Strong limits on the possible decay of the vacuum energy into CDM or CMB photons

Reuven Opher and Ana Pelinson

IAG, Universidade de São Paulo, Rua do Matão, 1226
Cidade Universitária, CEP 05508-900, São Paulo, S.P., Brazil

(Dated: March 20, 2022)

We investigate models that suggest that the vacuum energy decays into cold dark matter (CDM) and into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. We show that the density fluctuation spectrum obtained from the CMB and galaxy distribution data agreement put strong limits on the rate of decay of the vacuum energy. A vacuum energy decaying into CDM increases its total density ρ, diluting $(\delta \rho/\rho)^2$. The observed temperature fluctuations of the CMB photons $(\delta T/T)^2$ are approximately proportional to CDM density fluctuations $(\delta \rho/\rho)^2$. In both case, when evaluating $(\delta \rho/\rho)^2$ at the recombination era, its present measured value must be increased by a factor F. Since the $(\delta \rho/\rho)^2$ derived from the CMB and galaxy distribution data agree to $\sim 10\%$, the maximum value for F is $F_{\text{max}} \cong 1.1$. Our results indicate that the rate of the decay of the vacuum energy into CDM and CMB photons are extremely small.

PACS numbers: 98.80.-k, 95.35.+d, 98.70.Vc, 04.62.+v

I. INTRODUCTION

Recent observations has indicated that the universe is spatially flat and undergoing a late time acceleration. This acceleration has been attributed to a dark energy component with negative pressure which can induce repulsive gravity. The simplest and most obvious candidate for this dark energy is the cosmological constant Λ with the equation of state $w = p/\rho = -1$, where p is the pressure and ρ is the energy density. A decaying vacuum energy is very attractive since it may link the present vacuum energy that is accelerating the universe today with perhaps the large vacuum energy that created the inflation epoch in the past.

We analyze how the observed cosmic microwave background (CMB) and large galaxy survey data constraints the decaying vacuum energy models into cold dark matter (CDM) varying with redshift from the recombination era ($z \sim 1070$) to the present ($z \sim 0$). A vacuum energy decaying into CDM increases its total density, diluting $(\delta \rho/\rho)^2$. In order to evaluate $(\delta \rho/\rho)^2$ at the recombination era, when it created the $\delta T/T$ of the CMB, its present measured value obtained from the galaxy distribution data must then be increased by a factor F. The density fluctuations derived from the CMB data were compared with those derived from the 2dF Galaxy Redshift Survey (2dFGRS). Since the $(\delta \rho/\rho)^2$ derived from the CMB and galaxy distribution data agree to $\sim 10\%$, the maximum value for F is $F_{\text{max}} \cong 1.1$. We made a similar analysis for the possibility of the decay of the vacuum energy into CMB photons. In this scenario, the temperature fluctuations at the recombination epoch $(\delta T/T)_{\text{rec}}$ were diluted by the photons created by the vacuum energy decay. Thus, the temperature fluctuations at present are smaller than those existing at the recombination era. This implies bigger density fluctuations $\delta \rho/\rho$ at the recombination era than those derived from the observed CMB data.

II. VACUUM ENERGY DECAYING INTO CDM

A vacuum energy decaying into CDM increases its total density, diluting $(\delta \rho/\rho)^2$. Consequently, a larger density fluctuation spectrum $(\delta \rho/\rho)^2$ is predicted at the recom-
combination era \((z_{\text{rec}} = 1070)\) by the factor

\[
F \equiv \left[\frac{\mathcal{P}_M(z)}{\rho_M(z) - \Delta \rho(z)} \right]^2 \bigg|_{z = z_{\text{rec}}},
\]

where

\[
\mathcal{P}_M(z) = \rho_c^0 (1 + z)^3 \Omega_M^0
\]

is the matter density for a constant vacuum energy density, \(\rho_c^0 \equiv 3 H_0^2/(8 \pi G) \approx 1.88 h_0^2 \times 10^{-29} \text{ g cm}^{-3}\) is the critical density, and \(\Omega_M^0\) is the normalized matter density, \(\Omega_M^0 = \rho_M^0/\rho_c^0 \approx 0.3\).

