Defect production due to quenching through a multicritical point

Uma Divakaran¹, Victor Mukherjee¹, Amit Dutta¹ and Diptiman Sen²

¹ Department of Physics, Indian Institute of Technology, Kanpur 208 016, India
² Center for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India
E-mail: udiva@iitk.ac.in, victor@iitk.ac.in, dutta@iitk.ac.in and diptiman@cts.iisc.ernet.in

Received 15 October 2008
Accepted 4 December 2008
Published 2 February 2009

Online at stacks.iop.org/JSTAT/2009/P02007
doi:10.1088/1742-5468/2009/02/P02007

Abstract. We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as \(t/\tau \), where \(\tau \) is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects \((n) \) in the final state is not necessarily given by the Kibble–Zurek scaling form \(n \sim 1/\tau^{d\nu/(2z+1)} \), where \(d \) is the spatial dimension, and \(\nu \) and \(z \) are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by \(n \sim 1/\tau^{d/(2z_2)} \), where the exponent \(z_2 \) determines the behavior of the off-diagonal term of the \(2 \times 2 \) Landau–Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.

Keywords: integrable spin chains (vertex models), spin chains, ladders and planes (theory), quantum phase transitions (theory)
1. Introduction

The zero-temperature quantum phase transitions occurring in quantum many-body systems has been a challenging area of research for the past few years [1, 2]. The dynamics taking place in such systems on varying a parameter in the Hamiltonian in a definite fashion have come to the forefront only recently [3–7]. In this paper, we focus on the density of defects generated when a system, prepared in its ground state, is adiabatically quenched at a uniform rate [4–6], [8–21]. These works have their roots in the study of phase transitions in the early universe [22] which was extended to second-order phase transitions [23] and later to quantum spin chains [4]. The diverging relaxation time associated with a quantum critical point results in the failure of the system to follow its instantaneous ground state; this eventually leads to the generation of defects in the final state. When a parameter of the quantum Hamiltonian is varied as t/τ, where τ is the characteristic timescale of the quenching, the Kibble–Zurek (KZ) argument [4, 5] predicts a density of defects in the final state that scales as $1/\tau^{d\nu/(z\nu+1)}$ in the limit $\tau \rightarrow \infty$. Here ν and z denote the correlation length and dynamical exponents, respectively, characterizing the associated quantum phase transition of the d-dimensional quantum system. The KZ prediction has been verified for various exactly solvable spin models when quenched across a critical point [4, 6, 8, 9]. Various generalizations of the KZ scaling form have also been proposed for quenching through a gapless phase or along a gapless line [10, 17, 20]. Experimental verification of the dynamics of such systems can be realized by the trapped ultracold atoms in optical lattices; for a review see [24].

The generation of defects during the adiabatic quenching dynamics of a one-dimensional spin-$1/2$ XY chain across a quantum critical point was studied in [6]. The Hamiltonian of the system is [25]

$$H = -\frac{1}{2} \sum_n (J_x \sigma_n^x \sigma_{n+1}^x + J_y \sigma_n^y \sigma_{n+1}^y + h \sigma_n^z),$$

(1)

where the σs are Pauli spin matrices satisfying the usual commutation relations. The strength of the transverse field is denoted by h, and J_x and J_y are the strengths of the interactions in the x and y directions, respectively. The phase diagram of the above model is shown in figure 1.

It was observed that when the transverse field h is varied as $h = t/\tau$, the system crosses the Ising transition lines as shown in the figure, and the defect density scales
Defect production due to quenching through a multicritical point

Figure 1. The phase diagram of the anisotropic XY model in a transverse field in the $h/(J_x + J_y) - \gamma$ plane, where $\gamma \equiv (J_x - J_y)/(J_x + J_y)$. The vertical bold lines given by $h/(J_x + J_y) = \pm 1$ denote the Ising transitions. The system is also gapless on the horizontal bold line $\gamma = 0$ for $|h| < J_x + J_y$. FM$_x$(FM$_y$) is a long-range ordered phase with ferromagnetic ordering in the $x(y)$ direction. The thick dashed line marks the boundary between the commensurate and incommensurate ferromagnetic phases. The thin dotted lines indicate the adiabatic and impulse regions when the field h is quenched from $-\infty$ to ∞. The two points with coordinates $\gamma = 0$ and $h/(J_x + J_y) = \pm 1$ denoted by A and B are multicritical points.

