Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawaiʻi

Johanna L K Wren, Donald R Kobayashi

Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study we assess larval reef fish distributions in the waters west of the Big Island of Hawaiʻi using both in situ and model data. Catches from Cobb midwater trawls off west Hawaiʻi shows that reef fish larvae are most numerous in offshore waters deeper than 3,000 meters and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5 % of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawaiʻi, and the dispersal of larvae throughout the Hawaiian archipelago.
1 Johanna L. K. Wren* & Donald R. Kobayashi

2 1Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai‘i, 1000 Pope Road, Honolulu, HI 96822, USA

4 jwren@hawaii.edu

6 2NOAA Fisheries, Pacific Islands Fisheries Science Center, NOAA IRC, 1845 Wasp Boulevard, Building 176, Honolulu, HI 96818, USA
Introduction

Population connectivity, defined as the exchange of individuals among geographically separate sub-populations (Cowen et al. 2007, Fogarty & Botsford 2007, Pineda et al. 2007, Cowen & Sponaugle 2009) is widely recognized as important in effective marine conservation (e.g. Jones et al. 2007, Toonen et al. 2011, Treml et al. 2012). Because traditional maximum sustainable yield fisheries management has consistently failed (Sharp 1995, Hilborn 2011), there is a general movement towards Ecosystem Based Management (EBM) to replace single-species management approaches (Slocombe 1993, Panel 1999, Browman et al. 2004, Pikitch et al. 2004, Kappel et al. 2006, McLeod & Leslie 2009). A common approach in EBM is to establish networks of marine protected areas (MPAs) to protect breeding populations which can then “spill-over” into surrounding areas to enhance stocks in areas of heavy human exploitation (Gerber et al. 2005, Halpern et al. 2009, Lester et al. 2013). Management efforts focus on regulating the adult fish, but an effective management for healthy ecosystems and sustainable fisheries requires understanding of not only adult habitats and spawning areas, but also larval dispersal and population connectivity (Gaines et al. 2010, Toonen et al. 2011).

The majority of marine organisms show a bi-phasic life style with a free-living, dispersive larval stage, that can last hours to weeks, and a more sessile or sedentary adult form (Thorson 1950, Thresher & Brothers 1985, Strathmann 1993, Raff 2008, Marshall et al. 2012). Although fish are mobile animals, most adult reef fish show strong site (Meyer et al. 2000, 2010, Wetherbee et al. 2004), thus dispersal is primarily limited to the egg and larval stages when the pelagic propagules can be transported across wide geographic areas depending upon the oceanographic regime. The importance of the larval life stage of marine fish and invertebrates in understanding population dynamics has long been recognized (Thorson 1950, Knight-Jones 1953, Scheltema...
yet little is still known about dispersal of marine larvae, and factors affecting dispersal and near shore retention (Levin 2006, Hellberg 2009, Cowen & Sponaugle 2009). However, an important driver of horizontal dispersal is the vertical strata occupied by these early life-history stages (Olivar & Sabate 1997, Muhling & Beckley 2007) since abiotic and biotic gradient vary greater on the vertical scale than the horizontal scale.

The Hawaiian Archipelago is located in the central north Pacific gyre and ocean circulation patterns are primarily driven by prevailing easterly trade winds (Lumpkin 1998). The main surface flow along the island chain is from east to west: from the Main Hawaiian Islands (MHI) to the North Western Hawaiian Islands (NWHI) and westward into the Central and Western Pacific (Fig 1). The Hawaiian Lee Counter Current that flows along the southern perimeter of the islands is the main mode of surface flow towards the Hawaiian Island chain from the west to the east (Chavanne et al. 2002, Qiu & Durland 2002). Cyclonic (cold core) and anti-cyclonic (warm core) wind-generated mesoscale eddies are consistently formed in the lee of the Hawaiian Islands (Patzert 1969, Lumpkin 1998, Jia et al. 2011). Cold core eddies travel northeast along the southern perimeter of the island chain, transporting water from the Island of Hawai‘i, henceforth referred to as Big Island, along the MHI chain (Seki et al. 2001). Warm core eddies are spun up off the Big Island and travel southwest, transporting water away from the island chain (Bidigare et al. 2003). These eddies have the potential to boost primary production as well as aid with water dispersal or retention within the islands themselves (Seki et al. 2002).

The hydrodynamic environment around the Hawaiian Islands is complex making it difficult to generalize physical dispersal pathways for pelagic propagules (Friedlander et al. 2009). It has long been hypothesized that the mesoscale eddies that form in the lee of the Hawaiian Islands are responsible for retaining larval fish near the islands, preventing the larvae from being swept away
from appropriate settlement habitat (Lobel & Robinson 1983, Lobel 1989, 2011). The majority of spawning in Hawaiian reef fishes takes place during spring and summer (February through June), although most reef fish are believed to have low levels of spawning year round (Watson & Leis 1974, Lobel 1989, Bushnell et al. 2010). Reef fish spawning season in Hawai‘i coincides with “eddy season” (Lobel & Robinson 1983, Lobel 1989, 2011), that is, the time of year when eddies are more prevalent (Flament et al. 1996). Donahue et al. (2015) showed that timing of spawning and the subsequent timing with the presence of near shore eddies is more important than the location of spawning for larval settlement success in the lane snapper (Lutjanus synagris) off Cuba. In Hawai‘i, the temporal and spatial dynamics of eddy entrainment of propagules is not well understood, and while mesoscale eddies are shown to have an effect on larval dispersal elsewhere (Baums et al. 2006, Harrison et al. 2013), the effects of mesoscale eddies in larval transport and settlement in Hawai‘i has proven contradictory (Vaz et al. 2013), ranging from shown correlations between time of spawning and eddy activity (Lobel 1989) to no observed effect on recruitment (Fox et al. 2012). Spawning has also been linked with lunar cycles, and many reef fishes in Hawai‘i are shown to spawn on or near full moon (Walsh 1987, Bushnell et al. 2010).

