LUNEDÌ 4 APRILE ore 20:30
Sala San Francesco, via Marcolini 4 - Forlì

CENERE SUL CIELO
VELENO SULLA TERRA
2° convegno nazionale sul problema dell’incenerimento
Città di Forlì

“SENZA INCENERITORI SI PUÒ!”

Incontro con:
Prof. PAUL CONNETT
il “padre” fondatore della ZERO WASTE
(strategia Rifiuti Zero)

Relatori:
Dott. Ruggero Ridolfi
PRESIDENTE DELL’ISDE
Dott. Luigi Gaetti
SENATORE M5S
Ing. Andrea Bertani
CONSIGLIERE REGIONALE M5S
Ing. Francesco Girardi
CONSULENTE TECNICO
COMUNE CAPANNORI
Dott. Claudio Tedeschi
A.D. DISMEO S.R.L.
Dott.ssa Rita Bandini
BANDINI CASAMENTI S.R.L.

Associazione medici per l’ambiente
ISDE Italia
www.isde.it

Tutti gli uomini sono responsabili per l’ambiente.

I medici lo sono due volte.

Fino a quando possiamo restare indifferenti?

E-mail: isde@ats.it
Aumento di N° di casi di alcuni tipi di Tumori (espresso come percentuale di rischio relativo) negli abitanti che vivono nei pressi di inceneritori di rifiuti rispetto agli abitanti più lontani e non direttamente esposti:

- Epatocarcinoma + 9,7 %;
- Linfomi Non-Hodgkin + 8,4 %;
- Sarcomi dei tessuti molli +13,0 %;
- Tutti i tumori maligni femminili + 4,0 %;
- Carcinoma della mammella + 6,9%.
STUDI EPIDEMIOLOGICI ITALIANI SULLE POPOLAZIONI RESIDENTI IN PROSSIMITÀ DI INCENERITORI

FONTE	AREA	DISEGNO DELLO STUDIO	RISULTATI PRINCIPALI
Biggeri et al. 1996	Trieste	Caso - controllo	Incremento del rischio di cancro polmonare
Michelozzi et al. 1998	Roma	Mortalità micro - geografica	Incremento della mortalità per alcune cause e riduzione della sex – ratio alla nascita
Chellini et al. 2002	Prato	Mortalità micro - geografica	Incremento del rischio di cancro polmonare
Comba et al. 2003	Mantova	Caso - controllo	Incremento del rischio di sarcoma dei tessuti molli
Biggeri e Catelan 2005	Campi Bisenzio	Mortalità comunale	Incremento dei linfomi non Hodgkin
Biggeri e Catelan 2006	17 aree della Toscana con inceneritori	Mortalità comunale	Incremento dei linfomi non Hodgkin
Bianchi e Minichilli 2006	25 comuni italiani con inceneritori	Mortalità comunale	Incremento dei linfomi non Hodgkin
Tessari et al. 2006	Venezia	Caso - controllo	Incremento del rischio di sarcoma dei tessuti molli nelle donne dell'area più esposta
Ranzi et al. 2006	Forli	Coorte di residenti	Incremento di mortalità nelle donne per tutte le cause, tumore del colon e della mammella, per diabete e malattie cardiovascolari
Zambon et al. 2007	3 ASL Prov. Venezia	Caso – controllo	Incremento di rischio di sarcoma in entrambi i generi e di tumori del connettivo e di altri tessuti molli nelle sole donne

Pietro Comba¹, Lucia Fazzo¹, Fabrizio Bianchi²

¹ Dipartimento di Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Roma
² Istituto di Fisiologia Clinica, Sezione di Epidemiologia, Consiglio Nazionale delle Ricerche, Pisa
Studi epidemiologici su popolazione esposta alle emissioni di inceneritori per rifiuti hanno mostrato un incremento significativo di mortalità/incidenza/prevalenza per TUMORI (polmone, vescica, sarcomi ai tessuti molli, linfomi, epatocarcinoma, neoplasie infantili, tumori gastrodigestivi) *(Franchini M, Annali Istituto Superiore di Sanità, 2004)*

