The possibility of cosmic acceleration via spatial averaging in Lemaître–Tolman–Bondi models

Aseem Paranjape and T P Singh
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
E-mail: aseem@tifr.res.in and tpsingh@tifr.res.in

Received 23 May 2006, in final form 21 August 2006
Published 24 October 2006
Online at stacks.iop.org/CQG/23/6955

Abstract
We investigate the possible occurrence of a positive cosmic acceleration in a spatially averaged, expanding, unbound Lemaître–Tolman–Bondi cosmology. By studying an approximation in which the contribution of 3-curvature dominates over the matter density, we construct numerical models which exhibit acceleration.

PACS numbers: 98.80.−k, 95.36.+x, 04.20.−q
(Some figures in this article are in colour only in the electronic version)

1. Introduction

We live in an inhomogeneous universe, whose exact and complicated dynamics is described by Einstein’s equations. It is generally assumed that when the spatial inhomogeneities are averaged over, the resulting universe is described by the standard Friedmann equations for a homogeneous and isotropic cosmology. However, as is known [1], since Einstein equations are nonlinear, the averaging over the inhomogeneous matter distribution will in general not yield the solution of Einstein equations which is described by the Friedmann–Robertson–Walker (FRW) metric. There will be corrections to the FRW solution, which could be small or large, and which could in principle lead to observational effects indicating a departure from standard FRW cosmology.

The possibility that the observed cosmic acceleration [2] is caused by the spatial averaging of the observed inhomogeneities, rather than by a dark energy, has been investigated and debated in the literature [3–5]. A systematic framework has been developed for describing the dynamics of a modified Friedmann universe, obtained after spatial averaging [6]. It has been suggested that, within the framework of standard cosmology with cold dark matter initial conditions, an explanation of the acceleration in terms of averaged inhomogeneities is unlikely to work [7]. However, it is perhaps fair to say that the matter cannot be treated as completely closed, and further studies are desirable [8].
The Lemaître–Tolman–Bondi (LTB) cosmology [9], being an exact solution of Einstein equations for inhomogeneous dust matter, provides a useful toy model for investigating the possible connection between acceleration and averaging of inhomogeneities. Various authors have examined different aspects of the model in this regard. The redshift–luminosity distance relation in an LTB model and its possible connection with cosmic acceleration, or the lack of it, have been studied by Celerrier [10], Alnes et al [11] and by Vanderveld et al [12], Sugita et al [13], Mustapha et al [14], Iguchi et al [15]. Nambu and Tanimoto [16] give examples of cosmic acceleration after averaging in an LTB model consisting of a contracting region and an expanding region. Other works which study cosmic acceleration in LTB models are those by Moffat [17], Mansouri [18], Chuang et al [19], Räsänen [20] and Apostolopoulos et al [21].

It has sometimes been suggested in the literature that both an expanding and a contracting region are needed for acceleration. In the present paper we will address a question which does not seem to have been addressed in the above-mentioned works: can spatial averaging in a universe consisting of a single expanding LTB region produce acceleration? We show that the answer is in the affirmative. We do this by considering a low density, curvature-dominated unbound LTB model in which the contribution of matter density is negligible compared to the contribution of the curvature function. Further, we concentrate on the late-time behaviour of such a model. As a result of this proposed simplification, the calculation of the acceleration of the averaged scale factor becomes relatively simpler and conclusions about acceleration can be drawn, for specific choices of the energy function.

In section 2 of the paper we recall the effective FRW equations, resulting from spatial averaging in a dust-dominated spacetime. In section 3 we discuss spatial averaging for the marginally bound LTB model and point out there can be no acceleration in this case. The unbound LTB model is investigated in section 4, in the approximation that the spatial curvature (equivalently, the energy function) dominates over the dust matter density, and numerical and analytical examples of acceleration are given.

2. Averaging in dust-dominated spacetime

For a general spacetime containing irrotational dust, the metric can be written in synchronous and comoving gauge\(^1\),

\[
\text{d}x^2 = -dt^2 + h_{ij}(\vec{x}, t) \text{d}x^i \text{d}x^j.
\]  

(1)

The expansion tensor \(\Theta^i_j\) is given by \(\Theta^i_j \equiv (1/2)h^{i k} \dot{h}_{k j}\) where the dot refers to a derivative with respect to time \(t\). The traceless symmetric shear tensor is defined as \(\sigma^i_j \equiv \Theta^i_j - (\Theta/3)\delta^i_j\) where \(\Theta = \Theta^i_i\) is the expansion scalar. The Einstein equations can be split [6] into a set of scalar equations and a set of vector and traceless tensor equations. The scalar equations are the Hamiltonian constraint \((2a)\) and the evolution equation for \(\Theta\) \((2b)\),

\[
(3)\dot{R} + \frac{1}{2} \Theta^2 - 2\sigma^2 = 16\pi G\rho
\]  

\(2a\)

\[
(3)\dot{R} + \Theta + \Theta^2 = 12\pi G\rho,
\]  

\(2b\)

where the dot denotes derivative with respect to time \(t\). \((3)\dot{R}\) is the Ricci scalar of the three-dimensional hypersurface of constant \(t\) and \(\sigma^2\) is the rate of shear defined by \(\sigma^2 \equiv (1/2)\sigma^i_j\sigma^i_j\). Equations \((2a)\) and \((2b)\) can be combined to give Raychaudhuri’s equation

\[
\dot{\Theta} + \frac{1}{2} \Theta^2 + 2\sigma^2 + 4\pi G\rho = 0.
\]  

(3)

\(^1\) Latin indices take values 1...3, Greek indices take values 0...3. We set \(c = 1\).
The continuity equation \( \dot{\rho} = -\Theta \rho \) which gives the evolution of \( \rho \) is consistent with equations (2a), (2b). We only consider the scalar equations, since the spatial average of a scalar quantity can be defined in a gauge covariant manner within a given foliation of spacetime. For the spacetime described by (1), the spatial average of a scalar \( \Psi(t, \vec{x}) \) over a comoving domain \( \mathcal{D} \) at time \( t \) is defined by

\[
\langle \Psi \rangle_\mathcal{D} = \frac{1}{V_\mathcal{D}} \int_\mathcal{D} d^3x \sqrt{h} \Psi,
\]

where \( h \) is the determinant of the 3-metric \( h_{ij} \) and \( V_\mathcal{D} \) is the volume of the comoving domain given by \( V_\mathcal{D} = \int_\mathcal{D} d^3x \sqrt{h} \).

