The BSE property for vector-valued Frechet Lipschitz algebras

Ali Rejali1* Maryam Aghakoochaki2,†

1Department of Pure Mathematics Faculty of Mathematics and Statistics University of Isfahan
\texttt{rejali@sci.ui.ac.ir}
2University of Isfahan
\texttt{mkoochaki@sci.ui.ac.ir}

December 21, 2021

Abstract

Let \((X,d)\) be a metric space with at least two elements and \((A,p_l)\) be a commutative semisimple Frechet algebra over the scalar field \(\mathbb{C}\). The correlation between the BSE-property of the Frechet algebra \((A,p_l)\) and \(\text{Lip}_d(X,A)\) is assessed. It is found and approved that if \(\text{Lip}_d(X,A)\) is a BSE-Frechet algebra, then so is \(A\). The opposite correlation will hold if \((A,p_l)\) is unital. **Keywords:** BSE-Frechet algebra, Frechet- Lipschitz algebra, Metric space.

1 Introduction and preliminaries

The class of Frechet algebras which is an important class of locally convex algebras has been widely studied by many authors. For a full study of Frechet algebras, one may see (3,5,8). A Frechet space is a metrizable complete locally convex vector space. The topology of Frechet algebra \(A\) can be given by a sequence \((p_n)\) of increasing submultiplicative seminorms. Algebra \(A\) is called without order if \(aA = 0\) concludes that

*Corresponding author

†2020 Mathematics Subject Classification. Primary: 46J05; Secondary: 46J10
Let \(A \) be commutative and without order Frechet algebra and \(\Delta(A) \), be the character space of \(A \) with the Gelfand topology. In this study, \(\Delta(A) \) represents the set of all non-zero multiplicative linear functionals over \(A \). Assume that \(C_b(\Delta(A)) \) is the space consisting of all complex-valued continuous and bounded functions on \(\Delta(A) \).

A linear operator \(T \) on \(A \) is named a multiplier if \(T(xy) = xT(y) \), for all \(x, y \in A \). The set of all multipliers on \(A \) will be expressed as \(M(A) \). The strong operator topology (briefly SOT-topology) on \(M(A) \) is generated by the family of seminorms \(\{p_{x,l}\} \) defined as

\[
p_{x,l}(T) := p_l(T(x))
\]

for all \(x \in A, l \in \mathbb{N} \) and \(T \in M(A) \). If the Frechet algebra \(A \) is semisimple, then the Gelfand map \(\Gamma : A \to \hat{A}, f \mapsto \hat{f} \), is injective, or equivalently, and the following equation holds:

\[
\bigcap_{\varphi \in \Delta(A)} \ker(\varphi) = \{0\}
\]

Note that every semisimple commutative Frechet algebra is without order. As observed in [2], if the Frechet algebra \((A, p_l) \) is semisimple, then

\[
(M(A), SOT) \cong (\hat{M(A)}, \mathcal{T}_p)
\]

Where \(\mathcal{T}_p \) is pointwise topology on \(\hat{M(A)} \).

The Bochner-Schoenberg-Eberlein (BSE) is derived from the famous theorem proved in 1980 by Bochner and Schoenberg for the group of real numbers; [11] and [10]. The researcher in [4], revealed that if \(G \) is any locally compact abelian group, then the group algebra \(L_1(G) \) is a BSE algebra. The researcher in [10], [13], [14] assessed the commutative Banach algebras that meet the Bochner-Schoenberg-Eberlein-type theorem and explained their properties. They are introduced and assessed in [12] the first and second types of BSE algebras. This concept is expanded in [6] and [7].

The researchers are introduced and assessed in [2], the concept of BSE-Frechet algebra.

The big and little Frechet \(\alpha \)-Lipschitz vector-valued algebra of order \(\alpha \), where \(\alpha \in \mathbb{R} \) with \(\alpha > 0 \) was introduced in [9]. The researchers are provided a survey of the similarities and differences between Banach and Frechet algebras include some known results and examples. (See [3]).

That the Lipschitz algebra \(\text{Lip}_\alpha(K, A) \) is a BSE-algebra if and only if \(A \) is a BSE-algebra, where \(K \) is a compact metric space, \(A \) is a commutative unital semisimple Banach algebra, and \(0 < \alpha \leq 1 \) is proved in [11]. In this article, this result is generalized,
for any metric space \((X,d)\) and any commutative semisimple Frechet algebra \((A,p_l)\).
That the \(C_{BSE}(\Delta(\text{Lip}_d(X,A)))\) can be embedded in \(\text{Lip}_d(X,C_{BSE}(\Delta(A)))\) will be proved
in the article first, followed by proving that \(\text{Lip}_d(X,M(A)) \subseteq M(\text{Lip}_d(X,A))\). By
proving that if \(\text{Lip}_d(X,A)\) is a BSE- Frechet algebra, so is \(A\). If \((A,p_l)\) is unital Frechet
algebra and BSE- Frechet algebra, then \(\text{Lip}_d(X,A)\) is so, is assessed in this article.

1 Some basic properties of BSE- Frechet algebra

The basic terminologies and the related information on BSE-Frechet algebras are ex-
tracted from \([2]\) and prove some primary, basic results, and properties related to them.

