Proteome-wide analysis of HIV-specific naive and memory CD4\(^+\) T cells in unexposed blood donors

Suzanne L. Campion,\(^1\) Tess M. Brodie,\(^2\) William Fischer,\(^3\) Bette T. Korber,\(^3\) Astrea Rossetti,\(^2\) Nilu Goonetilleke,\(^4,5\) Andrew J. McMichael,\(^1\) and Federica Sallusto\(^2\)

\(^1\)Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, England, UK
\(^2\)Institute for Research in Biomedicine (IRB), 6-CH-6500 Bellinzona, Switzerland
\(^3\)Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
\(^4\)Department of Microbiology & Immunology and \(^5\)Department of Medicine, University of North Carolina, Chapel Hill, NC 27599

The preexisting HIV-1–specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4\(^+\) T cell repertoire in healthy HIV-1–negative volunteers, the HLA–peptide tetramer enrichment and T cell library technique, and show high concordance (\(r = 0.989\)). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4\(^+\) T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1–unexposed, seronegative donors. HIV-1–specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4\(^+\) T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8–12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome–wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV–1–specific helper cell responses by vaccination.

Only one candidate HIV vaccine, a canarypox vectored gp120 with a protein boost, has shown any efficacy (Rerks-Ngarm et al., 2009). The limited protection correlated with induction of nonneutralizing antibodies to the V1/V2 region of the virus Envelope protein (Env; Rerks-Ngarm et al., 2009; Haynes et al., 2012). This modest success has stimulated efforts to design vaccines that generate more efficient neutralizing antibodies, together with potent CD4\(^+\) T cell responses capable of providing help to B cells and cytotoxic T cells (Burton et al., 2012). Understanding how the magnitude and specificity of these helper T cells can be optimized will be critical to the design of an effective vaccine.

Primary immune responses are probably influenced strongly by the preexisting repertoire of B and T cells. However, characterization and quantification of these repertoires is difficult due to the extremely low number of circulating naive precursor cells (Jenkins et al., 2001; Su et al., 2013). Previous studies of naive CD4\(^+\) T cell repertoires in humans and mice have relied on magnetic beads to enrich MHC tetramer binding cells (Moon et al., 2007; Kwok et al., 2012; Su et al., 2013). However, although this approach gives precise information on responses to particular MHC–peptide epitopes, it does not measure the total repertoire and misses previously unknown epitopes. An alternative T cell library technique requires no prior knowledge of donor HLA type or epitope specificity (Geiger et al., 2009). The method presorts circulating T cells into naive and memory subsets which are seeded at limiting dilution before polyclonal

A.J. McMichael and F. Sallusto contributed equally to this paper.

\(^{\text{\textcopyright 2014 Campion et al. This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0.)}}\)
expansion in the presence of PHA, allogeneic feeder cells, and IL-2. Individual cultures are then screened for proliferative responses to a protein or series of peptides representing the pathogen of interest (Geiger et al., 2009). Combined with epitope mapping and the Poisson distribution, the T cell library technique can provide quantitative data on the specificity of the entire preexisting naive and memory repertoire.

The existence of HIV-1–specific memory cells in seronegative donors was originally suggested by studies of highly exposed HIV-1 seronegative (HESN) donors. It has been shown that 25–61% of HESNs have demonstrable HIV-1–specific memory cells, probably primed by exposure to the virus. Surprisingly, HIV-1–specific CD4+ T cells were also detected in 24–44% of unexposed donors (Ritchie et al., 2011), although it was not clear whether the latter came from cross-reactive memory T cells or naive T cells primed in vitro. More recently, the existence of low frequency (1–10/million) memory CD4+ T cells, specific for a known HIV-1 Gag epitope, was demonstrated by HLA DR4 tetramers in 50% of HIV-1 unexposed HLA DR4+ adults (Su et al., 2013), but it was not clear how generalizable the HIV-1 result was beyond the single epitope–HLA DR4 combination.

The present study first validates the library technique by direct comparison with the tetramer enrichment method for measuring precursor T cell frequencies. We then use the T cell library technique to provide the first proteome-wide analysis of the frequencies and specificities of preexposure HIV-1–specific naive and memory CD4+ T cells in a HLA diverse population of HIV-1 unexposed donors.

RESULTS AND DISCUSSION

Comparison of the T cell library technique to tetramer enrichment

Before commencing a proteome-wide screen of the preexisting HIV-1–specific naive and memory CD4+ repertoires, we first performed a direct comparison of the T cell library (Geiger et al., 2009) and tetramer enrichment methods (Su et al., 2013) using varicella zoster virus (VZV) as a model antigen. We established CD4+ T cell libraries of 192 wells per subset from naive CD45RA+CCR7+ central memory (CD45RA–CCR7+), and effector memory (CD45RA–CCR7–) subsets of five anonymous HLADRB1*1501+ blood donors. Lines were polyclonally expanded for 16–20 d before screening for proliferative response to two VZV epitopes (glycoprotein E [gE] and immediate early phosphoprotein 63 [IE63]), which are known to be restricted by and commonly detected in HLADRB1*1501 donors (Jones et al., 2007; Malavige et al., 2008). In parallel 25–70 × 10^6 CD4+ T cells from the same time point were screened using custom-made gE and IE63 HLADRB1*1501 tetramers. We show that the two techniques are highly comparable (Pearson’s correlation, r = 0.999), with no significant difference in the precursor frequencies obtained by each technique (paired Student’s t test, P = 0.1099; Fig. 1). These data support the T cell library technique for comprehensive analysis of naive and memory CD4+ T cell repertoires.

HIV-1–specific T cells in HIV-1–unexposed, seronegative donors

Naïve, central memory, and effector memory CD4+ T cell subsets from 10 HLA diverse (Table S1), healthy, HIV-1 seronegative donors were screened for HIV-1–specific responses using the T cell library method (Geiger et al., 2009). As above, 192 cell lines per subset were established at limiting dilution and polyclonally expanded. Each cell line was screened for reactivity to peptides spanning the entire consensus clade C HIV-1 proteome, pooled by proteins Gag, Env, Pol, Nef, and a mix of Vpr, Vpu, Tat, Rev, and Vif (designated Nef/Acc). Responding cells were detected by [3H] thymidine incorporation.

HIV-1–specific CD4+ T cells were detected in the naive subsets of all donors (Fig. 2 A) at frequencies ranging from

Figure 1. Comparison of the CD4+ T cell library and HLA tetramer enrichment methods. The naive and memory CD4+ T cell subsets of 5 HLADRB1*01 donors were screened in parallel for specificity to two known VZV epitopes (gE and IE63) using the T cell library technique and tetramer enrichment protocol. The precursor frequencies obtained from each methodology were subsequently compared using a paired Student’s t test (P = 0.1099; A), and Pearson’s correlation (r = 0.989; B). Given that the dataset included zero values, a log (x + 1) transformation was applied to all datasets.
In addition to the naive repertoire, HIV-1–specific T cells were also detected within the central memory (Fig. 2 B) and/or effector memory (Fig. 2 C) CD4^+ T cell compartments of all donors. However, the observed frequencies were 15–20-fold lower (Fig. 3, B–D) than TT-specific memory CD4^+ T cells (Fig. 3 D). The high circulating frequencies of TT-specific memory CD4^+ T cells are consistent with previous reports (Geiger et al., 2009) and reflect successful prior immunization (Sallusto et al., 2010). In contrast, the low frequencies

Figure 2. HIV-1–specific responses were detected in the circulating naive and memory CD4^+ T cell subsets of healthy, HIV-1 seronegative donors. For each of 10 donors, a mean of 187 cultured cell lines (each represented by a single dot) per naive (A), central memory (B), and effector memory (C) subsets were screened against pools of overlapping peptides spanning the entire HIV-1 proteome. Peptide pools were split according to protein with Nef and Accessory proteins, Vpr, Vpu, Tat, Rev, and Vif included as a single pool referred to as Nef/Acc. All data presented are expressed as the counts per minute, after subtraction of background, nonspecific proliferation (delta cpm). Positive responses are defined as SI >5 and >3,000 delta cpm with cutoff criteria represented by a horizontal line. Cell lines with background counts of ≥3,000 cpm were excluded from analysis. Proliferative responses to known recall antigen TT are shown for each donor.

28 to 129 cells/million (Fig. 3, A and D), comparable to precursor frequencies of tetanus toxoid (TT)–specific naive CD4^+ cells (Fig. 3 D). Although the use of a single consensus virus sequence allowed a comprehensive assessment of preexisting specificity, it must underestimate the total response specific for this highly variable virus. However, because 70% of new HIV-1 infections are established by a single founder virus (Keele et al., 2008), the frequencies presented herein should realistically predict an individual’s CD4^+ T cell response in acute infection.
of HIV-1–specific memory CD4+ T cells in unexposed donors suggest that these T cells arose because of rare cross-reactivities with non–HIV-1 antigens.

Considerable inter-donor variation in both the specificity and frequency of naive and memory HIV-1–specific CD4+ T cells was observed (Fig. 3, A–C), probably contributing to the great variation in adaptive immune responses seen after natural infection and vaccination. Overall, the HIV-1–specific memory T cell frequencies detected herein were ~10-fold higher than those recently reported using tetramer enrichment (Su et al., 2013). However, this is not a real discrepancy because we included peptides spanning the entire HIV-1 proteome, whereas they focused their analysis to a single known epitope; therefore, the findings are fully compatible.

After normalization of the dataset for viral protein size, HIV-1 Gag and Env proteins were the immunodominant targets of the preexposure naive and memory CD4+ T cell subsets (Fig. 3 E), similar to the known patterns of immunodominance in natural HIV-1 infection (Kaufmann et al., 2004; Ranasinghe et al., 2012). Consistent with the low frequency of Pol-specific responses observed after infection (Kaufmann et al., 2004; Ranasinghe et al., 2012), relatively...
The avidity of preexisting HIV-1–specific T cell responses detected in the naive and memory CD4+ T cell subsets of 5 healthy HIV-1 seronegative donors. Responses in naive (A), central memory (B), and effector memory (C) CD4+ T cells were assessed using peptide titration. EC50 values were determined for each epitope using interpolated dose–response curves and are presented for each cell line in the adjacent table, with epitopes defined according to their position within the HIV-1 reference strain HBX2. All data presented are expressed as the percentage of maximal counts per minute, after subtraction of background, nonspecific proliferation (delta cpm). The maximal delta cpm for each cell line is shown in the accompanying table.

Figure 5.

Peptide specificity and avidity of preexisting HIV-1–specific T cells
We next mapped the fine specificity of 68 preexisting naive, central memory, and effector memory HIV-1–specific CD4+ T cells in a total 68 T cell lines (Fig. 4 and Table S2). Epitopes were found to span the entire HIV-1 proteome (Fig. 4) with the majority of positive cell lines (76%) showing a single, unique peptide specificity, consistent with previous observations that preexisting memory CD4+ T cell responses are largely monoclonal (Geiger et al., 2009; Su et al., 2013).

The functional avidity of a subset of naive (n = 7; Fig. 5 A), central memory (n = 11; Fig. 5 B), and effector memory (n = 7; Fig. 5 C) CD4+ T cell lines was assessed by peptide titration. Overall, the avidities were comparable to those found in T cells responding to natural HIV-1 infection, with both high and low avidity responses (EC50 = 0.125–0.001577 µM) detected, but no significant difference between subsets.
The immunogens that primed the preexisting HIV-1–specific memory CD4+ T cells detected within seronegative donors are unknown and likely to come from many sources. Sequence identity searches (Altschul et al., 1990; Edgar, 2010) performed using the reactive HIV-1 peptide sequences identified potential epitope-length (8–12 aa) subsequence matches to a variety of human (Tables S4 B and S5 B) and human microbiome proteins (Tables S4 and S5). Epitope matches ranged from 1 to 230 microbial sequences, with 83% of all HIV-1 epitopes mapped to the CD4+ memory subsets shown to have epitope length (8–12 aa) matches to human microbiome proteins (Tables S4 A and S5 A). These data suggest that microbial proteins could have contributed to T cell priming. Our list of potential cross-reactive epitopes (Tables S4 and S5) is unlikely to be exhaustive because the degree of sequence identity required to activate cross-reactive T cell responses is unpredictable, and highly divergent epitopes can elicit cross-reactive responses in mice (Birnbaum et al., 2014). Moreover, database searches are limited to sequenced organisms and gene prediction algorithms which may miss cryptic epitopes that could be processed and presented during the course of infection (Ho and Green, 2006).

Known immunoprevalent epitopes are strongly represented in the preexposure repertoire

We next compared the mapped epitopes identified in the preexisting repertoire against HIV-1 epitope data stored in the Los Alamos National Laboratory (LANL) database (LANL-Immunology-Database, http://www.hiv.lanl.gov/content/immunology). We found that 70% of epitopes detected had previously been reported in natural HIV-1 infection (Fig. 4 A and Table S3). Many of these epitopes are presented by multiple Class II HLA types, making them immunoprevalent across the population (Table S3). Indeed, 10% of the mapped epitopes detected within this study were recognized by more than one donor (Fig. 4 and Table S2), independent of HLA type (Table S1). These data imply that T cell precursor frequency and specificity in both the naive and memory subsets before infection could play a large part in determining what is immunodominant after infection.

