A precise architecture characterization of the π Men planetary system

M. Damasso 1, A. Soffelletti 1, C. Lovis 2, S. C. C. Barros 3, S. G. Sousa 3, O. D. S. Demangeon 3, J. P. Faria 4, 5, J. Lillo-Box 6, S. Cristiani 6, 7, F. Pepe 2, R. Rebolo 8, 9, 10, N. C. Santos 3, 4, M. R. Zapatero Osorio 5, J. I. González Hernández 8, 9, M. Amate 8, L. Pasquini 11, F. M. Zerbi 12, V. Adibekyan 3, 4, M. Abreu 13, 14, M. Affolter 15, Y. Alibert 15, M. Aliverti 12, R. Allart 2, C. Allende Prieto 8, 9, D. Álvarez 11, D. Alves 13, 14, G. Avila 11, V. Baldini 6, T. Bandy 15, W. Benz 15, A. Bianco 12, F. Borsa 12, D. Bossi 13, V. Bourrier 2, F. Bouchy 2, C. Broeg 15, A. Cabrall 13, 14, G. Calderone 6, R. Cirami 6, J. Coelho 13, 14, P. Conconi 12, I. Coretti 6, C. Cumani 11, G. Cupani 6, V. D’Odorico 6, 7, S. Deiries 11, H. Dekker 11, B. Delabre 11, P. Di Marcantonio 6, X. Dumusque 2, D. Ehrenreich 2, P. Figueriras 16, 3, A. Fragoso 8, L. Genolet 2, M. Genoni 12, R. Génova Santos 8, 9, I. Hughes 2, O. Iwert 11, F. Kerber 11, J. Knudstrup 11, M. Landoni 12, B. Lavie 2, J.-L. Lizon 11, G. Lo Curto 16, C. Maire 2, C. J. A. P. Martins 3, 18, D. Mégevand 2, A. Mehner 16, G. Micela 17, A. Modigliani 11, 16, P. Molaro 6, 7, M. A. Monteiro 3, M. J. P. F. G. Monteiro 5, 18, M. Moschetti 12, E. Mueller 11, M. T. Murphy 10, N. Nunes 13, 14, L. Oggioni 12, A. Oliveira 13, 14, M. Oshagh 8, E. Palle 8, 9, G. Pariani 12, E. Poretti 12, J. L. Rasilla 8, I. Rebordão 13, 14, E. M. Redaelli 12, M. Riva 12, S. Santana Tschudi 8, 11, P. Santin 6, P. Santos 13, 14, D. Ségransan 2, T. M. Schmidt 6, A. Segovia 2, D. Sosnowska 2, P. Spano 50, A. Suárez Mascareño 8, 9, H. Tabernero 3, F. Tenegi 8, S. Udry 2, and A. Zanutta 12

(Affiliations can be found after the references)

Received May 14, 2020; accepted

ABSTRACT

Context. The bright star π Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the ESO’s Very-Large Telescope (VLT). The star hosts a multi-planet system (a transiting $4 M_\text{J}$ planet at \sim0.07 au, and a sub-stellar companion on a \sim2 100-day eccentric orbit) which is particularly appealing for a precise multi-technique characterization.

Aims. With the new ESPRESSO observations, that cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of new photometric transits of π Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign.

Methods. We analyse the enlarged spectroscopic and photometric datasets and compare the results to those in the literature. We further characterize the system by means of absolute astrometry with Hipparcos and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters.

Results. We present a precise characterization of the planetary system around π Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm/s) allow for a precise retrieval of the Doppler signal induced by π Men c. The residuals show an RMS of 1.2 m/s, which is half that of the HARPS data and, based on them, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass below $\sim2 M_\text{J}$ within the orbit of π Men c). We improve the ephemeris of π Men c using 18 additional TESS transits, and in combination with the astrometric measurements, we determine the inclination of the orbital plane of π Men b with high precision ($i = 45.8_{-0.3}^{+0.2}$ deg). This leads to the precise measurement of its absolute mass $m_b = 14.1_{-0.2}^{+0.1} M_\text{J}$, indicating that π Men b can be classified as a brown dwarf.

Conclusions. π Men represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3-D architecture of the π Men planetary system, and the high relative misalignment of the planetary orbital planes, put constraints and challenges to the theories of formation and dynamical evolution of planetary systems. The accurate measurement of the mass of π Men b contributes to make the brown dwarf desert a bit greener.

Key words. Techniques: radial velocities; photometric – Astrometry – Planetary systems – Stars: individual: π Men; HD 39091; TOI-144

1. Introduction

The Southern Hemisphere bright star π Men (HD 39091; V = 5.7 mag, spectral type G0V) became a high-priority target for follow-up with high-precision spectrographs after the NASA Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015) detected the transiting super-Earth/sub-Neptune π Men c (P_c \sim6.27 days; R_c \sim2 R_\oplus). This was one of the most relevant among the first discoveries of TESS after it started scientific observations at the end of July 2018 (π Men is also known as TESS object of interest TOI-144). Following the discovery announcement, Huang et al. (2018) and Gandolfi et al. (2018) independently detected the spectroscopic orbit of π Men c by analysing archival radial velocities (RVs) of HARPS and UCLES, and confirmed its planetary nature. The brightness of the star made it a perfect target for testing the performance of the new-generation ultra-stable...
and high-resolution Échelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO; Pepe et al. 2020) of ESO’s Very-Large Telescope (VLT). In fact, π Men was one of the first science targets observed with ESPRESSO, with the aim to use the very precise radial velocities ($\sigma_{RV} \sim 10$ cm s$^{-1}$) to improve the measurement of the mass and bulk density of π Men c.

The determination of precise planetary physical properties is crucial for successive investigations of a planet’s atmosphere, in particular for a strongly irradiated super-Earth-to-sub-Neptune-sized planet like π Men c. Following Batalha et al. (2019), a precision in the mass determination of at least 20% is required for detailed atmospheric analyses through transmission spectroscopy, as those that will be made possible with the James Webb Space Telescope. The growing interest around π Men c has led King et al. (2019) to present it as a favourable target to search for ultraviolet absorption due to an escaping atmosphere and, right after, Garcia Muñoz et al. (2020) announced the non-detection of neutral hydrogen in the atmosphere of the planet through Lyman-α transmission spectroscopy with the Hubble Space Telescope. They show that the lack of an extended atmosphere would make π Men c a prototype for investigating alternative scenarios for the atmospheric composition of highly irradiated super-Earths, and its expected bulk density could represent a threshold which separates hydrogen-dominated from non-hydrogen-dominated planets.

