Comparative Transcriptomic Analysis Revealed Novel Potential Therapeutic Targets Of Traditional Chinese Medicine (Pinggan-Qianyang Decoction) On Vascular Remodeling In Spontaneously Hypertensive Rats

Jia-Mei Yao
Xiangya Hospital Central South University

Cui Zhang
Xiangya Hospital Central South University

Yu-Shu Yang
Xiangya Hospital Central South University

Xia Fang
Xiangya Hospital Central South University

Qiong Chen
Xiangya Hospital Central South University

Guangwei Zhong (✉ 1139913641@qq.com)
Xiangya Hospital Central South University https://orcid.org/0000-0001-5844-4171

Research

Keywords: Traditional Chinese medicine; Comparative transcriptomic analysis; Vascular remodeling; Spontaneously hypertensive rats; AGE-RAGE signal pathway

DOI: https://doi.org/10.21203/rs.3.rs-90749/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Both experimental and clinical studies have revealed satisfactory effects with the traditional Chinese formula Pinggan Qianyang decoction (PGQYD) for improving vascular remodeling caused by essential hypertension. The present study explored various therapeutic targets of PGQYD using mRNA transcriptomics.

Methods: In this study, rats were randomly divided into three groups: Wistar-Kyoto (WKY; normal control), spontaneously hypertensive (SHR), and PGQYD-treated rat groups. After 12 weeks of PGQYD treatment, behavioral tests were employed and the morphology of thoracic aortas were examined with hematoxylin-eosin (HE) and Masson staining and electron microscopy. The mRNA expression profiles were identified with RNA-Seq and quantitative real-time PCR to validate changes in gene expression observed with microarray analysis. The gene ontology and pathway enrichment analyses were carried out to predict gene function and gene co-expressions. Pathway networks were constructed to identify the hub biomarkers, which were further validated by western blotting and immunofluorescence analysis.

Results: After PGQYD treatment, the behavioral tests and histological and morphological findings of vascular remodeling were obviously meliorated compared with the SHR group. In the rat thoracic aorta tissues, 626 mRNAs with an exact match were identified. A total of 129 of mRNAs (fold change >1.3 and P-value <0.05) were significantly changed in the SHR group compared to the WKY group. Among them, 16 mRNAs were markedly regulated by PGQYD treatment and validated with quantitative real-time PCR. Additionally, target prediction and bioinformatics analyses revealed that these mRNAs could play therapeutic roles through biological processes for regulating cell metabolic processes (such as glycation biology), biological adhesions, rhythmic processes, and cell aggregation. The cellular signaling pathways involved in glycosylation may be AGE-RAGE signaling pathway.

Conclusion: The present study provides novel insights for future investigations to explore the mechanisms by which PGQYD may effectively inhibit vascular remodeling by activating the AGE-RAGE signal pathway in glycation biology.

Background

Essential hypertension (EH) is a major public health problem both in middle-aged and elderly people. It is both a complex disease and an important risk factor for other cardiovascular outcomes, such as sudden death, stroke, myocardial infarction, heart failure, and renal diseases [1]. Unfortunately, the control of arterial hypertension is far from optimal and has improved only minimally over the last few decades [2]. Side effects of anti-hypertensive drugs, complaints due to their blood pressure lowering effect, and inadequate compliance are the key factors in the background of inadequate control of hypertension [3, 4]. Therefore, it is urgent to find new antihypertensive therapy in the future. The spontaneously hypertensive (SHR) rat model is a suitable model for studying the development and consequences of hypertension. The development of vascular remodeling is an early and important consequence of hypertension. Vascular remodeling is mainly characterized by vascular smooth muscle cell hypertrophy and increased production
of the extracellular matrix [5]. Vascular remodeling is initially an adaptive process that evolves in response to long-term pressure overload, but later it can contribute to the development of hypertensive target organ damage [6].

The development of new effective therapies for EH is urgently required. Fortunately, traditional Chinese medicine (TCM), with more than a 2,000-year history, includes some of the oldest herbal medicines in the world [7]. Based on a multi-component and multi-target approach, TCM has become an important source for new drug development to treat essential hypertension [8, 9]. The World Health Organization encourages the incorporation of herbal remedies into main stream medical systems [10]. Pinggan Qianyang decoction (PGQYD), a famous TCM formula, is by far the most frequently used for the treatment of EH (87.9%) [11]. Accumulating evidence has suggested that PGQYD improves target organ damage of EH through vascular protection, vascular anti-aging effects, and improvement in vascular remodeling [12]. Moreover, our previous study confirmed that PGQYD tends to improve vascular remodeling by enhancing HSP27 expression through the p38MAPK signaling pathway [13]. However, the multifaceted regulatory mechanisms of PGQYD acting on EH have not been fully elucidated due to the lack of appropriate methods.

Advanced omics technology is considered to be a holistic and efficient tool to study the use of TCM, and it can be used as a bridge between TCM and western medicine [14]. Transcriptomics is a powerful tool for detecting global alterations in RNA expression and, consequently, changes in the corresponding proteins [15, 16]. A transcriptomics study of Buyang-Huanwu Decoction (BYHWD) for treating intracerebral hemorrhage showed that three tRNAs (rno-tRFi-Ser-25a, rno-tRF5-Ala-16a, and rno-tRF5-Glu-29a) are specifically regulated by these drugs [17]. Another transcriptomics study of a TCM formula (Baoyuan decoction, BYD) for treating myocardial ischemia (MI) disclosed that the cardioprotection of BYD is mainly involved in the regulation of energy homeostasis, oxidative stress, apoptosis, inflammation, cardiac contractile dysfunction, and extracellular matrix remodeling [18]. Therefore, it is rational to believe that transcriptomics analysis of mRNAs may help shed light on multifaceted mechanisms of TCM formulas by identifying exact therapeutic targets and their interactions [19]. For that purpose, we aimed to utilize RNAsequencing technologies to evaluate the mRNA expression levels in Wistar-Kyoto (WKY; normal control) rats and the spontaneously hypertensive (SHR) and PGQYD-treated rats groups. Then hypertension-induced changed mRNAs (SHR vs WKY) and PGQYD-regulated altered mRNAs (PGQYD vs SHR) were obtained, and the key genes and pathways were identified with bioinformatics. Finally, the hub biomarkers were further validated by investigating protein expression levels. We evaluated their biological functions to reveal the therapeutic mechanisms of PGQYD (Fig. 1). These new findings may provide a novel perspective to illustrate the molecular mechanisms of PGQYD treatment for vascular remodeling after hypertension.

