In this study we investigated the mechanisms responsible for MAP kinase ERK1/2 activation following agonist activation of endogenous mu opioid receptors (MOR) normally expressed in cultured striatal neurons. Treatment with the MOR agonist fentanyl caused significant activation of ERK1/2 in neurons derived from wild type mice. Fentanyl effects were blocked by the opioid antagonist naloxone and were not evident in neurons derived from MOR knock-out (−/−) mice. In contrast, ERK1/2 activation by fentanyl was not evident in neurons from GRK3−/− mice or neurons pretreated with small inhibitory RNA for arrestin3. Consistent with this observation, treatment with the opiate morphine (which is less able to activate arrestin) did not elicit ERK1/2 activation in wild type neurons; however, transfection of arrestin3-(R170E) (a dominant positive form of arrestin that does not require receptor phosphorylation for activation) enabled morphine activation of ERK1/2. In addition, activation of ERK1/2 by fentanyl and morphine was rescued in GRK3−/− neurons following transfection with dominant positive arrestin3-(R170E). The activation of ERK1/2 appeared to be selective as p38 MAPK activation was not increased by either fentanyl or morphine treatment in neurons from wild type, MOR−/−, or GRK3−/− mice. In addition, U0126 (a selective inhibitor of MEK kinase responsible for ERK phosphorylation) blocked ERK1/2 activation by fentanyl. These results support the hypothesis that MOR activation of ERK1/2 requires opioid receptor phosphorylation by GRK3 and association of arrestin3 to initiate the cascade resulting in ERK1/2 phosphorylation in striatal neurons.

Opioid receptor activation results in both acute and long-lasting changes in neuronal physiology. The mechanisms responsible for the acute changes include Gαi/o and Gβγ protein activation that increases potassium conductance, decreases calcium conductance, and results in presynaptic inhibition (1–3). The mechanisms responsible for the long lasting effects of opioids are less clear but may include changes in adenyl cyclase activity and activation of mitogen activating protein kinase (MAPK)2 pathways (4, 5). In this study we used primary cultured neurons isolated from mouse striata to address the mechanisms linking mu opioid receptor (MOR) activation to the phosphorylation and activation of the extracellular signal-related kinases 1 and 2 (ERK1/2) members of the MAPK family.

Phosphorylation of ERK1/2 by GPCRs involves growth factor receptor transactivation (4). As demonstrated for the β-adrenergic receptor, participation of arrestin is an integral part of GPCR signaling through the ERK1/2 signaling pathway in transfected HEK293 cells (6). Following agonist activation of MOR, the receptor becomes phosphorylated by G-protein receptor kinase (GRK), which initiates an arrestin-dependent desensitization process that involves clathrin-mediated endocytosis (7). The opioid activation of ERK1/2 by MOR agonist (D-Ala2,Me-Phe4,Gly-ol5) (DAMGO) was demonstrated in MOR-transfected cells (8), and ERK1/2 was activated in the pons and medulla of morphine-treated mice (9). However, the mechanism of ERK1/2 activation by opioids is not clear.

To assess whether GRK and arrestin were required for MOR activation of ERK1/2, we compared the activation of ERK1/2 in striatal neurons harvested from wild type, MOR knock-out mice (MOR−/−), and GRK3 knock-out mice (GRK3−/−). Using siRNA to reduce arrestin3 expression and the dominant positive form of arrestin 3, arrestin-(R170E) (10), we further characterized the role of arrestin in the activation of ERK1/2 by MOR agonists. The results suggest that MOR agonists in striatal neurons produced selective activation of ERK1/2, the selective activation of ERK1/2 was rescued by the dominant positive arrestin, and this activation of ERK1/2 was GRK3 and arrestin3 dependent.

EXPERIMENTAL PROCEDURES

Materials—Culture media, serum, anisomycin, and the MEK inhibitor U0126 were purchased from Sigma. Morphine and fentanyl were provided by the National Institute on Drug Abuse. Norbinaltorphimine HCl and (−)-U50,488 were obtained from Tocris (Ellisville, MO). Antibodies used include: rabbit anti-phospho-ERK1/2 (1/1000, Cell Signaling, Beverly, MA), rabbit anti-phospho-p38 (1/1000, Cell Signaling), mouse anti-arrestin3 (1/300 dilution, sc-13140 from Santa Cruz Biochemistry, Santa Cruz, CA), guinea pig anti-mu opioid recep-

Mu Opioid Receptor Activation of ERK1/2 Is GRK3 and Arrestin Dependent in Striatal Neurons

Tara A. Macey, Janet D. Lowe, and Charles Chavkin

From the Department of Pharmacology, University of Washington, Seattle, Washington 98195

* This work was supported by United States Public Health Service Grants R01DA11672 and T32NS07332. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Box 357280, 1959 Pacific Ave. N.E., Seattle, WA 98195-7280. Tel.: 206-543-4266; Fax: 206-685-3822; E-mail: cchavkin@u.washington.edu.

