Spatio-Temporal Pruning and Quantization for Low-latency Spiking Neural Networks

Sayeed Shafayet Chowdhury, Isha Garg and Kaushik Roy
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47905, USA
{chowdh23, gargi, kaushik}@purdue.edu

Abstract—Spiking Neural Networks (SNNs) are a promising computationally efficient alternative to traditional deep learning methods since they perform sparse event-driven information processing. However, a major drawback of using SNNs is the high inference latency, specially for real-time applications. The efficiency of SNNs could be further enhanced using compression methods such as pruning and quantization. Notably, SNNs, unlike their non-spiking counterparts, consist of a temporal dimension, the compression of which can lead to significant latency reduction. In this paper, we propose spatial and temporal pruning and quantization of SNNs. First, structured spatial pruning is performed by determining the layer-wise significant dimensions using principal component analysis of the average accumulated membrane potential of the neurons. This step leads to 10-14X model size compression. Additionally, the spatially-pruned SNNs enable inference with lower latency and decrease the total spike count per inference. To further reduce latency, temporal pruning is performed by gradually reducing the timesteps of simulation while training. The networks are trained using surrogate gradient descent based backpropagation and we validate the results on CIFAR10 and CIFAR100, using VGG architectures. The proposed spatio-temporally pruned SNNs achieve 89.04% and 66.4% accuracy on CIFAR10 and CIFAR100, respectively, while performing inference with 3-30X reduced latency compared to other state-of-the-art SNNs. Moreover, they require 8-14X lesser compute energy compared to their unpruned standard deep learning counterparts. The energy numbers are obtained by multiplying the number of operations with energy per operation. These SNNs also provide 1-4% higher accuracy in presence of Gaussian noise corrupted inputs. Furthermore, we perform post-training weight quantization and find the network performance remains reasonably stable up to 5-bit quantization.

Index Terms—SNN, temporal pruning, latency, spike rate, quantization, accuracy

I. INTRODUCTION

Over the past decade, the deep learning revolution has achieved impressive performance on many challenging tasks across domains such as computer vision and natural language processing [1]–[2]. However, such deep learning approaches are highly compute-intensive [3] and therefore it remains a challenge to deploy them for resource-constrained applications. To tackle this, one approach is to use various model compression techniques such as low-rank decomposition [4], pruning [5]–[6], and data quantization [7], which have provided a considerable boost in hardware performance [8]. Another route for efficient computation is employing Spiking Neural Networks (SNNs) [9], which perform computation using spikes instead of the analog values used in traditional non-spiking deep neural networks, referred to as Analog Neural Networks (ANNs) henceforth. The energy efficiency of SNNs primarily stems from the sparsity of computation at any given timestep and from the replacement of multiply–accumulate (MAC) operations in the ANNs by additions. However, a key distinction between ANN and SNN is the notion of time; SNNs require computation over multiple timesteps, whereas ANNs infer in a single shot in the temporal dimension. If the latency requirements are too high for SNNs, it also impacts energy-efficiency negatively. As such, there is scope to further enhance the energy-benefits of SNNs if pruning and quantization can be incorporated suitably in them.

Several works have explored the applicability of compression methods for SNNs. Models with ternary weights and binary activations were deployed on TrueNorth [10]. Dora et al. [11] proposed a two-stage growing-pruning method for fully-connected (FC) SNNs. A spike-timing dependent plasticity (STDP) learning rule with soft-pruning achieved 95.04% accuracy on MNIST [12]. Rathi et al. [13] used pruning and weight quantization on FC SNNs with STDP, and obtained 91.5% accuracy on MNIST. Yousefzadeh et al. [14] reported 95.7% accuracy on MNIST using SNNs trained with stochastic STDP and reduced bit precision. Notably, these approaches were mostly limited to small-scale MNIST dataset. Srinivasan et al. [15] introduced residual paths into spiking convolutional (conv) layers with binary weight kernels trained with probabilistic STDP and demonstrated 98.54% accuracy on MNIST but only 66.23% on CIFAR10. Additionally, the FC layers in this work were non-spiking. Recently, a comprehensive SNN compression approach was presented in [16] using the ADMM optimization tool, but most of the analysis still only focused on MNIST-like datasets. An attention-guided compression approach to limit spiking activity was proposed in [17], but it cannot reduce the latency considerably, also the accuracy for CIFAR100 is lower in this method compared to other works. Moreover, the feasibility of performing compression along the temporal axis of SNNs has not been explored in any of these prior works. Reducing timesteps holds great promise since such time-axis compression is directly correlated with latency as...
The main contributions of this work are summarized below—find spatio-temporal pruning enhances robustness by 1-4% with the robustness of the models against Gaussian noise, and VGG9 and VGG11, respectively, to explore the various effects analysis on CIFAR10 and CIFAR100 using deep SNNs such as effectively utilize the time axis of SNNs to perform temporal connections unlike previous SNN pruning approaches which we utilize PCA-based structured pruning to reduce spatial quantized using weight-sharing via K-means clustering [20]. performed the pruning steps, the weights of the network are quantized to perform further compression. First, the networks are trained till convergence. Then, to perform structured pruning, we find layerwise significant dimensions of the convolutional layers using Principal Component Analysis (PCA) of the average accumulated potential of the spiking neurons. A smaller network is then obtained with number of filters at each layer equal to that layer’s significant dimension. Subsequently, this network is trained from scratch. We achieve up to 14X reduction in model size in this process by removing redundant spatial connections. In addition, we analyze the effect of spatial pruning on latency and computational requirements. Our results demonstrate that spatial pruning enables up to 2.5X latency reduction as well as 2-3X reduction in average number of spikes per inference compared to unpruned SNNs. To further enhance the energy-efficiency of SNNs, we perform temporal pruning on top of the spatially-pruned SNNs. The timestep of simulation is gradually reduced while training, so that the accuracy does not drop significantly. Notably, this allows us to obtain SNNs that can converge with ∼25 timesteps on CIFAR10 and ∼30 timesteps for CIFAR100, which is considerably lower compared to usual Poisson-coded SNNs [18]–[19]. Note, here a single timestep denotes one full forward pass, in line with the definition of timestep used in previous SNN works [18]–[19]. In addition, the spatio-temporally pruned SNNs provide 8-14X higher energy-efficiency compared to their ANN counterparts. Having performed the pruning steps, the weights of the network are quantized using weight-sharing via K-means clustering [20]. We utilize PCA-based structured pruning to reduce spatial connections unlike previous SNN pruning approaches which mostly focused on unstructured pruning. More importantly, we effectively utilize the time axis of SNNs to perform temporal pruning, leading to further energy efficiency. We perform our analysis on CIFAR10 and CIFAR100 using deep SNNs such as VGG9 and VGG11, respectively, to explore the various effects of compression beyond MNIST-like tasks. We also experiment with the robustness of the models against Gaussian noise, and find spatio-temporal pruning enhances robustness by 1-4%. The main contributions of this work are summarized below -

