ON RADIO NUMBER OF STACKED-BOOK GRAPHS

TAYO CHARLES ADEFOKUN1 AND DEBORAH OLAYIDE AJAYI2

Abstract. A Stacked-book graph $G_{m,n}$ results from the Cartesian product of a star graph S_m and path P_n, where m and n are the orders of S_m and P_n respectively. A radio labeling problem of a simple and connected graph, G, involves a non-negative integer function $f : V(G) \to \mathbb{Z}^+$ on the vertex set $V(G)$ of G, such that for all $u, v \in V(G)$, $|f(u) - f(v)| \geq \text{diam}(G) + 1 - d(u, v)$, where $\text{diam}(G)$ is the diameter of G and $d(u, v)$ is the shortest distance between u and v. Suppose that f_{min} and f_{max} are the respective least and largest values of f on $V(G)$, then, span_f, the absolute difference of f_{min} and f_{max}, is the span of f while the radio number $rn(G)$ of G is the least value of span_f over all the possible radio labels on $V(G)$. In this paper, we obtain the radio number for the stacked-book graph $G_{m,n}$ where $m \geq 4$ and n is even, and obtain bounds for $m = 3$ which improves existing upper and lower bounds for $G_{m,n}$ where $m = 3$.

1. Introduction

The graph G considered in this paper is simple and undirected. The vertex and edge sets of G are $V(G)$ and $E(G)$. For $e = uv \in E(G)$, e connects two vertices u and v while $d(u, v)$ is the distance between u, v and $\text{diam}(G)$ is the diameter of G. Radio number labeling problem, which is mostly applied in frequency assignment for signal transmission, where it mitigates the problems of signal interference. It was first suggested in 1980 by Hale6.

Let f be a non negative integer function on $V(G)$ such that the radio labeling condition, $|f(u) - f(v)| \geq \text{diam}(G) + 1 - d(u, v)$ is satisfied for every pair $u, v \in V(G)$. The span of f, span_f, is the difference between f_{min} and f_{max}, the minimum and the maximum radio label on G respectively. Thus the smallest possible value of span_f is the radio number, $rn(G)$, of G. The radio labeling condition guarantees that every vertex on G has unique radio label. Therefore, $rn(G) \geq |V(G)| - 1$ is trivially true. However, establishing the radio number of graphs has proved to be quite tedious. Even so, such numbers have been completely determined for some graphs. Liu and Zhu10 showed that for path, P_n, $n \geq 3$,

$$rn(P_n) = \begin{cases} 2k(k - 1) + 1 & \text{if } n = 2k; \\ 2k^2 + 2 & \text{if } n = 2k + 1. \end{cases}$$

\textbf{Key words and phrases.} Radio labeling, radio number, stacked-book graph, Cartesian product of graphs

\textbf{2010 Mathematics Subject Classification.} Primary: 05C78; 05C15.
This improves results in [4] and [5] by Chatrand, et. al. where the upper and lower bounds for the same class of graph are obtained. Furthermore, Liu and Xie, [8], found the radio number for the square of a path, P^2_n as:

$$rn(P^2_n) = \begin{cases} k^2 + 2 & \text{if } n \equiv 1(\text{mod } 4), n \geq 9; \\ k^2 + 1 & \text{if otherwise}. \end{cases}$$

Similar results are obtained in [9] for square of cycles. Jiang [7] completely solved the radio number problem for the grid graph $(P_m \square P_n)$, where for $m, n > 2$, it is noted that

$$rn(P_m \square P_n) = \frac{mn^2 + nm^2 - mn - m + 2}{2}, \text{ for } m \text{-odd and } n \text{ even.}$$

Saha and Panigrahi [12] and Ajayi and Adefokun [1] obtained results on the radio numbers of Cartesian products of two cycles (toroidal grid) and of path and star graph (stacked-book graph) respectively. In the case of stacked-book graph $G = S_n \square P_m$, $rn(G) \leq n^2 m + 1$, which the authors noted is not tight. Recent results on radio number include those on middle graph of path [2], trees, [3] and edge-joint graphs [11].

In this paper, for even positive integer n, we consider the stacked-book graph $G_{m,n}$ and derive the $rn(G_{m,n})$ for the case $m \geq 4$. Furthermore, new lower and upper bounds of the number are obtained for $m = 3$, which improve similar results in [1].