‡ The abbreviations used are: MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; GPCR, G-protein coupled receptor; GRK3, G-protein coupled receptor kinase 3; IR, immunoreactivity; MEM, minimal essential media; MOR, Mu opioid receptor; p-p38, phospho-p38 MAPK; R170E, dominant positive arrestin3; RT, reverse transcriptase; siRNA, small inhibitory ribonucleic acid; YFP, yellow fluorescent protein; GFP, green fluorescent protein; DAMGO, d-Ala2,Me-Phe4,Gly-ol5; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid; dsRED, red fluorescent protein isolated from the Indo Pacific reef coral Discosoma species.
MOR Activation of ERK1/2

tor (1/1000 dilution, Neuromics, Minneapolis, MN), and rabbit anti-β-actin (1/10,000 dilution, ab8227, AbCam, Cambridge, MA). Secondary antibodies for confocal microscopy were purchased from Invitrogen and secondary antibodies for immunoblot analysis from Rockland (Gilbertsville, PA). The Li-Cor Blocking Buffer was purchased from Li-Cor Biosciences (Lincoln, NE). Pregnant C57Bl/6 mice were obtained from Charles River (Wilmington, MA). Transgenic mice lacking functional mu opioid receptors, MOR^{-/-} (11), or G-protein receptor kinase 3, GRK₃^{+/} (12) on a C57Bl/6 background, were kindly provided by Dr. John Pintar (R. W. Johnson School of Medicine) and Drs. Marc Caron and Robert Lefkowitz (Duke University), respectively, and bred within the University of Washington vivarium under specific pathogen-free conditions.

Striatal Neuronal Cultures and MOR-GFP AtT-20 Cells— This procedure was described previously (13) and adapted for these studies. The striatal region was dissected from 3–4-day-old C57Bl/6 or transgenic mice and incubated in MEM containing 20 units/ml papain for 30 min at 37 °C. The tissue was then triturated using fire-polished Pasteur pipettes in MEM supplemented with 10% fetal bovine serum, 0.45% glucose, 0.5 mm glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were plated on poly-lysine-treated glass coverslips (BD Biosciences) at a density of 75,000 cells per coverslip for confocal microscopy, or in poly-lysine-coated 6-well plates for immunoblot analysis. Neuronal medium containing 50% MEM, 39% Ham’s F-12 medium, 10% horse serum, 1% fetal bovine serum, 0.45% glucose, 0.1 mg/ml apotransferrin, 0.5 mm kynurenic acid, 100 units/ml penicillin, and 100 μg/ml streptomycin was added 1 h after initial plating. Cultures were used 12–14 days after plating. MOR-GFP-transfected AtT-20 cells were previously described (14). Cells were grown in a humidified 5% CO₂ incubator at 37 °C.

Transfection of Striatal Neuronal Cultures— For experiments using the dominant positive arrestin3-(R170E) (10), striatal cultures were grown in 6-well plates. Lipofectamine 2000 (Invitrogen) was added to MEM according to the manufacturer’s instructions, whereas the RNA mixtures were prepared at a final concentration of 25 nm. RNA mixtures were added dropwise to the Lipofectamine 2000 mixture and incubated at room temperature for 30 min. After the incubation, the total mixture was added to cells plated on coverslips for confocal microscopy, or to 6-well tissue culture plate for immunoblotting. Some wells received Lipofectamine 2000 in Opti-MEM only as a negative control (control). The mixture was removed after 4 h and fresh media was added to the cultures. Cells were harvested on the second day following transfection for quantification of p-ERK1/2, arrestin3, and actin immunoreactivity as described. Transfection efficiency was determined by transfecting 0.5 μg of the empty vector DsRed (Clontech, Palo Alto, CA) with the siRNA mixture as described above. Using confocal microscopy, DsRed positive cells were counted and taken over the total number of cells per ×63 field to calculate an average transfection efficiency at 28.5 ± 0.5%.

Quantitative Real-time Polymerase Chain Reaction (RT-PCR)— For further quantification of arrestin3 knockdown levels, RNA was harvested from striatal neuronal cultures prepared from 3–4-day-old mouse pups using Qiashredder homogenizer columns and the RNeasy Mini Kit according to the manufacturer’s protocol (Qiagen, Valencia, CA). One step quantitative real-time PCR was performed on a Stratagene Mx3000 machine using the Brilliant SYBR Green QPCR Master Mix with Stratascript Reverse Transcriptase (Stratagene, La Jolla, CA). Arrestin2, arrestin3, and a control endogenous housekeeping gene, ribosomal protein ARBP, were amplified in separate reactions starting with 20 ng of total RNA for each sample. The oligo sequences used for amplification of mouse arrestin2 and arrestin3 were found through PrimerBank (15) and were as follows: arrestin2 (PrimerBank code 30089688a3), forward (GCCCCAAT-GGAAGGCTCCT), reverse (CCACGAGGTCATGTGGTCC); and arrestin3 (PrimerBank code 21703856a3), forward (GGAGTAG CCTTGGAGATGAG), reverse (GGTCAGACATGAGAAGGTGCC). The oligos used for the housekeeping gene ARBP were forward (TGTTGA-CAACGGCAGATT) and reverse (CCAGGGCAACAG- TTGGGTA). Standard curves were run with serial dilutions of RNA and the PCR efficiencies were found to be similar for all oligo sets. Dissociation curves for the products of each oligo set had a single peak indicating specific amplification. For each sample, the Ct, or cycle at which the fluorescence measured reached the threshold to be above the ambient background signal, was determined for arrestin2, arrestin3, and ARBP. The ΔCt was calculated by subtracting the Ct for the endogenous control gene ARBP from the Ct of the gene of interest. Relative quantification was done using the ΔΔCt.
The expression of phospho-ERK1/2 was assessed in agonist-treated neurons and compared with untreated striatal cells. Treatment with 100 nM fentanyl for 30 min significantly increased the activation of phospho-ERK1/2 in the whole cell lysates prepared from wild type striatal neurons by 81 ± 13% above basal levels (p < 0.01, n = 7) (Fig. 1, A and B, left column, and Fig. 2). The increase in ERK1/2 phosphorylation was blocked by the MOR antagonist naloxone and was not evident in primary striatal neurons cultured from MOR−/− mice. Furthermore, the MEK inhibitor U0126 prevented the fentanyl-induced phosphorylation of ERK1/2 (p < 0.01, n = 4). Treatment with fentanyl (100 nM) for 2, 5, or 15 min did not significantly affect ERK1/2 phosphorylation (90 ± 6.5, 88 ± 14, and 88 ± 20%, respectively) compared with basal phospho-ERK1/2 levels in the whole cell lysate prepared from the wild type striatal neurons (Fig. 1D, n = 2–4). Lower doses of fentanyl were also used to treat neurons, and using immunoblot analysis the phosphorylation of ERK1/2 was not significantly increased from basal levels (data not shown, n = 3).

