A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID

CAMIL MUSCALU AND ITAMAR OLIVEIRA

Dedicated to the memory of Robert S. Strichartz.

Abstract. We propose a new approach to the Fourier restriction conjectures. It is based on a discretization of the Fourier extension operators in terms of quadratically modulated wave packets. Using this new point of view, and by combining natural scalar and mixed norm quantities from appropriate level sets, we prove that all the L^2-based k-linear extension conjectures are true for every $1 \leq k \leq d + 1$ if one of the functions involved is a full tensor. We also introduce the concept of weak transversality, under which we show that all conjectured L^2-based multilinear extension estimates are still true provided that one of the functions involved has a weaker tensor structure, and we prove that this result is sharp. Under additional tensor hypotheses, we show that one can improve the conjectured threshold of these problems in some cases. In general, the largely unknown multilinear extension theory beyond L^2 inputs remains open even in the bilinear case; with this new point of view, and still under the previous tensor hypothesis, we obtain the near-endpoint best possible target for the k-linear extension operator if the inputs are in a certain L^p space for p sufficiently large. Finally, we exploit the connection between the geometric features behind the results of this paper and the theory of Brascamp-Lieb inequalities, which allows us to verify a special case of a conjecture by Bennett, Bez, Flock and Lee.

Contents

1 Introduction ... 2
2 Discrete models .. 5
 2.1 The linear model ($k = 1$) 6
 2.2 The multilinear model ($2 \leq k \leq d + 1$) 8
3 Transversality versus weak transversality 9
4 Our approach and its building blocks 11
5 Proof of Proposition 4.1 - Strichartz/Tomas-Stein for E_d ($k = 1$, $p = 2$) ... 12
6 Proof of Proposition 4.3 - Conjecture 1.1 for E_1 ($k = 1$, $d = 1$, $p = 4$) ... 15
7 Proof of Proposition 4.4 - Conjecture 1.2 for $ME_{2,1}$ ($k = 2$, $d = 1$) ... 17
8 Case $k = 1$ of Theorem 1.5 18
9 Case $2 \leq k \leq d + 1$ of Theorem 1.5 20
 9.1 Understanding the core ideas in the $k = d = 2$ case 22
 9.2 The general argument ... 25
10 The endpoint estimate of the case $k = d + 1$ of Theorem 1.5 ... 34
11 Improved k-linear bounds for tensors 36
12 Beyond the L^2-based k-linear theory 42
13 Weak transversality, Brascamp-Lieb and an application 48
 13.1 A link between weak transversality and Brascamp-Lieb inequalities ... 48
 13.2 An application to Restriction-Brascamp-Lieb inequalities 54
14 Further remarks .. 56
Appendices .. 58
 A.1 Sharp examples ... 58
 A.2 Transversality as a necessary condition in general 64
Appendix B Technical results ... 65
References .. 71
1. Introduction

Given a compact submanifold $S \subset \mathbb{R}^{d+1}$ and a function $f : \mathbb{R}^{d+1} \to \mathbb{R}$, the Fourier restriction problem asks for which pairs (p, q) one has

$$\|\hat{f}|_S\|_{L^q(S)} \lesssim \|f\|_{L^p(\mathbb{R}^{d+1})},$$

where $\hat{f}|_S$ is the restriction of the Fourier transform \hat{f} to S. This problem arises naturally in the study of certain Fourier summability methods and is known to be connected to questions in Geometric Measure Theory and in nonlinear dispersive PDEs. The interaction between curvature and the Fourier transform has been exploited in a variety of contexts since the works of Hörmander ([18]), Fefferman ([13]) and Stein and Wainger ([43]) in the study of oscillatory integrals. For a more detailed description of the restriction problem we refer the reader to the classical survey [34]. In this paper we work with the equivalent dual formulation of the question above (known as the Fourier extension problem), and specialize to the case where S is the compact piece of the paraboloid parametrized by $\Gamma(x) = (x, |x|^2) \subset \mathbb{R}^{d+1}$ with $x \in [0, 1]^d$. In this setting, the Fourier extension operator is initially defined on $C([0, 1]^d)$ by

$$E_d g(x_1, \ldots, x_d, t) = \int_{[0,1]^d} g(\xi_1, \ldots, \xi_d) e^{-2\pi i (\xi_1 x_1 + \ldots + \xi_d x_d)} e^{-2\pi it(\xi_1^2 + \ldots + \xi_d^2)} d\xi.$$

E. Stein proposed the following conjecture (cf. Chapter IX of [42]):

Conjecture 1.1. The inequality

$$\|E_d g\|_{L^q(\mathbb{R}^{d+1})} \lesssim_{p, q, d} \|g\|_{L^p([0, 1]^d)},$$

holds if and only if $q > \frac{2(d+1)}{d}$ and $q \geq \frac{(d+2)}{d} p'$.

Multilinear variants of Conjecture [1.1] arose naturally from the works [21], [22] and [23] of Klainerman and Machedon on wellposedness of certain PDEs. Given $2 \leq k \leq d+1$ compact and connected domains $U_j \subset \mathbb{R}^d$, $1 \leq j \leq k$, define

$$E_{U_j} g(x, t) := \int_{U_j} g(\xi) e^{-2\pi i x \cdot \xi} e^{-2\pi it|\xi|^2} d\xi, \quad (x, t) \in \mathbb{R}^d \times \mathbb{R}.$$

Taking the product of all k such operators associated to a set of transversal U_j leads to the following conjecture (see Appendix A):

Conjecture 1.2 ([1]). If the caps parametrized by U_j are transversal, then

$$\left\| \prod_{j=1}^k E_{U_j} g_j \right\|_{p} \lesssim \prod_{j=1}^k \|g_j\|_2$$

for all $p \geq \frac{2(d+k+1)}{k(d+1)}$.

Roughly, transversality means that any choice of one normal vector per cap is a set of linearly independent vectors, as shown below in Figure 1.

Remark 1.3. From now on, we shall refer to Conjecture 1.1 as the case $k = 1$. It was settled only for $d = 1$ by Fefferman and Zygmund ([12], [47]). In higher dimensions we highlight the case $p = 2$ solved by Strichartz in [44], which is equivalent to the Tomas-Stein theorem ([39]) in the restriction setting. Progress beyond these two results was made in many works over the last decades through a diverse set of techniques: localization, bilinear estimates, wave-packet decompositions and more recently polynomial methods. We mention the papers [9], [32], [35], [26], [35], [10] and [20]. Analogous problems for other manifolds were studied in [10], [14] and [31].
A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID

Figure 1. A choice of normal vectors to the caps parametrized by U_j via $x \mapsto |x|^2$.

Remark 1.4. In [16], Guth proved a weaker version of Conjecture 1.2 for all $2 \leq k \leq d+1$ and up to the endpoint, which is known as the k-broad restriction inequality. This estimate plays a central role in his argument in [16] to improve the range for which Conjecture 1.1 is known.

Only three cases of Conjecture 1.2 are well understood:

(i) Tao settled the case $k = 2$ in [35] up to the endpoint inspired by Wolff's work [46] for the cone. Lee obtained the endpoint for $k = 2$ in [24].
(ii) Bennett, Carbery and Tao settled the case $k = d + 1$ up to the endpoint in [5].
(iii) Bejenaru settled the case $k = d$ in [8] up to the endpoint.

The goal of this paper is to propose a new approach to these problems based on a natural discretization of the operators in terms of scalar products against quadratically modulated wave-packets. Our main theorem reads as follows:

Theorem 1.5. Conjectures 1.1 and 1.2 hold up to the endpoint if one (any) of the functions involved is a full tensor.

Remark 1.6. The endpoint $(p, q) = \left(\frac{2(d+1)}{d}, \frac{2(d+1)}{d} \right)$ is not included in the range where (2) is supposed to hold, therefore our main theorem implies the case $k = 1$ when g is a full tensor.

Remark 1.7. For $2 \leq k \leq d + 1$, Theorem 1.5 can be proved if the caps are assumed to be weakly transversal, which is defined in Section 3. We will prove that transversality implies weak transversality (up to dividing the caps into finitely many pieces), the latter being what is actually exploited in this paper. Under weak transversality, Theorem 1.5 holds if one (any) of the functions has a weaker tensor structure. This will be made precise in Section 9.

Remark 1.8. For $2 \leq k \leq d + 1$, Theorem 1.5 is sharp under weak transversality in the following sense: if all functions g_1, \ldots, g_k are generic, it does not hold if the caps are assumed to be weakly transversal. This is explained in Appendix A.

Remark 1.9. For $2 \leq k \leq d + 1$ we do not use the tensor structure explicitly. It is used in an implicit way when comparing the sizes of natural scalar and mixed norm quantities that appear in the proofs.

Remark 1.10. For $2 \leq k \leq d$, if all functions involved are full tensors, one has more estimates than those predicted by Conjecture 1.2 assuming extra degrees of transversality, as proven in Section 11.

It is natural to try to generalize the statement of Conjecture 1.2 for L^p inputs rather than just L^2. A motivation for that is to deeply understand the role played by transversality: as we will see, the farther our inputs are from L^2, the less impact the configuration of the caps on the paraboloid has in the best possible estimate (with a single exception to be detailed soon). The general statement of the k-linear extension conjecture for the paraboloid is (as in [11]):

1A function g in d variables is a full tensor if it can be written as $g(x_1, \ldots, x_d) = g_1(x_1) \cdot \cdots \cdot g_d(x_d)$.

We refer the reader to [10] and [32] for other results related to the restriction problem involving tensors, and we thank Terence Tao for pointing these papers out to us.
Conjecture 1.11. Let \(k \geq 2 \) and suppose that \(U_1, \ldots, U_k \) parametrize transversal caps of the paraboloid \(x \mapsto |x|^2 \) in \(\mathbb{R}^{d+1} \). If \(\frac{1}{q} < \frac{d}{2(d+1)} \), \(\frac{1}{q} \leq \frac{d+k-1}{d+k+1} \rho' \) and \(\frac{1}{q} \leq \frac{d+k-1}{d+k+1} \rho' + \frac{k-1}{k-d+1} \), then

\[
\left\| \prod_{j=1}^{k} E_{U_j} g_j \right\|_{L^2(\mathbb{R}^{d+1})} \lesssim_p q \prod_{j=1}^{k} \|g_j\|_{L^p(U_j)}.
\]

For \(2 \leq k < d+1 \), to recover the whole range, it is enough to prove Conjecture 1.2 and

\[
(4) \quad \left\| \prod_{j=1}^{k} E_{U_j} g_j \right\|_{L^{\frac{2(d+1)}{k\alpha}}(\mathbb{R}^{d+1})} \lesssim \varepsilon \prod_{j=1}^{k} \|g_j\|_{L^{\frac{2(d+1)}{k\alpha}}(U_j)},
\]

for all \(\varepsilon > 0 \).

Remark 1.12. Observe that (4) covers the case \((p, q) = \left(\frac{2(d+1)}{d}, \frac{2(d+1)}{d} + \varepsilon \right) \) of Conjecture 1.11. Notice also that this case would follow from the case \((p, q) = \left(\frac{2(d+1)}{d}, \frac{2(d+1)}{d} + \varepsilon \right) \) of the linear extension conjecture 1.1 and Hölder’s inequality. This means that the closer we get to the endpoint extension exponent, the less improvements transversality yield in the multilinear theory. The exception to this is the \(k = d+1 \) case, for which \(L^2 \) functions give the best possible output for the corresponding multilinear operator (rather than \(L^{\frac{2(d+1)}{d\alpha}} \)). Indeed, when one function is a tensor, the best result in this case are obtained in Section 10.

By adapting the argument that shows the case \(2 \leq k \leq d+1 \) of Theorem 1.5, we are able to prove the following weaker version of (4):

Theorem 1.13. Let \(2 \leq k < d+1 \). If \(g_1 \) is a tensor in addition to the hypotheses of Conjecture 1.11, the following estimate holds:

\[
(5) \quad \left\| \prod_{j=1}^{k} E_{U_j} g_j \right\|_{L^{\frac{2(d+1)}{kd}}(\mathbb{R}^{d+1})} \lesssim \varepsilon \prod_{j=1}^{k} \|g_j\|_{L^{p(k,d)}(U_j)}
\]

for all \(\varepsilon > 0 \), where

\[
p(k, d) = \begin{cases}
\frac{4(d+1)}{d}, & \text{if } 2 \leq k < \frac{d}{2}, \\
\frac{4(d+1)}{2d-k+1}, & \text{if } \frac{d}{2} \leq k < d+1.
\end{cases}
\]

Remark 1.14. Notice that \(\frac{2(d+1)}{d} < p(k, d) \), so Theorem 1.13 is not optimal on the space of the input functions. On the other hand, the output \(L^{\frac{2(d+1)}{kd}} \) (for all \(\varepsilon > 0 \)) is the best to which one can hope to map the multilinear operator on the left-hand side.

Remark 1.15. Bounds such as the one from Theorem 1.13, i.e. in which one needs \(p \) big enough (and not sharp) to map \(L^p \) inputs to a fixed \(L^q \), are common in the linear extension theory. For example, in [15] Wang shows that \(E_2 \) maps \(L^\infty([-1,1]^2) \) to \(L^q(\mathbb{R}^3) \) for \(q > 3 + \frac{3}{13} \). As mentioned in [36], this implies the (seemingly stronger) bound

\[
\|E_2 g\|_{L^q([-1,1]^2)} \lesssim \|g\|_{L^q([-1,1]^2)}
\]

for \(q > 3 + \frac{3}{13} \) via the factorization theory of Nikishin and Pisier (see Bourgain’s paper [9]).

Remark 1.16. The multilinear extension theory for inputs near \(L^{\frac{2(d+1)}{d}} \) remains largely unknown in general (except for the almost optimal result in the \(k = d+1 \) case in [5]). In fact, it is not fully settled even in the \(k = 2 \), \(d > 1 \) case (whose \(L^2 \)-based analogue is known). We refer the reader to the recent paper [29] for partial results in this direction.

Remark 1.17. As the reader may expect, any function can be taken to be the tensor in the statement of Theorem 1.13.\(^2\)

\(^2\)The full range of estimates follows by interpolation between these two cases and the trivial bound \((p, q) = (1, \infty) \).
We finish this introduction by highlighting the close connection between our results and the theory of linear and non-linear Brascamp-Lieb inequalities. The concept of weak transversality that we introduce can be characterized in terms of certain Brascamp-Lieb data, and by exploiting the geometric features arising from this fact we are able to verify a special case of a conjecture by Bennett, Bez, Flock and Lee.

The paper is organized as follows: in Section 2 we present the linear and multilinear models that we will work with in the proof of Theorem 1.5. We also highlight the main differences between the linearized models that are used in most recent approaches and ours. In Section 3 we define the concepts of transversality and weak transversality, and state in what sense the former implies the latter. Section 4 presents what we refer to as the building blocks of our approach. Sections 5, 6 and 7 establish these building blocks: in Section 5 we revisit the case \(k = 1 \) and \(p = 2 \) for our model, in Section 6 we revisit Zygmund’s argument and recover the case \(k = 1 \) for \(d = 1 \), and in Section 7 we deal with the case \(k = 2 \) and \(d = 1 \). In Section 8 we settle the case \(k = 1 \) of Theorem 1.5, and in Section 9 we show the cases \(2 \leq k \leq d + 1 \).

Section 10 covers the endpoint estimate of the case \(k = d + 1 \). In Section 11 we discuss how one can improve the bounds of Conjecture 1.2 under extra transversality and tensor hypotheses. Theorem 1.13 (our partial result beyond the \(L^2 \)-based \(k \)-linear theory) is presented in Section 12. In Section 13 we establish a connection between the classical theory of Brascamp-Lieb inequalities and our results, and give an application of this link to a conjecture made in [4]. In Section 14 we make a few additional remarks. Appendix A contains examples that show that the range of \(p \) in Conjecture 1.2 is sharp, and also that one can not obtain this range in general under a condition that is strictly weaker than transversality. Appendix B contains technical results used throughout the paper.

We thank David Beltrán, Jonathan Bennett, Emanuel Carneiro, Andrés Fernandez, Jonathan Hickman, Victor Lie, Diogo Oliveira e Silva, Keith Rogers, Mateus Sousa, Terence Tao, Joshua Zahl and the anonymous referees for many important remarks, corrections and for pointing out references in the literature.

2. DISCRETE MODELS

A common first step of the earlier works is to linearize the contribution of the quadratic phase \(x \mapsto |x|^2 \). One starts by studying \(E_{d} g \) on a ball of radius \(R \) (hence \((|x|, t)| \leq R \)) and splits the domain of \(g \) into balls \(\theta_k \) of radius \(R - \frac{1}{2} \). Let us consider \(d = 1 \) here for simplicity. If

\[
\theta_k := g \cdot \phi_{\theta_k},
\]

where \(\phi_{\theta_k} \) is a bump adapted to \([kR^{-\frac{1}{2}}, (k + 1)R^{-\frac{1}{2}}] \), the quadratic exponential

\[
e_{x,t}(\xi) = e^{2\pi i x \xi} e^{2\pi i t \xi^2}
\]

behaves in a similar way to a linear exponential \(e^{i \# \xi} \) when restricted to this interval. Indeed, the phase-space portrait of \(e_{x,t} \) is the (oblique if \(t \neq 0 \)) line

\[
u \mapsto x + 2tu,
\]

as it is explained in more detail in Chapter 1 of [28]. When we evaluate this line at the endpoints of the support of \(\phi_{\theta_k} \) (taking into account that \(|t| \leq R \)), we see that the phase-space portrait of

\[
\phi_{\theta_k} \cdot e_{x,t}
\]

is a parallelogram that essentially coincides with the rectangle

\[
I \times J = [kR^{-\frac{1}{2}}, (k + 1)R^{-\frac{1}{2}}] \times [x + 2tkR^{-\frac{1}{2}}, x + 2tkR^{-\frac{1}{2}} + R]^2.
\]

Observe that \(I \times J \) has area 1. On the other hand, the phase-space portrait of \(\phi_{\theta_k} \) is a Heisenberg box of sizes \(R^{-\frac{1}{2}} \) and \(R^{\frac{1}{2}} \), and the linear modulation

\[
e^{2\pi i (x + 2tkR^{-\frac{1}{2}})}
\]

shifts it in frequency to \(J \). The conclusion is that the phase-space portrait of
is the Heisenberg box $[\theta]$, hence the effect of the quadratic modulation $e_{x,t}$ in this setting is essentially the same as the linear one in $[\theta]$.

Using bumps such as φ_{θ} to decompose the domain of g and expanding each g_{θ} into Fourier series allows us to write

$$g(x) = \sum_{\theta \in R^{-\frac{1}{2}}Z^d \cap [0,1]^d} \widehat{g_{\theta}}(x) \varphi_{\theta}(x) = \sum_{\theta \in R^{-\frac{1}{2}}Z^d \cap [0,1]^d} \sum_{\nu \in R^{d+1}Z^d} \widehat{g_{\theta,\nu}}(x) c_{\nu,\theta} e^{2\pi i \nu \cdot \varphi_{\theta}(x)},$$

where φ_{θ} is $\equiv 1$ on the support of φ_{θ} and decays very fast away from it. Applying E_d and using the previous intuition gives rise to the wave packet decomposition

$$E_d g = \sum_{(\theta,\nu) \in R^{-\frac{1}{2}}Z^d \cap [0,1]^d \times R^{d+1}Z^d} E_d(g_{\theta,\nu}),$$

where $E_d(g_{\theta,\nu})$ is essentially supported on a tube in \mathbb{R}^{d+1} of size $R^{\frac{1}{2}} \times \ldots \times R^{\frac{1}{2}} \times R$ whose direction is determined by θ and that is translated by a parameter depending on ν. With this linearized model at hand, one can study the interference between these tubes pointing in different directions (both in the linear and multilinear settings) and take advantage of orthogonality both in space and in frequency. This leads to local estimates of type

$$\|E_d g\|_{L^p(B(0,R))} \lesssim \varepsilon R^p \|f\|_p, \quad \forall \varepsilon > 0$$

and multilinear analogues of it that are later used to obtain global estimates via ε-removal arguments (as in [36]). The reader is referred to [15] for the details of the decomposition above. This approach has given the current best L^p bounds for E_d.

In our case, we do not linearize the contribution of the quadratic phase. Instead, we consider a discrete model that keeps the quadratic nature of E_d intact.

2.1. The linear model ($k = 1$). We consider $d = 1$ for simplicity, but the discretization process is analogous for all $d > 1$. Recall that the extension operator for the parabola defined for functions supported on $[0,1]$ is given by

$$E_1(x,t) = \int_0^1 g(u) e^{-2\pi i xu} e^{-2\pi i tu^2} \, du.$$

We can insert a bump φ in the integrand that is equal to 1 on $[0,1]$ and supported in a small neighborhood of this interval. Rewriting E_1,

$$E_1(x,t) = \sum_{n,m \in \mathbb{Z}} \left[\int g(u) \varphi(u) e^{-2\pi i xu} e^{-2\pi i tu^2} \, du \right] \chi_n(x) \chi_m(t),$$

where $\chi_n := \chi_{[n,n+1]}$. Define the sequences x_n and t_m by

$$\sup_{(x,t) \in [n,n+1] \times [m,m+1]} \left| \int g(u) \varphi(u) e^{-2\pi i xu} e^{-2\pi i tu^2} \, du \right| = \left| \int g(u) \varphi(u) e^{-2\pi i xu} e^{-2\pi i t u^2} \, du \right|.$$

These sequences depend on g, but the bounds we will prove do not. Bounding E_1,

$$|E_1(x,t)| \leq \sum_{n,m \in \mathbb{Z}} \left| \int g(u) \varphi(u) e^{-2\pi i xu} e^{-2\pi i t u^2} \, du \right| \chi_n(x) \chi_m(t) = |T_1 g(x,t)| + |T_2 g(x,t)| + |T_3 g(x,t)| + |T_4 g(x,t)|,$$

where T_1 is given by
\[T_1g(x,t) = \sum_{n,m \in \mathbb{Z}} \left| \int g(u)\varphi(u)e^{-2\pi i u x}e^{-2\pi i u^2} du \right| \chi_n(x)\chi_m(t), \]

and \(T_2, T_3 \) and \(T_4 \) are defined similarly, but with sums over
\[n \equiv 1 \pmod{2}, \quad m \equiv 0 \pmod{2} \quad \text{for } T_2, \]
\[n \equiv 0 \pmod{2}, \quad m \equiv 1 \pmod{2} \quad \text{for } T_3, \]
\[n \equiv 1 \pmod{2}, \quad m \equiv 1 \pmod{2} \quad \text{for } T_4. \]

Let us look at \(T_1 \), for example. The restriction of the sum in \((n, m)\) done above guarantess that \(x_{2n} \) and \(t_{2m}\) are strictly increasing sequences such that

\[|x_{2n} - x_{2(n+1)}| \approx 1, \quad |t_{2m} - t_{2(m+1)}| \approx 1. \]

Similar spacing properties hold for \(T_2, T_3 \) and \(T_4 \).

\[\text{Figure 2. The points } \{(x_{2n}, t_{2m})\}_{n,m}. \]

Suppose we have the bound
\[\|T_jg\|_q \lesssim \|g\|_p, \]
and the implicit constant does not depend on the sequences \(x_n, t_m\). The considerations above imply
\[\|E_1g\|_q \lesssim \|g\|_p. \]

Let \(\varphi \) be a compactly supported bump (say, in a very small open neighborhood of \([0, 1]\)) with \(\varphi \equiv 1 \) on \([0, 1]\) and denote

\[\varphi_{\mathbb{Z}^d}(x) := \varphi(x)e^{2\pi x \cdot \mathbb{n}}e^{2\pi |x|^2}m. \]

There is a slight abuse of notation here: in (10) we use the same letter \(\varphi \) to represent a multivariable bump with \(\varphi \equiv 1 \) on \([0, 1]^d\), which is just a tensor product of \(d \) copies of the single-variable one.

Definition 2.1. Let \(E_d \) be defined on \(C([0, 1]^d) \) given by
\[E_d(g) = \sum_{\mathbb{n} \in \mathbb{Z}^d} \langle g, \varphi_{\mathbb{Z}^d}\rangle (\chi_{\mathbb{n}} \otimes \chi_m), \]
where $\chi_{\vec{n}}$ and χ_m are the characteristic functions of the boxes $[n_1, n_1+1) \times \ldots \times [n_d, n_d+1)$ and $[m, m+1)$, respectively.\footnote{Morally speaking, the discrete model and the original operator are “comparable”, but we were not able to prove that rigorously. For that reason we included the proof of known extension estimates for E_d.}

Observe that we made a special choice in the definition above. The scalar products in the sum are indexed by points in \mathbb{Z}^{d+1}, but there is no guarantee that the points $\{ (x_n, t_m) \}_{n,m}$ are in this lattice. This is not an issue because all bounds we will prove for E_d and Λ_d will depend only on the fact that points in \mathbb{Z}^{d+1} satisfy the spacing condition $\footnote{The only reason why we considered the operators T_1, T_2, T_3 and T_4 above was to obtain $\footnote{If we had not done that, it could be the case that pairs of consecutive x_n, x_{n+1} get arbitrarily close, which would not allow us to use Bessel’s inequality in Section 7 for example.}}$.

The wave packets $\varphi_{n,m}$ have a natural phase-space portrait that consist of parallelograms in the phase plane.

![Figure 3. The phase-space portrait of $\varphi_{n,m}$](image)

By keeping the quadratic nature of E_d intact we take advantage of orthogonality in different ways. For example, for a fixed m the wave packets $\varphi_{n,m}$ are almost orthogonal, as suggested by the fact that the corresponding parallelograms are (almost) disjoint.

2.2. The multilinear model ($2 \leq k \leq d+1$). We recall the definition of the k-linear extension operator:

Definition 2.2. For $Q = \{Q_1, \ldots, Q_k\}$ a transversal set of cubes, the k-linear extension operator is given by

\[
ME_{k,d}(g_1, \ldots, g_k) := \prod_{j=1}^{k} \mathcal{E}_{Q_j} g_j,
\]

where

\[
\mathcal{E}_{Q_j} g_j(x, t) = \int_{Q_j} g_j(\xi) e^{-2\pi i x \cdot \xi} e^{-2\pi i t |\xi|^2} d\xi, \quad (x, t) \in \mathbb{R}^d \times \mathbb{R}.
\]

By an analogous argument to the one we showed in subsection 2.1, it is enough to prove the corresponding bounds for the following model operator:

Definition 2.3. Let $ME_{k,d}$ be defined on $C(Q_1) \times \ldots \times C(Q_k)$ by

\[
ME_{k,d}(g_1, \ldots, g_k) := \sum_{(\vec{n}, m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^{k} \langle g_j, \varphi_{\vec{n}, m}^j \rangle (\chi_{\vec{n}} \otimes \chi_m).
\]
where
\[\varphi^l_{n,m} = \bigotimes_{l=1}^{d} \varphi^{l,j}_{n,m}, \quad \varphi^{l,j}_{n,m}(x_l) = \varphi^{l,j}(x_l) e^{2\pi in_l x_l} e^{2\pi imx_l^2} \]
and \(\varphi^{l,j}(x) \equiv 1 \) on the \(l \)-coordinate projection of the domain of \(g_j \) defined above and decays fast away from it.

3. Transversality versus weak transversality

We recall the following definition from [1]:

Definition 3.1. Let \(2 \leq k \leq d+1 \) and \(c > 0 \). A \(k \)-tuple \(S_1, \ldots, S_k \) of smooth codimension-one submanifolds of \(\mathbb{R}^{d+1} \) is \(c \)-transversal if
\[|v_1 \wedge \ldots \wedge v_k| \geq c \]
for all choices \(v_1, \ldots, v_k \) of unit normal vectors to \(S_1, \ldots, S_k \), respectively. We say that \(S_1, \ldots, S_k \) are transversal if they are \(c \)-transversal for some \(c > 0 \).

In other words, if the \(k \)-dimensional volume of the parallelepiped generated by \(v_1, \ldots, v_k \) is bounded below by some absolute constant for any choice of normal vectors \(v_j \), the submanifolds are transversal. From now on, we will say that a collection of \(k \) cubes in \(\mathbb{R}^d \) is transversal if the associated caps defined by them on the paraboloid are transversal in the sense of Definition 3.1.

One can assume without loss of generality that the \(U_j \)'s in the statements of Conjecture 1.2 are cubes that parametrize transversal caps on \(\mathbb{P}^d \) via the map \(x \mapsto |x|^2 \). Even though these conjectures are known to fail in general if one does not assume transversality between the caps (see Appendix A.2), the theorem that we will prove holds under a weaker condition, since one of the functions is a tensor.

Definition 3.2. Let \(Q = \{Q_1, \ldots, Q_k\} \) be a collection of \(k \) (open or closed) cubes\(^5\) in \(\mathbb{R}^d \). \(Q \) is said to be weakly transversal with pivot \(Q_j \) if for all \(1 \leq j \leq k \) there is a set of \((k-1) \) distinct directions \(\mathcal{E}_j = \{e_{i_1}, \ldots, e_{i_{k-1}}\} \) (depending on \(j \)) of the canonical basis such that
\[(12) \quad \begin{align*}
\pi_{i_1}(Q_j) \cap \pi_{i_1}(Q_1) &= \emptyset, \\
\vdots & \\
\pi_{i_{j-1}}(Q_j) \cap \pi_{i_{j-1}}(Q_{j-1}) &= \emptyset, \\
\pi_{i_j}(Q_j) \cap \pi_{i_j}(Q_{j+1}) &= \emptyset, \\
\vdots & \\
\pi_{i_{k-1}}(Q_j) \cap \pi_{i_{k-1}}(Q_k) &= \emptyset,
\end{align*}\]
where \(\pi_l \) is the projection onto \(e_l \). We say that \(Q \) is weakly transversal if it is weakly transversal with pivot \(Q_j \) for all \(1 \leq j \leq k \)\(^6\).

Remark 3.3. For each \(1 \leq j \leq k \), from now on we will refer to a set\(^7\) \(\mathcal{E}_j \) above as a set of directions associated to \(Q_j \). Notice that there could be many of such sets for a single \(j \). Also, if \(j_1 \neq j_2 \), it could be the case that no set of directions associated to \(Q_{j_1} \) is associated to \(Q_{j_2} \).

\(^5\) The word cube will be used throughout the paper to refer to any rectangular box in \(\mathbb{R}^d \), regardless of the sizes of its edges, and they always refer to the supports of the input functions of our linear and multilinear operators. In this paper, it will not be relevant whether the sides of a box have the same length or not, therefore this slight abuse of terminology is harmless.

\(^6\) The estimates that we will prove will depend on the separation of the projections in Definition 3.2 just as they depend on the behavior of \(c \) from Definition 3.1 in the general case for transversal caps.

\(^7\) The typeface \(\mathcal{E} \) is being used to distinguish this concept from the previously defined operators \(\mathcal{E}_d \) and \(E_d \).
Let us give a few examples to distinguish between definitions 3.1 and 3.2. Consider the case $d = 2$, $k = 3$, $Q_1 = [0, 1]^2$, $Q_2 = [2, 3]^2$, and $Q_3 = [4, 5]^2$. The line $y = x$ intersects Q_1, Q_2 and Q_3, then it follows from Definition 3.1 that they are not transversal. However, observe that

$$\begin{align*}
\pi_1(Q_1) \cap \pi_1(Q_2) &= \emptyset, \\
\pi_2(Q_1) \cap \pi_2(Q_3) &= \emptyset,
\end{align*}$$

so $\{e_1, e_2\}$ is a set associated to Q_1 (and similarly one can verify that it is also associated to Q_2 and Q_3). This shows that the collection defined by Q_1, Q_2 and Q_3 is weakly transversal.

Consider now the cubes $K_1 = [0, 1]^2$, $K_2 = [4, 5] \times [0, 1]$ and $K_3 = [2, 3]^2$. Not only are they transversal in the sense of Definition 3.1 but also weakly transversal.

This is not by chance: a given transversal collection of k cubes can be “decomposed” into finitely many collections of k cubes that are also weakly transversal.

Claim 3.4. Given a collection $Q = \{Q_1, \ldots, Q_k\}$ of transversal cubes, each $Q_l \in Q$ can be partitioned into $O(1)$ many sub-cubes

$$Q_l = \bigcup_i Q_{l,i}$$

so that all collections \tilde{Q} made of picking one sub-cube $Q_{l,i}$ per Q_l

$$\tilde{Q} = \{\tilde{Q}_1, \ldots, \tilde{Q}_k\}, \quad \tilde{Q}_l \in \{Q_{l,i}\}_i,$$

are weakly transversal.

