Sizes of Galactic Globular Clusters

Sidney van den Bergh

Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada

sidney.vandenbergh@nrc-cnrc.gc.ca

Received ; accepted 

[REPLACE WITH PUBLICATION DATE]
ABSTRACT

A study is made of deviations from the mean power-law relationship between the Galactocentric distances and the half-light radii of Galactic globular clusters. Surprisingly deviations from the mean $R_h$ versus $R_{gc}$ relationship do not appear to correlate with cluster luminosity, cluster metallicity, or horizontal branch morphology. Differences in orbit shape are found to contribute to the scatter in the $R_h$ versus $R_{gc}$ relationship of Galactic globular clusters.

Online material: extended table

keywords (Galaxy: ) Globular clusters: half-light radii

1. INTRODUCTION

In a recent paper Hammer et al. (2011) have presented persuasive evidence to suggest that the Milky Way galaxy is a very unusual spiral galaxy, which has managed to avoid any major mergers since it originally formed. According to Hammer et al. only $\sim 1\%$ of all major spirals belong to this pristine class of galaxies. It is therefore of particular interest to study the group characteristics of Galactic globular clusters, which may provide information on the earliest evolutionary phase of galactic evolution. Fortunately we now have available from Harris (1996) (2010 edition) an essentially complete catalog of data on Galactic globular clusters.

Among the properties listed in this catalog (see Table 1) are the luminosities, metallicities, Galactocentric distances and half-light radii of individual clusters. The latter parameter is of particular interest because it is relatively insensitive to the effects

1http://physwww.physics.mcmaster.ca/~harris/mwgc.dat
of dynamical evolution (Spitzer & Thuan 1972, Lightman & Shapiro 1978, Murphy et al. 1990). It has been shown (van den Bergh 1994, 2011) that the half-light radii of Galactic globular clusters scatter widely around a relation of the form

\[ R_h \propto R_{gc}^{2/3}. \]  

(1)

It is the purpose of the present investigation to ask if this scatter correlates with the luminosity (mass), the metallicity \([\text{Fe/H}]\) or horizontal branch characteristics of individual clusters.

It is convenient to express the deviations of individual globular clusters from Eqn. (1) by a parameter that, we shall call \( D \), which is defined by the relation

\[ D = \frac{2}{3} \log R_{gc} - \log R_h. \]  

(2)

Physically a positive value of \( D \) implies that the Galactocentric distance of a cluster is larger than expected for its size. Alternatively one might say that clusters with positive \( D \) values are smaller than expected from their observed \( R_{gc} \) values.

2. DEVIATIONS CORRELATED WITH LUMINOSITY

It was first shown by van den Bergh et al. (1991) that the radii of globular clusters are uncorrelated with their luminosities. This conclusion was recently strengthened and confirmed by van den Bergh (2011) who found that the half-light radii of Galactic globular clusters are independent of their absolute magnitudes. Figure 1 shows that the parameter \( D \) is also uncorrelated with cluster luminosity. In other words, the relation between the half-light radii of clusters and their Galactocentric distances also appear to be independent of cluster luminosity, and hence presumably of cluster mass.
3. DEVIATIONS CORRELATED WITH METALLICITY

Figure 2 shows a plot of the parameter D as a function of cluster metallicity. Inspection of the figure hints at the possibility that metal-rich clusters with \([\text{Fe/H}] > -1.0\) might have systematically smaller D values than more metal-poor clusters. However, a Kolmogorov-Smirnov test shows that this effect falls well below any respectable level of statistical significance. In other words D and \([\text{Fe/H}]\) appear to be uncorrelated. Previously it had also been found (van den Bergh 2011) that \([\text{Fe/H}]\) of globular clusters is independent of cluster luminosity.

4. CORRELATIONS WITH HORIZONTAL BRANCH GRADIENT

Following Lee (1990) the horizontal branches of globular clusters may be described via the parameter C defined by the relation

\[
C = (B - R) / (B + V + R),
\]

in which B, V and R are the number of blue, variable and red horizontal-branch stars, respectively. The individual values of C for halo clusters, that are given in Table 1, were drawn from the compilation by MacKey & van den Bergh (2005). Inspection of the data listed in Table 1, which are plotted in Figure 3, shows not even a hint of a correlation between the parameter D and the globular cluster horizontal branch population as described by the parameter C.

