Abstract

Deep Neural Networks (DNNs) require very large amounts of computation, and many different algorithms have been proposed to implement their most expensive layers, each of which has a large number of variants with different trade-offs of parallelism, locality, memory footprint, and execution time. In addition, specific algorithms operate much more efficiently on specialized data layouts.

We state the problem of optimal primitive selection in the presence of data layout transformations, and show that it is NP-hard by demonstrating an embedding in the Partitioned Boolean Quadratic Assignment problem (PBQP). We propose an analytic solution via a PBQP solver, and evaluate our approach experimentally by optimizing several popular DNNs using a library of more than 70 DNN primitives, on an embedded platform and a general purpose platform. We show experimentally that significant gains are possible versus the state of the art vendor libraries by using a principled analytic solution to the problem of primitive selection in the presence of data layout transformations.

CCS Concepts • Software and its engineering → Software performance; • Compilers; • Computing methodologies → Machine learning; Neural networks; Computer vision;

Keywords Deep Neural Networks, Primitive Selection

1 Motivation

Deep neural networks are among the most successful techniques for processing image, video, sound and other data arising from real-world sensors. DNNs require very large amounts of computation which challenge the resource of all but the most powerful machines.

However, DNNs are most useful when deployed in real-world embedded devices, which navigate and interact with their surroundings. In these embedded environments, limits on battery capacity, memory and processing power are significant constraints.

DNNs consist of a directed graph of “layers” that receive raw input data, and output a transformation or classification of the data. Several different types of layers are used to implement DNNs, such as activation layers, pooling layers, convolution layers, and fully-connected layers. In the best-known and best-performing DNNs, a great majority of the execution time is spent in the convolution layers.

There are many ways that each layer can be implemented. For example, a common approach to implementing convolution is to restructure the input data and call a matrix multiplication routine [8]. Other researchers have used carefully hand-tuned C or assembly routines or specialized domain-specific algorithms (such as Winograd or FFT convolution) with low asymptotic time complexity.

Given the large space of approaches, it can be difficult to guess which primitive routine might be best used to instantiate any given layer from a DNN. With no further information, a simple solution is to simply pick a single primitive for all layers. However, we show that no single primitive yields best performance for all layers.

On the contrary, some algorithms perform well across a range of inputs, whereas others can be quite inefficient on average, but perform extremely well in particular cases. An additional complication is that input data layouts can have a large impact on the performance of particular primitives.

However, the outputs of one layer become the inputs of others. Thus data layout decisions cannot be made in isolation, because the selection of the output layout of a producer layer determines the input layouts of all connected consumer layers.
Contributions: In this paper we address the problem of per-layer primitive selection for deep neural networks to optimize a global goal function for the whole network. Specifically, we make the following contributions:

- We demonstrate empirically that different DNN primitives can provide very different levels of performance for the same layer.
- We formulate the selection of implementations for convolutional layers in the presence of data layout transformations as a Partitioned Boolean Quadratic Programming (PBQP) problem.
- We demonstrate the effectiveness of our technique using a large library of more than 70 DNN primitives operating on a variety of data layouts with an off-the-shelf PBQP solver.
- We demonstrate significant speedups from our approach on desktop and embedded CPUs on several popular deep neural networks.

2 Background

A deep neural network (DNN) consists of a directed graph of layers that receive, process, and output data. Input data enters the graph through an input layer. Starting from the input layer(s), each layer of the graph is executed in topological order. Data flows between layers along directed edges, which determine the order of execution, similar to data dependencies in a basic block.

The directed graph of layers may be cyclic or acyclic. One well-known class of acyclic feedforward DNNs are Convolutional Neural Networks (CNNs). CNNs normally accept a large matrix or tensor input, such as an RGB image. The input layer of the CNN processes the input tensor, and produces one or more output tensors on its output edge(s). These outputs trigger the execution of subsequent layers.

The output of the CNN is commonly a classification, that is, a weighted distribution of categories — such as dogs or helicopters — that the CNN predicts for the input. Once training is complete, a CNN is stateless; the output is purely a function of the most recent input and the trained, fixed internal weights.

The layers within a DNN consist of standard mathematical operators such as convolution, activation, pooling, and full-connected layers. These standard operators can be used to build a very large variety of deep learning models. A DNN can be implemented using a library of primitive routines, where each primitive implements one of each of the types of layer in the DNN. A single input to a layer is often a large four dimensional tensor. Therefore the amount of computation performed by each primitive is typically large.

2.1 Convolution Layers

The most computationally-intensive layer in many DNNs is the convolution layer. The convolution layer is based on the idea of convolving a 2D input of dimensions $H \times W$ with a convolution kernel of $k \times k$. However, as shown in Figure 1, in DNN convolution both the input and kernels have C separate channels. Rather than convolving with just a single kernel, the C-channel input is convolved with M separate C-channel kernels. Thus, DNN convolution operates on a 3D input tensor, a 4D tensor of kernels, and produces a 3D tensor as output. The total number of operations in a simple (non-strided) DNN convolution is $O(H \times W \times C \times k^2 \times M)$.

![Figure 1. DNN convolution of a 3D input tensor composed of C input feature maps, each of size $H \times W$, with a 4D kernel composed of M multichannel filters, each with C channels and a $k \times k$ kernel, resulting in M output feature maps, each of size $H \times W$.](image)

2.2 Data Layouts

Each primitive takes inputs in a given data layout, performs the operations of one or more layers, and produces output in a given layout. Some DNN libraries produce all inputs and outputs in a canonical layout, such as the NCHW data layout used by Caffe [8]. However, forcing each layer to use the same layout removes the opportunity to customize layouts to particular operations (such as convolution with large K but small C) or for cross-layer optimizations that exploit specialized layouts.