A bounded complex-valued continuous function \(\sigma\) on \(\Delta(A)\), is named BSE-Frechet
function, if there exists a bounded set \(M\) in \(A\) and a positive real number \(\beta_M\) in a sense
that for every finite complex-number \(c_1, \ldots, c_n\) and the same many \(\varphi_1, \ldots, \varphi_n\) in \(\Delta(A)\) the following
inequality
\[
|\sum_{j=1}^{n} c_j \sigma(\varphi_j)| \leq \beta_M P_M(\sum_{j=1}^{n} c_j \varphi_j)
\]
holds; where \(P_M\) is defined as
\[
P_M(f) := \sup\{|f(x)| : x \in M\} \quad (f \in A^*)
\]
The set of all BSE- functions is expressed by \(C_{BSE}(\Delta(A))\). The BSE- seminorm of
\(\sigma \in C_{BSE}(\Delta(A)), q_l(\sigma)\), is expressed as:
\[
q_l(\sigma) = \sup\{|\sum_{i=1}^{n} c_i \sigma(\varphi_i)| : P_M(\sum_{i=1}^{n} c_i \varphi_i) \leq 1, \varphi_i \in \Delta(A), c_i \in \mathbb{C}, n \in \mathbb{N}\}
\]
where
\[
M_l := \{a \in A : p_l(a) \leq 1\}
\]
It was shown that \((C_{BSE}(\Delta(A)), q_l)\) is a semisimple commutative Frechet subalgebra of
\(C_b(\Delta(A))\). It is easy to prove that
\[
q_l(\sigma) = \inf\{\beta_M | \sum_{j=1}^{n} c_j \sigma(\varphi_j) | \leq \beta_M P_M(\sum_{j=1}^{n} c_j \varphi_j), c_j \in \mathbb{C}, \varphi_j \in \Delta(A)\}
\]
It is obvious that if \(x \in A\) then \(\hat{x} \in C_{BSE}(\Delta(A))\) and \(q_l(\hat{x}) \leq p_l(x)\), where \(\hat{x}(\varphi) = \varphi(x)\)
for all \(\varphi \in \Delta(A)\). The set \(M(A)\) with the strong operator topology, is an unital
commutative locally convex algebra. It was shown that for each $T \in M(A)$ there exists a unique bounded continuous function \hat{T} on $\Delta(A)$ expressed as:

$$\varphi(Tx) = \hat{T}(\varphi)(x),$$

for all $x \in A$ and $\varphi \in \Delta(A)$. By setting $\{\hat{T} : T \in M(A)\}$, the $\widehat{M(A)}$ is yield. A commutative Frechet algebra A is called BSE- Frechet- algebra if it meets the following condition:

$$\widehat{M(A)} = C_{BSE}(\Delta(A)).$$

A bounded net $\{e_\beta\}$ in A is named a bounded Δ- weak approximate identity for A if $\varphi(ae_\beta) \to \varphi(a)$ for all $\varphi \in \Delta(A)$ and $a \in A$, equivalently $\varphi(e_\beta) \to 1$.

Proposition 1. Let (A,p_l) be a commutative semisimple Frechet algebra. Then $\sigma \in C_{BSE}(\Delta(A))$ if and only if there exists a bounded net $\{x_\lambda\}$ in A with

$$\lim \hat{x_\lambda}(\varphi) = \sigma(\varphi)$$

for all $\varphi \in \Delta(A)$.

Theorem 2. Let (A,p_l) be a commutative semisimple Frechet algebra. Then A has a bounded Δ- weak approximate identity if and only if

$$\widehat{M(A)} \subseteq C_{BSE}(\Delta(A)).$$

2 Some basic properties of vector-valued Frechet-Lipschitz algebra

The basic terminologies and the related information on vector-valued Frechet-Lipchitz algebras are reviewed. In the sequel, some primary, basic results, and properties related to them are proved.

Throughout this section, (X,d) is a metric space with at least two elements and (A,p_l) is a commutative semisimple Frechet algebra over the scaler field \mathbb{C}. Let $f : X \to A$ be a function. Set

$$q_{l,A}(f) = \sup_{x \in X} p_l(f(x))$$

and

$$p_{l,A}(f) = \sup_{x \neq y} \frac{p_l(f(x) - f(y))}{d(x,y)}$$
The set of all functions such $f : X \to A$ satisfies in the following conditions:

i) $q_{l,A}(f) < \infty$, for each $l \in \mathbb{N}$;

ii) $p_{l,A}(f) < \infty$, for each $l \in \mathbb{N}$.

is named the vector-valued Fréchet Lipschitz algebra and is expressed by $\text{Lip}_d(X, A)$.

Put

$$ r_{l,A}(f) = q_{l,A}(f) + p_{l,A}(f) \quad (f \in \text{Lip}_d(X, A)) $$

$C_b(X, A)$ is the set of all bounded continuous functions from X into A. Let $f \in C_b(X, A)$. If $f, g \in C_b(X, A)$ and $\lambda \in \mathbb{C}$, define

$$(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (\lambda f)(x) = \lambda f(x) \quad (x \in X)$$

It is obvious that $(C_b(X, A), q_{l,A})$ is a Fréchet space over \mathbb{C}. That $(\text{Lip}_d(X, A), r_{l,A})$ is a Fréchet subalgebra of $C_b(X, A)$ is in Lemma 3.1 proved in [9].

In this article, $f_a : X \to A \quad (a \in A)$ is the constant function on X, where $f_a(x) = a \quad (x \in X)$. It is obvious that these functions belong to $\text{Lip}(X, A)$ and

$$ r_{l,A}(f_a) = q_{l,A}(f_a) = p_{l}(a), $$

for each $a \in A$ and $f \in \text{Lip}_d(X, A)$.

