Minireview

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

Dongwon Baek¹, Hyun Jin Chun², Dae-Jin Yun³, and Min Chul Kim¹,²*

¹Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea, ²Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea, ³Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea, *These authors contributed equally to the work.

INTRODUCTION

The availability of inorganic phosphate (Pi) in soil is a crucial determinant of plant growth and development as well as crop productivity (Raghothama, 1999). Plants have evolved morphological, physiological, biochemical, and molecular processes to improve the mobilization, acquisition, and efficient utilization of Pi under deficiency conditions (Poirier and Bucher, 2002; Yuan and Liu, 2008). Reports on the mechanisms that regulate sensing and the response to Pi starvation have identified Pi starvation signaling pathway components and the cross-talk between Pi starvation responses and other plant signaling pathways, including sugars, phytohormones, and photosynthesis (Franco-Zorrilla et al., 2005; Lei et al., 2011a; Rouached et al., 2010; Rubio et al., 2009).

Cross-regulation occurs between Pi starvation and other plant signaling pathways, such as sugars and phytohormones (Rouached et al., 2010; Yuan and Liu, 2008). Pi starvation often causes sugar accumulation in plant tissues; high sugar levels in roots induce root system architecture (RSA) changes under Pi deprivation (Ciereszko et al., 2005; Ham-
also acts as a direct transcriptional activator of the miR-399f gene, which plays a crucial role in maintaining Pi homeostasis in response to changing environmental conditions.

The signaling networks involved with plant responses to Pi starvation are well known, but the cross-talk between Pi starvation and other abiotic stress signaling pathways remains unclear. Recently, however, their cross-talk has been suggested in physiological, phenotypical, and molecular levels. In barley, heat stress affects the expression of PSI genes, which leads to maintenance of Pi homeostasis in plant tissues (Pacak et al., 2016). They suggest that retarded growth and accelerated senescence of barley under heat stress conditions is probably due to disturbances of the macronutrient, including Pi, homeostasis. Comparative root transcriptome analysis using rice cultivars exhibiting contrasting nutrient, including Pi, homeostasis. Comparative root transcriptome analysis using rice cultivars exhibiting contrasting...
Table 1. Transcription factors interconnecting Pi starvation and other stress-responsive signaling pathways in Arabidopsis

Type of Factor	Transcription Name	Locus	Binding Motif	Sequence	Responses	References
MYB Family (R1-type)	MYB-CC	PHR1 At4g28610 P185 element	GNATATNC-AC/AAATTC/CC	Pi starvation, metals deficiency, oxygen deficiency	Brat et al., 2015; Bustos et al., 2010; Khan et al., 2014; Klecker et al., 2014; Nilsson et al., 2007; Rubio et al., 2001	
		PHL1 At5g29000		Pi starvation		
		PHL2 At3g24120		Pi starvation		
		PHL3 At4g13640		Pi starvation		
MYB-CC (R2R3-type)	MYB2	At2g47190 MBS	TAACTG	Pi starvation, cytokinin response, salt/ABA/drought response	Abe et al., 1997; 2003; Baek et al., 2013; Guo and Gan, 2011; Yoo et al., 2005	
WRKY Family	WRKY6	At1g62300 W box	TTGACT/C	Pi starvation, pathogen defense, ABA response	Robatzek and Somssich, 2002; Chen et al., 2009; Huang et al., 2016	
	WRKY42	At4g04450		Pi starvation	Su et al., 2015	
	WRKY45	At3g01970		Pi starvation	Wang et al., 2014c	
	WRKY75	At5g13080		Pi starvation, JA/SA response, pathogen defense	Chen et al., 2013; Devaiah et al., 2007a; Schmiesing et al., 2016	
Zinc Finger (C2H2-type)	ZAT6	At5g04340 POS9A (GA)$_4$ repeat	TGTGAGAGA	Pi starvation, metals deficiency, salt/drought/osmotic stress response	Chen et al., 2009; Huang et al., 2016; Chen et al., 2013; Devaiah et al., 2007b; Liu et al., 2013; Nakashima and Yamaguchi-Shinozaki, 2006	
		POS9B and POS9C				
		DRE	TGGCCGAC			

