TCF7L2 rs7903146 polymorphism association with diabetes and obesity in an elderly cohort from Brazil

Lais Bride 1, Michel Naslavsky 2, Guilherme Lopes Yamamoto 2, Marília Sciliar 2, Lucia HS Pimassoni 1, Paola Sossai Aguiar 1, Flavia Paula 1,4, Jaqueline Wang 2, Yeda Duarte 5,6, Maria Rita Passos-Bueno 2, Mayana Zatz 2, Flávia Imbroisi Valle Errera Corresponding Author: Flávia Imbroisi Valle Errera
Email address: flavia.valle@ufes.br

1 Biotechnology Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
2 Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
3 School of Science of Santa Casa de Misericórdia de Vitória, Vitória, Espírito Santo, Brazil
4 Department of Biological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
5 School of Nursing, University of São Paulo, São Paulo, São Paulo, Brazil
6 School of Public Health, University of São Paulo, São Paulo, São Paulo, Brazil

Background. Type 2 diabetes mellitus (T2DM) and obesity are complex pandemic diseases in the 21st century. Worldwide, the T allele rs7903146 in the TCF7L2 gene is recognized as a strong GWAS signal associated with T2DM. However, the association between the C allele and obesity is still poorly explored and needs to be replicated in other populations. Thus, the primary objectives of this study were to evaluate the TCF7L2 rs7903146 association with T2DM according to BMI status and to determine if this variant is related to obesity and BMI variation in a cohort of elderly Brazilians.

Methods. A total of 1,023 participants from an elderly census-based cohort called SABE (Saúde, Bem Estar e Envelhecimento - Health, Well-Being and Aging) were stratified by BMI status and type 2 diabetes presence. The TCF7L2 genotypes were filtered from the Online Archive of Brazilian Mutations (ABraOM - Online Archive of Brazilian Mutations) database, a web-based public database with sequencing data of samples of the SABE’s participants. Logistic regression models and interaction analyses were performed. The BMI variation (∆BMI) was calculated from anthropometric data collected in up to two time-points with a ten-year-assessment interval.

Results. The association between the rs7903146 T allele and T2DM was inversely proportional to the BMI status, with an increased risk in the normal weight group (OR 3.36; 95% CI 1.46-7.74; P=0.004). We confirmed the T allele association with risk for T2DM after adjusting for possible confounding variables (OR 2.35; 95% CI 1.28 – 4.32; P=0.006). Interaction analysis showed that the increased risk for T2DM conferred by the T allele is modified by BMI (P_interaction=0.008), age (P_interaction=0.005) and gender (P_interaction=0.026). A T allele protective effect against obesity was observed (OR 0.71; 95% CI 0.54-0.94; P=0.016). The C allele increased obesity risk (OR 1.40; 95% CI 1.06-1.84; P=0.017) and the CC genotype showed a borderline association with abdominal obesity risk (OR 1.28; 95% CI 1.06-1.67; P=0.045). The CC genotype increased the obesity risk factor after adjusting for possible confounding variables (OR 1.41; 95% CI 1.06 – 1.86; P=0.017). An increase of the TT genotype in the second tertile of ∆BMI values was observed in participants without type 2 diabetes (OR 5.13; 95% CI 1.40-18.93; P=0.009) in the recessive genetic model. Conclusion. We confirmed that the rs7903146 is both associated with T2DM and obesity. The TCF7L2 rs7903146 T allele increased T2DM risk in the normal weight group and interacted with sex, age and BMI, while the C allele increased obesity risk. The TT genotype was associated with a lesser
extent of BMI variation over the SABE study's ten-year period.
TCF7L2 rs7903146 polymorphism association with diabetes and obesity in an elderly cohort from Brazil

Lais de Lima Bride¹, Michel Satya Naslavsky², Guilherme Lopes Yamamoto², Marília Oliveira Sciliar², Lúcia Helena Sagrillo Pimassoni³, Paola Sossai Aguiar¹, Flávia de Paula¹, Jaqueline Yu Ting Wang², Yeda Aparecida Oliveira Duarte⁵,⁶, Maria Rita Passos-Bueno², Mayana Zatz², Flávia Imbroisi Valle Errera¹,⁴

¹ Biotechnology Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
² Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
³ School of Science of Santa Casa de Misericórdia de Vitória, Vitória, Brazil
⁴ Center for Human and Molecular Genetics, Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
⁵ School of Nursing, University of São Paulo, São Paulo, Brazil
⁶ School of Public Health, University of São Paulo, São Paulo, Brazil

Corresponding Author:
Flávia Imbroisi Valle Errera¹,⁴
Avenida Fernando Ferrari, 514, Edifício Lydia Behar, sala 105, Vitória, Espírito Santo, zip code 29075-910, Brazil.
Email address: flavia.errera@gmail.com, flavia.valle@ufes.br
Abstract

Background. Type 2 diabetes mellitus (T2DM) and obesity are complex pandemic diseases in the 21st century. Worldwide, the T allele rs7903146 in the TCF7L2 gene is recognized as a strong GWAS signal associated with T2DM. However, the association between the C allele and obesity is still poorly explored and needs to be replicated in other populations. Thus, the primary objectives of this study were to evaluate the TCF7L2 rs7903146 association with T2DM according to BMI status and to determine if this variant is related to obesity and BMI variation in a cohort of elderly Brazilians.

Methods. A total of 1,023 participants from an elderly census-based cohort called SABE (Saúde, Bem Estar e Envelhecimento - Health, Well-Being and Aging) were stratified by BMI status and type 2 diabetes presence. The TCF7L2 genotypes were filtered from the Online Archive of Brazilian Mutations (ABraOM - Online Archive of Brazilian Mutations) database, a web-based public database with sequencing data of samples of the SABE’s participants. Logistic regression models and interaction analyses were performed. The BMI variation (∆BMI) was calculated from anthropometric data collected in up to two time-points with a ten-year-assessment interval.

Results. The association between the rs7903146 T allele and T2DM was inversely proportional to the BMI status, with an increased risk in the normal weight group (OR 3.36; 95% CI 1.46-7.74; \(P=0.004 \)). We confirmed the T allele association with risk for T2DM after adjusting for possible confounding variables (OR 2.35; 95% CI 1.28 – 4.32; \(P=0.006 \)). Interaction analysis showed that the increased risk for T2DM conferred by the T allele is modified by BMI (\(P_{\text{interaction}}=0.008 \)), age (\(P_{\text{interaction}}=0.005 \)) and gender (\(P_{\text{interaction}}=0.026 \)). A T allele protective effect against obesity was observed (OR 0.71; 95% CI 0.54-0.94; \(P=0.016 \)). The C allele increased obesity risk (OR 1.40; 95% CI 1.06-1.84; \(P=0.017 \)) and the CC genotype showed a borderline association with abdominal obesity risk (OR 1.28; 95% CI 1.06-1.67; \(P=0.045 \)). The CC genotype increased the obesity risk factor after adjusting for possible confounding variables (OR 1.41; 95% CI 1.06 – 1.86; \(P=0.017 \)). An increase of the TT genotype in the second tertile of ∆BMI values was observed in participants without type 2 diabetes (OR 5.13; 95% CI 1.40-18.93; \(P=0.009 \)) in the recessive genetic model.

Conclusion. We confirmed that the rs7903146 is both associated with T2DM and obesity. The TCF7L2 rs7903146 T allele increased T2DM risk in the normal weight group and interacted with sex, age and BMI, while the C allele increased obesity risk. The TT genotype was associated with a lesser extent of BMI variation over the SABE study's ten-year period.
Introduction

Type 2 diabetes mellitus (T2DM) and obesity are considered pandemic diseases. They are interconnected by insulin mechanisms and characterized by complex interactions between environmental and genetic factors (Haupt et al., 2010; Chen et al., 2018; Grant, 2019). In this context, crucial T2DM genes involved in insulin production, processing, trafficking and secretion can also play a significant role in obesity development (Noordam et al., 2017; Fernández-Rhodes et al., 2018). The TCF7L2 (10q25.2), one of these genes, encodes a transcription factor member of the Wnt signaling pathway known to act on vital functions of β cells and glucose metabolizing tissues (Cropano et al., 2017).

