We study the Cauchy problem for the diffusion equation

\[\partial_t^\alpha (u(t,x) - u_0) + Lu(t,x) = f(t,x) \quad \text{in} \quad \mathbb{R}_+ \times \mathbb{R}^d, \quad 0 < \alpha \leq 1, \quad (1.1) \]

where \(u_0(x) = u(0,x) \) is the initial condition, \(\partial_t^\alpha \) denotes the Riemann-Liouville fractional derivative if \(\alpha \in (0,1) \) and \(L \) is a nonlocal elliptic operator of order \(\beta \in (0,2] \). A standard example is the fractional Laplacian \(L = (-\Delta)^{\beta/2} \). The equation is nonlocal both in space and time and we call such a parabolic equation a fully nonlocal diffusion equation.

Our emphasis is on the decay properties, and for the space-fractional heat diffusion such questions have been studied, for instance, by Chasseigne, Chaves and Rossi in [13] as well as by Ignat and Rossi in [24]. For a more comprehensive account of the asymptotic theory in case \(\alpha = 1 \), we refer to [37]. The decay of solutions and behavior of the Barenblatt solution for the space-fractional porous medium equation has, in turn, been studied by Vazquez in [42]. In the present paper, we extend these developments – concerning the fundamental solutions, representation formulas and decay properties – to the above fully nonlocal equation. For the case \(\beta = 2 \), see earlier works by Vergara and Zacher in [43] and by Vergara and the
present authors in [28]. For the regularity theory of nonlocal equations in case \(\alpha = 1\) or \(\beta = 2\), we refer to [11, 17, 22, 12, 30, 2, 49, 48] and the references therein.

Nonlocal PDE models arise directly, and naturally, from applications. Time fractional diffusion equations are closely related to a class of Montroll-Weiss continuous time random walk (CTRW) models and have become one of the standard physics approaches to model anomalous diffusion processes [17, 15, 25, 33]. For a detailed derivation of these equations from physics principles and for further applications of such models we refer to the expository review article of Metzler and Klafter in [34]. The fractional Laplacian arises in the modeling of jump processes and also in quantitative finance as a model for pricing American options [16, 40]. The fully nonlocal diffusion equation, in particular, has been used in diffusion models, for instance, in [12] and [15].

Despite their importance for applications, the mathematical study of fully nonlocal diffusion problems of type (1.1) is relatively young. In a very recent paper Allen, Caffarelli and Vasseur [1] have studied the regularity of weak solutions to such problems. Even more recently, simultaneously to our work, Kim and Lim [31] have considered the behavior of fundamental solutions, whereas Cheng, Li and Yamamoto [14] have studied other aspects of the asymptotic theory. Apart from these papers, the study of the parabolic problem has mostly concentrated on the aforementioned cases \(\alpha = 1\) or \(\beta = 2\).

We point out that the nonlocal in time term in (1.1), with \(\partial_t^\alpha\) being the Riemann-Liouville fractional derivation operator, coincides (for sufficiently smooth \(u\)) with the Caputo fractional derivative of \(u\), see (2.3) below. The formulation with Riemann-Liouville fractional derivative has the advantage that a priori less regularity is required on \(u\) to define the nonlocal operator. In particular, our formulation is exactly the one which naturally arises from physics applications, see for instance [34, equation (40)].

Our first main result considers a representation formula for classical solutions of the Cauchy problem for equation (1.1) with \(L = (-\Delta)^\beta\). In the process, we calculate the exact behavior of the fundamental solutions.

Next, we show that the mild solutions, which are defined through the representation formula whenever its integrals are finite, tend to the fundamental solutions \(Z\) and \(Y\) – corresponding to the initial and forcing data, respectively – in \(L^p\) with quantitative decay rates. Such results are nontrivial already for standard caloric functions, especially in the case of a non-vanishing forcing term. In particular, the proof requires a delicate analysis of the problem as well as gradient estimates for the fundamental solutions which can only be represented via so called Fox \(H\)-functions.

In the analysis of these special functions we use number theoretic tools to obtain their behavior up to the first derivatives. A particular difficulty in all the analysis is caused by the fact that the fundamental solutions \(Z\) and \(Y\) have singularities also for positive times. This causes integrability problems and requires a delicate analysis.

We continue to study decay results by two additional approaches. In the first one, we use Fourier techniques to build optimal \(L^2\)-decay estimates for mild solutions of the aforementioned Cauchy problem. Contrary to the standard caloric functions, the decay rate does not improve with high enough dimensions, but there exists a critical dimension at which the decay rate of bounded domains is achieved. This critical dimension phenomena is brought by the introduction of the fractional Riemann-Liouville time-derivative and such behavior is not observed in the case
\(\alpha = 1\). This also substantially complicates the analysis and we are required to use Riesz potential estimates to obtain the decay results. Thus the theory is markedly different from that of the standard heat equation.

Finally, we turn into studying the decay of weak solutions where we can consider operators \(L\) with general measurable kernels. We show that the \(L^2\)-norm of a weak solution, which is defined in a variational formulation, is a subsolution to a purely time-fractional equation. On the other hand, the exact behavior of the solutions for such problems is well-known and, therefore, we may use the comparison principle to conclude the result – even in such a general context. While our method gives the optimal decay rate in the case \(\alpha = 1\), the energy methods used in the proof cannot discriminate between large and small dimensions. Consequently, we are not able to obtain the non-smooth decay behavior – and the consequent critical dimension phenomenon – with respect to the dimension. Thus, it remains an open question whether our decay result is optimal in this context.

2. Preliminaries and main results

2.1. Notations and definitions. Let us first fix some notations. We denote the space of \(k\)-times continuously differentiable functions by \(C^k\) and \(C^0 := C\).

The Riemann-Liouville fractional integral of order \(\alpha \geq 0\) is defined for \(\alpha = 0\) as \(J_0^{\alpha} f(t) = \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau = (g_\alpha * f)(t)\), (2.1) where \(g_\alpha(t) = \frac{t^{\alpha-1}}{\Gamma(\alpha)}\) is the Riemann-Liouville kernel and \(*\) denotes the convolution in time. We denote the convolution in space by \(\star\) and the double convolution in space and time by \(\hat{*}\).

The Riemann-Liouville fractional derivative of order \(0 < \alpha < 1\) is defined by \(D^\alpha_t f(t) = \frac{d}{dt} J^{1-\alpha}_1 f(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-\tau)^{-\alpha} f(\tau) d\tau\). (2.2)

Observe that for sufficiently smooth \(f\) and \(\alpha \in (0, 1)\)
\[\partial^\alpha_t (f - f(0))(t) = (J^{1-\alpha}_1 f')(t) =: cD^\alpha_t f(t),\] (2.3)
the so-called Caputo fractional derivative of \(f\). In case \(\alpha = 1\), we have the standard time derivative.

Let
\[\hat{u}(\xi) = \mathcal{F}(u)(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-ix \cdot \xi} f(x) dx\]
and
\[\mathcal{F}^{-1}(u)(\xi) := \mathcal{F}(u)(-\xi)\]
denote the Fourier and inverse Fourier transforms of \(u\), respectively. We define the fractional Laplacian as
\[(-\Delta)^{\beta/2} u(x) = \mathcal{F}_{\xi \rightarrow x}^{-1}(|\xi|^\beta \hat{u}(\xi)).\]
Next we define the concept of a classical solution of \(\mathcal{L}\), with \(\mathcal{L} = (-\Delta)^{\beta/2}\), given with an initial condition \(u(0, x) = u_0(x)\).
Definition 2.4. Let $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Suppose $u_0 \in C(\mathbb{R}^d)$ and $f \in C([0, \infty) \times \mathbb{R}^d)$. Then a function $u \in C([0, \infty) \times \mathbb{R}^d)$ is a classical solution of the Cauchy problem

$$
\begin{aligned}
&\partial_t^\alpha (u(t, x) - u_0) + (-\Delta)^{\beta/2} u(t, x) = f(t, x), \quad \text{in } (0, \infty) \times \mathbb{R}^d, \\
u(0, x) = u_0(x), \quad \text{in } \mathbb{R}^d,
\end{aligned}
$$

(2.5)

if

(i) $\mathcal{F}^{-1}_{\xi \mapsto \eta}(|\xi|^\beta \hat{u}(\xi))$ defines a continuous function of x for each $t > 0$,

(ii) for every $x \in \mathbb{R}^d$, the fractional integral $J^{1-\alpha}u$, as defined in (2.1), is continuously differentiable with respect to $t > 0$, and

(iii) the function $u(t, x)$ satisfies the integro-partial differential equation of (2.5) for every $(t, x) \in (0, \infty) \times \mathbb{R}^d$ and the initial condition of (2.5) for every $x \in \mathbb{R}^d$.

We remark that under appropriate regularity conditions on the data, existence and uniqueness of strong L^p-solutions of (2.5) follows from the results in [45], which are formulated in the framework of abstract parabolic Volterra equations, see also the monograph [36].

Next we turn in to the weak solutions to equation (1.1). In place of the fractional Laplacian we will consider a more general class of elliptic operators. In this context, we avoid using the Fourier transform and the corresponding definition for the fractional Laplacian is given by its singular integral representation

$$
(-\Delta)^{\frac{\beta}{2}} u(x) = c(d, \beta) \text{P.V.} \int_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+\beta}} dy
$$

(2.6)

where P.V. stands for the Cauchy principal value and c is a constant. In [39] it is shown that $(-\Delta)^{\frac{\beta}{2}} u(x)$ is a continuous function whenever u is locally in $C^2(\mathbb{R}^d)$ and

$$
\int_{\mathbb{R}^d} \frac{|u(x)|}{1 + |x|^{d+\beta}} dx < \infty.
$$

We will study the weak formulation where we define the operator through a bilinear form. We begin by setting up the problem.

We define the fractional Sobolev space $W^{\frac{\beta}{2}, 2}(\mathbb{R}^d)$ for $\beta \in (0, 2)$ as

$$
W^{\frac{\beta}{2}, 2}(\mathbb{R}^d) := \left\{ v \in L^2(\mathbb{R}^d) : \frac{|v(x) - v(y)|}{|x - y|^{d+\beta}} \in L^2(\mathbb{R}^d \times \mathbb{R}^d) \right\}
$$

endowed with the norm

$$
\|v\|_{W^{\frac{\beta}{2}, 2}(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |v|^2 dx + \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|v(x) - v(y)|^2}{|x - y|^{d+\beta}} dx dy \right)^{1/2}.
$$

Let $0 < \lambda \leq \Lambda$ and define the kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$ to be a measurable function such that

$$
\frac{\lambda}{|x - y|^{d+\beta}} \leq K(x, y) \leq \frac{\Lambda}{|x - y|^{d+\beta}}
$$

(2.7)

for almost every $x, y \in \mathbb{R}^d$ and for some $\beta \in (0, 2)$. Consider the bilinear form

$$
\mathcal{E}(u, v) := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x, y)[u(x) - u(y)] \cdot [v(x) - v(y)] dx dy
$$
for any \(u, v \in W^{\frac{d}{2}, 2}(\mathbb{R}^d) \). Let \(\varphi \in W^{\frac{d}{2}, 2}(\mathbb{R}^d) \). We now define an elliptic operator \(\mathcal{L} \) by

\[
\langle \mathcal{L} u, \varphi \rangle = \mathcal{E}(u, \varphi),
\]

where \(\langle \cdot, \cdot \rangle \) stands for the duality pairing on \(V' \times V \) with \(V = W^{\frac{d}{2}, 2}(\mathbb{R}^d) \). Observe that if \(K(x, y) = c(d, \beta)|x - y|^{-d - \beta} \) the operator \(\mathcal{L} \) defined here gives the fractional Laplacian of (2.6).

We study the Cauchy problem for weak solutions of the equation

\[
\partial_t^\alpha (u - u_0) + \mathcal{L} u = 0. \tag{2.8}
\]

In the case \(\alpha = 1 \), a weak solution is defined in the classical way. Letting \(T > 0 \), a natural parabolic function space for defining weak solutions on \([0, T] \times \mathbb{R}^d\) in the case \(\alpha \in (0, 1) \) is given by

\[
F_\alpha(T) := \{ v \in L^{\infty}(0, T]; L^2(\mathbb{R}^d)) \cap L^2([0, T]; W^{\frac{d}{2}, 2}(\mathbb{R}^d)) \text{ such that } g_{1-\alpha} v \in C([0, T]; L^2(\mathbb{R}^d)) \text{ and } (g_{1-\alpha} v)|_{t=0} = 0 \},
\]

\[\text{cf. [47].}\]

The definition of weak solution (in the case \(\alpha \in (0, 1) \)) is now the following.

Definition 2.9. Let \(u_0 \in L^2(\mathbb{R}^d) \) and \(u : [0, \infty) \times \mathbb{R}^d \rightarrow \mathbb{R} \) be such that for any \(T > 0 \) we have \(u|_{[0, T] \times \mathbb{R}^d} \in F_\alpha(T) \). Then we say that \(u \) is a weak solution of equation (2.8) with initial condition \(u|_{t=0} = u_0 \) if for all \(T > 0 \)

\[
\int_0^T \int_{\mathbb{R}^d} -[g_{1-\alpha} (u(t, x) - u_0(x))]|D_\alpha \varphi (t, x)| \, dx \, dt
\]
\[
+ \int_0^T \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x, y)[u(t, x) - u(t, y)] \cdot (\varphi(t, x) - \varphi(t, y)) \, dx \, dy \, dt = 0
\]

for all test functions \(\varphi \in W^{1, 2}([0, T]; L^2(\mathbb{R}^d)) \cap L^2([0, T]; W^{\frac{d}{2}, 2}(\mathbb{R}^d)) \) with \(\varphi|_{t=T} = 0 \) in \(L^2(\mathbb{R}^d) \).

We recall that existence and uniqueness of weak solutions in \(F_\alpha(T) \) has been studied in [47], even in a more general context.

2.2. Fox H-functions

The Fox \(H \)-functions are special functions of a very general nature and there is a natural connection to the fractional calculus, since the fundamental solutions of the Cauchy problem can be represented in terms of them. Since the asymptotic behavior of the Fox \(H \)-functions can be found from the literature, the Fox \(H \)-functions have a crucial role also in our asymptotic analysis. We collect here some basic facts on these functions.

Let us start with the definition. To simplify the notation we introduce

\[
(a_i, \alpha_i)_{k,p} := ((a_k, \alpha_k), (a_{k+1}, \alpha_{k+1}), \ldots, (a_p, \alpha_p))
\]

for the set of parameters appearing in the definition of Fox \(H \)-functions. The Fox \(H \)-function is defined via a Mellin-Barnes type integral as

\[
H_{pq}^{mn}(z) := H_{pq}^{mn} \left[\left(\frac{a_i}{(b_j, \beta_j)_{i,n}} \right) \right] = \frac{1}{2\pi i} \int_{\mathcal{L}} H_{pq}^{mn}(s) z^{-s} ds, \tag{2.10}
\]

where

\[
H_{pq}^{mn}(s) = \prod_{j=1}^m \Gamma(b_j + \beta_j s) \prod_{i=1}^n \Gamma(1 - a_i - \alpha_i s) \prod_{j=m+1}^n \Gamma(1 - b_j - \beta_j s) \tag{2.11}
\]
Remark refer to Corollary 2.5.1 and Property 2.5 of [29], respectively.

Barnes integral representation of Fox

Proof. in (6) JUKKA KEMPPAINEN, JUHANA SILJANDER AND RICO ZACHER

b v convergence of the integrals. Since (6) to the right of ξ of Lemma 2.14. We will need the following properties from Chapter 2 of [29].

We will use (6) v of the complex plane which separates the poles

Properties of Fox H-functions: (i) \(b^m \mathcal{H}_{pq}^{mn} \left[z \right] \left[\frac{(a_i, \alpha_i)_{p-1}}{(b_j, \beta_j)_{p-1}}, (a_i, \alpha_i)_{p-1} \right] \) is valid even for a wider range of parameters than the range given by (6).

