An Improved Algorithm for Diameter-Optimally Augmenting Paths in a Metric Space

Haitao Wang

Department of Computer Science, Utah State University, Logan, UT 84322, USA.
haitao.wang@usu.edu

Abstract

Let P be a path graph of n vertices embedded in a metric space. We consider the problem of adding a new edge to P such that the diameter of the resulting graph is minimized. Previously (in ICALP 2015) the problem was solved in $O(n \log^3 n)$ time. In this paper, based on new observations and different algorithmic techniques, we present an $O(n \log n)$ time algorithm.

Keywords and phrases diameter, path graphs, augmenting paths, minimizing diameter, metric space

1 Introduction

Let P be a path graph of n vertices embedded in a metric space. We consider the problem of adding a new edge to P such that the diameter of the resulting graph is minimized. The problem is formally defined as follows.

Let G be a graph and each edge has a non-negative length. The length of any path of G is the total length of all edges of the path. For any two vertices u and v of G, we use $d_G(u,v)$ to denote the length of the shortest path from u to v in G. The diameter of G is defined as $\max_{u,v \in G} d_G(u,v)$.

Let P be a path graph of n vertices v_1, v_2, \ldots, v_n and there is an edge $e(v_{i-1}, v_i)$ connecting v_{i-1} and v_i for each $1 \leq i \leq n-1$. Let V be the vertex set of P. We assume $(V, |\cdot|)$ is a metric space and $|v_iv_j|$ is the distance of any two vertices v_i and v_j of V. Specifically, the following properties hold: (1) the triangle inequality: $|v_iv_k| + |v_kv_j| \geq |v_iv_j|$; (2) $|v_iv_j| = |v_jv_i| \geq 0$; (3) $|v_iv_j| = 0$ if $i = j$. In particular, for each edge $e(v_{i-1}, v_i)$ of P, its length is equal to $|v_{i-1}v_i|$. We assume that given any two vertices v_i and v_j of P, the distance $|v_iv_j|$ can be obtained in $O(1)$ time.

Our goal is to find a new edge e connecting two vertices of P and add e to P, such that the diameter of the resulting graph $P \cup \{e\}$ is minimized.

The problem has been studied before. Große et al. [10] solved the problem in $O(n \log^3 n)$ time. In this paper, we present a new algorithm that runs in $O(n \log n)$ time. Our algorithm is based on new observations on the structures of the optimal solution and different algorithmic techniques. Following the previous work [10], we refer to the problem as the diameter-optimally augmenting path problem, or DOAP for short.

1.1 Related Work

If the path P is in the Euclidean space \mathbb{R}^d for a constant d, then Große et al. [10] also gave an $O(n + 1/e^3)$ time algorithm that can find a $(1+\epsilon)$-approximation solution for the problem DOAP, for any $\epsilon > 0$. If P is in the Euclidean plane \mathbb{R}^2, De Carufel et al. [4] gave a linear time algorithm for adding a new edge to P to minimize the continuous diameter (i.e., the diameter is defined with respect to all points of P, not only vertices).

The more general problem and many variations have also been studied before, e.g., see [1, 3, 5, 6, 9, 12, 13, 15] and the references therein. Consider a general graph G in which edges...
have non-negative lengths. For an integer k, the goal of the general problem is to compute a set F of k new edges and add them to G such that the resulting graph has the minimum diameter. The problem is NP-hard [15] and some other variants are even W[2]-hard [6, 9]. Approximation results have been given for the general problem and many of its variations, e.g., see [3, 6, 13]. The upper bounds and lower bounds on the values of the diameters of the augmented graphs have also been investigated, e.g., see [1, 12].

Since diameter is an important metric of network performance, which measures the worst-case cost between any two nodes of the network, as discussed in [3, 5], the problem of augmenting graphs for minimizing the diameter and its variations have many practical applications, such as in data networks, telephone networks, transportation networks, scheduling problems, etc.

As an application of our problem DOAP, consider the following scenario in transportation networks. Suppose there is a highway that connects several cities. In order to reduce the transportation time, we want to build a new highway connecting two cities such that the distance between the farthest two cities using both highways is minimized. Clearly, this is a problem instance of DOAP.

1.2 Our Approaches

To tackle the problem, Große et al. [10] first gave an $O(n \log n)$ time algorithm for the decision version of the problem: Given any value λ, determine whether it is possible to add a new edge e into P such that the diameter of the resulting graph is at most λ. Then, by implementing the above decision algorithm in a parallel fashion and applying Megiddo’s parametric search [14], they solved the original problem DOAP in $O(n \log^3 n)$ time [10]. For differentiation, we referred to the original problem DOAP as the optimization problem.

Our improvement over the previous work [10] is twofold. First, we solve the decision problem in $O(n)$ time. Our algorithm is based on the $O(n \log n)$ time algorithm in the previous work [10]. However, by discovering new observations on the problem structure and with the help of the range-minima data structure [2, 11], we avoid certain expensive operations and eventually achieve the $O(n)$ time complexity.

Second, comparing with the decision problem, our algorithm for the optimization problem is completely different from the previous work [10]. Let λ^* be the diameter of the resulting graph in an optimal solution. Instead of using the parametric search, we identify a set S of candidate values such that λ^* is in S and then we search λ^* in S using our algorithm for the decision problem. However, computational difficulties arise for this approach due to that the set S is too large ($|S| = \Omega(n^2)$) and computing certain values of S is time-consuming (e.g., for certain values of S, computing each of them takes $O(n)$ time). To circumvent these difficulties, our algorithm has several steps. In each step, we shrink S significantly such that λ^* always remains in S. More importantly, each step will obtain certain formation, based on which the next step can further reduce S. After several steps, the size of S is reduced to $O(n)$ and all the remaining values of S can be computed in $O(n \log n)$ time. At this point we can use our decision algorithm to find λ^* from S in additional $O(n \log n)$ time. Equipped with our linear time algorithm for the decision problem and utilizing several other algorithmic techniques such as the sorted-matrix searching techniques [7, 8] and range-minima data structure [2, 11], we eventually solve the optimization problem in $O(n \log n)$ time.

The rest of the paper is organized as follows. In Section 2, we introduce some notation and observations. In Section 3, we present our algorithm for the decision problem. The optimization problem is solved in Section 4.
2 Preliminaries

In this section, we introduce some notation and observations, some of which are from Große et al. [10].

For any two vertices \(v_i \) and \(v_j \) of \(P \), we use \(e(v_i, v_j) \) to denote the edge connecting \(v_i \) and \(v_j \) in the metric space. Hence, \(e(v_i, v_j) \) is in \(P \) if and only if \(|i - j| = 1 \). The length of \(e(v_i, v_j) \) is \(|v_i v_j| \).

For any \(i \) and \(j \) with \(1 \leq i \leq j \leq n \), we use \(G(i, j) \) to denote the resulting graph by adding the edge \(e(v_i, v_j) \) into \(P \). If \(i = j \), \(G(i, j) \) is essentially \(P \). Let \(D(i, j) \) denote the diameter of \(G(i, j) \).

Our goal for the optimization problem DOAP is to find a pair of indices \((i, j) \) with \(1 \leq i \leq j \leq n \) such that \(D(i, j) \) is minimized. Let \(\lambda^* = \min_{1 \leq i \leq j \leq n} D(i, j) \), i.e., \(\lambda^* \) is the diameter in an optimal solution.

Given any value \(\lambda \), the decision problem is to determine whether \(\lambda \geq \lambda^* \), or in other words, determine whether there exist a pair \((i, j) \) with \(1 \leq i \leq j \leq n \) such that \(D(i, j) \leq \lambda \). If yes, we say that \(\lambda \) is a feasible value.

Recall that for any graph \(G \), \(d_G(u, v) \) refers to the length of the shortest path between two vertices \(u \) and \(v \) in \(G \).

