PrP\(^{\text{Sc}}\) Binding Antibodies Are Potent Inhibitors of Prion Replication in Cell Lines*

Received for publication, March 1, 2004, and in revised form, May 6, 2004
Published, JBC Papers in Press, May 7, 2004, DOI 10.1074/jbc.M402270200

Vincent Beringue§§, Didier Vilette§, Gary Mallinson¶, Fabienne Archer§, Maria Kaisar‡, Mourad Tayebi¶, Graham S. Jackson, Anthony R. Clarke¶, Hubert Laude§, John Collinge, and Simon Hawke‡***

From the §Department of Neurogenetics, CNS Infection and Immunity Group, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom, ¶Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78 352 Jouy en Josas, France, and [Medical Research Council, Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom

Conversion of the cellular \(\alpha\)-helical prion protein (PrP\(^{\text{C}}\)) into a disease-associated isoform (PrP\(^{\text{Sc}}\)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP\(^{\text{C}}\) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP\(^{\text{Sc}}\) inhibit prion replication in ovine PrP-inducible Rov cells. We conclude from these experiments that antibodies exclusively binding PrP\(^{\text{C}}\) were relatively inefficient inhibitors of ScRov cell PrP\(^{\text{Sc}}\) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP\(^{\text{Sc}}\) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.

Prion diseases are fatal neurodegenerative disorders that include scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, and Creutzfeldt-Jakob disease in humans. The recent emergence of a new human prion disease, variant Creutzfeldt-Jakob disease, almost certainly resulting from the human consumption of bovine spongiform encephalopathy-infected material (1) is a major public health and safety issue (2, 3). The infectious agent or prion is mainly composed of PrP\(^{\text{Sc}}\),1 a detergent-insoluble and partially protease-resistant isoform of the host-encoded cellular prion protein, PrP\(^{\text{C}}\) (4). According to the protein-only hypothesis, in the course of prion infection, \(\alpha\)-helical PrP\(^{\text{C}}\) is refolded without post-translational modification into \(\beta\)-sheet-rich PrP\(^{\text{Sc}}\), initially in the presence of exogenous PrP\(^{\text{Sc}}\) and then by an autocatalytic process (5). Currently, no treatment of prion disease is effective once neurological illness has developed, but any molecule able to interact with either one or both isoforms could potentially delay or even cure the disease (6). Recent reports indicate that anti-PrP monoclonal antibodies (mAbs) efficiently inhibit PrP\(^{\text{Sc}}\) accumulation in ScN2a mouse neuroblastoma cells (7, 8) and in infected transgenic mice engineered to produce one of these mAbs, 6H4 (9). Their efficiency was related directly to their epitope and to their affinity for PrP\(^{\text{C}}\) (10, 11). We also have recently reported that mAbs effectively suppress systemic prion replication in vivo (12). In that study, two mAbs with differential affinity for normal and disease-associated isoforms of prion protein were used: ICSM 18, which almost exclusively binds to PrP\(^{\text{C}}\), and ICSM 35, which efficiently binds to both normal and disease-associated isoforms. Both mAbs were efficient equally at delaying the onset of prion disease in the treated mice, but it was unclear whether the additional targeting of PrP\(^{\text{Sc}}\) by ICSM 35 played a role in controlling prion replication. In this study, we have used a larger panel of mAbs raised in PrP\(^{\text{null}}\) mice (Prnp\(^{0/0}\)) against the \(\alpha\) and \(\beta\) isoforms of human recombinant PrP (13) to inhibit prion replication in scrapie-infected epithelial Rov (ScRov) cells (14). Rov cell PrP\(^{\text{C}}\) expression is inducible by doxycycline, thereby allowing the clearance of PrP\(^{\text{Sc}}\) to be studied in the absence of its PrP\(^{\text{C}}\) substrate. Here we show that mAbs that additionally target disease-associated isoforms of PrP block PrP\(^{\text{Sc}}\) accumulation more efficiently than mAbs recognizing PrP\(^{\text{C}}\) alone. We also found that the inhibition by several mAbs was similar and even greater than turning off the production of the PrP\(^{\text{Sc}}\) substrate, suggesting antibody-mediated enhancement of the proteolysis of intracellular PrP\(^{\text{Sc}}\).