(ii) \(H_{pq}^{mn} \left[z \right] \left[\frac{(a_i, \alpha_i)_{p-1}}{(b_j, \beta_j)_{p-1}}, (a_i, \alpha_i)_{p-1} \right] \)

(iii) \(H_{pq}^{mn} \left[z \right] \left[\frac{(a_i, \alpha_i)_{p-1}}{(b_j, \beta_j)_{p-1}}, (a_i, \alpha_i)_{p-1} \right] \)

(iv) \(\partial_j^k H_{pq}^{mn} \left[z \right] \left[\frac{(a_i, \alpha_i)_{p-1}}{(b_j, \beta_j)_{p-1}}, (a_i, \alpha_i)_{p-1} \right] \)

(v) For \(b > 0 \) and \(x > 0 \) we have

(proof)

Remark 2.15. There are some restrictive conditions on the parameters appearing in (v) (for details, see [29, Corollary 2.5.1]). The conditions are required for the convergence of the integrals. Since (v) represents a Hankel transform formula for the Fox H-functions and the Fourier transform can be written as a Hankel transform, we will use (v) in the proof of Theorem 2.22 to calculate the inverse Fourier transform of \(\xi \mapsto \left| \xi \right|^s \hat{Y}(t, \xi) \), which is not integrable in general. But since both sides of (v) depend analytically on our choice of parameters, the identity

\[\langle \hat{f}, \varphi \rangle = \langle f, \varphi \rangle, \] (2.16)

where \(\langle \cdot, \cdot \rangle \) denotes the duality pairing on \(S' \times S \) with \(S \) denoting the space of Schwartz functions on \(\mathbb{R}^d \), allows us by analytic continuation to conclude that (v) is valid even for a wider range of parameters than the range given by the restrictions in [29, Corollary 2.5.1]. Then the Hankel transform formula (v) has to be understood as the generalized Fourier transform (2.16). For details on generalizing integral identities we refer to [29].
An important special case of the function $H_{1,1}^1(-z)$ with the parameters $(a_i, \alpha_i)_{1,1} = (0, 1)$ and $(b_j, \beta_j)_{1,2} = ((0, 1), (1 - \alpha, \beta))$ is the two-parameter Mittag-Leffler function

$$E_{\alpha, \beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta + \alpha k)}.$$

(2.17)

It appears in the fundamental solutions of the Cauchy problem for integro-ordinary differential equations. Since the problem (2.5) formally transforms into

$$\begin{cases}
\partial_\alpha \hat{u}(t, \xi)(\hat{u}(t, \xi) - \hat{u}_0(\xi)) + |\xi|^\beta \hat{u}(t, \xi) = \hat{f}(t, \xi), \\
\hat{u}(0, \xi) = \hat{u}_0(\xi),
\end{cases}$$

(2.18)

the fundamental solutions in the Fourier domain can be formally expressed in terms of Mittag-Leffler functions. It can be shown rigorously that in our case the fundamental solutions Z and Y satisfy

$$\hat{Z}(t, \xi) = \left(\frac{2\pi}{d}\right)^{-d/2} E_{\alpha,1}(\xi^\beta t^\alpha).$$

(2.19)

and

$$\hat{Y}(t, \xi) = \left(\frac{2\pi}{d}\right)^{-d/2} t^{\alpha-1} E_{\alpha,\alpha}(\xi^\beta t^\alpha).$$

(2.20)

The Mittag-Leffler function $E_{\alpha,\alpha}(-x)$ is known to be completely monotone for $x \in \mathbb{R}_+$ and it has the asymptotics

$$E_{\alpha,\alpha}(-x) \sim \frac{1}{1 + x^2}, \quad x \in \mathbb{R}_+. $$

(2.21)

For $E_{\alpha,1}$ we have the asymptotic behavior

$$E_{\alpha,1}(-x) \sim \frac{1}{1 + x}, \quad x \in \mathbb{R}_+. $$

(2.22)

The asymptotic behavior follows from an integral representation

$$E_{\alpha,\beta}(z) = \frac{1}{2\pi i} \int_{C} \frac{e^{-z t} t^{-\beta}}{t^\alpha - z} dt,$$

where C is an infinite contour in the complex plane. For details we refer to [21, Chapter 18]. Alternatively, one can use the connection to the Fox H-function and use the asymptotic behavior known for the Fox H functions, see Section 3.2. For the function Y we obtain the asymptotics

$$\hat{Y}(t, \xi) \sim \frac{t^{\alpha-1}}{1 + |\xi|^{2\beta} t^{2\alpha}}. $$

(2.23)

2.3. Main results. Our first theorem states that a classical solution of (2.5) has an integral representation involving Z and Y mentioned above. Since we defined the fractional Laplacian via the Fourier transform, we need to guarantee that $F_{t \rightarrow z}^{-1}(|\xi|^\beta \hat{u}(t, \xi))$ determines a continuous function in x. In particular, by the Riemann-Lebesgue Lemma, this is true if $|\cdot|^\beta \hat{u}(t, \cdot) \in L^1(\mathbb{R}^d)$. We also need that $u(t, x)$ is a continuous function up to 0 for all $x \in \mathbb{R}^d$. For these purposes, we impose the condition

$$|\tilde{f}(t, \xi)| \leq C|g(\xi)|$$

(2.24)

for the forcing term f, where the function g satisfies

$$(1 + |\cdot|^\beta)g(\cdot) \in L^1(\mathbb{R}^d),$$

(2.25)

and $C > 0$ is a constant which is uniform in time.
Theorem 2.26. Let $u_0 \in L^1(\mathbb{R}^d)$ be such a function that $\hat{u}_0 \in L^1(\mathbb{R}^d)$ and let f be a function satisfying $f(t, \cdot) \in L^1(\mathbb{R}^d)$ for all $t \geq 0$ and (2.21) with g satisfying (2.25). Define

$$Z(t, x) = \pi^{-d/2}|x|^{-d}H_{32}^{12}[2^{\beta}r^{a}|x|^{-\beta}(1-\frac{d}{2}, \frac{d}{2}, (0, 1), (0, \alpha))].$$

and

$$Y(t, x) = \pi^{-d/2}t^{\alpha-1}|x|^{-d}H_{32}^{12}[2^{\beta}t^{-\alpha}|x|^{-\beta}(1-\frac{d}{2}, \frac{d}{2}, (0, 1), (1-\alpha, \alpha))].$$

Then the function

$$\Psi(t, x) = \int_{\mathbb{R}^d}Z(t, x-y)u_0(y)\,dy + \int_0^t \int_{\mathbb{R}^d}Y(t-s, x-y)f(s, y)\,dy\,ds$$

is a classical solution to problem (2.23).

Remark 2.29. In our asymptotic analysis we prefer to use the similarity variable $R = t^{-\alpha}|x|^2$ similarly as in [20]. Therefore, it is desirable to use the property (ii) of Lemma 2.14 and write Z in a form

$$Z(t, x) = \pi^{-d/2}|x|^{-d}H_{23}^{21}[2^{-\beta}t^{-\alpha}|x|^{-\beta}(1, 1), (\alpha, \beta/2), (1, 1), (1, \beta/2)].$$

and Y in a form

$$Y(t, x) = \pi^{-d/2}t^{\alpha-1}|x|^{-d}H_{23}^{21}[2^{-\beta}t^{-\alpha}|x|^{-\beta}(1, 1), (\alpha, \beta/2), (1, 1), (1, \beta/2)].$$

Observe that in the special case $\beta = 2$, we obtain the time-fractional diffusion equation. Its decay properties have been studied in [28] and for the behavior of its fundamental solution, we refer to [32]. If we restrict our formula (2.27) to the case $\beta = 2$, it reduces to

$$Z(x, t) = \pi^{-d/2}|x|^{-d}H_{32}^{12}[4^{\alpha}|x|^{-2}(1-\frac{d}{2}, 1), (0, 1), (0, 1)].$$

Using the properties (ii) and (iii) of the Fox H-function from Lemma 2.14 gives

$$H_{32}^{12}[4^{\alpha}r^{-2}(1-\frac{d}{2}, 1), (0, 1), (0, \alpha)] = H_{21}^{12}[4^{\alpha}r^{-2}(1-\frac{d}{2}, 1), (0, 1)]
= H_{12}^{20}\frac{1}{4}|x|^{2}\alpha(1, 1), (1, 1)].$$

Therefore the formula (2.32) reads as

$$Z(t, x) = \pi^{-d/2}|x|^{-d}H_{12}^{20}\frac{1}{4}|x|^{2}\alpha(1, 1), (1, 1)].$$

which is exactly the same as obtained by Kochubei in [32] Formula (18).

As explained earlier, the functions Z and Y can be derived by taking the Fourier transform with respect to the spatial variable x and the Laplace transform with respect to time in (1.1). For more details we refer to [13]. Our contribution is in showing that they induce a representation formula, even for relatively rough initial and forcing data.

Adopting the notion of the Green matrix from [20], we call the pair (Z, Y) the matrix of fundamental solutions of equation (2.3). Next we define the concept of mild solutions by means of the above representation formula.

Definition 2.33. Let u_0 and f be Lebesgue measurable functions on \mathbb{R}^d and $[0, \infty) \times \mathbb{R}^d$, respectively. The function u defined by

$$u(t, x) = \int_{\mathbb{R}^d}Z(t, x-y)u_0(y)\,dy + \int_0^t \int_{\mathbb{R}^d}Y(t-s, x-y)f(s, y)\,dy\,ds
=: u_{\text{init}}(t, x) + u_{\text{force}}(t, x)$$

is called a mild solution to problem (2.23).
is called the *mild solution* of the Cauchy problem \((2.25)\) whenever the integrals in the above formula are well defined.

We are particularly interested in the case where the data belong to some Lebesgue spaces. Note that our case differs from the usual heat equation. For example, in the case of the heat equation it is enough that \(u_0 \in C(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)\) for the above defined \(u\) to be the classical solution of the homogeneous equation. As we shall see, for \(d \geq 2\) and \(\alpha < 1\) the function \(Z(t,x)\) has a singularity not only in \(t\), but also in \(x\), which implies that more smoothness on \(u_0\) is required. The function \(Y\) also has a singularity both in \(t\) and \(x\). Notice that this resembles the Laplace equation, for which the fundamental solution \(\mathcal{u}(x) = c(d)|x|^{2-d}\) has a singularity at \(x = 0\). In a sense this reflects the *elliptic nature* of the nonlocal PDE when \(\alpha < 1\).

Next we turn in to the decay of mild solutions. We give a quantitative rate at which the solution decays to its fundamental solution and, moreover, if the first moment of the initial datum is finite, we can say even more. These results are analogous with the ones for the heat equation in \([50]\). However, unlike in the case of caloric functions, we need to restrict our study of the \(L^p\)-decay to a certain range of possible values of \(p\). This is caused by the fact that the fundamental solution lacks integrability for large enough \(p\). Note that this does not happen for the heat kernel, which belongs to \(L^\infty(\mathbb{R}^d)\) for all \(t > 0\). In the limiting case we prove a convergence result in the weak \(L^p\)-norm.

Denote
\[
\kappa_1(\beta,d) = \begin{cases}
\frac{d}{d-\beta+1}, & \text{for } d > \beta - 1, \\
\infty, & \text{for } d \leq \beta - 1
\end{cases}
\]
and
\[
\kappa_2(\beta,d) = \begin{cases}
\frac{d}{d-\beta+1}, & \text{if } d > 2\beta, \\
\infty, & \text{otherwise.}
\end{cases}
\]

In order to obtain decay for the solution, we need to assume that there exists a \(\gamma > 1\) such that
\[
\|f(t,\cdot)\|_{L^1(\mathbb{R}^d)} \lesssim (1 + t)^{-\gamma}, \quad t > 0. \tag{2.34}
\]
Set also
\[
M_{\text{init}} = \int_{\mathbb{R}^d} u_0(y) \, dy \quad \text{and} \quad M_{\text{force}} = \int_0^\infty \int_{\mathbb{R}^d} f(t,y) \, dy \, dt.
\]

With this notation we have the following result.

Theorem 2.35. Let \(d \geq 1\), \(u_0 \in L^1(\mathbb{R}^d)\) and \(f \in L^1(\mathbb{R}_+ \times \mathbb{R}^d)\). Suppose \(f\) satisfies \((2.25)\) with some \(\gamma > 1\). Assume that \(u\) is the mild solution of equation \((2.25)\).

1. Then
\[
t^{\frac{\kappa_2}{2} - \frac{1}{2}} \|u_{\text{init}}(t,\cdot) - M_{\text{init}}Z(t,\cdot)\|_{L^p} \to 0, \quad t \to \infty,
\]
for all \(p \in [1, \kappa_1]\), and
\[
t^{1 + \frac{\kappa_2}{2} - \frac{1}{2} - \alpha} \|u_{\text{force}}(t,\cdot) - M_{\text{force}}Y(t,\cdot)\|_{L^p} \to 0, \quad t \to \infty,
\]
for all \(1 \leq p \leq \infty\), if \(\alpha = 1\) or \(d < 2\beta\), and for \(p \in [1, \kappa_2]\), if \(d \geq 2\beta\).

2. Assume in addition that \(\|u_0\|_{L^1} < \infty\). Then
\[
t^{\frac{\kappa_2}{2} - \frac{1}{2}} \|u_{\text{init}}(t,\cdot) - M_{\text{init}}Z(t,\cdot)\|_{L^p} \lesssim t^{-\frac{\beta}{2}}, \quad t > 0.
\]
Moreover, in the limit case \(p = \kappa_1(\beta,d)\) we have
\[
t^{\frac{\alpha(d-1)}{d}} \|u_{\text{init}}(t,\cdot) - M_{\text{init}}Z(t,\cdot)\|_{L^{\kappa_1(\beta,d)}(\mathbb{R}^d)} \lesssim t^{-\frac{\beta}{d}}, \quad t > 0.
\]
Continuing on decay results, we now turn to study the L^2-decay of mild solutions. Observe the critical dimension phenomenon that the decay rate does not improve when the dimension is increased after $d > 2\beta$. Thus, the non-local case is markedly different from that of the standard caloric functions. Importantly, in Section 7 we will also show the decay rate provided here is optimal. In particular, the decay rate below is sharp for all initial data u_0 such that $\int_{\mathbb{R}^d} u_0 \, dx \neq 0$.

Theorem 2.36. Let $\alpha \in (0, 1), d \geq 1$ and $d \neq 2\beta$. Suppose u is the mild solution of the Cauchy problem \((2.5)\) with $u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and $f \equiv 0$. Then

$$\|u(t, \cdot)\|_{L^2} \lesssim t^{-\min\{1, \frac{d}{2\beta}\}}, \quad t > 0.$$

Moreover, in case $d = 2\beta$ we have

$$\|u(t, \cdot)\|_{L^2, \infty} \lesssim t^{-\alpha}, \quad t > 0.$$

Finally, in the following theorem we turn in to the decay of weak solutions. The proof is based on a comparison principle and a priori estimates. It is an open question whether the decay rate here is optimal as it is not as good as the one obtained by the Fourier methods in the previous theorem. The same phenomenon is present already in the case of the time fractional diffusion [28]. Observe that our method gives the correct decay when applied to the heat equation.

For $s \in (0, 1)$ we set

$$[v]_{W^{s,1}(\mathbb{R}^d)} = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|v(x) - v(y)|}{|x-y|^{d+s}} \, dx \, dy,$$

which is the Gagliardo-seminorm of the Sobolev Slobodecki space $W^{s,1}(\mathbb{R}^d)$.

Theorem 2.37. Let $u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and suppose the kernel K satisfies \((2.7)\) with some $\beta \in (0, 2)$. Let u be the weak solution of equation \((2.8)\) with initial condition $u|_{t=0} = u_0$, and assume that

$$\int_0^T \|u(t, \cdot)\|_{W^{s,1}(\mathbb{R}^d)} \, dt < \infty \quad \text{for all } T > 0. \quad (2.38)$$

Then

$$\|u(t, \cdot)\|_{L^2} \lesssim (1 + t)^{-\frac{sd}{d+2\beta}}, \quad t > 0.$$

Remark 2.39. (i) As our proof shows, Theorem 2.37 (trivially) extends to the case where the kernel K also depends on time t, that is $K = K(t, x, y)$, provided that K is measurable on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$ and \((2.7)\) holds a.e. in this set with $K(t, x, y)$ in place of $K(x, y)$. In this more general formulation, our result can be also applied to certain quasilinear equations which satisfy suitable structure conditions.

(ii) The authors believe that by careful estimates for appropriate approximating equations (as in [47]) combined with Gagliardo-Nirenberg inequalities one can show that the weak solution of equation \((2.8)\) always satisfies the technical condition \((2.38)\) provided that $u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$. For the sake of simplicity we do not go into the details here.

3. Auxiliary tools

We recall some classical results which are needed in the theory.
3.1. Review of harmonic analysis. Let \(f \ast g \) denote the convolution of \(f, g \) on \(\mathbb{R}^d \). We recall the Young’s inequality for convolutions: for any triple \(1 \leq p, q, r \leq \infty \) satisfying \(1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \),

\[
\| f \ast g \|_{L^r} \leq \| f \|_{L^p} \| g \|_{L^q}, \quad f \in L^p(\mathbb{R}^d), \ g \in L^q(\mathbb{R}^d). \tag{3.1}
\]

We also recall the strengthened version for weak type spaces: Let \(1 < p, q, r < \infty \) satisfy \(1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \). Then

\[
\| f \ast g \|_{L^r} \leq C(p, q, r) \| f \|_{L^p, \infty} \| g \|_{L^q}, \quad f \in L^p(\mathbb{R}^d), \ g \in L^q(\mathbb{R}^d), \tag{3.2}
\]

see [24, Theorem 1.4.24]. In the case \(q = 1 \) there also holds

\[
\| f \ast g \|_{L^p, \infty} \leq C(p) \| f \|_{L^p, \infty} \| g \|_{L^1}, \quad f \in L^p(\mathbb{R}^d), \ g \in L^1(\mathbb{R}^d), \tag{3.3}
\]

for all \(1 < p < \infty \), see [24, Theorem 1.2.13].

For the nonhomogeneous problem we need the integral form of the Minkowsky inequality in the following form. Let \(1 \leq p < \infty \) and \(F \) be a measurable function on the product space \(\mathbb{R}^+ \times \mathbb{R}^d \). Then

\[
\left(\int_{\mathbb{R}^+} \left(\int_{\mathbb{R}^d} |F(t, x)| \, dx \right)^p \, dt \right)^{\frac{1}{p}} \leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^+} |F(t, x)|^p \, dt \right)^{\frac{1}{p}} \, dx.
\]

We will also need the following decomposition lemma from [19].

Lemma 3.4. Suppose \(f \in L^1(\mathbb{R}^d) \) such that \(\int_{\mathbb{R}^d} |x| |f(x)| \, dx < \infty \). Then there exists \(F \in L^1(\mathbb{R}^d; \mathbb{R}^d) \) such that

\[
f = \left(\int_{\mathbb{R}^d} f(x) \, dx \right) \delta_0 + \text{div} \, F
\]

in the distributional sense and

\[
\| F \|_{L^1(\mathbb{R}^d; \mathbb{R}^d)} \leq C_d \int_{\mathbb{R}^d} |x| |f(x)| \, dx.
\]

We will also need the boundedness of the Riesz potential

\[
(-\Delta)^{-\frac{\beta}{2}} f := c_{d, \beta} \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-\beta}} \, dy,
\]

for \(0 < \beta < d \). We have the Hardy-Littlewood-Sobolev theorem on fractional integration [23, Theorem 6.1.3]:

Theorem 3.5. Let \(1 \leq p < d/\beta \) and \(f \in L^p(\mathbb{R}^d) \). Then

\[
\| (-\Delta)^{-\frac{\beta}{2}} f \|_{L^q(\mathbb{R}^d)} \lesssim \| f \|_{L^p(\mathbb{R}^d)}
\]

for \(p > 1 \) and

\[
p = \frac{dp}{d - p\beta}.
\]

In case \(p = 1 \), we have

\[
\| (-\Delta)^{-\frac{\beta}{2}} f \|_{L^{\frac{dp}{d - p\beta}, \infty}(\mathbb{R}^d)} \lesssim \| f \|_{L^1(\mathbb{R}^d)}.
\]
3.2. Asymptotic behavior of the Fox H-functions. When developing the asymptotic behavior of the fundamental solution, we need the following representation formulas for the Fox H-function H_{21}^{23}. Here we have omitted the parameters of the Fox H-function and H_{21}^{23} refers to the Fox H-function appearing either in 2.30 or 2.31. The following results hold for both functions.

