DISTRIBUTION OF THE MARINE CLADOCERANS (CRUSTACEA, BRANCHIPODA) OFF SANTOS, BRAZIL

CARLOS EDUARDO FALAVIGNA DA ROCHA
Departmento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 20.520, 01000 - São Paulo, Brasil. (recebido em 15.X.1982)

RESUMO - A distribuição e migração verticais, bem como a distribuição segundo as massas de água de quatro espécies de cladóceros marinhos (Penilia avirostris Dana, Evadne tergestina Claus, E. spinifera P.E. Müller e Podon intermedius Lilljeborg) foram estudadas em amostras de plancton coletadas sucessivamente a 45-47 m, 20-25 m e 0-1 m, em intervalos de 4 horas, durante 24 horas nas seguintes datas: 8-9/04/60, 22-23/09/60, 6-7/07/61 e 7-8/11/61. P. avirostris, espécie euritérmica, mais abundante no verão-outono e sem preferência por qualquer massa d'água, realizou migrações verticais diárias entre a superfície e a meia-água controladas pelas condições de luminosidade. E. spinifera e E. tergestina foram superficiais e não apresentaram migração vertical. E. spinifera foi estenotérmica, preferindo águas de 20,0 a 23,0 °C e desaparecendo quando a superfície foi ocupada por águas mais quentes. E. tergestina foi euritérmica apresentando as mesmas preferências que P. avirostris. P. intermedius foi estenotérmico psicrófilo e se distribuiu preferencialmente próximo do fundo, associado com a Água Subtropical. Sua migração entre o fundo e a meia-água foi controlada pela luz e termoclina. A presença de aglomerações de Oscillatoria sp na superfície e a distribuição agregada dos cladóceros foram outros fatores que interferiram na distribuição vertical desses animais.

ABSTRACT - The vertical distribution, migration and habitat preferences of four cladocerans (Penilia avirostris Dana, Evadne tergestina Claus, Evadne spinifera P.E. Müller and Podon intermedius Lilljeborg) were studied in a series of samples collected in four different periods at 24° 16' 8" Lat S -46° 0.4' Long. W. Informations on their life cycle were added.
INTRODUCTION

Cladocera distribution has been intensely searched, mainly in the North Atlantic Ocean, North Sea, Mediterranean Sea, Black Sea and Indian Ocean. In the South Atlantic it is little known up to now. A summary of the geographic distribution of cladocerans, with the most important pertaining literature is provided by Della Croce (1974).

The distribution of cladocerans off Brazil was never studied in detail. There are some data furnished by oceanographic expeditions and trips (Dana, 1852-55; Hansen, 1899; Rammner, 1933; Seguin, 1965; Fontes, 1971, 1973a and b; Ramírez & De Vreese, 1974) and by surveys of the zooplankton in some areas (Almeida Prado, 1962; Teixeira et al., 1965; Santos, 1973 and Castello, 1978). The Figure 1 shows the occurrence of the species of cladocerans registered in Brazilian waters according to the mentioned literature.

Little is known about the diel vertical migration of these animals. The nyctimeral rhythms of the species considered in this paper have been investigated in the Black Sea (Porumb & Porumb, 1965), in the Mediterranean (Leveau, 1965; Thiriot, 1972-73), off the coast of Madagascar (Frontier, 1973), in the Gulf of Guinea (Binet, 1975) and in the Inland Sea of Japan (Onbe, 1977). Lee (1974) and Bosch & Taylor (1973) studied the vertical migration of E. nordmanni and P. polyphemoides respectively.

The purpose of this paper is to determine ecological preferences of cladocerans in Brazilian waters. It will be taken into consideration the relations between some abiotic factors and the vertical distribution and migration, as well as the preferences of each species to the different water masses.

MATERIAL AND METHODS

The material studied belongs to the Plankton Collection Series V, taken off Santos (24° 16.4' S - 46° 0.4 W) on April 8-9, 1960, September 22-23, 1960, July 6-7, 1961 and November 7-8, 1961.

