CHANDRA X-RAY OBSERVATIONS OF THE QUADRUPLY LENSED QUASAR RX J0911.4+0551

N. D. Morgan, G. Chartas, M. Malm, M. W. Bautz, I. Burzt, J. Hjorth

S. E. Jones, P. L. Schechter

Received 2001 January 25; accepted 2001 March 5

ABSTRACT

We present results from X-ray observations of the quadruply lensed quasar RX J0911.4+0551 using data obtained with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory. The 29 ks observation detects a total of ~404 X-ray photons (0.3 to 7.0 keV) from the four images of the lensed quasar. Deconvolution of the aspect-corrected data resolves all four lensed images, with relative positions in good agreement with optical measurements. When compared with contemporaneous optical data, one of the lensed images (component A3) is dimmer by a factor of ~6 in X-rays with respect to the two brighter images (components A1 and A2). Spectral fitting for the combined images shows significant intrinsic absorption in the soft (0.2–2.4 keV) energy band, consistent with the minimum broad absorption line (BAL) nature of this quasar, while a comparison with ROSAT Position Sensitive Proportional Counter observations from 1990 shows a drop of ~6.5 in the total soft bandpass flux. The observations also detect ~157 X-ray photons arising from extended emission of the nearby cluster (peaked ~42° southwest of RX J0911.4+0551) responsible for the large external shear present in the system. The Chandra observation reveals the cluster emission to be complex and nonspherical, and yields a cluster temperature of $kT = 2.3^{+0.8}_{-1.0}$ keV and a 2.0 to 10 keV cluster luminosity within a 1 Mpc radius of $L_X = 7.6^{+0.6}_{-0.2} \times 10^{43}$ ergs s$^{-1}$ (error bars denote 90% confidence limits). Our mass estimate of the cluster within its virial radius is $2.3^{+1.8}_{-0.7} \times 10^{14} M_\odot$ and is a factor of 2 smaller than, although consistent with, previous mass estimates based on the observed cluster velocity dispersion.

Subject headings: gravitational lensing — quasars: absorption lines — quasars: individual (RX J0911.4+0551) — X-rays: general — X-rays: individual (RX J0911.4+0551)

1. INTRODUCTION

Gravitational lenses that produce multiple images of quasars can be used to measure cosmological parameters (Refsdal 1964; Kochanek 1996) to study the properties of the lensing galaxies (Keeton, Kochanek, & Falco 1998) and to resolve structures associated with the lensed quasar (Bunker, Moustakas, & Davis 2000). For the past 20 years, such work has been carried out at optical and radio wavelengths. With the advent of the subarcsecond angular resolution of the Chandra X-Ray Observatory (Weisskopf, O'Dell, & van Speybroeck 1996), one can hope to carry out similar studies at X-ray wavelengths. As the X-ray emission from quasars has a different spatial and temporal structure, X-ray studies offer a variety of new opportunities. In the present paper we report on Chandra observations of the quadruply imaged quasar RX J0911.4+0551, which have implications both for the structure of the lensing potential and for the structure of the X-ray-emitting region.

To our knowledge, the observations of RX J0911.4+0551 presented here are the first X-ray observations of the system since its detection by the ROSAT All-Sky Survey in 1990 October. The source was optically identified as a gravitationally lensed $z = 2.85$ quasar by Bade et al. (1997) and later confirmed as a quadruple system by Burud et al. (1998). Lensing models require a large external shear ($\gamma \gtrsim 0.15$) to account for the system's complex image geometry. Burud et al. (1998) first suggested the source of this shear to be a group of galaxies in the southwest vicinity of RX J0911.4+0551, which has been spectroscopically confirmed by Kneib, Cohen, & Hjorth (2000) to be a high-redshift cluster of at least 24 galaxies at $z = 0.769$. The original ROSAT observation of RX J0911.4+0551 lacked the sensitivity and angular resolution required for a detailed X-ray analysis of the lensed quasar and cluster. Deconvolution of the Chandra observations presented here identifies all four components of the lensed quasar, and an adaptively smoothed image reveals the extent of the X-ray emission from the nearby cluster as well. The format of the paper is as follows: We describe the Chandra observations and reductions of RX J0911.4+0551 in § 2, discuss X-ray astrometry and relative photometry of the lens components in § 2.1, and report spectral properties of the lensed quasar in § 2.2. The X-ray detection and analysis of the cluster are presented in § 3. We summarize our findings and briefly comment on possible sources of X-ray variability for the system in § 4.

