THE LOCAL EXTERIOR SQUARE AND ASAI L-FUNCTIONS FOR $GL(n)$ IN ODD CHARACTERISTIC

YEONGSEONG JO

ABSTRACT. Let F be a non-archimedean local field of odd characteristic $p > 0$. In this paper, we consider local exterior square L-functions $L(s, \pi, \wedge^2)$, Bump-Friedberg L-functions $L(s, \pi, BF)$, and Asai L-functions $L(s, \pi, As)$ of an irreducible admissible representation π of $GL_m(F)$. In particular, we establish that those L-functions, via the theory of integral representations, are equal to their corresponding Artin L-functions $L(s, \wedge^2(\phi(\pi)))$, $L(s+1/2, \phi(\pi))L(2s, \wedge^2(\phi(\pi)))$, and $L(s, As(\phi(\pi)))$ of the associated Langlands parameter $\phi(\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.

1. INTRODUCTION

Let F be a non-archimedean local field of positive characteristic $p \neq 2$. Let π be an irreducible admissible representation of $GL_m(F)$, where m is a positive integer. The local Langlands correspondence provides a bijection between the set of equivalence classes of irreducible admissible (complex-valued) representations of $GL_m(F)$ and the set of equivalence classes of m-dimensional Weil-Deligne representations of Weil-Deligne group W_F of F. Let r denote either the exterior square representation $\wedge^2 : GL_m(\mathbb{C}) \rightarrow GL_{m(m-1)/2}(\mathbb{C})$ or the Asai representation (the twisted tensor induction) $As : GL_m(\mathbb{C}) \rightarrow GL_{m^2}(\mathbb{C})$ (Cf. [2, §2.1], [43, §1.2]) of the Langlands dual group $GL_m(\mathbb{C})$ of $GL_m(F)$. Let $L(s, (r \circ \phi)(\pi))$, $s \in \mathbb{C}$ be the Artin local L-function defined by Deligne and Langlands [45], where $\phi(\pi) : W_F \rightarrow GL_m(\mathbb{C})$ is the Weil-Deligne representation corresponding to the local Langlands correspondence. In this paper, we address that in the cases of exterior square, Bump-Friedberg, and Asai local L-functions, L-factors are compatible with the local Langlands correspondence, and establish a series of equalities of local L-functions:

- (Jacquet-Shalika cases, Theorem 3.8) $L(s, \pi, \wedge^2) = L(s, \wedge^2(\phi(\pi)))$;
- (Bump-Friedberg cases, Theorem 4.6) $L(s, \pi, BF) = L(s + 1/2, \phi(\pi))L(2s, \wedge^2(\phi(\pi)))$;
- (Flicker cases, Theorem 4.7) $L(s, \pi, As) = L(s, As(\phi(\pi)))$,

where L-factors on the left hand sides are defined by the theory of integral representations in positive characteristic.

In late 1980’s, global Zeta integrals for (partial) Asai L-functions for GL_m appeared in the paper by Flicker [13, 14]. Around that time, Jacquet and Shalika [27] and Bump and Friedberg [5] independently constructed two different integral representations for an (incomplete) exterior square L-function associated to a cuspidal automorphic representation on GL_m over a global field. Recently there has been renowned interest in the local theory of Asai and exterior square L-functions via Rankin-Selberg methods. In characteristic 0, the identities were shown for Jacquet-Shalika integrals by the author [29], and Bump-Friedberg integrals [39] and Flicker integrals [36, 37] by Matringe. As a matter of fact, these results improve discrete series cases of Kewat and Raghunathan [34] for Jacquet-Shalika integrals and Anandavardhanan and Rajan [2] for Flicker integrals. In the
positive characteristic $p > 0$, Artin L-factors $L(s, \wedge^2(\phi(\pi)))$ and $L(s, As(\phi(\pi)))$ coincide with the corresponding ones $L(s, \pi, \wedge^2)$ and $L(s, \pi, As)$ via the Langlands-Shahidi method by a sequence of work of Henniart and Lomelí [21–23]. Similar problems have been worked out by Henniart [20] in the characteristic zero cases.

The method to prove the matching is developed by Cogdell and Piatetski-Shapiro [11] in the framework of local L-functions of pairs of irreducible generic representations (π_1, π_2). The computation of local Rankin-Selberg L-functions is boiled down to decomposing it as the product of what is called the exceptional L-functions (in the sense of [11]) $L_{ex}(s, \pi_1^{(k_1)} \times \pi_2^{(k_2)})$ for pairs of Bernstein-Zelevinsky’s derivatives $(\pi_1^{(k_1)}, \pi_2^{(k_2)})$. The “derivative” in the sense of Bernstein-Zelevinsky $\pi^{(k)}$ is given by representations of smaller groups $GL_{m-k}(F)$. The advantage of adapting such derivatives enables us to proceed it by induction on the rank $m-k$ of general linear groups $GL_{m-k}(F)$.

Each pole of exceptional L-functions, which we often refer to “exceptional poles”, is astonishingly characterized by local distinctness or existence of certain models. Sooner and later, the classification of irreducible generic distinguished representations attains its own merit and it is widely explored in various work. Indeed, topics of the classification are brought to light for $(S_{2n}(F), \Theta)$-distinguished representations (Shalika models) in [40], for $H_m(F)$-distinguished representation (Linear / Friedberg-Jacquet models) in [39], for $GL_m(F)$-distinguished representations (Flicker-Rallis models) in [37] by Matringe, and for $(GL_m(F), \Theta)$-distinguished representations (Bump-Ginzburg models) in [32] by Kaplan. In particular, the part of Theorems is highlighted as, so to speak, “the hereditary property of models” motivated from the classification of irreducible admissible generic representations of $GL_m(F)$ (Whittaker models) due to Rodier [42, P. 427].

When we combine these two ingredients, the factorization of local L-functions and the classification of distinguished representations, we are guided to obtain major applications, the inductive relation of local L-functions for irreducible generic representations $\pi = \text{Ind}_Q^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ (Corollary 2.14):

\begin{equation}
L(s, \pi, \wedge^2) = \prod_{1 \leq k \leq t} L(s, \Delta_k, \wedge^2) \prod_{1 \leq i < j \leq t} L(s, \Delta_i \times \Delta_j),
\end{equation}

and the weak multiplicativity of γ-factors for parabolically normalized induced (not necessarily irreducible) representations $\pi = \text{Ind}_Q^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ (Theorem 2.12):

\begin{equation}
\gamma(s, \pi, \wedge^2, \psi) \sim \prod_{1 \leq k \leq t} \gamma(s, \Delta_k, \wedge^2, \psi) \prod_{1 \leq i < j \leq t} \gamma(s, \Delta_i \times \Delta_j, \psi),
\end{equation}

where \sim means the equality up to a unit in $\mathbb{C}[q^{\pm}]$ and Δ_i‘s are discrete series representations.

Building upon (1.1), we can incorporate the Langlands classification of irreducible admissible representations in terms of discrete series ones into the theory of local L-functions. In turn, (1.2) allows us to compute local L-functions further in accordance with the Bernstein-Zelevinsky classification of discrete series representations in terms of irreducible supercuspidal ones. As a consequence, we express all exterior square L-factors for irreducible admissible representations in terms of L-factors for irreducible supercuspidal ones in a purely local mean. This comes down to reducing our main questions to all irreducible supercuspidal representations, which are eventually served as building blocks.

We emphasize that the third identity in Flicker cases is not new and it can be found in the Appendix A of [1]. However, we discovered that our technique seems (at least to us) to carry out uniformly to other L-function for GL_m. As an application of our approach, the main result of [1] immediately implies the agreement of local Asai L-factors for irreducible supercuspidal representations, which is sufficient to extend it to all irreducible admissible representations, reflecting on the local Langlands correspondence. At this point, unlike [1, Appendix A], additional globalizations are not required to generalize the equality unconditionally. In the course of following the
direction taken by [1, Appendix A], we encounter a few stumbling blocks. In contrast to characteristic 0 cases, we could not find a good way of adjusting the globalization of discrete series representations in Gan-Lomelí [16, Proposition 8.2] to our circumstance. As seen in several others work [2, 31, 34, 46], there might be no guarantee that the different places \(v_1 \) and \(v_2 \) are co-prime in order to conclude that \(\log(q_{v_1})/\log(q_{v_2}) \) is irrational, and this coprimity condition may prompt an issue in characteristic \(p > 0 \). We propose to resolve all these difficulties by globalizing irreducible supercuspidal representations in Henniart-Lomelí [21, 23, Theorem 3.1] and controlling all but one place in which we are interested.

In practice, we demonstrate the identity sequently for irreducible supercuspidal representations and eventually for discrete series representations under the Working hypothesis analogous to Kaplan’s enquiry [32, Remark 4.18] that \((GL_m(F), \theta)\)-distinguished discrete series representations in positive characteristic are self-dual. Thankfully, we remove the hypothesis by investigating irreducible generic subquotients of principal series representations. We expect to overcome Kaplan’s issue beyond the principal series cases by reconciling the different definitions of local symmetric square \(L \) -functions possessing their own insights about representations. The poles of \(L(s, \pi, \text{Sym}^2) \) by means of the Rankin-Selberg method can be determined by the occurrence of \((GL_m(F), \theta)\)-distinguished representations [46], whereas the symmetric square \(L \) -functions through the Langlands-Shahidi method \(L(s, \pi, \text{Sym}^2) \) can be related to the presence of the self-duality \(\pi \cong \overline{\pi} \), using the Rankin-Selberg \(L \)-factor \(L(s, \pi \times \pi) \) as a product of \(L(s, \pi, \text{Sym}^2) \) and \(L(s, \pi, \text{Sym}^2) \) [21, 23]. Taking it for granted that \(L(s, \pi, \text{Sym}^2) \) can be factored in terms of exceptional \(L \)-factors for derivatives (Cf. [30, Theorem 3.15]), our discourse sheds light on some impetus toward systematic development of symmetric square \(L \) -factors via integral representations [46] in number theoretic aspects and the classification of \((GL_m(F), \theta)\)-distinguished representations over local function fields [32] in representation theoretic perspectives. We will return these matters in near future.

Finally, it is worth pointing out that the result of this paper will be used to supply the proof of the clam in the preprint by Chen and Gan [7, Theorem 1.1] that the exterior square \(L \) -function can be equivalently defined by the Langlands-Shahidi method or the local zeta integrals of Jacquet-Shalika [27] in positive characteristic.

Let us overview the content of this paper. Section 2.1 begins with a summary of the theory of derivatives of Bernstein and Zelevinsky and the basic existence Theorem of Jacquet-Shalika integrals. Section 2.2 is devoted to classifying all irreducible generic distinguished representation with respect to given closed algebraic subgroups, especially \(H_{2n} \) and \(S_{2n} \), due to Matringe. By combining the factorization of Section 2.1, the classification of Section 2.2, and the method of deformations and specializations, we prove a weak version of multiplicativity of \(\gamma \)-factors and the inductive relation of \(L \)-factors. Using the globalization of irreducible supercuspidal representation presented in Section 3.2, if necessary, we complete computing local exterior square \(L \) -functions at the end of Section 3.2, local Bump-Friedberg \(L \) -functions in Section 4.1, and local Asai \(L \) -functions in Section 4.2.

2. Jacquet-Shalika Zeta Integrals

2.1. Derivatives and exceptional poles. Let \(F \) be a non-archimedean local field of characteristic \(p \neq 0, 2 \). We let \(\mathcal{O} \) denote its ring of integers, \(p \) its maximal ideal, \(q \) the cardinality of its residual field. We will let \(\varpi \) denote a uniformizer, so \(p = (\varpi) \). We normalize the absolute value by \(|\varpi|^{-1} = |\mathcal{O}/p| \). The character of \(GL_m \) given by \(g \mapsto |\det(g)| \) is denoted by \(\nu \).

For the group \(GL_m := GL_m(F) \), we often confront the two cases: \(m \) is even and \(m \) is odd. For the former we let \(m = 2n \), and for the latter \(m = 2n + 1 \). Let \(\sigma_m \) be the permutation matrix given by

\[
\sigma_{2n} = \begin{pmatrix} 1 & 2 & \cdots & n & n + 1 & n + 2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n - 1 & 2 & 4 & \cdots & 2n \end{pmatrix}
\]
when \(m = 2n \) is even, and by
\[
\sigma_{2n+1} = \begin{pmatrix}
1 & 2 & \cdots & n \\
1 & 3 & \cdots & 2n - 1
\end{pmatrix}
\begin{pmatrix}
1 & n + 1 & n + 2 & \cdots & 2n & 2n + 1 \\
2 & 4 & \cdots & 2n & 2n + 1
\end{pmatrix}
\]
when \(m = 2n + 1 \) is odd. Let \(B_m \) be the Borel subgroup consisting of the upper triangular matrices with Levi subgroup \(A_m \) of diagonal matrices and unipotent radical \(N_m \). We write \(Z_m \) denote to the center consisting of scalar matrices. We define \(P_m \) the mirabolic subgroup given by
\[
P_m = \left\{ \begin{pmatrix} g & tu \\ 1 & 1 \end{pmatrix} \mid g \in GL_{m-1}, u \in F^{m-1} \right\}.
\]
We denote by \(U_m \) the unipotent radical of \(P_m \). As a group, \(P_m \) has a structure of a semi-direct product \(P_m = GL_{m-1} \ltimes U_m \). We let \(M_m \) be the \(m \times m \) matrices, \(N_m \) the subspace of upper triangular matrices of \(M_m \). Let \(\{ e_i \mid 1 \leq i \leq m \} \) be the standard low basis of \(F^m \).

We let \(\psi_F \) denote a non-trivial additive character of \(F \). We let \(\psi \) denote the character of \(N_m \) defined by
\[
\psi(n) = \psi_F\left(\sum_{i=1}^{n-1} n_{i,i+1} \right), \quad n = (n_{i,j}) \in N_m.
\]

We denote by \(A_F(m) \) the set of equivalence classes of all admissible representations of \(GL_m \) on complex vector spaces. Furthermore we say that a representation \(\pi \in A_F(m) \) is called generic if \(\text{Hom}_{N_m}(\pi, \psi) \neq \{0\} \). We say that a representation \(\pi \in A_F(m) \) is of Whittaker type if
\[
\dim \text{Hom}_{N_m}(\pi, \psi) = 1.
\]
For any character \(\chi \) of \(F^\times \), \(\chi \) can be uniquely decomposed as \(\chi = \chi_0 e^{s \varphi} \), where \(\chi_0 \) is a unitary character and \(s \varphi \) is a real number. We use the notation \(s \varphi = \text{Re}(\varphi) \) for the real part of the exponent of the character \(\chi \).

If \(\pi \in A_F(m) \) is irreducible and generic, it is known from \([18]\) that \(\pi \) is of Whittaker type. By Frobenius reciprocity, there exists a unique embedding of \(\pi \) into \(\text{Ind}^{GL_m}_m(\psi) \) up to scalar. The image \(\mathcal{W}(\pi, \psi) \) of \(V_\pi \) is called the Whittaker model of \(\pi \). For a non-zero functional \(\lambda \in \text{Hom}_{N_m}(\pi, \psi) \), we define the Whittaker function \(W_\psi(\lambda, \psi) \) associated to \(v \in V_\pi \) by
\[
W_\psi(\lambda, \psi)(g) = \lambda(\pi(g)v), \quad g \in GL_m.
\]
We set \(W := W_\psi \). It follows from \([3, \text{Lemma 4.5}] \) and \([48, \text{§9}] \) that if \(\Delta_1, \Delta_2, \cdots, \Delta_t \) are irreducible essentially square integrable, which we call discrete series representations, then the representation of the form \(\text{Ind}^{GL_m}_{Q^m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t) \) is a representation of Whittaker type, where the induction is the normalized parabolic induction from the standard parabolic subgroup \(Q \) attached to the partition \((m_1, m_2, \cdots, m_t)\) of \(m \) and \(\Delta_i \in A_F(m_i) \). Also, whenever the parabolic subgroup \(Q \) and ambient group \(GL_m \) are clear from the context, we simply write \(\text{Ind}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t) \).

