Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, *Helicoverpa armigera* and *H. assulta*

Hetan Chang1,2, Dong Ai2, Jin Zhang1,2, Shuanglin Dong1*, Yang Liu2*, Guirong Wang2

1 College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China, 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

☯ These authors contributed equally to this work.

* sdong@njau.edu.cn (SD); yangliu@ippcaas.cn (YL)

Abstract

In order to acquire enough nutrients and energy for further development, larvae need to invest a large portion of their sensory equipments to identify food sources. Yet, the molecular basis of odor-driven behavior in larvae has been poorly investigated. Information on olfactory genes, particularly odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the initial steps of olfaction is very scarce. In this study, we have identified 26 OBP and 21 CSP genes from the transcriptomes of *Helicoverpa armigera* larval antennae and mouthparts. A comparison with the 34 OBP and 18 CSP genes of the adult antenna, revealed four novel OBPs and seven novel CSPs. Similarly, 27 OBPs (six novel OBPs) and 20 CSPs (6 novel CSPs) were identified in the transcriptomes of *Helicoverpa assulta* larval antennae and mouthparts. Tissue-specific profiles of these soluble proteins in *H. armigera* showed that 6 OBP and 4 CSP genes are larval tissue-specific, 15 OBPs and 13 CSPs are expressed in both larvae and adult, while the rest are adult-specific. Our data provide useful information for functional studies of genes involved in larval foraging.

Introduction

For survival, insects need a specialised sensory system to monitor environmental odors. Olfactory stimuli in Lepidoptera can be divided into intra-specific pheromones, mainly mediating communication between sexes, and plant volatiles used as cues for larval foraging and oviposition [1–3]. Odor detection is achieved by ten thousand chemosensilla on the two main sensory organs, antenna and mouthparts, housing olfactory sensory neurons (OSNs) that respond to volatiles and send electrical impulses to antennal lobes. From these organs cognate project
neurons (PN) convey electric signals to the mushroom bodies and lateral horn of the protocerebrum, triggering behavioral responses [4–6]. At the periphery, several protein families are involved in odor detection: odorant binding proteins (OBPs), chemosensory proteins (CSP), odorant receptors (OR) and ionotropic receptors (IR) [7–9]. Of these genes, the receptor families including ORs and IRs are the key elements which determine both sensitivity and specificity of chemical recognition. ORs are seven trans-membrane domain receptors expressed in the dendrite membrane of olfactory sensory neurons. OR perform their function as heterodimer with a specific ligand-binding ORx and a highly conserved co-receptor named Orco [10–12]. IRs belong to the ionotropic glutamate receptor (iGluR)-like protein family and can be activated by small molecules like acetates and amine-like volatile compounds [13–15].

Apart from receptors, two families of soluble proteins, OBPs and CSPs, also play essential roles in the first step of olfactory detection. OBPs are small soluble proteins generally with 135–220 amino acids. To maintain a compact and conserved structure, six conserved cysteines are paired in three interlocked disulphide bridges. Six α-helices envelop a hydrophobic binding pocket [16–18]. OBPs are present at high concentrations (up to 10mM) in the lymph between the dendritic membrane and the cuticular wall [7, 19]. More interesting, there are some evidences that OBPs contribute to odorant recognition, rather than being passive odorant shuttles [20, 21]. Some studies have shown that OBPs perform the first filtering function in olfactory discrimination [19,20], besides a more general role in ferrying ligands through the sensillum lymph to the membrane of OSN dendrites. OBPs have also been shown to influence the response of ORx/ORco complexes to specific odors [21, 22]. CSPs represent another class of small soluble proteins abundant in the lymph of chemosensilla [23]. They are different from OBPs in amino acid sequence and structure, but appear to be similar in functions, although better evidence is needed to clarify their role in olfaction.

In Lepidoptera, both larvae and adults use their olfactory system to detect volatile chemicals, but their olfactory organs are completely different in morphology. In adults, a pair of antennae bear tens of thousands of sensilla, each of them housing two or more OSNs [24, 25]. Larvae are equipped with two different olfactory organs, antennae and mouthparts [26,27]. Unlike adult antennae, larval antennae and mouthparts contain few sensilla, but each of them houses a cluster of OSNs [28, 29]. With the rapid development of next generation sequence techniques, a large number of olfactory genes including IRs, ORs, OBPs and CSPs have been recently identified in the antennae of several moths, such as Manduca sexta [15, 30–32], Helicoverpa armigera [33–35], Helicoverpa assulta [34, 36], Cydia pomonella [37], Spodoptera littoralis [38, 39] and Chilo suppressalis [40], and many others. However, limited information is available for larval antennae and mouthparts.

Two Helicoverpa species, H. armigera and H. assulta are worldwide agricultural pests [41]. The behaviors of larvae and adults are largely triggered by olfactory stimuli. Previously, we performed a transcriptome analysis on adult antennae in both species. A total of 131 putative chemosensory unigenes were identified in H. armigera including 60 ORs, 19 IRs, 34 OBPs and18 CSPs. Similarly, in H. assulta we found 129 putative chemosensory unigenes, including 64 ORs, 19 IRs, 29 OBPs and 17 CSPs [34]. Skiri et al. (2005) have identified 65 glomeruli in each sex of H. armigera and 66 glomeruli in females of H. assulta [6], later supplemented by 15 new glomeruli in H. armigera [42]. Assuming that the number of glomeruli is equal to the number of ORs and IRs [43, 44], almost all olfactory receptors were identified in the two species. These data also agree with another study focused on both adults and larvae of H. armigera chemosensory tissues [35]. However, the repertoires of OBPs and CSPs in these two species may be incomplete by comparison with the numbers of OBPs and CSPs identified in the genome of B. mori (46 OBPs and 24 CSPs) [45]. This suggests that some OBP and CSP sources may occur in other chemosensory tissues, such as larval antennae and mouthparts. In this study, we
performed a transcriptome analysis to identify OBP and CSP genes in larval chemosensory organs of *H. armigera* and *H. assulta*. Moreover, we conducted RT-PCR assays on *H. armigera* adult and larval olfactory organs to find OBP and CSP genes with specific expression in larval antennae or mouthparts.

Methods

Insect rearing

H. armigera were reared at the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. The *H. assulta* larvae were collected from the tobacco fields with the permission of the Experiment Station of Henan University of Science and Technology in Xuchang, Henan Province, China. Larvae were reared on an artificial diet and placed on a 16:8 h (light: dark) photoperiod at 27 ± 1˚C, 55–65% RH. Pupae were sexed and male and female individuals were placed in separate cages for eclosion. The adults were fed on 10% honey solution. In expression profile studies, all adult tissues were collected from 3-day-old male and female moths, all larval tissues were collected from fifth instar larvae.