EXPERIMENTAL PROCEDURES

Production of Monoclonal Antibodies—The panel of ICSM mAbs was produced as described previously (15). They were affinity-purified from hybridoma culture supernatant over the protein A or G matrix (Akkermans Prime, Amersham Biosciences), filter-sterilized, and stored at 4 °C.

Treatment of ScRov Cells with the ICSM Antibodies—ScRov cells were grown in 24-well plates as described previously (14). Doxycycline (1 \(\mu\)g/ml) was present in the culture medium unless mentioned. A triplicate of ScRov cells was treated with the ICSM mAbs once a week just after splitting. The controls were either left untreated or treated with isotype control mAb (15, 16). In one experiment, the cells were exposed to similar concentrations of dextran sulfate 500 (DS500, Sigma). One quarter of the cells was passaged weekly, and the residual cells (typically \(\sim 24 \times 10^6\) cells or 80 \(\mu\)g of proteins) were pelleted, lysed in lysis buffer (20 mm Tris-HCl, pH 7.5, 1% Nonidet P40, and 0.5% sodium deoxycholate), and stored at \(-80^\circ\) C for subsequent analysis. PrP\(^{\text{Sc}}\) was extracted from 40 \(\mu\)g of protein by 100 \(\mu\)g/ml proteinase K for 1 h at 37 °C. The protein was then denatured with 3 volumes of Lae-

1 The abbreviations used are: PrP\(^{\text{Sc}}\), disease-associated isoform of prion protein; PrP\(^{\text{C}}\), cellular prion protein; mAb, monoclonal antibody; DS500, dextran sulfate 500; PBS, phosphate-buffered saline.

* This work was supported by grants from the Medical Research Council (London, United Kingdom) and by a Marie Curie Fellowship grant from the European Union. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

‡ Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

§ Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

¶ Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

** Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

*** Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

†† Present address: UMR754 Rétrovirus et Pathologie Comparée, Institut National de la Recherche Agronomique, 89 366 Lyon, France.

This paper is available on line at http://www.jbc.org

39671
mM buffer (17) for 5 min at 100 °C before an additional concentration of the protein with cold acetone. Typically, 15 μg of proteins (i.e., the equivalent of 45 × 10^3 cells) were used for Western blots (see below).

Immunoprecipitation—Scrapie-infected and -uninfected Rov cells were washed three times in cold PBS and scraped in cold lysis buffer. A mixture of protease inhibitors (Roche Applied Science) in addition to 5 mM phenylmethylsulfonlfluoride was added prior to (Rov cells) or after proteinase K treatment (ScRov cells) at 50 μg/ml for 1 h at 37 °C. Lysates then were incubated with 10 μg/ml purified mAbs in lysis buffer for 2 h at 4 °C on a rotator. Negative controls omitted the capture mAb or used the relevant isotype control (15, 16). The immune complexes were adsorbed overnight onto protein G-agarose beads (Roche Applied Science) at 4 °C on a rotator. The beads were washed 4–5 times according to the manufacturer’s instructions. They were re-suspended in Laemmli buffer (17), heated at 100 °C, and pelleted at 12,000 × g to detach/denature the bound protein. The supernatant was analyzed by Western blot (see below).

For live cell immunoprecipitation, Rov cells were incubated overnight with 10 μg/ml ICSM mAbs in the culture medium. The protocol then was similar with the exception that the lysates were incubated directly with protein G-agarose beads. The bound fraction was compared with the total levels of PrP^Sc^, which corresponds to the unbound fraction when immunoprecipitation is performed with the relevant isotype controls. This fraction was precipitated by cold acetone, re-suspended in Laemmli buffer, and analyzed by Western blot.

Immunofluorescence—Rov and ScRov cells were incubated overnight on slides with 10 μg/ml ICSM mAbs. Controls were left untreated or treated with isotype control (15, 16). Cells were washed twice with cold PBS and fixed in 4% paraformaldehyde for 30 min. After three washes in PBS, cells were permeabilized with 0.5% Triton X-100 for 5 min. After several washes, the cells were incubated for 1 h with a 1/400 dilution of an isothiocyanate-conjugated anti-mouse IgG mAb (P.A.R.I.S, Paris, France) in 5% milk in PBS. After three washes in PBS, slides were mounted in antifading solution (Dabko) and kept in the dark at 4 °C until microscopic analysis with the Nikon fluorescent microscope.