The difference between the matter density \(\rho_M^0\) and the matter density predicted by the model in which the vacuum energy decays into matter, \(\rho_{Mv}\), is

\[
\Delta \rho(z) = \mathcal{P}_M(z) - \rho_{Mv}(z).
\]

The density \(\rho_{Mv}(z)\) is normalized at redshift \(z = 0\) \([\rho_{Mv}(z = 0) \equiv \rho_{Mv}^0]\). In order to describe the transfer of the vacuum energy \(\rho_\Lambda\) into matter \(\rho_{Mv}\), we use the conservation of energy equation,

\[
\dot{\rho}_\Lambda + \dot{\rho}_{Mv} + 3 H (\rho_{Mv} + P_{Mv}) = 0,
\]

where \(P_{Mv}\) is the pressure due to \(\rho_{Mv}\). For CDM, we have \(P_{Mv} = 0\).

There exists an extensive list of phenomenological \(\Lambda\)-decay laws. Several models in the literature are described by a power law dependence

\[
\rho_\Lambda(z) = \rho_\Lambda^0 (1 + z)^n,
\]

where \(\rho_\Lambda^0 \equiv \rho_\Lambda(z = 0)\), which we investigate here.

The solution for the matter density has the form

\[
\rho_{Mv}(z) = A (1 + z)^3 + B \rho_\Lambda(z),
\]

where \(A\) and \(B\) are unknown constants. Using Eqs. (6) and (5) in Eq. (4), the dependence of \(\rho_{Mv}\) as a function of \(n\) is

\[
\rho_{Mv}(z) = \rho_{Mv}^0 (1 + z)^3 - \frac{n \rho_\Lambda^0}{3 - n} \left[(1 + z)^3 - (1 + z)^n\right].
\]

Using Eqs. (2) and (7) in Eq. (3), we find from Eq. (1) that

\[
F = \left[1 - \left(\frac{n}{3 - n}\right) \left(\frac{\rho_\Lambda^0}{\rho_{Mv}^0}\right) \left[1 - (1 + z)^{n-3}\right]\right]^{-2}.
\]

If, as discussed in section 1, the density power spectrum from observations can be increased by no more than approximately 10% due to the decay of the vacuum energy, we then have a maximum value for the \(F\) factor \(F_{\text{max}} \approx 1.1\). This maximum value gives \(n_{\text{max}} \approx 0.06\).

We also considered a recent model suggested by the renormalization group equation of the effective quantum field theory which has a \(\Lambda\)-decay dependence

\[
\rho_\Lambda(z; \nu) = \rho_\Lambda^0 + \rho_\Lambda^0 \nu (z, \nu),
\]

where \(\rho_\Lambda(z = 0) \equiv \rho_\Lambda^0\), \(k = 0\), and

\[
f(z) = \frac{\nu}{1 - \nu} \left[(1 + z)^{3(1-\nu)} - 1\right].
\]

The dimensionless parameter \(\nu\) comes from the renormalization group

\[
\nu = \frac{\sigma M^2}{12 \pi M_{\text{Pl}}^2},
\]

where \(\sigma M^2\) is the sum of all existing particles (fermions with \(\sigma = -1\) and bosons with \(\sigma = +1\)). The range of \(\nu\) is \(\nu \in (0, 1)\).

Using Eqs. (9) and (10), the matter density as a function of \(z\) and \(\nu\), in the matter era, is

\[
\rho_{Mv}(z; \nu) = \rho_{Mv}^0 (1 + z)^{3(1-\nu)}.
\]

Using Eqs. (12) and (2) in Eq. (3), we find from Eq. (1), the factor \(F\) modifying the density power spectrum:

\[
F = (1 + z_{\text{rec}})^{6\nu}.
\]

Using \(F_{\text{max}} \approx 1.1\) we place an upper limit on the \(\nu\) parameter: \(\nu_{\text{max}} \approx 2.3 \times 10^{-3}\).

