PRIMITIVE ROOT BIASES FOR PRIME PAIRS I: EXISTENCE AND NON-TOTALITY OF BIASES

STEPHAN RAMON GARCIA, FLORIAN LUCA, AND TIMOTHY SCHAAFF

Abstract. We study the difference between the number of primitive roots modulo \(p \) and modulo \(p + k \) for prime pairs \(p, p + k \). Assuming the Bateman–Horn conjecture, we prove the existence of strong sign biases for such pairs. More importantly, we prove that for a small positive proportion of prime pairs \(p, p + k \), the dominant inequality is reversed.

1. Introduction

Let \(k \) be a positive even integer and suppose that \(p \) and \(p + k \) are prime. Then the difference between the number of primitive roots modulo \(p \) and modulo \(p + k \) is

\[
T(p) := \varphi(p-1) - \varphi(p+k-1).
\]

If \(T(p) > 0 \), then \(p \) has more primitive roots than \(p + k \) does; if \(T(p) < 0 \), then \(p \) has fewer primitive roots than \(p + k \) does. We are interested here in the sign of \(T(p) \) as \(p \) ranges over the set of all primes \(p \) for which \(p + k \) is also prime.

To streamline our presentation, we let \(\mathbb{P}_k \) denote the set of primes \(p \) for which \(p + k \) is prime. For example, \(\mathbb{P}_2 \) is the set of twin primes, \(\mathbb{P}_4 \) is the set of cousin primes, and \(\mathbb{P}_6 \) is the set of “sexy primes.” We denote by \(\mathbb{P}_k(x) \) the set of elements in \(\mathbb{P}_k \) that are at most \(x \). The number of elements in \(\mathbb{P}_k(x) \) is denoted by \(\pi_k(x) \); this is the counting function of \(\mathbb{P}_k \). That is, \(\pi_k(x) \) is the number of primes \(p \leq x \) such that \(p + k \) is prime. In what follows, the letters \(p, q, r, s \) are reserved for primes.

It has long been conjectured that each \(\mathbb{P}_k \) is infinite (this appears to date back at least to de Polignac). For example, the twin-prime conjecture asserts that \(\mathbb{P}_2 \) is infinite. There have been tantalizing steps toward this conjecture in recent years \cite{2, 5, 11}. A more refined version of the twin-prime conjecture is the first Hardy–Littlewood conjecture, which asserts that \(\pi_2 \) is asymptotic to a certain constant times \(x/(\log x)^2 \). The far-reaching Bateman–Horn conjecture (Section 2) implies that each \(\mathbb{P}_k \) is infinite and provides asymptotics for \(\pi_k(x) \) on the order of \(x/(\log x)^2 \). The first Hardy–Littlewood conjecture and the twin-prime conjecture both follow from the Bateman–Horn conjecture.

Our work is inspired by \cite{3}, in which a peculiar primitive root bias was discovered in the twin prime case \(k = 2 \). Assuming the Bateman–Horn conjecture, it was

2010 Mathematics Subject Classification. 11A07, 11A41, 11N36, 11N37.

Key words and phrases. prime, twin prime, primitive root, Bateman–Horn conjecture, Twin Prime Conjecture, Brun Sieve, cousin prime, sexy prime, prime bias.

SRG supported by NSF grant DMS-1265973 and the Budapest Semesters in Mathematics (BSM) Director’s Mathematician in Residence (DMIR) program. SRG and TS supported by a David L. Hirsch III and Susan H. Hirsch Research Initiation Grant. FL was supported in part by grants CPRR160325161141 and an A-rated researcher award both from the NRF of South Africa and by grant no. 17-02604S of the Czech Granting Agency.
proved that at least 65.13% of twin prime pairs \(p, p+2\) satisfy \(T(p) > 0\) and that at least 0.47% satisfy \(T(p) < 0\) (numerical evidence suggests that the bias is approximately 98% to 2%). This is interesting for two reasons. First, a pronounced bias in favor of \(T(p) > 0\) exists for twin primes (although relatively easy to motivate from a heuristic standpoint, the proof is long and involved). Second, the bias is not total: the inequality is reversed for a small positive proportion of the twin primes.

In this paper, we extend the results of [3] to prime pairs \(p, p+k\). As before, we assume the Bateman–Horn conjecture. Although there are some similarities, many significant complications arise when passing from the case \(k = 2\) to \(k \geq 4\).

(a) The direction and magnitude of the bias in \(T(p)\) now depend heavily on the value of \(k \pmod{3}\) and the smallest primes that do not divide \(k\). If \(k \equiv -1 \pmod{3}\), then an overwhelming majority of primes \(p \in \mathbb{P}_k\) satisfy \(T(p) > 0\). If \(k \equiv 1 \pmod{3}\), then the bias is strongly toward \(T(p) < 0\). If \(k \equiv 0 \pmod{3}\), then the extreme bias disappears and either sign can be favored.

(b) An elementary lemma in the twin-prime case [3, Lem. 2] that relates the sign of \(T(p)\) to the sign of a more tractable function fails for \(k \geq 4\) and must be replaced by a much more difficult asymptotic version (Theorem 6).

(c) The “influence” of the small primes 5, 7, and 11 was sufficient to establish that a positive proportion of twin prime pairs \(p, p+2\) satisfy \(T(p) < 0\) [3]. This straightforward analysis is no longer possible for \(k \geq 4\) and we must introduce several parameters in order to compensate.

(d) The tolerances are spectacularly small for certain \(k\). A notable example is \(k = 14\). Among the first 20 million primes there are 1,703,216 pairs of primes of the form \(p, p+14\); see Table 1. Only three pairs satisfy \(T(p) \leq 0\), a proportion of \(1.76 \times 10^{-6}\). These sorts of numbers give us little room to maneuver.

A more extreme example is \(k = 70\). Among the first 20 million primes, every prime pair \(p, p+70\) satisfies \(T(p) < 0\). Nevertheless, our approach proves that a tiny positive proportion (at least \(1.81 \times 10^{-20}\)) of the primes in \(\mathbb{P}_{70}\) satisfy \(T(p) > 0\). Even in such lopsided cases, we are able to prove that the biases are not total: the dominant inequality is reversed for a positive proportion of the primes considered.

This paper is organized as follows. Section 2 introduces the Bateman–Horn conjecture and a closely-related unconditional result that is necessary for our work. Section 3 concerns a “totient comparison theorem” (Theorem 6) that permits us to consider a more convenient function \(S(p)\) in place of \(T(p)\). The short Section 4 contains an heuristic argument that explains the dependence of our results upon the value of \(k \pmod{3}\). For \(k \not\equiv 0 \pmod{3}\), the heuristic argument is turned into a rigorous, quantitative theorem in Section 5 which contains our main result (Theorem 7). Although it is too technical to state here, Theorem 7 proves the following.

(a) For \(k \not\equiv 0 \pmod{3}\), strong primitive root biases exist for prime pairs \(p, p+k\).

(b) The biases are not total: the dominant inequality is reversed for a positive proportion of prime pairs \(p, p+k\).

We conclude in Section 6 with an analogous theorem (Theorem 10) for \(k \equiv 0 \pmod{3}\). In this case, we prove that substantial positive proportions of \(p \in \mathbb{P}_k\) satisfy \(T(p) > 0\) and \(T(p) < 0\), respectively. Thus, the extreme biases observed in the \(k \not\equiv 0 \pmod{3}\) setting disappear.
to which primes occur for

there exists a collection of distinct irreducible polynomials with integer

Let \(f_1, f_2, \ldots, f_m \) be a collection of distinct irreducible polynomials with integer coefficients and positive leading coefficients. An integer \(n \) is prime generating for this collection if each \(f_1(n), f_2(n), \ldots, f_m(n) \) is prime. Let \(P(x) \) denote the number of prime-generating integers at most \(x \) and suppose that \(f = f_1 f_2 \cdots f_m \) does not vanish identically modulo any prime. The Bateman–Horn conjecture asserts that

\[
P(x) \sim \frac{C}{D} \int_2^x \frac{dt}{(\log t)^m},
\]

in which

\[
D = \prod_{i=1}^m \deg f_i \quad \text{and} \quad C = \prod_p \frac{1 - N_f(p)/p}{(1 - 1/p)^m},
\]

where \(N_f(p) \) is the number of prime divisors of \(f \) modulo \(p \).
Table 2. Numerical approximations of the Bateman–Horn constant C_k.

k	C_k	k	C_k	k	C_k	k	C_k
2	1.32032	32	1.32032	62	1.36585	92	1.3832
4	1.32032	34	1.40835	64	1.32032	94	1.34966
6	2.64065	36	2.64065	66	2.93405	96	2.64065
8	1.32032	38	1.39799	68	1.40835	98	1.58439
10	1.76043	40	1.76043	70	2.11252	100	1.76043
12	2.64065	42	3.16878	72	2.64065	102	2.81669
14	1.58439	44	1.46703	74	1.35805	104	1.44035
16	1.32032	46	1.3832	76	1.39799	106	1.34621
18	2.64065	48	2.64065	78	2.88071	108	2.64065
20	1.76043	50	1.76043	80	1.76043	110	1.95604
22	1.46703	52	1.44035	82	1.35418	112	1.58439
24	2.64065	54	2.64065	84	3.16878	114	2.79598
26	1.44035	56	1.58439	86	1.35253	116	1.36922
28	1.58439	58	1.36922	88	1.46703	118	1.34349
30	3.52086	60	3.52086	90	3.52086	120	3.52086

in which $N_f(p)$ is the number of solutions to $f(n) \equiv 0 \pmod{p}$ \[1\]. For simplicity, we prefer the asymptotically equivalent expression

$$\frac{Cx}{D(\log x)^m}.$$

For a fixed k, let

$$f(t) = t(t + k),$$

so that

$$N_f(p) = \begin{cases} 1 & \text{if } p|k, \\ 2 & \text{if } p \nmid k. \end{cases}$$

(2.2)

The Bateman–Horn conjecture predicts that

$$\pi_k(x) \sim \prod_{p|k} \frac{p(p-1)}{(p-1)^2} \prod_{p \nmid k} \frac{p(p-2)}{(p-1)^2} \frac{x}{(\log x)^2} = \frac{C_k x}{(\log x)^2},$$

in which

$$C_k = \prod_{p|k} \frac{p(p-1)}{(p-1)^2} \prod_{p \nmid k} \frac{p(p-2)}{(p-1)^2},$$

depends only on upon the primes that divide k; see Table \[2\]. For example, $C_k \approx 1.32032$ whenever k is a power of 2. In particular, $C_k/2 \approx 0.660162$ is the twin-primes constant.