Another reason why π Men is very intriguing is that it hosts a Doppler-detected sub-stellar companion (minimum mass to-noise ratio S_{night}) over a time span of 201 days. The spectra were acquired 275 spectra in 37 nights (multiple and consecutive exposures per session) of the instrument, up to March 2019. We collected the available data set. The Generalized Lomb-Scargle (GLS; Zecharismer & Kürster 2009) periodograms of the H-α activity index and bisector asymmetry indicator BIS of the cross-correlation function (CCF) show the main peak at the same period $P \sim 122$ days.

3. Stellar fundamental parameters and activity diagnostics from ESPRESSO spectra

We obtained a combined ESPRESSO spectrum of π Men with a very high S/N>2 000, and we analysed it to derive the basic stellar physical parameters summarized in Table 1. A subset of blaze-corrected bi-dimensional (S2D) spectra at the barycentric reference frame were coadded, normalized, merged and corrected for RV (see Fig. A.1) using the crossfit workflow of the data analysis software (DAS) of ESPRESSO (Di Marcantonio et al. 2018). The stellar parameters were derived using ARES v2 and MOOG 2014 (for more details, see Sousa 2014) in which the spectral analysis is based on the excitation and ionization balance of the iron abundances. We used the ARES code (Sousa et al. 2007, 2015) to consistently measure the equivalent widths for each line. The line list used in this analysis was the same as in Sousa et al. (2008). The abundances were computed in local thermodynamic equilibrium (LTE) with the MOOG code (Sneden 1973). For this step a grid of plane-parallel Kurucz ATLAS9 model atmospheres was used (Kurucz 1993). This is the same methodology used to derive homogeneous spectroscopic parameters for the Sweet-CAT catalogue (Santos et al. 2013; Sousa et al. 2018). The final uncertainties of the spectroscopic parameters are obtained from the formal errors by adding in quadrature 60 K, 0.04 dex, and 0.1 dex for T_{eff}, [Fe/H], and $log g$, respectively, in order to take systematic errors into account, as described in Sousa et al. (2011). Stellar mass, radius and age are derived using the optimization code PARAM (da Silva et al. 2006; Rodrigues et al. 2014, 2017) with the additional information of Gaia Data Release 2 (DR2) parallax $\pi = 54.705 \pm 0.067$ mas and magnitude $G = 5.4907 \pm 0.0014$ mag (Gaia Collaboration et al. 2018), and 2MASS band $K_s = 4.241 \pm 0.027$ mag. These results are in agreement with those derived from HARPS spectra (Santos et al. 2013), with the age in agreement with that obtained by Delgado Mena et al. (2015) and based on the lithium abundance determination. We derived the projected rotational velocity $v\sin i$, using the package FASMASYNTH (Tsantaki et al. 2017). We fixed the spectroscopic stellar parameters to the values derived by ARES+MOOG. The macroturbulence velocity in this analysis was set to 3.8 km s$^{-1}$ following the relation presented in Doyle et al. (2014). The $v\sin i$ was the only free parameter used in this analysis where synthesis spectra are compared with our ESPRESSO combined spectrum for a bunch of Fe I lines. We obtained $v\sin i =3.34 \pm 0.07$ km s$^{-1}$ larger than the value 2.96 km s$^{-1}$ determined by Delgado Mena et al. (2015) using HARPS spectra, and in agreement with the estimate of Gandolfi et al. (2018).

The time series of the $S_{\text{H$\alpha$}}$ and H-α chromospheric activity indexes extracted from the ESPRESSO spectra are shown in Fig. 1 (nightly averages). The $S_{\text{H$\alpha$}}$ index shows variations suggestive of a long-term cycle that we cannot characterize with the available data set. The Generalized Lomb-Scargle (GLS; Zecharismer & Kürster 2009) periodograms of the H-α activity index and bisector asymmetry indicator BIS of the cross-correlation function (CCF) show the main peak at the same period $P \sim 122$ days.
4. Radial velocities and photometry analysis

4.1. Data extraction

In this work we used RVs extracted from ESPRESSO spectra using the version 2.0.0 of the ESPRESSO data reduction pipeline (DRS), adopting a template mask for a star of spectral type F9V to derive the CCF. During each observing night we collected series of multiple spectra at a rate of 2 to 12 consecutive exposures. Due to the technical intervention on ESPRESSO on September 2018 (close to the end of the commissioning phase), the RVs taken up to and after epoch BJD 2 450 8374 were treated in our analysis as two independent data sets composed of 71 and 204 measurements, respectively (reducing to 8 and 29 data points for nightly binned data), each characterized by an independent uncorrelated jitter and RV offset free parameter.

We also included RVs extracted from CORALIE spectra. During 21-year long scientific observations, CORALIE (Udry et al. 2000) underwent two significant upgrades in 2007 and 2014 which improved the RV precision. Both the intervention resulted in a new RV offset between the dataset (Ségransan et al. 2020), that we took into account in our analysis, also including distinct uncorrelated jitter terms. We refer to each dataset as CORALIE-98, CORALIE-07, CORALIE-14, for the period covering 1998-2007, 2007-2014 and 2014-now. CORALIE RVs are especially useful for further constraining the orbit of planet b. ESPRESSO and CORALIE RVs are listed in Table B.1 and B.2. We added to the new RVs those measured with HARPS and UCLES that are publicly available in (Gandolfi et al. 2018). A total of 520 RVs covering a time span of 8062 days were used in our study, and they are summarized in Table B.3.

Concerning new photometric data, we extracted and analyzed the publicly available TESS light curve to provide updated transit parameters. The data were downloaded from the Mikulski Archive for Space Telescopes (MAST) portal. For each sector, we de-trended the light curve with a spline filter and breakpoints every 0.5 days to remove long-term stellar activity and instrumental trends similar to Barros et al. (2016). Next, we extracted the region of the light curves with three transit times the transit duration and centred around the mid-transit times. Then, we fitted a first-order polynomial to the out-of-transit data of each transit to normalize it. We excluded the first transit of sector 1 (reference epoch BJD 2 458 325) and the first of sector 4 (reference epoch BJD 2 458 413) from our analysis since they are affected by instrumental systematics that cannot be corrected in a simple way. In particular, the second excluded transit is affected to such an extent that the transit shape is distorted and ~ 30% deeper compared to the other transits. We analysed in total 22 transits (4 already published and 18 new).

