Toward Nonbinary Nuance in Research and Care: Mapping Differences in Gender Affirmation and Transgender Congruence in an Online National U.S. Survey

Abstract

Purpose: To close gaps in transgender health research, we mapped trends in gender affirmation processes (i.e., social, legal, and psychological transitions) that are unique among nonbinary (NB) transgender adults when compared with transgender women (TW) and transgender men (TM).

Methods: Data were drawn from the Columbia Trans Empowerment Survey (N = 707), an online national study conducted between 2014 and 2015 in the United States. We used one-way analysis of variance tests, chi-square tests, Kruskal–Wallis tests, and post hoc analyses to estimate differences in gender affirmation processes and transgender congruence between: (1) NB adults, n = 271, 38%; (2) TW, n = 291, 41%; and (3) TM, n = 145, 21%. We then identified bivariate correlations between variables of interest.

Results: In the full sample (n = 707), we found significant positive bivariate correlations between pursuing gender affirmation and transgender congruence. In terms of demographics, NB participants were significantly more likely to be queer (42.1%), polyamorous (25.5%), unemployed (44.8%), and younger (median = 22) than TW and TM. They also reported taking significantly fewer gender affirmation processes, with significant differences between the three groups in terms of particular experiences. The NB participants also reported significantly lower rates of transgender congruence, specifically lower appearance congruence though similar gender identity acceptance.

Conclusion: The NB transgender adults in this sample report unique identity-related characteristics, including significantly lower rates of medical/social transition as well as decreased transgender congruence. These data are among the first to describe unique pathways by which NB adults, TW, and TM may pursue gender affirmation and interact with providers as they navigate congruence, transition, and well-being.

Keywords: transgender; nonbinary; congruence; transition; gender affirmation

Introduction

Recent studies have begun to explore the critical role of gender affirmation processes (i.e., social, medical, and legal steps that people take to actualize one’s gender identity) in promoting mental health and mitigating the impact of minority stress among transgender and nonbinary (TNB) adults. For example, TNB adults in a recent study who changed their legal name and/or gender marker reported improved psychological outcomes. Similar results have evidenced benefits of medical gender affirmation, including increased transgender congruence (i.e., comfort with one’s gender identity and external appearance), and improved psychological outcomes. For many TNB people, these processes reduce dysphoria and are critical to survival. However, binary, linear models of gender affirmation are limited
in their nuance and relevance among growing cohorts of people who identify as nonbinary (NB), for whom disparities in health care access and quality persist.6--8

Across TNB samples, approximately one-third identify as NB, an umbrella term describing gender identities that lie between masculine and feminine, hybridize both, or defy restrictive gender ideologies.9 For NB individuals, the process of a gender “transition” may be complex, irrelevant, or fraught with misunderstanding from providers.9--11 However, many NB people pursue gender affirmation11 and may have unique needs compared with transgender women (TW) and transgender men (TM).12 Current clinical guidelines poorly reflect such nuances13,14 and NB people often report barriers to affirming care, including difficulty finding affirming providers, stigma in health care encounters, and denial of coverage.11,15,16

In a 2015 national survey, for example, 70\% of NB people reported a need for counseling, yet only 31\% accessed care (compared with 73\% among TW and TM).17 Group disparities likely exist across all gender affirmation processes, though a few data exist regarding capturing unique needs, access, and outcomes.15,18

This study fills gaps by mapping unique trends in demographics, gender affirmation processes, and transgender congruence. First, we map differences in demographic characteristics between NB adults, TW, and TM. In recent community surveys, NB people are more likely to identify as queer19 and polyamorous20 than cisgender people, TW, and TM. However, clinical guidelines rarely attend to intersecting identities and marginalized experiences.10,21

Second, we map differences in gender affirmation processes taken by NB participants, TW, and TM.22 This line of inquiry is justified given the lack of knowledge about NB-affirming care, including in Version 7 of the World Professional Association for Transgender Health’s Standards of Care (SOC). These SOC, though important, do not adequately outline guidelines for gender affirmation processes among NB people, who have often relied on providers who use an “informed consent” rather than a “gatekeeping” model to access care.9--11 This study builds on limited knowledge about NB gender affirmation processes to inform future guidelines for TNB care.23,24

Third, given associations between gender affirmation and psychological outcomes, we measure differences in transgender congruence. We measured two sub-outcomes: appearance congruence (a match between external appearance and internal gendered experience) and gender identity acceptance (self-affirmation of transgender identity).5 Transgender congruence may differ between NB and binary transgender people, with important implications for care.15 Indeed, congruence may not be relevant (or possible) for NB people given the fluidity implicit in NB positionality and limitations in current care options. Recent studies in the United Kingdom6 and Canada25 demonstrate lower transgender congruence among NB participants, though it remains clear that many NB people wish to pursue medical affirmation and face significant barriers.6 To expand on current findings,26 we examine differences between NB adults, TW, and TM and provide suggestions for clinical work and research with TNB communities.