Spatial averaging is, by definition, not generally covariant. Thus the choice of foliation is relevant and should be motivated on physical grounds. In the context of cosmology, averaging over freely falling observers is a natural choice, especially when one intends to compare the results with standard FRW cosmology. Following definition (4) the following commutation relation then holds [6]

\[
\langle \Psi \rangle_\mathcal{D} - \langle \dot{\Psi} \rangle_\mathcal{D} = \langle \Psi \Theta \rangle_\mathcal{D} - \langle \Psi \rangle_\mathcal{D} \langle \Theta \rangle_\mathcal{D},
\]

which yields for the expansion scalar \( \Theta \)

\[
\langle \Theta \rangle_\mathcal{D} - \langle \dot{\Theta} \rangle_\mathcal{D} = \langle \Theta^2 \rangle_\mathcal{D} - \langle \Theta \rangle_\mathcal{D}^2.
\]

Introducing the dimensionless scale factor \( a_\mathcal{D} \equiv (V_\mathcal{D} / V_{D,0})^{1/3} \) normalized by the volume of the domain \( \mathcal{D} \) at some initial time \( t_0 \), we can average the scalar Einstein equations (2a), (2b) and the continuity equation to obtain [6]

\[
\langle \Theta \rangle_\mathcal{D} = 3 \frac{\dot{a}_\mathcal{D}}{a_\mathcal{D}},
\]

\[
3 \left( \frac{\dot{a}_\mathcal{D}}{a_\mathcal{D}} \right)^2 - 8\pi G \langle \rho \rangle_\mathcal{D} + \frac{1}{2} \langle \mathcal{R} \rangle_\mathcal{D} = -\frac{Q_\mathcal{D}}{2},
\]

\[
3 \left( \frac{\dot{a}_\mathcal{D}}{a_\mathcal{D}} \right)^2 + 4\pi G \langle \rho \rangle_\mathcal{D} = Q_\mathcal{D},
\]

\[
\langle \rho \rangle_\mathcal{D} = -\langle \Theta \rangle_\mathcal{D} \langle \rho \rangle_\mathcal{D} = -3 \frac{d_\mathcal{D}}{a_\mathcal{D}} \langle \rho \rangle_\mathcal{D}.
\]

Here \( \langle \mathcal{R} \rangle_\mathcal{D} \), the average of the spatial Ricci scalar \( \langle^{(3)}\mathcal{R} \rangle \), is a domain-dependent spatial constant. The ‘backreaction’ \( Q_\mathcal{D} \) is given by

\[
Q_\mathcal{D} \equiv \frac{1}{2} \left( \langle \Theta^2 \rangle_\mathcal{D} - \langle \Theta \rangle_\mathcal{D}^2 \right) - 2 \langle \sigma^2 \rangle_\mathcal{D}
\]

and is also a spatial constant. The last equation (7d) simply reflects the fact that the mass contained in a comoving domain is constant by construction: the local continuity equation \( \dot{\rho} = -\Theta \rho \) can be solved to give \( \rho \sqrt{h} = \rho_0 \sqrt{h_0} \) where the subscript 0 refers to some arbitrary reference time \( t_0 \). The mass \( M_\mathcal{D} \) contained in a comoving domain \( \mathcal{D} \) is then \( M_\mathcal{D} = \int_\mathcal{D} \rho \sqrt{h} d^3x = \int_\mathcal{D} \rho_0 \sqrt{h_0} d^3x = \) constant. Hence

\[
\langle \rho \rangle_\mathcal{D} = \frac{M_\mathcal{D}}{V_{D,0} a_\mathcal{D}^3},
\]

which is precisely what is implied by equation (7d).

This averaging procedure can only be applied for spatial scalars, and hence only a subset of the Einstein equations can be smoothed out. As a result it may appear that the outcome of such an approach is severely restricted, and essentially incomplete due to the impossibility to
analyse the full set of equations. However one should note that the cosmological parameters of interest are scalars, and the averaging of the exact scalar part of Einstein equations provides the requisite information. A more general strategy would be to consider the smoothing of tensors, which is beyond the scalar approach that certainly provides useful information, albeit not the full information.

Equations (7b), (7c) can be cast in a form which is immediately comparable with the standard FRW equations [22]. Namely,

\[ \frac{\dot{a}_D}{a_D} = -\frac{4\pi G}{3}(\rho_{\text{eff}} + 3P_{\text{eff}}) \]  \hspace{1cm} (10a)  
\[ \left(\frac{\dot{a}_D}{a_D}\right)^2 = \frac{8\pi G}{3}\rho_{\text{eff}} \]  \hspace{1cm} (10b)  

with \( \rho_{\text{eff}} \) and \( P_{\text{eff}} \) defined as

\[ \rho_{\text{eff}} = \langle \rho \rangle_D - \frac{Q_D}{16\pi G} - \frac{\langle R \rangle_D}{16\pi G^2}, \quad P_{\text{eff}} = -\frac{Q_D}{16\pi G} + \frac{\langle R \rangle_D}{48\pi G}. \]  \hspace{1cm} (11)  

A necessary condition for (10a) to integrate to (10b) takes the form of the following differential equation involving \( Q_D \) and \( \langle R \rangle_D \)

\[ Q_D + 6\frac{\dot{a}_D}{a_D}Q_D + \langle R \rangle_D + 2\frac{\dot{a}_D}{a_D}\langle R \rangle_D = 0 \]  \hspace{1cm} (12)  

and the criterion to be met in order for the effective scale factor \( a_D \) to accelerate is

\[ Q_D > 4\pi G \langle \rho \rangle_D. \]  \hspace{1cm} (13)  

3. The LTB solution

The system of equations (10a), (10b) and (12) is only consistent, it does not close. For a completely general spacetime with dust, therefore, it is not possible to proceed with the analysis without making certain assumptions about the form of the functions \( Q_D \) and \( \langle R \rangle_D \) [6, 7]. For this reason, it becomes convenient to work with the LTB metric, an exact solution of the Einstein equations which is a toy model consisting of a spherically symmetric inhomogeneous dust-dominated spacetime. In this section, we describe the LTB solution and apply to it the averaging procedure described above for the simplest, marginally bound case. In the following section we extend the analysis to the unbound LTB solution. The LTB metric for pressureless dust is given in the synchronous and comoving gauge by

\[ ds^2 = -dt^2 + \frac{R^2(r, t)}{1 + 2E(r)}dr^2 + R^2(r, t)(d\theta^2 + \sin^2 \theta d\phi^2). \]  \hspace{1cm} (14)  

The Einstein equations simplify to

\[ \frac{1}{2}R^2(r, t) - \frac{GM(r)}{R(r, t)} = E(r), \]  \hspace{1cm} (15a)  
\[ 4\pi \rho(r, t) = \frac{M'(r)}{R^2(r, t)R^2(r, t)}. \]  \hspace{1cm} (15b)  

Surfaces of constant \( r \) are 2-spheres having area \( 4\pi R^2(r, t) \). \( \rho(r, t) \) is the energy density of dust, while \( E(r) \) and \( M(r) \) are arbitrary functions that arise on integrating the dynamical equations. Solutions can be found for three cases \( E(r) > 0, E(r) = 0 \) and \( E(r) < 0 \). We will restrict our attention to models in which \( E(r) \) has the same sign, for all \( r \). The solution
for $E(r) = 0$ (the marginally bound case) has the particularly simple form

$$R(r, t) = \left(\frac{9GM(r)}{2}\right)^{1/3} (t - t_0(r))^{2/3}, \quad \text{for } E(r) = 0. \quad (16)$$

