Title: An attempt of using public ambient temperature data in swine genetic evaluation for litter size traits at birth in Japan

Authors: Hitomi Hara^A,E, Shinichiro Ogawa^A,D,E, Chika Ohnishi^B, Kazuo Ishii^C, Yoshinobu Uemoto^A and Masahiro Satoh^A

^AGraduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan.
^BNational Livestock Breeding Center, Miyazaki Station, Kobayashi, Miyazaki 886-0004, Japan.
^CDivision of Animal Breeding and Reproduction, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan.
^DCorresponding author. E-mail: shinichiro.ogawa.d5@tohoku.ac.jp
^EEqual contribution.

Running head: USING PUBLIC DATA IN GENETIC EVALUATION
ABSTRACT

To obtain the fundamental information on using ambient temperature information in developing the model for routine swine genetic evaluation in Japan, we analyzed total number born (TNB), number born alive (NBA), and number stillborn (NSB) collected at a Japanese farm, together with off-farm ambient temperature measured at a nearest Automated Meteorological Data Acquisition System station. Five repeatability animal models were exploited, considering the effects of farrowing season (model 1), farrowing month (model 2), quadratic regressions of daily maximum ambient temperature of farrowing day (model 3), season and temperature (model 4), or month and temperature (model 5). Patterns of the effects of daily maximum temperature of farrowing day estimated using model 3 was similar to those of farrowing season by model 1 and those of farrowing month by model 2. Adding the effect of daily maximum temperature of farrowing day (models 4 and 5) could explain phenotypic variability greater than only considering either of farrowing season and month (models 1 and 2). Estimated heritability was stable among the models and the rank correlation of predicted breeding values between models was >0.98 for all traits. The results indicate the possibility that using public ambient temperature can capture a large part of the phenotypic variability in litter size traits at birth caused by the seasonality in Japan and do not harm, at least, the performance of genetic evaluation. This study could support the availability of public meteorological data in flexible developing operational models for future swine genetic evaluation in Japan.

KEYWORDS: genetic parameter estimation, litter size traits at birth, meteorological observation data, pig breeding, temperature
1. INTRODUCTION

In Japan, pork production traits, including average daily gain, longissimus muscle area, and intramuscular fat content with middle to high heritabilities, have been genetically improved by selection (e.g., Suzuki et al. 2005; Kadowaki et al. 2012; Ohnishi and Satoh 2018). Now, improving sow lifetime productivity is a pressing challenge to efficient pork production, although the heritabilities of litter size traits at birth have been estimated to be low (e.g., Tomiyama et al. 2011; Ogawa et al. 2019a; Ogawa et al. 2020). Potentials have been assessed of several approaches, such as choosing a statistical model more appropriate to estimate breeding values for number born alive (NBA) in terms of the parity order of dam (Ogawa et al. 2019b; Konta et al. 2020), exploring a preferable trait to assist in genetically improving NBA (Konta et al. 2019; Ogawa et al. 2019a; Ogawa et al. 2020), and investigating the possibility of genetically improving sow longevity (Ogawa et al. 2021a). A possible different approach is to perform a large-scale genetic evaluation across farms because this might predict breeding values that have higher accuracies by using more phenotypic information obtained from relatives reared on different farms and that can be directly compared between individuals on different farms. Therefore, it is important to provide an operational model suitable for a large-scale routine genetic evaluation by simultaneously using data collected from around Japan.

Japan is an island country that has four distinct seasons with a climate ranging from subarctic in the north to subtropical in the south, and the conditions are different between the Pacific side and the Sea of Japan side (https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist.html). Japanese pig farms are widely distributed in Japan (e.g., Koike et al. 2018; Ogawa et al. 2019c; Fujimoto et al. 2021).
Previous studies have reported that seasons affect the meat production and reproductive performance of pigs reared in Japan (e.g., Harada et al. 1992; Saito and Koketsu 2009; Kakuma 2018), and statistical models considering the effects of season at measuring phenotypic information have been widely used in the genetic evaluation of traits that can be recorded throughout the year (e.g., Tomiyama et al. 2011; Kadowaki et al. 2019; Ogawa et al. 2019a; Ogawa et al. 2020). The scale of national swine genetic evaluation is getting larger (http://www.nlbc.go.jp/kachikukairyo/iden/buta/chiikinai.html), and the current evaluation uses operational models including the fixed cross-classified effects of the combination of region and season at measuring (http://www.nlbc.go.jp/kachikukairyo/iden/buta/hyokaho.html). However, these models could not explain the variation by the time of year within each season.

Effects of the time of year on pigs’ trait expression could be associated with ambient climate conditions, including thermal environment. Using information on thermal environment, such as ambient temperature, might explain not only the variation across seasons but also that within each season. However, full details of thermal environment for farm animals are rarely available. On the other hand, the utility of public meteorological data has been studied worldwide. For instance, by using off-farm temperature data measured at weather stations, Zumbach et al. (2008) analyzed carcass weight of pigs raised on 2 farms in North Carolina, USA; Lewis and Bunter (2011) analyzed several production traits of gilts and litter traits of sows on a farm in Australia; Tummaruk (2012) analyzed age at first observed estrus in gilts in 4 commercial herds in Thailand; Wegner et al. (2014) and Wegner et al. (2016) analyzed the numbers of total born, liveborn piglets, stillborn piglets, and weaned piglets of sows on several
farms in Germany; and Mellado et al. (2018) analyzed the numbers of live pigs, stillborn pigs, and mummified pigs of gilts and sows on a single farm in central west Mexico. Freitas et al. (2006) reported that correlations between the temperature humidity index (THI) according to on-farm temperature and humidity records on a Holstein farm in Tifton, Georgia, USA, and THI according to records measured at several weather stations (up to 300 km apart) were > 0.92. Following this, Bloemhof et al. (2013) showed the utility of daily maximum temperature from weather stations as a heat stress indicator for farrowing rate and total number born on 16 farms in Spain and Portugal. Using public meteorological data, other studies reported the results of epidemiological investigations of total number born, weaning-to-first-mating interval, adjusted 21-day litter weight, peripartum pig deaths, and farrowing rates of gilts and sows (mainly crossbred) reared in Japanese commercial farms, in terms of herd management (e.g., Iida and Koketsu 2013; Iida and Koketsu 2014a; Iida and Koketsu 2014b; Sasaki et al. 2018). Previous studies used information on daily maximum temperature to investigate the effect of ambient temperature on reproductive traits of pig (e.g., Lewis and Bunter 2011; Bloemhof et al. 2013; Iida and Koketsu 2013; Iida and Koketsu 2014a; Iida and Koketsu 2014b; Sasaki et al. 2018).