Analysis of the mapped HIV-1 epitopes according to CD4+ T cell subset (Fig. 4, B and C) showed that independent of donor HLA or antigen sensitivity, 88% of the epitopes recognized by preexisting naive CD4+ T cells had previously been detected in natural infection, whereas a significantly lower proportion (56%) was found for epitopes recognized by memory CD4+ T cells (P = 0.0028). HIV-1 preferentially infects HIV-1–specific memory CD4+ T cells (Douek et al., 2002), and central memory CD4+ T cells in particular are rapidly depleted during acute infection leaving very few during chronic infection (Younes et al., 2003). Thus, preexisting memory HIV-1–specific T cells could be depleted during the acute stages of infection, allowing naive T cells to expand preferentially. Alternatively, the higher proportion of novel epitopes (42%) identified in the preexisting memory CD4+ T cell repertoire may help to promote diversity of the T cell response in natural infection and could be of clinical benefit to host (Rosenberg et al., 1997).

Detection of preexisting, cross-reactive memory CD4+ T cells in unexposed donors is not restricted to HIV-1

Finally, we asked whether detection of cross-reactive memory CD4+ T cells in unexposed donors is unique to HIV-1. We screened five of the same healthy donors for proliferative responses to peptides spanning the entire envelope protein of the Zaire reference strain of Ebola virus. Because Ebola infection is associated with an extremely high mortality rate (WHO, 1978), our donors cannot have been previously exposed. In addition to naive Ebola Env-specific cells (mean 25.26 specific cells/million; Fig. S1 A), Ebola-specific memory CD4+ T cells were detected in 4/5 donors tested (mean 142 specific cells/million; Fig. S1, B and C). The frequencies of Ebola Env–specific T cells were modestly higher than those observed for HIV-1 (Fig. S1 D) but still 10-fold lower in the memory subsets than TT-specific memory cells (Fig. S1 D and Fig. 3 B). These observations demonstrate that the findings on preexposure CD4+ repertoires reported herein are not limited to HIV-1.

Conclusion

The present dataset provides the first comprehensive, systematic, and quantitative analysis of the preexposure HIV–specific CD4+ T cell repertoire in HLA diverse seronegative donors. Using peptides spanning the entire HIV-1 proteome, we show that both specificity and avidity of the preexposure HIV–specific CD4+ T cell repertoire has considerable overlap with those of CD4+ T cells detected after natural HIV-1 infection. Furthermore, we suggest that some preexisting memory HIV–specific T cells may have been primed by microbial organisms present within the human microbiome. These data help explain immunodominance and immunoprevalence in natural HIV-1 infection and the variability in human immune responses to infection and vaccines.

MATERIALS AND METHODS

Study participants and approval. Leukopheresis samples were obtained from a total of 15 anonymous HIV-1 seronegative, healthy individuals recruited by the Basel Swiss Red Cross Blood Centre and National Blood Service (Bristol, UK). Informed, written consent was obtained from all donors and human primary cell protocols were approved by the Federal Office of Public Health (N. A000197/2 to F. Sallusto).

HLA typing. DNA was extracted using 5 PRIME Achieve Pure DNA kit (Prima Scientific) as per manufacturer’s recommendations. HLA typing (Weatherall Institute of Molecular Medicine, Oxford, England, UK) was performed using the sequence-specific primer method adapted from Bunce (2003), which uses allele–specific primer combination in PCR amplification to provide absolute HLA resolution to two digits and high-probability resolution to four digits. HLA types for all donors are shown in Table S1.

Antigen preparation. Synthetic peptides were synthesized by Sigma-Aldrich, and/or the Medical Research Council Human Immunology Unit, WIMM (Oxford, UK), as 18mers overlapping by 10 aa. The Zaire Ebola Reference Strain (Zaire-strain Mayinga-76; FASTA ID VGP_EBOZM, UNIPROT Q65320; UniProt Consortium, 2012) was used to design peptides.
Tetramer enrichment protocol. Untouched CD4+ T cells were isolated from PBMCs using magnetic microbeads (Miltenyi Biotec). Tetramer staining and enrichment was performed as described previously (Su et al., 2013). In brief, cells were incubated for 30 min with live/dead Aqua marker (Invitrogen), washed, and then labeled with either eGFP or E63 tetramers at room temperature for 45 min (14 µg/ml). Surface markers AF700-labeled anti-CD3 (UCHT3; BD), FITC-labeled anti-CD4 (SK3; BD), Pacific blue–labeled anti-CD5RA (MHCD45RA28; BD), and PE-cyanine 7 (PECy7)–labeled anti-CD56 (B159; BD), anti-CD14 (MSE2; BD), and anti-CD8 (SK1; BD) were incubated at room temperature for 15 min. Before tetramer enrichment, 1/10th staining volume was removed and added to TruCount tubes (BD) to give an absolute count of the starting number of CD4+ naive and memory T cells. The remaining staining volume was enriched for tetramer-positive cells using anti-PE microbeads (Miltenyi Biotec) and added to a separate TruCount tube. Samples were acquired using an LSR Fortessa (BD), and the frequency of tetramer-positive cells determined by dividing the absolute counts of tetramer positive cells by the starting number of CD4+ naive/memory T cells.

Cell purification and sorting for T cell library. CD14+ monocytes and CD4+ T cells were isolated from PBMCs by positive selection with anti-body-coated microbeads (Miltenyi Biotec). CD14+ monocytes were immediately cryopreserved and stored in liquid nitrogen until required for use as antigen-presenting cells in subsequent stimulation assays. CD4+ T cell subsets were cell sorted to 99% purity on a FACSAria (BD) after staining with FITC-labeled anti-CD45RA (ALB11; Beckman Coulter), allophycocyanin-labeled anti-CD4 (SK3; BD), and anti-CCR7 (150503; R&D Systems), followed by staining with biotinylated anti-IgG2a (SouthernBiotech) and streptavidin–Pacific blue (Invitrogen). PE-cyanine 5 (PC5)–labeled anti-CD56 (N901 [NHK-1; Beckman Coulter], anti-CD25 (B1.49.9; Beckman Coulter), and anti-CD8 (B9.11; Beckman Coulter) were included as a dump channel to exclude natural killer, regulatory, and CD8+ T cells.

T cell libraries. The medium used throughout was RPMI 1640 supplemented with 2 mM glutamine, 1% (vol/vol) nonessential amino acids, 1% (vol/vol) sodium pyruvate, 50 µM U-pencillin, 50 µg/ml streptomycin, and 5% human serum (Swiss Red Cross). Cell-sorted naive (CD45RA+CCR7−), central memory (CD45RA−CCR7+), and effector memory (CD45RA−CCR7−) CD4+ T cell populations were seeded at 2,000 (naive) and 1,000 (memory) cells. Effector memory CD4+ T cell subsets were subsequently reanalyzed by previously reported epitopes from the naive and memory T cell populations of >5 and a delta value (cpm in response to antigen-pulsed monocytes—cpm in response to unpulsed monocytes) of >3 × 10^3 cpm was adopted, based upon observations made across multiple negative and positive samples assessed by T cell library technique and represented the 99th percentile of delta cpm obtained from unstimulated samples (Geiger et al., 2009). Overall, <3% of lines were excluded because of nonspecific proliferation. Positive cultures identified in the first screening assay were subsequently realanalyzed using a three dimensional matrix mapping approach (Roederer and Koup, 2003) to identify epitope specificity. Precursor frequencies were calculated based on the number of negative wells according to the Poisson distribution and expressed per million cells (Lefkovits and Waldmann, 1979). EC50 values were determined from interpolated dose–response curves using Prism (version 5.00 for Windows; GraphPad Software).

Epitope analysis. All mapped epitopes were screened against the LANL HIV-1 Molecular Immunology database (LANL-Immunology-Database) to determine whether they had previously been reported in natural HIV-1. HIV-1–specific epitopes mapped in the memory subsets were screened using the National Centre for Biotechnology and Information (NCBI) base local alignment sequence tool (BLAST) search tool (Abeculal et al., 1998) for epitope-length sequence matches to human pro tease and microbiome sequences. Short-sequence optimizations were used for BLAST, as the goal was detection of sequence similarity rather than of bona fide homology. Additional human proteome sequence data were downloaded from UniProt (UniProt Consortium, 2012), whereas further human microbiome sequences (shotgun sequences derived from body location samples) were obtained from the Human Microbiome Project (HMP) clustered gene indices catalog (http://www.hmpdacc.org/HMGC/). The UniProt and HMP sequences were processed with UBLAST (Edgar, 2010) using highly nons-stringent criteria (id, 0.01; eval, 10,000; maxaccepts, 500,000) to generate matches. Both NCBI-BLAST and UBLAST matches were then filtered on the number of amino acid identities and similarities (Tables S4 and S5). For NCBI, BLAST–included epitopes showed a minimum of 8 out of 9 matched amino acids with the highest sequence identities showing 12 of 12 matched amino acids. Sequences identified with UBLAST search algorithms had a minimum of 8 of 8 matched amino acids with the highest levels of sequence identity observed with 12 of 12 amino acids matched.

Statistics. Epitope maps obtained from the LANL immunology database show 60% of the HIV-1 proteome is covered by previously defined CD4+ T cell epitopes (LANL–Immunology-Database). Because of this greater proportion of sequence with previously known epitopes, we normalized the number of amino acids covered by epitopes identified in this study to the number of amino acids from the HIV-1 Molecular Immunology database which contain known CD4+ T cell epitopes (1,875 aa) or which contained no epitopes (1,272 aa). Using a Fisher’s exact test, the significance of HIV-1 proteome coverage by previously reported epitopes from the naive and memory CD4+ T cell subsets could be compared. Significance was defined as P < 0.005.

Pearson’s correlation was used to compare the precursor frequencies obtained using the T cell library technique and the tetramer enrichment protocol. Because the dataset included zero values, a log (x + 1) transformation was applied to all data points.

Online supplemental material. Fig. S1 shows data from the naive, central, and effector memory subsets of five healthy leukapheresis donors who were screened for proliferative responses to a pool of peptides spanning the envelope protein of the Zaire reference strain of Ebola virus. Table S1 shows the HLA class I and II typing for all 10 donors studied within the context of this manuscript. Table S2 shows the amino acid sequence and delta cpm values for the 68 HIV-1–specific T cell responses detected in the naive, central memory, and effector memory CD4+ T cell subsets of five healthy, HIV-1 monocytes (2.5 × 10^3/well) were pulsed for 2 h with appropriate peptide pools, or control antigen before co-culture with T cells. Proliferation was measured on day 4 after 16 h incubation with 1 µCi/ml [3H] Thymidine (GE Healthcare). A stringent positivity criteria, defined as a stimulation index of >5 and a delta value (cpm in response to antigen-pulsed monocytes—cpm in response to unpulsed monocytes) of >3 × 10^3 cpm was adopted, based upon observations made across multiple negative and positive samples assessed by T cell library technique and represented the 99th percentile of delta cpm obtained from unstimulated samples (Geiger et al., 2009). Overall, <3% of lines were excluded because of nonspecific proliferation. Positive cultures identified in the first screening assay were subsequently realanalyzed using a three dimensional matrix mapping approach (Roederer and Koup, 2003) to identify epitope specificity. Precursor frequencies were calculated based on the number of negative wells according to the Poisson distribution and expressed per million cells (Lefkovits and Waldmann, 1979). EC50 values were determined from interpolated dose–response curves using Prism (version 5.00 for Windows; GraphPad Software).

Epitope analysis. All mapped epitopes were screened against the LANL HIV-1 Molecular Immunology database (LANL-Immunology-Database) to determine whether they had previously been reported in natural HIV-1. HIV-1–specific epitopes mapped in the memory subsets were screened using the National Centre for Biotechnology and Information (NCBI) base local alignment sequence tool (BLAST) search tool (Abeculal et al., 1998) for epitope-length sequence matches to human pro tease and microbiome sequences. Short-sequence optimizations were used for BLAST, as the goal was detection of sequence similarity rather than of bona fide homology. Additional human proteome sequence data were downloaded from UniProt (UniProt Consortium, 2012), whereas further human microbiome sequences (shotgun sequences derived from body location samples) were obtained from the Human Microbiome Project (HMP) clustered gene indices catalog (http://www.hmpdacc.org/HMGC/). The UniProt and HMP sequences were processed with UBLAST (Edgar, 2010) using highly nons-stringent criteria (id, 0.01; eval, 10,000; maxaccepts, 500,000) to generate matches. Both NCBI-BLAST and UBLAST matches were then filtered on the number of amino acid identities and similarities (Tables S4 and S5). For NCBI, BLAST–included epitopes showed a minimum of 8 out of 9 matched amino acids with the highest sequence identities showing 12 of 12 matched amino acids. Sequences identified with UBLAST search algorithms had a minimum of 8 of 8 matched amino acids with the highest levels of sequence identity observed with 12 of 12 amino acids matched.

Statistics. Epitope maps obtained from the LANL immunology database show 60% of the HIV-1 proteome is covered by previously defined CD4+ T cell epitopes (LANL–Immunology-Database). Because of this greater proportion of sequence with previously known epitopes, we normalized the number of amino acids covered by epitopes identified in this study to the number of amino acids from the HIV-1 Molecular Immunology database which contain known CD4+ T cell epitopes (1,875 aa) or which contained no epitopes (1,272 aa). Using a Fisher’s exact test, the percentage of HIV-1 proteome covered by previously reported epitopes from the naive and memory CD4+ T cell subsets could be compared. Significance was defined as P < 0.005.

