Engineered bamboo: The promising material for building and construction application in Indonesia

A Supriadi and D R Trisatya
Forest Products Research and Development Center, Ministry of Environment and Forestry, Bogor, Indonesia. Jl. Gunung Batu No. 5, Bogor, West Java, Indonesia

E-mail: susupriadi@gmail.com

Abstract. There is a rising gap between supply and demand of wood as building and construction materials. The search of alternative materials to fill in the gap is an urgent concern. Bamboo is one of locally abundant resources; 88 out of 135 species growth in Indonesia is an endemic. It is a renewably material and has comparable characteristics to wood. Notable efforts to reduce the variability of raw bamboo have led to the improved physical and mechanical properties of the engineered bamboo. Laminated bamboo and hybrid laminated bamboo-wood had superior wood strength in comparison to the raw materials. Laminated bamboo produced from andong (Gigantochloa pseudoarundinacea (Steud.) Widjaja), mayan (Gigantochloa robusta Kurz), vertically laminated andong bamboo comparable to wood strength class I, I-II and II, respectively. Furthermore, hybrid laminated bamboo-wood andong-manii (Maesopsis eminii Engl.), andong-mayan-jabon (Anzocephalus cadamba (Roxb.) Miq.) comparable to wood strength class II and III, respectively. The properties improvement of engineered bamboo demonstrates the potential application of laminated bamboo as a substitution for building and construction material.

1. Introduction
Timber is a primary product sourced from forest that has made a huge economic contribution for the country. However, the unsustainable forest management practices have led to the scarcity of timber supply. Log production from natural forest in 2007 was 31.5 million m3 [1] and decreased to 5.8 million m3 in 2015 [2]. Annual timber demand was as much as 60 million m3. A scarcity of timber, particularly the common commercial timber, forced prices up.

Investigations have been carried out on the searching of renewable materials that can substitute timber. Bamboo is a lignocelullosic material that has the potential to substitute timber. It has been widely used traditionally in the nation, thus it has a strong cultural value [3,4]. Moreover, bamboo being one of the fastest growing species in the globe has ecological, comparable mechanical characteristics, social-economic values [5].

A wide range of bamboo utilization has been reported elsewhere, including furniture, musical instruments, basket, erosion control, fence, beam, roofs skeleton, walling/ceiling [6]. The utilization of bamboo, however, is restricted due to the natural shape and low durability to fungi and insects attacks[7]. The improvement in preservation and manufacturing technologies overcome the limitation through engineered bamboo manufacturing. Laminated bamboo and hybrid laminated bamboo wood demonstrated competitive physical and mechanical properties. Thus, it is suitable as a wood alternative to substitute building and construction materials.
This paper briefly summarizes the potential prospect of bamboo as a wood substitute in Indonesia. It is intended to provide data and information on bamboo potential for building and construction materials and government strategy on the development of engineered bamboo in Indonesia.

2. Bamboo potential and development strategy in Indonesia
Bamboo is abundantly found in the country. It grows in community garden and in forest area, on slope hills to valleys and other areas [8]. Bamboo is a member of the Poaceae family and Bambusoideae subfamily. There are as much as 1,250 bamboo species in at least 75 genera. Of those species, 135 species are found in Indonesia. Species endemic to Indonesia is 118 species of sympodial bamboo [9][10]. Table 1 depicts 76 bamboo species that are considerably important. Bamboo materials suitable for industry should be targeted at cost effective and the easiness to cultivate [11]. The latter is aimed to ensure the sustainability of bamboo production in a large scale. The following species were suggested in bamboo industry: petung (Dendrocalamus asper), tali (Gigantochloa apus), ater (Gigantochloa atter), hitam (Gigantochloa atroviolacae), mayan (Gigantochloa robusta), andong (Gigantochloa. pseudoarundinacae), peting (Gigantochloa levis), yellow ampel (B. vulgaris v. striata), green ampel (B. vulgaris v. vitata) and duri (B. blumeana) [11].

