ONE-RELATOR GROUPS WITH TORSION ARE CONJUGACY SEPARABLE

ASHOT MINASYAN AND PAVEL ZALESSKII

Abstract. We prove that one-relator groups with torsion are hereditarily conjugacy separable. Our argument is based on a combination of recent results of Dani Wise and the first author. As a corollary we obtain that any quasiconvex subgroup of a one-relator group with torsion is also conjugacy separable.

1. Introduction

Recall that a group G is said to be conjugacy separable if for any two non-conjugate elements $x, y \in G$ there is a homomorphism from G to a finite group M such that the images of x and y are not conjugate in M. Conjugacy separability can be restated by saying that each conjugacy class $x^G = \{ gxg^{-1} \mid g \in G \}$ is closed in the profinite topology on G. The group G is said to be hereditarily conjugacy separable if every finite index subgroup of G is conjugacy separable. Conjugacy separability is a natural algebraic analogue of solvability of the conjugacy problem in a group and has a number of applications (see, for example, [11]). Any conjugacy separable group is residually finite, but the converse is false. Generally, it may be quite hard to show that a residually finite group is conjugacy separable.

In the recent breakthrough work [16] Dani Wise proved that one-relator groups with torsion possess so-called quasiconvex hierarchy, and groups with such hierarchy are virtually compact special. The class of special (or A-special, in the terminology of [7]) cube complexes was originally introduced by Fredéric Haglund and Dani Wise in [7], as cube complexes in which hyperplanes enjoy certain combinatorial properties. They also showed that a cube complex is special if and only if it admits a combinatorial local isometry to the Salvetti cube complex (see [3]) of some right angled Artin group. It follows that the fundamental group of every special complex \mathcal{X} embeds into some right angled Artin group.

A group G is said to be virtually compact special if G contains a finite index subgroup P such that $P = \pi_1(\mathcal{X})$ for some compact special cube complex \mathcal{X}. Thus Wise’s result implies that any one-relator group G, with torsion, is (virtually) a subgroup of a right...
angled Artin group. In particular, G is residually finite, which answers an old question of G. Baumslag.

An important fact, established by Haglund and Wise in [7], states that the fundamental group P of a compact special complex is a virtual retract of some finitely generated right angled Artin group. From the work of the first author [11] it follows that P is hereditarily conjugacy separable. This shows that any one-relator group with torsion possesses a hereditarily conjugacy separable subgroup of finite index. Unfortunately, in general conjugacy separability is not stable under passing to finite index overgroups (see [6]). The aim of this note is to prove the following:

Theorem 1.1. If G is a one-relator group with torsion then G is hereditarily conjugacy separable.

This theorem answers positively Question 8.69 in Kourovka Notebook [10], posed by C.Y. Tang. This question was also raised in [15] in 1982; its special cases have been considered in [15] and [1].

As a consequence of Theorem 1.1 we also derive

Corollary 1.2. If G is a one-relator group with torsion then every quasiconvex subgroup of G is conjugacy separable.

Our proof of Theorem 1.1 uses the above mentioned results of Wise, Haglund-Wise and the first author, and employs the quasiconvex hierarchy for one-relator groups with torsion, that was investigated by Wise in [16].

2. **Background on one-relator groups with torsion**

Let

\[(1) \quad G = \langle S \parallel W^n \rangle \]

be a one-relator group with torsion, where S is a finite alphabet, $n \geq 2$ and W is a cyclically reduced word, which is not a proper power in the free group $F(S)$.

Newman’s spelling theorem [12, Thm. 3] (see also [9, IV.5.5]) implies that every freely reduced word over $S^{\pm 1}$, representing the identity element of G, contains a subword of W^n of length strictly greater than $(n - 1)/n$ times the length of W^n. Since $(n - 1)/n \geq 1/2$ it follows that the presentation (1) satisfies Dehn’s algorithm ([9, IV.4]); in particular G has a linear Dehn function, and hence it is word hyperbolic. For the background on hyperbolic groups and quasiconvex subgroups the reader is referred to [2].

Another important fact, proved by Newman in [12, Thm. 2] (see also [8, p. 956]), states that centralizers of non-trivial elements in one-relator groups with torsion are cyclic.

