A RIGIDITY THEOREM FOR HOLOMORPHIC GENERATORS
ON THE HILBERT BALL

MARK ELIN, MARINA LEVENSHTEIN, SIMEON REICH, AND DAVID SHOIKHET

(Communicated by N. Tomczak-Jaegermann)

Abstract. We present a rigidity property of holomorphic generators on the
open unit ball B of a Hilbert space H. Namely, if $f \in \text{Hol}(B, H)$ is the generator
of a one-parameter continuous semigroup $\{F_t\}_{t \geq 0}$ on B such that for some
boundary point $\tau \in \partial B$, the admissible limit $K\text{-lim}_{z \to \tau} f(z) = 0$, then f
vanishes identically on B.

Let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. If H is finite dimensional, we will identify H with \mathbb{C}^n. We denote by $\text{Hol}(D, E)$ the
set of all holomorphic mappings on a domain $D \subset H$ which map D into a subset
E of H, and put $\text{Hol}(D) := \text{Hol}(D, D)$.

We are concerned with the problem of finding conditions for a mapping $F \in \text{Hol}(D, E)$ to coincide identically with a given holomorphic mapping on D when
they behave similarly in a neighborhood of a boundary point $\tau \in \partial D$.

A number of basic results in this direction are due to D. M. Burns and
S. G. Krantz [6]. They establish conditions at a boundary point for a holomor-
phic self-mapping F of the open unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ to coincide with the identity mapping (see Proposition 1 below). Then they generalize this fact
to the n-dimensional case: for holomorphic self-mappings of the open unit ball
(see Proposition 3 below) and of strongly pseudoconvex domains in \mathbb{C}^n. Further
developments of this theme are presented by X. J. Huang in [15], where he ob-
tains similar results for weakly pseudoconvex domains. More recently, L. Baracco,
D. Zaitsev and G. Zampieri [3] have proved local boundary rigidity theorems for
mappings defined only on one side as germs at a boundary point, and extended
their results from boundaries of domains to submanifolds of higher codimension.
More higher-dimensional results can be found, for instance, in [2] and [11].

In this paper we present a rigidity theorem for holomorphic generators on the
open unit ball B of a Hilbert space H which generalizes the analogous theorem
for the one-dimensional case [8, 17, 7] and properly contains the above-mentioned
Burns–Krantz theorem for the open unit ball in \mathbb{C}^n.

Received by the editors July 30, 2007, and, in revised form, October 20, 2007.
2000 Mathematics Subject Classification. Primary 30C45, 30D05, 46T25, 47H20.
Key words and phrases. Angular limit, Hilbert ball, holomorphic generator, K-limit, one-
parameter continuous semigroup, rigidity.

The third author was partially supported by the Fund for the Promotion of Research at the
Technion and by the Technion President’s Research Fund.

All the authors thank the referee for several helpful comments and suggestions.

©2008 American Mathematical Society
We begin by recalling the result of D. M. Burns and S. G. Krantz [6] for holomorphic self-mappings of the open unit disk Δ.

Proposition 1. Let $F \in \text{Hol}(\Delta)$. If the unrestricted limit

$$\lim_{z \to \tau} \frac{F(z) - z}{(z - \tau)^3} = 0$$

for some $\tau \in \partial \Delta$, then $F \equiv I$ on Δ.

This assertion also holds when the unrestricted limit is replaced with the angular one (see [22] and [5]). Recall that a function $f \in \text{Hol}(\Delta, \mathbb{C})$ has an angular limit $L := \angle \lim_{z \to \tau} f(z)$ at a point $\tau \in \partial \Delta$ if $f(z) \to L$ as $z \to \tau$ in each nontangential approach region

$$\Gamma_k(\tau) := \left\{ z \in \Delta : \frac{|z - \tau|}{1 - |z|} < k \right\}, \quad k > 1.$$

In this case it is convenient to set $f(\tau) := \angle \lim_{z \to \tau} f(z)$. Moreover, in a similar way, one defines the angular derivative of f at $\tau \in \partial \Delta$ by $f'(\tau) := \angle \lim_{z \to \tau} \frac{f(z) - f(\tau)}{z - \tau}$.

