Yuankui Ma, Wen Peng, and Tianping Zhang*

Upper bound estimate of incomplete Cochrane sum

DOI 10.1515/math-2017-0068
Received September 2, 2016; accepted May 8, 2017.

Abstract: By using the properties of Kloosterman sum and Dirichlet character, an optimal upper bound estimate of incomplete Cochrane sum is given.

Keywords: Dedekind sum, Cochrane sum, Kloosterman sum, Gauss sum

MSC: 11F20, 11L05, 11L07

1 Introduction

Let \(q \) be a positive integer, then for an arbitrary integer \(h \), the famous Dedekind sum \(S(h, q) \) is defined as

\[
S(h, q) = \sum_{a=1}^{q} \left(\left(\frac{a}{q} \right) \left(\frac{ha}{q} \right) \right),
\]

where

\[
\left(\frac{x}{y} \right) = \begin{cases}
 x - [x] - \frac{1}{2}, & \text{if } x \text{ is not an integer}, \\
 0, & \text{if } x \text{ is an integer}.
\end{cases}
\]

In October 2000, during his visit to Xi'an, Todd Cochrane introduced a sum analogous to it as follows:

\[
C(h, q) = \sum_{a=1}^{q} \left(\left(\frac{a}{q} \right) \left(\frac{ha}{q} \right) \right),
\]

where \(\sum_{a=1}^{q} \) denotes the summation over all \(1 \leq a \leq q \) such that \((a, q) = 1 \), and \(\overline{a} \) is defined by \(a \overline{a} \equiv 1 \pmod{q} \).

Since then, various properties of \(C(h, q) \) are studied by many scholars. For example, Zhang and Yi [1] obtained the upper bound estimate

\[
|C(h, q)| \ll \sqrt{q}d(q) \ln^2 q,
\]

where \(d(q) \) is the classical divisor function. For the case \(q = p \), an odd prime, they also gave a sharp asymptotic formula

\[
\sum_{h=1}^{p-1} C^2(h, p) = \frac{5}{144} p^2 + O \left(p \exp \left(\frac{4 \ln p}{\ln \ln p} \right) \right).
\]
which proved that (1) is optimal. For arbitrary integer $q \geq 3$, Zhang [2] studied the mean square of the Cochrane sum $C(h, q)$, and obtained
\[
\sum_{h=1}^{q} C^2(h, q) = \frac{5}{144} \Phi(q) \prod_{p^2 \parallel q} \left(\frac{p+1}{p+2} \right)^2 + \frac{1}{p+1} + \frac{1}{p^3} + O\left(q \exp \left(\frac{4 \ln q}{\ln \ln q} \right) \right).
\]
where $\Phi(q)$ denotes the Euler function and $\prod_{p^2 \parallel q}$ the product over all prime divisors of q with $p^2 \parallel q$ and $p^2 + 1 \parallel q$.

Later Lu and Yi [3] gave the mean square value of $C(h, q)$ over incomplete intervals. In fact, under the conditions that $q > 3$ is a square-free integer and α a real number with $\alpha \in (0, 1]$, they got
\[
\sum_{h=1}^{N} C^2(h, q) = \frac{5\delta}{144} \omega^3(q) \prod_{p \mid q} \frac{p^2 + 2p - 1}{p^2 + 1} + O\left(q^{2-\frac{1}{2}\delta} + \epsilon \right),
\]
where $\omega(q) = \sum_{d \mid q} 1$, ϵ is a sufficiently small positive constant and the O constant depends only on ϵ.

Other properties like the high-dimensional generalizations and hybrid mean values involving $C(h, q)$ can be found in references [4-8] and therein.

For arbitrary integers m and n, Estermann [9] gave an upper bound estimate of the classical Kloosterman sum $S(m, n; q)$ as
\[
|S(m, n; q)| \leq (m, n, q) \frac{1}{2} q \frac{1}{2} d(q), \tag{2}
\]
where $S(m, n; q)$ is defined by
\[
S(m, n; q) = \sum_{a \mod q} e \left(\frac{ma + n\overline{a}}{q} \right),
\]
where $e(x) = e^{2\pi i x}$, and (m, n, q) denotes the greatest common divisor of m, n, q. By completing method, one can derive immediately from (2) an upper bound estimate of the incomplete Kloosterman sum
\[
S(m, n; q, I) = \sum_{a \in I} e \left(\frac{ma + n\overline{a}}{q} \right)
\]
as the following:
\[
|S(m, n; q, I)| \ll q^{1+\epsilon} (m, q) \frac{1}{2}. \tag{3}
\]
where I is an interval with length not exceeding q.