Methods

Participants and procedures

The TNB adults living in the United States were recruited online for the Columbia Trans Empowerment Study, a national survey focused on marginalization and empowerment among TNB people. Four expert reviewers (e.g., leading members of TNB communities) provided feedback to ensure protocols were affirming22,23 and congruent with guidelines for online TNB health research.24 The study received research ethics committee approval from the Teachers College, Columbia University Institutional Review Board. Participants were recruited on TNB social media pages and listservs for community centers, university groups, and political organizations between 2014 and 2015. Interested participants were directed to an online study hosted on Qualtrics.com and provided information about rights, risks, and benefits. Participants clicked Yes/No to confirm eligibility (identifying as TNB, 18+ years old, U.S.-based) and to provide informed consent.

In total, 1485 individuals clicked the link; 2 declined to consent. Of the remaining 1483, 572 consented though they answered no additional items. The remaining 911 were screened for eligibility; 73 were excluded due to age ($n=47$) or location ($n=26$). Of the remaining 838, 107 completed <80\% of 110 items and were removed. Eight were removed for failing >1 validity check (e.g., “Please select ‘Somewhat Disagree’”). Sixteen were removed for falsified/duplicate data. The final sample consisted of 707 U.S. TNB adults.

Measures

Demographic characteristics. Participants indicated their gender, race, residential environment, sexual orientation, relationship status, employment, education, socioeconomic class, HIV testing and status, and TNB community connectedness (Table 1).
Gender affirmation processes. Participants answered the following question: “Have you ever taken any of these steps to change how you present your gender to others?” by clicking Yes/No to indicate if they had: (1) changed their name, (2) changed their hair, (3) changed the sex on their ID, (4) changed their clothes, (5) changed their face with surgery, (6) changed the structure of their neck, (7) changed their chest, (8) had bottom surgery, (9) used hormone therapy treatment, or (10) changed their appearance in other ways.

Table 1. Demographic Characteristics of Full Sample and Differences by Subgroup

Demographic variables	Total (n=707)	Group a, nonbinary (n=271)	Group b, transgender women (n=291)	Group c, transgender men (n=145)	χ² df p Post hoc
Race					
Asian-American	26 (3.9)	7 (5.0)	7 (2.6)		
Black/African American	24 (3.6)	5 (3.6)	12 (4.4)		
Latinx American	27 (4.0)	8 (5.7)	8 (2.9)		
Native American	7 (1.0)	3 (2.1)	2 (0.7)		
White	505 (75.0)	102 (72.9)	215 (79.0)		
Multiracial or Biracial	74 (11.0)	14 (10.0)	26 (9.6)		
Other	10 (1.5)	1 (0.7)	2 (0.7)		
Environment					
Urban	286 (42.6)	54 (38.8)	117 (43.0)		
Suburban	282 (42.0)	63 (45.3)	108 (39.7)		
Rural	103 (15.4)	22 (15.8)	47 (17.3)		
Sexual orientation					
Gay/lesbian	98 (14.6)	46 (33.1)	33 (12.1)		
Queer	204 (30.4)	12 (8.6)	82 (30.1)		
Pansexual	102 (15.2)	20 (14.4)	39 (14.3)		
Bisexual	86 (12.8)	26 (18.7)	33 (12.1)		
Heterosexual/straight	106 (15.8)	25 (18.0)	73 (26.8)		
Other	76 (11.2)	10 (7.2)	12 (4.4)		
Relationship orientation					
Monogamous	590 (83.5)	124 (85.5)	264 (90.7)		
Polyamorous	117 (16.5)	21 (14.5)	27 (9.3)		
Employment status					
Full time	213 (31.8)	54 (38.8)	94 (34.9)		
Part time	196 (29.3)	35 (25.2)	82 (30.5)		
Unemployed	260 (38.9)	50 (36.0)	93 (35.6)		
Education					
Some high school or less	21 (3.1)	3 (2.2)	7 (2.6)		
High school diploma	79 (11.8)	9 (6.5)	37 (13.6)		
Undergraduate	446 (66.4)	100 (71.9)	180 (66.2)		
Graduate	126 (18.7)	27 (19.4)	48 (17.6)		
Social class					
Upper/upper-middle	102 (15.2)	21 (15.1)	40 (14.8)		
Middle class	261 (39.0)	56 (40.3)	108 (39.9)		
Working/poor	307 (45.8)	62 (44.6)	123 (45.4)		
Lifetime history of HIV test					
No	292 (43.5)	55 (39.3)	118 (43.2)		
Yes	379 (56.5)	85 (60.7)	155 (56.8)		
Community connectedness					
Not at all	40 (6.0)	7 (5.0)	19 (7.0)		
Very little	174 (25.9)	32 (23.0)	79 (29.0)		
Moderately	238 (35.4)	47 (33.8)	90 (33.1)		
Quite a bit	145 (21.6)	34 (24.5)	55 (20.2)		
Extremely	75 (11.2)	19 (13.7)	29 (10.7)		
Age, median (IQR)	26 (20–23)	27 (21–42)	23 (20–27)	35.625^{a,b} 2 < 0.001	a ≠ b, c