2. Preliminaries

Let S_m be a star of order $m \geq 3$ and for each vertex $v_i \in V(S_m)$, $2 \leq i \leq m$, v_i is adjacent to v_1, the center vertex of S_m. Also, let P_n be a path such that $|V(P_n)| = n$. The Graph $G_{m,n} = S_m \square P_n$, is obtained by the Cartesian product of S_m and P_n. The vertex set $V(G_{m,n})$ is the Cartesian product $V(S_m) \times V(P_n)$, such that for any $u_iv_j \in V(G_{m,n})$, then, $u_i \in V(S_m)$ and $v_j \in V(P_n)$. For $E(G_{m,n})$, $u_ivj\ u_kv_l$ is contained in $E(G_{m,n})$ for $u_ivj\ u_kv_l \in V(G_{m,n})$, then either $u_i = u_k$ and $v_jv_l \in E(P_m)$ or $u_iu_k \in E(S_m)$ and $v_j = v_l$. Geometrically, $V(G_{m,n})$ contains n number of S_m stars, namely $S_m(1), S_m(2), \ldots, S_m(n)$, such that for every pair $v_i \in S_m(i)$ and $v_{i+1} \in S_m(i+1)$, $u_iv_{i+1} \in E(G_{m,n})$. These are, in fact, the only type of edges on $G_{m,n}$ apart from those on its S_m stars. This geometry fetched $G_{m,n}$ the name stacked-book graph.

Remark 2.1. It is easy to see that $diam(G_{m,n}) = n + 1$, being the number of edges from $u_1v_1 \rightarrow u_1v_1 \rightarrow u_1v_2 \rightarrow \cdots \rightarrow u_1v_n \rightarrow u_jv_n$, where $i \neq j$.

Remark 2.1. For convenience, we write u_cv_j as $u_{i,j}$ in certain cases and $u_{i,j}u_{k,l}$ is the edge induced by $u_{i,j}$ and $u_{k,l}$.

Definition 2.1. Let $G_{m,n} = S_m \square P_n$. The vertex set $V(i) \subset V(G_{m,n})$ is the set of vertices on star $S_m(i)$, defined by the set $\{u_1v_i, u_2v_i, \ldots, u_nv_i\}$.

We introduce the following definition:

Definition 2.2. Let $G_{m,n} = S_m \square P_n$. Then, the pair $\{S_{m(i)}, S_{m(i+\frac{n}{2})}\}$ is a subgraph $G(i) \subset G_{m,n}$ induced by $V(i)$ and $V(i+\frac{n}{2})$.

Remark 2.2. The maximum number of $G(i)$ subgraph in a $G_{m,n}$ graph, n even, is $\frac{n}{2}$ and the $diam(G(i)) = \frac{n}{2} + 2$.
Remark 2.3. Let \(\{V(i), V(i+\frac{n}{2})\} \) induce \(G(i) \), such that \(V(i) = \{u_{1,i}, u_{2,i}, \cdots, u_{m,i}\} \) and \(V(i+\frac{n}{n}) = \{v_{1,i+\frac{n}{2}}, v_{2,i+\frac{n}{2}}, \cdots, v_{m,i+\frac{n}{2}}\} \). Then, for \(u \in V(i) \), \(v \in V(i+\frac{n}{n}) \) and \(d(u, v) = p \), where \(p \in \{\frac{n}{2}, \frac{n}{2} + 1, \frac{n}{2} + 2\} \) and for \(u_{k,i}, v_{t,i+\frac{n}{2}}, \)
\[
p = \begin{cases}
\frac{n}{2} & \text{if } k = t; \\
\frac{n}{2} + 1 & \text{if } t = 1, k \neq t; \\
\frac{n}{2} + 2 & \text{if } t \neq 1, k \neq 1, k \neq t.
\end{cases}
\]

3. RESULTS

In this section, we estimate the radio number of stacked-book graphs and obtain the exact radio number for \(G_{m,n} \), for \(m \geq 4 \), \(n \) even.

Lemma 3.1. Let \(S_m \) be a star on \(G_{m,n} \) and \(f \), a radio label function on \(G_{m,n} \). Then spanf on \(S_m \) is \(n(m - 1) + 1 \).

