Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release

Yingfeng Ji1, Shoichi Yoshioka1,2, Vlad C. Manea3,4 & Marina Manea3,4

Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab.

Dual subduction zones, where two tectonic plates subduct with different rates and azimuths, represent a special case of subduction1. This particular case of subduction is formed as a consequence of a triple trench junction, where two oceanic plates simultaneously subduct beneath the overriding plate, and at the same time one beneath the other. Presently, there is only one case of triple trench junction (TTT) known on the Earth, Boso-Oki Triple Junction, located off the coast of Japan beneath the Kanto district2. This tectonically complex region is situated where the Philippine Sea plate is subducting beneath the continental North American plate, and at the same time the Pacific plate is subducting below both the Philippine Sea and continental plates along the Japan trench3 (Fig. 1B). The interplate seismic activity in this region is characterized by numerous large earthquakes (M > 7), abundant clustered microseismicity, as well as deep-focus intraslab seismicity (~160 km depth) (Fig. 1D), whose origin is still a subject of debate. Comprehensive high-resolution seismic velocity studies obtained based on seismic tomography4–7 improved considerably our understanding of seismotectonics in this complex region. The great diversity of seismic activity has been debated in terms of frictional and mechanical interactions along the Philippine Sea-Pacific slab contact zone8,9, bending/unbending of local contorted Philippine Sea slab10, or net slab pull forces11. However, recently the origin of intermediate as well as deep-focus seismicity has been linked with dehydration reactions12. Dehydration embrittlement has been proposed as a possible mechanism for decreasing effective normal stress and so triggering intermediate-depth earthquakes12. Nevertheless, double-subduction related seismogenesis and its potential relationship with slab dehydration at the intermediate-depth remained unclear mainly due to lack in the high-resolution observations at depths and well-constrained numerical modeling. For the Kanto region, high-resolution seismic tomography has recently provided detailed seismic velocity structure for the incoming plate above a depth of ~100 km beneath the seismically active zone9, bending/unbending of local contorted Philippine Sea slab8, or net slab pull forces11. However, recently the origin of intermediate as well as deep-focus seismicity has been linked with dehydration reactions12. Dehydration embrittlement has been proposed as a possible mechanism for decreasing effective normal stress and so triggering intermediate-depth earthquakes12. Nevertheless, double-subduction related seismogenesis and its potential relationship with slab dehydration at the intermediate-depth remained unclear mainly due to lack in the high-resolution observations at depths and well-constrained numerical modeling. For the Kanto region, high-resolution seismic tomography has recently provided detailed seismic velocity structure for the incoming plate above a depth of ~100 km beneath the seismically active zone9. Additionally, in this area high-resolution hypocenter data (≤ 5 km in depth) (Fig. 1D) has been collected by the Japan Meteorological Agency in last two decades, offering an exceptional opportunity to investigate potential links between seismogenesis associated with geodynamic processes of dual subduction.

1Research Center for Urban Safety and Security, Kobe University, Rokkodai-cho 1-1, Nada ward, Kobe, 657-8501, Japan. 2Department of Planetology, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada ward, Kobe, 657-8501, Japan. 3Computational Geodynamics Laboratory, Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico. 4Astronomical Institute of the Romanian Academy, 040557, Bucharest, Romania. Correspondence and requests for materials should be addressed to V.C.M. (email: vlad@geociencias.unam.mx)
Here, we present three-dimensional robustly-constrained high-resolution thermo-mechanical numerical models to simulate the physical processes associated with simultaneous subduction of the overlapping Philippine Sea and Pacific plates beneath Kanto region (Fig. 1B) (more details can be found in Methods and Supplementary material). Compared with our previous study 14,15, this is a developed study where we include a thorough study on the effect of Philippine Sea plate thickness on the Pacific plate thermal structure, as well as the toroidal mantle flow around the tip of the Philippine Sea plate. The thickness of the Philippine Sea plate is still controversial, but from the studies including the tension-type seismicity distribution16,17, nonlinear travel time tomography18 and converted seismic wave19, a thickness ranging from 50 km to 60 km is more possible. Our models reveal that the thickness of the Philippine Sea plate and complex interaction with the underneath Pacific subducting plate controls the slab dehydration inside the Pacific slab and generates a complex toroidal mantle flow pattern between the two major tectonic plates that represents the first order cause for seismicity distribution beneath Kanto at depths <160 km.