No study has been investigated in detail about the performance of genetic evaluation of Japanese purebred pig population using public ambient temperature information. This is a challenging task, and as a first step, it seems reasonable to start from assessing the performance of using public meteorological data in swine genetic evaluation by analyzing data from a single farm, owing to secure the interpretability of the results. Total number born (TNB), NBA, and number stillborn (NSB) at birth are the traits having been repeatedly investigated for foreign
pig populations (e.g., Lewis and Bunter 2011; Bloemhof et al. 2013; Wegner et al. 2014; Wegner et al. 2016), this could give more opportunities to make a meaningful discussion. This study, aiming at obtaining fundamental information for establishing a more efficient swine breeding scheme in Japan, compared on-farm temperature data measured on a single swine farm and off-farm data acquired at the nearest Automated Meteorological Data Acquisition System (AMeDAS) station (https://www.jma.go.jp/jma/en/Activities/amedas/amedas.html), and estimated genetic parameters of TNB, NBA, and NSB and predicted breeding values for these traits using the public temperature data.

2. MATERIALS AND METHODS

2.1 Ethics statement

All procedures involving animals were performed in accordance with the National Livestock Breeding Center's guidelines for the care and use of laboratory animals.

2.2 Phenotypic information and pedigree data

We used 1,161 records for TNB, NBA, and NSB of 437 purebred Duroc dams obtained between 24 April 2010 and 8 August 2017 at the National Livestock Breeding Center’s Miyazaki Station (31°56’ N, 130°56’ E, 462 m a.s.l.) in Miyazaki Prefecture (Ogawa et al. 2020; Yazaki et al. 2020; Ogawa et al. 2021). Miyazaki Prefecture is located along the southeastern coast of the island of Kyusyu in Japan and has a subtropical climate. Artificial insemination was used for all service events. NBA was determined by the next day of the farrowing and included the number of piglets dead when checking to determine NBA but seemed to be alive at farrowing. The number of mummified piglets was not included in NSB. TNB was calculated as the sum...
of NBA and NSB. The pedigree data included information on 11,631 individuals. Basic statistics from the phenotypic records for the studied traits are listed in Table 1.

2.3 On- and off-farm ambient temperature data

As on-farm ambient temperature data, temperatures within two sire barns and two growing barns recorded at intervals of 5 or 10 minutes from 4 October 2016 to 24 August 2017 were available. As off-farm ambient temperature data, the daily maximum temperatures acquired by the Kobayashi AMeDAS station (32°00′ N, 130°57′ E, 276 m a.s.l.), about 6 km from the farm, from 28 December 2009 to 24 August 2017 were obtained from the Japan Meteorological Agency’s homepage (https://www.data.jma.go.jp/gmd/risk/obsdl/).

2.4 Numerical analyses

The following single-trait linear animal model was used:

\[y = Xb + Za + Wpe + e, \]

where \(y \) is the vector of phenotypic records; \(b \) is the vector of macro-environment effects (fixed effect); \(a \) is the vector of breeding values (random effect); \(pe \) is the vector of permanent environment effects (random effect); \(e \) is the vector of random errors (random effect); and \(X, W, \) and \(Z \) are the design matrices relating \(y \) to \(b, a, \) and \(pe, \) respectively. Macro-environment effects included farrowing year (2010 to 2017), parity of dam (1st to 8th), mating sire breed (Duroc, Large White), and the time of year as one of farrowing season (spring [March–May], summer [June–August], autumn [September–November], winter [December–February]; model 1), farrowing month (January to December; model 2), daily maximum temperature of farrowing day at Kobayashi AMeDAS station (quadratic regression; model 3), farrowing season and daily maximum temperature of farrowing day (model 4), or farrowing month and
daily maximum temperature of farrowing day (model 5). The mean and variance–covariance of the random effects were as follows:

\[
E \begin{bmatrix} a \\ pe \\ e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \text{var} \begin{bmatrix} a \\ pe \\ e \end{bmatrix} = \begin{bmatrix} A\sigma^2_a & 0 & 0 \\ 0 & I\sigma^2_{pe} & 0 \\ 0 & 0 & I\sigma^2_e \end{bmatrix},
\]

where \(\sigma^2_a \) is the additive genetic variance; \(\sigma^2_{pe} \) is the permanent environmental variance; \(\sigma^2_e \) is the error variance; \(A \) is the additive genetic relationship matrix; and \(I \) is the identity matrix. Variance components were estimated in AIREMLF90 program (Misztal et al. 2002). Standard errors of the estimated heritability and repeatability were calculated using the elements of the inverse of the average-information matrix at convergence (Klei and Tsuruta 2008). Default setting was used as convergence criteria in the iteration procedure, that is, an iteration was stopped when at least one of the following conditions was first satisfied:

\[
\frac{\sum_{i=1}^{n} (\hat{\theta}_{i,k} - \hat{\theta}_{i,k-1})^2}{\sum_{i=1}^{n} \hat{\theta}_{i,k}^2} < 10^{-12} \quad \text{and} \quad \frac{\sum_{i=1}^{n} |\hat{\theta}_{i,k} - \hat{\theta}_{i,k-1}|}{n} < 10^{-6},
\]

where \(\hat{\theta}_{i,k} \) is the estimated value of parameter \(i \) in iteration \(k \) and \(n \) is the number of parameters to be estimated.

3. RESULTS AND DISCUSSION

3.1 Comparing on- and off-farm temperature data

Fig. 1 illustrates the relationship of on- and off-farm daily maximum temperatures. Values of Pearson’s correlation coefficients between the temperatures were very high, ranging from 0.92 to 0.96, and therefore it is reasonable to assume that off-farm daily maximum temperatures corresponded 1:1 with on-farm daily maximum temperatures in this study. The reason for such
high correlations might be that the distance between the farm and the AMeDAS station is only
6 km, with no obvious geographical barrier between the farm and station (Freitas et al. 2006).
Sasaki et al. (2018) used meteorological data measured at weather stations nearest each of 25
swine farms and found that the coefficient of determination between on- and off-farm
temperatures was high (0.85). Our coefficients of determination ranged from 0.84 to 0.93, equal
to or higher than that found by Sasaki et al. (2018).

Nevertheless, the ranges of the values of on-farm temperatures in all barns were
narrower than that of off-farm temperatures, and the distributions were slightly different
between boar barns and growing barns (Fig. 1). These differences could be due to factors
controlling on-farm environmental conditions. Apparent abnormal values of on-farm
temperatures might reflect the effect of installation site or a flaw in the measuring devices.