Here $t_0(r)$ is another arbitrary function arising from integration. The solution describes an expanding region, with the initial time $t_0$ chosen such that $t > t_0(r)$ for all $r$. For the other two cases, the solutions can be written in parametric form

$$R = \frac{GM(r)}{2E(r)} (\cosh \eta - 1); \quad t - t_0(r) = \frac{GM(r)}{(2E(r))^{3/2}} (\sinh \eta - \eta), \quad 0 \leq \eta < \infty, \quad \text{for } E(r) > 0. \quad (17a)$$

$$R = \frac{GM(r)}{-2E(r)} (1 - \cos \eta); \quad t - t_0(r) = \frac{GM(r)}{(-2E(r))^{3/2}} (\eta - \sin \eta), \quad 0 \leq \eta \leq 2\pi, \quad \text{for } E(r) < 0. \quad (17b)$$

In the unbound case ($E(r) > 0$), $R(r, t)$ increases monotonically with $t$, for every shell with label $r$. In the bound case ($E(r) < 0$), $R(r, t)$ increases to a maximum value $R_{\text{max}}(r)$ for each shell $r$ and then decreases back to 0 in a finite time.

In all cases, there are two physically different free functions, although three arbitrary functions $E$, $M$, and $t_0$ appear. One of the three represents the freedom to rescale the coordinate $r$. We use this freedom to set $R(r, t_0) = r$. To completely specify the solution, we specify the initial density $\rho_0(r)$ and the function $E(r)$. This specifies $M(r) = 4\pi \int_0^r \rho_0(\tilde{r}) \tilde{r}^2 d\tilde{r}$ (which in the marginally bound case is interpreted as the mass contained in a comoving shell), and $t_0(r)$ can be solved for using equations (16), (17a) or (17b) as the case may be, at time $t = t_0$.

### 3.1. Averaging the LTB solution

The quantities defined in section 2 can be computed for the LTB metric of equation (14). The averages are computed over a spherical domain of radius $r_D$, centred on the observer. Other choices of the averaging domain will possibly yield different results, however, the choice of a spherical domain seems natural for the spherically symmetric metric of equation (14). For clarity, we suppress the $r$ and $t$ dependences of the various functions in the following

$$V_D = 4\pi \int_0^{r_D} \frac{R' R'^2}{\sqrt{1 + 2E}} dr; \quad \langle \Theta \rangle_D = \frac{4\pi}{V_D} \int_0^{r_D} \frac{R'^2 + 2RR'^2}{\sqrt{1 + 2E}} dr = \frac{\dot{V}_D}{V_D}; \quad (18)$$

$$M_D = \int_0^{r_D} \frac{M'}{\sqrt{1 + 2E}} dr,$$

where a prime denotes a derivative with respect to $r$. Note that $M_D \neq M(r_D)$ if $E \neq 0$. Only in the marginally bound case is the function $M(r)$ identified with the mass contained in the shell with label $r$. It is convenient to work with the combination $(2/3)(\Theta^2)_D - 2(\sigma^2)_D$ rather than evaluate the average rate of shear $(\sigma^2)_D$ separately. We define this to be $C_D$ and obtain

$$C_D \equiv \frac{2}{3} (\Theta^2)_D - 2(\sigma^2)_D = \frac{8\pi}{V_D} \int_0^{r_D} \frac{2RR'' + \dot{R}R'}{\sqrt{1 + 2E}} dr. \quad (19)$$

### 3.2. The marginally bound case—vanishing backreaction

The results of the previous subsection hold for all classes of the LTB solution, provided the averaging domain is spherically symmetric about the centre. Now consider the marginally
bound case $E(r) = 0$ for all $r$. The algebra in this case becomes very simple, and the backreaction can be computed analytically. We will show next that for a single domain with $E(r) = 0$ throughout, the backreaction $Q_D$ is, in fact, zero. Also, the average spatial curvature $(\langle R \rangle_D)$ is zero (which is expected by inspection of the metric (14) if we note that a spatially uniform initial density profile in the LTB solution in this case yields the corresponding FRW solution). As described earlier we have

$$M(r) = 4\pi \int_0^r \rho_0(\tilde{r}) \tilde{r}^2 d\tilde{r}; \quad t_0(r) = t_\infty - \frac{r^{3/2}}{3} \sqrt{\frac{2}{GM(r)}}. \quad (20)$$

To obtain the second equation we have used equation (16) at time $t = t_\infty$ with the condition $R(r, t_\infty) = r$. Some algebra then yields the following results:

$$R = \frac{2}{3} \left( \frac{9GM(r)}{2} \right)^{1/3} (t - t_0(r))^{-1/3} \quad (21a)$$

$$R' = \frac{2}{3} \left( \frac{9GM(r)}{2} \right)^{1/3} (t - t_0(r))^{-1/3} \left[ \frac{M'(r)}{2M(r)} (t - t_0(r)) - t'_0(r) \right] \quad (21b)$$

$$R' = \frac{2}{3} \left( \frac{9GM(r)}{2} \right)^{1/3} (t - t_0(r))^{-4/3} \left[ \frac{M'(r)}{M(r)} (t - t_0(r)) + t'_0(r) \right] \quad (21c)$$

$$V_D = 6\pi GM_D (t - t_0(r_D))^2 \Rightarrow a_D(t) = \left( \frac{t - t_0(r_D)}{t_\infty - t_0(r_D)} \right)^{2/3} \quad (21d)$$

$$\langle \Theta \rangle_D = \frac{2}{t - t_0(r_D)}; \quad C_D = \frac{8}{3(t - t_0(r_D))^2}. \quad (21e)$$

Since the solution was constructed assuming $t > t_0(r)$ for all $r$, equation (21d) immediately shows that $a_D < 0$ and hence acceleration is not possible in this case. Further, equation (21e) shows that $Q_D = C_D - (2/3)\langle \Theta \rangle_D^{1/2} = 0$. Thus the backreaction term vanishes for a region described by the marginally bound LTB solution. This result is not unexpected. We note that mathematically, the general relativistic equations (15a) and (15b) describing the evolution of a spherical dust cloud are identical to the corresponding Newtonian equations. It has been shown by Buchert et al [23] that the backreaction $Q_D$ in a spherically symmetric Newtonian model of dust must vanish. Further, we note that in the marginally bound case, the mathematical expressions for the averaged quantities defined earlier coincide with their corresponding Newtonian analogues. Hence, for the fully relativistic (marginally bound) case also, the backreaction must vanish. The spatial Ricci scalar and its spatial average for a general $E(r)$ are given by

$$^{(3)}R = -\frac{4}{R^2} \left( E + \frac{E'R'}{R'} \right); \quad \langle R \rangle_D = -\frac{16\pi}{V_D} \int_{t_\infty}^{\infty} \frac{3}{\sqrt{1+2E}} d\tilde{r} \quad (22)$$

which shows that $^{(3)}R$ and hence $(\langle R \rangle_D)$ vanish in the marginally bound case. This is consistent with the requirement of equation (12).

