Leptoquarks decaying to a top quark and a charged lepton at hadron colliders

Sacha Davidson 1,∗, and Patrice Verdier 1,†

1IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi 69622 Villeurbanne cedex, France

Abstract

We study the sensitivity of the Tevatron and the 7 TeV LHC to a leptoquark S coupling to a top quark and a charged lepton L ($\equiv e, \mu, or \tau$). For the Tevatron, we focus on the case $m_S < m_t$, where the leptoquark pair production cross section is large, and the decay is three-body: $S \rightarrow WbL$. We argue that existing Tevatron observations could exclude $m_S \lesssim 160$ GeV. For $m_S > m_t$, we show that the LHC experiments with low integrated luminosity could be sensitive to such leptoquarks decaying to tl^\pm with $l = \mu$ or τ.

1 Introduction and Review

Leptoquarks [1] are bosons which couple to a lepton and a quark. Although they are not known to address current issues in particle physics (such as the identity of dark matter or the hierarchy problem), they can be motivated in several ways. Most pragmatically, they are strongly interacting and their decay products include leptons, so they are interesting search candidates for hadron colliders. The Tevatron sets bounds on leptoquarks which decay to first and second generation fermions, and to $b\bar{s}$; in this note, we consider leptoquarks which couple to the top quark and any charged lepton L^\pm ($L \in \{e, \mu, \tau\}$). We discuss the bounds that could be set with $4.3 \, fb^{-1}$ of Tevatron data, and the prospects for the 7 TeV LHC with $1 \, fb^{-1}$.

Leptoquarks can arise in several extensions of the Standard Model, such as Grand Unified Theories [2], Technicolour [3] and R-parity violating Supersymmetry [4]. We focus on scalar leptoquarks called S, with baryon and lepton number conserving interactions, and a mass $m_S \lesssim 1$ TeV. Several recent models [5, 6, 7] include such leptoquarks. The Lagrangian describing their renormalisable interactions with Standard Model (SM) fermions and singlet neutrinos ν is [8]

$$
L_{LQ} = S_0(\lambda_{LS_0} \bar{t}_2 q^c + \lambda_{RS_0} \bar{\nu}_e c^e) + \bar{S}_0 \lambda_{RS_0} \bar{d} d^c + (\lambda_{LS_2} \bar{t} u + \lambda_{RS_2} \bar{\nu}_q [i \tau_2]) S_2 + \bar{\lambda}_{LS_2} \bar{d} d^c + \bar{\lambda}_{RS_2} \bar{\nu}_q [i \tau_2] S_2 + h.c.
$$

(1)

where the leptoquark subscript is its SU(2) representation, the λs are 3×3 matrices in the lepton and quark flavour spaces and are labelled by the SU(2) representation of the leptons ($L = $ doublet, $R = $ singlet) and the leptoquark name, τ_2 is a Pauli matrix (so $i \tau_2$ provides the antisymmetric SU(2) contraction), the SM SU(2) singlets are e, u, d and ν, and in this equation, q and ℓ are the doublets. For most of the rest of the paper, L and ℓ label physical particles

$$
\ell \in \{e, \mu\}, \quad L \in \{e, \mu, \tau\}
$$

In eqn (1), we included for completeness, leptoquarks which couple to singlet neutrinos ν_R. If the neutrino masses are Dirac, these interactions could allow $S \rightarrow t\nu$ without $S \rightarrow b\nu$. However, we do not analyse such decays. Notice that we neglect, or set to zero, the (renormalisable) interactions of the leptoquark with the Higgs, which naturally should be present, and can contribute via loops to precision electroweak parameters [9] and neutrino masses [10].

To look for leptoquarks, some theoretical expectations about the structure and hierarchy of their interactions would be helpful. Various theoretical arguments can suggest that the largest leptoquark couplings should be to the third generation, at least in the quark sector. This arises, for instance, in the Cheng-Sher ansatz [11] for flavoured couplings

$$
\lambda^{LQ} \propto \sqrt{\frac{m_L m_{LQ}}{v^2}}
$$

(2)

where $v = 175$ GeV is the Higgs vacuum expectation value. This would give the largest leptoquark coupling to t and τ, and can arise Randall-Sundrum type extra dimensional models, or in composite models as recently discussed in [6].

∗E-mail address: s.davidson@ipnl.in2p3.fr
†E-mail address: verdier@ipnl.in2p3.fr
Figure 1: Lowest order diagrams for leptoquark single and pair production; single production can be neglected for a leptoquark which couples only to t quarks, because the t content of the proton is small.

The expectations of this ansatz are compared to current low energy constraints in [12]; improving the sensitivity of $K \rightarrow \pi \nu \bar{\nu}$ could probe this pattern for leptoquarks that couple to neutrinos.

A phenomenological “bottom-up” approach to the couplings of new particles, motivated by the success of the Minimal Flavour Violation hypothesis [13, 14], is to construct them by multiplying the known mass and mixing matrices of leptons and quarks. Some possibilities for leptoquarks were studied in [15]. In this approach, Nikolidakis and Smith [16] noted that a New Physics coupling with a single lepton index L can be proportional to

$$\varepsilon^{LMK}[Y_e Y_e^\dagger m_\nu]_{JK}$$

where Y_e is the charged lepton Yukawa matrix (index order doublet-singlet), and m_ν is the majorana neutrino mass matrix. This idea was studied for leptoquarks in [15]. Since m_ν is fairly democratic, the $Y_e Y_e^\dagger$ hierarchy selects the τ index. The totally antisymmetric SU(2) tensor is ε, so this construction favours couplings to the e and μ. It is therefore interesting to study leptoquarks which decay to t and any charged lepton: $L = \tau, \mu, e$. The μ and e are particularly attractive final state particles for hadron colliders: if one of the Ws from the ts decays to the $\ell = e$ or μ, as occurs $\sim 29\%$ of the time, the final state would be jets + $E_T + \ell^\pm \ell^\pm \ell^{\mp}$ (see figure 2.)

Figure 2: Possible decay chain for a pair of scalar leptoquarks interacting with tops and muons.