No	Genera	Number of important species
1.	Arundinaria	1
2.	Bambusa	19
3.	Cephalostachyum	1
4.	Chimonobambusa	2
5.	Dendrocalamus	6
6.	Dinochloa	1
7.	Gigantochloa	18
8.	Melocana	1
9.	Nastus	3
10.	Neololeba	1
11.	Phyllostachys	3
12.	Pleioblastus	2
13.	Pseudosasa	1
14.	Schizostachyum	14
15.	Semiarundinaria	1
16.	Shibatea	1
17.	Thyrsostachys	1

Source: [11]

2.1. Bamboo for building and construction materials
Bamboo is a promising lignocelullosic material for use in building and construction materials as it is renewable, light, strong, and relatively low cost material. The utilization of bamboo in building and construction is ranging from foundation, flooring, walling, roof and scaffolding. As it can be seen in Table 2, only particular bamboo species are meet the requirement for building and construction materials.
Table 2. Bamboo species for building and construction materials

No	Scientific name	Local name
1	Dendrocalamus asper [Schultes f.] Backer ex Heyne	Betung
2	Gigantochloa apus [J.A.& J.H. Schultes] Kurz	Tali
3	Bambusa tera bambosi [L.] Voss.	Ori
4	Dendrocalamus giganteus Wallich ex Munro	Sembilang
5	Bambusa blumeana [J.A. & J.H. Schultes]	Duri
6	Dendrocalamus latiflorus Munro	Taiwan
7	Gigantochloa atter [Hassk] Kurz	Ater
8	Gigantochloa balui [K.M. Wong]	Buluh abe
9	Gigantochloa levis [Blanco] Merill	Peting
10	Gigantochloa manggong Widjaya	Manggong
11	Gigantochloa pseudoarundinaceae [Steudel] Widjaya	Gombong
12	Gigantochloa robusta Kurz	Mayan
13	Gigantochloa scortechinii Gamble	Buhul kapal
14	Schizostachyum brachycladum Kurz	Tamiang
15	Schizostachyum lima [Blanco] Meriil	Buhul toi
16	Schizostachyum zollingeri Steudel	Lampar

Source: [11,12]

2.2. Bamboo characteristics

Bamboo is a wonder grass; it grows in a rapid cycle and has a wide range of utilization. It was revealed that bamboo could grow up to 1 meter in a day; it is also can be harvested in 3—5 year period and is a self-renewing resource [13]. Conversely, the productivity rate of tree is not as high as bamboo and for some species tree needs more than 40 years to be yielded.

Bamboo is a versatile material, it is inexpensive, resilient, lightweight, straight, easy to carry, and has superior strength compared to steel [14]. Moreover, it can be obtained easily and only needs a simple fabrication, thus it has been widely traditionally used for many years.

In spite of its advantages, its natural shape, dimension, and morphology limit the optimum utilization of bamboo. The inferior flexibility in the lateral direction demonstrates large bending [13]. Bamboo should be treated prior to its utilization since it is prone to powder post beetle attacks [15]. It was reported that the addition of 0.5% permethrin in the adhesive effectively increased the powder post beetle mortality rate [15]. Further, the preservation of bamboo can be carried out through water soaking, lime washing and chemical preservative methods.

2.3. Bamboo development strategy

The sustainability of bamboo production obviously depends on the availability of production factors. One of the main factors is the accessibility to sustained supply of raw bamboo material. The Government of Indonesia is committed to developing bamboo utilization as one of the substantial non timber forest products. Initiated by the Environmental Bamboo Foundation, a-thousand-bamboo villages program were launched to establish ‘restoration economies’ in 1,000 communities all over Indonesia, using bamboo as a keystone species for conservation and sustainable livelihood [16]. The program, supported by the Ministry of Environment and Forestry, is a framework to create the integrated bamboo industry between upstream, middle and downstream industry [16].

Similarly, local governments support the economic and ecological restoration through the development of bamboo plantation. As it can be seen in Table 3 the government of Bangli allocated more than 200 ha area for bamboo plantation. While in Kintami the area is located in forest area, other subdistricts have their plantation outside the forest area [17].
Table 3. Bamboo development potential in Bangli Regency, Bali

No	Subdistrict	Area (ha)	Existing	Projected	Total area (ha)
1.	Bangli	1,202.3	72.1		1,274.4
2.	Susut	532.95	-		532.95
3.	Tembuku	713.65	41.0		754.65
4.	Kintamani	4,045.28	93.0		4,138.28
	Total	6,494.18	206.1		6,700.28

Source: [17]

Yogyakarta, owing plentiful traditional bamboo craftsmen and abundant bamboo plantation in forest area and its surrounding, is considered as one of the crucial non-timber forest product provinces. The Ministry has facilitated the development of bamboo plantation in another 80 ha area or almost 30% from the existing bamboo plantation (Table 4) [18].