Although weaker than the Bateman–Horn conjecture, the Brun sieve \[7, Thm. 3, Sect. I.4.2\] suffices for many applications. It does, however, have the distinct advantage of being a proven fact, rather than a long-standing conjecture. The Brun sieve implies that there is a constant B that depends only on m and D such that

$$P(x) \leq \frac{BC}{D} \int_2^x \frac{dt}{(\log t)^m} = (1 + o(1))\frac{BC}{D} \frac{x}{(\log x)^m}.$$
for sufficiently large x. In particular, there is a constant K such that
\[\pi_k(x) \leq K \frac{C_k x}{(\log x)^2} \]
for all k and sufficiently large x. Thus, the Brun sieve implies that the upper bound on π_k implied by the Bateman–Horn conjecture is of the correct order of magnitude.

3. Totient comparison theorem

The well-known formula
\[\frac{\varphi(n)}{n} = \prod_{q | n} \left(1 - \frac{1}{q}\right). \quad (3.1) \]
depends only on the primes that divide n and not on their multiplicity. Because of this, we find it more convenient to work with
\[S(p) := \frac{\varphi(p - 1)}{p - 1} - \frac{\varphi(p + k - 1)}{p + k - 1} \]
instead of the more obvious quantity
\[T(p) = \varphi(p - 1) - \varphi(p + k - 1). \]
We are able to do this because the sign of $T(p)$ almost always agrees with the sign of $S(p)$. For $k = 2$, elementary considerations confirm that $S(p)T(p) > 0$ for $p \geq 5$ [3, Lem. 2]. For $k \geq 4$, the result is more difficult. We require several lemmas before we obtain an asymptotic analogue of the desired result (Theorem 4).

We first need to estimate the number of $p \in \mathbb{P}_k(x)$ for which $S(p)$ or $T(p)$ equals zero. In both cases, the number is negligible when compared with $\pi_k(x)$; this is Lemma 3 below. To this end, we need the following result.

Lemma 1 (Graham–Holt–Pomerance [1]). Suppose that j and $j + k$ have the same prime factors. Let $g = \gcd(j, j + k)$ and suppose that
\[\frac{j}{g}t + 1 \quad \text{and} \quad \frac{(j + k)t}{g} + 1 \quad (3.2) \]
are primes that do not divide j.

(a) Then $n = j \left(\frac{(j + k)t}{g} + 1\right)$ satisfies $\varphi(n) = \varphi(n + k)$.

(b) For k fixed and sufficiently large x, the number of solutions $n \leq x$ to $\varphi(n) = \varphi(n + k)$ that are not of the form above is less than $x/\exp((\log x)^{1/3})$.

Part (b) of the preceding was improved by Yamada [10], although the bound there is slightly more complicated than that of Graham–Holt–Pomerance. In Lemma 4, one considers numbers with the same prime factors. Because of this, we will also need the following lemma of Thue.

Lemma 2 (Thue [8]). Let $1 = n_1 < n_2 < \cdots$ be the sequence of positive integers whose prime factors are at most p. Then $\lim_{i \to \infty} (n_{i+1} - n_i) = \infty$.

A more explicit version of Thue’s theorem is due to Tijdeman [9], who proved that there is an effectively computable constant $C = C(p)$ such that $n_{i+1} - n_i > n_i/(\log n_i)^C$ for $n_i \geq 3$. For our purposes, however, Thue’s result is sufficient. In particular, Lemma 2 implies that for each fixed k, the sequence n_1, n_2, \ldots contains only finitely many pairs n_i, n_j for which $n_j = n_i + k$.

We are now ready to show that \(T(p) \) and \(S(p) \) are rarely equal to zero relative to the counting function \(\pi_k \).

Lemma 3. As \(x \to \infty \),

(a) \(#\{p \in \mathbb{P}_k(x) : S(p) = 0\} = o(\pi_k(x))\), and

(b) \(#\{p \in \mathbb{P}_k(x) : T(p) = 0\} = O(\pi_k(x))\).

Proof. (a) Let \(P(n) \) denote the largest prime factor of \(n \). Since

\[
\frac{\varphi(n)}{n} = \prod_{q | n} \left(1 - \frac{1}{q} \right),
\]

it follows that \(P(n) \) is the largest prime factor of the denominator of \(\varphi(n)/n \). If \(S(p) = 0 \), then \(P(p-1) = P(p+k-1) \) divides \(\gcd(p-1, p+k-1) \), which divides \(k \). Consequently, \(S(p) = 0 \) implies that the prime factors of both \(p-1 \) and \(p+k-1 \) are at most \(k \). Lemma 4 implies that only finitely many such \(p \) exist. Thus, the number of primes \(p \in \mathbb{P}_k(x) \) for which \(S(p) = 0 \) is \(o(\pi_k(x)) \).

(b) Lemma 2 ensures that for each fixed \(k \), there are only finitely many \(j \) for which \(j \) and \(j+k \) have the same prime factors. Fix \(j \) and let \(g = \gcd(j, j+k) \). To apply Lemma 1 with \(n = p-1 \), we must count those

\[
t \leq \frac{g(x-j+1)}{j(j+k)} \quad \text{(so that } p \leq x\text{)}
\]

for which

\[
p = j \left(\frac{j+k}{g} \cdot t + 1 \right) + 1, \quad q = j \left(\frac{j+k}{g} \cdot t + 1 \right) + k + 1, \quad r = \frac{j}{g} \cdot t + 1, \quad s = \frac{j+k}{g} \cdot t + 1,
\]

are simultaneously prime. Since we have four linear constraints, the Brun sieve ensures that the number of such \(t \) is \(O\left(\frac{x}{(\log x)^4}\right) = o(\pi_k(x)) \). Thus, the number of primes \(p \in \mathbb{P}_k(x) \) for which \(T(p) = 0 \) is \(o(\pi_k(x)) \). \(\square \)

Our proof of Lemma 3 actually shows something stronger: \(S(p) = 0 \) for only finitely many \(p \in \mathbb{P}_k \). We can prove Lemma 3 as stated without Thue’s result (Lemma 2) as follows. If \(p-1 \leq x \) and \(P(p-1) \leq k \), then \(p-1 \) is divisible only by the \(\pi(k) \) primes at most \(k \). The number of such \(p \) at most \(x \) is \(O\left(\frac{\log x}{(\log x)^2}\right) \), even without the condition that \(p \) is prime.

The next step toward the desired totient comparison theorem (Theorem 6) is to prove that for each \(\ell \geq 1 \), most \(p \in \mathbb{P}_k(x) \) have the property that \(2^\ell | T(p) \); this is Lemma 2. Since \(T(p) = 0 \) rarely occurs by Lemma 3, it will follow that \(T(p) \) is typically large in absolute value. To do this, we require the following folk lemma. Since we are unable to locate an exact reference for it, we provide the proof.

Lemma 4. \[
\sum_{q^2 \leq x} \frac{1}{q^3} = \log \log x + O(1).
\]

1If \(\pi(k) = s \) and \(P(p-1) \leq k \), we may write \(p-1 = p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} \), in which \(2 = p_1 < p_2 < \cdots < p_s \) are the primes at most \(k \). For \(i = 1, 2, \ldots, s \), we have \(p_i^{a_i} \leq x \) and hence \(a_i \leq (\log x)/\log p_i \). Thus, there are at most \(1 + \log x/\log p_1 \) possibilities for \(a_1 \). Consequently, there are at most \(O((\log x + 1)^s) = O((\log x)^{\pi(k)}) \) admissible vectors of exponents \((a_1, a_2, \ldots, a_s)\).
Proof. Mertens’ theorem [6, §VII.28.1b] implies that
\[\sum_{q \leq x} \frac{1}{q} = \log \log x + O(1). \]

Thus,
\[\sum_{q \leq x} \frac{1}{q^2} = \sum_{q \leq x} \frac{1}{q} + \sum_{q^a \leq x} \frac{1}{q^a} \leq \log \log x + O(1) + \sum_{n \geq 2} \sum_{k \geq 2} \frac{1}{n^k} \]
\[= \log \log x + O(1) + \sum_{n \geq 2} \frac{1}{n^{2}} \cdot \frac{1}{1 - 1/n} \]
\[= \log \log x + O(1). \]

\[\square \]

Let \(\omega(n) \) denote the number of distinct prime divisors of \(n \). The formula
\[\varphi(n) = \prod_{p \mid n} p^{a-1}(p-1) \]
ensures that \(2^{\omega(n)-1} | \varphi(n) \) because each odd prime power \(p^a \) that exactly divides \(n \) provides at least an additional factor of 2 to \(\varphi(n) \) since \(p - 1 \) is even. If \(p \) is large, then \(p - 1 \) and \(p + k - 1 \) tend to have many prime factors. Thus, we expect that \(T(p) \) should be divisible by a large power of 2. The following makes this precise.