Results

Numerical modelling and temperature distribution. To better understand the mantle flow and thermal regimes of the interplate and slab contact zone undergoing subduction upon convergence beneath Kanto region, we developed high-resolution three-dimensional kinematic thermo-mechanical simulations of dual subduction to predict temperature, mantle flow, and spatial distribution of hydrous fluid content inside the Pacific and Philippine Sea subducting plates. The geometry of numerical models is constrained by the present-day dual subducting plate geometry, with specific model parameters illustrated in Supplementary material. Our approach towards evaluating the effect of double subduction involves a set of three-dimensional numerical models including the oblique subduction along a curved oceanic slab specifically chosen for the central Japan15. In order to better quantify the effect of double subduction, we also developed a synthetic model where the Philippine Sea plate was intentionally removed from the initial model setup. The calculated thermal structure as well as the fluid content corresponding to both models is presented in Fig. 2. The model without the Philippine Sea plate incorporated shows a thermal distribution of the Pacific plate increasing with depth and running almost parallel to the slab geometry with some perturbations due to the contortion of the Pacific slab at depths >200 km (Fig. 2A). On the other hand, one of the first effects of the Philippine Sea plate subduction on top of the Pacific plate is a
significantly deeper than normal cold interplate zone located on the upper surface of the Pacific plate and con-
figured to the contact area between the two plates (Fig. 2B and C). Compared with adjacent areas unaltered by the
presence of the Philippine Sea plate, or with the synthetic model without the Philippine Sea plate (Fig. 2A), the
slab contact zone beneath Kanto is colder with nearly 300 °C along its southwestern edge. The cooling effect of
the Philippine Sea plate sitting on top of the Pacific plate is transferred inside the Pacific slab through the entire
oceanic crust but diminishes rapidly in the lithosphere (Fig. S1). Additionally, we observed a local heating effect at
the contact zone due to the strong contortion and sagging of the Philippine Sea plate which places in near contact
its hot lithosphere with the Pacific slab surface (Fig. 2C). Therefore, the entire oceanic crust of the Pacific slab is
strongly affected by dual subduction beneath Kanto region.

Dual slab dehydration and seismicity distribution. Based on the calculated temperature distribution
(Fig. 2A–C), we estimate water content for the Pacific and Philippine Sea slabs, using phase diagrams for MORB
and ultramafic rocks such as harzburgite20–22. The single subduction model shows a distribution variation of
hydrated phases confined above ~40 km depth, and mainly parallel to the Japan Trench (Fig. 2D). To the south, the
hydrated portion of the oceanic crust becomes smaller and shallower. Including the subduction of the Philippine
Sea plate in the model, the downdip limit of highly hydrous phases inside the Pacific oceanic crust (Fig. 2E and F)
increases in the region which corresponds to the double slab contact zone with the Philippine Sea slab beneath
the Kanto region. Considering that the temperature drops approximately 300 °C in this region, the presence of stable
highly hydrous minerals in the oceanic crust extends to greater depths of ~140 km or more (Fig. 2F). In this depth
range, the Pacific plate dehydration and transition to anhydrous eclogite occurs in a relatively short distance.
Farther north, both models predict similar results where the oceanic crust transports fluids only to shallower
depths of ~40 km, but the water content inside the oceanic lithospheric mantle gradually increases until the Pacific
slab reaches ~250 km depth (Fig. 3A and B). Instead, the model with dual subduction indicates that the Philippine
Sea plate also strongly controls the water distribution in the oceanic lithosphere in the first ~16 km from the
slab surface (Fig. 3B). It is now commonly accepted that the oceanic slabs undergo phase transition and release
fluids into the slab contact zone, increasing pore pressure and promote seismogenesis23,24. Following, we will
investigate the spatial correlation between the slab dehydration and location of seismicity inside the Pacific sub-
ducting plate (Fig. 3) using the high accuracy (≤5 km) unified hypocenter data catalogue (1997.10-2015.2) with
magnitude no less than 2.0 from Japan Meteorological Agency. One of the first key observations is the presence
of a highly active seismic belt located in the oceanic crust and parallel to the Japan trench at a depth of ~40 km.