and cross-regulation by modulating plant transcriptional processes in multiple stress signaling pathways (Banerjee and Roychoudhury, 2015; Phukan et al., 2016). WRKY transcription factors with a C2H2 zinc finger domain control target gene transcription by binding to W box (TTGACT/C) elements (Choi and Lin, 2011; Rushton et al., 2010). The WRKY6 transcription factor is a typical WRKY family member with roles in the responses to different stimuli, where it enhances the PR1 promoter activity in senescence and pathogen-defense signaling (Chen et al., 2009; Huang et al., 2016; Robatzek and Somssich, 2002). WRKY6 expression is also highly induced by bacterial pathogens and it increases the senescence-induced receptor-like kinase promoter’s activity in response to the bacterial elicitor flagellin (Robatzek and Somssich, 2002). WRKY6 directly binds to the W box within the RAV1 promoter and decreases its gene transcript level during ABA stress response (Huang et al., 2016). Thus, WRKY6 modulates the cross-talk among different stress responses by regulating the transcription of various target genes (Table 1).

WRKY6 negatively regulates PHO1 expression (Chen et al., 2009) and a WRKY6 homolog, WRKY42, positively regulates Pho1 and PHO1 transcription in the Pi starvation response (Table 1; Su et al., 2015). WRKY6 and WRKY42 are both degraded via 26S proteasome-mediated proteolysis in the Pi starvation response (Chen et al., 2009; Su et al., 2015). WRKY45 is specifically expressed in roots and binds to two W box elements in the promoter of Pho1 to regulate its transcription (Chen et al., 2009). WRKY45 is also specifically expressed in roots and binds to two W box elements in the promoter of Pho1 to regulate its transcription (Chen et al., 2009; Su et al., 2015). WRKY45 is specifically expressed in roots and binds to two W box elements in the promoter of Pho1 to regulate its transcription (Chen et al., 2009; Su et al., 2015). WRKY45 is specifically expressed in roots and binds to two W box elements in the promoter of Pho1 to regulate its transcription (Chen et al., 2009; Su et al., 2015). WRKY45 is specifically expressed in roots and binds to two W box elements in the promoter of Pho1 to regulate its transcription (Chen et al., 2009; Su et al., 2015).
Other transcription factors

There are numerous other transcription factors that are important components of the transcriptional regulatory system of stress-responsive genes (Nakashima et al., 2009). C2H2-type zinc finger protein transcription factors function as essential components in Pi starvation and other abiotic stresses (Sakamoto et al., 2000). ZAT6 binds to three different sequences of POS9 (P-INO-specific regions) motifs in target gene promoters during developmental processes and the Pi starvation response (Table 1; Devaiah et al., 2007b; Meister et al., 2004). ZAT6 is strongly induced and closely related to abiotic stress responses, such as salt, cold, osmotic, and drought stresses, by binding to DRE (dehydration-responsive element) in target gene promoter regions (Table 1; Liu et al., 2013; Vogel et al., 2005). ZAT6 is highly expressed under cold stress and it regulates CBF2 transcription by binding to

Stress	Motif Name	Sequence	ApTIs	Gene Name (Number of sites in the promoter)	microRNAs	PSI
Auxin	AuxRE	TGTCTCAATAAG	ApT1(1), ApT5(1)	miR2111a(1)	None	
AuxRR-core	GGTCCAT		ApT1(1), ApT5(1)	miR156g(2)	SPX1(1), LPR1(1)	
TGA-element	AACGAC		ApT1(1), ApT5(1)	miR156g(2), miR156g(1), miR156h(1),	SPX4(2), PHR1(2), SCR1(1), RAP1(2)	
				miR2111a(1)	miR2111a(1)	
TGA-box	TGAACGTAA		None	miR156b(1)	None	
Ethylene	ERE	ATTCCAAA	GGTCCAT	miR156b(2), miR156b(1), miR156c(1),	None	
				miR156(2), miR2111b(1)	AAmPS2(1), RAP1(2)	
GA P-box	CACTTGGA		GGTCCAT	miR156b(1), miR156b(1), miR156c(1),	None	
GARE-motif	GCCTTGTGAG		GGTCCAT	miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
TATC-box	TATCCCA		GGTCCAT	miR156b(1), miR156b(1), miR156c(1),	None	
CGTCA-motif	CGTCA		GGTCCAT	miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	
				miR156b(1), miR156b(1), miR156c(1),	None	

In silico analysis was conducted using 1.5 kb upstream promoter regions from first exon start site of each gene by the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).
DRE within its promoter (Vogel et al., 2005).

