(q, t)-hook formula for Birds and Banners

Masao ISHIKAWA

1Department of Mathematics, Faculty of Education, University of the Ryukyus, Nishihara, Okinawa
901-0213, Japan, ishikawa@edu.u-ryukyu.ac.jp

2010 Mathematics Subject Classification : Primary 05A52 Secondary 05A10, 06A07,
33D15, 33D45.

Keywords : Multivariate hook formula, Macdonald polynomials, d-complete posets, Gasper’s identity
for VWP-series 12W11.

Abstract

We study Okada’s conjecture on (q, t)-hook formula of general d-complete posets. Proctor
classified d-complete posets into 15 irreducible ones. We try to give a case-by-case proof of
Okada’s (q, t)-hook formula conjecture using the symmetric functions. Here we give a proof of
the conjecture for birds and banners in which we use Gasper’s identity for VWP-series 12W11.

1 Introduction and the main results

The aim of this paper is to prove Okada’s multivariate hook formula conjecture for birds and
banners, i.e., Theorem 1.9. His conjecture is for general d-complete posets, and here we give
a partial proof for birds and banners only. Proctor [9] has classified d-complete posets into 15
irreducible classes. Okada [8] has made his conjecture for general d-complete posets. He has proven
two cases in his paper and we settle two cases in this paper so that the rest 11 classes are still
left. Even though we do a case-by-case proof, we need the Macdonald polynomials and Gasper’s
identity for very well-poised series 12W11 in our proof. This paper is composed as follows. In this
section we recall the fundamental concepts on d-complete partitions, and then state our main result,
i.e., Theorem 1.9. To state Okada’s conjecture we need the terminologies on d-complete posets. In
Section 2 we recall the Macdonald polynomials. In Section 3 we rewrite Okada’s conjecture by the
Macdonald polynomials and use the fact that the Macdonald polynomials are basis for the ring of
the symmetric functions. In Section 4 we prove the Macdonald polynomial identities obtained in
Section 3 using Gasper’s identity.

Let N (resp. Z) be the set of nonnegative integers (resp. integers). Throughout this paper we
use the standard notation for q-series (see [1, 3, 4, 5]):

\[(a; q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k), \quad (a; q)_n = \frac{(a; q)_\infty}{(aq^n; q)_\infty}\]

for any integer n. Usually (a; q)_n is called the q-shifted factorial, and we frequently use the compact
notation:

\[(a_1, a_2, \ldots, a_r; q)_n = (a_1; q)_n(a_2; q)_n \cdots (a_r; q)_n.\]

The \(r+1\phi_r\) basic hypergeometric series is defined by

\[r+1\phi_r \left(\frac{a_1, a_2, \ldots, a_r+1 ; q, z}{b_1, \ldots, b_r} \right) = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \ldots, a_r+1; q)_n}{(q, b_1, \ldots, b_r; q)_n} z^n. \quad (1.1)\]
A basic hypergeometric series \(r+1 \phi_r \) is said to be balanced if it satisfies \(qa_1 \cdots a_{r+1} = b_1 \cdots b_r \) and \(z = q \), well-poised if it satisfies \(qa_1 = a_2 b_1 = \cdots = a_{r+1} b_r \), very well-poised if it is well-poised and satisfies \(b_1 = a_1^\frac{q}{a} \) and \(b_2 = -a_1^\frac{q}{a} \) (see [3] §2.1). If \(r+1 \phi_r \) is very well-poised, we use the notation

\[
r+1 W_r (a_1; a_4, \ldots, a_{r+1}; q, z) = r+1 \phi_r \left[\frac{a_1, qa_1^\frac{q}{a}, \cdots, a_{r+1}^\frac{q}{a}}{a_1^\frac{q}{a}, qa_1, \cdots, a_{r+1}^\frac{q}{a}} ; q, z \right].
\]

Proposition 1.1. Gasper’s identity ([2, p.1065, (3.2)], [3, pp.250, Ex.8.15]) reads as follows:

\[
\begin{align*}
4 \phi_3 \left[\frac{a, b, c, d}{bq/a, cq/a, dq/a} ; q^2/a^2 \right] &= \frac{(a/d, bq/d, cq/d, ac/d; q)_\infty}{(q/d, ab/d, ac/d, bcq/d; q)_\infty} \\
\times 12 W_1 \left[\frac{bc/d}{ad}; \left(\frac{bcq}{ad} \right)^\frac{1}{2}, -a, \frac{bc}{d}, -q \left(\frac{bc}{d} \right)^\frac{1}{2}, -q \left(\frac{bc}{d} \right) \right],
\end{align*}
\]

where at least one of \(a, b, c \) is of the form \(q^{-n} (n = 0, 1, \ldots) \).

We use the notation in [8]. For nonnegative integers \(n \) and \(m \) we write

\[
f(n; m) = f_{q,t}(n; m) = \frac{(t^{m+1}; q)_n}{(t^m; q)_n},
\]

and

\[
F(x) = F(x; q, t) = \frac{(tx; q)_\infty}{(x; q)_\infty},
\]

where \(q \) and \(t \) are parameters and \(x \) is a variable (see [8] (5)(6)). Hereafter we use the convention that \(f_{q,t}(n; m) = 0 \) for a negative integer \(n < 0 \).

We use the notation in [7] [12] for partitions. Let \(\lambda = (\lambda_1, \lambda_2, \ldots) \) be a partition, i.e., \(\lambda_1 \geq \lambda_2 \geq \ldots \) with finitely many \(\lambda_i \) unequal to zero. The length and weight of \(\lambda \), denoted by \(\ell(\lambda) \) and \(|\lambda| \), are the number and sum of the non-zero \(\lambda_i \) respectively. When \(|\lambda| = N \) we say that \(\lambda \) is a partition of \(N \), and the unique partition of zero is denoted by \(\emptyset \). The multiplicity of the part \(i \) in the partition \(\lambda \) is denoted by \(m_i(\lambda) \). We identify a partition with its diagram (Ferrers graph)

\[
D(\lambda) = \{(i, j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i\}. \tag{1.3}
\]

The conjugate \(\lambda' \) of \(\lambda \) is the partition obtained by reflecting the diagram of \(\lambda \) in the main diagonal. A partition is said to be strict if we have strict inequalities \(\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0 \) with \(r = \ell(\lambda) \). If \(\lambda \) is a strict partition, then its shifted diagram is defined by

\[
S(\lambda) = \{(i, j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1\}. \tag{1.4}
\]

Hereafter we may use the same symbol \(\lambda \) to represent its diagram (or shifted diagram).

We use standard notation and terminology of [12] Chapter 3 related to posets. We write \(x < y \) if \(x \) is covered by \(y \), i.e., \(x < y \) and there is no \(z \in P \) such that \(x < z < y \). A Hasse diagram is a diagram in which one represents each element of \(P \) as a vertex in the plane and draws an edge that goes upward from \(x \) to \(y \) whenever \(y \) covers \(x \).

Definition 1.2. ([11], [12] §3.15]) Let \(P \) be a poset. A \(P \)-partition is a map \(\pi : P \to \mathbb{N} \) satisfying

\[
x \leq y \text{ in } P \quad \implies \quad \pi(x) \geq \pi(y) \text{ in } \mathbb{N}. \tag{1.5}
\]

Let \(\mathcal{P}(P) \) denote the set of \(P \)-partitions.
First, we review the definition and some properties of d-complete posets. (See [9, 10].) For $k \geq 3$, we denote by $d_k(1)$ the poset consisting of $2k - 2$ elements, called double-tailed diamond poset, with the Hasse diagram depicted in Figure 1. The two incomparable elements are called the sides, the $k - 2$ elements above them are called neck elements, and the maximum and minimum elements are called top and bottom respectively. If $k = 3$ then we call $d_3(1)$ a diamond. Let P be a poset. An interval $[w, v] = \{x \in P : w \leq x \leq v\}$ is called a d_k-interval if it is isomorphic to $d_k(1)$. A d_k-interval consists of three elements x, y and w such that w is covered by both x and y.

A poset P is d-complete if it satisfies the following three conditions for every $k \geq 3$:

(D1) If I is a d_k-interval, then there exists an element v such that v covers the maximal elements of I and $I \cup \{v\}$ is a d_k-interval.

(D2) If $I = [w, v]$ is a d_k-interval and the top v covers u in P, then $u \in I$.

(D3) There are no d_k-intervals which differ only in the minimal elements.

We quote a proposition due to Proctor [9, Proposition in §3] (also see [8, Proposition 4.1]):

Proposition 1.3. ([9, Proposition in §3]) Let P be a d-complete poset. Suppose that P is connected, i.e., the Hasse diagram of P is connected. Then we have

(a) P has a unique maximal element v_0.

(b) For each $v \in P$, every saturated chain from v to the maximum element v_0 has the same length.

Hence P admits a rank function $r : P \to \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

A rooted tree is a poset which has a unique maximal element, and is such that each non-maximal element is covered by exactly one other element. Let P be a poset with a unique maximal element. The top tree T of P is the filter (i.e., $x \in T$ and $y \geq x$ implies $y \in T$) of P, whose vertex set consists of all elements $x \in P$ such that every $y \geq x$ is covered by at most one other element of P. T is clearly a rooted tree and an element of T is called top tree element. Afterwards we use a particular kind of rooted tree. Let $f \geq 0$ and $g, h \geq 0$ be integers. The rooted tree $Y(f; g, h)$ consists of one branch element above which a chain of f elements has been adjoined and below which two non-adjacent chains with g and h elements, respectively.

Let P be a connected d-complete poset with top tree T. An element $x \in P$ is said to be acyclic if $x \in T$ and it is not in the neck of any d_k-interval for any $k \geq 3$. An element of P is said to be cyclic if it is not acyclic. Let Q be a d-complete poset containing an acyclic element y. Let
Then \(P \) be a connected \(d \)-complete poset. By Proposition 1.3 (a), let \(x \) denote the unique maximal element of \(P \). Then the slant sum of \(Q \) with \(P \) at \(y \), denoted \(Q^y \setminus x P \), is the poset formed by creating a covering relation \(x < y \). A \(d \)-complete poset \(P \) is slant irreducible if it is connected and it cannot be expressed as a slant sum of two non-empty \(d \)-complete posets. Suppose that \(P \) is a connected \(d \)-complete poset with top tree \(T \). An edge \(x < y \) of \(P \) is a slant edge if \(x, y \in T \) and \(y \) is acyclic. In \([9]\) Proctor proves \(P \) is slant irreducible if and only if it contains no slant edges. Also, \(P \) is slant irreducible if and only if every acyclic element is a minimal element of its top tree. \([9]\) Proposition C of §4) Given any connected \(d \)-complete poset \(P \), first locate all of its slant edges. These may be erased in any order to produce a collection \(P_1, P_2, \ldots \) of uniquely determined smaller non-adjacent connected \(d \)-complete posets. No new slant edges are created, and so each of \(P_1, P_2, \ldots \) are slant irreducible. We say that \(P_1, P_2, \ldots \) are the slant irreducible components of \(P \). If \(P \) is an irreducible component, then its top tree \(T \) is of the form \(Y(f; g, h) \) for some \(f \geq 0 \) and \(h \geq g \geq 1 \) \([9]\) Theorem of §5). In the paper he establish the following theorem, which describe the structure of any connected \(d \)-complete poset.

Proposition 1.4. (Proctor \([9]\) Theorem in §4) Let \(P \) be a connected \(d \)-complete poset. It may be uniquely decomposed into a slant sum of one element posets and irreducible components. The top tree of \(P \) is an analogous slant sum of the top trees of the irreducible components.

In §7 of \([9]\) Proctor defines 15 disjoint classes of irreducible components \(C_1, \ldots , C_{15} \) and have shown that these 15 disjoint classes exhaust the set of all irreducible components. For the list of 15 classes of irreducible \(d \)-complete posets see \([9]\) Table 1. The diagram \([1.3]\) of an ordinary partition \(\lambda \) or the shifted diagram \([1.4]\) of a shifted partition \(\lambda \) is regarded as a poset by defining its order structure as

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

By this order the poset represented by a diagram \(P = D(\lambda) \) is called a shape with its top tree \(T = Y(f; g, h) \) where \(f = 0 \), \(g = \ell(\lambda) \) and \(h = \ell(\lambda') \). We use \(C_1 \) to express the class of shapes which is a class of irreducible \(d \)-complete posets defined in \([9]\).

Another important class \(C_2 \) is the set of posets \(P = S(\alpha) \) of shifted diagrams for strict partitions \(\alpha \), which is called shifted shapes with its top tree \(T = Y(f; g, h) \) where \(f = g = 1 \) and \(h = \ell(\alpha) \). Its Hasse diagram is designated by Figure 2 in which the first row has \(\alpha_1 \) vertices, the second row \(\alpha_2 \) vertices and so on. When depicting these posets as a Hasse diagram, we use the convention that a northwest vertex is larger than another in southeast. Here the larger dots and the heavier edges indicate the top tree. For later use we denote by \(P = P_2(\alpha) \) the Shifted shape associated with a strict partition \(\alpha \). If \(P = P_2(\alpha) \) is the shifted shape associated with a strict partition \(\alpha \),

then \(P \)-partition

\[
\pi = (\pi_{ij})_{(i,j) \in S(\alpha)}
\]

satisfies

\[
\pi_{ij} \leq \pi_{i+1,j}, \quad \pi_{ij} \leq \pi_{i,j+1},
\]

\[
\pi = (\pi_{ij})_{(i,j) \in S(\alpha)}
\]

satisfies

\[
\pi_{ij} \leq \pi_{i+1,j}, \quad \pi_{ij} \leq \pi_{i,j+1},
\]

Figure 2: Shifted shapes \(C_2 \)

4
whenever the both sides defined. For example, Figure 3 is a P-partition for shifted shape $(8, 5, 2, 1)$.