Figure 2. Slab temperature and H2O distribution. (A,D) Numerical experiment with a single plate (Pacific).
(B,C,E,F) Numerical experiment with double subduction. In (C) and (F), the Philippine Sea plate is shown as
a semitransparent surface. Note that the water content in (D,E,F) reflects complete slab hydration, whereas in
nature slabs are assumed to be partial hydrated46. Therefore our estimates should be considered as an upper
bound.
In this region located outside the influence of the Philippine slab, both dehydration models (Fig. 3A and B) show that hydrous minerals are stable and the oceanic crust does not experience any significant phase transformation until it reaches 40 ± 10 km depth (Fig. 3). Within this depth range, the Pacific oceanic crust seismicity correlates remarkably well with our dehydration estimations from jadeite lawsonite blueschist (5.4 wt%), greenschist (3.0 wt%), and lawsonite amphibole eclogite (<1.0 wt%). However, farther south, the synthetic single subduction model that includes only the Pacific plate fails to correlate the main dehydration front location with seismicity distribution in the oceanic crust which actually increases to <150 km depth (Fig. 3A). Instead, the realistic model with dual subduction delays the eclogitization of the crust of the Pacific slab down to ~140 km depth and shows a good correlation between the location of slab dehydration front and deeper (<150 km depth) distribution of seismicity (Fig. 3B). Another interesting aspect of our assessment is the presence of a hydrated strip located inside the Pacific slab, which ranges from ~100 km down to ~250 km more. Figure 3B shows a good correlation between our predicted fluid distribution inside the Pacific slab corresponding to the contact region with the Philippine Sea plate, and the observed intraslab seismicity.

Discussion

Combining the precise location of earthquakes within the Pacific oceanic crust beneath Kanto region with information of 3-D slab thermal structure and dehydration of double subduction, we found robust evidence of a causal link between oceanic plate dehydration and occurrence of earthquakes (Fig. 3). This is best explained in terms of oceanic crust and lithosphere dehydration beneath Kanto where the slab surface is colder by nearly ~300 °C than that of the model of single subduction (Fig. 2A–C). Compared with the model of single subduction (Fig. 2D), the overlapped double slabs model create a cold slab contact zone, where the phase transition to anhydrous eclogite is shifted to a depth of approximately 140 km (Fig. 2E and F). Wada and He predicted the same cooling of the PAC-PSP contact zone but at greater depths (70–80 km in Wada and He vs. 40 km here), which would significantly alter the spatial correspondence between seismicity and slab dehydration. As we will show later, our model setup includes the gap between the Philippine Sea plate and Pacific plate and allows the hot mantle under the Philippine Sea plate to escape under the tip of the slab and creates a toroidal mantle flow.

Dehydration reaction depicted by large seismic velocity changes accounts for the spatially remarkable seismicity near the slab contact zone, suggesting that eclogite facies phase transformation of hydrous minerals may occur at these depths.
transition inside the slab occurs at temperature ~750 °C33–35, we observed a good correlation with the Philippine Sea plate seismicity (Fig. S4). This suggests that temperature inside the Philippine Sea plate plays a key control on the maximum depth extent for seismic activity.

In this study, combined precise seismological observations and robust numerical modelling results show that the subduction of the Philippine Sea plate on top of the Pacific plate beneath Kanto plays a key process that contributes to significant variations of water content and seismicity distribution, corresponding to the oceanic crust.
Methods

Model parameters and boundary conditions. The modelling was performed resolving the governing equations describing the conservation of mass, momentum, and energy for calculating temperature, flow velocity, and pressure, assuming an anelastic liquid approximation and a two-phase flow. The three-dimensional numerical model simulates subduction of the oceanic Pacific and Philippine Sea plates beneath a fixed continental plate. The computations are performed within a Cartesian domain 800 km long, 700 km wide and 400 km deep (Fig. S3). This domain is evenly divided into grid cells, which corresponds to an 10 × 10 × 4 km grid resolution. Compared with our previous study, in this work we carried out these numerical simulations with more than twice increase in spatial resolution.

