Western Indian Ocean

JOURNAL OF Marine Science

Volume 18 | Issue 2 | Jul – Dec 2019 | ISSN: 0856-860X

Chief Editor José Paula
Aims and scope: The *Western Indian Ocean Journal of Marine Science* provides an avenue for the wide dissemination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal management. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, *Western Indian Ocean Journal of Marine Science* features state-of-the-art review articles and short communications. The journal will, from time to time, consist of special issues on major events or important thematic issues. Submitted articles are subjected to standard peer-review prior to publication.

Manuscript submissions should be preferably made via the African Journals Online (AJOL) submission platform (http://www.ajol.info/index.php/wiojms/about/submissions). Any queries and further editorial correspondence should be sent by e-mail to the Chief Editor, wiojms@fc.ul.pt. Details concerning the preparation and submission of articles can be found in each issue and at http://www.wiomsa.org/wio-journal-of-marine-science/ and AJOL site.

Disclaimer: Statements in the Journal reflect the views of the authors, and not necessarily those of WIOMSA, the editors or publisher.

Copyright © 2019 – Western Indian Ocean Marine Science Association (WIOMSA)
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission in writing from the copyright holder.
Natural recovery of mangroves in abandoned rice farming areas of the Rufiji Delta, Tanzania

Emmanuel Japhet¹*, Mwita M. Mangora¹, Carl C. Trettin², Judith A. Okello³

¹ Institute of Marine Sciences, University of Dar es Salaam, PO Box 668, Mizingani Street, Zanzibar, Tanzania
² USDA Forest Service, Southern Research Station, USA
³ Kenya Marine and Fisheries Research Institute, PO Box 81651 - 80100 Mombasa, Kenya

* Corresponding author: emajaphet@yahoo.com

Abstract
Natural recovery of mangroves in abandoned rice farming areas is important for reviving its multiple ecosystem services including climate change mitigation. This study aims at understanding the natural recovery rate and pattern of mangroves in the abandoned rice farming areas of the Rufiji Delta. Mangrove areas were stratified into early and intermediate succession as well as old growth forest. Forty-five nested plots, fifteen at each site, were randomly selected, where plant and soil data were collected. Based on the Importance Value Index, the most abundant tree species in the early succession was Barringtonia racemosa, a mangrove associated tree species having a value of 67.9. The mangrove Avicennia marina was the most abundant in both intermediate succession and old growth forest having a value of 170.7 and 163.1, respectively. Pairwise comparison of means indicated a significant change (p < 0.05) of structural parameters with fallow age. No significant change (p > 0.05) was detected in the measured soil properties among the three succession categories. The findings demonstrate that even a period of up to 15 years would not allow full recovery of structural attributes for a mangrove forest converted to agricultural land, with grass cover being among factors limiting the recovery due to obstruction of propagule dispersal.

Keywords: Succession; structural attributes; soil properties; fallow; abundance

Introduction
The mangrove ecosystem in the Rufiji Delta, Tanzania, has over the years been severely affected by a complex set of factors, including climate change and anthropogenic pressures, triggering their loss (Wagner and Sallema-Mtui, 2016). The anthropogenic threats include over harvesting of mangrove trees (for fuel wood, building materials), conversion of mangrove areas for other uses, such as salt works, human settlements and agriculture, and in particular rice farming (Semesi, 1992; Mangora et al., 2016). Rice farming is reported to be a major cause of mangrove cover loss in the delta. Nindi et al. (2014) estimated that 4,140 ha of mangroves was cleared for rice farming between 1989 and 2010. Most recently (Monga et al., 2018) reported the loss of mangroves due to rice farming at about 7,298 ha between 1991 and 2015, implying an annual loss of about 304 ha per year.

Similar trends in mangrove losses due to conversion into other uses are reported from other places. In particular, South-East Asia has been in the spotlight where conversion for aquaculture has led to unprecedented losses of mangroves, with about 22,000 ha lost between 2000 and 2012 (Richards and Friessa, 2016). Likewise, in Guinea (West Africa) about 64,000 ha has been converted to rice farming (Adesina and Baidu-Forson, 1995). Mangrove deforestation also has implications for the provision of ecosystem services (Richards and Friessa, 2016), as it results in a loss of carbon (Lagomasino, 2019) and other biodiversity supported by the mangroves.

Despite these reported losses, gains from natural recruitments have also been reported to compensate the losses, reducing the net loss. (Lagomasino et al., 2019; Monga et al., 2018). Monga et al. (2018) reported an average mangrove cover gain of 109 ha.
from 1991 to 2015 in the Rufiji delta. Mangrove forest gain occurs through natural regeneration (Lagomasino, 2019) and planting (Monga et al., 2018).

Rice farming has been practiced in the Rufiji Delta in areas close to fresh water sources by converting the mangrove forest to farmland (Lagomasino, 2019). Due to poor agronomic knowledge, the farming approach in the delta is of a shifting nature where farms are cultivated in a rotation of 3-5 years before farmers move on to open new farm fields by clearing mangrove forests (Monga et al., 2018), and leaving the rice farm fallow. A field is referred to as fallow when it is left uncultivated (Wezel and Haigis, 2002). Natural recovery in the fallow fields has been observed taking place along different trajectories. While in some areas natural regeneration may take place immediately after abandonment (1 year), others remain infested with weeds.