Theorem 3.6. Let either $\beta > \alpha$ and $z \neq 0$, or $\alpha = \beta$ and $0 < |z| < \delta$ with
\[\delta = \alpha^{-\alpha} \left(\frac{1}{2} \right)^{1/2} \left(\frac{3}{2} \right)^{3/2}. \]
Then the Fox H-function $H_{21}^{23}(z)$ is an analytic function of z and
\[H_{21}^{23}(z) = \sum_{j=1}^{2} \sum_{l=0}^{\infty} \text{Res}_{s=b_{jl}} [H_{21}^{23}(s) z^{-s}], \]
where b_{jl} are given in (2.12).

The asymptotic behavior of $H_{21}^{23}(z)$ as $z \to 0$ follows immediately from (3.7) in the case $\beta \geq \alpha$ by calculating the residues. If $0 < \alpha < \beta$ and $|\arg z| < \pi (1 - \frac{\alpha}{\beta})$, then
\[H_{21}^{23}(z) \sim -\sum_{j=1}^{2} \sum_{l=0}^{\infty} \text{Res}_{s=-b_{jl}} [H_{21}^{23}(-s) z^{s}], \]
when $z \to 0$. Again, the asymptotic behavior follows immediately by calculating the residues.

The asymptotic behavior at infinity is more complicated to derive. For details we refer to [6] and [29, Sections 1.3 and 1.5].

Theorem 3.9. The asymptotic expansion at infinity of the Fox H-function $H_{21}^{23}(z)$ has the form
\[H_{21}^{23}(z) \sim \sum_{k=0}^{\infty} h_{k} z^{-k}, \]
where the constants h_{k} have the form
\[h_{k} = \lim_{s \to a_{1k}} \left[-(s-a_{1k}) H_{23}^{21}(s) \right] \]
\[= (-1)^{k} \frac{\Gamma(b_{1} + (1 - a_{1} + k) \frac{\alpha}{\alpha_{1}}) \Gamma(b_{2} + (1 - a_{1} + k) \frac{\alpha}{\alpha_{1}})}{k! \alpha_{1} \Gamma(a_{2} + (1 - a_{1} + k) \frac{\alpha}{\alpha_{1}}) \Gamma(1 - b_{3} - (1 - a_{1} + k) \frac{\alpha}{\alpha_{1}})} \]
in view of the relation
\[\text{Res}_{s=a_{1k}} [H_{23}^{21}(s) z^{-s}] = h_{k} z^{-a_{1k}} = h_{k} z^{(a_{1} - 1 - k) / \alpha_{1}}. \]

4. Behavior of the fundamental solutions

We start by showing some basic properties of the fundamental solutions Z and Y. The first lemma provides an important connection between the functions Z and Y. Note, in particular, that Z and Y are identical in the case $a = 1$.

Lemma 4.1. The fundamental solutions Z and Y of equation (1.1) are connected via $Y = \partial_{1}^{1-\alpha} Z$.

Proof. Observe first that
\[\partial_{1}^{1-\alpha} f(at) = a^{1-\alpha} (\partial_{1}^{1-\alpha} f)(at) \]
for a sufficiently smooth function f and for a constant $a \in \mathbb{R}_{+}$.
Now we combine this with Lemma [2.14] (iv) to obtain
\[
\partial_t^{1-\alpha} H^{12}_{32} [2^\beta t^{\alpha} |x|^{-\beta}] (1-\frac{d}{2}\beta/2), \ (0,1), \ (\alpha, \ (0,\alpha)
\]
\[
= \ell^{\alpha-1} H^{12}_{43} [2^\beta t^{\alpha} |x|^{-\beta}] (0,0), \ (1-\frac{d}{2}\beta/2), \ (0,1), \ (1-\alpha, \alpha)
\].
We need to study the Mellin transform of the above Fox H-function. That is
\[
\mathcal{H}_{43}^{13}(s) = \frac{\Gamma(s) \Gamma(1-\alpha s) \Gamma \left(\frac{d}{2} - \frac{\beta}{2} s \right) \Gamma(1-s)}{\Gamma \left(\frac{d}{2} - \frac{\beta}{2} s \right) \Gamma(1-\alpha s) \Gamma(\alpha - \alpha s)}
\]
\[
= \frac{\Gamma(s) \Gamma \left(\frac{d}{2} - \frac{\beta}{2} s \right) \Gamma(1-s)}{\Gamma \left(\frac{d}{2} - \frac{\beta}{2} s \right) \Gamma(\alpha - \alpha s)} = \mathcal{H}_{32}^{12}(s)
\].
We obtain
\[
Y(t, x) = \pi^{-d/2} |x|^{-d/2} \ell^{\alpha-1} H^{12}_{32} [2^\beta t^{\alpha} |x|^{-\beta}] (1-\frac{d}{2}\beta/2), \ (0,1), \ (\alpha, \ (0,\alpha)
\]
\[
= \partial_t^{1-\alpha} Z(t, x),
\]
as required. \hfill \Box

Before moving into providing the exact behavior of the fundamental solutions Z and Y, we give the following remark.

Remark 4.2. Observe that the functions Z and Y are both non-negative and, moreover, Z induces a probability measure.

Indeed, by Bochner’s Theorem the non-negativity follows from showing that the Fourier transforms $\hat{Z}(t, \cdot)$ and $\hat{Y}(t, \cdot)$ are positive definite on \mathbb{R}^d. Recalling that $\hat{Z}(t, \cdot)$ and $\hat{Y}(t, \cdot)$ can be represented in terms of the Mittag-Leffler functions $E_{\alpha,1} \text{ and } E_{\alpha,\alpha}$, for the positive definiteness it is enough to show that the functions $f(r) = E_{\alpha,1}(-r^\beta \bar{r}^{\frac{d}{2}})$ and $g(r) = E_{\alpha,\alpha}(-r^\beta \bar{r}^{\frac{d}{2}})$ are completely monotone on \mathbb{R}^+. [38] Theorem [3]. But since the functions $r \mapsto E_{\alpha,1}(-r)$, $x \mapsto E_{\alpha,\alpha}(-x)$ and $x \mapsto cx^{\frac{\beta}{2} - 1}$ with $c \geq 0$ and $\beta \leq 2$ are known to be completely monotone on \mathbb{R}^+ [35], we obtain the result.

Finally, by [2.19] we have
\[
\int_{\mathbb{R}^d} Z(t, x) \, dx = \hat{Z}(t, 0) = E_{\alpha,1}(0) = 1,
\]
for every $t > 0$, which yields that $Z(t, \cdot) \geq 0$ induces a probability measure on \mathbb{R}^d.

When proving the decay estimates we will need the following asymptotic estimates for the fundamental solutions. We begin by studying the function Z.

Lemma 4.3. Let $d \in \mathbb{Z}_+$, $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Denote $R := |x|^{\beta} t^{-\alpha}$. Then the function Z has the following asymptotic behavior:

(i) If $R \leq 1$, then
\[
Z(t, x) \sim \begin{cases}
\ell^{-d/2}, & \text{if } \alpha = 1, \text{ or } \beta > d \text{ and } 0 < \alpha < 1, \\
\ell^{-\alpha} \left(\log(|x|^{\beta} t^{-\alpha}) \right) + 1), & \text{if } \beta = d \text{ and } 0 < \alpha < 1, \\
\ell^{-\alpha} |x|^{-d+\beta}, & \text{if } 0 < \beta < d \text{ and } 0 < \alpha < 1.
\end{cases}
\]
(ii) If $R \geq 1$, then
\[Z(t, x) \sim t^\alpha |x|^{-d-\beta}, \quad \text{if } \beta < 2. \]

In the special case $\beta = 2$ there holds
\[Z(t, x) \lesssim t^\alpha |x|^{-d-2}. \]

Proof. (i) $R \leq 1$: We start with the case $0 < \alpha < 1$. Since the asymptotic behavior depends on whether $\beta \geq \alpha$ or $\beta < \alpha$, we have study different subcases. First of all, recall the definition of Z as
\[Z(t, x) = \pi^{-d/2} |x|^{-d} H_{23}^{21} \left[2^{-\beta} t^{-\alpha} |x|^{\beta} \right] \left(\frac{1}{2}, \frac{\beta}{2} + \frac{\alpha}{2} \right). \]

In order to figure out the asymptotic behavior of Z, we need to study the above Fox H-function. As it was mentioned in Section 3.2, the asymptotic behavior follows by calculating the residues. We provide the details for the reader’s convenience.

The subcase $\beta \geq \alpha$: We have
\[H_{23}^{21}(z) = \sum_{j=1}^{2} \sum_{l=0}^{\infty} \text{Res}_{s=b_{j,l}} \left[H_{23}^{21}(s) z^s \right] \]
by Theorem 3.1. Recall the definition of the Mellin transform
\[\mathcal{M}(H_{23}^{21} \left[z \right] \left(\frac{1}{2}, \frac{\beta}{2} + \frac{\alpha}{2} \right) = \frac{\Gamma \left(\frac{d}{2} + \frac{\alpha}{2} s \right) \Gamma (1 + s) \Gamma (-s)}{\Gamma (1 + \alpha s) \Gamma (-\frac{d}{2} s)}. \]

In light of (4.4), the asymptotic behavior is determined by the largest value of s, which is a pole of $H_{23}^{21}(s)$. Now, for $0 < \alpha < 1$ the above Mellin transform has poles at $s = -1$ and $s = -d/\beta$. Suppose first that $\beta > d$. The only value for d to this happen is $d = 1$, when $1 < \beta \leq 2$, whereas for $0 < \beta \leq 1$ there is no such d. Then the asymptotics is determined by the pole at $-1/\beta$ and the behavior of the H_{23}^{21} near zero is $H_{23}^{21}(z) \sim z^{1/\beta}$. This yields
\[Z(t, x) \sim t^{-\alpha/\beta}, \]
as required.

Assume next that $\alpha \leq \beta < d$. Then the largest value of s such that the Mellin transform has a pole is $s = -1$ and we obtain $H_{23}^{21}(z) \sim z$. This produces
\[Z(t, x) \sim t^{-\alpha} |x|^{-d+\beta}. \]

In the case $\beta = d$ the Mellin transform has a second order pole at $s = -1$. Then the residue can be calculated as
\[
\text{Res}_{s=-1} [H_{23}^{21}(s) z^s] = \lim_{s \to -1} \frac{d}{ds} [(s + 1)^{2} H_{23}^{21}(s) z^s] \\
= z \lim_{s \to -1} \frac{d}{ds} [(1 + s)^2 H_{23}^{21}(s)] \\
+ \lim_{s \to -1} [(1 + s)^2 H_{23}^{21}(s) \frac{d}{ds} (z^{-s})].
\]
Since $(1 + s) \Gamma (1 + s) = \Gamma (2 + s)$ and $\frac{d}{ds} (1 + s) \Gamma (\frac{d}{2} + \frac{\alpha}{2} s) = \Gamma (\frac{d}{2} + 1 + \frac{\alpha}{2} s)$ are analytic at $s = -1$, the limits
\[
\lim_{s \to -1} \frac{d}{ds} [(1 + s)^2 H_{23}^{21}(s)] \quad 	ext{and} \quad \lim_{s \to -1} (1 + s)^2 H_{23}^{21}(s)
\]
exist. Moreover, since
\[\lim_{s \to -1} \frac{d}{ds}(z^{-s}) = z \log z, \]
we may conclude that in this case \(H_{23}^{21}(z) \sim z \log z \) and thus
\[Z(t, x) \sim t^{-\alpha}(|\log(|x|t^{-\alpha})| + 1), \]
again as required.

The subcase \(\beta < \alpha \): Since we are interested in the asymptotics of the Fox \(H \)-function for \(z \in \mathbb{R}_+ \), the asymptotics is given by (3.8). Because \(0 < \beta < \alpha \leq 1 \leq d \), we have \(d/\beta > 1 \) and the leading term is determined by
\[\text{Res}_{s=1} [H_{23}^{21}(-s)z^s]. \]
Therefore
\[Z(t, x) \sim t^{-\alpha}|x|^{-d+\beta} \]
In the special case \(\alpha = 1 \) we see that the Mellin transform of \(H_{23}^{21}(z) \) reduces to
\[H_{23}^{21}(s) = \frac{\Gamma\left(\frac{d}{2} + \frac{\beta}{2}s\right)\Gamma(-s)}{\Gamma\left(-\frac{d}{2}\right)}. \]
Therefore the asymptotics is given by the pole at \(s = -\frac{d}{\beta} = -\frac{d}{3} \). Proceeding as above we end up to the desired estimate.

(ii) \(R \geq 1 \): We use the asymptotic behavior of the Fox \(H \)-functions provided by Theorem 3.9:
\[H_{23}^{21}(z) \sim \sum_{k=0}^{\infty} h_k z^{-k}, \]
for constants \(h_k \) defined in (3.11). We aim to find the smallest value of \(k \) such that \(h_k \neq 0 \). Let’s first study the case \(0 < \beta < 2 \). Now
\[h_0 = \frac{\Gamma\left(\frac{d}{2}\right)\Gamma(1)}{\Gamma(1)\Gamma(0)} = 0 \quad \text{and} \quad h_1 = \frac{\Gamma\left(\frac{d}{2} + \frac{\beta}{2}\right)\Gamma(2)}{\Gamma(1 + \alpha)\Gamma\left(-\frac{\beta}{2}\right)} \neq 0. \quad (4.5) \]
Therefore the leading term in the expansion (3.10) is \(h_1 z^{-1} \) so
\[H_{23}^{21}(z) \sim z^{-1}, \quad z \to \infty \]
and we obtain the claim of the lemma.

If \(\beta = 2 \), we see from (4.5) that \(h_0 = 0 \) and \(h(1) = 0 \), since
\[\Gamma\left(-\frac{\beta}{2}\right) = \Gamma(-1) = \infty. \]
Therefore the claim is true also in this case. However, we can continue to deduce \(h_k = 0 \) for all \(k \in \mathbb{Z}_+ \). One can prove that now actually \(Z(t, x) \) decays in terms of \(R \to \infty \), but we do not need that fact in our considerations.

The next lemma gives the behavior of the fundamental solution \(Y \). The proof is similar to the previous lemma.

Lemma 4.6. Let \(d \geq 1, \ 0 < \alpha \leq 1 \) and \(0 < \beta \leq 2 \). Denote \(R := |x|^\beta t^{-\alpha} \). Then the function \(Y \) has the following asymptotic behavior:
Recall the expression for the fundamental solution.

Let

\[Y(t, x) \sim \begin{cases} t^{-\alpha - 1}|x|^{-d + 2\beta}, & \text{if } d > 2\beta \text{ and } 0 < \alpha < 1, \\
 t^{-\alpha - 1} \log(2^{-\beta} |x|^\beta t^{-\alpha}), & \text{if } d = 2\beta \text{ and } 0 < \alpha < 1, \\
 t^{\alpha - 1 - \frac{d}{\beta}}, & \text{if } \alpha = 1, \text{ or } d < 2\beta \text{ and } 0 < \alpha < 1. \end{cases} \]

(i) If \(R \leq 1 \), then

\[Y(t, x) \sim t^{2\alpha - 1}|x|^{-d - \beta}, \quad \text{if } 0 < \beta < 2. \]

In the special case \(\beta = 2 \) there holds

\[Y(t, x) \lesssim t^{2\alpha - 1}|x|^{-d - 2}. \]

Proof. The proof is similar to that of Lemma 4.3. We omit the details. Once again, notice that in the special case \(\beta = 2 \) the function \(Y \) has indeed exponential decay as \(R \to \infty \) but we do not need that fact in our calculations.

Next we turn to study the behavior of the derivatives of \(Z \) and \(Y \).

Lemma 4.7. Let \(d \geq 1 \), \(0 < \alpha \leq 1 \) and \(0 < \beta \leq 2 \). Denote \(R := |x|^\beta t^{-\alpha} \). Then the derivatives of the fundamental solution pair \((Z, Y) \) have the following asymptotic behavior:

(i) For the function \(Z \) we have

\[|\nabla Z(t, x)| \sim t^{-\alpha}|x|^{-d - 1 + \beta}, \quad \text{if } R \leq 1 \]

\[|\nabla Z(t, x)| \sim t^{\alpha}|x|^{-d - 1 - \beta}, \quad \text{if } R \geq 1. \]

(ii) For \(Y \) we have for \(R \leq 1 \) that

\[|\nabla Y(t, x)| \sim \begin{cases} t^{\alpha - 1}|x|^{-d - 1 + 2\beta}, & \text{if } d + 2 > 2\beta \text{ and } 0 < \alpha < 1, \\
 t^{\alpha - 1}|x| \log(2^{-\beta} |x|^\beta t^{-\alpha}), & \text{if } d + 2 = 2\beta \text{ and } 0 < \alpha < 1, \\
 t^{\alpha - 1 - \frac{d}{\beta} + 2} |x|, & \text{if } \alpha = 1 \text{ or } d + 2 > 2\beta, \end{cases} \]

and

\[|\nabla Y(t, x)| \sim t^{2\alpha - 1}|x|^{-d - 1 - \beta}, \quad \text{if } R \geq 1. \]

Proof. We provide the calculations only for the gradient of the function \(Z \). The other cases are handled similarly, but we omit the details.