On-farm temperatures were collected from October 2016, whereas most farrowing
records were obtained before that date. Therefore, we used off-farm temperature data measured
at Kobayashi, supposing that the 1:1 correspondence between on- and off-farm daily maximum
temperatures also held before October 2016. Fig. 2 shows the relationships of off-farm daily
maximum temperature of farrowing day with farrowing seasons and months. Values of the
temperatures varied not only across the seasons and months in average but also within each
season and month. This fact reflects the potential for capturing the phenotypic variation of traits
within each season and month by using ambient temperature data. Previous study reported that
the thermoneutral zone of sow was from 18 to 20°C (e.g., Curtis 1983; Peltoniemi et al. 1999;
Bloemhof et al. 2013). Therefore, it could be expected that seasons and months with average
values of temperature deviating from sow’ thermoneutral zone, such as summer and winter
seasons and months within these seasons, might affect their phenotypic performance in this study.

3.2 Effects of farrowing season, farrowing month, and daily maximum ambient temperature of farrowing day

Table 2 summarizes the results about the estimated effects of farrowing season, farrowing month, and off-farm daily maximum temperature of farrowing day. Fig. 3 illustrates the changes in the effects of off-farm daily maximum temperature of farrowing day estimated using model 3. Fig. 4 shows the relationships of the effect of off-farm daily maximum temperature of farrowing day estimated using model 3 with corresponding farrowing seasons and months. Proportions of variances of phenotypic records explained by the estimated effects of farrowing season, farrowing month, and off-farm daily maximum temperature of farrowing day, as well as Pearson’s correlation coefficients between the values explained by those effects, are listed in Table 3. Fig. 5 shows the relationship between mating and farrowing dates and that between off-farm daily maximum temperatures of mating and farrowing days.

Values of the effects of spring and summer at farrowing on TNB estimated using model 1 were similar to each other, that of autumn was slightly lower than those of spring and summer, and that of winter was the lowest (Table 2). TNB would be largely determined by ovulation rate, early embryonic mortality, and early fetal death (e.g., Edwards et al. 1968; Wildt et al. 1975; Nardone et al. 2006). Considering that the average value of gestation length in our population was 115.9 days, nearly 4 months, and that >90% of the farrowing records exhibited the gestation length ranging from 114 to 118 days (Fig. S1), most litters farrowed in winter had been artificially inseminated from August to October, hotter months in this study (Fig. 2).
heat-stressed dam before and after insemination could exhibit lower feed intake, diminished follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion, and increased body temperature and oxidative stress, these might cause lower ovarian function and higher early embryonic mortality (e.g., Flowers et al. 1989; Flowers and Day 1990; Quesnel et al. 1998; Kim et al. 2013). Previous studies have shown that the temperature in the period between several days prior to and after insemination had greater effects on TNB (Omtvedt et al. 1971; Bloemhof et al. 2013; Wegner et al. 2016).

Values of the estimated effects of spring and autumn at farrowing on NSB were similar, that of summer was slightly higher than those of spring and autumn, and that of winter was the highest (Table 2). It has been reported that heat stress in later pregnancy increased the number of stillborn piglets (e.g., Edwards et al. 1968; Omtvedt et al. 1971; Wegner et al. 2016). Therefore, the slightly lower value for summer at farrowing might be due to heat stress in dams. On the other hand, the lowest value for winter might be caused by cold stress in not only dam but also piglet. For example, previous studies reported the range of comfortable temperature of 18°C to 23°C for lactating sow (Yan and Yamamoto 2000; Brown-Brandl et al. 2001) and the minimum comfortable temperature of around 34°C to 35°C for newborn piglet (Mount 1959; Manno et al. 2005). Considering the physiological temperature in dam’s utero, between 38°C to 40°C, piglets encounter a colder environment immediately, this triggers the reduction of body temperature soon, known as hypothermia (Tuchscherer et al. 2000; Pandorfi et al. 2005; Malmkvist et al. 2006).

Values of the estimated effects for NBA were like the difference between those for TNB and NSB because TNB was the sum of NBA and NSB in this study. From what has been
discussed above, one can add the effects about the time at mating, such as mating year and
either of mating season, mating month, or temperature of mating day. However, care must be
taken to accurate data collection about the mating and farrowing dates and a characteristic data
structure about these factors (Fig. 5), due to seasonal variation in ambient temperature and less
variability in gestation length. Ogawa et al. (2019c) reported the estimated effects of farrowing
season for NBA in Landrace and Large White dams raised on multiple farms in different
prefectures of a single Japanese pig breeding company. Ogawa et al. (2019c) showed lower
estimated values for winter than for spring, although the difference between the values was
0.30 in Landrace and 0.21 in Large White, both smaller than this study. This inconsistency
might be due to differences in breed, farm location, and rearing condition. Our population was
reared in Miyazaki Prefecture, in southern Japan, and analyzing data obtained at different
locations, such as northern Japan, might yield different effects of the time of year. Tummaruk
et al. (2004) estimated the effects of farrowing month on NBA in Landrace and Large White
populations in Thailand, showing that NBA was significantly lower in August and September
than from November to June. The inconsistency might be due in part to the difference in climate
conditions between countries. Bertoldo et al. (2012) observed that the estimated effects of
season on litter size varied among studies, possibly owing to confounding factors, including
parity of dam and semen characteristics. Tummaruk et al. (2004) and Tummaruk et al. (2010)
reported that the effect of season on litter size was more prominent in gilts than in sows,
although it is possible that their results were affected by culling for reproductive performance
at earlier parities (Sasaki et al. 2018).

Variations in phenotypic records explained by farrowing season in model 1 and that
by farrowing month in model 2 was largely in common, although the proportion on variance explained by farrowing month was greater than that explained by farrowing season for all traits (Table 3). Considering the effect of the time of year as farrowing month could explain additional variations which are not explained by farrowing season, though the statistical model becomes more complicated, that is, the number of levels increases from 4 to 12, and thus the average number of records per level is decreased. Therefore, in terms of data connectedness and reliability of the results, more careful consideration is required to interpret the results obtained using more complicated model, especially when the data structure is severely unbalanced and the data size is small. We assumed no interaction between farrowing year and farrowing season or month, and the average number of records per level decreases further when considering farrowing year-by-season and year-by-month effects.

