Colorectal carcinoma and chronic inflammatory demyelinating polyneuropathy: is there a possible paraneoplastic association?

Adnan Malik1, Faisal Inayat2, Muhammad Hassan Naeem Goraya3, Gul Nawaz4, Ahmad Mehran2, Atif Aziz2, Saad Saleem6

1Loyola University Medical Center, Maywood, IL, USA; 2Allama Iqbal Medical College, Lahore; 3Services Institute of Medical Sciences, Lahore, Pakistan; 4Marshfield Clinic, Marshfield, WI, USA; 5Islamic International Medical College, Rawalpindi, Pakistan; 6Sunrise Hospital and Medical Center, Las Vegas, NV, USA

INTRODUCTION

According to the World Health Organization GLOBOCAN database, 1.8 million new cases of colorectal carcinoma (CRC) and 861,000 deaths were recorded in 2018.1 The knowledge about different types of paraneoplastic syndromes associated with this globally ubiquitous cancer is imperative. In addition to other manifestations, a wide range of peripheral neuropathies have also been reported as remote effects of CRC. However, paraneoplastic demyelinating neuropathies are rarely observed. Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated inflammatory disease characterized by inflammation and destruction of the myelin sheath in the peripheral nervous system, with an estimated prevalence of up to 10.3 per 100,000 individuals.2,3 While CIDP has been associated with various malignancies, a paraneoplastic correlation between CRC and CIDP remains rarely recognized.4 Consequently, the pathophysiological link between these illnesses and the clinical outcomes of their co-occurrence has not been well-studied. In the current study, we describe the case of a patient with chronic CIDP who was subsequently diagnosed with infiltrating CRC. This article illustrates that updated knowledge of this association will help clinicians promptly investigate patients with CIDP for an underlying CRC. Furthermore, it will enable existing CRC patients to undergo stringent clinical sur-
veillance for potential CIDP symptoms, facilitating early treatment for neuropathy.

CASE REPORT

A 32-year-old woman was diagnosed with CIDP on a standard set of investigations on May 25, 2018. She was immediately initiated on monthly intravenous immunoglobulin (IVIG) (1 g/kg) therapy. She received a total of 10 cycles, with only a transient improvement in strength after each course. Subsequently, her condition worsened, and she gradually became unresponsive to IVIG treatment. She was then administered 10 mg prednisone, achieving only brief symptomatic relief. Two months before her current presentation, she was diagnosed with new-onset mild anemia (hemoglobin, 11 g/dL). Her primary care physician performed an assessment and started iron replacement therapy, considering it to be related to her menstrual bleeding. The patient was admitted to our hospital for the evaluation of dyspnea on exertion, lightheadedness, malaise, and black stools developed over the past week. She reported episodic epigastric pain, occasional nausea, bloating, and constipation. At presentation, the patient was hemodynamically stable. Physical examination revealed conjunctival pallor with mild generalized abdominal discomfort, while a clinical examination detected progressive sensorimotor neuropathy affecting all four limbs with diffuse areflexia.

Blood tests conducted upon admission revealed the following levels: hemoglobin 5.4 g/dL, hematocrit 19.8%, red cell count $3.43 \times 10^6/\mu L$, mean corpuscular volume 56.8 fl, mean corpuscular hemoglobin 16.3 pg/cell, and mean corpuscular hemoglobin concentration 25.7 g/dL, indicating severe hypochromic microcytic anemia. Her white cell and platelet counts, renal and liver function tests, thyroid profile, vitamin B12, and serum electrolytes were within normal limits. The tests for celiac disease and *Helicobacter pylori* infection were negative. Anti-myelin-associated glycoprotein (anti-MAG) antibodies tested positive in the immunofluorescence assay. Esophagogastroduodenoscopy revealed an obstructing mass in the second part of the duodenum (Fig. 1A). Histopathological analysis of the biopsy specimen confirmed a moderately differentiated adenocarcinoma. Her colonoscopy also showed a large necrotic mass in the ascending colon, which was endoscopically consistent with malignancy (Fig. 1B). Biopsy specimens were sent for histopathology, which confirmed the presence of infiltrating colorectal adenocarcinoma. Abdominal computed tomography was performed to exclude two different cancers. It revealed that the ascending colon mass directly invaded the duodenum (Fig. 2). No abdominal or thoracic distant tumor spread was noted on computed tomography scans.