4.2. Combined analysis

We performed a combined light curve+RV fit using nightly binned RVs for HARPS, CORALIE and ESPRESSO, in order to average out short-term stellar jitter (e.g. p-modes, granulation). The analysis was carried out using the code presented in Demangeon et al. (2018). It combines parts of the Python packages radvel (Fulton et al. 2018) (radvel.kepler.rv_drive) for the radial velocities and batman (Kreidberg 2015) for the photometry into a Bayesian framework to compute the posterior probability of the planetary model parameters. This posterior function is then maximized using, first the Nelder-Mead simplex algorithm implemented in the Python package scipy.optimize (Gao & Han 2012) followed by an exploration with the affine-invariant ensemble sampler mcmc algorithm implemented by the Python package emcee (Foreman-Mackey et al. 2013).

As done by Gandolfi et al. (2018) and Huang et al. (2018), we modeled any additional source of noise in the RVs not included in the nominal $\sigma_{RV}(t)$ only by fitting uncorrelated jitter terms added in quadrature to $\sigma_{RV}(t)$. In fact, we did not find evidence in the TESS light curve, RVs, and spectroscopic activity diagnostics of a signal modulated over the stellar rotational period ~18 d found by Zurlo et al. (2018), or its harmonics, such as to justify the use of a more sophisticated model to mitigate the stellar activity (e.g. Gaussian Process regression). To this regard, based on our measurements of $\sin i_*$ and R_*, we estimated the upper limit of the rotation period of π Men to be 17.7 ± 0.5 d. We tested models with the eccentricity e_* of π Men c set to zero or fitted as free parameter, to explore if the use of ESPRESSO RVs and additional TESS transits helps to constrain e_*. This parameter wasn’t well determined by Huang et al. (2018) and Gandolfi et al. (2018), who could constrain e_* to be less than 0.3 and 0.45 (at 68% of confidence), respectively.

The results of our analysis and those from the literature are summarized in Table 3. Based on the Bayesian information criterion (BIC), we found that the model with fixed circular orbit is strongly favoured ($\text{BIC}_c - \text{BIC}_{circ} > 10$), and we adopted it as our final solution. However, we cannot rule out a mild eccentricity (the posterior is not a zero-mean Gaussian distribution), and we

Table 2. Summary of the RVs analysed in this work. ESPRESSO data are distinguished by pre and post technical interventions, as described in the text. Values given for HARPS and ESPRESSO are for unbinned data.

Instrument	Time span [BJD-2450000]	N meas.	Median σ_{RV} [m/s]	Ref.
			Binned	Unbinned
UCLES/AAT	829.9-3669.2	42	-	4.6
HARPS$_{\text{pre}}$	3001.8-7033.6	128	0.30	0.50
HARPS$_{\text{post}}$	7298.8-7464.5	16	0.25	0.40
CORALIE-98	1131.8-4108.7	10	-	4.32
CORALIE-07	4433.7-6648.8	12	-	3.04
CORALIE-14	7650.8-8891.5	38	2.76	2.76
ESPRESSO$_{\text{pre}}$	8367.8-8374.9	71	0.09	0.25
ESPRESSO$_{\text{post}}$	8421.8-8568.5	201	0.10	0.28

are able to set the upper limit $e_c < 0.21$ (corresponding to the 68th percentile of the posterior), providing a further constraint for studies of the dynamical interaction with the massive and eccentric companion b. The best-fit model for the transit light curve of π Men c (i.e. that obtained using the derived median values for the free parameters) is shown in Fig. 2 with the 22 individual transits we analysed combined. Figure 3 shows the best-fit spectroscopic orbits for planets b and c. The mass of π Men c $m_c = 4.3 \pm 0.7$ M_\oplus is measured with a precision of $\sim 16\%$.

The upper panel of Fig. 4 shows the GLS periodogram of the ESPRESSO RV residuals, after removing the signal induced by planet b. It clearly shows the dominant peak at the orbital period of π Men c, with a bootstrapping false alarm probability (FAP) of 0.6% determined from 10,000 simulated datasets. The dispersion of the ESPRESSO residuals is 1.2 m s$^{-1}$ (middle panel of Figure 4), half the RMS of the HARPS residuals. The uncorrelated jitter term $\sigma_{\text{jitter, ESPRESSO}} \sim 1.2$ m s$^{-1}$ and the RMS of the residuals are one order of magnitude higher than the typical RV precision, and this could be due to effects of the stellar magnetic activity for which our model does not include an analytic term. We then considered the ESPRESSO residuals obtained after removing also the signal of π Men c, and we did not find significant correlations between the BIS, the S_{MW}, and H_{α} activity diagnostics. Therefore, explaining the observed “excess” of jitter in terms of activity does not appear straightforward. The GLS periodogram of these residuals is shown in the last panel of Fig. 4. Through a bootstrap (with replacement) analysis, we found that the peak with the highest power has a false alarm probability (FAP) of $\sim 37\%$. We further discuss this signal in Appendix A.

The ESPRESSO and CORALIE observations cover the periastron passage of planet b ($T_{\text{b,peri}} = 2458388.6 \pm 2.2$ BJD), allowing for a more precise determination of the Doppler semi-amplitude K_b and eccentricity e_b. With 18 additional transits of π Men c available, we improved the accuracy and precision of the transit ephemeris and of the transit depth, that in combination with the re-determined stellar radius resulted in a planet radius $R_c = 2.11 \pm 0.05$ R_\oplus, slightly larger than that reported in literature.

According to our results, the predicted time of inferior conjunction $T_{\text{b, conj}}$ of the outermost companion falls within the time span of the TESS observations (sector 12). We checked the light curve within a $\pm 5\sigma$ range from the best-fit value (Fig. 5), and we did not find evidence for the transit of π Men b. Assuming a radius of 0.8 R_\oplus for π Men b (Sorahana et al. 2013), we could detect transits of the sub-stellar companion if the orbital inclination angle i_b were within the penumbra cone defined by the narrow angle ± 0.1 deg as measured from a perfectly edge-on orbit.

