Lumbar Intradiscal Invaginated Inferior Vena Cava Aneurysm

Seung Young Jeong, Jin Uk Kim, Soo Yong Park, Jun Ho Lee, and Kyu Jae Lee

The objective of this study is to present a rare case of an invaginated inferior vena cava (IVC) aneurysm in the lumbar intradiscal space. A 73-year-old woman with lower back pain and bilateral lower extremity swelling presented to the clinic. She had undergone spinal surgery performed thrice at the same site (L4–L5) in another hospital and a separate posterolateral fusion surgery procedure 3 years previously. On plain radiography, pseudarthrosis was observed at L4–L5 segment. Contrast computed tomography (CT) imaging revealed a dilatation of the IVC in the intradiscal space of L4–L5. On the anterior side, anterior discectomy was performed. Following insertion of the allograft bone chip and cage, the invaginated IVC aneurysm was repositioned. Implant removal and screw fixation were performed posteriorly. Post-surgery, the patient’s lower back pain improved, and the start of anticoagulation treatment after vascular evaluation was planned. Although there have been numerous case reports of patients with intradiscal cysts or gas requiring surgical treatment, there have not yet been any reports of those with invaginated IVC in an intradiscal space. It is important to provide the appropriate treatment based on a thorough prior understanding of the patient’s anatomy.

Keywords: IVC aneurysm, IVC reposition, invagination, lumbar intradiscal space, pseudarthrosis

Introduction

Major vessel injury is a rare complication in spine surgery, but when it occurs, it can be fatal. In particular, severe vascular complications are often reported during interbody fusion,1–3) and it is important to have a thorough understanding of the anatomy, preoperatively. Venous aneurysm is a rare disease that can be arise anywhere in the body. Aneurysms have especially been reported in the inferior vena cava (IVC), but there are no reports of an aneurysm in the vena cava (IVC), but there are no reports of an aneurysm in the lumbar intradiscal space yet. Thus, we present the first such case here.

Case Report

A 73-year-old woman presented at our hospital with lower back pain and neurogenic intermittent claudication (NIC), including bilateral lower extremity swelling. On examination, she complained of having an increased level of pain while in the sitting position, and there was a notable decrease in her blood pressure (BP), that is, mean 108/72 mmHg than in the supine position (mean 131/81 mmHg). She had previously undergone spinal surgery three times performed at the same site (L4/L5) in another hospital, and had had posterolateral fusion surgery that was no interdiscal procedure 3 years prior to presentation at our clinic.

On dynamic plain radiograph, screw loosening in and instability of the L4–L5 segment, and of the thoracic to L2 bamboo spine, were observed (Figs. 1A and 1B).

Contrast multi-dimensional computed tomography (CT) imaging revealed a dilatation (diameter: 3.3 cm) of the IVC in the intradiscal space of L4–L5 (Fig. 2).

On magnetic resonance imaging (MRI), IVC aneurysm invagination in the L4–L5 intradiscal space was observed, with central stenosis of L4–L5 and bilateral foraminal stenosis of L5–S1 in the sagittal and axial scans (Fig. 3).

We planned to perform an anterior lumbar interbody fusion (ALIF) procedure of L4–L5–S1 and IVC aneurysm repositioning with a conventional retroperitoneal approach on the anterior side. Implant removal and L4–L5–S1 screw fixation were also planned on the posterior side.