This study aimed to assess the pattern of natural recovery on the abandoned rice farms and how successive transitions back to mangrove stands takes place through analysis of the sediment characteristics, forest species composition and structural attributes. Since succession recovery implies a return to the original type of mangrove forest (Lugo, 1980), understanding the pattern of natural recovery in abandoned agricultural areas is important to inform management decision and plans, particularly with regards to restoration initiatives. The vegetation components in the abandoned rice fields vary on spatial and temporal scales depending on the number of years the land has been left without agricultural activities (Iwara et al., 2014). Moreover, species composition of secondary forest often fails to converge with that of nearby mature forest (Letcher and Chazdon, 2009). Undertaking this kind of a study is important as it will assist in making decisions on whether to attempt restoration or not, as restoration is recommended when an ecosystem can no longer self-correct, or self-renew (Lewis III, 2005).

Materials and methods

Study area

The Rufiji Delta is located between latitudes 7°50’ and 8°03’ S and longitudes 39°15’ and 32°17’ E (Fig. 1). The delta is the culmination of the Rufiji River basin that drains about 20% of Tanzania, extending over an area of approximately 177,000 km² (Mwalyosi, 2018). This critical habitat supports diverse estuarine, coastal and marine ecosystems that are ecologically interconnected. One of the key components of the Delta is the largest mangrove area in Tanzania covering about
45,519 ha (Monga et al., 2018). Geologically, the Delta is underlain by Cretaceous and Jurassic limestones and shales, which are overlain by alluvial sand, silt, and clay deposited from the Tertiary period to the present (Mwansasu, 2016). Based on data from the nearby Kilindoni station (Mafia Island District), the Rufiji Delta is characterised by two rainy seasons with rainfall ranging from 750 mm to 1250 mm per annum. The short rains usually start in October and end in December, and the long rains are from February to May. Average temperature in the Delta ranges from 13°C to 41°C.

There are eight mangrove tree species occurring in the Delta, namely Avicennia marina, Bruguiera gymnorrhiza, Ceriops tagal, Heritiera littoralis, Lumnitzera racemosa, Rhizophora mucronata, Sonneratia alba and Xylocarpus granatum (Lupembe, 2014; Wagner and Salama-Mtui, 2016). The current population data from the ward offices of Sarale and Mwambao, shows that the population in the villages adjacent to the rice farming areas of the Delta is around 25,788. The distribution of people in the villages is as follows: Mtunda A (4900), Kikale (1822), Ruaruke B (4109), Mchungu (1396), Mdunda B (2581), Mfisini (2281), Nyamisati (2601), Kiomboni (3472) and Nchinga (2625). The major livelihood activities of these communities are rice farming (mainly farming in the Rufiji Delta), fishing and mangrove cutting. Other crops grown include cassava, pulses and legumes, coconuts, cashew nuts and mangoes, which are used for home consumption and as a source of income. Rice farming in the Rufiji Delta started in the 1970s with the preferred cultivation areas being along the main rivers and fringes of mangrove areas, where seasonal floods bring fresh water to the fields (Mwansasu, 2016).

Study design

A chronosequence method was used to study plant succession as described by Lagerström (2009). Accordingly, the targeted study area was categorized into three age classes: (i) Early succession, where rice farming activities have recently ceased (for less than five years) and natural plant recovery has started; (ii) Intermediate succession, areas abandoned for about 10 - 15 years; and (iii) Old growth forest, areas with mangrove trees of over 20 years and that have not been cleared for rice farming. The later was considered as reference forest as described by Lewis III, (2005). This succession age categorization was facilitated by local knowledge. A total of 45 nested plots (11.6, 2 and 0.5 m radii) were randomly established, with 15 plots for each succession category.

Field data collection

Vegetative measurements and data processing

In the main plots (radius of 11.6 m), all trees with \(\geq 5 \) cm stem diameter were measured for diameter at breast height (DBH) (DBH, defined as 1.3 m above the ground) and height using a diameter tape and a Suunto hypsometer respectively. For \(R. \) mucronata trees, stem diameter measurements were taken at 30 cm above the highest prop root. Subplots of 2 m radius were established at the centre of the main plot, and within the subplot, DBH and heights of small trees (0.5 - 4.9 cm stem diameter) were measured. Only saplings/juvenile (trees less than 0.5 cm stem diameter) were counted. Non-tree species such as grasses and climbers were counted within a plot of 0.5 m. Species richness was determined as the total number of species represented in the plot. Importance Value Index (IVI) was used as a measure of the abundance and ecological success of the plant species. In a given plant community, the higher the IVI, the more abundant and successful, and importance of the role of a vegetation species (Shrestha et al., 2000; Reddy et al., 2008; Winata et al., 2017). The IVI for each individual plant species was determined using the following formula (Mueller - Dombois and Ellenberg, 1974; Munishi et al., 2007; Nzunda, 2008):

\[
IVI = RD + RF + RDo ...(1)
\]

Where:

- \(RD = 100 \) (Number of individuals of the species/Number of individuals of all species)
- \(RDo = 100 \times \) Total basal area of the species/Total basal area of all species
- \(RF = 100 \times \) Number of occurrences of the species/Number of occurrences of all species

Vegetation density (woody and non-tree species)

Number of plants per hectare for trees and non-tree species were computed as:

\[
N = \frac{ni}{a} ...(2)
\]

Where: \(N \) = Number of plants per hectare; \(n_i \) = number of plants counted; and \(a \) = plot area in ha

Basal area

Basal area \((m^2/ha)\) was calculated from measured DBH for all woody stems in each plot expressed as:

\[
g_i = \frac{\Pi dbh^2}{4} ...(3)
\]
\[G = \frac{\sum g_i}{A} \]