Effetto indagato	RR (rischio relativo)	Fonte bibliografica
Carcinoma polmonare (mortalità)	2 (small cell)	Barbone F., American Journal Epidemiology 1995
	2.6 (large cell)	Biggeri A., Envirom Health Perspect 1996
	6.7	
Linfomi Non Hodgkin	2.3 (Incidenza)	Floret N., Epidemiology 2003
	2 (Mortalità)	A Biggeri Epidemiol. Prevenzione 2005
Sarcomi tessuti molli (incidenza)	8.8 (maschi)	Comba P., Occupational Enviromental Medicine 2003
	5.6 (femmine)	
Neoplasie infantili (incidenza)	2.1	Knox E. G., International Journal of Epidemiology 2000
Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment

Environmental Health 2011, 10:22 doi:10.1186/1476-069X-10-22

Andrea Ranzi (aranzi@arpa.emr.it) Valeria Fano (valeria.fano@aslromad.it) Laura Ersapamer (lerspamer@arpa.emr.it) Paolo Lauriola (plauriola@arpa.emr.it) Carlo A Perucci (perucci@agenas.it) Francesco Forastiere (forastiere@asplazio.it)

Conclusions

No increased risk of mortality and morbidity was found in the entire area. The internal analysis of the cohort based on dispersion modeling found excesses of mortality for some cancer types in the highest exposure categories, especially in women. The interpretation of the findings is limited given the pilot nature of the study.
La gestione sostenibile dei rifiuti solidi urbani
12 Agosto 2015

Position Paper ISDE Italia

59 Kriebel D. Incinerators, birth defects and the legacy of Thomas Bayes. Occup.Environ.Med. 2010;67:433-4.
60 Valerio F. [Review on environmental impact of solid wastes produced by municipal urban waste incinerators]. Epidemiologia e prevenzione 2008;32:244-53.
61 (AIOM) AldOM. Progetto Ambiente e Tumori: AIOM: 2011.
62 ibald-Mulli A, Wichmann HE, Kreyling W and Peters A. Epidemiological evidence on health effects of ultrafine particles. J.Aerosol Med. 2002;15:189-201.
63 Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L et al. The pulmonary toxicology of ultrafine particles. J.Aerosol Med. 2002;15:213-20.
64 Donaldson K and Seaton A. The Janus faces of nanoparticles. J.Nanosci.Nanotechnol. 2007;7:4607-11.
65 Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N et al. Combustion-derived nanoparticles: a review of their toxicity following inhalation exposure. Part Fibre.Toxicol. 2005;2:10.
66 Duffin R, Mills NL and Donaldson K. Nanoparticles—a thoracic toxicology perspective. Yonsei Med.J. 2007;48:561-72.
67 Seaton A, MacNee W, Donaldson K and Godden D. Particulate air pollution and acute health effects. Lancet 1995;345:176-8.
68 Gentilini P and Gennaro V. Inceneritori. In: AIOM, editor. Ambiente e Tumori. Milano: 2011pp. 150-9.
69 Ranzi A, Fano V, Erspamer L, Lauriola P, Perucci CA and Forastiere F. Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment. Environ.Health 2011;10:22.
70 Kim YM, Kim JW and Lee HJ. Burden of disease attributable to air pollutants from municipal solid waste incinerators in Seoul, Korea: a source-specific approach for environmental burden of disease. Sci.Total Environ. 2011;409:2019-28.
71 Golini MN, Ancona C, Badaloni C, Bolignano A, Bucco S, Sozzi R et al. [Morbidity in a population living close to urban waste incinerator plants in Lazio Region (Central Italy): a retrospective cohort study using a before-after design]. Epidemiologia e prevenzione 2014;38:323-34.
72 Staessen JA, Nawrot T, Hon TD, Thijs L, Fagard R, Hoppenbrouwers K et al. Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. Lancet 2001;357:1660-9.
73 Miyake Y, Yura A, Misaki H, Ikeda Y, Usui T, Iki M et al. Relationship between distance of schools from the nearest municipal waste incineration plant and child health in Japan. Eur.J.Epidemiol. 2005;20:1023-9.
74 Cordier S, Chevrier C, Robert-Gnansia E, Lorente C, Brula P and Hours M. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators. Occup.Environ.Med. 2004;61:8-15.
75 Cordier S, Lehebel A, Amar E, Anzivino-Viricel L, Hours M, Monfort C et al. Maternal residence near municipal waste incinerators and the risk of urinary tract birth defects. Occup.Environ.Med. 2010;67:493-9.
76 Ding T, McConaha M, Boyd KL, Osteen KG and Bruner-Tran KL. Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice. Reproductive toxicology 2011;31:351-8. 31
77 Candela S, Bonvicini L, Ranzi A, Baldacchini F, Broccoli S, Cordioli M et al. Exposure to emissions from municipal solid waste incinerators and miscarriages: a multisite study of the MONITER Project. Environment international 2015;78:51-60.
78 Salerno C, Marciani P, Barasolo E, Fossale PG, Panella M and Palin LA. Exploration study on mortality trends in the territory surrounding an incineration plant of urban solid waste in the municipality of Vercelli (Piedmont, Italy) 1988-2009. Annali di igiene : medicina preventiva e di comunità 2015;27:633-45.
79 Agency USEP. EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments, Volume 1. 2012.
80 Garcia-Perez J, Fernandez-Navarro P, Castello A, Lopez-Cima MF, Ramis R, Boldo E et al. Cancer mortality in towns in the vicinity of incinerators and installations for the recovery or disposal of hazardous waste. Environment international 2013;51:31-44.
81 Lung FW, Chiang TL, Lin SJ and Shu BC. Incinerator pollution and child development in the taiwan birth cohort study. International journal of environmental research and public health 2013;10:2241-57.
82 Zubero MB, Aurrekoetxea JJ, Ibarluzea JM, Rivera J, Parera J, Abad E et al. Evolution of PCDD/Fs and dioxin-like PCBs in the general adult population living close to a MSW incinerator. Sci.Total Environ. 2011;410-411:241-7.
83 World Health Organization G. Population health and waste management: scientific data and policy options. Report of Rome workshop, 29-30 March 2007. Copenhagen, Denmark: WHO; 2007.
Dai processi di **combustione** ed **incenerimento**