- To the best of our knowledge, this is the first work that leverages the temporal axis of SNNs to perform pruning in order to reduce timesteps for computation in deep SNNs, and as a result, enhances inference efficiency.
- We incorporate PCA-based spatial pruning with temporal pruning, followed by quantization for designing efficient SNN architectures.
- We analyze the effect of spatial compression on temporal axis of SNNs, which reveals that spatial pruning leads to reduction in latency and total spike count per inference.
- The efficacy of the proposed methods is analyzed on CIFAR10 and CIFAR100 datasets with SNNs trained using the hybrid training method [18]. The resultant SNNs achieve 3-30X latency reduction compared to other state-of-the-art SNNs [18]–[19], while needing 8-14X lesser compute energy compared to corresponding unpruned ANNs.

The organization of the rest of this paper is as follows: the preliminaries of the SNN model and associated learning algorithms are presented in section II; section III explains the methods of spatial and temporal pruning as well as quantization utilized in this work; section IV comprises of the experimental setup, results, and related analysis, and the paper is concluded in Section V.

II. BACKGROUND

A. Spiking Neural Networks

The Leaky Integrate and Fire (LIF) model [21] used in this work is described as-

\[\tau_m \frac{dU}{dt} = -(U - U_{rest}) + RI, \quad U \leq V_{th} \]

(1)

where \(U \) relates to the membrane potential, \(I \) is the weighted sum of spike-inputs, \(\tau_m \) indicates the time constant for membrane potential decay, \(R \) represents membrane leakage path resistance, \(V_{th} \) is the firing threshold and \(U_{rest} \) is resting potential. The discretized version of Eqn. (1) is given as-

\[u_i^t = \lambda u_i^{t-1} + \sum_j w_{ij} o_j^{t-1} - v_{th} o_i^{t-1}, \]

(2)

\[o_i^{t-1} = \begin{cases} 1, & \text{if } u_i^{t-1} > v_{th} \\ 0, & \text{otherwise} \end{cases} \]

(3)

where \(u \) is the membrane potential, subscripts \(i \) and \(j \) represent the post and pre-neuron, respectively, \(t \) denotes timestep, \(\lambda \) is the leak constant \(e^{-\tau_m / \tau} \), \(w_{ij} \) represents the weight of connection between the \(i \)-th and \(j \)-th neuron, \(o \) is the output spike, and \(v_{th} \) is the firing threshold. As evident from Eqn. (2) whenever \(u \) crosses this threshold, it is reduced by the amount \(v_{th} \), implementing a soft-reset.

B. Training Methodology

The training scheme for deep SNNs can be broadly divided into two categories - (i) ANN-SNN conversion: first an ANN is trained and then converted to an SNN by replacing the ReLU activation with IF/LIF neurons with threshold balancing [22], [23], (ii) backpropagation from scratch: training SNNs from scratch using backpropagation is challenging due to the non-differentiability of the spike function. To overcome this, surrogate-gradient based learning [24] has been utilized where the derivative of the dirac-delta spike function is approximated. Another approach is hybrid training [18], where a pre-trained ANN is first converted to SNN, then subsequent surrogate gradient learning is performed in the SNN domain. Conversion methods achieve high accuracy but suffer from high inference latency (2000-2500 timesteps). The latency is reduced in SNNs trained with surrogate-gradients (∼100-125 timesteps), but it needs to be improved further for edge deployment. In this
Algorithm 1 An iteration of spike-based backpropagation.