Let \(\text{Rep}(G) \) denote the category of smooth representations of an \(l \)-group \(G \). There are four functors \(\Psi^+, \Psi^-, \Phi^+, \) and \(\Phi^- \). The functor \(\Psi^- \) is a normalized Jacquet functor and \(\Phi^- \) a normalized \(\psi \)-twisted Jacquet functor from \(\text{Rep}(P_m) \) to \(\text{Rep}(GL_{m-1}) \) and \(\text{Rep}(P_{m-1}) \), respectively. Given \(\tau \in \text{Rep}(P_m) \) on the space \(V_\tau \), \(\Psi^- (\tau) \) is realized on the space \(V_\tau / V_\tau(U_m, 1) \) with the action \(\Psi^- (\tau)(g)(v + V_\tau(U_m,1)) = |\text{det}(g)|^{-\frac{t}{3}}(\tau(g)v + V_\tau(U_m,1)) \) and the subspace \(V_\tau(U_m,1) = \langle \tau(u)v - v \mid v \in V_\tau, u \in U_m \rangle \). Likewise \(\Phi^- (\tau) \) is realized on the space \(V_\tau / V_\tau(U_m, \psi) \) with the action \(\Phi^- (\tau)(g)(v + V_\tau(U_m, \psi)) = |\text{det}(g)|^{-\frac{t}{3}}(\tau(g)v + V_\tau(U_m, \psi)) \) and the subspace \(V_\tau(U_m, \psi) = \langle \tau(u)v - \psi(v)u \mid v \in V_\tau, u \in U_m \rangle \). The functor \(\Psi^+ \) and \(\Phi^+ \) are normalized compactly supported inductions from \(\text{Rep}(GL_{m-1}) \) and \(\text{Rep}(P_{m-1}) \), respectively to \(\text{Rep}(P_m) \). Given \(\sigma \in \text{Rep}(GL_{m-1}) \), \(\Psi^+ (\sigma) = \text{ind}^{F_m}_{GL_{m-1}U_m}(|\text{det}(g)|)\frac{1}{3}\sigma \otimes 1 \) is realized on the space \(V_\sigma \), where \(\text{ind} \) is a compactly supported induction. If \(\sigma \in \text{Rep}(P_{m-1}) \), then \(\Phi^+ (\sigma) = \text{ind}^{F_m}_{P_{m-1}U_m}(|\text{det}(g)|)\frac{1}{3}\sigma \otimes \psi \).
For \(\tau \in \text{Rep}(P_m) \), four functors are utilized to define what is called Bernstein-Zelevinsky \(k^{th} \)-derivatives \(\tau^{(k)} \). Let \(\tau^{(k)} \in \text{Rep}(GL_{m-k}) \) be \(\tau^{(k)} = \Psi^-(\Phi^-)^{k-1}(\tau) \) for \(1 \leq k \leq m \). The smooth representation \(\tau \) affords a natural filtration by \(P_m \)-modules

\[
0 \leq \tau_m \leq \tau_{m-1} \leq \cdots \leq \tau_1 = \tau
\]
such that \(\tau_k/\tau_{k+1} = (\Phi^+)^{k-1}\Psi^+(\tau^{(k)}) \) and \(\tau_k = (\Phi^+)^{k-1}(\Phi^-)^{k-1}(\tau) \). Let \(\pi = \text{Ind}_{Q_m}^{GL_m}(\Delta_1 \otimes \cdots \otimes \Delta_t) \) be a parabolically induced representation, where \(\Delta_i \) is an irreducible essentially square integrable representation of \(GL_{m_i} \) so that \(m = m_1 + \cdots + m_t \). Then \(\pi^{(k)} \) has a filtration whose successive quotients are isomorphic to \(\text{Ind}(\Delta^{(k_1)}_1 \otimes \cdots \otimes \Delta^{(k_t)}_t) \) with \(k = k_1 + \cdots + k_t \) [4, Theorem 4.4, Lemma 4.5]. For every \(0 \leq k \leq m-1 \), let \((\omega^{(k)})_{i_k=1,2,\ldots,r_k} \) be the family of the central characters of non-zero successive quotient of the form \(\pi^{(k)}_{i_k} = \text{Ind}(\Delta^{(k_1)}_1 \otimes \cdots \otimes \Delta^{(k_t)}_t) \).

Let \(\mathcal{S}(F^n) \) be the space of smooth locally constant compactly supported functions on \(F^n \). For each Whittaker function \(W \in W(\pi, \psi) \) and Schwartz-Bruhat function \(\Phi \in \mathcal{S}(F^n) \), we define Jacquet-Shalika integrals:

\[
J(s,W,\Phi) = \int_{N_n/\text{Gl}_n} \int_{N_n/\mathcal{M}_n} W \left(\sigma_{2n} \left(\begin{array}{cc} I_n & X \\ N_n & I_n \end{array} \right) \right) \psi^{-1}(\text{Tr}(X)) \Phi(e_n g) |\text{det}(g)|^s dX dg
\]
in the even case \(m = 2n \) and

\[
J(s,W,\Phi) = \int_{N_n/\text{Gl}_n} \int_{N_n/\mathcal{M}_n} \int_{F^n} W \left(\sigma_{2n+1} \left(\begin{array}{cc} I_n & X \\ N_n & 1 \end{array} \right) \right) \psi^{-1}(\text{Tr}(X)) \Phi(y) |\text{det}(g)|^{s-1} dy dX dg
\]
in the odd case \(m = 2n + 1 \). Several nice consequences follow from inserting asymptotic formula over the torus for \(W \) into the local Zeta integral \(J(s,W,\Phi) \) [28, Theorem 3.3, Lemma 3.10].

Theorem 2.1. Let \(\pi = \text{Ind}_{Q_m}^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t) \) be a parabolically induced representation. Let \(W \in W(\pi, \psi) \) and \(\Phi \in \mathcal{S}(F^n) \).

(i)-(1) (Even cases \(m = 2n \)) If we have, Re(s) > \(-\frac{1}{k} \omega^{(2n-2k)}_{\pi^{(2n-2k)}}\), for all \(1 \leq k \leq n \) and all \(1 \leq r_{2k} \leq r_{2k} \), then each local integral \(J(s,W,\Phi) \) converges absolutely.

(i)-(2) (Odd cases \(m = 2n + 1 \)) If we have Re(s) > \(-\frac{1}{k} \omega^{(2n+1-2k)}_{\pi^{(2n+1-2k)}}\), for all \(1 \leq k \leq n \) and all \(1 \leq r_{2k-1} \leq r_{2k-1} \), then each local integral \(J(s,W,\Phi) \) converges absolutely.

(ii) Each \(J(s,W,\Phi) \) is a rational function in \(\mathbb{C}(q^{-s}) \), hence \(J(s,W,\Phi) \) as a function of \(s \) extends meromorphically to all \(\mathbb{C} \).

(iii) Each \(J(s,W,\Phi) \) can be written with a common denominator determined by \(\pi \). Hence the family has “bounded denominators”.

Let \(\mathcal{J}(\pi) \) be the complex linear space of the local integrals \(J(s,W,\Phi) \). The family of local integrals \(\mathcal{J}(\pi) \) is a \(\mathbb{C}[q^{\pm s}] \)-fractional ideal of \(\mathbb{C}(q^{-s}) \) containing 1 [28, Theorem 3.6, Theorem 3.9]. Since the ring \(\mathbb{C}[q^{s},q^{-s}] \) is a principal ideal domain, the fractional ideal \(\mathcal{J}(\pi) \) has a generator. Since \(1 \in \mathcal{J}(\pi) \) we can take a generator having numerator 1 and normalized (up to units) to be of the form \(P(q^{-s})^{-1} \) with \(P(X) \in \mathbb{C}[X] \) having \(P(0) = 1 \). The local exterior square \(L \)-function or simply exterior square \(L \)-factor

\[
L(s,\pi,\wedge^2) = \frac{1}{P(q^{-s})}
\]
is defined to be the normalized generator of the fractional ideal \(\mathcal{J}(\pi) \) spanned by the local Zeta integrals \(J(s,W,\Phi) \).
We define the Fourier transform on $S(F^m)$ by
\[\hat{\Phi}(y) = \int_{F^n} \Phi(x)\psi(x^t y) \, dx. \]

We assume that the measure on F^m is the self-dual measure. Then the Fourier inversion takes the form $\hat{\Phi}(x) = \Phi(-x)$. Let
\[w_m := \begin{pmatrix} I_n & \ldots & I_n \\ I_n & \ldots & 1 \end{pmatrix} \]
denote the long Weyl element in GL_m. For $(\pi, V_\pi) \in \text{Rep}(GL_m)$, let π^t denote the representation of GL_m on the same space V_π given by $\pi^t(g) = \pi(\pi^t g^{-1})$. If π is irreducible, it is known that $\pi^t \simeq \pi$, the contragredient representation of π. The parabolically induced representation $\pi^t = \text{Ind}(\Delta_t \otimes \Delta_{t-1} \otimes \cdots \otimes \Delta_1)$ is again of Whittaker type. If $W \in \mathcal{W}(\pi, \psi)$, then $\hat{W}(g) := W(w_m t g^{-1})$ belongs to $\mathcal{W}(\pi^t, \psi^{-1})$. We let τ_m be a matrix given by $\begin{pmatrix} I_n & \ldots & I_n \\ I_n & \ldots & 1 \end{pmatrix}$ when $m = 2n$ is even, and by $\begin{pmatrix} I_n & \ldots & I_n \\ I_n & \ldots & 1 \end{pmatrix}$ when $m = 2n + 1$ is odd. As a consequence of the uniqueness of bilinear forms on $\mathcal{W}(\pi, \psi) \times S(F^n)$, we can define the local γ-factor which gives rise to the local functional equation for our integrals $J(s, W, \Phi)$ \cite{9, 38} (Cf. \cite[Theorem 2.10, (2.1)]{29}).

Theorem 2.2. Let $\pi = \text{Ind}_{GL_m}^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be a parabolically induced representation of GL_m. Then there is a rational function $\gamma(s, \pi, \wedge^2, \psi) \in \mathbb{C}(q^{-s})$ such that for every W in $\mathcal{W}(\pi, \psi)$, and every $\Phi \in S(F^n)$, we have
\[J(1 - s, g(\tau_m)\hat{W}, \hat{\Phi}) = \gamma(s, \pi, \wedge^2, \psi)J(s, W, \Phi), \]
where g denotes right translation.

An equally important local factor is the local ε-factor
\[\varepsilon(s, \pi, \wedge^2, \psi) = \gamma(s, \pi, \wedge^2, \psi) \frac{L(s, \pi, \wedge^2)}{L(1 - s, \pi^t, \wedge^2)} \]
which is an invertible element $\varepsilon(s, \pi, \wedge^2, \psi) \in \mathbb{C}[q^\pm s]$. With the local ε-factor the functional equation becomes
\[\frac{J(1 - s, g(\tau_m)\hat{W}, \hat{\Phi})}{L(1 - s, \pi^t, \wedge^2)} = \varepsilon(s, \pi, \wedge^2, \psi) \frac{J(s, W, \Phi)}{L(s, \pi, \wedge^2)}. \]

Let $\pi = \text{Ind}_{GL_{2n}}^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be a parabolically induced representation. Let $S_0(F^n)$ be the subspace of $\Phi \in S(F^n)$ for which $\Phi(0, 0, \cdots, 0) = 0$. Suppose that there exists a function in $J(\pi)$ having a pole of order d_{s_0} at $s = s_0$. We investigate the rational function defined by an individual Zeta integral $J(s, W, \Phi)$. Then the Laurent expansion about $s = s_0$ will take the form
\[J(s, W, \Phi) = \frac{B_{s_0}(W, \Phi)}{(q^s - q^{s_0})^{d_{s_0}}} + \text{higher order terms}. \]

We define the Shalika subgroup S_{2n} of GL_{2n} by
\[S_{2n} = \left\{ \begin{pmatrix} I_n & Z \\ I_n & h \end{pmatrix} \left| \begin{array}{c} Z \in \mathcal{M}_n, \ h \in GL_n \end{array} \right. \right\}. \]

Let us denote an action of the Shalika subgroup S_{2n} on $S(F^n)$ by
\[R \left(\begin{pmatrix} I_n & Z \\ I_n & h \end{pmatrix} \right) \Phi(x) = \Phi(xh). \]
for $\Phi \in S(F^n)$. The coefficient of the leading term, $B_{s_0}(W, \Phi)$, will define a non-trivial bilinear form on $W(\pi, \psi) \times S(F^n)$ enjoying the quasi-invariance

$$B_{s_0}(g(g)W, R(g)\Phi) = |\det(h)|^{-s_0} \psi(\text{Tr}(Z)) B_{s_0}(W, \Phi) \quad \text{for} \quad g = \begin{pmatrix} I_n & Z \\ \end{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} \in S_{2n}.$$

The pole at $s = s_0$ of the family $\mathcal{J}(\pi)$ is called exceptional if the associated bilinear form $B_{s_0}(W, \Phi)$ vanishes identically on $W(\pi, \psi) \times S_0(F^n)$. If $s = s_0$ is an exceptional pole of $\mathcal{J}(\pi)$ then the bilinear form B_{s_0} factors to a non-zero bilinear form on $W(\pi, \psi) \times S(F^n)/S_0(F^n)$. The quotient $S(F^n)/S_0(F^n)$ is isomorphic to \mathbb{C} via the map $\Phi \mapsto \Phi(0)$. Let Θ be the character of S_{2n} given by

$$\Theta \left(\begin{pmatrix} I_n & Z \\ \end{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} \right) = \psi(\text{Tr}(Z)).$$

We say that $\pi \in A_F(2n)$ is called (S_{2n}, Θ)-distinguished if $\text{Hom}_{S_{2n}}(\pi, \Theta) \neq \{0\}$. A nonzero linear functional Λ in $\text{Hom}_{S_{2n}}(\pi, \Theta)$ (Λ_σ in $\text{Hom}_{S_{2n}}(\pi, \nu \cdot \hat{\Theta})$) is called a Shalika functional (a twisted Shalika functional, respectively). If $s = s_0$ is an exceptional pole, then the form B_{s_0} can be written as $B_{s_0}(W, \Phi) = \Lambda_{s_0}(W)\Phi(0)$ with Λ_{s_0} the Shalika functional on $W(\pi, \psi)$. Using the notation, we let

$$L_{ex}(s, \pi, \wedge^2) = \prod_{s_0)(1 - q^{s_0}q^{-s})^{d_{s_0}},$$

where s_0 runs through all the exceptional poles of $\mathcal{J}(\pi)$ with d_{s_0} the maximal order of the pole at $s = s_0$. The factorization of local exterior square L-functions proposed by Cogdell and Piatetski-Shapiro asserts that it can be expressed in terms of the exceptional exterior square L-factors of the derivatives of π [28].

Theorem 2.3. Let $\pi = \text{Ind}_G^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be an irreducible generic representation of GL_m such that all the derivatives $\pi^{(k)}$ of π are completely reducible with irreducible generic constituents of the form $\pi_i^{(k)} = \text{Ind}(\Delta_i^{(k_1)} \otimes \cdots \otimes \Delta_i^{(k_t)})$ with $k = k_1 + \cdots + k_t$. For each k, i is indexing the partition of k. Then

(i) (Even cases $m = 2n$) $L(s, \pi, \wedge^2) = l.c.m. \{ L_{ex}(s, \pi_i^{(2k)}, \wedge^2)^{-1} \}_{k, i}$

(ii) (Odd cases $m = 2n + 1$) $L(s, \pi, \wedge^2) = l.c.m. \{ L_{ex}(s, \pi_i^{(2k+1)}, \wedge^2)^{-1} \}_{k, i}$

where the least common multiple is with respect to divisibility in $\mathbb{C}[q^{\pm s}]$ and is taken over all k with $k = 0, 1, \cdots, n - 1$ and for each k all constituents $\pi_i^{(2k)}$ ($\pi_i^{(2k+1)}$) of $\pi^{(2k)}$ ($\pi^{(2k+1)}$, respectively).

A similar definition $L_{ex}(s, \pi \times \sigma)$ and factorization formula has been constructed by Cogdell and Piatetski-Shapiro in the context of local Rankin-Selberg L-functions for a pair of representations (π, σ) of GL_m [11; 39, §4.1].