as $[6] 1/\sqrt{\tau}$. This is in agreement with the KZ prediction since the values of the critical exponents associated with the Ising transition are given by $z = \nu = 1$. On the other hand, if the interaction in the x direction (J_x) is quenched in a similar fashion keeping h and J_y fixed [8], the defect density is again found to scale as $1/\sqrt{\tau}$ though the magnitude depends upon the values of J_y and h. If $h < 2J_y$, the system crosses the anisotropic critical line ($J_x = J_y$) in addition to the Ising transition lines mentioned above, and hence the magnitude of the defects is increased. However, it was observed that if J_x is quenched keeping $h = 2J_y$, the system crosses the multicritical point at $J_x = J_y$ and $h = 2J_y$, where the Ising and anisotropic transition lines meet. The density of defects in the final state generated in a passage through the above multicritical point shows a slower decay with τ given as $1/\tau^{1/6}$. Since the critical exponents associated with this multicritical point are given by $\nu = 1/2$ and $z = 2$, the above scaling relation does not follow from the KZ scaling relation $1/\tau^{d\nu/(2\nu+1)}$. It is this observation which motivated us to look for a generalized scaling relation valid even for a multicritical point. It should be noted here that this is the first attempt to provide a generalized scaling relation for defect density when the system

doi:10.1088/1742-5468/2009/02/P02007
is quenched linearly through a multicritical point, which has also been extended to the non-linear case in a recent work [29].

The paper is organized as follows. In section 2, we derive the general form for the scaling of defects and apply it in two models. Section 3 consists of concluding remarks.

2. General scaling

To propose a general scaling scheme valid even for a multicritical point using the Landau–Zener non-adiabatic transition probability [26, 27], let us consider a d-dimensional model Hamiltonian of the form

\[H = \sum_{\vec{k}} \psi_{\dagger}(\vec{k})\left(\left(\lambda(t) + b(\vec{k})\right)\sigma^z + \Delta(\vec{k})\sigma^+ + \Delta^*(\vec{k})\sigma^-\right)\psi(\vec{k}), \tag{2} \]

where \(\sigma^+ = (\sigma^x + i\sigma^y) \), \(b(\vec{k}) \) and \(\Delta(\vec{k}) \) are model dependent functions, and \(\psi(\vec{k}) \) denotes the fermionic operators \((\psi_1(\vec{k}), \psi_2(\vec{k})) \). The above Hamiltonian can represent, for example, a one-dimensional transverse Ising or XY spin chain [25], or an extended Kitaev model for \(d = 2 \) written in terms of Jordan–Wigner fermions [28]. We assume that the parameter \(\lambda(t) \) varies linearly as \(t/\tau \) and vanishes at the quantum critical point at \(t = 0 \), so that the system crosses a gapless point at \(t = 0 \) for the wavevector \(\vec{k} = \vec{k}_0 \). Without loss of generality, we set \(|\vec{k}_0| = 0 \). The parameters \(b(\vec{k}) \) and \(\Delta(\vec{k}) \) are assumed to vanish at the quantum critical point in a power-law fashion given by

\[b(\vec{k}) \sim |\vec{k}|^{z_1} \quad \text{and} \quad \Delta(\vec{k}) \sim |\vec{k}|^{z_2}. \tag{3} \]

Many of the models described by equation (2) exhibit a quantum phase transition with the exponents associated with the quantum critical point being \(\nu = z = z_2 = 1 \). We shall however explore the more general case below.

The Schrödinger equation describing the time evolution of the system when \(\lambda \) is quenched is given by \(i\partial\psi/\partial t = H\psi \) (where we set Planck’s constant \(\hbar = 1 \)). Using the Hamiltonian in equation (2), we can write

\[\begin{align*}
 i\frac{\partial \psi_1(\vec{k})}{\partial t} &= \left(\frac{t}{\tau} + b(\vec{k})\right) \psi_1(\vec{k}) + \Delta(\vec{k})\psi_2(\vec{k}), \\
 i\frac{\partial \psi_2(\vec{k})}{\partial t} &= -\left(\frac{t}{\tau} + b(\vec{k})\right) \psi_2(\vec{k}) + \Delta^*(\vec{k})\psi_1(\vec{k}). \tag{4} \end{align*} \]