A simple way to find the cost of implementing any layer with any primitive is to execute the primitive using sample inputs for the layer. The cost of execution of most DNN layers depends primarily on the dimensions of the input rather than on the actual input values. Since the execution time tends to remain stable regardless of the particular input values, it is possible to measure with some consistency the execution time of a given primitive implementing a given layer. However, given a set of execution times for each of the layers in a network with different primitives, it is not obvious which primitives to select to implement each layer to maximize overall performance.

In particular, when input data is converted to a special representation, such as a frequency domain representation, it is often much more efficient to keep the data in that representation for as long as possible, rather than to convert back and forth between data representations for each layer in the network.

3 Primitive Selection

In this section we consider the problem of selecting a primitive to implement each layer to yield the lowest cost instantiation of a given DNN. By lowest cost we mean that the sum of the execution times of each of the layers of the DNN is minimized. This problem may seem no more than selecting the fastest implementation of each layer, but in fact it is much more difficult.

The parameters of a convolutional layer on which the runtime chiefly depends are informally well understood — the work to be done grows with the size and number of input feature maps, and the size and number of filters, but decreases as the stride of the convolution increases. We can model a convolutional scenario formally as a 6-tuple \(\{C, H, W, \delta, K, M\} \), respectively, the number of input feature maps, the height of an input feature map, the width of an input feature map, the stride of the convolution, the radix of the convolutional filters, and the number of output feature maps.

Note that our formulation does not consider minibatching. Minibatching can trivially be incorporated by adding a seventh parameter to encode the batch size. However, our application context is highly latency sensitive, so our formulation, in practice, considers only a minibatch size of 1.

Input data is provided to a convolutional layer in a 3-dimensional tensor of size \(C \times H \times W \). In the abstract, any layout (i.e. permutation of the order of these dimensions) of the tensor is valid. However, each primitive operator deals with inputs and outputs in a specific data layout.

We model primitive operators with a 3-tuple \(\{L_{in}, P, L_{out}\} \), respectively, the input layout, primitive identifier, and output layout, where the layouts are a permutation of \(\{C, H, W\} \). A directed edge from a layer instantiated with primitive \(A \) to another layer instantiated with primitive \(B \) is legal iff \(L_{out}(A) = L_{in}(B) \). Thus a primitive assignment also implies a specific layout assignment to the input and output edges of a DNN layer.

Two incompatible primitives cannot be connected, regardless of the optimality of such an arrangement. For example, a particular primitive operator that performs convolution might operate on tensors of 16-bit fixed point data. Another might operate on 32-bit floating point. If the output data of one primitive were provided as input to the other, garbage would result.

We combine different incompatible primitives using a legalization phase. The legalization phase inserts additional data layout conversion layers to bisect illegal edges, and legalize an assignment. The legalizer can then select one or more data layout transformation primitives to implement the conversion layers.

A problem with selecting data layout transformation primitives is that the number of supported data layouts may be large. There may not be a separate conversion primitive connecting every pair of data layouts. This may result in a chain of data layout transformations being required to convert from one layout to another.

An additional complication that arises from inserting data layout transformations is that the transformations themselves take time to execute. The legalization pass may allow two incompatible primitives to work together, but the cost of the data layout transformations may be so high that the selection is no longer optimal. Once the cost of data layout transformations is included, the optimal selection might instead be another selection with fewer or cheaper data layout conversions. If the cost of the data layouts is considered only after selection, the solution may be sub-optimal.

Clearly, the problem is more complex than simply picking the fastest legal primitive for each DNN layer. In fact, as we show in the next section, it is NP-hard to find the least-cost assignment of primitives to layers in the presence of data layout transformations.

3.1 Computing Costs

We provide a two-stage solution to the primitive selection problem. In the first stage we compute the cost of converting between each of the supported data layouts. Note that the set of data transformation routines between the various pairs of data layouts is not normally complete. Instead we have a limited set of direct data layout transformation routines between various pairs of data layouts.

Where there is no direct routine to transform from data layout \(A \) to data layout \(B \), it may be possible to build a chain of transformations between the layouts. For example, if there exist transformations \(A \rightarrow D \), \(D \rightarrow X \) and \(X \rightarrow B \), then it is possible to convert from layout \(A \) to \(B \) via that chain \(A \rightarrow D \rightarrow X \rightarrow B \).

Considering the set of data layouts supported by a DNN library as nodes in a graph, we can construct a data-layout transformation (DT) graph. The direct data layout transformation routines can be considered directed edges of the DT graph. If there is a directed path between any pair of nodes in the graph, then a chain of data layout transformations can be constructed to convert from one layout to the other. The full set of possible direct and indirect data layout transformations is then given by the transitive closure of the DT graph.

However, the transitive closure tells us only which pairs of data layouts can be linked by a chain of data layout transformations. We also need to know the cost of every DT graph path. Thus, we must measure the execution time of the data layout transformation routines on tensors of the size that appear at their inputs in the DNN, or else provide a heuristic cost for paths.

In the current paper we measure the execution time of transformations ahead of time, but simple heuristics might be almost as effective.

To find the least-cost chain of data layout transformations between a pair of data layouts we need to find the shortest
path between the corresponding pair of DT graph nodes. Rather than computing the shortest path between each pair of nodes each time we need it, we instead compute the all-pairs shortest path for the DT graph ahead of time. Where no path exists between a pair of nodes, the cost of the data layout transformation is infinite. This gives us the (transitive) data layout transformation costs for the transfer of data between layers of the original DNN graph.