2.2. Classes of distinguished representations. For $m = 2n$ even, we let M_{2n} denote the standard Levi subgroup of GL_{2n} associated with the partition (n, n) of $2n$. Let $w_{2n} = \sigma_{2n}$ and then we set $H_{2n} = w_{2n}M_{2n}w_{2n}^{-1}$. Let $w_{2n+1} = w_{2n+2}|GL_{2n+1}$ so that

$$w_{2n+1} = \begin{pmatrix} 1 & 2 & \cdots & n+1 \\ 1 & 2 & \cdots & n+1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 3 & \cdots & 2n + 1 \\ n+2 & n+3 & \cdots & 2n \end{pmatrix}.$$

In the odd case, $w_{2n+1} \neq \sigma_{2n+1}$ and we denote by M_{2n+1} the standard Levi subgroup attached to the partition $(n+1, n)$ of $2n+1$. We set $H_{m+1} = w_{2n+1}M_{2n+1}w_{2n+1}^{-1}$. We observe that H_m is compatible in the sense that $H_m \cap GL_{m-1} = H_{m-1}$. If α is a character of F^\times and $\text{diag}(g, g') \in M_m$, we denote by χ_α the character

$$\chi_\alpha : w_m \begin{pmatrix} g & g' \\ \end{pmatrix} w_m^{-1} \mapsto \alpha \left(\frac{\det(g)}{\det(g')} \right).$$
of H_m. Let χ be a character of H_m. We say that $\pi \in A_F(m)$ is (H_m, χ)-distinguished if $\Hom_{H_m}(\pi, \chi) \neq 0$. If χ is trivial, it is customary to say that π is H_m-distinguished. In order to classify all irreducible generic distinguished representations, we need to know that the induced representations of the form $\Ind_Q^{GL_2n}(\Delta \otimes \widetilde{\Delta})$ are distinguished. These types of properties over non-Archimedean local fields in characteristic zero were originally investigated by Cogdell and Piatetski-Shapiro [10]. Afterwards the conjecture was settled by Matringe [39, 40]. Parts of the proof of [39, Proposition 3.8] contain inaccuracies, and subsequently it is clarified in [40, Proposition 5.3].

Proposition 2.4 (N. Matringe). Let Δ be discrete series representations of GL_n and α a character of F^\times. Then irreducible generic representations of the form $\Ind_Q^{GL_2n}(\Delta \otimes \widetilde{\Delta})$ are both (H_{2n}, χ_α)- and (S_{2n}, Θ)-distinguished.

Proof. We consider parabolically induced representations of the form $\Pi_s := \Ind_Q^{GL_2n}(\Delta_0 \nu^s \otimes \widetilde{\Delta}_0 \nu^{-s})$ with Δ_0 a unitary discrete series representations of GL_n and s a complex parameter. The proof in [39, Proposition 3.8] relies on Bernstein’s analytic continuation principle for invariant linear forms. In order to apply it to positive characteristic, we need to explain that the space $\Hom_{H_{2n}}(\Pi_s, \Theta)$ is of dimension at most one for all s except the finite number for which Π_s is irreducible. However, if this is the case, $\Hom_{s_{2n}}(\Pi_s, \Theta)$ embeds as a subspace of $\Hom_{H_{2n}\cap P_{2n}}(\Pi_s, 1_{H_{2n}})$ via [38, Proposition 4.3] along with $\Hom_{s_{2n}}(\Pi_s, \Theta) \subseteq \Hom_{s_{2n}\cap P_{2n}}(\Pi_s, \Theta)$. Thanks to an auxiliary deformation parameter s, the proof of [39, Proposition 5.1-8] asserts that except for a finite number of s, the space $\Hom_{H_{2n}\cap P_{2n}}(\Pi_s, 1_{H_{2n}})$ is of dimension at most 1, as desired.

Alternatively, the quickest way is to use the equivalence between (H_{2n}, χ_α)-distinctions and (S_{2n}, Θ)-distinctions [47, Corollary 3.6], which only depends on Gan’s approach of theta correspondence [15, Theorem 3.1]. This allows us to reduce to the case for $\alpha = 0$, where the result is immediate from Blanc and Delorme [6], as described in [38, §5]. We refer interested reader to an excellent survey article [41, Proposition 3.2.15] for an expository construction of this open orbit contribution.

We are now ready to introduce the classification of (H_{2n}, χ_α)-distinguished representations established by Matringe [39, Theorem 3.1]. The classification result holds in positive characteristic $p \neq 2$ though written in characteristic 0 only. Indeed, the proof relies crucially on Bernstein-Zelevinsky’s version of Mackey’s theorem [4, Theorem 5.2], the explicit description of discrete series representations and their Jacquet modules [48, Proposition 9.5], and the fact that a discrete series representation of GL_{2n+1} cannot be H_{2n+1}-distinguished [38, Theorem 3.1]. All the aforementioned properties are true in positive characteristic (Cf. [1, Appendix A; 15, §4]).

Theorem 2.5 (N. Matringe, Even cases $m = 2n$). Let $\pi = \Ind_Q^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_i)$ be an irreducible generic representation of GL_{2n}. Let α be a character of F^\times with $0 \leq \Re(\alpha) \leq 1/2$. Then π is (H_{2n}, χ_α)-distinguished if and only if there is a reordering of the Δ_i‘s and an integer r between 1 and $[t/2]$, such that $\Delta_{i+1} = \Delta_i$ for $i = 1, 3, \cdots, 2r - 1$, and Δ_i is (H_{2n}, χ_α)-distinguished for $i > 2r$.

For a discrete series representation Δ of GL_{2n}, Δ is H_{2n}-distinguished if and only if (S_{2n}, Θ)-distinguished. Matringe [38, §5], using an analytic approach, and Gan [15, Theorem 4.2], using the theta correspondence, individually settled this connection. Combining this with [40, Theorem 1.1, Proposition 5.3], we classify (S_{2n}, Θ)-distinguished generic representation of GL_{2n} in terms of (S_{2n}, Θ)-distinguished discrete series representations Δ_i [40, Corollary 1.1]. We refer the reader to [40] for further details of the proof.

Theorem 2.6 (N. Matringe). Let $\pi = \Ind_Q^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_i)$ be an irreducible generic representation of GL_{2n}. Then π is (S_{2n}, Θ)-distinguished if and only if there is a reordering of the
\(\Delta_i\)'s and an integer \(r\) between 1 and \([t/2]\), such that \(\Delta_{i+1} = \tilde{\Delta}_i\) for \(i = 1, 3, \ldots, 2r - 1\), and \(\Delta_i\) is \((S_{2n_i}, \Theta)\)-distinguished for \(i > 2r\).

In the light of Theorem 2.5, Theorem 2.6, and [15, Theorem 4.2], Matringe and Gan’s equivalence is valid in more general setting of irreducible generic representations of \(GL_{2n}\).

2.3. Deformations and specializations. Let \(\pi = \text{Ind}_{Q}^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)\) be a parabolically induced representation of \(GL_m\). Let \(\mathcal{D}_\pi\) denote the complex manifold \((\mathbb{C}/\log(\mathbb{Q}))^t\). The isomorphism \(\mathcal{D}_\pi \rightarrow (\mathbb{C}^\times)^t\) is defined by \(u := (u_1, u_2, \ldots, u_t) \mapsto u^a := (q^{u_1}, q^{u_2}, \ldots, q^{u_t})\). We use \(q^u\) as short for \((q^{u_1}, q^{u_2}, \ldots, q^{u_t})\). For \(u \in \mathcal{D}_\pi\), we set

\[
\pi_u = \text{Ind}_{Q}^{GL_m}(\Delta_1^{u_1} \otimes \Delta_2^{u_2} \otimes \cdots \otimes \Delta_t^{u_t}).
\]

Let us set

\[
\pi_u^{(k_1, k_2, \ldots, k_t)} = \text{Ind}_{Q}^{GL_m}(\Delta_1^{(k_1)} \otimes \Delta_2^{(k_2)} \otimes \cdots \otimes \Delta_t^{(k_t)}).
\]

Section 2.3 is indebted to Cogdell and Piatetski-Shapiro [11] and we closely follow the path of the adaptation of [11] used in [29, 36, 39] to study the characteristic zero case. In particular the deformation and specialization argument is widely available in the literature [11, 29, 36, 39]. Henceforth we only remark on the nature of the difference but the reader should consult to [11, 36] for a complete regard.

Definition 2.7. We say that \(u = (u_1, u_2, \ldots, u_t) \in \mathcal{D}_\pi\) is in general position if it satisfies the following properties:

(i) For every sequences of nonnegative integers \((k_1, k_2, \ldots, k_t)\), a nonzero representation

\[
\pi_u^{(k_1, k_2, \ldots, k_t)} = \text{Ind}(\Delta_1^{(k_1)} \otimes \Delta_2^{(k_2)} \otimes \cdots \otimes \Delta_t^{(k_t)})
\]

is irreducible;

(ii) If \((a_ir_1, a_2r_2, \ldots, a_tr_t)\) and \((b_1r_1, b_2r_2, \ldots, b_tr_t)\) are two different sequences such that

\[
\sum_{i=1}^t a_ir_i = \sum_{i=1}^t b_ir_i
\]

then two representations

\[
\text{Ind}(\Delta_1^{(a_1r_1)} \otimes \Delta_2^{(a_2r_2)} \otimes \cdots \otimes \Delta_t^{(a_tr_t)}) \quad \text{and} \quad \text{Ind}(\Delta_1^{(b_1r_1)} \otimes \Delta_2^{(b_2r_2)} \otimes \cdots \otimes \Delta_t^{(b_tr_t)})
\]

possess distinct central characters;

(iii) If \((i, j, k, \ell) \in \{1, 2, \ldots, t\}^4\) with \(i \neq j\), \(L(s, \Delta_i^{u_1} \times \Delta_j^{u_2})\) and \(L(s, \Delta_k^{u_3} \times \Delta_\ell^{u_4})\) have no common poles;

(iv) If \((i, j) \in \{1, 2, \ldots, t\}^2\) with \(i \neq j\), then \(L(s, \Delta_i^{u_1} \times \Delta_j^{u_2} \times \Delta_j^{u_4})\) and \(L(s, \Delta_i^{u_1} \times \Delta_j^{u_2} \times \Delta_\ell^{u_4})\) have no common poles;

(v) If \((i, j) \in \{1, 2, \ldots, t\}^2\) with \(i \neq j\), then \(L(s, \Delta_i^{u_1} \times \Delta_j^{u_2} \times \Delta_j^{u_4})\) and \(L(s, \Delta_k^{u_3} \times \Delta_\ell^{u_4})\) have no common poles;

(vi) If \(1 \leq i \neq j \leq t\) and \((\Delta_i^{a_1r_1})^* \simeq \Delta_j^{(a_1r_1)} \nu^e\) for some complex number \(e\), then the dimension of the space

\[
\text{Hom}_{\mathcal{D}_\pi}(\Delta_i^{a_1r_1} \otimes \Delta_j^{a_1r_1} \otimes \Delta_i^{a_1r_1})^* \simeq \Delta_j^{(a_1r_1)} \nu^e
\]

is at most 1.

We confirm that off a finite number of hyperplanes in \(u\), the deformed representation \(\pi_u\) is in general position [29, Proposition 4.1]. The important point is that \(u \in \mathcal{D}_\pi\) in general position depends only on the representation \(\pi\) not \(s \in \mathbb{C}\). The purpose of (ii) is that outside a finite number of hyperplanes, the central character of \(\pi_u\) are distinct and therefore there are only trivial extension among these representation. As a result, off these hyperplanes, the
derivatives $\pi^{(k)}_u = \oplus_{i=1}^t \pi^{(a_1 r_1, a_2 r_2, \cdots, a_t r_t)}_u$ are completely reducible, where $k = \sum_{i=1}^t a_i r_i$ and each $\pi^{(a_1 r_1, a_2 r_2, \cdots, a_t r_t)}_u$ is irreducible. Conditions (i) and (ii) ensure that Theorem 3.9 is applicable. The purpose of Condition (vi) is that the occurrence of the exceptional pole of $L(s, \pi, \lambda^2)$ at $s = 0$ can be determined by the existence of Shalika functional from [29, Lemma 3.2]. Throughout Section 2.3, we assume the Working Hypothesis proposed by E. Kaplan [32, Remark 4.18] for fields of odd characteristic.

Working Hypothesis. Let Δ be a (S_{2n}, Θ)-distinguished discrete series representation of GL_{2n}. Then Δ is self-dual. Namely, $\Delta \simeq \Delta$.

The following statement is a consequence of Working Hypothesis along with Theorem 2.6.

Corollary 2.8. We assume the Working Hypothesis. Let $\pi = \text{Ind}_{Q}^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be an irreducible generic representation of GL_{2n}. If π is (S_{2n}, Θ)-distinguished, then π is self-dual. Namely, $\pi \simeq \pi$.

Working Hypothesis needs not to be considered for the subclass of irreducible principal series representations induced from Borel subgroups because of Theorem 2.6, and we shall verify the presumption case by case in §2.

Proposition 2.9. Let $\pi = \text{Ind}_{B_{2n}}^{GL_{2n}}(\chi_1 \otimes \chi_2 \otimes \cdots \otimes \chi_{2n})$ be a (S_{2n}, Θ)-distinguished irreducible principal series representation of GL_{2n}. Then π is self-dual. Namely, $\pi \simeq \pi$.

Now we provide an interpretation of Theorem 2.6 in terms of local L-functions, which is analogous to Proposition 4.13 in [39].

Proposition 2.10. Let $\pi = \text{Ind}_{Q}^{GL_{2n}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be an irreducible generic representation of GL_{2n} where each Δ_i is a discrete series representation of GL_{n_i} with $2n = \sum_{i=1}^t n_i$ and $t \geq 2$. Suppose that $L_{ex}(s, \pi, \lambda^2)$ has a pole at $s = s_0$. Then we are in the one of the following:

(i) There are $(i,j) \in \{1, 2, \cdots, t\}$ with $i \neq j$ such that n_i and n_j are even, and $L_{ex}(s, \Delta_i, \lambda^2)$ and $L_{ex}(s, \Delta_j, \lambda^2)$ have $s = s_0$ as a common pole;

(ii) There are $(i,j,k,\ell) \in \{1, 2, \cdots, t\}$ with $(i,j) \neq (k,\ell)$ such that $L_{ex}(s, \Delta_i \times \Delta_j)$ and $L_{ex}(s, \Delta_k \times \Delta_\ell)$ have $s = s_0$ as a common pole;

(iii) There are $(i,j,k) \in \{1, 2, \cdots, t\}$ with $i \neq j$ such that n_k is even and $L_{ex}(s, \Delta_i \times \Delta_j)$ and $L_{ex}(s, \Delta_k, \lambda^2)$ have $s = s_0$ as a common pole.

Proof. Suppose that $L_{ex}(s, \pi, \lambda^2)$ has a pole at $s = s_0$. As $L(s, \pi, \lambda^2) = L(s - s_0, \pi_{\nu}^{\Delta_{\nu}^{\lambda^2}})$, the representation $\pi_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ admits a non-trivial Shalika functional. We know from Theorem 2.6 that $\pi_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ is isomorphic to

$\text{Ind}
((\Delta_{i_1} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}} \otimes (\Delta_{i_2} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}})^\sim) \otimes \cdots \otimes (\Delta_{i_r} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}})^\sim \otimes (\Delta_{i_{r+1}} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}) \otimes \cdots \otimes (\Delta_{i_t} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}), 0 \leq r \leq \lfloor t/2 \rfloor$,

where $\Delta_{i_j} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ affords a Shalika functional and each n_{i_j} is even for all $j > r$. Putting it in a different way, $(\Delta_{i} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}})^\sim \simeq \Delta_{j} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ with $i \neq j$, or $\Delta_{k} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ owns a Shalika functional with n_k an even number.