Recall the expression for the fundamental solution \(Z \):

\[Z(t, x) = \pi^{-d/2}|x|^{-d} H_{\frac{d}{2}}^{12} [2^{-\beta} t^{\alpha} |x|^{-\beta}, (1-\frac{d}{2}, 1), (1, (0, \alpha), (0, \beta/2))]. \]

First of all, we use Lemma 2.13 (ii) to write the above Fox \(H \)-function as

\[H_{\frac{d}{2}}^{12} [2^{-\beta} t^{\alpha} |x|^{-\beta}, (1-\frac{d}{2}, 1), (0, \beta/2)] = H_{\frac{d}{2}}^{21} [2^{-\beta} t^{\alpha} |x|^{-\beta}, (1, (1, 1), (1, (0, \alpha)), (1, (0, \alpha)))]. \]

According to Lemma 2.13 (i), we have

\[\frac{d}{dt} H_{\frac{d}{2}}^{21} [z, (1, 1), (1, 1)] = z^{-1} H_{\frac{d}{2}}^{22} [z, (0, 1), (1, 1), (0, \alpha)]. \]
Using the product rule for differentiation, we may now calculate
\[
\frac{\partial}{\partial x_j} Z(t, x) = \pi^{-d/2} \frac{x_j}{|x|^{d+2}} [\beta H^a_{23}^1(z) - d H^a_{23}^1(z)].
\]
For simplicity, we have here omitted the set of parameters inside the Fox H-functions. Next we analyse the above Fox H-functions by studying the corresponding Mellin transforms. We have
\[
\beta H^a_{23}^2(s) - d H^a_{23}^2(s)
\]
\[
= \beta \frac{\Gamma\left(\frac{d}{2} + \frac{s}{2}\right)\Gamma(1 + s)\Gamma(1 - s)}{\Gamma(1 + \alpha s)\Gamma(1 - \alpha s)} - d \frac{\Gamma\left(\frac{d}{2} + \frac{s}{2}\right)\Gamma(1 + s)\Gamma(-s)}{\Gamma(1 + \alpha s)\Gamma(-\alpha s)}
\]
\[
= -2 \left(\frac{d}{2} + \beta \frac{s}{2}\right) \frac{\Gamma\left(\frac{d}{2} + \frac{s}{2}\right)\Gamma(1 + s)\Gamma(-s)}{\Gamma(1 + \alpha s)\Gamma(-\alpha s)}
\]
\[
= -2 d \frac{\Gamma\left(\frac{d}{2} + \frac{s}{2}\right)\Gamma(1 + s)\Gamma(-s)}{\Gamma(1 + \alpha s)\Gamma(-\alpha s)}
\]
\[
= -2 d H^a_{23}^2\left[\frac{(1, 1)}{\beta} \right] \left[\frac{(1, 1), (1, \alpha)}{\beta^\alpha \gamma} \right].
\]
Thus we obtain
\[
\frac{\partial}{\partial x_j} Z(t, x) = -2\pi^{-d/2} \frac{x_j}{|x|^{d+2}} H^a_{23}^1 \left[2^{-\beta} t^{-\alpha} |x|^\beta \right] \left[\frac{(1, 1), (1, \alpha)}{\beta^\alpha \gamma} \right]
\]
and
\[
|\nabla Z(t, x)| = 2\pi^{-d/2} |x|^{-d-1} \left|H^a_{23}^1 \left[2^{-\beta} t^{-\alpha} |x|^\beta \right] \left[\frac{(1, 1), (1, \alpha)}{\beta^\alpha \gamma} \right]\right|.
\]
Now the result follows from the behavior of the Fox H-functions. \qed

5. Representation formula for solutions

5.1. Proof of Theorem 2.26. We are now ready to prove Theorem 2.26, which justifies calling (Z, Y) the matrix of fundamental solutions for the equation (2.6).

Proof. We need to show that the function
\[
\Psi(t, x) = \int_{\mathbb{R}^d} Z(t, x - y) u_0(y) dy + \int_0^t \int_{\mathbb{R}^d} Y(t - s, x - y) f(s, y) dy ds
\]
\[
=: \Psi_1(t, x) + \Psi_2(t, x)
\]
is a classical solution to equation (1.1). We divide the proof into three steps as there are three requirements in the definition of the classical solution.

Step 1: First we need to prove that $F_{\xi \to \xi}^{-1}(\xi) [\beta \tilde{Z}(t, \xi)]$ is a continuous function with respect to x for each $t > 0$. The representation (2.19) and the asymptotic behavior of the Mittag-Leffler function given by (2.22) give
\[
|\tilde{Z}(t, \xi)| \leq \frac{C}{1 + |\xi|^\beta \gamma}
\]
for $t > 0$. Thus $|\xi|^\beta \tilde{Z}(t, \xi)$ is bounded for all $t > 0$ and by using the assumption that $\tilde{u}_0 \in L^1$ we obtain
\[
|\xi|^\beta F_{x \to \xi}(Z * u_0)(t, \cdot) = |\xi|^\beta \tilde{Z}(t, \xi) \tilde{u}_0(\xi) \in L^1(\mathbb{R}^d).
\]
In order to estimate Y, we use the assumption (2.21) to obtain
\[
|\tilde{f}(s, \xi)| \lesssim |g(\xi)|
\]
Using Remark 4.2 to deduce that Z function with the Hölder exponent less than $\min \{f \}$. At this point we use the conditions (2.24) and (2.25) to give some regularity for the right hand side f. Our conditions guarantee that $f(t, \cdot)$ is a Hölder continuous function with the Hölder exponent less than $\min \{1, \beta \}$ uniformly in t, i.e. we have an estimate

$$|f(t, y) - f(t, x)| \leq C|x - y|^{\gamma}, \quad t \geq 0,$$

which establishes that $|\cdot|^{\beta} F(\cdot) f(t, \cdot) \in L^1$. This together with (5.1) gives, again by the Riemann-Lebesgue lemma, that

$$F_{\xi}^{-1}(\cdot) \in L^1$$

is a continuous function, as required.

Step II: We proceed as in Section 5.3 of [20]. By Lemma 4.1 we have

$$\partial_\xi H_{12}^{13} [t^\alpha (1 - \xi, \cdot), \beta, (0, 1), (0, \alpha)] = t^{-\alpha} H_{13}^{12} [t^\alpha (0, \alpha), (1 - \xi, \cdot), (0, 1), (0, \alpha)].$$

A detailed study of the asymptotics similarly as in Lemma 1.3 can be used to show that $\partial_\xi Z(t, \cdot)$ is integrable for all $t > 0$. Thus for all $x \in \mathbb{R}^d$ the function $J^{1-\alpha} \Psi_1(t, x)$ is continuously differentiable with respect to time for all $t > 0$. We now turn to study Ψ_2.

Let $v := J^{1-\alpha} \Psi_2$. Observe that, after changing the order of integration and a change of variables, Lemma 4.1 gives

$$v(t, x) = \int_0^t \int_{\mathbb{R}^d} Y(t - \lambda, x - y) f(\lambda, y) dy d\lambda d\tau$$

$$= \int_0^t \int_{\mathbb{R}^d} Z(t - \tau, x - y) f(\tau, y) dy d\tau.$$

Using Remark 1.2 to deduce that Z is a probability density gives

$$\frac{1}{h} [v(t + h, x) - v(t, x)]$$

$$= \int_t^{t+h} \int_{\mathbb{R}^d} Z(t + h - s, x - y) f(s, y) dy ds$$

$$+ \int_0^h \int_{\mathbb{R}^d} \frac{1}{h} [Z(t + h - s, x - y) - Z(t - s, x - y)] f(s, y) dy ds$$

$$= \int_t^{t+h} \int_{\mathbb{R}^d} Z(t + h - s, x - y) f(s, y) - f(s, x) dy ds + \int_t^{t+h} f(s, x) ds$$

$$+ \int_0^h \int_{\mathbb{R}^d} \frac{1}{h} [Z(t + h - s, x - y) - Z(t - s, x - y)] f(s, y) dy ds.$$
for any $0 < \gamma < \min \{1, \beta\}$. Using this we obtain

\[
\int_{t}^{t+h} \int_{\mathbb{R}^{d}} Z(t + h - s, x - y)[f(s, y) - f(s, x)] dy ds
\]

\[
= \int_{0}^{h} \int_{\mathbb{R}^{d}} Z(s, x - y)[f(t + h - s, y) - f(t + h - s, x)] dy ds
\]

\[
\lesssim \int_{0}^{h} \int_{\{s - y \geq s^{\alpha/\beta}\}} Z(s, x - y) \cdot |x - y|^\gamma dy ds
\]

\[
+ \int_{0}^{h} \int_{\{s - y < s^{\alpha/\beta}\}} Z(s, x - y) \cdot |x - y|^\gamma dy ds.
\]

and continue by using Lemma 4.3 to conclude that

\[
\int_{0}^{h} \int_{\{s - y \geq s^{\alpha/\beta}\}} Z(s, x - y) \cdot |x - y|^\gamma dy ds \lesssim \int_{0}^{h} s^{\alpha/\beta} \int_{h/\alpha/\beta}^{\infty} r^{-\beta - 1 + \gamma} dr ds
\]

\[
\lesssim \int_{0}^{h} s^{\alpha/\beta} ds \lesssim h^{\gamma/\beta} \rightarrow 0
\]

as $h \rightarrow 0$. Utilizing Lemma 4.3 similarly in the second integral gives

\[
\int_{0}^{h} \int_{\{s - y < s^{\alpha/\beta}\}} Z(s, x - y) \cdot |x - y|^\gamma dy ds \lesssim h^{\gamma/\beta} \rightarrow 0
\]

as $h \rightarrow 0$. Here one needs to check different cases depending on the values of α, β and d.

Altogether we have that

\[
\lim_{h \rightarrow 0} \frac{v(t + h, x) - v(t, x)}{h} = f(t, x) + \int_{0}^{t} \int_{\mathbb{R}^{d}} \frac{\partial Z(t - s, x - y)}{\partial t} f(s, y) dy ds
\]

and, therefore, the function $J^{1-\alpha} \Psi$ is continuously differentiable with respect to t.

Step III: We need to prove that the function Ψ satisfies the integro-partial differential equation. Our assumptions on f and the asymptotic behavior of Y guarantee that $Y(t - \cdot, x - \cdot)f(\cdot, \cdot) \in L^1((0, t) \times \mathbb{R}^{d})$. Therefore

\[
\Psi_2(t, x) \rightarrow 0, \quad \text{as} \quad t \rightarrow 0,
\]

which means that

\[
\partial_t^\alpha \Psi_2(t, x) = \partial_t^\alpha (\Psi_2(t, x) - \Psi_2(0, x)).
\]

Notice that as a by-product of Step II we obtained

\[
\partial_t^\alpha \Psi_2(t, x) = f(t, x) + \int_{0}^{t} \int_{\mathbb{R}^{d}} \frac{\partial Z(t - s, x - y)}{\partial t} f(s, y) dy ds.
\] \hspace{1cm} (5.2)

We will show that $(\partial_t^\alpha + (-\Delta)^{\beta/2}) \Psi_2(t, x) = f(t, x)$. By (5.2) it is enough to show that

\[
(-\Delta)^{\beta/2} \Psi_2(t, x) = -\int_{0}^{t} \int_{\mathbb{R}^{d}} \frac{\partial Z(t - s, x - y)}{\partial t} f(s, y) dy ds.
\]

We start by calculating

\[
(-\Delta)^{\beta/2} Y(t, x) = \mathcal{F}^{-1}_{\xi \rightarrow x} (|\xi|^\beta \hat{Y}(t, \xi))(t, x).
\]

Recall from (2.20) that

\[
\hat{Y}(t, \xi) = (2\pi)^{-d/2} t^{\alpha - 1} E_{\alpha, \alpha}(-|\xi|^\beta \gamma^\alpha) = (2\pi)^{-d/2} t^{\alpha - 1} H_{12}^{11} \left(|\xi|^\beta \gamma^\alpha \right)_{(0, 1), (1 - \alpha, \alpha)}.
\]
Notice that in the following calculations we have to interpret the integral properly due to poor decay of \(\hat{Y}(t, \cdot) \) at infinity, see Remark 2.13.

Notice that \(\hat{Y} \) is a radial function of \(\xi \) and for radial functions we have in general that [24, Appendix B.5]

\[
\mathcal{F}(f)(|\xi|) = |\xi|^{2\beta/d} \int_0^\infty f(r) r^{d/2} J_{\beta - 2}(r|\xi|) \, dr,
\]

where \(J_{\beta - 2}/2 \) is the modified Bessel function. For the definition, see [14]. We use this formula together with Lemma 2.14 (v) and (vi) to calculate

\[
\mathcal{F}^{-1}(|\xi|^{\beta} \hat{Y}(t, \xi))(x) = (2\pi)^{-d/2} |x|^{\beta/d} \int_0^\infty r^{d/2 + \beta} J_{\beta - 2}(r|\xi|) H_{12}^{11} \left[x^{\beta} \xi^{\alpha} \right] \left(0.1, (1 - \alpha, \alpha) \right) \, dr.
\]

On the other hand, combining the chain rule with Lemma 2.14 (i), gives

\[
\partial_t Z(t, x) = \alpha \pi^{-d/2} |x|^{-d} t^{\beta - 1} H_{12}^{11} \left[2^{\beta} |x|^{-\beta} \right] \left(0.1, (1 - \frac{d}{2}, \frac{d}{2}) \right) \left(0.1, (0, \alpha) \right), (1, 1), (1, \alpha)
\]

Now by studying the Mellin transform \(H_{12}^{11} \) and using the properties of the Gamma function gives

\[
H_{12}^{11} \left[2^{\beta} |x|^{-\beta} \right] \left(0.1, (1 - \frac{d}{2}, \frac{d}{2}) \right) \left(0.1, (0, \alpha) \right) = \alpha^{-1} H_{12}^{11} \left[2^{\beta} |x|^{-\beta} \right] \left(1 - \frac{d}{2}, \frac{d}{2} \right) \left(1, 1 \right).
\]

Inserting this into (5.3) yields

\[
\partial_t Z(t, x) = -\mathcal{F}^{-1}(|\xi|^{\beta} \hat{Y}(t, \xi))(x).
\]

By the above calculation

\[
\mathcal{F} \left(\int_0^t \int_{\mathbb{R}^d} \frac{\partial Z(t - s, x - y)}{\partial t} f(s, y) \, dy \, ds \right) = \int_0^t \mathcal{F}(\partial_t Z(t - s, \xi)) \hat{f}(s, \xi) \, ds = -|\xi|^{\beta} \int_0^t \hat{Y}(t - s, \xi) \hat{f}(s, \xi) \, ds.
\]

Now using the growth condition of function \(f \) (cf. [24]), we have that \(| \cdot |^{\beta} \int_0^t \hat{Y}(t - s, \cdot) \hat{f}(s, \cdot) \, ds \in L^1(\mathbb{R}^d) \) and therefore it has a unique inverse Fourier transform. We obtain

\[
(-\Delta)^{\beta/2} \int_0^t \int_{\mathbb{R}^d} Y(t - s, x - y) f(s, y) \, dy \, ds
\]

\[
= \mathcal{F}^{-1} \left(|\xi|^{\beta} \int_0^t \hat{Y}(t - s, \xi) \hat{f}(s, \xi) \, ds \right)
\]

\[
= - \int_0^t \int_{\mathbb{R}^d} \frac{\partial Z(t - s, x - y)}{\partial t} f(s, y) \, dy \, ds.
\]

Therefore

\[
(\partial_t^\alpha + (-\Delta)^{\beta/2}) \Psi_2(t, x) = f(t, x),
\]

as claimed.
Let us now study the first integral. By using the asymptotics of Z as in Step II, it is straightforward to show that
\[\int_{\mathbb{R}^d} Z(t, x - y)u_0(y) \, dy \to u_0(x), \quad \text{as} \ t \to 0. \]

A similar argument as for Ψ_2 produces
\[\frac{\partial}{\partial t} \left[\int_{\mathbb{R}^d} Z(t, x - y)u_0(y) \, dy - u_0(x) \right] + (-\Delta)^{\beta/2} \int_{\mathbb{R}^d} Z(t, x - y)u_0(y) \, dy = 0. \]
We omit the details.

Now Ψ satisfies the initial condition by the superposition principle.

Step IV: Finally we have to prove that Ψ is a jointly continuous function in $[0, \infty) \times \mathbb{R}^d$. The continuity at $t = 0$ is established in Step III. If $t > 0$, the continuity in both variables follows from our conditions given for u_0 and f, which guarantee that u_0 and f are continuous and uniformly bounded. Then the asymptotics of Z and Y given in Lemmas 4.3 and 4.6 together with the Lebesgue dominated convergence theorem imply the continuity. This finishes the proof. □

6. Large-time behavior of mild solutions

We begin by calculating an L^p-decay estimate for the fundamental solution Z, which is given in the following lemma.

Lemma 6.1. Let $d \geq 1$, $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Then $Z(t, \cdot) \in L^p(\mathbb{R}^d)$ for any $t > 0$ and
\[\|Z(t, \cdot)\|_{L^p(\mathbb{R}^d)} \lesssim t^{-\frac{d}{p} \left(1 - \frac{p}{\beta}\right)}, \quad t > 0, \] (6.2)
for every $1 \leq p < \kappa_3(\beta, d)$, where
\[\kappa_3 = \kappa_3(\beta, d) := \begin{cases} \frac{d}{\beta - 1}, & \text{if } d > \beta, \\ \infty, & \text{otherwise}. \end{cases} \] (6.3)
Moreover, if $\alpha = 1$ or $1 = d \leq \beta$, then (6.2) holds for all $p \in [1, \infty]$. Finally, for $d > \beta$ and $0 < \alpha < 1$, we obtain
\[\|Z(t, \cdot)\|_{L^{\frac{d}{\beta} \cdot \infty}} \lesssim t^{-\alpha}, \quad t > 0. \]

Proof. We begin by decomposing the L^p-integral of Z as
\[\|Z(t, \cdot)\|_{L^p} \leq \int_{\{R \geq 1\}} Z(t, x)^p \, dx + \int_{\{R \leq 1\}} Z(t, x)^p \, dx. \]
In view of Lemma 4.3 we have for all dimensions d and for all values $1 \leq p < \infty$ that
\[\int_{\{R \geq 1\}} Z(t, x)^p \, dx \lesssim \int_{\{R \geq 1\}} t^{\alpha p} |x|^{-d \beta - \beta p} \, dx \lesssim \int_{\mathbb{R}^d} t^{\alpha p} t^{-d \beta \beta p - \beta p} \, dx \leq t^{-\frac{dp}{p} (1 - \frac{p}{\beta})}, \]
and thus
\[\left(\int_{\{R \geq 1\}} Z(t, x)^p \, dx \right)^{\frac{1}{p}} \lesssim t^{-\frac{dp}{p} \left(1 - \frac{1}{p}\right)} \text{ for all } 1 < p < \infty \text{ and } t > 0. \] (6.4)
We come now to the estimate for the integral where \(R \leq 1 \). In the case \(\alpha = 1 \) or \(\beta > d \) and \(0 < \alpha < 1 \), we have for all \(1 \leq p < \infty \) that

\[
\int_{\{R \leq 1\}} Z(t,x)^p \, dx \lesssim \int_{\{R \leq 1\}} t^{-\frac{\alpha d}{\alpha}} \, dx \lesssim \int_0^t \frac{\beta}{\alpha} \, dr \lesssim t^{-\frac{\alpha d}{\alpha} + \frac{\beta}{\alpha}}.
\]

If \(\beta = d \) and \(0 < \alpha < 1 \), we estimate

\[
\int_{\{R \leq 1\}} Z(t,x)^p \, dx \lesssim \int_{\{R \leq 1\}} t^{-\alpha p} \left(\left| \log(\|x\|^{\beta} t^{-\alpha}) \right| + 1 \right)^p \, dx \\
\lesssim \int_0^t t^{-\alpha p} \left(\left| \log(\|x\|^{\beta} t^{-\alpha}) \right| + 1 \right)^p \, r^{d-1} \, dr \\
\lesssim \int_0^1 t^{-\alpha p + \alpha d/\beta} \left(\left| \log(s^{\beta}) \right| + 1 \right)^p s^{d-1} \, ds \\
\lesssim t^{-\alpha p + \alpha} = t^{-\frac{\alpha d}{\alpha} (p-1)},
\]

for all \(1 \leq p < \infty \). Note that the condition \(\beta > d \) can only happen if \(d = 1 \).