During 24 hours' periods, every 4 hours, plankton was sampled with a standard net no. 3 (0.5 m of mouth diameter, 1.8 m length and bolting silk with 64 meshes/inch) during fifteen minutes, at a velocity of approximately 0.5 knot. The hauls were consecutive and made in three levels: near the bottom (45 or 47 m), in midwater (20 or 25 m) and near to the surface (1.0 m). The filtrated volume of water was estimated using the N.r.h formula. All the samples were fixed with formaline at 10 %.

For each series of samples, the temperatures and salinities were measured at depths previously fixed.

P. avirostris was counted in subsamples obtained by the Stempel pipette. For the other species, a Folsom sampler was used. Males, sexual and parthenogenetic females were identified and counted separately. The identification of the
Figure 1 - The occurrence of the Cladocerans off Brazil.
species was made according to Baker (1938), Claus (1877), Rammner (1939) and Steuer (1933)

THE ENVIRONMENT

According to Emilsson (1961), four water masses may occur off Santos:

a) Tropical Water (T), with temperatures above 20.0 °C and salinities higher than 36.0 °/oo.

b) Subtropical Water (ST) with salinities from 35.0 to 36.0 °/oo and temperatures between 10.0 and 20.0 °C flowing northward under the Tropical Water which flows South.

c) Coastal Water (C) with salinities under 35.0 °/oo and variable temperatures.

d) Shelf Water (S) formed by the mixture of the three mentioned waters, having salinities between 35.0 and 36.0 °/oo and temperatures above 20.0 °C.

The water masses found during each hauling period are noted in Table I.

TABLE I - The water masses in the collecting station during the four periods studied, with indications of the limits of depth in which they occurred. C = Coastal Water, S = Shelf Water, ST = Subtropical Water and T = Tropical Water. (*) = Thermocline between 15 and 25 m, (**) = Thermocline between 7 and 15 m.

APRIL 8-9, 1960	SEPTEMBER 22-23, 1960	JULY 6-7, 1961	NOVEMBER 7-8, 1961	
DEPTH (m)	WATER MASSES	DEPTH (m)	WATER MASSES	
0-7	S.	0-25	S.	
7-15	T	25-35	T, S.	
25-47	S.T			
	(*)	10-45	S.	
			15-45	S.T
		47	T	
		45	T	

RESULTS

Four species of cladocerans were found: P. avirostris, E. tergestina, E. spinifera and P. intermedius.

Evadne costai Fontes, 1971 from the coastal waters off North and Northeast of Brazil is a junior synonym of E. ter-
TABLE II - Density (ind/100 m³) of Penilia avirostris at different times and depths during the four periods studied. PH = parthenogenetic females, SF = sexual females; M = males and T = total.

