FLAG VARIETIES AS EQUIVARIANT COMPACTIFICATIONS OF G^n_a

IVAN V. ARZHANTSEV

Abstract. Let G be a semisimple affine algebraic group and P a parabolic subgroup of G. We classify all flag varieties G/P which admit an action of the commutative unipotent group G^n_u with an open orbit.

Introduction

Let G be a connected semisimple affine algebraic group of adjoint type over an algebraically closed field of characteristic zero, and P be a parabolic subgroup of G. The homogeneous space G/P is called a (generalized) flag variety. Recall that G/P is complete and the action of the unipotent radical P_u of the opposite parabolic subgroup P^- on G/P by left multiplication is generically transitive. The open orbit O of this action is called the big Schubert cell on G/P. Since O is isomorphic to the affine space A^n, where $n = \dim G/P$, every flag variety may be regarded as a compactification of an affine space.

Notice that the affine space A^n has a structure of the vector group, or, equivalently, of the commutative unipotent affine algebraic group G^n_u. We say that a complete variety X of dimension n is an equivariant compactification of the group G^n_u, if there exists a regular action $G^n_u \times X \to X$ with a dense open orbit. A systematic study of equivariant compactifications of the group G^n_u was initiated by B. Hassett and Yu. Tschinkel in [4], see also [10] and [1].

In this note we address the question whether a flag variety G/P may be realized as an equivariant compactification of G^n_u. Clearly, this is the case when the group P_u^-, or, equivalently, the group P_u is commutative. It is a classical result that the connected component \tilde{G} of the automorphism group of the variety G/P is a semisimple group of adjoint type, and $G/P = \tilde{G}/Q$ for some parabolic subgroup $Q \subset \tilde{G}$. In most cases the group \tilde{G} coincides with G, and all exceptions are well known, see [6], [7, Theorem 7.1], [12, page 118], [8, Section 2]. If $\tilde{G} \neq G$, we say that (\tilde{G}, Q) is the covering pair of the exceptional pair (G, P). For a simple group G, the exceptional pairs are $(\text{PSp}(2r), P_1)$, $(\text{SO}(2r + 1), P_r)$ and (G_2, P_1) with the covering pairs $(\text{PSL}(2r), P_1)$, $(\text{PSO}(2r + 2), P_{r+1})$ and $(\text{SO}(7), P_1)$ respectively, where PH denotes the quotient of the group H by its center, and P_i is the maximal parabolic subgroup associated with the ith simple root. It turns out that for a simple group G the condition $\tilde{G} \neq G$ implies that the unipotent radical Q_u is commutative and P_u is not. In particular, in this case G/P is an equivariant compactification of G^n_u. Our main result states that these are the only possible cases.

\textit{Date}: March 19, 2010.
\textit{2010 Mathematics Subject Classification}. Primary 14M15; Secondary 14L30.
\textit{Key words and phrases}. Semisimple group, parabolic subgroup, flag variety, automorphism.
\textit{Supported by RFBR grants 09-01-00648-a, 09-01-90416-Ukr-f-a, and the Deligne 2004 Balzan prize in mathematics.
Theorem 1. Let G be a connected semisimple group of adjoint type and P a parabolic subgroup of G. Then the flag variety G/P is an equivariant compactification of \mathbb{G}_a^n if and only if for every pair $(G^{(i)}, P^{(i)})$, where $G^{(i)}$ is a simple component of G and $P^{(i)} = G^{(i)} \cap P$, one of the following conditions holds:

1. The unipotent radical $P_u^{(i)}$ is commutative;
2. The pair $(G^{(i)}, P^{(i)})$ is exceptional.

For convenience of the reader, we list all pairs (G, P), where G is a simple group (up to local isomorphism) and P is a parabolic subgroup with a commutative unipotent radical:

- $(\text{SL}(r + 1), P_i)$, $i = 1, \ldots, r$; $(\text{SO}(2r + 1), P_i)$; $(\text{Sp}(2r), P_i)$;
- $(\text{SO}(2r), P_i)$, $i = 1, r - 1$, (E_6, P_i), $i = 1, 6$; (E_7, P_i),

see [9 Section 2]. The simple roots $\{\alpha_1, \ldots, \alpha_r\}$ are indexed as in [2] Planches I-IX. Note that the unipotent radical of P_i is commutative if and only if the simple root α_i occurs in the highest root ρ with coefficient 1, see [11 Lemma 2.2]. Another equivalent condition is that the fundamental weight ω_i of the dual group G^v is minuscule, i.e., the weight system of the simple G^v-module $V(\omega_i)$ with the highest weight ω_i coincides with the orbit $W\omega_i$ of the Weyl group W.