Studies on larval reef fish distributions suggest that larval abundances of insular marine fish that spawn pelagic eggs are more numerous off shore than near shore (see Leis & Miller 1976, Wren & Kobayashi pers. obs.). Many of the most common reef fish species in Hawai‘i fall into this category, and larvae of Pomacentrids, Chaetodontids and Acanthurids are very rare in inshore plankton tows, but numerous in deeper, offshore tows (Leis & Miller 1976) although this does depend on the stages of the larvae sampled by the gear. Studying later stage larvae in situ is generally intractable, because most shorefish larvae are not easily captured/identified/enumerated, are found in low densities, and are spread over large geographical areas (Clarke 1991).
approach that could yield insights into the vertical and horizontal distributions of these elusive early life-history stages is using computer simulation coupled with field sampling (Botsford et al. 2009, Leis et al. 2011, 2013, Sponaugle et al. 2012, Kough et al. 2013, Wood et al. 2014).

Given the common spawning season and the presence of mesoscale eddies in the lee of the Hawaiian Islands, we wanted to test the hypothesis that there is a common “larval pool” in the lee of Big Island (Sale 1978). This was accomplished with field sampling and through numerical modeling. We use two different biophysical modeling approaches to investigate larval distributions. The first approach uses a computer simulation to hindcast likely sites of propagule origin from midwater trawl samples and employs statistical tools to indicate the most likely vertical strata of propagule occupancy. This information will improve understanding of horizontal and vertical movements as well as be useful for targeted sampling of these elusive early life history stages. The second approach uses computer simulation to forecast field samples, in essence generating a virtual “larval pool”, and uses a similar comparative approach to identify the most likely vertical strata of propagule occupancy using observed and predicted patterns of relative larval abundance.

Methods

Field sampling

Midwater trawl samples collected during the SE1104 research cruise aboard the NOAA ship Oscar Elton Sette July 1-July 14, 2011 were used in this analysis. Two replicate 2-hour dual-warp Cobb midwater trawls (see Baltz et al. 2002 for gear specifications) were conducted nightly, at ca. 2100 and 0100 hrs, at a speed of 3 knots at 11 stations off the west coast of the Big Island (Fig 2). Maximum trawl depth targeted the shallow scattering layer, and was determined nightly.
from EK60 active acoustics identification of the lower boundary of the shallow scattering layer, which ranged between 150-250m. Each trawl sampled three depth strata evenly (stepped oblique) divided between 50m and the deepest bounds of the scattering layer. Tow time for each depth interval was 20 minutes following net equilibration at the deepest depth, for a minimum duration of 1h at depth and a total trawl time of approximately 2h. The trawl is constructed of graded nylon mesh (6", 3", and a 1.5" liner terminated with a 1mm Nitex plankton net) and has a mouth area of approximately 690 m2 at the most forward position of the coarsest mesh.

Trawl catch was quantified based on weight and volume, and the catch was sorted into six categories: Myctophid fish, non-Myctophid fish, cephalopods, crustaceans, gelatinous zooplankton and miscellaneous zooplankton. From the non-Myctophid fish category, shore fish larvae were removed and preserved in 95% EtOH. Fish larvae from seven familial or similar groups, Chaetodontidae; Acanthuridae; Pomacanthidae; Labridae and Cirrhitidae; Muraenidae; Aulostomidae and Fistulariidae; and Mullidae, were measured and counted. These groupings were chosen because they are relatively easy to distinguish visually and their members are almost exclusively shore fish (Mundy 2005, Randall 2007). Identification to species level was not possible in the scope of this study due to time constraints and difficulty/impossibility of identification without genetic analysis (Mundy, pers. comm.) for many larval fish (e.g., Acanthurids, Pomacanthids). It is important to note that we used trawl catch data for the family of Acanthurids, not specifically for *Zebrasoma flavescens*.

Dispersal modeling

Larval dispersal simulations were performed using a two dimensional, Lagrangian advection diffusion model (Polovina et al. 1999, DeMartini et al. 2013). In the model, larvae are
moved at each timestep by advective displacement caused by water flow combined with a random
displacement caused by diffusion. Current velocities used by the model consist of daily snapshots
of u (east) and v (north) velocities obtained from a regional implementation of the HYbrid
Coordinate Ocean Model (HYCOM) for the Main Hawaiian Islands (MHI) [HYCOM described
in the following section]. We used an eddy diffusivity of 250 m2/s, which is derived from drifters
in the MHI (Jia pers comm, Rivera et al. 2011). Spawning habitat was defined in the model as a
suite of 302 sites uniformly located every 5 km around the perimeter of each of the emergent MHI.
The dispersal model is conventionally run forward in time, but is capable of running in reverse
(backwards in time) for hindcasting purposes, facilitated by using off-line storage arrays of the
daily currents.

Ocean circulation data

The HYbrid Coordinate Ocean Model (HYCOM), a data-assimilative ocean circulation
model developed by the multi-institution HYCOM Consortium, was the source of the modeled
ocean circulation flow fields used in this study. Forcing and assimilation for HYCOM are
accomplished using the Navy Operational Global Atmospheric Prediction System (NOGAPS)
winds to drive the dynamics, and the Navy Coupled Ocean Data Assimilation (NCODA) system
to incorporate external measurements of satellite altimetry, sea surface temperature, and \textit{in-situ}
vertical profiles of temperature and salinity. The NOGAPS and NCODA data can vary in temporal
resolution from hours to weeks as well as be snapshot inputs from vessels, moorings, or profiling
buoys; however, the standard temporal resolution of the HYCOM output data is daily, which is
what was used in this study (Jia et al. 2011). The daily HYCOM data is a regional implementation
of the University of Miami global model using K-Profile Parameterization for characterizing the
mixed layer, and is made available at the Asia-Pacific Data-Research Center (APDRC) at the
International Pacific Research Center (IPRC), School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi (point of contact Dr. Yanli Jia). Daily HYCOM data covering the temporal domain of the calendar year 2011 and the spatial domain of 166°W to 150°W longitude and 16°N to 26°N latitude were downloaded as NetCDF files using the APDRC/IPRC website as a data conduit.

HYCOM is vertically structured with 32 layers ranging in thickness from 5-500m, with thinner layers in the upper portions of the water column and an average layer width of 10m in the upper 40m of the water column. For this exercise, several different vertical strata and averages of vertical strata of the HYCOM data were used: surface waters representing the upper 5m only, 50m depth only, 100m depth only, 0-50m average, and 0-100m average. Extraction and averaging was undertaken using R language subroutines (R Core Team 2012). The horizontal structure of the HYCOM is a variable width resolution averaging ~0.04 degree over both longitude and latitude. For ease of use, the daily variable resolution output was regridded to a daily uniform 0.04 degree coordinate system in latitude and longitude for the study domain using the mapping software Generic Mapping tools (GMT) subroutines named blockmean and surface (Wessel & Smith 1991).