IN SILICO ANALYSIS OF PUTATIVE CIS-ACTING REGULATORY ELEMENTS IN PI-RESPONSIVE GENE PROMOTERS

Phosphate transporters

Plants have diverse biological mechanisms for enhancing the availability of external Pi in the soil via Pi transporters (Chiou et al., 2011: Raghothama, 2000). Pi transporters are encoded by members of PHT gene families, including nine Pht1 members, one Pht2 member, three Pht3 members, six Pht4 members, and three Pht5 members in Arabidopsis (Guo et al., 2008; Knappe et al., 2003; Liu et al., 2016: Rausch and Bucher, 2002). Pht1:1 transcription is positively regulated by PHR1 (Rubio et al., 2001), WRKY75 (Devaiah et al., 2007a), WRKY45 (Wang et al., 2014), and WRKY42 (Su et al., 2015) but negatively regulated by MYB62 (Devaiah et al., 2009) under Pi-deficient conditions. Several types of cis-acting regulatory elements exist in the Pht1:1 promoter, such as P1BS, W box, and MBs. To understand the transcriptional regulation of Pi transporters, we conducted in silico analysis based on the DNA sequences of Pi transporter promoter regions and showed that the expression of Pi transporters could be regulated by hormones and various other stresses as well as by Pi starvation (Tables 2 and 3).

In silico analysis suggest that Pht1:4, Pht1:7, Pht1:8, Pht1:9, Pht3:1, Pht3:2, Pht4:1, Pht4:5, Pht5:2 and Pht5:3 gene transcription is possibly regulated by auxin because their promoters contain auxin-related putative cis-acting regulatory elements such as AuxRE, AuxRR-core, TGA-element, and TGA-box (Table 2). The Pht1:3, Pht1:4, Pht1:6, Pht3:1, Pht3:3 and Pht4:2 gene promoters contain ethylene-responsive cis-acting elements, and a GA-responsive element is found in most Pi transporter genes except Pht1:6, Pht2:1, Pht3:3, Pht4:3, and Pht4:4 (Table 2). A previous report shows the induction of Pht4:4 expression by ethylene supporting the reliability of our in silico analysis for understanding the regulation of Pi starvation-responsive gene networks by other stresses (Lei et al., 2011b). Most Pi transporters contain putative cis-acting regulatory elements in their promoters, such as CGTCA-motif, TGAACG-motif, SARE, and TCA-element, which are related to SA- and JA-mediated plant defense signaling (Table 2). The ABA or drought stress-responsive elements ABRE, DRE, and MBS also exist in most Pi transporters, except Pht1:6, Pht1:7, Pht3:1, and Pht5:2, and the cold-responsive element LTR is found in the Pht1:5, Pht1:6, Pht2:1, Pht3:1, Pht3:3, Pht4:2, Pht4:5, Pht4:6, and Pht5:2 gene promoters (Table 3). Many Pi transporters have TC-rich repeats related to defense and stress responses, except the Pht1:8, Pht3:3, Pht4:4, Pht4:6, and Pht5:1 genes, and an HSE element for heat stress response, except the Pht1:2, Pht1:5, Pht3:1, Pht4:3, Pht4:5, Pht4:6, Pht5:2, and Pht5:3 genes (Table 3). Fungal stress-related Box-W1 elements are found in the Pht1:1, Pht1:3, Pht1:6, Pht1:9, Pht3:1, Pht3:3, Pht4:3, Pht4:4, Pht4:6, and Pht5:3 genes, and wounding stress-related WUN-motifs are predicted in the Pht1:4, Pht3:1, Pht4:1, and Pht4:6 gene promoters (Table 3).