Proof. Let the center vertex of \(S_m \) be \(v_1 \) and let \(f(v_1) \) be the radio label on \(v_1 \).
There exists some \(v_2 \in V(S_m) \) such that \(d(v_1, v_2) = 1 \). Therefore, by the definition, \(f(v_2) \geq f(v_1) + n + 1 \). Suppose that \(k \notin \{1, 2\} \). For \(v_k, d(v_2, v_k) = 2 \), for all \(v_k \in V(S_m) \). Thus, without loss of generality, suppose that \(v_m \) is the last vertex on \(V(S_m) \), then \(f(v_m) \geq f(v_0) + (n + 1) + n(m - 2) \) and the claim follows. \(\square \)

Remark 3.1. It is easy to confirm that given a star \(S_m \) with center vertex \(v_1 \), if for a positive integer \(\alpha \), \(rn(S_m) = \alpha \), then either \(f(v_1) \) is \(f_{\min} \) or \(f_{\max} \).

Now we establish lower bound for \(G(i) \).

Lemma 3.2. Let \(G(i) \) be a subgraph of \(G_{m,n} \) and let \(f \) be the radio label on \(V(G_{m,n}) \). Then, \(rn(G(i)) \geq f(v_1) + mn - \frac{n}{2} + 2 \), where \(v_1 \) is the center vertex of \(S_{m(i+\frac{n}{n})} \).

Proof. Let \(S_{m(i)} \) and \(S_{m(j)} \) be the stars on \(G(i) \subset G_{m,n} \), where \(j = i + \frac{n}{2} \). By Lemma 3.1, \(f(v_m) = f(v_1) + mn - n + 1 \), with \(f(v_m) = \max \{f(v_i) : v_i \in V(S_m(j))\} \), and \(v_1 \) the center of \(S_{m(j)} \). Now, let \(u_1 \) be the center vertex of \(S_{m(i)} \). It is clear that \(d(u_1, v_1) = \frac{n+2}{2} \). Thus, \(f(u_1) \geq f(v_1) + mn - n + 1 + \frac{n+2}{2} = f(v_1) + mn - \frac{n}{2} + 2 \).

Claim: For optimal radio labeling of \(G(i) \), maximum label on \(S_{m(i)} \) is at least \(f(u_1) \).

Reason: Consider some \(u_m \in V(S_m) \), such that \(m \neq 1 \) and \(d(u_m, v_m) = \frac{n+2}{2} \). Then \(f(u_m) = f(v_1) + mn - \frac{n}{2} + 1 \). By Lemma 3.1, the spanf of \(f \) for a star \(S_m \) is \(mn-n+1 \). Now, \(f(u_m) - (mn-n+1) = f(v_1) + \frac{n}{2} \). Thus, by Remark 3.1, \(f(u_1) = f(v_1 + \frac{n}{2}) \).

This is a contradiction, considering that \(d(u_1, v_1) = \frac{n}{2} \). \(\square \)

Lemma 3.3. Let \(G^+(i) \subset G_{m,n} \) be \(G(i) \cup w_1 \), where \(w_1 \) is the center vertex of \(S_{m(j+1)} \) and let \(f \) be a radio labeling on \(G_{m,n} \), where \(n \) is even. Then, the spanf of \(f \) on \(G^+(i) \geq mn + 3 \).

Proof. Let \(u_1 \) be the center vertex of \(S_{m(i)} \). It can be verified that \(d(u_1, w_1) = \frac{n}{2} \). By the proof of Lemma 3.2, \(f(u_1) \geq f(v_1) + mn - \frac{n}{2} + 2 \), where \(v_1 \) is the center vertex.
of $S_{m(j)}$. Thus by definition, $f(w_1) \geq f(v_1) + mn - \frac{n}{2} + 2 + \frac{n+2}{2} = f(v_1) + mn + 3$. Since $f(v_1)$ is the minimum label on $G(i)$, the result follows. □

Now we present the lower bound for stacked-book graph $G_{m,n}$, where n is an even integer and $m \geq 3$.

Theorem 3.1. Let $G = G_{m,n}$ be a stacked-book graph with $m \geq 3$ and n an even integer. Furthermore, let f be the radio labeling on G. Then, $rn(G) \geq \frac{mn^2}{2} + n - 1$.