The quadratic curve for the effect of off-farm daily maximum temperature of farrowing day estimated using model 3 was convex upward for TNB and NBA and downward for NSB (Fig. 3), although the value of the effect for TNB became stable when the temperature was >20°C. Phenotypic variation explained by the temperature in model 3 was partly in common with those explained by farrowing season in model 1 and farrowing month in model 2 (Table 3). The proportions of variances explained by the temperature were the lowest for TNB and NBA, while it was lower than that explained by farrowing month but greater than that explained by farrowing season for NSB.

Model 3 assumes that the effect of the time of year is the same when the daily maximum temperatures are the same on different days. However, sows farrowed in spring and sows farrowed in autumn might be differently affected, partly because of different responses
to daylight hours, daily temperature range, and relative humidity, even if the daily maximum temperatures are the same. Therefore, we performed the analyses using models 4 and 5. For TNB and NSB, simultaneous considering the effects of the temperature and season or month (models 4 and 5) could explain more proportions of variance than considering only one of the effects of season, month, and temperature (models 1, 2, and 3) (Table 3). This indicates the availability of using temperature data to explain additional variation which could not capture by considering the effects of season and month. On the other hand, interpreting the respective values of effects of farrowing season, farrowing month, and daily maximum temperature of farrowing days estimated using models 4 and 5 were more difficult than those estimated using the other models (Table 2, Fig. S5). This could be due to confounding; that is, there are overlaps among the variations explained by farrowing season, month, and daily maximum temperature of farrowing day. Lewis and Bunter (2011) discussed the possibility of confounding when dissociating the effects of contemporary group and daily maximum temperature.

We adopted the quadratic regression of phenotypic values on temperatures, according to the results from the preliminary analysis and aiming to prevent over-fitting (Figs. S1, S2, S3, and S4). Including quadratic regression of daily maximum temperature of farrowing day lost 2 degrees of freedom, whereas including discrete effects of farrowing season and farrowing month lost 4 and 12 degrees of freedom, respectively. Furthermore, considering farrowing season and month would reduce both the average number of records per level the connectedness with other effects. On the other hand, considering daily maximum temperature as covariates in the model restricts the expression of the effect of the time of year. Therefore, modeling should be flexible in response to the structure and size of the data analyzed.
3.3 Genetic parameter estimation and breeding value prediction

Results of estimating genetic parameters are listed in Table 4. Values of Spearman’s rank correlation coefficients of predicted breeding values the 437 sows with their own records between the models are shown in Table 5. Values of estimated heritability and repeatability were stable across the models for all traits, mainly due to the small proportions of variance in phenotypic records explained by farrowing month, farrowing year, and daily maximum temperature of farrowing day (Table 3). Values of Spearman’s rank correlation coefficients were >0.98. These results could imply the possibility that including temperature information into the analytical model at least did not harm the performance of breeding value prediction.

3.4 General discussion

With the aim of increasing the rate of genetic improvement, it is important to develop an operational model suitable for routine large-scale genetic evaluation that can handle integrated data collected around Japan. In this study, we used public meteorological data as a source of climate information to analyze phenotypic records of TNB, NBA, and NSB. This is the first study to assess the performance of using public ambient temperature data in swine genetic evaluation in Japan. We revealed that adding the effect of temperature could explain additional variations that did not explain by considering only the effect of season (Table 3). Possible reasons for our results would be that high one-to-one correspondence of off-farm temperature data with on-farm temperature (Fig. 1) and that the values of temperature varied within each season (Fig. 2). On the other hand, it should be noted that such correspondence might not be guaranteed on other farms, depending on physical and management characteristics. Therefore, it is important to investigate factors affecting the relationship between on- and off-farm ambient
temperatures. Exploring a more appropriate use of temperature data, such as daily average and minimum temperatures, daily temperature range, and other factors including relative humidity, as well as choosing a different expression of the effect of ambient temperature, including linear-plateau regression and smoothing spline, might explain more phenotypic variation (Zumbach et al. 2008; Lewis and Bunter 2011; Bloemhof et al. 2013; Guy et al. 2017; Tiezzi et al. 2020).

Moreover, AMeDAS relative humidity data and mesh climate data are now available as different sources of climate information. Effects of time of year, and even those of year, might vary among regions and farms. If an interaction of region and farm with time could be explained by using public meteorological data, the statistical modelling might become simpler and more objective. To tackle these challenging issues, further analysis should be performed to investigate the performance of the integrated use of different kinds of public meteorological data with a larger data set with a more complex structure.

Recently, studies have investigated the methodology for efficient breeding using information obtained from public databases; for example, genomic prediction incorporating biological information (e.g., Melzer et al. 2013; Ogawa et al. 2015; Okada et al. 2018) and prediction of breeding value by exploiting public meteorological data (e.g., Zumbach et al. 2008; Fragomeni et al. 2016a; Tiezzi et al. 2020). For the letter, it is likely that a sow’s response to high ambient temperature is somewhat heritable and that the genetic correlations of sow reproductive traits among seasons and ambient temperatures are not unity (e.g., Bloemhof et al. 2008; Lewis and Bunter 2011; Tiezzi et al. 2020). Similar results were also reported for production traits (e.g., Lewis and Bunter 2011; Fragomeni et al. 2016b; Usala et al. 2021). In pig breeding, selection has been performed to improve meat production and number of piglets
weaned both in Japan (e.g., Suzuki et al. 2005; Tomiyama et al. 2011; Ohnishi and Satoh 2018) and overseas (e.g., Merks 2000; Hill 2016; Zak et al. 2017). Genetic improvement of productivity has brought about a large increase in total metabolic heat production (e.g., Cabezón et al. 2016; Johnson 2018; Johnson et al. 2019), reducing individual animals’ ability to cope with high ambient temperatures (e.g., Brown-Brandl et al. 2001; Renaudeau et al. 2011; Robbins et al. 2021). Pork production in Japan is anticipated to be affected by global warming (Takada et al. 2008; Sakatani 2014). Therefore, it is an urgent priority to establish new pig breeding schemes to confront global warming (e.g., Bloemhof et al. 2012; Schauburger et al. 2019; Tiezzi et al. 2020). In this regard, public meteorological data might offer a powerful resource, and therefore, it is important to develop a future breeding scheme to genetically improve heat tolerance of pigs in Japan (Carabaño et al. 2019; Mayorga et al. 2019; Rauw et al. 2020).

DATA AVAILABILITY STATEMENT

Restrictions apply to the availability of these data, which were used under license for this study.

