Supplementary information

From *operando* Raman mechanochemistry to “NMR crystallography”: understanding the structures and interconversion of Zn-terephthalate networks using selective 17O-labelling.

César Leroy, Thomas-Xavier Métro, Ivan Hung, Zhehong Gan, Christel Gervais & Danielle Laurencin

FIGURE S1: Reaction profiles corresponding to signals enlightened in Figure 1 between 1380 and 1480 cm$^{-1}$, from 1000 to 5400 s of milling reaction. Only ZTA2a and ZTA2b are present from 1000 s onwards.

FIGURE S2: pXRD pattern of synthesized Zn-BDC compounds (dark colours) along with simulated corresponding patterns of optimized structures (light colours). Simulated patterns of starting materials ZnO (ICSD- 67848) and H$_2$BDC (CCDC BONHUK) are indicated in order to show the purity of synthesized compounds.

FIGURE S3: a) FTIR spectra of ZTA1 (green), ZTA2a (red), ZTA2b (blue) and ZTA3 (purple). b): zoom on the ν(OH) region of FTIR spectra of ZTA2a-*17OH (dark red), ZTA2b-*17OH (dark blue) and ZTA3-*17OH (dark purple). c) zoom on the ν$_{as}$ (COO$^{-}$) region of FTIR spectra of ZTA1-*13BDC (dark green), ZTA2a-*13BDC (dark red) and ZTA3-*13BDC (dark purple).

FIGURE S4: a) 13C CPMAS NMR spectra of H$_2$BDC recorded with a spinning speed of 8.0, 4.2 and 15 kHz (Top) at B_0 = 14.1 T. b) 17O NMR spectra of H$_2$BDC* recorded at 9.4, 14.1 and 20.0 T. NMR parameters used for each multi-spinning speeds and multi-fields fits can be found in the respective tables of a) and b).

FIGURE S5: FTIR spectrum (2000 – 1000 cm$^{-1}$ region), in black H$_2$BDC*, both red spectra correspond to two syntheses of ZTA2a-*13BDC.

FIGURE S6: ¹H NMR spectra recorded at B_0 = 14.1 T and v_{rot} = 16 kHz. For ZTA3, the dashed blue spectrum corresponds to the ¹H NMR spectrum recorded at B_0 = 20.0 T and v_{rot} = 60 kHz. No acid proton (~ 14 ppm) is observed in the Zn-BDC compounds.

FIGURE S7: Graphical plot of $\delta_{iso}(^{13}C)_{calc}$ vs. the corresponding $\delta_{iso}(^{13}C)_{exp}$.

FIGURE S8: a) Graphical plot of the longest C-O distance (d_{C-O}) of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}COO)$. b) Graphical plot of the shortest C-O distance (d_{C-O}), of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}COO)$. c) Graphical plot of difference Δ between the longest and the shortest C-O distances of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}COO)$ d) Graphical plot of the carboxylate angle θ_{O-C-O} of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}COO)$. Orange dots correspond to values for the final optimized structures of
Zn-BDC phases discussed in this article. Blue dots correspond to values for different other structure optimization models of ZTA3. The linear trendline corresponds to the blue set of dots. ..S7

FIGURE S9: 13C CPMAS NMR spectra of Zn-BDC compounds: bottom $\nu_{rot} = 8$ kHz, middle $\nu_{rot} = 4.0$ or 4.2 kHz and top simulated from calculated NMR parameters (Table 4). Dotted red lines correspond to final fits see Table S1...S7

TABLE S1: 13C CSA parameters obtained by fitting simultaneously spectra recorded at $B_0 = 14$. 1 T with two spinning speeds $\nu_{rot} = 8.0$ and 4.2/4.0 kHz..S8

FIGURE S10: a) Graphical plot of the Ω vs. the corresponding $\delta_{iso}(^{13}C)_{calc}$. b) Graphical plot of the Ω vs. the corresponding longest C-O distance (d_{C-O}). Orange dots correspond to values for the final optimized structures of Zn-BDC phases discussed in this article. Blue dots correspond to values for different other structure optimization models of ZTA3......................................S8

FIGURE S11: 17O MQMAS spectrum of ZTA3-0H recorded at $B_0 = 18.8$ T under $\nu_{rot} = 16$ kHz. Extracted slices are fitted with parameters presented in Table 5. ...S9

FIGURE S12: 17O MQMAS spectrum of ZTA3-0BDC recorded at $B_0 = 18.8$ T under $\nu_{rot} = 16$ kHz. Extracted slices are fitted with parameters presented in Table 5. ...S9

FIGURE S13: a) 17O MAS NMR spectra of ZTA3-0H and b) 17O MAS NMR ZTA3-0BDC recorded at $B_0 = 9.4$, 14.1 and 20.0 T and $\nu_{rot} = 18$, 18 and 14.286 kHz respectively. Red dotted lines correspond to final fits. ...S10