The mechanical boundary conditions are as follows: the top boundary is rigid (Dirichlet) and the bottom boundary is permeable (Neumann) in the vertical direction; lateral boundaries are also permeable (Neumann) except the lateral boundaries corresponding to the oceanic Pacific and Philippine Sea plates, which have prescribed a time-dependent subduction velocity. We considered the two oceanic slabs in close contact with each other with no gaps along the slab contact zone. Viscous decoupling is not included on the megathrust and slab contact zone due to uncertainty. The age of the Pacific plate is considered to be fixed at 130 Myr, and its current thickness is 85 km, whereas the age of the Philippine Sea plate beneath Kanto is considered to be also fixed at 40 Myr and a current slab thickness of 60 km, calculated using a half space cooling model with the temperature at the base of lithosphere of 1100 °C and the mantle temperature of 1400 °C. Our models include a well-constrained constant convergence rates for both Pacific (9.7 cm/yr) and Philippine Sea (5.4 cm/yr) plates. However, for the Philippine Sea plate, the plate motion velocity changes abruptly its direction at 3 Ma from N26.5°W to N59.8°W. The subduction evolution of the Pacific plate is integrated in time 20 Myr, whereas the subduction history of the Philippine Sea plate is considered to be only 9 Myr, which is the time required for the leading edge to reach its current location. The subduction histories timing assumed for the two plates ensured that the calculated plate geometry at 0 Ma matched the current plate geometry based on seismic tomography. In terms of rheology, we use a composite upper mantle viscosity for deformation at constant stress, where model viscosity is defined by the viscous flow law for wet olivine (see model parameters for the diffusion and dislocation creep of olivine in Supplementary Table 1). Slab H₂O content is calculated for P-T conditions computed from the phase diagrams.

Model sensitivity tests. We performed sensitivity tests to investigate the robustness of our modelling results, and varied the mantle viscosity from 0.9 × 10²⁰ Pa s to 1.1 × 10²¹ Pa s, and mantle density from 3250 kg/m³ to 3350 kg/m³. We present the benchmark model results as deviation from the reference models (∆T and ∆H₂O), and show these results at different depth levels within the Pacific slab. The tests show that mantle density variations (±50 kg/m³) induce small temperature variations of ~10 °C at depths <100 km, and ~30 °C at 200 km depth (Figs S5 and S6). In terms of H₂O content, the Pacific crust shows no significant variations. However at higher depths within the Pacific slab the differences in H₂O estimates are up to 10%, but they are rather limited and concentrated in small regions. Mantle viscosity variations tests show maximum temperature variations of only ~10–20 °C and concentrated at depths of 40–100 km. Similarly with the mantle density variation tests, in terms of H₂O content, the Pacific crust shows almost no significant variations. Only at higher depths within the slab the differences in H₂O estimates are up to 8% but they are limited and concentrated in small regions (Figs S7 and S8).

References

1. Ishise, M., Miyake, H. & Koketsu, K. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure. Phys. Earth Planet. Inter. 244, 49–68 (2015).
2. McKenzie, D. P. & Morgan, W. J. Evolution of triple junctions. Nature 224, 125–133 (1969).
3. Seno, T., Stein, S. & Gripp, A. E. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research 98, https://doi.org/10.1029/93JB00782 (1993).
4. Matsubara, M., Hayashi, H., Obara, K. & Kasahara, K. Low-velocity oceanic crust at the top of the Philippine Sea and Pacific plates beneath the Kanto region, central Japan, imaged by seismic tomography. J. Geophys. Res. 110, B12304, https://doi.org/10.1029/2005JB003673 (2005).
5. Wu, F., Okaya, D., Sato, H. & Hirata, N. Interaction between two subducting plates under Tokyo and its possible effects on seismic hazards. Geophys. Res. Lett. 34, L18301, https://doi.org/10.1029/2007GL030763 (2007).
6. Nakajima, J. & Hasagawa, A. Cause of M7 intraslab earthquakes beneath the Tokyo metropolitan area: possible evidence for a vertical slab tear at the easternmost portion of the Philippine Sea slab. J. Geophys. Res. 115, B04301, https://doi.org/10.1029/2009JB006863 (2010).
7. Nakajima, J. Seismic attenuation beneath Kanto, Japan: evidence for high attenuation in the serpentinized subducting mantle. Earth Planets and Space 66, 12 (2014).
8. Nakajima, J., Hirose, F. & Hasagawa, A. Seismotectonics beneath the Tokyo metropolitan area, Japan: Effect of slab-slab contact and overlap on seismicity. J. Geophys. Res. 114, B08309, https://doi.org/10.1029/2008JB006101 (2009).
9. Uchida, N., Matsuzawa, T., Nakajima, J. & Hasagawa, A. Subduction of a wedge-shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes. J. Geophys. Res. 115, B07309, https://doi.org/10.1029/2009JB006962 (2010).
10. Engdahl, E. R. & Scholz, C. H. A double Benioff Zone beneath the central Aleutians: An unbending of the lithosphere. Geophysical Research Letters 4, https://doi.org/10.1029/GL004i010p00473 (1977).
11. Schellart, W. P. Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophys. Res. Lett. 31, L07611, https://doi.org/10.1029/2004GL019528 (2004).
12. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H₂O from subducting slabs worldwide. J. Geophys. Res., Solid Earth 116, B1 (2011).
13. Hasagawa, A. et al. Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: Possible thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material. Geophys. Res. Lett. 34, L09305, https://doi.org/10.1029/2007GL029616 (2007).
14. Y. J., Yoshioka, S. & Matsumoto, T. Three-dimensional numerical modeling of temperature and mantle flow fields associated with subduction of the Philippine Sea plate, southwest Japan. J. Geophys. Res. Solid Earth 121, 4458–4482, https://doi.org/10.1002/2016JB013292 (2016).