Hindcast simulation

Hindcasting simulations used the dispersal model (described above) run backwards in time with reversed currents (i.e., starting at the trawl site and extending up to 75 days prior to the trawl date). This approach was used to predict the likely origination site and depth strata of occupancy for larval shore fish caught at the 11 trawl sites by comparing the five different depth scenarios (depths=the upper 5m, 50m depth, 100m depth, 0-50m average, and 0-100m average) and by using
a plausible range of pelagic larval durations (PLDs=15, 30, 45, 60, and 75 days). The averaged depth strata were used in an effort to emulate diel vertical migration (DVM) over 50m and 100m vertical horizons, realizing that this is only an approximation of what DVM would cause. For each trawl sample and PLD/depth combination, 1000 simulated hindcast trajectories were generated for analysis. When a particle was within 5km of the 302 pre-defined spawning sites on day 1 it was defined as originating from that spawning area.

Forecast simulation

In the forecast simulation the dispersal model was run in conventional forward mode. This approach was intended to simulate a generic “larval pool” for shorefish (*sensu* Sale 1978), and specifically for the yellow tang, *Zebrasoma flavescens*. We used the HYCOM current vectors from the 100m depth layer, based on results from our hindcast simulation (see results section) and the PLD was parameterized after the yellow tang and set to 54 days (Claisse, McTee, et al. 2009, Christie et al. 2010). Size at settlement for *Z. flavescens* is estimated at 30-55mm total length (Claisse, McTee, et al. 2009). Virtual larvae were released daily from the spawning habitat during 2011. For each of the 302 release sites and for each day, 1000 simulated forecast trajectories were generated for analysis. Pelagic abundance of older larvae (defined as ages >=50% of PLD) was tabulated into daily 0.1° x 0.1° bins for the trawl survey dates, and actual larval catch of Acanthurids was compared to simulated larval abundance at that point in time and space. There are to our knowledge no published growth rates for larval yellow tang, thus the age of the Acanthurids used to parameterize our model are estimates. Based on the size at settlement (~30 mm) and a 55 day PLD, we felt comfortable comparing trawl catch with data modeled using a 54 day PLD and estimating the larval pool using 50% of the PLD.
Statistical methods

A generalized additive model (GAM) was constructed in R using the mgcv package (Wood 2011), and used to characterize effects from vertical layering and PLD on the predicted origin. Operationally this was accomplished by using the GAM to predict hindcast settlement success. Smoother functions for the significant terms were plotted and examined. Degrees of freedom for the smoothing splines were scrutinized and intentionally kept as low as possible (1-2 inflection points) to minimize issues of overfitting the data.

GAM was also used to characterize the relationships between actual larval catch and simulated larval abundance. We used in situ Acanthurid abundances from trawl catches and compared them to modeled abundances from the forecast simulation parameterized after Zebrasoma flavescens. A key linkage between larval abundance and larval catch involves efficiency of the sampling gear (e.g., Clarke 1983), thus the GAM was parameterized with variables that have been known to impact visual avoidance such as moon phase and moon angle. Additionally, moon phase is known to affect biomass and abundance of mesophotic boundary layer communities in the study region (Drazen et al. 2011). Moon data was obtained from the open source astronomical package named PyEphem written in the programming language Python. Moon phase and moon angle were calculated for the individual trawls based on their position, date, and time of day/night. Because both the moon phase (amount of illumination) and moon angle (important scalar of the amount of illumination) could be independently or jointly important we entered them as a bivariate smoothing term in the GAM function. The k term for the smoothers were set to k = 5 for simulated larval abundance and k=6 for the moon phase and moon angle smoothing term (to keep inflection points at a reasonable level), and a Poisson distribution was assumed for the GAM. While there are likely many other variables that could relate to the
efficiency of the sampling gear, these were thought to be the most important because tow speed and weather conditions were relatively constant over the course of these surveys.

Results

Field sampling

A strong cyclonic eddie was present off the west shore of Big Island during field sampling. Additionally, there was a weaker, anti-cyclonic eddie near shore, moving water southward along the coast south of Kailua-Kona. Mean circulation on the Kohala shelf was north-eastward until the ʻAlenuihāhā channel (between Maui and Big Island) pushed surface waters westward (Fig 3). Most of our stations were located in the smaller anti-cyclonic eddy near the Kona coast. Trawling took place between a new moon on June 30, 2011 and a full moon on July 14, 2011.

Larval shore fish counts were highest in stations further offshore (Fig 4), consistent with the observations of Leis & Miller (1976) and Leis (1982). Offshore stations had the greatest diversity of shore fish, with individuals from all seven familial groups present (Table 1). Acanthurids were present at 8 of the 11 stations and mirrored total shorefish abundance patterns in the trawl catch (Fig 4). Variability between replicates was low relative to variability between stations. The average length of the collected Acanthurids was 26.1 mm pre-caudal length (PCL); near their size at recruitment (Claisse, Kienzle, et al. 2009).

Hindcasting simulation

A GAM was constructed to identify effects from vertical layering and PLD on the predicted origin by using these variables in a model predicting hindcast settlement success. PLD is highly significant (p<0.001) for dispersal in the model. The PLD function shows that shorter PLD’s coincide with higher hindcast settlement success, and that after 40 days there is little change in the...
probability of originating from a suitable adult habitat (Fig 5a). After 40 days of dispersal the effect
PLD has on dispersal ability remains stable, indicating that fish with PLD’s longer than 40 days
have the same potential for dispersal based on PLD alone. Thus, a 45 day PLD can be
representative for longer PLD’s, which has implications for future dispersal modeling as well as
predicting dispersal ability based on PLD alone.

The vertical function from the GAM suggests that the depth layer that is most optimal for
larval shore fish in order to have originated from a suitable adult habitat is 100m (p<0.001)
followed by the 50m depth layer (p<0.05) (Fig 5b). There is no statistically significant difference
between the effect of the surface strata or the two averaged (0-50m and 0-100m) strata on origin
sites according to the GAM, indicating that the surface layer is disproportionally influencing the
averaged depth scenarios.

