Dysregulation of microRNA in cholangiocarcinoma identified through a meta-analysis of microRNA profiling

Somsak Likhitrattanapisal, Supeecha Kumkate, Pravech Ajawatanawong, Kanokpan Wongprasert, Rutaiwan Tohtong, Tavan Janvilisri

Abstract

BACKGROUND

In the past decades, the potential of microRNA (miRNA) in cancer diagnostics and prognostics has gained a lot of interests. In this study, a meta-analysis was conducted upon the pooled miRNA microarray data of cholangiocarcinoma (CCA).

AIM

To identify differentially expressed (DE) miRNAs and perform functional analyses in order to gain insights to understanding miRNA-target interactions involved in tumorigenesis pathways of CCA.

METHODS

Raw data from 8 CCA miRNA microarray datasets, consisting of 443 samples in total, were integrated and statistically analyzed to identify DE miRNAs via comparison of levels of miRNA expression between CCA and normal bile duct samples using t-tests ($P < 0.001$). The 10-fold cross validation was performed in order to increase the robustness of the t-test results.

RESULTS
Our data showed 70 up-regulated and 48 down-regulated miRNAs in CCA. Gene Ontology and pathway enrichment analyses revealed that mRNA targets of DE miRNAs were significantly involved in several biological processes. The most prominent dysregulated pathways included phosphatidylinositol-3-kinases/Akt, mitogen-activated protein kinase and Ras signaling pathways.

CONCLUSION

DE miRNAs found in our meta-analysis revealed dysregulation in major cancer pathways involved in the development of CCA. These results indicated the necessity of understanding the miRNA-target interactions and the significance of dysregulated miRNAs in terms of diagnostics and prognostics of cancers.

Key words: Cholangiocarcinoma; Microarray; MicroRNA; Meta-analysis

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: At present, there is an accumulating mass of cholangiocarcinoma microRNA (miRNA) profiling data, however, it is challenging to gain the maximal information from these data because the experimental designs in each study tend to focus on only a few specific research questions. This work therefore integrates and inter-validates the cholangiocarcinoma miRNA expression profiles from multiple independent datasets to identify the differential dysregulation of miRNA and their corresponding downstream pathways underlying mechanism of pathogenesis. The significant merit of our findings offers a valuable reference for future studies and further investigation of these miRNA genes and their interactions will eventually lead to the identification of genes and pathways important to the overall mechanism of the dysregulated processes in cholangiocarcinoma development.

INTRODUCTION

Cholangiocarcinoma (CCA), first described by Durand-Fardel in 1840, is a form of malignant tumor that originate from biliary epithelial cells in the liver and/or extrahepatic bile ducts[6,2]. CCA accounts for 10%-15% of hepatobiliary neoplasm. Thus, it is the second most common primary hepatobiliary malignancy after hepatocellular carcinoma (HCC)[3]. Moreover, the incidence and mortality rate of CCA have been reportedly increasing worldwide over the past three decades[4,4]. However, the prevalence of CCA vary greatly among different geographical regions of the world. Incidence of CCA in most Western countries ranges from 2 to 6 cases per 100000 people per year[5]. There is a higher prevalence of CCA in Asia and in people of Asian descent, which has been attributed to endemic chronic parasitic infestation[6]. Primary sclerosing cholangitis, inflammation that causes scars within the bile ducts, is the most common known predisposing factor for CCA[7]. In East and Southeast Asia, where the disease is common, CCA has been pathogenically associated with liver fluke infestation, particularly the endemic Clonorchis sinensis and Opisthorchis viverrini. In addition, hepatitis C virus infection and liver cirrhosis have been suggested as potential risk factors for CCA[8].

MicroRNAs (miRNAs) are a family of endogenous, non-coding RNAs found in plants, animals, and some viruses[9-11]. miRNA genes are highly-conserved and may be located either within the introns or exons of protein-coding genes (70%) or in intergenic areas (30%)[12]. A miRNA in its single-stranded functional form is usually 21-22 nucleotides long (though it can vary from 19-25 nucleotides)[13]. In present, the latest release of miBase (version 22) (http://www.mirbase.org/) contains 38589 hairpin precursors and 48860 mature miRNA from 271 organisms[14]. Several hundreds of miRNA genes in the human genome have been discovered in the last decade[15-17].
However, it is estimated that the human genome may encode over 1000 miRNAs in total\(^\text{[23,34]}\). The primary function of miRNAs is to control gene expression at post-transcriptional level. miRNAs suppress the target mRNA expression, mostly through interaction with the 3’ untranslated region\(^\text{[17,18]}\), resulting in inhibition of target mRNA translation activity and, to a lesser extent, targeting mRNA cleavage\(^\text{[17,18,24]}\). Each miRNA may be responsible for regulation of the expression of hundreds of gene targets\(^\text{[18]}\).