In addition to data layout transformation costs, we also compute the cost of implementing each of the primitive functions that implement layers of the DNN graph. Each layer might be implemented by one of many different primitives. For example, in our DNN library, we provide implementations of six major families of convolution algorithm. Each algorithm has many variants with distinct performance characteristics, resulting in over 70 different primitive routines that implement DNN convolution.

To estimate the cost of a specific assignment of a primitive to a DNN layer, we profile the execution time of the primitive operating on tensors of the size used in the layer. Note that the dimensions of all inputs to DNN layers are known statically, and the control flow in most layers is sensitive only to the size of inputs, not the specific values of the input data. Therefore, statically-measured execution times on random input of the appropriate size give a very good estimate of the actual execution time.

3.2 The Optimization Problem

Given a DNN graph G, we compute the instance cost (execution time) for all convolutional scenarios $S \in G$ under every available primitive $P_0...P_n$ to form the product space $S \times P$. Since each edge cost is determined by the pair of assignments of primitives to nodes in each of the nodes linked by the edge, we must then compute all paths D in the DT graph implied by each assignment, I, of the nodes of G, drawn from points in this space, and compute the instance cost (execution time) for these also. The task before us is then to find the point in the product space $S \times P \times D$ of instantiations of G which minimizes the total cost.

 Constructed in this way, we can map the problem of layer selection in the presence of data layout transformations to a well-known existing optimization problem — PBQP.

3.3 Partitioned Boolean Quadratic Programming

The partitioned Boolean quadratic programming (PBQP) problem is an assignment problem that can be visualized as a graph. For each node there are several possible assignments, each with a known cost. In addition, there is a second set of costs associated with edges in the graph. The cost of edges is a table indexed by the pair of assignments of the two nodes linked by the edge. PBQP has been used to model a number of problems in compiler optimization such as register allocation for architectures with irregular instruction sets [14], and instruction selection on DAGs [6].

Given a set of layers and a set of primitives, we attempt to assign the layers to primitives to minimize the total cost. The cost of assigning a layer to a primitive is the execution time of the layer implemented with that primitive. Figure 2a shows a simple graph representation of a PBQP instance.

![Simple PBQP instance](image)

Figure 2. Example of simple linear PBQP problem. Optimal assignments are indicated by the letter left of the node.

Each layer can be implemented by any one of three different primitives: A, B or C. Each of the three primitives uses a different algorithm, and therefore has a different cost to implement the layer.

Given the cost of implementing the nodes with each of the three primitives in Figure 2a, the optimal primitive selection for each node is clear. The lowest cost selection for each of the three layers is B, C and B respectively.

In addition to the cost table for each individual layer, the PBQP formulation allows a second cost to be specified for edges. In our simple example, an additional cost matrix can be associated with each edge in the graph. The cost matrix for an edge represents the costs associated with all pairs of selections for the two nodes connected by the edge.

Figure 2b shows a cost table for the edge that transitions from conv1 and conv2. For example, if primitive A is selected for conv1 and A is also selected for conv2, then the edge cost of transitioning between conv1 and conv2 is zero. This zero cost is the result of using the same data layout for both conv1 and conv2. In contrast, in this example we assume that primitives A, B and C operate on different data layouts, and there is therefore a data layout transformation cost which arises when we transition between different primitives in connected layers.

In Figure 2b primitive B has the lowest cost for layer conv1. However, when we consider data layout transformation costs, primitive B is no longer the optimal selection for layer conv1. For layer conv2, primitive C is so much faster than the other two choices. However, the cost of transitioning from B at layer conv1 and C at layer conv2 is so high that B is not
the optimal selection for layer conv1. The edge cost is large because the two primitives use different data layouts, and therefore a data layout transformation must be inserted between the two primitives. The additional cost that arises from pairs of assignment choices on the graph edges makes PBQP different from other similar problems, such as the quadratic assignment problem [10].

Figure 3. Inception Module

In the simple example in Figure 2 it is feasible to solve the selection problem relatively simply even in the presence of edge costs. This is partly because the example is small, and partly because the graph in the example is purely linear. However, data layout transformation costs on graph edges are much more problematic in DAG-shaped DNNs. Figure 3 shows an example of a DAG sub-graph from the GoogleNet DNN [16].

Where a layer has multiple direct successors and/or predecessors, the same data layout may not be optimal for all. Choosing one layout over another may limit the choice of primitives that can be used in successor/predecessor layers, or may require the insertion of expensive data layout transformations. PBQP allows us to model these complicated DAG costs within an abstract optimization problem, and to find solutions with an off-the-shelf PBQP solver.

4 DNN Convolution Algorithms

A wide variety of convolution algorithms have been proposed over many years, each with their own strengths and weaknesses [4]. Researchers in signal processing often distinguish between direct and indirect convolution methods.

Direct methods compute the convolution as a simple sum of products, as is found in a standard textbook definition of convolution. On the other hand so-called fast convolution algorithms reduce the computational complexity by transforming the input to another form before performing the convolution. In this section we describe several different classes of convolution algorithms that are commonly used to implement DNNs.

• The direct-loop family of convolution algorithms perform multi-channel multi-kernel convolution using a simple six-deep loop nest. There are many variants of this loop nest with different reorderings, tilings, and schedules to improve execution time, vectorization, and spatial and temporal locality of data access.

The sum-of-single-channels algorithm is a member of the direct-loop family of methods. It uses the loop ordering \(M \times C \times H \times W \times K \times K \).

• The im2 family of convolution algorithms are variants of the well-known im2col approach [8]. These convolutions first construct a Toeplitz matrix from the input image, and convolve this with the kernel using a single call to the BLAS GEMM routine.

• The kn2 family of low-memory GEMM-based convolution algorithms are presented by Vasudevan et al. [3, 18]. This family of approaches does not construct a Toeplitz matrix, and instead computes convolution as the sum of several matrix multiplications. We use variants of the kn2 family that compute the sum of GEMMs as an accumulation and achieve good execution times with low additional memory.