Consider any pair of indices \((i, j) \) with \(1 \leq i \leq j \leq n \). We define \(\alpha(i, j) \), \(\beta(i, j) \), \(\gamma(i, j) \), and \(\delta(i, j) \) as follows (refer to Fig. 1).

\begin{itemize}
 \item **Definition 1.** Define \(\alpha(i, j) \) to be the largest shortest path length in \(G(i, j) \) from \(v_1 \) to all vertices \(v_k \) with \(k \in [i, j] \), i.e., \(\alpha(i, j) = \max_{i \leq k \leq j} d_{G(i, j)}(v_1, v_k) \).
 \item Define \(\beta(i, j) \) to be the largest shortest path length in \(G(i, j) \) from \(v_n \) to all vertices \(v_k \) with \(k \in [i, j] \), i.e., \(\beta(i, j) = \max_{i \leq k \leq j} d_{G(i, j)}(v_k, v_n) \).
 \item Define \(\gamma(i, j) \) to be the largest shortest path length in \(G(i, j) \) from \(v_k \) to \(v_l \) for any \(k \) and \(l \) with \(i \leq k \leq l \leq j \), i.e., \(\gamma(i, j) = \max_{i \leq k \leq j} d_{G(i, j)}(v_k, v_l) \).
 \item Define \(\delta(i, j) \) to be the shortest path length in \(G(i, j) \) from \(v_1 \) to \(v_n \), i.e., \(\delta(i, j) = d_{G(i, j)}(v_1, v_n) \).
\end{itemize}

It can be verified (also shown in [10]) that the following observation holds.

\begin{itemize}
 \item **Observation 2.** \(D(i, j) = \max\{\alpha(i, j), \beta(i, j), \gamma(i, j), \delta(i, j)\} \).
\end{itemize}

Further, due to the triangle inequality of the metric space, the following monotonicity properties hold.

\begin{itemize}
 \item **Observation 3.** \(D(i, j) = \max\{\alpha(i, j), \beta(i, j), \gamma(i, j), \delta(i, j)\} \).
 \item For any \(1 \leq i \leq j \leq n - 1 \), \(\alpha(i, j) \leq \alpha(i, j + 1) \), \(\beta(i, j) \geq \beta(i, j + 1) \), \(\gamma(i, j) \leq \gamma(i, j + 1) \), and \(\delta(i, j) \geq \delta(i, j + 1) \).
 \item For any \(1 \leq i < j \leq n \), \(\alpha(i, j) \leq \alpha(i + 1, j) \), \(\beta(i, j) \geq \beta(i + 1, j) \), \(\gamma(i, j) \geq \gamma(i + 1, j) \), and \(\delta(i, j) \leq \delta(i + 1, j) \).
\end{itemize}
For any pair \((i, j)\) with \(1 \leq i \leq j \leq n\), let \(P(i, j)\) denote the subpath of \(P\) between \(v_i\) and \(v_j\). Hence, \(dp(v_i, v_j)\) is the length of \(P(i, j)\), i.e., \(dp(v_i, v_j) = \sum_{i<k<j} |v_kv_{k+1}|\) if \(i < j\) and \(dp(v_i, v_j) = 0\) if \(i = j\).

In our algorithms, we will need to compute \(f(i, j)\) for each \(f \in \{\alpha, \beta, \gamma, \delta\}\). The next observation gives an algorithm. The result was also given by Große et al. \cite{Groesse2013} and we present the proof here for completeness of this paper.

\begin{lemma} \cite{Groesse2013} \label{lem:dp}
With \(O(n)\) time preprocessing, given any pair \((i, j)\) with \(1 \leq i \leq j \leq n\), we can compute \(dp(i, j)\) and \(\delta(i, j)\) in \(O(1)\) time, and compute \(\alpha(i, j)\) and \(\beta(i, j)\) in \(O(\log n)\) time.
\end{lemma}

\begin{proof}
As preprocessing, we compute the prefix sum array \(A[1 \cdots n]\) such that \(A[k] = \sum_{1 \leq \ell \leq k-1} |v_{\ell+1}|\) for each \(k \in [2, n]\) and \(A[1] = 0\). This can be done in \(O(n)\) time. This finishes our preprocessing.

Consider any pair \((i, j)\) with \(1 \leq i \leq j \leq n\). Note that \(dp(v_i, v_j) = A[j] - A[i]\), which can be computed in constant time.

For \(\delta(i, j)\), it is easy to see that \(\delta(i, j) = \min\{dp(1, n), dp(1, i) + |v_i| + dp(j, n)\}\). Hence, \(\delta(i, j)\) can be computed in constant time.

For \(\alpha(i, j)\), if we consider \(d_{G(i,j)}(v_1, v_k)\) as a function of \(k \in [i, j]\), then \(d_{G(i,j)}(v_1, v_k)\) is a unimodal function. More specifically, as \(k\) changes from \(i\) to \(j\), \(d_{G(i,j)}(v_1, v_k)\) first increases and then decreases. Hence, \(\alpha(i, j)\) can be computed in \(O(\log n)\) time by binary search on the sequence \(v_i, v_{i+1}, \ldots, v_j\).

Computing \(\beta(i, j)\) can be also done in \(O(\log n)\) time in a similar way to \(\alpha(i, j)\). We omit the details.
\end{proof}

For computing \(\gamma(i, j)\), although one may be able to do so in \(O(n)\) time, it is not clear to us how to make it in \(O(\log n)\) time even with \(O(n \log n)\) time preprocessing. As will be seen later, this is the major difficulty for solving the problem DOAP efficiently. We refer to it as the \(\gamma\)-computation difficulty. Our main effort will be to circumvent the difficulty by providing alternative and efficient solutions.

For any pair \((i, j)\) with \(1 \leq i \leq j \leq n\), we use \(C(i, j)\) to denote the cycle \(P(i, j) \cup e(v_i, v_j)\). Consider \(d_{C(i,j)}(v_k, v_l)\) for any \(k \leq l\) with \(i \leq k \leq l \leq j\). Notice that the shortest path from \(v_k\) to \(v_l\) in \(C(i, j)\) is also a shortest path in \(G(i, j)\). Hence, \(d_{G(i,j)}(v_k, v_l) = d_{C(i,j)}(v_k, v_l)\). There are two paths in \(C(i, j)\) from \(v_k\) to \(v_l\): one is \(P(k, l)\) and the other uses the edge \(e(v_i, v_j)\). We use \(d^1_{C(i,j)}(v_k, v_l)\) to denote the length of the above second path, i.e., \(d^1_{C(i,j)}(v_k, v_l) = dp(v_k, v_l) + |v_i| + dp(v_i, v_j)\). With these notation, we have \(d_{C(i,j)}(v_k, v_l) = \min\{dp(v_k, v_l), d^1_{C(i,j)}(v_k, v_l)\}\). According to the definition of \(\gamma(i, j)\), we summarize our discussion in the following observation.

\begin{observation} \label{obs:gamma}
For any pair \((i, j)\) with \(1 \leq i \leq j \leq n\), \(\gamma(i, j) = \max_{1 \leq \ell \leq j} d_{C(i,j)}(v_i, v_{\ell})\), with \(d_{C(i,j)}(v_k, v_{\ell}) = \min\{dp(v_k, v_{\ell}), d^1_{C(i,j)}(v_k, v_{\ell})\}\) and \(d_{C(i,j)}(v_k, v_{\ell}) = dp(v_k, v_{\ell}) + |v_i| + d_{C(i,j)}(v_k, v_{\ell})\).
\end{observation}

In the following, to simplify the notation, when the context is clear, we use index \(i\) to refer to vertex \(v_i\). For example, \(dp(i, j)\) refers to \(dp(v_i, v_j)\) and \(\gamma(i, j)\) refers to \(\gamma(v_i, v_j)\).

\section{The Decision Problem}

In this section, we present our \(O(n)\) time algorithm for solving the decision problem. For any value \(\lambda\), our goal is to determine whether \(\lambda\) is feasible, i.e. whether \(\lambda \geq \lambda^*\), or equivalently,
whether there is a pair \((i, j)\) with \(1 \leq i \leq j \leq n\) such that \(D(i, j) \leq \lambda\). If yes, our algorithm can also find such a feasible edge \(e(i, j)\).

By Observation 2, \(D(i, j) \leq \lambda\) holds if and only if \(f(i, j) \leq \lambda\) for each \(f \in \{\alpha, \beta, \gamma, \delta\}\). To determine whether \(\lambda\) is feasible, our algorithm will determine for each \(i \in [1, n]\), whether there exists \(j \in [i, n]\) such that \(f(i, j) \leq \lambda\) for each \(f \in \{\alpha, \beta, \gamma, \delta\}\).

For any fixed \(i \in [1, n]\), we consider \(\alpha(i, j), \beta(i, j), \gamma(i, j), \delta(i, j)\) as functions of \(j \in [i, n]\). In light of Observation 3, \(\alpha(i, j)\) and \(\gamma(i, j)\) are monotonically increasing and \(\beta(i, j)\) and \(\delta(i, j)\) are monotonically decreasing (e.g., see Fig. 2). We define four indices \(I_i(f)\) for \(f \in \{\alpha, \beta, \gamma, \delta\}\) as follows. Refer to Fig. 2.

Definition 6. Define \(I_i(\alpha)\) to be the largest index \(j \in [i, n]\) such that \(\alpha(i, j) \leq \lambda\). We define \(I_i(\gamma)\) similarly to \(I_i(\alpha)\). If \(\beta(i, n) \leq \lambda\), then define \(I_i(\beta)\) to be the smallest index \(j \in [i, n]\) such that \(\beta(i, j) \geq \lambda\); otherwise, let \(I_i(\beta) = \infty\). We define \(I_i(\delta)\) similarly to \(I_i(\beta)\).

