Unveiling the power spectra of δ Scuti stars with TESS

The temperature, gravity, and frequency scaling relation

S. Barceló Forteza, A. Moya, D. Barrado, E. Solano, S. Martín-Ruiz, J. C. Suárez, and A. García Hernández

1 Dpto. de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, 28692, Spain
2 Electrical Engineering, Electronics, Automation and Applied Physics Department, E.T.S.I.D.I., Polytechnic University of Madrid (UPM), Madrid 28012, Spain
3 School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
4 Spanish Virtual Observatory, Spain
5 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain
6 Dept. Theoretical Physics and Cosmology, University of Granada (UGR), 18071, Granada, Spain

Received 5 December 2019; Accepted 14 April 2020

ABSTRACT

Thanks to high-precision photometric data legacy from space telescopes like CoRoT and Kepler, the scientific community could detect and characterize the power spectra of hundreds of thousands of stars. Using the scaling relations, it is possible to estimate masses and radii for solar-type pulsators. However, these stars are not the only kind of stellar objects that follow these rules: δ Scuti stars seem to be characterized with seismic indexes such as the large separation (Δv). Thanks to long-duration high-cadence TESS light curves, we analysed more than two thousand of this kind of classical pulsators. In that way, we propose the frequency at maximum power (ν_{max}) as a proper seismic index since it is directly related with the intrinsic temperature, mass and radius of the star. This parameter seems not to be affected by rotation, inclination, extinction or resonances, with the exception of the evolution of the stellar parameters. Furthermore, we can constrain rotation and inclination using the departure of temperature produced by the gravity-darkening effect. This is especially feasible for fast rotators as most of δ Scuti stars seem to be.

Key words. asteroseismology - stars: oscillations - stars: variables: δ Scuti

1. Introduction

Asteroseismology has proven to be a very fruitful technique to characterize the stars and improve the stellar evolution theory (see [Aerts et al. 2010] [Chaplin & Miglio 2013] [Catelan & Smith 2015] [Aerts 2019] for detailed reviews). Stellar pulsations are sensitive to the internal structure of stars and their physics. There are different types of pulsators (e.g., solar-like, δ Scuti stars) according to their excitation mechanism (see Fig. 1 in [Jeffery 2008]). The seismic indexes describe the properties of the power-spectral structure as a whole, the so-called power spectrum envelope (envelope hereafter). The scaling relations can relate their structural parameters with seismic indexes such as happens with solar-like pulsators (e.g., [Kjeldsen & Bedding 1995]). Using the high amount of stellar data from space missions like CoRoT [Baglin et al. 2006] or Kepler [Borucki et al. 2010], the scientific community has been looking for scaling relations also for δ Scuti stars (e.g., [Suárez et al. 2014]; [García Hernández et al. 2015]; [Michel et al. 2017]; [Moya et al. 2017]; [Barceló Forteza et al. 2018]; [Bowman & Kurtz 2018]). Trying to extend ensemble asteroseismology, [Barceló Forteza et al. 2018] (BF18 hereafter-) describe the envelope of δ Scuti stars with several metrics such as the number of modes (N_{envelope}), the frequency at maximum power, where ν_i and A_i are the frequency and the amplitude of each mode of the envelope, respectively; and its asymmetry

$$\alpha = \frac{2\nu_{\text{max}} - \nu_h - \nu_l}{2 (\nu_h - \nu_l)},$$

where ν_{hi} are the highest and lowest frequency of the envelope, respectively.

δ Scuti stars are A-F intermediate mass stars (1.5 to 2.5 M_\odot; Breger 2000) with frequencies between 60 to 930 μHz and temperatures from 6000 to 9000 K (Uytterhoeven et al. 2011). Their main excitation mechanism is κ-mechanism (Chevalier 1971). [Dziembowski 1997] predicted that the excited modes have higher frequencies at higher temperatures ($T_{\text{eff}} \propto \nu_i$, see Fig. 2 in that paper). Taking into account solar composition, but no rotation, and no core overshoot, [Balona & Dziembowski 2011] also predicted this behaviour for the frequency of the mode with highest amplitude,

$$T_{\text{eff}} \propto \nu_0.$$

(3)

However, the observations show a wide variation (see Fig. 2 in that paper). These differences may be produced by other mechanisms playing a significant role, especially for hybrid pulsators (Antoci et al. 2014; Xiong et al. 2016). On the other hand, there are other physical processes that can modify the observed temperature such as the gravity-darkening effect (von Zeipel 1924). A high rotation rate modifies the shape of the star from a sphere

$$\nu_{\text{max}} = \sum \frac{A_i \nu_i}{\sum A_i},$$

(1)
to an ellipsoid. In that way, the temperature at the poles is higher than the temperature at the equator. The departure of temperature is defined by BF18 as

\[\delta T_{\text{eff}}(i) \equiv \frac{T_{\text{eff}}(i) - T_{\text{eff}}}{T_{\text{eff}}} \approx \left(1 - \frac{R(i) - \epsilon^2 \sin^2(i)}{1 - \frac{2}{3} \epsilon^2} \right) \beta - 1 \]

