Shear Behavior of Joint

The Partial Prestressed Concrete Beam-Column Reinforced Concrete of Ductile Frame Structure Building In a Scure Residents and for Settlement Environment

Made D Astawa, IGP Raka, and Tavio

Abstract—Concentration of this study is to create a Specimens model of Joint Interior Beam - Column using Partial Prestressed Concrete Beams elements connected with Reinforced Concrete Column. Design capacity of Beam- Column Joint Shear is the horizontal shear reinforcement in the form of stirrups Ø 10-50 mm to fill the empty space bj = 288 mm. The capacity Shear that can be deployed by the cross bar = 103.62 kN. Total shear force that is capable of detained by the beam-column joint structures are Vjh = 409 kN. This study is a continuation of research SRPMK models shaped beam - column joint with beam section 250/400 mm , and the column section 400/400 mm , the source of funds from Research Duitlabmas Decentralization Program of Higher Education , through ITS Featured Research Grant in 2013. Experimental studies have been conducted with Cyclic loading (pseudo dynamic) lateral , static axial load on the column as a stabilizer . Specimens ability to withstand Ultimate Lateral Cyclic Load : conditions Load push (press) = 470.90 kN and Load Pull = 465.80 kN. Everything is > 409 kN. Ductility structure also qualified in 3.50% Drift Ratio: Conditions Press μ = 1.27 > 1.20, Pull Conditions μ = 1.29 > 1.20. In general, behavioral modeling structure has qualified as a reliable protection occupancy when the building was hit by an earthquake.

Keywords—The Beam-Column Joint shear Behavior, ductile, Earthquake Resistant.

I. INTRODUCTION

Investigation of the collapse of the post-quake buildings in areas hit by the earthquake lately, such as the earthquake in Aceh (2004), Yogyakarta (2006), West Sumatra (2009), mostly due to a design fault structural elements beam-column Joint, because the strong-column design principles are lacking weak beams, namely the lack of transverse reinforcement as a barrier shear reinforcement in columns, precisely at the beam-column joint. So in this study will design a retaining structure element model of the quake at the confluence ductile joint. Therefore, the objective of this study is to design a Specimens model of Joint Interior Beam - Column reinforced concrete column and partially prestressed concrete beams reliable against shear failure and bending, as the protection of a safe and comfortable shelter.

II. THE FUNDAMENTAL THEORY

A. Load-deflection relationship on prestressed concrete.

Load-deflection relationship for beams with some variation of prestressing force is presented in Figure 1. Both under-reinforced concrete beams or over-reinforced concrete beam[16].

B. Flexure tension Elastic and Partial Prestressed Beams strength after cracking.

At the stage of full service load, partial prestressed beams are usually cracked, although stress concrete and steel stress remains in the elastic range. Even more complicated is for cracked prestressed concrete beams. Axial force is not constant after the crack, but depending on the loading and the nature of the cross-section. Effective cross-section of a typical partial prestressed beams at serviceability load is shown in Figure 2. (a). Load step (1) Figure 2. (b) application effective prestressing force P only. At this stage, the stress in the tendon is:

\[f_{p1} = f_{pe} = \frac{P_e}{A_p} \] (1)

In the compressive strain assumed perfect bonding between the two materials, similar to those seen at the same level concrete. Thus, reinforcement is subject to compressive stress initials:

Furthermore, fictitious load stage (2), is useful to consider the stage of the fictitious load corresponding to complete decompression of the concrete, the concrete strain zero through the entire depth (Figure 2. (c)). Deformation compatibility of concrete and steel require Stress changes in the tendon and reinforcement rods on each beam to move from step (1) to step (2):

\[f_{p2} = E_p \cdot \varepsilon_{p2} \] (2)

\[f_{s2} = E_s \cdot \varepsilon_{s2} \] (3)

At this stage hypothetical load, stress on the rod reinforcement, ignoring the effect of shrinkage and creep, are:

\[f_s = E_s (-\varepsilon_{s2} + \varepsilon_{s2}) = 0 \] (4)