Lemma 5. For \(k \geq 2 \) even and \(\ell \geq 1 \),
\[\# \{ p \in \mathbb{P}_k(x) : 2^\ell \mid T(p) \} \sim \pi_k(x). \]

Proof. It suffices to show that the counting function for the set of \(p \in \mathbb{P}_k(x) \) for which \(\omega(p-1) \leq \ell \) or \(\omega(p+k-1) \leq \ell \) is \(o(\pi_k(x)) \). Indeed, if \(\omega(p-1), \omega(p+k-1) \geq \ell + 1 \), then the preceding discussion implies that \(2^\ell \) divides both \(\varphi(p-1) \) and \(\varphi(p+k-1) \), and hence divides \(T(p) \).

If \(\omega(p-1) \leq \ell \), then \(p-1 = nr \), in which \(r \) is prime and \(\omega(n) \leq \ell \). We must have \(\gcd(n, k + 1) = 1 \) since otherwise \(p + k \) would be composite. Let \(g \) be the product of the three polynomials
\[g_1(t) = t, \quad g_2(t) = nt + 1, \quad g_3(t) = nt + k + 1. \]

Then
\[N_g(q) = \begin{cases}
1 & \text{if } q \mid n, \\
2 & \text{if } q \nmid n \text{ and } q \mid k \text{ or } q \mid (k+1), \\
3 & \text{if } q \nmid n, q \nmid k, q \nmid (k+1).
\end{cases} \]

The Brun sieve provides the following asymptotic estimate, uniformly in \(n \):
\[\sum_{l \leq x} \frac{1}{l} \ll \frac{x/n}{(\log x/n)^3} \prod_{q \mid n} \frac{1 - N_g(q)/q}{(1 - 1/q)^3} \]
\[\ll \frac{x}{n(\log x)^3} \prod_{q \mid n} \frac{1 - 1/q}{(1 - 1/q)^3} \prod_{q \mid k \text{ or } q \mid (k+1)} \frac{1 - 2/q}{(1 - 1/q)^3} \prod_{q \mid n, q \mid k} \frac{1 - 3/q}{(1 - 1/q)^3}. \]
\[
\ll \frac{x}{n(\log x)^3} \left[\frac{1}{(1-\frac{1}{2})^2} \right] \omega(n) \prod_{q \mid k \text{ or } q \mid (k+1)} \frac{1-\frac{2}{q}}{(1-\frac{1}{q})^3} \prod_{q \nmid n, q \nmid k \text{ and } q \mid (k+1)} \frac{1-\frac{3}{q}}{(1-\frac{1}{q})^3} \]
\[
\ll \frac{2^{2\ell}x}{n(\log x)^3}.
\]
In the preceding computation, we used the fact that
\[
1 \leq \frac{1-\frac{2}{q}}{(1-\frac{1}{q})^3} \text{ for } q \geq 3
\]
to overestimate the finite product in the middle of (3.4) independently of \(n\). Moreover, the third product in (3.4) converges since
\[
1 - \frac{\frac{3}{q}}{(1-\frac{1}{q})^3} = \frac{3q-1}{(q-1)^3} \sim \frac{3}{q^2}.
\]
Lemma 4 provides
\[
\sum_{\substack{p \in \mathbb{P}_k(x) \\ \omega(p-1) \leq \ell}} \sum_{\substack{n \leq x \\ \omega(n) \leq \ell}} \sum_{\substack{t \leq \frac{x}{n} \\ t, n, t+1, nt+k+1 \text{ prime}}} 1
\]
\[
\ll \frac{2^{2\ell}x}{n(\log x)^3}
\]
\[
\ll \frac{x}{(\log x)^3} \sum_{\substack{n \leq x \\ \omega(n) \leq \ell}} \frac{1}{n}
\]
\[
\ll \frac{x}{(\log x)^3} \frac{1}{\ell!} \left(1 + \sum_{q \leq x} \frac{1}{q^\ell} \right)
\ll \frac{x}{(\log x)^3} (\log \log x + O(1))^\ell
\]
\[
= o(\pi_k(x)).
\]
Similarly, the count of \(p \in \mathbb{P}_k(x)\) with \(\omega(p+k-1) \leq \ell\) is also \(o(\pi_k(x))\). \(\square\)

We are now in a position to prove the main result of this section. It says that \(S(p)\) and \(T(p)\) are nonzero and share the same sign for most \(p \in \mathbb{P}_k(x)\).

Theorem 6 (Totient Comparison Theorem). Let \(k\) be even. Then as \(x \to \infty\),
\[
\#\{p \in \mathbb{P}_k(x) : S(p)T(p) > 0\} \sim \pi_k(x).
\]

Proof. In light of Lemma 4 it suffices to show that
\[
\#\{p \in \mathbb{P}_k(x) : S(p) > 0, T(p) > 0\} \sim \pi_k(x).
\]
Since \(T(p) > 0\) implies that \(S(p) > 0\), we focus on the converse. If \(S(p) > 0\), then
\[
0 < (p+k-1)\varphi(p-1) - (p-1)\varphi(p+k-1)
\]
\[
= p(\varphi(p-1) - \varphi(p+k-1)) + (k-1)\varphi(p-1) + \varphi(p+k-1)
\]
\[
\leq p(\varphi(p-1) - \varphi(p+k-1)) + (k-1)(p-1) + (p+k-1)
\]
\[
\leq p(\varphi(p-1) - \varphi(p+k-1) + k)
\]
\[= p(T(p) + k). \]
(3.5)

Fix \(\ell \) so that \(2^\ell \geq k \). Apply Lemma 5 at \((3.5) \) and conclude that
\[\{ p \in \mathbb{P}_k(x) : S(p) > 0, T(p) \geq 0 \} \sim \pi_k(x). \]

Now apply Lemma 3b to replace \(T(p) \geq 0 \) in the preceding with \(T(p) > 0 \).
\(\square \)

In light of Theorem 6, we can focus our attention on the expression \(S(p) \), which is nonzero and shares the same sign as \(T(p) \) for all \(p \in \mathbb{P}_k \) outside of a set of zero density with respect to the counting function \(\pi_k(x) \). The two expressions
\[\frac{\varphi(p - 1)}{p - 1} = \prod_{q \mid (p - 1)} \left(1 - \frac{1}{q} \right) \quad \text{and} \quad \frac{\varphi(p + k - 1)}{p + k - 1} = \prod_{q \mid (p + k - 1)} \left(1 - \frac{1}{q} \right) \]
(3.6)

that comprise \(S(p) \) are primarily determined by the small prime divisors of \(p - 1 \) and \(p + k - 1 \). Since \(p \) and \(p + k \) are both prime, the nature of these small divisors is also related to \(k \).

4. An heuristic argument

Before proceeding to the technical details, it is instructive to go through a brief heuristic argument. With the help of the Bateman–Horn conjecture, we will ultimately be able to turn this informal reasoning into rigorous, quantitative proofs.

As Table 1 suggests, the behavior of \(T(p) \) is heavily influenced by the value of \(k \) (mod 3). Here is the explanation.

- If \(k \equiv -1 \) (mod 3), then elementary considerations imply that \(3 \mid (p + k - 1) \) whenever \(p, p + k \) are prime and \(p \geq 5 \). Then (3.6) becomes

\[\frac{\varphi(p - 1)}{p - 1} = \frac{1}{2} \prod_{q \geq 5} \left(1 - \frac{1}{q} \right) \quad \text{and} \quad \frac{\varphi(p + k - 1)}{p + k - 1} = \frac{1}{3} \prod_{q \geq 5} \left(1 - \frac{1}{q} \right), \]

and hence we expect that \(S(p) > 0 \) for most \(p \in \mathbb{P}_k \). Moreover, this suggests that \(S(p) < 0 \) might occur if \(p - 1 \) is divisible by many small primes.

- If \(k \equiv 1 \) (mod 3), then a similar argument tells us that

\[\frac{\varphi(p - 1)}{p - 1} = \frac{1}{3} \prod_{q \geq 5} \left(1 - \frac{1}{q} \right) \quad \text{and} \quad \frac{\varphi(p + k - 1)}{p + k - 1} = \frac{1}{2} \prod_{q \geq 5} \left(1 - \frac{1}{q} \right). \]

Thus, we expect that \(S(p) < 0 \) for most \(p \in \mathbb{P}_k \) and that \(S(p) > 0 \) might occur if \(p + k - 1 \) is divisible by many small primes.