Total n = 707. Some values do not add to 707 or 100% due to either missing information or “select all that apply.” Post hoc: As appropriate, post hoc tests were conducted by using partial χ² or Mann–Whitney U with LSD criterion.

^ap < 0.001.
^bp < 0.05.
^cKruskal–Wallis test (nonparametric equivalent to ANOVA).
ANOVA, analysis of variance; df, degrees of freedom; IQR, interquartile range; LSD, lysergic acid diethylamide.
The total number of “Yes” items were summed to create a composite score. Participants who changed their appearance in other ways \((n = 216) \) explained further in a free-text box. Qualitative data were blind-coded by the two first authors who met to resolve discrepancies.

Transgender congruence. Participants completed the 12-item Transgender Congruence Scale\(^5\) to report the extent to which they felt genuine, authentic, and comfortable with their gender identities and personal appearance (e.g., “My outward appearance represents my gender identity,” “I feel that my mind and body are consistent with one another.”) Item scores were averaged; higher scores indicate higher transgender congruence.

Analysis plan
Analyses were conducted in SPSS. First, we conducted analyses of variance (ANOVAs), chi-square tests \((\alpha = 0.05)\), and Fisher’s exact tests (when expected cell counts < 5) to compare group differences by outcome. Second, when group differences were significant, we conducted Kruskal–Wallis tests to determine difference distributions by group. Post hoc tests included partial chi-square and Mann–Whitney U with lysergic acid diethylamide (LSD) criterion. Third, we determined bivariate correlations via Pearson correlations.

Results
Demographic characteristics
In the full sample, participants most frequently identified as: TW (41.2%); White (75%); urban (42.6%); queer (30.4%); monogamous (83.5%); unemployed (36.8%); started/completed undergrad (63.1%); and middle class (36.9%). Just more than half (56.5%) received an HIV test, with 98.4% who had received a negative result. Participants most frequently reported moderate TNB community connectedness (35.4%). Age: 18–71 years old \((M = 26.31, \text{median } = 23, \text{standard deviation [SD]} = 9.82)\).

Gender identity (NB, TW, TM) yielded nonsignificant associations with race, environment, education, class, HIV testing and status, and community connectedness. There were some significant differences. In particular, NB participants were significantly more likely to identify as queer \((\chi^2 = 164.565, \text{degrees of freedom [df]} = 10, p < 0.001)\), polyamorous \((\chi^2 = 27.173, \text{df} = 2, p < 0.001)\), and unemployed \((\chi^2 = 11.882, \text{df} = 4, p = 0.018)\) compared with TW and TM despite similar levels of education. The NB participants were significantly younger \((\text{median } = 22, \text{interquartile range [IQR]}: 19–27)\) than TW \((\text{median } = 27, \text{IQR: } 21–42)\) and TM \((\text{median } = 23, \text{IQR } = 20–27; \chi^2 = 35.625, \text{df} = 2, p < 0.001)\).