Stress change in the same tendon that is in the concrete at that level, and can be calculated based on the properties of concrete has not cracked section:

\[\varepsilon_{p2} = \frac{P_e}{A_e \cdot E_e} \left(1 + \frac{1}{r^2}\right) \] (5)

after \(f_{p2} \) can be calculated from Eq. (2.4). Reinforcement rods without stress in step (2), but to produce a zero voltage condition on the concrete, tendon to be pulled by external forces fictitious by:
F = Ap(fp1 + fp2)

is shown in Figure 2. (c). Effect of compressive force is now postponed to give fictitious force F is equal and opposite, as shown in Figure 2. (d). This style works together with external moment M, due to its own weight and load superposition, can be represented by a resultant force R applied with eccentricity e above the neutral line is not cracked concrete, where R = F and:

\[e = \frac{M}{R} \]

Beam can now be analyzed as ordinary reinforced concrete members were eccentric compressive force. Resultant strain distribution in concrete (3) is shown in Figure 2. (e). An increase in strain in the tendons and reinforcing rods, and \(\varepsilon \), respectively, together with the corresponding stress FP3 and FS3, imposed on stress and strain existing in the tendon and reinforcement rods.

The addition of steel stress, and stress in the concrete, can be searched by using the concept of cross-section transformation. Tendons can be replaced by a broad cross-section of tensile equalen nAp concrete and reinforcing rods were replaced by broad nAs, where \(n_p = \frac{ep}{Ec} \) dan \(n_s = \frac{es}{Ec} \), as shown in Figure 3(a). Neutral axis for transformation equalen homogeneous cross-section, with the distance y from the surface, can be found from the moment equilibrium condition due to internal force around the entire work line action R must be zero. Compressive stress in concrete due to internal forces and the compressive stress and the action transforming on s teel section, as shown in Figure 3 (b). Moment equations for the internal force of the resultant external R generate the cubic equation for y that can be solved through a trial (trials). Once the magnitude of y, the transformation of the effective area and moment of inertia about the joint is determined on the basis that the flexural tensile stress in the steel \(f_y = 1.25 \). Figure 5 shows the forces acting on the beam-column relations in the joint.

D. Reinforcement distribution on the Joint

For reinforcement bar sizes 3 to No. 11 ends in a joint exterior with standard hooks 90° on the normal concrete, length delivery outside face of the column ldh, as required by ACI 318 regulations, shall not be less than the value of the largest of the equation (2.18) and (2.19) and (2.20) the following:

\[l_{dh} \geq \frac{f_y db}{65 \sqrt{f_{ct}} } \]

where \(db = \) bar diameter.

\[l_{dh} \geq 6 \text{ inch} \]

Length distribution given out advance column should not be less than \(ld = 2.5 \text{ ldh} \), when the depth of the concrete cast in one ride down the slope reinforcement exceeds 12". All straight bar ends on the joint reinforcement required for confinement passes through the core of a column or shear wall boundary rods. Every part, no longer restrained planting in the core must be increased by a factor of 1.6.

E. State of the Art Shear ductility of Beam-Column Joint

Uma, S.R & Meher Prasad. A (2006) They conducted a joint study at seismic behavior of reinforced concrete frame beam-column moment bearers (25). The aspects studied include: force of action at the beam-column joint, frame and pedestal respected contribution mechanism at joint, bonding requirements, factors affecting the bonding strength, at joint shear requirements.
In terms of shear at joint analysis, more detail is described as follows:

1. Shear force at beam-column joint Interior

Note assembling parts of interior beam-column joint extends between the points of counter bending, as shown in Figure 6 (a). Shear forces acting on the joint can be calculated by using the criteria of balance. High center to the center of the column is lc and range of center-to-center beam is lb. Figure 6 (b) shows the strength of the beam joint work in advance. Bending moment and shear force distribution for each column is shown in Figure 6 (c) and Figure 6 (d). To read Figure 6 (c) it is clear that the nature of the moment above the most and below the joint changes and shows a steep gradient in the joint, causing a large shear forces in the joint compared with that in the column. Horizontal shear force across the joint can be obtained based on the criteria of balance. See arch bending moments, moments Ms and Mn work on the advance with the opposing forces on the joint between the beams are stringing. Assuming symmetrical reinforced beams, tensile force Tb and compressive force Cb done in reinforcement beams. Slide the vertical beam on the face of the joint is Vb. Assuming the shear force Cb = Tb, slide on the columns = Vcol, from forces above is calculated as the equilibrium criterion.

\[V_{col} = \frac{2T_b + V_b \cdot h_c}{l_c} \]

(20)

wherein:
- \(l_c \) = height of the floor (the Figure 7 (a).
- \(h_c \) = height of the column.
- \(Z_b \) = the lever arm.

