RESEARCH ARTICLE

INTRACORONARY EXPLORATION IN ACUTE CORONARY SYNDROME BY OPTICAL COHERENCE TOMOGRAPHY (OCT): EXPERIENCE OF NORD FRANCHE-COMTÉ HOSPITAL.

I.Atidi, B.Elhoussaadani, M.Mansour, Y.Lefrançois, S.Rekik and M.Cherti.
Catheterism laboratory of Nord Franche-comte Hospital France.

Abstract

Purpose: We evaluated the impact of the thrombus burden measured by optical coherence tomography (OCT) on the occurrence of periprocedural myocardial infarction among patients included undergoing percutaneous coronary intervention (PCI) in non ST elevation acute coronary syndrome.

Methods: Prospective multicenter study including patients treated for NSTE-ACS (<72 h) undergoing PCI of the infarct related artery. OCT was performed before and after PCI. Thrombus burden was measured quantitatively by planimetry, and semi quantitatively by the OCT thrombus score. Secondary endpoints evaluated the correlation between the OCT characteristics of the infarct related artery and the volume of thrombus, post PCI outcome of the thrombus, and the impact of thrombus volume on fractional flow reserve (FFR) measured at the end of the procedure.

Results: 20 patients aged 62±6 years from Nord Franche-comté hospital were included. Thrombus was more frequently present on OCT (14 patients (69%)) than on angiography (6 patients (31%)). There was no significant difference in the loading dose of aspirin, P2Y12 inhibitors or GPIIb/IIIa inhibitors between groups. Type IVa MI occurred in 7 patients (33%). The presence of thrombus was not associated with periprocedural MI (5 (39%) vs 2 (18%) p=0.93). Mean thrombus volume evaluated either by planimetry or semi-quantitatively was not predictive of type IVa MI. The presence of a plaque erosion or a plaque rupture was correlated with the presence of thrombus. There was a strong correlation between the presence of thrombus pre PCI and the presence of tissue prolapse post PCI. The volume of thrombus was significantly correlated with the volume of tissue prolapse (p=0.03 and p=0.01), this suggests that tissue prolapse is at least partly composed of thrombus. The presence of thrombus and its volume measured pre PCI did not affect the functional outcome of the angioplasty post pci (FFR = 0.94±0.04 vs 0.93±0.04 p=0.51).

Conclusion: OCT enables better visualization of thrombus than angiography in NSTE-ACS. In patients receiving optimal antiplatelet therapy, neither the presence nor the volume of thrombus impacts on the rate of periprocedural myocardial infarction. Thrombus burden as measured pre-PCI is correlated with post PCI intra-stent tissue
Introduction:

- Guided group due to the severity of the stenosis or the presence of thrombus, and required predilatation to enable an OCT run suitable for analysis.

- Plaque rupture (figure 16) was present in half of all lesions and intact fibrous cap (figure 17) in the other half. Three quarters had mainly lipid-rich plaque composition, and the other 25% had fibrous plaque (Table 3).

- Thrombus was visible in 14 patients (69%) on OCT. The thrombus was white in 6 patients (42.2%), red in 3 patients (19.3%) and mixed in 5 patients (38.6%).

- The median thrombus volume was 1.07 mm³ [0.09; 3.40], median thrombus length was 2.95 mm [0.50; 5.50], median thrombus area was 0.42 mm² [0.12; 0.79] and median thrombus height was 0.50 mm [0, 27; 0.80].

- OCT was more accurate to detect thrombus (14 patients) than angiography (9 patients), with an angiographic sensitivity of 63%, specificity of 97%, positive predictive value of 98% and a negative predictive value of 54% (Table 4). Thrombus TIMI Score was correlated to thrombus volume measured by planimetry (p<0.004) (figure 18). OCT thrombus score was also correlated to thrombus volume measured by planimetry (p<0.001) (figure 19).