SI CREANO

oltre **3.000** contaminanti dell’aria e **decine di sostanze CANCEROGENE**
EMISSIONI DA INCENERITORI

- Polveri
- Metalli pesanti
- Ossidi di azoto
- Inquinanti organici (IPA, PCB, furani, ftalati, chetoni, alcheni, diossine)
- Ogni tonnellata di rifiuti incenerita comporta l’immissione di 451kg di gas serra

- CONOSCIUTI OLTRE 200….ma si calcola siano solo circa il 10-20% del totale!
| agente | Grado di evidenza IARC | Effetto cancerogeno |
|-----------------|------------------------|--|
| Arsenico | 1 | Pelle, polmoni, fegato, vescica, rene, colon |
| Berillio | 1 | Polmone |
| Cadmio | 1 | Polmone, prostata |
| Cromo | 1 | Polmone |
| Nickel | 1 | Polmone |
| Mercurio | 2b | Polmone, pancreas, colon, prostata, encefalo, rene |
| Piombo | 2a | Polmone, vescica, rene, gastroenterica |
| Benzene | 1 | Leucemia |
| Idrocarburi policiclici | 2b | Fegato, polmone, leucemia |
| Cloroformio | 2b | Vescica, rene, encefalo, linfoma |
| Clorofenoli | 2b | Sarcomi tessuti molli, linfomi Hodgkin e non Hodgkin |
| Tricloroetilene | 2a | Fegato, linfomi non Hodgkin |
| TCDD (Diossine) | 1 | Linfomi, sarcomi non Hodgkin |
DIOXIN (TCDD) was classified in Group 1 in 1997....... via initial binding to the Aryl Hydrocarbon Receptor (AhR), which leads to changes in gene expression, cell replication and apoptosis. There is now sufficient epidemiological evidence for all cancers combined, making TCDD the first agent classified initially in Group 1.
RICORDA CHE:
Uno Studio POSITIVO significa che il rischio c’è!
Uno Studio NEGATIVO è negativo e basta! Non significa che il rischio non ci sia, ma che lo studio non è stato in grado di verificarlo e, soprattutto, non annulla uno studio positivo!
Studi epidemiologici su popolazioni esposte alle emissioni di inceneritori per rifiuti: effetti segnalati