Many results about one-relator groups are proved using induction on some complexity depending on the word W. In this paper we will use the repetition complexity $RC(W)$ of W employed by Wise in [16]. This is defined as the difference between the length of W, and the number of distinct letters from S that occur in W. For example, if $S = \{a, b, c\}$ then $RC(ab^2a^{-1}c^{-3}) = 7 - 3 = 4$.
Start with a one relator-group G given by presentation (1). Recall that a Magnus subgroup M of G is a subgroup generated by a subset $U \subset S$ such that U omits at least one generator appearing in W. By the famous Magnus’s Freiheitssatz, M is free and U is its free generating set.

Observe that if $RC(W) = 0$ then every letter appears in W exactly once. In this case, using Tietze transformations, it is easy to see that G is isomorphic to the free product of a free group of rank $|S| - 1$ with the cyclic group of order n.

Assume, now, that $RC(W) > 0$. Then, following [16, 18.2], one can let $H = G \ast \langle t \rangle$, and represent H as an HNN-extension of another one-relator group $K = \langle \langle S \parallel W^n \rangle \rangle$, where $|S| < \infty$, W is some cyclically reduced word in the free group $F(S)$, and the associated subgroups are Magnus subgroups M_1, M_2 of K. In other words, there are subsets $U_1, U_2 \subset S$, each of which omits some letter of W, and a bijection $\alpha : U_1 \to U_2$ such that $M_i = \langle U_i \rangle$, $i = 1, 2$, and H has the presentation

\[(2) \quad H = \langle S, t \parallel W^n, tut^{-1} = \alpha(u) \text{ for all } u \in U_1 \rangle.\]

Moreover, in [16, 18.3] Wise shows that one can do this in such a way that $RC(W) < RC(W)$.

Lemma 2.1. The group H defined above contains a finite index normal subgroup $L \triangleleft H$ such that L is hereditarily conjugacy separable.

Proof. In [16, Ch. 18] Wise shows that H is virtually compact special. By the work of Haglund and Wise from [7, Ch. 6], H contains a finite index subgroup L such that L is a virtual retract of some finitely generated right angled Artin group A. Now, a result of the first author [11, Cor. 2.1] implies that L is hereditarily conjugacy separable. \[\square\]

The next statement follows from a combination of results of Wise [16] and Haglund-Wise [7]:

Lemma 2.2. Let P be a finite index subgroup of K or M_1, or M_2. Then P is closed in the profinite topology of H.

Proof. The group H is hyperbolic as a free product of two hyperbolic groups, and by [16, Lemma 18.8] K, M_1 and M_2 are all quasiconvex subgroups of H. Since a finite index subgroup of a quasiconvex subgroup is itself quasiconvex, it follows that P is quasiconvex in H.

As we already mentioned above, [16, Cor. 18.3] states that H is virtually compact special. Now we can use [7, Thm. 7.3, Lemma 7.5], which imply that any quasiconvex subgroup of H is separable in H. Thus the lemma is proved. \[\square\]

3. Some auxiliary facts

First let us specify some notation. If A is a group and $C, D \subseteq A$, then C^D will denote the subset defined by $C^D = \{ dcd^{-1} \mid c \in C, d \in D \}$. If $x \in A$ and $E \subseteq A$ then $C_E(x) = \{ g \in E \mid gx = xg \}$ will denote the centralizer of x in E.
Recall that a subset C of a group A is said to be separable if C is closed in the profinite topology of A. This is equivalent to the following property: for every $y \in A \setminus C$ there exist a finite group Q and an epimorphism $\psi : H \to Q$ such that $\psi(y) \notin \psi(C)$ in Q.

The following notion is helpful for proving hereditary conjugacy separability of groups. It is similar to [11, Def. 3.1].

Definition 3.1. Let H be a group and $x \in H$. We will say that the element x satisfies the Centralizer Condition in H (briefly, CC_H), if for every finite index normal subgroup $P \triangleleft H$ there is a finite index normal subgroup $N \triangleleft H$ such that $N \leq P$ and $C_{H/N}(\psi(x)) \subseteq \psi(C_H(x)P)$ in H/N, where $\psi : H \to H/N$ is the natural homomorphism.

The condition CC_H defined above is actually quite natural from the viewpoint of the profinite completion \widehat{H} of H. Indeed, in [11, Prop. 12.1] it is shown that if H is residually finite then $x \in H$ has CC_H if and only if $C_{\widehat{H}}(x) = \overline{C_H(x)}$, where the right-hand side is the closure of $C_H(x)$ in the profinite completion \widehat{H}.