Finally, if \(0 < \beta < d \) and \(0 < \alpha < 1 \), we have

\[
\int_{\{R \leq 1\}} Z(t,x)^p \, dx \lesssim \int_{\{R \leq 1\}} t^{-\alpha p} \left| x \right|^{-\alpha p + \beta p} \, dx \lesssim \int_0^t t^{-\alpha p + \beta p} \, r^{d-1} \, dr \\
\lesssim t^{-\alpha p + \beta p} \left| x \right|^{-\alpha p + (d-\beta)p} \lesssim t^{-\frac{\alpha d}{\alpha} p} (p-1),
\]

whenever the last integral is finite, that is, whenever

\[
p < \frac{d}{d-\beta} = \kappa_3(\beta,d).
\]

Combining the previous estimates we see that

\[
\left(\int_{\{R \leq 1\}} Z(t,x)^p \, dx \right)^{\frac{1}{p}} \lesssim t^{-\frac{\alpha d}{\alpha} \left(1 - \frac{1}{p} \right)} \text{ for all } 1 \leq p < \kappa_3(\beta,d) \text{ and } t > 0. \quad (6.5)
\]

Observe that by Lemma 6.3 we have \(Z(t,\cdot) \in L^\infty(\mathbb{R}) \) for all \(t > 0 \), provided \(\alpha = 1 \) or \(\beta < d \), and moreover, we have the estimate

\[
\|Z(t,x)\|_{L^\infty} \lesssim t^{-\frac{\alpha d}{\alpha}},
\]

which proves the second statement.

For the weak-\(L^p \)-estimate we set \(p = \frac{d}{d-\beta} \). We need to estimate

\[
\|Z(t,\cdot)\|_{L^p,\infty} = \sup \left\{ \lambda d_{Z(t,x)}(\lambda)^{\frac{1}{p}} : \lambda > 0 \right\},
\]

where

\[
d_{Z(t,x)}(\lambda) = |\{ x \in \mathbb{R}^d : Z(t,x) > \lambda \}|
\]

denotes the distribution function of \(Z(t,x) \). Using again the similarity variable \(R = t^{-\alpha} |x|^\beta \) we have

\[
\|Z(t,\cdot)\|_{L^p,\infty} \leq 2 \left(\|Z(t,x)\chi_{\{R \leq 1\}}(t)\|_{L^p,\infty} + \|Z(t,x)\chi_{\{R \geq 1\}}(t)\|_{L^p,\infty} \right). \quad (6.6)
\]

Employing (6.3), we find that

\[
\|Z(t,x)\chi_{\{R \geq 1\}}(t)\|_{L^p,\infty} \leq \|Z(t,x)\chi_{\{R \geq 1\}}(t)\|_{L^p} \leq C t^{-\frac{\alpha d}{\alpha} \left(1 - \frac{1}{p} \right)} = Ct^{-\alpha}.
\]
For the term with $R \leq 1$ we use the case $0 < \beta < d$ of Lemma \ref{lem:decay} to estimate
\[
d_{Z(t,x)\chi_{(R\leq 1)}(t)}(\lambda) = |\{ x \in \mathbb{R}^d : Z(t,x) > \lambda \text{ and } R \leq 1 \}| \\
\leq |\{ x \in \mathbb{R}^d : \lambda < Ct^{-\alpha}|x|^{-d+\beta} \}| \\
= |\{ x \in \mathbb{R}^d : |x| < (Ct^{-\alpha}\lambda^{-1})^{\frac{1}{d-\beta}} \}| \\
\leq C_1 (t^{-\alpha}\lambda^{-1})^{\frac{1}{d-\beta}}.
\]
This shows that
\[
d_{Z(t,x)\chi_{(R\leq 1)}(t)}(\lambda)^{1/p} \leq C_{1/p}t^{-\alpha}\lambda^{-1},
\]
and thus
\[
\| Z(t,x)\chi_{(R\leq 1)}(t) \|_{L^p} \lesssim t^{-\alpha}.
\]
This finishes the proof.

As a simple consequence of the above lemma we obtain the following decay result.

Proposition 6.7. Let $d \geq 1$, $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Assume that u is the mild solution of equation \cite{article} with $f \equiv 0$ and $u_0 \in L^q(\mathbb{R}^d)$, where $1 \leq q \leq \infty$. Then the following hold:

(i) if $q = \infty$ we have
\[
\| u(t,\cdot) \|_{L^\infty(\mathbb{R}^d)} \lesssim \| u_0 \|_{L^\infty(\mathbb{R}^d)}, \quad t > 0;
\]
(ii) if $1 \leq q < \infty$ and $d > q\beta$, we have for every $r \in [q, \frac{qd}{d-q\beta})$ that
\[
\| u(t,\cdot) \|_{L^r(\mathbb{R}^d)} \lesssim t^{-\frac{qd}{d}(\frac{1}{r} - \frac{1}{q})}, \quad t > 0, \quad (6.8)
\]
and if, in addition, $0 < \alpha < 1 < d$ we obtain
\[
\| u(t,\cdot) \|_{L^{\frac{qd}{d}(\frac{1}{r} - \frac{1}{q})}(\mathbb{R}^d)} \lesssim t^{-\alpha}, \quad t > 0;
\]
(iii) if $1 \leq q < \infty$ and $d = q\beta$, the estimate \cite{article} holds for every $r \in [q, \infty]$;
(iv) if $d < q\beta$ or $\alpha = 1$, the estimate \cite{article} holds for every $r \in [q, \infty]$.

Proof. Let p be defined via
\[
1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}, \quad (6.9)
\]
For such p, q and r we may use Young’s inequality for convolutions to obtain
\[
\| \Psi(t,\cdot) \|_{L^r} = \| Z(t,\cdot) * u_0(\cdot) \|_{L^r} \leq \| Z(t,\cdot) \|_{L^p} \| u_0 \|_{L^q}, \quad (6.10)
\]
The idea is now to use Lemma \ref{lem:decay} to estimate the L^p-decay of Z on the right hand side of the above estimate. We only need to consider different cases corresponding to the different choices of the parameters.

Recall that by Lemma \ref{lem:decay} we obtain
\[
\| Z(t,\cdot) \|_{L^p(\mathbb{R}^d)} \lesssim t^{-\frac{qd}{d}(1 - \frac{1}{p})}, \quad (6.11)
\]
for $1 \leq p < \kappa_3(\beta, d)$, where κ_3 is as in \cite{article}. Now, claim (i) follows directly from choosing $p = 1$, $r = \infty$ and $q = \infty$ in \cite{article}.

On the other hand, a straightforward calculation shows that for $r \in [q, \frac{qd}{d-q\beta})$, we have $1 \leq p < \frac{d}{d-q\beta}$. We again use the above L^p-estimate for Z together with \cite{article} to obtain the claim.
For $d > q\beta$ and $r = \frac{qd}{d-\beta}$, we have from (6.10) that $p = \frac{d}{d-\beta}$. Now we may use the second part of Lemma 6.1 to obtain that if $d \geq 2$ and $0 < \alpha < 1$, then

$$\|Z(t, \cdot)\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim t^{-\alpha}, \quad t > 0,$$

which together with Young’s inequality for weak L^p-spaces gives

$$\|u(t, \cdot)\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \|Z(t, \cdot)\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \|u_0\|_{L^\infty(\mathbb{R}^d)} \lesssim t^{-\alpha},$$

as required.

For (iii), observe that inserting $q = d/\beta$ and $p \in [1, \frac{d}{d-\beta})$ in (6.10) gives $r \in [q, \infty)$. Similarly, inserting $q \in (d/\beta, \infty)$ and $p \in [1, \frac{d}{d-\beta})$ in (6.10) gives $r \in [q, \infty)$. This yields the first claim of (iv). If $\alpha = 1$ we, in turn, by Lemma 6.1 obtain the L^p-decay (6.11) for any $1 \leq p \leq \infty$ and we may again use Young’s inequality, as in (6.10), to obtain the claim for any $r \in [q, \infty]$.

We continue by studying the above type of results for the inhomogeneous equation. First we need the L^p-decay estimates for the fundamental solution Y.

Lemma 6.12. Let $d \geq 1$, $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Then $Y(t, \cdot) \in L^p(\mathbb{R}^d)$ and

$$\|Y(t, \cdot)\|_{L^p(\mathbb{R}^d)} \lesssim t^{\alpha - \frac{d}{2\beta}(1 - \frac{1}{p})}, \quad t > 0, \quad (6.13)$$

for every $1 \leq p < \kappa_2$, where

$$\kappa_2 = \kappa_2(\beta, d) = \begin{cases} \frac{d}{d-2\beta}, & \text{if } d > 2\beta, \\ \infty, & \text{otherwise.} \end{cases}$$

At the borderline $p = \kappa_2$, we also have for $d > 2\beta$ that $Y(t, \cdot)$ belongs to $L^{\frac{d}{d-2\beta}, \infty}(\mathbb{R}^d)$ and

$$\|Y(t, \cdot)\|_{L^{\frac{d}{d-2\beta}, \infty}} \lesssim t^{-1-\alpha}, \quad t > 0.$$

Finally, if $\alpha = 1$ or $d < 2\beta$, estimate (6.13) holds for all $p \in [1, \infty]$.

Proof. The proof is similar to that of the function Z. We give the proof in the case $d < 2\beta$ and $0 < \alpha < 1$ as an example. We begin by decomposing the L^p-integral of Y as

$$\|Y(t, \cdot)\|_{L^p}^p = \int_{\{R \geq 1\}} Y(t, x)^p \, dx + \int_{\{R \leq 1\}} Y(t, x)^p \, dx.$$

By Lemma 6.1, we have for all dimensions d and for all values $1 \leq p < \infty$ that

$$\int_{\{R \geq 1\}} Y(t, x)^p \, dx \lesssim \int_{\{R \geq 1\}} t^{2\alpha p - p} |x|^{-d p - \beta p} \, dx \lesssim t^{2\alpha p - p} \int_{\mathbb{R}^d} r^{-d p - \beta p} \, dr \lesssim t^{(\alpha - 1)p - \frac{dp}{2}(p - 1)},$$

and thus

$$\left(\int_{\{R \geq 1\}} Y(t, x)^p \, dx \right)^\frac{1}{p} \lesssim t^{\alpha - \frac{d}{2}(1 - \frac{1}{p})} \quad \text{for all } 1 \leq p < \infty \text{ and } t > 0. \quad (6.14)$$
Similarly as in the proof of Proposition 6.7, we choose $p \leq 1$. Again, by Lemma 4.6 we have

$$\int_{R \leq 1} Y(t, x)^p \, dx \lesssim \int_{R \leq 1} t^{(\alpha-1)p - \frac{d+\alpha}{p}} \, dx \lesssim \int_0^1 r^{d-1} \, dr$$

for all $1 \leq p < \infty$, which finishes the proof of the first statement in this case. Since in this case even $Y(t, \cdot) \in L^\infty(\mathbb{R}^d)$, we see that the second statement holds as well.

The weak-L^p estimate is done similarly to Lemma 6.1. We omit the details. □

Again, we may use the above estimates to prove a decay result concerning the source term f. Here we need to impose a decay condition similar to (2.34) for the source term. We obtain the following proposition.

Proposition 6.15. Let $d \geq 1$, $0 < \alpha \leq 1$ and $0 < \beta \leq 2$. Assume that u is the mild solution of equation (2.34) with $u_0 = 0$ and $f(t, \cdot) \in L^q(\mathbb{R}^d)$ for each $t \geq 0$ and for some $q \in [1, \infty)$. Assume further that f satisfies the decay condition

$$\|f(t, \cdot)\|_{L^q(\mathbb{R}^d)} \lesssim (1 + t)^{-\gamma}, \quad t > 0,$$

for some $\gamma > 0$. Then we have in case $\gamma \neq 1$

(i) if $1 \leq q < \infty$ and $d > q\beta$, we have for every $r \in [q, \frac{qd}{d - q\beta})$ that

$$\|u(t, \cdot)\|_{L^r(\mathbb{R}^d)} \lesssim t^{\alpha - \min(1, \gamma) - \frac{d+\alpha}{r} \left(1 - \frac{1}{r}\right)}, \quad t > 0; \tag{6.17}$$

(ii) if $1 < q < \infty$ and $d \leq q\beta$, the estimate (6.17) holds for every $r \in [q, \infty)$.

In the case $\gamma = 1$, the assertions (i) and (ii) are valid with (6.17) replaced by

$$\|u(t, \cdot)\|_{L^r(\mathbb{R}^d)} \lesssim t^{\alpha - 1 - \frac{d+\alpha}{r} \left(1 - \frac{1}{r}\right)} \log(1 + t), \quad t > 0. \tag{6.18}$$

Proof. The proof is now an easy application of the integral form of the Minkowsky inequality, the Young inequality for convolutions and Lemma 6.12.

Using the Minkowsky inequality, we have

$$\|u(t, \cdot)\|_{L^r(\mathbb{R}^d)} \leq \int_0^t \left(\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} Y(t-s, x-y) f(s, y) \, dy \, dx \right)^{1/r} \, ds$$

for $1 \leq r < \infty$.

Similarly as in the proof of Proposition 6.7, we choose p such that

$$1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}. \tag{6.19}$$

Then the Young inequality for convolution yields

$$\|u(t, \cdot)\|_{L^r(\mathbb{R}^d)} \leq \int_0^t \|Y(t-s, \cdot)\|_{L^p(\mathbb{R}^d)} \|f(s, \cdot)\|_{L^q(\mathbb{R}^d)} \, ds.$$

We split the integral into two parts as follows

$$\int_0^t \|Y(t-s, \cdot)\|_{L^p(\mathbb{R}^d)} \|f(s, \cdot)\|_{L^q(\mathbb{R}^d)} \, ds = \left(\int_0^{t/2} + \int_{t/2}^t \right) \|Y(t-s, \cdot)\|_{L^p(\mathbb{R}^d)} \|f(s, \cdot)\|_{L^q(\mathbb{R}^d)} \, ds =: I_1 + I_2. \tag{6.20}$$

Recall that by Lemma 6.12 we have

$$\|Y(t, \cdot)\|_{L^p(\mathbb{R}^d)} \lesssim t^{\alpha - 1 - \frac{d+\alpha}{p} \left(1 - \frac{1}{p}\right)}, \quad t > 0. \tag{6.21}$$
for $1 \leq p < \kappa_2$ where

$$\kappa_2 = \begin{cases} \frac{d}{1 + 2\beta}, & \text{if } d > 2\beta, \\ \infty, & \text{otherwise.} \end{cases}$$

If $d > 2q\beta$, for $r \in [q, \frac{ad}{d-q\beta}) \supset [q, \frac{ad}{d-q\beta})$ we obtain from (6.19) that correspondingly $p \in (1, \frac{d}{d-q\beta})$. Therefore, we may use (6.21) to estimate the L^p-norm of Y in (6.20). On the other hand, if $d \leq 2q\beta$, the different values of $p \in [1, \kappa_2)$ yield the corresponding choices of r in $[q, \infty)$ and, thus, we may again use (6.21) to estimate (6.20).

We continue the estimate by using (6.21). For the first integral we observe that $\frac{d}{2} \leq t - s \leq t$ and hence (6.21) together with the decay condition (6.16) implies

$$I_1 \lesssim \int_0^{t/2} \|f(s, \cdot)\|_{L^p(\mathbb{R}^d)} ds \lesssim t^{\alpha - \frac{ad}{d-q\beta}(1 - \frac{1}{p})} \int_0^t (1 + s)^{-\gamma} ds,$$

which gives the desired estimate for I_1.

In the second integral we need to take care of the singularity of $Y(t, \cdot)$ at $t = 0$. The integral converges if and only if

$$\alpha - 1 - \frac{ad}{\beta}(1 - \frac{1}{p}) > -1.$$

This gives $1 \leq p < \frac{d}{d-q\beta}$, provided $d > \beta$. If $d = \beta$, this holds for all $p \in [1, \infty)$, and if $d < \beta$, this estimate is always true. Observe that this restriction gives the different choices of r in the items (i) and (ii) of the claim. We obtain

$$I_2 \lesssim \int_0^{t/2} (1 + s)^{-\gamma}\|Y(t - s, \cdot)\|_{L^p(\mathbb{R}^d)} ds \lesssim t^{-\gamma} \int_0^t s^{\alpha - \frac{ad}{d-q\beta}(1 - \frac{1}{p})} ds,$$

for all $\gamma > 0$. So I_2 decays faster than I_1 if $\gamma \geq 1$, whereas for $\gamma \in (0, 1)$ we obtain the same decay rates. Observe also that, similarly as in Proposition 6.7 the restriction $1 \leq p < \frac{d}{d-q\beta}$ plays a role only if $d \geq q\beta$. In this case, we obtain directly from (6.19) that $r \in [1, \frac{d}{d-q\beta})$.

The last step towards the proof of Theorem 2.35 is the following gradient L^p-estimate for Z.

