Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase∗†§

Received for publication, December 30, 2008, and in revised form, January 30, 2009. Published, JBC Papers in Press, January 31, 2009, DOI 10.1074/jbc.M809784200

Nicolas Blot†‡§, Xian-Jun Wu†, Jean-Claude Thomas∗**, Juan Zhang†, Laurence Garczarek†§, Stephan Böhm†‡§, Jun-Ming Tu†‡§, Ming Zhou†, Matthias Plösch‡, Lutz Eichacker‡§§, Frédéric Partensky∗†, Hugo Scheer†‡, and Kai-Hong Zhao†‡§

From the ‡§UPMC-Université Paris 06, Station Biologique, 29682 Roscoff, France, ‡§CNRS, UMR 7144, Groupe Plancton Océanique, 29682 Roscoff, France, the *State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China, the ‡College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China, ‡§CNRS and Ecole Normale Supérieure (UMR 8186), Département de Biologie Moléculaire des Organismes Photosynthétiques, 75230 Paris, France, the †Department Biologie I, Universität München, 80638 München, Germany, and the †§Center for Organelle Research (CORE), Universitetet i Stavanger, N-4036 Stavanger, Norway.

Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ~ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters.

To perform photosynthesis, the main energetic basis for life on earth, phototrophic organisms have to cope with large spatial and temporal variations of light conditions. A major evolutionary step in meeting this challenge was the development of light-harvesting complexes, the most variable part of the photosynthetic apparatus (1). By binding a large number of chromophores, these antennas can considerably enhance the photon absorption capacity of reaction centers that are responsible for the conversion of solar energy into chemical energy. Pigmented proteins associated with light-harvesting complexes also fill (at least partially) the large gap between the absorption bands of reaction center chlorophylls (e.g. ~440 and 680 nm for chlorophyll a found in most oxygenic organisms). Antennas also transport the excitons with minimal loss and transduce high energy excitons into the low energy ones required by the reaction centers (1, 2). They do not only vary among the different organisms but also with time within individual organisms, thereby providing the flexibility needed by the photosynthetic apparatus to work efficiently under varying ambient conditions.

Cyanobacteria, which contribute a substantial fraction of global photosynthesis (3), evolved a particularly sophisticated and dynamic antenna complex, the phycobilisome (PBS)4; (4, 5). This extravascular membrane with a size of several MDa is mainly composed of the deeply colored and intensely fluo-

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

1 The on-line version of this article (available at http://www.jbc.org) contains four supplemental tables and eight supplemental figures.

2 The recipient of a dissertation stipendium from the Chinese Scholarship Council.

3 To whom correspondence should be addressed. Tel./Fax: 86-27-87541634; E-mail: khzhao@163.com.

4 The abbreviations used are: PBS, phycobilisome; PC, phycocyanin; C-PC, C-type phycocyanin; PCB, phycocyanobilin; R-PC, R-phycocyanin (prefix R originally referred to as “rhodophytes,” but now designates spectral type); RpcA, apo-α-subunit of R-PC; RpcG, fused PUB lyase (EF-type); IEF, isoelectric focusing; PE, phycoerythrin; PEB, phycoerythrobilin; PEC, phycoerythrocyanin; PecA, apo-α-PEC; PecE, PecF, subunits of PUB-α-PEC lyase-isomerase; PUB, phycourobilin; PVB, phycoviolobilin; HPLC, high pressure liquid chromatography.

9290 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 284 NUMBER 14 APRIL 3, 2009
rescuing phycobiliproteins. A single PBS, generally composed of a central core and 6–8 radiating rods, contains hundreds of linear tetrapyrrole chromophores (phycobilins) that are covalently attached to their apoproteins. The remarkably wide diversity of PBSs found in nature is due to the large number of possible combinations of phycobiliproteins with various pigmentations that constitute the rods. Marine Synechococcus, the second most abundant oxyphototrophic organism on Earth after Prochlorococcus (3, 6), is the cyanobacterial group in which the largest diversity of PBS rod composition (and hence pigmentation) can be found (7). This is particularly useful to enable this group to cope with the variety of light environments encountered in marine ecosystems.

PBSs can, at least in part, be reversibly dissociated (8–10). Progress in understanding PBS assembly was slow, however, due to the complex and poorly understood post-translational modifications of the phycobiliproteins required prior to assembly. Only after maturation can phycobiliproteins form spontaneously trimers, which are then integrated into the PBSs by interaction with specific structural proteins, so-called linker polypeptides. These post-translational modifications reactions include the covalent attachment of 1–4 chromophores to each individual apoprotein (11–20), methylation of an asparagine residue (21–23), and cleavage of N-terminal methionine residue (5, 24) (see UniProtKB/Swiss-Prot entry Q1XDQ2).