2. OBSERVATIONS AND ANALYSIS

RX J0911.4+0551 was observed for ~29 ks with the Chandra X-Ray Observatory on 1999 November 2. The data were obtained using the back-illuminated S3 chip of the Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 1992; Bautz et al. 1998) at a focal plane temperature of ~110°C. The telescope pointing placed RX J0911.4+0551

1 Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; malm@space.mit.edu, mwb@space.mit.edu, ndmorgan@space.mit.edu, schech@space.mit.edu, sjones@space.mit.edu.

2 Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802; chartas@jonestel.astro.psu.edu.

3 Institut d'Astrophysique et de Geophysique de Liège, Université de Liège, Avenue de Cointe 5, 4000 Liège, Belgium; burud@astro.ulg.ac.be.

4 Astronomical Observatory, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark; jens@astro.ku.dk.
at the default aim point for the ACIS-S array during the exposure. Three periods of background flaring were detected, during which time the count rate reached 2 to 4 times the nominal background rate. Since the contamination of point sources from background flaring is small, these times were not filtered from our observation except for the cluster analysis discussed in § 3. Removal of the three X-ray flares reduces the effective exposure time of the data to \(\approx 26 \text{ ks} \).

The data were reduced using the CIAO software tools following the science threads outlined on the Chandra X-Ray Observatory Center (CXC) user support home page. The data used throughout this paper have been reprocessed by the CXC using software version R4CU5UPD9, which results in an improved aspect solution over earlier versions of the processing software. Also, in the standard CXC pipeline the photon event positions are randomized by \(\pm 0'0246 \) (1 ACIS pixel = 0'492), which is mainly to reduce aliasing effects for observations of duration less than \(\approx 2 \text{ ks} \). Given the small angular extent of the lens (\(\approx 3' \)), we reproduced the event positions using the CXC tool ACIS_PROCESS_EVENTS without incorporating the randomization.

Throughout this work, we have adopted a flat cosmological model parameterized by \(\Omega_0 = 0.5 \) and \(H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1} \). At the redshift of the lensing galaxy (\(z = 0.769 \); Kneib et al. 2000), this yields a physical scale of 8.2 kpc arcsec\(^{-1}\). Unless otherwise noted, error bars denote 90\% confidence limits.

\subsection{2.1. Relative Astrometry and Photometry}

In Figure 1a we show the X-ray image of RX J0911.4 + 0551, resampled at a resolution of 0'1 pixel\(^{-1}\) and smoothed with a Gaussian of \(\sigma = 0'2 \). A total of 404 X-ray photons in the 0.3–7.0 keV bandpass are estimated from the four lensed images of the quasar, which compensates for contributions from the X-ray background and from the nearby cluster. Adopting the nomenclature of Burud et al. (1998), component B is clearly resolved whereas components A1, A2, and A3 are not clearly separated. To enhance the image quality, we applied the Richardson-Lucy maximum likelihood deconvolution technique (Richardson 1972; Lucy 1974) to the X-ray image of RX J0911.4 + 0551. The point-spread function (PSF) incorporated in the deconvolution was generated with the ray-trace simulator MARX version 3.0 (Wise, Huenemoerder, & Davis 1997). The input spectrum for the simulation was based on the model of the observed spectrum of RX J0911.4 + 0551 (see § 2.2). In particular, we chose an absorbed power-law model with Galactic absorption of \(N_H = 0.036 \times 10^{22} \text{ cm}^{-2} \), intrinsic absorption at \(z = 2.8 \) of \(N_H = 4.1 \times 10^{22} \text{ cm}^{-2} \), and a photon spectral index of 1.63. The PSF and image were then sampled at a resolution of 0'1. In Figure 1b we show the deconvolved image of RX J0911.4 + 0551 smoothed with a Gaussian of \(\sigma = 0'2 \). All four components are now resolved with relative positions in good agreement (to better than 0'15) with those found from optical observations. Component B appears somewhat extended along the east-west direction in both the raw and deconvolved images, which we attribute to the small number of counts (\(\approx 70 \) in total for 0.3 to 7.0 keV) detected for this component. In Table 1 we present the optical and X-ray offsets of the lensed images.