• The Winograd family of methods use the Winograd algorithm for convolution with a theoretically optimal number of multiplications [4]. Unlike the direct-loop, im2 and kn2 approaches, all of which perform the same number of floating point operations, winograd is a “fast” algorithm by the signal processing definition, which greatly reduces the number of operations. We implemented the Winograd algorithm for scenarios with \(K = 3 \) and \(K = 5 \).

• The fft family of methods perform FFT convolution via the convolution theorem, by first computing the Fourier transform of the input image and the kernel, applying a pointwise multiplication, and then computing the inverse Fourier transform of the resulting matrix to produce the output. Our fft implementations compute 2D convolution as a sum of 1D FFT convolutions, which requires less space than 2D FFT convolution at the cost of more operations.

Table 1. Strengths and weaknesses of different convolution algorithms commonly used in DNN implementations

Algorithm	Time	Memory	Strided	Bad cases
direct loop	- -	++	++	Non-strided
im2	+	-	++	Large image
kn2	+	+	-	Few channels
Winograd	++	-	-	Unpredictable
FFT	++	-	+	Small kernel

Table 1 gives a brief overview of some of the strengths and weaknesses of these major approaches. In principle it should be possible to optimize the simple loop nest to achieve high performance, but in practice such loop nests are more often very slow. The Winograd algorithm can be very fast for \(K = 3 \) and \(K = 5 \) convolutions, but equally there are cases where the im2 and kn2 approaches are faster. We have found it very difficult to predict the cases where Winograd will be faster without measuring the performance of the layers. The kn2 approach is fast and requires little memory, but it cannot
be used to efficiently implement strided convolutions. On the other hand, our FFT algorithm is only sometimes faster than other approaches, but in those rare cases it can give significant speedups.

Real-World Solutions: To demonstrate our formulation in practice, Figure 4 shows two primitive selections made by the formulation. Figure 4 shows the convolution layers of AlexNet [11]. The figure shows the selection of primitives that our approach makes on ARM Cortex A-57 and Intel Core i5-4570 processors.

![Figure 4. PBQP selections for multithreaded execution of AlexNet on ARM Cortex A-57 and Intel Core i5-4570.](image)

The primitive selections on both processors are interesting in both their similarities and differences. Recall that we select from a library of around 70 primitive functions which implement DNN convolution, and therefore the range of possible selections is large.

The conv1 layer of AlexNet consists of a \(K = 11, \delta = 4 \) convolution. The layers selected for both ARM and Intel processors are im2 layers, with a row-oriented layout. The only difference between the two is that the layer selected for ARM passes the kernel matrix to the GEMM matrix multiplication call as a transposed matrix. There is no good way to select between these very similar primitives except by profiling the code to see which is faster on a particular target architecture.

The remaining layer selections are all instances of the Winograd convolution algorithm for both target architectures. However, there is a striking difference in the selections for the ARM and Intel processors. The selection for the Intel processor consists entirely of primitives that implement two-dimensional Winograd convolution. This approach requires significant memory, but minimizes the number of executed operations.

In contrast, a majority of the Winograd selections for the ARM processor are one-dimensional Winograd convolutions. One dimensional Winograd convolutions require more floating point operations than their 2D counterparts, because the 2D operation must be constructed from the sum of a number of 1D Winograd convolutions. However, the 1D algorithm requires less memory. Given that the ARM processor has much smaller caches than the Intel processor, it seems that the lower memory requirements of 1D Winograd makes it faster on the ARM processor. As a result, of the four Winograd primitives that are selected to implement convolution layers on the ARM processor, three are 1D Winograd convolution algorithms.

Note also that the optimizer selects the 8-way vectorized implementations of Winograd on the Intel processor, which has Intel’s 8-way FP32 AVX2 vector extensions, while on the ARM processor, which has ARM’s 4-way FP32 NEON vector extensions, it also selects the appropriate architectural variant.

A strength of our approach is that we can easily capture these fine architectural differences with layerwise profiling, while keeping the optimizer free from platform-specific special cases. Layerwise profiling need only be run once per hardware platform per DNN model. The resulting cost tables are tiny compared to the weight data required for most DNN models, making it feasible to produce these cost tables before deployment, and ship them with the trained model to maximise inference performance in situ.

5 Experimental Evaluation

To validate our primitive selection approach, we performed whole-network benchmarking with several popular CNN architectures on multiple hardware platforms. We also ran these CNN architectures using some state-of-the-art software frameworks, to demonstrate the benefit of our global approach to optimization of DNN inference. This section presents the results of our evaluation, with discussion.

5.1 Experimental Setup

We evaluated our approach on an Intel Haswell CPU, specifically the Intel Core i5-4570, and on an ARM Cortex A-57 CPU. The Cortex A-57 is used in NVIDIA’s Tegra X1 platform for embedded and automotive development.

On the ARM platform, we used the popular BVLC Caffe framework [9], which is accelerated by the high-performance OpenBLAS library under the hood. On the Intel platform, there is a vendor library available with an optimizing code generator which targets DNN inference: MKL-DNN [2]. The BVLC Caffe framework also runs on this platform.

We used Caffe version 1.0 on all platforms, and on the Intel platform, we used MKL-DNN version 0.10. We used OpenBLAS release 0.2.20 on all platforms. Both Caffe and our own primitive library use OpenBLAS internally to perform the matrix multiplications at the heart of DNN convolution, so using the same underlying OpenBLAS library ensures we are competing on an equal footing.