Given the slope of the moment in the joint core, horizontal shear force, vjh can be written as :

\[V_{j h} = V_{ch} \left(\frac{k}{Z_b} - 1 \right) - V_h \left(\frac{h_c}{Z_b} \right) \]

(21)

1) The Joint Shear strength

Joint shear strength is strongly influenced by the parameters that influence the two principles against sliding mechanism. Total force contributed by each mechanism can be considered as the shear strength of the joint in the horizontal direction is calculated by :

\[V_{j h} = V_{ch} + V_{sh} \]

where \(V_{ch} \) is the contribution of the concrete strut and \(V_{sh} \) is a contribution of the truss mechanism. Contribution of each mechanism is influenced significantly by the prevailing conditions of the bond as discussed in the previous section. Of reference the results this research, the idea arose to investigate the shear capacity of the joint partially prestressed concrete beams with reinforced concrete columns, shear ductility in particular reliability, to avoid storey frame structure of shear failure due to lateral seismic loads. This study is the continuity of the previous year studies that have examined about bending ductility of the structure model of the same order. State of the Art this research is to explore and find the idea of the results of previous studies that the researchers "Column-Behavior Relations Slide Concrete Beams on the Framework Struktur Daktil as Environmental Building a Reliable and Safe Housing"
stirrups Φ10, 40 mm concrete cover

\[A_{ch} = (320)(320) = 102400 \text{ mm}^2, \]

\[h_c = 320 - 2(0.5, 10) = 310 \text{ mm}. \]

Stirrup spacing S is taken 50 mm.

\[A_{sh} = 0.3 \left(\frac{50 \times 310 \times 40}{1000} - 1 \right) = 261.56 \text{ mm}^2 \]

or \[A_{sh} = 0.9 \left(\frac{50 \times 310 \times 40}{1000} \right) = 139 \text{ mm}^2, \]

used a great value.

\[1010 \rightarrow A_s = 785 \text{ mm}^2, \]

the amount of stirrups \(\geq 261.56 / 78.5 = 3.33 \), it takes 4 stirrups, but since \(S = 50 \text{ mm} \), and height of the beam space \(= 400-35-8 = 310 \text{ mm} \), we used amount of stirrups \(= 288 / 50 = 5.76 \); 6 pieces rounded stirrups with \(A_{sh} = 471 \text{ mm}^2 \).

D. Calculating the shear strength of joint

Above beam reinforcement is 5D13 with \(A_s = 663.7 \text{ mm}^2 \). 3D13 reinforcement in bottom beam with \(A_s = 398.2 \text{ mm}^2 \). Effectively the high block requirements for strong concrete and reinforcement in the joint stirrups \(\geq 0.55 \) according to SNI 03-2847

\[V_{ch} = \frac{2T_n Z_n + V_n h_c}{l_c} \]

from the equation 20

\[V_{jh} = V_{col} \left(\frac{1}{Z_n} - 1 \right) - V_n \left(\frac{h_c}{Z_n} \right) \]

from the equation 21

\[V_n = 0.4, 0.25, 24(1.6) + 192/1.6 = 123.84 \text{ kN} \]

\[V_{ch} = \frac{102.54 + 398.2 \times 400 \times (365 - 82) / 2^{10}}{3} - 123.84 \times 0.4 = 68 \text{ kN} \]

\[V_{jh} = 68 \times \left(\frac{3.0}{0.3238} - 1 \right) - 123.84 \times \left(\frac{4.0}{0.3238} \right) = 409 \text{ kN} \]

Shear strength at the joint are calculated of the nominal strong concrete and reinforcement in the joint stirrups

\[V_n \leq \sqrt[12]{ \frac{A_{ch}}{A_{sh}} } \]

from the equation 16

The equation 2.17 is applicable for Beam-Column Joint frame field. High joint taken = Column high = 400 mm, the effective width taken of the smallest value: beam (b), or \(b + 2X \); \(X = \) difference thick outer edge of the effective width taken of the smallest value: beam (b).

