Superclimb of Dislocations and the Anomalous Isochoric Compressibility of Solid 4He

Ş.G. Söyler,¹ A.B. Kuklov,² L. Pollet,³ N.V. Prokof’ev,¹,⁴ and B.V. Svistunov¹,⁴

¹Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
²Department of Engineering Science and Physics, CUNY, Staten Island, NY 10314, USA
³Department of Physics, Harvard University, Cambridge, MA 02138, USA
⁴Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

(Dated: August 31, 2009)

In the experiment on superfluid transport in solid 4He [PRL 100, 235301 (2008)], Ray and Hallock observed an anomalously large isochoric compressibility: the supersolid samples demonstrated a significant and apparently spatially uniform response of density and pressure to chemical potential, applied locally through Vycor “electrodes”. We propose that the effect is due to superclimb: edge dislocations can climb because of mass transport along superfluid cores. We corroborate the scenario by ab initio simulations of an edge dislocation in solid 4He at $T = 0.5K$. We argue that at low temperature the effect must be suppressed due to a crossover to the smooth dislocation.

PACS numbers: 67.80.bd, 67.80.dj, 67.80.-s, 05.30.Jp

At present, the experimental search for supersolidity (proposed theoretically in Refs. [1]) in 4He focuses mostly on torsional oscillator experiments [2], and on attempts to detect pressure driven non-plastic flow [3]. So far, direct superflow through solid 4He has been observed only in the experiment by Ray and Hallock [4, 5]. Although it was argued that the presence of a few liquid channels is compatible with the observations [6, 7], the absence of flow at temperatures above $T \approx 0.6K$ is a strong argument against this scenario and in favor of superfluidity along dislocation cores or grain boundaries. Theoretically, a superfluid dislocation network can manifest itself as a genuine superfluid or be in the Shevchenko state [8], characterized by anomalously low viscosity due to phase slips. In practice, the Shevchenko state might mimic superfluidity even at relatively high temperatures, $T > 0.1K$, well above the actual transition determined by the dislocation density.

The “UMass sandwich” setup of Refs. [4, 5] is different from the pressure driven cells [6]. Superfluid 4He is fed into the crystal through Vycor “electrodes”, meaning that the chemical potential μ is the physical quantity relevant to the external perturbation applied to the crystal. An insulating (i.e., non-supersolid) crystalline groundstate has to be isochorically incompressible: $\chi \equiv (dn/d\mu)\nabla = 0$: that is, the density n of the crystal should demonstrate no response to infinitesimal, quasi-static changes of μ [9]. Indeed, as long as the creation of single vacancies and interstitials is forbidden by finite energy gaps, the only way the density of a crystal can react dynamically to a small change in the chemical potential, $\delta \mu$, is by creating/removing crystalline layers. This requires nucleation times exponentially large in $|\delta \mu|^{-1}$. Thus, at temperatures much smaller than the vacancy/interstitial gaps, the isochoric compressibility χ associated with thermally excited vacancies and interstitials is exponentially small. Consistent with these arguments, all non-supersolid samples of Refs. [4, 5] have $\chi = 0$: two pressure gauges monitoring the solid showed no response to a change in μ by the Vycor electrodes.

Supersolids have no vacancy (interstitial) gap [10] and are thus genuinely isochorically compressible: $\chi \neq 0$. One might argue that χ should scale linearly with the superfluid fraction ρ_s since both are due to zero-point vacancies (interstitials). Given the extremely low value of $\rho_s \lesssim 10^{-5}$ following from estimates based on the observed supercritical flux (see Refs. [4, 5] for more details), one does not expect a noticeable χ. However, a density/pressure response to μ by several orders of magnitude larger than expected is precisely what was observed, to which we refer as the effect of anomalously isochoric compressibility. Remarkably, the response was apparently spatially homogeneous, since two pressure gauges attached to two ends of the solid typically showed equal variations (but different absolute values; most samples were characterized by a static pressure gradient) [4, 5].

In this Letter, we argue that the microscopic phenomenon behind the effect of anomalous isochoric compressibility in the experiments by Ray and Hallock is the superclimb of superfluid edge dislocations, that is, climb controlled by superfluid flow along the core. Our idea is that significant and spatially uniform mass accumulation in the bulk of supersolid 4He is due to the synergy between: (i) the presence of a superfluid network capable of delivering 4He atoms from Vycor electrodes to distant bulk regions and (ii) the presence of edge dislocations, whose superclimb is responsible for the density/pressure change.