There are various experimental constraints on leptoquarks. At hadron colliders, they can be singly or pair produced via their strong interactions (see figure 1). As discussed in [17], single production can lead to the same final state as pair production. However, since we are interested in leptoquarks that couple to the top quark, we can neglect single production, because the top density in the proton is negligible. The cross section, for pair production from gg or $q\bar{q}$, has been computed at Next to Leading Order (NLO) [18], and included in the PROSPINO program, which we used to produce figure 3. The Tevatron [19] has searched for leptoquarks decaying to any lepton and a quark other than the
top, with a coupling $\lambda \gtrsim 10^{-8}$. The restriction on λ ensures that the leptoquark decays at the collision point. The bounds depend on the final state; a recent review [20] gives $m_S \gtrsim 210\{\tau b\}, 214\{\nu q\}, 247\{\nu b\}, 299\{e q, \nu b\}, 316\{\mu q, \mu b\}$ GeV, where $q \in \{u, d, s, c\}$. Leptoquarks have also been searched for at the HERA ep collider, which allow to exclude a s-channel resonance with $\lambda \gtrsim 0.1$ and $m_S \lesssim 250 - 300$ GeV [21]. Finally, there are bounds on two quark, two lepton contact interactions from several (mostly accelerator) experiments [22], which give interesting constraints (see e.g. [12], [23]) on leptoquarks interacting with lower generation fermions. The prospects of discovering leptoquarks above the various backgrounds at the early LHC have been discussed in [24].

There are numerous precision/rare decay bounds on leptoquarks, which usually apply to products of different λs, and depend on the SU(2) representation of the leptoquark. Some recent compilations are [25] (bounds from meson anti-meson mixing, allowing for complex couplings) and [12] (mostly tree processes). In general, it is clear that these bounds exclude flavour-democratic $\lambda^{LQ} \sim \mathcal{O}(1)$ for $m_S < \text{TeV}$. Certain processes, such as $K \rightarrow \pi \nu \bar{\nu}$ or $K_L \rightarrow \mu^{\pm} e^{\mp}$ provide much more stringent bounds.

Bounds and prospects for a “third generation” leptoquark interacting with a top, have been discussed by several people, in particular Eboli and collaborators. The constraints from the loop contribution to leptonic Z decay [26] are satisfied if $\lambda \lesssim \epsilon$ for $m_S \sim 300$ GeV (for both the leptoquarks of eqn (1) which couple to t_R). To extrapolate this bound for leptoquarks in the range 300 GeV $\rightarrow m_W$, we assume that the bound can be scaled as $\lambda/m_S \lesssim \epsilon/(300 \text{GeV})$, see eqn (4). The LHC prospects of a leptoquark decaying to $t\tau$ or $b\tau$ were discussed in [27], who emphasized the interesting one, two and three lepton final states which could be detected above backgrounds. Gripaios et al recently implemented the various leptoquarks of eqn(1) in HERWIG [28], and discussed kinematic reconstruction techniques for leptoquarks decaying to third generation fermions at the 7 TeV LHC.

In this paper, we study leptoquarks which couple to tops, but not to bs or lower generation quarks, because leptoquarks with an $\mathcal{O}(1)$ branching ratio to $b\tau$, or jet $+ e$ or μ, are already excluded by the Tevatron up to $m_S \lesssim 200 - 300$ GeV [19, 20]. We are therefore interested in leptoquarks which couple to singlet up-type quarks, that is, the SU(2) singlet leptoquark S_0 with coupling λ_{RS_0} (and $\lambda_{LS_0} = 0$), or the doublet leptoquark S_2 with couplings $\lambda_{LS_2} \neq 0$ and $\lambda_{RS_2} = 0$. Neither of these leptoquarks arise in R-parity violating Supersymmetry. We then restrict the coupling to third generation quarks, and assume, for the body of the paper, a branching ratio of 1 to the final state of top $+$ the charged lepton L^\pm of our choice.

The NLO cross section for leptoquark pair production [18], via the strong interaction, is plotted in figure 3. This shows that the Tevatron with 5 fb^{-1} of data could produce $\gtrsim \mathcal{O}(5000)$ pairs of leptoquarks with $m_S \lesssim 150$ GeV, whereas the 7 TeV LHC with 1 fb^{-1} could produce a thousand pairs of 300 GeV leptoquarks. Section 2 outlines a simple counting experiment that compares current Tevatron data, to leptoquarks with $m_S < m_t$, decaying via an off-shell top to bW and a charged lepton. It suggests that the Tevatron could exclude such leptoquarks, for leptoquark masses sufficiently below m_t. In section 3, we briefly mention prospectives with 1 fb^{-1} of data from the 7 TeV LHC.

Figure 3: Pair production cross section for SU(2) singlet leptoquarks at the Tevatron and the 7 TeV LHC. Standard Model tt production, with $\sigma_{pp \rightarrow tt}(\sqrt{s} = 7 \text{ TeV}) \simeq 165 \text{ pb}$ and $\sigma_{pp \rightarrow tt}(\sqrt{s} = 1.96 \text{ TeV}) \simeq 7.8 \text{ pb}$, could be a significant background to the leptoquark signal, in particular in the $m_S \sim m_t \pm 15$ GeV region, where the leptons leptoquark decays would be soft.
2 Leptoquarks with $m_S < m_t$ at the Tevatron

In this section, we consider leptoquarks S interacting only with the top (and any L), with masses in the range $m_W + m_b < m_S < 2m_W < m_t$. They would be copiously pair-produced via their strong interactions at the Tevatron. There are two reasons for this limited mass range, despite that figure (3) suggests several hundred leptoquark pairs could be produced at the Tevatron up to masses $m_S \sim 250$ GeV. Firstly, in the range $m_S \simeq m_t \pm 15$ GeV, the lepton produced with the almost-on-shell top is unlikely to pass the $p_T > 15 – 20$ GeV cuts that we impose. Secondly, it is convenient to analyse separately the $m_S < m_t$ and $m_S > m_t$ cases; so we study the former at the Tevatron and the latter at the LHC.

Leptoquarks with $m_S < m_t$ could also be singly produced in top decay; however we neglect this process, because $BR(t \rightarrow SL) \leq 2|\lambda|^2/|y_t|^2$ is suppressed by the leptoquark coupling λ (y_t is the top quark Yukawa coupling). We consider the range

$$10^{-6(\pm 3)} < \lambda < e\frac{m_S}{300 \text{ GeV}}$$

where the upper bound is approximately the constraint from leptoquark loop contributions to the ZLL vertex[26]. It implies that $BR(t \rightarrow SL)$ is negligible, when it is kinematically allowed. The lower bound ensures that λ is sufficiently large that the leptoquarks decay at the collision point (no displaced vertex); see the discussion after eqn (14). We also assume that S interacts only with a top and a charged lepton L^\pm, so $BR(S \rightarrow bWL) = 1$, where L is a e, μ, τ.

Since the leptoquark decays to a singlet t_R, its decay rate to bWL, via an off-shell t, has a simple analytic form, which we obtain in subsection 2.1. This allows us to implement the three-body decay in PYTHIA, as the product of the two body decays $\Gamma(S \rightarrow t^*L)\Gamma(t^* \rightarrow bW)$ with variable m_t and leptoquark coupling λ. This is discussed at the end of section 2.1.