CONFLICTS OF INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Development of Breeding Technology for Animal Life Production).
REFERENCES

Bertoldo MJ, Holyoake PK, Evans G, Grupen CG. (2012) Seasonal variation in the ovarian function of sows. Reproduction. Fertility and Development 24, 822–834. doi: 10.1071/RD11249

Bloemhof S, Mathur PK, Knol EF, van der Waaij EH. (2013) Effect of daily environmental temperature on farrowing rate and total born in dam line sows. Journal of Animal Science 91, 2667–2679. doi: 10.2527/jas.2012-5902

Bloemhof S, Mathur PK, van der Waaij EH, Leenhouwers JI, Knol EF. (2012) Genetic aspects of heat stress in pigs expressed in fertility traits. Paper at: 14 Seminar of the FAO-CIHEAM Subnetwork on Sheep and Goat Nutrition and 2nd Lowinputbreeds Symposium, Hammamet, Tunisia, 15-18 May 2012.

Bloemhof S, van der Waaij EH, Merks JWM, Knol EF. (2008) Sow line differences in heat stress tolerance expressed in reproductive performance traits. Journal of Animal Science 86, 3330–3337. doi: 10.2527/jas.2008-0862

Brown-Brandl TM, Eigenberg RA, Nienaber JA, Kachman SD. (2001) Thermoregulatory profile of a newer genetic line of pigs. Livestock Production Science 71, 253–260. doi: 10.1016/S0301-6226(01)00184-1

Cabezón FA, Schinckel AP, Richert BT, Stewart KR, Gandarillas M, Peralta WA. (2016) Analysis of lactation feed intakes for sows including data on environmental temperatures and humidity. The Professional Animal Scientist 32, 333–345. doi: 10.15232/pas.2015-01495
Carabaño MJ, Ramón M, Menéndez-Buxadera A, Molina A, Díaz C. (2019) Selecting for heat tolerance. *Animal Frontiers* 9, 62–68. doi: 10.1093/af/vfy033

Curtis SE. (1983) Environmental management in animal agriculture. *Ames, Iowa: Iowa State University Press. pp. 6–96.*

Edwards RL, Omtvedt IT, Tuesman EJ, Stephens DF, Mahoney GWA. (1968) Reproductive performance of gilts following heat stress prior to breeding and in early gestation. *Journal of Animal Science* 27, 1634–1637. doi: 10.2527/jas1968.2761634x

Flowers B, Day BN. (1990) Alterations in gonadotropin secretion and ovarian function in prepubertal gilts by elevated environmental temperature. *Biology of Reproduction* 42, 465–471. doi: 10.1095/biolreprod42.3.465

Flowers B, Cantley TC, Martin MJ, Day BN. (1989) Effect of elevated ambient temperatures on puberty in gilts. *Journal of Animal Science* 67, 779–784. doi: 10.2527/jas1989.673779x

Fragomeni BO, Lourenco DAL, Tsuruta S, Andonov S, Gray KA, Huang Y, Misztal I. (2016a) Modeling response to heat stress in pigs from nucleus and commercial farms in different locations in the United States. *Journal of Animal Science* 94, 4789–4798. doi: 10.2527/jas.2016-0536

Fragomeni BO, Lourenco DAL, Tsuruta S, Bradford HL, Gray KA, Huang Y, Misztal I. (2016b) Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs. *Journal of Animal Science* 94, 5004–5013. doi: 10.2527/jas.2016-0820

Freitas MS, Misztal I, Bohmanova J, West J. (2006) Utility of on- and off-farm weather records
for studies in genetics of heat tolerance. *Livestock Science* **105**, 223–228. doi: 10.1016/j.livsci.2006.06.011

Fujimoto K, Kawasaki M, Endo Y, Yokoyama T, Yamane I, Yamazaki H, Kure K, Haga T, Sugiura K. (2021) Antimicrobial use on 74 Japanese pig farms in 2019: A comparison of Japanese and European defined daily doses in the field. *PLoS One* **16**, e0255632. doi: 10.1371/journal.pone.0255632

Guy SZY, Li L, Thomson PC, Hermesch S. (2017) Contemporary group estimates adjusted for climatic effects provide a finer definition of the unknown environmental challenges experienced by growing pigs. *Journal of Animal Breeding and Genetics* **134**, 520–530. doi: 10.1111/jbg.12282

Harada K, Komura H, Duran PG, Ochiai I, Fukuhara R. (1992) Effects of fattening season on the growth pattern and estimated mature size of ultrasonic estimates of carcass traits in live pigs. *Animal Science and Technology* **63**, 1042–1050. (in Japanese) doi: 10.2508/chikusan.63.1042

Hill WG. (2016) Is continued genetic improvement of livestock sustainable? *Genetics* **202**, 877–881. doi: 10.1534/genetics.115.186650

Iida R, Koketsu Y. (2013) Quantitative associations between outdoor climate data and weaning-to-first-mating interval or adjusted 21-day litter weights during summer in Japanese swine breeding herds. *Livestock Science* **152**, 253–260. doi: 10.1016/j.livsci.2012.12.014

Iida R, Koketsu Y. (2014a) Climatic factors associated with peripartum pig deaths during hot and humid or cold seasons. *Preventive Veterinary Medicine* **115**, 166–172. doi:
Iida R, Koketsu Y. (2014b) Interactions between pre- or postservice climatic factors, parity, and weaning-to-first-mating interval for total number of pigs born of female pigs serviced during hot and humid or cold seasons. *Journal of Animal Science* **92**, 4180–4188. doi: 10.2527/jas.2014-7636

Johnson JS. (2018) Heat stress: impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. *Animal Production Science* **58**, 1404–1413. doi: 10.1071/AN17725

Johnson JS, Zhang S, Morello GM, Maskal JM, Trottier NL. (2019) Technical note: development of an indirect calorimetry system to determine heat production in individual lactating sows. *Journal of Animal Science* **97**, 1609–1618. doi: 10.1093/jas/skz049

Kadowaki H, Suzuki E, Kojima-Shibata C, Suzuki K, Okamura T, Onodera W, Shibata T, Kano H. (2012) Selection for resistance to swine mycoplasmal pneumonia over 5 generations in Landrace pigs. *Livestock Science* **147**, 20–26. doi: 10.1016/j.livsci.2012.03.014

Kadowaki K, Osawa T, Ishii K, Inoue K. (2019) Estimates of genetic parameters for number born alive using a random regression model with considered parities. *Japanese Journal of Swine Science* **56**, 139–148. (in Japanese) doi: 10.5938/youton.56.4_139

Kakuma T. (2018) Seasonal effects on the pig farm management. *Japanese Journal of Swine Science* **55**, 48–55. (in Japanese) doi: 10.5938/youton.55.2_48

