COHOMOLOGICAL DIMENSION, CONNECTIVITY, AND LUSTERNIK–SCHNIRELMANN CATEGORY

YU. B. RUDYAK

Abstract. Dranishnikov [D2] proved that
\[\text{cat } X \leq \text{cd}(\pi_1(X)) + \left\lfloor \frac{\text{hd}(X) - 1}{2} \right\rfloor, \]
where \(\text{cd}(\pi) \) denotes the cohomological dimension of a group \(\pi \) and \(\text{hd}(X) \) denotes the homotopy dimension of \(X \). Furthermore, there is a well-known inequality of Grossman, [G]:
\[\text{cat } X \leq \left\lfloor \frac{\text{hd}(X)}{k + 1} \right\rfloor \text{ if } \pi_i(X) = 0 \text{ for } i \leq k. \]
We make a synthesis and generalization of both of these results, by demonstrating the main result:
\[\text{cat } X \leq \text{cd}(\pi_1(X)) + \left\lfloor \frac{\text{hd}(X) - 1}{k + 1} \right\rfloor \text{ if } \pi_i(X) = 0 \text{ for } i = 2, \ldots, k. \]
The proof of the main theorem uses the Oprea–Strom inequality \(\text{cat } X \leq \text{hd}(B\pi_1(X)) + \text{cat}^1 X, [OS] \) where \(\text{cat}^1 \) is the Clapp-Puppe cat.A with \(A \) the class of 1-dimensional CW complexes. The inequality clarified the Dranishnikov inequality.

1. Introduction

We work in the category of connected CW complexes and continuous maps. We use the sign \(\cong \) for homotopy equivalences. All covers are assumed to be open. Given a space \(X \), \(\text{hd}(X) \) denotes the homotopy dimension of \(X \), that is, the minimum cellular dimension of all CW complexes homotopy equivalent to \(X \). Given a group \(\pi \), \(B\pi \) denotes a classifying space for \(\pi \), and \(\text{cd}(\pi) \) denotes the cohomological dimension of \(\pi \), [B]. A classifying map for \(X \) is a map \(c = c_X : X \to B\pi_1(X) \) that induces an isomorphism of fundamental groups.

Below \(\text{cat } X \) denotes the Lusternik–Schnirelmann category of a space \(X \), [LS, CLOT]. A well-known inequality \(\text{cat } X \leq \text{hd } X \), [LS, F, CLOT] can be generalized as follows [G, CLOT]:

1.1. Theorem. If \(\pi_i(X) = 0 \) for \(i \leq k \) then \(\text{cat } X \leq \frac{\text{hd } X}{k + 1} \).

2010 Mathematics Subject Classification. Primary 55M30, Secondary 20J06.
Concerning the case of $\pi_1(X) \neq 0$, the author conjectured that $\text{cat } X$ can be asymptotically bounded above by $\frac{\text{hd}(X)}{2}$, provided that $\pi_1(X)$ has finite cohomological dimension, i.e., $\text{cd}(\pi_1(X)) < \infty$. Later Dranishnikov [D2] proved the following fact:

1.2. **Theorem.** $\text{cat } X \leq \text{cd}(\pi_1(X)) + \left\lceil \frac{\text{hd}(X) - 1}{2} \right\rceil$.

This theorem can be regarded as a confirmation of the conjecture.

Also, I suspected that there should be a synthesis of Theorem 1.1 and Theorem 1.2 so that the equation Theorem 1.2 can be improved by replacing (approximately) $\text{hd } X$ by $\text{hd } X/(k + 1)$ for X k-connected. In other words, I expected to have a claim that generalizes both Theorem 1.1 and Theorem 1.2. Now I know how to make this improvement (synthesis, generalization). Let me tell you the precise statements (Theorem 1.6 and Corollary 1.7 below).

