Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Quantitative real-time PCR assays for detection and type-specific identification of the endemic species C human adenoviruses

Xiaoyan Lu, Dean D. Erdman*

Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA

ABSTRACT

Human adenoviruses (HAdVs) are medically important respiratory pathogens. Among the 7 recognized species (A–G), species C HAdVs (serotypes 1, 2, 5 and 6) are globally endemic and infect most people early in life. Species C HAdV infections are often subclinical or mild and can lead to persistent shedding from the gastrointestinal and upper respiratory tracts. They can also cause severe disseminated disease in newborns and immunocompromised persons, when rapid and quantitative detection and identification of the virus would help guide therapeutic intervention. To this end, we developed quantitative type-specific real-time PCR (qPCR) assays for HAdV-1, -2, -5 and -6 targeting the HAdV hexon gene. All type-specific qPCR assays reproducibly detected as few as 5 copies/reaction of quantified hexon recombinant plasmids with a linear dynamic range of 8 log units (5–5 × 10^7 copies). No non-specific amplifications were observed with concentrated nucleic acid from other HAdV types or other common respiratory pathogens. Of 199 previously typed HAdV field isolates and positive clinical specimens, all were detected and correctly identified to type by the qPCR assays; 10 samples had 2 HAdV types and 1 sample had 3 types identified which were confirmed by amplicon sequencing. The species C HAdV qPCR assays permit rapid, sensitive, specific and quantitative detection and identification of four recognized endemic HAdVs. Together with our previously developed qPCR assays for the epidemic respiratory HAdVs, these assays provide a convenient alternative to classical typing methods.

Published by Elsevier B.V.

1. Introduction

Human adenoviruses (HAdVs) cause a wide spectrum of diseases of the respiratory, ocular and gastrointestinal tracts. HAdVs are classified within the family Adenoviridae, genus Mastadenovirus, and are further divided into seven species (A–G) and over 50 recognized types (Harrach et al., 2012). Clinical symptoms, disease severity and epidemiological patterns of infection are often determined by virus species or type. Species C HAdVs (serotypes 1, 2, 5 and 6) are globally endemic and infect most people early in life (Schmitz et al., 1983). Approximately half of all HAdVs identified in a three year study of clinically severe infections among U.S. civilians were species C (Gray et al., 2007). Uniquely, species C viruses can establish infections of mucosa-associated lymphoid tissues where they can persist without clinical evidence for life (Garnett et al., 2002). Infections of immunocompetent persons with these viruses are most often subclinical or lead to mild acute respiratory illnesses.

However, immunosuppressed persons are at risk for severe disseminated life-threatening disease from primary infection or virus reactivation (Ison 2006; Walls et al., 2003; Echavarria, 2008) as are immunologically naive newborns (Abzug and Levin, 1991; Cassir et al., 2014).

HAdVs were traditionally typed by neutralization and/or hemagglutination inhibition using type-specific hyperimmune animal antisera. A variety of molecular methods have since replaced immunotyping, including genome restriction analysis (Adrian et al., 1986), PCR-coupled microarrays (Lin et al., 2004); PCR-fragment length analysis (Adhikary et al., 2004; Ebner et al., 2006), electrospray ionization mass spectrometry (Blyn et al., 2008), partial sequencing of specific target genes (Lu and Erdman, 2006; McCarthy et al., 2009) and more recently, full genome sequencing using next generation molecular methods (Torres et al., 2010). However, these methods are often complex and time consuming, and are not optimally designed for viral load determinations, important for monitoring HAdV disease progression and therapeutic efficacy. Quantitative real-time PCR (qPCR) has been proposed as a rapid, sensitive and widely available technology for detection and identification of HAdVs more suited for the clinical diagnostic setting (Heim et al., 2003; Metzgar et al., 2010). We recently

* Corresponding author at: 1600 Clifton Road, N.E., Mailstop G04, Atlanta, GA 30329, USA.
E-mail address: dde1@cdc.gov (D.D. Erdman).

http://dx.doi.org/10.1016/j.jviromet.2016.05.020
0166-0934/Published by Elsevier B.V.
introduced type-specific qPCR assays for identification HAdVs most often associated with outbreaks of acute respiratory disease (species B types 3, 7, 11, 14, 16 and 21; species E type 4) to facilitate rapid public health response (Lu et al., 2013). In this study, we describe the development and validation of qPCR assays for the endemic species C HAdVs.