Proof. See Claim B.4 in the appendix. \[\square\]

As a consequence of Claim 3.4, to prove the case $2 \leq k \leq d + 1$ of Theorem 1.5 it suffices to show it for weakly transversal collections. To simplify the exposition, we will present our results for the cubes

$$Q_1 = [0, 1]^d, \quad Q_j = [2, 3]^{d-2} \times [4, 5] \times [0, 1]^{d-j+1}, \quad 2 \leq j \leq k.$$

The associated directions to Q_1 are $\{e_1, \ldots, e_{k-1}\}$, and we will use it as the pivot. Any other weakly transversal collection of cubes can be dealt with in the same way.
4. Our approach and its building blocks

Notice that the operators E_d and $ME_{k,d}$ are pointwise bounded by E_d and $ME_{k,d}$, respectively, therefore we can not directly conclude any result about the models from the fact that they hold for the original operators. Some of these results will be reproven for the models in this paper, and they will act as building blocks in the proof of Theorem 1.5 which is presented in Sections 8 and 9. More precisely, Theorem 1.5 relies on the following:

1. Mixed norm Strichartz/Tomas-Stein ($k = 1$, $p = 2$). In Section 5 we show the following:

 Proposition 4.1. For all $p > \frac{2(d+2)}{d}$,
 $$\|E_d g\|_p \lesssim \|g\|_2.$$

 As a consequence, we have:

 Corollary 4.2. For all $\varepsilon > 0$,
 $$\|E_d(g)\|_{L^2([0,1])} \lesssim \varepsilon \|g\|_2.$$

 Proof. Apply Minkowski’s inequality and Proposition 4.1 in dimension $d - 8$. \square

 We will use Corollary 4.2 in Section 1.2 to prove Theorem 1.5 for $2 \leq k \leq d + 1$. It will not be needed when $k = d + 1$.

2. Extension conjecture for the parabola ($k = 1$, $d = 1$, $p = 4$). In Section 6 we prove the following:

 Proposition 4.3. For all $\varepsilon > 0$,
 $$\|E_1 g\|_{4 + \varepsilon} \lesssim \|g\|_4.$$

 One can show by interpolation that Proposition 4.3 implies Conjecture 1.1 for $d = 1$. We will use it in Section 8 to settle the case $k = 1$ of Theorem 1.5.

3. Bilinear extension conjecture for the parabola ($k = 2$, $d = 1$). In Section 7 we show that the model $ME_{2,1}$ in Definition 2.3 maps $L^2([0,1]) \times L^2([4,5])$ to $L^2(\mathbb{R}^2)$.

 Proposition 4.4. The following estimate holds:
 $$\|ME_{2,1}(f,g)\|_2 \lesssim \|f\|_2 \cdot \|g\|_2.$$

 Transversality will be captured in Section 9 through (15).

By combining scalar and mixed norm stopping times8 performed simultaneously, we are able to put together the key estimates (13), (14) and (15). In the $2 \leq k \leq d + 1$ case, the tensor structure is used in an implicit way to allow us to better relate these scalar and mixed norm stopping times.

8Notice that, after taking L^2 norm in the first l variables, we can use Bessel to bound the left-hand side of (13) by

$$\left[\sum_{n_{l+1},\ldots,n_d,m} \left(\sum_{n_1,\ldots,n_l} \|g; \varphi_{n_{l+1},\ldots,n_d,m}, \varphi_{n_1,\ldots,n_l,m})^2 \right) \right]^{\frac{1}{p_0}} \leq \left[\sum_{n_{l+1},\ldots,n_d,m} \|g; \varphi_{n_{l+1},\ldots,n_d,m}) \|^2 \right]^{\frac{1}{p_0}},$$

where $p_0 = \frac{2(d+2)}{d} + \varepsilon$. This is how we will use Corollary 4.2 in (53).

9This is not meant in a literal probabilistic sense; strictly speaking, the argument combines the level sets of various scalar and mixed norm quantities that appear naturally in our analysis.
Remark 4.5. The tensor structure $g = g_1 \otimes \ldots \otimes g_d$ in the $k = 1$ case allows us to write

\begin{equation}
\langle g, \varphi_{n,m} \rangle = \prod_{j=1}^{d} \langle g_j, \varphi_{n_j,m} \rangle.
\end{equation}

We then obtain the following multilinear form by dualization:

\begin{equation}
\Lambda_d(g_1, \ldots, g_d, h) = \langle E_d(g), h \rangle = \sum_{\vec{n} \in \mathbb{Z}^d, m \in \mathbb{Z}} \prod_{j=1}^{d} \langle g_j, \varphi_{n_j,m} \rangle \cdot \langle h, \chi_{\vec{n}} \otimes \chi_m \rangle,
\end{equation}

for appropriate exponents p_j and q. Interpolation theory shows that it suffices to obtain

\begin{equation}
\| \Lambda_d(g_1, \ldots, g_d, h) \| \lesssim \| h \|_q \cdot \prod_{j=1}^{d} \| g_j \|_{p_j}
\end{equation}

for all $\varepsilon > 0$, $|g_j| \leq \chi_{E_j}$, $|h| \leq \chi_{F}$, $E_j \subset [0, 1]$ and $F \subset \mathbb{R}^3$ measurable sets such that γ_j ($1 \leq j \leq d$) and γ_{d+1} are in a small neighborhood of $\frac{d}{2(d+1)}$ and $\frac{d+2}{2(d+1)} + \varepsilon$, respectively. We refer the reader to Chapter 3 of [38] for a detailed account of multilinear interpolation theory.

To keep the notation simple, all restricted weak-type estimates we will prove in this paper will be for the centers of such neighborhoods. For example, we will show that

\begin{equation}
|\Lambda_d(g_1, \ldots, g_d, h)| \lesssim \varepsilon \| F \|_{\gamma_{d+1}} \cdot \prod_{j=1}^{d} |E_j|^{\gamma_j}
\end{equation}

for all $\varepsilon > 0$, but it will be clear from the arguments that as long as we give this $\varepsilon > 0$ away, a slightly different choice of interpolation parameters yields $\| g \|_2$. The restricted weak-type estimates that we will prove in the $2 \leq k \leq d + 1$ case will also be for the centers of the corresponding neighborhoods.

5. Proof of Proposition 4.1 - Strichartz/Tomas-Stein for E_d ($k = 1, p = 2$)

Our proof is inspired by the classical TT^* argument. It is possible to prove the endpoint estimate directly for the model E_d by repeating the steps of this argument (see for example Section 11.2.2 in [27]), but we chose the following approach because of its similarity with the one we will use to prove Theorem 1.5. By interpolation with the trivial bound for $q = \infty$, it is enough to prove the bound

\begin{equation}
\| E_d g \|_{2(d+1)} + \varepsilon \lesssim \varepsilon \| g \|_2
\end{equation}

for all $\varepsilon > 0$.

We start by dualizing E_d to obtain a bilinear form Λ_d:

\footnote{There is an overlap of classical notation here that we hope will not compromise the comprehension of the paper: we chose the typeface E_d to represent the discrete model of the official extension operator E. On the other hand, the classical theory of restricted weak-type multilinear interpolation usually labels the measurable sets involved in the problems by E_j or F_j. The context will make it clear which object we are referring to.}

\footnote{Rigorously, this only verifies the case $k = 1$ near the endpoint $\left(\frac{2(d+1)}{d}, \frac{2(d+1)}{d} \right)$, but this is known to imply the desired estimates in the full range. For details, see Theorem 19.8 of Mattila's book [25].}
\[A_d(g, h) = \langle E_d(g), h \rangle = \sum_{n \in \mathbb{Z}^d} \langle g, \varphi_{\mathbf{n}, m} \rangle \cdot \langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle. \]

Let \(E_1 \subset \mathbb{R}^d \) and \(E_2 \subset \mathbb{R}^{d+1} \) be measurable sets of finite measure with \(|g| \leq \chi_{E_1} \) and \(|h| \leq \chi_{E_2} \). Split \(\mathbb{Z}^{d+1} \) in two ways:

\[
\mathbb{Z}^{d+1} = \bigcup_{l_1 \in \mathbb{Z}} A_{l_1}, \quad \text{where} \quad (\mathbf{n}, m) \in A_{l_1} \iff |\langle g, \varphi_{\mathbf{n}, m} \rangle| \approx 2^{-l_1}.
\]

\[
\mathbb{Z}^{d+1} = \bigcup_{l_2 \in \mathbb{Z}} B_{l_2}, \quad \text{where} \quad (\mathbf{n}, m) \in B_{l_2} \iff |\langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle| \approx 2^{-l_2}.
\]

Define \(X_{l_1,l_2} := A_{l_1} \cap B_{l_2} \) and observe that

\[
|A_d(g, h)| \lesssim \sum_{l_1, l_2 \in \mathbb{Z}} 2^{-l_1} 2^{-l_2} \# X_{l_1,l_2}.
\]

Notice that, for all \((\mathbf{n}, m) \in X_{l_1,l_2} \),

\[
2^{-l_1} \lesssim \int_{\mathbb{R}^d} |g(x)||\varphi_{\mathbf{n}, m}(x)| dx \leq \min \{|E_1|, 1\},
\]

\[
2^{-l_2} \lesssim \int_{\mathbb{R}^d} |h(x)||\chi_{\mathbf{n}} \otimes \chi_m(x)| dx \leq \min \{|E_2|, 1\},
\]

In particular, \(l_1, l_2 \geq 0 \) in the sum above. Now we bound \(\# X_{l_1,l_2} \) in two different ways and interpolate between them:

(a) \textbf{L}^1-type bound: Exploit \(h \).

\[
\# X_{l_1,l_2} \leq \# B_{l_2} \leq 2^{l_2} \sum_{(\mathbf{n}, m) \in B_{l_2}} |\langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle| \lesssim 2^{l_2} \sum_{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}} \int_{Q_{\mathbf{n}, m}} |h| = 2^{l_2} \|h\|_1 \leq 2^{l_2} |E_2|,
\]

where \(Q_{\mathbf{n}, m} := \Pi_{i=1}^d [n_i, n_i + 1] \times [m, m + 1], \mathbf{n} = (n_1, \ldots, n_d) \).

(b) \textbf{L}^2-type bound: Exploit \(g \).

\[
\# X_{l_1,l_2} \leq 2^{2l_1} \sum_{(\mathbf{n}, m) \in X_{l_1,l_2}} |\langle g, \varphi_{\mathbf{n}, m} \rangle|^2 = 2^{2l_1} \left| \left\langle \sum_{(\mathbf{n}, m) \in X_{l_1,l_2}} (g, \varphi_{\mathbf{n}, m}) \varphi_{\mathbf{n}, m} \right. \right. \rangle \right|_2 \leq 2^{2l_1} |E_1| \left| \left\langle \sum_{(\mathbf{n}, m) \in X_{l_1,l_2}} (g, \varphi_{\mathbf{n}, m}) \varphi_{\mathbf{n}, m} \right. \right. \rangle \right|_2.
\]

For each set \(X_{l_1,l_2} \) define \(\pi_m := \{ \mathbf{n} \in \mathbb{Z}^d; (\mathbf{n}, m) \in X_{l_1,l_2} \} \). Observe that:

\[
(*) = \sum_{m; \pi_m \neq \emptyset} \sum_{n; \pi_n \neq \emptyset} \sum_{k \in \pi_n} \sum_{\mathbf{n} \in \pi_m} \langle g, \varphi_{\mathbf{n}, m} \rangle \langle g, \varphi_{\mathbf{k}, m} \rangle \langle \varphi_{\mathbf{n}, m}, \varphi_{\mathbf{k}, m} \rangle \cdot U \left((\langle g, \varphi_{\mathbf{n}, m} \rangle)_{\mathbf{n} \in \pi_m}, (\langle g, \varphi_{\mathbf{k}, m} \rangle)_{\mathbf{k} \in \pi_n} \right)
\]

We will estimate \(U \) in two ways. Let \(a_{\mathbf{n}, m} := \langle g, \varphi_{\mathbf{n}, m} \rangle \). First, by the triangle inequality and the stationary phase Theorem B.3.
which implies as long as fixed. Interpolating between these bounds for 1

Another possibility is:

by Cauchy-Schwarz and orthogonality on the sets \(\pi_m\) and \(\pi_{\tilde{m}}\) (recall that \(m\) and \(\tilde{m}\) are fixed). Interpolating between these bounds for 1 \(\leq p \leq 2\):

Back to (*):

as long as

by discrete fractional integration. Plugging this back in [21]:

which implies

(22) \[\#X^{l_1,l_2} \lesssim 2^{2l_1 |E_1|^\frac{1}{2}} \left(\sum_{(\tilde{m},m) \in X^{l_1,l_2}} |(g, \varphi, \tilde{m})|^p \right)^\frac{1}{p} \lesssim 2^{2l_1 |E_1|^\frac{1}{2}} \left(2^{-p l_1 \#X^{l_1,l_2}}\right)^\frac{1}{p},\]
Interpolating between (20) and (22):

\[
|\lambda_d(g, h)| \lesssim \sum_{l_1, l_2 \geq 0} 2^{-l_1} 2^{-l_2} \left(2^{(2+\frac{4}{d})l_1} |E_1|^{1+\frac{2}{d}} \right)^{\theta_1} \left(2^{l_2} |E_2| \right)^{\theta_2} \\
= \left(\sum_{l_1 \geq 0} 2^{-l_1} (1-(2+\frac{4}{d})\theta_1) \right) \left(\sum_{l_2 \geq 0} 2^{-l_2(1-\theta_2)} \right) |E_1|^{1+\frac{2}{d}} |E_2|^{\theta_2} \\
\lesssim 2^{-l_1(1-(2+\frac{4}{d})\theta_1)} 2^{-l_2(1-\theta_2)} |E_1|^{1+\frac{2}{d}} |E_2|^{\theta_2} \\
\lesssim \min \{ |E_1|^{1+\frac{2}{d}} \}, \min \{ |E_2|^{1-\theta_2}, 1 \} |E_1|^{1+\frac{2}{d}} |E_2|^{\theta_2} \\
\lesssim |E_1|^{\alpha_1(1-(2+\frac{4}{d})\theta_1)} |E_2|^{\alpha_2(1-\theta_2)+\theta_2},
\]

for all \(0 \leq \alpha_1, \alpha_2 \leq 1\), \(\theta_1 + \theta_2 = 1\), with \(0 \leq (2+\frac{4}{d}) \theta_1 < 1\), \(0 \leq \theta_2 < 1\), where \(\tilde{l}_1\) is the smallest possible value of \(l_1\) for which \(K_{\tilde{l}_1} \neq 0\) and \(\tilde{l}_2\) is defined analogously. Picking \(\alpha_1 = \frac{2}{d}\), \(\alpha_2 = 0\), \(\theta_1 = \frac{d}{2(d+2)} - \varepsilon\) and \(\theta_2 = \frac{d+1}{2(d+2)} + \varepsilon\) gives

\[
|\lambda_d(g, h)| \lesssim |E_1|^{\frac{1}{2}} \cdot |E_2|^{\frac{d+4}{2(d+2)} + \varepsilon}
\]

for all \(\varepsilon > 0\), which proves the proposition by restricted weak-type interpolation.

6. Proof of Proposition 1.3 - Conjecture 1.1 for \(E_1\) (\(k = 1, d = 1, p = 4\))

The following argument is inspired by Zygmund’s original proof of this case. Define

\[
\Phi_{n,m}(s, t) := |t-s|^{\frac{3}{2}} \varphi(s) \varphi(t) e^{2\pi i (s-t)n} e^{2\pi i (s-t^2)m}.
\]

Claim 6.1.

\[
\langle \Phi_{n,m}, \Phi_{\tilde{n},\tilde{m}} \rangle = O_N \left(\frac{1}{(n-\tilde{n})(m-\tilde{m})^N} \right)
\]

for any natural \(N\) if \(n \neq \tilde{n}\) and \(m \neq \tilde{m}\).

Proof.

\[
\langle \Phi_{n,m}, \Phi_{\tilde{n},\tilde{m}} \rangle = \int_{[0,1]^2} |t-s|^{3/2} |\varphi(s)|^2 |\varphi(t)|^2 e^{2\pi i (s-t)(n-\tilde{n})} e^{2\pi i (s-t^2)(m-\tilde{m})} ds dt \\
= \int_{R} |u| \psi(u,v) e^{2\pi i u(n-\tilde{n})} e^{2\pi i v(m-\tilde{m})} du dv,
\]

where \(R\) is the region that we obtain after making the change of variables \(s-t = u, s^2-t^2 = v\), and \(\psi(u,v) = \varphi \otimes \varphi \left(\frac{u+v^2}{u}, \frac{v-u^2}{u} \right)\). The claim follows by the non-stationary phase Theorem 3.2. \(\square\)

We now prove the following:

Lemma 6.2. For \(G\) smooth supported on \([0,1] \times [0,1]\),

\[
\left\| \sum_{n,m \in \mathbb{Z}} \langle G, \varphi_{n,m} \otimes \varphi_{\tilde{n},\tilde{m}} \rangle (\chi_n \otimes \chi_m) \right\|_{L^2} \lesssim \left(\int_{[0,1]^2} \frac{|G(s,t)|^2}{|s-t|} ds dt \right)^{1/2}
\]
Proof. Define $\tilde{G}(s, t) = \frac{G(s, t)}{|s-t|^\frac{\gamma}{2}}$ on $[0,1]^2 \setminus \{(x, x); 0 \leq x \leq 1\}$. Observe that

$$
\left|\sum_{n,m \in \mathbb{Z}} \langle G, \varphi_{n,m} \otimes \overline{\varphi_{n,m}} \rangle (\chi_n \otimes \chi_m)\right|^2 = \sum_{n,m \in \mathbb{Z}} |\langle G, \varphi_{n,m} \otimes \overline{\varphi_{n,m}} \rangle|^2
$$

$$
= \sum_{n,m \in \mathbb{Z}} |\langle \tilde{G}, \varphi_{n,m} \rangle|^2
$$

$$
\lesssim \|\tilde{G}\|^2_{L^2},
$$

by the almost orthogonality of the $\Phi_{n,m}$ proved in the previous claim.

Remark 6.3. By the triangle inequality,

$$
\left|\sum_{n,m \in \mathbb{Z}} \langle G, \varphi_{n,m} \otimes \overline{\varphi_{n,m}} \rangle (\chi_n \otimes \chi_m)\right| \lesssim \int\int_{[0,1]^2} |G(s, t)| \, ds \, dt.
$$

Hence by interpolation we obtain

$$
\left(\int\int_{[0,1]^2} |G(s, t)|^{p'} \, ds \, dt\right)^\frac{1}{p'} \leq \left(\int\int_{[0,1]^2} |G(s, t)|^{p''} \, ds \, dt\right)^\frac{1}{p''}
$$

for $2 \leq p \leq \infty$.

Let $E \subset \mathbb{R}^d$ be a measurable set of finite measure with $|g| \leq \chi_E$. Using Remark 6.3 and Lemma 6.2 for $G = g \otimes \overline{g}$, we have

$$
\left[\sum_{n,m \in \mathbb{Z}} |\langle g, \varphi_{n,m} \rangle|^{1+\varepsilon} \right]^{\frac{2}{1+\varepsilon}} = \left[\int_{\mathbb{R}^2} \left(\sum_{n,m \in \mathbb{Z}} |\langle g, \varphi_{n,m} \rangle|^{1+\varepsilon} (\chi_n \otimes \chi_m) \right) \right]^{\frac{2}{1+\varepsilon}}
$$

$$
\leq \left[\int_{\mathbb{R}^2} \left(\sum_{n,m \in \mathbb{Z}} |\langle g, \varphi_{n,m} \rangle|^{2} (\chi_n \otimes \chi_m) \right) \right]^{\frac{2}{1+\varepsilon}}
$$

$$
= \left[\sum_{n,m \in \mathbb{Z}} |\langle g, \varphi_{n,m} \rangle|^{2} (\chi_n \otimes \chi_m) \right]^{\frac{2}{1+\varepsilon}}
$$

$$
\lesssim \left(\int\int_{[0,1]^2} \frac{|g(s)|^{p'} |g(t)|^{p''}}{|s-t|^{p'-1}} \, ds \, dt \right)^\frac{1}{p'},
$$

where $p' = \frac{4+\varepsilon}{2+\varepsilon}$. To bound this last integral, we proceed as follows:

$$
\int_{0}^{1} \int_{0}^{1} \frac{|\rho(s)| \cdot |\rho(t)|}{|s-t|^{\gamma}} \, ds \, dt = \int_{0}^{1} |\rho(t)| \int_{0}^{1} \frac{|\rho(s)|}{|s-t|^{\gamma}} \, ds \, dt
$$

$$
= \int_{0}^{1} |\rho(t)| \cdot \left(|\rho| \ast \frac{1}{|s|^{\gamma}} \right) (t) \, dt
$$

$$
= \|\rho\left(|\rho| \ast \frac{1}{|s|^{\gamma}}\right)\|_{L^1(dt)}
$$

$$
\lesssim \|\rho\|_{L^{2}(dt)} \|\left(|\rho| \ast \frac{1}{|s|^{\gamma}}\right)\|_{L^{p'}(dt)}
$$

$$
\lesssim \varepsilon \|\rho\|_{p'}^2,
$$

if $\frac{1}{p'} = \frac{1}{p} - (1 - \gamma)$, by Theorem B.1. In our case, $\rho = |g|^{p'}$, $\gamma = p' - 1$ and $pp' = \frac{(4+\varepsilon)^2}{2(2+\varepsilon)} > 4$, then
\[
\left(\int_0^1 \int_0^1 \frac{|g(s)|^{p'} \cdot |g(t)|^{p'}}{|s-t|^{p-1}} \, ds \, dt \right)^{\frac{1}{p'}} \lesssim \left(\int_0^1 |g(t)|^{pp'} \, dt \right)^{\frac{2}{pp'}}
\]

\[
= \left(\int_0^1 |g(t)|^{4+\frac{(4+\varepsilon)^2}{2(2+\varepsilon)-4}} \, dt \right)^{\frac{4(2+\varepsilon)}{(4+\varepsilon)^2}}
\]

\[
\lesssim \left(\int_0^1 |g(t)|^{4} \, dt \right)^{\frac{4(2+\varepsilon)}{(4+\varepsilon)^2}} = |E|^{\frac{4(2+\varepsilon)}{(4+\varepsilon)^2}}.
\]

Observed that in the second line of the chain of inequalities above we used the fact that \(|g| \leq 1\). Finally,

\[
\|E_1 g\|_{4+\varepsilon} = \left[\sum_{n,m \in \mathbb{Z}^2} |\langle g, \varphi_{n,m} \rangle|^{4+\varepsilon} \right]^{\frac{1}{4+\varepsilon}} \lesssim |E|^{\frac{2(2+\varepsilon)}{(4+\varepsilon)^2}} \leq |E|^\frac{1}{4}.
\]

This shows that \(E_1\) maps \(L^4([0,1])\) to \(L^q(\mathbb{R}^2)\) for any \(q > 4\) by restricted weak-type interpolation.

7. **Proof of Proposition 4.4 - Conjecture 1.2** for \(ME_{2,1}\) \((k = 2, d = 1)\)

The model to be treated is

\[ME_{2,1}(f,g) := \sum_{(n,m) \in \mathbb{Z}^2} \langle f, \varphi_{n,m}^1 \rangle \cdot \langle g, \varphi_{n,m}^2 \rangle (\chi_n \otimes \chi_m)\]

Since \(d = 1\), we do not have to deal with the multivariable quantity

\[\varphi_{n,m}^j = \bigotimes_{l=1}^d \varphi_{n_l,m_l}^{j_l}\]

from Definition 2.3, so we will simplify the notation by taking \(\varphi_{n,m}^1 := \varphi_{n,m}^{1,1}\) and \(\varphi_{n,m}^2 := \varphi_{n,m}^{1,2}\). We also replaced \((g_1, g_2)\) by \((f, g)\) here to reduce the number of indices carried through the section.

We provide a simple argument involving Bessel’s inequality. After a change of variables to move the domain of \(\varphi^2\) to be the same as the one of \(\varphi^1\), we have:

\[|ME_{2,1}(f,g)| \lesssim \sum_{(n,m) \in \mathbb{Z}^2} |\langle f, \varphi_{n,m}^1 \rangle| |\langle (g)_{-4}, \varphi_{n+8m,m}^1 \rangle| (\chi_n \otimes \chi_m)\]

\[= \sum_{(n,m) \in \mathbb{Z}^2} |\langle f \otimes (g)_{-4}, \varphi_{n,m}^1 \otimes \varphi_{n+8m,m}^1 \rangle| (\chi_n \otimes \chi_m),\]

where \(\Box^2 (g)_{-4}(y) = g(y + 4)\). Observe that

\[\Box^2 (g)_{-4}(y) = g(y + 4).\]

\[\text{This was done to bring the support of } \varphi_{n,m}^2 \text{ to the one of } \varphi_{n+8m,m}^1. \text{ The price to pay is the } +4m \text{ shift in the linear modulation index of the bump.} \]
\[\langle f \otimes (g)^{-4}, \varphi_{n,m}^1 \otimes \varphi_{n+8m,m}^1 \rangle = \iint f(x)g(y+4)\varphi^1(x)\varphi^1(y)e^{-2\pi inx}e^{-2\pi iny^2}e^{2\pi i(n+8m)y}e^{2\pi imy^2}dxdy \]
\[= \iint f(x)g(y+4)e^{2\pi iny-x}e^{2\pi im(y-x)}(y+x)e^{16\pi imy}dxdy \]
\[\lesssim \int \left[\int f\left(\frac{v-u}{2}\right)g\left(\frac{v+u}{2}+4\right)e^{2\pi imuv}e^{8\pi im(u+v)}dv \right] e^{2\pi imu}du \]
\[= \tilde{H}_m(-n) \]

Hence
\[\|ME_{2,1}(f,g)\|_2^2 \lesssim \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} |\tilde{H}_m(-n)|^2 = \sum_{m \in \mathbb{Z}} \|H_m\|_2^2, \]
by Bessel. On the other hand,
\[\|H_m\|_2^2 = \int \int f\left(\frac{v-u}{2}\right)g\left(\frac{v+u}{2}+4\right)e^{2\pi imuv}e^{8\pi im(u+v)}dv \leq \int \left[\int f\left(\frac{v-u}{2}\right)g\left(\frac{v+u}{2}+4\right)e^{2\pi imuv}e^{8\pi im(u+v)}dv \right] e^{-2\pi imu}du \]
\[= \int \left| \tilde{H}_u(m(u+4)) \right|^2 du. \]

Transversality enters the picture here through the factor \((u+4)\) above: the +4 shift in \(u\) comes from the fact that the supports of \(\varphi^1\) and \(\varphi^2\) are disjoint and far enough from each other, hence \(u+4 \geq c > 0\). This way,
\[\|ME_{2,1}(f,g)\|_2^2 \lesssim \int \left(\sum_{m \in \mathbb{Z}} |\tilde{H}_u(m(u+4))|^2 \right) du \]
\[\lesssim \int \int |\tilde{H}_u(v)|^2dvdu \]
\[\lesssim \|f\|_2^2 \|g\|_2^2, \]
by Bessel again.

8. Case \(k = 1\) of Theorem 1.5

In this section we start the proof of Theorem 1.5. There are two main ingredients in the argument for the case \(k = 1\): Proposition 4.3 and the fact that the wave packets
\[\varphi_{\vec{m},m}(x) := \varphi(x_1) \cdot \ldots \cdot \varphi(x_d)e^{2\pi ix \cdot \vec{m}}e^{-2\pi |x|^2m}. \]
are almost orthogonal for a fixed \(m\) and \(\vec{m}\) varying in \(\mathbb{Z}^d\). The latter fact will be exploited through Bessel’s inequality whenever possible. Recall from Remark 4.5 that, since \(g = g_1 \otimes \ldots \otimes g_d\), it suffices to study the multilinear form
\[\Lambda_d(g_1, \ldots, g_d, h) = \sum_{\vec{m} \in \mathbb{Z}^d} \prod_{j=1}^d \langle g_j, \varphi_{n_j,m} \rangle \cdot \langle h, \chi_{\vec{m}} \otimes \chi_m \rangle. \]

Now we focus on obtaining \(19\). Let \(E_j \subset [0, 1], 1 \leq j \leq d, \) and \(F \subset \mathbb{R}^{d+1}\) be measurable sets for which \(|g_j| \leq \chi_{E_j}\) and \(|h| \leq \chi_F\). Define the sets
\[A^l_j := \{(n_j, m) \in \mathbb{Z}^2; \ |(g_j, \varphi_{n_j, m})| \approx 2^{-l_j}\}, \quad 1 \leq j \leq d. \]
\[B^{l+1} := \{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \ |\langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle| \approx 2^{-l_{d+1}}\}. \]
\[X^{l_1, \ldots, l_{d+1}} := \{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \ (n_j, m) \in A^l_j, 1 \leq j \leq d\} \cap B^{l+1}. \]

Hence,
\[|A_d(g_1, \ldots, g_d, h)| \lesssim \sum_{l_1, \ldots, l_{d+1} \in \mathbb{Z}} 2^{-l_1 - \cdots - l_{d+1}} \#X^{l_1, \ldots, l_{d+1}}. \]

As in Section 5, we know that \(l_1, \ldots, l_{d+1} \geq 0 \). We can estimate \(\#X^{l_1, \ldots, l_{d+1}} \) using the function \(h \):
\[
\#X^{l_1, \ldots, l_{d+1}} \lesssim 2^{l_{d+1}} \sum_{(\mathbf{n}, m) \in Z^{d+1}} |\langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle| \lesssim 2^{l_{d+1}} |F|.
\]

Alternatively, many bounds for \(\#X^{l_1, \ldots, l_{d+1}} \) can be obtained using the input functions \(g_1, \ldots, g_d \):
\[
\#X^{l_1, \ldots, l_{d+1}} \lesssim \sum_{(\mathbf{n}, m) \in Z^{d+1}} \mathbb{1}_{A^l_1}(n_1, m) \cdots \mathbb{1}_{A^l_d}(n_d, m)
\]
\[
= \sum_{m \in \mathbb{Z}} \sum_{n_1 \in \mathbb{Z}} \cdots \sum_{n_{d-1} \in \mathbb{Z}} \mathbb{1}_{A^l_1}(n_1, m) \cdots \mathbb{1}_{A^l_{d-1}}(n_{d-1}, m) \sum_{n_d \in \mathbb{Z}} \mathbb{1}_{A^l_d}(n_d, m)
\]

Observe that \(\alpha_{d,m} = \#\{n; (n, m) \in A^l_1\} \) and \((n, m) \in A^l_1 \Rightarrow 1 \leq 2^{2l_1} |\langle g_1, \varphi_{n,m} \rangle|^2 \). Adding up in \(n \),
\[
\alpha_{d,m} \lesssim 2^{2l_d} \sum_{n; (n, m) \in A^l_d} |\langle g_d, \varphi_{n,m} \rangle|^2 \lesssim 2^{2l_d} |E_d|
\]
by orthogonality. Notice that this quantity does not depend on \(m \), therefore we can iterate this argument for \(d - 2 \) of the remaining \(d - 1 \) characteristic functions:
\[
\#X^{l_1, \ldots, l_{d+1}} \lesssim 2^{2l_d} |E_d| \sum_{m \in \mathbb{Z}} \sum_{n_1 \in \mathbb{Z}} \mathbb{1}_{A^l_1}(n_1, m) \cdots \mathbb{1}_{A^l_{d-3}}(n_{d-3}, m) \sum_{n_{d-2} \in \mathbb{Z}} \mathbb{1}_{A^l_{d-2}}(n_{d-2}, m)
\]
\[
\lesssim 2^{2l_d} |E_d|^2 \sum_{m \in \mathbb{Z}} \sum_{n_1 \in \mathbb{Z}} \mathbb{1}_{A^l_1}(n_1, m) \cdots \mathbb{1}_{A^l_{d-4}}(n_{d-4}, m) \sum_{n_{d-3} \in \mathbb{Z}} \mathbb{1}_{A^l_{d-3}}(n_{d-3}, m)
\]
\[
\lesssim 2^{2l_d} 2^{2l_{d-1}} \cdots 2^{2l_2} |E_d| \cdots |E_2| \sum_{m \in \mathbb{Z}} \sum_{n_1 \in \mathbb{Z}} \mathbb{1}_{A^l_1}(n_1, m)
\]

To bound \(\#A^l_1 \) we can use Proposition 4.3. For \(\varepsilon > 0 \) we have:

\[
(n, m) \in A^l_1 \Rightarrow 1 \leq 2^{(4+\varepsilon)l_1} |\langle g_1, \varphi_{n,m} \rangle|^{4+\varepsilon} \Rightarrow \#A^l_1 \lesssim 2^{(4+\varepsilon)l_1} \sum_{(n, m) \in A^l_1} |\langle g_1, \varphi_{n,m} \rangle|^{4+\varepsilon} \lesssim 2^{(4+\varepsilon)l_1} |E_1|.
\]

Using this above,
\[
\#X^{l_1, \ldots, l_{d+1}} \lesssim \varepsilon 2^{2l_d} 2^{2l_{d-1}} \cdots 2^{2l_2} 2^{(4+\varepsilon)l_1} |E_d| \cdots |E_2| |E_1|.
\]
We could have used the $L^4 - L^{4+\varepsilon}$ bound for any g_j and a Bessel bound for the remaining ones. More precisely, if $\sigma \in S_d$ is a permutation, we have

$$\#X_1 \cdots X_{d+1} \lesssim 2^{d\sigma(d)} 2^{2L_0(d-1)} \cdots 2^{2L_0(2)} 2^{(4+\varepsilon)[\sigma(1)] \, |E_{\sigma(d)}|} \cdots |E_{\sigma(2)}||E_{\sigma(1)}| \quad (29)$$

This amounts to exactly d different estimates. Interpolating between all of them with equal weight $\frac{1}{d}$, we obtain:

$$\#X_1 \cdots X_{d+1} \lesssim 2^{\frac{2(d-1)}{d} \frac{d+\varepsilon}{d} l_1} \cdots 2^{\frac{2(d-1)}{d} \frac{d+\varepsilon}{d} l_d} |E_1| \cdots |E_d| \quad (30)$$

$$= 2^{(2 + \frac{2}{d} + \frac{\varepsilon}{d}) l_1} \cdots 2^{(2 + \frac{2}{d} + \frac{\varepsilon}{d}) l_d} |E_1| \cdots |E_d|.$$

Finally, we interpolating between bounds (25) and (30):

$$|\Lambda_d(g_1, \ldots, g_d, h)| \lesssim \sum_{l_1, \ldots, l_d \in \mathbb{Z}_+} 2^{-l_1} \cdots 2^{-l_d+1} \#X_1 \cdots X_{d+1}$$

$$\lesssim \sum_{l_1, \ldots, l_d \in \mathbb{Z}_+} 2^{-l_1} \cdots 2^{-l_d+1} (2^{(2 + \frac{2}{d} + \frac{\varepsilon}{d}) l_1} \cdots 2^{(2 + \frac{2}{d} + \frac{\varepsilon}{d}) l_d} |E_1| \cdots |E_d|) \theta_1 \left(2^{l_d+1} |F| \right)^{\theta_2}$$

$$\lesssim \left(\sum_{l_d+1 \geq 0} 2^{-(1-\theta_2)l_d+1} |F|^{\theta_2} \right)^{\frac{d}{\alpha}} \prod_{j=1}^{d} \sum_{l_j \geq 0} 2^{-(1 - (2 + \frac{2}{d} + \frac{\varepsilon}{d}) \theta_1) l_j} |E_j|^{\theta_1}$$

$$\lesssim |E_1|^{|\alpha(1 - (2 + \frac{2}{d} + \frac{\varepsilon}{d}) \theta_1) + \theta_1} \cdots |E_d|^{|\alpha(1 - (2 + \frac{2}{d} + \frac{\varepsilon}{d}) \theta_1) + \theta_1} |F|^{\theta_2},$$

for any $0 \leq \alpha \leq 1$. On the other hand, for several of the series above to converge we need $(2 + \frac{2}{d} + \frac{\varepsilon}{d}) \theta_1 > 1$. By choosing the appropriate α and θ_1 close to $(2 + \frac{2}{d})^{-1}$, one concludes this case.