A point $\tau \in \bar{\Delta}$ is a fixed point of $F \in \text{Hol}(\Delta)$ if either $F(\tau) = \tau$, where $\tau \in \Delta$, or $\lim_{r \to 1} F(r\tau) = \tau$, where $\tau \in \partial \Delta = \{ z : |z| = 1 \}$. If F is not an automorphism of Δ with an interior fixed point, then by the classical Schwarz–Pick lemma and the Julia–Wolff–Carathéodory theorem, there is a unique fixed point $\tau \in \bar{\Delta}$ such that for each $z \in \Delta$, $\lim_{n \to \infty} F_n(z) = \tau$, where the n-th iteration F_n of F is defined by $F_1 = F, F_n = F \circ F_{n-1}, n = 2, 3, \ldots$. This point is called the Denjoy–Wolff point of F. Moreover, a boundary fixed point $\tau \in \partial \Delta$ of F is its Denjoy–Wolff point if and only if $F'(\tau) \in (0, 1]$.

A rigidity result for generators of one-parameter continuous semigroups on Δ (see Proposition 2 below) has been proved in [8] and [17]. To formulate it, we first recall the definitions of these notions.

Let $D \subset H$ be a domain in the Hilbert space H. We say that a family $S = \{ F_t \}_{t \geq 0} \subset \text{Hol}(D)$ is a **one-parameter continuous semigroup on D** (a semigroup, for short) if

(i) $F_t(F_s(z)) = F_{t+s}(z)$ for all $t, s \geq 0$ and all $z \in D$,

and

(ii) $\lim_{t \to 0^+} F_t(z) = z$ for all $z \in D$.

A semigroup $S = \{ F_t \}_{t \geq 0} \subset \text{Hol}(D)$ is said to be generated if for each $z \in D$, there exists the strong limit

$$\lim_{t \to 0^+} \frac{1}{t} [z - F_t(z)] = f(z).$$

In this case the mapping $f : D \to H$ is called the **(infinitesimal) generator** of S.

A well-known representation of generators on Δ is due to E. Berkson and H. Porta [4], namely:

A function $f \in \text{Hol}(\Delta, \mathbb{C})$ is a generator if and only if there is a point $\tau \in \bar{\Delta}$ and a function $p \in \text{Hol}(\Delta, \mathbb{C})$ with $\text{Re} \, p(z) \geq 0$ for all $z \in \Delta$ such that

$$f(z) = (z - \tau)(1 - \tau z)p(z), \quad z \in \Delta.$$

This point τ is the common Denjoy–Wolff point of the semigroup generated by f.

The following rigidity result for generators has been proved in [8] and [17].
Proposition 2. Let \(g \in \text{Hol}(\Delta, \mathbb{C}) \) be the generator of a one-parameter continuous semigroup. Suppose that
\[
\angle \lim_{z \to 1} \frac{g(z)}{|z - 1|^3} = 0.
\]
Then \(g \equiv 0 \) in \(\Delta \).

Here we take this opportunity to present a completely different proof of this assertion.

Proof. Suppose that \(g \) does not vanish identically on \(\Delta \). Condition (2) implies that \(\tau = 1 \) is the Denjoy–Wolff point of the semigroup generated by \(g \) (see Lemma 3 in [10]). So, \(g \) has no null point in \(\Delta \) (see Theorem 1 in [10]). Consequently, \(g \) can be represented by the Berkson–Porta formula
\[
g(z) = -(1 - z)^2 p(z), \quad z \in \Delta,
\]
where \(p \) is a holomorphic function of nonnegative real part which does not vanish in \(\Delta \).

Consider the function
\[
g_1(z) := -\frac{z}{(1 - z)^2} \cdot g(z) = z p(z), \quad z \in \Delta.
\]
This function is the holomorphic generator of a semigroup on \(\Delta \) with its Denjoy–Wolff point at zero.