Although the functions of dysregulated miRNAs in human cancers remain largely a mystery, multiple miRNAs and their corresponding target genes have been reported to be associated with tumor initiation and progression\(^\text{[6,24,25]}\). Many transcriptional profiling data demonstrated that miRNA expression profiling efficiently classified different tumor types more reliably than did mRNA profiling\(^\text{[23,24]}\). Systematic expression analyses using miRNA microarray technology have been performed in several types of cancer; for example, hepatic\(^\text{[28]}\), colorectal\(^\text{[31]}\), lung\(^\text{[27]}\), and breast cancers\(^\text{[32]}\).

However, due to insufficient control of false positives and the small sample sizes relative to the large sets of microarray probes, individual microarray-based studies are often deficient in terms of statistical robustness\(^\text{[33,34]}\). Meta-analysis is the use of statistical techniques to combine results from independent but related studies, hence it is one of the most preferable ways to increase the statistical power of the readily available microarray data. Moreover, it is relatively inexpensive in terms of financial and time investments\(^\text{[31]}\).

Our meta-analysis of miRNA microarray datasets was aimed to identify the differentially expressed (DE) miRNA in various CCA samples compared to the non-cancerous counterparts. The results from the robust statistical tests would provide insights to understanding the regulatory potential of miRNAs in tumorigenesis pathways of CCA.

MATERIALS AND METHODS

miRNA microarray data collection

The miRNA microarray datasets were retrieved from the public repository database Gene Expression Omnibus (http: //ncbi.nlm.nih.gov/geo) via the computerized search using combinations of relevant keywords, including (miRNA OR microRNA) AND (cholangiocarcinoma OR CCA OR CCC). All dataset search hits were initially checked whether raw data were provided. Datasets without raw data were promptly omitted. A matrix series tables and raw data package(s) of each available dataset were downloaded and extracted. Eight miRNA microarray datasets from independent research studies were employed in our meta-analysis. Six out of these 8 datasets (GSE32958, GSE47764, GSE50894, GSE51429, GSE53870, GSE53992) were conducted using biopsied tissue samples. One study (GSE59856) used serum miRNA and another (GSE47396) used miRNA samples from cell lines.

Data processing

After extraction and background-correction, the GPR or TXT raw data files of each dataset were converted to comma-separated values file format and then imported as a data frame into R software version 3.1.2\(^\text{[34]}\). Before pooling samples of all datasets, the identification name of every miRNA probe was checked against identification entries registered in miRBase database (www.mirbase.org/)\(^\text{[35]}\) and was subsequently renamed in accordance with miRBase identification, in order to avoid confusion from naming system of different microarray platforms. Log, transformation was applied to all intensity values. The transformed data were then normalized following 2 steps, i.e., within-array normalization using a median centering method, followed by between-array normalization using a quantile normalization method. Hence normalized data would exhibit normal distribution with the same standard deviation across datasets which is an essential assumption of parametric statistical tests.

Statistical analysis

In order to identify DE miRNA in CCA, the pooled samples were grouped into 2 groups: “CCA” and “Normal”. The normalized intensity values of each miRNA were compared between these two groups using \(t\)-tests conducted in MultiViewer Experiment version 4.6 in TM4 software suite\(^\text{[31]}\). \(P\) value threshold was set at below 0.001 (\(P < 0.001\)). As clinical validation in our study is restricted, \(k\)-fold cross validation was applied to verify the integrity of significant DE miRNAs from \(t\)-test analysis. The
10-fold cross validation was performed by randomly assigning samples into 10 different sets and repeating t-test statistical analysis with the same parameter ($P < 0.001$) for 10 rounds. In each round, one set was chosen as the validation set whereas the rest were test sets. DE miRNA which showed statistical significance among test sets and validation sets from all 10 rounds were collected as validated DE miRNAs for further analysis.

Bioinformatics analysis and visualization of miRNA-target interactions

In order to assess the biological functions of the gene targets of DE miRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were employed using DIANA miRPath version 3.0[34]. The lists of up- and down-regulated miRNAs were categorized and separately uploaded as inputs to DIANA miRPath. The human KEGG and GO analyses were selected with P-value threshold at 0.01. The KEGG pathways, which were the most enriched by target genes of DE miRNAs, were selected to analyze the miRNA-target interactions. Unique targets of each DE miRNA in the selected pathways were filtered into the list, which was then used in the network visualizer software. Visualized miRNA-target interaction networks were constructed using Cytoscape version 3.3.0[35] with CyTargetLinker plugin version 2.1[36].

RESULTS

Differentially-expressed miRNA

A framework of our meta-analysis approach is depicted in Figure 1. In total, there were eligible 246 CCA and 197 normal samples from 8 independent miRNA microarray datasets, which included tissue samples, sera and cell lines as detailed in Table 1. Initial t-tests results identified 224 DE miRNAs consisting 114 up-regulated and 110 down-regulated miRNAs. Following statistical validation of these results using k-fold cross validation, the numbers of up-regulated and down-regulated miRNAs were confined to 70 (Table 2) and 48 (Table 3), respectively. The overall expression profiling of DE miRNAs is presented in Figure 2.

