Observation of the Decay $B \to J/\psi \eta K$ and Search for $X(3872) \to J/\psi \eta$

B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Coudere,1 J.-M. Gaillard,1 A. Hicheur,1 Y. Karyotakis,1 J. P. Lees,1 V. Tisserand,1 A. Zghiche,1 A. Palano,2 A. Pompili,2 J. C. Chen,3 N. D. Qi,3 G. Rong,3 P. Wang,3 Y. S. Zhu,3 G. Eigen,4 I. Ofte,5 B. Stugu,4 G. S. Abrams,5 A. W. Borgland,5 A. B. Breon,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,9 E. Charles,5 C. T. Day,5 M. S. Gill,5 A. V. Gritsan,5 Y. Groyosman,5 R. G. Jacobsen,5 R. W. Kadel,5 J. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 C. Le Clerc,5 M. E. Levi,5 G. Lynch,5 L. M. Mir,5 P. J. Oddone,5 T. J. Orimoto,5 M. Pripstein,5 N. A. Roe,5 M. T. Ronan,5 V. G. Shkelov,5 A. V. Telnov,5 W. A. Wenzel,5 K. Ford,6 T. J. Harrison,6 C. M. Hawkes,6 S. E. Morgan,6 A. T. Watson,6 N. K. Watson,6 M. Fritsch,7 K. Goetz,7 T. Held,7 H. Koch,7 B. Lewandowski,7 M. Pelizzaeus,7 M. Steinke,7 J. T. Boyd,8 N. Chevalier,8 W. N. Cottingham,8 M. P. Kelly,8 T. E. Latham,8 F. W. Wilson,8 K. Abe,9 T. Cuhadar-Donszelmann,9 C. Hearty,9 T. S. Mattison,9 J. A. McKenna,9 D. Thiessen,9 P. Kyberd,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Bukin,11 V. P. Druzhinin,11 V. B. Golubev,11 V. N. Ivanchenko,11 E. A. Kravchenko,11 A. P. Omuchin,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 A. N. Yushkov,11 D. Best,12 M. Bruinsma,12 M. Chao,12 I. Eschrich,12 D. Kirkby,12 A. J. Lankford,12 M. Mandelkern,12 R. K. Momsen,12 W. Roethel,12 D. P. Stoker,12 C. Buchanan,13 B. L. Hartfiel,13 J. W. Gary,14 B. C. Shen,14 K. Wang,14 D. Del Re,15 H. K. Hadavand,15 E. J. Hill,15 D. B. MacFarlane,15 H. P. Paar,15 Sh. Rahatliou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnari,16 B. Ahmnes,16 S. L. Levy,16 O. Long,16 A. Lu,16 M. A. Mazur,16 J. D. Richman,16 W. Verkerke,16 T. W. Beck,17 A. M. Eisner,17 C. A. Heuschr,17 W. S. Lockman,17 T. Schalk,17 R. E. Schmitz,17 B. A. Schumm,17 A. Seiden,17 P. Spradlin,17 D. C. Williams,17 M. G. Wilson,17 J. Albert,18 E. Chen,18 G. P. Dubois-Felsmann,18 A. Dvoretskii,18 D. G. Hitlin,18 I. Narsky,18 T. Piafren,18 F. C. Porter,18 A. Ryd,18 A. Samuel,18 S. Yang,18 S. Jayatilleke,19 G. Mancinelli,19 B. T. Meadows,19 M. D. Sokoloff,19 T. Abe,20 F. Blanc,20 P. Bloom,20 C. P. Clark,20 W. T. Ford,20 U. Nauenberg,20 A. Observ,20 P. Rankin,20 J. G. Smith,20 W. C. van Hoek,20 L. Zhang,20 J. L. Barton,21 T. Hu,21 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 D. Altenburg,22 T. Brandt,22 J. Brose,22 T. Colberg,22 M. Dickopp,22 E. Feltresi,22 A. Hauke,22 H. M. Lacker,22 E. Maly,22 R. Müller-Pfeifferkorn,22 R. Rogowski,22 S. Otto,22 J. Schubert,22 K. R. Schubert,22 R. Schwierz,22 B. Spaan,22 D. Bernard,23 G. R. Bonneau,23 F. Brochard,23 P. Grenier,23 Ch. Thiebaux,23 G. Vasileiadis,23 M. Verderi,23 D. J. Bard,24 A. Khan,24 D. Lavin,24 F. Muheim,24 S. Playfer,24 M. Andreotti,25 V. Azzolini,25 D. Bettoni,25 C. Bozzi,25 R. Calabrese,25 G. Cibinetto,25 E. Luppi,25 M. Negrini,25 A. Sarti,25 E. Treadwell,26 R. Baldini-Ferroli,27 A. Calcaterra,27 R. de Sangro,27 G. Finocchiaro,27 P. Patteri,27 M. Piccolo,27 A. Zallo,27 A. Buzzo,28 R. Capra,28 R. Contr,28 G. Crosetti,28 M. Lo Vetere,28 M. Macri,28 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 S. Bailey,29 G. Brandenburg,29 M. Morii,29 E. Won,29 R. S. Dubitzky,30 U. Langenegger,30 W. Bhiemji,31 D. A. Bowerman,31 P. D. Dauncey,31 U. Egede,31 J. R. Gaillard,31 G. W. Morton,31 J. A. Nash,31 G. P. Taylor,31 G. J. Grenier,32 S.