Western Blotting—Samples were run on 12% polyacrylamide Criterion gels (Bio-Rad) or 12% NuPAGE gels (Invitrogen), electrotransferred onto polyvinyldene difluoride membranes (Millipore), and immunoblotted with 0.1–0.2 μg/ml of the biotinylated anti-PrP antibody, ICSM 18. Immunoreactivity was visualized with an enhanced chemiluminescence kit on autoradiographic films (ECL Plus, Amersham Biosciences). Densitometric analyses of the films were performed with the program NIH image (Wayne Rasband, National Institutes of Health) as described previously (18). The amount of PrP^Sc^ was estimated by comparison with a dilution scale of sheep scrapie PrP^Sc^ prepared in similar conditions and at the same time.

RESULTS

Monoclonal Antibodies Raised against β-PrP Inhibit More Efficiently PrP^Sc^ Accumulation in ScRov Cells—In initial studies, we assessed how efficiently ICSM 4, 17, 18, and 19 raised against α-PrP and ICSM 35 raised against β-PrP inhibited prion replication (Table I). ICSM 18 and ICSM 17 recognize residues 146–159 and 150–160 of murine PrP. ICSM 35 recognizes residues 96 and 109 on the N-terminal region of the PrP^C^ target. ScRov cells were treated with ICSM 35 (raised against β-PrP), ICSM 19 (raised against α-PrP), and control mAbs at each 10 μg/ml in the presence or absence of doxycycline. With doxycycline removed from the culture medium, the PrP^Sc^ half-life was 3 ± 0.2 days (Fig. 2). This was similar to treatment with ICSM 35 (Fig. 2, PrP^Sc^ half-life of 3.5 ± 0.5 days). Interestingly, both mechanisms of inhibition were synergistic, because ICSM 35 added to the cells in which doxycycline has just been removed induced an even faster clearance of PrP^Sc^ (Fig. 2, half-life 2.1 ± 0.3 day; p < 0.05; Mann-Whitney U test). In contrast, inhibition by ICSM 19 was much slower than turning off the PrP^C^ substrate (PrP^Sc^ half-life 16 ± 4.4 days) (Fig. 2).

Two other mAbs raised against β-PrP were similarly potent. In fact PrP^Sc^ clearance with ICSM 37 was significantly faster than with ICSM 35 and even faster than turning off the PrP^C^ promoter (Fig. 3; p < 0.05; Mann-Whitney U test). Inhibition induced by ICSM 42 was similar to ICSM 35 (Table I and data not shown). In contrast, other mAbs raised against α-PrP (ICSM 6, 7, 41, and 44) failed to reduce PrP^Sc^ levels even after 3 weeks treatment with 10 μg/ml (Table I).

TABLE I

Inhibition of ScRov PrP^Sc^ accumulation by ICSM monoclonal antibodies

ICSM	Immunogen	Epitope	Immunoreactivity	Inhibition		
PrP^Sc^						
+/−	4 ± S.D.	4 α	C	37 ± 8	0	−
4 α	C	27 ± 14	0	−		
7 α	C	26 ± 17	0	−		
17 α	140–159	26 ± 11	0	−		
18 α	146–159	183 ± 8	4 ± 1	++		
19 α	C	91 ± 26	0	++		
41 α	C	162 ± 44	4	−		
44 α	C	58 ± 37	3	−		
35 β	96–109	100	100	−		
37 β	96–109	109 ± 8	190 ± 7	−		
42 β	96–109	94 ± 22	90 ± 4	−		
Monoclonal Antibodies Raised against β-PrP-immunoprecipitated ScRov Cell PrPSc.—One possible explanation for the differences observed in efficacy between the mAbs tested was that they differentially recognized normal and disease-associated isoforms of PrP. Therefore, we immunoprecipitated PrPc and the protease-resistant core of PrPSc (PrP27–30) from Rov and ScRov cells lysates. All of the mAbs reacted with PrPc, ICSM 18 exhibiting about twice the affinity of any mAbs raised against β-PrP (Table I and Fig. 4a, left panel). In stark contrast, only mAbs raised against β-PrP reacted strongly with PrP27–30, ICSM 37 immunoprecipitating 2-fold more PrPSc than ICSM 35 and 42 at an equivalent concentration (Table I and Fig. 4a, right panel).