Lemma 6.22. Let $d \in \mathbb{Z}_+$ and $\kappa_1(\beta, d)$ be as in Section 2. Then $\nabla Z(t, \cdot)$ belongs to $L^p(\mathbb{R}^d; \mathbb{R}^d)$ for all $t > 0$ and $1 \leq p < \kappa_1(\beta, d)$, and there holds

$$\|\nabla Z(t, \cdot)\|_{L^p(\mathbb{R}^d; \mathbb{R}^d)} \lesssim t^{-\frac{d}{d-q\beta}(1 - \frac{1}{p})}, \quad t > 0. \quad (6.23)$$

The estimate (6.23) remains valid for $d = 1, \beta = 2$ and $p = \infty$.

Moreover, if $p = \kappa_1(\beta, d)$, then we have that $\nabla Z(t, \cdot)$ belongs to $L^{p, \infty}(\mathbb{R}^d; \mathbb{R}^d)$ for all $t > 0$ and

$$\|\nabla Z(t, \cdot)\|_{L^{p, \infty}(\mathbb{R}^d; \mathbb{R}^d)} \lesssim t^{-\alpha}, \quad t > 0.$$

Proof. The proof is very similar to that of Lemma 6.1. Let $R = |x|^\beta t^{-\alpha}$ be the similarity variable. Let’s first divide the object of our study into two parts:

$$\int_{\mathbb{R}^d} |\nabla Z(t, x)|^p dx = \int_{\{R \leq 1\}} |\nabla Z(t, x)|^p dx + \int_{\{R \geq 1\}} |\nabla Z(t, x)|^p dx =: I_1 + I_2.$$
For the first term, we may use Lemma 4.7 to get

\[I_1 = \int_{\{R \leq 1\}} |\nabla Z(t, x)|^p \, dx \leq \int_{\{|x| \leq t^{\alpha/\beta}\}} |x|^{-(d+\beta+1)p-\alpha p} \, dx \]
\[\lesssim t^{-\alpha p} \int_0^{t^{\alpha/\beta}} r^{-(d+\beta+1)p-\alpha p} \, dr \]
\[\lesssim t^{-\frac{\alpha}{p} - \frac{d}{p}(1-\frac{1}{p})} \tag{6.24} \]

provided the last integral is finite, that is

\[1 \leq p < \kappa_1(\beta, d). \]

For the second term we again use Lemma 4.7 and obtain

\[I_2 = \int_{\{R \geq 1\}} |\nabla Z(t, x)|^p \, dx \leq \int_{\{|x| \geq t^{\alpha/\beta}\}} |x|^{-(d+\beta+1)p+\alpha p} \, dx \]
\[\lesssim t^{\alpha p} \int_{\{r \geq t^{\alpha/\beta}\}} r^{-(d+\beta+1)p+\alpha p} \, dr \]
\[\lesssim t^{-\frac{\alpha}{p} - \frac{d}{p}(1-\frac{1}{p})} \tag{6.25} \]

for all \(1 \leq p < \infty \). Thus we obtain the first part of the lemma.

If \(\beta \geq d + 1 \), which is equivalent with \(\beta = 2 \) and \(d = 1 \), we see from Lemma 4.7 that \(\nabla Z(t, \cdot) \) is indeed bounded. Therefore the second statement holds as well.

Let now \(p = \kappa_1(\beta, d) \). Similarly as (6.6), we obtain

\[\|\nabla Z(t, x)(t, \cdot)\|_{L^p, \infty} \leq 2 \left(\|\nabla Z(t, x)(t, \cdot)\chi_{\{R \leq 1\}}(t)\|_{L^p, \infty} + \|\nabla Z(t, x)(t, \cdot)\chi_{\{R \geq 1\}}(t)\|_{L^p, \infty} \right). \]

Employing estimate (6.25) gives

\[\|\nabla Z(t, x)\chi_{\{R \geq 1\}}(t)\|_{L^p, \infty} \leq \|\nabla Z(t, x)\chi_{\{R \geq 1\}}(t)\|_{L^p} \]
\[\lesssim t^{-\frac{\alpha}{p} - \frac{d}{p}(1-\frac{1}{p})} \lesssim t^{-\alpha}. \]

For the term with \(R \leq 1 \) we use Lemma 4.7 to estimate as follows.

\[d_{\nabla Z(t, x)\chi_{\{R \leq 1\}}(t)}(\lambda) = |\{x \in \mathbb{R}^d : |\nabla Z(t, x)| > \lambda \text{ and } R \leq 1\}| \]
\[\leq |\{x \in \mathbb{R}^d : \lambda < Ct^{-\alpha}|x|^{-d+\beta-1}\}| \]
\[= |\{x \in \mathbb{R}^d : |x| < \left(Ct^{-\alpha}\lambda^{-1}\right)^{-\frac{1}{d-\beta}}\}| \]
\[\leq C_1 \left(t^{-\alpha}\lambda^{-1}\right)^{-\frac{1}{d-\beta}}. \]

This shows that

\[d_{\nabla Z(t, x)\chi_{\{R \leq 1\}}(t)}(\lambda)^{1/p} \leq C_1^{1/p} t^{-\alpha}\lambda^{-1}, \]

and thus

\[\|\nabla Z(t, x)\chi_{\{R \leq 1\}}(t)\|_{L^p, \infty} \lesssim t^{-\alpha}, \]

which finishes the proof.
6.1. Proof of Theorem 2.35

Now we are ready to prove Theorem 2.35.

Proof of Theorem 2.35. We split the proof into two parts. We first study the estimates for \(Z \). The estimate for \(Y \) is still substantially more involved and we do it after studying \(Z \).

The estimates for \(Z \): The strategy of the proof here is the same as in [50, p. 14, 15]. Suppose first that \(u_0 \in L^1(\mathbb{R}^d) \) is such that \(\int_{\mathbb{R}^d} |x| |u_0(x)| \, dx < \infty \). By Lemma 6.22 there exists \(\phi \in L^1(\mathbb{R}^d, \mathbb{R}^d) \) such that

\[
0 = M_{\text{init}} \delta_0 + \text{div} \phi
\]

and \(\|\phi\|_{L^1} \leq C_1 \|x|u_0\|_{L^1} \). Consequently,

\[
\begin{align*}
\text{u}_{\text{init}}(t, x) &= M_{\text{init}} (Z(t, \cdot) \cdot \delta_0) (x) + (Z(t, \cdot) \cdot \text{div} \phi(\cdot))(x) \\
\text{u}_{\text{init}}(t, x) &= M_{\text{init}} Z(t, x) + (\nabla Z(t, \cdot) \cdot \phi)(x),
\end{align*}
\]

which yields

\[
\text{u}_{\text{init}}(t, x) - M_{\text{init}} Z(t, x) = (\nabla Z(t, \cdot) \cdot \phi)(x).
\] (6.26)

By Young's inequality it follows that for any \(1 \leq p < \kappa_1(\beta, d) \)

\[
\|u_{\text{init}}(t, \cdot) - M_{\text{init}} Z(t, \cdot)\|_{L^p} \leq \|\nabla Z(t, \cdot)\|_{L^p} \|\phi\|_{L^1} \leq \|\nabla Z(t, \cdot)\|_{L^p} \|x|u_0\|_{L^1} \leq t^{-\frac{d}{q} - \frac{d}{q'}(1 - \frac{1}{p})},
\]

where we used Lemma 6.22. Hence

\[
t^{\frac{d}{q} - \frac{1}{2}} \|u_{\text{init}}(t, \cdot) - M_{\text{init}} Z(t, \cdot)\|_{L^p} \lesssim t^{-\frac{d}{q}},
\]

which is the first part of assertion (ii). The second part follows from [40, 20] by applying Young’s inequality for weak \(L^p \)-spaces [24, Theorem 1.2.13].

To prove (i) we choose a sequence \((\eta_j) \subset C_0^\infty(\mathbb{R}^d) \) such that \(\int_{\mathbb{R}^d} \eta_j \, dx = M_{\text{init}} \) for all \(j \) and \(\eta_j \to u_0 \) in \(L^1(\mathbb{R}^d) \). For each \(j \) by Part (a) and by Lemma 6.1 we obtain

\[
\begin{align*}
\|u_{\text{init}}(t, \cdot) - M_{\text{init}} Z(t, \cdot)\|_{L^p} &\leq \|Z(t, \cdot) \cdot (u_0 - \eta_j)\|_{L^p} + \|Z(t, \cdot) \cdot \eta_j - M_{\text{init}} Z(t, \cdot)\|_{L^p} \\
&\leq \|Z(t, \cdot)\|_{L^p} \|u_0 - \eta_j\|_{L^1} - C(j) t^{-\frac{d}{q} - \frac{d}{q'}(1 - \frac{1}{p})} \\
&\leq C_1 t^{-\frac{d}{q} - \frac{1}{2} - \frac{d}{q'}(1 - \frac{1}{p})},
\end{align*}
\]

and therefore

\[
t^{\frac{d}{q} - \frac{1}{2}} \|u_{\text{init}}(t, \cdot) - M_{\text{init}} Z(t, \cdot)\|_{L^p} \leq C_1 \|u_0 - \eta_j\|_{L^1} - C(j) t^{-\frac{d}{q}},
\]

which implies

\[
\limsup_{t \to \infty} t^{\frac{d}{q} - \frac{1}{2}} \|u_{\text{init}}(t, \cdot) - M_{\text{init}} Z(t, \cdot)\|_{L^p} \leq C_1 \|u_0 - \eta_j\|_{L^1}.
\]

Assertion (i) follows by sending \(j \to \infty \). This finishes the decay estimates for \(Z \).

We continue with \(Y \).

The estimate for \(Y \): Next we turn to study \(u_{\text{forc}} \). We split \(M_{\text{forc}} \) into two parts as follows

\[
M_{\text{forc}} = \int_0^t \int_{\mathbb{R}^d} f(\tau, y) \, dy \, d\tau + \int_t^\infty \int_{\mathbb{R}^d} f(\tau, y) \, dy \, d\tau
\]
and note that
\[
\begin{align*}
t^{1+\frac{\alpha}{p}(1-\frac{1}{p})-\alpha} \|Y(t,\cdot)\|_{L^p} \int_t^\infty \int_{\mathbb{R}^d} f(\tau,y)\,dy\,d\tau \\
\leq t^{1+\frac{\alpha}{p}(1-\frac{1}{p})-\alpha} \|Y(t,\cdot)\|_{L^p} \int_t^\infty \int_{\mathbb{R}^d} |f(\tau,y)|\,dy\,d\tau \\
\leq \int_t^\infty \int_{\mathbb{R}^d} |f(\tau,y)|\,dy\,d\tau \to 0
\end{align*}
\]
as \(t \to \infty\). Here we used Lemma 6.12 to obtain
\[
\|Y(t,\cdot)\|_{L^p} \sim t^{\alpha-\frac{\alpha}{p}(1-\frac{1}{p})-1}, \quad t \to \infty.
\]
Therefore it suffices to prove that
\[
t^{1+\frac{\alpha}{p}(1-\frac{1}{p})-\alpha} \left\| \int_0^t (Y(t-\tau,\cdot) * f(\tau,\cdot))\,d\tau - Y(t,\cdot) \int_0^t \int_{\mathbb{R}^d} f(\tau,y)\,dy\,d\tau \right\|_{L^p} \to 0,
\]
as \(t \to \infty\).

To prove the assertion, we fix \(0 < \delta < \frac{1}{2}\), and decompose the set of integration \((0,t) \times \mathbb{R}^d\) into two parts
\[
\Omega_1(t) = (0,\delta t) \times \{y \in \mathbb{R}^d : |y| \leq (\delta t)^{\alpha/\beta}\}, \\
\Omega_2(t) = (0,t) \times \mathbb{R}^d \setminus \Omega_1(t).
\]

Let us start with the set \(\Omega_1(t)\). We estimate by using the integral form of the Minkowsky inequality in the case \(1 \leq p < \infty\) to obtain
\[
\begin{align*}
\left\| \int_{\Omega_1(t)} [Y(t-\tau,\cdot - y) - Y(t,\cdot) f(\tau,y)]\,dy\,d\tau \right\|_{L^p} &
\leq \int_{\Omega_1(t)} \left\| Y(t-\tau,\cdot - y) - Y(t,\cdot) \right\|_{L^p} |f(\tau,y)|\,dy\,d\tau.
\end{align*}
\]
(6.27)

If \(p = \infty\), the same estimate holds trivially. Note that in \(\Omega_1(t)\) we have \(t \geq t - \tau \geq t(1-\delta) \geq \frac{1}{2}t\), so \(t-\tau\) and \(t\) are comparable and there is no singularity in \(\tau\). Our aim is to prove that the \(L^p\)-norm on the left-hand side of (6.27) tends to \(0\) as \(\delta \to 0\) uniformly in \(t\). To achieve this, we distinguish two different cases w.r.t. \(x \in \mathbb{R}^d\) when looking at the \(L^p\)-norm on the right-hand side of (6.27):

(i) \(|x-y| \leq 2(\delta t)^{\alpha/\beta}\),
(ii) \(|x-y| > 2(\delta t)^{\alpha/\beta}\).

Observe that this splitting seems to be needed. If we simply estimate the \(L^p\)-norm by the triangle inequality
\[
\left\| Y(t-\tau,\cdot - y) - Y(t,\cdot) \right\|_{L^p} \leq \left\| Y(t-\tau,\cdot) \right\|_{L^p} + \left\| Y(t,\cdot) \right\|_{L^p} =: I_1 + I_2,
\]
we would get a bound
\[
I_1 + I_2 \lesssim t^{\alpha-\frac{\alpha}{p}(1-\frac{1}{p})-1},
\]
which is of a right form but the problem is that this quantity does not converge to zero as \(\delta \to 0\) which is what we are after. Therefore we need to do the estimates more carefully.

The motivation for the splitting is that in the case (i) both \(|x-y|\) and \(|x|\) are bounded from above by a multiple of \((\delta t)^{\alpha/\beta}\). In this case we will simply use the triangle inequality (6.28). The second case (ii) is more complicated, but here we
We start with the case (i). Note that for (Lemmas 4.6 and 4.7).

As mentioned before, we use (6.28) and (6.30) to obtain

\[\frac{1}{p} \]

Introducing the spherical coordinates gives the desired estimate

\[p \]

Notice that the assumption \(\delta \) is different for each \(d \), we consider here only the case \(d > 2\beta \) and \(0 < \alpha < 1 \). The other cases can be treated similarly, since the proof is based only on the pointwise estimates for \(Y \), \(\nabla Y \), and \(\partial_t Y \) given in Lemmas [4.6] and [4.7].

We start with the case (i). Note that for \((\tau, y) \in \Omega_1(t) \) we have

\[\frac{|x - y|}{(t - \tau)^{\alpha/\beta}} \leq \frac{2\delta^{\alpha/\beta}}{(1 - \delta)^{\alpha/\beta}}, \]

so we may use the asymptotic behavior of Lemma [4.6] for small values of the similarity variable \(R \) to obtain

\[|Y(t, x)| \lesssim t^{-\alpha - 1}|x|^{d + 2\beta}. \]

As mentioned before, we use (6.28) and (6.30) to obtain

\[I_1 \lesssim t^{-\alpha - 1}\left(\int_{|x| \leq 2\delta(t)^{\alpha/\beta}} |x - y|^{(-d + 2\beta)p} \, dx \right)^{1/p}. \]

Introducing the spherical coordinates gives the desired estimate

\[I_1 \lesssim \delta \beta^{(d + 2\beta + \phi)} t^{-\frac{\alpha}{\beta}}(1 - \frac{\beta}{\phi})^{-1}. \]

Notice that the assumption \(p \in [1, \kappa_2] \) guarantees the integrability and the positivity of the power of \(\delta \), which is needed in the end. The same proof applies also for \(I_2 \).

Now we shall provide the estimate in the second case (ii). Since we are going to use the Mean Value Theorem, we need to calculate the derivatives of the fundamental solution \(Y \). We recall the following estimates from Lemma [4.7] for \(d > 2\beta \):

\[|\nabla Y(t, x)| \lesssim t^{2\beta - 1}|x|^{-\beta - d - 1}, \quad |x|^\beta t^{-\alpha} \geq 1, \]

and

\[|\nabla Y(t, x)| \lesssim t^{-\alpha - 1}|x|^{-d + 2\beta}, \quad |x|^\beta t^{-\alpha} \leq 1. \]

By using the Mean Value Theorem for \(I_3 \) we obtain

\[I_3 = \|y||\nabla Y(t - \tau, \tilde{x}(\cdot))\|_{L^p} \]

for some \(\tilde{x} \) on the line between \(x - y \) and \(x \), where \(x \) denotes the integration variable.

Since

\[|\tilde{x}| = |x - y + \tilde{x} - (x - y)| \geq |x - y| - |\tilde{x} - (x - y)| \]

\[\geq |x - y| - |y| \geq \frac{|x - y|}{2}, \]

we have

\[\frac{|\tilde{x}|}{(t - \tau)^{\alpha/\beta}} \geq \frac{|x - y|}{2t^{\alpha/\beta}} \geq \delta^{\alpha/\beta}. \]
Notice, that since δ can be small, we have to use the asymptotics near zero and near infinity. Therefore we divide the integral I_3 into two parts I_{31} and I_{32} depending on whether $|\tilde{x}|^\beta(t - \tau)^{-\alpha}$ is less than 1 or greater than 1.

In I_{32} we use

$$|\tilde{x}| \leq |x - y| + |y| \leq \frac{3}{2}|x - y|,$$

so the set of integration is contained in the set

$$\mathcal{B} = \{ x \in \mathbb{R}^d : |x - y| \geq \frac{2}{3}(t - \tau)^{\alpha/\beta} \},$$

which implies the estimate

$$I_{32} \lesssim (\delta t)^{\alpha/\beta} \left(\int_{|x-y| \geq \frac{2}{3}(t-\tau)^{\alpha/\beta}} (t-\tau)^{(2\alpha-1)p} |\tilde{x}|^{(-d-1-\beta)p} \, dx \right)^{1/p} \lesssim \delta^{\alpha/\beta}(t-\tau)^{\alpha/\beta + 2\alpha - 1} \left(\int_{|x-y| \geq \frac{2}{3}(t-\tau)^{\alpha/\beta}} |x-y|^{-(d-1-\beta)p} \, dx \right)^{1/p}.$$

Introducing spherical coordinates gives the estimate

$$I_{32} \lesssim \delta^{\alpha/\beta}(t-\tau)^{\alpha/\beta - \frac{d}{2}(1 - \frac{\alpha}{\beta}) - 1},$$

which is of the form we need.

