Density functional simulations of pressurized Mg-Zn and Al-Zn alloys

Mohammad Alidoust,1 David Kleiven,1 and Jaakko Akola1,2

1Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
2Computational Physics Laboratory, Tampere University, FI-30014, Tampere, Finland

(Dated: May 4, 2021)

The Mg-Zn and Al-Zn binary alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (HCP) and face-centered-cubic (FCC) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are MgZn19, Mg12Zn43, MgZn, and Mg34Zn30 for the HCP, and MgZn3 and MgZn for the FCC lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the HCP and FCC lattices under all conditions. By applying an isotropic pressure in the HCP lattice, Mg12Zn43 turns into an unstable phase at P≈10 GPa, a new stable phase Mg2Zn appears at P≥20 GPa, and Mg34Zn30 becomes unstable for P≥30 GPa. For FCC lattice, the Mg2Zn phase weakly touches the convex hull at P≥20 GPa while the other stable phases remain intact up to ≈120 GPa. Furthermore, making use of the obtained DFT results, bulk modulus has been computed for several compositions up to pressure values of the order of ≈120 GPa. The findings suggest that one can switch between Mg-rich and Zn-rich early-stage clusters simply by applying external pressure. Zn-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation.

PACS numbers:

I. INTRODUCTION

The controlled creation of alloys is an attractive research field from both theoretical and experimental standpoints.1-3 An alloy system comprises numerous charged particles that interact with each other and make a highly complicated interacting many-body platform. As it is evident, this level of complexity makes accurate theoretical studies of such systems quite challenging, and, therefore multiple approximations with today’s computers have to be incorporated.4-14 The interplay of the quantum mechanical interactions and the specific spatial ordering of different atoms, forming an alloy, determines the macroscopic properties of alloys, and this has served as a unique platform for testing and developing various theoretical approaches.4,5,7,15-17 On the other hand, the detailed atomistic level insight from theoretical studies may provide useful information for synthesizing alloys in experiments with boosted specific properties.14,18-21 Prominent examples can be found in aluminium alloys that play increasingly crucial roles in various industrial products.5,8-12,22-25

One of the main goals of alloying matrices is to obtain the most lightweight and high-strength alloys that can be extensively used in aircraft industries, modern trains and vehicles, and so forth. The central mechanisms for enhancing the strength of aluminium is to produce uniform distributions of nucleated precipitates and solid microstructures in the aluminium matrix with different solute elements such as Zn, Mg, Si, Cu, Mn, and Cr.26-35 Among them, however, Zn and Mg have demonstrated to be the most effective additives to help the growth of precipitates from solute clusters, thus enhancing the strength and hardness of the Al matrix through generating high resistance against dislocation motion and damage. For example, a recent experiment has demonstrated that a cyclic deformation of an Al alloy at room temperature facilitates a diffusion of solid solute clusters and eventually generates a matrix with uniformly close packed precipitates that increase the material strength and elongation properties. The advantages of this method compared to conventional temperature-ageing approaches are (i) a shorter processing time and (ii) a more uniformly distributed microstructure with no precipitate-free zones.26,36 Also, it has been experimentally observed that several phases of precipitates can develop in Mg-Zn and Al-Zn-Mg alloys, including MgZn, monoclinic Mg2Zn7, η-MgZn2, β-MgZn2 with hexagonal symmetry, Mg2Zn3, and Mg2Zn11.37-43 Recent systematic investigations have demonstrated that the morphology and structural evolution of precipitates in Mg alloys are closely linked to their internal sub-unit cell arrangements, the aspect ratio of precipitates, misfit strains, and their interaction with matrix interfaces.37,44-46

Despite the extensive attention that aluminium alloys have received so far, only limited studies have been performed for investigating their fundamental properties when subject to tension from atomistic level first-principles.47,48 The findings of such high-end rigorous studies not only can be used as guidelines for future experiments but they also can be employed as benchmark tests for computationally less expensive approaches (such as effective potential methods15,16 which are crucial for molecular dynamics simulations or phase field approximations). Hence, these results can serve in developing reliable multiscale models for providing better insights into closer-to-realistic sample sizes. Also, there are several magnesium and zinc rich alloys that, respectively, contain Al / Zn and Al / Mg elements as the most effective additions to improve their hardness. Therefore, it is of fundamental interest to study these alloys within the entire composition range. In order to provide insights for the Al-Mg-Zn alloys, one first needs to study the properties of the Al-Mg, Mg-Zn, and Al-Zn binaries, which comprise the boundaries of the Al-Mg-Zn trinary composition diagram. The properties of the Al-Mg bi-
nary have already been studied in previous works, and thus, we focus here on the Mg-Zn and Al-Zn binaries only.

In this work, we employ an iterative combination of a cluster expansion (CE) method, Monte Carlo (MC) simulations, and DFT calculations to exhaustively search and find the stable phases of the Mg-Zn and Al-Zn binary alloys, starting from both hexagonal-close-packed (HCP) and face-centered-cubic (FCC) lattice symmetries. Our theoretical results show that the stable phases of the Mg-Zn binary are mixture and layered configurations of the two elements in the HCP lattice, and they are in line with experimental observations where MgZn, Mg2Zn7, and MgZn compositions with hexagonal symmetry have been found as the most stable phases. For the FCC lattice, we find layered geometrical motives emerging for MgZn and higher Mg-concentrations. The Al-Zn binary turns out to be energetically unfavorable on both the HCP and FCC lattice symmetries under all pressure conditions studied, which indicates a segregation behavior. Although the free energies of Mg-rich compositions are lower than those of Zn-rich ones for the Mg-Zn binary, the presence of an external pressure can revert the situation such that Mg-rich alloys become unstable. The analysis of bulk modulus for several compositions illustrates that Zn-rich compositions have the largest bulk modulus and they are more resistant to external deformation. These findings suggest that by applying an appropriate pressure to early-stage clusters of the Mg-Zn binary, one can control the type of the precipitate clusters (being either Zn-rich or Mg-rich solid solutions), and thus, tune the absolute hardness of the entire matrix.