However, the equality
\[
\angle \lim_{z \to 1} \frac{g_1(z)}{z - 1} = \angle \lim_{z \to 1} \frac{-z}{(1 - z)^3} \cdot g(z) = 0
\]
implies that \(g_1(1) = 0 \) and \(g_1'(1) = 0 \). Therefore \(\tau = 1 \), too, is the Denjoy–Wolff point of the semigroup generated by \(g_1 \) (again by Lemma 3 in [10]). The contradiction we have reached proves that \(g \equiv 0 \) on \(\Delta \). \(\square \)

As we have already mentioned above, D. M. Burns and S. G. Krantz generalize their one-dimensional result for holomorphic self-mappings of \(\Delta \) (Proposition 1) to the open unit ball \(B := \{ x \in \mathbb{C}^n : \| x \| < 1 \} \), where \(\| x \| = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2} \).

Proposition 3 (see [6]). Let \(B \subset \mathbb{C}^n \) be the open unit ball. Let \(\Phi : B \to B \) be a holomorphic mapping of the ball to itself such that
\[
\Phi(x) = 1 + (x - 1) + O (\| x - 1 \|^{4})
\]
as \(x \to 1 \). (Here \(1 \) denotes the distinguished boundary point \(1 = (1, 0, \ldots, 0) \) of the ball.) Then \(\Phi(x) = x \) on the ball.

At this juncture, a natural question arises: does the rigidity result for generators (Proposition 2) admit an analogous generalization to the open unit balls of either \(\mathbb{C}^n \) or a Hilbert space \(H \)? The following theorem gives an affirmative answer to this question. Moreover, we show that it is sufficient to consider the \(K \)-limit instead of the unrestricted one in the assumption of the theorem.

Let \(B \) be the open unit ball of the Hilbert space \(H \). For \(\alpha > 1 \), we denote by
\[
D_\alpha(\tau) := \left\{ x \in B : |1 - \langle x, \tau \rangle| < \frac{\alpha}{2} (1 - \| x \|^2) \right\}
\]
To this end, we fix a point y where the Korányi approach regions at M. ELIN, M. LEVENSHTEIN, S. REICH, AND D. SHOIKHET

$$g(x) = \frac{g(x)}{c}$$

Now we define a holomorphic function

$$f(x) = \frac{g(x)}{c}$$

This function is a holomorphic generator on Δ. To see this, note that by the

Theorem. Let $f \in \text{Hol}(\mathbb{B}, H)$ be the generator of a one-parameter continuous semigroup on \mathbb{B}. If for some $\tau \in \partial \mathbb{B}$, the K-limit

$$\lim_{x \to \tau} \frac{f(x)}{\|x - \tau\|^3} = 0,$$

then $f \equiv 0$ on \mathbb{B}.

Proof. We prove this assertion by reduction to the one-dimensional case. Namely, we consider the restriction of the orthogonal projection of an appropriate modification of the generator f to a one-dimensional disk touching \mathbb{B} at the point $\tau \in \partial \mathbb{B}$.

To this end, we fix a point $y \in \mathbb{B}$ and define the mapping

$$M_y(x) := \frac{y - P_y x - sQ_y x}{1 - \langle x, y \rangle}, \quad x \in \mathbb{B},$$

where P_y is the orthogonal projection of H onto the subspace generated by y ($P_0 \equiv 0$ and $P_y x = \langle x, y \rangle y$ for $y \neq 0$), $Q_y = I - P_y$ and $s = \sqrt{1 - \|y\|^2}$. This mapping is an automorphism of \mathbb{B} satisfying $M_y^{-1} = M_y$ (cf. p. 98 in [12] and p. 25 in [20]).

Denote by U_y a unitary operator on \mathbb{B} such that $U_y \tau = M_y \tau$. Then the mapping $m := M_y \circ U_y$ is an automorphism of \mathbb{B} which satisfies $m(\tau) = \tau$ and $m(0) = y$.

Obviously, m is a biholomorphism of \mathbb{B} onto \mathbb{B}. Therefore, by Lemma 3.7.1 on p. 30 of [9], the mapping

$$f_m(w) = \left[m'(w) \right]^{-1} f(m(w)), \quad w \in \mathbb{B},$$

is also a holomorphic generator on \mathbb{B}.