Let (A, p_l) and (B, q_l) be Frechet algebras. The function $\Phi : (A, p_l) \to (B, q_l)$ is called isometric, if

$$ q_l(\Phi(a)) = p_l(a) \quad (a \in A, l \in \mathbb{N}) $$

Let $K_A : A \to \text{Lip}_d(X, A)$ such that $a \mapsto f_a$. Then K_A is a continuous, linear and injective function. Furthermore, $\widehat{K}_A : \Delta(\text{Lip}_d(A)) \to \Delta(A) \cup \{0\}$ is homomorphism and A can be considered as a closed subalgebra of $\text{Lip}_d(X, A)$.

Proposition 3. Let (X, d) be a metric space, (A, p_l) be a commutative Frechet algebra over the scalar field \mathbb{C}. Then $\text{Lip}_d(X, A)$ is a semisimple Frechet algebra if and only if A is so.

Proof. First, Assume that A is semisimple and take $f, g \in \text{Lip}_d(X, A)$ such that $f \neq g$. So there exists $x_0 \in X$ such that $f(x_0) \neq g(x_0)$. Because A is a semisimple algebra, there exists $\varphi \in \Delta(A)$ where

$$ \varphi(f(x_0)) \neq \varphi(g(x_0)). $$
$x_0 \otimes \varphi$ defined by $x_0 \otimes \varphi(f) = \varphi(f(x_0))$; for $f \in \text{Lip}_d(X, A)$. It is obvious that $x_0 \otimes \varphi \in \Delta(\text{Lip}_d(X, A))$ and

$$x_0 \otimes \varphi(f) \neq x_0 \otimes \varphi(g)$$

This implies that $\text{Lip}_d(X, A)$ is semisimple.

Now assume that $\text{Lip}_d(X, A)$ is a semisimple Frechet algebra. Let $a, b \in A$ where $a \neq b$, so $f_a \neq f_b$. Because $\text{Lip}_d(X, A)$ is a semisimple, there exists $\psi \in \Delta(\text{Lip}_d(X, A))$ where $\psi(f_a) \neq \psi(f_b)$. Which yield:

$$\hat{K}_A(\psi)(a) = \psi(K_A(a)) = \psi(f_a) \neq \psi(f_b) = \psi(K_A(b)) = \hat{K}_A(\psi)(b).$$

Consequently $\hat{K}_A(\psi)(a) \neq \hat{K}_A(\psi)(b)$ and $\hat{K}_A(\psi) \in \Delta(A)$. Then $\Delta(A)$ separates the points of A, this implies that A is a semisimple Frechet algebra. \hfill \Box

Proposition 4. Let (X, d) be a metric space, (A, p_l) be a commutative Frechet algebra over the scaler field \mathbb{C}. Then $\text{Lip}_d(X, A)$ is without order if and only if A is so.

Proof. Let A be without order Frechet algebra and Assume that $f \in \text{Lip}_d(X, A)$ be non-zero. So there exists $x_0 \in X$ where $f(x_0) \neq 0$. Because A is without order, there exists $b \in A$ where

$$f(x_0)b \neq 0.$$

Which yield:

$$(ff_b)(x_0) = f(x_0)f_b(x_0) = f(x_0)b \neq 0.$$

So $ff_b \neq 0$, therefore $\text{Lip}_d(X, A)$ is without order.

Conversely, assume that $\text{Lip}_d(X, A)$ be without order and take $a \in A$ where $a \neq 0$, so $f_a \neq 0$. Because $\text{Lip}_d(X, A)$ is without order, there exists $g \in \text{Lip}_d(X, A)$ where $f_ag \neq 0$. This follows that there exists $x_0 \in X$ where $(f_ag)(x_0) \neq 0$, thus $ag(x_0) \neq 0$ and consequently A is without order. \hfill \Box

Lemma 5. Let (A, p_l) be a commutative semisimple Frechet algebra and (X, d) be a metric space. If $\text{Lip}_d(X, A)$ has a bounded $\Delta-$ weak approximate identity, then A has a bounded $\Delta-$ weak approximate identity.

Proof. Assume that $\text{Lip}_d(X, A)$ has a bounded $\Delta-$ weak approximate identity and (f_β) is a bounded $\Delta-$ weak approximate identity for $\text{Lip}_d(X, A)$. By allowing $\varphi \in \Delta(A)$ the following is yield:

$$\lim_{\beta} \varphi(f_\beta(x)) = \lim_{\beta} (x \otimes \varphi)(f_\beta) = 1.$$

because $x \otimes \varphi \in \Delta(\text{Lip}_d(X, A))$, for each $x \in X$ and $\varphi \in \Delta(A)$, thus, the net $(f_\beta(x))$ is a bounded $\Delta-$ weak approximate identity for A. This completes the proof. \hfill \Box
Lemma 6. Let \((A,p_l)\) and \((B,q_l)\) be a commutative Frechet algebra and \((X,d)\) be a metric space. If \(A \cong B\), as two Frechet algebras, then \(\text{Lip}_d(X,A) \cong \text{Lip}_d(X,B)\). These two as Frechet algebras are isometric.

