Multiple and Additive Functions of ALDH3A1 and ALDH1A1

CATARACT PHENOTYPE AND OCULAR OXIDATIVE DAMAGE IN Aldh3a1(−/−)/Aldh1a1(−/−) KNOCK-OUT MICE*§

Received for publication, March 9, 2007, and in revised form, May 22, 2007 Published, JBC Papers in Press, June 13, 2007, DOI 10.1074/jbc.M702076200

Natalie Lassen†, J. Bronwyn Bateman†, Tia Estey†, Jer R. Kuszk‡, David W. Nees§, Joram Piatigorsky¶, Gregg Duester**, Brian J. Day††, Jie Huang‡‡, Lisa M. Hines§§, and Vasilis Vasiliou***

From the †Molecular Toxicology and Environmental Health Sciences Program, Departments of Pharmaceutical Sciences, and ‡Ophthalmology and Pediatrics, Rocky Mountain Lions Eye Institute, The Children’s Hospital, University of Colorado, Denver, Colorado 80262, the §Departments of Ophthalmology and Pathology, Rush University Medical Center, Chicago, Illinois 60612, the ¶Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, the **OncoDevelopmental Biology Program, Burnham Institute, La Jolla, California 92037, the ††Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, and the §§Department of Biology, University of Colorado, Colorado Springs, Colorado 80933

ALDH3A1 (aldehyde dehydrogenase 3A1) is abundant in the mouse cornea but undetectable in the lens, and ALDH1A1 is present at lower (catalytic) levels in the cornea and lens. To test the hypothesis that ALDH3A1 and ALDH1A1 protect the anterior segment of the eye against environmentally induced oxidative damage, Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out and Aldh3a1(−/−)/Aldh1a1(−/−) single knock-out mice were evaluated for biochemical changes and cataract formation (lens opacification). The Aldh1a1/Aldh3a1- and Aldh3a1-null mice develop cataracts in the anterior and posterior subcapsular regions as well as punctate opacities in the cortex by 1 month of age. The Aldh1a1-null mice also develop cataracts later in life (6–9 months of age). One- to three-month-old Aldh-null mice exposed to UVB exhibited accelerated anterior lens subcapsular opacification, which was more pronounced in Aldh3a1 mice and wild type animals. Cataract formation was associated with decreased proteasomal activity, increased protein oxidation, increased GSH levels, and increased levels of 4-hydroxy-2-nonenal- and malondialdehyde-protein adducts. In conclusion, these findings support the hypothesis that corneal ALDH3A1 and lens ALDH1A1 protect the eye against cataract formation via nonenzymatic (light filtering) and enzymatic (detoxification) functions.

The cornea serves as a physical and biochemical protective barrier between the external milieu and internal ocular tissues. The anterior segment of the eye absorbs the major fraction of the UV light entering the eye and acts as a filter, protecting the lens and retina from UV-induced damage (1). UV radiation-induced pathologic changes in the eye are associated with the generation of reactive oxygen species (ROS)2 that cause lipid peroxidation (LPO), protein modification and denaturation, and DNA damage (2, 3). These effects may cause reduction of corneal epithelial cell viability and cell death by apoptotic pathways (4) as well as protein denaturation with the loss of tertiary structural relationships in the lens fibers, essential for transparency (3). Exposure to solar radiation, particularly within the UV wavelengths, is a risk factor for the development of age-related cataracts and macular degeneration in the retina as well as some corneal diseases (5, 6).

The cornea expresses several proteins that minimize the damaging effects of UV radiation to the more internal structures. The corneas of all mammals are rich in antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase, that protect other proteins against the oxidative effects of ROS generated by UV light (7). Nuclear ferritin, detected in chicken corneal epithelium, protects against UV-induced DNA oxidative damage (8). The corneal epithelium of most mammalian species expresses low molecular weight scavengers of ROS, such as glutathione, α-tocopherol, ascorbate, and NADPH (9, 10). NADPH is essential for the regeneration of GSH from its oxidized form (GSSG) through the glutathione reductase/peroxidase system, serving as an indirect antioxidant by maintaining the reducing power of GSH (11). NADPH may also function as a direct antioxidant by reducing glutathyl and tyrosyl radicals generated during oxidative stress (12). Additionally, this molecule directly absorbs UV light (11) and protects biomolecules through direct binding. For example, bound NADPH is known to offset H2O2-induced inactivation of catalase (13). Corneal crystallins, which are proteins expressed in high levels similar to lens crystallins, are thought to also play a protective role against UV-induced damage (14). The NADP+-dependent isocitrate dehydrogenase, a bovine corneal crystallin, plays a protective role against UV-induced oxidative injury by prevent-

* This work was supported by National Institutes of Health Grants EY11490 (to V. V.), EY08282 (to J. B. B.), and EY13969 (to G. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables 1 and 2 and Figs. 1–4.

‡ To whom correspondence should be addressed: Molecular Toxicology and Environmental Health Sciences Program, Dept. of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Denver, CO 80262. Tel.: 303-315-6153; Fax: 303-315-6281; E-mail: vasilis.vasiliou@uchsc.edu.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables 1 and 2 and Figs. 1–4.
ing LPO, protein oxidation, oxidative DNA damage, and intracellular peroxide generation (15). Albumin, the most prevalent protein in the corneal stroma, may serve as an antioxidant scavenger of hydrogen peroxide and protects the cornea against oxidative damage (16). Two aldehyde dehydrogenases, ALDH3A1 and ALDH1A1, are of interest (17, 18). ALDH3A1 represents 5–50% of the corneal water-soluble proteins in mammalian species (19), although it appears to be absent from the lens, whereas ALDH1A1 is found mainly in the lens and to a lesser extent (<5%) in the cornea (17). Early studies have suggested a protective role of ALDH3A1 against UV-induced damage in the cornea. SWR/J mice are susceptible to UV-induced cornea clouding (20), apparently from a lack of stable ALDH3A1 expression due to several mutations in the Aldh3a1 gene (21, 22). Although the biological basis is not well characterized, one established mechanism by which both ALDH3A1 and ALDH1A1 protect the corneal epithelium from UV-induced oxidative damage is the detoxification of highly reactive products of LPO, such as 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA). ALDH3A1 metabolizes 4-HNE (23), whereas ALDH1A1 metabolizes both 4-HNE and MDA (24). Thus, the presence of ALDH1A1 may complement one or more of the functions ascribed to ALDH3A1 and may provide a means of oxidizing MDA, which is a poor substrate of ALDH3A1 (23). Possible additional functions of ocular ALDH3A1 include direct absorption of UV radiation, chaperone-like activity, and scavenging of UV-generated ROS via the -SH groups of the cysteine and methionine residues (reviewed in Ref. 25).

