Differential effects of warming and nitrogen fertilization on soil respiration and microbial dynamics in switchgrass croplands

JIANWEI LI1, SIYANG JIAN1, JASON P. DE KOFF1, CHAD S. LANE2, GANGSHENG WANG3, MELANIE A. MAYES3 and DAFENG HUI4

1Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA, 2Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, NC 28403-5928, USA, 3Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, 4Department of Biological Science, Tennessee State University, Nashville, TN 37209, USA

Abstract

The mechanistic understanding of warming and nitrogen (N) fertilization, alone or in combination, on microbially mediated decomposition is limited. In this study, soil samples were collected from previously harvested switchgrass (Panicum virgatum L.) plots that had been treated with high N fertilizer (HN: 67 kg N ha⁻¹) and those that had received no N fertilizer (NN) over a 3-year period. The samples were incubated for 180 days at 15 °C and 20 °C, during which heterotrophic respiration, δ¹³C of CO₂, microbial biomass (MB), specific soil respiration rate (Rs: respiration per unit of microbial biomass), and exoenzyme activities were quantified at 10 different collections time. Employing switchgrass tissues (referred to as litter) with naturally abundant δ¹³C allowed us to partition CO₂ respiration derived from soil and amended litter. Cumulative soil respiration increased significantly by 16.4% and 4.2% under warming and N fertilization, respectively. Respiration derived from soil was elevated significantly with warming, while oxidase, the agent for recalcitrant soil substrate decomposition, was not significantly affected by warming. Warming, however, significantly enhanced MB and Rs indicating a decrease in microbial growth efficiency (MGE). On the contrary, respiration derived from amended litter was elevated with N fertilization, which was consistent with the significantly elevated hydrolase. N fertilization, however, had little effect on MB and Rs, suggesting little change in microbial physiology. Temperature and N fertilization showed minimal interactive effects likely due to little differences in soil N availability between NN and HN samples, which is partly attributable to switchgrass biomass N accumulation (equivalent to ~53% of fertilizer N). Overall, the differential individual effects of warming and N fertilization may be driven by physiological adaptation and stimulated exoenzyme kinetics, respectively. The study shed insights on distinct microbial acquisition of different substrates under global temperature increase and N enrichment.

Keywords: exoenzyme activities, heterotrophic respiration, microbial biomass, microbial growth efficiency, nitrogen fertilization, soil warming, switchgrass

Received 13 February 2018; accepted 16 March 2018

Introduction

The mean surface temperature of the Earth is predicted to increase by 1.5 °C by the end of this century (Melillo et al., 2014; Stocker et al., 2014). Nitrogen fertilization is a major contributor to global reactive N, which is projected to increase from 86 Tg N in 1995 to 135 Tg N in 2050 (Galloway et al., 2008; Fowler et al., 2013). Given the fact that soils harbor the largest organic C pool in the terrestrial biosphere, both warming and enhanced N availability could affect the formation and decomposition of soil organic matter (SOM), resulting in potential positive feedback to climate change (Thornton et al.,...
Switchgrass (Panicum virgatum L.), a model bioenergy crop, can mitigate climate change by reducing greenhouse gas emissions and enhancing C sequestration in soils via root and microbial biomass turnover (Follett et al., 2012). Given its low fertilizer and irrigation requirements, switchgrass was studied to promote growth and achieve high dry matter yields (McLaughlin, 1992; Heaton et al., 2004; Monti et al., 2012). However, the mechanistic understanding of soil response to climate warming and N fertilization in bioenergy croplands remains strikingly elementary (Ma et al., 2000b; Heaton et al., 2004).

Warming can increase the rates of SOM mineralization and CO₂ respiration (Rustad et al., 2001; Bergner et al., 2004; Kirschbaum, 2004; Bradford et al., 2008; Li et al., 2012), and soil microbial biomass carbon (MBC; Li et al., 2013; Ziegler et al., 2013). The extracellular hydrolytic and oxidative enzymes facilitate microbial decomposition of labile and recalcitrant substrates in soils (Sinsabaugh & Shah, 2012; Burns et al., 2013). Warming can enhance hydrolytic C acquisition enzymes (e.g., \(\beta-1,4\)-glucosidase and \(\beta\)-D-cellobiosidase) and phenol oxidase activities (Sowerby et al., 2005; Li et al., 2012), while hydrolytic and oxidative enzyme activities were reported to be unresponsive to warming (Bell et al., 2010; Gutknecht et al., 2010). Although there have been no reported warming effects on switchgrass soil C cycling, studies of switchgrass greenhouse gas fluxes have demonstrated that CO₂ flux is strongly associated with seasonal temperature variations, with flux rates being high in the summer and low in autumn and winter (Ma et al., 2000a; Nikiëma et al., 2011). Also, indirect evidence from studies on C₄ prairie soils (dominated by switchgrass and other grasses) showed that warming significantly increased soil heterotrophic respiration (Luo et al., 2009).