In this paper we mainly consider only two classes, i.e., birds C_3 (Figure 4) and banners C_6 (Figure 6). Let $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions such that $\alpha_1 > \alpha_2 > 0$ and $\beta_1 > \beta_2 > 0$. Define the bird $P = P_3(\alpha, \beta; f)$ by

$$P = P_H \cup P_R \cup P_L \cup P_T$$

where

$P_H = \{(1, j) : -f + 1 \leq j \leq 1\}$,

$P_R = \{(i, j) : i \leq j \leq \alpha_i + i - 1 (i = 1, 2)\}$,

$P_L = \{(i, j) : j \leq i \leq \beta_j + j - 1 (j = 1, 2)\}$,

$P_T = \{(i, i) : 2 \leq i \leq f + 2\}$

as a set and we regard it as a poset by defining its order structure (1.6) if and only if the both of (i_1, j_1) and (i_2, j_2) are in $P_H \cup P_R \cup P_L$ or in P_T (see [9, Table 1 and Figure 5.3]). We call P_H the head, P_T the tail, P_R (resp. P_L) the right (resp. left) wing of P. The Hasse diagram of a bird is as in Figure 4. Strictly speaking, we have to impose the condition $\alpha_1 = \alpha_2 + 1$ and $\beta_1 = \beta_2 + 1$ to let P be slant irreducible, but here we don’t need this condition. For example, the left-picture in Figure 5 stands for $P = P_3((4, 3), (4, 2); 2)$. We have the chain $[v, v_2]$ (resp. $[w_2, w]$), which is the head (resp. tail) of P. Recall that a P-partition π satisfies the condition (1.5). When $P = P_3(\alpha, \beta; f)$, we associate the quadruple $(\sigma, \tau; \rho, \theta)$ with π, where

$\sigma = (\sigma_{i,j})_{(i,j) \in P_R}$, \quad $\tau = (\tau_{i,j})_{(j,i) \in P_L}$, \quad $\rho = (\rho_i)_{i=0,...,f}$, \quad $\theta = (\theta_i)_{i=0,...,f}$

with

$\sigma_{i,j} = \pi(i, j)$ \quad for $(i, j) \in P_R$, \quad $\tau_{i,j} = \pi(j, i)$ \quad for $(i, j) \in P_L$, \quad $\rho_{i+1} = \pi(1, i)$ \quad for $(1, i) \in P_H$, \quad $\theta_{i-2} = \pi(i, i)$ \quad for $(i, i) \in P_T$. (1.9)
Figure 5: Bird $P = P_3((4,3),(3,2);2)$ and banner $P = P_6((9,6,3,2);2)$

Hence we use the convention that $\rho_0 = \sigma_{11} = \tau_{11}$ and $\theta_0 = \sigma_{22} = \tau_{22}$. We write $\pi = (\sigma,\tau;\rho,\theta)$ hereafter. If $P = P_3((4,3),(4,2);2)$ then π is as the left picture of Figure 5.

Let $\alpha = (\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ be a strict partition such that $\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 > 0$, and let $f \geq 2$ be a positive integer. Let P be the set $P = P_H \cup P_W \cup P_T$ of lattice points in \mathbb{Z}^2, where

\begin{align*}
P_H &= \{(1,j) : -f + 2 \leq j \leq 1\}, \\
P_W &= \{(i,j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1,2,3,4)\}, \\
P_T &= \{(i,3) : 3 \leq i \leq f + 2\}.
\end{align*}

We regard P as a poset by defining the order relation (1.6) if both of (i_1,j_1) and (i_2,j_2) are in $P_H \cup P_W$ or in P_T, and call it a banner (see [9, Table 1 and Figure 5.6]). The Hasse diagram of a bird is as in Figure 4 in general. Strictly speaking again, we have to impose the condition $\alpha_1 = \alpha_2 + 1$ to let P be slant irreducible, but we don’t need this condition here. We call P_H the head, P_T the tail, and P_W the wing of P. We use the symbol $P = P_6(\alpha;f)$ to mean the banner associated with a strict partition α and a positive integer f. The Hasse diagram of a banner is given in Figure 6. For example, the right picture in Figure 5 stands for $P = P_6((9,6,3,2);2)$. If

\begin{align*}
\sigma_{i,j} &= \pi(i,j) \quad \text{for} \ (i,j) \in P_W, \\
\rho_i &= \pi(1,-i+2) \quad \text{for} \ i = 1,\ldots,f, \\
\theta_i &= \pi(i+2,3) \quad \text{for} \ i = 1,\ldots,f.
\end{align*}

Hence we have $\rho_1 = \sigma_{11}$ and $\theta_1 = \sigma_{33}$. Hereafter we write $\pi = (\sigma;\rho,\theta)$. For example, the right picture of Figure 7 is a $P_6((9,6,3,2);2)$-partition.

Let P be a connected d-complete poset and T its top tree. Let C be a set, called a set of colors, whose cardinality is the same as T. A coloring of P a coloring map c of P to the set of colors C. P is said to be properly colored if the coloring map c satisfies
Proposition 1.6. (1) If \(d \) is a rooted tree, then it is simply colored by the identity map \(P \to P \), i.e. we assign a distinct color to each vertex of \(P \).

Proposition 1.5. Let \(P \) be a connected \(d \)-complete poset and \(T \) its top tree. Let \(C \) be a set whose cardinality is the same as \(T \). Then a bijection \(c : T \to C \) can be uniquely extended to a proper coloring \(c : P \to C \) satisfying the following condition:

(C4) If \([w,v]\) is a \(d \)-interval then \(c(w) = c(v) \).

Such a map \(c : P \to I \) is called a \(d \)-complete coloring.

For example, in the both picture of Figure 6 because \([w_2,v_2]\) (resp. \([w_1,v_1]\), \([w,v]\)) is a \(d_3 \)-interval (resp. \(d_4 \)-interval), \(w_2 \) (resp. \(w_1, w \)) and \(v_2 \) (resp. \(v_1, v \)) have the same color.

In Figure 7, \(v_1 \) (resp. \(v_2 \)) and \(v_3 \) (resp. \(v_4 \)) have the same color since \([v_3,v_1]\) (resp. \([v_4,v_2]\)) is a \(d_4 \)-interval, however, the \(v_1 \) and \(v_2 \) have distinct colors since the both are in the top tree.

Proposition 1.6. (1) If \(\alpha \) is a strict partition with length \(\geq 2 \), then the top tree of the shifted shape \(P = P_2(\alpha) \) is given by

\[
T = \{ (1,j) : 1 \leq j \leq \alpha_1 \} \cup \{ (2,2) \},
\]

(1.11)

and a \(d \)-complete coloring \(c : P \to \{0,0',1,2,\ldots,\alpha_1-1\} \) is given by

\[
c(i,j) = \begin{cases}
 j - i & \text{if } i < j, \\
 0 & \text{if } i = j \text{ and } i \text{ is odd}, \\
 0' & \text{if } i = j \text{ and } i \text{ is even}.
\end{cases}
\]

(1.12)

Hence we see that \(P \) has the top tree \(Y(1;1,\alpha_1-1) \).

(2) If \(\alpha \) and \(\beta \) are strict partitions with length \(\geq 2 \) and \(f \geq 1 \) then the top tree of the bird \(P = P_3(\alpha;\beta;f) \) is given by

\[
T = \{ (1,j) : -f+1 \leq j \leq \alpha_1 \} \cup \{ (i,1) : 1 \leq i \leq \beta_1 \},
\]

(1.13)

and a \(d \)-complete coloring \(c : P \to \{ -f,\ldots,-1,0,1,2,\ldots,\alpha_1-1 \} \cup \{1',2',\ldots,(\beta_1-1)' \} \) is given by

\[
c(i,j) = \begin{cases}
 j - i & \text{if } i < j, \text{ i.e., } (i,j) \in P_H, \\
 (i-j)' & \text{if } 1 \leq j < i, \text{ i.e., } (i,j) \in P_L, \\
 j - 1 & \text{if } i = 1 \text{ and } j \leq 1, \text{ i.e., } (i,j) \in P_H, \\
 -i + 2 & \text{if } i = j \geq 2, \text{ i.e., } (i,j) \in P_R.
\end{cases}
\]

(1.14)

Hence we see that \(P \) has the top tree \(Y(f;\alpha_1-1,\beta_1-1) \).
(3) If α is a strict partitions with length $= 4$ and $f \geq 2$ then the top tree of the banner $P = P_3(\alpha; f)$ is given by

$$T = \{(1, j) : -f + 2 \leq j \leq \alpha_1\} \cup \{(2, 2)\},$$

and a d-complete coloring $c : P \to \{-f + 1, \ldots, -1, 0, 1, 2, \ldots, \alpha_1 - 1\} \cup \{0'\}$ is given by

$$c(i, j) = \begin{cases} j - i & \text{if } i \neq j, \\ 0 & \text{if } i = j \text{ and } i \text{ is odd}, \\ 0' & \text{if } i = j \text{ and } i \text{ is even}. \end{cases}$$

Hence we see that P has the top tree $Y(f; \alpha_1 - 1, 1)$.

Proof. (1) is obtained in [8, Example 4.3(b)]. (2) and (3) are also obtained from (C1)–(C4).

Let P be a connected d-complete poset and $c : P \to C$ a d-complete coloring. Let z_i ($i \in C$) be indeterminates. For a P-partition $\pi \in \mathcal{A}(P)$, we write

$$z^\pi = \prod_{v \in P} z_{c(v)}^{\pi(v)}.$$

As in [8, p.412] we associate a monomial $z[H_P(v)]$ to each $v \in P$, called the *hook monomial*, which is uniquely determined by induction as follows:

(a) If v is not the top of any d_k-interval, then we define

$$z[H_P(v)] = \prod_{w \leq v} z_{c(w)}.$$

(b) If v is the top of a d_k-interval $[w, v]$, then we define

$$z[H_P(v)] = \frac{z[H_P(x)] \cdot z[H_P(y)]}{z[H_P(w)]},$$

where x and y are the sides of $[w, v]$. Further we denote $z[H_P] = \{z[H_P(v)] : v \in P\}$ the set of the hook monomials, and let $F(z[H_P]; q, t)$ denote the product of $F(z[H_P(v)]; q, t)$ over $v \in P$, i.e.,

$$F(z[H_P]; q, t) = \prod_{v \in P} F(z[H_P(v)]; q, t).$$

Let P be a connected d-complete poset with the maximum element v_0, and the rank function $r : P \to \mathbb{N}$. Let T be the top tree of P. Take T as a set of colors and let $c : P \to T$ be the d-complete coloring such that $c(v) = v$ for all $v \in T$. Let $\hat{P} = P \cup \{\hat{1}\}$ be the extended poset, where $\hat{1}$ is the new maximum element of \hat{P} which covers v_0. Then \hat{P} has its top tree $\hat{T} = T \cup \{\hat{1}\}$, where $\hat{c} : \hat{P} \to \hat{T}$ with $\hat{c}(\hat{1}) = 1$.

Definition 1.7. Given a P-partition $\pi \in \mathcal{A}(P)$, let $\hat{\pi} : \hat{P} \to \mathbb{N}$ be the extensions of π defined by $\hat{\pi}(\hat{1}) = 0$. Define a weight $W_p(\pi; q, t)$ by putting

$$W_p(\pi; q, t) = \prod_{x < y, \hat{c}(x) = \hat{c}(y)} \frac{f(\pi(x) - \pi(y); d(x, y))}{\prod_{x < y, \hat{c}(x) = \hat{c}(y)} f(\sigma(x) - \sigma(y); e(x, y)) f(\sigma(x) - \sigma(y); e(x, y) - 1)},$$

where $\hat{c}(x) \sim \hat{c}(y)$ means that $\hat{c}(x)$ and $\hat{c}(y)$ are adjacent to each other in T, and

$$d(x, y) = \frac{r(y) - r(x) - 1}{2}, \quad e(x, y) = \frac{r(y) - r(x)}{2}.$$
Now we quote Okada’s (q, t)-hook formula conjecture.

Conjecture 1.8. (Okada [8]) Let P be a connected d-complete poset. Using the notations defined above, we have

$$
\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) z^\pi = F(z[H_p]; q, t).
$$

(1.18)

Okada has proven this conjecture for shapes and shifted shapes. The purpose of this paper is to prove his conjecture for birds and banners.

Theorem 1.9. Okada’s (q, t)-hook formula conjecture is true for birds and banners.