We then pulsed uninfected Rov cells with ICSM 18 or ICSM 19 (10 μg/ml overnight) and immunoprecipitated the PrPc-bound fraction after thoroughly washing the cells. Interestingly, ICSM 18 and ICSM 19 bound 62% and 75% of PrPc molecules, whereas ICSM 35 and 37 bound, respectively, only 14% and 33% (Fig. 4, b and c). Similar experiments on ScRov cells were inconclusive, as we frequently observed non-specific binding of PrPSc to the beads used to bring down the antigen/antibody complexes (data not shown). However ICSM 35 and 37 do bind PrPSc in living cells. Using immunofluorescence microscopy, we found dotlike intracellular staining in ScRov cells (as indicated by an arrow) but not in Rov cells (Fig. 4d). This was similar to the staining of fixed ScRov cells with these mAbs after guanidium thiocyanate denaturation,2 a treatment known to increase specifically PrPSc immunoreactivity (20, 21). In contrast, we were unable to observe any differences in the binding of ICSM 18 and 19 between Rov and ScRov cells (Fig. 4d). Overall, these experiments indicate that mAbs raised against β-PrP bind endogenous intracellular PrPSc.

DISCUSSION

Given that the transformation of normal cellular prion protein is central to the pathogenesis of prion disease, it is not surprising that most of the available therapeutic strategies

① V. Beringue and F. Archer, unpublished data.
Inhibitory Effects of Anti-PrPSc Antibodies

target either normal or disease-related isoforms. However, success has been limited when translating methods that were shown to be effective \textit{in vitro} to animal models and patients (22). Studies in neuroblastoma cells clearly indicate that targeting PrPC either by cleaving it from the cell surface with phosphatidylinositol-specific phospholipase C or stabilizing it with monoclonal antibodies inhibits prion replication very efficiently (7, 8, 23). In our system, turning off the ovine PrP promoter completely abrogates prion replication (this study and Ref. 14), analogous to the situation in PrP null mice that do not support prion replication (24). However, not all PrPC-binding antibodies have inhibitory effects (Table I). Peretz et al. (8) elegantly show that artificially engineered Fabs were most potent when they targeted helix 1, a region to which ICSM 18 and mAb 6H4 bind (10, 15). Fabs binding the 90–109 region also inhibited prion replication (8), although interestingly, these artificially engineered antibodies do not recognize native PrPSc (11), unlike our mAbs raised against \(\beta\)-PrP in which the 90–109 region is immunodominant (this study).3 It is of some concern for the general applicability of cell lines as systems for screening anti-prion agents that prion replication in ScRov cells was inhibited inefficiently by mAbs binding helix 1 such as ICSM 18 and mAb 6H4 bind (10, 15). Fabs binding the 90–109 region also inhibited prion replication (8), although interestingly, these artificially engineered antibodies do not recognize native PrPSc (11), unlike our mAbs raised against \(\beta\)-PrP in which the 90–109 region is immunodominant (this study).3

Although targeting PrPSc exclusively is clearly an effective strategy in some cell lines, failure to inhibit infectious prions may allow the conversion to recur once the PrPSc-binding inhibitor is removed. Thus infection is merely suppressed and not eradicated. Previous work indicates that ScN2a cells are curable with anti-PrPSc antibodies (7, 8), but clearly this does not apply to all cells capable of supporting prion replication as we show here. Perhaps this is mainly due to the level of PrPC. It is worth noting that the clone successfully treated by mAb 6H4 expressed very low levels of PrPC (7) compared with Rov cells that express similar levels of PrPC to those found in sheep brain (14). One might anticipate that differential sensitivity to anti-prion agents may exist similarly \textit{in vivo}, and continuous suppression with high concentrations of inhibitor may be required given that PrPC is widely expressed in variable amounts and rapidly turned over at the cell surface (25, 26). Such a strategy may be employed with caution during the neuroinvasion course of the disease, because the administration of high doses of mAbs with high affinity for PrPC within the central nervous system may trigger neuronal apoptosis \textit{in vivo} (27).