2. Material and methods

2.1. Virus strains and clinical specimens

HAdV prototype strains 1–51 and 179 geographically and temporally diverse respiratory specimens (nasopharyngeal and oropharyngeal swabs, nasal wash, tracheal aspirate, blood, plasma and stool) and 20 field isolates collected during outbreak investigations and routine surveillance and previously determined positive for HAdV-1 (n = 63), -2 (n = 85), -5 (n = 43), and -6 (n = 8) by generic PCR and partial hexon gene sequencing (Lu and Erdman, 2006) were available from CDC archives for testing. To evaluate assay specificity, we also tested the assays against high concentrations of other potential respiratory pathogens, including respiratory syncytial virus (Long), human metapneumovirus (CAN97-83), parainfluenza viruses 1–4, rhinovirus (1A), human coronaviruses (229E and OC43), influenza viruses A/A/California/09 and B/Asia/Shanghai/99, cytomegalovirus, herpes simplex virus, human bocavirus (clinical specimen), Streptococcus pneumoniae and Hemophilus influenzae, and pooled nasal wash specimens predicted to contain diverse human microbiological flora from 20 consenting healthy new military recruits.

2.2. Primers and probes

Hexon gene sequences of HAdV prototype and field strains available from GenBank® (NCBI/NLM) were aligned and type-specific conserved regions were identified. Multiple primer/probe sets were designed using Primer Express™ software ver. 3.0 (Applied Biosystems, Foster City, CA) to give predicted type-specific amplification and show no major non-specific homologies on BLAST analysis. Hydrolysis probes were labeled at the 5′-end with 6-carboxyfluorescein (FAM) and at the 3′-end with Black Hole Quencher™ 1 (Biosearch Technologies, Inc., Novato, CA). Optimal primer/probe concentrations for each assay were determined by checkerboard titrations and primer/probe combinations giving the best overall performance with a limited panel of HAdVs were further evaluated. Primer/probe sets that performed best at conditions described below and with no identifiable cross-reactions were chosen for further study (Table 1). Primer and probe sequences used for detection of all HAdVs (pan-qPCR) were from Heim et al. (Heim et al., 2003).

2.3. qPCR assays

Total nucleic acid (TNA) extracts were prepared from 100 μL of virus isolates or 200 μL of clinical specimens using the NucliSens® miniMAG or easyMAG extraction systems following the manufacturer’s instructions (bioMérieux, Durham, NC). qPCR assays were run following conditions previously described (Lu et al., 2013). Briefly, 25 μL reaction mixtures were prepared by adding 5 μL of sample nucleic acid extract to 20 μL of iQ™ Supermix (Bio-Rad, Hercules, CA) containing optimal concentrations of primer/probes (Table 1). Thermocycling was performed on Stratagene Mx3000P qPCR system (Agilent Technologies, Santa Clara, CA) or an Applied Biosystems® 7500 Fast Dx Real-Time PCR System (Thermo Fisher Scientific, Carlsbad, CA) programed for: 3 min at 95 °C to activate the iTaq DNA polymerase and 45 cycles of 15 s at 95 °C and 1 min at 55 °C. Positive test results were assigned to well-defined fluorescent curves that crossed the threshold within 45 cycles.

2.4. HAdV hexon recombinant plasmids (HRPs)

Recombinant DNA plasmids containing sequence-confirmed full hexon genes of HAdV-1 (Ad.71), 2 (Ad.6), 5 (Ad.75) and 6 (Ton.99) prototype strains were constructed by commercial sources (DNA Technologies Inc., Gaithersburg, MD; Celltechologies, Baltimore, MD) for use as positive controls and for analytical sensitivity studies. The HRPs were quantified using the Qubit™ dsDNA BR Assay Kit with the Qubit® 2.0 Flurometer (Thermo Fisher Scientific). Standard curves for quantitative assessment were prepared from replicate serial 10-fold dilutions (1–10^7 copies/μL) of the HRPs in 10 mM TE buffer containing 100 μg/ml herring sperm DNA (Promega, Madison, WI).