-J. Lee,32 U. Mallick,32 J. Cochran,33 H. B. Crawford,33 J. Lamsa,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 J. Yi,33 M. Davier,34 G. Grosdidier,34 A. Höcker,34 S. Laplace,34 F. Le Diberder,34 V. Lepeltier,34 A. M. Lutz,34 T. C. Petersen,34 S. Plaszczynski,34 M. H. Schune,34 L. Tantot,34 G. Wormser,34 C. H. Cheng,35 D. J. Lange,35 M. C. Simani,35 D. M. Wright,35 A. J. Bevan,36 J. P. Coleman,36 J. R. Fry,36 E. Gabathuler,36 R. Gamet,36 M. Kay,36 R. J. Parry,36 D. J. Payne,36 R. J. Sloane,36 C. Touramanis,36 J. J. Back,37 P. F. Harrison,37 G. B. Mohanty,37 C. L. Brown,38 G. Cowan,38 R. L. Flack,38 H. U. Flaecher,38 S. George,38 M. G. Green,38 A. Kurup,38 C. E. Marker,38 T. R. Mcmahon,38 S. Riccardi,38 S. Salvatore,38 G. Vaitas,38 M. A. Winter,38 D. Brown,39 C. L. Davis,39 J. Allison,40 N. R. Barlow,40 R. J. Barlow,40 P. A. Hart,40 M. C. Hodgkinson,40 G. D. Lafferty,40 A. J. Lyon,40 J. C. Williams,40 A. Farbin,41 W. D. Hulsbergen,41 A. Jawahery,41 D. Kovalskyi,41 C. K. Læs,41 V. Lillard,41 D. A. Roberts,41 G. Blaylock,42 C. Dallapiccola,42 K. T. Flood,42 S. S. Hertzbach,42 R. Koffler,42 V. B. Koptchev,42 T. B. Moore,42 S. Sarenzi,42 H. Staengle,42 S. Willocq,42 R. Cowan,43 G. Scioilla,43 F. Taylor,43 R. K. Yamamoto,43 D. J. J. Mangane,44 P. M. Patel,44 S. H. Robertson,44 A. Lazzaro,45 F. Palombo,45 J. M. Bauer,46 L. Cremaldi,46 V. Eschenburg,46 R. Godang,46 R. Krogeler,46 J. Reidy,46 D. A. Sanders,46 D. J. Summers,46 H. W. Zhao,46 S. Brunet,47 D. Côté,47 P. Taras,47 H. Nicholson,48 C. Cartaro,49 N. Cavallo,49 F. Fobozzi,49 C. Gatto,49
D. Dujmic, W. Kozanecki, A. M. Boyarski, S. M. Xella, O. Igonkina, V. Re, M. Carpinelli, I. Kitayama, K. Paick, D. Hufnagel, M. S. Alam, M. Zito, M. Benayoun, M. A. Mazzoni, T. Hryn’ova, F. Cossutti, F. Bellini, M. Langer, V. Del Gamba, Ph. Leruste, J. Schwiening, P. K. Behera, V. Luth, D. Monorchio, R. Waldi, D. Piemontese, H. Kagan, T. Hryn’ova, F. Di Lodovico, H. Kim, A. J. Edwards, H. Marsiske, M. Cristinziani, S. Ye, M. pierini, G. Della Ricca, H. Li, D. A. Petersen, A. Snyder, M. Saleem, R. Kowalewski, R. H. Schindler, M. A. Giorgi, M. Rotondo, M. Rotondo, M. Saleem, V. Halyo, S. J. Gowdy, M. Baak, G. Raven, L. Wilden, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, S. Petrak, B. N. Ratcliff, A. Roodman, A. A. Salimov, R. H. Schindler, J. Schwiening, G. Simi, A. Snyder, M. Soha, J. Stelzer, D. Su, M. K. Sullivan, J. Va’vra, S. R. Wagner, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, C. C. Young, P. R. Burchat, A. J. Edwards, T. I. Meyer, B. A. Petersen, C. Roat, S. Ahmed, M. S. Alam, J. A. Ernst, M. A. Saeed, M. Saleem, F. R. Wappler, W. Buga, M. Krishnamurthy, S. M. Spanier, J. R. Eckmann, J. L. Ritchie, A. Satpathy, R. F. Schwitter, J. M. Izen, I. Kitayama, X. C. Lou, S. Ye, F. Bianchi, M. Bona, F. Gallo, D. Gamba, C. Borean, L. Bosisio, F. Cossutti, G. Della Ricca, S. Dittongo, S. Granacagnolo, L. Lanceri, P. Poropat, L. Vitale, G. Vaugnín, R. S. Panvini, Sw. Banerjee, C. M. Brown, D. Fortin, P. D. Jackson, R. Kowalewski, J. M. Roney, H. R. Band, S. Dau, M. Datta, A. M. Eichenbaum, J. J. Hollar, J. R. Johnson, P. E. Kutter, H. Li, F. Di Lodovico, A. Mihalyi, A. K. Mohapatra, Y. Yan, R. Prepost, S. J. Sekula, P. Tan, J. H. von Wimmersperg-Toeller, J. Wu, S. L. Wu, Z. Yu, and H. Nea