According to [39, Proposition 4.6], $(\Delta_{i} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}})^\sim \simeq \Delta_{j} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ or equivalently $\Delta_{i} \simeq \Delta_{j} \nu_{\nu}^{\lambda^2}$ if and only if $L_{ex}(s, \Delta_i \times \Delta_j)$ has a pole at $s = s_0$. If $\Delta_{k} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ has the Shalika functional, the space $\text{Hom}_{\text{S}_{\nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}}}(\Delta_{k} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}, \Theta)$ is non-trivial and that its central character $\omega_{\Delta_{k} \nu_{\nu}^{\lambda^2}}$ is trivial. Since $\Delta_{k} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}$ is the irreducible square integrable representation, we obtain from [29, Proposition 3.4] that $L_{ex}(s, \Delta_{k} \nu_{\nu}^{\Delta_{\nu}^{\lambda^2}}, \lambda^2)$ has a pole at $s = 0$ or equivalently $L_{ex}(s, \Delta_{k}, \lambda^2)$ has a pole at $s = s_0$. Therefore $s = s_0$ is the common pole for either of three cases in Proposition 2.10. \qed
Let Δ be a discrete series representation. According to [48], such a representation Δ is the unique irreducible quotient of the form: $\text{Ind}_Q^{GL_m}(\rho \otimes \rho \nu \otimes \cdots \otimes \rho \nu^{\ell-1})$, where the induction is normalized parabolic induction from the standard parabolic subgroup Q attached to the partition (r, r, \cdots, r) of $m = r\ell$ and $\rho \in A_F(r)$ is irreducible and supercuspidal. We denote by $\Delta = [\rho, \rho \nu, \cdots, \rho \nu^{\ell-1}]$ such a quotient. Using Hartogs’ Theorem [29] is more close to the original spirit of the direction in [11]. Nevertheless we present an alternative approach employing Proposition 2.10 to keep the uniformity with [36, 39].

Proposition 2.11. We assume the Working Hypothesis. Let $\pi = \text{Ind}_Q^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be a parabolically induced representation of GL_m. Let $u = (u_1, u_2, \cdots, u_t) \in \mathcal{D}_\pi$ be in general position and $\pi_u = \text{Ind}_Q^{GL_m}(\Delta_1 \nu^{u_1} \otimes \Delta_2 \nu^{u_2} \otimes \cdots \otimes \Delta_t \nu^{u_t})$ the deformed representation. Then we have the following:

(i) $L(s, \pi_u, \wedge^2) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_k, \wedge^2) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_i \times \Delta_j)$.

(ii) There is a polynomial $Q(X) \in \mathbb{C}[X]$ such that

$$L(s, \pi, \wedge^2) = Q(q^{-s}) \prod_{1 \leq k \leq t} L(s, \Delta_k, \wedge^2) \prod_{1 \leq i < j \leq t} L(s, \Delta_i \times \Delta_j).$$

\textbf{Proof.} Let us take Δ_t to be associated to the segment $[\rho_1, \rho_1 \nu, \cdots, \rho_1 \nu^{\ell-1}]$ with ρ_1 an irreducible supercuspidal representation of GL_r, $m_i = r_i \ell_i$, and $m = \sum_{i=1}^{t} r_i \ell_i$. Keeping Theorem 2.3 in hand, we set out

$$L(s, \pi_u, \wedge^2) = \text{l.c.m.}\{L_{ex}(s, \pi_u^{(a_1 r_1, a_2 r_2, \cdots, a_t r_t)}, \wedge^2)\}$$

where $0 \leq a_i \leq \ell_i$, $m - \sum_{i=1}^{t} a_i r_i$ is an even number, and the least common multiple is taken in terms of divisibility in $\mathbb{C}[q^\pm s]$. Suppose that $L_{ex}(s, \pi_u^{(a_1 r_1, a_2 r_2, \cdots, a_t r_t)}, \wedge^2)$ has a pole at $s = s_0$. If the number of indices i such that $r_i \not= \ell_i$ is more than 3, we deduce from Proposition 2.10 that

(i) There are $(i, j) \in \{1, 2, \cdots, t\}$ with $i \not= j$ such that $m_i - a_i r_i$ and $m_j - a_j r_j$ are even, and $L(s, \Delta_i^{(a_i r_i)} \nu^{u_i}, \wedge^2)$ and $L(s, \Delta_j^{(a_j r_j)} \nu^{u_j}, \wedge^2)$ have $s = s_0$ as a common pole;

(ii) There are $(i, j, k, \ell) \in \{1, 2, \cdots, t\}$ with $\{i, j\} \not= \{k, \ell\}$ such that $L(s, \Delta_i^{(a_i r_i)} \nu^{u_i} \times \Delta_j^{(a_j r_j)} \nu^{u_j})$ and $L(s, \Delta_k^{(a_k r_k)} \nu^{u_k} \times \Delta_{\ell}^{(a_{\ell} r_{\ell})} \nu^{u_\ell})$ have $s = s_0$ as a common pole;

(iii) There are $(i, j, k) \in \{1, 2, \cdots, t\}$ with $i \not= j$ such that $m_k - a_k r_k$ is even, and $L(s, \Delta_i^{(a_i r_i)} \nu^{u_i} \times \Delta_j^{(a_j r_j)} \nu^{u_j})$ and $L(s, \Delta_k^{(a_k r_k)} \nu^{u_k}, \wedge^2)$ have $s = s_0$ as a common pole.

However, Conditions (iii), (iv), and (v) of general positions ensure that the above scenario cannot happen as long as u is in general position, because exceptional poles are poles of original L-factors $L(s, \Delta_i \times \Delta_j)$ and $L(s, \Delta_k, \wedge^2)$. Owing to [29, Corollary 4.11], when there exists exactly one pair (i, j) of indices $i \not= j$ such that $r_i \not= \ell_i$ and $r_j \not= \ell_j$, we have

$$L_{ex}(s, \text{Ind}(\Delta_i^{(a_i r_i)} \nu^{u_i} \otimes \Delta_j^{(a_j r_j)} \nu^{u_j}), \wedge^2) = L_{ex}(s, \Delta_i^{(a_i r_i)} \nu^{u_i} \times \Delta_j^{(a_j r_j)} \nu^{u_j}).$$

if i is the only index such that $r_i \not= \ell_i$, it is nothing but $L_{ex}(s, \Delta_i^{(a_i r_i)} \nu^{u_i}, \wedge^2)$.

To summarize $L_{ex}(s, \pi_u^{(a_1 r_1, a_2 r_2, \cdots, a_t r_t)}, \wedge^2)$ is equal to either $L_{ex}(s, \Delta_i^{(a_i r_i)} \nu^{u_i} \times \Delta_j^{(a_j r_j)} \nu^{u_j})$ for $i < j$ or $L_{ex}(s, \Delta_i^{(a_i r_i)} \nu^{u_i}, \wedge^2)$. Following the rest of the proof in [29, Theorem 5.1], we arrive at

$$L(s, \pi_u, \wedge^2) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_k, \wedge^2) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_i \times \Delta_j).$$
Concerning the second part, let \(W_u^{(0)} \) be the Whittaker model associated to \(\pi_u \) [11, §3.1]. For \(W_u \in W_u^{(0)} \), it follows from the standard Bernstein’s principle of meromorphic continuation and rationality [29, Proposition 4.2, Proposition 4.4] that \(J(s, W_u, \Phi) \) defines a rational function in \(C(q^s, q^{-s}) \). We conclude the first part (i) that the rational function

\[
J(s, W_u, \Phi) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_k, \wedge^2) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_i \times \Delta_j)
\]

has no poles on the Zariski open set of \(u \) in general position. We can take one step further to assert that the ratio lies in \(C[q^{\pm s}, q^{\pm u}] \) by the proof of [39, Lemma 5.1] and [29, Proposition 5.3]. The statement is now an immediate consequence of specialization to \(u = 0 \).

We denote by \(P \approx Q \) that the ratio is a unit in \(C[q^{\pm s}] \) for two rational functions \(P(q^{-s}) \) and \(Q(q^{-s}) \) in \(C(q^{-s}) \). As alluded in Langlands-Shahidi method [17, 21, 23, 35], the unit emerging in Theorem 2.12-(ii) will be presumably 1. This is so-called the multiplicativity of \(\gamma \)-factors. However demonstrating the multiplicativity property requires manipulating integrals in a delicate manner. Nonetheless, it seems likely that the weaker one that is relevant to us is enough for the application therein.

Theorem 2.12. We assume the Working Hypothesis. Let \(\pi = \text{Ind}_{Q}^{GL_m}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t) \) be a parabolically induced representation of \(GL_m \). Let \(u = (u_1, u_2, \cdots, u_t) \in \mathcal{D}_\pi \) be in general position and \(\pi_u = \text{Ind}_{Q}^{GL_m}(\Delta_1^u \Delta_2^u \otimes \cdots \otimes \Delta_t^u) \) the deformed representation. Then we have the following:

(i) \(\gamma(s, \pi_u, \wedge^2, \psi) \sim \prod_{1 \leq k \leq t} \gamma(s + 2u_k, \Delta_k, \wedge^2, \psi) \prod_{1 \leq i < j \leq t} \gamma(s + u_i + u_j, \Delta_i \times \Delta_j, \psi) \).

(ii) \(\gamma(s, \pi, \wedge^2, \psi) \sim \prod_{1 \leq k \leq t} \gamma(s, \Delta_k, \wedge^2, \psi) \prod_{1 \leq i < j \leq t} \gamma(s, \Delta_i \times \Delta_j, \psi) \).

Proof. The proof proceeds along the line of [29, Proposition 5.4] and [39, Proposition 5.5] by appealing Theorem 2.2 and Proposition 2.11 to our framework and it is originated from Cogdell and Piatetski-Shapiro [11, Proposition 4.3]. The second statement (ii) can be accomplished by specializing to \(u = 0 \).

To proceed further, we adopt the terminology from [11, 39]. We say that \(\pi \in \mathcal{A}_F(m) \) is a representation of Langlands type if \(\Xi \) is of the form \(\text{Ind}_{Q}^{GL_m}(\Delta_{o1}^u \otimes \Delta_{o2}^u \otimes \cdots \otimes \Delta_{ot}^u) \), where each \(\Delta_{oi} \) is the irreducible square integrable representation of \(GL_{m_i} \), \(m_1 + m_2 + \cdots + m_t = m \), each \(u_i \) is real and they are ordered so that \(u_1 \geq u_2 \geq \cdots \geq u_t \). Let \(\pi \) be an irreducible admissible representation of \(GL_m \). Regardless of being generic, \(\pi \) can be realized as the unique Langlands quotient of Langlands type \(\Xi = \text{Ind}_{Q}^{GL_m}(\Delta_{o1}^u \otimes \Delta_{o2}^u \otimes \cdots \otimes \Delta_{ot}^u) \) which is of Whittaker type. The exterior square \(L \)-factor is defined to be

\[
L(s, \Xi, \wedge^2) = L(s, \pi, \wedge^2).
\]

Theorem 2.13. We assume the Working Hypothesis. Let \(\pi = \text{Ind}_{Q}^{GL_m}(\Delta_{o1}^u \otimes \Delta_{o2}^u \otimes \cdots \otimes \Delta_{ot}^u) \) be a representation of Langlands type of \(GL_m \). Then we have

\[
L(s, \pi, \wedge^2) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_{o_k} \wedge^2) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j}).
\]

Proof. The proof is akin to those of [11, Theorem 4.1], [29, Theorem 5.7] and [36, Theorem 4.26]. In order to be concise, we do not include the complete details. \(\square \)

We pass to the case of irreducible generic representations.
Corollary 2.14. We assume the Working Hypothesis. Let \(\pi = \text{Ind}_{Q}^{GL_{m}}(\Delta_{1} \otimes \Delta_{2} \otimes \cdots \otimes \Delta_{t}) \) be an irreducible generic representation of \(GL_{m} \). Then we have
\[
L(s, \pi, \wedge^{2}) = \prod_{1 \leq k \leq t} L(s, \Delta_{k}, \wedge^{2}) \prod_{1 \leq i < j \leq t} L(s, \Delta_{i} \times \Delta_{j}).
\]

Proof. Since \(\pi \) is irreducible, essentially square integrable representations \(\Delta_{i} \) can be rearranged to be in Langlands order without changing \(\pi \). \(\square \)

We define the symmetric square \(L \)-factor to be the ratio of Rankin-Selberg \(L \)-factors for \(GL_{m} \times GL_{m} \) by exterior square \(L \)-factors for \(GL_{m} \):
\[
(2.1) \quad L(s, \pi, \text{Sym}^{2}) = \frac{L(s, \pi \times \pi)}{L(s, \pi, \wedge^{2})}.
\]

In comparison to [36] and [39], we pursue purely local means more to express a local exterior square \(L \)-function in terms of local \(L \)-functions for supercuspidal representations. Performing this step has benefits to make the globalization result of Henniart and Lomelí [21, 23] feasible, instead of globalizing discrete series representations [32, 34, 36] as a black box.

Theorem 2.15. We assume that the Working Hypothesis holds for the subclass of all irreducible supercuspidal representations. Let \(\Delta_{o} = [\rho_{o} \nu^{-\frac{t-1}{2}}, \cdots, \rho_{o} \nu^{\frac{t-1}{2}}] \) be an irreducible square integrable representation of \(GL_{t} \) with \(\rho_{o} \) an irreducible unitary supercuspidal representation of \(GL_{t} \).

(i) Suppose that \(t \) is even. Then we have
\[
L(s, \Delta_{o}, \wedge^{2}) = \prod_{i=1}^{\ell/2} L(s, \rho_{o} \nu^{(\ell+1)/2-i}, \wedge^{2}) L(s, \rho_{o} \nu^{\ell/2-i}, \text{Sym}^{2});
\]
\[
L(s, \Delta_{o}, \text{Sym}^{2}) = \prod_{i=1}^{\ell/2} L(s, \rho_{o} \nu^{(\ell+1)/2-i}, \text{Sym}^{2}) L(s, \rho_{o} \nu^{\ell/2-i}, \wedge^{2}).
\]

(ii) Suppose that \(t \) is odd. Then we have
\[
L(s, \Delta_{o}, \wedge^{2}) = \prod_{i=1}^{(\ell+1)/2} L(s, \rho_{o} \nu^{(\ell+1)/2-i}, \wedge^{2}) \prod_{i=1}^{(\ell-1)/2} L(s, \rho_{o} \nu^{\ell/2-i}, \text{Sym}^{2});
\]
\[
L(s, \Delta_{o}, \text{Sym}^{2}) = \prod_{i=1}^{(\ell+1)/2} L(s, \rho_{o} \nu^{(\ell+1)/2-i}, \text{Sym}^{2}) \prod_{i=1}^{(\ell-1)/2} L(s, \rho_{o} \nu^{\ell/2-i}, \wedge^{2});
\]

Proof. Our proof is truly influenced by Shahidi [44, Proposition 8.1]. By the uniqueness of the Whittaker functional, the Whittaker model for \(\Delta_{o} \) agrees with that for \(\xi = \text{Ind}(\rho_{o} \nu^{-\frac{t-1}{2}} \otimes \cdots \otimes \rho_{o} \nu^{\frac{t-1}{2}}) \). Likewise the same feature holds for \(\xi^{i} := \text{Ind}(\rho_{o} \nu^{-\frac{t-1}{2}} \otimes \cdots \otimes \rho_{o} \nu^{\frac{t-1}{2}}) \) and \(\tilde{\Delta}_{o} \). This puts us in a position to manifest that
\[
\gamma(s, \Delta_{o}, \wedge^{2}, \psi) = \gamma(s, \text{Ind}(\rho_{o} \nu^{-\frac{t-1}{2}} \otimes \cdots \otimes \rho_{o} \nu^{\frac{t-1}{2}}), \wedge^{2}, \psi).
\]
Let \(u \) be in general position and \(\xi_{u} = \text{Ind}(\rho_{o} \nu^{u_{1}-\frac{t-1}{2}} \otimes \cdots \otimes \rho_{o} \nu^{u_{t}+\frac{t-1}{2}}) \) its associated deformed representation. Upon noting the assumption that any \((S_{2m}, \Theta) \)-distinguished irreducible supercuspidal representation \(\rho \) is self-dual, we see that Proposition 2.10 to Theorem 2.12 can be completely carried over verbatim to the triple \((\Delta_{o}, \xi, \xi_{u}) \). The remainder of the proof is parallel to that of
4.3. The equality for principal series representations. We briefly review the Langlands-Shahidi method to the local exterior square L-function [17, 21]. Let $G = Sp_{2m}$ be a symplectic group over F in $2m$ variables. The group $M \simeq GL_m$ can be embedded as a Levi component of a maximal Siegel parabolic subgroup $P = MN$ with unipotent radical N. Let r be the adjoint representation of the L-group of M on \mathfrak{t}_n, the Lie algebra of the L-group of N. We can check that $r = r_1 \oplus r_2$. The irreducible representation r_1 gives the standard γ-factor of GL_n and r_2 gives the Langlands-Shahidi exterior square γ-factor, $\gamma(s, \pi, r_2, \psi) = \gamma_{LS}(s, \pi, 2, \psi)$. The γ-factor $\gamma_{LS}(s, \pi, 2, \psi)$ defined in [21] is a rational function in $C(q^{-s})$. Let $P(X)$ be the unique polynomial in $C[X]$ satisfying $P(0) = 1$ and such that $P(q^{-s})$ is the numerator of $\gamma_{LS}(s, \pi, 2, \psi)$. Whenever π is tempered, the local Langlands-Shahidi exterior square L-function is defined by

$$L(s, \rho, \lambda^2) := P(q^{-s})^{-1}.$$

We observe that π tempered implies that $\mathcal{L}(s, \rho, \lambda^2)$ is holomorphic for $\text{Re}(s) > 0$ [21, §4.6]. The Langlands-Shahidi exterior square ε-factor is defined to satisfy the relation:

$$\varepsilon_{LS}(s, \pi, 2, \psi) = \bigg(\frac{\mathcal{L}(1 - s, \pi, \lambda^2)}{\mathcal{L}(s, \pi, \lambda^2)}\bigg)^{1/2}.$$

Besides, various types of L-factors $L(s, \pi, \text{Sym}^2)$ for $G = SO_{2m+1}$, $L(s, \pi \times \pi)$ for $G = GL_{2m}$, and $L(s, \pi, A)$ for $G = U_m$, can be extracted from [23, 35].