Enrichment analyses

To explore the biological functions of DE miRNAs found in the meta-analysis results, GO and KEGG pathway enrichment analyses were performed using DIANA miRPath v3.0 with P-value threshold at 0.01 and MicroT score threshold at 0.8. The miRPath v3.0 results indicated that there were 4407 and 7236 predicted target genes of up-regulated and down-regulated miRNAs, respectively, involved in GO biological processes. GO enrichment analysis showed 72 biological processes associated with up-regulated miRNAs (Supplementary Table 1), whereas 95 biological processes were identified to be associated with down-regulated miRNAs (Supplementary Table 2).

KEGG pathway enrichment analysis showed that gene targets of up-regulated miRNAs were significantly involved ($P < 0.01$) in 48 molecular biological processes (Supplementary Table 3) while gene targets of down-regulated miRNAs were significantly involved ($P < 0.01$) in 32 processes (Supplementary Table 4). Figure 3 represents the most prominent dysregulated pathways of up-regulated miRNAs including phosphatidylinositol-3 kinases/Akt (PI3K/Akt) signaling pathway (215 gene targets of 57 miRNAs, $P = 0.00424$), mitogen-activated protein kinase (MAPK) signaling pathway (169 gene targets of 55 miRNAs, $P = 0.00034$), and Ras signaling pathway (159 gene targets of 58 miRNAs, $P = 2.34E-06$). These three pathways were also the most prominent dysregulated pathways of down-regulated miRNAs, which were PI3K/Akt signaling pathway (209 gene targets of 42 miRNAs, $P = 1.91E-05$), MAPK signaling pathway (147 gene targets of 39 miRNAs, $P = 0.0079$), and Ras signaling pathway (147 gene targets of 39 miRNAs, $P = 2.03E-06$).

Visualization of miRNA-target interaction networks

According to the results of KEGG pathway analysis, PI3K/Akt, MAPK and Ras signaling pathways were the most enriched biological processes with which target genes of DE miRNAs were associated. For up-regulated miRNAs associated with these three pathways, 7 miRNAs including miR-330-5p, miR-519d-3p, miR-548a-5p, miR-548d-3p, miR-1207-3p, miR-1304-5p, and miR-2113 were chosen as representative miRNAs of this group. For down-regulated miRNAs, 9 miRNAs including let-7b-5p, let-7c-3p, let-7f-5p, miR-195-5p, miR-20a-5p, miR-26b-5p, miR-27b-3p, miR-29b-3p, and...
miR-330-3p were chosen as representatives. Using regulatory interaction networks data from TargetScan and miRTarBase, 35 and 46 unique target genes of up- and down-regulated miRNAs, respectively, were identified to be involved in these three pathways (Figure 4).

DISCUSSION

At present, a global view of miRNA roles in the development of cancers remains incomplete. Due to widespread usage of microarray technology, there has been an enormous expansion of publicly available datasets\[37\], which could be integrated and analyzed with a statistically robust meta-analysis approach. In our meta-analysis, miRNA microarray datasets from multiple independent studies were analyzed with highly stringent statistics and cross validation, leading to identification of DE miRNAs in CCA compared to non-cancerous cells across the pooled samples. The lack information on whether the samples were from primary or metastatic sites would pose as one of the limitations of this study.

Many DE miRNAs observed in our study are significantly related to 3 major cancer signaling pathways, namely the MAPK signaling pathway, PI3K/Akt signaling pathway, and Ras signaling pathway. Among the up-regulated miRNAs found in our meta-analysis, miR-519d and miR-330 are of particular interest as dysregulated expression of these miRNAs have been reported in several types of cancer. miR-519d belongs to the chromosome 19 miRNA cluster, which is the largest human miRNA cluster described so far\[17\]. Although there is no direct evidence on the relationship of miR-519d and CCA development, miR-519d has been shown to be up-regulated in HCC patient’s tissues, exerting oncogenic activity by inhibiting the tumor suppressor proteins such as CDKN1A/p21, PTEN, AKT3 and TIMP2\[38\]. In contrast, overexpression of miR-519d in a human HCC cell line QGY-7703 has been shown to block cell proliferation. On the contrary, down-regulation of miR-519d has been reported to promote cell proliferation in many cancers, including cervical cancer, breast cancer, and ovarian cancer\[39-42\].

