Data Descriptor: Daily observations of stable isotope ratios of rainfall in the tropics

Niels C. Munksgaard1,2, Naoyuki Kurita3, Ricardo Sánchez-Murillo4, Nasir Ahmed5, Luis Araguas6, Dagnachew L. Balachew6, Michael I. Bird7, Supriyo Chakraborty7, Nguyen Kien Chinh8, Kim M. Cobb9, Shelby A. Ellis9, Germain Esquivel-Hernández9, Samuel Y. Ganyaglo10, Jing Gao11, Didier Gastmans12, Kudzai F. Kaseke16,17, Seifu Kebede15, Marcelo R. Morales16, Moritz Mueller8, Seng Chee Poh18, Vinicius dos Santos12, He Shaoneng19, Lixin Wang13, Hugo Yacobaccio16 & Costijn Zwart1

We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.

Background & Summary. This database is an outcome of the International Atomic Energy Agency’s (IAEA) coordinated Research Project (CRP) F31004 on ‘Stable isotopes in precipitation and paleoclimatic archives in tropical areas to improve regional hydrological and climatic impact models’. The project was conducted from 2012–2017 with participation from the following member States: Argentina, Australia, Bangladesh, Brazil, China, Costa Rica, Ethiopia, Ghana, India, Japan, Singapore, United States of America (USA) and Vietnam.

The stable isotopes of water (i.e., δ18O/δ16O and δ2H/δ1H, expressed as δ18O and δ2H values hereafter) are effective integrating tracers of regional-scale hydroclimate processes1,2. The key objective of the CRP was to improve understanding of the links between stable isotopes in precipitation and the hydroclimatic factors controlling them in tropical regions from daily to annual timescales and site to regional spatial scales. To achieve this objective the CRP initiative collected daily precipitation samples for analysis of stable isotope ratios of oxygen and hydrogen.

1College of Science and Engineering, James Cook University, Cairns, Australia. 2Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Australia. 3Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan. 4Stable Isotopes Research Group and Water Resources Management Laboratory, Universidad Nacional, Heredia, Costa Rica. 5Isotope Hydrology Division, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh. 6Isotope Hydrology Section, International Atomic Energy Agency, Vienna, Austria. 7Center for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India. 8Department of Isotope Hydrology, Center for Nuclear Techniques, Ho Chi Minh City, Vietnam. 9School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, USA. 10Isotope Hydrology Laboratory, National Nuclear Research Institute, Accra, Ghana. 11Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China. 12Environmental Studies Center, São Paulo State University, Butanta, Brazil. 13Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, USA. 14Earth Research Institute, University of California Santa Barbara, Santa Barbara, California, USA. 15Department of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia. 16Inst. de Biodiversidad y Biología Experimental y Aplicada, Universidad de Buenos Aires, Buenos Aires, Argentina. 17Faculty of Engineering, Computing & Science, Swinburne University of Technology, Kuching, Malaysia. 18School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Terengganu, Malaysia. 19Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore. Correspondence and requests for materials should be addressed to N.C.M. (email: niels.munksgaard@jcu.edu.au)
across the tropics. Several sampling stations with no prior rainfall isotope observations were established. It is noteworthy that this data set is the first systematic effort to capture ground-based daily isotope record of tropical rainfall in all phases (i.e. neutral, warm, and cool) of the El Niño-Southern Oscillation (ENSO). Furthermore, the 2015–2016 ENSO event was one of the strongest on record.

The availability of Global Circulation Models (GCMs) incorporating isotope physics provided a promising framework to study isotopic variability in precipitation\(^4,8\). To evaluate the stable isotope fields simulated by such GCMs, the IAEA’s Global Network of Isotopes in Precipitation (GNIP) database\(^6,10\) has recurrently been used as the major comprehensive source of data. While isotope-enabled GCMs simulate modern isotopic patterns in global precipitation on monthly and inter-annual time scales reasonably well over mid and high latitude regions, simulations of tropical rainfall need further development\(^6,8\). A major reason for this problem is that the physical mechanisms controlling the spatial and temporal isotopic variations in tropical precipitation are still not fully understood. In addition, the poor spatial and temporal coverage of precipitation isotope data in tropical regions poses a challenge to explore the primary drivers of isotope variability. Therefore, an expanded monitoring network in the tropics is required, not only to identify the key controls of isotopic variability, but to improve the reproducibility of GCMs simulations. This improvement may help elucidate the mechanisms (e.g. sub-cloud evaporation, moisture convergence and entrainment) that control isotopic changes in precipitation and enhance the capabilities of climate models to predict variability and availability of fresh water resources. In addition, better understanding of the controls on precipitation isotope variability will lead to improvements in our interpretation of isotope-based proxies in terrestrial and maritime paleoarchives (e.g., caves, corals, lake sediments, and potentially tree-rings)\(^11\).