Proposition 2.16. Let Δ be a discrete series representation of the form

$$[\chi, \chi \nu, \cdots, \chi \nu^{\ell-1}],$$

where χ is a character of F^\times. Then we have

$$L(s, \Delta, \lambda^2) = L(s, \Delta, \lambda^2).$$

As a consequence, if $\ell = 2n$ is even and Δ is (S_{2n}, Θ)-distinguished, then Δ is self-dual.

Proof. Just as observed in Proposition 2.9, the Working Hypothesis does not need to be checked for the character χ of F^\times, and Δ is automatically self-dual. As in the proof of Theorem 4.4, we can easily reduce it to the case with Δ a unitary representation. We are then left with applying Theorem 2.15 to Δ, from which the equality shall follow by comparing it with the work of Shahidi [44, Proposition 8.1].

Let us turn our attention to the subclass of irreducible generic subquotients of principal series representations. This class is not necessarily spherical.

Proposition 2.17. Let π be an irreducible generic subquotient of a principal series representation of GL_m. Then we have

$$L(s, \pi, \lambda^2) = L(s, \pi, \lambda^2).$$
in the preceding section 4.8 2.6 2.16 2.2 2.16 17 with the absolute convergence of the integral \(\int \chi \circ \Phi \), where

\[\chi \circ \Phi = \chi \circ \Phi(\pi_{\chi}) = \chi \circ \Phi(\pi_{\chi}) \]

is a cuspidal automorphic representation of \(\Pi \). Hence Corollary 2.18.

Let \(\pi = \operatorname{Ind}_{B_m}^{GL_m}(\chi_1 \otimes \chi_2 \otimes \cdots \otimes \chi_m) \) be an irreducible full induced representation from the Borel subgroup of unramified character \(\chi \) of \(F^\times \). Then we have

\[L(s, \pi, \lambda^2) = \prod_{1 \leq i < j \leq m} \frac{1}{1 - \chi_i(\varpi)\chi_j(\varpi)q^{-s}}. \]

3. Local to Global Argument

3.1. Eulerian integral representations. We denote by \(\mathbb{F}_q \) the residue field of \(F \), and let \(k = \mathbb{F}_q(t) \) be a (global) function field of the projective line \(\mathbb{P}^1 \) over \(\mathbb{F}_q \). Let \(\mathbb{A} \) denote its ring of adeles. Let (\(\Pi, V_\Pi \)) be a cuspidal automorphic representation of \(GL_m(\mathbb{A}) \). We denote by \(|\mathbb{P}^1| \) the set of closed points of \(\mathbb{P}^1 \). The set \(|\mathbb{P}^1| \) is in bijection with the set of places of \(k \). Hence we write by abuse of notation \(|\mathbb{P}^1| \) for the set of places of \(k \). Since \(\Pi \) is irreducible, we have restricted tensor product decomposition \(\Pi = \bigotimes_i \Pi_i \) with \((\Pi_i, V_{\Pi_i}) \) irreducible admissible generic representations of \(GL_m(k_i) \) [12] (Cf. [8, §4]). Let its central character be \(\omega_\Pi \). We let \(P_{n-1} = Z_nP_n \) be the standard parabolic subgroup associated to the partition \((n - 1, 1) \) of \(n \). Each \(\Phi \in \mathcal{S}(\mathbb{A}^n) \) defines a smooth function on \(GL_n(\mathbb{A}) \), left invariant by \(P_n(\mathbb{A}) \), by \(g \mapsto \Phi(e_ng) \) for \(g \in GL_n(\mathbb{A}) \). We consider the function

\[f(s, g; \Phi, \omega_\Pi) = |\det(g)|^s \int_{\mathbb{A}^n} \omega_\Pi(z)\Phi(ze_ng)|z|^{ns}d^nx \]

with the absolute convergence of the integral [26, (4.1)]. We extend \(\omega_\Pi \) to a character of \(P_{n-1} \) by \(\omega_\Pi(p) = \omega_\Pi(a) \) for \(p = \begin{pmatrix} h & u \\ a & 1 \end{pmatrix} \in P_{n-1} \). We construct the Eisenstein series by

\[E(s, g; \Phi, \omega_\Pi) = \sum_{\gamma \in P_{n-1,1}(k) \setminus GL_n(k)} F(s, \gamma g; \Phi, \omega_\Pi) \]

This series is convergent absolutely for \(\operatorname{Re}(s) > 1 \) [26, (4.1)]. The mirabolic (Godement-Jacquet) Eisenstein series \(E(s, g; \Phi, \omega_\Pi) \) has a meromorphic continuation to all of \(\mathbb{C} \) and satisfies the following functional equation [26, §4]:

\[E(s, g; \Phi, \omega_\Pi) = E(1 - s, \gamma g; \Phi, \omega_\Pi^{-1}) \]

where \(\gamma g = \gamma g^{-1} \) and the Fourier transform on \(\mathcal{S}(\mathbb{A}^n) \) is defined by

\[\hat{\Phi}(g) = \int_{\mathbb{A}^n} \Phi(x)\psi(x^tg)dx. \]

For \(m = 2n \), \(\Phi \in \mathcal{S}(\mathbb{A}^n) \), and \(\varphi \in V_\Pi \), we let

\[I_\varphi(s, \varphi, \Phi) = \int_{Z_n(\mathbb{A})GL_n(\mathbb{A})} \int_{M_n(k) \setminus M_n(\mathbb{A})} \varphi \left(\begin{pmatrix} I_n & X \\ 0 & I_n \end{pmatrix} \begin{pmatrix} g \\ \varphi \end{pmatrix} \right) \psi^{-1}(\operatorname{Tr}(X))E(s, g; \Phi, \omega_\Pi)dXdg. \]
For $m = 2n + 1$, $\Phi \in S(\mathbb{A}^n)$, and $\varphi \in V_{\Pi}$, we define a global integral as follows:

$$I_\psi(s, \varphi, \Phi) = \int_{k^n \setminus GL_n(k) \setminus GL_n(\mathbb{A}) \setminus M_n(k) \setminus M_n(\mathbb{A})} \int_{k^n \setminus \mathbb{A}^n} \varphi \left(\begin{pmatrix} I_n & X & Z \cr I_n & 1 & g \cr I_n & y & 1 \end{pmatrix} \right) \Psi^{-1}(\text{Tr}(X)) \det(g)|^{s-1} dX dy \times \varphi^{-1}(\text{Tr}(X)) dX dy.$$

The following theorem gives a meaning to these global integrals.

Theorem 3.1. The integral $I_\psi(s, \varphi, \Phi)$ is convergent for $\text{Re}(s)$ large enough, represents a meromorphic function on the entire plane and satisfies the functional equation

$$I_\psi(s, \varphi, \Phi) = I_{\psi-1}(1 - s, \varphi(\tau_m \varphi), \Phi),$$

where φ denotes right translation and $\varphi(g) = \varphi(\tau g)$.

Proof. The analytic properties have been established for the even case $m = 2n$ in Section 5 of [27] and the odd case $m = 2n + 1$ in Section 9 of [27]. The functional equation for the even case $m = 2n$ follows immediately from that of the Eisenstein series $E(s, g: \Phi, \omega_{\Pi})$ (3.1). See also [34, Theorem 3.11]. We take this occasion to refine the elaboration for the odd case $m = 2n + 1$ in [9, §3.5] thoroughly. If $\varphi \in V_{\Pi}$, then φ_1 and φ_2 are defined on the page 219 of [27]:

$$\varphi_1(g) = \int_{\mathbb{A}^n} \varphi \left(g \begin{pmatrix} I_n & I_n & 1 \cr & y & 1 \end{pmatrix} \right) \Phi(dY) dy; \quad \varphi_2(g) = \int_{\mathbb{A}^n} \varphi \left(g \begin{pmatrix} I_n & I_n & 1 \cr & y & 1 \end{pmatrix} \right) \Phi(-\tau y) dy$$

where $\Phi \in S(\mathbb{A}^n)$. We begin to deal with the equation on the bottom of page 219 of [27]:

$$\int_{k^n \setminus \mathbb{A}^n} \int_{M_n(k) \setminus M_n(\mathbb{A})} \varphi_1 \left(\begin{pmatrix} I_n & X & Z \cr I_n & 1 & g \cr I_n & y & 1 \end{pmatrix} \right) \psi^{-1}(\text{Tr}(X)) dX dy \times \varphi_2 \left(\begin{pmatrix} I_n & X & Z \cr I_n & 1 & g \cr I_n & y & 1 \end{pmatrix} \right) \psi^{-1}(\text{Tr}(X)) dX dy \times \det(g).$$

(Here φ in the corresponding formula in [27, P. 219] seems to be φ_2). As opposed to Jacquet and Shalika who conjugate them with the permutation matrix $\begin{pmatrix} w_n & \cdots & w_n \\
1 & \cdots & 1 \end{pmatrix}$, we exploit τ_{2n+1}. This articulation is consistent with the shape of the local functional equation in [9, Theorem 3.1]. By applying $g \mapsto \tau_{2n+1}^{-1} g \tau_{2n+1}^{-1}$, and then changing the variables $X \mapsto -X$ and $Z \mapsto -Z$, the above integral is written as

$$\int_{k^n \setminus \mathbb{A}^n} \int_{M_n(k) \setminus M_n(\mathbb{A})} \varphi_2 \left(\begin{pmatrix} I_n & X & Z \cr I_n & 1 & t \cr I_n & y & 1 \end{pmatrix} \right) \psi(\text{Tr}(X)) dy \times \det(g).$$
We insert the definition of φ_1 and φ_2 and then utilize the assignment $g \mapsto \tau_{2n+1} t g \tau_{2n+1}^{-1}$ on the last matrix. After the change of the variables $y \mapsto -y$, the identity becomes

\[
\int_{A^n} \int_{k^n \setminus A^n} \int_{M_n(k) \setminus M_n(\mathbb{A})} \varphi \left(\begin{pmatrix} I_n & X & Z \\ I_n & y & 1 \end{pmatrix} \right) \begin{pmatrix} g \\ g \\ 1 \end{pmatrix} \begin{pmatrix} I_n \\ I_n \\ y \\ 1 \end{pmatrix} \psi^{-1}(\text{Tr}(X))\Phi(y)dXdZdy
\]

\[
= \int_{A^n} \int_{k^n \setminus A^n} \int_{M_n(k) \setminus M_n(\mathbb{A})} \tilde{\varphi} \left(\begin{pmatrix} I_n & X & Z \\ I_n & y & 1 \end{pmatrix} \right) \begin{pmatrix} t g^{-1} \\ t g^{-1} \end{pmatrix} \begin{pmatrix} I_n \\ I_n \\ y \\ 1 \end{pmatrix} \tau_{2n+1} \right) \psi(\text{Tr}(X))\tilde{\Phi}(y)dXdZdy|\det(g)|
\]

from which the desired global functional equation for integrals follows. \[\square\]

Let

\[
W_\varphi(g) = \int_{N_m(k) \setminus N_m(\mathbb{A})} \varphi(ng)\psi^{-1}(n)dn \quad \text{and} \quad \tilde{W}_\varphi(g) = \int_{N_m(k) \setminus N_m(\mathbb{A})} \tilde{\varphi}(w_mng)\psi(n)dn
\]

be the associated Whittaker function of φ and $\tilde{\varphi}$, respectively. We have yet to check that our integrals are Eulerian.

Proposition 3.2 (Jacquet-Shalika). For $\varphi \in V_{II}$ and $\Phi \in S(F^n)$, global Jacquet-Shalika integrals

\[
J_\psi(s, W_\varphi, \Phi)
\]

\[
= \int_{N_m(\mathbb{A}) \setminus GL_n(\mathbb{A})} \int_{N_m(\mathbb{A}) \setminus M_n(\mathbb{A})} W_\varphi \left(\begin{pmatrix} I_n & X \\ I_n \end{pmatrix} \right) \begin{pmatrix} g \\ g \end{pmatrix} \psi^{-1}(\text{Tr}(X))\Phi(e_n,g)|\det(g)|^{s-1}dXdg
\]

in the even case $m = 2n$ and

\[
J_\psi(s, W_\varphi, \Phi) = \int_{N_m(\mathbb{A}) \setminus GL_n(\mathbb{A})} \int_{N_m(\mathbb{A}) \setminus M_n(\mathbb{A})} \int_{A^n} W_\varphi \left(\begin{pmatrix} I_n & X \\ I_n \end{pmatrix} \right) \begin{pmatrix} g \\ g \end{pmatrix} \begin{pmatrix} I_n \\ I_n \\ y \\ 1 \end{pmatrix} \right) \psi^{-1}(\text{Tr}(X))\tilde{\Phi}(y)|\det(g)|^{s-1}dYdX
dXdg
\]

in the odd case $m = 2n + 1$ converges when $\text{Re}(s)$ is sufficiently large and, when this is the case, we have

\[
I_\psi(s, \varphi, \Phi) = J_\psi(s, W_\varphi, \Phi).
\]

We suppose, in addition, that $W_\varphi(g) = \prod_{v \in |P|} W_\varphi(g_v)$, $\psi(n) = \prod_{v \in |P|} \psi(n_v)$, and $\Phi(g) = \prod_{v \in |P|} \Phi_v(g_v)$. Then, when $\text{Re}(s)$ is sufficiently large,

\[
J_\psi(s, W_\varphi, \Phi) = \prod_{v \in |P|} J_\psi(s, W_\varphi, \Phi_v).
\]

Likewise, the right hand side of the functional equation is also unfold and can be factored as

\[
I_{\psi^{-1}}(1-s, \varphi(\tau_m)\tilde{\varphi}, \Phi) = J_{\psi^{-1}}(1-s, \varphi(\tau_m)\tilde{W}_\varphi, \Phi) = \prod_{v \in |P|} J_{\psi^{-1}}(1-s, \varphi(\tau_m)\tilde{W}_\varphi, \Phi_v)
\]

with the convergence for $\text{Re}(s) \ll 0$.

