Score lists in \([h-k]\)-bipartite hypertournaments

S. Pirzada\(^1\), T. A. Chishti\(^2\), T. A. Naikoo\(^3\)

\(^1\)Department of Mathematics, University of Kashmir, India
\(^2\)Centre of Distance Education, University of Kashmir, India
\(^3\)Email: sdpirzada@yahoo.co.in
\(^3\)Email: tariqnaikoo@rediffmail.com

AMS Subject Classification: 05C

Abstract. Given non-negative integers \(m, n, h\) and \(k\) with \(m \geq h > 1\) and \(n \geq k > 1\), an \([h-k]\)-bipartite hypertournament on \(m+n\) vertices is a triple \((U, V, A)\), where \(U\) and \(V\) are two sets of vertices with \(|U| = m\) and \(|V| = n\), and \(A\) is a set of \((h+k)\) - tuples of vertices, called arcs, with exactly \(h\) vertices from \(U\) and exactly \(k\) vertices from \(V\), such that any \(h+k\) subsets \(U_1 \cup V_1\) of \(U \cup V\), \(A\) contains exactly one of the \((h+k)!\) \((h+k)\) - tuples whose entries belong to \(U_1 \cup V_1\). We obtain necessary and sufficient conditions for a pair of non-decreasing sequences of non-negative integers to be the losing score lists or score lists of some \([h-k]\)-bipartite hypertournament.

1. Introduction

Hypergraphs are generalization of graphs [3]. While edges of a graph are pairs of vertices of the graph, edges of a hypergraph are subsets of the vertex set, consisting of at least two vertices. An edge consisting of \(k\) vertices is called a \(k\)-edge. A \(k\)-hypergraph is a hypergraph all of whose edges are \(k\)-edges. A \(k\)-hypertournament is a complete \(k\)-hypergraph with each \(k\)-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge.

Instead of scores of vertices in a tournament, Zhou et al. [8] considered scores and losing scores of vertices in a \(k\)-hypertournament, and derived a result analogous to Landau’s theorem [6]. The score \(s(v_i)\) or \(s_i\) of a vertex \(v_i\) is the number of arcs containing \(v_i\) and in which \(v_i\) is not the last element, and the losing score \(r(v_i)\) or \(r_i\) of a vertex \(v_i\) is the number of arcs containing \(v_i\) and in which \(v_i\) is the last element. The score sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing order.

We note that for two integers \(p\) and \(q\).
The following characterizations of score sequences and losing score sequences in k-hypertournaments can be found in Zhou et al. [8].

Theorem 1.1. Given two non-negative integers \(n \) and \(k \) with \(n \geq k > 1 \), a non-decreasing sequence \(R = [r_1, r_2, ..., r_n] \) of non-negative integers is a losing score sequence of some k-hypertournament if and only if for each \(j \),

\[
\sum_{i=1}^{j} r_i \geq \binom{j}{k},
\]

with equality when \(j = n \).

Theorem 1.2. Given non-negative integers \(n \) and \(k \) with \(n \geq k > 1 \), a non-decreasing sequence \(S = [s_1, s_2, ..., s_n] \) of non-negative integers is a score sequence of some k-hypertournament if and only if for each \(j \),

\[
\sum_{i=1}^{j} s_i \geq j \left(\frac{n-1}{k-1} \right) + \left(\frac{n-j}{k} \right) - \binom{n}{k},
\]

with equality when \(j = n \).

Bang and Sharp [1] proved Landau’s theorem using Hall’s theorem on a system of distinct representatives of a collection of sets. Based on Bang and Sharp’s ideas, Koh and Ree [5] have given a different proof of Theorems 1.1 and 1.2. Some more results on scores of k-hypertournaments can be found in [4, 7].

Bipartite hypergraphs are generalization of bipartite graphs. If \(U = \{u_1, u_2, ..., u_m\} \) and \(V = \{v_1, v_2, ..., v_n\} \) are vertex sets, then the edge of a bipartite hypergraph is a subset of the vertex sets, containing at least one vertex from \(U \) and at least one vertex from \(V \). If an edge has exactly \(h \) vertices from \(U \) and exactly \(k \) vertices from \(V \), it is called an \([h,k]\)-edge. An \([h,k]\)-bipartite hypergraph is a bipartite hypergraph all of whose edges are \([h,k]\)-edges. An \([h,k]\)-bipartite hypertournament is a complete \([h,k]\)-bipartite hypergraph with each \([h,k]\)-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge.

