Mini Review

ISSN: 2574 -1241
DOI: 10.26717.BJSTR.2019.14.002500

Phytochemical and pharmacological review on

Stephania japonica

Apu Kumar Das, Shamim Molla, Musfiqur Rahman Sykat, Md. Ahad Ali, Md. Tanziul Haque,
Md. Lutfor Rahman, Imam Mohiuddin Babu, Md. Hamidul Islam and Muhammad Torequl Islam*

Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology, Bangladesh

*Corresponding author: Muhammad Torequl Islam, Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology, Gopalganj-8100, Bangladesh

ARTICLE INFO

Received: January 25, 2019
Published: February 06, 2019

Citation: Apu Kumar Das, Shamim Molla, Musfiqur Rahman Sykat, Md. Ahad Ali, Md. Tanziul Haque, Md. Lutfor Rahman, Imam Mohiuddin Babu, Md. Hamidul Islam, Muhammad Torequl Islam. Phytochemical and pharmacological review on *Stephania japonica*. Biomed J Sci & Tech Res 14(1)-2019. BJSTR. MS.ID.002500.

ABSTRACT

This paper reviews phytochemical and pharmacological profiles of *Stephania japonica* from the databases PubMed, Science Direct and Google Scholar up to December 2018. *S. japonica* is a common plant, widely distributed in all over Bangladesh. Traditionally, this plant is considered as one of the important medicinal plants in the treatment of a variety of ailments, including inflammation, pain, rheumatism, cancer, bone fracture and fever. Findings suggest that *S. japonica* is rich in important phytochemicals, including alkaloids, steroids, saponins and fats. It is evident to possess anti-inflammatory, antioxidant, antidiarrheal, antimicrobial, insecticidal, anti-nociceptive, neuro-protective, analgesic and anti-hyperglycaemic activities. In conclusion, *S. japonica* may be one of the best sources of plant-based active constituents.

Keywords: *Stephania Japonica*; Phytochemicals; Pharmacological Activities

Introduction

Plants have been used in traditional medicine since ancient time with a reputation as efficacious remedies regardless of insufficient scientific evidence to substantiate their efficacy. The exploration of the chemical properties of the plants throughout the age was accomplished principally through careful observation, trial and error and the accidental discovery. In this process, the human race, over the centuries, has created a vast heritage of knowledge and experience on medicinal plants in different cultures and civilizations. Most of such indigenous knowledge handed down, through the ages, by oral tradition. The major portion of the present-day knowledge of the medicinal properties of the plants is thus the sum total of these observations and experience [1]. The plant *Stephania japonica* Linn. belongs to the family Menisperaceae, a slender wiry climber or twining shrub [2], is widely used in the traditional medicine of Bangladesh in the treatment of a wide range of diseases and disorders, including inflammation, cancer, asthma, fever, sleep disturbance, edema, and bone fracture [3,4]. Especially its leaves, are extensively used to treat different kinds of painful conditions, more specifically, the crushed leaves for body pain [4,5] and warmed leaves for rheumatism [6]. In 1982, Matsui have isolated two hasubanan type alkaloid oxostephamiersine (284 mg) and 16-oxoprometaphanine (238.5 mg) and one bisbenzylisoquinoline type alkaloid stebisimine (192.5 mg) from the methanolic extract *S. japonica* leaves. This review aimed at sketching a current scenario on the phytochemical and pharmacological activities of *S. japonica* on the basis of scientific reports found in PubMed, Science Direct and Google Scholar databases up to December 2018.

Findings

Plant Morphology

S. japonica is a slender wiry climber. Leaves peltate, thinly papyraceous, glabrous on both the surfaces, broadly triangular, ovate-acuminate, 3-12 cm long, apex acutely acuminate or obtuse, base rounded, margins entire. Inflorescence axillary, compound, umbelliform cymes, usually singleper axil, 3-6 cm long. Flowers small, male flower greenish-white or yellowish. Drupes light yellow to orange red, obovate, glabrous [7].
Taxonomy
- Kingdom: Plantae
- Order: Ranunculales
- Family: Menispermaceae
- Genus: Stephania
- Species: S. japonica

Synonyms
S. hernandifolia Walp., Menispermum japonicum Thunb.
Bengali/Vernacular Name: Akanadi, Nimuka, Maknadi.
Tribal Name: Tung Nah Way, ThayaNuya (Marma).
English Name: Tape-vine [7].