RNA extraction

Fresh larval antennae and mouthparts were grinded in a liquid nitrogen cooled homogenizer, later adding 1mL of TriZol reagent (Invitrogen, Carlsbad, CA, USA) and the total RNA extraction were performed following the manufacturer’s instructions. The RNA sediment was dissolved in 20μL RNase-free water, RNA integrity was verified by gel electrophoresis. RNA quantity were measured on a Nanodrop ND-2000 spectrophotometer (NanoDrop products, Wilmington, DE, USA) and purity was verified by gel electrophoresis.

cDNA library construction and sequencing

Five micrograms total RNA of each samples (*H. armigera* larval antennae, *H. armigera* larval mouthparts, *H. assulta* larval antennae, and *H. assulta* larval mouthparts,) was used to construct the cDNA library respectively. cDNA library construction and Illumina HiSeq 2000 (Illumina, San Diego, CA, USA) sequencing of the samples were performed at Beijing Genomics Institute (BGI, Shenzhen, China). The length of insert sequence was around 200 bp. The libraries were paired-end sequenced using PE90 strategy. The detailed procedures have been described in previous work from our laboratory [33, 34].

Assembly and functional annotation

After removing low quality reads, trimming low quality nucleotides of both ends, trimming 3 adaptors and poly-A/T tails, the remainder raw-reads were considered as clean-reads. De novo assembly in each sample was conducted using Trinity (version 20120608). Then the unigenes derived from the Trinity outputs were clustered by TGICL [46,47]. The consensus cluster sequences and singletons make up the unigenes dataset. The annotation of unigenes were performed via a NCBI blastx against non-redundant (nr) and SwissProt database. Candidate unigenes encoding putative OBPs and CSPs, were identified according to nr and SwissProt annotation results.

Sequence and phylogenetic analysis

The open reading frames (ORFs) of the putative chemosensory genes were predicted by using ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Putative N-terminal signal peptides of OBPs and CSPs were predicted by Signal IP 4.0 (http://www.cbs.dtu.dk/services/SignalP/).
Alignments of amino acid sequences (without signal peptides) were performed by ClustalX 2.0. The phylogenetic trees of OBPs and CSPs were constructed using MEGA5 software by the neighbor-joining method with Jones-Taylor-Thornton (JTT) model and the node support was assessed using a bootstrap procedure of 1000 replicates. The OBP data set contained OBP sequences identified in Lepidoptera (37 from *H. armigera*, 35 from *H. assulta*, 14 from *H. virescens*, 47 from *M. sexta* and 35 from *B. mori*). The CSP data set contained 25 sequences from *H. armigera*, 23 from *H. assulta*, 9 from *H. virescens*, 13 from *C. suppressalis*, and 16 from *B. mori*. The protein name and accession number of the genes used for phylogenetic tree building are listed in S1 Material.

Expression analysis by semi-quantitative reverse transcription PCR

Semi-quantitative reverse transcription PCR was performed to compare the expression levels of candidate chemosensory genes in larval antennae, larval mouthparts, adult antennae and adult abdomen in *H. armigera*. Total RNA was extracted from each sample as mentioned above. Before cDNA synthesis, total RNA was treated with DNase I (Fermentas, Vilnius, Lithuania) to remove residual genomic DNA. The cDNA was synthesized from total RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA). Gene specific primers were designed using Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (S2 Material) and synthesized by Sangon Biotech Co., Ltd (Shanghai, China). Taq MasterMix (CWBio, Beijing, China) was used for PCR reactions under general 3-step amplification of 94˚C for 30s, 60˚C for 30s, 72˚C for 30s. For most chemosensory genes, the PCR cycle-numbers were 28. PCR products were run on a 2% agarose gel and verified by DNA sequencing. The experiment was repeated using two independently prepared cDNA templates.

Results

Illumina sequencing and functional annotation

In this study, the transcriptomes of larval antennae and mouthparts in *H. armigera* and *H. assulta* were sequenced by Illumina HiSeq 2000 platform. After filtering, 51.1 million and 45.5 million clean-reads of 4.6 and 4.1 gigabases were generated for larval antennae and mouthparts of *H. armigera*, respectively. Meanwhile, 50.2 million and 52.9 million clean-reads of 4.5 and 4.8 gigabases were generated for larval antennae and mouthparts of *H. assulta*. These clean reads were assembled into 47,331, 41,705, 57,789 and 47,423 unigenes in *H. armigera* larval antennae and mouthparts, and in *H. assulta* larval antennae and mouthparts, respectively. After clustering and merging, 39,371 unigenes consisting of 12,724 distinct clusters and 26,647 distinct singletons were obtained for *H. armigera* and 44,352 unigenes consisting of 11,179 distinct clusters and 33,173 distinct singletons were obtained for *H. assulta* (Table 1).

A blastx homology search against the NCBI nr protein database revealed that 22,628 (57.5%) and 22,724 (51.2%) unigenes from *H. armigera* and *H. assulta*, respectively, showed sequence similarities to known proteins, with a cut-off E-value of 10^{-5}. In the nr homologous species distribution, 46.78% (*H. armigera*) and 48.42% (*H. assulta*) annotated sequences closely matched the sequences of *B. mori*. The next most similar species was *D. plexippus* whose sequences matched 26.25% of those of *H. armigera* and 27.13% of *H. assulta*. Only a low percentage (<5%) of *H. armigera* and *H. assulta* sequences had orthologues in other species (S3 Material).

Identification of putative odorant-binding proteins

Based on the blastx sequence homology searching, a total of 26 and 27 OBP genes were obtained from *H. armigera* and *H. assulta* larval transcriptome respectively. Of these genes, 22
HarmOBPs and HassOBPs presented intact ORFs encoding for proteins of 135 to 195 aa, all exhibiting signal peptides at their N-termini (Table 2). A comparison with known OBPs of \textit{H. armigera} adult antenna revealed four novel OBPs in larvae, that we named as HarmOBP31, HarmOBP33, HarmOBP35 and HarmOBP36, and six new OBPs in \textit{H. assulta}, named as HassOBP33 to HassOBP38. All these novel genes were deposited in the GeneBank databases with the following accession numbers: HarmOBP31: KY810175, HarmOBP33: KY810179, HarmOBP35: KY810176, HarmOBP36: KY810177, HassOBP33: KY810180, HassOBP34: KY810178, HassOBP35: KY810181, HassOBP36: KY810182, HassOBP37: KY810183, HassOBP38: KY815028.

