SOME FAMILIES OF SUPERCONGRUENCES INVOLVING
ALTERNATING MULTIPLE HARMONIC SUMS

KEVIN CHEN, RACHAEL HONG, JERRY QU, DAVID WANG, JIANQIANG ZHAO

Abstract. Let p be a prime. In this short note we study some families of supercongruences involving the following alternating sums

$$\sum_{j_1+j_2+\cdots+j_n=2p^r \atop p \nmid j_1 \cdots j_n} \frac{(-1)^{j_1+\cdots+j_n}}{j_1 \cdots j_n} \left(\mod p^r \right),$$

which extend similar statements proved by Shen and Cai who treated the cases when $n = 4, 5$. Our method works for arbitrary n.

1. Introduction

Over the past quarter of a century, multiple zeta values (MZVs) and their various generalizations have been intensively studied by many mathematicians and physicists due to their important applications in quite a few different areas of mathematics and theoretical physics. These values are infinite series whose finite sums are commonly called the multiple harmonic sums, defined as follows. Let \mathbb{N} and \mathbb{N}_0 be the set of positive integers and nonnegative integers, respectively. For any $n, d \in \mathbb{N}$ and $s = (s_1, \ldots, s_d) \in \mathbb{N}^d$, we define the multiple harmonic sums (MHSs) by

$$\mathcal{H}_n(s) := \sum_{n > k_1 > \cdots > k_d > 0} \frac{1}{k_1^{s_1} \cdots k_d^{s_d}}.$$

For example, $\mathcal{H}_{n+1}(1)$ is often called the nth harmonic number.

Very recently, a finite version of MZVs has emerged which has been conjectured to be closely related to MZVs, see [15, Ch. 8]. These values are essentially the MHSs truncated at different primes and then taken residues modulo the corresponding primes. Such congruences were first studied independently by the last author in [12, 13] and Hoffman in [3]. In general, it is well-known that Bernoulli numbers play a very important role in these congruences, see [8] for some classical results. As an application, in [11] the

2010 Mathematics Subject Classification. 11A07, 11B68.

Key words and phrases. Multiple harmonic sums, finite multiple zeta values, Bernoulli numbers, supercongruences.
last author proved, by using some special properties of the double harmonic sums, that for every odd prime p

$$
\sum_{i,j,k \geq 1, i+j+k=p} \frac{1}{i^j k^k} \equiv -2B_{p-3} \pmod{p},
$$

(1)

where B_k are Bernoulli numbers defined by the generating series

$$
\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}.
$$

Later, Ji gave an alternative simpler proof of (1) in [4] using some combinatorial techniques. Congruence (1) has since been generalized by either increasing the number of indices, changing the bound from p to multiples of p or p-powers, and/or considering the corresponding supercongruences (see [1, 5, 9, 10, 14, 16]), or even allowing the alternating version of MHSs (see [6, 7]).

Our main results of this short note concern the following type of sums. Let P_p be the set of positive integers not divisible by p. For $m, n, r, N \in \mathbb{N}$, we define

$$
Z_n(N, p) := \sum_{l_1 + l_2 + \ldots + l_n = N, l_1, \ldots, l_n \in P_p} \frac{1}{l_1 l_2 \ldots l_n}
$$

for $p | N$,

$$
R_n^{(m)}(p^r) := \sum_{l_1 + l_2 + \ldots + l_n = mp^r, l_1, \ldots, l_n \in P_p} \frac{1}{l_1 l_2 \ldots l_n} = Z_n(mp^r, p)
$$

for $p \nmid m$,

$$
S_n^{(m)}(p^r) := \sum_{l_1 + l_2 + \ldots + l_n = mp^r, p^r > l_1, \ldots, l_n \in P_p} \frac{1}{l_1 l_2 \ldots l_n}
$$

for $p \nmid m$.

The primary goal of our study is to find nice and simple supercongruences involving alternating sums defined as follows:

$$
\sigma_n^{(b)}(N, p) := \sum_{l_1 + l_2 + \ldots + l_n = N, l_1, \ldots, l_n \in P_p} \frac{(-1)^{l_1+\ldots+l_n}}{l_1 l_2 \ldots l_n}
$$

for $p | N$.