- If \(k \equiv 0 \) (mod \(q \)), in which \(q \) is prime, then \(q \) either divides both \(p - 1 \) and \(p + k - 1 \), or it divides neither. Thus, the prime divisors of \(k \) have no bearing upon the large-scale sign behavior of \(S(p) \). It is the small primes \(q \geq 5 \) that divide exactly one of \(p - 1 \) and \(p + k - 1 \) which govern our problem. Consequently, the observed bias in the sign of \(S(p) \) is less pronounced if \(3 \mid k \).
5. Primitive roots biases for $k \not\equiv 0 \pmod{3}$

Let χ_3 denote the nontrivial Dirichlet character modulo 3. That is,

$$
\chi_3(k) = \begin{cases}
0 & \text{if } k \equiv 0 \pmod{3}, \\
1 & \text{if } k \equiv 1 \pmod{3}, \\
-1 & \text{if } k \equiv 2 \pmod{3}.
\end{cases}
$$

Fix $k \not\equiv 0 \pmod{3}$ and let

$$
\begin{align*}
5 \leq q_1 < q_2 < q_3 < \cdots
\end{align*}
$$

be the ordered sequence of primes that do not divide

$$\begin{align*}
k(k - \chi_3(k)),
\end{align*}
$$

which is a multiple of 6. This sequence is infinite since it contains all primes larger than $\max\{5, k + 1\}$. Let $Q = Q(k)$ denote the set

$$
\begin{align*}
Q = \{q_1, q_2, \ldots, q_m\},
\end{align*}
$$

in which the index m shall be determined momentarily. Define

$$
\begin{align*}
L_k &= \log \left[\frac{2}{3} \prod_{q \in Q} \left(1 + \frac{1}{q - 1} \right) \right], \\
R_k &= \sum_{\substack{r \geq 5 \quad r \nmid (k - \chi_3(k))}} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1} \right),
\end{align*}
$$

in which $f(t) = t(t + k)$ is the polynomial defined in (2.1). From (2.2), we see that

$$
r - N_f(r) \in \{r - 1, r - 2\}
$$

for all primes r, so the general term in (5.4) is $O(1/r^2)$. Define m in (5.2) to be the smallest index such that

$$
L_k > R_k.
$$

This is possible since the product (5.3) diverges if taken over all sufficiently large primes, while the sum (5.4) converges under the same circumstances.

This establishes the notation necessary for part (a) of the following result. For part (b), we use an expression similar to (5.4). Let

$$
R_k' = \sum_{\substack{r \geq 5 \quad r \nmid (k - \chi_3(k))}} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1} \right).
$$

This lays the foundation for the following theorem, which establishes a bias in the number of primitive roots of prime pairs $p, p + k$ when $k \equiv \pm 1 \pmod{3}$.

Theorem 7. Assume that the Bateman–Horn conjecture holds. Let $k \not\equiv 0 \pmod{3}$.

(a) The set of primes $p \in \mathbb{P}_k$ for which

$$
\text{sgn } T(p) = \chi_3(k)
$$

has lower density (as a subset of \mathbb{P}_k) at least

$$
\prod_{q \in Q} (q - 2)^{-1} \left(1 - \frac{R_k}{L_k} \right) > 0.
$$
(b) The set of primes $p \in \mathbb{P}_k$ for which
\[
\text{sgn} T(p) = -\chi_3(k)
\]
has lower density (as a subset of all prime pairs $p, p + k$) at least
\[
1 - \frac{R'_k}{\log(3/2)} > 0.6515.
\]

Tables 3 and 4 provide the sets Q, numerical values for L_k, R_k, R'_k, and the bounds in Theorem 7 for various values of k.

5.1. Preliminary lemmas. Before proceeding with the proof of Theorem 7, we require a few preliminary results. Certain conditions in Lemmas 8 and 9 are slightly more general than necessary. This is because they will later be applied when $k \equiv 0 \pmod{3}$ (Section 6). For our present purposes (the proof of Theorem 7), the set Q in the following lemmas is as defined in the preceding section.

Lemma 8. Assume that the Bateman–Horn conjecture holds. Let k be a positive even integer and let Q be a finite set of primes such that $q \nmid k(k+1)$ (resp., $q \nmid k(k-1)$), for all $q \in Q$. The number of $p \in \mathbb{P}_k(x)$ such that $q|(p-1)$ (resp., $q|(p+k-1)$) for all $q \in Q$ is
\[
\pi'_k(x) = (1 + o(1)) \pi_k(x) \prod_{q \in Q} (q-2)^{-1}.
\]

Proof. Suppose that $q \nmid k(k+1)$ for all $q \in Q$, since the case $q \nmid k(k-1)$ is analogous. We wish to count the number of $p \in \mathbb{P}_k(x)$ such that $q|(p-1)$ for all $q \in Q$. If $a = \prod_{q \in Q} q$, then the desired primes are those of the form
\[
n = at + 1 \leq x \quad \text{such that} \quad n+k = at+k+1 \text{ is prime}.
\]

Let
\[
g_1(t) = at + 1, \quad g_2(t) = at + k + 1, \quad \text{and} \quad g = g_1 g_2.
\]

In the Bateman–Horn conjecture with s denoting an arbitrary prime, we have
\[
N_g(s) = \begin{cases}
0 & \text{if } s \in Q, \\
1 & \text{if } s|k, \ s \notin Q, \\
2 & \text{if } s \nmid k, \ s \notin Q.
\end{cases} \quad (5.6)
\]

For sufficiently large x, the Bateman–Horn conjecture predicts that the number of such $t \leq (x-1)/a$ is
\[
\pi'_k(x) = (1 + o(1)) \frac{(x-1)/a}{(\log((x-1)/a))^2} \prod_{s \geq 2} \frac{1 - N_g(s)/s}{(1 - 1/s)^2}
\]
\[
= (1 + o(1)) \frac{x}{a(\log x)^2} \prod_{s \geq 2} \frac{1 - N_g(s)/s}{(1 - 1/s)^2}
\]
\[
= (1 + o(1)) \frac{x}{a(\log x)^2} \prod_{s \in Q} \frac{1}{(1 - 1/s)^2} \prod_{s \notin Q} \frac{1 - N_g(s)/s}{(1 - 1/s)^2}
\]
Lower Bound: $T(p) < 0$

k	Q	L_k	R_k	R'_{k}	Lower Bound: $T(p) > 0$	
2	5, 7, 11	0.067139	0.025497	0.004594	0.141298	0.651516
8	5, 7, 11	0.067139	0.025497	0.004594	0.141298	0.651516
14	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53	0.113089	0.103683	1.56×10^{-18}	0.061779	0.847635
20	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47	0.094041	0.090599	3.50×10^{-17}	0.091873	0.773414
26	5, 7, 11	0.067139	0.024890	0.004661	0.140692	0.653012
32	5, 7, 13	0.051872	0.027680	0.002826	0.130708	0.677634
38	5, 7, 11	0.067139	0.0245373	0.004700	0.133845	0.669898
44	7, 13, 17, 19, 23, 29, 31, 37, 41	0.107845	0.088373	1.93×10^{-9}	0.118661	0.727645
50	7, 11, 13, 19, 23, 29, 31	0.090439	0.066279	1.0×10^{-13}	0.065858	0.837574
56	5, 11, 13, 17	0.053656	0.039870	0.000057	0.132979	0.672033
62	5, 11, 13, 17	0.053656	0.044691	0.000037	0.11043	0.727645
68	5, 7, 11	0.067140	0.025013	0.004647	0.139985	0.654755
74	7, 11, 13, 17, 19, 23	0.083182	0.083047	6.14×10^{-10}	0.066895	0.835016
80	7, 11, 13, 17, 19, 23	0.083182	0.064502	8.47×10^{-8}	0.122703	0.697378
86	5, 7, 11	0.067139	0.0214415	0.005041	0.139985	0.669898
92	5, 7, 11	0.067139	0.018824	0.004647	0.138929	0.65736
98	5, 13, 17, 19, 23	0.056865	0.045054	1.17×10^{-6}	0.125570	0.690307
104	11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79	0.122425	0.114018	1.71×10^{-28}	0.035480	0.912495
110	7, 11, 13, 17, 19, 23, 29, 31, 41	0.080446	0.071049	1.29×10^{-11}	0.120861	0.701920
116	5, 7, 11	0.067139	0.023334	0.004833	0.133975	0.669577
122	5, 7, 11	0.067139	0.025492	0.004594	0.140660	0.653012
128	5, 7, 11	0.067139	0.025434	0.004601	0.140724	0.652691
134	7, 11, 13, 17, 19, 23, 29	0.118273	0.081959	4.29×10^{-9}	0.066913	0.834971
140	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53	0.091583	0.085513	5.59×10^{-17}	0.117087	0.711229
146	5, 11, 13, 17	0.053656	0.043706	0.000041	0.110645	0.727559
152	5, 7, 11	0.067139	0.025276	0.004618	0.137080	0.661920
158	5, 7, 11	0.067139	0.025453	0.004599	0.140922	0.652442
164	7, 13, 17, 19, 23, 29, 31, 41	0.106682	0.090011	4.72×10^{-13}	0.056311	0.861120