- None of the patient characteristics, and no variable among troponin at admission, troponin at 24 hours or creatinine at admission was predictive of the presence of thrombus (Table 5). The number diseased vessels, the infarct related artery, and the ACC/AHA lesion type were also not found to be associated with the presence of thrombus. Plaque rupture and plaque erosion were significantly associated with the presence of thrombus (p= 0.004 and p<0.001). The volume of thrombus was not significantly different in both cases (figure 20).

- The presence of a lipid-rich plaque, a fibrous plaque, a necrotic core, a calcium nodule or neo vessels was not associated with the presence of thrombus (Table 5).

Primary end point: impact of thrombus volume measured quantitatively or semi quantitatively on periprocedural myocardial infarction:

- Periprocedural myocardial infarction occurred in 7 patients (40%). The presence of thrombus was not associated with the occurrence of periprocedural myocardial infarction (p=0.93) (Table 6).

- The volume of thrombus assessed either by planimetry or in a semiquantitative manner was not associated with the occurrence of type IVa myocardial infarction. Patients who presented type IVa MI had a mean thrombus volume of 3.28 ± 4.92 mm³, whereas the volume was 2.72 ± 4.04 mm³ among patients who did not present periprocedural MI (p=0.52) (Table 7).

- Among patients with periprocedural MI, OCT thrombus score was 10.33± 10.11, vs 9.23±8.94 among patients without periprocedural MI (p=0.56). The results were the same after adjustment for pretreatment with aspirin and P2Y12 inhibitors and for the use of GP IIb/IIa inhibitors. Only 1 (5%) patients suffered from no reflow.

OCT analysis post PCI:

- Tissue protrusion was present in all cases with varying volume (range 0.23 - 14.5 mm³). The median protrusion volume was 2.29 mm³ [1.31; 4.20]. The median protrusion length was 6.90 mm [4.35; 9.80], median height was 0.46 mm [0.32; 0.62], and median protrusion area was 8.76 mm² [5.44; 11.95] (Table 8).
Irregular protrusion was seen in 68% of cases (14 patients), smooth in 13% of cases (3 patients) and disrupted in 18% of cases (4 patients). Among patients with thrombus on OCT, the protrusion volume was 3.75± 4.71, vs 0.34±1.13 among patients without thrombus (p=0.0007). Thrombus volume measured by planimetry was correlated to the volume of protrusion (p=0.03) (figure 21). OCT thrombus score was also correlated to the volume of protrusion (p=0.01) (figure 22).

Impact of thrombus mass on post PCI FFR:
Regardless of the method used for thrombus measurement, the thrombus burden did not affect the post PCI FFR. Among patients with thrombus on OCT, FFR post PCI was 0.94±0.04 vs 0.93±0.04 in those with no thrombus on OCT (p=0.51).

The correlations were respectively R²=0.005 (p=0.49) for OCT Thrombus score, and R²=0.0014 (p=0.70) for planimetry.

Discussion:
Thrombus is more frequently visualized on OCT than on angiographic images. The presence of thrombus is frequent in NSTE-ACS (70% of cases). The nature of the underlying layer is not correlated with the presence of thrombus, whereas plaque rupture and plaque erosion are associated with thrombus presence. The volume of thrombus is approximately the same, whatever the nature of the underlying lesion (rupture or erosion). In our study, neither the presence nor the volume of thrombus was associated with the occurrence of periprocedural myocardial infarction. Conversely, the thrombus volume was significantly correlated with the volume of tissue protrusion, but this had no impact on the final FFR measures at the end of the procedure.

Defining the appropriate management for patients with acute myocardial infarction requires careful assessment of the risk of mortality and adverse ischemic events. In this context determining the morphology of the targeted plaque and its composites is essential for carrying out percutaneous coronary intervention (PCI). Thrombus is frequently encountered on angiography in patients with unstable angina and acute myocardial infarction (AMI). Ross et al. (17) found that among patients with stable angina, those showing thrombus on in angiography were at higher risk of ischemic outcomes. Marieke et al. (18) investigated the incidence and repercussions of angiographically visible distal embolization (AVDE) after primary PCI in ST-elevation MI patients, and found that the presence of thrombus impacted the presence of thrombus post PCI, and was associated with impaired myocardial reperfusion and poor outcome.