Forecasting simulation

The forecast simulations showed that actual larval catch was significantly related to
simulated larval abundance (p<0.05) with the moon phase and moon angle surface (p<0.001)
explaining 67.5% of the deviance (Fig 6). The relationship between the larval catch and simulated
larval abundance was positive and the moon variables were incorporated with lower larval catch
associated with higher moon angle (moon higher in the sky) and higher moon phase (brighter
moon). There was indication of an intermediate moon phase corresponding to higher larval catch
visualized by the hump on the surface in Figure 6.

Discussion

We corroborated the larval dispersal model for July 2011 by field sampling, showing that
the predicted larval densities are found to significantly feed into a plausible model of abundance.
While treating larvae as passive particles in the dispersal simulation, and accounting for larval behavior and gear catchability through the lunar phase and angle variable in the GAM, we were able to account for nearly 68 percent of the variance when modeling Acanthurids. Furthermore, all seven familial categories of larval fish showed the same distribution pattern in trawl data with higher abundances off shore compared to near shore, lending further evidence of the presence of a common larval pool in the water off Kona (Sale 1978).

There is ample evidence that larval fish undergo both ontogenic and diel vertical migration and that incorporating these behaviors into a biophysical model can increase the predictive power of the model (Drake et al. 2011, 2013, Sponaugle et al. 2012, Sundelöf & Jonsson 2012, Robins et al. 2013, Bidegain et al. 2013). However, little is known about the behavior of larval Acanthurids in general and *Z. flavescens* in particular. There are published swimming speeds for Acanthurids in the field and they illustrate a highly variable behavior and swimming speeds of late stage larvae (Sancho et al. 1997, Leis & Carson-Ewart 2000). Our model is parameterized for larvae approximately half way through their larval period (compared with *in situ* larvae that range between 10 and 30 mm in standard length). With such variable size and range of developmental stages, we could not venture a guess as to the swimming speed of the larvae, thus we opted for a conservative approach. Keeping the modeled larvae passive seemed appropriate in this initial evaluation of the performance of the model. Keeping larvae passive can also yield information about possible drivers of the observed distribution; achieving a high congruence between *in situ* and modeled distributions when modeled larvae were not attributed any behavior and were treated as passive drifters, indicates that the observed larval distribution is forced by physical oceanographic drivers. For example, Kough and colleagues (2013) identified an area in the Caribbean where lobster larvae aggregated, referred to as ‘nursery areas’ in the study, and
hypothesized that this might be a physical oceanography-driven aggregation area for lobster larvae that could play an important role in the management of the lobster stock.

The presence of a mesoscale eddy during field sampling may have helped retain larvae near the trawl sites, driving the pattern of observed as well as modeled larval distributions. It has long been hypothesized that the eddies that form along the Kona coast are responsible for retaining larvae nearshore (Sale 1970, Leis & Miller 1976, Lobel 1989, 2011, Vaz et al. 2013), thus increasing the chance of settlement success and self-recruitment. Eddies form off Kona mainly during summer when the trade winds are stronger, which coincides with the major spawning season of most Hawaiian reef fish (Walsh 1987, Bushnell et al. 2010). The eddies develop 10-15 days after a strong wind event and last for 55-70 days (Patzert 1969, Lobel & Robinson 1986). The majority of eddies move northwest at approximately 6 cm/s which may aid in transporting larvae away from the Big Island and along the south perimeter of the Main Hawaiian Island chain (Patzert 1969, Vaz et al. 2013). However, some eddies remain stationary in the lee of Big Island, and have been observed to remain in that location for 70 days (Lobel & Robinson 1986), making it possible for larvae spawned on reefs along the leeward coast of the Big Island to be entrained in eddies and remain near the coast for the duration of their pelagic larval stage.

The larger 'off shore' eddy present during our field sampling (Fig 3) spun up on or near June 1, 2011 and was present throughout sampling, whereas the smaller eddy located close to shore during field sampling spun up on or near July 3, 2011 and lasted the duration of field sampling. Considering that Z. flavescens spawns at full moon (Bushnell et al. 2010) and the PLD is estimated at 55 days (Claisse, McTee, et al. 2009, Christie et al. 2010), it is likely that larvae we caught during trawling were spawned near the full moon on either May 17 or June 16, 2011 and possibly entrained in the eddy shortly thereafter. Genetic analysis of the Acanthurid larvae can be
done to verify the origin location of the larvae against published genetic connectivity data (Eble et al. 2009, Christie et al. 2010).

The hindcast simulation showed that larvae can reach the full extent of the Main Hawaiian Islands (MHI) in 40-45 days, which is important for future dispersal modeling studies. Connectivity patterns in the MHI will not change significantly if PLD is increased past 45 days, thus connectivity studies using a 45 day PLD can be representative of fish species with a longer PLD in Hawai‘i. The results from the hindcasting simulation suggest that the larvae should primarily occupy the 100m depth layer if settlement success is the primary driver. Little is known about larval shore fish depth distributions around the Hawaiian Islands, however Acanthurid larvae have been found as deep as 575m in the Caribbean, with the highest concentrations at or slightly above the chlorophyll a maximum (Oxenford et al. 2006) which in the study was at 100 m. Boehlert & Mundy (1996) reported that Acanthurids are found in the upper 80 m in waters off O‘ahu (mean mixed layer depth at Station ALOHA north of O‘ahu (22° 45'N, 158° 00'W) is 60.1m [http://hahana.soest.hawaii.edu/hot/hot-dogs/mldepth.html]). The chlorophyll maximum at Station ALOHA is located near 110 m depth and the salinity maximum near 100 m [http://hahana.soest.hawaii.edu/hot/methods/chl.html; http://hahana.soest.hawaii.edu/hot/methods/salinity.html], making our hypothesis derived from model results that larvae should occupy the 100m depth layer plausible.