The ACIS PSF (when properly normalized) gives the probability distribution of detecting a single X-ray photon at some position with respect to the center of a point source. One can therefore use several PSFs of different relative intensities to quantify the likelihood of observing the distribution of photon counts for a given set of image flux ratios and positions (see, e.g., Cash 1979). Specifically, we have solved for the relative flux ratios of the system components using the Cash (1979) \(C \)-statistic to quantify the relative goodness of fit between the observed and predicted number of photons per bin. The system was modeled...
using four of the MARX PSFs described above; relative positions of the four sources were held fixed according to the optical astrometry listed in Table 1, but the overall position of the system was allowed to vary during the fit. The best-fit parameters were then determined by simultaneously varying the intensity of each component and the overall position of the system using Powell’s direction-set method (Press et al. 1995) until a minimum C-statistic was reached. This analysis was performed on the raw data at a resampling size of 0.06, or an eighth of an ACIS pixel.

In Table 2 we present our optimal X-ray flux ratios for the 0.3 to 7.0 keV bandpass, along with contemporaneous (to within 1 day) I-band data obtained from an ongoing monitoring campaign of RX J0911.4+0551 using the Nordic Optical Telescope (NOT; J. Hjorth et al. 2001, in preparation). Since the separation between components A1 and A2 is 0.48, or slightly less than 1 ACIS pixel, it is prudent to discuss the combined flux of components A1 and A2 when comparing with the optical data. Our maximum likelihood analysis yields an (A1 + A2)/B X-ray flux ratio of 4.68 and an (A1 + A2 + A3)/B flux ratio of 4.87, which are ~20% and ~30% smaller than the respective optical ratios of 5.67 and 6.95. A significant difference is observed for A3/B, where we find an X-ray flux ratio of 0.19 as compared with the optical ratio of 1.28. If we normalize the optical and X-ray fluxes at their respective A1 and A2 values, then component B is brighter by a factor of 1.2 in X-rays and component A3 is fainter by a factor of 5.7 in X-rays. We briefly discuss possible implications of the faintness of A3 in § 4.

2.2. Spectral Properties

A source spectrum of RX J0911.4+0551 was extracted by combining events from all four quasar images and a background spectrum from events located within an annulus centered on RX J0911.4+0551 with inner and outer radii of 15” and 30”, respectively. Redistribution matrices and ancillary response files were generated using the CXC tools MKRMF and MKARF. A fit of an absorbed power-law model with intrinsic and Galactic absorption in the energy range 0.5–6.0 keV yields a photon spectral index of $\Gamma = 1.45^{\pm 0.24}$ and a $0.2–2.4$ keV flux (approximating the ROSAT bandpass) of $F_X = 3.3^{+0.1}_{-0.1} \times 10^{-15}$ ergs s$^{-1}$ cm$^{-2}$. A fit of a simple absorbed power-law model with Galactic absorption of $N_H = 0.036 \times 10^{20}$ cm$^{-2}$, considering only energies above 1.5 keV, yields a photon spectral index of $\Gamma = 2.22^{+0.44}_{-0.43}$, which is typical for high-redshift radio-quiet quasars (Reimers et al. 1995). As we show in Figure 2, extrapolating this model to energies below 1.5 keV clearly indicates that considerable intrinsic absorption is present.

RX J0911.4+0551 was observed with the ROSAT Position Sensitive Proportional Counter (PSPC) in 1990 October with a count rate of 0.020 ± 0.0088 counts s$^{-1}$ (1 σ). Assuming the simple absorbed power-law model from above, the corresponding X-ray flux for the ROSAT observation is $F_X = (2.2 \pm 1.1) \times 10^{-13}$ ergs s$^{-1}$ cm$^{-2}$ (1 σ). This includes emission from both the gravitational lens and extended emission from the nearby cluster (see § 3). Within a circular aperture centered on RX J0911.4+0551 of diameter 1’ (twice the half-power diameter of the ROSAT PSPC), the Chandra estimate of the flux due solely to cluster emission is $(6.6 \pm 1.0) \times 10^{-15}$ ergs cm$^{-2}$ s$^{-1}$ (1 σ). Therefore, the cluster contribution to the original ROSAT flux was

