SUPPLEMENTAL INFORMATION

Base-Editing-Mediated Artificial Evolution of OsALS1 in planta to Develop Novel Herbicide-Tolerant Rice Germplasms

Yongjie Kuang, Shaofang Li, Bin Ren, Fang Yan, Carl Spetz, Xiangju Li, Xueping Zhou & Huanbin Zhou

CONTENTS

Supplemental Figure 1. Gene expression of OsALS1, OsALS2 and OsALS3.
Supplemental Figure 2. The genomic DNA sequence and sgRNA-targeting sites of OsALS1 in Kitaake.
Supplemental Figure 3. Nucleotide changes of the endogenous OsALS1 gene in rice cells introduced by BEMGE.
Supplemental Figure 4. Evolved OsALS1 variant carrying point mutations at A152/A154/P171 sites identified in BS-tolerant plants from particle bombardment transformation.
Supplemental Figure 5. BS-tolerance assay of wild-type Kitaake seeds.
Supplemental Figure 6. Inheritance and BS-tolerance assay of OsALS1-edited plants.
Supplemental Figure 7. Potential off-targets of rBE9/sgRNA19 in the rice genome.
Supplemental Table 1. List of oligonucleotides in this study.

METHODS

REFERENCES
Supplemental Figure 1. Gene Expression of *OsALS1*, *OsALS2* and *OsALS3*.
(A) Boxplot showing gene expression level of *OsALS1*, *OsALS2* and *OsALS3* in 9 tissues/284 experiments from Rice Expression Database (http://expression.ic4r.org). (B) RT-PCR Analysis of *OsALS1*, *OsALS2* and *OsALS3* in Kitaake. Genomic DNA was used as a control for sample quality and this experiment was repeated three times with the same results.
Supplemental Figure 2. The Genomic DNA Sequence and sgRNA-Targeting Sites of OsALS1 in Kitaake.

ATGGCTACGACCGCCGCGCCGCGCCGCGCCGACCTTGTCCGCCGCCGACGGCCAAGACCGGCCGTAAGAACCACCAGCGACACCACGTCCTTCCCGCTCCAGGCCGGGGTGTTGGGGACGCCTTGCCACCTCGCCCGGCAAGCCCAGGGCCGTGGGGCCGGCCGAGCCCCGCAAGGGCGCGGACATCCTCGTGGAGGCGCTGGAGCGGTGCGGCGTCAGCGACGTGTTCGCCTACCCGGGCGGCACGTCCATGGAGATCCACCAGGCGCTGACGCGCTCCCCGGTCATCACCAACCACCTCTCCGCCACGAGCAGGGCGAGGCGTTCGCGGCGTCCGGGTACGCGCGCGCGTCCGGCGCGTCGGGGTCTGCGTCGCCACCTCCGGCCCCGGGGCAACCACTCGTGTCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCCATCACGGGCCAGGTCCCCCGCCGCATGATCGGCACCGACGCCTTCCAGGAGACGCCCATAGTCGAGGTCACCCGCATCCATCACCAAGCACAATTACCTTGTCCTTGATGTGGAGGACATCCCCCGCGTCATAAGGAAGCCTTCTTCCTCGCGTCCTCGGGCCGTCCTGGCCCGGTGCTGGTCGACATCCCAAGGACATCCAGCAGCAGATGGCTGTGCCAGTCTGGGACACCTCGATGAATCTACGGGGTACATTGCACGCCTGCCCAAGCCACCCGCGACAGAATTGCTTGAGCAGGTTTGGCGTCTGGTTGGCGAGTCACGGCGCCCGATTCTCTATGCGCCGGTGTGGTCTCTCTGACATCTGTGTAATTCCGCAACCAGCGAGATGTTAAGCTTGCTTTACAGGGCTTGAATGCTCTGCTAGACCAGAGCACAACAAAGACAAGTGTGATTGCTTGTGACAGGGAAAATTGAGGCTTTTGTACGCCAGTACATTCCACCCCTGGTACGCGCGCGCGCAGCAGCAGCGGTTTTTTTGATCAGCGCTGCCGCGGCGCGCAGTGGCTGTCTTCGGCTGGTCTGGGCGCAATGGGATTTGGGCTGCCTGCTGCAGCTGGTGCTTCTGTGGCTAACCCAGGTGTCACAGTTGTTGATATTGATGGGGATGGTACCTTCATGAACATTCAGGAGTTGGCATTGATCCGCATTGAGAACCTCCCGGTGAGGTGATGGTGTTGAACACCAACATTTGGGTATGGTTGTGCAATGGGAGGATAGTTTTACAAGGCAAATAGGGCGCATACATACTTGGGCAACCCAGAATGTGAGAGCGAGATATATCCAGATTTTGTGACTATTGCTAAAGGGTTCAATATTCCTGCAGTCCGTGTAACAAAGAAGAGTGAAGTCCGTGCCGCCATCAAGAAGATGCTCGAGACCCCAGGGCTACTTGTTGGATATCATCGTCCCACACCAGGAGCATGTGCTGCCTATGATCCCAAGTGAGGGGCGCATTCAAGGACATGATCCTGGATGGTGATGGCAGGACTATGTATTAA
Supplemental Figure 3. Nucleotide Changes of the Endogenous OsALS1 Gene in Rice Cells Introduced by BEMGE.