Herein, we establish that the Aldh1a1(–/–), and Aldh3a1(–/–) single knock-outs as well as the Aldh1a1(–/–)/Aldh3a1(–/–) double knock-out mice develop premature cataracts (lens opacification), documenting the importance of these proteins and their combined roles in preventing ocular toxicity. These studies have important implications for cataract formation in humans.

MATERIALS AND METHODS

Animals—Transgenic Aldh1a1(–/–), Aldh3a1(–/–), and Aldh1a1(–/–)/Aldh3a1(–/–) mice and their wild type counterparts (C57BL/6J×129/sv) were bred. Generation of Aldh1a1(–/–) and Aldh3a1(–/–) single knock-out animals has been previously described (26, 27). Aldh1a1(–/–)/Aldh3a1(–/–) double knock-out mice were generated by breeding F3 homozygous hybrids of Aldh1a1(–/–) and Aldh3a1(–/–) mice. C57BL/6J×129/sv mice are F3 hybrids of control C57BL/6J and 129/sv mice, the genetic background of all knock-out lines used in this study. Animals were maintained in a temperature-controlled room (21–22 °C) on a 12-h light/dark cycle and supplied with food and water ad libitum. Four to twenty animals of each genetic strain and gender, at various ages, were used for each experiment. All animal use was conducted in compliance with Institutional Animal Care and Use Committee of the University of Colorado and was performed according to the published National Institutes of Health guidelines.

Clinical Assessment of Cornea and Lens—The clinical transparency of the cornea and lens in the wild type, Aldh1a1(–/–) and Aldh3a1(–/–) single knock-out, and double knock-out mice of 1–3 and 6–9 months of age was assessed using slit lamp biomicroscopy (FS-2; Nikon, Melville, NY). Mydriasis was induced by a topical application of 1:1 solution of 1% tropicamide (Alcon, Forth Worth, TX) and 10% phenylephrine (Akorn, Buffalo Grove, IL) in conscious animals. Observations lasted 3–5 min per eye and were recorded by a digital camera. To avoid bias, the observer was “blinded” to the genetic background of the mice being examined. To assess the extent of lens opacification, a cataract scoring system ranging from 0 to 3 (where 0 = no opacity, 1 = mild, 2 = moderate, and 3 = severe) based on slit lamp biomicroscopy was utilized. The assessment was made during the examination to minimize misinterpretation of photographic light and positional artifacts. Animals were randomly reexamined for consistency during the assessment. The anterior, middle, and posterior regions of the lens were examined. Quantitative analyses of light scattering from cornea and lens were performed by selecting a line of pixels through the center of the eye with cornea peaks normalized to an arbitrary value of 100, assuming that all images had the same corneal clarity (28).

Protein Studies—To determine any changes in protein expression due to the absence of ALDH1A1 and ALDH3A1 proteins, corneal and lenticular expression of alcohol dehydrogenase and aldosreductase, which are two major 4-HNE-metabolizing enzymes, as well as antioxidant enzymes (catalase, Cu,Zn-SOD, and glutathione peroxidase) and corneal crystallins (transketolase) were evaluated in all Aldh genetic stocks by Western blot and SDS-PAGE analyses.

Preparation of Tissue Extracts—Wild type, Aldh1a1(–/–), Aldh3a1(–/–), and Aldh1a1(–/–)/Aldh3a1(–/–) double knock-out mice were sacrificed by CO2 inhalation followed by cervical dislocation. Corneas and lenses were then immediately removed from enucleated eyes by circumferential sclerotomy posterior to the limbus. Lenses (from one animal), and corneas (pooled from at least three animals) were homogenized in lysis buffer containing 25 mM Tris, 0.25 mM sucrose (pH 7.4), 0.5 μg/ml leupeptin, 0.5 μg/ml aprotonin, 1 μg/ml pepstatin, and 100 μg/ml phenylmethylsulfonyl fluoride (Sigma). Lysates were sonicated for 5 s on ice using a Branson sonifier 250 (VWR Scientific, Willard, OH) and then cooled on ice for 15 s for a total of three cycles. Lysates were centrifuged at 10,000 × g for 30 min at 4 °C, and supernatants were collected for analysis by Western blotting. Protein concentrations were measured using the BCA method (Pierce).

SDS-PAGE and Western Immunoblotting—For silver staining, 10 μg of protein was loaded and subjected to electrophoresis using a 10% SDS-polyacrylamide gel. For Western blot analysis, 10–30 μg of protein from lens and cornea were subjected to electrophoresis and immunoblotted according to previously described methods (29). The primary antibodies included affinity-purified rabbit anti-Aldh1a1 (26), monoclonal and polyclonal anti-ALDH3A1 (23), monoclonal anti-β-actin (Sigma), antibodies to Cu,Zn-SOD (Calbiochem), Mn-SOD, aldose reductase (a gift from Dr. M. Petrush, University of Washington, St. Louis, MO), catalase (Research Diagnostic, Concord, MA), glutathione peroxidase (Cortex Biochem, San Leandro, CA), transketolase (30), alcohol dehydrogenase (31), and γ-glut-
Cataract Phenotype in Aldh3a1(−/−)/Aldh1a1(−/−) Mice

tamylcysteine synthase (GCS) (a gift from Dr. T. Kavanagh, University of Washington, Seattle, WA). Anti-rabbit, antiseep, and anti-mouse immunoglobulin G-conjugated horse-radish peroxidase antibodies were obtained from Jackson Laboratories (West Grove, PA). Labeled proteins were detected by enhanced chemiluminescence (PerkinElmer Life Sciences).