In the tropics, precipitation isotopes mainly correlate negatively with precipitation amounts on a monthly scale. This empirical low-latitude inverse correlation between water isotope ratios and the amount of rainfall, known as the ‘amount effect’\(^12\), has been used as a rationale to infer and dry paleo-hydroclimate periods based on available maritime and terrestrial paleo proxies across the tropics\(^13\). However, the amount effect is not universal over the tropical regions. For example, in SE Asia the effect is relatively strong at two marine island stations (Palau and Bali) but relatively weak at continental coastal stations (e.g., Bangkok and Da Nang)\(^14\). Furthermore, the correlation between precipitation amount and isotopic composition is commonly weaker or non-existent on a daily basis compared to monthly time scales\(^2,14,15\). This is because the linear regression approach neglects other processes such as moisture convergence and entrainment, resulting in weak correlations across the tropics with >80% of the variance unexplained when using daily data, whereas stronger correlations (30–70% variance explained) are reported when computing monthly means\(^7\). These complexities indicate that the isotopic variations in precipitation, even at tropical islands where a pronounced amount-effect is observed, are not directly controlled by rainfall amount but is rather influenced by the other convection related processes (e.g. cloud microphysics, cloud type, moisture transport). This conclusion is supported by several recent studies which have demonstrated that the isotopic variability is associated with regional, rather than local, convective activity (e.g. in North Africa\(^16\), Western Pacific\(^19\), Northern Australia\(^22\)). These variations typically manifest as negative excursions in \(\delta^{18}O\) and \(\delta^{2}H\) values in tropical rainfall\(^19,29\).

It is well known that intra-seasonal isotopic variations are clearly seen in many tropical regions (e.g. Borneo\(^1\), Western Pacific\(^19\), Northern Australia\(^21\)). These variations typically manifest as negative excursions in \(\delta^{18}O\) and \(\delta^{2}H\) values and typically, but not exclusively, correspond to the wet phases of the Madden Julian Oscillation (MJO). Cyclonic lows (i.e., hurricanes, typhoons) may also produce extreme rainfall and negative \(\delta^{18}O\) and \(\delta^{2}H\) anomalies. Within the MJO wet phase, large organised convective cloud systems, referred to as mesoscale convective systems (MCSs), account for a large portion of tropical rainfall. Stratiform rainfall associated with MCSs has been shown to be mainly associated with large negative excursions of \(\delta^{18}O\) and \(\delta^{2}H\) values in tropical rainfall\(^19,29\). Negative isotope anomalies in stratiform rainfall have been linked to deposition of \(^{18}O\)- and \(\delta^{2}H\)-depleted water vapour onto ice particles at altitude which, as they fall, aggregate and melt at mid tropospheric levels\(^9,30\). Most recently, the relative influence of bulk precipitation microphysics, cloud type, and surface moisture transport on precipitation amounts and \(\delta^{18}O/\delta^{2}H\) ratios was assessed in the tropics\(^7\). This analysis showed that bulk precipitation microphysics and cloud type (i.e., stratiform rain fraction) exert comparable influences on the isotopic composition of precipitation, whereas moisture transport plays an important secondary role in regions of deep atmospheric convection. Reduced Outgoing Longwave Radiation (OLR) values are indicative of stronger MCS activity and often correlate with low \(\delta^{18}O\) values in rainfall\(^30,32\). Based on these results, we can hypothesise that stratiform rainfall is a major driver of isotopic variability over the amount-effect dominated region. However, currently both spatial and temporal coverage of precipitation isotope data is insufficient to adequately test the hypothesis.

