The organization of individually mapped structural and functional semantic networks in aging adults

W. Tyler Ketchabaw1 · Andrew T. DeMarco1 · Sachi Paul1 · Elizabeth Dvorak1 · Candace van der Stelt1 · Peter E. Turkeltaub1,2

Received: 31 January 2022 / Accepted: 18 July 2022 / Published online: 4 August 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Language function in the brain, once thought to be highly localized, is now appreciated as relying on a connected but distributed network. The semantic system is of particular interest in the language domain because of its hypothesized integration of information across multiple cortical regions. Previous work in healthy individuals has focused on group-level functional connectivity (FC) analyses of the semantic system, which may obscure interindividual differences driving variance in performance. These studies also overlook the contributions of white matter networks to semantic function. Here, we identified semantic network nodes at the individual level with a semantic decision fMRI task in 53 typically aging adults, characterized network organization using structural connectivity (SC), and quantified the segregation and integration of the network using FC. Hub regions were identified in left inferior frontal gyrus. The individualized semantic network was composed of three interacting modules: (1) default-mode module characterized by bilateral medial prefrontal and posterior cingulate regions and also including right-hemisphere homotopes of language regions; (2) left frontal module extending dorsally from inferior frontal gyrus to pre-motor area; and (3) left temporoparietal module extending from temporal pole to inferior parietal lobule. FC within Module3 and integration of the entire network related to a semantic verbal fluency task, but not a matched phonological task. These results support and extend the tri-network semantic model (Xu in Front Psychol 8: 1538 1538, 2017) and the controlled semantic cognition model (Chiou in Cortex 103: 100 116, 2018) of semantic function.

Keywords Semantic network · Structural connectivity · Functional connectivity · Graph theory · Modules · Hubs

Introduction
Over the past decade, the study of the neurobiology of language has undergone a paradigm shift. Early neuroimaging studies of language focused on localization of function to specific brain areas, but more recent work has taken a network-based perspective that considers information transfer between neural processors (Medaglia et al. 2015). The semantic network, hypothesized to function in a way that binds lexical items to representations from distributed brain regions (Chiou et al. 2018), is of particular interest for elucidating how behavior is supported by the organization and interaction of relevant brain networks. Previous neuroimaging studies of semantic function in the brain have found group-level activation in distributed regions, including canonical language regions in left inferior frontal gyrus (IFG) and left temporoparietal cortex, in addition to “domain general” or “multiple demand” regions like bilateral medial prefrontal cortex that are not specific to language function (Braga et al. 2020; Fedorenko and Thompson-Schill 2014).

From a network perspective, functional connectivity (FC) studies have been cited as support for two theories of semantic function. First, it has been proposed that semantic function is coordinated by a highly influential “hub” region in anterior temporal lobe (ATL) interacting with peripheral “spokes” to form polymodal representations which are linked to lexical items (Patterson and Ralph 2016). An expansion of this hub-and-spoke model, the controlled semantic cognition (CSC) model (Chiou and Lambon Ralph 2019), broadens the
concept of a unitary central hub to instead cover a graded span of cortex in ATL. The CSC model additionally includes left inferior frontal regions which are thought to play a role in selecting the proper representation from semantically related competitors (Chiou et al. 2018). Another model of semantic functioning proposes a tri-network organization, driven by communication within and between a frontoparietal network, a perisylvian network, and parts of the default mode network (Xu et al. 2017). Under this model, semantic representations are accessed through perisylvian and default mode networks, with frontoparietal network performing roles in cognitive control similar to the CSC model.

However, the evidence underpinning these theories in neurotypical individuals is lacking in two respects. First, these studies have not accounted for interindividual variability in either brain anatomy or the arrangement of the language network (Fedorenko et al. 2010). Traditional spatial normalization approaches do not consider anatomical differences across individuals, such as the precise location of sulci and gyri (Frost and Goebel 2012). Here, we apply a gray matter parcellation (Hagmann et al. 2008) based on individual surface anatomy (Fischl et al. 2004) to better reckon with this macro-anatomical variability. Additionally, the definition of the semantic network in prior studies was driven by group-level activation on fMRI tasks, which may be overlooking idiosyncratic features of individuals’ brain network organization (Gordon et al. 2017). A high degree of interindividual variability has been reported in the language domain in particular (Fedorenko and Thompson-Schill 2014), and individually defining language regions based on first-level fMRI activation may be important for understanding individual differences in language abilities (Fedorenko and Kanwisher 2009; Nieto-Castañón and Fedorenko 2012).

Second, prior work studying the semantic network in neurotypical individuals has primarily focused on FC analyses. Such studies do not consider the presence of white matter networks which present neurophysiological and anatomical constraints on connectivity and are thought to provide a substrate upon which functional networks are founded (Chiou et al. 2018; Friederici 2015; van den Heuvel and Sporns 2013a). These white matter networks can be studied with structural connectivity (SC) techniques such as diffusion-based imaging, which does not consider activity in gray matter. Thus, SC and FC are complementary methods, and can be combined to elucidate a more complete understanding of network organization (for a more complete discussion on the SC-FC relationship, see Supplemental Text).

To address these gaps, in this study, we localize the semantic network at the individual level using a validated semantic decision fMRI task (Wilson et al. 2018). Next, we use structural connectivity to inform functional connectivity analyses of these individualized semantic networks (ISNs) using graph theory. Specifically, we use SC to identify hubs and modules in the ISN and naturalistic resting-state FC to interrogate the balance of segregation and integration in the system based on the small-world framework (Bassett and Bullmore 2017; Bullmore and Sporns 2009; see Supplemental Text for further discussion of graph theory and brain networks). Finally, we relate segregation and integration of the network to performance on semantic and phonological fluency tasks.

Methods

Participants

Participants were 53 native English speaking, neurotypical adults (29 female, mean age 60.1 ± 11.9 years, range 30.7–82.1 years) with no history of significant neurological or psychiatric condition. This group was recruited as an age and demographically matched control sample for a study of stroke survivors and, therefore, provides improved validity when extrapolating to post-stroke semantic deficits as compared to more frequently studied healthy college students. All participants scored in the typical range for their age and education on the Montreal Cognitive Assessment based on published norms (Rossetti et al. 2011). The research protocol was approved by the Georgetown University Medical Center Institutional Review Board, and written informed consent was acquired for all participants before enrollment in the study.

