Association of Insulin Resistance with Vitamin B₁₂ Status in Type 2 Diabetes Mellitus Patients on Metformin Therapy

Cassinadane A Vayarvel¹, Vengatapathy Kuzhandai Velu², Shaik A Hussain³, Ramasamy Ramesh⁴

Abstract

Introduction: Association of insulin resistance with obesity and metabolic syndrome is an established fact. Vitamin B₁₂ deficiency resulting from metformin therapy in type 2 diabetes mellitus (T2DM) patients was documented in the literature. In our study, we tried to explore the association of insulin resistance with vitamin B₁₂ deficiency in T2DM patients on metformin therapy.

Materials and methods: A total of 120 T2DM patients on metformin for at least 6 months with minimum dose of 1,000 mg/day between age group 35 years and 55 years were included. They were divided into group I (with B₁₂ deficiency) and group II (with normal B₁₂ levels). Patients who were on multivitamin supplementation or B₁₂ therapy, nutritional deficiency of vitamin B₁₂, or with any coexisting cause of B₁₂ deficiency like alcoholism, liver, thyroid, and cardiac diseases were excluded from the study. Following biochemical parameters were estimated: fasting plasma glucose, fasting plasma insulin, and vitamin B₁₂. Homocysteine and HOMO-IR were calculated. The statistical analysis, such as Student’s t-test and Pearson correlation test, was performed.

Results: B₁₂ deficiency (group I) showed significant increase in insulin resistance. A negative correlation was observed between vitamin B₁₂ and HOMA IR. Homocysteine showed positive correlation with HOMA IR.

Conclusion: There is a negative correlation between the levels of vitamin B₁₂ and insulin resistance and a positive correlation between homocysteine and insulin resistance in T2DM patients on metformin therapy.

Keywords: Diabetes mellitus, Insulin resistant, Metformin, Vitamin B₁₂

SBV Journal of Basic, Clinical and Applied Health Science (2020): 10.5005/jp-journals-10082-02233

Introduction

Over the past two decades, there is a rapid increase in the prevalence of diabetes among the Asian Indians. In 1995, there were around 19 million diabetics in India, which has considerably increased to 32 million in 2000 and 66.8 million in 2014. Further, it is predicted to touch 100 million by 2030.

The significance of both β-cell dysfunction and insulin resistance in the production of hyperglycemia of type 2 diabetes mellitus (T2DM) is apparent. Insulin resistance, a condition occurring in muscles, fat, and liver cells, is also increasing rapidly among Indians.

Association of insulin resistance with obesity and metabolic syndrome is an established fact. Vitamin B₁₂ deficiency resulting from metformin therapy in T2DM patients was documented in the literature. In our study, we tried to explore the association of insulin resistance with vitamin B₁₂ deficiency in T2DM patients on metformin therapy.

Materials and Methods

The study population included 120 T2DM patients on metformin for at least 6 months with minimum dose of 1,000 mg/day between the age group 35 years and 55 years attending a tertiary care hospital in Puducherry. Institutional ethical committee clearance was obtained before patients were selected according to the inclusion and exclusion criteria. They were divided into group I (with B₁₂ deficiency) and group II (with normal B₁₂ levels). Patients who were on multivitamin supplementation, B₁₂ therapy, nutritional deficiency of vitamin B₁₂, or with any coexisting cause of B₁₂ deficiency like alcoholism, liver, thyroid, and cardiovascular diseases were excluded from the study.

Fasting plasma glucose was estimated by the glucose oxidase peroxidase method (reference range 70–110 mg/dL), fasting plasma insulin (ref. range: 5–17 μ unit/mL) and vitamin B₁₂ (ref. range: 200–835 pg/mL) by the chemiluminescence method, homocysteine by the immunoturbidimetry method (ref. range: 4–14 μmol/L), and homeostatic model assessment of insulin resistance (HOMO-IR, ref. range: 0.5–1.4) was calculated by using the formula fasting insulin × fasting glucose/405.

