Patellar resurfacing versus nonresurfacing in total knee arthroplasty: an updated meta-analysis of randomized controlled trials

Kai Chen†, Xiaoyu Dai†, Lidong Li, Zhigang Chen, Haidong Cui and Shujun Lv*

Abstract

Background: Whether resurface the patella or not in total knee arthroplasty (TKA) was controversial. In 2013, we conducted a meta-analysis of randomized controlled trials (RCTs). After that, plenty of studies have been carried out, but there still existed a great deal of controversy. In order to update our previous study, we conducted this update meta-analysis to evaluate the efficacy of patellar resurfacing in TKA.

Methods: Databases were searched for RCTs comparing the outcomes of patellar resurfacing and nonresurfacing in TKA. Outcomes of knee relevant indicators were analysed. To see the short- and long-term effects, we calculated the data in total and divided the patients who were followed up for ≤ 3 years and ≥ 5 years into two subgroups as well.

Results: Thirty-two trials assessing 6887 knees were eligible. There was a significant difference in terms of reoperation (in total and ≥ 5 years), Knee Society Score (KSS), function score (in total and ≥ 5 years) and noise. While no significant difference was found in the following items: reoperation (≤ 3 years), anterior knee pain (AKP), function score (≤ 3 years), range of motion (ROM), Oxford score, the Knee Injury and Osteoarthritis Outcome Score (KOOS), visual analogue score (VAS), Feller score, patellar tilt and the patients’ satisfaction.

Conclusions: We found that patellar resurfacing could reduce the occurrence of reoperation and noise after surgery, as well as increase the KSS and function score, while it might not influence the outcomes such as AKP, ROM, Oxford score, KOOS, VAS, Feller score, patellar tilt and the patients’ satisfaction. The results are different from our previous finding in the meta-analysis. In conclusion, we prefer patellar resurfacing in TKA.

Keywords: Patellar resurfacing, Total knee arthroplasty, Updated meta-analysis, Randomized controlled trial
Introduction

Total knee arthroplasty (TKA) is one of the most common treatments for patients suffered knee arthritis. Nevertheless, the management of patella during TKA operation still remains controversial [1]. In previous literature reports, there are 3 strategies adopted by different surgeons: patellar resurfacing, patellar nonresurfacing and selective resurfacing [2, 3]. But no consensus on the best management has been reached [4]. The outcome indicators such as Knee Society Score (KSS), function score of KSS, range of motion (ROM), anterior knee pain (AKP) postoperative and the ratio of reoperation are different in various studies [1–5]. The different outcomes of previous studies provide the basis for different choices of patellar resurfacing or not. In 2013, the author conducted a meta-analysis of randomized controlled trials [5]. We found that patellar resurfacing could reduce the risk of reoperation. And in a long-term follow-up, patellar resurfacing might make a difference of KSS. While in other aspects, the benefit of patellar resurfacing was limited. The limitation of our previous meta-analysis is the amount of high-quality randomized controlled trials. Since 2013, more and more RCTs, retrospective studies, even meta-analysis and systematic reviews have been carried out. Still, no clear conclusion has been drawn. In order to see if the result of our previous study has changed and update the latest data, we conducted this update meta-analysis of available RCTs to evaluate the efficacy of patellar resurfacing in TKA. Especially, we evaluated the items as follows: reoperation, AKP, KSS, function score, ROM, Oxford score, the Knee injury and Osteoarthritis Outcome Score (KOOS), visual analogue score (VAS) of pain, Feller score, patella tilt, noise after operation and patients’ satisfaction. Data in total, follow-up no more than 3 years and no less than 5 years were calculated separately.

