aging Cell. 11 (4) (2012) 693–660.

122. J.H. Lim, C. Luo, F. Vazquez, P. Puigserver, Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization, Cancer Res. 74 (13) (2014) 3535–3545.

123. L. D’Errico, G. Lo Sasso, L. Salvatore, S. Murzilli, M. Cristofaro, D. Latorre, G. Villani, A. Moschetta, Basix is necessary for PGCP1alpha pro-apoptotic effect in colorectal cancer cells, Cell Cycle 17 (10) (2011) 2937–2945.

124. E.L. LaGory, C. Wu, C.M. Taniguchi, C.C. Ding, J.T. Chi, R. von Eyben, D.A. Scott, A.D. Richardson, A.J. Giaccia, Suppression of PGCP-1alpha Is critical for reprogramming oxidative metabolism in renal cell carcinoma, Cell Rep. 12 (1) (2015) 116–127.

125. N. Durand, P. Storez, Targeting reactive oxygen species in development and pro- gestion of pancreatic cancer, Expert Rev. Anticancer Ther. 17 (1) (2017) 19–31.

126. N.S. Chandel, D.A. Tuveson, The promise and perils of antioxidants for cancer patients, N. Engl. J. Med. 371 (2) (2014) 177–178.

127. V.I. Sayin, M.K. Ibrahim, E. Larsson, J.A. Nilsson, P. Lindahl, M.O. Bergo, Antioxidants ameliorate lung cancer progression in mice, Sci. Transl. Med. 6 (264) (2014) 211ra15.

128. E. Piskounova, M. Agathocleous, M.M. Murphy, Z. Hu, S.E. Huddleston, Z. Zhao, A.M. Leitch, T.M. Johnson, R.J. Derendarz, S.J. Morrison, Oxidative stress inhibits distant metastasis by human melanoma cells, Nature 527 (7577) (2015) 186–191.

129. C.E. Schara, D.J. Dues, K.R. Spielbein, E. Machala, J.F. Cooper, M. Senchuk, S. Hekimi, V. Bavari, D. van Bodegom, Mitochondrial and cytoplasmic ROS have opposite effects on lifespan, PLoS Genet. 11 (2) (2015) e1004972.

130. G.S. Omenn, G.E. Goodman, M.D. Thornquist, J. Balzs, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meykens, B. Valasian, J.H. Williams, S. Bahnart, S. Harmar, Effects of a combination of beta carotene and vitamins A on lung cancer and cardiovascular disease, N. Engl. J. Med. 334 (18) (1996) 1150–1155.

131. X. Gao, B. Schottker, Redox-signaling pathways involved in cancer development: a systematic review of literature reviews, Oncotarget 8 (31) (2017) 31888–31896.
[158] M.K. Johnson, A.J. Thomson, A.J. Richards, J. Peterson, A.E. Robinson, R.R. Ramsay, T.P. Singer, Characterization of the Fe-S cluster in aconitase using low temperature magnetic circular dichroism spectroscopy, J. Biol. Chem. 259 (4) (1984) 2274–2282.

[159] M.C. Kennedy, W.E. Antholine, H. Beinert, An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide, J. Biol. Chem. 272 (33) (1997) 20340–20347.

[160] J. Vasquez-Vivar, B. Kalyanaraman, M.C. Kennedy, Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation, J. Biol. Chem. 275 (19) (2000) 14064–14069.