The next two lemmas were proved by the first author in [11, Lemmas 3.4 and 3.7]. The first one shows why the Centralizer Condition is useful, and the second lemma provides a partial converse to the first one.

Lemma 3.2. Suppose that H is a group, $H_1 \leq H$ and $x \in H$. Assume that the element x satisfies CC_H and the conjugacy class x^H is separable in H. If the double coset $C_H(x)H_1$ is separable in H, then the H_1-conjugacy class x^{H_1} is also separable in H.

Lemma 3.3. Let H be a group. Suppose that $x \in H$, $P \triangleleft H$ and $|H : P| < \infty$. If the subset x^P is separable in H, then there is a finite index normal subgroup $N \triangleleft H$ such that $N \leq P$ and $C_{H/N}(\psi(x)) \subseteq \psi(C_H(x)P)$ in H/N (where $\psi : H \to H/N$ denotes the natural homomorphism).

The proof of Theorem 1.1 will also use the following two auxiliary statements.

Lemma 3.4. Let A be a group and let $C_1, C_2 \leq A$ be isomorphic subgroups with a fixed isomorphism $\varphi : C_1 \to C_2$. Let $B = \langle A, t \mid t^g = \varphi(g) \text{ for all } g \in C_1 \rangle$ be the corresponding HNN-extension of A. Suppose that $x, y \in A$ are elements such that $y \notin x^A$ and $x \notin C_i^A$ for $i = 1, 2$. Then $y \notin x^B$ and $C_B(x) = C_A(x)$ in B.

Proof. Let \mathcal{T} be the Bass-Serre tree associated to the splitting of B as an HNN-extension of A. Then x fixes a particular vertex v of \mathcal{T}, where the stabilizer $St_B(v)$ of v in B is equal to A. The stabilizer of any edge e, adjacent to v, is C_i^a for some $i \in \{1, 2\}$ and some $a \in A$ (see [14]). Therefore, the assumptions imply that x does not fix any edge of \mathcal{T} adjacent to v. Since the fixed point set of an isometry of a tree is connected, it follows that v is the only vertex of \mathcal{T} fixed by x.

Arguing by contradiction, suppose that $y \in x^B$, thus there is $b \in B$ such that $y = bxb^{-1}$ in B. Then $b \circ v$ is the only vertex of \mathcal{T} fixed by y. Since $A = St_B(v)$ and $y \in A$ the latter implies that $b \circ v = v$. Hence $b \in St_B(v) = A$, i.e., $y \in x^A$, contradicting one of the assumptions. Thus $y \notin x^B$, as claimed.
For the final assertion, suppose that \(b \in C_B(x) \), i.e., \(x = bxb^{-1} \). The same argument as above shows that \(b \in A \), hence \(b \in C_A(x) \).

Lemma 3.5. Let \(A \) be a group with a free subgroup \(F \leq A \) and let \(g \in A \setminus \{1\} \) be an element of finite order. Suppose that every finite index subgroup of \(F \) is separable in \(A \). Then there exists a finite index normal subgroup \(N \triangleleft A \) such that \(\psi(g) \notin \psi(F)^{A/N} \), where \(\psi : A \to A/N \) denotes the natural epimorphism.

Proof. Since every finite index subgroup of \(F \) is separable in \(A \) and \(F \) is residually finite, the assumptions imply that \(A \) is residually finite and the profinite topology of \(A \) induces the full profinite topology on \(F \). Therefore by Lemma 3.2.6 in [13] the closure \(\hat{F} \), of \(F \), in the profinite completion \(\hat{A} \) of \(A \), is naturally isomorphic to the profinite completion \(\hat{F} \) of \(F \). Then in the profinite completion \(\hat{A} \), of \(A \), the claim of the lemma reads as follows: \(g \) is not conjugate to \(\hat{F} \cong \hat{F} \) in \(\hat{A} \). Indeed, \(\hat{F} = \lim \psi_N(F)^{A/N} \), where \(\psi_N : F \to F/N \) denotes the natural epimorphism and the inverse limit is taken over the directed set of all finite index normal subgroups \(N \triangleleft_f A \). Therefore \(\psi_N(g) \notin \psi_N(F)^{A/N} \) for some \(N \triangleleft_f A \) if and only if \(g \notin \hat{F} \). But \(\hat{F} \cong \hat{F} \) is torsion-free by Proposition 22.4.7 in [3], hence the result follows.