The patient was admitted for surgery. On the anterior side, after vertical incision, L5–S1 ALIF was performed, L4–L5 anterior discectomy revealed an empty space and fluid collection, and a sufficient discectomy was performed to observe the IVC aneurysm (Fig. 4). The common iliac vein was carefully dissected caudal to the L4/L5 disc level to inspect the location of IVC invagination, and an orifice was observed. Taking care not to damage the invaginated IVC, the allograft bone chip and polyetheretherketone (PEEK) cage were inserted, and the invaginated IVC aneurysm was repositioned. Implant removal and screw fixation were performed posteriorly. After surgery, the patient’s lower back pain and leg pain improved, and the start of anticoagulation treatment was planned after vascular evaluation. On the post-operative 3 months follow up image, the invaginated IVC aneurysm was repositioned and significantly reduced in size than pre-operative (Fig. 5A). CT assessment at 7 months also showed IVC aneurysm was maintained stable (Fig. 5B). Because there is no symptom associated with IVC aneurysm after our surgery. We did not perform further surgical manipulation to the aneurysm itself.
Discussion

Although cases of low back pain or radiculopathy due to the presence of an intradiscal cyst or gas are rare, they have been reported previously.\(^4\)\(^{-}^9\) Intradiscal cysts or gas developed in the central canal and show similar symptoms as those of disc herniation due to compression of the thecal sac or nerve root; typically, treatment can be achieved simply by removal.\(^8\)\(^,\)\(^9\) However, there have been almost no reported cases of spinal symptoms caused by venous aneurysm, or of intradiscal invagination of the IVC, and the mechanisms of pathogenesis and treatment methods are not well-known.

Previously there have been case reports of venous aneurysm, in which venous aneurysm is defined as a persistent isolated venous dilatation measuring twice the normal diameter, with the normal range being 1.5–3.7 cm\(^10\)\(^{-}^12\) According to a recent literature review, IVC aneurysm is so rare that only a total of 53 cases have ever been reported.\(^13\) It is known that IVC aneurysm can be caused by trauma, inflammatory process, longstanding systemic venous hypertension, and/or congenital defects.\(^14\)\(^,\)\(^15\) IVC aneurysm is usually asymptomatic, but it can present with complications, such as leg swelling, abdominal/lower back pain, deep venous thrombosis, massive penile bleeding, and in severe cases, pulmonary embolism or paradoxical cerebral embolism.\(^10\)

Our case showed low back pain, decreased BP, and leg swelling while in the sitting position due to compression of the invaginated IVC. Laboratory tests were HLA B-27-negative, and radiography showed a bamboo spine, which was consistent with seronegative spondyloarthritis. It is
thought that the patient had previously developed pseudo-
trothrosis following L4/L5 posteriorlateral fusion, that inflamma-
tion had caused injury to the anterior longitudinal ligament
(ALL), and that the IVC had invaginated into the L4/L5 disc
space, after which repetitive trauma had resulted in IVC
aneurysm.

Gradman and Steinberg classify IVC aneurysms into four
types according to the association of the aneurysm with the
hepatic vein and resultant obstruction.\(^\text{16}\) Montero-Baker
et al. reported that it is recommended that aneurysms types
II–IV undergo resection, ligation, and endovascular manage-
ment, and that it is that type I, small (<5 cm) and stable
aneurysms undergo conservative management.\(^\text{13}\)

Our case appeared to be a type III IVC aneurysm; according
to the literature, of 21 type III aneurysm patients, satisfactory
outcomes were achieved after 15 patients were treated with
resection or embolization, and after six patients were given
conservative treatment.\(^\text{13}\) However, there is still no established
treatment for invaginated IVC, but in cases such as the present
case, we believe that the proper treatment involves reposi-
tioning of the invaginated IVC, followed by vascular evalua-
tion for a precise diagnosis, then commencement of
anticoagulation medication to prevent embolism, and main-
taining conservative treatment without additional surgical
manipulation if the aneurysm is stable.

Conclusions

The patient in our case was found to be HLA B-27-negative
as per her laboratory results, but was suspected to have sero-
negative spondyloarthropathy. In the unstable L4–L5 disc
space, IVC invagination showed repetitive trauma and inflam-
mation, leading to dilatation of the IVC. There have been
numerous case reports of intradiscal cyst or gas requiring sur-
gical treatment, but there have been any reports of invaginated
IVC in the intradiscal space, yet. It is important to provide the
patient with the appropriate treatment according to their IVC
type, with selection based on a thorough understanding of
their anatomy prior to treatment.

