Continuous vs. cyclic combined hormonal contraceptives for treatment of dysmenorrhea: a systematic review

Tiffany Damm a, Georgine Lamvu a,b, Jorge Carrillo a,b, Chensi Ouyang b,c, Jessica Feranec a,b

Objective: This systematic review aims to evaluate the benefits of oral continuous combined hormonal contraceptives (CHCs) in managing dysmenorrhea by comparing randomized controlled trials (RCTs) evaluating the efficacy of continuous vs. cyclic CHC use for the following outcomes: (a) reducing dysmenorrhea duration and frequency, (b) severity, (c) recurrence and (d) interference with daily activity.

Study design: Cochrane, PUBMED and Popline databases were searched from 1934 to 2018 for all relevant studies evaluating CHC for treatment of dysmenorrhea. A study was selected if it (a) compared continuous regimen vs. cyclic regimen of oral CHC, (b) measured dysmenorrhea as a primary or secondary outcome, (c) was an RCT and (d) was published in English. Due to differences in CHC used and outcome measurement, a systematic analysis of individual study results and a limited meta-analysis were conducted.

Results: Of 780 studies that were screened by title and abstract, 8 were included in the final analysis; 6 evaluated cyclic vs. continuous CHC, and 2 evaluated cyclic vs. extended/ flexible CHC use. Quality of evidence was low for all outcome measures. Overall, compared to cyclic use, flexible/extended CHC resulted in 4 fewer days of dysmenorrhea. Studies revealed conflicting results for interference with daily activity, pain severity and pain recurrence. Side effects were few in both comparison groups.

Conclusions: Continuous or extended/flexible CHC use may reduce dysmenorrhea duration compared to cyclic regimen; however, more rigorous research is needed.

Implications: This systematic review shows that continuous CHC use may reduce dysmenorrhea duration compared to cyclic regimen, although the quality of evidence is low. Future double-blinded RCTs with more rigorous study design, consistent outcome measures and comprehensive outcome reporting are needed.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dysmenorrhea is defined as cyclic crampy lower abdominal or pelvic pain that occurs just before and/or during menstruation, affecting approximately 50%–90% of reproductive age women worldwide [1–4]. Primary dysmenorrhea does not have discernable macroscopic pathology, while secondary dysmenorrhea results from diseases such as endometriosis, adenomyosis or uterine fibroids [5]. Dysmenorrhea pain scores are moderate in 37%–47% and severe in 17%–18% of women [6,7], and dysmenorrhea is associated with decreased quality of life, depression and anxiety [58–10]. In recent studies, women with dysmenorrhea demonstrate functional and structural changes in the areas of the brain responsible for pain processing, like women with noncyclic chronic pelvic pain due to endometriosis [11,12]. Initial longitudinal studies suggest that central changes associated with chronic pain may be reversible once the nociceptive input is removed. Researchers speculate that untreated dysmenorrhea may increase the risk of developing chronic pelvic pain and associated comorbidities [5] and that early screening and treatment of dysmenorrhea may prevent women from developing chronic pelvic pain.

Cyclic combined hormonal contraceptives (CHCs) are commonly used as second-line therapy for dysmenorrhea, following first-line therapy of nonsteroidal anti-inflammatory drugs [13–15]. CHCs may
be prescribed as continuous, extended or flexible regimens. Cyclic use consists of 21 days of active hormone tablets followed by a 7-day hormone-free interval during which the patient experiences withdrawal bleeding. Continuous regimens skip the hormone-free interval to eliminate menstruation. Extended regimens lengthen the interval of active hormone to greater than 21 days, resulting in decreased and delayed menstruation. Flexible regimens allow women to initiate a hormone-free interval at their discretion, usually in response to unscheduled or “breakthrough” bleeding.

CHCs have been shown in randomized controlled trials (RCTs) to be similarly effective when used in cyclic, continuous, extended or flexible regimens for contraception [16]. A Cochrane systematic review of 10 studies confirmed that cyclic CHCs also significantly improve dysmenorrhea [15]. Continuous/extended regimen contraceptives are part of American College of Obstetricians and Gynecologists dysmenorrhea management guidelines [17]. However, their efficacy in the treatment of dysmenorrhea has not been studied in a systematic fashion.