Here we present stable isotope data for daily precipitation collected at nineteen stations at both maritime and continental locations within the tropics; ten stations are (near-) coastal and nine are located from 80 to 600 km inland. We also calculated daily mean stratiform rainfall area fractions at these stations using TRMM and Global Precipitation Mapping (GPM) satellite observations.

Methods
Sampling and analysis. Details of the sampling stations including location, updated Köppen-Geiger climate zone classification\(^31\), mean annual precipitation and temperature, sampling period and number of samples collected are provided in Table 1 and Fig. 1. Rainfall samples were usually collected at 9am local time but variations of up to a few hours occurred on some occasions for practical reasons.
Table 2 provides sampling, laboratory and instrumental details along with the analytical precision claimed by the individual laboratories. Most stations used the IAEA-designed rain collector (Palmex, Zagreb, Croatia) which minimises secondary evaporation from the sample.

All isotope data are reported as δ²H and δ¹⁸O values (in ‰) relative to the VSMOW/SLAP scale with δVSMOW defined as the zero point:

$$\delta = \frac{(R_{\text{sample}} - R_{\text{VSMOW}}) - 1}{R_{\text{VSMOW}}} \times 1000 \, (\text{‰})$$

where R corresponds to the absolute isotope abundance ratios of ²H/¹H and ¹⁸O/¹⁶O.

Calculation of Stratiform Rainfall Fraction. The daily mean stratiform rainfall area fraction (Fst) was calculated to examine the influence of stratiform rainfall on the daily isotopic variability. Fst is defined as the average percent of rainfall area covered by stratiform rainfall over the 5° x 5° longitude/latitude box centered over each isotope monitoring station. We used the Ku-band Precipitation Radar (KuPR) convective/stratiform classification data from version 5, level 2 product of GPM (Global Precipitation Measurement) Core Observatory (https://pmm.nasa.gov/GPM), which is a successor of the TRMM Precipitation Radar. The GPM satellite flies at an altitude of 407 km in a non-sun-synchronous orbit and completes roughly 16 orbits per day between 65°N and 65°S. The KuPR's horizontal footprint size along a track (swath width) is 245 km. Based on this swath width, 164 orbits are required to cover the whole equator (roughly 40,000 km) corresponding to around 10 days. This

Table 1. Location and climate information for rainfall sampling stations. *Data from Climate-data.org where not supplied by site investigator.

Contributing country	Station	Köppen-Geiger climate classification	Sampling period	Number of observations	Latitude (degrees)	Longitude (degrees)	Altitude (m asl)	Marine (M) or land (L) dominated	Mean annual P (mm)	Mean annual T (°C)
Argentina	SP Reyes, Argentina	Bsh/Bsk	2014–15	30	24.14S	65.39W	140	L	556	15.9
Australia	Cairns, Australia	Am	2014–17	405	16.82S	145.68E	27	M	2386	25.0
Australia	Darwin, Australia	Aw	2014–17	252	12.36S	130.89E	5	M	1694	27.7
Bangladesh	Barisal, Bangladesh	Aw	2013–15	234	22.72N	90.35E	7	M	2068	25.9
Bangladesh	Cox’s Bazar, Bangladesh	Am	2015	104	21.44N	91.97E	8	M	4713	25.6
Brazil	Rio Claro, Brazil	Cfa	2014–17	254	23.40S	47.54W	84	M	1294*	20.3*
Costa Rica	28 Millas, Costa Rica	Af	2014–17	582	10.10N	83.37W	18	M	3032	22.3
Costa Rica	Heredia, Costa Rica	Aw	2013–17	440	10.00N	84.11W	1150	M	2554	20.9
Ethiopia	Addis Ababa, Ethiopia	Cwb	2014	135	8.00N	38.76E	2440	L	1143*	16.3*
Ghana	Abetifi, Ghana	Af	2014–15	83	6.68N	0.63W	595	M	1566*	22.6*
Ghana	Amedrofe, Ghana	Af	2014–16	95	6.85N	0.43W	686	M	1350*	27.0*
India	Port Blair, India	Am	2012–16	558	11.66N	92.73E	16	M	3068*	26.4*
Japan	Nagoya, Japan	Cfa	2013–17	399	35.15N	136.97E	137	M	1632	16.4
Singapore	Nanyang Tech, Singapore	Af	2013–16	469	1.35N	103.68E	42	M	2378*	26.8*
Singapore	Kuching, Malaysia	Af	2014–16	295	1.46N	119.41E	5	M	4093*	26.9*
Singapore	Kuala Terengganu, Malaysia	Af	2014–16	206	5.41N	103.09E	5	M	2761*	26.8*
USA	Mulu, Malaysia	Af	2013–17	1091	4.05N	114.81E	32	M	3839*	27.0*
USA	Windhoek, Namibia	Bwh	2012–15	109	22.61S	17.10E	1721	L	359*	19.5*
Vietnam	HCM City, Vietnam	Am	2013–15	331	10.04N	106.69E	5	M	1868*	27.4*