Input: Pixel-based mini-batch of input (X) - target (Y) pairs, timesteps (T), number of layers (L), pre-trained ANN weights (W), membrane potential (U), membrane leak constant (λ), layer-wise firing thresholds (V_{th})

Initialize: $U^l_t = 0, \forall l = 1, ..., L$

```
// Forward Phase
for $t \leftarrow 1$ to $T$
do
// generate Poisson spike-inputs of a mini-batch data
$O^l_t = \text{Poisson}(\text{inputs});$
for $l \leftarrow 2$ to $L - 1$
do
// membrane potential integrates weighted sum of spike-inputs
$U^l_t = U^{l-1}_t + W^l_t \ast O^{l-1}_t$
if $U^l_t > V_{th}$ then
// if membrane potential exceeds $V_{th}$, a neuron fires a spike
$O^l_t = 1, U^l_t = U^{l-1}_t - V_{th}$
else
// else, membrane potential decays exponentially
$O^l_t = 0, U^l_t = \lambda \ast U^{l-1}_t$
end if
end for
// final layer neurons do not fire
$U^L_t = U^{L-1}_t + W^L \ast O^{L-1}_t$
end for
// calculate loss, Loss=$\text{cross-entropy}(U^T_L, Y)$

// Backward Phase
for $t \leftarrow T$ to 1
do
for $l \leftarrow L - 1$ to 1
do
// evaluate partial derivatives of loss with respect to weight by unrolling the network over time
$\Delta W^l_t = \frac{\partial \text{Loss}}{\partial O^l_t} \frac{\partial O^l_t}{\partial U^l_t} \frac{\partial U^l_t}{\partial W^l_t}$
end for
end for
```

work, we utilize the hybrid training method to demonstrate our method but the proposed scheme is applicable for both backpropagation from scratch and hybrid training approaches. For the hybrid method, we first train an iso-architecture ANN and copy the weights to the SNN for fine-tuning. Then to balance the layerwise neuronal thresholds, we select the 99.9 percentile of the pre-activation distribution at each layer as its threshold as proposed in [19]. Next, we perform surrogate-gradient based learning, the details of which are depicted in Algorithm 1. The gradient of the spike function is approximated using the linear surrogate-gradient [25].

III. PROPOSED COMPRESSION METHODS

In this section, we describe the proposed compression techniques in detail. Notably, the spatial and temporal pruning methods can be applied independently or in conjunction.

A. PCA-based Spatial Pruning

Pruning methods aim to compress networks post training in order to remove redundancy by either pruning individual weights or removing entire filters. Pruning connections based on magnitude thresholding results in unstructured sparsity that is difficult to leverage in hardware. Hence, in this paper, we focus on obtaining structured sparsity in trained SNNs using principal component analysis (PCA) following the method proposed in [26] for ANNs. In CNNs, there exists high correlation among many filters within the same layer, thus we can reduce dimensionality of layers without causing significant hit to accuracy. Reference [26] proposed identifying such correlations by applying PCA on the activation maps generated by the filters in ANNs, and we adopt this approach for the case of SNNs. The goal is to determine the number of significant dimensions at each conv layer to find the least number of features required for explaining 99.9% of the total variance in input. The information propagation for SNNs is embedded in the spiking activity of the neurons. If multiple neurons spike in a coordinated manner, there is redundancy among them and they can be reduced to a smaller set of neurons with modified weights. In order to detect redundancy between filters, we use the pre-spike activations (accumulated membrane potential) as instances of filter activity that serve as feature value inputs to PCA. Note, in this case, we utilize the average membrane potential accumulated at the neurons of the corresponding layer using incoming spike inputs over all timesteps. A schematic of the proposed PCA-based pruning is depicted in Fig. [1]. Here, $C (M)$ denote the number of input (output) channels for a convolutional layer and $h_i; w_i (h_o; w_o)$ denote the height and width of the input (output) feature maps. First, the SNN is trained till convergence with an initial configuration, then a forward pass is performed to find the redundancy of filters. Let, B_i denotes the activation matrix obtained as the output of a forward pass, here L refers to the layer index. The top-left input patch is convolved with the first filter to give the top left pixel of the output activation map. The convolution of the same patch with all M filters provides a vector in $\mathbb{R}^{1 \times 1 \times M}$, which counts as one sample of M parameters, where each parameter represents the activity of a filter. Similarly, the next filter activity sample is obtained by sliding the convolution kernel to the next input patch. This process is detailed in [26]. Let, $B_i \in \mathbb{R}^{h_o \times w_o \times M}$, where b is the mini-batch size, so we collect $b \times h_o \times w_o$ samples in one forward pass, with M parameters each. We perform the convolution at each timestep and the output is accumulated as membrane potential at the neurons. Then, we average the accumulated membrane potential over all timesteps which acts as a measure of the spike-rate of the neurons. Then this averaged B_i is flattened as $B_{i, \text{avg}} \in \mathbb{R}^{h_o \times w_o \times M} \rightarrow C_i \in \mathbb{R}^{S \times M}$, with $S = b \times h_o \times w_o$. This matrix C_i is given as input to PCA where Singular Value Decomposition (SVD) is performed on the matrix $C_i^T C_i$. Using this operation, we find significant dimensionality of the compressed space of filters, defined as the number of uncorrelated filters that can explain 99.9% of the variance of features, as shown in Fig. [1] (the curve in the figure corresponds to 1st conv layer of VGG9 on CIFAR10). Thus, the layerwise width (number of filters) of the network is optimized as suggested in [26]. Note,
this dimensionality reduction can be performed in parallel for all layers which means we get the significant dimension at all layers concurrently with just a few forward passes. Furthermore, the depth (number of layers) is also reduced following a heuristic proposed in [26], where we get rid of the layers where number of significant dimensions decrease compared to the preceding layer. Once the PCA-pruned configuration (where the significant dimensions determine the width at each layer) is determined, we initialize an ANN with this compressed architecture and perform the whole hybrid training pipeline to obtain the pruned SNN.