Of the three major phycobilins, the red-absorbing phycocyanobilin (PCB) and the green-absorbing phycoerythrobilin (PEB) are generated by specialized reductases from biliverdin (Fig. 1), the cleavage product of the heme macrocycle (26). Free PCB and PEB molecules are then attached by phycobilin lyases to specific binding sites on the phycobiliprotein subunits (18). Biosynthesis of a third chromophore, phycourourobilin (PUB), which has never been found in free form, was until now enigmatic. Phycobiliproteins from all marine cyanobacteria adapted to oceanic waters, including Synechococcus, Crocosphaera, and Trichodesmium, are particularly rich in PUB, probably making it the most abundant phycobilin in the ocean (7, 27–30). Indeed, this chromophore absorbs efficiently blue-green light ($\lambda_{\text{max}} \approx 495$ nm), a wavelength range prevailing in open oceanic subsurface waters and which is only poorly absorbed by chlorophyll a. Thus, elucidating the PUB biosynthesis process has been a challenge for many years.

So far, only three types of phycocyanin were known in marine Synechococcus spp., and none of them contained PUB. Among
Phycourobilin Biosynthesis in Trichromatic Phycocyanin

the 11 recently sequenced strains (31), two (WH5701 and RS9917) have PBSs with rods entirely constituted of C-type phycocyanin (C-PC (7)), a form frequently found in freshwater cyanobacteria (5). This C-PC binds PEB at all three available chromophore binding sites: α-84, β-82, and β-153. Several phycocythrin-containing marine Synechococcus strains possess phycocyanin of the R-type that carry PEB either at β-153 only (R-PC III), as in WH7805, or both at α-84 and at β-153 (R-PC II), as in WH7803 (5, 32, 33). Using comparative genomics, candidate genes were recently retrieved that code for the different phycobilin lyases required for catalyzing the chromophorylation of these various phycocyanins (7). For the C-PC, it was demonstrated in freshwater cyanobacteria (15–20) that three phycobilin lyases, the heterodimeric CpcE/F, the monomeric CpcS (also sometimes found in heterodimer with CpcU), and the monomeric CpcT, are needed to catalyze the attachment of PEB at α-84, β-84, and β-155, respectively (note that the positions of the chromophore binding sites slightly differ between the α-phycocyanin of freshwater and marine cyanobacteria), and all three sequences have clear orthologs in the WH5701 and RS9917 genomes. WH7805 contains phycobilin lyase genes (called rpcE-F) that are homologous to rpcE-F, and it has been suggested that they could encode a phycocyanin α-84 PEB lyase (34). In WH7803, the rpcT gene is missing and replaced by rpcT, which has been proposed to encode a phycocyanin β-153 PEB lyase (7). In four sequenced marine Synechococcus, including two oceanic strains with a particularly high PUB content, WH8102 and CC9605, and two type IV chromatic adapters, RS9916 and BL107, the rpcE-F operon is replaced by a single gene, rpcG (7). This gene appears to encode a fusion protein, and its N and C termini show much higher homology to Nostoc (Anabaena) sp. PCC 7120 Pce and PecF, respectively, which form the heterodimeric phycocyanin α-84 PBS lyase-isomerase, than to CpcE/F or RpcE/F lyases from other marine Synechococcus. Moreover, the RpcG C terminus carries a short motif (NHQQGN) that has been assigned an isomerase function in the F-subunit of PecF (35). This motif is responsible for the concomitant isomerization of the A-ring of PCB to generate the PBS chromophore. The analogous isomerization starting from free PEB would thus be expected to generate a cystine-bound PUB chromophore (Fig. 1). This hypothesis led us to explore the function and specificity of the putative lyase-isomerase RpcG from two marine Synechococcus strains by a heterologous approach in Escherichia coli and to investigate the implications for phycobiliprotein pigmentation.

EXPERIMENTAL PROCEDURES

Preparation of Intact Phycobilisomes—Marine Synechococcus spp. strains WH8102 and RS9916 were grown in PCR-S11 medium under continuous white light as described previously (36). Extraction of intact PBSs was carried out with 0.75 m phosphate buffer on a sucrose density gradient as described previously (37). PBSs used for purifying R-PC V were concentrated by ultracentrifugation, and pellets were either used immediately or kept frozen at −30 °C until use.