Image acquisition and preprocessing

Functional imaging

Both fMRI task and naturalistic resting-state scans were acquired with the same parameters: a BOLD T2*-weighted scan (TR = 794 ms, 48 2.6 mm slices with 10% gap, 2.9 mm voxels, FOV = 211 mm, matrix = 74 × 74, FA = 50°, SMS = 4), consisting of 504 volumes lasting 6m40s for the task and 1024 volumes lasting 14m37s for the naturalistic resting state. A common preprocessing pipeline was run on both task and resting-state scans in AFNI (Cox 1996), including susceptibility distortion correction, realignment for head motion, despiking, global mean scaling, smoothing with a 6 mm FWHM kernel, temporal high-pass filtering at 0.01 Hz, and detrending. Images were coregistered to a T1-weighted scan (MPRAGE) which was parcellated using the structural connectivity-derived Lausanne atlas (Hagmann et al. 2008) at scale125 (234 nodes). To calculate nuisance regressors representing white matter and cerebrospinal fluid (CSF) signals, masks were derived from tissue probability maps (TPMs) from segmentation of the T1-weighted image performed in SPM. Specifically, the top
30 voxels in the white matter and CSF TPMs (i.e., those with the highest probability of being that tissue type) were selected from anatomically constrained ROIs that cover the expected location of ventricles and deep white matter. The average timecourse from these white matter and CSF masks was then extracted and regressed out using generalized linear models (GLMs) as described below.

**Task**

The fMRI task was a validated adaptive semantic decision task, described in detail in (Wilson et al. 2018). Briefly, in the language condition, participants decide if two printed words are semantically related. In the control condition, participants decide if two false font strings are matching. Responses to each trial were collected via button press. The participants complete 20 alternating blocks of language and control conditions, with 4–10 items in each block depending on adaptive difficulty level. To maintain similar levels of effort across different levels of language ability, a staircase procedure adapts item difficulty to each individual participant’s performance. Statistical analysis was conducted with a whole-brain GLM estimated using the fmrilm function from FMRISTAT (Worsley et al. 2002), with covariates including the time-course of a white matter and cerebrospinal fluid (CSF) seed, and the six head-motion parameters not convolved with the hemodynamic response function (HRF). The semantic decision task was modeled using two alternating boxcar functions (corresponding to the language and control conditions), convolved with the HRF. The contrast of interest was semantic greater than control condition, specified as [1,−1].

**Derivation of individualized semantic networks**

After coregistering the resulting T map to the parcellated native-space MPRAGE, mean T scores were calculated for each of the 234 nodes, and the top 10% (24 nodes) were used to define an individualized semantic network (ISN) for each participant (Fig. 1). This top 10% cutoff was chosen rather than a p-value cutoff to account for differences in activation magnitude across participants (i.e., strong vs. weak activators), and is standard for analyses localizing individualized networks (Mahowald and Fedorenko 2016). This approach also generates ISNs with the same number of nodes and edges in each individual (van Wijk et al. 2010), sized similarly to previously established resting-state networks (Gordon et al. 2016; Yeo et al. 2011). At the top 10% cutoff,
average activation of selected nodes across all participants was $T = 4.68 \pm 2.62$ (median $T = 4.03$). At less stringent cutoff values (15% and higher), ISNs contained many nodes that do not activate with the task (mean activation $T < 1$), and at more stringent cutoff values the networks were not fully connected (i.e., some nodes were not connected to any other nodes). The cutoff of top 10% activation was, therefore, deemed appropriate for these analyses. Results were similar at top 11% and 12% cutoffs (data not shown) suggesting the cutoff did not drive our results.

Naturalistic resting-state paradigm

Participants watched a 14.5-min movie excerpt in the scanner during the naturalistic resting-state scan. The excerpt comes from *The Gruffalo* (2009), starting just after the opening credits (1m29s mark) and ending on a shot of the Gruffalo’s face 16 min into the film. Prior work indicates that naturalistic movie watching induces the same patterns of connectivity as normal resting state paradigms with higher reliability and less head motion (Vanderwal et al. 2015) and may be helpful for elucidating individual differences (Vanderwal et al. 2017). After the common preprocessing steps described above, the following nuisance regressors were removed before whitening the data to give a final residual file: signal from white matter, CSF, and global non-brain signal derived from scalp and skull, as well as head motion and its first temporal derivatives. Functional connectomes were generated for each individual by extracting the average BOLD timecourse from each node of the anatomical parcellation and calculating the correlation (Pearson’s $r$ transformed by Fisher Z) between timescourses from each pair of nodes in that participants ISN.

DTI acquisition and pre-processing

To quantify white matter connections, multi-shell High Angular Resolution Diffusion Imaging scans were acquired (HARDI; TR = 4.7 or 5.0 s, TE = 0.082 s, readout time = 0.061 s, diffusion-weighted gradients: 81 directions at $b = 3000$, 40 at $b = 1200$, 7 at $b = 0$, 70 slices, 2 mm cubic voxels, flip angle = 90, phase encoding direction = anterior to posterior, partial fourier = 6/8, FOV = 232 mm, Matrix = $116 \times 116$, slice acceleration = 1). 6 volumes of reverse phase-encoded $b = 0$ images were also acquired for susceptibility field estimation.

Structural connectomes were constructed from the HARDI data through the MRtrix 3.0 software (Tournier et al. 2019) as described in full by Dickens et al. 2021. Briefly, preprocessing followed the standard stepwise application of gaussian noise removal, gibbs ringing artifact removal, correction of distortions induced by motion, eddy currents, and magnetic susceptibility, and correction of B0 field inhomogeneity. Voxelwise fiber orientation distributions were computed using multi-shell, multi-tissue constrained spherical deconvolution (Jeurissen et al. 2014). The preprocessed diffusion-weighted images were upsampled to 1.3 mm prior to spherical deconvolution to increase anatomical contrast. Structural connectivity was quantified through 15 million streamlines generated by probabilistic anatomically constrained tractography (Smith et al. 2012) on the normalized white matter fiber orientation distributions. Streamline density was made proportional to the voxel- and orientation-wise apparent fiber density through spherical-deconvolution informed filtering of tractograms 2 (SIFT2) (Smith et al. 2015). Specifically, edges of the structural connectome were generated by assigning streamlines (Daducci et al. 2012) to parcels of the Lausanne atlas at scale 125, and then multiplying each streamline by its respective cross-sectional multiplier derived using tck2sift2 from MRtrix. Overall, each edge value is directly proportional to the cross-sectional area of white matter connecting the two parcels.

Graph theory analyses

Structural hub analysis

One prominent feature of brain networks is the presence of disproportionately highly connected nodes, called hub nodes, which are thought to be important for relaying and coordinating information transfer within and between brain networks (van den Heuvel and Sporns 2013b). The present study focused on structural hubs rather than functional hubs because FC does not require anatomical connections, a theoretical criterion for network hubs based on neurophysiological constraints (Chiou et al. 2018; van den Heuvel and Sporns 2013b). Further, based on lesion studies, structural hubs seem to be more relevant to cognitive function than functional hubs (Gleichgerrcht et al. 2015; Griffis et al. 2019; Reber et al. 2021).