Another up-regulated miRNA identified in our study includes miR-330. This miRNA has been previously reported to be up-regulated in glioblastoma\[43\], colorectal cancer\[44\], non-small cell lung cancer\[45\], and esophageal cancer\[46\] whereas its down-regulated expression has been demonstrated in prostate cancer\[47-49\]. miR-330 has been shown to promote cancer cell proliferation via suppression of CDC42, a Rho GTPase-associated with MAPK signaling pathway\[44\]. Besides, hypoxia-induced upregulation of integrin-alpha 5, a predicted target of miR-330 and a critical receptor in PI3K/Akt signaling pathway, has been shown to enhance cell proliferation, metastasis and apoptosis resistance of CCA cell lines\[50-52\]. Paradoxically, miR-330 has been reported to induce apoptosis in prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation in prostate cancer cells\[53\].
miRNA	FC	Abs. t value	DF	Adj. P value	FDR
hsa-let-7b-3p	1.482	6.603	74	0.000	0.000
hsa-miR-1193	1.579	7.409	112	0.000	0.000
hsa-miR-1207-3p	1.516	10.533	120	0.000	0.000
hsa-miR-1224-3p	5.164	7.024	66	0.000	0.000
hsa-miR-1227-3p	2.039	7.963	117	0.000	0.000
hsa-miR-1227-3p	1.594	5.7	355	0.000	0.000
hsa-miR-1249-3p	1.781	7.406	126	0.000	0.000
hsa-miR-1267	2.433	7.758	119	0.000	0.000
hsa-miR-1269a	1.647	7.209	72	0.000	0.000
hsa-miR-1273d	1.665	7.159	80	0.000	0.000
hsa-miR-1284	1.606	7.019	127	0.000	0.000
hsa-miR-1304-5p	1.651	6.863	89	0.000	0.000
hsa-miR-1322	1.731	9.866	132	0.000	0.000
hsa-miR-147b	2.727	8.195	52	0.000	0.000
hsa-miR-149-3p	3.022	8.11	88	0.000	0.000
hsa-miR-181a-2-3p	1.476	7.004	90	0.000	0.000
hsa-miR-185-3p	5.044	9.684	113	0.000	0.000
hsa-miR-1908-5p	9.384	7.977	150	0.000	0.000
hsa-miR-1909-3p	2.19	6.502	129	0.000	0.000
hsa-miR-1913	2.222	6.861	137	0.000	0.000
hsa-miR-1914-5p	1.575	6.615	140	0.000	0.000
hsa-miR-1972	2.043	8.605	111	0.000	0.000
hsa-miR-2113	1.634	7.74	358	0.000	0.000
hsa-miR-2116-3p	1.656	9.782	115	0.000	0.000
hsa-miR-2119a-2-3p	1.6	6.436	125	0.000	0.000
hsa-miR-2355-5p	2.762	9.902	113	0.000	0.000
hsa-miR-30c-1-3p	1.976	7.144	114	0.000	0.000
hsa-miR-3131	2.446	6.211	114	0.000	0.000
hsa-miR-3147	1.371	7.617	115	0.000	0.000
hsa-miR-3150a-3p	1.894	7.004	112	0.000	0.000
hsa-miR-3151-5p	1.387	6.831	115	0.000	0.000
hsa-miR-3153	1.994	9.741	115	0.000	0.000
hsa-miR-3178	4.752	8.999	97	0.000	0.000
hsa-miR-3180	4.161	9.232	92	0.000	0.000
hsa-miR-3184-5p	4.809	6.949	81	0.000	0.000
hsa-miR-3185	3.193	8.217	96	0.000	0.000
hsa-miR-3186-3p	1.446	6.611	104	0.000	0.000
hsa-miR-3197	4.454	13.341	95	0.000	0.000
hsa-miR-325	1.498	5.994	168	0.000	0.000
hsa-miR-330-5p	1.808	8.061	161	0.000	0.000
Likhitrattanapisal S et al. miRNA dysregulation in cholangiocarcinoma

miRNA	FC	Abs. t-value	DF	Adj. P-value
hsa-miR-412-3p	1.933	7.414	144	0.000
hsa-miR-423-3p	1.784	8.826	81	0.000
hsa-miR-4258	3.644	8.72	99	0.000
hsa-miR-4270	3.705	6.216	113	0.000
hsa-miR-4288	2.93	7.991	84	0.000
hsa-miR-4292	2.558	8.404	93	0.000
hsa-miR-4301	2.22	8.196	99	0.000
hsa-miR-4310	1.462	7.004	99	0.000
hsa-miR-4312	1.915	9.85	109	0.000
hsa-miR-4323	1.484	6.579	172	0.000
hsa-miR-512-5p	1.833	7.931	97	0.000
hsa-miR-515-3p	1.635	6.22	186	0.000
hsa-miR-517c-3p	1.833	7.499	164	0.000
hsa-miR-520a-5p	1.627	6.71	151	0.000
hsa-miR-520d-5p	5.392	7.514	342	0.000
hsa-miR-548a-5p	2.047	6.687	119	0.000
hsa-miR-612	1.79	6.719	131	0.000
hsa-miR-625-3p	3.763	8.618	104	0.000
hsa-miR-637	2.081	7.404	159	0.000
hsa-miR-668-3p	1.437	6.341	153	0.000
hsa-miR-765	2.014	7.266	338	0.000
hsa-miR-891a-5p	2.297	13.332	105	0.000
hsa-miR-891b	2.052	7.342	117	0.000
hsa-miR-92b-5p	2.802	6.499	106	0.000
hsa-miR-938	1.556	8.445	155	0.000

The P value was set to lower than 0.001 (P < 0.001). miRNA: MicroRNA; FC: Fold change (ratio of mean signal intensities of cholangiocarcinoma to those of normal samples); DF: Degree of freedom; Abs. t value: Absolute t value; Adj. P value: Adjusted P value; FDR: False discovery rate.