Insect OBPs are generally grouped into three main subfamilies: “Classic” OBPs with six conserved cysteines, “Minus-C” with only four cysteines, and “Plus-C” with more cysteines in addition to those of the conserved motif [45, 48, 49]. Among the larval OBPs, 14 of \textit{H. armigera} and 17 of \textit{H. assulta} were assigned to the Classic OBP group, while 3 can be classified as Minus-C OBPs in both species. 7 OBPs in both species belong to the Plus-C group, while others could not be assigned due to incomplete sequences (Fig 1).

A phylogenetic tree was constructed using OBP sequences from \textit{H. armigera}, \textit{H. assulta}, \textit{H. virescens}, \textit{M sexta} and \textit{B. mori} (Fig 2). Accordingly, the OBPs can be grouped into ABPI (antennal binding protein I), ABPII (antennal binding protein II), CRLBP (classic OBP), Minus-C, Plus-C, and PBP/GOBP (general odorant binding protein/pheromone binding protein) clusters based on the classification of OBPs from \textit{B. mori} [45]. At the same time, most OBPs of \textit{H. armigera} and \textit{H. assulta} defined as Minus-C and Plus-C clustered with \textit{B. mori} proteins of the same groups. However, among “classic” OBPs, only two sequences were found in the CRLBP branch, the others in the ABPX branches. Based on the bootstrap values on the tree, for all novel HarmOBPs we could find orthologous genes in \textit{H. assulta} with more than 90% sequence identity. Only for HassOBP38 we could not identify an orthologue in \textit{H. armigera}.

Identification of candidate chemosensory proteins

In our transcription sets, a total of 21 sequences in \textit{H. armigera} and 20 sequences in \textit{H. assulta} can be matched with sequences of known CSPs in other Lepidoptera species. Of these, 17 HarmCSPs and HassCSPs had full-length ORFs and predicted signal peptides. Their lengths range from 107 to 292 amino acids (Table 3). A comparison with CSPs previously reported for

Sample	Total Number	Total Length (nt)	Mean Length (nt)	N50 Total Consensus Sequences	Distinct Clusters	Distinct Singletons	
\textit{H. armigera}							
Contig	Harm-L-A	83,523	37,101,992	444	1247	-	-
	Harm-L-MP	71,965	32,582,057	453	1244	-	-
Unigene	Harm-L-A	47,331	43,705,425	907	1953	11,955	29,750
	Harm-L-MP	41,705	46,761,853	1188	2298	39,371	12,724
All		93,038	83,864,349	1188	2298	39,371	12,724
\textit{H. assulta}							
Contig	Hass-L-A	103,673	38,454,494	371	831	-	-
	Hass-L-MP	78,235	39,088,209	461	1241	-	-
Unigene	Hass-L-A	57,789	40,537,882	701	1554	57,789	8,354
	Hass-L-MP	47,423	42,770,981	902	2028	47,423	9,677
All		100,212	83,106,863	1058	2104	44,352	11,179

[Table 1. Summary of data used for transcriptome assembly.](https://doi.org/10.1371/journal.pone.0179243.t001)
Table 2. Unigenes of candidate odorant binding proteins in larval chemosensory tissues of *H. armigera* and *H. assulta*.

Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Signal peptide	Full length	
Unigene 16494	HarmGOBP2	634	162	emb	CAC08211.1[general odorant-binding protein 2 precursor (GOBP2)] [Helicoverpa armigera]	6E-115	100%	Yes	Yes
Unigene 15587	HarmOBP1	617	147	gb	AEX07272.1[odorant-binding protein [Helicoverpa assulta]]	1E-80	94%	Yes	Yes
Unigene 25962	HarmOBP2	276	51	gb	AGH70103.1[odorant-binding protein 7 [Spodoptera exigua]]	4E-22	84%	Yes	No
Unigene 8467	HarmOBP3	662	147	gb	AGC92788.1[odorant-binding protein 3 [Helicoverpa assulta]]	2E-97	96%	Yes	Yes
Unigene 3463	HarmOBP4	611	147	gb	AEX07276.1[odorant-binding protein [Helicoverpa assulta]]	2E-89	91%	Yes	Yes
CL5000.Contig1	HarmOBP5	641	147	gb	AEX07271.1[odorant-binding protein [Helicoverpa assulta]]	1E-101	99%	Yes	Yes
CL1168.Contig2	HarmOBP6	641	147	gb	AEX07270.1[odorant-binding protein [Helicoverpa assulta]]	2E-98	97%	Yes	Yes
Unigene 9848	HarmOBP9	703	148	gb	AGC92789.1[odorant-binding protein 9 [Helicoverpa assulta]]	7E-106	99%	Yes	Yes
CL3933.Contig2	HarmOBP14	769	137	gb	AFI57167.1[odorant-binding protein 18 [Helicoverpa armigera]]	1E-94	100%	Yes	Yes
CL3679.Contig2	HarmOBP15	631	168	gb	ADY17882.1[odorant-binding protein [Spodoptera exigua]]	6E-82	75%	Yes	Yes
Unigene 12555	HarmOBP16	714	186	gb	AEX07273.1[odorant-binding protein [Helicoverpa assulta]]	3E-78	62%	Yes	Yes
Unigene 9920	HarmOBP17	473	137	gb	AGM38607.1[odorant binding protein [Chilo suppressalis]]	1E-58	69%	Yes	Yes
Unigene 371	HarmOBP19	533	148	ref	NP_001141088.1[odorant-binding protein 4 [Bombyx mori]]	3E-37	46%	Yes	Yes
Unigene 16501	HarmOBP21	550	142	gb	AFD34178.1[odorant-binding protein 2 [Argyresthia conjugella]]	3E-45	54%	Yes	Yes
Unigene 24118	HarmOBP22	576	140	gb	AFG72998.1[odorant-binding protein 1 [Spodoptera exigua]]	3E-55	57%	Yes	No
Unigene 3491	HarmOBP23	811	241	gb	AGH70107.1[odorant binding protein 11 [Spodoptera exigua]]	3E-95	80%	Yes	No
Unigene 10971	HarmOBP25	658	195	gb	AEX07273.1[odorant-binding protein [Helicoverpa assulta]]	1E-136	98%	Yes	Yes
Unigene 14030	HarmOBP26	669	154	gb	EHJ67765.1[odorant binding protein [Danaus plexippus]]	1E-60	69%	Yes	Yes
CL376.Contig1	HarmOBP27	577	147	gb	AEX07279.1[odorant-binding protein [Helicoverpa armigera]]	7E-97	96%	Yes	Yes
Unigene 15643	HarmOBP28	643	147	gb	BAI44700.1[odorant binding protein [Bombyx mori]]	6E-52	56%	Yes	Yes
Unigene 6228	HarmOBP29	608	142	gb	AAR28763.1[odorant-binding protein-2 precursor [Spodoptera frugiperda]]	1E-46	62%	Yes	Yes
Unigene 8997	HarmOBP30	794	135	gb	AFI57166.1[odorant-binding protein 17 [Helicoverpa armigera]]	1E-93	99%	Yes	Yes
Unigene 9430	HarmOBP31	755	150	gb	AEX07271.1[odorant-binding protein [Helicoverpa assulta]]	2E-59	61%	Yes	Yes
Unigene 5227	HarmOBP33	351	99	ref	XP_004928233.1[general odorant-binding protein 9a-like [Bombyx mori]]	1E-41	65%	No	No
Unigene 6209	HarmOBP35	656	146	gb	AFI57165.1[odorant-binding protein 16 [Helicoverpa armigera]]	5E-108	99%	Yes	Yes
Unigene 7375	HarmOBP36	537	149	ref	NP_001141088.1[odorant-binding protein 4 [Bombyx mori]]	4E-40	45%	Yes	Yes