DATE	April 8-9, 1960	September 22-23, 1960	July 6-7, 1961	November 7-8, 1961																					
TIME (hrs)	DEPTH (m)	PF	SF	M	T	DEPTH	PF	TIME (hrs)	DEPTH																
24:00	0	50,333	333	7,556	53,222	0	533	0	1,191	0	520	2	-	522											
	20	6,833	-	-	6,833	12:00	25	10,833	12:00	25	27,555	08:00	25	3,169	2	3	3,171								
	45	582	2	-	584	47	1,049	45	1,555	45	6,817	-	-	6,817	-	-		-	-		-	-			
04:00	0	73,600	1,200	5,200	80,000	0	8,200	0	264	0	389	-	-	389	-	-		-	-		-	-			
	20	5,150	9	9	5,168	16:00	25	7,445	16:00	25	14,944	12:00	25	5,289	-	5	5,289	-		-	-		-	-	
	45	9,156	-	180	9,336	47	675	45	444	45	1,295	-	-	1,295	-	-		-	-		-	-			
08:00	0	924	9	9	942	0	454	0	9,500	45	17,500	-	-	17,500	-	-		-	-		-	-			
	20	5,443	7	18	5,445	20:00	25	8,000	20:00	25	22,611	16:00	25	529	-	5	529	-		-	-		-	-	
	45	827	-	7	852	47	755	45	240	45	4,835	-	-	4,835	-	-		-	-		-	-			
12:00	0	758	-	2	760	0	21,000	0	5,555	0	7,186	-	-	7,186	-	-		-	-		-	-			
	20	8,306	9	18	8,333	24:00	25	12,500	24:00	25	27,222	20:00	25	7,671	-	7	7,671	-		-	-		-	-	
	45	2,338	4	2	2,344	47	258	45	844	45	1,271	-	-	1,271	-	-		-	-		-	-			
16:00	0	2,074	9	18	2,101	0	2,560	0	3,722	0	6,244	-	-	6,244	-	-		-	-		-	-			
	20	16,857	9	16	18,865	04:00	25	5,778	04:00	25	23,611	24:00	25	2,000	-	2	2,000	-		-	-		-	-	
	45	192	-	-	192	47	320	45	417	45	2,844	-	-	2,844	-	-		-	-		-	-			
20:00	0	79,218	160	89	79,467	0	1,298	0	2,166	0	4,666	-	-	4,666	-	-		-	-		-	-			
	20	14,525	9	-	14,534	08:00	25	14,167	08:00	25	35,889	04:00	25	25,066	-	25	25,066	-		-	-		-	-	
	45	1,780	9	1	1,789	47	1,954	45	329	45	5,166	-	-	5,166	-	-		-	-		-	-			
24:00	0	5,827	27	18	5,877	0	800	0	853	0	755	-	-	755	-	-		-	-		-	-			
	20	1,128	2	-	1,131	12:00	25	4,111	12:00	25	2,833	08:00	25	1,769	-	1	1,769	-		-	-		-	-	
	45	3,400	-	3,400	47	2,078	45	2,942	45	977	-	-	977	-	-		-	-		-	-				
T	289,252	1,800	8,119	399,171	104,778	179,687	105,958	4	2	105,964															
TABLE III - Density (ind/100 m³) of Evadne tergestina (E.T.), Evadne spinifera (E.s) and Podon intermedius (P.i.) at different times and depths during the four periods studied. PF = parthenogenetic females, SF = sexual females, M = males and T = total.

DATE	SPECIES	April 8-9, 1960	September 22-23, 1960	July 6-7, 1961	November 7-8, 1961
TIME DEPTH (hs)	E.T.	E.s. P.i.	E.t. E.s. P.i.	E.t. E.s. P.i.	E.t. E.s. P.i.
24:00	0 1,644	2 20 1,666 - 2	0 6,556 2,661 -	0 844 - 884 118 - 0 4,264	189 11
04:00	20 373 - - 373 - -12:00 25 89 17 -12:00 25 18 - - 18 187 - 08:00 25 47 - 1,084				
01,822 0 11,935 2 4	45 58 4 - 62 - 100 47 44 27 71 45 27 - - 27 - 9 45 60 - 718				
04:00	20 158 2 2 162 - 16:00 25 302 62 -16:00 25 320 - - 320 - 12:00 25 51 - 1,733				
01,053 0 1,053 - - 0 1 11 67 - 0 29 2 - 31 18 - 0 3,333 276 116					
08:00	20 144 4 148 - 4 20:00 25 44 - - 20:00 25 338 - - 338 - 16:00 25 24 - 502				
01,822 0 11,935 2 4	45 311 2 4 317 218 47 53 18 - 45 44 - - 44 - 9 45 782 18 1,471				
12:00	20 169 2 2 171 - 24:00 25 27 9 9 24:00 25 720 - 720 - 20:00 25 320 - 818				
01,053 0 1,053 - - 0 1 11 67 - 0 29 2 - 31 18 - 0 3,333 276 116					
16:00	20 189 2 2 189 - 04:00 25 36 - - 04:00 25 382 - - 382 - 24:00 25 27 - 293				
01,822 0 11,935 2 4	45 29 - 29 - 29 47 18 44 - 45 62 - - 62 - - 45 356 9 213				
20:00	20 193 - 193 - 08:00 25 27 - 08:00 25 196 - - 196 18 - 04:00 25 116 - 507				
01,822 0 11,935 2 4	45 22 - 22 - 60 47 169 267 71 45 44 - - 44 - - 45 293 - 267				
24:00	20 20 2 - 22 - 12:00 25 187 18 - 12:00 25 916 - - 916 18 - 12:00 25 204 9 116				
01,822 0 11,935 2 4	45 9 1 - 91 - 100 47 36 62 80 45 124 - - 124 27 - 45 53 - 187				