4. Proofs

Proof of Theorem 1.1. Let \(G \) be a one-relator group given by the presentation \(\langle S | \mathcal{W} \rangle \). The result will be proved by induction on \(RC(W) \). If \(RC(W) = 0 \) then \(G \) is isomorphic to the free product \(F_m \ast \mathbb{Z}/n\mathbb{Z} \), where \(m = |S| - 1 \) and \(F_m \) is the free group of rank \(m \). Therefore \(G \) is virtually free and so it is hereditarily conjugacy separable by Dyer’s theorem [4].

Thus we can further assume that \(RC(W) > 0 \). Let \(H \cong G \ast \mathbb{Z} = K, M_1, M_2, U_1, U_2 \) and \(\alpha : M_1 \to M_2 \) be as described in Section 2. Then \(K = \langle S \parallel \mathcal{W} \rangle \), where \(RC(\mathcal{W}) < RC(W) \), and so \(K \) is hereditarily conjugacy separable by induction. Since \(G \) is a retract of \(H \), to prove the theorem it is enough to show that \(H \) is hereditarily conjugacy separable (cf. [11] Lemma 9.5).

Observe that \(H \) is itself a one-relator group with torsion. Therefore, by Newman’s theorem [12] Thm. 2], centralizers of non-trivial elements in \(H \) are cyclic. We also recall that, according to Lemma 2.1, \(H \) contains a finite index normal subgroup \(L \) which is hereditarily conjugacy separable.

Let \(H_1 \leq H \) be an arbitrary finite index subgroup and let \(x \in H \) be an arbitrary element. We will show that the subset \(x^{H_1} \) is separable in \(H \) by considering two different cases.

Case 1: \(x \) has infinite order in \(H \). Since \(L \) is hereditarily conjugacy separable, \(L_1 = H_1 \cap L \) is a normal conjugacy separable subgroup of finite index in \(H \). Set \(l = |H : L_1| \). Then \(x^l \in L_1 \setminus \{1\} \) and \(C_H(x^l) \) is infinite cyclic. It follows that for any \(y \in H \setminus x^{H_1} \), \(y^l \notin (x^l)^{H_1} \).

Indeed, if \(x^l = hyh^{-1} \) for some \(h \in H_1 \), then both \(x \) and \(hyh^{-1} \) belong to the infinite
cyclic subgroup $C_H(x^l)$. But in the infinite cyclic group any element can have at most one l-th root, thus $x = h y h^{-1}$, contradicting the assumption that $y \notin x^{H_1}$.

Since L_1 is conjugacy separable, $(x^l)^{L_1}$ is closed in the profinite topology of L_1, and since $|H : L_1| < \infty$ this implies that $(x^l)^{L_1}$ is separable in H. Moreover, we can also deduce that the subset $(x^l)^{H_1}$ is separable in H, because it equals to a finite union of conjugates of $(x^l)^{L_1}$, as L_1 has finite index in H_1. Since $y^l \notin (x^l)^{H_1}$, there are a finite group Q and an epimorphism $\psi : H \to Q$ such that $\psi(y^l) \notin \psi((x^l)^{H_1}) = (\psi(x)^l)^{\psi(H_1)}$. Therefore $\psi(y) \notin \psi(x^{H_1})$ in Q, as required. Thus x^{H_1} is separable in H.

Case 2: x has finite order in H. Note that we can assume that $x \neq 1$ in H because otherwise $x^{H_1} = \{1\}$ is separable in H as H is residually finite (by Wise’s work [16] H possesses a finite index subgroup that embeds into a right angled Artin group, and right angled Artin groups are well-known to be residually finite). Now we are going to verify that all the assumptions of Lemma [5, 2] are satisfied.

Claim 1: the conjugacy class x^H is separable in H.

By the torsion theorem for HNN-extensions ([9, IV.2.4]), $x \in K^H$. Thus, without loss of generality, we can assume that $x \in K$.

Consider any element $y \in H \setminus x^H$. If y has infinite order then, since H is residually finite, there is a finite group Q and an epimorphism $\psi : H \to Q$, such that the order of $\psi(y)$ in Q is greater than the order of x in H (and, hence, of $\psi(x)$ in Q). It follows that $\psi(x)$ is not conjugate to $\psi(y)$ in Q.