(4)

where \(i \) is the inclination from the line of sight; \(\beta \) depends on the importance of the convection (Claret et al. 1998), and \(\epsilon \) is the ratio between the centrifugal and gravity forces

\[\epsilon^2 = \frac{\Omega^2 R^3}{GM} \]

(5)

where \(M \) is the mass; \(T_{\text{eff}} \) and \(R \) are the mean effective temperature and the mean radius, i.e., the temperature and radius of a spherically symmetric star with the same mass as the rotating star. The value of the departure of temperature is positive (negative) for inclinations lower (higher) than mid-latitudes (\(i \sim 55^\circ \)) and higher its value with higher rotation rate up to the break-up frequency (\(\Omega \sim \Omega_c \)). Then, the departure can be up to \(\delta T_{\text{eff}}(i \sim 0^\circ) \sim 14.5\% \) for pole-on and down to \(\delta T_{\text{eff}}(i \sim 90^\circ) \sim 21.5\% \) for edge-on pure \(\delta \) Scuti stars. At mid-latitudes the non-spherical contributions of all structural parameters are the same as a spherically symmetric star (Pérez Hernández et al. 1999). Balona & Dziembowski (2011) studied the excitation mechanism without taking into account \(\Omega \) and \(i \). Therefore, we assume that equation (4) may be rewritten as

\[T_{\text{eff}} \propto v_0 \]

(6)

Moreover, the mode with highest amplitude can change with time due to any amplitude modulation mechanism (e.g., Barcelona Forteza et al. 2015; Bowman et al. 2016, see also Section 4.2). Taking into account pure \(\delta \) Scuti stars only, BF18 use \(v_{\text{max}} \) instead of \(v_0 \) as a seismic index,

\[\bar{T}_{\text{eff}} \propto v_{\text{max}} \]

(7)

finding a higher correlation for this scaling relation (see Section 4) and suggesting that gravity-darkening effect may be the cause of the observed dispersion.

2. Data and analysis

Our statistical study needs of a large sample of \(\delta \) Scuti stars. For that reason, we analysed a total of 2372 A and F stars with peaks within the typical frequency regime of this type of stars, including those studied in BF18. In addition, we cross-matched our list with that obtained by the Working Group 4 of the TESS Asteroseismic Operations Center that excludes well-known or suspected Ap or roAp stars (see Antoci et al. 2019, to compare stars from TESS first two sectors). This may include Pre-Main Sequence stars, High Amplitude \(\delta \) Scuti stars, and slow and fast rotators. We obtained the data from CoRoT Sismo-channel: 8 stars (Charpinet et al. 2006), Kepler Long (LC) and Short Cadence (SC) light curves: 1124 and 572 stars, respectively (Brown et al. 2011), and TESS satellite from sectors 1 to 11 (668 stars; Stassun et al. 2019). We used Kepler and TESS original data from MAST. Each sector lasts around ~27 days and the number of sectors depend on the position of the star in the sky. Therefore, the maximum duration of the light curve is of ~300 days. The cadence of the studied TESS light curves is ~2 minutes and,
therefore, the Nyquist frequency is 4167μHz far enough from the typical frequency regime for δ Scuti stars (Aerts et al. 2010).

Using δ Scuti Basics Finder pipeline (δSBF hereafter, Barceló Forteza et al. 2017 and references therein), we characterized their power-spectral structure. Thanks to this method (Barceló Forteza et al. 2015), we interpolate the light curve of each star using the information of the subtracted peaks minimizing the effect of gaps and considerably improving the background noise, thereby avoiding spurious effects (García et al. 2014). Finally, this pipeline produces more accurate and precise results in terms of the parameters of its methods. Its reasonably fast computing speed makes this pipeline appropriate for the study of large samples. We also include a superNyquist analysis (Murphy et al. 2013) up to 1132μHz only to those light curves with lower Nyquist frequency. This is of importance for those stars observed only with Kepler LC in order to properly correct their frequencies and amplitudes. We used the same threshold than in BF18 to study the peaks of the envelope, avoiding hundreds of low amplitude peaks that may be part of the grass (e.g., Poretti et al. 2009, Barceló Forteza et al. 2017, de Franciscis et al. 2019).

