Review Article

Characteristics of cranial vault lymphoma from a systematic review of the literature

Naoki Nitta¹, Suzuko Moritani², Tadateru Fukami¹, Kazuhiko Nozaki¹

Departments of ¹Neurosurgery, ²Clinical Laboratory Medicine and Division of Diagnostic Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan.

E-mail: *Naoki Nitta - nnitta@belle.shiga-med.ac.jp; Suzuko Moritani - mori@belle.shiga-med.ac.jp; Tadateru Fukami - tadateru@belle.shiga-med.ac.jp; Kazuhiko Nozaki - noz@belle.shiga-med.ac.jp

ABSTRACT

Background: Cranial vault lymphomas are rare and their clinical features are often similar to those of cranial vault meningiomas. The objective of this review was to identify the features helpful for differentiating lymphomas of the cranial vault, from meningiomas which were the most common diagnosis before the definitive pathological diagnosis.

Methods: The inclusion criterion was a histologically proven malignant lymphoma initially appearing in the calvarium. We conducted a literature search of the electronic PubMed and Ichushi-Web databases up to June 1, 2020. Cranial vault lymphoma that was diagnosed after an original diagnosis of lymphoma in a nodal or soft-tissue site was excluded from the study. Descriptive analyses were used to present the patient characteristics.

Results: A total of 111 patients were found in 98 eligible articles. Almost all studies were case reports. The most common symptom was a growing subcutaneous scalp mass (84%) present for a mean duration of 5.9 months before the patient presented for treatment in analyzable cases; this fast growth may distinguish lymphomas from meningiomas. The tumor vascularization was often inconspicuous or poor, unlike well-vascularized meningiomas. A disproportionately small amount of skull destruction compared with the soft-tissue mass was observed in two-thirds of the analyzable cases.

Conclusion: This qualitative systematic review identified several features of cranial vault lymphomas that may be useful in differentiating them from meningiomas, including a rapidly growing subcutaneous scalp mass, poor vascularization, and limited skull destruction relative to the size of the soft-tissue mass.

Keywords: Calvarial lymphoma, Calvarium, Lymphosarcoma, Reticulum cell sarcoma, Skull

INTRODUCTION

Malignant lymphoma of the bone is uncommon and, hence, presents diagnostic and therapeutic problems.[71] Cranial vault involvement has been reported to account for 5.5% of bone lymphoma cases and the number of reported cases of lymphoma initially appearing in the calvarium is limited.[21] The diagnosis of this rare cranial vault tumor before pathological diagnosis has usually been not lymphoma but meningioma, metastatic tumor, or other mesenchymal tumors, which has tended to lead to radical operative treatments like gross total removal of the tumor.[1,25,96] If we can make a differential diagnosis of cranial vault lymphoma preoperatively, we may choose less radical procedures like biopsy and can start chemotherapy at an earlier time. This article presents...
a systematic review of the literature to show demographic, clinical, and imaging characteristics, as well as treatments and outcomes of cranial vault lymphoma. We specify characteristic features of cranial vault lymphoma that may be helpful for their diagnosis, especially to distinguish them from meningiomas, which have been the most common diagnosis of cranial vault lymphomas before definitive pathological diagnosis [1,2,4,13,35,36,37,50,54,65,66,70,75,84,86,88,96,105].

MATERIALS AND METHODS

Eligibility criteria

The inclusion criterion was a histologically proven malignant lymphoma initially appearing in the calvarium. Cranial vault lymphoma that was diagnosed after an original diagnosis of lymphoma in nodal or soft-tissue site was excluded from the study. Skull base lymphoma and dural lymphoma were also excluded from the study. Articles whose full text was unable to be located were excluded from the study. We excluded systematic and retrospective review articles and case series articles that did not include case-specific data.

Information sources and search strategy

We conducted a literature search of the electronic PubMed and Ichushi-Web databases up to June 1, 2020, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We extracted all human reports on cranial vault lymphomas, using the following terms: cranial vault lymphoma; skull lymphoma; calvarial lymphoma; transcalvarial lymphoma; dural lymphoma; and combinations of the variables of lymphoma, lymphosarcoma (an obsolete classification of non-Hodgkin lymphoma), reticulum cell sarcoma (another obsolete classification of non-Hodgkin lymphoma), cranial vault, skull, and calvarium. The search resulted in 1492 PubMed citations and 391 Ichushi-Web citations, 113 of which were duplicated, resulting in a total of 1770 articles [Figure 1].

Selection process

Two reviewers (N.N. and T.F.) independently and in duplicate screened, reviewed, and discussed all the selected articles. The full text of all eligible articles was reviewed, and their data extracted and collated. In cases where questions regarding the inclusion of certain articles arose, this was discussed with a third reviewer, K.N.

Data collection process and data items

Data of the eligible works were obtained through careful analysis of the full text by two authors (N.N. and T.F.) independently. The senior author, K.N., was available in case of a split decision. Questions arising as to pathological diagnosis were discussed with a pathologist, S.M. We analyzed the clinical and radiological characteristics of the patients, as well as their treatments and survival in these published studies. Specifically, we extracted the following items: age of the patient; sex; clinical symptoms; location of tumors; findings of palpation; skin condition; speed of growth; existence of other lesions; types of treatment; extent of resection; duration of follow-up and outcomes; laboratory data; imaging data of skull X-ray, angiogram, computed tomography (CT), magnetic resonance imaging (MRI), and others; bone images on CT; extra- and intracranial tumor extension on CT and MRI; dural tail and brain invasion on MRI; and histopathological types. Due to the heterogeneity of patient descriptions, some clinical and imaging features were not explicitly reported for each patient. We extracted and reported only unambiguously described data. Data on clinical and imaging features were also extracted from the patient imaging data. Evaluation of publication bias was not feasible because of heterogeneity and because most of the included studies were case reports and case series.

Figure 1: The PRISMA flowchart of our systematic review. New studies were those identified from the reference lists of articles identified in the initial screen.
Nitta, et al.: Cranial vault lymphoma

Statistical analysis

Descriptive analyses were used to present the patient characteristics. Continuous variables were expressed as mean ± standard deviation, and categorical variables were expressed as number and percentage. Because of the limited follow-up data included in each intervention and the lack of standardization of assays and treatments across the many laboratories included in the present review, we were unable to statistically compare the findings on images and the changes in clinical outcomes. All calculations were performed with JMP 13.2.1 (SAS Institute, Inc., Cary, North Carolina, U.S.).

RESULTS

From among the articles found, we selected all studies reporting patients with cranial vault lymphoma (n = 106) without limitation of language and identified additional studies from the reference lists of the articles (n = 3). After discarding duplicate references and publications (n = 2), as well as excluding reports of secondary cranial vault lymphoma, skull base lymphoma, or dural lymphoma (n = 9), we settled on 98 articles for careful review. The number of articles retained at each stage of data acquisition is shown in a PRISMA flowchart [Figure 1].

We found 111 cases of histologically proven malignant lymphomas initially appearing in the cranial vault in the 98 articles and analyzed the data of 111 patients [Tables 1, S1, and S2].

The average patient age was 52 ± 20 years (range, 3–85 years) [Table 1]. The male-to-female ratio was 1.09:1. Common symptoms were a growing subcutaneous mass on the scalp (84%), headache (33%), focal neurological deficit (25%), and seizure (6%) in the 110 cases with available data. The parietal (57%), frontal (54%), occipital (21%), and temporal (15%) bones were the affected sites in 110 cases with analyzable data. The subcutaneous scalp mass was firm (57%), soft (16%), nontender (56%), tender (22%), or accompanied by reddish skin or ulcer (7%) in 68 cases with a description of the scalp mass. In the 49 cases with a description of mass growth, the mean duration of growth was 5.9 ± 6.3 months before the patient presented for treatment. In 23% of 93 cases with available data, lesions outside the cranial vault were present.

Laboratory data were described in 59 cases, with human immunodeficiency virus positivity in 5 cases (8%), elevated lactate dehydrogenase in 6 cases (10%), anemia in 4 cases (7%), increased white blood cell count in 3 cases (5%), elevated erythrocyte sedimentation rate in 2 cases (3%), elevated alkaline phosphatase in 1 case (2%), increased soluble interleukin-2 receptor (sIL2R) in 1 case (2%), and decreased platelets in 1 case (2%) [Table S1]. Findings on plain skull X-ray were described in 38 cases, including osteolytic changes at the tumor site in 29 cases (76%), no change in 6 cases (16%), hyperostosis in 2 cases (5%), and periosteal reaction in 4 cases (11%). A sharp margin of the skull lesion was observed in 6 cases (16%) and an indistinct or irregular margin of the skull lesion in 15 cases (40%). In 12 cases with description of tumor vascularization on angiogram, no or poor tumor vascularization was found in 7 cases (58%). If any vascularization was present, it was mainly derived from the external carotid artery circulation. Among 32 cases with analyzable CT data, the tumor was hyperdense in 25 cases (78%), isodense in 5 cases (16%), and hypodense in 2 cases (6%). Among 42 cases with contrast-enhanced (CE) CT data, the tumor was enhanced well in 37 cases (88%) and slightly in 5 cases (12%). Most tumors were enhanced diffusely, either homogeneously or heterogeneously, whereas some extracranial components showed peripheral enhancement. On MRI, T1-weighted imaging (T1WI) with analyzable data (n = 38) showed a hyper- and isointense tumor in 1 case (3%), isointense tumor in 11 cases (29%), iso- and hypointense tumor in 4 cases (11%), and hypointense tumor in 22 cases (58%). T2-weighted imaging (T2WI) (n = 40) showed a hyperintense tumor in 21 cases (53%), hyper- and isointense tumor in 1 case (3%), isointense tumor in 12 cases (30%), iso- and hypointense tumor in 5 cases (13%), and hypointense tumor in 1 case (3%). CE-T1WI (n = 48) showed an enhancing tumor in 48 cases (100%). The tumors tended to show uptake on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and on bone scintigraphy and gallium scintigraphy, which were also used for the evaluation of lesions outside the cranial vault.