The article is organized as follows. In Sec. II, we briefly discuss and present the theoretical framework used in order to find the energetically favorable phases of binary alloys. In Sec. III, we present our main findings and a detailed description of the results. Finally, in Sec. IV, we present concluding remarks.

II. METHODS

In this section, we describe the theoretical framework and computational details.

A. Density functional theory calculations

The first-principles calculations based on the density functional theory of electronic structure were performed using the GPAW code. The interaction between ions (nuclei + core electrons) and valence electrons was described by using the projector augmented-wave method. The gradient-corrected functional by Perdew-Burke-Ernzerhof (PBE) was employed for the exchange correlation energy, the plane-wave cut-off for kinetic energy was set to 600 eV, and the number of electronic bands was chosen as 120% (corresponding to 20% unoccupied). Furthermore, we have used 5.5 k-points per Å\(^{-1}\) in order to grid the k-space on the basis of the Monkhorst-Pack scheme. In order to produce consistent data, we have kept fixed all the above-mentioned parameters throughout all DFT calculations. The parameter values were chosen based on extensive convergence and consistency tests, and they provide a balance between convergence and good accuracy in all calculations. We have exploited the ‘fast inertial relaxation engine’ and ExpCellFilter modules available in the atomistic simulation environment package to relax the atomic positions in a given structure under isotropic pressure through self-consistent loops until the residual forces on each atom become less than 0.07 eV/Å. We have cross-checked our DFT calculations for selected compositions with tighter convergence criteria and found no changes in the resulting convex hull. In total, 861 individual configurations of 64-atoms were DFT-optimized based on these specifications at zero pressure, and the most stable configurations at the convex hull were subjected to additional pressure calculations.

B. Cluster expansion model

The cluster expansion (CE) model is a generic approach that can describe multi-component systems through trainable parameters. The main objective is thus to develop CE models with the ability to predict configurational properties with high-accuracy and much less computational cost than for DFT. In this work, CE provides an effective Hamiltonian, describing the configurational energy of Mg-Zn and Al-Zn alloys. Each element atom type is represented by a pseudospin \(\tau_\alpha\) with an effective cluster interaction \(E_\alpha\) at a configurational ordering \(\alpha\) (specific order of atoms in a given composition). Thus, with this approach, we can expand and express the energy of a given configuration by:

\[
E = E_0 + \sum_i E_i \tau_i + \sum_{ij} E_{ij} \tau_i \tau_j + \sum_{ijk} E_{ijk} \tau_i \tau_j \tau_k + \ldots \quad (1)
\]

The effective cluster interactions \(E_\alpha\) are unknown coefficients. The main task is to train the above expansion to DFT data (training set) and to find the best values for \(E_\alpha\) in a truncated series to describe the configurational energy accurately. The accuracy of CE predictions depends crucially on several ingredients: The number of structures in the data set, how the structures are chosen, the number of effective correlation functions (how many terms the expansion possesses), and the correlation functions used for fitting to the data set. The method we chose to find the best truncated series is the minimization of the leave-one-out cross validation (CV) score through the least absolute shrinkage and selection operator (LASSO), i.e.,

\[
\min_\alpha \left\{ \sum_{n=1}^{N} \left(E_{DFT}^n - E_{CE}^n \right)^2 + \alpha \sum_\alpha |E_\alpha| \right\}, \quad (2)
\]

in which \(N\) is equal to the number of configurations evaluated by DFT calculations, \(E_{DFT}^n\) represents the energy of nth structure predicted by DFT, and \(E_{CE}^n\) is the prediction made by CE. The second term in Eq. (2) is a cost function, where term \(\alpha\) regularizes the coefficients such that it imposes penalty to coefficients with large values and helps in reducing over-fitting. To construct CE models, we have employed the open source PYTHON modules in the CLEASE software.
C. Monte Carlo simulations

The configuration space of 64-atom model structures for Mg-Zn and Al-Zn alloys contains a large number of unique configurations, made of various combinations of the considered elements within the entire composition range. Therefore, it is not feasible to evaluate all possible configurations in the configuration space using DFT calculations. In order to effectively search the configuration space and find the energetically most favorable configurations, we have used the Metropolis algorithm and Monte Carlo simulations. In short, one shuffles the list of atoms in a given configuration and calculates the energy difference between the new and old configuration: \(\Delta E = E_j - E_i \). Next, one picks up a random number \(r \) and defines a probability for accepting the new configuration \(j \) together with a simulated annealing algorithm at a temperature \(T \) as follows:

\[
 r < \exp \left\{ -\frac{\Delta E}{k_B T} \right\}.
\]

Here, \(k_B \) is the Boltzmann constant and \(\gamma \) is a parameter that controls the acceptance rate of new structures. Depending on the number of possibilities available within the configuration space, one produces a sufficient number of random structures by swapping atoms in each Metropolis step and then increases \(\gamma \) slowly from highly small values (equivalent to a high acceptance rate) to large values of \(\gamma \) where the acceptance rate of new structures become highly suppressed. Note that, at a low enough temperature regime where \(k_B T \rightarrow 0 \), one can remove \(\gamma \) and use \(k_B T \) as the controlling parameter for the acceptance rate by varying the temperature exponentially from high (equivalent to small values for \(\gamma \)) to low enough values (equivalent to large values for \(\gamma \)).

III. RESULTS AND DISCUSSIONS

A. Atomic structure, energetics and the effect of pressure

A CE model is inevitably tied to the elements in question and lattice symmetry, making it almost impractical to train only one model for a set of alloys with different lattice symmetries. Therefore, we have trained several CE models for each alloy system with a specific lattice structure. To find the energetically most favorable structures for Mg-Zn and Al-Zn binaries, we have chosen the following strategy which is tedious but reliable. (i) We produce a database of 40 randomly generated unique structures. (ii) Considering the parameters described in Sec. II A, we perform DFT calculations (always requiring geometry and unit cell optimization) for structures generated in the previous stage. (iii) We construct more than 50 CE models as explained in Sec. II B by varying the maximum diameter of clusters. (iv) By selecting CE models possessing CV scores (prediction error with respect to DFT results) less than 10 meV, we generate new unique low-energy structures and add them to the database if not already existing. (v) Extracting these new unique structures, we perform DFT calculations and repeat stages (iii) to (v) until new CE models are not able to add new unique structures into the database, and the procedure reaches convergence.