Subsequently, the patient underwent an exploratory laparotomy. It confirmed that the ascending colon cancer involving the hepatic flexure, was invading the second portion of the duodenum. A right hemicolectomy plus pancreaticoduodenectomy was performed, with no intra-operative complications. The postprocedural hospital course was unremarkable, and the patient showed good clinical recovery. She was discharged

Fig. 1. Endoscopic evaluation. (A) Upper endoscopy showing a mass in the second part of the duodenum. (B) Colonoscopy showing a large, necrotic mass in the ascending colon.
from the hospital on postoperative day 12 in a stable condition. Pathologic assessment demonstrated a right colonic moderately differentiated adenocarcinoma with duodenal and pancreatic head invasion and tumor-free surgical resection margins. Lymphatic involvement was not noted.

Immunohistochemical examination confirmed the colonic origin of the cancer. According to pathological reports, the stage of CRC was IIC (T4bN0M0), with high-risk features. As per the National Comprehensive Cancer Network (NCCN) guidelines, adjuvant chemotherapy with leucovorin and 5-fluorouracil was initiated. In terms of CIDP-related abnormalities, the patient showed clear improvement after bowel resection. At the 10-month follow-up, nerve conduction studies revealed resolution of all demyelinating features, with marked overall strength improvement. Anti-MAG antibodies disappeared in the subsequent biochemical testing.

DISCUSSION

A wide range of paraneoplastic syndromes has previously been described in patients with CRC (Table 1). However, to our knowledge, the association with CIDP remains extremely rare. We conducted a systematic search of MEDLINE, Cochrane, Embase, and Scopus databases from inception until their latest publications. Search terminologies such as “colorectal adenocarcinoma”, “colon cancer” and “paraneoplastic syndrome” were combined using the Boolean operators “AND” and “OR” with the terms “neuropathy” and “chronic inflammatory demyelinating polyneuropathy”. The search methodology for data synthesis and the results are shown in Fig. 3. After exclusion of duplicate and redundant search results, we found only three previously reported cases of CIDP associated with CRC (Table 2). A comprehensive review of these cases revealed that two patients were male and one was female, ranging in age from 53–78 years. One patient developed CIDP concurrently with CRC detection, while two were affected from the neuropathy months to years before the cancer diagnosis.

Published medical literature remains scarce on the association between CRC and CIDP being a coincidence or part of a paraneoplastic syndrome. Prior research suggests that carcinomas may show a propensity to produce certain antigens on cancer cells that are shared with Schwann cells. Therefore, such
cancers may trigger the production of onconeural antibodies that may also cross-react with the aforementioned nerve cells, ultimately causing CIDP.9-11 Although immunotherapy can trigger CIDP in certain malignancies, all three cases of CRC-CIDP were reported either at or prior to the cancer diagnosis.6-8,12 Ayyappan et al.7 reported a case of distally acquired demyelin-

Table 1. Paraneoplastic syndromes associated with colorectal cancer

Dermatological	Rheumatic	Renal	Hematological	Central nervous system	Peripheral nervous system
Acquired hypertrichosis lanuginose	Carcinomatous polyarthritis	Membranous glomerulopathy	Venous thromboembolism	Optic neuropathy and retinopathy	Lambert-Eaton myasthenic syndrome
Paraneoplastic acrokeratosis	Palmar fascitis and arthritis	MPGN	Migratory thrombophlebitis	Limbic encephalitis	Stiff person syndrome
Paraneoplastic pemphigus	Multicentric reticulohistiocytosis	SIADH	Paraneoplastic eosinophilia	PCD	Sensory-motor polyneuropathy
Paraneoplastic dermatomyositis	RS3PE	Hypercalcemia of malignancy	Hemolytic anemia	Necrotizing myelopathy	Polymyositis
Erythema gyratum repens	Polymyalgia rheumatica	Cushing’s syndrome			
Erythroderma	Raynaud’s phenomenon				
Cutaneous leukocytoclastic vasculitis					
Sweet’s syndrome					

MPGN, membranoproliferative glomerulonephritis; SIADH, syndrome of inappropriate antidiuretic hormone secretion; PCD, paraneoplastic cerebellar degeneration; RS3PE, remitting seronegative symmetrical synovitis with pitting edema.

Fig. 3. Flow diagram representing the search methodology for data synthesis regarding the association of colorectal carcinoma with chronic inflammatory demyelinating polyneuropathy.