Subsection 2.2 contains preliminary estimates of the contribution of such leptoquarks to the jets + E_T and jets + $E_T + \ell^\pm\ell^\mp\bar{\nu}_\ell$[30] data sets used by D0 to measure the $t\bar{t}$ production cross section (ℓ here means e or μ). We consider separately the cases $S \rightarrow t\tau^\pm$ and $S \rightarrow t\mu^\pm$; we assume that the bounds which could be obtained on $S \rightarrow t\ell^\pm$ are similar to those on $S \rightarrow t\mu^\pm$.

2.1 The decay rate $S \rightarrow bWL^\pm$ for $m_S < m_t$

If the masses of the b and $L \in \{e, \mu, \tau\}$ are neglected, then the invariant mass of the bW system (or equivalently, the magnitude of the four-momentum carried by the off-shell top in the decay $S \rightarrow bWL$), is

$$t^2 = m_{bW}^2 = (p_b + p_W)^2 = 2p_b \cdot p_W + m_W^2 .$$

The differential three-body decay rate can be written [31]

$$\frac{d\Gamma}{dt} = \frac{1}{(2\pi)^6} \frac{1}{16m_S^2} \int |M|^2 |\vec{p}_b^*||\vec{p}_L|^2 d\Omega_b^* d\Omega_L$$

where the L parameters are in the S rest frame, and the starred b parameters in the bW rest frame.

The matrix element for $S \rightarrow bWL$ is

$$M = \frac{\lambda g}{\sqrt{2}}m_LP_R \frac{\gamma_u + m_t}{t^2 - m_t^2 + im_t\Gamma_t} \gamma_\mu P_L u_b \varepsilon_\mu$$

(7)

(8)

where u_L is the spinor field for L, and is simple in squared form because the top must flip chirality on the internal line:

$$|M|^2 = -\frac{m_b^2 \lambda^2 g^2}{(t^2 - m_t^2)^2 + m_t^2 \Gamma_t^2}
\left(p_L \cdot p_b + 2p_L \cdot p_W p_b \cdot p_W \overline{m_W^2}
ight).$$

To evaluate the angular integrations of eqn (6) with $|M|^2$ from eqn (8), requires the Lorentz transformation of the b 4-momentum in the S frame (p_b), to the t frame (p_b^*). Writing

$$E_b = \gamma E_b^*(1 + \beta \cos \theta^*)$$

(9)
with \(\gamma = E_t/m_t \), \(\beta = |\vec{p}_l|/m_t \), and using

\[
|\vec{p}_b^2| = \frac{t}{2} \left(1 - \frac{m_W^2}{t^2}\right), \quad |\vec{p}_L| = \frac{m_S}{2} \left(1 - \frac{t^2}{m_S^2}\right), \tag{10}
\]
gives

\[
\int \left(p_L \cdot p_b + 2 \frac{p_L \cdot p_W p_b \cdot p_W}{m_W^2} \right) d\Omega_b^2 d\Omega_L = 4\pi^2 m_S^2 \left(1 - \frac{t^2}{m_S^2}\right) \frac{t^2}{m_W^2} \left(1 - \frac{m_W^2}{t^2}\right) \left(1 + 2 \frac{m_W^2}{t^2}\right) \tag{11}
\]

So one obtains

\[
d\Gamma = \frac{\Gamma(S \to t^* L) \Gamma(t^* \to W b)}{2m_t} \frac{m_t^4}{\pi m_t} \frac{t^2}{(t^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} \tag{12}
\]

where the two body decay rates of the leptoquark \(S \) and the top quark \(t \) are the rest-frame formulae, with \(m_t \) replaced by \(t \):

\[
\Gamma(t^* \to W b) = \frac{g^2 t^2}{64\pi m_W^2} \left(1 - \frac{m_W^2}{t^2}\right)^2 \left(1 + 2 \frac{m_W^2}{t^2}\right), \quad \Gamma(S \to t^* L) = \frac{2 t^2}{16\pi} \left(1 - \frac{t^2}{m_S^2}\right)^2 . \tag{13}
\]

A check that can be performed on eqn(12) is to take the limit \(t^2 \to m_t^2 \). Using the identity:

\[
\frac{\epsilon}{\pi x^2 + \epsilon^2} \to \delta(x) \tag{14}
\]

with \(x = t^2 - m_t^2 \), the \(dt \) integration can be performed, and one obtains the two-body leptoquark decay rate \(\Gamma(S \to t L) \), as expected. We are interested in the case \(t^2 - m_t^2 \gg \Gamma_t m_t \), so we drop the \(\Gamma_t \) term in the denominator of eqn (12). The total decay rate \(\Gamma(S \to b W L) \) can also be obtained analytically, but is not illuminating. It is plotted on the left in figure 4 for \(\lambda = 1 \). The leptoquark will decay in less than a centimetre for \(\lambda \gtrsim 10^{-3} \) at \(m_S \simeq 100 \text{ GeV} \), and for \(\lambda \gtrsim \text{few} \times 10^{-6} \) at \(m_S \simeq 160 \text{ GeV} \).

![Figure 4: On the left, the total decay rate \(\Gamma(S \to bWL) \), for \(\lambda = 1 \), as a function of the leptoquark mass \(m_S \), where \(L \) is a charged lepton \(e, \mu \) or \(\tau \). On the right, the fraction of decays to a \(bW \) of invariant mass \(t \) for various leptoquark masses \(m_S \).](image)

Equation (12) implies that the decay \(S \to bWL \) can be computed as the two-body decay \(S \to t^* L \), where \(t^* \) is a top quark of mass \(t \), followed by the decay \(t^* \to bW \), provided the whole process has a \(t \)-dependent coupling constant \(\propto 1/(t^2 - m_t^2)^2 \). We implement the \(m_S < m_t \) leptoquarks in PYTHIA from this perspective: for each event, the top mass is randomly selected, distributed between \(m_W + m_b \) and \(m_S \) according to eqn (12). The two-body leptoquark decay is then performed by PYTHIA followed by a two-body top decay. We checked that the resulting \(bW \) invariant mass distribution reproduces eqn(12).
2.2 Potential bounds from the Tevatron

In this section we estimate the number of events from \(m_S < m_t \) leptoquarks, that could appear in two recent D0 data samples used to measure the \(\ell \bar{t} \) production cross section: \(\ell^\pm + E_T + \text{jets} \) [29], for leptoquarks decaying to \(t\tau^\pm \), and \(\ell^\pm \ell^\mp + E_T + \text{jets} \) [30] for leptoquarks decaying to \(t\mu^\pm \). These two analyses are not optimal to select these leptoquark signals because they require exactly one and two leptons, respectively, in the final state. However, due to the important leptoquark pair production cross section when \(m_S < m_t \), we will show that a significant number of leptoquark events would nevertheless enter in these data samples.