N fertilization elevated SOM mineralization and CO₂ respiration in croplands (Lu et al., 2011) and significantly stimulated hydrolytic C acquisition enzyme activities but suppressed phenol oxidase and peroxidase activities across different ecosystems (Jian et al., 2016; Chen et al., 2017a). Soil MBC may decline with N fertilization due to depressed microbial growth at lower pH and the depletion of labile substrate (Treseder, 2008; Liu & Greaver, 2010; Jian et al., 2016). In general, switchgrass soil CO₂ and CH₄ fluxes and soil total C and organic C content were not altered by N fertilization (Jung & Lal, 2011; Nikiëma et al., 2011; Mbonimpa et al., 2015). According to a 3-year switchgrass study, soil microbial biomass and potential mineralizable C were not affected by NH₄NO₃ fertilization (Lee et al., 2007). However, a recent study showed N fertilization decreased soil organic C and N pools in switchgrass systems and moderated soil C sequestration potential (Valdez et al., 2017). The differential effects of warming and N fertilization render it imperative to study their interactive effects on soil respiration and microbial dynamics.

Previous studies showed strong interactive effects of warming and N fertilization on soil respiration, microbial community composition, and oxidase activities in various soil and ecosystems (Liu et al., 2011; Liang & Balser, 2012; Li et al., 2013; Zhao et al., 2014; Chen et al., 2017b). Warming and N fertilization in combination increased the ratio of fungi to bacteria (F:B) but decreased total phospholipid fatty acid and phenol oxidase activity in forest soils (Zhao et al., 2014) and the microbial contribution to soil C pool in a grassland soil (Liang & Balser, 2012). Warming, fertilization, and their interaction decreased soil MBC significantly but substantially increased soil microbial biomass nitrogen (MBN) in the subalpine coniferous forest ecosystem (Liu et al., 2011). In boreal forest soils, higher N bioavailability enhanced the positive warming effects on soil phenol oxidase activity and lower N availability suppressed the warming-induced CO₂ derived from labile material (Li et al., 2013). In a switchgrass cropland, N fertilization and high temperatures in summer resulted in the higher soil respiration and microbial biomass (Nikiëma et al., 2011). Given that the microbial mining of N and phosphorus (P) nutrients may vary widely under N fertilization (Saiya-Cork et al., 2002; Marklein & Houlton, 2012; Deng et al., 2017b) or warming (Bai et al., 2013; Billings & Ballantyne, 2013), a potentially strong interaction between warming and N fertilization on the hydrolase associated with N and P acquisitions may be expected. On the other hand, global warming may increase soil N availability, which could have far-reaching impacts on soil respiration and microbial activities (Joseph & Henry, 2008; Dijkstra et al., 2010; Turner & Henry, 2010; Melillo et al., 2011). N fertilization may enhance N availability in soil and plant N uptake and biomass accumulation, resulting in changes in nutrient availability to plants (Jenkinson et al., 1985), which in turn may alter plant, soil, and microbial responses to climate warming (Melillo et al., 2011).

The effects of climate change on switchgrass have focused on aboveground crop yield responses (Hartman & Nippert, 2013; Palmer et al., 2014; Deng et al., 2017a; Zhu et al., 2017). For instance, N fertilization has been shown to greatly increase biomass yield by 1.5-fold to 2.5-fold (Nikiëma et al., 2011; Qin et al., 2015). Warming also increased biomass yield or had no effect (Hartman & Nippert, 2013). However, few studies have investigated belowground microbial and enzymatic activities under both warming and N fertilization conditions. The plant biomass N accumulation accounted for a
significant portion of fertilizer N in switchgrass croplands (Garten et al., 2010; Owens et al., 2013); however, how switchgrass and soil interact and mechanistically mediate climate change has not been addressed. Because climate warming and N fertilizer inputs appear to exert strong controls on soil C cycling and potentially positive feedback to climate change, lacking evidence on the interactive effects of warming and N fertilization prevents the prediction of soil C responses under multifactor climate change scenarios.

In the established switchgrass stands subjected to N fertilization for 3 years in middle Tennessee, soil samples were collected from two N fertilization treatments (NN: no N input; HN: 67 kg N ha⁻¹) and incubated for 180 days at two temperatures (i.e., 15 °C and 20 °C) with or without amended switchgrass tissue materials (hereafter referred to as litter). Soil CO₂ emission, δ¹³C of respired CO₂, microbial biomass, and exoenzyme activities were quantified at 10 different collections during the incubation. It was hypothesized that (1) warming would increase soil heterotrophic respiration associated with the elevated microbial biomass and oxidoase activities; (2) N fertilization would increase soil heterotrophic respiration associated with the elevated microbial biomass and hydrolase activities; and (3) warming would stimulate soil respiration and microbial activities in the fertilized soils during incubation as a result of the strong interaction between warming and N fertilization. Alternatively, when there is no interaction between these two factors, this study explored how soil N availability may moderate their effects, because switchgrass biomass N accumulation usually represents a major portion of fertilizer N. By combining a switchgrass field experiment, laboratory incubation, and microbial activity assays, this study explored soil and microbial responses and offered insights into the underlying microbial processes and their interaction with soil and plants that govern these responses.