As discussed in [10], \(\lambda\) is feasible if and only if \([1, I_i(\alpha)] \cap [I_i(\beta), n] \cap [1, I_i(\gamma)] \cap [I_i(\delta), n] \neq \emptyset\) for some \(i \in [1, n]\). By Observation 3, we have the following lemma.

Lemma 7. For any \(i \in [1, n - 1]\), \(I_i(\alpha) \geq I_{i+1}(\alpha)\), \(I_i(\beta) \geq I_{i+1}(\beta)\), \(I_i(\gamma) \leq I_{i+1}(\gamma)\), and \(I_i(\delta) \leq I_{i+1}(\delta)\) (e.g., see Fig. 3).

Proof. According to Observation 3, \(\alpha(i, j) \leq \alpha(i+1, j)\). This implies that \(I_i(\alpha) \geq I_{i+1}(\alpha)\) by their definitions (e.g., see Fig. 3). The other three cases for \(\beta, \gamma, \delta\) are similar.

Figure 2 Illustrating \(f(i, j)\) as \(j\) changes in \([i, n]\) and \(I_i(f)\) for \(f \in \{\alpha, \beta, \gamma, \delta\}\).

Figure 3 Illustrating \(f(i, j)\) and \(f(i+1, j)\) as \(j\) changes and \(I_i(f)\) and \(I_{i+1}(f)\) for \(f \in \{\alpha, \beta, \gamma, \delta\}\).

3.1 Computing \(I_i(\alpha), I_i(\beta), \text{ and } I_i(\delta)\) for all \(i \in [1, n]\)

In light of Lemma 7, for each \(f \in \{\alpha, \beta, \delta\}\), we compute \(I_i(f)\) for all \(i = 1, 2, \ldots, n\) in \(O(n)\) time, as follows.

We discuss the case for \(\delta\) first. According to Lemma 4, \(\delta(i, j)\) can be computed in constant time for any pair \((i, j)\) with \(1 \leq i \leq n\). We can compute \(I_i(\delta)\) for all \(i \in [1, n]\) in \(O(n)\) time by the following simple algorithm. We first compute \(I_i(\delta)\), which is done by computing \(\delta(1, j)\) from \(j = 1\) incrementally until the first time \(\delta(1, j) \leq \lambda\). Then, to compute \(I_2(\delta)\),
we compute $\delta(2,j)$ from $j = I_1(\delta)$ incrementally until the first time $\delta(2,j) \leq \lambda$. Next, we compute $I_1(\delta)$ for $i = 3, 4, \ldots, n$ in the same way. The total time is $O(n)$. The correctness is based on the monotonicity property of $I_i(\delta)$ in Lemma 7.

To compute $I_1(\alpha)$ or $I_1(\beta)$ for $i = 1, 2, \ldots, n$, using a similar approach as above, we can only have an $O(n \log n)$ time algorithm since computing each $\alpha(i,j)$ or $\beta(i,j)$ takes $O(\log n)$ time by Lemma 4. In the following Lemma 8 we give another approach that only needs $O(n)$ time.

Lemma 8. $I_1(\alpha)$ and $I_1(\beta)$ for all $i = 1, 2, \ldots, n$ can be computed in $O(n)$ time.

Proof. We only discuss the case for β since the other case for α is analogous.

The key idea is that for each pair (i,j), instead of computing the exact value of $\beta(i,j)$, it is sufficient to determine whether $\beta(i,j) \leq \lambda$. In what follows, we show that with $O(n)$ time preprocessing, we can determine whether $\beta(i,j) \leq \lambda$ in $O(1)$ time for any index pair (i,j) with $1 \leq i \leq j \leq n$.

Let k be the smallest index in $[1,n]$ such that $d_P(k,n) \leq \lambda$. This implies that $d_P(k-1,n) > \lambda$ if $k > 1$. As preprocessing, we compute the index k, which can be easily done in $O(n)$ time (or even in $O(\log n)$ time by binary search).

Consider any pair (i,j) for $1 \leq i \leq j \leq n$. Our goal is to determine whether $\beta(i,j) \leq \lambda$.

1. If $k \leq i$, then it is vacuously true that $\beta(i,j) \leq \lambda$.
2. If $k > j$, then $\beta(i,j) > \lambda$.
3. If $i < k \leq j$, a crucial observation is that $\beta(i,j) \leq \lambda$ if and only if the length of the path from v_n to v_{k-1} using the new edge $e(i,j)$, i.e., $d_P(i,k-1) + \|v_i v_j\| + d_P(j,n)$, is less than or equal to λ. See Fig. 4. Clearly, the above path length can be computed in constant time, and thus, we can determine whether $\beta(i,j) \leq \lambda$ in constant time.

Therefore, we can determine whether $\beta(i,j) \leq \lambda$ in constant time for any pair (i,j) with $1 \leq i \leq j \leq n$. With this result, we can use a similar algorithm as the above for computing $I_1(\delta)$ to compute $I_1(\beta)$ for all $i \in [1,n]$ in $O(n)$ time. The lemma thus follows.

Due to the γ-computation difficulty mentioned in Section 3, it is not clear whether it is possible to compute $I_1(\gamma)$ for all $i = 1, \ldots, n$ in $O(n \log n)$ time.

Recall that λ is feasible if and only if there exists an $i \in [1,n]$ such that $[1, I_1(\alpha)] \cap [I_1(\beta), n] \cap [1, I_1(\gamma)] \cap [I_1(\delta), n] \neq \emptyset$. Now that $I_1(\delta)$ for all $i = 1, 2, \ldots, n$ and $f \in \{\alpha, \beta, \delta\}$ have been computed but the $I_1(\gamma)$'s are not known, in the following we will use an “indirect” approach to determine whether the intersection of the above four intervals is empty for every $i \in [1,n]$.

3.2 Determining the Feasibility of λ

For each $i \in [1,n]$, define $Q_i = [1, I_1(\alpha)] \cap [I_1(\beta), n] \cap [1, I_1(\gamma)] \cap [I_1(\delta), n]$. Our goal is to determine whether Q_i is empty for each $i = 1, 2, \ldots, n$.
Consider any $i \in [1,n]$. Since $I_i(f)$ for each $f \in \{\alpha, \beta, \delta\}$ is known, we can determine the intersection $[1, I_i(\alpha)] \cap [I_i(\beta), n] \cap [I_i(\delta), n]$ in constant time. If the intersection is empty, then we know that $Q_i = \emptyset$. In the following, we assume the intersection is not empty.

Let a_i be the smallest index in the above intersection. As in \cite{Große}, an easy observation is that $Q_i \neq \emptyset$ if and only if $a_i \in [1, I_i(\gamma)]$. If $a_i \leq i$ (note that $a_i \leq i$ actually implies $a_i = i$ since $a_i \geq I_i(\beta) \geq i$), it is obviously true that $a_i \in [1, I_i(\gamma)]$ since $i \leq I_i(\gamma)$. Otherwise (i.e., $i < a_i$), according to the definition of $I_i(\gamma)$, $a_i \in [1, I_i(\gamma)]$ if and only if $\gamma(i, a_i) \leq \lambda$. Große et al. \cite{Große} gave an approach that can determine whether $\gamma(i, a_i) \leq \lambda$ in $O(\log n)$ time after $O(n \log n)$ time preprocessing. In the following, by new observations and with the help of the range minima data structure \cite{RMB, RMB}, we show that whether $\gamma(i, a_i) \leq \lambda$ can be determined in constant time after $O(n)$ time preprocessing.

For each $j \in [1,n]$, define g_j as the largest index in $[j, n]$ such that $d_P(j,k) \leq \lambda$. Observe that $g_1 \leq g_2 \leq \cdots \leq g_n$.

Consider any i and the corresponding a_i with $i < a_i$. Our goal is to determine whether $\gamma(i, a_i) \leq \lambda$. Since we are talking about $\gamma(i, a_i)$, we are essentially considering the graph $G(i,a_i)$. Recall that $C(i,a_i)$ is the cycle $P(i,a_i) \cup e(i,a_i)$. By Observation 5, $\gamma(i, a_i) = \max_{1 \leq k \leq a_i} d_{C(i,a_i)}(k,l)$, and further, $d_{C(i,j)}(k,l) = \min\{d_P(k,l), d_{C(i,a_i)}(k,l)\}$ and $d_{C(i,i)}(k,l) = d_P(i,k) + |v_i v_{a_i}| + d_P(l,a_i)$.

For any $j \in [i,a_i-1]$, if $g_j \leq a_i - 1$, then vertex $g_j + 1$ is in the cycle $C(i,a_i)$. Note that $d_{C(i,i)}(j,g_j + 1) = d_P(i,j) + |v_i v_{a_i}| + d_P(g_j + 1,a_i)$. See Fig. 5.