Now we define an incomplete Cochrane sum as follows:
\[
C(h, q; \lambda) = \sum_{a=1}^{\lambda q} \left(\frac{a}{q} \right) \left(\frac{ha}{q} \right), \tag{4}
\]
where $\lambda \in (0, 1]$. By using the properties of Kloosterman sum and Dirichlet character, we shall prove the following:

Theorem. Let q, h be integers with $q \geq 2$ and $(h, q) = 1$, λ be a real number with $\lambda \in (0, 1]$. Then we have the upper bound estimate
\[
|C(h, q; \lambda)| \ll q^{1+\epsilon}.
\]

Taking $\lambda = 1$ in Theorem, we may immediately obtain

Corollary. Let q, h be integers with $q \geq 2$ and $(h, q) = 1$. Then we have
\[
|C(h, q)| \ll q^{1+\epsilon},
\]
which is almost the same estimate as (1).
Some lemmas

To prove Theorem, we need the following several lemmas.

Lemma 1.1. Let \(q, h \) be integers with \(q \geq 2 \) and \((h,q) = 1\), \(\lambda \) be a real number with \(\lambda \in (0, 1] \). Then we have the identity

\[
C(h, q; \lambda) = -\frac{1}{2\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \chi(h) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda) - G(\chi, -m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right).
\]

where \(\chi \) denotes a Dirichlet character modulo \(q \), \(G(\chi, m; \lambda) = \sum_{c=1}^{\lambda q} \chi(c) e \left(\frac{cm}{q} \right) \) denotes the partial Gauss sum corresponding to \(\chi \), and \(G(\chi, m) := G(\chi, m; 1) \).

Proof. From (4) and the orthogonality relation for characters modulo \(q \), we have

\[
C(h, q; \lambda) = \sum_{a \leq \lambda q \atop (a, q) = 1} \left(\frac{a}{q} \right) \left(\frac{\overline{ah}}{q} \right) = \frac{1}{\varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \chi(a) \left(\sum_{b=1}^{q} \chi(b) \left(\frac{bh}{q} \right) \right).
\]

Note that

\[
((x)) = -\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{n}, \quad \sin \chi = \frac{1}{2i}(e^{ix} - e^{-ix})
\]

and for arbitrary integer \(r \) with \((r, q) = 1\),

\[
G(\chi, rn) = \overline{\tau(r)} G(\chi, n)
\]

and

\[
\sum_{c=1}^{q} \chi(c) \left(\frac{cr}{q} \right) = 0 \quad \text{if} \quad \chi(-1) = 1.
\]

From these identities, we have

\[
C(h, q; \lambda) = \frac{1}{\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \left(\sum_{m=1}^{\infty} \frac{\chi(a) \sin \left(\frac{2\pi ma}{q} \right)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{\chi(b) \sin \left(\frac{2\pi nbh}{q} \right)}{n} \right)
\]

\[
= -\frac{1}{4\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda) - G(\chi, -m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n) - G(\chi, -n)}{n} \right)
\]

\[
= -\frac{1}{4\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi(h)} \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda) - G(\chi, -m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n) - G(\chi, -n)}{n} \right)
\]

\[
= -\frac{1}{2\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi(h)} \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda) - G(\chi, -m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right). \quad \square
\]

Lemma 1.2. Let \(q, h \) be integers with \(q \geq 2 \) and \((h,q) = 1\), \(\lambda \) be a real number with \(\lambda \in (0, 1] \). Then we have the estimates

\[
\sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi(h)} \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right) \ll \varphi(q)q^{1+\varepsilon}.
\]
Upper bound estimate of incomplete Cochrane sum

\[
\sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right) \ll \varphi(q)q^{\frac{1}{2}+\varepsilon}.
\]

Proof. For any non-principal Dirichlet character \(\chi \) modulo \(q \) and any parameter \(N \geq q \), applying Abel’s identity [10], we have

\[
\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda)}{m} = \sum_{1 \leq m \leq N} \frac{G(\chi, m; \lambda)}{m} + \int_{N}^{\infty} \frac{A(y, \chi)}{y^2} dy,
\]

\[
\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} = \sum_{1 \leq n \leq N} \frac{G(\chi, n)}{n} + \int_{N}^{\infty} \frac{B(y, \chi)}{y^2} dy,
\]

where \(A(y, \chi) = \sum_{N < m \leq y} G(\chi, m; \lambda) \), \(B(y, \chi) = \sum_{N < n \leq y} G(\chi, n) \).