By identifying both physical and biological features, such as preferred depth strata and the effect of PLD on dispersal ability, we can better understand and evaluate population dynamics in fish or invertebrate populations. Essential Fish Habitat (EFH) mapping is used in determining areas of high importance for a variety of commercially important fish species, but little to no consideration is taken to the larval stage of the fishes (Kobayashi pers. comm., Warner et al. 2000).
Additionally, creating an archipelago-wide larval hotspot map will aid in identifying important larval fish habitat and this study lays the groundwork for that effort. The approach of generating a baseline population of organisms and applying a simulated capture process to allow comparison with actual catch data is similar to approaches used in stock assessment methodologies. The methodological approach called stock synthesis (Methot 1990) is an example of such an inverse type approach (Murray-Smith 2000). This approach is of value for identifying complex yet important drivers of the system under study when an observed value is the synergistic result of layered and interacting processes. In such instances the parameters cannot be simply incorporated in conventional linear approaches modeling observed values against a suite of predictor variables. The insights into the capture process presented here might be useful for future inverse modeling of insular fish stocks and their recruitment dynamics.

As more detailed abundance, behavior and growth data become available for Zebrasoma flavescence, the modeling approach can be better tuned to model both patterns of connectivity and the spatiotemporal nature of the “larval pool”. Future trawl surveys can test the hypothesis of the 100 m depth occupancy, as well as target areas that are predicted to have high larval abundance if specimen acquisition is prioritized. Similarly, such areas of high larval abundance can potentially be protected from deleterious effects in an effort to preserve essential fish habitat and areas of particular concern, ideas that have received national attention in both the public and scientific communities (Warner et al. 2000, Kough et al. 2013). If species are recruitment-limited and/or the propagules are localized and vulnerable in time and space, pelagic areas might be warranted for management scrutiny.

Computer simulation modeling proved to be a powerful tool for furthering our understanding of larval transport in the Hawaiian Islands region. Even though the parameterization
of the model was kept conservative with respect to larval behavior and life history traits (e.g. we did not include mortality, ontogenic or diel vertical migrations, or swimming behavior) we were able to reproduce in situ larval distributions and account for two thirds of the variance in the model. By ground-truthing the dispersal model with field sampling, we took steps towards making predictions about the spatiotemporal dynamics of the larval pool in west Hawai‘i. Future projects will incorporate additional years of in situ trawl catches so that we can make the biophysical model predictive, thus rendering it a valuable tool in management efforts of important commercial fish, not only the reef associated yellow tang (Zebrasoma flavescens) but for commercially important bottomfish in Hawai‘i such as eteline snappers.

Acknowledgements
The authors would like to thank B. Mundy for invaluable help with larval fish identifications, Y. Jia for HYCOM data, and R. J. Toonen, J. Kool and two anonymous reviewers for greatly improving this manuscript. We also thank the crew of NOAA Research Vessel Oscar Elton Sette and J. Denton, A. Shimada, N. Shoji, M. Seki, M. Duncan, L. Richards and E. Howell for help with trawling and sorting.
Figure 1: Main surface currents around the Main Hawaiian Islands (after Lumpkin 1998).
Figure 2: Location of Cobb trawl stations off the Kona coast of Hawai‘i Island used in this study and visited by the SE1104 cruise.
Figure 3. Mean HYCOM currents between July 2 and July 13, 2011, for Big Island of Hawai‘i.

Red circles show trawl sites during field sampling.
Figure 4: Summary of larval shorefish catch from Cobb trawl samples used in this study. Bar graphs show average counts of larval shore fish for each station caught during the SE1104 cruise. The graphs are placed in the location of the trawl.
Figure 5: Generalized additive model output showing relationships between modeled settlement success and a) PLD and b) depth strata used in biophysical model. Higher values denote higher modeled settlement success. Gray area shows +/- two standard errors.
Figure 6: Generalized additive model output showing relationship between trawled larval abundance of Acanthurids and a) simulated larval Acanthurid abundance and b) a moon phase and moon angle surface. The linear predictor is the observed and modeled abundance from figure.
a). Higher values denote higher values of modeled larval catch and gray area in a) shows ± two
standard errors.
Table 1: Summarizing larval shore fish counts from seven familial groups, as well as latitude, longitude and moon phase for all stations visited during SE1104 cruise from July 1 to July 14th, 2011. Trawl 6 and 8 has no data on larval shore fish abundance because the cod end of the trawl was compromised by cookie cutter sharks (*Isistius brasiliensis*) and trawl catch lost.

Trawl number	Station number	Longitude	Latitude	Moon Phase	Moon Angle	Pomacanthidae	Acanthuridae	Chaetodontidae	Labridae & Cirrhitidae	Muraenidae	Fistulariidae	Mullidae
1	1	203.50	19.65	4.5	36.8	24	5	2	3	1	2	15
2	1	203.47	19.63	5.4	58.2	28	10	5	1	0	4	0
3	2	203.87	19.67	10.4	25.0	14	1	1	1	1	1	0
4	2	203.87	19.67	11.9	52.9	1	0	0	0	0	0	0
5	3	203.80	19.98	18.4	12.7	2	0	0	0	0	0	0
6	4	204.03	20.01	28.0	0.7	7	1	1	0	0	0	1
7	4	204.03	20.01	28.0	0.7	7	0	1	1	0	1	0
8	5	203.85	19.30	38.9	0.0	1	7	5	0	0	1	0
9	5	203.86	19.30	40.8	24.8	5	5	22	5	1	2	0
10	6	203.49	19.35	50.4	0.0	5	4	4	4	2	2	17
11	6	203.47	19.34	52.3	13.6	7	8	15	0	6	0	3
12	7	203.54	19.50	61.8	0.0	3	6	12	1	4	4	6
13	7	203.51	19.45	63.6	2.5	8	4	15	0	2	2	0
14	7	203.51	19.45	63.6	2.5	8	4	15	0	2	2	0
15	8	204.17	19.33	72.9	0.0	4	2	0	1	0	0	0
16	8	204.08	19.33	74.2	0.0	6	0	0	0	0	0	0
17	9	203.98	19.53	82.0	0.0	4	0	0	0	1	0	0
18	9	203.98	19.53	83.4	0.0	8	2	0	0	0	0	0
19	10	203.81	19.86	89.8	0.0	1	0	0	0	0	0	0
20	10	203.83	19.83	90.9	0.0	7	0	0	0	0	0	0
21	11	203.64	19.99	95.5	0.0	1	0	0	0	0	0	0
22	11	203.64	19.99	96.2	0.0	5	0	0	0	0	0	0
References:

