Efeitos do treinamento muscular respiratório domiciliar em crianças e adolescentes com doença pulmonar crônica*

Effects of home-based respiratory muscle training in children and adolescents with chronic lung disease

Iván Rodríguez Núñez, Daniel Zenteno Araos, Carlos Manterola Delgado

Resumo

Objetivo: A fraqueza muscular respiratória é uma repercussão funcional da doença pulmonar crônica (DPC). O objetivo deste estudo foi avaliar os efeitos do treinamento muscular respiratório (TMR) domiciliar em crianças e adolescentes com DPC ou doença neuromuscular (DNM). Métodos: Estudo quasi-experimental com crianças e adolescentes com DPC ou DNM. Foram medidos a força muscular respiratória (PEmáx e PImáx) e o pico de fluxo da tosse (PFT) antes e depois de 6 meses de TMR domiciliar. Foram realizadas comparações estatísticas entre valores pré- e pós-TMR e foram avaliadas as correlações entre a duração e o efeito do TMR. Resultados: Foram incluídos no estudo 29 pacientes, com média de idade de 12 anos (variação, 5-17 anos), dos quais 18 (62,1%) eram meninos. O grupo DPC consistiu em 11 pacientes (37,9%) e o grupo DNM, em 18 (62,1%). A média da duração do TMR foi de 60 semanas (variação, 46-90 semanas) no grupo DPC e de 39 semanas (variação, 24-89 semanas) no grupo DNM. Em comparação com os valores pré-TMR, os valores pós-TMR para PImáx e PEmáx foram significativamente maiores nos dois grupos, enquanto aqueles para PFE e PFT foram significativamente maiores apenas no grupo DNM. Não houve correlações entre a duração e o efeito do TMR. Conclusões: O TMR domiciliar parece ser uma estratégia eficaz para o aumento da força muscular respiratória em crianças e adolescentes com DPC ou DNM, embora aumente efetivamente a capacidade de tosse somente naqueles com DNM.

Descritores: Exercícios respiratórios; Fibrose cística; Bronquiolite obliterante; Doenças neuromusculares; Tosse.

Abstract

Objective: Respiratory muscle weakness is a functional repercussion of chronic lung disease (CLD). The objective of this study was to assess the effects of home-based respiratory muscle training (RMT) in children and adolescents with CLD or neuromuscular disease (NMD). Methods: This was a quasi-experimental study involving children and adolescents with CLD or NMD. Before and after 6 months of home-based RMT, we measured respiratory muscle strength (MIP and MEP), PEF, and peak cough flow (PCF). We made statistical comparisons between the pre-RMT and post-RMT values, as well as evaluating the correlation between the duration and effect of RMT. Results: The study included 29 patients, with a mean age of 12 years (range, 5-17 years), of whom 18 (62.1%) were male. The CLD group comprised 11 patients (37.9%), and the NMD group comprised 18 (62.1%). The mean duration of the RMT was 60 weeks (range, 46-90 weeks) in the CLD group and 39 weeks (range, 24-89 weeks) in the NMD group. In comparison with the pre-RMT values, the post-RMT values for MIP and MEP were significantly higher in both groups, whereas those for PEF and PCF were significantly higher only in the NMD group. We found no correlation between the duration and the effect of RMT. Conclusions: Home-based RMT appears to be an effective strategy for increasing respiratory muscle strength in children and adolescents with CLD or NMD, although it increased the ability to cough effectively only in those with NMD.

Keywords: Breathing exercises; Cystic fibrosis; Bronchiolitis obliterans; Neuromuscular diseases; Cough.