- **Sistema respiratorio**: tosse persistente, bronchiti, allergie
- **Patologie cardiovascolari**
- **Sistema riproduttivo**: incremento dei nati femmine e parti gemellari
- **Incremento di incidenza di malformazioni congenite**
- **Ipofunzione tiroidea**
- **Diabete**
Studio caso controllo condotto a Roma:
- 80 casi di pazienti con endometriosi
- 78 controlli

In tutte le donne fu quantificata la presenza nel siero di:
- PCB NDL, PCB DL, DDE’, HCL, PCDD e PCDF

RISULTATI: aumento del rischio di endometriosi per:
- PCB NDL 138: OR = 3,78 (IC 1.60-8.94)
- PCB NDL 153: OR = 4.88 (IC 2.01-11)
- PCB NDL 170: OR = 3.52 (IC 1.41-8.79)
- PCB DL 118: OR = 3,79 (IC 1.61-8.91)
- Somma di PCB NDL e PCB DL: OR = 5.63 (IC 2.25-14.10)

I RISULTATI DEL NOSTRO STUDIO CONFERMANO CHE ESISTE UNA ASSOCIAZIONE FRA LIVELLI DI PCB E DDE’ NEL SIERO ED ENDOMETRIOSI
Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

Sam De Coster and Nicolas van Larebeke

Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Experimental Oncology, Ghent University Hospital, De Flandriaan 185, 9000 Ghent, Belgium

Figure 6: Sperm morphology for candidate sperm donors presenting themselves to the department of andrology of Ghent University, based on the data of Comhaire et al. [26].
• Studio caso-controllo condotto in Francia

• 304 neonati con malformazioni del tratto urogenitale diagnosticati nella regione Rhône-Alpes nel periodo 2001-2003

• 226 controlli appaiati per sesso, anno e distretto di nascita

• Presa in esame l’esposizione dal 1°- 4° mese prima del concepimento fino alla fine del 3° mese di gestazione in relazione alle emissioni di 21 inceneritori secondo un modello matematico (ADMS3 software) di dispersione calcolato entro 10 km per ogni singolo impianto

• OR = 2.95 (CI 1.47 - 5.92)
Combating Environmental Causes of Cancer
David C. Christiani, M.D., M.P.H.

During the past three decades, increases in the incidence of some childhood cancers, such as leukemia and brain tumors, may implicate prenatal exposure to environmental carcinogens — and more than 300 industrial chemicals have been detected in umbilical-cord blood.
In Italia le scorie pesanti, nonostante la loro composizione tossica vengono definite “rifiuti speciali non pericolosi” (codice CER 190112) e, come previsto dal DM 05/02/98 (emanato in attuazione del DLgs 22/97), possono essere utilizzate tal quali e senza l’effettuazione preventiva di test di cessione quando vengono utilizzate: nei cementifici, nella produzione di conglomerati cementizzi e nell’industria dei laterizzi e dell’argilla espansa. Il test di cessione viene richiesto solo qualora vengano utilizzate per la realizzazione di rilevati, sottofondi stradali e recuperi ambientali.
Dai documenti ufficiali **Europei** (*) risultano i seguenti dati per l’**Italia**:
295,5 gr/anno di **diossine** in tossicità equivalente (TE) prodotte dagli **impianti di incenerimento** (pari al 64% del totale). Di questi 170,6 gr/anno (pari al 37% del totale) sono prodotti dai **soli impianti di incenerimento per rifiuti urbani**.

(*) inventario della Commissione Europea, rapporto finale del 31.12.2000, 3° volume, pag 69
http://ec.europa.eu/environment/dioxin/pdf/stage2/volume_3.pdf)
Le diossine si eliminano in tempi lunghissimi: il tempo di dimezzamento è di 7 – 11 anni.

Della quantità ingerita oggi, fra 10 anni ne abbiamo in corpo ancora la metà e fra 20 ancora un quarto.
Gli impianti di incenerimento di rifiuti rientrano fra le **industrie insalubri di classe I** in base all’articolo 216 del testo unico delle Leggi sanitarie (G.U. n. 220 del 20/09/1994, s.o.n.129).