We have carried out the above steps for the Mg-Zn and Al-Zn binaries on both the HCP and FCC lattice symmetries and used identical fitting procedures for the surrogate CE models. In the following, we have neglected vibrational effects at finite temperature. For the \(2 \times 2 \times 2 \), \(3 \times 3 \times 3 \), and \(4 \times 4 \times 4 \) unit cell structures the concentration of elements changes by a step of 12.50%, 3.7037%, and 1.5625%, respectively. Therefore, the last case (64 atoms) with the smallest steps allows for explor-
The energetically most favorable structures of these 402 structures, calculated by Eq. (4), as a function of concentration of Mg element and $E[B]$ are the free energies of composition A_iB_{1-x}. Also $E[\mathcal{A}]$ and $E[\mathcal{B}]$ are the free energies of pure elements \mathcal{A} and \mathcal{B}, respectively. Note that we assume here zero temperature where potential energy, configurational energy, and free energy are the same.

At finite temperature values, however, one should differentiate free energy from other energies. Note that we assume here zero temperature where potential energy, configurational energy, and free energy are the same. At finite temperature values, however, one should differentiate when using these terminologies.

Figure 1 summarizes the results of the above strategy for Mg-Zn binary in HCP lattice. To reach convergence as described above, this process has demanded to gradually add and calculate the configurational energies of 402 unique structures of Mg from first-principles. The plot exhibits the formation energy of these 402 structures, calculated by Eq. (4), as a function of Mg concentration. The energetically most favorable structures (compositions) are those with energies touching the convex hull (black curve). To make it more visible, we have marked those by solid red circles while other structures close to the convex hull are marked by green circles.

We find that Zn, MgZn$_3$, Mg$_{19}$Zn$_{45}$, MgZn$_x$, Mg$_{34}$Zn$_{30}$, and Mg construct the convex hull and are the most favorable compounds for HCP lattice. We also show four other compounds, i.e., Mg$_{15}$Zn$_{09}$, Mg$_{17}$Zn$_{47}$, Mg$_{21}$Zn$_{83}$, and Mg$_{3}$Zn$_{3}$ that are close to the convex hull. The free energies of these configurations are summarized in Table I. The corresponding real space 4x4x4 configurations are displayed on the right hand side of Figure 1, and they show gradual changes in site occupations. The prominent feature of these structures is that they show a strong mixing of Mg and Zn in HCP lattice symmetry over the entire composition range. The corresponding 5x5x5 extended supercells are presented in the Appendix, Fig. 9.

Note that since we are restricted by 4x4x4 structures due to computational limitations in DFT calculations, we are able to span the concentration range only by steps of 1.5625%. Therefore, there may exist other energetically favorable compounds close to the convex hull (namely, they fall into regions that are only explorable through larger atomic models). Nevertheless, the step of 1.5625% is small enough to allow us to provide an overview of the convex hull for binary alloys. The stable phases with hexagonal symmetries in experiment are Mg$_2$Zn$_3$, Mg$_2$Zn$_{11}$, Mg$_2$Zn$_{9}$, Mg$_2$Zn$_{7}$, and Mg$_2$Zn$_3$. The last case was also explored and confirmed in our results above. The ratios of the other two compositions, 1:2 and 4:7, do not match exactly with the 4x4x4 structures considered in this study, but the predicted phase Mg$_{21}$Zn$_{13}$ lends support also for these experimental observations.

Another limitation considers the (possible) structural transition upon alloying or applying pressure. In this case, the searchable configuration space would considerably increases and include numerous new possibilities. We postpone addressing these interesting topics to our future works, and thus, assume here that no structural transitions beyond the HCP/FCC will take place under alloying and/or the application of pressure. Note that as close-packed structures the HCP and FCC lattices have the largest coordination number, i.e., 12 (sphere packing efficiency of 0.74), and it does not seem plausible that other lattice structures (such as body-centered cubic) would emerge as a result of applying pressure.

Next, we study the Mg-Zn binary with the FCC lattice symmetry. As bulk materials, Mg and Zn have the FCC lattice symmetry whereas Al exists as the FCC lattice symmetry. However, as it is fully confirmed by experiments, the solid solutes and clusters in Al dominated matrices tend to mimic the lattice symmetry of bulk Al and develop FCC-like sublattices. Therefore, in order to understand the properties of the Mg-Zn solid clusters in the Al-dominated matrices one needs to study this binary with the FCC symmetry as well. Figure 2(a) shows the normalized free energy of 232 unique structures as a function of concentration. The FCC structures have been systematically collected in the DFT database as described above for the HCP case. Fig. 2(a) shows the normalized free energy and Figure 2(b) exhibits the associated formation energy obtained by Eq. (4). Note that the FCC structures display exactly the same trend (not shown) as Fig. 2(a) as the energetic differences between the FCC and HCP configurations are very small. For the FCC lattice symmetry, the convex hull is made by Zn, MgZn$_3$ (by the green solid circles), MgZn$_2$, and Mg marked by solid red circles. We have also marked Mg$_8$Zn$_{58}$ and Mg$_5$Zn$_{7}$ that have energies closer to the convex hull than other compounds. The normalized free energy of these compounds (shown by the blue circles) are summarized in Table II. The corresponding real space 4x4x4 configurations are shown on the right hand side of Fig. 2. Interestingly, unlike for the HCP lattice, Mg$_5$Zn$_{58}$ and Mg$_5$Zn$_{7}$ suggest a full mixture of Mg and Zn atoms from 0% to 30% magnesium, while the stable MgZn$_2$ phase and Mg$_5$Zn$_{7}$ display that compositions containing more than 50% of Mg tend to create layered structures.