Materials And Methods

Preparation of PGQYD
The ingredients of PGQYD included five medicinal herbs: Tian Ma (*Gastrodiae Rhizoma*), Gou Teng (*Uncaria Rhynchophylla*), Shi Jue Ming (*Haliotis Discus Hannai*), Mao Li (*Ostrea Gigas Thunberg*), and Niu Xi (*Cyathulae Radix*) at a ratio of 10:20:30:30:20, respectively (dry weight). All herbs were obtained from Xiangya Hospital, Central South University (CSU; Changsha, China). Furthermore, each herb was authenticated by the herbal medicinal botanist, Professor Shao Liu, in the Department of Pharmacy at Xiangya Hospital, CSU. The decoction was prepared and subjected to quality control as previously described [20]. Finally, the powder was dissolved in distilled water at a concentration of 0.2 g/ml for intragastric administration.

Animals and Experimental Groups

Twenty healthy male spontaneous hypertensive rats (14 weeks old, SCXK (Hu) 2018-009] and 10 healthy male WKY rats [14 weeks old, SCXK (Hu) 2018-009] weighing 220 – 240 g were purchased from Shanghai Slake Experimental Animal Co., Ltd. All the animals were reared under identical conditions (room temperature at 25 °C and 12-h light-dark cycle) and had free access to standard rodent water and food. All animal protocols were approved by the Committee on the Use and Care of Animals of CSU and conformed to the Guidelines for the Care and Use of Laboratory Animals. After 1 week of adaptive feeding, the SHR rats with systolic blood pressure (SBP) more than 165 mmHg and the WKY rats with SBP less than 120 mmHg were used in this investigation. The first group was an age-matched normotensive control group (WKY, n = 10). The SHR rats were randomly divided into two groups. One group received no treatment (SHR, n = 10), whereas the other group (PGQYD, n = 10) received 0.7 g/kg/day as the dosage of PGQYD for 4 weeks.

Assessment of behaviors and measurement of blood pressure

The degree of irritability was observed and graded [21]: 1 point: screamed and jumped when holding the neck; 2 points: bit while holding the neck; 3 points: when the tail was raised, the rat screamed, jumped, and even bit the rats in the same cage, frequently fought, and bit the iron cage. If the above situation was not obvious, it was scored as level 0. The rotation tolerance time was measured. The rats were placed on a home-made rotating platform with a rotating speed of 45 r·min⁻¹. If the rats did not fall after rotating for 2 min, the experiment was stopped. SBP was determined in conscious rats using the tail-cuff method [22]. The rat tails were occluded with the appropriate size tube-shaped tail cuff connected to the tail cuff device. The SBP and HR of the rats were measured via an XH200 thermostatic non-invasive blood pressure meter and an MD3000 biological signal collection and processing system (Huaibei Zhenghua Biological Instrument Equipment Co., Ltd., Anhui, China). Each result was averaged from three repeats at the beginning of the study, and at 1 week, 2 weeks, 3 weeks, and 4 weeks subsequently until euthanasia. On the 28th day, rats were deeply anesthetized by intraperitoneal injection of pentobarbital and perfused with ice-cold saline. Then, thoracic aortic tissues were harvested for subsequent analysis.

Histological and Morphological Assay
Rats were anesthetized with an intraperitoneal injection of 5 mL/kg 20% urethane at the end of each week of whole-day drug administration. The thoracic aorta below the aortic arch of each rat was stripped and clipped. A portion was fixed in 8% neutral formaldehyde, embedded in paraffin, sectioned at 5 µm, and stained with hematoxylin-eosin (HE) and Masson, and then observed with electron microscopy [23]. Light microscopy was used to image each cross-sectional slice, of which there were five per rat. Each vascular ring in the perpendicular position and the vessel media wall was observed. The images were observed under a Leica imaging system (Leica Microsystems GmbH, Wetzlar, Germany). The media thickness (MT) and inner diameter (LD) were measured, and the ratio of media thickness to inner diameter (MT/LD) was calculated. Other parts of the thoracic aorta were removed from the adventitia and were promptly refrigerated at −80°C for processing in an mRNA assay.

Transcript Profile Analysis

The total RNA of thoracic aorta tissues from nine rats (WKY group, n = 3, SHR group, n = 3, and PGQYD group, n = 3) were extracted using TRIlitol (Invitrogen, Carlsbad, CA, USA) reagent for RNA sequencing and were purified according to the manufacturer’s instructions. Total RNA was extracted from the right globus pallidus and purified with an RNeasy Mini Kit (Qiagen, Redwood City, CA, USA). Arraystar Rat mRNA microarrays (v2.0, containing 24,626 coding transcripts) were used to detect the expression of mRNAs in a total of nine rats (three groups with three replicates). Tissue preparation and microarray hybridization were performed with an Agilent Gene Expression Hybridization Kit (Agilent Technology, CA, USA) [24]. After washing, the arrays were scanned with an Agilent Microarray Scanner and finally analyzed with Agilent Feature Extraction software (version 10.5.1.1). Differentially expressed transcripts (thresholds of ≥1.3-fold and p values of <0.05) were identified by comparing the SHR model and normal control groups (SHR vs WKY) and the SHR + PGQYD-treated and SHR groups (PGQYD vs SHR). Then, we determined the intersection between the upregulated transcripts in the SHR vs WKY groups and the downregulated transcripts in the PGQYD vs SHR groups as well as the intersection between the downregulated transcripts in the SHR vs WKY groups and the upregulated transcripts in the PGQYD vs SHR groups to identify the mechanism by which PGQYD reverses pathophysiological changes in SHR.

Analysis of Differentially Expressed Genes (DEGs)

The expression level for each gene was determined by the number of reads uniquely mapped to the specific gene and the total number of uniquely mapped reads in the sample. The gene expression level was calculated with the reads per kb per million (RPKM) method [25]. The formula to calculate FPKM was as follows: FPKM=(number of mapping fragments) × 10³× 10⁶/[(length of transcript)×(number of total fragments)]. Then, the NOI seq method was applied to screen DEGs between two groups, with the threshold of significance as fold change of RPKM ≥ 3 and probability ≥ 0.8 [26].

Pathway Enrichment Analysis and GO Analysis

GO (http://www.geneontology.org) analysis was performed to determine biological roles based on the molecular functions, biological processes, and cellular components of the aberrantly expressed mRNAs; p < 0.05 and false discovery rate (FDR) < 0.05 were used as thresholds to define markedly enriched GO
terms/pathways [27]. Pathway analysis (based on KEGG, http://www.genome.jp/kegg/) was performed to explore the pathways significantly enriched in DEGs [28].