The Kruskal–Wallis test was done to analyze the normal distribution of data. After that the Student’s t test was performed.
to compare between groups. The Pearson correlation test was used for the correlation analysis. Significance was assessed at \(p < 0.05 \).

RESULTS

A total of 120 T2DM patients on metformin therapy was analyzed for their vitamin B\(_{12}\) status and divided into two groups. Group I comprised of 49 patients with vitamin B\(_{12}\) deficiency and group II had 71 patients with normal vitamin B\(_{12}\) levels. Homocysteine was also analyzed as an added parameter to confirm the B\(_{12}\) status. In group I, 24 (49%) were male and 25 (51%) were female. In group II, 28 (40%) were male and 43 (60%) were female as shown in Table 1.

Based on the vitamin B\(_{12}\) status, the study population was divided into two groups. In Table 2, the insulin resistance marker HOMA-IR was compared between the groups. Subjects with vitamin B\(_{12}\) deficiency (group I) showed significant increase in insulin resistance (\(p < 0.01 \)). In addition, as a support for our study we compared homocysteine, a marker for vitamin B\(_{12}\) deficiency levels between the groups, and it showed a significant increase in group I subjects.

A negative correlation was observed between vitamin B\(_{12}\) and HOMA-IR (\(r = -0.290, p = 0.037 \)). Homocysteine showed positive correlation with HOMA-IR (\(r = 0.397, p < 0.01 \)).

DISCUSSION

Metformin, which is still remaining as the optimal drug for monotherapy with respect to T2DM, is said to induce vitamin B\(_{12}\) deficiency.\(^2\)\(^-\)\(^9\) B\(_{12}\) deficiency prevalence ranges from 6 to 30% among T2DM patients undergoing long-term treatment with metformin.\(^1\)\(^0\)\(^-\)\(^1\)\(^1\)

In our study of 120 T2DM patients who were on metformin therapy, 49 patients were found to be having vitamin B\(_{12}\) deficiency, which amounts to around 41% of the study population. Previous studies showed a mean value of less than 221 pg/mL as vitamin B\(_{12}\) deficient. Comparatively, in our study we had a mean value of 205 pg/mL in group I. In this case, the control study we identified that increased HOMA-IR is associated with low levels of vitamin B\(_{12}\) and increased homocysteine in T2DM patients on metformin therapy.

The inverse relationship between vitamin B\(_{12}\) and insulin resistance is in accord with a previous study.\(^1\)\(^2\)\(^-\)\(^3\) Vitamin B\(_{12}\) serves as a cofactor in methionine synthesis as well as in conversion of methyl malonic acid to succinylcholine.\(^1\)\(^2\)\(^-\)\(^3\) Hence, vitamin B\(_{12}\) deficiency might affect insulin resistance by increasing the stress in the endoplasmic reticulum by the leakage of cellular folate, thereby leading to deficiency of free fatty acid oxidation. Simultaneously, the increase in methyl malonic acid (MMA) causes lipogenesis and insulin resistance as explained by Li et al.\(^1\)\(^4\)

Homocysteine, a marker for vitamin B\(_{12}\) deficiency, was elevated in group I, which showed a positive correlation with insulin resistance. The relationship between homocysteine and insulin resistance was explored in previous studies.\(^1\)\(^5\)\(^-\)\(^7\) In our study, we observed that metformin therapy leads to vitamin B\(_{12}\) deficiency in 41% of the T2DM patients and they also had increased levels of homocysteine, which may be an confounding factor in increasing the insulin resistance.

We have found the associations of vitamin B\(_{12}\) and homocysteine with insulin resistance among T2DM patients on metformin therapy. Further investigations might be essential to find out the underlying pathogenesis of insulin resistance in B\(_{12}\) deficiency.

CONCLUSION

There is a negative correlation between the levels of vitamin B\(_{12}\) and insulin resistance and a positive correlation between homocysteine and insulin resistance in T2DM patients on metformin therapy. Further studies are required to correlate insulin resistance with the dose and duration of metformin therapy together with the body mass index.