B. Temporal Pruning While Training

The spatial pruning compresses the networks spatially. However, SNNs consist of a temporal axis, whereby the information is spread across multiple timesteps. To leverage the time dimension and reduce latency, we propose gradual pruning of timesteps while training. The method is described in Algorithm 2. First, the SNN is trained till convergence with maximum number of timesteps that yields highest accuracy. Then, we start reducing the simulation timesteps by v at each step and keep training the SNN for few epochs to regain accuracy. Here, the number of timesteps to curtail at a single pruning iteration (v) as well as number of epochs to retrain at each step are hyperparameters. We perform this timestep pruning anticipating it will lead to reduction in latency as well as enhance energy-efficiency, which is validated in section IV. However, there is an inherent trade-off between accuracy and latency in SNNs. Hence, the validation accuracy is checked before each timestep pruning iteration and the stopping criterion is based on the lowest acceptable validation accuracy. This temporal pruning scheme is motivated by spatial pruning methods where a network is first trained, then based on some importance measure, insignificant connections are pruned away. Likewise, we first train the SNN with higher number of timesteps and then gradually perform timestep reduction. Notably, this temporal pruning step can be performed either in standalone fashion or together with the structured spatial pruning step described previously. Though the pruning scheme described above increases the training overhead slightly, the goal here is to reduce inference latency and enhance inference efficiency.

C. Weight Quantization

In addition to the pruning methods, weight quantization can be performed to further compress the SNNs. The activations of SNNs are binary, so if the weights can be represented with reduced bit-precision without accuracy loss, it can reduce the storage requirements significantly. Here, we adopt weight-sharing method as proposed in [27] to limit the number of effective weights. K-means clustering [20] is used to cluster similar weights for each layer of a trained network where all the weights belonging to the same cluster share the same

Algorithm 2 Pseudo-code for temporal pruning while training.

Input: Trained SNN with total number of timesteps (T), desired reduced timesteps (T_r), timesteps reduced in single step (v), number of epochs to train between timestep reductions (e), lowest acceptable validation accuracy (A_{min})

Initialize: $T_r = T - v$, validation accuracy, $A_{pruned} = validation accuracy$ of network trained with T timesteps

while $A_{pruned} > A_{min}$ do

 // Training Phase
 for epoch ← 1 to e do
 //Train network with T_r timesteps using algorithm 1
 end for

 // Validation Phase
 // Find validation accuracy
 $A_{pruned} = $ Accuracy(network trained in previous step)

 // Timestep reduction
 $T_r = T_r - v$

end while
weight. Notably, we perform this clustering both for the conv as well as the FC-layers. With \(z \) clusters, only \(\log_2(z) \) bits are needed to encode the index of weights. For a network with \(p \) connections (each represented with \(b \) bits), the compression rate in case of \(z \) shared weights becomes \(r = \frac{pb}{p \log_2(z) + zb} \).

We would like to mention that this quantization step is orthogonal to previous PCA-based pruning and timestep reduction approaches. Again, there is an inherent trade-off between bit-precision and accuracy. Hence, it provides a knob to obtain an optimized configuration with lowest bit-precision possible with minimal accuracy drop.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments are performed on VGG9 for CIFAR10 dataset and on VGG11 for CIFAR100. All results are obtained using the hybrid training approach [13]. For all cases, standard data augmentation techniques are followed such as padding by 4 pixels on each side, and a \(32 \times 32 \) random cropping from the padded image or its horizontally flipped version (with 0.5 probability of flipping). The testing is done using the original \(32 \times 32 \) images. Both training and testing data are normalized using 0.5 as both mean and standard deviation for all channels. While training the ANNs for hybrid training method, we use cross-entropy loss with stochastic gradient descent optimization (weight decay=0.0001, momentum=0.9) with an initial learning rate of 0.1, which is divided by 10 every 100-th epoch. The ANNs do not have bias terms and batch-normalization is not used, rather dropout is used as regularizer and the dropout mask is kept constant across all timesteps in the SNN domain. Furthermore, to perform pooling between layers, average-pooling is used instead of max-pooling to avoid information loss in SNNs as per [22]. Poisson rate-coding is used to convert static images into spike inputs over time. Upon ANN-SNN conversion, SNNs are trained for 20-30 epochs with cross-entropy loss and adam optimizer (weight decay=0.0005). Initial learning rate is kept at 0.0001, which is halved every 5-th epoch.