New techniques for intracoronary imaging are much more efficient for the detection of thrombus. Indeed, in our study of patients with NSTE-ACS, the correlation between the TIMI Thrombus Score and the volume of thrombus measured by OCT by planimetry was excellent. However, angiography was able to detect thrombus in only 44% of the cases, whereas thrombus was visualized in almost 70% of cases by OCT.

The OCT Thrombus Score was first described by Prati et al in the COCTAIL trial (15). It is routinely used for the quantification of thrombus. Its simplicity, rapidity and reproducibility make it a top-grade tool for this task. In this context, the OCT Thrombus Score is recommended by the expert review for OCT of the European Cardiology Society. However, it was never validated in a large-scale study, although Amabile et al (19) reported that it was correlated with the volume of thrombus in a sample of 3 patients. Our study, comprising a larger number of patients, confirms these results, and shows good correlation with the thrombus volume as measured by planimetry.

Porto et recently studied the predictive factors on OCT for the occurrence of periprocedural myocardial infarction, in which half of the patients were treated for stable angina and the other half for NSTE-ACS. The presence of thrombus was not associated with periprocedural myocardial infarction; however, the thrombus was not quantified. The OCT characteristics of the culprit lesion in patients treated with non-urgent angioplasty, mainly in the context of stable angina, studied by Lee et al (20) were also not correlated with the occurrence of a type IVa MI. The thrombus was not quantified in this study either. Yonetsu and al. (21) did not find that thrombus on OCT was predictive of creatine kinase-MB elevation in patients with elective stent implantation. In 2014, Souteyrand et al. performed OCT control in patients with an infarct presenting a high thrombotic load on angiography (22). After 30 days, thrombus was only visible in 30% of cases. Taking account of these contradictory results, our study is, to the best of our knowledge, the first to evaluate the impact of the volume of thrombus on periprocedural myocardial infarction in patients with non ST elevation acute coronary syndrome. Patients received optimal treatment as recommended by the
European Society of Cardiology and the American college of Cardiology. Patients received the same pre-angioplasty treatment (dual antiplatelet therapy, unfractionated heparin). Similarly, the majority of patients with a high thrombotic load received GP IIb/IIIa inhibitors.

Thus, in our study concerning non-ST elevation acute coronary syndromes, thrombus was present in most cases, patients received optimal treatment with at least DAPT, leading to an identical occurrence of type IVa myocardial infarction, irrespective of whether thrombus was present or not, and regardless of the thrombus volume. Thus, the optimal treatment decreased the complications related to myocardial infarction, indeed only 1 patients suffered from no reflow.

Our results are therefore contradictory with those performed by angiography. The reasons are probably due to the fact that firstLy, a large part of the thrombus was not seen on angiography (in one third of cases). Secondly, existing angiographic studies date from several years ago, when treatment options were not the same as now. Thirdly, the population studied concerned patients with and without ST elevation. However, we know that the volume of thrombus in STEMI is much higher than in NSTEMI and that the prognosis is much less favourable.

Our study showed that the predictive lesion characteristics of thrombus formation were plaque rupture and plaque erosion. These results are in line with the previous pathology (23) or OCT (24) studies. Indeed, in plaque rupture, a structural defect, or a gap in the fibrous cap exposes the highly thrombogenic core to the blood. The mechanism of plaque erosion is less obvious. It is likely due to the loss of the antithrombotic properties of the plaque surface resulting in thrombus formation. In both cases, the thrombus volume was the same (25). Hu et al found a higher thrombus volume on OCT in patients with plaque rupture compared to plaque erosion. However, the antiplatelet treatment was not specified.

The plaque type, the presence of a necrotic core, the presence of calcium nodule or neo vessels were not associated with the presence of thrombus. We did not find any other OCT studies that analyzed these characteristics.