4.3. Mass limits for co-orbital companions to π Men c

Given the high-precision of the ESPRESSO and HARPS RVs, we explored the possibility of the presence of co-orbital bodies to π Men c through the technique described in Leleu et al. (2017) and subsequently applied by Lillo-Box et al. (2018b). This technique uses the information from the transit time of the planet and the full radial velocity dataset to constrain the time lag between the planet transit and the time of zero radial velocity (a generalization of the Ford & Gaudi 2006 methodology). The technique is based on modeling the radial velocity data by using Eq. 18 from Leleu et al. (2017), where the key parameter α contains all the information about the co-orbital signal. A posterior distribution of α compatible with zero discards the presence of co-orbitals up to a certain mass. Contrarily, if α is significantly different from zero, the data contains hints for the presence of a co-orbital body, with negative values corresponding to L_4 and positive values to L_5. In this framework, we analyse the radial velocity dataset with such model and using the emcee Markov Chain Monte Carlo ensemble sampler to explore the parameter space. We used the same priors for the parameters in common with the analysis presented in Sect. 2 and a uniform prior $\mathcal{U}(-1, 1)$ for the α parameter. We used 96 random walkers and 10,000 steps per walker with two first burn-in chains and a final production chain with 5,000 steps. We checked the convergence of the chains by estimating the autocorrelation times and checking that the chain length is at least 30 times this autocorrelation time for all parameters. The result provides a value for the α parameter of $\alpha = -0.25^{+0.19}_{-0.21}$. Although shifted towards negative values, the posterior distribution is compatible with zero at the 95% confidence level. Consequently, we cannot confirm the presence of co-orbitals. However, given this posterior value, we can certainly put upper limits to the presence of co-orbitals at both Lagrangian points. By using the 95% confidence levels, we can discard co-orbitals more massive than 3.1 M_\oplus at L_4 and 0.3 M_\oplus at L_5, i.e. co-orbitals more massive than three times the mass of Mars at L_5. An intensive and dedicated effort with additional radial velocity data would then be needed to further explore the L_4 region.

5. Constraining the relative alignment of the planetary orbital planes

We further constrain the relative alignment of the orbital planes of the two planets using the combination of the high-precision spectroscopic orbit for π Men b obtained thanks to the contribution of the ESPRESSO data set, and the absolute astrometry of Hipparcos and Gaia, as follows.
Table 3: Best-fit results of the π Men photometry+RV joint modelling. Values are given as the 50th percentile of the posterior distributions, and the uncertainties are derived from the 16th and 84th percentiles.

Jump parameter	Prior	Best-fit value	Literature
K_0 [m s$^{-1}$]	U(185.6,199.6)	$0.196.1^{+0.07}_{-0.07}$	$0.195.8^{+1.4}_{-1.4}$ (a); $0.192.6^{+1.4}_{-1.4}$ (b)
P_0 [days]	U(2084.42,2101.72)	$2088.8^{+0.4}_{-0.4}$	$2091.2^{+2.0}_{-2.6}$ (a); $2093.0^{+3.7}_{-1.7}$ (b)
$T_{b, \text{conj}}$ [BJD-2 450 000]	U(8590.2,8674.2)	$8632.7^{+1.2}_{-1.2}$	$6548.2^{+2.7}_{-2.6}$ (a); $-391.3^{+0.8}_{-0.4}$ (b)
$e_b \cos \omega_{a,b}$	U (-1, 1)	$0.5552^{+0.0014}_{-0.0015}$	$0.5531^{+0.0014}_{-0.0015}$
$e_b \sin \omega_{a,b}$	U (-1, 1)	$-0.3220^{+0.0027}_{-0.0028}$	$-0.3221^{+0.0028}_{-0.0029}$
K_0 [m s$^{-1}$]	U(0.5)	$1.5^{+0.2}_{-0.2}$	$1.55^{+0.27}_{-0.28}$ (a); $1.58^{+0.26}_{-0.28}$ (b)
P_c [days]	$N(6.2679,0.00046)$	$6.267852^{+0.000016}_{-0.000016}$	$6.267843^{+0.000024}_{-0.000024}$ (a); $6.26769^{+0.000046}_{-0.000046}$ (b)
$T_{c, \text{conj}}$ [BJD-2 450 000]	N(8519.8066,0.0012)	$8519.8068^{+0.0003}_{-0.0003}$	$8519.8065^{+0.0005}_{-0.0006}$ (a); $8325.503055^{+0.00024}_{-0.00024}$ (b)
$e_c \cos \omega_{a,c}$	U (-1, 1)	0 (fixed)	0 (a,b)
$e_c \sin \omega_{a,c}$	U (-1, 1)	$-0.11^{+0.17}_{-0.17}$	0 (a,b)
$\sigma_{\text{BUJ,UCES}}$ [m s$^{-1}$]	U(0.50)	$4.1^{+0.1}_{-0.1}$	$4.3^{+0.1}_{-0.1}$
$\sigma_{\text{BUJ,CORALIE-98}}$ [m s$^{-1}$]	U(0.50)	$4.3^{+0.1}_{-0.1}$	$4.3^{+0.1}_{-0.1}$
$\sigma_{\text{BUJ,CORALIE-07}}$ [m s$^{-1}$]	U(0.50)	$13.3^{+4.9}_{-3.3}$	$13.7^{+5.2}_{-3.4}$
$\sigma_{\text{BUJ,CORALIE-14}}$ [m s$^{-1}$]	U(0.50)	$13.2^{+3.7}_{-2.7}$	$13.4^{+4.3}_{-2.7}$
$\sigma_{\text{BUJ,HARPS,pre-upgrade}}$ [m s$^{-1}$]	U(0.10)	$2.3^{+0.3}_{-0.3}$	$2.3^{+0.3}_{-0.3}$
$\sigma_{\text{BUJ,HARPS,post-upgrade}}$ [m s$^{-1}$]	U(0.10)	$1.8^{+0.6}_{-0.4}$	$1.8^{+0.6}_{-0.4}$
$\sigma_{\text{BUJ,ESPERO,pre-upgrade}}$ [m s$^{-1}$]	U(0.10)	$1.2^{+0.3}_{-0.3}$	$1.2^{+0.3}_{-0.3}$
$\sigma_{\text{BUJ,ESPERO,post-upgrade}}$ [m s$^{-1}$]	U(0.10)	$1.2^{+0.3}_{-0.3}$	$1.3^{+0.3}_{-0.3}$
$\gamma_{\text{CORALIE-98}}$ [m s$^{-1}$]	U(10600,10800)	$10674.0^{+4.6}_{-4.8}$	$10674.6^{+5.0}_{-5.0}$
$\gamma_{\text{CORALIE-07}}$ [m s$^{-1}$]	U(-100,100)	$-3.2^{+4.4}_{-3.5}$	$-3.5^{+4.4}_{-3.5}$
$\gamma_{\text{CORALIE-14}}$ [m s$^{-1}$]	U(0.200)	$21.9^{+4.4}_{-4.6}$	$21.5^{+5.0}_{-5.0}$
$\gamma_{\text{HARPS,pre-upgrade}}$ [m s$^{-1}$]	U(10600,10800)	$10707.0^{+1.0}_{-1.0}$	$10707.0^{+1.0}_{-1.0}$
$\gamma_{\text{HARPS,post-upgrade}}$ [m s$^{-1}$]	U(10600,10800)	$-22.5^{+0.8}_{-0.8}$	$-22.7^{+0.8}_{-0.8}$
$\gamma_{\text{ESPERO,pre-upgrade}}$ [m s$^{-1}$]	U(-10,100)	$6039.0^{+2.0}_{-2.0}$	$6039.1^{+2.0}_{-2.0}$
$\gamma_{\text{ESPERO,post-upgrade}}$ [m s$^{-1}$]	U(-10,100)	$-1.3^{+2.0}_{-2.0}$	$-1.3^{+2.0}_{-2.0}$
R_c / R_*	U(0.1)	$0.0165^{+0.0001}_{-0.0001}$	$0.0166^{+0.0004}_{-0.0004}$
a / R_*	(f)	$12.5^{+0.3}_{-0.3}$	$11.2^{+1.9}_{-1.9}$
i_c [deg]	U(0.9)	$87.05^{+0.15}_{-0.15}$	$86.9^{+0.15}_{-0.15}$
σ_{TESS} [ppm]	U(0.300)	130^{+2}_{-2}	130^{+2}_{-2}
limb darkening coeff q_1	N(0.280,0.002)	$0.280^{+0.002}_{-0.002}$	$0.280^{+0.002}_{-0.002}$
limb darkening coeff q_2	N(0.270,0.002)	$0.270^{+0.002}_{-0.002}$	$0.270^{+0.002}_{-0.002}$