Given a P-partition $\pi \in \mathcal{A}(P)$ for the shifted shape $P = P_2(\alpha)$ for a strict partition α, we write

$$
f^\text{ND}_\alpha(\pi; q, t) = \prod_{(i,j) \in \alpha} \prod_{m \geq 0} \frac{f(\pi_{i,j} - \pi_{i-m,j-m}; m)}{f(\pi_{i,j} - \pi_{i-m,j}; m)} f^\text{D}(\pi; q, t) = \prod_{(i,j) \in \alpha} \prod_{m \text{ even}} \frac{f(\pi_{i,j} - \pi_{i-m,j-m}; m)}{f(\pi_{i,j} - \pi_{i-m,j}; m)} f(\pi_{i,j} - \pi_{i-m,1-j-m}; m + 1).
$$

Here we use the convention that $\pi_{i,j} = 0$ if $i \leq 0$ or $j \leq 0$. Further we use the following short notation. Let m and n be positive integers such that $m \leq n$. When $\rho = (\rho_m, \ldots, \rho_0)$ and $\theta = (\theta_m, \ldots, \theta_0)$ satisfy

$$
0 \leq \rho_n \leq \cdots \leq \rho_m \leq \theta_m \leq \cdots \leq \theta_n,
$$

we write

$$
\Phi^n_m(\rho; \theta; q, t) = \prod_{i=m+1}^n \frac{f(\rho_{i-1} - \rho_i; 0) f(\theta_{i-1} - \rho_i; 0) f(\theta_i - \rho_i; 0) f(\theta_i - \theta_{i-1}; 0)}{f(\theta_i - \rho_i; i) f(\theta_i - \rho_i + 1; i + 1)}.
$$

(1.22)

Proposition 1.10.

1. Let α be a strict partition of length r and $P = P_2(\alpha)$ the associated shifted shape. If $\pi = (\pi_{i,j})_{(i,j) \in \alpha}$ is a P-partition satisfying the condition [1.8], then its weight $W_P(\pi; q, t)$ is given by

$$
W_P(\pi; q, t) = f^\text{D}(\pi; q, t) f^\text{ND}_\alpha(\pi; q, t).
$$

(1.23)

2. Let α and β be strict partitions of length 2. Let $f > 0$ be a positive integer, and set $P = P_2(\alpha, \beta; f)$ to be the bird associated with α, β and f. If $\pi = (\pi, \rho; \theta)$ is a P-partition satisfying the condition [1.9], then its weight $W_P(\pi; q, t)$ is given by

$$
W_P(\pi; q, t) = \frac{f(\sigma_{22} - \sigma_{12}; 0) f(\tau_{22} - \tau_{12}; 0) f(\rho f; 0) f(\theta f; f + 1)}{f(\sigma_{22} - \sigma_{12}; 0) f(\sigma_{22} - \sigma_{11}; 1)}
$$

$$
\times \Phi^n_0(\rho; \theta; q, t) f^\text{ND}_\alpha(\sigma; q, t) f^\text{D}(\tau; q, t).
$$

(1.24)

Here we use the convention that $\sigma_{11} = \tau_{11} = \rho_0$ and $\sigma_{22} = \tau_{22} = \theta_0$.

3. Let α be a strict partition of length 4. Let $P = P_4(\alpha; f)$ be the banner associated with α and f. If $\pi = (\sigma; \rho; \theta)$ is a P-partition satisfying the condition [1.10], then its weight $W_P(\pi; q, t)$ is given by

$$
W_P(\pi; q, t) = f(\rho f; 0) f(\theta f; f + 1) \Phi^n_1(\rho; \theta; q, t) f^\text{D}(\sigma; q, t) f^\text{ND}_\alpha(\sigma; q, t).
$$

(1.25)

Here we use the convention that $\sigma_{11} = \rho_1$ and $\sigma_{33} = \theta_1$.

Proof. For (1) [1.23] is exactly the same as [8] Theorem 1.2 (9)]. For (2) and (3), one can compute $W_P(\pi; q, t)$ directly from the definition [1.17].
Proposition 1.11. (1) Let α be a strict partition of length r and $P = P_2(\alpha)$ the associated shifted shape. Let n be an integer such that $n \geq \alpha_1$, and let α^c be the strict partition formed by the complement of α in $[n]$, i.e.,

$$\{\alpha_1, \ldots, \alpha_r\} \cup \{\alpha_1', \ldots, \alpha_{n-r}'\} = [n].$$

We write $y_0 = z_0\sigma$ (see Proposition 1.9 (1)) hereafter. Then we have

$$F(z[H_{p}]; q, t) = \prod_{\alpha_i' < \alpha_j} \prod_{\beta_i' < \beta_j} F(z_{\alpha^c_{i}}; q, t) \prod_{i=1}^{f} \prod_{i<j} \prod_{i=1}^{f} \prod_{i<j} F(z_{\alpha^c_{i}}; q, t),$$

(1.26)

where \(w = y_{0}/z_{0}\) and \(z_{i} = \prod_{k=0}^{i-1} z_{k} \ (i = 1, \ldots, n). \) if r is odd, $w = z_{0}/y_{0}$ and \(z_{i} = y_{0}\prod_{k=1}^{i-1} z_{k} \ (i = 1, \ldots, n). \) if r is even.

(2) Let $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions of length 2. Let \(f > 0\) be a positive integer, and set $P = P_2(\alpha, \beta, f)$ the bird associated with f, α, and β. Let m, n be integers such that $m \geq \ell(\alpha)$ and $n \geq \ell(\beta)$, and let α^c (resp. β^c) be the strict partition formed by the complement of α (resp. β) in $[n]$ (resp. $[n]$). We write $y_i = z_{c_i}$ for $i = 1, \ldots, \beta_1 - 1$ and $x_i = z_{d_i}$ for $i = 1, \ldots, f$. Further we may write $x_0 = y_0 = z_0$. (See Proposition 1.9 (2)). Then we have

$$F(z[H_{p}]; q, t) = \prod_{\alpha_i' < \alpha_j} \prod_{\beta_i' < \beta_j} F(z_{\alpha^c_{i}}; q, t) \prod_{i=1}^{f} F(z_{\alpha^c_{i}}; q, t) \prod_{i=1}^{f} F(z_{\alpha^c_{i}}; q, t),$$

(1.27)

where \(\tilde{x}_{i} = \prod_{k=i}^{f} x_{i} \) for $i = 0, \ldots, f$, \(\tilde{y}_{i} = \prod_{k=i}^{f} y_{i} \) for $i = 1, \ldots, n$, and $\tilde{z}_{i} = \prod_{k=i}^{f} z_{k}$ for $i = 1, \ldots, m$.

(3) Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ be a strict partition of length 4. Let $P = P_4(f; \alpha)$ the banner associated with α and β. Let n be an integer such that $n \geq 4 = \ell(\alpha)$, and let α^c be the strict partition formed by the complement of α in $[n]$. We write $y_0 = z_0$ and $x_i = z_{-i+1}$ for $i = 2, \ldots, f$ (see Proposition 1.9 (3)). Hereafter we may use the convention that $x_1 = z_0$.

Then we have

$$F(z[H_{p}]; q, t) = \prod_{\alpha_i' < \alpha_j} \prod_{\beta_i' < \beta_j} F(z_{\alpha^c_{i}}; q, t) \prod_{i=1}^{f} F(z_{\alpha^c_{i}}; q, t) \prod_{i=1}^{f} F(z_{\alpha^c_{i}}; q, t),$$

(1.28)

where $w = \frac{z_0}{y_0}$, \(\tilde{x}_{i} = \prod_{k=i}^{f} x_{i} \) for $i = 1, \ldots, f$, and $\tilde{z}_{i} = y_0\prod_{k=1}^{i-1} z_{k}$ for $i = 1, \ldots, n$.

Proof. (1) If $P = P_2(\alpha)$, then we have

$$z[H_{P}(i, j)] = \begin{cases} z_{\alpha_{i}'} & \text{if } i \leq j < r, \\ z_{\alpha_{i}} & \text{if } i \leq j = r, \\ z_{\alpha_{i-1}'} & \text{if } i \leq r < j, \end{cases}$$

as stated in [3, §3, Proof Theorem 1.2].
In this section we recall the fundamental properties of Macdonald polynomials and consider it’s application. Especially Theorem 2.2 and its corollary will play an important role in the next part.

1. If \(P = P_1(\alpha; f) \), then we have

\[
z[H_P(i, j)] = \begin{cases}
\frac{x^2}{x_{i-j+1}} \prod_{k,l=0}^{2} \tilde{y}_k \tilde{z}_l & \text{if } i = 1 \text{ and } -f + 1 + j \leq 0, \\
\frac{\tilde{y}_{j}}{\tilde{z}_{-i}} & \text{if } 1 \leq i, j \leq 2, \\
\frac{\tilde{y}_{j}}{\tilde{z}_{-i}} & \text{if } 1 \leq i \leq 2 < j, \\
\frac{\tilde{y}_{j}}{\tilde{z}_{-i}} & \text{if } 1 \leq j \leq 2 < i, \\
\frac{\tilde{y}_{j}}{\tilde{z}_{-i}} & \text{if } 3 \leq i = j \leq f + 2.
\end{cases}
\]

2. If \(P = P_0(\alpha; f) \), then we have

\[
z[H_P(i, j)] = \begin{cases}
\frac{x^2}{x_{i-j+2}} \prod_{k=1}^{4} \tilde{z}_k & \text{if } i = 1 \text{ and } -f + 2 + j \leq 0, \\
\frac{\tilde{y}_{j}}{\tilde{z}_{-i+1}} & \text{if } 1 \leq i \leq j \leq 4, \\
\frac{\tilde{z}}{\tilde{z}_{-i}} & \text{if } 1 \leq i \leq j = 4, \\
\frac{\tilde{z}}{\tilde{z}_{-i}} & \text{if } 1 \leq i \leq 4 < j, \\
\frac{\tilde{z}}{\tilde{z}_{-i}} & \text{if } 3 \leq i \leq f + 2 \text{ and } j = 3.
\end{cases}
\]

\[\square\]

2 Macdonald polynomials

In this section we recall the fundamental properties of Macdonald polynomials and consider it’s application. Especially Theorem 2.2 and its corollary will play an important role in the next section.

We follow the notation and terminology of [4] for the symmetric functions. If \(\lambda \) and \(\mu \) are partitions then \(\mu \subseteq \lambda \) if \(\mu \) is contained in \(\lambda \), i.e., \(\mu_i \leq \lambda_i \) for all \(i \geq 1 \). If \(\mu \subseteq \lambda \) then the skew-diagram \(\lambda/\mu \) denotes the set-theoretic difference between \(\lambda \) and \(\mu \), i.e., those squares of \(\lambda \) not contained in \(\mu \). The skew diagram \(\lambda/\mu \) is a vertical \(r \)-strip if \(|\lambda - \mu| = |\lambda| - |\mu| = r \) and if, for all \(i \geq 1 \), \(\lambda_i \geq \mu_i \) is at most one, i.e., each row of \(\lambda - \mu \) contains at most one square. The set of all vertical \(r \)-strips is denoted by \(\mathcal{V}_r \) and the set of all vertical strips by \(\mathcal{V} = \bigcup_{r=0}^{\infty} \mathcal{V}_r \). The skew diagram \(\lambda/\mu \) is a horizontal \(r \)-strip if \(|\lambda - \mu| = r \) and if, for all \(i \geq 1 \), \(\lambda'_i \geq \mu'_i \) is at most one, i.e., each column of \(\lambda - \mu \) contains at most one square. For two partitions \(\lambda \) and \(\mu \), we write \(\lambda \succ \mu \) if \(\lambda \supset \mu \) and \(\lambda/\mu \) is a horizontal strip. Note that \(\lambda/\mu \) is a horizontal strip if and only if \(\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \). The set of all horizontal \(r \)-strips is denoted by \(\mathcal{H}_r \) and the set of all horizontal strips by \(\mathcal{H} \). Let \(s = (i, j) \) be a square in the diagram of \(\lambda \), and let \(a(s) \) and \(l(s) \) be the arm-length and leg-length of \(s \), given by

\[a(s) = \lambda_i - j, \quad l(s) = \lambda'_j - i. \]

Then we define the rational functions let

\[b_\lambda(s) = b_\lambda(s; q, t) := \frac{1-q^{a(s)}(s) q^{l(s)}(s)}{1-q^{a(s)}(s) q^{l(s)}(s)} \cdot \begin{cases}
1, & \text{if } s \in \lambda, \\
\frac{1}{q^{a(s)}(s) q^{l(s)}(s)} & \text{otherwise,}
\end{cases} \]

and [6] (3.6) [7] VI.7 (6.19), VI.7 Ex.4

\[b_\lambda(q, t) := \prod_{s \in \lambda} b_\lambda(s; q, t) = \prod_{i \geq 1} \prod_{m \geq 0} \frac{f_{q, t}(\lambda_i - \lambda_{i+m+1}; m)}{f_{q, t}(\lambda_i - \lambda_{i+m}; m)}, \quad (2.1) \]

\[b_\lambda^e(q, t) := \prod_{s \in \lambda, l(s) \text{ even}} b_\lambda(s; q, t) = \prod_{i \geq 1} \prod_{m \geq 0} \frac{f_{q, t}(\lambda_i - \lambda_{i+m+1}; m)}{f_{q, t}(\lambda_i - \lambda_{i+m}; m)}, \quad (2.2) \]

\[b_\lambda^o(q, t) := \prod_{s \in \lambda, a(s) \text{ odd}} b_\lambda(s; q, t). \quad (2.3) \]
If \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are two sequences of independent indeterminates, then we write
\[
\Pi(x; y; q, t) = \prod_{i,j} \frac{(tx_iy_j;q)_\infty}{(x_iy_j; q)_\infty} = \prod_{i,j} F(x_iy_j; q, t).
\] (2.4)

Let \(\mathfrak{S}_n \) denote the symmetric group, acting on \(x = (x_1, \ldots, x_n) \) by permuting the \(x_i \), and let \(\Lambda_n = \mathbb{Z}[x_1, \ldots, x_n]^{\mathfrak{S}_n} \) and \(\Lambda \) denote the ring of symmetric polynomials in \(n \) independent variables and the ring of symmetric polynomials in countably many variables, respectively. For \(\lambda = (\lambda_1, \ldots, \lambda_n) \) a partition of at most \(n \) parts the monomial symmetric function \(m_\lambda \) is defined as
\[
m_\lambda(x) = \sum_{\alpha} x^\alpha,
\]
where the sum is over all distinct permutations \(\alpha \) of \(\lambda \), and \(x = (x_1, \ldots, x_n) \). For \(\ell(\lambda) > n \) we set \(m_\lambda(x) = 0 \). The monomial symmetric functions \(m_\lambda(x) \) for \(\ell(\lambda) \leq n \) form a \(\mathbb{Z} \)-basis of \(\Lambda_n \).