We kept all external software dependencies in sync between each platform. The C++ compiler we used was GCC...
stable release 7.2. All benchmark executables were compiled using \texttt{-march=native -std=c++14 -O3}. The NVIDIA Tegra X1 board we used for the Cortex-A57 benchmarking was running NVIDIA JetPack 3.1.

5.2 Methodology

For performance evaluation of our approach, we used three popular network architectures: AlexNet [11], VGG [15], and GoogleNet [16].

Each of these network architectures has a public model corresponding to the publication made available by the authors, or via the BVLC Caffe Model Zoo, a public repository of trained DNN architectures. We used these public versions of the network architectures for our experimentation.

Note that Caffe models other than VGG-D and VGG-E have not been released by the authors [15], so we cannot present Caffe results for these models. However, we present results obtained from a faithful reconstruction of the models by hand, exactly following [15].

Starting from the published network models, we extracted all convolutional scenarios in the graph, performed the profiling to gather cost data, and constructed the PBQP query for the minimum cost instantiation. We mapped the solution to code with a simple code generator which emitted calls to primitive operations in our library.

Note that we modelled\textbf{ convolutional layers only} in the DNN graph for optimization. All other layers were represented in our formulation as dummy nodes, accepting any input and output layouts, and having zero cost. Since convolution accounts for a very large proportion of the execution time of a DNN, we hoped that this simplifying assumption would reduce the size of our optimization queries, while not damaging the quality of the solution.

We used the same code generator with the example code which ships with Intel’s MKL-DNN library to obtain executable instances of the models using MKL-DNN\footnote{Intel’s state-of-the-art MKL-DNN framework [2] contains an optimizing JIT compiler for DNN convolution. The framework natively targets Intel vector extensions, and underpins projects such as Intel Caffe [1].}. For Caffe, we executed published network models directly using caffe\footnote{Published algorithms for Winograd convolution, im2 and kn2 family convolutions, and direct convolutions tend to use one of three main data layouts for inputs and outputs: $C \times H \times W$, $H \times C \times W$, and $H \times W \times C$. The latter two layouts correspond to transpositions or blockings of the simple data layout used by direct convolutions ($C \times H \times W$). Note that the \textit{same} data layout is not always used for both input and output by a primitive operation. All layers and all primitives used to instantiate them in every network in our benchmarking operate on 32-bit single-precision floating point data.}
time. Every whole-network benchmark was run for five iterations, and the mean execution time for one forward pass was used to calculate speedups.

We performed separate single-threaded and multi-threaded cost modelling, and solved and built independently two versions of every benchmark program. The multi-threaded benchmarks were run using all cores available on the machine. Both of the test systems had four CPU cores. On our graphs, all bars represent a speedup over a common baseline. For this baseline, all convolutions in the network are performed using the textbook sum-of-single-channels algorithm, with single-threaded execution.

5.3 Data Layouts Used

For performance evaluation of our approach, we used three popular network architectures: AlexNet [11], VGG [15], and GoogleNet [16].

Each of these network architectures has a public model corresponding to the publication made available by the authors, or via the BVLC Caffe Model Zoo, a public repository of trained DNN architectures. We used these public versions of the network architectures for our experimentation.

Note that Caffe models other than VGG-D and VGG-E have not been released by the authors [15], so we cannot present Caffe results for these models. However, we present results obtained from a faithful reconstruction of the models by hand, exactly following [15].

Starting from the published network models, we extracted all convolutional scenarios in the graph, performed the profiling to gather cost data, and constructed the PBQP query for the minimum cost instantiation. We mapped the solution to code with a simple code generator which emitted calls to primitive operations in our library.

Note that we modelled\textbf{ convolutional layers only} in the DNN graph for optimization. All other layers were represented in our formulation as dummy nodes, accepting any input and output layouts, and having zero cost. Since convolution accounts for a very large proportion of the execution time of a DNN, we hoped that this simplifying assumption would reduce the size of our optimization queries, while not damaging the quality of the solution.

We used the same code generator with the example code which ships with Intel’s MKL-DNN library to obtain executable instances of the models using MKL-DNN\footnote{Intel’s state-of-the-art MKL-DNN framework [2] contains an optimizing JIT compiler for DNN convolution. The framework natively targets Intel vector extensions, and underpins projects such as Intel Caffe [1].}. For Caffe, we executed published network models directly using caffe\footnote{Published algorithms for Winograd convolution, im2 and kn2 family convolutions, and direct convolutions tend to use one of three main data layouts for inputs and outputs: $C \times H \times W$, $H \times C \times W$, and $H \times W \times C$. The latter two layouts correspond to transpositions or blockings of the simple data layout used by direct convolutions ($C \times H \times W$). Note that the \textit{same} data layout is not always used for both input and output by a primitive operation. All layers and all primitives used to instantiate them in every network in our benchmarking operate on 32-bit single-precision floating point data.}
time. Every whole-network benchmark was run for five iterations, and the mean execution time for one forward pass was used to calculate speedups.

We performed separate single-threaded and multi-threaded cost modelling, and solved and built independently two versions of every benchmark program. The multi-threaded benchmarks were run using all cores available on the machine. Both of the test systems had four CPU cores. On our graphs, all bars represent a speedup over a common baseline. For this baseline, all convolutions in the network are performed using the textbook sum-of-single-channels algorithm, with single-threaded execution.

5.4 Optimization Overheads

We used the PBQP solver of Scholz et al. [7] to solve our optimization queries. Solving the PBQP optimization query took less than one second for each of the networks we experimented with, using our Intel experimental machine. In each case, the solver reported that the optimal solution was found.