Phosphate starvation-inducible genes

The expression of many Pi starvation-responsive genes is cross-regulated by Pi starvation and other stress signaling pathways. Plant phytohormones, such as cytokinin, ethylene, ABA, and auxin are associated with the transcription of genes involved in the Pi starvation response. PHO1 plays a crucial role in Pi starvation signaling and it is significantly down-regulated by auxin, cytokinin, and ABA (Ribot et al., 2008). RNS1 is a secreted ribonuclease and another Pi starvation-related gene that is significantly upregulated by ABA (Hillwig et al., 2008). The RNS1 promoter contains several putative cis-acting elements, including ABRE, MYB/MYC, W box, HSE, P-box, and TCA elements, which mediate various stress signaling pathways (Tables 2 and 3; Hillwig et al., 2008). SIZ1 is a small ubiquitin-like modifier E3 ligase paying important roles in enhancing the tolerance of environmental stresses such as salt, cold, drought, ABA, auxin, SA, and Pi starvation (Catala et al., 2007; Miura et al., 2005; 2007; 2009; 2010; 2011a; 2011b). Multiple functions of SIZ1 are known in various stress signaling pathways, but the transcriptional regulation of its expression remains unknown. Our in silico analysis indicates that the SIZ1 promoter contains various putative cis-acting regulatory elements, such as ABRE, LTR, TC-rich repeats, WUN-motif, box-W, and TCA elements, which function in diverse stress signal transduction cascades (Tables 2 and 3). Our results provide biological insights into the mechanisms that regulate SIZ1 expression as well as its biological functions in plant stress responses. In summary, findings of our in silico analysis of the regulatory regions of Pi starvation-related genes, such as Pi transporters, miRNAs, and PSI genes, suggest that their expression may be related to various environmental stresses to maintain Pi homeostasis in plants.
Table 3. Analysis of various stresses signaling-related putative cis-acting regulatory elements in Pi starvation-responsive gene promoters

Stress	Motif Name Sequence	Gene Name (Number of sites in the promoter)	AtPIs	microRNAs	PSI
ABA	ACGTGCC	AtPh4;1(1), AtPh4;4(1)		miR2111b(1)	
	AGTACGTCGCG	None		miR399e(1)	
	CAGCCTGGGC	AtPh4;1(1), AtPh4;2(1), AtPh4;3(1), AtPh4;4(1), AtPh4;5(1)		miR156b(2), miR156c(1), miR156e(1), miR156h(1), miR399e(1), miR2111a(1)	
	CGACGGTGCT	None		miR2111a(1)	
	GCAACGGTGTC	AtPh5;5(1), AtPh5;3(1)		None	
	GCCACGTACA	AtPh3;3(1)		None	
	GCCCGCTGGGC	AtPh4;1(1), AtPh4;2(1)		None	
	TACGTG	AtPh1;1(1), AtPh1;2(1), AtPh1;3(1), AtPh1;4(1), AtPh1;5(1), AtPh1;6(1), AtPh1;7(1), AtPh1;8(1), AtPh2;1(1), AtPh3;2(1), AtPh3;3(1), AtPh4;1(1), AtPh4;2(1), AtPh4;4(1), AtPh4;6(1), AtPh4;8(1), AtPh5;1(1)		miR156a(1), miR156d(1), miR156h(1), miR399c(1)	LPR(1)
Drought	C-repeat/ DRE	TGGCCGAC		miR778a(1), miR827a(1)	
CE3	TAGCGTC	None		miR156h(1)	
MBS	CGTCCGAC	AtPh1;9(1)		None	
Cold	CCGAAA	AtPh1;5(1), AtPh1;6(1), AtPh1;7(1), AtPh1;8(2), AtPh1;9(1), AtPh2;1(3), AtPh3;1(2), AtPh3;3(1), AtPh4;2(1), AtPh4;5(1), AtPh4;6(1), AtPh4;7(1), AtPh4;8(1), AtPh4;9(1), AtPh5;2(1)		miR156b(1), miR156e(1), miR399c(1), miR827a(1)	LPR(1)
Defense	TC-rich repeats	ATTCTCAA		miR156c(1), miR156e(1), miR156h(1), miR2111a(1)	
	ATTTCCTCA	AtPh1;3(2), AtPh1;4(2), AtPh1;5(1), AtPh1;6(2), AtPh1;7(2), AtPh2;1(1), AtPh2;2(1), AtPh2;3(1), AtPh2;4(1), AtPh4;1(1), AtPh4;2(1), AtPh4;3(1), AtPh4;4(1), AtPh4;5(1), AtPh4;6(1), AtPh4;7(1), AtPh4;8(1), AtPh4;9(1), AtPh5;2(1)		miR156b(1), miR156c(1), miR156h(1), miR399b(1), miR399c(1), miR399d(1), miR399e(1), miR399f(1), miR399g(1), miR399h(1), miR827a(1)	LPR(1), LPR(2)
Fungal	Box-W1	TTGACC		miR778a(1)	
Heat	HSE	ATTTTTCTCCTA		PHR(1), PHF(1), LPR(2)	
Wound	WUN-motif	GTTTTCTTCAC		IPS(1), AAAP(2), SCR(2)	
	TCATACGAA	AtPh1;9(1)		None	