In contrast to wild type neurons, fentanyl (100 nM) treatment of striatal neurons from GRK3−/− mice for 5, 15, or 30 min did not cause a significant activation of ERK1/2 (data for the 30-min time point are shown, Fig. 1, left column). The results suggest that GRK3 was required for the fentanyl-induced activation of ERK1/2.

Treatment with 10 μM morphine for 30 min did not significantly increase the activation of phospho-ERK1/2 in whole cell lysates prepared from wild type, MOR−/−, or GRK3−/− striatal neurons compared with basal levels of phospho-ERK1/2 (Fig. 1, right column, and Fig. 2). The increase in ERK1/2 phosphorylation was blocked by the MOR antagonist naloxone and was not evident in primary striatal neurons cultured from MOR−/− mice. Furthermore, the MEK inhibitor U0126 prevented the fentanyl-induced phosphorylation of ERK1/2 (p < 0.01, n = 4). Treatment with fentanyl (100 nM) for 2, 5, or 15 min did not significantly affect ERK1/2 phosphorylation (90 ± 6.5, 88 ± 14, and 88 ± 20%, respectively) compared with basal phospho-ERK1/2 levels in the whole cell lysate prepared from the wild type striatal neurons (Fig. 1D, n = 2–4). Lower doses of fentanyl were also used to treat neurons, and using immunoblot analysis the phosphorylation of ERK1/2 was not significantly increased from basal levels (data not shown, n = 3).

The lack of response of GRK3−/− cells to fentanyl was not due to an inability of these neurons to show receptor-activated ERK1/2 phosphorylation. The MEK inhibitor U0126 significantly reduced the basal activation of phospho-ERK1/2 in wild type, MOR−/−, and GRK3−/− striatal neurons (p < 0.01, n = 7), indicating the cultured neurons from the transgenic mice were capable of ERK1/2 phosphorylation. As a positive control, treatment with the kappa opioid receptor agonist U50,488 (10 μM) significantly increased...
MOR Activation of ERK1/2

FIGURE 1. MOR activation of phospho-ERK1/2 is agonist selective and GRK3 dependent in striatal neurons. Agonist-induced activation of phospho-ERK1/2 by the endogenous MOR in wild type, MOR−/−, and GRK3−/− striatal neurons was assessed. Whole cell lysates prepared from neuronal cultures as described under “Experimental Procedures” were used to quantify the expression levels of phospho-ERK1/2. A, the results are the mean ± S.E., expressed as a percent of basal, untreated striatal neuronal cultures (**, p < 0.01 by Dunnett’s post hoc comparison, n = 3–7). B, representative immunoblots for the 44/42-kDa phospho-ERK1/2 protein are shown in which wild type (WT), MOR−/−, or GRK3−/− striatal neurons were vehicle treated (Basal) or treated for 30 min with fentanyl (100 nM) or morphine (10 μM) with or without pretreatment with naloxone (10 μM) or U0126 (1 μM). Representative immunoblots for β-actin demonstrates equal protein loading for each representative experiment. C, wild type and GRK3−/− neuronal cultures were treated with vehicle (Basal), 10 μM U0126, or 50 μM anisomycin (Anis). The results are the mean ± S.E., expressed as a percent of basal, untreated striatal neuronal cultures (*, p < 0.05; **, p < 0.01, by Dunnett’s post hoc comparison, n = 3–7). Representative immunoblots for the 44/42-kDa phospho-ERK1/2 protein in whole cell lysates prepared from cultured striatal neurons with the MAPK activator anisomycin (50 μM) significantly increased phospho-ERK1/2 levels 51.7 ± 17.5 and 116 ± 27.8%, respectively (p < 0.05).

MOR Activation of phospho-ERK1/2 levels in both wild type and GRK3−/− striatal neurons by 27.6 ± 6.3 and 68.5 ± 38.5%, respectively (p < 0.05, n = 3–7) (Fig. 1C). In addition, treatment of both wild type and GRK3−/− neurons with the MAPK activator anisomycin (50 μM) significantly increased phospho-ERK1/2 levels 51.7 ± 17.5 and 116 ± 27.8%, respectively (p < 0.05) treated with the transfection reagent alone showed a fentanyl-induced increase in phospho-ERK1/2 (Fig. 4B). Whereas, the siRNA-induced depletion of arrestin3 significantly attenuated the fentanyl-induced phosphorylation of ERK1/2 in striatal neurons to 66 ± 9% of the basal level of phospho-ERK1/2 (p < 0.01, n = 4) (Fig. 4B).
peptides co-translationally bound to arrestin3 at 27.2 ± 4.0 average pixels per cell. Neurons transfected with DsRed but not arrestin3 siRNA showed that arrestin3 was expressed at 147 ± 17.2 fg/20 ng of total RNA (Fig. 4F). Endogenous arrestin3 levels were significantly higher than endogenous arrestin2 levels in these cultured striatal neurons.