Gender affirmation processes
See Table 2 for gender affirmation processes by full sample and subgroup. In the full sample \((n = 707)\), participants most frequently (23.6%) endorsed at least 3 out of 10 processes \((M = 3.79, \text{SD } = 1.83, \text{range } 0–10)\). For exploratory analysis, we used a chi-square test to compare NB participants with a combined “binary” group composed of all the TW and the TM in the sample. Between these two groups, the “binary” group had taken more steps to affirm their gender \((\chi^2 = 81.963, \text{df} = 10, p < 0.001)\). We then compared differences between the three groups. A one-way ANOVA indicated significant differences \((F = 22.90, \text{df} = 2, p < 0.001)\), with NB participants reporting significantly fewer processes than TW \((\text{mean difference } = −0.95, p < 0.001)\) and TM \((\text{mean difference } = −0.92, p < 0.001)\). The TW and TM reported a similar count of total gender affirmation processes.

The three groups reported significant differences in terms of eight gender affirmation processes. First, NB participants were significantly less likely than TM to have changed their name \((58.7% \text{ compared with } 73.2\%, \chi^2 = 13.365, \text{df} = 2, p < 0.001)\), with no significant differences when compared with TW. Second, NB participants were significantly less likely than TM and TW to have changed the sex on their ID \((\chi^2 = 60.865, \text{df} = 2, p < 0.001)\). Third, TW were significantly more likely than TM to have changed the clothes they wear \((\chi^2 = 6.874, \text{df} = 2, p = 0.03)\), with nonsignificant differences when compared with NB participants. Fourth, in terms of changing one’s face with surgery, Fisher’s exact test revealed significant differences between TW \((0.4\%)\), TM \((0.7\%)\), and NB \((0.4\%)\) participants. Fifth, TM were significantly more likely than NB participants and TW to have changed their chest \((\chi^2 = 57.865, \text{df} = 2, p < 0.001)\), though differences between NB participants and TW were nonsignificant. Sixth, in terms of genital (or “bottom”) surgery, post hoc tests revealed significant differences between all three groups \((\chi^2 = 21.593, \text{df} = 2, p < 0.001)\). The TW were the most likely to have had genital surgery \((11.7\%)\), with \(~3.8\%\) of TM and \(1.8\%\) of NB participants having done so. Seventh, all three groups differed in terms of hormone therapy treatment. The TW reported the highest rates \((76.6\%)\), compared with TM \((64.6\%)\) and NB participants \((24.4\%\); \(\chi^2 = 136.409, \text{df} = 2, p < 0.001)\). Eighth, NB participants and TW were significantly more likely than...
TM to have changed their appearance in other ways, with nonsignificant differences between NB and TW participants. There were no significant group differences in terms of who was more likely to have changed their hair or changed the structure of their neck.

We also analyzed qualitative data provided by participants about other ways they had pursued gender affirmation. The following themes and frequencies emerged: changed facial or body hair (16.4%); binding (14.6%); makeup (11.3%); packing (6.1%); voice change (5.6%); body language/mannerisms (4.7%); diet or exercise (3.8%); tattoos or piercings (3.3%); packing or shapewear (1.4%); tucking (0.5%); and pronouns (0.5%). Sample sizes were too small to reveal group differences in terms of having changed one’s appearance in these other ways.

Table 2. Gender Affirmation Processes for Full Sample and Differences by Subgroup

Gender affirmation process	Full sample (n=707)	Group a, nonbinary (n=271)	Group b, transgender women (n=291)	Group c, transgender men (n=145)	\(\chi^2 \)	df	p	Post hoc
Changed your name					13.365a	2	0.001	a \(\neq c \)
Yes	465 65.8	159 58.7	93 64.1	213 73.2				
No	242 34.2	112 41.3	52 35.9	78 26.8				
Changed your hair	594 84.0	236 87.1	120 82.8	238 81.8	3.148	2	0.21	
Yes	113 16.0	35 12.9	25 17.2	53 18.2				
Changed the sex on your ID	200 23.8	33 12.2	46 31.7	121 41.6	60.865b	2	<0.001	a \(\neq b \neq c \)
Yes	507 76.2	238 87.8	99 68.3	170 58.4				
Changed the clothes you wear	606 85.7	236 87.1	131 90.3	238 81.8	6.874c	2	0.03	b \(\neq c \)
Yes	10 14.3	35 12.9	9 0.9	2 0.7				
Changed your face with surgery	12 1.7	1 0.4	9 0.4	2 0.7				
Yes	695 98.3	270 99.6	136 93.8	289 99.3				
Changed the structure of your neck	27 3.8	6 2.2	138 95.2	14 4.8	3.082	2	0.21	
Yes	680 96.2	265 97.8	7 4.8	277 95.2				
Changed your chest	163 23.1	36 13.3	18 12.4	109 37.5	57.865b	2	<0.001	c \(\neq a, b \)
Yes	544 76.9	235 86.7	127 87.6	182 62.5				
Had genital surgery	33 4.7	5 1.8	17 11.7	11 3.8	21.593b	2	<0.001	a \(\neq b \neq c \)
Yes	674 95.3	266 98.2	128 88.3	280 96.2				
Used hormone therapy treatment	365 51.6	66 24.4	111 76.6	188 64.6	136.409b	2	<0.001	a \(\neq b \neq c \)
Yes	342 48.4	205 75.6	34 23.4	103 35.4				
Changed your appearance in other ways	213 30.1	92 33.9	52 35.9	69 23.7	9.835a	2	0.007	c \(\neq a, b \)
Yes	494 69.9	179 66.1	93 64.1	222 76.3				