5. DISCUSSION

Using the recent compilation of data on Galactic globular clusters by Harris it is found that the half-light radii of globular clusters scale as the \(\sim 2/3\) power of their Galactocentric
distances. However, the scatter about this relationship is considerable. In the present paper it is found that these deviations do not appear to correlate with either cluster luminosity, cluster metallicity, or population gradients along the cluster horizontal branch. However, van den Bergh (1993) was able to show that the radii of individual globular clusters depend on orbit shape, with globulars on nearly circular orbits having above-average half-light radii. On the other hand clusters on retrograde orbits were found to have slightly below-average radii. Some speculations about the reasons for this dependence of size on orbit shape were given in van den Bergh (1994), but no firm conclusions can yet be drawn. In any case it is clear that such a dependence of cluster radius on orbit shape will contribute to the observed scatter around Equation 1.

I am indebted to Brenda Parrish and Jason Shrivell for technical support. Special thanks are due to a particularly helpful referee.
REFERENCES

Hammer, F., Puech, M., Flores, H., Yang, Y. B., Wang, J. L. & Fouquet, S. 2011, arXiv:1111.2044

Harris, W.E. 1996, AJ, 112, 1487

Lee, Y.-W. 1990, ApJ, 363, 159

Lightman, A. P. & Shapiro, S. L. 1978, Rev. Mod. Phys., 50, 437

Mackey, A. D. & van den Bergh, S. 2005, MNRAS, 360, 631

Murphy, B. W., Cohn, H. N. & Hut, P. 1990, MNRAS, 245, 355

Spitzer, L. & Thuan, T. X. 1972, ApJ, 175, 31

van den Bergh, S. 1993, ApJ, 411, 178

van den Bergh, S. 1994, AJ, 108, 2145

van den Bergh, S. 2011, PASP, 123, 1044

van den Bergh, S., Morbey, C. & Pazder, J. 1991, ApJ, 375, 594.

This manuscript was prepared with the AAS \LaTeX{} macros v5.2.
Table 1. Data on Galactic globular clusters

| ID   | \(R_{gc}\) | \(\log R_{gc}\) | [Fe/H] | \(M_v\) | \(R_h\) | \(\log R_h\) | D   | C   |
|------|-------------|------------------|--------|--------|--------|---------------|-----|-----|
| N 104 | 7.4         | 0.87             | -0.72  | -9.42  | 4.15   | 0.62          | -0.04 | -0.99 |
| N 288 | 12.0        | 1.08             | -1.32  | -6.75  | 5.77   | 0.76          | -0.04 | +0.98 |
| N 362 | 9.4         | 0.97             | -1.26  | -8.43  | 2.05   | 0.31          | +0.34 | -0.87 |
| Whi 1 | 34.5        | 1.54             | -0.70  | -2.46  | 1.93   | 0.29          | +0.74 | ...  |
| N1261 | 18.1        | 1.26             | -1.27  | -7.80  | 3.22   | 0.51          | +0.33 | -0.71 |
| Pal 1 | 17.2        | 1.24             | -0.65  | -2.52  | 1.49   | 0.17          | +0.66 | -1.00 |
| AM 1  | 124.6       | 2.10             | -1.70  | -4.73  | 14.71  | 1.17          | +0.23 | -0.93 |
| Eri   | 95.0        | 1.98             | -1.43  | -5.13  | 12.06  | 1.08          | +0.24 | -1.00 |
| Pal 2 | 35.0        | 1.54             | -1.42  | -7.97  | 3.96   | 0.60          | +0.43 | -0.10 |
| N1851 | 16.6        | 1.22             | -1.18  | -8.33  | 1.80   | 0.26          | +0.55 | -0.32 |
| N1904 | 18.8        | 1.27             | -1.60  | -7.86  | 2.44   | 0.39          | +0.46 | +0.89 |
| N2298 | 15.8        | 1.20             | -1.92  | -6.31  | 3.08   | 0.49          | +0.31 | +0.93 |
| N2419 | 89.9        | 1.95             | -2.15  | -9.42  | 21.38  | 1.33          | -0.03 | +0.86 |
| Ko 2  | 41.9        | 1.62             | ...    | -0.35  | 2.12   | 0.33          | +0.75 | ...  |
| Pyx   | 41.4        | 1.62             | -1.20  | -5.73  | ...    | ...           | ...  | -1.00 |
| N2808 | 11.1        | 1.05             | -1.14  | -9.39  | 2.23   | 0.35          | +0.35 | -0.49 |
| E 3   | 9.1         | 0.96             | -0.83  | -4.12  | 4.95   | 0.69          | -0.05 | ...  |
| Pal 3 | 95.7        | 1.98             | -1.63  | -5.69  | 17.49  | 1.24          | +0.08 | -0.50 |
| N3201 | 8.8         | 0.94             | -1.59  | -7.45  | 4.42   | 0.65          | -0.02 | +0.08 |
| Pal 4 | 111.2       | 2.05             | -1.41  | -3.11  | 16.13  | 1.21          | +0.16 | -1.00 |
| Ko 1  | 49.3        | 1.69             | ...    | -4.25  | 3.65   | 0.56          | +0.57 | ...  |
| N4147 | 21.4        | 1.33             | -1.80  | -6.17  | 2.69   | 0.43          | +0.46 | +0.66 |
| N4372 | 7.1         | 0.85             | -2.17  | -7.79  | 6.60   | 0.82          | -0.25 | +1.00 |
Table 1—Continued