Pearson’s correlation was used to compare the precursor frequencies obtained using the T cell library technique and the tetramer enrichment protocol. Because the dataset included zero values, a log (x + 1) transformation was applied to all data points.

Online supplemental material. Fig. S1 shows data from the naive, central, and effector memory subsets of five healthy leukapheresis donors who were screened for proliferative responses to a pool of peptides spanning the envelope protein of the Zaire reference strain of Ebola virus. Table S1 shows the HLA class I and II typing for all 10 donors studied within the context of this manuscript. Table S2 shows the amino acid sequence and delta cpm values for the 68 HIV-1–specific T cell responses detected in the naive, central memory, and effector memory CD4+ T cell subsets of five healthy, HIV-1
seronegative donors. Table S3 shows the results of a Los Alamos database search to determine whether any of the mapped epitopes detected in the pre-exposure repertoire had previously been reported in natural infection, and lists the citation for instances where the epitope had previously been reported. Table S4 displays the results of screening mapped HIV-1–specific epitopes in the memory CD4+ T cell subsets of HIV-1 unexposed uninfected donors against predicted genes from the HMP, shotgun sequences and human sequences from Uniprot. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20130555/DC1.

The authors wish to thank Mrs. V.E. Whale and Miss Elena Brenna for technical assistance, Dr. D. Jarrossay for cell sorting, Professor G.S. Ogg for advice and guidance on the work, Dr. D. Giorgi for cell primer typing of HLA class I and II tetramers, and Dr. T. Rosston for HLA typing. In addition, we acknowledge the NIH Tetramer Core Facility (contract HHSH27220030006Q) for provision of GE- and IE63-specific HLA class II tetramers.

Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, and by the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, grant number UM1AI010645-01, the Medical Research Council, the ERC, grant number ERC-2012-ADG-2012314, and the NSF, grant number IOS11-47662. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The authors declare no competing financial interests.

Submitted: 16 March 2013
Accepted: 29 May 2014

REFERENCES

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410. http://dx.doi.org/10.1016/S0022-2836(05)80030-2

Birnbaum, M.E., J.L. Mendzola, D.K. Sethi, S. Dong, J. Glanville, J. Dobinson, E. Orkan, M.M. Davis, K.W. Wucherpfennig, and K.C. Garcia. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 157:1073–1087. http://dx.doi.org/10.1016/j.cell.2014.03.047

Bunce, M. 2003. PCR-sequence-specific primer typing of HLA class I and II alleles. Methods Mol. Biol. 210:143–171.

Burton, D.R., R. Ahmed, D.H. Barouch, S.T. Butera, S. Crotty, A. Godzik, D.E. Kaufmann, M.J. McElrath, M.C. Nussenzweig, B. Pulendran, et al. 2012. A blueprint for HIV vaccine discovery. Cell Host Microbe. 12:396–407. http://dx.doi.org/10.1016/j.chom.2012.09.008

Douek, D.C., J.M. Brenchley, M.R. Betts, D.E. Kaufmann, M.I. Malavge, G.N. L. Jones, A.P. Black, and G.S. Ogg. 2003. Varecia zoster virus glycoprotein E-specific CD4+ T cells show evidence of recent activation and effector differentiation, consistent with frequent exposure to replicative cycle antigens in healthy immune donors. Clin. Exp. Immunol. 152:209–231. http://dx.doi.org/10.1111/j.1365-2249.2008.03633.x

Moon, J.J., H.H. Chu, M. Pepper, S.J. McSorley, S.C. Jameson, R.M. Kedl, and M.J. Jenkins. 2007. Nave CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 27:203–213. http://dx.doi.org/10.1016/j.immuni.2007.07.007

Ramasighe, S., M. Flanders, S. Cutler, D.Z. Sgoiohian, M. Ghebremichael, I. Davis, M. Lindyest, F. Peryea, B.D. Walker, D. Heckerman, and H. Streeck. 2012. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. J. Virol. 86:277–283. http://dx.doi.org/10.1128/JVI.01577-11

Rerks-Ngarm, S., P. Pitsutthutham, N. Nayaphan, J. Kaeuweungwal, J. Chiu, R. Paris, N. Premsr, C. Namwat, M. de Souza, E. Adams, et al. MOPH-TAVEG Investigators. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361:2209–2220. http://dx.doi.org/10.1056/NEJMoa0908492

Ritchie, A.J., S.L. Campion, J. Kopycnisky, Z. Moodie, Z.M. Wang, K. Pandya, S. Moore, M.K. Liu, S. Brackenridge, K. Kuldanek, et al. 2011. Differences in HIV-specific T cell responses between HIV-exposed and unexposed HIV-seronegative individuals. J. Virol. 85:3507–3516. http://dx.doi.org/10.1128/JVI.02444-10

Roederer, M., and R.A. Koup. 2003. Optimized determination of T cell epitope responses. J. Immunol. Methods. 274:221–228. http://dx.doi.org/10.1016/S0022-1759(03)00423-4

Rosenberg, E.S., J.M. Billingsley, A.M. Caliendo, S.L. Boswell, P.E. Sax, S.A. Kalams, and B.D. Walker. 1997. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 278:1447–1450. http://dx.doi.org/10.1126/science.278.5342.1447

Sallusto, F., A. Lanzavecchia, K. Araki, and R. Ahmed. 2010. From vaccines to memory and back. Immunity. 33:451–463. http://dx.doi.org/10.1016/j.immuni.2010.06.008

Su, L.F., B.A. Kidd, A. Han, J.J. Kotzin, and M.M. Davis. 2013. Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity. 38:373–383. http://dx.doi.org/10.1016/j.immuni.2012.10.021

UniProt Consortium. 2012. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 40:D71–D75. http://dx.doi.org/10.1093/nar/gkr981

W.H.O. 1978. Ebola haemorrhagic fever in Zaire, 1976. Bull. World Health Organ. 56:271–293.

Younes, S.A., B. Yassin-Diab, A.R. Dumont, M.R. Boulouss, Z. Grossman, J.P. Rount, and R.P. Sekaly. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J. Exp. Med. 198:1909–1922. http://dx.doi.org/10.1084/jem.20031598

Preexisting HIV-1–specific CD4 T cells | Campion et al.
Table S3. HIV-1 specific epitopes mapped in the pre-exposure repertoire were compared against the Los Alamos database to establish whether they had previously been reported in natural infection.

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 33→50	Leuk 7	Central Memory	HLWASRELERFALNPGL	Ramduth et al., 2009
			K-I--------V	Chevalier et al., 2011
			K-I--------V	Kaufmann et al., 2004
			I--------VN	Wahren et al., 1989
			I--------VN	Koepp et al., 2006
			V--------VN	Jones et al., 2009
			------------	Kaufmann et al., 2004
			------------	Ranasinghe et al., 2012
Gag 41→58	Leuk 7	Naive	LERFALNPGLLETSEGCK	Kaushik et al., 2005
			------------	Ramduth et al., 2009
Gag 57→74	Leuk 7	Central Memory	CKQIIKQLQALQGTTEE	Chevalier et al., 2011
			------------	Kaufmann et al., 2004
			------------	Jones et al., 2009
			------------	Fonseca et al., 2006
Gag 73→90	Leuk 9	Central Memory	EELRSLYNTVFATLVCHE	Chevalier et al., 2011
			TGS------------	Kaufmann et al., 2004
			TGS------------	Jones et al., 2009
			------------	Geels et al., 2006
Gag 81→98	Leuk 10	Naive	TVATLYCVHEKIEVRDTK	Chevalier et al., 2011
			SLYN------------	Kaufmann et al., 2004
			SLYN------------	Geels et al., 2006
Gag 228→245	Leuk 9	Central Memory	MREPQGSDIAGTTSTLQE	Boritz et al., 2007
			------------	Koeppe et al., 2006
Gag 236→253	Leuk 9	Central Memory	IAGTTSTLQEQIAMMTSN	Boritz et al., 2007
			PRGSD------------	Koeppe et al., 2006
			GSD------------	Kaushik et al., 2005

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
HBX2 location	Subject ID	CD4⁺ T cell subset	Sequence	Reference
Gag 260→277	Leuk 7	Effector Memory	DIYKRWIILGLNKIVRMY	Ramduth et al., 2009
			PVG---------	De Groot et al., 2005
			VGE--SPV	Boaz et al., 2003
			------------	Wilson et al., 2001
			------------	Vingert et al., 2010
			------------	Rosenberg et al., 1997
			SP	Koepp et al., 2006
			------------	Jones et al., 2009
			------------	Kaufmann et al., 2004
			------------	Adams et al., 1997
Gag 268→285	Leuk 7	Naïve	LGLNKIVRMYSVPSILDI	Ramduth et al., 2011
			I-----------	De Groot et al., 2005
			PVGDYKYRWI-	Ramduth et al., 2009
			VGEKYRWI-	De Groot et al., 2005
			YKRWI-	Boaz et al., 2003
			YKRWI-	Wilson et al., 2001
			YKRWI-	Vingert et al., 2010
			YKRWI-	Rosenberg et al., 1997
			I-----------	Koepp et al., 2006
			------------	Jones et al., 2009
			------------	Kaufmann et al., 2004
			------------	Kaufmann et al., 1997
			------------	Adams et al., 1997
Gag 276→293	Leuk 7	Naïve	MYSPVSIILDIRKQPKEFF	De Groot et al., 2005
			IGLNKIVR-	De Groot et al., 2005
			LGLNKIVR-	Chevalier et al., 2011
			------------	Schrier et al., 1989
			------------	Younes et al., 2003
Gag 292→309	Leuk 7	Naïve	PFDYVYDFKTLRAEQVA	Schrier et al., 1989
			ILDIRQGPKE-	Younes et al., 2003
			IIRQGPKE-	Kaufmann et al., 2004
			GPK-	Kaufmann et al., 2004
			GPK-	Adams et al., 1997
			E-----------	Boritz et al., 2007

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Supplementary Table 3 (Continued):

Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 397→414	Leuk 10	Naïve	GKEHIAHRCRAPKRKGKCW	Kaufmann et al., 2004
			----K-----------K	Chevalier et al., 2011
			----KN--------	
Gag 429→446	Leuk 7	Naïve	RQANFLGKMWPHKGKRPG	Wahren et al., 1989
	Leuk 7	Naïve	MKDCTE----------	Kaufmann et al., 2004
	Leuk 10	Naïve	MKDCTE----------	Chevalier et al., 2011
			MKDCTE----------	Kaufmann et al., 2004
			MKDCTE----------	Ramduth et al., 2009
			MKDCTE----------	Chevalier et al., 2011
Gag 445→462	Leuk 7	Naïve	PNGLFQNRPEPTAPPAES	Chevalier et al., 2011
	Leuk 7	Naïve	PNGLFQNFR----	
	Leuk 10	Naïve	PNGLFQNR----	
			PNGLFQNR---------	
Gag 453→472	Leuk 7	Naïve	PEPTAPPAEPRFEETTP	Chevalier et al., 2011
	Leuk 7	Naïve	PNGLFQNFR----	
	Leuk 10	Naïve	PNGLFQNR---------	
Pol 313→330	Leuk 7	Naïve	AIFQSSMTKIEFFRQAN	Wilson et al., 2001
Pol 377→394	Leuk 7	Central Memory	QKEPEFWMGYELHPDKW	Boaz et al., 2003
Pol 713→730	Leuk 10	Central Memory	KVLFLOGIDKQEEHEKY	
Pol 777→794	Leuk 6	Effector Memory	QLDCTHLEKVIYLNWW	

Pol 945→962	Leuk 7	Central Memory	SRDPIWKPGAKILWKGEG	Fonseca et al., 2006
Env 1→19	Leuk 9	Central Memory	MRVRIILRCQWWIGI	
Env 9→27	Leuk 9	Central Memory	NCQWWINGILFWMLMI	
Env 90→107	Leuk 7	Naïve	TNMEIKNCSPNITTEL	Geretti et al., 1994
			TNPTSSSSWGMMEK----	Mirano-Bascos et al., 2008
			SSSGRIMEMK-------	Geretti et al., 1994
			MEK-------------SIRNK	Mirano-Bascos et al., 2008
			-----------------	Geretti et al., 1994

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Env 156→173	Leuk 9	Central Memory	NCSFNITELRKKQKVY GEIK---------TSIRG-V-- MEKGEIK---------Y----SIRNK K---------I----	Geretti et al., 1994 Mirano-Bascos et al., 2008 Gaudebout et al., 1997
Env 164→181	Leuk 8	Effector Memory	ELRKKQKVYALFYRLDIVPLNENNS ----------VPLTK	Harari et al., 2008
Env 172→189	Leuk 8	Effector Memory	VYALFYRDIVPLNENNS ----------VPLTK	Harari et al., 2008
Env 213→230	Leuk 7	Naive	IFINHYCAPAGYAILKCNN P---------F---------K	Geretti et al., 1994
			----------F--------	Ranasinghe et al., 2012
Env 269→286	Leuk 10	Naive	LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
			LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
Env 277→294	Leuk 7	Naive	LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
			LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
Env 285→302	Leuk 7	Naive	LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
			LTVIIRSENLTVNLIIVTLQKVSKKLKE	Mirano-Bascos et al., 2008 De Groot et al., 2004
Env 334→351	Leuk 7	Central Memory	SEDKWNKTLQVSKKLKE	Geretti et al., 1994
Env 342→360	Leuk 7	Central Memory	LQVSKKLKEHPKNTIK	Geretti et al., 1994
Env 411→428	Leuk 7	Central Memory	NSTITLPCRIKQIINMQ D---------KVGR D---------KVGR D---------KVGR D---------KVGR D---------KVGR	Geretti et al., 1994. Harari et al., 2008 Mirano-Bascos et al., 2008 Koup et al., 2010
Env 419→436	Leuk 7	Central Memory	RIKQIINMQQEVGRAMYA DTITLPC---------K- DTITLPC---------K- DTITLPC---------K- DTITLPC---------K-	Geretti et al., 1994. Harari et al., 2008 Mirano-Bascos et al., 2008 Koup et al., 2010
Env 435→452	Leuk 7	Naive	YAPPIAGNITCKSNITGL	Geretti et al., 1994. Harari et al., 2008 Mirano-Bascos et al., 2008 Koup et al., 2010