Dominant Positive Arrestin3-(R170E) Rescues Morphine-mediated Activation of Phospho-ERK1/2—Arrestin3-(R170E) is a dominant positive arrestin that eliminates the requirement of receptor phosphorylation in GPCR desensitization (10). Transfection of wild type striatal cultures with the dominant positive arrestin3-(R170E)-YFP significantly increased the morphine-induced phosphorylation of ERK1/2 compared with basal levels by 70 ± 18% (p < 0.01, Fig. 5B). YFP-transfected neurons treated with 10 μM morphine did not significantly increase phospho-ERK1/2 compared with basal levels. Treatment with 100 nM fentanyl of R170E-YFP-transfected striatal neurons increased phospho-ERK1/2 to 99 ± 28% compared with basal levels (p < 0.05, Fig. 5A). YFP-transfected striatal neurons treated with fentanyl significantly increased the phosphorylation of ERK1/2 by 95 ± 26% compared with basal levels (p < 0.05, Fig. 5A). The increase in fentanyl-induced phosphorylation of ERK1/2 was slightly higher than experiments in Fig. 1. However, this difference was not significant. The rescue by arrestin-(R170E) suggests that the inability of morphine to induce ERK1/2 phosphorylation was caused by its low efficiency in recruiting GRK3 and arrestin3.

Dominant Positive Arrestin3-(R170E) Rescues Activation of Phospho-ERK1/2 Independent of GRK3—Transfection of GRK3−/− striatal cultures with the dominant positive arrestin3-(R170E)-YFP significantly increased the phosphorylation of ERK1/2 following fentanyl or morphine treatment compared with basal levels by 50 ± 20 and 50 ± 13%, respectively (p < 0.05, Fig. 5C). YFP-transfected neurons treated with 100 nM fentanyl or 10 μM morphine did not significantly increase phospho-ERK1/2 activation compared with basal levels (Fig. 5C). Although there was a significant increase of phosphorylated ERK1/2 in GRK3−/− striatal cultures compared with basal levels in wild type neurons, this increase was less than the fentanyl-induced activation of ERK1/2 in wild type cultures and fentanyl- or morphine-induced activation in R170E-YFP-transfected wild type striatal neurons. Again, the rescue of the MOR-induced phosphorylation of ERK1/2 by the dominant positive arrestin suggests the GRK3−/− neurons were specifically impaired in MOR phosphorylation and subsequent arrestin3 recruitment.
MOR Activation of ERK1/2

FIGURE 3. The MAP kinase phospho-p38 is not activated by MOR agonists in striatal neurons. Agonist-induced activation of phospho-p38 by the endogenous MOR receptor in wild type, MOR−/−, and GRK3−/− striatal neurons was assessed. Whole cell lysates prepared from neuronal cultures as described under "Experimental Procedures" were used to quantify the expression levels of phospho-p38. Top, the results are the mean ± S.E., expressed as a percent of basal, untreated striatal neuronal cultures. Treatment of wild type, MOR−/−, or GRK3−/− striatal neurons with 100 nM fentanyl or 10 μM morphine for 30 min did not significantly increase the immunoreactivity of phospho-p38 (n = 7). The MOR antagonist, 10 μM naloxone, did not significantly increase phospho-p38 activation in fentanyl- or morphine-treated wild type, MOR−/−, or GRK3−/− striatal neurons (n = 7). Furthermore, 1 μM U0126, the phospho-ERK1/2 inhibitor, did not significantly decrease the immunoreactivity of phospho-p38 compared with basal levels in wild type, MOR−/−, and GRK3−/− striatal neurons treated with fentanyl or morphine (n = 4). Bottom, representative immunoblots for the 38-kDa phospho-p38 protein are shown in which cells were untreated (Baseline), treated with fentanyl, treated with morphine, pretreated with naloxone, or pretreated with U0126 for wild type (WT), MOR−/−, or GRK3−/− striatal neurons.

DISCUSSION

The novel finding of this study was that in mouse striatal neurons mu opioid receptor activation induced the phosphorylation of ERK1/2 MAPK by a mechanism that required agonist-induced mu receptor phosphorylation by GRK3 followed by arrestin3 recruitment. These results suggest that arrestin association mediates both homologous desensitization of MOR and enables MOR to participate in signal transduction pathways involving MAPK activation.

Desensitization of the mu opioid receptor by morphine has been characterized extensively with disparate results. However, two recent studies provided evidence that desensitization and endocytosis of MOR occurred with morphine treatment (17, 18). Activation of ERK1/2 by the mu opioid agonist DAMGO has been demonstrated in MOR-transfected cells and in neurons from morphine-treated mice (8, 9). However, the activation of ERK1/2 within the striatum and possible differences in the phosphorylation of ERK1/2 induced by MOR agonists has not been demonstrated. In this study we found that phosphorylation of ERK1/2 was significantly increased by fentanyl, a potent and efficacious MOR agonist, compared with basal levels of ERK1/2 phosphorylation. The effect was shown to be mediated by mu opioid receptors because naloxone, a MOR antagonist, blocked the fentanyl effect and similarly the effect was not seen in neurons isolated from MOR−/− mice. The fentanyl-induced increase was also blocked by the MEK inhibitor U0126.