Proof. Assume that \(\Theta : A \rightarrow B\) is an isomorphism map. Define

\[
\tilde{\Theta} : \text{Lip}_d(X,A) \rightarrow \text{Lip}_d(X,B)
\]

Where \(\tilde{\Theta}(f)(x) = \Theta(f(x))\), for all \(x \in X\) and \(f \in \text{Lip}_d(X,A)\). If \(f_1, f_2 \in \text{Lip}_d(X,A)\) and \(f_1 = f_2\), so \(f_1(x) = f_2(x)\) for each \(x \in X\). Thus \(\Theta(f_1(x)) = \Theta(f_2(x))\), then \(\tilde{\Theta}(f_1) = \tilde{\Theta}(f_2)\). This implies that \(\tilde{\Theta}\) is well-defined. At this stage, \(\tilde{\Theta}(f) \in \text{Lip}_d(X,B)\), for each \(f \in \text{Lip}_d(X,A)\) is assessed. For all \(x, y \in X\) with \(x \neq y\) the following is yield:

\[
\frac{q_l(\tilde{\Theta}(f)(x) - \tilde{\Theta}(f)(y))}{d(x,y)} = \frac{q_l(\Theta(f(x)) - \Theta(f(y)))}{d(x,y)} \leq \frac{p_l(f(x) - f(y))}{d(x,y)} \leq Kp_l(f(x) - f(y))
\]

This follows that

\[
p_l,B(\tilde{\Theta}(f)) \leq Kp_l,A(f)
\]

Moreover, for all \(x \in X\) Which yield:

\[
q_l(\tilde{\Theta}(f)(x)) = q_l(\Theta(f(x))) \leq Kp_l(f(x))
\]

This implies that \(q_l,B(\tilde{\Theta}(f)) \leq Kq_l,A(f)\), which \(K\) is an upper bound for \(\Theta\). Therefore \(\tilde{\Theta}(f) \in \text{Lip}_d(X,B)\).

In the sequel, it will be concluded that \(\tilde{\Theta}\) is injective. To that end, take \(f, g \in \text{Lip}_d(X,A)\), such that \(\tilde{\Theta}(f) = \tilde{\Theta}(g)\). So \(\Theta(f(x)) = \Theta(g(x))\), for all \(x \in X\), thus \(f(x) = g(x)\) for all \(x \in X\), because \(\Theta\) is injective. Then \(\tilde{\Theta}\) is injective. It remains to prove that \(\tilde{\Theta}\) is surjective. Assume that \(g \in \text{Lip}_d(X,B)\) and define \(f(x) = \Theta^{-1}(g(x))\), for all \(x \in X\). Which yield:

\[
\frac{p_l(f(x) - f(y))}{d(x,y)} = \frac{p_l(\Theta^{-1}(g(x)) - \Theta^{-1}(g(y)))}{d(x,y)} \leq M\frac{q_l(g(x) - g(y))}{d(x,y)}
\]

This follows that

\[
p_l,A(f) \leq Mp_l,B(g)
\]

In the same way, It will be concluded that \(q_l,A(f) \leq Mq_l,B(g)\), for some \(M > 0\). At the result \(f \in \text{Lip}_d(X,A)\) and \(\tilde{\Theta}(f)(x) = \Theta(f(x)) = \Theta(\Theta^{-1}(g(x))) = g(x)\) and thus \(\tilde{\Theta}(f) = g\). This completes the proof. \(\square\)
Lemma 7. Let \((X, d)\) be a metric space, \((A, p)\) be a commutative Frechet algebra over the scaler field \(\mathbb{C}\). Assume that \(M\) is a bounded set in \(A\), \(x \in X\), \(\varphi \in \Delta(A)\), \(c_1, \ldots, c_n \in \mathbb{C}\) and the same number \(\varphi_1, \ldots, \varphi_n \in \Delta(A)\), then the following is yield:

\[
P_{M'}\left(\sum_{i=1}^{n} c_i (x \otimes \varphi_i)\right) = P_M\left(\sum_{i=1}^{n} c_i \varphi_i\right).
\]

where \(M' = \{K_A(a) | a \in M\}\).

Proof. By allowing \(c_1, \ldots, c_n \in \mathbb{C}\) and the same number \(\varphi_1, \ldots, \varphi_n \in \Delta(A)\), the following is yield:

\[
P_{M'}\left(\sum_{i=1}^{n} c_i (x \otimes \varphi_i)\right) = \sup \left\{ \sum_{i=1}^{n} c_i (x \otimes \varphi_i)(f) \mid f \in M' \right\}
= \sup \left\{ \sum_{i=1}^{n} c_i \varphi_i(f(x)) \mid f(x) \in M \right\}
\leq \sup \left\{ \sum_{i=1}^{n} c_i \varphi_i(a) \mid a \in M \right\}
= P_M\left(\sum_{i=1}^{n} c_i \varphi_i\right).
\]

For the reverse inclusion, which yield:

\[
P_M\left(\sum_{i=1}^{n} c_i \varphi_i\right) = \sup \left\{ \sum_{i=1}^{n} c_i \varphi_i(a) \mid a \in M \right\}
= \sup \left\{ \sum_{i=1}^{n} c_i \varphi_i(f_a(x)) \mid a \in M \right\}
= \sup \left\{ \sum_{i=1}^{n} c_i (x \otimes \varphi_i)(f_a) \mid f_a \in M' \right\}
\leq \sup \left\{ \sum_{i=1}^{n} c_i (x \otimes \varphi_i)(f) \mid f \in M' \right\}
= P_{M'}\left(\sum_{i=1}^{n} c_i (x \otimes \varphi_i)\right)
\]

Consequently,

\[
P_{M'}\left(\sum_{i=1}^{n} c_i (x \otimes \varphi_i)\right) = P_M\left(\sum_{i=1}^{n} c_i \varphi_i\right).
\]

\(\square\)
3 Main results

The structure of the BSE functions on $\Delta(\text{Lip}_d(X, A))$ is characterization and the correlations between the BSE property of A and $\text{Lip}_d(X, A)$ are assessed.