Fig. 1 Flow chart of the studies recruited in this meta-analysis
First author	Journal	Year of publication	Number of knees (RS/NRS)	Mean age (years) (RS/NRS)	Lost to follow-up (knees)	Mean years of follow-up	Outcomes	Level of evidence	Type of knee prosthesis
Feller [6]	JBJS	1996	19/19	70.8/71.2	0/2	2/2	HSS, patellar score, pain, reoperation	I	PCA (HOWMEDICA)
Kajino [7]	JBJS	1997	26/26	56.1/55	0/6	6/6	HSS, pain, muscle strength, patellar tilt	I	Yoshino-Shoji (Biomet)
Schroeder-Boersch [8]	Arch Orthop Trauma Surg	1998	20/20	73/72.2	0/2	2/2	KSS, AKP, radiographs, reoperation	I	Duracon (HOWMEDICA)
Newman [9]	Knee	2000	42/42	72/71.2	0/5	5/5	AKP, reoperation	I	Kinematic (HOWMEDICA)
Barrack [10]	JBJS	2001	47/46	66.2/66	11/11	5/5–7	KSS, AKP, ROM, satisfaction, reoperation	I	Miller-Galante II (ZIMMER)
Wood [11]	JBJS	2002	92/128	73.7/73.7	22/22	4/4	KSS, AKP, reoperation, satisfaction, patellar tilt	I	Miller-Galante II (ZIMMER)
Mayman [12]	JOA	2003	50/50	72/68	29/10	10/10	KSS, AKP, reoperation, satisfaction	I	AMK (Depuy)
Waters [13]	JBJS	2003	243/231	69.1/69	0/2	5.3/5.3	KSS, AKP, satisfaction, ROM, radiographs	I	Press-fit condylar prosthesis (Johnson & Johnson)
Burnett [4]	CORR	2004	42/48	71/69	0/10	10/10	KSS, AKP, ROM, reoperation	I	AMK (Depuy)
Gildone [14]	Acta Orthop Belg	2005	28/28	73.6/74.6	0/2	2/2	KSS, daily activities, ROM, satisfaction, AKP	I	NexGen (ZIMMER)
Campbell [15]	JBJS	2006	46/54	71/73	42/10	10/10	WOMAC, AKP, radiographs, KSS	I	Miller-Galante II (ZIMMER)
Myles [16]	Clinical Biomechanics	2006	25/25	70/70	8/2	2/2	KSS, WOMAC, VAS, reoperation	I	LCS rotating platform knee replacement (DePuy)
Burnett [17]	CORR	2007	28/28	78/78	8/10	10/10	AKP, ROM, reoperation	I	Miller-Galante II (ZIMMER)
Smith [18]	JBJS	2008	73/86	71.9/71.2	7/4	4/4	KSS, AKP, satisfaction, radiographs, reoperation	I	Profix total knee system (Smith & Nephew)
Burnett [19]	JBJS	2009	58/60	65.3/67.1	40/10	10/10	ROM, KSS, AKP, satisfaction	II	Miller-Galante II (ZIMMER)
Breeman [20]	JBJS	2011	861/854	70/70	405/5	5/5	Oxford score, SF-12, EuroQol-5d, cost-effective, reoperation	I	No mention
Beaufre [21]	BMC Research Notes	2012	21/17	64.9/62	15/15	10/10	WOMAC, reoperation, ROM, Rand 36 score	I	Profix total knee system
Liu [22]	Knee	2012	68/64	67.5/68	12/7	7/7	KSS, AKP, ROM, radiographs, reoperation	I	Press-fit condylar prosthesis (DePuy)
Ferguson (FB)	Knee	2014	88/88	69.8/69	13/2	2/2	Oxford score, ROM, SF-12 score, reoperation	I	Press-fit condylar prosthesis (DePuy)
Ferguson (MB)	Knee	2014	89/87	70.2/70	13/13	2/2	Oxford score, EuroQol-5d, SF-12 score, reoperation	I	No mention
Murray [24]	Health Technology Assessment	2014	816/798	70/70	824/10	10/10	Oxford score, EuroQol-5d, SF-12 score, reoperation	I	No mention
Sreehari [25]	AO	2014	75/60	68.1/65.8	0/5	5/5	KSS, AKP, ROM, reoperation	I	No mention
Identification and eligibility of relevant RCTs

We carried out a literature search using MEDLINE, Ovid and Cochrane Library databases to identify all papers published from January 2013 to May 2020 that evaluated the outcome of patients undertaking TKA with patellar resurfacing or not. Utilizing the methodology of our previously published meta-analysis, the inclusion criteria for this study included [5] (1) English publications, (2) adults undergoing primary TKA, (3) all available RCTs comparing TKAs with and without patellar resurfacing and (4) data for the ratio of reoperation, AKP, knee scores (KSS, function score, Oxford score, KOOS, VAS, Feller score), ROM, patella tilt and noise after operation such as crepitus and patients’ satisfaction. The exclusion criteria were non-English language articles, proceedings of meetings, unpublished data, non-randomized controlled studies, studies of body specimens and researches of TKA but not about patellar resurfacing. To avoid double-counting, multiple publications of the same patient population were pooled as one study. In order to avoid the loss of included literatures, we did not use advanced search strategy this time. And our search words were “patellar resurfacing”, “patellar replacement”, “total knee arthroplasty” and “total knee replacement”. The references of present meta-analysis, systematic reviews and review articles were also been searched from the databases for any missed studies. In the end, we added the 14 RCTs before 2013 in our previous study into this study.

Table 1 Characteristics of studies (Continued)