Equivalently, given non-negative integers \(m, n, h \) and \(k \) with \(m \geq h > 1 \) and \(n \geq k > 1 \), an \([h,k]\)-bipartite hypertournament of order \(m \times n \) consists of two vertex sets \(U \) and \(V \) with \(|U| = m\) and \(|V| = n\), together with an arc set \(E \), a set of \((h+k)\) tuples of vertices, with exactly \(h \) vertices from \(U \) and exactly \(k \) vertices from \(V \), called arcs, such that for any \(h \)-subset \(U_1 \) of \(U \) and \(k \)-subset \(V_1 \) of \(V \), \(E \) contains exactly one of the \((h+k)!\) \((h+k)\)-tuples whose \(h \) entries belong to \(U_1 \) and \(k \) entries belong to \(V_1 \). Let \(e = (u_1, u_2, ..., u_h, v_1, v_2, ..., v_k) \) be an arc in \(H \) and \(i < j \), we denote \(e(u_i, u_j) = (u_1, ..., u_i, u_j, v_1, v_2, ..., v_k) \), that
is, the new arc obtained from e by interchanging u_i and u_j in e. Similarly, we can have new arcs of the form $e(v_i, v_j)$ and $e(u_i, v_j)$.

For a given vertex $u_i \in U$, the score $d_H^+(u_i)$ (or simply $d^+(u_i)$) is the number of [h-k]-arcs containing u_i and in which u_i is not the last element. The losing score $d_H^-(u_i)$ (or simply $d^-(u_i)$) is the number of [h-k]-arcs containing u_i and in which u_i is the last element. Similarly, we define by $d_H^+(v_j)$ and $d_H^-(v_j)$ respectively as the score and losing score of a vertex $v_j \in V$. The losing score lists of an [h-k]-bipartite hypertournament is a pair of non-decreasing sequences $A = [a_1, a_2, ..., a_m]$ and $B = [b_1, b_2, ..., b_n]$, where a_i is a losing score of some vertex $u_i \in U$ and b_j is a losing score of some vertex $v_j \in V$. Similarly, the score lists are formed by listing the scores in non-decreasing order, and we denote these by $C = [c_1, c_2, ..., c_m]$ and $D = [d_1, d_2, ..., d_n]$.

2. Main results

The following two Theorems are the main results and provide a characterization of losing score lists and score lists in [h-k]-bipartite hypertournaments.

Theorem 2.1. Given non-negative integers m, n, h and k with $m \geq h > 1$ and $n \geq k > 1$, the non-decreasing sequences $A = [a_1, a_2, ..., a_m]$ and $B = [b_1, b_2, ..., b_n]$ of non-negative integers are the losing score lists of an [h-k]-bipartite hypertournament if and only if for each p and q,

$$
\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j \geq \binom{p}{h} \binom{q}{k},
$$

with equality when $p = m$ and $q = n$.

Theorem 2.2. Given non-negative integers m, n, h and k with $m \geq h > 1$ and $n \geq k > 1$, the non-decreasing sequences $C = [c_1, c_2, ..., c_m]$ and $D = [d_1, d_2, ..., d_n]$ of non-negative integers are the score lists of an [h-k]-bipartite hypertournament if and only if for each p and q,

$$
\sum_{i=1}^{p} c_i + \sum_{j=1}^{q} d_j \geq \binom{m-1}{h-1} \binom{n}{k} + q \binom{m}{h} \binom{n-1}{k-1} + \binom{m-p}{h} \binom{n-q}{k} - \binom{m}{h} \binom{n}{k},
$$

with equality when $p = m$ and $q = n$.