1. Proof of Theorem

If the unipotent radical P_u is commutative, then the action of P_u on G/P by left multiplication is the desired generically transitive \mathbb{G}_a^n-action, see, for example, [5 pp. 22-24]. The same arguments work when for the connected component \tilde{G} of the automorphism group $\text{Aut}(G/P)$, one has $G/P = \tilde{G}/Q$ and the unipotent radical Q_u is commutative. Since

$G/P \cong G^{(1)}/P^{(1)} \times \cdots \times G^{(k)}/P^{(k)},$

where $G^{(1)}, \ldots, G^{(k)}$ are the simple components of the group G, the group \tilde{G} is isomorphic to the direct product $G^{(1)} \times \cdots \times G^{(k)}$, cf. [5 Chapter 4]. Moreover, $Q_u \cong Q_u^{(1)} \times \cdots \times Q_u^{(k)}$ with $Q^{(i)} = \tilde{G}^{(i)} \cap Q$, Thus the group Q_u is commutative if and only if for each pair $(G^{(i)}, P^{(i)})$ either $P_u^{(i)}$ is commutative or the pair $(G^{(i)}, P^{(i)})$ is exceptional.

Conversely, assume that G/P admits a generically transitive \mathbb{G}_a^n-action. One may identify \mathbb{G}_a^n with a commutative unipotent subgroup H of \tilde{G}, and the flag variety G/P with \tilde{G}/Q, where Q is a parabolic subgroup of \tilde{G}.

Let $T \subset B$ be a maximal torus and a Borel subgroup of the group \tilde{G} such that $B \subseteq Q$. Consider the root system Φ of the tangent algebra $\mathfrak{g} = \text{Lie}(\tilde{G})$ defined by the torus T, its decomposition $\Phi = \Phi^+ \cup \Phi^-$ into positive and negative roots associated with B, the set of simple roots $\Delta \subseteq \Phi^+$, $\Delta = \{\alpha_1, \ldots, \alpha_r\}$, and the root decomposition

$\mathfrak{g} = \bigoplus_{\beta \in \Phi^-} \mathfrak{g}_\beta \oplus \mathfrak{t} \oplus \bigoplus_{\beta \in \Phi^+} \mathfrak{g}_\beta,$

where $\mathfrak{t} = \text{Lie}(T)$ is a Cartan subalgebra in \mathfrak{g} and $\mathfrak{g}_\beta = \{x \in \mathfrak{g} : [y, x] = \beta(y)x$ for all $y \in \mathfrak{t}\}$ is the root subspace. Set $\mathfrak{q} = \text{Lie}(Q)$ and $\Delta_Q = \{\alpha \in \Delta : \mathfrak{g}_-\alpha \not\subseteq \mathfrak{q}\}$. For every root
\[\beta = a_1 \alpha_1 + \ldots + a_r \alpha_r \] define \(\deg(\beta) = \sum_{\alpha_i \in \Delta^+} a_i \). This gives a \(\mathbb{Z} \)-grading on the Lie algebra \(\mathfrak{g} \):

\[\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_k, \quad \text{where} \quad \mathfrak{t} \subseteq \mathfrak{g}_0 \quad \text{and} \quad \mathfrak{g}_\beta \subseteq \mathfrak{g}_k \quad \text{with} \quad k = \deg(\beta). \]

In particular,

\[\mathfrak{q} = \bigoplus_{k \geq 0} \mathfrak{g}_k \quad \text{and} \quad \mathfrak{q}_- = \bigoplus_{k < 0} \mathfrak{g}_k. \]

Assume that the unipotent radical \(\mathcal{Q}_u^- \) is not commutative, and consider \(\mathfrak{g}_\beta \subseteq [\mathfrak{q}_-, \mathfrak{q}_-] \). For every \(x \in \mathfrak{g}_\beta \setminus \{0\} \) there exist \(z' \in \mathfrak{g}_{\beta'} \subseteq \mathfrak{q}_- \) and \(z'' \in \mathfrak{g}_{\beta''} \subseteq \mathfrak{q}_- \) such that \(x = [z', z''] \). In this case \(\deg(z') > \deg(x) \) and \(\deg(z'') > \deg(x) \).

Since the subgroup \(H \) acts on \(\tilde{G}/Q \) with an open orbit, one may conjugate \(H \) and assume that the \(H \)-orbit of the point \(eQ \) is open in \(\tilde{G}/Q \). This implies \(\mathfrak{g} = \mathfrak{q} \oplus \mathfrak{h} \), where \(\mathfrak{h} = \text{Lie}(H) \). On the other hand, \(\mathfrak{g} = \mathfrak{q}_- \). So every element \(y \in \mathfrak{h} \) may be (uniquely) written as \(y = y_1 + y_2 \), where \(y_1 \in \mathfrak{q} \), \(y_2 \in \mathfrak{q}_- \), and the linear map \(\mathfrak{h} \rightarrow \mathfrak{q}_- \), \(y \mapsto y_2 \), is bijective. Take the elements \(y, y', y'' \in \mathfrak{h} \) with \(y_2 = x, y_2' = z', y_2'' = z'' \). Since the subgroup \(H \) is commutative, one has \([y', y''] = 0\).