(The BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunei University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, CA 92697, USA
13University of California at Los Angeles, Los Angeles, CA 90024, USA
14University of California at Riverside, Riverside, CA 92521, USA
15University of California at San Diego, La Jolla, CA 92039, USA
16University of California at Santa Barbara, Santa Barbara, CA 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
18California Institute of Technology, Pasadena, CA 91125, USA
19University of Cincinnati, Cincinnati, OH 45221, USA
20University of Colorado, Boulder, CO 80309, USA
We report the observation of the B meson decay $B^\pm \to J/\psi \eta K^\pm$ and evidence for the decay $B^0 \to J/\psi \eta K^0_S$, using 90 million $B\bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II e^+e^- asymmetric-energy storage ring. We obtain branching fractions of...
The study of charmonium states produced in exclusive B meson decays led to observations of known charmonium states and recently to the discoveries of new states. Since B mesons can decay via color-suppressed $b \rightarrow c\pi\bar{s}$ quark transitions, the charmonium states are typically produced in final states with kaons. Many known charmonium states have been observed in decays such as $B \rightarrow J/\psi K^{(*)}, \psi(2S)K^{(*)}, \chi_cK^{(*)}$, and $\eta_c(1S)K^{(*)}$ and evidence for new states such as a candidate for the $\eta_c(3654)$ has been published [1]. Recently the Belle Collaboration [2] observed a new narrow mass state with a 3.872 GeV/c^2 mass produced in the decay $B^\pm \rightarrow X(3872)K^\pm$, $X(3872)\rightarrow \pi^+\pi^-J/\psi$. This new state may be the hitherto undetected $J/\psi K^0$ charmonium state \mathcal{B}. However, such a state should have a large radiative $E1$ dipole transition into $\gamma\eta_c^*$ which Belle does not observe, and theoretical models [2] predict a smaller mass splitting, relative to the $\psi(3770)$, than observed. Unconventional explanations include a molecule \mathcal{E} formed with charmed D and D^* mesons, since the $X(3872)$ has a mass exactly at D^*0 (2007) + D^0 (1864) threshold. Alternatively, this new state may be a hybrid charmonium state \mathcal{E} formed of $c\pi + \text{gluons}$ since color octet charmonium states may be produced in exclusive B decays \mathcal{B}.