For \(r \) a nonnegative integer the power sums \(p_r \) are given by \(p_0 = 1 \) and \(p_r = m_{\langle r \rangle} \) for \(r > 1 \). More generally the power-sum products are defined as \(p_\lambda(x) = p_{\lambda_1}(x)p_{\lambda_2}(x) \cdots \) for an arbitrary partition \(\lambda = (\lambda_1, \lambda_2, \ldots) \). Define the Macdonald scalar product \(\langle \cdot, \cdot \rangle_{q,t} \) on the ring of symmetric functions by
\[
\langle p_\lambda, p_\mu \rangle_{q,t} = \delta_{\lambda\mu} z_\lambda \prod_{i=1}^n \frac{1 - q^{\lambda_i}}{1 - t^{\lambda_i}}
\]
with \(z_\lambda = \prod_{i \geq 1} t^{m_i} m_i! \) and \(m_i = m_i(\lambda) \). If we denote the ring of symmetric functions in \(\Lambda_n \) variables over the field \(\mathbb{F} = \mathbb{Q}(q,t) \) of rational functions in \(q \) and \(t \) by \(\Lambda_n,\mathbb{F} \), then the Macdonald polynomial \(P_\lambda(x) = P_\lambda(x; q, t) \) is the unique symmetric polynomial in \(\Lambda_n,\mathbb{F} \) such that \[VI (4.7) \] [Mac:]
\[
P_\lambda = \sum_{\mu \leq \lambda} u_{\lambda\mu}(q,t)m_\mu(x)
\]
with \(u_{\lambda\lambda} = 1 \) and
\[
\langle P_\lambda, P_\mu \rangle_{q,t} = 0 \quad \text{if} \lambda \neq \mu.
\]
The Macdonald polynomials \(P_\lambda(x; q, t) \) with \(\ell(\lambda) \leq n \) form an \(\mathbb{F} \)-basis of \(\Lambda_n,\mathbb{F} \). If \(\ell(\lambda) > n \) then \(P_\lambda(x; q, t) = 0 \). \(P_\lambda(x; q, t) \) is called Macdonald’s \(P \)-function. Since \(P_\lambda(x_1, \ldots, x_n; 0; q, t) = P_\lambda(x_1, \ldots, x_n; q, t) \) one can extend the Macdonald polynomials to symmetric functions containing an infinite number of independent variables \(x = (x_1, x_2, \ldots) \), to obtain a basis of \(\mathbb{F} = \Lambda \otimes \mathbb{F} \). A second Macdonald symmetric function, called Macdonald’s \(Q \)-function, is defined as
\[
Q_\lambda(x; q, t) = b_\lambda(q,t)P_\lambda(x; q, t).
\] (2.5)
The normalization of the Macdonal inner product is then \(\langle P_\lambda, Q_\mu \rangle_{q,t} = \delta_{\lambda\mu} \) for all \(\lambda, \mu \), which is equivalent to
\[
\sum_\lambda P_\lambda(x; q, t)Q_\lambda(y; q, t) = \Pi(x; y; q, t).
\] (2.6)
(See [Z] VI.4, (4.13).) Let \(g_r(x; q, t) := Q_{\langle r \rangle}(x; q, t) \), or equivalently, [Z] VI.2, (2.8)]
\[
\prod_{i=1}^\infty \frac{(tx_iy;q)_\infty}{(x_iy; q)_\infty} = \sum_{r=0}^\infty g_r(x; q, t) q^r.
\]
Then the Pieri coefficients \(\phi_{\lambda/\mu} \) and \(\psi_{\lambda/\mu} \) are given by [Z] VI.6, (6.24)]
\[
P_\mu(x; q, t) g_r(x; q, t) = \sum_{\lambda \rightarrow \mu \in \mathfrak{S}_r} \phi_{\lambda/\mu}(q,t) P_\lambda(x; q, t),
\]
\[
Q_\mu(x; q, t) g_r(x; q, t) = \sum_{\lambda \rightarrow \mu \in \mathfrak{S}_r} \psi_{\lambda/\mu}(q,t) Q_\lambda(x; q, t).
\]
Another direct expressions for $\phi_{\lambda/\mu}$ and $\psi_{\lambda/\mu}$ is given in [7 VI.6, Ex.2] as

$$
\phi_{\lambda/\mu}(q, t) = \prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{f(\lambda_i - \mu_j; j - i) f(\mu_i - \lambda_{j+1}; j - i)}{f(\lambda_i - \lambda_{j+1}; j - i)}, \quad (2.7)
$$

$$
\psi_{\lambda/\mu}(q, t) = \prod_{1 \leq i \leq j \leq \ell(\mu)} \frac{f(\lambda_i - \mu_j; j - i) f(\mu_i - \lambda_{j+1}; j - i)}{f(\lambda_i - \lambda_{j+1}; j - i)}. \quad (2.8)
$$

Here we use these expressions to rewrite Okada’s (q, t)-hook formula conjectures by the Pieri coefficients. For any three partitions λ, μ, ν let $f_{\mu/\nu}$ be the coefficient P_μ in the product $P_\mu P_\nu$: [7 VI (7.1')]\]

$$
P_\mu(x; q, t)P_\nu(x; q, t) = \sum_\lambda f_{\mu/\nu}^{\lambda} P_\lambda(x; q, t) \quad (2.9)
$$

Now let λ, μ be partitions and define $Q_{\lambda/\mu} \in \Lambda_\mathfrak{F}$ by

$$
Q_{\lambda/\mu}(x; q, t) = \sum_\nu f_{\mu/\nu}^{\lambda} Q_\nu(x; q, t). \quad (2.10)
$$

Then $Q_{\lambda/\mu}(x; q, t) = 0$ unless $\lambda \supset \mu$, and $Q_{\lambda/\mu}$ is homogeneous of degree $|\lambda| - |\mu|$, which is called Macdonald’s skew Q-function. We define Macdonald’s skew P-function $P_{\lambda/\mu}$ as

$$
P_{\lambda/\mu}(x; q, t) = \frac{b_{\lambda}(q, t)}{b_{\mu}(q, t)} P_{\lambda/\mu}(x; q, t). \quad (2.11)
$$

holds. Let T be a tableau of shape $\lambda - \mu$ and weight ν, thought as a sequence of partitions $(\lambda^{(0)}, \ldots, \lambda^{(r)})$ such that

$$
\mu = \lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(r)} = \lambda
$$

and such that each $\lambda^{(i)} - \lambda^{(i-1)}$ is a horizontal strip. Let

$$
\phi_T(q, t) = \prod_{i=1}^r \phi_{\lambda^{(i)}/\lambda^{(i-1)}}(q, t),
$$

$$
\psi_T(q, t) = \prod_{i=1}^r \psi_{\lambda^{(i)}/\lambda^{(i-1)}}(q, t).
$$

Then we have [7 VI, (7.13), (7.13')]\]

$$
Q_{\lambda/\mu}(x; q, t) = \sum_T \phi_T(q, t)x^T,
$$

$$
P_{\lambda/\mu}(x; q, t) = \sum_T \psi_T(q, t)x^T,
$$

summed over tableaux T of shape $\lambda - \mu$, where $x^T = \prod_{i=1}^r x_\lambda^{(i) - \lambda^{(i-1)}}$. It also holds [7 VI.7, (7.9) (7.9')]\]

$$
Q_\lambda(x; z; q, t) = \sum_{\mu} Q_{\lambda/\mu}(x; z; q, t)Q_\mu(x; z; q, t), \quad (2.12)
$$

$$
P_\lambda(x; z; q, t) = \sum_{\mu} P_{\lambda/\mu}(x; z; q, t)P_\mu(x; z; q, t), \quad (2.13)
$$

where the sums on the right are over partitions $\mu \subset \lambda$. The following lemma has appeared in the proof of [13 Proposition 2.2] (also see [7 I.5, Ex.26] and [14 Proposition 5.1]).

Lemma 2.1. Let μ and ν be partitions, and $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ are independent indeterminates.

$$
\sum_{\lambda} Q_{\lambda/\mu}(x; q, t)P_{\lambda/\nu}(y; q, t) = \Pi(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t)P_{\mu/\tau}(y; q, t) \quad (2.14)
$$
Proof. First if we use (2.9) and (2.5), then we have
\[\sum \sum_{\lambda} Q_{\lambda/\mu}(x)P_{\lambda/\nu}(y)Q_{\mu}(z)P_{\nu}(w) \]
\[= \sum \sum_{\lambda} Q_{\lambda}(x, z)P_{\lambda}(y, w) \]
\[= \Pi(x, z; y, w) = \Pi(x, y)\Pi(x; w)\Pi(z; y)\Pi(z; w) \]
\[= \Pi(x; y) \sum_{\xi} Q_{\xi}(x)P_{\xi}(w) \sum_{\eta} Q_{\eta}(z)P_{\eta}(y) \sum_{\tau} Q_{\tau}(z)P_{\tau}(w) \]
by (2.10) and (2.11)
\[= \Pi(x; y) \sum_{\mu, \tau} Q_{\mu/\tau}(x)P_{\mu/\tau}(y)Q_{\mu}(z)P_{\nu}(w). \]
Hence, by comparing the coefficients of $Q_{\mu}(z)P_{\nu}(w)$ in the both sides, we obtain the desired identity. This completes the proof.

In [13] Vuletić has presented so-called a generalized MacMahon’s formula. The following theorem gives a generalized form of [13] Proposition 2.2, which we use in the proof of Okada’s conjecture.

Theorem 2.2. Fix a positive integer T and two partitions μ^0 and μ^T. Let $x^0, \ldots, x^{T-1}, y^1, \ldots, y^T$ be sets of variables. Then we have
\[\sum_{(\lambda^1, \mu^1, \lambda^2, \ldots, \lambda^T) \atop i=1} \prod_{i=1}^{T} Q_{\lambda^i/\mu^i-1}(x^{i-1}; q, t)P_{\lambda^i/\mu^i}(y^i; q, t) \]
\[= \prod_{0 \leq i < j \leq T} \Pi(x^i; y^j; q, t) \sum_{\nu} Q_{\nu/\tau}(x^0, \ldots, x^{T-1}; q, t)P_{\nu/\mu}(y^1, \ldots, y^T; q, t) \]
(2.15)
where the sum runs over $(2T - 1)$-tuples $(\lambda^1, \mu^1, \lambda^2, \ldots, \mu^{T-1}, \lambda^T)$ of partitions satisfying
\[\mu^0 \subset \lambda^1 \supset \mu^1 \subset \lambda^2 \supset \cdots \supset \mu^{T-1} \subset \lambda^T \supset \mu^T. \]
(2.16)

Proof. Our proof is similar to that of [13] Proposition 2.2. We proceed by induction on T. If $T = 1$ then Lemma 2.1 is nothing but the desired identity. Assume $T > 1$ and (2.15) holds up to $T - 1$. We need consider the sum
\[S := \sum_{(\lambda^1, \mu^1, \lambda^2, \ldots, \lambda^T) \atop i=1} \prod_{i=1}^{T} Q_{\lambda^i/\mu^i-1}(x^{i-1})P_{\lambda^i/\mu^i}(y^i), \]
where the sum runs over $(\lambda^1, \mu^1, \lambda^2, \ldots, \lambda^T)$ satisfying (2.14). First fix $(\mu^1, \ldots, \mu^{T-1})$ and take the sum over $(\lambda^1, \ldots, \lambda^T)$ using (2.14). Then we obtain
\[S = \prod_{i=1}^{T} \Pi(x^{i-1}; y^i) \sum_{(\tau^1, \mu^1, \ldots, \tau^T) \atop i=1} \prod_{i=1}^{T} Q_{\mu^i/\tau^i}(x^{i-1})P_{\mu^i/\tau^i}(y^i), \]
where the sum runs over $(\lambda^1, \mu^1, \lambda^2, \ldots, \lambda^T)$ satisfying
\[\mu^0 \supset \tau^1 \supset \mu^1 \supset \tau^2 \supset \mu^2 \supset \cdots \supset \mu^{T-1} \supset \tau^T \subset \mu^T. \]
By the induction hypothesis we can suppose
\[
\sum_{(\mu^1, \tau^1, \ldots, \mu^{T-1})} \sum_{i=1}^{T} \prod_{i=1}^{T} Q_{\mu^i/\tau^i}(x^{i-1}) P_{\mu^{i-1}/\tau^{i-1}}(y^i)
= \prod_{0 \leq i < j \leq T-1} \Pi(x^i, y^{i+1}) \sum_{\nu} Q_{\tau^i/\nu}(x^0, \ldots, x^{T-2}) P_{\tau^{i-1}/\nu}(y^2, \ldots, y^T).
\]

Hence, substituting this identity into the above \(S \), we obtain
\[
S = \prod_{0 \leq i < j \leq T} \Pi(x^i, y^j) \sum_{(\tau^1, \nu, \tau^T)} Q_{\mu/\tau}(x^T) P_{\mu/\tau}(y^1) P_{\mu^{T-1}/\nu}(x^0, \ldots, x^{T-2}) P_{\mu^1/\nu}(y^2, \ldots, y^T),
\]
where the sum runs over \((\tau^1, \nu, \tau^T)\) such that \(\mu^0 \supset \tau^1 \supset \nu \subset \tau^T \subset \mu^T \).