Proof. From the definition of $G(i)$, graph $G_{m,n}$ contains $\frac{n}{2}$ number of $G(i)$ subgraphs. Likewise, it can be seen that $G_{m,n}$ contains $\frac{n}{2}$ number of $G^+(i)$ subgraphs. Now, let $G(\frac{r}{2})$, induced by $S_{m(\frac{r}{2})}$ and $S_{m(n)}$ be the last $G(i)$ subgraphs on $G_{m,n}$ and $G^+(1), G^+(2), \ldots, G^+(\frac{mn}{2})$ be the $\frac{mn}{2}$ number of $G^+(i)$ graphs. By the earlier result, if $f(v_1) = 0$, then $rn(G_{m,n}) \geq (\frac{mn}{2})(mn + 3) + mn - \frac{n}{2} + 2 = \frac{mn^2}{2} + n - 1$. □

In what follows, we examine the upper bound of the stacked-book graph $G_{m,n}$.

Lemma 3.4. Let $G(i)$ be a subgraph of $G_{m,n}$ induced by $\left\{V(i), V(i+\frac{n}{2})\right\}$. Then for any pair $v \in V(i)$ and $u \in V(i+\frac{n}{2})$, such that $d(u, v) \geq \frac{n}{2} + 1$, $|f(v) - f(u)| \geq \frac{n}{2}$.

Proof. Let $u = u_{k,i} \in V(i)$ and $v = u_{t,i+\frac{n}{2}} \in V(i+\frac{n}{2})$. Since $d(u, v) > \frac{n}{2}$, then by Remark 2.3, $k \neq t$. Suppose that neither u nor v is the center vertex of their respective stars $S_{m(i)}$ and $S_{m(i+\frac{n}{2})}$. Then, $d(u, v) = \text{diam}(G(i))$. Now, let the radio label on u and v be $f(u)$ and $f(v)$ respectively. Suppose, without loss of generality, that $f(v) > f(u)$. Then $f(v) \geq f(u) + \text{diam}(G_{m,n}) + 1 - \text{diam}(G(i))$, which implies that

$$f(v) \geq f(u) + \frac{n}{2}.$$

This implies that $f(v) - f(u) \geq \frac{n}{2}$. Similarly, if $f(u) \geq f(v)$, then $f(u) - f(v) \geq \frac{n}{2}$ and thus, the claim follows. □

The following remarks can be confirmed by applying similar methods as in proof of Lemma 3.4.

Remark 3.1. Suppose that either of u, v in Lemma 3.4, say u, is such that for any $u' \in V(i)$, $uv' \in E(S_{m(i)})$. Then $d(u, u') = \frac{n}{2} + 1$ and $|f(u) - f(v)| \geq \frac{n}{2} + 1$.

Remark 3.2. Let $u, u' \in V(i)$. If $d(u, u') = 1$, then $|f(u) - f(u')| \geq n + 1$ and $|f(u) - f(v')| \geq n$ for $d(u, u') = 2$.

Theorem 3.2. Let $m > 3$ be odd and $G(i) \subseteq G_{m,n}$, be induced by $\left\{V(i), V(i+\frac{n}{2})\right\}$; then, $rn(G(i)) \leq f(v_1) + mn - \frac{n}{2} + 2$, where v_1 is the center star $S_{m(\frac{n}{2})}$.