![Figure 2](image-url)
small, on the order of a few percent. When we compare the estimated ROSAT flux from RX J0911.4+0551 with the Chandra observation, we find that it has dropped by a factor of $\sim 6.5 \pm 3.3$ (1 σ) over the 10 year period. Our spectral fits to the Chandra spectrum of RX J0911.4+0551 indicate that a factor of 3.0 ± 1.5 (1 σ) variation in the 0.2–2.4 keV flux is possible if one assumes that the presently observed intrinsic X-ray absorber were not present during the ROSAT PSPC observation.

3. CLUSTER ANALYSIS

The Chandra observation of RX J0911.4+0551 provides the first detailed X-ray study of the nearby cluster, reported by Kneib et al. (2000). The extent of the X-ray emission from the cluster is apparent after adaptively smoothing the image with the CXC tool CSMOOTH (Ebeling, White, & Rangarajan 2000). Contours for the smoothed image are displayed in Figure 3 and are shown overlaid on an IJK composite exposure of the RX J0911.4+0551 field from Burud et al. (1998). When creating the smoothed image, we used a conservative lower bound on the signal-to-noise ratio (S/N) of the smoothing kernel of S/N ≥ 3 and also excluded emission from within a small ($\sim 4''$ radius) region around RX J0911.4+0551 itself. The smoothed emission profile consists of a bright, extended component peaked $\sim 42''$ southwest of component B, but is clearly elongated in the direction toward RX J0911.4+0551. An iterative centroiding algorithm (Buote & Canizares 1992) applied to the binned event positions yields a centroid for the extended emission of $\Delta \alpha = -12'0, \Delta \delta = -39'8$, where offsets are with respect to the centroid of component B. The contour morphology suggests that the cluster mass distribution is complex and nonspherical, and possibly not dynamically relaxed. If the X-ray emission follows the mass distribution (which, simulations suggest, it need not always do during merging; see, e.g., Roettiger, Stone, & Mushotzky 1998), then our image implies that the cluster is responsible for some fraction of the mass convergence at the location of the lens.

Within an ellipse of $70'' \times 90''$ (Fig. 3, dashed line) encompassing the bulk of the cluster emission, we find a total of 157 net cluster counts above an estimated background of 222 counts. The corresponding 0.3–7.0 keV flux (assuming

![Figure 3](image-url)

Fig. 3.—X-ray contours (logarithmically spaced) of an adaptively smoothed Chandra image of the RX J0911.4+0551 field (excluding emission from RX J0911.4+0551 itself; solid lines). The background image is a composite optical image taken with the NOT and ESO New Technology Telescope (Burud et al. 1998). X-ray contours have been aligned with the optical exposure according to the Chandra aspect solution. The dashed line indicates the elliptical aperture used in § 3 to estimate the cluster luminosity. Inset: closeup of RX J0911.4+0551 taken from archival HST NICMOS imaging of E. Falco (principal investigator). The four quasar images and lensing galaxy are labeled.
the spectral form described below) is \(f_x = (2.5 \pm 0.2) \times 10^{-14} \text{ergs} \text{s}^{-1} \text{cm}^{-2} \) (1\(\alpha \)).

To estimate an X-ray temperature for the cluster, we extracted a 0.3–7.0 keV source spectrum centered on the southwest peak within a 20” aperture and subtracted a background spectrum from an annulus with inner and outer radii of 90’ and 140’, respectively. Fitting the emission spectrum to an optically thin Raymond & Smith (1977) plasma model with a Galactic absorption of \(N_H = 0.036 \times 10^{22} \) cm\(^{-2}\), a metal abundance of 0.3 \(Z_{\odot} \), and a cluster redshift of \(z = 0.769 \) (Kneib et al. 2000) yields a temperature of \(kT = 2.3^{+0.8}_{-0.6} \) keV at the 90% confidence level. This is consistent with the estimate of \(kT = 4.5 \pm 1.2 \) keV obtained by Kneib et al. (2000) from their measurement of the cluster velocity dispersion and the \(\sigma-T_x \) relationship (Girardi et al. 1996).