First author	Journal	Year of publication	Number of knees (RS/NRS)	Mean age (years) (RS/NRS)	Lost to follow-up (knees)	Mean years of follow-up	Outcomes	Level of evidence	Type of knee prosthesis
Roberts [26]	JOA	2015	178/172	70.2/71.3	236	10.4	reoperation	I	DePuy Sigma
Ali [27]	Acta Orthopaedica	2016	33/36	68/69	5	6	VAS, KOSS, satisfaction, reoperation	I	Triathlon CR
Aunan [28]	Acta Orthopaedica	2016	63/66	70/69	1	3	KOSS, KSS, Oxford score, VAS, satisfaction, reoperation	I	NexGen (Zimmer)
Vukadin [29]	Acta Chirurgiae Orthopaedicae	2017	30/29	68.1/66	1	2	KSS, Oxford score, reoperation	I	Unknown
Dong [30]	JOA	2018	48/48	67.7	6	3	KSS, Feller score, AKP, reoperation	I	Posterior cruciate stabilizing total knee prostheses (Smith & Nephew)
Kaseb [31]	ABJS	2018	24/26	64.8	0	0.5	KSS, AKP, WOMAC, SF-36 score, ROM, VAS, reoperation	I	Profix (Zimmer)
Ha [32]	International Orthopaedics	2019	60/60	65.2	12	5	KSS, AKP, satisfaction, reoperation	I	Stryker Scorpio NRG knee prosthesis
Kaseb [33]	ABJS	2019	29/44	68.1/65.75	0	8.68 months	KSS, KOSS	I	NexGen fixed bearing knee prosthesis (Zimmer)
Koh [34]	KSSTA	2019	49/49	70	0	5	AKP, forgotten score, ROM, WOMAC, reoperation, Feller score, radiograph	I	Posterior stabilized knee system (Lospa)
Thiengwittayaporn [35]	JOA	2019	41/39	68.2/68.2	4	1	KSS, AKP, Oxford score, ROM, patellar score, patellar tilt	I	Smith & Nephew
Raaij [36]	J Knee Surg	2020	21/21	Unknown	0	2	HSS, KSS, KOSS, reoperation	I	Unknown
Outcomes
The researchers sorted the data successively for further analysis as follows: the number of reoperation, the number of patients suffered AKP postoperative, KSS, function score, ROM, Oxford score, KOOS, VAS, Feller score, patella tilt, noise after operation and patients' satisfaction. To see the short- and long-term effects, we calculated the data in total, follow-up no more than 3 years and no less than 5 years separately.

Data extraction
Two of the authors extracted the relevant data from each article independently. And a third researcher checked the data against the original information to avoid anthropic mistakes. The extracted data included publication and patients' characteristics, length of follow-up and numbers of lost to follow-up, knee prosthesis used in TKA and clinical outcomes (AKP, ROM, KSS, Function score and so on).

Assessment of methodological quality
Included studies were independently rated for methodological quality by two of the authors. Any controversy was cross-checked and resolved by a third author to reach a final consensus. The risks of bias in included studies were assessed using the Cochrane Risk of Bias Tool (Review Manager 5.4). The items assessed were (1) random sequence generation (selection bias), (2) allocation concealment (selection bias), (3) blinding of participants and personnel (performance bias), (4) blinding of outcome assessment (detection bias), (5) incomplete outcome data (attrition bias), (6) selective reporting (reporting bias) and (7) other biases.

Statistical analysis
The software Review Manager 5.4 (Cochrane Library) was used to analyse the included data. Fixed model or random-effects model were chosen based on the heterogeneity of the studies. A P value of <0.1 and $I^2 < 25\%$ were considered suggestive of statistical heterogeneity. The mean difference and 95% confidence (95%CI) were used for continuous data (such as ROM, scores, patellar tilt), while the risk ratios and 95%CI were used for dichotomous outcomes such as reoperation and AKP.

Results
A flow chart of the recruited studies was shown in Fig. 1. Thirty-two trials [4, 6–36] assessing 6887 knees were selected for inclusion in this meta-analysis. Details on all the studies are shown in Table 1. The methodological quality is shown in Fig. 2 to see the bias risk of each study.
Reoperation
A total of 5391 knees were included when comparing the ratio of reoperation for any reason postoperative which was described in 30 studies. The funnel plot showed low publication bias of the 30 researches (Fig. 3). The risk ratio (RR) (RR = 0.63, 95%CI 0.54~0.73, P < 0.00001, Fig. 4) implied that there was a significant difference between the two groups. And the test for homogeneity was not significant (P = 0.75). We could draw a conclusion that patellar resurfacing could reduce the reoperation rate postoperative. In addition, we analysed reoperation of 10 studies with a follow-up of no more than 3 years. The test for homogeneity showed no significant difference (P = 0.72). No significant difference was found between the reoperation data of the 2 groups (RR = 0.57, 95%CI 0.26~1.25, P = 0.16, Fig. 5). Eighteen studies included data no less than 5 years. The test for homogeneity showed no significant difference (P = 0.44). A significant difference was found between the reoperation data of the 2 groups (RR = 0.62, 95%CI 0.53~0.72, P < 0.00001, Fig. 6).

Anterior knee pain
Sixteen studies included 2163 knees reported on the incidence of AKP. The risk ratio for AKP was not significant in total (RR = 0.75, 95%CI 0.49~1.14, P = 0.18, Fig. 7), while the test for homogeneity showed significant difference (P < 0.00001). Four studies reported on data ≤ 3 years (RR = 0.73, 95%CI 0.32~1.69, P = 0.46, Fig. 8), and 11 studies reported on data ≥ 5 years (RR = 0.79, 95%CI 0.43~1.43, P = 0.43, Fig. 9). All the analyses showed that there was no remarkable difference in AKP between the resurfacing group and the nonresurfacing group.