One can now remove \(b(\vec{k}) \) from the above equations by redefining \(t/\tau + b(\vec{k}) \rightarrow t \); thus the exponent \(z_1 \) defined in equation (3) does not play any role in the following calculations. Defining a new set of variables \(\psi_1(\vec{k}) = \tilde{\psi}_1(\vec{k}) \exp(\int t' dt'/\tau) \) and \(\psi_2(\vec{k}) = \tilde{\psi}_2(\vec{k}) \exp(-\int t' dt'/\tau) \), we arrive at a time evolution equation for \(\psi_1(\vec{k}) \) given by

\[\left(\frac{d^2}{dt^2} - 2it\frac{d}{dt} + |\Delta(\vec{k})|^2\right) \psi_1(\vec{k}) = 0. \tag{5} \]

Further rescaling \(t \rightarrow t\tau^{1/2} \) leads to

\[\left(\frac{d^2}{dt^2} - 2it\frac{d}{dt} + |\Delta(\vec{k})|^2\tau\right) \psi_1(\vec{k}) = 0. \tag{6} \]
Defect production due to quenching through a multicritical point

If the system is prepared in its ground state at the beginning of the quenching, i.e., \(\psi_1(\vec{k}) = 1 \) at \(t = -\infty \), the above equation suggests that the probability of the non-adiabatic transition, \(p_k = \lim_{t \to +\infty} |\psi_1(\vec{k})|^2 \), must have a functional dependence on \(|\Delta(\vec{k})|^2 \tau \) of the form
\[
p_k = f(|\Delta(\vec{k})|^2 \tau).
\]

The analytical form of the function \(f \) is given by the general Landau–Zener formula [26, 27]. The defect density in the final state is therefore given by
\[
n = \int \frac{d^dk}{(2\pi)^d} f(|\Delta(\vec{k})|^2 \tau) = \int \frac{d^dk}{(2\pi)^d} f(|\vec{k}|^{2z_2} \tau).
\]

The scaling \(k \to k^{2z_2} \tau \) finally leads to a scaling of the defect density given by
\[
n \sim 1/\tau^{d/(2z_2)}.
\]

We shall recall the example of the quenching dynamics of the transverse XY spin chain when the field or the interaction is quenched [6, 8]. When the system is quenched across the Ising or anisotropic critical line by linearly changing \(h \) or \(J_x \) as \(t/\tau \), \(\Delta(\vec{k}) \) vanishes at the critical point as \(\Delta(\vec{k}) \sim |\vec{k}| \) yielding \(z_2 = z = 1 \); hence the generalized scaling form given in equation (9) matches with the Kibble–Zurek prediction with \(\nu = z = 1 \). On the other hand, when the system is swept across the multicritical point \((J_x = J_y, h = 2J_y) \) by quenching the interaction \(J_x = t/\tau \) with \(h = 2J_y \), the equivalent \(2 \times 2 \) Hamiltonian matrix of the Jordan–Wigner fermions in an appropriate basis can be written as [8]
\[
\begin{bmatrix}
J_x + J_y(\cos 2k + 2 \cos k) & J_y(\sin 2k + 2 \sin k) \\
J_y(\sin 2k + 2 \sin k) & -J_x - J_y(\cos 2k + 2 \cos k)
\end{bmatrix}.
\]

The corresponding Schrödinger equations are
\[
\begin{align*}
\frac{i}{\tau} \frac{\partial \tilde{\psi}_1(\vec{k})}{\partial t} &= \left(\frac{t}{\tau} + J_y(\cos 2k + 2 \cos k) \right) \tilde{\psi}_1(\vec{k}) + J_y(\sin 2k + 2 \sin k)\tilde{\psi}_2(\vec{k}), \\
\frac{i}{\tau} \frac{\partial \tilde{\psi}_2(\vec{k})}{\partial t} &= J_y(\sin 2k + 2 \sin k)\tilde{\psi}_1(\vec{k}) - \left(\frac{t}{\tau} + J_y(\cos 2k + 2 \cos k) \right) \tilde{\psi}_2(\vec{k}).
\end{align*}
\]

At the quantum critical point \(J_x = J_y \), the diagonal term \(b(k) = J_y(\cos 2k + 2 \cos k) \) goes as \(-J_y - J_y|\pi - k|^2 \near k = \pi \). Hence the dynamical exponent is given by \(z = z_1 = 2 \) at this multicritical point. Note that in this example, the critical point is not crossed at \(t = 0 \); however, one can shift the time so that \(b'(k) \sim |\pi - k|^{z_1} \), which would ensure that the quantum critical point is crossed at \(t = 0 \).