Total n = 707. Some values do not add to 707 or 100% due to either missing data or “select all that apply.” For “changed your face with surgery,” a Fisher’s exact test was used due to cell counts falling < 5. a: Denotes Fisher’s exact test performed due to cell value < 5. Post hoc: As appropriate, post hoc tests were conducted by using partial \(\chi^2 \) or Mann–Whitney U with LSD criterion.

\(^a \) p < 0.01.

\(^b \) p < 0.001.

\(^c \) p < 0.05.

Transgender congruence

In the full sample, the mean transgender congruence score was 3.01 (\(\bar{z} = 0.91, SD = 0.93 \), range 1–5). Subscale scores were: 2.73 for Appearance Congruence (\(\bar{z} = 0.94, SD = 1.13 \), range 1–5) and 3.93 for Gender Identity Acceptance (\(\bar{z} = 0.72, SD = 0.90 \), range 1–5). In terms of subgroup differences, NB participants reported significantly lower transgender congruence than TW and TM. Mean rates of transgender congruence (range 1–5) were 3.01 (SD = 0.93) for the full sample; 3.23 (SD = 1) for TM; 3.17 (SD = 1) for TW; and 2.74 (SD = 0.73) for NB participants. Analyses revealed significant overall group differences (\(F = 22.93, df = 2, p < 0.001 \)), with NB participants reporting significantly lower scores than TW (mean difference = −0.43, \(p < 0.001 \) and
TM (mean difference = −0.49, p < 0.001). The TW and TM, however, reported similar rates of transgender congruence.

To explore this further, we compared subscales between the three groups. The groups had significantly different scores on the appearance congruence subscale (range 1–5). Mean rates were 2.73 (SD = 1.13) for the full sample, 3.01 (SD = 1.21) for TM, 2.89 (SD = 1.19) for TW, and 2.34 (SD = 0.86) for NB participants. In post hoc analyses, NB participants reported significantly lower appearance congruence scores than TM (mean difference = −0.67, p < 0.001) and TW (mean difference = −0.54, p < 0.001). Differences between TM and TW were nonsignificant. Group differences were nonsignificant for the gender identity acceptance subscale.

Bivariate correlations
See Table 3 for full-sample bivariate correlations and descriptive statistics. All variables were significantly positively associated at the p < 0.01 or < 0.001 with the exception of the Gender Identity Acceptance Subscale.

Discussion
In this online US sample, NB participants reported fewer gender affirmation processes and lower transgender congruence than TW and TM. They also were more likely to identify as queer, polyamorous, young, and unemployed. Across subgroups, we found a positive, significant association between gender affirmation and transgender congruence, though only in terms of appearance and not in terms of gender identity acceptance. These results build on findings from prior research documenting group-level differences within TNB communities that are crucial for care and collaborative research.

Demographic findings were consistent with prior research. These results support recent studies demonstrating that NB people may embrace fluidity and reject binarization beyond their gendered experiences. Being queer- and polyamory-affirming is, thus, critical for NB-competent care. Another notable difference was a higher rate of unemployment for NB participants, even with similar education levels. The NB participants were younger than TW and TM and thus perhaps more likely to be in school and/or not yet in the workforce, yet these results echo recent calls for NB-affirming employment pipelines and nondiscrimination policies.

Regarding gender affirmation processes, TW and TM took significantly more steps than NB participants. These findings support studies demonstrating that NB people may not need to undergo social, legal, or medical changes to affirm their gender. Similarly, they may reflect disparities in access to care and available medical interventions between NB people, TW, and TM. The very concept of transition may be irrelevant or marginalizing in its binary frame, yet NB people continue to report a burden of unmet need for gender-affirming care.