Traditional Uses
Leaves and roots are bitter and astringent; used in fever, diarrhoea, urinary diseases and dyspepsia. Leaves are mounted on the abscess and kept for bursting. Leaves are macerated in a glass of water and are taken after mixing with molasses to cure urethritis. Leaves are also given for gastritis in Khagrachari. On the other hand, tooth paste is taken for vertigo and dysentery; root tuber mixed with root juice of Flemingia stricta (Family: Leguminosae) is taken for asthma; the root paste is warmed and rubbed in hydrocele. The ethanolic leaf extract of the plant is evident to have broad spectrum anti-bacterial and anti-fungal activities [7,8].

Phytochemical Composition
Roots, tubers and leaves of S. japonica contain alkaloids, steroids and fats. Stems contain bis-benzyloquinoline alkaloids, stephasubine and 3’,4’-dihydro-stephasubine, saponins, steroids and fats. Roots contain the alkaloids, fangchinoline, dl-tetrandrine, d-tetrandrine and disochondrodendrine. Aerial parts of the plant contain aknadinine, epistephanine, hernandifoline and magnoflorine. Roots and tubers contain alkaloids – aknadinine, aknadine and aknadicine. A new alkaloid-3-O-di-methyl-hernandifoline was also isolated from the plant [7]. The plant is also evident to possess tannins, glycosides, flavonoids and [9].

Pharmacological Activities

Anti-Inflammatory Activity
The plant extract (methanol) has been found to show significant anti-inflammatory effect on egg albumin method [10]. Ahmed et al. [11] also suggested an anti-inflammatory effect of the plant.

Antioxidant Activity

The crude extract of the plant is evident to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical at 20-200 μg/ml [11,12]. The IC50 values were calculated as 33.57 μg/ml [12].

Anti-Diarrheal Activity
S. japonica ethanol extract at dosage level 0.5, 1 and 2 g/kg decreased the gastrointestinal motility and number of feces in rats (n = 5) (Chatterjee, 1993).

Anti-Microbial and Cytotoxic Effect
Ethyl acetate soluble fraction of the S. japonica extract was found to act against Salmonella typhi, Escherichia coli and Bacillus cereus. The zones of inhibition produced by the crude methanolic extract, n-hexane, chloroform and ethyl acetate soluble fractions were found to be 12.80-16.55 mm, 12.60 mm, 5-14.30 mm and 10-20.25 mm, respectively, at a concentration of 30 g/disc (Rahman). Chloroform, n-hexane and ethyl acetate soluble fractions of methanolic extract of S. japonica were also found to produce a concentration-dependent cytotoxic effect in brine shrimps. The chloroform and ethyl acetate soluble fractions of methanolic extract of S. japonica showed cytotoxicity (with LC50 66.488 and 45.662 mg/ml, respectively) (Rahman).

Insecticidal Activity
1, 5 and 10 mg solutions of plant extract (acetone fraction) exhibited the insecticidal effect [13]. The plant is also evident to act against Callosobruchus chinensis where at dose 5 mg, it achieved 50% death of test insect [14].

Anti-Nociceptive Activity
S. japonica is evident to show analgesic effect in mice [15]. The methanolic extract of the plant at 50, 100, and 200 mg/kg was evident to show an anti-nociceptive effect in mice [9].

Neuro-Protective Activity
In a recent study, methanolic extract of the herb showed a neuroprotective effect, possibly by reducing oxidative stress, neuroinflammation and inhibiting cholinesterase activity [10].

Anti-Hyperglycemic Effect
The methanolic extract of the plant at 250 and 500 mg/kg is evident to exert an anti-hyperglycemic effect in experimental rats [16]. S. japonica mediated anti-hyperglycemic effect was also seen by Ueda et al. [17], Gregersen et al. [18] and Hossain et al. [19].