Applying (2.12) and (2.13), we obtain the desired identity for \(T \). This completes the theorem. \(\square \)

We define \(P_{[\lambda, \mu]}(x; q, t) \) and \(Q_{[\lambda, \mu]}(x; q, t) \) for a pair \((\lambda, \mu)\) of partitions, a set \(x = (x_1, x_2, \ldots) \) of independent variables and \(\delta = \pm 1 \) by
\[
P_{[\lambda, \mu]}(x; q, t) = \begin{cases}
P_{\lambda/\mu}(x; q, t) & \text{if } \delta = +1, \\ Q_{\lambda/\mu}(x; q, t) & \text{if } \delta = -1,
\end{cases}
Q_{[\lambda, \mu]}(x; q, t) = \begin{cases}
Q_{\lambda/\mu}(x; q, t) & \text{if } \delta = +1, \\ P_{\mu/\lambda}(x; q, t) & \text{if } \delta = -1.
\end{cases}
\]

Here we assume \(\lambda \supset \mu \) if \(\delta = +1 \), and \(\lambda \subset \mu \) if \(\delta = -1 \).

Corollary 2.3. Let \(n \) be a positive integer, and \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) a sequence of \(\pm 1 \), Fix a positive integer \(T \) and two partitions \(\lambda^0 \) and \(\lambda^n \). Let \(x^1, \ldots, x^n \) be sets of variables. Then we have
\[
\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} P_{[\lambda^{i-1}, \lambda^i]}(x^i; q, t)
= \prod_{(i, j) \in \{(-1, +1)\}} \Pi(x^i, x^j; q, t) \sum_{\nu} Q_{\lambda^n/\nu}(\{x^1\}_{\epsilon_i = -1}; q, t) P_{\lambda^0/\nu}(\{x^1\}_{\epsilon_i = +1}; q, t),
\]
\[
\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} Q_{[\lambda^{i-1}, \lambda^i]}(x^i; q, t)
= \prod_{(i, j) \in \{(-1, +1)\}} \Pi(x^i, x^j; q, t) \sum_{\nu} P_{\lambda^n/\nu}(\{x^1\}_{\epsilon_i = -1}; q, t) Q_{\lambda^0/\nu}(\{x^1\}_{\epsilon_i = +1}; q, t),
\]
where the sum runs over \((n - 1)\)-tuples \((\lambda^1, \lambda^2, \ldots, \lambda^{n-1})\) of partitions satisfying
\[
\begin{cases}
\lambda^{i-1} \supset \lambda^i & \text{if } \epsilon_i = +1, \\ \lambda^{i-1} \subset \lambda^i & \text{if } \epsilon_i = -1.
\end{cases}
\]

Proof. Taking \(T = n \) in Theorem 2.2 we have
\[
\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^n)} \prod_{i=1}^{n} Q_{\lambda^i/\lambda^{i-1}}(X^{i-1}; q, t) P_{\lambda^{i-1}/\lambda^i}(Y^i; q, t)
= \prod_{0 \leq i < j \leq n} \Pi(X^i; Y^j; q, t) \sum_{\nu} Q_{\lambda^n/\nu}(X^0, \ldots, X^{n-1}; q, t) P_{\lambda^0/\nu}(Y^1, \ldots, Y^n; q, t)
\]
where the sum runs over \(\lambda^0 \subset \Lambda^1 \supset \lambda^1 \subset \Lambda^2 \supset \lambda^2 \subset \cdots \supset \lambda^{n-1} \subset \Lambda^n \supset \lambda^n \).
Put \(X^{i-1} = 0 \) and \(Y^{i} = x^{i} \) if \(\epsilon_{i} = +1 \), and \(X^{i-1} = x^{i} \) and \(Y^{i} = 0 \) if \(\epsilon_{i} = -1 \). Since \(P_{\lambda/\mu}(0; q, t) = Q_{\lambda/\mu}(0; q, t) = \begin{cases} 1 & \text{if } \lambda = \mu, \\ 0 & \text{otherwise,} \end{cases} \) we obtain \(\Lambda^{i} = \begin{cases} \lambda^{i-1} & \text{if } \epsilon_{i} = +1, \\ \lambda^{i} & \text{if } \epsilon_{i} = -1. \end{cases} \) Hence we have the condition (2.19) for the sum. Since

\[
Q_{\lambda/\nu}(X^{i-1}; q, t)P_{\lambda/\nu}(Y^{i}; q, t) = \begin{cases} P_{\lambda/\nu}(x^{i}; q, t) & \text{if } \epsilon_{i} = +1, \\ Q_{\lambda/\nu}(x^{i}; q, t) & \text{if } \epsilon_{i} = -1. \end{cases}
\]

the left-hand side equals

\[
\sum_{(\lambda^{i}, \lambda^{i+1}, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} P_{\lambda^{i}-1, \lambda^{i}}(x^{i}; q, t).
\]

Meanwhile the right-hand side becomes

\[
\prod_{(\epsilon_{i}, \epsilon_{j}) = (1, -1)} \Pi(x^{i}; x^{j}; q, t) \sum_{\nu} Q_{\lambda^{i}/\nu}(\{x^{i}\}_{i=-1}^{i=+1}; q, t)P_{\lambda^{i}/\nu}(\{x^{i}\}_{i=+1}^{i=1}; q, t).
\]

This proves (2.17). The other identity can be proven similarly.

Theorem 2.4. (Warnaar 15, Proposition 1.3, (1.17))

\[
\sum_{\lambda} w^{r(\lambda)} b_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i = 1}^{I(t,x_1)} \frac{(1 + wx_i) (qt x_i^2; q^2)^{\infty}}{(x_i^2; q^2)^{\infty}} \prod_{i < j} \frac{(tx_i x_j; q)^{\infty}}{(x_i x_j; q)^{\infty}},
\]

(2.20)

where \(r(\lambda) \) is the number of rows of odd length.

Applying \(w_{q,t} \) VI.2, (2.14) to the both sides of (2.20), we obtain

Corollary 2.5.

\[
\sum_{\lambda} w^{r(\lambda)} b_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i = 1}^{I(t,x_1)} \frac{(tw x_i; q)^{\infty}}{(x_i; q)^{\infty}} \prod_{i < j} \frac{(tx_i x_j; q)^{\infty}}{(x_i x_j; q)^{\infty}}.
\]

(2.21)

Proof. First, if we take logarithm of the right-hand side of (2.20), then we have

\[
\log \prod_{i < j} \frac{(tx_i x_j; q)^{\infty}}{(x_i x_j; q)^{\infty}} = \sum_{i < j} \sum_{r = 0}^{n} \{ \log (1 - q^{n} x_i x_j) - \log (1 - q^{n} x_i x_j) \} \\
= \sum_{n \geq 1} \frac{1}{n} \sum_{i < j} \left(\frac{1 - q^{n} x_i x_j}{1 - q^{n}} \right)^{n} x_i^{n} x_j^{n} \\
= \frac{1}{2} \sum_{n \geq 1} \frac{1}{n} \sum_{i < j} \left(\frac{1 - q^{n} x_i x_j}{1 - q^{n}} \right) \left(p_{n}(x)^{2} - p_{2n}(x) \right).
\]

Applying the \(x \)-algebra homomorphism \(w_{q,t} \) to this formula, and using \(w_{q,t} p_{r}(x) = (-1)^{r-1} \frac{1 - q^{r} x^{r}}{1 - q^{r}} p_{r}(x) \) (see [1] VI.2, (2.14)), we obtain

\[
w_{q,t} \log \prod_{i < j} \frac{(tx_i x_j; q)^{\infty}}{(x_i x_j; q)^{\infty}} = \sum_{n \geq 1} \frac{1}{n} \sum_{i < j} \left(\frac{1 - q^{n} x_i x_j}{1 - q^{n}} \right) \left(x_i^{n} x_j^{n} \right).
\]

Similarly, since

\[
\log \prod_{i = 1}^{I(t,x_1)} \frac{(tx_i x_j; q^2)^{\infty}}{(x_i x_j; q^2)^{\infty}} = \sum_{n \geq 1} \frac{1}{n} \sum_{i < j} \frac{1 - q^{n} t^n}{1 - q^{2n}} p_{2n}(x),
\]

16
we have
\[w_{q,t} \log \prod_{i \geq 1} \frac{(qt x_i^2; q^2)_\infty}{(x_i^2; q^2)_\infty} = - \sum_{n \geq 1} \frac{1}{n} \frac{1 - q^n t^n}{1 - t^2 n} \sum_i x_i^{2n}. \]

Finally, from
\[\log \prod_i (1 + wx_i) = \sum_{n \geq 1} \frac{(-1)^{n-1} w^n}{n} p_n(x) \]
we obtain
\[w_{q,t} \log \prod_i (1 + wx_i) = \sum_i \sum_{n \geq 1} \frac{1}{n} \frac{1 - q^n w^n x_i^n}{1 - t^n x_i^n}. \]

Hence we obtain
\[w_{q,t} \prod_i \frac{(1 + wx_i) \left(qt x_i^2; q^2\right)_\infty}{(x_i^2; q^2)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty} = \prod_i \frac{(qw x_i; t)_\infty}{(wx_i; t)_\infty} \prod_{i < j} \frac{(q x_i x_j; t)_\infty}{(x_i x_j; t)_\infty}. \]

Now, applying
\[w_{q,t} P_\lambda(x; q, t) = Q_\lambda(x; t, q) \]
\[w_{q,t} Q_\lambda(x; q, t) = P_\lambda(x; t, q) \]
(\cite[VI.5, (5.1)]{Okada}) to the left-hand side of (2.20), and swapping \(q \) and \(t \), we obtain the desired formula (2.24).

From (2.21), we easily obtain
\[\sum_{\lambda} w_{q,t}^{\left|\lambda\right|} b_{\lambda}^{q,t}(q, t) P_\lambda(x; q, t) = \prod_{i \geq 1} \frac{(tw x_i q; q)_\infty}{(wx_i; q)_\infty} \prod_{i < j} \frac{(t x_i x_j q; q)_\infty}{(x_i x_j; q)_\infty}, \]
and
\[\sum_{\lambda} w_{q,t}^{\left|\lambda\right|} b_{\lambda}^{q,t}(q, t) P_\lambda(x; q, t) = \prod_{i \geq 1} \frac{(t x_i q; q)_\infty}{(x_i; q)_\infty} \prod_{i < j} \frac{(t x_i x_j q; q)_\infty}{(x_i x_j; q)_\infty}. \]

3 \((q, t)\)-hook formula and Macdonald polynomials

In this section we rewrite the left-hand side and the right-hand side of Okada’s conjecture using the Macdonald polynomials. In Proposition 1.10 we give the left-hand sides for birds and banners, and in Proposition 3.11 we give the right-hand sides. We rewrite these formula into Theorem 3.2 and Theorem 3.3. We will see Corollary 2.3 and Corollary 2.5 plays a key role in the proof.

We define \(\phi_{\delta,\lambda,\mu}(q, t) \) and \(\psi_{\delta,\lambda,\mu}(q, t) \) for a pair \(\lambda, \mu \) of partitions and \(\delta = \pm 1 \) by
\[\phi_{\delta,\lambda,\mu}(q, t) = \begin{cases} \phi_{\lambda/\mu}(q, t) & \text{if } \delta = +1, \\ \psi_{\mu/\lambda}(q, t) & \text{if } \delta = -1, \end{cases} \]
and
\[\psi_{\delta,\lambda,\mu}(q, t) = \begin{cases} \psi_{\lambda/\mu}(q, t) & \text{if } \delta = +1, \\ \phi_{\mu/\lambda}(q, t) & \text{if } \delta = -1. \end{cases} \]

Here we assume \(\lambda \succ \mu \) if \(\delta = +1 \), and \(\lambda \prec \mu \) if \(\delta = -1 \). We also write
\[|\lambda - \mu|_{\delta} = \begin{cases} |\lambda - \mu| & \text{if } \delta = +1, \\ |\mu - \lambda| & \text{if } \delta = -1. \end{cases} \]
Let \(n \) be a positive integer. Let \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) be a sequence of \(\pm 1 \). Let \((\lambda_0, \lambda_1, \ldots, \lambda_n) \) be an \((n + 1)\)-tuple of partitions such that \(\lambda_i^{-1} \succ \lambda_i \) if \(\epsilon_i = +1 \), and \(\lambda_i^{-1} \prec \lambda_i \) if \(\epsilon_i = -1 \). Then we write
\[\phi_{\lambda_0,\lambda_1,\ldots,\lambda_n}(q, t) = \prod_{i=1}^{n} \phi_{\epsilon_i,\lambda_{i-1},\lambda_i}(q, t), \]
\[\psi_{\lambda_0,\lambda_1,\ldots,\lambda_n}(q, t) = \prod_{i=1}^{n} \psi_{\epsilon_i,\lambda_{i-1},\lambda_i}(q, t). \]
Let \(\alpha \) be a strict partition, and let \(n \) be an integer such that \(n \geq \alpha_1 \). Define a sequence \(\epsilon = \epsilon_n(\alpha) = (\epsilon_1, \ldots, \epsilon_n) \) of \(\pm 1 \) by putting

\[
\epsilon_k(\alpha) = \begin{cases}
+1 & \text{if } k \text{ is a part of } \alpha, \\
-1 & \text{if } k \text{ is not a part of } \alpha.
\end{cases}
\]