\[f_h = 0.235 \times (350,5) = 82.4 \text{ mm} \]

\[\phi \]

\[\frac{V_{jh}}{f_h} = 0.55 \times (471) \times 10^{-3} = 103.62 \text{ kN} \]

\[A_{sh} = 310 - 2(0,5) = 400 \text{ mm} \]

\[0.235 \times \text{Column high} = 3.0 \text{ m} \]

\[\text{F. Specimen test results expected} \]

a. There was good cooperation between the concrete reinforced strand tendons in response to the earthquake Cyclic lateral shear loads, so \(\mu \geq V_u \) both conditions are still elastic nor the inelastic conditions.

b. Shear ductility \(\mu \geq V_u \) of the joint, until the boundary load is done through a horizontal in laboratory experiments.

c. When the shear capacity of the specimens fulfilling \(\mu \geq V_u \), then the ductility \(\mu = (\delta_{\text{max}} / \delta_{\text{first yield}}) \), will also be fulfilled.

IV. EXPERIMENTAL ANALYSIS OF TEST RESULTS IN LABORATORY

To get accurate data from Beam-Column Joint research is then mounted several sensors at the points that are important to the tool, including the form; Linear Variable Displacement Transducer (LVDT), Stain-gauge (SG) and Wire-gauge (WG). Each outcome data at every point in the form of graphs will be presented sequentially.

Results analysis Test Specimens at peak Interior Column. For the beam-column joint specimens Interior, the Static Axial load on a given column by vertical actuator load capacity by 10% Column = 10% (400x400) 40 X 10-3 = 640kN. Load data will be shown in the following table 2 for conditions on top of the column.

A. Load Structure resist capability at Joint Shears from reading the data stain-gauge (SG) in a row

SG-13 (reinforcement columns) + SG-16 (Sengkang Scroll) + SG-25 (Strand Tendons) + SG-40 (Concrete Column). Lateral Press Forces = 114.2 +142.3 kN

\[+44.3kN+142=470.9kN. \]

Lateral Pull Forces = 135 kN kN +138 +58.5 +134.3 +465.8kN.

\[\phi_{\text{plan}} = 409kN, \]

the ability resist lateral test force results of Specimen : Press = 470.9 kN and Pull = 465.8 kN. All of them > 409 kN ... (OK)

B. Load capacity compared Load Melt Early specimens in accordance with SNI 03-1726-2002

\[P_y/P_i \geq f_i, \]

where \(f_i = 1.2, \) Ideal load (Pi) conditions on the elastic Story Drift 1.0 % the first cycle :

\[P_i (\text{press}) = 108, 50 \text{ kN} ; P_i (\text{pull}) = 106,20 \text{ kN} \]

Maximum load (Py) yield conditions on Story Drift 3.5% 13th cycle :

\[P_y (\text{press}) = 138,30 \text{ kN} ; P_y (\text{pull}) = 137,60 \text{ kN} \]

\[P_y/P_i \geq 1,20 \]

\(138,30/108,50 \geq 1,20 \text{ (press)} \)

\(\mu = 1,27 > 1,20 \)

\(\text{(OK)} \)

\[P_y/P_i \geq 1,20 \]

\(137,60/106,20 \geq 1,20 \text{ (pull)} \)

\(\mu = 1,29 > 1,20 \)

\(\text{(OK)} \)

C. Structural stability

There are 3 criteria that must be met by the specimen in accordance with the "Proposed Revision to 1997 NEHRP Recommended Provisions for Seismic Regulations for Precast Concrete Structure" and the American Concrete Institute (ACI). Analysis of test results according to the 3 criteria are:
Load capacity of Specimen to Maximum working Cyclic Lateral Load:
1) The maximum load at 4.50% Story Drift:
 - Press = 142.30 kN
 - Pull = 137.60 kN

 Conclusion: The maximum load at 4.50% Story Drift was 137.60 kN, which is greater than 135.70 kN, indicating that the load carried by the specimen is able to withstand the specified load.

2) The maximum load at Story Drift: 3.50% Cycle 3:
 - Press = 138.30 kN
 - Pull = 137.60 kN
 - Cyclic Lateral Press Load on the 3rd Cycle = 130.70 kN.
 - Cyclic Lateral Pull Load on the 3rd Cycle = 131.00 kN.