(A) Graphs of transition and transversion mutations in the target region of OsALS1 (261-666 bp) corresponding to sgRNA pool No. 2. sgRNA-binding regions are shown in different color, and sgRNA-unbinding regions are in black. Normalized reads were calculated as reads per million. (B) Summary of sgRNA numbers in transgenic callus lines introduced by Agrobacterium- and particle bombardment-mediated transformation. A total of 100 independent transgenic rice calli line were examined by Sanger sequencing. (C-E) Representative Sanger sequencing chromatograms of detected sgRNAs and nucleotide changes of OsALS1 in independent rice callus line #3 (C), line #16 (D) and line #13 (E) generated by Agrobacterium-mediated transformation. (F-G) Representative Sanger sequencing chromatograms of detected nucleotide changes of OsALS1 in independent rice callus line #7 (F) and line #34 (G) generated by particle bombardment-mediated transformation. In (C-G), the sgRNA transgenes and the nucleotide changes in target region of OsALS1 are underlined in the sequencing chromatograms.
Supplemental Figure 4. Evolved OsALS1 variant carrying point mutations at A152/A154/P171 sites identified in BS-tolerant plants from particle bombardment-mediated transformation.

The PAM sequences, the target sequences, the candidate bases in the putative editing window and the detected nucleotide changes/the corresponding amino acids are highlighted in green, bold, red and blue, respectively. The nucleotide changes are underlined in the sequencing chromatograms.
Supplemental Figure 5. BS-Tolerance Assay of wild-type Kitaake Seeds.
Wild-type Kitaake seeds were germinated in 1/2 MS cylinders complemented with 0, 0.1, 0.4, 0.6, 1 and 10 μM of BS, samples were photographed 14 days after BS treatment.
Supplemental Figure 6. Inheritance and BS-Tolerance Assay of OsALS1-Edited Plants.
(A) Germination assay of OsALS1-edited seeds in 1/2 MS cylinders with 0.6 μM of BS. Homozygous T2 seeds of P171L and P171S were used and the emergence of hypocotyl and roots was considered as tolerance. (B) The genotype of T0 line #9 and representatives of its T1 offspring. (C) Identification of transgene-free OsALS1(R190H) plants in T1 population. The presence and absence of individual genes were detected by PCR-amplification with gene-specific primers.
Supplemental Figure 7. Potential off-targets of rBE9/sgRNA19 in the rice genome.
The PAM sequences and the mismatches to the target sequence in the potential off-target region
are highlighted in green and red, respectively. The frequency for each off-target site is presented in
the columns to the right.
Supplemental Table 1. List of Oligonucleotides in this Study.

Primer name (5’ - 3’)	Primer name	Primer sequence (5’ - 3’)	Used for
ccdB-F1		ACCCGCGCGCTGTCGCTTGTGAGAGACCATTGCCGGCCATGAGG	inserting the ccdB-expression cassette into pENTR4:sgRNA8
ccdB-R1		CTTGCTATTTTCTAGCTCAAACTGAGACCCTGGCACCTGCAGACTGGC	
Array-F1		CACATGCCCAGCTAATCCGAGCAACTTATAAACCCGCCC GTGTGTCGCTTGTGTCGGC	PCR-amplifying each sgRNA pool
Array-R1		ACTCGGTGCTTTTCTAGTTGACAGTTGACTAGCTCTATTTAAACCTTGCTATTTCTAGCTTGAAG	
OsALS1-F1		CCACACGATCCCGGAGTGA	detecting nucleotide changes of OsALS1 gene
OsALS1-R1		TACCATGCAAGCAGCATCAAAC	
Oligo1		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	construction of sgRNA pool No.1
Oligo2		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	
Oligo3		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	
Oligo4		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	
Oligo5		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	
Oligo6		CCCCGCGCGCTGCTGCTTGTGCTTAGCCGCCGCGGGCCTTTTAAGAGCTAGAAATAGCAAGTTAAATAAG	
Oligo	Sequence	construction of sgRNA pool No.2	
---------	--	---------------------------------	
Oligo7	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo8	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo9	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo10	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo11	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo12	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo13	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo14	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo15	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo16	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo17	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo18	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo19	CCCGCGCGCTGTCGCTTTGTTGGCCGCGCTCCCCGCGAGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAG		
Oligo	Sequence	construction of sgRNA pool No.3	
---------	--	----------------------------------	
Oligo20	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo21	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo22	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo23	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo24	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo25	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo26	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo27	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo28	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo29	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo30	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo31	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo32	CCCGCAGCTGGATCGGCAACCCGACCTCCCGGTTTT AGAGCTAGGAATAGCAAGTTAAAATAAG		
Oligo33	CCCGCCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo34	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo35	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo36	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo37	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo38	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo39	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo40	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo41	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo42	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo43	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo44	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo45	CCCGCGCGCTGCGCTTGTGCGAGATCTGTGAGGATTTTAGAGCTAGAAATGCAAGTCAGTTAAATAAG		
Oligo	Sequence	Notes	
--------	--	--	
Oligo46	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGTTCTGGTTTTA GAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo47	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo48	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo49	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo50	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo51	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo52	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo53	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo54	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo55	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo56	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo57	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		
Oligo58	`CCCGCGCGCTGCTGCTTTGTGCTGCTGACGTGGTCTTCGATTAGTTAATTGAGTTTT AGAGCTAGAAATAGCAAGTTAAAAATAAG`		

