Research Paper

Study of Shooting Accuracy and Fatigue of Leg Muscles After Eight Weeks of Resistance Training in Shooters Men With a Inflatable Pistol

Alireza Ramezani1, *Morad Hosseini1

1. Department of Exercise Physiology, School of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.

Citation: Ramezani A, Hosseini M. [Study of Shooting Accuracy and Fatigue of leg Muscles After Eight Weeks of Resistance Training in Shooters men With a Inflatable Pistol (Persian)]. Journal of Sport Biomechanics. 2019; 4(4):66-77. https://doi.org/10.32598/biomechanics.4.4.66

Abstract

Objective: The purpose of this study was to investigate the shooting accuracy and leg muscles fatigue of male shooters using air pistol after 8 weeks of resistance training.

Method: The study population consisted of all elite male shooters from Kohgiluyeh and Boyerahmad Province of Iran. Of these, 20 subjects were selected as study samples and underwent shooting with two different postural forms (prolonged and intermittent standing) before and after resistance training. The resistance training protocol included 5 different movements performed slowly in the morning. Movements started in 3 sets of 10 repetitions with 1-min rest interval in the first session and ended with 5 sets of 14 repetitions with 1-min interval in the last session. It lasted for 8 weeks, 3 sessions per week. For data analysis, repeated mesures Analysis of Variance (ANOVA) and Pearson correlation test were used and performed in SPSS V. 20 software.

Result: After eight weeks of resistance training, the posttest shooting accuracy and muscle fatigue were significantly different compared to the pre-test scores in different postural forms (P=0.05). There was a high correlation between changes in muscle fatigue and shooting accuracy in both prolonged and intermittent standing positions (P=0.05).

Conclusion: Eight weeks of resistance training had positive effect on muscle fatigue and shooting accuracy of shooters in two forms of standing positions.

Keywords: Shooting accuracy, Muscle fatigue, Elite male shooters

Extended Abstract

1. Introduction

In many daily activities and some sports, like golf and shooting, standing for a long time with proper posture is essential [1-3]. Ankle muscle fatigue reduces postural control. During a shooting race, some shooters stay in their place until the end of the competition, while others leave the race to hear coach guidance and some sit on their seats to relieve fatigue. Each of these situations may occur several times. This indicates that coaches are not following a specific approach based on the competition’s strategy and shooting tactics, and shooters follow their own rules [1].

Shooters require long-term biopsychological stability to achieve desirable records. During shooting competition with air guns, men can have 60 shots within 105 minutes, while...
for women, this rate is 40 shots in 75 minutes [2]. Shooting rules do not allow people to shoot in the sitting position; thus, for a shooter, most of the time in a shooting race is spent in standing position. Shooting with a 10-m air pistol is among the shooting competitions where a person must stand for a long time [2]. Checking the fatigue of each lower limb muscle caused by shooting and identifying the most active muscles can be an appropriate guide for trainers in designing training programs. Finding new approaches to reduce fatigue and increase accuracy in the shooting is also necessary.

2. Participants and Methods

This was a quasi-experimental study. The study participants were 20 healthy male shooters practicing in a shooting hall in Yasuj City, Iran. They were selected using a convenience sampling technique. The study subjects performed two different shooting forms (prolonged standing and intermittent standing) before and after an 8-week resistance training course. The shooting accuracy and muscle fatigue were assessed accordingly.

The training protocol included the following 5 movements performed slowly and in the morning: seated leg curl, standing calf raise on a machine, cable standing leg curl, standing barbell calf raise, and calf raise on a leg press machine without knee bending. Movements started in 3 sets of 10 repetitions with a 1-min rest interval in the first session; they ended with 5 sets of 14 repetitions with a 1-min interval in the last session. They were performed for 8 weeks, 3 sessions per week.