Knee Society Score
Eighteen studies included 2265 knees reported on the necessary data of KSS. The mean difference (MD) for KSS was significant in total (MD = 1.04, 95%CI 0.54~1.54, P < 0.00001, Fig. 10). And the test for homogeneity showed no significant difference (P = 0.24). Thirteen studies reported on data ≤ 3 years (MD = 0.77, 95%CI 0.08~1.47, P = 0.03, Fig. 11), and 6 studies reported on data ≥ 5 years (MD = 1.31, 95%CI 0.70~1.93, P < 0.00001, Fig. 12). All the analyses showed that there was a significant difference of KSS between the resurfacing group and the nonresurfacing group. It seemed that the patellar resurfacing group might get higher KSS scores after primary surgery.
Function score

The function score was the function component of KSS. In our study, 16 studies of 1989 knees showed a function score. There was a significant difference between the two groups in total and for ≥ 5 years, while the difference ≤ 3 years was not significant (in total MD = 1.91, 95%CI 1.06–2.77, P < 0.00001, Fig. 13; ≤ 3 years MD = 1.41, 95%CI 0.22–3.05, P = 0.09, Fig. 14; ≥ 5 years MD = 2.26, 95%CI 1.19–3.32, P < 0.00001, Fig. 15). The P value of heterogeneity was 0.22 showing low heterogeneity.

Range of motion

Six studies included 829 knees reported on necessary data of ROM. It seemed that there was no significant difference between the two groups after operation (in

Function score

- The function score was the function component of KSS.
- In our study, 16 studies of 1989 knees showed a function score.

Range of motion

- Six studies included 829 knees reported on necessary data of ROM.
- It seemed that there was no significant difference between the two groups after operation.
total MD = −0.60, 95%CI −2.27~1.08, P = 0.49, Fig. 16; ≤3 years MD = −0.33, 95%CI −2.19~1.52, P = 0.72; ≥5 years MD = −0.34, 95%CI −3.21~2.52, P < 0.81). The P value of heterogeneity was 0.45 showing low heterogeneity.

Oxford score
Six studies included 2569 knees reported on necessary data of Oxford score. It seemed that there was no significant difference between the resurfacing group and the nonresurfacing group (in total MD = −0.65, 95%CI −0.34~1.63, P = 0.20, Fig. 17; ≤3 years MD = −0.51, 95%CI −0.40~1.41, P = 0.27; ≥5 years only 2 studies).

The Knee Injury and Osteoarthritis Outcome Score
Three studies included 277 knees reported on necessary data of KOOS score. There was no significant difference between the two groups (in total MD = 2.16, 95%CI −1.91~6.23, P = 0.30, Fig. 18).
Three studies included 217 knees reported on necessary data of VAS score. There was no significant difference between the two groups (in total MD = −0.10, 95%CI −0.42~0.22, \(P = 0.55\)).

Feller score

Three studies included 274 knees reported on necessary data of Feller score. There was no significant difference between the two groups (in total MD = 0.31, 95%CI −0.8~1.43, \(P = 0.59\)).

Patellar tilt

Five studies included 444 knees reported on necessary data of patellar tilt angle. There was no significant difference between the two groups (in total MD = −0.03, 95%CI −0.36~0.30, \(P = 0.86\)).

Noise after operation

Five studies included 503 knees reported on necessary data of the appearance of noise such as clunk, crepitus and so on. There was a significant difference between the two groups (in total RR = 0.47, 95%CI 0.32~0.68, \(P < 0.00001\)). It seemed that patellar resurfacing might reduce the occurrence of noise postoperative.

Patients satisfaction

We got 10 studies of 1382 knees showing the number of patients satisfied with the operation (Fig. 19). It seemed that there was no significant difference between the two groups (in total RR = 1.24, 95%CI 0.73~2.10, \(P = 0.44\)), while the \(P\) value of heterogeneity was 0.007, which showed high heterogeneity.

Discussion

In this meta-analysis, 32 randomized controlled trials assessing 6887 knees were adopted. We analysed the data by different statistical indicators and follow-up periods (3 subgroups: in total, \(\leq 3\) years and \(\geq 5\) years). In summary, we found that there was a significant difference between the two groups in terms of reoperation (in total and \(\geq 5\) years), KSS (all 3 subgroups), function score (in total and \(\geq 5\) years) and noise postoperation, while no significant difference was found between the resurfacing and the nonresurfacing group in the following items: reoperation (\(\leq 3\) years), AKP (all 3 subgroups), function score (\(\leq 3\) years), ROM,
Oxford score, KOOS, VAS, Feller score, patellar tilt and the patients’ satisfaction. We could conclude that patellar resurfacing might reduce the occurrence of reoperation and noise after surgery, as well as increase the KSS and function score. Especially, the noise syndrome, such as clunk, crepitus and so on, was seen in some of the latest studies. Ha et al. and we got the same conclusion that patellar resurfacing might reduce the ratio of noise after primary TKA surgery [32], while the relationship between noise and other scores was not clear. The results of reoperation and function score for ≤ 3 years were not significantly different in our study. This indicated that the follow-up periods might affect the outcome indicators. Nevertheless, our study showed that patellar resurfacing might not influence the results such as AKP, ROM, Oxford score, KOOS, VAS, Feller score, patellar tilt and the patients’ satisfaction compared with nonresurfacing. Especially for the AKP result, the findings of our study are close to that in Teel et al.’s meta-analysis and different from Migliorini et al.’s study [37, 38].