Let $f \in \text{Lip}_d(X, A)$, define $r'_{l,A}(f) = \max\{p_{l,A}(f), q_{l,A}(f)\}$. It is obvious that $r'_{d,A}$ is a seminorm on $\text{Lip}_d(X, A)$. Clearly

\[(\text{Lip}_d(X, A), r_{l,A}) \cong (\text{Lip}_d(X, A), r'_{l,A})\]

Proposition 8. Let (X, d) be a metric space and (A, p_l) be a commutative semisimple Fréchet algebra. Assume that $\text{Lip}_d(X, A)$ is a BSE- Frechet- algebra. Then A is so.

Proof. Because $\text{Lip}_d(X, A)$ is a BSE- algebra, by referring to Theorem 2, $\text{Lip}_d(X, A)$ has a bounded $\Delta-$ weak approximate identity. Lemma 5 and Theorem 2 implies that $\hat{\mathcal{M}}(A) \subseteq \mathcal{C}_{\text{BSE}}(\Delta(\text{Lip}_d(X, A))).$

For the reverse inclusion, take $\sigma \in \mathcal{C}_{\text{BSE}}(\Delta(\text{Lip}_d(X, A)))$. There exist a bounded set M in A and a positive real number β_M where by allowing ψ_1, \ldots, ψ_n of $\Delta(\text{Lip}_d(X, A))$ and the same number of complex numbers c_1, \ldots, c_n, the following is yield:

\[
\left| \sum_{i=1}^{n} c_i \sigma o \hat{\mathcal{K}}_A(\psi_i) \right| = \left| \sum_{i=1}^{n} c_i \sigma(\psi_i o \mathcal{K}_A) \right| \\
\leq \beta_M P_M \left(\sum_{i=1}^{n} c_i(\psi_i o \mathcal{K}_A) \right) \\
\leq \beta_M K P_M' \left(\sum_{i=1}^{n} c_i \psi_i \right)
\]

for some $K > 0$, where $M' = \{K_A(a) | a \in M\}$. It follows that $\sigma o \hat{\mathcal{K}}_A \in \mathcal{C}_{\text{BSE}}(\Delta(\text{Lip}_d(X, A)))$.

By applying the BSE- property of $\text{Lip}_d(X, A)$, there exists $T \in M(\text{Lip}_d(X, A))$ where $\hat{T} = \sigma o \hat{\mathcal{K}}_A$. Now define $T' \in M(A)$ as follows:

\[T'(a) = T(K_A(a))(x_0), \quad (a \in A)\]

where $x_0 \in X$ is an arbitrary member of X. If $a_1, a_2 \in A$;

\[T'(a_1 a_2) = T(K_A(a_1 a_2))(x_0) = T(K_A(a_1)K_A(a_2))(x_0) = T(K_A(a_1))(x_0)K_A(a_2)(x_0) = T'(a_1).a_2\]
Hence $T' \in M(A)$. Let $\varphi \in \Delta(A)$; It is easy to prove that $\hat{K}_A(x_0 \otimes \varphi) = \varphi$ and the following is yield:

$$
\hat{T}'(\varphi) = \frac{\varphi(T'(a))}{\varphi(a)} = \frac{\varphi(T(K_A(a))(x_0))}{\varphi(a)} = \frac{(x_0 \otimes \varphi)(T(K_A(a)))}{\varphi(f_a(x_0))} = \frac{(x_0 \otimes \varphi)(T(K_A(a)))}{(x_0 \otimes \varphi)(K_A(a))} = \hat{T}(x_0 \otimes \varphi) = \sigma\hat{K}_A(x_0 \otimes \varphi) = \sigma(\hat{K}_A(x_0 \otimes \varphi)) = \sigma(\varphi)
$$

Therefore $\hat{T}' = \sigma$ and consequently $C_{BSE}(\Delta(A)) \subseteq \widehat{M}(A)$. Thus A is a Frechet- BSE-algebra.

The correlation between the $C_{BSE}(\Delta(\operatorname{Lip}_d(X,A)))$ and $\operatorname{Lip}_d(X,C_{BSE}(\Delta(A)))$ is assessed as follows:

Theorem 9. Let (X,d) be a metric space, (A,p_l) be a commutative semisimple Frechet algebra. Then $C_{BSE}(\Delta(\operatorname{Lip}_d(X,A)))$ can be embedded in $\operatorname{Lip}_d(X,C_{BSE}(\Delta(A)))$. These two as Frechet algebras are isometric;

Proof. Let

$$
\phi : C_{BSE}(\Delta(\operatorname{Lip}_d(X,A))) \to \operatorname{Lip}_d(X,C_{BSE}(\Delta(A))),
$$

defined by

$$
\phi(\Sigma) = \phi_\Sigma \quad (\Sigma \in C_{BSE}(\Delta(\operatorname{Lip}_d(X,A))),
$$

Where

$$
\phi_\Sigma(x)(\varphi) = \Sigma(x \otimes \varphi), \quad (x \in X, \varphi \in \Delta(A))
$$