Proof. All these statements are drawn, with some minor changes of notation, from Proposition 5 in §6 of [27] for the even case $m = 2n$, and Section 9.2 of [27] for the odd case $m = 2n + 1$. \[\square\]

Throughout, we will take $S \subset |P|\setminus \Pi_v$ to be a finite set of places such that for all $v \notin S$, Π_v and ψ_v are all unramified and ψ_v normalized. The partial L-function is a product of local factors

\[
L^S(s, \Pi, \lambda^2) = \prod_{v \notin S} L(s, \Pi_v, \lambda^2).
\]
More precisely, this product converges for \(\Re(s) \) large enough (cf. [27, §8, §9]). The global \(L \)-function and \(\varepsilon \)-factors for \(\Pi \) are
\[
L(s, \Pi, \wedge^2, S) = \prod_{v \in |P^1|} L(s, \Pi_v, \wedge^2) = L^S(s, \Pi, \wedge^2) \prod_{v \in S} L(s, \Pi_v, \wedge^2)
\]
and
\[
\varepsilon(s, \Pi, \wedge^2, S) = \prod_{v \in |P^1|} \varepsilon(s, \Pi_v, \wedge^2, \psi_v) = \prod_{v \in S} \varepsilon(s, \Pi_v, \wedge^2, \psi_v).
\]

As for the \(\varepsilon \)-factor, we know that \(\varepsilon(s, \Pi_v, \wedge^2, \psi_v) \equiv 1 \) for \(v \notin S \). The independence of \(\varepsilon(s, \Pi, \wedge^2, S) \) from the choice of \(\psi \) can be seen as a consequence of the global functional equation below.

Theorem 3.3. The global \(L \)-function \(L(s, \Pi, \wedge^2, S) \) has a meromorphic continuation to the entire plane and it satisfies the global functional equation
\[
L(s, \Pi, \wedge^2, S) = \varepsilon(s, \Pi, \wedge^2, S)L(1 - s, \tilde{\Pi}, \wedge^2, S),
\]
where \(\varepsilon(s, \Pi, \wedge^2, S) \) is entire and non-vanishing. This identity implies that \(\varepsilon(s, \Pi, \wedge^2, S) \) is independent of \(\psi \) as well.

Proof. From the unfolding in Proposition 3.2, and the local calculation of [27, §7.2, §9.4] together with Corollary 2.18, we know that for \(\Re(s) \) large and for appropriate choice of \(\varphi \), we have
\[
I_\psi(s, \varphi, \Phi) = J_\psi(s, W_\varphi, \Phi) = \prod_{v \in |P^1|} J_\psi_v(s, W_{\varphi_v}, \Phi_v) = \left(\prod_{v \in S} J_\psi_v(s, W_{\varphi_v}, \Phi_v) \right) L^S(s, \Pi, \wedge^2)
\]
\[
= \left(\prod_{v \in S} \frac{J_\psi_v(s, W_{\varphi_v}, \Phi_v)}{L(s, \Pi_v, \wedge^2)} \right) L(s, \Pi, \wedge^2, S) = \left(\prod_{v \in S} e_v(s, W_{\varphi_v}, \Phi_v) \right) L(s, \Pi, \wedge^2, S),
\]
where \(e_v(s, W_{\varphi_v}, \Phi_v) = \frac{J_\psi_v(s, W_{\varphi_v}, \Phi_v)}{L(s, \Pi_v, \wedge^2)} \). It can be seen from Theorem 2.1 that \(e_v(s, W_{\varphi_v}, \Phi_v) \) is entire. Therefore \(L(s, \Pi, \wedge^2, S) \) has a meromorphic continuation as the integral \(I_\psi(s, \varphi, \Phi) \) is a meromorphic function on the entire plane from Theorem 3.1. While on the other side, we obtain
\[
I_{\psi^{-1}}(1 - s, \varrho(\tau_m)\tilde{\varphi}, \hat{\Phi}) = J_{\psi^{-1}}(1 - s, \varrho(\tau_m)\tilde{W}_\varphi, \hat{\Phi})
\]
\[
= \left(\prod_{v \in S} \tilde{e}_v(1 - s, \varrho(\tau_m)\tilde{W}_{\varphi_v}, \hat{\Phi}_v) \right) L(1 - s, \tilde{\Pi}, \wedge^2, S)
\]
with \(\tilde{e}_v(1 - s, \varrho(\tau_m)\tilde{W}_{\varphi_v}, \hat{\Phi}_v) = \frac{J_\psi^{-1}(1 - s, \varrho(\tau_m)\tilde{W}_{\varphi_v}, \hat{\Phi}_v)}{L(1 - s, \tilde{\Pi}_v, \wedge^2)} \). However we derive from the local functional equation, Theorem 2.2, that
\[
\tilde{e}_v(1 - s, \varrho(\tau_m)\tilde{W}_{\varphi_v}, \hat{\Phi}_v) = \frac{J_\psi^{-1}(1 - s, \varrho(\tau_m)\tilde{W}_{\varphi_v}, \hat{\Phi}_v)}{L(1 - s, \tilde{\Pi}_v, \wedge^2)} = \varepsilon(s, \Pi_v, \wedge^2, \psi_v) \frac{J_\psi_v(s, W_{\varphi_v}, \Phi_v)}{L(s, \Pi_v, \wedge^2)}
\]
\[
= \varepsilon(s, \Pi_v, \wedge^2, \psi_v)e_v(s, W_{\varphi_v}, \Phi_v).
\]
Combining these all together, we get
\[
L(s, \Pi, \wedge^2, S) = \left(\prod_{v \in S} \varepsilon(s, \Pi_v, \wedge^2, \psi_v) \right) L(1 - s, \tilde{\Pi}, \wedge^2, S) = \varepsilon(s, \Pi, \wedge^2, S)L(1 - s, \tilde{\Pi}, \wedge^2, S)
\]
since for \(v \notin S \) we know that \(\Pi_v \) and \(\psi_v \) are unramified so that \(\varepsilon(s, \Pi_v, \wedge^2, \psi_v) \equiv 1 \). \(\square \)
3.2. The equality for discrete series representations. Let \(k_0 = \mathbb{F}_q((t)) \) be the completion of \(k \) at the point 0 \(\in [\mathbb{P}^1] \). We start with a local irreducible unitary supercuspidal representation \(\rho \) and globalize it according to the result of Henniart-Lomelí [21; 23, Theorem 3.1].

Theorem 3.4 (Henniart-Lomelí). Let \(\rho \) be an irreducible unitary supercuspidal representation of \(GL_m(F) \). We choose an isomorphism \(\xi : F \cong k_0 \). Then there exists a cuspidal unitary automorphic representation \(\Pi = \bigotimes_v \Pi_v \) whose local components \(\Pi_v \) satisfy:

- \(\rho \) corresponds to \(\Pi_0 \) via \(\xi \);
- at the places \(v \in [\mathbb{P}^1] \) away from 0, 1, and \(\infty \), \(\Pi_v \) is irreducible and unramified;
- \(\Pi_1 \) is an irreducible generic subquotient of an unramified principal series representation;
- \(\Pi_\infty \) is an irreducible generic subquotient of a tamely ramified principal series representation.

We have control at all places outside 0, which makes it possible to deduce the identity for irreducible supercuspidal representations.

Theorem 3.5 (Supercuspidal cases). Let \(\rho \) be an irreducible supercuspidal representation of \(GL_r \). Then we have

\[
L(s, \rho, \wedge^2) = L(s, \rho, \wedge^2).
\]

As a consequence, if \(\rho \) is \((S_{2n}, \Theta)\)-distinguished, then \(\rho \) is self-dual.

Proof. Twisting by an unramified character does not affect the conclusion, so we can assume that \(\rho = \rho_0 \) is unitary. (See the proof of Theorem 4.4 for details, cf.[35, §6.6]). We define the Langlands-Shahidi global \(L \)-function and \(\varepsilon \)-factors for \(\Pi \) by

\[
\mathcal{L}(s, \Pi, \wedge^2, S) = \prod_{v \in [\mathbb{P}^1]} \mathcal{L}(s, \Pi_v, \wedge^2) \quad \text{and} \quad \varepsilon_{LS}(s, \Pi, \wedge^2, \psi, S) = \prod_{v \in [\mathbb{P}^1]} \varepsilon_{LS}(s, \Pi_v, \wedge^2, \psi_v).
\]

We choose a finite set \(S = \{0, 1, \infty\} \) of places. Applying Theorem 3.4 to the irreducible unitary supercuspidal representation \(\rho_0 \), we obtain a cuspidal unitary automorphic representation \(\Pi \). For our convenience, we rewrite the global functional equation in [21, 4.1.(vi)] as

\[
\mathcal{L}(s, \Pi, \wedge^2, S) = \varepsilon_{LS}(s, \Pi, \wedge^2, S)\mathcal{L}(1 - s, \tilde{\Pi}, \wedge^2, S).
\]

The function \(\varepsilon_{LS}(s, \Pi, \wedge^2, S) \) is entire and non-vanishing. From the global functional equation given by Theorem 3.3 and (3.2), this means that the ratio of \(L \)-function satisfies

\[
\frac{L(s, \Pi, \wedge^2, S)}{\mathcal{L}(s, \Pi, \wedge^2, S)} = \frac{\eta(s, \Pi, S)\mathcal{L}(1 - s, \tilde{\Pi}, \wedge^2, S)}{\varepsilon_{LS}(s, \Pi, \wedge^2, S)\mathcal{L}(1 - s, \tilde{\Pi}, \wedge^2, S)},
\]

where \(\eta(s, \Pi, S) = \varepsilon(s, \Pi, \wedge^2, S)\varepsilon_{LS}(s, \Pi, \wedge^2, S)^{-1} \) is entire and non-vanishing. Applying the already established principal series representations in Corollary 2.18 alongside with Proposition 2.17 at the places \([\mathbb{P}^1] - \{0\}\) yields agreements:

\[
\prod_{v \notin \{0\}} L(s, \Pi_v, \wedge^2) = \prod_{v \notin \{0\}} \mathcal{L}(s, \Pi_v, \wedge^2) \quad \text{and} \quad \prod_{v \notin \{0\}} L(1 - s, \tilde{\Pi}_v, \wedge^2) = \prod_{v \notin \{0\}} \mathcal{L}(1 - s, \tilde{\Pi}_v, \wedge^2).
\]

Therefore, at the remaining one place, we have

\[
\frac{L(s, \rho_0, \wedge^2)}{\mathcal{L}(s, \rho_0, \wedge^2)} = \frac{\eta(s, \Pi, S)\mathcal{L}(1 - s, \tilde{\rho}_0, \wedge^2)}{\varepsilon_{LS}(s, \rho_0, \wedge^2)\mathcal{L}(1 - s, \tilde{\rho}_0, \wedge^2)}.
\]

In view of [17] and [34, Theorem 3.7], \(L(s, \rho_0, \wedge^2) \) and \(\mathcal{L}(s, \rho_0, \wedge^2) \) are regular and non-vanishing in the region \(\text{Re}(s) > 0 \), whereas similar analytic properties for \(L(1 - s, \tilde{\rho}_0, \wedge^2) \) and \(\mathcal{L}(1 - s, \tilde{\rho}_0, \wedge^2) \) are valid in the half plane \(\text{Re}(s) < 1 \). This forces that the ratio \(\frac{L(s, \rho_0, \wedge^2)}{\mathcal{L}(s, \rho_0, \wedge^2)} \) is an entire and non-vanishing function and hence it is a constant. Since these \(L \)-factors are normalized, these must be equal.
We now gain the full strength of flexibility to transport L-factors in the Langlands-Shahidi side to the Rankin-Selberg side. The L-factor $L(s, \rho \times \rho)$ is decomposed as the product of $L(s, \rho, \Lambda^2)$ and $L(s, \rho, \text{Sym}^2)$ (cf. \cite{17, 21, 44, Corollary 8.2}). Then the pole of $L(s, \rho, \Lambda^2)$ at $s = 0$ detected by the existence of Shalika functional \cite[Theorem 3.6.(ii)]{29} contributes the pole of $L(s, \rho \times \rho)$. This is amount to saying that ρ is self-dual \cite[Proposition 4.6]{39}.

Once we know the inductivity of ε-factors, we expect that $\eta(s, \Pi, S) \equiv 1$ independent the choice of S. We now come to the case of discrete series representations.

Theorem 3.6 (Discrete series cases). \textit{Let Δ be a discrete series representation of GL_m. Then we have}

$$L(s, \Delta, \Lambda^2) = L(s, \Delta, \Lambda^2).$$

As a consequence, if Δ is (S_{2n}, Θ)-distinguished, then Δ is self-dual.

Proof. As indicated in the proof of Theorem 4.4, after proper unramified twisting of Δ, we can easily reduce the equality to the case when Δ is a unitary representation of the form $[\rho_0, \nu_1^{-\frac{1}{2}}, \cdots, \rho_0, \nu_t^{-\frac{1}{2}}]$ with ρ_0 a unitary irreducible supercuspidal representation of GL_r (cf.\cite[§6.6]{35}). Taking the advantage of Proposition 3.5, Theorem 2.15 finally matches with the expression in \cite[Proposition 8.1]{44}. Concerning the second assertion, we literally reiterate the second part of the proof of Theorem 3.5 line-by-line, and therefore we omit thorough arguments entirely.

The identity can be extended to the class of all irreducible admissible representations of GL_m.

Theorem 3.7. \textit{Let π be an irreducible admissible representation of GL_m. Then we have}

$$L(s, \pi, \Lambda^2) = L(s, \pi, \Lambda^2).$$

Proof. We realize π as the unique Langlands quotient of Langlands type $\Xi = \text{Ind}^G_{Q} (\Delta_{o_1} \nu^{\mu_1} \otimes \Delta_{o_2} \nu^{\mu_2} \otimes \cdots \otimes \Delta_{o_t} \nu^{\mu_t})$ which is again of Whittaker type. Thanks to Theorem 3.6, the Working Hypothesis is not required to be checked for discrete series representations. Then Theorem 2.13 gives us that

$$L(s, \Xi, \Lambda^2) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_{o_k}, \Lambda^2) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j}),$$

which coincides with corresponding decompositions in the Langlands-Shahidi theory \cite[§3.1.(xi)]{17}.

By exploiting the main result of Henniart-Lomelí \cite{21}, it can be summarized that the definition of local exterior square L-function via the theory of integral representations is compatible with the local Langlands correspondence. In what follows, we let W'_F denote the Weil–Deligne group of F and let ϕ a m-dimensional (complex-valued) Frobenius semi-simple representation of W'_F. We call this the \textit{Weil-Deligne representation of W'_F}. Let Λ^2 denote the exterior representation of $GL_m(\mathbb{C})$. We then denote by $L(s, \Lambda^2(\phi))$ the \textit{Artin exterior square L-factor} attached to ϕ.