(Continued)
Table 2. (Continued)

Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Signal peptide	Full length		
H. assulta										
Unigene23306	HassGOBP1	328	109	sp	Q27226.1	general odorant binding protein 1 [Heliothis virescens]	9E-73	96%	Yes	No
Unigene21063	HassGOBP2	624	162	gb	AAQS4909.1	general odorant binding protein 2 [Helicoverpa assulta]	8E-115	100%	Yes	Yes
CL3828.Contig1	HassOBP1	1042	147	gb	AE007272.1	odorant-binding protein [Helicoverpa assulta]	1E-81	98%	Yes	Yes
CL2155.Contig1	HassOBP2	752	143	gb	AGH70103.1	odorant binding protein 7 [Spodoptera exigua]	7E-85	82%	Yes	Yes
Unigene16541	HassOBP3	618	147	gb	AGC92788.1	odorant-binding protein 3 [Helicoverpa assulta]	2E-100	100%	Yes	Yes
Unigene8150	HassOBP4	581	147	gb	AE007276.1	odorant-binding protein [Helicoverpa assulta]	2E-96	97%	Yes	Yes
Unigene6153	HassOBP5	637	147	gb	AE007271.1	odorant-binding protein [Helicoverpa assulta]	1E-101	99%	Yes	Yes
Unigene5533	HassOBP6	626	147	gb	AE007270.1	odorant-binding protein [Helicoverpa assulta]	2E-101	99%	Yes	Yes
Unigene8860	HassOBP9.2	698	148	gb	AGC92789.1	odorant-binding protein 9 [Helicoverpa assulta]	5E-105	99%	Yes	Yes
Unigene18089	HassOBP14	1747	137	gb	AFI57167.1	odorant-binding protein 18 [Helicoverpa armigera]	1E-89	99%	Yes	Yes
Unigene18604	HassOBP15	579	166	gb	ADY17882.1	odorant binding protein [Spodoptera exigua]	1E-82	76%	Yes	No
Unigene4097	HassOBP19	516	148	ref	NP_001140188.1	odorant-binding protein 4 [Bombyx mori]	1E-37	47%	Yes	Yes
Unigene5122	HassOBP22	379	125	gb	AGM38613.1	odorant binding protein [Chilo suppressalis]	2E-54	58%	No	No
Unigene1471	HassOBP23	863	241	gb	AGH70107.1	odorant binding protein 11 [Spodoptera exigua]	8E-96	81%	Yes	No
Unigene12884	HassOBP25	621	194	gb	AE007273.1	odorant-binding protein [Helicoverpa assulta]	8E-115	100%	Yes	Yes
Unigene8198	HassOBP26	669	181	gb	EHJ67765.1	odorant binding protein [Danaus plexippus]	9E-73	96%	Yes	No
CL3623.Contig1	HassOBP27	573	147	gb	AE007279.1	odorant-binding protein [Helicoverpa armigera]	1E-22	48%	No	No
Unigene6098	HassOBP28	585	147	db	BAA44700.1	odorant binding protein [Bombyx mori]	1E-37	47%	Yes	Yes
Unigene6100	HassOBP29	602	142	gb	AAR28763.1	odorant-binding protein 2 precursor [Spodoptera frugiperda]	2E-54	58%	No	No
Unigene11827	HassOBP30	811	135	gb	AFI57166.1	odorant-binding protein 17 [Helicoverpa armigera]	8E-96	81%	Yes	No
Unigene6144	HassOBP31	789	150	gb	AE007271.1	odorant-binding protein [Helicoverpa assulta]	5E-134	97%	Yes	Yes
Unigene10157	HassOBP33	609	152	ref	XP_00492833.1	general odorant-binding protein 99a-like [Bombyx mori]	1E-60	69%	Yes	Yes
Unigene13394	HassOBP34	476	137	gb	AGM38607.1	odorant binding protein [Chilo suppressalis]	8E-98	97%	Yes	Yes
Unigene16490	HassOBP35	636	146	gb	AGC92791.1	odorant-binding protein 16 [Helicoverpa assulta]	3E-52	56%	Yes	Yes
Unigene2048	HassOBP36	527	149	ref	NP_001140188.1	odorant-binding protein 4 [Bombyx mori]	8E-45	60%	Yes	Yes
Unigene20923	HassOBP37	634	142	gb	AFD34178.1	odorant binding protein 2 [Argyresthia conjugella]	1E-93	99%	Yes	Yes
Unigene31389	HassOBP38	356	118	gb	AGC92793.1	odorant-binding protein 19 [Helicoverpa assulta]	4E-59	62%	Yes	Yes

https://doi.org/10.1371/journal.pone.0179243.t002
Candidate OBPs and CSPs in the larval chemosensory tissues of *Helicoverpa armigera* and *H. assulta*

H. armigera and *H. assulta* adult antenna revealed seven new sequences in *H. armigera* (HarmCSP20 to HarmCSP26) and six in *H. assulta* (HassCSP20 to HassCSP25). All candidate CSPs exhibit the four conserved cysteine pattern characteristic of this family (Fig 3). These sequences were used to build a neighbor-joining tree with the CSPs of *C. suppressalis*, *B. mori* and *H. virescens*. In the tree we could recognize four groups of genes clustered together with a 99% bootstrap value, while the remaining sequences could not be grouped. Based on this homology analysis, we named the novel CSPs as HarmCSP20/HassCSP20, HarmCSP21/HassCSP21, HarmCSP22/HassOBP22, HarmCSP23/HassCSP23, HarmCSP24, HarmCSP25, HarmCSP26, HassCSP24 and HassCSP25 following the numbers assigned to previously reported CSPs (Fig 4). All these novel genes were deposited in the GeneBank: HarmCSP20-26 (GeneBank accession numbers: KY810184, KY810185, KY810186, KY810187, KY810188, KY815026, KY815027), HassCSP20-25 (GeneBank accession numbers: KY810189, KY810190, KY810191, KY810192, KY810193, KY810194).