We obtain the leptoquark events using \textsc{pythia} 6.4 [32] with \textsc{tauola} [33] to decay \(\tau s \), and reconstruct jets using the anti-\(k_t \) algorithm of the \textsc{fastjet} package [34]. All final state particles except neutrinos and charged leptons are used to construct the jets. We do not include a detector simulation. We only impose the preselection cuts of the experiments on our leptoquark events, and count the number of remaining events. D0 uses multivariate techniques to further discriminate \(\ell t \) signal from \(W+ \) jets or \(Z+ \) jets, which we do not consider. We study two cases: \(S \to t\tau^- \), and \(S \to t\mu^+ \).

In \textsc{pythia}, leptoquarks can decay to \(t \) and \(L^+ \), but not \(\tau \) and \(L^- \). The first is appropriate to the SU(2) doublet leptoquark \(S_2 \), whereas the second would correspond to the singlet leptoquark \(S_0 \). In the \(S \to t\mu \) case, the events corresponding to \(t\mu^- \) or \(t\mu^+ \) should be equally detectable, so we let \textsc{pythia} decay the leptoquarks to \(t\mu^\pm \), and apply the resulting bounds to both \(S_2 \) and \(S_0 \).

The case of \(S \to t\tau^\pm \) is more delicate, because the angular and energy distribution of the tau decay products depends on the charge and polarisation of the \(\tau \). We therefore ask \textsc{tauola} to flip the sign of \(\tau s \) produced in \(S_0 \) decays. In the case of leptonic \(\tau \) decays, energetic \(\ell^- \) are emitted preferentially anti-parallel to the direction of motion of a relativistic \(\tau_R \) [see e.g. the \(e \) distribution from \(\mu \) decay in [31]]. So for the singlet leptoquark \(S_0 \), which decays to \(t\tau_R(\tau_R)^- \), the neutrinos from the leptonic tau decays frequently carry most of the \(p_T \) of the \(\tau \). Since the \(\tau s \) are already not very energetic, this means the charged leptons from their decay may not pass \(p_T \) cuts, so hadronic \(\tau \) decays are more useful. We assume that the bounds we obtain on the singlet leptoquark \(S_0 \) can be applied to the doublet leptoquark \(S_2 \), which decays \(S_2 \to t(\tau_L)^+ \), because our bounds will mostly come from events with hadronic \(\tau \) decays\(^3\).

2.2.1 \(S \to t\tau^\pm \)

Consider first the production of a leptoquark anti-leptoquark pair, followed by leptoquark decay to a \(t \) and a \(\tau^- \) or \(\tau^+ \). This could contribute to the \(\ell^\pm + E_T + \text{jets} \) signal from which D0 extracted the Standard Model top pair production cross section \(\sigma_{\bar{t}t} \) in [29]; since the leptoquark process should have more jets than \(\bar{t}t \) production, we focus on the \(\ell^\pm \) and at least 4 jet sample.

In our simulated sample of leptoquark events, we require that a \(W^\pm \) from the \(t \) or \(\bar{t} \) decays to \(\nu \) and \(e^\pm \) or \(\mu^\pm \), which reduces the cross section by a factor

\[
BR(\ell^\pm + E_T + n \text{ jets}) = .22(W^+ \to \ell^+\nu) \times .66(W^- \to \text{had}) \times 2(W^+ \leftrightarrow W^-) \simeq .29
\]

Then we impose the following cuts, patterned on the preselection of the D0 analysis. We require

1. \(E_T > 25 \text{ GeV} \)
2. a lepton with \(p_T > 20 \text{ GeV} \) and \(|\eta| \leq 1.1(e), 2.0(\mu) \) and no second lepton with \(p_T > 15 \text{ GeV} \)
3. at least 4 jets with \(p_T > 20 \text{ GeV} \), and \(|\eta| < 2.5 \)

With \(\varepsilon_{\text{sim}} \) the fraction of simulated events which pass these cuts, the inclusive leptoquark signal efficiency is simply \(\varepsilon(\ell^\pm + E_T + 4 \text{ jets}) = \varepsilon_{\text{sim}} \times BR \). This efficiency is given in column 3 of Table 1. We then estimate the number of leptoquark induced events in the 4.3 \(fb^{-1} \) of data used in [29] to be the last column of table 1.

The total number of observed [expected] \(\ell^\pm + E_T + 4 \text{ jets} \) events in [29] is 1795 [1796 ± 158]. Using the modified frequentist \(CL_s \) method [35], the number of signal events excluded at 95% C.L. is 388. By interpolating our results, we find that leptoquarks with mass

\[
m_S < 158 \text{ GeV} \quad \text{for} \quad BR(S \to t\tau^\pm) = 1
\]

are excluded at 95% C.L.

\(^1\)We modified the \textsc{tauola-pythia} interface so that it finds and assigns polarisation to \(\tau s \) from leptoquark decay.

\(^2\)The various scalar leptoquarks of eqn (1) have recently been included in \textsc{herwig} [28], which would avoid this limitation that \textsc{pythia} only knows one chiral structure for leptoquark interactions.

\(^3\)We checked that changing the \(\tau \) polarisation makes a relatively insignificant change to the bounds.
Table 1: The second column is the leptoquark pair production cross section at the Tevatron for various masses. The leptoquarks decay to $t\tau^\pm$. The third column estimates the fraction of events remaining after the cuts given in section 2.2.1. The last column is the expected number of leptoquark-induced events in the D0 lepton + ≥ 4 jets sample [29] based on 4.3 fb^{-1}.

m_S (GeV)	σ (pb)	$\varepsilon(T_1/4j)$	$N(LQ)$
160	1	0.0823	367
140	2.4	0.0618	658
120	6	0.0389	1035
100	16	0.0149	1060

2.2.2 $S \rightarrow t\mu^\pm$

Consider now a pair of leptoquarks which decay to a t and a μ^\pm, which could contribute to the $\ell^+_i\ell^-_j + E_T + \text{jets}$ data sample from which D0 extracts σ_{ij} [30]. In this analysis [30], $\ell^+_i\ell^-_j$ can be $e^+e^-, e^\pm\mu^\mp$ or $\mu^+\mu^-$. The leptoquarks we study would contribute mostly to $e^\pm\mu^\mp$ or $\mu^+\mu^-$. However, to be conservative, we compare our expectations to the observed number of $\ell^+_i\ell^-_j + \text{jets}$ events, including e^+e^-.

We simulate leptoquark pair production, followed by leptoquark decays $S \rightarrow W^+b\mu^+$, and require that one W decay to a charged lepton e, μ or τ, which should represent a fraction

$$\frac{34(W^+ \rightarrow \ell^+\nu)}{0.66(W^- \rightarrow \text{had})} \times 2(W^+ \leftrightarrow W^-) \simeq 0.45$$

(16)

of the events. We require a leptonic W to ensure missing transverse energy in the event, but include also the $W \rightarrow \tau\nu$ decays, because a lepton from the W is not necessary since two charged leptons are already coming directly from the leptoquark decay.