Finally, to test the background improvement of this pipeline for all TESS light curves, we used the same method as García et al. (2014) for the Kepler data. In addition, we take into account the duty cycle of the observations. The factor of improvement for light curves with duty cycles of 60% is up to 3. This factor increases up to 14 for duty cycles around 90%. Moreover, ν_{max} can be measured with high accuracy (an error up to 5%) with only 2-d light curves within this range of duty cycles (Moya et al. 2018). Therefore, TESS observations are long enough to obtain an accurate value of this seismic index.

3. Results

After the analysis, we classified the studied stars in δ Scuti, γ Doradus, and hybrid stars, as explained in Uytterhoeven et al. (2011). We find that 1442 of the 2372 stars (61%) are δ Scuti stars, 410 stars (17%) are δ Sci/γ Dor hybrids, 239 stars (10%) are γ Dor/δ Sct hybrids, and 281 stars (12%) are γ Doradus stars or other kinds of pulsators. We take into account those stars without significant pulsation in the γ Doradus regime since hybrid stars can have a higher convective efficiency (Uytterhoeven et al. 2011). This is of importance to accomplish all of our assumptions, and only take into account the excitation mechanism of pure δ Scuti stars oscillations.

Regarding the typical number of peaks in the envelopes, we find between 5 to 37 modes and a mean value of 21 modes (see Fig. 1). Using the acoustic ray dynamics, Lignières & Georgeot (2009) estimate the number of island modes and chaotic modes of the power spectra of δ Scuti stars versus the rotation rate. Although its result its only qualitative, we noted that the estimated number of 2-period island modes for a fast-rotating δ Scuti star is of the same order of magnitude (34 ± 2 modes).

The observed asymmetry of the envelopes (see Fig. 2) is in agreement with BF18 results. Around 62% of the envelopes have significantly higher asymmetry than the Sun ($>3\sigma$). This asymmetry is towards lower frequency modes and ~17% towards higher frequency modes. The higher number of cases towards lower frequencies may be indicative of the excitation mechanism for this kind of stars.

3.1. The $T_{\text{eff}} - \nu_{\text{max}}$ scaling relation

In order to calculate the parameters of this scaling relation we used several techniques. Following the steps in BF18 but including all the stars of the current sample, we made a linear fit between the measured temperatures T_{eff} and ν_{max} (LFIT, see Table 1 and Fig. 3). To test the probability that the relation between these two parameters is not random, we used the Pearson
correlation (r) and the probability of being uncorrelated (P_u; i.e. Taylor[1997]). This last parameter represents the probability that N measurements of a priori two uncorrelated variables gives a specific Pearson correlation or higher ($|r| \geq r_0$). For example, in the present case, the probability of being uncorrelated with a Pearson correlation coefficient of $R \sim 0.55$ is around

$$P_u = \frac{2\Gamma \left(\frac{N-1}{2}\right)}{\sqrt{\pi\Gamma \left(\frac{N}{2}\right)}} \int_0^{x_0} \left(1 - x^2\right)^{\frac{N}{2} - \frac{1}{2}} dx \approx 6 \times 10^{-116}\%,$$

(8)

where $\Gamma(x)$ is the gamma function, and N is the number of δ Scuti stars of the sample. Therefore, we find a statistically significant correlation ($P_u \leq 1\%$). In addition, comparing our results from those of BF18, we noted that the higher number of stars of this kind we add, the lower is the probability than these two parameters are uncorrelated although they have similar dispersion values (σ; see Table 1). As BF18 suggest in their study, this dispersion may be produced by gravity-darkening effect since 99.3% of the sample lie inside the expected temperature regime.

For the second technique (MFIT), we calculate the mean effective temperature for each 10 μHz bin of ν_{max}. In that way, the different contributions of the departure of temperature (δT_{eff}) produced by the gravity-darkening are cancelled (see Section 1). This is only possible if there are a significant amount of stars with a representative amount of different orientations. Then, we only take into account those bins with a population higher than the 1% of the total amount of stars (see Fig. 4). Once with those values, we made the fit finding a linear relation with a Pearson coefficient of 0.972. The difference between the parameters obtained from the previous technique can be explained with the shorter range we are forced to take.

The third method (KFIT) requires to know the structural parameters of the δ Scuti stars. We selected 8 CoRoT δ Scuti stars from Sismo-channel whose temperature (T_{eff}), rotation rate (Ω/Ω_C) and inclination (i) has been obtained in other studies (see Table 2 in BF18). Using Eq. [4] we can calculate their departure of temperature $\delta T_{\text{eff}}(i)$ and, finally, its mean effective temperature T_{eff}. Then, we make the $T_{\text{eff}} - \nu_{\text{max}}$ linear fit. We also find a similar relation than in BF18 but with higher correlation. We noted that the relative differences of mean temperature between all these methods are lower than 5% (see Section 4 for further discussion).