ALDH3A1 Enzymatic Assay—ALDH3A1 activity was determined using either 5 mM benzaldehyde (substrate) and 2.5 mM NADP+ (coenzyme) or 5 mM propionaldehyde (substrate) and 1 mM NADP+ (coenzyme) as described previously (29). ALDH3A1 activity was normalized to total protein concentration measured by the BCA method (Pierce).

Determination of Reduced GSH Levels—Eyes from wild type, Aldh1a1(−/−), Aldh3a1(−/−), and Aldh1a1(−/−)/ Aldh3a1(−/−) double knock-out mice 6 months of age were excised, and the lenses and corneas were separated and combined for each animal. The tissues were weighed using an analytical scale (model CAHN C-33; Waltham, MA), sonicated on ice in KPBS buffer (50 mM KH2PO4, 50 mM K2HPO4, pH 7.4, 17.5 mM EDTA, 50 mM serine, and 50 mM boric acid), and incubated in the dark at room temperature for 30 min in the presence of monobromobimane (for the development of the GSH-monobromobimane derivative). The reaction was stopped by the addition of 70% perchloric acid, the samples were centrifuged at 10,000 × g for 10 min at 4 °C, and the supernatant solution was removed and analyzed for GSH on a Hitachi high pressure liquid chromatograph (model L-2420; San Jose, CA) equipped with a fluorometric detector (model L-2480) as previously described with minor modifications (32).

Determination of Protein-Carbonyls and 4-HNE- and MDA-adducted Proteins—Lenses were dissected from 6-month-old wild type and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice, and the soluble and insoluble fractions were processed as previously described (33). Equal aliquots of samples from each animal strain were processed for detection of carboxyl groups using the Oxyblot detection kit (Chemicon International, Temecula, CA). Briefly, the soluble and insoluble fractions were treated with 2,4-dinitrophenylhydrazine to derivatize the carboxyl groups to 2,4-dinitrophenylhydrazone. The 2,4-dinitrophenylhydrazone-derivatized protein samples were separated on 10% polyacrylamide gels, transferred to polyvinylidene difluoride membranes, and probed using specific antibody for the 2,4-dinitrophenylhydrazone-derivatized residues of oxidatively damaged proteins. The same samples were processed for detection of 4-HNE and MDA adducts by immunoblotting using polyclonal antibodies developed against 4-HNE- and MDA-adducted proteins (a gift from Dr. D. Petersen, University of Colorado Health Sciences Center, Denver, CO). Labeled proteins were detected by enhanced chemiluminescence (PerkinElmer Life Sciences).

Proteasome Activity Assay—Lens homogenates from wild type, Aldh1a1(−/−), and Aldh3a1(−/−) single and double knock-out mice were diluted to 0.5 mg/ml in PBS and assayed for chymotrypsin-like proteasome activity as described previously (34). The chymotrypsin-like activity was measured using a fluorogenic substrate, succinyl-Leu-Leu-Val-Tyr-amido-benzyloxycarbonyl-Leu-Leu-Val-Tyr-aminobenzyloxycarbonyl (Sigma). Samples were assayed at 37 °C for 1 h in a black 96-well plate (Costar; Corning Inc.) using a temperature-controlled fluorescence plate reader (Spectra MAX Gemini EM, Sunnyvale, CA). The measured excitation and the emission wavelengths were 360 and 430 nm, respectively. Identical samples were prepared with the proteasome inhibitor, N-benzyloxycarbonyl-Leu-Leu-Val-Tyr (MG132; Sigma), to determine specific activity to proteasome degradation.

UVB Exposure—One- to three-month-old wild type, Aldh1a1(−/−), and Aldh3a1(−/−) single and double knock-out mice were exposed to UVB light for 2.5 min (0.05 J/cm²) and 10 min (0.2 J/cm²), and lens opacification was evaluated 12 and 48 h after UV exposure by slit lamp biomicroscopy. Animals were first anesthetized by subcutaneous injection of xylazine (10 mg/kg) and ketamine (150 mg/kg) and were placed directly under the UV lamp with the head propped on its side so that each eye faced the lamp one at a time. Both eyes were exposed to equal amounts of energy. The UV source (a 115-V, 60-Hz, 0.16-A non-ozone-producing lamp with a peak wavelength of 302 nm; UVP Inc., San Gabriel, CA) was mounted horizontally in an enclosed box. The distance from the lamp to the eye was 27 cm. The energy output of the lamp at this distance was measured to be 350 milliwatts/cm² using a UVX digital radiometer attached to a UVX-31 300-nm sensor (UVP Inc.). Heat transmission from the lamp to the bottom of the box was negligible. In addition, the chymotrypsin-like activity of the lens 20 S proteasome was determined.

Statistical Analysis—Data are expressed as mean values ± S.E. Statistical analyses were done using SigmaStat®, version 3.10 (Systat Software, Point Richmond, CA), or SAS®, version 9.1 (SAS Institute Inc., Cary, NC). All comparisons of mean (or median, if not normally distributed) values between groups were performed using one-way analysis of variance (or Kruskal-Wallis test based on ranks), with post hoc pairwise comparisons based on Bonferroni’s test. A comparison of the proportion of mice with lens opacification between single or double knock-out mice and control mice was performed using Fisher’s exact test. A level of p < 0.05 was considered statistically significant. Each experiment was repeated three times.