Finally, OCT provided clearer and more frequent visualization of tissue protrusion. However, its mechanism remains unclear and debated. Young et al. showed a greater incidence of tissue protrusion on IVUS in patients presenting with myocardial infarction as compared to patients with stable angina (26). Sugiyama et al. recently showed that the presence of thrombus pre-angioplasty was predictive of the occurrence of tissue protrusion (27). However, the volume of thrombus was not quantified. Our study confirms these results showing a very good correlation between the volume of thrombus present pre angioplasty (measured by planimetry or semi quantitatively) and the volume of tissue protrusion post angioplasty. Moreover, we showed that the volume of thrombus is associated with the presence of irregular protrusion in non ST elevation acute coronary syndrome. Thus, we assume that tissue protrusion in NSTEMI is mostly of thrombotic origin.

Study limitations:-
The main limitation of our study is that we did not evaluate the impact in terms of clinical events. The number of patients included was higher than in most OCT studies. However, considering the occurrence of Major Cardiovascular Events in NSTEMI (28), a much higher number of patients would have been required to show potential clinical differences.

Table 1:- Baseline Characteristics of the Study Population.

	N=20
Age	62 ±6
Male (%)	16 (80)
Diabetes Mellitus (%)	13 (65)
Obesity (%)	10 (50)
Hypercholesterolemia (%)	7 (35)
Hypertension (%)	11 (55)
Current Smokers (%)	13 (65)
Family history of CAD (%)	8 (40)
History of myocardial infarction (%)	9 (45)
History of Heart failure (%)	2 (10)
History of stroke (%)	1(5)
-----------------------	------
History of Peripheral artery disease (%)	1(5)
History of kidney injury (%)	3(15)
History of PCI	7(35)
History of CAVB	1(5)
History of valvular heart disease (%)	2(10)
Infarct-related artery	0(0)
Right coronary artery (%)	6 (30)
Circumflex artery (%)	3 (15)
Left anterior descending artery (%)	4(20)

ACC/AHA lesion type

A (%)	5 (25.0)
B1 (%)	11 (55.0)
B2 (%)	2 (10)
C (%)	1 (5)

Troponin at admission ng/L	0.54[0.15:1.72]
Troponin at 24h ng/L	1.30[0.52:3.58]
Hemoglobin at admission g/dl	14.8[1.85:15.8]
Creatinine at admission μmol/l	82.5[70.87:95.65]
LVEF (%)	60[53;66]
Duration of procedure, min	56[49;78]
Volume of contrast medium, ml	190[140;250]

Table 2: Pretreatment, periprocedural treatment, and treatment at discharge.

Pretreatment	Periprocedural treatment	Discharge treatment
Loading dose of P2Y12 inhibitor	16 (80%)	
Loading dose of aspirin	16 (80%)	
Anticoagulant during PCI	17 (85%)	
Unfractionated heparin	19 (95%)	
Enoxaparin	1 (5%)	
Bivalirudin	0 (0%)	
Periprocedural GP IIb/IIIa inhibitor	10 (50%)	
ACEI/ARB	18 (90%)	
Beta blocker	17 (85%)	
Statin	19 (95%)	
Diuretics	3 (15%)	
Aspirin	19 (95%)	
P2Y12 inhibitor	20(100%)	
Clopidogrel	2 (10%)	
Prasugrel	2 (10%)	
Ticagrelor	16 (80%)	

Table 3: OCT findings before angioplasty.