We corroborate our scenario by ab initio simulations which show that edge dislocation with Burgers vector along the hep C-axis has superfluid core (we previously reported the superfluidity in the core of a screw dislocation [11]), and that it can climb in response to variations of μ. We argue that at low temperature the climb must be suppressed due to a crossover from a rough to a smooth dislocation [12]. This prediction is a manifestation of the structural evolution of dislocations with temperature, and is important for experimental validation of the scenario. While superflow is a necessary condition for superclimb, the dislocation must also have a finite den-
sity of jogs to allow for threshold-less climb. Otherwise, a finite gap Δ for creating dislocation jogs will protect the dislocation from shifting significantly in response to small variations in μ.

The effect of anomalous isochoric compressibility is one of the novel properties emerging in the “quantum metallurgy” \[13\] context. These properties have long been discussed in the past; for example, it was speculated that quantum dislocations should be characterized by “thick” (roughened) cores due to zero-point motion \[14]. An important role of quantum roughening of dislocations in the torsional oscillator response has also been proposed in Refs. \[14\] \[16\]. Superclimb is a quantum analog of classical high-T climb due to thermally activated flux of vacancies toward, away or along the cores (pipe diffusion) \[17\] which adds (removes) atoms to (from) the extra plane forming the edge dislocation, so that the dislocation core shifts along the extra-plane direction. Obviously, at low T, the activated mass flow is exponentially suppressed and quickly becomes negligible.

Apart from climb, dislocations can also glide. In Ref. \[12\] it was shown that gliding dislocations (gliding does not require mass influx) are smooth at $T = 0$ because Coulomb-type interactions between shape fluctuations \[18\] \[19\] induce an energy gap Δ_{glide} with respect to creating a pair of kinks in Peierls potential. Hence, threshold-less glide of a dislocation can effectively occur only at T comparable with Δ_{glide}. This gap is also related to shear modulus stiffening at low T \[20\]. Similarly, dislocations have a gap Δ for creating a pair of jogs at $T = 0$, which leads to a suppression of climb (and χ) at low T. The values of Δ can be quite different from Δ_{glide} because the jog–anti-jog deconfinement couples to fluctuations of the superfluid density leading to an additional mechanism for the gap formation.

Model of climbing superfluid dislocation. We introduce a coarse-grained description of an edge dislocation with superfluid core oriented along the X-axis in terms of the core displacement $y(x, \tau)$ along the Y-axis (in the climbing direction), perpendicular to the Burgers vector which is along the Z-axis. We proceed under the assumptions of small gradients and large displacements compared to the lattice spacing. Then, a coarse-grained density variation $\delta n(x, t)$ translates directly into a coarse-grained variations $\delta y(x, t) \propto \delta n(x, t)$. The proportionality coefficient is purely geometrical: adding one atom to the edge results in its displacement by a lattice period in the climb direction $\delta y(x, t) = d' \epsilon$ and also in a density change $\delta n(x, t) = 1/\alpha a$, where a is the length of the unit cell along the core. Thus, $\delta n(x, t) = \xi \delta y(x, t)$ with $\xi \equiv 1/\alpha a'$. This relation implies that for a superfluid dislocation the core displacement δy is the conjugate variable to the superfluid phase φ. The combined coarse-grained, low-energy effective action for superfluid and displacement degrees of freedom in the imaginary time description reads ($\hbar = 1$)

$$S = \int_0^\beta d\tau \int dx \left[-i\xi y \dot{\varphi} + \frac{\rho_s}{2}(\partial_x \varphi)^2 - \mu \xi y \right] + S_d(1)$$

where the purely dislocation part of the action, S_d, is taken in the form of the Granato-Lücke string subject to Peierls potential \[19\] \[21\].

$$S_d = \int_0^\beta d\tau \int dx \left[\frac{n_1 v_d^2}{2} (\partial_x y)^2 - u \cos \left(\frac{2\pi y}{a'} \right) \right], \quad (2)$$

with n_1 being the linear mass density of the core, v_d standing for speed of sound along the string determined by shear modulus G: $v_d^2 \approx G/n_1$, and u denoting the strength of Peierls potential. In Eq. \[4\], the kinetic energy $\propto y^2$ is neglected in the low energy limit under the consideration. Full quantum mechanical description of the system based on calculating the partition function $\int D\varphi \exp(-S)$ will be presented elsewhere.

Apart from the Peierls term $\propto u$ (not to be confused with the sine-Gordon term where the argument would be $\propto \int y(x')dx'$), the quantized action \[1\] \[2\] is a standard harmonic $(1+1)$-dimensional action. A renormalization-group analysis, similar to the one given in Ref. \[12\], shows that, at $T = 0$, the Peierls term has scaling dimension $\dim[u] = 2$ regardless of the parameters of the system, even if the long-range deformation potential forces are ignored. This means that the Peierls barrier is relevant at $T = 0$ and always leads to a finite gap Δ for the climb motion, i.e. the dislocation in its groundstate is smooth. In such a state, the cosine term can be expanded in powers of y around some equilibrium position $y_m = ma'$, $m = 0, \pm 1, \pm 2, \ldots$... Accordingly, in the low-energy limit—when the gradient in the action \[2\] can be ignored—the action \[1\] reduces to the standard 1D superfluid action \[22\]