Proof. Let $V(i) = \left\{u_{1,i}, u_{2,i}, \ldots, u_{m,i}\right\}$ and $V(t) = \left\{u_{1,t}, u_{2,t}, \ldots, u_{m,t}\right\}$, where $t = i + \frac{n}{2}$. For $r \in [1, m]$, set $u_{r,i} \in V(i)$ as α_r and $u_{r,t} \in V(t)$ as β_r. From earlier remark, $d(\beta_r, \alpha_r) \in \left\{\frac{n}{2} + 1, \frac{n}{2} + 2\right\}$ for $r \neq s$. Now, for every pair α_s, β_r, where $\alpha_s \in V(i)$, and $\beta_r \in V(t)$, let $r \neq s$ except otherwise stated. Let α_1 and β_1 be the respective centers of the stars $S_{m(i)}$ and $S_{m(t)}$ induced by $V(i)$ and $V(t)$ and let the radio label on β_1 be $f(\beta_1)$.
such that \(f(\beta_1) = \min \{ f(\beta_i) : 1 \leq i \leq m \} \). Since \(\beta_1 \) is the center of \(S_{m(t)} \), then given \(\alpha_2 \in V(i) \), \(d(\beta_1, \alpha_2) = \frac{n}{2} + 1 \). Now set \(p = \text{diam}(G_{m,n}) + 1 - d(\beta_1, \alpha_r), r \neq 1 \). Hence, \(p = n + 2 - (\frac{n}{2} + 1) = \frac{n}{2} + 1 \). Suppose that \(\alpha_j \in V(i) \) and \(\beta_k \in V(t) \), such that \(1 \neq j \neq k \neq 1 \). Then, \(d(\alpha_j, \beta_k) = \frac{n}{2} + 2 \). So we set \(q = \text{diam}(G_{m,n}) + 1 - d(\alpha_j, \beta_k) = \frac{n}{2} + 1 \). For \(f(\beta_1) \) and some \(\alpha_2 \in V(i) \), \(f(\alpha_2) = f(\beta_1) + p \). Also, for \(\beta_3 \in V(t) \), \(f(\beta_3) = f(\alpha_2) + q = f(\beta_1) + p + q \) and \(f(\alpha_4) = f(\beta_1) + 2q + p \). We continue to label the vertices on both \(V(i) \) and \(V(t) \) alternatively based on the last value attained. Therefore, for \(m \) odd,

\[
\begin{align*}
 f(\beta_m) &= f(\alpha_{m-1}) + \frac{n}{2} \\
 &= f(\beta_1) + (m-2)q + p.
\end{align*}
\]

It can be seen that there does not exist \(\alpha_i \in V(i) \), such that \(d > m \). So, we reverse the order of labeling, such that for \(\beta_m, \alpha_3 \), \(f(\alpha_3) = f(\beta_m) + q = f(\beta_1) + (m-2)q + 2p \).

Also, for the pair \(\alpha_3, \beta_2 \), \(f(\beta_2) = f(\beta_1) + (m-2)q + 2q + p \). This continues until we reach the pair \(\alpha_m, \beta_{m-1} \), and obtain

\[
\begin{align*}
 f(\alpha_{m-1}) &= f(\beta_1) + (2m-3)q + p.
\end{align*}
\]

Finally, we consider the pair \(\beta_{m-1} \) and \(\alpha_1 \). Since \(\alpha_1 \) is the center of \(S_{i(i)} \), then \(d(\alpha_1, \beta_{m-1}) = \frac{n}{2} + 1 \) and hence,

\[
\begin{align*}
 f(\alpha_1) &= f(\alpha_{m-1}) + p \\
 &= f(\beta_1) + (2m-3)q + 2p \\
 &= f(\beta_1) + mn - \frac{n}{2} + 2.
\end{align*}
\]

Hence, \(\text{rn}(G(i)) \leq f(\alpha_1) + mn - \frac{n}{2} + 2 \), where \(m \) is odd and \(n \) even. \(\square \)

Next we directly apply Theorem 3.2

Lemma 3.5. Let \(G(i) \) be induced by \(\left\{ S_{m(i)}, S_{m(i+\frac{n}{2})}, \gamma_1 \right\} \), where \(\gamma_1 \) is the center of star \(S_{m(i+\frac{n}{2}+1)} \), induced by \(V(i+\frac{n}{2}+1) \). Then, \(f(\gamma_1) \leq f(\beta_1) + mn + 3 \).

Proof. For \(\alpha_1 \) and \(\beta_1 \) centers of stars \(S(i) \) and \(S(i+\frac{n}{2}) \) respectively, let \(f(\alpha_1) = f(\beta_1) + mn - \frac{n}{2} + 2 \), as established in Theorem 3.2. Then, \(d(\alpha_1, \gamma_1) = \frac{n}{2} + 1 \). Therefore,

\[
\begin{align*}
 f(\gamma_1) &= f(\alpha_1) + p \\
 &= f(\beta_1) + mn + 3.
\end{align*}
\]

\(\square \)

Now, for \(\beta_1 \), the center of \(S_{m(1+\frac{n}{2})} \), induced by \(V(1+\frac{n}{2}) \). By setting \(f(\beta_1) = 0 \), we establish an upper bound for the radio number of a stacked-book graph \(G_{m,n} \) in the next results.