4. The unbound LTB solution

Since the solution with zero spatial curvature fails to produce a non-trivial backreaction, we consider next the opposite extreme—a curvature-dominated solution in which the contribution to the Einstein equations due to matter is much smaller than that due to spatial curvature. Before describing the construction of such a solution, we present a general treatment of regularity conditions which an unbound LTB model must satisfy.
4.1. Regularity conditions on unbound LTB models

Consider the class of unbound LTB models given by (17a). The functions $M(r)$ and $E(r)$ are to be specified by initial conditions at $t = t_{in}$, and the choice of scaling $R(r, t_{in}) = r$ fixes $t_{0}(r)$ as

$$ t_{0}(r) = t_{in} - \frac{GM(r)}{(2E(r))^{3/2}}(\sinh \eta_{in}(r) - \eta_{in}(r)); \quad \cosh \eta_{in}(r) - 1 = \frac{2E(r)r}{GM(r)}. \quad (23) $$

The regularity conditions imposed on this model, and their consequences, are as follows

- No evolution at the symmetry centre. This is required in order to maintain spherical symmetry about the same point at all times, and translates as $\dot{R}(0, t) = 0$ for all $t$. The right-hand side of equation (15a) must therefore vanish in the limit $r \to 0$. Since the functions involved are non-negative, we assume that we can write

$$ E(r \to 0) \sim r^{\delta}; \quad \delta > 0; \quad M(r \to 0) \sim r^{\alpha}; \quad (24) $$

Consistency requires $\beta$ to be constant, and our scaling choice further requires $\beta = 1$. We do not require the exponents $\delta$ and $\alpha$ to necessarily be integers.

- No shell-crossing singularities. Physically, we demand that an outer shell (labelled by a larger value of $r$) has a larger area radius $R$ than an inner shell, at any time $t$. Unphysical shell-crossing singularities arise when this condition is not met. Mathematically, this requires

$$ R'(r, t) > 0 \quad \text{for all } r, \text{ for all } t. \quad (25) $$

- Regularity of energy density. We demand that the energy density $\rho(r, t)$ remains finite and strictly positive for all values of $r$ and $t$. Combining this with equations (15b) and (25) gives (assuming that $R'$ is finite for all $r$ and since $\beta = 1$)

$$ \lim_{r \to b} \rho(r, t) = \text{finite} \Rightarrow \alpha - 1 - 2\beta = 0 \Rightarrow \alpha = 3. \quad (26) $$

- No trapped shells. In order for an expanding shell to not be trapped initially, it must satisfy the condition $r > 2GM(r)$. Near the regular centre, this condition is automatically satisfied independent of the exact form of $M(r)$, since there $M \sim r^{3}$.

Consider now the function $t_{0}(r)$ given by (23). By observing the behaviour of the functions (cosh $\eta_{in} - 1$) and (sinh $\eta_{in} - \eta_{in}$) for values of $\delta$ equal to, less than and greater than 2, it is easy to check that $t_{0}(r)$ is finite at $r = 0$ for all values of $\delta$. However, this involves the assumption that $M(r)$ is positive for $r \neq 0$. In the limit of $M \to 0$ for all $r$, we find

$$ R \simeq \sqrt{2E(t - t_{0}(r))}; \quad t_{0}(r) \simeq t_{in} - \frac{r}{\sqrt{2E}}. \quad (27) $$

Although now, in the limit $r \to 0$, $t_{0}(r)$ is finite only when $\delta \leq 2$, it will turn out that the integrals involved in the averaging procedure are insensitive to the behaviour of $t_{0}(r)$ in the $r \to 0$ limit, and remain well defined for all positive values of $\delta$. The expression for $(3)^{R}$ in (22) indicates that the spatial Ricci scalar diverges as $r \to 0$ unless $\delta \geq 2$. However, we note that the spatial Ricci scalar is not a fully covariant quantity and depends on our choice of time slicing. The four-dimensional Ricci scalar, obtained after taking the trace of the Einstein equations as $(4)^{R} = 8\pi G \rho(r, t)$, is finite at the origin irrespective of the behaviour of $E(r)$. It is interesting to see how this cancellation occurs. We have

$$ (4)^{R} = (3)^{R} + 2 \left\{ \left( \frac{R'}{R} \right)^{2} + \frac{2}{R^{2}} \right\} + 2 \left\{ \frac{R'}{R} + 2 \frac{R'R'}{R''R} \right\}; \quad (3)^{R} = -\frac{4}{R^{2}} \left\{ E + \frac{E'R}{R'} \right\}. \quad (28) $$
On using the Einstein equation (15a) we obtain
\[
2 \left\{ \left( \frac{\dot{R}}{R} \right)^2 + \frac{\ddot{R}}{R} \right\} = 4 \frac{E}{R^2}, \quad 2 \left\{ \frac{\ddot{R}}{R} + \frac{\dot{R} \dot{R}'}{RR'} \right\} = 2 \frac{GM'}{R^2R} + 4 \frac{E'}{RR'}
\]  
(29)
which neatly cancels the contribution from \((13/R)\), leaving precisely \(8\pi G\rho(r, t)\) after applying the second Einstein equation (15b). Hence the four-dimensional Ricci scalar does not impose any further restrictions on the form of \(E(r)\). The fact that the origin is well behaved can also be seen from the behaviour of the Kretschmann scalar, given by [25]
\[
\left( \frac{4}{R} \right)^2 \left( \frac{4}{R} \right)_{\mu\nu\rho} = 12 \frac{G^2 M^2}{R^4 R^2} - 32 \frac{G^2 M M'}{R^5 R'} + 48 \frac{G^2 M^2}{R^6}.
\]  
(30)
A condition on the value of \(\delta\) is obtained, however, by the regularity of the energy density \(\rho(r, t)\), which assumes that \(R'(r, t)\) is not only positive, but also finite for all \(r\) and \(t\). Equation (27) shows that unless \(\delta = 2\), \(R'\) either diverges or vanishes at the centre, violating this regularity condition.