In order to ease the visibility of the mixture and layered compositions, we present visualizations of the 5x5x5 extended cells in the Appendix, Fig. 9.

We have carried out the same computational procedure as above for the Al-Zn binary. Figure 3(a) shows the formation energy as function of Al concentration for 164 unique structures, gradually collected through iterating the loop between the stages (i) and (v). The corresponding free energies are presented in Fig. 10 in Appendix. Here we have considered both 3x3x3 and 4x4x4 structures with the FCC lattice symmetry. The formation energy is either positive or takes very small negative values throughout the full composition range. The overall positive formation energy indicates that the Al-Zn binary tends to segregate always. This is confirmed by the atomic configurations of the lowest-energy structures (not
FIG. 2: (Color online). The Mg-Zn binary with the FCC lattice symmetry. (a) Normalized free energy of 232 configurations as a function of Mg concentration (in percentage %). (b) The convex hull of these 232 unique configurations with 4×4×4 unit cell structures containing 64 atoms. The stable phases are MgZn$_3$ and MgZn (marked by red), whereas Mg$_6$Zn$_{58}$ and Mg$_3$Zn (marked by green) are close to the convex hull. The corresponding atomic structures are shown on the right side. The green and blue spheres stand for Mg and Zn atoms, respectively.

FIG. 3: (Color online). Formation energy of unique configurations of the Al-Zn binary as a function of Al concentration. (a) FCC lattice with 163 unique configurations (3×3×3 and 4×4×4 structures). The external pressure is set zero. (b) HCP lattice and 64 unique configurations under external pressure: P=0, 40, 80 GPa.

shown) which show a strong segregation of Al and Zn. To provide further insight for this binary, we show in Fig. 3(b) the formation energy of the Al-Zn binary for the HCP lattice. Clearly, Al and Zn prefer to separate as for the FCC lattice symmetry. We also present results for the isotropic pressures of 40 GPa and 80 GPa in the HCP case. Introducing a non-zero pressure results in a stronger positive formation energy, and thus, it is unable to assist mixing of the Al and Zn elements. Note that, as pure Al and Zn belong to the FCC and HCP lattice symmetries, respectively, the final segregated compositions might be mixtures of these two symmetries. Nevertheless, in Al-rich and Zn-rich alloys, one can expect that the leading lattice symmetry is dictated by the FCC and HCP symmetries, respectively.

Having determined the stable phases of Mg-Zn binary on the HCP and FCC lattices, we now subject these compounds (together with those nearby the convex hull) to the external pressure. Figure 4(a) shows the normalized free energy of 11 compounds against externally applied isotropic pressure from 0 to 120 GPa. Under ambient conditions, bulk Mg and Zn have the lowest and highest free energy, respectively, and the other compounds are located between these two limits. By applying an external pressure, the free energy of all compounds increases and at high pressure regions, larger than 80 GPa, the free energy becomes positive, limiting the formation of solid state compounds. Fig. 4(a) illustrates that although Mg-rich compounds are more stable at low pressure regime, they turn unstable faster than those with a higher concentration of Zn and there is a cross-over at 30 GPa. Correspondingly, the Zn-rich compounds show more stability under pressure, which can be used as a control knob for switching between the two types of alloys. Also, this finding can be expanded to large enough precipitates of these elements: By applying pressure to an Al matrix where Mg and Zn solute atoms form solid clusters, one may be able to externally control the type of the clusters to be either Mg-rich or Zn-rich. Figure 4(b) shows the normalized volume of each compound against the applied isotropic pressure. Obviously, bulk Mg and Zn exhibit the highest and lowest volume reduction, respectively, and the rest are located between these two limits. The percentage of volume reduction confirms the higher stability of Zn-rich compounds.
FIG. 4: (Color online). The Mg-Zn binary with the HCP lattice symmetry. (a) The free energy of marked phases in the convex hull, normalized by the number of atoms in supercell, as a function of applied isotropic pressure from 0 GPa to 120 GPa. (b) Change in the normalized volume of different compounds when applying the isotropic pressure. The inset panel shows the percentage of volume reduction due to the exerted pressure. (c) Bulk modulus, B_0, of different compounds under pressure. The inset panel is a zoomed-in of the bulk modulus restricted to low pressures (from 0 GPa to 5 GPa). (d) Normalized free energy of different compositions as a function of Mg concentration (in percentage %) at various values of the isotropic external pressure: $P=0, 10, 20, 30, 40, 70, 100, 120$ GPa. (e) Variation of convex hull and the evolution of the stable phases by increasing the external pressure. The stable phases are marked by red color, while the rest of compounds are shown by green.

One important quantity that we can calculate now is the bulk modulus B_0 which measures the stiffness of a material against elastic deformation when subject to an external pressure. To this end, we make use of the Birch-Murnaghan empirical equation of state for pressure as a function of volume:

$$P(V) = \frac{3B_0}{2} \left\{ 1 + \frac{3(B_0' - 4)}{4} \left[\left(\frac{V_0}{V} \right)^\frac{3}{2} - 1 \right] \right\} \left[\left(\frac{V_0}{V} \right)^\frac{3}{2} - \left(\frac{V_0}{V} \right)^\frac{5}{2} \right],$$

in which B_0 is the bulk modulus, B_0' is the derivative of the bulk modulus with respect to pressure, V_0 is the volume at zero pressure, V is the volume, and P is the pressure. Also, the bulk modulus is closely linked to the speed of sound (mechanical waves) and the energy stored in a solid system, which is given by:

$$B_0 = -V \left(\frac{\partial P}{\partial V} \right).$$

To evaluate Eq. (6), we first find the set of parameter values that fits Eq. (5) into our DFT data such that we obtain $P(V)$ numerically, and thus B_0 can be evaluated. Figure 4(c) shows the bulk modulus of the Mg-Zn compounds. The calculated bulk moduli of the elemental Mg and Zn are in good agreement with those reported values in experiments. The calcu-
FIG. 5: (Color online). The Mg-Zn binary with the FCC lattice symmetry. (a) Normalized free energy of the Mg-Zn compositions as a function of the externally applied isotropic pressure from 0 GPa to 120 GPa with a step of 10 GPa. (b) Normalized volume of the compounds as a function of pressure. The inset panel exhibits the volume reduction of each compound as a function of pressure. (c) Bulk modulus as a function of pressure. The inset shows a zoomed-in shot of the bulk modulus at low pressures. (d) Normalized free energy as a function of Mg concentration (in percentage). (e) Formation energy of the Mg-Zn binary phases.