However, when activation of ERK1/2 was assessed following morphine treatment in wild type striatal neurons, there was no significant increase in ERK1/2 phosphorylation compared with basal levels. This agonist selective activation of ERK1/2 in striatal neuronal cultures was also evident in a heterologous gene expression system similar to those in which GPCR-mediated ERK1/2 activation has been previously characterized (6). In AtT-20 cells expressing a GFP-tagged MOR, fentanyl but not morphine produced an increase in ERK1/2 phosphorylation. Although recent evidence has demonstrated that morphine treatment does cause rapid desensitization of the MOR under certain expression conditions (18), our data suggest that morphine was less effective than fentanyl at activating ERK1/2, which is consistent with its lower efficacy (14).

Because the activation of ERK1/2 by other GPCRs has been described as biphasic, we examined whether the fentanyl-induced increase in ERK1/2 phosphorylation was also biphasic. Previous reports have indicated that there is a G-protein-dependent early peak of activation, followed by a slower arrestin-dependent activation of ERK1/2 (6, 19). Both studies that investigated the biphasic activation of ERK1/2 used a transfected cell line that over-expressed the receptors and arrestin to characterize ERK1/2 phosphorylation. In whole cell lysates of striatal neurons containing the cytosolic and nuclear fractions, the phosphorylation of ERK1/2 was assessed at the endogenous levels of MOR and arrestin expression. Under these conditions, we did not observe a significant phosphorylation of ERK1/2 at the early time points suggesting an absence of the early, arrestin-independent activation of ERK1/2.

To determine whether the activation of ERK1/2 by fentanyl was specific or if MOR agonists might activate additional MAPK pathways, we also examined the stress-induced p38 MAPK. The p38 MAPK pathway has been demonstrated to play a major role in environmental stress and inflammatory signals, including cytokine activation (20). In addition, it has been demonstrated in rat dorsal root ganglion neurons, that chronic morphine treatment increased the activation of the MAPK pathways, ERK1/2, and p38 (21). The phosphorylation of the p38 MAPK pathway was not induced by fentanyl.
or morphine. Pretreatment with naloxone or the ERK1/2 inhibitor U0126 did not significantly increase the phosphorylation of p38. The results do not exclude a link between MOR and p38 in other systems, but they show that in these cultured neurons fentanyl specifically activated ERK1/2. The differences between p38 and ERK1/2 signaling observed support the concept that the pathways linking MOR activation to these MAP kinases are distinguishable.

To begin to elucidate the mechanisms underlying the specific activation of ERK1/2 by fentanyl, we investigated the role of GRK- and arrestin-dependent pathways. Following GRK phosphorylation of the receptor, arrestin binds and terminates the signaling of the receptor (22). In addition, the binding of arrestin targets the receptor to clathrin-coated pits for internalization and either degradation or resensitization (23, 24). Furthermore, it has been demonstrated that arrestin acts as a scaffolding protein, and promotes the stable association of signaling proteins with the receptor to activate MAPK pathways (19, 25). Arrestin scaffolding to MAPK has also been implicated in behavioral consequences using in vivo animal models (26). Therefore, to first determine whether GRK was involved in the fentanyl-mediated increase in ERK1/2 phosphorylation, we used striatal neuronal cultures derived from GRK3−/− mice. These mice have previously been shown to develop reduced behavioral tolerance to fentanyl (27). The fentanyl-induced activation of ERK1/2 was attenuated in GRK3−/− neurons indicating that GRK3 was specifically required for the MOR-mediated increase in phosphorylation of ERK1/2.

The lack of fentanyl effect on ERK1/2 phosphorylation in neurons derived from MOR−/− and GRK3−/− mice was not due to a gross inability of these cultures to show ERK1/2 phosphorylation. The MEK inhibitor U0126 dramatically decreased the phosphorylation of