Isolation of the Trichromatic Phycocyanin, R-PC V—PBS pellets were solubilized in Hepes buffer (10 mM, pH 7.2) containing NaCl (5 mM), Pefabloc (1 mM), EDTA (1 mM), and β-mercaptoethanol (1%, v/v). PBS dissociation was allowed for 90 min at 0 °C. Individual phycobiliproteins were separated by non-denaturing isoelectric focusing (IEF) using 6% polyacrylamide (30% acrylamide, 1.6% bisacrylamide) tube gels, 4 mm in diameter, containing a convenient mixture of ampholytes (4% Servalyt 4–6, 1% Servalyt 3–7). Protein (200 μg) was loaded on the gel, and the isoelectric focusing was achieved with NaOH (20 mM) as a cathode buffer and phosphoric acid (0.045%) as the anode buffer (36). Voltage was gradually increased from 150 to 400 V by 50-V steps every 45 min. Phycocyanin was found focusing on the basic part of the gel, as a violet purple band, near various PE complexes that were all more acidic. The allophycocyanin components, focusing at lower acidic pH, were lost under these conditions. Bands of interest were cut out and kept frozen until further characterization.

Subunit Isolation by Denaturing Isoelectric Focusing and Mass Spectrometry—Denaturing polyacrylamide gels were prepared in 4-mm tubes as described above, the only modification being the addition of urea (8 M). Bands containing native biliproteins obtained by non-denaturing IEF were cut into small pieces and incubated in situ, on the top of urea acrylamide gels, in urea (9 M) containing mercaptoethanol (1% v/v) for 45 min, before starting the IEF in the same conditions as described above. All operations were made under dim light or, when possible, in complete darkness. Colored bands were cut out at the end of electrophoresis and frozen until use.

For mass spectrometric characterization of polypeptides, bands were cut out from IEF gels and fragmented into small pieces, denatured with 6% lithium dodecyl sulfate denaturation buffer, and loaded on lithium dodecyl sulfate-PAGE plate gels as described (37). The Coomassie Blue G 250-stained bands of phycobiliprotein subunits were analyzed by mass spectrometry using the facility at the “Unité de Phytopharmacie et Médiateurs Chimiques,” Institut Nationale de la Recherche Agronomique (INRA) Versailles, France. Details on mass spectrometry experimental procedures can be found elsewhere (36).

In-gel Spectroscopic Analyses of Separated Biliproteins—Absorption spectra were obtained with a model DW/2 spectrophotometer (Aminco Chance, Bogart, GA) using fragments of acrylamide gels containing the separated biliproteins. Polyacrylamide amylodye gel fragments, with or without 8 M urea, were used as a blank. For recording the absorption spectra of denatured α- and β-subunits of R-PC V, samples were soaked for 15 min in acidic urea (8 M, acidified with HCl to pH 3) before recording the spectra.

Gene Cloning—Cloning and expression followed generally the standard procedures (38). The genes cpeB and pecB were PCR-amplified from Fischerella sp. PCC7603 (Mastigocladus laminosus), subsequently producing cpeB(C84S), cpeB(C155S), pecB(C84A), and pecB(C155I) via site-directed mutation (39); cpeA, cpeE, cpeF, cpeS, cpeT, ho1, pcyA, pecA, pecE, pecF from Nostoc sp. PCC 7120 (19, 40); and cpeA1, cpeB, pcyA, and pecB from Tolypothrix (Calothrix) sp. PCC 7601 and then subsequently producing cpeA(C139S) and cpeF(C84S/C59S/C165S) via site-directed mutation (20). The genes cpeA2, rpcG, mpeA, and rpcA from Synechococcus sp. WH8102 and the genes pcyB, pecB, ho1, rpcA, and rpcG from Synechococcus sp. RS9116 were PCR-amplified with the respective primers (supplemental
Phycourobilin Biosynthesis in Trichromatic Phycocyanin

— The concomitant presence of rpcG, cpcS, and rpcT homologs in the genome of Synechococcus sp. WH8102 (as well as in three other sequenced, oceanic strains, see above), led us to postulate that this strain may possess a novel phycocyanin binding a PUB at α-84, a PCB at β-82, and possibly a PEB at β-153. To verify this hypothesis, we isolated PBSs from Synechococcus sp. WH8102, separated the different phycobiliproteins by non-denaturing IEF, and then analyzed them by in situ absorption and fluorescence spectroscopy. As expected, the phycocyanin fraction exhibited three absorption maxima at 490, 534, and 615 nm, indicating the presence of three different chromophores, PUB, PEB, and PCB, respectively (Fig. 2, A and B). Excitation into all three bands resulted in an emission of the lowest energy chromophore, PCB (supplemental Fig. S1), indicating the efficient coupling of the three chromophores. We propose to call this novel phycocyanin R-PC V following the nomenclature of Sidler (5). Fractionation into its constitutive subunits by IEF under denaturing conditions resulted in an R-PC II-like β-subunit containing one PCB and one PEB chromophore, and an α-subunit containing a PUB chromophore (λmax = 492 nm, Fig. 2, C and D); this result is consistent with the prediction made from comparative genomics. Mass spectrometry analyses of these fractions unambiguously identified the expected phycocyanin α- and β-subunits from WH8102 (supplemental Table S3 and supplemental Fig. S2). Although not direct evidence, these results strongly support our previous hypothesis that the rpcT gene may encode a phycocyanin β-153 PEB lyase (7). This is further confirmed by the fact that CpcT (encoded by the cpcT gene, a paralog of rpcT) can add either PCB or PEB to cysteine-β153 when expressed in E. coli (Table 1), although it binds only PCB in the cyanobacterium from which the gene is derived.