Derived planetary parameters

- Eccentricity, e_b
- Argument of periastron, $\omega_{a,b}$ [deg]
- $T_{b,\text{periastron}}$ [BJD-2 450 000]
- Minimum mass, $m_b \sin b$ [M$_{\oplus}$]
- Orbital semi-major axis, a_b [au]
- Eccentricity, e_c
- Argument of periastron, $\omega_{a,c}$ [deg]
- Orbital semi-major axis, a_c [au]
- Mass, m_c [M$_{\oplus}$]
- Radius, R_c [R$_{\oplus}$]
- Average density, ρ_c [g cm$^{-3}$]

ABIC

- RMS of the RV residuals [m s$^{-1}$]

Notes. (a) After [Randolph et al. 2018]. (b) After [Huang et al. 2018]. (c) The eccentricity was further constrained to values < 0.75. (d) Relative to the UCLES dataset, which is used as reference. (e) Relative to the pre- dataset of the corresponding instrument. (f) In the analysis we used the stellar density ρ_* [g cm$^{-3}$] as free parameter ($N(0.67,0.04)$), from which we derived a / R_* at each step of the MC sampling. (g) We used $\cos i_c$ as free parameter.
We first take the cross-calibrated Hipparcos/Gaia DR2 π Men proper motion values and the scaled Hipparcos-Gaia positional difference from the Brandt [2018, 2019] catalogue of astrometric accelerations. The latter quantity is defined as the difference in astrometric position between the two catalogues divided by the corresponding ∼25-yr time baseline, a factor of ∼4.4 longer than the orbital period of π Men b. It corresponds to a long-term proper-motion vector that can be considered as a close representation of the tangential velocity of the barycentre of the system. By subtracting this long-term proper motion from the quasi-instantaneous proper motions of the two catalogues one obtains a pair of ‘proper motion difference’, ‘astrometric acceleration’, or ‘proper motion anomaly’ values, in short $\Delta \mu$, assumed to be entirely describing the projected velocity of the photocenter around the barycentre at the Hipparcos and Gaia DR2 epochs.\footnote{The original catalogue presented in Brandt [2018] is superseded by the new version published in Brandt [2019] that corrects an error in the calculation of the perspective acceleration in R.A.}

The observed $\Delta \mu$ values (see Table[4] contain information on the orbital motion of π Men b (the orbital effect due to π Men c is entirely negligible). We elect to use the π Men proper motion vector from the Brandt [2018, 2019] catalogue instead of the physically equivalent and equally well validated quantity in the catalogue produced by Kervella et al. [2019] for two reasons: a) the former catalogue is constructed based on a linear combination of the two Hipparcos reductions, a choice that appears preferable with respect to considering either reduction individually; b) Brandt [2018, 2019] brings the composite Hipparcos astrometry on the bright reference frame of Gaia DR2, resulting in an updated error model with rather conservative uncertainties, which are shown to be statistically well-behaved. The robustness of the Brandt [2018, 2019] catalogue has been further probed recently by Lindegren (2020a,b) when comparing the spin and orientation of the bright reference frame of Gaia DR2 using very long baseline interferometry observations of radio stars and the independent assessment of the rotation made by Brandt (2018, 2019).

We then follow Kervella et al. [2020] and explore via an MCMC algorithm the ranges of inclination i_3 and longitude of the ascending node Ω_3 compatible with the absolute astrometry and the spectroscopically determined orbital parameters (and their uncertainties). The values of i_3 and Ω_3 (using uniform priors on cos i_3 and Ω_3 over the allowed ranges for both prograde and retrograde motion) are fitted in a model of the proper motion differences that we build averaging over the actual Hipparcos and Gaia observing windows, adopting the times of Hipparcos observations available in the Hipparcos-2 catalogue (van Leeuwen 2007) and taking the Gaia transit times from the Gaia Observation Forecast Tool (GOST).\footnote{https://gaia.esac.esa.int/gost/index.jsp} This allows us to cope with the ‘smearing’ effect of the orbital motion due to the fact that the observed $\Delta \mu$ values are time averages of the intrinsic velocity vector of the star over the Hipparcos and Gaia observing periods, respectively. For π Men b this effect in non-negligible (see Kervella et al. [2019]).

