The complete chloroplast genome sequence of *Camellia zhaiana* (Theaceae), a critically endangered species from China

Fang-Yuan Wu, Shi-Cheng Ma, Pin-Ming Ye, Hang Ye and Jin-Lin Ma

Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, China; Wuzhou Tea Industry Development Service Center, Wuzhou, China; Golden Camellia Park, Nanning, China

ABSTRACT

Camellia zhaiana S.X. Yang (Theaceae) is a recently described species reported from Guangxi, China. It was proposed as a critically endangered species according to the IUCN Red List Categories and Criteria. In this study, we report and characterize the complete chloroplast (cp) genome of *C. zhaiana* using Illumina pair-end sequencing data. This is the first report of a cp genome of a species classified in *Camellia* section. *Longipedicellata*. The cp genome of *C. zhaiana* is 156,627 bp in length and includes a large single-copy region (LSC, 86,196 bp), a small single-copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,075 bp). The genome contains 135 genes, including 40 tRNA, eight rRNA, and 87 protein-coding genes. Phylogenetic analysis showed a strongly supported sister relationship between *C. zhaiana* and *C. longipedicellata*, which is a species classified in sect. *Longipedicellata*. These data support the previous systematic findings of *C. zhaiana* and advance the bioinformatics of the genus *Camellia*.

Camellia contains about 120 species distributed in East and Southeast Asia (Ming, 2000; Ming and Bartholomew, 2007). The Southern Yangtze River of China is the center of species diversity for the genus (Ming and Zhang, 1996). *Camellia zhaiana* is one of these species and was previously reported as a new to science (Liu et al., 2020). It was said to be classified in sect. *Longipedicellata*, and to resemble *C. longipedicellata* (Liu et al., 2020). It grows in the evergreen broad-leaved forests of limestone mountains at the elevation range 30-100 m (Liu et al., 2020). It is distinct in being the only species from China with red flowers and a long pedicle (Liu et al., 2020). Although the morpho-anatomy of *C. zhaiana* was well described, no DNA sequences of this species are published. In this study, we present the complete chloroplast (cp) genome sequence of *C. zhaiana* to determine its systematic position in *Camellia* and to contribute to the future phylogenetic and taxonomic studies of the genus.

Fresh leaves of *C. zhaiana* were collected from Long’an county of Guangxi, China (23°05’7.00”N, 107°44’2.91”E). The voucher specimen (S.X. Yang, P. M. Ye & F. Y. Wu 6023) was deposited at the Herbarium at Kunming Institute of Botany (KUN, http://www.kun.ac.cn, Jing-Hua Wang, wangjh@mail.kib.ac.cn), Chinese Academy of Sciences. Total genomic DNA was extracted using a modified hexadecyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). The 150 bp pair-end reads were generated using the Illumina HiSeq 2500 platform. The clean data was de novo assembled by GetOrganelle (Lin et al., 2020), followed by using Bandage 0.8.1 (Wick et al., 2015) to assess the completeness of the assembly. PGA (Qu et al., 2019) was used to annotate the chloroplast genome using the default settings. Phylogenetic analysis of *C. zhaiana* was performed with 26 *Camellia* species and two outgroups (*Polyspora axillaris* and *Pyrenaria oblongicarpa*) using RAxML version 8.2.12 (Stamatakis, 2014) with the GTR+GAMMA nucleotide substitution model and 1,000 bootstrap replicates following a previous study (Yu et al., 2017).

The circular complete chloroplast genome of *C. zhaiana* (GenBank accession number is MW755302) is 156,627 bp in length, with a mean sequencing depth of 70.6 x. The GC content of the genome is 37.3%. This genome includes a large single-copy region (LSC, 86,196 bp), a small single-copy region (SSC, 18,281 bp), and two inverted repeat regions (IR, 26,075 bp). In total, it contains 135 genes, with 40 tRNA, eight rRNA, and 87 protein-coding genes.

The maximum likelihood phylogenetic tree revealed that *C. zhaiana* and *C. longipedicellata* formed a monophyletic clade with full bootstrap support (BS = 100%) (Figure 1). This result supported the taxonomic treatment that *C. zhaiana* belongs in sect. *Longipedicellata* and resembles *C. longipedicellata*.

CONTACT Jin-Lin Ma (majinlin009@163.com) Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China
According to the classification of Ming (2000), five species were recognized. The cp genome provides a reference for further study on the phylogeny of Camellia, as well as the protection and utilization of C. zhaiana.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by the Open Research Fund of Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization [Grant No. 19-B-01-03, JB-20-01-04].

Data availability statement
The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MW755302, reference number MW755302. The associated BioProject, SRA, and BioSample numbers are PRJNA725163, SRR14326647, and SRS8774896 respectively.

References
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19(1):11–15.
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.
Liu ZW, Ye PM, Li ZH, Wei XJ, Liu ED, Zhang ZR, Ma JL, Yang SX. 2020. Camellia zhaiana (sect. Longipedicellata), a new species of Theaceae from Guangxi. China. Phytotaxa. 460(3):225–229.
Ming TL. 2000. Monograph of the genus Camellia. Kunming (Yunnan): Yunnan Science and Technology Press.
Ming TL, Bartholomew B. 2007. Theaceae. In: Wu CY, Raven PH, editors. Flora of China. Beijing, China and Saint Louis (MO): Science Press and Missouri Botanical Garden Press; p. 366–478.
Ming TL, Zhang WJ. 1996. The evolution and distribution of genus Camellia. Acta Botanica Yunnanica. 18(1):1–13.
Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15(1):50.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20):3350–3352.
Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ. 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleafed forests revealed by the temporal history of the tea family. New Phytol. 215(3):1235–1248.