Where: \(G \) = Basal area per plot (m\(^2\)ha\(^{-1}\)); DBH = Diameter at Breast Height (m); \(\Pi = \pi \); \(A \) = Plot area (ha); \(g_i \) = Basal area of a tree/shrub (m\(^2\))

Soil sampling and laboratory treatments

Soil samples were collected at the centre of the plot by retrieving a soil core to a depth of 100 cm using a stainless steel gouge auger (AMS Inc., American Falls, Idaho, USA). These soil samples were collected at different depth ranges (0 - 30, 30 - 60 - 100 cm), and three soil samples of 5 cm length were extracted at each depth range of 15 - 20, 40 - 45 and 70 - 75 cm, hereafter referred to as \(L_1 \), \(L_2 \), and \(L_3 \) respectively. Each sample was divided into two sub-samples, with some oven dried at different temperatures to determine sediment characteristics. Organic matter content was determined by the loss ignition method, with samples placed in a muffle furnace (AAF 11/7, Wolf Laboratories Limited, UK) at 540°C for 5 hours.

Extractable phosphorus was determined by the Bray-1 method by shaking 1g of dried soil in 10 ml of 0.025 M HCl and 0.03 M NH\(_4\)F for 5 minutes. Phosphorus was determined on the filtrate by the molybdate-blue method using ascorbic acid as a reductant. Colour development was measured using a UV VIS spectrophotometer.

Table 1. Plant species richness and dominance in the studied sites in the Rufiji Delta.

Plant type	Names Family	Species	Succession stage	Old growth Forest IVI	
Trees			Early IVI	Intermediate IVI	
	Acanthaceae	Avicennia marina	58.9	170.7	163.1
	Rauraceae	Heritiera littoralis	25.5	14.2	131.8
	Rhizophoraceae	Brugueira gymnorrhiza	14.7	19.3	53.4
	Rhizophoraceae	Ceriops tagal,	-	13.0	21.6
	Rhizophoraceae	Rhizophora mucronata	-	-	5.7
	Lecythidaceae	Barringtonia racemosa	67.9	83.7	17.7
Non-tree plants					
	Palmae	Phoenix reclinata	12.5	37.7	28.1
	Poaceae	Pothriochlo aglabra	91.2	64.7	0
	Apocynaceae	Derris trifoliata	51.5	63.9	34.8
	Pteridaceae	Acrostichum areum	12.9	32.6	112.0
	Cyperaceae	Fuirena zambesica	78.4	87.8	0
	Poaceae	Penisetum spp	189.4	124.1	0
	Fabaceae	Sesbaniam acrantha	12.8	13.1	0
	Cyperaceae	Cyerus latifolius	26.4	65.3	0
spectrophotometer (Bray and Kurtz, 1945). The concentration of potassium was analyzed using an AAS flame spectrophotometer (Van Reeuwijk, 2002). Soil samples were extracted with a 1 M NH₄OAc solution at pH7.00. The soil solution slurry was shaken for 2 h, and the solution was separated from the solid by centrifugation.

Data analysis

Statistical analysis of the data was carried out by using IBM SPSS Statistics 20. One-way analysis of variance (ANOVA) was used to test the variation of means of structural parameters and soil characteristic values from the early and intermediate succession stages as well as the old growth forest sites. Pair wise tests of the mean values of data sets collected from the three different sites were carried out using Least Significant Differences (P < 0.05).

Results

Floristic composition

A total of six tree species of three different families were recorded (Table 1). The highest plant species richness was found in the old growth forest, followed by the intermediate succession and then the early succession sites. Among the tree species recorded, one was a non-mangrove tree species (*Barringtonia racemose*). The mangrove species, *Rhizophora mucronata*, was only found in the old growth forest, and *Ceriops tagal* in the intermediate succession. *Barringtonia*

Figure 2. Number of stems per hectare across diameter classes of the different succession categories studied in the Rufiji Delta. (A) = Early succession; (B) = Intermediate succession; and (C) = old growth forest.
racemosa, Avicennia marina, Heritiera littoralis and Bruguiera gymnorrhiza were found in the early, intermediate and old growth forest. *Avicennia marina* was the most abundant mangrove tree species in the intermediate and old growth forest. However, in the early succession, *B. racemosa* was the most abundant (Table 1).

For non-tree plant species, the intermediate succession had the highest species richness, followed by the early succession, while the old growth forest had the least. *Phoenix reclinata*, *Derris trifoliata* and *Acrostichum areum* were the most common species found in both early and intermediate succession sites (Table 1). Among the non-tree plants, *Pennisetum spp* was the most abundant species in the early and intermediate succession while *Acrostichum areum* was the most abundant in the old growth forest.

Diameter size class distribution, stem density and basal area of trees

In general, as the mangrove aged, tree sizes increased, while stem density per diameter size class decreased successively, depicting a reverse ‘J’ shape (Fig. 2). A larger diameter size of ≥20 cm was mostly recorded in the old growth forest, with a decrease in the intermediate succession, and was completely absent in the early succession site (Table 2). However, tree height increased significantly (p = 0.001) with mangrove age. The trend was similar to that of stocking parameters (stem density and basal area) which also increased with mangrove age.

Soil characteristics

The highest values of Soil Organic Carbon (SOC) in the old forest and intermediate succession sites were recorded in the topmost soils (0 - 30 cm depth),

Table 2. Structural attributes of trees and soil nutrients in the in the studied sites in Rufiji Delta; values are means and standard deviation for three sites: old growth; intermediate; and early succession. Means with different letters are significantly different at p < 0.05.