Our research goal is to describe the existing evidence gap and systematically review all relevant RCTs evaluating the efficacy of continuous/flexible vs. cyclic CHC for the management of dysmenorrhea.

2. Materials and methods

2.1. Search strategy

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines [18]. The research question was defined a priori. Three databases — Popline, Cochrane and PUBMED — were queried. We searched Popline using keywords dysmenorrhea and contraception, Cochrane for reviews comparing continuous vs. cyclic contraception and dysmenorrhea, and the PUBMED computerized database from 1934 to 2018 (last searched on September 23, 2018) using the following search strategy of Keywords: (oral contracept* OR hormonal contracept* OR combined contracept*) AND (menstrual pain[tw] OR pelvic pain[tw] OR dysmenorrhea OR dysmenorrhea) AND (flexible OR extended OR cyclic OR cyclical OR continuous).

2.2. Selection criteria

Articles were included in this review if they were RCTs that (a) compared continuous or extended vs. cyclic CHC and (b) measured dysmenorrhea as a primary or secondary outcome. We excluded studies not published in English. The population of interest was any reproductive age woman desiring contraception. The following dysmenorrhea outcomes were reviewed: (a) duration, (b) frequency, (c) severity, (d) recurrence, (e) days when dysmenorrhea interfered with activity and (f) side effects and adverse effects.

2.3. Study selection, data synthesis and quality of evidence assessment

The primary reviewer (T.D.) evaluated titles and abstracts of the literature search of Cochrane, PUBMED and Popline to determine papers requiring full-text review as per the inclusion and exclusion criteria. Two authors (T.D. and C.O.) independently evaluated the included studies for risk of bias and quality of evidence according to the GRADE Handbook [19] using Review Manager 5 (RevMan 2014) [20] and GRADEpro [21], with reviewer G.L. serving as adjudicator. Factors that were considered when evaluating risk of bias included random sequence generation, allocation concealment, blinding, incomplete outcome reporting and selective reporting. Evidence quality for each outcome was rated as high, moderate, low or very low based on
Characteristics of studies are summarized in Table 1. Study duration ranged from 6 to 24 months. Study locations spanned seven countries. Five types of progestins were used across studies. Risk of bias for each outcome is represented in Fig. 2. Overall, all studies had serious risk of bias. Two studies had unknown random sequence generation [29,34]. Four studies had unknown allocation concealment [29,31,33,36]. Seven studies had unknown blinding or were open label [29,31–36]. Incomplete outcome accounting occurred in two studies [33,36]. Selective reporting occurred in one study [32]. Summary of evidence evaluating quality of evidence and effect of intervention for each outcome is presented in Table 2. Quality of evidence was (a) low for duration, (b) very low for frequency, (c) very low for severity, (d) low for recurrence rate and (e) low for days with dysmenorrhea interfering with daily activity.

Kwiecien et al. [29] studied 32 women who were evenly randomized to receive either 168 days of cyclic or continuous regimen of 20 mcg ethinyl estradiol/0.1 mg levonorgestrel. One of the study’s secondary outcome was number of days with dysmenorrhea. Patients taking continuous CHC had fewer days with dysmenorrhea than those taking cyclic CHC (1.9 vs. 13.3 days, p<.01).

Legro et al. [30] studied 62 women, evenly randomized to receive 20 mcg ethinyl estradiol/1 mg norethindrone in either a cyclic or continuous regimen for 168 days. Dysmenorrhea was a secondary outcome and was assessed using the Moos-Menstrual Distress Questionnaire (MMDQ) administered at baseline and once per menstrual cycle thereafter. The change in dysmenorrhea severity during treatment compared to baseline was greater (p = .010) in the continuous group (−5.8) vs. the cyclic group (2.6).

Seracchioli et al. [31] studied women with secondary dysmenorrhea from endometriosis who had undergone laparoscopic excision of symptomatic ovarian endometrioma. After surgery, they were randomly assigned to one of three groups: (a) no additional treatment (104 allocated and 87 completed the trial), (b) cyclic oral CHC (103 allocated and 92 completed the trial) and (c) received continuous oral CHC (104 allocated and 95 completed the trial). Participants used 0.020 mg ethinyl estradiol/0.075 mg gestodene for 24 months. The primary outcome, dysmenorrhea recurrence [defined as 10-point Visual Analogue Scale (VAS) score ≥4], decreased in the continuous CHC group compared to cyclic CHC and placebo groups (p<.005).