The rs7903146 T allele in TCF7L2 is the strongest GWAS signal for T2DM risk in different populations across the world and it is associated with insulin synthesis, processing, secretion and action mechanisms (Grant et al., 2006; Cauchi et al., 2008b; Bouhaha et al., 2010; Zhou et al., 2014; Corella et al., 2016; Cropano et al., 2017). The genetic susceptibility for T2DM is modulated by BMI, suggesting a potential relationship between the rs7903146 variant and risk for obesity. Such factors may be related to the TCF7L2 expression and the Wnt pathway regulation of adipose tissue (Ross et al., 2000; Grant et al., 2006; Zhou et al., 2014; Cropano et al., 2017; Chen et al., 2018).

The Wnt signaling pathways negatively regulate adipogenesis and play important metabolic and developmental roles in adipose tissue composition and functioning (Chen & Wang, 2018). Although the TCF7L2 encodes the main effector involved in this signaling pathway, few studies investigate the association between the rs7903146 and risk for obesity (Haupt et al., 2010; Al-Daghri et al., 2014; Locke et al., 2015; Abadi et al., 2017; Muller et al., 2019). These studies reported an association between the rs7903146 C allele and the risk for obesity. In this sense, validation research for the association in other populations is compelling (Grant, 2019).

We hypothesize that the rs7903146 variant is associated not only with T2DM but also with obesity. We aimed to explore the relation between T2DM risk conferred by the rs7903146 SNP and BMI status, verifying differences among the rs7903146 genotypes on BMI variation over a ten-year period. Furthermore, we performed interaction analyses of this genetic variant with BMI, age and gender.
Materials & Methods

Study Cohort

We recruited elderly volunteers from a health survey called SABE (Saúde, Bem Estar e Envelhecimento - Health, Well-Being and Aging). SABE was carried out in São Paulo, Brazil, under the coordination of the Pan American Health Organization. The project was initially a multicenter health survey and well-being of older people in seven Caribbean and Latin American urban centers (Bridgetown, Barbados; Buenos Aires, Argentina; Havana, Cuba; Mexico City, Mexico; Montevideo, Uruguay; Santiago, Chile; and São Paulo, Brazil). The Brazilian center has since adopted a longitudinal approach with a new data collection every five years, under the coordination of the Public Health School at the University of São Paulo (Lebrão & Laurenti, 2005).

SABE was approved by the Ethics in Research Committee of the School of Public Health of the University of São Paulo and the Brazilian National Committee for Ethics in Research under protocol number 2015/12837/1.015.223. All participants signed an informed consent form under the Brazilian regulatory requirements of research with human subjects. A detailed description of the study population, including demographic characteristics, clinical and anthropometric data, medical history and socioeconomic background, has been previously published (Lebrão & Laurenti, 2005).

In addition, SABE was approved by the Institutional Review Board of the University of São Paulo School of Public Health (CAAE: 47683115.4.0000.5421, Review: 3.600.782). All genomic dataset subjects have agreed to participate in this study and signed the written informed consent form approved by CEP/CONEP (Brazilian local and national Ethical Committee Boards).

Clinical and Anthropometric Characteristics

Data was collected by a specific standardized questionnaire (C10) proposed by the Pan American Health Organization (PAHO), which was translated and adapted for use in Brazil (Naslavsky et al., 2017). Trained interviewers administered the questionnaire in subjects' households. The T2DM was considered self-reported if the subject provided an affirmative answer to the question, “Have you ever been told by a doctor or other health professional that you have diabetes or high blood sugar levels?” Blood was withdrawn and submitted to biochemical and genomic analyses.

We assessed the following demographic and health variables: gender, age, fasting plasma glucose (mg/dL), glycated hemoglobin (%), total cholesterol (mg/dL), fasting triglyceride (mg/dL), LDL cholesterol (mg/dL), HDL cholesterol (mg/dL), systolic pressure (mmHg), diastolic pressure (mmHg), BMI (kg/m²), waist circumference (cm), hip circumference (cm), and hip-waist ratio (cm / cm). All participants with T2DM and/or with blood glucose levels above 100...
mg/dL were considered hyperglycemic. For anthropometric evaluation, the weight was measured using a portable scale (Seca, Germany), and the height was measured using an anthropometer (Harpenden, England). Waist circumference was measured using an inelastic measurement tape placed on the midpoint between the lower margin of the last palpable riband and the top of the iliac crest. Hip circumference was measured around the widest portion of the buttocks.

The BMI was calculated from weight and height at baseline from the ratio of body weight (in kilograms) to height in square meters. We stratified individuals into three groups according to the World Health Organization (WHO) criteria for BMI classification: normal weight (18.5 – 24.9 kg/m²), overweight (25.0 – 29.9 kg/m²) and obesity (≥ 30.0 kg/m²). Abdominal obesity was defined by the waist circumference > 88 cm for women and > 102 cm for men. Anthropometric data were analyzed twice over ten years (2000 and 2010). The BMI variation (∆BMI) of each elderly was obtained from the difference between the BMI measured in the collection years 2010 and 2000.

After excluding subjects with incomplete data, this study was carried out in a multiethnic population of 1,023 elderly individuals. The cohort included men and women whose anthropometric, biochemical, and genetic information were evaluated to verify association with T2DM, obesity, and BMI variation over ten years.

Next-Generation Sequencing Data

We selected the TCF7L2 rs7903146 SNP because of its high predictive power (effect size × allele frequency) in the Latin American population. It is also localized in a gene related to various cellular processes involved in T2DM development (Berumen et al., 2019). We filtered the TCF7L2 rs7903146 genotypes from the whole-genome sequencing dataset of SABE, the second phase of genomic analyses following the dataset deposited in ABrAOM - Arquivo Brasileiro Online de Mutações (Online Archive of Brazilian Mutations, http://abraom.ib.usp.br).

Quality control of genotypes and variants is described by Naslavsky et al. (2017) and by Naslavsky et al. (2020).

Statistical Analysis

Data regarding continuous variables were expressed as percentages and the mean ± standard deviation (SD) and percentages for categorical variables. The one-sample Kolmogorov-Smirnov test was used to test the normality. Differences between groups for categorical data were tested by χ² analysis, while Independent Samples Mann-Whitney U test and the Kruskal-Wallis test were used for continuous data. Allele frequencies were determined by gene counting and Hardy-Weinberg equilibrium deviations were verified using a χ² test.

Allele and genotype distributions among groups were evaluated with χ² test or Fisher’s exact test. The level of significance adopted was P<0.05. Logistic regression models were developed.
after adjusting for age and gender and were performed to assess the independent role of the
\textit{TCF7L2} genotype. Interaction analysis was performed. The rs7903146 genotypic frequencies
were compared among the ΔBMI tertiles. SPSS (version 25.0.0.0) software was used for general
statistics.

A power analysis was performed using the software G*Power version 3.1.9.2 to verify the
rs790314 association with T2DM and obesity. The sample size was 1,023, and to perform the
power analysis were considered: a significance level of 0.05, the OR of 1.3, a statistical power of
90\%, the expected squared coefficient of multiple correlations (R^2) of 0.25 (moderate
association).

Results

The main clinical features of the 1,023 participants are depicted in Table 1. The median age of
participants was 71.4 years old (59–99 years old), and 64.32\% of participants were women. The
three groups clustered by BMI status contain 280 subjects with normal weight, 424 with
overweight and 319 with obesity (Table 1). These groups did not differ in systolic pressure, total
cholesterol and LDL cholesterol. However, groups differed in gender ratio, age, waist
circumference, hip circumference, hip-waist ratio, diastolic pressure, plasma glucose, glycated
hemoglobin, fasting triglyceride, HDL cholesterol and number of subjects with T2DM and
arterial hypertension (Table1).

The genotypic distributions for the rs7903146 were in Hardy-Weinberg equilibrium in all groups
(All $P>0.05$). These genotypic and allelic distributions of participants with and without T2DM
according to BMI status are shown in Supplemental Table 1 (All $P>0.05$). In addition, the
analysis of ancestries frequency is demonstrated in Supplemental Table 2. There was a
significant difference in European contribution among the genotypes ($P=0.007$) and between
Non-T2DM and T2DM groups ($P=0.020$).