Introdução

Fraqueza muscular respiratória é uma das principais repercussões funcionais da deterioração da função pulmonar em crianças com doença pulmonar crônica (DPC) ou doença neuromuscular (DNM). Essa fraqueza leva a desenvolvimento de hipoventilação alveolar, formação de microatelectasias e disfunção do...
Efeitos do treinamento muscular respiratório domiciliar em crianças e adolescentes com doença pulmonar crônica

meccanismo da tosse, fatores que aumentam o risco de insuficiência respiratória.\([6]\)

Foi demonstrado que o treinamento muscular respiratório (TMR) é uma estratégia eficaz para mitigar perdas na força e resistência muscular respiratória.\([5-7]\) Porém, não há um consenso baseado em evidências sobre os protocolos e os métodos ideais de treinamento para se obter melhorias significativas de acordo com as características fisiopatológicas de doenças específicas, especialmente em crianças e adolescentes. No Chile, recomenda-se que o TMR, de duração progressiva e com cargas de 20-30% da PImáx, seja realizado periodicamente em crianças e adolescentes com DPC.\([8]\)

A adesão dos pacientes à reabilitação é fundamental para se alcançar os objetivos, e os protocolos de reabilitação domiciliar têm produzido resultados positivos.\([9]\) Isso porque a reabilitação é realizada em um ambiente familiar, sem a necessidade de ir a uma unidade de saúde, facilitando assim a consecução dos objetivos da reabilitação.

Existem poucos relatos sobre os efeitos do TMR não supervisionada sobre a função pulmonar. Portanto, o objetivo deste estudo, realizado no Chile, foi avaliar os efeitos de um programa de TMR domiciliar sobre a função pulmonar em crianças e adolescentes com DPC ou DNM.

Métodos

Delineamento

Trata-se de um estudo quasi-experimental incluindo dados de função respiratória coletados antes e depois da implantação de um protocolo de TMR domiciliar de 6 meses para pacientes com DPC ou DNM participantes do programa de reabilitação respiratória pediátrica do Hospital Guillermo Grant Benavente, na cidade de Concepción, Chile.

Participantes

Por meio de amostragem não probabilística de conveniência de casos prevalentes e incidentes, foram selecionados pacientes com DNM ou DPC entre 6 e 18 anos de idade que haviam iniciado o protocolo de TMR domiciliar entre maio de 2011 e maio de 2013. Foram incluídos apenas aqueles pacientes que haviam participado do protocolo por pelo menos 6 meses, embora aqueles que haviam continuado o protocolo por mais de 6 meses também tenham sido incluídos. Pacientes com déficits cognitivos e aqueles cujos pais ou responsáveis legais não permitiram a participação no estudo foram excluídos.

Cálculo do tamanho da amostra

O tamanho da amostra foi calculado considerando-se um risco de 5% de erro do tipo I, um poder de 85%, uma diferença mínima esperada na PImáx de 27 cmH\(_2\)O, uma variância de 436,81 e dois grupos de estudo (DPC e DNM).\([10]\) Dessa forma, o tamanho mínimo da amostra necessária foi estimado em 10 indivíduos por grupo.

Procedimentos

Para cada paciente, foram coletados dados referentes ao histórico médico, além de dados basais de peso, altura, idade, sexo, espirometria, PImáx, PEmáx, PFE e pico de fluxo da tosse (PFT), bem como o número de semanas de participação no protocolo de TMR domiciliar. Também foram coletados valores pós-TMR de PImáx, PEmáx, PFE e PFT. Todas as variáveis foram medidas pelo mesmo avaliador.

A espirometria foi realizada com um espirômetro Microlab ML3500 (Micro Medical Ltd, Rochester, Inglaterra), de acordo com as diretrizes estabelecidas pela American Thoracic Society. Foram registrados valores de VEF\(_1\), CVF, relação VEF\(_1\)/CVF e FEF\(_{25-75}\%), em valores absolutos e em percentual do previsto, de acordo com Knudson et al.\([11]\)