Table 3. Lower bounds in Theorem 7 for $k \equiv -1 \pmod{3}$.
\(k\)	\(Q\)	\(L_k\)	\(R_k\)	Lower Bound: \(T(p) > 0\) \(R_k^*\)	Lower Bound: \(T(p) < 0\) \(R_k^*\)	
4	5,7,11	0.067139	0.025497	0.004594	0.141298	0.651516
10	7, 11, 13, 17, 19, 23	0.083182	0.064667	8.39 \times 10^{-8}	0.122703	0.697378
16	7, 11, 13, 17, 19, 23, 29	0.118273	0.081963	4.28 \times 10^{-9}	0.066917	0.834963
22	5, 13, 17, 19, 23	0.056865	0.049243	7.58 \times 10^{-7}	0.109409	0.730164
28	5, 11, 13, 17	0.053656	0.038571	0.000063	0.13616	0.664189
34	5, 7, 13	0.051872	0.028538	0.002723	0.130453	0.678257
40	7, 11, 17, 19, 23, 29, 31	0.071021	0.068880	1.59 \times 10^{-10}	0.115426	0.715324
46	7, 11, 13, 17, 19, 29, 31	0.106611	0.082375	2.30 \times 10^{-9}	0.066821	0.8352
52	5, 7, 11	0.067139	0.024517	0.004702	0.13665	0.662979
58	5, 7, 11	0.067139	0.025150	0.004632	0.138071	0.659474
64	5, 11, 13, 17	0.053656	0.045009	0.000036	0.110468	0.727552
70	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61	0.102261	0.086419	1.81 \times 10^{-20}	0.115448	0.715271
76	7, 11, 13, 17, 19, 23, 29, 31	0.096996	0.083859	1.11 \times 10^{-9}	0.066740	0.835398
82	5, 7, 11	0.067139	0.025331	0.004612	0.141282	0.651555
88	5, 7, 13	0.051872	0.027621	0.002833	0.138939	0.657333
94	5, 7, 11	0.067139	0.022396	0.004946	0.140157	0.65433
100	7, 13, 17, 19, 23, 29, 31, 37	0.083152	0.071944	1.67 \times 10^{-11}	0.112113	0.723496
106	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59	0.111335	0.108798	3.52 \times 10^{-19}	0.036080	0.911017
112	5, 11, 13, 17, 19, 23, 29, 31	0.053656	0.039790	0.000958	0.135777	0.666119
118	5, 7, 11	0.067139	0.02145	0.005040	0.134016	0.669175
124	5, 7, 11	0.067139	0.025459	0.004599	0.140027	0.65317
130	7, 11, 17, 19, 23, 29, 31	0.071021	0.068848	1.62 \times 10^{-10}	0.121523	0.700289
136	7, 11, 13, 19, 23, 29, 31	0.090439	0.084567	4.69 \times 10^{-10}	0.066664	0.83558
142	5, 7, 11	0.067139	0.018217	0.005397	0.140817	0.652702
148	5, 11, 13, 17	0.053656	0.044941	0.000036	0.110440	0.727606
154	5, 13, 19, 23, 29, 31	0.064121	0.045715	3.11 \times 10^{-8}	0.131059	0.676768
160	7, 11, 13, 17, 19, 23	0.083182	0.064667	8.39 \times 10^{-8}	0.122329	0.698299
166	7, 13, 17, 19, 23, 29, 31, 37, 41	0.107845	0.089968	5.26 \times 10^{-13}	0.056325	0.861085
172	5, 7, 11	0.067139	0.025449	0.004599	0.138104	0.659394
178	5, 7, 11	0.067139	0.025464	0.004598	0.140997	0.652259
184	5, 7, 11	0.067139	0.024618	0.004691	0.140922	0.652444

Table 4. Lower bounds in Theorem 7 for \(k \equiv 1 \pmod{3}\).
\begin{equation*}
= (1 + o(1)) \frac{x}{a(\log x)^2} \prod_{s \in Q} (1 - N_f(s)/s)^{-1} \prod_{s \geq 2} \frac{1 - N_f(s)/s}{(1 - 1/s)^2},
\end{equation*}

in which \(N_f(s)\) refers to \((2.2)\). Simplifying further yields

\begin{equation*}
\pi_k'(x) = (1 + o(1)) \frac{\pi_k(x)}{a} \prod_{s \in Q} (1 - 2/s)^{-1}
= (1 + o(1)) \pi_k(x) \prod_{q \in Q} (q - 2)^{-1}.
\end{equation*}

\textbf{Lemma 9.} Assume that the Bateman–Horn conjecture holds. Let \(k\) be a positive even integer and let \(Q\) be a finite set of primes such that

\(q \nmid k(k + 1)\) \quad (resp., \(q \nmid k(k - 1)\)),

for all \(q \in Q\). Let \(r \geq 5\) be a fixed prime not in \(Q\) that satisfies

\(r \nmid k(k - 1)\) \quad (resp., \(r \nmid k(k + 1)\)).

The number of \(p \in \mathbb{P}_k(x)\) such that

\(q|(p - 1)\) and \(r|(p + k - 1)\) \quad (resp., \(r|(p - 1)\)),

for all \(q \in Q\) is

\[\pi_{k,r}(x) = (1 + o(1)) \frac{\pi_k(x)}{r - N_f(r)} \prod_{q \in Q} (q - 2)^{-1},\]

in which \(N_f(r)\) refers to \((2.2)\).

\textbf{Proof.} Suppose that \(q \nmid k(k + 1)\) for all \(q \in Q\), since the case \(q \nmid k(k - 1)\) is analogous. Fix a prime \(r \geq 5\) such that \(r \nmid (k - 1)\) and let \(a = \prod_{q \in Q} q\). The desired primes are precisely those of the form

\[n = aj + 1 \leq x\] such that \(n + k = aj + k + 1\) is prime and \(r|(aj + k)\).

In particular, \(j\) must be of the form

\[j = j_0 + r\ell,\]

in which \(j_0\) is the smallest positive integer such that \(j_0 \equiv -ka^{-1} \pmod{r}\) (note that \(a\) is invertible modulo \(r\) since \(r \notin Q\)). Let \(b_r = aj_0 + 1\). Then

\[n = ar\ell + b_r \quad \text{and} \quad n + k = ar\ell + (b_r + k) \quad \text{(5.7)}\]

are both prime, \(n \leq x\), and

\[\ell \leq \frac{x - b_r}{ar}.\]

In the Bateman–Horn conjecture, let

\[g_1(t) = art + b_r, \quad g_2(t) = art + (b_r + k), \quad \text{and} \quad g = g_1g_2.\]

With \(s\) denoting an arbitrary prime, \(N_g(s)\) is as in \((5.6)\) except for \(s = r\), in which case \(N_g(r) = 0\). Indeed,

\[g_1(t) \equiv b_r \equiv aj_0 + 1 \equiv -k + 1 \not\equiv 0 \pmod{r} \quad \text{and} \quad g_2(t) \equiv b_r + k \equiv 1 \pmod{r}\]

for all \(t\). As \(x \to \infty\), the Bateman–Horn conjecture predicts that the number of such \(\ell\) is

\begin{equation*}
\pi_{k,r}'(x) = (1 + o(1)) \frac{(x - b_r)/(ar)}{(\log((x - b_r)/(ar)))^2} \prod_{s \geq 2} \left(1 - N_g(s)/s \right)^2.
\end{equation*}
\[
\begin{align*}
= (1 + o(1)) & \frac{x}{ar(\log x)^2} \prod_{s \geq 2} \left(1 - \frac{N_g(s)/s}{(1 - 1/s)^2} \right) \\
= (1 + o(1)) & \frac{x}{ar(\log x)^2} \prod_{s \in Q \text{ or } s = r} \left(1 - \frac{1}{(1 - 1/s)^2} \right) \prod_{s \notin Q, s \neq r} \left(1 - \frac{N_g(s)/s}{(1 - 1/s)^2} \right) \\
= (1 + o(1)) & \frac{x}{ar(\log x)^2} \prod_{s \in Q \text{ or } s = r} (1 - N_f(s)/s)^{-1} \prod_{s \geq 2} \left(1 - \frac{N_f(s)/s}{(1 - 1/s)^2} \right) \\
= (1 + o(1)) & \frac{\pi_k(x)}{r - N_f(r)} \prod_{q \in Q} (q - 2)^{-1} \quad \square
\end{align*}
\]

5.2. Proof of Theorem 5. In light of Theorem 3, we may use \(S(p) \) and \(T(p) \) interchangeably in what follows. Suppose that \(k \not\equiv 0 \pmod{3} \).

- If \(\chi_3(k) = -1 \), then we wish to count \(p \in \mathbb{P}_k \) for which \(q|(p - 1) \) for all \(q \in Q \).
- If \(\chi_3(k) = 1 \), then we wish to count \(p \in \mathbb{P}_k \) for which \(q|(p + k - 1) \) for all \(q \in Q \).

Because of this slight difference, we define \(\tau_k = k(1 + \chi_3(k))/2 \). That is,

\[
\tau_k = \begin{cases} 0 & \text{if } \chi_3(k) = -1, \\ k & \text{if } \chi_3(k) = 1, \end{cases}
\]

so that

\[
p - 1 + \tau_k = \begin{cases} p - 1 & \text{if } \chi_3(k) = -1, \\ p + k - 1 & \text{if } \chi_3(k) = 1. \end{cases}
\]

Now let \(\pi'_k(x) \) denote the number of primes \(p \in \mathbb{P}_k(x) \) such that \(q|(p - 1 + \tau_k) \) for all \(q \in Q \). Lemma 4 allows us to count these prime pairs. Moreover, Lemma 9 permits us to count such pairs after imposing the additional restriction that a fixed prime \(r \geq 5 \) not in \(Q \) divides \(p - 1 + (k - \tau_k) \), where

\[
p - 1 + (k - \tau_k) = \begin{cases} p + k - 1 & \text{if } \chi_3(k) = -1, \\ p - 1 & \text{if } \chi_3(k) = 1. \end{cases}
\]

Let \(\pi'_{k,r}(x) \) denote the number of primes \(p \in \mathbb{P}_k(x) \) such that \(q|(p - 1 + \tau_k) \) for all \(q \in Q \), and \(r|(p - 1 + (k - \tau_k)) \).