5.5 Interpretation of Results

Our presentation of results from whole-network benchmarking labels results with the name of the family of convolution algorithms which was used to produce the result. For each family of algorithms, we construct the test network by picking the fastest variant of that family to replace the sum-of-single-channels algorithm for each individual convolution in the network, if the replacement is, in fact, faster than sum-of-single-channels for that convolutional scenario in benchmarking. From this we obtain bars for each family of convolution algorithms from Section 4: \textit{direct, im2, kn2, winograd, fft}. We also tested the simple strategy outlined in Section 2.2 which eliminates all data layout transformations by choosing a canonical layout for tensors, and keeping all data in this format. This is the \textit{local optimal} bar on the graphs. For our experiments, we used the default Caffe layout, $C \times H \times W$, as the canonical layout.

Absolute timings for the subset of networks which run on both experimental architectures are presented in Tables 2 and 3.

5.6 Experimental Results on Core i5-4570

Figures 5 and 6 present the results of our whole-network evaluation on the Intel Haswell platform. The solution found by the PBQP formulation for single threaded execution of a DNN model is competitive with the optimized vendor library, even outperforming it in some cases, such as on the VGG-B, VGG-C, and VGG-E DNN models. However, it is in multithreaded execution where the PBQP approach really shines. The PBQP solver finds excellent solutions for all DNN models, outperforming the vendor library by as much as a factor of 2x in the case of the VGG-E model (Figure 6).
5.7 Experimental Results on Cortex-A57

Figure 7 presents the results of our whole-network evaluation on the ARM Cortex-A57 platform. Note that the VGG-B, VGG-C, and VGG-E DNN models are too large to fit on this platform. However, we were able to reliably execute the AlexNet and GoogleNet DNN models.

Although less pronounced than on Intel Haswell, we still see a very significant speedup (up to 7x) from our approach versus Caffe on the Cortex-A57 (Figure 7b).

5.8 Experimental Trends

Our results strongly support the position that there is no one convolution algorithm which excels in every scenario. For example, Winograd convolution is supremely effective in VGG family DNN models, because they are entirely composed of $K = 3$ convolution layers. However, Winograd by itself is among the slowest approaches for the AlexNet and GoogleNet models (Figure 6).

We also see an experimental validation of the importance of modelling the cost of data layout transformations. Recall that our strategy for non-PBQP bars is to replace the SUM2D algorithm only if the replacement has a smaller execution time. Figure 7a shows that for GoogleNet, this strategy leads to a net slowdown for the family of direct loop-based convolutions — even though at all points the faster loop was chosen, the legalizing data layout transformations are so expensive that the baseline SUM2D instantiation of the network is faster.

The effect is even larger considering the case of Winograd convolution for AlexNet on Intel Haswell (Figure 6). Recall from Figure 4 that the PBQP optimal selection on this platform uses a Winograd variant for 4 of the 5 convolutions in AlexNet. Yet simply selecting the fastest Winograd variant ignoring data layout transformation costs yields an instantiation that performs only marginally better than the baseline SUM2D network instantiation.
Optimal DNN Primitive Selection with PBQP

Whole Network Benchmarking (aarch64)

(a) Single-Threaded: Comparison of approaches with PBQP selection on ARM Cortex-A57

(b) Multi-Threaded: Comparison of approaches with PBQP selection on ARM Cortex-A57

Figure 7. Whole-network benchmarking results on ARM Cortex-A57

Table 2. Single inference time on Intel Core i5-4570 (ms) with (S)ingle-threaded and (M)ulti-threaded execution.

Network	SUM2D	L.OPT	PBQP	CAFFE
(S) AlexNet	711.75	231.75	100	419.565
(S) GoogleNet	1401	465.25	249	1267.07
(M) AlexNet	712.25	186	44.25	286.518
(M) GoogleNet	1400.25	261.5	123.5	919.196

Table 3. Single inference time on ARM Cortex-A57 (ms) with (S)ingle-threaded and (M)ulti-threaded execution.

Network	SUM2D	L.OPT	PBQP	CAFFE
(S) AlexNet	2369.5	744.25	461	2341.09
(S) GoogleNet	4547.5	1695.25	1025	5782.4
(M) AlexNet	2432.5	639.25	294	1342.62
(M) GoogleNet	4509.75	919.25	547.5	3707.91

Discussion

Our experimental results demonstrate that our PBQP formulation is extremely effective at selecting the optimal primitives to implement a DNN. In this section we briefly consider some alternative strategies to the same problem, and discuss their strengths and weaknesses as compared with our approach.

As we have shown in Section 3 the primitive selection problem can be transformed into the NP-hard PBQP problem. However, it is worth noting that the primitive selection problem is NP-hard only in the presence of multiple data layouts for tensors in the network. If a fixed canonical data layout is selected for all layers, the problem becomes much easier.

If the NP-hardness of primitive selection can be eliminated by keeping all data in a canonical layout, then it would not be easier to simply use canonical data types rather than solve a difficult selection problem? Our experiments show that this approach can yield high performance in some situations (see VGG-C in Figure 5), but it is always outperformed by the optimal selection. In some cases, the gap is very wide (see AlexNet in Figure 5).

Our experimental data shows that even simple variations on input data layout can have a significant impact on data locality, and therefore upon the execution time of DNN primitives. By solving the primitive selection problem using our PBQP formulation, we can find an optimal solution that takes data layout transformation costs into account.

Heuristics: A similar question arises around other heuristics that might be used for primitive selection. In other words, is our PBQP formulation a more sophisticated solution than is needed to solve the primitive selection problems in our experiments?

There are simpler heuristics (some of which we employ in benchmarking, such as locally optimal method selection) that still provide good results for the experiments in Section 5.

However, the problem with heuristic solutions is not that they perform poorly on the experimental data that was used during their development. Simple survivorship bias guarantees that heuristics that do poorly on test data are quickly dropped by those developing them.