B. Effect of PCA-based Spatial Pruning

First, we analyze the effect of PCA-based spatial pruning of conv layers of SNN using the method described in section III, subsection A. The layerwise significant dimensions obtained using PCA of the average accumulated membrane potential are given in Table I. As can be seen, our method successfully identifies redundancies in the filters across the layers. Having determined the minimum number of filters which captures most of the data variation in each layer, we initialized a new network with the reduced dimensions, also the 3 fully-connected layers of VGG networks are reduced to a single layer as per [26]. For the rest of this paper, we refer to the original unpruned, PCA-based spatially compressed, spatio-temporally compressed and spatio-temporally pruned network, respectively (the corresponding timesteps are denoted in parenthesis). Li denotes i-th layer. The later layers contain only VGGmo results due to depth reduction in VGGms and VGGmst networks through spatial pruning.

Table I: PCA-based Filter Dimensionality Reduction

VGG9	CIFAR10	Initial Dim.	Significant Dim.	Final Dim.
	CIFAR100			

![Layerwise spike rate for (a) VGG9 on CIFAR10, (b) VGG11 on CIFAR100. Here VGGmo, VGGms and VGGmst denote original unpruned, spatially pruned and spatio-temporally pruned network, respectively (the corresponding timesteps are denoted in parenthesis). Li denotes i-th layer. The later layers contain only VGGmo results due to depth reduction in VGGms and VGGmst networks through spatial pruning.](image-url)
on it. So, we choose λ to be 0.9901 for all simulations, since this value of leak provides optimized performance for SNNs in terms of robustness and spiking activity as per [28].

C. Effect of Spatial Pruning on Latency and Compute Requirements

Next, we investigate the effect of spatial pruning on latency and average number of spikes per inference. This analysis holds importance since the energy-efficiency of SNNs is directly related to the number of operations performed, which is determined by the total number of spikes per inference across all layers. In this regard, we compare the cumulative number of spikes per inference for all layers averaged over all images (termed as average cumulative spike-count per inference, or ASCI) between the unpruned and pruned networks. Interestingly, ASCI for VGG9s becomes 1.8X compared to VGG9o. To counter this, we next investigate if the spatially-pruned networks can converge with lower timesteps. The intuition is that since each timestep incurs more spikes to the previous cumulative spike count, timestep reduction might lead to decrease in ASCI. Our results validate that the spatially pruned networks can converge faster. On the other hand, since the spatially pruned networks reach convergence faster than the unpruned networks, simulating them for equal number of timesteps causes redundant spikes in the pruned networks. Hence, VGG9s(100) has higher ASCI than VGG9o(100). However, the ASCI of VGG9s(40) is 0.65X compared to VGG9o(100), similarly, the ASCI of VGG11s(50) is 0.32X compared to VGG11o(125). To further analyze the spiking activity of various networks, the layerwise spike rates of each network are shown in Fig. 2. The spike rate at a layer L of a network is defined as \[\text{Spike Rate}_{L} = \frac{\#\text{Spikes over all timesteps in layer } L}{\#\text{Neurons in layer } L} \] (5)

From Fig. 2 we again notice similar pattern with VGG9s(100) and VGG11s(125) showing higher layerwise spiking activity compared to their unpruned counterparts. However, this issue is resolved with VGG9s(40) and VGG11(50). The average spike rates for VGG9o(100), VGG9s(100) and VGG9s(40) are 1.38, 3.45 and 1.31, respectively. Again, for VGG11o(125) VGG11s(125) and VGG11s(50), the average spike rates are 4.21, 4.67 and 1.84, respectively. So, spatial pruning enables inference with lower latency as well as lower compute requirements (by decreasing ASCI and spike rate), thereby improving energy-efficiency. We report results for VGG9s and VGG11s upto 40 and 50 timesteps, respectively, below which the networks do not converge well. To further enhance SNN performance by reducing latency even more through leveraging the time axis of SNNs, we perform temporal pruning, which is the focus of our next discussion.