Baltz K, Field J, Ralston S, Sakuma K (2002) Operations Manual - Juvenile Rockfish Recruitment Survey Trawling Protocols: 21pp

Baums IB, Paris CB, Chérubin LM (2006) A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr 51:1969–1981

Bidegain G, Bárcena JF, García A, Juanes JA (2013) LARVAHS: Predicting clam larval dispersal and recruitment using habitat suitability-based particle tracking model. Ecol Modell 268:78–92

Bidigare RR, Benitez-Nelson C, Leonard CL, Quay PD, Parsons ML, Foley DG, Seki MP (2003) Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. Geophys Res Lett 30:1318

Boehlert GW, Mundy BC (1996) Ichthyoplankton vertical distributions near Oahu, Hawai‘i, 1985–1986: data report. NOAA Technical Memo. NMFS-SWSC-235: 1–148

Botsford LW, Brumbaugh DR, Grimes C, Kellner JB, Largier J, O‘Farrell MR, Ralston S, Soulanille E, Wespestad V (2009) Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev Fish Biol Fish 19:69–95

Browman HI, Cury PM, Hilborn R, Jennings S, Lotze HK, Mace PM, Murawski S, Pauly D, Sissenwine M, Stergiou KI, others (2004) Ecosystem-based Management. Mar Ecol Prog Ser 274:269–303

Bushnell ME, Claisse JT, Laidley CW (2010) Lunar and seasonal patterns in fecundity of an
indeterminate, multiple-spawning surgeonfish, the yellow tang Zebrasoma flavescens. J Fish Biol 76:1343–61

Chavanne C, Flament P, Lumpkin R, Dousset B, Bentamy A (2002) Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven ocean circulation. Can J Remote Sens 28:466–474

Christie MR, Tissot BN, Albins MA, Beets JP, Jia Y, Ortiz DM, Thompson SE, Hixon MA (2010) Larval connectivity in an effective network of marine protected areas. PLoS One 5:e15715

Claisse JT, Kienzle M, Bushnell ME, Shafer DJ, Parrish JD (2009) Habitat- and sex-specific life history patterns of yellow tang Zebrasoma flavescens in Hawaii, USA. Mar Ecol Prog Ser 389:245–255

Claisse JT, McTee SA, Parrish JD (2009) Effects of age, size, and density on natural survival for an important coral reef fishery species, yellow tang, Zebrasoma flavescens. Coral Reefs 28:95–105

Clarke T a (1983) Comparison of abundance estimates of small fishes by three towed nets and preliminary results of the use of small purse seines as sampling devices. Biol Oceanogr 2:311–340

Clarke TA (1991) Larvae of nearshore fishes in oceanic waters near Oahu, Hawaii. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service

Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE (2007) Population Connectivity
Cowen RK, Sponaugle S (2009) Larval Dispersal and Marine Population Connectivity. Ann Rev Mar Sci 1:443–466

DeMartini EE, Wren JLK, Kobayashi DR (2013) Persistent spatial patterns of recruitment in a guild of Hawaiian coral reef fishes. Mar Ecol Prog … 485:165–179

Donahue MJ, Karnauskas M, Toews C, Paris CB (2015) Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment. PLoS One 10:e0130694

Drake PT, Edwards CA, Barth JA (2011) Dispersion and connectivity estimates along the US west coast from a realistic numerical model. J Mar Res 69:1–37

Drake PT, Edwards CA, Morgan SG, Dever EP (2013) Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System. J Mar Res 71:317–350

Drazen JC, Forest LG De, Domokos R (2011) Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies, and the moon. Deep Res Part I Oceanogr Res Pap 58:557–566

Eble JA, Toonen RJ, Bowen BW (2009) Endemism and dispersal: comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago. Mar Biol 156:689–698

Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup ED (1996) Ocean atlas of Hawai’i: regional processes.

Fogarty MJ, Botsford LW (2007) Population connectivity. Oceanography 20:112
Fox HE, Haisfield KM, Brown MS, Stevenson TC, Tissot BN, Walsh WJ, Williams ID (2012) Influences of oceanographic and meteorological features on reef fish recruitment in Hawai‘i. Mar Ecol Prog Ser 463:259–272

Friedlander A, Kobayashi DR, Bowen BW, Meyers C, Papastamatiou YP, DeMartini EE, Parrish F, Treml EA, Currin C, Hilting A, Others (2009) Connectivity and integrated ecosystem studies. A Mar Biogeogr Assess Northwest Hawaiian Islands:291–330

Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci U S A 107:18286–18293

Gerber LR, Beger M, McCarthy MA, Possingham HP (2005) A theory for optimal monitoring of marine reserves. Ecol Lett 8:829–837

Halpern BS, Lester SE, Kellner JB (2009) Spillover from marine reserves and the replenishment of fished stocks. Environ Conserv 36:268–276

Harrison CS, Siegel DA, Mitarai S (2013) Filamentation and eddy–eddy interactions in marine larval accumulation and transport. Mar Ecol Prog Ser 472:27–44

Hellberg ME (2009) Gene Flow and Isolation among Populations of Marine Animals. Annu Rev Ecol Evol Syst 40:291–310

Hilborn R (2011) Future directions in ecosystem based fisheries management: A personal perspective. Fish Res 108:235–239

Jia Y, Calil PHR, Chassignet EP, Metzger EJ, Potemra JT, Richards KJ, Wallcraft a. J (2011) Generation of mesoscale eddies in the lee of the Hawaiian Islands. J Geophys Res 116:C11009
Jones GP, Srinivasan M, Almany GR (2007) Population Connectivity and Conservation of Marine Biodiversity. Oceanography 20:100–111

Kappel C V, Martone RG, Duffy JE (2006) Ecosystem-based management. Encycl Earth Ed by CJ Cleveland Environ Inf Coalition, Natl Coun Council Sci Environ Washington, DC:1–4

Knight-Jones EW (1953) Laboratory experiments on gregariousness during setting in Balanus balanoides and other barnacles. J Exp Biol 30:584–598

Kough AS, Paris CB, Butler MJ (2013) Larval Connectivity and the International Management of Fisheries. PLoS One 8

Leis JM (1982) Nearshore distributional gradients of larval fish (15 taxa) and planktonic crustaceans (6 taxa) in Hawaii. Mar Biol 72:89–97

Leis JM, Carson-Ewart BM (2000) Behaviour of pelagic larvae of four coral-reef fish species in the ocean and an atoll lagoon. Coral Reefs 19:247–257

Leis JM, Caselle JE, Bradbury IR, Kristiansen T, Llopiz JK, Michael J, Connor MIO, Paris CB, Shanks AL, Sogard SM, Swearer SE, Vetter RD, Warner RR, Miller MJ, Treml EA (2013) Does fish larval dispersal differ between high and low latitudes? Does fish larval dispersal differ between high and low latitudes?