3. Results

3.1. Analytical sensitivity of qPCR assays

The optimized qPCR assays were first evaluated with serial dilutions of the quantified HRPs to estimate their limits of detection (LODs). Serial dilutions of the respective HRPs containing 50, 5 and 0.5 copies/reaction were each tested in 16 replicates. The type-specific and pan-qPCR assays gave linear dynamic ranges of 8 log units (5–5 × 10^7 copies) and amplification efficiencies exceeding 95% (Fig. 1). All type-specific qPCR assays could reproducibly detect 5 HRP copies/reaction (Table 2). The HAdV pan-qPCR assay showed comparable LODs with type-specific qPCR assays.

3.2. Analytical specificity of qPCR assays

The primer/probes of each qPCR assay were evaluated in silico with HAdV hexon gene sequences published on GenBank; no significant sequence homologies were observed with other HAdV types that would predict cross-reactivity. BLAST analyses found no significant homologies with human genome or other human microbial flora that would possibly lead to false positive results. Each qPCR assay was then tested against concentrated genomic DNA (CT values <20 by HAdV pan-qPCR) from HAdV prototype strains 1–51 to assess type-specificity. No cross-reactions were detected (Table 3). The specificity of the qPCR panel was further assessed by testing laboratory cultures or positive clinical specimens known to contain high concentrations of viral and bacterial pathogens that may be present in the respiratory tract as described in the Materials and Methods. No positive results were obtained with any of the samples with the exception of the human nasal wash pool, where weak positive results (CT, 38.9 and 38.4) were obtained with the HAdV pan- and HAdV-1 assays, respectively. Subsequent PCR and partial hexon gene sequencing confirmed low level HAdV-1 in the pool, indicating that the virus was present in the upper respiratory tract of one or more of the individuals sampled.

3.3. Clinical evaluation of HAdV qPCR assays

To assess the performance of the qPCR assays with diverse HAdV field isolates and positive clinical specimens, TNA from 199 previously typed HAdV strains were tested by all assays (Table 4). HAdV was detected in all samples and correctly identified to type by the respective qPCR assay. However, 2 different HAdV types were found in 10 clinical specimens [HAdV-1 (CR. 30.1)/2 (CR. 31.8); HAdV-1 (CR. 29.0)/5 (CR. 36.4); HAdV-2 (CR. 32.5)/1 (CR. 40.4); HAdV-2 (CR. 34.0)/5 (CR. 39.9); HAdV-2 (CR. 32.5)/5 (CR. 38.3); HAdV-2 (CR. 35.2)/5 (CR. 37.1); HAdV-5 (CR. 25.6)/1 (CR. 32.9); HAdV-5 (CR. 35.3)/1 (CR. 37.2); HAdV-5 (CR. 31.0)/1 (CR. 38.0); HAdV-5
Table 1
Primer/probe sequences of HAdV qPCR assays.

Assay	Primer/probes	Sequence (5′-3′)	Hexon gene location	GenBank accession no.	Final concentration (nmol/L)	Amplicon size (bp)
HAdV-pan	Forward primer	GCCGCAGTGGTCTTACATGCACATC	18881-18905	AC_000017.1	500	132
	Reverse primer	GCCACAGGTTGGTGTTTAACTTCTT	19012-18990		500	
	Probe	TGCACCGAGCCGGGGCTACAGTACCCCGGA	18949-18921		100	
HAdV-1	Forward primer	ATACCCAAACTGAAGGCAATCC	19453-19474	AC_000017.1	250	82
	Reverse primer	GCCCGCTTTTTGGATTATCTCCAACCT	19534-19510		500	83
	Probe	TTTTGCCGATCCCACTTATCAACCTGA	19477-19504		50	
HAdV-2	Forward primer	AACGGCTGAGATCTGACACGACGACGACG	19326-19347	AC_000007.1	500	83
	Reverse primer	GCCCGCTTTTTGGATTATCTCCAACCT	19408-19387		500	
	Probe	CACATGTCTATGCCCAGGCTCCTTTGTC	19355-19382		50	
HAdV-5	Forward primer	ACAGTACAACGAGGAGGATTAG	19290-19313	AC_000008.1	250	70
	Reverse primer	GCCGCCTGCCAATACGACGACGACGACG	19359-19343		500	
	Probe	CATGCCCTATGCCCAGGCTCCTTTTGC	19315-19341		100	
HAdV-6	Forward primer	CACTGCCGGAAAATATATCTCATAAACA	19367-19394	FJ349096.1	500	76
	Reverse primer	GCCGCCGGACCTCCTGCTA	19443-19427		500	
	Probe	ACAATAGAATCTGCCGGACCACA	19401-19425		50	