Suppose that \(p \) is counted by \(\pi'_k(x) \). The condition \(k \not\equiv 0 \pmod{q} \) ensures that \(q \nmid (p - 1 + (k - \tau_k)) \) for all \(q \in Q \). Thus,

\[
3|(p - 1 + (k - \tau_k)) \quad \text{and} \quad 3 \nmid (p - 1 + \tau_k),
\]

so that

\[
\frac{\varphi(p - 1 + \tau_k)}{p - 1 + \tau_k} \leq \frac{1}{2} \prod_{q \in Q} \left(1 - \frac{1}{q} \right).
\]

If \(\text{sgn} S(p) = -\chi_3(k) \) (so that \(p \) does not belong to the set of interest in Theorem 7), then

\[
\frac{1}{3} \prod_{r|(p - 1 + (k - \tau_k))} \left(1 - \frac{1}{r} \right) = \frac{\varphi(p - 1 + (k - \tau_k))}{p - 1 + (k - \tau_k)} \leq \frac{1}{2} \prod_{q \in Q} \left(1 - \frac{1}{q} \right).
\]
Consequently,
\[
\prod_{r \in \mathbb{P}(p-1+(k-\tau_k))} \left(1 + \frac{1}{r-1}\right) > \frac{2}{3} \prod_{q \in \mathbb{Q}} \left(1 + \frac{1}{q-1}\right),
\]
in which \(r \) is prime. Let
\[
F(p) := \sum_{r \mid (p-1+(k-\tau_k)) \ r \not\in \mathbb{Q}} \log \left(1 + \frac{1}{r-1}\right).
\]

We want to count primes \(p \in \mathbb{P}_k(x) \) such that
\[
F(p) > \log \left[\frac{2}{3} \prod_{q \in \mathbb{Q}} \left(1 + \frac{1}{q-1}\right) \right] = L_k
\]
and \(q \mid (p-1+\tau_k) \) for all \(q \in \mathbb{Q} \). To do this, we first sum up \(F(p) \) over all primes \(p \) counted by \(\pi'_k(x) \) and change the order of summation to get
\[
A(x) = \sum_{p \text{ counted by } \pi'_k(x)} F(p)
\]
\[
= \sum_{5 \leq r \leq z \ r \not\in \mathbb{Q}} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)
\]
\[
\leq \sum_{5 \leq r \leq z \ r \not\in \mathbb{Q}} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)
\]
\[
+ \sum_{z < r \leq (\log x)^3 \ r \not\in \mathbb{Q}} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)
\]
\[
= A_1(x) + A_2(x) + A_3(x),
\]
in which \(z \) is a fixed number. We bound the three summands separately. In what follows, we let \(\delta > 0 \) be small, and fix \(z \) large enough so that
\[
\frac{8K}{z - 2} \prod_{q \in \mathbb{Q}} (q-2)^{-1} < \frac{\delta}{3}.
\]

(a) Suppose that \(5 \leq r \leq z \) and \(r \not\in \mathbb{Q} \). Lemma 3 asserts that if \(r \nmid (k + \chi_3(k)) \), then
\[
\pi'_{k,r}(x) = (1 + o(1)) \frac{\pi_k(x)}{r - N_f(r)} \prod_{q \in \mathbb{Q}} (q-2)^{-1}
\]
uniformly for \(r \in [5, z] \setminus \mathbb{Q} \) as \(x \to \infty \). If \(r \mid (k + \chi_3(k)) \) and \(r \mid (p-1 + (k-\tau_k)) \), then
\[
0 \equiv p-1 + (k-\tau_k) \equiv p-1 - (\chi_3(k) + \tau_k) \pmod{r}.
\]
When $\chi_3(k) = -1$, we have $p \equiv 0 \pmod{r}$. When $\chi_3(k) = 1$, we add $k + \chi_3(k)$ to the middle expression and simplify to get $p + k \equiv 0 \pmod{3}$. In either case, it follows that $\pi_{k,r}'(x) \leq 1$ when $r | (k + \chi_3(k))$. Thus, for sufficiently large x we have

$$A_1(x) \leq (1 + o(1)) \frac{\pi_k(x)}{\prod_{q \in Q}(q - 2)} \sum_{\substack{5 \leq r \leq z \leq x \atop \text{r} \not\in Q, r | (k + \chi_3(k))}} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1}\right)$$

$$+ \sum_{\substack{5 \leq r \leq z \leq x \atop \text{r} \not\in Q, r | (k + \chi_3(k))}} \log \left(1 + \frac{1}{r - 1}\right)$$

$$\leq (1 + o(1)) \frac{R_k}{\prod_{q \in Q}(q - 2)} \sum_{\substack{5 \leq r \leq z \leq x \atop \text{r} \not\in Q, r | (k + \chi_3(k))}} \log \left(1 + \frac{1}{r - 1}\right) \pi_k(x)$$

$$= \left(1 + o(1)\right) \frac{R_k}{\prod_{q \in Q}(q - 2)} + \frac{1}{\prod_{q \in Q}(q - 2)} \sum_{\substack{5 \leq r \leq z \leq x \atop \text{r} \not\in Q, r | (k + \chi_3(k))}} \log \left(1 + \frac{1}{r - 1}\right) \pi_k(x)$$

where the last inequality follows from $\pi_k(x) \to \infty$.

(b) Suppose that $z < r \leq (\log x)^3$ and $r \not\in Q$. Maintaining the notation a, b_r from the proof of Lemma 9, the Brun sieve yields an absolute constant K such that for sufficiently large x,

$$\pi_{k,r}'(x) \leq \frac{K(x + \tau_k - b_r)/ar}{(\log((x + \tau_k - b_r)/ar))^2} \prod_{p \geq 2} \frac{1 - N_p(p)/p}{(1 - 1/p)^2}$$

$$= \frac{C_kK(x + \tau_k - b_r)}{(r - N_f(r))(\log((x + \tau_k - b_r)/ar))^2} \prod_{q \in Q} (q - 2)^{-1}$$

$$\leq \frac{2C_kKx}{(r - N_f(r))(\log((x - b_r)/ar))^2} \prod_{q \in Q} (q - 2)^{-1}$$

$$\leq \frac{2C_kKx}{(r - N_f(r))(\log(x/ar - 1))^2} \prod_{q \in Q} (q - 2)^{-1},$$

where the last inequality follows from the fact that $b_r \leq ar$. Since $r \leq (\log x)^3$,

$$\log(x/ar - 1) \geq \log(x^{1/2}) = (\log x)/2$$

for large enough x. Thus,

$$\pi_{k,r}'(x) \leq \frac{8C_kKx}{(r - N_f(r))(\log x)^2} \prod_{q \in Q} (q - 2)^{-1}$$

$$\leq \frac{8K\pi_k(x)}{r - 2} \prod_{q \in Q} (q - 2)^{-1}$$
for sufficiently large x. Since $\log(1 + t) < t$ for $t > 0$, for sufficiently large x we obtain

$$A_2(x) = \sum_{\substack{z < r \leq \log(x) \atop r \not\in Q}} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)$$

$$\leq 8K \pi_k(x) \prod_{q \in Q} (q-2) \sum_{r > z} \frac{1}{r-2} \log \left(1 + \frac{1}{r-1}\right)$$

$$= \sum_{\substack{z < r \leq \log(x) \atop r \not\in Q}} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)$$

$$\leq \frac{8K \pi_k(x)}{(z-2) \prod_{q \in Q} (q-2)}$$

$$< \frac{\delta}{3} \pi_k(x).$$

(c) Suppose that $(\log x)^3 < r \leq x$ and $r \not\in Q$. By (5.7), the primes counted by $\pi'_{k,r}(x)$ lie in an arithmetic progression modulo ar, with a defined as in Lemma 9. Thus, their number is at most

$$\pi'_{k,r}(x) \leq \left\lfloor \frac{x}{ar} \right\rfloor + 1 \leq \frac{x}{ar} + 1.$$

Since $\log(1 + t) < t$, for sufficiently large x we obtain

$$A_3(x) = \sum_{\log(x)^3 < r \leq x \atop r \not\in Q} \pi'_{k,r}(x) \log \left(1 + \frac{1}{r-1}\right)$$

$$\leq \sum_{\log(x)^3 < r \leq x \atop r \not\in Q} \frac{1}{r-1} \left(\frac{x}{ar} + 1\right)$$

$$\leq \frac{x}{a} \sum_{r > \log(x)^3} \frac{1}{r(r-1)} + \sum_{\log(x)^3 < r \leq x} \frac{1}{r-1}$$

$$\leq \frac{x}{a} \sum_{r > \log(x)^3} \left(\frac{1}{r-1} - \frac{1}{r}\right) + \int_{(\log x)^3 - 2}^{x} \frac{dt}{t}$$

$$\leq \frac{x}{a((\log x)^3 - 1)} + \left(\log t\right)_{t=(\log x)^3 - 2}^{t=x}$$

$$= \frac{x}{a((\log x)^3 - 1)} + \log x$$

$$= (1 + o(1)) \left(\frac{x}{a(\log x)^3} + \log x\right)$$

$$= o(1) \pi_k(x)$$

$$< \frac{\delta}{3} \pi_k(x).$$
Returning to (5.9) and using the preceding three estimates, we have
\[A(x) = A_1(x) + A_2(x) + A_3(x) \]
\[< \left(\frac{R_k}{\prod_{q \in Q} (q-2)} + \delta \right) \pi_k(x) \]
for sufficiently large \(x \). Let \(U(x) \) be the set of primes \(p \) counted by \(\pi'_k(x) \) with \(\text{sgn} S(p) = -\chi_3(k) \), so that \(p \) does not belong to the set of interest in Theorem 7a. As we have seen, if \(p \in U(x) \), then
\[F(p) > L_k. \]
Thus,
\[0 \leq \#U(x) L_k < \sum_{p \in U(x)} F(p) \leq A(x) \]
\[< \left(\frac{R_k}{\prod_{q \in Q} (q-2)} + \delta \right) \pi_k(x), \]
from which we deduce that
\[\#U(x) < \left(\frac{R_k \prod_{q \in Q} (q-2)^{-1} + \delta}{L_k} \right) \pi_k(x). \]