Variables	Unit	Old growth Forest (mean ± SD)	Intermediate (mean ± SD)	Early (mean ± SD)	F	P
Stem density (stems ha⁻¹)	417 ± 162ᵃ	334 ± 147ᵇ	98 ± 97ᶜ	18.50	P = 0.001	
Basal area (m² ha⁻¹)	17.67 ± 6.11ᵃ	0.98 ± 1.43ᵇ	0.12 ± 0.24ᶜ	115.20	P = 0.001	
Height (m)	16.41 ± 5.00ᵃ	4.78 ± 2.47ᵇ	2.74 ± 1.44ᶜ	120.13	P = 0.001	
Overall TN (%)	0.15 ± 0.06ᵃ	0.15 ± 0.06ᵇ	0.13 ± 0.06ᶜ	1.99	P = 0.597	
Total Nitrogen L₁ (%)	0.17 ± 0.07ᵃ	0.19 ± 0.06ᵇ	0.15 ± 0.07ᶜ	1.949	P = 0.155	
Total Nitrogen L₂ (%)	0.14 ± 0.07ᵃ	0.14 ± 0.05ᵇ	0.12 ± 0.05ᶜ	0.296	P = 0.745	
Total Nitrogen L₃ (%)	0.13 ± 0.05ᵃ	0.13 ± 0.05ᵇ	0.13 ± 0.05ᶜ	0.114	P = 0.892	
Overall P (mgKg⁻¹)	10.07 ± 6.92ᵃ	9.04 ± 6.53ᵇ	10.04 ± 10.40³	0.79	P = 0.574	
Phosphorous L₁ (mgKg⁻¹)	10.62 ± 7.30ᵃ	9.08 ± 6.10ᵇ	10.00 ± 10.81³	0.131	P = 0.877	
Phosphorous L₂ (mgKg⁻¹)	8.86 ± 6.33ᵃ	7.74 ± 4.48ᵇ	7.54 ± 4.48ᶜ	0.283	P = 0.755	
Phosphorous L₃ (mgKg⁻¹)	10.74 ± 7.39ᵃ	10.31 ± 8.55ᵇ	11.81 ± 13.22³	0.10	P = 0.905	
Overall K (%)	2.78 ± 1.15ᵃ	2.06 ± 0.97ᵇ	2.24 ± 0.93ᶜ	5.902	P = 0.249	
Potassium L₁ (%)	2.70 ± 1.18ᵃ	1.78 ± 0.90ᵇ	1.90 ± 0.71ᶜ	4.23	P = 0.210	
Potassium L₂ (%)	2.72 ± 1.09ᵃ	2.10 ± 0.84ᵇ	2.29 ± 0.84ᶜ	1.794	P = 0.179	
Potassium L₃ (%)	2.91 ± 1.25ᵃ	2.32 ± 1.13ᵇ	2.53 ± 1.07ᶜ	1.002	P = 0.376	
Overall SOC (%)	5.97 ± 1.48ᵃ	5.77 ± 1.25ᵇ	5.70 ± 1.70ᶜ	1.24	P = 0.480	
Organic C L₁ (%)	6.06 ± 1.24ᵃ	6.14 ± 1.24ᵇ	5.51 ± 1.08ᶜ	1.24	P = 0.301	
Organic C L₂ (%)	5.99 ± 1.45ᵃ	5.62 ± 1.18ᵇ	5.97 ± 2.23ᶜ	2.12	P = 0.296	
Organic C L₃ (%)	5.83 ± 1.76ᵃ	5.53 ± 1.30ᵇ	5.54 ± 1.68ᶜ	0.170	P = 0.844	
while at the early succession sites, the highest value was in the depth range of 30 to 60 cm. This was the same Total Nitrogen (TN) (Table 2). However, values for Phosphorus and Potassium were highest at deeper soil 60 to 100 cm depths. There was no significant change (p > 0.05) in the values of the studied soil properties (Total Nitrogen, Phosphorus, Potassium) between old forest, intermediate and early succession sites.

Discussion

Vegetation recovery trajectory and structural development

The number of mangrove species recorded in the old growth forest site (Table 1) is less than that reported in earlier studies, which reported 8 true mangrove species in the Rufiji Delta (Semesi, 1992; Wagner and Salama-Mtui, 2016; Mangora et al., 2016). This implies that only six mangrove species grow well in the studied sites. The two missing species, *Sonneratia alba* and *Lumnitzera racemose*, are rare in the Rufiji Delta, probably due to their limited ecological range.

The general trend in the natural recovery of mangrove tree species shows that species richness increases with fallow age (Table 1). An increase of one species from early succession to intermediate succession was apparent; with the same observed between intermediated succession and old growth forest. This implies that regeneration in the fallow rice fields would result in the development of a forest similar to the old growth forest in terms of tree species composition. Likewise, Ball (1980) reported a successional trend that may lead to the development of a forest similar to the historical forest in Southern Florida, USA. In other forest types, Haripal and Sahoo (2011) reported an increase in species richness with age in the tropical dry deciduous forest in the Western part of Orissa, India. This indicates that different vegetation types may have a similar successional trajectory.