Major differences also emerged between TM and TW. The TM were more likely to legally change their names/gender markers and to have top surgery. These differences may highlight inequities in availability of safe, validated gender affirmation procedures and/or legal/social resources. The TW were more likely than TM to have had “bottom” surgery and use hormone treatment, perhaps as a result of advancements in vaginoplasty compared with phalloplasty as well as the gendered ways TW and TM contend with sexual objectification. In terms of “top” surgery, TM may be more likely to pursue this process than TW because breast growth can often be achieved through hormone therapy.

In terms of transgender congruence, NB participants reported significantly lower scores than TM and TW. This implies that the concept of “congruence” is not relevant for NB people and/or the lack of NB-affirming options persists. Similarly, the (outdated) notion that TNB people aim to “pass” in some “congruent” way may not be relevant for NB people. This is perhaps best understood by our finding of nonsignificant differences in terms of gender identity acceptance, yet lower appearance congruence for NB participants, who

Table 3. Bivariate Correlations, Descriptive Statistics, and Chronbach’s Alpha for Variables of Interest

Variable	(1)	(2)	(2a)	(2b)	Possible range	M	SD	α
(1) Gender Affirmation Processes	—	—	—	—	0–10	3.79	1.83	—
(2) Transgender Congruence	0.36*	—	—	—	1–5	3.01	0.93	0.91
(2a) Appearance Congruence Subscale	0.38*	0.97*	—	—	1–5	2.73	1.13	0.94
(2b) Gender Identity Acceptance Subscale	0.04	0.49*	0.27*	—	1–4	3.93	0.90	0.72

*a p < 0.001.
SD, standard deviation.
accept their gender identity despite their gendered appearance not being congruent. Given that this study was cross-sectional, we cannot conclude whether NB participants were first not affirmed and subsequently experienced lower congruence, or whether NB people simply defy binary notions of congruence. Recent studies have demonstrated both. Either way, these findings reflect emerging self-definition and creative gender expression in NB communities.

Limitations
Findings must be interpreted in light of a number of limitations: sample demographics (i.e., majority White, young, and urban); cross-sectional design, calling for longitudinal studies; and the creation of a false trichotomy (NB, TW, and TM) by which TNB people were compared. We are unable to report on differences in gender affirmation processes by sex assigned at birth. Per feedback from NB expert reviewers, we chose not to ask nor report on sex assigned at birth to avoid invalidating TNB people by categorizing participants by “biology” or social/medical labels. We stand by this approach while acknowledging its limitations. First, we are unable to report on differences in outcome by sex assigned at birth; as a result, we cannot make claims about utilization of particular types of hormone/surgical intervention that are specific to bodily difference. Second, there is debate around which aspects of TNB people’s lives to capture in health research. Many scholars recommend using a two-step method that captures sex assigned at birth and current gender identity. In future studies, we recommend researchers more rigorously capture details of gender affirmation processes by capturing differences by group in terms of: (1) desire for intervention, (2) utilization of intervention, and (3) sociocultural determinants of health and access. These outcomes can be assessed by differences in sex assigned at birth, gender identity, or both depending on the aims and goals of each study. Similarly, future studies may wish to conduct further analysis of the differences between NB and “binary” (i.e., TW and TM) people. This may reduce limitations in terms of differential access to certain interventions.

Our sample consists of NB people who indicated that they identify as transgender, thus limiting generalizability to people who identify as NB and as transgender (many NB people do not identify as transgender). We also encourage future studies to examine disparities in affirmation processes by race, gender, and social class and to examine ways that NB people may engage in social transition not captured in this survey. Finally, transgender congruence may differ significantly for individuals during the gender affirmation process. We recommend future studies compare nuances in congruence by stage, identity, and desired outcomes.

These findings call for more nuanced care with NB people. Mental health professionals working with NB individuals should work to bolster gender affirmation by engaging in care that affirms flexibility and fluidity in gender, rather than endorsing a transition as healthy or even normative. They also call for more nuanced research processes. The Transgender Congruence Scale may have been developed with TW and TM in mind; we encourage psychometric development of NB-affirming measures and the inclusion of NB people in study design and implementation. We also recommend that future studies incorporate intersectional approaches (framing intersections as key predictors) by capturing the impact of structural racism, ageism, and disparities in access on gender affirmation outcomes.