Expression of the OBPs and CSPs in larva and adult *H. armigera*

To better understand the functional role of OBPs and CSPs in larval olfactory systems, we investigated the expression patterns of all candidate HarmOBPs and HarmCSPs via semi-quantitative reverse transcription PCR. The tissues used were larval antenna, larval mouthpart, adult antenna and adult abdomen. The results reported in Fig 5 show that all OBPs except HarmOBP16 were successfully detected in target tissues. Six OBPs were exclusive to larval tissues including HarmOBP36, HarmOBP27 and HarmOBP19 specific for larval mouthparts, while HarmOBP26, HarmOBP31 and HarmOBP35 were expressed in both larval antennae and mouthparts. On the other hand, we found that five OBPs (HarmOBP2, HarmOBP15 and HarmOBP21, HarmOBP22 and HarmOBP23) are exclusively expressed in adult antenna. The remaining 13 OBPs showed expression in both larval and adult tissues. Of this latter group HarmGOBP2, HarmOBP4, HarmOBP9, HarmOBP17 and HarmOBP25 where were preferentially expressed in adult antenna, while the others did not show significant differences between...
Candidate OBPs and CSPs in the larval chemosensory tissues of *Helicoverpa armigera* and *H. assulta*. Compared to OBPs, CSPs were more expressed in non-olfactory tissues suggesting diverse functions. Eight of them showed similar expression levels in all tissues, while the others were specifically detected in olfactory organs. In particular, four genes (HarmCSP20, 22, 23 and 24) were specific of larval olfactory tissues, one (HarmCSP14) was detected only in adult antenna, and three (HarmCSP7, HarmCSP15 and HarmCSP25) were found in both larval and adult olfactory organs with no significant differences.

![Phylogenetic tree of OBPs from *H. armigera*, *H. assulta* and other Lepidoptera insects](https://doi.org/10.1371/journal.pone.0179243.g002)
Unigene reference	Gene name	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Signal peptide	Full length
H. armigera							
Unigene12801	HarmCS1	745	gb	ABB91378.1	chemosensory protein [Helicoverpa assulta]	1.00E-67	99% Yes Yes
Unigene12890	HarmCS2	523	gb	AGR939574.1	chemosensory protein 4 [Agrotis ipsilon]	1.00E-73	86% Yes Yes
Unigene2914	HarmCS4	381	gb	AFR92093.1	chemosensory protein 9 [Helicoverpa armigera]	2.00E-65	98% No No
Unigene4249	HarmCS5	730	gb	AGY49267.1	putative chemosensory protein [Sesamia inferens]	4.00E-65	71% Yes Yes
Unigene4261	HarmCS7	684	gb	AGY49261.1	putative chemosensory protein [Sesamia inferens]	1.00E-47	61% Yes Yes
CL750.Contig1	HarmCS8	546	gb	AFR92095.1	chemosensory protein 11 [Helicoverpa armigera]	9.00E-91	99% Yes Yes
Unigene8213	HarmCS9	389	gb	AGH20055.1	chemosensory protein 17, partial [Helicoverpa armigera]	2.00E-68	100% No No
Unigene2863	HarmCS10	1000	gb	AGY49264.1	putative chemosensory protein [Sesamia inferens]	2.00E-64	92% Yes Yes
Unigene6030	HarmCS12	377	gb	AFR92092.1	chemosensory protein 8 [Helicoverpa armigera]	1.00E-68	100% Yes No
CL1562.Contig1	HarmCS14	2323	ref	NP_001037069.1	chemosensory protein 9 precursor [Bombyx mori]	1.00E-81	70% Yes Yes
Unigene8181	HarmCS15	516	gb	AGH20053.1	chemosensory protein 15, partial [Helicoverpa armigera]	1.00E-75	99% Yes Yes
CL5163.Contig1	HarmCS16	544	gb	AGR939578.1	chemosensory protein 8 [Agrotis ipsilon]	1.00E-66	76% Yes Yes
CL513.Contig1	HarmCS18	864	gb	AGY49260.1	putative chemosensory protein, partial [Sesamia inferens]	1.00E-45	99% Yes Yes
Unigene2882	HarmCS19	1216	gb	AFR92094.1	chemosensory protein 10 [Helicoverpa armigera]	3.00E-25	42% Yes Yes
CL1091.Contig1	HarmCS20	1056	gb	AGH20054.1	chemosensory protein 16, partial [Helicoverpa armigera]	8.00E-75	93% Yes Yes
CL750.Contig3	HarmCS21	567	gb	AFR92098.1	chemosensory protein 14 [Helicoverpa armigera]	4.00E-85	93% Yes Yes
Unigene14000	HarmCS22	545	gb	BAG71920.1	chemosensory protein 12 [Papilio xuthus]	2.00E-43	58% Yes Yes
Unigene7878	HarmCS23	507	ref	NP_001037066.1	chemosensory protein precursor [Bombyx mori]	2.00E-49	60% Yes Yes
CL750.Contig2	HarmCS24	404	gb	AFR92098.1	chemosensory protein 14 [Helicoverpa armigera]	3.00E-64	91% No No
Unigene12750	HarmCS25	577	gb	AFR92093.1	chemosensory protein 9 [Helicoverpa armigera]	5.00E-74	82% Yes Yes
Unigene4081	HarmCS26	458	gb	AIW65100.1	chemosensory protein [Helicoverpa armigera]	5E-85	99% Yes Yes
H. assulta							
Unigene15996	HassCS1	746	gb	ABB91378.1	chemosensory protein [Helicoverpa assulta]	1.00E-86	98% Yes Yes
Unigene20555	HassCS2	530	gb	AGR939574.1	chemosensory protein 4 [Agrotis ipsilon]	1.00E-73	94% Yes Yes
CL2298.Contig1	HassCS4	374	gb	AFR92093.1	chemosensory protein 9 [Helicoverpa armigera]	6.00E-65	99% No No
CL332.Contig1	HassCS5	693	gb	AGY49267.1	putative chemosensory protein [Sesamia inferens]	9.00E-66	88% Yes Yes

(Continued)
Discussion

In Lepidoptera, the main tasks of adults are reproduction and species dispersal. To accomplish them they use a sophisticated olfactory system for correct mating and oviposition on the suitable host plant [50, 51]. Compared to adults, larvae show limited activity, their major tasks being feeding, growing and accumulating energy [52,53]. Therefore larvae are expected to harbor a simpler olfactory system than adults. One of the characteristics of monophagous insects is the strict specificity to their host, a typical example being the specialization of M. sexta for Solanaceous plants [32]. In this case, the mother choses the host plant while ovipositing and larvae may not need to move away through their life [54, 55]. In contrast, larvae of polyphagous species often ignore their mother’s choices, disperse actively, and often move between different host plants for feeding [56, 57]. For example, sometimes larvae need to abandon their prior host and select another one, because the plant resources are exhausted, or because of competition with other herbivores, or else because the plant has become infected [58–61]. Such differences in foraging behaviors are genetically determined [56].