Materials and methods

Site description, plant and soil sampling, and chemical analysis

The switchgrass stands were located at the Tennessee State University Agricultural Research and Education Center, Ashland City, Tennessee. The site occupies Lindsale silt loam soil (fine-silty, mixed, mesic Fluvaequent Eutrochrepts; de Koff & Allison, 2015). On the year prior to planting switchgrass in 2012, the field site was left fallow. The switchgrass was planted in 2012 in four blocks (3.2 m by 39 m) with a 2.4 m buffer between each block. Each block was divided into eight individual plots (3.2 m by 4.9 m). A full factorial experiment design was employed in which three different treatments (i.e., N fertilizer, biochar, and potassium fertilizer), and two levels of each treatment were randomly assigned to the eight plots (2 × 2 × 2). This study focused on N fertilizer treatment, which included two levels: no N input (NN) and relatively high N input (HN, 67 kg N ha⁻¹). The N fertilizer (i.e., ammonium nitrate) was applied to the fertilized plots by hands on May 6, 2014, and March 26, 2015. Plant biomass above approximately 15 cm in height was harvested in December 2015 from all plots with a sickle bar mower. The samples were weighed and then dried in a forced-air oven at 60 °C until their weight decreased by 0.7% or less per day. After drying, subsamples of plant tissues were ground with a large Wiley Mill (Thomas Manufacturing, Hillside, NJ, USA) until they could pass through a 1 mm screen.

After switchgrass biomass was harvested, soil samples (0–15 cm) were collected from the mineral soil horizon in January 2016 by removing the surface litter layer. Five samples were collected from each of the NN and HN plots for a total of 40 samples (5 samples × 2 treatments × 4 replicates). All of the samples were stored in coolers and taken to the laboratory for analysis. After roots were removed from each core, soil samples collected from the same plot were homogenized into one single sample and sieved through a 2-mm soil sieve (Fisher Scientific, Hanover Park, IL, USA). Two composite soil samples obtained from the NN and HN plots were subjected to different temperatures (15 °C and 20 °C) in laboratory incubation to be conducted within 2 weeks after soil collection. Soil moisture was determined by oven-drying subsamples for 24 h at 105 °C. Air-dried soil subsamples were ground to fine powder for C and N analysis. Both switchgrass plant materials and soil samples were shipped to the University of North Carolina at Wilmington Center for Marine Science for analysis of total C and N, δ¹³C and δ¹⁵N using a Thermo Scientific HT Plus elemental analyzer (Thermo Fisher Scientific Inc., Waltham, MA, USA) interfaced with a Thermo Scientific Delta V Plus stable isotope mass spectrometer. The switchgrass biomass N accumulation was calculated by multiplying the harvested switchgrass biomass by the biomass N concentration (i.e., 0.28%) obtained via the aforementioned N analysis.

Laboratory incubation

Field moist soil samples (10.0 g equivalent dry weight) were weighed in PVC cores (5 cm diameter, 7.5 cm tall) that had been sealed with glass fiber paper on the bottom. The PVC cores were placed in Mason jars (1 L) lined with a bed of glass beads to ensure that the cores did not rest in any moisture. The ground dry switchgrass aboveground tissue material (1.0 g, δ¹³C = −18.5‰) was added to the cores and mixed well with soils, marking the initiation of incubation (day 0). This treatment hereafter is referred to as litter treatment. The added litter material is relatively more labile than soil samples due to its higher abundance of nonstructural compounds (Cotrufo et al., 2015). An equivalent number of soil samples were incubated without litter addition (no litter treatment). A total of 240 jars underwent incubation based on 2 temperature treatments × 2 N fertilizer treatments × 2 litter treatments × 3 replicates × 10 sampling times. Water was added to the incubation vessel periodically to bring the soils to a 75% waterholding capacity (0.4 gH₂O g⁻¹ soil⁻¹), a moisture content expected to promote microbial activity (Linn & Doran, 1984). The weight
of each jar was monitored weekly to determine whether any water had been lost from its core, and an equivalent amount of water that was lost was added to each core to ensure that diffusion of substrates to enzymatic reaction sites was not limited. The jars were also aerated each week to prevent an anaerobic environment.

On days 1, 5, 10, 15, 30, 60, 90, 120, 150, and 180, soil respiration was measured and soil was destructively collected from 24 jars to measure microbial biomass C and N and extracellular enzyme activities. The total CO2 concentration in the jars and δ13C of CO2 were measured by connecting the jars to a Picarro G2131-i analyzer (Picarro Inc., Santa Clara, CA, USA). This method took advantage of high-precision stable isotope ratio measurements with continuous time. Respiration rate was calculated using the amount of CO2 that had accumulated in the circulation system over time and soil dry weight. The cumulative respiration calculation assumed the respiration rate was constant until the next measurement was made.