We will reduce these congruences to those of $Z_n(N, p)$ whose special cases $R_n^{(m)}(p^r)$ are closely related to $S_n^{(m)}(p^r)$ by Proposition 2.3. These results are motivated by the recent work of Shen and Cai [6] who studied the above sums for $n = 3, 4$. In Theorem 3.4 we generalize this to arbitrary n by using $R_n^{(m)}(p^r)$ with $m = 1, 2$.

Acknowledgement. We would like to thank the anonymous referee for the careful reading of the manuscript and helpful comments and suggestions.
2. Some useful lemmas

We start with a formula expressing the sums \(Z_n(N, p) \) in terms of a modified version of multiple harmonic sums.

Lemma 2.1. Let \(n, N \in \mathbb{N} \) and \(p \) be a prime. If \(p \mid N \) then we have

\[
Z_n(N, p) = \frac{n!}{N} \sum_{\substack{1 \leq u_1 < \cdots < u_{n-1} < N \\ u_1, u_2 - u_1, \ldots, u_{n-1} - u_{n-2}, u_{n-1} \in \mathcal{P}_p}} \frac{1}{u_1 \cdots u_{n-1}}.
\]

(2)

Proof. First, noting that \(l_1 + l_2 + \cdots + l_n = N \), we have

\[
Z_n(N, p) = \frac{1}{N} \sum_{\substack{l_1 + l_2 + \cdots + l_n = N \\ l_1, \ldots, l_n \in \mathcal{P}_p}} \frac{1}{l_1 l_2 \cdots l_n}.
\]

Then one writes

\[
\frac{1}{l_1 \cdots l_{n-1}} = \frac{l_1 + \cdots + l_{n-1}}{l_1 \cdots l_{n-1}(l_1 + \cdots + l_{n-1})}
\]

to get

\[
Z_n(N, p) = \frac{n(n-1)}{N} \sum_{\substack{l_1 + \cdots + l_{n-1} < u_{n-1} < N \\ l_1, \ldots, l_{n-2}, u_{n-1} - l_1 - \cdots - l_{n-2}, u_{n-1} \in \mathcal{P}_p}} \frac{1}{l_1 l_2 \cdots l_{n-2} u_{n-1}},
\]

and continues in this way by using the substitutions \(u_j = l_1 + \cdots + l_j \) for \(1 \leq j < n \) to prove equation (2). This completes the proof of the lemma. \(\Box \)

Lemma 2.2. Suppose \(m, n, r \in \mathbb{N} \) and \(p \) is a prime with \(p > n + 1 \). Then we have

\[
S_n^{(m)}(p^{r+1}) \equiv (-1)^{m-1} \left(\frac{n-2}{m-1} \right) S_n^{(1)}(p^2)p^{r-1} \pmod{p^{r+1}}.
\]

Proof. For all \(n, a \in \mathbb{N} \), set

\[
\gamma_n(a) := (-1)^{n+1} \frac{(a-1)!(n-1-a)!}{(n-1)!}.
\]

By [5, Lemma 2.3], we have

\[
S_n^{(m)}(p^{r+1}) \equiv p \sum_{a=1}^{n-1} (-1)^{m-1} \left(\frac{n-2}{m-1} \right) \gamma_n(a) S_n^{(a)}(p^r) \pmod{p^{r+1}}
\]

\[
\equiv (-1)^{m-1} \left(\frac{n-2}{m-1} \right) S_n^{(1)}(p^{r+1}) \pmod{p^{r+1}}.
\]
So the lemma follows from [3 (1.3)] which says
\[S_n^{(1)}(p^{r+1}) \equiv pS_n^{(1)}(p^r) \pmod{p^{r+1}} \]
for all \(r \geq 2 \). \(\square \)

Proposition 2.3. Let \(m, n, r \in \mathbb{N} \) with \(r \geq 2 \). Then we have
\[
R_n^{(m)}(p) \equiv \sum_{a=1}^{n-1} \binom{m + n - a - 1}{n - 1} S_n^{(a)}(p) \pmod{p}, \tag{3}
\]
\[
R_n^{(m)}(p^r) \equiv m \cdot S_n^{(1)}(p^2)p^{r-2} \pmod{p^r}. \tag{4}
\]