D. Analysis of Temporal Pruning

We perform gradual temporal pruning while training as discussed in section III, subsection B. The effect of temporal pruning on spatially pruned networks is shown in Fig. 3. Interestingly, for both VGG9 and VGG11, the proposed method enables us to keep reducing timesteps to much lower limits compared to what would be possible without any spatio-temporal pruning. In the regions where usual training method fails to converge (≤ 30 timesteps for VGG9 and ≤ 50 timesteps for VGG11), our pruned networks retain near maximum performance. However, one drawback is that to perform such temporal pruning, first we need to train the SNN with higher timesteps and then gradually reduce timesteps while training, which increases the training effort. For our experiments, at each timestep reduction iteration, we reduce timestep by 1, and this configuration is retrained for 1 epoch to regain accuracy. Note, without the pre-training with higher timesteps, we did not succeed in obtaining a network with reduced latency directly. For example, for VGG9 on CIFAR10, starting with a network trained on 100 timesteps, we perform spatio-temporal pruning to reach a network which achieves 81.63% accuracy with just 15 timesteps. But a network trained from scratch with 15 timesteps does not converge at all. This validates the efficacy of our method in training networks with extremely low latency and high efficiency requirements, suitable for real-time applications and edge deployment. This
method of first training a larger network and then obtaining a smaller sub-network (in the temporal axis) is similar to what is followed in spatial pruning. This approach can be thought of as a kind of simulated annealing, where the pre-training with higher timesteps provides a suitable initialization for subsequent latency reduction. Another perspective is to think of this method as a form of distillation process, where the initial network with higher timesteps works as the teacher network, and the student network with reduced latency is learnt from it. However, in our case, the student configuration is not pre-defined, rather it gradually evolves from the teacher at each pruning iteration. Again, distillation works better when the mismatch of capacity between student and teacher networks is minimized [30]. In our case, this is satisfied implicitly since at each pruning iteration, the student learns from the teacher trained at previous iteration, so the student and teacher differ by latency of single timestep. The accuracies and ASCI results of the spatio-temporally pruned networks are given in Table II. As can be seen, for VGG9st and VGG11st, the timesteps required and ASCI can be reduced significantly, albeit with little drop in accuracy. Furthermore, the layerwise spike rates for the VGG9st and VGG11st networks are shown in Fig. 2, which demonstrates that the spike rate at each layer are reduced noticeably compared to unpruned configurations.

E. Quantization Results

The primary focus of this paper is the spatio-temporal pruning methods described so far, however we also explore the feasibility of performing quantization on top of the pruned networks. The weight sharing quantization adopted in this work has been described in section III, subsection C. Here, the quantization is applied on top of spatio-temporal pruning and the quantized networks are denoted as VGG9stq and VGG11stq. The results are shown in Fig. 2. For both cases, up to 5 bit precision, the accuracy drop is negligible, which is consistent with results reported in [16]. Beyond that, at 2 bit quantization level, there is significant accuracy degradation and at 1 bit, the networks fail to converge. This shows that quantization methods can be easily applied up to 5 bits together with the proposed pruning schemes to further enhance the SNN compression performance without sacrificing accuracy. Note, we perform weight clustering in a layerwise manner at same bit level for all layers. For 5-bit quantization, model sizes for VGG9stq and VGG11stq are only 0.02X and 0.036X, respectively of VGG9o and VGG11o. So, the storage requirements for these SNNs are significantly reduced using the proposed compression pipeline.

F. Computational Efficiency

SNNs derive their energy-efficiency by replacing the floating-point (FP) multiply and accumulate (MAC) operations by FP additions. In 45nm CMOS technology, an addition (0.9pJ) is 5.1× less costly than a MAC (4.6pJ) [31]. We calculate the layerwise number of operations (#ops) of the parent unpruned ANN using:

\[
\text{#ANN}_{\text{ops}} = \begin{cases}
 k_w \times k_h \times c_{\text{in}} \times h_{\text{out}} \times w_{\text{out}} \times c_{\text{out}}, & \text{Conv layer} \\
 n_{\text{in}} \times n_{\text{out}}. & \text{Linear layer}
\end{cases}
\]

where \(k_w(k_h)\) denote filter width (height), \(c_{\text{in}}(c_{\text{out}})\) is number of input (output) channels, \(h_{\text{out}}(w_{\text{out}})\) is the height (width) of the output feature map, and \(n_{\text{in}}(n_{\text{out}})\) is the number of input (output) nodes. The #ops in layer \(L\) of an SNN is related to #ops of an iso-architecture ANN by that layer’s spike-rate:

\[
\text{#SNN}_{\text{ops,L}} = \text{spike rate}_L \times \text{#ANN}_{\text{ops,L}}.
\]

The layerwise spike rates for CIFAR10 and CIFAR100 using the proposed pruning methods are shown in Fig. 2. We calculate the layerwise #ops of the pruned SNNs using Eqn. 6. Then the energy benefit of the SNNs over the unpruned ANN (\(\alpha = \frac{E_{\text{unpruned ANN}}}{E_{\text{Compressed SNN}}}\)) is computed as,

\[
\alpha = \frac{\sum_L \text{#Unpruned ANN}_{\text{ops,L}} \times 4.6}{\sum_L \text{#Compressed SNN}_{\text{ops,L}} \times 0.9}
\]

We find that the VGG9st(25) and VGG11st(30) networks are 14.64× and 8.43× energy-efficient, respectively, compared to their corresponding unpruned ANNs. Also, in comparison to VGG9o(100) and VGG11o(125), VGG9st(25) and VGG11st(30) provide 5.5× and 7.7× energy-efficiency, respectively. Note, this evaluation of efficiency excludes the

Table II

Network	VGG9o	VGG9s	VGG9t	VGG9stq	VGG11o	VGG11s	VGG11stq			
Accuracy(%)	90.1	90.02	89.9	89.04	88.6	68.1	68	67.8	66.4	66.2
Timestep	100	100	40	25	25	125	125	50	30	30
#Params	1X	0.07X	0.07X	0.07X	1X	0.107X	0.107X	0.107X	0.107X	
ASCI	1X	1.8X	0.65X	0.35X	0.35X	1X	0.82X	0.32X	0.18X	0.18X
Bit Precision	32	32	32	32	32	32	32	5		

Fig. 4. Effect of weight quantization on accuracy.
cost of memory access, since it is hardware architecture and system configuration dependent.