The primes \(p \) counted by \(\pi'_k(x) \) which are not in \(U(x) \) satisfy \(\text{sgn} S(p) = \chi_3(k) \). By Lemma 8 and the preceding calculation, for large \(x \) there are at least
\[\pi'_k(x) - \#U(x) > \left(1 + o(1) \right) \prod_{q \in Q} (q-2)^{-1} - \frac{R_k \prod_{q \in Q} (q-2)^{-1} + \delta}{L_k} \pi_k(x) \]
\[= \prod_{q \in Q} (q-2)^{-1} \left(1 - \frac{R_k}{L_k} - \epsilon \right) \pi_k(x) \]
such primes, where \(\epsilon > 0 \) can be made arbitrarily small by taking \(x \) large enough. The condition (5.5) ensures that the quantity in parentheses is positive for a small enough \(\epsilon \). By Theorem 6, the set of \(p \in \mathbb{P}_k \) for which
\[\text{sgn} S(p) = \text{sgn} T(p) \]
has full density as a subset of \(\mathbb{P}_k \). It follows that the set of prime pairs for which \(\text{sgn} T(p) = \chi_3(k) \) has lower density
\[\liminf_{x \to \infty} \frac{\# \{ p \in \mathbb{P}_k(x) : \text{sgn} T(p) = \chi_3(k) \}}{\pi_k(x)} \geq \prod_{q \in Q} (q-2)^{-1} \left(1 - \frac{R_k}{S_k} - \epsilon \right) + o(1). \]
Because this holds for all \(\epsilon > 0 \), the lower bound in Theorem 7b follows.

5.3. Proof of Theorem 7b. As before, we may use \(S(p) \) and \(T(p) \) interchangeably in what follows. Fix \(k \) satisfying \(\chi_3(k) = \pm 1 \) and let \(r \geq 5 \) be prime. We wish to count the number of \(p \in \mathbb{P}_k(x) \) for which \(r | (p - 1 + \tau_k) \).

If \(r | (k - \chi_3(k)) \), then
\[p - 1 + \tau_k + (k - \chi_3(k)) \equiv 0 \pmod{r}. \]
Consequently, (5.8) permits us to deduce that \(p + k \equiv 0 \pmod{r} \) of \(p \equiv 0 \pmod{r} \).

In either case, there is at most one such prime \(p \).

Now suppose that \(r \nmid (k - \chi_3(k)) \) and let

\[
g_1(t) = rt + 1 - \tau_k, \quad g_2(t) = rt + 1 + (k - \tau_k), \quad \text{and} \quad g = g_1g_2.
\]

Then

\[
N_g(p) = \begin{cases}
0 & \text{if } p = r, \\
1 & \text{if } p | k, \\
2 & \text{if } p \nmid k,
\end{cases}
\]

so the Bateman–Horn conjecture gives

\[
\sum_{\begin{subarray}{c}
p \in \mathbb{P}_k(x) \\
p + \tau_k \equiv 1 \pmod{r} \\
r \mid (k - \chi_3(k))
\end{subarray}} 1 = (1 + o(1)) \frac{(x + \tau_k - 1)/r}{(\log((x + \tau_k - 1)/r))^2} \prod_{p \geq 2} 1 - \frac{N_g(p)/p}{(1 - 1/p)^2}
\]

\[
= (1 + o(1)) \frac{x}{r(\log x)^2} \cdot \frac{1}{(1 - 1/r)^2} \prod_{p \neq r} 1 - \frac{N_g(p)/p}{(1 - 1/p)^2}
\]

\[
= (1 + o(1)) \frac{x}{r(\log x)^2} \cdot \frac{1}{r - N_f(r)} \prod_{p \geq 2} 1 - \frac{N_f(p)/p}{(1 - 1/p)^2}
\]

\[
= (1 + o(1)) \frac{\pi_k(x)}{r - N_f(r)},
\]

(5.10)

in which \(N_f(r) \) refers to (2.9). If \(\operatorname{sgn} S(p) = \chi_3(k) \), so that \(p \) does not belong to the set of interest in Theorem 7b, then

\[
\frac{1}{2} \prod_{r \mid (p - 1 + \tau_k)} \left(1 - \frac{1}{r} \right) = \frac{\varphi(p - 1 + \tau_k)}{p - 1 + \tau_k} < \frac{\varphi(p - 1 + (k - \tau_k))}{p - 1 + (k - \tau_k)} \leq \frac{1}{3},
\]

because \(3 \nmid (p - 1 + \tau_k) \) and \(3 | (p - 1 + (k - \tau_k)) \). If

\[
G(p) := \sum_{r \mid (p - 1 + \tau_k) \atop r \geq 5} \log \left(1 + \frac{1}{r - 1} \right),
\]

then \(G(p) > \log(3/2) \) whenever \(p, p + k \) are primes that satisfy \(\operatorname{sgn} S(p) = \chi_3(k) \).

Let \(\pi''_k(x) \) denote the number of primes \(p \in \mathbb{P}_k(x) \) for which \(\operatorname{sgn} S(p) > \chi_3(k) \). For sufficiently large \(x \), (5.10) implies that

\[
\pi''_k(x) \log(3/2) < \sum_{p \in \mathbb{P}_k(x)} G(p)
\]

\[
= \sum_{p \in \mathbb{P}_k(x)} \sum_{r \mid (p - 1 + \tau_k) \atop r \geq 5} \log \left(1 + \frac{1}{r - 1} \right)
\]

\[
\leq \sum_{5 \leq r \leq x} \log \left(1 + \frac{1}{r - 1} \right) \sum_{p \in \mathbb{P}_k(x)} \sum_{p + \tau_k \equiv 1 \pmod{r}} 1
\]

\[
\leq \sum_{5 \leq r \leq x} \log \left(1 + \frac{1}{r - 1} \right) \sum_{p \in \mathbb{P}_k(x)} \sum_{p + k \equiv 1 \pmod{r}} 1
\]
\[+ \sum_{5 \leq r \leq x, r \mid (k - \chi_3(k))} \log \left(1 + \frac{1}{r - 1} \right) \]

\[\leq \left[(1 + o(1)) \sum_{r \geq 5, r \mid (k - \chi_3(k))} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1} \right) \right] \pi_k(x) \]

\[+ \frac{1}{\pi_k(x)} \sum_{r \geq 5, r \mid (k - \chi_3(k))} \log \left(1 + \frac{1}{r - 1} \right) \pi_k(x) \]

\[= \left(\sum_{r \geq 5, r \mid (k - \chi_3(k))} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1} \right) + o(1) \right) \pi_k(x) \]

\[= \left(R'_k + o(1) \right) \pi_k(x). \]

Thus, there are at least

\[\pi_k(x) - \pi''_k(x) > \pi_k(x) \left(1 - \frac{R'_k}{\log(3/2)} - o(1) \right) \]

primes \(p \in \mathbb{P}_k(x) \) such \(\text{sgn} S(p) = -\chi_3(k) \). Reasoning similar to that used in the conclusion of the proof of part (a) yield the formula in Theorem 7b.

To show that this lower density is bounded below by 0.6515, we observe that

\[R'_k = \sum_{r \geq 5, r \ni (k - \chi_3(k))} \frac{1}{r - N_f(r)} \log \left(1 + \frac{1}{r - 1} \right) \]

\[\leq \sum_{r \geq 5} \frac{1}{r - 2} \log \left(1 + \frac{1}{r - 1} \right) \]

\[< 0.1412981. \]

It follows that

\[1 - \frac{R'_k}{\log(3/2)} > 1 - \frac{0.1412981}{\log(3/2)} > 0.6515. \]

This completes the proof of Theorem 7. \(\square \)

6. Extending Theorem 7 to Pairs \(p, p + k \) with \(k \equiv 0 \) (mod 3)

Fix \(k \equiv 0 \) (mod 3). The techniques used in the proof of Theorem 7a can be used to show that \(T(p) < 0 \) and \(T(p) > 0 \) both occur with positive density as a subset of \(\mathbb{P}_k \). Because the proofs are nearly identical, we simply point out the small differences and leave the remaining details to the reader.

Since \(\chi_3(k) = 0 \) whenever \(k \equiv 0 \) (mod 3), some notational adjustment is needed.