Machado et al. [32] studied 78 women evenly randomized to a cyclic regimen or continuous regimen using 30 mcg ethinyl estradiol/3 mg drospirenone for 168 days. Twenty-nine women in each group (74%) successfully completed the trial. Frequency of dysmenorrhea was a secondary outcome. There was a decrease in dysmenorrhea frequency from 59% at 1 month to 29% at 6 months among the women taking continuous regimen (p<.02). No statistical difference was found for the cyclic group (44% at 1 month to 28% at 6 months).

A total of 794 articles were extracted from Cochrane, PUBMED and Popline search. After removal of duplicates, 780 studies were screened for eligibility (Fig. 1). Of the 15 articles that were assessed for eligibility by full text, 7 were excluded for the following reasons: not a randomized control trial [22–26], control group was using placebo [27] and continuous intervention was using progestin only [28]. From the eight studies included in descriptive analysis, two had similar methodology and were evaluated in a meta-analysis [35,36]. All eight studies in the final analysis were RCTs published between 2002 and 2017. Cyclic regimen consisted of 21 days of active hormone with a 7-day hormone-free interval unless otherwise defined.

Characteristics of studies are summarized in Table 1. Study duration ranged from 6 to 24 months. Study locations spanned seven countries. Five types of progestins were used across studies. Risk of bias for each outcome is represented in Fig. 2. Overall, all studies had serious risk of bias. Two studies had unknown random sequence generation [29,34]. Four studies had unknown allocation concealment [29,31,33,36]. Seven studies had unknown blinding or were open label [29,31–36]. Incomplete outcome accounting occurred in two studies [33,36]. Selective reporting occurred in one study [32]. Summary of evidence evaluating quality of evidence and effect of intervention for each outcome is presented in Table 2. Quality of evidence was (a) low for duration, (b) very low for frequency, (c) very low for severity, (d) low for recurrence rate and (e) low for days with dysmenorrhea interfering with daily activity.

Kwiecien et al. [29] studied 32 women who were evenly randomized to receive either 168 days of cyclic or continuous regimen of 20 mcg ethinyl estradiol/0.1 mg levonorgestrel. One of the study’s secondary outcome was number of days with dysmenorrhea. Patients taking continuous CHC had fewer days with dysmenorrhea than those taking cyclic CHC (1.9 vs. 13.3 days, p<.01).

Legro et al. [30] studied 62 women, evenly randomized to receive 20 mcg ethinyl estradiol/1 mg norethindrone in either a cyclic or continuous regimen for 168 days. Dysmenorrhea was a secondary outcome and was assessed using the Moos-Menstrual Distress Questionnaire (MMDQ) administered at baseline and once per menstrual cycle thereafter. The change in dysmenorrhea severity during treatment compared to baseline was greater (p = .010) in the continuous group (−5.8) vs. the cyclic group (2.6).

Seracchioli et al. [31] studied women with secondary dysmenorrhea from endometriosis who had undergone laparoscopic excision of symptomatic ovarian endometrioma. After surgery, they were randomly assigned to one of three groups: (a) no additional treatment (104 allocated and 87 completed the trial), (b) cyclic oral CHC (103 allocated and 92 completed the trial) and (c) received continuous oral CHC (104 allocated and 95 completed the trial). Participants used 0.020 mg ethinyl estradiol/0.075 mg gestodene for 24 months. The primary outcome, dysmenorrhea recurrence [defined as 10-point Visual Analogue Scale (VAS) score ≥4], decreased in the continuous CHC group compared to cyclic CHC and placebo groups (p<.005).