$$S_1 = \int_0^\beta d\tau \int dx \left[-i \xi y \dot{\varphi} + \frac{\rho_s}{2}(\partial_x \varphi)^2 - \mu \xi y + \frac{g}{2} y^2 \right], \quad (3)$$

with $g = u(2\pi)^2/\alpha a^2$. This action describes superfluidity with speed of sound $v_1 = \sqrt{\rho_s g/\xi} \propto \sqrt{\rho_s a}$ and also a finite climb in response to $\delta \mu$: $\delta y = \delta \mu / g$.

With increasing T, thermally excited jogs and kinks render Peierls potential less and less relevant, so that eventually it can be ignored. In this limit, the dislocation becomes rough, that is, similar to a free string \[21\], and the spatial gradient in Eq. \[2\] should be taken into account. The effective action \[1\] then becomes

$$S_2 = \int_0^\beta d\tau \int dx \left[-i \xi y \dot{\varphi} + \frac{\rho_s}{2}(\partial_x \varphi)^2 + \frac{n_1 v_d^2}{2}(\partial_x y)^2 - \mu \xi y \right]. \quad (4)$$

Eq. \[4\] predicts an extremely strong quasi-static climb response: $\partial_x^2 \delta y \propto -\delta \mu$ determined by the length of a free dislocation segment L (the cross-linking distance in the network), so that a typical displacement $\delta y \propto L^2 \delta \mu$. This implies that the resulting specific compressibility is independent of the dislocation density $\approx 1/L^2$, provided the network is uniform over the whole sample. Indeed, the added amount of atoms per each “elementary” cube of the side L is $\sim a L \delta y \propto L^3 \delta \mu$. Thus, the added fraction of atoms per unit volume is independent of L.

The superfluid component also demonstrates an unusual behavior. The equation of motion for small oscillations reads

$$\ddot{\varphi} - \eta \dot{\varphi}^2 = 0, \quad \eta \equiv \frac{\rho_s n_1 v_0^2}{\xi^2},$$

meaning that the spectrum of superfluid excitations is not sound-like anymore. It is described by a quadratic dispersion $\omega = \sqrt{\eta q^2}$, where q is the momentum along the dislocation line. Full quantum mechanical description of the crossover from the regime (3) to (4), (5) in line with the approach of Ref. [12] will be presented elsewhere. Here we point out two qualitative predictions of the model (1)-(2): (i) suppression of the climb at $T < \Delta$, and (ii) dramatic softening of superfluid phonons at $T > \Delta$.

Numerical results. Our *ab initio* Monte Carlo (MC) simulations were based on the worm algorithm [24]. The most important numerical finding of the present study is that edge dislocations with Burgers along the hcp axis have superfluid cores in solid 4He. Our example is based on the dislocation with the core along the X-axis (and Burgers vector along the Z-axis). Since the hcp structure has two atoms in the unit cell, two extra half-planes are involved. Figures 1, 2 show snapshots of atomic positions in a typical MC configuration, along C-axis and along the core. Particles outside the circle, Fig. 4 were pinned to their classical lattice positions and provided boundary conditions for the simulation cell. The studied dislocation splits into two partials with the fcc fault forming in between [17]. The splitting is so large that it does not fit the simulation cell since one of the partials has moved all the way to the cell boundary. A direct simulation of the fcc fault yielded an unmeasurably small (within our accuracy) fault energy < 0.1K/atom, meaning that the splitting (proportional to the inverse of the fault energy) is indeed expected to be as large as $\geq 150 - 300\text{ Å}$. Correspondingly, physical properties of the both partials are essentially independent from each other.

Under these circumstances we performed extensive simulations of a single partial attached to the fault. The rectangular simulation cell contained from 600 to 3400 particles with periodic boundary conditions along the core. In perpendicular directions a boundary of pinned 4He atoms surrounding a cylinder of radius R provided the necessary boundary conditions for the simulated sample of solid 4He containing the partial dislocation at the center and the fault extending in the positive Y-direction. Depending on R, the number of actually simulated particles varied from 270 to 1700. Superfluid properties were detected by observing winding exchange cycles along the cylinder axis (X-axis). The core response to changes in μ has been studied by tracing the position of the maximum $Y(\mu)$ of the columnar superfluid density map in the (Y,Z) plane [24].