Substituting

$$[m'(w)]^{-1} = [m^{-1}(x)]'_x = U_y^* M_y'(m(w))$$

in (4), we have

$$f_m(w) = U_y^* M_y'(m(w)) f(m(w)), \quad w \in \mathbb{B}.$$
We claim that under our assumptions, \(g \equiv 0 \) on \(\Delta \). Indeed,

\[
g(z) = (U_y^* M_y'(m(z\tau)) f(m(z\tau)), \tau) = \langle M_y'(m(z\tau)) f(m(z\tau)), U_y \tau \rangle
\]
and, consequently,

\[
g(z) = \frac{1}{|z - 1|^3} \left\langle f(m(z\tau)), [M_y'(m(z\tau))]^* U_y \tau \right\rangle
\]

Note that each automorphism \(h \) of \(\mathbb{B} \) is the restriction to \(\mathbb{B} \) of a holomorphic mapping defined either on the larger ball \(B(0, R) \) centered at zero of radius \(R = \frac{1}{|y|} \) if \(h(0) \neq 0 \) or on all of \(H \) if \(h \) fixes the origin. So, \(M_y \) and \(m \) are, in fact, holomorphic mappings defined either on the open ball \(B(0, R) \) of radius \(R = \frac{1}{|y|} > 1 \) if \(y \neq 0 \) or on \(H \) if \(y = 0 \). Hence the first factor on the right-hand side of equality (8) has a finite limit as \(z \to 1 \), and so has the second factor of the inner product.

Now we show that the first factor of the last inner product in (8) tends to zero as \(z \to 1 \) nontangentially in \(\Delta \).

For \(z \) close enough to 1 in the nontangential approach region

\[
\Gamma_k = \left\{ z \in \Delta : \frac{|z - 1|}{1 - |z|} < k \right\}, \quad k > 1,
\]

\(m(z\tau) \) belongs to the Korányi region \(D_\alpha(\tau) \) whenever \(\alpha > k \). Indeed, it can be shown by direct calculations that the function \(m \) satisfies the equality

\[
\frac{1 - \langle m(z\tau), \tau \rangle}{1 - |m(z\tau)|^2} = L \frac{|1 - z|^2}{1 - |z|^2}, \quad z \in \Delta,
\]

where

\[
L := \left. \frac{d}{dz} \langle m(z\tau), \tau \rangle \right|_{z=1} = \frac{1 - \langle y, \tau \rangle}{1 - \langle U_y \tau, y \rangle} = \frac{|1 - \langle y, \tau \rangle|^2}{1 - \|y\|^2} > 0.
\]

Consequently, we have for \(z \in \Gamma_k \),

\[
\frac{1 - \langle m(z\tau), \tau \rangle}{1 - |m(z\tau)|^2} = L \frac{|1 - z|^2}{1 - |z|^2} \left. \frac{1}{1 - \langle m(z\tau), \tau \rangle} \right| < L k \frac{|1 - z|}{1 - \langle m(z\tau), \tau \rangle}.
\]

Since

\[
\lim_{z \to 1^-} \left. \frac{1 - \langle m(z\tau), \tau \rangle}{1 - |m(z\tau)|^2} \right| = L,
\]

it follows that if \(z \in \Gamma_k \) is close enough to 1, then \(m(z\tau) \) is in \(D_\alpha(\tau) \) \((\alpha > k) \). Hence, by hypothesis (8) of the theorem,

\[
\angle \lim_{z \to 1^-} \frac{f(m(z\tau))}{\|m(z\tau) - \tau\|^3} = 0.
\]

Therefore equality (8) implies that

\[
\angle \lim_{z \to 1^-} \frac{g(z)}{|z - 1|^3} = 0,
\]
and by Proposition 2, \(g \equiv 0 \) on \(\Delta \). So, by (7),

\[
(f(m(z\tau)), [M_y'(m(z\tau))]^* U_y \tau) = 0 \quad \text{for all} \quad z \in \Delta.
\]