15. Y. J., Yoshioka, S., Manea, V. C., Manea, M. & Matsumoto, T. Three-dimensional numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan. J. Geophys. Res. Solid Earth 122, 332–353, https://doi.org/10.1002/2016JB013230 (2017).

16. Seno, T. Focal mechanism and depth of the 1971 January 3 earthquake (M=5.5) which occurred near the Zenisu ridge off central Honshu—Implications for the Philippine Sea plate thickness beneath the western edge of the Izu Ridge. Earthquake (in Japanese) 40, 629–632 (1987).

17. Moriya, T., Tajima, F. & Seno, T. An unusual zone of seismic coupling in the Bonin Arc: the 1972 Hachijo-Oki Earthquakes and related seismicity, Pagoph, 129, Nos 1/2 (1989).

18. Kamiya, S. & Kobayashi, Y. Thickness variation of the descending Philippine Sea slab and its relationship to volcanism beneath the Kanto-Tokai district, central Japan. J. Geophys. Res. Solid Earth 112, B6 (2007).

19. Uchida, N., Matsuzawa, T., Nakajima, J. & Hasegawa, A. Subduction of a wedge-shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes. Journal of Geophysical Research: Solid Earth 115, B7 (2010).

20. Hacker, B. R., Abers, G. A. & Peacock, S. M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Earth Planet. Sci. Lett. 108(2), https://doi.org/10.1029/2001JB001129 (2003).

21. Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108(2030), B1, https://doi.org/10.1029/2001JB001129 (2003).

22. Omori, S., Kita, S., Maruyama, S. & Santosh, M. Pressure–temperature conditions of ongoing regional metamorphism beneath the Japanese Islands. Gondwana Research 16, 458–469 (2009).

23. Peacock, S. M. et al. Thermal structure of the Costa Rica - Nicaragua subduction zone: Slab metamorphism, seismicity and arc magmatism. Phys. Earth Planet. Inter. 149, 187–200 (2005).

24. Abers, G. A., Nakajima, J., van Keken, P. E., Kita, S. & Hacker, B. R. Thermal-petrological controls on the location of earthquakes within subducting plates. Earth Planet. Sci. Lett. 369, 178–187 (2013).

25. Okazaki, K. & Hirth, G. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature 530, 81–84 (2016).

26. Wada, I. & He, J. Thermal structure of the Kanto region, Japan. Geophys. Res. Lett. 44, 7194–7202, https://doi.org/10.1002/2017GL073597 (2017).

27. Nakajima, J., Tsuji, Y. & Hasegawa, A. Seismic evidence for thermally-controlled dehydration reaction in subducting oceanic crust. Geophys. Res. Lett. 36, L03303, https://doi.org/10.1029/2008GL036865 (2009).

28. Wilson, C. R., Spiegelman, M., van Keken, P. E. & Hacker, B. R. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth and Planetary Science Letters 401, 261–274 (2014).

29. Kincaid, C. & Griffiths, R. W. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425(6953), 58 (2003).

30. Kincaid, C. & Griffiths, R. W. Variability in flow and temperatures within mantle subduction zones. Geochemistry, Geophysics, Geosystems, 5(6) (2004).