Machado et al. [32] studied 78 women evenly randomized to a cyclic regimen or continuous regimen using 30 mcg ethinyl estradiol/3 mg drospirenone for 168 days. Twenty-nine women in each group (74%) successfully completed the trial. Frequency of dysmenorrhea was a secondary outcome. There was a decrease in dysmenorrhea frequency from 59% at 1 month to 29% at 6 months among the women taking continuous regimen (p<.02). No statistical difference was found for the cyclic group (44% at 1 month to 28% at 6 months).
Muzii et al. [33] studied participants who were previously diagnosed with endometriomas larger than 3 cm, had moderate to severe dysmenorrhea or chronic pelvic pain (≥ 4 on a 10-point VAS scale) and had not used estroprogestins in the last 6 months. All women underwent laparoscopic excision of ovarian endometriomas. Twenty-eight women postoperatively received 20 mcg ethinyl estradiol/0.15 mg desogestrel in a cyclic regimen, and 29 women received continuous active hormone for 168 days. One of the primary outcomes of the study was pain recurrence defined as dysmenorrhea or chronic pain that was graded ≥ 4 on the 10-point VAS scale. There was no significant difference in pain recurrence rate between the continuous and the cyclic groups (17% vs. 32%, p=.54). The discontinuation rate was significantly increased in the continuous group (41% vs. 14% in the cyclic regimen, p=.03) and was mainly attributed to breakthrough bleeding. Six women who discontinued the continuous regimen were crossed over to the cyclic regimen, and the other six discontinued all hormonal treatments. The four patients who did not complete the cyclic regimen were observed without further treatment.

Dmitrovic et al. [34] studied 38 women with history of primary dysmenorrhea (onset < 3 years after menarche) and 3 months of moderate to severe primary dysmenorrhea prior to enrollment, and used 0.075 mg gestodene and 20 mcg ethinyl estradiol/0.15 mg desogestrel in a cyclic regimen, and 29 women received continuous active hormone for 168 days. One of the primary outcomes of the study was pain recurrence defined as dysmenorrhea or chronic pain that was graded ≥ 4 on the 10-point VAS scale. There was no significant difference in pain recurrence rate between the continuous and the cyclic groups (17% vs. 32%, p=.54). The discontinuation rate was significantly increased in the continuous group (41% vs. 14% in the cyclic regimen, p=.03) and was mainly attributed to breakthrough bleeding. Six women who discontinued the continuous regimen were crossed over to the cyclic regimen, and the other six discontinued all hormonal treatments. The four patients who did not complete the cyclic regimen were observed without further treatment.

Strowitzki et al. [35] studied participants with moderate to severe primary dysmenorrhea in at least 4 of 6 preceding menses and used 20 mcg ethinyl estradiol/3 mg drospirenone. There were 108 women in the cyclic group (24 days active tablets/3 days hormone-free tablets) and 115 women in the extended/flexible group, where women could use the CHC for as long as they desired until they experienced 3 days of consecutive bleeding. At that point, participants started a 4-day hormone-free period before resuming active tablets. Of the 223 participants, 210 women completed the trial (110 in the extended regimen and 100 in the cyclic regimen). The primary outcome was the number of days with dysmenorrhea. The investigators found that women in the extended/flexible regimen spent fewer days with dysmenorrhea (−4.2 days, 95% CI −6.5 to −2.0, p<.001) and with dysmenorrhea that interfered with daily activities (−2.2 days, 95% CI −4.2 to −0.1) when compared to women on the cyclic regimen.