Assume that $\Sigma_1, \Sigma_2 \in C_{BSE}(\Delta(\operatorname{Lip}_d(X,A)))$, where $\Sigma_1 = \Sigma_2$. So $\Sigma_1(x \otimes \varphi) = \Sigma_2(x \otimes \varphi)$, at the result $\phi_{\Sigma_1}(x)(\varphi) = \phi_{\Sigma_2}(x)(\varphi)$, for all $x \in X$ and $\varphi \in \Delta(A)$. Then $\phi_{\Sigma_1} = \phi_{\Sigma_2}$ and, therefore, ϕ is well defined. It is obvious that ϕ is
linear. Let $\Sigma_1, \Sigma_2 \in C_{BSE}(\Delta(\text{Lip}_d(X, A)))$, so $\phi(\Sigma_1, \Sigma_2) = \phi_{\Sigma_1, \Sigma_2}$, By allowing $x \in X$ and $\varphi \in \Delta(A)$, the following is yield:

$$
\phi_{\Sigma_1, \Sigma_2}(x)(\varphi) = \Sigma_1(x \otimes \varphi).
$$

Thus $\phi_{\Sigma_1, \Sigma_2}(x) = \phi_{\Sigma_1}(x) \cdot \phi_{\Sigma_2}(x)$, so $\phi_{\Sigma_1, \Sigma_2} = \phi_{\Sigma, \Sigma}$. Then ϕ is homomorphism. First of all, $\phi_{\Sigma}(x) \in C_{BSE}(\Delta(A))$, for each $x \in X$ and $\Sigma \in C_{BSE}(\Delta(\text{Lip}_d(X, A)))$ is assessed. In fact, Since $\Sigma \in C_{BSE}(\Delta(\text{Lip}_d(X, A)))$, so there exists a bounded set M in $\text{Lip}_d(X, A)$ such that for every complex number c_1, \cdots, c_n and the same number $\varphi_1, \cdots, \varphi_n \in \Delta(A)$, we have

$$
P_M\left(\sum_{i=1}^{n} c_i(x \otimes \varphi_i)\right) = \sup\left\{ |\sum_{i=1}^{n} c_i(x \otimes \varphi_i)(f)| : f \in M \right\}
\leq \sup\left\{ |\sum_{i=1}^{n} c_i\varphi_i| : a \in M' \right\}
= P_{M'}\left(\sum_{i=1}^{n} c_i\varphi_i\right).
$$

Where $M' := \hat{x}(M)$. This implies that

$$
|\sum_{i=1}^{n} c_i\phi_{\Sigma}(x)(\varphi_i)| = |\sum_{i=1}^{n} c_i\Sigma(x \otimes \varphi_i)|
\leq q_l(\Sigma)P_M\left(\sum_{i=1}^{n} c_i \otimes \varphi_i\right)
= q_l(\Sigma)P_{M'}\left(\sum_{i=1}^{n} c_i\varphi_i\right).
$$

Hence $\phi_{\Sigma}(x) \in C_{BSE}(\Delta(A))$ and $q_l(\Sigma) \leq q_l(\phi_{\Sigma}(x))$, for each $x \in X$, since $q_l(\Sigma) = \inf\left\{ \beta_M \mid |\sum_{j=1}^{n} c_j \Sigma(\varphi_j)| \leq \beta_M P_M(\sum_{j=1}^{n} c_j \varphi_j) \right\}$. In the other hand

$$
q_l(\phi_{\Sigma}(x)) = \sup\left\{ |\sum_{i=1}^{n} c_i(\phi_{\Sigma}(x))(\varphi_i)| : P_M\left(\sum_{i=1}^{n} c_i\varphi_i\right) \leq 1, \varphi_i \in \Delta(A) \right\}
= \sup\left\{ |\sum_{i=1}^{n} c_i\Sigma(x \otimes \varphi_i)| : P_M\left(\sum_{i=1}^{n} c_i(x \otimes \varphi_i)\right) \leq 1, \varphi_i \in \Delta(A) \right\}
\leq q_l(\Sigma)
$$

11
Therefore
\[q_l(\phi_\Sigma(x)) \leq q_l(\Sigma). \]
Consequently, for all \(x \in X, \Sigma \in C_{BSE}(\Delta(\text{Lip}_d(X, A))) \) and \(l \in \mathbb{N} \), we have
\[q_l(\phi_\Sigma(x)) = q_l(\Sigma). \tag{1} \]
Note that
\[
q_l(\phi_\Sigma(x) - \phi_\Sigma(y)) = \sup \left\{ \left| \sum_{i=1}^n c_i (\phi_\Sigma(x) - \phi_\Sigma(y)) (\varphi_i) \right| : P_{M_l} \left(\sum_{i=1}^n c_i \varphi_i \right) \leq 1, \varphi_i \in \Delta(A) \right\}
\]
which implies that \(\phi_\Sigma \) is isometry. This completes the proof.

Let \(T \in M(A) \). Define
\[q'_l(T) = \sup \{ p_l(T(a)) : a \in A, p_l(a) \leq 1 \}. \]
It is obvious that \(q'_l \) is a seminorm on \(M(A) \). In the following theorem, it will be shown that \(\text{Lip}_\alpha(X, A) \) can be embedded in \(M(\text{Lip}_d(X, A)) \), isometrically as two locally convex algebras which are isometric.
Theorem 10. Let \((X, d)\) be a metric space and \((A, p_t)\) be a commutative semisimple Frechet algebra. Then

\[\text{Lip}_d(X, M(A)) \subseteq M(\text{Lip}_d(X, A)), \]

As two locally convex algebras which are isometric.

Proof. Let

\[\phi : \text{Lip}_d(X, M(A)) \rightarrow M(\text{Lip}_d(X, A)) \]

Where

\[\phi(F) = \phi_F \quad (F \in \text{Lip}_d(X, M(A))). \]

Defined by

\[\phi_F(g) = F \odot g \quad (g \in \text{Lip}_d(X, A)) \]
\[F \odot g(x) = F(x)(g(x)) \quad (x \in X). \]

It will be concluded that \(\phi\) is an isomorphism map. Assume that \(F_1, F_2 \in \text{Lip}_d(X, M(A))\) where \(F_1 = F_2\), so \(F_1(x) = F_2(x)\), for each \(x \in X\). Thus \(F_1(x)(g(x)) = F_2(x)(g(x))\), for all \(g \in \text{Lip}_d(X, A)\), then \(F_1 \odot g(x) = F_2 \odot g(x)\), for all \(x \in X\) and \(g \in \text{Lip}_d(X, A)\). Therefore \(\phi(F_1) = \phi(F_2)\) and so \(\phi\) is well-defined.