Pretreatment	Periprocedural treatment	Discharge treatment
Plaque rupture (%)	20/10 (50%)	
Intact fibrous plaque (%)	20/10 (50%)	
Lipid-rich plaque (%)	15 (75%)	
Fibrous plaque (%)	4 (20%)	
Thin-cap fibroatheroma (%)	11 (55%)	
Calcifications (%)	9 (45%)	
Calcium nodule (%)	3 (15%)	
Necrotic core/ or Intraplaque hemorrhage(%) 14(70)
Semi-circular 2 (10%)
Thrombus 14 (70%)
White thrombus 3(15%)
Red thrombus 4(20%)
Mixed thrombus 7(35%)
Thrombus Volume mm³ 1.07[0.09;3.40]
Thrombus length mm 2.95[0.50;5.50]
Thrombus area mm² 0.42[0.12;0.79]
Thrombus height mm 0.50[0.27;0.80]
OCT Thrombus Score 9.69±9.40

Table 4: Sensitivity, specificity, positive predictive value and negative predictive value of thrombus detection with angiography.

	Thrombus OCT yes N=14	Thrombus Oct no N=6
Thrombus angiography yes	1	
Thrombus angiography no	6	2
Sensitivity	63.86%	
Specificity	97.29%	
PPV	98.15%	
NPV	54.54%	

Table 5: Protrusion characteristics.

	N=20
Protrusion volume mm³	2.29[1.31;4.20]
Protrusion length mm	6.90[4.35;9.80]
Protrusion height mm	0.46[0.32;0.62]
Protrusion area mm²	8.76[5.44;11.95]
Irregular protrusion	14(70%)
Smooth protrusion	2(10%)
Disrupted protrusion	3(15%)

Table 6: Impact of thrombus presence and volume on periprocedural (type 4a) myocardial infarction.

	Type IVa MI (+) N=8	No Type IVa MI N=12	p
Thrombus (+)	3	8	0.93
Thrombus (-)	4	4	
Thrombus volume	3.28 ± 4.92	2.72±4.04	0.52
OCT thrombus score	10.33±10.11	9.23±8.94	0.56

Table 7: TIMI Thrombus Score by angiography.

	N=20
Timi Thrombus 0 (%)	6 (30%)
Timi Thrombus 1 (%)	4 (20%)
Timi Thrombus 2 (%)	5 (25%)
Timi Thrombus 3 (%)	4 (20)
Timi Thrombus 4 (%)	2 (10%)
Timi Thrombus 5 (%)	1 (5%)
Figure 1: Normal artery wall showing intima media and adventis

Figure 2: Red thrombi

Figure 3: White thrombi with plaque rupture.

Figure 4: Calcification within plaque.
Figure 5: Fibrous plaque.

Figure 6: Necrotic pool.

Figure 7: Calcium Nodule.

Figure 8: OCT Thrombus score 1.
Figure 9: OCT Thrombus score 2

Figure 10: OCT Thrombus Score 3

Figure 11: OCT Thrombus score 4

Figure 12: Thrombus volume assessed by planimetry
Figure 13: Smooth protrusion

Figure 14: Irregular protrusion

Figure 15: Tissue prolapse assessed by planimetry

Figure 16: Plaque rupture

Figure 17: Plaque erosion
Figure 18: Correlation between TIMI Thrombus Score assessed by angiography and thrombus volume measured by planimetry by OCT.

![Figure 18](image)

Figure 19: Correlation between OCT thrombus score and Thrombus Volume measured by planimetry.

![Figure 19](image)

Figure 20: Plaque volume according to the underlying plaque

![Figure 20](image)
Conclusion:
OCT allows better visualization of thrombus than angiography in non–ST elevation acute coronary syndrome. In patients receiving optimal antiplatelet therapy, neither the presence nor the volume of thrombus impacts on the occurrence of periprocedural myocardial infarction. Thrombus burden as measured pre-PCI is associated with post-PCI intra-stent tissue protrusion, but does not influence the functional outcome of the angioplasty measured by FFR.