Theorem 3.8. \textit{Let π be an irreducible admissible representation of $GL_m(F)$ and $\phi(\pi)$ the Weil-Deligne representation of W'_F corresponding to π under the local Langlands correspondence. Then we have}

$$L(s, \pi, \Lambda^2) = L(s, \pi, \Lambda^2) = L(s, \Lambda^2(\phi(\pi))).$$

4. **Bump-Friedberg and Flicker Zeta Integrals**

4.1. **Bump-Friedberg L-factors.** We define the embedding $J : GL_n \times GL_n \rightarrow GL_m$ by

$$J(g, g')_{k,l} = \begin{cases} g_{i,j} & \text{if } k = 2i - 1, l = 2j - 1, \\ g'_{i,j} & \text{if } k = 2i, l = 2j, \\ 0 & \text{otherwise}, \end{cases}$$
for $m = 2n$ even and $J : GL_{n+1} \times GL_n \to GL_m$ by

$$J(g, g')_{k,l} = \begin{cases} g_{i,j} & \text{if } k = 2i - 1, l = 2j - 1, \\ g_{l,j} & \text{if } k = 2i, l = 2j, \\ 0 & \text{otherwise}, \end{cases}$$

for $m = 2n + 1$ odd. As for the intention of holding onto coherent terminology with [39], interested readers may perceive that we interchange the role of g and g' in [5]. Let $\pi = \text{Ind}_{Q}^{GL_m}(\Delta_1 \otimes \cdots \otimes \Delta_t)$ be a parabolically induced representation. For each Whittaker function $W \in W(\pi, \psi)$ and Schwartz-Bruhat function $\Phi \in S(F^n)$, we define Bump-Friedberg integrals:

$$Z(s_1, s_2, W, \Phi) = \int_{N_m} \int_{N_n \backslash GL_n} W(J(g, g')) \Phi(e_m J(g, g')) \left| \det(g) \right|^{-s_1/2} \left| \det(g') \right|^{s_2 - s_1} \, dg \, dg'$$

in the even case $m = 2n$ and

$$Z(s_1, s_2, W, \Phi) = \int_{N_m} \int_{N_n \backslash GL_n} W(J(g, g')) \Phi(e_m J(g, g')) \left| \det(g) \right|^{-s_1/2} \left| \det(g') \right|^{s_2 - s_1} \, dg \, dg'$$

in the odd case $m = 2n + 1$. If r a real number, we denote by δ_r the character,

$$\delta_r : J(g, g') \mapsto \left| \frac{\det(g)}{\det(g')} \right|^r.$$

We denote by χ_m and μ_m characters of H_m:

$$\chi_m \left(w_m \begin{pmatrix} g & \alpha \\ g' & \beta \end{pmatrix} w_m^{-1} \right) = \begin{cases} 1 & \text{for } m = 2n; \\ \left| \frac{\det(g)}{\det(g')} \right| & \text{for } m = 2n + 1; \end{cases}$$

$$\mu_m \left(w_m \begin{pmatrix} g & \alpha \\ g' & \beta \end{pmatrix} w_m^{-1} \right) = \begin{cases} \left| \frac{\det(g)}{\det(g')} \right| & \text{for } m = 2n; \\ 1 & \text{for } m = 2n + 1. \end{cases}$$

We turn toward the case for $s_1 = s + 1/2$ and $s_2 = 2s$. We unify Bump-Friedberg Zeta Integrals as one single integral of the form:

$$Z(s, W, \Phi) = \int_{(N_m \cap H_m) \backslash H_m} W(h) \chi_m^{1/2}(h) \Phi(e_m h) \left| \det(h) \right|^s \, dh$$

The twisted analogue of Bump-Friedberg Zeta Integrals attached to χ_α is defined by

$$Z(s, W, \Phi, \chi_\alpha) = \int_{(N_m \cap H_m) \backslash H_m} W(h) \chi^{1/2}(h) \chi_\alpha \Phi(e_m h) \left| \det(h) \right|^s \, dh$$

The integral $Z(s, W, \Phi, \chi_\alpha)$ converges absolutely for s of real part large enough. The \mathbb{C}-vector space generated by Bump-Friedberg Zeta integrals

$$\langle Z(s, W, \Phi, \chi_\alpha) \mid W \in W(\pi, \psi), \Phi \in S(F^n) \rangle$$

is a $\mathbb{C}[q^{\pm s}]$-fractional ideal $I(\pi, \chi_\alpha, BF)$ of $\mathbb{C}(q^{-s})$. The ideal $I(\pi, \chi_\alpha, BF)$ is principal and has a unique generator of the form $P(q^{-s})^{-1}$, where $P(X)$ is a polynomial in $\mathbb{C}[X]$ with $P(0) = 1$. The Bump-Friedberg L-factor associated to π is defined by the unique normalized generator [39, Proposition 4.8]:

$$L(s, \pi, \chi_\alpha, BF) = \frac{1}{P(q^{-s})}.$$

If $\alpha = 1_{F^\times}$ is a trivial character, it is convenient to write $L(s, \pi, BF)$ for $L(s, \pi, \chi_1_{F^\times}, BF)$. The Bump-Friedberg γ-factor

$$\gamma(s, \pi, BF, \psi) = \varepsilon(s, \pi, BF, \psi) \frac{L(1/2 - s, \pi', \delta_{-1/2}, BF)}{L(s, \pi, BF)}$$
is a rational function in $\mathbb{C}(q^{-s})$ that depends on a choice of a non-trivial character ψ (Cf. [39, Proposition 4.11]). While the proof of [38, Proposition 6.2] reflects the structure of Weil-Deligne representations, our aim is to show the factorization of $L(s, \pi, \chi_\alpha, BF)$ as a product of the standard L-factor $L(s+1/2, \pi)$ and the exterior square L-factor $L(2s, \pi, \wedge^2)$ within the framework of Rankin-Selberg method. Our approach here is more direct and concise.

Theorem 4.1 (Supercuspidal cases). Let ρ be an irreducible supercuspidal representation of GL_r. Then

$$L(s, \rho, BF) = L(s + 1/2, \rho)L(2s, \rho, \wedge^2).$$

Proof. If $r = 1$, then ρ is a character of F^\times. The integral is just Tate integrals of the form

$$\int_{F^\times} \rho(z)\Phi(z)|z|^{s+\frac{r}{2}}d^\times z,$$

hence

$$L(s, \rho, BF) = L(s + 1/2, \rho) = L(s + 1/2, \rho)L(2s, \rho, \wedge^2),$$

where the last equality comes from $L(2s, \rho, \wedge^2) = 1$ (Cf. [29, Theorem 2.13]).

We deduce from Theorem 2.3 aligned with [39, Proposition 4.14] that all the poles of $L(s, \rho, BF)$ and $L(s, \rho, \wedge^2)$ are necessarily simple. Given $r = 2n + 1$ with $n \geq 1$, the result of Matringe [38, Theorem 3.1] (Cf. Theorem 4.2) tells us that ρ cannot be H_{2n+1}-distinguished. According to [24, §3.1] coupled with [29, Theorem 3.6.(iii)] and [39, Corollary 4.3], we have

$$L(s, \rho, BF) = L(s, \rho) = L(s, \rho, \wedge^2) = 1.$$

Now we turn to the case when $r = 2n$ is even. Analyzing poles of local L-functions is just a question of certain distinctions of representations. To be precise, [29, Theorem 3.6.(i)] together with [39, Corollary 4.3] and §2.2 lead us to the following equivalent statements:

1. $L(2s, \rho, \wedge^2)$ has a pole at $s = s_0$;
2. $L(s, \rho, BF)$ has a pole at $s = s_0$;
3. ρ^{s_0} is (S_{2n}, Θ)-distinguished;
4. ρ^{s_0} is H_{2n}-distinguished.

The above characterization of poles of L-factors can be reinterpreted in the following manner:

$$L(s, \rho, BF) = L(2s, \rho, \wedge^2) = L(s + 1/2, \rho)L(2s, \rho, \wedge^2),$$

where the last identity follows from $L(s + 1/2, \rho) = 1$ (Cf. [24, §3.1]).

Unlike the case of Jacquet and Shalika’s Zeta integrals §2–§3, it is necessary to use the hereditary property of H_{2n+1}-distinguished representations due to N. Matringe [39, Theorem 3.1] additionally.

Theorem 4.2 (N. Matringe. Odd cases $m = 2n + 1$). Let $\pi = \text{Ind}_Q^{GL_{2n+1}}(\Delta_1 \otimes \Delta_2 \otimes \cdots \otimes \Delta_t)$ be an irreducible generic representation of GL_{2n+1}. Let α be a character of F^\times with $0 \leq \text{Re}(\alpha) \leq 1/2$. Then π is $(H_{2n+1}, \chi_\alpha^{\delta_0 - 1/2})$-distinguished if and only if π is a parabolically induced representation of the form $\text{Ind}_{P_{2n,1}}^{GL_{2n+1}}(\pi' \otimes \alpha'^{-1/2})$, for π' an irreducible generic (H_{2n}, χ_α)-distinguished representation of GL_{2n} such that $\text{Ind}_{P_{2n,1}}^{GL_{2n+1}}(\pi' \otimes \alpha'^{-1/2})$ is still irreducible and generic.

Throughout the rest of §4.1, a variant of the systematic machinery developed in §2.3 (in particular, Proposition 2.10 to Theorem 2.12) should continue to work out in the context of Bump-Friedberg Zeta integrals and it is dealt with in [39, §4] in great detail and clarity. By doing so, Bump-Friedberg local L-functions are compatible with the classification of discrete series representations in terms of supercuspidal ones owing to Bernstein and Zelevinsky [4, 48].

Proposition 4.3. Let $\Delta_0 = [\rho_o, \rho_o^{\frac{1}{2}}, \cdots, \rho_o^{\frac{t-1}{2}}]$ be an irreducible square integrable representation of GL_{t_r} with ρ_o an irreducible unitary supercuspidal representation of GL_r.

(i) Suppose that \(\ell \) is even. Then we have
\[
L(s, \Delta_\ell, BF) = L(s + \ell/2, \rho) \prod_{i=1}^{\ell/2} L(2s, \rho \nu^{(\ell+1)/2-i}, \chi_2) L(2s, \rho \nu^{\ell/2-i}, \Sym^2).
\]

(ii) Suppose that \(\ell \) is odd. Then we have
\[
L(s, \Delta_\ell, BF) = L(s + \ell/2, \rho) \prod_{i=1}^{(\ell+1)/2} L(2s, \rho \nu^{(\ell+1)/2-i}, \chi_2) \prod_{i=1}^{(\ell-1)/2} L(2s, \rho \nu^{\ell/2-i}, \Sym^2).
\]

Proof. By the uniqueness of the Whittaker functional, the Whittaker model for \(\Delta_\ell \) coincides with that for \(\Ind(\rho \nu^{−\frac{\ell+1}{2}} \otimes \cdots \otimes \rho \nu^{−\frac{\ell-1}{2}}) \). Likewise the same trait holds for dual objects provided by \(\Ind(\tilde{\rho} \nu^{−\frac{\ell+1}{2}} \otimes \cdots \otimes \tilde{\rho} \nu^{−\frac{\ell-1}{2}}) \) and \(\tilde{\Delta}_\ell \). According to [39, Proposition 5.5],
\[
\gamma(s, \Delta_\ell, BF, \psi) \sim \prod_{i=0}^{\ell-1} \gamma \left(s + \frac{1-\ell}{2} + i, \rho, BF, \psi \right) \prod_{0 \leq i < j \leq \ell-1} \gamma(2s + 1 - \ell + i + j, \rho \times \rho, \psi).
\]

With the help of Theorem 4.1, the expression can be reformulated in terms of \(L \)-factors as
\[
\gamma(s, \Delta_\ell, BF, \psi) \sim \prod_{i=0}^{\ell-1} \frac{L(-s - i + \ell/2, \rho)}{L(s + i - 1 - \ell/2, \rho)} \prod_{i=0}^{\ell-1} \frac{L(-2s + \ell - 2i, \rho, \chi_2)}{L(2s + 1 - \ell + 2i, \rho, \chi_2)} \prod_{0 \leq i < j \leq \ell-1} \frac{L(-2s + \ell - i - j, \rho \times \rho)}{L(2s + 1 - \ell + i + j, \rho \times \rho)}.
\]

By virtue of [29, Lemma 5.11] combined with \(L(-s, \rho) \sim L(s, \tilde{\rho}) \) (Cf. [25, §8.2 (15), (16)]), it may be written as
\[
\gamma(s, \Delta_\ell, BF, \psi) \sim \prod_{i=0}^{\ell-1} \frac{L(s + i - \ell/2, \rho)}{L(s + i + 1 - \ell/2, \rho)} \prod_{i=0}^{\ell-1} \frac{L(2s - \ell + 2i, \rho, \chi_2)}{L(2s + 1 - \ell + 2i, \rho, \chi_2)} \prod_{0 \leq i < j \leq \ell-1} \frac{L(2s - \ell + i + j, \rho \times \rho)}{L(2s + 1 - \ell + i + j, \rho \times \rho)}.
\]

We do the case \(\ell \) even, the case \(\ell \) odd being treated similarly. At this moment, we repeat the proof given in [29, Theorem 5.12] with adjusting \(s \) to \(2s \). After cancelling common factors, our quotient is simplified to
\[
\gamma(s, \Delta_\ell, BF, \psi) \sim \frac{L(s - \ell/2, \rho)}{L(s + \ell/2, \rho)} \prod_{i=0}^{(\ell/2)-1} \frac{L(2s - \ell + 2i, \rho, \chi_2)}{L(2s + 1 + 2i, \rho, \chi_2)} \frac{L(2s - \ell + 2i + 1, \rho, \Sym^2)}{L(2s + 2i + 1, \rho, \Sym^2)}.
\]

Using [39, Corollary 4.1], \(L(1/2 - s, \tilde{\Delta}_\delta, \delta_{-1/2}, BF)^{-1} \) has zeros in the half plane \(\Re(s) \geq 1/2 \), while \(L(s, \Delta_\ell, BF)^{-1} \) has its zeros contained in the region \(\Re(s) \leq 0 \). Since half planes \(\Re(s) \geq 1/2 \) and \(\Re(s) \leq 0 \) are disjoint, they do not share factors in \(\mathbb{C}[q \pm \alpha] \). As \(\rho \) is unitary, the poles of the product of \(L \)-factors in the numerator must lie on the line \(\Re(s) = (\ell - i)/2 \) for \(i = 0, \cdots, \ell - 2, \ell - 1 \), while those in the denominator are located on the line \(\Re(s) = -i/2 \) for \(i = 0, \cdots, \ell - 2, \ell - 1, \ell \). Therefore they do not have common factors at all. We establish the desired identity from the observation that the ratios (4.1) and \(\gamma(s, \Delta_\ell, BF, \psi) \sim \frac{L(1/2 - s, \tilde{\Delta}_\delta, \delta_{1/2}, BF)}{L(s, \Delta_\ell, BF)} \) are all reduced and indices \(i \)'s are rearranged.

Theorem 4.4 is the key step to improve the factorization to the set of discrete series representations. If we can do this, then the application of the Langlands classification Theorem allows us to extend it to all irreducible admissible representations.
Theorem 4.4 (Discrete series cases). Let Δ be an irreducible essentially square integrable representation of GL_m. Then

$$L(s, \Delta, BF) = L(s + 1/2, \Delta)L(2s, \Delta, \wedge^2).$$

Proof. We choose an unramified quasi-character ν^{s_1}, $s_1 \in \mathbb{C}$, so that $\Delta = \Delta_0\nu^{s_1}$, where Δ_0 is an irreducible square integrable representation of GL_m. We can easily verify that $L(s, \Delta_0\nu^{s_1}, BF) = L(s + s_1, \Delta_0, BF)$, $L(s + 1/2, \Delta_0\nu^{s_1}) = L(s + s_1 + 1/2, \Delta_0)$, and $L(2s + \Delta_0\nu^{s_1}, \wedge^2) = L(2s + 2s_1, \Delta_0, \wedge^2)$. Hence for the calculation purpose, we may assume that $\Delta = \Delta_0$ is unitary. The representation Δ is the segment consisting of supercuspidal representations of the form $\Delta_0 = [\rho_0\nu^{-\frac{s_1}{2}}, \cdots, \rho_0\nu^{-\frac{s_1}{2}}]$, where ρ_0 is an irreducible unitary supercuspidal representation of GL_r with $m = \ell r$. We replace σ by 1_{F^x} in [11, §2.6.2 Corollary]. Then the formula becomes

$$L(s + 1/2, \Delta_0) = L(s + 1/2, \Delta_0 \times 1_{F^x}) = L(s + \ell/2, \rho_0).$$

This may also be seen from [24, Proposition 3.1.3]. Now we are left with invoking Theorem 2.15. □

Finally, Theorem 4.5 renders the factorization result unconditional.

