Materials Research Express

PAPER

Enhancing reliability of InGaN/GaN light-emitting diodes by controlling the etching profile of the current blocking layer

Shui-Hsiang Su 1, Chun-Lung Tseng 1, Ching-Hsing Shen 2, I-Jou Hsieh 1 and Yen-Sheng Lin 1

1 Department of Electronic Engineering, I-Shou University, Kaohsiung 84001, Taiwan
2 EPISSTAR Corporation, Tainan 744, Taiwan
E-mail: shsu@isu.edu.tw

Keywords: LED, GaN, current blocking layer

Abstract

SiO₂ was used as the current blocking layer (CBL) during fabricating the InGaN/GaN-based light-emitting diodes (LEDs). The SiO₂ film was prepared by plasma enhanced chemical vapor deposition (PECVD) at a lower temperature (LT) of 180 °C and a higher temperature (HT) of 280 °C for characterizing the reliability of LEDs. The degradation of output power in LT-CBL LED is as high as 6.8% during 1000 h in the high-temperature and humidity (85 °C/85 RH) condition. Experimental results demonstrate the low temperature grown CBL forms a larger side-wall angle via wet etching. The thinner side-wall ITO film cracks and the current spreading effect is suppressed, causing drastic power degradation. On the contrary, the HT-CBL SiO₂ demonstrates optimal step coverage of ITO film for current spreading and then the HT-CBL LEDs slightly degrade as low as 5% in the accelerated reliability test. A dense quality of HT-CBL SiO₂ as well as a good CBL decreased parasitic optical absorption in the p-pad electrode and p-finger. Besides, the HT-CBL SiO₂ showed a small side-wall angle of 40° which increased the step coverage and current spreading of ITO. An approach is conducted to confirm the side-wall profile of CBL for each process.

1. Introduction

InGaN/GaN-based light-emitting diodes (LEDs) have been regarded as the promising candidate for lighting technology because of their application in back lighting, full-color display, and traffic signals [1–4]. Many groups had investigated for high power LEDs, which also has a remarkable growth in the solid-state lighting. Nevertheless, InGaN/GaN-based LEDs exist the limited light extraction efficiency due to the total internal reflection between GaN (n = 2.5) and air (n = 1). According to Snell’s law, the critical angle (θc) is only around 23°, the result indicates that the photons can only escape from GaN to air within 23° [5, 6]. In addition, the limit of internal quantum efficiency (IQE) of LEDs is almost as up to 90%. The other difficult issues have been show such as strong piezolectric in quantum wells and low hole concentration of Mg-doped GaN. Therefore, in order to improve the light extraction efficiency of InGaN/GaN-based LEDs, there are several groups have reported the methods for reduced the total internal reflection and enhanced the output power, such as pattern structure [7, 8], V-shaped pits [9, 10], reflective current blocking layer [11, 12], and photonic crystal [13]. In particular, for conventional LED the high resistivity in p-GaN:Mg would restrict the lateral current spreading, leading the non-uniform emission distribution in indium-tin-oxide (ITO) layer and casing current crowding effect in the LED structure. Many methods were used to investigate in current blocking layer (CBL) and its stack layer arranged, for alleviating the photons emission from multiple quantum wall (MQW) active layer would be absorbed under pad region. Hence, the investigations in material application on CBL were including the Ag or Al particles embedded within SiO₂ layer as reflector to reduce the photons through under pad area [14, 15], O₂ plasma-treated current blocking region to prevent the emission absorbed via metal pad [16], a line-width simulation in CBL [17] and a newly material InZnO as schottky blocking layer [18], Mg implantation into invisible CBL to decrease the current crowding effect of emission region [19]. However, as of now there seem not to have discussion the etching mechanism and side-wall profile with different grown temperature for SiO₂ as CBL.
the side-wall angle of CBL would influence ITO side-wall profile and lead to the poor step coverage of ITO, it might result in an unstable optical property in reliability of LED device.

In this work, we have fabricated InGaN/GaN-based LEDs using SiO2 as a CBL. SiO2 is prepared by plasma enhanced chemical vapor deposition (PECVD) at 180 °C and 280 °C. The side-wall profile of SiO2 and related etching mechanism are discussed. The performance of CBL is characterized depending on the observation of film’s quality. Finally, we investigate the reliability of LEDs under the accelerated reliability test.