 Conclusion: The maximum load at 3.50% Story Drift was 137.60 kN, which is greater than 135.70 kN, indicating that the load carried by the specimen is able to withstand the specified load.

3) Energy dissipating Relative ratio (β) is comparing between broad Hysteretic loop formed by the vast parallelogram formed by the intersection at end Hysteretic Loop on Story Drift with the Story Drift stiffness:
 - a. Extensive formation of Energy by Hysteretic Loop Story Drift Ratio at 4.50%: Energy dissipation of 4.50% Story Drift Cycle 3rd cycle
 - Area of Parallelogram formed by the end of intersection Loop Hysteretic: $(E_1 + E_2) + (01' + \Theta 2) = 19.080,808.6 Nmm$
 - Comparison Value: $16143803 / 1908080,86 = 0.85 > 0.121$ (OK).
 - b. Area of the formation Energy by Hysteretic Loop at Story Drift Ratio 3.50%:
 - Energy Dissipation 3rd cycle = 10,757,962 Nmm
 - Area of Parallelogram formed by the intersection of Loop Hysteretic ends: $(E_1 + E_2) + (01' + \Theta 2) = 14759808,46 Nmm$
 - Comparison Value: $10757962 / 14759808,4 = 0.73 > 0.121$ (OK).

4) Value comparison The gradient Hysteretic Loop bordered by limits abcissa-X and + X on the X axis:
 - a. Comparison of Curva The gradient according to the requirements of ACI 374.1.05 3rd Cycle at Story Drift 4.50%:
 - Press:
 - Gradien Siklus ke-3 Story Drift 4.50 = tan 39.66 = 0.105
 - 0.105 > 0.05 ... (OK)
 - Pull:
 - Gradien Siklus ke-3 Story Drift 4.50 = tan 0.05 = 0.000121
 - 0.000121 < 0.05 (not OK)
 - b. Comparison of Curva The gradient according to the requirements of ACI 374.1.05 3rd Cycle at Story Drift 3.50%:
 - Press:
 - Gradien Siklus ke-1 Story Drift 3.50 = tan 44.79 = 0.126
 - 0.126 > 0.05 ... (OK)
 - Pull:
 - Gradien Siklus ke-1 Story Drift 3.50 = tan 41.24 = 0.121
 - 0.121 > 0.05 (OK)

V. CONCLUSION

Conclusion: The results of Analyze beam-column joint of Specimen interior was as follows:

1) Strong Joint Slide:
 - Results:
 - Strong Slide Joint Press = 470.9 kN
 - Strong Slide Joint Pull = 465.8 kN
 - Planning Result: 409.9 kN
 - Experimental Results > Results of Planning.
 - Structure qualified

2) Yield Load capacity directly Initial Load:
 - Ideal load (P_i) conditions on the elastic Story Drift 1.0% the first cycle:
 - $P_i (press) = 106, 20 kN$; $P_i (pull) = 108, 50 kN$
 - Maximum load (Py) yield conditions on Story Drift 3.5% 3rd cycle:
 - $Py (press) = 138, 60 kN$; $Py (pull) = 137, 50 kN$
 - $Py/Pi \geq 1.20$ (OK)

3) Structural stability:
 - a. The maximum load at 4.50% Story Drift:
 - Load Press = 114.80/138.30 (100%) = 80.60% > 75% (OK), Structure qualified
 - Load Pull = 99.30 / 135.70 (100%) = 73.17% <75% (not OK)
 - b. The maximum load at Story Drift: 3.50% Cycle 3:
 - Press Load = 138.30/130.70 (100%) = 94.50% > 75% (OK), Structure qualified
 - Pull Load = 137.60 / 131.00 (100%) = 95.20% > 75% (OK)

- Comparison of Curva The gradient according to the requirements of ACI 374.1.05 3rd Cycle at Story Drift 4.50%:
Press:
\[
\text{Gradien Siklus ke-3 Story Drift 4,50} = \tan 39.66 = 0.105
\]
\[
0,105 > 0,05 \ldots (OK), \text{Structure qualified.}
\]
Pull:
\[
\text{Gradien Siklus ke-3 Story Drift 4,50} = \tan 0,05
\]
\[
0,121 > 0,05 (OK), \text{Structure qualified.}
\]