Momoeda et al. [36] studied women with dysmenorrhea baseline score of ≥ 3 points in 2 prior consecutive menses and used extended/flexible vs. cyclic CHC (20 mcg ethinyl estradiol/3 mg drospirenone). A total of 216 patients were evenly randomized into the 2 groups. Women in the flexible regimen used CHC ≥ 24 days and up to 120 days. After 3 consecutive days of bleeding, patients started a 4-day hormone-free interval prior to resuming CHC. Women in the cyclic regimen received 24 days of active tablets and 4 days of hormone-free tablets. Ninety-eight participants (91%) in the flexible/extended group and 84 participants (78%) in the cyclic group completed the 168-day study. Of the 98 women in the flexible/extended group, 59 continued with long-term follow-up for a total of 364 days. The primary outcome was defined as number of days with at least mild dysmenorrhea.
Certainty assessment	No. of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	No. of patients	Effect	Absolute (95% CI)	Certainty
Dysmenorrhea duration (follow-up: median 140 days; assessed with: daily journal)	3	Randomized trials	Serious^a	Not serious	Serious^b	Not serious	None	236	231	MD 4.0 days lower (5.7 lower to 2.3 lower)^b	Very low
Dysmenorrhea frequency (follow-up: mean 168 days; assessed with: daily journal)	1	Randomized trials	Serious^c	Not serious	Serious^d	Serious^e	None	Continuous and cyclic regimen each included 39 women. Frequency was measured as the percentage of women with dysmenorrhea after the 1st and 6th pill pack. Frequency declined from 29% to 28.2% (p=.02) in the continuous regimen group and from 44.4% to 27.8% in the cyclic regimen (noted as not statistically significant but p value not reported). Based on the available evidence, we are uncertain whether there is any difference in dysmenorrhea frequency among patients taking either cyclic or continuous CHC.	Very low		
Dysmenorrhea severity (follow-up: range 1 months to 6 months; assessed with: 10-point VAS)	5	Randomized trials	Serious^f	Not serious	Very serious^g	Not serious	None	There were 277 women in the cyclic and 279 continuous group. Studies differed in measurement of pain severity, study duration and progestins used. Dmitrovic 2012 and Legro 2008 both measured severity using the MMDQ. Dmitrovic 2012 reported no difference in MMDQ pain score, mean difference 4.5 (95% CI −22.2 to 13.2, p=.6). Legro 2008 reported a mean difference of 8.4 (95% CI 2.0−14.7, p=.01) at 6 months, favoring continuous CHC. Seracchioli 2010 reported median difference of 2 on 10-point VAS scores at 6 months (p<.0005), favoring continuous CHC. Muzii 2011 also evaluated pain severity on 10-point VAS but found no significant difference (no numerical data were provided). Momoeda 2017 and Dmitrovic 2012 evaluated pain severity using 100-mm VAS. Momoeda 2017 reported that there was no significant difference in pain reduction over 6 months (no numerical data were provided). Dmitrovic 2012 reported a mean difference in favor of continuous CHC at 1 month of −27.3 (95% CI −40.5 to −14.2, p<.001) and at 3 months of −17.8 (95% CI −31.4 to −2.1, p=.03); however, the authors noted no difference in dysmenorrhea severity at 6 months, −16.0 (95% CI −32.2 to 0.1, p=.05). Based on the available evidence, we are uncertain whether there is any difference in dysmenorrhea severity among patients taking either cyclic or continuous CHC.	Very low		
Dysmenorrhea recurrence (follow-up: range 6 months to 48 months; assessed with: 10-point VAS)	2	Randomized trials	Serious^h	Not serious	Seriousⁱ	Not serious	None	There were a total of 120 women in the cyclic regimen and 124 in the continuous regimen. Recurrence rates were defined as pain severity VAS ≥4 during treatment. Seracchioli 2010 showed that, after 24 months of treatment, recurrence rates were <5% in the continuous regimen compared to 25%–30% in the cyclic regimen (p<.005). Muzii 2011 showed that, after 12 months of treatment, recurrence rates were 17% in the continuous regimen compared to 32% in the continuous regimen (p=.54). Based on the available evidence, we are uncertain if there is any difference in dysmenorrhea recurrence among patients taking either cyclic or continuous CHC.	Low		
Numbers of days when dysmenorrhea interfered with daily activity (follow-up: range 140 days to 168 days; assessed with: daily journal)	2	Randomized trials	Serious^j	Not serious	Not serious	Serious^k	None	There were a total of 215 women in the cyclic regimen and 220 in the flexible regimen. Strowitzki 2012 reported a mean difference of 2.2 fewer days (95% CI −4.2 to −0.1) in favor of flexible regimen, and Momoeda 2017 reported 2.0 days fewer (95% CI −7.5 to 3.5), not statistically significant. Standard deviations not reported by studies; therefore, we were unable to compile meta-analysis. Based on the available evidence, we are uncertain if there is any difference in number of days with dysmenorrhea that interfered with daily activities among patients taking either cyclic or flexible CHC.	Low		
Side effects	5	Randomized trials	-	-	-	-	-	All studies reported side effect profiles except for Seracchioli 2010 and Muzii 2011. Types of side effects assessed varied among studies. Kwiecien 2002 reported decrease of bloating in the continuous group, with a mean difference of 10.4 days less (p=.04); Machado 2010 found that there was a significant decrease of headache (p<.02), nausea (p<.02), appetite (p<.05) and acne (p<.05) in the continuous compared to cyclic group. However, Momoeda 2017, Strowitzki 2012 and Kwiecien 2002 found no difference in			