| T | 19,608 55 141 19,804 | 6 811 | 10,782 8,746 276 | 11,954 7 36 11,992 3,255 | 18 36,021 904 8,340 |
gestina. Its occurrences were included in the Figure 1 related to E. tergestina.

P. avirostris, the most abundant cladoceran in the area, and E. tergestina attaining peaks of density in April. Amphigonic forms of P. avirostris were numerous in April and rare in November (Table II), while those of E. tergestina appear in April and July (Table III).

E. spinifera (Table III) occurred very sporadically in April. Its population, composed exclusively by parthenogenetic females increased in July and September, decreasing again in November.

P. intermedius (Table III) was the least abundant cladoceran off Santos. It was more numerous in November and April than in September and July. Only parthenogenetic females were collected.

The ranges of salinity and temperature in which the four species occurred were from 34.76 to 36.17 °/oo and from 15.04 to 26.00 °C (P. avirostris and E. tergestina) or to 25.7 °C (E. spinifera and P. intermedius).

a) Distribution per water mass

P. avirostris and E. tergestina (Figures 2 and 3) occurred in the four water masses, attaining their density peaks in the Shelf Water. E. spinifera (Figure 4) was almost restricted to Shelf and Coastal waters with temperatures between 20.0 and 23.5 °C. P. intermedius (Figure 5) shows remarkable preference to Subtropical Water. The densities of the four species diminished in the Tropical Water.

Figure 2 - Density of P. avirostris according to temperature and salinity.
Figure 3 - Density of *Evadne teregestina* according to temperature and salinity.

Figure 4 - Density of *Evadne spinifera* according to temperature and salinity.
b) Vertical Distribution and Migration

P. avirostris was distributed between 0 m and 50 m, but the migratory movements were accomplished in the upper 25 m (Figure 6a-d). The greater part of its population migrated towards the surface at night and it descended to deeper levels at sunrise, staying there during the day (Figures 6a, b and c). In July (Figure 6d) the greater percentage of the population remained in the midwater during sampling time. After sundown some animals migrated to the surface.

E. tergestina and *E. spinifera* (Table III) showed preference to the surface waters and no daily vertical movements of the animals were registered.

P. intermedius occurred mainly in the cold water below the thermocline. In April (Figure 7a), it was concentrated near the bottom all the time. In November (Figure 7b) it migrated between the bottom and the midwater.

The parthenogenetic females of *P. avirostris* and *E. tergestina* did not show different patterns of migration at different ages. Males and sexual females distributed similarly to the parthenogenetic specimens (Table II and III).

The low densities of cladocerans species in September at 20:00 hours at the surface was caused by a bloom of *Oscillatoria* sp in this layer.
Figure 6 - Vertical distribution of *Penilia avirostris* on April 8-9, 1960 (a), September 22-23, 1960 (b), July 6-7, 1961 (c) and November 7-8, 1961 (d).

Figure 7 - Vertical distribution of *Podon intermedius* on April 8-9, 1960 (a) and November 7-8, 1961 (b).
DISCUSSION

The occurrence of *P. avirostris* and *E. tergestina* in the four periods, under distinct hydrographic conditions, suggests that they were annual in the studied area. Both species were eurythermic but preferring the waters with temperatures above 21.0°C. So they can be considered warm water forms, in agreement with Onbé (1977).

E. spinifera was a stenothermic thermophilous species. The thermic variation in which it occurred, agrees with that observed by Gieskes (1971) and Specchi *et al.* (1974). The cause of its low density during the Summer and Autumn, and the great number of its congeneric species in this same period in the Shelf Water was probably the progressive warming of this water mass up to 25.0°C. Onbé (1977) also suggested the important role of the temperature on the control of the seasonal occurrence and succession of the *Evadne* species.