Extra- and intracranial extensions of the tumor were evaluated by CT, MRI, or both in 87 cases [Table S2]; the extracranial extension was much larger than the intracranial extension in 35 cases (40%), both were nearly the same size in 35 cases (40%), the intracranial extension was much larger than the extracranial extension in 16 cases (18%), and there was neither intra- nor extracranial extension in 1 case (1%). Bone changes of the cranial vault due to the tumor were evaluated by CT, MRI, or both in 84 cases. The images showed no skull changes and/or preserved skull contour in 11 cases (13%), osteolytic changes in 68 cases (81%), hyperostosis in 4 cases (5%), and only sclerosis at the lesion in 1 case (1%). In the 68 cases with osteolytic skull changes due to the tumor, the skull was penetrated or dissolved to less than half of the thickness in 26 cases (38%), whereas permeative dissolution with relatively preserved skull contour was observed in 35 cases (51%). Periosteal bone formation was observed in 10 cases (15%). In seven cases, there was no detailed description. A disproportionately small area of cortical destruction of the cranial vault relative to the volume of the extra- or intracranial soft-tissue mass, which we defined as cortical destruction less than one-fifth of the soft-tissue mass in diameter, was observed in 50 cases (67%) on CT, MRI, or...
Table 1: Clinical features, treatment, and outcome of 111 patients with cranial vault lymphoma.

Author year (reference)	Age (years)	Sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Wichtl, 1949	66	F	Subcutaneous mass on the scalp	Occipital	NA	NA	Biopsy	R	Died* (55 mo)
Strange and De Lorimier, 1954	50	F	Subcutaneous mass on the scalp	Frontal	Soft, growing for 6 mo, 8 cm	NA	Biopsy	R	Alive (7 y)
	47	F	Subcutaneous mass on the scalp, neurological deficit	Frontal	Soft, nontender, growing for 6 mo	NA	Biopsy	R	Alive (1 y)
	66	F	Subcutaneous mass on the scalp	Parietotemporal	Firm, nontender, growing for 8 mo, 6 cm	Preauricular LNs	Biopsy	R	Alive (10 mo)
Ullrich and Bucy, 1958	53	F	Subcutaneous mass on the scalp, headache	Frontal, occipital	Soft, tender, 9 cm	None	Gross total removal	R	Alive (5.5 y)
Piendak and Alder, 1959	33	M	Subcutaneous mass on the scalp, diplopia, ophthalmalgia	Frontal	Soft	None	Subtotal removal	R	Alive (9 y)
Block and Peck, 1964	68	M	Subcutaneous mass on the scalp	Frontal	Firm, nontender, nonreddish, growing for 1 mo, 5 cm	Axillary LNs	Biopsy	R	NA
Topolnicki and White, 1969	67	F	Subcutaneous mass on the scalp, headache	Frontoparietal	Soft, nontender, 12 cm Ulcerated	None	Biopsy	R	Alive (4 y)
Wainwright, 1973	77	M	Subcutaneous mass on the scalp, ulceration	Fronto-parietal	Soft, nontender, growing for 5 mo, 17 cm	Anterior cervical LNs	Subtotal removal	C	Alive (22 mo)
Gawish, 1976	8	M	Subcutaneous mass on the scalp	Frontal	Soft, nontender, growing for 5 mo, 17 cm	None	Gross total removal	R	Alive (7 mo)
Agbi et al., 1983	58	F	Subcutaneous mass on the scalp, neurological deficit, seizure, headache	Parietotemporal	Firm	None	Biopsy	Steroid	Alive (6 mo)
Holtás et al., 1985	60	F	Subcutaneous mass on the scalp	Frontal	Firm, nontender, 6 cm	None	Biopsy	R+C	Alive (5 mo)
	20	M	Seizure	Frontal	NA	None	Surgery (NA)	R+C	Alive (5 mo)

(Contd...)
Table 1: (Continued).

Author year (reference)	Age (years) /sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Kinjo and Satoh, [45] 1985	23/M	Subcutaneous mass on the scalp, neurological deficit, headache, vomiting,	Frontal and occipital	Soft, 13 cm	Multifocal bone lesions	Subtotal removal	R	Died (5 mo)
Thomas and Kennedy, [97] 1986	28/F	Subcutaneous mass on the scalp	Occipital	Firm, tender, 10 cm	Supraclavicular LNs	Biopsy	R	Alive (14 mo)
Howat et al., [32] 1987	3/M	NA	Frontal	NA	None	NA	R+C	Alive (13 y)
Maiuri et al., [56] 1987	51/F	Neurological deficit, headache	Parieto-occipital	NA	None	Gross total removal	R	Alive (2 y)
Tagawa et al., [94] 1987	65/F	Subcutaneous mass on the scalp	Frontal	Growing for 3 mo, 9 cm	None	Biopsy	R+C	Alive (1 y)
Kawakami et al., [42] 1988	52/F	Subcutaneous mass on the scalp	Parietal	Firm, 5 cm	None	Gross total removal	R	Alive (6 y)
Morgello et al., [63] 1989	56/M	Subcutaneous mass on the scalp	Occipital	Growing for 5 mo	NA	Biopsy	R+C	Died (20 mo)
Herkes et al., [29] 1991	73/F	Seizure	Frontal	Firm, nontender, 5 cm Ulcerated	Retroperitoneal LNs, multifocal bone lesions	Biopsy	R+C	Alive (3 mo)
	55/M	Neurological deficit	Parietal	Firm, nontender, 6 cm	None	Biopsy	R	Died (3 mo)
Kumon et al., [49] 1991	74/F	Subcutaneous mass on the scalp	Frontal	Firm, nontender, 6 cm	None	Subtotal removal	C	Alive (8 mo)
Natsuda et al., [66] 1991	41/F	Subcutaneous mass on the scalp	Temporal	Ulcerated, growing for 3 mo, 15 cm	None	Biopsy	R+C	Alive (6 mo)
Lonjon et al., [53] 1993	71/F	Subcutaneous mass on the scalp	Occipital	Growing for 3 mo, 11 cm	None	Subtotal removal	C	Alive (6 mo)
Parekh et al., [75] 1993	65/F	Neurological deficit, headache	Parietal	Firm, nontender, 3 cm	None	Gross total removal	R	Died* (6 y)
Sato et al., [89] 1993	65/M	Subcutaneous mass on the scalp, neurological deficit	Parietal	Firm, nontender, growing for 1 mo, 13 cm	None	Subtotal removal	R+C	Alive (20 mo)
Kelleher et al., [41] 1994	30/F	Headache	Frontotemporal	Tender	None	Biopsy	C	Alive (27 mo)
Loembe et al., [52] 1994	32/M	Subcutaneous mass on the scalp	Frontoparietal	Firm, nontender, growing for 6 mo	None	Subtotal removal	Refused	Died* (6 wk)

(Contd...)
Table 1: (Continued).