(continued on next page)
Women using the flexible/extended regimen reported 3.4 fewer days of dysmenorrhea when compared to women using the cyclic regimen (95% CI −6.5 to −0.3, p = .030). There was no difference in the number of days with dysmenorrhea that interfered with daily activity (mean difference 2.0, 95% CI −7.5 to 3.5). Both the flexible/extended regimen and the cyclic regimen were associated with a decrease in dysmenorrhea severity from baseline; however, no statistical difference was found. After 364 days of flexible/extended regimen, there was no statistical difference in the reduction in dysmenorrhea severity when compared to 168 days of treatment.

Meta-analysis was performed for two studies: Momoeda et al. and Dmitrovic et al. [35,36]. The analysis showed that women who used the flexible/extended regimen reported 3.98 fewer days of dysmenorrhea (95% CI −5.69 to −2.27) when compared to women using the cyclic regimen (Fig. 3). The other studies had different methods of outcome measurements, were using different progestin formulations of CHC or did not publish sufficient data to be compiled into a meta-analysis.

Due to the very low quality of evidence, we are uncertain whether there is any difference in dysmenorrhea frequency and severity among patients taking either cyclic or continuous/long-acting. Due to the conflicting results from available evidence, we are uncertain if there is any difference in dysmenorrhea or in the number of days with dysmenorrhea that interfered with activities among patients taking either cyclic or continuous/extended CHC.

The number of adverse events reported by studies was low and comparable between groups. Several studies measured various side effects. Kwiecien et al. [29] reported decrease of bloating in the continuous group, with a mean difference of 10.4 days less (p = .04). Machado et al. [32] found that there was a significant decrease of headache (p < .02), nausea (p < .05), appetite (p < .05) and acne (p < .05) in the continuous compared to the cyclic group. However, others found no significant difference in headaches, nausea or vomiting [27,28,33,34]. Dmitrovic et al. [34] found greater weight gain in the continuous group (mean difference 2.3 kg, 95% CI 0.8–3.8, p = .003) and decrease in systolic blood pressure (p < .05); however, no differences were reported by Legro 2008, Machado 2010 or Strowitzki 2012. Legro 2008, Dmitrovic 2012 and Strowitzki 2012 found no difference in triglycerides, LDL and total cholesterol. While Legro 2008 found an increase in serum HDL-C in the cyclic group, (mean difference 5.0, 95% CI 0.7–9.3, p = .02), neither Dmitrovic 2012 and Strowitzki 2012 found a difference.
treatment of dysmenorrhea [37], there has not been a systematic review comparing the efficacy of the different regimens. Our research suggests that continuous and flexible CHC may result in 4 days less spent in pain when compared to cyclic CHC. We are uncertain whether continuous and flexible CHC decreases dysmenorrhea severity, frequency, recurrence and days when dysmenorrhea interferes with activity due to the very low quality of evidence or conflicting evidence. Side effects and adverse events were few, and there is not enough high-quality evidence about differences in side effects that can be attributed to cyclic vs. continuous or flexible CHC.

Although our findings are based on RCTs, there are several limitations. Nearly all trials used different formulations of CHC and measured outcomes using different scales, which limited our ability to perform a large meta-analysis. Our study examined CHC only and did not include the many formulations of progestin-only contraceptive. During our literature review, we did find some studies examining progestin-only contraceptives, and further research regarding their efficacy on dysmenorrhea would be valuable. Study populations were heterogeneous, with eight RCTs conducted in three different continents, which might account for conflicting results regarding dysmenorrhea severity. Only English studies were reviewed, further limiting generalizability. Quality of evidence was low for three outcomes (duration, severity and days when dysmenorrhea interfered with activity) and was very low for dysmenorrhea recurrence and frequency. Attribution bias was a concern in two studies. Majority of studies were either open label or had unclear blinding, and several had unclear allocation concealment, leading to an increase in risk of bias. More high-quality double-blind RCTs are needed to address these limitations. Lastly, the number of participants enrolled in each study was small. However, there were a total of 889 patients when all studies were combined, and the optimal information size criteria were met in all outcomes except for days when dysmenorrhea interfered with daily activity and dysmenorrhea frequency.