Our cuts to select two charged leptons are patterned on the D0 analysis [30]. We therefore require exactly two opposite sign leptons of $p_T > 15$ GeV with $|\eta| \leq 1.1(e), 2.0(\mu)$. Then, D0 uses a multivariate technique (Bayesian decision tree or BDT) to further discriminate top pair events from $Z/\gamma^* + \text{jets}$ events which we can not take into account. But since the topology of our leptoquark signal is very close from the one of top pair production, we believe that leptoquark events will nevertheless pass the selection cut applied on this BDT output with an efficiency very close to the one from top pair events. In the following, we will not take into account the efficiency of the BDT, and simply replace it by a cut $E_T > 25$ GeV. Then, we count the number of jets satisfying $p_T > 20$ GeV and $\eta < 2.5$ and require at least 3 jets.

In the third and fourth columns of table 2, we give the estimated fraction of leptoquark events which would pass the above cuts (obtained by multiplying eqn (16), and the fraction of simulated events which pass cuts) and the expected number of leptoquark-induced events in 4.3 fb^{-1}. These numbers can be compared to the $\sim 51(65 \pm 15)$ observed[expected] events 4, bearing in mind that we have not simulated detector effects and that we did not take into account the efficiency of the selection cut on the BDT output rejecting Drell-Yan events, which is around 70%. From those events, we computed that the number of signal events excluded at 95% C.L. is 39. We therefore see that the expected number of leptoquarks events is much larger than this number: this leptoquark signal would significantly contribute to the number of events observed in the DØ analysis, and we can conclude that leptoquark with mass

$$m_S < 160\, \text{GeV} \quad \text{for} \quad BR(S \rightarrow t\mu^\pm) = 1$$

are excluded at 95% C.L.

3 At the 7 TeV LHC

Leptoquarks decaying to a top and an e or μ are attractive search candidates for the early LHC because the final state contains leptons and many jets. If a W^\pm from the t or \bar{t} decays leptonically, various combinations of same sign and opposite sign leptons of different flavour can be obtained (see figure 2).

Since the events contain many jets, the leptoquark pair production and decay should be calculated at NLO, so that the Monte Carlo simulation matches as well as possible to the real events. In addition, detailed study of backgrounds

4The numbers are extracted from a histogram.
would be required to identify suitable cuts to select leptoquark events and identify the leptoquark mass. We leave
this analysis to the experimental collaborations, and here, we merely estimate the fraction of events at the LHC, with
cuts similar to recent LHC $t\bar{t}$ results [36, 37].

We consider leptoquarks that decay with a branching ratio of one to either $t\tau^-$, or $t\mu^+$, with a mass in the range
200 – 400 GeV (so they decay to an on-shell top). The production and decay are calculated by PYTHIA 6.4[32]. Jets
are reconstructed with the anti-k_t algorithm of the FASTJET package[34], with $R = .5$. To estimate a total number of
surviving events, we assume 1 fb^{-1} of data.

3.1 Counting events: $S \to t\mu^+$

Consider first the decay $S \to t\mu^+$. If one W decays leptonically, this could be searched for in events with $\ell^+\ell^- + E_T$ + jets. CMS recently determined the $t\bar{t}$ production cross section [36] (with two leptonic Ws) from such events, and our
cuts are patterned on this analysis. We expect more leptons and jets in $S\bar{S}$ production than in $t\bar{t}$ production, so we
impose:

1. $E_T > 30$ GeV

2. Exactly two opposite sign charged leptons (e^{\pm}, μ^{\pm}), with $p_T > 20$, $|\eta| < 2.5$.

 Or alternatively, two OS leptons, with at least one other lepton.

3. at least four jets of $p_T > 30$ GeV, and $|\eta| < 2.5$

The CMS analysis has an isolation cut for the leptons; we instead require that the simulated leptons who pass p_T
cuts be produced in W or S decays (to avoid high p_T leptons from meson decays). We allow all decays to our Ws
in PYTHIA. This means, for instance that our simulation now includes events with two leptonic Ws, which could
pass cuts if there are additional QCD jets (this accounts for $\sim 10\%$ of our events at $m_S = 200$ GeV). The fraction
of events that survive cuts 1, 3 and either of the versions of 2, are respectively defined as $\varepsilon(E_T, = 2OS\ell, 4j)$ and
$\varepsilon(E_T, > 2OS\ell, 4j)$, and are given in columns three and five of table 3. The number of events at the 7 TeV LHC with
$L = 1fb^{-1}$ of integrated luminosity is estimated in the fourth and sixth columns.

m_S (GeV)	σ_{prod}/pb	$\varepsilon(E_T, = 2OS\ell, 4j)$	$N_{\varepsilon}(LQ)$	$\varepsilon(E_T, > 2OS\ell, 4j)$	$N_{>\varepsilon}(LQ)$
200	12.5	.055	683	.035	438
250	3.69	.095	352	.094	346
300	1.3	.104	136	.116	151
350	0.515	.109	56	.12	62
400	0.224	.121	27	.129	29

Table 3: The second column is the leptoquark pair production cross section at the 7 TeV LHC. The leptoquarks decay
to $t\mu^\pm$. The third column is the fraction of events which pass the cuts of section 3.1 with exactly a pair of opposite
sign leptons, and the fourth column is the estimated number of events in 1 fb^{-1} of data. Columns five and six are the
same, for the 3 or more lepton cut of section 3.1.

We can compare to the CMS determination [36] of the $t\bar{t}$ production cross section, based on 3.1 pb^{-1} of data from
the 7 TeV LHC. In the $2OS\ell$ and ≥ 4 jet bin, CMS observes one event, where $\sim .75 \rightarrow 1.5$ signal events are expected.
From [38], it appears that the background is $\lesssim 1/3$ of the signal. We anticipate that a 200 GeV leptoquark would contribute ~ 2 events in the $\geq 4j$ and exactly 2 OS lepton bin.

The integrated luminosity available now (winter 2011) is of order 35 pb^{-1}, or ten times that used in the CMS analysis [36]. This suggests that $\sigma_{\ell\ell}$ measurements at the LHC are already sensitive to leptoquarks S with $BR(S \to t\mu^\pm) = 1$ and $m_S \gtrsim 200$ GeV. Furthermore, searching for $\geq 3\ell$ and ≥ 4 jets would be more sensitive to such leptoquarks.