For each node in each ISN, the two following graph measures were calculated (Sporns et al. 2007): (1) strength, the sum of all connection weights of a given node; and (2) betweenness centrality, the number of shortest path lengths in the network that pass through a given node. To find nodes with much stronger connectivity than the rest of the network, strength and betweenness were Z scored within each individual ISN, and hub nodes were defined as nodes with $Z > 1$ for both metrics (Sporns et al. 2007).

Structural connectivity modularity analysis

Community detection was performed on SC data of each participants ISN using the Louvain algorithm with optimization (Que et al. 2015; Rubinov and Sporns 2011), yielding
analytical subnetworks through which information can route in each individual (Fig. 1).

Because semantic networks are individualized for these analyses based on fMRI task activation, the ISNs do not necessarily contain the same nodes across participants. To account for these differences, we derived consensus modules by finding group overlap in individual (first-level) modules. Specifically, consensus modules were derived using an adaptation of the consensus clustering procedure (Lancichinetti and Fortunato 2012; Rasero et al. 2017). Briefly, an association matrix was constructed, counting the number of times across individuals that any two nodes occurred in the same module, and then the Louvain algorithm was run on this association matrix (Fig. 1), yielding consensus clusters of nodes that served as stable group-level modules. Each node was then assigned to a group-level module according to the consensus cluster analysis to permit a comparison of modules across participants’ ISNs. Modules and hubs are visualized using BrainNetViewer (http://www.nitrc.org/projects/bnv/; Xia et al. 2013).

Functional connectivity analyses

Once hub regions and consensus modules were derived using the SC data, FC was used to characterize how information is communicated through these anatomical subnetworks. To quantify segregation and integration in the whole network, three commonly reported graph theory summary measures (Bullmore and Sporns 2009) (Figure S1), which do not consider the presence of modules, were calculated using Brain Connectivity Toolbox (Rubinov and Sporns 2010): (1) clustering, a measure of segregation; (2) global efficiency, a measure of integration; and (3) small world propensity, a combined measure that compares the observed clustering and global efficiency to values in ideal small-world networks. Small-world propensity contextualizes clustering and global efficiency by normalizing relative to an “ideal” small-world network (Muldoon et al. 2016). Ideal networks in this context are clustered similarly to a lattice graph (i.e., when every node is connected to all of its neighbors) and are similarly efficient to a random graph (i.e., when nodes have equal probability of being connected to any other node in the graph). For the consensus modules, segregation and integration was calculated. Segregation was calculated as the average FC between all node pairs within each consensus module. Integration was calculated for each pair of consensus modules by taking the average connectivity of each node in one module to every node in the other module, i.e., cross-network connectivity. By calculating segregation and integration both at the whole-network and the modular level, we are able to interrogate the contributions to behavior of both the network-wide organization as well as the role of specific modules.

Behavioral testing

Verbal fluency is a cognitive ability involving the retrieval and articulation of information from memory (Shao et al. 2014). We examined verbal fluency for two reasons: (1) because matched semantic and non-semantic versions are available allowing us to examine the specificity of the network-behavior relationships as determined by our regressions; and (2) because there is no ceiling effect on performance of verbal fluency tasks so there is sufficient variability for performing regressions.

Category [semantic] fluency Participants were presented with a category and asked to list as many related words aloud as possible in 60 s. All participants performed two versions of the task, using the categories “animals” and “fruits and vegetables.” Only unique words were counted. If a participant listed both a suprordinate item (e.g., “bird”) and accompanying subordinate items (e.g., “eagle” and “falcon”) only the subordinate items were counted.

Letter [phonological] fluency Similarly, participants were presented with a letter and asked to list as many words as possible in 60 s that begin with that letter. All participants performed two versions of the task, using the categories “farm” and “farm”. Proper names of people and places were not counted. If a participant listed two words related by morphology, derivations (e.g., “farm” and “farmer”) were counted as separate words but inflections (e.g., “float” and “floating”) were not. If the participant began listing numbers (“forty, forty-one”), they were redirected to give different words and only the first number was counted.

Backwards elimination regressions with behavior

To test the hypothesis that language abilities are related to segregation and integration of the functional language network, backward-elimination linear regressions were performed in SPSS using verbal fluency scores as the dependent variable and measures of segregation and integration as predictors. Two separate models were run for each fluency task with main effects of the following predictors: (1) graph theory measures of the entire network (clustering and global efficiency); and (2) within- and cross-module connectivity of each of the 3 modules. All models included age and years of education as covariates. Model #1 starts with 4 variables, clustering, efficiency, age, and education. Model #2 starts with 8 variables, connectivity within each
of the three modules, connectivity across the three pairs of modules, and age and education. The backwards elimination procedure starts with main effects of all terms in the model and iteratively removes one variable with the highest (least significant) $F$ test probability, leaving at the end either a subset of the original predictors that contribute significantly or an empty model (to remain in the model, variables must have $P < 0.10$). The backward-elimination approach was selected because it considers all variables initially and is less susceptible to multicollinearity across predictors compared to other stepwise regression techniques (Myers et al. 2016).

**Results**

**Performance on fMRI task and behavioral testing**

Participants performed a Semantic Decision task with adaptive difficulty designed to maintain an accuracy of 80%. Participants were highly accurate on both the active condition and control condition (88.0% ± 3.3% and 84.3% ± 2.7%, respectively; overall accuracy 86.1% ± 2.0%). Across participants, the median stimulus difficulty level (maximum level 7) was on average 5.7 ± 1.1 for the active condition and 4.5 ± 0.8 for the control condition, indicating that participants were maintaining high performance on more difficult stimuli.

For the behavioral testing, participants performed two matched verbal fluency tasks, one semantic version (category fluency) and one phonological version (letter fluency). On average, participants produced 21.5 ± 5.5 items for the category fluency task and 15.7 ± 4.8 items for the letter fluency task. There was a significant difference between the two tasks in total number of items produced [$T(100) = 5.7, P < 0.00001$] but variance was similar [$F(50,50) = 1.3, P = 0.332$].