9. Case $2 \leq k \leq d + 1$ of Theorem 1.5

Recall that we fixed a set of weakly transversal cubes $Q = \{Q_1, \ldots, Q_k\}$ in Section 3 and let g_j be supported on Q_j. The averaged k-linear extension operator in \mathbb{R}^d is given by

$$ME_{k,d}^\frac{1}{k}(g_1, \ldots, g_k) = \sum_{(\overline{n}, m) \in \mathbb{Z}^{d+1}} \left(\prod_{i=1}^{k} |\langle g_j, \varphi_{\overline{n}, m}^j \rangle| \right)^{\frac{1}{k}} (\chi_{\overline{n}} \otimes \chi_m).$$

The conjectured bounds for it are

$$\|ME_{k,d}^\frac{2}{k}(g_1, \ldots, g_k)\|_{L^p(\mathbb{R}^{d+1})} \lesssim \prod_{j=1}^{k} \|g_j\|_{L^2(Q_j)} \quad (31)$$

for all $p \geq \frac{2(d+k+1)}{(d+k-1)}$.

13We consider this averaged version of $ME_{k,d}$ for technical reasons. The conjectured bounds for it have a Banach space as target, as opposed to the quasi-Banach space (for most k and d) $L^{2(d+k+1)\gamma}$ that is the target of Conjecture 1.2. The fact that L^p for $p \geq \frac{2(d+k+1)}{(d+k-1)}$ is Banach lets us use effectively in the interpolation argument, since it forces the final power γ on $|F|^\gamma$ to be positive.

When $k = d = 2$, Conjecture 1.2 has L^2 as target. We will discuss this case first to help digest the main ideas of the general argument, and since this space is Banach, we can work directly with $ME_{2,d}$ instead of considering the averaged operator $ME_{2,d}^\frac{1}{2}$.

As done in the case $k = 1$, it’s enough to prove certain restricted weak-type bounds for its associated form

$$
\tilde{\Lambda}_{k,d}(g,h) := \sum_{(n,m) \in \mathbb{Z}^{d+1}} \left(\prod_{j=1}^{k} |\langle g_j, \varphi_{n,m}^j \rangle| \right)^{\frac{1}{k}} \langle h, \chi_n^j \otimes \chi_m \rangle,
$$

where $g := (g_1, \ldots, g_k)$ by a slight abuse of notation.

Remark 9.1. We will prove (31) up to the endpoint assuming that g_1 is a full tensor, but the argument can be repeated if any other g_j is assumed to be of this type. As the reader will notice, the proof depends on the fact that we can find $k - 1$ canonical directions associated to Q_j, which is the defining property of a weakly transversal collection of cubes with pivot Q_j. In what follows, we are taking $\{e_1, \ldots, e_{k-1}\}$ to be the set of directions associated to Q_1.

Remark 9.2. As we mentioned in Remark 1.7 under weak transversality alone we do not need g_1 to be a full tensor to prove the case $2 \leq k \leq d$ of Theorem 1.9. In fact, the following structure is enough in this section:

$$
g_1(x_1, \ldots, x_d) = g_{1,1}(x_1) \cdot g_{1,2}(x_2) \cdot \cdots \cdot g_{1,k-1}(x_{k-1}) \cdot g_{1,k}(x_k, x_{k+1}, \ldots, x_d).
$$

Notice that we have $k - 1$ single variable functions and one function in $d - k + 1$ variables. The single variable ones are defined along $k - 1$ canonical directions $\{e_1, \ldots, e_{k-1}\}$ associated to Q_1, and $g_{1,k}$ is a function in the remaining variables.

In general, if we are given a weakly transversal collection \tilde{Q}, for a fixed $1 \leq j \leq k - 1$ we have a set of associated directions $\mathcal{E}_j = \{e_1, \ldots, e_{k-1}\}$ (see Definition 3.2). Denote by x_{e_j} the vector of $d - k + 1$ entries obtained after removing $x_{i_1}, \ldots, x_{i_{k-1}}$ from (x_1, \ldots, x_d). Assuming that the functions g_{l} for $l \neq j$ are generic and that g_{j} has the weaker tensor structure

$$
g_j(x_1, \ldots, x_d) = g_{j,1}(x_{i_1}) \cdot \cdots \cdot g_{j,k-1}(x_{i_{k-1}}) \cdot g_{j,k}(x_{e_j})
$$

will suffice to conclude Theorem 1.5 for \tilde{Q} through the argument that we will present in this section.

Remark 9.3. As a consequence of Claim 3.4, a collection $Q = \{Q_1, \ldots, Q_k\}$ of transversal cubes generates finitely many sub-collections \mathcal{Q} of weakly transversal ones (after partitioning each Q_l into small enough cubes and defining new collections with them). However, for a fixed $1 \leq j \leq k$, the associated $k - 1$ directions in \mathcal{E}_j can potentially change from one such weakly transversal sub-collection to another, and this is why we assume g_j to be a full tensor under the transversality assumption.

In this section we will use the following conventions:

- The variables of g_j are x_1, x_2, \ldots, x_d, but we will split them in two groups: $k - 1$ blocks of one variable represented by x_1, $1 \leq i \leq k - 1$, and one block of $d - k + 1$ variables $\tilde{x}_k = (x_k, x_{k+1}, \ldots, x_{d-1}, x_d)$.
- The index x_i in $\langle \cdot, \cdot \rangle_{x_i}$ indicates that the inner product is an integral in the variable x_i only. For instance,

$$
\langle g_j, \varphi \rangle_{x_1} := \int_{\mathbb{R}} g_j(x_1, \ldots, x_d) \cdot \varphi(x_1, \ldots, x_d)dx_1
$$

is now a function of the variables x_2, \ldots, x_d. The vector index \tilde{x}_k in $\langle \cdot, \cdot \rangle_{\tilde{x}_k}$ is understood analogously:

$$
\langle g_j, \varphi \rangle_{\tilde{x}_k} := \int_{\mathbb{R}^{d-k+1}} g_j(x_1, \ldots, x_d) \cdot \varphi(x_1, \ldots, x_d)d\tilde{x}_k
$$

- The expression $\|\langle g_j, \cdot \rangle_{x_i}\|_2$ is the L^2 norm of a function in the variables x_l, $1 \leq l \leq k - 1$, $l \neq i$. To illustrate using (34),

$$
\|\langle g_j, \varphi \rangle_{x_1}\|_2 = \left[\int_{\mathbb{R}^{d-1}} \left| \int_{\mathbb{R}} g_j(x_1, \ldots, x_d) \cdot \varphi(x_1, \ldots, x_d)dx_1 \right|^2dx_2 \ldots dx_d \right]^{\frac{1}{2}}.
$$
The quantity \(\| (g_j, \cdot) \xi_k^j \|_2 \) is defined analogously as

\[
\| (g_j, \varphi) \xi_k^j \|_2 = \left[\int_{\mathbb{R}^{d-k+1}} \left| \int_{\mathbb{R}^d} g_j(x_1, \ldots, x_d) \cdot \varphi(x_1, \ldots, x_d) \, dx_k \right|^2 \, dx_1 \ldots dx_{k-1} \right]^\frac{1}{2}.
\]

- For \(\vec{n} = (n_1, \ldots, n_d) \), define the vector

\[
\vec{n}_i := (n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_d).
\]

In other words, the hat on \(\vec{n}_i \) indicates that \(n_i \) was removed from the vector \(\vec{n} \). For \(f : \mathbb{Z}^d \to \mathbb{C} \), define

\[
\| f(\vec{n}) \|_{\ell^1_{\vec{n}_i}} := \sum_{\vec{n}_i \in \mathbb{Z}^{d-1}} |f(\vec{n})|.
\]

That is, \(\| f(\vec{n}) \|_{\ell^1_{\vec{n}_i}} \) is the \(\ell^1 \) norm of \(f \) over all \(n_1, \ldots, n_d \), except for \(n_i \). Hence \(\| f(\vec{n}) \|_{\ell^1_{\vec{n}_i}} \) is a function of the remaining variable \(n_i \). The quantity \(\| f(\vec{n}) \|_{\ell^1_{\vec{n}_k}} \) is defined analogously as

\[
\| f(\vec{n}) \|_{\ell^1_{\vec{n}_k}} := \sum_{(n_1, \ldots, n_{k-1}) \in \mathbb{Z}^{k-1}} |f(\vec{n})|.
\]

Finally, the integral \(\int g \, d\hat{x}_i \) means the following:

\[
\int g(x_1, \ldots, x_d) \, d\hat{x}_i := \int g(x_1, \ldots, x_d) \, dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_d.
\]

In what follows, let \(E_{1,1}, \ldots, E_{1,k-1} \subset [0,1] \), \(E_{1,k} \subset [0,1]^{d-k-1} \), \(E_j \subset Q_j \) (\(2 \leq j \leq k \)) and \(F \subset \mathbb{R}^{d+1} \) be measurable sets such that \(|g_{1,l}| \leq \chi_{E_{1,l}} \) for \(1 \leq l \leq k-1 \), \(|g_{1,k}| \leq \chi_{E_{1,k}} \), \(|g_j| \leq \chi_{E_j} \), for \(2 \leq j \leq k \) and \(|h| \leq \chi_F \). Furthermore, \(E_1 := E_{1,1} \times \ldots \times E_{1,k-1} \times E_{1,k} \).

A rough description of the argument in one sentence is: the proof is a combination of Strichartz in some variables and bilinear extension in many pairs of the other variables. In order to illustrate that, we will first present the simplest case in an informal way, which means that we will avoid the purely technical aspects in this preliminary part. Once this is understood, it will be clear how to rigorously extend the argument in general.

9.1. Understanding the core ideas in the \(k = d = 2 \) case. Consider the model

\[
ME_{2,2}(g_1, g_2) = \sum_{(\vec{n}, m) \in \mathbb{Z}^3} \langle g_1, \varphi_{\vec{n}, m}^1 \rangle \langle g_2, \varphi_{\vec{n}, m}^2 \rangle (\chi_{\vec{n}} \otimes \chi_m)
\]

and its associated trilinear form\(^{14}\)

\[
\tilde{\Lambda}_{2,2}(g_1, g_2, h) = \sum_{(\vec{n}, m) \in \mathbb{Z}^3} \langle g_1, \varphi_{\vec{n}, m}^1 \rangle \langle g_2, \varphi_{\vec{n}, m}^2 \rangle (\chi_{\vec{n}} \otimes \chi_m).
\]

Assuming that \(g_1 = g_{1,1} \otimes g_{1,2} \), we want to prove that

\[
|\tilde{\Lambda}_{2,2}(g_1, g_2)| \lesssim |E_1|^{\frac{1}{2}} \cdot |E_2|^{\frac{1}{2}} \cdot |F|^{\frac{5}{4}+\varepsilon},
\]

for all \(\varepsilon > 0 \). The \(L^2 \times L^2 \to L^{\frac{12}{5}+\varepsilon} \) bound will then follow by multilinear interpolation and Remark\(^{4.5}\). Given the expository character of this subsection, we adopt the informal convention

\[
\begin{cases}
 x^+ \text{ means } x + \delta, \text{ where } \delta > 0 \text{ is arbitrarily small}, \\
 x^- \text{ means } x - \delta, \text{ where } \delta > 0 \text{ is arbitrarily small}.
\end{cases}
\]

We will always be able to control how small the \(\delta \) above is, so we do not worry about making it precise for now.

The first step is to define the level sets of the scalar products appearing in \(ME_{2,2} \):

\(^{14}\) There is a slight abuse of notation here: we are using \(\tilde{\Lambda}_{2,2} \) for the form associated to \(ME_{2,2} \) and not for its averaged version \(ME_{2,2} \), as established in the beginning of this section.
\[A_{1}^{l_1} = \left\{ (\vec{n}, m) : |\langle g_1, \varphi_{n,m}^1 \rangle| \approx 2^{-l_1} \right\}, \]
\[A_{2}^{l_2} = \left\{ (\vec{n}, m) : |\langle g_2, \varphi_{n,m}^2 \rangle| \approx 2^{-l_2} \right\}. \]

Transversality will be captured by exploiting the sizes of “lower-dimensional” information: in fact, we want to make the operator \(ME_{2,1} \) appear, and this will be possible thanks to the interaction between the quantities associated to the following level sets:

\[B_{1}^{r_1} = \left\{ (n_1, m) : \| \langle g_1, \varphi_{n_1,m}^{1,1} \rangle \|_2 \approx 2^{-r_1} \right\}, \]
\[C_{1}^{s_1} = \left\{ (n_1, m) : \| \langle g_2, \varphi_{n_1,m}^{1,2} \rangle \|_2 \approx 2^{-s_1} \right\}. \]

Since there is only one direction along which one can exploit transversality, we will use the \(L^2 \) theory for \(E_1 \) (i.e. Strichartz) along the remaining one. In order to do that, the following level sets will be used:

\[B_{2}^{r_2} = \left\{ (n_2, m) : \| \langle g_1, \varphi_{n_2,m}^{2,1} \rangle \|_2 \approx 2^{-r_2} \right\}, \]
\[C_{2}^{s_2} = \left\{ (n_2, m) : \| \langle g_2, \varphi_{n_2,m}^{2,2} \rangle \|_2 \approx 2^{-s_2} \right\}. \]

The size of the scalar product involving \(h \) will be captured by the following set:

\[D^k = \left\{ (\vec{n}, m) : |\langle H, \chi_{\vec{n}} \otimes \chi_m \rangle| \approx 2^{-k} \right\}. \]

We will also need to organize all the information above in appropriate “slices” and in a major set that takes everything into account. The sets that do that are

\[X^{l_2,s_1} := A_{2}^{l_2} \cap \left\{ (\vec{n}, m) ; (n_1, m) \in C_{1}^{s_1} \right\}, \]
\[X^{l_2,s_2} := A_{2}^{l_2} \cap \left\{ (\vec{n}, m) ; (n_2, m) \in C_{2}^{s_2} \right\}, \]
\[X^{\vec{l}_1,\vec{r}_1,\vec{s}_1} := A_{1}^{l_1} \cap A_{2}^{l_2} \cap \left\{ (\vec{n}, m) ; (n_1, m) \in B_{1}^{r_1} \cap C_{1}^{s_1}, (n_2, m) \in B_{2}^{r_2} \cap C_{2}^{s_2} \right\} \cap D^k, \]

where we are using the abbreviations \(\vec{l} = (l_1, l_2), \vec{r} = (r_1, r_2) \) and \(\vec{s} = (s_1, s_2) \). This gives us

\[|\hat{\Lambda}_{2,2}(g_1, g_2, h)| \lesssim \sum_{\vec{l},\vec{r},\vec{s},k} 2^{-l_1} 2^{-l_2} 2^{-k} |X^{\vec{l},\vec{r},\vec{s},k}|. \]

For the sake of simplicity, let us assume that \(g_1 = 1_{E_{1,1}} \otimes 1_{E_{1,2}}, g_2 = 1_{E_2} \) and \(h = 1_{F^k} \).

We will need efficient ways of relating the scalar and mixed-norm quantities above. A direct computation (using the definition of \(X^{\vec{l},\vec{r},\vec{s},k} \)) shows that

\[2^{-l_1} = \frac{2^{-r_1} \cdot 2^{-r_2}}{|E_1|^{\frac{1}{2}}}. \]

Using Bessel along a direction, for \((n_1, n_2, m) \in X^{l_2,s_1} \) we have:

\[1 \approx 2^{2l_2} |\langle g_2, \varphi_{n_2,m}^{2} \rangle|^2 \implies |X_{(n_1,m)}^{l_2,s_1}| \approx 2^{2l_2} \sum_{n_2 \in X_{(n_1,m)}^{l_2,s_1}} |\langle g_2, \varphi_{n_2,m}^{2} \rangle|^2 \]
\[\implies |X_{(n_1,m)}^{l_2,s_1}| \lesssim 2^{l_2} \| \langle g_2, \varphi_{n_1,m}^{1,2} \rangle \|_2^2 \]
\[\implies 2^{-l_2} \lesssim \frac{2^{-s_1}}{|X_{(n_1,m)}^{l_2,s_1}|^\frac{1}{2}} \]
\[\implies 2^{-l_2} \lesssim \frac{2^{-s_1}}{\| 1_{X_{(n_1,m)}^{l_2,s_1}} \|_{L^\infty}^\frac{1}{2}} \]

\[\text{These indicator functions actually bound } g_1 \text{ and } g_2, \text{ but this does not affect the core of the argument.} \]
by taking the supremum in \((n_1, m)\). Analogously,

\[
2^{-l_2} \lesssim \frac{2^{-s_2}}{\|1_{\mathcal{X}'^2} \|_{L^\infty_{n_1,m} l_{B_1}}^{\ell_1}}.
\]

Relations (36), (37) and (38) play a major role in the proof. The last major piece is a way of bounding \(#\mathcal{X}'^2, r, \mathbf{x}, k\) that allows us to exploit transversality and Strichartz along the right directions, as well as the dual function \(h\). We start with the simplest one of them:

\[
#\mathcal{X}'^2, r, \mathbf{x}, k \lesssim 2^k \sum_{(n,m) \in \mathbb{Z}^3} | \langle h, \chi_{\mathbf{x}} \otimes \chi_{\mathbf{m}} \rangle | = 2^k |F|.
\]

By dropping most of the indicator functions in the definition of \(#\mathcal{X}'^2, r, \mathbf{x}, k\) and using Hölder, we obtain

\[
#\mathcal{X}'^2, r, \mathbf{x}, k \leq \sum_{(n,m) \in \mathbb{Z}^3} 1_{\mathcal{X}'^2, r, \mathbf{x}}(\mathbf{n}, m) \cdot 1_{B_1^0 \cap C_1^0} (n_1, m) \leq \|1_{\mathcal{X}'^2, r, \mathbf{x}}\|_{L^\infty_{n_1,m} l_{B_1}} \cdot \|1_{B_1^0 \cap C_1^0}\|_{l_{B_1}}.
\]

The second factor of the inequality above will be bounded by the one-dimensional bilinear theory:

\[
#B_1^0 \cap C_1^0 \lesssim 2^{2r_1+2s_1} \sum_{n_1,m \in \mathbb{Z}} \left\| \langle g_1, \varphi_{n_1,m}^{1,1} \rangle_{x_1} \right\|^2_2 \cdot \left\| \langle g_2, \varphi_{n_1,m}^{1,2} \rangle_{x_1} \right\|^2_2 \\
= 2^{2r_1+2s_1} \int \left(\sum_{n_1,m \in \mathbb{Z}} \left\| \langle g_1, \varphi_{n_1,m}^{1,1} \rangle_{x_1} \right\|^2_2 \cdot \left\| \langle g_2, \varphi_{n_1,m}^{1,2} \rangle_{x_1} \right\|^2_2 \right) dx_2 d\mathbf{x}_2 \\
= 2^{2r_1+2s_1} \int \|g_1\|^2_{L^2_{x_1}} \cdot \|g_2\|^2_{L^2_{x_1}} dx_2 d\mathbf{x}_2 \\
\leq 2^{2r_1+2s_1} \|g_1\|^2_2 \cdot \|g_2\|^2_2,
\]

by Proposition 4.4 since the supports of \(\varphi^{1,1}\) and \(\varphi^{1,2}\) are disjoint (this is equivalent to transversality in dimension one). This gives us

\[
#\mathcal{X}'^2, r, \mathbf{x}, k \leq \|1_{\mathcal{X}'^2, r, \mathbf{x}}\|_{L^\infty_{n_1,m} l_{B_1}} \cdot 2^{2r_1+2s_1} \cdot |E_1| \cdot |E_2|.
\]

Alternatively,

\[
#\mathcal{X}'^2, r, \mathbf{x}, k \leq \sum_{(n_1,m) \in \mathbb{Z}^3} 1_{B_1^0 \cap C_2^0} (n_2, m) \sum_{n_1 \in \mathbb{Z}} 1_{\mathcal{X}'^2} (\mathbf{n}, m) \cdot 1_{B_1^0} (n_1, m) \\
\leq \|1_{\mathcal{X}'^2}\|_{L^\infty_{n_1,m} l_{B_1}} \cdot \|1_{B_1^0}\|_{l_{B_1}} \cdot \|1_{B_1^0 \cap C_2^0}\|_{l_{B_1,m}}.
\]

We can treat the last two factors appearing in the right-hand side above as follows: for a fixed \(m \in \mathbb{Z},\)

\[
\sum_{n_1 \in \mathbb{Z}} 1_{B_1^0} (n_1, m) \lesssim 2^{2r_1} \sum_{n_1 \in \mathbb{Z}} \left\| \langle g_1, \varphi_{n_1,m}^{1,1} \rangle_{x_1} \right\|^2_2 \leq 2^{2r_1} \cdot \|g_1\|^2_2
\]

by Bessel (recall that the modulated bumps \(\varphi_{n_1,m}^{1,1}\) are almost-orthogonal if \(n_1\) varies and \(m\) is fixed), and then we take the supremum in \(m\). As for the other factor, observe that 16

\[\text{[16]}\text{Here we are also ignoring the fact that we do not prove the endpoint } L^2 - L^6 \text{ estimate for the model } E_1. \text{ It will not compromise this preliminary exposition.}\]
also take an appropriate combination between (37) and (38), and use (36):

\[\#B^2 \cap C^2 \lesssim 2^{5r_2+s_2} \sum_{n_2,m \in \mathbb{Z}} \| \langle g_1, \varphi^2_{n_2,m} \rangle \|_{x_2}^5 \cdot \| \langle g_2, \varphi^2_{n_2,m} \rangle \|_{x_2}^2 \]

\[\lesssim 2^{5r_2+s_2} \left(\sum_{n_2,m \in \mathbb{Z}} \| \langle g_1, \varphi^2_{n_2,m} \rangle \|_{x_2}^6 \right)^{\frac{5}{6}} \left(\sum_{n_2,m \in \mathbb{Z}} \| \langle g_2, \varphi^2_{n_2,m} \rangle \|_{x_2}^6 \right)^{\frac{1}{6}} \]

\[\leq 2^{5r_2+s_2} \| g_1 \|_{x_2}^5 \cdot \| g_2 \|_{x_2}^2 \]

by Corollary 4.2. These last two estimates give the following bound on \(#X^\mathcal{T}, \mathcal{P}, \mathcal{V}, k:\)

\[(41) \quad \#X^\mathcal{T}, \mathcal{P}, \mathcal{V}, k \lesssim \| \mathbb{1}_{\mathcal{X}^\mathcal{T} \cap \mathcal{X}^\mathcal{P} \cap \mathcal{X}^\mathcal{V} \cap \mathcal{X}^\mathcal{K} \cap \mathcal{X}^\mathcal{A}} \|_{x_2}^\mathcal{T} \cdot |E_1|^{\frac{1}{2}} \cdot 2^{2r_2+s_2} \cdot |E_1|^{\frac{1}{2}} \cdot |E_2|^{\frac{1}{2}}.\]

In what follows, we interpolate between \(\mathcal{T}, \mathcal{P}, \mathcal{V}, k\), and with weights \(\frac{5}{4}, \frac{1}{4}, \frac{5}{6}\), respectively. We also take an appropriate combination between (37) and (38), and use (36):

\[|\tilde{A}_{2,2}(g_1, g_2, h)| \lesssim \sum_{\mathcal{T}, \mathcal{P}, \mathcal{V}, k} 2^{-r_1} \cdot 2^{-r_2} \cdot 2^{-\frac{s_1}{10}} \cdot 2^{-\frac{s_2}{10}} \cdot 2^{-\frac{k}{8}} \cdot 2^{-\frac{k}{5}} \cdot 2^{-\frac{k}{2}} \cdot \left(|\mathbb{1}_{\mathcal{X}^\mathcal{T} \cap \mathcal{X}^\mathcal{P} \cap \mathcal{X}^\mathcal{V} \cap \mathcal{X}^\mathcal{K} \cap \mathcal{X}^\mathcal{A}} \|_{x_2}^\mathcal{T} \cdot |E_1|^{\frac{1}{2}} \cdot 2^{2r_2+s_2} \cdot |E_1|^{\frac{1}{2}} \cdot |E_2|^{\frac{1}{2}} \right)^{\frac{1}{5}} \cdot \left(2^k |F| \right)^{\frac{1}{8}} \lesssim |E_1|^{\frac{1}{2}} \cdot |E_2|^{\frac{1}{2}} \cdot |F|^{\frac{1}{5}},\]

which is the estimate that we were looking for\(^{17}\).

9.2. The general argument. Roughly, this is a one-paragraph outline of the proof: we split the sum in (32) into certain level sets, find good upper bounds for how many points \((\mathbf{n}, m)\) are in each level set using the weak transversality and Strichartz information, and then average all this data appropriately.

First we will prove the bound

\[(42) \quad \| ME_{k,d}^{\mathcal{F}}(g) \|_{L^4_{(\mathbf{n}+x)}(\mathbb{R}^{d+1})} \lesssim \varepsilon \prod_{l=1}^{k} |E_{1,l}|^{\frac{1}{2l}} \cdot \prod_{j=2}^{k} |E_{j}|^{\frac{1}{2j}},\]

for every \(\varepsilon > 0\). As we remarked at the end of Section 4, this is the restricted weak-type bound that will be proved directly; all the other ones that are necessary for multilinear interpolation can be proved in a similar way, as the reader will notice.

We will define several level sets that encode the sizes of many quantities that will play a role in the proof. We start with the ones involving the scalar products in the multilinear form above.

\[A_{j}^{l} := \{ (\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad |\langle g_j, \varphi^j_{\mathbf{n},m} \rangle | \approx 2^{-l} \}, \quad 1 \leq j \leq k.\]

The sizes of the \(\langle g_j, \varphi^j_{\mathbf{n},m} \rangle \) are not the only information that we will need to control. As in the previous subsection, some mixed-norm quantities appear naturally after using Bessel’s\(^{17}\) bound on \(\tilde{A}_{2,2}\) is of course informal, which is why we wrote \(|\lesssim|\). Observe that we also removed the sum in \(\mathcal{T}\); it contributes with a term that depends on \(\varepsilon\) in the formal argument. Later in the text we will see why we can assume \(\mathcal{T}, \mathcal{P}, \mathcal{V}, k \geq 0\) in the sum above.

\(^{17}\)This bound on \(\tilde{A}_{2,2}\) is of course informal, which is why we wrote \(|\lesssim|\). Observe that we also removed the sum in \(\mathcal{T}\); it contributes with a term that depends on \(\varepsilon\) in the formal argument. Later in the text we will see why we can assume \(\mathcal{T}, \mathcal{P}, \mathcal{V}, k \geq 0\) in the sum above.
inequality along certain directions, and we will need to capture these as well:

\[B_{i,1}^{r_i} := \{ (n_i, m) \in \mathbb{Z}^2; \| (g_{i}, \varphi_{n_i, m})_x \|_2 \approx 2^{-r_i} \}, \quad 1 \leq i \leq k - 1, \]

\[B_{i,1}^{r_i+1} := \{ (n_i, m) \in \mathbb{Z}^2; \| (g_{i+1}, \varphi_{n_i, m})_x \|_2 \approx 2^{-r_i+1} \}, \quad 1 \leq i \leq k - 1, \]

\[B_{kj}^{r_k} := \{ (\vec{n}_k, m) \in \mathbb{Z}^{d-k+2}; \| (g_j, \varphi_{\vec{n}_k, m})_x \|_2 \approx 2^{-r_k} \}, \quad 1 \leq j \leq k. \]

Set \(B_{ij}^{r_i} := \emptyset \) for any other pair \((i, j)\) not included in the above definitions. Observe that \(g_{i} \) (the function that has a tensor structure) has \(k \) sets \(B_{i,1}^{r_i} \) and \(1 \) set \(B_{k,1}^{r_k} \). The other functions \(g_{j}, j \neq i \), have only two: \(1 \) set \(B_{kj}^{r_k} \) and \(1 \) set \(B_{kj}^{r_k} \) for each \(1 \leq j \leq k \). The idea behind the sets \(B_{i,1}^{r_i} \) and \(B_{i,1}^{r_i+1} \) is to isolate the “piece” of each function that encodes the weak transversality information from the part that captures the Strichartz/Tomas-Stein behavior, which is in the set \(B_{kj}^{r_k} \). For each \(1 \leq i \leq k - 1 \), we will pair the information of the sets \(B_{i,1}^{r_i} \) and \(B_{i,1}^{r_i+1} \) with \(\langle \varphi \rangle \) to extract the gain yielded by weak transversality. The information contained in the sets \(B_{kj}^{r_k} \) will be exploited via Corollary 4.2.

The last quantity we have to control is the one arising from the dualizing function \(h \):

\[C_l := \{ (\vec{n}, m) \in \mathbb{Z}^{d+1}; \| (h, \chi_{\vec{n}} \otimes \chi_m) \|_2 \approx 2^{-t} \}. \]

In order to prove some crucial bounds, at some point we will have to isolate the previous information for only one of the functions \(g_{j} \). This will be done in terms of the following sets:

\[X_{l}^{r_{l}, i, j} := A_{l}^{r_{l}, i, j} \cap \{ (\vec{n}, m) \in \mathbb{Z}^{d+1}; \quad (n_i, m) \in B_{i,j}^{r_{i}} \} \].

In other words, \(X_{l}^{r_{l}, i, j} \) contains all the \((n_1, \ldots, n_d, m)\) whose corresponding scalar product \(\langle g_{j}, \varphi_{\vec{n}, m} \rangle \) has size about \(2^{-l} \) and with \((n_i, m)\) being such that \(\| (g_{j}, \varphi_{\vec{n}, m})_x \|_2 \) has size about \(2^{-r_{i}} \).

Finally, it will also be important to encode all the previous information into one single set. This will be done with

\[\tilde{X}^{T, R, l} := \bigcap_{1 \leq j \leq k} A_{l}^{r_{l}, i, j} \cap \{ (\vec{n}, m) \in \mathbb{Z}^{d+1}; \quad (n_i, m) \in \bigcap_{j} B_{i,j}^{r_{i}} \}, \quad 1 \leq i \leq d \} \cap C_l, \]

where we are using the abbreviations \(T = (l_1, \ldots, l_k) \) and \(R := (r_{i,j})_{i,j} \). Hence we can bound the form \(\tilde{A}_{k,d} \) as follows:

\[\tilde{A}_{k,d}(g, h) \leq \sum_{T, R, l} 2^{-l} \prod_{j=1}^{k} 2^{-l_j} \# \tilde{X}^{T, R, l}. \]

Observe that we are assuming without loss of generality that \(l_j, r_{i,j}, t \geq 0 \). Indeed,

\[2^{-l_j} \leq |\langle g_{j}, \varphi_{\vec{n}, m} \rangle| \leq \| g_{j} \|_{\infty} \cdot \| \varphi \|_{1} \leq 1, \]

so \(l_j \) is at least as big as a universal integer. The argument for the remaining indices is the same.