3.2 Counting events: $S \to t\tau^-$

Consider now the decay $S \to t\tau^-$ with $BR(S \to t\tau^-) = 1$. This decay would be more challenging to reconstruct, because the neutrinos from both τs and a leptonic W can contribute to $E_T\!\!\!\!E$. We decay $S \to t\tau^+$ in PYTHIA, and tell TAUOLA to flip the sign of the τs from the leptoquarks: $\tau^\pm \to \tau^\mp$, with helicity assigned as if it were chiral singlet (τ_R). Similarly to the discussion of $S \to \tau\tau$ at the Tevatron (see section 2.2.1), we attempt to constrain these leptoquarks at the LHC from lepton + jets + $E_T\!\!\!\!E$ events. However, in our simulation of $S \to \tau\tau$ at the LHC, unlike that of section 2.2.1, we allow all decays to the Ws from the tops. This is because, at the LHC, leptons produced in τ decay can be energetic enough to pass p_T cuts.

We then impose the following cuts, patterned on an ATLAS [37] analysis which extracts the $t\bar{t}$ production cross section from lepton + jets + $E_T\!\!\!\!E$ events:

1. $E_T > 25$ GeV, where all the neutrinos are summed into $E_T\!\!\!\!E$
2. at least four jets with $p_T > 25$ GeV, $|\eta| < 2.5$.
3. we require at least one e^\pm, μ^\pm with $p_T > 20$ GeV, $|\eta| < 2.5$. To mimic an isolation cut on our simulated leptons, we then check that the e^\pm, μ^\pm and μ^- with highest p_Ts are separated from the jets which pass cuts, by $\Delta R = \sqrt{(\eta_\ell - \eta_j)^2 + (\phi_\ell - \phi_j)^2} \geq .3$. The leptons failing this check are rejected. Then, we may in addition require either exactly one lepton (as in the ATLAS analysis), or, at least 7 jets and/or e^\pm and/or μ^\pm which pass these cuts.

To take into account both hadronic and leptonic τ decays, the requirement of ≥ 7 jets and/or leptons is applied.

Our estimates of the fraction of leptoquark events that would pass these cuts (for the three possible lepton cuts), and the number of events in $1~fb^{-1}$ of data, are in table 4. Notice that the efficiencies, for finding an $S \to t\tau^\pm$ leptoquark in such single lepton events, are higher than the efficiencies to find $S \to t\mu^\pm$ leptoquarks in the dilepton events, given in table 3. This is because there is always $E_T\!\!\!\!E (\nu, s)$ in the $S \to t\tau^\pm$ final state, and there is an e^\pm or μ^\pm approximately $2/3$ of the time. Whereas requiring $E_T\!\!\!\!E$ in the $S \to t\mu^\pm$ decays, imposes a leptonic W, which occurs $\sim 29\%$ of the time.

m_S	σ/pb	$\varepsilon(\geq 1\ell)$	$N(\geq 1\ell)$	$\varepsilon(1\ell)$	$N(1\ell)$	$\varepsilon(\geq 7\ell + j)$	$N(\geq 7\ell + j)$
200	12.5	.160	2000	.143	1788	.039	488
250	3.69	.297	1096	.241	889	.126	465
300	1.30	.374	486	.285	370	.199	259
350	.515	.428	220	.322	166	.234	121
400	.224	.451	101	.328	74	.264	59

Table 4: The second column is the leptoquark pair production cross section at the 7 TeV LHC. The leptoquark decays to $t\tau^\pm$. The third, fifth and seventh are the fraction of events which survive the cuts of section 3.2; the three εs correspond to the three different lepton cuts. Then the fourth, sixth and eighth columns are the estimated number of events passing cuts in $1~fb^{-1}$ of data, for $BR(S \to t\tau^-) = 1$.

It is less straightforward to anticipate LHC sensitivity in this channel. ATLAS [37] measured the $t\bar{t}$ production cross section in the single lepton + jets + $E_T\!\!\!\!E$ channel, with $2.8~pb^{-1}$ of data. In the bin containing ≥ 4 jets of which two are tagged as bs, they observe 37 events from $t\bar{t}$, and estimate the background as 12.2 ± 3.9. The ATLAS b tagging efficiency varies ($40-60\%$ for $E_{j}: 25 \rightarrow 85$GeV); if we assume that $\sim 50\%$ of the bs from leptoquarks are tagged, one can guess from table 4 that a $m_S = 200$ GeV leptoquark, with $BR(S \to t\tau^-) = 1$, could contribute $\sim 1 - 2$ events to this bin. Explicitly counting events with extra jets (beyond the four expected from $t\bar{t}$), or events with extra leptons (ATLAS required one and only one), could improve the sensitivity to leptoquarks decaying to $t\tau^-$.

4 Summary

Like the Higgs, a scalar leptoquark is a boson that couples to two fermions. Since the quark Yukawa couplings to the Higgs are hierarchical, and flavour physics in the quark sector follows Standard Model expectations, one can anticipate that leptoquarks, like the Higgs, interact preferentially with third generation quarks. This also arises in several models. However, expectations for leptoquark couplings to leptons are less straightforward to extract from lepton mass matrices. The charged leptons are hierarchical, so one could imagine that leptoquarks should preferentially decay to $t \tau$. On the other hand, the neutrino sector is comparatively democratic, suggesting that leptoquarks could decay to t and any lepton. The $t e^\pm$ and $t \mu^\pm$ final states could be interesting search channels for the early LHC.

This paper studied possible bounds on leptoquarks S, with a mass in the range 100 GeV $< m_S < 400$ GeV, which are pair-produced via their strong interactions, and decay to a top quark (and only the top: no $b, c...$), and a charged lepton $L = e, \mu$ or τ. We expect the Tevatron, with its high luminosity, to be sensitive to the range $m_S < m_t$, where the leptoquarks decay to the three-body final state $bW^{\pm}L^\mp$. Leptoquarks with $m_S > m_t$ could be found at the LHC. The range $m_S \approx m_t \pm 15$ GeV appears difficult: the soft leptons in the final state may not pass p_T cuts, so the $S\bar{S}$ final state becomes difficult to distinguish from $t\bar{t}$. Recall that at $m_S \sim m_t$, the $S\bar{S}$ production cross section is $\sim 1/10$ of the $t\bar{t}$ production cross section.

We estimated the number of leptoquark-induced events containing lepton(s) plus jets, using PYTHIA 6.4, TAUOLA, and the anti-k_t jet algorithm of FASTJET. We include no detector simulation. We consider separately the sensitivities to leptoquarks which decay to $t \tau^{\pm}$, or $t \mu^{\pm}$, assuming a branching ratio of 1 in each case. We further assume that our estimates for the $t \mu^{\pm}$ final state could apply to leptoquarks decaying to $t e^\pm$.