According to a program previously written for DASYLAB software, the raw Electromyography (EMG) signal was recorded every 1 second. A pass filter of 5 to 450 Hz was applied. Then, using the Fast Fourier Transform (FFT) algorithm, the time domain of the signal was converted to the frequency domain. Next, the median frequency was calculated per second and recorded until the end of the test. Consequently, using the MATLAB software, the slope of median frequency was illustrated for each muscle throughout the test. In the intermittent standing protocol, the study subjects sat and rested every 20 minutes. During the resting period, muscle activity and the median frequency values were reduced; thus, resting times were eliminated the intermittent standing protocol by Microsoft Excel V. 2010 software.

3. Results

After the test (resistance training), the frequency (%) of shooting error, as well as the amount of muscle fatigue (slope of muscle activity changes), decreased. As per Table 1, after performing 8 weeks of resistance training, the posttest shooting accuracy significantly differed compared to the pretest accuracy values in different postural forms (F(2, 18)=8.22; P=0.001). These results indicated that after conducting 8 weeks of resistance training, the subjects’ shooting accuracy significantly improved; such an effect was higher in the extended-standing position with no rest. Furthermore, changes in post-training muscle fatigue were significantly different from those of the pretest values in different postural forms (F(2, 18)=0.0024; P=0.001).

4. Discussion

The collected results revealed that conducting 8 weeks of resistance training significantly improved muscle fatigue and shooting accuracy in a prolonged standing position with no rest. This finding is consistent with the those of Janice Tan et al. [1], Abdol Rahim et al. [6], Sartika and Dawal [8], Vuillermant et al. [9], Walesh et al. [10], and Davidson et al. [11]. The conditions that were created for the present study subjects were the standard and routine situations of the shooters. They followed the same shooting protocols as before.

Furthermore, all environmental conditions were the same as their previous training conditions. The only nuisance variable that caused differences in test performance, compared to the subjects’ previous training conditions, was the attachment of electromyographic electrodes to their leg muscles; this might slightly impact the results’ accuracy. However, this does not appear to affect the study’s purpose (comparing two different shooting situations). Factors such as subjects’ psychological and nutritional status during the two test days, Table 1.

Factor	df	F	Sig.
Time	1	48.13	0.001
Time × Group	2	8.22	0.001
Error (time)	17	--	--
as well as the effects of cross talk on the EMG signal, could be considered as other nuisance variables [7, 10].

5. Conclusion

Conducting an 8-week resistance training could improve the shooting accuracy with air pistols in young adult shooter men. The intervention also reduced muscle fatigue in these subjects.

Ethical Considerations

Compliance with ethical guidelines

Ethical issues (including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Shahid Rajae Teacher Training University, Tehran Research Council (17129).

Authors’ contributions

All authors contributed equally in preparing all parts of the research.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The writers are grateful to the shooters and their trainers and sports officials in Yasuj City.
بررسی تغییرات دقت تیراندازی و خستگی عضلات ساق پا به دنبال هشت هفته تمرینات مقاومتی در مردان تیراندازی با تپانچه بادی

Автор: مراد حسینی، دکتر تهران، دانشگاه تربیت دبیر شهید رجایی، دانشکده علوم ورزشی، گروه فیزیولوژی ورزش.

در مرجع تیراندازی تراپیک، دخترین و مستقل عضلات ساق پا مشابه عضلات پا کناری بوده و به‌طور مهم در متمرکز کردن و دقت تیراندازی نقش ایفا می‌کنند. پژوهش حاضر احتمال وجود اثرات مقاومتی تمرین بر این عضلات را بررسی کرده است.

 Nahid, A. (2023). تغییرات دقت تیراندازی و خستگی عضلات ساق پا به دنبال هشت هفته تمرینات مقاومتی در مردان تیراندازی با تپانچه بادی. نشریه اصفهان، 6(2)، 4-11.

کلید واژه‌ها: دقت تیراندازی، خستگی عضلات، تیراندازان مرد.
برای یک تیرانداز، بیشتر زمان یک سهپه تیراندازی در وضعیت استایل رسته تیراندازی با منظور آن در آن فرد به دست می‌آید.

برخی از مهم‌ترین عضلاتی که در کنترل پس‌چرخ در ایستاده می‌شوند، عبارتند از: ساقی قدامی، نعلی و دوقلو.