**Semantic network localization**

The fMRI task was successful in localizing language regions in each individual, identifying expected areas of consistent activation in left inferior frontal nodes and temporoparietal nodes, as well as domain-general nodes in medial prefrontal cortex (Fig. 2a and b). Our first analysis aimed to inspect the amount of interindividual variability in task activation patterns. This is important for establishing the utility of using individualized networks for our analyses. To quantify the consistency of activation patterns across individuals, each participant’s activation at every node was made into a 234-element vector, and correlations (Pearson’s $r$) were calculated on these nodewise activation vectors, computing correlations for each pair of participants. A summary of each participant’s similarity to the rest of the group was derived by calculating the average of their correlation to every other participant in the study (Fig. 2c). The average of this summary similarity score across individuals was $R^2 = 0.514$. This correlation analysis also revealed 2 outliers with $r < 0.5$ with the rest of the group. Upon visual inspection of their activation patterns, these two participants were found to be right-lateralized for language, and were excluded from all further analyses (Fig. 2b, two leftmost columns). After removing these two individuals, the average group correlation was $R^2 = 0.523$. Only 1 node (left pars triangularis) was identified as part of the language network in all participants, and three others (left superior temporal sulcus, left pars opercularis, and left pars orbitalis) were identified in >95% of participants. In total, 131 nodes were present in at least 1 ISN, with 62 (47.3%) of those nodes occurring in ≤2 participants (Table S1). These results demonstrate that, while there is a high degree of similarity in activation patterns of this adaptive language task, it is still important to account for interindividual variability in the organization and precise localization of the language network.

**Structural hub analysis**

A hub region analysis was conducted using SC to examine the influence of individual nodes on the rest of the network. In total, 29 hub regions were identified, of which only 2 were present in at least 15 participants (Fig. 3 and Table S2), with no other nodes appearing as hubs in more than 5 participants. Both of the reliable hub nodes fell within left IFG, specifically in pars triangularis and opercularis, with at least one of these nodes identified as a hub in 33/51 participants. Notably, the pars triangularis node was the only node that was present in 100% of participants’ ISNs, and it was identified as a hub in 57% of these networks. The pars opercularis node was present in 74.5% of participants’ ISNs and was identified as a hub in 42% of these networks.

**Structural modularity analyses**

To interrogate the arrangement of the possible anatomical routes for information to take through the language network, modularity analyses were conducted using structural connectivity. ISNs contained between 3 and 6 modules (mean = 4.27 ± 0.83). Consensus clustering was then performed to enable comparisons across individuals. This second-level analysis revealed 3 consensus modules shown in Fig. 4 and fully detailed in Table S1. Expected language regions were primarily contained in Modules 2 (green) and 3 (blue). Module 2 covered a swathe of lateral frontal cortex, extending dorsally from left IFG to premotor area and somatosensory cortex. Module3 comprised most of left temporoparietal cortex, extending from temporal pole to the inferior parietal lobule and including anterior parts of left fusiform.
gyrus. Module1 (red) was more variable across individuals, consistently including a subset of default mode regions (Raichle 2015) in dorsomedial prefrontal cortex, medial orbitofrontal cortex, and parts of posterior cingulate, and less consistently including right-hemisphere homotopes of canonical language regions in temporoparietal cortex and inferior frontal gyrus.

Functional connectivity analyses

Segregation and integration of the whole network

At the whole-network level, segregation and integration properties were summarized using clustering and global efficiency, respectively, as well as small-world propensity (SWP), a combined measure. Mean values for these measures were as follows: clustering $0.218 \pm 0.0513$; global efficiency $0.299 \pm 0.0674$; SWP $0.5036 \pm 0.138$. In comparison to null networks generated as part of the SWP calculation (Muldoon et al. 2016), ISNs were near ideal levels of clustering ($\Delta C = 0$ for 50/51 participants, where 0 is optimal, i.e., clustered similar to a lattice graph) while path length (efficiency) was less optimized (mean $\Delta I = 0.70 \pm 0.20$, where 1 is optimal, i.e., as efficient as a random graph).

It has been previously reported that structural and functional brain networks change over the typical aging process (Damoiseaux 2017) such that they become less segregated and more integrated, i.e., less strongly connected within a network and more strongly connected across networks. To test for this relationship in the current data, correlations...
(two-tailed Spearman’s rho) were calculated between age and all connectivity measures. No significant correlations were found (all $P > 0.10$), suggesting that the connectivity of the semantic network may not be affected by typical aging in the same way as other networks (Chan et al. 2014; ...
Damoiseaux 2017). This should be confirmed in future studies with larger sample sizes and/or longitudinal data collection.

**Segregation and integration of consensus modules**

After obtaining the consensus clusters, functional connectivity was calculated within and between modules in each ISN (Fig. 5). The ISN of one participant with bilateral activation contained only 1 node in Module2 and, therefore, within-Module2 connectivity could not be calculated; this participant was excluded from all modularity analyses (final \(N=50\)). Two separate one-way ANOVAs were conducted to test if within-module FC was higher than cross-module FC, as expected, and to explore if connections within or across specific modules were stronger or weaker than the rest of the network. In the first ANOVA, the FC of each edge from each ISN was coded in a binary way as either within-module (i.e., connecting two nodes in the same module) or cross-module (i.e., connecting two nodes in different modules), irrespective of the specific module the nodes were in. FC of within-module edges was significantly higher than cross-module edges \([F(1303)=144.99, P<0.0001]\). In the second ANOVA, edges were coded as one of the 6 edge types based on the specific module(s) being linked by the edge, e.g., within-Module1 or Module1-Module2. There was a significant main effect of edge type \([F(5299)=35.61, P<0.001]\).

Pairwise post-hoc tests conducted with Tukey’s method showed that FC within Module2 (green) was higher than FC within Module1 (red) \([95\% \text{ CI } (0.009 0.129), P=0.014]\). Module2×3 FC was not significantly different from Module1×2 or 1×3 \([\text{vs. Module1×2: } 95\% \text{ CI } (−0.045 0.075), P=0.98; \text{vs. Module1×3, } 95\% \text{ CI } (−0.114 −0.054): P=0.11]\). In summary, Module2 was highly segregated with strong integration with both Modules 1 and 3; Module1 was not highly segregated; and Module3 seems to be between Modules 1 and 2 on both segregation (FC within modules) and integration (FC between modules).

**Regressions with behavior**

To test the hypothesis that verbal fluency in neurotypical adults is related to semantic network organization, backward-elimination linear regressions were performed. These regressions included performance on Letter Fluency and Category Fluency tasks as dependent variables; measures of segregation and integration as predictors; and age and education as covariates. It was hypothesized that semantic function was related to information transfer through the network, so positive relationships were expected with whole-network integration (global efficiency). For modular connectivity, it was expected that semantic performance would be related to FC within Module3 (temporoparietal cortex), which contains the putative hub endorsed by the hub-and-spoke model, and/or FC between Module2 (left inferior frontal/premotor cortex) and Module3, the canonical language network and the proposed circuit in the CSC model of semantic function. Relationships were not expected with Letter Fluency, since the localizer fMRI task was semantic in nature, and the networks being studied were individualized to account for idiosyncrasies in participants’ semantic networks.