On the other hand, the off-diagonal term \(\Delta(k) = J_y(\sin 2k + 2 \sin k) = |\pi - k|^3 \) leads to the density of defect scaling as \(1/\tau^{1/6} \); this is in agreement with the generalized scaling relation proposed in equation (9) with \(z_2 = 3 \). Figure 2 shows the numerical integration of equation (10) which confirms the defect scaling exponent of \(-1/6\).

Finally, let us comment on the dynamics of an exactly solvable transverse Ising model with an additional three-spin interaction which is also quenched through a multicritical point [9] by varying the transverse field as \(h = t/\tau \). It has been observed that the defect density \(n \) scales as \(1/\tau^{1/6} \) which again does not support the KZ scaling form. The three-
Defect production due to quenching through a multicritical point

Figure 2. n versus τ obtained by numerically solving equation (10) at the multicritical point with $h = 10$ and $J_y = 5$. The line has a slope of -0.16.

The spin interacting Hamiltonian is given by [30]

$$H = -\frac{1}{2} \sum_i \sigma_i^z [h + J_3 \sigma_{i-1}^x \sigma_{i+1}^x] + \frac{J_x}{2} \sum_i \sigma_i^x \sigma_{i+1}^x.$$ \hspace{1cm} (11)

We shall henceforth set $J_x = 1$. The equivalent 2×2 Hamiltonian matrix of the Jordan-Wigner fermions in the momentum representation takes the form

$$\begin{bmatrix} h(t) + \cos k - J_3 \cos 2k & i(\sin k - J_3 \sin 2k) \\ -i(\sin k - J_3 \sin 2k) & -(h(t) + \cos k - J_3 \cos 2k) \end{bmatrix}.$$

It may be noted that by virtue of a duality transformation, this model can be mapped to a transverse XY model with competing interactions for the x and y components of the spin [30]. The multicritical point in the phase diagram of this model is at $h = -1$ and $J_3 = 1/2$. We observe that the off-diagonal term $\sin k - J_3 \sin 2k$ scales as $|\vec{k}|^3$ at the multicritical point; therefore the defect density scales as $1/\tau^{1/6}$ as expected from the general scaling relation proposed here. The importance of the multicritical point has also been observed in non-linear quenching of different models [29].

3. Conclusions

We have shown that the density of defects n produced when a system is quenched through a multicritical point does not follow the KZ scaling relation $1/\tau^{d\nu/(z\nu+1)}$. We then proved a new scaling form which is not only valid at an ordinary quantum critical point but is also valid at a multicritical point. We argue that for a system which is swept across a multicritical point in a phase diagram, it is the exponent z_2 defined above which appears in the scaling of the defect density given in equation (9). However, for a passage through an ordinary critical point in many models, $z_2 = z = 1$, and equation (9) reproduces the conventional KZ scaling form with $\nu = z = 1$.

doi:10.1088/1742-5468/2009/02/P02007 6
Acknowledgments

AD acknowledges Subir Sachdev for a very interesting discussion. AD and UD thank G E Santoro for stimulating discussions and SISSA, Trieste, Italy, where part of this work was carried out, for hospitality. AD and DS also thank Krishnendu Sengupta for his comments. DS thanks DST, India, for financial support under Project No. SR/S2/CMP-27/2006.

References

[1] Sachdev S, 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)

[2] Chakrabarti B K, Dutta A and Sen P, 1996 Quantum Ising Phases and Transitions in Transverse Ising Models vol m41 (Berlin: Springer)

[3] Kadowaki T and Nishimori H, 1998 Phys. Rev. E 58 5355
Sengupta K, Powell S and Sachdev S, 2004 Phys. Rev. A 69 053616
Calabrese P and Cardy J, 2005 J. Stat. Mech. P04010
Calabrese P and Cardy J, 2006 Phys. Rev. Lett. 96 136801
Das A, Sengupta K, Sen D and Chakrabarti B K, 2006 Phys. Rev. B 74 144423