Discussion
There is a relation between oxidative stress and inflammation [20]. Phenolic natural compounds such as flavonoids possess antioxidant and anti-inflammatory activity [21]. It is well established that the first phase of formalin test reflects neurogenic pain and the late phase corresponds to inflammatory pain responses [22]. Thus, the antioxidant and anti-inflammatory responses are the best sign of probable potent S. japonica-based constituents for the traditional usages, especially in inflammation and pain. Medicinal plant extracts offer considerable potential for the development
of new agents effective against pathogens that are currently difficult to treat [23]. Noxious stimuli or infection is also related to inflammation cells [20]. S. japonica mediated antimicrobial effect is also evident in scientific report (Rahman). Recent evidence indicates that cytokines (and chemokines), as well as their receptors, are involved in the pathophysiology of many inflammatory diseases including sepsis, rheumatoid arthritis atherosclerotic and asthma. These pathological states seem to be linked with an imbalance of cytokine network and to the excessive recruitment of leukocytes to the inflammatory sites [24,25] (Young).

Because of this, the cytokine system constitutes a very interesting and promising target for the development of clinically relevant anti-inflammatory drugs. Carrageenan induced paw edema in rats is thought to be biphasic [26]. In the second phase bradykinin, protease, prostaglandin, and lysosome are released [27]. Evidence supports that various plant-derived compounds with anti-inflammatory properties exert their effects through the modulation of cytokine system [28]. For instance, flavonoids, a class of compounds widely distributed throughout the plant kingdom possess interesting anti-inflammatory action [29]. So, resulting anti-inflammatory and antioxidant effect could be assumed either as the protective effect against oxidative stress or inhibition of enzymes of prostaglandin pathway or other enzymatic pathways of inflammatory process. Further, anti-inflammatory, anti-microbial and anti-diarrheal effects of S. japonica may be linked with each other. On the other hand, anti-hyperglycemia and cytotoxic effects of the herb indicate potential sources of anti-diabetic and anti-cancer substances in it. Generally, antioxidant and anti-inflammatory effects are protective in nature [10]. Therefore, the neuroprotective capacity of the plant may be due to its antioxidant effects in different test systems [30-33].

Conclusion

S. japonica contains a number of important phytoconstituents and possesses prominent biological activities. More studies are necessary as S. japonica may be one of the best sources of phytomedicines.

Conflict of interest

None declared.