The orbital fit results to the Hipparcos/Gaia absolute astrometry are reported in Table[4] while in Figure[D.1] we show the posterior distributions for the model parameters explored in our MCMC analysis. The corresponding inferred true mass of π Men b is $m_{B}=14.1^{+0.8}_{-0.6} M_{\text{Jup}}$. Furthermore, the evidence for orbital motion at both the Hipparcos and Gaia epochs also allows us to break the degeneracy between prograde and retrograde motion, the latter being clearly favoured. Overall, the inference is for a highly significant non-coplanarity between π Men b and π Men c. Given that the inclination of the orbital plane of the latter is known, we can then directly provide constraints on the possible range of mutual inclination angles i_{rel}, expressed as a function of the unknown longitude of the ascending node of π Men c (allowed to vary in the range [0,360)] deg). The results are shown in Figure[D.2]. We find that 52.3 ≤ i_{rel} ≤ 128.8 deg, at the 1σ-level. The i_{rel} distribution shows two clear peaks at 50 deg and 130(±180-50) deg. A sketch of the 3-D system’s architecture is given in Figure[6].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{Time series of the S$_{\text{Phot}}$ (upper panel) and H-α (bottom panel) spectroscopic activity indexes derived from the ESPRESSO spectra.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Fig2.png}
\caption{Transit signal of π Men b observed in the TESS light curve. Data from 22 individual transits are phase folded to the orbital period of the planet, and the red curve represents the best-fit model (Table[5]).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Fig3.png}
\caption{Normalized flux from the Gaia mission.}
\end{figure}
6. Summary and Discussion

One main goal of our study was to assess the performance of a very high precision RV follow-up of a bright planet-hosting star with the ESPRESSO spectrograph, and the characterization of the low-mass transiting planet π Men c came as an ideal test case. The multi-planet system orbiting π Men was object of recent characterization studies using space-based photometry and high-precision RVs, as those collected with HARPS, thus our results can be compared with those in the literature. Figure 3 (lower panel) shows the low dispersion of the ESPRESSO RV measurement around the best-fit spectroscopic orbit of π Men c. After removing the best-fit Keplerian of the companion π Men b and the offsets of the pre- and post-technical intervention, we modelled the residuals of the ESPRESSO RVs with a Keplerian function to quantify how well the orbit of planet c is fitted using only this dataset. This Monte-Carlo analysis was performed using the open source Bayesian inference tool MultiNest v3.10 (e.g. Feroz et al. 2013), through the python wrapper (Buchner et al. 2014). We obtained the Doppler semi-amplitude $K_c = 1.5 \pm 0.3 \, \text{m s}^{-1}$, which has basically the same precision of the value we obtained using the RVs from all the instruments. This result, based on data collected during 37 nights over a time span of 200 days, illustrates well the performance reached by ESPRESSO on such a target. From these residuals, we derived upper limits to the minimum mass of planets that may still be undetected as a function the orbital period. The detection limits are calculated by injecting trial circular orbits into the observed data (e.g. Cumming et al. 1999). We explore orbital periods from 0.5 days to twice the timespan of the ESPRESSO data.

Table 4

Components of the proper motion vector difference for π Men, priors, and best-fit results for the MCMC analysis of the Δµ time series constrained by the spectroscopic orbital solution.

Star name	Epoch	Δµα (mas yr$^{-1}$)	Δµδ (mas yr$^{-1}$)
π Men	Hipparcos	0.884 ± 0.398	0.404 ± 0.445
π Men	Gaia	0.591 ± 0.246	0.739 ± 0.263

Jump parameter	Prior	Best-fit value
i_b [deg]	$U(0,180)$	45.8$^{+3.4}_{-3.1}$
Ω_b [deg]	$U(0,360)$	108.8$^{+0.6}_{-0.7}$
Mass, m_b [M$_{\text{Jup}}$]	(derived)	14.1$^{+0.5}_{-0.4}$

Fig. 3

Spectroscopic orbits of the two planets in the π Men system (upper panel: π Men b; lower panel: π Men c; best-fit solutions in Table 4). The orange curve represents the best-fit model. For π Men c we do not show the more scattered and less precise UCLES and CORALIE data for a better visualization, and the error bars include uncorrelated jitters added in quadrature to σ_{RV}.

Fig. 4

Upper panel. GLS periodogram of the ESPRESSO RV residuals, after removing the best-fit Doppler signal of π Men b. We assumed RV error bars with the uncorrelated jitter added in quadrature to the formal σ_{RV}. The highest peak occurs at the orbital period of π Men c, with a bootstrapping false alarm probability of 0.6% determined from 10 000 simulated datasets. Middle panel. ESPRESSO RV residuals after removing the adopted 2-planet model solution in Table 4. The error bars in black include the uncorrelated jitter derived from our analysis, which has been added in quadrature to the σ_{RV} uncertainties (indicated in red). Lower panel. GLS periodogram of the ESPRESSO residuals, with the RV error bars including the uncorrelated jitter added in quadrature to the formal σ_{RV}. The FAP of the main peak at ~ 190 d was determined through a bootstrap (with replacement) analysis using 10 000 simulated datasets. This signal is further discussed in Appendix C.
The high value of i_{rel} could cause in principle significant secular evolution in eccentricity and inclination of π Men c (see e.g. [Kozai]1962, [Lidov]1962, [Holman et al.]1997), which might then shift out of the transiting configuration observed today. The system’s architecture is also suggestive of a violent dynamical evolution history, that might point to a high-eccentricity migration scenario and a significant degree of spin-orbit misalignment of the transiting inner planet (see e.g. [Fabrycky & Tremaine]2007, [Chatterjee et al.]2008, [Ogilvie]2014, [Hamers et al.]2017).