One of the down-regulated miRNAs identified in our study was miR-20a, one of the mature miRNA products of the miR-17-92 cluster pri-miRNA. Down-regulation of miR-20a has been shown to mediate cellular differentiation and growth arrest induced by HIF-1 in acute myeloid leukemia cells by targeting p21 and STAT3[52], demonstrating an oncogenic role of miR-20a. In addition, the miR-17-92 cluster miRNAs have been shown to be up-regulated and play oncogenic roles in many types of cancer including CCA[53]. In contrast, down-regulation of miR-20a has been shown to promote HCC cell proliferation via upregulation of Mcl-1, an antiapoptotic member of the Bcl-2 family, suggesting a tumor-suppressor role[54].

Besides, our meta-analysis of CCA miRNA microarrays has revealed down-regulation of several members of the let-7 miRNA family (let-7b, -7c, -7f), whose members are estimated to comprise 1%-5% of the mammalian genome[10,17]. This miRNA family has been shown to generally play a tumor suppressor role[58], where ectopic expression of the let-7 family inhibits cell proliferation through down-regulation of c-Myc in nasopharyngeal carcinoma cells, whereas down-regulation of let-7 promotes cancer cell growth by increasing the activity of Ras protein, in lung cancer[59] and liver cancer[60] cells.
miRNA	FC	Abs. t value	DF	Adj. P value	FDR
hsa-let-7b-5p	0.336	6.655	186	0.000	0.000
hsa-let-7c-3p	0.686	9.519	138	0.000	0.000
hsa-let-7f-5p	0.226	6.65	89	0.000	0.000
hsa-miR-100-5p	0.424	7.984	144	0.000	0.000
hsa-miR-10a-5p	0.458	5.943	196	0.000	0.000
hsa-miR-10b-3p	0.352	8.834	72	0.000	0.000
hsa-miR-1225-5p	0.097	6.448	88	0.000	0.000
hsa-miR-127-3p	0.62	6.167	84	0.000	0.000
hsa-miR-1288-3p	0.394	7.17	61	0.000	0.000
hsa-miR-1305	0.311	7.255	66	0.000	0.000
hsa-miR-130a-3p	0.459	7.775	101	0.000	0.000
hsa-miR-136-5p	0.51	7.184	191	0.000	0.000
hsa-miR-139-3p	0.626	7.227	95	0.000	0.000
hsa-miR-145-5p	0.359	7.026	129	0.000	0.000
hsa-miR-150-3p	0.51	7.109	139	0.000	0.000
hsa-miR-157-3p	0.638	7.108	115	0.000	0.000
hsa-miR-181c-3p	0.602	6.651	133	0.000	0.000
hsa-miR-181d-5p	0.598	7.741	138	0.000	0.000
hsa-miR-192-5p	0.267	7.582	69	0.000	0.000
hsa-miR-194-5p	0.283	8.454	90	0.000	0.000
hsa-miR-195-5p	0.449	7.441	101	0.000	0.000
hsa-miR-20a-5p	0.386	6.929	99	0.000	0.000
hsa-miR-215-5p	0.271	8.404	70	0.000	0.000
hsa-miR-217-5p	0.305	7.657	121	0.000	0.000
hsa-miR-217b-3p	0.317	8.02	146	0.000	0.000
hsa-miR-219-3p	0.432	6.216	110	0.000	0.000
hsa-miR-229-3p	0.25	9.578	93	0.000	0.000
hsa-miR-24-3p	0.735	6.521	122	0.000	0.000
hsa-miR-3120-3p	0.673	6.341	90	0.000	0.000
hsa-miR-330-3p	0.691	6.605	99	0.000	0.000
hsa-miR-330-3p	0.746	6.762	90	0.000	0.000
hsa-miR-342-3p	0.516	8.228	193	0.000	0.000
hsa-miR-345-5p	0.531	8.154	69	0.000	0.000
hsa-miR-374a-5p	0.439	8.25	99	0.000	0.000
hsa-miR-374b-5p	0.568	6.771	117	0.000	0.000
hsa-miR-378b	0.489	7.181	101	0.000	0.000
hsa-miR-4294	0.471	7.279	96	0.000	0.000
hsa-miR-4326	0.69	6.513	115	0.000	0.000
hsa-miR-451a	0.143	7.636	85	0.000	0.000
hsa-miR-483-5p	0.412	7.272	166	0.000	0.000
hsa-miR-503-3p	0.625	6.612	105	0.000	0.000
The P value was set to lower than 0.001 ($P < 0.001$). miRNA: MicroRNA; FC: Fold change (ratio of mean signal intensities of cholangiocarcinoma to those of normal samples); DF: Degree of freedom; Abs. t value: Absolute t value; Adj. P value: Adjusted P value; FDR: False discovery rate.