|     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|
| Ru 106 | 18.5 | 1.27 | -1.68 | -6.35 | 6.48 | 0.81 | +0.04 | -0.82 |
| N4590 | 10.2 | 1.01 | -2.23 | -7.37 | 4.52 | 0.66 | +0.01 | +0.17 |
| N4833 | 7.0 | 0.85 | -1.85 | -8.17 | 4.63 | 0.67 | -0.10 | +0.93 |
| N5024 | 18.4 | 1.26 | -2.10 | -8.71 | 6.82 | 0.83 | +0.01 | +0.81 |
| N5053 | 17.8 | 1.25 | -2.27 | -6.76 | 13.21 | 1.12 | -0.29 | +0.52 |
| N5139 | 6.4 | 0.81 | -1.53 | -10.26 | 7.56 | 0.88 | -0.34 | ... |
| N5272 | 12.0 | 1.08 | -1.50 | -8.88 | 6.85 | 0.84 | -0.12 | +0.08 |
| N5286 | 8.9 | 0.95 | -1.69 | -8.74 | 2.48 | 0.39 | +0.24 | +0.80 |
| AM 4 | 27.8 | 1.44 | -1.30 | -1.81 | 4.03 | 0.61 | +0.35 | ... |
| N5466 | 16.3 | 1.21 | -1.98 | -6.98 | 10.70 | 1.03 | -0.22 | +0.58 |
| N5634 | 21.2 | 1.33 | -1.88 | -7.69 | 6.30 | 0.80 | +0.09 | +0.91 |
| N5694 | 29.4 | 1.47 | -1.98 | -7.83 | 10.18 | 1.01 | -0.03 | +1.00 |
| I4499 | 15.7 | 1.20 | -1.53 | -7.32 | 9.35 | 0.97 | -0.17 | +0.11 |
| N5824 | 25.9 | 1.41 | -1.91 | -8.85 | 4.20 | 0.62 | +0.14 | +0.79 |
| Pal 5 | 18.6 | 1.27 | -1.41 | -5.17 | 18.42 | 1.27 | -0.42 | -0.40 |
| N5897 | 7.4 | 0.87 | -1.90 | -7.23 | 7.49 | 0.87 | -0.29 | +0.86 |
| N5904 | 6.2 | 0.79 | -1.29 | -8.81 | 3.86 | 0.59 | -0.06 | +0.31 |
| N5927 | 4.6 | 0.66 | -0.49 | -7.81 | 2.46 | 0.39 | +0.05 | -1.00 |
| N5946 | 5.8 | 0.76 | -1.29 | -7.18 | 2.74 | 0.44 | +0.07 | +0.69 |
| BH 176 | 12.9 | 1.11 | 0.00 | -4.06 | 4.95 | 0.69 | +0.05 | -1.00 |
| N5986 | 4.8 | 0.68 | -1.59 | -8.44 | 2.96 | 0.47 | -0.02 | +0.97 |
| Lyng 7 | 4.3 | 0.63 | -1.01 | -6.60 | 2.79 | 0.45 | -0.03 | -1.00 |
| Pal 14 | 71.6 | 1.85 | -1.62 | -4.80 | 27.15 | 1.43 | -0.20 | -1.00 |
| N6093 | 3.8 | 0.58 | -1.75 | -8.23 | 1.77 | 0.25 | +0.14 | +0.93 |
Table 1—Continued