بر اساس نتایج پژوهش‌های قبلی، می‌توان خستگی عضلانی را به عنوان یکی از عوامل قوی برای کنترل پس‌چرخ در وضعیت ایستاده در نظر گرفت. این تحقیق نشان داده‌است که با افزایش خستگی عضلات ساق، جابه‌جایی مرکز فشار بیشتر و افزایش پیدا کردن عضلات ساق و در نتیجه کاهش تعادل، افراد در انجام فعالیت‌های روزمره کمک می‌کند. در بررسی‌های مشابه این تحقیق، میزان درصد تارهای کند و تند انقباض نیز در نظر گرفته شده اما نتایجی کمک نکننده‌ای در این زمینه بدست آمده است.

بررسی‌های نوین با هدف کاهش خستگی و افزایش دقت تیراندازی ضروری به نظر می‌رسد. با توجه به ضعف ادبیات پژوهشی در زمینه میزان خستگی عضلانی در افراد تیرانداز، پژوهش تحقیقاتی با هدف بررسی این مسئله و آموزش تمرینات مقاومتی در این مورد ضروری به‌ویژه در رقابت‌های تیراندازی انجام می‌شود.

روش‌های تمرینی

روش‌شناسی

تحقیق‌های نوین اغلب آزمایش مستقل (تمرین مقاومتی) بر روی یک گروه آزمایشی (مردان تیرانداز) انجام شد. آزمودنی‌ها، در مقدار متغیرهای مختلف (تمرین مقاومتی) در جریان و با پوشش متفاوت، از آن‌ها کاربردی در زمینه تیراندازی استفاده کردند. تحقیق‌ها نشان داد که در تمرینات مقاومتی، با توجه به تغییرات مختلف عضلات، تغییرات مختلفی در عملکرد تیراندازی می‌تواند ایجاد کند.

روش‌شناسی

تحقیق‌های نوین اغلب آزمایش مستقل (تمرین مقاومتی) بر روی یک گروه آزمایشی (مردان تیرانداز) انجام شد. آزمودنی‌ها، در مقدار متغیرهای مختلف (تمرین مقاومتی) در جریان و با پوشش متفاوت، از آن‌ها کاربردی در زمینه تیراندازی استفاده کردند. تحقیق‌ها نشان داد که در تمرینات مقاومتی، با توجه به تغییرات مختلف عضلات، تغییرات مختلفی در عملکرد تیراندازی می‌تواند ایجاد کند.

روش‌شناسی

تحقیق‌های نوین اغلب آزمایش مستقل (تمرین مقاومتی) بر روی یک گروه آزمایشی (مردان تیرانداز) انجام شد. آزمودنی‌ها، در مقدار متغیرهای مختلف (تمرین مقاومتی) در جریان و با پوشش متفاوت، از آن‌ها کاربردی در زمینه تیراندازی استفاده کردند. تحقیق‌ها نشان داد که در تمرینات مقاومتی، با توجه به تغییرات مختلف عضلات، تغییرات مختلفی در عملکرد تیراندازی می‌تواند ایجاد کند.
به صورت تصادفی میزان لاکتات خون آزمودنی ها هدف گیری شد. برای تجزیه و تحلیل داده های تصدیقی تکرارهایی و محاسبه خطا استفاده شد.

تجزیه و تحلیل داده ها

روش تجزیه و تحلیل داده ها بر اساس فرضیه تحقیق، تعداد فرم های وضعیتهای (دو فرم) و متغیرهای تحقیق تعیین شد. به وسیله نرم افزار SPSS نتایج دقت هدف گیری در فرم های وضعیت، با روش آماری تحلیل واریانس با اندازه گیری مکرر و ضریب همبستگی پیرسون استفاده شد.