In silico analysis was conducted using 1.5 kb upstream promoter regions from first exon start site of each gene by the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

CONCLUSION

Phosphorus in the form of Pi is an essential nutrient for plant growth, development, and productivity, but Pi is one of the least available essential nutrients because of its insolubility and low available concentrations (Poirier and Bucher, 2002; Raghothama, 1999). To cope with Pi starvation, plants reprogram various cellular processes, including the reduction
of internal Pi usage and activation of external Pi acquisition and recycling. Studies on Pi starvation signaling in plants have identified signaling components, such as transcription factors, non-coding RNAs, and protein modifiers, but also cross-talk with other plant signaling pathways including phytohormones, sugars, and other nutrients (e.g., iron) (Rouached et al., 2010; Yuan and Liu, 2008). Biotic and abiotic stresses significantly affect plant growth, but the links between Pi starvation and other environmental stress signaling pathways remain unclear. Understanding the cross-regulation of gene expression by identifying the transcription factors involved in both Pi starvation and diverse environmental stress signaling pathways, as well as in silico analysis of cis-acting elements in the regulatory regions of Pi starvation signaling components, will provide molecular mechanisms of the connections between Pi starvation and other environmental stress signaling pathways.

ACKNOWLEDGMENTS

This study was supported by the Next Generation BioGreen21 Program (SSAC, grant number PJ0101051), Rural Development Administration Republic of Korea, and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1A2A1A0301413, 2016R1A1B101011803, and 2017R1D1A1B03029706).

REFERENCES

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., and Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859-1868.

Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15, 63-78.

Baek, D., Kim, M.C., Chun, H.J., Kang, S., Park, H.C., Shin, G., Park, J., Shen, M., Hong, H., Kim, W.Y., et al. (2013). Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol. 167, 362-373.

Baek, D., Chun, H.J., Kang, S., Shin, G., Park, S.J., Hong, H., Kim, C., Kim, D.H., Lee, S.Y., Kim, M.C., et al. (2016). A Role for Arabidopsis miR399f in salt, drought, and ABA signaling. Mol. Cells 39, 111-118.

Banerjee A., and Roychoudhury A. (2015). WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015, 807560.

Bayle, V., Arrighi, J.F., Creff, A., Nespolous, C., Vialaret, J., Rossignol, M., Gonzalez, E., Paz-Ares, J., and Nussaume, L. (2011). Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23, 1523-1535.

Bournier, M., Tissot, N., Mari, S., Boucherez, J., Lacombe, E., Briat, J.F., and Gaymard, F. (2013). Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670-22680.

Briat, J.F., Rouached, H., Tissot, N., Gaymard, F., and Dubos, C. (2015). Integration of P, S, Fe, and Zn nutrient signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci. 6, 290.

Bustos, R., Castrillo, G., Linhares, F., Puga, M.I., Rubio, V., Pérez-Pérez, J., Solano, R., Leyva, A., and Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6, e1001102.

Catala, R., Ouyang, J., Abreu, I.A., Hu, Y., Seo, H., Zhang, X., and Chua, N.H. (2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell. 19, 2952-2966.

Chen, Y.F., Li, L.Q., Xu, Q., Kong, Y.H., Wang, H., and Wu, W.H. (2009). The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 21, 3554-3566.

Chen, X., Liu, J., Lin, G., Wang, A., Wang, Z., and Lu, G. (2013). Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Res. 32, 1589-1599.

Chen, J., Yang, L., Yan, X., Liu, Y., Wang, R., Fan, T., Ren, Y., Tang, X., Xiao, F., Liu, Y., et al. (2016). Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis. Plant Physiol. 171, 707-719.

Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by MicRNA in Arabidopsis. Plant Cell. 18, 412-421.

Chiou, T.J., and Lin, S.I. (2011). Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 62, 185-206.

Ciereszko, I., and Kleczkowski, L.A. (2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim. Biophys. Acta. 1579, 43-49.

Ciereszko, I., Johansson, H., and Kleczkowski, L.A. (2005). Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. 162, 343-353.

Cui, L.G., Shan, J.X., Shi, M., Gao, J.P., and Lin, H.X. (2014). The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80, 1108-1117.

Devaiah, B.N., Karthikeyan, A.S., and Raghothama, K.G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143, 1789-1801.