RESULTS

Aldh1a1(−/−)/Aldh3a1(−/−) Double Knock-out Mice—The tail DNA analyses of the mice (Fig. 1) confirmed the genotype of the double knock-out and wild type mice. The Aldh1a1 genotype was determined by Southern blot analysis (26), whereas the Aldh3a1 genotype was determined by PCR (27) (supplemental Fig. 1). The homozygous mutant mice were born alive in the expected Mendelian gender ratio with no malformations or reduced survival or growth, indicating that Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice are healthy and fertile. The absence of ALDH1A1 and ALDH3A1 proteins in the double knock-out mice in lens and cornea was verified using silver staining (Fig. 1A) and Western blot analysis (Fig. 1B). ALDH1A1 protein (55 kDa) was missing from the lens of Aldh1a1(−/−) and Aldh1a1(−/−)/Aldh3a1(−/−) mice; ALDH3A1 (51 kDa) was missing from the cornea of the Aldh1a1(−/−)/Aldh3a1(−/−) mice but not from the cornea of Aldh1a1(−/−) mice (Fig. 1A). It is also obvious that no other new proteins are present in the area of ~50 kDa in either cornea.
Cataract Phenotype in Aldh3a1(−/−)/Aldh1a1(−/−) Mice

A. SDS-polyacrylamide gel with silver staining of proteins (10 μg) extracted from lens and cornea from wild type (WT), Aldh1a1(−/−) (1a1(−/−)), and double knock-out mice (DKO). The positions of the protein bands corresponding to ALDH1A1 and ALDH3A1 are indicated by the arrows (55 and 50 kDa, respectively). M, molecular weight markers.

B. Western blot analyses of ALDH1A1 and ALDH3A1 proteins (20 μg) in wild type, Aldh1a1(−/−)−, and Aldh3a1(−/−) (3a1(−/−)) single and double knock-out mice. β-Actin expression was used to show equal loading.

FIGURE 1. Detection of ALDH1A1 and ALDH3A1 proteins in lens and cornea. A, SDS-polyacrylamide gel with silver staining of proteins (10 μg) extracted from lens and cornea from wild type (WT), Aldh1a1(−/−) (1a1(−/−)), and double knock-out mice (DKO). The positions of the protein bands corresponding to ALDH1A1 and ALDH3A1 are indicated by the arrows (55 and 50 kDa, respectively). M, molecular weight markers. B, Western blot analyses of ALDH1A1 and ALDH3A1 proteins (20 μg) in wild type, Aldh1a1(−/−)−, and Aldh3a1(−/−) (3a1(−/−)) single and double knock-out mice. β-Actin expression was used to show equal loading.

TABLE 1

Substrate	Activitya (nmol NAD(P)H/min/mg protein)
WT lens	3430.5 ± 3.1
WT cornea	853.7 ± 9.9
DKO cornea	ND
DKO lens	ND

a Specific activities are expressed as nmol of NAD(P)H/min/mg protein as mean ± S.E. from triplicates in three separate experiments and were assayed using benzaldehyde and NADP+ or propionaldehyde and NAD+ as substrates and coenzymes, respectively.

TABLE 2

Cataract detection in wild type, Ald1a1(−/−), and Aldh3a1(−/−) single and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out (DKO) mice by in vivo slit lamp biomicroscopy

Cataract was documented in wild type, Ald1a1(−/−), and Aldh3a1(−/−) single and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice 1–3 and 6–9 months of age.

Age	Genotype	Total mice	Mice with cataract	Percentage	p valuea
months					
1–3	Wild type	18	3	17	0.99
	Aldh1a1(−/−)	15	3	20	0.99
	Aldh3a1(−/−)	16	10	62	0.012
	DKO	14	11	79	<0.001
6–9	Wild type	23	6	26	0.046
	Aldh1a1(−/−)	16	10	63	0.003
	Aldh3a1(−/−)	12	10	83	<0.001
	DKO	17	16	94	<0.001

a p values comparing proportion of mice with cataracts among Aldh1a1(−/−) and Aldh3a1(−/−) single and double knock-out mice versus wild type mice (Fisher’s exact test). p < 0.05 was considered statistically significant. When comparing single and double knock-out mice, for the 1–3-month-old group, both Aldh3a1(−/−) and double knock-out mice were significantly different from the Aldh1a1(−/−) mice (Fisher’s exact test, p < 0.05). However, there was no significant difference between the double knock-out and the Aldh3a1(−/−) mice (p = 0.44). For the 6–9-month-old group, the DKO mice were significantly different from the Aldh1a1(−/−) mice only (Fisher’s exact test, p < 0.05). No other significant differences between knock-out mice groups were identified.
double knock-out mouse of more than 12 months of age (supplemental Fig. 2). Anterior subcapsular lenticular opacities (supplemental Fig. 2B) and punctate, refractile opacities were visible in the posterior cortex (supplemental Fig. 2, C and D) in contrast with the embryonal nucleus, which was relatively clear (supplemental Fig. 2, B and C). Age-matched wild type mice had clear lenses, although a small proportion developed mild cataracts with age (data not shown).

4-HNE-metabolizing and Antioxidant Enzymes in Aldh Transgenic Mice—There were no differences in the corneal and lenticular expression of alcohol dehydrogenase and aldose reductase, two major 4-HNE-metabolizing enzymes, as well as antioxidant enzymes (catalase, Cu/Zn-SOD, glutathione peroxidase) and corneal crystallins (transketolase) between wild type and each Aldh stock (supplemental Fig. 3, A and B). Each membrane was stripped and reprobed with anti-β-actin antibody to document equal loading.

