LEPTIN RECEPTORS

E. Gorska¹, K. Popko¹, A. Stelmaszczyk-Emmel¹, O. Giepiela¹, A. Kucharska², M. Wasik¹

¹Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age and ²Clinic of Pediatric Endocrinology, Warsaw Medical University, Warsaw, Poland

Abstract

Leptin or obesity receptor (Ob-R) is a member of class I cytokine receptor family. Ob-R, expressed in six isoforms, is the product of alternative RNA splicing of db gene. According to its structural differences, the receptor’s isoforms are divided into three classes: long, short, and secretory isoforms. A long, fully active isoform of Ob-Rb is expressed mainly in the hypothalamus, where it takes part in energy homeostasis and in the regulation of secretory organ’s activity. Ob-Rb is also present on all types of immune cells, involved in innate and adaptive immunity. Short leptin isoforms (Ob-Ra, Ob-Rc, Ob-Rd, and Ob-Re) that contain box 1 motif are able to bind JAK kinases (Janus kinases) as well as to activate some other signal transduction cascades. A soluble isoform (Ob-Re) can regulate serum leptin concentration and serve as a carrier protein delivering the hormone to its membrane receptors and is able to transduce the signal into the cell. JAK/STAT pathway plays the major role in leptin signal transduction through membrane receptors. Among all Ob-R isoforms, only full-length isoform (Ob-Rb) is able to fully transduce activation signal into the cell.

Key words: leptin, leptin receptor, leptin receptor isoforms

INTRODUCTION

A search for the biological factor responsible for energy balance and signal transduction to the hypothalamus was initiated by studies on animal models. In 1994, a molecular defect in the obese gene (Ob), a gene responsible for the obesity phenotype in ob/ob mice was identified using a positive cloning method. Ob gene has been found on chromosome 6 in mice and on chromosome 7q31.3 in humans and has been shown to encode 4.5 kb-long mRNA. The protein encoded by the ob gene has been isolated and named leptin - from the Greek "leptos" meaning thin [1]. It has been demonstrated that leptin biological activity strongly depends on its proper interactions with Ob-R receptors [2].

THE STRUCTURE OF LEPTIN RECEPTORS

Ob-R receptor, encoded by db gene has been identified for the first time in a murine vascular plexus using a cloning technique. It is a member of class I cytokine receptors family that, apart from, Ob-R consists of gp130 subunit of IL-2R, IL-3, IL-4, IL-6, IL-7, LIF (leukemia inhibitory factor), G-CSF (granulocyte-colony stimulating factor), growth hormone, prolactin, and erythropoietin receptors [3, 4]. Ob-R expressed in six isoforms, is the product of alternative RNA splicing of db gene (diabetes gen) [5, 6]. Ob-R expressed in six isoforms, is the product of alternative RNA splicing of db gene (diabetes gen) [5, 6]. According to its structural differences, the receptor’s isoforms were divided into three classes: long, short and secretory.

All Ob-R isoforms have a similar, extracellular ligand-binding domain located in N-terminus of the protein. The domain is constituted by 816 amino acids and contains four cysteine residues, WSXWS motif (Trp-Ser-X-Trp-Ser) and a different number of fibronectin III domains. Five isoforms, including the long isoform Ob-Rb and short ones - Ob-Ra, Ob-Rc, Ob-Rd, and Ob-Re, have a transmembrane domain consisting of 34 amino acids. The intracellular domain of the long isoform consists of 303 amino acids at carboxyl terminus, while intracellular domains of short isoforms are shorter and consists of 32-40 amino acids. Apart from identical extracellular and transmembrane domains, Ob-R isoforms (short and long) have the same sequence of the first intracellular 29 amino acids. This sequence contains a constant box 1 motif and JAK tyrosine kinase. The length of the further intracellular amino acid sequences depends on the alternative mRNA splicing. Ob-Rb isoform contains additional box 2 and SOCS (suppressor of cytokine signaling) motifs. SOCS expression is induced by cytokines [7]. A sixth, secreted Ob-Re isoform, does not contain intracellular and cytoplasmic domains and is secreted to the bloodstream as a soluble receptor (Fig. 1) [6, 8-10].

A long, fully active isoform of Ob-Rb is expressed mainly in the hypothalamus, where it takes part in energy homeostasis and in the regulation of secretory organs’ activity. Ob-Rb is also present in all types of immune cells, involved in innate and adaptive immunity (Fig. 2) [7, 9, 11, 12-14].