Conflicts of Interest Disclosure

None.

References

1. Baker JK, Reardon PR, Reardon MJ, Heggeness MH: Vascular injury
 in anterior lumbar surgery. *Spine* 18: 2227–2230, 1993
2. Brau SA, Delamarter RB, Schiffman ML, Williams LA, Watkins RG:
 Vascular injury during anterior lumbar surgery. *Spine J* 4: 409–412, 2004
3. Fantini GA, Pappou IP, Girardi FP, Sandhu HS, Cammisa FP: Major
 vascular injury during anterior lumbar spinal surgery: incidence, risk
 factors, and management. *Spine* 32: 2751–2758, 2007
4. Nishizawa T, Koyanagi T, Toyama Y, et al.: Three cases of intraspinal
cyst whose symptoms resembled lumbar disc herniation. *Seikei Geka*
 46: 1353–1357, 1995 (Japanese)
5. Tokutani S, Katano H, Ichikawa S, et al.: Intraspinous cyst (premembra-
nous hematoma): a case report. *Rinsho Seikei Geka* 31: 1195–1198,
 1996 (Japanese)
6. Chatani K, Kamata K, Shirokura M, et al.: Intraspinous cystic hematoma
 associated with lumbar disc herniation. *J Jpn Orthop Assoc* 70: S316, 1996
7. Certo F, Visocchi M, Borderi A, Pennisi C, Albanese V, Barbagallo
 GM: Lumbar intervertebral discal cyst: a rare cause of low back pain and
 radiculopathy. Case report and review of the current evidences on
diagnosis and management. *Evid Based Spine Care* J 5: 141–148, 2014
8. Yasuoka H, Nemoto O, Kawaguti M, Naitou S, Yamamoto K, Ukegawa Y:
 An unusual case of nerve root compression by intradiscal gas pseudocyst
 of the lumbar spine. *J R Army Med Corps* 156: 47–48, 2010
9. Takeshima Y, Takahashi T, Hanakita J, et al.: Lumbar discal cyst with
 spontaneous regression and subsequent occurrence of lumbar disc her-
niation. *Neurol Med Chir (Tokyo)* 51: 809–811, 2011
10. Davidovic L, Dragas M, Bozic V, Takac D: Aneurysm of the inferior
 vena cava: case report and review of the literature. *Pneumologie* 23:
 184–188, 2008
11. McDevitt DT, Lohr JM, Martin KD, Welling RE, Sampson MG: Bilat-
 eral popliteal vein aneurysm. *Ann Vasc Surg* 7: 282–286, 1993
12. Marks WM, Korobkin M, Callen PW, Kaiser JA: CT diagnosis of tumor
 thrombosis of the renal vein and inferior vena cava. *AJR Am J
 Roentgenol* 131: 843–846, 1978
13. Montero-Baker MF, Branco BC, Leon LL Jr, Labropoulos N, Echeverria A,
 Mills JL Sr: Management of inferior vena cava aneurysm. *J Vasc Surg*
 28: 822–826, 1998
14. Furukawa T, Yamada T, Mori Y, et al.: Idiopathic aneurysm of inferior vena
cava: CT demonstration. *J Comput Assist Tomogr* 10: 1076–1077, 1986
15. Moncada R, Demos TC, Marsan R, Churchill RJ, Reyes C, Love L:
 CT diagnosis of idiopathic aneurysms of the thoracic systemic veins.
 J Comput Assist Tomogr 9: 305–309, 1985
16. Gradman WS, Steinberg F: Aneurysm of the inferior vena cava: case
 report and review of the literature. *Ann Vasc Surg* 7: 347–353, 1993

Corresponding author:
Jin Uk Kim, MD, Department of Neurosurgery, Incheon Nanoori Hospital, 156 Bupyeongmunhwa-ro, Bupyeong-gu, Incheon, Republic of Korea.
✉ ultralex@hanmail.net