To further elucidate the nature of the $X(3872)$, we performed an analysis on the new exclusive decay $B \rightarrow J/\psi\eta K$, to search for $X(3872) \rightarrow J/\psi\eta$. If the $X(3872)$ is a conventional charmonium decay, its mass may be similar to the $\psi(2S)$, which decays into $J/\psi\pi^+\pi^-$ and, with a factor ten smaller relative rate, into $J/\psi\eta$. If instead, it is a hybrid charmonium state, it is also predicted \mathcal{E} to decay into $J/\psi\pi\pi$ and $J/\psi\eta$ with possibly an enhanced rate in the η channel.

The decay $B \rightarrow J/\psi\eta K$ is similar at the quark level to other color-suppressed decays such as $B \rightarrow J/\psi\phi K$ which has been observed with a branching fraction of $(4.4 \pm 1.4 \pm 0.5) \times 10^{-5}$ [7]. Hence it might be expected that $B \rightarrow J/\psi\eta K$ has a comparable branching fraction.

The data used in this analysis correspond to a total integrated luminosity of 81.9 fb$^{-1}$ taken on the $\Upsilon(4S)$ resonance, producing a sample of 90.0 \pm 1.0 million $B\overline{B}$ events ($N_{b\overline{b}}$). Data were collected at the PEP-II asymmetric-energy e^+e^- storage ring with the BABAR detector, fully described elsewhere [5]. The BABAR detector includes a silicon vertex tracker and a drift chamber in a 1.5-T solenoidal magnetic field to detect charged particles and measure their momenta and energy loss. Photons, electrons, and neutral hadrons are detected in a CsI(Tl)-crystal electromagnetic calorimeter. An internally reflecting ring-imaging Cherenkov detector is used for particle identification. Penetrating muons and neutral hadrons are identified by resistive-plate chambers in the steel flux return. Preliminary track-selection criteria in this analysis follow previous BABAR analyses [9] and the detailed explanation of the particle identification (PID) is given elsewhere [2, 10].

The intermediate states in the charged ($J/\psi\eta K^\pm$) and neutral ($J/\psi\eta K^0_S$) modes used in this analysis, $J/\psi \rightarrow e^+e^-, J/\psi \rightarrow \mu^+\mu^-, \eta \rightarrow \gamma\gamma$ and $K^0_S \rightarrow \pi^+\pi^-$, are selected within the mass intervals $2.95 < m(e^+e^-) < 3.14$, $3.06 < m(\mu^+\mu^-) < 3.14$, $0.525 < m(\gamma\gamma) < 0.571$, and $0.489 < m(\pi^+\pi^-) < 0.507$ GeV/c^2. The mass interval for e^+e^- is larger than than for $\mu^+\mu^-$ to enable detection of events with Bremsstrahlung in the detector. The K^0_S decay length in the lab frame is required to be greater than 0.1 cm.

Determination of the signal and the background utilizes two kinematic variables \mathcal{E}: the energy difference ΔE between the energy of the B candidate and the beam energy E^*_{B} in the $\Upsilon(4S)$ rest frame; and the beam-energy-substituted mass $m_{ES} = \sqrt{(E^*_{B})^2 - (p^*_{B})^2}$, where p^*_{B} is the reconstructed momentum of the B candidate in the $\Upsilon(4S)$ frame. Signal events should be concentrated in a rectangular signal-box region bounded by $|m_{ES} - m_B| < 7.5$ MeV/c^2, where m_B is the mass of B meson and $|\Delta E| < 40$ MeV.