In our patient, the etiological mechanism behind CIDP is likely to be a paraneoplastic syndrome due to the close temporal relationship between cancer resection and resolution of clinical symptomology, marked improvement of overall strength, normalization of electrophysiological patterns, and the disappearance of anti-MAG antibodies. Notably, demyelinating neuropathy does not usually improve without immunotherapy. However, this patient did not receive any additional therapy for CIDP, and she achieved dramatic clinical and electrophysiological recovery. Furthermore, anti-MAG antibodies may persist for a longer period of time in these patients. However, in our case, it was not detected soon after tumor resection. According to the definition of a paraneoplastic syndrome, CIDP was indeed a heterogeneous disorder that preceded the CRC diagnosis and was not physically related to the tumor or its metastasis.13 It was independent of local tumor effects, metabolic and nutritional
Table 2. Association of colorectal carcinoma with chronic inflammatory demyelinating polyneuropathy reported in the published medical literature

Authors	Country	Age (yr)/sex	Clinical presentation	CSF and serologic findings	Cancer site	Timing of CRC diagnosis in relation to CIDP	EP/sural nerve biopsy findings	Treatment	Outcome and follow-up
Antoine et al. (1996)	France	73/M	Paresthesia, loss of strength in hands, abdominal pain, diarrhea	1 Leucocyte/mm³, CSF protein 90 mg/dL, normal IgG pattern	Rectosigmoid mass with a single hepatic metastasis	Concurrent Ep: pure upper limb CIDP with demyelinating features. Biopsy: mononuclear infiltrates	Rectosigmoidectomy and partial hepatectomy	Improved with tumor resection	
Ayyappan et al. (2015)	Australia	78/F	Bilateral hand and left great toe numbness and weakness, abdominal pain, constipation	Positive anti-MAG and ANA, mild eosinophilia, mildly elevated ESR	Sigmoid colon	1 mo after Ep: demyelinating features of DADS-CIDP	Laparoscopy-assisted high anterior resection of the sigmoid colon	Improved 8 mo after tumor resection; anti-MAG anti-bodies became negative	
Galassi and Luppi (2016)	Italy	53/M	Acroparesthesias, areflexia, loss of touch and vibration sensation	CSF protein 140 mg/dL, monoclonal IgG lambda positive, CEA 100 ng/dL	Sigmoid colon	52 mo after Ep: demyelinating features of DADS-CIDP	Radical hemicolecotomy followed by chemotherapy with leucovorin and 5-FU	Died 12 mo after cancer diagnosis	
The present report	USA	32/F	Dyspnea on exertion, lightheadedness, anorexia, malaise, worsening CIDP symptoms	Positive anti-MAG and ANA	Right colon infiltrating adenocarcinoma directly invading into the duodenum	18 mo after Ep: demyelinating features of CIDP	Right hemicolecotomy plus pancreatoduodenectomy followed by chemotherapy with leucovorin and 5-FU	Improved with tumor resection in 10 mo of follow-up; anti-MAG antibodies disappeared	

CSF, cerebrospinal fluid; CRC, colorectal carcinoma; CIDP, chronic inflammatory demyelinating neuropathy; EP, electrophysiology; M, male; F, female; anti-MAG, anti-myelin-associated glycoprotein; ANA, antinuclear antibody; ESR, erythrocyte sedimentation rate; DADS, distal acquired demyelinating symmetric; CEA, carcinoembryonic antigen; 5-FU, 5-fluorouracil.
deficits, infection, coagulopathy, and cancer chemotherapy. These observations suggest the potential existence of a causal paraneoplastic mechanism between CRC and CIDP.

With regard to the diagnosis of CRC, a multitude of stool-based tests and visual examination of the colon and rectum are recommended for screening and detection. CIDP is suspected based on the initial history and clinical examination. After exclusion of other probable etiologies, the diagnostic confirmation is primarily based on the evidence of peripheral nerve demyelination on electrodiagnostic results or rarely by nerve biopsy. The European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) guideline classifies CIDP as typical (classic) or atypical. Clinical inclusion criteria for typical CIDP requires either chronically progressive, stepwise, or recurrent symmetric proximal and distal weakness or sensory dysfunction of all extremities, developing over at least 2 months or absent/reduced tendon reflexes in all extremities. In patients with atypical CIDP, diagnosis requires one of the following neuropathic features: predominantly distal, asymmetric, focal, pure motor, or pure sensory. Based on EFNS/PNS criteria, CIDP can also be classified into three categories as definite, probable, and possible. The sensitivity of the EFNS/PNS criteria is 81% to 99%, and the specificity is 61% to 97%.

In patients with atypical CIDP, surgery is required. The diagnosis of CIDP precedes CRC detection, it may facilitate early detection and prompt initiation of appropriate treatment, which in turn may help to lower the potential morbidity and mortality associated with a delayed cancer diagnosis.