فرم های وضعیت

هفته اول و دوم	هفته سوم و چهارم	هفته پنجم و ششم	هفته سوم و چهارم	هفته پنجم و ششم	هفته سوم و چهارم	هفته پنجم و ششم
4 تکرار با 30 دمای کاراکتر در شیب	3 تکرار با 30 دمای کاراکتر در شیب	2 تکرار با 30 دمای کاراکتر در شیب	4 تکرار با 30 دمای کاراکتر در شیب	3 تکرار با 30 دمای کاراکتر در شیب	2 تکرار با 30 دمای کاراکتر در شیب	4 تکرار با 30 دمای کاراکتر در شیب

استراحت بین تکرارها	استراحت بین تکرارها	استراحت بین تکرارها	استراحت بین تکرارها
1 دقیقه استراحت	1 دقیقه استراحت	1 دقیقه استراحت	1 دقیقه استراحت

تحلیل داده های خصخص عضلانی (EMG)

روش تجزیه و تحلیل داده ها بر اساس فرضیه تحقیق، تعداد فرم های وضعیتهای (دو فرم) و متغیرهای تحقیق تعیین شد. به وسیله نرم افزار Dasylab نتایج دقت هدف گیری در فرم های وضعیت، با روش آماری تحلیل واریانس با اندازه گیری مکرر و ضریب همبستگی پیرسون استفاده شد.

مشخصات آزمودنی ها

سن	حداقل	حداکثر	معیارهای تحریک استفاده شده
21	342	168	148
24	342	168	148

جدول ۱. نتایج دقت هدف گیری

شبه‌درجه‌های نوار عصبی و عضله (EMG)	کسب قابل قبول‌کننده‌کمتر	کسب قابل‌پذیرفتنی	شیب ضمنی در ۲۰۰۹ نسخه Excel	
1. Fast Fourier Transform (FFT)	۱۷۶ الف	۱۸۶ الف	۱۶۸ الف	۱۶۸ الف

تحلیل داده های نوار عصبی و عضله (EMG)

روش تجزیه و تحلیل داده ها بر اساس فرضیه تحقیق، تعداد فرم های وضعیتهای (دو فرم) و متغیرهای تحقیق تعیین شد. به وسیله نرم افزار Dasylab نتایج دقت هدف گیری در فرم های وضعیت، با روش آماری تحلیل واریانس با اندازه گیری مکرر و ضریب همبستگی پیرسون استفاده شد.

مشخصات آزمودنی ها

سن	حداقل	حداکثر	معیارهای تحریک استفاده شده
21	342	168	148
24	342	168	148

جدول ۱. نتایج دقت هدف گیری

شبه‌درجه‌های نوار عصبی و عضله (EMG)	کسب قابل قبول‌کننده‌کمتر	کسب قابل‌پذیرفتنی	شیب ضمنی در ۲۰۰۹ نسخه Excel	
1. Fast Fourier Transform (FFT)	۱۷۶ الف	۱۸۶ الف	۱۶۸ الف	۱۶۸ الف
جدول ۱. مقادیر مربوط به خستگی عضلانی و دقت تیراندازی (درصد خطای تیراندازی) در دو فرم ایستادن ممتد و ایستادن متناوب قبل و بعد از دوره تمرین

متغیر شماره	قبل از آزمون	پس از آزمون
میزان خستگی عضلانی (شیب تغییرات فعالیت عضلانی)	قبل از آزمون	پس از آزمون
درصد خطای تیراندازی	قبل از آزمون	پس از آزمون

نتایج آزمون در $F(2,18) = 8/22$، $P = 0/001$ داشتند. این نتایج نشان می‌دهد که در بعد از هشت هفته تمرین، درصد خطای تیراندازی بهبود معنی‌داری را نشان داد. برای تحلیل آماری دقیق‌تر در بخش استنباطی این فصل به تحلیل استنباطی ۲ و ۱ تصویر شماره مربوطه پرداخته می‌شود.

.img

نکته کلیه شهادت دقت و خستگی عضلات پس از اجرای پروتکل هشت هفته ای تمرینات مقاومتی نسبت به قبل از آن بهبود یافت. برای آزمون کردن فرضیه اول از آزمون تحلیل واریانس با داده‌های تکراری استفاده شد تا مشخص شود آیا تمرینات مقاومتی بر دقت هدف‌گیری تیراندازان در دو فرم وضعیتی تأثیرگذار بوده یا نه. نتایج آزمون نشان می‌دهد که در فرم وضعیت ایستادن ممتد که استراحت وجود نداشت، تأثیر بهتری مشاهده شد که این نتایج نشان می‌دهد که در بعد از هشت هفته تمرین، درصد خطای تیراندازی بهبود معنی‌داری را نشان داد. برای تحلیل آماری دقیق‌تر در بخش استنباطی این فصل به تحلیل استنباطی ۲ و ۱ تصویر شماره مربوطه پرداخته می‌شود.