Como uma representação da força muscular respiratória, foram avaliadas a PImáx, medida durante um esforço inspiratório máximo, a partir do volume residual, manitado por pelo menos um segundo, e a PEmáx, medida durante um esforço expiratório máximo, a partir da CPT, mantida por pelo menos um segundo. Utilizou-se um manovacuômetro (NS 120-TRS; Instrumentation Industries Bethel Park, PA, EUA), calibrado em centímetros de água (de 0 a −120 cmH\(_2\)O e de 0 a +120 cmH\(_2\)O). Os valores de PImáx e PEmáx foram expressos em valores absolutos e percentual do valor normal de acordo com os valores de referência para idade e sexo, conforme determinado por Szeinberg et al.\([11]\)

O PFE e o PFT foram mensurados com um medidor de pico de fluxo (Mini-Wright);
Clement Clarke International, Essex, Inglaterra). O PFE foi avaliado com o indivíduo sentado e usando um clipe nasal, e foi dada a indicação para que o mesmo soprasse com a maior força possível a partir da CPT. O teste foi realizado no máximo oito vezes, e registrou-se o maior valor reprodutível em três tentativas com diferença não superior a 10% entre cada valor. O PFT foi avaliado com o indivíduo sentado, e foi dada a instrução para que o mesmo inspirasse até a CPT e então realizasse uma manobra de tosse máxima, utilizando o mesmo instrumento. Os resultados foram expressos em litros por minuto.

Protocolo de TMR

O protocolo de TMR envolveu o uso de válvulas de carga limiar (IMT ou PEP; Philips Respironics, Murrysville, PA, EUA) uma vez ao dia por pelo menos 5 dias na semana e por pelo menos 6 meses. Cada paciente, bem como seus pais e responsáveis, foram treinados nos aspectos metodológicos do protocolo de TMR e nas estratégias para se manter uma adesão adequada em ambiente domiciliar. Os pacientes foram avaliados a cada 4-6 semanas, ocasiões em que foram lembrados da importância da adesão ao protocolo de TMR. O treinamento muscular inspiratório diário consistiu em 3 séries de 3 min de ventilação demandada pela válvula, com carga de 30-50% da PImáx, com um período de descanso de 1 min entre as séries. O treinamento muscular expiratório diário consistiu em 3 séries de 15 expirações pela válvula, com carga de 30-50% da PEMáx, com um período de descanso de 1 min entre as séries.

Considerações éticas

Os pais ou responsáveis legais de todos os pacientes que participaram do estudo assinaram um termo de consentimento livre e esclarecido. Os pacientes acima dos 12 anos de idade também assinaram o termo de consentimento. O protocolo de pesquisa foi aprovado pelo Comitê de Ética em Pesquisa do Hospital Guillermo Grant Benavente.

Análise estatística

Por meio do Statistical Package for the Social Sciences, versão 11.5 (SPSS Inc., Chicago, IL, EUA), realizou-se uma análise exploratória dos dados, seguida do cálculo da estatística descritiva, incluindo médias, variações e proporções. Como as variáveis apresentaram distribuição não normal, estatística analítica foi aplicada, utilizando-se o teste dos postos sinalizados de Wilcoxon para comparações pareadas para avaliar a diferença entre os valores pré- e pós-TMR, enquanto o teste U de Mann-Whitney foi utilizado para comparação das médias entre os dois grupos. Além disso, o coeficiente de correlação rô de Spearman foi utilizado para determinar se a duração do TMR se correlacionou com aumentos nas variáveis PImáx, PEMáx, PFE e PFT. Valores de p < 0,05 foram considerados estatisticamente significativos.

Resultados

Foram incluídos no estudo 29 pacientes, com média de idade de 12 anos (variação, 5-17 anos), dos quais 18 (62,1%) eram meninos. O grupo DPC consistiu em 11 pacientes (37,9%), com diagnósticos incluindo bronquiolite obliterante pós-infecciosa (n = 3), fibrose cística (n = 5) e bronquiectasia (n = 3). O grupo DNM consistiu em 18 (62,1%), com diagnósticos incluindo distrofia muscular de Duchenne (DMD; n = 7), atrofia muscular espinal (AME; n = 3), mielomeningocele (n = 2), distrofia muscular fácio-escápulo-umeral (n = 1), distrofia muscular de Becker (n = 1), miopatia de Bethlem (n = 1), miopatia congênita (n = 1), doença de Charcot-Marie-Tooth (n = 1) e síndrome de Guillain-Barré (n = 1).

