Microstructure evolution and phase transformation of ZrB$_2$-45MoSi$_2$-10Al coating at high temperature

To cite this article: M G Kovaleva et al 2021 J. Phys.: Conf. Ser. 2124 012010

View the article online for updates and enhancements.
Microstructure evolution and phase transformation of ZrB$_2$-45MoSi$_2$-10Al coating at high temperature

M G Kovaleva1, V Yu Novikov1, O N Vagina1 and V V Sirota2

1Belgorod State National Research University, Belgorod, Russia
2Belgorod State Technological University V.G. Shoukhov, Belgorod, Russia

E-mail: kovaleva@bsu.edu.ru

Abstract. The ZrB$_2$-45MoSi$_2$-10Al coating was prepared by a Robotic complex for detonation spraying of coatings equipped with a multi-chamber detonation accelerator on surface of carbon/carbon composites without adhesion sublayer. The coating has a lamella-type structure typical for gas-thermal coatings, well connected with C/C composite substrate without sublayer, and composed of m-ZrO$_2$, t-ZrO$_2$, t-MoSi$_2$, some h-ZrB$_2$, and c-Al phases. Heat treatment of the samples at 1500 °C for 1, 3 and 6 h was carried out in air. The effect of heat treatment on the microstructure and phase composition of the ZrB$_2$-45MoSi$_2$-10Al coating was investigated by X-ray diffraction and scanning electron microscopy. The c-ZrO$_2$ and h-(α-Al$_2$O$_3$) were formed after oxidation at 1500 °C for 6 h. The uniform distribution of ZrO$_2$ ceramic particles and the formation of α-Al$_2$O$_3$ enhanced the thermal stability of the coating. The coating average microstructure of the coating contributed to its good oxidation-resistant property at high temperature.

1. *Introduction*

The widespread use of carbon/carbon (C/C) composites is still significantly constrained by their extremely low or insufficient heat resistance in oxygen-containing media [1]. In vacuum and inert media, carbon materials are efficient up to 3000°C, however, in an air atmosphere they oxidize (burn out) already at temperatures of 350-500 °C. Reliable protection against high-temperature oxidation can significantly expand the temperature-time intervals of C/C composites application, and in most cases it is the only possible way to realize their heat-resistant characteristics and functional properties. The destruction of materials can be prevented by creating a protective heat-resistant gas-tight coating on the surface of the C/C composites, preventing the access of oxygen to carbon [2-4], such as ZrSiO$_4$, C/SiC, SiO$_2$/SiC, ZrB$_2$-SiC, ZrB$_2$-MoSi$_2$, yttrium silicate, coating, etc [5, 6] by various methods, including pack cementation, slurry method, chemical vapor deposition, atmospheric plasma spraying and thermal spray, etc. [7, 8].

One of the widespread approaches to the selection of the composition of the main layer of the high-temperature coating is the selection of the composition of refractory compounds that are in the viscoplastic state during the operation of the product. This state is achieved by using refractory boron or aluminoborosilicate glasses as a matrix, into which reinforcing particles of silicides, carbides, borides (less often oxides and nitrides) of Group IV – VI metals are additionally introduced to increase the heat resistance. The use of precursors of the ZrB$_2$ – MoSi$_2$ system is promising for this class of coatings [9, 10].
In this study, a ZrB$_2$-45MoSi$_2$-10Al coating was chosen as the oxidation protective coating for C/C composites. The microstructure evolution and phase transformation in the ZrB$_2$-45MoSi$_2$-10Al coating during annealing treatment at 1500 °C were investigated.