A Biochemical Pathway to Phycourobilin—The finding of PUB on Synechoccus sp. WH8102 phycocyanin α-subunit and its correlation with the rpcG gene strongly suggested that the latter encoded an enzyme catalyzing the concomitant biosynthesis of the PUB chromophore from a PEB precursor and its attachment to cysteine α-84 of R-PC V. Direct proof for this was obtained by using an adapted (20) multiplasmid expression system in E. coli (52). Unlike in vitro chromophorylations of
Quantitative absorption and fluorescence data of reconstituted biliproteins

Although every reaction was tested with reductases generating PEB or, in most cases PCB, and with a combination of each lyase and apoprotein that are listed in Table S2, and under “Experimental Procedures,” only those reactions are listed that resulted in successful chromophorylation. Spectra were obtained in potassium phosphate buffer (20 mM, pH 7.2) containing NaCl (0.5 M), and data were averaged from 2–3 independent experiments. QVIS/uv denotes the absorbance ratio of the visible and near-UV bands.

Biliprotein	Lyase	λ_max (QVIS/uv)	ε_vis	nm	Fluorescence (λ_max)
PUB-PecA⁺	RpeG⁺ or PecE/F⁺	554/381 (3.8)	0.97 (±0.03)	105	503
PUB-RpeA⁺	RpeG⁺	492/376 (6.7)	1.58 (±0.01)	104	503
PUB-RpeA⁺	RpeG⁺	493/375 (11.9)	1.27 (±0.04)	104	503
PVB-PecA⁺	RpeG⁺ or PecE/F⁺	565/331 (2.6)	0.98 (±0.01)	105	502
PVB-RpeA⁺	RpeG⁺	557/329 (3.2)	0.95 (±0.03)	105	502
PEB-CpcA⁺	CpeE/F⁺	555/381 (3.6)	1.39 (±0.03)	105	577
PEB-PecA⁺	CpeE/F⁺	555/379 (6.9)	1.30 (±0.04)	105	577
PEB-CpeA(C445)⁺	CpeE/F⁺	533/384 (5.5)	0.92 (±0.04)	105	554
PEB-CpeA(C1551)⁺	CpeE/F⁺	533/371 (6.9)	1.33 (±0.03)	105	554
PEB-PecB(C444)⁺	CpeE/F⁺	537/394 (3.0)	0.94 (±0.02)	105	554
PEB-PecB(C1551)⁺	CpeE/F⁺	546/381 (7.6)	0.98 (±0.07)	105	554

* Amplitudes (ΔAA, see Ref. 46) of the reversible photochemistry of PVB-PecA and PVB-RpeA formed in the presence of RpcA were 103% and 22%, respectively.

** A, components of phycobilisomes, separated by non-denaturing isoelectric focusing on polyacrylamide gels; the more acidic allophycocyanins were lost under these conditions. a.u., absorbance units. B, absorption spectrum of R-PC V. C, subunits of R-PC V separated by denaturing isoelectric focusing. D, absorption spectra of isolated subunits.

This system indeed generated the desired chromoprotein, termed PUB-RpcA₈₁₀₂. No chromophorylated RpcA was formed if the rpcG-containing plasmid was omitted. Purified native PUB-RpcA₈₁₀₂ exhibited the characteristic absorption, fluorescence, and circular dichroism spectra of PUB-containing phycobiliproteins (Fig. 3, Table 1, and supplemental Fig. S3). Formation of the PUB chromophore was verified by the spectra of both the denatured protein (supplemental Fig. S3) and the chromopeptides obtained by tryptic digestion (supplemental Fig. S4). Covalent attachment of the PUB chromophore was confirmed by the Zn²⁺-induced green fluorescence on denaturing gels (Fig. 4) and correct binding to cysteine 84 by tryptic digestion and HPLC/mass spectrometry (supplemental Table S4).