For example, if \(\alpha = (8, 5, 2, 1) \) and \(n = 10 \), then we have \(\epsilon = (+ + + + - - - - - -) \). Let \(\pi \in \mathcal{S}(\alpha) \) a \(P \)-partition for the the shifted shape \(P = P_2(\alpha) \). For each integer \(k = 0, \ldots, n \) we define the \(k \)th trace \(\pi[k] \) to be the sequence \((\ldots, \pi_{2,k+2}, \pi_{1,k+1})\) obtained by reading the \(k \)th diagonal from SE to NW. Here we use the convention that \(\pi[k] = \emptyset \) if \(k \geq \alpha_1 \). For example, if \(\pi \) is the \(P \)-partition of shifted shape \(\alpha = (8, 5, 2, 1) \) in Figure 3, then we have \(\pi[0] = (\pi_{44}, \pi_{33}, \pi_{22}, \pi_{11}) \), \(\pi[1] = (\pi_{34}, \pi_{23}, \pi_{12}) \), \(\pi[2] = (\pi_{24}, \pi_{13}) \), \(\pi[3] = (\pi_{25}, \pi_{14}) \), \(\pi[4] = (\pi_{26}, \pi_{15}) \), \(\pi[5] = (\pi_{16}) \), \(\pi[6] = (\pi_{17}) \), \(\pi[7] = (\pi_{18}) \), \(\pi[8] = \pi[9] = \pi[10] = \emptyset \), and

\[
\pi[0] \succ \pi[1] \succ \pi[2] \succ \pi[3] \succ \pi[4] \succ \pi[5] \succ \pi[6] \succ \pi[7] \succ \pi[8] \succ \pi[9] \succ \pi[10].
\]

By direct computation one can easily check

\[
W_P(\pi; q, t) = b_{\pi[0]}(q, t)^{\psi_{\pi[0]}^\epsilon(\alpha)} \prod_{i=1}^{n} (q^{\phi_{\pi[i]}^\epsilon(\alpha)})^{n-1} (q, t),
\]

in short, where \(\rho = (\rho_0, \ldots, \rho_n) \) and \(\theta = (\theta_0, \ldots, \theta_n) \) satisfy (2.1), and \(\tilde{x} = (\tilde{x}_0, \ldots, \tilde{x}_n) \) are indeterminates. For example, if \(\pi = (\sigma, \rho, \theta) \) is the \(P \)-partition of the bird \(P = P_2(\alpha, \beta; f) \) for \(\alpha = (4, 3), \beta = (4, 2) \) and \(f = 2 \) (see Figure 4) and satisfies (1.3), then we have

\[
W_P(\pi; q, t) = \tilde{W}_P(\pi; q, t) = \tilde{W}_2(\rho, \theta; q, t) \psi_{\sigma[0], \ldots, \sigma[4]}^\epsilon(\alpha) \prod_{i=1}^{n} (q^{\phi_{\sigma[i]}^\epsilon(\alpha)})^{n-1} (q, t).
\]

Further, if \(\pi = (\sigma; f) \) is the \(P \)-partition of the banner \(P = P_3(\alpha; f) \) for \(\alpha = (10, 6, 3, 2) \) and \(f = 2 \) (see Figure 7) and satisfies (1.10), then we have

\[
W_P(\pi; q, t) = \tilde{W}_P(\pi; q, t) = \tilde{W}_2(\rho, \theta; q, t) \psi_{\sigma[0], \ldots, \sigma[10]}^\epsilon(\alpha) \prod_{i=1}^{n} (q^{\phi_{\sigma[i]}^\epsilon(\alpha)})^{n-1} (q, t).
\]

Proposition 3.1. (1) Let \(P = P_2(\alpha) \) be the shifted shape associated with a strict partition \(\alpha \) such that \(\ell(\alpha) = r \), and let \(n \) be an integer such that \(n \geq \alpha_1 \). If \(\pi \in \mathcal{S}(\alpha) \) is a \(P \)-partition satisfying the condition (1.8), then we have

\[
W_P(\pi; q, t) = b_{\pi[0]}^\epsilon(q, t) \psi_{\pi[0], \ldots, \pi[10]}^\epsilon(q, t) \prod_{i=1}^{n} (q^{\phi_{\pi[i]}^\epsilon(\alpha)})^{n-1} (q, t),
\]

and

\[
\bar{z}^\pi = w \prod_{i=1}^{n} \tilde{z}_{\epsilon_i(\alpha)}^{\epsilon(\alpha)} \prod_{i=1}^{n} \tilde{z}_{\epsilon_i(\alpha)}^{\epsilon(\alpha)}
\]

where \(w \) and \(\tilde{z}_i (1 \leq i \leq n) \) are as in Proposition 1.11 (1).

(2) Let \(\alpha = (\alpha_1, \alpha_2) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that \(\ell(\alpha) = \ell(\beta) = 2 \). Let \(f > 0 \) be a positive integer, and set \(P = P_3(\alpha, \beta; f) \) the bird associated with \(\alpha \), \(\beta \) and \(f \). Let \(m \)
Proof. (3) Let \(\alpha \) (resp. \(H \)) be a positive integer such that \(m \geq \alpha \) (resp. \(n \geq \beta \)). If \(\pi = (\sigma, \tau; \rho, \theta) \) is a \(P \)-partition satisfying the condition \((\Pi.9)\), then we have

\[
W_P(\pi; q, t) = \tilde{\Phi}_0^f(\rho; \theta; q, t) \psi^{(\alpha)}_{[\sigma, \ldots, \tau]}(q, t) \phi^{(\beta)}_{[\rho, \ldots, \theta]}(q, t)
\]

and

\[
z = \sum_{i=1}^{m} \alpha_i \theta_i \prod_{i=1}^{m} \tilde{z}_i^{e_i(\alpha) |\sigma| |1| - |\sigma| |e_i(\alpha)|} f \prod_{i=1}^{n} \tilde{y}_i^{e_i(\beta) |\tau| |1| - |\tau| |e_i(\beta)|} g
\]

where \(\tilde{x}_i (0 \leq i \leq f), \tilde{y}_i (1 \leq i \leq n) \) and \(\tilde{z}_i (1 \leq i \leq m) \) are as in Proposition \((\Pi.11)\) (2).

(3) Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \) be a strict partition such that \(\ell(\alpha) = 4 \). If \(P = P_0(\alpha; f) \) is the \(P \)-partition associated with \(\alpha \) and \(f \). If \(\pi = (\sigma, \rho; \theta) \) is a \(P \)-partition satisfying the condition \((\Pi.10)\), then we have

\[
W_P(\pi; q, t) = \tilde{\Phi}_1^f(\rho; \theta; q, t) b^{(\alpha)}_{[\sigma, \ldots, \tau]}(q, t) \psi^{(\alpha)}_{[\sigma, \ldots, \tau]}(q, t)
\]

and

\[
z = \sum_{i=1}^{m} \alpha_i \theta_i \prod_{i=1}^{m} \tilde{z}_i^{e_i(\alpha) |\sigma| |1| - |\sigma| |e_i(\alpha)|} f \prod_{i=1}^{n} \tilde{y}_i^{e_i(\beta) |\tau| |1| - |\tau| |e_i(\beta)|} g
\]

where \(w, \tilde{x}_i (1 \leq i \leq f) \), and \(\tilde{z}_i (1 \leq i \leq n) \) are as in Proposition \((\Pi.11)\) (3).

19
Theorem 3.2. Let \(\alpha \) be a positive integer, and set \(m \) (resp. \(\rho, \theta \)) be a positive integer such that \(\sum_{i=1}^{m} \rho_i > m - 1 - \theta_i \). Hence we can obtain (3.5). Meanwhile, (3.6) can be obtained from the convention \(\sigma_{11} = \rho_0 \) and \(\theta_{11} = \pi_{33}. \)

\[\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) z^\pi = \prod_{i=2}^{f} x_i^{\rho_i + \theta_i}, \]

where \(z_i = \frac{z_0}{y_0} \) and \(z_i \) are as in Proposition 1.11 (1).

(2) Let \(\alpha = (\alpha_1, \alpha_2) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that \(\ell(\alpha) = \ell(\beta) = 2 \). Let \(f > 0 \) be a positive integer, and set \(P = P_2(\alpha, \beta; f) \) to be the bird associated with \(\alpha, \beta \) and \(f \). Let \(m \) (resp. \(n \)) be a positive integer such that \(m \geq \alpha_1 \) (resp. \(n \geq \beta_1 \)). If \(\pi = (\sigma, \tau; \rho, \theta) \) is a \(P \)-partition satisfying the condition (3.9), then we have

\[\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) z^\pi = \prod_{\alpha_i < \alpha_j} F\left(\frac{z_{\alpha_i}}{z_{\alpha_j}} \right) \prod_{\beta_i < \beta_j} F\left(\frac{z_{\beta_i}}{z_{\beta_j}} \right) \times \sum_{(\rho, \theta)} \tilde{F}_0(\tilde{x}; \rho; q, t) P(\theta_0, \rho_0)(\tilde{x}_0 \tilde{z}_{\alpha_1}, \tilde{x}_0 \tilde{z}_{\alpha_2}; q, t) Q(\theta_0, \rho_0)(\tilde{y}_{\beta_1}, \tilde{y}_{\beta_2}; q, t). \]

where the sum on the right-hand side is taken over all pairs \((\rho, \theta) \) with \(\rho = (\rho_0, \ldots, \rho_f) \) and \(\theta = (\theta_0, \ldots, \theta_f) \) satisfying

\[0 \leq \rho_f \leq \cdots \leq \rho_0 \leq \theta_0 \leq \cdots \leq \theta_f. \]

Here \(\tilde{x}_i \) (\(0 \leq i \leq f \)), \(y_i \) (\(1 \leq i \leq n \)) and \(z_i \) (\(1 \leq i \leq m \)) are as in Proposition 1.11 (2).

(3) Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \) be a strict partition such that \(\ell(\alpha) = 4 \). Let \(P = P_4(\alpha; f) \) be the banner associated with \(\alpha \) and \(f \). If \(\pi = (\sigma; \rho, \theta) \) is a \(P \)-partition satisfying the condition (1.10), then we have

\[\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) = \prod_{\lambda_i < \lambda_f} F\left(\frac{z_{\lambda_i}}{z_{\lambda_f}} \right) \sum_{(\lambda, \rho, \theta)} \tilde{F}_0(\tilde{x}; \lambda; q, t) P(\theta_0, \rho_0)(\tilde{z}_{\alpha_1}, \tilde{z}_{\alpha_2}, \tilde{z}_{\alpha_3}, \tilde{z}_{\alpha_4}; q, t), \]

for all \(f > 0 \).
where the sum on the right-hand side is taken over all triplets \((\lambda, \rho, \theta)\) with \(\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)\), \(\rho = (\rho_1, \ldots, \rho_f)\) and \(\theta = (\theta_1, \ldots, \theta_f)\) satisfying
\[
\lambda_4 \leq \lambda_3 \leq \lambda_2 \leq \lambda_1, \quad 0 \leq \rho_f \leq \cdots \leq \rho_1 = \lambda_4, \quad \lambda_2 = \theta_1 \leq \cdots \leq \theta_f.
\] (3.11)
Here \(w, \tilde{x}_i (1 \leq i \leq f)\) and \(z_i (1 \leq i \leq n)\) are as in Proposition 3.10 (3).

Proof. (1) Since
\[
\psi_{[i-1]/[i]}(q, t) z_{\pi[i]}^{-\frac{1}{2}} z_{\pi[i]} \sum_{\pi[0]} b^\lambda_{\pi[0]}(q, t)^{f([\pi[0]] - r(\pi[0])))}/2 P_{\pi[0]}(\tilde{z}_{\lambda_z}, \ldots, \tilde{z}_{\lambda_z}, q, t),
\]
where the sum on the right-hand side runs over all partitions \(\pi[0]\).

(2) Again, using (2.17) to take the sum of the product of (8.3) and (8.4), we obtain
\[
\sum_{\pi} W_\pi(q; t) z^\pi = \prod_{\alpha_1 < \alpha_1} F \left(\frac{z_{\alpha_1}^{-1} z_{\alpha_1}}{x_{\alpha_1}} \right) \prod_{\beta_1 < \beta_1} F \left(\frac{y_{\beta_1}^{-1} y_{\beta_1}}{x_{\beta_1}} \right) \tilde{x}_{0,0+\theta_0} \times \sum_{(\rho, \theta)} \tilde{\Phi}_{0}^f(\rho, \theta) \tilde{x}_{0,0+\theta_0} P_{\sigma[0]}(\tilde{z}_{\alpha_1}, \tilde{z}_{\alpha_1}; q, t),
\]
where the sum on the right-hand side runs over all partitions \(\pi[0]\).

(3) Using (2.17) to take the sum of the product of (8.3) and (8.4), we obtain
\[
\sum_{\pi} W_\pi(q; t) z^\pi = \prod_{\alpha_1 < \alpha_1} F \left(\frac{z_{\alpha_1}^{-1} z_{\alpha_1}}{x_{\alpha_1}} \right) \sum_{(\rho, \theta)} \tilde{\Phi}_{0}^f(\rho, \theta) \times (\tilde{x}_{0,0+\theta_0} P_{\sigma[0]}(\tilde{z}_{\alpha_1}, \tilde{z}_{\alpha_1}; q, t),
\]
where the sum on the right-hand side runs over all triplets \((\sigma[0], \rho, \theta)\) satisfying (8.11).