During the implementation process of our study, we searched a great many literatures comparing patellar resurfacing versus nonresurfacing in TKA. Though the non-RCTs were excluded from this study, we still read the literature as well as previous meta-analysis and systemic reviews thoroughly. Twenty-two non-RCTs [39–60] and 15 meta-analysis or systemic reviews [2, 5, 37, 38, 61–71] were singled out ever since 2013. In the non-RCT studies, nine stated that there was no difference between patellar resurfacing and nonresurfacing in terms of patellar scoring, patellar function, patellar AKP and patellar noise. Our study is consistent with the results of non-RCT studies but inconsistent with those of meta-analysis and systemic reviews.
nonresurfacing. Twelve preferred patellar resurfacing for the reasons such as better results in mid-term evaluation, lower rate of reoperation, lower incidence of noise, lower complication rate, higher patients satisfaction, lower AKP rate and higher ROM result, while in Crawford et al.’s study [58], it seemed that TKA with patellar resurfacing had a higher incidence of manipulation under anaesthesia than nonresurfacing. Coory et al. [57] conducted a study of 570,735 TKAs followed up for 17 years from 1999 to 2017. They found that patellar resurfacing might reduce the rate of revision for both MS and PS knees, and the rate of reoperation for MS knees was the lowest. Especially, in Feng et al.’s two studies [41, 59] of Chinese people, there was no significant difference between resurfacing and nonresurfacing. We speculated that the race might influence the outcomes of patellar resurfacing. Furthermore, amongst the 15 meta-analysis or systemic reviews, the studies of Cheng et al. [61], Jonbergen et al. [62] and Grassi et al. [70] indicated that patellar resurfacing had no advantages with nonresurfacing. Petersen et al. [64] believed that the functional causes of AKP might be distinguished from mechanical causes, while Arirachakan et al. [67] indicated that patellar denervation might improve the knee function but does not improve pain compared with patellar resurfacing. In the researches of Longo et al. [4], Tang et al. [71], Migliorini et al. [38] and Teel et al. [37], patellar resurfacing got the advantage in the following aspects: better KSS and function scores and lower reoperation rate. These 4 studies were carried out in the last 3 years including the latest RCTs preceding 2018. It showed the necessity for high-quality RCT research.

Some limitations of this study should be acknowledged: (1) data of RCTs were not fully reported; (2) the sample size and follow-up time were not close in different RCTs, which might cause heterogeneity; (3) some studies did not provide standard deviation, and this might cause the loose of some studies; (4) still we could not get the full text of few RCTs, which might cause bias; (5) the kind of knee prosthesis and

Fig. 12 KSS (≥ 5 years)

Fig. 13 Function score in total
the race of the patients may affect the clinical outcomes as well as the result of this meta-analysis; and (6) the skills of surgeons might also influence the outcomes of each group, so a standard to assess the surgery skills was needed to avoid surgeon bias.

Compared with the above literatures, our study analysed more outcome indicators, included the latest RCTs until May 2020 and got updated conclusions. In addition, we suggested further research directions as follows: (1) more high-quality RCTs of large sample size and long-term follow-up (such as 5–10 years or even longer), (2) more RCTs about the influence of TKA prosthetic type on outcomes of patellar resurfacing, (3) more studies about different patellar resurfacing outcomes of osteoarthritis and rheumatoid arthritis, (4) RCTs about the influence of different grade of patellofemoral arthritis, (5) RCTs focus on the relationship between radiograph measurement (such as angles) and outcome indicators (such as complication, scores and pain), and (6) studies about different race.
Fig. 17 Oxford score in total

Study or Subgroup	Resurfacing Mean SD Total	Nonresurfacing Mean SD Total	Mean Difference Mean Difference IV	Year
Breman S 2011	35.01 5.55 66 34.57 10.25	846 34.4% 0.44 [0.09, 0.57] 2011		
Ferguson KB(FB) 2014	19.5 9.3 66 68 18.1 10.6	68 7.5% 1.40 [0.97, 4.77] 2014		
Ferguson KB(JB) 2014	19.2 9.3 58 17 8.4 60	60 8.2% 2.20 [1.00, 5.43] 2014		
Murray DW 2014	33.6 11.3 418 33.5 10.8 390	24.8% 0.10 [0.43, 1.63] 2014		
Aunan E 2016	17 6 63 19 7 66	14.7% -1.00 [2.25, 1.25] 2016		
Thangwittayaporn S 2019	50.4 5.4 41 47.2 7 39	10.3% 3.20 [0.40, 6.00] 2019		
Total (95% CI)	1259 100.0% 0.65 [-0.34, 1.63] 1310			