The following two lemmas play a crucial role in the argument by relating the scalar and mixed-norm quantities involved in the stopping-time above. Lemma 9.4 allows us to do that for the quantities associated to \(g_{i} \), the function that has a tensor structure. We remark that this is the only place in the proof where the tensor structure is used.

Lemma 9.4. If \(\tilde{X}^{T, R, l} \neq \emptyset \), then:

\[\text{...} \]

\[\text{...} \]

\[\text{...} \]

\[\text{...} \]
A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID

Proof. Observe that

\[2^{-r_{i,1}} \cdot \ldots \cdot 2^{-r_{k,1}} \approx \prod_{i=1}^{k} \| \langle g_1, \varphi_{n_i,m}^{i,1} \rangle \|_2, \]

\[= \prod_{i=1}^{k} \left\| \langle g_{i,1} \otimes \ldots \otimes g_{k,1}, \varphi_{n_i,m}^{i,1} \rangle \|_2 \right\|
\]

\[= \prod_{i=1}^{k} \| \langle g_{i,1}, \varphi_{n_i,m}^{i,1} \rangle \|_2 \cdot \| g_{1,1} \otimes \ldots \otimes g_{k,1,1} \|_2 \]

\[= \| \langle g_1, \varphi_{n_i,m}^{1,1} \rangle \|_2 \cdot \| g_1\|_2 \]

\[\approx 2^{-l_1} \cdot \| g_1 \|_2^{-1}, \]

and this proves the lemma. \(\square \)

Lemma 9.5 gives us an alternative way of relating the quantities previously defined for the generic functions \(g_2, \ldots, g_k \).

Lemma 9.5. If \(X \rightarrow \mathbb{R}^t \neq \emptyset \), then:

\[2^{-r_{i,1}} \cdot \ldots \cdot 2^{-r_{k,1}} \approx \prod_{i=1}^{k} \| \langle g_1, \varphi_{n_i,m}^{i,1} \rangle \|_2, \]

\[= \prod_{i=1}^{k} \left\| \langle g_{i,1} \otimes \ldots \otimes g_{k,1}, \varphi_{n_i,m}^{i,1} \rangle \|_2 \right\|
\]

\[= \prod_{i=1}^{k} \| \langle g_{i,1}, \varphi_{n_i,m}^{i,1} \rangle \|_2 \cdot \| g_{1,1} \otimes \ldots \otimes g_{k,1} \|_2 \]

\[= \| \langle g_1, \varphi_{n_i,m}^{1,1} \rangle \|_2 \cdot \| g_1\|_2 \]

\[\approx 2^{-l_1} \cdot \| g_1 \|_2^{-1}, \]

for all \(1 \leq i \leq k - 1 \).

Proof. (44) is a consequence of orthogonality: for a fixed \((n_i, m) \), denote

\[X^{l_{i+1},r_{i+1}}_{(n_i,m)} := \{ \hat{n}_i; \ (\hat{n}_i, m) \in X^{l_{i+1},r_{i+1}}_{(n_i,m)} \}. \]

This way,

\[\# X^{l_{i+1},r_{i+1}}_{(n_i,m)} \approx 2^{l_{i+1}} \sum_{\hat{n}_i \in X^{l_{i+1},r_{i+1}}_{(n_i,m)}} | \langle g_{i+1}, \varphi_{n_i,m}^{i+1} \rangle |^2 \]

\[\leq 2^{l_{i+1}} \sum_{\hat{n}_i} \left| \left\langle g_{i+1}, \varphi_{n_i,m}^{i+1} \right\rangle \right|^2 \]

\[\leq 2^{l_{i+1}} \int \left| \left\langle g_{i+1}, \varphi_{n_i,m}^{i+1} \right\rangle \right|^2 d\hat{x}_i \]

\[\approx 2^{l_{i+1}} \cdot 2^{-2r_{i+1}}, \]

where we used Bessel’s inequality from the second to the third line. The lemma follows by taking the supremum in \((n_i, m) \). (45) is proven analogously. \(\square \)

The following corollary gives a convex combination of the relations in Lemma 9.5 that will be used in the proof.
Corollary 9.6. For $1 \leq i \leq k - 1$ we have
\[
2^{-l_{i+1}} \lesssim 2^{2 \frac{2k}{d + k + 1} r_{i+1,i+1} - l_{i+1}^0} \cdot 2^{-\frac{d-k+1}{d+k+1} r_{k+1,i+1}} .
\]

Proof. Interpolate between the bounds of Lemma 9.5 with weights $\frac{2k}{d+k+1}$ and $\frac{d-k+1}{d+k+1}$, respectively.

We now concentrate on estimating the right-hand side of (43) by finding good bounds for $\# \mathcal{X}^{T,R,t}$. The following bound follows immediately from the disjointness of the supports of $\chi_{\mathbb{R}} \otimes \chi_m$:
\[
\# \mathcal{X}^{T,R,t} \lesssim \sum_{(\mathbf{n},m) \in \mathbb{Z}^{d+1}} |\langle h, \chi_{\mathbb{R}} \otimes \chi_m \rangle| \lesssim 2^{|F|}.
\]
By definition of the set $\mathcal{X}^{T,R,t}$:
\[
\# \mathcal{X}^{T,R,t} \leq \sum_{(\mathbf{n},m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^{k} 1_{K_j}^{1/2} \cdot \prod_{i,j} 1_{\mathcal{B}_{i,j}}^{1/2}.
\]
We will manipulate (47) in k different ways: $k - 1$ of them will exploit orthogonality (through the one-dimensional bilinear theory after combining the sets $\mathcal{B}_{i+1,i+1}$ and $\mathcal{B}_{i,i+1}$, $1 \leq i \leq k - 1$) and the last one will reflect Strichartz/Tomas-Stein in an appropriate dimension. The following lemma gives us estimates for the cardinality of $\mathcal{X}^{T,R,t}$ based on the sizes of some of its slices along canonical directions.$^{[19]}$

Lemma 9.7. The bounds above imply
(a) The orthogonality-type bound.$^{[20]}$
\[
\# \mathcal{X}^{T,R,t} \lesssim \sum_{(\mathbf{n},m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^{k} 1_{K_j}^{1/2} \cdot 2^{2r_{i+1} + 2r_{i+1} + 1} \cdot \|	ilde{g}_1\|_2 \|	ilde{g}_{i+1}\|_2, \quad 1 \leq i \leq k - 1.
\]
(b) The Strichartz-type bound:
\[
\# \mathcal{X}^{T,R,t} \leq \prod_{j=2}^{k} \|1_{K_j}^{1/2} \|_{l_{m}^{\infty \rightarrow m} l_{n}^{\infty \rightarrow k}}^2 \cdot 2^{\sum_{i=1}^{k-1} r_{i+1} - k(i+1)} \cdot \|	ilde{g}_1\|_2 \|	ilde{g}_{i+1}\|_2, \quad 1 \leq i \leq k - 1.
\]
where
\[
\alpha := \frac{2(d+k+1)}{k(d-k+1)} + \beta \frac{(d+k+1)}{k(d-k+3)}, \quad \beta := \frac{2}{k} + \delta \frac{(d-k+1)}{k(d-k+3)},
\]
with $\delta, \bar{\delta} > 0$ being arbitrarily small parameters to be chosen later.$^{[21]}$

Proof. For each $1 \leq i \leq k - 1$ we bound most of the indicator functions in (47) by 1 and obtain

$^{[19]}$The reader may associate this idea to certain discrete Loomis-Whitney or Brascamp-Lieb inequalities. While reducing matters to lower dimensional theory is at the core of our paper, we do not yet have a genuine “Brascamp-Lieb way” of bounding $\# \mathcal{X}^{T,R,t}$ for which our methods work. For instance, no “slice” of $\mathcal{X}^{T,R,t}$ given by fixing a few (or all) n_j and summing over m appears in our estimates, which breaks the Loomis-Whitney symmetry.

$^{[20]}$Weak transversality enters the picture here.

$^{[21]}$One should think of δ and $\bar{\delta}$ as being “morally zero”. They will be chosen as a function of the initially given $\epsilon > 0$, and the only reason we introduce them is to make the appropriate up to the endpoint Strichartz exponent appear in (53). The main terms of α and β are also chosen with that in mind.
Using this in (50) gives
\[b \]
\[\text{d} \]
\[\text{satisfies} \]
\[\text{Proposition 4.4} \]
\[\text{for each} \]
\[\text{where we used Hölder's inequality from the third to fourth line. Next, notice that} \]
\[\| \mathbb{B}_{i+1}^{r+1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{r+1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \]

Transversality is exploited now: the cube \(Q_1 \) with \(\{ε_1, \ldots, ε_{k-1}\} \) as associated set of directions satisfies (12), which allows us to apply Proposition 4.4 for each \(1 ≤ i ≤ k - 1 \) since weak transversality is equivalent to transversality in dimension \(d = 1 \). By definition of the sets \(\mathbb{B}_{i+1}^{r+1} \) and \(\mathbb{B}_{i+1}^{1} \), Fubini and Proposition 4.4 we have:

\[\| \mathbb{B}_{i+1}^{r+1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \]

Using this in (50) gives (a). As for (b), bound \(\#X_{T,R}^{T,R} \) as follows:

\[\#X_{T,R}^{T,R} = \sum_{(n,m) ∈ Z^{d+1}} 1_{X_{T,R}^{T,R},(n,m)} \]

\[\sum_{(n,m) ∈ Z^{d+1}} \prod_{j=2}^{k} 1_{X^{r,j,k}_j}(n,m) \prod_{i=1}^{k-1} 1_{B_{i+1}^{r+1}}(n_i,m) \prod_{l=1}^{k} 1_{B_{k,l}^{r}}(n_k,m) \]

\[\sum_{n_k,m,l} \prod_{j=1}^{k} 1_{B_{k,l}^{r}}(n_k,m) \quad \sum_{n_1, \ldots, n_{k-1}} \prod_{j=2}^{k} 1_{X^{r,j,k}_j}(n,m) \prod_{i=1}^{k-1} 1_{B_{i+1}^{r+1}}(n_i,m) \]

\[\sum_{n_k,m,l} \prod_{j=2}^{k} 1_{X^{r,j,k}_j}(n,m) \prod_{i=1}^{k-1} 1_{B_{i+1}^{r+1}}(n_i,m) \]

where we used Hölder's inequality from the third to fourth line. Next, notice that

\[\| \mathbb{B}_{i+1}^{r+1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \quad \| \mathbb{B}_{i+1}^{1} \|_{ℓ_{n_i,m}^{1}} \]

\[\sup_{m} 2^{2r_i,1} \sum_{n_i} \| ⟨g_1, ϕ_{n_i,m}^{r,1}⟩_x \|^{2} \quad \sup_{m} 2^{2r_i,1} \int \sum_{n_i} \| ⟨g_1, ϕ_{n_i,m}^{r,1}⟩_x \|^{2} \text{d}x_i \]

\[\leq 2^{2r_i,1} \| g_1 \|^{2} \]

(52)
by orthogonality. Now let

\[p_{k,1} := \frac{k(d - k + 3)}{(d + k + 1)}, \]

\[p_{k,l} := \frac{k(d - k + 3)}{(d - k + 1)}, \quad \forall \ 2 \leq l \leq k \]

and notice that

\[\sum_{l=1}^{k} \frac{1}{p_{k,l}} = 1. \]

This way, by definition of \(B_{k,l} \) and by Hölder’s inequality with these \(p_{k,l} \) we have

(53)

\[\left\| \prod_{l=1}^{k} \mathbb{1}_{B_{k,l}} \right\|_{\ell_{n}^{2}(R,t)} \]

\[\leq 2^{\alpha_{k,1}+\sum_{l=2}^{k} \beta_{r_{k,l}}} \sum_{(\mathfrak{n}_{k,m})} \left\| \langle g_{1}, \varphi_{\mathfrak{n}_{k,m}}^{k,1} \rangle \right\|_{2}^{\alpha_{p_{k,1}}} \cdot \prod_{l=2}^{k} \left\| \langle g_{1}, \varphi_{\mathfrak{n}_{k,m}}^{k,l} \rangle \right\|_{2}^{\beta_{p_{k,l}}} \]

\[\leq 2^{\alpha_{k,1}+\sum_{l=2}^{k} \beta_{r_{k,l}}} \left(\sum_{(\mathfrak{n}_{k,m})} \left\| \langle g_{1}, \varphi_{\mathfrak{n}_{k,m}}^{k,1} \rangle \right\|_{2}^{2} \right)^{2(d-k+3)}(d-k+1)^{\delta} \cdot \prod_{l=2}^{k} \left\| \langle g_{1}, \varphi_{\mathfrak{n}_{k,m}}^{k,l} \rangle \right\|_{2}^{2} \]

\[\leq 2^{\alpha_{k,1}+\sum_{l=2}^{k} \beta_{r_{k,l}}} \cdot \| g_{1} \|_{2}^{\alpha} \cdot \prod_{l=2}^{k} \| g_{l} \|_{2}^{\beta}, \]

by the up to the endpoint mixed-norm Strichartz bound in Corollary 4.2. Using (52) and (53) in (51) yields \((b)\).

Given \(\varepsilon > 0 \) small\(^{23}\), we interpolate between \(k + 1 \) bounds for \(\# X_{T,R,t} \) with the following weights\(^{24}\)

\[
\begin{cases}
\theta_{l} = \frac{1}{d+k+1} - \frac{\varepsilon}{k}, & 1 \leq l \leq k - 1 \quad \text{for (48)}, \\
\theta_{k} = \frac{\varepsilon}{(d-k+1)} & \text{for (49)}, \\
\theta_{k+1} = 1 - \frac{(d+k-1)}{2(d+k+1)} + \varepsilon & \text{for (46)},
\end{cases}
\]

which leads to

\(^{22}\)See the footnote related to Corollary 4.2

\(^{23}\)Perhaps it is helpful for the reader to think of \(\varepsilon, \delta \) and \(\bar{\delta} \) as equal to zero to focus on the important parts of the proof. The presence of these parameters here is a mere technicality, except of course for the fact that \(\varepsilon > 0 \) makes us lose the endpoint in this case.

\(^{24}\)Observe that \(\sum_{l=1}^{k+1} \theta_{l} = 1 \). These weights are chosen so that the correct powers of the measures \(|E_{j}| \) and \(|F| \) appear in (55).
Developing the expression above,

\[|\tilde{\Lambda}_{k,d}(g,h)| \]
\[\lesssim \sum_{\ell,R,t \geq 0} 2^{-t} \times \prod_{j=1}^{k} 2^{-r_{j,1}} \]
\[\times \prod_{l=1}^{k-1} \left(\frac{2^{2r_{l+1} + 2r_{l+1} \cdot \|g_{l+1}\|}}{\|g_{l}\|^2} \right)^{\frac{1}{d + k + 1} - \frac{1}{k}} \]
\[\times \prod_{j=2}^{k} \left(\frac{2^{2r_{j,k,j} + 2r_{j,k,j} \cdot \|g_{j}\|}}{\|g_{j}\|^2} \right)^{\frac{1}{d + k + 1} - \frac{1}{k}} \]
\[\times \left((2^t |F|) \left[1 - \frac{(d-k+1)}{2(d + k + 1)} \right] + \epsilon \right), \]

Using Lemma 9.4 and Corollary 9.6 to bound the \(2^{-l_j} \) in the form \(\tilde{\Lambda}_{k,d} \) yields:

\[|\tilde{\Lambda}_{k,d}(g,h)| \]
\[\lesssim \sum_{\ell,R,t \geq 0} 2^{-t} \times \prod_{j=1}^{k} 2^{-r_{j,1}} \left(\frac{1}{\|g_{1}\|^2} \prod_{j=1}^{k} 2^{-r_{j,1}} \right)^{\frac{1}{d + k + 1} - \frac{1}{k}} \]
\[\times \prod_{i=1}^{k-1} \left(\frac{2^{2r_{i,k+1} + 2r_{i,k+1} \cdot \|g_{i+1}\|}}{\|g_{i}\|^2} \right)^{\frac{1}{d + k + 1} - \frac{1}{k}} \]
\[\times \prod_{j=2}^{k} \left(\frac{2^{2r_{j,k,j} + 2r_{j,k,j} \cdot \|g_{j}\|}}{\|g_{j}\|^2} \right)^{\frac{1}{d + k + 1} - \frac{1}{k}} \]
\[\times \left((2^t |F|) \left[1 - \frac{(d-k+1)}{2(d + k + 1)} \right] + \epsilon \right), \]

Developing the expression above,
$$\tilde{\Lambda}_{k,d}(g,h) \lesssim \sum_{T,R,t \geq 0} 2^{-t} \times 2^{-\frac{d}{2} l_1} \times \left(\prod_{j=1}^{k} 2^{-r_{j,1}} \right)^{\frac{1}{k} - \frac{d}{k}} \cdot \|g_1\|_2^{2(k-1) - \frac{k}{k}} \times \prod_{i=1}^{k-1} 2^{-\frac{d}{2} l_{i+1}^1} \times \prod_{i=1}^{k-1} \left[2^{-\frac{d}{2} \times \frac{d}{k} + 1} \cdot 2^{-\frac{(d-k+1)}{2(k-d+1)}} \right]^{\gamma \frac{d}{k} - \frac{d}{k}}$$

At this point we set the values of δ and $\tilde{\delta}$ (as functions of ε) to be such that\footnote{We emphasize that these particular choices are just for computational convenience, and we have not developed the expressions because this is exactly how we use them to simplify the previous calculations.}

$$\delta = \left[\frac{(d-k+1)}{k(d-k+3)} - \frac{(d+k+1)\varepsilon}{k^2(d-k+3)} \right] = \frac{1}{2} \left[\frac{\varepsilon}{k^2} + \frac{2(d+k+1)\varepsilon}{k^2(d-k+1)} \right]$$

$$\tilde{\delta} = \left[\frac{(d-k+1)^2}{2k(d+k+1)(d-k+3)} - \frac{(d-k+1)\varepsilon}{k^2(d-k+3)} \right] = \frac{1}{2} \left[\frac{2\varepsilon}{k^2} - \frac{(d-k+1)\varepsilon}{k^2(d-k+1)} \right].$$

Simplifying (and using the expressions that define α and β in Lemma 9.7),
\[
|\tilde{A}_{k,d}(g, h)| \lesssim \left[\sum_{l_1 \geq 0} 2^{-\frac{\varepsilon}{2} l_1} \right] \times \left[\prod_{j=1}^{k-1} \left(\sum_{r_{j,1} \geq 0} 2^{-\left(\frac{2d}{k} + \frac{d}{2}\right) r_{j,1}} \right) \right] \times \left[\sum_{r_{k,1} \geq 0} 2^{-r_{k,1} \left(-\frac{d}{2k^2} + \frac{(d+k+1)}{2(2d+k+1)} \right)} \right] \\
\times \left[\prod_{i=1}^{k-1} \left(\sum_{r_{i+1,i} \geq 0} 2^{-\left(\frac{2d}{k} + \frac{d}{2}\right) r_{i+1,i}} \right) \right] \times \left[\sum_{r_{k+1} \geq 0} 2^{-r_{k+1} \left(-\frac{d}{2k^2} + \frac{(d+k+1)}{2(2d+k+1)} \right)} \right] \\
\times \left[\prod_{j=1}^{k} \|g_j\|_2 \right] \times \left[\prod_{j=2}^{k} \|g_j\|_2 \right] \times |F[1 - \chi^{(d+k+1)}_{2(2d+k+1)}]|^\varepsilon.
\]

Observe that
\[
\sum_{l_1 \geq 0} 2^{-\frac{\varepsilon}{2} l_1} \lesssim 2^{-\frac{\varepsilon}{k} \tilde{t}_1},
\]
where \(\tilde{t}_1\) is the smallest index \(l_1\) such that \(\chi^{\tilde{t}_1,R_1} \neq \emptyset\). Hence there exists some \((\tilde{k}, \tilde{m})\) such that
\[
2^{-\tilde{t}_1} \approx |\langle g_1, \varphi^{1}_{\tilde{k}, \tilde{m}} \rangle| \leq |E_1|,
\]
therefore
\[
\sum_{l_1 \geq 0} 2^{-\frac{\varepsilon}{2} l_1} \lesssim |E_1|^\frac{1}{k}.
\]

Notice also that
\[
\sum_{r_{j,1} \geq 0} 2^{-\left(\frac{2d}{k} + \frac{d}{2}\right) r_{j,1}} \lesssim 2^{-\left(\frac{2d}{k} + \frac{d}{2}\right) \tilde{r}_{j,1}},
\]
where \(\tilde{r}_{j,1}\) is defined analogously. We can then find \((n_j, m)\) such that
\[
2^{-r_{j,1}} \lesssim \|\langle g_1, \varphi^{j,1}_{n_j, m} \rangle\|_2 \leq |E_1|^\frac{1}{2},
\]
therefore
\[
\sum_{r_{j,1} \geq 0} 2^{-\left(\frac{2d}{k} + \frac{d}{2}\right) r_{j,1}} \lesssim |E_1|^\frac{1}{k} + \frac{d}{2k^2}.
\]

We can estimate all other sums in the bound above analogously. Observe that since the cardinalities appearing in
\[
(54) \quad \prod_{i=1}^{k-1} \left[\sup_{l_{i+1}, r_{i+1}} \|1_{\chi^{l_{i+1}, r_{i+1}}^{(i+1)}}\|_{\ell^2_{n_i}} \right] \cdot \sup_{l_{k+1}, r_{k+1}} \|1_{\chi^{l_{k+1}, r_{k+1}}^{(k+1)}}\|_{\ell^2_{n_k}} \cdot \left[\prod_{i=1}^{k-1} \|1_{\chi^{l_{i+1}, r_{i+1}}^{(i+1)}}\|_{\ell^2_{n_i}} \right] \cdot \left[\prod_{i=1}^{k} \|1_{\chi^{l_{i+1}, r_{i+1}}^{(i+1)}}\|_{\ell^2_{n_i}} \right]
\]
are integers, the whole expression (54) is $O(1)$. Using these observations and the fact that $|E_j| < 1$ gives us
\begin{equation}
|\tilde{\Lambda}_{k,d}(g,h)| \lesssim |F|^\frac{1}{k} \prod_{j=1}^{k} |E_j|^\frac{1}{k}.
\end{equation}

To simplify our notation, set $g := (g_1, g_2, \ldots, g_{k-1}, g_k, g_2, \ldots, g_k)$. To rigorously use multilinear interpolation theory, one can run the argument above for the following averaged multilinearized version of $ME_{k,d}$:

$$\tilde{ME}_{k,d} \left(\frac{1}{k} \right) := \sum_{(n,m) \in \mathbb{Z}^{d+1}} \left(\prod_{l=1}^{k-1} |\langle g_{1,l}, \varphi_{n_l,m}^{1} \rangle| \right)^{\frac{1}{k}} |\langle g_{1,k}, \varphi_{n_k,m}^{1} \rangle|^{\frac{1}{k}} \left(\prod_{j=2}^{k} |\langle g_{j}, \varphi_{n_j,m}^{j} \rangle| \right)^{\frac{1}{k}} (h, \chi_{n} \otimes \chi_{m}),$$

with associated dual form\footnote{There is a slight difference between the forms $\tilde{\Lambda}_{k,d}$ and $\tilde{\Lambda}_{k,d}$: the latter is $2(k-1)$-linear, whereas the former is k-linear. We can not apply multilinear interpolation theory with inequality (55) directly, because all we proved is that it holds when g_1 is a tensor. In order to correctly place our estimates in the context of multilinear interpolation, we need to consider a form that has the appropriate level of multilinearity, which is $\tilde{\Lambda}_{k,d}$.}

$$\tilde{\Lambda}_{k,d}(g,h) := \sum_{(n,m) \in \mathbb{Z}^{d+1}} \left(\prod_{l=1}^{k-1} |\langle g_{1,l}, \varphi_{n_l,m}^{1} \rangle| \right)^{\frac{1}{k}} |\langle g_{1,k}, \varphi_{n_k,m}^{1} \rangle|^{\frac{1}{k}} \left(\prod_{j=2}^{k} |\langle g_{j}, \varphi_{n_j,m}^{j} \rangle| \right)^{\frac{1}{k}} (h, \chi_{n} \otimes \chi_{m}).$$

Hence (55) gives us
\begin{equation}
\|\tilde{ME}_{k,d}(g)\|_{L^{2(d+k-1)+\varepsilon}(\mathbb{R}^{d+1})} \leq \varepsilon \prod_{l=1}^{k} |E_{1,l}|^{\frac{1}{k}} \cdot \prod_{j=2}^{k} |E_{j}|^{\frac{1}{k}},
\end{equation}

which is (42) for $\tilde{ME}_{k,d}$. Finally, observe that
\begin{equation}
\|\tilde{ME}_{k,d}(g)\|_{L^{2(d+k-1)+\varepsilon}(\mathbb{R}^{d+1})} \leq \prod_{l=1}^{k} |E_{1,l}|^{\frac{1}{k}} \cdot \prod_{j=2}^{k} |E_{j}|^{\frac{1}{k}},
\end{equation}

which finishes the proof of the case $2 \leq k \leq d + 1$ by restricted weak-type interpolation.

10. THE ENDPOINT ESTIMATE OF THE CASE $k = d + 1$ OF THEOREM 1.5

Let $g_1 : Q_1 \to \mathbb{R}$, $g_j : Q_j \to \mathbb{R}$ for $2 \leq j \leq d + 1$ be continuous functions. Recall that the multilinear model for $k = d + 1$ is given in Section 2 by:

$$ME_{d+1,d}(g_1, \ldots, g_{d+1}) := \sum_{(n,m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^{d+1} |\langle g_j, \varphi_{n,m}^{j} \rangle| (\chi_{n} \otimes \chi_{m}),$$

where
and \(\varphi^{l,j}(x) \) was defined in Section 2. From now on, we will assume without loss of generality that \(g_1 \) is the full tensor. To simplify our notation, set \(g := (g_1, \ldots, g_{1,d}, g_2, \ldots, g_{d+1}) \). Define

\[
\tilde{ME}_{d+1,d}(g) := \sum_{(\vec{n},m) \in \mathbb{Z}^{d+1}} \prod_{l=1}^{d} \langle g_l, \varphi^{l,j}_{\vec{n},m} \rangle \prod_{j=2}^{d+1} \langle g_j, \varphi^{l,j}_{\vec{n},m} \rangle (\chi_{\vec{n}} \otimes \chi_m).
\]

We will show that \(\tilde{ME}_{d+1,d} \) maps

\[
L^2([0,1]) \times \ldots \times L^2([0,1]) \times L^2(Q_2) \times \ldots \times L^2(Q_{d+1})
\]

to \(L^2 \), which implies the endpoint estimate of the case \(k = d + 1 \) in Theorem 1.5.

Endpoint estimate of the case \(k = d + 1 \). Notice that we have \(d \) factors in the first product and \(d \) factors in the second. We will pair them in the following way:

\[
\tilde{ME}_{d+1,d}(g) := \sum_{(\vec{n},m) \in \mathbb{Z}^{d+1}} \prod_{j=2}^{d+1} \langle g_j, \varphi^{l,j}_{\vec{n},m} \rangle \cdot \langle g_{1,j-1}, \varphi^{l,j-1}_{\vec{n},m} \rangle (\chi_{\vec{n}} \otimes \chi_m)
\]

Now observe that

\[
\|\tilde{ME}_{d+1,d}(g)\|_{L^2}^2 = \sum_{(\vec{n},m) \in \mathbb{Z}^{d+1}} \prod_{j=2}^{d+1} \left| \langle g_j \otimes \overline{g_{1,j-1}}, \varphi^{l,j}_{\vec{n},m} \otimes \overline{\varphi^{l,j-1}_{\vec{n},m}} \rangle \right|^2
\]

(58)

\[
\leq \prod_{j=2}^{d+1} \left(\sum_{(\vec{n},m) \in \mathbb{Z}^{d+1}} \left| \langle g_j \otimes \overline{g_{1,j-1}}, \varphi^{l,j}_{\vec{n},m} \otimes \overline{\varphi^{l,j-1}_{\vec{n},m}} \rangle \right|^2 \right)^{\frac{1}{2}}
\]

Let us analyze the \(j = 2 \) scalar product inside the parentheses (the others are dealt with in a similar way):

\[
\langle g_j \otimes \overline{g_{1,j-1}}, \varphi^{l,j}_{\vec{n},m} \otimes \overline{\varphi^{l,j-1}_{\vec{n},m}} \rangle
\]

\[
= \int_{\mathbb{R}^{d-1}} (g_{2,1} \otimes \overline{g_{1,1}}, \varphi^{1,2}_{\vec{n},m} \otimes \varphi^{1,1}_{\vec{n},m}) \left(\prod_{u \geq 2} \varphi^{u,2}_{\vec{n},m}(x_u) \right) e^{-2\pi i \left(\sum_{l \geq 2} x_l^2 \right)} e^{-2\pi i \left(\sum_{l \geq 2} n_l x_l \right)} dx_1
\]

\[
= \tilde{H}_{n_1,m}(n_2, \ldots, n_d),
\]

where

\[
\tilde{H}_{n_1,m}(x_2, \ldots, x_d) := \langle g_{2,1} \otimes \overline{g_{1,1}}, \varphi^{1,2}_{\vec{n},m} \otimes \varphi^{1,1}_{\vec{n},m} \rangle \left(\prod_{u \geq 2} \varphi^{u,2}_{\vec{n},m}(x_u) \right) e^{-2\pi i \left(\sum_{l \geq 2} x_l^2 \right)}.
\]

We can then use Plancherel if we sum over \(n_2, \ldots, n_d \) first:
\[
\sum_{(\overline{n},m)\in \mathbb{Z}^{d+1}} |\langle g_j \otimes \overline{g}_{1,j-1}, \varphi_{\overline{n},m}^j \otimes \overline{\varphi}_{n_{j-1},m}^{j-1}\rangle|^2
\]

\[
= \sum_{n_1,m} \sum_{n_2,\ldots,n_d} \left| \widehat{H}_{n_1,m}(n_2, \ldots, n_d) \right|^2
\]

\[
= \sum_{n_1,m} \| \widehat{H}_{n_1,m} \|_2^2
\]

\[
= \int_{\mathbb{R}^{d-1}} \left(\prod_{u \geq 2} \varphi_{u,2}(x_u) \right) \left(\sum_{n_1,m} |\langle g_2 \otimes \overline{g}_{1,1}, \varphi_{n_1,m}^{1,2} \otimes \overline{\varphi}_{n_1,m}^{1,1}\rangle|^2 \right) \, dx_1
\]

By our initial choice of cubes, \(\text{supp}(\varphi_{n_1,m}^{1,1}) \cap \text{supp}(\varphi_{n_1,m}^{1,2}) = \emptyset \), so the sum in \((n_1,m)\) is actually \(M_{2,1}\) (we are freezing \(d-1\) variables of \(g_2\) in this sum). Our results from Section 7 imply

\[
\sum_{(\overline{n},m)\in \mathbb{Z}^{d+1}} |\langle g_j \otimes \overline{g}_{1,j-1}, \varphi_{\overline{n},m}^j \otimes \overline{\varphi}_{n_{j-1},m}^{j-1}\rangle|^2 = \|g_2 \otimes \overline{g}_{1,1}\|_2^2.
\]

Arguing like that for all \(2 \leq j \leq d+1\), (58) gives us

\[
\| \hat{M}E_{d+1,d}(g) \|_a^{\frac{2}{d}} \leq \prod_{j=2}^{d+1} \|g_2 \otimes \overline{g}_{1,j-1}\|_2^{\frac{2}{d}} = \prod_{j=1}^{d+1} \|g_j\|_2^{\frac{2}{d}}
\]

and the result follows. \(\square\)

11. Improved k-linear bounds for tensors

In this section we investigate the following question: can one obtain better bounds than those of Conjecture 1.2 if one is restricted to the class of tensors?\[27\] The answer depends on the concept of degree of transversality. The extra information that the input functions are supported on cubes that have disjoint projections along many directions leads to new transversality conditions, and we can take advantage of it in the full tensor case. This is the content of Theorem 11.2.

Let \(\{e_j\}_{1 \leq j \leq d}\) be the canonical basis of \(\mathbb{R}^d\). If \(Q \subset \mathbb{R}^d\) is a cube, \(\pi_j(Q)\) represents the projection of \(Q\) along the \(e_j\) direction.