Real-Time Quantitative PCR Validation

The procedure of real-time quantitative PCR was based on a previous study [29]. Total RNA was extracted from tissues in each group and 5 µg of total RNA was reversely transcribed to cDNA (Tiangen Biotech, Shanghai, China) based on the manufacturer’s manuals. RT-qPCR was performed in a reaction system (25 µL) that contained SYBR Green/Fluorescein qPCR Master Mix, forward primers, reverse primers, and cDNA. The ABI7500 realtime PCR system (provided by Applied Biosystems, CA, USA) was employed for PCR. Alterations in mRNA expression in thoracic aortas tissues were assessed with the $2^{-\Delta\Delta Ct}$ method normalized with endogenous control GAPDH. The PCR primers that were used are listed in Table 1.
Gene:NCBI Reference Sequence	Sequences	Product size(bp)
SMAD2:NM_001277450.1	F:5’-TCTGATTCAAAACGAGGAGCAGC-3’ R:5’-ACTGGCGTTGAAGAAGGAAA-3’	254
GSK-3:NM_032080.1	F:5’-AGGTGAATCGAGAAGAGCC-3’ R:5’-GCCACCAGTTCTCCTGAGTC-3’	270
METT13:NM_171992.4	F:5’-TGTCATGCTGGGCCTCATT-3’ R:5’-GCGGCTGGCTTTACATTAGC-3’	233
CASP3:NM_012922.2	F: 5’-ACCGCACCCGTTACTATTC-3’ R: 5’-CAAATTCGTGCGGACCTTC-3’	148
RAGE:NM_053336.2	F:5’-GGGTCAAGAAACCGGTGAT-3’ R:5’-GTCTGGGTGTGCGTTTGC-3’	153
HMGN4:XM_033219548.1	F:5’-ACGCAAGTAGAAGGAGCTG-3’ R:5’-CCGAATTGCAAGGACAGAGA-3’	298
PTGS1:NM_017043.4	F:5’-CGGTACTGCTACAGATGCT-3’ R:5’-CCGTGCAGATACCTACAT-3’	126
JAK2:NM_031514.1	F:5’-GGGTGCCAGACAGAGATTTA-3’ R:5’-AATCCAAAAACGCTTCAACTGCTC-3’	282
EIF4B:NM_001008324.1	F:5’-GATGAGGAGACGACTGCAC-3’ R:5’-GCATTCTGTGAATGGAGGC-3’	325
DNMT1B:NC_037647.1	F:5’-GCGAGCATGTCAACTAGGAGG-3’ R:5’-ATACGTTGCATTCCGCACC-3’	163
SIRT1:NM_001372090.1	F:5’-TCAGCTGTTGGCTGACTTCAT-3’ R:5’-TCCAATGCTAGCCTAC-3’	348
PDCD4:NM_022265.2	F:5’-AAGCAAAAAGACGACTGCAGG-3’ R:5’-CCACTCTTCTACCTCCCAAAGG-3’	424
FOXO1:NM_001191846.2	F:5’-GAGCAGTCAAAGATGCCGT-3’ R:5’-CAGAGCACACGGAGCTACACA-3’	395

F: forward primer. R: reverse primer.
Gene:NCBI Reference Sequence	Sequences	Product size(bp)
ADAM22:XM_017592951.1	F:5’-TCTCTTAGGGTCCAGCTTCT-3’ R:5’-CCGCTTTAGTCTCGGCTTCA-3’	218
KIF5A:NM_212523.1	F:5’-GGACACCAAAGCGACCT-3’ R:5’-ATAATGACGCTGTCGCCC-3’	289
AQP5:NM_012779.1	F:5’-CTGGCGGCCCATCCTCTATT-3’ R:5’-CCCAGCTGAGAGGATGTTG-3’	253
Egr-1:NM_012551.2	F:5’-ATCAAAGCCTTCGACTCA-3’ R:5’-GTGTAAGCTCATCCGAGG-3’	196
HSP27:M86389.1	F:5’-CTCGGTTTCCCCGATGAGG-3’ R:5’-CCACGCCTTCCTGTTCTTA-3’	255
MFN2:NM_130894.4	F:5’-AGCACCCACTGTCTTGACC-3’ R:5’-GCAAGGTGACCTTACAGGT-3’	697
SAMD4A:XM_017599656.1	F:5’-AGGCCCTAGGCTTCAGGGG-3’ R:5’-CAGGAACTGAGTGTGCCCTG-3’	237
SEPN1:XM_008764190.2	F:5’-ATTTTACAGCCGCAAAGGTCC-3’ R:5’-TAGGGGATGGCCAGCATAGA-3’	398
PTEN:NM_031606.1	F:5’-CTCATGGCGTGGCTTGACT-3’ R:5’-TCAGGGTACGACACAGATACT-3’	231
GAPDH:NM_017008.4	F:5’-CAGCCCCCCAGGTGTATCC-3’ R:5’-GAAGATCGGGTCACCTCACA-3’	142

F: forward primer. R: reverse primer.

Immunofluorescence (IFC) analysis

The staining procedure for IFC analysis was based on a previous study [30]. The 5 µm acetone-fixed thoracic aorta frozen sections were incubated for 1 h in 10% bovine serum to block nonspecific protein-protein interactions. They were cultured in PBS (overnight at 4 °C) and incubated with primary antibodies (rabbit anti-rat RAGE antibodies, 1:200, Abcam, Cambridge, MA, UK; rabbit anti-rat EGR-1 antibodies, 1:200, Abcam, Cambridge, UK). After washing three times for 10 min, the sections were incubated in PBS for 1 h...
at room temperature with secondary antibodies [goat anti-rabbit Alexa Fluor 594 (1:200)]. The nuclei were counterstained with 4-0-6-diamidino-2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA). The immunofluorescence staining was analyzed using a laser-scanning confocal microscope (SLM 510, Carl Zeiss Meditec, Inc., Jena, Germany).

Western blotting analysis

From the frozen thoracic aorta tissues, proteins were extracted and the concentrations were measured with a bicinchoninic acid (BCA) protein assay. Samples were subjected to incubation with primary antibodies antiCaSR (provided by Abcam; 1:800), renin (provided by Bioss, Beijing, China; 1:250), AT2R (provided by Abcam; 1:800), angiotensin II type 1 receptor (AT1R) (provided by Abcam; 1:800), MasR (Abcam; 1:800), B cell leukemia-2 (Bcl-2) (provided by Cell Signaling Technology, Danvers, USA; 1:1000), Bcl-2-associated X protein (Bax; provided by Cell Signaling Technology; 1:800), and caspase-3 (provided by Abcam; 1:500), and normalized to GAPDH (provided by Sugisuke Bridge, China; 1:1000). Bio-Rad Quantity One software (provided by Bio-Rad) was used to quantify the intensity of the protein bands. The primary antibodies used are listed in Table 2.