References:
1. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012 Mar 20; 59(12):1058–72.
2. Kubo T, Xu C, Wang Z, van Ditzhuijzen NS, Bezerra HG. Plaque and thrombus evaluation by optical coherence tomography. Int J Cardiovasc Imaging. 2011 Feb;27(2):289–98.
3. La Vecchia L, Bedogni F, Finocchi G, Mezzena G, Martini M, Sartori M, Castellani A, Soffiati G, Vincenzi M. Troponin T, troponin I and creatine kinaseMB mass after elective coronary stenting. Coron Artery Dis. 1996; 7:535–540.
4. Testa L, Van Gaal WJ, Biondi Zoccai GG, Agostoni P, Latini RA, Bedogni F, Porto I, Banning AP. Myocardial infarction after percutaneous coronary intervention: a meta-analysis of troponin elevation applying the new universal definition. QJM. 2009; 102:369–378.
5. Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, Satler LF, Kent KM, Stone GW, Leon MB. Atherosclerotic plaque burden and CK-MB enzyme elevation after coronary interventions: intravascular ultrasound study of 2256 patients. Circulation. 2000; 101:604 – 610.
6. Kawaguchi R, Oshima S, Jingu M, Tsurugaya H, Toyama T, Hoshizaki H, Taniguchi K. Usefulness of virtual histology intravascular ultrasound to predict distal embolization for ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2007; 50: 1641–1646.
7. Porto I, Vito LD, Burzotta F, Niccoli G, Trani C, Leone AM, et al. Predictors of Periprocedural (Type IVa) Myocardial Infarction, as Assessed by FrequencyDomain Optical Coherence Tomography. Circ Cardiovasc Interv. 2012 Feb 1;5(1):89–96.
8. Lee T, Yonetsu T, Koura K, Hishikari K, Murai T, Iwai T, et al. Impact of Coronary Plaque Morphology Assessed by Optical Coherence Tomography on Cardiac Troponin Elevation in Patients With Elective Stent Implantation. Circ Cardiovasc Interv. 2011 Aug 1; 4(4):378–86.
9. Meneveau N, Souteyrand G, Motreff P, Caussin C, Amabile N, Ohlmann P, Morel O, Lefrançois Y, Descotes-Genon V, Silvain J, Braik N, Chopard R, Chatot M, Ecarnot F, Tauzin H, Van Belle E, Belle L, Schiele F. Optical Coherence Tomography to Optimize Results of Percutaneous Coronary Intervention in Patients with Non-ST-Elevation Acute Coronary Syndrome: Results of the Multicenter, Randomized DOCTORS Study. Circulation. 2016 Sep 27;134(13):906-17.
10. Meneveau N, Ecarnot F, Souteyrand G, Motreff P, Caussin C, Van Belle E, Ohlmann P, Morel O, Grentzinger A, Angioi M, Chopard R, Schiele F. Does optical coherence tomography optimize results of stenting? Rationale and study design. Am Heart J. 2014 Aug;168(2):175-81.e1-2
11. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Apple FS. Third universal definition of myocardial infarction. Eur Heart J 2012; 33: 2551–2567
12. Gibson CM, de Lemos JA, Murphy SA, Marble SJ, McCabe CH, Cannon CP, Antman EM, Braunwald E (2001) Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarc- tion: a TIMI 14 substudy. Circulation 103:2550–2554.
13. F Prati, Evelyn Regar, Gary S. Mintz et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal (2010) 31, 401–415.
14. F Prati, Evelyn Regar, Gary S. Mintz et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. European Heart Journal (2012) 33, 2513–2522.
15. F Prati, Capodanno D, Pawlowski T, Ramazzotti V, Albertucci M, La Manna A et al. Local delivery versus intracoronary infusion of abciximab in patients with acute coronary syndromes. JACC Cardiovasc Interv 2010;3:928–34
16. Tsunenari Soeda, Shiro Uemura; Seung-Jung Park, et al. Incidence and Clinical Significance of Post-Stent OCT Findings: One Year Follow-Up Study From a Multicenter Registry. Circulation. 2015 Sep 15;132(11):1020-9.