The core position exhibited strong continuous response to variations of μ. The slope $dY/d\mu$ was larger in bigger cells indicating that at the simulated temperature $T = 0.5\text{ K}$ it is controlled by the image forces provided by the boundary conditions. At fixed μ, the configuration-to-configuration fluctuations of the core position were as large as several unit cells. Remarkably, the exchange-cycle map does not show any visible modulation with the lattice period in the Y-direction (while the structure in the Z-direction is clearly seen), see Fig. 3 meaning that the core is loosing its crystalline structure locally and the Peierls potential in the climb direction is negligible under the simulated conditions. A systematic numeric study of the Peierls gap effects emerging at much lower temperatures and in larger system sizes remains a major computational challenge.

Crucial data can be obtained experimentally with the “UMass sandwich” setup, that potentially allows one to work at T of few tens of mK [23]. Since the quantity
to induce a DC flow. Such measurements near 400mK have been already done [26].

Summarizing, we present strong ab initio evidence and a coarse-grained analytic description of the climbing of an edge dislocation in solid 4He, assisted by superfluidity of its core. This phenomenon yields a natural microscopic interpretation for the effect of anomalous isochoric compressibility accompanying superflow in the experiment by Ray and Hallock. Theoretically, we argued that at low T, the superclimb, and, correspondingly, the effect of anomalous isochoric compressibility, must be suppressed due to a crossover to a smooth dislocation. Experimental observation of the suppression, feasible within the “UMass sandwich” setup, might yield strong support for the proposed scenario bridging “quantum metallurgy” and supersolidity. The superclimb effect can also lead to high mobility of small dislocation loops (with Burgers vectors along C-axis) made of one partial surrounding the core. This phenomenon yields a natural microscopic interpretation for the effect of anomalous isochoric compressibility (as a function of T), one can use the superfluid syringe experimental protocol, when both Vycor electrodes are being operated at one and the same chemical potential and are used exclusively to inject atoms into the solid, rather than

of interest is the isochoric compressibility (cf. [17]), and implications of their presence are yet to be investigated.

The authors are grateful to R. Hallock, D. Schmeltzer, and M. Troyer for stimulating discussions. We also thank P. Corboz for initial assistance. This work was supported by the National Science Foundation under Grants Nos. PHY-0653183 and PHY-0653135, CUNY grants and the Swiss National Science Foundation. Simulations were performed on Brutus (ETH Zurich), Typhon and Athena (CSI), and Masha (UMass) Beowulf clusters.

[1] A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969); D. J. Thouless Ann. Phys. 52, 403(1969); G. V. Chester, Phys. Rev. A 2, 256 (1970).
[2] E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004). A.S.C. Rittner and J.D. Reppy, Phys. Rev. Lett. 97, 165301 (2006); ibid 98, 175302 (2007); Y. Aoki, et al., Phys. Rev. Lett. 99, 015301 (2007); M. Kondo, et al., J. Low temp. Phys. 148, 695 (2007); A. Penzew, et al., J. Low temp. Phys. 148, 677 (2007).
[3] M.W. Meisel, Physica B 178, 121 (1992); D.S. Greywall, Phys. Rev. B 16, 1291 (1977); J. Day, and J. Beamish, Phys. Rev. Lett. 96, 105304 (2006); A.S.C. Rittner, et al., arXiv:0904.2640
[4] M.W. Ray and R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008).
[5] M.W. Ray and R.B. Hallock, Phys. Rev. B 79, 224302 (2009).
[6] S. Sasaki, et al., Science 313, 1098 (2006).
[7] S. Ballbar and F. Caupin, J. Phys.: Cond. Matter 20, 173201 (2008).
[8] S.I. Shevchenko, Sov. J. Low Temp. Phys. 13, 61 (1987).
[9] Note an analogy with incompressibility of the phase of a Mott insulator in externally imposed lattices.
[10] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).
[11] M. Boninsegni, et al., Phys. Rev. Lett. 99, 035301 (2007).
[12] D. Aleinikava, et al., arXiv:0812.0983
[13] A. Dorsey, talk at Workshop “Supersolid 2008”, Trieste, ITCP, August 18-22, 2008.
[14] A. Meyerovich, private communication.
[15] P.G. de Gennes, C.R. Physique 7, 561(2006).
[16] J.-P. Bouchaud and G. Biroli, C.R. Physique 9,1067 (2008).
[17] D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, 4th Edition, 2007.
[18] J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, 1968.
[19] A.M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Wiley, 2005.
[20] J. Day and J. Beamish, Nature 450, 853 (2007).
[21] A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956); ibid. 789 (1956).
[22] F. D. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[23] M. Boninsegni, et al., Phys. Rev. Lett. 96, 070601 (2006); Phys. Rev. E 74, 036701 (2006).
[24] The methods of addressing superfluid properties of dislocation core are essentially the same that were used previously for revealing the superfluidity of the screw dislocation along the C-axis in Ref. [11].
[25] R.B. Hallock, private communication.
[26] M.W. Ray and R.B. Hallock, arXiv:0908.2591