Thus we can further suppose that y also has finite order in H; as before this allows us to assume that $y \in K$. Consequently $y \in K \setminus x^K$, and by conjugacy separability of K, we can find a finite index normal subgroup $K_0 \triangleleft K$ such that the images of x and y, under the natural epimorphism $K \to K/K_0$, are not conjugate in K/K_0.

According to Lemmas [2, 2] and [5, 3] H contains finite index normal subgroups $N_1, N_2 \triangleleft H$ such that the image of x in H/N_i is not conjugate to the image of M_i for $i = 1, 2$. By Lemma [2, 2] K_0 is separable in H, hence there exists a finite index normal subgroup $N_0 \triangleleft H$ such that $N_0 \cap K \subseteq K_0$. Let $N' \triangleleft H$ and $K_1 \triangleleft K$ denote the finite index normal subgroups of H and K respectively, defined by $N' = N_0 \cap N_1 \cap N_2$ and $K_1 = K \cap N'$.

Let $\xi : K \to K/K_1$ denote the natural epimorphism. Note that the isomorphism $\alpha : M_1 \to M_2$ gives rise to the isomorphism $\tilde{\alpha} : \xi(M_1) \to \xi(M_2)$, defined by $\tilde{\alpha}(\xi(g)) = \xi(\alpha(g))$ for all $g \in M_1$. Indeed, the fact that $\tilde{\alpha}$ is well-defined is essentially due to the construction of K_1 as the intersection of K with a normal subgroup N' of H, and so ξ is a restriction to K of $\tilde{\xi} : H \to H/N'$. Thus for any $g, h \in M_1$ with $\xi(g) = \xi(h)$ we have

$$\tilde{\alpha}(\xi(g)) = \tilde{\xi}(\alpha(g)) = \tilde{\xi}(t g t^{-1}) = \tilde{\xi}(t) \tilde{\xi}(g) \tilde{\xi}(t^{-1}) = \tilde{\xi}(t h t^{-1}) = \tilde{\xi}(\alpha(h)) = \tilde{\alpha}(\xi(h)).$$

Let \tilde{H} be the HNN-extension of K/K_1 with associated subgroups $\tilde{\xi}(M_1)$ and $\tilde{\xi}(M_2)$, defined by

$$\tilde{H} = \langle K/K_1, \tilde{t} \parallel \tilde{t} \tilde{\xi}(u) \tilde{t}^{-1} = \tilde{\alpha}(\xi(u)) \text{ for all } u \in U_1 \rangle.$$
Note that \bar{H} is virtually free since $|K/K_1| < \infty$ (see, for example, [13 II.2.6, Prop. 11]). Clearly ξ extends to a homomorphism $\eta : H \rightarrow \bar{H}$, given by $\eta(t) = t$ and $\eta(g) = \xi(g)$ for all $g \in K$.

Let us show that $\eta(x) = \xi(x)$ is not conjugate to $\eta(y) = \xi(y)$ in \bar{H}. Indeed, $\xi(y) \notin \xi(K^{K/K_1})$ because the homomorphism $K \rightarrow K/K_0$ factors through ξ by construction (as $K_1 = K \cap N' \subseteq K \cap N_0 \subseteq K_0$) and the images of x and y are not conjugate in K/K_0. On the other hand, since $K_1 \subseteq N_1 \cap N_2$, we have $\xi(x) \notin \xi(M_i^{K/K_1})$ for $i = 1, 2$. Therefore, $\xi(y) \notin \xi(x)^{\bar{H}}$ by Lemma [3.4].

It remains to recall that \bar{H} is conjugacy separable by Dyer’s theorem [3], and so there exist a finite group Q and a homomorphism $\zeta : \bar{H} \rightarrow Q$ such that $\zeta(\eta(y)) \notin \zeta(\eta(x))^Q$ in Q. Hence the homomorphism $\psi = \zeta \circ \eta : H \rightarrow Q$ distinguishes the conjugacy classes of x and y, as required. Thus we have shown that x^R is separable in H.

Claim II: x satisfies the Centralizer Condition CC_H from Definition [3.1].