Increased Levels of Reduced GSH in the Lens and Cornea of Aldh1a1(−/−), Aldh3a1(−/−), and Double Knock-out Mice—The level of reduced GSH was measured in 6-month-old animals. Compared with wild type animals, there was a 2.3, 22.3, and 29.3% GSH increase in the lens of Aldh1a1(−/−), Aldh3a1(−/−), and double knock-out mice, respectively (Table 3). In addition, a 6.4, 25.8, and 45.2% GSH increase occurred in the cornea of Aldh1a1(−/−), Aldh3a1(−/−), and double knock-out mice, respectively, compared with the wild type animals. There was an overall significant difference in GSH for both the lens and cornea, which was primarily evident in the double knock-out mice (Table 3). In addition, increased levels of GSH were also closely correlated with an increase in the content of GCS, which is a heterodimer composed of a catalytic or heavy (GCSH) (Fig. 3A) and modulatory or light (GCSL) (Fig. 3B) subunit, respectively. However, GCSL was undetectable in lens extracts, perhaps due to the antibody sensitivity. Although GCSH (−/−) mice are lethal, GCSH(−/−) mice are viable with low levels of GSH (35, 36).

Decreased Proteasomal Function in Double Knock-out Mice—Because lens opacification results from aggregation and denaturation of proteins, we assessed the lens proteasomal activity in Aldh1a1/Aldh3a1-null mice by determining the chymotrypsin-like activity of the proteasome in the soluble fraction of lenses of all groups of mice at various ages (1–3 and 6–9 months of age). A greater difference in chymotrypsin-like proteasome activity was observed in the 6–9-month-old group, with the double knock-out mice having the lowest mean value of proteasome activity as compared with age-matched wild type animals (Fig. 4).

Increased Carbonylation and 4-HNE- and MDA-adducted Proteins in the Lens of Double Knock-out Mice—Carbonylated proteins (Fig. 5A) as well as 4-HNE- and MDA-adducted proteins (Fig. 5B) were detected in the lens extracts from wild type and double knock-out mice. These data illustrate the increase in oxidized proteins as well as the increase of 4-HNE- and MDA-adducted proteins in the insoluble fractions of lenses in

TABLE 3

Levels of GSH in lenticular and corneal tissues extracted from wild type, Aldh1a1(−/−), Aldh3a1(−/−) single, and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out (DKO) mice at 6 months of age

Genotype	Tissue	GSH (mean ± S.E.)	p value*
Wild type	Lens	3940 ± 234	
Aldh1a1(−/−)	Lens	4030 ± 398	NS
Aldh3a1(−/−)	Lens	4819 ± 333	NS
DKO	Lens	5095 ± 269	0.052
Wild type	Cornea	345 ± 38	
Aldh1a1(−/−)	Cornea	367 ± 42	NS
Aldh3a1(−/−)	Cornea	434 ± 36	NS
DKO	Cornea	501 ± 34	0.025

* All p values presented in the table represent the post hoc Bonferroni’s test comparing the designated group with the wild type mice.
* NS, not significant.
Aldh 3a1 genetic stocks, especially in Aldh3a1(−/−) and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice (Fig. 6).

6-month-old double knock-out mice as compared with the age-matched wild type animals.

UVB-induced Corneal Edema and Cataract Formation—All Aldh genetic stocks exhibited anterior subcapsular lens opacification and corneal edema at both UVB doses tested, which were more evident in Aldh3a1(−/−) and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice (supplemental Fig. 4A and supplemental Table 2, A and B). Exposure to a high UV dose (0.2 J/cm²) led to the development of severe corneal edema in all Aldh-deficient mice that was much more pronounced in Aldh3a1(−/−) and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice compared with Aldh1a1(−/−) and wild type animals (supplemental Fig. 4B and supplemental Table 2B). In addition, samples from the same animals were used to determine the chymotrypsin-like activity of the proteasome. UVB caused significant inhibition of the proteasome activity in all Aldh genetic stocks, especially in Aldh3a1(−/−) and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice (Fig. 6).

FIGURE 4. Decrease of chymotrypsin-like proteasome activity in Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice. Lenses from wild type, Aldh1a1(−/−), and Aldh3a1(−/−) single and double knock-out mice, 6 months of age, were extracted, and fresh lysates were processed for chymotrypsin-like proteasome activity. The activities are expressed as the rate of substrate conversion/min × mg of protein. Values represent mean ± S.E. (n = 3/group). An overall significant difference in proteasome activity was observed among the different genotypes (Fₐₙ = 264.2, p < 0.001). Post hoc Bonferroni’s t test indicated that all groups were significantly different from each other. *, p < 0.05 comparing Aldh1a1(−/−) to wild type and p < 0.001 comparing Aldh1a1(−/−) to either Aldh3a1(−/−) or double knock-out mice. ***, p < 0.001 comparing the designated group to any other group.

DISCUSSION

We report accelerated cataract formation and document the phenotype in mice with single and double knock-out-of the genes encoding ALDH1A1 and ALDH3A1, establishing the importance of these two enzymes in the mechanism of cataract formation. A combined absence of ALDH3A1 and ALDH1A1 activity in these mice significantly increased lens opacification, decreased proteasomal activity, and increased oxidative damage of proteins, based on increased levels of carbonylated as well as 4-HNE- and MDA-adducted proteins in the lens of the double knock-out mice as compared with wild type animals.

UV radiation leads to the production of ROS in the lens and increases the risk of cataract formation in mammals. ROS initiate LPO, which generates aldehydes, such as 4-HNE and MDA, that are potent electrophiles. Both MDA and 4-HNE adduct to nucleophilic groups of proteins, resulting in protein cross-linking, denaturation, and aggregation (37). Levels of protein carbonyls, as well as 4-HNE- and MDA-adducted proteins, therefore provide a sensitive indicator of cellular protein oxidative damage (38, 39). Increased levels of LPO are associated with the accumulation of 4-HNE and/or MDA in human corneal pathologies (7), lenses with cataracts (40, 41), and retinas with macular degeneration (42).