Qualunque sia la tipologia adottata (a griglia, a letto fluido, a tamburo rotante) e qualunque sia il materiale trattato il processo stesso della combustione dà origine a diverse migliaia di inquinanti.

Anche se solo il 10-20% è conosciuto si può affermare che fra di essi **vi siano decine di CANCEROGENI CERTI** o probabili secondo la IARC (**International Agency for Research on Cancer**)
I NUOVI IMPIANTI

• I NUOVI IMPIANTI destinati all’incenerimento dei rifiuti sono detti termovalorizzatori, ma l’uso di questo termine è stato diffidato dalla CE e la Direttiva quadro 2008/98/CE li ha classificati impianti di smaltimento al pari delle discariche, in quanto non offrono alcuna garanzia per essere considerati più salubri dei precedenti.

• L’applicazione delle BAT (Best Available Tecnology) genera comunque inquinanti tossici e persistenti e in special modo particolato ultrafine, il più pericoloso per la salute e per il quale non esistono filtri, quando la combustione avviene a temperature molto elevate come nei “moderni inceneritori”.

• Anche gli inceneritori di "ultima generazione” hanno la necessità di discariche di servizio, in ragione del 20-30% della massa dei rifiuti bruciati (a cui si aggiunge un ulteriore 3-5% di rifiuti altamente pericolosi, costituito dalle ceneri volanti e dai residui degli impianti di abbattimento) che devono essere conferiti in discariche speciali.
Exposure to emissions from municipal solid waste incinerators and miscarriages: A multisite study of the MONITER Project

S. Candela a, b, L. Bonvicini a, b, A. Ranzi c, F. Baldacchini a, b, S. Broccoli a, b, M. Cordioli c, E. Carretta a,b, F. Luberto a, b, P. Angelini d, A. Evangelista a, b, P. Marzaroli a,b, P. Giorgi Rossi a, b, F. Forastiere e

a Epidemiology Unit, Azienda Unità Sanitaria Locale, Reggio Emilia, Italy
b IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
c Regional Reference Centre on Environment and Health, ARPA Emilia-Romagna Region, Modena, Italy

ABSTRACT

Background: Miscarriages are an important indicator of reproductive health but only few studies have analyzed their association with exposure to emissions from municipal solid waste incinerators. This study analyzed the occurrence of miscarriages in women aged 15–49 years residing near seven incinerators of the Emilia-Romagna Region (Northern Italy) in the period 2002–2006.

Methods: We considered all pregnancies occurring in women residing during the first trimester of pregnancy within a 4 km radius of each incinerator. Addresses were geocoded and exposures were characterized by a dispersion model (ADMS Urban model) producing pollution maps for incinerators based on PM10 stack measurements and for other pollution sources based on NOx ground measurements. Information on pregnancies and their outcomes was obtained from the Hospital Discharge Database. Simplified True Abortion Risks (STAR) × 100 estimated pregnancies were calculated. We ran logistic regressions adjusting for maternal characteristics, exposure to other sources of pollution, and sites, considering the whole population and stratifying by miscarriage history.

Results: The study analyzed 11,875 pregnancies with 1375 miscarriages. After adjusting for confounders, an increase of PM10 due to incinerator emissions was associated with an increased risk of miscarriage (test for trend, p = 0.042). The odds ratio for the highest quartile of exposed versus not exposed women was 1.29, 95% CI 0.97–1.72. The effect was present only for women without previous miscarriages (highest quartile of exposed versus not exposed women 1.44, 95% CI 1.06–1.96; test for trend, p = 0.009).

Conclusion: Exposure to incinerator emissions is associated with an increased risk of miscarriage. This result should be interpreted with those of a previous study on reproductive health conducted in the same area that observed an association between incinerator exposure and preterm births.

© 2015 Elsevier Ltd. All rights reserved.
ABITIAMO in una delle 5 AREE PIÙ INQUINATE DEL PIANETA!