4.2. Late-time solution and curvature-dominated unbound models

The function \(R(r, t)\) is an increasing function of time in all the unbound models described by (17a). The Einstein equation (15a) then shows that for sufficiently late times \(t \gg t_{in}\), neglecting the term involving \(1/R\), all unbound models have the approximate solution given by (27). If on the other hand, we start with a model which satisfies \(GM(r)/(rE(r)) \ll 1\) for all \(r\), then since our scaling assumes that \(R = r\) at \(t = t_{in}\), we will have \(GM(r)/(R(r, t)E(r)) \ll 1\) for all \(r\) and for all \(t \gg t_{in}\), and (27) is then an approximate solution at all times, the approximation becoming better as \(t\) increases. To make this idea more precise, consider the closed-form expression for \(t\) in terms of \(R\) obtained by integrating equation (15a) [24]
\[
t - t_0(r) = \frac{R^{3/2}}{(2GM)^{1/2}} F\left( \frac{ER}{GM} \right); \quad F(x) = \frac{1}{x} \left( 1 + x \right)^{1/2} - \frac{1}{x^{3/2}} \sinh^{-1}(x^{1/2}).
\]  
(31)
Hence, imposing \(R(r, t_{in}) = r\) we have
\[
t_0(r) = t_{in} - \frac{r^{3/2}}{(2GM)^{1/2}} F\left( \frac{Er}{GM} \right).
\]  
(32)
Let us write \(GM(r)/E(r) = \epsilon G \hat{M}(r)/E(r) = \epsilon g(r)\) where \(\epsilon\) is a dimensionless positive number whose value we can control. This relation also defines the functions \(\hat{M}(r)\) and \(g(r)\). We can rewrite (31) for \(\epsilon \ll 1\) as
\[
\sqrt{2} E(t - t_0(r)) = R \left\{ 1 + \frac{\epsilon g}{2R} \ln \left( \frac{\epsilon g}{R} \right) - \frac{\epsilon g}{R} \left( \ln 2 - \frac{1}{2} \right) + O\left( \left( \frac{\epsilon g}{R} \right)^2 \right) \right\}.
\]  
(33)
Here \(O(x^2)\) represents a power series beginning with a term of order \(x^2\), and we have used a binomial expansion in \(\epsilon g(r)/R\) and the asymptotic expansion for the inverse hyperbolic sine given by (as \(x \to 0\)) [26]
\[
\sinh^{-1} \left( \frac{1}{x} \right) = \ln 2 - \ln x + \frac{1}{4} x^2 + O(x^4).
\]  
(34)
The terms in equation (33) involving \(\epsilon\) vanish as \(\epsilon \to 0\), although the expression in (33) cannot be inverted to get \(R = R(r, t)\), due to the presence of the logarithm. We can, however, make the following statement. Provided the function \(g(r)/r\) is finite for all values of \(r\), then given any starting time \(t_{in}\), we can choose \(\epsilon\) small enough that the terms involving \(\epsilon\) on the right-hand side of equation (33) are all negligible compared to unity. Then, since \(R\) increases
with time, these terms will always be negligible compared to unity. Alternatively, given some 
\( \epsilon g / r = GM/(Er) \) which is finite for all \( r \), one can always wait for a sufficiently long time, and find that the \( \epsilon \)-dependent terms become smaller compared to unity. In this case, we need not even assume that \( \epsilon \) is small. It is in this sense that the approximation involved in writing the equations in (27) becomes better as \( t \) increases (with the caveat that if \( \epsilon \) is not small, then \( t_0(r) \) must be given by the full expression (32) and not the approximation of (27)). This shows that the first of equations (27) is the correct late-time solution for all unbound models, with the second being a good approximation when \( \epsilon \) is small. The condition that for some \( \epsilon > 0 \), \( g(r)/r \) be finite for all \( r \), and in particular as \( r \to 0 \), implies that \( \delta \leq 2 \) where \( \delta \) is defined in (24). This is not inconsistent with the requirement \( \delta = 2 \) imposed by the criterion of regularity of energy density.

Consider now a model which begins with negligible matter (\( \epsilon \to 0 \)) and in which we have waited for a sufficiently long time (\( t \gg t_0 \)). Eliminating \( t_0(r) \) from (27) the approximate solution becomes

\[
R(r, t) = \sqrt{2E(r)}(t - \lambda_r t_0) + \lambda_r r, \tag{35}
\]

where we have introduced two placeholders \( \lambda_r \) and \( \lambda_t \) which will remind us of the relative magnitudes of various terms. We will ultimately set \( \lambda_r = \lambda_t = 1 \). Substituting for \( R \) in the expression for the domain volume \( V_D \) in equation (18), we find

\[
V_D = (t - \lambda_r t_0)^2 I_E + \lambda_r (t - \lambda_r t_0)^2 I_{E\ell} + \lambda_r^2 (t - \lambda_r t_0) I_{E\ell^2} + \lambda_r^3 I_{E^3}, \tag{36}
\]

where we have defined the domain-dependent integrals

\[
I_E = 4\pi \int_0^{r_D} \frac{\sqrt{2EE'}}{\sqrt{1+2E}} dr; \quad I_{E\ell} = 4\pi \int_0^{r_D} \frac{(r \cdot 2E')'}{\sqrt{1+2E}} dr; \quad I_{E\ell^2} = 4\pi \int_0^{r_D} \frac{(r^2 \cdot \sqrt{2E})'}{\sqrt{1+2E}} dr; \quad I_{E^3} = 4\pi \int_0^{r_D} \frac{r^3}{\sqrt{1+2E}} dr. \tag{37}
\]

The sum of the exponents of \( \lambda_r \) and \( \lambda_t \) in each term in (36) indicates the relative order of that term with respect to the leading \( t^3 \) term. This approach of treating some terms as small compared to others is valid since the various integrals which multiply the powers of \( t \) are all finite and non-zero.

We note that the solution in equation (27) actually corresponds to Minkowski spacetime, since in this limit the matter content has been neglected. The corresponding Riemann tensor and Kretschmann scalar are exactly zero. The constant time 3-spaces are hypersurfaces of negative curvature, with the 3-curvature being determined by the function \( E(r) \). The ‘FRW’ limit of this solution is in fact the Milne universe; the solution (27) could hence be thought of as the ‘Tolman–Bondi’ type generalization of the Milne universe. For our purpose, it is not a problem that the solution describes Minkowski spacetime—we know from the initial conditions that dust matter is present, only its density is negligible compared to the curvature term. The form of the solution then allows us to easily determine if the average scale factor \( a_D \) undergoes acceleration. We demonstrate this with explicit examples in the next subsection. Subsequently, we argue that if a small amount of matter is introduced, so as to introduce departure from Minkowski spacetime, the sign of the acceleration of \( a_D \) is preserved.
4.3. Condition for late-time acceleration

The expression for the volume $V_D(t)$ in (36) allows us to determine the late-time behaviour of the effective scale factor $a_D(t) \equiv (V_D(t)/V_D(t_\infty))^{1/3}$. Using a binomial expansion for $t \gg t_\infty$ in (36), we get

$$3 \frac{\ddot{a}_D}{a_D} = \frac{\dot{V}_D}{V_D} - \frac{2}{3} \left( \frac{\dot{V}_D}{V_D} \right)^2 = \frac{2\lambda_r^2}{3L_E^2} \left( I_{E_r^2} - \frac{1}{3L_E^2}(I_{E_r})^2 \right) + O(3),$$

where $O(3)$ represents terms involving $\lambda_I^m\lambda^2$, i.e. containing $1/t^{m+n}$ with $m+n \geq 3$.