* HAdV generic primer/probe sequences from Heim et al. (2003) [18].
* Probes labeled at the 5′-end with the reporter molecule 6-carboxyfluorescein (FAM) and at the 3′-end with Black Hole Quencher® 1 (Biosearch Technologies Inc., Novato, CA).

Fig. 1. Plots of serial 10-fold dilutions of the respective hexon recombinant plasmids ranging from 5 to 5 × 10^7 copies/reaction obtained with HAdV type-specific- (blue) and pan- (red) qPCR assays. Plot inserts show calculated linear correlation coefficients (R^2) and amplification efficiencies for each assay.

Table 2
HAdV qPCR assays limits of detection.

HRP copies/reaction	No. HAdV qPCR assay positives with 16 replicates of hexon recombinant plasmids (HRPs)*
	HAdV-1 HRP HAdV-2 HRP HAdV-3 HRP HAdV-4 HAdV-5 HAdV-6 HAdV-7
	HAdV-1 HAdV-pan HAdV-2 HAdV-pan HAdV-3 HAdV-pan HAdV-4 HAdV-pan HAdV-5 HAdV-pan HAdV-6 HAdV-pan
0.5	5/16 4/16 7/16 3/16 5/16 7/16 9/16 6/16
5	16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16
50	16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16

* Underlines designate assay limits of detection with >70% replicate positives.
Table 3
HAdV qPCR assays specificity.

Samples	HAdV-pan	HAdV-1	HAdV-2	HAdV-5	HAdV-6
HAdV-1	14.9	14	–	–	–
HAdV-2	15.2	–	14.4	–	–
HAdV-5	15.0	–	–	15.0	–
HAdV-6	15.6	–	–	–	15.3
HAdV-3, -4, -7 to -51	12.7–19.5	–	–	–	–
Other respiratory pathogens^a	–	–	–	–	–
Pooled human nasal wash^b	39.0^c	38.4^c	–	–	–

^a C_T values shown for positive samples.
^b See Materials and Methods.
^c HAdV-1 confirmed by PCR and sequencing of partial hexon gene [15].

Table 4
HAdV qPCR assays results with 199 HAdV field isolates and positive clinical specimens.

Virus^a	N	HAdV-pan	HAdV-1	HAdV-2	HAdV-5	HAdV-6
HAdV-1	63	63	0	63	0	1^b
HAdV-2	85	85	0	83	0	4^a
HAdV-5	43	43	0	40	0	43
HAdV-6	8	8	0	8	0	8
HAdV-3	12.7–19.5	–	–	–	–	–

^a HAdV type determined by PCR and sequencing of hexon hypervariable regions 1–6 [15].
^b qPCR amplicons sequence-confirmed for co-presence of HAdV-1, -2 or -5 DNA in the respective samples.

(\(C_T\) 19.2)/1 (\(C_T\) 37.9)] and 3 HAdV types were found in one specimen [HAdV-2 (\(C_T\) 37.6)/1 (\(C_T\) 40.0)]/5 (\(C_T\) 40.2)]. All qPCR findings were confirmed by sequencing the respective qPCR amplicons. In most cases, only the predominant type (type with the lower \(C_T\) value) was identified by our routine method of generic PCR and partial hexon gene sequencing (Lu and Erdman, 2005).