Theorem 4.5. Let π be an irreducible admissible representation of GL_m. Then we have

$$L(s, \pi, BF) = L(s + 1/2, \pi)L(2s, \pi, \wedge^2).$$

Proof. We realize π as the unique Langlands quotient of Langlands type $\Xi = \text{Ind}^G_{GL_m}(\Delta_1\nu^{s_1} \otimes \Delta_2\nu^{s_2} \otimes \cdots \otimes \Delta_t\nu^{s_t})$ which is again of Whittaker type. The local Bump-Friedberg L-function is defined to be $L(s, \pi, BF) = L(s, \Xi, BF)$. By [39, Theorem 5.2], we have the equality

$$L(s, \Xi, BF) = \prod_{1 \leq k \leq t} L(s + u_k, \Delta_{o_k}, BF) \prod_{1 \leq i < j \leq t} L(2s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j}).$$

Applying Theorem 4.4, the product can be further decomposed as

$$L(s, \Xi, BF) = \prod_{1 \leq k \leq t} L(s + u_k + 1/2, \Delta_{o_k}) \prod_{1 \leq i < j \leq t} L(2s + 2u_k, \Delta_{o_k}, \wedge^2) \prod_{1 \leq i < j \leq t} L(2s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j}).$$

Collecting the contributions for the first product $\prod L(s + u_k + 1/2, \Delta_{o_k})$ gives the standard L-factor $L(s + 1/2, \Xi) = L(s + 1/2, \pi)$ by [24, Theorem 3.4], while gathering those for the rest product $\prod L(2s + 2u_k, \Delta_{o_k}, \wedge^2) \prod L(2s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j})$ yields the exterior square L-factor $L(2s, \pi, \wedge^2)$ by Theorem 2.13. □

We end this section with relating Bump-Friedberg L-factors to Galois theoretic counterparts. In conclusion, it is a consequence of the local Langlands correspondence that $L(s + 1/2, \pi) = L(s + 1/2, \phi(\pi))$ combined with Theorem 3.8 and Theorem 4.5.

Theorem 4.6. Let π be an irreducible admissible representation of $GL_m(F)$ and $\phi(\pi)$ its associated Weil-Deligne representation of W_F' under the local Langlands correspondence. Then we have

$$L(s, \pi, BF) = L(s + 1/2, \phi(\pi))L(2s, \wedge^2(\phi(\pi))).$$

4.2. Asai L-factors. Let E be a quadratic extension of F. We denote by $x \mapsto \overline{x}$ the non-trivial associated Galois action. We fix an element $z \in E^\times$ such that $\overline{z} = -z$ and a non-trivial character ψ_E of F. Let

$$\psi_E(x) = \psi_E\left(\frac{x - \overline{x}}{2z - \overline{z}}\right), \quad x \in E.$$

Then the additive character ψ_E of E is trivial on F and defines a character of $N_m(E)$, which by abuse of notation we again denote by ψ_E. We shall use the Fourier transform induced by the additive character ψ on the space of Schwartz-Bruhat space $S(F^m)$. Let $\pi = \text{Ind}_Q^{GL_m}(\Delta_1 \otimes \cdots \otimes \Delta_t) \in \mathcal{A}_E(m)$ be a parabolically induced representation with an associated Whittaker model $W(\pi, \psi_E)$. For each
Whittaker function $W \in W(\pi, \psi_E)$ and each Schwartz-Bruch function $\Phi \in S(F^m)$, we define the local Flicker integral [13, 14] by
\[
Z(s, W, \Phi) = \int_{N_m \backslash GL_m} W(g) \Phi(e_m g) |\det(g)|^s dg
\]
which is absolutely convergent when the real part of s is sufficiently large. Each $Z(s, W, \Phi)$ is a rational function of q^{-s} and hence extends meromorphically to all of \mathbb{C}. These integrals $Z(s, W, \Phi)$ span a fractional ideal $I(\pi, As)$ of $\mathbb{C}[q^{\pm s}]$ generated by a normalized generator of the form $P(q^{-s})^{-1}$ where the polynomial $P(X) \in \mathbb{C}[X]$ satisfies $P(0) = 1$. The local Asai L-function attached to π is defined by such a unique normalized generator $[36, \text{Definition } 3.1]$:
\[
L(s, \pi, As) = \frac{1}{P(q^{-s})}.
\]
Let us define the local Asai ε-factor by, as usual $[39, \S 3]$ (Cf. [1, \S 8]):
\[
\varepsilon(s, \pi, \psi, As) = \frac{L(s, \pi, As)}{L(1 - s, \pi^\vee, As)}.
\]
The Weil-Deligne group W'_E of E is of index two in the Weil-Deligne group W_E of F and the quotient W'_E/W_E is naturally identified with $\text{Gal}(E/F)$. We fix an element σ in W'_E which does not belong to W_E once for all. The image of σ in W'_E/W_E is the non-trivial element of $\text{Gal}(E/F)$ which by abuse notation also denoted σ. Given a m-dimensional (complex) Frobenius semi-simple representation ϕ of W'_E, the Asai representation $As(\phi) : W'_E \to \text{GL}(\mathbb{C}^m \otimes \mathbb{C}^m) \simeq \text{GL}_{m^2}(\mathbb{C})$ given by (twisted) tensor induction of ϕ is defined as (Cf. [2, \S 2.1], [33, \S 2], and [43, \S 1.2]):
\[
As(\phi)(\tau)(v \otimes w) = \begin{cases}
\phi(\tau)(v) \otimes \phi(\sigma \tau \sigma^{-1})(w) & \text{if } \tau \in W'_E; \\
\phi(\tau^{-1})(w) \otimes \phi(\sigma \tau)(v) & \text{if } \tau \notin W'_E.
\end{cases}
\]
We then denote by $L(s, As(\phi))$ the Artin L-factor attached to Asai representation.

The conjugation σ extends naturally to an automorphism of $GL_m(E)$, which we also denote by σ. If $\pi \in A_E(m)$, we denote by π^σ the representation $g \mapsto \pi(\sigma(g))$.

Theorem 4.7. Let π be an irreducible admissible representation of $GL_m(E)$ and $\phi(\pi)$ its associated Weil-Deligne representation of W'_E under the local Langlands correspondence. Then we have
\[
L(s, \pi, As) = L(s, \pi, As) = L(s, As(\phi(\pi))).
\]

Proof. We first consider the case of irreducible unitary supercuspidal representations ρ_\circ of GL_r.

As a consequence of [1] joined with [2, Proposition 6] and [22], we have
\[
L(s, \rho_\circ, As) = L(s, \rho_\circ, As).
\]

Let Δ be a discrete series representation. In the spirit of twists by unramified characters for Langlands-Shahidi theoretic L-factors [22, \S 3.1.(vi)] and Rankin-Selberg theoretic L-factors [36, Theorem 2.3], there is no harm to assume that $\Delta = \Delta_\circ$ is an irreducible square integrable representation of GL_{rE} associated to the segment $[\rho_\circ \nu^{-\frac{1}{2}}, \cdots, \rho_\circ \nu^{\frac{1}{2}}]$ with ρ_\circ an irreducible unitary supercuspidal representation of GL_r. Let $\chi_{E/F}$ be an extension to E^\times of the character F^\times associated to E/F by the local class field theory. As explained in [1, Appendix A], [36, Corollary 4.24] and [36, Theorem 4.26] driven from the Cogdell and Piatetski-Shapiro method similar to $\S 2.3$ depend on the complete classification of $GL_m(F)$-distinguished representations [37]. Looking at the proof of this Proposition, we need to check that the $GL_m(F)$-distinguished representation, namely, $\text{Hom}_{GL_m(F)}(\pi, 1_{GL_m(F)}) \neq \{0\}$, is still Galois self-dual, $\pi^\sigma \simeq \pi$, for any non-archimedean local field of odd residual characteristic. It is presently written in this generality in the literature (Cf. [41, \S 3.2.12]). Counting on the weak multiplicativity of $\gamma(s, \pi, As, \psi)$ [36, Corollary 4.24],
we get the results below using arguments parallel to the one employed in the proof of Goldberg [19, Theorem 5.6]:

\[L(s, \Delta, As) = \prod_{i=1}^{\ell/2} L(s, \rho_0 \nu^{(\ell+1)/2-i}, As) L(s, \chi_{E/F} \otimes \rho_0 \nu^{\ell/2-i}, As) \]

when \(\ell \) is even and

\[L(s, \Delta, As) = \prod_{i=1}^{(\ell+1)/2} L(s, \rho_0 \nu^{(\ell+1)/2-i}, As) \prod_{i=1}^{(\ell-1)/2} L(s, \chi_{E/F} \otimes \rho_0 \nu^{\ell/2-i}, As) \]

when \(\ell \) is odd. The expression is alike to that in Theorem 2.15. This places us in a position to deduce

(4.2) \[L(s, \Delta, As) = L(s, \Delta, As) \]

for any discrete series representations \(\Delta \) of \(GL_{\ell} \).

In general, we realize \(\pi \) as the unique Langlands quotient of Langlands type \(\Xi = \text{Ind}_Q^{GL_{m}}(\Delta_1 \nu^{n_1} \otimes \Delta_2 \nu^{n_2} \otimes \cdots \otimes \Delta_t \nu^{n_t}) \). As such, by the inductive relation of \(L(s, \pi, As) \) [36, Theorem 4.26], one has the equality

\[L(s, \pi, As) = \prod_{1 \leq k \leq t} L(s + 2u_k, \Delta_{o_k}(\wedge^{2})) \prod_{1 \leq i < j \leq t} L(s + u_i + u_j, \Delta_{o_i} \times \Delta_{o_j}). \]

Consequently, the equality

\[L(s, \pi, As) = L(s, \pi, As) \]

follows from [22, §4.2] along with (4.2) for all irreducible admissible representations \(\pi \) of \(GL_{m}(E) \). The remaining part is simply to quote the main Theorem of Henniart and Lomelí [22, Theorem 4.3].

Acknowledgments. As this paper is a conclusion of my Ph.D. work, the author would like to thank, my advisor James Cogdell, for countless stimulus discussions and for proposing to express L-factors in terms of those for supercuspidal representations. I sincerely thank to Nadir Matringe for patiently answering questions about linear and Shalika periods. I also thank to Shantanu Agarwal for drawing the author’s attention to positive characteristic. In particular, I am indebted to Muthu Krishnamurthy for fruitful mathematical communications over the years and describing a whole picture of the Langlands-Shahidi method to me. I am grateful to the University of Iowa and the University of Maine for their hospitality and support while the article is written. Lastly, I would like to thank to the anonymous referee for many valuable remarks and suggestions, which significantly improve exposition and organization of this paper.

References

[1] U. K. Anandavardhanan, R. Kurinczuk, N. Matringe, V. Sécherre, and S. Stevens, Galois self-dual cuspidal types and Asai local factors, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 9, 3129–3191.
[2] U. K. Anandavardhanan and C. S. Rajan, Distinguished representations, base change, and reducibility for unitary groups, Int. Math. Res. Not. 14 (2005), 841–854.
[3] I. N. Bernstein and A. V. Zelevinskiĭ, Representations of the group GL(n, F), where F is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian).
[4] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472.
[5] Daniel Bump and Solomon Friedberg, The exterior square automorphic L-functions on GL(n), Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 47–65.
[6] Philippe Blanc and Patrick Delorme, Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique G/H, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 213–261 (French, with English and French summaries).
THE LOCAL EXTERIOR SQUARE AND ASAI L-FUNCTIONS

[7] Rui Chen and Wee Teck Gan, *Unitary Friedberg-Jacquet periods*, Preprint, available at https://arxiv.org/abs/2108.04064.

[8] J. W. Cogdell, *Analytic theory of L-functions for GL_n*, An introduction to the Langlands program (Jerusalem, 2001), Birkhäuser Boston, Boston, MA, 2003, pp. 197–228.

[9] James W. Cogdell and Nadir Matringe, *The functional equation of the Jacquet-Shalika integral representation of the local exterior-square L-function*, Math. Res. Lett. 22 (2015), no. 3, 697–717.

[10] James W. Cogdell and I. I. Piatetski-Shapiro, *Exterior square L-function for GL(n)*, Talk given at the Fields Institute, April (1994), available at https://people.math.osu.edu/cogdell.1/exterior-www.pdf.

[11] J. W. Cogdell and I. I. Piatetski-Shapiro, *Derivatives and L-functions for GL_n*, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 115–173.

[12] D. Flath, *Decomposition of representations into tensor products*, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 179–183.

[13] Yuval Z. Flicker, *Twisted tensors and Euler products*, Bull. Soc. Math. France 116 (1988), no. 3, 295–313 (English, with French summary).

[14] ———, *On zeros of the twisted tensor L-function*, Math. Ann. 297 (1993), no. 2, 199–219.

[15] Wee Teck Gan, *Periods and theta correspondence*, Representations of reductive groups, Proc. Sympos. Pure Math., vol. 101, Amer. Math. Soc., Providence, RI, 2019, pp. 113–132.

[16] Wee Teck Gan and Luis Lomelí, *Globalization of superrigid representations over function fields and applications*, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2813–2858.

[17] Radhika Ganapathy and Luis Lomelí, *On twisted exterior and symmetric square γ-factors*, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 3, 1105–1132 (English, with English and French summaries).

[18] I. M. Gelfand and D. A. Kajdan, *Representations of the group GL(n, K) where K is a local field, Lie groups and their representations* (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, R.I., 1979, pp. 95–118.

[19] David Goldberg, *Some results on reducibility for unitary groups and local Asai L-functions*, J. Reine Angew. Math. 448 (1994), 65–95.

[20] Guy Henniart, *Correspondance de Langlands et fonctions L des carrés extérieur et symétrique*, Int. Math. Res. Not. IMRN 4 (2010), 633–673 (French).

[21] Guy Henniart and Luis Lomelí, *Local-to-global extensions for GL_n in non-zero characteristic: a characterization of γ_F(s, π, Sym^2, ψ) and γ_F(s, π, ∧^2, ψ)*, Amer. J. Math. 133 (2011), no. 1, 187–196.

[22] ———, *Characterization of γ-factors: the Asai case*, Int. Math. Res. Not. IMRN 17 (2013), 4085–4099.

[23] ———, *Uniqueness of Rankin-Selberg products*, J. Number Theory 133 (2013), no. 12, 4024–4035.

[24] Hervé Jacquet, *Principal L-functions of the linear group*, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 63–96.

[25] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, *Rankin-Selberg convolutions*, Amer. J. Math. 105 (1983), no. 2, 367–464.

[26] H. Jacquet and J. A. Shalika, *On Euler products and the classification of automorphic representations. I*, Amer. J. Math. 103 (1981), no. 3, 499–558.

[27] Hervé Jacquet and Joseph Shalika, *Exterior square L-functions*, Automorphic forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 101, Amer. Math. Soc., Providence, RI, 1990, pp. 143–226.

[28] Yeongseong Jo, *Factorization of the local exterior square L-function of GL_m*, Manuscripta Math. 162 (2020), no. 3–4, 493–536.

[29] ———, *Derivatives and exceptional poles of the local exterior square L-function for GL_m*, Math. Z. 294 (2020), no. 3–4, 1687–1725.

[30] ———, *Rankin-Selberg integrals for local symmetric square factors on GL(2)*, Mathematika 67 (2021), no. 2, 388–421.

[31] Anthony C. Kable, *Asai L-functions and Jacquet’s conjecture*, Amer. J. Math. 126 (2004), no. 4, 789–820.

[32] Eyal Kaplan, *The characterization of theta-distinguished representations of GL(n)*, Israel J. Math. 222 (2017), no. 2, 551–598.

[33] M. Krishnamurthy, *Determination of cusp forms on GL(2) by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan)*, J. Number Theory 132 (2012), no. 6, 1359–1384.

[34] Pramod Kumar Kewat and Ravi Raghunathan, *On the local and global exterior square L-functions of GL_n*, Math. Res. Lett. 19 (2012), no. 4, 785–804.

[35] Luis Alberto Lomelí, *On automorphic L-functions in positive characteristic*, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 5, 1733–1771.
Nadir Matringe, *Conjectures about distinction and local Asai \(L \)-functions*, Int. Math. Res. Not. IMRN 9 (2009), 1699–1741.

Omer Offen, *Period integrals of automorphic forms and local distinction*, Relative aspects in representation theory, Langlands functoriality and automorphic forms, Lecture Notes in Math., vol. 2221, Springer, Cham, 2018, pp. 159–195.

François Rodier, *Whittaker models for admissible representations of reductive \(p \)-adic split groups*, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 425–430.

Shunsuke Yamana, *Local symmetric square \(L \)-factors of representations of general linear groups*, Pacific J. Math. 286 (2017), no. 1, 215–256.

Chang Yang, *Linear periods for unitary representations*, Math. Z. 302 (2022), no. 4, 2253–2284.

Department of Mathematics Education, Ewha Womans University, Seoul 03760, Republic of Korea

Email address: jo.59@buckeyemail.osu.edu