construction of sgRNA pool No.6
Oligo59	CCCGCGCGCTGCTGGCTTGTATCCAAACAGTATGGCCCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG	
Oligo60	CCCGCGCGCTGCTGGCTTGTATGGCTCTGCTGGTTTTAAGAGCTAGAAATAGCAAGTTAAAATAAG	
Oligo61	CCCGCGCGCTGCTGGCTTGTATGGCTGCTGGTTTTAAGAGCTAGAAATAGCAAGTTAAAATAAG	
Oligo62	CCCGCGCGCTGCTGGCTTGTATGGCTGCTGGTTTTAAGAGCTAGAAATAGCAAGTTAAAATAAG	
Oligo63	CCCGCGCGCTGCTGGCTTGTATGGCTGCTGGTTTTAAGAGCTAGAAATAGCAAGTTAAAATAAG	
OsALS2-F1	CAAGGACATCCAGCAGCAGA	semi-quantitative RT-PCR analysis of OsALS2
OsALS2-R1	GAAGTTCCCGATGCCCATGA	
OsALS3-F1	GATGCATGGCAGCTGTGTACG	semi-quantitative RT-PCR analysis of OsALS3
OsALS3-R1	TTGCCTGGTGTGGTTCCAG	
OsActin-F1	GCGTGAGACAAAATTTCTTCAACCG	semi-quantitative RT-PCR analysis as the internal control
OsActin-R1	TCTGTACCCCTCATCAGGCATC	
Hyg-F1	CGGAAGTGCTTGACATTG	PCR-amplifying Hyg gene in OsALS1-editing plants
Hyg-R1	GACCTCGATATTGGAATCC	
Cas9-F1	GGTAATGAACACTCGCTCTGC	PCR-amplifying Cas9 gene in OsALS1-editing plants
Cas9-R1	TGCCGTCAAGAATCTCCTTTG	
U6p-F3	CTGTGATGGGCTGGATG	PCR-amplifying sgRNA cassette in

14
Sequence 1	Sequence 2	Description
NosT-g10-R1	CGTTATTTATGAGATGGGTTT	*OsALS1*-editing plants
U6p-OsALS1-F1	GAGGCAGGGAGGAACAGTTTAG	Deep-sequencing of sgRNAs in transgenic calli obtained by *A. tumefaciens*-mediated transformation
NosT-OsALS1-R1	CGCCAGTGTGATGGATATCTG	Deep-sequencing of sgRNAs in transgenic calli obtained by gene gun bombardment
U6p-OsALS1-F2	GAGAGGCGGGAGGAACAGT	Deep-sequencing of sgRNAs in transgenic calli obtained by gene gun bombardment
NosT-OsALS1-R2	TCTGCAGAAATTGCCCCTTCG	Deep-sequencing of the target region of *OsALS1* in transgenic calli obtained by *A. tumefaciens*-mediated transformation
OsALS1-DS-F1	CGACGTGTTCTCGCCTACC	Deep-sequencing of the target region of *OsALS1* in transgenic calli obtained by *A. tumefaciens*-mediated transformation
OsALS1-DS-R1	GCCATCTGCTGCTGGAT	Deep-sequencing of the target region of *OsALS1* in transgenic calli obtained by *A. tumefaciens*-mediated transformation
OsALS1-DS-F2	TGGAGCGGTGCGGCCGTCA	Deep-sequencing of the target region of *OsALS1* in transgenic calli obtained by *A. tumefaciens*-mediated transformation
OsALS1-DS-R2	GCCAGGACGGCCCGAGGAC	Deep-sequencing of the target region of *OsALS1* in transgenic calli obtained by *A. tumefaciens*-mediated transformation
OsALS1-off1-F1	GAGCCGCTACAAGCGAGGT	Off-target detection of the target site sgRNA19
OsALS1-off1-R1	CGGGAGATGTATCCCGCA	Off-target detection of the target site sgRNA19
OsALS1-off2-F1	CGCCGCTAAGCTGCCCCAACCG	Off-target detection of the target site sgRNA19
OsALS1-off2-R1	CGACCCGTTGGACGCGGAGGAAGAA	Off-target detection of the target site sgRNA19
METHODS