.img

نکته کلیه شهادت دقت و خستگی عضلات پس از اجرای پروتکل هشت هفته ای تمرینات مقاومتی نسبت به قبل از آن بهبود یافت. برای آزمون کردن فرضیه اول از آزمون تحلیل واریانس با داده‌های تکراری استفاده شد تا مشخص شود آیا تمرینات مقاومتی بر دقت هدف‌گیری تیراندازان در دو فرم وضعیتی تأثیرگذار بوده یا نه. نتایج آزمون نشان می‌دهد که در فرم وضعیت ایستادن ممتد که استراحت وجود نداشت، تأثیر بهتری مشاهده شد که این نتایج نشان می‌دهد که در بعد از هشت هفته تمرین، درصد خطای تیراندازی بهبود معنی‌داری را نشان داد. برای تحلیل آماری دقیق‌تر در بخش استنباطی این فصل به تحلیل استنباطی ۲ و ۱ تصویر شماره مربوطه پرداخته می‌شود.
چپ: آزمون تحلیل واریانس با داده‌های تکراری مطالعه تغییرات شیب فعالیت عضلانی و میزان خستگی عضلات تیراندازان در قبل و بعد از هشت هفته تمرین مقاومتی

شاخص آماری	درجه آزادی	مربع	ف (مربع)	ضریب	شدیدت	معنی‌داری
زمان	1	0/48	0/01	0/001		
زمان × گروه	2	0/822	0/01	0/001		
خط (زمان)	17	-	-	-		

این نتایج نشان می‌دهد، متعاقب هشت هفته تمرین مقاومتی، تغییرات شیب فعالیت عضلانی یا میزان خستگی عضلات ودیده‌گی تیراندازان بهبود منجر گردیده که در فرم وضیعی ایستادن ممتد و استراحتی فرم وضعیتی ایستادن ممتد که استراحت موجود نبود، تأثیر بهتری مشاهده شد. بنابراین فرصت تحقیق در این شرایط تأیید است.

برای پایان ارتباط معنی‌دار بین تغییرات فعالیت عضلات

شاخص آماری	درجه آزادی	مربع	ف (مربع)	ضریب	شدیدت	معنی‌داری
زمان	1	0/0088	0/01	0/001		
زمان × گروه	2	0/0024	0/01	0/001		
خط (زمان)	17	-	-	-		

این نتایج نشان می‌دهد، متعاقب هشت هفته تمرین مقاومتی، تغییرات شیب فعالیت عضلانی یا میزان خستگی عضلات تیراندازان بهبود داشته که در فرم وضیعی ایستادن ممتد که استراحت موجود نبود، تأثیر بهتری مشاهده شد. بنابراین احتمال آماری فرصت صفر رد و فرصت تحقیق مورد تایید است.

برای پایان ارتباط معنی‌دار بین تغییرات فعالیت عضلات

فرضیه صفر رد و فرضیه تحقیق مورد تایید است.

برای آزمون کردن فرضیه دوم از آزمون تحلیل واریانس با داده‌های تکراری استفاده شد تا مشخص شود آیا تغییرات مقاومتی بر تغییرات شیب فعالیت عضلات تیراندازان در دو فرم وضیعی تأثیرگذار بوده یا نه. نتایج آورده شده است.