FIGURE 4. Inhibition of the fentanyl-mediated activation of phospho-ERK1/2 by siRNA-induced knockdown of endogenous arrestin3. Fentanyl-induced activation of phospho-ERK1/2 by the endogenous MOR in siRNA arrestin3-treated wild type striatal neurons. A, immunoreactivity of arrestin3 (55 kDa) was determined in cells transfected with siRNA specific to arrestin3 and treated with transfection reagent only as described under "Experimental Procedures." Cells were treated with 100 nM fentanyl for 30 min (***, p < 0.01, by Student's t test). A, inset, a representative immunoblot of arrestin3 (50 μg of protein) in cells transfected with the transfection reagent only (control) or arrestin3 siRNA (+siRNA) is shown. To control for equal loading of protein, membranes were reblotted with β-actin. B, phospho-ERK1/2 immunoreactivity (44/42 kDa) of cells transfected with transfection reagent only or siRNA-treated neurons was determined as described under "Experimental Procedures" (***, p < 0.01, by Student’s t test). B, inset, representative immunoblot of phospho-ERK1/2 (30 μg of protein) in cells transfected with the transfection reagent only (control) or arrestin3 siRNA (+siRNA) is shown. C, the pixel intensity of the immunoreactivity of phospho-ERK1/2 was calculated using Metamorph software. Phospho-ERK1/2 was quantified in striatal neurons co-transfected with siRNA for arrestin3 and the empty vector DsRed (***, p < 0.01 by Dunnett's post hoc comparison, n = 3) and compared with neurons without DsRed expression within the same field (open bars), neurons transfected with DsRed only, and neurons within the field of DsRed transfection only without DsRed expression (solid bars). In experiments, all cells were treated with the transfection reagent, Lipofectamine 2000. D, panel A, DsRed and arrestin3 siRNA co-transfected in striatal neurons, arrow points to transfected neuron; panel B, phospho-ERK1/2 immunoreactivity in the presence of arrestin3 siRNA, arrow points to the same transfected neuron as in panel A; panel C, no DsRed expressed, arrow points to the same untransfected neuron in panel C, E, RNA was harvested from untreated and siRNA-treated neurons and quantitative RT-PCR was run. Arrestin3, arrestin2, and a control endogenous housekeeping gene ARBP were amplified in separate reactions from 20 ng of total RNA harvested from untreated neurons (basal), transfection reagent-treated neurons (lip), and arrestin3 siRNA-treated neurons (arrestin3). Results are expressed as the fold change over the untreated neurons (basal) (**, p < 0.01, by Dunnett's post hoc comparison). F, RNA was harvested from neurons and quantitative RT-PCR was run. Arrestin3 and arrestin2 were amplified in separate reactions from 20 ng of total RNA harvested from neurons. Standard curves were generated from in vitro transcribed arrestins to determine the absolute quantity of arrestin mRNA in the cultured neurons. Levels of arrestin2 and arrestin3 are expressed as femtograms of RNA. The abundance of arrestin2 was significantly lower than arrestin3 (***, p < 0.01, by Student's t test).
MOR Activation of ERK1/2

FIGURE 5. Dominant positive arrestin rescues morphine-mediated and GRK-mediated activation of phospho-ERK1/2. Morphine-induced activation of phospho-ERK1/2 by transfection of the dominant positive arrestin R170E in wild type and GRK3−/− striatal neurons. A, upper panel, striatal cultures were transfected with the dominant positive arrestin3-R170E-YFP or empty vector YFP and treated with 100 nM fentanyl. The intensity of the phospho-ERK1/2 immunoreactivity in agonist-treated transfected neurons was compared with untreated striatal neurons transfected with the dominant positive arrestin3-R170E-YFP (Basal). Fentanyl treatment increased the activation of phospho-ERK1/2 compared with basal levels (*, p < 0.05 by Dunnett’s post hoc comparison, n = 4). B, lower panel, a representative immunoblot for the 44/42-kDa phospho-ERK1/2 protein is shown in which cells were untreated in the presence of the dominant positive arrestin-R170E (Basal), treated with fentanyl in the presence of the dominant positive arrestin-R170E (+R170E) or YFP (+YFP). Representative immunoblots for β-actin demonstrates equal protein loading for each representative experiment. B, upper panel, striatal cultures were transfected with the dominant positive arrestin3-R170E-YFP or empty vector YFP and treated with 10 μM morphine for 30 min. The intensity of the phospho-ERK1/2 immunoreactivity in agonist-treated transfected neurons was compared with untreated transfected neurons transfected with the dominant positive arrestin-R170E-YFP (Basal). Morphine treatment increased the activation of phospho-ERK1/2 compared with basal levels (**, p < 0.01 by Dunnett’s post hoc comparison, n = 4). C, lower panel, a representative immunoblot for the 44/42-kDa phospho-ERK1/2 protein is shown in which cells were untreated in the presence of the dominant positive arrestin3-R170E-YFP or empty vector YFP and treated with 100 nm fentanyl or 10 μM morphine for 30 min. The intensity of the phospho-ERK1/2 immunoreactivity in agonist-treated transfected neurons was compared with untreated transfected neurons transfected with the dominant positive arrestin3-R170E-YFP (Basal). Fentanyl treatment increased the activation of phospho-ERK1/2 compared with basal levels (*, p < 0.05 by Dunnett’s post hoc comparison, n = 4). Morphine treatment increased the activation of phospho-ERK1/2 compared with basal levels (*, p < 0.05 by Dunnett’s post hoc comparison, n = 4). C, lower panel, a representative immunoblot for the 44/42-kDa phospho-ERK1/2 protein is shown in which cells were untreated in the presence of the dominant positive arrestin-R170E (Basal), treated with fentanyl in the presence of the dominant positive arrestin R170E (+R170E) or YFP (+YFP). Representative immunoblots for β-actin demonstrates equal protein loading for each representative experiment. C, lower panel, a representative immunoblot for the 44/42-kDa phospho-ERK1/2 protein is shown in which cells were untreated in the presence of the dominant positive arrestin3-R170E-YFP, treated with morphine in the presence of the dominant positive arrestin3-R170E (+R170E) or YFP (+YFP). Representative immunoblots for β-actin demonstrates equal protein loading for each representative experiment.