We have the following lemma.

Lemma 9. $\gamma(i, a_i) \leq \lambda$ if and only if for each $j \in [i,a_i-1]$, either $g_j \geq a_i$ or $d_{C(i,a_i)}(j,g_j + 1) \leq \lambda$.

Proof. Suppose $\gamma(i, a_i) \leq \lambda$. Consider any $j \in [i,a_i-1]$ such that $g_j \leq a_i - 1$. Below we prove $d_{C(i,a_i)}(j,g_j + 1) \leq \lambda$ must hold.

By the definition of g_j, it holds that $d_P(j,g_j + 1) > \lambda$. Since $\gamma(i, a_i) \leq \lambda$ and $d_{C(i,a_i)}(j,g_j + 1) \leq \gamma(i, a_i)$, we obtain $d_{C(i,a_i)}(j,g_j + 1) \leq \lambda$. Note that $d_{C(i,i)}(j,g_j + 1) = \min\{d_P(j,g_j + 1), d_{C(i,a_i)}(j,g_j + 1)\}$. Hence, it must hold that $d_{C(i,i)}(j,g_j + 1) \leq \lambda$.

This proves one direction of the lemma.

Suppose it is true that for each $j \in [i,a_i-1]$, either $g_j \geq a_i$ or $d_{C(i,a_i)}(j,g_j + 1) \leq \lambda$. We prove $\gamma(i, a_i) \leq \lambda$ below.

Consider any pair of indices (k,l) with $i \leq k \leq l \leq a_i$. To prove $\gamma(i, a_i) \leq \lambda$, it is sufficient to show that $d_{C(i,a_i)}(k,l) \leq \lambda$. If $k = l$, then $d_{C(i,a_i)}(k,l) = 0$ and thus $d_{C(i,a_i)}(k,l) \leq \lambda$ obviously holds. In the following we assume $k < l$. This implies that $k \leq a_i - 1$. Hence, either $g_k \geq a_i$ or $d_{C(i,a_i)}(k,g_k + 1) \leq \lambda$.

Recall that $d_{C(i,a_i)}(k,l) = \min\{d_P(k,l), d_{C(i,a_i)}(k,l)\}$. If $g_k \geq a_i$, then $l \leq a_i \leq g_k$, and thus, $d_P(k,l) \leq \lambda$ by the definition of g_k. Hence, we obtain $d_{C(i,a_i)}(k,l) \leq \lambda$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph.png}
\caption{Illustrating the graph $G(i,a_i)$ with $g_j + 1 \leq a_i$.}
\end{figure}
Otherwise, we have \(d_{C(i,a_i)}^1(k, g_k + 1) \leq \lambda \). If \(l \leq g_k \), we again have \(d_P(k, l) \leq \lambda \) and thus \(d_{C(i,a_i)}(k, l) \leq \lambda \). If \(l \geq g_k + 1 \), then \(d_P(l, a_i) \leq d_P(g_k + 1, a_i) \). Hence, \(d_{C(i,a_i)}^1(k, l) = d_P(i, k) + |v_i v_{a_i}| + d_P(l, a_i) \leq d_P(i, k) + |v_i v_{a_i}| + d_P(g_k + 1, a_i) = d_{C(i,a_i)}^1(k, g_k + 1) \leq \lambda \). Consequently, we again obtain \(d_{C(i,a_i)}(k, l) \leq \lambda \).

This proves the other direction of the lemma.

Recall that \(g_1 \leq g_2 \leq \cdots \leq g_n \). For each \(k \in [1, n] \), define \(h_k \) to be the smallest index \(j \) in \([1, k]\) with \(g_j \geq k \). Observe that \(h_1 \leq h_2 \leq \cdots \leq h_n \).

Note that if \(i < h_{a_i} \), then for each \(j \in [i, h_{a_i} - 1] \), \(g_j < a_i \) and \(g_j + 1 \leq a_i \). Due to the preceding lemma, we further have the following lemma.

Lemma 10. \(\gamma(i, a_i) \leq \lambda \) if and only if either \(h_{a_i} \leq i \) or \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) holds for each \(j \in [i, h_{a_i} - 1] \).

Proof. Suppose \(\gamma(i, a_i) \leq \lambda \). If \(h_{a_i} \leq i \), then we do not need to prove anything. In the following, we assume \(h_{a_i} > i \). Consider any \(j \in [i, h_{a_i} - 1] \). Our goal is to show that \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) holds.

Indeed, since \(\gamma(i, a_i) \leq \lambda \), by Lemma 9 we have either \(g_j \geq a_i \) or \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \). Since \(j \in [i, h_{a_i} - 1] \), \(g_j < a_i \). Hence, it must be that \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \).

This proves one direction of the lemma.

Suppose either \(h_{a_i} \leq i \) or \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) holds for each \(j \in [i, h_{a_i} - 1] \). Our goal is to show that \(\gamma(i, a_i) \leq \lambda \). Consider any \(k \in [i, a_i - 1] \). By Lemma 9 it is sufficient to show that either \(g_k \geq a_i \) or \(d_{C(i,a_i)}^1(k, g_k + 1) \leq \lambda \).

If \(h_{a_i} \leq i \), then since \(k \geq i \), we obtain \(g_k \geq a_i \) by the definition of \(h_{a_i} \).

Otherwise, \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) holds for each \(j \in [i, h_{a_i} - 1] \). If \(k \geq h_{a_i} \), then we still have \(g_k \geq a_i \). Otherwise, \(k \in [i, h_{a_i} - 1] \), and thus it holds that \(d_{C(i,a_i)}^1(k, g_k + 1) \leq \lambda \).

This proves the other direction of the lemma.

Let \(|C(i, a_i)| \) denote the total length of the cycle \(C(i, a_i) \), i.e., \(|C(i, a_i)| = d_P(i, a_i) + |v_i v_{a_i}| \). The following observation is crucial because it immediately leads to our algorithm in Lemma 12.

Observation 11. \(\gamma(i, a_i) \leq \lambda \) if and only if either \(h_{a_i} \leq i \) or \(\min_{j \in [i, h_{a_i} - 1]} \{d_P(j, g_j + 1)\} \geq |C(i, a_i)| - \lambda \).

Proof. Suppose \(h_{a_i} > i \). Then, for each \(j \in [i, h_{a_i} - 1] \), \(g_j < a_i \) and \(g_j + 1 \leq a_i \). Note that \(d_{C(i,a_i)}^1(j, g_j + 1) = |C(i, a_i)| - d_P(i, g_j + 1) \). Hence, \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) is equivalent to \(d_P(j, g_j + 1) \geq |C(i, a_i)| - \lambda \). Therefore, \(d_{C(i,a_i)}^1(j, g_j + 1) \leq \lambda \) holds for each \(j \in [i, h_{a_i} - 1] \) if and only if \(\min_{j \in [i, h_{a_i} - 1]} \{d_P(j, g_j + 1)\} \geq |C(i, a_i)| - \lambda \).

By Lemma 11 the observation follows.

Lemma 12. With \(O(n) \) time preprocessing, given any \(i \in [1, n] \) and the corresponding \(a_i \) with \(i < a_i \), whether \(\gamma(i, a_i) \leq \lambda \) can be determined in constant time.

Proof. As preprocessing, we first compute \(g_j \) for all \(j = 1, 2, \ldots, n \), which can be done in \(O(n) \) time due to the monotonicity property \(g_1 \leq g_2 \leq \cdots \leq g_n \). Then, we compute \(h_k \) for all \(k = 1, 2, \ldots, n \), which can also be done in \(O(n) \) time due to the monotonicity property \(h_1 \leq h_2 \leq \cdots \leq h_n \). Next, we compute an array \(B[1, \ldots, n] \) with \(B[j] = d_P(j, g_j + 1) \) for each \(j \in [1, n] \) (let \(d_P(j, g_j + 1) = \infty \) if \(g_j + 1 > n \)). We build a range-minima data structure
According to our discussion above, we first compute the value of the algorithm and the sorted-matrix searching techniques \cite{7, 8}. Let some refer to it as the decision algorithm. In this section, we present our algorithm that solves the optimization problem in constant time \cite{2, 11}. This finishes the preprocessing step, which takes \(O(n)\) time in total.

Consider any \(i\) and the corresponding \(a_i\) with \(i < a_i\). Our goal is to determine whether \(\gamma(i, a_i) \leq \lambda\), which can be done in \(O(1)\) time as follows.