Devaiah, B.N., Nagarajan, V.K., and Raghothama, K.G. (2007b). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 145, 147-159.

Devaiah, B.N., Madhuvanti, R., Karthikeyan, A.S., and Raghothama, K.G. (2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant. 2, 43-58.

Dong, J., Piñeros, M.A., Li, X., Yang, H., Liu, Y., Murphy, A.S., Kochian, L.V., and Liu, D. (2017). An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots. Mol. Plant. 10, 244-259.

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573-581.

Franco-Zorrilla, J.M., Gonzalez, E., Bustos, R., Linhares, F., Leyva, A., and Paz-Ares, J. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285-293.

Franco-Zorrilla, J.M., Martin, A.C., Leyva, A., and Paz-Ares, J. (2005). Interaction between phosphate-starvation, sugar, and cytokinin...
signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol. 138, 847-857.

Gibson, S.I. (2004). Sugar and phytohormone response pathways: navigating a signaling network. J. Exp. Bot. 55, 253-264.

Guo, Y., and Gan, S. (2011). AtMYB7 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol. 156, 1612-1619.

Guo, B., Jin, Y., Wusser, C., Blanchafior, E.B., Motes, C.M., and Versaw, W.K. (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177, 889-898.

Hammond, J.P., and White, P.J. (2008). Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp. Bot. 59, 93-109.

Hillwig, M.S., Lebrasseur, N.D., Green, P.J., and Macintosh, G.C. (2008). Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression. Mol. Genet. Genomics. 280, 249-261.

Hoeren, F.U., Dufol, R., Wu, Y., Peacock, W.J., and Dennis, E.S. (1998). Evidence for a role for AtMYB in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics. 149, 479-490.

Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiu, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120-2132.

Jain, A., Nagarajan, V.K., and Raghothama, K.G. (2012). Transcriptional regulation of phosphate acquisition by higher plants. Cell. Mol. Life Sci. 69, 3207-3224.

Karthikeyan, A.S., Varadarajan, D.K., Jain, A., Held, M.A., Carpita, N.C., and Raghothama, K.G. (2007). Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225, 907-918.

Khan, G.A., Bouraine, S., Wege, S., Li, Y., de Carbonnel, M., Berthomieu, P., Poirier, Y., and Rouach, H. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PRH1, the phosphate exporter PHO1, and its homolog PHO1:H3 in Arabidopsis. J. Exp. Bot. 65, 871-884.

Klecker, M., Gasch, P., Peisker, H., Dörmann, P., Schlicke, H., Grimm, B., and Mustroph, A. (2014). A shoot-specific hypoxic response of arabidopsis sheds light on the role of the phosphate-responsive transcription factor PHOSPHATE STARVATION RESPONSE1. Plant Physiol. 165, 774-790.

Knapp, S., Flogge, U.J., and Fischer, K. (2003). Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol. 133, 1178-1190.

Lei, M., Liu, Y., Zhang, B., Zhao, Y., Wang, X., Zhou, Y., Raghothama, K.G., and Liu, D. (2011a). Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol. 156, 1116-1130.

Lei, M., Zhu, C., Liu, Y., Karthikeyan, A.S., Bressan, R.A., Raghothama, K.G., and Liu, D. (2011b). Ethylene signaling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol. 189, 1084-1095.

Lejay, L., Wirth, J., Pevert, M., Cross, J.M., Tillard, P., and Gojon, A. (2008). Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol. 146, 2036-2053.

Liu, X.M., Nguyen, X.C., Kim, K.E., Han, H.J., Yoo, J., Lee, K., Kim, M.C., Yun, D.J., and Chung, W.S. (2013). Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem. Biophys. Res. Commun. 430, 1054-1059.

Liu, J., Wang, F., Yu, G., Zhang, X., Jia, C., Qin, J., and Pan, H. (2015). Functional analysis of the maize C-Repeat/DERE Motif-Binding transcription factor CBF3 promoter in response to abiotic stress. Int. J. Mol. Sci. 16, 12131-12146.

Liu, T.Y., Huang, T.K., Yang, S.Y., Hong, Y.T., Huang, S.M., Wang, F.N., Chiang, S.F., Tsai, S.Y., Lu, W.C., and Chiu, T.J. (2016). Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7, 11095.

Ma, Z., Baskin, T.J., Brown, K.M., and Lynch, J.P. (2003). Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131, 1381-1390.

Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 37, 426-438.

Miura, K., Rus, A., Sharkhusu, A., Yoko, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA 102, 7760-7765.

Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DEBF1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403-1414.

Miura, K., Lee, J., Jin, J.B., Yoo, C.Y., Miura, T., and Hasegawa, P.M. (2009). Sumoylation of ABIS5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 106, 5418-5423.

Miura, K., Lee, J., Miura, T., and Hasegawa, P.M. (2010). SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol. 51, 103-113.

Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J.B., Yoo, C.Y., Miura, T., Sato, A., Bohnert, H.J., and Hasegawa, P.M. (2011a). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol. 155, 1000-1012.

Miura, K., Sato, A., Ona, M., and Funakawa, J. (2011b). Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2. Planta 234, 1191-1199.

Miller, R., Nilsson, L., Nielsen, L.K., and Nielsen, T.H. (2005). Interaction between phosphate starvation signaling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol. Plant. 124, 81-90.

Nakashima, K., and Yamaguchi-Shinozaki, K. (2006) Regulators involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum. 126, 62-71.

Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88-95.

Nilsson, L., Miller, R., and Nielsen, T.H. (2007). Increased expression...
of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ. 30, 1499-1512.

Pacak, A., Barciszewska-Pacak, M., Swida-Barteczka, A., Kruszka, K., Senga, P., Milanowska, K., Jakobsen, J., Jarmolowski, A., and Szewykowska-Kulinska, Z. (2016). Heat Stress Affects P1-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. Front. Plant Sci. 7, 926.

Pant, B.D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., and Scheible, W.R. (2009). Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541-1555.

Phukan, U.J., Jeena, G.S., and Shukla, R.K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 7, 760.

Poirier, Y., and Bucher, M. (2002). Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book. 1, e0024.

Raghothama, K.G. (1999). Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-693.

Raghothama, K.G. (2000). Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182-187.

Rausch, C., and Bucher, M. (2002). Molecular mechanisms of phosphate transport in plants. Planta 216, 23-37.

Ribot, C., Wang, Y., and Poirier, Y. (2008). Expression analyzes of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227, 1025-1036.

Robatzek, S., and Somssich, I.E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16, 1139-1149.

Rouach, H., Arpat, A.B., and Poirier, Y. (2010). Regulation of phosphate starvation responses in plants’ signaling players and cross-talks. Mol. Plant 3, 289-297.

Rubio, V., Linhares, F., Solano, R., Martin, A.C., Iglesias, J., Leyva, A., and Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15, 2122-2133.

Rubio, V., Bustos, R., Irigoyen, M.L., Cardona-Lopez, X., Rojas-Triana, M., and Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant Mol. Biol. 69, 361-373.

Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci. 15, 247-258.

Sakamoto, H., Araki, T., Meshi, T., and Iwabuchi, M. (2000). Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene 248, 23-32.

Schmiesing, A., Emonet, A., Gouhier-Darimont, C., and Reymond, P. (2016). Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to Piers Brassicae egg extract. Plant Physiol. 170, 2432-2443.

Shukla, T., Kumar, S., Khare, R., Tijipathi, R.D., and Trivedi, P.K. (2015). Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front. Plant Sci. 6, 898.

Singh, A., Kumar, P., Gautam, V., Rengasamy, B., Adhikari, B., Udayakumar, M., and Sarkar, A.K. (2016). Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci. Rep. 6, 39266.

Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., and Blaufle, I. (2014). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell. 26, 1792-1807.

Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., and Chen, Y.F. (2015). WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol. 167, 1579-1591.

Sun, L., Song, L., Zhang, Y., Zheng, Z., and Liu, D. (2016). Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol. 170, 499-514.

Trull, M.C., Gultinan, M.J., Lynch, J.P., and Deikman, J. (1997). The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation. Plant Cell Environ. 20, 85-92.

Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195-211.

Wang, X., Yi, K., Tao, Y., Wang, F., Wu, Z., Jiang, D., Chen, X., Zhu, L., and Wu, P. (2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant Cell Environ. 29, 1924-1935.

Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., and Chen, Y.F. (2014). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164, 2020-2029.

Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94.

Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et al. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB82, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 280, 3697-3706.

Yuan, H., and Liu, D. (2008). Signaling components involved in plant responses to phosphate starvation. J. Integr. Plant Biol. 50, 849-859.