Proof. Let \(p \) be a prime number such that \(p > n + 1 \). For any \(n \)-tuples \((l_1, \ldots, l_n)\) of integers in \(\mathcal{P}_p \) satisfying \(l_1 + \cdots + l_n = mp^r \), we rewrite
\[l_i = x_ip^r + y_i, \quad x_i \geq 0, \quad 1 \leq y_i < p^r, \quad y_i \in \mathcal{P}_p, \quad 1 \leq i \leq n. \]
Since
\[\left(\sum_{i=1}^{n} x_i \right)p^r + \sum_{i=1}^{n} y_i = mp^r, \]
there exists \(1 \leq a < n \) such that
\[
\begin{cases}
 x_1 + \cdots + x_n = m - a, \\
 y_1 + \cdots + y_n = ap^r.
\end{cases}
\]
For \(1 \leq a < n \), the equation \(x_1 + \cdots + x_n = m - a \) has \(\binom{m + n - a - 1}{n - 1} \) nonnegative integer solutions. Hence, for all \(r \geq 1 \),
\[
R_n^{(m)}(p^r) = \sum_{l_1 + \cdots + l_n = mp^r} \frac{1}{l_1l_2 \cdots l_n},
\]
\[
= \sum_{a=1}^{n-1} \sum_{\substack{x_1 + \cdots + x_n = m - a \\
y_1 + \cdots + y_n = ap^r}} \frac{1}{(x_1p^r + y_1) \cdots (x_n p^r + y_n)}
\]
\[
\equiv \sum_{a=1}^{n-1} \binom{m + n - a - 1}{n - 1} S_n^{(a)}(p^r) \pmod{p^r}
\]
\[
\equiv \sum_{a=1}^{n-1} \binom{m + n - a - 1}{n - 1} (-1)^a \binom{n - a - 2}{a - 1} S_n^{(1)}(p^2)p^{r-2} \pmod{p^r},
\]
by Lemma 2.2. Note that the penultimate step holds for \(r = 1 \) which implies (3). However, the last step is valid only when \(r \geq 2 \). So (4) follows.
immediately from
\[
\sum_{a=1}^{n-1} (-1)^{a-1} \binom{n-2}{a-1} \binom{m+n-a-1}{n-1} = \sum_{a=1}^{n-1} \binom{a+1-n}{a-1} \binom{m+n-a-1}{m-a} = m
\]
by the famous Chu–Vandermonde identity. □

3. ALTERNATING SUMS

We now define the alternating version of the multiple harmonic sums. For convenience, we denote by \(\bar{s} \) a signed integer for every \(s \in \mathbb{N} \) and set \(|\bar{s}| = s \) and \(\text{sgn}(\bar{s}) = -1 \). Let \(s_j \) be either a positive integer or a signed integer for all \(j = 1, \ldots, d \). For any \(n \in \mathbb{N} \), the alternating MHS is defined by

\[
\mathcal{H}_n(s_1, \ldots, s_d) := \sum_{n > k_1 > \ldots > k_d > 0} \text{sgn}(s_1)^{k_1} \cdots \text{sgn}(s_d)^{k_d}.
\]

For example, \(\lim_{n \to \infty} \mathcal{H}_n(\bar{1}) \) is just the well-known alternating harmonic series.

As variations of alternating MHSs, we have defined that

\[
\sigma_n^{(b)}(N, p) = \sum_{l_1 + l_2 + \cdots + l_n = N} \frac{(-1)^{l_1+\cdots+l_n}}{l_1l_2\ldots l_n} \quad \text{for } p|N.
\]

In this section, for each fixed \(n \geq 4 \), we will study some suitable linear combinations of \(\sigma_n^{(b)}(N, p) \) for \(b = 1, \ldots, n-1 \). To this end, for any \(a \geq b \geq 0 \), \(d \geq 0 \) and \(s = (s_1, \ldots, s_d) \in \{1, \bar{1}\}^d \), we define

\[
F_a^{(b)}(s, N, p) := \sum_{N > i_1 > \cdots > i_d > 1} \frac{\text{sgn}(s_1)^{i_1} \cdots \text{sgn}(s_d)^{i_d} (-1)^{i_1+\cdots+i_d}}{i_1 \cdots i_d l_1 \ldots l_a}.
\]