Lack of a full-length Ob-Rb receptor is responsible for the development of the early obesity phenotype in db/db mice and in obese rats. In db/db mice, a short Ob-Ra isoform with limited activity is synthesized. The condition leads to diabetes, morbid obesity, and pubertal development disorders. The mice strain is also characterized by cold intolerance and elevated concentration of glucosteroid hormones. Moreover, db/db mice phenotype includes a significantly elevated leptin concentration, with no ability to respond to leptin signal [15].
Short leptin isoforms that contain box 1 motif are able to bind JAK kinases (Janus kinases) and to activate some signal transduction cascades. However, the effect of short isoform activation differs from that of long isoform activation [16, 17]. Their main function is presumably connected with leptin internalization and degradation [18]. A short isoform, Ob-Ra, is the most common Ob-R isofom that can be found in many various cells and tissues, including kidney, lungs, liver, spleen, and macrophages [6].

A soluble isoform of the receptor, Ob-Re, is probably a result of alternative transcript splicing of db gene or a consequence of transmembrane Ob-R receptor destruction. Circulating Ob-Re is able to bind serum leptin and to inhibit signal transduction pathways. On the other hand, the receptor can regulate serum leptin concentration and serve as a carrier protein delivering the hormone to its membrane receptors able to transduce the signal into the cell [19].

In normal conditions, only 5-25% of all Ob-R isoforms are present on the cell surface, whereas the majority of receptors are localized within the cell. After ligand binding, the receptors are internalized into early endosomes via clathrin-coated vesicles. Next, the receptor is degraded or effectively recycled to the cell membrane. The process concerns mainly Ob-Ra and Ob-Rb isoforms. A decrease in Ob-Rb expression is much higher than changes in Ob-Ra expression, and short isoform Ob-Ra is much faster recycled to the cell membrane. Relatively weak signal transduction through long Ob-Rb isoform observed in obese, hyperleptinemic patients is related to delayed receptor expression on the cell surface, which may explain leptin resistance in these patients [8, 20, 21].

SIGNAL TRANSDUCTION PATHWAYS

The major role in leptin signal transduction through membrane receptors is mediated through JAK/STAT (signal transduction and activation of transcription) pathway. Among all Ob-R isoforms, only the full-length isoform Ob-Rb is able to fully transduce an activation signal into the cell. Ob-Rb is considered a fully active receptor, because it contains 3 intracellular motifs necessary to activate the JAK/STAT pathway. The described motifs are the following: box 1 and box 2 that bind JAK tyrosine kinase, and box 3 motif that binds STAT transcription factor [6, 15]. Additionally, in intracellular domain, Ob-Rb contains four tyrosine residues (Tyr974, Tyr985, Tyr1077 and Tyr1138) that activate intracellular signal transduction pathways (Fig. 2) [22]. After ligand binding to the Ob-Rb receptor, a cytoplasmic tyrosine kinase JAK2 binds to box-1 and

Fig. 1. Leptin receptor (Ob-R) isoforms. CR - cytokine receptor domain, F-III - type III fibronectin domains, Box 1, 2, 3 - constant, intracellular motifs [according to 7, 8].

Fig. 2. Ob-Rb, long isoform of leptin receptor: JAK-tyrosine kinases, STAT-signal transducer and activator of transcription, SOCS proteins-cytokine signal transduction inhibitors, P - phosphate residues, CR - cytokine receptor domain, F-III-type III fibronectin domains [according to 7, 17].
phosphorylation of JAK2. PtPB1 overexpression de-
ulator that regulates signal transduction through de-
27]. in addition, PtP1B (protein tyrosine phosphatase
SoCS3 dependent JAK2 phosphorylation activity [21,
Sh2 domain with tyr985 or through the inhibition of
negative regulator of cytokines’ activity. Leptin in-
duces SoCS3 expression by binding to the SoCS3
proteins, mainly SoCS3. SoCS proteins serve as a
JAK/StAt pathway activation also requires SoCS
box-2 motifs [23]. The activated kinase is autophos-
phorylated and activates specific tyrosine residues (Tyr
985 and Tyr1138) in the receptor molecule. Next, after
Tyr1138 phosphorylation, STAT proteins bind to box-
3 motif. STAT proteins (STAT1, STAT3, STAT5,
STAT6), including the key signal transduction mole-
cule STAT3, are phosphorylated on tyrosine residues by
JAK2 kinases. The process leads to the dissociation of
proteins from the receptor, dimerization and translocation to the nucleus. After the translocation STAT proteins stimu-
late specific genes expression [according to 17, 24].