Heterogeneity: $\tau^2 = 0.41; \chi^2 = 6.90, df = 5 (P = 0.23); I^2 = 28$

Test for overall effect: $Z = 1.28 (P = 0.20)$

Fig. 18 KOOS in total

Study or Subgroup	Resurfacing Mean SD Total	Nonresurfacing Mean SD Total	Mean Difference Mean Difference IV	Year
Ali A 2016	87 17 33 89 13 36	32.0% -2.00 [-9.19, 5.19] 2016		
Aunan E 2016	88 15 63 93 18 66	50.8% 5.00 [0.71, 10.71] 2016		
Kasemp MH 2019	71.24 21.17 29 89.71 20.57	44 17.2% 1.53 [0.20, 11.34] 2019		
Total (95% CI)	125 100.0% 2.16 [-1.91, 6.23] 146			

Heterogeneity: $\chi^2 = 2.25, df = 2 (P = 0.32); I^2 = 11$

Test for overall effect: $Z = 1.04 (P = 0.30)$

Fig. 19 Satisfaction in total

Study or Subgroup	Resurfacing Events Total	Nonresurfacing Events Total	Weight	Odds Ratio M.H. Random, 95% CI	Year
Barrack R 2001	43 47 43 46 7.1% 0.75 [0.16, 3.55] 2001				
Mayman D 2003	50 50 48 50 2.6% 5.21 [0.24, 11.24] 2003				
Waters TS 2003	204 229 186 206 14.7% 0.89 [0.47, 1.63] 2003				
Burnett R 2004	34 42 30 48 10.6% 1.12 [0.40, 3.16] 2004				
Smith AJ 2008	52 71 71 86 13.3% 0.58 [0.27, 1.24] 2008				
Liu ZT 2012	56 68 54 64 11.9% 0.89 [0.34, 2.17] 2012				
Ali A 2016	31 33 34 36 5.0% 0.91 [0.12, 6.87] 2016				
Dong YL 2018	13 48 10 48 11.7% 1.41 [0.55, 3.83] 2018				
Ho C 2019	28 60 4 60 10.0% 12.25 [3.84, 38.08] 2019				
Koh UJ 2019	22 45 22 45 12.6% 1.00 [0.44, 2.29] 2019				
Total (95% CI)	693 689 100.0% 1.24 [0.73, 2.10] 533				

Total events: 533 510
Heterogeneity: $\tau^2 = 0.40; \chi^2 = 22.79, df = 9 (P = 0.007); I^2 = 61$

Test for overall effect: $Z = 0.76 (P = 0.44)$
Conclusion

This study is an update meta-analysis of our previous study. We included more high-quality RCTs and analyse more outcomes. Subgroup analysis of different follow-up time is conducted. In conclusion, we find that patellar resurfacing could reduce the occurrence of reoperation and noise after surgery, as well as increase the KSS and function score, while it may not influence the results such as AKP, ROM, Oxford score, KOOS, VAS, Feller score, patellar tilt and the patients’ satisfaction. The result is different from our previous meta-analysis. As a result of this new study, we prefer patellar resurfacing in TKA, while, still, more high-quality RCTs are expected eagerly.

Abbreviations

TKA: Total knee arthroplasty; KSS: Knee society score; AKP: Anterior knee pain; RCTs: Randomized controlled trials; KOOS: Knee injury and osteoarthritis outcome score; VAS: Visual analogue score

Acknowledgements

Ye Hong (13962780166@139.com) and Shiran Zhou (13615222133@139.com) also contributed to our study for their work on literature retrieval.

Authors’ contributions

1. Objective: Kai Chen. 2. Data sources: Lidong Li and Zhigang Chen. 3. Study selection: Haidong Cui and Shujun Lv. 4. Data extraction: Kai Chen and Xiaoyu Dai. 5. Data synthesis: Zhigang Chen and Haidong Cui. 6. Conclusions: Lidong Li and Shujun Lv. 7. Wrote the manuscript: Kai Chen and Xiaoyu Dai. The author(s) read and approved the final manuscript.

Authors’ information

See on the title page.

Funding

Scientific Research Project of the Nantong Municipal Science and Technology Bureau (MSZ21024). Scientific Research Project of Nantong Health Bureau (QBS2019013). Support for the literature search.

Availability of data and materials

Yes

Ethics approval and consent to participate

Not applicable

Consent for publication

Yes

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Orthopedic Surgery, Hai’an People’s Hospital, Zhongba Road 17, Hai’an, Nantong 226000, Jiangsu, People’s Republic of China.