The findings of the present study on the natural recovery trajectory of tree species did not fully support the initial floristic composition succession model, which suggests that species present at the early succession stages will also occur in the subsequent stages (Almazan - Nunenz et al., 2016). While species like *A. marina*, *H. littoralis* and *B. gymnorrhiza* were encountered in both the early and the intermediate succession stages, *R. mucronata* was encountered only in the old growth forest, implying failure of these mangrove tree species in contributing to natural recovery. This suggests that the initial floristic composition succession model might be applicable only if there are favourable conditions for natural recovery of the mangrove tree species. Such conditions include the presence of mother trees producing propagules, and the absence of hydrologic restrictions or blockages (i.e. dikes) which prevent natural waterborne transport of mangrove propagules to a restoration site (Lewis III, 2005). Ball (1980) reported that direction of winds and currents may prevent substantial transportation of propagules to a site where they can germinate in a mangrove forest of Southern Florida.

In terms of dominance, the results from the old growth forest (Table 1) are similar to those described for the entire coast of Tanzania (Njana et al., 2017). However, other inventory studies in the Rufiji Delta indicate a shift of dominance from *A. marina* at early forest development stages (under story) to *C. tagal* at mature stages (over story) (Mangora et al., 2016). In a study in an upland forest ecosystem, Haripal and Sahoo (2011) reported on the shift in dominance of species along the chronosequence of rice fallows in the Western part of Orissa, India. Similarly, in the present study there was a shift of dominance from *B. racemosa*, in the early succession to *A. marina* in the intermediate and the old growth forest. According to Guariguata and Ostertag, (2001), together with the presence of remnant trees that can strongly influence the rate of initial colonization through their effects on seed dispersal, sprouting ability determines the abundance of the species. Buoyancy of propagules and tidal regime in the Rufiji Delta may also influence the abundance of species. Two factors might have contributed to *B. racemosa* being the most abundant tree species in the early succession of the fallows. Firstly, the seed disposal strategy of the plant may play a role. The fruit of *B. racemosa* is coated with buoyant fibrous tissue which allows them to be carried great distances by water currents (Osman et al., 2015). When deposited in a favourable location, the seed germinates to form a plant. Secondly, *B. racemosa* has the ability to sprout from stumps. Guariguata and Ostertag, (2001) argued that sprouting is likely to be important in forest regeneration, as many species are capable of producing either sprouts originating from boles or branches (above ground sprouts) or subterranean tissues (root sprouts). In the present study, species like *B. racemosa* mainly regenerated through sprouting from stumps. According to Osman et al. (2015) *B. racemosa* is a mangrove-associated species which grows well in wet areas (fresh water swamps, riverbanks and lakes) and can tolerate slightly saline conditions. In the Rufiji Delta, the
Non-tree species in the recovering and old growth forest, and their associates threats

In terms of species richness, while previous studies reported only one species (*Acrostichum areum*) growing in the reference old growth forest (Wagner and Sallem-Mtui, 2016), the present study found three species growing here (Table 1), among which *A. areum* and *D. trifoliata* were mangrove-associated species (Lobo and Krishnakumar, 2014; Raju and Kumar, 2016). Non-tree species do not fully correspond to the initial floristic composition succession model (Almazan-Nunenz, *et al.*, 2016), as not all species present in the early successional stages persist to subsequent successional stages (Table 1). In terms of dominance, the trend showed that this changes with fallow age. For example, *Pennisetum spp.* (Poaceae family) was dominant in the early and intermediate succession while *A. areum* and *D. trifoliata* were dominant in the old growth forest. *Pennisetum spp.* are usually perennial rhizomatous herbs and are often woody and tree like (Gibson, 2009). They are fast growing, form dense ground cover, have well-developed root systems and are able to grow at various contaminated sites, display moderate salinity tolerance, and have an extensive root system that can firmly hold the soil and withstand adverse environmental conditions (Radhakrishnan *et al.*, 2006; Mane *et al.*, 2011). They have an extremely effective seed dispersal mechanism, and low soil nutrient requirements which facilitates their colonization on fallow rice fields (Haripal and Sahoo, 2011). In the mangrove forests of Bangladesh, few additional invasive species that inhibit normal growth of mangroves were recorded (Biswas *et al.*, 2007). *A. areum* is the only fern in the mangrove ecosystems of the Indian coast, and the species is widely distributed throughout the mangrove forest irrespective of local ecological and environmental conditions (Lobo and Krishnakumar, 2014).

The presence of non-tree species has been noted to pose threats to the natural recovery of mangrove tree species. For example, in the Sundarbans mangrove forest of Bangladesh. The climber *D. trifoliata* has been reported to pose a threat to many regenerating seedlings owing to its aggressive twinning and strangulating habit. Dense populations of *D. trifoliata* form a cover over seedlings and saplings of *Heritiera fomes*, *Excoecaris agallocha*, *Sonneratia apetala*, among others (Biswas *et al.*, 2007). Likewise, in the Rufiji Delta, this climber (Liana) suppresses the growth of regenerating tree species. It smothers mangrove trees and may eventually lead to their death. In areas with no trees, this species covers the ground (Plate 1). In addition to smothering, the climbers and grasses negatively affect transportation and germination of propagules by preventing access to the soil. This affects the natural regeneration of the deforested and degraded parts of the mangrove forest, as well as species richness and recovery rate in the rice fallows of the Rufiji Delta.