Author year (reference)	Age (years) /sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Morioka et al.,[64] 1994	69/M	Subcutaneous mass on the scalp	Frontal	Firm, nontender, growing for 1 mo	None	Biopsy	R+C	Died (18 mo)
Vigushin et al.,[103] 1994	68/M	Neurological deficit	Parieto-temporal	NA	None	Partial removal	C	Alive (2 y)
Wittram et al.,[107] 1994	31/M	Subcutaneous mass on the scalp, seizure	Parietal	Soft, 8 cm	LNs in the abdomen	NA	NA	
Aslan et al.,[6] 1995	12/M	Subcutaneous mass on the scalp, neurological deficit, neck pain	Occipital	Firm, nontender, growing for 0.5 mo, 8 cm	None	Biopsy	R+C	Alive (2 mo)
Landys et al.,[50] 1995	62/M	Neurological deficit, malaise, abdominal pain	Fronto-parietal	Firm, nontender, 16 cm	Retroperitoneal lesion, spleen	Biopsy	C	Alive (5 y)
Paige and Bernstein,[72] 1995	51/M	Subcutaneous mass on the scalp, headache	Parieto-occipital	Firm, growing for 3 mo, 10 cm	None	Biopsy	R+C	NA
	78/M	Subcutaneous mass on the scalp	Temporal	Nontender, growing for 12 mo, 5 cm	None	Removal	R+C	Alive (3 y)
Isla et al.,[14] 1996	75/F	Seizure	Frontal	NA	None	Removal	R+C	Alive (3 y)
Bhatia et al.,[2] 1997	50/M	Headache	Parietal	Firm, tender, 3 cm	None	Biopsy	R+C	Died (7 mo)
Curti et al.,[14] 1997	19/F	Subcutaneous mass on the scalp, neurological deficit, headache, vomiting	Parietal	NA	Multifocal bone lesions	Gross total removal	C	NA
Muin et al.,[65] 1997	60/M	Neurological deficit, headache	Parietal	NA	None	Gross total removal	R+C	Alive (8 mo)
Jamjoom et al.,[37] 1998	25/M	Subcutaneous mass on the scalp	Parietal	Firm, nontender, growing for 12 mo, 5 cm	None	Gross total removal	R	Alive (5 mo)
Jiménez Moragas et al.,[38] 1999	38/M	Incidentally found	Whole of the cranial vault	NA	Hepatomegaly	Biopsy	None	Died* (5 d)
Dai et al.,[16] 2000	21/M	Subcutaneous mass on the scalp	Frontal	Firm, nontender, growing for 4 mo, 5 cm	Preauricular LNs	Gross total removal	R+C	Alive (6 mo)

(Contd...)
Table 1: (Continued).

Author year (reference)	Age (years) /sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Pardhanani et al.,[74] 2000	77/M	Subcutaneous mass on the scalp, neurological deficit	Frontotemporal	Firm	NA	Biopsy	R	Died (3 wk)
Parker et al.,[76] 2001	11/M	Subcutaneous mass on the scalp	Frontal	Growing for 1 mo	None	Removal	C	Alive (1 y)
Thurnher et al.,[39] 2001	36/M	Subcutaneous mass on the scalp	Frontoparietal	Tender, 8 cm	A lesion in the mouth	Partial removal	R+C	Died (8 mo)
Duyndam et al.,[19] 2002	71/F	Subcutaneous mass on the scalp	Frontal	Firm, tender, 7 cm	None	Biopsy	C	Alive (6 mo)
Pernot et al.,[78] 2002	40/M	Subcutaneous mass on the scalp, headache	Frontoparietal	NA	None	Gross total removal	R	Alive (1 y)
Kanai et al.,[39] 2003	71/F	Subcutaneous mass on the scalp	Frontoparietal	Firm, nontender, growing for 3 mo, 8 cm	None	Subtotal removal	C	Died (3.5 y)
Kantarci et al.,[41] 2003	65/M	Subcutaneous mass on the scalp	Fronto-parietal	Firm, nontender, ulcerated, 10 cm	Cervical LNs	Biopsy	NA	NA
Koral et al.,[47] 2003	15/M	Subcutaneous mass on the scalp	Temporo-occipital	Growing for 24 mo, 7 cm	None	Biopsy	C	Alive (2.5 y)
Mongia et al.,[62] 2003	25/M	Subcutaneous mass on the scalp	Frontotemporo-parietal	Firm, tender, growing for 6 mo, 15 cm	None	Subtotal removal	R+C	Alive (2.5 y)
Nishimoto et al.,[69] 2003	63/M	Subcutaneous mass on the scalp	Frontoparietal	Firm, nontender, growing for 2 mo, 4 cm	None	Biopsy	C	Alive (NA)
Aquilina et al.,[5] 2004	72/F	Subcutaneous mass on the scalp, seizure, headache, fatigue	Frontotemporal	Firm, nontender	None	Biopsy	C	Alive (6 mo)
Horstman et al.,[31] 2004	80/F	Subcutaneous mass on the scalp	Parieto-occipital	Growing for 6 mo, 18 cm	A neck lesion	Biopsy	C	Died (NA)
Madan et al.,[88] 2004	70/F	Subcutaneous mass on the scalp, weight loss	Parieto-occipital	Nontender, reddish, growing for 12 mo, 7 cm	None	NA	C	Alive (NA)
Szucs-Farkas et al.,[93] 2005	42/F	Subcutaneous mass on the scalp, malaise, nausea, and headache	Parieto-occipital	NA	None	Biopsy	R	Alive (NA)

(Contd...)
Table 1: (Continued).

Author year (reference)	Age (years) /sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Tanimura et al.,[95] 2005	85/F	Subcutaneous mass on the scalp	Parietal	4 cm	None	Refused (autopsy)	Refused	Died (4 mo)
Evliyaoglu et al.,[21] 2006	78/F	Subcutaneous mass on the scalp, neurological deficit, headache	Parietal	Firm, growing for 0.25 mo, 5 cm	None	Subtotal removal	R+C	Alive (4 y)
Galarza et al.,[23] 2006	61/M	Headache	Parietal	NA	None	Gross total removal	R+C	Alive (23 mo)
Palled et al.,[23] 2006	13/M	Subcutaneous mass on the scalp, proptosis, neck swelling	Frontal	Nontender, growing for 2 mo, 9 cm	Cervical LNs	Biopsy	C	Alive (NA)
Agrawal et al.,[2] 2007	43/F	Subcutaneous mass on the scalp	Frontal	Firm, nontender, growing for 8 mo, 4 cm	None	Gross total removal	R	NA
Fukushima et al.,[23] 2007	60/F	Subcutaneous mass on the scalp	Parietal	Firm, nonpulsatile, 6.5 cm	None	Removal	R+C	Alive (3 y)
Mohindra et al.,[61] 2007	30/M	Subcutaneous mass on the scalp, headache	Frontal	Growing for 2 mo	NA	Removal	R+C	Alive (6 mo)
Uff and Shieff,[100] 2007	76/F	Subcutaneous mass on the scalp, neurological deficit	Parietal	NA	None	Biopsy	R	Died* (2 wk)
Gaitonde et al.,[24] 2008	70/F	Subcutaneous mass on the scalp	Frontal	Growing for 12 mo, 3.4 cm	None	Gross total removal	R+C	Alive (NA)
Gonzalez-Bonet et al., [28] 2008	84/F	Subcutaneous mass on the scalp, seizure	Frontoparietal	Growing for 0.75 mo, 2.5 cm	None	Gross total removal	Refused	Died (5 mo)
Yoon et al.,[109] 2008	53/M	Neurological deficit	Frontoparietal	NA	Retrobulbar lesion	Removal	R	Alive (3 y)
Renard et al.,[84] 2009	67/F	Subcutaneous mass on the scalp	Frontal	Tender	None	Biopsy	C	NA
da Rocha et al.,[111] 2010	13/M	Subcutaneous mass on the scalp	Parietal	NA	NA	C	NA	
	66/F	Subcutaneous mass on the scalp	Frontoparietal	NA	NA	C	NA	
	72/F	Subcutaneous mass on the scalp	Pariet-occipital, frontal	NA	NA	R+C	NA	

(Contd...)
Table 1: (Continued).

Author year	Age (years)	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Khalid et al.,[44] 2010	19/M	Subcutaneous mass on the scalp	Parietal, occipital	Firm, nontender, growing for 6 mo, 6 cm	None	Biopsy	C	Alive (2 y)
Ochiai et al.,[70] 2010	72/M	Subcutaneous mass on the scalp	Temporoparietal	Firm, nontender, 7 cm	None	Gross total removal	R+C	Alive (1 y)
Castro-Bouzas et al.,[10] 2011	59/F	Subcutaneous mass on the scalp	Occipital	Firm, tender, 3 cm	None	Gross total removal	R+C	Alive (30 mo)
Fadoukhair et al.,[22] 2011	42/F	Subcutaneous mass on the scalp	Parietal	Firm, tender, 8 cm	None	Biopsy	R+C	Alive (9 mo)
Ciarpaglini and Otten,[13] 2012	74/F	Subcutaneous mass on the scalp	Temporoparietal	Firm, tender, growing for 36 mo, 15 cm	None	Gross total removal	R+C	Alive (2 y)
El Asri et al.,[20] 2012	52/M	Subcutaneous mass on the scalp	Frontotemporal	Firm, tender, growing for 7 mo	None	Biopsy	R	Alive (18 mo)
Martin et al.,[58] 2012	50/M	Subcutaneous mass on the scalp	Parieto-occipital	Nontender, growing for 4 mo, 10 cm	None	Partial removal	R+C	NA
Rezaei-Kalantari et al.,[83] 2012	42/M	Subcutaneous mass on the scalp, headache	Frontal, parietal	Soft, nontender, growing for 4 mo, 10 cm	None	Removal	R+C	NA
Ko et al.,[46] 2013	81/F	Subcutaneous mass on the scalp	Frontoparietal	Firm, nontender, 6 cm	None	Removal	C	Alive (9 mo)
Kosugi et al.,[48] 2013	82/F	Subcutaneous mass on the scalp	Parietal	Firm, 3 cm	Ileocecal lesion	Biopsy	R+C	Alive (30 mo)
Mishra et al.,[90] 2013	34/M	Subcutaneous mass on the scalp	Frontal	Nontender, growing for 12 mo, 7 cm	None	Removal	R+C	Alive (6 mo)
Salunke et al.,[86] 2013	30/M	Subcutaneous mass on the scalp, headache	Frontal	Firm, nontender, growing for 3 mo	None	Removal	R+C	Alive (6 mo)
Sanjayan et al.,[84] 2013	29/M	Subcutaneous mass on the scalp, headache, and vomiting	Parieto-occipital	NA	Axillary LNs	Gross total removal	R+C	Alive (7 y)
Rasouli et al.,[83] 2014	48/F	Subcutaneous mass on the scalp	Frontoparietal	Firm, growing for 4 mo, 5.5 cm	None	Removal	R	Alive (NA)
Sugimoto et al.,[95] 2014	39/F	Subcutaneous mass on the scalp	Frontal	NA	Biopsy	C	Alive (2 y)	