1) \(\phi_F\) is a continuous linear multiplier on \(\text{Lip}_\alpha(X, A)\) is assessed in the following:
Assume that \(g_1, g_2 \in \text{Lip}_d(X, M(A))\), so

\[\phi_F(g_1 g_2) = F \odot g_1 g_2. \]

for any \(x \in X\), the following is yield:

\[F \odot g_1 g_2(x) = F(x)(g_1 g_2(x)) \]
\[= F(x)(g_1(x)g_2(x)) \]
\[= g_1(x)F(x)(g_2(x)) \]
\[= g_1(x)F \odot g_2(x) \]

This implies that

\[F \odot g_1 g_2 = g_1. (F \odot g_2). \]

Then \(\phi_F(g_1 g_2) = g_1. \phi_F(g_2)\), for all \(g_1, g_2 \in \text{Lip}_d(X, M(A))\), at the result \(\phi_F\) is a multiplier. It is obvious that for each \(F \in \text{Lip}_d(X, M(A))\), the map \(\phi_F\) is linear. In the
sequel, that φ_F is a continuous map will be proved. Let (g_n) be a sequence in $\text{Lip}_d(X, A)$ converges to $g \in \text{Lip}_d(X, A)$. Then $r_{l,A}(g_n) \to r_{l,A}(g)$, thus $q_{l,A}(g_n) \to q_{l,A}(g)$ and so $p_{l,A}(g_n) \to p_{l,A}(g)$. Which yield:

$$q_{l,A}(F \circ g_n - F \circ g) = \sup \{ p_l(F(x)(g_n(x) - g(x))) : x \in X \} \leq K \sup \{ p_l(g_n(x) - g(x)) : x \in X \} = Kq_{l,A}(g_n - g) \to 0,$$

Which

$$K := q_{l,M(A)}(F) = \sup \left\{ q'_l(F(x)) \mid x \in X \right\}$$

Note that

$$q'_l(F(x)) = \sup \{ p_l(F(x))(a) \mid a \in A, p_l(a) \leq 1 \}.$$

This shows that

$$q_{l,A}(F \circ g_n - F \circ g) \to 0.$$

Also:

$$p_{l,A}(F \circ g_n - F \circ g) = \sup \left\{ \frac{p_l(F(x)(g_n(x) - g(x)) - F(y)(g_n(y) - g(y)))}{d(x, y)} : x \neq y \right\} \leq \sup \left\{ \frac{p_l(F(x)(g_n(x) - g(x)) - (g_n(y) - g(y)))}{d(x, y)} : x \neq y \right\} + \sup \left\{ \frac{p_l(F(x) - F(y))}{d(x, y)} (g_n(y) - g(y)) : x \neq y \right\} \leq q_{l,M(A)}(F)p_{l,A}(g_n - g) + p_{l,M(A)}(F)q_{l,A}(g_n - g) \to 0$$

Which yield:

$$p_{l,A}(F \circ g_n - F \circ g) \to 0.$$

Therefore $r_{l,A}(F \circ g_n - F \circ g) \to 0$. Hence φ_F is a continuous map. This follows that $\varphi_F \in M(\text{Lip}_d(X, A))$.

2) In following, it will be concluded that φ is an isomorphism map.

It is obvious that φ is a linear map. Assume that (F_n) is a sequence in $\text{Lip}_d(X, M(A))$ which converges to some $F \in \text{Lip}_d(X, M(A))$, so $p_{l,M(A)}(F_n - F) \to 0$ and $q_{l,M(A)}(F_n - F) \to 0$. yielding the following:

$$q'_l(\phi(F_n) - \phi(F)) = \sup \{ r_{\alpha,A}(F_n \circ g - F \circ g) : g \in \text{Lip}_d(X, A) \}$$
Hence
\[q_{t,A}(F_n \circ g - F \circ g) = \sup \{ p_t((F_n(x) - F(x))g(x)) : x \in X \} \leq \sup_s \sup \{ p_t((F_n - F)(x)(a)) : a \in A, x \in X \} = \sup \{ q'_t((F_n - F)(x)) : x \in X \} = q_{t,M(A)}(F_n - F) \to 0 \]

Thus
\[q_{t,A}(F_n \circ g - F \circ g) \to 0. \]

Moreover
\[p_{t,A}(F_n \circ g - F \circ g) = \sup \{ \frac{p_t((F_n - F)(x)(g(x)) - ((F_n - F)(y)(g(y))))}{d(x,y)} : x \neq y \} \leq \sup \{ \frac{p_t((F_n - F)(x) - (F_n - F)(y))(g(x))}{d(x,y)} : x \neq y \} + \sup \{ \frac{(p_t(F_n - F)(y))(g(x) - g(y))}{d(x,y)} : x \neq y \} \leq p_{t,M(A)}(F_n - F).q_{t,A}(g) + q_{t,M(A)}(F_n - F).p_{t,A}(g) \to 0, \]
and so
\[p_{t,A}(F_n \circ g - F \circ g) \to 0. \]

It follows that \(r_{t,A}(\phi_{F_n}(g) - \phi_F(g)) \to 0 \), for all \(g \in \text{Lip}_d(X,A) \). Consequently \(q''_{t}(\phi(F_n) - \phi(F)) \to 0 \). Therefore \(\phi \) is a continuous map.