We described herein the lenticular phenotype of the Aldh genetic stocks, by slit lamp biomicroscopy, in vivo. Although lens opacities were documented in all Aldh-deficient groups examined, we found cataracts in most Aldh3a1(−/−) single knock-out mice as early as 1 month of age, whereas the wild type control mice had typically clear lenses. In Aldh1a1(−/−) single knock-out mice, lens opacification was less frequent than in both the Aldh3a1(−/−) single knock-out and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice and was also observed to occur later in life. The double knock-out mice showed denser lens opacification in the anterior subcapsular region at all ages when compared with single knock-outs (Aldh1a1(−/−) and Aldh3a1(−/−)) and wild type mice. For this reason, we docu-
Cataract Phenotype in Aldh3a1(−/−)/Aldh1a1(−/−) Mice

mented the double knock-out cataract phenotype in detail. Moreover, the percentage of mice with cataracts was significantly higher in the double knock-out mice and was evident as early as 1 month of age; this trend increased over time as compared with age-matched control wild type animals. Over 12 months of age, the double knock-out mice developed anterior and posterior subcapsular cataracts with punctate and refrac-
tile lenticular opacities with a relatively clear embryonal nucleus. Based on these results, we postulate that both ALDH1A1 and ALDH3A1 act additively in protecting against cataract formation. However, Aldh1a1/Aldh3a1 null mice do not have altered amounts of other antioxidant enzymes; hence, the potential protective effect of ALDH1A1 and ALDH3A1 against UV-induced cataract formation should be considered a direct sequel. Specifically, the absence of ALDH3A1 from the corneal epithelium and stroma in the knock-out mice (23), where it constitutes ~50% of the total water-soluble protein content in wild type mice (27), increased lens opacification. This effect is most likely due to the ability of ALDH3A1 to act as a filter in the cornea by absorbing light (43, 44). ALDH1A1 may protect the lens against cataract formation by detoxifying alde-
ydic products of LPO in both the cornea and lens. Further support for this mechanism is provided by the fact that the antimalarial drug chloroquine induces prominent anterior cat-
aracts in rats (45) and that this drug binds and inhibits ALDH1A1 (46). The role of ALDH1A1 as a light filter is rather unlikely, because this enzyme is not expressed in the cornea at levels comparable with ALDH3A1. Therefore, the combined absence of these two enzymes results in increased oxidative damage and aldehyde-adducted proteins in the lens, and this is probably the basis for cataract formation.

In this study, we found that all of the Aldh genetic stocks had increased levels of GSH. The double knock-out mice have the highest mean values of GSH as compared with age-matched control animals in both lens and cornea (Table 3), indicating a possible adaptive response to oxidative stress in these animals. Response to oxidative stress often involves changes in GSH content, which is replaced through either enzymatic reduction of its disulfide (GSSG) or through de novo synthesis. GSH is a major regulator of the tissue redox environment, in both lens and cornea (47, 48). GSH is synthesized in the cell by the sequential actions of GCS and glutathione synthase in a series of six-enzyme-catalyzed reactions, which have been termed as the γ-glutamyl cycle (49). GCS activity appears to be rate-limiting, being subject to feedback inhibition by physiological concentrations of GSH. GCS is a heterodimer comprising a cata-
lytic (heavy subunit, GCSH; 73 kDa) and regulatory (light subunit, GCSL; 30 kDa) polypeptide. GCSH is responsible for the catalytic activity, whereas the smaller GCSL modu-
lates the K_m of the enzyme for glu-
tamate and its sensitivity to feed-
back inhibition by GSH (35). Both subunits are expressed in ocular tissues (47), and both are inducible by electrophilic compounds like 4-HNE (50). The increased levels of GSH correlated with an increase in the content of GCSH and GCSL sub-
units (Fig. 6, A and B). ALDH3A1

FIGURE 5. Detection of oxidized proteins (A) and 4-HNE- and MDA-adducted proteins (B) in lens extracts from wild type and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice. Lenses from wild type (WT) and double knock-out (DKO) mice, 6 months of age, were separated into soluble (S) and insoluble (I) fractions. A, 2,4-dinitrophenylhydrazine-derivatized (+) and nonderivatized (−) proteins were separated by SDS-PAGE (10%) and transferred to polyviny-
diene difluoride membranes. Oxidized proteins were recognized by an antibody specific to the 2,4-dinitrophenylhydrazone-derivatized residues and detected by enhanced chemiluminescent reagents. B, equal amounts of lens homogenates were subjected to SDS-PAGE (10%) and transferred to polyviny-
diene difluoride membranes. 4-HNE- and MDA-adducted proteins were detected by Western blotting. Protein molecular mass (kDa) markers are given on the left.

FIGURE 6. Decrease of chymotrypsin-like proteasome activity in Aldh genetic stocks after UVB exposure. Wild type, Aldh1a1(−/−), and Aldh3a1(−/−) single and Aldh1a1(−/−)/Aldh3a1(−/−) double knock-out mice, 1–3 months of age, were exposed to two different doses of UVB light (0.05 and 0.2 J/cm²). The lenses were subsequently extracted and processed for chymotrypsin-like proteasome activity. The activities were normal-
ized to percentage of control. Values represent mean ± S.E. (n = 3/group).
oxidizes 4-HNE with high specificity (23), whereas ALDH1A1 metabolizes both 4-HNE and MDA (24). Therefore, we attribute the increased levels of GSH in the double knock-out mice to accumulation of 4-HNE and MDA derived from UV-induced lipid peroxidation as a consequence of the lack of ALDH1A1 and ALDH3A1.