Table 2

Primary antibody information.

Product No.	Name	MW(KDa)	Source/subtype	Dilution degree	Production company
42544S	RAGE	52	Rabbit mAb	1:200	Cell Signaling Technology, Inc.
5174S	GAPDH	37	Rabbit mAb	1:200	Cell Signaling Technology, Inc.
3230S	JAK2	120	Rabbit mAb	1:200	Cell Signaling Technology, Inc.
9662S	CASP3	35	Rabbit mAb	1:200	Cell Signaling Technology, Inc.
4154S	EGR-1	75	Rabbit mAb	1:200	Cell Signaling Technology, Inc.
5339S	SMAD2	60	Rabbit mAb	1:200	Cell Signaling Technology, Inc.

MW: molecular weight.

Statistics Analysis

Statistical analyses were carried out with SPSS 19.0 (SPSS Inc., Chicago, IL, USA). Assays were conducted at least three times unless otherwise stated. All values were expressed as either the mean ± standard deviation (SD) or the mean ± the standard error (SE), except for the neurobehavioral scores. The comparison of data between groups was assessed using a one-way analysis of variance (ANOVA) followed by Tukey’s multiple-comparison test. Neurobehavioral scores were expressed as the median.
(interquartile range, IQR) and were analyzed using the Mann–Whitney U test. $P < 0.05$ was considered as statistical significance.

Results

Effects of PGQYD on behaviors and blood pressure in SHRs

As shown in Figs. 2A and 2B, compared with the WKY group, the degree of irritability in the SHR group was significantly increased, while the rotation tolerance time was dramatically decreased ($P < 0.01$). Compared with the SHR group, the degree of irritability in the PGQYD group was significantly decreased ($P < 0.05$), and the rotation tolerance time was obviously prolonged ($P < 0.05$). The results showed that PGQYD could improve the behavior of SHR rats. As shown in Fig. 2C, before treatment, the blood pressure of the two groups of SHRs was significantly increased compared with that of the WKY group ($P < 0.01$). Compared with the SHR group, systolic blood pressure was reduced in the PGQYD group after 2 weeks ($P < 0.05$), and the efficacy was stable with the extension of the course of treatment (5th week). It was suggested that PGQYD could reduce the systolic blood pressure of SHR rats.

Effect of PGQYD on vascular remodeling in the morphology of SHRs

Masson and HE staining showed that the aortic tunica media of the SHR group was thicker than that of WKY group, and the aortic tunica media of PGQYD-treated rats was thinner than that of the SHR rats in the SHR group (Figs. 3A and 3B). As shown in Figs. 3D and 3E, both MT and MT/LD were higher in the SHR group than in the WKY group (MT: 118.6 ± 10.3 µm vs 85.3 ± 9.6 µm, respectively, $P = 0.009$; MT/LD: 1.83 ± 0.18 vs 1.25 ± 0.19, respectively, $P = 0.02$). However, both MT and MT/LD were significantly lower in the PGQYD group than in the SHR group (MT: 98.3 ± 11.2 µm vs 118.6 ± 10.3 µm, respectively, $P = 0.02$; MT/LD: 1.47 ± 0.21 vs 1.83 ± 0.18, respectively, $P = 0.04$).

Comparison of rat aortic electron microscopy results in each group are shown in Fig. 3C. In the WKY group, organelles in the cytoplasm of vascular smooth muscle cells were not well developed, mitochondria were occasionally seen, and the endoplasmic reticulum was visible. In the SHR group, organelles in the cytoplasm of vascular smooth muscle cells were more developed, more mitochondria were seen, and the endoplasmic reticulum was visible. In the PGQYD group, organelles in the plasma of vascular smooth muscle cells were more developed, and the mitochondria and endoplasmic reticulum were visible. It was suggested that PGQYD could improve morphological changes in the aortic vascular tissue and reverse vascular remodeling in SHR rats.

Classification of the Transcriptomic Phenotypes and Identification of the Altered Transcripts with PGQYD Treatment
A non-target global gene expression analysis was employed to explore how vascular remodeling altered aortic tissue mRNA expression, as well as evaluate the intervention with the PGQYD treatment on SHR rats. According to the cut-off criteria of |log2-fold change (FC)|>1 and FDR < 0.05, a total of 465 DEGs were detected in the SHR group when compared to the WKY group (Figs. 4A and 4C), and a total of 511 DEGs were detected in the PGQYD group when compared to the SHR group (Figs. 4B and 4D). There were 129 and 70 DEGs (upregulated and downregulated, respectively) in the SHR group (relative to the WKY group) and PGQYD-treat (relative to the SHR group) group (Figs. 4E and 4F, respectively). Interestingly, PGQYD treatment could reverse these changes in the SHR group and created expression profiles close to WKY levels (Fig. 4F). Additionally, we identified 22 significantly dysregulated mRNAs in the SHR group: 16 were upregulated, while six were downregulated (SHR vs WKY). After PGQYD treatment, 22 mRNAs were obviously changed: six were upregulated, while 16 were downregulated (PGQYD vs SHR).

All expression levels of 22 candidate transcripts (Table 1) were validated at the transcript level by qRT-PCR (Fig. 5). The qRT-PCR results indicated statistically that the SHR group had increases in 11 gene expression levels (SMAD2, GSK-3, METTL3, CASP3, SIRT1, RAGE, HMGN4, PTGS1, JAK2, EIF4B, and DNMT1; Figs. 5A–B) and decreases in five gene expression levels (Egr-1, MFN2, HSP27, PTEN, and SEPN1; Fig. 5C).

Enrichment Analysis of GO and KEGG Pathways

GO and KEGG assignments were used to classify the genes associated with the response of vascular remodeling to PGQYD treatment. GO classification analysis provided the percentage and distribution of top-level GO terms that were portrayed in three categories: (A) cellular component; (B) molecular function, and (C) biological process. As shown in Figs. 6A and 7A, we found that transcripts regulated in the thoracic aorta tissues of these model rats, as compared with the WKY group and PGQYD treatment group, could be mapped to biological processes (BP) for regulating cell metabolic processes, biological adhesions, rhythmic processes, cell aggregation, cell components (CC) for cell junctions, membrane parts and extracellular regions, molecular functions (MF) for receptor binding, signal transducer activity, antioxidant activity, transcription factor activity, and catalytic activity. For further characterization of the DEGs, we performed pathway enrichment analysis with GSEA. As shown in Figs. 6B–D, we found that transcripts regulated in the thoracic aorta tissues of these model rats, compared with the WKY group, could be mapped to signaling pathways, such as the AGE-RAGE signaling pathway, oxidative phosphorylation, MAPK signaling pathway, and PI3K-AKT signaling pathway. As shown in Figs. 7B–D, we found that transcripts regulated in the thoracic aorta tissues of these model rats, compared with the PGQYD treatment group, could be mapped to signaling pathways, such as the AGE-RAGE signaling pathway, phagosomes, ECM-receptor interactions, and the PI3K-AKT signaling pathway.