The TT genotype was more frequent in the T2DM group ($P=0.0001$). The \textit{TCF7L2} rs7903146 T
allele, in association with T2DM, was confirmed on the recessive genetic model (OR=1.89; 95%
CI: 1.21–2.95; $P=0.004$), but no significant associations were detected with other phenotypes
(Supplemental Table 3). Significant association signals were detected between hyperglycemia and
the T allele on the dominant genetic model (OR=1.77; 95% CI: 2.61 – 1.20; $P=0.004$) as well as
on the log-additive model (OR=1.56; 95% CI: 2.09 – 1.17; $P=0.002$) (Supplemental Table 4). Yet,
a C allele protective effect was also observed against T2DM under dominant (OR=0.51; 95%
CI:0.32 – 0.80; $P=0.003$), additive (OR=0.50; 95% CI:0.31 – 0.81; $P=0.004$) and allelic (OR=
0.79; 95% CI: 0.64 – 0.98; $P=0.031$) genetic models (Supplemental Table 5).
The regression analysis showed a risk for T2DM on TT carriers even after adjusting for all confounds depicted in Table 1 (Table 2). However, the interaction analysis demonstrated that BMI modifies the association between TT genotype and T2DM risk (OR = 1.02; 95% CI: 1.01 – 1.04; \(P_{interaction} = 0.008 \)). This result reinforces the logistic regression analysis stratified by BMI status, which showed that the risk for T2DM conferred by T allele is higher in the normal weight group, with the following odds ratios: (OR = 3.36; 95% CI: 1.46–7.74; \(P = 0.004 \)) for the recessive model and (OR = 3.21; 95% CI: 1.31–7.87; \(P = 0.011 \)) for the additive model (Table 3). In addition, the T allele and age interaction analysis demonstrated that the increased T2DM risk in TT carriers is maintained, and the age affects this association (OR = 1.01; 95% CI: 1.00 – 1.02; \(P_{interaction} = 0.005 \)).

Association tests separated by gender showed a borderline association between the TT genotype and risk for T2DM in men (OR = 2.19; 95% CI: 1.05 – 4.58; \(P = 0.042 \)). Tests also reported a trend for association in women (OR = 1.75; 95% CI: 1.00 – 3.07; \(P = 0.055 \)). After grouping subjects from the normal weight and overweight groups and excluding the obese group, we observed association both in men (OR = 2.64; 95% CI: 1.16 – 5.98; \(P = 0.020 \)) and women (OR = 2.14; 95% CI: 1.08 – 4.21; \(P = 0.028 \)). However, in the normal weight group, we noticed a strong association in men (OR = 5.48; 95% CI: 1.57 – 19.10; \(P = 0.008 \)) while there was no association in women. Furthermore, this result is also reinforced by the interaction analysis of the TT genotype and gender on the risk for T2DM (OR = 1.87; 95% CI: 1.08 – 3.25; \(P_{interaction} = 0.026 \)).

The association between the rs7903146 variant and obesity status was analyzed and the T allele conferred protection against obesity on the dominant model (OR = 0.71; 95% CI: 0.54–0.94; \(P = 0.016 \)) (Supplemental Table 6). This result leads us to believe that there is an association between the C allele and obesity. Our analysis revealed a CC genotype association with obesity risk on the recessive model (OR = 1.40; 95% CI: 1.06–1.84; \(P = 0.017 \)) (Table 4). The regression analysis showed a higher risk for obesity on CC carriers even after adjustment for all the possible confounds (OR = 1.41; 95% CI 1.06 – 1.86; \(P = 0.017 \)) (Table 5). Additionally, we observed a borderline association with abdominal obesity in subjects with CC genotype (OR = 1.29; 95% CI: 1.28–1.67; \(P = 0.045 \)).

Analysis of BMI variation over ten years of SABE study revealed a different distribution of rs7903146 genotypes among \(\Delta \)BMI tertiles (Supplemental Tables 7 and 8). We observed an increase in the TT genotype in the \(\Delta \)BMI second tertile compared to the first tertile. The increased frequency in the TT genotype was detected on the recessive genetic model (OR = 2.00; 95% CI 1.01 - 3.97; \(P = 0.044 \)) and in participants without T2DM, both on the additive (OR = 5.13; 95% CI 1.40-18.93; \(P = 0.009 \)) as on the recessive model (OR = 5.13; 95% CI 1.43-18.37; \(P = 0.010 \)) (Supplemental Table 7). No significant values were found among individuals with T2DM (Supplemental Table 8).
Discussion

We evaluated the TCF7L2 rs7903146 association with T2DM and obesity. We explored whether the strength of association with T2DM depends on BMI status (normal-weight, overweight and obesity). The differences in BMI variation over ten years on C and T allele carriers were also investigated. We confirmed that the T allele risk confers risk for T2DM, and it is influenced by BMI status, age and gender. The TT genotype conferred a protective effect against obesity and the CC genotype was associated with risk for obesity. Moreover, the TT genotype was associated with a lower BMI variation over a ten-year period in our elderly cohort.

According to the Allele Frequency Aggregator (ALFA) project from the National Center for Biotechnology Information (NCBI) database, the worldwide frequency for the rs7903146 T allele is around 0.29 (Phan et al., 2020). In our population, T allele frequency varied from 0.27 to 0.33 among the categories, except for the normal weight diabetic elderly group. For this group, the T allele frequency was around 0.40 (Supplemental Table 1). Thereafter, we performed regression analysis adjusted for gender and age, which confirmed the rs7903146 T allele risk for T2DM in the total population (Table 3).

Other Brazilian studies also reported the rs7903146 T allele association with risk for T2DM (Barra et al., 2012; Assmann et al., 2017). However, these studies did not investigate the influence of BMI on diabetes risk or addressed this issue considering an elderly population. Thus, we verified an increased risk for T2DM conferred by the rs7903146 T allele in lower BMI participants. This risk was higher in the normal weight group (OR 3.36; 95% CI 1.46-7.74; P=0.004) (Table 3). Previous studies, with populations from other countries, also reported a higher risk for T2DM when the BMI is lower (Cauchi et al., 2006, 2008b; Bouhaha et al., 2010; Corella et al., 2016). Cauchi et al., (2008) and Corella et al., (2016) observed odds ratios of 1.89 (95% CI: 1.67-2.14) and 2.32 (95% CI: 1.90-2.85) in individuals without obesity, respectively. Meanwhile, Bouhaha et al. (2010) reported an odds ratio (OR 3.24; 95% CI: 1.10-9.53) similar to our results. Perry et al. (2012), when analyzing 36 diabetes loci, verified, in 29 of them, a higher risk for T2DM in normal weight individuals compared to obese individuals.

The rs7903146 T allele may have a more significant impact on individuals without obesity. This impact is due not to the obesity-induced insulin resistance but due to pancreatic dysfunction, indicating that β-cell impairment predicts a future T2DM in subjects with lower BMI (Cauchi et al., 2008b; Bouhaha et al., 2010). Among leaner subjects, the β-cell compensation is lower, while among people with obesity, the compensation is higher (Watanabe et al., 2007). Plasmids carrying the T allele showed more robust transcriptional activity when compared to those with the C allele. In addition, pancreatic cells with T allele carriers showed impaired proinsulin processing, resulting in a high level of proinsulin in the plasma and an increased proinsulin/insulin ratio (Stolerman et al., 2009). Human islets have a higher degree of open chromatin, corroborating that the T allele leads to an increased expression of TCF7L2 and
decreased insulin content and secretion (Zhou et al., 2014). Additionally, Zhou et al. (2014) demonstrated that in islets from CC genotype carriers, TCF7L2 mRNA expression was negatively associated with the genes ISL1, MAFA and NKX6.1 but not with MAFA and NKX6.1 in CT/TT genotype carriers. This finding reinforces the β-cell impairment in T allele risk carriers.

The difference in the association of genes between men and women has been previously explored. Interestingly, there is evidence that the TCF7L2 gene behaves differently in women and men. Moreover, He, Zhong and Cui (2014) conducted an integrated approach and observed gender differences in association signals at the gene-level and pathway-level. In this study, the TCF7L2 association was found only in male subjects, and all SNPs in this gene, considering the female population, did not show significance. Since TCF7L2 belongs to several enriched pathways and is widely recognized as a gene conferring risk of T2DM, the authors performed the same analysis but deleting this gene in all pathways. They observed no significant change between pathway signals with and without the TCF7L2 gene in the female group, while the strong signals in the male group were almost nonexistent after deleting the gene. This evidence suggests a potential difference in T2DM etiology in the pathway-level for each gender group. The authors verified that the significance of the pathways in the male group is primarily dominated by the TCF7L2 gene (He, Zhong & Cui, 2014).