H. armigera and H. assulta are two closely related species both representing serious pests in China and other countries. H. armigera is a polyphagous insect which attacks about 180 species...
of plants [62], while *H. assulta* is oligophagous, mainly feeding on tobacco [63]. In both species antennae and mouthparts are the main chemosensory structures guiding the larvae to their host plants. Thus, a study of larval antennae and mouthparts at the molecular level can provide useful information for larva-based pest control.

In this work, we focused on two families of soluble protein OBPs and CSPs which play some roles in the interactions between odorant molecules and olfactory receptors. We identified a total of 26 OBPs and 21 CSPs in the larval chemosensory tissues of *H. armigera* as well as 27 OBPs and 20 CSPs in *H. assulta*. Combined with the data available for in adult antennae, the total number of OBP genes identified in *H. armigera* and *H. assulta* are 38 and 35 respectively. These numbers are lower, although in the same order, than those reported for other species (46 in *B. mori*) [45]. The total number of CSP genes identified in *H. armigera* (25) and *H. assulta* (23) are also in the same order of magnitude as in other species such as *B. mori* (21), and *S. littoralis* (23) [39, 45].

For most of HarmOBPs and HarmCSPs we could find homologue genes in *H. assulta*. The high similarities in sequence between pairs of orthologous genes suggest that *H. armigera* and *H. assulta* larvae detect similar volatile substances. This idea is supported by the observation that often mixed populations of the two species are present on tobacco and some solanaceous plants [63]. However, for some genes we could not find orthologs in the sister species. This fact, if confirmed, could suggest that during evolution, the two species can have developed some unique characteristics in their chemosensory systems to become adapted to different ecosystems. For nearly half of the HarmCSPs, we detected expression in non-olfactory organ, such as adult abdomen, suggesting roles different from chemosensing. Similarly, in other species, some CSPs were found to be expressed in non-olfactory tissues, such as the pheromone glands, where they likely assist delivery of semiochemicals in the environment [64–67], or in reproductive organs, with putative roles in egg and embryo development [68, 69].

Fig 3. Sequences alignment of candidate HarmCSPs and HassCSPs. All these CSPs were characteristic of four conserved cysteine residues marked with "\ast".

![Fig 3. Sequences alignment of candidate HarmCSPs and HassCSPs.](https://doi.org/10.1371/journal.pone.0179243.g003)
OBPs and CSPs are expressed both in adults and in larvae chemo-sensory organs, suggesting some common olfactory related behaviors. In particular, the gene encoding GOBP2 is expressed in larval antenna, where it might bind pheromone cues. Such hypothesis was originated from what was observed in *Plutella xylostella* [70]. However, for all PBP genes we could not find their expression in *H. armigera* larval tissues. This case, although being inconsistent with what was observed in *S. littoralis* [53], was common in other species. We also found three OBPs and six CSPs presenting larva-specific expression, suggesting that they may be involved in larval-foraging behaviors. Three OBPs and ten CSPs were found to be expressed more in larval antennae than in mouthparts, whereas the other proteins were only detected in larval mouthparts, suggesting that these genes may be involved in taste.

![Phylogenetic tree of CSPs](https://doi.org/10.1371/journal.pone.0179243.g004)

Fig 4. Phylogenetic tree of CSPs *H. armigera, H. assulta and other Lepidoptera insects.* Harm: *H. armigera* (red), Hass: *H. assulta* (blue), Hvirs: *H. virescens* (black), Bm: *B. mori* (aquamarine), Csups: *C. suppressalis* (cyan). The red and blue pentastars represented newly identified HarmCSPs and HassCSPs respectively.

https://doi.org/10.1371/journal.pone.0179243.g004
Our results contribute to a better understanding of the chemoreception mechanisms of larvae at the molecular level and might help the development of larva-targeted strategies for population control in these two important agricultural pests.

Supporting information

S1 Material. Accession numbers for amino acid sequences of OBPs and CSPs used in phylogenetic analyses.

(SDOCX)

S2 Material. Primers for RT-PCR expression analyses of *H. armigera* OBPs and CSPs.

(SDOCX)
S3 Material. Species distribution of unigenes’ best-hit annotation term in nr database.
(A) H. armigera unigenes. (B) H. assulta unigenes.

(TIF)

Acknowledgments
We thank Dr. Junfeng Dong (Henan University of Science and Technology) for providing the H. assulta and Miss Liyan Yang for insect rearing. This work was supported by National Natural Science Foundation of China (31372264 to SD, 31230062 to GW, 31321004 to GW&YL, and 31471833 to YL).

Author Contributions
Conceptualization: SD YL GW.
Data curation: HC YL.
Formal analysis: HC DA YL.
Funding acquisition: SD YL GW.
Investigation: HC DA JZ YL.
Methodology: HC SD YL GW.
Project administration: SD YL GW.
Resources: HC DA JZ.
Software: HC YL.
Supervision: SD YL GW.
Validation: SD YL GW.
Visualization: HC DA.
Writing – original draft: HC SD YL GW.
Writing – review & editing: HC SD YL GW.

References
1. Knolhoff LM, Heckel DG. Behavioral assays for studies of host plant choice and adaption in herbivorous insects. Annual Review of Entomology. 2014; 59: 263–78. https://doi.org/10.1146/annurev-ento-011613-161945 PMID: 24160429
2. Ando T, Inomata S, Yamamoto M. Lepidopteran sex pheromones. Topics in Current Chemistry. 2004; 239:51–96. https://doi.org/10.1007/b95449 PMID: 22160231
3. Hansson BS. Olfaction in Lepidoptera. Reviews. 1995; 51:11, pp1003–1027. https://doi.org/10.1007/BF01946910
4. Zhao XC, Tang QB, Liu Y, Wang YR, Yan FM, Wang GR. Fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of Helicoverpa armigera (Insecta). Cell & Tissue Research. 2013; 353: 399–408. https://doi.org/10.1007/s00441-013-1657-z PMID: 23736380
5. Hansson BS, Anton S. Function and morphology of the antenna lobe: New Developments. Annu Rev Entomol. 2000; 45: 203–31. https://doi.org/10.1146/annurev.ento.45.1.203 PMID: 10761576
6. Skiri HT, Re H, Berg BG, Mustaparta H. Consistent organization of glomeruli in the antennal lobes of related species of Heliothine moths. J Comp Neurol, 2005; 491: 367–80. https://doi.org/10.1002/cne.20692 PMID: 16175592.
7. Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology. 2003; 58:373–391. https://doi.org/10.1146/annurev-ento-120811-153635 PMID: 23020622