Rice Cultivars and Growth Conditions

The *Geng* rice cultivar Kitaake and Nangeng 46 were used in this study. Both rice varieties were kept in our lab. Wild-type and *OsALS1*-edited plants were grown in a growth chamber under short-day conditions (10 h light at 30°C / 14 h dark at 25°C) or in the greenhouse under natural conditions in Beijing.

Agrobacterium tumefaciens-Mediated Rice Transformation

Agrobacterium-mediated rice transformation was carried out with immature embryo of rice seed following a protocol mentioned previously (Hiei and Komari, 2008) with minor modifications. Briefly, each rBEs/sgRNAs pool was individually transferred into *A. tumefaciens* strain EHA105 by electroporation, all *Agrobacterium* cells were scraped off the plates, collected in MSD liquid medium, adjusted the final OD_{600} to 0.1, and then used to infect 14-day-old rice calli. After two rounds of Hygromycin (Roche) selection on MSD plates, the resistant calli were screened for herbicide resistance with 0.4 μM Bispyribac-sodium (Sigma) on MSD plates in the next 4 weeks. Rice plants were further generated from independent herbicide-resistant callus lines.

Particle Bombardment-Mediated Rice Transformation

Gold particle preparation and plasmid DNA delivery was carried out following a protocol (Christou, 1997) with minor modifications. Briefly, 0.75 mg of gold particle was coated with 4 μg of plasmids of each rBEs/sgRNAs pool and used for 4 shots of particle bombardments by the Biolistic PDS-1000/He Particle Delivery System (Bio-Rad). Each plate of rice calli was first bombarded with a 1,100 psi rupture disk at 10-cm distance down from the stopping screen, and it was repeated with a 650 psi rupture disk at 6-cm distance. After two rounds of Hygromycin (Roche) selection on MSD plates, the resistant calli were screened for herbicide resistance with 0.4 μM Bispyribac-sodium (Sigma) on MSD plates in the next 4 weeks. Rice plants were generated from independent herbicide-resistant callus lines finally.
RNA Extraction and RT-PCR Analysis
Total RNA was extracted from leaves of each independent rice line with the TRIzol™ Reagent (Invitrogen) and 1 μg of RNA from each sample was used as template to synthesize the first-strand cDNA using the PrimeScript™ RT Reagent Kit with gDNA Eraser (Takara Bio) following the manufacturer’s instructions. RT-PCR was carried out with gene specific primers (Supplemental Table 1) with varying numbers of amplification cycles (25, 30, 35) and OsActin as an internal control. These experiments were repeated three times.

Genomic DNA Extraction and Genotyping
Genomic DNA was extracted from calli and rice leaves using Plant Genomic DNA Kit (TIANGEN) as described by the manufacturer, and used as the template to PCR amplify the corresponding target region of OsALS1, the transgenes Cas9, Hyg, sgRNA or OsALS1 mutant alleles with I5 high-fidelity DNA polymerase (MCLAB) and specific primers (Supplemental Table 1). Amplicons were gel-purified and subjected to Sanger sequencing directly. For low quality of sequencing results, the PCR products were further cloned into the pEASY-Blunt cloning vector (TransGen Biotech), and a number of colonies identified with inserts were sequenced.

Herbicide Tolerance Assay
Rice calli of wild-type Kitaake were cultured on MSD plates containing a concentration gradient of bispyribac-sodium (Sigma) at 0, 0.1, 0.25, 0.4, 0.52 and 1 μM, respectively, phenotypes were then recorded after 28 days. Rice seeds were germinated in 1/2 MS cylinders containing a concentration gradient of bispyribac-sodium (Sigma) at 0, 0.1, 0.4, 0.6, 1 and 10 μM, respectively, phenotypes were then recorded after 14 days. Three-week-old rice seedlings were sprayed with bispyribac-sodium suspension concentrate (Mefront) at 16x, 32x, 48x (x = 26.25 g a.i./ha) using spray tower at 0.3 MPa pressure, phenotypes were then recorded after 21-30 days of herbicide applications, wild-type plants were included as the control. These experiments were repeated three times.
REFERENCES

Christou, P. (1997). Rice transformation: bombardment. Plant Mol. Biol. 35:197-203.

Hiei, Y., and Komari, T. (2008). *Agrobacterium*-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3:824-834.