Berumen et al. (2019) investigated the influence of several factors on T2DM variability in Mexico. The authors observed that the factors contributed more in men (33.2%) than in women (25%). In addition, genes played a substantially more important role in men than in women (14.9% vs. 5.5%), while obesity and parental history played a similar role in both genders. Genes and parental history appeared to play a more significant role than obesity in T2DM. According to Berumen et al., the effect of TCF7L2 on men is more significant when the disease is diagnosed at ≤45 years of age than when it is diagnosed at an older age, especially for the homozygous risk allele (OR= 4.62 and 2.59, respectively). Thus, the previously mentioned studies could explain the interaction between the T allele and gender on diabetes risk, which was observed in our study.

Our selected gene variant represents only a fraction of the studied gene’s potential variation and the mechanisms involving TCF7L2, T2DM and obesity. Additional genetic studies with other variants are needed better to understand the TCF7L2 role in these complex diseases. The rs12255372 variant in intron 4 of the TCF7L2 gene showed strong linkage disequilibrium (LD) with rs7903146 (Pang, Smith & Humphries, 2013). Moreover, subjects homozygous for the risk-associated allele showed higher gene expression in pancreatic islets and were more than twice as likely to develop T2DM as non-carriers (Lyssenko et al., 2007; Pang, Smith & Humphries, 2013).
Prior association studies reported a lack of association between the rs7903146 T allele and obesity status (Cauchi et al., 2008b; Stolerman et al., 2009; Bouhaha et al., 2010; Al-Safar et al., 2015). However, we verified a T allele protective effect against obesity (Supplemental Table 6), corroborating results reported in more recent studies (Noordam et al., 2017; Fernández-Rhodes et al., 2018). A cross-sectional analysis conducted in middle-aged participants (mean age of 55.9 ± 6.0 years) reported a T allele association with lower BMI and mean total body fat (Noordam et al., 2017). Furthermore, Fernandez-Rhodes et al. (2018) showed an association between TT genotype, decreased waist circumference and lower mean BMI at multiple time points in the life course. This protection against obesity might be due to reduced insulin production and secretion related to the rs7903146 T allele once insulin stimulates the increased glucose uptake in adipocytes. Insulin plays, therefore, a pro-obesogenic role both from its anabolic effect on lipid accumulation and due to compensatory eating to prevent episodes of hypoglycemia (Zhou et al., 2016).

Multiple factors are related to the changes in body composition with aging. From the fourth decade onwards, the muscle mass declines and accounts for reduced resting metabolic rates, which contribute to the gradual increase in body fat in elderly subjects (Gallagher et al., 1998; Sayer et al., 2008). Around 75 years of age, the BMI appears to be stable, yet it is overestimated due to an increase in fat mass and a decrease in lean mass and bone density (Ponti et al., 2020). In this sense, due to sarcopenic obesity, it is not easy to differentiate lean and obese elders. BMI cutoff points are still controversial for this range of age and, therefore, BMI classification is a limiting factor for our cohort. However, the BMI variation is a substantial risk predictor for elders and the rs7903146 T allele protective effect against obesity deserves attention – especially since thinness is a significant risk factor in old age, and weight loss is closely related to the frailty syndrome and other health complications (Aune et al., 2016; Di Angelantonio et al., 2016; Ponti et al., 2020).

Studies have reported clinical implications of sarcopenic obesity in subjects with T2DM (Khadra et al.; Ghoch, Calugi & Grave, 2018; Kim & Park, 2018). A recent meta-analysis observed that the presence of sarcopenic obesity increases the T2DM risk by 38% concerning those without sarcopenic obesity (OR = 1.38, 95%CI: 1.27-1.50) (Khadra et al., 2019). The commonly accepted mechanism interconnecting T2DM and sarcopenic obesity involves an increase in fat mass, decrease in lean mass, chronic inflammation and insulin resistance; however, the mechanism itself is still unclear (Ponti et al., 2020). It can thus be said that the interaction between the T allele and age on diabetes risk observed in our elderly cohort could be related to the sarcopenic obesity in older adults and the age-related decline in resting metabolic rates.

Our data further suggest a differential effect of rs7903146 genotypes in BMI variation only in elderly subjects without T2DM (Supplemental Table 7). Minor variation in BMI was observed among the TT genotype during the SABE ten-year period. This conclusion is drawn from the
increased number of TT subjects without T2DM on the second tertile of ∆BMI values (Supplemental Table 7). The same result is found in interventional studies that verified lower BMI variation in rs7903146 T allele carriers (Haupt et al., 2010; Kaminska et al., 2012; Roswall et al., 2014). Mattei et al., 2012 observed a greater loss of lean mass for CC subjects on a low-fat diet compared to TT (Mattei et al., 2012). Similarly, less weight gain per year was observed in patients with the T allele compared to the C allele after adopting a Mediterranean diet (Roswall et al., 2014). According to Fisher et al. (2012), the rs7903146 C allele arose during the transition from hunter-gatherer to agricultural practices, with a consequent reduction of protein sources). Carriers of the rs7906146 T allele were then selectively adapted to maintain weight stability under low-protein conditions (Fisher et al., 2012).

Helgason et al. (2007) reported that the rs7903146 T allele was the probable ancestral allele, serving for a better subjacent mutation. In addition, the authors identified a haplotype with the C allele (HapA). This haplotype indicates positive selection, besides the association with BMI and altered concentrations of ghrelin and leptin. It further indicates that the selective advantage of HapA may have been mediated through effects on energy metabolism (Helgason et al., 2007). Corroborating with these findings, the most significant GWAS meta-analysis for BMI so far (~300,000 subjects) reported a C allele association with BMI (Locke et al., 2015). Although the extent of clinical variability associated with the C allele is not fully known, significant associations between the rs7903146 C allele and BMI and/or waist circumference were observed in a Saudi population (Al-Daghri et al., 2014), in European adults (Abadi et al., 2017) and American Indians (Muller et al., 2019).

CC genotype subjects expressed more transcripts containing the alternative spliced exons (13 and 13a) in their adipose tissue associated with BMI and body fat percentage than the T allele carriers (Kaminska et al., 2012). Furthermore, in addition to nine diabetes-associated genes, five in seven TCF7L2 splice forms were differentially expressed by comparing leukocyte cells of carriers of the CC and CT/TT genotypes. This ratio might reflect a significant change in gene interactions and responsible networks as glucose homeostasis, adipogenesis and others (Vaquero et al., 2012). In this sense, the TCF7L2 alternative splicing in the adipose tissue could be regulated by health, disease, weight loss and insulin resistance (Mondal et al., 2010; Kaminska et al., 2012; Vaquero et al., 2012; Zhou et al., 2014; Chen et al., 2018). The TCF7L2 gene plays important metabolic and developmental roles in adipose tissue composition and functioning. Therefore, it is largely hypothesized that the Wnt signaling is critical for obesity development (Chen & Wang, 2018; Chen et al., 2018). This gene is differentially methylated in adipose tissue, exhibiting relevant epigenetic changes to the development of both diabetes and obesity (Nilsson et al., 2014). The TCF7L2 protein inactivation is associated with increased subcutaneous adipose tissue mass, adipocyte hypertrophy and inflammation (Chen et al., 2018). Furthermore, besides alternative splicing, other regulatory changes seem to be genotype-
specific and further affect the *TCF7L2* role in adipose tissue. Several protein factors, including GATA3, a transcription factor that controls the preadipocyte-to-adipocyte transition, bind only to the rs7903146 C allele but not to the T allele under caloric restriction (Cauchi et al., 2008a).

This evidence supports the CC genotype association with the risk of obesity and abdominal obesity in our population. Thus, we speculate that the inverse effects observed in our study of the rs7903146 T and C alleles on risks for diabetes and obesity. Such effects might be related to the *TCF7L2* expression and its genotype-specific effects on the WNT signaling pathway in adipose tissue and others. We recognize the advances in knowledge regarding the production, processing, trafficking and secretion of insulin. However, more studies are required to understand further the mechanisms interconnecting the *TCF7L2* rs7903146 variant, T2DM and obesity.