3.2. Mean effective gravity

To study the effect of the evolutionary stage in the frequency distribution, [Bowman & Kurtz, 2018] analysed the power spectra of a large sample of δ Scuti stars, including hybrids. They separated their sample taking into account the measured effective gravity, g_{eff}, considering three different groups: ZAMS ($\log g_{\text{eff}} \gtrsim 4.5$), MAMS ($3.5 \leq \log g_{\text{eff}} \leq 4.0$), and TAMS ($\log g_{\text{eff}} \lesssim 3.5$), for zero-, mid-, and terminal-age main sequence stars, respectively. They conclude that each evolutionary stage should be treated separately.

Here, we do the same exercise but taking into account the gravity-darkening effect. To calculate the mean effective gravity ($\overline{g_{\text{eff}}}$), intrinsic to the star, we use von Zeipel’s law (von Zeipel...
Fig. 6. From bottom to top, left panels: Cumulative histogram of the population of stars per v_{max} and higher \bar{g}_{eff}. Red dotted lines point to the 99\% of population limit (see text). We indicate the number of stars per group (N_\ast). From bottom to top, right panels: Relation between v_{max} and T_{eff} for δ Scuti stars of the same group (solid line, see text). The color of each star indicates its \bar{g}_{eff}. Bottom right panel: Each colored line represents the scaling relation for each group.
Table 2. Parameters of the $T_{\text{eff}} - \nu_{\text{max}}$ relation for each g_{eff} group

log g_{eff}	Slope	Y-intercept	σ	r	P_a	N_{in}	N_{out}
±0.125							
3.50	4.2 ± 1.1	7150 ± 150	6.43	0.354	15 × 10$^{-7}$	99.1	0.9
3.75	4.0 ± 0.3	6920 ± 60	4.96	0.556	19 × 10$^{-35}$	99.7	0.3
4.00	3.8 ± 0.2	6750 ± 40	4.25	0.680	11 × 10$^{-79}$	99.8	0.2
4.25	3.5 ± 0.1	6460 ± 40	3.36	0.858	4 × 10$^{-93}$	100.0	0.0

Notes. (†) Number of stars in and out of the expected departure of temperature limits taking into account $\Omega = \Omega_C$ (see text).

Fig. 7. Precision and accuracy of our methodology. The relative errors of the mean effective temperature (left) and mean effective surface gravity (right panels) have been calculated for typical photometric temperature errors (from top to bottom) and for different error values of surface gravity.

\[\log g_{\text{eff}} \approx \log g_{\text{eff}}(i) - \frac{4}{\beta} \log \left(\frac{T_{\text{eff}}(i)}{T_{\text{eff}}} \right), \]

(9)

where $\beta \sim 1$ for stars with fully radiative envelope (Claret 1998), and we obtain T_{eff} with LIFIT scaling relation. Since we can recover g_{eff} for 1390 of our δ Scuti stars sample (see Fig. 5), it is possible to observe if the evolutionary stage affects the $T_{\text{eff}} - \nu_{\text{max}}$ relation. In order to study the dependence of the parameters of the scaling relation with g_{eff}, we divided our sample in several groups of $\Delta \log g_{\text{eff}} \sim 0.25$ bins.

First of all, we observe that there is a top limit for ν_{max} related to the mean surface gravity (ν_{d}). To not to take into account spurious candidates, we define this parameter as the top frequency that contains the 99% of δ Scuti stars of its group (see left panels in Fig. 6). We find its dependence with the mean surface gravity with a linear fit,

$$\nu_{\text{d}} \sim (224 \pm 26) 10^{-4} g_{\text{eff}} + (240 \pm 30)$$

(10)

where the frequency is in μHz and the mean surface gravity in c.g.s..

Secondly, we made a $T_{\text{eff}} - \nu_{\text{max}}$ linear fit for each mean surface gravity group (see Fig. 6). We have not taken into account those groups with low population and neither those stars with $\nu_{\text{max}} > \nu_{\text{d}}$. In that way, we only take into account those frequency bins with enough stars to cancel the contribution of the gravity-darkening effect (see Section 1). Once with the scaling relation for each g_{eff} group (see Table 2), we observed that they change with the mean surface gravity. Then, we calculated the dependence of the slope and the y-intercept with this parameter, ν_{max}.

\[\hat{T}_{\text{eff}}(g_{\text{eff}}) \approx (a_1 g_{\text{eff}} + a_2) \nu_{\text{max}} + (a_3 g_{\text{eff}} + a_4) \nu_{\text{d}}. \]

(11)

Once we obtained all parameters (a_i), we use this improved $\hat{T}_{\text{eff}}(g_{\text{eff}})$ relation in Eq. [9] to recalculate the mean surface gravity, improving the selection of the respective group for each star. We repeat this process, iterating until the variation of the parameters is negligible ($|a_i/a_i| < 10^{-4}$). After a few iterations, we obtain the parameters of the improved $\hat{T}_{\text{eff}}(g_{\text{eff}}) - \nu_{\text{max}}$ scaling relation (see Table 3) with a probability to be uncorrelated of 8×10^{-212}.