Then it is easy to see that if \(N \) is even then

\[
N \sigma_n^{(b)}(N, p) = (n-b)F_{n-1}^{(b)}(\emptyset, N, p) + bF_{n-1}^{(n-b)}(\emptyset, N, p), \quad (5)
\]
\[
F_a^{(b)}(s, N, p) = (a-b)F_{a-1}^{(b)}((s, 1), N, p) + bF_{a-1}^{(a-b)}((s, \bar{1}), N, p), \quad a \geq 1. \quad (6)
\]

Here, we have abused the notation by writing \((s, 1) = (s_1, \ldots, s_d, 1) \) and \((s, \bar{1}) = (s_1, \ldots, s_d, \bar{1}) \). For \(m \in \mathbb{N}_0 \) and \(n \in \mathbb{N} \), put

\[
X_m := (1_m), \quad Z_n := ((\bar{1}), 1_{n-1}).
\]

For \(s = (X_{w_1}, Z_{w_2}, \ldots, Z_{w_l}) \), we set \(W_s := (w_1, w_2, \ldots, w_l) \), \(\text{len}(W_s) := l \) and

\[
A_\emptyset := 0, \quad B_\emptyset := 0, \quad W_\emptyset := (0), \quad P_\emptyset := b. \quad (7)
\]
Otherwise, for $s \neq \emptyset$, we define

$$A_s := \sum_{2^i} w_i, \quad B_s := \sum_{2^i} w_i, \quad P_s := \begin{cases} a - b - A_s & \text{if } 2 | \text{len}(W_s); \\ b - B_s & \text{if } 2 \nmid \text{len}(W_s). \end{cases}$$

Finally, for all fixed $a \geq b \geq 0$ and $A, B \geq 0$, we put

$$C_{a,b}(A, B) = C(A, B) := \begin{cases} 1 & \text{if } A, B = 0; \\ (b - A)^{(a - B)} & \text{if } A = 0, B > 0; \\ (a - b)_A & \text{if } A > 0, B = 0; \\ (a - b)_A(b - B) & \text{if } A > 0, B > 0, \end{cases}$$

where $(x)_\alpha = x(x - 1) \cdots (x - \alpha + 1)$ is the Pochhammer symbol for the falling factorial.

Lemma 3.1. Let $a, b \in \mathbb{N}_0$. Then for any fixed nonnegative integer $d \leq a$,

$$F^{(b)}_a(\emptyset, N, p) = \sum_{s \in \{1, 1\}^d} C_{a,b}(A_s, B_s) F^{(P_s)}_{a-A_s-B_s}(s, N, p).$$

Proof. We will prove this by induction on d. If $d = 0$ then there is only one term in the sum corresponding to $s = \emptyset$. Then the lemma holds by (11). Now let $d \geq 1$ and suppose the lemma is true when d is replaced by $d - 1$. Observe that any composition in $\{1, 1\}^d$ is produced by either $(s, 1)$ or $(s, 1)$ for a unique $s \in \{1, 1\}^{d-1}$. Further, it is easy to see that

$$(A_{(s,1)}, B_{(s,1)}) = \begin{cases} (A_s + 1, B_s) & \text{if } 2 \nmid \text{len}(W_s); \\ (A_s, B_s + 1) & \text{if } 2 | \text{len}(W_s), \end{cases}$$

$$(A_{(s,1)}, B_{(s,1)}) = \begin{cases} (A_s, B_s + 1) & \text{if } 2 \nmid \text{len}(W_s); \\ (A_s + 1, B_s) & \text{if } 2 | \text{len}(W_s). \end{cases}$$

If $d < a$ and $2 \nmid \text{len}(W_s)$, then by (6)

$$C(A_s, B_s) F^{(b - B_s)}_{a-A_s-B_s}(s, N, p) = C(A_s, B_s) \left[(a - b - A_s) F^{(b - B_s)}_{a-A_s-B_s-1}((s, 1), N, p) \\ + (b - B_s) F^{(a - b - A_s)}_{a-A_s-B_s-1}((s, 1), N, p) \right]$$