The main strength of this study is the median age of our population, which exceeds the age of onset of diabetes and obesity, thus minimizing a typical bias in the selection of the control group. As far as we know, this is one of the few association studies that reported an association of the rs7903146 variant with BMI variation during a 10-year-interval assessment. It is also unique to investigate obesity status in an exclusively elderly cohort. Dietary factors play an essential role in T2DM etiology and the gene-diet interaction could influence T2DM pathogenesis (Ouhaibi-Djellouli et al., 2014; Hindy et al., 2016). Therefore, the lack of assessment regarding dietary aspects as well as physical activity levels could be a limitation of our study. However, we could detect and confirm the association between T2DM and the rs7903146 T allele in our population, worldwide recognized as the strongest GWAS signal for diabetes risk (Grant, 2019). Despite our population size, we were able to reproduce significant results following more recent studies performed on larger populations (Locke et al., 2015; Abadi et al., 2017; Fernández-Rhodes et al., 2018).

Conclusions

We confirmed that the rs7903146 variant is associated with both T2DM and obesity. This result is supported by evolutive aspects and functional studies concerning the T and C alleles, contributing to knowledge expansion regarding this barely explored association. In addition, we found a TT association with a lower BMI variation in elderly subjects over the ten years of the SABE study. These findings provide a unique contribution to the field of association studies about this polymorphism. Nevertheless, additional studies are needed to understand the *TCF7L2* rs7903146 association with obesity and with BMI variation in different age groups of populations across the world.

Acknowledgments

The authors acknowledge all volunteers and professionals who participated in the SABE survey. They would also like to thank the Academic Publishing Advisory Center (*Centro de Assessoria*...
References

Abadi A, Alyass A, Robiou du Pont S, Bolker B, Singh P, Mohan V, Diaz R, Engert JC, Yusuf S, Gerstein HC, Anand SS, Meyre D. 2017. Penetration of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution. *American Journal of Human Genetics* 101:925–938. DOI: 10.1016/j.ajhg.2017.10.007.

Al-Daghri NM, Alkharfy KM, Al-Attas OS, Krishnaswamy S, Mohammed AK, Albagha OM, Alenad AM, Chrousos GP, Alokail MS. 2014. Association between type 2 diabetes mellitus-related SNP variants and obesity traits in a Saudi population. *Molecular Biology Reports* 41:1731–1740. DOI: 10.1007/s11033-014-3022-z.

Al-Safar H, Hassoun A, Almazrouei S, Kamal W, Afandi B, Rais N. 2015. Association of the genetic polymorphisms in transcription factor 7-like 2 and peroxisome proliferator-activated receptors-γ 2 with type 2 diabetes mellitus and its interaction with obesity status in Emirati population. *Journal of Diabetes Research* 2015. DOI: 10.1155/2015/129695.

Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, Cairns BJ, Huxley R, Jackson CL, Joshy G, Lewington S, Manson JAE, Murphy N, Patel A V., Samet JM, Woodward M, Zheng W, Zhou M, Bansal N, Barricarte A, Carter B, Cerhan JR, Collins R, Smith GD, Fang X, Franco OH, Green J, Halsey J, Hildebrand JS, Ji Jung K, Korda RJ, McLerran DF, Moore SC, O’Keeffe LM, Paige E, Ramond A, Reeves GK, Rolland B, Sacerdote C, Sattar N, Anopoulou ES, Stevens J, Thun M, Ueshima H, Yang L, Duk Yun Y, Willeit P, Banks E, Beral V, Chen Z, Gapstur SM, Gunter MJ, Hartge P, Jee SH, Lam TH, Peto R, Potter JD, Willett WC, Thompson SG, Danesh J, Hu FB. 2016. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. *The Lancet* 388:776–786. DOI: 10.1016/S0140-6736(16)30175-1.

Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, Romundstad P, Vatten LJ. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. DOI: 10.1136/bmj.i2156.

Berumen J, Orozco L, Betancourt-Cravioto M, Gallardo H, Zulueta M, Mendizabal L, Simon L, Benuto RE, Ramírez-Campos E, Marin M, Juárez E, García-Ortiz H, Martínez-Hernández A, Venegas-Vega C, Peralta-Romero J, Cruz M, Tapia-Conyer R. 2019. Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: A case-control study. *Scientific Reports* 9:1–15. DOI: 10.1038/s41598-019-39145-x.

Bouhaha R, Choquet H, Meyre D, Kamoun HA, Ennafaa H, Baroudi T, Sassi R, Vaxillaire M, Elgaaied A, Froguel P, Cauchi S. 2010. *TCF7L2* is associated with type 2 diabetes in nonobese individuals from Tunisia. *Pathologie Biologie* 58:426–429. DOI: 10.1016/j.patbio.2009.01.003.

Cauchi S, Choquet H, Gutiérrez-aguilar R, Capel F, Grau K, Proença C, Dina C, Duval A, Balkau B, Marre M, Potoczna N, Langan D, Horber F, Sørensen TIA. 2008a. Effects of *TCF7L2* Polymorphisms on Obesity in European Populations. *Obesity Journal* 16:476–482. DOI: 10.1038/oby.2007.77.

Cauchi S, Meyre D, Dina C, Samson C, Gallina S, Balkau B, Charpentier G, Stetsyuk V, Staels
B, Frühbeck G, Froguel P. 2006. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes 55:2903–2908. DOI: 10.2337/db06-0474.

Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N, Balkau B, Marre M, Charpentier G, Froguel P, Meyre D. 2008b. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Medical Genetics 7903146:1–9. DOI: 10.1186/1471-2350-9-45.

Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S, Norton L. 2018. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes 67:554–568. DOI: 10.2337/db17-0318.

Chen N, Wang J. 2018. Wnt/β-Catenin signaling and obesity. Frontiers in Physiology 9:1–15. DOI: 10.3389/fphys.2018.00792.

Corella D, Coltell O, Sorlí J V., Estruch R, Quiles L, Martínez-González MÁ, Salas-Salvadó J, Castañer A, Arós F, Ortega-Calvo M, Serra-Majem L, Gómez-Gracia E, Portolés O, Fiol M, Espino JD, Basora J, Fitó M, Ros E, Or dová J M. 2016. Polymorphism of the transcription factor 7-like 2 gene (TCF7L2) interacts with obesity on type-2 diabetes in the predimed study emphasizing the heterogeneity of genetic variants in type-2 diabetes risk prediction: Time for obesity-specific genetic risk sc. Nutrients 8. DOI: 10.3390/nu8120793.

Cropano C, Santoro N, Group L, Dalla Man C, Cobelli C, Galderisi A, Kursawe R, Pierpont B, Goffredo M, Caprio S. 2017. The rs7903146 Variant in the TCF7L2 Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care 40:1082–1089. DOI: 10.2337/dc17-0290.

Fernández-Rhodes L, Green Howard A, Graff M, Isasi CR, Highland HM, Young KL, Parra E, Below JE, Qi Q, Kaplan RC, Justice AE, Papanicolaou G, Laurie CC, A Grant SF, Haiman C, F Loos RJ, North KE. 2018. Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/ Study of Latinos. BMC Obesity 5:2–12. DOI: 10.1186/s40608-018-0200-x.

Fisher E, Meidtner K, Ängquist L, Holst C, Hansen RD, Halkjaer J, Masala G, Østergaard JN, Overvad K, Palli D, Vima leswaran KS, Tjonneland A, Van Der A DL, Wareham NJ, Sørensen TIA, Loos RJF, Boeing H. 2012. Influence of dietary protein intake and glycemic index on the association between TCF7L2 HapA and weight gain. American Journal of Clinical Nutrition 95:1468–1476. DOI: 10.3945/ajcn.111.014670.

Ghoch M El, Calugi S, Grave RD. 2018. The Open Nutrition Journal Sarcopenic Obesity: Definition, Health Consequences and Clinical Management. 12:70–73. DOI: 10.2174/1874288201812010070.

Grant SFA. 2019. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care 42:1624–1629. DOI: 10.2337/dc19-0001.

Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G,
Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. 2006. confers risk of type 2 diabetes. 38:320–323. DOI: 10.1038/ng1732.

Haupt A, Thamer C, Heni M, Ketterer C, Machann J, Schick F, Machicao F, Stefan N, Claussen CD, Häring HU, Fritsche A, Staiger H. 2010. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes 59:747–750. DOI: 10.2337/db09-1050.

He T, Zhong PS, Cui Y. 2014. A set-based association test identifies sex-specific gene sets associated with type 2 diabetes. Frontiers in Genetics 5:1–8. DOI: 10.3389/fgene.2014.00395.

Hindy G, Mollet IG, Rukh G, Ericson U, Orho-Melander M. 2016. Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. DOI: 10.1186/s12263-016-0524-4.