An alternative strategy is to target both PrPC and PrPSc, thereby blocking the incorporation of PrPSc into propagating prions and additionally capping the infectious template. In

3 V. Beringue, G. Mallinson, M. Kaisar, M. Tayebi, and S. Hawke, unpublished observations.
these mAbs to suppress prion replication correlated so well with its affinity for PrPSc but not for PrPSc (Table 1). Therefore it seems reasonable to suggest that PrPSc binding plays the major effector role, but differences between species and/or strains cannot be excluded despite helix I being highly conserved between species (28). The most potent mAbs bound significantly less PrPSc than ICSM 18, and immunofluorescence confirmed that the mAbs raised against β-PrP bound disease-associated prion protein. In fact these studies correlated very well with the indirect immunoprecipitation. Thus mAbs exhibiting high affinity for PrPSc by immunoprecipitation stained intracellular organelles and inhibited prion replication very efficiently. Clearly, unless mAbs completely specific for PrPSc are used, it will not be possible to conclusively prove that PrPSc binding is crucial. It is possible, for example, that ovine PrPSc is stabilized most efficiently by interactions at the 90–109 region. In any case, PrPSc binding may be necessary for the mAbs to be internalized and/or presented to intracellular PrPSc. Currently, we are attempting to characterize mAbs that bind PrPSc exclusively and mAbs that bind to the N-terminal portion of PrP77–30 but that have low affinity for PrPSc (such as mAb 3F4) (29). However, taken together, we suggest that additional targeting of PrPSc may improve the efficacy of anti-prion agents.

How could the mAbs interact with PrPSc? This may be direct if the PrPSc conversion occurred at the cell surface (23). We have shown by immunofluorescence that our mAbs are internalized in contrast with recent studies in human cells (30). If conversion occurred in endosomes, the antibodies may be internalized via PrPSc and then bind to PrPSc whether or not they were released from PrPSc. We did not find by immunofluorescence Fc receptors at the Rov cell surface, making Fe-mediated internalization of the mAbs unlikely (data not shown).

Finally, the Rov cell system allowed a comparison of the kinetics of PrPSc inhibition to be studied in the absence of the PrPSc substrate. Again, supporting a direct role for PrPSc binding, we found that several mAbs inhibited as rapidly as repressing PrPSc expression and that one mAb, ICSM 37, was even more rapid, suggesting that it enhanced the breakdown of PrPSc. Interestingly, PrPSc was not released from the cells into the supernatant (data not shown). Perhaps mAb binding facilitates the intracellular clearance of PrPSc. Pulse-chase experiments are planned to study this intriguing phenomenon in greater detail.

How does the work described here apply to our recent in vitro data (12)? We have recently shown that both ICSM 18 and 35 effectively inhibit prion replication in vivo. In these experiments, it was not determined by which mechanism prion replication was inhibited or whether the infection was eradicated but differences between species and/or strains cannot be excluded despite helix I being highly conserved between species (28). The most potent mAbs bound significantly less PrPSc than ICSM 18, and immunofluorescence confirmed that the mAbs raised against β-PrP bound disease-associated prion protein. In fact these studies correlated very well with the indirect immunoprecipitation. Thus mAbs exhibiting high affinity for PrPSc by immunoprecipitation stained intracellular organelles and inhibited prion replication very efficiently. Clearly, unless mAbs completely specific for PrPSc are used, it will not be possible to conclusively prove that PrPSc binding is crucial. It is possible, for example, that ovine PrPSc is stabilized most efficiently by interactions at the 90–109 region. In any case, PrPSc binding may be necessary for the mAbs to be internalized and/or presented to intracellular PrPSc. Currently, we are attempting to characterize mAbs that bind PrPSc exclusively and mAbs that bind to the N-terminal portion of PrP77–30 but that have low affinity for PrPSc (such as mAb 3F4) (29). However, taken together, we suggest that additional targeting of PrPSc may improve the efficacy of anti-prion agents.

How could the mAbs interact with PrPSc? This may be direct if the PrPSc conversion occurred at the cell surface (23). We have shown by immunofluorescence that our mAbs are internalized in contrast with recent studies in human cells (30). If conversion occurred in endosomes, the antibodies may be internalized via PrPSc and then bind to PrPSc whether or not they were released from PrPSc. We did not find by immunofluorescence Fc receptors at the Rov cell surface, making Fe-mediated internalization of the mAbs unlikely (data not shown).