1.3. **Definition** (Clapp and Puppe [CP]). Given a class \mathcal{A} of CW complexes and a space X, define a subset A of X to be \mathcal{A}-categorical if the inclusion $A \rightarrow X$ factors, up to homotopy, through a space in \mathcal{A}. Follow Clapp and Puppe [CP], define the \mathcal{A}-cover of X to be the cover $\{U_0, U_1, \ldots, U_m\}$ such that each U_i is \mathcal{A}-categorical. Define $\text{cat}_A X$, the \mathcal{A}-category of X to be the minimal number k such that there exists an \mathcal{A}-categorical cover $\{U_0, U_1, \ldots, U_k\}$.

For example, $\text{cat}_A(X) = \text{cat}(X)$ if \mathcal{A} is the class of contractible spaces.

1.4. **Definition.** Let $\mathcal{A}(n)$ be the class of all n-dimensional CW complexes. Put $\text{cat}^n(X) := \text{cat}_{\mathcal{A}(n)}(X)$.

The following Oprea–Strom Theorem recovers and clarifies Theorem 1.2.

1.5. **Theorem.** For every space X we have

$$\text{cat } X \leq \text{hd}(B\pi_1(X)) + \text{cat}^1(X) \leq \text{hd}(B\pi_1(X)) + \left\lceil \frac{\text{hd}(X) - 1}{2} \right\rceil.$$

Proof. See Oprea and Strom [OS, Corollary 6.2].

We prove the following generalization of Theorem 1.5.

1.6. **Theorem** (Corollary [2.5]). Let X be a CW complex and $\pi = \pi_1(X)$. Suppose that the classifying map $c: X \rightarrow B\pi$ induces an isomorphism $c_*: \pi_i(X) \rightarrow \pi_i(B\pi)$ for $i \leq k$. (In particular, $\pi_i(X) = 0$ for $i = 2, \ldots, k$.) Then

$$\text{cat } X \leq \text{hd}(B\pi) + \text{cat}^k(X) \leq \text{hd}(B\pi) + \left\lceil \frac{\text{hd}(X) - 1}{k + 1} \right\rceil.$$
1.7. Corollary. Let X be a CW complex as in Theorem 1.6. Then

$$\text{cat } X \leq \text{cd}(\pi) + \left\lceil \frac{\text{hd}(X) - 1}{k + 1} \right\rceil.$$

Clearly, Theorem 1.6 and Corollary 1.7 can be regarded as an above-mentioned synthesis.

2. Proofs

First, we settle the second part of the inequality noted in Theorem 1.6.

2.1. Proposition. Let X_k be the k-skeleton of a CW complex X. Then

$$\text{cat}^k(X) \leq \left\lfloor \frac{\text{hd}(X)}{k + 1} \right\rfloor \leq \left\lceil \frac{\text{hd}(X) - 1}{k + 1} \right\rceil.$$

Proof. For the first inequality, see [OS, Proposition 4.4]. The second inequality is obvious. □

Now we prove the first part of 1.6. The proof is based (speculated) on [OS, Sections 5,6] that, in turn, exploits clever ideas of Dranishnikov [D1, D2].

Let X be a CW complex. Take $k > 1$, let X_k be the k-skeleton of X, and let $	ilde{Z}$ be the universal covering of Z for $Z = X$ or $Z = X_k$. Put $\pi = \pi_1(X)$ and let $E\pi \to B\pi$ be the universal bundle for π. Note that π acts on \tilde{Z} via deck transformations of the covering $\tilde{Z} \to Z$, and we can form the Borel construction

$$p : E\pi \times_\pi \tilde{Z} \to B\pi.$$

It is worth noting that $E\pi$ is contractible, and so

$$E\pi \times_\pi \tilde{Z} \cong Z.$$

The inclusion $i = i_k : X_k \to X$ yields the commutative diagram

$$
\begin{array}{ccc}
E\pi \times_\pi \tilde{X}_k & \xrightarrow{f} & E\pi \times_\pi \tilde{X} \\
\downarrow p_0 & & \downarrow p_1 \\
B\pi & = & B\pi
\end{array}
$$

where $f = f_k$ is induced by i, and $p_0 = p$ if $Z = X_k$, and $p_1 = p$ if $Z = X$. Take a base point $*$ of $B\pi$ and let F_0, F_1 be the fibers of p_0, p_1 over $*$, respectively. Then f yields a map (inclusion) $j : F_0 \to F_1$ of fibers.