Kaminska D, Kuulasmaa T, Venesmaa S, Käkelä P, Vaittinen M, Pulkkinen L, Päakkönen M, Gylling H, Laakso M, Pihlajamäki J. 2012. Adipose Tissue TCF7L2 Splicing Is Regulated by Weight Loss and Associates With Glucose and Fatty Acid Metabolism. 61:2807–2813. DOI: 10.2337/db12-0239.

Khadra D, Itani L, Tannir H, Kreidieh D, Masri D El, Ghoch M El. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis ORCID number: PRISMA 2009 Checklist statement. DOI: 10.4239/wjd.v10.i5.311.

Kim K, Park SM. 2018. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study OPEN. ScientiFiC REPoRts | 8:2703. DOI: 10.1038/s41598-018-21168-5.

Lebrão ML, Laurenti R. 2005. Saúde, bem-estar e envelhecimento: o estudo SABE no Município de São Paulo. Revista brasileira de epidemiologia = Brazilian journal of epidemiology 8:127–141.
Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, Roussel R, Tregouet DA, Maestroni
A, Maestroni S, Falhammar H, Gu T, Möllsten A, Cimponeriu D, Mihai I, Mota M, Mota E,
Serafinceanu C, Stavarachi M, Hansson RL, Nelson RG, Kretzler M, Panduru NM, Gu HF,
Brismar K, Zerbini G, Hadjadj S, Marme M, Lajer M, Waggott D, Savage DA, Bain SC,
Martin F, Godson C, Groop PH, Maxwell AP, Sengupta S, Peloso GM, Ganna A, Mora S,
Chang HY, Den Hertog HM, Donnelly LA, Freitag DF, Gurdasani D, Heikkilä K, Johnson
T, Kaakinen M, Kettunen J, Li X, Montasser ME, Petersen AK, Saxena R, Service SK,
Sidore C, Surakka I, Teslovich TM, Van den Herik EG, Volcik KA, Wu Y, Asiki G, Been
LF, Burnett MS, Doring A, Elliott P, Eyjolfsson GI, Goodarzi MO, Gravito ML,
Hartikainen AL, Hung YJ, Jones MR, Kaleebu P, Khaw KT, Kim E, Komulainen P,
Lehtimäki T, Lin SY, Lindstrom J, Muller G, Narisu N, Nieminen T V., Nsubuga RN,
Olafsson I, Palotide A, Papamarkou T, Pomilla C, Pouta A, Ruokonen A, Seeley J, Silander
K, Tiret L, van Pelt L, Wainwright N, Wijmenga C, Young EH, Bennett F, Boomsma DI,
Burnier M, Chen YD, Feranil AB, Ferrieres J, Freimer NB, Hsiung CA, Kesäniemi A,
Koudstaal PJ, Krauss RM, Kyyvik KO, Meneton P, Moilanen L, Sanghera DK, Sheu WH,
Whitfield JB, Wolfenbuttel BH, Ordovas JM, Rich SS, Johnson A, Johnson L, Larson MG,
Levy D, Newton-Cheh C, O’reilly PF, Palmas W, Rice K, Smith A, Snider H, Tobin M,
Verwoert G, Rice KM, Verwoert GC, Phuhr V, Heath S, Söber S, Arora P, Zhang F, Lucas
G, Milaneschi Y, Parker AN, Fava C, Fox ER, Go MJ, Sjögren M, Vinay D, Alexander M,
Tabara Y, Shaw-Hawkins WH, Whincup PH, Shi G, Seielstad M, Sim X, Nguyen KD,
Matullo G, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R,
Dahgam S, Palmen J, Kuznetsova T, Uiterwaal CS, Adeyemo A, Ludwig B, Tomaszewski
M, Tzoulaki I, Palmer ND, Chang YP, Steinle NI, Grobbee DE, Morrison AC, Najjar S,
Hadley D, Brown MJ, Connell JM, Day IN, Lawlor DA, Lawrence RW, Ongen H, Li Y,
Young JH, Bis JC, Bolton JA, Chaturvedi N, Islam M, Jafar TH, Kulkarni SR, Howard P,
Guarrera S, Ricceri F, Emilsson V, Plump AS, Weder AB, Sun Y V., Scott LJ, Peltonen L,
Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Artigas MS, Dong Y, Wang X,
Zhu H, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatay A, Shriner D, Veldre
G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle
DS, Corsi AM, Singleton A, Hilton G, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T,
Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Cho YS, Kim HL,
Scott J, Sehmi JS, Hedblad B, Nilsson P, Smith GD, Raffel LJ, Yao J, Schwartz SM, Ikram
M, W L, Mosley TH, Shedishar E, Srinine NR, Wain L V., Zitting P, Cooper JA, van Gilst
WH, Janipalli CS, Mani K, Yajnik CS, Mattace-Raso FU, Lakatta EG, Orru M, Scuteri A,
Ala-Korpela M, Kangas AJ, Soininen P, Tukiainen T, Wirtz P, Ong RT, Dörr M, Galan P,
Hercberg S, Lathrop M, Zelenika D, Zhai G, Meschia JF, Sharma P, Terzic J, Kumar M,
Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes F, Charchar FJ, Guo X,
Rotimi C, Bots ML, Brand E, Talmud PJ, Nyberg F, Laan M, Palmer LJ, van der Schouw
YT, Casas JP, Vineis P, Ganesh SK, Wong TY, Tai ES, Morris RW, Marmot MG, Miki T,
Chandak GR, Zhu X, Elousa R, Soranzo N, Sijbrands ES, Ueda M, Vasan RS, Järvelin MR,
Alizadeh BZ, de Boer RA, Boezen HM, Hillegel HL, van der Klauw MM, Ornem J,
Rosmalen JG, Slaets JP, Lagou V, Welch RP, Wheeler E, Rehnborg E, Rasmusson-Torvik
LJ, Lecoeur C, Johnson PC, Sennblad B, Salo P, Timpson NJ, Evans DM, St Pourcain B,
Bielak LF, Horikoshi M, Navarro P, Raychaudhuri S, Chen H, Rybin D, Willems SM, Song
K, An P, Marullo L, Jansen H, Pankow J, Edkins S, Varga T V., Oksa H, Antonella M,
Kong A, Herder C, Antti J, Small KS, Miljkovic I, Atalay M, Kiess W, Smit JH, Campbell
Lyssenko V, Lupi R, Marchetti P, Guerra S Del, Orho-melander M, Almgren P, Sjögren M, Ling C, Eriksson K, Lethagen Å, Mancarella R, Berglund G, Tuomi T, Nilsson P, Prato S Del, Manucci PM, Anand S, Nathan DM, Macrae CA, Berglund G, Asselta R, Duga S, Durbin R, Glass D, Hassanali N, Ingelsson E, Krestyaninova M, Lowe CE, Meduri E, Di Meiglio P, Montgomery SB, Nestle FO, Nisbet J, O’raihilly S, Parts L, Potter S, Sekowska M, Shin SY, Surti A, Gianniny L, Parkin M, Patsy B, Arnold AM, Buzkova P, Haines J, Murdoch D, Glenn K, Brown-Gentry K, Thornton-Wells T, Dumitrescu L, Bush WS, Mitchell SL, Goodloe R, Wilson S, Boston J, Malinowski J, Restrepo N, Oetjens M, Fowke J, Spencer K, Pendergrass S, Le Marchand L, Park L, Tiirikainen M, Kolonel L, Cheng I, Wang H, Shohet R, Stram D, Henderson B, Monroe K, Anderson G, Carlson C, Prentice R, Lacroix A, Wu C, Carty C, Rosse S, Young A, Kocarnik J, Lin Y, Jackson R, Duggan D, Yugoslav B, Su T, Chen W, Couper D, Easton DF, Eriksson J, Foroud T, Li S, Murray SS, Ness AR, Northstone K, Peacock M, Pharoah P, Rice JP, Ring SM, Schork NJ, Segre AV, Sovio U, Srinivasan SR, Tammesoo ML, van Meurs JB, Young L, Bierut LJ, Econo MJ. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. DOI: 10.1038/nature14177.
Mondal AK, Das SK, Baldini G, Chu WS, Sharma NK, Hackney OG, Zhao J, Grant SFA, Elbein SC. 2010. Genotype and tissue-specific effects on alternative splicing of the transcription factor 7-like 2 gene in humans. *Journal of Clinical Endocrinology and Metabolism* 95:1450–1457. DOI: 10.1210/jc.2009-2064.