2. Experimental

Figure 1 schematically illustrates the LED structure. GaN-based LED with a 30 nm-thick GaN nucleation layer at the temperature of 550 °C, a 3 μm n-GaN:Si at 1050 °C, 7 pairs of MQWs for each pair with a 3 nm-thick in InGaN well layer and a 7 nm-thick in GaN barrier layer as MQWs at 770 ~ 800 °C, a 50 nm-thick Mg-doped Al0.15Ga0.85N electron blocking layer grown at the temperature of 1000 °C, and a 0.6 μm p-GaN:Mg layer at 1000 °C were grown by metal-organic chemical vapor deposition (MOCVD) on the c-axis sapphire substrate. Afterward, the mesa area was defined by photolithography to serve as the wet etching mask. The SiO2 film acted as a CBL, which was grown upon the p-GaN:Mg layer via PECVD grown at 180 °C and 280 °C using silane/nitrogen (SiH4/N2) mixture as process gas and N2O gas as carry gas. SiH4 and N2O were used to as precursor source for silicon and oxygen. The SiO2 film was prepared at a lower temperature of 180 °C (hereinafter referred to as LT-CBL SiO2) and a higher temperature of 280 °C (hereinafter referred to as HT-CBL SiO2). Then the ITO was deposited utilizing sputter, after that the SiO2/ITO structure was treated with anneal alloy by rapid thermal annealing (RTA) at 530 °C in nitrogen atmosphere for 1 min. The Cr/Au (30 nm/50 nm) layer was deposited onto exposed n-GaN and ITO, respectively, as the n- and p-contact.

The surface roughness and morphologies were determined via atomic force microscope (AFM, Veeco Dimension 3100) and scanning electron microscope (SEM, JEOL JSM-6700P). The average surface roughness of topographical was calculated on an area of 1 μm×1 μm. Angle resolved x-ray photoelectron spectroscopy (XPS, PHI Quantera SXM) was used to measure the quantitative analysis and determine the N content in the SiO2:N layer and analyze the chemical bonding state. The reference binding energy position was regulated by Au 4f7/2. The results can be attributed to nitrogen doping into HT-CBL SiO2, which might result in an unstable optical property in reliability of LED device.

3. Results and discussion

The panels (a), (b), and (c) in figure 2 show the core level spectra of Si 2p3/2, O 1 s and N 1 s of LT-CBL SiO2, respectively. Si 2p3/2 and O 1 s located at 103.61 and 532.84 eV, but not absorbed any peaks corresponding to N 1 s. According to the report by Chen et al [20], the Si 2p3/2 peak around 103.61 eV indicates Si4+ in SiO2. In addition, the core levels of Si 2p3/2, O 1 s, and N 1 s of HT-CBL SiO2 are shown in figures 2(d), (e) and (f), which indicate at 103.95, 533.19, and 399.04 eV, respectively. A quantitative analysis on the XPS spectra determined the atomic composition of N is 2%, meaning the stoichiometric as SiO1.98N0.02 in the HT-CBL SiO2. N 1 s peak at 399.04 eV in HT-CBL SiO2, associating with the nitrogen was replaced by oxygen atoms and the appearance of nitrogen related bonding such as Si—O—N [21–23], but different from the original N 1 s locating at 398 eV. As compare with Si 2p core-level and O 1 s spectra, the Si 2p and O 1 s peak both shifts towards higher binding energy from LT-CBL SiO2 to HT-CBL SiO2. The results can be attributed to nitrogen doping into HT-CBL SiO2,
leading to the replacement of partial O sites by N. A stronger electronegativity of oxygen than nitrogen with the Si atom, it might imply that the Si 2p and O 1s spectra shift toward higher binding energy. The results also suggested the partial incorporation of nitrogen in SiO$_2$ and a dense quality from SEM analysis are caused by the N$_2$O dissociated at the growth temperature of 280 °C.