We do not detect enough photons to constrain the radial surface brightness profile of the cluster. We obtain a crude estimate of the integrated cluster emission by assuming the profile is well described by an isothermal \(\beta \)-model (Cavaliere & Fusco-Femiano 1976) with parameters typical for nearby, non-cooling-flow clusters (\(\beta = 0.6, r_c = 0.22 \) Mpc; Mohr, Mathiesen, & Evrard 1999). Normalizing the model using the observed flux within the elliptical aperture, we predict a 2.0–10 keV luminosity within a 1 Mpc (122”) radius of \(L_X = 7.6^{+0.6}_{-0.2} \times 10^{43} \) ergs s\(^{-1}\).

From our temperature we can obtain a crude cluster mass estimate. We first estimate the virial radius for the cluster. Girardi et al. (1998) find for nearby clusters that the virial radius is \(R_v \approx 4 \sigma_{1000} h_{50}^{-1} \) Mpc, where \(\sigma_{1000} \) is the radial velocity dispersion divided by 1000 km s\(^{-1}\). Assuming the virial radius scales with redshift as \(R_v \approx (1 + z)^{-3/2} \), and given the observed velocity dispersion \(\sigma_{1000} = 0.84 \) (Kneib et al. 2000), we estimate \(R_v \approx 1.4 h_{50}^{-1} \) Mpc. Assuming an isothermal plasma with the density distribution described above and \(kT = 2.3 \) keV, the mass within the virial radius is \(M(R_v) = 2.3^{+1.3}_{-0.7} \times 10^{14} M_\odot \). Alternatively, the mass-temperature relation of Hjorth, Oukbir, & van Kampen (1998) gives \(M(R_v) = 3.2^{+2.8}_{-1.0} \times 10^{14} M_\odot \). Here the 90% confidence limits are dominated by errors in the temperature and do not include systematic errors arising from our ignorance of the slope of the surface brightness distribution, or from calibration uncertainties in the mass-temperature relationship. Our X-ray mass estimate is somewhat smaller than, although consistent with, the virial estimate of \(4.8^{+1.2}_{-0.7} \times 10^{14} M_\odot \) (1 \(\sigma \); \(\Omega_m = 1.0, \Omega_\Lambda = 0.0 \)) obtained by Kneib et al. (2000). Given the asymmetry of the X-ray emission, it is reasonable to speculate that the X-ray gas is not in hydrostatic equilibrium. In this case, one might well expect the emission-weighted X-ray temperature to lead to an underestimate of the gravitating mass (e.g., Roettiger et al. 1998). In any event, given the large uncertainties, the agreement among the mass estimates must be regarded as good.

4. DISCUSSION AND CONCLUSIONS

Our analysis has detected two indications of X-ray variability for RX J0911.4+0551. First, component A3 is dimmer in X-rays by a factor of \(\sim 6 \) when compared with contemporaneous optical data. The reason for A3’s X-ray faintness is not known. One possible explanation is differential \(N_H \) column densities along the lines of sight to the quasar images. Although an attempt was made to search for differential X-ray extinction between the four lens components (the details of which will be presented in a forthcoming paper; Chartas et al. 2001), a preliminary analysis is inconclusive; the intrinsic \(N_H \) column density of image A3 is poorly constrained by the \textit{Chandra} data. A demagnifying microlensing event of component A3 is also a possible, although somewhat unlikely, explanation. A sixfold drop in flux would require fluctuations on the order of \(\Delta m \sim 2 \) mag; microlensing dips of this size are rare, in theory (Witt, Mao, & Schechter 1995).

Second, the total observed flux for the system has dropped by a factor of \(\sim 6.5 \) when compared with \textit{ROSAT} PSPC observations obtained in 1990 October. Such a drop in flux may be a result of quasar engine variability. Almaini et al. (2000) have observed engine variability of a factor of 3 in flux over a period of several days, so a factor of \(\sim 6.5 \) between the \textit{ROSAT} and \textit{Chandra} observations is not unlikely.