We also demonstrated a decrease in chymotrypsin-like proteasome activity (Fig. 4) in the double knock-out mice and in Aldh-null mice exposed to UV (Fig. 6). The proteasome is the major proteolytic system that removes oxidatively damaged proteins (51). As oxidized proteins aggregate, they tend to inhibit the multicatalytic protease (52). The significant decrease in proteolytic activity in the double knock-out mice is probably due to increased levels of protein carbonylation (Fig. 5A). The age-related accumulation of oxidized proteins is caused, in part, by loss of the chymotrypsin-like activity of the proteasome in the double knock-out mice, and the resultant carbonylated proteins are less susceptible to proteolysis. The absence of ALDH3A1 and ALDH1A1 proteins in the double knock-out mice results in the accumulation of highly oxidized proteins as compared with age-matched wild type controls. These findings suggest that both ALDH3A1 and ALDH1A1 protect the proteasome against oxidative stress and further substantiate the protective roles of both enzymes in ocular tissues.

The 4-HNE- and MDA-modified proteins increase in the double knock-out mice. The lens insoluble protein fractions from the double knock-out mice had higher levels of protein carbonylation (Fig. 5A) as well as proteins adducted to 4-HNE and MDA (Fig. 5B) compared with age-matched wild type controls. We have also observed increased 4-HNE protein adducts in both lens and cornea of Aldh3a1(−/−) knock-out mice (53). Cataract formation in the double knock-out mice correlates with the increased levels of 4HNE- and MDA-adduct proteins. The combined oxidative effects of increased carbonylated and 4-HNE- and MDA-adducted proteins, in concert with decreased proteasome activity are likely to be the basis of the cataracts we observed in the animals. The decrease in proteasome activity and the formation of carbonylated as well as 4-HNE- and MDA-adducted proteins almost certainly contribute significantly to the mechanisms causing protein aggregation and cataract formation in the double knock-out mice. Therefore, without ALDH activity inhibiting the formation of protein aggregates and, consequently, lens opacification by detoxification of LPO-derived aldehydes, the denaturing effects of UV-induced oxidative stress are not protected effectively.

In conclusion, our data suggest that ALDH1A1 in the lens and cornea together with ALDH3A1 in the cornea protect the mouse lens against opacification through both catalytic and noncatalytic properties. Detoxification of lipid peroxide aldehydes and scavenging of free oxygen radicals in the lens by ALDH1A1 prevent protein cross-linking and aggregation. Less expected was our finding that the absence of ALDH3A1 alone leads to lens opacification, considering that this enzyme is essentially undetectable in wild type mouse lenses by our assays. Indeed, Aldh3a1-null mice do not even show corneal opacification (27). A nonenzymatic role for corneal ALDH3A1 has been suggested based on the high concentration (50% of water-soluble protein), which is above what is needed for a solely catalytic role. Thus, the simplest explanation for the opaque lenses in Aldh3a1 null mice is that ALDH3A1 absorbs UV light in the wild type cornea, thus minimizing the amount of UV radiation that reaches the lens. The concept that ALDH3A1 acts as a corneal filter for UV light was proposed by Abedin et al. (43) on the basis of its abundance in the mammalian cornea and enrichment of UV-absorbing tryptophans among its amino acids. Subsequently, Mitchell and Cenedella (44) called the abundant intracellular corneal proteins, which include ALDH3A1, “absorbins.” The use of ALDHs for nonenzymatic, optical roles finds precedence in the lens, where they occur in elephant shrews (η-crystallin) (54) and mollusks (Ω-crystallin) (55–58). Although η-crystallin of the elephant shrew lens has retinaldehyde dehydrogenase activity, Ω-crystallins in mollusk lenses lack enzymatic activity, consistent with an entirely structural role. Although our data support the idea that ALDH3A1 protects the lens by filtering UV light in the mouse cornea, we cannot exclude the possibility that the absence of corneal ALDH3A1 results in the accumulation of peroxidic aldehydes or other ROS in the cornea that leak into the lens and contribute to lens opacification. Unlike ROS, aldehydes are generally long lived compounds that can diffuse through the cell and react with biological targets distant from the site of origin (59).

ALDH3A1 is an active enzyme in the mouse cornea (21), and its absence in SWR/J mice, in which ALDH3A1 is unstable (21, 22), results in corneal opacification when the mice are exposed to UV irradiation (20). Our present UV treatments of Aldh3a1-null mice are consistent with the results for the SWR/J mice regarding the corneal opacification and show further that the absence of this enzyme contributes to UV-induced lens opacification. In addition, we have recently shown that ALDH3A1 may act as an antioxidant in cultured stromal fibroblasts (60). Taken together, our data are consistent with ALDH1A1 and ALDH3A1 in the lens and cornea providing additive safeguards to protect lens clarity using a combination of enzymatic and nonenzymatic properties (Scheme 1). The distribution of lens protective mechanisms between lens and cornea is consistent
Cataract Phenotype in Aldh3a1(−/−)/Aldh1a1(−/−) Mice

with the utilization of a gene sharing strategy in both the lens and cornea, as expressed in the refracton hypothesis (61), and with the co-evolution of these two transparent tissues for their optical function.

Acknowledgments—We thank Dr. David Thompson for valuable discussions and critical review of this manuscript and Tina Fay for technical assistance.