Finally, we find a scaling relation between the frequency at maximum power and two intrinsic parameters of δ Scuti star structure. To calculate both \hat{T}_{eff} and g_{eff} for an individual star, we iterate Eq. [11] and [9] until these parameters converge to stable values. To test this method, we simulated $\sim 10^8$ stars with known
We noted that for equal T_{eff}, the lowest \bar{g}_{eff} δ Scuti stars excite the lowest frequencies (see bottom right panel of Fig. 9). Then, older stars should have lower frequency ranges as it is predicted by Christensen-Dalsgaard (2000). The highest frequency limit, $\sim 800 \mu$Hz, was already pointed by Bowman & Kurtz (2018) although they only take into account the maximum amplitude peak, v_0, instead of v_{max}. To choose a proper parameter to calculate the mean effective temperature is of importance to constrain rotation and inclination for each star (see Section 4.1). However, BF18 proved that there are not significant differences between the use of both parameters to calculate the scaling relation but v_0 produce a slightly higher dispersion and lower correlation due to the asymmetry of the envelope (see Section 4.2 for further discussion). We repeated the same test with our improved scaling relation (Eq. 11) finding similar parameters inside 1σ error (see Table 3). Therefore, combination frequencies should not affect significantly our results. In addition, there are several studies, both theoretical (e.g., Moskalik 1985; Nowakowski 2005) and observational (e.g., Breger & Montgomery 2014; Barceló Forteza et al. 2018; Saio et al. 2018) suggesting that peaks nearly or equal to v_{max} may be resonantly-excited modes. In that way, these modes should be taken into account to calculate v_{max}.

Another phenomenon we observe is a higher dispersion of temperatures for lower \bar{g}_{eff} groups (σ, see Table 1 and Fig. 6). The gravity-darkening effect depends on the ratio between centrifugal and gravity forces, ϵ^2 (see Eq. 4). Rewriting Equation 5 as

$$\epsilon^2 = \frac{\Omega^2 \rho}{\bar{g}_{\text{eff}}} \propto \frac{\Omega^2}{\bar{g}_{\text{eff}}}$$

we noted that a higher rotation is required for more dense stars to have the same ϵ^2, i.e., the same departure of temperature. Combining the gravity-darkening effect and the stellar evolution theory, we may explain the behaviour of temperature dispersion since radius increase with age (Christensen-Dalsgaard 2000). Assuming that the observed dispersion (σ) is produced by the gravity-darkening effect, we can define the threshold rotation rate (Ω_T) as the minimum rotation needed to observe a departure of temperature equal to σ. We can calculate the minimum rotation rate of a particular departure of temperature assuming a pole-on or equator-on star since intermediate values of inclination require higher values of rotation (see Section 1 and BF18). We use a numerical technique to calculate this parameter (see Section 4.1 for further details). Our results suggest that Ω_T/Ω_c decrease with the mean surface gravity (see Fig. 9) with the form

$$\frac{\Omega_T}{\Omega_c} \approx -0.17 \pm 0.03 \log \bar{g}_{\text{eff}} + 1.38 \pm 0.11$$

and, therefore, increase with age. This effect does not mean that rotation should increase with age (contrary to gyrochronology predictions; e.g., Soderblom 2010), but it might decrease less than density. In any case, all the values of Ω_T/Ω_c are in agreement with the great fraction of fast rotators for A-type stars found by Royer et al. (2007): $\Omega \approx 0.5\Omega_c$.