8. Hallen EA, Dahanukar A, Carlson JR. Insect odor and taste receptors. Annual Review of Entomology. 2006; 51:113–135. https://doi.org/10.1146/annurev.ento.51.051705.113646 PMID: 16332206

9. Touhara K, Vosshall LB. Sensing odorants and pheromones with chemosensory receptors. Annual Review of Physiology. 2009; 71: 307–332. https://doi.org/10.1146/annurev.physiol.010908.163209 PMID: 19575682

10. Benton R., Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology 2006; 4: e20. https://doi.org/10.1371/journal.pbio.0040020 PMID: 16402857

11. Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008; 452: 1002–6. https://doi.org/10.1038/nature06850 PMID: 19135896

12. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature, 2008; 452: 1007–1. https://doi.org/10.1038/nature06861 PMID: 18408711

13. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell, 2009; 136:149–62. https://doi.org/10.1016/j.cell.2008.12.001 PMID: 19135896

14. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010; 6: e1001064. https://doi.org/10.1371/journal.pgen.1001064 PMID: 20808886

15. Grosse-Wilde E, Kuebler LS, Buck S, Vogel H, Wich er D. Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci U S A. 2011; 108: 7449–54. https://doi.org/10.1073/pnas.1017963108 PMID: 21498690

16. Pelosi P, Iovinella I, Feliciolim A, Dani FR. Soluble proteins of chemical communication: an overview across arthropods. Front Physiol. 2014; 5: 320. https://doi.org/10.3389/fphys.2014.00320 PMID: 25221516

17. Sandler BH, Nikonova L, Leal WS, Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2002; 7:143–51. https://doi.org/10.1016/S1074-5521(00)00078-8 PMID: 10662696

18. Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999; 266: 386–91. https://doi.org/10.1006/.bbrc.1999.1791 PMID: 10600513

19. Klein U. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antherea polyphemus (Saturniidae). Insect Biochem. 1987; 17:1193–1204. https://doi.org/10.1016/0022-1910(87)90093-X

20. Plettner E, Lazar J, Prestwich EG, Prestwich GD. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispers. Biochemistry. 2000; 39:8953–62. https://doi.org/10.1021/bi000461x PMID: 10913308

21. Chang HT, Liu Y, Yang T, Pelosi P, Dong SL, Wang GR. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep. 2015; 5:13093. https://doi.org/10.1038/srep13093 PMID: 26310773

22. Sun MJ, Liu Y, Walker WB, Liu CC, Lin KJ, Wang GR. Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xylostella. PLoS One. 2013; 8: e62098. https://doi.org/10.1371/journal.pone.0062098 PMID: 23626773

23. Pelosi P, Zhou JJ, Ban LP, Calvello M. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences. 2006; 63: 1658–1676. https://doi.org/10.1007/s00018-005-5607-0 PMID: 16786224

24. Ljungberg H, Anderson P, Hansson BS. Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J Insect Physiol.1993; 39:253–260. https://doi.org/10.1016/0022-1910(93)90096-A

25. Chang HT, Guo MB, Wang B, Liu Y, Dong SL, Wang GR. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components. Sci Rep. 2016; 6:18742. https://doi.org/10.1038/srep18742 PMID: 26744070

26. Dethier VG, Choonhoven LM. Olfactory coding by lepidopterous larvae. Entomol Exp Appl. 1969; 12: 535–543.
27. Laue M. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars. Arthropod Struct Dev. 2000; 29: 57–73. https://doi.org/10.1016/S1467-8039(00)00013-X PMID: 18088914

28. Schoonhoven LM, Dethier VG. Sensory aspects of host-plant discrimination by lepidopteran larvae. Arch Neerl Zool. 1964; 16: 497–530. https://doi.org/10.1163/036551666X00057

29. Roessingh P, Xu S, Menken SB. Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007; 193: 635–47. https://doi.org/10.1007/s00359-007-0218-x PMID: 17372741

30. Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, et al. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem Mol Biol. 2016; 76: 118–47. https://doi.org/10.1016/j.ibmb.2016.07.005 PMID: 27522922.

31. Vogt RG, Große-Wilde E, Zhou JJ. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol. 2015; 62: 142–53. https://doi.org/10.1016/j.ibmb.2015.03.003 PMID: 25784631.

32. Koenig C, Bretschneider A, Heckel DG, Große-Wilde E, Hansson BS, Vogel H. The plastic response of Manduca sexta to host and non-host plants. Insect Biochem Mol Biol. 2015; 63: 72–85. PMID: 26070471

33. Liu Y, Gu SH, Zhang YJ, Guo YY, Wang GR. Candidate Olfaction Genes Identified within the Helicoverpa armigera Antennal Transcriptome. PLoS One. 2012; 7: e48260. https://doi.org/10.1371/journal.pone.0048260 PMID: 23110222

34. Zhang J, Wang B, Dong SL, Cao DP, Dong JF, Walker WS, et al. Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS One. 2015; 10: e0117054. https://doi.org/10.1371/journal.pone.0117054 PMID: 25659090

35. Liu NY, X W, Papanicolaou A, Dong SL, Anderson A. Identification and characterization of three chemosensory receptor families in the cotton bollworm Helicoverpa armigera. BMC Genomics. 2014; 15:597. https://doi.org/10.1186/1471-2164-15-597 PMID: 25027790

36. Xu W, Papanicolaou A, Liu NY, Dong SL, Anderson A. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta. Insect Mol Biol. 2015; 24:253–63. https://doi.org/10.1111/imb.12153 PMID: 25430896

37. Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, et al. Putative chemosensory receptors of the coding moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS One. 2012; 7: e31620. https://doi.org/10.1371/journal.pone.0031620 PMID: 22363688.

38. Poivet E, Gallot A, Montagné N, Glaser N, Leguei F, Jacquin-Joly E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS One. 2013; 8: e60263. https://doi.org/10.1371/journal.pone.0060263 PMID: 23562515

39. Jacquin-Joly E, Leguei F, Montagné N, Monsenpes C, Francois M, Poulsen J, et al. Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci. 2012; 8:1036–50. https://doi.org/10.7150/ijbs.9297 PMID: 25076861

40. Cao DP, Liu Y, Wei JJ, Liao XY, Walker WB, Li JH, et al. Identification of Candidate Olfactory Genes in the moth Chilo suppressalis by Antenna l Transcriptome Analysis. Int J Biol Sci. 2004; 10:846–60. https://doi.org/10.7150/ijbs.9297 PMID: 25076861

41. Fitt GP. The ecology of Heliotis species in relation to agroecosystems. Annu Rev Entomol. 1989; 34: 17–53. https://doi.org/10.1146/annurev.en.34.010189.000313

42. Zhao XC, Ma BW, Berg BG, Xie GY, Tang QB, Guo XR. A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera. Sci Rep. 2016; 6: 35204. https://doi.org/10.1038/srep35204 PMID: 27725758.