The effect of laboratory air on measured [CO2] and δ13C of CO2 in each jar was corrected for using average values of laboratory air during the incubation. Based on a mixing model, δ13C of CO2 in the incubation jars (litter treatment) represented a mixture of CO2 derived from laboratory air, respired SOM, and litter. The δ13C of mixed CO2-C was derived from respired SOM and litter (Eqn 1) by excluding the effect of laboratory CO2-C.

\[\delta^{13}C_{\text{soil} + \text{litter} + \text{air}} = \delta^{13}C_{\text{soil} + \text{litter} + \text{air}} - \delta^{13}C_{\text{air}} \]

(1)

where \(\delta^{13}C_{\text{soil} + \text{litter} + \text{air}} \) and \(\delta^{13}C_{\text{soil} + \text{litter}} \) denote the δ13C of CO2-C from SOM, litter, and laboratory air and from SOM and litter, respectively. \(\delta^{13}C_{\text{air}} \) denotes the total concentration of CO2 respired from SOM, the replaced litter, and ambient laboratory CO2 introduced into the sample. \(\delta^{13}C_{\text{air}} \) represents the CO2 concentration of laboratory air (500 ppm). The proportion of respired CO2-C was then derived from SOM in the total respiration from SOM and litter (Eqn 2).

\[P_{\text{soil}} = \frac{\delta^{13}C_{\text{soil} + \text{litter}} - \delta^{13}C_{\text{litter}}}{\delta^{13}C_{\text{soil} + \text{litter}} - \delta^{13}C_{\text{litter}}} \]

(2)

where \(P_{\text{soil}} \) denotes the proportion of respired CO2-C from indigenous SOM, and \(\delta^{13}C_{\text{soil}} \) and \(\delta^{13}C_{\text{litter}} \) denote the δ13C of SOM and litter, respectively. It was assumed that the difference between the δ13C of respired CO2 and the δ13C of the substrate from which it is derived is negligible and that this offset is equivalent for both indigenous SOM and replaced litter. The most simplistic assumptions were adopted in accordance with established protocols (OMalley et al., 1996; Phillips et al., 2005; Li et al., 2012).

Microbial biomass and biomass-specific soil respiration

A chloroform fumigation-K2SO4 extraction (Brookes et al., 1985) and potassium persulfate (0.5 M K2SO4) digestion methods were used to quantify microbial biomass C and N (Paul, 2007). All K2SO4 soil extracts were shaken on a mechanical shaker for 1 h and then filtered through Whatman #40 filter paper. Extractable organic C or N in fumigated and unfumigated samples were analyzed on a Shimadzu analyzer (Shimadzu Corp., Kyoto, Japan), and the difference between fumigated and unfumigated treatments represented MBC or MBN. The ratio of MBC and MBN (C:Nmb) was also derived and analyzed. Biomass-specific soil respiration was derived by the ratio of soil respiration divided by microbial biomass in each collection and it was used to index microbial physiology (Bradford et al., 2008).

Hydrolytic and oxidative extracellular enzyme activities

On days 1, 5, 10, 15, 30, 60, 90, 120, 150, and 180, hydrolytic and oxidative extracellular enzyme assays were performed according to protocols discussed in previous studies (Sinsabaugh et al., 2000; Allison et al., 2008; Li et al., 2012). These measures represent potential enzyme activities indicative of overall enzyme concentrations (Wallenstein & Weintraub, 2008) and the potential microbial capacity to process labile and relatively slow-turnover SOM. Fluorescent-labeled substrates were used to index the enzymes x,1,4-glucosidase (AG), β,1,4-glucosidase (BG), cellobiohydrolase (CBH), β,1,4-xylidoside (BX), acid phosphatase (AP), β,1,4-N-acetyl-glucosaminidase (NAG), and leucine amino peptidase (LAP; Marx et al., 2001; Li et al., 2012). Colorimetric techniques were used to assess the potential activity of phenol oxidase (PHO), peroxidase (PER), and urease (UREA; Saiya-Cork et al., 2002). In this study, labile C-acquiring enzymes (C-acq) were considered as the sum of AG, BG, CBH, and BX, N-acquiring enzymes (N-acq) as the sum of NAG and LAP, and oxidative enzymes (OX) as the sum of PHO and PER.

For these assays, a 1.0 g soil sample (fresh weight) was homogenized by mixing it with 125 mL of 50 mM sodium acetate buffer (pH 5.5) for 30 s with a hand blender. To quantify extracellular enzyme activities (EEA) for each soil sample, 16 replicate wells containing 50 μL soil slurry and 50 μL of substrate were used. To calculate the quench coefficient, eight wells were used containing 200 μL of soil slurry and 50 μL of standard (10 μM 4-methylumbelliferone (MUB)) for hydrolytic enzymes; an additional control (blank) was composed of eight wells pipetted with 200 μL of soil slurry. Negative controls consisted of eight wells with 50 μL of substrate and 200 μL of buffer. Eight wells with 50 μL of MUB or 7-amino 4-methylcoumarin (MC) and 200 μL buffer were used to derive the emission coefficient. L-3,4-dihydroxyphenylalanine (L-DOPA) was used as a substrate for PHO and PER. The plates were incubated at 15 °C or 20 °C, corresponding to their respective temperature treatments, for approximately 20 h. In each well of all fluorescence plates, 10 μL of 0.5 M NaOH was added to raise the MUB or MC emission coefficients to a detectable level. Fluorescence was assessed using a microplate fluorometer (Molecular Devices, Sunnyvale, CA, USA) set to an excitation wavelength of 365 nm and emission wavelength of 460 nm. Spectrophotometric activity was quantified with a spectrophotometer (Molecular Devices). The absorbance was measured at
460 nm for PHO and PER. Measurements are presented as μmol activity h⁻¹ g⁻¹ soil⁻¹.