Although the E. coli system is largely devoid of unspecific side reactions and avoids solubility problems (18). The rpcG gene was expressed together with the gene for the apoprotein, RpcA, and three genes coding for enzymes that generate the PEB chromophore from heme, viz. heme oxygenase (hoI) and two bilin reductases (pebA and pebB) (26). The balanced gene expression of the introduced genes can be controlled by growth at a relatively low temperature (16–20 °C).

Although every reaction was tested with reductases generating PEB or, in most cases PCB, and with a combination of each lyase and apoprotein that are listed in Table S2, and under “Experimental Procedures,” only those reactions are listed that resulted in successful chromophorylation. Spectra were obtained in potassium phosphate buffer (20 mM, pH 7.2) containing NaCl (0.5 M), and data were averaged from 2–3 independent experiments. QVIS/uv denotes the absorbance ratio of the visible and near-UV bands.

** TABLE 1**

Quantitative absorption and fluorescence data of reconstituted biliproteins

Although every reaction was tested with reductases generating PEB or, in most cases PCB, and with a combination of each lyase and apoprotein that are listed in Table S2, and under “Experimental Procedures,” only those reactions are listed that resulted in successful chromophorylation. Spectra were obtained in potassium phosphate buffer (20 mM, pH 7.2) containing NaCl (0.5 M), and data were averaged from 2–3 independent experiments. QVIS/uv denotes the absorbance ratio of the visible and near-UV bands.

- **A**, components of phycobilisomes, separated by non-denaturing isoelectric focusing on polyacrylamide gels; the more acidic allophycocyanins were lost under these conditions. a.u., absorbance units.
- **B**, absorption spectrum of R-PC V.
- **C**, subunits of R-PC V separated by denaturing isoelectric focusing.
- **D**, absorption spectra of isolated subunits.

This system indeed generated the desired chromoprotein, termed PUB-RpcA₈₁₀₂. No chromophorylated RpcA was formed if the rpcG-containing plasmid was omitted. Purified native PUB-RpcA₈₁₀₂ exhibited the characteristic absorption, fluorescence, and circular dichroism spectra of PUB-containing phycobiliproteins (Fig. 3, Table 1, and supplemental Fig. S3). Formation of the PUB chromophore was verified by the spectra of both the denatured protein (supplemental Fig. S3) and the chromopeptides obtained by tryptic digestion (supplemental Fig. S4). Covalent attachment of the PUB chromophore was confirmed by the Zn²⁺-induced green fluorescence on denaturing gels (Fig. 4) and correct binding to cysteine 84 by tryptic digestion and HPLC/mass spectrometry (supplemental Table S4).
and supplemental Figs. S4 and S5). Additional support for the function of RpcG was the formation of the homologous chromoprotein, PUB-RpcA⁹⁹¹⁶, when the respective genes (<i>rpcA</i>, <i>rpcG</i>, <i>pebA</i>, <i>pebB</i>, and <i>ho1</i>), from <i>Synechococcus</i> sp. RS9916, were introduced into the heterologous <i>E. coli</i> system (Fig. 3c).

The Lyase-Isomerase RpcG Can Use Different Substrates—To further test the isomerase capacities of RpcG, we replaced <i>pebA</i> and <i>pebB</i> genes in the <i>E. coli</i> system by <i>pcyA</i>, encoding the PCB:ferredoxin oxidoreductase, an enzyme that catalyzes the two-step reduction of biliverdin to produce PCB (53). When the phycoerythrocyanin α-subunit PecA from <i>Nostoc</i> sp. PCC 7120 was provided as the acceptor protein, the PCB chromophore was not only attached at the correct α-H₂₅₁-84 site but also isomerized at the same time to the PVB chromophore. The product, PVB-PecA, had the characteristic spectral properties of PVB-phycobiliproteins; it showed, in particular, the unique reversible orange-green photochemistry (46) (Table 1 and supplemental Fig. S6b). The difference spectrum of this photoreaction is qualitatively and quantitatively identical to that of α-H₂₅₁-PEC from <i>Nostoc</i> sp. PCC 7120 generated by using the isomerizing lyase PecE/F and the apoprotein PecA from the same organism (54). Moreover, RpcG could also attach PCB to RpcA with concomitant isomerization to PVB, when the system was co-transformed with the <i>rpcA</i> gene from <i>Synechococcus</i> sp. WH8102. The product (PVB-RpcA) again showed the characteristic spectra and photochemistry (Table 1, Fig. 3b, and supplemental Fig. S6a). However, the amplitude in this case was only ~20% of that of the authentic α-PEC, probably reflecting the hybrid situation when using the apoprotein from <i>Synechococcus</i> sp. WH8102 that naturally carries a PUB chromophore.