Muller YL, Hanson RL, Piaggi P, Chen P, Wiessner G, Okani C, Skelton G, Kobes S, Hsueh W, Knowler WC, Bogardus C, Baier LJ. 2019. Assessing the Role of 98 Established Loci for Body Mass Index in American Indians. *Obesity* 27:845–854. DOI: 10.1002/oby.22433.

Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T, Nunes K, Ceroni JRM, de Carvalho DL, da Silva Simões CE, Bozoklian D, Nonaka R, Silva N dos SB, da Silva Souza A, de Souza Andrade H, Passos MRS, Castro CFB, Mendes-Junior CT, Mercuri RL V, Miller TLA, Buzzo JL, Rego FO, Araújo NM, Magalhães WCS, Célia Mingroni-Netto R, Borda V, Guio H, Barreto ML, Lima-Costa MF, Horta BL, Tarazona-Santos E, Meyer D, Galante PAF, Guryev V, Castelli EC, Duarte YAO, Passos-Bueno MR, Zatz M. 2020. Whole-genome sequencing of 1,171 elderly admixed individuals from the largest Latin American metropolis (São Paulo, Brazil). *bioRxiv*:2020.09.15.298026. DOI: 10.1101/2020.09.15.298026.

Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N, Bozoklian D, Sandberg TOM, Brito LA, Lazar M, Bernardo DV, Amaro E, Duarte YAO, Lebrão ML, Passos-Bueno MR, Zatz M. 2017. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. *Human Mutation* 38:751–763. DOI: 10.1002/humu.23220.

Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, Rönn T, Pedersen BK, Scheele C, Vaag A, Ling C. 2014. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. *Diabetes* 63:2962–2976. DOI: 10.2337/db13-1459.

Noordam R, Zwetsloot CPA, de Mutsert R, Mook-Kanamori DO, Lamb HJ, de Roos A, de Koning EJP, Rosendaal FR, Willems van Dijk K, van Heemst D. 2017. Interrelationship of the rs7903146 TCF7L2 gene variant with measures of glucose metabolism and adiposity: The NEO study. *Nutrition, Metabolism and Cardiovascular Diseases* 31:150–157. DOI: 10.1016/j.numecd.2017.10.012.

Ouhaibi-Djellouli H, Mediene-Benchekor S, Lardjam-Hetraf SA, Hamani-Medjaoui I, Meirhaeghe A. 2014. The TCF7L2 rs7903146 polymorphism, dietary intakes and type 2 diabetes risk in an Algerian population. *Nutrition, Metabolism and Cardiovascular Diseases* 31:150–157. DOI: 10.1016/j.numecd.2017.10.012.

Pang DX, Smith AJP, Humphries SE. 2013. Functional analysis of TCF7L2 genetic variants associated with type 2 diabetes. *Nutrition, Metabolism and Cardiovascular Diseases* 23:550–556. DOI: 10.1016/j.numecd.2011.12.012.

Perry JRB, Voight BF, Yengo L, Amin N, Dupuis J, Ganser M, Grallert H, Navarro P, Li M, Qi L, Steinhorsdottir V, Scott RA, Almgren P, Arking DE, Aulchenko Y, Balkau B, Benediktsson R, Bergman RN, Boerwinkle E, Bonnycastle L, Burtt NP, Campbell H, Charpentier G, Collins FS, Gieger C, Green T, Haddad S, Hattersley AT, Herder C, Hofman A, Johnson AD, Kooper K, Kraft P, Labruyne Y, Langenberg C, Manning AK, Mohlke KL, Morris AP, Oostra B, Pankow J, Petersen AK, Pramstaller PP, Prokopenko I, Rathmann W, Rayner W, Roden M, Rudan I, Rybin D, Scott LJ, Sigurdsson G, Sladek R,
Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Uitterlinden AG, Vivequín S, Weedon MN, Wright AF, Hu FB, Illig T, Kao L, Meigs JB, Wilson JF, Stefánsson K, van Duijn C, Altschuler D, Morris AD, Boehnke M, McCarthy MI, Froguel P, Palmer CNA, Wareham NJ, Groop L, Frayling TM, Cauchi S. 2012. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases. *PLoS Genetics* 8. DOI: 10.1371/journal.pgen.1002741.

Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, Sangiorgi L, Franceschi C, Bazzocchi A. 2020. Aging and Imaging Assessment of Body Composition: From Fat to Facts. *Frontiers in Endocrinology* 10. DOI: 10.3389/fendo.2019.00861.

Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. 2000. Inhibition of adipogenesis by Wnt signaling. *Science* 289:950–953. DOI: 10.1126/science.289.5481.950.

Roswall N, Ängquist L, Ahluwalia TS, Romaguera D, Larsen SC, Østergaard JN, Halkjær J, Vimalaswaran KS, Wareham NJ, Bendinelli B, Palli D, Boer JMA, Van Der A DL, Boeing H, Loos RJF, Sørensen TIA, Tjønneland A. 2014. Association between Mediterranean and Nordic diet scores and changes in weight and waist circumference: Influence of FTO and TCF7L2 loci. *American Journal of Clinical Nutrition* 100:1188–1197. DOI: 10.3945/ajcn.114.089706.

Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. 2008. The developmental origins of sarcopenia. *Journal of Nutrition, Health and Aging* 12:427. DOI: 10.1007/BF02982703.

Stolerman ES, Manning AK, McAteer JB, Fox CS, Dupuis J, Meigs JB, Florez JC. 2009. TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. *Diabetologia* 52:614–620. DOI: 10.1007/s00125-009-1266-2.

Vaquero AR, Ferreira NE, Omae S V, Rodrigues M V, Teixeira SK, Krieger JE, Pereira AC. 2012. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. *Physiological genomics* 44:903–14. DOI: 10.1152/physiolgenomics.00030.2012.

Watanabe RM, Allayee H, Xiang AH, Trigo E, Hartiala J, Lawrence JM, Buchanan T a. 2007. With Gestational Diabetes Mellitus and Interacts With Adiposity to Alter Insulin Secretion in Mexican Americans. *Diabetes* 56:1481–1485. DOI: 10.2337/db06-1682.Additional.

Zhou Y, Oskolkov N, Shcherbina L, Ratti J, Kock KH, Su J, Martin B, Oskolkova MZ, Göransson O, Bacon J, Li W, Bucciarelli S, Cilio C, Brazma A, Thatcher B, Rung J, Wierup N, Renström E, Groop L, Hansson O. 2016. HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. *Molecular and Cellular Endocrinology* 430:138–145. DOI: 10.1016/j.mce.2016.01.027.

Zhou Y, Park S, Su J, Bailey K, Ottosson-laakso E, Shcherbina L, Oskolkov N, Zhang E, Thevenin T, Bennet H, Vikman P, Wierup N, Fex M, Rung J, Wollheim C, Groop L, Hansson O, Nobrega M, Renstro E. 2014. TCF7L2 is a master regulator of insulin production and processing. *Human Molecular Genetics* 23:6419–6431. DOI: 10.1093/hmg/ddu359.
Table 1 (on next page)

Anthropometric and biochemical characteristics according to Body Mass Index status.

Data are presented as median and range for the most variables; P-value with Kruskal-Wallis test for quantitative variables and Chi-square test for qualitative data. BMI classification criteria: normal-weight (18.5–24.9 kg/m\(^2\)), overweight (25.0–29.9 kg/m\(^2\)), obesity (≥ 30.0 kg/m\(^2\)). P, P-value; T2DM, Type 2 diabetes mellitus; M/F, Male/Female; BMI, Body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein.
Table 2
Anthropometric and biochemical characteristics according to Body Mass Index status.