|   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
| N6121 | 5.9 | 0.77 | -1.16 | -7.19 | 2.77 | 0.44 | +0.07 | -0.06 |
| N6101 | 11.2 | 1.05 | -1.98 | -6.94 | 4.70 | 0.67 | +0.03 | +0.84 |
| N6144 | 2.7 | 0.43 | -1.76 | -6.85 | 4.22 | 0.63 | -0.34 | +1.00 |
| N6139 | 3.6 | 0.56 | -1.65 | -8.36 | 2.50 | 0.40 | -0.03 | +0.91 |
| Ter 3 | 2.5 | 0.40 | -0.74 | -4.82 | 2.98 | 0.47 | -0.20 | -1.00 |
| N6171 | 3.3 | 0.52 | -1.02 | -7.12 | 3.22 | 0.51 | -0.16 | -0.73 |
| 1636-2 | 2.1 | 0.32 | -1.50 | -4.02 | 1.21 | 0.08 | +0.13 | -0.40 |
| N6205 | 8.4 | 0.92 | -1.53 | -8.55 | 3.49 | 0.54 | +0.07 | +0.97 |
| N6229 | 29.8 | 1.47 | -1.47 | -8.06 | 3.19 | 0.50 | +0.48 | +0.24 |
| N6218 | 4.5 | 0.65 | -1.37 | -7.31 | 2.47 | 0.39 | +0.04 | +0.97 |
| FRS173 | 3.7 | 0.57 | ... | -6.45 | 0.97 | -0.01 | +0.39 | ... |
| N6235 | 4.2 | 0.62 | -1.28 | -6.29 | 3.35 | 0.53 | -0.12 | +0.89 |
| N6254 | 4.6 | 0.66 | -1.56 | -7.48 | 2.50 | 0.40 | +0.04 | +0.98 |
| N6256 | 3.0 | 0.48 | -1.02 | -7.15 | 2.58 | 0.41 | -0.09 | -1.00 |
| Pal 15 | 38.4 | 1.58 | -2.07 | -5.52 | 14.43 | 1.16 | -0.11 | +1.00 |
| N6266 | 1.7 | 0.23 | -1.18 | -9.18 | 1.82 | 0.26 | -0.11 | +0.32 |
| N6273 | 1.7 | 0.23 | -1.74 | -9.13 | 3.38 | 0.53 | -0.38 | +0.96 |
| N6284 | 7.5 | 0.88 | -1.26 | -7.96 | 2.94 | 0.47 | +0.12 | +0.88 |
| N6287 | 2.1 | 0.32 | -2.10 | -7.36 | 2.02 | 0.31 | -0.10 | +0.98 |
| N6293 | 1.9 | 0.28 | -1.99 | -7.78 | 2.46 | 0.39 | -0.20 | +0.90 |
| N6304 | 2.3 | 0.36 | -0.45 | -7.30 | 2.44 | 0.39 | +0.15 | -1.00 |
| N6316 | 2.6 | 0.41 | -0.45 | -8.34 | 1.97 | 0.29 | -0.02 | -1.00 |
| N6314 | 9.6 | 0.98 | -2.31 | -8.21 | 2.46 | 0.39 | +0.26 | +0.91 |
| N6325 | 1.1 | 0.04 | -1.25 | -6.96 | 1.43 | 0.16 | -0.13 | +0.84 |
|   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
| N6333 | 1.7 | 0.23 | -1.77 | -7.95 | 2.21 | 0.34 | -0.19 | +0.87 |
| N6342 | 1.7 | 0.23 | -0.55 | -6.42 | 1.80 | 0.26 | -0.11 | -1.00 |
| N6356 | 7.5 | 0.88 | -0.40 | -8.51 | 3.56 | 0.55 | +0.04 | -1.00 |
| N6355 | 1.4 | 0.15 | -1.37 | -8.07 | 2.36 | 0.37 | -0.27 | +0.62 |
| N6352 | 3.3 | 0.52 | -0.64 | -6.47 | 3.34 | 0.52 | -0.17 | -1.00 |
| I257  | 17.9 | 1.25 | -1.70 | -6.15 | 10.18 | 1.01 | -0.18 | +1.00 |
| Ter 2 | 0.8 | -0.10 | -0.69 | -5.88 | 3.32 | 0.52 | -0.59 | -1.00 |
| N6366 | 5.0 | 0.70 | -0.59 | -5.74 | 2.92 | 0.47 | 0.00 | -0.97 |
| Ter 4 | 1.0 | 0.00 | -1.41 | -4.48 | 3.87 | 0.59 | -0.59 | +1.00 |
| HP 1  | 0.5 | -0.30 | -1.00 | -6.46 | 7.39 | 0.87 | -1.07 | +0.75 |
| N6362 | 5.1 | 0.71 | -0.99 | -6.95 | 4.03 | 0.61 | -0.14 | -0.58 |
| Lil 1 | 0.8 | -0.10 | -0.33 | -7.32 | ... | ... | ... | -1.00 |
| N6380 | 3.3 | 0.52 | -0.75 | -7.50 | 2.35 | 0.37 | -0.02 | -1.00 |
| Ter 1 | 1.3 | 0.11 | -1.03 | -4.41 | 7.44 | 0.87 | -0.80 | -1.00 |
| Ton 2 | 1.4 | 0.15 | -0.70 | -6.17 | 3.10 | 0.49 | -0.39 | -1.00 |
| N6388 | 3.1 | 0.49 | -0.55 | -9.41 | 1.50 | 0.18 | +0.15 | -1.00 |
| N6402 | 4.0 | 0.60 | -1.28 | -9.10 | 3.52 | 0.55 | -0.15 | +0.65 |
| N6401 | 2.7 | 0.43 | -1.02 | -7.90 | 5.89 | 0.77 | -0.48 | +0.35 |
| N6397 | 6.0 | 0.78 | -2.02 | -6.64 | 1.94 | 0.29 | +0.23 | +0.98 |
| Pal 6 | 2.2 | 0.34 | -0.91 | -6.79 | 2.02 | 0.31 | -0.08 | -1.00 |
| N6426 | 14.4 | 1.16 | -2.15 | -6.67 | 5.51 | 0.74 | +0.03 | +0.58 |
| Djo 1 | 5.7 | 0.76 | -1.51 | -6.98 | ... | ... | ... | ... |
| Ter 5 | 1.2 | 0.08 | -0.23 | -7.42 | 1.45 | 0.16 | -0.11 | -1.00 |
| N6440 | 1.3 | 0.11 | -0.36 | -8.75 | 1.19 | 0.08 | -0.01 | -1.00 |
Table 1—Continued