Conclusion
Our findings are in line with recent studies demonstrating transition- and health-related differences between NB adults, TW, and TM. Further inquiry is critical given that NB adults report deleterious health outcomes due to minority stressors and will benefit from resilience-bolstering, NB-affirming interventions. Despite the need, NB individuals are likely to avoid care and/or not return. Indeed, if care competencies ubiquitously encourage bolstering transgender congruence and facilitating transition, guidelines need to be amended to support other markers of positive outcomes. We hope these findings expand on recent efforts to measure and mitigate NB health disparities, including interventions to facilitate affirmation, decrease stigma, and promote health and health care for all TNB people.

Acknowledgments
The authors would like to thank the four expert reviewers who advised them on all aspects of the study protocol development and were instrumental in ensuring scale items, conceptual models, and recruitment procedures were TNB-affirming. The authors also thank Jenna Augenblick, Dr. Sriya Bhattacharyya, Dr. Benjamin Cook, Dr. Caryn Rodgers, Dr. Jessica Esposito, and the staff at the PRIME Center for Health Equity for their support.
No competing financial interests exist.

The PIs did not receive any funding for the current project.

The PIs did not receive any funding for the current project.

1. Hughto JMW, Gunn HA, Rood BA, Pantalone DW. Social and medical gender affirmation experiences are inversely associated with mental health problems in a U.S. non-probability sample of transgender adults. Arch Sex Behav. 2020;1–13. [Epub ahead of print]; DOI: 10.1007/s10508-020-01655-5
2. Restar A, Jin H, Breslow A, et al. Legal gender marker and name change is associated with lower negative emotional response to gender-based mistreatment and improve mental health outcomes among trans populations. SSM Popul Health. 2020;11:100095.
3. Glynn TR, Gamarel KE, Kahler CW, et al. The role of gender affirmation in psychological well-being among transgender women. Psychol Sex Orientat Gend Divers. 2016;3:336.
4. Crosby RA, Salazar LF, Hill BJ. Gender affirmation and resiliency among Black transgender women with and without HIV infection. Transgend Health. 2016;1:86–93.
5. Kozeb HB, Tylla TL, Bauerband LA. Measuring transgender individuals’ comfort with gender identity and appearance: development and validation of the Transgender Congruence Scale. Psychol Women Q. 2012;36:179–196.
6. Jones BA, Pierre Bouman W, Haycraft E, et al. Gender congruence and body satisfaction in nonbinary transgender people: a case control study. Int J Transgenderism. 2019;20:263–274.
7. Liszewski W, Peebles JK, Yeung H, Arron S. Persons of nonbinary gender—awareness, visibility, and health disparities. N Engl J Med. 2018;379:2391–2393.
8. McNabb C. Nonbinary Gender Identities: History, Culture, Resources. Lanham, MD: Rowman & Littlefield, 2017.
9. Matsuno E, Budge SL. Non-binary/genderqueer identities: a critical review of the literature. Curr Sex Health Rep. 2017;9:116–120.
10. Matsuno E. Nonbinary-affirming psychological interventions. Cogn Behav Pract. 2019;26:617–628.
11. Rider GN, Vencill JA, Berg DR, et al. The gender affirming lifespan approach (GALA): a framework for competent clinical care with nonbinary clients. Int J Transgenderism. 2019;20:275–288.
12. Koehler A, Eyssel J, Nieder TO. Genders and Individual treatment progress in (non-)binary trans individuals. J Sex Med. 2018;15:102–113.
13. Richards C, Bouman WP, Seal L, et al. Non-binary or genderqueer genders. Int Rev Psychiatry. 2016;28:95–102.
14. Vincent B. Breaking down barriers and binaries in trans healthcare: the validation of non-binary people. Int J Transgenderism. 2019;20:122–137.
15. Puckett JA, Cleary P, Rossman K, et al. Barriers to gender-affirming care for transgender and gender nonconforming individuals. Sex Res Soc Policy. 2017;15:48–59.
16. Safer JD, Coleman E, Feldman J, et al. Barriers to health care for transgender individuals. Curr Opin Endocrinol Diabetes Obes. 2016;23:178–181.
17. James SE, Herman JL, Rankin S, et al. The Report of the 2015 U.S. Transgender Survey. Washington, DC: National Center for Transgender Equality, 2016.