FIGURE S14: a) 17O MAS NMR spectra of ZTA2a-0H and b) 17O MAS NMR ZTA2a-0BDC recorded at $B_0 = 9.4$, 14.1, 18.8 and 20.0 T and $\nu_{rot} = 18$, 18, 16 and 14.286 kHz respectively. Red dotted lines correspond to final fits. ...S10

FIGURE S15: 17O MAS NMR spectra of ZTA2b-0H at $B_0 = 9.4$, 14.1 and 20.0 T and $\nu_{rot} = 18$, 18, 16 and 14.286 kHz respectively. Red dotted lines correspond to final fits. ...S11

FIGURE S16: 17O MAS NMR spectra of ZTA1-0BDC recorded at $B_0 = 14.1$ and 20.0 T and $\nu_{rot} = 18$ and 14.286 kHz respectively. Red dotted lines correspond to final fits. ...S11

FIGURE S17: Graphical plot of a) the shortest distance (d_{Zn-O}) vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$, b) the d_{C-O} distance vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$ and c) the θ_{Zn-O-C} angle vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$...........S12

FIGURE S18: Graphical plot of the 17O QI parameters C_Q and η_Q: a) the shortest distance (d_{Zn-O}) vs. the corresponding C_Q (left) and η_Q (right), b) the d_{C-O} distance vs. the corresponding C_Q (left) and η_Q (right), and c) the θ_{Zn-O-C} angle vs. the corresponding C_Q (left) and η_Q (right)..S13

FIGURE S19: a) In black the Raman spectra of d_4-H$_2$BDC and H$_3$BDC, in grey the Raman spectrum of the Perspex jar used for operando experiments. b) ν(CD) region of Raman spectra of d_4-H$_2$BDC, ZTA1-d$_4$BDC and ZTA2a-d$_4$BDC.............S14
Figure S1: Reaction profiles corresponding to signals enlightened in Figure 1 between 1380 and 1480 cm\(^{-1}\), from 1000 to 5400 s of milling reaction. Only ZTA2a and ZTA2b are present from 1000 s onwards.

Figure S2: pXRD pattern of synthesized Zn-BDC compounds (dark colours) along with simulated corresponding patterns of optimized structures (light colours). Simulated patterns of starting materials ZnO (ICSD- 67848) and H\(_2\)BDC (CCDC BONHUK) are indicated in order to show the purity of synthesized compounds.
Figure S3: a) FTIR spectra of ZTA1 (green), ZTA2a (red), ZTA2b (blue) and ZTA3 (purple). b): zoom on the v(OH) region of FTIR spectra of ZTA2a-^*OH (dark red), ZTA2b-^*OH (dark blue) and ZTA3-^*OH (dark purple). c) zoom on the $\nu_{\text{vs/bs}}$(COO^-) region of FTIR spectra of ZTA1-^*BDC (dark green), ZTA2a-^*BDC (dark red) and ZTA3-^*BDC (dark purple).
Figure S4: a) 13C CPMAS NMR spectra of H$_2$BDC recorded with a spinning speed of 8.0, 4.2 and 15 kHz (Top) at $B_0 = 14.1$ T. b) 17O NMR spectra of H$_2$BDC* recorded at 9.4, 14.1 and 20.0 T. NMR parameters used for each multi-spinning speeds and multi-fields fits can be found in the respective tables of a) and b).

Figure S5: FTIR spectrum (2000 – 1000 cm$^{-1}$ region), in black H$_2$BDC*, both red spectra correspond to two syntheses of ZTA2a-BDC.
Figure S6: 1H NMR spectra recorded at $B_0 = 14.1$ T and $\nu_{\text{rot}} = 16$ kHz. For ZTA3, the dashed blue spectrum corresponds to the 1H NMR spectrum recorded at $B_0 = 20.0$ T and $\nu_{\text{rot}} = 60$ kHz. No acid proton (~ 14 ppm) is observed in the Zn-BDC compounds.

Figure S7: Graphical plot of $\delta_{\text{iso}}^{(13)}\text{C}_{\text{calc}}$ vs. $\delta_{\text{iso}}^{(13)}\text{C}_{\text{exp}} / \text{ppm}$

$\delta_{\text{iso}}^{(13)}\text{C}_{\text{calc}}$ vs. $\delta_{\text{iso}}^{(13)}\text{C}_{\text{exp}} / \text{ppm}$

$R^2 = 0.945$

Figure S7: Graphical plot of $\delta_{\text{iso}}^{(13)}\text{C}_{\text{calc}}$ vs. the corresponding $\delta_{\text{iso}}^{(13)}\text{C}_{\text{exp}}$.
Figure S8: a) Graphical plot of the longest C-O distance (d_{C-O}) of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}C)$O. b) Graphical plot of the shortest C-O distance (d_{C-O}) of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}C)$O. c) Graphical plot of difference Δ between the longest and the shortest C-O distances of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}C)$O. d) Graphical plot of the carboxylate angle θ_{O-C-O} of the BDC ligand vs. the corresponding $\delta_{iso}(^{13}C)$O. Orange dots correspond to values for the final optimized structures of Zn-BDC phases discussed in this article. Blue dots correspond to values for different other structure optimization models of ZTA3. The linear trendline corresponds to the blue set of dots.