ERK1/2 compared with basal levels in wild type, MOR−/−, and GRK3−/− neurons. Furthermore, treatment with the MAPK activator anisomycin significantly increased levels of phosphorylated ERK1/2 in both wild type and GRK3−/− cultures. These data suggest that the mechanisms underlying both basal and induced ERK1/2 phosphorylation were still intact in these neurons. As an additional positive control for GPCR-induced phosphorylation of ERK1/2, activation of the kappa opioid receptor by U50,488 also induced phosphorylation of ERK1/2 in both wild type and GRK3−/− cultures. Previous work in AtT-20 cells has suggested that the kappa-mediated activation of ERK1/2 was GRK and arrestin independent, although kappa-induced phosphorylation of p38 required both GRK3 and arrestin3 (28). Therefore, although both the MOR−/− and GRK3−/− neurons could demonstrate ERK1/2 activation, they were specifically unable to increase ERK1/2 phosphorylation in response to fentanyl. These results suggest a specific role for GRK3 in the fentanyl-induced phosphorylation of ERK1/2.

Next, we examined the role of arrestin3 in the phosphorylation of ERK1/2 induced by fentanyl in striatal neurons. Using both immunoblot analysis and confocal microscopy, a significant decrease in the phosphorylation of ERK1/2 by fentanyl in siRNA-treated neurons was evident. The complete attenuation of MOR-mediated activation of ERK1/2 caused by a partial knockdown of arrestin was surprising. This may suggest that at endogenous levels of MOR expression, arrestin levels are limiting. The attenuation of ERK1/2 phosphorylation that was observed with the knockdown of arrestin3, defines the necessity of arrestin3 in the MOR-mediated activation of ERK1/2. Furthermore, our quantitative RT-PCR data supports a specific role for arrestin3 because it was the iso-
form of arrestin most abundantly expressed in the cultured striatal neurons.

As discussed earlier, the differential ability of fentanyl, but not morphine, to lead to increased levels of phosphorylated ERK1/2 may result from the lower efficacy of morphine. It is possible that morphine-activated MOR does not recruit arrestin readily compared with other more efficacious MOR agonists or the coupling of arrestin to MOR is less efficient with morphine activation. Consistent with this, numerous studies have suggested that morphine does not efficiently promote MOR regulation by GRK and arrestin. Morphine has been shown either to be unable to induce MOR phosphorylation (29, 30) or to induce less phosphorylation of MOR compared with higher efficacy agonists such as DAMGO (31, 32). Additionally, morphine was unable to promote internalization of MOR in heterologous cell systems (7), although more recently morphine was shown to produce internalization in striatal neurons when MOR- and GFP-tagged arrestin were overexpressed (18). Although we did not directly examine receptor internalization or arrestin binding in the present study, the inability of morphine to activate ERK1/2 compared with the higher efficacy agonist fentanyl is consistent with decreased coupling of morphine-activated receptors to arrestin.

Because the stability of the arrestin-receptor interaction likely depends on the phosphorylation state of the receptor, we used a dominant positive arrestin to eliminate the requirement of receptor phosphorylation. The dominant positive arrestin3-(R170E) has previously been reported to bind to agonist-occupied receptors and mediate desensitization independent of receptor phosphorylation (10, 33). When the arrestin3-(R170E) mutant and a phosphorylation insensitive delta opioid receptor were expressed, desensitization of the receptor was similar to the wild type (33). As expected, morphine produced a significant increase in levels of phosphorylated ERK1/2 in neurons transfected with arrestin3-(R170E). These data suggest that bypassing the requirement for receptor phosphorylation with the dominant positive arrestin enables morphine-activated receptors to more efficiently couple to arrestin to facilitate activation of ERK1/2. Because transfection of arrestin-(R170E) might have activated ERK1/2 independently of agonist treatment, we also examined untreated transfected neurons. However, phosphorylated ERK1/2 levels were not increased in arrestin3-(R170E) transfected, untreated neurons. Thus, the ability of the dominant positive arrestin to promote morphine-induced activation of ERK1/2 supports the concept that morphine is less efficient at recruiting arrestin.

In the usual mode of GPCR desensitization, GRK phosphorylation of the receptor is presumed to be necessary. In our study using GRK3−/− neurons, neither fentanyl nor morphine induced significant ERK1/2 phosphorylation. Again, when we transfected the dominant positive arrestin into neurons, thus removing the requirement of receptor phosphorylation, we were able to rescue the phosphorylation of ERK1/2 in the GRK3−/− striatal neurons. Interestingly, the phosphorylation of ERK1/2 by both MOR agonists was similar, suggesting a similar mechanism was involved. The rescue of MOR-mediated ERK1/2 activation in GRK3−/− neurons by arrestin3-(R170E) again demonstrates that these neurons were not globally deficient in their ability to activate ERK1/2, but rather that GRK3 was essential for MOR-induced phosphorylation of ERK1/2.

In this study, we were able to determine that the activation of MOR was agonist dependent in striatal neurons. The phosphorylation of ERK1/2 was dependent on both GRK3 and arrestin3 expression. Furthermore, when the requirement of MOR phosphorylation was eliminated by the transfection of arrestin3-(R170E), morphine-mediated activation of ERK1/2 was significantly increased. These data suggest that the addition of the dominant positive arrestin rescues the ability for the less efficacious agonist morphine to promote the arrestin-receptor interaction andmediateactivationofERK1/2. This study suggests the coupling of MOR to arrestin3 can alter the signaling properties of MOR. Increasing the strength of the association of the signaling proteins increases the efficiency of MOR to activate ERK1/2. This study helps further elucidate the signaling mechanisms of mu opioid receptors in brain.