2. Comparison of Curva The gradient according to the requirements of ACI 374.1.05 3rd Cycle at Story Drift 3.50%:
\[
\text{Gradien Siklus ke-1 Story Drift 3.50} = \tan 44.79 = 0.126
\]
\[
0,126 > 0,05 \ldots (OK), \text{Structure qualified.}
\]
\[
\text{Gradien Siklus ke-1 Story Drift 0,002} = \tan 82.77 = 0,000121
\]
\[
0,000121>0,05 \ldots \text{(not OK), Structure not qualified.}
\]

Resume:
In general, the model structure is eligible, although the structure stability test results are not eligible while receiving force Pull specimen on Story Drift 4.50%, but at 3.50% Story Drift has qualified. Similarly, in comparison Gradient, only on Drift Ratio 4.50% who do at 3.50% Story Drift has qualified. Similarly, in receiving force Pull specimen on Story Drift 4.50%, but structure stability test results are not eligible while M. Sc, Ph.D. Our gratitude also goes to LPPM -ITS for Ir. Bambang Supriyadi, CES, DEA and Ir. Handayanu, the examiners: Prof. Ir. Priyo Suprobo, MS, Ph.D., Dr. Ir. I.G.P. Raka, DEA and Dr. Ir. Tavio, MS, Ph.D., Dr. Ir. Bambang Supriyadi, CES, DEA and Ir. Handayanu, M. Sc, Ph.D. Our gratitude also goes to LPPM-ITS for assistance fund through Outstanding ITS Research, Research DITLITABMAS Decentralization Program, National Development University "Veteran" East Java which has given me the opportunity to study in the S3ITS, Conference Committee APTECS-2013 ITS, has been pleased to accept my paper are presented, all colleagues at the department of Civil Engineering-FTSP - UPN, and all who assisted in this research.

ACKNOWLEDGEMENT
In writing and making this study design we were much aided by various parties, especially the Promoter Prof. Dr. Ir. I.G.P. Raka, DEA & Prof. Ir. Tavio, MS, Ph.D., the examiners: Prof. Dr. Ir. Priyo Suprobo, MS, Ph.D., Dr. Ir. Bambang Supriyadi, CES, DEA and Ir. Handayanu, M. Sc, Ph.D. Our gratitude also goes to LPPM-ITS for assistance fund through Outstanding ITS Research, Research DITLITABMAS Decentralization Program, National Development University "Veteran" East Java which has given me the opportunity to study in the S3ITS, Conference Committee APTECS-2013 ITS, has been pleased to accept my paper are presented, all colleagues at the department of Civil Engineering-FTSP - UPN, and all who assisted in this research.