Os testes de função pulmonar revelaram que todos os pacientes do grupo DPC apresentavam padrão obstrutivo, sendo o comprometimento mínimo em dois casos, leve em três, moderado em um e grave em cinco. No grupo DNM, foram observados padrão restritivo (com comprometimento leve em seis, comprometimento moderado em dois e comprometimento grave em dois) e padrão obstrutivo (com comprometimento mínimo) em um caso. Os pacientes restantes não apresentaram alterações espirométricas. A Tabela 1 apresenta as características basais da amostra, e a Tabela 2 apresenta a distribuição dos pacientes de acordo com o diagnóstico.

Com o objetivo de manter a adesão ao protocolo de treinamento, os pacientes foram avaliados a cada 4-6 semanas por um fisioterapeuta especialista em reabilitação respiratória, que refrescou a memória dos pacientes em relação aos aspectos metodológicos do TMR. Todos os pacientes continuaram o TMR por um período maior que os 6 meses prescritos, sendo que a
Efeitos do treinamento muscular respiratório domiciliar em crianças e adolescentes com doença pulmonar crônica

Tabela 1 - Características basais da amostra de pacientes.

Característica	Grupo DNM (n = 18)	Grupo DPC (n = 11)
Idade (anos)	12 (5-17)	13 (5-16)
Meninos/meninas, n/n	11/6	6/5
Peso (kg)	41 (23-88)	38 (18-71)
Altura (m)	1,45 (1,10-1,60)	1,42 (1,03-1,61)
Ambulantes/não ambulantes, n/n	8/10	11/0
Duração do TMR (semanas)	39 (24-89)	60 (46-90)

Função pulmonar

VEF (L)	1,67 (0,49-2,95)	1,35 (0,55-2,67)
VEF (% do previsto)	79,0 (30-116)	54,0 (30-99)
CVF (L)	1,85 (0,58-3,28)	1,92 (0,65-3,43)
CVF (% do previsto)	78,5 (11-114)	81,0 (49-112)
Relação VEF/CVF	88,5 (71-100)	64,0 (39-85)
FEF 25-75% (L/seg)	1,83 (0,5-5,9)	0,57 (0,26-2,29)
FEF 25-75% (% do previsto)	66,0 (30-142)	31,0 (11-72)

DNM: doença neuromuscular; DPC: doença pulmonar crônica; e TMR: treinamento muscular respiratório. *Resultados expressos em média (variação), exceto onde indicado.

Tabela 2 - Distribuição dos pacientes de acordo com o diagnóstico (N = 29).

Diagnóstico	Distribuição
Doenças neuromusculares	
Distrofia muscular de Duchenne	7
Distrofia muscular	1
fáscio-escápulo-umeral	
Distrofia muscular de Becker	1
Atrofia muscular espinhal do tipo II	2
Atrofia muscular espinhal do tipo III	1
Miopatia de Bethlem	1
Mielomeningocele	2
Miopatia congênita	1
Doença de Charcot-Marie-Tooth	1
Síndrome de Guillain-Barré	1
Doenças pulmonares crônicas	
Bronquiolite obliterante	3
pós-infecciosa	
Fibrose cística	5
Bronquiectasia	3

média da duração do TMR foi de 39 semanas (variação, 24-89 semanas) no grupo DNM e de 60 semanas (variação, 46-90 semanas) no grupo DPC.