(Contd...)
Author year (reference)	Age (years) / sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Tashiro et al.,[96] 2015	63/F	Subcutaneous mass on the scalp	Frontal	Growing for 4 mo	None	Subtotal removal	C	Alive (9 y)
	53/M	Subcutaneous mass on the scalp	Frontal	Growing for 2 mo	Cervical LNs	Subtotal removal	R+C	Alive (2 y)
Wang et al.,[105] 2015	45/M	Subcutaneous mass on the scalp, neurological deficit	Parietal	Growing for 6 mo, 9 cm	None	Gross total removal	R+C	Alive (12 mo)
Akamatsu et al.,[4] 2016	76/F	Subcutaneous mass on the scalp	Frontal	Soft, nontender, growing for 1 mo, 10 cm	Multifocal bone lesions, retroperitoneal lesion	Biopsy	C	Alive (9 mo)
Bhatoe and Ambastha,[8] 2016	14/F	Subcutaneous mass on the scalp	Frontoparietal	Soft, nontender, growing for 6 mo, 5 cm	NA	Gross total removal	NA	NA
Issara et al.,[35] 2016	56/F	Enlarging lacuna image of skull	Multiple	NA	None	Removal	R+C	Alive (4 mo)
Jaiswal et al.,[36] 2016	40/F	Subcutaneous mass on the scalp, headache deficit	Frontoparietal	Firm, tender, growing for 12 mo	None	Gross total removal	NA	NA
Lv et al.,[54] 2016	56/M	Neurological deficit, headache deficit	Parietal	NA	None	Removal	C	Alive (50 mo)
Mascolo et al.,[59] 2016	58/M	Subcutaneous mass on the scalp	Parietal, frontal	Growing for 3 mo, 12 cm	None	Biopsy	C	Alive (6 mo)
Kanaya et al.,[40] 2017	65/M	Subcutaneous mass on the scalp, neurological deficit	Parietal	NA	Multifocal LNs	Removal	C	Alive (18 mo)
Naama et al.,[96] 2017	67/F	Subcutaneous mass on the scalp	Parietal	Nontender, growing for 2 mo, 6 cm	None	Biopsy	R+C	Alive (20 mo)
Chan et al.,[11] 2018	49/F	Subcutaneous mass on the scalp	Frontal	Growing for 12 mo, 11 cm	None	Biopsy	C	Alive (6 mo)
Lee and Yun,[91] 2018	50/M	Subcutaneous mass on the scalp, headache deficit	Frontal	Nontender, 3 cm	None	Gross total removal	C	Alive (6 mo)
Salvo et al.,[87] 2018	74/F	Neurological deficit	Parietotemporal	NA	None	Removal	C	Alive (6 mo)
Huang et al.,[39] 2019	31/M	Subcutaneous mass on the scalp	Parietooccipital	Tender, growing for 2 mo	None	Gross total removal	C	Alive (12 mo)

(Contd...)
Table 1: (Continued).

Author year (reference)	Age (years) /sex	Symptoms at onset	Lesion location	Properties of mass	Other lesions	Surgery	Adjuvant therapies	Outcomes (follow-up)
Umemura et al.,[102] 2019	72/F	Subcutaneous mass on the scalp	Parietal	Nontender, 10 cm	None	Removal	R	NA
	63/M	Subcutaneous mass on the scalp, neurological deficit	Occipital	Nontender, 4 cm	None	Partial removal	C	NA
Xing et al.,[108] 2019	53/M	Subcutaneous mass on the scalp, headache	Parietal	8.2 cm	NA	NA	NA	NA
	28/M	Subcutaneous mass on the scalp	Occipital	5 cm	NA	NA	NA	NA
	68/F	Subcutaneous mass on the scalp	Fronto-temporo-parietal	6.3 cm	NA	NA	NA	NA
	39/M	Subcutaneous mass on the scalp	Frontoparietal	11.2 cm	NA	NA	NA	NA
	45/M	Subcutaneous mass on the scalp, neurological deficit, headache	Parieto-occipital	10.4 cm	NA	NA	NA	NA
Ahmad et al.,[3] 2020	37/M	Subcutaneous mass on the scalp, neurological deficit	Frontoparietal	Growing for 3 mo, 5 cm	NA	Biopsy	R+C	NA
Nasim et al.,[67] 2020	69/M	Neurological deficit	Parietal	NA	None	Gross total removal	None	Alive (1 y)

The size shown in “Properties of mass” is the greatest diameter of the scalp mass. C: Chemotherapy, Dead*: Died of a cause unrelated to the skull lesion, F: Female, LN: Lymph node, M: Male, NA: Not available, R: Radiotherapy, y: Year, mo: Month

both (n = 75). On MRI (n = 57), a dural tail was observed in 42 cases (74%), and invasion of the brain was observed in 15 cases (26%).

Surgery was detailed in 98 cases, of which 45 (46%) involved a biopsy or partial removal and 53 (54%) involved subtotal or gross total removal [Table 1]. Adjuvant therapy was reported for 96 cases. The breakdown was radiotherapy alone for 24 cases (25%), chemotherapy alone for 34 cases (35%), and both for 38 cases (40%).

The type of lymphocyte was described in 80 cases: 75 (94%) were B-cell lymphomas and 5 (6%) were T-cell lymphomas [Table S2]. Diffuse large B-cell lymphoma (DLBCL) was the most common, being reported in 34 cases.

To determine the rates of survival, we excluded cases in which the patients died of a cause unrelated to the skull lesion and included cases with follow-up periods of more than 6 months (n = 74) or 1 year (n = 54). In the included cases, 67 (90.5%) and 45 (83.3%) patients were alive at the follow-up of 6 months and 1 year, respectively [Table 1].

DISCUSSION

We reviewed the demographic, clinical, and imaging characteristics of cranial vault lymphoma to specify the features that might be helpful for differential diagnosis, especially between lymphomas and meningiomas of the cranial vault.
When a tumor with intra- and extracranial extension sandwiching the skull is seen, meningioma with extracranial extension is often first suspected. In many cases, the subcutaneous scalp mass was firm and nontender, which is also similar to meningioma with extracranial extension. However, in our review, the subcutaneous scalp mass grew very rapidly before the patient presented for treatment, for a mean duration of 5.9 months, which is atypical for meningioma, which is generally slow growing.[18,79]

Laboratory data were unremarkable in many cases. Kosugi et al.[48] reported elevated sIL2R, a marker of lymphoproliferative neoplasms,[61] in a patient with cranial vault lymphoma, suggesting that elevated sIL2R associated with a cranial vault tumor might indicate lymphoma rather than meningioma. Another finding that could be used to differentiate the two tumor types is poor or no tumor vascularization on angiograms, which differs from the rich tumor vascularization from the external carotid artery circulation observed in many cases of meningioma.[90] The tumor also showed high uptake on FDG-PET.[4,11,40,86,92,96] Because meningiomas are mostly slow-growing tumors and their glucose metabolism might be only moderately elevated, the high physiological glucose uptake of the normal cerebral cortex leads to a low meningioma-to-background ratio.[26]

Hence, a high tumor-to-background ratio may indicate a lymphoma and contribute to ruling out a meningioma.

The extracranial component tended to be at least as large as the intracranial component in cranial vault lymphoma. Because meningioma usually originates from the meninges, theoretically, it tends to grow intracranially rather than extracranially. Extracranial-dominant extension might, therefore, also contribute to distinguishing cranial vault lymphoma from meningioma.