Fig. 3. JAK/STAT pathway activation by Ob-Rb leptin re-
ceptor mechanism. After leptin binding, the Ob-Rb receptor
changes its conformation that leads to JAK translocation.
JAK proteins become activated and start to exert their kinase
activity and phosphorylate tyrosine residues of other JAK
proteins and of Ob-Rb receptor. Tyr1138 phosphorylation
allows STAT3 protein binding and next, STAT proteins be-
come the substrate for JAK proteins related to Ob-R recep-
tor. STAT3 protein phosphorylation leads to dissociation of
the protein from the receptor, dimerization and translocation to the nucleus. After the translocation STAT proteins phos-
phorylate tyrosine residues of other JAK

Apart from the above described, leptin signaling also is mediated by other pathways. MAPK kinases (mitogen-activated protein kinase), IRS1 (insulin re-
ceptor substrate-1), and phosphatidylinositol kinase (PI3K) are important pathways responsible for Ob-Rb receptor
activation by leptin in various cells, e.g., T-cells [28, 29]. The MAPK kinase signal transduction pathway is mediated by ERK (estrogen receptor) and p38 kinases. It has been demonstrated in osteoblasts
that leptin, after activation of Ob-Rb, induces apopto-
sis through the activation of MAPK, ERK1/2-dependent
activation of cytoplasmic phospholipase A2, and subsequent cytochrome c release and activation of
caspases 3 and 9 [30]. Osmotic stress, heat shock, and
cytokines are able to activate another MAPK family
protein, namely p38. In mononuclear cells, after bind-
ing to Ob-Rb, leptin increases the level of p38MAPK
phosphorylation. In LPS (lipopolysaccharide)-stimu-
lated Kupffer cells, leptin significantly increases TNFα
secretion through the activation of p38 and JNK/MAPK (c-Jun N-terminal kinase), whereas in smooth muscle cells it is able to induce hypertrophy through the activation of p38 MAPK [31].

The majority of insulin-mediated biological effects are caused by PI3K activation. PI3K is believed to constitute an important common element for signal transduction pathways activated by insulin and leptin and its receptor. In the central nervous system, adipose tissue, liver, and pancreas, leptin induces a similar path-
way to that activated by insulin, including PI3K-dependent activation of PDE3B (phosphodiesterase 3B) and cAMP (cyclic adenosine monophosphate) re-
duction [32]. It seems that the PI3K/PDE3B/cAMP
pathway cooperates with the JAK2/STAT cascade and is an important element of leptin signal transduction pathways in the hypothalamus [28].

LEPTIN RECEPTOR GENE POLYMORPHISM

LEPR gene (leptin receptor gene) mutations are ex-
tremely rare in human and animals. A single nucleotide
substitution (G to A) in exon 6 leads to a deficiency in
cytoplasmic and transmembrane domain of the recep-
tor [33]. The mutation caused by premature stop
codon insertion at the 3’ terminus of LEPrb mRNA
was found in db/db mice [15], whereas in Zucker rats,
the mutation was caused by amino acid substitution
(Gln to Pro) at position 269 of the extracellular do-
main of the receptor. The described mutation resulted in a severe reduction of Ob-R expression on the cell
surface and limitation in the leptin-receptor binding. Obese Koletsky rats had a point mutation at 763 posi-
tion resulting in premature stop codon introduction in
the intracellular domain of the receptor that led to a
total deficiency in all Ob-R isoforms on the cell sur-
face. Both Zucker and Koletsky rats are characterized
by morbid obesity, hyperphagia, hyperlipidemia, and
numerous hormonal disorders [34, 35]. In humans, a
rare mutation caused by a single substitution of G to
A in exon 16 was identified. It leads to an abnormal
expression of transmembrane and intracellular do-
mains of receptors. As in case of laboratory animals, humans with LEPR gene defects demonstrate obesity, hyperphagia, pubertal development disorders, and endocrine system abnormalities [33].

LEPR gene polymorphisms seem to be much better described. It has been demonstrated that the polymorphisms may lead to the impairment of signal transduction from the receptor into the cell through premature Ob-Ra, instead of Ob-Rb isoform production, or through a decrease in Ob-R expression on the cell surface and limitation in leptin-receptor interactions. LEPR gene defects influence the development of hyperphagia, obesity, pubertal development disorders, neuroendocrine system regulation impairment, and diabetes caused by β-cell apoptosis in the pancreas [8, 15, 33, 36]. The most commonly seen polymorphism is Gln223Arg, encoding the extracellular domain of the receptor responsible for leptin binding. Glutamine to arginine change may be responsible for an impaired signal transducing capacity of the leptin receptor [36]. A connection between Gln223Arg polymorphism and breast cancer development and progression has been suggested [37]. Genetic interactions between leptin and Gln223Arg polymorphisms of LEPR gene can increase the risk of the development of non-Hodgkin lymphoma in obese patients [38]. It also is suggested that the discussed polymorphisms are related to hemodynamic and metabolic disorders found in obese patients [39]. Overweight and obesity commonly observed after the management of childhood acute lymphoblastic leukemia also may have to do with the Gln223Arg polymorphism of LEPR gene [40].