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Env 477→494	Leuk 7	Naïve	DNRSELYKYKVEIKPL	Geretti et al., 1994.
			GDMR----------	Wahren et al., 1989
			DMR----------	Geretti et al., 1994.
			------K------GVAPTKA	Mirano-Bascos et al., 2008
			------R------GVAPTRAK	
Env 565→582	Leuk 9	Effector Memory	MLQLIVWGIKQLTRVLA	Malhotra et al., 2003
	Leuk 8	Central Memory	-------------	Wahren et al., 1989
			QQHL----------	Geretti et al., 1994.
Env 613→630	Leuk 8	Effector Memory	SWSNKSQEDIDNDNWMTWQ	
Env 669→686	Leuk 7	Naïve	LWNNFDITNWLYIKIFI	Wahren et al., 1989
			AS-------N------	Schrier et al., 1989
Env 725→742	Leuk 9	Central Memory	RGDORLGRআEEEGĘQDR	
			-------R-----DR	Schrier et al., 1989
Env 733→750	Leuk 9	Central Memory	IEEEGĘQDRĐRŚIŔLVS	
			GR-------R-----DR	Schrier et al., 1989
Env 773→790	Leuk 8	Effector Memory	DFIŁIAARAVELLGRSSL	
Env 790→807	Leuk 6	Effector Memory	WEAKŁYGŚLVQYWGŁEŁ	Berzofsky et al., 1991
	Leuk 8	Central Memory	RİVELLLGRGŚ-------------KNSAVŚ	Berzofsky et al., 1991
Env 798→815	Leuk 6	Effector Memory	SĻQVYWGŁEĻKKSASIĻLL	
Env 830→847	Leuk 7	Central Memory	IELIĞRİCRAINPIŘRI	
Nef 73→90	Leuk 9	Central Memory	QVPLRPMTYKAADFDSFF	De Groot et al., 2005.
			VGFPRP----------	Ranasinghe et al., 2012
			-------H-LKEKGGL	
Nef 129→146	Leuk 10	Naïve	PPGVGRYPTFGWCFKLV	Pancré et al., 2007
			-------Y-----PVEPĐKVEEANKG	
Rev 17→34	Leuk 9	Central Memory	RIIKĻYQSNPYPKPEGT	
Rev 49→66	Leuk 10	Central Memory	QŘQIŅISERILSTCLGR	Blazević et al., 1995
			RRRWRER-------	
Vif 1→18	Leuk 9	Central Memory	MENVQVLIVWQVĐRMI	De Groot et al., 2005.
			-------RTWNSLVK	
Vif 81→98	Leuk 10	Central Memory	LĞHGVŚIĘWŁRŁRŚTȘQV	Ranki et al., 1997
			-------KQ------	
Vpu 2→20	Leuk 8	Central Memory	ARVDYRLGŚVČALIVALII	
Vpu 17→34	Leuk 9	Central Memory	IIAIVVWTVYIĘRKL	
Vpu 33→50	Leuk 10	Naïve	LĽQRKŘIDWLIRRİRERĂ	
Vpu 41→58	Leuk 9	Central Memory	WĽIRRİRERĂAESĐGNESE	
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.

References

Adams, S.L., R.A. Bitt, and G.J. Stewart. 1997. T-cell response to HIV in natural infection: optimized culture conditions for detecting responses to gag peptides. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology. 15:257–263.

Berzofsky, J.A., C.D. Pendleton, M. Clerici, J. Ahlers, D.R. Lucey, S.D. Putney, and G.M. Shearer. 1991. Peptides containing multideterminant clusters of human immunodeficiency virus envelope induce murine and human T-cell responses in diverse histocompatibility types. Trans. Assoc. Am. Physicians. 104:69–77.

Blazevic, V., A. Ranki, and K.J. Krohn. 1995. Helper and cytotoxic T cell responses of HIV type 1–infected individuals to synthetic peptides of HIV type 1 Rev. AIDS Res. Hum. Retroviruses. 11:1335–1342.

Boaz, M.J., A. Waters, S. Murad, P.J. Easterbrook, E. D’Sousa, C. van Weelie, and A. Vyakarnam. 2003. CD4 responses to conserved HIV-1 T helper epitopes show both negative and positive associations with virus load in chronically infected subjects. Clin. Exp. Immunol. 134:454–463.

Borít, E., L.I. Rapaport, T.B. Campbell, J.R. Koeppe, and C.C. Wilson. 2007. CD4+ T cell targeting of human immunodeficiency virus type 1 (HIV-1) peptide sequences present in vivo during chronic, progressive HIV-1 disease. Virology. 361:34–44.

Chevalier, M.F., B. Julg, A. Pyo, M. Flanders, D.V. Hunter, S. Mujib, G. Gyenes, R.D. Mason, R. Mohamed, K.S. MacDonald, C. Kovacs, and M.A. Koeppe, J.R., T.B. Campbell, E.L. Rapaport, and C.C. Wilson. 200--.

Mathiesen, T., A. Sönnerborg, and B. Wahren. 1989. Detection of antibodies against myelin basic protein and increased levels of HIV-IgG antibodies and HIV antigen after solubilization of immune complexes in sera and CSF of HIV infected patients. Virology. 21:2–9.

Mirano-Bascon, D., M. Tary-Lehmann, and S.J. Landry. 2008. Antigen structure influences helper T cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. Eur. J. Immunol. 38:1231–1237.

Papiné, V., N. Delhom, Y. Yazdanpanah, A. Delanoye, M. Delacre, S. Depil, O. Moráles, Y. Mouton, and C. Auriault. 2007. Presence of HIV-1 Nef-specific CD4+ T cell response is associated with non-progression in HIV-1 infection. Vaccine. 25:5927–5937.
Ramduth, D., C.L. Day, C.F. Thobakgale, N.P. Mkhwanazi, C. de Pierres, S. Reddy, M. van der Stok, Z. Mncube, K. Nair, E.S. Moodley, et al. 2009. Immunodominant HIV-1 C4d+ T cell epitopes in chronic untreated clade C HIV-1 infection. *PLoS ONE* 4:e5013.

Ranasinghe, S., M. Flanders, S. Cutler, D.Z. Soghoian, M. Ghebremichael, I. Davis, M. Lindqvist, F. Pereyra, B.D. Walker, D. Heckerman, and H. Streeck. 2012. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. *J. Virol.* 86:277–283.

Ranki, A., J. Sumi, V. Blazevic, P. Holmström, S. Mattinen, K. Krohn, and S.L. Valle. 1997. T-cell recognition of HIV antigens in HIV-seroreverted persons. *AIDS* 11:132–133.

Ritchie, A.J., S.L. Campion, J. Kopycinski, Z. Moodie, Z.M. Wang, K. Pandya, S. Moore, M.K. Liu, S. Brackenridge, K. Kuldane, K. Legg, M.S. Cohen, E.L. Dchwart, B.F. Haynes, S. Fidler, A.J. McMichael, and N. Gootentilleke. 2011. Differences in HIV-specific T cell responses between HIV-exposed and–unexposed HIV-seronegative individuals. *J. Virol.* 85:3507–3516.

Rosenberg, E.S., J.M. Billingsley, A.M. Caliendo, S.L. Boswell, P.E. Sax, S.A. Kalams, and B.D. Walker. 1997. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. *Science.* 278:1447–1450.

Schrier, R.D., J.W. Giann Jr., R. Landes, C. Lockshin, D. Richman, A. McCutchan, C. Kennedy, M.B. Oldstone, and J.A. Nelson. 1989. T cell recognition of HIV synthetic peptides in a natural infection. *J. Immunol.* 142:1166–1176.

Vingert, B., S. Perez-Patridge, P. Jeannin, O. Lambotte, F. Boufassa, F. Lemaitre, W.W. Kwok, I. Theodorou, J.F. Delfraissy, J. Théze, and L.A. Chakrabarti; ANRS EP36 HIV Controllers Study Group. 2010. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. *PLoS Pathog.* 6:e1000780.

Wahren, B., J. Rosen, E. Sandström, T. Mathiesen, S. Modrow, and H. Wigzell. 1989. HIV-1 peptides induce a proliferative response in lymphocytes from infected persons. *J. Acquir. Immune Defic. Syndr.* 2:448–456.

Wilson, C.C., B. Palmer, S. Southwood, J. Sidney, Y. Hagashimoto, E. Appella, R. Chesnut, A. Sette, and B.D. Livingston. 2001. Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. *J. Virol.* 75:4195–4207.

Younes, S.A., B. Yassine-Diab, A.R. Dumont, M.R. Boulassel, Z. Grossman, J.P. Routy, and R.P. Sekaly. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. *J. Exp. Med.* 198:1909–1922.
Table S3. HIV-1 specific epitopes mapped in the pre-exposure repertoire were compared against the Los Alamos database to establish whether they had previously been reported in natural infection.

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 33→50	Leuk 7	Central Memory	HLVNASRELERFALNPGL	Ramduth et al., 2009
			K-I---------L	Chevalier et al., 2011
			K-I---------V	Kaufmann et al., 2004
			-I----------VN	Wahren et al., 1989
			-I----------VN	Koeppe et al., 2006
			-I----------VN	Jones et al., 2009
			---------------	Kaufmann et al., 2004
			---------------	Ranasinghe et al., 2012
Gag 41→58	Leuk 7	Naïve	LERFALNPGLLETSEGCK	Kaushik et al., 2005
			---------------	Ramduth et al., 2009
Gag 57→74	Leuk 7	Central Memory	CQPQQSHQALAPQGTE	Chevalier et al., 2011
Gag 73→90	Leuk 9	Central Memory	EELRSLYNTVATLYCVHE	Kaufmann et al., 2004
			TGS------------	Jones et al., 2009
			TGS------------	Fonseca et al., 2006
Gag 81→98	Leuk 10	Naïve	TVATLYCVHEKIEVRDTK	Chevalier et al., 2011
			SLYN-----------	Kaufmann et al., 2004
			SLYN-----------	Geels et al., 2006
Gag 228→245	Leuk 9	Central Memory	MREPRGSDIAGTTSTLQE	Boritz et al., 2007
			---------------	Koepe et al., 2006
Gag 236→253	Leuk 9	Central Memory	IAGTTSTLQEIQIAMTSN	Boritz et al., 2007
			PRGSD-----------	Koepe et al., 2006
			GSD------------	Kaushik et al., 2005

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 260→277	Leuk 7	Effector Memory	DIYKRWIILGLNKIVRMY	Ramduth et al., 2009
			PVG------	De Groot et al., 2005
			VGE------	Boaz et al., 2003
			---------	Wilson et al., 2001
			---------	Vingert et al., 2010
			---------	Rosenberg et al., 1997
			---------	Koepe et al., 2006
			---------	Jones et al., 2009
			---------	Kaufmann et al., 2004
			---------	Adams et al., 1997
Gag 268→285	Leuk 7	Naïve	LGLNKIVRMYSVPSILD	Ritchie et al., 2011
			I---------	De Groot et al., 2005
			---------	Ramduth et al., 2009
			---------	De Groot et al., 2005
			---------	Boaz et al., 2003
			---------	Wilson et al., 2001
			---------	Vingert et al., 2010
			---------	Rosenberg et al., 1997
			---------	Koepe et al., 2006
			---------	Jones et al., 2009
			---------	Kaufmann et al., 2004
			---------	Adams et al., 1997
Gag 276→293	Leuk 7	Naïve	MYSVPSILDIKQGPEFF	Schrier et al., 1989
			I---------	De Groot et al., 2005
			---------	Chevalier et al., 2011
			---------	Schrier et al., 1989
			---------	Younes et al., 2003
Gag 292→309	Leuk 7	Naïve	PFRDYVDRFFKTLRAEQA	Wahren et al., 1989
			I---------	De Groot et al., 2005
			---------	Schrier et al., 1989
			---------	Younes et al., 2003

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Supplementary Table 3 (Continued):

Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 397→414	Leuk 10	Naïve	KEGHIARNCRAFRKKGCW	Kaufmann et al., 2004
			---K----	
			---KN--------	
Gag 429→446	Leuk 7	Naïve	RQANFLQRIWPSHKGRPG	Wahren et al., 1989
			MKDCTE-------	

Gag 445→462	Leuk 7	Naïve	PGNFLQRNPPEPTAPPAES	Chevalier et al., 2011
			---S-----------	

Gag 453→472	Leuk 7	Naïve	PEPTAPPAESFRFEETTP	Chevalier et al., 2011
	Leuk 10	Naïve	FLQSR---------	Kaufmann et al., 2004
			---E-----------	