Definition 11.1. Let \(\{Q_1, \ldots, Q_k\}\) be a collection of \(k\) closed unit cubes in \(\mathbb{R}^d\) with vertices in \(\mathbb{Z}^d\). We associate to this collection its transversality vector \(\tau = (\tau_1, \ldots, \tau_d)\), where \(\tau_j = 1\) if there are at least two distinct intervals among the projections \(\pi_j(Q_l), 1 \leq l \leq k\), and \(\tau_j = 0\) otherwise. The total degree of transversality of the collection \(\{Q_1, \ldots, Q_k\}\) is

\[
|\tau| := \sum_{1 \leq i \leq d} \tau_i.
\]

The \(k\)-linear extension model for a set of cubes \(\{Q_l\}_{1 \leq l \leq k}\) as in Definition 11.1 is initially given on \(C(Q_1) \times \cdots \times C(Q_k)\) by

\[
(59) \quad ME_{k,d}^{Q_1,\ldots,Q_k}(g_1, \ldots, g_k) := \sum_{(\overline{n},m)\in \mathbb{Z}^{d+1}} \prod_{j=1}^{k} \langle g_j, \varphi_{\overline{n},m}^j \rangle (\chi_{\overline{n}} \otimes \chi_m).
\]

\[27\]Extension estimates beyond the conjectured range have been verified by Oliveira e Silva and Mandel in [30] for a certain class of functions when the underlying submanifold is \(S^{d-1}\). [41] also contains results of this kind for the paraboloid.
where the bumps $\varphi^j_{k,m}$ are analogous to the ones in Section 9 but now adapted to the cubes Q_k.

From now on we will assume that g_j is a full tensor $g_j^1 \otimes \cdots \otimes g_j^d$ for $1 \leq j \leq k$ and that the transversality vector of the collection $\{Q_1, \ldots, Q_k\}$ is τ. To simplify the notation, we will replace the superscripts Q_j in (59) with τ and denote

$$g := (g_1^1, \ldots, g_1^d, \ldots, g_j^1, \ldots, g_j^d, \ldots, g_k^1, \ldots, g_k^d).$$

We are then led to consider

$$\text{ME}^\tau_{k,d}(g) := \sum_{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^k \prod_{l=1}^d |(g_j^l, \varphi^j_{n_l,m})|^{1/k} (\mathbf{n}^\tau \otimes \chi_m),$$

where

$$\varphi^j_{n_l,m}(x) = \varphi^j(x)e^{2\pi in_l x}e^{2\pi in_l x^2}, \quad \text{supp}(\varphi^j) \subset \pi_l(Q_j).$$

As it was the case in Section 9, we will deal first with an averaged version of $\text{ME}^\tau_{k,d}$ for technical reasons. Define

$$\text{EME}^\tau_{k,d}(g) := \sum_{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^k \prod_{l=1}^d |(g_j^l, \varphi^j_{n_l,m})|^{1/k} (\mathbf{n}^\tau \otimes \chi_m),$$

and consider its dual form

$$\text{AME}^\tau_{k,d}(g, h) := \sum_{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^k \prod_{l=1}^d |(g_j^l, \varphi^j_{n_l,m})|^{1/k} \cdot (h, \mathbf{n}^\tau \otimes \chi_m).$$

Let $E_{j,l}$, $1 \leq j \leq k$ and $1 \leq l \leq d$, be measurable sets such that $|g_j^l| \leq \chi_{E_{j,l}}$. Let $F \subset \mathbb{R}^{d+1}$ be a measurable set such that $|h| \leq \chi_F$. Under these conditions we have the following result:

Theorem 11.2. $\text{ME}^\tau_{k,d}$ satisfies

$$\|\text{ME}^\tau_{k,d}(g)\|_{L^p(\mathbb{R}^{d+1})} \lesssim_p \prod_{j=1}^k \prod_{l=1}^d \|g_j^l\|_2$$

for all $p > p_\tau := \frac{2(d+|\tau|+2)}{k(d+|\tau|)}$.

Proof. It is enough to prove that

$$\|\text{ME}^\tau_{k,d}(g)\|_{L^p(\mathbb{R}^{d+1})} \lesssim_p \prod_{j=1}^k \prod_{l=1}^d |E_{j,l}|^{1/p},$$

holds for every

$$p > \frac{2(d+|\tau|+2)}{(d+|\tau|)}.$$

Define the level sets

$$A_{r_{j,l}} := \{(n_t, m) \in \mathbb{Z}^2; \quad |(g_j^l, \varphi^j_{n_l,m})| \approx 2^{-r_{j,l}}\},$$

$$\mathbb{B}^l := \{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad |(h,
\mathbf{n}^\tau \otimes \chi_m)| \approx 2^{-l}\}.$$

Set $R := (r_{i,j})_{i,j}$ and

$$\mathbb{X}^R := \left\{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad (n_t, m) \in \bigcap_{j=1}^k A_{r_{j,l}}, \quad 1 \leq l \leq d\right\} \cap \mathbb{B}^l.$$

We then have

$$\|\text{ME}^\tau_{k,d}(g)\|_{L^p(\mathbb{R}^{d+1})} \lesssim_p \prod_{j=1}^k \prod_{l=1}^d |E_{j,l}|^{1/p},$$
A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID

\[|\tilde{\Lambda}_{k,d}(g, h)| \lesssim \sum_{R,t \geq 0} 2^{-t} \cdot \prod_{j=1}^{k} \prod_{l=1}^{d} 2^{-r_{j,l}} \cdot \#X^{R,t}. \]

As in the previous section, we can assume without loss of generality that \(r_{j,l}, t \geq 0 \). We can estimate \(\#X^{R,t} \) using the function \(h \):

\[(62) \quad \#X^{R,t} \lesssim 2^{t} \sum_{(\vec{n}, m) \in \mathbb{Z}^{d+1}} |\langle h, \chi_{\vec{n}} \otimes \chi_{m} \rangle| \lesssim 2^{t} |F|.
\]

Alternatively, by the definition of \(X^{R,t} \):

\[(63) \quad \#X^{R,t} \leq \sum_{(\vec{n}, m) \in \mathbb{Z}^{2}} \prod_{j=1}^{k} \prod_{l=1}^{d} \mathbb{1}_{K_{j,l}}(n_{l}, m) \gamma_{l,j,j},
\]

There are many ways to estimate the right-hand side above. We will obtain \(d \) different bounds for it, each one arising from summing in a different order. Fix \(1 \leq l \leq d \) and leave the sum over \((n_{l}, m)\) for last:

\[(64) \quad \#X^{R,t} = \sum_{(n_{l}, m) \in \mathbb{Z}^{2}} \left[\prod_{j=1}^{k} \mathbb{1}_{K_{j,l}}(n_{l}, m) \right] \cdot \prod_{\tilde{l}=1}^{d} \left[\sum_{n_{\tilde{l}}} \prod_{j=1}^{k} \mathbb{1}_{\tilde{K}_{j,l}}(n_{\tilde{l}}, m) \right] \gamma_{l,j,j},
\]

where we used Hölder’s inequality in the last line and \(\gamma_{l,j,j} \) are generic parameters such that

\[(65) \quad \sum_{j=1}^{k} \gamma_{l,j,j} = 1
\]

for all \(1 \leq l, \tilde{l} \leq d \) with \(l \neq \tilde{l} \) fixed. Let us briefly explain the labels in these parameters that we just introduced:

\[
\gamma_{l,j,j} \rightarrow \begin{cases}
 l & \text{indicates that the last variables to be summed are } (n_{l}, m), \\
 \tilde{j} & \text{corresponds to the } \tilde{j}-\text{th function } g_{\tilde{j}}, \\
 \tilde{l} & \text{corresponds to the } \tilde{l}-\text{th variable } n_{\tilde{l}}.
\end{cases}
\]

We will not make any specific choice for the \(\gamma_{l,j,j} \) since condition (65) will suffice. Now observe that for a fixed \(m \in \mathbb{Z} \) we have:

\[(66) \quad \sum_{n_{\tilde{l}}} \mathbb{1}_{\tilde{K}_{j,l}}(n_{\tilde{l}}, m) \leq 2^{2r_{j,l}} \sum_{n_{\tilde{l}}} |\langle g_{\tilde{j}}, \varphi_{n_{\tilde{l}}, m} \rangle|^{2} \leq 2^{4r_{\tilde{j},l}} \cdot |E_{\tilde{j},l}| \]

by Bessel’s inequality. Using (66) back in (64):
\[\#X_{R,t}^{\ell} \leq \prod_{l=1}^{d} \prod_{\substack{j=1 \atop l \neq l}}^{k} 2^{2\gamma_{l,j,l'}} \cdot |E_{j,l'}^{l}|^\gamma_{l,j,l'} \cdot \sum_{(n_l,m) \in \mathbb{Z}^2} \prod_{j=1}^{k} \mathbb{1}_{A_{l,j,l'}^{r_{l,j,l'}}(n_l,m)} , \]

\[= \prod_{l=1}^{d} \prod_{\substack{j=1 \atop l \neq l}}^{k} 2^{2\gamma_{l,j,l'}} \cdot |E_{j,l'}^{l}|^\gamma_{l,j,l'} \cdot \sum_{(n_l,m) \in \mathbb{Z}^2} \prod_{(j_1,j_2)}^{l \text{-transversal}, j_1 \neq j_2} \mathbb{1}_{A_{j_1,l'}^{r_{j_1,l'}}(n_l,m)} \cdot \mathbb{1}_{A_{j_2,l'}^{r_{j_2,l'}}(n_l,m)} \]

We simply used the fact that $1^2 = 1$ in the last line above. Our goal is to pair the scalar products in \((60)\) corresponding to the functions $g_{j_1}^l$ and $g_{j_2}^l$. There are two kinds of such pairs:

(a) A pair (j_1, j_2) with $j_1 \neq j_2$ is l-transversal if $\text{supp}(\varphi^{l,j_1}) \cap \text{supp}(\varphi^{l,j_2}) = \emptyset$.

(b) A pair (j_1, j_2) with $j_1 \neq j_2$ is non-l-transversal along the direction e_l if $\text{supp}(\varphi^{l,j_1}) \cap \text{supp}(\varphi^{l,j_2}) \neq \emptyset$.

Thus we have by Hölder’s inequality for generic parameters α_{l,j_1,j_2} and β_{l,j_1,j_2}:

\[\#X_{R,t}^{\ell} \leq \prod_{l=1}^{d} \prod_{\substack{j=1 \atop l \neq l}}^{k} 2^{2\gamma_{l,j,l'}} \cdot |E_{j,l'}^{l}|^\gamma_{l,j,l'} \cdot \prod_{(j_1,j_2)}^{l \text{-transversal}, j_1 \neq j_2} \left(\sum_{(n_l,m) \in \mathbb{Z}^2} \mathbb{1}_{A_{j_1,l'}^{r_{j_1,l'}}(n_l,m)} \cdot \mathbb{1}_{A_{j_2,l'}^{r_{j_2,l'}}(n_l,m)} \right)^{\alpha_{l,j_1,j_2}} \]

\[\times \prod_{(j_1,j_2)}^{\text{non}-l \text{-transversal}, j_1 \neq j_2} \left(\sum_{(n_l,m) \in \mathbb{Z}^2} \mathbb{1}_{A_{j_1,l'}^{r_{j_1,l'}}(n_l,m)} \cdot \mathbb{1}_{A_{j_2,l'}^{r_{j_2,l'}}(n_l,m)} \right)^{\beta_{l,j_1,j_2}} \]

Define

\[\alpha_{l,j_1,j_2} = 0, \quad \text{if } (j_1, j_2) \text{ is non-l-transversal}, \]

\[\beta_{l,j_1,j_2} = 0, \quad \text{if } (j_1, j_2) \text{ is l-transversal}. \]

Hence Hölder’s condition is

\[\sum_{(j_1,j_2) \leq \ell, l \leq k \atop j_1 \neq j_2} \alpha_{l,j_1,j_2} + \beta_{l,j_1,j_2} = 2, \]

since we are counting each α_{l,j_1,j_2} and β_{l,j_1,j_2} twice, for all $1 \leq l \leq d$. The labels in the parameters α and β track the following information:

\[\alpha_{l,j_1,j_2} \text{ and } \beta_{l,j_1,j_2} \rightarrow \begin{cases} l & \text{indicates that we are summing over } (n_l,m), \\ j_1 \text{ and } j_2 \text{ correspond to two distinct functions } g_{j_1} \text{ and } g_{j_2}. \end{cases} \]

We can then use Proposition 4.4 for the transversal pairs and a combination of one-dimensional Strichartz/Tomas-Stein with Hölder for the non-transversal ones:

\[\#X_{R,t}^{\ell} \leq \prod_{l=1}^{d} \prod_{\substack{j=1 \atop l \neq l}}^{k} 2^{2\gamma_{l,j,l'}} \cdot |E_{j,l'}^{l}|^\gamma_{l,j,l'} \cdot \prod_{(j_1,j_2)}^{l \text{-transversal}, j_1 \neq j_2} \left(2^{2\alpha_{l,j_1,j_2}} |E_{j_1,l'}^{l}|^{\alpha_{l,j_1,j_2}} \cdot |E_{j_2,l'}^{l}|^{\alpha_{l,j_1,j_2}} \right) \]

\[\times \prod_{(j_1,j_2)}^{\text{non}-l \text{-transversal}, j_1 \neq j_2} \left(2^{2\beta_{l,j_1,j_2}} |E_{j_1,l'}^{l}|^{\beta_{l,j_1,j_2}} \cdot |E_{j_2,l'}^{l}|^{\beta_{l,j_1,j_2}} \right). \]

As mentioned earlier in this section, we have d estimates like \((70)\). We will interpolate between them with weights θ_l.

\[\#X_{R,t}^{l} = \prod_{l=1}^{d} (\#X_{R,t}^{l})^{\theta_{l}} \]

with

\[\sum_{l=1}^{d} \theta_{l} = 1. \]

This yields

\[\#X_{R,t}^{l} \lesssim \prod_{j=1}^{k} \prod_{l=1}^{d} 2^{\#_{j,l} r_{j,l}} \cdot |E_{j,l}|^{\#_{j,l}}, \]

where

\[\#_{j,l} = \left[\sum_{j_{1} \neq j_{2}} (2\alpha_{l,j_{1},j_{1}} + 3\beta_{l,j_{1},j_{1}}) \right] \cdot \theta_{l} + \sum_{l \neq l} 2\gamma_{l,j,l} \cdot \theta_{l}. \]

In order to prove an estimate like \(L^{2} \times \ldots \times L^{2} \to L^{p} \), we will need all these coefficients \#_{j,l} to be equal. Let us call them all \(X \) for now and sum over \(j \):

\[\sum_{j=1}^{k} X = \left[\sum_{j=1}^{k} \sum_{j_{1} \neq j} (2\alpha_{l,j_{1},j_{1}} + 3\beta_{l,j_{1},j_{1}}) \right] \cdot \theta_{l} + \sum_{l \neq l} 2\gamma_{l,j,l} \cdot \theta_{l}. \]

By (65) and (69):

\[X = \frac{1}{k} \left[6 - \sum_{j=1}^{k} \sum_{j_{1} \neq j} \alpha_{l,j_{1},j_{1}} \right] \cdot \theta_{l} + \sum_{l \neq l} 2 \cdot \theta_{l}, \]

for all \(1 \leq l \leq d \). Together with (71), (73) gives us a linear system of \(d \) equations in the \(d \) variables \(\theta_{1}, \ldots, \theta_{d} \). The solution is

\[\theta_{l} = \left[\sum_{l=1}^{d} 4 - \sum_{j=1}^{k} \sum_{j_{1} \neq j} \alpha_{l,j_{1},j_{1}} \right]^{-1}. \]

Plugging (74) back in (73) gives us

\[X = \frac{2}{k} \left[1 + \left(\sum_{l=1}^{d} 4 - \sum_{j=1}^{k} \sum_{j_{1} \neq j} \alpha_{l,j_{1},j_{1}} \right)^{-1} \right]. \]

To minimize \(X \) we must maximize

\[\sum_{j=1}^{k} \sum_{j_{1} \neq j} \alpha_{l,j_{1},j_{1}}. \]

This is achieved by choosing \(\beta_{l,j_{1},j_{2}} = 0 \) for all \((j_{1}, j_{2})\) if there is at least one \(l \)-transversal pair \((j_{1}, j_{2})\). In other words, choose

\[\beta_{l,j_{1},j_{2}} = 0 \quad \text{for all } (j_{1}, j_{2}) \text{ if } \tau_{l} = 1. \]

Hence by (69):

\[\sum_{j=1}^{k} \sum_{j_{1} \neq j} \alpha_{l,j_{1},j_{1}} = \begin{cases} 2 & \text{if } \tau_{l} = 1, \\ 0 & \text{if } \tau_{l} = 0. \end{cases} \]
This choice of parameters gives us

\[X = \frac{2(d + |\tau| + 2)}{k(d + |\tau|)} , \]

which implies the following estimate for \(\#X_{R,t} \):

\[\#X_{R,t} \lesssim \prod_{j=1}^{k} \prod_{l=1}^{d} 2^{X_{r,j,\tau}} \cdot |E_{j,l}|^{\frac{2}{k}} , \]

Finally, we interpolate between (76) with weight \(\frac{1}{k} \) and (62) with weight \((1 - \frac{1}{k} \) to bound the form \(\Lambda_{\tau}^{k,d} \):

\[|\Lambda_{\tau}^{k,d}(g,h)| \lesssim \sum_{R,t \geq 0} 2^{-t} \cdot \prod_{j=1}^{k} \prod_{l=1}^{d} 2^{X_{r,j,\tau}} \cdot |E_{j,l}|^{\frac{2}{k}} \]

\[\times \left[\prod_{j=1}^{k} \prod_{l=1}^{d} 2^{X_{r,j,\tau}} \cdot |E_{j,l}|^{\frac{2}{k}} \right]^{\frac{1}{k} - \epsilon} \cdot [F]^{(1 - \frac{2}{k}) + \epsilon} \]

Developing the right-hand side:

\[|\Lambda_{\tau}^{k,d}(g,h)| \lesssim \sum_{t \geq 0} 2^{-t} \cdot \prod_{j=1}^{k} \prod_{l=1}^{d} 2^{X_{r,j,\tau}} \cdot |E_{j,l}|^{\frac{2}{k}} \]

\[\times \left[\prod_{j=1}^{k} \prod_{l=1}^{d} |E_{j,l}|^{\frac{2}{k}} \right] \cdot [F]^{(1 - \frac{2}{k}) + \epsilon} \]

As in the previous section, these series are summable. We have

\[\sum_{r,j,l \geq 0} 2^{-\epsilon X_{r,j,\tau}} \lesssim |E_{j,l}|^{\epsilon X} . \]

For the series in \(t \) we can just bound it by an absolute constant depending on \(\epsilon \). This leads to

\[|\Lambda_{\tau}^{k,d}(g,h)| \lesssim \epsilon \left[\prod_{j=1}^{k} \prod_{l=1}^{d} |E_{j,l}|^{\frac{2}{k} + \epsilon X} \right] \cdot [F]^{(1 - \frac{2}{k}) + \epsilon} \]

\[\lesssim \left[\prod_{j=1}^{k} \prod_{l=1}^{d} |E_{j,l}|^{\frac{2}{k}} \right] \cdot [F]^{(1 - \frac{2}{k}) + \epsilon} , \]

since \(|E_{j,l}| \leq 1 \), which finishes the proof by multilinear interpolation.

Remark 11.3. If \(\tau_l = 0 \) for \(1 \leq l \leq d \), then

\[p_{\tau} = \frac{2(d + 2)}{kd} , \]

which could have been proven in general with Hölder and Strichartz/Tomas-Stein. This is because there is no transversality to exploit, therefore the best bounds we can hope for in the multilinear setting come from the linear one.

Remark 11.4. If there are exactly \(k - 1 \) indices \(l \) such that \(\tau_l = 1 \), then

\[p_{\tau} = \frac{2(d + k + 1)}{k(d + k - 1)} , \]

which is consistent with Theorem 1.5.
Remark 11.5. Finally, if one has more than \(k - 1 \) indices \(l \) such that \(\tau_l = 1 \), then
\[
p_{r} < \frac{2(d + k + 1)}{k(d + k - 1)},
\]
which clearly illustrates the point of this section. The extreme case is when \(\tau_l = 1 \) for \(1 \leq l \leq d \), which gives
\[
p_{r} = \frac{2(d + 1)}{kd}.
\]
This can be seen as an improvement upon the linear extension conjecture itself in the following sense: if we take the product of \(k \) extensions \(E_{U_j}g_j, 1 \leq j \leq k \), and combine the linear extension conjecture with Hölder’s inequality, we obtain an operator that maps \(L^{2(d+1)/d} \times \cdots \times L^{2(d+1)/d} \) to \(L^{2(d+1)/d} + \varepsilon \). On the other hand, if we are in a situation in which we have as much transversality as possible and all \(g_j \) are full tensors, we obtain \(L^{2} \times \cdots \times L^{2} \) to \(L^{2(d+1)/d} + \varepsilon \).

12. Beyond the \(L^2 \)-based \(k \)-linear theory

We start by restating the near-endpoint estimate (4). For \(2 \leq k < d+1 \), to recover the whole range of the generalized \(k \)-linear extension conjecture, it is enough to prove Conjecture 1.2 and
\[
\left\| \prod_{j=1}^{k} E_{U_j}g_j \right\|_{L^{2(d+1)/d} + \varepsilon (\mathbb{R}^{d+1})} \lesssim \prod_{j=1}^{k} \|g_j\|_{L^{2(d+1)/d} (U_j)}
\]
for all \(\varepsilon > 0 \).

Let \(Q = \{Q_1, \ldots, Q_k\} \) be our initially fixed set of cubes\(^{28}\). In what follows, we recast the statement of Theorem 1.13 in terms of this set:

Theorem 12.1. If \(Q \) is a collection of transversal cubes and \(g_1 \) is a tensor, the operator \(ME_{k,d}(g_1, \ldots, g_k) \) satisfies
\[
\|ME_{k,d}(g_1, \ldots, g_k)\|_{L^{2(d+1)/d} + \varepsilon (\mathbb{R}^{d+1})} \lesssim \prod_{j=1}^{k} \|g_j\|_{L^{p(k,d)}(Q_j)},
\]
where
\[
p(k,d) = \begin{cases}
\frac{4(d+1)}{d+k+1}, & \text{if } 2 \leq k < \frac{d}{2}, \\
\frac{4(d+1)}{2d-k+1}, & \text{if } \frac{d}{2} \leq k < d+1.
\end{cases}
\]

As anticipated in the introduction, we prove it by adapting the argument from Section 9.

Remark 12.2. As in Section 9, the theorem above holds under the assumption that the given set of cubes is weakly transversal and any other \(g_j, j \neq 1 \), can be assumed to be the tensor.

Remark 12.3. Roughly speaking, the difference between the proof of Theorem 12.1 and the one done in Section 9 is in the building blocks we use: instead of Strichartz/Tomas-Stein (in the form of Corollary 4.2), we will use the best extension bound for the parabola (in the form of Proposition 4.3). One can think of the argument in this section as a rigorous way of replacing the former piece by the latter in our machinery.

Proof of Theorem 12.1. We work in the same setting as in Section 9. Even though there are some slight differences between the level sets from that section and the ones that we will define here, the approach is very similar.

It is convenient to recall a few important points from Section 9:

- The form of interest here is (in its averaged form):
\[
\tilde{\Lambda}_{k,d}(g,h) := \sum_{(\mathbf{n},m) \in \mathbb{Z}^{d+1}} \left(\prod_{j=1}^{k} \langle g_j, \varphi_{\mathbf{n},m}^j \rangle \right)^\frac{k}{p} \langle h, \chi_{\mathbf{n}} \otimes \chi_m \rangle.
\]

\(^{28}\)See Section 3.
The tensor g_1 has the structure $g_1 = g_{1,1} \otimes \ldots \otimes g_{1,d}$.

$E_{1,1}, \ldots, E_{1,d} \subset [0,1]$, $E_j \subset Q_j$ ($2 \leq j \leq k$) and $F \subset \mathbb{R}^{d+1}$ are measurable sets such that $|g_{1,l}| \leq \chi_{E_{1,l}}$ for $1 \leq l \leq d$, $|g_j| \leq \chi_{E_j}$ for $2 \leq j \leq k$ and $|h| \leq \chi_F$. Furthermore, $E_1 := E_{1,1} \times \ldots \times E_{1,d}$.

We start by encoding the sizes of the scalar products appearing in (79):

$$A_{j}^{l} := \{(\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad |\langle g_{j}, \varphi_{\mathbf{n}, m} \rangle| \approx 2^{-l} \}, \quad 1 \leq j \leq k.$$

Now we see the first difference between the argument in this section and the one in Section 9, the mixed-norm quantities here are all of the same kind, in the sense that the inner products inside the L^2 norms are all one-dimensional:

$$E_{i,j} := \{ (\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad \|\langle g_{j}, \varphi_{\mathbf{n}, m} \rangle x_i \|_2 \approx 2^{-r_{i,j}} \}, \quad 1 \leq i \leq d, \quad 1 \leq j \leq k;$$

The remaining sets are defined just as in Section 9 and with the exact same purpose:

$$E_{l,R,t} := \{ (\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad |\langle h, \varphi_{\mathbf{n}, m} \rangle \chi_m \rangle \approx 2^{-t} \},$$

$$X_{l,r_{i,j}} := A_{j}^{l} \cap \{ (\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad (n_i, m) \in E_{i,j} \},$$

$$X_{l,R,t} := \bigcap_{1 \leq j \leq k} A_{j}^{l} \cap \{ (\mathbf{n}, m) \in \mathbb{Z}^{d+1}; \quad (n_i, m) \in \bigcap_{1 \leq j \leq k} E_{i,j} \cap \mathcal{C}_i^l \},$$

where we are using the abbreviations $\mathbf{l} = (l_1, \ldots, l_k)$ and $R := (r_{i,j})_{i,j}$. Hence,

$$|A_{k,d}(g, h)| \lesssim \sum_{\mathbf{r} \in \mathbf{R}, \mathbf{t}} 2^{-t} \prod_{j=1}^{k} 2^{-r_{i,j}} \#X_{\mathbf{r}, \mathbf{R}, \mathbf{t}}.$$

The analogue of Lemma 9.4 is the bound

$$2^{-l} \approx \frac{2^{-r_{i,1}} \ldots 2^{-r_{i,d}}}{\|g_{1}\|_{2}^{-1}},$$

which is proven in the same way. Also, by an argument entirely analogous to the one of Lemma 9.5, we can show that

$$2^{-l} \lesssim \frac{2^{-r_{i,j}}}{\|\mathbb{1}_{X_{r_{i,j}}^{\perp}}\|_{1_{n_{i}, m_{\mathbf{n}}}^{l_{i}^{1}}}}, \quad \forall \quad 1 \leq i \leq d, \quad 2 \leq j \leq k.$$

The following corollary of the estimates above will give us the appropriate convex combination of such relations:

Corollary 12.4. For $1 \leq i \leq k - 1$ we have

$$2^{-l_{i+1}} \lesssim \frac{2^{-k \frac{r_{i+1}}{d} r_{i+1}}}{\|\mathbb{1}_{X_{r_{i+1}}^{\perp}}\|_{1_{n_{i}, m_{\mathbf{n}}}^{l_{i+1}^{1}}}} \cdot \prod_{u=k}^{d} \frac{2^{-\frac{1}{d} r_{u+1} r_{u+1}}}{\|\mathbb{1}_{X_{r_{u+1}}^{\perp}}\|_{1_{n_{u}, m_{\mathbf{n}}}^{l_{u+1}^{1}}}}.$$

Proof. Interpolate between the bounds in (81) with one weight equal to $\frac{k}{d+1}$ for $(i, j) := (i, i+1)$ and $(d - k + 1)$ weights $\frac{1}{d+1}$ for $(i, j) := (u, i+1)$, $k \leq u \leq d$. \square
We can estimate \(\#X_{n,m}^{T,R,t} \) using the function \(h \):

\[
\#X_{n,m}^{T,R,t} \lesssim \sum_{(n,m) \in \mathbb{Z}^{d+1}} |\langle h, \chi_{n,m} \otimes \chi_m \rangle| \lesssim 2^{|F|}.
\]

Alternatively,

\[
\#X_{n,m}^{T,R,t} \leq \sum_{(n,m) \in \mathbb{Z}^{d+1}} \prod_{j=1}^{k} \mathbb{1}_{H_j^{(n,m)}} \prod_{i=1}^{k} \mathbb{1}_{A^{(n,m)}} (n_i, m).
\]

Similarly to what was done in Section 9, we will manipulate the inequality above in \(d \) ways: \(k - 1 \) of them will exploit orthogonality (from the combination of the sets \(B_{1}^{r_i,1} \) and \(B_{1}^{r_i,1} \), \(1 \leq i \leq k - 1 \)), but now the other \(d - k + 1 \) ones will reflect the linear extension problem in dimension 1. The following lemma is the appropriate analogue of Lemma 9.7 in this section:

Lemma 12.5. The bounds above imply

(a) The orthogonality-type bounds: for all \(1 \leq i \leq k - 1 \),

\[
\#X_{n,m}^{T,R,t} \leq \| \chi_{r_i+1}^{r_i+1} \|_{e_{n,m}^{\infty}} \cdot \| g_i \|_{2}^{2} \cdot \| g_{i+1} \|_{2}^{2}.
\]

(b) The extension-type bounds: for all \(k \leq u \leq d \),

\[
\#X_{n,m}^{T,R,t} \leq \sum_{n_u,m} \prod_{j=2}^{k} \mathbb{1}_{X_{j}^{n_u,1}(n_u,m)} \prod_{i=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m) \cdot \prod_{l=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m)
\]

\[
\times 2^{|r_u+1} \sum_{i} \beta \cdot \left(\prod_{j \neq u} \| g_{j,1} \|_{2}^{\alpha} \cdot \| g_{1,1} \|_{2}^{\alpha} \cdot \prod_{l=2}^{k} \| g_{l} \|_{2}^{\beta} \right),
\]

where

\[
\alpha := \frac{2(k + 1)}{k} + \delta \cdot \frac{(k + 1)}{2k}, \quad \beta := \frac{2}{k} + \delta \cdot \frac{1}{2k},
\]

with \(\delta, \tilde{\delta} > 0 \) being arbitrarily small parameters to be chosen later.