Figures 3(a) and (b) illustrate a sketch map of the side-wall profile of LT- and HT-CBL SiO$_2$ during the wet etching process. The buffered oxide etchant (BOE), as wet etching solution, is a mixture of a buffering agent, such as ammonium fluoride (NH$_4$F) and hydrofluoric acid (HF). The overall chemical reaction involved is normally understood as [24, 25].

$$\text{SiO}_2 + 6\text{HF} \rightarrow 2\text{H}^+ + \text{SiF}_6^{2-} + 2\text{H}_2\text{O} \tag{1}$$

Firstly, the silicon oxide can be formatted to Si(−OH)$_x$ in the BOE etching solution. The Si(−OH)$_x$ will react with the different rate constants, such as HF$_2^-$ and HF in the wet etching solution. Shortly afterwards, the SiO$_2$ would be etched to form SiF$_6^{2-}$, and then the Si would be taken off. Figures 3(c) and (d) demonstrate SEM image from vertical to cross section of the CBL side-wall profile after 15 s etching in BOE solution. As compared with

Figure 2. The XPS spectra for Si 2p$_{1/2}$, O 1s and N 1s of the LT-CBL and HT-CBL SiO$_2$, respectively.
HT-CBL SiO₂, the SEM image presents a larger angle (θ) on side-wall profile of LT-CBL SiO₂. Since the LT-CBL SiO₂ has rough surface and less dense structure, the BOE solution easily reacts and passes down through LT-CBL SiO₂ in vertical direction, thus causes the larger side-wall angle of 80° (θ_1). In the other words, the etching process of LT-CBL SiO₂ includes faster vertical etching rate and slower horizontal etching rate owing to the incorporation of its less dense structure and rough surface. As for side-wall profile of HT-CBL SiO₂, a dense film quality deserves an isotropic etching in all direction and results in a smaller side-wall angle of 40° (θ_2). The result is also corresponding to the SEM cross section image as shown in figure 3(d).

To further monitor the side-wall profile of CBL SiO₂, we conducted a simple approach to confirm the profile for each process. The SEM top view of pad and CBL SiO₂ can be corresponding with the cross section structure, as shown in figures 4(a) and (b). The lateral distance from point A to B can be measured by SEM as x. The thickness of CBL SiO₂ is in an automatically updated record from PECVD equipment status. Thus the side-wall angle of CBL SiO₂ could be calculated from x and y and the side-wall angle has been determined to be 40°. The inset in figure 4(a) shows the optimal step coverage with a side-wall angle of 40° when subsequently grown the sputter-deposited ITO onto HT-CBL SiO₂. As a result, the side-wall profile of HT-CBL SiO₂ can be fine tune.

Figure 3. A sketch map for wet etching process of (a) LT-CBL and (b) HT-CBL SiO₂ side-wall profile. The SEM image from vertical to the cross-section of side-wall profile of (c) LT-CBL and (d) HT-CBL SiO₂ after etching in BOE solution.

Figure 4. (a) The SEM top view of pad and CBL SiO₂. The inset is the SEM cross-section of the side-wall HT-CBL SiO₂. (b) A simple approach to confirm the CBL SiO₂ side-wall profile.
under the condition of growth temperature and etching-steps to approach smoothly and flatly for quality electrical device.

Figure 5 shows the normalized power degradation under accelerated reliability test for LT-CBL and HT-CBL LED. The accelerated reliability performance is measured in the high-temperature and humidity (85 °C/85 RH) using an injection current of 120 mA for 1000 h. The degradation of output power in LT-CBL LED is as high as 6.8% during 1000 h. The results can be attributed to the low temperature grown CBL would form a larger side-wall angle via BOE wet etching. As shown in figure 3(c), the vertical strike and rough side-wall of LT-CBL might result in the non-uniform ITO layer grown upon CBL. The thickness of ITO covering on CBL is thinner on vertical direction of side-wall than horizontal direction. A thinner ITO film area has a higher sheet resistance [26], which leads to a large heat accumulated effect while device operation. Thus, the side-wall ITO will crack and the current spreading effect is suppressed, causing drastic power degradation when LT-CBL LEDs operates under the accelerated reliability test. On the contrary, HT-CBL SiO2 has dense quality and smooth surface as well as a good current blocking layer to resist electron transporting through the p-pad and p-finger region. It avoids combination of electron and hole in MQWs under the p-pad and p-finger region. On the other hand, it also means the LEDs with a HT-CBL SiO2 inserted beneath the p-pad electrode and p-finger might increase the light-output power, attributing to a reduction in parasitic optical absorption in the p-pad electrode and p-finger [27–29]. Accordingly, the deposition mechanism of PECVD SiO2 growth is related an effective surface diffusion length (λ) dependence of diffusion constant (D) [30]. Thus, an increasing in growth temperature would increase diffusion constant and cause the atomic with longer effective surface diffusion length. It suggests that HT-CBL SiO2 demonstrates the dense quality to be a stable CBL. The HT-CBL SiO2 will result in optimal step coverage of ITO layer for current spreading and then the HT-CBL LEDs degrade as low as 5% in the accelerated reliability test.

