Systems biology approach to studying proliferation-dependent prognostic subnetworks in breast cancer

Qianqian Song1,2, Hongyan Wang1, Jiguang Bao2, Ashok K. Pullikuth3, King C. Li1, Lance D. Miller3 and Xiaobo Zhou1,3,*

1Division of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
2School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, P R China
3Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA

*Corresponding author

Email addresses:
Q.S.: wasqqdyx@gmail.com
H.W.: jojowang.business@gmail.com
J.B.: jgbao@bnu.edu.cn
A.K.P.: apulliku@wakehealth.edu
K.C.L.: kingli@wakehealth.edu
L.D.M.: ldmiller@wakehealth.edu
X.Z.: xizhou@wakehealth.edu
Figure S1. Cross-validated Kaplan-Meier survival curves of P-high tertile in our BR dataset.

The figure presented the result of cross-validation on our BR dataset. The red color represented good outcome patients (low-risk), while the green color represented poor outcome patients (high-risk). The significant P-value declared the robustness of our model.
Figure S2. SPNs in the P-inter group, i.e. P-inter SPNs.

There are 8 SPNs discovered in the inter proliferation (P-inter) group. Genes are color coded (i.e. red/green: genes that are overexpressed/underexpressed in patients with shorter DMFS). In the color bar, deep green means that log2(fold change)<0, light green or light red represents that 0<fold change<1, while deep red means that log2(fold change)>0. Details about P-inter SPNs can be found in the Results section.
Figure S3. SPNs in the P-low group, i.e. P-low SPNs.

There are 6 SPNs discovered in the low proliferation (P-low) group. Genes are color coded (i.e. red/green: genes that are overexpressed/underexpressed in patients with shorter DMFS). In the color bar, deep green means that log2(fold change)<0, ligh green or light red represents that 0<fold change<1, while deep red means that log2(fold change)>0. Details about P-low SPNs can be found in the Results section.
Figure S4. Classification performance of makers identified by different methods in predicting breast cancer metastasis.

We calculated the accuracy, precision and recall of correct classification into metastatic-/non-metastatic patient groups based on our identified SPNs. The color of number corresponds to the color of bar, for example, in the P-high test set, the accuracy, precision and recall are 88.24%, 83.74%, 75.33%, respectively. The classification accuracy, precision and recall achieved by different methods (the Ridge-based Cox model and CRANE method) were also reported in the figure.
Figure S5. Enrichment analysis of P-inter SPNs in BP sets and KEGG pathway sets.

Subfigure A. showed the enrichment of P-inter SPNs in biological process (BP) sets, while subfigure B. was the enrichment of P-inter SPNs in KEGG pathway sets. Enriched biological process or pathway (i.e. enrichment) was indicated by yellow, whereas non-enrichment was indicated by blue.
Figure S6. Enrichment analysis of P-low SPNs in BP sets and KEGG pathway sets.

Subfigure A. showed the enrichment of P-low SPNs in biological process (BP) sets, while subfigure B. was the enrichment of P-low SPNs in KEGG pathway sets. Enriched biological process or pathway (i.e. enrichment) was indicated by yellow, whereas non-enrichment was indicated by blue.
Figure S7. Survival analysis of the dataset used in Wang et al.

A. shows the survival curves (with log-rank P-value) of P-high subset in Wang et al.’s dataset. B. shows the survival curves of P-inter subset in Wang et al.’s dataset. C. shows the survival curves of P-low subset in Wang et al.’s dataset.
Figure S8. Survival curves of two proliferation groups (P-high group, P-low group) in test set.

A. shows the survival analysis of P-high group in test set. B. shows the survival analysis of P-low group in test set.
Figure S9. Survival curves of four proliferation groups (P-high, P-intermediate I, P-intermediate II, P-low group) in test set.
Figure S10. Survival analysis of three proliferation tertiles with weights in SPNs.

A. shows the survival curves of P-high test set based on the weighted P-high SPNs. B. shows the survival curves and log-rank P-value of P-inter test set based on the weighted P-inter SPNs. C. shows the survival curves of P-low test set based on the weighted P-low SPNs.
Figure S11. Test in different proliferation tertiles by SPNs.