Proof. Part (a) is the same as in Lemma 9.7 (a). As for (b), fix \(k \leq u \leq d \) and bound \(\#X_{n,m}^{T,R,t} \) as follows:

\[
\#X_{n,m}^{T,R,t} = \sum_{(n,m) \in \mathbb{Z}^{d+1}} \mathbb{1}_{X_{n,m}^{T,R,t}} (n, m)
\]

\[
\leq \sum_{n_u,m} \prod_{j=2}^{k} \mathbb{1}_{X_{j}^{n_u,1}(n_u,m)} \prod_{i=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m) \cdot \prod_{l=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m)
\]

\[
= \sum_{n_u,m} \prod_{j=2}^{k} \mathbb{1}_{B_{1}^{r_u,1}} (n_u,m) \prod_{j=2}^{k} \mathbb{1}_{X_{j}^{n_u,1}(n_u,m)} \prod_{i=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m)
\]

\[
\leq \sum_{n_u,m} \prod_{j=2}^{k} \mathbb{1}_{B_{1}^{r_u,1}} (n_u,m) \prod_{j=2}^{k} \mathbb{1}_{X_{j}^{n_u,1}(n_u,m)} \prod_{i=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m)
\]

\[
\leq \prod_{j=2}^{k} \mathbb{1}_{X_{j}^{n_u,1}(n_u,m)} \prod_{i=1}^{k} \mathbb{1}_{B_{1}^{r_i,1}} (n_i, m)
\]

where we used Hölder’s inequality from the third to fourth line. Next, notice that
by orthogonality. Now let

\[\| \mathbf{1}_{B_{r,1}^l} \|_{L^\infty} \lesssim \sup_{m \in \mathbb{R}^l} \| \sum_{n_i} \langle g_1, \varphi_{n_i,m}^{\ell} \rangle x_i \|_2^2 \]

(87)

\[= \sup_{m} 2^{2r_\ell} \int \sum_{n_i} \| \langle g_1, \varphi_{n_i,m}^{\ell} \rangle x_i \|_2^2 \, \text{d} \hat{x}_i \]

\[\lesssim 2^{2r_\ell} \cdot \| g_1 \|_2^2 \]

by orthogonality. Now let

\[p_{u,1} := \frac{2k}{(k + 1)}, \]

\[p_{u,l} := 2k, \quad \forall \quad 2 \leq l \leq k \]

and notice that

\[\sum_{l=1}^k \frac{1}{p_{u,l}} = 1. \]

This way, by definition of \(B_{u,l}^r \) and by Hölder’s inequality with these \(p_{u,l} \) we have

(88)

\[\left\| \prod_{l=1}^k \mathbf{1}_{B_{u,l}^r} \right\|_{L^1(u,m)} \]

\[\lesssim 2^{\alpha r_{u,1} + \sum_{l=2}^k \beta r_{u,l}} \sum_{(n_u,m)} \| \langle g_1, \varphi_{n_u,m}^{u,1} \rangle x_u \|_2^\alpha \prod_{l=2}^k \| \langle g_l, \varphi_{n_u,m}^{u,l} \rangle x_u \|_2^\beta \]

\[\leq 2^{\alpha r_{u,1} + \sum_{l=2}^k \beta r_{u,l}} \left(\sum_{(n_u,m)} \| \langle g_1, \varphi_{n_u,m}^{u,1} \rangle x_u \|_2^{\alpha p_{u,1}} \right)^{\frac{1}{p_{u,1}}} \prod_{l=2}^k \left(\sum_{(n_u,m)} \| \langle g_l, \varphi_{n_u,m}^{u,l} \rangle x_u \|_2^{\beta p_{u,l}} \right)^{\frac{1}{p_{u,l}}} \]

\[= 2^{\alpha r_{u,1} + \sum_{l=2}^k \beta r_{u,l}} \left(\sum_{(n_u,m)} \| \langle g_1, \varphi_{n_u,m}^{u,1} \rangle x_u \|_2^{4+\delta} \right)^{\frac{1}{p_{u,1}}} \prod_{l=2}^k \left(\sum_{(n_u,m)} \| \langle g_l, \varphi_{n_u,m}^{u,l} \rangle x_u \|_2^{4+\delta} \right)^{\frac{1}{p_{u,l}}} \]

At this point we see another difference between this proof and the argument in Section 9: we do not obtain a pure \(L^p \) norm when using the near-\(L^4 \) extension analogue of Corollary 4.2 for \(l = d - 1 \). Alternatively, we use Hölder in the term involving \(g_1 \) once more:

\[\| \langle g_1, \varphi_{n_u,m}^{u,1} \rangle x_u \|_2^{4+\delta} = \left[\int \left(\prod_{j \neq u} |g_1,j|^2(x_j) \right) \cdot |\langle g_1,u, \varphi_{n_u,m}^{u,1} \rangle x_u |^2 \text{d} \hat{x}_u \right]^{\frac{4+\delta}{2}} \]

\[\leq \left(\prod_{j \neq u} \| g_1,j \|_2 \right)^{4+\delta} \cdot |\langle g_1,u, \varphi_{n_u,m}^{u,1} \rangle x_u |^{4+\delta}. \]

For the remaining \(g_l \) we simply use Hölder and the fact that they are compactly supported\(^{30}\)

\[\| \langle g_l, \varphi_{n_u,m}^{u,l} \rangle x_u \|_2^{4+\delta} \lesssim \| \langle g_l, \varphi_{n_u,m}^{u,l} \rangle x_u \|_4^{4+\delta}. \]

These observations imply

\(^{30}\)We use this crude estimate for the remaining \(g_l \) because they do not have the same structure that allows “pulling out” the one-dimensional functions \(g_{l,j} \), like \(g_1 \) does. There is a clear loss here and it is reflected in the fact that \(p(k, d) \) is not the best exponent for which \(\mathbf{78} \) holds.
Developing the expression above,

\[
\left\| \prod_{l \geq 1} \frac{g_{u,l}}{b_{u,l}} \right\|_{\ell^{1}_{(u,m)}} \leq 2^\alpha \tau_{u,1} + \sum_{l=2}^{\beta \tau_{u,1}} \left(\prod_{j \neq u} \left\| g_{1,j} \right\|_2 \right)^{\frac{d_\nu}{\tau_{u,1}}} \cdot \left(\prod_{(n_u,m)} \left\| g_{1,u} , \varphi_{n_u,m} x_u \right\|_4^{4+\delta} \right)^{\frac{1}{\tau_{u,1}}},
\]

where we used Minkowski for norms and the \(L^4 - L^{4+\delta} \) one-dimensional extension estimate from the second to third line above. Part (b) follows from applying (87) and (89) to (86). \(\square \)

Given \(\varepsilon > 0 \), we bound the multilinear form \(\tilde{\Lambda}_{k,d} \) using the estimates from (80) and Corollary 12.4 (with the appropriate \(\varepsilon \)-losses for later convenience), and the ones from Lemma 12.5 with the following weights:

\[
\begin{align*}
\theta_l &= \frac{2(l+1)}{2(d+1)} - \frac{\varepsilon}{d}, \quad 1 \leq l \leq d, \quad \text{for the } d \text{ estimates in (84) and (85)}, \\
\theta_{d+1} &= 1 - \frac{d}{2(d+1)} + \varepsilon \quad \text{for (82)}.
\end{align*}
\]

Hence,

\[
|\tilde{\Lambda}_{k,d}(g,h)| \leq \sum_{T', R \geq 0} \left(\frac{1}{\left\| g_1 \right\|_2^d} \right) \left(\prod_{l=1}^{d} \left(\frac{1}{\left\| g_1 \right\|_2^d} \right) \right) \cdot \prod_{u=k}^{d} \left(\frac{1}{\left\| g_1 \right\|_2^d} \right) \cdot \prod_{l=1}^{d} \left(\frac{1}{\left\| g_1 \right\|_2^d} \right)
\]

Developing the expression above,
\[|\tilde{A}_{k,d}(g, h)| \lesssim \]
\[\sum_{l', R_l \geq 0} 2^{-l'} \times 2^{-\left(\frac{(d+1)\varepsilon}{2kd}\right)l_1} \times \left(\prod_{j=1}^{d} 2^{-r_{j,1}} \right) \times \|g_1\|_2^{\frac{(d+1)(d-1)\varepsilon}{2kd}} \cdot \frac{(d-1)\varepsilon}{k} \]
\[\times \prod_{i=1}^{k-1} 2^{-\left(\frac{(d+1)\varepsilon}{2}l_i+1\right)} \times \prod_{i=1}^{k-1} \left[2^{-\frac{1}{d+1}l_{i,1}+1} \cdot \prod_{u=k}^{d} 2^{-\frac{1}{d+1}r_{u,i+1}} \right] \]
\[\times \prod_{i=1}^{k-1} \left[\|1_{X_{l+i+1}}r_{i,1+i} \|_{\ell^1_{n_{i,m}, \ell^1_{n_{i+1,m}}}} \cdot \frac{1}{\|\ell^1_{n_{i,m}, \ell^1_{n_{i+1,m}}}^{\varepsilon} \|} \right] \times \prod_{i=1}^{k-1} \left[2^{r_{i,1}+r_{i,i+1}} \cdot \frac{1}{d+1} - \frac{2\varepsilon}{d} \right] \]
\[\times \|g_1\|_2^{\frac{(d-1)\varepsilon}{2kd}} \cdot \prod_{l=1}^{k-1} \|g_1\|_2^{\frac{1}{2kd} - \frac{2\varepsilon}{d}} \]
\[\times \prod_{u=k}^{d} \left[\left(\prod_{j=2}^k \|1_{X_{j-1}^{r_{-u,1}}} \|_{\ell^1_{n_{u,m}, \ell^1_{n_{u+1,m}}}^{\varepsilon}} \right) \cdot \left(2^{\frac{\varepsilon}{d+1} \sum_{i \neq u} r_{i,1} \cdot 2^{d-1+r_{u,1}} + \sum_{l=2}^{k} \beta r_{u,l} \right) \right] \]
\[\times \|g_1\|_2^{\frac{(2d-k-1)(d-1)}{d+1} \left(\frac{1}{2(d+1)} - \frac{\varepsilon}{d} \right)} \cdot \prod_{k \leq u \leq d} \left[\left(\|g_{1,u}\|_4 \cdot \prod_{j \neq u} \|g_{1,j}\|_2 \right)^{\alpha} \right] \cdot \prod_{l=2}^{d} \|g_1\|_2^{\beta(d-k+1) \left(\frac{1}{2(d+1)} - \frac{\varepsilon}{d} \right)} \]
\[\times \left(2^d |F| \right)^{\left(1 - \frac{d}{2(d+1)} \right)} \cdot \alpha \cdot \varepsilon . \]

Observe that the product of the blue factors above (for \(k \leq u \leq d \)) is
\[\prod_{k \leq u \leq d} \left(\|g_{1,u}\|_4 \cdot \prod_{j \neq u} \|g_{1,j}\|_2 \right) = \left[\prod_{l=1}^{k-1} \|g_{1,l}\|_2^{d-k+1} \right] \cdot \prod_{u=k}^{d} \left[\|g_{1,u}\|_2^{d-k} \cdot \|g_{1,u}\|_4 \right] \]
\[= \left[\prod_{j=1}^{d} \|g_{1,j}\|_2^{d-k} \right] \cdot \left[\prod_{l=1}^{k-1} \|g_{1,l}\|_2^{d-k} \right] \cdot \left[\prod_{u=k}^{d} \|g_{1,u}\|_2^{d-k} \cdot \|g_{1,u}\|_4 \right] \]
\[\leq \|g_1\|_2^{d-k} \cdot |E_{1,1}|^{\frac{1}{2}} . \]

Notice that the previous step was lossy, which also reflects in the suboptimal final exponent \(p(k, d) \). Now we set the values of \(\delta \) and \(\tilde{\delta} \) (as functions of \(\varepsilon \)) to be such that
\[\delta \cdot \frac{(k+1)}{2k} \left(\frac{1}{2(d+1)} - \frac{\varepsilon}{d} \right) = \frac{(d+1)\varepsilon}{kd} , \]
\[\tilde{\delta} \cdot \frac{1}{2k} \left(\frac{1}{2(d+1)} - \frac{\varepsilon}{d} \right) = \frac{\varepsilon}{kd} . \]

Simplifying the expression above with this choice of \(\delta \) and \(\tilde{\delta} \),

\[\text{Recall that } |g_1| = |g_{1,1} \otimes \ldots \otimes g_{1,d}| \leq \|e_{1,1} \otimes \ldots \otimes e_{1,d} \| \leq \|e_1\| . \]
\[|\tilde{\Lambda}_{k,d}(g,h)| \lesssim \left[\sum_{l_i \geq 0} 2^{-\frac{(d+1)\varepsilon}{2kd} l_i} \right] \times \left[\prod_{j=1}^{k-1} \left(\sum_{r_j,i \geq 0} 2^{-\frac{(d+1)\varepsilon}{2kd} r_j,i} \right) \right] \times \left[\prod_{u=k}^{d} \left(\sum_{r_{u,i} \geq 0} 2^{-\frac{(d+1)\varepsilon}{2kd} r_{u,i}} \right) \right] \]

\[\times \left[\prod_{i=1}^{k-1} \left(\sum_{r_{i,i} \geq 0} 2^{-\frac{(d+1)\varepsilon}{2kd} r_{i,i}} \right) \right] \times \left[\prod_{u=k}^{d} \left(\sum_{r_{u,i} \geq 0} 2^{-\frac{(d+1)\varepsilon}{2kd} r_{u,i}} \right) \right] \]

By considerations identical to the ones in the end of Section 13, this implies

(90) \[|\tilde{\Lambda}_{k,d}(g,h)| \lesssim \varepsilon |F|^{1-\frac{d}{2(d+1)}} + \varepsilon |E_1|^{k+1} |E_{d+1}^{2d-k+1}(d+1)\varepsilon}. \]

To make all exponents of \(|E_j|\) (1 ≤ j ≤ k) the same, we have to take

\[\frac{1}{\overline{p}(k, d)} = \min \left\{ \frac{2d-k+1}{4k(d+1)}, \frac{d+k+1}{4k(d+1)} \right\}. \]

Again by the same considerations from Section 9, (90) implies\(^{[2]}\) Theorem 12.1 \(\square \)

13. Weak transversality, Brascamp-Lieb and an application

We were recently asked by Jonathan Bennett if there was a link between our results and the theory of Brascamp-Lieb inequalities. The motivation for that comes from the fact that, assuming \(g_1 = g_{1,1} \otimes \ldots \otimes g_{1,d} \), one can see the operator \(\mathcal{M}\mathcal{E}_{d+1,d} \) as the 2d-linear object

\[T(g_{1,1}, \ldots, g_{1,d}, g_{2,1}, \ldots, g_{2,d+1}) := \mathcal{M}\mathcal{E}_{d+1,d}(g_{1,1} \otimes \ldots \otimes g_{1,d}, g_{2,1}, \ldots, g_{2,d+1}), \]

and given that such a link exists in the theory of \(\mathcal{M}\mathcal{E}_{d+1,d} \) (see [1]), it is natural to wonder if boundedness for \(T \) is related somehow to the finiteness condition of certain Brascamp-Lieb constants \(BL(L, p) \).

The purposes of this section are to make this connection clear and to give a modest application of our results to the theory of Restriction-Brascamp-Lieb inequalities.

13.1. A link between weak transversality and Brascamp-Lieb inequalities. We start with some classical background. Let \(L_j : \mathbb{R}^n \rightarrow \mathbb{R}^{p_j} \) be linear maps and \(p_j \geq 0, 1 \leq j \leq m \). Inequalities of the form

(91) \[\int_{\mathbb{R}^n} \prod_{j=1}^{m} (f_j \circ L_j)^{p_j}(v) dv \leq C \prod_{j=1}^{m} \left(\int_{\mathbb{R}^{p_j}} f_j(y_j) dy_j \right)^{p_j} \]

\(^{[2]}\) Notice that we obtain something slightly better than Theorem 12.1 if one is looking for asymmetric estimates: (90) implies a bound of type \(L_{p_1} \times L_{p_2} \times \ldots \times L_{p_m} \rightarrow L_{\frac{1}{\overline{p}(k, d)} + \varepsilon}, p_1 \neq p_2 \) and \(p_1, p_2 \leq \overline{p}(k, d) \), if \(g_1 \) is a tensor.
are called Brascamp-Lieb inequalities. In [6], Bennett, Carbery, Christ and Tao established for which Brascamp-Lieb data \((L, p)\) the inequality above holds, where \(L = (L_1, \ldots, L_m)\) and \(p = (p_1, \ldots, p_m)\). The best constant for which (91) holds for all nonnegative input functions \(f_j \in L^1(\mathbb{R}^{n_j})\) is denoted by \(BL(L, p)\).

Theorem 13.1 ([6]). The constant \(BL(L, p)\) in (91) is finite if and only if for all subspaces \(V \subset \mathbb{R}^n\)

\[
\text{dim}(V) \leq \sum_{j=1}^{m} p_j \text{dim}(L_j V)
\]

and

\[
\sum_{j=1}^{m} p_j n_j = n.
\]

Remark 13.2. By taking \(V = \mathbb{R}^n\) in (92) it follows that each \(L_j\) must be surjective for (93) to hold as well.

We will work with explicit maps \(L_j\) and use Theorem 13.1 to establish a link between the concept of weak transversality and inequalities such as (91). These maps will be associated to the submanifolds relevant to the problem at hand: the \(d\)-dimensional paraboloid \(\mathbb{P}^d\) in \(\mathbb{R}^{d+1}\) and some “canonical” two-dimensional parabolas.

In order to define \(L_j\), we fix standard parametrizations for the submanifolds mentioned above. Let

\[
\Gamma: \mathbb{R}^d \rightarrow \mathbb{R}^{d+1}
\]

\[
(x_1, \ldots, x_d) \mapsto \left(x_1, \ldots, x_d, \sum_{i=1}^{d} x_i^2 \right),
\]

parametrize \(\mathbb{P}^d\) and

\[
\gamma_j: \mathbb{R} \rightarrow \mathbb{R}^{d+1}
\]

\[
x \mapsto (x \cdot \delta_{1j}, \ldots, x \cdot \delta_{dj}, x^2)
\]

parametrize a parabola in the two-dimensional canonical subspace generated by \(e_j\) and \(e_{d+1}\) (\(\delta_{ij}\) is the Kronecker delta). Their differentials are given by

\[
d\Gamma: \mathbb{R}^d \rightarrow M_{(d+1)\times d}
\]

\[
(x_1, \ldots, x_d) \mapsto \begin{bmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & 1 \\
2x_1 & 2x_2 & \ldots & 2x_d
\end{bmatrix},
\]

and

\[
d\gamma_j: \mathbb{R} \rightarrow M_{(d+1)\times 1}
\]

\[
x \mapsto \begin{bmatrix}
\delta_{1j} \\
\delta_{2j} \\
\vdots \\
\delta_{dj} \\
2x
\end{bmatrix}.
\]

\(^{33}\)From now on, we will replace \(n\) by \(d + 1\) when referring to the dimension of the euclidean space.
For $d + 1$ points $x^j = (x^j_1, \ldots, x^j_d) \in \mathbb{R}^d$, $1 \leq j \leq d + 1$, define the linear maps L^x_j and $L^{x+1}_{d+\ell}$ as follows:

$$
L^x_{\ell} := \left(d\gamma_{x}(x^j_\ell) \right)^* , \quad \forall 1 \leq \ell \leq d,
$$

$$
L^{x+1}_{d+\ell} := \left(d\Gamma(x_1^{\ell+1}, \ldots, x_d^{\ell+1}) \right)^* , \quad \forall 1 \leq \ell \leq d.
$$

It is important to emphasize that $L_{d+\ell}$ depends on $x^{\ell+1}$ (and similarly, L_{ℓ} depends on x^ℓ).

The main result of this subsection is:

Theorem 13.3. Let $Q = \{Q_1, \ldots, Q_{d+1}\}$ be a collection of closed cubes in \mathbb{R}^d. If Q is weakly transversal with pivot Q_1, then for any choice of points $x^j = (x^j_1, \ldots, x^j_d) \in Q_j$, the linear maps in (98) satisfy

$$
BL(L(x), p) < \infty \text{ for } L(x) = (L^x_1, \ldots, L^x_{d+1}) \text{ and } p = \left(\frac{1}{d}, \ldots, \frac{1}{d} \right).
$$

Conversely, if (99) is satisfied by the linear maps in (98) for any choice of points $x^j = (x^j_1, \ldots, x^j_d) \in Q_j$, then Q can be decomposed into $O(1)$ weakly transversal collections Q' of $d + 1$ cubes, each one having a cube $Q'_1 \subset Q_1$ as pivot.

Remark 13.4. If Q can be decomposed into $O(1)$ weakly transversal collections Q' of $d + 1$ cubes (in the sense of Claim 3.4), each one having a cube $Q'_1 \subset Q_1$ as pivot, then the conclusion of the first part of the theorem above also holds for Q. Some important examples to keep in mind are the ones of transversal configurations that are not weakly transversal by themselves, but that are decomposable into such: for instance, $\{Q_1, Q_2, Q_3\}$ where $Q_1 = [1, 4] \times [2, 3]$, $Q_2 = [0, 2] \times [0, 1]$ and $Q_3 = [3, 5] \times [0, 1]$ is a transversal collection of cubes in \mathbb{R}^2, but not weakly transversal with pivot Q_1 since $\pi_1(Q_1)$ intersects both $\pi_1(Q_2)$ and $\pi_1(Q_3)$.

Remark 13.5. We can of course obtain a similar statement if Q is weakly transversal with any other pivot Q_j, $j \neq 1$. The linear maps L_{ℓ} and $L_{d+\ell}$ would have to be changed accordingly.

Proof of Theorem 13.3. Suppose that Q is weakly transversal with pivot Q_1. We can then assume without loss of generality that

$$
\begin{align*}
\pi_1(Q_1) \cap \pi_1(Q_2) &= \emptyset, \\
&\vdots \\
\pi_d(Q_1) \cap \pi_d(Q_{d+1}) &= \emptyset.
\end{align*}
$$

The strategy is to apply Theorem 13.1. Condition (93) is trivially satisfied, so we just have to check (92). Fix the points $x^j = (x^j_1, \ldots, x^j_d) \in Q_j$, $1 \leq j \leq d$. To avoid heavy notation, we will omit the superscripts x^j_1 and $x^{\ell+1}$ when referring to L^x_{ℓ} and $L^{x+1}_{d+\ell}$, respectively, but these points will be referenced whenever they play an important role. We emphasize that the maps L_{ℓ}, $1 \leq \ell \leq d$, are being identified with the row vector

$$
\begin{bmatrix}
\delta_{1\ell} & \delta_{2\ell} & \ldots & \delta_{d\ell} & 2x_1^j
\end{bmatrix},
$$

whereas the maps $L_{d+\ell}$, $1 \leq \ell \leq d$, are identified with the $d \times (d + 1)$ matrix

$$
\begin{bmatrix}
1 & 0 & \ldots & 0 & 2x_1^{\ell+1} \\
0 & 1 & \ldots & 0 & 2x_2^{\ell+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 2x_d^{\ell+1}
\end{bmatrix}.
$$

34We highlight that the superscript j in x^j_1 denotes the point, whereas the subscript i denotes the i-coordinate of the corresponding point. Notice also that we are identifying the adjoint operator T^* with the transpose of the matrix that represents T in the canonical basis.
If \(V \subset \mathbb{R}^{d+1} \) is a subspace of dimension \(k \), we have to verify that

\[
dk \leq \sum_{j=1}^{d} \dim(L_j V) + \sum_{\ell=1}^{d} \dim(L_{d+\ell} V). \tag{101}
\]

Suppose that there are exactly \(m \geq 0 \) indices \(j \in \{1, \ldots, d\} \) such that \(\dim(L_j V) = 0 \). If \(m = 0 \), we must have \(L_j V = \mathbb{R} \) for all \(1 \leq j \leq d \), hence

\[
\sum_{j=1}^{d} \dim(L_j V) = d. \tag{102}
\]

Surjectivity of \(L_{d+\ell} \), \(1 \leq \ell \leq d \), implies \(\dim(\ker(L_{d+\ell})) = 1 \), which gives the lower bound \(\dim(L_{d+\ell} V) \geq k - 1 \). We then obtain

\[
\sum_{\ell=1}^{d} \dim(L_{d+\ell} V) \geq d(k - 1). \tag{103}
\]

It is clear that \(102 \) and \(103 \) together verify \(101 \) in the \(m = 0 \) case. If \(m \geq 1 \), assume without loss of generality that

\[
L_1 V = \ldots L_m V = 0, \tag{104}
\]

\[
L_{m+1} V = \ldots = L_d V = \mathbb{R}. \tag{105}
\]

This gives us

\[
\sum_{j=1}^{d} \dim(L_j V) = d - m. \tag{106}
\]

We will show that

\[
\sum_{\ell=1}^{d} \dim(L_{d+\ell} V) \geq (d - m)(k - 1) + mk. \tag{107}
\]

Observe that \(106 \) and \(107 \) together verify \(101 \) in the \(m \geq 1 \) case.

We claim that there are at least \(m \) maps \(L_{\ell j} \) among \(L_{\ell+1}, \ldots, L_{2d} \) such that \(\dim(L_{\ell j} V) = k \). If not, there are \(d - m + 1 \) maps \(L_{\ell_1}, \ldots, L_{\ell_{d-m+1}} \) with \(\dim(L_{\ell_j} V) \leq k - 1 \). Since \(\dim V = k \), the rank-nullity theorem implies the existence of

\[
0 \neq v^{\ell_j} \in \ker(L_{\ell_j}) \cap V, \quad 1 \leq j \leq d - m + 1. \tag{108}
\]

By \(104 \),

\[
L_r v^{\ell_j} = v^{\ell_j} + 2x_r^{d+1}v^{\ell_j}_{d+1} = 0, \quad 1 \leq r \leq m, \tag{109}
\]

and by \(108 \) we have

\[
L_{\ell_j} v^{\ell_j} = \begin{bmatrix}
1 & 0 & \ldots & 0 & 2x_1^{\ell_j-d+1} \\
0 & 1 & \ldots & 0 & 2x_2^{\ell_j-d+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 2x_d^{\ell_j-d+1}
\end{bmatrix} \cdot \begin{bmatrix}
v_1^{\ell_j} \\
v_2^{\ell_j} \\
\vdots \\
v_d^{\ell_j}
\end{bmatrix} = \begin{bmatrix}
v_1^{\ell_j} + 2x_1^{\ell_j-d+1}v_1^{\ell_j-d+1} \\
v_2^{\ell_j} + 2x_2^{\ell_j-d+1}v_2^{\ell_j-d+1} \\
\vdots \\
v_d^{\ell_j} + 2x_d^{\ell_j-d+1}v_d^{\ell_j-d+1}
\end{bmatrix} = 0 \tag{110}
\]

for \(1 \leq j \leq d - m + 1 \). For each \(1 \leq r \leq m \), combining the information from \(109 \) and \(110 \) gives us

\[
v_{d+1}^{\ell_j} \cdot (x_r^{\ell_j} - x_r^{\ell_j-d+1}) = 0.
\]

If \(v_{d+1}^{\ell_j} = 0 \), then \(110 \) also implies \(v_n^{\ell_j} = 0 \) for all \(n \in \{1, \ldots, d\} \), thus \(v^{\ell_j} = 0 \), which contradicts \(108 \). Then we must have

\[
x_r^{\ell_j} = x_r^{\ell_j-d+1}, \quad 1 \leq r \leq m.
\]
Let us now see why this cannot happen. We have just shown that there are \(d - m + 1 \) values of \(\alpha \) for which

\[
\begin{align*}
\pi_1(Q_1) \cap \pi_1(Q_{\alpha}) & \neq \emptyset, \\
\vdots \\
\pi_m(Q_1) \cap \pi_m(Q_{\alpha}) & \neq \emptyset.
\end{align*}
\] (111)

On the other hand, (100) tells us that \(\alpha \notin \{2, 3, \ldots, m + 1\} \), hence there are at most \(d - m \) possible values for \(\alpha \) (we can not have \(\alpha = 1 \) either), which is a contradiction.

Hence there are at least \(m \) maps \(L_{\ell_j} \) among \(L_{\ell_{k+1}}, \ldots, L_{2d} \) such that \(\dim(L_{\ell_j}V) = k \). The remaining \(d - m \) maps have kernels of dimension 1, so the image of \(V \) through them has dimension at least \(k - 1 \) (again by surjectivity of \(L_{\ell_j} \) and the rank-nullity theorem). This verifies (107).

For the converse implication, suppose that (99) is satisfied by the linear maps in (98) for any choice of one point per cube in \(Q \). Suppose, by contradiction, that (102) is not satisfied for a certain choice of one point per cube in \(Q \). Hence there are at least

\[
\begin{align*}
35 \\
36
\end{align*}
\] so that all collections \(\widetilde{Q} \) made of picking one sub-cube \(Q_{l,i} \) per \(Q_l \) satisfy the following:

(a) For any two \(\widetilde{Q}_r, \widetilde{Q}_s \in \widetilde{Q} \), either \(\pi_j(\widetilde{Q}_r) \cap \pi_j(\widetilde{Q}_s) = \emptyset \), or \(\pi_j(\widetilde{Q}_r) = \pi_j(\widetilde{Q}_s) \), or \(\pi_j(\widetilde{Q}_r) \cap \pi_j(\widetilde{Q}_s) = \{p_{r,s}\} \), where \(p_{r,s} \) is an endpoint of both \(\pi_j(\widetilde{Q}_r) \) and \(\pi_j(\widetilde{Q}_s) \).

(b) All \(\pi_j(\widetilde{Q}_s) \) that intersect a given \(\pi_j(\widetilde{Q}_r) \) (but distinct from it) do so at the same endpoint.

By a slight abuse of notation, let \(Q \) denote one such sub-collection that has the two properties above. Suppose, by contradiction, that \(Q \) is not weakly transversal with pivot \(Q_1 \) (recall that this is a cube obtained from the original \(Q_1 \)). The strategy now is to construct a subspace \(V \subset \mathbb{R}^{d+1} \) that contradicts (92) for a certain choice of one point per cube in \(Q \). This construction will exploit a certain feature of a special subset of \(Q \), which is the content of Claim 13.6.

For simplicity of future references, let us say that a subset \(A \subset Q \) has the property \((P) \) if

\[
\begin{align*}
(1) & \; Q_1 \in A, \\
(2) & \; A \text{ is not weakly transversal with pivot } Q_1.
\end{align*}
\]

We say that a subset \(A \subset Q \) is minimal if \(A' \subset A \) has the property \((P) \) if and only if \(A' = A \). It is clear that, since \(Q \) has the property \((P) \) itself, it must contain a minimal subset of cardinality at least 2.

Claim 13.6. Let \(A = \{Q_1, K_2, \ldots, K_n\} \) be a minimal set of \(n \) cubes\(^{36}\). There is a set \(D \) of \((d - n + 2) \) canonical directions \(v \) for which

\[
\pi_v(Q_1) \cap \pi_v(K_j) \neq \emptyset, \quad \forall \; 2 \leq j \leq n.
\] (112)

Proof of Claim 13.6. See Claim 13.6 in the appendix. \(\square \)

\(^{35}\) In other words, all \(\pi_j(\widetilde{Q}_r) \) that intersect a given \(\pi_j(\widetilde{Q}_s) \) (but distinct from it) do so on the same side. In short notation, let \(\mathcal{S}_j \) be the set of \(s \) for which \(\pi_j(\widetilde{Q}_r) \cap \pi_j(\widetilde{Q}_s) \neq \emptyset \). The conclusion is that there is some real number \(\gamma_j \) such that

\[
\gamma_j \in \pi_j(\widetilde{Q}_r) \cap \bigcap_{s \in \mathcal{S}_j} \pi_j(\widetilde{Q}_s).
\]

\(^{36}\) Observe that \(Q_1 \) is the only “\(Q \)” cube in this collection. The others are labeled by \(K_j \).
We know that Q has a minimal subset of cardinality $2 \leq n \leq d + 1$. By the previous claim and by conditions (a) and (b) of our initial reductions, if $\mathcal{A}' = \{Q_1, K_2, \ldots, K_n\}$ is a minimal subset of Q, for every $v \in D$ there is a number γ_v such that

$$\gamma_v \in \pi_v(Q_1) \cap \bigcap_{j=2}^{n} \pi_v(K_j).$$

Indeed, $\pi_v(Q_1)$ intersects each $\pi_v(Q_j)$ “on the same side”, so the intersection above must be nonempty (the existence of these γ_v is the only reason why we may need to decompose the initial collection Q into sub-collections that satisfy (a) and (b)).

For simplicity and without loss of generality, assume that $A = \{Q_1, Q_2, \ldots, Q_n\}$ is minimal and $D = \{e_1, \ldots, e_{d-n+2}\}$. Consider the points

$$(\gamma_1, \ldots, \gamma_{d-n+2}, x_{d-n+3}^1, \ldots, x_d^l) \in Q_j, \quad 1 \leq j \leq n,$$

$$(x_1^1, \ldots, x_d^l) \in Q_l, \quad n + 1 \leq l \leq d + 1,$$

By hypothesis, $\text{BL}(L(x), p) < \infty$ for the following collection of linear maps and exponents:

$$L_r^\gamma(v_1, \ldots, v_{d+1}) = v_r + 2\gamma_r v_{d+1}, \quad 1 \leq r \leq d - n + 2,$$

$$L_s^1(v_1, \ldots, v_{d+1}) = v_s + 2x_s^1 v_{d+1}, \quad d - n + 3 \leq s \leq d,$$

$$L_{d+r}^{(\gamma_1, \ldots, \gamma_{d-n+2}, x_{d-n+3}^{r+1}, \ldots, x_d^{r+1})}(v_1, \ldots, v_{d+1}) = \begin{bmatrix} v_1 + 2\gamma_1 v_{d+1} \\ \vdots \\ v_{d-n+2} + 2\gamma_{d-n+2} v_{d+1} \\ v_{d-n+3} + 2x_{d-n+3}^{r+1} v_{d+1} \\ \vdots \\ v_d + 2x_d^{r+1} v_{d+1} \end{bmatrix}, \quad 1 \leq r \leq n - 1,$$

$$L_{d+l}^{x_{d+l}} = \begin{bmatrix} v_1 + 2x_1^{l+1} v_{d+1} \\ \vdots \\ v_d + 2x_d^{l+1} v_{d+1} \end{bmatrix}, \quad n \leq l \leq d,$$

$$p = \left(\frac{1}{d}, \ldots, \frac{1}{d}\right).$$

Define

$$V := \bigcap_{r=1}^{d-n+2} \ker(L_r^\gamma).$$

Observe that $\dim(V) = n - 1$. Indeed, if we start with a vector $v = (v_1, \ldots, v_{d+1})$ of $d + 1$ “free coordinates”, we lose one degree of freedom for each kernel in the intersection above, since $L_r^\gamma(v) = 0$ gives a relation between v_r and v_{d+1}. We have $d - n + 2$ many of them, hence the total degree of freedom is $(d + 1) - (d - n + 2) = n - 1$, which is the dimension of V. On the other hand, for every $v \in V$ we have by definition

$$L_r^\gamma(v) = 0, \quad 1 \leq r \leq d - n + 2,$$

hence

$$\sum_{j=1}^{d} \dim(L_j V) \leq n - 2.$$
Also,

\[
L_{d+r}^{(\gamma_1, \ldots, \gamma_{d-n+2}, x_{d-n+3}, \ldots, x_d)}(v) = \begin{bmatrix}
0 \\
\vdots \\
v_{d-n+3} + 2x_{d-n+3}v_{d+1} \\
\vdots \\
v_d + 2x_d v_{d+1}
\end{bmatrix}, \quad 1 \leq r \leq n - 1,
\]

thus

\[
\dim(L_{d+r}V) \leq n - 2, \quad 1 \leq r \leq n - 1.
\]

Since \(\dim(V) = n - 1 \), we have the trivial bound

\[
\dim(L_{d+l}V) \leq n - 1, \quad n \leq l \leq d.
\]

Altogether, these bounds imply

\[
\frac{1}{d} \left(\sum_{j=1}^{d} \dim(L_j V) + \sum_{\ell=1}^{d} \dim(L_{d+\ell} V) \right) \leq \frac{1}{d} \left[(n - 2) + (n - 1)(n - 2) + (d - n + 1)(n - 1) \right]
\]

\[
= \frac{1}{d} [(n - 1)d - 1]
\]

\[
< n - 1 = \dim(V).
\]

Our initial hypothesis, however, is that \(\text{BL}(L(x), p) < \infty \), therefore by Theorem 13.1 we must have

\[
\dim(V) \leq \frac{1}{d} \left(\sum_{j=1}^{d} \dim(L_j V) + \sum_{\ell=1}^{d} \dim(L_{d+\ell} V) \right),
\]

which gives a contradiction. We conclude that \(Q \) is weakly transversal with pivot \(Q_1 \). \(\square \)

13.2. An application to Restriction-Brascamp-Lieb inequalities. The following conjecture was proposed in [4] by Bennett, Bez, Flock and Lee:

Conjecture 13.7. Suppose that for each \(1 \leq j \leq m \), \(\Sigma_j : U_j \mapsto \mathbb{R}^n \) is a smooth parametrization of a \(n_j \)-dimensional submanifold \(S_j \) of \(\mathbb{R}^n \) by a neighborhood \(U_j \) of the origin in \(\mathbb{R}^{n_j} \). Let

\[
E_j g_j(\xi) := \int_{U_j} e^{-2\pi i \xi \cdot \Sigma_j(x)} g_j(x) dx
\]

be the associated (parametrized) extension operator. If the Brascamp-Lieb constant \(\text{BL}(L, p) \) is finite for the linear maps \(L_j := (d\Sigma_j(0))^* : \mathbb{R}^n \mapsto \mathbb{R}^{n_j} \), then provided the neighborhoods \(U_j \) of 0 are chosen to be small enough, the inequality

\[
\int_{\mathbb{R}^n} \prod_{j=1}^{m} |E_j g_j|^{2p_j} \lesssim \prod_{j=1}^{m} \|g_j\|_{L^2(U_j)}^{2p_j}
\]

holds for all \(g_j \in L^2(U_j), 1 \leq j \leq m \).