The bulk moduli of the Mg-Zn compounds are located between those of bulk Zn and Mg from top to bottom, respectively. Clearly, we can conclude that Zn-rich compounds are stiffer than those with a high concentration of Mg.

In order to evaluate the stability of these compounds subject to isotropic pressure, we show their normalized free energy values as a function of Mg concentration in Fig. 4(d) at several pressures. The associated convex hulls are presented in Fig. 4(e). As evidenced above based on the bulk moduli, the free energy of bulk Mg (Fig. 4(d)) has the largest variation. To make it clearer, we have marked stable phases, touching the convex hull, by solid red symbols, while those compounds away from the convex hull are displayed in green. We find that MgZn$_3$ and MgZn show stability in the entire interval of the applied pressure. Interestingly, we see that Mg$_{10}$Zn$_{15}$, which is a stable phase at zero pressure, becomes unstable at larger pressure values than 10 GPa. Similarly, Mg$_{33}$Zn$_{30}$ becomes unstable at pressures higher than 40 GPa. Remarkably, Mg$_3$Zn becomes more stable at pressures higher than 20 GPa as it not only touches the convex hull but also comprises a new minimum above 70 GPa.
with bulk Mg and becomes the lowest energy compound. At 80 GPa, MgZn$_3$ has the lowest free energy, and bulk Mg and bulk Zn change their places as the upper/lower boundary above 100 GPa. Note that for both the HCP and FCC lattices, pressure-controlled alloying becomes possible around 30 GPa, in particular at pressure values larger than 40 GPa. Figure 5(b) illustrates the normalized volume and the results are very similar to those for the HCP lattice in Fig. 4(b). This concludes that Zn-rich alloys are less sensitive to changes in pressure. For the bulk modulus (Fig. 5(c)), as before, bulk Zn and bulk Mg exhibit the highest and lowest B_0 values, respectively. The bulk moduli of Mg on the HCP and FCC lattices are almost the same (Figs. 4(c) and 5(c), insets). However, the Zn bulk modulus enhances by almost 15% by the lattice change. Hence, our analysis demonstrates that Zn-rich alloys with the FCC lattice symmetry are more favorable in terms of hardness and stability against external deformation.

In Fig. 5(d), we plot the normalized free energy as a function of Mg concentration and pressure and Figure 5(e) displays the associated convex hull. Here, MgZn$_1$, and MgZn are stable throughout the pressure interval 0-120 GPa, while Mg$_2$Zn$_3$ stays close to the convex hull. Mg$_2$Zn touches the convex hull above 20 GPa but does not introduce a new minimum. This differs from the HCP case where Mg$_3$Zn becomes stable as pressure increases. Therefore, we can conclude that Mg$_3$Zn with the FCC lattice symmetry has a limited stability when subject to pressure.

Finally, let us consider a situation where the Mg-Zn binary can be a mixture of the HCP and FCC lattices. We calculate the mixing enthalpy and obtain the structural energy differences as follows:

$$\Delta H^\text{hcp}[M_xZ_y] = E^\text{hcp}[M_xZ_y] - yE^\text{fcc}_Z - xE^\text{hcp}_M, \quad (7a)$$

$$\Delta H^\text{fcc}[M_xZ_y] = E^\text{fcc}[M_xZ_y] - yE^\text{hcp}_Z - xE^\text{fcc}_M, \quad (7b)$$

where $y \equiv 1 - x$ and $E^\text{hcp/fcc}_M$ are the energies of Mg and Zn on the HCP and FCC lattices. If we now add and subtract yE^hcp_Z and yE^fcc_Z on the right hand sides of the two equations, respectively, we find

$$\Delta H^\text{hcp/fcc}[M_xZ_y] = H^\text{hcp/fcc}[M_xZ_y] + y(E^\text{hcp}_Z - E^\text{fcc}_Z), \quad (8a)$$

$$\Delta H^\text{hcp/fcc}[M_xZ_y] = H^\text{hcp/fcc}[M_xZ_y] + y(E^\text{fcc}_Z - E^\text{hcp}_Z), \quad (8b)$$

where $H^\text{hcp/fcc}[M_xZ_y]$ is the isostructural mixing enthalpy on the HCP and FCC lattices, given by Eq. (4). Thus, the last terms in the above equations provide the contribution of the structural energy difference in the Mg-Zn alloys. We have plotted this quantity for Zn, MgZn$_1$, MgZn$_2$, Mg$_3$Zn, and Mg as a function of pressure in Fig. 6. The structural energy difference is very small, indicating that Mg and Zn can acquire FCC phase with a small energy cost. By increasing the pressure the structural energy difference first increases at 10 GPa and then decreases while remaining negative the whole time, demonstrating that the HCP lattice remains always energetically preferable. These findings can be confirmed by comparing the free energies in Tables I and II. We note here that according to the experimental observations, large enough precipitates develop hexagonal lattice symmetry under ambient conditions.37,38,41–43