The scarcity of *E. spinifera* in the Subtropical Water can be attributed to the low temperatures (15.0 and 16.0°C), which were the same as when this species disappeared in the Mediterranean Sea (Thiriot, 1972 and Specchi *et al.*, 1974).

P. intermedius is a species characteristic of the Subtropical Water, together with Calanus tenuicornis, Calanoides carinatus and Ctenocalanus vanus, as indicated by Björnberg (1963) Ramirez & De Vreese (1974) verified that in the region between the southernmost part of Brazil and Mar del Plata, *P. intermedius* was the most abundant cladoceran when the region was occupied by the Falklands Current and Subtropical Water. The animals are probably brought by the cold water which flows to the north near the bottom, over the South Continental Shelf of Brazil. The influence of the water currents on the horizontal and seasonal distributions of the cladocerans was also pointed out by Baker (1938) and by Specchi (1973).

The light seems to have a controlling role on the diel vertical migration of *P. avirostris* and *P. intermedius*. Although *P. avirostris* has showed no responses to different light intensities under experimental conditions (Lochhead, 1954) and a remarkable positive phototaxis to artificial light (Porumb & Porumb, 1965), it showed a negative phototaxis off Santos. An analogous behaviour was verified by Marano (1970) in the Mediterranean Sea and by Binet (1975) off the Ivory Coast, while the absence of migratory movements was registered by Onbé (1977).

P. intermedius' migration towards the surface after the sundown was registered by Hansen (1951), Furnestin (1957) and Marano (1970). Off Santos, the rise of the species was always prevented by the thermocline that acted as an efficient ecological boundary.

The vertical distribution of the two species of *Evadne* was not influenced by the luminosity conditions. They tolerated high intensities at the surface during the day and no tendency to vertical homogeneity of the distribution after sundown was observed, in agreement with Frontier (1973), Marano (1970) and Furnestin (1957). The variation of the densi
ties in the different depths during the 24 hours' periods was probably caused by the horizontal transport of the population and the distribution in patches as was suggested by Riera & Blasco (1967)

SUMMARY AND CONCLUSIONS

1 - *Evadne costai* Fontes, 1971 is a junior synonym of *E. tergestina* Claus, 1877

2 - *P. avirostris*, *E. tergestina*, *E. spinifera* and *P. intermedius* occurred in a decreasing order of abundance.

3 - *P. avirostris* and *E. tergestina* were together, showing the same thermic preferences. They were probably annual species with peaks of abundance in the Summer and Fall, when amphigonic forms appeared. *P. intermedius* also was a Summer-Fall form, but it was related with the deep cold water. *E. spinifera* was a Winter and Spring form, excluded from the area when the temperature over-reached 23.0 °C.

4 - *P. intermedius* is a characteristic species of the Subtropical Water. It is an allochthonous form brought by this cold water to the southern area of the Brazilian Continental Shelf. *E. spinifera* was associated with the surface water, with temperatures between 20.0 and 23.0 °C (Shelf and Coastal Waters). *E. tergestina* was more numerous in the Shelf Water, while *P. avirostris* did not show preference to any water mass. In general, the cladocerans avoided the waters with oceanic influence.

5 - *E. spinifera* and *E. tergestina* were surface species, while *P. intermedius* was distributed mainly between 25 and 50 m. *P. avirostris* was found between 0 m and 50 m, but preferred the upper 25 m.

6 - *P. avirostris* and *P. intermedius* showed negative phototaxis. The former migrated during the night between the midwater and surface. The latter migrated between the bottom and midwater, with homogeneous distribution at midnight. *Evadne* spp did not migrate.

7 - The stimulating factor of the daily vertical migration was the light intensity variation. Besides being a determinant factor of the horizontal distribution and life cycle of the cladocerans, the temperature was another factor which influenced the vertical distribution of these organisms, mainly of the stenothermic species. The presence of blooms of *Oscillatoria* sp at the surface was another factor which interfered with the vertical distribution and migration.