جدول شماره ۶

شاخص آماری	درجه آزادی	مربع	ف (مربع)	ضریب	شدیدت	معنی‌داری
زمان	1	0/48	0/01	0/001		
زمان × گروه	2	0/822	0/01	0/001		
خط (زمان)	17	-	-	-		

این نتایج نشان می‌دهد، متعاقب هشت هفته تمرین مقاومتی، تغییرات شیب فعالیت عضلات ودیده‌گی تیراندازان بهبود داشته که در فرم وضیعی ایستادن ممتد و استراحتی فرم وضعیتی ایستادن ممتد که استراحت موجود نبود، تأثیر بهتری مشاهده شد. بنابراین احتمال آماری فرصت صفر رد و فرصت تحقیق مورد تایید است.

برای پایان ارتباط معنی‌دار بین تغییرات فعالیت عضلات
شناختی بیشتر با تنظیم دستگاه نشانه روی هدف در رابطه است. تنظیم دقیق دید اسلحه روی هدف نیازمند زمان است. در یک بازه زمانی معین ارزش دست و نوسانات قلیت به حفظ خود می‌رسد و پس از این بازه نوسانات را در اثر شتاب در زمان مناسب تنظیم نشانه داده می‌شود.

نتیجه‌گیری نهایی

با توجه به نتایج می‌توان نتیجه‌گیری نمود که مقایسه‌هایی که در این راستا انجام شده‌اند، به‌طور کلی به لحاظ محیطی و فیزیکی بیانک‌های تغییرات قابل توجهی در عملکرد و سطح خستگی عضلات ساق پا در زمان تیراندازی نبوده است. همچنین به‌طور کلی به لحاظ محیطی و فیزیکی بیانک‌های تغییرات قابل توجهی در عملکرد و سطح خستگی عضلات ساق پا در زمان تیراندازی نبوده است.

مطالعات مشابه با این تحقیق حاصل ریالیت روی در داده را نشان می‌دهد که به‌طور کلی به لحاظ محیطی و فیزیکی، یک متغیر مزاحمی که باعث تغییرات قابل توجهی در عملکرد و سطح خستگی عضلات ساق پا در زمان تیراندازی نبوده است.

یک پیام‌رسانی مهم در این تحقیق به‌طور کلی به لحاظ محیطی و فیزیکی، یک متغیر مزاحمی که باعث تغییرات قابل توجهی در عملکرد و سطح خستگی عضلات ساق پا در زمان تیراندازی نبوده است.
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

مباحث اخلاقی (از جمله سرقت ادبی، رضایت آگاهانه، سوء فکری، ساخت نامه، جمل ادامه، انتشار مخالف و یا ارسال، افزودنی و غیره) توسط نویسندگان کلیاً رعایت شده است.

حامی مالی

این مقاله توسط شورای پژوهشی دانشگاه تربیت مدرس تهران پشتیبانی شده است.

مشارکت نویسندگان

همه نویسندگان به یک اندازه در تهیه مقاله مشارکت داشتند.

تعارض منافع

طبق نظر نویسندگان این مقاله هیچگونه تعارض منافعی ندارد.

علیرضا رضایی و همکاران. بررسی تغییرات دقت تیراندازی و خستگی عضلات ساق پا به دلیل هشت هفته تمرینات مقاومتی
References

[1] Janice Tan SJ, Lim D, Xie W, Liao K. A study of muscle fatigue for prolonged standing using surface electromyogram: A case study. Portuguese Journal of Sport Sciences. 2011; 11(Suppl 2):775-8.

[2] Ijtehad SZ. [Scoring puzzler in shooting (Persian)]. 2nd ed. Tehran: Parsis Publishing; 2008.

[3] Vaez Mousavi SMK, Naji M, Hasanzadeh N. [Arousal and activation in a pistol shooting task (English-Persian)]. Iranian Journal of Military Medicine. 2011; 12(4):185-90

[4] Di Giulio I, Maganaris CN, Baltzopoulos V, Loram ID. The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. The Journal of Physiology. 2009; 587(10):2399-416. [DOI:10.1113/jphysiol.2009.168690] [PMID] [PMCID]

[5] Suponitsky Y, Vebitsky O, Peled E, Mizrahi J. Effect of selective fatigueing of the Shank muscles on single-leg-standing sway. Journal of Electromyography and Kinesiology. 2008; 18(4):682-9. [DOI:10.1016/j.jelekin.2007.01.009] [PMID]