We see that the generic late-time (i.e. $t \to \infty$) behaviour of the unbound models under consideration is $\ddot{a}_D \to 0$, and that deviations from zero are small, being a second-order effect. Whether the approach to $\ddot{a}_D = 0$ is via an accelerating or decelerating phase depends upon the relative magnitudes of the domain integrals involved. A sufficient condition for an unbound model with negligible matter to accelerate at late times is

$$\mathcal{P} \equiv I_{E_r^2} - \frac{1}{3L_E^2}(I_{E_r})^2 > 0.$$

To proceed further we need to specify a particular model. As an explicit example of models admitting acceleration, we consider the power-law models characterized by $2E(r) = r^\delta$, for all $r$, in some units. (At present we are only demonstrating the existence of such models, and shall therefore not worry about the physical scales involved.) Keeping in mind the discussion of sections 4.1 and 4.2, we must strictly speaking only consider the model with $\delta = 2$. The models with $\delta > 2$ cannot be considered at all, since they violate the conditions assumed in section 4.2 which justified the approximation in equation (27). The models with $\delta < 2$ on the other hand contain a Ricci scalar that diverges and a matter density that vanishes at the centre. Despite these pathologies, we display the results for the models with $\delta < 2$ as an existence proof of acceleration using this very simple parametrization. Although it is possible to obtain analytical expressions for the integrals in (37) in terms of the incomplete Beta function, it serves our purpose much better to numerically evaluate the integrals for various values of $\delta$ and $r_D$, and plot the function $\mathcal{P}$ defined in (39). The results are shown in figure 1. Note that $\mathcal{P}$ vanishes along the line $\delta = 2$, but is positive everywhere else in the region plotted, and that the positivity of $\dot{a}_D/a_D$ at late times is independent of the size of the domain $r_D$. We have therefore obtained a continuous range of parameter values $(\delta, r_D)$ which admit late-time acceleration.

In order to demonstrate that the acceleration obtained above is not an artefact of the singular behaviour of those models, we construct another set of models which show late-time
The possibility of cosmic acceleration via spatial averaging in Lemaître–Tolman–Bondi models 6965

Figure 2. The models described by \(2E(r) = r^2/(1 + r^a)\). (a) The scaled function \(P/I_E\). (b) \(P/I_E\) plotted against \(a\) for specific values of \(r_D\).

acceleration, and in which the spatial Ricci scalar \((^3R)\) remains finite everywhere. Consider the models characterized by the energy function

\[ 2E(r) = \frac{r^2}{1 + r^a}; \quad a > 0, \tag{40} \]

where we have again used arbitrary units. Since \(a > 0\), the \(r \to 0\) behaviour of these models is \(2E \sim r^2\), which satisfies the regularity conditions of section 4.1 and keeps \((^3R)\) finite at the origin. Also, keeping \(a < 2\) ensures the ‘no shell-crossing’ criterion of section 4.1.

The function \(P/I_E\) for these models, which controls the magnitude of the late-time acceleration, is shown in figure 2, against \(r_D\) and \(a\). For clarity, in the second panel we have shown \(P/I_E\) against \(a\) for specific values of \(r_D\). Again, we find that \(P/I_E\) is positive everywhere in the region shown, and hence the models show late-time acceleration for all allowed values of \(a\) and \(r_D\). As an example, we plot the evolution of the dimensionless quantity \(q_D\) defined by

\[ q_D = -\frac{\ddot{a}D}{a^2D}; \quad \frac{V_DV_D}{(V_D)^2} = 2 - 3 \frac{V_DV_D}{(V_D)^2} \tag{41} \]

for various fixed values of \(a\) and \(r_D\). The results are shown in figure 3. We have used units in which \(t_0 = 1\), and have displayed the evolution for times \(t > 100t_0\).

As mentioned earlier, a potentially contentious issue is that in all of the calculations above, we have actually set \(\epsilon = 0\). Since the function \(t_0(r)\) approaches its approximation in equation (27) in a continuous fashion as \(\epsilon \to 0\), we expect that models with a non-zero but small matter density will also exhibit the same qualitative late-time behaviour as the ones above. To demonstrate this, we consider the leading corrections to the function \(t_0(r)\) in the presence of a small but non-zero \(\epsilon\). We are still assuming the late-time limit so that the \(\epsilon\)-dependent terms on the right-hand side of equation (33) can be neglected (more precisely, we treat both \(\epsilon\) and \(g/R\) as small quantities). First, let us rewrite equation (32) as

\[ t_0(r) = t_{ln} - \frac{h(r)}{\sqrt{2E}}; \quad h(r) = r \left( \frac{Er}{GM} \right)^{1/2} F \left( \frac{Er}{GM} \right) = r \left[ 1 + \frac{\epsilon g}{2r} \ln \left( \frac{\epsilon g}{r} \right) + O \left( \frac{\epsilon g}{r} \right) \right]. \tag{42} \]

It is easy to check that in the late-time limit, the expression for volume \(V_D\) becomes

\[ V_D = \left( t - \lambda_l t_{ln} \right) I_E + \lambda_r \left( t - \lambda_l t_{ln} \right) I_{Eh} + \lambda_r^2 \left( t - \lambda_l t_{ln} \right) I_{h^2} + \lambda_r^3 I_{h^3}. \tag{43} \]
where $\mathcal{I}_E$ is the same as defined in (37), and the remaining integrals are defined analogously to those in (37),

$$
\mathcal{I}_{Eh} = 4\pi \int_0^{r_P} \frac{(2Eh)'}{\sqrt{1 + 2E}} dr; \quad \mathcal{I}_{Eh^2} = 4\pi \int_0^{r_P} \left(\frac{h^2}{\sqrt{1 + 2E}}\right)' dr; \quad \mathcal{I}_{h^2} = 4\pi \int_0^{r_P} \frac{h^2}{1 + 2E} dr.
$$

(44)

In arriving at equation (43), we have neglected terms involving $(g/R)(\epsilon \ln \epsilon)$, $(g/R) \ln(g/R)$ and terms of order $\mathcal{O}(\epsilon^2)$ on the right-hand side of equation (33). In order to proceed as before, we further assume that these leading-order corrections are smaller than the terms of order $\lambda^2$ coming from the binomial expansion of $V_D$ in equation (43). This is essential in order to be able to make a statement analogous to (39), and can be ensured by choosing $\epsilon$ small enough, without setting it exactly to zero. The condition for late-time acceleration in this situation becomes

$$
\mathcal{P}_b = \mathcal{I}_{Eh^2} - \frac{1}{3\lambda^2_E} (\mathcal{I}_{Eh})^2 > 0.
$$

(45)