No grupo DNM, houve um aumento pós-TMR significativo da força muscular respiratória, evidenciado pela melhora média (em relação aos valores basais) na PImáx (aumento no valor absoluto de 25 cmH2O [45,4%; p = 0,004], bem como aumento do percentual do previsto [de 44,5% {variação, 22,9-90,0%} para 63,0% {variação, 30,7-100%}; p = 0,01; Figura 1A]) e na PEMáx (aumento no valor absoluto de 15 cmH2O [37,5%; p = 0,007], bem como aumento do percentual do previsto [de 28% {variação, 9-48%} para 33% {variação, 11-62%}; p = 0,002; Figura 1B]). No grupo DPC, houve melhoras pós-TMR semelhantes nos valores médios de PImáx (aumento no valor absoluto de 20 cmH2O [33,3%; p = 0,01], bem como aumento do percentual do previsto [de 47,5% {variação, 19-82%} para 73% {variação, 32-110%}; p = 0,005; Figura 1A]) e nos valores médios de PEMáx (aumento no valor absoluto de 20 cmH2O [33,3%; p = 0,02], bem como aumento do percentual do previsto [de 39% {variação, 28-74%} para 48% {variação, 27-85%}; p = 0,021; Figura 1B]). A Tabela 3 apresenta as variações entre as avaliações pré-
Os autores observaram que o TMR aumentou a força e resistência muscular inspiratória em 49% e 16%, respectivamente. Esses valores foram comparados entre os períodos pré e pós-TMR, de acordo com o grupo. Como se pode observar nessa tabela (e na Figura 2), a média do PFE aumentou 85 L/min (56,6%) no grupo DNM (p = 0,001) contra apenas 25 L/min (14,2%) no grupo DPC (p = ns), enquanto a média do PFT aumentou 55 L/min no grupo DNM (31,4%; p = 0,001) contra apenas 16 L/min (8,5%) no grupo DPC (p = ns). Não houve correlações entre a duração e o efeito do TMR em nenhum dos dois grupos.

Discussão

No presente estudo, constatou-se que, em crianças e adolescentes com DNM ou DPC, o TMR domiciliar não supervisionado por pelo menos 6 meses produziu um aumento significativo da força muscular respiratória (ou seja, da PImáx e da PEmáx). Além disso, foram observadas melhoras pós-TMR significativas no PFE e no PFT nos pacientes com DNM. Porém, não se identificou nenhuma correlação entre a duração do TMR e a magnitude das melhoras na função pulmonar.

Nossos resultados estão de acordo com os relatados por Koesessler et al.,(5) que avaliaram os efeitos de um protocolo de TMR domiciliar de dois anos em pacientes com DMD ou AME.(12-16)

Os autores observaram que o TMR aumentou a força e resistência muscular inspiratória em 49% e 16%, respectivamente. Esses valores foram
Efeitos do treinamento muscular respiratório domiciliar em crianças e adolescentes com doença pulmonar crônica

obtidos depois de 10 meses de treinamento, ocasião na qual se atingiu um platô em termos de aumento da força. Nos pacientes com DMD avaliados no presente estudo, foram observados aumentos pós-TMR dos valores médios absolutos de Plmáx e PEmáx, que aumentaram 30 cmH₂O (60%) e 10 cmH₂O (33%), respectivamente, contra 25 cmH₂O (47%) e 6,7 cmH₂O (14%), respectivamente, em nossos pacientes com AME. No restante dos pacientes do grupo DNM, os aumentos pós-TMR da Plmáx e da PEmáx variaram de 8 cmH₂O a 65 cmH₂O e de 10 cmH₂O a 48 cmH₂O, respectivamente, com exceção do paciente com distrofia muscular de Becker, que não apresentou alterações na Plmáx e na PEmáx, e do paciente com miopatia congênita, que não apresentou alterações na Plmáx.

Vale ressaltar que 66% de nossos pacientes com DNM (n = 12) foram reavaliados depois de 35 semanas de treinamento e a magnitude total do aumento de Plmáx registrado foi de 45.4%. É provável que, nesse estágio, a força muscular respiratória tenha atingido a fase de platô e que avaliações posteriores mostrassem apenas aumentos discretos da Plmáx.