[6] Abdol Rahim AH, Omar AR, Halim I, Mohd Saman A, Othman I, Alina M, et al. Analysis of muscle fatigue associated with prolonged standing tasks in manufacturing industry. Paper presented at: International Conference on Science and Social Research (CSSR 2010). 5-7 December 2010; Kuala Lumpur, Malaysia. [DOI:10.1109/CSSR.2010.5773875]

[7] Lin YH, Chen CY, Cho MH. Influence of shoe/floor conditions on lower leg circumference and subjective discomfort during prolonged standing. Applied Ergonomics. 2012; 43(5):965-70. [DOI:10.1016/j.apergo.2012.01.006] [PMID]

[8] Sartika SJ, Dawal SZ. Investigation on lower leg muscles activity and discomfort on prolonged standing task. Paper presented at: International Conference for Technical Postgraduates (TECHPOS). 14-15 December 2009; Kuala Lumpur, Malaysia. [DOI:10.1109/TECHPOS.2009.5412066]

[9] Vuillerme N, Danion F, Forestier N, Nougier V. Postural sway under muscle vibration and muscle fatigue in humans. Neuroscience Letters. 2002; 333(2):131-5. [DOI:10.1016/S0304-3940(02)00999-0]

[10] Walsh M, Peper A, Bierbaum S, Karamanidis K, Arampatzis A. Effects of submaximal fatiguing contractions on the components of dynamic stability control after forward falls. Journal of Electromyography and Kinesiology. 2011; 21(2):270-5. [DOI:10.1016/j.jelekin.2010.12.005] [PMID]

[11] Davidson BS, Madigan ML, Nussbaum MA, Wojcik LA. Effects of localized muscle fatigue on recovery from a postural perturbation without stepping. Gait & Posture. 2009; 29(4):552-7. [DOI:10.1016/j.gaitpost.2008.12.011] [PMID]

[12] Freitas SM, Wieczorek SA, Marchetti PH, Duarte M. Age-related changes in human postural control of prolonged standing. Gait & Posture. 2005; 22(4):322-30. [DOI:10.1016/j.gaitpost.2004.11.001] [PMID]

[13] Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics. 2009; 24(4):327-40. [DOI:10.1016/j.clinbiomech.2009.01.010] [PMID]

[14] Goonetilleke RS, Hoffmann ER, Lau WC. Pistol shooting accuracy as dependent on experience, eyes being opened and available viewing time. Applied Ergonomics. 2009; 40(3):500-8. [DOI:10.1016/j.apergo.2008.09.005] [PMID]

[15] Lakie M. The influence of muscle tremor on shooting performance. Experimental Physiology. 2010; 95(3):441-50. [DOI:10.1113/exphysiol.2009.047555] [PMID]

[16] Bertollo M, Robazza C, Falasca WN, Stocchi M, Babiloni C, Del Percio C, et al. Temporal pattern of pre-shooting psycho-physiological states in elite athletes: A probabilistic approach. Psychology of Sport and Exercise. 2012; 13(2):91-8. [DOI:10.1016/j.psychsport.2011.09.005]

[17] Allison GT, Fujiwara T. The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle activity. Clinical Biomechanics. 2002; 17(6):464-9. [DOI:10.1016/S0268-0033(02)00033-5]

[18] Nelson-Wong E, Callaghan JP. Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to an exercise intervention. Journal of Electromyography and Kinesiology. 2010; 20(6):1125-33. [DOI:10.1016/j.jelekin.2010.07.007] [PMID]

[19] Vaugoyeau M, Viel S, Amblar B, Azulay JP, Assaïante C. Proprioceptive contribution of postural control as assessed from very slow oscillations of the support in healthy humans. Gait & Posture. 2008; 27(2):294-302. [DOI:10.1016/j.gaitpost.2007.04.003] [PMID]

[20] Selen LPJ, Beek PJ, van Dieën JH. Fatigue-induced changes of impedance and performance in target tracking. Experimental Brain Research. 2007; 181(1):99-108. [DOI:10.1007/s00221-007-0909-0] [PMID] [PMCID]