Statistical analysis

Repeated-measure ANOVA (PROC MIXED, SAS, Cary, NC, USA) was used to assess the main effects of temperature, N fertilization, litter, and their interactions on soil respiration rate, δ¹³C of respired CO₂, proportion of CO₂ respired from indigenous SOM, microbial biomass, biomass-specific respiration, and EEA during the incubation. Post hoc tests via Tukey-Kramer-adjusted P-values were also used to assess the effects of temperature, N fertilization, or their interaction on a day in which significant interaction was observed. A two-way ANOVA was also used to assess the major effects of temperature, N fertilization, and their interactions on cumulative respiration (as distinct from respiration rates) and differences between two temperatures (20 °C and 15 °C) on each day in no litter and litter treatments, respectively. The overall average of each EEA for all days was tested by two-way ANOVA to examine generalized temperature and N fertilization effects. All datasets are in Table S2.

Results

Switchgrass biomass yield and soil C and N contents

High N led to 30% higher biomass yield on average than NN (1.3 ± 0.1 kg m⁻² vs. 1.0 ± 0.4 kg m⁻²). The N removal via biomass was 36.4 kg N ha⁻¹ in the HN stands, which was equivalent to 54.3% of fertilizer N applied. There were no significant differences in either soil organic C (1.05% vs. 1.06%) or total N (0.099% vs. 0.102%) between NN and HN. The δ¹³C of bulk SOM is −24.5‰ and −26.0‰ in NN and HN, respectively. The soil δ¹³N is 4.5‰ and 4.6‰ in NN and HN, respectively.

Soil CO₂ efflux and its partitioning

Warming significantly increased the cumulative respiration by 16% over 180 days. The positive warming effects were revealed on days 30, 60, 90, 120, 150, and 180 in the no litter treatment and on days 15, 30, 60, 90, 120, 150, and 180 in the litter treatment (Table 1; Fig. 1). On day 60, the proportion of respired CO₂ derived from indigenous SOM was significantly enhanced with warming from 60% (15 °C) to 82% (20 °C; Fig. 2; P < 0.05). N fertilization significantly increased the cumulative respiration by 4.2% over 180 days. The positive N fertilization effects were revealed on days 120 and 180 in the litter treatment (Table 1; Fig. 1). On day 5, the proportion of respired CO₂ derived from indigenous SOM significantly decreased with N fertilization from 43% (NN) to 32% (HN; Fig. 2; P < 0.05). That is, the proportion of respired CO₂ derived from litter

Soil variable	T	N	D	T*N	T*D	N*D	T*N*D
No litter treatment							
Respiration rate	**	***					
Cumulative	***	***	***				
Specific		***	***	***	***	***	
MBC	***						
MBN	***						
C:Nmb		***	***	***	***	***	
AG		***	***	***	***	***	
BG		***	***	***	***	***	
BX		***	***	***	***	***	
CBH	***	***	***	***	***	***	
C-acq	***	***	***	***	***	***	
NAG	***	***	***	***	***	***	
LAP	***	***	***	***	***	***	
N-acq	***	***	***	***	***	***	
PHO	***	***	***	***	***	***	
PER	***	***	***	***	***	***	
OX	***	***	***	***	***	***	
AP	***	***	***	***	***	***	
UREA	***	***	***	***	***	***	
Litter treatment							
Respiration rate	**	***					
Cumulative	***	***	***				
Specific		***	***	***	***	***	
MBC	***						
MBN	***						
C:Nmb		***	***	***	***	***	
AG		***	***	***	***	***	
BG		***	***	***	***	***	
BX		***	***	***	***	***	
CBH	***	***	***	***	***	***	
C-acq	***	***	***	***	***	***	
NAG	***	***	***	***	***	***	
LAP	***	***	***	***	***	***	
N-acq	***	***	***	***	***	***	
PHO	***	***	***	***	***	***	
PER	***	***	***	***	***	***	
OX	***	***	***	***	***	***	
AP	***	***	***	***	***	***	
UREA	***	***	***	***	***	***	

T, temperature; N, fertilization, D, date. Asterisks denote significance (*0.05–0.01, **0.01–0.001, ***0.001).
on days 15, 30, 60, 90, 120, and 150 and was enriched with N fertilization on days 1 and 5 (Table 2).