REFERENCES

1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998;21(9):1414–1431. DOI: 10.2337/diacare.21.9.1414.
2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27(5):1047–1053. DOI: 10.2337/diacare.27.5.1047.
3. International Diabetes Federation. The diabetes atlas, 6th ed. Poster update. 2014. Available at http://www.idf.org/sites/default/files/Atlas-poster2014_EN.pdf. [Accessed 2 February 2015].
4. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999;104(6):787–794. DOI: 10.1172/JCI17231.
5. Belhayara MI, Melkouz Z, Hamdaoui MS, Bachaoui M, Kheroua O, Malaisse WJ. The metabolic syndrome: emerging novel insights regarding the relationship between the homeostasis model assessment of insulin resistance and other key predictive markers in young adults of western Algeria. Nutrients 2020;12(3):727. DOI: 10.3390/nu12030727.
6. Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013;7(1):14–24. DOI: 10.1007/s11684-013-0262-6.
7. Khan A, Shafrq I, Hassan Shah M. Prevalence of vitamin b12 deficiency in patients with type II diabetes mellitus on metformin: a study from Khyber Pakhtunkhwa. Cureus 2017;9(8):e1577. DOI: 10.7759/cureus.1577.
8. Akinlade KS, Agbekuku SO, Rahamon SK, Balogun WG. Vitamin B 12 levels in patients with type II diabetes mellitus on metformin. annals of Ibadan. Postgrad Med 2015;13:79–83.
9. Martin C. The role of vitamins in the prevention and treatment of type 2 diabetes and its complications. J Diabetes Nurs 2013;17:378–383.
10. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Seaquist D, Topolski R. The prevalence of vitamin B\textsubscript{12} deficiency in patients with type 2 diabetes: a cross-sectional study. J Am Board Fam Med 2009;22(5):528–534. DOI: 10.3122/jabfm.2009.05.090044.

11. Reinstatler L, Qi YP, Williamson RS, Garn JV, Oakley GP Jr. Association of biochemical B\textsubscript{12} deficiency with metformin therapy and vitamin B\textsubscript{12} supplements: the national health and nutrition examination survey, 1999–2006. Diabetes Care 2012;35(2):327–333. DOI: 10.2337/dc11-1582.

12. Krishnaveni GV, Hill JC, Veena SR, Bhat DS, Wills AK, Karat CLS, et al. Low plasma vitamin B\textsubscript{12} in pregnancy is associated with gestational ‘diabetes’ and later diabetes. Diabetologia 2009;52(11):2350–2358. DOI: 10.1007/s00125-009-1499-0.

13. Kim J, Ahn CW, Fang S, Lee HS, Park JS. Association between metformin dose and vitamin B\textsubscript{12} deficiency in patients with type 2 diabetes. Medicine (Baltimore) 2019;98(46):e17918. DOI: 10.1097/MD.00000000000017918.

14. Li Z, Gueant-Rodriguez RM, Quilliot D, Sirveaux MA, Meyre D, Gueant JL, et al. Folate and vitamin B\textsubscript{12} status is associated with insulin resistance and metabolic syndrome in morbidobesity. Clin Nutr 2017;37(5):1700–1706. DOI: 10.1016/j.clnu.2017.07.008.

15. Yang N, Yao Z, Miao L, Liu J, Gao X, Fan H, et al. Novel clinical evidence of an association between homocysteine and insulin resistance in patients with hypothyroidism or subclinical hypothyroidism. PLoS One. 2015;10(5):e0125922. DOI: 10.1371/journal.pone.0125922.

16. Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J, et al. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem 2013;288(14):9583–9592. DOI: 10.1074/jbc.M112.431627.

17. Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, et al. Framingham offspring study. fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 2001;24(8):1403–1410. DOI: 10.2337/diacare.24.8.1403.