4.1. $i - \Omega$ maps

BF18 calculated the minimum rotation rate (Ω_{min}) for ~ 700 pure δ Scuti stars. This parameter can be obtained using Eq. 4 and assuming the star is pole-on or equator-on. Furthermore, the limits of the inclination from the line of sight (i) can also been obtained assuming $\Omega \sim \Omega_c$. But, the observed departure of temperature should be higher than the relative error of the measurement

$$\delta T_{\text{eff,obs}} > E T_{\text{eff}}/\tilde{T}_{\text{eff}},$$

to avoid the $i - \Omega$ degeneracy zone (see Fig 5 and 6 in BF18). This zone does not allow us to use this technique to differentiate between a moderate or slow rotator with any inclination from a extreme rotator with an inclination close to the mid-latitude ($i \sim 55^\circ$). In that case a deeper study is needed (e.g., Poretti et al. 2009; García Hernández et al. 2013; Escozra et al. 2016; Barceló Forteza et al. 2017).
Fig. 10. Frequency of the highest amplitude peak (ν_0, left panels) and frequency at maximum power (ν_{\max}, right panels) with time for five pure δ Scuti stars with detected RMC (one per row; see text). Black circles represent the measurements of each parameters for 20-day segments of the entire light curve. Blue dashed line is the mean value of all 20-d measurements and blue dashed-dotted lines are their error. Red line is the measurement of each parameter for a 1450-day light curve and red dotted lines are their error. The error bars for 20-d measurements of ν_0 are smaller than the symbol. For clarity reasons, we only plotted the error bars for 20-d measurements of ν_{\max} for these outside of the 1450-d measure error.
We used a different technique to obtain a map with all possible combinations of \(i - \Omega\). This method consists to simulate around one million of stars with different \(i - \Omega\) values and only select those which fulfill the observed departure of temperature \(\delta T_{\text{eff,obs}}\) (see Fig. 8).

To calculate the correct \(\delta T_{\text{eff,obs}}\), we take into account the improved scaling relation (Eq. 11). But it is not always possible since we may not know the measured \(g_{\text{eff}}\). In that case we use the LFIT scaling relation. The limits of rotation and inclination for the stars of our sample (see Table A.1), including \(i - \Omega\) maps, are only available in electronic form.

In this way, we find only five \(\delta\) Scuti stars are out of the expected regime of temperature for fast rotators: \(\delta T_{\text{eff,obs}} \lesssim -21.5\%\) or \(\delta T_{\text{eff,obs}} \gtrsim 14.5\%.\) The other 4 outsiders have an unknown value of surface gravity. These stars may be (pre-)Extremely Low Mass stars since they have similar frequency ranges and similar or higher surface gravity (Sánchez Arias et al. 2018).

4.2. Mode variations with time

There are several reasons to use \(\nu_{\text{max}}\) instead of \(\nu_0\) apart from its lower correlation. First of all, the visibility of the highest amplitude mode depends of the point of view of the observer (see Lignières & Georgeot 2009). Secondly, the highest amplitude mode is not fixed, i.e., the amplitudes can change with time and other modes can become the highest amplitude mode (i.e., Handler et al. 1998, Breger 2000b, Barceló Forteza et al. 2015). This is not the case for \(\nu_{\text{max}}\) that remains approximately constant during the cyclic changes (see Fig. 9).

To study the variability of \(\nu_0\) and \(\nu_{\text{max}}\) with time for stars with detected cyclic variations, we used SBF pipeline for each 20-d segments and we compared the results with these of the entire light curve. To find a sample of stars with cyclic variations, we studied the power spectrum of the entire light curve for all pure \(\delta\) Scuti stars of our sample. There, the variations in the parameters of a mode are observed as split peaks of this mode (e.g., Moskalik 1985, Shibahashi & Kurtz 2012; see also Fig. 11), i.e., a multiplet. The frequency shift between peaks, the ratio of amplitudes, and the symmetry of the multiplet may indicate the nature of the variation. On one hand, a symmetric multiplet could indicate a superNyquist frequency mode (Murphy et al. 2013) or a binarity nature of the system (e.g., Shibahashi & Kurtz 2012, Murphy et al. 2014). On the other hand an asymmetric multiplet can indicate a cyclic variation such as resonant mode coupling (RMC; Moskalik 1985, Barceló Forteza et al. 2015) or, in extreme cases, may suggest a definitive change in the stellar structure (Bowman & Kurtz 2014). Fig. 10 show the variation of \(\nu_0\) and \(\nu_{\text{max}}\) for 5 pure \(\delta\) Scuti stars with detected variations in some of their peaks in agreement with RMC. The sharp changes of \(\nu_0\) with time can be compared with \(\nu_{\text{max}}\) 20-d measurements. In fact, the \(\nu_0\) mean of the 20-d light curves is not in agreement with the value obtained with the entire light curve in all tested cases. This is not
the case for \(v_{\text{max}} \) since both values are equal within errors. Resonances seem not to modify \(v_{\text{max}} \) at least in the long term.