In this stage, that \(\phi \) is injective is assessed. Assume that \(F \in \text{Lip}_d(X,M(A)) \) where \(\phi_F = \phi(F) = 0 \). If \(F \neq 0 \), then there exists \(x_0 \in X \) where \(F(x_0) \neq 0 \), so there exists \(a_0 \in A \) where \((F(x_0))(a_0) \neq 0 \). Put \(g = f_{a_0} \), thus \(g \in \text{Lip}_d(X,A) \) and
\[F \circ g(x_0) = F(x_0)(g(x_0)) = (F(x_0))(a_0) \neq 0 \]
i.e.
\[\phi_F(g)(x_0) = F \circ g(x_0) \neq 0 \]
This is a contradiction. Therefore \(\phi \) is injective.

At this stage, based on the established prerequisite the primary Theorem, is expressed as follows:
Theorem 11. Let \((X,d)\) be a metric space and \((A,p)\) be a commutative semisimple Frechet algebra. Then \(\text{Lip}_d(X,A)\) is a Frechet-BSE-algebra if and only if \(A\) is a Frechet-BSE algebra. Then

1) If \(\text{Lip}_d(X,A)\) is a Frechet-BSE-algebra, then \(A\) is a Frechet-BSE-algebra.
2) If \(A\) is unital and Frechet-BSE-algebra, then \(\text{Lip}_d(X,A)\) is a Frechet-BSE-algebra.

Proof. 1) If \(\text{Lip}_d(X,A)\) is a Frechet-BSE-algebra, then by Proposition 8, \(A\) is a Frechet-BSE-algebra.

2) Assume that \(A\) is a BSE-algebra. Since \(A\) is semisimple, then by applying Proposition 3, \(\text{Lip}_d(X,A)\) is semisimple. By applying Proposition 8 imply that

\[
(M(\text{Lip}_d(X,A)) \subseteq C_{\text{BSE}}(\Delta(\text{Lip}_d(X,A))).
\]

For the reverse inclusion, according to Theorem 9 and Theorem 10, the following is yield:

\[
C_{\text{BSE}}(\Delta(\text{Lip}_d(X,A))) \subseteq \text{Lip}_d(X,C_{\text{BSE}}(\Delta(A)))
\]

\[
\cong \text{Lip}_d(X,\hat{M}(A))
\]

\[
= \text{Lip}_d(X,M(A))
\]

\[
\subseteq M(\text{Lip}_d(X,A))
\]

\[
\cong (M(\text{Lip}_d(X,A))
\]

Thus

\[
C_{\text{BSE}}(\Delta(\text{Lip}_d(X,A))) \cong (M(\text{Lip}_d(X,A))).
\]

\[\square\]

Because every commutative \(C^*\)-Banach algebra is BSE algebra, [13], so by using Theorem [11] the following example is immediate:

Example 1. Let \((X,d)\) be a metric space and \(A\) be a commutative \(C^*\)-Banach algebra. Then \(\text{Lip}_d(X,A)\) is a BSE-Frechet algebra

References

[1] F. Abtahi, Z. Kamali, M. Toutounchi, The Bochner-Schoenberg-Eberline type property for vector-valued Lipschitz algebras. J. Math. Anal. Appl. (2019).
[2] M. Amiri and A. Rejali, The Bochner · Schoenberg · Eberline property for commutative Frechet algebras. arXiv:2012.06388 [math.FA].

[3] Z. Alimohammadi and A. Rejali, Frechet algebras in abstract harmonic analysis. arXiv: 1811.10981v1 [math.FA] 27 Nov (2018)

[4] W. F. Eberlein, Characterizations of Fourier- Stieltjes transforms, Duke Math. J., 22(1955), 465- 468.

[5] H. Goldmann, Uniform Frechet Algebras, North- Holland Mathematics Studies, 162. Northholland, Amsterdam- New York, 1990.

[6] J. Inoue and S-E. Takahasi, On characterization of image of the Gelfand transform of commutative Banach algebras, Math. Nachr, 280 (2007), 105- 129.

[7] E. Kaniuth and A. Ulger, The Boghner · Schoenberg · Eberline property for commutative Banach algebras, especially Fourier- Stieltjes algebras, Trans. Amer. Math. Soc., 362(2010), 4331- 4356.

[8] A. Ya. Helemskii, The homology of Banach and topological algebras (Moscow University Press, English transl: Kluwer Academic Publishers, Dordrecht 1989).

[9] A. Ranjbari, A. Rejali, Frechet α -Lipschitz vector- valued operator algebra, U.P.B. Sci. Bull., series A, Vol 80, Iss.4,(2018), 141-152

[10] I.J. Schoenberg, A remark on the preceding note by Boghner, Bull.Amer Math. Soc., 40(1934),277-278.

[11] S. Bochner, A theorem on Fourier- Stieltjes integrals, Bull.Amer Math. Soc., 40(1934),271-276.

[12] S.E.Takahasi and O.Hatori, Commutative Banach algebras Which satisfy a Boghner- Schonberg- Eberlein- type theorem, Proc. Amer. Math. Soc., 110(1990), 149- 158.

[13] S.E.Takahasi and O.Hatori, Commutative Banach algebras and BSE- inequalities, Math. Japonica, 37(1992), 47- 52.

[14] S.E.Takahasi and O.Hatori and K. Tanahashi, Commutative Banach algebras and BSE- norm, Math. Japonica, 46(1997), 59- 80.