18. Seal L. Adult endocrinology. In: Genderqueer and Non-Binary Genders. (Richards C, Bouman WP, Barker M-J; eds). Palgrave Macmillan UK, London, United Kingdom. 2017, pp. 183–223.
19. Watson RJ, Whelton CW, Puhl RM. Evidence of diverse identities in a large national sample of sexual and gender minority adolescents. J Res Adolesc. 2020;30:851–863.
20. Manley MH, Diamond LM, van Anders SM. Polyamory, monogamy, and sexual fluidity: a longitudinal study of identity and sexual trajectories. Psychol Sex Orientat Gend Divers. 2015;2:168.
21. Brewster ME, Soderstrom B, Esposito J, et al. A content analysis of scholarship on consensual nonmonogamies: methodological roadmaps, current themes, and directions for future research. Couple Fam Psychol Res Pract. 2017;6:32.
22. Coleman E, Bockting W, Botzer M, et al. Standards of care for the health of transsexual, transgender, and gender-nonconforming people, version 7. Int J Transgenderism. 2012;13:165–232.
23. Sherer I. Social transition: supporting our youngest transgender children. Pediatrics. 2016;137:e20134358.
24. Winter S, Diamond M, Green J, et al. Transgender people: health at the margins of society. Lancet. 2016;388:390–400.
25. Clark BA, Veale JF, Townsend M, et al. Non-binary youth: access to gender-affirming primary health care. Int J Transgenderism. 2018;19:158–169.
26. Owen-Smith AA, Gerth J, Sineath RC, et al. Association between gender confirmation treatments and perceived gender congruence, body image satisfaction, and mental health in a cohort of transgender individuals. J Sex Med. 2018;15:591–600.
27. Brewster ME, Velez B, DeBaere C, Moradi B. Transgender individuals’ workplace experiences: the applicability of sexual minority measures and models. J Couns Psychol. 2012;59:60–70.
28. Restar A, Jin H, Breslow AS, et al. Developmental milestones in young transgender women in two american cities: results from a racially and ethnically diverse sample. Transgend Health. 2019;4:162–167.
29. Tebbe EA, Budge SL. Research with trans communities: applying a process-oriented approach to methodological considerations and research recommendations. PLoS One. 2016;11:e0178043.
30. Riggle ED, Rostosky SS, McCants LE, Pascale-Hague D. The positive aspects of a transgender self-identification. Psychol Sex. 2011;2:147–158.
31. Bauer GR, Braimoh J, Scheil AI, Dharma C. Transgender-inclusive measures of sex/gender for population surveys: mixed-methods evaluation and recommendations. PLoS One. 2017;12:e0178043.
32. Deutsch MB. Making it count: improving estimates of the size of transgender and gender nonconforming populations. LGBT Health. 2016;3:181–185.
33. Vincent BW. Studying trans: recommendations for ethical recruitment and collaboration with transgender participants in academic research. Psychol Sex. 2018;9:102–116.
34. Webb A, Matsuno E, Budge S, et al. Non-Binary Gender Identities. PsyCCT Dataset. 2015. DOI:10.1007/s10508-017-0011-1.
35. Breslow AS, Brewster ME, Velez BL, et al. Resilience and collective action: exploring buffers against minority stress for transgender individuals. Psychol Sex Orientat Gend Divers. 2015;2:253.
36. Matsuno E, Israel T. Psychological interventions promoting resilience among transgender individuals: transgender Resilience Intervention Model (TRIM). Couns Psychol. 2018;46:655–665.
37. Budge SL, Thai JL, Tebbe EA, Howard KA. The intersection of race, sexual orientation, socioeconomic status, trans identity, and mental health outcomes. Couns Psychol. 2016;45:1025–1049.
38. Budge SL, Rossman HK, Howard KA. Coping and Psychological Distress Among Genderqueer Individuals: the Moderating Effect of Social Support. J LGBT Issues Couns. 2014;8:95–117.

Cite this article as: Breslow AS, Wojcik H, Cox Jr R, Tran NM, Brewster ME (2021) Toward nonbinary nuance in research and care: mapping differences in gender affirmation and transgender congruence in an online national US survey, Transgend Health 6.3, 156–163, DOI: 10.1089/trgh.2020.0038.

Abbreviations Used
ANOVA = analysis of variance
df = degrees of freedom
IQR = interquartile range
NB = nonbinary
SD = standard deviation
SOC = Standards of Care
TM = transgender men
TNB = transgender and nonbinary
TW = transgender women