Finally, the Rov cell system allowed a comparison of the kinetics of PrPSc inhibition to be studied in the absence of the PrPSc substrate. Again, supporting a direct role for PrPSc binding, we found that several mAbs inhibited as rapidly as repressing PrPSc expression and that one mAb, ICSM 37, was even more rapid, suggesting that it enhanced the breakdown of PrPSc. Interestingly, PrPSc was not released from the cells into the supernatant (data not shown). Perhaps mAb binding facilitates the intracellular clearance of PrPSc. Pulse-chase experiments are planned to study this intriguing phenomenon in greater detail.

How does the work described here apply to our recent in vitro data (12)? We have recently shown that both ICSM 18 and 35 effectively inhibit prion replication in vivo. In these experiments, it was not determined by which mechanism prion replication was inhibited or whether the infection was eradicated but differences between species and/or strains cannot be excluded despite helix I being highly conserved between species (28). The most potent mAbs bound significantly less PrPSc than ICSM 18, and immunofluorescence confirmed that the mAbs raised against β-PrP bound disease-associated prion protein. In fact these studies correlated very well with the indirect immunoprecipitation. Thus mAbs exhibiting high affinity for PrPSc by immunoprecipitation stained intracellular organelles and inhibited prion replication very efficiently. Clearly, unless mAbs completely specific for PrPSc are used, it will not be possible to conclusively prove that PrPSc binding is crucial. It is possible, for example, that ovine PrPSc is stabilized most efficiently by interactions at the 90–109 region. In any case, PrPSc binding may be necessary for the mAbs to be internalized and/or presented to intracellular PrPSc. Currently, we are attempting to characterize mAbs that bind PrPSc exclusively and mAbs that bind to the N-terminal portion of PrP77–30 but that have low affinity for PrPSc (such as mAb 3F4) (29). However, taken together, we suggest that additional targeting of PrPSc may improve the efficacy of anti-prion agents.

Finally, the Rov cell system allowed a comparison of the kinetics of PrPSc inhibition to be studied in the absence of the PrPSc substrate. Again, supporting a direct role for PrPSc binding, we found that several mAbs inhibited as rapidly as repressing PrPSc expression and that one mAb, ICSM 37, was even more rapid, suggesting that it enhanced the breakdown of PrPSc. Interestingly, PrPSc was not released from the cells into the supernatant (data not shown). Perhaps mAb binding facilitates the intracellular clearance of PrPSc. Pulse-chase experiments are planned to study this intriguing phenomenon in greater detail.
27. Solforosi, L., Criado, J. R., McGavern, D. B., Wirz, S., Sanchez-Alavez, M., Sugama, S., DeGiorgio, L. A., Volpe, B. T., Wiseman, E., Abalos, G., Masliyah, E., Gilden, D., Oldstone, M. B., Conti, B., and Williamson, R. A. (2004) Science \textbf{303}, 1514–1516

28. Oesch, B., Westaway, D., and Prusiner, S. B. (1991) \textit{Curr. Top. Microbiol. Immunol.} \textbf{172}, 109–124

29. Kascsak, R. J., Rubenstein, R., Merz, P. A., Tonna-DeMasi, M., Fersko, R., Carp, R. I., Wisniewski, H. M., and Diringer, H. (1987) \textit{J. Virol.} \textbf{61}, 3688–3693

30. Paitel, E., Alves Da Costa, C., Vilette, D., Grassi, J., and Checler, F. (2002) \textit{J. Neurochem.} \textbf{83}, 1208–1214

31. Sabuncu, E., Petit, S., Le Dur, A., Lan Lai, T., Vilotte, J. L., Laude, H., and Vilette, D. (2003) \textit{J. Virol.} \textbf{77}, 2696–2700

32. Heppner, F. L., Christ, A. D., Klein, M. A., Prinz, M., Fried, M., Kraehenbuhl, J. P., and Aguzzi, A. (2001) \textit{Nat. Med.} \textbf{7}, 976–977
PrP^{Sc} Binding Antibodies Are Potent Inhibitors of Prion Replication in Cell Lines

Vincent Beringue, Didier Vilette, Gary Mallinson, Fabienne Archer, Maria Kaisar, Mourad Tayebi, Graham S. Jackson, Anthony R. Clarke, Hubert Laude, John Collinge and Simon Hawke

J. Biol. Chem. 2004, 279:39671-39676.
doi: 10.1074/jbc.M402270200 originally published online May 7, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M402270200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 32 references, 21 of which can be accessed free at http://www.jbc.org/content/279/38/39671.full.html#ref-list-1