Leis JM, Herwerden L Van, Patterson HM (2011) Estimating Connectivity in Marine Fish Populations: What Works Best? Oceanogr Mar Biol 49:193–234

Leis JM, Miller JM (1976) Offshore distributional patterns of Hawaiian fish larvae. Mar Biol 36:359–367
Lester SE, Costello C, Halpern BS, Gaines SD, White C, Barth JA (2013) Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Mar Pol 38:80–89

Levin L a. (2006) Recent progress in understanding larval dispersal: New directions and digressions. Integr Comp Biol 46:282–297

Lobel PS (1989) Ocean current variability and the spawning season of Hawaiian reef fishes. Environ Biol Fishes 24:161–171

Lobel PS (2011) Transport of reef lizardfish larvae by an ocean eddy in Hawaiian waters. Dyn Atmos Ocean 52:119–130

Lobel PS, Robinson AR (1983) Reef fishes at sea: ocean currents and the advection of larvae. In: p 29–38

Lobel PS, Robinson AR (1986) Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep Sea Res Part A Oceanogr Res Pap 33:483–500

Lumpkin CF (1998) Eddies and currents of the Hawaiian Islands. UNIVERSITY OF HAWAII

Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB (2012) The biogeography of marine invertebrate life histories. Annu Rev Ecol Evol Syst 43:97

McLeod KL, Leslie HM (2009) Ecosystem-based management for the oceans (KL McLeod and HM Leslie, Eds.). Island Press, Washington, DC, USA, Washington D. C.

Methot RD (1990) Synthesis model: An adaptable framework for analysis of diverse stock assessment data. INPFC Bull. 50: 259-277. In: Symposium on application of stock
assessment techniques to Gadoids.

Meyer CG, Holland KN, Wetherbee BM, Lowe CG (2000) Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve. Environ Biol Fishes 59:235–242

Meyer CG, Papastamatiou YP, Clark TB (2010) Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar Biol 157:1499–1511

Muhling BA, Beckley LE (2007) Seasonal variation in horizontal and vertical structure of larval fish assemblages off south-western Australia, with implications for larval transport. J Plankton Res 29:967–983

Mundy BC (2005) Checklist of the fishes of the Hawaiian Archipelago. Bishop Museum Press

Murray-Smith DJ (2000) The inverse simulation approach: a focused review of methods and applications. Math Comput Simul 53:239–247

Olivar MP, Sabate A (1997) Vertical distribution of fish larvae in the north-west Mediterranean Sea in spring. Mar Biol 129:289–300

Oxenford HA, Fanning P, Cowen RK (2006) Spatial distribution of surgeonfish (Acanthuridae) pelagic larvae in the eastern Caribbean. Caribb Connect Implic Mar Prot Area Manag 9:42

Panel EPA (1999) Ecosystem-based fishery management. Natl Mar Fish Serv 305:346–347

Patzert WC (1969) Eddies in Hawaiian waters. DTIC Document

Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P,
Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-Based Fishery Management. Science 305:346–347

Pineda JS, Hare JA, Sponaugle S (2007) Larval Transport and Dispersal in the Coastal Ocean and Consequences for Population Connectivity. Oceanography 20:22–39

Polovina JJ, Kleiber P, Kobayashi DR (1999) Application of TOPEX-POSEIDON satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993-1996. Fish Bull 97:132–143

Qiu B, Durland TS (2002) Interaction between an island and the ventilated thermocline: Implications for the Hawaiian Lee Countercurrent. J Phys Oceanogr 32:12

R Core Team (2012) R: A Language and Environment for Statistical Computing.

Raff RA (2008) Origins of the other metazoan body plans: the evolution of larval forms. Philos Trans R Soc B Biol Sci 363:1473–1479

Randall JE (2007) Reef and shore fishes of the Hawaiian Islands. University of Hawaii Sea Grant College Program

Rivera MAJ, Andrews KR, Kobayashi DR, Wren JLK, Kelley CD, Roderick GK, Toonen RJ (2011) Genetic Analyses and Simulations of Larval Dispersal Reveal Distinct Populations and Directional Connectivity across the Range of the Hawaiian Grouper (Epinephelus quernus). J Mar Biol:1–11

Robins PE, Neill SP, Giménez L, Jenkins SR, Malham SK, Gime L (2013) Physical and biological controls on larval dispersal and connectivity in a highly energetic shelf sea. Limnol Ocean 58:0
Sale PF (1970) Distribution of larval Acanthuridae off Hawaii. Copeia 1970:765–766

Sale PF (1978) Coexistence of coral reef fishes—a lottery for living space. Environ Biol Fishes 3:85–102

Sancho G, Ma D, Lobel PS (1997) Behavioral observations of an upcurrent reef colonization event by larval surgeonfish Ctenochaetus strigosus (Acanthuridae). Mar Ecol Prog Ser 153:311–315

Scheltema RS (1971) Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol Bull 140:284–322

Seki MP, Lumpkin R, Flament P (2002) Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish Tournament. J Oceanogr 58:739–745

Seki MP, Polovina JJ, Brainard RE, Bidigare RR, Leonard CL, Foley DG (2001) Biological enhancement at cyclonic eddies tracked with GOES thermal imagery in Hawaiian waters. Geophys Res Lett 28:1583–1586

Sharp GD (1995) It’s about time: new beginnings and old good ideas in fisheries science. Fish Oceanogr 4:324–341