Our results suggest that current determinations of the $t\bar{t}$ production cross section, both from the Tevatron and the LHC, could constrain a leptoquark with $BR(S \rightarrow t \mu^\pm) = 1$, and a mass of order $100 \rightarrow 250$ GeV. At the Tevatron, D0 determines the $t\bar{t}$ production cross section $\sigma_{\bar{t}t}$ from the final state $E_T + \geq 3$ jets, using 4.3 fb$^{-1}$ of data. We estimate that these results could exclude

$$m_S \lesssim 160 \ \text{GeV} \quad \text{for} \quad BR(S \rightarrow t \ell^\pm) = 1, \quad \ell \in \{e\mu\}$$

At the LHC, CMS obtained $\sigma_{\bar{t}t}$ from events containing $\ell^\pm_1 \ell^\mp_2 + E_T + \geq 2$ jets. It is possible that leptoquarks with $m_S \gtrsim 200$ GeV, could have contributed a few events to the scantily populated (1 event) ≥ 4 jet bin.

Leptoquarks with $BR(S \rightarrow t \tau^\pm)$ would contribute to the the final state $\ell + E_T + \geq 4$ jets (which is used to determine $\sigma_{\bar{t}t}$), if at least one of the Ws or τs decays leptonically. A significant fraction of the leptoquark events should have more than four jets, but the available data sets present a single ≥ 4 jet bin, so we cannot profit from this property. We estimate that a D0 analysis could exclude

$$m_S \lesssim 160 \ \text{GeV} \quad \text{for} \quad BR(S \rightarrow t \tau^\pm) = 1$$

ATLAS also obtained $\sigma_{\bar{t}t}$ from events with $\ell + E_T + \geq 4$ jets, but leptoquarks with $m_S \sim 200$ GeV would be consistent with the backgrounds.

The current integrated luminosity of the LHC is significantly larger than that used in the analyses we compared to [37, 36]. So we anticipate that the winter 2011 determinations of $\sigma_{\bar{t}t}$ at the LHC should have some sensitivity to the leptoquarks discussed here. However, $S\bar{S}$ production followed by $S \rightarrow tL^\pm$, should usually give a final state with more leptons and/or jets than $t\bar{t}$ production. This means that analyses counting additional leptons and/or jets, could have improved sensitivity.

Acknowledgements

We thank A Aparici, C Biscarat, G Grenier, S Perries sand V Sanz for useful discussions.

References

[1] Some earlier discussions are (see e.g. references and citations thereof):
S. Davidson, D. C. Bailey and B. A. Campbell, “Model independent constraints on leptoquarks from rare processes,” Z. Phys. C 61 (1994) 613 [arXiv:hep-ph/9309310]. J. L. Hewett and T. G. Rizzo, “Much ado about leptoquarks: A Comprehensive analysis,” Phys. Rev. D 56, 5709 (1997) [arXiv:hep-ph/9703337]. “A Comprehensive study of leptoquark bounds,” Phys. Rev. D 49 (1994) 333 [arXiv:hep-ph/9309266].
[2] P. Langacker, “Grand Unified Theories And Proton Decay,” Phys. Rept. 72 (1981) 185.

[3] E. Farhi and L. Susskind, “Technicolor,” Phys. Rept. 74 (1981) 277.

[4] R. Barbier et al., “R-parity violating supersymmetry,” Phys. Rept. 420 (2005) 1 [arXiv:hep-ph/0406039].

[5] S. S. Gershtein, A. A. Likhoded and A. I. Onishchenko, “TeV-scale leptoquarks from GUTs/string/M-theory unification,” Phys. Rept. 320 (1999) 159.

I. Dorsner and P. Fileviez Perez, “Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks,” Nucl. Phys. B 723, 53 (2005) [arXiv:hep-ph/0504276].

[6] B. Gripaios, “Composite Leptoquarks at the LHC,” JHEP 1002 (2010) 045 [arXiv:0910.1789 [hep-ph]].

[7] P. Fileviez Perez, T. Han, T. Li and M. J. Ramsey-Musolf, “Leptoquarks and Neutrino Masses at the LHC,” Nucl. Phys. B 819 (2009) 139 [arXiv:0810.4138 [hep-ph]].

D. Aristizabal Sierra, M. Hirsch and S. G. Kovalenko, “Leptoquarks: Neutrino masses and accelerator phenomenology,” Phys. Rev. D 77 (2008) 055011 [arXiv:0710.5699 [hep-ph]].

P. Y. Popov, A. V. Povalov and A. D. Smirnov, “Fermionic decays of scalar leptoquarks and scalar gluons in the minimal four color symmetry model,” Mod. Phys. Lett. A 20 (2005) 3003 [arXiv:0710.5699 [hep-ph]].

[8] W. Buchmuller, R. Ruckl and D. Wyler, “Leptoquarks in lepton quark collisions,” Phys. Lett. B 191 (1987) 442 [Erratum-ibid. B 448 (1999) 320].

[9] P. Fileviez Perez, T. Han, T. Li and M. J. Ramsey-Musolf, “Leptoquarks and Neutrino Masses at the LHC,” Nucl. Phys. B 819 (2009) 139 [arXiv:0810.4138 [hep-ph]].

[10] M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, “New low-energy leptoquark interactions,” Phys. Lett. B 378 (1996) 17 [arXiv:hep-ph/9602305]. U. Mahanta, “Neutrino masses and mixing angles from leptoquark interactions,” Phys. Rev. D 62 (2000) 075009 [arXiv:hep-ph/9905518]. K. S. Babu and J. Julio, “Two-Loop Neutrino Mass Generation through Leptoquarks,” Nucl. Phys. B 841 (2010) 130 [arXiv:1006.1092 [hep-ph]].

[11] T. P. Cheng and M. Sher, “Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets,” Phys. Rev. D 35 (1987) 3484.

[12] M. Carpentier and S. Davidson, “Constraints on two-lepton, two quark operators,” arXiv:1008.0280 [hep-ph].

[13] A. J. Buras, P. Gambino, M. Gorban, S. Jager and L. Silvestrini, “Universal unitarity triangle and physics beyond the standard model,” Phys. Lett. B 500, 161 (2001) [arXiv:hep-ph/0007085]. R. S. Chivukula and H. Georgi, “Composite Technicolor Standard Model,” Phys. Lett. B 188 (1987) 99.

[14] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, “Minimal flavour violation: An effective field theory approach,” Nucl. Phys. B 645 (2002) 155 [arXiv:hep-ph/0207036].

[15] S. Davidson and S. Descotes-Genon, “Minimal Flavour Violation for Leptoquarks,” arXiv:1009.1998 [hep-ph].

[16] E. Nikolidakis and C. Smith, “Minimal Flavor Violation, Seesaw, and R-parity,” Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129 [hep-ph]].

[17] A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, “Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model,” JHEP 0509, 005 (2005) [arXiv:hep-ph/0502067].