This will be proved similarly to Claim I. As above, without loss of generality, we can assume that $x \in K$. Consider any finite index normal subgroup $P < H$ and let $R = K \cap P$.

Since K is hereditarily conjugacy separable by induction, the finite index subgroup $E = R \langle x \rangle \leq K$ is conjugacy separable. Hence the subset $x^E = x^R$ is separable in E. And since $|K : E| < \infty$ we see that x^R is separable in K. Therefore we can apply Lemma [3.3] to find a finite index normal subgroup $K_0 < K$ such that $K_0 \leq R$ and the centralizer of the image of x in K/K_0 is contained in the image of $C_K(x)R$ in K/K_0.

Arguing as in Claim I, we can choose finite index normal subgroups $N_0, N_1, N_2 < H$ such that $K \cap N_0 \subseteq K_0$, and the image of x is not conjugate to the image of M_i in H/N_i for $i = 1, 2$. Set $N' = N_0 \cap N_1 \cap N_2$ and $K_1 = K \cap N'$. Similarly to Claim I, the homomorphism $\xi : K \rightarrow K/K_1$ extends to a homomorphism $\eta : H \rightarrow \bar{H}$, where \bar{H} is an HNN-extension of K with associated subgroups $\xi(M_1)$ and $\xi(M_2)$.

Denote $\bar{x} = \eta(x) = \xi(x) \in K/K_1 \leq \bar{H}$. As before, since $K_1 \leq N_i$, we have that $\bar{x} \notin \xi(M_i^{K/K_1})$, $i = 1, 2$, and so we can use Lemma [3.4] to conclude that $C_{\bar{H}}(\bar{x}) = C_{K/K_1}(\bar{x})$. Recall that $K_1 \leq K_0$, hence the epimorphism from K to K/K_0 factors through ξ. Therefore in \bar{H} we have

$$C_{\bar{H}}(\bar{x}) = C_{K/K_1}(\bar{x}) \subseteq \xi(C_K(x)R_{K_0}) = \xi(C_K(x)R) \subseteq \eta(C_H(x)P),$$

because $K_0 \leq R \leq P$ by construction.

Once again, \bar{H} is virtually free and so is any subgroup of it. Therefore $P(\bar{x}) \leq \bar{H}$ is conjugacy separable by Dyer’s theorem [3], where $\bar{P} = \eta(P)$ is a finite index normal subgroup of \bar{H}. As above this yields that the subset $\bar{x}^P(\bar{x}) = \bar{x}^P$ is separable in \bar{H}. By Lemma [3.3] there exists a finite index normal subgroup $\bar{N} < \bar{H}$ such that $\bar{N} \leq \bar{P}$ and

$$C_{\bar{H}/\bar{N}}(\zeta(\bar{x})) \subseteq \zeta(C_{\bar{H}}(\bar{x})\bar{P}),$$

where $\zeta : \bar{H} \rightarrow \bar{H}/\bar{N}$ is the natural epimorphism.

Let $N = \eta^{-1}(\bar{N})$ be the full preimage of \bar{N} in H, and let $\psi : H \rightarrow H/N$ be the natural homomorphism. Then $\psi = \zeta \circ \eta$ and \bar{H}/\bar{N} can be identified with H/N. A combination
of (1) and (3) gives the following inclusion in H/N:

\[C_{H/N}(\psi(x)) \subseteq \zeta(C_H(x)P) \subseteq \zeta(\eta(C_H(x)P)\overline{P}) = \psi(C_H(x)P). \]

To finish the proof of Claim II it remains to show that $N \leq P$. Since $\eta(N) = \overline{N} \leq \overline{P} = \eta(P)$, it is enough to prove that $\ker \eta \leq P$. To this end, observe that $\ker \eta$ is the normal closure of $K_1 = \ker \xi$ in H (this easily follows from the universal property of HNN-extensions and is left as an exercise for the reader). Since $K_1 \leq K_0 \leq R \leq P$ and $P \triangleleft H$, we see that the normal closure of K_1 in H must also be contained in P. Thus $\ker \eta \leq P$, implying that $N \leq P$, which finishes the proof of Claim II.

In order to apply Lemma 3.2 we should also note that the subset $C_H(x)H_1$ splits in a finite union of left cosets modulo H_1 in H because $[H : H_1] < \infty$, and hence this subset is separable in H. In view of Claims I, II we see that all of the assumptions of Lemma 3.2 are satisfied. Therefore x^{H_1} is separable in H, and the consideration of Case 2 is finished.