$$= C(A_s + 1, B_s) F^{(P_{(s,1)})}_{a-(A_s+1)-B_s}((s, 1), N, P)$$
$$+ C(A_s, B_s + 1) F^{(P_{(s,1)})}_{a-A_s-(B_s+1)}((s, 1), N, p)$$
$$= C(A_{(s,1)}, B_{(s,1)}) F^{(P_{(s,1)})}_{a-A_{(s,1)}-B_{(s,1)}}((s, 1), N, P)$$
$$+ C(A_{(s,1)}, B_{(s,1)}) F^{(P_{(s,1)})}_{a-A_{(s,1)}-B_{(s,1)}}((s, 1), N, p).$$
If $d < a$ and $2 | \text{len}(W_s)$, then by (3) again
\[
C(A_s, B_s) F_{a-A_s-B_s}^{(a-b-A_s)}(s, N, p)
\]
\[
= C(A_s, B_s) \left[(b - B_s) F_{a-A_s-B_s-1}^{(a-b-A_s)}((s, 1), N, p) + (a - b - A_s) F_{a-A_s-B_s-1}^{(b-B_s)}((s, 1), N, p) \right]
\]
\[
= C(A_s, B_s + 1) F_{a-A_s-B_s+1}^{(P_{a,b})}((s, 1), N, P)
\]
\[
+ C(A_s + 1, B_s) F_{a-A_s-B_s+1}^{(P_{a,b})}((s, 1), N, P)
\]
\[
= C(A_{(s,1)}, B_{(s,1)}) F_{a-A_{(s,1)}-B_{(s,1)}}^{(P_{a,b})}((s, 1), N, P)
\]
\[
+ C(A_{(s,1)}, B_{(s,1)}) F_{a-A_{(s,1)}-B_{(s,1)}}^{(P_{a,b})}((s, 1), N, p).
\]
This finishes the induction proof of the lemma. \qed

Corollary 3.2. Let $a, b \in \mathbb{N}$ with $a \geq b$. For all $s \in \{1, \overline{1}\}^a$, we have
\[
C_{a,b}(A_s, B_s) = \begin{cases}
(a - b)!b & \text{if } A_s = a - b, B_s = b; \\
0 & \text{if } A_s \neq a - b, B_s \neq b.
\end{cases}
\]

Proof. It is easy to see that $A_s + B_s = |W_s| = |s| = a$. If $C_{a,b}(A_s, B_s) \neq 0$, then by its definition
\[
a - b - A_s + 1 > 0, b - B_s + 1 = -(a - b - A_s) + 1 > 0,
\]
which imply that $A_s = a - b, B_s = b$ and $C_{a,b}(A_s, B_s) = (a - b)!b$. \qed

Corollary 3.3. For all fixed $a \in \mathbb{N}$, we have
\[
\sum_{b=0}^{a} \binom{a}{b} F_a^{(b)}(0, 2N, p) = \frac{N}{a + 1} Z_{a+1}(N, p).
\]

Proof. By Corollary 3.2, $C(A_s, B_s) \neq 0$ for one and only one b for every $s \in \{1, \overline{1}\}^a$. Thus,
\[
\sum_{b=0}^{a} \binom{a}{b} F_a^{(b)}(0, 2N, p) = \sum_{s \in \{1, \overline{1}\}^a} a! F_0^{(0)}(s, 2N, p)
\]
\[
= a! \sum_{\substack{2N > i_1 > \cdots > i_a > 0 \\
i_1, i_1-1, \ldots, i_a-1 \in \mathbb{P}_p}} \frac{(1 + (-1)^{i_1}) \cdots (1 + (-1)^{i_a})}{i_1 \cdots i_a}
\]
As the term is nonzero only when all indices are even, we get
\[
\sum_{b=0}^{a} \binom{a}{b} F_a^{(b)}(0, 2N, p) = a! \sum_{\substack{N > i_1 > \cdots > i_a > 0 \\
i_1, i_1-1, \ldots, i_a-1 \in \mathbb{P}_p}} \frac{1}{i_1 \cdots i_a}.
\]
We can now finish the proof of the corollary by applying Lemma 2.1.