2.2. Proposition. If $\pi_i(X) = 0$ for $i = 2, \ldots, k$ then the inclusion $j : F_0 \to F_1$ is null-homotopic.
Proof. It follows because F_0 is homotopy equivalent to \tilde{X}_k, while \tilde{X}_k is contractible ($\pi_i(\tilde{X}_k) = 0$ for $i \leq k$ and $hdX_k \leq k$).

Following [OS], define a cover $U = \{U_0, U_1, \ldots, U_n\}$ of $E\pi \times \pi \tilde{X}$ to be a Γ_k-cover if each inclusion $U_m \subset E\pi \times \pi \tilde{X}$ passes through the inclusion f, up to homotopy over $B\pi$. In this case we define $\gamma(U) = n$. Now, set

$$\Gamma_k(X) = \inf\{\gamma(U) \mid U \text{ is a } \Gamma_k\text{-cover of } E\pi \times \pi \tilde{X}\}.$$

2.3. Proposition. We have

$$\text{cat}X = \text{cat}(E\pi \times \pi \tilde{X}) \leq \text{hd}(B\pi) + \Gamma_k.$$

Proof. The equality $\text{cat}X = \text{cat}(E\pi \times \pi \tilde{X})$ is explained in (2.2). The inequality follows from [OS, Prop. 5.1] because of Proposition 2.2. □

2.4. Theorem. For any CW complex X and every $k \geq 1$, we have $\Gamma_k(X) = \text{cat}^k(X)$

Proof. For $k = 1$, this is [OS, Theorem 6.1]. For $k > 1$, the proof is literally the same as for $k = 1$. The only change is to replace X_1 by X_k, cat^1 by cat^k, and Γ_1 by Γ_k, in [OS, Theorem 6.1]. □

2.5. Corollary. Let X be a CW complex and $\pi = \pi_1(X)$. Suppose that the classifying map $c : X \to B\pi$ induces an isomorphism $c_* : \pi_i(X) \to \pi_i(B\pi)$ for $i \leq k$. Then

$$\text{cat}X \leq \text{hd}(B\pi_1(X)) + \text{cat}^k(X) \leq \text{hd}(B\pi_1(X)) + \left\lceil \frac{\text{dim}(X) - 1}{k + 1} \right\rceil.$$

Proof. The first inequality follows from Proposition 2.3 and Theorem 2.4, the second inequality follows from Proposition 2.1. □

Now we prove Corollary 1.7. First, given a group π, recall that $\text{cd}(\pi) = \text{hd}(B\pi)$ if either $\text{cd}(\pi) \leq 3$, [EG] or $\text{cd}(\pi) = 1$, [Stal, Swan]. Furthermore, recall that $\text{cd}(\pi) = \text{cat}(B\pi)$ for all groups π, [EG, Stal, Swan]. So, for $\text{cd}(\pi) \neq 2$, Corollary 1.7 follows from Corollary 2.5 directly. (Note also that if $\text{cd}(\pi) = 2$ then either $\text{hd}(B\pi) = 2$ or $\text{hd}(B\pi) = 3$, and it is unknown question whether there exists a group π with $\text{cd}(\pi) = 2$ and $\text{hd}(B\pi) = 3$.)

Consider a space X and the classifying map $c : X \to B\pi$ where $\pi = \pi_1(X)$. Note that $c_* : \pi_1(X) \to \pi_1(B\pi)$ is an isomorphism. Given $k \in \mathbb{N}$, assume that $c_* : \pi_i(X) \to \pi_i(B\pi)$ is an isomorphism for $i \leq k$.