Thus we have shown that x^{H_1} is separable in H for all $x \in H$ and any finite index subgroup $H_1 \leq H$. Since the profinite topology of a subgroup is finer than the topology induced from the ambient group, we can conclude that x^{H_1} is separable in H_1 whenever $x \in H_1$. Consequently H_1 is conjugacy separable. Since H_1 was chosen as an arbitrary finite index subgroup of H, we see that H is hereditarily conjugacy separable.

\[\square \]

Proof of Corollary 4.2. Let $H \leq G$ be a quasiconvex subgroup. By Newman’s theorem [12] Thm. 2, for any $x \in H \setminus \{1\}$ there is $g \in G$ such that $C_G(x) = \langle g \rangle$. Hence $x = g^k \in H$ for some $k \in \mathbb{N}$ and so the subset $C_G(x)H$ splits in a finite union of left cosets modulo H. Now, since G is virtually compact special by [10] Cor. 18.3, quasiconvex subgroups are separable in G by [7] Thm. 7.3, Lemma 7.5. It follows that H and, hence, $C_G(x)H$ are separable in G, for an arbitrary $x \in H$ (if $x = 1$ then $C_G(x)H = G$).

By Theorem 14.1 G is hereditarily conjugacy separable and so every element $x \in G$ satisfies CC_G (see [11] Prop. 3.2]). Therefore we can apply Lemma 5.2 to conclude that x^H is separable in G (and, hence, in H). Thus H is conjugacy separable, as claimed. \[\square \]

References

[1] R.B.J.T Allenby, C.Y. Tang, Conjugacy separability of certain 1-relator groups with torsion. *J. Algebra* **103** (1986), no. 2, 619-637.

[2] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short, Notes on word hyperbolic groups. In: Short, H.B., ed. Group Theory from a Geometrical Viewpoint, Proc. ICTP Trieste, *World Scientific Publishing Co., Inc., River Edge, NJ*, pp. 3-63.

[3] R. Charney, An introduction to right-angled Artin groups. *Geom. Dedicata* **125** (2007), 141-158.

[4] J.L. Dyer, Separating conjugates in free-by-finite groups. *J. London Math. Soc. (2)* **20** (1979), no. 2, 215-221.

[5] M.D. Fried, M. Jarden, Field Arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 11. *Springer-Verlag, Berlin*, 2008.

[6] A.V. Goryaga, Example of a finite extension of an FAC-group that is not an FAC-group (Russian). *Sibirsk. Mat. Zh.* **27** (1986), no. 3, 203-205, 225.

[7] F. Haglund, D.T. Wise, Special cube complexes. *Geom. Funct. Anal.* **17** (2008), no. 5, 1551-1620.
[8] A. Karrass, D. Solitar, The free product of two groups with a malnormal amalgamated subgroup. *Canad. J. Math.* **23** (1971), 933-959.

[9] R.C. Lyndon, P.E. Schupp, Combinatorial group theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. *Springer-Verlag, Berlin-New York*, 1977. xiv+339 pp.

[10] V.D. Mazurov, E.I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory. Sixteenth edition. Including archive of solved problems. *Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk*, 2006. 178 pp.

[11] A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and its applications. *Groups Geom. Dyn.* **6** (2012), no. 2, 335-388.

[12] B.B. Newman, Some results on one-relator groups. *Bull. Amer. Math. Soc.* **74** (1968), 568-571.

[13] L. Ribes, P.A. Zalesskii, Profinite groups. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 40. *Springer-Verlag, Berlin*, 2010. xvi+464 pp.

[14] J.-P. Serre, Arbres, amalgames, SL2. *Astérisque*, no. **46**. Société Mathématique de France, Paris, 1977. 189 pp.

[15] C.Y. Tang, Conjugacy separability of certain 1-relator groups. *Proc. Amer. Math. Soc.* **86** (1982), no. 3, 379-384.

[16] D.T. Wise, The structure of groups with a quasiconvex hierarchy. Preprint (2011). Available from http://www.math.mcgill.ca/wise/papers.html.

(Ashot Minasyan) School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom.

E-mail address: aminasyan@gmail.com

(Pavel Zalesskii) Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília-DF, Brazil.

E-mail address: pz@mat.unb.br