AREE AD ELEVATE CONCENTRAZIONI DI NO2 (OSSIDI DI AZOTO)
2008: INCENERITORI per rifiuti in ITALIA
Commento ODMCeO 2

pag. 15: il riferimento bibliografico 11 si riferisce ad un recente studio condotto a Seoul su 4 inceneritori che rispettano i limiti emissivi. Lo studio ha preso in esame 4 inquinanti (PM10, NOx, SO2, CO), di norma non presi in considerazione negli studi epidemiologici in quanto ritenuti di scarso impatto per la salute umana, ed ha evidenziato per l’esposizione ad essi un carico aggiuntivo 297/persone anno di morti e malati. L’Ordine concorda con gli Autori dello studio quando affermano che pur essendo tale carico aggiuntivo percentualmente basso: “nessun ulteriore aggravio per la salute umana proveniente dall’incenerimento dei rifiuti può essere considerato accettabile”, dal momento che si tratta di un rischio evitabile.
S.E.N.T.I.E.R.I - Studio Epidemiologico Nazionale Territori e Insediamenti Esposti a Rischi da Inquinamento (Epidemiol Prev 2011; (5-6) Suppl 4).

- Studio dell'ISS, esaminate le statistiche di mortalità di 44 delle 57 aree da tempo identificati come “siti da bonificare” nel periodo 1995-2002

- 298 Comuni con 5,5 milioni di abitanti

- Eccesso di mortalità rispetto alle medie regionali: 10mila morti in più in otto anni rispetto al numero atteso considerando tutte le cause di morte.

- 3.508 decessi considerando solo le malattie più chiaramente riconducibili al fatto di vivere vicino a impianti siderurgici e petrolchimici, raffinerie, inceneritori, discariche, porti, cave di amianto e miniere

10 maggio 2013
In 23 Sin serviti da Registro Tumori
Incidenza aumentata del 9% negli uomini e del 7% nelle donne.
TARANTO dati «aggiornati di mortalità anni 2003 e 2006/2008 analizzati nello studio SENTIERI - ISS»

BAMBINI sotto un anno di età e per tutte le cause: +35% di decessi.

Morti nel periodo perinatale: +71%

Tumori del fegato +24% ; Linfomi +38%, Mesoteliomi +306% ; Polmoni +48%; Stomaco +100%, Mammella +24%;

Incremento complessivo di TUTTI I TUMORI +30%.

ORE 00.12 DEL 13.02.2010 (foto di fabio matacchiera)
In Italia record europeo per morti premature dovute all'inquinamento
30 novembre, 2015

Stima dell'Agenzia Europea dell'Ambiente (AEA): nel 2012 ha registrato 84.400 decessi per L'INQUINAMENTO DELL'ARIA rispetto alla normale aspettativa di vita. Tre i 'killer' sotto accusa.

• Le micro polveri sottili (Pm2.5), 59.500 decessi (403mila in UE)
• Il biossido di azoto (NO2) 21.600 decessi (28mila in UE)
• L'ozono, quello nei bassi strati dell'atmosfera (O3), 3.300 decessi (432mila in UE)

Area più colpita in Italia dalle micro polveri si conferma la Pianura Padana
Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project.

Cesaroni G et al

- Per ogni aumento di 5 microgrammi al metro cubo (5 µg/m³) nella media annuale di esposizione a PM2.5 corrisponde un aumento del rischio di morte per cause non accidentalni del 7%.
- I limiti proposti dall’OMS, pari a 10 µg/m³ per il PM2,5, sono inferiori rispetto a quelli attualmente in vigore nel nostro paese, pari a 25 µg/m³: una differenza di ben 15 µg/m³…. Corrispondente ad un aumento del rischio di morte del 21% !!
“Relazione finale sui lavori del tavolo interistituzionale in tema di diossine/furani e PCB nelle matrici ambientali ed alimentari del territorio forlivese”

commento n° 10 dell’Ordine dei Medici

..”Nel complesso si stima che nella popolazione femminile entro 3,5 km dagli inceneritori di Forlì dal 1990 al 2003 si siano osservati 116 decessi oltre l’atteso di cui 70 per cancro.”