Gene co-expression network analysis of the differences in the WKY, SHR, and PGQYD groups
According to transcriptome analysis of the three groups, 16 gene expressions were dysregulated (including 11 upregulated genes and six down regulated genes) and affirmed by qRT-PCR detection. These dysregulated genes were closely related to the vascular remodeling of hypertension treated by PGQYD. ESR1 was identified as the hub gene (Fig. 8A). Combined with the prediction of the PI3K-Akt signal pathway, AGE-RAGE signal pathway, and mTOR signal pathway were closely related to the vascular remodeling of hypertension treated by PGQYD (Fig. 8B, Table 3). It was suggested that GSK-3, eIF4B, PTEN, CCND1, SMAD2, JAK2, CASP3, EGR-1, RAGE, and FOXO1 were closely related to the above-mentioned signaling pathways.
Table 3
Pathways enrichment analysis of differently expressed genes in SHR of PGQYD-treated rats.

ID	Description	Gene Ratio	Bg Ratio	Enrich_factor	P value	Q value
ko04512	ECM-receptor interaction	25/511	85/8503	4.89	1.23E-11	2.86E-09
ko04612	Antigen processing and presentation	24/511	105/8503	3.8	8.92E-09	1.04E-06
ko04151	PI3K-Akt signaling pathway	46/511	375/8503	2.04	2.38E-06	9.26E-05
ko04010	MAPK signaling pathway	35/511	281/8503	2.07	2.87E-05	0.000839335
ko04514	Cell adhesion molecules (CAMs)	29/511	180/8503	2.68	9.08E-07	5.30E-05
ko00190	Oxidative phosphorylation	6/71	169/8503	4.25	0.002778328	0.032077901
ko04915	Estrogen signaling pathway	5/71	112/8503	5.35	0.00236519	0.032077901
ko04213	Longevity regulating pathway - multiple species	4/71	73/8503	6.56	0.003148434	0.032077901
ko04713	Circadian entrainment	13/304	103/8503	3.53	7.14E-05	0.007407254
ko04940	AGE-RAGE signaling pathway	16/511	77/8503	3.46	1.02E-05	0.000341825

ID: KEGG pathway ID; Description: KEGG pathway name; generatio: gene proportion of the pathway in the gene concentration of interest; Bg Ratio: gene proportion of the pathway in the background gene concentration; enrich factor: enrichment factor; P value: enrichment significance p value; Q value: enrichment significance Q value.

Validation of Targeted Genes Enriched in the AGE-RAGE Signaling Pathway after PGQYD treatment

Six genes were enriched in the AGE-RAGE signaling pathway (SMAD2, JAK2, RAGE, CASP3, and EGR-1). These results indicated that the role of the AGE-RAGE signaling pathway was important in the SHR model rats after PGQYD treatment. Thus, the western blot method and immunofluorescence analysis were utilized to determine the expression levels of SMAD2, JAK2, RAGE, CASP3, and EGR-1 in thoracic aorta tissues. The results showed that SMAD2, CASP3, JAK2, and RAGE expression levels were higher in the SHR
group compared with the WKY group. However, after vascular remodeling injury, the expression levels of
\textit{EGR-1} were remarkably decreased (Fig. 9). To different extents, the PGQYD treatment improved the
expression levels of these five proteins. Among them, \textit{EGR-1} had remarkably increased protein expression
levels (Fig. 10A). \textit{SMAD2, CASP3, JAK2, and RAGE} had significantly decreased protein expression levels
compared with the SHR group (Figs. 10B-C). The above results indicated that PGQYD effectively regulated
the AGE-RAGE signaling pathway in vascular remodeling. Regulation of the AGE-RAGE signaling pathway
was involved in the PGQYD pharmaceutic effect on hypertension, which agreed with the predicted
mechanism mentioned previously (Fig. 11).

\textbf{Discussion}

This was the first study to investigate the expression profiles of mRNAs as potential molecules regulating
mRNA translational activities in experimental SHR treated rats with the TCM formula. After PGQYD
treatment, 16 mRNAs were significantly reversed compared with the SHR rats. The bioinformatics analysis
indicated that the functions of the altered genes were enriched in biological processes (BP) for regulating
cell metabolic processes, biological adhesions, rhythmic processes, cell aggregation; cell components (CC)
for cell junctions, membrane parts, and the extracellular region as well as molecular functions (MF) for
receptor binding, signal transducer activity, antioxidant activity, transcription factor activity, and catalytic
activity. In addition, these genes were closely associated with the AGE-RAGE signaling pathway, PI3K-Akt
signal pathway, and mTOR signal pathway. These findings provide new insights into the understanding of
therapeutic targets and pharmacological mechanisms of PGQYD treatment for essential hypertension.

In this study, the SHR rats displayed remarkably enhanced vascular remodeling. Moreover, rat aortic
electron microscopy images indicated that organelles in the cytoplasm of vascular smooth muscle cells
were more developed, more mitochondria were seen, and the endoplasmic reticulum was visible compared
to the WKY rats. In the present study, our findings showed that PGQYD, a specific TCMF for treating
esential hypertension, could substantially improve blood pressure, behavioral, pathology (vascular
remodeling) and endothelial dysfunction in essential hypertension, indicating there were unique
advantages in the herb combinations and synergistic actions of multiple ingredients in the TCM.

TCM has been used for hundreds of years, but the underlying therapeutic mechanisms remain poorly
understood. It is a challenge to illustrate the action mechanisms of TCM as a result of the unknown
mutually synergistic actions of the complex components [31]. Omics techniques have thus been accepted
as valuable techniques for understanding TCM from a holistic and comprehensive approach [32]. To
further discover the potential mechanism of action of PGQYD on essential hypertension, we adopted
transcriptomic techniques. In this study, we first described the transcriptomic features of PGQYD-treated
SHR rats, and KEGG analysis suggested that the regulated transcripts were attributed to multiple functions,
such as cell metabolic processes, biological adhesions, rhythmic processes, and cell aggregation. Most
genes involved in the three cellular functions were dysregulated. According to the pathway and gene co-
expression network of PGQYD-specific genes, the AGE-RAGE signaling pathway, PI3K-Akt signal pathway,
and SMAD2 were at the core of the networks.
In the processes of cell metabolism, various biochemical modification reactions can finely regulate the activity and function of cells. Among them, enzymatic glycosylation is a common molecular modification in the process of cell metabolism regulation, and it plays an important role in maintaining and regulating cell functions [33]. Glycosyltransferase can transfer the glycosylation of the glycosyl donor to the corresponding receptor molecules to achieve glycosylation. The glycosylation of receptor molecules will change their stability, solubility, and regional localization in cells, and this will play an important role in regulating the cell cycle, signal transduction, protein expression regulation, responses, and clearing of foreign matter in cells [34, 35]. Vast evidence supports the view that the glycation of proteins is one of the main factors contributing to aging and is an important element of the etiopathology of age-related diseases, especially type 2 diabetes mellitus, hypertension, and neurodegenerative diseases [36, 37, 38]. Counteracting glycation can therefore be a means of increasing both the lifespan and healthspan [39]. In this study, the results suggested that the process of cell metabolism in glycation may play an important role in the vascular remodeling with PGQYD treatment.