By Observation \cite{11}, \(\gamma(i, a_i) \leq \lambda\) if and only if either \(h_{a_i} \leq i\) or \(\min_{j \in [i, h_{a_i} - 1]}\{dp(j, g_j + 1)\} \geq |C(i, a_i)| - \lambda\). Since \(h_{a_i}\) has been computed in the preprocessing, we check whether \(h_{a_i} \leq i\) is true. If yes, then we are done with the assertion that \(\gamma(i, a_i) \leq \lambda\). Otherwise, we need to determine whether \(\min_{j \in [i, h_{a_i} - 1]}\{dp(j, g_j + 1)\} \geq |C(i, a_i)| - \lambda\) holds. To this end, we first compute \(\min_{j \in [i, h_{a_i} - 1]}\{dp(j, g_j + 1)\}\) in constant time by querying the range-minima data structure on \(B\) with \((i, h_{a_i} - 1)\). Note that \(|C(i, a_i)|\) can be computed in constant time. Therefore, we can determine whether \(\gamma(i, a_i) \leq \lambda\) in \(O(1)\) time. This proves the lemma. \(\blacktriangleleft\)

With Lemma \cite{12}, the decision problem can be solved in \(O(n)\) time. The proof of the following theorem summarizes our algorithm.

\textbf{Theorem 13.} Given any \(\lambda\), we can determine whether \(\lambda\) is feasible in \(O(n)\) time, and further, if \(\lambda\) is feasible, a feasible edge can be found in \(O(n)\) time.

\textbf{Proof.} First, we do the preprocessing in Lemma \cite{3} in \(O(n)\) time. Then, for each \(f \in \{\alpha, \beta, \delta\}\), we compute \(I_i(f)\) for all \(i = 1, 2, \ldots, n\), in \(O(n)\) time. We also do the preprocessing in Lemma \cite{12}.

Next, for each \(i \in [1, n]\), we do the following. Compute the intersection \([1, I_i(\alpha)] \cap [I_i(\beta), n] \cap [I_i(\delta), n]\) in constant time. If the intersection is empty, then we are done for this \(i\). Otherwise, obtain the smallest index \(a_i\) in the above intersection. If \(a_i \leq i\), then we stop the algorithm with the assertion that \(\lambda\) is feasible and report \(e(i, a_i)\) as a feasible edge. Otherwise, we use Lemma \cite{12} to determine whether \(\gamma(i, a_i) \leq \lambda\) in constant time. If yes, we stop the algorithm with the assertion that \(\lambda\) is feasible and report \(e(i, a_i)\) as a feasible edge. Otherwise, we proceed on \(i + 1\).

If the algorithm does not stop after we check all \(i \in [1, n]\), then we stop the algorithm with the assertion that \(\lambda\) is not feasible. Clearly, we spend \(O(1)\) time on each \(i\), and thus, the total time of the algorithm is \(O(n)\). \(\blacktriangleleft\)

\section{The Optimization Problem}

In this section, we present our algorithm that solves the optimization problem in \(O(n \log n)\) time, by making use of our algorithm for the decision problem given in Section \cite{3} (we will refer to it as the decision algorithm). It is sufficient to compute \(\lambda^*\), after which we can use our decision algorithm to find an optimal new edge in additional \(O(n)\) time.

We start with an easy observation that \(\lambda^*\) must be equal to the diameter \(D(i, j)\) of \(G(i, j)\) for some pair \((i, j)\) with \(1 \leq i \leq j \leq n\). Further, by Observation \cite{2}, \(\lambda^*\) is equal to \(f(i, j)\) for some \(f \in \{\alpha, \beta, \gamma, \delta\}\) and some pair \((i, j)\) with \(1 \leq i \leq j \leq n\).

For each \(f \in \{\alpha, \beta, \gamma, \delta\}\), define \(S_f = \{f(i, j) \mid 1 \leq i \leq j \leq n\}\). Let \(S = \bigcup_{f \in \{\alpha, \beta, \gamma, \delta\}} S_f\). According to our discussion above, \(\lambda^*\) is in \(S\). Further, note that \(\lambda^*\) is the smallest feasible value of \(S\). We will not compute the entire set \(S\) since \(|S| = \Omega(n^2)\). For each \(f \in \{\alpha, \beta, \gamma, \delta\}\), let \(\lambda_f\) be the smallest feasible value in \(S_f\). Hence, we have \(\lambda^* = \min\{\lambda_\alpha, \lambda_\beta, \lambda_\gamma, \lambda_\delta\}\).

In the following, we first compute \(\lambda_\alpha, \lambda_\beta, \lambda_\gamma, \lambda_\delta\) in \(O(n \log n)\) time by using our decision algorithm and the sorted-matrix searching techniques \cite{7, 8}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Diagram of the optimization problem.}
\end{figure}
4.1 Computing $\lambda_{\alpha}, \lambda_{\beta},$ and λ_{δ}

For convenience, we begin with computing λ_{β}.

We define an $n \times n$ matrix $M[1 \cdots n; 1 \cdots n]$. For each $1 \leq i \leq n$ and $1 \leq j \leq n$, define $M[i,j] = \beta(i,j)$ if $j \geq i$ and $M[i,j] = \beta(i,i)$ otherwise. By Observation 3, the following lemma shows that M is a sorted matrix in the sense that each row is sorted in descending order from left to right and each column is sorted in descending order from top to bottom.

\begin{lemma}
For each $1 \leq i \leq n$, $M[i,j] \geq M[i,j+1]$ for any $j \in [1, n-1]$; for each $1 \leq j \leq n$, $M[i,j] \geq M[i+1,j]$ for any $i \in [1, n-1]$.
\end{lemma}

\begin{proof}
Consider any two adjacent matrix elements $M[i,j]$ and $M[i,j+1]$ in the same row. If $j \geq i$, then $M[i,j] = \beta(i,j)$ and $M[i,j+1] = \beta(i+1,j)$. By Observation 3, $M[i,j] \geq M[i,j+1]$. If $j < i$, then $M[i,j] = M[i,j+1] = \beta(i,i)$. Hence, in either case, $M[i,j] \geq M[i,j+1]$ holds.

Consider any two adjacent matrix elements $M[i,j]$ and $M[i+1,j]$ in the same column. If $j \geq i+1$, then $M[i,j] = \beta(i,j)$ and $M[i+1,j] = \beta(i+1,j)$. By Observation 3, we obtain $M[i,j] \geq M[i+1,j+1]$. If $j < i+1$, then $M[i,j] = \beta(j,j)$ and $M[i,j+1] = \beta(j+1,j+1)$. Note that $\beta(j,j)$ is essentially equal to $d_{P}(j,n)$ and $\beta(j+1,j+1)$ is equal to $d_{P}(j+1,n)$. Clearly, $d_{P}(j,n) \geq d_{P}(j+1,n)$. Hence, in either case, $M[i,j] \geq M[i,j+1]$.
\end{proof}

Note that each element of S_{δ} is in M and vice versa. Since λ_{δ} is the smallest feasible value of S_{δ}, λ_{β} is also the smallest feasible value of M. We do not construct M explicitly. Rather, given any i and j, we can “evaluate” $M[i,j]$ in $O(\log n)$ time since $\beta(i,j)$ can be computed in $O(\log n)$ time if $i \leq j$ by Lemma 4. Using the sorted-matrix searching techniques \cite{2 8}, we can find λ_{β} in M by calling our decision algorithm $O(\log n)$ times and evaluating $O(n)$ elements of M. The total time on calling the decision algorithm is $O(n \log n)$ and the total time on evaluating matrix elements is also $O(n \log n)$. Hence, we can compute λ_{β} in $O(n \log n)$ time.

Computing λ_{α} and λ_{δ} can be done similarly in $O(n \log n)$ time, although the corresponding sorted matrices may be defined slightly differently. We omit the details. However, we cannot compute λ_{γ} in $O(n \log n)$ time in the above way, and again this is due to the λ-computation difficulty mentioned in Section 2.

Note that having λ_{α}, λ_{β}, and λ_{δ} essentially reduces our search space for λ^{\star} from $S_{\gamma} \cup \{\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\delta}\}$.

We compute $\lambda_{1} = \min\{\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\delta}\}$. Thus, $\lambda^{\star} = \min\{\lambda_{1}, \lambda_{\gamma}\}$. Hence, if $\lambda_{\gamma} \geq \lambda_{1}$, then $\lambda^{\star} = \lambda_{1}$ and we are done for computing λ^{\star}. Otherwise (i.e., $\lambda_{\gamma} < \lambda_{1}$), it must be that $\lambda^{\star} = \lambda_{\gamma}$ and we need to compute λ_{γ}. To compute λ_{γ}, again we cannot use the similar way as the above for computing λ_{β}. Instead, we use the following approach. We should point out that the success of the approach relies on the information implied by λ_{γ}.

4.2 Computing λ^{\star} in the Case $\lambda_{\gamma} < \lambda_{1}$

We assume $\lambda_{\gamma} < \lambda_{1}$. Hence, $\lambda^{\star} = \lambda_{\gamma}$. Let $e(i^{\star}, j^{\star})$ be the new edge added to P in an optimal solution. We also call $e(i^{\star}, j^{\star})$ an optimal edge.

