PAC fields over finitely generated fields

Lior Bary-Soroker · Moshe Jarden

Abstract We prove the following theorem for a finitely generated field K: Let M be a Galois extension of K which is not separably closed. Then M is not PAC over K.

Mathematics Subject Classification (2000) 12E30

1 Introduction

A central concept in Field Arithmetic is “pseudo algebraically closed (abbreviated PAC) field”. If K is a countable Hilbertian field, then $K_s(\sigma)$ is PAC for almost all $\sigma \in \text{Gal}(K)^e$ [1, Theorem 18.6.1]. Moreover, if K is the quotient field of a countable Hilbertian ring R (e.g. $R = \mathbb{Z}$), then $K_s(\sigma)$ is PAC over R [3, Proposition 3.1], hence also over K.

Here K_s is a fixed separable closure of K and $\text{Gal}(K) = \text{Gal}(K_s/K)$ is the absolute Galois group of K. This group is equipped with a Haar measure and “almost all” means “for all but a set of measure zero”. If $\sigma = (\sigma_1, \ldots, \sigma_e) \in \text{Gal}(K)^e$, then $K_s(\sigma)$ denotes the fixed field in K_s of $\sigma_1, \ldots, \sigma_e$.

Recall that a field M is said to be PAC if every nonempty absolutely irreducible variety V defined over M has an M-rational point. One says that M is PAC over a subring R if for every absolutely irreducible variety V defined over M of dimension $r \geq 1$ and every dominating separable rational map $\varphi : V \to K_M^r$ there exists an $a \in V(M)$ with $\varphi(a) \in R^r$.
When \(K \) is a number field, the stronger property of the fields \(\bar{K}(\sigma) \) (namely, being PAC over the ring of integers \(O \) of \(K \)) has far reaching arithmetical consequences. For example, \(\bar{O}(\sigma) \) (= the integral closure of \(O \) in \(\bar{K}(\sigma) \)) satisfies Rumely’s local–global principle [4, special case of Corollary 1.9]: If \(V \) is an absolutely irreducible variety defined over \(\bar{K}(\sigma) \) with \(V(\bar{O}) \neq \emptyset \), then \(V \) has an \(O(\sigma) \)-rational point. Here \(\bar{K} \) denotes the algebraic closure of \(K \) and \(\bar{K}(\sigma) \) is, as before, the fixed field of \(\sigma_1, \ldots, \sigma_e \) in \(\bar{K} \).

The article [3] gives several distinguished Galois extensions of \(\mathbb{Q} \) which are not PAC over any number field and notes that no Galois extension of a number field \(K \) (except \(\bar{K} \)) is known to be PAC over \(K \). This lack of knowledge has come to an end in [5], where Neukirch’s characterization of the \(p \)-adically closed fields among all algebraic extensions of \(\mathbb{Q} \) is used in order to prove the following theorem:

Theorem A If \(M \) is a Galois extension of a number field \(K \) and \(M \) is not algebraically closed, then \(M \) is not PAC over \(K \).

The goal of the present note is to generalize Theorem A to an arbitrary finitely generated field (over its prime field):

Theorem B Let \(K \) be a finitely generated field and \(M \) a Galois extension of \(K \) which is not separably closed. Then \(M \) is not PAC over \(K \).

The proof of Theorem B is based on Proposition 5.4 of [3] which combines Faltings’ theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic. The latter theorems are much deeper than the result of Neukirch used in the proof of Theorem A.

2 Accessible extensions

The proof of Theorem B actually gives a stronger theorem: No accessible extension (see definition prior to Theorem 4) of a finitely generated field \(K \) except \(K_s \) is PAC over \(K \). Technical tools in the proof are the “field crossing argument” and “ring covers”:

An extension \(S/R \) of integral domains with the corresponding extension \(F/E \) of quotient fields is said to be a **cover of rings** if \(S = R[z] \) and \(\text{discr}(\text{irr}(z, E)) \in R^\times \) [1, Definition 6.1.3]. We say that \(S/R \) is a **Galois cover of rings** if \(S/R \) is a cover of rings and \(F/E \) is a Galois extension of fields. Every epimorphism \(\varphi_0 \) of \(R \) onto a field \(E \) extends to an epimorphism \(\varphi \) of \(S \) onto a Galois extension \(F \) of \(E \) and \(\varphi \) induces an isomorphism of the decomposition group \(D_\varphi = \{ \sigma \in \text{Gal}(F/E) | \sigma(\text{Ker}(\varphi)) = \text{Ker}(\varphi) \} \) onto \(\text{Gal}(\bar{F}/\bar{E}) \) [1, Lemma 6.1.4]. In particular, \(\text{Gal}(F/E) \cong \text{Gal}(\bar{F}/\bar{E}) \) if and only if \([F:E] = [\bar{F}:\bar{E}]\).

As in the proof of [1, Lemma 24.1.1], the field crossing argument is the basic ingredient of the construction included in the proof of the following lemma.

Lemma 1 Let \(K \) be a field, \(M \) an extension of \(K \), \(n \) a positive integer, \(N \) a Galois extension of \(M \) with Galois group \(A \) of order at most \(n \), and \(t \) an indeterminate. Then there exist fields \(D, F_0, F, \hat{F} \) as in diagram (1) such that the following holds:

(a) \(F_0 \) is regular over \(K \), \(F \) and \(D \) are regular over \(M \), and \(\hat{F} \) is regular over \(N \).
(b) \(FD = DN = \hat{F} \).

\(\square \) Springer