To show that \(T(p) < 0 \) occurs with positive density in \(\mathbb{P}_k \), we follow the proof of Theorem 7a as if \(k \equiv -1 \) (mod 3), replacing each occurrence of \(\chi_3(k) \) with \(-1\). Similarly, to show that \(T(p) > 0 \) occurs with positive density, we follow the proof as if \(k \equiv 1 \) (mod 3), replacing \(\chi_3(k) \) with \(1\).

\(2 \)The terms of \(R'_k \) are \(O(1/r^2) \), since \(t < \log(1 + t) \) for \(t > 0 \), so the series converges. Mathematica provides the numerical value 0.141298112.
We modify the definition of \(L_k \) by setting
\[
L_k^\pm := \log \left[\prod_{q \in Q^\pm} \left(1 + \frac{1}{q - 1} \right) \right],
\]
in which \(Q^\pm \) are finite sets of primes to be determined shortly. Note the absence of the 2/3 factor inside the logarithm. This is due to the fact that 3 either divides both \(p-1 \) and \(p+k-1 \), or it divides neither. Consequently, the usual 2/3 from (5.3) is “canceled” when we compare \(\phi(p-1)/(p-1) \) and \(\phi(p+k-1)/(p+k-1) \). This is also the reason why we cannot employ the techniques from the proof Theorem 7b to establish a lower density greater than 0.5 when \(k \equiv 0 \pmod{3} \). This is not surprising, since Table 1 demonstrates that there is no universal bias in the sign of \(T(p) \) that applies for all \(k \equiv 0 \pmod{3} \).

Next, we let
\[
R_k^\pm := \sum_{\substack{r \geq 5 \ \text{mod} \ (k \pm 1) \ \text{and} \ r \not| k \pm 1 \ \text{and} \ r \not| k \equiv 0 \pmod{3} \forall q \in Q^\pm}} \frac{1}{r - Nf(r)} \log \left(1 + \frac{1}{r - 1} \right),
\]
in which the signs are chosen depending on whether we wish to prove \(T(p) > 0 \) or \(T(p) < 0 \). We define \(Q^\pm \) to be the smallest ordered subset of primes for which \(q \not| k \pm 1 \) for all \(q \in Q^\pm \) and such that
\[
L_k^\pm > R_k^\pm.
\]
Beyond the aforementioned, the only other difference in the proof is the absence of the 2/3 factor when comparing \(\phi(p-1)/(p-1) \) and \(\phi(p+k-1)/(p+k-1) \). With this in mind, we have the following result.

Theorem 10. Assume that the Bateman–Horn conjecture holds. If \(k \equiv 0 \pmod{3} \), then the set of primes \(p \in \mathbb{P}_k \) for which
\[
\text{sgn} T(p) = \pm 1
\]
has lower density (as a subset of \(\mathbb{P}_k \)) at least
\[
\prod_{q \in Q^\pm} (q - 2)^{-1} \left(1 - \frac{R_k^\pm}{L_k^\pm} \right) > 0.
\]

Table 5 provides numerical values for \(R_k^\pm, L_k^\pm \), and the bounds in Theorem 10 for various values of \(k \equiv 0 \pmod{3} \).

References

[1] Paul T. Bateman and Roger A. Horn. A heuristic asymptotic formula concerning the distribution of prime numbers. *Math. Comp.*, 16:363–367, 1962.

[2] Wouter Castryck, Étienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, János Pintz, Andrew V. Sutherland, Terence Tao, and Xiao-Feng Xie. New equidistribution estimates of Zhang type. *Algebra Number Theory*, 8(9):2067–2199, 2014.

[3] S.R. García, E. Kahoro, and F. Luca. Primitive root bias for twin primes. *Exp. Math.* in press (http://arxiv.org/abs/1705.02485).

[4] S. W. Graham, Jeffrey J. Holt, and Carl Pomerance. On the solutions to \(\phi(n) = \phi(n+k) \). In *Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997)*, pages 867–882. de Gruyter, Berlin, 1999.

[5] James Maynard. Small gaps between primes. *Ann. of Math.* (2), 181(1):383–413, 2015.
\[
\chi_3(k) = -1 \\
\begin{array}{cccccc}
\begin{array}{c|ccc}
k & Q^- & L^-_k & R^-_k \\
\hline
6 & 5 & 0.223144 & 0.066917 & 0.233472 \\
12 & 5 & 0.223144 & 0.056327 & 0.249192 \\
18 & 5 & 0.223144 & 0.066439 & 0.241994 \\
24 & 7 & 0.154151 & 0.108351 & 0.23941 \\
30 & 7 & 0.154151 & 0.080573 & 0.234086 \\
36 & 5 & 0.223144 & 0.058581 & 0.245824 \\
42 & 5 & 0.223144 & 0.066711 & 0.233679 \\
48 & 7 & 0.154151 & 0.110211 & 0.238123 \\
54 & 7 & 0.154151 & 0.090573 & 0.23941 \\
60 & 7 & 0.154151 & 0.091827 & 0.080860 \\
66 & 5 & 0.223144 & 0.036087 & 0.279427 \\
72 & 5 & 0.223144 & 0.061779 & 0.241048 \\
78 & 5 & 0.223144 & 0.065799 & 0.235043 \\
84 & 11, 13 & 0.175353 & 0.11823 & 0.003290 \\
90 & 11, 17 & 0.155935 & 0.107941 & 0.002279 \\
96 & 5 & 0.223144 & 0.04537 & 0.248123 \\
102 & 5 & 0.223144 & 0.066564 & 0.2339 \\
108 & 5 & 0.223144 & 0.066828 & 0.23506 \\
114 & 7 & 0.154151 & 0.112581 & 0.004602 \\
120 & 7 & 0.154151 & 0.087831 & 0.004602 \\
126 & 7 & 0.154151 & 0.110935 & 0.004602 \\
132 & 5 & 0.223144 & 0.057999 & 0.235043 \\
138 & 5 & 0.223144 & 0.060766 & 0.233597 \\
144 & 7 & 0.154151 & 0.092601 & 0.004602 \\
150 & 7 & 0.154151 & 0.091827 & 0.004602 \\
156 & 5 & 0.223144 & 0.065180 & 0.235967 \\
\end{array}
& \begin{array}{cccc}
\begin{array}{c|ccc}
Q^+ & L^+_k & R^+_k \\
\hline
6 & 7 & 0.154151 & 0.110468 & 0.233372 \\
12 & 5 & 0.223144 & 0.066917 & 0.233472 \\
18 & 5 & 0.223144 & 0.065617 & 0.235314 \\
24 & 7 & 0.154151 & 0.10982 & 0.080859 \\
30 & 7 & 0.154151 & 0.09873 & 0.080859 \\
36 & 11, 13 & 0.175353 & 0.112359 & 0.004602 \\
42 & 5 & 0.223144 & 0.066917 & 0.233472 \\
48 & 7 & 0.154151 & 0.10935 & 0.056816 \\
54 & 7 & 0.154151 & 0.084596 & 0.090242 \\
60 & 7 & 0.154151 & 0.087831 & 0.086045 \\
66 & 5 & 0.223144 & 0.04537 & 0.248123 \\
72 & 5 & 0.223144 & 0.066564 & 0.2339 \\
78 & 5 & 0.223144 & 0.066828 & 0.23506 \\
84 & 11, 13 & 0.175353 & 0.118143 & 0.003290 \\
90 & 11, 17 & 0.155935 & 0.107941 & 0.002279 \\
96 & 5 & 0.223144 & 0.04537 & 0.248123 \\
102 & 5 & 0.223144 & 0.066564 & 0.2339 \\
108 & 5 & 0.223144 & 0.066828 & 0.23506 \\
114 & 7 & 0.154151 & 0.110935 & 0.004602 \\
120 & 7 & 0.154151 & 0.087831 & 0.004602 \\
126 & 7 & 0.154151 & 0.110935 & 0.004602 \\
132 & 5 & 0.223144 & 0.057999 & 0.235043 \\
138 & 5 & 0.223144 & 0.060766 & 0.233597 \\
144 & 7 & 0.154151 & 0.092601 & 0.004602 \\
150 & 7 & 0.154151 & 0.091827 & 0.004602 \\
156 & 5 & 0.223144 & 0.065180 & 0.235967 \\
\end{array}
\end{array}
\end{array}
\]

Table 5. Lower bounds from Theorem 10 for \(k \equiv 0 \pmod{3} \).

[6] József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici. *Handbook of number theory. I*. Springer, Dordrecht, 2006. Second printing of the 1996 original.

[7] Gérard Tenenbaum. *Introduction to analytic and probabilistic number theory*, volume 163 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, third edition, 2015. Translated from the 2008 French edition by Patrick D. F. Ion.

[8] Axel Thue. *Selected mathematical papers*. Universitetsforlaget, Oslo, 1977. With an introduction by Carl Ludwig Siegel and a biography by Viggo Brun, Edited by Trygve Nagell, Atle Selberg, Sigmund Selberg, and Knut Thalberg.

[9] R. Tijdeman. On integers with many small prime factors. *Compositio Math.*, 26:319–330, 1973.

[10] Tomohiro Yamada. On equations \(\sigma(n) = \sigma(n + k) \) and \(\varphi(n) = \varphi(n + k) \). *J. Combinatorics and Number Theory*, in press https://arxiv.org/1001.2511.

[11] Yitang Zhang. Bounded gaps between primes. *Ann. of Math.* (2), 179(3):1121–1174, 2014.