In this study, we also find that only 27\% of pure \(\delta \) Scuti stars have constant amplitude peaks (see Fig. 12). We recover the same proportion of stars with constant modes obtained by Bowman et al. (2016) if we take into account hybrid stars (38\%). We observed that the other 73\% of the pure \(\delta \) Scuti stars have modes with detected amplitude and/or phase variations. Looking to these phenomena for each \(g_{\text{eff}} \) group, we observe significant differences. The lower the surface gravity, the larger fraction of \(\delta \) Scuti stars with detected variable modes (from 52\% to 76\%), especially for those with asymmetric multiplets (from 16\% to 35\%), including these candidates to have RMC (from 5\% to 20\%). Moreover, these candidates with extrinsic causes of variation (superNyquist frequencies or binarity) are approximately constant with surface gravity (\(\sim 16\% \)). Finally, the proportion of stars observed with multiplets of only one detected sidelobe is approximately constant too (\(\sim 27\% \)). We also added this analysis star by star in Table A.1.

Our results suggest that the evolutionary stage seems to favour resonances towards older ages. This is in agreement with the increase of the g-mode frequencies with age (Christensen-Dalsgaard 2000) and its interaction with p-modes. In addition, the transition stages may be observed as permanent changes in the power spectra of the stars due to their restructuring.

5. Advantages of \(\bar{T}_{\text{eff}} \)

Once with the parameters of the scaling relation, we can use Eq. 11 to obtain the mean effective temperature of other pure \(\delta \) Scuti stars. We analysed the power spectra of 239 \(\delta \) Scuti candidates observed by CoRoT Exo-channel (Debosscher et al. 2009), calculating their \(T_{\text{eff}} \) for 174 of them (see Table A.2 only in the electronic form). The \(T_{\text{eff}} \) of these stars were estimated by fitting their spectral energy distribution (SED) to a grid of theoretical models (Kurucz, Castelli et al. 1997) using the Virtual Observatory tool (VOSA, Bayo et al. 2008). Extinction was left as a free parameter in the SED fitting process, ranging from zero to the value obtained from the NASA/IPAC Galactic Dust Reddening and Extinction service\(^2\) using (Schlafly & Finkbeiner 2011).

Figure 13 compares the effective temperatures obtained with VOSA (red bars) with those available in the COROTSKY Database (blue bars; Charpinet et al. 2006). We can see how the assumption of no extinction for the majority of the objects in COROTSKY leads to an underestimation of the temperatures. This effect may cause a misclassification since cool \(\delta \) Scuti stars are discarded and other kind of hot pulsators are included.

Moreover, different models based on different physical properties, may produce results with discrepancies up to the same order of magnitude (Sarro et al. 2013). For example, rotation can modify the observed colors (Collins & Smith 1985) with the consequent impact on temperature. In contrast, \(T_{\text{eff}} \) seem not to depend on these parameters. Therefore, we can conclude that the scaling relation based on \(v_{\text{max}} \) allow us to characterize \(\delta \) Scuti stars independently of rotation and also extrinsic parameters of the star such as extinction.

6. Conclusions

The relation between the power-spectral structure and the structural parameters for \(\delta \) Scuti stars has been a long-standing de-

Footnote:

2 https://irsa.ipac.caltech.edu/applications/DUST/
bate, especially since the beginning of large surveys thanks to space telescopes (e.g., Balona & Dziembowski 2011; Moya et al. 2017). In this work, we have studied the oscillation spectra of 2372 A-F pulsating stars observed by CoRoT, Kepler & TESS. From them, 1442 were pure δ Scuti stars. Once characterized their power spectra, we obtained the empirical scaling relation between the frequency at maximum power, the mean effective temperature, and the mean surface gravity (Eq. [1]). This is in agreement with the predicted frequency distribution for k-mechanism (Dziembowski 1977) since we detected higher frequency modes for higher temperature δ Scuti stars. In fact, our relation is similar to that found by Barceló Forteza et al. (2018). We also observed that old stars with low surface gravity present lower frequency ranges (see Eq. [10] and Fig. 6), just as opposite than young δ Scuti stars. This is in agreement with predictions too (Christensen-Dalsgaard 2000). Therefore, the evolutionary stage affects $T_{\text{eff}} - \nu_{\text{max}}$ relation and it must be taken into account to find the intrinsic parameters of these kind of stars ($T_{\text{eff}}, g_{\text{eff}}$).