The effects of glycation and glycation inhibitors on the course of selected age-related diseases, such as Alzheimer’s disease, Parkinson’s disease, and hypertension have also been reviewed [40]. Impaired awareness of glycation biology in hypertension initiation and progression was one of the fundamental reasons for the meticulous investigation of the molecules involved in signaling pathways [41]. Glycation of biological macromolecules results in the progression of advanced glycation end-products (AGEs) that proliferate in the process of vascular remodeling by activation of transcription factors and release of cytokines [42]. The activation of a downstream signaling pathway ultimately leads to the pathophysiological conditions of diabetes, aging, neurological disorders, and hypertension as well as the result of the activation of transcription factors [43]. However, some untouched mechanisms might be responsible for the establishment of the function of AGE-RAGE or AGE-sRAGE axis activation that leads to the friend-foe association with vascular remodeling [44]. In this study, our findings showed that the expressions of RAGE, SMAD2, JAK2, and CASP3 were upregulated and the expression of EGR-1 was downregulated in the SHR model rats. Among them, five mRNAs were markedly regulated with PGQYD treatment. The results indicated that the mechanism for PGQYD reversing vascular remodeling may be involved in the process of glycation regulation, which was carried out by RAGE, SMAD2, JAK2, CASP3, and EGR-1. Through bioinformatics analysis, we found that five genes; that is, RAGE, Smad2, JAK2, CASP3, and Egr-1, are involved in regulation through the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway. The study showed that paeoniflorin inhibited autophagy at least partly by inhibiting RAGE and upregulating the level of p-mTOR to act against AGE-induced mesangial cell dysfunction.

mTOR is a protein kinase that is conserved in a wide variety of species and it acts as an interface for various metabolic pathways [45]. mTOR plays crucial roles in cell metabolism, a fundamental biological activity involved in cell development, growth, maintenance, and survival [46]. The mTOR signaling pathway is involved in vascular remodeling against stress, such as pressure overload in VSMCs. The effect of mTOR inhibition and deficiency on vascular remodeling differs in physiological and pathological status [47]. The PI3K signaling pathway and its major downstream effector protein kinase B (PKB/Akt) are
involved in glucose metabolism, differentiation, proliferation, apoptosis, cell migration and inflammatory responses [48, 49]. Many diseases, including diabetes, atherosclerosis, hypertension, and cancers, are associated with abnormal loss or activation of the PI3K/Akt pathway [50]. In the pathology of vascular remodeling, many factors in the arterial wall cause the loss of Akt activity [51]. Jin X et al. have shown that activation of the PI3K/Akt signaling pathway can reduce levels of reactive oxygen species and lipid deposition, thereby inhibiting endothelial dysfunction and reversing the progression of vascular remodeling [52]. Nε-Carboxymethyl-Lysine (the key active component of AGEs, CML) significantly decreased the phosphorylation of PI3K/AKT signaling and restoration of PI3K/AKT signaling in cell apoptosis. The results showed RAGE induced foam cell apoptosis in diabetic atherosclerosis by inhibiting the PI3K/AKT pathway [53].

The mammalian target of rapamycin (mTOR) was a serine/threonine kinase that belongs to the highly conservative, ubiquitously expressed phosphoinositide 3-kinase (PI3K)-related kinase family [54]. As a catalytic subunit, mTOR can integrate various physiological stimuli to regulate the growth and metabolism of cells. The PI3K/Akt/mTOR signaling pathway is thought to be a crucial regulator of autophagy and apoptosis [55, 56]. It has been confirmed that the mechanisms of apoptosis and autophagy in vascular smooth muscle cells were involved in vascular remodeling of hypertension [57]. It has also been confirmed that activation of the PI3K/Akt/mTOR pathway was detected in the proliferation, migration, and autophagy of VSMCs, which enhanced phenotype transformation [58]. In our study, the results indicated that the PI3K/Akt/mTOR signal pathway was involved in the process of vascular remodeling, and this regulated the mechanism of PGQYD in reversing vascular remodeling. These findings suggested that the mechanism of PGQYD in reversing vascular remodeling was involved in the AGE-RAGE/PI3K/Akt/mTOR signaling pathway, which regulated the target gene expression and regulated the process of cell glycation biology.

Conclusions

In conclusion, we performed a transcriptomics analysis of gene expression changes in SHR rats under treatment with PGQYD using a RNA-seq technique. Overall, a total of 465 predicted protein-encoding genes were identified. Further gene expression analysis revealed a total of 16 DEGs, including 11 upregulated genes and five downregulated genes. Intensive bioinformatics analysis identified cell regulation, cell metabolic processes (glycation biology), biological adhesions, rhythmic processes, and cell aggregation as significant biological processes. The AGE-RAGE signaling pathway, PI3K-Akt signal pathway, and mTOR signal pathway were mainly involved. Overall, the results from this study might provide insights into the understanding of the mechanisms for the response to PGQYD. Furthermore, this work demonstrated the potential utility of the RNA-seq technique in ant-hypertension studies.

Abbreviations

PGQYD: Pinggan Qianyang decoction; SHR: spontaneously hypertensive; WKY: Wistar-Kyoto; VSMCs: vascular smooth muscle cell TCM: traditional Chinese medicine; EH: essential hypertension; HSP27: heat...
Declarations

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data and materials generated or analyzed during this study are available from the corresponding author on reasonable request.

Consent for publication

The manuscript is approved by all authors for publication.

Ethics approval and consent to participate

The experimental protocol was established according to the ethical guidelines and was approved by the Experimental Animal Ethics Committee of Central South University University.

Funding

This work was financially supported by Natural Science Foundation of China(Grant Numbers 81673858, 81704062 and 30500644) and the project of Natural Science Foundation of Hunan Province (Grant Numbers 2020JJ8073).