Before the data were analyzed, the final selection criteria were optimized separately for the charged and neutral modes using a Monte Carlo (MC) simulation of the signal and the known backgrounds. Motivated by the $B \rightarrow J/\psi\phi K$ measurement, the $ab initio$ value of the branching fraction for $B \rightarrow J/\psi\eta K$ used in the signal MC was 5×10^{-5}. The number of reconstructed MC signal events n_{mc}^s and the number of reconstructed MC background events n_{mc}^b in the signal-box were used to estimate the sensitivity ratio, $n_{mc}^s / \sqrt{n_{mc}^s + n_{mc}^b}$. This ratio was maximized by varying the selection criteria on the η mass, a π^0 veto, the photon helicity angle from the η decay and the thrust angle. The $\gamma\gamma$ mass interval of the η candidate as specified earlier was chosen by this procedure. In the charged(neutral) mode, if either of the photons associated with an η candidate is vetoed and the photon helicity angle from the η decay is $|\theta^\eta_\gamma| > 0.93 (0.81)$, where θ^η_γ is the photon helicity angle \mathcal{E} in the η rest frame. Signal
events have a uniform \(\cos \theta_T \) distribution whereas combinatorial background of random pairs of photons typically has a distribution that peaks near \(\pm 1 \).

To separate two-jet continuum events from the more spherical decays of \(B \) mesons produced nearly at rest from \(\Upsilon(4S) \rightarrow B\bar{B} \), the angle \(\theta_T \) between the thrust direction of the \(B \) meson candidate and the thrust direction of the remaining charged tracks and photons in the event is calculated. We reject events when \(|\cos \theta_T| \) is greater than 0.8(0.9), since the distribution in \(\cos \theta_T \) is flat for \(B\bar{B} \) events, while background \(e^+e^- \rightarrow q\bar{q} \) continuum events peak at \(\cos \theta_T = \pm 1 \).

The data, after these cuts, are shown in Figs. 1 and 2 where (a) is a scatter plot of \(\Delta E \) versus \(m_{ES} \), (b) is the \(\Delta E \) histogram and (c) is the \(m_{ES} \) histogram (solid line). We find evidence for \(B \) signals in both the \(J/\psi K^\pm \) and \(J/\psi K_S^0 \) modes.

![Figure 1: For \(B^\pm \rightarrow J/\psi K^\pm \), the \(\Delta E \) versus \(m_{ES} \) event distribution (a) is shown with vertical and horizontal bands defined by limits, \(|m_{ES} - m_B| < 7.5 \) MeV/c\(^2\) and \(\Delta E < 40 \) MeV, respectively. The intersection of these bands corresponds to the signal-box region defined in the text. The \(\Delta E \) projection (b) is shown for events in the vertical band that contains the \(m_{ES} \) signal region. The \(m_{ES} \) projection (c) is shown for events in the horizontal band that contains the \(\Delta E \) signal region. The dashed histogram represents the estimated background and is described in the text.](image1.png)

![Figure 2: The \(\Delta E \) and \(m_{ES} \) distributions for \(B^0 \rightarrow J/\psi K_S^0 \). The descriptions of Figs. (a), (b), and (c) follow those of Figs. 1(a), (b), and (c), respectively.](image2.png)

To determine the branching fraction for these modes, we first find the number of signal events, which is defined as \(n_s = n_0 - n_b \), where \(n_0 \) is the number of events in the signal-box region, and \(n_b \) is the estimated number of background events. For each mode, \(n_b \) is obtained from fitting the \(m_{ES} \) distribution for events with \(|\Delta E| < 40 \) MeV with the line shape of a Gaussian function and an ARGUS function, which is an empirical parameterization of the background shape. The fit parameters are the normalization and mean of the Gaussian and the normalization of the background curve. The width of the Gaussian is fixed to the value determined by MC simulation and the shape of the background curve is fixed to a best fit to the data \(m_{ES} \) distribution with the \(\Delta E \) sideband region of \(0.10 < |\Delta E| < 0.14 \) GeV for the \(B^\pm \) mode and \(0.08 < |\Delta E| < 0.28 \) GeV for the \(B^0 \) mode. Figs. (c) and (c) show the resulting Gaussian and background curves (solid) and the background events (dashed histogram) from the \(\Delta E \) sideband regions normalized to the data in the signal region. Integrating the background curve over the signal-box region we obtain \(n_b \) and its uncertainty, \(\sigma_{n_b} \). Results are listed in Table I. Additional checks on the background shapes were performed. Using data, a \(\gamma \gamma \) mass sideband that is outside the nominal \(\eta \) mass was selected and a similar \(m_{ES} \) background shape was found. Using MC simulations of inclusive \(B \rightarrow J/\psi \) backgrounds another \(m_{ES} \) background shape was obtained and fit. If we include a fit component due to this background, which is well described by a broad Gaussian distribution, and we refit the data sideband distribution, the background results do not change.