Two regression models were run for both behavioral measures. Model #1 featured the whole-network graph
theory measures (clustering and global efficiency) as predictors. Model #2 featured within- and cross-module FC. No relationships were found with Letter Fluency (final Model #1: $F(1,49) = 0.765$, $P = 0.386$; final Model #2: $F(1,48) = 0.954$, $P = 0.334$).

For Category Fluency, Model #1 demonstrated a positive relationship with education ($P = 0.015$) and global efficiency ($P = 0.003$), and a negative relationship with clustering ($P = 0.010$; overall final Model #1: $F(3,47) = 4.499$, $P = 0.007$, adjusted $R^2 = 0.174$; Table 1). For the module-based analysis, task performance was positively related to within-Module3 FC ($P = 0.031$) and marginally related to education ($P = 0.060$; overall final Model #2: $F(2,47) = 3.940$, $P = 0.026$, adjusted $R^2 = 0.107$; Table 1).

### Discussion

The goal of this paper was to characterize the structural and functional properties of the individually defined semantic network and their relation to behavior in a cohort of typical older adults. Studying the organization of the semantic network in typically aging adults is imperative to gain a better understanding of the brain changes that underpin semantic deficits and recovery in post-stroke aphasia. Semantic network individualization revealed areas of consistent activation during the fMRI task, but also a high degree of interindividual variability in activation patterns. The hub region analyses identified hubs in left inferior frontal gyrus, most consistently in pars triangularis. The structural modularity analysis revealed three modules in the semantic network, two which align well

| Variable | Beta | Std. Beta | t     | Sig. (p) |
|----------|------|-----------|-------|----------|
| (Intercept) | 13.38 | 3.51 | 3.51 | .001 *** |
| Age | −0.1 | −0.713 | .479 | −0.105 |

Table 1 Backward-elimination linear regressions relating performance on Category Fluency, a semantic fluency task, to functional connectivity-derived properties of the semantic network. The final models are shown along with the variables removed by the elimination procedure.

| Variable | Beta | Std. Beta | t     | Sig. (p) |
|----------|------|-----------|-------|----------|
| (Intercept) | 12.74 | 3.91 | 3.91 | <.001 |
| Education years | 1.48 | 0.261 | 1.93 | .060 |
| Within_Mod3 | 14.52 | 0.301 | 2.22 | .031 * |
| Age | −0.164 | −1.191 | .240 | −0.173 |
with canonical left hemisphere language regions and one module containing default mode and right-hemisphere nodes. We found that performance on a semantic verbal fluency task—but not a matched phonological fluency task—was related to connectivity within the left temporo-parietal module and the segregation and integration of the network as a whole. Together, these results demonstrate an integrated structurofunctional semantic network comprised of subnetworks which may play more important roles for specific processes.

**Hub analyses**

Hub regions are thought to be important for coordinating information transfer through brain networks (van den Heuvel and Sporns 2013b). In our structural hub analysis, we identified only 2 nodes with consistent hub characteristics across individuals, pars triangularis and pars opercularis in left IFG. Notably, pars triangularis was both the only node to appear as part of the ISN in every participant and the most robustly identified hub, suggesting a common functional role across individuals. Parts of left IFG, particularly pars triangularis, have been previously described as both a functional and structural hub, possibly involved in cognitive control due to its density of connections with medial prefrontal cortex (Milton et al. 2021; Vandenberghe et al. 2013; Xu et al. 2016). Further, rTMS experiments have shown that disruption of anterior IFG is associated with increased latency on semantic but not phonological tasks (Gough et al. 2005; Klaus and Hartwigsen 2019; Whitney et al. 2010), supporting its role as a critical node in the semantic network.

Notably absent from our hub analysis, however, was left anterior temporal lobe (ATL), which is claimed to contain the central hub for semantic function under the hub-and-spoke model (Patterson and Ralph 2016). Under this model, multisensory input from perceptual “spokes” is bound together in the ATL hub to create a unified, polymodal semantic representation. FC studies have supported the hub status of the ATL in the semantic network in both clinical populations (Vandenberghe et al. 2013; Zhao et al. 2017) and neurotypical individuals (Xu et al. 2016; Yu et al. 2018). Structural connectivity analyses have been less consistent in identifying ATL as a highly and widely connected hub region, although there seem to be relationships in stroke and semantic dementia between severity of semantic deficit and integrity of ATL-related white matter tracts such as superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, and uncinate fasciculus (Chen et al. 2020; Han et al. 2013; Harvey et al. 2013; Sundqvist et al. 2020; Xing et al. 2017). One possible explanation for this inconsistency is that the ATL “hub” is not a discrete node but a functionally graded span of cortex (Binney et al. 2012; Ralph et al. 2017), better characterized as a subnetwork of connected processors than a unitary hub region. Areas of high functional convergence within this subnetwork (Bajada et al. 2019) might then be detected in FC studies, which might explain the discrepancy between structural and functional hub analyses. Alternatively, the ATL may function as a hub via indirect connections to sensory networks, which are less likely to be detected by SC methods (Sporns 2013). In total, our structural hub results support the controlled semantic cognition (CSC) model (Chiou et al. 2018), an adaptation of the original hub-and-spoke model. The CSC model postulates that cognitive control circuits in left IFG exert influence over the graded hub in ATL to select the context-appropriate representation amongst related competitors. The role of the pars triangularis hub region in these cognitive control functions deserves further attention in future studies.

Our analyses may be limited by the selection of only nodes that are activated by a semantic decision task, possibly missing brain-wide hubs that may lie outside of the task-defined semantic network. Future studies should investigate hubs in functionally defined networks using other fMRI tasks to localize other language subprocesses (e.g., phonology, syntax), or perform brain-wide structurofunctional hub analyses to determine how hub connectivity relates to language function in neurotypical individuals.

**Consensus modules**

Brain networks are organized into communities, or modules, that are more strongly connected within a community than across communities (Meunier et al. 2010). Disruption of the modular arrangement of brain networks in stroke survivors is associated with cognitive deficits including aphasia (Siegel et al. 2016), and FC studies suggest the semantic network is highly modular (Yu et al. 2018). The present study uses SC to detect modules for two reasons. First, brain networks are constrained by anatomical connections. Second, this approach enables the examination of FC within and between modules without being biased by the community detection algorithm. That is, the community detection algorithm maximizes connectivity within modules, so the use of one modality (SC) to define the network permits the calculation of intra- and inter-modular connectivity with a separate, complementary modality (FC) without so-called “double dipping.”