Remark 13.8. The weaker inequality

\[
\int_{B(0,R)} \prod_{j=1}^{m} |E_j g_j|^{2p_j} \lesssim \varepsilon^R \prod_{j=1}^{m} \|g_j\|_{L^2(U_j)}^{2p_j}
\]

involving an arbitrary \(\varepsilon > 0 \) loss was established in [4].
Remark 13.9. Very few cases of Conjecture 13.7 are fully understood. Recently, Bennett, Nakamura and Shiraki settled the rank-1 case $n_1 = \ldots = n_m = 1$ as an application of their results on Tomographic Fourier Analysis.

Given their hybrid nature, estimates such as (113) are called Restriction-Brascamp-Lieb inequalities.

Our goal here is to verify Conjecture 13.7 in a special case. We chose to state the main result of this subsection in a way that does not emphasize the origin in the domains of Σ_j. The reason for this choice is that it brings to light key geometric features of the problem.

We will need a result from [4] on the stability of Brascamp-Lieb constants. Most of them being very elementary situations, as mentioned in [4].

Theorem 13.10 ([4]). Suppose that (L^0, p) is a Brascamp-Lieb datum for which $BL(L^0, p) < \infty$. Then there exists $\delta > 0$ and a constant $C < \infty$ such that

$$BL(L, p) \leq C$$

whenever $\|L - L^0\| < \delta$.

Now we are ready to state and prove our result:

Theorem 13.11. Let Γ and γ_j be the parametrizations from (94) and (96), respectively. If, for $x^j = (x^j_1, \ldots, x^j_d) \in \mathbb{R}^d$, the linear maps in (98) satisfy

$$(115) \quad BL(L(x), p) < \infty \text{ for } L(x) = (L_1^{x^j_1}, \ldots, L_{d+1}^{x^j_d}) \text{ and } p = \left(\frac{1}{d}, \ldots, \frac{1}{d}\right),$$

then there are small enough cube-neighborhoods $U_i \subset \mathbb{R} (1 \leq i \leq d)$ of x^j and $V_\ell \subset \mathbb{R}^d$ of x^ℓ ($2 \leq \ell \leq d + 1$) for which (113) holds.

Remark 13.12. Rephrasing Theorem 13.11 in terms of the original statement, it says that Conjecture 13.7 holds for

$$\Sigma_i = \gamma_i - (\delta_i \cdot x^j_1, \ldots, \delta_i \cdot x^j_d, 0), \quad 1 \leq i \leq d.$$
$$\Sigma_\ell = \Gamma - (x^{\ell-d+1}, 0), \quad d + 1 \leq \ell \leq 2d.$$
$$m = 2d,$$
$$p = \left(\frac{1}{d}, \ldots, \frac{1}{d}\right).$$

Proof of Theorem 13.11. The argument is just a matter of putting the pieces together. By (115) and Theorem 13.10 there are small enough cube-neighborhoods $U_i \subset \mathbb{R} (1 \leq i \leq d)$ of x^j and $V_\ell \subset \mathbb{R}^d$ of x^ℓ ($2 \leq \ell \leq d + 1$) for which (115) still hold. Define

$$Q_1 := U_1 \times \ldots \times U_d,$$
$$Q_\ell := V_\ell, \quad 2 \leq \ell \leq d + 1.$$

Now we apply Theorem 13.3 to conclude that the collection $Q = \{Q_1, \ldots, Q_{d+1}\}$ can be decomposed into $O(1)$ weakly transversal collections Q' of $d + 1$ cubes, each one having a cube $Q_1' \subset Q_1$ as pivot.

38Most of them being very elementary situations, as mentioned in [4].

39See [10] for a more detailed exposition of this approach.

40Theorem 13.10 says that the map $L \mapsto BL(L, p)$ is locally bounded for a fixed p, and this is enough for our purposes. On the other hand, it was shown in [3] that the Brascamp-Lieb constant is continuous in L. It was later shown in [2] that $BL(L, p)$ is in fact locally Hölder continuous in L.

41Observe that we are just translating the domain of the Σ’s back to the origin.

42Our maps L_j are sufficiently smooth for the stability theorem to be applied. The entries of the matrices that represent them are polynomials.
To each such sub-collection we apply the endpoint estimate from Section 10 (all we need to apply it is weak transversality), which finishes the proof.

□

14. Further remarks

Remark 14.1. It was pointed out to us by Jonathan Bennett that the d-dimensional estimates (2) for tensors are equivalent to certain 1-dimensional mixed norm bounds. We present this remark in the following proposition:

Proposition 14.2 (Bennett). For all $p, q \geq 1$, the estimate

(116) \[\|E_d g\|_{L_{\xi_1, \ldots, \xi_{d+1}}^q} \lesssim q \|g\|_p \]

holds for tensors $g(x) = g_1(x_1) \cdot \ldots \cdot g_d(x_d)$ if and only if

(117) \[\|E_1 f\|_{L_{\xi_2}^{p_2} L_{\xi_1}^{q_1}} \lesssim p \|f\|_p \]

holds.

Proof. Assume first that (116) holds for tensors. Then
\[\|E_1 f\|_{L^q_{\xi_2} L^p_{\xi_1}} = \left[\int \left[\int |E_1 f(\xi_1, \xi_2)|^q d\xi_1 \right]^d d\xi_2 \right]^{1/p} \]

\[= \left[\int \prod_{j=1}^d \left[\int |E_1 f(\xi_2, \xi_d)|^q d\xi_2 \right] d\xi_d \right]^{1/p} \]

\[= \left[\int \prod_{j=1}^d \int |E_d(f \otimes \ldots \otimes f)(\eta_1, \ldots, \eta_d)|^q d\eta_1 \ldots d\eta_d \right]^{1/p} \]

\[= \|E_d(f \otimes \ldots \otimes f)\|_{L^q_{\xi_d}}^{1/q} \]

\[\lesssim \|f \otimes \ldots \otimes f\|_{L^p_{\xi_1}}^{1/p} \approx \|f\|_{L^p_{\xi_1}}.\]

which proves (117). Conversely, assuming that (117) holds for all \(f \in L^p([0,1])\) yields

\[\|E_d(g_1 \otimes \ldots \otimes g_d)\|_{L^q_{\xi_d}} = \int |E_1 g_1(\xi_1, \xi_d+1)|^q \ldots |E_1 g_d(\xi_d, \xi_d+1)|^q d\xi_1 \ldots d\xi_d+1 \]

\[= \int \prod_{j=1}^d \left[\int |E_1 g_j(\xi_j, \xi_d+1)|^q d\xi_j \right] d\xi_d+1 \]

\[\leq \prod_{j=1}^d \left[\int \left[\int |E_1 g_j(\xi_j, \xi_d+1)|^q d\xi_j \right]^d d\xi_d+1 \right]^{1/q} \]

\[= \prod_{j=1}^d \|E_1 g_j\|_{L^q_{\xi_d+1} L^p_{\xi_j}} \]

\[\lesssim \prod_{j=1}^d \|g_j\|_{L^p_{\xi_j}} \]

\[= \|g\|_{L^p_{\xi_1}}.\]

Estimates such as (117) can be verified directly by interpolation. Taking sup in \(\xi_2\) gives

\[(118) \quad \|E_1 f\|_{L^q_{\xi_2} L^p_{\xi_1}} \lesssim \|f\|_{L^p([0,1])}.\]

Conjecture 1.1 for \(d = 1\) follows from

\[(119) \quad \|E_1 f\|_{L^q_{\xi_2} L^p_{\xi_1}} \lesssim \|f\|_{L^p([0,1])}\]

for all \(\varepsilon > 0\). Using mixed-norm Riesz-Thorin interpolation with weights \(\approx \frac{d-1}{d+1}\) for (118) and \(\approx \frac{2}{d+1}\) for (119), one obtains (117) for \(p = \frac{2(d+1)}{d} + \varepsilon\) and \(q = \frac{2(d+1)}{d} + \varepsilon\), which shows (116) by the previous claim.

The reader will notice that our proof for the case \(k = 1\) of Theorem 1.5 has a similar idea in its core: we interpolate (at the level of the sets \(X^{(1),\ldots,l_d}\)) between two estimates similar to (118) and (119). On the other hand, we have not found an extension of Bennett’s remark to the case \(2 \leq k \leq d + 1\), in which we still need to interpolate locally instead of globally and assume that only one function has a tensor structure.

Remark 14.3. In [33] the authors obtain the following off-diagonal type bounds:
Remark 14.4. Under the assumption that the argument presented in Section 9. We chose not to include them in this manuscript.

for tensors.

result here, but the idea is simply to interpolate between the p the methods of this work allow to prove Conjecture 1.11. We will not cover the details of this

Range optimality.

A.1.

by the concept of weak transversality that we introduce.

that, to attain the sharp range of Conjecture 1.2 in general, transversality can not be replaced as well.

enough to address weakly transversal configurations of caps and give sharp results in such cases

exploit different ideas than those present in [14] and [19] in the sense that they are robust

surfaces of any signature in Hickman and Iliopoulou’s paper [19]. Our examples, however,

problem for the sphere in Foschi and Klainerman’s work [14], and in the multilinear case for

remark that sharp examples already exist in the literature, notably in the context of the bilinear

Proposition A.1.

The condition $p \geq \frac{2(d+|\tau|+2)}{k(d+|\tau|)}$ is necessary for Theorem 11.2 to hold.

Our examples are constructed based on one-dimensional considerations. For the benefit of simplifying the notation, smoothing the exposition to the reader and to establish a clear link with Conjecture 1.2 we present them in the $|\tau| = k - 1$ case, which is the smallest possible value for the corresponding $|\tau|$ of a given collection of transversal cubes (up to decomposing it into weakly transversal collections, see Claim B.4). It will be clear, however, how to work out the general case of arbitrary $|\tau|$, and we will point that out along the proof of Claim A.3.

Consider the caps that project onto the following transversal domains via

$$U_1 = [0, 1]^d,$$

$$U_j = [2, 3]^{d-2} \times [4, 5] \times [0, 1]^{d-j+1}, \quad 2 \leq j \leq k.$$

Observe that these caps are transversal as well\footnote{For general $|\tau|$ we would have to start with a different collection of cubes with the appropriate total degree of transversality.} therefore the following argument for the case $|\tau| = k - 1$ of Proposition A.1 also shows that the range of Conjecture 1.2 is necessary.

We present the examples separately to distinguish their features. For $k = d + 1$ we will take appropriately placed cubes, whereas for $2 \leq k \leq d$ we will take slabs (boxes with edges of two different scales).

Claim A.2. Let $k = d + 1$, $\delta > 0$ small and let A_j^δ be given by

$$A_1^\delta = [0, \delta]^d,$$

$$A_j^\delta = [2, 2+\delta]^{d-2} \times [4, 4+\delta] \times [0, \delta]^{d-j+1}, \quad 2 \leq j \leq d + 1.$$
Define \(f_\delta^j := 1_{A_j} \). Then
\[
\frac{\left\| \prod_{j=1}^{d+1} E_U f_\delta^j \right\|_p}{\prod_{j=1}^{d+1} \| f_\delta^j \|_2} \geq \frac{\delta^{(d+1)-\frac{1}{p}(d+1)}}{\delta^{\frac{d}{2}}}.
\]

Therefore, letting \(\delta \to 0 \) implies \(p \geq \frac{2}{d} \) is a necessary condition for the \((d+1)\)-linear extension conjecture to hold for this choice of \(U_j \)'s and for all \(f_j \) that are full tensors.

Claim A.3. Let \(2 \leq k < d + 1, \delta > 0 \) small and let \(B_\delta^j \) be given by
\[
\begin{align*}
B_\delta^1 &= [0, \delta^{k-1}] \times [0, \delta^{d-k+1}], \\
B_\delta^j &= [2, 2 + \delta^2]^{j-2} \times [4, 4 + \delta^2] \times [0, \delta^{k-j}] \times [0, \delta^{d-k+1}], \quad 2 \leq j \leq k.
\end{align*}
\]
Define \(g_\delta^j := 1_{B_\delta^j} \). Then
\[
\frac{\left\| \prod_{j=1}^{k} E_U g_\delta^j \right\|_p}{\prod_{j=1}^{k} \| g_\delta^j \|_2} \geq \frac{\delta^{\frac{k}{2}(d-k-1)-\frac{1}{p}(d+k+1)}}{\delta^{\frac{k}{2}}}.
\]

Therefore, letting \(\delta \to 0 \) implies \(p \geq \frac{2(d+k+1)}{k(d+k-1)} \) is a necessary condition for the \(k \)-linear extension conjecture to hold for this choice of \(U_j \)'s and for all \(g_j \) that are full tensors.

Figure 6. Cases \(k = 3 \) and \(k = 4 \) when \(d = 3 \)

Before proving the claims, we need the following lemma:

Lemma A.4 (Scale-1 phase-space portrait of \(e^{2\pi i x^2} \)). There exists a sequence of smooth bumps \((\varphi_n)_{n \in \mathbb{Z}}\) such that:

(i) \(\text{supp}(\varphi_n) \subset [n-1, n+1], \ n \in \mathbb{Z}, \)

(ii) \(|\varphi_n^{(l)}(x)| \leq C_l \) uniformly in \(n \in \mathbb{Z} \) and such that
\[
e^{2\pi i x^2} = \sum_{n \in \mathbb{Z}} e^{4\pi i n x} \varphi_n(x).
\]

Proof. See [28], Proposition 1.10 on page 23. \(\square \)

Rescaling with \(t > 0 \), the corresponding phase space portrait of \(e^{2\pi i t x^2} \) is
\[
e^{2\pi i t x^2} = e^{2\pi i (\sqrt{t} x)^2} = \sum_{n \in \mathbb{Z}} e^{4\pi i n \sqrt{t} x} \varphi_n(\sqrt{t} x).
\]

Observe that \(\tilde{\varphi}_t(x) = \varphi_n(\sqrt{t} x) \) is adapted to the Heisenberg box \([\frac{n}{\sqrt{t}}, \frac{n+1}{\sqrt{t}}] \times [0, \sqrt{t}]\), but strictly supported on \([\frac{n-1}{\sqrt{t}}, \frac{n+1}{\sqrt{t}}]\). This way, we can write
since \(\text{supp}(\Phi_{n,t}) \) boxes of size \(N \) where \(\delta \) modulation contribution for \(I \) dominate each factor above. Since \(A(121) \) later), we then have:

Proof of Claim A.2. Motivated by the uncertainty principle, the first step is to analyze the behavior of the extension operator \(\mathcal{E}_{U_j} \) applied to \(f_j^\delta \) on a box whose sizes are reciprocal to the ones of \(\text{supp}(f_j^\delta) \). More precisely, we will show that \(|E_{U_j}(f_j^\delta)| \gtrsim \delta^d \) on such boxes.

If \(\delta < \frac{1}{\sqrt{t}} \),

\[
\mathcal{E}_{U_1}(f_1^\delta)(\xi_1, \ldots, \xi_d, t) = \prod_{j=1}^d \left[\int_0^\delta e^{-2\pi i \xi_j x_j} e^{-2\pi i t x_j^2} dx_j \right],
\]

since \(\text{supp}(\Phi_{n,t}) \cap [0, \delta] = \emptyset \) if \(n \in \mathbb{Z} \setminus \{0, 1\} \). If \(|\xi_j x_j| < \frac{1}{N} \) \((N \) is a big number to be chosen later), we then have:

\[
|\mathcal{E}_{U_1}(f_1^\delta)(\xi_1, \ldots, \xi_d, t)| \geq \prod_{j=1}^d \left(\left| \int_0^\delta [\Phi_{0,t}(x_j) + \Phi_{1,t}(x_j)] dx_j \right| - \int_0^\delta |e^{-2\pi i \xi_j x_j} - 1| \cdot |\Phi_{0,t}(x_j) + \Phi_{1,t}(x_j)| \right)
\]

where \(N \) is picked so that \(|e^{-2\pi i \xi_j x_j} - 1| \) is close enough to zero to make

\[
A_j := \left| \int_0^\delta [\Phi_{0,t}(x_j) + \Phi_{1,t}(x_j)] dx_j \right|
\]

dominate each factor above. Since \(A_j \gtrsim \delta \) (recall that \(\Phi_{0,t} \) and \(\Phi_{1,t} \) are adapted to Heisenberg boxes of size \(\frac{1}{\sqrt{t}} \times \sqrt{t} \) and \(\delta < \frac{1}{\sqrt{t}} \)), we conclude that if \(|\xi_j| \lesssim \frac{1}{\sqrt{t}} \) for \(1 \leq j \leq d \) and \(|t| < \frac{1}{\sqrt{t}} \), then

\[
|\mathcal{E}_{U_1}(f_1^\delta)(\xi_1, \ldots, \xi_d, t)| \gtrsim \delta^d.
\]

If \(\phi \) is a bump supported on \([-1, 1] \), we have just proved that

\[
|\mathcal{E}_{U_1}(f_1^\delta)(\xi_1, \ldots, \xi_d, t)| \gtrsim \delta^d \phi_\delta(\xi_1) \cdots \phi_\delta(\xi_d) \phi_\delta(t),
\]

where \(\phi_\delta(\xi) := \phi(\delta x) \). Analogously, if \(\delta < \frac{1}{\sqrt{t}} \),

\[
\mathcal{E}_{U_2}(f_2^\delta)(\xi_1, \ldots, \xi_d, t)
\]

\[
= \left[\int_4^{4+\delta} e^{-2\pi i \xi_1 x_1} e^{-2\pi i t x_1^2} dx_1 \right] \cdot \prod_{j=2}^d \left[\int_0^\delta e^{-2\pi i \xi_j x_j} e^{-2\pi i t x_j^2} dx_j \right]
\]

\[
= \left[\int_4^{4+\delta} e^{-2\pi i \xi_1 x_1} \left(\sum_{n \in \mathbb{Z}} \Phi_{n,t}(x_1) \right) dx_1 \right] \cdot \prod_{j=2}^d \left[\int_0^\delta e^{-2\pi i \xi_j x_j} \cdot |\Phi_{0,t}(x_j) + \Phi_{1,t}(x_j)| dx_j \right],
\]

There are at most \(O(1) \) integers \(n \) such that \(\text{supp}(\Phi_{n,t}) \cap [4, 4+\delta] \neq \emptyset \), and they cluster around \([4\sqrt{t}]\). Without loss of generality, one can assume that \(n = 4\sqrt{t} \) so that the main contribution for \(I_1 \) comes from \(\Phi_{4\sqrt{t},t} \) whose Heisenberg box is \([4, 4+\frac{1}{\sqrt{t}}] \times [8t, 8t + \sqrt{t}] \). The modulation \(e^{-2\pi i \xi_1 x_1} \) shifts this box vertically by \(-\xi_1 \), and \(I_1 \) is negligible if the boxes \([4, 4+\frac{1}{\sqrt{t}}] \times [8t, 8t + \sqrt{t}] \).
together imply $| \xi_1 - 8t | < \frac{1}{\delta}$ and $[0, \delta] \times [0, \frac{1}{\gamma}]$ are disjoint in frequency, so we need $| \xi_1 - 8t | < \frac{1}{\delta}$ to have a significant contribution to I_j. In that case,

$$|I_1| \gtrsim \left| \int_{\frac{4}{\delta}}^{4+\delta} e^{-2\pi i \xi x_1} \Phi_{4\sqrt{\gamma},t}(x_1) dx_1 \right| \gtrsim \delta.$$

The analysis of I_j for $j \geq 2$ is the same as the one for the factors of $E_{U_1}(f_2^j)$. We conclude that if $| \xi_1 - 8t | < \frac{1}{\delta}$, $| \xi_j | < \frac{1}{\delta}$ for $2 \leq j \leq d$ and $| t | < \frac{1}{\gamma}$, then

$$|E_{U_2}(f_2^j)(\xi_1, \ldots, \xi_d, t)| \gtrsim \delta^d.$$

As before,

$$|E_{U_2}(f_2^j)(\xi_1, \ldots, \xi_d, t)| \gtrsim \delta^d \phi_\delta(\xi_1 - 8t) \cdot \phi_\delta(\xi_2) \ldots \phi_\delta(\xi_d) \phi_\delta^2(t).$$

The conclusion is that (123)

$$|E_{U_j}(f_2^j)(\xi_1, \ldots, \xi_d, t)| \gtrsim \delta^d \phi_\delta(\xi_1 - 4t) \ldots \phi_\delta(\xi_{j-2} - 4t) \cdot \phi_\delta(\xi_{j-1} - 8t) \cdot \phi_\delta(\xi_j) \ldots \phi_\delta(\xi_d) \phi_\delta^2(t),$$

for all $2 \leq j \leq d + 1$.

Let $\xi = (\xi_1, \ldots, \xi_d)$. From (122) and (123) we obtain

(124)

$$\prod_{j=1}^{d+1} |E_{U_j}(f_2^j)(\xi, t)| \gtrsim \delta^{d(d+1)} \left[\phi_\delta^d(t) \prod_{l=1}^d \phi_\delta(\xi_l) \right] \times \left[\prod_{j=2}^d \phi_\delta(\xi_1 - 4t) \ldots \phi_\delta(\xi_{j-2} - 4t) \cdot \phi_\delta(\xi_{j-1} - 8t) \cdot \phi_\delta(\xi_j) \ldots \phi_\delta(\xi_d) \phi_\delta^2(t) \right]$$

Now we analyze the support of the product of the right-hand of (124). Notice that we have at least one bump like $\phi_\delta(\xi_j)$ for every $1 \leq j \leq d + 1$, so $| \xi_j | < \frac{1}{\delta}$ is a necessary condition for the product not to be zero. On the other hand, the conditions

$$| \xi_j | \lesssim \frac{1}{\delta},$$

$$| \xi_j - 8t | \lesssim \frac{1}{\delta}$$

together imply $| t | \lesssim \frac{1}{\gamma}$, which is much more restrictive than the $| t | \lesssim \frac{1}{\gamma}$ that comes from the support of the bump $\phi_\delta^2(t)$. We conclude that the right-hand side of (124) is supported on the box

$$R^*_\delta = \left\{ (\xi_1, \ldots, \xi_d, t) \in \mathbb{R}^{d+1}; \ | t | \lesssim \frac{1}{\delta}, \ | \xi_j | \lesssim \frac{1}{\delta}, \ 1 \leq j \leq d \right\}.$$

Finally,

(125)

$$\frac{\left\| \prod_{j=1}^{d+1} E_{U_j}(f_2^j) \right\|_p}{\prod_{j=1}^{d+1} \| f_2^j \|_2} \gtrsim \frac{\delta^{d(d+1)} \cdot |R^*_\delta|^{\frac{1}{p}}}{\sigma^{d(d+1) \cdot \frac{1}{2}}} \gtrsim \frac{\delta^{d(d+1) - \frac{1}{p}(d+1)}}{\delta^{d(d+1) - \frac{1}{p}(d+1)}}$$

and the claim follows. \[\square\]
Proof of Claim A.3. The outline of the following argument is the same as the one used in previous proof. Let $\xi = (\xi_1, \ldots, \xi_d)$. If $\delta^2 < \frac{1}{\sqrt{4t}}$,

$$E_{U_1}(g_1^\delta)(\xi, t) = \prod_{j=1}^{k-1} \left[\int_0^{\delta^2} e^{-2\pi i \xi_j x_j} e^{-2\pi i t x_j^2} dx_j \right] \cdot \prod_{l=k}^{d} \left[\int_0^{\delta} e^{-2\pi i \xi_l x_l} e^{-2\pi i t x_l^2} dx_l \right]$$

since $\text{supp}(\Phi_{n,t}) \cap [0, \delta^2] = \emptyset$ if $n \in \mathbb{Z}\setminus\{0, 1\}$. If $\delta < \frac{1}{\sqrt{4t}}$ (which is stronger than the previous condition $\delta^2 < \frac{1}{\sqrt{4t}}$), we can eliminate most $\Phi_{n,t}$ in (\star) as well:

$$E_{U_1}(g_1^\delta)(\xi, t) = \prod_{j=1}^{k-1} \left[\int_0^{\delta^2} e^{-2\pi i \xi_j x_j} [\Phi_{0,t}(x_j) + \Phi_{1,t}(x_j)] dx_j \right] \cdot \prod_{l=k}^{d} \left[\int_0^{\delta} e^{-2\pi i \xi_l x_l} \cdot [\Phi_{0,t}(x_l) + \Phi_{1,t}(x_l)] dx_l \right],$$

If $|\xi_j x_j| < \frac{1}{\delta}$ (for N big enough), we then have:

$$|E_{U_1}(g_1^\delta)(\xi, t)| \gtrsim \delta^{d+k-1},$$

by the same argument presented when we analyzed (121). We conclude that if $|\xi_j| \lesssim \frac{1}{\delta}$ for $1 \leq j \leq k-1$, $|\xi_l| \lesssim \frac{1}{\delta}$ for $k \leq l \leq d$ and $|t| < \frac{1}{\delta}$, then $|E_{U_1}(g_1^\delta)(\xi, t)| \gtrsim \delta^{d+k-1}$.

Using the same notation from the proof of Claim A.2, there have just proved that

$$|E_{U_1}(g_1^\delta)(\xi, t)| \gtrsim \delta^d \phi_{\beta}(\xi_1) \cdot \ldots \phi_{\beta}(\xi_{k-1}) \phi_{\delta}(x_k) \cdot \ldots \phi_{\delta}(x_d) \cdot \phi_{\beta}(t),$$

where $\phi_{\delta}(\xi) := \phi(\delta x)$ and ϕ is a bump supported on $[-1, 1]$. Analogously, if $\delta < \frac{1}{\sqrt{4t}}$,

$$E_{U_2}(g_2^\delta)(\xi, t),$$

As in the proof of Claim A.2, the main contribution for M_1 comes from $\Phi_{4\sqrt{t},t}$, whose Heisenberg box is $[4, 4 + \frac{1}{\sqrt{4t}}] \times [8t, 8t + \sqrt{t}]$. The modulation $e^{-2\pi i \xi x_1}$ shifts this box vertically by $-\xi_1$, and M_1 is negligible if the boxes $[4, 4 + \frac{1}{\sqrt{4t}}] \times [8t - \xi_1, 8t + \sqrt{t} - \xi_1]$ and $[0, \delta^2] \times [0, \frac{1}{\delta}]$ are disjoint in frequency, so we need $|\xi_1 - 8t| \lesssim \frac{1}{\delta}$ to have a significant contribution to M_1. In that case,

44For general $|\tau|$, we would have $|\tau|$ conditions of type $|\xi_j| \lesssim \frac{1}{\delta}$ and $(d - |\tau|)\text{like }|\xi_j| \lesssim \frac{1}{\delta}$.
\[
|M_1| \gtrsim \left| \int_4^{4+\delta^2} e^{-2\pi i \xi_1 x_1} \Phi_2 \sqrt{T_d}(x_1) \, dx_1 \right| \gtrsim \delta^2.
\]

The analysis of \(M_j\) for \(2 \leq j \leq k-1\) and of \(M_l\) for \(k \leq l \leq d - k + 1\) are the same as the one for the factors of \(E_{U_j}(g_j^\delta)\). We conclude that if \(|\xi_1 - 8t| \lesssim \frac{1}{\delta^2}, \, |\xi_j| \lesssim \frac{1}{\delta^2}\) for \(2 \leq j \leq k-1, \, |\xi_l| \lesssim \frac{1}{\delta^2}\) for \(k \leq l \leq d\) and \(|t| \leq \frac{1}{\delta^2}\), then

\[
|E_{U_j}(g_j^\delta)(\xi, t)| \gtrsim \delta^{d+k-1}.
\]

As before,

\[
|E_{U_j}(g_j^\delta)(\xi, t)| \gtrsim \delta^d \phi_\delta(\xi_1 - 4t) \cdot \phi_\delta(\xi_2) \cdots \phi_\delta(\xi_{k-1}) \cdot \phi_\delta(\xi_k) \cdots \phi_\delta(\xi_d) \phi_\delta(t).
\]

The extensions \(E_{U_j}(g_j^\delta)\) for \(3 \leq j \leq k\) are treated in the same way. The conclusion is that

\[
(127) \quad |E_{U_j}(g_j^\delta)(\xi, t)| \gtrsim \delta^d \phi_\delta(\xi_1 - 8t) \cdot \phi_\delta(\xi_2) \cdots \phi_\delta(\xi_{k-1}) \cdot \phi_\delta(\xi_k) \cdots \phi_\delta(\xi_d) \phi_\delta(t)
\]

for all \(2 \leq j \leq k\). From (126) and (127) we obtain

\[
(128) \quad \prod_{j=1}^{k} |E_{U_j}(g_j^\delta)(\xi, t)|
\]

\[
\gtrsim \delta^{k(d+k-1)} \left[\phi_\delta(t) \prod_{l=1}^{k-1} \phi_\delta(\xi_l) \cdot \prod_{n=k}^{d} \phi_\delta(\xi_n) \right]
\]

\[
\times \left[\prod_{j=2}^{d} \left(\prod_{n=1}^{j-2} \phi_\delta(\xi_n - 4t) \right) \cdot \phi_\delta(\xi_{j-1} - 8t) \cdot \left(\prod_{m=j}^{k-1} \phi_\delta(\xi_m) \right) \cdot \left(\prod_{r=k}^{d} \phi_\delta(\xi_r) \right) \cdot \phi_\delta(t) \right].
\]

Notice that we have at least one bump like \(\phi_\delta(\xi_j)\) for every \(1 \leq j \leq k-1\) and at least one \(\phi_\delta(\xi_l)\) for \(k \leq l \leq d\), so \(|\xi_j| \lesssim \frac{1}{\delta^2}\) and \(|\xi_l| \lesssim \frac{1}{\delta^2}\) are necessary conditions for the product not to be zero. On the other hand, the conditions

\[
|\xi_j| \lesssim \frac{1}{\delta^2},
\]

\[
|\xi_j - 8t| \lesssim \frac{1}{\delta^2}
\]

together imply \(|t| \lesssim \frac{1}{\delta^2}\), which does not add any new information compared to the one coming from the bump \(\phi_\delta(t)\) (this is the main difference between the analysis in Claims A.2 and A.3). We conclude that the right-hand side of (128) is supported on the box

\[
S_\delta^* = \left\{ (\xi_1, \ldots, \xi_d, t) \in \mathbb{R}^{d+1}; \ |t| \lesssim \frac{1}{\delta^2}, \ |\xi_j| \lesssim \frac{1}{\delta^2}, \ 1 \leq j \leq k-1; \ |\xi_l| \lesssim \frac{1}{\delta}, \ k \leq l \leq d \right\}.
\]

Finally,

\[
(129) \quad \frac{\left\| \prod_{j=1}^{k} E_{U_j}(g_j^\delta) \right\|_p}{\prod_{j=1}^{d+1} \|g_j^\delta\|_2} \gtrsim \frac{\delta^{(d+k-1)k} \cdot |S_\delta^*|^{\frac{1}{p}}}{\delta^{\frac{(d+k-1)k}{2} \cdot \left(\frac{d+k+1}{p} \right)}}
\]

and the claim follows. \(\square\)
A.2. Transversality as a necessary condition in general. A natural question is: given \(k \) cubes \(U_j, 1 \leq j \leq k \), is it possible to prove
\[
\left\| \prod_{j=1}^{k} E_{U_j} g_j \right\|_p \lesssim \prod_{j=1}^{k} \|g_j\|_2
\]
for \(p \geq \frac{2(d+k+1)}{k(d+k-1)} \) and all \(g_j \in L^2(U_j) \) if the \(U_j \)'s are assumed to be weakly transversal?