However, other findings are unlikely to clarify the diagnosis. For example, the tumors tended to be hyper- to isodense on CT, iso- to hypointense on T1WI, and hyper- to isointense on T2WI, which are nonspecific features of skull tumors. Although a dural tail was observed in many cases, as reported by Xing et al.,[108] this finding is also observed in meningiomas.[79]

It has been suggested that lymphoma cells infiltrate the spaces within the diploe and extend along the emissary veins to infiltrate the soft tissues on either side of the bone.[5,20,107,77] Osteolytic changes were most frequently observed on CT and MRI (68 cases) followed by no changes and/or preserved skull contour (11 cases). In the cases with osteolytic skull changes, permeative dissolution with relatively preserved skull contour was observed in 35 cases. Although the destruction of the cranial vault tended to be small, the extracranial and intracranial components of the tumor tended to be large. These data support the characteristic permeating growth pattern of cranial vault lymphoma involving a large soft-tissue component and slight bony destruction, as reported previously.[20,62,90,108]

After histological confirmation of the diagnosis, patients were usually treated with adjuvant chemotherapy, radiotherapy, or both. Although the best treatment for cranial vault lymphoma has not been elucidated because of the paucity of cases and lack of clinical studies, treatments based on those for systemic malignant lymphoma tended to be adopted.

B-cell lymphomas accounted for approximately 94% of the cranial vault lymphomas, whereas T-cell lymphomas roughly accounted for the remaining 6% of cases. Peripheral T-cell lymphomas account for 6–10% of all cases of non-Hodgkin lymphoma[57] and T-cell lymphomas account for 5–6% of cases of primary lymphoma of bone.[11,82] However, T-cell lymphomas account for only 2% of all primary lymphomas in the central nervous system (CNS),[27] suggesting that cranial vault lymphomas are more similar to extracranial lymphomas than they are to CNS lymphomas. We could not determine the subtypes of lymphoma of all cases using the present classification because our study included some very old reports from before the discovery of lymphocyte markers. Nonetheless, DLBCL accounted for the majority of cases of cranial vault lymphoma in the available data, which is also true for cases of bone lymphoma.[82]

In analyzable follow-up data, 67 and 45 patients were alive after 6 months (\(n = 74\)) and 1 year (\(n = 54\)), respectively [Table 1]. Although our review does not allow for predicting prognosis due to the limited numbers and the limited duration of follow-up data, the 6-month survival rate and 1-year survival rate are not <60.4% and 40.5%, respectively.

In the present review, we have provided objective data from patients reported in published studies. The difficulty in systematically reviewing the data reported in the literature is the heterogeneity of the data. In particular, almost all reports reviewed for this study were case reports. Because of the limited number and the heterogeneity of described data of preoperative findings and treatments, we could perform only descriptive analyses. Another weakness of the present review resulted from biased reporting in the published studies, with likely underreporting of recent cases in the United States and European countries because of decreased novelty in inverse proportion to the accumulation of reported cases. The data that were more likely to be reported, if present, included findings on MRI and CT. Findings of plain skull X-ray and angiography and long-term follow-up data were less likely to be reported.

The strength of the present review is the comprehensive nature of the literature search. We analyzed cases from all over the world, reported not only in English but also in four non-English languages.
CONCLUSION

Cranial vault lymphoma is a rare entity among skull tumors. To the best of our knowledge, this is the largest reported pooled database describing cranial vault lymphoma patients. The most common symptom was a rapidly growing subcutaneous scalp mass. The tumor was poorly vascularized on angiography. Skull destruction on images was mild and disproportionately small despite the large size of the extracranial and/or intracranial component in two-thirds of the cases. These features should help to distinguish lymphoma from meningioma.

Acknowledgments

The authors thank ELSS, Inc. (https://www.elss.co.jp/) for English-language editing of this manuscript.

Declaration of patient consent

Patient’s consent not required as patient’s identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Agbi CB, Bannister CM, Turnbull IW. Primary cranial vault lymphoma mimicking a meningioma. Neurochirurgia (Stuttg) 1983;26:130-2.
2. Agrawal A, Makannavar JH, Shetty JP, Shetty RK, Shetty L. Frontal convexity primary lymphoma masquerading meningioma: A case report and review of literature. Indian J Cancer 2007;44:36-7.
3. Ahmad W, Hassan A, Niazi IK. Cranial vault lymphoma—an unusual presentation of primary disease. J Pak Med Assoc 2020;70:767-8.
4. Akamatsu Y, Kanamori M, Uenohara H, Tominaga T. Bone regeneration after chemotherapy for vault lymphoma. BMJ Case Rep 2016;2016:bcr2015213524.
5. Aquilina K, O’Brien DE, Phillips JP. Diffuse primary non-Hodgkin’s lymphoma of the cranial vault. Br J Neurosurg 2004;18:518-23.
6. Aslan Y, Okten A, Demirci A. Primary Burkitt’s lymphoma of the cranial vault in a child. Pediatr Radiol 1995;25 Suppl 1:S232-3.
7. Bhatia S, Smally AJ, Dekker P. Primary non-Hodgkin’s lymphoma of the cranial vault. Clin Oncol (R Coll Radiol) 1997;9:195-6.
8. Bhatoe HS, Ambastha R. Primary non Hodgkin’s lymphoma of the cranial vault in a child. J Neurooncol 2016;126:209-11.
9. Block A, Peck HM. Radiological notes: Lymphosarcoma of the scalp with bony invasion. J Mt Sinai Hosp N Y 1964;31:241-4.
10. Castro-Bouzas D, Prieto-González A, Serramito-García R, Santín-Amo JM, Reyes-Santías RM, Allat AG, et al. Primary cranial vault lymphoma. Rev Neurol 2011;53:735-8.
11. Chan DY, Chan DT, Poon WS, Wong GK. Primary cranial vault lymphoma. Br J Neurosurg 2018;32:214-5.
12. Chisholm KM, Oghami RS, Tan B, Hasserjian RP, Weinberg OK. Primary lymphoma of bone in the pediatric and young adult population. Hum Pathol 2017;60:1-10.
13. Ciarpaglini R, Otten P. Primary cranial vault lymphoma with brain infiltration: Case report and review of the literature. Br J Neurosurg 2012;26:756-8.
14. Curtu B, Kernan J, Favre J. Malignant non-Hodgkin’s lymphoma of the cranial vault: A case report. Br J Neurosurg 1997;11:433-6.
15. da Rocha AJ, da Rocha TM, da Silva CJ, Paes RP, Bruniera P, Chiattone CS. Cranial vault lymphoma: A systematic review of five patients. J Neurooncol 2010;100:9-15.
16. Dai MS, Ho CL, Chen CY, Chen TM, Yu CP, Chao TY. Lymphoma of bone with initial presentation as a calvarial mass. Ann Hematol 2000;79:700-2.
17. Deckert MP, Kluin PM, Ferry JA. Lymphomas. In: Louis DN, Wiestler OD, Cavenee WK, editors. WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon: International Agency for Research on Cancer; 2016.
18. Djindjian M, Rauly A, Gaston A, Decq P, Gabriel-Cordonnier E, Poirier J, et al. Intra-extracranial meningioma in two-thirds of the cases. These features should help to distinguish lymphoma from meningioma.
19. Duyndam DA, Biesma DH, van Heesewijk JP. Primary non-Hodgkin’s lymphoma of the cranial vault: A case report. Br J Neurosurg 2012;154:257-65.
20. El Asri AC, Akhaddar A, Baallal H, Boulahroud O, Mandour C, Weinberg OK. Primary lymphoma of the cranial vault: Case report and a systematic review of the literature. Acta Neurochir (Wien) 2012;154:257-65.
21. Evliyaoğlu C, Ilbay K, Ercin C, Ceylan S. Primary cranial vault lymphoma mimicking a meningioma-report of the RANO/PET Group. Neuro Oncol 2017;19:1576-87.
22. Fadoukhair Z, Lalya I, Amzerin M, Elkhanoussi B, Sbitti Y, Boutayeb S, Alibay K, Ercin C, Ceylan S. Primary cranial vault lymphoma: A case report and review of literature. Neurosurg Focus 2016;19:1576-87.
23. Fukushima Y, Oka H, Utsuki S, Nakahara K, Fujii K. Primary malignant lymphoma of the cranial vault. Neurochirurgie 1995;41:329-36.
24. Gaitonde S, Patel R, Alagiozian-Angelova V, Kadkol S, Peace D, Weinberg OK. Primary lymphoma of bone with initial presentation as a calvarial mass. Ann Hematol 2000;79:700-2.
25. Galarza M, Gazzeri R, Elfeky HA, Johnson RR. Primary lymphoma of bone with initial presentation as a calvarial mass. Ann Hematol 2000;79:700-2.
26. Galldiks N, Albert NL, Sommerauer M, Grosu AL, Weinberg OK. Primary lymphoma of bone with initial presentation as a calvarial mass. Ann Hematol 2000;79:700-2.
27. Gawish HH. Primary Burkitt’s lymphoma of the frontal bone.
Diffuse large B-cell lymphoma with a bulky headache as the initial symptom. Neurosurgery 1991;29:898-901.

30. Holtás S, Monajati A, Utz R. Computed tomography of malignant lymphoma involving the skull. J Comput Assist Tomogr 1985;9:725-7.