For $\epsilon < \epsilon^{-1}$, we have $0 < \epsilon < -\epsilon \ln \epsilon < 1$, and the leading-order terms in the expansion of $h(r)$ contain $(\epsilon \ln \epsilon)$ (assuming that the $r$-dependent coefficients are well behaved for all $r$). On expanding the integrals in (45) to this leading order, we find for the function $\mathcal{P}_b$,

$$
\mathcal{P}_b = \mathcal{P} + (-\epsilon \ln \epsilon) \mathcal{P}^{(\epsilon \ln \epsilon)} + \mathcal{O}(\epsilon, (\epsilon \ln \epsilon)^2); \quad \mathcal{P}^{(\epsilon \ln \epsilon)} = \frac{2}{3\lambda^2_E} \mathcal{I}_{Eh} \mathcal{I}_{Eh^2} - \frac{1}{\mathcal{I}_{Eh^2}}.
$$

(46)

where $\tilde{M}$ is defined by $M = \epsilon \tilde{M}$, $\mathcal{P}$ is defined in (39) and the integrals $\mathcal{I}_{Eh}^{(\epsilon \ln \epsilon)}$ and $\mathcal{I}_{Eh^2}^{(\epsilon \ln \epsilon)}$ give the leading-order corrections to $\mathcal{I}_{Eh}$ and $\mathcal{I}_{Eh^2}$ respectively. The function $\mathcal{P}_b$ of (45) replaces $\mathcal{P}$ in equation (38). This shows that a non-zero $\epsilon$ brings in an additional correction to $\dot{a_D}/a_D$ which is of order $\lambda^2 (\epsilon \ln \epsilon)$. We have already neglected terms of order $(g/R) (\epsilon \ln \epsilon)$, and since $(g/R)$ is small because $t$ is large, we should therefore also ignore terms of order $\lambda^2 (\epsilon \ln \epsilon)$, $\lambda^2 (\epsilon \ln \epsilon)$ and higher. Hence the correction given by $\mathcal{P}^{(\epsilon \ln \epsilon)}$ (provided it is finite) should be ignored. We therefore see explicitly that within the late-time approximation, we can always have a non-zero but small enough $\epsilon$ which does not affect the sign of the acceleration at the leading order.

A rigorous argument to demonstrate acceleration in models with non-zero matter in general would, of course, require a complete numerical evolution of the LTB equations, and

Figure 3. Evolution of $q_D$ in the models with $2E(r) = r^2/(1 + r^a)$, plotted for (a) three values of $a$ with $r_P = 250$ and (b) three values of $r_P$ with $a = 1$. 

(a) Domain range $r_P = 250$

(b) Exponent $a = 1$
this work is in progress. Our semi-numerical analysis, however, throws open the possibility of a large class of models which may show late-time acceleration after averaging.

Our results for the zero matter limit also point to the need for caution in interpreting acceleration—by suitable choices of the energy function $E(r)$ one could obtain acceleration, even though in this limit the spacetime coincides with Minkowski spacetime. A similar demonstration was earlier given by Ishibashi and Wald [5]. They showed that by suitably joining two negative curvature slices (hyperboloids) in Minkowski spacetime one can construct a spatial region which exhibits acceleration. In contrast though, the slicing we choose is physically motivated, so as to coincide with the FRW slicing when matter is included. Our own interest of course was in demonstrating, by adding matter beyond the Minkowski limit, that acceleration is possible in a single expanding LTB region.

4.4. An analytical example ($r = 0$ excluded)

In this subsection we will follow a slightly different approach and try to construct an accelerating model from purely analytic arguments. We begin with a domain in which $t_0(r) > 0$ for all $r$. We now use the approximate solution (27) in the expression for volume in (18) and keep the integration limits unspecified as $r_1$, $r_2$, i.e. $V_D = 4\pi \int_{r_1}^{r_2} R' R^2 / \sqrt{1 + 2E} \, dr$. At late times $t$, by treating $t_0(r)$ in its entirety as a small quantity compared to $t$, we find

$$\ddot{a}_D \propto \frac{1}{I_1^{-2/3}} \left( I_1 I_3 - \frac{I_3^2}{3} \right),$$

(47)

where the constant of proportionality is positive, $\epsilon$-dependent terms have been neglected and we have defined the integrals

$$I_1 = \frac{1}{3} \int_{r_1}^{r_2} \frac{(2E)^{3/2}}{\sqrt{1 + 2E}} \, dr; \quad I_2 = -\int_{r_1}^{r_2} \frac{(2E)^{3/2} t_0'}{\sqrt{1 + 2E}} \, dr; \quad I_3 = \int_{r_1}^{r_2} \frac{(2E)^{3/2} t_0^2}{\sqrt{1 + 2E}} \, dr.$$  

(48)

Note that $\ddot{a}_D$ is still a second-order quantity at late times. The integral $I_3$, which is essentially the same as $I_E$ defined in (37), is of the form $\int x^{1/2} / \sqrt{1 + x} \, dx$. This can be evaluated exactly and $I_1$ is positive provided $E(r)$ is an increasing function of $r$, which we henceforth assume. Let us also assume that $t_0(r)$ is an increasing function of $r$: this requires $E(r)$ to increase faster than $r^2$. Although this is not consistent with our arguments of section 4.2, note that simultaneously requiring $t_0 > 0$ and $t_0' > 0$ places a restriction on the minimum value that $r$ can take. For example, if $2E = (r/r_0)^m$, $m > 2$ then these conditions imply (using equation (27)) that $r \geq r_1 > (r_0^2 / t_0')^{1/(m-1)}$. Since the origin is necessarily excluded, the function $GM/(Er)$ will remain finite for all allowed values of $r$, even though $E(r)$ rises faster than $r^2$. So the assumptions on which the later arguments were built are not violated.

The condition for positivity of $\ddot{a}_D$ at late times is now $\ddot{P} = I_1 I_3 - I_3^2 / 3 > 0$. Our assumptions above ensure that the integrands of $I_1$, $I_2$ and $I_3$ are all positive. We denote

$$f \equiv (2E)^{3/2}; \quad p \equiv \frac{t_0}{t_m} = 1 - \frac{r}{t_m(2E)^{1/2}}.$$  

(49)

The positivity condition can be written as

$$\left\{ \int_{r_1}^{r_2} \frac{f'}{3 \sqrt{1 + 2E}} \, dr \right\} \left\{ \int_{r_1}^{r_2} \frac{t_m^2 (fp)^2'}{\sqrt{1 + 2E}} \, dr \right\} > \left\{ \int_{r_1}^{r_2} \frac{t_m (fp)'}{3 \sqrt{1 + 2E}} \, dr \right\}^2.$$  

(50)

A set of sufficient conditions for this relation to hold is

$$f' > (fp)' \quad (fp^2)'> (fp)'.$$  

(51)

2 Factors of $4\pi$ have been absorbed in the proportionality constant.
Some straightforward algebra reduces these conditions to

\[
\frac{f'}{f} > \frac{p'}{1-p} \quad \text{and} \quad \frac{f'}{f} > \frac{p'}{1-p} \frac{2p-1}{p}
\]

(52)

respectively. By definition, \(0 < p < 1\) since we require \(t_0 > 0\) for all \(r\). This implies \((2p-1)/p < 1\) for all \(r\), so if the first relation in (52) holds, then so does the second. The first relation, in terms of \(E(r)\), reduces to \(E'/E > (-1/r)\) which is necessarily true. Hence we have obtained a class of solutions which show late-time acceleration of the effective scale factor \(a_D\), with the caveat that we must exclude a sphere around the origin from our domain of integration, the radius of this sphere being determined by the form of \(E(r)\).