In order to prove Theorem 2.1 and Theorem 2.2, we require the following Lemmas. We note that in an [h-k]-bipartite hypertournament H there are exactly $\binom{m}{h} \binom{n}{k}$ arcs, and in each arc, only one vertex is at the last entry. Therefore,
\[\sum_{i=1}^{m} d_H^-(u_i) + \sum_{j=1}^{n} d_H^-(v_j) = \binom{m}{h} \binom{n}{k}.\]

Lemma 2.1. If \(H\) is an \([h-k]\)-bipartite hypertournament of order \(m \times n\) with score lists \(A = [c_i]^m\) and \(B = [d_j]^n\), then

\[\sum_{i=1}^{m} c_i + \sum_{j=1}^{n} d_j = (h + k - 1) \binom{m}{h} \binom{n}{k}.\]

Proof. Obviously, \(m \geq h\) and \(n \geq k\). If \(a_i\) is the losing score of \(u_i \in U\) and \(b_j\) is the losing score of \(v_j \in V\), then

\[\sum_{i=1}^{m} a_i + \sum_{j=1}^{n} b_j \geq \binom{m}{h} \binom{n}{k}.\]

Now, there are \(\binom{m - 1}{h - 1} \binom{n}{k}\) arcs containing a vertex \(u_i \in U\), and \(\binom{m}{h} \binom{n - 1}{k - 1}\) arcs containing a vertex \(v_j \in V\). Therefore,

\[
\sum_{i=1}^{m} c_i + \sum_{j=1}^{n} d_j = \sum_{i=1}^{m} \left(\binom{m - 1}{h - 1} \binom{n}{k} \right) + \sum_{j=1}^{n} \left(\binom{m}{h} \binom{n - 1}{k - 1} - \binom{m}{h} \binom{n}{k} \right)
\]

\[
= m \left(\binom{m - 1}{h - 1} \binom{n}{k} \right) + n \left(\binom{m}{h} \binom{n - 1}{k - 1} - \binom{m}{h} \binom{n}{k} \right)
\]

\[
= (h + k - 1) \binom{m}{h} \binom{n}{k}.
\]

Lemma 2.2. If \(A = [a_1, a_2, ..., a_m]\) and \(B = [b_1, b_2, ..., b_n]\) are losing score lists of an \([h-k]\)-bipartite hypertournament \(H\), and if \(a_i < a_j\), then \(A' = [a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_m]\) and \(B\) are losing score lists of some \([h-k]\)-bipartite hypertournament.

Proof. Let \(A\) and \(B\) be the losing score lists of an \([h-k]\)-bipartite hypertournament \(H\) with vertex sets \(U = \{u_1, u_2, ..., u_m\}\) and \(V = \{v_1, v_2, ..., v_n\}\) so that \(d^-(u_i) = a_i\) and \(d^-(v_j) = b_j\) \((1 \leq i \leq m, 1 \leq j \leq n)\).

If there is an \([h-k]\)-arc \(e\) containing both \(u_i\) and \(u_j\) with \(u_j\) as the last element in \(e\), let \(e' = (u_i, u_j)\) and \(H' = (H-e) \cup e'\). Clearly \(A'\) and \(B\) are the losing score lists of \(H'\).

Now, assume that for every arc \(e\) containing both \(u_i\) and \(u_j\), \(u_j\) is not the last element in \(e\). Since \(a_i < a_j\), there exist two \([h-k]\)-arcs \(e_1 = (w_1, w_2, ..., w_{i-1}, u_i, w_{i+1}, ..., w_h, z_1, z_2, ..., z_k)\) and \(e_2 = (w_1', w_2', ..., w_{h-1}', z_1', z_2', ..., z_k', u_j)\) where \(w's \in U, z's \in V, u_i \notin \{w_1, w_2, ..., w_h\}, u_j \notin \{w_1, w_2, ..., w_h\}\) and \((w_1, w_2', w_{h-1}', z_1', z_2', ..., z_k')\) is a permutation of \((w_1, w_2, ..., w_h-1, z_1, z_2, ..., z_k)\).
Now, let $e'_1 = e_1(u_i, x)$ and $e'_2 = e_2(u_j, y)$ where x is any one from $\{w_1, w_2, ..., w_{h-1}, z_1, z_2, ..., z_k\}$ and y is any one from $\{w'_1, w'_2, ..., w'_{h-1}, z'_1, z'_2, ..., z'_k\}$. Take $H' = (H - (e_1 \cup e_2)) \cup (e'_1 \cup e'_2)$. Then, A' and B are the score lists of H'.

Lemma 2.3. Let $A = [a_1, a_2, ..., a_m]$ and $B = [b_1, b_2, ..., b_n]$ be non-decreasing sequences of non-negative integers satisfying (1). If $a_m < \binom{m-1}{h-1} \binom{n}{k}$, then there exists $r (1 \leq r \leq m-1)$ such that $A'/r = [a_1, a_2, ..., a_{r-1}, a_{m+1}]$ is non-decreasing and A' and B satisfy (1).