31. Holt, A. F., Royden, L. H. & Becker, T. W. The dynamics of double slab subduction. Geophysical Journal International 209(1), 250–265 (2017).

32. Zhang, Q., Guo, F., Zhao, L. & Wu, Y. Geodynamics of divergent double subduction: 3-D numerical modeling of a Cenozoic example in the Molucca Sea region, Indonesia. J. Geophys. Res. Solid Earth 122, 3977–3998, https://doi.org/10.1002/2017JB013991 (2017).

33. Gorbatov, A. & Kostoglodov, V. Maximum depth of seismicity and thermal parameter of the subducting slab: general empirical relation and its application. Tectonophysics 277(1–3), 165–187 (1997).

34. Oleskevich, D. A., Hyndman, R. D. & Wang, K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. Journal of Geophysical Research: Solid Earth 104(B7), 14965–14991 (1999).

35. Wei, S. S., Wiens, D. A., van Keken, P. E. & Chen, C. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration. Sci. Adv. 3, e1601755 (2017).

36. Yoshioka, S. & Murakami, K. Temperature distribution of the upper surface of the subducted Philippine Sea plate, southwest Japan, from a three-dimensional subduction model: relation to large interplate and low-frequency earthquakes. Geophys. J. Int. 171, 302–313 (2007).

37. Sdrolias, M. R. & Muller, D. Controls on back-arc basin formation. Geochim. Geophys. Geosyst. 7, Q04016, https://doi.org/10.1029/2005GC001009 (2006).

38. Nakajima, J. & Hasegawa, A. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophys. Res. Lett. 33, L16309, https://doi.org/10.1029/2006GL026773 (2006).

39. Yoshifu, T. Regionality of group velocities of Rayleigh waves in the Pacific and thickening of the plate. Earth Planet. Sci. Lett. 25, 305–312 (1975).

40. Muller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochim. Geophys. Geosyst. 9, Q04006, https://doi.org/10.1029/2007GC001743 (2008).

41. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181(1), 1–80, https://doi.org/10.1111/1365-246X.12491 (2010).

42. Takahashi, M. Tectonic development of the Japanese islands controlled by the Philippine Sea plate motion. Journal of Geoculture 115, 116–123 (2006).

43. Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, Inside the Subduction Factory, Geophys. Monogr. Ser., vol. 138, edited by J. Eiler, pp. 83–105, AGU, Washington, D. C. (2003).

44. Burkett, E. R. & Billen, M. I. Three-dimensionality of slab detachment due to ridge-trench collision: laterally simultaneous boudinage versus tear propagation. Geochim. Geophys. Geosyst. 11, Q11012, https://doi.org/10.1029/2010GC003266 (2010).

45. Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis (p. 19). Colorado: US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division (2009).

46. Peacock, S. M. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib. Miner. Petrol. 95 (1987).

Acknowledgements

We thank P. Takley for sharing his source code of mantle convection Stag3D. We also thank Japan Meteorological Agency for sharing the unified hypocenter data. All numerical computations were performed at the National Laboratory for Advanced Scientific Visualization at UNAM (LAVIS) and Kobe University computing facility. This work received support from LAVIS software engineers Luis Alberto Aguilar Bautista, Alejandro de León.
Cuevas, and Carlos Sair Flores Bautista. This study was partly supported by JSPS KAKENHI Grant Number 15H01140, 16H04040 and 16H06477. The part of this research is supported by The Project for Hazard Assessment of Large Earthquakes and Tsunamis in the Mexican Pacific Coast for Disaster Mitigation, SATREPS funded by JST-JICA (#1554361). This work was also supported by a grant of the Romanian Ministry of National Education and Scientific Research, RDI Program for Space Technology and Advanced Research - STAR, project ID 513, and grants no 066/2015 and 523.01/192DBE/2016 from DGAPA-PASPA, Mexico.

Author Contributions
Y.J. and S.Y. set up the numerical model, and V.C.M. and M.M. took the lead in writing the manuscript. Y.J. performed the numerical modelling on ADA supercomputing facility. Y.J. post-processed the modelling results, V.C.M. and M.M. prepared the figures, and S.Y. and M.M. provided comments and revisions. Y.J. contributes equally to the corresponding author.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16818-z.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017