B. Electronic band structure and density of states

DFT calculations include explicit information of the electronic structure for all configurations sampled in this study. Here, we present the density of states and band structure for the MgZn compound and HCP lattice symmetry, which is one
FIG. 8: (Color online). Total and projected density of electronic states (TDOS/PDOS) of MgZn with the HCP symmetry as a function of energy. The Fermi level is shifted to zero energy. TDOS is plotted for six values of volume per atom: 18.3981 Å³ (0 GPa), 15.5730 Å³ (10 GPa), 14.2759 Å³ (20 GPa), 13.0530 Å³ (30 GPa), and 9.8069 Å³ (120 GPa). (a) TDOS in a broad range of energies: from −15 eV to +10 eV. (b)-(c) Zoomed-in TDOS at the Fermi level and the main peak in the valence band. (d)-(g) PDOS corresponding to the two extreme volumes 18.3981 Å³ (0 GPa) and 9.8069 Å³ (120 GPa).

of the lowest energy configurations located at the convex hull (see Fig. 1). In order to find out how the applied pressure can influence the electronic properties, we have systematically scaled down the unit cell volume and plotted the associated band structure, total density of states (TDOS), and projected density of states (PDOS). Figure 7 illustrates the band structure along the high-symmetry lines. We have considered two different normalized volumes 18.3981 Å³ and 9.8069 Å³ in Figs. 7(a) and 7(b) corresponding to \(P = 0 \) and \(P = 120 \) GPa, respectively. The band energies are shifted such that the zero energy corresponds to the Fermi level. The effect of pressure is evident around the Fermi level where there are less bands at high pressure. Further, by selecting the symmetry points \(\Gamma \) and \(A \) as examples, one can see that there are bands which have been pushed at lower energies in the valence band.

The corresponding TDOS and PDOS for the MgZn compound are plotted in Fig. 8. TDOS (Fig. 8(a)) is shown as a function of the normalized volume per atom (VPA), corresponding to applied pressures between \(P = 0 \) − 120 GPa. As seen, there is a prominent peak in the valence band above -10 eV which responds to pressure by broadening and shifting at lower energies (Fig. 8(c)). Analysis of the projections onto atomic \(s \)-, \(p \)-, \(d \)-orbitals (PDOS, Figs. 8d-g) reveals that this pressure-sensitive peak is associated with the \(d \)-electrons of Zn. Furthermore, TDOS at the Fermi level shows clear suppression with decreasing VPA, in accordance with the band structure in Fig. 7. Inspection of the corresponding region in PDOS indicates that this reduction is mainly due to reduction in the corresponding the \(s \)- and \(p \)-weights of Mg. In general, PDOS shows broadening towards lower energies upon applying pressure.

IV. CONCLUSIONS

We have employed a configurational cluster expansion method, Markov chain Monte Carlo search algorithm, and first-principles computations in the framework DFT to determine the stable phases of the Mg-Zn and Al-Zn binaries on both the HCP and FCC lattice symmetries. In order to find the ground states, we have constructed several CE models, performed extensive searches in configuration space to systematically predict configurations close to ground state in the entire composition range, and carried out DFT calculations (optimizing cell and geometry) for predicted configurations. By tuning concentration with a step of 1.5625% (64-atom system), we have found that MgZn₃, Mg₁₉Zn₄₅, MgZn, and Mg₃₄Zn₃₀ with the HCP symmetry, and MgZn₁₁ and MgZn with FCC symmetry, are the stable phases of the relaxed Mg-Zn binary, while Al-Zn has a positive formation energy throughout the entire composition range for both the HCP and FCC lattices subject to zero/finite pressure. Our findings are in a good agreement with experimental observations where MgZn₂, Mg₅Zn₇, and MgZn compounds with hexago-
TABLE I: Free energy per atom (eV) and volume per atom (Å³) for the Mg-Zn compositions in the HCP lattice.

Pressure (GPa)	Zn	Mg_{15}Zn_{49}	Mg_{30}Zn_{45}	Mg_{17}Zn_{47}	Mg_{19}Zn_{48}	Mg_{32}Zn_{43}	Mg_{34}Zn_{30}	Mg_{31}Zn_{3}	Mg_{66}Zn_{3}	Mg	
0	-1.1913	-1.3473	-1.3586	-1.3667	-1.3838	-1.3984	-1.4853	-1.4987	-1.5507	-1.6028	-1.6155
10	-1.1461	-1.2931	-1.3066	-1.3111	-1.3239	-1.3369	-1.4189	-1.4285	-1.4666	-1.5002	-1.5167
20	-1.0632	-1.1933	-1.2051	-1.2078	-1.2151	-1.2247	-1.2941	-1.2983	-1.3137	-1.3192	-1.3297
30	-0.9632	-1.0738	-1.0845	-1.0850	-1.0901	-1.0964	-1.1500	-1.1439	-1.1387	-1.1154	-1.1184
40	-0.8539	-0.9444	-0.9541	-0.9532	-0.9550	-0.9581	-0.9962	-0.9800	-0.9553	-0.9024	-0.8991
70	-0.4976	-0.5333	-0.5403	-0.5346	-0.5271	-0.5214	-0.5130	-0.4935	-0.3902	-0.2562	-0.2338
100	-0.1254	-0.1112	-0.1143	-0.1057	-0.0906	-0.0768	-0.0273	0.0024	0.1702	0.3790	0.4164
120	0.1274	0.1695	0.1689	0.1793	0.1992	0.2179	0.2928	0.3296	0.5362	0.7901	0.8388

The DFT calculations were performed using the resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway. Financial support from the NTNU Digital Transformation program (Norway) for the project ALLDESIGN is gratefully acknowledged. M.A. thanks A. Lervik, E. Thronsen, and other expert colleagues in NTNU and SINTEF for several conversations.

Appendix A: First-principles data and extended unit cells

Here, we present the numerical results from DFT calculations for the Mg-Zn compounds discussed in the main text. Table I contains the normalized free energy of the Mg-Zn compounds with the HCP lattice symmetry. Table II presents the normalized free energy of the Mg-Zn compounds with the FCC lattice symmetry, and table III summarizes the bulk moduli of several compositions on both the HCP and FCC lattices. We have also included the experimentally measured values for bulk moduli.