Figure 1. Map of the 19 sampling stations (green dots) and 229 GNIP (Global Network of Isotopes in Precipitation) tropical stations (pink dots; ranging from 23.76°N/23.83°S and 90.30°W/125.26°E). Geographical coordinates for stations of this study are provided in Table 1.
means that only a few GPM orbits pass through the domain (5° x 5° longitude/latitude box) within 10 days and so we cannot obtain daily convective/stratiform classification data from the satellite. As an alternative approach, we used area averaged (5° x 5° box) daily precipitation to estimate the daily Fst. In the tropics, stratiform rainfall area is significantly larger than the convective rainfall area, and the increase in rain area is more likely to result in larger total rain amounts\(^3\),\(^3\) \(^4\) \(^5\). We found statistically significant relationships of area-averaged rainfall amount (P\(_{\text{area}}\)) to Fst over the study domains at fourteen stations (i.e., Cairns, Darwin, 28 Millas, Heredia, Barisal, Cox’s Bazar, Port Blair, Nanyang Tech., Mulu, Ho Chi Minh City (HCM City), Kuala Terengganu., Kuching, Abetifi, and Amedzofe) from 2014 to 2017 (\(p < 0.05\), R\(^2\) range = 0.25–0.72, mean R\(^2\) = 0.53). As shown in Fig. 2, combining data from the 14 stations show a strong correlation between P\(_{\text{area}}\) and Fst (R\(^2\) = 0.87, \(p < 0.01\)). However, at five inland or slightly extra-tropical stations (i.e., Rio Claro, Addis Ababa, Windhoek, Nagoya and SP Reyes) the relationships were weak, and we excluded these stations from further analysis. We then applied the correlation shown in Fig. 2 to a satellite-based daily precipitation dataset to estimate the daily Fst over the study domain at 14 stations. A Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis product, namely TMPA 3B42, was used to estimate area-averaged daily precipitation at each station. The TMPA 3B42 product has a 3-hourly temporal resolution and a 0.25° spatial resolution\(^3\). Original data are available online at http://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_V7.shtml.

Figure 3 shows the correlation between the 10-day moving average rainfall isotope data and stratiform rainfall area fractions >0.01 for 14 tropical stations. Since there is a time lag for organized convective cloud systems (MCSs) in

Contributing country /Chief Investigator	Sampling method	Laboratory	Instrument	\(\delta^2\text{H} \text{ precision}\) \(\% (1\sigma)\)	\(\delta^{18}\text{O} \text{ precision}\) \(\% (1\sigma)\)
Argentina/H.D. Yacoubaccio	Pluviometer	INGEIS	LGR DLT-100	0.5	0.2
Australia/N.C. Munksgaard	IAEA rain collector	James Cook University & Charles Darwin University	Picarro L2120-i, L2130-i (diffusion sampler)	0.5	0.1
Bangladesh/N. Ahmed	IAEA rain collector	INST and IAEA hydrology	LGR LWIA-24-EP		1.32
Brazil/D. Gastmans	IAEA rain collector	IGCE/UNESP	LGR LWIA-24-EP, T-LWIA-45-EP	1.2	0.2
Costa Rica/R. Sánchez-Murillo	IAEA rain collector	Stable Isotopes Research Group, Universidad Nacional de Costa Rica	Picarro L2120-i	0.5	0.1
Ethiopia/S. Kebede	IAEA rain collector	IAEA/NERC-Keyworth, UK	Picarro L2120-i	0.8	0.1
Ghana/S. Ganyaglo	IAEA rain collector	IAEA hydrology/GAEC	LGR DLT-100	1.0	0.2
India/S. Chakraborty	IAEA rain collector/rain gauge	Indian Institute of Tropical Meteorology	LGR TIWA-45-EP	1.0	0.1
Japan/N. Kurita	Rain gauge	Nagoya University	Picarro L1102-i	1.0	0.1
Singapore/S. He	IAEA rain collector	EOS, Nanyang Technical University	Picarro L2130-i, L2140-i	0.5	0.1
USA/K. M. Cobb	Copper rain gauge	Georgia Institute of Technology	Picarro L2130-i	0.5	0.1
USA/L. Wang	Rain gauge	Indiana University-Purdue University Indianapolis Ecological Lab	LGR TWYIA-45-EP	0.8	0.2
Vietnam/K.C. Nguyen	IAEA rain collector	Center for Nuclear Techniques	LGR DLT-100	1.0	0.15