Gag 461→480	Leuk 7	Naïve	ESFRFEETTPAPRQEPKD	Kaufmann et al., 2004
			TAPPE---------	Kaushik et al., 2005
Pol 313→330	Leuk 7	Naïve	AIFQSSMTKILEPFRAQN	Wilson et al., 2001
			SP-------------	Boaz et al., 2003
Pol 377→394	Leuk 7	Central Memory	QKEPPFLWELHPSWK	
Pol 713→730	Leuk 10	Central Memory	KVLFLOGIDKQEEHEKY	
Pol 777→794	Leuk 6	Effector Memory	QLDCTHLGEKILVAYWS	

Pol 945→962	Leuk 7	Central Memory	SRDPIWKGPALILHPSWK	
Env 1→19	Leuk 9	Central Memory	MRVRGLRNCQQWINGI	
Env 9→27	Leuk 9	Central Memory	NQQWINGILGFMML	
Env 90→107	Leuk 7	Naïve	TENFVMKNDVDMQHED	
			PQEVFLVNV---	Fonseca et al., 2006

Env 148→165	Leuk 9	Central Memory	TNTMGEIKNCSPNITTEL	Mirano-Bascos et al., 2008
	Leuk 9	Central Memory	TNPTSSSNGMMEK-	Geretti et al., 1994
			SSSRGRIMEMEK---	Mirano-Bascos et al., 2008
			MEK------------	Geretti et al., 1994

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Env 156→173	Leuk 9	Central Memory	NCSFNITELRDKQKVYGEIK---------TSIRG-V--MKGEIK-Y---------SIRNK	Geretti et al., 1994
				Mirano-Bascos et al., 2008
				Gaudebout et al., 1997
Env 164→181	Leuk 8	Effector Memory	ELRDQKVAYALFYRLDI-------------VPLTK	Harari et al., 2008
Env 172→189	Leuk 8	Effector Memory	VYALFYRDLIVPLNENNS---------------------	Harari et al., 2008
Env 213→230	Leuk 7	Naive	IPINHYCAPAGYAILKCNNF---------K	Geretti et al., 1994
				Ranasinghe et al., 2012
Env 269→286	Leuk 10	Naive	EIIIRSENLTNNAKTIIVDIV-----------Q	Mirano-Bascos et al., 2008
				De Groot et al., 2004
Env 277→294	Leuk 7	Naive	LTNNAKTIIVHLNESVEINF---------QIN	Malhotra et al., 2003
			IRSVNF---------Q---------T	Geretti et al., 1994
			SAF---------Q-	Wahren et al., 1989
Env 285→302	Leuk 7	Naive	IVHLNESVEIVCTRPNNDVF---------F	Malhotra et al., 2003
				Geretti et al., 1994
Env 334→351	Leuk 7	Central Memory	SEDKWKTLQVSKKLKE	
Env 342→360	Leuk 7	Central Memory	LQVSKKLKEHFPNKTIK	
Env 411→428	Leuk 7	Central Memory	NSTITLPCRIKQIGINWQD---------KVG	Geretti et al., 1994.
	Leuk 10	Naive		Harari et al., 2008
				Mirano-Bascos et al., 2008
				Koup et al., 2010
Env 419→436	Leuk 7	Naive	RIKQIGINMQWQEVGRAMYAD---------KVG	Geretti et al., 1994.
	Leuk 7	Central Memory		Harari et al., 2008
	Leuk 10	Naive		Mirano-Bascos et al., 2008
				Koup et al., 2010
Env 435→452	Leuk 7	Naive	YAPPIAGNITCKSNITGL	

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
HBX2 location	Subject ID	CD4⁺ T cell subset	Sequence	Reference
Env 477→494	Leuk 7	Naive	**DNWRSELYKYKVVEIKPL**	Geretti et al., 1994.
			GDIMR	Wahren et al., 1989.
			DMR	Geretti et al., 1994.
			-----------K-------**GVAPTKA**	
			-----------R-------**GVAPTRAK**	
Env 565→582	Leuk 9	Effector Memory	**MLQLIVWGIKQLQTRVA**	Malihotra et al., 2003.
	Leuk 8	Central Memory	**---------------**-**VERYLK**	Wahren et al., 1989.
			QQHL	
Env 613→630	Leuk 8	Effector Memory	**SWSNKSQEDWNMTM**	
Env 669→686	Leuk 7	Naive	**LWNWFDTINWLWYIKIFI**	
			AS	
Env 725→742	Leuk 9	Central Memory	**RGPDRLRIEEEGEQDR**	Schrier et al., 1989.
			----------------**R**-------**DR**	
Env 733→750	Leuk 9	Central Memory	**IEEEEGEQDQRSIRLV**	Schrier et al., 1989.
			GR	
Env 773→790	Leuk 8	Effector Memory	**DFILIAARAVELLGRSSL**	
Env 790→807	Leuk 6	Effector Memory	**WEALKYLGSLVQYWGLEL**	Berzofsky et al., 1991.
	Leuk 8	Central Memory	**RIVELLGRG**	
			----------------**KNSAVS**	
Env 798→815	Leuk 6	Effector Memory	**SLVQYWGLLEKKAISLL**	Berzofsky et al., 1991.
Env 830→847	Leuk 7	Central Memory	**IELIQRICAIINPRRI**	
Nef 73→90	Leuk 9	Central Memory	**QVPLRMHTKAADFDSFF**	De Groot et al., 2005.
			VGFPVRP	Ranasinghe et al., 2012.
			----------------**H-LKEKGGL**	
Nef 129→146	Leuk 10	Naive	**PGPGVRYPLTFGCFKLV**	Pancré et al., 2007.
			----------------**PVEPKVEEANKG**	
Rev 17→34	Leuk 9	Central Memory	**RIIKILQSNFYPKPEGT**	
Rev 49→66	Leuk 10	Central Memory	**QRQINSERILSTCLGR**	Blazevic et al., 1995.
			RRRRRER	
Vif 1→18	Leuk 9	Central Memory	**MENRWQVLWVQVDRMKI**	De Groot et al., 2005.
			----------------**RTWNSLV**	
Vif 81→98	Leuk 10	Central Memory	**LGHGVSIEWLRRYSTQV**	Ranki et al., 1997.
			----------------**KQ**	
Vpu 2→20	Leuk 8	Central Memory	**ARVDYRLGVGVALII**	
Vpu 17→34	Leuk 9	Central Memory	**IIAVVWTVYIYRKL**	
Vpu 33→50	Leuk 10	Naive	**LLRQRKIDWLRIRRERA**	
Vpu 41→58	Leuk 9	Central Memory	**WLRIRIRERAEDSGNESE**	
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.

References

Adams, S.L., R.A. Bitt, and G.J. Stewart. 1997. T-cell response to HIV in natural infection: optimized culture conditions for detecting responses to gag peptides. J. Acquir. Immune Defic. Syndr. 15:257–263.

Berzofsky, J.A., C.D. Pendleton, M. Clerici, J. Ahlers, D.R. Lucey, S.D. Putney, and G.M. Shearer. 1991. Peptides containing multideterminant clusters of human immunodeficiency virus envelope induce murine and human T-cell responses in diverse histocompatibility types. Trans. Assoc. Am. Physicians. 104:69–77.

Blazevic, V., A. Ranki, and K.J. Krohn. 1995. Helper and cytotoxic T cell responses of HIV type 1–infected individuals to synthetic peptides of HIV type 1 Rev. AIDS Res. Hum. Retroviruses. 11:1335–1342.

Boaz, M.J., A. Waters, S. Murad, P.J. Easterbrook, E. D’Sousa, C. van Wheeley, and A. Vyakarnam. 2003. CD4 responses to conserved HIV-1 T helper epitopes show both negative and positive associations with virus load in chronically infected subjects. Clin. Exp. Immunol. 134:454–463.

Bonitz, E., E.L. Rapaport, T.B. Campbell, J.R. Koeppe, and C.C. Wilson. 2007. CD4+ T cell targeting of human immunodeficiency virus type 1 (HIV-1) peptide sequences present in vivo during chronic, progressive HIV-1 disease. Virology. 361:34–44.

Chevalier, M.F., B. Julig, A. Pyo, M. Flanders, S. Ranasinghe, D.Z. Sohogian, D.Z. Soghoian, D.S. Kwon, J. Rychert, J. Lian, M.I. Muller, et al. 2011. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 85:733–741.

De Groot, A.S., E.A. Bishop, B. Khan, M. Lilly, L. Marcon, J. Franco, K.H. Mayer, C.C. Carpenter, and W. Martin. 2004. Engineering immunogenic consensus T helper epitopes for a cross-clade HIV vaccine. Methods. 34:476–487.

De Groot, A.S., L. Marcon, E.A. Bishop, D. Rivora, M. Kutzler, D.B. Weiner, and W. Martin. 2005. HIV vaccine development by computer assisted design: the GAIA vaccine. Vaccine. 23:2136–2148.

Fonseca, S.G., A. Coutinho-Silva, L.A. Fonseca, A.C. Segurado, S.L. Morzes, H. Rodrigues, J. Hammer, E.G. Källå, J. Sidney, A. Sette, et al. 2006. Identification of novel consensuses CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS. 20:2263–2273.

Gaudebout, P., D. Zeliszewski, J.J. Golvan, C. Pignal, S. Le Gac, F. Borras, Cuesta, and G. Sterken. 1997. Binding analysis of 95 HIV gp120 peptides to HLA-DR1101 and –DR0401 evidenced many HLA-class II binding regions on gp120 and suggested several promiscuous regions. J. Acquir. Immune Defic. Syndr. Hum. Retroviro. 14:91–101.

Geel, M.J., C.A. Jansen, E. Baan, L.M. De Cuyper, M.J. Muller, W.A. Paxton, and D. van Baarle. 2006. CTL escape and increased viremia irrespective of HIV-specific CD4+ T-helper responses in two HIV-infected individuals. Virology. 345:209–219.

Geretti, A.M., C.A. Van Baalen, J.C. Borrells, C.A. Van Els, and A.D. Oosterhuis. 1994. Kinetics and specificities of the T helper-cell response to gp120 in the asymptomatic stage of HIV-1 infection. Sand. J. Immunol. 39:355–362.

Harada, S., A.P. Bart, W. Stühr, G. Tapia, M. Garcia, E. Medjina-Rais, S. Burnet, C. Cellera, O. Erlwein, T. Barber, et al. 2008. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med. 205:63–77.

Jones, R.B., F.Y. Yue, X.X. Gu, D.V. Hunter, S. Mubij, G. Gyeren, R.D. Mason, R. Mohamed, K.S. MacDonald, C. Kovacs, and M.A. Ostrowski. 2009. Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations. J. Virol. 83:8722–8732.

Kaufmann, D.E., P.M. Bailey, J. Sidney, B. Wagner, P.J. Norris, M.N. Johnston, L.A. Cosmi, M.M. Addo, M. Lichterfeld, M. Altfeld, et al. 2004. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J. Virol. 78:4463–4477.

Kauikh, S., M. Vajpayee, N. Wig, and P. Seth. 2005. Characterization of HIV-1 Gag-specific T cell responses in chronically infected Indian population. Clin. Exp. Immunol. 142:388–397.

Kosse, J.K., T.B. Campbell, E.L. Rapaport, and C.C. Wilson. 2006. HIV-1 T cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. J. Acquir. Immune Defic. Syndr. 41:140–148.

Koeppe, R.A., M. Roederer, L. Lamoreaux, J. Fischer, L. Novak, M.C. Nason, B.D. Larkin, M.E. Enama, J.E. Ledgerwood, R.T. Bailer, et al., VRC 010 Study Team. 2010. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS ONE. 5:e9015.

Malhotra, U., S. Holte, T. Zhu, E. Delpit, C. Huntsberry, A. Sette, R. Shankarappa, J. Maenza, L. Corey, and M.J. McElrath. 2003. Early induction and maintenance of Env-specific T-helper cells following human immunodeficiency virus type 1 infection. J. Virol. 77:2663–2674.

Mathiesen, T., A. Sonnemberg, and B. Wahren. 1989. Detection of antibodies against myelin basic protein and increased levels of HIV-IgG antibodies and HIV antigen after solubilization of immune complexes in sera and CSF of HIV infected patients. Virolog. 21:1–9.

Mirano-Bascon, D., M. Tary-Lehmnam, and S.J. Landry. 2008. Antigen structure influences helper T-cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. Eur. J. Immunol. 38:1231–1237.

Paré, V., N. Delhom, Y. Yazdanpanah, A. Delanoye, M. Delacret, S. Depul, O. Moralis, Y. Mouton, and C. Auriat. 2007. Presence of HIV-1 Nef specific CD4+ T cell response is associated with non-progression in HIV-1 infection. Virology. 25:5927–5937.

Table S3. HIV-1 specific epitopes mapped in the pre-exposure repertoire were compared against the Los Alamos database to establish whether they had previously been reported in natural infection.