MBC, MBN, and biomass-specific soil respiration

Warming significantly increased MBC in the litter treatment, but N fertilization showed no significant effect on MBC (Table 1; Table S1). There was no significant warming, N fertilization, or their interactive effects on MBN or C:Nmb in both no litter and litter treatments (Table 1). As an index of microbial physiology, microbial biomass-specific respiration rates were relatively higher in the litter treatment than in the no litter treatment (Fig. 3). Warming significantly increased microbial biomass-specific respiration in the litter treatment ($P < 0.05$) and in the no litter treatment ($P = 0.057$; Fig. 3). There was no significant N fertilization effect on specific respiration rates (Table 1).

Hydrolytic and oxidative extracellular enzymes

Warming significantly increased AG, BG, BX, C-acq, AP, NAG, and N-acq in specific collection date (Table 1). For instance, warming significantly increased BG, BX, and C-acq on day 5 in both litter treatments (Fig. 4a, b). Warming showed no significant effects on CBH, LAP, PER, PHO, or OX (Table 1). N fertilization significantly increased BG, C-acq, NAG, N-acq, and AP on certain collection in both litter treatments (Table 1). In particular, N
fertilization increased C-acq on day 5 in both litter treatments and CBH in litter treatment (Fig. 4a, b). N fertilization also decreased OX and PER in no litter treatment but had no significant effects on OX, PHO, and PER (Table 1; Fig. 4c, d). The significant interactions between warming and N fertilization were found only in the no litter treatment on PHO and AG during the incubation (Table 1) and on BX on day 5 (Fig. 4a).

Discussion

Warming effects on soil respiration, microbial biomass, and enzyme activities

Warming increased soil respiration significantly in most collections during incubation. This supports the first hypothesis and is also consistent with former studies that reported positive warming effects driven by a rapid depletion of labile substrates (Xu et al., 2012), microbial community change (Zhou et al., 2012; DeAngelis et al., 2015), and high temperature sensitivity of recalcitrant substrates (Davidson & Janssens, 2006). Warming not only increased microbial biomass, which has been reported in different types of soils (Ziegler et al., 2013), but also elevated the specific respiration rate (i.e., respiration per unit microbial biomass), suggesting a decrease in microbial growth efficiency (MGE) of the microbial communities. This finding supports that rising soil temperatures are generally expected to reduce MGE, as warming limits microbial growth by increasing the energy cost of maintaining the existing biomass (Manzoni et al., 2012; Sinsabaugh et al., 2013).

The results of this study also suggested that warming promoted the microbial substrate preference for relatively more recalcitrant substrates after 2 months of incubation. This finding is consistent with the warming-enhanced microbial preference for a relatively humified substrate in a boreal forest soil (Li et al., 2012). Thus, more pronounced warming-induced increases in oxidase rather than hydrolase activities are expected, as revealed by Li et al. (2012). However, this study showed no significant increase in oxidases despite the increase in hydrolases with warming. This was likely attributable to the similar nature of soil and litter substrates in switchgrass cropland due to the large volume of root exudates and their contribution to SOM (Rovira, 1959). This similarity was supported by elevated soil labile C pools and N immobilization in matured switchgrass stands (Pryatel, 2015), but future studies should explicitly obtain the quality of switchgrass aboveground materials, root, and soil.

N fertilization effects on soil respiration, microbial biomass, and enzyme activities

Consistent with our second hypothesis, N fertilization increased soil respiration and hydrolase activities. The stimulatory N fertilization effect on both soil respiration and hydrolase activities was also revealed across broader spatiotemporal scales (Jian et al., 2016; Chen et al.,
Table 2 Mean (±SD) stable C isotopic signature of respired CO₂ derived from two fertilizer treatment (Fert: NN and HN) soils under two temperature treatments (Temp: 15 °C, 20 °C) in no litter and litter addition treatments during a 180-day incubation