2. Materials and methods
ZrB$_2$-45MoSi$_2$-10Al coating was obtained on the surface of C/C composites using by a Robotic complex for detonation spraying of coatings (IntelMashin LLC, Russia) equipped with a multi-chamber detonation accelerator (MCDS) [11-14] (Figure 1). ZrB$_2$, MoSi$_2$, Y$_2$O$_3$, Al micro-powders (Russia) were used for applying ZrB$_2$-45MoSi$_2$-10Al coating. The powders were sieved on the fractions (<20 microns). Then mechanical mixing and homogenization of the powders was carried out in planetary mill with balls made of zirconium oxide in alcohol for 24 hours. Then the powder mix was dried in a drying cabinet (100°C, 6 h). All operations were performed in the air.

The technology of detonation spraying of industrial coatings is characterized by economy and environmental friendliness, since the plasma components used are not substances hostile to the environment. The physical essence of the detonation coating technology using a multi-chamber detonation accelerator (MCDS) is the collision of fine particles heated and accelerated in a supersonic flow of combustion products with a solid substrate. The MCDS provides a high speed of > 1600 m/s and a compact powder jet of up to 100 g/s, with a ceramic spraying capacity of up to 1 kg/h. The process of coating formation is carried out in layers, using the effects of collective interaction between the powder jet and the surface, which determines its high quality. The high speed of dispersed materials ensures their plastic deformation, nanostructuring and the creation of thin lamellae (thickness 4-8 microns) [11-14].

The parameters of the coating spray are listed in Table 1.

![Image of Robotic complex for detonation spraying of coatings](Figure 1. Robotic complex for detonation spraying of coatings (IntelMashin LLC, Russia) equipped with a multi-chamber detonation accelerator (MCDS).)

Spray distance, mm	Barrel length, mm	Barrel diameter, mm	Powder feed rate, g/h	Flow rate of fuel mixture components, m3/h	Oxygen/fuel ratio		
80	500	16	600	Oxygen	C$_3$H$_8$+C$_4$H$_10$	Air	
				*4.00 / **3.60	*0.05 / **0.68	*0.12 / **0.68	5.3

*Cylindrical form combustion chamber. **Combustion chamber in the form of a disk

5 wt.% Y$_2$O$_3$ acts as a stabilizer of high-temperature tetragonal and cubic modification of zirconia [13-15].
To increase the wettability of the surface of C/C composites Al powder was added to the initial powder mixture [16, 17].

The cross-section surfaces of the samples with coating were investigated using a scanning electron microscope (SEM) (Nova NanoSEM 450). The phase composition was determined by diffractometer Rigaku Ultima. A high-temperature furnace (LHT 04/17, Nabertherm GmbH) was used for the heat treatment of coating in air from 23 to 1500 °C for different time (1, 3 and 6 h).

3. Results and discussion

Thickness of the coating was 200 μm (Figure 2, a). The coating shows a very dense microstructure consisting of well-flattened particles (Figure 2). Micro-cracks not found out. High rates of deformation of dispersed particles cause their fragmentation into smaller fragments and the formation of particles with characteristic sizes from 50 to 1000 nm. Thus, the fine fractions of the powder were heated, deformed to the state of thin lamellas, filled the space between the coarse particles, and formed a dense coating.

![Figure 2](image.png)

Figure 2. The cross-sectional SEM-BSE micrograph of the ZrB$_2$-45MoSi$_2$-10Al coating before treatment: low (a) and high magnification (b).

The changes in the microstructure and phase composition of the coating after treatment in air at 1500 °C were observed (Fig. 3, 4).
Figure 3. SEM-BSE micrograph of the fracture surface of ZrB₂-45MoSi₂-10Al coating after oxidation at different hours: 1 (a, b, c), 3 (d, e, f), 6 (g, h, i).

The m-ZrO₂, t-ZrO₂, t-MoSi₂, and some h-ZrB₂ were identified in composite coating before the oxidation test (Fig. 4, a).

The XRD patterns of ZrB₂-45MoSi₂-10Al coating after oxidations at different hours (1, 3 and 6) are presented in Fig. 4, b-d. A silica glass with mullite, and zircon in small amounts was formed in of ZrB₂-45MoSi₂-10Al coating after oxidation at different hours (1, 3 and 6) (Fig. 3, a, d, g). White particles with a higher amount of zirconium oxide are embedded in the glassy matrix (Fig. 3, a, d, g), according to the XRD result.