5. Discussion

We have shown that it is possible, within the framework of classical general relativity, to construct models of universes in which the average behaviour of spatial slices is that of accelerating expansion. Although the LTB models are unrealistic (since they place us at the centre of the universe), they are useful in building intuition. Especially, since LTB is an exact solution, it helps towards a deeper understanding of averaged inhomogeneous cosmological solutions of Einstein equations. In particular, our solution could be assumed to apply not necessarily to the whole universe, but only to a local underdense region such as a void. The volume average of the late universe is dominated by voids, and structures occupy a tiny fraction of the volume. The average over such a distribution does not lead to a FRW model. The curvature of voids can be estimated to be proportional to minus the square of their Hubble expansion rate and thus must be negative [27]. The negative curvature LTB model discussed in this paper could be useful for describing such a situation.

In both the examples which we gave, namely the power-law models and the models given by equation (40), the qualitative behaviour of the evolution of the effective scale factor was independent of the size of the averaging domain. Whereas the power-law models were pathological in the sense that, among other things, their spatial Ricci scalars diverged at the symmetry centre, the second class of models described by (40) had no such pathology.

The point to be emphasized, though, is that our analysis clearly shows the importance of curvature (expressed as a non-zero energy function \(E(r)\)) in causing the late-time acceleration. The fact that the limit of vanishing matter density \((\epsilon \to 0)\) is well defined means that the qualitative behaviour of curvature-dominated models is not expected to change by adding a finite but small amount of matter.

A few remarks comparing the results of the present paper with the concordance model in standard cosmology are in order. One could assert that observational data show that our currently accelerating universe has zero spatial curvature. On the other hand, our LTB model with zero spatial curvature (the marginally bound case) shows no acceleration. It might hence appear that our curvature-dominated LTB model is of very limited interest. However, observations in the late universe must not be matched only with a zero-curvature universe. The fact that the limit of vanishing matter density \((\epsilon \to 0)\) is well defined means that the qualitative behaviour of curvature-dominated models is not expected to change by adding a finite but small amount of matter.

It might also be said that observational data show that the universe has up to 30% of its content in luminous and dark matter and hence our low density, curvature-dominated model showing acceleration does not meet this criterion. However, in reality our model is in
disagreement with the concordance model, which while being one of the simplest and most favoured possibilities need not turn out to be the final answer. The consideration of averaged inhomogeneities shows that low density, curvature-dominated models can also in principle fit the observational data. This issue should hence be regarded as an open one. Furthermore, as noted above, our LTB model could by itself be considered relevant for describing a locally underdense region such as a void.

Our results highlight the intimate connection between the averaged spatial curvature, and the evolution of the kinematic backreaction, as anticipated from the integrability condition given by equation (12). It will be interesting to consider the more general dust models described by the metric (1), and enquire if acceleration can again be produced in the approximation where the averaged 3-curvature dominates over the averaged matter density during some epoch of cosmic evolution.

Acknowledgments

We thank Sarang Sane and Rakesh Tibrewala for useful discussions, and Thomas Buchert and Syksy Räsänen for comments on an earlier version.

References

[1] Ellis G F R 1984 General Relativity and Gravitation ed B Bertotti et al (Dordrecht: D Reidel Publishing Co)
[2] Riess A G et al 1998 Astron. J. 116 1009
[3] Perlmutter S et al 1999 Astrophys. J. 517 565
[4] Räsänen S 2004 J. Cosmol. Astropart. Phys. JCAP 02(2004)003
[5] Notari A 2005 Preprint astro-ph/0503715 and references therein
[6] Kob W E, Matarrese S and Riotto A 2005 New J. Phys. at press Preprint astro-ph/0506534
[7] Ishibashi A and Wald R M 1999 ApJ 517 565
[8] Räsänen S 2004 JCAP 02(2004)003
[9] Buchert T 2000 Gen. Rel. Grav. 32 105
[10] Buchert T 2006 Class. Quantum Grav. 23 819
[11] Buchert T, Larena J and Alimi J-M 2006 Class. Quantum Grav. 23 6379 (Preprint gr-qc/0606026)
[12] Lemaitre G 1933 Ann. Soc. Sci. Brux. A 53 51 (in French)
[13] Lemaitre G 1997 Gen. Rel. Grav. 29 5 (reprint)
[14] Tolman R C 1934 Proc. Natl Acad. Sci. 20 169
[15] Bondi H 1947 Mon. Not. R. Astron. Soc. 107 410
[16] Celerier M N 2000 Astron. Astrophys. 335 63
[17] Alnes H, Amzagouzi M and Gron O 2006 Phys. Rev. D 73 083519 (Preprint astro-ph/0512006)
[18] Vanderveld R A, Planagan E E and Wasserman I 2006 Phys. Rev. D 74 023506 (Preprint astro-ph/0602476)
[19] Sugiuira N, Nakao K and Harada T 1999 Phys. Rev. D 60 103508
[20] Mustapha N, Hellaby C and Ellis G F R 1997 Mon. Not. R. Astron. Soc. 292 817
[21] Itoh H, Nakamura T and Nakao K 2002 Prog. Theor. Phys. 108 809
[22] Nambu Y and Tanimoto M 2005 Preprint gr-qc/0507057
[23] Moffat J W 2006 J. Cosmol. Astropart. Phys. JCAP05(2006)001 (Preprint astro-ph/0505326)
[24] Mansouri R 2005 Preprint astro-ph/0512605
[25] Chuang C H, Gu J A and Hwang W Y P 2005 Preprint astro-ph/0512651
[26] Räsänen S 2004 J. Cosmol. Astropart. Phys. JCAP 11(2004)010
[27] Apostolopoulos P et al 2006 J. Cosmol. Astropart. Phys. JCAP06(2006)009 (Preprint astro-ph/0603234)
[28] Buchert T 2001 Gen. Rel. Grav. 33 1381
[29] Singh T P and Joshi P S 1996 Class. Quantum Grav. 13 559
[30] Hellaby C 1994 Phys. Rev. D 49 6484
[31] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (National Bureau of Standards) (New York: Dover)
[32] Räsänen S 2006 Preprint astro-ph/0607626