17. Ross MJ, Herrmann HC, Moliterni DJ, Blankenship JC, Demopoulos L, DiBattiste PM, Ellis SG, Ghazzal Z, Martin JL, White J, Topol EJ. Angiographic variables predict increased risk for adverse ischemic events after coronary stenting with glycoprotein IIb/IIIa inhibition: results from the TARGET trial. J Am Coll Cardiol. 2003 Sep 17;42(6):981-8.
18. Henriques JP, Zijlstra F, Ottervanger JP, de Boer MJ, van ’t Hof AW, Hoornije JC, Suryapranata H. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur Heart J. 2002 Jul;23(14):1112-7.
19. N. Amabile, S. Hammas, S. Fradi, G. Souteyrand et al. Intra-coronary thrombus evolution during acute coronary syndrome: regression assessment by serial OCT analyses. European Heart Journal – Cardiovascular Imaging (2015) 16, 433–440.
20. Lee T, Yonetsu T, Koura K, Hishikari K, Murai T, Iwai T, et al. Impact of Coronary Plaque Morphology Assessed by Optical Coherence Tomography on Cardiac Troponin Elevation in Patients With Elective Stent Implantation. Circ Cardiovasc Interv. 2011 Aug 1; 4(4):378–86.
21. Yonetsu T, Kakuta T, Lee T, Takahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M. Impact of plaque morphology on creatine kinase-MB elevation in patients with elective stent implantation. Int J Cardiol. 2011 Jan 7;146(1):80-5
22. Geraud Souteyrand; Nicolas Amabile; Nicolas Combaret; Sami Hammas; Francesco Prati; Colin Berry; Bruno Pereira; Jean-Rene Lusson; Christophe Caussin; Pascal Motreff.Invasive management without stents in selected acute coronary syndrome patients with a large thrombus burden: a prospective study of optical coherence tomography guided treatment decisions. EuroIntervention. 2015 Dec;11(8):895-904.
23. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006 Apr 18;47(8 Suppl):C13-8.
24. Saia F, Komukai K, Capodanno D, Sirbu V, Musumeci G, Bocciuzzi G, Tarantini G, Fineschi M, Tumminello G, Bernelli C, Niccoli G, Coccato M, Bordoni B, Bezerra H, Biondi-Zoccai G, Virmani R, Guagliumi G; OCTAVIA Investigators. Eroded Versus Ruptured Plaques at the Culprit Site of STEMI: In Vivo Pathophysiological Features and Response to Primary PCI. JACC Cardiovasc Imaging. 2015 May;8(5):566-75.
25. Hu S,Zhu Y Zhang Y Dai J, Li L, Dauerman H, Soeda T, Wang Z, Lee H, Wang C, Zhe C, Wang Y, Zheng G Zhang S Jia H, Yu B, Jang IK. Management and Outcome of Patients With Acute Coronary Syndrome Caused by Plaque Rupture Versus Plaque Erosion: An Intravascular Optical Coherence Tomography Study. J Am Heart Assoc. 2017 Feb 24:6
26. Hong YJ, Jeong MH, Ahn Y, Sim DS, Chung JW, Cho JS, Yoon NS, Yoon HJ, Moon JY, Kim KH, Park HW, Kim JH, Cho JG, Park JC, Kang JC. Plaque Prolapse After Stent Implantation in Patients With Acute Myocardial Infarction An Intravascular Ultrasound Analysis. JACC: CARDIOVASCULAR IMAGING VOL. 1, NO. 4, 2008.
27. Sugiyama T, Kimura S, Akiyama D, Hishikari K, Kawaguchi N, Kamiishi T, Hikita H, Takahashi A, Isobe M. Quantitative assessment of tissue prolapse on optical coherence tomography and its relation to underlying
plaque morphologies and clinical outcome in patients with elective stent implantation. Int J Cardiol. 2014 Sep;176(1):182-90.

28. Wongpraparut N, Panchavinn P, Tresukosol D, Chotinaiwattarakul C, Phankingthongkum R, Tungsubutra W, Pongakasira R, Karaketklang K. Predictors of in-hospital adverse events after PCI for NSTEMI in the National Percutaneous Coronary Intervention (PCI) Registry. J Med Assoc Thai. 2014 Oct;97(10):1040-6.