For I_{31} we note that by (6.33) the set of integration is contained in the set

$$\{ x \in \mathbb{R}^d : \delta^{\alpha/\beta} \leq \frac{|x - y|}{2(t - \tau)^{\alpha/\beta}} \leq 1 \},$$

so by using (6.32) we obtain

$$I_{31} \lesssim (\delta t)^{\alpha/\beta} \left(\int_{\delta^{\alpha/\beta} \leq \frac{|x-y|}{2(t-\tau)^{\alpha/\beta}} \leq 1} (t-\tau)^{(-\alpha-1)p} |\tilde{x}|^{(-d-1+2\beta)p} \, dx \right)^{1/p}.$$

Once again we use the fact that $|\tilde{x}|$ and $|x - y|$ are comparable. We may proceed as before except we have to separate two cases: (a) $(-d - 1 + 2\beta)p = -d$ or (b) $(-d - 1 + 2\beta)p \neq -d$. An easy calculation shows that the first case is possible only in the case $\beta \geq \frac{1}{2}$. The case (a) leads to a logarithmic function. Indeed, we may estimate

$$I_{31} \lesssim \delta^{\alpha/\beta}(t-\tau)^{\alpha/\beta - \alpha - 1} \left(\int_{\delta^{\alpha/\beta} \leq \frac{|x-y|}{2(t-\tau)^{\alpha/\beta}} \leq 1} |x-y|^{(-d-1+2\beta)p} \, dx \right)^{1/p} \lesssim \delta^{\alpha/\beta} \log \delta^{1/p}(t-\tau)^{\alpha/\beta - \alpha - 1}.$$

A simple arithmetic calculation shows that the power of t is actually

$$\frac{\alpha}{\beta} - \alpha - 1 = \frac{\alpha d}{\beta}(1 - \frac{1}{p}) - 1,$$

which is exactly of the right form and the factor depending on δ tends to zero as $\delta \to 0$ uniformly in t.

The assumption $p \in [1, \kappa_2)$ leads to a usual power function similarly as before. We omit the details and write the final estimate

$$I_{31} \lesssim \left| \delta^\frac{d}{2} - \delta^2 \alpha - \frac{d}{2} \right| (1 - \frac{d}{p}) \left| \delta^{\alpha/\beta}(t-\tau)^{\alpha/\beta - \alpha - 1} \right|. \quad (6.34)$$

Again the assumption $p \in [1, \kappa_2)$ guarantees that the second power of δ is positive, so we have obtained the desired estimate also in this case.
For I_4 we use again the Mean Value Theorem to obtain
\[I_4 = \tau \| \partial_t Y(t, \cdot) \|_{L^p} \]
for some $\tilde{t} \in (t - \tau, t)$. Note that in $\Omega_4(t)$ t and \tilde{t} are comparable: $(1 - \delta)t \leq \tilde{t} \leq t$.

Now $|x| = |x - y + y| \geq |x - y| - |y| \geq (\delta t)^{\alpha/\beta}$, so
\[\hat{z} := \frac{|x|}{t^{\alpha/\beta}} \geq \frac{|x|}{t^{\alpha/\beta}} \geq \frac{(\delta t)^{\alpha/\beta}}{t^{\alpha/\beta}} = \delta^{\alpha/\beta} \tag{6.35} \]
and again we have two cases, since δ can be small. We denote the integrals by I_{41} and I_{42} depending on whether $\hat{z} \leq 1$ or $\hat{z} \geq 1$.

Again, we recall from Lemma 4.7 the estimates
\[|\partial_t Y(t, x)| \lesssim t^{-\alpha - 2} |x|^{-d + 2\beta}, \quad \frac{|x|^\beta}{t^\alpha} \leq 1, \tag{6.36} \]
and
\[|\partial_t Y(t, x)| \lesssim t^{2\alpha - 2} |x|^{-d - \beta}, \quad \frac{|x|^\beta}{t^\alpha} \geq 1. \tag{6.37} \]

The estimates (6.35) and (6.36) now give for I_{41} that
\[I_{41} \lesssim \delta t \left(\int_{|x| \geq (\delta t)^{\alpha/\beta}} t^{(-\alpha - 2)p}|x|^{(-d + 2\beta)p} \, dx \right)^{1/p}. \]

By changing the variables $x \leftrightarrow \frac{x}{t^{\alpha/\beta}} =: z$, we obtain
\[I_{41} \lesssim \delta t^{\alpha - \frac{d\alpha}{p}(1 - \frac{1}{p}) - 1} \left(\int_{|z| \leq 1} |z|^{(-d + 2\beta)p} \, dz \right)^{1/p} \lesssim \left| \delta - \delta^{1 + 2\alpha - \frac{d\alpha}{p}(1 - \frac{1}{p})} \right| t^{\alpha - \frac{d\alpha}{p}(1 - \frac{1}{p}) - 1}. \]

Since the powers of δ are even better than in (6.34), we have derived the desired estimate for I_{41}.

For I_{42} we observe that
\[1 \leq \hat{z} \leq \frac{|x|}{((1 - \delta)t)^{\alpha/\beta}} \]
which implies
\[|x| \geq ((1 - \delta)t)^{\alpha/\beta}. \]

We use (6.37) to obtain
\[I_{42} \lesssim \delta t^{\alpha - \frac{d\alpha}{p}(1 - \frac{1}{p}) - 1} \left(\int_{|x| \geq (1 - \delta)^{\alpha/\beta}} t^{(2\alpha - 2)p}|x|^{(-d - \beta)p} \, dx \right)^{1/p}. \]

Making the obvious change of variables $x \leftrightarrow \frac{x}{t^{\alpha/\beta}} =: z$ we end up with the estimate
\[I_{42} \lesssim \delta t^{\alpha - \frac{d\alpha}{p}(1 - \frac{1}{p}) - 1} \]
similarly as before.

Collecting all above we see that
\[t^{1 + \frac{d\alpha}{p}(1 - \frac{1}{p}) - \alpha} \left\| \int_{\Omega_1(t)} \left(Y(t - \tau, \cdot - y) - Y(t, \cdot) \right) f(\tau, y) \, dy \, d\tau \right\|_{L^p} \lesssim \delta^\eta \| f \|_1 \]
for some positive number η. The upper bound tends to zero as $\delta \to 0$ uniformly in t.
We now fix $\delta_0 < \frac{1}{T}$ such that the previous term is small and continue to estimate the norm
\[
\left\| \int_{\Omega_2(t)} (Y(t - \tau, \cdot - y) - Y(t, \cdot)) f(\tau, y) \, dy \, d\tau \right\|_{L^p}.
\]

Using the integral form of the Minkowsky inequality we have
\[
t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p})} \left\| \int_{\Omega_2(t)} (Y(t - \tau, \cdot - y) - Y(t, \cdot)) f(\tau, y) \, dy \, d\tau \right\|_{L^p} \\
\leq t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p})} \left\| \int_{\Omega_2(t)} \| f(\tau, y) \|_{L^p} \, dy \, d\tau \right\|_{L^p} \\
+ t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p})} \left\| \int_{\Omega_2(t)} \| Y(t, \cdot) \|_{L^p} \| f(\tau, y) \|_{L^p} \, dy \, d\tau \right\|_{L^p} =: I_5 + I_6.
\]

By Lemma 6.12 we have that $\|Y(t, \cdot)\|_{L^p} \sim t^{\alpha - \frac{\alpha d}{p} (1 - \frac{1}{p}) - 1}$ and, therefore, we may directly estimate I_6 by
\[
I_6 \lesssim \int_{\Omega_2(t)} |f(\tau, y)| \, dy \, d\tau \to 0,
\]
as $t \to \infty$.

For I_5 we have two possibilities: either $\tau \leq \delta_0 t$ or $\tau \geq \delta_0 t$. According to this we split the domain $\Omega_2^{(0)}(t)$ into two parts:
\[
\Omega_2^{(0)}(t) = (0, \delta_0 t) \times \{ y \in \mathbb{R}^d : |y| \geq (\delta_0 t)^{\alpha/\beta} \} \cup (\delta_0 t, t) \times \mathbb{R}^d,
\]
where (0) indicates the fact that we have fixed $\delta = \delta_0$.

Hence, I_5 can be written as
\[
I_5 = t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p}) - \alpha} \int_0^{\delta_0 t} \int_{|y| \geq (\delta_0 t)^{\alpha/\beta}} \| Y(t - \tau, \cdot - y) \|_{L^p} \| f(\tau, y) \|_{L^p} \, dy \, d\tau \\
+ t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p}) - \alpha} \int_{\delta_0 t}^t \int_{\mathbb{R}^d} \| Y(t - \tau, \cdot - y) \|_{L^p} \| f(\tau, y) \|_{L^p} \, dy \, d\tau.
\]

We use the same bound $\| Y(t, \cdot) \|_{L^p} \lesssim t^{\alpha - \frac{\alpha d}{p} (1 - \frac{1}{p}) - 1}$ as above for both integrals. Then the first integral is dominated by
\[
t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p}) - \alpha} \int_0^{\delta_0 t} \int_{|y| \geq (\delta_0 t)^{\alpha/\beta}} (t - \tau)^{\alpha - \frac{\alpha d}{p} (1 - \frac{1}{p}) - 1} |f(\tau, y)| \, d\tau \, dy \\
\leq (1 - \delta_0)^{\alpha - \frac{\alpha d}{p} (1 - \frac{1}{p}) - 1} \int_0^{\delta_0 t} \int_{|y| \geq (\delta_0 t)^{\alpha/\beta}} |f(\tau, y)| \, d\tau \, dy,
\]
which clearly tends to zero as $t \to \infty$. The upper bound for the second integral is
\[
t^{1 + \frac{\alpha d}{p} (1 - \frac{1}{p}) - \alpha} \int_{\delta_0 t}^t \int_{\mathbb{R}^d} (t - \tau)^{\alpha - \frac{\alpha d}{p} (1 - \frac{1}{p}) - 1} |f(\tau, y)| \, d\tau \, dy
\]
This integral causes problems, since now there is a singularity in t. But the assumption $p \in [1, \kappa_2]$ guarantees that the singularity is weak. We use the decay
condition \((2.34)\) imposed for the source term. By using this, we have
\[
I_5 \lesssim t^{1 + \frac{d}{2\beta}(1 - \frac{1}{\beta}) - \alpha} \int_{\delta t} t (t - \tau)^{\alpha - \frac{d}{2\beta}(1 - \frac{1}{\beta}) - 1} (1 + \tau)^{-\gamma} d\tau \\
\lesssim t^{1 + \frac{d}{2\beta}(1 - \frac{1}{\beta}) - \alpha - \gamma} \int_{0}^{\delta t} \tau^{\alpha - \frac{d}{2\beta}(1 - \frac{1}{\beta}) - 1} d\tau \lesssim t^{1 - \gamma},
\]
which tends to zero as \(t \to \infty\), since \(\gamma > 1\). This, finally, finishes the proof of the case where \(d > 2\beta\) and \(0 < \alpha < 1\). The other cases are proved similarly. We omit the details.

\[
\square
\]

7. Optimal L²-decay for mild solutions

In this section we will give the proof of Theorem \((2.36)\). Here we only consider equation \((2.5)\), but our reasoning can be extended to cover a wider range of equations. The main tool we use is Plancherel’s theorem, but in general it can be replaced by more general multiplier theorems which allow one to study more general equations, too. For details of such an approach we refer to our earlier paper \([28]\). Here we restrict our study to equation \((2.5)\) for simplified exposition.

We begin this section by showing that our decay rate is optimal. Indeed, we have the following result.

Proposition 7.1. Let \(\alpha \in (0, 1), d \geq 1\), and \(d \neq 2\beta\). Suppose \(u\) is the mild solution of the Cauchy problem \((2.5)\) with \(f \equiv 0\). Assume further that \(u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)\) with \(\int_{\mathbb{R}^d} u_0 \, dx \neq 0\). Then
\[
\|u(t, \cdot)\|_2 \gtrsim t^{-\alpha \min \left(1, \frac{d}{2\beta}\right)}, \quad t \geq 1.
\]
The constant in the estimate depends on \(\int_{\mathbb{R}^d} u_0 \, dx\).

Proof. Let \(\rho_0 > 0\), \(t > 0\) and \(\rho = \rho(t) \in (0, \rho_0]\). By Plancherel’s theorem, monotonicity of \(E_{\alpha,1}\), and the estimate \(E_{\alpha,1}(-x) \geq c_1/(1 + x)\) for all \(x \geq 0\) (with some \(c_1 > 0\)), we have
\[
\|u(t, \cdot)\|_2^2 = \|\tilde{u}(t, \cdot)\|_2^2 = \int_{\mathbb{R}^d} |\tilde{Z}(t, \xi)|^2 |\tilde{u}_0(\xi)|^2 \, d\xi \\
\geq \frac{1}{(2\pi)^d} \int_{B_{\rho}(0)} E_{\alpha,1}(-|\xi|^2 \rho^d) |\tilde{u}_0(\xi)|^2 \, d\xi \\
\geq \frac{c_2^2}{(2\pi)^d(1 + \rho^d \rho^d)} \int_{B_{\rho}(0)} |\tilde{u}_0(\xi)|^2 \, d\xi \\
= \frac{c_2}{1 + \rho^d \rho^d} \rho^{-d} \int_{B_{\rho}} |\tilde{u}_0(\xi)|^2 \, d\xi.
\]
By the Plancherel Theorem and the Riemann-Lebesgue Lemma we have \(\tilde{u}_0 \in C_0(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)\). By the Lebesgue differentiation theorem, we may choose \(\rho_0\) small enough in order to obtain
\[
\rho^{-d} \int_{B_{\rho}} |\tilde{u}_0(\xi)|^2 \, d\xi \geq \frac{|\tilde{u}(0)|^2}{2} \quad \text{for all } \rho \in (0, \rho_0].
\]
Using this in \((7.2)\) gives the lower bound
\[
\|u(t, \cdot)\|_2^2 \geq \frac{c_2 |\tilde{u}(0)|^2 \rho^d}{2(1 + \rho^d \rho^d)}, \quad (7.3)
\]
Next we choose \(\rho = \rho_0 \), which yields
\[
\|u(t, \cdot)\|_{L^2}^2 \gtrsim t^{-2\alpha}
\]
for \(t \geq 1 \). On the other hand, the choice \(\rho = \rho(t) = \frac{\rho_0}{(1 + t^2)^{\beta/\alpha}} \) gives \(\rho(t)^2 t^\alpha \leq \rho_0^2 \)
and thus by (7.3) we get the estimate
\[
\|u(t, \cdot)\|_{L^2}^2 \gtrsim t^{-2\alpha}, \quad t \geq 1.
\]
These estimates combined together give the claimed lower bound. \(\square \)

Observe that the constant in the above proposition is of the form \(C = C(\rho_0) \int_{\mathbb{R}^d} u \, dx \), where also \(\rho_0 \) depends on \(\int_{\mathbb{R}^d} u \, dx \). Nevertheless, we obtain that the decay rate in Theorem 2.36 is optimal. We will now give a proof of this decay result.

Proof of Theorem 2.36. To prove the upper bound, we proceed as in [28, Theorem 4.2]. Suppose that \(d < 2\beta \). By Plancherel’s Theorem, the Riemann-Lebesgue Lemma and the estimate (2.22), we have
\[
\|u(t, \cdot)\|_{L^2}^2 = \int_{\mathbb{R}^d} |\hat{Z}(t, \xi)|^2 \hat{u}_0(\xi)^2 \, d\xi \leq \|\hat{u}_0\|_{L^\infty} \int_{\mathbb{R}^d} \hat{Z}(t, \xi)^2 \, d\xi \leq \|\hat{u}_0\|_{L^\infty}^2 \, \int_{\mathbb{R}^d} \frac{d\xi}{(1 + |\xi|^{2\beta})^2} \int_{\mathbb{R}^d} \frac{d\eta}{(1 + |\eta|^{\beta})^2},
\]
where in the last step we have made the change of variables \(\xi \leftrightarrow \xi^{\alpha/\beta} =: \eta \). Now the condition \(d < 2\beta \) guarantees that the last integral is converging. Hence we have derived the upper bound in the case \(d < 2\beta \).

We are left with the case \(d > 2\beta \). Here we use the Hardy-Littlewood-Sobolev Theorem on fractional integration. Indeed, we choose \(q = 2 \) in Theorem 3.5 to obtain
\[
\|(-\Delta)^{-\frac{\alpha}{2}} u_0\|_{L^2} \lesssim \|u_0\|_{L^{2\alpha/\beta} \cap L^\infty} < \infty,
\]
so that \(u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \) implies that \(u_0 \in L^{2\alpha/\beta} (\mathbb{R}^d) \) by interpolation. Using this and the estimate (2.21) we have
\[
\|u(t, \cdot)\|_{L^2}^2 = \int_{\mathbb{R}^d} |\xi|^{2\beta} |\hat{Z}(t, \xi)|^2 |\xi|^{-\beta} \hat{u}_0(\xi)^2 \, d\xi \lesssim t^{-2\alpha} \int_{\mathbb{R}^d} \frac{|\xi|^{2\beta} t^{2\alpha}}{(1 + |\xi|^{2\beta} t^{2\alpha})^2} |\xi|^{-\beta} \hat{u}_0(\xi)^2 \, d\xi \lesssim t^{-2\alpha} \int_{\mathbb{R}^d} |\xi|^{-2\beta} |\hat{u}_0(\xi)|^2 \, d\xi \equiv t^{-2\alpha} \|(-\Delta)^{-\frac{\alpha}{2}} u_0\|_{L^2}^2,
\]
which completes the proof by (7.3).

For the borderline case \(d = 2\beta \) we estimate directly by Young’s inequality (3.3) to obtain
\[
\|u(t, \cdot)\|_{L^\infty} \leq \|u_0(\cdot) \ast Z(t, \cdot)\|_{L^\infty} \leq C \|Z(t, \cdot)\|_{L^{2\alpha}} \|u_0\|_{L^1} \leq C \|u_0\|_{L^1} t^{-\alpha},
\]
where we used Lemma 6.3 to estimate the weak \(L^2 \)-norm of \(Z \). This finishes the proof. \(\square \)
8. Energy method and L^2–decay for weak solutions

In this section we consider the L^2–decay of weak solutions which are defined in Definition 2.29. We will restrict our study to the homogeneous case $f \equiv 0$. We will proceed in a rather formal manner where we prove the estimates starting directly from the equation by multiplying it with the appropriate test functions. For the details required for the rigorous treatment starting from the Definition 2.9 we refer to [28].