Since $\lambda^{\star} = \lambda_{\gamma} < \lambda_{1}$, we have the following observation.

\begin{observation}
If $\lambda_{\gamma} < \lambda_{1}$ and $e(i^{\star}, j^{\star})$ is an optimal edge, then $\lambda^{\star} = \gamma(i^{\star}, j^{\star})$.
\end{observation}

\begin{proof}
Assume to the contrary that $\lambda^{\star} \neq \gamma(i^{\star}, j^{\star})$. Then, by Observation 2, λ^{\star} is equal to one of $\alpha(i^{\star}, j^{\star}), \beta(i^{\star}, j^{\star}),$ and $\delta(i^{\star}, j^{\star})$. Without loss of generality, assume $\lambda^{\star} = \alpha(i^{\star}, j^{\star})$.
\end{proof}
Therefore, we obtain
\[
\lambda_1 = \lambda_\gamma < \lambda_1 = \min\{\lambda_\alpha, \lambda_\beta, \lambda_\delta\} \leq \lambda_\alpha.
\]

For any \(i \in [1, n]\), for each \(f \in \{\alpha, \beta, \gamma, \delta\}\), with respect to \(\lambda_1\), we define \(I'_i(f)\) in a similar way to \(I_i(f)\) defined in Section 3 with respect to \(\lambda\) except that we change “\(\leq \lambda\)” to “\(< \lambda_1\)”. Specifically, define \(I'_i(\alpha)\) to be the largest index \(j \in [i, n]\) such that \(\alpha(i, j) < \lambda_1\). \(I'_i(\gamma)\) is defined similarly to \(I'_i(\alpha)\). If \(\beta(i, n) < \lambda_1\), then define \(I'_i(\beta)\) to be the smallest index \(j \in [i, n]\) such that \(\beta(i, j) < \lambda_1\); otherwise \(I'_i(\beta) = \infty\). \(I'_i(\delta)\) is defined similarly to \(I'_i(\beta)\). Note that similar monotonicity properties for \(I'_i(f)\) with \(f \in \{\alpha, \beta, \gamma, \delta\}\) to those in Lemma 7 also hold.

Recall that \(e(i^*, j^*)\) is an optimal edge. An easy observation is that since \(\lambda_1\) is strictly larger than \(\lambda^*\), the intersection \([1, I'_i(\alpha)] \cap [I'_i(\beta), n] \cap [I'_i(\delta), n]\) cannot be empty. Let \(a_{i^*}\) be the smallest index in the above intersection. Note that \(i^* \leq a_{i^*}\) since \(i^* \leq I'_i(\beta) \leq a_{i^*}\).

The following lemma shows that \(e(i^*, a_{i^*})\) is actually an optimal edge.

Lemma 16. If \(\lambda_\gamma < \lambda_1\) and \(e(i^*, j^*)\) is an optimal edge, then \(j^* = a_{i^*}\).

Proof. For any pair \((i, j)\) with \(1 \leq i \leq j \leq n\), let \(\eta(i, j) = \max\{\alpha(i, j), \beta(i, j), \delta(i, j)\}\). By Observation 2, \(D(i, j) = \max\{\gamma(i, j), \eta(i, j)\}\).

We first prove the following claim: If \(\gamma(i^*, a_{i^*}) \geq \eta(i^*, a_{i^*})\), then \(j^* = a_{i^*}\) (e.g., see Fig. 6).

On the one hand, consider any \(j \in [i^*, a_{i^*} - 1]\). By the definition of \(a_{i^*}\), \(\eta(i^*, j) \geq \lambda_1\).

Since \(\lambda_1 > \lambda_\gamma = \lambda^*\), \(\eta(i^*, j) > \lambda^*\). By Observation 2, \(D(i^*, j) \geq \eta(i^*, j) > \lambda^*\). Hence, \(j^*\) cannot be \(j^*\) since otherwise \(D(i^*, j)\) would be equal to \(\lambda^*\), incurring contradiction.

On the other hand, consider any \(j \in [a_{i^*} + 1, n]\). By Observation 2, \(D(i^*, j) \geq \gamma(i^*, j)\). By Observation 3, \(\gamma(i^*, j) \geq \gamma(i^*, a_{i^*})\). Hence, \(D(i^*, j) \geq \gamma(i^*, a_{i^*})\). Further, since \(\gamma(i^*, a_{i^*}) \geq \eta(i^*, a_{i^*})\) (the claim hypothesis), we have \(D(i^*, a_{i^*}) = \max\{\gamma(i^*, a_{i^*}), \eta(i^*, a_{i^*})\}\). Therefore, we obtain \(D(i^*, a_{i^*}) \leq D(i^*, j)\). This implies that \(j^* = a_{i^*}\). Hence, the claim follows.

We proceed to prove the lemma. Based on the above claim, it is sufficient to show that \(\gamma(i^*, a_{i^*}) \geq \eta(i^*, a_{i^*})\), as follows.

Assume to the contrary that \(\gamma(i^*, a_{i^*}) < \eta(i^*, a_{i^*})\). Then, \(D(i^*, a_{i^*}) = \eta(i^*, a_{i^*})\). According to the definition of \(a_{i^*}\), \(\eta(i^*, a_{i^*}) < \lambda_1\). Hence, \(D(i^*, a_{i^*}) < \lambda_1\). Let \(\lambda' = D(i^*, a_{i^*})\). Since \(\lambda' = \eta(i^*, a_{i^*})\), \(\lambda'\) is a value in \(S_\alpha \cup S_\beta \cup S_\delta\). Since \(\lambda' = D(i^*, a_{i^*})\), \(\lambda'\) is a feasible value (i.e., \(\lambda' \geq \lambda^*\)). Recall that \(\lambda_1\) is the smallest feasible value of \(S_\alpha \cup S_\beta \cup S_\delta\). Thus, we obtain contradiction since \(\lambda' < \lambda_1\).

Therefore, \(\gamma(i^*, a_{i^*}) \geq \eta(i^*, a_{i^*})\) holds. The lemma thus follows.

Lemma 16 is crucial because it immediately suggests the following algorithm.

We first compute the indices \(I'_i(\alpha), I'_i(\beta), I'_i(\delta)\) for \(i = 1, \ldots, n\). This can be done in \(O(n)\) time using the similar algorithms as those for computing \(I_i(\alpha), I_i(\beta), I_i(\delta)\) in Section 3.1.
fact, here we can even afford $O(n \log n)$ time to compute these indices. Hence, for simplicity, we can use the similar algorithm as that for computing $I_i(\delta)$ in Section 3.1 instead of the one in Lemma 8. The total time is $O(n \log n)$.

Next, for each $i \in [1, n]$, if $[1, I_i(\alpha)] \cap [I'_i(\beta), n] \not= \emptyset$, then we compute a_i, i.e., the smallest index in the above intersection. Let I be the set of index i such that the above interval intersection for i is not empty. Lemma 16 leads to the following observation.

Observation 17. If $\lambda_\gamma < \lambda_1$, then λ^* is the smallest feasible value of the set $\{\gamma(i, a_i) \mid i \in I\}$.

Proof. By Lemma 16, one of the edges of $\{e(i, a_i) \mid i \in I\}$ is an optimal edge. By Observation 15, λ^* is in $\{\gamma(i, a_i) \mid i \in I\}$. Thus, λ^* is the smallest feasible value in $\{\gamma(i, a_i) \mid i \in I\}$. ▶

We can further obtain the following “stronger” result, although Observation 17 is sufficient for our algorithm.

Lemma 18. If $\lambda_\gamma < \lambda_1$, then $\lambda^* = \min_{i \in I} \gamma(i, a_i)$.

Proof. For any pair (i, j) with $1 \leq i \leq j \leq n$, let $\eta(i, j) = \max\{\alpha(i, j), \beta(i, j), \delta(i, j)\}$. By Observation 2, $D(i, j) = \max\{\gamma(i, j), \eta(i, j)\}$.

We first prove the following claim: For any $i \in I$, $\eta(i, a_i) < \gamma(i, a_i)$. Indeed, assume to the contrary that $\eta(i, a_i) \geq \gamma(i, a_i)$ for some $i \in I$. Then, $D(i, a_i) = \eta(i, a_i)$. By the definition of a_i, $\eta(i, a_i) < \lambda_1$. Hence, $D(i, a_i) < \lambda_1$. Let $\lambda^* = D(i, a_i)$. Note that λ^* is a feasible value that is in $S_\alpha \cup S_\beta \cup S_\delta$. However, $\lambda^* < \lambda_1$ contradicts with that λ_1 is the smallest feasible value in $S_\alpha \cup S_\beta \cup S_\delta$.