After oxidations at 1 h in the coating mullite with a rhombic crystal lattice of mullite of the composition Al₂₃.₅Si₆.₅O₁₄.₈₂ in small amounts begins to form (Fig. 3, b). The main phases at this temperature are m-ZrO₂ and c-ZrO₂. Also, the zirconium orthosilicate phase (zircon - ZrSiO₄) is formed in the coating.

After oxidations at 3 h the coating has the following composition: c-ZrO₂, h-Al₂O₃ and mullite (Fig. 4, c). The content of mullite, according to X-ray phase analysis, is close to the detection limit (the intensity of reflections corresponding to mullite is close to the background intensity).

The XRD pattern of ZrB₂-45MoSi₂-10Al coating after the oxidation at 1500°C for 6 h is presented in Fig. 3, d. It can be seen that only c-ZrO₂ and h-Al₂O₃ were detected.

The microstructure of the ZrB₂-45MoSi₂-10Al coating after oxidation at 1 h is similar to that of the samples oxidized at 1500°C for 3 and 6 h. A dense without cracks and pores structure of coating is formed, however, there is mullite (the finest intertwined needle-shaped crystals penetrating the glass phase) in the structure of coating (Fig. 3, b). Needle mullite reinforces the glass phase, leading to increased refractoriness [17].
Figure 4. XRD patterns of the ZrB$_2$-45MoSi$_2$-10Al before (a) and after oxidation at different hours: 1 (b), 3 (c), and 6 (d).

4. Summary

In this paper, a ZrB$_2$-45MoSi$_2$-10Al coating prepared by a Robotic complex for detonation spraying of coatings was oxidation at 1500°C for 1, 3 and 6 h. Coating was formed on the substrate surface without intermediate layers in the "carbon-containing materials – coating" system that perform barrier-compensation functions. Complex for detonation spraying has provided the conditions for formation of dense and uniform coating layers with high adhesion. The penetrative cracks and pores in the coating were not found before and after oxidation. The oxidized for 1 h ZrB$_2$-45MoSi$_2$-10Al coating mainly consist of c-ZrO$_2$, m-ZrO$_2$, and in small amounts mullite and zircon. It was found that h-(α-Al$_2$O$_3$) was detected in ZrB$_2$-45MoSi$_2$-10Al coating after oxidation for 3 and 6 h. The Y$_2$O$_3$ stabilized cubic phase (c-ZrO$_2$) is found in the coating after oxidation for 3 and 6 h also.

5. References

[1] Devi G, Rao K 1993 Carbon-carbon Composites - An Overview Def. Sci. J. 43 369
[2] Jacobson N S, Curry D M 2006 Oxidation Microstructure Studies of Reinforced Carbon/Carbon Carbon 44 1142
[3] Lu W, Qian-gang F, Ning-kun L, Sun J 2016 Improvement of the Adhesion Strength of MoSi$_2$-ZrB$_2$ Coating by Optimizing Particle Spraying and Subsequent Heat Treatment J. Therm. Spray Technol. 25 1280
Acknowledgements

This research was funded by the Russian Science Foundation, under grant No 19-19-00274. The studies were carried out on the equipment of the Centre for High Technologies of BSTU and the Joint Research Center of Belgorod State National Research University «Technology and Materials» with financial support from the Ministry of Education and Higher Education of the Russian Federation within the framework of agreement No. 075-15-2021-690 (unique identifier for the project RF----2296.61321X0030). The authors would like to thank Dr Yuri Tyurin (E.O. Paton Electric Welding Institute, NASU) for his helpful advice on various technical issues examined in this paper, and Dr Oleg Kolisnichenko (E.O. Paton Electric Welding Institute, NASU) for his advice and comments.