The answer is no and we will address it in this second part of the first appendix. As a consequence, we conclude that Theorem 1.5 is sharp under weak transversality, as observed in Remark 1.8.

We will treat the case \(k = 3 \) and \(d = 2 \) for simplicity, but a similar construction holds in general. If three boxes \(U_1, U_2, U_3 \subset \mathbb{R}^2 \) are not transversal, there is a line that crosses them. Assume without loss of generality that \(U_1 = [0,1]^2, U_2 = [2,3]^2 \) and \(U_3 = [4,5]^2 \). We will show that
\[
\|E_{U_1}(h_1) \cdot E_{U_2}(h_2) \cdot E_{U_3}(h_3)\|_p \lesssim \|h_1\|_2 \cdot \|h_2\|_2 \cdot \|h_3\|_2
\]
only if \(p \geq \frac{10}{9} \). The trilinear extension conjecture for \(d = 2 \) states that \(p \geq 1 \) is the sharp range under the transversality hypothesis.

Claim A.5. Define the sets \(D_j^\delta \) by
\[
D_1^\delta = \left[\frac{\sqrt{2} - \delta^2}{2}, \frac{\sqrt{2} + \delta^2}{2} \right] \times \left[-\frac{\delta}{2}, \frac{\delta}{2} \right], \\
D_2^\delta = \left[\frac{5\sqrt{2} - 2\delta^2}{2}, \frac{5\sqrt{2} + 2\delta^2}{2} \right] \times \left[-\frac{\delta}{2}, \frac{\delta}{2} \right], \\
D_3^\delta = \left[\frac{9\sqrt{2} - 2\delta^2}{2}, \frac{9\sqrt{2} + 2\delta^2}{2} \right] \times \left[-\frac{\delta}{2}, \frac{\delta}{2} \right].
\]

Define \(h_j^\delta := 1_{D_j^\delta} \). Then
\[
\left\| \prod_{j=1}^{3} E_{D_j} h_j^\delta \right\|_p \gtrsim \delta^{\frac{2}{2} - \frac{5}{p}}.
\]

Proof. The proof is analogous to the ones of Claims A.2 and A.3. \(\square \)

Let the rhombuses \(\tilde{D}_j \) be given as follows:
\[
\tilde{D}_1 = \text{Conv} \left((0,0); \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right); \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right); \left(\frac{\sqrt{2}}{2}, 0 \right) \right), \\
\tilde{D}_2 = \text{Conv} \left((2\sqrt{2},0); \left(\frac{5\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right); \left(\frac{5\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right); (3\sqrt{2},0) \right), \\
\tilde{D}_3 = \text{Conv} \left((4\sqrt{2},0); \left(\frac{9\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right); \left(\frac{9\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right); (5\sqrt{2},0) \right).
\]

Observe that \(D_j^\delta \subset \tilde{D}_j \) for \(\delta > 0 \) small enough. Extend the domain of \(h_j^\delta \) to \(\tilde{D}_j \) so that it is 0 on \(\tilde{D}_j \setminus D_j^\delta \).

Let \(T \) be a \(\frac{\pi}{4} \) counterclockwise rotation and let
\[
H_j^\delta(x) := h_j^\delta \circ T^{-1}(x).
\]

Notice that \(T \) takes \(\tilde{D}_j \) to \(U_j \), as shown in the picture below.

Since \(L^p \) norms are invariant under rotations, we have
Figure 7. The function h^j_δ.

Figure 8. H^j_δ is supported on U_j.

$$\left\| \prod_{j=1}^{3} e_{U_j} H^j_\delta \right\|_p \geq \delta^{\frac{2}{p} - \frac{1}{p}}$$

from Claim A.5. Letting $\delta \to 0$ shows that we need $p \geq 10^\frac{9}{9}$, so the sharp range $p \geq 1$ can not be obtained if the boxes U_1, U_2, U_3 are not transversal.

Remark A.6. As expected, the functions H^j_δ do not have a tensor structure with respect to the canonical basis. If this was the case, our methods would have allowed us to prove that the corresponding trilinear extension operator maps $L^2 \times L^2 \times L^2$ to L^1.

Appendix B. Technical results

Here we collect a few technical results used throughout the paper.

Theorem B.1. For $0 < \gamma < d$, $1 < p < q < \infty$, and $\frac{1}{q} = \frac{1}{p} - \frac{d-\gamma}{d}$, we have

$$\|f * (\frac{|y|}{\gamma})\|_{L^q(\mathbb{R}^d)} \leq A_{p,q} \cdot \|f\|_{L^p(\mathbb{R}^d)}.$$

Proof. Proposition 7.8 in [27] \hfill \square

Theorem B.2 (Nonstationary phase). Let $a \in C_0^\infty$ and

$$I(\lambda) = \int_{\mathbb{R}^d} e^{2\pi i \lambda \phi(\xi)} a(\xi) d\xi.$$
If \(\nabla \phi \neq 0 \) on \(\text{supp}(a) \), then
\[
|I(\lambda)| \leq C(N, a, \phi)\lambda^{-N}
\]
as \(\lambda \to \infty \), for arbitrary \(N \geq 1 \).

Proof. Lemma 4.14 in [27]. \(\square \)

Theorem B.3 (Stationary phase). If \(\nabla \phi(\xi_0) = 0 \) for some \(\xi_0 \in \text{supp}(a) \), \(\nabla \phi \neq 0 \) away from \(\xi_0 \) and the Hessian of \(\phi \) at the stationary point \(\xi_0 \) is nondegenerate, i.e., \(\det D^2 \phi(\xi_0) \neq 0 \), then for all \(\lambda \geq 1 \)
\[
|I(\lambda)| \leq C(N, a, \phi)\lambda^{-\frac{d}{2}}.
\]

Proof. Lemma 4.15 in [27]. \(\square \)

We now restate and prove the main claim from Section [3].

Claim B.4. Given a collection \(Q = \{Q_1, \ldots, Q_k\} \) of transversal cubes, each \(Q_l \in Q \) can be partitioned into \(O(1) \) many sub-cubes
\[
Q_l = \bigcup_i Q_{l,i}
\]
so that all collections \(\tilde{Q} \) made of picking one sub-cube \(Q_{l,i} \) per \(Q_l \)
\[
\tilde{Q} = \{\tilde{Q}_1, \ldots, \tilde{Q}_k\}, \quad \tilde{Q}_l \in \{Q_{l,i}\}_i,
\]
are weakly transversal.

Proof. For each \(1 \leq j \leq d \), consider the set \(A_j \) of endpoints of the intervals \(\pi_j(Q_1), \ldots, \pi_j(Q_k) \). Using these endpoints to partition this collection of intervals, one can assume that there are three cases for two cubes \(Q_r \) and \(Q_s \):

1. \(\pi_j(Q_r) \cap \pi_j(Q_s) = \emptyset \).
2. \(\pi_j(Q_r) = \pi_j(Q_s) \).
3. \(\pi_j(Q_r) \cap \pi_j(Q_s) = \{p_{r,s}\} \), where \(p_{r,s} \) is an endpoint of both \(\pi_j(Q_r) \) and \(\pi_j(Q_s) \).

We can go one step further and assume that all \(\pi_j(Q_s) \) that intersect a given \(\pi_j(Q_r) \) (but distinct from it) do so at the same endpoint. Indeed, if \(\pi_j(Q_{s_1}) \cap \pi_j(Q_{r}) = \{p\} \), \(\pi_j(Q_{s_2}) \cap \pi_j(Q_{r}) = \{q\} \) and \(\pi_j(Q_{s}) = [p, q] \), we can simply split \(\pi_j(Q_{r}) \) in half and obtain intervals that satisfy this property.

Now we choose a point \(x_{j,r} \) in every interval \(\pi_j(Q_r) \):

1. If \(\pi_j(Q_{s}) \cap \pi_j(Q_{r}) = \emptyset \) for all \(s \neq r \), let \(x_{j,r} \) be the center of \(\pi_j(Q_r) \).
2. If \(\pi_j(Q_r) \) intersects some \(\pi_j(Q_{s_1}) \) at \(p \), any other \(\pi_j(Q_{s_2}) \) that intersects \(\pi_j(Q_r) \) also does it at \(p \). In this case choose \(x_{j,r} = x_{j,s} = p \) for all \(s \) such that \(\pi_j(Q_{r}) \cap \pi_j(Q_{s}) \neq \emptyset \).

Let us now show that, after the reductions above, the transversal set of cubes \(Q \) is weakly transversal. More precisely, for a fixed \(1 \leq l \leq k \), we will show that there is a set of \((k - 1) \) canonical directions that together with \(Q_l \) satisfy [12]. Let \(\tilde{x}^i_l \in Q_i \) for \(1 \leq i \leq k \) be given in coordinates by
\[
\tilde{x}^i_l = (x^i_{1,l}, x^i_{2,l}, \ldots, x^i_{d,l}).
\]
The normal vector to \(\mathbb{P}^d \) at \(\tilde{x}^i_l \) is
\[
\tilde{w}^i_l = (-2x^i_{1,l}, -2x^i_{2,l}, \ldots, -2x^i_{d,l}, 1).
\]

Then the cubes in \(Q \) are transversal if and only if the matrix
\[
\begin{pmatrix}
-2x_{1,1} & -2x_{1,2} & \cdots & -2x_{1,k} \\
-2x_{2,1} & -2x_{2,2} & \cdots & -2x_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
-2x_{d,1} & -2x_{d,2} & \cdots & -2x_{d,k} \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]
has rank \(k \) for all \(x_{j,i} \in \pi_j(Q_i), 1 \leq j \leq d, 1 \leq i \leq k \).
By Lemma B.5 (proven at the end of this appendix), there are \((k-1)\) rows \(R_{i_n} = (-2x_{i_n,1}, \ldots, -2x_{i_n,k})\) of the above matrix, \(1 \leq n \leq k - 1\), such that

\[
\begin{align*}
&x_{i_1,l} \neq x_{i_1,1} \\
&\vdots \\
&x_{i_{l-1},l} \neq x_{i_{l-1},l-1} \\
&x_{i_l,l} \neq x_{i_l,l+1} \\
&\vdots \\
&x_{i_{k-1},l} \neq x_{i_{k-1},k}.
\end{align*}
\]

Because of the choices we made, \(x_{i_n,l} \neq x_{i_n,r}\) implies \(\pi_{i_n}(Q_l) \cap \pi_{i_n}(Q_r) = \emptyset\), which finishes the proof.

\[\square\]

Finally, we state and prove the auxiliary linear algebra lemma used in the proof of Claim B.4.

Lemma B.5. Let \(M\) be the \((d+1) \times k\) matrix

\[
M = \begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,k} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{d,1} & a_{d,2} & \cdots & a_{d,k} \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

and assume that it has rank \(k\). For each column \(C_j = (a_{1,j}, \ldots, a_{d,j}, 1)\) there are \((k-1)\) rows \(R_{i_l} = (a_{i_{l,1}}, \ldots, a_{i_{l,k}})\), \(1 \leq l \leq k - 1\), such that

\[
\begin{align*}
a_{i_1,j} \neq a_{i_1,l_1} \\
a_{i_2,j} \neq a_{i_2,l_2} \\
&\vdots \\
a_{i_{k-1},j} \neq a_{i_{k-1},l_{k-1}},
\end{align*}
\]

where \((l_1, l_2, \ldots, l_{k-1})\) is some permutation of \((1, 2, \ldots, j-1, j+1, \ldots, k)\).

Proof. Let us first consider the case \(k = d + 1\). We have to show that for all columns \(C_j\) the first \(k - 1\) rows satisfy the property of the lemma. Observe that the product

\[
MA = \begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,k} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k-1,1} & a_{k-1,2} & \cdots & a_{k-1,k} \\
1 & 1 & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & \cdots & 1 & 1 \\
-1 & 0 & \cdots & 0 & 0 \\
0 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{pmatrix}
\]

is a rank \(k\) matrix equal to

\[
\begin{pmatrix}
(a_{1,1} - a_{1,2}) & (a_{1,1} - a_{1,3}) & \cdots & (a_{1,1} - a_{1,k-1}) & (a_{1,1} - a_{1,k}) & a_{1,1} \\
(a_{2,1} - a_{2,2}) & (a_{2,1} - a_{2,3}) & \cdots & (a_{2,1} - a_{2,k-1}) & (a_{2,1} - a_{2,k}) & a_{2,1} \\
(a_{3,1} - a_{3,2}) & (a_{3,1} - a_{3,3}) & \cdots & (a_{3,1} - a_{3,k-1}) & (a_{3,1} - a_{3,k}) & a_{3,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
(a_{k-1,1} - a_{k-1,2}) & (a_{k-1,1} - a_{k-1,3}) & \cdots & (a_{k-1,1} - a_{k-1,k-1}) & (a_{k-1,1} - a_{k-1,k}) & a_{k-1,1} \\
0 & 0 & \cdots & 0 & 0 & 1
\end{pmatrix}
\]
By computing the Laplace expansion with respect to the last row, we conclude that det (MA) is equal to

$$
\det \begin{pmatrix}
(a_{1,1} - a_{1,2}) & (a_{1,1} - a_{1,3}) & \cdots & (a_{1,1} - a_{1,k-1}) & (a_{1,1} - a_{1,k}) \\
(a_{2,1} - a_{2,2}) & (a_{2,1} - a_{2,3}) & \cdots & (a_{2,1} - a_{2,k-1}) & (a_{2,1} - a_{2,k}) \\
(a_{3,1} - a_{3,2}) & (a_{3,1} - a_{3,3}) & \cdots & (a_{3,1} - a_{3,k-1}) & (a_{3,1} - a_{3,k}) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(a_{k-1,1} - a_{k-1,2}) & (a_{k-1,1} - a_{k-1,3}) & \cdots & (a_{k-1,1} - a_{k-1,k-1}) & (a_{k-1,1} - a_{k-1,k}) \\
(a_{k,1} - a_{k,2}) & (a_{k,1} - a_{k,3}) & \cdots & (a_{k,1} - a_{k,k-1}) & (a_{k,1} - a_{k,k})
\end{pmatrix}.
$$

The entries of this matrix are

$$
x_{i,j} := a_{i,1} - a_{i,j+1}, \quad 1 \leq i, j \leq k - 1.
$$

The column C_1 has the property of the lemma if and only if there is some permutation π of $(1, 2, \ldots, k - 1)$ such that

$$
\begin{align*}
x_{1,\pi(1)} &= a_{1,1} - a_{1,\pi(1)+1} \neq 0 \\
x_{2,\pi(2)} &= a_{2,1} - a_{2,\pi(2)+1} \neq 0 \\
&\vdots \\
x_{k-1,\pi(k-1)} &= a_{k-1,1} - a_{k-1,\pi(k-1)+1} \neq 0.
\end{align*}
$$

If this was not the case, for all such permutations π of $(1, 2, \ldots, k - 1)$ at least one among $x_{1,\pi(1)}, x_{2,\pi(2)}, \ldots, x_{k-1,\pi(k-1)}$ would be zero. Hence

$$
det(MA) = \sum_{\pi \in S_{k-1}} \text{sgn}(\pi) \cdot x_{1,\pi(1)} \cdot \cdots \cdot x_{k-1,\pi(k-1)} = 0,
$$

a contradiction. A similar argument shows that any other column also has this property.

The case $k < d + 1$ can be reduced to the previous one. Indeed, the rank k condition guarantees that there is a $k \times k$ minor of M that has rank k. There are two possibilities:

1. There is a $k \times k$ minor of rank k that has a row of 1's.

 This is identical to the case $k = d + 1$ and we conclude that the rows that generate this minor are the ones that satisfy the property of the lemma.

2. No $k \times k$ minor of rank k has a row of 1's.

 Here the rows of all non-singular minors are among the first d ones of M. Let R_{il}, $1 \leq l \leq k$, be k rows of M that generate such a minor \tilde{M}:

$$
\tilde{M} = \begin{pmatrix}
a_{i_1,1} & a_{i_1,2} & \cdots & a_{i_1,k} \\
a_{i_2,1} & a_{i_2,2} & \cdots & a_{i_2,k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{k-1},1} & a_{i_{k-1},2} & \cdots & a_{i_{k-1},k} \\
ai_{k,1} & a_{i_k,2} & \cdots & a_{i_k,k}
\end{pmatrix}.
$$

Proceed as in the case $k = d + 1$ and multiply \tilde{M} by the matrix A to obtain

$$
\tilde{MA} = \begin{pmatrix}
(a_{i_1,1} - a_{i_1,2}) & (a_{i_1,1} - a_{i_1,3}) & \cdots & (a_{i_1,1} - a_{i_1,k}) & a_{i_1,1} \\
(a_{i_2,1} - a_{i_2,2}) & (a_{i_2,1} - a_{i_2,3}) & \cdots & (a_{i_2,1} - a_{i_2,k}) & a_{i_2,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(a_{i_{k-1},1} - a_{i_{k-1},2}) & (a_{i_{k-1},1} - a_{i_{k-1},3}) & \cdots & (a_{i_{k-1},1} - a_{i_{k-1},k}) & a_{i_{k-1},1} \\
(a_{i_k,1} - a_{i_k,2}) & (a_{i_k,1} - a_{i_k,3}) & \cdots & (a_{i_k,1} - a_{i_k,k}) & a_{i_k,1}
\end{pmatrix}.
$$

By computing the Laplace expansion along the last column of \tilde{MA}, we conclude that at least one $(k - 1) \times (k - 1)$ minor obtained from the first $(k - 1)$ columns of \tilde{MA} is non-singular. We argue again as in the case $k = d + 1$ to find the $k - 1$ rows that satisfy
the property of the lemma for the column C_1. An analogous argument works for any other column of M, but these $k - 1$ special rows may vary from column to column.

Let us recall some of the terminology from the proof of Theorem 13.3 in Section 13. A subset $A \subset Q$ has the property (P) if

1. $Q_1 \in A$.
2. A is not weakly transversal with pivot Q_1.

We say that $A \subset Q$ is minimal if $A' \subset A$ has the property (P) if and only if $A' = A$. Since Q itself has the property (P), it must contain a minimal subset of cardinality at least 2.

Claim B.6. Let $A = \{Q_1, K_2, \ldots, K_n\}$ be a minimal set of n cubes. There is a set D of $(d - n + 2)$ canonical directions v for which

$$\pi_v(Q_1) \cap \pi_v(K_j) \neq \emptyset, \quad 2 \leq j \leq n. \quad (131)$$

Proof of Claim B.6. If $n = 2$, then $Q_1 \cap K_2 \neq \emptyset$ and the claim follows directly. If $n > 2$, observe that $A' = \{Q_1, K_2, \ldots, K_{n-1}\}$ is weakly transversal with pivot Q_1, otherwise A would not be minimal. Hence there are $1 \leq j_1, \ldots, j_{n-2} \leq d$ distinct such that

$$\pi_{j_1}(Q_1) \cap \pi_{j_1}(K_2) = \emptyset, \quad \vdots \quad \pi_{j_{n-2}}(Q_1) \cap \pi_{j_{n-2}}(K_{n-1}) = \emptyset. \quad (132)$$

Let $D := \{e_1, \ldots, e_d\} \setminus \{e_{j_1}, \ldots, e_{j_{n-2}}\}$. In what follows, we will show that (131) holds for this set of directions. Notice that if

$$\pi_l(Q_1) \cap \pi_l(K_n) = \emptyset \quad (133)$$

for some $l \in D$, then A would be weakly transversal with pivot Q_1 (because (132) together with (133) verify the definition of weak transversality), which is false by hypothesis. Hence (131) holds for $j = n$.

Let us argue by induction that, if (131) holds for $1 \leq m < n - 1$ cubes $K_n, K_{\alpha_1}, \ldots, K_{\alpha_m-1}$, then it’s possible to find a new one K_{α_m} for which (131) also holds. This will be achieved by the following algorithm: consider the set

$$A'' := \{Q_1, K_n, K_{\alpha_1}, \ldots, K_{\alpha_m-1}\}.$$

By the minimality of A, A'' is weakly transversal with pivot Q_1, hence there are $1 \leq r_1, \ldots, r_m \leq d$ distinct such that

$$\pi_{r_1}(Q_1) \cap \pi_{r_1}(K_n) = \emptyset, \quad \pi_{r_2}(Q_1) \cap \pi_{r_2}(K_{\alpha_1}) = \emptyset, \quad \vdots \quad \pi_{r_m}(Q_1) \cap \pi_{r_m}(K_{\alpha_{m-1}}) = \emptyset. \quad (134)$$

Property (P) for A implies $r_1 \in \{j_1, \ldots, j_{n-2}\}$. Then there is j_{β_1} such that $r_1 = j_{\beta_1}$, therefore

$$\pi_{j_{\beta_1}}(Q_1) \cap \pi_{j_{\beta_1}}(K_{\beta_1+1}) = \emptyset, \quad \pi_{j_{\beta_1}}(Q_1) \cap \pi_{j_{\beta_1}}(K_n) = \emptyset. \quad (135)$$

45Observe that Q_1 is the only "Q" cube in this collection. The others are labeled by K_j.

46We are done if there are $m = n - 1$ for which (131) holds, therefore we assume the strict inequality $m < n - 1$.

47Otherwise we face the same problem that appeared in (133).
Since $K_{β_1+1}$ appears in (132), it is one among K_2, \ldots, K_{n-1}, hence $K_{β_1+1} ≠ K_n$. We are done if $K_{β_1+1} ∉ A''$: indeed, if (136)$$π_l(Q_1) ∩ π_l(K_{β_1+1}) = ∅$$for some $l ∈ D$, then

\[
\begin{align*}
π_{j_1}(Q_1) & ∩ π_{j_1}(K_2) = ∅, \\
π_{j_{β_1}-1}(Q_1) & ∩ π_{j_{β_1}-1}(K_{β_1}) = ∅, \\
π_l(Q_1) & ∩ π_l(K_{β_1+1}) = ∅, \\
π_{j_{β_1}+1}(Q_1) & ∩ π_{j_{β_1}+1}(K_{β_1}+2) = ∅, \\
π_{j_{n-2}}(Q_1) & ∩ π_{j_{n-2}}(K_{n-1}) = ∅, \\
π_{j_{β_1}}(Q_1) & ∩ π_{j_{β_1}}(K_n) = ∅,
\end{align*}
\]

and A would be weakly transversal with pivot Q_1 (by definition again), which contradicts property (P). This way, we would find a new (not in A'') cube $K_{β_1+1}$ for which (131) also holds.

On the other hand, if $K_{β_1+1} = K_{α_{q_1}}$ for some $K_{α_{q_1}} ∈ A'' \setminus \{K_n\}$, then we simply switch the projections $π_{j_{β_1}}$ and $π_{r_{q_1}+1}$ in (132) (they are distinct because $j_{β_1} = r_1 ≠ r_{q_1+1}$) and consider the conditions

\[
\begin{align*}
π_{j_1}(Q_1) & ∩ π_{j_1}(K_2) = ∅, \\
π_{j_{β_1}-1}(Q_1) & ∩ π_{j_{β_1}-1}(K_{β_1}) = ∅, \\
π_{q_{q_1}+1}(Q_1) & ∩ π_{r_{q_1}+1}(K_{α_{q_1}}) = ∅, \\
π_{j_{β_1}+1}(Q_1) & ∩ π_{j_{β_1}+1}(K_{β_1}+2) = ∅, \\
π_{j_{n-2}}(Q_1) & ∩ π_{j_{n-2}}(K_{n-1}) = ∅, \\
π_{j_{β_1}}(Q_1) & ∩ π_{j_{β_1}}(K_n) = ∅,
\end{align*}
\]

where the last condition is taken from (135). Since $j_{β_1} ≠ r_{q_1+1}$, property (P) for A again implies that $r_{q_1+1} = j_{β_2}$. Notice that $β_2 ≠ β_1$ because $r_1 = j_{β_1}$ and $r_1 ≠ r_{q_1+1}$. This way, from (132),

(139)$$\begin{align*}
π_{j_{β_2}}(Q_1) & ∩ π_{j_{β_2}}(K_{β_2+1}) = ∅, \\
π_{j_{β_2}}(Q_1) & ∩ π_{j_{β_2}}(K_{α_{q_2}}) = ∅.
\end{align*}$$

The index $j_{β_2}$ is one of the elements in the set $\{j_1, \ldots, j_{β_1}-1, j_{β_1}+1, \ldots, j_{n-2}\}$, hence $K_{β_2+1}$ is in the set $\{K_2, \ldots, K_{β_1}, K_{β_1}+2, \ldots, K_{n-1}\}$. As before, we are done if $K_{β_2+1} ∉ A''$. If not, $K_{β_2+1} = K_{α_{q_2}}$ for some $K_{α_{q_2}} ∈ A'' \setminus \{K_n, K_{α_{q_1}}\}$ and we switch the projections $π_{j_{β_2}}$ and $π_{r_{q_2}+1}$ in (138) to find some $β_3 ≠ \{β_1, β_2\}$ such that

(140)$$\begin{align*}
π_{j_{β_3}}(Q_1) & ∩ π_{j_{β_3}}(K_{β_3+1}) = ∅, \\
π_{j_{β_3}}(Q_1) & ∩ π_{j_{β_3}}(K_{α_{q_2}}) = ∅.
\end{align*}$$

We keep doing that until we find some $K_{β_{j+1}} ∉ A''$. This is guaranteed to happen since there are $n-1$ cubes K_j, but only $m < n-1$ of them in A''. The conclusion is that

\[m < n-1 \text{ cubes } K_j \text{ satisfy (131)} \implies m + 1 \text{ cubes } K_j \text{ satisfy (131)},\]

therefore (131) holds for $2 ≤ j ≤ n$.

□
References

[1] J. Bennett, *Aspects of multilinear Harmonic Analysis related to transversality*, preprint, 2014.

[2] J. Bennett, N. Bez, S. Buschenhenke, M. G. Cowling, T. C. Flock, *On the nonlinear Brascamp-Lieb inequality*, Duke Math. J., 169 (2020) 3291-3338.

[3] J. Bennett, N. Bez, M. G. Cowling, T. C. Flock, *Behaviour of the the Brascamp-Lieb constant*, Bull. Lond. Math. Soc. 49 (2017), 512-518.

[4] J. Bennett, N. Bez, T. C. Flock, S. Lee, *Stability of the Brascamp-Lieb constant and applications*, Amer. J. Math. 140 (2018), 543-569.

[5] J. Bennett, A. Carbery, T. Tao, *On the multilinear restriction and Kakeya conjectures*. Acta Math., 2006.

[6] J. Bennett, A. Carbery, M. Christ and T. Tao, *The Brascamp-Lieb inequalities: finiteness, structure and extremals*, Geom. Funct. Anal. 17 (5) (2008), 1343-1415.

[7] J. Bennett, A. Carbery, M. Christ and T. Tao, *Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities*, Math. Res. Lett. 17 (4) (2010), 647-666.

[8] I. Bejenaru, *The almost optimal multilinear restriction estimate for hypersurfaces with curvature: the case of n−1 hypersurfaces in \(\mathbb{R}^{n-1}\)*, preprint, 2020.

[9] J. Bourgain, *Besicovitch type maximal operators and applications to Fourier analysis*. Geom. Funct. Anal., 1(2), 1991.

[10] J. Bennett, S. Nakamura, *Tomography bounds for the Fourier extension operator and applications*, Math. Ann. 380 (2021), 119-159.

[11] J. Bennett, S. Nakamura, S. Shiraki, *Tomographic Fourier extension identities for submanifolds of \(\mathbb{R}^n\)*, preprint, 2022.

[12] C. Fefferman, *Inequalities for strongly singular convolution operators*. Acta Math., 124, 1970.

[13] C. Fefferman, *The multiplier problem for the ball*. Ann. of Math., 94, 1971, 330-336.

[14] D. Foschi and S. Klainerman, *Bilinear space-time estimates for homogeneous wave equations*, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 211-274. MR 1755116 (2001g:35145).

[15] L. Guth, *Restriction estimates using polynomial partitioning I*. J. Amer. Math. Soc. 29 (2016), no. 2, 371-413.

[16] L. Guth, *Restriction estimates using polynomial partitioning II*. Acta Math., 221, 2018.

[17] L. Guth, J. Hickman, and M. Iliopoulou, *Sharp estimates for oscillatory integral operators via polynomial partitioning*. Acta Math., to appear, Preprint: arXiv:1710.10349.

[18] L. Hörmander, *Oscillatory integrals and multipliers on \(FL^p\)*, Ark. Mat. 11 (1973), 1-11.

[19] J. Hickman and M. Iliopoulou, *Sharp \(L^p\) estimates for oscillatory integral operators of arbitrary signature*. Mathematische Zeitschrift, 301(1), 1143-1189, 2022.

[20] J. Hickman and K. Rogers, *Improved Fourier restriction in higher dimensions*. Camb. J. Math., 7(3), 2019.

[21] S. Klainerman and M. Machedon, *Space-time estimates for null forms and the local existence theorem*, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268.

[22] S. Klainerman and M. Machedon, *Finite energy solutions of the Yang-Mills equations in \(\mathbb{R}^{3+1}\)*, Annals of Mathematics 142 (1995), 39-119.

[23] S. Klainerman and M. Machedon, *Estimates for null forms and the spaces \(H_{\alpha,\delta}\)*, Int. Math. Res. Not. (1996), no. 17, 853-865.

[24] J. Lee, *An endpoint estimate of the bilinear paraboloid restriction operator*, preprint, 2021.

[25] P. Mattila, *Fourier Analysis and Hausdorff Dimension*. Cambridge University Press, 2015.

[26] A. Moyua, A. Vargas, L. Vega, *Schrödinger maximal function and restriction properties of the Fourier transform*. International Math. Research Notices, 16, 1996.

[27] C. Muscalu, W. Schlag, *Classical and Multilinear Harmonic Analysis I*. Cambridge University Press, New York NY 2013.

[28] C. Muscalu, W. Schlag, *Classical and Multilinear Harmonic Analysis II*. Cambridge University Press, New York NY 2013.

[29] C. Oh, *An improved bilinear restriction estimate for paraboloid in \(\mathbb{R}^3\)*, preprint, 2021.
[30] D. Oliveira e Silva, R. Mandel, *The Tomas-Stein Inequality under the effect of symmetries*, preprint, 2021.
[31] Y. Ou, H. Wang, *A cone restriction estimate using polynomial partitioning*, J. Eur. Math. Soc. 24 (2022), no. 10, pp. 3557-3595.
[32] T. Tao, A. Vargas, *A bilinear approach to cone multipliers I: Restriction estimates*. Geom. Funct. Anal., 10, 2000.
[33] T. Tao, A. Vargas, L. Vega, *A bilinear approach to the Restriction and Kakeya conjectures*. Journal of the American Mathematical Society, 11(4), 1998.
[34] T. Tao, *Recent progress on the Restriction conjecture*. Park City proceedings, 2003.
[35] T. Tao, *A sharp bilinear restriction estimate on paraboloids*. Geom. Funct. Anal., (13), 2003.
[36] T. Tao, *Bochner-Riesz conjecture implies the restriction conjecture*. Duke Math. J. 96, 363-375.
[37] H. Tanaka, *An estimate for the Bochner-Riesz operator on functions of product type in \mathbb{R}^2*. Tokyo J. Math., 24 (2001), no. 2, 567-578.
[38] C. Thiele, *Wave packet analysis*. CBMS Regional Conference Series in Mathematics, vol. 105, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
[39] P. Tomas, *A Restriction theorem for the Fourier transform*. Bull. Amer. Math. Soc., (81), 1975.
[40] I. Satoru, *Interpolation of operators in Lebesgue spaces with mixed norm and its applications to Fourier analysis*. Tohoku Math. J., (2) 38, 1986, no. 3, 469-490.
[41] S. Shao, *Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case*. Rev. Mat. Iberoam. 25 (2009), no. 3, 1127-1168.
[42] E. Stein, *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Material Series 43. Princeton University Press, New Jersey, 1993.
[43] E. Stein, S. Wainger, *Problems in harmonic analysis related to curvature*. Bull. Amer. Math. Soc., 84 (6) (1978), 1239-1295.
[44] R. S. Strichartz, *Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*. Duke Math. J. 44 (1977), no. 3, 705-714.
[45] H. Wang, *A Restriction estimate in \mathbb{R}^3 using brooms*. preprint, 2018.
[46] T. Wolff, *A sharp bilinear cone restriction estimate*. Annals of Math, 153, 2001.
[47] A. Zygmund, *On Fourier coefficients and transforms of functions of two variables*. Studia Math., 50, 1974.

Camil Muscalu, DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853
E-mail address: camil@math.cornell.edu

Itamar Oliveira, DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853
E-mail address: oliveira.itamar.w@gmail.com