If we apply Warner’s formula (2.2.3) to (3.5), we can obtain the \((q, t)\)-hook formula (1.26) for shifted shapes. This gives another proof of Proposition 4.5 (b). Now we look at the right-hand side of the conjectured identities in the cases of Birds and Banners. From Proposition 3.11, we can derive the following theorem.

Theorem 3.3. (1) Let \(\alpha = (\alpha_1, \alpha_2)\) and \(\beta = (\beta_1, \beta_2)\) be strict partitions of length 2. Let \(f > 0\) be a positive integer, and set \(P = P_{f}(\alpha, \beta; f)\) the bird associated with \(f, \alpha, \beta\). Let \(m, n\) be integers such that \(m \geq f(\alpha)\) and \(n \geq f(\beta)\), and let \(\alpha^+\) (resp. \(\beta^+\)) be the strict partition formed by the complement of \(\alpha\) (resp. \(\beta\)) in \([m]\) (resp. \([n]\)). Then we have
\[
F(z[H_p]; q, t) = \prod_{\alpha_1 < \alpha_1} F \left(\frac{z_{\alpha_1}^{-1} z_{\alpha_1}}{x_{\alpha_1}} \right) \prod_{\beta_1 < \beta_1} F \left(\frac{y_{\beta_1}^{-1} y_{\beta_1}}{x_{\beta_1}} \right)
\]
\[
\times \sum_{\lambda} \sum_{\rho} \sum_{\sigma[0]} \sum_{\tilde{\Phi}_{0}^f(\rho, \theta)} \sum_{f(k_i, q) f(l_i, q)} \tilde{x}_{0,0+\theta_0}
\]
\[
\times \frac{b_{\lambda}^{-1}(q, t)}{b_{\lambda}(q, t)} \frac{P_{\lambda}(\tilde{x}_{\alpha_1}, \tilde{x}_{\alpha_1}; q, t) Q_{\lambda}(\tilde{y}_{\beta_1}, \tilde{y}_{\beta_1}; q, t)}{F(z[H_p]; q, t)}
\]
(3.12)
where \(\tilde{x}_i (1 \leq i \leq f, \tilde{y}_i (1 \leq i \leq n)\) and \(\tilde{z}_i (1 \leq i \leq m)\) are as in Proposition 3.11 (2).
(2) Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ be a strict partition of length 4. Let $P = P_\beta(f; \alpha)$ the Banner associated with α and β. Let n be an integer such that $n \geq 4 = \ell(\alpha)$, and let α^c be the strict partition formed by the complement of α in $[n]$. We write $y_0 = z_0^r$ and $x_i = z_{-i}$ for $i = 1, \ldots, f$. Then we have

$$F(z[H_p]; q, t) = \prod_{\alpha'_1 < a_j} F\left(\overline{z}_{\alpha'_1}; \alpha_j\right) \prod_{\beta'_1 < b_j} F\left(\overline{y}_{\beta'_1}; \beta_j\right)$$

$$\times \sum_{l(\alpha) \leq 4} \sum_{k_1, \ldots, k_f \geq 0} \sum_{l_1, \ldots, l_f \geq 0} \prod_{i=1}^f f(k_i; 0) f(l_i; 0) x_i^{k_i-l_i}$$

$$\times \left(\overline{x}_2 w\right)^{\lambda_2 + \lambda_4} \ell^{\lambda_{1+2}}(q, t) P_\lambda(\overline{z}_{\alpha_1}, \overline{z}_{\alpha_2}, \overline{z}_{\alpha_3}, \overline{z}_{\alpha_4}; q, t)$$

(3.13)

where $w, \overline{x}_i (2 \leq i \leq f)$ and $\overline{z}_i (1 \leq i \leq n)$ are as in Proposition 1.11 (3).

Proof. (1) From (2.6) we have

$$\prod_{i, j=1}^2 F(\overline{x}_1 \overline{y}_j, \overline{z}_{\alpha_i}) = \sum_{\mu} P_\mu(\overline{x}_1 \overline{z}_{\alpha_1}, \overline{x}_1 \overline{z}_{\alpha_2}) Q_\mu(\overline{y}_{\beta_1}, \overline{y}_{\beta_2}).$$

By the binomial theorem we have

$$\prod_{i=1}^f F(\overline{x}_i) = \sum_{k_1, \ldots, k_f \geq 0} \prod_{i=1}^f f(k_i; 0) x_i^{k_i},$$

$$\prod_{i=1}^f F\left(\overline{x}_i \overline{y}_k\right) = \sum_{l_1, \ldots, l_f \geq 0} \prod_{i=1}^f f(l_i; 0) \overline{x}_i^{l_i} \left(\overline{x}_1 \overline{y}_k\right)^{l_1 + \cdots + l_f}.$$

By [7, VI.4, (4.17)] and (2.5) we obtain

$$(\overline{x}_2 \overline{z}_2)^l P_\mu(\overline{x}_1 \overline{z}_{\alpha_1}, \overline{x}_1 \overline{z}_{\alpha_2}) = P_{\mu+1+2}(\overline{x}_1 \overline{z}_{\alpha_1}, \overline{x}_1 \overline{z}_{\alpha_2}),$$

$$(\overline{y}_1 \overline{y}_2)^l Q_\mu(\overline{y}_{\beta_1}, \overline{y}_{\beta_2}) = \frac{b_{\mu}(q, t)}{b_{\mu+1+2}(q, t)} Q_{\mu+1+2}(\overline{y}_{\beta_1}, \overline{y}_{\beta_2}).$$

From (1.27) we obtain

$$F(z[H_p]; q, t) = \prod_{\alpha'_1 < a_j} F\left(\overline{z}_{\alpha'_1}; \alpha_j\right) \prod_{\beta'_1 < b_j} F\left(\overline{y}_{\beta'_1}; \beta_j\right)$$

$$\times \sum_{l(\alpha) \leq 4} \sum_{k_1, \ldots, k_f \geq 0} \sum_{l_1, \ldots, l_f \geq 0} \prod_{i=1}^f f(k_i; 0) f(l_i; 0) x_i^{k_i-l_i}$$

$$\times \frac{b_{\mu}(q, t)}{b_{\mu+1+2}(q, t)} P_{\mu+1+2}(\overline{x}_1 \overline{z}_{\alpha_1}, \overline{x}_1 \overline{z}_{\alpha_2}; q, t) Q_{\mu+1+2}(\overline{y}_{\beta_1}, \overline{y}_{\beta_2}; q, t).$$

This immediately implies (3.12).

(2) From Warner’s formula (2.23), we have

$$\prod_{i=1}^4 F(\overline{z}_{\alpha_i}; q, t) = \prod_{1 \leq i < j \leq 4} F\left(\overline{w} \overline{x}_2 \overline{z}_{\alpha_i} \overline{z}_{\alpha_j}; q, t\right)$$

$$= \sum_{\mu} \mu^{\mu_2+\mu_4} b_{\mu}(q, t) P_\mu(\overline{z}_{\alpha_1}, \overline{z}_{\alpha_2}, \overline{z}_{\alpha_3}, \overline{z}_{\alpha_4}; q, t).$$
By the binomial theorem we have
\[
\prod_{i=2}^{f} F(x_i) = \sum_{k_2, \ldots, k_f \geq 0} \prod_{i=2}^{f} f(k_i; 0)x_i^{k_i},
\]
\[
\prod_{i=2}^{f} \left(\frac{\xi_2^2}{x_1} w^2 \prod_{j=1}^{4} \bar{z}_{\alpha_j} \right) = \sum_{l_2, \ldots, l_f \geq 0} \prod_{i=2}^{f} f(l_i; 0)\bar{x}_i^{-l_i} \left(\frac{\xi_2^2}{x_1} w^2 \prod_{j=1}^{4} \bar{z}_{\alpha_j} \right) \prod_{i=1}^{l_1+\cdots+l_f}.
\]
From (1.2) we obtain
\[
F(z[H_p]; q, t) = \prod_{\alpha_i \leq \alpha_j} F(\bar{x}_{\alpha_i}^{-1}\bar{x}_{\alpha_j}^{-1})
\times \sum_{l_2, \ldots, l_f \geq 0} \sum_{\nu_1 \leq \nu_2 \leq \nu_f} \sum_{i_2, \ldots, i_f \geq 0} \prod_{i=2}^{f} f(k_i; 0)f(l_i; 0)x_i^{k_i-l_i}
\times (\xi_2 w)^{\nu_2 + \nu_f + 1} b_{\nu_f}^{(q, t)}(q, t) P_{\nu_f + 1}(\bar{z}_{\alpha_1}, \bar{z}_{\alpha_2}, \bar{z}_{\alpha_3}, \bar{z}_{\alpha_4}; q, t).
\]
This immediately implies (3.12).

4 Proof by Gasper’s formula

Now we are in position to prove Okada’s conjecture for birds and banners, i.e., Theorem 1.9. At the last step of our proof Gasper’s identity (1.2) plays an important role.

We use the fact that Macdonald’s polynomials are basis for $\Lambda[4]$. (cf. [4]). To prove the birds case, we fix integers ρ_0 and θ_0 such that $\theta_0 \geq \rho_0 \geq 0$, and nonnegative integers r_1, \ldots, r_f. If we compare the coefficient of $\prod_{i=1}^{f} x_i^{r_i} \cdot P_{\lambda}(\bar{x}_{\alpha_1}, \bar{x}_{\alpha_2}; q, t)Q_{\lambda}(\bar{y}_{\beta_1}, \bar{y}_{\beta_2}; q, t)$ in (3.8) and (3.12), the following identity must hold:

\[
\sum_{(\rho_1, \ldots, \rho_f) \in \nu_f \leq \nu_2 \leq \nu_f} \hat{\Phi}^{(\rho, \theta)}(\rho; q, t) = \sum_{l=0}^{\rho_0} \sum_{l_1, \ldots, l_f \geq 0} \frac{b_{(\theta_0-l, \rho_0-l)}(q, t)}{b_{(\theta_0, \rho_0)}(q, t)} \prod_{i=1}^{f} f(l_i; 0)f(l_i + r_i; 0),
\]
where $(\theta_1, \ldots, \theta_f)$ is determined from θ_0 and (ρ_1, \ldots, ρ_f) by using the equations $\theta_i = \rho_{i-1} + \theta_{i-1} + r_i - \rho_i$ for $i = 1, \ldots, f$. Since (2.4) implies
\[
b_{(\theta_0, \rho_0)} = f(\theta_0 - \rho_0; 0) \frac{f(\theta_0; 1)}{f(\theta_0 - \rho_0; 1)} f(\rho_0; 0),
\]
we obtain
\[
b_{(\theta_0-l, \rho_0-l)}(q, t) = \frac{f(\rho_0 - l; 0)f(\theta_0 - l; 1)}{f(\rho_0; 0)f(\theta_0; 1)}.
\]
Hence it is enough to prove
\[
\sum_{(\rho_1, \ldots, \rho_f) \in \nu_f \leq \nu_2 \leq \nu_f} \hat{\Phi}^{(\rho, \theta)}(\rho; q, t) = \sum_{l=0}^{\rho_0} \sum_{l_1, \ldots, l_f \geq 0} \frac{f(\rho_0 - l; 0)f(\theta_0 - l; 1)}{f(\rho_0; 0)f(\theta_0; 1)} \prod_{i=1}^{f} f(l_i; 0)f(l_i + r_i; 0). \quad (4.1)
\]
In the case of banners we fix a partition $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ of length 4 and nonnegative integers r_2, \ldots, r_f. If we compare the coefficient of $\prod_{i=2}^{f} x_i^{r_i} \cdot P_{\lambda}(\bar{x}_{\alpha_1}, \bar{x}_{\alpha_2}; q, t)$ in (3.10) and (3.13), the following identity must hold:
\[
\sum_{(r_2, \ldots, r_f) \in \nu_f \leq \nu_2 \leq \nu_1} \tilde{\Phi}^{(\lambda, \theta)}(\rho; q, t) = \sum_{l=0}^{\lambda_4} \sum_{l_2, \ldots, l_f \geq 0} \frac{b_{\lambda-l, 1}^{(q, t)}(q, t)}{b_{\lambda}^{(q, t)}(q, t)} \prod_{i=2}^{f} f(l_i; 0)f(l_i + r_i; 0),
\]
where \((\theta_2, \ldots, \theta_f)\) is determined from \(\theta_1\) and \((\rho_2, \ldots, \rho_f)\) by using the equations \(\theta_i = \rho_{i-1} + \theta_{i-1} + r_i - \rho_i\) for \(i = 2, \ldots, f\). Here we use the convention that \(\rho_1 = \lambda_1\) and \(\theta_1 = \lambda_2\). Again, because of \((4.1)\) we obtain
\[
\frac{b^{2i}_{\lambda-1-i, i+1}(q, t)}{b^i_{\lambda}(q, t)} = \frac{f(\lambda_4 - l; 0)f(\lambda_2 - l; 2)}{f(\lambda_4; 0)f(\lambda_2; 2)}.
\]

Hence it is enough to prove
\[
\sum_{\sigma \leq f} \Phi^i_{\sigma} (\rho; \theta; q; t) = \sum_{l = 0}^{\lambda_1} \sum_{\substack{i_2, \ldots, i_f \geq 0 \leq \sigma_{i_2 + \cdots + i_f + 1} = k}} \frac{f(\lambda_4 - l; 0)f(\lambda_2 - l; 2)}{f(\lambda_4; 0)f(\lambda_2; 2)} \prod_{i=0}^{f} f(l_i; 0)f(l_i + r_i; 0). \quad (4.2)
\]

In fact a more general formula holds. If we prove the following theorem, then the proof of \((4.1)\) and \((4.2)\) are both done.