Quanti altri ne avremmo osservati se l’indagine si fosse ampliata oltre i 3,5 km?
PRESENZA DI DIOSSINE E PCB IN ALLEVAMENTI RURALI DEL COMUNE DI FORLI’ ANNO anno 2011

Tabella 11 – Campioni effettuati nel 2011 per il controllo dei PCDD/F e PCB in matrici di origine animale giudicati in base alle nuove normative 2012 (tenendo conto anche dei 5 campioni ISDE)

Matrice di origine animale	Numero campioni	N° campioni non conformi al Regolamento (CE) N°1881/2006 modificato dal Regolamento (UE) 1259/2011	N° campioni non conformi alla Raccomandazione Commissione Europea (23/8/2011)	N° campioni conformi
Galline/Pollo	12	8	2	2
Uova	24	4	7	13
Tessuto adiposo ovino	3	0	2	1
Fegato ovino	3	1	n.a.	2
Latte ovino	3	0	0	3
Latte bovino	3	0	1(*)	2
Latte caprino	2	0	1	1
Pesce	1	0	0	1
Totale matrici animali	51	13	13	25
Vegetali	10	0	10	0
Totale complessivo	61	13	23	25
Impianto di vecchia generazione (anni '70) e chiuso nel 2014
Rischi di mortalità con intervallo di confidenza significativo (Carcinomi COLON-RETTO, POLMONE, IPERTENSIONE, INFARTO, CIRROSI) l'eccesso calcolato è di **3,44 casi/anno, per 15 anni**, in linea con quanto conosciuto in letteratura per gli impianti di vecchia generazione (**da 1 a 3 casi di tumore l'anno per 100.000 abitanti esposti**).

http://www.arpa.piemonte.it/news/concluso-lo-studio-epidemiologicoarpa-sullinceneritore-di-vercelli
La gestione sostenibile dei rifiuti solidi urbani

L’UE, con la Direttiva quadro 2008/98/CE, ha delineato una **precisa gerarchia** per una corretta gestione dei rifiuti. Tale direttiva è stata recepita in **Italia** con il D.LGS 205/2010

nel rispetto della seguente gerarchia:

1. **prevenzione**;
2. **preparazione per il riutilizzo**;
3. **riciclaggio**;
4. **recupero** di altro tipo, (per esempio il recupero di energia);
5. **smaltimento** (in discarica)
Le conseguenze sanitarie delle discariche

Attualmente le discariche di rifiuti sono la modalità di smaltimento più diffusa nel nostro Paese.

- Anche se controllate possono causare contaminazione del suolo (Pastor & Hernandez 2012; Melnyk et al. 2015) (in particolare da metalli pesanti) e delle falde acquifere (Loizidou & Kapetanios 1993; Pastor & Hernandez 2012; Fernandez et al. 2014), inquinamento atmosferico (Assmuth & Kalevi 1992; Rabl et al. 2008; Cheng et al. 2011; Heaney et al. 2011; Ancona et al. 2015), e contaminazione della catena alimentare (Waseem A, et al 2014. Ismail A, et al 2014).

- Eccessi di mortalità malattie non neoplastiche (cardiovascolari, respiratorie, dell’apparato digerente e del sistema nervoso) (Salerno C and Palin LA. 2011)

- Eccessi di mortalità per malattie cardiocircolatorie e cerebrovascolari, per tumori maligni del sistema emato-linfopoietico, del fegato e della vescica (Minichilli F, et al 2005)
Veleni 7 volte oltre i limiti nella discarica di IMOLA

di Antonio Amorosi su Libero

• «Cromo esavalente», «arsenico», «nichel», tutti composti cancerogeni e «solfati e nitriti», sono stati trovati nella più grande discarica dell’Emilia Romagna, la Tre Monti di Imola, in misura dalle tre alle sette volte «superiore al valore limite». Sono i rilievi pubblicati dall’Arpa sulla discarica da 4 milioni di tonnellate di rifiuti collocata a 9 chilometri da Imola e a due dalla località turistica Riolo Terme.

• La discarica doveva contenere solo rifiuti inerti e non pericolosi ma evidentemente qualcosa di diverso vi è stato sversato illegalmente nel tempo e per quantità rilevanti.