The structural modularity analyses revealed three consensus modules at the group level. Module2 (left frontal cortex from inferior frontal gyrus to premotor area) and Module3 (left temporoparietal cortex) constituted the majority of the expected language network, and Module1 (posterior cingulate, medial
prefrontal cortex, right-hemisphere language homotopes) included regions that have been associated with language but are not domain specific (i.e., they are activated by other cognitive tasks as well) (Campbell and Tyler 2018; Fedorenko 2014).

These modules align well with a previous FC study of the semantic network (Xu et al. 2016) which also found three modules that were labelled “Default mode network”, corresponding to our Module1; “Frontoparietal network”, corresponding primarily to our Module2; and “Perisylvian network”, corresponding to our Module3. In the present study, structural connectivity was used for the modularity analyses to respect the physical, neurophysiological constraints of brain networks which rely on anatomical connections between regions for communication (Chiou et al. 2018). One noticeable difference from the results in (Xu et al. 2016) is the module membership of left inferior parietal nodes, which cluster with left temporal nodes in the present study but were assigned to a module containing left inferior frontal nodes in the prior study.

Additionally, this prior study employed a literature search to define 60 nodes based on standard space coordinates, whereas the present study performed analyses on individually defined semantic networks which do not necessarily include the same nodes across participants. Using a functional localizer at the individual level can reveal idiosyncrasies that are missed by group-level analyses (Gordon et al. 2017). The present results reveal a much broader semantic network than the one reported previously, including more right-hemisphere regions which possibly reflects interindividual variability in language network organization (Fedorenko et al. 2010). The role of the right hemisphere in recovery from post-stroke aphasia has been long debated (Turkeltaub 2019), and characterizing the idiosyncratic involvement of these brain regions in typically aging individuals deserves future attention.

It is conceivable that our SC analyses may have overemphasized the importance of short-distance connections, which tend to be denser than long-distance connections in probabilistic tractography, contributing to the contiguousness of our modules relative to comparable FC studies like (Xu et al. 2016). Diffusion-based tractography is also susceptible to false positives, although probabilistic tractography with HARDI tends to outperform other diffusion methods (Maier-Hein et al. 2017). These limitations need to be considered, but our finding that FC within the three structural modules is stronger than FC across structural modules suggests that there is a neural basis for this three-module organization.

Relationships with behavior

Regressions showed relationships between properties of the semantic network and performance on Category Fluency, a semantic task, but not Letter Fluency, a phonological task. In terms of whole network measures, Category Fluency performance was positively related to integration (global efficiency) and negatively related to segregation (clustering). Examining integration and segregation of the network modules, Category Fluency performance was positively related to FC within Module 3 (temporoparietal cortex). It is worth noting that the variance in behavior explained by these models was relatively low, so work remains to identify network properties that robustly explain language ability. Still, these results suggest that functional integration of the semantic network—that is, efficient communication across the whole network—is important for building and accessing semantic representations.

The finding that Category Fluency is positively related to FC within Module3 supports previous results and models of semantic function. These results fit well with the CSC model described earlier in that Module3 would contain the putative graded hub in anterior temporal lobe, and stronger FC within this subnetwork could support access to semantic representations. The results also align with a previous study of neurotypical native Chinese speakers, which found that semantic performance on reading tasks was positively related to within-language network FC (similar to efficiency) of posterior superior temporal gyrus (pSTG). Follow-up analysis revealed that connections between pSTG, anterior temporal lobe, and anterior fusiform gyrus were most important for semantic function (Yu et al. 2018). Notably, Module3 in the current study contained all of these regions, so our results support this prior finding.

Also of note, this previous study found relationships between phonological performance and language network connectivity to anterior temporal lobe (Yu et al. 2018), whereas we did not find relationships with our phonologically related task (Letter Fluency). The key difference between this prior study and the current study was the method for identifying network nodes; the prior study selected the same atlas regions for every participant, while the present study identified ISNs using a semantic fMRI localizer. Thus, since our individualized networks were defined using a semantic task, we would not expect to find relationships with phonology. The difference in behavioral results for phonological performance between these studies might reflect the utility of the individual localizer task to identify participant-specific nodes involved in a cognitive process of interest. Future connectivity studies should use multiple localizer tasks designed to reliably parse out brain regions involved in specific language subprocesses to examine how the broader language network dynamically responds across conditions (Fedorenko and Thompson-Schill 2014).

Conclusion

In this study, we used multimodal neuroimaging to investigate the properties of the individually localized semantic network. This study adds to a growing body of literature
accounting for interindividual differences in network organization, and is the first study of healthy individuals to combine structural and functional connectivity to support such analyses. We used structural connectivity to identify hub nodes and probe the modular organization of the semantic network, revealing 2 hubs in left IFG and a three-module arrangement. While, we did not find a structural hub node in ATL as predicted by the hub-and-spoke model (Patterson and Ralph 2016), we found evidence supporting the importance of within-temporoparietal FC in performance of a semantic fluency task, consistent with previous studies (Yu et al. 2018) and supporting the controlled semantic cognition model (Chiou et al. 2018). Future studies should further investigate the behavioral relevance of semantic network modules and hub regions to improve our understanding of conditions like semantic aphasia and semantic dementia.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00429-022-02544-4.

Author contributions The conception and design of this study was developed by authors WTK, AD, and PET. Data collection was performed by authors SP and CV. Author WTK was responsible for material preparation, data analysis, and original manuscript writing. All authors contributed to revision and finalization of the manuscript and have approved the final version.

Funding This work was supported by NIH/NIDCD R01DC014960 to PET and K99DC018828 to AD.

Data availability The datasets analyzed during the current study are not presently publicly available as data collection is still ongoing. The data used for this study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethics approval This study was performed in line with the principles of the Declaration of Helsinki, and all study procedures were approved by the Georgetown Institutional Review Board.

Consent to participate Written informed consent was obtained from all participants included in this study.