The problem with heuristics is that one is never sure how they will do on unseen data that arises in practice. We therefore argue that it is worthwhile using a more sophisticated approach to the problem.

Related Work

PBQP is an extension of the quadratic assignment problem (QAP) [10], one of the fundamental combinatorial optimization problems. QAP is NP-hard, as is PBQP, but heuristics
have been identified that can often solve or find approximate solutions for practical instances of PBQP quickly [6]. PBQP has been used to solve several problems in compiler optimization such as register allocation for architectures with irregular instruction sets [14], and code selection on SSA graphs [6].

Latte [17] is a domain-specific language, compiler and runtime for specifying DNNs. Latte provides abstractions such as neurons, ensembles and connections that allow a programmer to specify the elements of a DNN. A sophisticated compiler generates optimized code, and pattern-matches for code regions that can be replaced by calls to optimized libraries such as GEMM. An advantage of Latte is that it can automatically fuse successive layers such as convolution and activation. In contrast, we use a library of highly-optimized routines, and focus on selecting the best among them rather than attempting to generate the best code from a high-level specification.

Moskewicz et al. [12] proposed Boda, a program generator for deep neural networks. Boda generates large numbers of variants of loop nests to implement DNN layers, and uses auto-tuning to select from among them. Our approach has two significant advantages when compared with auto-tuning. First, our approach requires much less time than auto-tuning. Our profiling step requires that we time each of our methods for each layer in the DNN, whereas auto-tuning typically requires large numbers of measurements in context. Second, insofar as the profiled times of each routine are accurate, and the PBQP instance can be solved in reasonable time, our approach will provide an optimal selection of layers. A viable future approach might be to use code generators and auto-tuners to generate the code and data layouts for given layers and use our approach to combine these code segments to implement an entire DNN.

GPU vendors and research groups have developed libraries of optimized routines to implement each layer of DNNs. Perhaps the fastest library for NVIDIA GPUs is cuDNN [13]. The cuDNN library provides several implementations of DNN convolution.

A function is provided to query the library at runtime to heuristically select the method to implement a given layer given the input parameters. In contrast, we solve for the global optimal layer selection, taking into account data layout transformation costs. We also measure profile layer execution times rather than relying on estimated values. The cuDNN approach is equivalent to applying our local optimal heuristic without fixing the data layout.

TensorFlow XLA is a domain-specific compiler for linear algebra computations which has been applied to DNNs [5]. Compared to simply invoking primitive functions from a high-level deep learning framework, XLA allows a stand-alone C/C++ code base to be generated to implement a DNN. XLA can eliminate intermediate storage buffers and fuse adjacent layers.

The XLA ahead-of-time compiler is arguably similar to our own program generation framework which uses C++ templates to avoid many of the costs of cross-layer transitions and to give the C++ compiler the best opportunity for code optimization. Our layer selection approach is well-suited to systems such as XLA that generate DNN code ahead of time.

8 Conclusion & Future Work

Using a PBQP solver in conjunction with per-layer profiling to create a cost model is an extremely effective tactic for DNN implementation, even under simplifying assumptions where only convolutional layers are modelled in the PBQP formulation. We have demonstrated significant gains in DNN inference performance on both a high performance and embedded processors.

Future Work: Modelling our problem as an instance of PBQP gives us a great deal of extensibility. For example, given some convolution routines which leverage sparsity in the kernel (for example routines based on a sparse GEMM), our approach can be used to decide whether a dense or a sparse implementation (and moreover, which sparse implementation) will be faster for any given convolutional layer, with the addition of a kernel sparsity ratio parameter to the formulation.

Our approach can enable the construction of DNNs using convolution routines from different libraries, if at least one edge in the DT graph connects a convolution from library A to one from library B. Investigation of the performance of these ensembles is an exciting prospect for future work.

Our formulation, as mentioned in Section 3, does not currently consider minibatch parallelism, but this can be encoded with another integer parameter to the model (the minibatch size). This would enable our optimization approach to select either parallel GEMM or minibatch parallelism on a per-layer basis.

A Artifact Description

A.1 Abstract

Our artifacts are delivered as a public Git repository, with a bundled Dockerfile for our build environment.

A.2 Description

A.2.1 Check-list (artifact meta information)

- Run-time environment: Docker, GNU/Linux
- Hardware: x86_64 or aarch64 CPU
- Output: measurements as .DAT files, graphs as PDF/EPS files
- Experiment workflow: make target
- Publicly available?: yes

A.2.2 How Delivered

Our library has been released as open-source software under the BSD3 license.
The library and benchmark suite are available in public Git repositories on Bitbucket; the library is available here https://bitbucket.org/STG-TCD/trinnity, and the benchmarks are available here https://bitbucket.org/STG-TCD/trinnity-benchmarks.

A.2.3 Hardware Dependencies

There are no hardware dependencies, but to reproduce our results exactly, you will need to use the same platforms as were used in the evaluation in the paper.

- Intel Core i5-4570 (Haswell) with min. 8GB RAM
- NVIDIA Jetson TX1 (ARM Cortex A-57) running JetPack 3.0

A.2.4 Software Dependencies - Docker

Our build environment is packaged using Docker. Please make sure docker is installed, and the docker service is started.

A.3 Installation

Clone the benchmarks using git from the bitbucket repository at https://bitbucket.org/STG-TCD/cgo-2018-ae.

Change to the trinnity-benchmarks directory and say docker build -t trinnity-benchmarks -f Dockerfile. It will take some time to construct the build environment, but no user interaction is necessary.

A.4 Experimental Workflow

Say docker run -i -t trinnity-benchmarks /bin/bash to start a shell in our build environment.