To illustrate how the Mg and Zn elements are arranged in the high-symmetry compositions found in Figs. 1 and 2, we have expanded the unit cells of MgZn_{3}, Mg_{2}Zn, and Mg_{6}Zn_{3} up to 5 × 5 × 5 cells. We have rotated the cells for visualization purposes as the coordinate axis arrows indicate. Also, Fig. 10 exhibits the DFT calculated free energies of predicted unique structures for the Al-Zn alloy both on FCC and HCP lattices. The formation energy counterparts are presented in Fig. 3. In Fig. 10(a), the free energy of the Al-Zn alloys with the FCC lattice symmetry is plotted as a function of Mg concentration. The external pressure is set zero. Figure 10(b) presents similar study except now the lattice is changed to HCP and the results of 40 GPa and 80 GPa pressure values in addition to 0 GPa are shown. The results show that the application of an isotropic static pressure to the Al-Zn alloys decreases the free energy.
Table II: Free energy per atom (eV) and volume per atom (Å³) for Mg-Zn compositions in the FCC lattice.

Pressure (GPa)	Zn	MgZn_{88}	MgZn_{51}	MgZn	Mg_{1/2}Zn_{1/2}	Mg
0	-1.1689	-1.2336	-1.3417	-1.4805	-1.5427	-1.6085
10	-1.1262	-1.1859	-1.2884	-1.4144	-1.4558	-1.5000
20	-1.0410	-1.0925	-1.1848	-1.2817	-1.2980	-1.3095
30	-0.9379	-0.9810	-1.0620	-1.1358	-1.1174	-1.0966
40	-0.8251	-0.8610	-0.9298	-0.9840	-0.9222	-0.8738
50	-0.7066	-0.7352	-0.7920	-0.8234	-0.7293	-0.6500
60	-0.5851	-0.6067	-0.6520	-0.6732	-0.5381	-0.4266
70	-0.4604	-0.4754	-0.5090	-0.5021	-0.3566	-0.2021
80	-0.3346	-0.3434	-0.3664	-0.3333	-0.1499	0.0187
90	-0.2073	-0.2107	-0.2228	-0.1718	0.0430	0.2375
100	-0.0819	-0.0778	-0.0790	-0.0073	0.2247	0.4537
120	0.1745	0.1880	0.2059	0.3153	0.5882	0.8770

Volume - FCC

Pressure (GPa)	Zn	MgZn_{88}	MgZn_{51}	MgZn	Mg_{1/2}Zn_{1/2}	Mg
0	15.0892	15.6145	16.4053	18.0280	20.5353	23.0647
10	13.5633	13.9217	14.4742	15.5968	17.3198	19.0178
20	12.6312	12.9019	13.3414	14.5712	15.5902	16.9342
30	11.9649	12.1799	12.5467	13.2325	14.4226	15.5886
40	11.4460	11.6277	11.9385	12.5335	13.4950	14.5354
50	11.0239	11.1780	11.4474	11.9608	12.7777	13.7380
60	10.6699	10.8030	11.0391	11.5233	12.2199	13.0870
70	10.3625	10.4792	10.6865	11.1031	11.7821	12.5341
80	10.0940	10.1971	10.3821	10.7341	11.3736	12.0630
90	9.8541	9.9471	10.1114	10.4269	10.9933	11.6510
100	9.6427	9.7231	9.8691	10.1523	10.6538	11.2869
120	9.2688	9.3355	9.4537	9.6819	10.1333	10.6698

Table III: Calculated bulk moduli of the Mg-Zn alloys.

Pressure (GPa)	Zn	MgZn_{88}	MgZn_{51}	MgZn_{47}	MgZn_{59}	MgZn_{56}	MgZn_{51}	MgZn_{50}	Mg_{1/2}Zn_{1/2}	Mg
0	66.6732	54.6725	60.6312	53.8911	51.0433	50.0149	50.8842	48.6929	42.8030	36.7433

Pressure (GPa)	Zn	MgZn_{88}	MgZn_{51}	MgZn_{47}	MgZn_{59}	MgZn_{56}	MgZn_{51}	MgZn_{50}	Mg_{1/2}Zn_{1/2}	Mg
0	78.9948	66.3637	60.5714	50.9126	48.6929	42.8030	36.7433	36.5245	36.5245	36.5245

1. F.W. Gayle, M. Goodway, *Precipitation hardening in the first aerospace aluminum alloy: the wrought flyer crankcase*, Science 266, 1015 (1994).
2. T.M. Pollock, *Weight loss with magnesium alloys*, Science 328, 986 (2010).
3. J.F. Nie, *Precipitation and hardening in magnesium alloys*, Metall. Mater. Trans. A 43, 3891 (2012).
4. Z. Wu, M. F. Francis and W. A. Curtin, *Magnesium interatomic potential for simulating plasticity and fracture phenomena*, Modelling Simul. Mater. Sci. Eng. 23, 045010 (2018).
5. B. Zheng, L. Zhaoa, X.B. Hua, S.J. Donga, H. Li, *Calphad Coupling of Phase Diagrams and Thermochemistry 33, 650 (2009).*
6. P. Mao, B. Yu, Z. Liu, F. Wang, Y. Ju, *First-principles calculations of structural, elastic and electronic properties of AB₂-type intermetallics in Mg–Zn–Ca–Cu alloy*, Journal of Magnesium and Alloys 1, 256 (2013).
7. D. E. Dickel, M. Baskes, I. Aslam and C. D. Barrett, *New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys*, Modelling Simul. Mater. Sci. Eng. 26, 045010 (2018).
8. B. Liu, Z. Q., Chen, C. H. Liu, J. H. Chen, *Vacancy-Mg complexes and their evolution in early stages of aging of Al–Mg based alloys*, Appl. Surf. Sci. 298, 50 (2014).
9. D. Kleiven a, O. L. Ødegard, K. Laasonen, J. Akola, *Atomic simulations of early stage clusters in Al–Mg alloys*, Acta Materialia 166, 484 (2019).
10. B. Zheng, L. Zhaoua, X.B. Hua, S.J. Donga, H. Li, *First-principles studies of Mg₁₂Al₁₄₋ₓ, Mg₅Alₓ, Mg₅Sn, MgZn₅, Mg₅Ni, Al₅Ni phases*, Physica B: Condensed Matter 560, 255 (2019).
FIG. 9: (Color online). The high-symmetry HCP and FCC compositions of the Mg-Zn binary shown in the convex hull plots in the main text. The unit cells are replicated 5 × 5 × 5 times.