References

Bajada CJ, Trujillo-Barreto NJ, Parker GJM, Cloutman LL, Lambon Ralph MA (2019) A structural connectivity convergence zone in the ventral and anterior temporal lobes: data-driven evidence from structural imaging. Cortex 120:298–307. https://doi.org/10.1016/j.cortex.2019.06.014

Bassett DS, Bullmore ET (2017) Small-world brain networks revisited. Neurosci Rev J Bring Neurobiol Neurol Psychiat 23(5):499–516. https://doi.org/10.1177/1073858416667720

Binney RJ, Parker GJM, Lambon Ralph MA (2012) Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J Cogn Neurosci 24(10):1998–2014. https://doi.org/10.1162/jocn_a_00263

Braga RM, DiNicola LM, Becker HC, Buckner RL (2020) Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J Neurophysiol 124(5):1415–1448. https://doi.org/10.1152/jn.00753.2019

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. https://doi.org/10.1038/nrn2575

Campbell KL, Tyler LK (2018) Language-related domain-specific and domain-general systems in the human brain. Curr Opin Behav Sci 21:132–137. https://doi.org/10.1016/j.cobeha.2018.04.008

Chan MY, Park DC, Savañka NK, Petersen SE, Wig GS (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci 111(46):E4997–E5006. https://doi.org/10.1073/pnas.1415122111

Chen Y, Huang L, Chen K, Ding J, Zhang Y, Yang Q, Lv Y, Han Z, Guo Q (2020) White matter basis for the hub-and-spoke semantic representation: evidence from semantic dementia. Brain J Neurol 143(4):1206–1219. https://doi.org/10.1093/brain/awaa057

Chiou R, Humphreys GF, Jung J, Lambon Ralph MA (2018) Controlled semantic cognition relies upon dynamic and flexible interactions between the executive ‘semantic control’ and hub-and-spoke ‘semantic representation’ systems. Cortex 103:100–116. https://doi.org/10.1016/j.cortex.2018.02.018

Chiou R, Lambon Ralph MA (2019) Unveiling the dynamic interplay between the hub- and spoke-components of the brain’s semantic system and its impact on human behaviour. Neuroimage 199:114–126. https://doi.org/10.1016/j.neuroimage.2019.05.059

Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014

Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L, Gigandet X, Meuli R, Hagmann P, Thiran J-P (2012) The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS ONE 7(12):e48121. https://doi.org/10.1371/journal.pone.0048121

Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. Neuroimage 160:32–40. https://doi.org/10.1016/j.neuroimage.2017.01.077

Dickens JV, DeMarco AT, van der Stelt CM, Snider SF, Lacey EH, Medaglia JD, Friedman RB, Turkeltaub PE (2021) Two types of phonological reading impairment in stroke aphasia. Brain Commun 3(3):fcab194. https://doi.org/10.1093/braincomms/fcab194

Fedorenko E (2014) The role of domain-general cognitive control in language comprehension [Hypothesis and Theory]. Front Psychol 5(335). https://doi.org/10.3389/fpsyg.2014.00335

Fedorenko E, Hsieh P-J, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N (2010) New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J Neurophysiol 104(2):1177–1194. https://doi.org/10.1152/jn.00032.2010

Fedorenko E, Kanwisher N (2009) Neuroimaging of language: why hasn’t a clearer picture emerged? Lang Ling Comp 3(4):839–865. https://doi.org/10.1111/j.1749-818X.2009.00143.x

Fedorenko E, Thompson-Schill SL (2014) Reworking the language network. Trends Cogn Sci 18(5):120–126. https://doi.org/10.1016/j.tics.2013.12.006

Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22. https://doi.org/10.1093/cercor/bhg087
Friederici AD (2015) White-matter pathways for speech and language processing. Handb Clin Neurosci 129:177–186. https://doi.org/10.1016/b978-0-444-62630-1.00010-x

Frost MA, Goebel R (2012) Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59(2):1369–1381. https://doi.org/10.1016/j.neuroimage.2011.08.035

Gleichgercht E, Kocher M, Nesland T, Rorden C, Fridriksson J, Bonilha L (2015) Preservation of structural brain network hubs is associated with less severe post-stroke aphasia. Restor Neurol Neurosci 34(1):19–28. https://doi.org/10.3233/RNN-150511

Gordon EM, Lauermann TO, Adeyemo B, Petersen SE (2017) Individual variability of the system-level organization of the human brain. Cereb Cortex 27(1):386–399. https://doi.org/10.1093/cercor/bhv239

Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25(35):8010–8016. https://doi.org/10.1523/JNEUROSCI.2307-05.2005

Griffis JC, Metcalf NV, Corbetta M, Shulman GL (2019) Structural disconnections explain brain network dysfunction after stroke. Cell Rep 26(10):2527–2540.e2529. https://doi.org/10.1016/j.celrep.2019.07.160

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. https://doi.org/10.1371/journal.pbio.0060159

Han Z, Ma Y, Gong G, He Y, Caramazza A, Bi Y (2013) White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain 136(10):2952–2965. https://doi.org/10.1093/brain/awt205

Harvey DY, Wei T, Ellmore TM, Hamilton AC, Schnur TT (2013) Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control. Neuropsychologia 51(5):789–801. https://doi.org/10.1016/j.neuropsychologia.2013.01.028

He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350. https://doi.org/10.1097/WCO.0b013e32833aa567

Jeourissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103:411–426. https://doi.org/10.1016/j.neuroimage.2014.07.061

Klaus J, Hartwigsen G (2019) Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Human Brain Map 40(11):3279–3287. https://doi.org/10.1002/hbm.24597

Lancichinetti A, Fortunato S (2012) Consensus clustering in complex networks. Sci Rep 2(1):336. https://doi.org/10.1038/srep00336

Malowond K, Fedorenko E (2016) Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability. Neuroimage 139:74–93. https://doi.org/10.1016/j.neuroimage.2016.05.073

Maier-Hein KH, Nehor PE, Houde JC, Cote MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, He R, Li Q et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8(1):1349. https://doi.org/10.1038/s41467-017-01285-x

Medaglia JD, Lynall M-E, Bassett DS (2015) Cognitive network neuroscience. J Cogn Neurosci 27(8):1471–1491. https://doi.org/10.1162/jocn_a_00810

Meunier D, Lambiotte, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. https://doi.org/10.3389/fnins.2010.00200

Milton CK, Dhanaraj V, Young IM, Taylor HM, Nicholas PJ, Briggs RG, Bai MY, Fonseka RD, Hormovas J, Lin YH (2021) Parcellation-based anatomic model of the semantic network. Brain and Behavior 11(4):e02665. https://doi.org/10.1002/brb3.2065

Muldoon SF, Bridgeford EW, Bassett DS (2016) Small-world propensity and weighted brain networks. Sci Rep 6(1):22057. https://doi.org/10.1038/srep22057

Myers R.H., Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. John Wiley and Sons

Nieto-Castañón A, Fedorenko E (2012) Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. Neuroimage 63(3):1646–1669. https://doi.org/10.1016/j.neuroimage.2012.06.065

Patterson K, and Ralph MAL (2016). The hub-and-spoke hypothesis of semantic memory. In Neurobiology of Language (765–775). Elsevier