Figure S9: 13C CPMAS NMR spectra of Zn-BDC compounds: bottom $\nu_{rot} = 8$ kHz, middle $\nu_{rot} = 4.0$ or 4.2 kHz and top simulated from calculated NMR parameters (Table 4). Dotted red lines correspond to final fits see Table S1.
Table S2: 13C CSA parameters obtained by fitting simultaneously spectra recorded at $B_0 = 14.1$ T with two spinning speeds $\nu_{rot} = 8.0$ and 4.2/4.0 kHz.

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
172.1 ± 0.3	136.9 ± 0.4	0.05 ± 0.01
174.0 ± 0.1	140.0 ± 2.4	0.13 ± 0.03

ZTA3

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
137.0 ± 0.1	206.6 ± 4.5	0.26 ± 0.09
129.8 ± 0.1	210.5 ± 0.8	0.40 ± 0.05
128.4 ± 0.1	221.1 ± 0.8	0.19 ± 0.01

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
172.1 ± 0.1	137.3 ± 0.2	0.23 ± 0.01

ZTA2b

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
135.6 ± 0.2	215.1 ± 6.7	0.29 ± 0.02
130.3 ± 0.1	193.2 ± 10.4	0.68 ± 0.33
129.4 ± 0.1	241.2 ± 6.4	0.32 ± 0.06

ZTA2a

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
172.5 ± 0.2	139.9 ± 8.2	0.34 ± 0.15
175.7 ± 0.1	137.5 ± 0.4	0.19 ± 0.01
136.7 ± 0.1	210.3 ± 2.6	0.29 ± 0.03
132.2 ± 0.2	231.3 ± 2.8	0.36 ± 0.02

ZTA1

$\delta_{iso}(^{13}C)$ / ppm	Ω / ppm	κ
176.6 ± 0.1	154.7 ± 6.3	0.03 ± 0.20
135.0 ± 0.1	210.4 ± 5.9	0.23 ± 0.03
131.2 ± 0.2	221.1 ± 3.3	0.35 ± 0.01

Figure S10: a) Graphical plot of the Ω vs. the corresponding $\delta_{iso}(^{13}C)_{calc}$. b) Graphical plot of the Ω vs. the corresponding longest C-O distance (d_{C-O}). Orange dots correspond to values for the final optimized structures of Zn-BDC phases discussed in this article. Blue dots correspond to values for different other structure optimization models of ZTA3.
Figure S11: 17O MQMAS spectrum of ZTA3-^aOH recorded at $B_0 = 18.8$ T under $\nu_{rot} = 16$ kHz. Extracted slices are fitted with parameters presented in Table 5.

Figure S12: 17O MQMAS spectrum of ZTA3-^aBDC recorded at $B_0 = 18.8$ T under $\nu_{rot} = 16$ kHz. Extracted slices are fitted with parameters presented in Table 5.
Figure S13: a) 17O MAS NMR spectra of ZTA3-*OH and b) 17O MAS NMR ZTA3-*BDC recorded at $B_0 = 9.4$, 14.1 and 20.0 T and $\nu_{\text{rot}} = 18$, 18 and 14.286 kHz respectively. Red dotted lines correspond to final fits.

Figure S14: a) 17O MAS NMR spectra of ZTA2a-*OH and b) 17O MAS NMR ZTA2a-*BDC recorded at $B_0 = 9.4$, 14.1, 18.8 and 20.0 T and $\nu_{\text{rot}} = 18$, 18, 16 and 14.286 kHz respectively. Red dotted lines correspond to final fits.
Figure S15: 17O MAS NMR spectra of ZTA2b-*OH at $B_0 = 9.4$, 14.1 and 20.0 T and $\nu_{\text{rot}} = 18$, 18 and 14.286 kHz respectively. Red dotted lines correspond to final fits.

Figure S16: 17O MAS NMR spectra of ZTA1-*BDC recorded at $B_0 = 14.1$ and 20.0 T and $\nu_{\text{rot}} = 18$ and 14.286 kHz respectively. Red dotted lines correspond to final fits.
Figure S17: Graphical plot of a) the shortest distance (d_{Zn-O}) vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$, b) the distance d_{C-O} vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$ and c) the θ_{Zn-O-C} angle vs. the corresponding $\delta_{iso}(^{17}O)_{calc}$.
Figure S18: Graphical plot of the 17O QI parameters C_Q and η_Q: a) the shortest distance (d_{Zn-O}) vs. the corresponding C_Q (left) and η_Q (right), b) the d_{C-O} distance vs. the corresponding C_Q (left) and η_Q (right), and c) the $\theta_{Zn-O,C}$ angle vs. the corresponding C_Q (left) and η_Q (right).
Figure S19: a) In black the Raman spectra of d_4-H_2BDC and H_2BDC, in grey the Raman spectrum of the Perspex jar used for operando experiments. b) ν(CD) region of Raman spectra of d_4-H_2BDC, ZTA1-d_4BDC and ZTA2a-d_4BDC.