Theorem 3.3. For \(G_{m,n} \), \(m \) odd and \(n \) even, \(\text{rn}(G_{m,n}) \leq \frac{mn^2}{2} + n - 1 \).
Proof. Let \(\{v_{1(1)}, v_{2(1)}, v_{3(1)}, \ldots, v_{n(1)}\} \) be the set of the respective centers of stars \(S_{m(1)}, S_{m(2)}, S_{m(3)}, \ldots, S_{m(n)} \) in \(G_{m,n} \). Also, suppose that \(f(v_{n+1(1)}) = 0 \). From the Lemma 3.5 \(f(v_{n+2(1)}) = mn + 3; f(v_{n+3(1)}) = 2(mn + 3) \) and so on. In the end, \(f(v_{n(1)}) = (\frac{n}{2} - 1)(mn + 3) \). Also, let \(v_{n-\frac{n}{2}(1)} = v_{\frac{n}{2}(1)} \) be the center of \(S_{m(\frac{n}{2})} \subset G_{m,n} \) and let \(S_{m(\frac{n}{2})}, S_{m(n)} \) induce the graph \(G(\frac{n}{2}) \subset G_{m,n} \). By Theorem 3.2,

\[
\text{rn}\left(G\left(\frac{n}{2} \right) \right) \leq f(v_{n(1)}) + mn - \frac{n}{2} + 2 \\
\leq \frac{mn^2}{2} + n - 1.
\]

□

Theorem 3.4. Let \(m, n \) be even. Then \(\text{rn}(G_{m,n}) \leq \frac{mn^2}{2} + n - 1 \).

Proof. The proof follows similar argument and technique as in Theorem 3.2, Lemma 3.5 and Theorem 3.3. □

![Figure 1. A G_{4,6} graph with \text{rn}(G_{4,6}) \leq 77](image)

Theorems 3.1, 3.3, 3.4 establish the radio number of \(G_{m,n} \), where \(m \geq 4 \) and \(n \) is even, as recapped in the next theorem.

Theorem 3.5. Let \(G_{m,n} \) be a stacked-book graph with \(m \geq 4 \) and \(n \) even, then, \(\text{rn}(G_{m,n}) = \frac{mn^2}{2} + n - 1 \).

Next we consider the case where \(m = 3 \). First we present a result that is equivalent to Theorem 3.2 with respect to \(m = 3 \).

Theorem 3.6. Let \(G_{3,n} \) be a stacked-book graph, where \(n \) is even. Suppose that the pair \(\{S_{3(i)}, S_{3(i+\frac{n}{2})}\} \) form a subgraph \(G(i) \) of \(G_{3,n} \). Then, \(\text{rn}(G(i)) \leq f(u_1) + \frac{5n}{2} + 3 \), where \(u_1 \) is the center vertex of \(S_{3(i+\frac{n}{2})} \).

Proof. Let \(V(i) = \{v_1, v_2, v_3\} \) and \(V(i+\frac{n}{2}) = \{u_1, u_2, u_3\} \) where \(V(i) \) and \(V(i+\frac{n}{2}) \) are vertex sets of stars \(S_{3(i)} \) and \(S_{3(i+\frac{n}{2})} \) in \(G_{3,n} \) respectively. Also, let \(v_1 \) and \(u_1 \) be the respective center vertices of \(S_{3(i)} \) and \(S_{3(i+\frac{n}{2})} \). From earlier remark, \(d(v_1, u_1) = \frac{n}{2} + 1 \). Suppose
that \(f(u_1) \), the radio label of \(u_1 \) is the smallest possible radio label on \(G(i) \), then,
\[
 f(v_2) = f(v_1) + \text{diam}(G_{3,n}) + 1 - d(v_1, u_1) \\
 = f(u_1) + \frac{n}{2} + 1.
\]

For \(v_2, u_3 \) \(d(v_2, u_3) = \frac{n}{2} + 2 \),
\[
 f(u_3) = f(u_1) + n + 1
\]

For \(u_3, v_1 \) \(d(u_3, v_1) = \frac{n}{2} + 1 \),
\[
 f(v_1) = f(u_1) + \frac{3n}{2} + 2.
\]

For \(v_1, u_2 \) \(d(v_1, u_2) = \frac{n}{2} + 1 \) and thus,
\[
 f(u_2) = f(u_1) + \frac{3n}{2} + 2 + n + 2 - \left(\frac{n}{2} + 1 \right) \\
 = f(u_1) + 2n + 3.
\]

And finally, for the pair \(v_3, u_2 \) \(d(v_3, u_3) = \frac{n}{2} + 2 \) and
\[
 f(u_3) = f(u_1) + 5n + 3.
\]

Hence, \(rn(G(i)) \leq f(u_1) + \frac{5n}{2} + 3 \).