Next, we prove the lemma by using the above claim. For each $i \in I$, by the above claim, $D(i, a_i) = \gamma(i, a_i)$, and thus, $\gamma(i, a_i)$ is a feasible value. By Lemma 16, we know that λ^* is in $\{\gamma(i, a_i) \mid i \in I\}$. Therefore, λ^* is the smallest value in $\{\gamma(i, a_i) \mid i \in I\}$. The lemma thus follows. ▶

Observation 17 essentially reduces the search space for λ^* to $\{\gamma(i, a_i) \mid i \in I\}$, which has at most $O(n)$ values. It is tempting to first explicitly compute the set and then find λ^* from the set. However, again, due to the γ-computation difficulty, we are not able to compute the set in $O(n \log n)$ time. Alternatively, we use the following approach to compute λ^*.

4.3 Finding λ^* in the Set $\{\gamma(i, a_i) \mid i \in I\}$

Recall that according to Observation 5, $\gamma(i, j) = \max_{i \leq k \leq j} d_C(i, j, k, l)$, with $d_C(i, j, k, l) = \min\{d_P(k, l), d^n_C(i, j)(k, l)\}$ and $d^n_C(i, j)(k, l) = d_P(k, l) + |v_1v_j| + d_P(l, j)$. Hence, $\gamma(i, j)$ is equal to $d_P(k, l)$ or $d^n_C(i, j)(k, l)$ for some $k \leq l$. Therefore, by Observation 17, there exists $i \in I$ such that λ^* is equal to $d_P(k, l)$ or $d^n_C(i, j)(k, l)$ for some k and l with $i \leq k \leq l \leq a_i$.

Let $S_p = \{d_P(k, l) \mid 1 \leq k \leq l \leq n\}$ and $S_c = \{d^n_C(i, j)(k, l) \mid i \leq k \leq l \leq a_i, i \in I\}$. Based on our above discussion, λ^* is in $S_p \cup S_c$. Further, λ^* is the smallest feasible value in $S_p \cup S_c$.

Let λ_p be the smallest feasible value of S_p and let λ_c be the smallest feasible value of S_c. Hence, $\lambda^* = \min\{\lambda_p, \lambda_c\}$. By using the technique of searching sorted-matrices 7, 8, the following lemma computes λ_p in $O(n \log n)$ time.

Lemma 19. λ_p can be computed in $O(n \log n)$ time.
Recall that \(\lambda^* = \min\{\lambda_p, \lambda_c\} \). In the case \(\lambda_p \leq \lambda_c \), \(\lambda^* = \lambda_p \) and we are done with computing \(\lambda^* \). In the following, we assume \(\lambda_p > \lambda_c \). With the help of the information implied by \(\lambda_p > \lambda_c \), we will compute \(\lambda^* \) in \(O(n \log n) \) time. The details are given below.

For any \(j \in [1, n] \), let \(g'_j \) denote the largest index \(k \in [j, n] \) such that the subpath length \(d_p(j, k) \) is strictly smaller than \(\lambda_p \). Note that the definition of \(g'_j \) is similar to \(g_j \) defined in Section 4.3 except that we change \(d \) below.

For each \(k \in [1, n] \), let \(h'_k \) denote the smallest index \(j \in [1, k] \) with \(g'_j \geq k \). Let \(I' \) be the subset of \(i \in I' \) such that \(i \leq h'_a_i - 1 \). Hence, for each \(i \in I' \) and each \(j \in [i, h'_a_i - 1] \), \(g'_j < a_i \) and thus \(g'_j + 1 \leq a_i \).

For each \(i \in I' \), define \(d^i_{\max}(i, a_i) = \max_{j \in [i, h'_a_i - 1]} d^i_{C(i, j)}(j, g'_j + 1) \). The following lemma gives a way to determine \(\lambda^* \).

\[\text{Lemma 20. If } \lambda_c < \lambda_1 \text{ and } \lambda_c < \lambda_p \text{, then } \lambda^* = d^i_{\max}(i, a_i) \text{ for some } i \in I'. \]

\[\text{Proof. Since } \lambda_c < \lambda_1 \text{ and } \lambda_c < \lambda_p \text{, by our above discussions, } \lambda^* = \lambda_c. \]

By Observation 17, \(\lambda^* \) is the diameter of the graph \(G(i, a_i) \) for some \(i \in I \) and \(\lambda^* \) is equal to the length of the shortest path of two vertices \(v_k \) and \(v_l \) in \(C(i, a_i) \) for \(i \leq k \leq l \leq a_i \), i.e., \(\lambda^* = d^i_{C(i, a_i)}(k, l) = \min\{d_p(k, l), d^i_{C(i, j)}(k, l) \} \). See Fig. 7. Since \(\lambda^* = \lambda_c \), we further know that \(\lambda^* = d^i_{C(i, j)}(k, l) \) and \(d^i_{C(i, j)}(k, l) \leq d_p(k, l) \). In fact, \(d^i_{C(i, j)}(k, l) < d_p(k, l) \), since \(d^i_{C(i, j)}(k, l) = d_p(k, l) \), then \(\lambda^* = d_p(k, l) \) would be in the set \(S_p \), contradicting with that \(\lambda_p \) is the smallest feasible value in \(S_p \) and \(\lambda^* < \lambda_p \).

For simplicity of discussion, we assume \(|v_l v_{l-1}| > 0 \) (since otherwise we can keep updating \(l \) to \(l-1 \) until we find \(|v_l v_{l-1}| > 0 \); note that such an \(l \) will eventually be found before we reach \(k \) since \(0 \leq \lambda^* = d^i_{C(i, j)}(k, l) < d_p(k, l) \)).

We prove the following claim: \(d_p(k, l-1) < \lambda_p \leq d_p(k, l) \).

\[\text{On the one hand, since } \lambda^* = d^i_{C(i, a_i)}(k, l) \text{ and } |v_l v_{l-1}| > 0, \text{ we obtain that } \lambda^* < d^i_{C(i, a_i)}(k, l-1). \text{ Since } \lambda^* \text{ is the diameter in the graph } G(i, a_i), d^i_{C(i, a_i)}(k, l-1) = d^i_{C(i, a_i)}(k, l-1) \leq \lambda^* \text{. Further, because } d^i_{C(i, a_i)}(k, l-1) = \min\{d_p(k, l-1), d^i_{C(i, a_i)}(k, l-1) \} \text{ and } \lambda^* < d^i_{C(i, a_i)}(k, l-1), \text{ we obtain } d_p(k, l-1) \leq \lambda^*. \text{ As } \lambda^* = \lambda_c < \lambda_p, \text{ it follows that } d_p(k, l-1) < \lambda_p. \]
On the other hand, assume to the contrary that $\lambda_p > d_p(k, l)$. Then, since $d_p(k, l) > d_{C(i,a_i)}(k, l) = \lambda^*$, $d_p(k, l)$ is a feasible value. Clearly, $d_p(k, l)$ is in the set S_p. However, $\lambda_p > d_p(k, l)$ contradicts with that λ_p is the smallest feasible value in S_p.

This proves the claim. With the claim, we show below that $\lambda^* = d_{\max}^1(i, a_i)$, which will prove the lemma.

We first show that i is in \mathcal{I}', i.e., $i \leq h'_{a_i} - 1$. Indeed, since $\lambda_p \leq d_p(k, l)$ (by the claim), based on the definition of g_k^i, it holds that $g_k^i < l$ (e.g., see Fig. 7). Since $l \leq a_i$, we obtain $g_k^i \leq a_i - 1$. This implies that $k < h'_{a_i}$ and thus $k \leq h'_{a_i} - 1$. Since $i \leq k$, $i \leq h'_{a_i} - 1$.

It remains to prove $\lambda^* = d_{\max}^1(i, a_i)$. Indeed, recall that $\lambda^* = d_{C(i,a_i)}(k, l)$. Note that the above claim in fact implies that $g_k^i = l - 1$, and thus, $g_k^i + 1 = l$. Hence, we have $\lambda^* = d_{C(i,a_i)}(k, l) = d_{C(i,a_i)}(k, g_k^i + 1)$. Note that k is in $[i, h'_{a_i} - 1]$. Consider any $j \in [i, h'_{a_i} - 1]$. To prove $\lambda^* = d_{\max}^1(i, a_i)$, it is now sufficient to prove $\lambda^* \geq d_{C(i,a_i)}(j, g_j^i + 1)$, as follows.

Recall that $g_j^i + 1 = l \leq a_i$. Since λ^* is the diameter of $G(i, a_i)$, $d_{C(i,a_i)}(j, g_j^i + 1) = d_{C(i,a_i)}(j, g_j^i + 1) \leq \lambda^*$. Recall that $d_{C(i,a_i)}(j, g_j^i + 1) = \min\{d_p(j, g_j^i + 1), d_{C(i,a_i)}(j, g_j^i + 1)\}$. By the definition of g_j^i, we know that $d_p(j, g_j^i + 1) \geq \lambda_p$. Since $\lambda_p > \lambda^*$, $d_p(j, g_j^i + 1) > \lambda^*$. Hence, it must be that $\lambda^* \geq d_{C(i,a_i)}(j, g_j^i + 1)$.