Acknowledgments—We thank John Pintar for the MOR−/− mice; Marc Caron and Robert Lefkowitz for the GRK3−/− mice; Vsevolod Gurevich for the bovine arrestin3-(R170E) mutant. We also thank Andrea Francois, Michael Soskis, and Greg Martin for technical assistance.

REFERENCES

1. Kovoor, A., Henry, D. J., and Chavkin, C. (1995) J. Biol. Chem. 270, 589–595
2. Kovoor, A., Nappey, V., Kieffer, B. L., and Chavkin, C. (1997) J. Biol. Chem. 272, 27605–27611
3. Kovoor, A., Celver, J. P., Wu, A., and Chavkin, C. (1998) Mol. Pharmacol. 54, 704–711
4. Schulz, R., Eisinger, D. A., and Wehmeyer, A. (2004) Eur. J. Pharmacol. 500, 487–497
5. Clark, M. J., Neubig, R. R., and Traynor, J. R. (2004) J. Pharmacol. Exp. Ther. 310, 215–222
6. Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., Reiter, E., Premont, R. T., Lichtarge, O., and Lefkowitz, R. J. (2006) J. Biol. Chem. 281, 1261–1273
7. Keith, D. E., Murray, S. R., Zaki, P. A., Chu, P. C., Lissin, D. V., Kang, L., Evans, C. J., and von Zastrow, M. (1996) J. Biol. Chem. 271, 19021–19024
8. Belcheva, M. M., Vogel, Z., Ignatova, E., Avidor-Reiss, T., Zippel, R., Levy, R., Young, E. C., Barg, J., and Coscia, C. J. (1998) J. Neurochem. 70, 635–645
9. Narita, M., Ioka, M., Suzuki, M., and Suzuki, T. (2002) Neurosci. Lett. 324, 97–100
10. Kovoor, A., Celver, J., Abdryashitov, R. I., Chavkin, C., and Gurevich, V. V. (1999) J. Biol. Chem. 274, 6831–6834
11. Schuller, A. G., King, M. A., Zhang, J., Bolan, E., Pan, Y. X., Morgan, D. J., Chang, A., Czick, M. E., Unterwald, E. M., Prestnak, G. W., and Pintar, J. E. (1999) Nat. Neurosci. 2, 151–156
12. Peppel, K., Boekhoff, I., McDonald, P., Breer, H., Caron, M. G., and Lefkowitz, R. J. (1997) J. Biol. Chem. 272, 25425–25428
13. Macey, T. A., Gurevich, V. V., and Neve, K. A. (2004) Mol. Pharmacol. 66, 1635–1642
14. Celver, J., Xu, M., Jin, W., Lowe, J., and Chavkin, C. (2004) Mol. Pharmacol. 65, 528–537
15. Wang, X., and Seed, B. (2003) Nucleic Acids Res. 31, e154
16. Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., and Zumla, A. (2004) BioTechniques 37, 112–119
17. Dang, V. C., and Williams, J. T. (2005) Mol. Pharmacol. 68, 1127–1132
18. Haberstock-Debic, H., Kim, K. A., Yu, Y. I., and von Zastrow, M. (2005) J. Neurosci. 25, 7847–7857
19. McDonald, P. H., and Lefkowitz, R. J. (2001) Cell Signal. 13, 683–689
20. Tibbles, L. A., and Woodgett, J. R. (1999) Cell. Mol. Life Sci. 55, 1230–1254
21. Ma, W., Zheng, W. H., Powell, K., Jhamandas, K., and Quirion, R. (2001) Eur. J. Neurosci. 14, 1091–1104
22. Bohn, L. M., Dykstra, L. A., Lefkowitz, R. J., Caron, M. G., and Barak, L. S. (2004) Mol. Pharmacol. 66, 106–112
23. Pippig, S., Andexinger, S., and Lohse, M. J. (1995) Mol. Pharmacol. 47, 666–676
24. Tsao, P. I., and von Zastrow, M. (2000) J. Biol. Chem. 275, 11130–11140
25. Luttrell, L. M., Roudabush, F. L., Choy, E. W., Miller, W. E., Field, M. E., Pierce, K. L., and Lefkowitz, R. J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2449–2454
26. Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., and Caron, M. G. (2005) Cell 122, 261–273
27. Terman, G. W., Jin, W., Cheong, Y. P., Lowe, J., Caron, M. G., Lefkowitz, R. J., and Chavkin, C. (2004) Br. J. Pharmacol. 141, 55–64
28. Bruchas, M. R., Macey, T. A., Lowe, J. D., and Chavkin, C. (2006) J. Biol. Chem. 281, 18081–18089
29. Zhang, J., Ferguson, S. S., Barak, L. S., Bodduluri, S. R., Laporte, S. A., Law, P. Y., and Caron, M. G. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7157–7162
30. Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y., and von Zastrow, M. (1999) Neuron 23, 737–746
31. Yu, Y., Zhang, L., Yin, X., Sun, H., Uhl, G. R., and Wang, J. B. (1997) J. Biol. Chem. 272, 28869–28874
32. Koch, T., Schulz, S., Pfeiffer, M., Klutzny, M., Schroder, H., Kahl, E., and Holt, V. (2001) J. Biol. Chem. 276, 31408–31414
33. Celver, J., Vishnivetskiy, S. A., Chavkin, C., and Gurevich, V. V. (2002) J. Biol. Chem. 277, 9043–9048