Kim SW, Weaver AC, Shen YB, Zhao Y. (2013) Improving efficiency of sow productivity: nutrition and health. *Journal of Animal Science and Biotechnology* **4**, 26. doi:
Klei B, Tsuruta S. (2008) Approximate variance for heritability estimates. Accessed May. 21, 2020. http://nce.ads.uga.edu/~shogo/html/research/AI_SE.pdf

Koike N, Mai TN, Shirai M, Kubo M, Hata K, Marumoto N, Watanabe S, Sasaki Y, Mitoma S, Notsu K, Okabayashi T, Wiratsudakul A, Kabali E, Norimine J, Sekiguchi S. (2018) Detection of neutralizing antibody against porcine epidemic diarrhea virus in subclinically infected finishing pigs. The Journal of Veterinary Medical Science 80, 1782–1786. doi: 10.1292/jvms.18-0132

Konta A, Ogawa S, Kimata M, Ishii K, Uemoto Y, Satoh M. (2019) A study on the potential for improving number born alive using teat number in pig female breeds. Nihon Chikusan Gakkaiho 90, 207–212. (in Japanese) doi: 10.2508/chikusan.90.207

Konta A, Ogawa S, Kimata M, Ishii K, Uemoto Y, Satoh M. (2020) Comparison of two models to estimate genetic parameters for number of born alive in pigs. Animal Science Journal 91, e13417. doi: 10.1111/asj.13417

Lewis CRG, Bunter KL. (2011) Effects of seasonality and ambient temperature on genetic parameters for production and reproductive traits in pigs. Animal Production Science 51, 615–626. doi: 10.1071/AN10265

Manno MC, Oliveira RFM, Donzele JL, Ferreira AS, Oliveira WP, Lima KRS, Vaz RGM. (2005) Effect of thermal environment on performance of growing pigs from 15 to 30 kg. Revisita Brasileira de Zootecnia 34, 1963–1970. doi: 10.1590/S1516-35982005000600021

Mayorga EJ, Renaudeau D, Ramirez BC, Ross JW, Baumgard LH. (2019) Heat stress
adaptations in pigs. *Animal Frontiers* **9**, 54–61. doi: 10.1093/af/vfy035

Melzer N, Wittenburg D, Repsilber D. (2013) Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows. *PLoS One* **8**, e70256. doi: 10.1371/journal.pone.0070256

Merks JWM. (2000) One century of genetic changes in pigs and the future needs. *BSAS Occasional Publication* **27**, 8–19. doi: 10.1017/S1463981500040498

Mellado M, Gaytán L, Macías-Cruz U, Avendaño L, Meza-Herrera C, Lozano EA, Rodríguez Á, Mellado J. (2018) Effect of climate and insemination technique on reproductive performance of gilts and sows in a subtropical zone of Mexico. *Austral Journal of Veterinary Sciences* **50**, 27–34. doi: 10.4067/S0719-81322018000100106

Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. (2002) BLUPF90 and related programs. *Proceedings of the 7th World Congress of Genetics Applied to Livestock Production, Montpellier, France.*

Mount LE. (1959) The metabolic rate of the new-born pig in relation to environmental temperature and to age. *The Journal of Physiology* **147**, 333–345. doi: 10.1113/jphysiol.1959.sp006247

Nardone A, Ronchi B, Lacetera N, Bernabucci U. (2006) Climatic effects on productive traits in livestock. *Veterinary Research Communications* **30**(Suppl. 1), 75–81. doi: 10.1007/s11259-006-0016-x

Ogawa S, Kimata M, Ishii K, Uemoto Y, Satoh M. (2021a) Genetic analysis for sow stayability at different parities in purebred Landrace and Large White pigs. *Animal Science Journal* **92**, e13599. doi: 10.1111/asj.13599
Ogawa S, Konta A, Kimata M, Ishii K, Uemoto Y, Satoh M. (2019a) Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. *Animal Science Journal* **90**, 23–28. doi: 10.1111/asje.13120

Ogawa S, Konta A, Kimata M, Ishii K, Uemoto Y, Satoh M. (2019b) Genetic parameter estimation for number born alive at different parities in Landrace and Large White pigs. *Animal Science Journal* **90**, 1111–1119. doi: 10.1111/asje.13252

Ogawa S, Konta A, Kimata M, Ishii K, Uemoto Y, Satoh M. (2019c) Genetic relationship of litter traits between farrowing and weaning in Landrace and Large White pigs. *Animal Science Journal* **90**, 1510–1516. doi: 10.1111/asje.13304

Ogawa S, Matsuda H, Taniguchi Y, Watanabe T, Takasuga A, Sugimoto Y, Iwaisaki H. (2015) Estimated genetic variances due to QTL candidate regions for carcass traits in Japanese Black cattle. *Book of Abstracts of the 66th Annual Meeting of the European Association for Animal Production, Warsaw, Poland.*

Ogawa S, Ohnishi C, Ishii K, Uemoto Y, Satoh M. (2020) Genetic relationship between litter size traits at birth and body measurement and production traits in purebred Duroc pigs. *Animal Science Journal* **91**, e13497. doi: 10.1111/asje.13497

Ogawa S, Yazaki N, Ohnishi C, Ishii K, Uemoto Y, Satoh M. (2021b) Maternal effect on body measurement and meat production traits in purebred Duroc pigs. *Journal of Animal Breeding and Genetics* **138**, 237–245. doi: 10.1111/jbg.12505

Ohnishi C, Satoh M. (2018) Estimation of genetic parameters for performance and body measurement traits in Duroc pigs selected for average daily gain, loin muscle area, and backfat thickness. *Livestock Science* **214**, 161–166. doi: 10.1016/j.livsci.2018.05.022
Okada D, Endo S, Matsuda H, Ogawa S, Taniguchi Y, Katsuta T, Watanabe T, Iwaisaki H. (2018) An intersection network based on combining SNP coassociation and RNA coexpression networks for feed utilization traits in Japanese Black cattle. Journal of Animal Science 96, 2553–2566. doi: 10.1093/jas/sky170

Omtvedt IT, Nelson RE, Edwards RL, Stephens DF, Turman EJ. (1971) Influence of heat stress during early, mid and late pregnancy of gilts. Journal of Animal Science 32, 312–317. doi: 10.2527/jas1971.322312x

Peltoniemi OAT, Love RJ, Heinonen M, Tuovinen V, Saloniemi H. (1999) Seasonal and management effects on fertility of the sow: a descriptive study. Animal Reproduction Science 55, 47–61. doi: 10.1016/S0378-4320(98)00159-6