Structural development

The diameter size class distribution curves (reverse ’J’ distribution curve) obtained in the present study (Fig. 2) corresponds to that earlier reported from the mangroves of Gazi Bay in Kenya (Githaiga, 2013). According to Phillip (1994), a reverse ’J’ distribution curve is commonly associated with natural forests with active recruitment and which are recovering from anthropogenic disturbances. Such disturbances include selective removal of poles from the forests (Githaiga, 2013). The ’J’ distribution curve from the present study indicates that there was active natural regeneration of trees in the early and intermediate sites, while in the old growth forest sites the mangrove forest is recovering from selective harvesting. The early successional recovery had a low DBH range compared to other successional stages (Fig. 2). The presence of a small number of mature trees in the intermediate succession site and their complete absence in the early succession site indicates that the tree sizes increased with fallow age. Likewise, Ball, (1980) reported that mature individuals of Avicennia germinans (DBH approximately 20 - 30 cm) were very rare in the in a Mangrove Forest of Southern Florida, USA. Likewise, in the Rufiji Delta, larger diameter size trees of ≥ 20 cm was mostly recorded in the old growth forest, decrease in the intermediate succession while completely absent in the early succession site.

The value of stem density found in the old growth forest (Table 2) was less than that earlier reported in previous studies (Lupembe, 2014; Mangora *et al.*, 2016). The low stem density in the present study is
probably because of selective harvesting of mangrove forest products for poles and timber. This area is surrounded by many people who depend on the mangrove forest products for domestic and commercial purposes. However, the value of basal area and height obtained from this study was higher than that reported earlier for all mangrove forests of Tanzania (Njana et al., 2017). This implies that the old forest site studied was composed of larger tree sizes, as the larger the tree sizes, the larger the basal area. Similarly, Sukardjo and Yamada (1992) reported basal area and height at one site to be higher than four other sites in a R. mucronata plantation in Tritih, Central Java, Indonesia, as a result of variation in growth caused by differences in soil fertility.

The recovery trends in this study show that structural attributes, stem density, basal area and height increased significantly with fallow age (p = 0.001), but they are much lower compared to the old growth forest (Table 2). This implies that for the mangrove forest of Rufiji Delta, a period of up to 15 years would be insufficient to allow full recovery from losses from conversion to agriculture. However, Lugo (1980) reported that the rate of succession recovery after disturbances varies in the different types of mangroves and depends on the characteristics of nearby ecosystems and growth conditions at each site.

Soil properties

The TN, Available Phosphorus (AP) and SOC values obtained in the Rufiji Delta were less than that reported in the mangrove forest of the Apar Nature Reserve in Indonesia, where the TN was 0.34 ± 0.02 %, while SOC, and AP were 3.96 ± 0.18% and 19.87 ± 0.22 mg/kg, respectively, in an Avicenia officinalis pure stand (Sukardjo, 1994). TN was 0.97 ± 0.01 %, while SOC, and AP were 60.27 ± 1.03% and 19.87 ± 0.22 ppm, respectively, in a C. tagal pure stand. Dasgupta et al. (2018) reported that SOC ranges between 0.9 to 1.4 % in mangrove soils of the Sundarbans, West Bengal, India. However, Hossain and Nuruddin (2016) reported TN and SOC to range between 0.09 - 0.97 % and 0.38 - 13.31 % respectively in different mangrove forests of the world. Therefore, the value of TN and SOC obtained from the present study in both intact and the regenerating forest were within the global estimates. The value of Potassium found in the Rufiji Delta was higher than that of 0.27± 0.02 found in A. officinalis and 0.17 ± 0.02 in C. tagal reported in the mangrove forest of the Apar Nature Reserve in Indonesia.

The studied soil properties from converted sites and intact forest does not follow the paradigm of significant declines following conversion (Allen, 1985; Raich, 1983; Guariguata and Ostertag, 2001). Neither
significant increase nor decline in soil nutrient properties of the fallows was found. This might be because there is a continuous inflow of soil sediments carried by the river from upstream. Alongi et al. (2005) found that sediment and associated elements, including nutrients within mangroves is a result of intense human activity along the south China coast. Walling (1999) showed that the change from natural vegetation to cultivation can increase soil erosion rates by an order of magnitude or more. Elevated sediment loading to estuarine and coastal environments can occur via a number of mechanisms, including urban development, and often results in increased turbidity and sedimentation rates in estuarine and coastal waters (Ellis et al., 2004). However, high levels of radioactive nuclides suggest that these sediments originate from erosion of agricultural soils within the catchment (Alongi et al., 2005). For instance, in Kenya it has been reported that the two main rivers (Athi- Galana/Sabaki and Tana) which drain into the Indian Ocean are reported to deliver several tonnes of sediments into the coastal areas (Okello, 2016). In the Rufiji Delta, sediments with nutrients from upstream have been carried by the Rufiji River and deposited in the delta. The Rufiji river has a basin which extends over an area of 177,000 km² with a mean annual discharge that ranges between 900 and 1,133 m³/s (ASCLME, 2012; Mwalyosi, 2018). These sediments with nutrients might counterbalance the loss of nutrient in the study area.