43. Carlsson MA, Galizia CG, Hansson BS. Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae). Chem Senses. 2002; 27: 231–244. PMID: 11923186

44. Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila antennal lobe. Current Biology 15: 1548–1553. https://doi.org/10.1016/j.cub.2005.07.066 PMID: 16139209

45. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH. The Odorant Binding Protein Gene Family from the Genome of Silkworm, Bombyx mori. BMC Genomics. 2009; 10: 332. https://doi.org/10.1186/1471-2164-10-332 PMID: 19624863

46. Ma DK, Li ZZ, Lu AY, Sun F, Chen S, Rothe M, et al. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell. 2015; 161: 1152–63. https://doi.org/10.1016/j.cell.2015.04.026 PMID: 25981666
47. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011; 29: 644–652. https://doi.org/10.1038/nbt.1883 PMID: 21572440

48. Liu NY, Zhang T, Ye ZF, Li F, Dong SL. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes. Int J Biol Sci. 2015; 11:1036–48. https://doi.org/10.7150/ijbs.20120 PMID: 26221071

49. Yin XW, Iovinella I, Marangoni R, Cattonaro F, Flamini G, Sagona S, et al. Odorant-binding proteins and olfactory coding in the solitary bee Osmia cornuta. Cell and Mol Life Sci. 2013; 70: 3029–39. https://doi.org/10.1007/s00018-013-1308-2 PMID: 23512006

50. Thompson JN. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl. 1988; 47: 3–14. https://doi.org/10.1111/j.1570-7458.1988.tb02275.x

51. Marion-Poll F, Descoins C. Taste detection of phytoecdysteroids in larvae of Bombyx mori, Spodoptera littoralis and Ostrinia nubilalis. J Insect Physiol. 2002; 48: 467–476. https://doi.org/10.1016/S0022-1910(02)00068-9 PMID: 12770096

52. Wiklund C. The evolutionary relationship between adult oviposition preferences and larval host plant range in Papilio machaon L. Oecologia. 1975; 18: 185–197. https://doi.org/10.1007/BF00345421 PMID: 28308676

53. Poivet E, Rharrabe K, Monsempes C, Glaser N, Rochat D, Renou M, et al. The use of the sex pheromone as an evolutionary solution to food source selection in caterpillars. Nat Commun. 2012; 3:1047. https://doi.org/10.1038/ncomms2050 PMID: 22948829

54. Hovanitz W, Chang VC. Three factors affecting larval choice of food plant. J Res Lepidoptera. 1962; 1

55. Wiklund C. Host plant suitability and the mechanism of host selection in larvae of Papilio machaon. Ent exp appl. 1973; 16: 232–242. https://doi.org/10.1111/j.1570-7458.1973.tb00269.x

56. Wiklund C. Oviposition preferences in Papilio machaon in relation to the host plants of the larvae. Ent exp appl. 1974; 17: 189–198. https://doi.org/10.1111/j.1570-7458.1974.tb00335.x

57. Clark M, Malcolm SB. Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol. 2002; 47: 361–393. https://doi.org/10.1146/annurev.ento.47.091201.145220 PMID: 11729079

58. Jackson RE, Mahaffey JS, Jrjr B, VAN Duyn JW, Sorensen CE. The impact of transgenic cottons expressing one or two proteins from Bacillus thuringiensis on survival and damage potential of first and second instars of Ostrinia nubilalis (Lepidoptera: Crambidae). J Cotton Sci. 2005; 9:199–203

59. Pats P, Ekborg B. Infestation and dispersal of early instars of Chilo partellus (Lepidoptera, Pyralidae) at different densities. Environ Entomol. 1992; 21:1110–1113

60. Kester KM, Peterson SC, Hanson F, Jackson DM. The roles of nicotine and natural enemies in determining larval feeding site distributions of Manduca sexta L. and Manduca quinquemaculata (Haworth) on tobacco. Chemoecology. 2002; 12:1–10.

61. Bernays EA. Feeding by lepidopteran larvae is dangerous. Ecol Entomol. 1997; 22:121–123. https://doi.org/10.1046/j.1365-2311.1997.00042.x

62. Singh AK, Mullick S. Leaf volatiles as attractants for neonate Helicoverpa armigera Hbn. (Lep., Noctuidae) larvae. J Appl Ent. 2002. 126:14–19. https://doi.org/10.1046/j.1439-0418.2002.00600.x

63. Wang HL, Ming QL, Zhao CH, Wang CZ. Genetic basis of sex pheromone blend difference between Helicoverpa armigera (Hubner) and Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae). J Insect Physiol. 2008; 54:813–7. https://doi.org/10.1016/j.jinsphys.2008.02.011 PMID: 18405915

64. Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, et al. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. J Insect Physiol. 2008; 54:351–5. https://doi.org/10.1016/j.jinsphys.2008.02.011 PMID: 18405915

65. Zhou XH, Ban LP, Iovinella I, Zhao L, Gao Q, Felicioli A, et al. Diversity, abundance, and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis. Biol Chem. 2013; 394: 43–54. https://doi.org/10.1515/hbz-2012-0114 PMID: 23096575

66. Gu SH, Wu KM, Guo YY, Pickett JA, Field LM, Zhou JJ, et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics. 2013; 14:636. https://doi.org/10.1186/1471-2164-14-636 PMID: 24053512

67. Dani FR, Michelucci E, Frances S, Mastrobuoni G, Cappellozzi S, La MG, et al. Odorant-binding proteins and chemosensory proteins in pheroemone detection and release in the silkmoth Bombyx mori. Chem Senses. 2011; 36:353–44. https://doi.org/10.1093/chemse/bjr137 PMID: 21220518.

68. Marinotti O, Ngo T, Kojin BB, Chou SP, Nguyen B, Juhn J, et al. Integrated proteomic and transcriptomic analysis of the Aedes aegypti egg shell. BMC Dev Biol. 2014; 14:15. https://doi.org/10.1186/1471-213X-14-15 PMID: 24707823
69. Maleszka J, Forêt S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol. 2007; 217:189–96. https://doi.org/10.1007/s00427-006-0127-y PMID: 17216269

70. Zhu J, Ban LP, Song LM, Liu Y, Pelosi P, Wang GR. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol. 2016; 72:10–9. https://doi.org/10.1016/j.ibmb.2016.03.005 PMID: 27001069