[18] M. Kramer, T. Plehn, M. Spira and P. M. Zerwas, “Pair production of scalar leptoquarks at the Tevatron,” Phys. Rev. Lett. 79 (1997) 341 [arXiv:hep-ph/9704322]. M. Kramer, T. Plehn, M. Spira and P. M. Zerwas, “Pair production of scalar leptoquarks at the LHC,” Phys. Rev. D 71 (2005) 057503 [arXiv:hep-ph/0411038]. W. Beenakker, M. Kramer, T. Plehn, M. Spira and P. M. Zerwas, “Stop production at hadron colliders,” Nucl. Phys. B 515 (1998) 3 [arXiv:hep-ph/9710451].
[19] V. M. Abazov et al. [D0 Collaboration], “Search for pair production of first-generation leptoquarks in p pbar collisions at sqrt(s)=1.96 TeV,” Phys. Lett. B 681 (2009) 224 [arXiv:0907.1048 [hep-ex]].

V. M. Abazov et al. [D0 Collaboration], “Search for pair production of second generation scalar leptoquarks,” Phys. Lett. B 671 (2009) 224 [arXiv:0808.4023 [hep-ex]].

V. M. Abazov et al. [D0 Collaboration], “Search for third generation scalar leptoquarks,” Phys. Lett. B 693 (2010) 95 arXiv:1005.2222 [Unknown].

V. M. Abazov et al. [D0 Collaboration], “Search for first generation leptoquarks decaying into τb,” Phys. Rev. Lett. 101 (2008) 241802 [arXiv:0806.3527 [hep-ex]].

V. M. Abazov et al. [D0 Collaboration], “Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV,” Phys. Lett. B http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm, D0 note 4922-CONF, D0 note 4552-CONF.

[20] G Grenier, on July 24, in session 10 (BSM) of the 35th ICHEP, Paris. Published in PoS (ICHEP2010)391.

[21] S. Chekanov et al. [ZEUS Collaboration], “A search for resonance decays to lepton + jet at HERA and limits on leptoquarks,” Phys. Rev. D 68 (2003) 052004 [arXiv:hep-ex/0304008]. A. Aktas et al. [H1 Collaboration], “Search for leptoquark bosons in e p collisions at HERA,” Phys. Lett. B 629 (2005) 9 [arXiv:hep-ex/0506044]. R. Ciesielski [H1 and ZEUS Collaborations], “Search for leptoquarks and contact interactions at HERA,” PoS PS-HEP2009 (2009) 269.

[22] K. S. McFarland et al. [CCFR Collaboration and The E744 Collaboration and The E770 Collaboration], “A precision measurement of electroweak parameters in neutrino nucleon scattering,” Eur. Phys. J. C 1, 509 (1998) [arXiv:hep-ex/9701010].

S. Schael et al. [ALEPH Collaboration], “Fermion pair production in e+e− collisions at 189-209-GeV and constraints on physics beyond the standard model,” Eur. Phys. J. C 49 (2007) 411 [arXiv:hep-ex/0609051]. http://www-d0.fnal.gov/Run2Physics/WWW/results/up.htm , D0 note 4922-CONF, D0 note 4552-CONF. R. Ciesielski [H1 and ZEUS Collaborations], “Search for leptoquarks and contact interactions at HERA,” PoS E-HEP2009 (2009) 269.

[23] K. m. Cheung, “Constraints on electron quark contact interactions and implications to models of leptoquarks and extra Z bosons,” Phys. Lett. B 517 (2001) 167 [arXiv:hep-ph/0106251].

[24] O. J. P. Eboli, R. Zukanovich Funchal and T. L. Lungov, “Signal and backgrounds for leptoquarks at the CERN LHC,” Phys. Rev. D 57 (1998) 1715 [arXiv:hep-ph/9709319].

C. Boulahouache [ATLAS Collaboration], “Prospects for early discoveries in final states with dileptons and jets: LRSM and leptoquarks,” AIP Conf. Proc. 1078 (2009) 584.

[25] J. P. Saha, B. Misra and A. Kundu, “Constraining Scalar Leptoquarks from the K and B Sectors,” arXiv:1003.1384 [Unknown].

[26] J. K. Mizukoshi, O. J. P. Eboli and M. C. Gonzalez-Garcia, “Bounds on scalar leptoquarks from Z physics,” Nucl. Phys. B 443, 20 (1995) [arXiv:hep-ph/9411392]. G. Bhattacharyya, J. R. Ellis and K. Sridhar, “Bounds on the masses and couplings of leptoquarks from leptonic partial widths of the Z,” Phys. Lett. B 336 (1994) 100 [Erratum-ibid. B 338 (1994) 522] [arXiv:hep-ph/9406354].

[27] O. J. P. Eboli, R. Zukanovich Funchal and T. L. Lungov, Phys. Rev. D 59 (1999) 035002 [arXiv:hep-ph/9808288].

[28] B. Gripaios, A. Papaefstathiou, K. Sakurai and B. Webber, “Searching for third-generation composite leptoquarks at the LHC,” arXiv:1010.3962 [hep-ph].

[29] D0 note 6037-CONF (summer 2010 conferences) http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T88/T88.pdf

[30] D0 note 6038-CONF (winter 2010 conferences) http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T86/T86.pdf
[31] K. Nakamura et al. [Particle Data Group], “Review of particle physics,” J. Phys. G 37 (2010) 075021.

[32] T. Sjostrand, S. Mrenna and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 0605 (2006) 026 [arXiv:hep-ph/0603175].

[33] P. Golonka, B. Kersevan, T. Pierzchala, E. Richter-Was, Z. Was and M. Worek, “The tauola-photos-F environment for the TAUOLA and PHOTOS packages, release II,” Comput. Phys. Commun. 174 (2006) 818 [arXiv:hep-ph/0312240].

[34] M. Cacciari and G. P. Salam, “Dispelling the N^3 myth for the k_t jet-finder,” Phys. Lett. B 641, 57 (2006) [arXiv:hep-ph/0512210].

[35] T. Junk, Nucl. Instrum. Methods in Phys. Res. A 434, 435 (1999); A. Read, in “1st Workshop on Confidence Limits”, CERN Report No. CERN-2000-005, 2000.

[36] V. Khachatryan et al. [CMS Collaboration], “First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at $\sqrt{s}=7$ TeV,” Phys. Lett. B 695 (2011) 424 [arXiv:1010.5994 [hep-ex]].

[37] G. Aad et al. [Atlas Collaboration], “Measurement of the top quark-pair production cross section with ATLAS in pp collisions at $\sqrt{s} = 7 TeV,”$ arXiv:1012.1792 [hep-ex].

[38] CMS Physics Analysis Summary: “Selection of Top-Like Events in the Dilepton and Lepton-plus-Jets Channels in Early 7 TeV Data”, CMS-PAS-TOP-10-004