FIGURE 3. Absorption (heavy lines) and fluorescence spectra (thin lines) of Ni²⁺-affinity-purified PUB-RpcA_{wh8122} (a), PVB-RpcA_{wh8122} (b), and PUB-RpcA₉₉₁₆ (c) in potassium phosphate buffer (20 mM, pH 7.2) containing NaCl (0.5 M) and imidazole (0.5 M (a and b) or 0.2 M (c)). Chromoproteins were reconstituted in <i>E. coli</i> under catalysis of RpcG. Controls (dashed lines) from samples produced in the absence of RpcG were nearly free of chromoproteins. Fluorescence from PUB was excited at 470 nm, and that from PVB was excited at 540 nm. The subsequent HPLC of chromopeptides obtained by tryptic digestion of PUB-RpcA is shown in supplemental Fig. S4.

FIGURE 4. SDS-polyacrylamide gel electrophoresis of His-tagged chromoproteins. PUB-PecA (lanes A and a), PUB-RpcA (lanes B and b), PVB-PecA (lanes C and c), and PVB-RpcA (lanes D and d), detected by staining with Coomassie Blue (top) and Zn²⁺-induced fluorescence (43) (bottom). Lane M, protein markers (from top to bottom: 24, 20, and 14 kDa). The samples were obtained via chromophorylation in <i>E. coli</i> and subsequent purification with Ni²⁺-affinity chromatography (see “Experimental Procedures”).
Phycourobilin Biosynthesis in Trichromatic Phycocyanin

rpC gene. It is clear from these results that RpGC, in the heterologous system, can use both PEB and PCB as substrates and attach them, with concomitant isomerization to PUB and PVB, respectively, to cysteine 84 of phyco(erythro)cyanin α-subunits (Fig. 1). It combines, therefore, the functions of the two subunits of the isomerizing-lyase, PecE/F, which catalyze the double bond shift of (Δ4-Δ2) in both PEB and PCB. As mentioned previously, RpGC contains the NHCQG sequence that has been identified as a critical motif for isomerizing lyases that accept PCB (35), suggesting that the isomerase function of this motif extends to PEB as substrate. It should be noted, however, that despite using PCB in the E. coli system, RpGC does not use PCB in natural conditions because no PVB has been observed in Synechococcus sp. WH8102, nor has it ever been reported from any other rpC-containing strains. This restricted specificity in vivo may indicate that additional factors control the lyase specificities, such as timing or kinetics.

Re-examining the Properties of the Isomerizing Lyase PecE/F—The acceptance, in E. coli, of both PCB and PEB as substrates by RpGC prompted us to re-investigate the substrate and the acceptor-protein specificities of the heterodimeric isomerizing lyase PecE/F. The respective genes, pecE/F, from Nostoc sp. PCC 7120 were again expressed in the E. coli system (20, 52).

Proteins were formed when phycocyanin and PecA as acceptor protein, PUB-PecA was obtained as the major product. In the absence of PecE/F, only small amounts of a chromoprotein were formed, and these contained the non-isomerized PEB chromophore. The isomerization reaction therefore requires cooperation of two matching partners, an isomerizing lyase and an appropriate acceptor protein, namely, PecA or RpCA.

We have demonstrated here, for the first time, a biosynthetic pathway to the PUB chromophore in phycobiliproteins. It is analogous to the formation of PVB; in both cases, the same isomerization occurs at ring A during the attachment reaction, and the lyases, chromophores, and accepting proteins can be interchanged as long as an α-subunit of a phycocyanin or phycoerythrocyanin is provided (Fig. 1). The emerging modular properties of the E/F-type lyases are reminiscent of those of the bilin reductases. In the biosynthesis of phycobiliproteins, these reductases act prior to chromophore attachment reaction and may be involved in metabolic channeling of these chromophores, which, in their free form, are chemically very labile (26).
Phycourobilin Biosynthesis in Trichromatic Phycocyanin

From an evolutionary viewpoint, the trichromatic R-PC V is remarkable because it is the only biliprotein (or even chromoprotein in general) so far known to harvest the complete range of wavelengths between the two peaks of chlorophyll a at ~440 and ~675 nm. Presently, one can only speculate on the possible functions of this unusual pigmentation. It probably contributes little additional light absorption because the majority of PUB is contained in PE I and PE II (Fig. 2) (37). Because PCs are located at the base of PBS rods, they are critical in transferring excitation energy to the PBS core; a function in energy transfer is therefore more likely. In PUB-rich PBSs, the presence of R-PC V with both PUB and PEB chromophores may improve spectral overlap with both the high energy PUB and the intermediate energy PEB in the distal parts of the rods, thereby optimizing energy equilibration and the further transfer to the low energy PCB chromophores of the allophycocyanins in the PBS core and, ultimately, to the RCs. An rpcG-like gene is also present in the cyanobacterium, *Crococphaera watsonii* (strain WH8501), which is particularly rich in PUB but gene is also present in the cyanobacterium, *Crocosphaera*