Quesnel H, Pasquier A, Mounier AM, Prunier A. (1998) Influence of feed restriction during lactation on gonadotropic hormones and ovarian development in primiparous sows. Journal of Animal Science, 76, 856–863. doi: 10.2527/1998.763856x

Rauw WM, de la Peña EM, Gomez-Raya L, Cortés LAG, Ciruelos JJ, Izquierdo EG. (2020) Impact of environmental temperature on production traits in pigs. Scientific Reports 10, 2106. doi: 10.1038/s41598-020-58981-w

Renaudeau D, Gourdine JL, St-Pierre NR. (2011) A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. Journal of Animal Science 89, 2220–2230. doi: 10.2527/jas.2010-3329

Robbins LA, Green-Miller AR, Lay Jr. DC, Schinckel AP, Johnson JS, Gaskill BN. (2021) Evaluation of sow thermal preference across three stages of reproduction. Journal of Animal Science 99, 1–10. doi: 10.1093/jas/skab202
Saito H, Koketsu Y. (2009) Factors associated with an occurrence of decreased pigs born alive in parity 2 in commercial herds. *Journal of Veterinary Epidemiology* **13**, 40–45. doi: 10.2743/jve.13.40

Sakatani M. (2014) Effects of summer heat stress on domestic animals. *Japanese Journal of Large Animal Clinics* **5** (supplement), 238–246. (in Japanese) doi: 10.4190/jjlac.5.238

Sasaki Y, Fujie M, Nakatake S, Kawabata T. (2018) Quantitative assessment of the effects of outside temperature on farrowing rate in gilts and sows by using a multivariate logistic regression model. *Animal Science Journal* **89**, 1187–1193. doi: 10.1111/asj.13048

Schaubberger G, Mikovits C, Zollitsch W, Hörtenthuber SJ, Baumgartner J, Niebuhr K, Piringer M, Knauder W, Anders I, Andre K, Hennig-Pauka I, Schönhart M. (2019) Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. *Climatic Change* **156**, 567–587. doi: 10.1007/s10584-019-02525-3

Suzuki K, Kadowaki H, Shibata T, Uchida H, Nishida A. (2005) Selection for daily gain, loin-eye area, backfat thickness and intramuscular fat based on desired gains over seven generations of Duroc pigs. *Livestock Production Science* **97**, 193–202. doi: 10.1016/j.livprodsci.2005.04.007

Takada R, Yamazaki M, Sugiura T, Yokozawa M, Otsuka M, Murakami H. (2008) Future prediction of the effect of global warming on a pig growth performance estimated from changes of the mean ambient temperature. *Nihon Chikusan Gakkaiho* **79**, 59–65. (in Japanese) doi: 10.2508/chikusan.79.59

Tiezzi F, Brito LF, Howard J, Huang YJ, Gray K, Schwab C, Fix J, Maltecca C. (2020)
Genomics of heat tolerance in reproductive performance investigated in four independent maternal lines of pigs. *Frontiers in Genetics* **11**, 629. doi: 10.3389/fgene.2020.00629

Tomiyama M, Kubo S, Takagi T, Suzuki K. (2011) Evaluation of genetic trends and determination of the optimal number of cumulative records of parity required in reproductive traits in a Large White pig population. *Animal Science Journal* **82**, 621–626. doi: 10.1111/j.1740-0929.2011.00889.x

Tummaruk P. (2012) Effects of season, outdoor climate and photo period on age at first observed estrus in Landrace×Yorkshire crossbred gilts in Thailand. *Livestock Science* **144**, 163–172. doi: 10.1016/j.livsci.2011.11.010

Tummaruk P, Tantasuparuk W, Techakumphu M, Kunavongkrit A. (2004) Effect of season and outdoor climate on litter size at birth in purebred Landrace and Yorkshire sows in Thailand. *Journal of Veterinary Medical Science* **66**, 477–482. doi: 10.1292/jvms.66.477

Tummaruk P, Tantasuparuk W, Techakumphu M, Kunavongkrit A. (2010) Seasonal influences on the litter size at birth of pigs are more pronounced in the gilt than sow litters. *The Journal of Agricultural Science* **148**, 421–432. doi: 10.1017/S0021859610000110

Usala M, Macciotta NOP, Bergamaschi M, Maltecca C, Fix J, Schwab C, Shull C, Tiezzi F. (2021) Genetic parameters for tolerance to heat stress in crossbred swine carcass traits. *Frontiers in Genetics* **11**, 612815. doi: 10.3389/fgene.2020.612815

Wegner K, Lambertz C, Das G, Reiner G, Gauly M. (2014) Climatic effects on sow fertility and piglet survival under influence of a moderate climate. *Animal* **8**, 1525–1533. doi:
Wegner K, Lambertz C, Das G, Reiner G, Gauly M. (2016) Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. *Animal Science Journal* **87**, 1334–1339. doi: 10.1111/asj.12569

Wildt DE, Riegle GD, Dukelow WR. (1975) Physiological temperature response and embryonic mortality in stressed swine. *American Journal of Physiology* **229**, 1471–1475. doi: 10.1152/ajplegacy.1975.229.6.1471

Yan PS, Yamamoto S. (2000) Relationship between thermoregulatory responses and heat loss in piglets. *Nihon Chikusan Gakkaiho*, **71**, 505–509. (in Japanese) doi: 10.2508/chikusan.71.10_505

Yazaki N, Ogawa S, Ohnishi C, Ishii K, Uemoto Y, Satoh M. (2020) Effectiveness of body measurement traits for improving production traits in Duroc pigs. *Nihon Chikusan Gakkaiho* **91**, 9–16. (in Japanese) doi: 10.2508/chikusan.91.9

Zak LJ, Gaustad AH, Bolarin A, Broekhuijse MLWJ, Walling GA, Knol EF. (2017) Genetic control of complex traits, with a focus on reproduction in pigs. *Molecular Reproduction and Development* **84**, 1004–1011. doi: 10.1002/mrd.22875

Zumbach B, Misztal I, Tsuruta S, Sanchez JP, Azain M, Herring W, Holl J, Long T, Culbertson M. (2008) Genetic components of heat stress in finishing pigs: Development of a heat load function. *Journal of Animal Science* **86**, 2082–2088. doi: 10.2527/jas.2007-0523
TABLE 1 Descriptive statistics of phenotypic measurements of the studied traits