The branching fraction is calculated as \(\mathcal{B} = n_s / (N_B \epsilon \times f) \) where \(\epsilon \) is the efficiency and \(f \) is the product of secondary branching fractions for the \(J/\psi, \eta, \) and \(K_S^0 \). Efficiencies are determined by MC simulation with three-body phase space and the branching fractions of \(\Upsilon(4S) \rightarrow B^+B^- \) and \(\Upsilon(4S) \rightarrow B^0\bar{B}^0 \) are assumed to be equal. Results on \(\mathcal{B} \) are given in the last column of Table I where the first and second errors are statistical and systematic, respectively. The statistical error is derived from the uncertainty in \(n_s \) which is \(\sqrt{n_0 + \sigma_{n_b}^2} \).

The systematic error, \(\sigma_{sys} \), for each mode (charged/neutral) is determined by adding in quadrature the
TABLE I: Efficiencies, number of signal-box and background events, 90% C.L. of the number of events and the branching fraction upper limits, P-values and branching fractions

Mode	ϵ	n_0	$n_b \pm \sigma_b$	$N_{90\%}$	90% C.L.U	P-value	Branching Fraction
$J/\psi K^\pm$	10.75%	99	50.3 ± 3.0	70.0	$< 1.5 \times 10^{-5}$	2×10^{-8}	$(10.8 \pm 2.3 \pm 2.4) \times 10^{-5}$
$J/\psi K^0_S$	8.53%	39	18.5 ± 1.7	34.5	$< 1.41 \times 10^{-5}$	9×10^{-5}	$(8.4 \pm 2.6 \pm 2.7) \times 10^{-5}$

percentage uncertainty on each of the following quantities: $N_{B\pi}$ (1.1/1.1); secondary branching fractions $\Gamma(2.48/2.52)$; MC statistics (1.77/2.17); PID, tracking, and photon detection efficiencies (8.2/8.3); π^0 veto (8.1/8.3); η mass range (3.40/3.14); background parameterization (16.7/27.0); and model dependence (5.1/9.5). The total systematic errors for the charged and neutral modes are 22.0% and 32.0%, respectively. The uncertainties in the PID, tracking, and photon detection efficiencies are based on the study of data control samples $\hat{\mathcal{D}}$. The uncertainty in the π^0 veto efficiency was studied by measuring the veto efficiency on the inclusive η rate in data and MC. The uncertainty due to the η mass selection was determined by comparing the measured η mass resolution in inclusive η decays to the η mass resolution from the signal MC. The background parameterization uncertainty was estimated by changing the ARGUS shape parameter by ±1 standard deviation, refitting the m_{ES} data distribution, and recalculating the number of signal events. Although this analysis used MC events generated with three-body phase space to determine the final efficiencies, additional systematic uncertainties due to the decay model dependence are estimated. The efficiency uncertainty due to unknown angular distributions and intermediate resonances has been estimated by comparing the efficiencies obtained in five different MC generated models. These include 100% transversely polarized J/ψ, 100% longitudinally polarized J/ψ, large two-body $J/\psi\eta$ mass, large two-body ηK mass and small two-body $J/\psi K$ mass. The resulting relative change in efficiencies was used to estimate the production model uncertainty. The resulting total σ_{sys} for each mode is used to determine the B systematic errors in Table I.

The P-value for null hypothesis (no signal) is the Poisson probability that the background events fluctuate to $\geq n_0$. Assuming the probability distribution function of the background is a Gaussian with mean n_0 and standard deviation σ_0, we calculate the Poisson probabilities with different background values weighted by this Gaussian distribution to determine the final P-value for each mode. The resulting P-values are equivalent to a statistical significance of 5.6σ and 3.9σ for the charged and neutral modes, respectively.