Proof. Let r be the maximum integer such that $a_{r-1} < a_r = a_{r+1} = ... = a_{m-1}$ with $a_0 = 0$ if $r = 1$.

To show that A' and B satisfy (1), we need to prove that for each $p (r \leq p \leq m-1)$,

$$\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j > \binom{p}{h} \binom{q}{k},$$

(3)

As $a_m < \binom{m-1}{h-1} \binom{n}{k}$, we have

$$\sum_{i=1}^{m-1} a_i + \sum_{j=1}^{n} b_j = \binom{m}{h} \binom{n}{k} - a_m$$

$$> \binom{m}{h} \binom{n}{k} - \binom{m-1}{h-1} \binom{n}{k}$$

$$= \left[\left(\binom{m}{h} - \binom{m-1}{h-1} \right) \binom{n}{k} \right]$$

$$= \left(\frac{m}{h} \right) \binom{n}{k}.$$

This shows that for $r = m-1$, (3) is true.

Now, assume that $r \leq m-2$. Then (3) holds for $p = m-1$.

If there exists $p_0 (r \leq p_0 \leq m-2)$ such that

$$\sum_{i=1}^{p_0} a_i + \sum_{j=1}^{q} b_j = \binom{p_0}{h} \binom{q}{k},$$

choose p_0 as large as possible.

Since

$$\sum_{i=1}^{p_0+1} a_i + \sum_{j=1}^{q} b_j > \binom{p_0+1}{h} \binom{q}{k},$$

therefore

$$a_{p_0} = a_{p_0+1} = \left(\sum_{i=1}^{p_0+1} a_i + \sum_{j=1}^{q} b_j \right) - \left(\sum_{i=1}^{p_0} a_i + \sum_{j=1}^{q} b_j \right)$$

$$> \left(\frac{p_0+1}{h} \right) \binom{q}{k} - \left(\frac{p_0}{h} \right) \binom{q}{k} = \left(\frac{p_0}{h-1} \right) \binom{q}{k}.$$

Thus, it follows that

$$\sum_{i=1}^{p_0} a_i + \sum_{j=1}^{q} b_j = \sum_{i=1}^{p_0} a_i + \sum_{j=1}^{q} b_j - a_{p_0}$$
\[
\left(\frac{p_0}{h} \right) \left(\begin{array}{c} q \\ k \end{array} \right) - \left(\frac{p_0}{h-1} \right) \left(\begin{array}{c} q \\ k \end{array} \right) \\
\left(\frac{p_0-1}{h} \right) + \left(\frac{p_0-1}{h-1} \right) \left(\begin{array}{c} q \\ k \end{array} \right) - \left(\frac{p_0}{h-1} \right) \left(\begin{array}{c} q \\ k \end{array} \right) \\
\left(\frac{p_0-1}{h-1} \right) - \left(\frac{p_0-1}{h-2} \right) \left(\begin{array}{c} q \\ k \end{array} \right) \\
\left(\frac{p_0-1}{h} \right) \left(\begin{array}{c} q \\ k \end{array} \right),
\]

a contradiction with the hypothesis on A and B. Hence (3) holds.

Proof of Theorem 2.1. Necessity. Let A and B be the losing score lists of an \([h,k]\)-bipartite hypertournament \(H(U, V)\). For any \(p\) and \(q\) with \(h \leq p \leq m\) and \(k \leq q \leq n\), let \(U_1 = \{u_1, u_2, \ldots, u_p\}\) and \(V_1 = \{v_1, v_2, \ldots, v_q\}\) be the set of vertices such that \(d^- (u_i) = a_i\) for each \(1 \leq i \leq p\), and \(d^- (v_j) = b_j\) for each \(1 \leq j \leq q\). Let \(H_1\) be the \([h,k]\)-bipartite subhypertournament formed by \(U_1\) and \(V_1\). Then

\[
\sum_{i=1}^{m} a_i + \sum_{j=1}^{n} b_j \geq \sum_{i=1}^{m-1} \overline{d}_{H_1}(u_i) + \sum_{j=1}^{n} \overline{d}_{H_1}(v_j) = \left(\frac{p}{h} \right) \left(\begin{array}{c} q \\ k \end{array} \right).
\]

Sufficiency. We induct on \(m\) and keep \(n\) fixed. For \(m = h\), the result is obviously true. Therefore, let \(m > h\), and similarly \(n > k\).