Theorem 3.4. Let n, N be two positive integers and p a prime. If $p|N$ then we have

$$\sum_{b=1}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2N,p) = \frac{1}{2} Z_n(N,p) - Z_n(2N,p),$$

where $\alpha_{n,b} = 1$ except for $\alpha_{n,n/2} = 1/2$ when n is even. In particular, for every $r \in \mathbb{N}$ and prime p we have

$$\sum_{b=1}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2p^r, p) = \frac{1}{2} \left(R_n^{(1)}(p^r) - R_n^{(2)}(p^r) \right) - \frac{3}{2} \sigma_n^{(1)}(p^2) p^{r-1} \pmod{p^r}.$$

Proof. For even N, we have $\sigma_n^{(b)}(N,p) = \sigma_{n-b}^{(n-b)}(N,p)$ and therefore we get

$$2N \sum_{b=0}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2N,p) = \frac{1}{2} \sum_{b=0}^{n} \binom{n}{b} 2N \sigma_n^{(b)}(2N,p)$$

$$= \frac{1}{2} \sum_{b=0}^{n} \binom{n}{b} (n-b) F_{n-1}^{(b)}(\emptyset, 2N,p) + \frac{1}{2} \sum_{b=0}^{n} \binom{n}{b} b F_{n-1}^{(n-b)}(\emptyset, 2N,p)$$

by (5). Using substitution $b \rightarrow n - b$ in the second sum, we get

$$2N \sum_{b=0}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2N,p) = \sum_{b=0}^{n} (n-b) \binom{n}{b} F_{n-1}^{(b)}(\emptyset, 2N,p)$$

$$= n \sum_{b=0}^{n-1} \binom{n-1}{b} F_{n-1}^{(b)}(\emptyset, 2N,p) = NZ_n(N,p),$$

by Corollary 3.3 with $a = n - 1$. Therefore,

$$\sum_{b=1}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2N,p) = \sum_{b=0}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(b)}(2N,p) - \sigma_n^{(0)}(2N,p)$$

$$= \frac{1}{2} Z_n(N,p) - Z_n(2N,p)$$

since $\sigma_n^{(0)}(2N,p) = Z_n(2N,p)$. The final congruence of the theorem follows easily from Proposition 2.3. This completes the proof of the theorem. \(\square\)
Corollary 3.5. Let \(n \in \mathbb{N} \) and \(p \) be a prime such that \(p > n + 1 \). Then we have

\[
\sum_{b=1}^{\lfloor n/2 \rfloor} \alpha_{n,b} \binom{n}{b} \sigma_n^{(0)}(2p, p) \equiv \begin{cases}
\frac{n!}{2} B_{p-n} & \text{mod } p,
\text{if } 2 \nmid n; \\
-\frac{n!}{2} \sum_{a+b=n, \, a,b \geq 3} \frac{B_{p-a}B_{p-b}}{ab} & \text{mod } p,
\text{if } 2|n.
\end{cases}
\]

Proof. This follows easily from Theorem 3.4, \[16\] Main Theorem, \[5\] Lemma 3.5 and Corollary 3.6] (for \(n \) odd) and \[10\] Theorem 1 and Corollary 1] (for \(n \) even). \(\square \)

Corollary 3.6. Let \(r \in \mathbb{N} \) and \(p > 4 \) be a prime. We have

\[
\sigma_4^{(1)}(2p^r, p) + 3\sigma_4^{(2)}(2p^r, p) \equiv 0 \pmod{p^r}, \tag{8}
\]

\[
\sigma_5^{(1)}(2p^r, p) + 2\sigma_5^{(2)}(2p^r, p) \equiv 6B_{p-5}p^{r-1} \pmod{p^r}. \tag{9}
\]

Proof. It follows from \[10\] Theorem 1], \[16\] Theorem 1.1], \[16\] Main Theorem], and \[9\] Theorem 2] that

\[
S_4^{(1)}(p^2) \equiv 0, \quad S_5^{(1)}(p^2) \equiv -20B_{p-5}p \pmod{p^2}.
\]

So Theorem 3.4 yields the corollary immediately. \(\square \)

In fact, this note was motivated by Shen and Cai’s proof of (8) and a finer version of (9) in \[7\]. Now it follows from \[10\] Theorem 4] and \[5\] Theorem 1.1] that

\[
S_6^{(1)}(p^2) \equiv -\frac{20}{3}B_{p-3}^2, \quad S_7^{(1)}(p^2) \equiv -504B_{p-7}p \pmod{p^2},
\]

and, by similar computation (see \[2\] for details)

\[
S_8^{(1)}(p^2) \equiv -\frac{1792}{5}B_{p-3}B_{p-5}p, \quad S_9^{(1)}(p^2) \equiv -\frac{32}{3}(2283B_{p-9} + 7B_{p-3}^3)p \pmod{p^2}.
\]