Slocombe DS (1993) Implementing ecosystem-based management. Bioscience:612–622

Sponaugle S, Paris CB, Walter KD, Kourafalou V, D’Alessandro E (2012) Observed and modeled larval settlement of a reef fish to the Florida Keys. Mar Ecol Prog Ser 453:201–212

Strathmann RR (1993) Hypotheses on the Origins of Marine Larvae. Annu Rev Ecol Syst 24:89–
Sundelöf A, Jonsson PR (2012) Larval dispersal and vertical migration behaviour - a simulation study for short dispersal times. Mar Ecol 33:183–193

Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

Thresher RE, Brothers EB (1985) Reproductive Ecology and Biogeography of Indo-West Pacific Angelfishes (Pisces: Eomacanthidae). Evolution (N Y)

Toonen RJ, Andrews KR, Baums IB, Bird CE, Concepcion GT, Daly-Engel TS, Eble JA, Faucci A, Gaither MR, Iacchei M, Puritz JB, Schultz JK, Skillings DJ, Timmers MA, Bowen BW (2011) Defining boundaries for ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago. J Mar Biol 2011:1–13

Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537

Vaz AC, Richards KJ, Jia Y, Paris CB (2013) Mesoscale flow variability and its impact on connectivity for the island of Hawai‘i. Geophys Res Lett 40:332–337

Walsh WJ (1987) Patterns of recruitment and spawning in Hawaiian reef fishes. Environ Biol Fishes 18:257–276

Warner RR, Swearer SE, Caselle JE (2000) Larval accumulation and retention: implications for the design of marine reserves and essential habitat. Bull Mar Sci 66:821–830
Watson W, Leis JM (1974) Ichthyoplankton of Kaneohe Bay, Hawaii: A One-year Study of Fish Eggs and Larve. University of Hawaii

Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans AGU 72:445–446

Wetherbee BM, Holland KN, Meyer CG, Lowe CG (2004) Use of a marine reserve in Kaneohe Bay, Hawaii by the Giant trevally, Caranx ignobilis. Fish Res 67:253–263

Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodol 73:3–36

Wood S, Paris CB, Ridgwell A, Hendy EJ (2014) Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob Ecol Biogeogr 23:1–11

Web references:

Fujieki, L. Hawaiʻi Ocean Time-Series Data Organization and Graphical System. (http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html) Last accessed 11.05.15
main surface currents around Hawaii

Figure 1: Main surface currents around the Main Hawaiian Islands (after Lumpkin 1998).
Location of trawl sites off Big Island of Hawai‘i

Figure 2: Location of Cobb trawl stations off the Kona coast of Hawai‘i Island used in this study and visited by the SE1104 cruise.
current vectors during field sampling

Figure 3. Mean HYCOM currents between July 2 and July 13, 2011, for Big Island of Hawai‘i. Red circles show trawl sites during field sampling.
Larval shore fish trawl catch at each site.

Figure 4: Summary of larval shorefish catch from Cobb trawl samples used in this study. Bar graphs show average counts of larval shore fish for each station caught during the SE1104 cruise. The graphs are placed in the location of the trawl.
Effect of PLD and depth on modeled larval success

Figure 5: Generalized additive model output showing relationships between modeled settlement success and a) pelagic larval duration (PLD) and b) depth strata used in biophysical model. Higher values denote higher modeled settlement success. Gray areas shows +/- two standard errors.
Relationship between larval catch and modeled abundance, and effect of moon on that catch

Figure 6: Generalized additive model output showing relationship between trawled larval abundance of Acanthurids and a) simulated larval Acanthurid abundance and b) a moon phase and moon angle surface. The linear predictor is the observed and modeled abundance from figure a). Higher values denote higher values of modeled larval catch and gray area in a) shows + - two standard errors.
Table 1: Summarizing larval shore fish counts from seven familial groups, as well as latitude, longitude and moon phase for all stations visited during SE1104 cruise from July 1 to July 14th, 2011. Trawl 6 and 8 has no data on larval shore fish abundance because the cod end of the trawl was compromised by cookie cutter sharks (Isistius brasiliensis) and trawl catch lost.
Table 1: Summarizing larval shore fish counts from seven familial groups, as well as latitude, longitude and moon phase for all stations visited during SE1104 cruise from July 1 to July 14th, 2011. Trawl 6 and 8 has no data on larval shore fish abundance because the cod end of the trawl was compromised by cookie cutter sharks (*Isistius brasiliensis*) and trawl catch lost.

Trawl number	Station number	Longitude	Latitude	Moon Phase	Moon Angle	Pomacanthidae	Acanthuridae	Chaetodontidae	Labridae & Cirrhitidae	Muraenidae	Fistularidae	Mullidae
1	1	203.50	19.65	4.5	36.8	24	5	2	3	1	2	15
2	1	203.47	19.63	5.4	58.2	28	10	5	1	0	4	0
3	2	203.87	19.67	10.4	25.0	14	1	1	1	1	0	0
4	2	203.87	19.67	11.9	52.9	1	0	0	0	0	0	0
5	3	203.80	19.98	18.4	12.7	2	0	0	0	0	0	0
7	4	204.03	20.01	28.0	0.7	7	1	1	0	0	1	0
9	5	203.85	19.30	38.9	0.0	1	7	5	0	0	1	0
10	5	203.86	19.30	40.8	24.8	5	5	22	5	1	2	0
11	6	203.49	19.35	50.4	0.0	5	4	4	4	2	2	17
12	6	203.47	19.34	52.3	13.6	7	8	15	0	6	0	3
13	7	203.54	19.50	61.8	0.0	3	6	12	1	4	4	6
14	7	203.51	19.45	63.6	2.5	8	4	15	0	2	2	0
15	8	204.17	19.33	72.9	0.0	4	2	0	1	0	0	0
16	8	204.08	19.33	74.2	0.0	6	0	0	0	0	0	0
17	9	203.98	19.53	82.0	0.0	4	0	0	0	1	0	0
18	9	203.98	19.53	83.4	0.0	8	2	0	0	0	0	0
19	10	203.81	19.86	89.8	0.0	1	0	0	0	0	0	0
20	10	203.83	19.83	90.9	0.0	7	0	0	0	0	0	0
21	11	203.64	19.99	95.5	0.0	1	0	1	0	0	0	0
22	11	203.64	19.99	96.2	0.0	5	0	0	0	0	0	0