2. Department of Orthopedic Surgery, The First People’s Hospital of Changzhou Affiliated to Soochow University, Jujian Road 185, Changzhou 213000, Jiangsu, People’s Republic of China.

Received: 14 October 2020 Accepted: 25 December 2020

Published online: 25 January 2021

References

1. Hou C, Chu X, Zhang B, Li J, Dong Y, Zhao Y. Patellar resurfacing versus patellar nonresurfacing in primary total knee arthroplasty: a protocol for systematic review and meta analysis. Medicine (Baltimore). 2020;99(21): e20097. https://doi.org/10.1097/md.0000000000020097 PubMed PMID: 32481276.

2. Calvisi V, Camilli R, Gupperelli S. Resurfacing versus nonresurfacing the patella in total knee arthroplasty: a critical appraisal of the available evidence. Arch Orthop Trauma Surg. 2009;129(9):1261–70. https://doi.org/10.1007/s00402-008-0801-9 Epub 2009/01/07 PubMed PMID: 19125261.

3. Burnett RS, Haydon CM, Ronaback CH, Bourne RB. The John Insall Award: patella resurfacing versus nonresurfacing in total knee arthroplasty. Clin Orthop Relat Res 2004;428:12-25. doi: https://doi.org/10.1097/01.blo.0000148594.05443.a3.

4. Longo UG, Ciuffreda M, Mannering N, D’Andrea V, Cimmino M, Denaro V. Patellar resurfacing in total knee arthroplasty: systematic review and meta-analysis. J Arthroplasty. 2018;33(2):1620–32. https://doi.org/10.1016/j.arth.2017.08.041 Epub 2017/10/17 PubMed PMID: 29328651.

5. Chen X, Li G, Fu D, Yuan C, Zhang Q, Cai Z. Patellar resurfacing versus nonresurfacing in total knee arthroplasty: a meta-analysis of randomised controlled trials. Int Orthop. 2013;37(6):1075–83. https://doi.org/10.1007/s00402-013-1686-9 Epub 2013/03/27 PubMed PMID: 23529719; PubMed Central PMCID: PMCPMC3664152.

6. Feller JA, Bartlett RJ, Lang DM. Patellar resurfacing versus retention in total knee arthroplasty. J Bone Joint Surg Am. 1996;78(2):226–8 Epub 1996/03/01. PubMed PMID: 8666630.

7. Kajino A, Yoshino S, Kameyama Y, Kohda M, Nagashima S. Comparison of the results of bilateral total knee arthroplasty with and without patellar replacement for rheumatoid arthritis. A follow-up note. J Bone Joint Surg Am. 1997;79(4):570–4 Epub 1997/04/01 PubMed PMID: 9114103.

8. Schroeder-Boersch H, Scheller G, Fischer J, Jari L. Advantages of patellar resurfacing in total knee arthroplasty. Two-year results of a prospective randomised study. Arch Orthop Trauma Surg. 1998;118(1-2):73–8. https://doi.org/10.1007/BF00703446 Epub 1998/02/11 PubMed PMID: 9457343.

9. Newman JH, Ackroyd CE, Shah NA, Karachalios T. Should the patella be resurfaced during total knee replacement? Knee. 2000;7(1):17–23 Epub 2000.

10. Barrack RL, Bertot AJ, Wolfe MW, Waldman DA, Millicol D, Myers L. Patellar resurfacing in total knee arthroplasty: A prospective, randomized, double-blind study with five to seven years of follow-up. J Bone Joint Surg Am. 2001;83(9):1376–81 Epub 2001/09/25 PubMed PMID: 11568201.

11. Wood DJ, Smith AJ, Cloppoy D, White B, Brankov B, Bulsara MK. Patellar resurfacing in total knee arthroplasty: a prospective randomised trial. J Bone Joint Joint Surg Am. 2003;85(2):187–93. https://doi.org/10.1302/00004623-20020200-00004 Epub 2002/02/28 PubMed PMID: 11861723.

12. Mayman D, Bourne RB, Ronaback CH, Vaz M, Kramer J. Resurfacing versus not resurfacing the patella in total knee arthroplasty: J Arthroplasty. 2003; 18(5):541–5. https://doi.org/10.1016/S0883-5403(03)00150-5.

13. Waters TS, Bentley G. Patellar resurfacing in total knee arthroplasty: a prospective, randomized study. J Bone Joint Surg Am. 2003;85(2):212–7. https://doi.org/10.2106/00004623-20030200-00005 Epub 2003/02/07 PubMed PMID: 12571296.

14. Gidone A, Manfredini M, Biscione R, Faccini R. Patella resurfacing in posterior stabilised total knee arthroplasty: a follow-up study in 56 patients. Acta Orthop Belg. 2005;71(4):445–51 Epub 2005/09/28 PubMed PMID: 16185000.

15. Campbell DG, Duncan WW, Ashworth M, Mintz A, Stirling J, Wakefield L, et al. Patellar resurfacing in total knee replacement: a ten-year randomised prospective trial. J Bone Joint Surg Br. 2006;88(6):734–9. https://doi.org/10.1302/0301-620X.BJSM.2006.88.6-734 Epub 2006/05/25 PubMed PMID: 16720765.