Conclusions
The present study has demonstrated that mangroves in the abandoned rice farming areas of the Rufiji Delta are undergoing successional recovery. Favourable conditions for natural regeneration are the presence of mother trees as a source of propagules, absence of vegetation such as the climber D. trifoliata and grass cover that prevent natural waterborne transport of mangrove propagules to the restoration site and contact of the propagules with soils. Species dominance varied with the fallow age, with the non-mangrove species, B. racemosa, dominating in the early succession stage, but subsequently replaced by A. marina in the intermediate succession stage and the intact mangrove forest. The structural characteristics determined in this study demonstrate that a period of up to 15 years would not be sufficient to allow full natural recovery of the degraded areas as a result of clearance and conversion of mangrove areas for traditional rice farming. Anthropogenic disturbance during tree harvesting and rice farming in the study site had no effects on soil nutrients as well as SOC. Sediments with nutrients from upstream have been carried by the Rufiji River and deposited in the delta and have counterbalanced the loss of nutrients due to rice farming. Therefore, soil nutrients are not a factor that affects the natural recovery rate of the mangrove forest in the studied area. In the areas where natural recovery has not been successful, human intervention geared towards restoration is recommended. Such interventions would include removal of grass cover and or planting to facilitate the recovery of the tree species. Therefore, in the abandoned rice farming areas of the Rufiji Delta, both planting and natural regeneration restoration approaches are applicable, but assessment of potential sites are required to determine the best restoration approach. In addition, permanent sample plots should be established in these parts of the delta for long term monitoring of plant recovery rate.

Acknowledgements
The Western Indian Ocean Marine Science Association (WIOMSA) provided financial support (Grant No. MARGI_2016_10) for the field work through its Marine Research Grant I (MARG I). Tanzania Forest Service field office at Nyamisati provided the necessary support for field logistics. The Soil Science Laboratory at Sokoine University (SUA) handled all soil laboratory works. The first author benefited from a scholarship for PhD study from the East African Mangrove Carbon Project supported by USAID through the Institute of Marine Sciences of the University of Dar es Salaam and the US Forest Service.

References
Adesina AA, Baidu-Forson J (1995) Farmers' perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Paso and Guinea. West Africa Agricultural Economics 13: 1-9
Allen JC (1985) Soil response to forest clearing in the United States and the tropics: geological and biological factors. Biotropia 17 (1): 15-27
Almazan-Nunenz RC, Corcuera P, Parra-Juarez L, Jimenez-Hernandez J, Charre GM (2016) Change in structure and diversity of woody plants in a secondary Mixed Pine - Oak Forest in the Sierra Mandre del Sur of Mexico. Forest 7 [doi.org/10.3390/f7040090]
Alongi DM, Pfitzner J, Trott LA, Tirendi F, Dixon P, Klumpp DW (2005) Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Juulongi Lang Estuary, China. Estuarine, Coastal and Shelf Science 63 [doi.org/10.1016/j.ecss.2005.01.004]
ASCLME (2012) National Marine Ecosystem Diagnostic Analysis, Tanzania. Contribution to the Agulhas and Somali Current Large Marine Ecosystems (ASCLME) Project (supported by UNDP with GEF grant financing). 92 pp

Ball MC (1980) Patterns of secondary succession in a mangrove forest of Southern Florida. Oecologia 44 (2): 22-235

Biswas SR, Chudhury JK, Nishat A, Rahman MM (2007) Do the invasive plants threaten the Sundarbans mangrove forest of Bangladesh? Forest Ecology and Management 245: 1-9

Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Science 39 (1): 39-46

Dasgupta M, Ghosh A, Naskar KR (2018) A comparative study on the properties of mangrove and non-mangrove soils of Sundarbans, West Bengal, India. Advances in Clinical Toxicology 3 (2): 1-8

Ellis JP, Nicholls R, Craggs R, Hofstra D, Hewitt J (2004). Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Marine Ecology Progress Series 270: 71-82

Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press. 314 pp

Githaiga GM (2013) Structure and biomass accumulation of natural mangrove forest at Gazi Bay. Kenya. MSc Dissertation. Kenyatta University. 69 pp

Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185-206

Haripal K, Sahoo S (2011) Vegetation dynamics in some tropical fallow rice fields in the Western part of Orissa, India. African Journal of Environmental Science and Technology 5 (1): 37-44

Hossain, MD, Nuruddin AA (2016) Soil and Mangrove: A Review. Journal of Environmental Science and Technology 9 [doi:10.3923/jest.2016.198.207]

Iwara, A, Deekor, TN, Njar GN (2014) Effect of farming activities on tree diversity, density and community structure in Agoi - Ekpo, Cross River State, Nigeria. Nova Journal of Engineering and Applied Sciences 3 (1): 1-6

Klute A (ed) (1986) Method of soil analysis, Part 1, physical and mineralogical methods, second edition. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, Wisconsin, USA 1188 pp

Lagerström (2009) Linkages of nitrogen and phosphorus availability to ecosystem processes and succession in forest of Northern Sweden. PhD Thesis, Swedish University of Agricultural Sciences, Umeå. 51 pp

Lagomasino D, FatoyinboT, Lee SK, Feliciano E, Trettin C, Shapiro A, Mangora, MM (2019). Measuring mangrove carbon loss and gain in deltas 14 [https://doi.org/10.1088/1748-9326/aaf0de]

Letcher GS, Chazdon RL (2009) Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 4 [doi.org/10.1111/j.1744-7429.2009.00517.x]

Lewis III RR (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24 [doi:10.1016/j.ecoleng.2004.10.003]

Lobo SM, Krishnakumar G (2014) Studies on ecological anatomy of the mangrove fern *Acrostichum chamaeaeum*. International Journal of Plant, Animal and Environmental Sciences 4 (1): 195-200

Lugo AE (1980) Mangrove ecosystems: successional or steady state. Biotropia 12 (2): 65-72

Lupembe BI (2014) Carbon stocks in the mangrove ecosystem of Rufiji River Delta, Rufiji District, Tanzania. MSc Thesis. Sokoine University of Agriculture, Morogoro, Tanzania. 77 pp

