Approximating Sumset Size

Shivam Nadimpalli
(Columbia)

Joint work with

Anindya De
(Penn)

Rocco Servedio
(Columbia)
Approximating **Sumset** Size

Shivam Nadimpalli
(Columbia)

Joint work with

Anindya De
(Penn)

Rocco Servedio
(Columbia)
Definition: Given an abelian group \((G, +)\) and a subset \(A \subseteq G\), we define the sumset \(A + A\) as

\[
A + A := \{a + b : a, b \in A\}.
\]

- Note \(A + A \neq 2A := \{a + a : a, a \in A\}\).
- Fundamental object of study in additive combinatorics.
Easy Example

\[A = \{1, 3, \ldots, 99\} \]

\[A + A = \{0, 2, \ldots, 98\} \]

- Note that \(|A| = |A + A| \).
- \(A \) is a coset of the subgroup of even residues modulo 100.
Why Sumset Size?

Easy Exercise: For $A \subseteq G$, if $|A| = |A + A|$, then $A = x + H$ for some subgroup $H \leq G$ and $x \in G$.

Robustifications & Variants

Freiman–Rusza, Plünneke–Rusza, Balog–Szemerédi–Gowers, etc.
A Natural Question

Question: Given query access to \(A \subseteq G \), what is \(|A+A|/|G|\) up to an error of \(\pm \epsilon \)?

This work: \(\mathbb{F}_2^n \)
A Natural Question over \mathbb{F}_2^n

Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\text{Vol}(A) := \frac{|A|}{2^n},$$

what is $\text{Vol}(A + A)$ up to an error of $\pm \epsilon$?

- Cost measure: number of queries (as a function of n and ϵ).
- At first glance: To confirm $z \notin A + A$, have to check that at least one of $x, y \notin A$ for the 2^n pairs (x, y) satisfying $x + y = z$.
No Query-Efficient Algorithm over \mathbb{F}_2^n

$A = \emptyset$

$\text{Vol}(A + A) = 0$

A is a random set of size $2^{0.51n}$

$\text{Vol}(A + A) \geq 1 - \exp(-n)$ w.h.p.

Need $\Omega(2^{0.49n})$ queries to distinguish A from A.
Refining The Original Question

Original Question: Given query access to \(A \subseteq \mathbb{F}_2^n \) and writing

\[
\text{Vol}(A) := \frac{|A|}{2^n},
\]

what is \(\text{Vol}(A + A) \) up to an error of \(\pm \varepsilon \)?

- Adding a small (random) collection \(R \subseteq \mathbb{F}_2^n \) of \(2^{0.51n} \) elements to \(A \) can blow up \(\text{Vol}(A + A) \) to almost 1.

- Natural relaxation: Output \(\text{Vol}(A' + A') \) for set \(A' \subseteq A \) that is close to \(A \).
An Analogous Situation: Approximating Surface Area

“Given a nice convex set such as a sphere, one can add a very thin tentacle to it with negligible volume but arbitrarily large surface area.”

– Kothari, Nayyeri, O’Donnell, Wu (2014)
Refining The Original Question

Original Question: Given query access to \(A \subseteq \mathbb{F}_2^n \) and writing

\[
\text{Vol}(A) := \frac{|A|}{2^n},
\]

what is \(\text{Vol}(A + A) \) up to an error of \(\pm \varepsilon \)?

- Adding a small (random) collection \(R \subseteq \mathbb{F}_2^n \) of \(2^{0.51n} \) elements to \(A \) can blow up \(\text{Vol}(A + A) \) to almost 1.

- Natural relaxation: Output \(\text{Vol}(A' + A') \) for set \(A' \subseteq A \) that is close to \(A \).
New Question: Given query access to $A \subseteq \mathbb{F}_2^n$ and writing

$$\text{Vol}(A) := \frac{|A|}{2^n},$$

what is $\text{Vol}(A' + A')$ up to an error of $\pm \varepsilon$ for some $A' \subseteq A$ such that

$$\text{Vol}(A \setminus A') \leq \varepsilon?$$
The Question We Consider

New Goal: Output $\text{Vol}(A' + A')$ instead of $\text{Vol}(A + A)$.

$\text{Vol}(\Box) \leq \varepsilon$
Revisiting Our Earlier Example

$A = \emptyset$

$\text{Vol}(A + A) = 0$

A is a random set of size $2^{0.51n}$

$\text{Vol}(A + A) \geq 1 - \exp(-n)$ w.h.p.

For $\varepsilon \geq 2^{-0.49n}$, simply output $\text{Vol}(A' + A') = 0$.
New Question: Given query access to \(A \subseteq \mathbb{F}_2^n \) and writing

\[
\text{Vol}(A) := \frac{|A|}{2^n},
\]

what is \(\text{Vol}(A' + A') \) up to an error of \(\pm \varepsilon \) for some \(A' \subseteq A \) such that

\[
\text{Vol}(A \setminus A') \leq \varepsilon?
\]

Main Theorem: Can be done using \(O_{\varepsilon}(1) \) queries to \(A \).

(Bonus: Outputs an exact oracle to \(A' \) and an approximate oracle to \(A' + A' \).)
Proof Sketch

Almost all of \(\mathbb{F}_2^n \)

Ingredient 1: “Non-tiny” random-like sets have “large” sumsets.

Ingredient 2: Green’s Regularity Lemma.

Need an algorithmic version
Green’s Regularity Lemma

- Decomposes \mathbb{F}_2^n into translates of $H \leq \mathbb{F}_2^n$ such that:
 - $H \cong \mathbb{F}_2^{n-k}$ where k is does not depend on n.
 - $A \cap (x + H)$ is “random-like,” i.e. has small Fourier coefficients.

- Made algorithmic by closely following the original proof and using the Goldreich–Levin algorithm.
Defining A': Iterate through 2^k cosets of H:

- If $|A \cap (x + H)| \leq \varepsilon \cdot 2^{n-k}$, then set $A' \cap (x + H) = \emptyset$.
- Else set $A' \cap (x + H) = A$.

Approximately Defining $A' + A'$: If A' intersects with cosets $x + H, y + H$,

$$(A' + A') \cap (x + y + H) \approx x + y + H.$$
Obtaining $O_\varepsilon(1)$ Query Complexity

• Explicitly obtaining a description of the subspace H necessarily requires a number of queries that scales at least linearly in n.
• Require implicit versions of aforementioned algorithms.
 – For Goldreich–Levin: Equivalent to being a local list corrector for the Hadamard code.
Conclusion & Future Directions

• Our approach extends to estimate $\text{Vol}(A + B)$ and $\text{Vol}(A + \ldots + A)$ for $A, B \subseteq \mathbb{F}_2^n$.

• Generalizing to groups other than \mathbb{F}_2^n?
 • Green’s Regularity Lemma does hold for arbitrary abelian groups.
 • Implicitly finding significant Fourier coefficients?
Thanks for listening! Questions?