In conclusion, this case report describes the unusual co-existence of CRC and CIDP in a patient whose initial clinical presentation was dominated by neurological symptoms related to CIDP. It offers a clinical basis for previous reports suggesting a possible paraneoplastic association between these disorders and provides evidence that tumor resection may be a potential treatment strategy for medically refractory CIDP in such patients.

Conflicts of Interest
The authors have no potential conflicts of interest.

Funding
None.

Author Contributions
Conceptualization: all authors; Data curation: AM, FI, MHNG; Formal analysis: AM, FI; Investigation: FI, AM, AA, SS; Methodology: all authors; Project administration: AM, FI; Visualization: all authors; Writing–original draft: AM, FI, MHNG; Writing–review & editing: all authors.

ORCID
Adnan Malik https://orcid.org/0000-0002-4276-205X
Faisal Inayat https://orcid.org/0000-0001-7576-7319
Muhammad Hassan Naeem Goraya https://orcid.org/0000-0003-4826-6580
Gul Nawaz https://orcid.org/0000-0002-4978-4761
Ahmad Mehran https://orcid.org/0000-0002-9064-4242
Atif Aziz https://orcid.org/0000-0001-5276-1985
Saad Saleem https://orcid.org/0000-0002-1327-492X

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
2. Dyck PJ, Lais AC, Ohta M, et al. Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc 1975;50:621–637.
3. Broers MC, Bunschoten C, Nieboer D, et al. Incidence and prevalence of chronic inflammatory demyelinating polyradiculoneuropathy: a systematic review and meta-analysis. Neuroepidemiology 2019;52:161–172.
4. Malik A, Berry R, Fung BM, et al. Association between chronic inflammatory demyelinating polyneuropathy and gastrointestinal malignancies. Clin J Gastroenterol 2021;14:1–13.
5. Rajabally YA, Attarian S. Chronic inflammatory demyelinating polyneuropathy and malignancy: a systematic review. Muscle Nerve 2018;57:875–883.
6. Antoine JC, Mosnier JF, Lapras J, et al. Chronic inflammatory demyelinating polyneuropathy associated with carcinoma. J Neurol Neurosurg Psychiatry 1996;60:188–190.
7. Ayyappan S, Day T, Kiers L. Distal acquired demyelinating symmetric (DADS) neuropathy associated with colorectal adenocarcinoma. Muscle Nerve 2015;51:928–931.
8. Galassi G, Luppi G. Distal acquired demyelinating symmetric neuropathy associated with colorectal adenocarcinoma: should it be termed paraneoplastic? Muscle Nerve 2016;53:658–659.
9. Bell CE, Seetharam S. Identification of the Schwann cell as a peripheral nervous system cell possessing a differentiation antigen expressed by a human lung tumor. J Immunol 1977;118:826–831.
10. Kudo M, Noguchi T. Immunoreactive myelin basic protein in tumor cells associated with carcinomatous neuropathy. Am J Clin Pathol 1985;84:741–743.
11. Altermatt HJ, Rodriguez M, Scheithauer BW, et al. Paraneoplastic anti-Purkinje and type I anti-neuronal nuclear autoantibodies bind selectively to central, peripheral, and autonomic nervous system cells. Lab Invest 1991;65:412–420.
12. Fuller GN, Spies JM, Pollard JD, et al. Demyelinating neuropathies triggered by melanoma immunotherapy. Neurology 1994;44:2404–2405.
13. Henry K. Paraneoplastic syndromes: definitions, classification, pathophysiology and principles of treatment. Semin Diagn Pathol 2019;36:204–210.
14. Jameson JL, Longo DL. Paraneoplastic syndromes: endocrinologic/hematologic. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s Principles of Internal Medicine 20th ed. McGraw-Hill Education; 2018.
15. Bunschoten C, Jacobs BC, Van den Bergh PYK, et al. Progress in diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy. Lancet Neurol 2019;18:784–794.
16. Van den Bergh PYK, Hadden RDM, Bouche P, et al. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society-first revision. Eur J Neurol 2010;17:356–363.
17. Breiner A, Brannagan TH. Comparison of sensitivity and specificity among 15 criteria for chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2014;50:40–46.
18. Kuwabara S, Misawa S. Chronic inflammatory demyelinating polyneuropathy. Adv Exp Med Biol 2019;1190:333–343.
19. Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Canc Netw 2018;16:359–369.
20. Kakushadze Z, Raghubanshi R, Yu W. Estimating cost savings from early cancer diagnosis. Data 2017;2:30.