III. VACUUM ENERGY DECAYING INTO CMB PHOTONS

According to the standard model, the temperature fluctuations observed today are given by the expression

\[
\left(\frac{\delta T}{T}\right) \bigg|_{z=0} = \mathcal{K} \frac{\delta \rho}{\rho} \bigg|_{z_{\text{rec}}},
\]

where \(\mathcal{K}\) is approximately constant and the temperature dependence of \(T(z)\) is

\[
T(z) = T_0 (1 + z),
\]

\[
\mathcal{K} = 1.1 \times 10^{-3}\text{ K}.\]
where $T_0 \simeq 2.75$ K is the present CMB temperature. The present value of $(\delta \rho/\rho)^2$ is gotten from the relation

$$
\left(\frac{\delta \rho}{\rho} \right) \bigg|_{z=0} = D(z_{\text{rec}} \rightarrow z = 0) \frac{\delta \rho}{\rho} \bigg|_{z_{\text{rec}}},
$$

where $D(z_{\text{rec}} \rightarrow z = 0)$ is the growth factor from the recombination era until the present time.

Using Eqs. (17), (19), and (20), we obtain

$$
\Delta T(z) = T(z_{\text{rec}}) - T(z_{\text{rec}}) = T(z_{\text{rec}}) - T(z_{\text{rec}}).
$$

From Eqs. (17) and (20), $T(z)$ was lower than $T(z)$ by ΔT at z_{rec}. Thus, the resultant recombination redshift \bar{z}_{rec} was higher than that of the standard model z_{rec}. Instead of Eq. (16), $(\delta \rho/\rho)$ at $z \sim 0$ is now given by

$$
\left(\frac{\delta \rho}{\rho} \right) \bigg|_{z=0} = D(z_{\text{rec}} \rightarrow z = 0) \frac{\delta \rho}{\rho} \bigg|_{z=\bar{z}_{\text{rec}}},
$$

where $D(z_{\text{rec}} \rightarrow z = 0)$ is the density fluctuation growth factor from the recombination era at \bar{z}_{rec} until the present epoch. Therefore, instead of Eq. (16), we have

$$
\left(\frac{\delta T}{T} \right) \bigg|_{z=0} = K \frac{\delta \rho}{\rho} \bigg|_{z=\bar{z}_{\text{rec}}}.
$$

Using Eqs. (18) and (19), we have

$$
\left(\frac{\delta T}{T} \right) \bigg|_{z=0} = F_1 D(z_{\text{rec}} \rightarrow z = 0) \left(\frac{\delta T}{T} \right) \bigg|_{z_{\text{rec}}},
$$

and from Eqs. (22) and (23),

$$
\left(\frac{\delta \rho}{\rho} \right) \bigg|_{z=0} = F_1 D(z_{\text{rec}} \rightarrow z = 0) \left(\frac{\delta T}{T} \right) \bigg|_{z_{\text{rec}}}.
$$

Equations (24) and (25) give the correction factor F_2 due to the change in the value of the recombination redshift,

$$
F_2 = \frac{D(z_{\text{rec}} \rightarrow z = 0)}{D(z_{\text{rec}} \rightarrow z = 0)}.
$$

The growth of a perturbation in a matter-dominated Einstein-de Sitter universe is $\delta \rho/\rho \propto a = (1+z)^{-1}$, where a is the cosmic scale factor. Thus, the growth factor D is

$$
D \simeq (1+z).
$$

We then find from Eq. (26)

$$
F_2 \simeq \left(\frac{1 + \bar{z}_{\text{rec}}}{1 + z_{\text{rec}}} \right).
$$

The temperature at z_{rec} in the standard model is

$$
T(z_{\text{rec}}) = T_0 (1 + z_{\text{rec}}).
$$

In order for the temperature at the recombination epoch z_{rec}, when the vacuum energy is decaying into CMB photons, to be $T(z_{\text{rec}})$, we must have, from Eq. (17),

$$
\bar{z}_{\text{rec}} = (1 + z_{\text{rec}})^{1/(1-\beta)} - 1.
$$

From Eq. (27), we then have

$$
F_2 \simeq (1 + z_{\text{rec}})^{2/(1-\beta)}.
$$
The total factor F is composed of F_1, due to the dilution of the CMB as a result of vacuum energy decay, and F_2, due to the change in the redshift of the recombination epoch. Assuming that the effects described by F_1 and F_2 are independent and that the total factor F is the product of F_1^2 and F_2^2, we have

$$F = F_1^2 F_2^2. \quad (31)$$

Thus, from Eqs. (21), (30) and (31), the condition for the maximum value of $\beta \in [0, 1]$ is

$$\beta_{\text{max}} = \alpha \left[1 - \sqrt{1 - \frac{\ln (F_{\text{max}})}{2\alpha^2 \ln (1 + z_{\text{rec}})}} \right], \quad (32)$$

where

$$\alpha = 1 + \frac{\ln (F_{\text{max}})}{4 \ln (1 + z_{\text{rec}})}. \quad (33)$$

As noted above, the maximum value of F from observations is $F_{\text{max}} \simeq 1.1$. For $z_{\text{rec}} \simeq 1100$, we find a very small maximum value of the β parameter, $\beta_{\text{max}} \simeq 3.4 \times 10^{-3}$.