Altogether, the meta-analysis of miRNA microarray datasets with highly stringent statistical methodology provides new insights into the role of miRNA and its dysregulations in CCA. Our findings of miRNA dysregulations in the cancer signaling pathways including PI3K/Akt pathway, MAPK pathway, and Ras pathway give clues into underlying miRNA-mRNA interplays of CCA. However, the analyses reported herein were based on the different origins of miRNAs, validations of such findings are warranted. Of clinical relevance, since many miRNAs have been reported as highly specific biomarkers for several types of cancer\(^\text{[58-60]}\), the identified miRNA in this study may have predictive values for CCA cases. Also, there are conflicting results in adjuvant settings for CCA\(^\text{[61]}\), the detection of a specific miRNA may be associated with an increased risk of recurrence after surgery. Further investigation of the miRNAs reported herein will bring about the novel knowledge of the dysregulated processes in CCA development at post-transcriptional level which could offer novel diagnostic and therapeutic approaches in the future.
Figure 1 Overview of a meta-analysis approach in this study. CCA: Cholangiocarcinoma; DE: Differentially expressed; miRNA: MicroRNA.
Figure 2 Heatmap of microRNA expression in cholangiocarcinoma and normal samples. The color gradient of each cell represents the log2 of normalized intensity value of microRNA microarray spot. CCA: Cholangiocarcinoma; miRNA: MicroRNA.
Figure 3 Pathway enrichment analyses of predicted target genes of differentially expressed microRNAs. The differentially expressed microRNAs obtained from meta-analysis were input to DIANA miRPath version 3.0. P value thresholds were set at 0.01. PI3K: Phosphatidylinositol-3-kinases; MAPK: Mitogen-activated protein kinase.
ARTICLE HIGHLIGHTS

Research background
The incidence of cholangiocarcinoma (CCA) is alarmingly elevating in many countries. Patients with CCA usually have poor prognosis as there is still no effective screening and treatment available. Therefore, it is essential to identify biomarkers for CCA.

Research motivation
Differential expression profiles of microRNA (miRNA) have been reported for many different types of cancer. Thus, a growing number of miRNA microarray data can be a valuable resource for the discovery of biomarkers to tackle challenges in the clinical management of CCA.
Research objectives
This work integrates and intervalidates the CCA miRNA expression profiles from multiple independent datasets to identify the differential dysregulation of miRNA and their corresponding downstream pathways underlying mechanism of pathogenesis.

Research methods
Eight independent CCA miRNA profiling microarray datasets, including 246 CCA and 197 normal samples were assimilated into a meta-analysis and cross-validation to identify a cohort of miRNA that were significantly dysregulated in CCA.

Research results
Of 118 dysregulated miRNA identified in our study, 70 were up-regulated and 48 were down-regulated miRNAs in CCA. Bioinformatic analyses revealed that mRNA targets of differentially expressed miRNAs were significantly distributed across various biological processes. The most prominent dysregulated pathways included phosphatidylinositol-3 kinases/Akt, mitogen-activated protein kinase and Ras signaling pathways.

Research conclusions
This current study represents the meta-analysis of miRNA microarray datasets with highly stringent statistical methodology and provides new insights into the role of miRNA and its dysregulations in CCA.

Research perspectives
The merit of our findings offers a valuable reference for future studies and further investigation of these miRNA GENES and their interactions will eventually lead to the identification of genes and pathways important to the overall mechanism of the dysregulated processes in CCA development.

REFERENCES

ACKNOWLEDGEMENTS

We appreciate a scholarship from the Development and Promotion of Science and Technology Talented Project awarded to Likhitrattanapisal S.

REFERENCES

1 de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med 1999; 341: 1368-1378 [PMID: 10536130 DOI: 10.1056/NEJM1999102834141807]
2 Olness MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology 2004; 66: 167-179 [PMID: 15218306 DOI: 10.1159/000077991]
3 Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990-2009. World J Gastroenterol 2009; 15: 4240-4262 [PMID: 19750567 DOI: 10.3748/wjg.15.4240]
4 Patel T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2002; 2: 10 [PMID: 11991810 DOI: 10.1186/1471-2407-2-10]
5 Singal AK, Vauthney JN, Grady JI, Stroehlein JR. Intra-hepatic cholangiocarcinoma—frequency and demographic patterns: thirty-year data from the M.D. Anderson Cancer Center. J Cancer Res Clin Oncol 2011; 137: 1071-1078 [PMID: 21207060 DOI: 10.1007/s00432-010-0971-z]
6 Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004; 24: 115-125 [PMID: 15192785 DOI: 10.1055/s-2004-828889]
7 Khan SA, Toledano MB, Taylor-Robinson SD. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB (Oxford) 2008; 10: 77-82 [PMID: 18773060 DOI: 10.1006/jcry.2001.092641]
8 Choi BI, Han JK, Hong ST, Lee KH. Cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbial Rev 2004; 17: 540-552, table of contents [PMID: 15258092 DOI: 10.1128/CMR.17.3.540-552.2004]
9 Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg 2002; 89: 962-970 [PMID: 12153620 DOI: 10.1046/j.1365-2168.2002.02143.x]
10 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297 [PMID: 14744438 DOI: 10.1016/j.cell.2004.04.045]
11 Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem 2009; 55: 623-631 [PMID: 19246615 DOI: 10.1373/clinchem.2008.112805]
12 Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol 2011; 223: 102-115 [PMID: 2125669 DOI: 10.1002/path.2806]
13 Smolle MA, Prinz F, Calin GA, Pichler M. Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Mol Aspects Med 2019; 70: 117-126 [PMID: 31582259 DOI: 10.1016/j.mam.2019.09.007]
miRNA dysregulation in cholangiocarcinoma