In particular, this equality holds for \(z = 0 \); i.e.,

\[
\langle f(y), [M_y'(y)]^* U_y \tau \rangle = 0 \quad \text{for each} \quad y \in \mathbb{B}.
\]
By direct calculations, one obtains that
\[M'_y(x)h = \frac{1}{(1 - \langle x, y \rangle)^2} \left[-(1 - \langle x, y \rangle)(P_y + sQ_y)h + \langle h, y \rangle(y - P_yx - sQ_yx) \right]. \]
Hence,
\[M'_y(y)h = -\frac{1}{1 - \|y\|^2}(P_y + sQ_y)h, \]
and equality (9) is equivalent to
\[\langle f(y), (P_y + sQ_y)U_y\tau \rangle = 0. \]
Substituting
\[U_y\tau = M_y\tau = \frac{y - P_y\tau - sQ_y\tau}{1 - \langle \tau, y \rangle} \]
in this equality, we obtain
\[\langle f(y), y - \tau + \|y\|^2\tau - \langle \tau, y \rangle y \rangle = 0 \text{ for all } y \in \mathbb{B}. \]
Let \(y = y_1\tau + \tilde{y} \), where \(y_1 = \langle y, \tau \rangle \) and \(\langle \tilde{y}, \tau \rangle = 0 \).
Similarly, \(f(y) = f_1(y)\tau + \tilde{f}(y) \) with \(f_1(y) = \langle f(y), \tau \rangle \) and \(\langle \tilde{f}(y), \tau \rangle = 0 \) for all \(y \in \mathbb{B} \).
Using this notation, we have
\[\langle f_1(y)\tau, y_1\tau - \tau + \|y\|^2\tau - |y_1|^2\tau \rangle = -\langle \tilde{f}(y), \tilde{y} - \tau_1\tilde{y} \rangle \]
and
\[(1 - \tau_1 - \|\tilde{y}\|^2)f_1(y) = (1 - y_1)(\tilde{f}(y), \tilde{y}). \]
Differentiating this equality with respect to \(\tau_1 \), we conclude that it can hold only if \(f_1(y) = 0 \) and
\[\langle \tilde{f}(y), \tilde{y} \rangle = 0 \text{ for all } y \in \mathbb{B}. \]
Now let \(\sigma \) be an arbitrary unit vector orthogonal to \(\tau \), i.e., \(\langle \sigma, \tau \rangle = 0 \). Suppose that \(\tilde{y} = y_2\sigma + u \), where \(y_2 = \langle \tilde{y}, \sigma \rangle \) and \(\langle u, \sigma \rangle = 0 \).
Similarly, \(\tilde{f}(y) = f_2(y)\sigma + v(y) \) with \(f_2(y) = \langle \tilde{f}(y), \sigma \rangle \) and \(\langle v(y), \sigma \rangle = 0 \) for all \(y \in \mathbb{B} \). Then by (10),
\[f_2(y)\tau_2 = -\langle v(y), u \rangle. \]
Differentiating this equality with respect to \(\tau_2 \), we obtain \(f_2(y) = 0 \). Hence, \(f \equiv 0 \) on \(\mathbb{B} \).

Following L. A. Harris [8], we define the numerical range of each \(h \in \text{Hol}(\mathbb{B}, H) \) which has a norm continuous extension to \(\overline{\mathbb{B}} \) by
\[V(h) := \{ \langle h(x), x \rangle : \|x\| = 1 \}. \]

For an arbitrary holomorphic mapping \(h \in \text{Hol}(\mathbb{B}, H) \) and for each \(s \in (0, 1) \), we define the mapping \(h_s : \frac{1}{s}\mathbb{B} \to H \) by
\[h_s := h(sx), \quad \|x\| < \frac{1}{s}, \]
and set
\[L(h) := \lim_{s \to 1^-} \sup \text{Re}(V(h_s)). \]
It is known (Theorem 1 in [14]) that the mapping \(I - h \) is a generator if and only if \(L(h) \leq 1 \). So the following corollary is an immediate consequence of our theorem.

Corollary. Let \(h \in \text{Hol}(B, H) \) with \(L(h) \leq 1 \). If for some \(\tau \in \partial B \), the K-limit

\[
K \lim_{x \to \tau} \frac{h(x) - x}{|x - \tau|^3} = 0,
\]

then \(h \equiv I \) on \(B \).

Since obviously \(L(h) \leq 1 \) for all self-mappings of \(B \), this corollary properly contains Proposition 3.