Author contribution

G.Z. conceived and designed the entire study. C.Z., F. X., and Y.Y. analyzed the data and performed literature research. C.Z. and Q.C. drafted the paper. G.Z. and J.Y. guided the entire study and revised it critically for important intellectual content. All authors have read and agreed with the final version of this manuscript.

References
1. oannidis JPA. Diagnosis and Treatment of Hypertension in the 2017 ACC/AHA Guidelines and in the Real World. JAMA. 2018; 319(2):115–116. doi:10.1001/jama. 2017. 19672.

2. Xie X, Atkins E, Lv J. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43. 10.1016/S0140-6736(15)00805-3.. (:. doi).

3. Zhao W, Katzmarzyk PT, Horswell R. et al. Aggressive blood pressure control increases coronary heart disease risk among diabetic patients. Diabetes Care. 2013;36(10):3287–96. 10.2337/dc13-0189.. (:. doi).

4. Basu S, Sussman JB, Rigdon J, Steimle L, Denton BT, Hayward RA. Benefit and harm of intensive blood pressure treatment: Derivation and validation of risk models using data from the SPRINT and ACCORD trials. PLoS Med. 2017;14(10):e1002410. 10.1371/journal.pmed.1002410. Published 2017 Oct 17.. ;).

5. Zhou TL, Henry RMA, Stehouwer CDA. van Sloten TT, Reesink KD, Kroon AA. Blood Pressure Variability, Arterial Stiffness, and Arterial Remodeling. Hypertension 2018;72(4):1002–10. doi:10.1161/HYPERTENSIONAHA.118.11325.

6. Pires PW, Rogers CT, McClain JL, Garver HS, Fink GD, Dorrance AM. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;301(1):H87–97. 10.1152/ajpheart.01206.2010.. (:. doi).

7. Chen B, Wang Y, He Z, Wang D, Yan X, Xie P. Tianma Gouteng decoction for essential hypertension: Protocol for a systematic review and meta-analysis. Med (Baltim). 2018;97(8):e9972. 10.1097/MD.0000000000009972.. ;).

8. Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res. 2013;36(7):570–9. 10.1038/hr.2013.18.. ;).

9. Wang J, Xiong X. Control strategy on hypertension in chinese medicine. Evid Based Complement Alternat Med. 2012;2012:284847. 10.1155/2012/284847.. ;. doi.

10. He SM, Li CG, Liu JP, Chan E, Duan W, Zhou SF. Disposition pathways and pharmacokinetics of herbal medicines in humans. Curr Med Chem. 2010;17(33):4072–113. 10.2174/092986710793205336.. (:. doi).

11. Zhong G, Luo Y, Xiang L. et al. Clinical efficacy study on calming liver and restraining Yang formula in treating patients with mild or moderate degree of essential hypertension. Zhongguo Zhong Yao Za Zhi. 2010;35(6):776–81. doi:10.4268/cjcm.20100626.

12. Zhong GW, Chen MJ, Luo YH, et al. Effect of Chinese herbal medicine for calming Gan (è) and suppressing hyperactive yang on arterial elasticity function and circadian rhythm of blood pressure in patients with essential hypertension. Chin J Integr Med. 2011;17(6):414–420. doi:10.1007/s11655-011-0761-6.
13. Guang-Wei ZHONG, Wei LI, Yan-Hong LUO, et al. Effects of the calming liver and suppressing yang method on proliferation and the expression of heat shock protein 27 in vascular smooth muscle cells of spontaneously hypertensive rats. Chinese Journal of Gerontology, 2009, 29(2):385–388.

14. Eichner J, Rosenbaum L, Wrzodek C, Häring HU, Zell A, Lehmann R. Integrated enrichment analysis and pathway-centered visualization of metabolomics, proteomics, transcriptomics, and genomics data by using the InCroMAP software. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:77–82. 10.1016/j.jchromb.2014.04.030. doi.

15. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. 10.1038/nrg2484. doi.

16. Lappalainen T, Sammeth M, Friedländer MR, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506–11. 10.1038/nature12531. doi.

17. Li P, Tang T, Liu T, et al. Systematic Analysis of tRNA-Derived Small RNAs Reveals Novel Potential Therapeutic Targets of Traditional Chinese Medicine (Buyang-Huanwu-Decoction) on Intracerebral Hemorrhage. Int J Biol Sci. 2019;15(4):895–908. Published 2019 Mar 1. doi:10.7150/ijbs.29744.

18. Du Z, Shu Z, Lei W, et al. Integration of Metabonomics and Transcriptomics Reveals the Therapeutic Effects and Mechanisms of Baoyuan Decoction for Myocardial Ischemia. Front Pharmacol. 2018;9:514. Published 2018 May 23. doi:10.3389/fphar.2018.00514.

19. Zhou W, Wang Y. A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: potential for therapeutics and drug discovery. J Ethnopharmacol. 2014;151(1):66–77. 10.1016/j.jep.2013.11.007. doi.

20. Guang-wei ZHONG, Wei LI, Min-jing CHEN, Zhen-jia YI. CHENGuo-lin, XIANGLing-li. Effects on the Vascular Remodeling and Adiponectin Expression in Aorta in the Spontaneously Hypertensive Rats by Chinese Herb Mixture Method. Chin J Hypertension. 2008;16(9):812–6.

21. Zhong G, Xiang L, Hu J, Yin Y, Chen Q, Fang X. Effect of Pinggan Qianyang recipe on the expression of Tpx II HSP27 and ANXA1 in the hypothalamus of spontaneously hypertensive rats with hyperactivity of liver-YANG syndrome. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015;40(2):136–43. 10.11817/j.issn.1672-7347.2015.02.004. doi.

22. Lvhua YANG, Shazhou ZOU, Yunxia LI. New equipments and methods in measuring systolic blood pressure and diastolic blood pressure of rats without wounds. Chinese Joumal of Applied Physiology. 1991;7(1):62–4.

23. Zhu X, Zhou Z, Zhang Q, et al. Vaccarin administration ameliorates hypertension and cardiovascular remodeling in renovascular hypertensive rats. J Cell Biochem. 2018;119(1):926–37. doi:10.1002/jcb.26258.

24. Ren S, Peng Z, Mao JH, et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 2012;22(5):806–21. doi:10.1038/cr.2012.30.

25. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131(4):281–5. doi:10.1007/s12064-012-0162-3.
26. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23. doi:10.1101/gr.124321.111.

27. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9. doi:10.1038/75556.

28. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27.