IV. CONCLUSIONS

We showed that the CMB and large galaxy survey data agreement put strong limits on the rate of a possible decay of the vacuum energy into CDM and into CMB photons.

When the vacuum energy decays into CDM, $\delta \rho/\rho$ is diluted and the density fluctuation spectrum is amplified by a factor F at the recombination era. The $(\delta \rho/\rho)^2$ derived from the CMB and galaxy distribution data agree to $\sim 10\%$, the maximum value for F is then $F_{\text{max}} \simeq 1.1$.

We found that the decay of the vacuum energy into CDM as a scale factor power law $\rho_\Lambda \propto (1 + z)^n$, gives a maximum value for the exponent $n_{\text{max}} \simeq 0.06$. For a parametrized vacuum decay into a CDM model with the form $\rho_\Lambda (z, \nu) = \rho_\Lambda (z = 0) + \rho_\nu^0 \nu/(1 + \nu) [(1 + z)^{3(1-\nu)} - 1]$, where ρ_ν^0 is the present critical density, an upper limit on the ν parameter was found to be $\nu_{\text{max}} \simeq 2.3 \times 10^{-3}$.

We made a similar analysis for the possibility of the decay of the vacuum energy into CMB photons. When photon creation due to the vacuum energy decay takes place, the standard linear temperature dependence, $T(z) = T_0 (1 + z)$, where T_0 is the present CMB temperature, is modified. We can place an upper limit on the β parameter for the decay of the vacuum energy into CMB photons, parametrized by a change in the CMB temperature at a given redshift z: $T(z) = T_0 (1 + z)^{1-\beta}$. We find that $\beta_{\text{max}} \simeq 3.4 \times 10^{-3}$.

Our results indicate that the rate of the decay of the vacuum energy into CDM and CMB photons are extremely small. Since the results show that the vacuum energy can only decay to a negligible extent into cold dark matter or CMB photons, we conclude that if the vacuum energy is decaying, it is decaying, for example, into hot dark matter (e.g., high energy neutrinos) or exotic matter (e.g., scalar fields), which do not affect the $(\delta \rho/\rho)^2$ or the $\delta T/T$ CMB spectra.

Acknowledgments. R.O. thanks the Brazilian agencies FAPESP (grant 00/06770-2) and CNPq (grant 300414/82-0) for partial support. A.P. thanks FAPESP for financial support (grants 03/04516-0 and 00/06770-2).

[1] R. Opher, A. Pelinson, Phys. Rev. D **70**, 063529 (2004).
[2] O. Lahav et al., MNRAS **333**, 961 (2002).
[3] W.J. Percival et al., MNRAS **337**, 1068 (2002).
[4] C. Shaun et al., MNRAS **326**, 505 (2005).
[5] R. Opher, A. Pelinson, MNRAS **362**, 167 (2005).
[6] M. Bronstein, Phys. Z. Sowjetunion **3**, 73 (1933).
[7] P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. **75**, 559 (2003).
[8] I.L. Shapiro, J. Solà, Phys. Lett. B **574**, 149 (2003); Nucl. Phys. B Proc. Suppl. **127**, 71 (2004).
[9] C. España-Bonnet, P. Ruiz-Lapuente, I.L. Shapiro, J. Solà, JCAP **0402**, 6 (2004).
[10] T. Padmanabhan, *Structure Formation in the Universe*, (Cambridge Univ. Press), Cambridge, UK, 1993.
[11] J.A.S Lima., A.I. Silva , S.M. Viegas, MNRAS **312**, 747 (2000).
[12] P. Coles, F. Lucchin, *Cosmology, The Origin and Evolution of Cosmic Structure*, John Wiley & Sons Ltd, New York, 1996.