31. Horstman AL, Go RS, Bottner WA. Cranial vault lymphoma. Haematologica 2004;89:E1M06.

32. Howat AJ, Thomas H, Waters KD, Campbell PE. Malignant lymphoma of the skull in children. Cancer 1987;59:335-9.

33. Huang J, Tang D, Xu Y, Wang X, Yu C, Dong Y. Head trauma complicated with primary cranial vault lymphoma: A case report. Medicine (Baltimore) 2019;98:e14465.

34. Isla A, Alvarez F, Gutiérrez M, Gamallo C, García-Blázquez M, Vega A. Primary cranial vault lymphoma mimicking meningioma. Neuroradiology 1996;38:211-3.

35. Issara K, Yossi S, Caravani I. Primary lymphoma of the skull: Case report and literature review. Cancer Radiother 2016;20:811-4.

36. Jaiswal M, Gandhi A, Purohit D, Singhvi S, Mittal RS. Primary non-Hodgkin's lymphoma of the skull with extra and intracranial extension presenting with bulky scalp mass lesion. Asian J Neurosurg 2016;11:444.

37. Jamjoom AB, Jamjoom ZA, Naim-Ur-Rahman, Cheema MA. Primary midline cranial vault lymphoma simulating a paraganglial meningioma: The role of angiography in preoperative diagnosis. Neurosurg Rev 1998;21:202-5.

38. Jiménez Moragas JM, Sánchez Rodríguez A, Sierra Camerino R, Palomo González MJ, Non-Hodgkin's disease of the skull in a patient with AIDS. An Med Interna 1999;16:186-8.

39. Kanai M, Kawano K, Murakami T, Saitou M, Kikumoto N. A case of malignant lymphoma of the cranial vault. No Shinkei Geka 2003;31:419-24.

40. Kanaya M, Endo T, Hashimoto D, Endo S, Takemura R, Okada K, et al. Diffuse large B-cell lymphoma with a bulky mass in the cranial vault. Int J Hematol 2017;106:147-8.

41. Kantarci M, Erdem T, Afler F, Gundogdu C, Okur A, Aktaş A. Imaging characteristics of diffuse primary cutaneous B-cell lymphoma of the cranial vault with orbital and brain invasion. AJNR Am J Neuroradiol 2003;24:1324-6.

42. Kawakami KK, Inagaki T, Numa Y, Kawamura Y, Matsumura H. Two cases of malignant lymphoma in the skull. Prog CT 1988;10:217-21.

43. Kelleher AD, Brew BJ, Milliken ST. Intractable headache as the presenting complaint of AIDS-related lymphoma confined to bone. J Acquir Immune Defic Syndr (1988) 1994;7:629-30.

44. Khalid M, Siddiqui MA, Qaseem SM, Ahmad M, Khalid S. Multifocal primary lymphoma of the cranial vault in a non-immunocompromised adolescent. JBR-BTR 2010;93:296-8.

45. Kinjo T, Satoh T. A case of malignant lymphoma in the skull after head injury associated with multiple bone tumors. No Shinkei Geka 1985;13:1191-6.

46. Ko MJ, Hwang SN, Park YS, Nam TK. Primary malignant lymphoma of the cranial vault with extra-and intracranial extension. Brain Tumor Res Treat 2013;1:32-5.

47. Koral K, Curran JG, Thompson A. Primary non-Hodgkin's lymphoma of the temporal bone. CT findings. Clin Imaging 2003;27:386-8.

48. Kosugi S, Kume M, Sato J, Sakuma I, Moroi J, Izumi K, et al. Diffuse large B-cell lymphoma with mass lesions of skull vault and illocecum. J Clin Exp Hematop 2013;53:219-9.

49. Kumon Y, Sakaki S, Nakano K, Fukui K, Kohno H, Kurihara K. Primary malignant lymphoma of the skull presenting as a growing mass in the forehead; a case report. No Shinkei Geka 1991;19:279-83.

50. Landys KE, Berg GE, Torgerson JS, Klingensiefer HA, Ridell BS, Johansson BR. Bulky centroblastic non-Hodgkin's lymphoma of the cranium vault mimicking brain involvement managed with chemotherapy: A case report. Cancer 1995;76:1261-7.

51. Lee SH, Yun SJ. Early stage primary cranial vault lymphoma in a 50-year-old man: Presenting as only sclerosis and mimicking osteoma. Ann Hematol 2018;97:183-4.

52. Loembe PM, Minko-Mi-Etoua D, Mekemeza-M’Obiang L, Assengone-Zeh Y, Mwanombet-Ompounaga L. Primary lymphoma of frontoparietal localization in the cranial vault. Report of a case. Neurochirurgie 1994;40:369-71.

53. Lonjon M, Hofman P, Thyss A, Paquis P, Roche JL. Primary lymphoma of the cranial vault. Apropos of a case. Neurochirurgie 1993;39:50-3.

54. Lv ZW, Cheng KL, Tian HJ, Han XM. Primary diffuse large B-cell lymphoma of the dura with skull and scalp involvement: A case report and brief review of the literature. Oncol Lett 2016;11:3583-8.

55. Madan RN, Narula MK, Anand R, Gurttoo A. Primary cutaneous non-Hodgkin's lymphoma of the scalp: A case report. Indian J Radiol Imaging 2004;14:385-387.

56. Maiuri F, Corriero G, Giamundo A. Primary lymphoma of the cranial vault. J Neurosurg Sci 1987;31:183-6.

57. Marchi E, O’Connor OA. The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J Clin 2020;70:47-70.

58. Martin J, Ramesh A, Kamaludeen M, Udhayas, Ganesh K, Martin JJ. Primary non-Hodgkin's lymphoma of the scalp and cranial vault. Case Rep Neurol Med 2012;2012:616813.

59. Mascaro M, Piccolo V, Iannuzzo G, De Lorenzo P, De Rosa G, Staibano S. Primary cutaneous diffuse large B-cell lymphoma with cranial vault and dura mater involvement. J Eur Acad Dermatol Venereol 2016;30:186-7.

60. Mishra SS, Senapati SB, Dhir MK, Das S, Burma S. A case of primary skull lymphoma: Review of literature. Neurol India 2013;61:334-6.

61. Mohindra S, Gupta R, Sharma T, Das A, Radotra BD. Calvarial lymphoma. Br J Neurosurg 2007;21:629-30.

62. Mongia S, Shukla D, Devi BI, Reddy TV. Primary cranial vault non-Hodgkin's lymphoma. Neurol India 2003;51:293-4.

63. Morgello S, Maiese K, Petit C. T-cell lymphoma in the HIV: Clinical and pathologic features. Neurology 1989;39:1190-6.

64. Moriooka T, Anagawa T, Nishio S, Nishie E, Fukui M, Okamura T. Malignant lymphoma of the scalp at the site of a previous blunt trauma: Report of two cases. Surg Neurol 1994;42:117-20.

65. Muin IA, Saffari HM, Hasimah YN. Primary non-Hodgkin's lymphoma of the cranial vault with orbital and brain invasion.
lymphoma of the cranial vault mimicking a meningioma: A case report. Med J Malaysia 1997;52:86-8.

66. Naama O, Gazzaz M, Boucetta M, Elmoustarchid B. Primary non-Hodgkin lymphoma of the cranial vault. Rev Neurol (Paris) 2017;173:668-70.

67. Nasim MM, Chalif DJ, Demopoulos AM, Brody J, Lee-Huang R, Spitzer SG, et al. Primary low-grade B-cell lymphoma of skull with translocation between immunoglobulin and interferon regulatory factor 4 genes. Int J Surg Pathol 2020;28:330-5.

68. Natsuda H, Muraki Y, Kobayashi T, Kozima H, Shibuya A, Nagasawa T, et al. Adult T cell lymphoma/leukemia with alopecia, huge tumors of scalp and wide destruction of cerebral bone. Rinsho Ketsueki 1991;32:537-41.

69. Nishimoto T, Yuki K, Sasaki T, Imada Y, Murakami T, Kodama Y. A case of subcutaneous malignant lymphoma with Dura mater invasion. No Shinkei Geka 2003;31:43-7.

70. Ochiai H, Kawano H, Miyaoaka R, Kawano N, Shimao Y, Kawasaki K. Primary diffuse large B-cell lymphomas of the temporoparietal Dura mater and scalp without intervening skull bone invasion. Neurol Med Chir (Tokyo) 2010;50:595-8.

71. Ostrowski ML, Unni KK, Banks PM, Shives TC, Evans RG, O'Connell MJ, et al. Malignant lymphoma of bone. Cancer 1986;58:2646-55.

72. Paige ML, Bernstein JR. Transcalvarial primary lymphoma of bone. A report of two cases. Neuroradiology 1995;37:456-8.

73. Palled S, Bedre G, Mukcaden MA, Ramadwar M, Bhagwat R, Banavali S, et al. Primary Burkitt’s lymphoma of frontal bone: A rare presentation. J Clin Oncol 2006;24:4521-2.