Likhitrattanapisal S et al. MicroRNAs in Cancer. Annu Rev Med 2009; 60: 167-179 [PMID: 19630570 DOI: 10.1146/annurev.med.59.053006.164707]

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47: D155-D162 [PMID: 30423142 DOI: 10.1093/nar/gkz1141]

Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014; 15: 1-19 [PMID: 23175680 DOI: 10.1093/bib/bbs075]

Bentwich I, Avnir A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einar P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37: 766-770 [PMID: 15965474 DOI: 10.1038/ng1590]

Matsuyama H, Suzuki H. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21: 132 [PMID: 31878193 DOI: 10.3390/ijms21101332]

Stavas CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNA: Many Roads to Gene Regulation. Cells 2019; 8: 1465 [PMID: 31752361 DOI: 10.3390/cells8111465]

Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-655 [PMID: 19239886 DOI: 10.1016/j.cell.2009.01.035]

Croce CM, Liang GS. miRNAs, cancer, and stem cell division. Cell 2005; 122: 6-7 [PMID: 16009126 DOI: 10.1016/j.cell.2005.06.036]

Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 2014; 5: 54 [PMID: 24672539 DOI: 10.3389/fgene.2014.00054]

Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol 2007; 26: 293-300 [PMID: 17504025 DOI: 10.1089/dna.2006.0554]

Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libuti SK, Nakaokura EK, Golub TR, Hanahan D. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009; 23: 2152-2163 [PMID: 19795263 DOI: 10.1101/gad.182109]

Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoeda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25: 2537-2545 [PMID: 16331254 DOI: 10.1038/sj.onc.1209283]

Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882-891 [PMID: 14537789]

Yamahara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens M, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189-198 [PMID: 16530703 DOI: 10.1016/j.ccr.2006.01.025]

Iorio MV, Ferracin M, Liu CG, Viale A, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065-7070 [PMID: 16103051 DOI: 10.1158/0008-5472.CAN-05-1783]

Dupuy A, Simon RM. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 2007; 99: 147-157 [PMID: 17277998 DOI: 10.1093/jnci/djk018]

Ioannisid J, P. Microarrays and molecular research: noise discovery? Lancet 2005; 365: 454-455 [PMID: 15705441 DOI: 10.1016/S0140-6736(05)17878-7]

Ramasastry A, Mondry A, Holmes CC, Ahman KG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 2008; 5: e184 [PMID: 18767902 DOI: 10.1371/journal.pmed.0050184]

Zhao JH, Tan Q. Integrated analysis of genetic data with R. Hum Genomics 2006; 2: 258-265 [PMID: 16460651 DOI: 10.1186/1479-7364-2-4-258]

Saeed AI, Shager V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiragarajan M, Sturm A, Snafflin M, Reantantz A, Popov D, Ryltsov A, Kostukovich E, Borovsksy O, Li Z, Vinnivc M, Trush V, Quackenbush J. TM4: a free, open-source system for microarray data management and analysis. Bioinformatics 2003; 19: 374-378 [PMID: 12613259 DOI: 10.1093/bioinformatics/19.2.374]

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkios D, Vergoulis T, Dalamagas T, Hatziigeorgiou AG. DIANA-miPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43: W460-W466 [PMID: 25977294 DOI: 10.1093/nar/gkv403]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrating models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504 [PMID: 14597658 DOI: 10.1101/gr.123903]

Kutmon M, Kelder T, Mandavipu P, Evelo CT, Coort SL. CyTargetLinker: a cytoscape app to integrate regulatory interactions in network analysis. PLoS One 2013; 8: e62160 [PMID: 24340000 DOI: 10.1371/journal.pone.0062160]

Campain A, Yang YH. Comparison study of microarray meta-analysis methods. BMC Bioinformatics 2010; 11: 408 [PMID: 20678237 DOI: 10.1186/1471-2105-11-408]

Fornari F, Milazzo M, Chioco P, Negriani M, Marasco E, Capranico G, Mantovani V, Marinello J, Sambioni S, Callagari E, Cescon M, Ravaioi M, Croce CM, Bolondi L, Gramantieri L. In hepatocellular carcinoma miR-199a is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 2012; 227: 275-285 [PMID: 22262499 DOI: 10.1002/path.2905]

Zhou JY, Zheng SR, Liu J, Shi R, Yu HL, Wei M. MiR-519d facilitates the progression and metastasis of cervical cancer through direct targeting Smad7. Cancer Cell Int 2016; 16: 21 [PMID: 27006642 DOI: 10.1186/s12935-016-0298-1]

Deng X, Zhao Y, Wang B. MiR-519d-mediated downregulation of STAT3 suppresses breast cancer progression. Oncol Rep 2015; 34: 2188-2194 [PMID: 26238950 DOI: 10.3892/or.2015.4160]

Pang Y, Mao H, Shen L, Zhao Z, Liu R, Liu P. MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP. Onco Targets Ther 2014; 7: 587-597 [PMID: 24790458 DOI: 10.2147/OTT.S60299]