Therefore, by Theorem 3.4] modulo \(p^r \) (\(r \geq 2 \)), we have

\[
6\sigma_6^{(1)}(2p^r, p) + 15\sigma_6^{(2)}(2p^r, p) + 10\sigma_6^{(3)}(2p^r, p) \equiv 10B_{p-3}^2p^{r-1},
\]

\[
7\sigma_7^{(1)}(2p^r, p) + 21\sigma_7^{(2)}(2p^r, p) + 35\sigma_7^{(3)}(2p^r, p) \equiv 756B_{p-7}p^{r-1},
\]

\[
8\sigma_8^{(1)}(2p^r, p) + 28\sigma_8^{(2)}(2p^r, p) + 56\sigma_8^{(3)}(2p^r, p) + 35\sigma_8^{(4)}(2p^r, p) \equiv 2688\frac{1}{5}B_{p-3}B_{p-5}p^{r-1},
\]

\[
9\sigma_9^{(1)}(2p^r, p) + 36\sigma_9^{(2)}(2p^r, p) + 84\sigma_9^{(3)}(2p^r, p) + 126\sigma_9^{(4)}(2p^r, p) \equiv 16(2283B_{p-9} + 7B_{p-3}^3)p^{r-1}.
\]
By combining Theorem 3.4 and the numerical results of \(S_n^{(1)}(p^2) \) obtained in [2], one can derive easily similar explicit formulas for all \(n \leq 12 \).

References

[1] T. Cai, Z. Shen and L. Jia, A congruence involving harmonic sums modulo \(p^\alpha q^\beta \), \textit{Int. J. Number Theory} \textbf{13} (2017), pp. 1083–1094.
[2] K. Chen and J. Zhao, Supercongruences involving multiple harmonic sums and Bernoulli numbers, \textit{J. Integer Sequences} \textbf{20} (2017), Article 17.6.8.
[3] M.E. Hoffman, Quasi-symmetric functions and mod \(p \) multiple harmonic sums, \textit{Kyushu J. Math.} \textbf{69} (2015), pp. 345–366.
[4] C. Ji, A simple proof of a curious congruence by Zhao, \textit{Proc. Amer. Math. Soc.} \textbf{133} (2005), pp. 3469–3472.
[5] M. McCoy, K. Thielen, L. Wang and J. Zhao, A family of super congruences involving multiple harmonic sums. \textit{Int. J. Number Theory} \textbf{13} (2017), pp. 109–128.
[6] T. Cai and Z. Shen, Super congruences involving alternating harmonic sums modulo prime powers, arxiv: 1503.03156.
[7] Z. Shen and T. Cai, Congruences for alternating triple harmonic sums, \textit{Acta Math. Sinica (Chin. Ser.)}, \textbf{55} (2012), pp. 737–748.
[8] Z.-W. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomial, \textit{Disc. Applied Math.} \textbf{105} (2000), pp. 193–223.
[9] L. Wang, A new curious congruence involving multiple harmonic sums, \textit{J. Number Theory} \textbf{154} (2015), pp. 16–31.
[10] L. Wang, New congruences on multiple harmonic sums and Bernoulli numbers. arXiv:1504.03227
[11] J. Zhao, Bernoulli numbers, Wolstenholme’s Theorem, and \(p^5 \) variations of Lucas’ Theorem, \textit{J. Number Theory} \textbf{123} (2007), pp. 18–26.
[12] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, \textit{Int. J. Number Theory} \textbf{4} (2008), pp. 73–106.
[13] J. Zhao, Mod \(p \) structure of alternating and non-alternating multiple harmonic sums. \textit{J. Théor. Nombres Bordeaux} \textbf{23} (2011), pp. 259–268. (MR 2780631)
[14] J. Zhao, Congruences involving multiple harmonic sums and finite multiple zeta values. \textit{Analysis, Geometry and Number Theory} (2) 2017, pp. 59–75. doi: 10.19272/201712501003.
[15] J. Zhao, Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and Its Applications, vol. 12, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016.
[16] X. Zhou and T. Cai, A generalization of a curious congruence on harmonic sums, \textit{Proc. Amer. Math. Soc.} \textbf{135} (2007), pp. 1329–1333.