REFERENCES
[1]. American Concrete Institute(ACI 318M-08), 2008 "Building Code Requirements for Structural Concrete and Commentary" First Printing June 2008.
[2]. Elamashai. A.S & Dowling P.J. 2001 “Design of Modern Higrise Reinforced Concrete Structures”, Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE
[3]. Dharma Astawa Made, 2007 “Teknik Gempa”, Modul Ajar, Jurusan Teknik Sipil-FTSP, UPN “Veteran” Jawa Timur, ISBN : 96-979-1005-20-3.
[4]. Fanella David A, Munshi Javeed. A, 1998 “Design of Concrete Buildings for Earthquake and Wind Forces”, Portland Cement Association.
[5]. Ghosh S. K, May-June 1999 “Impact of Earthquake Design Provisions of International Building Code”, PCI Journal.
[6]. Kashiwazaki Takashi, Hoguchi Hiroshi, 2000 “Structural Performances of Prestressed Concrete Interior Beam-Column Joints”, Proceedings of 12th Word Conference on Earthquake Engineering, Paper No. 2342, Auckland-New Zealand, ISBN : 0-9582154-0-5.
[7]. Key David, 1998 “Earthquake Design Practice for Buildings”, Thomas Telford, London.
[8]. Lin T. Y, Burns Ned. H, Indrawan Daniel, 1996 “Desain Struktur Beton Prategang Jilid 1”, Erlangga Jakarta.
[9]. Lin T. Y, Burn Ned. H, Mediana, 2000 “Desain Struktur Beton Prategang Jilid 2”, Erlangga Jakarta.
[10]. Miswandi V Eka, 1999 “Pengaruh nilai PPR dan Tulangan Transversal Terhadap Tingkat Duktilitas Balok Beton Pratekan Parsial pada Struktur Rangka Penahan Moment”, Tesis Magister Teknik Sipil ITS Surabaya.
[11]. Nakano K, Tanabe K, Machida S, & wada S, 2001 “Damage Controlled Seismic Design by Precast-Prestressed Concrete Structure with Mild-Press-Joint”, Part 1”, Basic Concept of Design, AJL Summaries of Technical Papers of Annual Meeting, Japan.
[12]. Naaman Antoine. E, 1982 “Prestressed Concrete Analysis and Design”, McGrow-Hill Book Company, New York, San Francisco,Auckland, Bogota, Hamburg, Johannesburg, London, Madrid, etc.
[13]. Naaman Antoine E, Siriasiorn A, 1978 “Analysis and Design of Partially Prestressed to Statisfy Serviceability Criteria”, A Study Report by a Research Fellowship Award from the Prestressed Concrete Institute and by the University of Illinois, Chicago.
[14]. Naaman Antoine E, Nop-Dec.1985 “Partially Prestressed Concrete (Review and Recommendation)”, special report, PCI. Journal.
[15]. Nawy Edward G, 2003 “Prestressed Concrete”, Pearson Prentice Hall, Upper Saddle River, new Jersey 07458.
[16]. Nilson Arthur H, 1987 “ Design of Prestressed Concrete”, John Wiley & Sons, Inc, New York, Chichester, Brisbane, Toronto, Singapore.
[17]. Park R and Paulay T, 1975 “Reinforced Concrete Structures”, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.
[18]. Paulay T, Priestley M. J. N, 1992 “Seismic Design of Reinforced Concrete and Masonry Buildings”, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore.
[19]. Raka I Gusti Putu, 1993 “Dukilitas Penampang Tiang Pencak Pratekan Bulat Berongga hasil Pemadatan Sentrifugal“, Laporan Penelitian, Jurusan Teknik Sipil-FTSP ITS Surabaya.
[20]. SNI 03-2847-2002, “Tata cara Perhitungan Struktur Beton untuk Bangunan Gedung”, Laboratorium Beton ITS Surabaya.
[21]. SNI 03-1726-2002, “Struktur Gedung Tahan Gempa”, Badan Standardisasi Nasional (BSN), Jakarta.
[22]. Sadhir K. Jain, R.K. Ingle, Goutam Mond, 2006 “Proposed codal provisions for design and detailing of beam-column joints in seismic regions”, The Indian Concrete Journal, Agustus 2006.
[23]. Thompson Kevin J, Park Robert, March-April 1980, “Ductility of Prestressed and Partially Prestressed Concrete Beam Section”, PCI Journal.
[24]. UBC, 1997 “ Uniform Building Code”
[25]. Uma S. R, Meher Prasad. A, “Seismic Behavior of Beam Column Joints in Reinforced Concrete Moment Resisting Frames”, Deapartment of Civil Engineering Indian Institute of technology Madras Chennai..
Figure 1. Idealization of the load-deflection curve for the beam with some variation of prestressing force. (Arthur H Nilson, 1987)

Figure 2. Basic cross-sectional analysis of cracks: (a) Cross-section cracks, (b) Strain of concrete and steel, (c) prestressed force, (d) force on the cross-crack, (e) Resultant stress (Arthur H Nilson, 1987)

Figure 3. Transformation of partial prestressed cracked beam section. (a) the transformation of cracked section, (b) tension (Arthur H Nilson, 1987)

Figure 4. Broad efektive in the Joint (Aj) (Fanella David A, Munshi Javeed A, 1998)

Figure 5. Horizontal shear force on the Beam-Column Joint (Fanella David A, Munshi Javeed A, 1998)

Figure 6. Horizontal shear force on interior joint (Uma & Meher Prasad, 2006)

Figure 7. Balance on Joint shear (Uma & Meher Prasad, 2006)
Figure 8. Idealization of the behavior of Beam-Column Joint (Uma & Meher Prasad, 2006)