In conclusion, our findings suggest that continuous or flexible CHC may be more effective than cyclic CHC in decreasing dysmenorrhea duration without increasing side effects or adverse events. Given the recent evidence suggesting that untreated dysmenorrhea may increase the risk for developing chronic pelvic pain and long-standing psychiatric dysfunction [5], it is important that high-quality research is conducted to more confidently elucidate the effect of continuous CHC on dysmenorrhea.

Acknowledgments
We would like to thank Shalu Gillum, J.D., M.L.S., AHP, for her assistance with the query of the literature databases.

References
[1] Jamieson DJ, Steege JF. The prevalence of dysmenorrhea, dyspareunia, pelvic pain, and irritable bowel syndrome in primary care practices. Obstet Gynecol 1996;87(1):55-8.
[2] Gebeeyeu MB, Mukuria AB, Tefera YG, et al. Prevalence, impact, and management practice of dysmenorrhea among University of Gondar students, northwestern Ethiopia: a cross-sectional study. Int J Reprod Med 2017:2017;3208276.
[3] Andersch B, Milson I. An epidemiologic study of young women with dysmenorrhea. Am J Obstet Gynecol 1982;144(6):655-60.
[4] Uusai A, Ayarzi U, Tozan M, et al. Prevalence of dysmenorrhea and its effect on quality of life among a group of female university students. Ups J Med Sci 2010;115(2):138-45.
[5] Iacovides S, Avdou I, Baker FC. What we know about primary dysmenorrhoea today: a critical review. Hum Reprod Update 2015;21(6):762-74.
[6] Kural M, Noor NN, Pandit D, et al. Menstrual characteristics and prevalence of dysmenorrhea in college going girls. J Family Med Prim Care 2015;4(3):426–31.
[7] Hailmeseskin S, Demissie A, Assefa N. Primary dysmenorrhea magnitude, associated risk factors, and its effect on academic performance: evidence from female university students in Ethiopia. Int J Womens Health 2016;8:489–96.
[8] Singh A, Kiran D, Singh H, et al. Prevalence and severity of dysmenorrhea: a problem related to menstruation, among first and second year female medical students. indian J Physiol Pharmacol 2008;52(4):380–97.
[9] Gagua T, Tcheselashvili B, Gagua D, et al. Assessment of anxiety and depression in adolescents with primary dysmenorrhea: a case-control study. J Pediat Adolesc Gynecol 2013;26(6):350–5.
[10] Balik G, Ustun I, Kagitci M, et al. Is there a relationship between mood disorders and dysmenorrhea? J Pediat Adolesc Gynecol 2014;27(6):371–4.
[11] Vincent K, Warnaby C, Stagg CJ, et al. Dysmenorrhoea is associated with central changes in otherwise healthy women. Pain 2011;152(9):1966–76.
[12] Wu TH, Tu CH, Chao HT, et al. Progesterone receptor expression in dysmenorrhea: a single center randomized study. J Minim Invasive Gynecol 2011;18(2):173-8.
[13] Osayande AM, Suarna. Diagnosis and initial management of dysmenorrhea. Am Fam Physician 2014;89(5):341–6.
[14] Lefebvre G, Pinsonneault A, Antov V, et al. Primary dysmenorrhea consensus guideline. J Obstet Gynecol Can 2005;27(12):1117–44.
[15] CL, Farquhar C, Roberts H, et al. Oral contraceptive pill for primary dysmenorrhea. Cochrane Database Syst Rev 2009(4):CD002120.
[16] Edelman A, Micks E, Gallo MF, et al. Continuous or extended cycle vs cyclic use of combined hormonal contraceptives for contraception. Cochrane Database Syst Rev 2014;7.
[17] The American College of Obstetricians and Gynecologists. Dysmenorrhea: painful periods. Available: https://www.acog.org/Patients/FAQs/Dysmenorrhea-Painful-Periods, Accessed date: 18 January 2018.
[18] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000597.
[19] Schünemann H, Brozek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group; 2013 Available from: www.gradeworkinggroup.org.