Now, \(a_m = \sum_{i=1}^{m} a_i + \sum_{j=1}^{n} b_j - \left(\sum_{i=1}^{m-1} a_i + \sum_{j=1}^{n} b_j \right)\)

\[
\leq \left(\frac{m}{h} \right) \left(\begin{array}{c} n \\ k \end{array} \right) - \left(\frac{m-1}{h} \right) \left(\begin{array}{c} n \\ k \end{array} \right)
\]

\[
= \left[\left(\frac{m}{h} \right) - \left(\frac{m-1}{h} \right) \right] \left(\begin{array}{c} n \\ k \end{array} \right)
\]

\[
= \left(\frac{m-1}{h-1} \right) \left(\begin{array}{c} n \\ k \end{array} \right).
\]

We consider the following two cases.

Case 1. \(a_m = \left(\frac{m-1}{h-1} \right) \left(\begin{array}{c} n \\ k \end{array} \right)\).

So, \(\sum_{i=1}^{m-1} a_i + \sum_{j=1}^{n} b_j = \sum_{i=1}^{m-1} a_i + \sum_{j=1}^{n} b_j - a_m\)

\[
= \left(\frac{m}{h} \right) \left(\begin{array}{c} n \\ k \end{array} \right) - \left(\frac{m-1}{h-1} \right) \left(\begin{array}{c} n \\ k \end{array} \right)
\]

\[
= \left[\left(\frac{m}{h} \right) - \left(\frac{m-1}{h-1} \right) \right] \left(\begin{array}{c} n \\ k \end{array} \right) = \left(\frac{m-1}{h-1} \right) \left(\begin{array}{c} n \\ k \end{array} \right).
\]

By induction hypothesis \([a_1, a_2, \ldots, a_{m-1}]\) and B are losing score lists of an \([h,k]\)-bipartite hypertournament \(H' (U', V)\) of order \(m-1 \times n\). Construct an \([h,k]\)-bipartite hypertournament \(H\) of order \(m \times n\) as follows. In \(H'\), let \(U' = \{u_1, u_2, \ldots, u_{m-1}\}\) and \(V = \{v_1, v_2, \ldots, v_n\}\). Adding a new vertex \(u_m\), for each \((h+k)\)-tuple containing \(u_m\), arrange \(u_m\) on the last entry. Denote \(E_1\) to be the set of
and B are losing score lists of H. Let \(E(H) = E(H') \cup E_1 \). Clearly, A and B are losing score lists of H.

Case 2. \(a_m < \binom{m-1}{h-1} \binom{n}{k} \).

Applying Lemma 2.3 repeatedly on A and keeping B fixed until we get a new non-decreasing list \(A' = [a_1', a_2', \ldots, a_m'] \) in which now \(a'_m = \binom{m-1}{h-1} \binom{n}{k} \).

By Case 1, A' and B are the losing score lists of an \([h-k] \)-bipartite hypertournament. Now, apply Lemma 2.2 on A' and B repeatedly until we obtain the initial pair of non-decreasing lists A and B. Then by Lemma 2.2, A and B are the losing score lists of an \([h-k] \)-bipartite hypertournament.

Remark. If \(h = 1 \), \(k = 1 \), we get the definition of scores in bipartite tournaments and Theorem 2.1 gives

\[
\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j \geq \binom{p}{1} \binom{q}{1} = pq,
\]

which is the characterization of score lists due to Beineke and Moon [2].

Proof of Theorem 2.2. Let \([c_1, c_2, \ldots, c_m]\) and \([d_1, d_2, \ldots, d_n]\) be score lists of an \([h-k]\)-bipartite hypertournament \(H(U, V) \), where \(U = \{u_1, u_2, \ldots, u_m\} \) and \(V = \{v_1, v_2, \ldots, v_n\} \) with \(d_H(u_i) = c_i \) for \(i = 1, 2, \ldots, m \), and \(d_H(v_j) = d_j \) for \(j = 1, 2, \ldots, n \). Clearly, \(d^+(u_i) + d^-(u_i) = \binom{m-1}{h-1} \binom{n}{k} \) and \(d^+(v_j) + d^-(v_j) = \binom{m}{h} \binom{n-1}{k} \).