Table 4. Bamboo development potential in Yogyakarta Province

No	Regency	Area (ha)	Existing	Projected	Total area (ha)
1.	Sleman	94.80	30.00		124.80
2.	Bantul	66.20	10.00		76.20
3.	Kulon Progo	55.30	20.00		75.30
4.	Gunung Kidul	4.25	20.00		24.25
	Total	220.55	80.00		300.55

Source: [18]

3. Engineered bamboo as a promising material substitution

The comparable mechanical properties of bamboo to softwood make it favourable to be used as building materials. To defeat the geometry drawbacks of bamboo, many efforts were made, including the converting process of a hollow shape into a thick planar shape. Laminated bamboo is a structural bonding of bamboo strips that arranged in vertically or horizontally direction [19]. The dimension and the utilization of this engineered bamboo, however, are more flexible compared to its natural shape. To form a lumber-like shape, laminated bamboo should be sourced from relatively thick wall bamboo and straight culm. There are at least six bamboo species that are commonly used for laminated bamboo and performed comparable physical and mechanical properties (Table 5).

Table 5. Suggested bamboo species for laminated bamboo

No	Scientific name	Local name
1.	*Dendrocalamus asper* [Schultes f.] Backer ex Heyne	betung
2.	*Gigantochloa pseudoarundinacea* [Steudel] Widjaya	andong
3.	*Gigantochloa levis* [Blanco] Merill	peting
4.	*Gigantochloa robusta* Kurz	mayan
5.	*Dendrocalamus strictus* (Roxb.) Nees	batu
6.	*Gigantochloa apus* [J.A.& J.H. Schultes] Kurz.	tali

Source: [11,20–27]

The hybrid laminated bamboo-wood (HLBW) incorporates the advantages of bamboo and wood in one composite product. The HLBW of andong (*Gigantochloa pseudoarundinacea* (Steud.)Widjaya) and jabon (*Antocephalus cadamba* Miq.) fell in strength class III, which is greater than jabon (strength class IV) [27]. This result was similar to the HLBW of mayan (*Gigantochloa robusta* Kurz.) and jabon [27]. Table 6 summarizes the strength class of engineered bamboo in accordance to [28].
Table 6. Strength class of laminated bamboo and hybrid laminated bamboo-wood

No	Engineered bamboo	Strength class
1.	Three-ply laminated andong board	I
2.	Three-ply laminated mayan board	I-I
3.	Vertically three-ply laminated andong beam	II
4.	Five-ply laminated batu bamboo beam	I
5.	Seven-ply laminated batu bamboo beam	I
6.	Two-ply hybrid laminated mayan-jabon beam	III
7.	Two-ply hybrid laminated andong-jabon beam	III
8.	Vertically hybrid laminated andong-manii beam	II
9.	Five-ply laminated tali-mayan lumber	III

Source: [11,20–27]

As it can be seen in Table 6, the engineered bamboo of three-ply laminated andong board, five-ply and seven-ply of batu bamboo beam performed superior strength class (class I) which is comparable to bangkirai (*Shorea laevis* Ridl.), resak (*Vatica spp.*.) and ulin (*Eusideroxylon zwageri* Teijsm & Binn). Engineered bamboo which categorized in strength class II had the potential to substitute teak (*Tectona grandis* Linn. F) and balam (*Palaquium obtusifolium* Burck.).

4. Conclusion and recommendation

This paper concisely summarizes the potential of bamboo in Indonesia to substitute building and construction materials. It is worth noting that, of 88 endemic bamboo species, as much as 16 species are desirable as building and construction materials. The application of laminated technology improved the mechanical characteristics of bamboo. The engineered bamboo has a potential as building and construction alternative materials. To sustain the production of engineered bamboo, the supply of bamboo raw material should be secured. This can be accomplished by performing national strategy on bamboo plantation development, such as the establishment of “a thousand bamboo villages” and other local initiatives that bring in together the goodness of this green gold resource for the livelihood and environment.

References

[1] MOF M of F 2008 *Statistik Departemen Kehutanan*

[2] MOEF M of E and F 2016 *Statistik Kementerian Lingkungan Hidup dan Kehutanan*. (Ministry of Environment and Forestry. Jakarta)

[3] Makmur M F, Larekeng S H and Restu M 2020 *GENETIC DIVERSITY OF EIGHT TYPES OF BAMBOO BASED ON RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) MARKERS Plant Arch.* 20 2333–7

[4] Hiswan J, Larekeng S and Putri S 2020 *IN VITRO SHOOT INDUCTION OF BATIK BAMBOO USING BAP AND NAA* vol 20