[4] Zurek W H, Dorner U and Zoller P, 2005 Phys. Rev. Lett. 95 105701
Dziarmaga J, 2005 Phys. Rev. Lett. 95 245701
Damski B, 2005 Phys. Rev. Lett. 95 035701
Damski B and Zurek W H, 2006 Phys. Rev. A 73 063405

[5] Polkovnikov A, 2005 Phys. Rev. B 72 161201(R)

[6] Cherng R W and Levitov L S, 2006 Phys. Rev. A 73 043614

[7] Schützhold R, Uhmann M, Xu Y and Fischer U R, 2006 Phys. Rev. Lett. 97 200601
Kollath C, Läuchli A M and Altman E, 2007 Phys. Rev. Lett. 98 180601
Manmana S R, Wessel S, Noack R M and Muramatsu A, 2007 Phys. Rev. Lett. 98 210405
Eckstein M and Kollar M, 2008 Phys. Rev. Lett. 100 120404

[8] Mukherjee V, Divakaran U, Dutta A and Sen D, 2007 Phys. Rev. B 76 174303

[9] Divakaran U and Dutta A, 2007 J. Stat. Mech. P11001

[10] Sen D, Sengupta K and Mondal S, 2008 Phys. Rev. Lett. 101 016806
Barankov R and Polkovnikov A, 2008 Phys. Rev. Lett. 101 076801

[11] Dziarmaga J, 2006 Phys. Rev. B 74 064416
Caneva T, Fazio R and Santoro G E, 2007 Phys. Rev. B 76 144427

[12] Cucchielli F M, Damski B, Dziarmaga J and Zurek W H, 2007 Phys. Rev. A 75 023603

[13] Dziarmaga J, Meisner J and Zurek W H, 2008 Phys. Rev. Lett. 101 115701

[14] De Grandi C, Barankov R A and Polkovnikov A, 2008 Phys. Rev. Lett. 101 230402

[15] Polkovnikov A and Gritsev V, 2008 Nat. Phys. 4 477

[16] Sengupta K, Sen D and Mondal S, 2008 Phys. Rev. Lett. 100 077204
Mondal S, Sen D and Sengupta K, 2008 Phys. Rev. B 78 045101

[17] Pellegrini F, Montangero S, Santoro G E and Fazio R, 2008 Phys. Rev. B 77 144040(R)

[18] Patane D, Silva A, Amico L, Fazio R and Santoro G E, 2008 Phys. Rev. Lett. 101 175701

[19] Mukherjee V, Dutta A and Sen D, 2008 Phys. Rev. B 77 214427

[20] Divakaran U, Dutta A and Sen D, 2008 Phys. Rev. B 78 144301

[21] Caneva T, Fazio R and Santoro G E, 2008 Phys. Rev. B 78 104426
Caneva T, Fazio R and Santoro G E, 2007 Phys. Rev. B 76 144427

[22] Kibble T W B, 1976 J. Phys. A: Math. Gen. 9 1387
Kibble T W B, 1980 Phys. Rep. 67 183

[23] Zurek W H, 1985 Nature 317 505
Zurek W H, 1996 Phys. Rep. 276 177

[24] Bloch I, Dalibard J and Zwerger W, 2008 Rev. Mod. Phys. 80 885

[25] Lieb E, Schultz T and Mattis D, 1961 Ann. Phys., NY 16 407
Barouch E and McCoy B M, 1971 Phys. Rev. A 3 786
Bunder J E and McKenzie R H, 1999 Phys. Rev. B 60 344

[26] Zener C, 1932 Proc. R. Soc. Lond. A 137 696

doi:10.1088/1742-5468/2009/02/P02007
Defect production due to quenching through a multicritical point

Landau L D and Lifshitz E M, 1965 *Quantum Mechanics: Non-relativistic Theory* 2nd edn (Oxford: Pergamon)

[27] Suzuki S and Okada M, 2005 *Quantum Annealing and Related Optimization Methods* ed A Das and B K Chakrabarti (Berlin: Springer) p 185

[28] Chen H D and Nussinov Z, 2008 *J. Phys. A: Math. Theor.* 41 075001

Lee D H, Zhang G-M and Xiang T, 2007 *Phys. Rev. Lett.* 99 196805

[29] Mondal S, Sengupta K and Sen D, 2008 arXiv:0808.1175

[30] Kopp A and Chakravarty S, 2005 *Nat. Phys.* 1 53

doi:10.1088/1742-5468/2009/02/P02007