So we have

\[
\sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m; \lambda)}{m} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right)
\]

\[
= \sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{1 \leq m \leq N} \frac{G(\chi, m; \lambda)}{m} \right) \left(\sum_{1 \leq n \leq N} \frac{G(\chi, n)}{n} \right)
\]

\[
+ \sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{1 \leq n \leq N} \frac{G(\chi, n)}{n} \right) \left(\int_{N}^{\infty} \frac{A(y, \chi)}{y^2} dy \right)
\]

\[
+ \sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{1 \leq m \leq N} \frac{G(\chi, m; \lambda)}{m} \right) \left(\int_{N}^{\infty} \frac{B(y, \chi)}{y^2} dy \right)
\]

\[
+ \sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\int_{N}^{\infty} \frac{A(y, \chi)}{y^2} dy \right) \left(\int_{N}^{\infty} \frac{B(y, \chi)}{y^2} dy \right)
\]

\[
:= M_1 + M_2 + M_3 + M_4.
\]

Now we estimate \(M_1, M_2, M_3, M_4 \) respectively. First note that

\[
G(\chi, n)G(\chi, m; \lambda) = \sum_{a=1}^{q} \chi(a)e\left(\frac{n\bar{a}}{q}\right) \sum_{b=1}^{\lambda \bar{q}} \chi(b)e\left(\frac{mb}{q}\right) = \sum_{b \leq \lambda \bar{q}} \sum_{a=1}^{q} \chi(a)e\left(\frac{n\bar{a}b + mb}{q}\right).
\]

By the orthogonality relation for characters modulo \(q \) as the following:

\[
\sum_{\chi \mod q \chi(1)=-1} \chi(a) = \begin{cases}
\frac{1}{2} \varphi(q), & \text{if } a \equiv 1 \pmod{q}, \\
\frac{-1}{2} \varphi(q), & \text{if } a \equiv -1 \pmod{q}, \\
0, & \text{otherwise},
\end{cases}
\]

we have

\[
M_1 = \sum_{\chi \mod q \chi(1)=-1} \mathcal{Z}(h) \left(\sum_{1 \leq m \leq N} \frac{G(\chi, m; \lambda)}{m} \right) \left(\sum_{1 \leq n \leq N} \frac{G(\chi, n)}{n} \right)
\]
\[
\begin{align*}
&= \sum_{1 \leq m \leq N} \sum_{1 \leq n \leq N} \frac{1}{m} \sum_{a=1}^{q} \sum_{b \leq \lambda q} e \left(\frac{na\overline{h} + mb}{q} \right) \sum_{\chi \mod q, \chi(-1)=-1} \chi(a) \overline{\chi}(h)
&= \frac{1}{2} \varphi(q) \sum_{1 \leq m \leq N} \sum_{1 \leq n \leq N} \frac{1}{mn} \sum_{b \leq \lambda q} e \left(\frac{mb + nh\overline{h}}{q} \right) \\
&= \frac{1}{2} \varphi(q) \sum_{1 \leq m \leq N} \sum_{1 \leq n \leq N} \frac{1}{mn} \sum_{b \leq \lambda q} e \left(\frac{mb - nh\overline{h}}{q} \right) \\
&\ll \varphi(q) \sum_{1 \leq m \leq N} \sum_{1 \leq n \leq N} \frac{1}{mn} \left| \sum_{b \leq \lambda q} e \left(\pm nh\overline{h} + mb \right) \right| \\
&\ll \varphi(q)q^{1/2+\varepsilon} \sum_{1 \leq m \leq N} \sum_{1 \leq n \leq N} \frac{1}{mn} (m, q)^{1/2} \\
&= \varphi(q)q^{1/2+\varepsilon} \sum_{u | q} \sum_{1 \leq m \leq N/u} \sum_{1 \leq n \leq N} \frac{u^{1/2}}{mun} \\
&\ll \varphi(q)q^{1/2+\varepsilon} \ln^2 N,
\end{align*}
\]
where we have used the upper bound of (3).

Then from the estimates for trigonometric sum and Gauss sum we can also get
\[
|A(y, \chi)| = \left| \sum_{b \leq \lambda q} \chi(b) \sum_{N < m \leq y} e \left(\frac{mb}{q} \right) \right| \\
\ll \sum_{b \leq \lambda q} \left| \sin \frac{\pi bq}{q} \right| \ll \sum_{b \leq \lambda q} \frac{q}{b} \\
\ll q \ln(\lambda q).
\]

and
\[
\sum_{\chi \mod q, \chi(-1)=-1} |G(\chi, n)| = \sum_{\chi \mod q, \chi(-1)=-1} |G(\chi, 1)| \ll q^{1/2} \varphi(q).
\]

Thus we have the estimate
\[
M_2 \ll \left| \sum_{\chi \mod q, \chi(-1)=-1} \overline{\chi}(h) \left(\sum_{1 \leq n \leq N} \frac{G(\chi, n)}{n} \right) \left(\int_{N}^{\infty} \frac{A(y, \chi)}{y^2} \, dy \right) \right| \\
\ll \sum_{1 \leq n \leq N} \frac{1}{n} \sum_{\chi \mod q, \chi(-1)=-1} |G(\chi, n)| \int_{N}^{\infty} \frac{q \ln(\lambda q)}{y^2} \, dy \\
\ll q^{1/2} \ln(\lambda q) \cdot \varphi(q) \ln N.
\]