4. Conclusion

In summary, the side-wall profile of HT-CBL SiO2 has been optimized to fabricate InGaN/GaN-based LEDs. The HT-CBL SiO2 shows dense structure quality and smooth surface than the LT-CBL SiO2. The HT-CBL SiO2 reduces the parasitic optical absorption under the p-pad electrode and p-finger, thus obtaining small side-wall angle of CBL and forming good step coverage while ITO is deposited upon CBL. The analysis of XPS spectra suggests the partial incorporation of nitrogen into HT-CBL SiO2 and a dense quality from SEM analysis are caused by the N2O dissociated at the growth temperature of 280 °C via the plasma process in PECVD technique. An approach via SEM cross section analysis and thickness of CBL is conducted to confirm the profile of side-wall. The HT-CBL SiO2 shows a small side-wall angle of 40° which increases the step coverage and current spreading of ITO. The HT-CBL LED demonstrates a good performance in high injection current, since HT-CBL effectively suppresses current directly pass through from pad to GaN. Consequently, the HT-CBL SiO2 exhibits optimal step coverage of ITO film for current spreading and then the HT-CBL LEDs demonstrate superior
reliability under the accelerated reliability test. The results indicate it is feasible for high-power device application.

Acknowledgments

This work was financially supported by the EPISTAR Corporation. The authors would also like to thank the National Science Council of the Republic of China, for financially supporting this research under Contract No. MOST105–2221–E–214–018–MY3 and 108–2221–E–214–027.