• E’ stato chiesto il raddoppio della discarica Tre Monti, candidandola a diventare la più grande d’Italia.
Art. 35. Misure urgenti per l'individuazione e la realizzazione di IMPIANTI DI RECUPERO DI ENERGIA, dai rifiuti urbani e speciali, costituenti INFRASTRUTTURE STRATEGICHE DI PREMINENTE INTERESSE NAZIONALE

- Tali impianti di TERMOTRATTAMENTO costituiscono infrastrutture e insediamenti strategici di preminente interesse nazionale ai fini della tutela della salute e dell'ambiente.

- Ai sensi del decreto legislativo n.152 del 2006 e successive modificazioni non sussistendo vincoli di bacino per gli impianti di recupero, negli stessi deve essere data priorità al trattamento dei rifiuti urbani prodotti nel territorio nazionale e a saturazione del carico termico.
Art. 1: obiettivo di questa Convenzione è Proteggere la salute umana e l’ambiente dai Contaminanti Organici Persistenti (POP’s)
Con il Decreto di Legge n. 155 del 13/8/2010, il Governo posticipa al 31 dicembre 2012 il divieto di superamento del livello di 1 nanogr. a metro cubo per il benzo(a)pirene (agente cancerogeno e genotossico).

“l’obiettivo di qualità di 1 nanogr. al metro cubo, anche dopo la data indicata, dovrà essere osservato perché ciò non comporti costi sproporzionati per l’industria”
CLAUDIO Galli, amministratore delegato di Hera Ambiente: quali controlli sulle dioxisne vengono fatti da Hera all'interno del Consorzio? «Il termovalorizzatore di Forlì è dotato di un campionatore in continuo anche per le dioxine e gli altri microinquinanti, oltre a quelli sul monossido di carbonio, il carbonio organico totale, l'acido cloridrico, l'acido fluoridrico, l'anidride solforosa, gli ossidi di azoto, l'ammoniaca, l'anidride carbonica.»

E sui policlorobifenili (Pcb)? «La normativa nazionale non impone la misurazione di tale parametro, ma nonostante questo il gruppo ne effettua periodicamente un controllo. La media per il 2010 è pari a 0,00015 nanogrammi normal-metrocubo in tossicità equivalente.»

Torniamo alle dioxine: quali risultati sono emersi nel 2010? «Sono un centesimo rispetto ai limiti di legge e si possono verificare sul sito del Gruppo (nella sezione ‘controllo delle emissioni’, ndr). Per Forlì il valore è di 0,003 nanogrammi normal-metrocubo, a fronte di un limite di legge di 0,1. L’impianto di Bologna mostra gli stessi parametri, Ravenna è su 0,005 e Modena a 0,002.»

Cosa dice la normativa in proposito? «La norma di riferimento è il decreto legislativo 133 del 2005, che stabilisce i valori detti sopra». Nell’allegato 1 alla legge si stabilisce che i controlli sono ottenuti con valori di campionamento di 8 ore (quindi non in continuo) e i valori limite di emissione si riferiscono alla concentrazione totale di dioxine e furani calcolata come concentrazione tossica equivalente.»
Aumento del rischio di morte per incremento di 10 microgrammi di PM10 per 2 anni

- Pazienti diabetici 32%
- Pazienti con BPCO 28%
- Pazienti con insufficienza cardiaca congestizia 27%
- Pazienti con patologie infiammatorie 22%

The American Journal of Respiratory and Critical Care
May 2006
Dal testo dell'interrogazione depositata in Commissione Europea dall' On. Andrea Zanoni sull'uso dei rifiuti nella produzione del cemento.

- A titolo di esempio si riporta un recente caso accaduto a Musestre, in provincia di Treviso, dove una cittadina nel contesto di un contenzioso legale contro un fornitore e un produttore di cemento, ha fatto eseguire **cinque perizie sulla propria abitazione** che hanno messo in evidenza che **nel cemento utilizzato** erano presenti
 - ceneri,
 - diossine e
 - metalli pesanti.

Queste sostanze tossico nocive e pericolose, che dovrebbero essere **smaltite in discariche speciali**, sono invece andate a finire **in un’abitazione civile**.