4. Discussion

In a previous study we described development of type-specific qPCR assays for the epidemic respiratory HAdVs types (Lu et al., 2013). In this study, we expanded this assay panel to include type-specific qPCR assays for the endemic species C viruses. Species C HAdVs can cause severe disseminate life-threatening disease in immunocompromised patients, particularly in the transplant recipients. Rapid and quantitative detection and identification of the endemic species C HAdVs among newborn and transplant recipients with severe disseminated diseases would help guide therapeutic intervention. Four species C HAdVs assays proved sensitive and specific and allowed quantitative assessment of viral loads based on standard curve analysis using quantified HPRs.

Real-time PCR technology for type-specific identification of HAdVs was first employed by Jones et al. (Jones et al., 2011) to detect and identify HAdVs-1, -2, -5 and -6 using the Joint Biological Agent Identification and Diagnostic System (BioFire Diagnostics, Salt Lake City, Utah) and LightCycler[®] 2.0 (Roche, Indianapolis, IN) platforms. However, their assays were not only predicted to be 10–20 times less sensitive than our corresponding qPCR assays, but also showed some non-specific cross-reactions among the four virus types. Furthermore, their assays were developed and validated on platforms that are not in common use outside of U.S. Department of Defense-affiliated laboratories.

Among the clinical specimens evaluated in our study, 11 were found to contain multiple species C HAdV types. In contrast, our routine typing method of generic PCR and Sanger sequencing of a partial region of the hexon gene was only able to identify the predominant HAdV type in most cases. Kores et al. (Kores et al., 2007) has shown the sequential emergence of multiple HAdVs after pedi-
References

Abzug, M.J., Levin, M.J., 1991. Neonatal adenovirus infection: four patients and review of the literature. Pediatrics 87, 890–896.

Adhikary, A.K., Inada, T., Banik, U., Numaga, J., Okabe, N., 2004. Identification of subgenus C adenoviruses by fiber-based multiplex PCR. J. Clin. Microbiol. 42, 670–673.

Adrian, T., Wadell, G., Hierholzer, J.C., Wigand, R., 1986. DNA restriction analysis of adenovirus prototypes 1–41. Arch. Virol. 91, 277–290.

Blyn, L.B., Hall, T.A., Libby, R., Ranken, K., Sampath, R., Rudnick, K., Moradi, E., Desai, A., Metzgar, D., Russell, K.L., Freed, N.E., Balansay, M., Broderick, M.P., Osono, M.A., Hofstadler, S.A., Ecker, D.J., 2008. Rapid detection and molecular serotyping of adenovirus by use of PCR followed by electrospray ionization mass spectrometry. J. Clin. Microbiol. 46, 644–651.

Cassir, N., Hriaiesch, S., Nougaredre, A., Zandotti, C., Fournier, P.E., Papazian, L., 2014. Outbreak of adenovirus type 1 severe pneumonia in a French intensive care unit. September–October 2012. Euro Surveill. 19 (39) (Pli 20914).

Ebner, K., Rauch, M., Preuner, S., Lion, T., 2006. Typing of human adenoviruses in specimens from immunosuppressed patients by PCR-fragment length analysis and real-time quantitative PCR. J. Clin. Microbiol. 44, 2808–2815.

Echavarria, M., 2008. Adenoviruses in immunocompromised hosts. Clin. Microbiol. Rev. 21, 704–715.

Garrett, C.T., Erdman, D., Xu, W., Gooding, L.R., 2002. Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J. Virol. 76, 10508–10516.

Gray, G.C., McCarthy, T., Lebeck, M.G., Schnurr, D.P., Russell, K.L., Kajon, A.E., Landry, M.L., Leland, D.S., Storch, G.A., Ginocchio, C.C., Robinson, C.C., Demmler, G.J., Saubolle, M.A., Kehl, S.C., Selvarangan, R., Miller, M.B., Chappell, J.D., Zerr, D.M., Kuka, D.L., Hallstead, D.C., Capuano, A.W., Setterquist, S.F., Chorazy, M.L., Dawson, J.D., Erdman, D.D., 2007. Genotype prevalence and risk factors for severe clinical adenovirus infection: United States 2004–2006. Clin. Infect. Dis. 45, 1120–1131.