REFERENCES

1. Ringvold, A. (1998) Acta Ophthalmol. Scand. 76, 149–153
2. Spector, A. (1995) FASEB J. 9, 1173–1182
3. Spector, A. (2000) J. Ocul. Pharmacol. Ther. 16, 193–201
4. Shinohara, T., Singh, D. P., and Chylack, L. T., Jr. (2000) J. Ocul. Pharmacol. Ther. 16, 181–191
5. Cruicksbams, K. J., Klein, B. E., and Klein, R. (1992) Am. J. Public Health 82, 1658–1662
6. Tomany, S. C., Cruicksbams, K. J., Klein, R., Klein, B. E., and Knudtson, M. D. (2004) Arch. Ophthalmol. 122, 750–757
7. Buddi, R., Lin, B., Atilano, S. R., Zorapapel, N. C., Kenney, M. C., and Brown, D. J. (2002) J. Histochem. Cytochem. 50, 341–351
8. Cai, C. X., Birk, D. E., and Liesenmayer, T. F. (1998) Mol. Biol. Cell 9, 1037–1051
9. van Haafken, R. I., Haenen, G. R., Evelo, C. T., and Bast, A. (2003) Mol. Cell. Biol. 23, 4637–4648
10. Pappa, A., Estey, T., Manzer, R., Brown, D., and Vasiliou, V. (2003) Biochem. J. 376, 615–623
11. Manzer, R., Qamar, L., Estey, T., Pappa, A., Petersen, D. R., and Vasiliou, V. (2003) DNA Cell. Biol. 22, 329–338
12. Estey, T., Piatigorsky, J., Lassen, N., and Vasiliou, V. (2006) Exp. Eye Res., 84, 3–12
13. Fan, X., Molotkov, A., Manabe, S., Donmoyer, C. M., Deltour, L., Foglio, M. H., Cuenca, A. E., Blamer, W. S., Lipton, S. A., and Duester, G. (2003) Mol. Cell. Biol. 23, 4637–4648
14. Nees, D. W., Wawrourke, E. F., Robison, W. G., Jr., and Piatigorsky, J. (2002) Mol. Cell. Biol. 22, 849–855
15. Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., and Park, J. W. (2004) Invest. Ophthalmol. Vis. Sci. 45, 1511–1526
16. cloak; H., van Heeckere, A. M., Min, E., and Velsor, L. W. (2004) Infect. Immun. 72, 2045–2051
17. Day, B. J., and Piatigorsky, J. (2001) Invest. Ophthalmol. Vis. Sci. 44, 2669–2674
18. Grune, T., Reinecheel, T., and Davies, K. J. (1997) FASEB J. 11, 526–534
19. Sato, T., and Pappa, A. (2004) Arch. Ophthalmol. 122, 11449–11455
20. Dettour, L., Foglio, M. H., and Duester, G. (1999) J. Biol. Chem. 274, 16796–16801
21. Ates, N. A., Yildirim, O., Tamer, L., Unlu, A., Erkan, B., Muslu, N., Kanik, A., Hatungil, R., and Atik, U. (2004) Eye 18, 758–785
22. Bulteau, A. L., Moreau, M., Nizard, C., and Friguet, B. (2002) Free Radic. Biol. Med. 32, 1157–1170
23. Dalton, T. P., Chen, Y., Schneider, S. N., Nebert, D. W., and Shertzer, H. G. (2004) Free Radic. Biol. Med. 37, 1511–1526
24. Yang, Y., Dieter, M. Z., Chen, Y., Shertzer, H. G., Nebert, D. W., and Dalton, T. P. (2002) J. Biol. Chem. 277, 49446–49452
25. Truscott, R. J. (2000) Ophthalmic Res. 32, 185–194
26. Grune, T., Reinecheel, T., and Davies, K. J. (1997) FASEB J. 11, 526–534
27. Stadtman, E. R., and Levine, R. L. (2000) Annu. N. Y. Acad. Sci. 899, 191–208
28. Ansari, N. H., Wang, L., and Srivastava, S. K. (1996) Biochem. Mol. Med. 58, 25–30
29. Ates, N. A., Yildirim, O., Tamer, L., Unlu, A., Erkan, B., Muslu, N., Kanik, A., Hatungil, R., and Atik, U. (2004) Eye 18, 758–785
30. Vejvoda, C., Marco, P., Renau-Piqueras, J., and Pinazo-Duran, M. D. (1999) Eye 13, 183–188
31. Abedinia, M., Pain, T., Algar, E. M., and Holmes, R. S. (1990) Exp. Eye Res. 51, 419–426
32. Mitchell, I., and Cenedella, R. J. (1995) Cornea 14, 266–272
33. Drenckhahn, D., and Lullmann-Rauch, R. (1997) Exp. Eye Res. 24, 621–632
34. Graves, P. R., Kwiek, J. J., Fadden, P., Ray, R., Hardenman, K., Coley, A. M., Foley, M., and Haystead, T. A. J. (2002) Mol. Pharmacol. 62, 1364–1372
35. Ganea, E., and Harding, J. J. (2006) Curr. Eye Res. 31, 1–11
36. Lou, M. F. (2003) Prog. Retinal Eye Res. 22, 657–682
37. Meister, A., and Anderson, M. E. (1983) Annu. Rev. Biochem. 52, 711–760
38. Davies, K. J. (2001) Biochimie (Paris) 83, 301–310
39. Friguet, B., Stadtman, E. R., and Szveda, L. I. (1994) J. Biol. Chem. 269, 21639–21643
40. Vasiliou, V., Merkouris, M., Nees, D. W., Piatigorsky, I., Petersen, D. R., and Pappa, A. (2004) Invest. Ophthalmol. Vis. Sci. 45, 3807 (abstr.)
41. Graham, C., Hodin, J., and Wistow, G. (1996) J. Biol. Chem. 271, 15623–15628
42. Montgomery, M. K., and Fall-Ngai, M. J. (1992) J. Biol. Chem. 267, 20999–21003
43. Zinovieva, R. D., Tomarev, S. I., and Piatigorsky, J. (1993) J. Biol. Chem. 268, 11449–11455
44. Tomarev, S. I., and Piatigorsky, J. (1996) Eur. J. Biochem. 235, 449–465
45. Piatigorsky, J., Koznik, Z., Horwitz, J., Ding, L., Carosa, E., Robison, W. G., Jr., Steinbach, P. J., and Tamm, E. R. (2000) J. Biol. Chem. 275, 41064–41073
46. Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Free Radic. Biol. Med. 11, 81–128
47. Lassen, N., Pappa, A., Black, W. J., Jester, J. V., Day, B. J., Min, E., and Vasiliou, V. (2006) Free Radic. Biol. Med. 41, 1459–1469
48. Piatigorsky, J. (2001) Cornea 20, 853–858