O PFE e o PFT são parâmetros que podem quantificar a função de tosse de forma objetiva, além de estarem diretamente associados à força muscular respiratória. Nesse contexto, foi demonstrado que níveis de PFT abaixo de 160 L/min se traduzem em tosse ineficaz e constituem fator de risco para o desenvolvimento de doenças respiratórias. Existem poucos estudos que avaliam o efeito do TMR sobre a função de tosse em pacientes com DNM. Foi demonstrado que protocolos de treinamento muscular respiratório melhoram a função de tosse em pacientes com esclerose múltipla. Em um estudo recente, Aslan et al. avaliaram o efeito do TMR sobre variáveis de função pulmonar (incluindo o PFT) em pacientes com DNM lentamente progressiva. Os autores observaram aumentos pós-TMR significativos apenas na força muscular respiratória. Em todos os pacientes com DNM avaliados em nosso estudo, tanto o PFE quanto o PFT aumentaram significativamente depois do TMR. Entre nossos pacientes com DMD, foram observados aumentos pós-TMR significativos dos valores médios absolutos de PFE e PFT, que aumentaram 90 L/min (60%) e 50 L/min (26%), respectivamente, contra 35 L/min (22%) e 96 L/min (70%), respectivamente, entre nossos pacientes com AME. No restante dos pacientes do grupo DNM, os aumentos pós-TMR do PFE e do PFT variaram de 30 L/min a 235 L/min e de 20 L/min a 150 L/min, respectivamente. É digno de nota que, dos 18 pacientes do grupo DNM, 8 (44,4%) apresentaram valor pré-TMR de PFT abaixo de 160 L/min e 6 desses pacientes conseguiram aumentar seu PFT para mais de 160 L/min depois do TMR.

Os dados da literatura são inconsistentes em relação aos efeitos do TMR em pacientes com DPC. Em pacientes com sequelas de infecções por adenovírus, foi demonstrado que o TMR aumenta a força muscular respiratória. Houston et al. demonstraram que o TMR aumentou a força e resistência dos músculos respiratórios em pacientes com fibrose cística. Porém, os autores não encontraram melhora nos fluxos e volumes pulmonares e sugeriram que seus resultados sejam confirmados em estudos com maior qualidade metodológica. Santana-Sosa et al. observaram que TMR combinado com treinamento muscular geral teve efeitos benéficos sobre a força muscular respiratória e o condicionamento físico em crianças com fibrose cística. No grupo DPC, houve um aumento geral pós-TMR na força muscular respiratória (ou seja, na Plmáx e na PEmáx) de 33%, sendo que a maior melhora foi observada em nossos pacientes com fibrose cística, que apresentaram aumentos de 30 cmH₂O (42%) e de 25 cmH₂O (45%) na Plmáx e na PEmáx, respectivamente. Por outro lado, nossos pacientes com bronquiolite obliterante pós-infecciosa apresentaram um aumento na Plmáx de apenas 20 cmH₂O (33,3%) e nossos pacientes com bronquiectasia apresentaram um aumento na PEmáx de apenas 25 cmH₂O (50%). Nenhum de nossos pacientes do grupo DPC apresentou alterações pós-TMR significativas no PFE ou no PFT. Isso era de se esperar, pois todos esses pacientes apresentaram padrão obstrutivo nas espirometrias, com níveis de FEF₂₅₋₇₅ abaixo do valor previsto, o que presumivelmente nega quaisquer ganhos na função de tosse obtidos por meio do TMR, conforme relatado na literatura.