References

1. Ghani A (2003) Medicinal Plants of Bangladesh with Chemical Constituents and Uses, (2nd Ed.). Asiatic Society of Bangladesh: Dhaka pp. 1-16.
2. Senthuramari R, Ismail AM, Kurihha TSV, Balasubramanian P (2012) Pharmacognostical and phytochemical studies on leaves of Stephania japonica Linn. J Chem Pharm Res 4(3): 1457-1464.
3. Kirtikar KR, Basu BD (1981) Indian Medicinal Plants. International Book Distributors, India.
4. Jahan R, Khatun MA, Nahar N, Jahan FI, Chowdhury AR, et al. (2010) Use of Menispermeaceae family plants in folkmedicine of Bangladesh. Adv Nat Appl Sci 4(1): 1-9.
5. Seraj S, Jahan FI, Chowdhury AR, Monjur-E-Khuda M, Khan MSH, et al. (2013) Tribalformulations for treatment of pain: a study of the bed community traditional medicinal practitioners of porbari village in dhaka district, bangladesh. Afric J Tradit Complement Altern Med 10(1): 26-34.
6. Rahman MA, Uddin SB, Wilcock CC (2007) Medicinal plants used by Chakma tribe in Hill Tracts districts of Bangladesh. Indian J Tradit Know 6(3): 508-517.
7. Anil B, Bhadauria NS, Jakhmola SS, Bhatnagar A (2001) Varietal preference of pulse beetle, Callosobruchus maculatus in cowpea. Indian J Entomol 63: 233-236.
8. Varalakshmi KN, Sangeetha CG, Samee US, Irum G, Lakshmi H, et al. (2011) In Vitro Safety Assessment of the Effect of Five Medicinal Plants on Callosobruchus maculatus (Fab.) 15: 283-284.
9. Moniruzzaman M, Hossain MS, Bhattacharjee PS (2016) Evaluation of antinoicceptive activity of methanolic extract of leaves of Stephania japonica Linn.] J Ethnopharmacol 186: 205-208.
10. Islam MT, Khutun MJ (2017) Antioxidant mediated neuroprotective and GABAergic calming effect of Stephania japonica. Int J Med 5(2): 190-194.
11. Ahmed NU, Akter R, Satter MA, Khan MS, Islam F, et al. (2011) Anti-Inflammatory, Antioxidant and Anti-Diabetic Effects of Ethanolic Extract of Stephania japonica. Bangladesh J Sci Ind Res 46(4): 437-442.
12. Braca AF, Nummiatina DB, Lorenzo Di, Pizza C, Poldi M, Morelli I (2001) Antioxidant principles from Bauhinia terapotensis. J Nat Prod 64: 892-895.
13. Talukder FA, Howe PE (1993) Deterrent and insecticidal effects of extract of pith of Stephania japonica on Tribolium castaneum in storage. J Chem Ecol 19(11): 2463-2471.
14. Ahmed F (2016) Insecticidal effects of Stephania japonica L. on pulse beetle (Callosobruchus chinesis L.), rice weevil (Sitophilus oryzae L.) and Mosquito larvae.
15. Ahmed F, Selim MST, Das AK, Choudhuri MSK (2004) Anti-inflammatory and antinoicceptive activities of Lippia nodiflora Linn. Pharmacize 59(4): 329-336.
16. Gosh S, Suryawanshi SA (2001) Effects of Vincarosea extracts in the treatment of alloxan diabetes in male albino rats. Indian J Exp Biol 39(8): 748-759.
17. Ueda M, Welfort RMM, Zubioli A, Bersani ACA, Bazotte RB, et al. (1983) Efeito do extrato aqüoso da Stevia rebaudiana (Bert) Bertoni sobre o teste de tolerância à glicose em ratos normais adultos. Rev Unimar 5: 111-115.
18. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53(1): 73-76.
19. Hossain MS, Khan MRI, Anisuzzaman ASM, Ahmed M, Amran MS, et al. (2010) Antidiabetic and glycogenesis effects of different fractions of ethanolic extract of leaves of M. indica (Linn.) in normal and alloxan induced diabetic rats. J Med Sci 10(4): 80-86.
20. Sorci G, Faivre B (2009) Inflammation and oxidative stress in vertebrate host-parasite systems. Phil Trans R Soc B 364(1513): 71-83.
21. Saccia R, Cuff CA, Ruddle NH (1997) Mediators of inflammation. Curr Opin Immunol 9(6): 851-857.
22. Hunskaa S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30(1): 103-114.
23. Machado TB, Leal ICR, Amaral ACF, Kokis V, de Silva MG, et al. (2005) Brazilian phytopharmaceuticals evaluation against hospital bacteria. Phytother Res 19(6): 519-525.
24. Feldmann M, Brennan FM, Maini R (1998) Cytokines in autoimmune disorders. Int Rev Immunol 17: 217-228.
25. Haddad JJ (2002) Cytokines and related receptor-mediated signaling pathways. Biochem Biophys Res Commun 297(4): 700-713.

26. Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenan edema in rats. J Pharmacol Exp Ther 166(1): 96-103.

27. Crunkhorn P, Meacock SC (1971) Mediators of the inflammation induced in the rat paw by carrageenan. Br J Pharmacol 42(3): 392-402.

28. Habtemariam S (2000) Natural inhibitor of tumor necrosis factor-alpha production, secretion and function. Planta Med 66(4): 303-313.

29. Gerritsen ME, Carley WW, Ranges GE, Shen CP, Phan SA, et al. (1995) Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol 147(2): 278-292.

30. Chatterjee TK (1993) Handbook on laboratory mice and rats.1st ed. (Kolkata, Department of Pharmaceutical Technology, Jadavpur University) pp. 157.

31. Farnsworth NR, Akerele O, Bingel AS, Dajja D Soejarto, Zhengang Guo (1985) Medicinal plants in therapy. Bull WHO 63(6): 965-981.

32. Moghal MMR, Siddiqui R, Masud Alam, A F M Shahid-Ud-Daula, Mohammad Shahriar, et al. (2011) The Antimicrobial activity and Brine Shrimp Lethality Bioassay of Leaf extracts of Stephania japonica (Akanadi). Bangladesh J Microbiol 28: 52-56.