Figure 9. Design Interior Joint Specimen

Figure 10. Moment distribution in the specimen Interior

Figure 11. Stirrups position

Figure 12. Relationships curve V Lateral Load and Lateral deflection at the top of column (tr-2)

Figure 13. The relationship curve V Lateral Load and Lateral Deflection Peak Each Cycle at Peak Column (Tr-2)

Figure 14. Energy dissipation curves area and broad Parallelogram in 3rd Cycle at the Story Drift 4:50% with gradient 0.200%

Figure 15. Energy dissipation curves area and broad Parallelogram in 3rd Cycle at the Story Drift 3:50% with gradient 0.200%
Figure 16. Comparison of Gradients curves in 3rd Cycle at Story Drift 4:50%

Figure 17. Comparison of Gradients curves in 3rd Cycle at Story Drift 5:50%

Table 1.
SPECIFICATIONS AND CRITERIA OF THE TEST SPECIMEN

Jenis Struktur	Element of Structure (cm)	Longitudinal Reinforcement	Stirrups	Tendons amount	Specimens amount
Interior Beam-Column Joint	Beam 25/40, Compressive Bar 3 D1	SD1	Ø8 - 75 (2Strand)	1	1
Column 40/40	Compressive Bar 6 D10 + 4 D13	50	-		

Table 2.
THE LATERAL LOAD DATA AND DEFLECTION AT PEAK OF COLUMN.

No.	V Loads (kN)	δ (Tr2) (mm)	Story Drift	No.	V Loads (kN)	δ (Tr2) (mm)
0	0	0	0	0	0	0
64	38,00	4,82	0,200	0	0	0
90	36,40	4,76	0,200	0	0	0
116	36,40	4,74	0,200	0	0	0
155	47,60	6,06	0,250	170	-38,30	-5,78
185	44,60	5,96	0,250	200	-40,30	-6,04
215	44,00	5,96	0,250	230	-40,00	-6,02
256	61,80	8,42	0,350	270	-58,20	-8,40
284	59,20	8,38	0,350	298	-55,90	-8,42
312	58,50	8,40	0,350	326	-55,60	-8,42
351	77,70	11,96	0,500	366	-75,40	-12,04
380	75,70	12,02	0,500	394	-72,80	-11,98
408	70,50	11,96	0,500	422	-70,50	-11,90
448	95,60	17,90	0,750	452	-94,60	-17,92
476	93,30	17,92	0,750	478	-92,00	-17,88

No.	V Loads (kN)	δ (Tr2) (mm)	Story Drift	No.	V Loads (kN)	δ (Tr2) (mm)
504	90,30	17,88	0,750	518	-90,60	-17,84
544	108,50	23,84	1,000	558	-106,20	-23,86
572	105,90	23,82	1,000	586	-103,20	-23,86
600	103,90	23,84	1,000	614	-101,90	-23,82
641	121,10	33,36	1,400	657	-118,10	-33,32
673	114,50	33,32	1,400	689	-115,50	-33,46
705	112,50	33,36	1,400	721	-113,50	-33,34
749	125,40	41,66	1,750	765	-124,70	-41,70
781	122,10	41,66	1,750	797	-121,80	-41,68
813	120,40	41,66	1,750	829	-120,40	-41,74
857	131,40	52,42	2,200	873	-130,00	-52,40
889	128,70	52,52	2,200	905	-127,10	-52,42
921	125,70	52,38	2,200	937	-125,40	-52,54
966	138,00	65,54	2,750	984	-133,70	-65,54
1002	134,00	65,74	2,750	1020	-131,70	-65,70
1038	130,70	65,52	2,750	1056	-130,40	-65,94
1086	138,30	83,34	3,500	1104	-137,60	-83,42
1122	133,70	83,42	3,500	1140	-134,30	-83,52
1158	130,70	83,60	3,500	1176	-131,00	-83,38
1201	142,30	119,38	4,500	1218	-135,70	-119,18
1217	131,40	119,38	4,500	1244	-129,40	-128,78
1233	114,80	119,58	4,500	1270	-99,30	-123,78

Maxi- mum Loads 142,30 119,38 Maximum Load -135,70 -119,18