Theorem 4.1. Let \(m\) and \(n\) be nonnegative integers. Let \(\rho_0, \theta_0\) be integers such that \(0 \leq \rho_0 \leq \theta_0\), and let \(\gamma_1, \ldots, \gamma_n\) be nonnegative integers. Then we have
\[
\sum_{\rho_0 \leq \rho_1 \leq \cdots \leq \rho_n \leq \theta_0} \prod_{i=1}^{n} \frac{f(p_{i-1} - \rho_i; 0)f(\theta_{i-1} - \rho_i; i + m - 1)f(\theta_i - p_{i-1}; i + m - 1)f(\theta_i - \theta_{i-1}; 0)}{f(\theta_i - \rho_i; i + m - 1)f(\theta_i - \rho_{i-1}; i + m)}
\]
\[
\times \prod_{k_1, \ldots, k_n \geq 0 \leq k_{i_2 + \cdots + i_f + 1}} f(p_0 - \sum_{i=0}^{n} k_i; 0)f(\theta_0 - \sum_{i=0}^{n} k_i; m) \prod_{i=1}^{n} f(k_i; 0)f(k_i + \gamma_i; 0), \quad (4.3)
\]

where the sum on the left-hand side runs over all \(n\)-tuples \((\rho_1, \ldots, \rho_n)\) of nonnegative integers such that \(k_0 \leq \rho_0 \leq \cdots \leq \rho_1 \leq \rho_0\), the sum on the right-hand side runs over all \(n\)-tuples \((k_1, \ldots, k_n)\) of nonnegative integers which satisfy \(k_1 + \cdots + k_n \leq \rho_0 - \rho_{m+1}\), and \(\theta_i\) is determined from \(\rho_i, \rho_{i-1}\) and \(\theta_{i-1}\) by \(\theta_i = \gamma_i + \theta_{i-1} + \rho_{i-1} - \rho_i\) for \(i = 1, \ldots, n\).

Before we prove this theorem, we need the following lemma which is a special case (i.e., \(n = 1\)) of this theorem.

Lemma 4.2. Let \(m\) be a nonnegative integer. Let \(\rho_0\) and \(\theta_0\) be integers such that \(0 \leq \rho_0 \leq \theta_0\), and let \(\gamma\) be a nonnegative integer. Then we have
\[
\sum_{\rho = \rho_0}^{\rho_0 - k_0} f(\rho + k_0 - 0; 0)f(\theta - k_0; m + 1) f(\theta - \rho; 0)f(\theta - \rho; m)f(\theta - \theta_0; 0) \frac{f(\theta - \theta_0; m)f(\theta - \theta_0; 0)}{f(\theta - \rho; 0)f(\theta - \theta_0; 0)}
\]
\[
= \sum_{k = 0}^{\rho_0 - k_0} f(\rho_0 - 0 - k_0 - k; 0)f(\theta_0 - k_0 - k; m)f(k; 0)f(k + \gamma; 0), \quad (4.4)
\]

where \(\theta = \gamma + \rho_0 + \theta_0 - \rho\).

Proof. Set \(S_1\) to be the left-hand side of \((4.4)\). If one puts \(k = \rho_0 - \rho\), then \(\rho = \rho_0 - k\) and \(\theta = k + \gamma + \theta_0\). Hence one obtains
\[
S_1 = \sum_{k=0}^{\rho_0 - k_0} f(\rho_0 - k_0 - k; 0)f(k + \gamma + \theta_0 - k_0; m + 1)
\]
\[
\times \frac{f(k; 0)f(k + \gamma + \theta_0 - \rho_0; m)f(k + \theta_0 - \rho_0; m)f(k + \gamma; 0)}{f(2k + \gamma + \theta_0 - \rho_0; m)f(2k + \gamma + \theta_0 - \rho_0; m + 1)}.
\]

If we use
\[
(\alpha; q)_{2k} = (\alpha; q)_k(-\alpha; q)_k(\alpha; q^2)_k(-\alpha; q^2)_k, \quad (\alpha; q^2)_k = \frac{(\alpha; q^2)_k}{(\alpha; q^2)_k},
\]

24
then the factors in the denominator are written as \(f(2k + \gamma + \theta_0 - \rho_0; m) = f(\gamma + \theta_0 - \rho_0; m) \times \frac{\left(\begin{array}{c} q^k + q^k \gamma - \theta_0 - \rho_0 \ni m \\ m \end{array} \right)}{\left(\begin{array}{c} q^k + q^k \gamma - \theta_0 - \rho_0 - 1 \\ m \end{array} \right)} \). and \(f(2k + \gamma + \theta_0 - \rho_0; m + 1) = f(\gamma + \theta_0 - \rho_0 - k; m + 1) = f(\gamma + \theta_0 - \rho_0; m + 1) \times \frac{\left(\begin{array}{c} q^k \gamma - \theta_0 - \rho_0 - 1 \\ m \end{array} \right)}{\left(\begin{array}{c} q^k \gamma - \theta_0 - \rho_0 - 2 \\ m \end{array} \right)} \). Meanwhile, the factors in the numerator are \(f(\rho_0 - k_0 - k; 0) = f(\rho_0 - k_0; 0) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \), \(f(k + \gamma + \theta_0 - \rho_0; m + 1) = f(\gamma + \theta_0 - \rho_0; m + 1) \times \frac{\left(\begin{array}{c} q^k \gamma - \theta_0 - \rho_0 - 1 \\ m \end{array} \right)}{\left(\begin{array}{c} q^k \gamma - \theta_0 - \rho_0 - 2 \\ m \end{array} \right)} \), \(f(k + \theta_0 - \rho_0; m) = f(\theta_0 - \rho_0; m) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \), \(f(k + \gamma; 0) = f(k + \gamma; 0) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \). Hence, substituting these factors, we obtain
\[
S_1 = C \cdot 12 \cdot W_1 \left(\begin{array}{c} q^k \gamma - \theta_0 - \rho_0 \\ m \end{array} \right), \frac{\left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right)}{\left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 2 \\ m \end{array} \right)}
\]
where \(a = t, b = tq^\gamma, c = q - \rho_0 + k_0, d = t^{-m}q^{-\theta_0 + k_0} \) and
\[
C = \frac{f(\rho_0 - k_0; 0)f(\gamma + \theta_0 - \rho_0; m + 1)f(\theta_0 - \rho_0; m)f(\gamma; 0)}{f(\gamma + \theta_0 - \rho_0, m + 1)}
\]
On the other hand, Set \(S_2 \) to be the right-hand side of \(\text{[1.3]} \). If we use \(f(\rho_0 - k_0 - k; 0) = f(\rho_0 - k_0; 0) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \), \(f(\theta_0 - k_0 - k; m) = f(\theta_0 - k_0; m) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \) and \(f(k + \gamma; 0) = f(k + \gamma; 0) \left(\begin{array}{c} q^k \gamma - \theta_0 + \theta_0 - \rho_0 - 1 \\ m \end{array} \right) \), then we obtain
\[
S_2 = f(\rho_0 - k_0; 0)f(\theta_0 - k_0; m)f(\gamma; 0)\phi_1 \left[\begin{array}{c} q^{-\rho_0 + k_0}, t^{-m}q^{-\theta_0 + k_0}, t, tq^\gamma, \frac{q^2}{\gamma^2} \\ \begin{array}{c} l^{-1}q^{-\rho_0 + k_0 + 1}, l^{-m-1}q^{-\theta_0 + k_0 + 1}, \gamma^{1+1}; q, q^2 \\ \end{array} \right] .
\]
Hence Gasper’s formula \(\text{[1.2]} \) proves that \(S_1 = S_2 \). The details are left to the reader. This completes our proof.

Proof of Theorem \text{[1.1]} We proceed by induction on \(n \). If \(n = 1 \), then \(\text{[1.3]} \) is nothing but \(\text{[1.3]} \). Let \(n \geq 2 \) and assume \(\text{[1.3]} \) is true for \(n - 1 \). If we set \(S \) to be the left-hand side of \(\text{[1.3]} \), then we have
\[
S = \sum_{\rho_0=k_0}^{\rho_0} f(\rho_0 - \rho_1; 0)f(\rho_0 - \rho_1; m)f(\theta_1 - \rho_0; m)f(\gamma; 0)
\]
\[
\times \sum_{k_0 \leq k_0 \leq k_0} f(\rho_0 - k_0; 0)f(\theta_0 - k_0; m + n)
\]
\[
\times \sum_{i=0}^{n} f(\rho_0 - k_0; 0)f(\theta_0 - k_0; i + m - 1)f(\gamma; 0)
\]
\[
\times f(\rho_0 - \rho_1; 0)f(\theta_0 - \rho_1; m)f(\theta_0 - \rho_0; m)f(\gamma; 0)
\]
\[
\times f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
We can use our induction hypothesis to obtain
\[
S = \sum_{k_2, \ldots, k_n \geq k_0} \prod_{i=2}^{n} f(k_i; 0)f(k_i + \gamma; 0)
\]
\[
\times \sum_{\rho_1=k_0 + \sum_{i=2}^{n} k_i} f(\rho_1 - k_0 - \sum_{i=2}^{n} k_i; 0)f(\gamma; 0)
\]
\[
\times f(\rho_0 - \rho_1; 0)f(\theta_0 - \rho_1; m)f(\theta_0 - \rho_0; m)f(\gamma; 0)
\]
\[
\times f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
\[
f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
\[
\times f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
\[
\times f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
\[
\times f(\theta_0 - \rho_1; m)f(\gamma; 0)
\]
If we use (4.4) again, then we obtain
\[S = \sum_{k_2 + \cdots + k_n \geq 0} \prod_{i=2}^{n} f(k_i; 0)f(k_i + \gamma_i; 0) \]
\[\times \sum_{0 \leq k_1 \leq \rho_0 - \sum_{i=2}^{n} k_i} f(\rho_0 - \sum_{i=0}^{n} k_i, 0)f(\theta_0 - \sum_{i=0}^{n} k_i, m)f(1, 0)f(1 + \gamma_1, 0), \]
which equals the right-hand side of (4.3). This completes our proof.

Concluding Remarks In the proof of the \((q,t)\) hook formula for birds and banners, Gasper’s identity (1.2) for \(12W_{11}\) plays an important role. The author tried the other classes of irreducible \(d\)-complete posets, but it seems that another identity will be needed for the rest.

References

[1] G. E. Andrews, R. Askey, and R. Roy. *Special Functions*. Cambridge Univ. Press, New York, first edition, 2000. ISBN: 0-521-78988-5.

[2] G. Gasper. Rogers’ linearization formula for the continuous \(q\)-ultraspherical polynomials and quadratic transformation formulas. *SIAM J. Math. Anal.*, 16:1061–1071, 1985.

[3] G. Gasper and M. Rahman. *Basic Hypergeometric Series*. Cambridge Univ. Press, Cambridge, second edition, 2004. ISBN: 9-780-52183357-8.

[4] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. *Hypergeometric Orthogonal Polynomials and Their q-Analogues*. Springer-Verlag, Berlin-New York, first edition, 2010. ISBN: 978-3-642-05014-5.

[5] R. Koekoek and R. F. Swarttouw. The askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue. Technical Report 98-17, Department of Technical Mathematics and Informations, Faculty of Information Technology and Systems, Deift University of Technology, 1998. available at [arXiv:9602214](https://arxiv.org/abs/9602214).

[6] R. Langer, M. J. Schlosser, and S. O. Warnaar. Theta functions, elliptic hypergeometric series, and kawanakas macdonald polynomial conjecture. *SIGMA*, 5:055, 2009. available at [arXiv:0905.4033](https://arxiv.org/abs/0905.4033).

[7] I. G. MacDonald. *Symmetric Functions and Hall Polynomials*. Oxford University Press, Oxford, second edition, 1998. ISBN: 0-19-853489-2.

[8] S. Okada. \((q,t)\)-deformations of multivariate hook product formulae. *J. Algebraic Combin.*, 32:399–416, 2010.

[9] R. Proctor. Dynkin diagram classification of \(\lambda\)-minusule bruhat lattices and of \(d\)-complete posets. *J. Algebraic Combin.*, 9:61–94, 1999.

[10] R. Proctor. Dynkin diagram classification of \(\lambda\)-minusule bruhat lattices and of \(d\)-complete posets. *J. Algebra*, 213:202–303, 1999.

[11] R. P. Stanley. Ordered structures and partitions. *Mem. Am. Math. Soc.*, 119, 1972.

[12] R. P. Stanley. *Enumerative Combinatorics: Volume 1 (Second Edition)*. Cambridge University Press, Cambridge, second edition, 2012. ISBN: 978-1-107-60262-5.

[13] M. Vuletić. A generalization of macmahon’s formula. available at [arXiv:0707.0532](https://arxiv.org/abs/0707.0532) 2007.

[14] M. Vuletić. Shifted schur process and asymptotics of large random strict plane partitions. *Int. Math. Res. Notices*, 2007:article ID rnm043, 2007. available at [arXiv:math-ph/0702068](https://arxiv.org/abs/math-ph/0702068).
[15] S. O. Warnaar. Rogers-szegő polynomials and hall-littlewood symmetric functions. *J. Algebra*, 303:810–830, 2006. available at [arXiv:0708.3110](https://arxiv.org/abs/0708.3110)