8 - The thermocline only acted as barrier on the vertical distribution of *P. intermedius*.

9 - No influence on the migratory pattern of the species by age or sex could be observed.
ACKNOWLEDGEMENTS - I thank Dr. Tagea K. S. Björnberg and Dr. Scintilla P. Por for their suggestions concerning this research. Financial support was provided by Universidade Federal de Sergipe and CAPES.

REFERENCES

ALMEIDA PRADO, M.S. de 1962 Sobre o plancton da Enseada do Mar Virado e os métodos de coletas. Bolm Inst.Oceanogr., S Paulo, 12(3):49-68.

BAKER, H.M. 1938. Studies on the Cladocera of Monterey Bay. Proc.Calif.Acad.Sci. (4th ser.), 23:311-365

BINET, D. 1975. Notes sur l'écologie de quelques taxons du zooplancton de Côte d'Ivoire. I - Ostracods, Cladocères et Cirripèdes. Doc.Scient. Centre Rech.Oceanogr.Abidjan, 4(2):19-39.

BJÖRNBERG, T.K.S. 1963. On the marine free-living copepods off Brazil. Bolm Inst.Oceanogr., S Paulo, 13(1):3-142

BOSCH, H.F & R. TAYLOR 1973. Diurnal vertical migration of an estuarine cladoceran, Podon polyphemoides, in the Chesapeake Bay. Mar.Biol., 19(2):172-181.

CASTELLO, J.P. 1978. Projeto Lagoa; relatório do décimo quarto cruzeiro, 20 a 22/12/1976 e décimo quinto cruzeiro, 10 a 13/1/1977 Base Oceanogr.Atlântica, ser.rel., Rio Grande, 9:78 p.

CLAUS, C. 1877 Zur Kenntniss des Baues und der Organisation der Polyphemiden. Denkschr.Akad.Wiss.,Math.-Nat.Kl.B,Wien, 37:137-160.

DANA, J.D. 1852-55. Crustacea. U.S.Explor.Exped.dur. Years 1858, 1859, 1840, 1841 and 1842. Vol. 13:1-1618; Atlas: 96 plates.

DELLA CROCE, N. 1974. Cladocera. Zooplankton Sheet, 143:1-4.

EMILSSON, I. 1961. The shelf and coastal waters off Southern Brazil. Bolm Inst.Oceanogr., S Paulo, 11(2):101-112.

FONTES, E.X. 1971. Evadne costai, a new species of Cladocera from the brazilian coast. Atas Soc.Biol.Rio de J, 14:165-167

FONTES, E.X. 1973a. Contribution to the study of Cladocera (Crustacea - Branchiopoda) from the brazilian coast. I. Description of Podon intermedius (Lilljeborg, 1853) Atas Soc.Biol. Rio de J., 17(1):15-18.

FONTES, E.X. 1973b. Contribution to the study of Cladocera (Crustacea - Branchiopoda) from the brazilian coast. 2 Description of Evadne tergestina Claus, 1877 Atas Soc. Biol. Rio de J., 17(1):27-30.

FRONTIER, L. 1973. Zooplancton de la région de Nosy-Bé. V Cladocères. Contribution à l'étude d'une baie eutrophique tropicale. Cah.O.R.S.T.O.M., sér. Oceanogr., 11(3): 259-272.

FURNESTIN, M.L. 1957 Chaetognathes et zooplancton du secteur Atlantique et Marrocaïn. Revue Trav.Inst. (scient. tech.) Pêches marit., 21(1/2):1-356.

GIESKES, W.W.C. 1971. Ecology of the Cladocera of the North Atlantic and North Sea, 1960-1967 Neth.J Sea Res., 5:
HANSEN, H. 1899. Die Cladoceren und Cirripedien der Plankton-Expedition, Ergebn. Deutsch Planktonexzped.Humboldt-Stift., II(G2):1-55.

HANSEN, K.V. 1951. On the diurnal migration of zooplankton in relation to the discontinuity layer. J. Cons. perm. int. Explor. Mer, 17(3):231-241.