Table 2. Investigator, sampling and analytical information.
the upwind region to arrive at rainfall sampling stations, the moving average improves correlation compared to using the daily data at most stations. The stations Heredia and 28 Millas in Costa Rica, Darwin and Cairns in Australia, Abetifi in Ghana, Nanyang Tech in Singapore, Mulu in Malaysia and HCM City in Vietnam had the strongest correlations ($R^2 = 0.28–0.58$) while the remaining stations had weaker or insignificant correlations ($p > 0.05$) (Table 3).

![Figure 3](image_url)

Figure 3. Relationship between 10-day moving average of rainfall $\delta^{18}O$ values and stratiform rainfall area fractions ($5^\circ \times 5^\circ$ box centered on each station) at 14 tropical stations. Refer to Table 1 for sampling period for each station and Table 3 for linear coefficients and correlation coefficient (R^2).

Station	N	R^2	slope	intercept
Cairns, Australia	1090	0.43	-13.3	+3.5
Darwin, Australia	747	0.28	-16.7	+4.5
Barisal, Bangladesh	586	0.04	-7.3	-1.1
Cox’s Bazar, Bangladesh	250	0.13	-8.3	-1.6
28 Millas, Costa Rica	796	0.58	-36.6	+16.4
Heredia, Costa Rica	929	0.32	-47.9	+18.4
Abetifi, Ghana	347	0.19	-15.4	+5.4
Amedzofe, Ghana	565	0.29	-20.9	+6.8
Port Blair, India	641	<0.01	+2.3	-4.4
Nanyang Tech, Singapore	624	0.32	-31.4	+10.6
Kuching, Malaysia	448	0.04	+9.4	-9.5
Kuala Terengganu, Malaysia	544	0.18	-20.8	+5.9
Mulu, Malaysia	1227	0.25	-35.9	+12.9
HCM City, Vietnam	739	0.36	-21.8	+5.6

Table 3. Observations (N), correlation coefficients (R^2) and linear coefficients of relationship between 10-day moving averages of rainfall $\delta^{18}O$ value and stratiform rainfall area fraction ($5^\circ \times 5^\circ$ box centred on station). Statistically significant ($p < 0.05$) values are underlined.

Technical Validation

All laboratory analyses were carried out using infrared laser-absorption spectrometry either by Off-Axis Integrated Cavity Output Spectroscopy (Los Gatos Research, San Jose, CA, USA) or by Cavity Ring Down Spectroscopy (Picarro, Santa Clara, CA, USA). These spectrometers can produce accurate and precise results provided that volatile organic compounds do not cause spectral interferences. However, such interferences are generally absent from rainfall samples and can easily be monitored using instrument software.

The datasets presented here were quality controlled by the individual investigators and laboratories. During the CRP participants were provided with guidance on the production, use and calibration of in-house (secondary) standard waters traceable to the International Measurement Standards VSMOW and SLAP (IAEA 2019) to
ensure analytical accuracy and optimise quality control procedures. Most of the CRP’s laboratories participated in the IAEA Water Isotope Inter-Comparison WICO2016 as well as an unofficial CRP-wide inter-comparison.