74. Pardhanani G, Ashkan K, Mendoza N. Primary non-Hodgkin’s lymphoma of the cranial vault presenting with unilateral proptosis. Acta Neurochir (Wien) 2000;142:597-8.

75. Parekh HC, Sharma RR, Keogh AJ, Prabhu SS. Primary malignant non-Hodgkin’s lymphoma of cranial vault: A case report. Surg Neurol 1993;39:286-9.

76. Parker JR, Lopez-Terrada D, Gresik MV, Vogel H, Baumgartner JE, Finegold MJ. Neutrophil-rich anaplastic malignant non-Hodgkin’s lymphoma of cranial vault: A case report. J Reconstr Microsurg 2001;17:55-60.

77. Parkinson J, Kennedy BJ. Primary Hodgkin’s disease of the skull. Response to irradiation. Cancer 1969;24:569-73.

78. Piendak JS, Alder JW Jr. Primary reticulum cell sarcoma of the skull with metastasis: Report of a case. Del Med J 1959;31:306-9.

79. Pui CH, Ip SH, Kung P, Dodge RK, Berard CW, Crist WM, et al. High serum interleukin-2 receptor levels are related to advanced disease and a poor outcome in childhood non-Hodgkin’s lymphoma. Blood 1987;70:624-8.

80. Ramadan KM, Shenkier T, Sehn LH, Gascoyne RD, Connors JM. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: A population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol 2007;18:129-35.

81. Rasouli J, Patel SA, Skovrlj B, Gologorsky Y, Mascielli J, Petersen B, et al. Primary extranodal marginal zone lymphoma involving the skull. J Clin Neurosci 2014;21:351-3.

82. Renard D, Campello C, Beraru O, Bouillot P, Labague P. Teaching neuroimages: Primary diffuse large B-cell lymphoma of the cranial vault. Neurology 2009;73:e84-5.

83. Rezaei-Kalantari K, Samimi K, Jafari M, Karimi MA, Ansari K, Davoodi M, et al. Primary diffuse large B-cell lymphoma of the cranial vault. Iran J Radiol 2012;9:88-92.

84. Salunke P, Garg R, Bal A, Kedia S, Bindal S. Primary malignant non-Hodgkin’s lymphoma of the skull vault in an immunocompetent patient. Neurol India 2013;61:201-4.

85. Salvo V, Brogna B, Sampirisi L, Casinelli A, Emanuela R. Diffuse-primary-B-cell lymphoma of the cranial vault presenting as stroke. Radial Clin Path Rep 2018;13:658-62.

86. Sanjayan R, Prabakaran P, Surendran A, Narayanan G. Non-Hodgkin lymphoma of the cranial vault. Am J Med 2012;126:e7-8.

87. Sato M, Saito T, Yamaguchi K. Primary malignant lymphoma of the skull presenting a huge mass lesion: Case report. No Shinkei Geka 1993;21:1061-4.

88. St. Clair EG, McCutcheon IE. Skull tumors. In: Youmans Neurological Surgery. 6th ed. Philadelphia, PA: Saunders; 2011.

89. Strange VM, De Lorimier AA. Rectal tumor sarcoma in the skull; report of three cases. Am J Roentgenol Radium Ther Nucl Med 1954;71:40-50.

90. Sugimoto KJ, Shimada A, Ichikawa K, Wakabayashi M, Sekiguchi Y, Izumi H, et al. Primary platelet-derived growth factor-producing, spindle-shaped diffuse large B-cell lymphoma of the skull: A case report and literature review. Int J Clin Exp Pathol 2014;7:4381-90.

91. Tagawa M, Momita S, Irie J. Primary B cell lymphoma of the skull following head trauma; a case report. Rinsho Ketsueki 1987;28:589-93.

92. Tanimura A, Adachi Y, Tanda M, Yuasa H, Ishii Y, Katou Y. Primary peripheral B cell lymphoma, Burkitt-like, of the cranial vault. Acta Haematol 2005;113:258-61.

93. Thompson CV, Kennedy BJ. Primary Hodgkin’s disease of the skull following a 3-year history of pseudotumor cerebri. Cancer 1986;58:318-20.

94. Tashiro R, Kanamori M, Suzuki H, Utsunomiya A, Meguro K, Tanimura A, Adachi Y, Tanda M, Yuasa H, Ishii Y, Katou Y. Primary malignant non-Hodgkin’s lymphoma of the cranial vault mimicking a meningioma: Report of a case. Del Med J 1997;52:86-8.

95. Tatematsu K, Kanai T, Sato M, Saito T, Yamaguchi K. Primary malignant lymphoma of the skull: A case report. Med J Malaysia 1997;52:86-8.

96. Tatematsu K, Kanai T, Sato M, Saito T, Yamaguchi K. Primary malignant lymphoma of the skull mimicking a meningioma: A case report. Med J Malaysia 1997;52:86-8.

97. Tomas CV, Kennedy BJ. Primary Hodgkin’s disease of the skull following a 3-year history of pseudotumor cerebri. Cancer 1986;58:318-20.

98. Thurner MM, Rieger A, Kleibl-Popov C, Schindler E. Malignant lymphoma of the cranial vault in an HIV-positive patient: Imaging findings. Eur Radiol 2001;11:1506-9.

99. Topolnicki W, White RJ. Primary reticulum cell sarcoma of the skull. Response to irradiation. Cancer 1969;24:569-73.

100. Ueff CE, Sheiff CL. Neurological picture. Massive transcalvarial lymphoma. J Neurol Neurosurg Psychiatry 2007;78:769.

101. Ueff CE, Sheiff CL. Neurological picture. Massive transcalvarial lymphoma. J Neurol Neurosurg Psychiatry 2007;78:769.

102. Umemura T, Nakano Y, Soejima Y, Saito T, Kitagawa T, Petersen B, et al. Primary extranodal marginal zone lymphoma involving the skull. J Clin Neurosci 2014;21:351-3.
Miyaoaka R, et al. Characteristics of bone destruction in cranial vault lymphoma compared with other skull tumors. J UOEH 2019;41:335-42.

103. Vigushin DM, Hawkins PN, Hsuan JJ, Totty NF, Pepys MB. AL kappa amyloid in a solitary extradural lymphoma. J Neurol Neurosurg Psychiatry 1994;57:751-4.

104. Wainwright RW. Primary reticulum cell sarcoma of the skull. Med J Aust 1973;1:499-500.

105. Wang L, Ouayang T, Zhang N, Song Z, Gao J, Li X, et al. Primary diffuse large B-cell dural lymphoma with bone and subcutaneous tissue involvement mimicking meningioma. J Craniofac Surg 2015;26:e492-4.

106. Wichtl O. Reticulum cell sarcoma of the skull roof healed by X-rays. Wien Med Wochenschr 1949;99:12.

107. Wittram C, Nixon TE, Mackenzie JM. Non-Hodgkin’s lymphoma of the skull vault. Eur J Radiol 1994;19:7-9.

108. Xing Z, Huang H, Xiao Z, Yang X, Lin Y, Cao D. CT, conventional, and functional MRI features of skull lymphoma: A series of eight cases in a single institution. Skeletal Radiol 2019;48:897-905.

109. Yoon SH, Paek SH, Park SH, Kim DG, Jung HW. Non-Hodgkin lymphoma of the cranial vault with retrobulbar metastasis mimicking a subacute subdural hematoma: Case report. J Neurosurg 2008;108:1018-20.

How to cite this article: Nitta N, Moritani S, Fukami T, Nozaki K. Characteristics of cranial vault lymphoma from a systematic review of the literature. Surg Neurol Int 2022;13:231.

Table S1: Laboratory data and features on images of patients with cranial vault lymphoma.

Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional	
Wichtl, [106] 1949	N/A	Destruction of bones	NA	NA	NA	NA	NA	NA	NA	
Strange and De Lorimier, [91] 1954	Unremarkable	Dissolution of the tables, periosteal reaction	NA	NA	NA	NA	NA	NA	NA	
Ullrich and Bucy, [101] 1958	Unremarkable	Dissolution and erosion of the tables, periosteal reaction	NA	NA	NA	NA	NA	NA	NA	
Piendak and Alder, [90] 1959	Unremarkable	Patchy decalcification, progressive bone destruction	NA	NA	NA	NA	NA	NA	NA	
Block and Peck, [91] 1964	Mild increase in WBCs	N/A	Periosteal reaction, the diploic space, and inner table were normal	NA	NA	NA	NA	NA	NA	NA
Topolnicki and White, [89] 1969	N/A	Destruction of the outer table	NA	NA	NA	NA	NA	NA	NA	
Wainwright, [104] 1973	Unremarkable	Marked erosion	NA	NA	NA	NA	NA	NA	NA	
Gawish, [27] 1976	Lymphocytosis, eosinophilia	Rarefaction of the bone with erosion	Mass effect with no blood circulation to the tumor	NA	NA	NA	NA	NA	NA	
Agbi et al., [1] 1983	Unremarkable	An area of hyperostosis	Mass effect with no pathological circulation	Hyper	Well, homogeneous	NA	NA	NA	NA	
Holtås et al., [30] 1985	N/A	NA	NA	NA	NA	NA	NA	NA	NA	
Kinjo and Satoh, [45] 1985	Unremarkable	Dehydration, hypercalcemia	Multiple punched out lesions	NA	NA	NA	NA	NA	NA	
Thomas and Kennedy, [97] 1986	N/A	A large lytic lesion	NA	Hypo	Well, diffuse	NA	NA	NA	NA	