Let \(a_{m+1-i} = d^-(u_i) \) and \(b_{n+1-j} = d^-(v_j) \).

Then \([a_1, a_2, \ldots, a_m]\) and \([b_1, b_2, \ldots, b_n]\) are the losing score lists of \(H \). Conversely, if \([a_1, a_2, \ldots, a_m]\) and \([b_1, b_2, \ldots, b_n]\) are the losing score lists of \(H \), then \([c_1, c_2, \ldots, c_m]\) and \([d_1, d_2, \ldots, d_n]\) are the score lists of \(H \). Hence it is sufficient to show that conditions (1) and (2) are equivalent provided

\[
c_i + a_{m+1-i} = \binom{m-1}{h-1} \binom{n}{k}
\]

and

\[
d_j + b_{n+1-j} = \binom{m}{h} \binom{n-1}{k}.
\]

First, assume (2) holds. Then

\[
\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j = \sum_{i=1}^{p} \left\{ \binom{m-1}{h-1} \binom{n}{k} - c_{m+1-i} \right\} + \sum_{j=1}^{q} \left\{ \binom{m}{h} \binom{n-1}{k-1} - d_{n+1-j} \right\}
\]

\[
= p \left(\binom{m-1}{h-1} \binom{n}{k} + q \right) \binom{m}{h} \binom{n-1}{k-1} - \left[\sum_{i=1}^{m} c_i + \sum_{j=1}^{n} d_j - \sum_{i=1}^{m-p} c_i - \sum_{j=1}^{n-q} d_j \right]
\]

7
\[\geq p \left(\binom{m-1}{h-1} \binom{n}{k} \right) + q \left(\binom{m}{h} \binom{n-1}{k-1} \right) - \left(h + k - 1 \right) \left(\binom{m}{h} \binom{n}{k} \right) \]
\[+ (m-p) \left(\binom{m-1}{h-1} \binom{n}{k} \right) + (n-q) \left(\binom{m}{h} \binom{n-1}{k-1} \right) \]
\[= \left(\binom{m-(m-p)}{h} \binom{n-(n-q)}{k} \right) - \left(\binom{m}{h} \binom{n}{k} \right) \]
with equality when \(p = m \) and \(q = n \). Thus, (1) holds.
Now, when (1) holds, using a similar argument as above, we can prove that (2) holds.
This completes the proof of the Theorem.

Corollary 2.1. Given non-negative integers \(m, n, h \) and \(k \) with \(m \geq h > 1 \) and \(n \geq k > 1 \), the non-decreasing sequences \(A = [a_i]_m^1 \) and \(B = [b_j]_n^1 \) of non-negative integers are the losing score lists of an \([h-k]\)-bipartite hypertournament if and only if for each \(p \) and \(q \),
\[\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j \leq \left(\binom{m}{h} \binom{n}{k} \right) - \left(\binom{m-p}{h} \binom{n-q}{k} \right), \]

Proof. This follows from Theorem 2.1.

References

[1] C. M. Bang and H. Sharp Jr., Score vectors of tournaments, J. Combin. Theory Ser. B 26 (1) (1979) 81-84.
[2] L. W. Beineke and J. W. Moon, On bipartite tournaments and scores, Proc. Fourth International Graph Theory Conference, Kalamazoo (1980 55-71.
[3] C. Berge, Graphs and hypergraphs, translated from French by E. Minieka, North-Holland Mathematical Library 6, North-Holland Publishing Co., Amsterdam, London, (1973).
[4] Y. Koh and S. Ree, Score sequences of hypertournament matrices, J.Korea Soc. Math. Educ. Ser. B: Pure and Appl. Math. 8 (2) (2001) 185-191.
[5] Y. Koh and S. Ree, On k-hypertournament matrices, Linear Algebra and its Applications 373 (2003) 183-195.
[6] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
[7] C. Wang and G. Zhou, Note on the degree sequences of k-hypertournaments, Discrete Mathematics, Preprint.
[8] G. Zhou, T. Yao and K. Zhang, On score sequences of k-hypertournaments, European J. Combin. 21 (8) (2000) 993-1000.