16. Myles CM, Rowe PJ, Newton RW, Burnett R. The effect of patella resurfacing in total knee arthroplasty on functional range of movement measured by flexible electrogoniometry. Clin Biomech (Bristol, Avon). 2000;15(7):733–9. https://doi.org/10.1016/S0268-0033(00)00010-X.

17. Burnett RS, Boone JL, McCarthy KP, Rosenzweig S, Barrack RL. A prospective randomized clinical trial of patellar resurfacing and nonresurfacing in bilateral TKA. Clin Orthop Relat Res. 2007;464:65–72. https://doi.org/10.1097/BLO.0b013e18127f833b Epub 2007/06/26 PubMed PMID: 17589364.

18. Smith AJ, Wood DJ, Li MG. Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the prolix total knee system. J Bone Joint Surg Br. 2008;90(1):43–9. https://doi.org/10.1302/ 0301-620X.90B1.18986 Epub 2007/12/28 PubMed PMID: 18160498.

19. Burnett RS, Boone JL, Rosenzweig SD, Steiger-May K, Barrack RL. Patellar resurfacing compared with nonresurfacing in total knee arthroplasty. A concise randomized trial. J Bone Joint Surg Am. 2009;91(11): 2562–7. https://doi.org/10.2106/JBJS.H010109 Epub 2009/11/04 PubMed PMID: 19884428.
20. Breeman S, Campbell M, Dakin H, Fiddian N, Fitzpatrick R, Grant A, et al. Patellar resurfacing in total knee replacement: five-year clinical and economic results of a large randomized controlled trial. J Bone Joint Surg Am. 2011;93(16):1473–81. https://doi.org/10.2106/JBJS.I.01775 Epub 2011/12/29. PubMed PMID: 22204002.

21. Beaufre L, Secrestan C, Johnston DW, Lavio G. A randomized controlled trial comparing patellar retention versus patellar resurfacing in primary total knee arthroplasty. 5-10 year follow-up. BCM Res Notes. 2012;25:73. https://doi.org/10.1186/1756-0500-5-73 Epub 2012/06/09 PubMed PMID: 22676495; PubMed Central PMCID: PMC3532201.

22. Liu ZT, Fu PL, Wu HS, Zhu Y. Patellar reshaping versus resurfacing in total knee arthroplasty - results of a randomized prospective trial at a minimum of 7 years’ follow-up. Knee. 2012;19(3):198–202. https://doi.org/10.1016/j. kene.2011.03.004 Epub 2011/04/26 PubMed PMID: 21515055.

23. Ferguson KB, Bailey O, Anthony I, James PJ, Stother IG. MJGB. A prospective randomised study comparing rotating platform and fixed bearing total knee arthroplasty in a cruciate substituting design–outcomes at two year follow-up. Knee. 2014;21(1):151–5. https://doi.org/10.1016/j.kene.2013.09.007 Epub 2014/10/23 PubMed PMID: 24714608.

24. Murray DW, MacLennan GS, Breeman S, Dakin HA, Johnston L, Campbell MK, et al. A randomised controlled trial of the clinical effectiveness and cost-effectiveness of different knee prostheses: the Knee Arthroplasty Trial (KAT). Health Technol Assess. 2014;18(19):1-13, vii-viii. doi: https://doi.org/10.3310/hta18190. Epub 2014/10/01 PubMed PMID: 25004040; PubMed Central PMCID: PMCPMC4812078.

25. Roberts DW, Hayes TD, Tate CT, Lesko JP. Selective patellar resurfacing in total knee arthroplasty: five-year clinical and economic results of a large randomized controlled trial. J Bone Joint Surg Am. 2011;93(16):1473–81. https://doi.org/10.2106/JBJS.I.01775 Epub 2011/12/29. PubMed PMID: 22204002.

26. Ali A, Lindstrand A, Nilsdotter A, Sundberg M. Similar patient-reported outcomes and postoperative satisfaction of patients and patellar crepitus. Arch Bone Jt Surg. 2019;7(5):441–8. https://doi.org/10.1016/j.knee.2017.09.050 Epub 2017/10/28 PubMed PMID: 29074323.
68. Findlay I, Wong F, Smith C, Back D, Davies A, Ajuied A. Non-resurfacing techniques in the management of the patella at total knee arthroplasty: a systematic review and meta-analysis. Knee. 2016;23(2):191–7. https://doi.org/10.1016/j.knee.2015.10.012 Epub 2016/02/06 PubMed PMID: 26846465.

69. van Jonbergen HP, Boeddda AV, van Raaij JJ. Patient satisfaction and functional outcomes following secondary patellar resurfacing. Orthopedics. 2016;39(5):e850–6. https://doi.org/10.3928/01477447-20160509-05 Epub 2016/05/14 PubMed PMID: 27172365.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.