ORCID iDs

Shui-Hsiang Su https://orcid.org/0000-0001-6354-4142

References

[1] Hou Y and Guo Z 2019 Enhancement of hole injection in deep ultraviolet light-emitting diodes using a serrated p-type layer Optics Commun. 433 236–41
[2] Usman M, Munsif M, Anwar A R, Mushtaq U, Imtiaz W A, Han D F and Muhammad N 2019 Zigzag-shaped quantum well engineering of green light-emitting diode superlattice Microst. 132 106164
[3] Song W, Chen H, Luo X, Sun Y, Wang X, Wang H, Guo Q, Qi M, Li G and Li S 2019 A single InGaN/GaN multiple quantum wells microwire light-emitting diode with high efficiency current injection and spreading J. Alloy. Comp. 791 1241–7
[4] Kim K, Hua M, Liu D, Kim J, Chen K I and Ma Z 2018 Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3 Nano Energy 43 259–69
[5] Xia C S, Sheng Y, Simon Li Z M and Cheng L 2015 Simulation of GaN-based light-emitting diodes with hemisphere patterned sapphire substrate based on poynuting vector analysis IEEE J. Quantum Electron. 51 3301010
[6] Gao H, Yan F, Zhang Y, Li J, Zeng Y and Wang G 2008 Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale Appl. Phys. Lett. 103 014134-1
[7] Zhou S, Cao B, Liu S and Ding H 2012 Improved light extraction efficiency of GaN-based LEDs with patterned sapphire substrate and textured ITO Optics & Laser Technology 44 2302–5
[8] Wang Y L, Chen K Y, Yang W C, Chiu S Y, Huang H H, Hung Y C and Cheng K Y 2015 Directional luminescence control of InGaN/ GaN heterostructures using quantum structure lattice arrays Appl. Phys. Lett. 106 111109-1
[9] Zhou S, Liu S and Ding H 2013 Enhancement in light extraction of LEDs with SiO2 current blocking layer deposited on naturally textured p-GaN surface Optics & Laser Technology 47 125–30
[10] Okada N, Kashihara H, Sugimoto K, Yamada Y and Tadatomo K 2015 Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes J. Appl. Phys. 117 025708
[11] Kao C C, Su Y K and Lin C L 2011 Enhancement of light output power of GaN-based light-emitting diodes by a reflective current blocking layer IEEE Photon. Technol. Lett. 23 986-8
[12] Zhang X J, Yang R X and Wang J G 2012 Enhanced light output power in InGaN/GaN light-emitting diodes with a high reflective current blocking layer J. Semiconductors 33 7074008-1
[13] Wiener J Jr, David A and Megens M M 2009 III-nitride photonic-crystal light-emitting diodes with high extraction efficiency Nat. Photonics 3 163–9
[14] Park J S, Han J and Seong T Y 2015 Improving the light output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer Superlattices Microstruct. 83 361–6
[15] Shue J K, Hung I H, Lai W C, Shei S C and Lee M L 2008 Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads Appl. Phys. Lett. 93 103507-1
[16] Lee S Y, Choi K K, Jeong H H, Kim E J, Son H K, Son S J, Song J O and Seong T Y 2011 Improved output power of GaN-based vertical light-emitting diodes fabricated with current blocking region formed by O2 plasma treatment Jpn. J. Appl. Phys. 50 075704-1
[17] Chen T M, Wang S J, Uang K M, Kuo H Y, Tsai C C, Lee W C and Kuan H 2008 Current spreading and blocking designs for improving light output power from the vertical-structured GaN-based light-emitting diodes IEEE Photonics Technol. Lett. 20 783–5
[18] Chang S J, Chen C F, Chen W S, Ko T K, Kuo C T, Yu K H, Shei S C and Chiou Y Z 2007 Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes Solid State Lett. 10 H175
[19] Jeong H H, Lee S Y, Jeong Y K, Choi K K, Song J O, Lee Y H and Seong T Y 2010 Improvement of the light output power of GaN-based vertical light-emitting diodes by a current blocking layer Solid-State Lett. 13 H237
[20] Chen X Y, Lu Y F, Tang I J, Wu Y H and Cho B J 2005 Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition Jpn. Appl. Phys. 97 014913-1
[21] Choi W K, Koh S K and Jung H J 1999 X-ray photoelectron spectroscopy studies of modified surfaces of α-Al2O3, SiO2, and Si3N4 by low energy reactive ion beam irradiation J. Vac. Sci. Technol. A 17 3362
[22] Kim J W, Yeom H W, Kong K J, Yu B D, Ahn D Y, Chung Y D, Whang C N, Yi H, Ha Y H and Moon D W 2003 Spontaneous N incorporation onto a Si(100) surface Phys. Rev. Lett. 90 106101-1
[23] Toyoda S, Okabayashi J, Kumigashira H, Oshima M, Ono K, Niwa M and Hirashita N 2003 Effect of nitrogen doping into SiO2 studied by photoemission spectroscopy Appl. Phys. Lett. 83 5449–51
[24] Parisi G, Hasko S and Rozgoni G 1977 Tapered windows in SiO2: the effect of NH4F:HF dilution and etching temperature J. Electrochem. Soc. 124 917
[25] Nielsen H and Hackman D 1983 Some illumination on the mechanism of SiO2 etching in HF solutions J. Electrochem. Soc. 130 708–12
[26] Choi H J, Yoon S G, Lee J H and Lee J Y 2012 Crystallized indium-tin oxide (ITO) thin films grown at low temperature onto flexible polymer substrates J Solid State Sci. Technol. 1 Q106–9
[27] Huh C, Lee J M, Kim D J and Park S J 2002 Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer J. Appl. Phys. 92 2248–50
[28] Uang K M, Wang S J, Chen T M, Lee W C, Chen S L, Wang Y Y and Kuan H 2009 Enhanced performance of vertical GaN-based light-emitting diodes with a current-blocking layer and electroplated nickel substrate Jpn. J. Appl. Phys. 48 102101-1

[29] Tsai C F, Su Y K and Lin C L 2009 Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer Technol. Lett. 21 996–8

[30] Barankin M D, Gonzalez E II, Ladwig A M and Hicks R F 2007 Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature Sol. Energy Mater. Sol. Cells 91 924–30