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 33→50	Leuk 7	Central Memory	HLVNASRERFALNPGL	Ramduth et al., 2009
			K--------L	Chevalier et al., 2011
			K--------V	Kaufmann et al., 2004
			I--------V	Wahren et al., 1989
			I--------VN	Koepe et al., 2006
			I--------VN	Jones et al., 2009
			I--------VN	Kaufmann et al., 2004
			I--------VN	Ranasinghe et al., 2012
Gag 41→58	Leuk 7	Naive	LERFALNPGLLETSEGCK	Kaushik et al., 2005
			---------------	Ramduth et al., 2009
Gag 57→74	Leuk 7	Central Memory	CKQIIKQLQPAIQTGE	
Gag 73→90	Leuk 9	Central Memory	EELRSLYNTVATLYCVHE	Chevalier et al., 2011
			TGS---------------	Kaufmann et al., 2004
			TGS---------------	Jones et al., 2009
			---------------	Fonseca et al., 2006
Gag 81→98	Leuk 10	Naive	TVATLYCVHEKIETRTK	Chevalier et al., 2011
			SLYN--------QR---	Kaufmann et al., 2004
			SLYN--------QR---	Geels et al., 2006
Gag 228→245	Leuk 9	Central Memory	MREPGRSDIAGTTSLQE	Boritz et al., 2007
			---------------	Koepe et al., 2006
Gag 236→253	Leuk 9	Central Memory	IAGTTSTLQEQIAAMTSN	Boritz et al., 2007
			PRGSD---------------	Koepe et al., 2006
			GSD---------------	Kaushik et al., 2005

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Gag 260→277	Leuk 7	Effector Memory	DYKRWIILGLNKIVRMY	Ramduth et al., 2009
			PVG----------	De Groot et al., 2005
			VGE---------SPV	Boaz et al., 2003
			-------------	Wilson et al., 2001
			---------------	Vingert et al., 2010
			---------------	Rosenberg et al., 1997
			SP-------------	Koepe et al., 2006
			SP-------------	Jones et al., 2009
			SPTS-----------	Kaufmann et al., 2004
			SPTSILD---------	Kaufmann et al., 2004
			SPVSILDIRQGP----	De Groot et al., 2005
Gag 268→285	Leuk 7	Naïve	LGLNKIVRMSPVSLID	Ritchie et al., 2011
			PVGDIYKRWI------	De Groot et al., 2005
			VGEDIYKRWI------	Ramduth et al., 2009
			YKRWI----------	De Groot et al., 2005
			YKRWI----------	Boaz et al., 2003
			YKRWI----------	Wilson et al., 2001
			YKRWI----------	Vingert et al., 2010
			YKRWI----------	Rosenberg et al., 1997
			I-------------	Koepe et al., 2006
			T-------------	Jones et al., 2009
			T-------------	Kaufmann et al., 2004
			R-------------	De Groot et al., 2005
Gag 276→293	Leuk 7	Naïve	MYSVPVISLLDKQGKPETF	De Groot et al., 2005
			ILGLNKIVR--------	De Groot et al., 2005
			LGLNKIVR--------	Chevalier et al., 2011
			---------------	Schrier et al., 1989
			----------------	Younes et al., 2003
Gag 292→309	Leuk 7	Naïve	PFDYVDRFFKTLRAEQA	Schrier et al., 1989
			ILDIRQGPFK--------	Younes et al., 2003
			IRQGPFK--------	Wahren et al., 1989
			GPFK----------	Kaufmann et al., 2004
			QPFK----------	Adams et al., 1997
			E-------------	Boritz et al., 2007

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Supplementary Table 3 (Continued):

Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference			
Gag 397→414	Leuk 10	Naïve	KEGHIARNCRAPRKKGCW	Kaufmann et al., 2004			
			---K--------				
			---KN-------				
Gag 429→446	Leuk 7	Naïve	RQANFLQKNPSHKGRPG	Wahren et al., 1989			
			MKDCTE------				

Gag 445→462	Leuk 7	Naïve	PGNFLQRPEPTAPPAES	Chevalier et al., 2011			
	Leuk 7	Naïve	---S---------				
	Leuk 10	Naïve	-----------				
Gag 453→472	Leuk 7	Naïve	PEPTAPPAESFRFEETTP	Chevalier et al., 2011			
	Leuk 7	Naïve	FLQSR-------				
	Leuk 10	Naïve	--------------				
Pol 313→330	Leuk 7	Naïve	AIFQSSMTKILEFPRAQN	Wilson et al., 2001			
			SP-----------				
Pol 377→394	Leuk 7	Central Memory	QKEPPFLNGYELHPDKW	Boaz et al., 2003			
Pol 713→730	Leuk 10	Central Memory	KVLFLQGIDKQEEHEKY				
Pol 777→794	Leuk 6	Effector Memory	QLDTHELGGIIIVAWV	Fonseca et al., 2006			

Pol 945→962	Leuk 7	Central Memory	SRDPIWKGPAILWKGEQ				
Env 1→19	Leuk 9	Central Memory	MRVRGILRNCQWWINGI				
Env 9→27	Leuk 9	Central Memory	NCQWWINGILGFWMMLI				
Env 90→107	Leuk 7	Naïve	TENVFMMKNQDMVQHED				
			PQEVVNYN-----				
Env 148→165	Leuk 9	Central Memory	TNNMGIEKNCSPNITTEL	Mirano-Bascos et al., 2008			
	Leuk 9	Central Memory	TNPTSSSSGMEMEK--	Geretti et al., 1994			
			SSSGRMIMEK-----				
			MEK----------SIRNK				
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.							
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.							
HBX2 location	Subject ID	CD4^+ T cell subset	Sequence	Reference			
---------------	------------	---------------------	----------	-----------			
Env 156→173	Leuk 9	Central Memory	NCSFNITELRDKKQKVY	Geretti et al., 1994			
			GEIK------TSIRG-V--	Mirano-Bascos et al., 2008			
			MEKGEIK----Y----SIRNK	Gaudebout et al., 1997			
			K-------------------	-----------			
Env 164→181	Leuk 8	Effector Memory	ELRDKKQKVYALFYRLDI	Harari et al., 2008			
			---------------	-----------			
Env 172→189	Leuk 8	Effector Memory	VYALFYRLDIVPLNENNS	Harari et al., 2008			
			---------------	-----------			
Env 213→230	Leuk 7	Naive	IFIHYCAPAGYAILKCNN	Geretti et al., 1994			
			P-----------------F-	-			
			---------------	-----------			
Env 269→286	Leuk 10	Naive	EIIIRSLENNAKTIIV	Mirano-Bascos et al., 2008			
			-DIV-----F-D------Q	De Groot et al., 2004			
			-VV----------F-	-----------			
Env 277→294	Leuk 7	Naive	LTNNAKTIIVHLNESVEI	Malhotra et al., 2003			
			NF-D------------QIN	Geretti et al., 1994			
			IRSVNF-D---------Q--T-	Wahren et al., 1989			
			SANF-D---------Q-	-----------			
Env 285→302	Leuk 7	Naive	IVHLNESVEIVCTRPPNN	Malhotra et al., 2003			
			NF-D------------QIN	Geretti et al., 1994			
			IRSVNF-D---------Q--T-	Wahren et al., 1989			
Env 334→351	Leuk 7	Central Memory	SEDWKWNLQKVSKKLKE	Geretti et al., 1994			
Env 342→360	Leuk 7	Central Memory	LQVSQKLEKHFPMKTIK	Geretti et al., 1994			
Env 411→428	Leuk 7	Central Memory	NSTITLPCRISKIINNWQ	Geretti et al., 1994.			
	Leuk 10	Naive	D---------------------KVG	Harari et al., 2008			
			D---------------------KVG	Mirano-Bascos et al., 2008			
			-------------KVGKA	Koup et al., 2010			
			-------------KVGKA	-----------			
Env 419→436	Leuk 7	Naive	RIKIINNWQEVGRAMYA	Geretti et al., 1994.			
	Leuk 7	Central Memory	DTITLPC------------	Harari et al., 2008			
	Leuk 10	Naive	DTITLPC------------	Mirano-Bascos et al., 2008			
			ITLQC-------------K-	Koup et al., 2010			
			-------------K-	-----------			
Env 435→452	Leuk 7	Naive	YAPPIAGNITCKSNITGL	Geretti et al., 1994.			

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
HBX2 location	Subject ID	CD4⁺ T cell subset	Sequence	Reference
Env 477→494	Leuk 7	Naïve	DNWRSELYKYKVVEIKPL	Geretti et al., 1994.
			GDIMR----------	Wahren et al., 1989
			DMR----------	Geretti et al., 1994.
			-----K-----GVAPTKA	Mirano-Bascos et al., 2008
			-----R-----GVAPTRAK	
Env 565→582	Leuk 9	Effector Memory	MLQLIVWGIQLQVRDLA	Malihotra et al., 2003
	Leuk 8	Central Memory	-------------VERYLK	Wahren et al., 1989
			QQHL----------	
Env 613→630	Leuk 8	Effector Memory	SWSNKSQEDIWDNMTWMQ	
Env 669→686	Leuk 7	Naïve	LWNWDFTNWLWYIKIFI	
			AS----------N----------	Wahren et al., 1989
Env 725→742	Leuk 9	Central Memory	RGPDRLGRIEEEGEQDR	Schrier et al., 1989
			--------------R--DR	
Env 733→750	Leuk 9	Central Memory	IEEEGEQDRSIRLVS	Schrier et al., 1989
			GR----------R--DR	
Env 773→790	Leuk 8	Effector Memory	DFILIAARAVELGRSSL	
Env 790→807	Leuk 6	Effector Memory	WEALKYGLSQLQYWGEL	Berzofsky et al., 1991
	Leuk 8	Central Memory	RIVEGLRGR-------------KNSA	
			RIVEGLRGR-------------KNSA	Berzofsky et al., 1991
Env 798→815	Leuk 6	Effector Memory	SLVQYWGELKSAISLL	
Env 830→847	Leuk 7	Central Memory	IELIQRCIRAINPRRI	
Nef 73→90	Leuk 9	Central Memory	QVPLRPMTYKAADLSFF	De Groot et al., 2005.
			VGFPVRP----------	Ranasinghe et al., 2012
			--------------H-LKEKGL	
Nef 129→146	Leuk 10	Naïve	PPQGVYRFITFGCWFKLV	Pancré et al., 2007
			--------------Y--PVEPDKVEEANKG	
Rev 17→34	Leuk 9	Central Memory	RIIKLYQSNPYPKPEGT	
Rev 49→66	Leuk 10	Central Memory	QRGINSERILSTCLGR	Blazevic et al., 1995
			RRRRRER----------	
Vif 1→18	Leuk 9	Central Memory	MENRQVQLIVQVDRMKI	De Groot et al., 2005.
			--------------RTWNSLVK	
Vif 81→98	Leuk 10	Central Memory	LGHVGSIVWRLRYSTQV	Ranki et al., 1997
			--------------KQ----	
Vpu 2→20	Leuk 8	Central Memory	ARVDYRLGVCALIVALII	
Vpu 17→34	Leuk 9	Central Memory	IIIAIVWTVYIYRKLL	
Vpu 33→50	Leuk 10	Naïve	LLRQKIDWLIRIRERA	
Vpu 41→58	Leuk 9	Central Memory	WLIRIRERAESDGNES	
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.

References

Adams, S.L., R.A. Bitt, and G.J. Stewart. 1997. T-cell response to HIV in natural infection: optimized culture conditions for detecting responses to gag peptides. *J. Acquir. Immune Defic. Syndr. Hum. Retrovir.* 15:257–263.

Berzofsky, J.A., C.D. Pendleton, M. Clerici, J. Ahlers, D.R. Lucey, S.D. Putney, and G.M. Shearer. 1991. Peptides containing multideterminant clusters of human immunodeficiency virus envelope induce murine and human T-cell responses in diverse histocompatibility types. *Trans. Assoc. Am. Physicians.* 104:69–77.

Blazevic, V., A. Ranki, and K.J. Krohn. 1995. Helper and cytotoxic T cell responses of HIV type 1–infected individuals to synthetic peptides of HIV type 1 Rev. *AIDS Res. Hum. Retroviruses.* 11:1335–1342.

Boaz, M.J., A. Waters, S. Murad, P.J. Easterbrook, E. D’Sousa, C. van Weelie, and A. Vyakarnam. 2003. CD4 responses to conserved HIV-1 T helper epitopes show both negative and positive associations with virus load in chronically infected subjects. *Clin. Exp. Immunol.* 134:454–463.

Boult, E., E.L. Rapaport, T.B. Campbell, J.R. Koeppe, and C.C. Wilson. 2007. CD4+ T cell targeting of human immunodeficiency virus type 1 (HIV-1) peptide sequences present in vivo during chronic, progressive HIV-1 disease. *Virology.* 361:34–44.

Chevalier, M.F., B. Julig, A. Pyo, M. Flanders, D.Z. Soghoian, D.S. Kwon, J. Rychert, J. Lian, M.I. Muller, et al. 2011. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. *J. Virol.* 85:733–741.

De Groot, A.S., E.A. Bishop, B. Khan, M. Lilly, L. Marcon, J. Franco, K.H. Mayer, C.C. Carpenter, and W. Martin. 2004. Engineering immunogenic consensus T helper epitopes for a cross-clade HIV vaccine. *Methods.* 34:476–487.

De Groot, A.S., L. Marcon, E.A. Bishop, D. Rivora, M. Kutzler, D.B. Weiner, and W. Martin. 2005. HIV vaccine development by computer assisted design: the GAIA vaccine. *Vaccine.* 23:2136–2148.

Domingo, S.G., A. Can擁有-Silva, L.A. Fournier, M. Huent, R. Rodrigues, E. Koeppe, J. Siddiqui, A. Sette, et al. 2006. Identification of novel consensus CD4+ T cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. *AIDS.* 20:2263–2273.