Next, we obtain the following result.

Lemma 3.6. Let \(\kappa_1 \) be the center of star \(S_{3(i+ \frac{n}{2})+1} \subseteq G_{3,n} \) and let \(H(1) \) be a subgraph of \(G(3,m) \) induced by \(\{S_{3(i)}, S_{3(i+ \frac{n}{2})}, \kappa_1\} \). Then \(f(\kappa_1) \leq 3n + 1 \).

Proof. The vertex with the maximum value of radio label in Theorem 3.6 is \(u_3 \). Let us adopt this, with \(f(u_3) = f(u_1) + \frac{5n}{2} + 3 \). Now, \(d(u_3, \kappa_1) = \frac{n}{2} + 2 \). Therefore,
\[
 f(\kappa_1) = f(u_1) + 3n + 3.
\]

In the final result here, we set \(f(u_1) = 0 \), for \(u_i \), the center of star \(S_{3(1+ \frac{n}{2})} \).

Theorem 3.7. Let \(n \) be an even positive integer. Then, \(rn(G_{3,m}) \leq \frac{3n^2}{2} + n \).

Proof. Proof follows similar technique adopted in Theorem 3.4.

Figure 2 is a radio numbering for \(G_{3,6} \). It shows that \(rn(G_{3,6}) \) is not more than 60.
4. Conclusion

It is noteworthy to look at some of the results in [7]. A \(G_{3,n} \) is a \(3 \times n \) grid. By [7], it is seen that \(rn(G_{3,6}) = 59 \), which is better than the result in Figure 2 above by 1. But this is still a considerable improvement compared with a upper bound of 109 suggested in [1]. In establishing the upper bound for \(G_{3,n} \), it is observed that the number of the pair \(u, v \in V(G_{3,n}) \) for which \(d(u, v) = \frac{diam(G_{3,n})+1}{2} \) is more than the case where \(d(u, v) = \frac{n}{2} \) in each of the segments of radio labeling of the stacked-graph. However, the reverse proves to be the case in \(G_{m,n} \), \(m \geq 4 \).

References

[1] D. O. Ajayi and T. C. Adefokun On bounds of radio number of certain product graphs, J. Nigerian Math. Soc. 37(2) (2018) 71-78.
[2] D. Bantva, S. Vaidya and S. Zhou Radio numbers of trees, Electron. Notes in Discrete Math. 48 (2015) 135-141.
[3] D. Bantva Radio numbers of middle graph of paths, Electron. Notes in Discrete Math. 66 (2017) 93-100.
[4] G. Chartrand, D. Erwin, F. Harary and P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.
[5] G. Chartrand, D. Erwin and P. Zhang, A graph labeling problem suggested by FM Channel Restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43-57.
[6] W. K. Hale, Frequency assignment theory and applications, Proc. IEEE, 68 (1980) 1497 - 1514.
[7] T-S Jiang, The radio number of grid graphs, arXiv:1401.658v1. 2014.
[8] D.D.-F. Liu and M. Xie Radio number for square paths, Ars Combin. 90 (2009) 307-319.
[9] D.D.-F. Liu and M. Xie Radio number for square cycles, Congr. Numer. 169 (2004) 105-125.
[10] D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005) 610-621.
[11] A. Naseem, K. Shabbir and H. Shaker The radio number of edge-joint graphs, ARS Comb. 139 (2018) 337-351.
[12] L. Saha and P. Panigrahi, On the radio numbers of toroidal grid, Aust. Jour. Combin. 55 (2013) 273-288.
1Department of Computer and Mathematical Sciences, Crawford University, Nigeria
E-mail address: tayoedefokun@crawforduniversity.edu.ng

2Department of Mathematics, University of Ibadan, Ibadan, Nigeria
E-mail address: olayide.ajayi@mail.ui.edu.ng; adelaidajayi@yahoo.com