A. shows the survival curves of P-inter group based on P-high SPNs. B. shows the survival curves of P-low group based on P-high SPNs. C. shows the survival curves of P-high group based on P-inter SPNs. D. shows the survival curves of P-low group based on
P-inter SPNs. E. shows the survival curves of P-high group based on P-low SPNs. F. shows the survival curves of P-inter group based on P-low SPNs.

Supplementary Table S1. Adjusted P-values of P-high, P-inter and P-low SPNs.

adjust P-value of SPNs	#1	#2	#3	#4	#5	#6	#7	#8
P-high	1.22E-16	1.11E-16	2.22E-16	5.11E-16	1.45E-16	1.11E-16	1.67E-16	5.55E-16
P-inter	1.11E-16	6.02E-15	1.11E-15	1.12E-16	2.45E-16	1.39E-15	3.77E-15	2.22E-16
P-low	1.67E-15	1.33E-15	1.23E-15	1.22E-15	9.99E-16	3.33E-16		

Supplementary Table S2. Clinical and pathological characteristics of test set.

Characteristics	test set* (n=255)
Age, years	
<=40	46 (18.43%)
41-55	128 (50.2%)
56-70	74 (29%)
>70	7 (2.37%)
T stage	
T0	2 (0.78%)
T1	19 (7.45%)
T2	133 (52.16%)
T3/4	101 (39.61%)
Grade	
Poor	121 (47.45%)
Moderate	98 (38.43%)
Good	13 (5.1%)
Unknown	23 (9.02%)
ER status	
Positive	148 (58.04%)
Negative	107 (41.96%)
Subtype	
Normal	24 (9.41%)
LumA	81 (31.77%)
LumB	34 (13.3%)
Her2	19 (7.45%)
Basal	97 (38.04%)
Metastasis within 5 years	
Yes	59 (23.14%)
No	196 (76.86%)

* samples in test set are extracted from GSE25055
Supplementary Table S3. Affymetrix probe sets and gene names that comprise the proliferation metagene.