Then we shall estimate \(M_3\). Since
\[
\sum_{\chi \mod q, \chi(-1)=-1} |G(\chi, m; \lambda)| \leq q^{1/2} (q) \left(\sum_{\chi \mod q, \chi(-1)=-1} |G(\chi, m; \lambda)|^2 \right)^{1/2} \\
= q^{1/2} (q) \left(\sum_{a \leq \lambda q} \sum_{b \leq \lambda q} e \left(\frac{ma - nb}{q} \right) \sum_{\chi \mod q, \chi(-1)=-1} \chi(a) \overline{\chi}(b) \right)^{1/2}
\]

\[\ll \phi^{1/2}(q) \left(\sum_{a \leq \lambda q} 1 \cdot \phi(q) \right)^{1/2} \]

and

\[\ll \phi(q)(\lambda q)^{1/2}, \]

Hence

\[|B(y, \chi)| \ll q \ln q. \]

At last, we have

\[M_4 = \sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi}(h) \left(\int_{-\infty}^{\infty} A(y, \chi) \frac{dy}{y^2} \right) \left(\int_{-\infty}^{\infty} B(y, \chi) \frac{dy}{y^2} \right) \]

\[\ll \sum_{1 \leq m \leq N} \frac{1}{m} \sum_{\chi \mod q \atop \chi(-1) = -1} |G(\chi, m; \lambda)| \int_{-\infty}^{\infty} q \ln q \frac{dy}{y^2} \]

\[\ll \frac{\lambda^{1/2}q^2\phi(q) \ln q \cdot \ln N}{N}. \]

Taking \(N = q^2 \), combining the estimates of \(M_1, M_2, M_3, M_4 \), we can get

\[\sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi}(h) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n; \lambda)}{n} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right) \ll \phi(q)q^{1/2+e}. \]

Similarly, we can also get

\[\sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi}(h) \left(\sum_{n=1}^{\infty} \frac{G(\chi, -n; \lambda)}{n} \right) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right) \ll \phi(q)q^{1/2+e}. \]

2 Proof of Theorem

In this section, we shall complete the proof of Theorem. For arbitrary integer \(h \) with \((h, q) = 1 \), applying Lemma 1.1 and Lemma 1.2 we immediately have

\[|C(h, q; \lambda)| = \frac{1}{2\pi \phi(q)} \left| \sum_{\chi \mod q \atop \chi(-1) = -1} \overline{\chi}(h) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n; \lambda) - G(\chi, -n; \lambda)}{n} \right) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m)}{m} \right) \right| \]
\[
\leq \frac{1}{2\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \chi(h) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n; \lambda)}{n} \right) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m)}{m} \right) + \frac{1}{2\pi^2 \varphi(q)} \sum_{\chi \mod q \atop \chi(-1) = -1} \chi(h) \left(\sum_{n=1}^{\infty} \frac{G(-\chi, -n; \lambda)}{n} \right) \left(\sum_{m=1}^{\infty} \frac{G(\chi, m)}{m} \right) \ll q^{1/2} + \varepsilon.
\]

This completes the proof of Theorem.

Acknowledgement: The authors want to express their sincere gratitude to the anonymous referee for his/her helpful comments and suggestions.

This work is supported by the National Natural Science Foundation of China (No.11201275), the Natural Science Foundation of Shaanxi Province of China (No.2016JM1017), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.16JK1373) and the Fundamental Research Funds for the Central Universities (No.GK201503014).

References

[1] Zhang W.P., Yi Y., On the upper bound estimate of Cochrane sums, Soochow J. Math., 2002, 28(3), 297-304.
[2] Zhang W.P., On a sum analogous to Dedekind sum and its mean square value formula, Int. J. Math. Math. Sci., 2002, 32(1), 47-55.
[3] Lu Y.M., Yi Y., On Cochrane sums over short intervals, J. Math. Anal. Appl., 2009, 356(2), 502-516.
[4] Zhang W.P., On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl., 2002, 267(1), 89-96.
[5] Zhang W.P., On a Cochrane sum and its hybrid mean value formula (II), J. Math. Anal. Appl., 2002, 276(1), 446-457.
[6] Xu Z.F., Zhang W.P., On the order of the high-dimensional Cochrane sum and its mean value, J. Number Theory, 2006, 117(1), 131-145.
[7] Liu H.N., A note on the upper bound estimate of high-dimensional Cochrane sums, J. Number Theory, 2007, 125(1), 7-13.
[8] Zhang T.P., A note on the hyper Cochrane sum, Indian J. Pure Appl. Math., 2013, 44(3), 297-310.
[9] Estermann T., On Kloosterman’s sum, Mathematika, 1961, 8, 83-86.
[10] Apostol T.M., Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.