G. Robustness to Noise

Next, we analyze the robustness of the spatio-temporally pruned nets to Gaussian noise and the results are displayed in Fig. 5. Here, the noise is applied to the analog-valued pixels before converting them to spikes. Compared to VGG9o and VGG11o, VGG9st and VGG11st provide 1.3% and 4.3% enhanced robustness respectively, averaged across different intensities of noise (determined by noise standard deviation). Similar noise robustness has been observed for spatially pruned networks in [32], where it is attributed to the implicit regularization obtained by eliminating redundant connections. Our results are also consistent with [33], where the authors reported enhanced robustness to adversarial noise for networks trained with lesser timesteps.

H. Comparison with Prior Art

In this section, we compare the performance of our spatio-temporally pruned networks with other recent algorithms in terms of providing low-latency solution for SNNs. The accuracy versus latency curves for CIFAR10 and CIFAR100 are shown in Fig. 6 top and bottom, respectively. Compared to time-to-first-spike (TTFS) coding [34], Phase coding [35], Burst coding [36] and other Rate [19] coding approaches, our proposed method can converge at much lower latency for both datasets. The drawback is that it suffers from a small accuracy drop. However, the range of timesteps where our method can reach near convergence, other algorithms fail to converge. This validates the efficacy of the proposed compression framework in obtaining extremely low-latency, low-power SNNs suitable for edge applications. In addition, we also provide comparison of this work with some other reported results in Table III. As can be seen, compared to other works, the spatial and temporal pruning approach proposed here enables SNNs to obtain higher performance in comparatively lesser timesteps. Moreover, this latency reduction also translates to higher energy-efficiency, as we have shown before.

V. Conclusion

SNNs can potentially provide an attractive energy-efficient alternative to ANNs. However, it is pivotal to address the issue of high inference latency for rate-coded SNNs. Merging usual compression approaches used in ANNs (such as pruning and quantization) with SNNs could enhance their energy-efficiency benefits. To that end, we propose spatial and temporal pruning and quantization for low-latency, highly efficient SNNs. We validate our results using VGG networks on CIFAR10 and CIFAR100. PCA-based spatial pruning compresses model size and reduces latency and compute requirements. In the proposed scheme, spatial pruning is followed by temporal pruning, which further reduces latency and improves energy-efficiency. Additional model compression is achieved using weight sharing quantization. This work applies compression techniques traditionally used for ANNs in the realm of SNNs.

Reference	Dataset	Accuracy (%)	Timestep
Hunsberger et al.	CIFAR10	82.95	6000
Cao et al.	CIFAR10	77.43	400
Wu et al.	CIFAR10	50.7	30
Kushawaha et al.	CIFAR10	45.98	not reported
Srinivasan et al.	CIFAR10	66.23	25
This work	CIFAR10	89.04	25
Lu et al.	CIFAR100	65.2	62
Rathi et al.	CIFAR100	67.9	125
Srinivasan et al.	CIFAR100	64.1	200
This work	CIFAR100	64.98	120

Reference	Dataset	Accuracy (%)	Timestep
Lu et al.	CIFAR100	64.4	30

Fig. 5. Effect of pruning on robustness to random Gaussian noise.

Fig. 6. Accuracy versus latency curve for various recent algorithms, the values for time-to-first-spike (TTFS) [34], Phase [35], Burst [36] and Rate [19] have been adopted from [34].
and proposes to utilize the time axis of SNNs effectively to perform holistic spatio-temporal compression. The associated trade-off is slight accuracy degradation, but allows SNNs to infer with 8-14X energy efficiency compared to unpruned ANNs, while occupying 10-14X lesser memory. We believe this approach provides a pathway towards finding suitable solutions to train SNNs with very low energy and latency requirements, which is crucial for edge applications. Future works include exploring other pruning and quantization methods for SNN compression.