References

1. Glazer, A. N. (1989) *J. Biol. Chem.* 264, 1–4
2. Green, B., and Parson, W. (2003) *Light-harvesting Antennas in Photosynthesis*, Kluwer, Dordrecht, The Netherlands
3. Garcia-Pichel, F., Belnap, J., Neuer, S., and Schanz, F. (2003) *Algal Stud.* 109, 213–228
4. Ganot, E. (1986) in *Photosynthesis III: Photosynthetic Membranes and Light-harvesting Systems* (Staehelin, L. A., and Arntzen, C. J., eds) pp. 260–268, Springer, Berlin
5. Sidler, W. A. (1994) in *The Molecular Biology of Cyanobacteria* (Bryant, D. A., ed) pp. 139–216, Kluwer, Dordrecht, The Netherlands
6. Partensky, F., Blanchot, J., and Vaulot, D. (1999) in *Marine Cyanobacteria* (Charpy, L., and Larkum, A., eds) pp. 457–475, Musée Oceanographique, Monaco
7. Six, C., Thomas, J. C., Garczarek, L., Ostrowski, M., Dufresne, A., Blot, N., Scanlan, D. J., and Partensky, F. (2007) *Genome Biol.* 8, R259
8. Canaani, O., Lipschultz, C. A., and Ganot, E. (1980) *FEBS Lett.* 115, 225–229
9. Lipschultz, C. A., and Ganot, E. (1981) *Biochemistry* 20, 3371–3376
10. Lundell, D. J., Williams, R. C., and Glazer, A. N. (1981) *J. Biol. Chem.* 256, 3580–3592
11. Fairchild, C. D., and Glazer, A. N. (1994) *J. Biol. Chem.* 269, 8686–8694
12. Schluchter, W. M., and Glazer, A. N. (1999) in *The Phototrophic Prokaryotes* (Peschek, G. A., Löffelhardt, W., and Schnetterer, G., eds) pp. 83–95, Kluwer/Plenum Press, New York
13. Schluchter, W. M., and Bryant, D. A. (2002) in *Home, Chlorophyll, and Bilins* (Smith, A. G., and Witty, M., eds) pp. 311–334, Humana Press, Totowa, NJ
14. Storf, M., Parbel, A., Meyer, M., Strohmann, B., Scheer, H., Deng, M., Zheng, M., Zhou, M., and Zhao, K. (2001) *Biochemistry* 40, 12444–12456
15. Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M. (2008) *J. Biol. Chem.* 283, 7513–7522
16. Shen, G., Schluchter, W. M., and Bryant, D. A. (2008) *J. Biol. Chem.* 283, 7503–7512
17. Shen, G., Saunee, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M., and Bryant, D. A. (2006) *J. Biol. Chem.* 281, 17768–17778
18. Scheer, H., and Zhao, K.-H. (2008) *Mol. Microbiol.* 68, 263–276
19. Zhao, K.-H., Zhang, J., Tu, J. M., Böhm, S., Plösch, M., Eichacker, L., Bubenzer, C., Scheer, H., Wang, X., and Zhou, M. (2007) *J. Biol. Chem.* 282, 34093–34103
20. Zhao, K.-H., Su, P., Tu, J. M., Wang, X., Liu, H., Plösch, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) *Proc. Natl. Acad. Sci. U. S. A.* 104, 14300–14305
21. Miller, C. A., Leonard, H. S., Pinsky, I. G., Turner, B. M., Williams, S. R., Harrison, L. J., Jr., Fletcher, A. F., Shen, G., Bryant, D. A., and Schluchter, W. M. (2008) *J. Biol. Chem.* 283, 13929–13930
22. Shen, G., Leonard, H. S., Schluchter, W. M., and Bryant, D. A. (2008) *J. Bacteriol.* 190, 4808–4817
23. Thomas, B. A., Bricker, T. M., and Klotz, A. V. (1993) *Biochim. Biophys. Acta* 1143, 104–108
24. Liu, L. N., Chen, X. L., Zhang, Y. Z., and Zhou, B. C. (2005) *Biochim. Biophys. Acta* 1708, 133–142
25. Zehr, J. P., Bench, S. R., Mondragon, E. A., McCray, J., and DeLong, E. F. (2007) *Proc. Natl. Acad. Sci. U. S. A.* 104, 17807–17812
26. Dammeyer, T., and Frankenberg-Dinkel, N. (2008) *Photochem. Photobiol.* 85, 9297
27. Swanson, R. V., Ong, L. J., Wilbanks, S. M., and Glazer, A. N. (1991) *J. Biol. Chem.* 266, 9528–9534
28. Ong, L. J., and Glazer, A. N. (1991) *J. Biol. Chem.* 266, 9515–9527
29. Ong, L. J., and Glazer, A. N., and Waterbury, J. B. (1984) *Science* 220, 80–83
30. Subramaniam, A., Carpenter, E. J., Karentz, D., and Falkowski, P. G. (1999) *Limnol. Oceanogr.* 44, 608–617
31. Dufresne, A., Ostrowski, M., Scanlan, D. J., Garczarek, L., Mazard, S., Palenik, B. P., Paulsen, I. T., Tandeau de Marsac, N., Wincker, P., Dossat, C., Ferrieria, S., Johnston, J., Post, A. F., Hess, W. R., and Partensky, F. (2008) *Genome Biol.* 9, R90
32. Ong, L. J., and Glazer, A. N. (1988) in *Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models* (Stevens, S. E., and Bryant, D. A., eds) pp. 102–121, American Society of Plant Physiologists, Rockville, MD
33. Ong, L. J., and Glazer, A. N. (1987) *J. Biol. Chem.* 262, 6323–6327
34. Wilbanks, S. M., and Glazer, A. N. (1993) *J. Biol. Chem.* 268, 1226–1235
35. Zhao, K. H., Wu, D., Zhou, M., Zhang, L., Böhm, S., Bubenzer, C., and Scheer, H. (2005) *Biochemistry* 44, 8126–8137
36. Everroad, C., Six, C., Partensky, F., Thomas, J. C., Holtzendorff, J., and Wood, A. M. (2006) *J. Bacteriol.* 188, 3345–3356
37. Six, C., Thomas, J.-C., Thion, L., Lemoine, Y., Zal, F., and Partensky, F. (2005) *J. Bacteriol.* 187, 1685–1694
38. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning a Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
39. Zhao, K. H., Zhu, J. P., Song, B., Zhou, M., Storf, M., Böhm, S., Bubenzer, C., and Scheer, H. (2004) *Biochim. Biophys. Acta* 1657, 131–145
40. Zhao, K. H., Su, P., Li, J. A., Tu, J. M., Zhou, M., Bubenzer, C., and Scheer, H. (2006) *J. Biol. Chem.* 281, 8573–8581
41. Zhao, K.-H., Wu, D., Zhang, L., Zhou, M., Böhm, S., Bubenzer, C., and Scheer, H. (2006) *FEBS J.* 273, 1262–1274
Phycourobilin Biosynthesis in Trichromatic Phycocyanin