This proves that $\lambda^* = d_{\max}^1(i, a_i)$. The lemma thus follows. △

In light of Lemma 20, in the case of $\lambda_c < \lambda_p$, $\lambda^* = \lambda_c$ is the smallest feasible value of $d_{\max}^1(i, a_i)$ for all $i \in \mathcal{I}'$. Note that the number of such values $d_{\max}^1(i, a_i)$ is $O(n)$. Hence, if we can compute $d_{\max}^1(i, a_i)$ for all $i \in \mathcal{I}'$, then λ^* can be easily found in additional $O(n \log n)$ time using our decision algorithm, e.g., by first sorting these values and then doing binary search.

The next lemma gives an algorithm that can compute $d_{\max}^1(i, a_i)$ for all $i \in \mathcal{I}'$ in $O(n)$ time, with the help of the range-minima data structure [2][11].

Lemma 21. $d_{\max}^1(i, a_i)$ for all $i \in \mathcal{I}'$ can be computed in $O(n)$ time.

Proof. Consider any $i \in \mathcal{I}'$. For any $j \in [i, h'_{a_i} - 1]$, it is easy to see that $d_{C(i,a_i)}(j, g_j^i + 1) = |C(i, a_i)| - d_p(j, g_j^i + 1)$, where $|C(i, a_i)|$ is the length of the cycle $C(i, a_i)$. Hence, we can obtain the following,

$$d_{\max}^1(i, a_i) = \max_{j \in [i, h'_{a_i} - 1]} d_{C(i,j)}(j, g_j^i + 1) = \max_{j \in [i, h'_{a_i} - 1]} \{|C(i, a_i)| - d_p(j, g_j^i + 1)\} = |C(i, a_i)| - \min_{j \in [i, h'_{a_i} - 1]} d_p(j, g_j^i + 1) .$$

Define $d_{\min}(i, a_i) = \min_{j \in [i, h'_{a_i} - 1]} d_p(j, g_j^i + 1)$. By the above discussions we have $d_{\max}^1(i, a_i) = |C(i, a_i)| - d_{\min}(i, a_i)$. Therefore, computing $d_{\max}^1(i, a_i)$ boils down to computing $d_{\min}(i, a_i)$. In the following, we compute $d_{\min}(i, a_i)$ for all $i \in \mathcal{I}'$ in $O(n)$ time, after which $d_{\max}^1(i, a_i)$ for all $i \in \mathcal{I}'$ can be computed in additional $O(n)$ time.

First of all, we compute g_j^i and h_j^i for all $j = 1, 2, \ldots, n$. This can be easily done in $O(n)$ time due to the monotonicity properties: $g_1^i \leq g_2^i \leq \cdots \leq g_n^i$ and $h_1^i \leq h_2^i \leq \cdots \leq h_n^i$. Recall that for each $i \in \mathcal{I}$, a_i has already been computed. Then, we can compute \mathcal{I}' in $O(n)$ time by checking whether $i \leq h'_{a_i} - 1$ for each $i \in \mathcal{I}$.

Next we compute an array $B[1 \cdots n]$ such that $B[j] = d_p(j, g_j^i + 1)$ for each $j \in [1, n]$. Clearly, the array B can be computed in $O(n)$ time. Then, we build a range-minima data structure on $B[2][11]$. The range-minima data structure can be built in $O(n)$ time such that given any pair (i, j) with $1 \leq i \leq j \leq n$, the minimum value of the subarray $B[i \cdots j]$ can be computed in constant time.
Finally, for each \(i \in \mathcal{I}' \), we can compute \(d_{\min}(i, a_i) \) in constant time by querying the range-minima data structure on \(B \) with \((i, h_{a_i}' - 1)\).

Therefore, we can compute \(d_{\min}(i, a_i) \) for all \(i \in \mathcal{I}' \), and thus compute \(d_{\max}^*(i, a_i) \) for all \(i \in \mathcal{I}' \) in \(O(n) \) time.

Therefore, we can compute \(\lambda^* \) in \(O(n \log n) \) time in the case \(\lambda_n < \lambda_1 \) and \(\lambda_n < \lambda_p \).

Our overall algorithm for computing an optimal solution is summarized in the proof of Theorem 22.

\begin{theorem}
An optimal solution for the optimization problem can be found in \(O(n \log n) \) time.
\end{theorem}

\begin{proof}
First, we compute \(\lambda_n, \lambda_\beta, \) and \(\lambda_\delta \), in \(O(n \log n) \) time by using our decision algorithm and the sorted-matrix searching techniques. Then, we compute \(\lambda_1 = \min\{\lambda_n, \lambda_\beta, \lambda_\delta\} \).

Second, by using \(\lambda_1 \), we compute the indices \(I'_1(\alpha) \), \(I'_1(\beta) \), and \(I'_1(\delta) \) for all \(i = 1, 2, \ldots, n \). This can be done in \(O(n) \) time. For each \(i \in [1, n] \), if \([1, I'_1(\alpha)] \cap [I'_1(\beta), n] \cap [I'_1(\delta), n] \neq \emptyset\), we compute \(a_i \) (i.e., the smallest index in the above intersection) and add \(i \) to the set \(\mathcal{I} \) (initially \(\mathcal{I} = \emptyset \)). Hence, all such \(a_i \)'s and \(\mathcal{I} \) can be computed in \(O(n) \) time.

If \(\mathcal{I} = \emptyset \), then we return \(\lambda_1 \) as \(\lambda^* \).

If \(\mathcal{I} \neq \emptyset \), then we compute \(\lambda_p \) in \(O(n \log n) \) time by Lemma 19. We proceed to compute \(d_{\max}^*(i, a_i) \) for all \(i \in \mathcal{I}' \) by Lemma 21 and then find the smallest feasible value \(\lambda' \) in the set \(\{d_{\max}^*(i, a_i) \mid i \in \mathcal{I}'\} \) in \(O(n \log n) \) time. Finally, we return \(\min\{\lambda_1, \lambda_p, \lambda'\} \) as \(\lambda^* \).

The above computes \(\lambda^* \) in \(O(n \log n) \) time. Applying \(\lambda = \lambda^* \) on our decision algorithm can eventually find an optimal edge in additional \(O(n) \) time.
\end{proof}

\begin{thebibliography}{9}

1. N. Alon, A. Gyárfás, and M. Ruszinkó. Decreasing the diameter of bounded degree graphs. Journal of Graph Theory, 35:161–172, 2000.
2. M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. of the 4th Latin American Symposium on Theoretical Informatics, pages 88–94, 2000.
3. D. Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science, 417:12–22, 2012.
4. J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid. Minimizing the continuous diameter when augmenting paths and cycles with shortcuts. In Proc. of the 15th Scandinavian Workshop on Algorithm Theory (SWAT), pages 27:1–27:14, 2016.
5. E.D. Demaine and M. Zadimoghaddam. Minimizing the diameter of a network using shortcut edges. In Proc. of the 12th Scandinavian conference on Algorithm Theory (SWAT), pages 420–431, 2010.
6. F. Frati, S. Gasparis, J. Gudmundsson, and L. Mathieson. Augmenting graphs to minimize the diameter. Algorithmica, 72:995–1010, 2015.
7. G. Frederickson and D. Johnson. Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing, 13(1):14–30, 1984.
8. G.N. Frederickson and D.B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. Journal of Algorithms, 4(1):61–80, 1983.
9. Y. Gao, D.R. Hare, and J. Nastos. The parametric complexity of graph diameter augmentation. Discrete Applied Mathematics, 161:1626–1631, 2013.
10. U. Große, J. Gudmundsson, C. Knauer, M. Smid, and F. Stehn. Fast algorithms for diameter-optimally augmenting paths. In Proc. of the 42nd International Colloquium on Automata, Languages and Programming (ICALP), pages 678–688, 2015.
\end{thebibliography}
Diameter-Optimally Augmenting Paths

11 D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. *SIAM Journal on Computing*, 13:338–355, 1984.

12 T. Ishii. Augmenting outerplanar graphs to meet diameter requirements. *Journal of Graph Theory*, 74:392–416, 2013.

13 C.-L. Li, S.T. McCormick, and D. Simchi-Levi. On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. *Operations Research Letters*, 11:303–308, 1992.

14 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. *Journal of the ACM*, 30(4):852–865, 1983.

15 A.A. Schoone, H.L. Bodlaender, and J. Van Leeuwen. Diameter increase caused by edge deletion. *Journal of Graph Theory*, 11:409–427, 1997.