Photometric and spectroscopic techniques to measure the temperature (T_{eff}) and the surface gravity (g_{eff}) may be significantly affected by gravity-darkening effect (von Zeipel 1924). Then, we have developed a methodology to correct such effect by iterating Eqs. [8] and [11] until convergence. Gravity-darkening effect may also explain the observed dispersion of the scaling relation (σ) and its decrease with $\log g_{\text{eff}}$ (see Table 2). Our results suggest that ageing stars may decrease its rotation slowly than its density, making them closer to its breakup frequency. Thanks to the departure of temperature of each individual star (Eq. [3]), we have delimited rotation and inclination from the line of sight, especially for fast rotators. In that way, it would be possible to correct their position in the HR Diagram and then improve age determination using isochrone fitting (e.g. Michel et al. 1999; Fox Machado et al. 2006). In addition, since δ Scuti stars are used as standard candles (e.g. McNamara 2011; Ziaei et al. 2019), it would be feasible to improve the distance determination to globular clusters and other galaxies. Moreover, exoplanetary research may benefit from our method since the calculation of the habitable zone depends on stellar parameters such as T_{eff} (Kopparapu et al. 2014).

In conclusion, we suggest the frequency at maximum power (ν_{max}; see Eq. [1]) as a seismic index since it is a proper indicator of the mean temperature and surface gravity of the star. It is independent of rotation and extrinsic parameters such as inclination or extinction. Furthermore, ν_{max} is not as affected as the highest amplitude mode (ν_{0}) by resonances. This property is especially useful for older stars since age benefits the interaction between modes (see Fig. 12). Finally, ν_{max} variation may indicate the restructuration of the stars and their power spectra between different transition stages.

Acknowledgements. Comments from J.A. Caballero are gratefully acknowledged. Authors wish to thank the referee for useful suggestions that improved the paper. We also thank the CoRoT, Kepler, and TESS Teams whose efforts made these results possible. The CoRoT space mission has been developed and was operated by CNES, with contributions from Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. Funding for Kepler’s Discovery mission is provided by NASA’s Science Mission Directorate. Funding for the TESS mission is provided by the NASA Explorer Program. Authors acknowledge the effort made by TASOC WG4 that helped us in our target selection. This publication makes use of VOSA, developed under the Spanish Virtual Observatory project supported by the Spanish MICIU through grant AyA2017-84089. VOSA has been partially updated by using funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement No 776403 (EXOPLANETS-A). SBF and DB has received financial support from the Spanish State Research Agency (AEI) Projects No ESP2017-87676-C5-1-R and No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astro-biología (INTA-CSIC). AM acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 749962 (project THOT). SMR acknowledges financial support from the Spanish MICIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). JCS and AGH acknowledges funding support from Spanish public funds (including FEDER funds) for research under project ESP2017-87676-C5-2-R and ESP2017-87676-C5-5-R. JCS also acknowledges support from project RYC-2012-09913 under the “Ramón y Cajal” program of the Spanish Ministry of Science and Education. AGH acknowledges support from “Universidad de Granada” under project E-FQM-041-UGR18 from “Programa Operativo FEDER 2014-2020” programme by “Junta de Andalucía” regional Government.
Moya, A., Suárez, J. C., García Hernández, A., & Mendoza, M. A. 2017, MN- RAS, 471, 2491
Murphy, S. J., Bedding, T. R., Shibahashi, H., Kurtz, D. W., & Kjeldsen, H. 2014, MNRAS, 441, 2515
Murphy, S. J., Shibahashi, H., & Kurtz, D. W. 2013, MNRAS, 430, 2986
Nowakowski, R. M. 2005, Acta Astron., 55, 1
Pérez Hernández, F., Claret, A., Hernández, M. M., & Michel, E. 1999, A&A, 346, 586
Poter, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85
Royer, F., Zorec, J., & Gómez, A. E. 2007, A&A, 463, 671
Saio, H., Bedding, T. R., Kurtz, D. W., et al. 2018, MNRAS, 477, 2183
Sánchez Arias, J. P., Romero, A. D., Córcoles, A. H., et al. 2018, A&A, 616, A80
Sarro, L. M., Debusscher, J., Neiner, C., et al. 2013, A&A, 550, A120
Schlafly, E. F. & Finkbeiner, D. P. 2011, ApJ, 737, 103
Shibahashi, H. & Kurtz, D. W. 2012, MNRAS, 422, 738
Soderblom, D. R. 2010, ARA&A, 48, 581
Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138
Suárez, J. C., García Hernández, A., Moya, A., et al. 2014, A&A, 563, A7
Taylor, J. 1997, Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, 2nd Edition (University Science Books)
Uytterhoeven, K., Moya, A., Grigahcène, A., et al. 2011, A&A, 534, A125
von Zeipel, H. 1924, MNRAS, 84, 684
Xiong, D. R., Deng, L., Zhang, C., & Wang, K. 2016, MNRAS, 457, 3163
Ziaali, E., Bedding, T. R., Murphy, S. J., Van Reeth, T., & Hey, D. R. 2019, MNRAS, 486, 4348