29. Zhang T, Tang N, Xi D, et al. Calcimimetic R568 improved cardiac remodeling by classic and novel renin-angiotensin system in spontaneously hypertensive rats. Exp Biol Med (Maywood). 2019;244(10):789–801. doi:10.1177/1535370219854325.

30. Duan J, Han X, Ling S, et al. Aortic Remodelling is Improved by 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Involving the Smad3 Pathway in Spontaneously Hypertensive Rats. Evid Based Complement Alternat Med. 2015;2015:789027. doi:10.1155/2015/789027.

31. Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery. Front Pharmacol. 2019;10:743. Published 2019 Jul 11. doi:10.3389/fphar.2019.00743.

32. Xu T, Pi Z, Liu S, Song F, Liu Z. Chemical Profiling Combined with "Omics" Technologies (CP-Omics): a Strategy to Understand the Compatibility Mechanisms and Simplify Herb Formulas in Traditional Chinese Medicines. Phytochem Anal. 2017;28(5):381–91. doi:10.1002/pca.2685.

33. Ahmad S, Akhter F, Shahab U, et al. Do all roads lead to the Rome? The glycation perspective! Semin Cancer Biol. 2018;49:9–19. doi:10.1016/j.semcancer.2017.10.012.

34. Mallard BW, Tiralongo J. Cancer stem cell marker glycosylation: Nature, function and significance. Glycoconj J. 2017;34(4):441–52. doi:10.1007/s10719-017-9780-9.

35. Mallard BW, Tiralongo J. Cancer stem cell marker glycosylation: Nature, function and significance. Glycoconj J. 2017;34(4):441–52. 10.1007/s10719-017-9780-9.. doi.

36. Liu T, Zhao J, Ibarra C, Garcia MU, Uhlén P, Nistér M. Glycosylation controls sodium-calcium exchanger 3 sub-cellular localization during cell cycle. Eur J Cell Biol. 2018;97(3):190–203. 10.1016/j.ejcb.2018.02.004.. doi.

37. Lazniewska J, Weiss N. Glycosylation of voltage-gated calcium channels in health and disease. Biochim Biophys Acta Biomembr 2017;1859(5):662–8. doi:10.1016/j.bbamem.2017.01.018.

38. Ohtsubo K, Chen MZ, Olefsky JM, Marth JD. Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat Med. 2011;17(9):1067–75. 10.1038/nm.2414. Published 2011 Aug 14.. doi.

39. Nagai-Okatani C, Minamino N. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure. PLoS One. 2016;11(6):e0150210. 10.1371/journal.pone.0150210. Published 2016 Jun 9.. doi.

40. Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. 10.1016/j.mad.2016.09.006.. doi.
41. Vicente Miranda H, El-Agnaf OM, Outeiro TF. Glycation in Parkinson's disease and Alzheimer's disease. Mov Disord. 2016;31(6):782–90. 10.1002/mds.26566. (:. doi.
42. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 2012;58(3):227–37. 10.1159/000334668.. doi.
43. Liu Y, Yu M, Zhang L. et al. Soluble receptor for advanced glycation end products mitigates vascular dysfunction in spontaneously hypertensive rats. Mol Cell Biochem. 2016;419(1–2):165–76. 10.1007/s11010-016-2763-5.. doi.
44. Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer’s Disease. ACS Chem Neurosci 2018;9(5):988–1000. doi:10.1021/acschemneuro.7b00410.
45. Bai Y, Shi X, Ke Y, Lin X, Hong H. Hypertension accelerates age-related intrarenal small artery (IRSA) remodelling and stiffness in rats with possible involvement of AGEs and RAGE. Histol Histopathol. 2020;35(1):97–109. 10.14670/HH-18-141.. doi.
46. Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells. 2019;8(12):1584. 10.3390/cells8121584. Published 2019 Dec 6.. doi.
47. Morita M, Gravel SP, Hulea L. et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473–80. doi:10.4161/15384101.2014.991572.
48. Lu QB, Wang HP, Tang ZH. et al. Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling. Biochim Biophys Acta Mol Basis Dis. 2018;1864(6 Pt A):2154–68. 10.1016/j.bbadis.2018.04.002.. doi.
49. Chen T, Zhang Y, Liu Y. et al. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging. 2019;11(18):7510–24. 10.18632/aging.102263.. doi.
50. Hao XJ, Xu CZ, Wang JT. et al. miR-21 promotes proliferation and inhibits apoptosis of hepatic stellate cells through targeting PTEN/PI3K/AKT pathway. J Recept Signal Transduct Res. 2018;38(5–6):455–61. 10.1080/10799893.2019.1585452.. doi.
51. Yoo KD, Park ES, Lim Y. et al. Clitocybin A, a novel isoindolinone, from the mushroom Clitocybe aurantiaca, inhibits cell proliferation through G1 phase arrest by regulating the PI3K/Akt cascade in vascular smooth muscle cells. J Pharmacol Sci. 2012;118(2):171–7. 10.1254/jphs.11159fp.. doi.
52. Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascul Pharmacol. 2015;74:38–48. 10.1016/j.vph.2015.05.008.. doi.
53. Jin X, Xu Z, Fan R. et al. H01 alleviates cholesterolinduced oxidative stress through activation of Nrf2/ERK and inhibition of PI3K/AKT pathways in endothelial cells. Mol Med Rep. 2017;16(3):3519–27. 10.3892/mmr.2017.6962.. doi.
54. Wang Z, Bao Z, Ding Y. et al. Nε-carboxymethyl-lysine-induced PI3K/Akt signaling inhibition promotes foam cell apoptosis and atherosclerosis progression. Biomed Pharmacother. 2019;115:108880. 10.1016/j.biopha.2019.108880.. doi.
55. Zhang M, Li F, Wang X. et al. MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic switch through repression of the PI3K/Akt/mTOR pathway. Histochem Cell Biol. 2020;153(5):357–66. 10.1007/s00418-020-01847-z. doi.

56. Pi S, Mao L, Chen J. et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis [published online ahead of print, 2020 Mar 19]. Autophagy 2020;1–21. doi:10.1080/15548627.2020.1741202.

57. Lee EJ, Kim DI, Kim WJ, Moon SK. Naringin inhibits matrix metalloproteinase-9 expression and AKT phosphorylation in tumor necrosis factor-alpha-induced vascular smooth muscle cells. Mol Nutr Food Res 2009;53(12):1582–91. doi:10.1002/mnfr.200800210.

58. Ciceri P, Falleni M, Tosi D. et al. Therapeutic Effect of Iron Citrate in Blocking Calcium Deposition in High Pi-Calcified VSMC: Role of Autophagy and Apoptosis. Int J Mol Sci. 2019;20(23):5925. 10.3390/ijms20235925. Published 2019 Nov 25. doi.