Trait	Abbreviation	Mean	SD	Min	Max
Total number born	TNB	8.8	2.8	1	17
Number born alive	NBA	7.7	2.8	1	15
Number stillborn	NSB	1.1	1.5	0	10

Abbreviations: Max, maximum value; Min, minimum value; SD, standard deviation.
TABLE 2 Estimated values of effects of farrowing season, farrowing month, and off-farm daily maximum temperature of farrowing day

Factor	Level	Total number born	Number born alive	Number stillborn
		Model 1 2 3 4 5	Model 1 2 3 4 5	Model 1 2 3 4 5
Season	Spring	0.91 - - 0.97 -	1.37 - - 1.20 -	-0.45 - - -0.22 -
	Summer	0.87 - - 0.97 -	1.12 - - 0.95 -	-0.23 - - 0.05 -
	Autumn	0.62 - - 0.69 -	1.03 - - 0.84 -	-0.43 - - -0.16 -
	Winter	0.00 - - 0.00 -	0.00 - - 0.00 -	0.00 - - 0.00 -
Month	January	- 0.00 - - 0.00 -	0.00 - - 0.00 -	0.00 - - 0.00 -
	February	- 0.58 - - 0.69 -	0.24 - - 0.20 -	0.34 - - 0.48 -
	March	- 1.07 - - 1.26 -	1.52 - - 1.45 -	-0.43 - - -0.17 -
	April	- 1.14 - - 1.47 -	1.60 - - 1.49 -	-0.49 - - -0.05 -
	May	- 1.32 - - 1.72 -	1.72 - - 1.58 -	-0.39 - - 0.14 -
	June	- 1.40 - - 1.80 -	1.71 - - 1.57 -	-0.29 - - 0.24 -
Month	Linear	Quadratic ($\times 10^2$)		
-----------	--------	--------------------------		
July	1.34	-0.13 0.03 0.14		
August	0.76	0.08 -0.02 -0.08		
September	1.21	0.19 0.06 0.02		
October	0.62	-0.12 -0.08 -0.10		
November	1.03	0.37 0.13 0.04		
December	0.46	0.25 0.16 0.18		

Note: Values were adjusted so that the estimated values of winter were 0 for Models 1 and 4 and those of January were 0 for Models 2 and 5.
TABLE 3 Proportions of variances of phenotypic records explained by the estimated effects of farrowing season, farrowing month, and off-farm maximum temperature of farrowing day (diagonal) and Pearson’s correlation coefficients between the values explained by those effects (below diagonal).

Model	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5				
1	1.40%					2.87%									1.33%				
2	0.827	2.06%				0.880	3.66%								0.842	1.94%			
3	0.642	0.574	0.53%			0.619	0.601	1.62%							0.579	0.524	1.41%		
4	0.977	0.821	0.769	2.31%		0.987	0.883	0.723	2.91%						0.854	0.743	0.885	1.82%	
5	0.863	0.972	0.727	0.889	3.71%	0.879	0.999	0.631	0.889	3.66%					0.730	0.873	0.760	0.857	2.55%
TABLE 4 Estimated values of genetic parameters (standard errors in parentheses)

Model	σ_a^2	σ_{pe}^2	σ_e^2	h^2	rep^2

Total number born

1 0.76 (0.43) 0.62 (0.38) 6.31 (0.31) 0.10 (0.05) 0.18 (0.03)
2 0.88 (0.45) 0.56 (0.39) 6.29 (0.32) 0.11 (0.06) 0.19 (0.03)
3 0.69 (0.43) 0.67 (0.39) 6.38 (0.32) 0.09 (0.05) 0.18 (0.03)
4 0.77 (0.43) 0.62 (0.38) 6.32 (0.32) 0.10 (0.05) 0.18 (0.03)
5 0.88 (0.45) 0.57 (0.39) 6.29 (0.32) 0.11 (0.06) 0.19 (0.04)

Number born alive

1 1.20 (0.52) 0.42 (0.40) 6.27 (0.32) 0.15 (0.06) 0.20 (0.04)
2 1.32 (0.50) 0.30 (0.40) 6.27 (0.31) 0.17 (0.06) 0.21 (0.04)
3 1.16 (0.50) 0.38 (0.40) 6.40 (0.32) 0.15 (0.06) 0.19 (0.04)
4 1.19 (0.50) 0.41 (0.40) 6.28 (0.32) 0.15 (0.06) 0.20 (0.04)
5 1.33 (0.52) 0.29 (0.40) 6.29 (0.32) 0.15 (0.06) 0.20 (0.04)

Number stillborn

1 0.17 (0.10) 0.12 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03)
2 0.18 (0.10) 0.12 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03)
3 0.17 (0.10) 0.11 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03)
4 0.18 (0.10) 0.11 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03)
5 0.18 (0.10) 0.11 (0.10) 1.89 (0.09) 0.08 (0.05) 0.13 (0.03)

Note: σ_a^2, additive genetic variance; σ_{pe}^2, permanent environmental variance; σ_e^2, error variance; h^2, heritability; rep^2, repeatability.
TABLE 5 Spearman’s rank correlations of predicted breeding values of 437 sows with their own records between different models

Model	Total number born	Number born alive	Number stillborn														
	1	2	3	4	1	2	3	4	1	2	3	4					
2	0.997		0.997			0.993											
3	0.996	0.991		0.991	0.990			0.994	0.990								
4	>0.999	0.997	0.996	>0.999	0.997	0.993			0.995	0.996	0.997						
5	0.996	>0.999	0.990	0.996	0.997	>0.999	0.990	0.997		0.987	0.997	0.991	0.996				
FIGURE 1 Scatter plots for on- and off-farm daily maximum temperatures. (a, b) Boar barns; (c, d) growing barns.
FIGURE 2 Relationships between off-farm daily maximum temperature of farrowing day and farrowing seasons and months. Black dots show the average values within each level of seasons and months.
FIGURE 3 Changes in the effects of off-farm maximum temperature of farrowing day estimated using model 3. Values were adjusted so that their minimum value was equal to zero.
FIGURE 4 Relationships between the effect of off-farm maximum temperature of farrowing day estimated using model 3 and corresponding farrowing seasons and months for total number born (a and b), number born alive (c and d), and number stillborn (e and f). Black dots show the average values within each level of seasons and months. Values were adjusted so that their minimum value was equal to zero.
FIGURE 5 Relationship between mating and farrowing seasons (a), mating and farrowing months (b), off-farm maximum temperatures of mating and farrowing days (c), and mating and farrowing years (d) for each of farrowing records. Some records showed same month (November in autumn) as mating and farrowing months, possibly due to errors in mating dates.