In conclusion, the unique imaging capabilities of \textit{Chandra} have resolved all four images of the quadruply lensed system RX J0911.4+0551 (detecting \(\sim 404 \) photons in the 0.3–7.0 keV energy range), with relative image positions in good agreement with optical measurements. In addition to the two indications of X-ray variability described above, we have also detected strong soft (<1.5 keV) X-ray absorption in the spectra of the combined quasar images, which is consistent with the mini-BAL nature of the quasar. The \textit{Chandra} observation of RX J0911.4+0551 has also identified extended X-ray emission from the nearby cluster, detecting \(\sim 157 \) photons (0.3 to 7.0 keV) in a region of \(\sim 1.4 \) arcmin\(^2\). The morphology of the cluster emission suggests a complex and nonspherical cluster mass distribution. Our estimates of the cluster X-ray temperature (\(kT = 2.3^{+1.8}_{-0.8} \) keV) and virial mass (\(2.3^{+1.3}_{-0.5} \times 10^{14} M_\odot \)) are consistent with previous estimates derived from the observed velocity dispersion of the cluster galaxies (Kneib et al. 2000).

N. D. M. and P. L. S. gratefully acknowledge support from the National Science Foundation through grant AST 96-16866 and from NASA under contract NAS 8-37716. M. W. B. and M. M. acknowledge support from NASA under contracts NAS-8-37716, NAS-8-38252, and 1797-MIT-NA-A-38252. J. H. acknowledges support by the Danish Natural Science Research Council (SNF).

REFERENCES

Almaini, O., et al. 2000, MNRAS, 315, 325
Bade, N., Siebert, J., Lopez, S., Voges, W., & Reimers, D. 1997, A&A, 317, L13
Bautz, M. W., et al. 1998, Proc. SPIE, 3444, 210
Bunker, A. J., Moustakas, L. A., & Davis, M. 2000, ApJ, 531, 95
Buote, D. A., & Canizares, C. R. 1992, ApJ, 400, 385
Burud, I., et al. 1998, ApJ, 501, L5
Cash, W. 1979, ApJ, 228, 939
Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 49, 137
Chartas, G., Dai, X., Gallagher, S. C., Garmire, G. P., Bautz, M. W., Schechter, P. L., & Morgan, N. D. 2001, ApJ, in press

Ebeling, H., White, D. A., & Rangarajan, F. V. N. 2000, MNRAS, submitted

Garmire, G. P., et al. 1992, in Proc. AIAA Space Programs and Technologies Conference (New York: Am. Inst. Aeronaut. Astronaut.).

Girardi, M., Borgani, S., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1998, ApJ, 505, 74
Girardi, M., Fadda, D., Giuricin, G., Mardirossian, F., Mezzetti, N., & Biviano, A. 1996, ApJ, 457, 61

Hjorth, J., Oukbir, J., & van Kampen, E. 1998, MNRAS, 298, L1
Keeon, C. R., Kochanek, C. S., & Falco, E. E. 1998, ApJ, 509, 561
Kneib, J.-P., Cohen, J. G., & Hjorth, J. 2000, ApJ, 544, L35
Kochanek, C. S. 1996, ApJ, 473, 595
Lucy, L. B. 1974, AJ, 79, 745
Mathur, S., Elvis, M., & Singh, K. P. 1995, ApJ, 455, L9
Mohr, J. J., Mathiesen, B., & Evrard, A. E. 1999, ApJ, 517, 627
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in C (Cambridge: Cambridge Univ. Press).
Raymond, J. C., & Smith, B. W. 1977, ApJS, 35, 419
Refsdal, S. 1964, MNRAS, 128, 307
Reimers, D., Bade, N., Schartel, N., Hagen, H.-J., Engels, D., & Toussaint, F. 1995, A&A, 296, L49
Richardson, W. H. 1972, J. Opt. Soc. Am., 62, 55
Roettiger, K., Stone, J. M., & Mushotzky, R. F. 1998, ApJ, 493, 62
Weisskopf, M. C., O'Dell, S. L., & van Speybroeck, L. P. 1996, Proc. SPIE, 2805, 2
Wise, M. W., Huenemoerder, D. P., & Davis, J. E. 1997, in ASP Conf. Ser. 125, Astronomical Data Analysis Software and Systems VI, ed. G. Hunt & H. E. Payne (San Francisco: ASP), 477
Witt, H. J., Mao, S., & Schechter, P. L. 1995, ApJ, 443, 18