In the proof of Theorem 2.37, we will need the following Lemma from [43].

Lemma 8.1. Let $T > 0$ and $\Omega \subset \mathbb{R}^d$ be an open set. Let $k \in W^1_{\text{loc}}([0, \infty))$ be nonnegative and nonincreasing. Then for any $v \in L^2((0,T) \times \Omega)$ and any $v_0 \in L^2(\Omega)$ there holds

$$
\int_{\Omega} v \partial_t (k \ast [v - v_0]) \, dx \geq \|v(t, \cdot)\|_{L^2(\Omega)} \partial_t (k \ast \|v\|_{L^2(\Omega)} - \|v_0\|_{L^2(\Omega)}) (t),
$$

for almost every $t \in (0, T)$.

Proof. The result is originally from [43]. For the proof in our context we refer to Lemma 6.2 in [28]. □

Observe that in our case the kernel k corresponds to $g_{1-\alpha}$. The function $g_{1-\alpha}$ is, however, not in $W^{1,1}$. For this reason, a rigorous treatment of the problem requires an appropriate regularization of the fractional derivation operator in time. One way to do this is via its Yosida approximations, which leads to an integro-differential operator of the same form with a kernel g that is also nonnegative and nonincreasing, and which belongs to $W^{1,1}_{\text{loc}}([0, \infty))$. The details of such calculations can be found in [28], see also [46]. Note that the regularized weak formulation used in [28] and [46] does not involve an integral in time on $[0, T]$, but it requires the validity of a certain relation pointwise a.e. in $(0, T)$. Here we proceed on a formal level by using the singular kernel $g_{1-\alpha}$ and a formulation of the problem where we only integrate in space (not in time) against a test function.

Lemma 8.3. Let $u_0 \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$. Suppose u is a weak solution of equation (2.38) with initial condition $u|_{t=0} = u_0$, and assume that (2.38) is satisfied. Then

$$
\|u(t, \cdot)\|_{L^1(\mathbb{R}^d)} \leq \|u_0\|_{L^1}
$$

for a.a. $t > 0$.

Proof. Letting $R > 0$ we choose a nonnegative cut-off function $\psi \in C_0^1(B_{R+1})$ such that $\psi = 1$ in B_R and $\psi \leq 1$ as well as $|\nabla \psi| \leq 2$ in B_{R+1}. Here B_R denotes the ball of radius $R > 0$ and center 0. For $\varepsilon > 0$, define

$$
H_\varepsilon(y) = \frac{(y^2 + \varepsilon^2)^{\frac{\alpha}{2}} - \varepsilon}{\varepsilon}, \quad y \in \mathbb{R}.
$$

Clearly $H_\varepsilon \in C^1(\mathbb{R})$ and $H'_\varepsilon \in W^1_\infty(\mathbb{R})$. Indeed,

$$
H'_\varepsilon(y) = \frac{y}{(y^2 + \varepsilon^2)^{\frac{\alpha}{2}}}, \quad y \in \mathbb{R}.
$$

Observe that H_ε is convex. Testing the PDE with $H'_\varepsilon(u)\psi$ gives

$$
\int_{\mathbb{R}^d} H'_\varepsilon(u)\psi \partial_t^\alpha (u - u_0) \, dx + F_\varepsilon(t) = 0, \quad t > 0,
$$
where
\[F_\varepsilon(t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x,y)[u(t,x) - u(t,y)][H_\varepsilon^\alpha(u(t,x))\psi(x) - H_\varepsilon^\alpha(u(t,y))\psi(y)] \, dx \, dy. \]

Since \(H_\varepsilon \) is convex, we may (formally) use the inequality from Corollary 6.1 in [38], to the result that pointwise a.e. we have
\[H_\varepsilon'(u)\partial_\varepsilon^\alpha (u - u_0) \geq \partial_\varepsilon^\alpha (H_\varepsilon(u) - H_\varepsilon(u_0)). \]

Applying this to the previous relation and convolving the resulting inequality with \(g_\alpha \) we obtain
\[\int_{\mathbb{R}^d} \left(H_\varepsilon(u) - H_\varepsilon(u_0) \right) \psi \, dx + g_\alpha * F_\varepsilon \leq 0, \quad t > 0. \]

Next, we send \(\varepsilon \to 0 \) and observe that \(H_\varepsilon(y) \to |y| \) as well as \(H_\varepsilon'(y) \to \text{sign} \, y \) for \(y \in \mathbb{R} \). Thus we get
\[\int_{\mathbb{R}^d} \left(|u(t,x)| - |u_0(x)| \right) \psi(x) \, dx + (g_\alpha * F)(t) \leq 0, \quad t > 0, \quad (8.4) \]

with
\[F(t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x,y)[u(t,x) - u(t,y)] \cdot \left[\text{sign} \, u(t,x) \psi(x) - \text{sign} \, u(t,y) \psi(y) \right] \, dx \, dy \]
\[\geq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x,y)[u(t,x) - u(t,y)] \cdot [\psi(x) - \psi(y)] \text{sign} \, u(t,y) \, dx \, dy =: F_1(t). \]

Using the properties of \(\psi \) and \(K \), we may estimate as follows.
\[|F_1(t)| \leq \Lambda \int \int_{\mathbb{R}^d} \frac{|u(t,x + h) - u(t,x)| \cdot |\psi(x + h) - \psi(x)|}{|h|^{d+\beta}} \, dh \, dx
\]
\[= \Lambda \int \int_{|h| > R/2} \ldots \, dh \, dx + \Lambda \int_{|h| \leq R/2} \int_{B_{R/2}} \ldots \, dh \, dx
\]
\[\leq \frac{2\Lambda}{(R/2)^2} \int \int_{|h| > R/2} \frac{|u(t,x + h) - u(t,x)|}{|h|^{d+\beta}} \, dh \, dx
\]
\[+ \Lambda \int \int_{|h| \leq R/2} \int_{B_{R/2}} \frac{|u(t,x + h) - u(t,x)|}{|h|^{d+\beta}} \, dh \, dx
\]
\[\leq \frac{2^{1+\frac{d}{2}}\Lambda}{R^{\frac{d+\beta}{2}}} \| u(t,\cdot) \|_{W^{\frac{d+\beta}{2},1}(\mathbb{R}^d)} + 2\Lambda \int \int \int_{|h| \leq R/2} \frac{|u(t,x + h) - u(t,x)|}{|h|^{d+\beta}} \, dh \, dx, \]

where the last two terms tend to 0 for a.a. \(t > 0 \) as \(R \to \infty \), by assumption \((2.33) \). Thus the assertion follows from \((8.4) \) and the previous estimates by sending \(R \to \infty \).

Finally, we have the following Lemma, which shows that the \(L^2 \)-norm of a weak solution is a subsolution to a purely time-fractional equation.

Lemma 8.5. Let \(K, u_0, \) and \(u \) be as in the previous lemma. Then there exists a constant \(\mu = \mu(d, \beta, \lambda, \| u_0 \|_{L^1}) > 0 \) such that (formally)
\[\partial_\varepsilon^\alpha \left[\| u(t,\cdot) \|_{L^2}^2 - \| u_0 \|_{L^2}^2 \right] + \mu \| u(t,\cdot) \|_{L^2}^{1+\frac{d}{2}} \leq 0, \quad t \geq 0. \quad (8.6) \]

Proof. Choose the test function \(\varphi = u \) in Definition \((2.39) \) of weak solutions. We apply Lemma \((8.4) \) for the fractional time derivative to obtain
\[\| u(t,\cdot) \|_{L^2} \partial_\varepsilon^\alpha \left[\| u(t,\cdot) \|_{L^2}^2 - \| u_0 \|_{L^2}^2 \right] + \int \int K(x,y)[u(t,x) - u(t,y)]^2 \, dx \, dy \leq 0. \]
For the elliptic term, we then use the fractional Nash inequality (cf. \cite[p. 13]{41}) together with the assumption (2.7) on the kernel K and with Lemma 8.3 to obtain
\[
\|u(t, \cdot)\|_{L^2}^{2+\frac{2\beta}{d}} \leq C\|u(t, \cdot)\|_{L^1}^{2+\frac{2\beta}{d}} \int \int_{\mathbb{R}^d} \frac{|u(t, x) - u(t, y)|^2}{|x - y|^{d+\beta}} \, dx \, dy
\]
\[
\leq C\|u_0\|_{L^1}^{2+\frac{2\beta}{d}} \int \int_{\mathbb{R}^d} K(x, y)|u(t, x) - u(t, y)|^2 \, dx \, dy.
\]
This concludes the proof. \hfill \Box

8.1. **Proof of Theorem 2.37.** We are finally ready to prove the decay result for the weak solutions. The proof is based on using the comparison principle for the purely time-fractional equation (8.6).

Proof of Theorem 2.37. Let $T > 0$ be an arbitrary real number. By the comparison principle for time-fractional differential equations (see \cite[Lemma 2.6 and Remark 2.1]{43}), the inequality (8.6) implies that $\|u(t, \cdot)\|_{L^2} \leq w(t)$ for almost every $t \in (0, T)$, where w solves the equation corresponding to (8.6), that is
\[
\partial_t^\alpha (w - w_0)(t) + \mu w(t)^\gamma = 0, \quad t > 0, \quad w(0) = w_0 := \|u_0\|_{L^2},
\]
where we put $\gamma = 1 + \frac{2\beta}{d}$. It is known that for $w_0 > 0$ there exist constants $c_1, c_2 > 0$ such that
\[
c_1 \frac{1}{1 + \frac{t}{1+\gamma}} \leq w(t) \leq c_2 \frac{1}{1 + \frac{t}{1+\gamma}}, \quad t \geq 0,
\]
see \cite[Theorem 7.1]{43}. Since $T > 0$ was arbitrary, we conclude that $\|u(t, \cdot)\|_{L^2} \leq w(t) \leq c_2 \frac{1}{1 + \frac{t}{1+\gamma}} = c_2 \frac{1}{1 + \frac{t}{1+\frac{2\beta}{d}}}$, almost every $t > 0$.

This finishes the proof of Theorem 2.37. \hfill \Box

Acknowledgements. The work has been partially conducted during the research visits of R.Z. to Aalto University in Spring 2013, and of J.K. and J.S. to the University of Ulm in Fall 2014; we thank both institutions for their kind hospitality.

The research visits of J.S. has been supported by a Väisälä foundation travel grant as well as via the Ulm International Research Fellows in Mathematics and Economics program of the Faculty of Mathematics and Economics of Ulm university. In addition, J.S. has enjoyed financial support from the Academy of Finland grant 259363, and R.Z., in turn, has been supported by a Heisenberg fellowship of the German Research Foundation (DFG), GZ Za 547/3-1.

References

[1] Mark Allen, Luis Caffarelli, and Alexis Vasseur. A parabolic problem with a fractional-time derivative. *arXiv preprint arXiv:1501.07211*, 2015.
[2] Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen, and Moritz Kassmann. Non-local Dirichlet forms and symmetric jump processes. *Trans. Amer. Math. Soc.*, 361(4):1963–1999, 2009.
[3] Salomon Bochner. *Harmonic analysis and the theory of probability*. Courier Corporation, 2012.
[4] Matteo Bonforte and Juan Luis Vázquez. A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Preprint, 2013.
[5] Matteo Bonforte and Juan Luis Vázquez. Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. *Adv. Math.*, 250:242–284, 2014.
[6] Boele Lieuwe Jan Braaksma. Asymptotic expansions and analytic continuations for a class of barnes-integrals. *Compositio Mathematica*, 15:239–341, 1936.
[7] Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur. Regularity theory for parabolic nonlinear integral operators. *J. Amer. Math. Soc.*, 24(3):849–869, 2011.
[8] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional Laplacian. *Comm. Partial Differential Equations*, 32(7-9):1245–1260, 2007.

[9] Luis Caffarelli and Luis Silvestre. Regularity theory for fully nonlinear integro-differential equations. *Comm. Pure Appl. Math.*, 62(5):597–638, 2009.

[10] Luis Caffarelli and Luis Silvestre. Regularity results for nonlocal equations by approximation. *Arch. Ration. Mech. Anal.*, 200(1):59–88, 2011.

[11] Luis Caffarelli and Luis Silvestre. Hölder regularity for generalized master equations with rough kernels. Preprint, 2012.

[12] Álvaro Cartea and Diego del Castillo-Negrete. Fluid limit of the continuous-time random walk with general lévy jump distribution functions. *Phys. Rev. E*, 76:041105, Oct 2007.

[13] Emmanuel Chasseigne, Manuela Chaves, and Julio D Rossi. Asymptotic behavior for nonlocal diffusion equations. *Journal de mathématiques pures et appliquées*, 86(3):271–291, 2006.

[14] Xing Cheng, Zhiyuan Li and Masahiro Yamamoto. Asymptotic behavior of solutions to space-time fractional diffusion equations arXiv preprint arXiv:1505.06965v2, 2015.

[15] Albert Compte and Manuel O. Cáceres. Fractional dynamics in random velocity fields. *Phys. Rev. Lett.*, 81:3140–3143, Oct 1998.

[16] Rama Cont and Peter Tankov. *Financial modelling with jump processes*. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004.

[17] Julia Dräger and Joseph Klafter. Strong anomaly in diffusion generated by iterated maps. *Phys. Rev. Lett.*, 84:5998–6001, Jun 2000.

[18] Jun-Sheng Duan. Time-and space-fractional partial differential equations. *Journal of mathematical physics*, 46(1):13504–13504, 2005.

[19] Javier Duoandikoetxea and Enrique Zuazua. Moments, masses de dirac et décomposition de fonctions. *Comptes rendus de l’Académie des sciences. Série 1, Mathématique*, 315(6):695–698, 1992.

[20] Samuil D. Eidelman and Anatoly N. Kochubei. Cauchy problem for fractional diffusion equations. *J. Differential Equations*, 199(2):211–255, 2004.

[21] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, Francesco G Tricomi, and Harry Bateman. *Higher transcendental functions*, volume 1. McGraw-Hill New York, 1953.

[22] Matthieu Felsinger, Moritz Kassmann. Local regularity for parabolic nonlocal operators. *Commun. Partial Differ. Equations*, 38:1539–1573, 2013.

[23] Israel M. Gelšand, Georgi E. Šilov. *Generalized Functions. Vol I: Properties and Operations*. Academic Press Inc., New York, 1968.

[24] Loukas Grafakos. *Classical and modern fourier analysis*. AMS, 10:12, 2004.

[25] Rudolf Hilfer. On fractional diffusion and continuous time random walks. *Phys. A*, 329:35–40, 2003.

[26] Liviu I. Ignat and Julio D. Rossi. Decay estimates for nonlocal problems via energy methods. *Journal de mathématiques pures et appliquées*, 92(2):163–187, 2009.

[27] Moritz Kassmann. A priori estimates for integro-differential operators with measurable kernels. *Calc. Var. Partial Differential Equations* (34): 1–21, 2009.

[28] Jukka Kemppainen, Juhana Siljander, Vicente Vergara, and Rico Zacher. Decay estimates for nonlocal problems via energy methods. *Arch. Ration. Mech. Anal.*, 200(1):59–88, 2011.

[29] Kyeong-Hun Kim and Sungbin Lim. Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations. arXiv preprint arXiv:1504.07356, 2015.

[30] Anatoly N. Kochubei. Fractional-order diffusion. *Differ. Equ.*, 26(4):485–492, 1990.

[31] Mark M. Meerschaert, David A. Benson, Hans-Peter Scheffler, and Peter Becker-Kern. Governing equations and solutions of anomalous random walk limits. *Phys. Rev. E*, 66:060102, Dec 2002.

[32] Ralf Metzler and Joseph Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. *Physics Reports*, 339(1):1 – 77, 2000.

[33] Kenneth S. Miller and Stefan G. Samko. Completely monotonic functions. *Integral Transforms and Special Functions*, 12(4):389–402, 2001.

[34] Jan Prüss. *Evolutionary integral equations and applications*, volume 87 of *Monographs in Mathematics*. Birkhäuser Verlag, Basel, 1993.

[35] Julio D. Rossi. Asymptotics for evolution problems with nonlocal diffusion. Manuscript available at http://mate.dm.uba.ar/~jrossi/CURSO(Marra)25-3-08.pdf, 2009.

[36] Isaac J. Schoenberg. Metric spaces and completely monotone functions. *Annals of Mathematics*, pages 811–841, 1938.
[39] Luis Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. *Communications on pure and applied mathematics*, 60(1):67–112, 2007.

[40] Luis Enrique Silvestre. *Regularity of the obstacle problem for a fractional power of the Laplace operator*. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)—The University of Texas at Austin.

[41] A.F.M. Ter Elst, Derek W. Robinson, Adam Sikora and Yueping Zhu. Second-order operators with degenerate coefficients. *Proceedings of the London Mathematical Society*, 95(2):299–328, 2007.

[42] Juan Luis Vázquez. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. *Journal of the European Mathematical Society*, 16(4):769–803, 2014.

[43] Vicente Vergara and Rico Zacher. Optimal decay estimates for time-fractional and other non-local subdiffusion equations via energy methods. *SIAM Journal on Mathematical Analysis*, 47(1):210–239, 2015.

[44] George Neville Watson. *A treatise on the theory of Bessel functions*. Cambridge university press, 1995.

[45] Rico Zacher. Maximal regularity of type L_p for abstract parabolic Volterra equations. *J. Evol. Equ.*, 5:79–103, 2005.

[46] Rico Zacher. Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients. *J. Math. Anal. Appl.*, 348:137–149, 2008.

[47] Rico Zacher. Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. *Funkcial. Ekvac.*, 52(1):1–18, 2009.

[48] Rico Zacher. A De Giorgi–Nash type theorem for time fractional diffusion equations. *Math. Ann.*, 356(1):99–146, 2013.

[49] Rico Zacher. A weak Harnack inequality for fractional evolution equations with discontinuous coefficients. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 12(4):903–940, 2013.

[50] Enrique Zuazua. Large time asymptotics for heat and dissipative wave equations. Manuscript available at http://www.uam.es/enrique.zuazua, 2003.