Thus

\[[y'_1 + y'_2, y''_1 + y''_2] = [y'_1, y''_1] + [y'_2, y''_2] + [y'_1, y''_2] + [y'_2, y''_1] = 0. \]

But

\[[y'_2, y''_2] = x \quad \text{and} \quad [y'_2, y'_1] + [y'_2, y''_2] + [y'_2, y''_2] \in \bigoplus_{k > \deg(x)} \mathfrak{g}_k. \]

This contradiction shows that the group \(\mathcal{Q}_u^- \) is commutative. As we have seen, the latter condition means that for every pair \((G^{(i)}, P^{(i)})\) either the unipotent radical \(P^{(i)}_u \) is commutative or the pair \((G^{(i)}, P^{(i)})\) is exceptional. The proof of Theorem 1 is completed.

2. Concluding Remarks

If a flag variety \(G/P \) is an equivariant compactification of \(G^u_\alpha \), then it is natural to ask for a classification of all generically transitive \(G^u_\alpha \)-actions on \(G/P \) up to equivariant isomorphism. Consider the projective space \(\mathbb{P}^n \cong \text{SL}(n+1)/P_1 \). In [1], a correspondence between equivalence classes of generically transitive \(G^u_\alpha \)-actions on \(\mathbb{P}^n \) and isomorphism classes of local (associative, commutative) algebras of dimension \(n + 1 \) was established. This correspondence together with classification results from [11] yields that for \(n \geq 6 \) the number of equivalence classes of generically transitive \(G^u_\alpha \)-actions on \(\mathbb{P}^n \) is infinite, see [11, Section 3]. On the contrary, a generically transitive \(G^u_\alpha \)-action on a non-degenerate projective quadric \(Q_n \cong \text{SO}(n+2)/P_1 \) is unique [10, Theorem 4]. It would be interesting to study the same problem for the Grassmannians \(\text{Gr}(k, r + 1) \cong \text{SL}(r + 1)/P_k \), where \(2 \leq k \leq r - 1 \).

Acknowledgement

The author is indebted to N.A. Vavilov for a discussion which results in this note. Thanks are also due to D.A. Timashev and M. Zaidenberg for their interest and valuable comments.
I.V. ARZHANTSEV

REFERENCES

[1] I.V. Arzhantsev and E.V. Sharoyko, Hassett-Tschinkel correspondence: modality and projective hypersurfaces. arXiv:0912.1474 [math.AG]
[2] N. Bourbaki, Groupes et algèbres de Lie, Chaps. 4, 5 et 6. Paris, Hermann, 1975.
[3] M. Demazure, Automorphismes et déformations des variétés de Borel. Invent. Math. 39 (1977), 179–186.
[4] B. Hassett and Yu. Tschinkel, Geometry of equivariant compactifications of G^n_a. Int. Math. Res. Notices 22 (1999), 1211–1230.
[5] V. Lakshmibai and K.N. Raghavan, Standard Monomial Theory. Invariant Theoretic Approach. Encyclopedia of Mathematical Sciences, Vol. 137, Springer, 2008.
[6] A.L. Onishchik, On compact Lie groups transitive on certain manifolds. Dokl. Akad. Nauk SSSR 135 (1961), 531–534 (Russian); English transl.: Sov. Math., Dokl. 1 (1961), 1288–1291.
[7] A.L. Onishchik, Inclusion relations between transitive compact transformation groups. Tr. Mosk. Mat. O.-va 11 (1962), 199–242 (Russian).
[8] A.L. Onishchik, Topology of transitive transformation groups. Leipzig: Johann Ambrosius Barth., 1994.
[9] R. Richardson, G. Röhrle and R. Steinberg, Parabolic subgroups with Abelian unipotent radical. Invent. Math 110 (1992), 649–671.
[10] E.V. Sharoyko, Hassett-Tschinkel correspondence and automorphisms of the quadric. Sbornik Math. 200 (2009), no. 11, 145–160.
[11] D.A. Suprunenko and R.I. Tyshkevich, Commutative matrices. Academic Press, New York, 1969.
[12] J. Tits, Espaces homogènes complexes compacts. Comm. Math. Helv. 37 (1962), 111–120.

DEPARTMENT OF ALGEBRA, FACULTY OF MECHANICS AND MATHEMATICS, MOSCOW STATE UNIVERSITY, LENINSKIE GORY 1, GSP-1, MOSCOW, 119991, RUSSIA
E-mail address: arjantse@mccme.ru