Harrach, B., Benkó, M., Both, G.W., Brown, M., Davison, A.J., Echavarria, M., Hess, M., Jones, M.S., Kajon, A., Lehmkuhl, H.D., Mauntner, V., Mittal, S.K., Wadell, G., 2012. Family Adenoviridae, p. 125–141. In: King, AMQ, Adams, MJ, Carstens, EB, Lefkowitz, EJ (Eds.), Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, San Diego, CA.

Heim, A., Ehnert, C., Harste, G., Pring-Akerblom, P., 2003. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J. Med. Virol. 70, 228–239.

Ison, M.G., 2006. Adenovirus infections in transplant recipients. Clin. Infect. Dis. 43, 331–339.

Jones, M.S., Hudson, N.R., Gribbins, C., Fischer, S.L., 2011. Evaluation of type-specific real-time PCR assays using the LightCycler and JBAI.DS. for detection of adenoviruses in species HADV-C. PLoS One 6, e26862.

Kroes, A.C., de Klerk, E.P., Lankester, A.C., Malipaaard, C., de Brouwer, C.S., Claas, E.C., Jol-van der Zijlde, E.C., van Tol, M.J., 2007. Sequential emergence of multiple adenovirus serotypes after pediatric stem cell transplantation. J. Clin. Virol. 38, 341–347.

Lin, B., Vora, G.J., Thach, D., Walter, E., Metzgar, D., Tibbetts, C., Stenger, D.A., 2004. Use of oligonucleotide microarrays for rapid detection and serotyping of acute respiratory disease-associated adenoviruses. J. Clin. Microbiol. 42, 3232–3239.

Lu, X., Erdman, D.D., 2006. Molecular typing of human adenoviruses by PCR and sequencing of a partial region of the hexon gene. Arch. Virol. 151, 1587–1602.

Lu, X., Trujillo-Lopez, E., Lott, L., Erdman, D.D., 2013. Quantitative real-time PCR assay panel for detection and type-specific identification of epidemic respiratory human adenoviruses. J. Clin. Microbiol. 51, 1089–1093.

Madschis, I., Wölfel, R., Harste, G., Pommmer, H., Heim, A., 2006. Molecular identification of adenovirus sequences: a rapid scheme for early typing of human adenoviruses in diagnostic samples of immunocompetent and immunodeficient patients. Med. Virol. 78, 1210–1217.

McCarthy, T., Lebeck, M.G., Capuano, A.W., Schnurr, D.P., Gray, C.C., 2009. Molecular typing of clinical adenovirus specimens by an algorithm which permits detection of adenovirus confections and intermediate adenovirus strains. J. Clin. Virol. 46, 80–84.

Metzgar, D., Gribbins, C., Hudson, N.R., Jones, M.S., 2010. Evaluation of multiplex type-specific real-time PCR assays using the LightCycler and joint biological agent identification and diagnostic system platforms for detection and quantitation of adult human respiratory adenoviruses. J. Clin. Microbiol. 48, 1397–1403.

Schmitz, H., Wigand, R., Heinrich, W., 1983. Worldwide epidemiology of human adenovirus infections. Am. J. Epidemiol. 117, 455–466.

Torres, S., Chodosh, J., Seto, D., Jones, M.S., 2010. The revolution in viral genomics as exemplified by the bioinformatic analysis of human adenoviruses. Viruses 2, 1367–1381.

Walls, T., Shankar, A.G., Shingadia, D., 2003. Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients. Lancet Infect. Dis. 3, 79–86.

Walsh, M.P., Seto, J., Liu, E.B., Dehghan, S., Hudson, N.R., Lukashev, A.N., Ivanova, O., Chodosh, J., Dyer, D.W., Jones, M.S., Seto, D., 2011. Computational analysis of two species C human adenoviruses provides evidence of a novel virus. J. Clin. Microbiol. 49, 3482–3490.