Que X, Checconi F, Petrini F, and Gunnels JA (2015, 25–29 May 2015). Scalable community detection with the Louvain algorithm. 2015 IEEE international parallel and distributed processing symposium

Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38(1):433–447. https://doi.org/10.1146/annurev-neuro-071013-014030

Ralph MAL, Jeffries E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18(1):42–55. https://doi.org/10.1038/nrn.2016.150

Rasero J, Pellicoro M, Angelini L, Cortes JM, Marinazzo D, Stramaglia S (2017) Consensus clustering approach to group brain connectivity matrices. Netw Neurosci 1(3):242–253. https://doi.org/10.1162/NETN_a_00017

Reber J, Hwang K, Bowren M, Bruss J, Mukherjee P, Tranel D, and Boes AD (2021). Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proceedings of the National Academy of Sciences, 118(19). e2018784118. https://doi.org/10.1073/pnas.2018784118

Rossetti HC, Lacritz LH, Cullum CM, Weiner MF (2011) Normative data for the Montreal cognitive assessment (MoCA) in a population-based sample. Neurology 77(13):1272. https://doi.org/10.1212/WNL.0b013e318230208a

Rubinov M, Sporns O (2010) Network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4):2068–2079. https://doi.org/10.1016/j.neuroimage.2011.03.069

Shao Z, Janse E, Visser K, Meyer AS (2014) What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults [Original Research]. Front Psychol 5(772):772. https://doi. org/10.3389/fpsych.2014.00772

Siegel JS, Ramsey LE, Snyder AZ, Glass JO, Bai MY, Fonseka RD, Chacko RV, Weinberger K, Baldassarre A, Hacker CD, Shulman GL, Corbetta M (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U.S.A. 113(30):E4367–E4376. https://doi.org/10.1073/pnas.1521083113

Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamline tractography through effective use of anatomical information. Neuroimage 62(3):1924–1938. https://doi.org/10.1016/j.neuroimage.2012.06.005
Smith RE, Tournier J-D, Calamante F, Connelly A (2015) SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119:338–351. https://doi.org/10.1016/j.neuroimage.2015.06.092

Sporns, O. (2013). Structure and function of complex brain networks. Dial Clin Neurosci 15(3), 247–262. https://doi.org/10.31887/DCNS.2013.15.3/osprons

Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640. https://doi.org/10.1146/annurev-psych-122414-033634

Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2(10):e1049. https://doi.org/10.1371/journal.pone.0001049

Sundqvist M, Routier A, Dubois B, Colliot O, Teichmann M (2020) The white matter module-hub network of semantics revealed by semantic dementia. J Cogn Neurosci 32(7):1330–1347. https://doi.org/10.1162/jocn_a_01549

Tournier J-D, Smith R, Raffelt D, Tabbara R, Dholander T, Pietsch M, Christiaens D, Jefferies E, Lambon Ralph MA, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. https://doi.org/10.1152/jn.00338.2011

Turkeltaub PE (2019) A taxonomy of brain–behavior relationships after stroke. J Speech Lang Hear Res 62(11):3907–3922. https://doi.org/10.1044/2019_JSLHR-L-RSNP-19-0032

van den Heuvel MP, Sporns O (2013a) An anatomical substrate for integration among functional networks in human cortex. J Neurosci 33(36):14489–14500

van den Heuvel MP, Sporns O (2013b) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696. https://doi.org/10.1016/j.tics.2013.09.012

van Wijk BCM, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5(10):e13701. https://doi.org/10.1371/journal.pone.0013701

Vandenberghe R, Wang Y, Nelissen N, Vandenbulcke M, Dholander T, Sunaert S, Dupont P (2013) The associative-semantic network for words and pictures: effective connectivity and graph analysis. Brain Lang 127(2):264–272. https://doi.org/10.1016/j.bandl.2012.09.005

Vanderwal T, Eilbott J, Finn ES, Craddock RC, Turnbull A, Castellanos FX (2017) Individual differences in functional connectivity during naturalistic viewing conditions. Neuroimage 157:521–530. https://doi.org/10.1016/j.neuroimage.2017.06.027

Vanderwal T, Kelly C, Eilbott J, Mayes LC, Castellanos FX (2015) Inscapes: a movie paradigm to improve compliance in functional magnetic resonance imaging. Neuroimage 122:222–232. https://doi.org/10.1016/j.neuroimage.2015.07.069

Whitney C, Kirk M, O’Sullivan J, Lambon Ralph MA, Jeffries E (2010) The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal Gyrus. Cereb Cortex 21(5):1066–1075. https://doi.org/10.1093/cercor/bhq180

Wilson SM, Yen M, Eriksson DK (2018) An adaptive semantic matching paradigm for reliable and valid language mapping in individuals with aphasia. Hum Brain Mapp 39(8):3285–3307. https://doi.org/10.1002/hbm.24077

Worsley KJ, Liao CH, Aston J, Petre V, Duncan G, Morales F, Evans A (2002) A general statistical analysis for fMRI data. Neuroimage 15(1):1–15. https://doi.org/10.1006/ima.2001.0933

Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7):e68910. https://doi.org/10.1371/journal.pone.0068910

Xing S, Lacey EH, Skipper-Kallal LM, Zeng J, Turkeltaub PE (2017) White matter correlates of auditory comprehension outcomes in chronic post-stroke aphasia. Front Neurol 8:54. https://doi.org/10.3389/fneur.2017.00054

Xu Y, He Y, Bi Y (2017) A tri-network model of human semantic processing [review]. Front Psychol 8(1538):1538. https://doi.org/10.3389/fpsyg.2017.01538

Xu Y, Lin Q, Han Z, He Y, Bi Y (2016) Intrinsic functional network architecture of human semantic processing: modules and hubs. Neuroimage 132:542–555. https://doi.org/10.1016/j.neuroimage.2016.03.004

Yeoh BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. https://doi.org/10.1152/jn.00338.2011

Yu M, Wu Z, Luan M, Wang X, Song Y, Liu J (2018) Neural correlates of semantic and phonological processing revealed by functional connectivity patterns in the language network. Neuropsychologia 121:47–57. https://doi.org/10.1016/j.neuropsychologia.2018.10.027

Zhao Y, Song L, Ding J, Lin N, Wang Q, Du X, Sun R, Han Z (2017) Left anterior temporal lobe and bilateral anterior cingulate cortex are semantic hub regions: evidence from behavior-nodal degree mapping in brain-damaged patients. J Neurosci 37(1):141–151. https://doi.org/10.1523/JNEUROSCI.1946-16.2016

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.