Data Records

Data sets are available at figshare.com. The file ‘CRP isotopes’ contains stable isotope data in daily rainfall at 19 stations sampled within the period 2012 to 2017. They are recorded in the following order: Local sampling start date/time (YYYY-MM-DDTHH:MM), local sampling end date/time (YYYY-MM-DDTHH:MM), precipitation δ18O (% VSMOW), precipitation δ2H (% VSMOW), precipitation d-excess (% VSMOW), precipitation amount (mm). Note that at some stations only the sampling end date was recorded (sampling of 24-hr rainfall occurred at 9:00 local time). Empty cells indicate that no data was obtained.

The file ‘CRP stratiform P’ contains calculated stratiform precipitation area fraction for the subset of 14 stations for which this fraction could be calculated (five stations were excluded, see above). They are recorded in the following order: Local sampling start date/time (YYYY-MM-DDTHH:MM), local sampling end date/time (YYYY-MM-DDTHH:MM), sampled precipitation amount (mm), precipitation δ2H (% VSMOW), precipitation δ18O (% VSMOW), daily mean area-averaged precipitation amount (mm), daily mean stratiform precipitation area-fraction, moving 10-day average precipitation δ18O (% VSMOW), moving 10-day average stratiform precipitation area-fraction. Stratiform rainfall area fractions <0.01 were disregarded due to their high uncertainty. Empty cells indicate that no data was obtained.

Usage Notes

We encourage interested parties to contact the site investigators to explore possible collaboration opportunities based on these data. It is noted that some data have been published in peer-reviewed journals.

References

1. Moerman, J. W. et al. Diurnal to inter annual rainfall δ18O variations in northern Borneo driven by regional hydrology. *Earth Planet. Sci. Lett.* 369–370, 108–119 (2013).
2. Konecky, B. L., Noone, D. C. & Cobb, K. M. The influence of competing hydroclimate processes on stable isotope ratios in tropical rainfall. *Geophys. Res. Lett.* 46, 1622–1633 (2019).
3. Santos, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. *Rev. Geophys.* 55(4), 1079–1129 (2017).
4. Joussaume, S., Sadourny, R. & Jouzel, J. A general circulation model of water isotope cycles in the atmosphere. *Nature* 311, 24–29 (1984).
5. Hoffmann, G. & Heimann, M. Water isotope modelling in the Asian monsoon region. *Quat. Int.* 37, 115–128 (1997).
6. Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. *J. Geophys. Res. Atmos.* 115, 1–27 (2010).
7. Risi, C. et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: I. Comparison between models and observations. *J. Geophys. Res. Atmos.* 117, 1–26 (2012).
8. Putnam A. L., Fiorella, R. P., Bowen, G. J., Cai, Z. A global perspective on local meteoric water lines: Meta-analytic insight into...
29. Aggarwal, P. K.
28. Kaseke, K. F.
25. Levin, N. E., Zipser, E. & Cerling, T. Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for Amazon Basin. *Quat. Sci. Rev.* 131, 250–261 (2016).

15. Sanchez-Murillo, R. et al. Key drivers controlling daily stable isotope variations in precipitation of Costa Rica: Caribbean Sea versus eastern Pacific Ocean moisture sources. *Quat. Sci. Rev.* 131(8), 250–261 (2016).

16. Risi, C. et al. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. *Geophys. Res. Lett.* 35, L24808 (2008).

17. Gao, J., Masson-Delmotte, V., Risi, C., He, Y. & Yao, T. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. *Tellus B* 65, 21043 (2013).

18. Comroy, J. L., Cobb, K. M. & Noone, D. Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. *J. Geophys. Res.* 118, 5867–5892 (2013).

19. Kurita, N. Water isotopic variability in response to mesoscale convective system over the tropical ocean. *J. Geophys. Res.* 118, 1–15 (2013).

20. Lekshmy, P. R., Midhun, M., Ramesh, R. & Jani, A. R. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall. *Sci. Rep.* 6(5661), 1–5 (2016).

21. Chakraborty, S. et al. Atmospheric controls on the precipitation isotope ratios over the Andaman Islands, Bay of Bengal. *Sci. Rep.* 6, 19555 (2016).