42. Laemmli, U. K., and Favre, M. (1973) *J. Mol. Biol.* **80**, 575–599
43. Berkelman, T., and Lagarias, J. C. (1986) *Anal. Biochem.* **156**, 194–201
44. MacColl, R., Eisele, L. E., Williams, E. C., and Bowser, S. S. (1996) *J. Biol. Chem.* **271**, 17157–17160
45. Yu, M. H., Glazer, A. N., Spencer, K. G., and West, J. A. (1981) *Plant Physiol.* **68**, 482–488
46. Zhao, K. H., Haessner, R., Cmiel, E., and Scheer, H. (1995) *Biochim. Biophys. Acta* **1228**, 235–243
47. Glazer, A. N., and Fang, S. (1973) *J. Biol. Chem.* **248**, 659–662
48. Glazer, A. N., and Hixson, C. S. (1975) *J. Biol. Chem.* **250**, 5487–5495
49. Glazer, A. N., and Hixson, C. S. (1977) *J. Biol. Chem.* **252**, 32–42
50. Bishop, J. E., Rapoport, H., Klotz, A. V., Chan, C. F., Glazer, A. N., Fügli-staller, P., and Zuber, H. (1987) *J. Am. Chem. Soc.* **109**, 875–881
51. Bradford, M. M. (1976) *Anal. Biochem.* **72**, 248–254
52. Tooley, A. J., and Glazer, A. N. (2002) *J. Bacteriol.* **184**, 4666–4671
53. Frankenberg, N., and Lagarias, J. C. (2003) *J. Biol. Chem.* **278**, 9219–9226
54. Zhao, K.-H., Ran, Y., Li, M., Sun, Y.-N., Zhou, M., Storf, M., Kupka, M., Böhm, S., Bubenzer, C., and Scheer, H. (2004) *Biochemistry* **43**, 11576–11588