If you are running the benchmarking on an x86_64 machine, you will need to disable "Intel SpeedStep" aka Dynamic Voltage and Frequency Scaling, and "Intel Turbo Boost" in BIOS for reproducible benchmark results.²

NVIDIA provide a setup script for the Jetson TX1 called jetson-clocks.sh in the home directory which places the device in high-performance mode. This script should be executed as root before running the benchmarks on the TX1.

Graphs are produced in the build/graphs subdirectory.

A.4.1 CGO AE Benchmarking

We have provided special make targets which step through the benchmarking used to generate the graphs in our paper, all the way from initial microbenchmarking to construct the cost models, to building the final optimized network executables, timing, and plotting the results.

To begin the benchmarking process, create an empty Makefile.config by executing the command
touch Makefile.config

To run the end-to-end benchmarking process, say

```bash
make end-to-end-cgo-x86_64
```

if you are on an x86_64 machine.

A.4.2 Cross Compilation

While you can run the end-to-end benchmarking process on the TX1 system, it is much faster to build the benchmarks by cross-compilation on a more powerful system.

On your x86_64 machine, build the cost model microbenchmarks by executing

```bash
make end-to-end-cgo-aarch64-build-cost-model-progs
```

then copy the whole triNNity-benchmarks directory to the aarch64 test machine (for example, with

```bash
rsync -avP ./ user@aarch64-machine:dir
```

and on your aarch64 machine, execute

```bash
make end-to-end-cgo-aarch64-build-cost-model
```
to build the cost model. Copy the directory once more to the aarch64 machine, and say

```bash
make end-to-end-cgo-aarch64-networks-build
to cross-compile the benchmarks using the cost model built on aarch64. After this, you can copy the directory once more to the x86_64 machine, and say

```bash
make end-to-end-cgo-aarch64-networks-run
to run the benchmarks and produce the final graphs.
```

### A.5 Evaluation and Expected Results

The directory build/graphs will contain the graphs produced from whole-network benchmarking. These should correspond very closely to those in the paper.

### A.6 Experiment Customization

Extensive customization is possible, but should not be necessary. The entire benchmark build system is contained in the Makefile, which builds the workflow up in simple steps which invoke other make rules in sequence.

### Acknowledgment

This work was supported by Science Foundation Ireland grant 12/IA/1381. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732204 (Bonseyes). This work is supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 16.0159. The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies. This work was supported in part by Science Foundation Ireland grant 13/Rc/2094 to Lero — the Irish Software Research Centre (www.lero.ie).

### References

[1] [n. d.]. Intel(R) Distribution of Caffe. [https://github.com/intel/caffe](https://github.com/intel/caffe). (n. d.). Accessed: 2017-09-13.

[2] [n. d.]. Intel(R) Math Kernel Library for Deep Neural Networks. [https://01.org/mkl-dnn](https://01.org/mkl-dnn). (n. d.). Accessed: 2017-09-13.

[3] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg. 2017. Low-memory GEMM-based convolution algorithms
for deep neural networks. CoRR arXiv:1704.04428 (2017).

[4] Richard E. Blahut. 2010. Fast Algorithms for Signal Processing. Cambridge University Press, Cambridge, UK.

[5] Jeff Dean. 2016. TensorFlow w/XLA: TensorFlow, Compiled. (December 2016). https://autodiff-workshop.github.io/ Presentation at Autodiff Workshop, co-located with NIPS 2016.

[6] Erik Eckstein, Oliver König, and Bernhard Scholz. 2003. Code Instruction Selection Based on SSA-Graphs. Springer Berlin Heidelberg, Berlin, Heidelberg, 49–65. https://doi.org/10.1007/978-3-540-39920-9_5

[7] Lang Hames and Bernhard Scholz. 2006. Nearly Optimal Register Allocation with PBQP. Springer Berlin Heidelberg, Berlin, Heidelberg, 346–361. https://doi.org/10.1007/11860999_21

[8] Yangqing Jia. 2014. Learning Semantic Image Representations at a Large Scale. Ph.D. Dissertation. EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/E ECS-2014-93.html

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia. ACM, 675–678.

[10] Tjalling C. Koopmans and Martin Beckmann. 1957. Assignment Problems and the Location of Economic Activities. Econometrica 25, 1 (1957), 53–76.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In 26th Annual Conference on Neural Information Processing Systems 2012. 1106–1114.

[12] Matthew W. Moskewicz, Ali Jannesari, and Kurt Keutzer. 2017. Boda: A Holistic Approach for Implementing Neural Network Computations. In Proceedings of the Computing Frontiers Conference (CF’17). ACM, New York, NY, USA, 53–62. https://doi.org/10.1145/3075564.3077382

[13] NVIDIA Inc 2017. cuDNN Developer Guide (du-06702-001_v07 ed.). NVIDIA Inc. Accessed: 2017-09-13.

[14] Bernhard Scholz and Erik Eckstein. 2002. Register Allocation for Irregular Architectures. In Proceedings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems: Software and Compilers for Embedded Systems (LCTES/SCOPES’02). ACM, New York, NY, USA, 139–148. https://doi.org/10.1145/513829.513854

[15] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

[16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[17] Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley, Armando Fox, and Tatiana Shpeisman. 2016. Latte: A Language, Compiler, and Runtime for Elegant and Efficient Deep Neural Networks. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA, 209–223. https://doi.org/10.1145/2908080.2908105

[18] Aravind Vasudevan, Andrew Anderson, and David Gregg. 2017. Parallel Multi Channel convolution using General Matrix Multiplication. In 28th IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP 2017, Seattle, WA, USA, July 10-12, 2017. 19–24. https://doi.org/10.1109/ASAP.2017.7995254