Probe Set ID	Gene Symbol	Gene Name
201291_s_at	TOP2A	Topoisomerase (DNA) II alpha 170kDa
201292_at	TOP2A	Topoisomerase (DNA) II alpha 170kDa
201890_at	RRM2	Ribonucleotide reductase M2
202095_s_at	BIRC5	Birculoviral IAP repeat-containing 5
202503_s_at	KIAA0101	KIAA0101
202580_x_at	FOXM1	Forkhead box M1
202589_at	TYMS	Thymidylate synthetase
202705_at	CCNB2	Cyclin B2
202870_s_at	CDC20	Cell division cycle 20 homolog (S. cerevisiae)
202954_at	UBE2C	Ubiquitin-conjugating enzyme E2C
203213_at	CDK1	Cyclin-dependent kinase 1
203214_x_at	CDK1	Cyclin-dependent kinase 1
20362_s_at	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)
203554_s_at	PTTG1	Pituitary tumor-transforming 1
203755_at	BUB1B	Budding uninhibited by benizimidazoles 1 homolog beta (yeast)
203764_at	DLGAP5	Discs, large (Drosophila) homolog-associated protein 5
204033_at	TRIP13	Thyroid hormone receptor interactor 13
204092_s_at	AURKA	Aurora kinase A
204162_at	NDC80	NDC80 homolog, k inetochore complex component (S. cerevisiae)
204170_s_at	CKS2	CDC28 protein kinase regulatory subunit 2
204444_at	KIF11	Kinesin family member 11
204641_at	NEK2	NIMA (never in mitosis gene a)-related kinase 2
204822_at	TTK	TTK protein kinase
204825_at	MELK	Maternal embryonic leucine zipper kinase
204962_s_at	CENPA	Centromere protein A
205034_at	CCNE2	cyclin E2
205046_at	CENPE	Centromere protein E, 312kDa
206102_at	GINS1	GINS complex subunit 1 (Psf1 homolog)
206364_at	KIF14	Kinesin family member 14
207828_s_at	CENPF	Centromere protein F, 350/400kDa (mitosin)
209172_s_at	CENPF	Centromere protein F, 350/400kDa (mitosin)
209408_at	KIF2C	Kinesin family member 2C
209642_at	BUB1B	Budding uninhibited by benizimidazoles 1 homolog (yeast)
209714_s_at	CDKN3	Cyclin-dependent kinase inhibitor 3
209773_s_at	RRM2	Ribonucleotide reductase M2
210022_s_at	MKI67	Antigen identified by monoclonal antibody Ki-67
210294_at	NCAHP	Non-SMC condensin I complex, subunit H
213226_at	CCNA2	Cyclin A2
214710_s_at	CCNB1	Cyclin B1
218009_s_at	PRC1	Protein regulator of cytokinesis 1
218039_at	NUSAP1	Nucleolar and spindle associated protein 1
218355_at	KIF4A	Kinesin family member 4A
218542_at	CEP55	Centrosomal protein 35kDa
218585_s_at	DTL	Denticless homolog (Drosophila)
218662_s_at	NCAPG	Non-SMC condensin I complex, subunit G
218663_at	NCAPG	Non-SMC condensin I complex, subunit G
218726_at	HJURP	Holliday junction recognition protein
218755_at	KIF20A	Kinesin family member 20A
21883_s_at	MLFL1P	MLF1 interacting protein
219148_at	PBK	PDZ binding kinase
219306_at	KIF15	Kinesin family member 15
219918_s_at	ASPM	asp (abnormal spindle) homolog, microcephaly associated (Drosophila)
220651_at	MCM10	Minichromosome maintenance complex component 10
221436_s_at	CDC2A3	Cell division cycle associated 3
221520_s_at	CDC2A8	Cell division cycle associated 8
222039_at	KIF18B	Kinesin family member 18B
222077_s_at	RACGAP1	Rac GTPase activating protein 1
204562_at	IRF4	Interferon regulatory factor 4
Supplementary Table S4. Overlap of genes among the SPNs, Chuang et.al, CRANE and the Cox-based Ridge regression method.

Gene Symbol	SPN	CRANE	Ridge																	
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	9	10	11	1
GNG11																				
TUBB6																				
COBRA1																				
SMAD2																				
CALM1																				
IGFBP7																				
DCTN2																				
HSPA1A																				
TBCA																				
MNAT1																				
ASPM																				
CBX3																				
POLR2H																				
HSP90AA1																				
TBCE																				
TUBB2C																				
STK3																				
CALD1																				
RDBP																				
CDK7																				
CCR9																				
SFN																				
NPM1																				
CTTN																				
IGF1R																				
TUBA1A																				
TAX1BP1																				
LAMA3																				
XPO1																				
VEGFA																				
STUB1																				
KTN1																				
THBS3																				
GNG10																				
UBE2D2																				
SPP1																				
DNAJA3																				
RAP1GAP																				
RNF41																				
gene																				
--------	---																			
ITGA3																				
GLI3																				
CD151																				
FBXW11																				
CHST2																				
NUDT9																				
PRKCZ																				
FEZ2																				
VAV1																				
IL6ST																				
KRT10																				
NLRP1																				
MCM7																				
YWHAQ																				
MAGOH																				
CR1																				
PCGF2																				
SMARCA5																				
GRB14																				
AKAP8																				
ASF1A																				
RAD21																				
TRAF6																				
NFKB1																				
C3																				
PDGFRA																				
CHEK2																				
SKAP1																				
CREB3L2																				
M6PR																				
SP140L																				
TAF9																				
PSMB10																				
TXNIP																				
TAPBPL																				
ARHGEF18																				
LPIN1																				
DTNB																				
NDUFS6																				
BTF3																				
IP6K1																				
CD72																				
PTGER4																				
MSN																				
Gene																				
--------	-------																			
BCL11A																				
CCDC88A																				
TNNT1																				
CD37																				
QKI																				
TCEAL4																				
RARRES1																				