LEE, J.W. 1974. The vertical distribution and diurnal migration of Cladocera, *Eudane nordmanni* Lovén at different stations in the Irish Sea. J. Oceanol. Soc. Korea, 9(1/2):1-9.

LEVEAU, M. 1965. Contribution à l'étude des ostracodes et cladoceres du Golfe de Marseille. Recl. Trav. Stn. mar. Endoume, 37(53):161-243.

LOCHHEAD, J.H. 1954. On the distribution of a marine cladoceran *Penilia avirostris* Dana (Crustacea, Branchiopoda), with a note on its reported luminescence. Biol. Bull. mar. biol. Lab. Woods Hole, 107:92-105.

MARANO, G. 1970. Distribuzione stagionale dei cladoceri lungo il litorale barese. Atti Soc. pelorit. Sci. fis. mat. nat., 17(3/4):203-215.

ONBÉ, T 1977. The biology of marine cladocerans in a Warm Temperate Water. Proc. Symp. Warm Water Zooplankton, Spec. Publ. Natn. Inst. Oceanogr. Goa, p. 383-398.

PORMBB, F.I. & I.I. PORUMB 1985. Recherches concernant la migration nyctémérale du zooplancton marin d'été. Revue roum. Biol., Zool., 10(5):361-371.

RAMEZIEZ, F.C. & P. DE VREESE 1974. Taxonomía y distribucion de los cladoceros (Crustacea, Phyllopoda) de un sector de la Plataforma Bonaerense y adyacencias. Physis, secc. A, 33(87):511-526.

RAMMNER, W. 1933. Die Cladoceren der 'Meteor' Expedition. Wiss. Ergebn. dt. Atlant. Exped. 'Meteor', 1925-27, Berlin & Leipzig, 12:111-121.

RAMMNER, W. 1939. Cladocera. Zooplankton Sheet, 3:1-4.

RIERA, T & D. BLASCO 1967. Plancton superficial del Mar de Baleares en Julio de 1966. Investigacion pesq., 31(3):463-484.

SANTOS, J.J. 1973. Estudo preliminar, principalmente do plancton, das águas da Baía de Todos os Santos. Bolm Zool e Biol. mar. , N.S., 30:419-447.

SEGUIN, G. 1965. Contribution à la connaissance du plancton des eaux côtières du Brésil (Copépodes et Amphipodes exceptés) et comparaison avec celui du Sénégal. Campagne de la 'Calypso' Janier-Février 1962 Pelagia, 2(3):5-44.

SPECCHI, M. 1973. Osservazioni sui cladoceri raccolti dall' 'Argonaut' nel Quarnero. Alcune comparizioni con la cladocerofauna del Bacino Occidentale dell'Alto Adriatico. Boll. Pesca Piscic. Idrobiol., 28(1):45-57.

SPECCHI, M.; L. DOLLINAR & S. FONDA-UMANI 1974. I cladoceri del genere *Eudane* nel Golfo di Trieste. Notizie sul ciclo biologico di *Eudane nordmanni*, *Eudane tergestina* ed *Eudane spinifera*. Boll. Pesca Piscic. Idrobiol., 29(2):107-122.

STEUER, A. 1933. Zur Fauna des Canal de Leme bei Rovigno. Thalassia, 1(4):4-44.
TEIXEIRA, C.; J. TUNDISI & M.B. KUTNER 1965. Plankton studies in a mangrove environment. II. The standing stock and some ecological factors. *Bolm Inst. Oceanogr.*, S Paulo, 14:13-41.

THIRIOT, A. 1972. Influence de la température sur les caractéristiques des populations des cladocères du genre *Eva* dans le Golfe du Lion (Méditerranée Occidentale). In: FIFTH EUROPEAN MARINE BIOLOGY SYMPOSIUM. Padova. Piccin Ed., p- 197-206.

THIRIOT, A. 1972-73. Les cladocères de Méditerranée Occidentale. 3. Cycle à Banyuls-sur-mer (Golfe du Lion). Synthèse des Années 1965-1969. *Vie Milieu*, 23(2B):243-295.