2.6. Lemma. Let $f : X \to Y$ be a locally trivial bundle with an k-connected fiber F. Suppose that f admits a section. Then

$$\text{cat}X \leq \text{cat}Y + \left\lceil \frac{\text{hd}(X) - k}{k + 1} \right\rceil.$$
COHOMOLOGICAL DIMENSION, CONNECTIVITY, AND LS CATEGORY

Proof. See [D1, Theorem 3.7]. □

We apply Lemma 2.6 to the Borel construction \(p : E\pi \times_\pi \tilde{X} \rightarrow B\pi \) as in (2.1), with \(\text{cd}(\pi) = 2 \). Note that the bundle \(p \) is the classifying map for \(X \). Furthermore, the fiber \(F \) of \(p \) is homotopy equivalent to \(\tilde{X} \).

For \(k = 1 \), Corollary 1.7 is the Dranishnikov theorem Theorem 1.2. So, assume that \(k > 1 \). Then \(\pi_2(F) = \pi_2(\tilde{X}) = 0 \), since \(\pi_2(\tilde{X}) = \pi_2(X) = \pi_2(B\pi) \).

We have \(\text{hd}(B\pi) \leq 3 \) and \(\pi_i(F) = 0 \) for \(i = 1, 2 \). So, because of the elementary obstruction theory, \(p \) has a section. Thus, because of 2.6 and since \(\text{cd}(\pi) = \text{cat}(B\pi) \), we conclude that

\[
\text{cat} X \leq \text{cd} \pi + \left\lceil \frac{\text{hd}(X) - 1}{k + 1} \right\rceil
\]

for \(\text{cd}(\pi) = 2 \), and therefore for all \(\pi \). This completes the proof of Corollary 2.5.

Acknowledgments: The work was partially supported by a grant from the Simons Foundation (#209424 to Yuli Rudyak).

References

[B] K. Brown: Cohomology of groups. Graduate Texts in Mathematics, 87 Springer, New York Heidelberg Berlin, 1994.

[CP] M. Clapp, D. Puppe: Invariants of the Lusternik-Schnirelmann type and the topology of critical sets. Trans. Amer. Math. Soc. 298 (1986) 603–620.

[CLOT] O. Cornea, G. Lupton, J. Oprea, and D. Tanré: Lusternik-Schnirelmann category. Mathematical Surveys and Monographs 103, American Mathematical Society, Providence, RI, 2003.

[D1] A. Dranishnikov: On the Lusternik-Schnirelmann category of spaces with 2-dimensional fundamental group. Proc. Amer. Math. Soc. 137 (2009), no. 4, 1489–1497.

[D2] A. Dranishnikov: The Lusternik-Schnirelmann category and the fundamental group. Algebr. Geom. Topol. 10 (2010), no. 2, 917–924.

[EG] S. Eilenberg and T. Ganea: On the Lusternik-Schnirelmann category of abstract groups. Ann. of Math. (2) 65 (1957), 517–518.

[F] R. Fox: On the Lusternik-Schnirelmann category. Ann. of Math. 42 (1941) 333–370.

[G] D. Grossman: An estimation of the category of Lusternik-Schnirelmann. C. R. (Doklady) Acad. Sci. URSS (N.S.) 54, (1946). 109–112.

[LS] L. A. Lusternik and L. G. Schnirelmann: Méthodes topologiques dans les problèmes variationnels. Hermann, Paris, 1934.

[OS] J. Oprea and J. Strom: Lusternik-Schnirelmann category, complements of skeleta and a theorem of Dranishnikov. Algebr. Geom. Topol. 10 (2010), no. 2, 1165–1186.

[Stal] J. Stallings: Groups of dimension 1 are locally free. Bull. Amer. Math. Soc. 74 (1968), 361–364.
[Swan] R. Swan: Groups of cohomological dimension one. J. Algebra 12 (1969), 585–610.

Department of Mathematics, 1400 Stadium Rd University of Florida Gainesville, FL 32611, USA
E-mail address: rudyak@ufl.edu