ACKNOWLEDGMENT

The work was supported in part by Center for Brain-inspired Computing (C- BRIC), a DARPA sponsored JUMP center, Semiconductor Research Corporation, National Science Foundation, the DoD Vannevar Bush Fellowship and U.S. Army Research Laboratory.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.
[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.
[3] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency of deep convolutional neural networks on epus and gpus,” In 2016 IEEE international conferences on big data and cloud computing (BCloud), social computing and networking (SocialCom), sustainable computing and communications (SustainCom) (BCloud-SocialCom-SustainCom), pp. 477–484, IEEE, 2016.
[4] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,” in Advances in Neural Information Processing Systems, pp. 442–450, 2015.
[5] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural network,” in Advances in neural information processing systems, pp. 1135–1143, 2015.
[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,” in Advances in Neural Information Processing Systems, pp. 2074–2082, 2016.
[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830 2016.
[8] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware aware automated quantization with mixed precision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8612–8620, 2019.
[9] W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural networks, 10(9):1659–1671, 1997.
[10] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nofo, P. Datta, A. Amir, B. Tabo, M. D. Flucken, and D. S. Modha, “Convolutional networks for fast, energy-efficient neuronomorphic computing,” Proceedings of the National Academy of Sciences, vol. 113, number 41, pp. 11441–11446, 2016.
[11] S. Dora, S. Sundaram, and N. Sundararajan, “A two stage learning algorithm for a growing-pruning spiking neural network for pattern classification problems,” in Neural Networks (IJCNN), 2015 International Joint Conference On, pp. 1–7, IEEE, 2015.
[12] Y. Shi, L. Nguyen, S. Oh, X. Liu, and D. Kuzum, “A soft-pruning method applied during training of spiking neural networks for in memory computing applications,” Frontiers in neuroscience, vol. 13, p. 405, 2019.
[13] N. Rathi, P. Panda, and K. Roy, “Sdp based pruning of connections and weight quantization in spiking neural networks for energy-efficient recognition,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018.
[14] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco, “On practical issues for stochastic stdp hardware with 1-bit synapses, weights,” Frontiers in neuroscience, vol. 12, 2018.
[15] G. Srinivasan and K. Roy, “Restocnet: Residual stochastic binary convolutional spiking neural network for memory-efficient neuronomorphic computing,” Frontiers in Neuroscience, vol. 13, p. 189, 2019.
[16] L. Deng, Y. Wu, Y. Hu, L. Liang, G. Li, X. Hu, Y. Ding, P. Li, and Y. Xie, “Comprehensive sin compression using adam optimization and activity regularization,” arXiv preprint arXiv:1911.00822, 2019.
[17] S. Kunds, G. Datta, M. Pedram, and P. A. Beere, “Spike-thrift: Towards energy-efficient deep spiking neural networks by limiting spiking activity via attention-guided compression,” In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3953–3962), 2021.
[18] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deepspiking neural networks with hybrid conversion and spike timing dependent backpropagation,” In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=BJx8erKvH.
[19] B. Rueckauer, I. Lungu, Y. Hu, M. Pfeiffer, and S. Liu, “Conversion of continuous-valued deep networks to efficient event-driven networks for image classification,” Frontiers in neuroscience, 11:682, 2017.
[20] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Vol. 1. No. 14. 1967.
[21] E. Hunsberger and C. Eliasmith, “Spike deep networks with lif neurons,” arXiv preprint arXiv:1510.08829, 2015.
[22] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fastclassifying, high-accuracy spiking deep networks through weight and threshold blocking.” In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2015.
[23] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural networks: Vgg and residual architectures,” Frontiers in neuroscience, 13:95, 2019.
[24] E. Nefci, H. Mostafa, and F. Zeyn, “Surrogate gradient learning in spiking neural networks,” IEEE Signal Processing Magazine, 36:61–63, 2019.
[25] G. Belllec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Longshort-term memory and learning-to-learn in networks of spiking neurons,” In Advances in Neural Information Processing Systems, pp. 787–797, 2018.
[26] I. Garg, P. Panda, K. Roy, “A low effort approach to structured cnn design using pca,” IEEE Access, 8, 1347–1360, 2019.
[27] S. Han, M. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.
[28] S. S. Chowdhury, C. Lee, and K. Roy, “Towards Understanding the Effect of Leak in Spiking Neural Networks,” arXiv preprint arXiv:2006.08761, 2020.
[29] I. Garg, S. S. Chowdhury, and K. Roy, “DCT-SNN: Using DCT to Distribute Spatial Information over Time for Learning Low-Latency Spiking Neural Networks,” arXiv preprint arXiv:2010.01795, 2020.
[30] J. H. Cho, and B. Hariharan, “On the efficacy of knowledge distillation,” In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4794-4802), 2019.
[31] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, IEEE, 2014.
[32] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex method applied during training of spiking neural networks for in memory computing applications,” In 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2020.
[33] J. Kim, H. Kim, S. Huh, J. Lee, and K. Choi, “Deep neural networks with weighted spikes,” Neurocomputing, 313:373–386, 2018.
[34] S. Park, S. Kim, H. Choe, and S. Yoon, “Fast and efficient information transmission with burst spikes in deep spiking neural networks,” In 2019
[37] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-efficient object recognition,” International Journal of Computer Vision, 113(1):54–66, 2015.

[38] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for training high-performance spiking neural networks,” Frontiers in neuroscience, 12:331, 2018.

[39] R. K. Kushawaha, S. Kumar, B. Banerjee, and R. Velmurugan, “Distilling Spikes: Knowledge Distillation in Spiking Neural Networks,” arXiv preprint arXiv:2005.00288, 2020.

[40] S. Lu, and A. Sengupta, “Exploring the connection between binary and spiking neural networks,” Frontiers in Neuroscience, 14, 535, 2020.