Variable	Unit	Normal-weight	Overweight	Obesity	P
Population size	N	280	424	319	-
Gender M/F	N/N	115/165	183/241	67/252	<0.0001
Age	years old	74.3 (65.8 - 82.6)	71.6 (64.5 - 79.2)	67.9 (64.0 - 75.2)	<0.0001
BMI	kg/m²	22.8 (21.0 - 24.0)	27.3 (26.2 - 28.4)	33.1 (31.2 - 35.9)	<0.0001
Waist circumference	cm	82.0 (77.8 - 87.0)	94.0 (89.0 - 99.0)	105.0 (100.0 - 110.0)	<0.0001
Hip circumference	cm	93.0 (90.0 - 96.0)	101.0 (98.0 - 104.0)	113.0 (108.0 - 120.0)	<0.0001
Hip-waist ratio	cm/cm	0.88 (0.83 - 0.93)	0.93 (0.88 - 0.98)	0.91 (0.87 - 0.97)	<0.0001
Systolic pressure	mmHg	134.3 (121.7 - 152.0)	138.0 (127.7 - 153.0)	138.0 (125.0 - 155.0)	0.0664
Diastolic pressure	mmHg	76.2 (68.3 - 85.8)	79.7 (72.0 - 86.3)	81.0 (74.2 - 90.0)	<0.0001
Plasma glucose	mg/dL	85.0 (78.0 - 95.0)	88.0 (81.0 - 102.3)	93.0 (84.0 - 107.0)	<0.0001
Glycated hemoglobin	%	5.7 (5.5 - 6.0)	5.8 (5.6 - 6.1)	5.9 (5.6 - 6.3)	<0.0001
Total cholesterol	mg/dL	202.5 (177.0 - 234.5)	200.0 (176.0 - 228.0)	207.0 (180.0 - 230.5)	0.3732
Fasting triglyceride	mg/dL	102.5 (75.0 - 137.3)	116.5 (89.8 - 167.3)	126.0 (94.0 - 168.5)	<0.0001
LDL cholesterol	mg/dL	126.0 (104.0 - 148.0)	124.0 (104.8 - 149.0)	130.0 (106.5 - 151.0)	0.7908
HDL cholesterol	mg/dL	52.0 (42.8 - 62.0)	45.0 (38.0 - 54.0)	47.0 (41.0 - 56.0)	<0.0001
T2DM	N (%)	51 (18)	117 (28)	92 (29)	0.0048
Hypertensive	N (%)	166 (59)	279 (66)	254 (80)	<0.0001

Data are presented as median and range for the most variables; P-value with Kruskal-Wallis test for quantitative variables and Chi-square test for qualitative data.

BMI classification criteria: normal-weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), obesity (≥ 30.0 kg/m²).

P, P-value; T2DM, Type 2 diabetes mellitus; M/F, Male/Female; BMI, Body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein.
Table 2 (on next page)

Association between rs7903146 TT genotype and risk for Type 2 diabetes adjusted for the confounding variables.

Regression logistic analysis was adopted.
Table 2. Association between rs7903146 TT genotype and risk for Type 2 diabetes adjusted for the confounding variables.

Possible confounding variable	P-value	Odds Ratio	95% Confidence Interval
Age (years old)	0.005	1.89	1.21 - 2.95
Gender (N)	0.005	1.90	1.22 - 2.97
BMI (kg/m²)	0.003	1.95	1.25 - 3.06
Waist circumference (cm)	0.004	1.93	1.23 - 3.02
Diastolic pressure (mmHg)	0.006	1.88	1.20 - 2.93
Glycated hemoglobin (%)	0.004	2.34	1.31 - 4.18
Fasting triglyceride (mg/dL)	0.005	1.90	1.22 - 2.97
HDL cholesterol (mg/dL)	0.006	1.87	1.19 - 2.92
European ancestrie (%)	0.005	1.92	1.21 - 3.05
All confounders together	0.006	2.35	1.28 - 4.32

Regression logistic analysis was adopted.
Table 3 (on next page)

Association of the rs7903146 T allele with type 2 diabetes mellitus according to Body Mass Index status.

Volunteers without type 2 diabetes mellitus were considered as the control group.

BMI classification criteria: normal-weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), obesity (≥ 30.0 kg/m²). P, P-value; 95% CI, 95% confidence interval; OR, odds ratio OR adjusted for sex and age.
Table 3
Association of the rs7903146 T allele with type 2 diabetes mellitus according to Body Mass Index status.
Volunteers without type 2 diabetes mellitus were considered as the control group.
BMI classification criteria: normal-weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), obesity (≥ 30.0 kg/m²).

BMI Status	N	Dominant model (CC Vs CT+TT) OR (95% CI)	P	Recessive Model (CC+CT Vs TT) OR (95% CI)	P	Additive Model (CC Vs TT) OR (95% CI)	P	Allelic Model (C Vs T) OR (95% CI)	P
Normal weight	280	1.23 (0.66 - 2.27)	0.512	**3.36 (1.46 - 7.74)**	**0.004**	**3.21 (1.31 - 7.87)**	**0.011**	1.52 (0.97 - 2.36)	0.066
Overweight	424	1.20 (0.78 - 1.86)	0.401	1.96 (0.99 - 3.87)	0.054	1.98 (0.96 - 4.10)	0.065	1.27 (0.92 - 1.74)	0.141
Obesity	319	1.15 (0.71 - 1.88)	0.565	1.23 (0.51 - 2.98)	0.642	1.31 (0.53 - 3.28)	0.560	1.13 (0.78 - 1.66)	0.516
Normal weight + overweight	704	1.22 (0.86 - 1.73)	0.276	**2.31 (1.37 - 3.90)**	**0.002**	**2.34 (1.34 - 4.08)**	**0.003**	**1.34 (1.04 - 1.73)**	**0.025**
Overweight + obesity	743	1.16 (0.84 - 1.60)	0.370	1.59 (0.93 - 2.72)	0.089	1.65 (0.94 - 2.89)	0.082	1.19 (0.94 - 1.52)	0.155
Total	1023	1.16 (0.87 - 1.54)	0.305	**1.90 (1.22 - 2.97)**	**0.005**	**1.94 (1.21 - 3.10)**	**0.006**	**1.25 (1.01 - 1.54)**	**0.042**

P, P-value; 95% CI, 95% confidence interval; OR, odds ratio OR adjusted for sex and age.
Table 4 (on next page)

Association of the rs7903146 C allele with the Body Mass Index Status

P, P-value; 95% CI, 95% confidence interval; OR, odds ratio OR adjusted for sex and age. BMI classification criteria: normal-weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), obesity (≥ 30.0 kg/m²).
Table 4
Association of the rs7903146 C allele with the Body Mass Index Status

Control group	Case group	Dominant model (TT Vs CC+CT)	Recessive Model (TT+CT Vs CC)	Additive Model (TT Vs CC)	Allelic Model (T Vs C)
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Normal-weight	Overweight	1.24 (0.74 - 2.09)	0.92 (0.68 - 1.26)	1.15 (0.67 - 1.98)	1.00 (0.79 - 1.26)
Normal-weight	Obesity	1.60 (0.88 - 2.92)	1.41 (1.00 - 1.98)	1.73 (0.93 - 3.21)	1.34 (1.03 - 1.75)
Normal-weight	Obesity+ overweight	1.32 (0.82 - 2.13)	1.08 (0.81 - 1.43)	1.31 (0.80 - 2.15)	1.10 (0.89 - 1.36)
Normal-weight + overweight	Obesity	1.29 (0.78 - 2.11)	1.40 (1.06 - 1.84)	1.48 (0.89 - 2.47)	1.28 (1.03 - 1.58)

P, P-value; 95% CI, 95% confidence interval; OR, odds ratio OR adjusted for sex and age.

BMI classification criteria: normal-weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), obesity (≥ 30.0 kg/m²).
Table 5 (on next page)

Association between rs7903146 CC genotype and risk for obesity adjusted for the confounding variables.

Regression logistic analysis was adopted. *Association between rs7903146 CC genotype and obesity adjusted by fasting triglyceride: $P=0.034$; OR=1.0016; 95% Confidence Interval = 1.0001 - 1.0031.
Table 5. Association between rs7903146 CC genotype and risk for obesity adjusted for the confounding variables.

Possible confounding variable	P-value	Odds Ratio	95% Confidence Interval
Age (years old)	<0.001	0.96	0.95 - 0.98
Gender (N)	<0.001	2.85	2.08 - 3.89
Diastolic pressure (mmHg)	<0.001	1.02	1.01 - 1.03
Glycated hemoglobina (%)	0.032	1.13	1.01 - 1.27
Fasting triglyceride* (mg/dL)	0.034	1.00	1.00 - 1.00
HDL cholesterol (mg/dL)	0.443	1.00	0.99 – 1.00
All confounders together	0.017	1.41	1.06 – 1.86

Regression logistic analysis was adopted.

*Association between rs7903146 CC genotype and obesity adjusted by fasting triglyceride: P=0.034; OR=1.0016; 95% Confidence Interval = 1.0001 - 1.0031.