Mane AV, Karadge BA, Samant JS (2011) Salt stress induced alteration in growth characteristics of a grass *Pennisetum alopecuroides*. Journal of Environmental Biology 32: 753-758

Mangora MM, Shalli MS, Semesi IS, Njana MA, Mwainunu Ej, Oritoen JE, Ntibasubile E, Mallya, HC, Mukama K, Wambura M, Chamuya NA, Trettin CC, Stringer CE (2016) Designing a mangrove research and demonstration forest in the Rufiji Delta, Tanzania. In: Stringer CE, Krauss KW, Latimer JS (eds) Linking terrestrial and marine ecosystems. pp 190-192

Monga E, Mangora MM, Mayunga J (2018) Mangrove cover change detection in the Rufiji Delta in Tanzania. Western Indian Ocean Journal of Marine Sciences 17 (2): 1-10

Mueller-Dombois D, Ellenberg, H (1974) Aims and methods of vegetation ecology. Jon Wiley and Sons, New York. 547 pp

Munishi PTK, Shear TH, Wentworth T, Temu RAPC (2007) Compositional gradients of plant communities in submontane rainforests of eastern Tanzania. Journal of Tropical Forest Science 19 (1): 35-45

Mwanyosy RBB (2018) Management of the Rufiji Delta as a wetland, Wetlands of Tanzania. pp 115-124

Mwansasu S (2016) Causes and perceptions of environmental change in the mangroves of Rufiji Delta, Tanzania.
Implications for sustainable livelihood and conservation. PhD thesis. Stockholm University. 43 pp

Nindi SJ, Machono H, Rubens J (2014) Remote sensing study of mangrove vegetation change in Rufiji Delta, Tanzania from 1990 to 2010. A report on activities undertaken to implement a consultancy work for remote sensing study of vegetation change in Rufiji Delta mangroves. WWF Tanzania Programme Office. 48 pp

Njana AM, Zahabu E, Malimbwi ER (2017) Carbon stocks and productivity of mangrove forests in Tanzania. Southern Forests. 1-16

Nzunda EF (2008) Resprouting and Multi-stemming and the role of the persistence niche in the structure and dynamics of subtropical coastal dune forest in KwaZulu-Natal province, South Africa. PhD Thesis. University of KwaZulu-Natal, South Africa. 162 pp

Okello JA (2016) The role of disturbances in mangrove wood formation and forest structure: Effect of large sedimentation events. PhD Thesis. VrijeUniversiteit Brussel and UniversitéLibre de Bruxelles. 225 pp

Osman NI, Sidik NF, Awal A (2015) Pharmacological activities of *Barringtonia racemosa* L. (Putat), a tropical medicinal plant species. Journal of Pharmaceutical Science and Research 7 (4): 185-188

Philip S M (1994) Measuring trees and forests, 2nd Edition. CAB International, Wallingford, UK. 310 pp

Radhakrishnan M, Waisel Y, Sternberg M (2006) Kikuyu grass: a valuable salt-tolerant fodder grass. Communications in Soil Science and Plant Analysis 37: 1-11

Raich JW (1983) Effects of forest conversion on the carbon budget of a tropical soil. Biotropia 15 [doi: 10.2307/2387826]

Raju AJS, Kumar R (2016) Pollination ecology of *Derris trifoliata* (Fabaceae), a mangrove associate in Coringa Mangrove Forest, Andhra Pradesh, India Journal of Threatened Taxa 8 (5): 8788-8796

Reddy SC, Ugle P, Murthy RSM, Sudhakar S (2008) Quantitative structure and composition of tropical forests of Mudumalai Wildlife Sanctuary, Western Ghats, India. Taiwan 55 (2): 150-156

Richards DR, Friessa DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000 – 2012. Pnas 113 [doi:10.1073/pnas.1510272113]

Semesi AK (1992) Developing management plans for the mangrove forest reserves of mainland Tanzania. Hydrobiologia 247: 1-10

Shrestha R, Karmacharya BS, Jha, KP (2000) Vegetation analysis of natural and degraded forests in Chitrepanti in Siwalik region of Central Nepal. Tropical Ecology 41 (1): 111-114

Sukardjo S (1994) Soils in the mangrove forests of the Apar Nature Reserve, Tanah Grogot, East Kalimantan, Indonesia. Southeast Asian Studies 32 (3): 385-398

Sukardjo S and Yamada I (1992). Biomass and productivity of a *Rhizophora mucronata* Lamark plantation in Tritih, Central Java, Indonesia. Forest Ecology and Management 49: 195-209

Van Reeuwijk L P (ed) (2002) Procedures for soil analysis, 6th Edition. International soil reference and information center. Wageningen, Netherlands. 116 pp

Wagner GM, Sallema - Mtui SR (2016) The Rufiji Estuary: Climate change, anthropogenic pressures, vulnerability assessment and adaptive management strategies. Estuaries: A lifeline of ecosystem services in the Western Indian Ocean. Estuaries of the World. pp 183-207

Walling D E (1999) Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410: 223-240

Wezel A, Haigis J (2002) Fallow cultivation system and farmers’ resource management in Niger, West Africa. Land degradation and development 13: 221-231

Winata A, Yuliana E, Rusdiyanto E (2017) Diversity and natural regeneration of mangrove vegetation in the tracking area on Kemujan Island Karimunjawa National Park, Indonesia. AES Bioflux 9 (2): 109-119