Gaudebout, P., D. Zeliszewski, J.J. Golvano, J.J. Golvano, C. Pignal, S. Le Gac, F. Borras, Cuesta, and G. Sterken. 1997. Binding analysis of 95 HIV gp120 peptides to HLA-DR1101 and –DR0401 evidenced many HLA-class II binding regions on gp120 and suggested several promiscuous regions. *J. Acquir. Immune Defic. Syndr. Hum. Retrovir.* 14:91–101.

Geels, M.J., C.A. Jansen, E. Baan, I.M. De Cuyper, G.J. van Schijndel, H. Schuitemaker, J. Goudsmid, G. Pollakis, I. Miedema, W.A. Paxton, and D. van Baalze. 2006. CTL escape and increased viremia irrespective of HIV-specific CD4+ T helper responses in two HIV-infected individuals. *Virology.* 345:209–219.

Geretti, A.M., C.A. Van Baalen, J.C. Borleffs, C.A. Van Els, and A.D. Oosterhuis. 1994. Kinetics and specificities of the T helper-cell response to gp120 in the asymptomatic stage of HIV infection. *Sand.* *J. Immunol.* 39:355–362.

Haan, A.L., P.A. Bart, W. Stöhr, G. Tapia, M. Garcia, E. Medjina-Rais, S. Burnet, C. Cellier, O. Erlwein, T. Barber, et al. 2008. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. *J. Exp. Med.* 205:63–77.

Jones, R.B., F.Y. Yue, X.X. Gu, D.V. Hunter, S. Mujib, G. Gyenes, R.D. Mason, R. Mohamed, K.S. MacDonald, C. Kovacs, and M.A. Ostrowski. 2009. Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations. *J. Virol.* 83:8722–8732.

Kaufmann, D.E., P.M. Bailey, J. Sidney, B. Wagner, P.J. Norris, M.N. Johnston, L.A. Cosma, M.M. Addo, M. Lichterfeld, M. Alföldi, et al. 2004. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. *J. Virol.* 78:4463–4477.

Koeppe, J.R., T.B. Campbell, E.L. Rapaport, and C.C. Wilson. 2006. HIV-1-specific T cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. *J. Acquir. Immune Defic. Syndr.* 41:140–148.

Koeppe, J.R., M. Rosedler, L. Lamoreaux, J. Fischer, L. Novik, M.C. Nason, B.D. Larkin, M.E. Enama, J.E. Ledgerwood, R.T. Bailer, et al., VRC 010 Study Team. 2010. Priming immunization with DNA vaccines improved HIV-1 Nef-specific CD4+ T helper epitope dominance in the human immune response to HIV envelope glycoprotein gp120. *Vaccine.* 28:4477–4483.

Koeppe, J.R., T.B. Campbell, E.L. Rapaport, and C.C. Wilson. 2006. HIV-1-specific T cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. *J. Acquir. Immune Defic. Syndr.* 41:140–148.

Koeppe, J.R., M. Rosedler, L. Lamoreaux, J. Fischer, L. Novik, M.C. Nason, B.D. Larkin, M.E. Enama, J.E. Ledgerwood, R.T. Bailer, et al., VRC 010 Study Team. 2010. Priming immunization with DNA vaccines improved HIV-1 Nef-specific CD4+ T helper epitope dominance in the human immune response to HIV envelope glycoprotein gp120. *Vaccine.* 28:4477–4483.
Ramduth, D., C.L. Day, C.F. Thobakgale, N.P. Mkhwanazi, C. de Pierres, S. Reddy, M. van der Stok, Z. Mncube, K. Nair, E.S. Moodley, et al. 2009. Immunodominant HIV-1 CD4+ T cell epitopes in chronic untreated clade C HIV-1 infection. *PLoS ONE* 4:e5013.

Ranaasinghe, S., M. Flanders, S. Cutler, D.Z. Soghoian, M. Ghebremichael, I. Davis, M. Lindqvist, F. Pereyra, B.D. Walker, D. Heckerman, and H. Streeck. 2012. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. *J. Virol.* 86:277–283.

Ranki, A., J. Sumi, V. Blazevic, P. Holmström, S. Mattinen, K. Krohn, and S.L. Valle. 1997. T-cell recognition of HIV antigens in HIV-seroreverted persons. *AIDS* 11:132–133.

Ritchie, A.J., S.L. Campion, J. Kopycinski, Z. Moodie, Z.M. Wang, K. Pandya, S. Moore, M.K. Liu, S. Brackenridge, K. Kudane, K. Legg, M.S. Cohen, E.L. Dchwart, B.F. Haynes, S. Fidler, A.J. McMichael, and N. Goonetilleke. 2011. Differences in HIV-specific T cell responses between HIV-exposed and –unexposed HIV-seronegative individuals. *J. Virol.* 85:3507–3516.

Rosenberg, E.S., J.M. Billingsley, A.M. Caliendo, S.L. Boswell, P.E. Sax, S.A. Kalams, and B.D. Walker. 1997. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. *Science.* 278:1447–1450.

Schnier, R.D., J.W. Giann Jr., R. Landes, C. Lockshin, D. Richman, A. McCutchan, C. Kennedy, M.B. Oldstone, and J.A. Nelson. 1989. T cell recognition of HIV synthetic peptides in a natural infection. *J. Immunol.* 142:1166–1176.

Vingert, B., S. Perez-Patrigeon, P. Jeannin, O. Lambotte, F. Boufassa, F. Lemaître, O. Lambotte, W.W. Kwok, I. Theodorou, J.F. Delfraissy, J. Thèze, and L.A. Chakrabarti; ANRS EP36 HIV Controllers Study Group. 2010. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. *PLoS Pathog.* 6:e1000780.

Wahren, B., J. Rosen, E. Sandström, T. Mathiesen, S. Modrow, and H. Wigzell. 1989. HIV-1 peptides induce a proliferative response in lymphocytes from infected persons. *J. Acquir. Immune Defic. Syndr.* 2:448–456.

Wilson, C.C., B. Palmer, S. Southwood, J. Sidney, Y. Higashimoto, E. Appella, R. Chesnut, A. Sette, and B.D. Livingston. 2001. Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. *J. Virol.* 75:4195–4207.

Younes, S.A., B. Yassine-Diab, A.R. Dumont, M.R. Boulassel, Z. Grossman, J.P. Routy, and R.P. Sekaly. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. *J. Exp. Med.* 198:1909–1922.
Table S3. HIV-1 specific epitopes mapped in the pre-exposure repertoire were compared against the Los Alamos database to establish whether they had previously been reported in natural infection.

HBX2 location	Subject ID	CD4⁺ T cell subset	Sequence	Reference
Gag 33→50	Leuk 7	Central Memory	HLVNASRERFALNPGL	Ramduth et al., 2009
			---------------	Chevalier et al., 2011
			K-I-------------	Kaufmann et al., 2004
			K-I-------------	Wahren et al., 1989
			-I-------------	Koepp et al., 2006
			-I-------------	Jones et al., 2009
			-I-------------	Kaufmann et al., 2004
			---------------	Ranasinghe et al., 2012
Gag 41→58	Leuk 7	Naïve	LERFALNPGLLETSEGCK	Kaushik et al., 2005
			---------------	Ramduth et al., 2009
Gag 57→74	Leuk 7	Central Memory	CKQIIKIQPALQGTTEE	Chevalier et al., 2011
Gag 73→90	Leuk 9	Central Memory	EELRSLYNTVATLYCVHE	Kaufmann et al., 2004
			TGS------------	Jones et al., 2009
			TGS------------	Fonseca et al., 2006
Gag 81→98	Leuk 10	Naïve	TVATLYCVHEKIIEVRDTK	Chevalier et al., 2011
			SLYN------------	Kaufmann et al., 2004
			SLYN------------	Geels et al., 2006
Gag 228→245	Leuk 9	Central Memory	MREPGRSDIAGTSTILQE	Boritz et al., 2007
			---------------	Koepp et al., 2006
Gag 236→253	Leuk 9	Central Memory	IAAGTTSTLQEQIAMTSN	Boritz et al., 2007
			PRGSD------------	Koepp et al., 2006
			GSD------------	Kaushik et al., 2005

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (−)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4 T cell subset	Sequence	Reference
Gag 260→277	Leuk 7	Effector Memory	DIYKRWIILGLNKIVRMY	Ramduth et al., 2009
			PVG--------	De Groot et al., 2005
			VGE----------SPV	Boaz et al., 2003
			----------------	Wilson et al., 2001
			----------------	Vingert et al., 2010
			----------------	Rosenberg et al., 1997
			PVG-------------	Koepe et al., 2006
			----------------	Jones et al., 2009
			----------------	Kaufmann et al., 2004
			----------------	Adams et al., 1997
			LGLNKIVRMYSPVSILD	De Groot et al., 2005
			I---------------	Ritchie et al., 2011
			PVGDIYKRWI-------	De Groot et al., 2005
			VGEDIYKRWI------	Boaz et al., 2003
			YKRWI------------	Wilson et al., 2001
			YKRWI-------------T-	Vingert et al., 2010
			YKRWI--------------T-	Rosenberg et al., 1997
			I---------------	Koepe et al., 2006
			---------------	Jones et al., 2009
			---------------	Kaufmann et al., 2004
			---------------	Adams et al., 1997
			---------------	De Groot et al., 1998
			---------------	Chevalier et al., 2011
			---------------	Schrier et al., 1989
			---------------	Younes et al., 2003
			LGLNKIVR-------	De Groot et al., 2005
			LGLNKIVR--------SPTSILD	De Groot et al., 2005
			-----------------	Chevalier et al., 2011
			-----------------	Schrier et al., 1989
			-----------------	Younes et al., 2003
			ILDIRQGPK---------Y	Schrier et al., 1989
			IROGK---------	Younes et al., 2003
			GPKE---------Y	Wahren et al., 1989
			GPKE--------Y	Kaufmann et al., 2004
			QPKE----------	Adams et al., 1997
			E-----------S	Boritz et al., 2007

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4 T cell subset	Sequence	Reference
Gag 397→414	Leuk 10	Naïve	KEGHIARNCRAPRKKGCW	Kaufmann et al., 2004
			---K------------------------K	Chevalier et al., 2011
Gag 429→446	Leuk 7	Naïve	RQANFLGKIPSHKGRPG	Wahren et al., 1989
			MKDCTE----------------	Kaufmann et al., 2004
				Chevalier et al., 2011
				Kaufmann et al., 2004
				Ramduth et al., 2009
				Chevalier et al., 2011
Gag 445→462	Leuk 7	Naïve	PGNFLQNRPEPTAPPAES	Chevalier et al., 2011
			---S-----------------	
Gag 453→472	Leuk 7	Naïve	PEPTAPPAESFRFEEETTP	Chevalier et al., 2011
			FLQSR-----------------	
Gag 461→480	Leuk 7	Naïve	ESFRFEEETTPAPRQEPKD	Kaufmann et al., 2004
			TAPPE-----------------	Kaushik et al., 2005
Pol 313→330	Leuk 7	Naïve	AIFQSSMTKILEFRAQN	Wilson et al., 2001
			SP-------------------	Boaz et al., 2003
Pol 377→394	Leuk 7	Central Memory	QKEPFLWMYELHPDKW	
Pol 713→730	Leuk 10	Central Memory	KVLFLQIDKQEEHEKY	
Pol 777→794	Leuk 6	Effector Memory	QLCTHLGKIIILVAVWV	
Pol 945→962	Leuk 7	Central Memory	SRDPFIWKPGAKILWKGKEG	
Env 1→19	Leuk 9	Central Memory	MRRVRGIHKQQWPGWGI	
Env 9→27	Leuk 9	Central Memory	NCQWQSGAGLMWMLMI	
Env 90→107	Leuk 7	Naïve	TENFMWKNMVDQMHEDE	
			PQEYLQVNWV-----------------	
Env 148→165	Leuk 9	Central Memory	TNNMEIKNCSFNITTEL	
	Leuk 9	Central Memory	TNPSSSSWGNMKE------------------	
			SSSGRMIMEK---------------------	
			MK---------------------------SIRNK	

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4^+ T cell subset	Sequence	Reference
Env 156→173	Leuk 9	Central Memory	NCSFNITELRDKKQKVY GEIK--------- MEKEIK-----Y----SIRNK K----------I----	Geretti et al., 1994 Mirano-Bascos et al., 2008 Gaudebout et al., 1997
Env 164→181	Leuk 8	Effector Memory	ELRDKKQKVYALFYRLDIVPLNENNS ---------------------VPLTK	Harari et al., 2008
Env 172→189	Leuk 8	Effector Memory	VYALFYRLDIVPLNENNS ---------------------VPLTK	Harari et al., 2008
Env 213→230	Leuk 7	Naive	IPINHYCAPAGYAILKCNN -DIV-----F-D------Q -VV-------F-	Geretti et al., 1994 Ranasinghe et al., 2012
Env 269→286	Leuk 10	Naive	EIISRSENLTNNAKTIIV -DIV-----F-D------Q -VV-------F-	Mirano-Bascos et al., 2008 De Groot et al., 2004
Env 277→294	Leuk 7	Naive	LTNNAKTIIVHLNESVEI NF-D-----------QIN IRSVNF-D-------Q--T- SANF-D-------Q-	Malhotra et al., 2003 Geretti et al., 1994 Wahren et al., 1989
Env 285→302	Leuk 7	Naive	IYHLNESVEIVCTRPNNN NF-D-----------QIN IRSVNF-D-------Q--T-	Malhotra et al., 2003 Geretti et al., 1994
Env 334→351	Leuk 7	Central Memory	SEDKWNKTLQVSKKLKE	
Env 342→360	Leuk 7	Central Memory	LQKVSSKKLKEIFPMNTIK	
Env 411→428	Leuk 7	Central Memory	NSTITLPCRIKQIINMQ D------------KVG D------------KVG ------------KVGK ------------KVGKA	Geretti et al., 1994. Harari et al., 2008 Mirano-Bascos et al., 2008 Koup et al., 2010
Env 419→436	Leuk 7	Central Memory	RIKQIINMQWQEVGRAMYA DTITLPC------------ DTITLPC------------ ITLQC-------------K- ------------K- ------------K-	Geretti et al., 1994. Harari et al., 2008 Mirano-Bascos et al., 2008 Koup et al., 2010
Env 435→452	Leuk 7	Naive	YAPPIAGNTCKSNITGL	

Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.
Table S3 (Continued):

HBX2 location	Subject ID	CD4+ T cell subset	Sequence	Reference
Env 477→494	Leuk 7	Naïve	DNWRSELYKVKVEIKPL	Geretti et al., 1994.
			GDMR--------	Wahren et al., 1989
			DMR--------	Geretti et al., 1994.
			--------K-------GVAPTKA	Mirano-Bascos et al., 2008
Env 565→582	Leuk 9	Effector Memory	MLQLTVWIGIKLQTRVLAYK	Malihotra et al., 2003
	Leuk 8	Central Memory	-------------VERYLK	Wahren et al., 1989
Env 613→630	Leuk 8	Effector Memory	SWSNKSLQEDWDNMTWMQ	
Env 669→686	Leuk 7	Naïve	LWNWFDTINWLYIKIFI	
			AS--------N--------	
Env 725→742	Leuk 9	Central Memory	RGPDLGRIEEEGEQDR	Schrier et al., 1989
			---------------R--DR	
Env 733→750	Leuk 9	Central Memory	IEEEGQDRDRSIRLV	Schrier et al., 1989
			GR--------R--DR	
Env 773→790	Leuk 8	Effector Memory	DFIILAAARAVELLGRSSL	
Env 790→807	Leuk 6	Effector Memory	WEALKYGSLVQWGPLEL	Berzofsky et al., 1991
	Leuk 8	Central Memory	RIVENLGRG------------------------	
			RIVENLGRG--------------------KNSAVS	
Env 798→815	Leuk 6	Effector Memory	SLVQYWGLEGKSAISSL	Berzofsky et al., 1991
Env 830→847	Leuk 7	Central Memory	IELIQRCRAINPIPRI	
Nef 73→90	Leuk 9	Central Memory	QVPLRPMTYKAADFSLFF	De Groot et al., 2005.
			VGFPVRP----------------------	Ranasinghe et al., 2012
			---------------H-LKEKGL	
Nef 129→146	Leuk 10	Naïve	PPGVPRYPLTFGCWKL	Pancré et al., 2007
			-----------------Y-PVEPDKEEANNG	
Rev 17→34	Leuk 9	Central Memory	RIIKLYQSNPYPKPEGT	
Rev 49→66	Leuk 10	Central Memory	QRQHISRIERLSTCLGR	Blazevic et al., 1995
			RRRRRRER---------------	
Vif 1→18	Leuk 9	Central Memory	MENRQVLWQVQDRMKI	De Groot et al., 2005.
			-----------------RTWNSLVK	
Vif 81→98	Leuk 10	Central Memory	LGHGVSIEWRLLRSTQV	
			---------------KQ----	Ranki et al., 1997
Vpu 2→20	Leuk 8	Central Memory	ARVDYRLGVGALIVALII	
Vpu 17→34	Leuk 9	Central Memory	IIAIVVWTVVYEVYRKL	
Vpu 33→50	Leuk 10	Naïve	LLRRQKDIVALRRIRERA	
Vpu 41→58	Leuk 9	Central Memory	WLIRIRERAEDSGNESE	
Sequence identified in T cell library assay is presented in bold font. Previously reported epitopes containing shared sequence homology (represented by dashed line (-)) to mapped epitopes are displayed with accompanying literature reference. Gray highlighting indicates peptide epitopes that have not been identified before.

References

Adams, S.L., R.A. Bitt, and G.J. Stewart. 1997. T-cell response to HIV in natural infection: optimized culture conditions for detecting responses to gag peptides. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology. 15:257–263.

Berzofsky, J.A., C.D. Pendleton, M. Clerici, J. Ahlers, D.R. Lucey, S.D. Putney, and G.M. Shearer. 1991. Peptides containing multideterminant clusters of human immunodeficiency virus envelope induce murine and human T-cell responses in diverse histocompatibility types. Trans. Assoc. Am. Physicians. 104:69–77.

Brazieva, V., A. Ranki, and K.J. Krohn. 1995. Helper and cytotoxic T cell responses of HIV type 1–infected individuals to synthetic peptides of HIV type 1. AIDS Res. Hum. Retroviruses. 11:1335–1342.

Boaz, M.J., A. Waters, S. Murad, P.J. Easterbrook, E. D’Sousa, C. van Wheele, and A. Vyakarnam. 2003. CD4 responses to conserved HIV-1 T helper epitopes show both negative and positive associations with virus load in chronically infected subjects. Clin. Exp. Immunol. 134:454–463.

Boritz, E., L. Rapaport, T.B. Campbell, J.R. Koeppe, and C.C. Wilson. 2007. CD4+ T cell targeting of human immunodeficiency virus type 1 (HIV-1) peptide sequences present in vivo during chronic, progressive HIV-1 disease. Virology. 361:34–44.

Chevalier, M.F., B. Julg, A. Pyo, M. Flanders, S. Ranasinghe, D.S. Kwon, J. Rychert, J. Lian, M.I. Muller, et al. 2011. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 85:733–741.

De Groot, A.S., E.A. Bishop, B. Khan, M. Lally, L. Marcon, J. Franco, K.H. Mayer, C.C. Carpenter, and W. Martin. 2004. Engineering immunogenic consensus T helper epitopes for a cross-clade HIV vaccine. Methods. 34:476–487.

De Groot, A.S., L. Marcon, E.A. Bishop, D. Rivora, M. Kutzler, D.B. Weiner, and W. Martin. 2005. HIV vaccine development by computer assisted design: the GAIA vaccine. Vaccine. 23:2136–2148.

Fonscoa, S.G., A. Cortinhas-Silva, L.A. Fonscoa, A.C. Segurado, S.L. Morz, H. Rodrigues, J. Hammer, E.G. Kallás, J. Sidney, A. Sette, et al. 2006. Identification of novel consensus CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS. 20:2263–2273.

Gaudebout, P., D. Zeliszewski, J.J. Golvan, C. Pignal, S. Le Gac, F. Borras, Cuesta, and G. Sterken. 1997. Binding analysis of 95 HIV gp120 peptides to HLA-DR1101 and ~DR0401 evidenced many HLA-class II binding regions on gp120 and suggested several promiscuous regions. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology. 14:91–101.

Geel, M.J., C.A. Jensen, E. Baan, L.M. De Cuyper, G.J. van Schijndel, H. Schuitemaker, J. Goudsmidt, G. Pollakis, F. Miedema, W.A. Paxton, and D. van Baarle. 2006. CTL escape and increased viremia irrespective of HIV-specific CD4+ T-helper responses in two HIV-infected individuals. Virology. 345:209–219.

Gorretti, A.M., C.A. Van Baalen, J.C. Borleffs, C.A. Van Eijl, and A.D. Osterhaus. 1994. Kinetics and specificities of the T helper-cell response to gp120 in the asymptomatic stage of HIV infection. Sand. J. Immunol. 39:355–362.

Hanaoka, A., P.A. Bart, W. Störhr, G. Tapia, M. Garcia, E. Medjima-Rais, S. Burnet, C. Cellera, O. Erlewine, T. Barber, et al. 2008. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med. 205:63–77.

Jones, R.B., F.Y. Yue, X.X. Gu, D.V. Hunter, S. Mujib, G. Gyenes, R.D. Mason, R. Mohamed, K.S. MacDonald, C. Kovacs, and M.A. Ostrowski. 2009. Human immunodeficiency virus type 1 escape from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations. J. Virol. 83:8722–8732.

Kauffmann, D.E., P.M. Bailey, J. Sidney, B. Wagner, P.J. Norris, M.N. Johnston, L.A. Cosm, M.M. Addo, M. Leichterfeld, M. Alfeld, et al. 2004. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J. Virol. 78:4463–4477.

Kaskish, S., M. Vajpayee, N. Wig, and P. Seth. 2005. Characterization of HIV-1 Gag-specific T cell responses in chronically infected Indian population. Clin. Exp. Immunol. 142:388–397.

Kossepp, J.K., T.B. Campbell, E.L. Rapaport, and C.C. Wilson. 2006. HIV-1-specific T cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. J. Acquir. Immune Defic. Syndr. 41:140–148.

Koel, R.A., M. Roedler, L. Lamoreaux, J. Fischer, L. Novik, M.C. Nason, B.D. Larkin, M.E. Enama, J.E. Ledgerwood, R.T. Baier, et al., VRC 010 Study Team. 2010. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS ONE. 5:e9015.

Malhotra, U., S. Holte, T. Zhu, E. Delpitt, C. Huntsberry, A. Sette, R. Shankarappa, J. Maenla, L. Corey, and M.J. McCllelath. 2003. Early induction and maintenance of Env-specific T-helper cells following human immunodeficiency virus type 1 infection. J. Virol. 77:2663–2674.

Mathiesen, T., A. Sonnerborg, and B. Wahren. 1989. Detection of antibodies against myelin basic protein and increased levels of HIV-IgG antibodies and HIV antigen after solubilization of immune complexes in sera and CSF of HIV infected patients. Virology. 21:2–9.

Miró-Boas, D., M. Tary-Lehnmann, and S.J. Landry. 2008. Antigen structure influences helper T-cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. Eur. J. Immunol. 38:1231–1237.

Panérré, V., N. Delhém, Y. Yazdanpanah, A. Delanoye, M. Delacre, S. Depil, O. Moralès, Y. Mouton, and C. Auriault. 2007. Presence of HIV-1 Nef specific CD4+ T cell response is associated with non-progression in HIV-1 infection. Virology. 25:5927–5937.
Ramduth, D., C.L. Day, C.F. Thobakgale, N.P. Mkhwanazi, C. de Pierres, S. Reddy, M. van der Stok, Z. Mncube, K. Nair, E.S. Moodley, et al. 2009. Immunodominant HIV-1 CD4+ T cell epitopes in chronic untreated clade C HIV-1 infection. *PLoS ONE* 4:e5013.

Ranaasinghe, S., M. Flanders, S. Cutler, D.Z. Soghoian, M. Ghebremichael, I. Davis, M. Lindqvist, F. Pereyra, B.D. Walker, D. Heckerman, and H. Streeck. 2012. HIV-specific CD4+ T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. *J. Virol.* 86:277–283.

Raniki, A., J. Sumi, V. Blazevic, P. Holmström, S. Mattinen, K. Krohn, and S.L. Valle. 1997. T-cell recognition of HIV antigens in HIV-seroreverted persons. *AIDS* 11:132–133.

Ritchie, A.J., S.L. Campion, J. Kopycinski, Z. Moodie, Z.M. Wang, K. Pandya, S. Moore, M.K. Liu, S. Brackenridge, K. Kuldane, K. Legg, M.S. Cohen, E.L. Dchwart, B.F. Haynes, S. Fidler, A.J. McMichael, and N. Goonetilleke. 2011. Differences in HIV-specific T cell responses between HIV-exposed and unexposed HIV-seronegative individuals. *J. Virol.* 85:3507–3516.

Rosenberg, E.S., J.M. Billingsley, A.M. Caliendo, S.L. Boswell, P.E. Sax, S.A. Kalams, and B.D. Walker. 1997. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. *Science.* 278:1447–1450.

Schnier, R.D., J.W. Giann Jr., R. Landes, C. Lockshin, D. Richman, A. McCutchan, C. Kennedy, M.B. Oldstone, and J.A. Nelson. 1989. T cell recognition of HIV synthetic peptides in a natural infection. *J. Immunol.* 142:1166–1176.

Vingert, B., S. Perez-Patrigeon, P. Jeannin, O. Lambotte, F. Boufassa, F. Lemaitre, W.W. Kwok, I. Theodorou, J.F. Delfraissy, J. Thèze, and L.A. Chakrabarti; ANRS EP36 HIV Controllers Study Group. 2010. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. *PLoS Pathog.* 6:e1000780.

Wahren, B., J. Rosen, E. Sandström, T. Mathiesen, S. Modrow, and H. Wigzell. 1989. HIV-1 peptides induce a proliferative response in lymphocytes from infected persons. *J. Acquir. Immune Defic. Syndr.* 2:448–456.

Wilson, C.C., B. Palmer, S. Southwood, J. Sidney, Y. Higashimoto, E. Appella, R. Chenut, A. Sette, and B.D. Livingston. 2001. Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. *J. Virol.* 75:4195–4207.

Younes, S.A., B. Yassin-Diab, A.R. Dumont, M.R. Boullassel, Z. Grossman, J.P. Routy, and R.P. Sekaly. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. *J. Exp. Med.* 198:1909–1922.