| Object | RA     | Dec    | V      | Verr   | U      | Uerr   | W      | Werr   | Z      | Zerr   |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N6441  | 3.9    | 0.59   | -0.46  | -9.63  | 1.92   | 0.28   | +0.11  | -1.00  |
| Ter 6  | 1.3    | 0.11   | -0.56  | -7.59  | 0.87   | -0.06  | +0.13  | -1.00  |
| N6453  | 3.7    | 0.57   | -1.50  | -7.22  | 1.48   | 0.07   | +0.31  | +0.84  |
| UKS 1  | 0.7    | -0.15  | -0.64  | -6.91  | ...    | ...    | ...    | -1.00  |
| N6496  | 4.2    | 0.62   | -0.46  | -7.20  | 3.35   | 0.53   | -0.12  | -1.00  |
| Ter 9  | 1.1    | 0.04   | -1.05  | -3.71  | 1.61   | 0.21   | -0.18  | +0.25  |
| Djo 2  | 1.8    | 0.26   | -0.65  | -7.00  | ...    | ...    | ...    | -1.00  |
| N6517  | 4.2    | 0.62   | -1.23  | -8.25  | 1.54   | 0.19   | +0.22  | +0.62  |
| Ter 10 | 2.3    | 0.36   | -1.00  | -6.35  | 2.62   | 0.42   | -0.18  | -1.00  |
| N6522  | 0.6    | -0.22  | -1.34  | -7.65  | 2.24   | 0.35   | -0.50  | +0.71  |
| N6535  | 3.9    | 0.59   | -1.79  | -4.75  | 1.68   | 0.23   | +0.16  | +1.00  |
| N6528  | 0.6    | -0.22  | -0.11  | -6.57  | 0.87   | -0.06  | -0.09  | -1.00  |
| N6539  | 3.0    | 0.48   | -0.63  | -8.29  | 3.86   | 0.59   | -0.27  | -1.00  |
| N6540  | 2.8    | 0.45   | -1.35  | -6.35  | ...    | ...    | ...    | +0.30  |
| N6544  | 5.1    | 0.71   | -1.40  | -6.94  | 1.06   | 0.03   | +0.44  | +1.00  |
| N6541  | 2.1    | 0.32   | -1.81  | -8.52  | 2.31   | 0.36   | -0.15  | +1.00  |
| 2MS 01 | 4.5    | 0.65   | ...    | -6.11  | 1.73   | 0.24   | +0.19  | ...    |
| ESO 06 | 14.0   | 1.15   | -1.80  | -4.87  | 6.54   | 0.82   | -0.05  | ...    |
| N6553  | 2.2    | 0.34   | -0.18  | -7.77  | 1.80   | 0.26   | -0.03  | -1.00  |
| 2MS 02 | 3.2    | 0.51   | -1.08  | -4.86  | 0.78   | -0.11  | +0.45  | ...    |
| N6558  | 1.0    | 0.00   | -1.32  | -6.44  | 4.63   | 0.67   | -0.67  | +0.70  |
| I1276  | 3.7    | 0.57   | -0.75  | -6.67  | 3.74   | 0.57   | -0.19  | -1.00  |
| Ter 12 | 3.4    | 0.53   | -0.50  | -4.14  | 1.05   | 0.02   | +0.33  | -1.00  |
| N6569  | 3.1    | 0.49   | -0.76  | -8.28  | 2.54   | 0.40   | -0.07  | -0.82  |
Table 1—Continued