22. Zwart, C., Munksgaard, N. C., Kurita, N. & Bird, M. I. Stable isotopic signature of Australian monsoon controlled by regional convection. *Quat. Sci. Rev.* 151, 228–235 (2016).

23. Gastmans, D. et al. Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil. *Isol. Environ. Health Studies* 53(5), 518–538 (2017).

24. Cai, Z., Tian, L. & Bowen, G. J. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. *Earth Planet. Sci. Lett.* 25, 23–33 (2017).

25. Levin, N. E., Zipser, E. & Cerling, T. Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa. *J. Geophys. Res.* 114, D23306 (2009).

26. Soderberg, K. et al. Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya. *Ecosphere* 4(3), 1–18 (2013).

27. Kurita, N., Fujiyoshi, F., Nakayama, T., Matsumi, Y. & Kitagawa, H. East Asian Monsoon controls on the inter-annual variability in precipitation isotope ratio in Japan. *Clim. Past.* 11, 339–353 (2015).

28. Kaseke, K. F. et al. Precipitation Origins and Key Drivers of Precipitation Isotope (18O, 2H, and 17O) Compositions Over Windhoek. *J. Geophys. Res. Atmos.* 123, 7311–7330 (2018).

29. Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. *Nature Geosci.* 9, 624–629 (2016).

30. Lekshmy, P. R., Midhun, M. & Ramesh, R. Influence of stratiform clouds on δ2H and δ18O of monsoon water vapour and rain at two tropical coastal stations. *J. Hydrology* 563, 354–362 (2018).

31. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. *Hydrol. Earth Sys. Sci. Disc.* 4(2), 439–473 (2007).

32. Gröning, M. H. et al. A simple rain collector preventing water re-evaporation dedicated for 18O and δ2H analysis of cumulative precipitation samples. *J. Hydrol.* 448, 195–200 (2012).

33. Schumacher, C. & Houze, R. A. Stratiform rain in the tropics as seen by the TRMM precipitation radar. *J. Climate* 16, 1739–1756 (2003).

34. Rapp, A. D., Peterson, A. G., Frauenfeld, O. W., Quiring, S. M. & Roark, E. B. Climatology of Storm Characteristics in Costa Rica. *Sci. Rep.* 4, 393–406 (2016).

35. Huffman, G. J., Bolvin, D. T. TRMM and other data precipitation data set documentation. *Earth Planet. Sci. Lett.* 25, 23–33 (2017).

36. Wassenaar, L. I. et al. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. *Rapid Comm. Mass Spect.* 32, 393–406 (2018).

Acknowledgements
The authors gratefully acknowledge financial and logistical support from the IAEA Isotope Hydrology Section (Dr. P.K. Aggarwal, Dr. S. Terzer and Dr. L.I. Wassenaar). MB and CZ received support from the Australian Research Council (FL140100044 and an Australian Postgraduate Award). LW acknowledges support from the U.S. National Science Foundation (IAA-1427642 and EAR-1554894). DG acknowledges support from the Brazilian FAPESP Sao Paulo Research Foundation (project 2015/15749-2). RS-M acknowledges support from Universidad Nacional (Heredia, Costa Rica) through grants SIA-0482-13, SIA-0378-14, and SIA-0101-14 and IAEA Technical Cooperation Project (COST7005: Ensuring water security and sustainability of Costa Rica).

Author Contributions
N.C.M., N.K., R.S.-M., N.A., L.A., D.L.B., M.I.B., S.C., N.K.C., S.A.E., G.E.-H., S.Y.G., J.G., D.G., K.F.K., S.K., M.R.M., M.M., S.C.P., V.d.S., H.S., L.W., H.Y. and C.Z. contributed to data collection, methodology and commented on the manuscript. N.K., N.K., and R.S.-M. drafted the manuscript and main figures. N.K. extracted TRMM/GPM satellite data and calculated stratiform rainfall fractions.

Additional Information
Competing Interests: N.C.M., N.K., R.S.-M., N.A., L.A., D.L.B., M.I.B., S.C., N.K.C., K.M.C., S.A.E., G.E.-H., S.Y.G., J.G., D.G., K.F.K., S.K., M.R.M., M.M., S.C.P., V.d.S., H.S., L.W., H.Y. and C.Z. declare no competing interest, financial and non-financial.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.