Based on the deuterium burning-mass limit for separating planets and brown dwarfs, which is theoretically established at ~ 13 M$_{\text{Jup}}$ for solar metallicity and the cosmic abundance of deuterium ([Burrows et al.]1995, [Saumon et al.]1996, [Chabrier et al.]2000), π Men b should be classified as a brown dwarf. Brown dwarf companions to a main sequence star appear to be very rare in close orbits (<3 AU), and their occurrence rate is much lower than for giant planets and stars. For instance, [Grether & Lineweaver]2006 found that ~16% of Sun-like stars have close companions (orbital period < 5 yr) more massive than Jupiter, but only < 1% are brown dwarfs, while 11% and 5% are stars and giant planets, respectively. This paucity is traditionally referred to as the brown dwarf desert. Today, the Kepler/K2 and TESS missions and the superWASP survey have proved that this desert is not so “dry” as originally thought. Several brown dwarfs have been detected with short orbital periods (see, e.g., [Carmichael et al.]2019, [Persson et al.]2019, [Carmichael et al.]2020, [Subjak et al.]2020, [Parviainen et al.]2020), and their occurrence rate has been revised to 2.0±0.5% by [Kiefer et al.]2019.

Our precise mass determination for π Men b contributes to further populate the brown dwarf desert.

The results of our study, based on multi-technique observations, make π Men a benchmark multi-body system – with a brown dwarf cohabiting with a super-Earth around a solar-like star – for which the 3-D architecture has been unveiled with precision. This indeed encourages further follow-up and detailed modeling of the π Men planetary system to understand its formation and evolution. We note that the nominal schedule of future TESS observations available at the moment includes the field of π Men for six more sectors in 2020-2021. The new data could be used to further constrain the TTVs of planet c.

Note. Few days before the formal acceptance of this paper, an independent study about the architecture of the π Men planetary system was published ([Xuan & Wyatt]2020). The results of that work, based on public data and not including the ESPRESSO observations, confirm the high mutual inclination of the orbital planes of π Men b and c. Our results are in agreement with those of [Xuan & Wyatt]2020 and are characterized by a better formal precision.
from Progetto Premiale 2015 FRONTIERA (OF.BU. 1.05.06.11) funding scheme of the Italian Ministry of Education, University, and Research, and also acknowledge the computing centres of INAF - Osservatorio Astrofisico di Trieste/Osservatorio Astronomico di Catania, under the coordination of the CHIPP project, for the availability of computing resources and support. C.L. and F.P. would like to acknowledge the Swiss National Science Foundation (SNSF) for supporting research with ESPRESSO through the SNSF grants nr. 140649, 152721, 166227 and 184618. The ESPRESSO Instrument Project was partially funded through SNSF’s FLARE Programme for large infrastructures. This work was supported by the Swiss National Science Foundation (SNSF) in the frame of the National Centre for Competence in Research “PlanetS”. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 724427). R.R., C.A.P., J.J.I.G.H., A.S.M., and M.R.Z.O. acknowledge financial support from the Spanish Ministry of Science and Innovation (MICINN) projects AYA2017-86389-P and AYA2016-79425-C3-2-P. J.J.I.G.H. acknowledges financial support from the Spanish MICINN under the 2013 Ramón y Cajal program RYC-2013-14875. M.T.M. thanks the Australian Research Council for Future Fellowship grant FT1800100194 which supported this work. Partial financial support from the agreement ASI-INAF n.2018-16-HH.0 is gratefully acknowledged. This work has made use of data from the European Space Astronomy Centre (ESAC) mission Gaia (https://www.cosmos.esa.int/web/gaia/targets), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planets data visualisation, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the expertise in exoplanet research. The DACE platform is available at https://dace.unige.ch.

References

Barros, S. C. C., Demangeon, O., & Deleuil, M. 2016, A&A, 594, A100

Batalha, N. E., Lewis, T., Fortney, J. J., et al. 2019, ApJ, 885, L25

Brandt, T. D., 2018, ApJS, 239, 31

Brandt, T. D., 2019, ApJS, 241, 39

Brandt, T. D., Dupuy, T. J., & Bowler, B. P. 2019, AJ, 158, 140

Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125

Burrows, A., Saumon, D., Guillot, T., Hubbard, W. B., & Lunine, J. I. 1995, Nature, 379, 235

Calissendorff, P. & Janson, M. 2018, A&A, 615, A149

Carmichael, T. W., Latham, D. W., & Vand erburg, A. M. 2019, AJ, 158, 38

Carmichael, T. W., Quinn, S. N., Mustill, A. c. e., et al. 2020, arXiv e-prints, arXiv:2002.01943

Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, L119

Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580

Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890

da Silva, L., Girardi, L., Pasquini, L., et al. 2006, A&A, 458, 699

Deck, K. M., Agol, E., Holman, M. J., & Nesvorný, D. 2014, The Astrophysical Journal, 787, 132

Delgado Mena, E., Bertrán de Lis, S., Adibekyan, V. Z., et al. 2015, A&A, 576, A69

Demangeon, O. D. S., Faedi, F., Hebrard, G., et al. 2018, Astronomy and Astrophysics, 610, A63

Di Marcatonio, P., Sosnowska, D., Cupani, G., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10704, Proc. SPIE, 107040E

Doyle, A. P., Davies, G. R., Smalley, B., Chaplin, W. J., & Elsworth, Y. 2014, Monthly Notices of the Royal Astronomical Society, 444, 3592

Dupuy, T. J., Brandt, T. D., Kratter, K. M., & Bowler, B. P. 2019, ApJ, 871, L4

Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298

Feng, F., Anglada-Escudé, G., Tuomi, M., et al. 2019, MNRAS, 490, 5002

Feroz, F., Hobson, M. P., Cameron, E., & Pettitt, A. N. 2013, arXiv e-prints, arXiv:1306.2144

Ford, E. B. & Gauld, B. S. 2006, The Astrophysical Journal, 652, L137

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, Publications of the Astronomical Society of the Pacific, 125, 306

Fulton, B. J., Petigura, E. A., Blunt, S., & Sinukoff, E. 2018, arXiv:1801.01947 [astro-ph] [arXiv:1801.01947]

Gaa Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1

Gandolfi, D., Barragán, O., Livingstone, J. H., et al. 2018, A&A, 619, L10

Gao, F. & Han, L. 2012, Comput Optim Appl, 51, 239

García Muñoz, A., Youngblood, A., Fossati, L., et al. 2020, ApJ, 888, L21

Grether, D. & Lineweaver, C. H. 2006, ApJ, 640, 1051

Hamers, A. S., Antonini, F., Lithwick, Y., Perets, H. B., & Portegies Zwart, S. F. 2017, MNRAS, 464, 688

Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254

Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288

Huang, C. X., Burt, J., Vanderburg, A., et al. 2018, ApJ, 868, L39

Jones, H. R. A., Paul Butler, R., Tinney, C. G., et al. 2002, MNRAS, 333, 871

Kervella, P., Arenou, F., Migndar, M. & Thévenin, F. 2019, A&A, 623, A72

Kervella, P., Arenou, F., & Schneider, J. 2020, A&A, 635, L14

Kervella, P., Arenou, F., & Schneider, J. 2020, A&A, 635, L14

Kervella, P., Arenou, F., & Schneider, J. 2020, A&A, 635, L14

M. Damasso et al.: A precise architecture characterization of the π Men planetary system

Fig. 7. Detection limits for additional planetary companions in the π Men system. The dashed red curve corresponds to a Doppler signal with semi-amplitude of 1 m s$^{-1}$, and the vertical dashed line marks the location of the time span of the ESPRESSO data.