Hou YY, Cao WW, Li L, Li SP, Liu T, Wan HY, Liu M, Li X, Tang H. MicroRNA-519d targets MKI67 and suppresses cell growth in the hepatocellular carcinoma cell line QGY-7703. Cancer Lett 2010; 307: 182-190
Likhitrattanapisal S et al. miRNA dysregulation in cholangiocarcinoma

[PMID: 21524841 DOI: 10.1016/j.canlet.2011.04.002]

Qu S, Yao Y, Shang C, Xue Y, Ma J, Li Z, Liu Y. MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SHHGL2 gene. PLoS One 2012; 7: e46010 [PMID: 23029364 DOI: 10.1371/journal.pone.0046010]

Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 2013; 431: 560-565 [DOI: 10.1016/j.bbr.2013.01.016]

Liu X, Shi H, Liu B, Li J, Liu Y, Yu B. miR-330-3p controls cell proliferation by targeting early growth response 2 in non-small-cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2015; 47: 431-440 [PMID: 25935837 DOI: 10.1093/abbs/gmv032]

Meng H, Wang K, Chen X, Guan X, Hu L, Xiong G, Li J, Bai Y. MicroRNA-330-3p functions as an oncogene in human esophageal cancer by targeting programmed cell death 4. Am J Cancer Res 2015; 5: 1062-1075 [PMID: 26045966]

Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009; 28: 3360-3370 [PMID: 19597470 DOI: 10.1038/onc.2009.192]

Mao Y, Chen H, Lin Y, Xu H, Zhu Z, Yu W, Xu J, Xu Z, Zheng X, Xie L. microRNA-330 inhibits cell motility by downregulating S1p in prostate cancer cells. Oncol Rep 2013; 30: 327-333 [PMID: 23678210 DOI: 10.3892/or.2013.2452]

Seubwai W, Kraiklang R, Wongkham C, Wongkham S. Hypoxia enhances aggressiveness of cholangiocarcinoma cells. Asian Pac J Cancer Prev 2012; 13 Suppl: 53-58 [PMID: 23480765]

Schlegel NC, von Planta A, Widmer DS, Dummer R, Christofori G. PI3K signalling is required for a TGFB-induced epithelial-mesenchymal-like transition (EMT-like) in human melanoma cells. Exp Dermatol 2015; 24: 22-28 [PMID: 25365305 DOI: 10.1111/exd.12580]

Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 2015; 9: 317-324 [PMID: 26241004 DOI: 10.1080/19336918.2015.10166860]

He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, Duan CW, Hong DL, Tanaka T, Chen GQ, Zhao Q. HIF-1α downregulates miR-17-20a directly targeting p21 and STAT3: a role in myeloid leukemia cell differentiation. Cell Death Differ 2013; 20: 408-418 [PMID: 23059786 DOI: 10.1038/cdd.2012.130]

Zhu H, Han C, Lu D, Wu T. miR-17-92 cluster promotes cholangiocarcinoma growth: evidence for PTEN as downstream target and IL-6/Stat3 as upstream activator. Am J Pathol 2014; 184: 2828-2839 [PMID: 25239565 DOI: 10.1016/j.ajpath.2014.06.024]

Fan MQ, Huang CB, Gu Y, Xiao Y, Sheng JX, Zhong L. Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J Exp Clin Cancer Res 2013; 32: 21 [PMID: 23594563 DOI: 10.1186/1756-9966-32-21]

Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the Silence: The Story of let-7 MicroRNA and Cancer. Genomics 2007; 8: 229-233 [PMID: 18645597 DOI: 10.1016/j.ygeno.2007.12.003]

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-647 [PMID: 15766527 DOI: 10.1016/j.cell.2005.01.014]

Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelkar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713-7722 [PMID: 17699775 DOI: 10.1158/0008-5472.CAN-07-1083]

Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-866 [PMID: 17060945 DOI: 10.1038/nrc1997]

Nappi L, Thi M, Lunn A, Huntsman D, Eigl BJ, Martin C, O'Neil B, Maughan BL, Chi K, So A, Black PC, Gleave M, Wyatt AW, Lavoie JM, Khalaf D, Bell R, Daneshmand S, Hamilton RJ, Leao RRN, Nichols C, Kollmannsberger C. Developing a Highly Specific Biomarker for Germ Cell Malignancies: Plasma mrR371 Expression Across the Germ Cell Malignancy Spectrum. J Clin Oncol 2019; 37: 3090-3098 [PMID: 31553692 DOI: 10.1200/JCO.18.02057]

Seerec P, Pearnigham P, Kumkate S, Janvilisri T. An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of Cholangiocarcinoma. Int J Genomics 2015; 2015: 179528 [PMID: 26421274 DOI: 10.1155/2015/179528]

Messina C, Merz V, Frisinghelli M, Trentin C, Grego E, Vecchia A, Salati M, Messina M, Carnaghi C, Caffo O. Adjuvant chemotherapy in resected bile duct cancer: A systematic review and meta-analysis of randomized trials. Crit Rev Oncol Hematol 2019; 143: 124-129 [PMID: 31563828 DOI: 10.1016/j.critrevonc.2019.09.002]