O presente estudo tem algumas limitações. Nossa amostra de pacientes foi dividida em dois grupos (DNM e DPC) com o objetivo de avaliar o efeito do TMR de acordo com a origem do comprometimento, permitindo a obtenção de uma visão mais ampla dos possíveis benefícios dessa estratégia de reabilitação. Porém, em razão da
heterogeneidade e pequeno tamanho da amostra, não foi possível realizar análises estatísticas dos subgrupos (ou seja, de acordo com o diagnóstico), o que nos impediu de tirar conclusões e fazer recomendações para o manejo de condições específicas. Além disso, embora a duração do TMR tenha sido maior entre nossos pacientes com DPC do que entre aqueles com DNM, não foi possível demonstrar a interdependência entre a duração e os efeitos do TMR, sendo que apenas uma correlação fraca (não significativa) foi observada entre os dois, em ambos os grupos (r<0,2; p ≥ 0,05). A falta de acompanhamento direto do protocolo de TMR é outra limitação de nosso estudo, pois não foi possível verificar o nível de adesão dos pacientes ao protocolo. No entanto, nas avaliações periódicas, conseguiu-se estabelecer que todos os pacientes sabiam como implantar o protocolo uma vez que haviam sido ensinados na primeira sessão. Ademais, em entrevistas com os pacientes e cuidadores, determinou-se que todos os pacientes praticavam o treinamento pelo menos 5 vezes na semana, embora esse dado possa estar sujeito a viés de relato (constrangimento levando pais e cuidadores a superestimar o nível de adesão). Adicionalmente, considerando-se que todos os testes de avaliação requerem a cooperação dos pacientes, não houve um grupo controle. Portanto, não foi possível excluir a possibilidade de viés de aferição, que poderia ter resultado em superestimação da magnitude dos aumentos pós-TMR nas variáveis avaliadas. Essas possíveis fontes de viés poderiam reduzir a validade dos desfechos.

Pode-se concluir que o TMR domiciliar, se continuado por pelo menos 6 meses, é uma estratégia eficaz para melhorar a força muscular respiratória em pacientes com DNM ou DPC, principalmente naqueles com fibrose cística. Especificamente em pacientes com DNM, essa estratégia de reabilitação também parece gerar aumentos significativos nos determinantes da função de tosse, como o PFE e o PFT.

Referências

1. Nève V, Cuisset JM, Edmé JL, Carpenter A, Howsam M, Leclerc Q, et al. Sniff nasal inspiratory pressure in the longitudinal assessment of young Duchenne muscular dystrophy children. Eur Respir J. 2013;42(3):671-80. http://dx.doi.org/10.1183/09031936.00127712
2. Dassios T, Katerlari A, Doudounakis S, Dimitriou G. Respiratory muscle function in patients with cystic fibrosis. Pediatr Pulmonol 2013;48(9):865-73. http://dx.doi.org/10.1002/ppul.22709
3. 4. Racca F, Del Sorbo L, Mongini T, Vianello A, Ranieri VM. Respiratory management of acute respiratory failure in neuromuscular disease. Minerva Anestesiol. 2010;76(1):51-62.
5. Koessler W, Wanke T, Winkler G, Nader A, Toifl K, Kurz H, et al. 2 Years’ experience with inspiratory muscle training in patients with neuromuscular disorders. Chest. 2001;120(3):765-9. http://dx.doi.org/10.1378/chest.120.3.765
6. Winkler G, Zifko U, Nader A, Frank W, Zwick H, Toifl K, et al. Dose-dependent effect of inspiratory muscle training in neuromuscular disorders. Muscle Nerve. 2000;23(8):1257-60. http://dx.doi.org/10.1002/1097-4598(200008)23:8<1257::AID-MUS15>3.0.CO;2-M
7. Houston BW, Mills N, Solís-Moya A. Inspiratory muscle training for cystic fibrosis. Cochrane Database Syst Rev. 2013;11:CD006112.
8. Zenteno D, Puppo H, Vera R, Torres R, Chun-Yang K, Salinas P, et al. Guías de rehabilitación para ni·os con enfermedades respiratorias crónicas. Neumol Pediatr. 2008;3(Suppl 1): 25-33.
9. Hebestreit H, Kieser S, Junge S, Ballmann M, Hebestreit A, Schindler C, et al. Long-term effects of a partially supervised conditioning programme in cystic fibrosis. Eur Respir J. 2010;35(5):578-83. http://dx.doi.org/10.1183/09031936.0062409
10. Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis. 1983;127(6):725-34.
11. Szeinberg A, Marcotte JE, Roizin H, Mindorff C, England S, Tabachnick E, et al. Normal values of maximal inspiratory and expiratory pressures with a portable apparatus in children, adolescents, and young adults. Pediatr Pulmonol. 1987;3(4):255-8. http://dx.doi.org/10.1002/ppul.1950030411
12. Khirani S, Ramirez A, Aubertin G, Boué M, Chemouny C, Forin V, et al. Respiratory muscle decline in duchenne muscular dystrophy. Pediatr Pulmonol. 2014;49(5):473-81. http://dx.doi.org/10.1002/ppul.22847
13. Gayraud J, Ramonatxo M, Rivier F, Humberclaude V, Petrol F, Matecki S. Ventilatory parameters and maximal respiratory pressure changes with age in Duchenne muscular dystrophy patients. Pediatr Pulmonol. 2010;45(6):552-9.
14. Toussaint M, Steens M, Soudon P. Lung function actually predicts hypercapnia in patients with Duchenne muscular dystrophy. Chest. 2007;131(2):368-75. http://dx.doi.org/10.1378/chest.0603112
15. Khirani S, Coella M, Caldarrelli V, Aubertin G, Boué M, Forin V, et al. Longitudinal course of lung function and respiratory muscle strength in spinal muscular atrophy type 2 and 3. Eur J Paediatr Neurol. 2013;17(6):552-60. http://dx.doi.org/10.1016/j.ejpn.2013.04.004
16. Kaufmann P, McDermott MP, Darras BT, Finkel RS, Sproule DM, Kang PB, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012;79(18):1889-97. http://dx.doi.org/10.1212/WNL.0b013e318271f7e4
17. Kang SW, Kang YS, Sohn HS, Park JH, Moon JH, Respiratory muscle strength and cough capacity in patients with Duchenne muscular dystrophy. Yonsei J Bras Pneumol. 2014;40(6):626-633 http://dx.doi.org/10.1590/S1806-37132014000600006
Efeitos do treinamento muscular respiratório domiciliar em crianças e adolescentes com doença pulmonar crônica