Litter	Temp, °C	Incubation time	Fert	Day 1N	Day 5N	Day 10	Day 15T	Day 30T	Day 60T	Day 90T	Day 120T	Day 150T	Day 180
No litter	15	NN	-26.86 ± 0.8	-29.82 ± 1.0	-26.92 ± 0.4	-22.72 ± 0.5	-26.93 ± 0.8	-26.45 ± 1.8	-23.23 ± 0.9	-21.82 ± 0.8	-22.04 ± 0.9	-21.91 ± 0.8	
	15	HN	-22.46 ± 0.4	-26.27 ± 0.8	-25.24 ± 1.7	-23.32 ± 0.8	-25.94 ± 0.7	-23.98 ± 5.5	-23.87 ± 0.9	-23.13 ± 0.9	-23.57 ± 0.9	-23.92 ± 0.9	
	20	NN	-26.01 ± 2.3	-25.44 ± 0.9	-25.75 ± 1.4	-25.19 ± 0.4	-28.29 ± 0.3	-28.69 ± 3.0	-22.44 ± 0.9	-22.51 ± 0.9	-22.94 ± 0.9	-21.72 ± 0.8	
	20	HN	-24.07 ± 1.4	-24.71 ± 0.1	-24.33 ± 0.7	-25.88 ± 0.9	-27.11 ± 1.4	-28.51 ± 3.6	-23.61 ± 0.9	-22.4 ± 0.9	-22.82 ± 0.9	-24.03 ± 0.9	
Litter	15	NN	-22.53 ± 0.6	-21.18 ± 0.8	-21.45 ± 2.5	-21.06 ± 1.3	-21.89 ± 2.4	-22.13 ± 1.0	-22.62 ± 1.1	-23.15 ± 0.4	-23.39 ± 1.0	-23.79 ± 0.2	
	15	HN	-21.84 ± 1.0	-20.85 ± 0.2	-19.67 ± 0.7	-21.47 ± 0.7	-21.79 ± 1.0	-23.47 ± 1.3	-23.7 ± 0.8	-23.98 ± 0.5	-24.1 ± 0.6	-25.44 ± 0.5	
	20	NN	-22.6 ± 0.10	-20.83 ± 0.2	-21.48 ± 1.4	-22.22 ± 1.0	-22.85 ± 1.6	-23.27 ± 0.8	-24.3 ± 1.8	-25.01 ± 0.9	-25.33 ± 0.7	-23.87 ± 0.4	
	20	HN	-21.8 ± 1.5	-20.96 ± 0.4	-20.94 ± 0.6	-22.48 ± 1.0	-23.28 ± 0.6	-24.71 ± 1.0	-25.42 ± 0.6	-25.34 ± 1.1	-25.41 ± 0.7	-25.65 ± 0.4	

Significant temperature effects for both no litter and litter addition treatments at α < 0.05.

Significant N fertilization effects for both no litter and litter addition treatments at α < 0.05.
In general, N fertilizers increased the amount of readily available N (i.e., NO₃⁻) for plant and microbial uptake (Yanai et al., 1998). In switchgrass croplands, the lower the amount of N fertilizer used, the less positive the effect of N fertilization on soil C and N stocks (Rasmussen et al., 1980; Heggenstaller et al., 2009; Stewart et al., 2016). The amount of fertilizer used in this study (i.e., 67 kg N ha⁻¹) should be regarded as the lower end of a wide spectrum of fertilization intensity of up to 300 kg N ha⁻¹ (Potter et al., 2011; Lu & Tian, 2017).

In addition, the harvested biomass N removal was equivalent to more than 53% of fertilizer N applied annually in our switchgrass cropland, which is lower than 68–94% found in other switchgrass croplands (Garten et al., 2010; Owens et al., 2013). Garten et al. (2011) found that during the growing season, the belowground biomass contained twice the amount of N stock in comparison with the aboveground biomass under 67 kg N ha⁻¹ N fertilization. These results suggest that plant N uptake and accumulation moderated soil N availability, which may contribute to the weak or lack

Fig. 3 Mean (±SE) specific soil CO₂ efflux in each collection date over 180-day incubation without litter addition (above) and with litter addition (below). Error bars indicate standard errors of the means (n = 3). The effects of temperature, nitrogen fertilizer and date were presented in Table 1.
of warming and N fertilization interaction. Nevertheless, soil samples used in the study were collected during the winter season following harvesting of the biomass when environmental stress for soil microbial activity was high (Rustad et al., 2001; Dessureault-Rompré et al., 2010). To further explore whether interactive effects of warming and N fertilization exist in the switchgrass cropland, future studies should conduct soil collections prior to harvesting biomass (i.e., during the growing season or shortly after fertilization). Quantifying microbial community compositions via molecular and genomic analyses will shed new insights on microbial routing of different substrates under multiple climate change scenarios in the future.

Acknowledgements

J Li and S Jian contributed equally to this work. This study was supported by funding from a US Department of Agriculture Evans-Allen grant awarded to JL (No. 1005761) and US Department of Energy (DOE) Office of Biological and Environmental Research through the Terrestrial Ecosystem Science Scientific Focus Area (TES-SFA) at Oak Ridge National Laboratory (ORNL). ORNL is managed by the University of Tennessee– Battelle, LLC, under contract no. DE-AC05-00OR22725 with the US DOE. We thank Richard Link for site establishment and maintenance, and Sherly Celada, Tariq Muhammad, and Dr. Chunlan Guo for their laboratory assistance. We appreciate the anonymous reviewers for their constructive comments and suggestions.

References

Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37, 937–944.

Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156–1168.

Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336–340.

Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441–451.

Bell TH, Kilronomos JN, Henry HAL (2010) Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal, 74, 820–828.
Bergner B, Johnstone J, Treseder KK (2004) Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biology, 10, 1996-2004.

Billings SA, Ballantyne F (2013) How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Global Change Biology, 19, 90-102.

Bradford MA, Davies CA, Frey SD et al. (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316-1327.

Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil-nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.

Burns RG, DeForest JL, Marxsen J et al. (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.

Chen J, Luo YQ, Li JW (2006) Temperature sensitivity of soil carbon decomposition on GHB flux in an alpine swamp meadow of a permafrost region. Science of the Total Environment, 361, 1389-1399.

Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Hadliss ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776.

Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.

DeAngelis KM, Pool G, Topcuoglu BD et al. (2013) Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 4, 104.

Deng Q, Aras S, Yu CL et al. (2017a) Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. Agriculture Ecosystems & Environment, 248, 29-37.

Deng Q, Hui DF, Dennis S, Reddy KC (2017b) Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Geography, 26, 713-728.

Dessureault-Rompré J, Zebühr BJ, Georgallas A, Burton DL, Grant CA, Drury CF (2010) Temperature dependence of soil nitrogen mineralization rate: comparison of mathematical models, reference temperatures and origin of the soils. Geoderma, 157, 97-108.

Dijkotta FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Fellet RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 187, 427-437.

Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenergy Research, 5, 866-875.

Fowler D, Coyle M, Skiba U et al. (2013) The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20130314.

Gallo M, Amornette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended northern temperate forest soils. Microbial Ecology, 49, 218-229.

Galloway JN, Townsend AR, Erisman JW et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.

Garten CT, Smith JL, Tyler DD et al. (2010) Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USA. Agriculture, Ecosystems & Environment, 136, 177-184.

Garten CT, Brice DJ, Castro HF et al. (2011) Response of “Alamo” switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agriculture, Ecosystems & Environment, 140, 289-297.

Geisserel D, Scew KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biology & Biochemistry, 75, 54-63.

Gutknecht JLM, Henry HAL, Balser TC (2010) Inter-annual variation in soil extracellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53, 283-293.

Hartman JC, Nippert JB (2013) Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive air temperature manipulation. GCB Bioenergy, 5, 683-692.

Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C 4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy, 27, 21-30.

Heggenstaller AH, Moore KJ, Liebman M, Anex RP (2009) Nitrogen influences biomass and nutrient partitioning by perennial, warm-season grasses. Agronomy Journal, 101, 1363-1371.

Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen — the so-called ‘priming’ effect. Journal of Soil Science, 36, 425-444.

Jian S, Li J, Chen J et al. (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biology and Biochemistry, 101, 32-43.

Joseph C, Henry HAL (2008) Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biology and Biochemistry, 40, 1947-1953.

Jung JY, Lal R (2011) Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum virgatum L.) and changes in soil organic carbon in Ohio. Geoderma, 166, 145-152.

Jung JY, Lal R, Usiri DAN (2011) Changes in CO2, C-13 abundance, inorganic nitrogen, beta-glucosidase, and oxidative enzyme activities of soil during the decomposition of switchgrass root carbon as affected by inorganic nitrogen additions. Biology and Fertility of Soils, 47, 801-813.

Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10, 1870-1877.

de Koff JP, Allison A (2015) Changes in nutrient characteristics of switchgrass for bioenergy. Agronomy Journal, 107, 2401-2409.

Lee DK, Doolittle JJ, Owens VN (2007) Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biology and Biochemistry, 39, 178-186.

Li J, Ziegler S, Lane CS, Billings SA (2012) Warming-enhanced preferential microbial mineralization of humified boreal forest soil organic matter: interpretation of soil profiles along a climate transect using laboratory incubations. Journal of Geophysical Research: Biogeosciences, 117, G02008.

Li J, Ziegler SE, Lane CS, Billings SA (2013) Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biology and Biochemistry, 66, 204-213.

Liang C, Balser TC (2012) Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 3, 1222.

Linn DM, Doran JW (1984) Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and no-tilled soils. Soil Science Society of America Journal, 48, 1267-1272.

Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.

Liu Q, Yin H, Chen J, Zhao C, Cheng X, Wei Y, Lin B (2011) Belowground responses of Picea asperata seedlings to warming and nitrogen fertilization in the eastern Tibetan Plateau. Ecological Research, 26, 637.

Lu CQ, Tian HQ (2017) Global nitrogen and phosphorus fertiliser use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data, 9, 181-192.

Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, Chen JK, Li B (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture Ecosystems & Environment, 140, 234-244.

Luo Y, Sherry R, Zhou X, Wan S (2009) Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 1, 62-74.

Ma Z, Wood CW, Bransby DJ (2000a) Carbon dynamics subsequent to establishment of switchgrass. Biomass & Bioenergy, 18, 103-114.

Ma Z, Wood CW, Bransby DJ (2000b) Soil management impacts on soil carbon sequestration by switchgrass. Biomass & Bioenergy, 18, 469-477.

Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91.

Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.

Marc S, Wood M, Jarvis SC (2001) A microplate fluorometric assay for the study of enzyme diversity in soils. Soil Biology & Biochemistry, 33, 1633-1640.

Mbonimpa EG, Hong CO, Owens VN et al. (2015) Nitrogen fertiliser and landscape position impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass. GCB Bioenergy, 7, 836-849.

McLaughlin SB (1992) New switchgrass biofuels research program for the southeast. Oak Ridge National Lab., TN (United States).

Melillo JM, Butler S, Johnson J et al. (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512.

Melillo JM, Richmond TC, Yole GW (2014) Climate change impacts in the United States: the third national climate assessment. US Global Change Research Program, 2014.