References

[1] D. Aharonov, S. Reich and D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, *Math. Proceedings of the Royal Irish Academy* 99A (1999), 93–104. MR1883068 (2002j:46053)

[2] H. Alexander, Holomorphic mappings from the ball and polydisc, *Math. Ann.* 209 (1974), 249–256. MR0352531 (50:5018)

[3] L. Baracco, D. Zaitsev and G. Zampieri, A Burns-Krantz type theorem for domains with corners, *Math. Ann.* 336 (2006), 491–504. MR2249756 (2007f:32021)

[4] E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, *Michigan Math. J.* 25 (1978), 101–115. MR0480965 (58:1112)

[5] F. Bracci, R. Tauraso and F. Vlacci, Identity principles for commuting holomorphic self-maps of the unit disc, *J. Math. Anal. Appl.* 270 (2002), 451–473. MR1916591 (2003f:30030)

[6] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, *J. Amer. Math. Soc.* 7 (1994), 661–676. MR1242454 (94j:32016)

[7] M. Elin, M. Levenshtein, S. Reich, and D. Shoikhet, Rigidity results for holomorphic mappings on the unit disk, in *Complex and Harmonic Analysis*, DEStech Publications, Lancaster, PA, 2007, 93–109.

[8] M. Elin, M. Levenshtein, D. Shoikhet, and R. Tauraso, Rigidity of holomorphic generators and one-parameter semigroups, *Dynam. Syst. Appl.* 16 (2007), 251–266. MR2330793

[9] M. Elin, S. Reich and D. Shoikhet, Complex dynamical systems and the geometry of domains in Banach spaces, *Dissertations Math.* 427 (2004). MR2071666 (2005g:47118)

[10] M. Elin and D. Shoikhet, Dynamic extension of the Julia–Wolff–Carathéodory theorem, *Dynam. Syst. Appl.* 10 (2001), 421–438. MR1858192 (2002j:30020)

[11] G. Gentili and S. Migliorini, A boundary rigidity problem for holomorphic mappings, *Gen. Math.* 5 (1997), 161–174. MR1723606 (2000f:32034)

[12] K. Goebel and S. Reich, *Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings*, Marcel Dekker, New York and Basel, 1984. MR741194 (85f:46012)

[13] L. A. Harris, The numerical range of holomorphic functions in Banach spaces, *Amer. J. Math.* 93 (1971), 1005–1019. MR0305055 (46:663)

[14] L. A. Harris, S. Reich and D. Shoikhet, Dissipative holomorphic functions, Bloch radii, and the Schwarz lemma, *J. Analyse Math.* 82 (2000), 221–232. MR1799664 (2001k:46074)

[15] X. J. Huang, A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, *Canad. J. Math.* 47 (1995), 405–420. MR1335086 (96f:32041)

[16] E. Kopečká and S. Reich, Hyperbolic monotonicity in the Hilbert ball, *Fixed Point Theory Appl.* 2006, Article ID 78104, 1–15. MR2210916 (2007c:47053)

[17] M. Levenshtein, S. Reich and D. Shoikhet, An application of the resolvent method to rigidity theory for holomorphic mappings, *J. Nonlinear Convex Anal.* 8 (2007), 99–103. MR2314669

[18] S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric, *Atti. Accad. Naz. Lincei* 8 (1997), 231–250. MR1631605 (99g:47155)

[19] S. Reich and D. Shoikhet, *Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces*, Imperial College Press, London, 2005. MR2229552 (2007g:47105)

[20] W. Rudin, *Function Theory in the Unit Ball of \(\mathbb{C}^n \)*, Springer, Berlin, 1980. MR601594 (82j:32002)
[21] D. Shoikhet, *Semigroups in Geometrical Function Theory*, Kluwer, Dordrecht, 2001. MR1849612 (2002g:30012)

[22] R. Tauraso and F. Vlacci, Rigidity at the boundary for holomorphic self-maps of the unit disk, *Complex Variables Theory Appl.* 45 (2001), 151–165. MR1909431 (2003e:30039)

Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
E-mail address: mark.elin@gmail.com

Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
E-mail address: marlev@list.ru

Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
E-mail address: sreich@tx.technion.ac.il

Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
E-mail address: davs27@netvision.net.il