[5] Benton A 2015 Priority species of bamboo 31–41

[6] Jannah M, Baharuddin and Taskirawati I 2019 *Potensi dan pemanfaatan tanaman bambu pada lahan masyarakat di Desa Kading Kabupaten Barru* *J. Perenn.* 15 87–92

[7] Larekeng S H, Gusmiaty G and Nadhilla D 2020 *In-Vitro Shoot Induction of Pring Tutul (Bambusa maculata) through in Various Plant Growth Regulators (PGR) IOP Conf. Ser. Earth Environ. Sci.* 575

[8] Sastrapradja S ., Widjaja E A, Prawiroatmodjo S . and Soenarko S . 1977 *Beberapa Jenis Bambu* (Lembaga Biologi Nasional - LIPI. Bogor.)

[9] Dransfield S and Widjaja E A 1995 *Bamboos: Plant Resources of South East Asia* (Backyis Publisher, Leiden)
[10] Lobovikov M, Paudel S, Ball L, Piazza M, Guardia M, Ren H, Russo L and Wu J 2007 *World Bamboo Resources: a Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005 No 18* (Food and Agriculture Organization)

[11] Sutiyono 2014 *Budidaya Bambu* (Badan Penelitian dan Pengembangan Kehutanan)

[12] Dransfield S W E 1995 *Plant Resources of South East Asia No 7: Bamboos* (Leiden: Backhuys Publishers)

[13] Darmawan U W and Ismanto A 2020 Bambu sebagai bahan bangunan dan konstruksi masa depan *FORPRO 2*

[14] Baksy A 2013 *The Bamboo Industry in India. Supply Chain Structure, Challenges and Recommendation*

[15] Jasni and Sulastiningsih I M 2005 Pencegahan serangan bubuk Dinoderus minutus Farb. pada bambu lapis dan kayu lapis *J. IImu dan Teknol. Kayu Trop.* 3 24–8

[16] Yayasan Bambu Lestari Y 2016 *Program 1000 Desa Bambu. Gerakan Industri Bambu Rakyat*

[17] Anon 2013 *Laporan Tahunan Pemerintah Kabupaten Bangli Provinsi Bali Tahun 2012*

[18] Dinas Kehutanan dan Perkebunan Provinsi Daerah Istimewa Yogyakarta D P D 2013 *Laporan Tahunan Dinas Kehutanan dan Perkebunan Provinsi Daerah Istimewa Yogyakarta Tahun 2012*

[19] ISO (International Organization for Standardization) 2020 *ISO 21625 Vocabulary related to Bamboo and Bamboo Products. ISO, Geneva*

[20] Sulastiningsih I, Nurwati and Santoso A 2005 Pengaruh lapisan kayu terhadap sifat bambu lamina *J. Penelit. Has. Hutan* 23 15–22

[21] Sulastiningsih I M and Nurwati 2009 Physical and mechanical properties of laminated bamboo board *J. Trop. For. Sci.* 21 246–51

[22] Ahmad M and Kamke F A 2011 Properties of parallel strand lumber from Calcutta bamboo (Dendrocalamus strictus) *Wood Sci. Technol.* 45 63–72

[23] Verma C S and Chariar V M 2012 Development of layered laminate bamboo composite and their mechanical properties *Compos. Part B Eng.* 43 1063–9

[24] Sulastiningsih I M, Ruhendi S, Massijaya M Y, Darmawan W and Santoso A 2014 Pengaruh komposisi arah lapisan terhadap sifat papan bambu komposit *J. Penelit. Has. Hutan* 32 221–34

[25] Sulastiningsih I M, Santoso A and Kristianto 2016 Karakteristik balok bambu lamina susun tegak dari bilah bambu andong (Gigantochloa pseudoarundinacea (Steud.) Widjaja) *J. Penelit. Has. Hutan* 34 167–77

[26] Santoso A, Sulastiningsih I M, Pari G and Jasni 2016 Pemanfaatan ekstrak kayu merbau untuk perekat produk laminasi bambu *J. Penelit. Has. Hutan* 34 89–100

[27] Supriadi A, Sulastiningsih I M and Subyakto 2017 Karakteristik laminasi bambu pada papan jabon *J. Penelit. Has. Hutan* 35 263–72

[28] Djoen Seng O 1990 *Specific Gravity of Indonesian Woods and its Significance for Practical Use. Communication No. 13* (Bogor: Oey, D. S. (1990). Specific Gravity of Indonesian Woods and its Significance for Practical Use. Communication No. 13. Bogor, Indonesia: Forest Products Research and Development Centre)