| BH 261 | 1.7 | 0.23 | -1.30 | -4.19 | 1.04 | 0.02 | +0.13 | ... |
| GLI 02 | 3.0 | 0.48 | -0.33 | ...   | ...  | ...  | ...   | ... |
| N6584  | 7.0 | 0.85 | -1.50 | -7.69 | 2.87 | 0.46 | +0.11 | -0.15|
| N6624  | 1.2 | 0.08 | -0.44 | -7.49 | 1.88 | 0.27 | -0.22 | -1.00|
| N6626  | 2.7 | 0.43 | -1.32 | -8.16 | 3.15 | 0.50 | -0.21 | +0.90|
| N6638  | 2.2 | 0.34 | -0.95 | -7.12 | 1.39 | 0.14 | +0.09 | -0.30|
| N6637  | 1.7 | 0.23 | -0.64 | -7.64 | 2.15 | 0.33 | -0.18 | -1.00|
| N6642  | 1.7 | 0.23 | -1.26 | -6.66 | 1.72 | 0.24 | -0.09 | -0.04|
| N6652  | 2.7 | 0.43 | -0.81 | -6.66 | 1.40 | 0.15 | +0.14 | -1.00|
| N6656  | 4.9 | 0.69 | -1.70 | -8.50 | 3.13 | 0.50 | -0.04 | +0.91|
| Pal 8  | 5.5 | 0.74 | -0.37 | -5.51 | 2.16 | 0.33 | +0.16 | -1.00|
| N6681  | 2.2 | 0.34 | -1.62 | -7.12 | 1.86 | 0.27 | -0.04 | +0.96|
| GLI 01 | 4.9 | 0.69 | ...   | -5.91 | 0.79 | -0.10 | +0.56 | ... |
| N6712  | 3.5 | 0.54 | -1.02 | -7.50 | 2.67 | 0.43 | -0.07 | -0.62|
| N6715  | 18.9| 1.28 | -1.49 | -9.98 | 6.32 | 0.80 | +0.05 | +0.54|
| N6717  | 2.4 | 0.38 | -1.26 | -5.66 | 1.40 | 0.15 | +0.10 | +0.98|
| N6723  | 2.6 | 0.41 | -1.10 | -7.83 | 3.87 | 0.59 | -0.32 | -0.08|
| N6749  | 5.0 | 0.70 | -1.60 | -6.70 | 2.53 | 0.40 | +0.07 | +1.00|
| N6752  | 5.2 | 0.72 | -1.54 | -7.73 | 2.22 | 0.35 | +0.13 | +1.00|
| N6760  | 4.8 | 0.68 | -0.40 | -7.84 | 2.73 | 0.44 | +0.01 | -1.00|
| N6779  | 9.2 | 0.96 | -1.98 | -7.41 | 3.01 | 0.48 | +0.16 | +0.98|
| Ter 7  | 15.6| 1.19 | -0.32 | -5.01 | 5.11 | 0.71 | +0.08 | -1.00|
| Pal 10 | 6.4 | 0.81 | -0.10 | -5.79 | 1.70 | 0.23 | +0.31 | -1.00|
| Arp 2  | 21.4| 1.33 | -1.75 | -5.29 | 14.73| 1.17 | -0.28 | +0.53|
Table 1—Continued