J Bras Pneumol. 2014;40(6):626-633

http://dx.doi.org/10.1590/S1806-37132014000600006

Sobre os autores

Iván Rodríguez Nuñez
Fisioterapeuta. Centro de Medicina Molecular, Hospital Guillermo Grant Benavente, Concepción, Chile.

Daniel Zenteno Araos
Pneumologista Pediátrico. Serviço de Pediatria, Hospital Guillermo Grant Benavente, Concepción, Chile.

Carlos Manterola Delgado
Médico Cirurgião. Centro de Pesquisas Biomédicas, Universidade Autônoma, Temuco, Chile.

22. Chiara T, Martin AD, Davenport PW, Bolser DC. Expiratory muscle strength training in persons with multiple sclerosis having mild to moderate disability: effect on maximal expiratory pressure, pulmonary function, and maximal voluntary cough. Arch Phys Med Rehabil. 2006;87(4):468-73. http://dx.doi.org/10.1016/j.apmr.2005.12.035

23. Aslan GK, Gurses HN, Issever H, Kiyan E. Effects of respiratory muscle training on pulmonary functions in patients with slowly progressive neuromuscular disease: a randomized controlled trial. Clin Rehabil. 2013;28(6):573-581. http://dx.doi.org/10.1177/0269215513512215

24. Silva J, Puppo H, Vargas D, González R, Pavón D, Girardi G. Entrenamiento muscular inspiratorio en niños secuestrados por adenovirus. Rev Chil Enfer Respir. 1999;15:239.

25. Santana-Sosa E, Gonzalez-Saiz L, Groeneveld IF, Villa-Asensi JR, Barrio Gómez de Aguero MI, Fleck SJ, et al. Benefits of combining inspiratory muscle with 'whole muscle' training in children with cystic fibrosis: a randomised controlled trial. Br J Sports Med. 2014;48(20):1513-7. http://dx.doi.org/10.1136/bjsports-2012-091892