Conflicts of interest: The authors declare no conflicts of interest in relation to this article.

REFERENCES

1. Zhang Y, Proence R, Maifei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-32.
2. Brunner I, Nick HP, Cumin F, Chiesi M, Baum H-P, Whitebread S, Strieker-Kronrad A, Levens N. Leptin is a physiologically important regulator of food intake. Int J Obesity 1997; 21: 1152-60.
3. Bazan JF. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor β-chain. Biochem Biophys Res Commun 1989; 164: 788-93.
4. Hegyì K, Fulop K, Kovacs K, Toth S, Falus A. Leptin induced signal transduction pathways. Cell Biol Int 2004; 28: 159-69.
5. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 2000; 21: 263-307.
6. Tartaglia LA, Dembski M, Wang X, Deng N, Culpepper J, Deves R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RL. Identification and expression cloning of a leptin receptor, Ob-R. Cell 1995; 83: 1263-71.
7. Sweeney G. Leptin signaling. Cell Signal 2002; 14: 655-63.
8. Ahima RS, Osei SY. Leptin signaling. Physiol Behav 2004; 81: 223-41.
9. Bjorbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997; 272: 32686-95.
29. Martin-Romero C, Sanchez-Margarel V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam 68. Cell Immunol 2001; 212: 83-91.
30. Kim GS, Hong JS, Kim SW, Koh JM, An CS, Choi JY, Cheng SL. Leptin induces apoptosis via ERK/cPLA2/cytocrome c pathway in human bone marrow stromal cells. J Biol Chem 2003; 278: 21920-29.
31. Sweeney G. Leptin signalling. Cell Signal 2002; 14: 655-63.
32. Zhao AZ, Huang JN, Gupta S, Pal R, Sahu A. A phosphatidylinositol 3-kinase-phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat Neurosci 2002; 5: 727-8.
33. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Casseu D, Gourmelen M, Dina C, Chambaz J, Lacorte J-M, Basdevant A, Bouguet Y, Froget P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398-401.
34. White DW, Wang D, Chua Jr SC, Morgenstern JP, Leibel RL, Bauman H, TARTAGLIA LA. Constitutive and impaired signaling of leptin receptors containing the Gln→Pro extracellular domain fatty mutation. Proc Natl Acad Sci USA 1997; 94: 10657-62.
35. Wu-Peng XS, Chua Jr SC, Okada N, Liu SM, Nicolson M, Leibel RL. Phenotype of the obese Koletsky (o) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lept). Evidence for deficient plasma-tocSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 1997; 46: 513-8.
36. Yiannakouris N, Yannakoulia M, Melistas L, Chan JL, Klimes-Zacas D, Mantzoros CS. The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J Clin Endocrinol Metab 2001; 86: 4434-9.
37. Snoussi K, Strosberg AD, Bouaouina N, Ben Ahmed S, Helal AN, Chouchane L. Leptin and leptin receptor polymorphism are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer 2006; 6: 2407-17.
38. Skibola CF, Holly EA, Forrest MS, Hubbard A, Brace PM, Skibola DR, Hegedus C, Smith MT. Body mass index, leptin and leptin receptor polymorphism, and non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 2004; 13: 779-86.
39. Guizar-Mendoza JM, Amador-Licona N, Flores-Martinez SE, Lopez-Gardona MG, Ahuatzin-Tremary R, Sanchez-Corona J. Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. J Hum Hypertens 2005; 19: 341-6.
40. Ross JA, Kevin C, Oeffinger KC, Davies SM, Mertens AC, Langer FK, Kiffmeyer WR, Sklar CA, Stovall M, Yano Y, Robison LL. Genetic variation in the leptin receptor gene and obesity in survivors of childhood acute lymphoblastic leukemia: A Report from the childhood cancer survivor study. J Clin Oncol 2004; 22: 3558-62.

Address for correspondence:
Elzbieta Gorska
24 Marszalkowska St.
00-576 Warsaw
Poland
Phone: +48 22 6296517
Fax +48 22 6296517
E-mail: elgorska@litewska.edu.pl