|     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| N6809 | 3.9 | 0.59 | -1.94 | -7.57 | 4.45 | 0.65 | -0.26 | +0.87 |
| Ter 8 | 19.4 | 1.29 | -2.16 | -5.07 | 7.27 | 0.86 | 0.00 | +1.00 |
| Pal 11 | 8.2 | 0.91 | -0.40 | -6.92 | 5.69 | 0.76 | -0.15 | -1.00 |
| N6838 | 6.7 | 0.83 | -0.78 | -5.61 | 1.94 | 0.29 | +0.26 | -1.00 |
| N6864 | 14.7 | 1.17 | -1.29 | -8.57 | 2.80 | 0.45 | +0.33 | -0.07 |
| N6934 | 12.8 | 1.11 | -1.47 | -7.45 | 3.13 | 0.50 | +0.24 | +0.25 |
| N6981 | 12.9 | 1.11 | -1.42 | -7.04 | 4.60 | 0.66 | +0.08 | +0.14 |
| N7006 | 38.5 | 1.59 | -1.52 | -7.67 | 5.27 | 0.72 | +0.34 | -0.28 |
| N7078 | 10.4 | 1.02 | -2.37 | -9.19 | 3.03 | 0.48 | +0.20 | +0.67 |
| N7089 | 10.4 | 1.02 | -1.65 | -9.03 | 3.55 | 0.55 | +0.13 | +0.96 |
| N7099 | 7.1 | 0.85 | -2.27 | -7.45 | 2.43 | 0.39 | +0.18 | +0.89 |
| Pal 12 | 15.8 | 1.20 | -0.85 | -4.47 | 9.51 | 0.98 | -0.18 | -1.00 |
| Pal 13 | 26.9 | 1.43 | -1.88 | -3.76 | 2.72 | 0.43 | +0.52 | -0.20 |
| N7492 | 25.3 | 1.40 | -1.78 | -5.81 | 8.80 | 0.94 | -0.01 | +0.81 |
Fig. 1.— The figure shows that the parameter $D$, which provides a measure of deviations from the $R_{gc}$ vs half-light radius relation of Eqn. (1), appears to be independent of cluster luminosity, and hence presumably cluster mass.
Fig. 2.— This figure shows that the parameter D appears to be independent of the cluster metallicity [Fe/H]. In other words the deviations of clusters from the half-light radius versus Galactocentric distance relationship appear to be independent of cluster metallicity.
Fig. 3.— Plot of the parameter D, that measures deviations from the $R_{gc}$ vs half-light radius relation, as a function of the horizontal branch population parameter C. The figure shows no evidence for a correlation between C and D.