We also determine the 90% confidence level upper limit (C.L.U.) on the branching fraction using n_0, n_b, and σ_b in the signal region, and σ_{sys}. The Bayesian upper limit on the number of signal events, $N_{90\%}$, is obtained by folding the Poisson distribution with two Gaussian distributions representing the background and systematic uncertainties and integrating the resulting function to the 90% confidence level (C.L.). This assumes that the a priori branching fraction distributions are uniform. The charged and neutral results, $J/\psi\eta K^\pm$ and $J/\psi\eta K^0_S$, are listed in Table I.

Our resulting branching fractions are comparable to the color-suppressed decay $B \to J/\psi\phi K$ branching fraction. The ratio of the charged ($J/\psi\eta K^\pm$) to neutral ($J/\psi\eta K^0_S$) branching fractions is consistent within errors to the expected value of two.

We search for the $X(3872)$ in $B \to X K, X \to J/\psi\eta$ now only selecting the signal region, $|m_{ES} - m_{B}| < 7.5 \text{ MeV}/c^2$ and $|\Delta E| < 40 \text{ MeV}$. The resulting $J/\psi\eta$ mass distribution is shown in Figure 3. The two-body mass resolution from Monte Carlo studies is 6 MeV/c^2. There is evidence for the $\psi(2S)$ and no evidence for the $X(3872)$. Using the measured branching fraction $B(B^{\pm} \to B \psi(2S) K^{\mp}) = (6.8 \pm 4.0) \times 10^{-4}$ [11], we expect to reconstruct 12 ± 1 events in the charged mode in the $J/\psi\eta$ mass region below 3.710 GeV/c^2 and we observe 15. After restricting the mass to 3.85 $< M(J/\psi\eta) < 3.89$ GeV/c^2, we fit the m_{ES} plot with the same procedure as before and obtain an upper limit for the product branching fraction $B(B^{\pm} \to X(3872) K^{\mp}, X \to J/\psi\eta) < 7.7 \times 10^{-6}$ at 90% C.L.

Our resulting upper limit may be compared to the Belle result $B(B^{\pm} \to \psi(2S) K^{\mp}) = (5.3 \pm 1.2 \pm 0.7)\%$. Using $B(B^{\pm} \to \psi(2S) K^{\mp} \to J/\psi\pi^\mp\pi^- K^{\mp}) = (2.0 \pm 0.15 \pm 0.22) \times 10^{-4}$ [11] it can be deduced that...
\[B(B^\pm \to X(3872)K^\pm \to J/\psi \pi^+\pi^-K^\pm) = (12.6 \pm 2.8 \pm 1.2) \times 10^{-6}. \]

If the matrix elements for \(X(3872) \to J/\psi \pi^+\pi^- \) and \(J/\psi \eta \) are similar to those of the \(\psi(2S) \) and we include the larger phase space for the decay of \(X(3872) \to J/\psi \eta K \) relative to the \(\psi(2S) \), then we would expect \(B(B^\pm \to X(3872)K^\pm \to J/\psi \eta K^\pm) \sim 3 \times 10^{-6} \). Our upper limit is within a factor two of this estimate. This result is not in contradiction with the charmonium interpretation of the \(X(3872) \).

In conclusion, we observe the new decay mode \(B \to J/\psi \eta K \) with branching fractions of \(B(B^\pm \to J/\psi \eta K^\pm) = (10.8 \pm 2.3 \pm 2.4) \times 10^{-5} \) and \(B(B^0 \to J/\psi \eta K^0) = (8.4 \pm 2.6 \pm 2.7) \times 10^{-5} \). We set an upper limit for the \(X(3872) \) in the product branching fraction, \(B(B^\pm \to X(3872)K^\pm \to J/\psi \eta K^\pm) < 7.7 \times 10^{-6} \) at 90\% C.L.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

\[\text{B} \]

[1] Belle Collaboration, S.K. Choi et al., Phys. Rev. Lett. 89, 102001 (2002) and BABAR Collaboration, G. Wagner, preprint [hep-ex/0305083] June 2003.

[2] Belle Collaboration, S.K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003) and confirming evidence from the CDF Collaboration, December 5, 2003, [hep-ex/0312021].