Fig. 8. Transit timing variations measured from the TESS light curve. The dashed vertical line shows the epoch of the periastron passage of π Men b.
Appendix A: Coadded ESPRESSO spectrum
Fig. A.1. Upper plot. Coadded, normalized, merged, RV-corrected ESPRESSO spectrum of π Men using the starII DAS workflow in a subset of 40 ESPRESSO spectra. Lower plot. Selected regions of the spectrum, to illustrate its quality.
Appendix B: ESPRESSO and CORALIE data

The radial velocities and activity diagnostics used in this work are listed in Table B.1 and B.2. The data are made publicly available also from the DACE platform through the Web page https://dace.unige.ch/radialVelocities/?pattern=Pi%20Men or the python API's https://dace.unige.ch/radialVelocities/?pattern=Pi%20Men.
Table B.1. Radial velocities and activity indicators of π Men extracted from ESPRESSO spectra with the version 2.0.0 of the DRS pipeline.

Time (BJD-2 450 000)	RV (m s\(^{-1}\))	\(\sigma_{\text{RV}}\) (m s\(^{-1}\))	FWHM (m s\(^{-1}\))	BIS	S-index	S-index error	H\(_\alpha\)-index	H\(_\alpha\)-index error
8367.869454	10874.79	0.26	8726.89	-0.0350	0.157607	0.000029	0.190834	0.000014
8367.871444	10876.16	0.24	8727.41	-0.0349	0.158518	0.000025	0.191048	0.000012
8367.873341	10875.78	0.25	8726.28	-0.0347	0.157664	0.000026	0.190987	0.000013
8367.875278	10875.10	0.22	8728.95	-0.0347	0.158364	0.000021	0.190946	0.000011

Table B.2. Radial velocities of π Men extracted from CORALIE spectra.

Time (BJD-2 450 000)	RV (m s\(^{-1}\))	\(\sigma_{\text{RV}}\) (m s\(^{-1}\))
CORALIE-98	10609.63	8.74
1139.791656	10592.62	6.14
1189.666147	10617.22	5.81
1256.511024	10625.82	5.32
1453.866446	10584.39	5.70

Appendix C: Further analysis of the ESPRESSO RV residuals

As discussed in Sect. 4.2, the GLS periodogram of the 2-planet model RV residuals shows a peak at \(~190\) d (last panel of Fig. 4). Even though it appears not significant according to a bootstrap analysis, nonetheless we investigated the properties of this signal in more detail by performing a Monte-Carlo analysis with MultiNest and a Bayesian model comparison. To this purpose, we considered the ESPRESSO RV residuals after subtracting the best-fit spectroscopic orbit of π Men b and instrumental offsets, and we modelled them with two Keplerians setting their eccentricities to zero, one for the Doppler signal due to π Men c, and using uninformative priors for the semi-amplitude, period and time of inferior conjunction of the other Doppler signal (\(K\): \(\mathcal{U}(0,3)\) m s\(^{-1}\); \(P\): \(\mathcal{U}(0,300)\) d; \(T_{0,c}\): \(\mathcal{U}(2 458 370,2 458 690)\) BJD). We found that the fit improves with respect to including only π Men c (see Sect. 6). The Bayesian factor is \(~+5\) favouring the model with 2 signals, with semi-amplitude \(K_c=1.3\pm0.2\) m s\(^{-1}\) (slightly lower and more significant than \(K_c=1.5\pm0.3\) m s\(^{-1}\)), and the uncorrelated jitter of the post-intervention data slightly decreases to \(1.0^{+0.2}_{-0.1}\) m s\(^{-1}\). For the second signal, we found \(K_d = 1.1^{+0.5}_{-0.3}\) m s\(^{-1}\) and \(P_d = 194^{+29}_{-17}\) d. The posterior distributions for the free model parameters are shown in Fig. C.1 and the best-fit model for the additional signal is shown in Fig. C.2. If due to a third planet in the system, this signal would correspond to a minimum mass of \(~10\) M\(_\oplus\). The results of our analysis are not sufficiently robust to reach any clear conclusion about the nature of this signal that appears in the ESPRESSO data, and we did not perform any dynamical analysis to verify the orbital stability. Further spectroscopic follow-up is indeed required to confirm the signal and improve the phase coverage.

Appendix D: Radial velocity and astrometric joint analysis

Fig. D.1 shows the posterior distributions for \(i_b\) and \(\Omega_b\) derived from the analysis described in Sect. 5. As one can see, the orbital plane inclination angle \(i_b\) and the longitude of the ascending node \(\Omega_b\) for planet b are both fitted with high formal precision: \(i_b = 45.8^{+3.6}_{-1.4}\) deg and \(\Omega_b = 108.8^{+6.5}_{-6.7}\) deg. Fig. D.2 shows the distribution of the mutual inclination angles \(i_{bc}\) between the companions b and c to π Men.
Fig. C.1. Posterior distributions for the free parameters of the 2-planet model tested on the RV ESPRESSO residuals, after removing the spectroscopic orbit of π Men b and instrumental offsets from the original dataset.
Fig. C.2. Best-fit model (orange curve) for the additional \(\sim 190 \text{-d} \) signal found in the RV residuals of ESPRESSO, as derived with a Monte-Carlo analysis. The error bars include a constant jitter term added in quadrature to the formal RV uncertainties.
Fig. D.1. Top and central panels: posterior distributions for i_b and Ω_b. Lower panel: joint posterior distributions for the two model parameters.
Fig. D.2. Distribution of possible mutual inclinations between π Men b and c.