11. T. Tsurua, M. Yamaguchi, K. Ebihara, M. Itakura, Y. Shiihara, K. Matsuda, H. Toda, First-principles study of hydrogen segregation at the MgZn precipitate in Al–Mg–Zn alloys, Computational Materials Science 148, 301 (2018).
12. C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of AlMgSi(Cu) precipitates, Acta Mater. 52, 4213 (2004).
13. A.V. Ruban, I.A. Abrikosov, Configurational thermodynamics of alloys from first principles: effective cluster interactions, Rep. Prog. Phys. 71, 046501 (2008).
14. A.Yu. Stroev, O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi, Solid solution decomposition and Guinier-Preston zone formation in AlCu alloys: a kinetic theory with anisotropic interactions, Phys. Rev. Mater. 2, 033603 (2018).
15. H.-S. Jang, K.-M. Kim, B.-J. Lee, Modified embedded-atom method interatomic potentials for pure Zn and Mg–Zn binary system, Calphad 60, 200 (2018).
16. M. I. Baskes, Commentary on ’modified embedded atom method potentials for hcp metals’ M. I. Baskes and R. A. Johnson (1994) Modelling Simul. Mater. Sci. Eng.—the early basis for modeling hcp materials using MEAM, Modelling Simul. Mater. Sci. Eng. 25 071002 (2017).
17. J.M. Sanchez, Cluster expansion and the configurational theory of alloys, Phys. Rev. B 81, 224202 (2010).
18. S. Wang, Y. Zhao, H. Guo, F. Lan and H. Hou, Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg–Zn–Zr System from First Principles, Materials 11, 2010 (2018).
19. Y.Z. Ji, A. Issa, T.W. Heo, J.E. Saal, C. Wolverton, L.Q. Chen, Predicting β’ precipitate morphology and evolution in Mg–RE alloys using a combination of first-principles calculations and phase-field modeling, Acta Mater. 76, 259 (2014).
20. T.E.M. Staab, B. Kobes, I. Kohlbach, B. Korff, M. Haaks, E. Dudzik, K. Maier, Atomic structure of pre-Guimier-Preston and Guinier-Preston-Bagaryatsky zones in Al-alloys, J. Phys. Conf. Ser. 265, 012018 (2011).
21. S.R. Nayak, C.J. Hung, R.J. Hebert, S.P. Alpay, Atomic origins of Guinier-Preston zone formation and morphology in Al-Cu and Al–Ag alloys from first principles, Scr. Mater. 162, 235 (2019).
22. G. Yi, W. Zeng, J.D. Poplawsky, D.A. Cullen, Z. Wang, M.L. Frey, Characterizing and modeling the precipitation of Mg-rich phases in Al5xxx alloys aged at low temperatures, J. Mater. Sci. Technol. 33, 991 (2017).
23. M. Liu, H. Fu, L. Tian, W. Xiao, Q. Peng, C. Ma, Nucleation and growth mechanisms of nano-scaled Si precipitates in Al–7Si supersaturated solid solution, Mater. Des. 121, 373 (2017).
24. C. Wang, T.-L. Huang, H.-Y. Wang, X.-N. Xue, Q.-C. Jiang, Effects of distributions of Al, Zn and Al + Zn atoms on the strengthening potency of Mg alloys: A first-principles calculations, Computational Materials Science 104, 23 (2015).
25. G. Esteban-Manzaneares, A. Ma, I. Papadimitriou, E. Martínez and J. Llorca, Basal dislocation/precipitate interactions in Mg–Al alloys: an atomistic investigation, Modelling Simul. Mater. Sci. Eng. 27 075003 (2019).
26. T. Saito, E.A. Mørtsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, K. Matsuda, R. Holmesstad, Atomic structures of precipitates in Al–Mg–Si alloys with small additions of other elements, Adv. Eng. Mater. 20, 1800125 (2018).
27. S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner, R. Holmesstad, Precipitates in aluminium alloys, Adv. Phys. X 3, 1479984 (2018).
28. T. Saito, S. Wenner, E. Osmundsen, C. D. Marioara, S. J. Ander-
FIG. 10: (Color online). Free energy of unique configurations of the Al-Zn binary as a function of Al concentration. (a) FCC lattice with 163 unique configurations (3x3x3 and 4x4x4 structures). The external pressure is set zero. (b) The HCP lattice and 64 unique configurations under external pressure: P=0 GPa (circles), 40 GPa (triangles), 80 GPa (astricks).
55 J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholm, C. Glinsvad, V. Haikola, H.A. Hansen, et al., *Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method*, J. Phys. Condens. Matter 22, 253202 (2010).

56 A.H. Larsen, J.J. Mortensen, J. Blomqvist, E. Castelli, R. Christiansen, M. Dulak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, et al., *The atomic simulation environment: a python library for working with atoms*, J. Phys. Condens. Matter 29, 273002 (2017).

57 N. Metropolis and S. Ulam, *The Monte Carlo Method*, J. Americ. Sta. 44, 247 (1949).

58 S.L. Chen, Y.A. Chang, *A thermodynamic analysis of the Al-Zn system and phase diagram calculation*, CALPHAD 17, 113 (1993).

59 M. Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. P. C. Klaver, and S. L. Dudarev, *Monte Carlo study of thermodynamic properties and clustering in the bcc Fe-Cr system*, Phys. Rev. B 75, 014208 (2007).

60 J. S. Wrobel, D. Nguyen-Manh, M. Yu. Lavrentiev, M. Muzyk, and S. L. Dudarev, *Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys*, Phys. Rev. B 91, 024108 (2015).