[20] Renewable Manager (ReMan) [computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.
[21] GRADEpro GDT: GRADEpro guideline development tool [software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available from: gradepro.org.
[22] Coelho S, Iaco MA, Ciampi LP, et al. Comparative prospective study on the quality of life and sexual function of women affected by endometriosis-associated pelvic pain on 2 mg dienogest/30 microg ethinyl estradiol continuous or 21/7 regimen oral contraceptive. J Endocrinol Invest 2016;39(8):923–31.
[23] Coffé AL, Sulak PJ, Kuehl TJ. Long-term assessment of symptomatology and satisfaction of an extended oral contraceptive regimen. Contraception 2007;75(6):444–9.
[24] Vercellin P, Frontino G, De Giorgi O, et al. Continuous use of an oral contraceptive for endometriosis-associated recurrent dysmenorrhea that does not respond to a cyclic pill regimen. Fertil Steril 2003;80(3):560–3.
[25] Seidman DS, Yeshaya A, Ber A, et al. A prospective follow-up of two 21/7 cycles followed by two extended regimen 84/7 cycles with contraceptive pills containing ethinyl estradiol and drospirenone. Isr Med Assoc J 2010;12(7):400–5.
[26] Vlahos N, Vlachos A, Triantafyllidou O, et al. Continuous versus cyclic use of oral contraceptives after surgery for symptomatic endometriosis: a prospective cohort study. Fertil Steril 2013;100(5):1337–42.
[27] Harada T, Momoeeda M, Terakawa N, et al. Evaluation of a low-dose oral contraceptive pill for primary dysmenorrhea: a placebo-controlled, double-blind, randomized trial. Fertil Steril 2011;95(6):1928–31.
[28] Razzi S, Luisi S, Ferretti C, et al. Use of a progesterone only preparation containing desogestrel in the treatment of recurrent pelvic pain after conservative surgery for endometriosis. Eur J Obstet Gynecol Reprod Biol 2007;135(2):188–97.
[29] Kwicien M, Edelman A, Nichols MD, et al. Bleeding patterns and patient acceptability of standard or continuous dosing regimens of a low-dose oral contraceptive: a randomized trial. Contraception 2003;67(1):9–13.
[30] Legro RS, Paulie JF, Kunselaer AR, et al. Effect of continuous versus cyclical Oral contraception: a randomized controlled trial. J Clin Endocrinol Metabol 2008;93(2):420–9.
[31] Seracchioli R, Mabrouk M, Frasca C, et al. Long-term oral contraceptive pills and post-operative pain management after laparoscopic excision of ovarian endometrioma: a randomized controlled trial. Fertil Steril 2010;94(2):464–71.
[32] Machado RB, de Melo NR, Maia Jr H. Bleeding patterns and menstrual-related symptoms with the continuous use of a contraceptive combination of ethinylestradiol and drospirenone: a randomized study. Contraception 2010;81(3):215–22.
[33] Muzii L, Maneschi F, Marana R, et al. Oral progesterogeni after laparoscopic surgery to excise endometriomas: continuous or cyclic administration? Results of a multicenter, randomized, open-label, parallel, prospective study. Contraception 2011;81(2):173–8.
[34] D’Mitrino R, Kunselaar AR, Legro RS. Continuous compared with cyclic oral contraceptives for the treatment of primary dysmenorrhea: a randomized controlled trial. Obstet Gynecol 2012;119(6):1143–50.
[35] Strozzi A, Iacovides S, Avdou I, Baker FC. What we know about primary dysmenorrhoea today: a critical review. Hum Reprod Update 2015;21(6):762–74.
[36] Kural M, Noor NN, Pandit D, et al. Menstrual characteristics and prevalence of dysmenorrhea in college going girls. J Family Med Prim Care 2015;4(3):426–31.
[37] Hailmeseskin S, Demissie A, Assefa N. Primary dysmenorrhea magnitude, associated risk factors, and its effect on academic performance: evidence from female university students in Ethiopia. Int J Womens Health 2016;8:489–96.