(Contd...)
Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional
Howat et al. [32] 1987	N/A	NA		NA	Hyper	NA	NA	NA	NA
Maiuri et al. [56] 1987	Unremarkable	Osteolytic area with irregular margins	Mass effect with no pathological vascularization	Hyper, slight, diffuse	NA	NA	NA	NA	Uptake of Ga-67
Tagawa et al. [94] 1987	Increase in LDH	NA	Mass effect with no pathological vascularization	Hyper, slight, diffuse	NA	NA	NA	NA	Uptake of Ga-67
Kawakami et al. [42] 1988	Unremarkable	Sharp bone defect	An avascular mass	NA	NA	NA	NA	NA	Uptake of Ga-67
Morgello et al. [63] 1989	N/A	NA	NA	NA	NA	NA	NA	NA	Uptake of Ga-67
Herkes et al. [29] 1991	Unremarkable	A permeative lytic lesion	NA	NA	NA	NA	NA	NA	Marked
Kuno et al. [48] 1991	Hyperglycemia, increase in Cre and urea	Unremarkable	No abnormalities	NA	NA	NA	NA	NA	
Natsuda et al. [48] 1991	HTLV-1 positive	N/A	Multiple lytic lesions with sharp margin, no sclerosis Osteolysis	Vascularization from ophthalmic artery branches	Iso, slight, diffuse	Iso, Iso	NA	Marked	
Lonjon et al. [53] 1993	N/A	NA	NA	NA	NA	NA	NA	NA	Uptake of Ga-67
Parekh et al. [79] 1993	Unremarkable	Hyperostosis	NA	Hyper	Well, diffuse	NA	NA	NA	Uptake on bone scintigraphy
Sato et al. [90] 1993	Unremarkable	An osteolytic lesion with an irregular margin	NA	Iso to hyper	Well, diffuse	Hypo	Hyper	Marked	
Kelleher et al. [103] 1994	HIV positive	NA	Uptake of 123I-SAP						
Loembe et al. [52] 1994	Anemia, accelerated ESR	Osteolysis with intratumoral calcifications	Vascularization from the meningeal and scalp vessels	NA	NA	NA	NA	NA	
Morioka et al. [84] 1994	N/A	NA	NA	NA	NA	NA	NA	NA	NA
Vigushin et al. [100] 1994	Monoclonal κ chains in urine	N/A	NA	NA	NA	Hypo	NA	NA	Uptake of 123I-SAP
Wittram et al. [107] 1994	N/A	NA	NA	Hyper	Well, diffuse	Hypo	NA	NA	

(Contd...)
Table S1: (Continued).

Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional
Aslan *et al.*,[6] 1995	Unremarkable	An osteolytic soft tissue mass	NA	NA	Hypo	Hyper	Marked	NA	
Landys *et al.*,[50] 1995	N/A	Destruction of bones	NA	Hyper	Well, diffuse	NA	NA	NA	
Paige and Bernstein,[23] 1995	N/A	NA	Vascularization from ICA and ECA circulation	NA	Well, diffuse	Iso to hypo	Iso to hypo	Marked	NA
N/A	NA	Poor vascularization from ICA and ECA circulation	NA	NA	Marked	NA			
Isla *et al.*,[34] 1996	Unremarkable	NA	NA	Well, diffuse	NA	NA	NA		
Bhatia *et al.*,[7] 1997	HIV positive	Ill-defined serpentine bone resorption	NA	NA	NA	Enhanced	Uptake of 99Tc		
Curty *et al.*, [14] 1997	N/A (HIV negative)	NA	Hyper	Well, diffuse	NA	NA	NA		
Muin *et al.*, [65] 1997	N/A	NA	Well, diffuse	NA	NA	NA			
Jamjoom *et al.*, [37] 1998	N/A (HIV negative)	NA	Slight peripheral vascularization from ECA circulation.	NA	Well, diffuse	NA	NA	NA	
Jiménez Moragas *et al.*, [38] 1999	HIV positive, decreased PLTs,	NA							
Dai *et al.*, [16] 2000	Increase in LDH	NA							
Pardhanani *et al.*, [74] 2000	N/A	NA							
Parker *et al.*, [76] 2001	Unremarkable	An osteolytic lesion	NA	Hyper	Well, diffuse (intracranial), peripheral (extracranial)	NA	NA	NA	
Thurnher *et al.*, [19] 2001	HIV positive	NA							
Duyndam *et al.*, [19] 2002	Unremarkable	No abnormalities	NA	NA	Hypo	Iso	Heterogeneous	NA	
Pernot *et al.*, [78] 2002	N/A	NA							

(Contd...)
Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional
Kanai et al. [39] 2003	Increase in LDH and ALP	NA	NA	Hyper	Well, diffuse	Hypo	Hyper	Enhanced	Uptake on bone and Ga scintigraphy
Kantarci et al. [41] 2003	Increase in LDH	NA	NA	NA	NA	Iso	Iso	Marked	NA
Koral et al. [47] 2003	N/A	No bony erosion	NA						
Nishimoto et al. [62] 2003	Unremarkable	NA	NA	Hypo	Well, diffuse	Hypo	Hypo	Homogeneous	NA
Aquilina et al. [5] 2004	N/A (HIV negative)	NA	NA	NA	Well, diffuse	NA	NA	NA	NA
Horstman et al. [55] 2004	N/A	NA	NA	Well, diffuse	NA	NA	NA	NA	NA
Madan et al. [69] 2004	N/A	NA	Hyper	NA	NA	NA	NA	NA	NA
Szucs-Farkas et al. [73] 2005	HIV positive	NA	Hyper	Well, diffuse	NA	NA	NA	NA	NA
Tanimura et al. [88] 2005	Anemia, increase in LDH and ferritin	Ill-defined serpentine bone resorption	NA	Iso	NA	Iso to hyp	Iso to hypo	Homogeneous	NA
Evliyaoglu et al. [21] 2006	N/A	No abnormalities	NA	Hyper	Slight, diffuse	NA	NA	NA	NA
Galarza et al. [23] 2006	N/A	NA	NA	Hyper	Well, diffuse	Hypo	Hyper	Enhanced	NA
Palled et al. [73] 2006	N/A	NA	NA	Well, diffuse	NA	NA	Enhanced	NA	NA
Agrawal et al. [73] 2007	Accelerated ESR	NA	NA	Well, diffuse	NA	NA	NA	NA	NA
Fukushima et al. [73] 2007	Unremarkable	An osteolytic lesion	NA	NA	Slight, diffuse	Hypo	Hyper	Homogeneous	Uptake on bone scintigraphy
Mohindra et al. [88] 2007	N/A	NA	NA	Well, diffuse	NA	NA	Marked	NA	NA
Uff and Shieff [90] 2007	N/A (HIV negative)	NA	NA	Well, diffuse	NA	Hyper	Enhanced	NA	NA
Gaitonde et al. [93] 2008	N/A	NA							
Gonzalez-Bonet et al. [100] 2008	Hypogammaglobulinemia	NA	NA	NA	NA	NA	Marked	NA	NA

(Contd...)
Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional	
Yoon et al. [10] 2008	Unremarkable	NA	NA	Hyper	NA	Hypo	Hyper	NA	NA	
Renard et al. [8, 9] 2009	N/A	NA	NA	Hyper	Well, diffuse	Iso	Iso	Marked, heterogeneous	Enhanced	NA
da Rocha et al. [15] 2010	N/A	NA	NA	NA	NA	Hypo	Hyper	NA	NA	
Khalid et al. [44] 2010	Unremarkable	NA	NA	Hyper	Well, diffuse	Iso to hypo	Iso to hypo	Marked, homogeneous	NA	
Ochiai et al. [70] 2010	N/A	No destruction or periosteal reaction	NA	NA	NA	Hypo	Hyper	Homogeneous	NA	
Castro-Bouzas et al. [10] 2011	N/A	NA								
Fadoukhair et al. [22] 2011	N/A	Unremarkable	NA	NA	NA	Hypo	Hyper	Homogeneous	NA	
Ciarpaglini and Otten. [13] 2012	Unremarkable	NA	NA	Hyper	Slight, diffuse	Iso	Iso	Marked	Uptake of 99 Tc MDP	NA
El Asri et al. [20] 2012	Unremarkable	NA	NA	Hyper	Slight, diffuse	Iso	Iso	Marked	Uptake of 99 Tc MDP	NA
Martin et al. [58] 2012	HBV positive	NA								
Rezaei-Kalantari et al. [85] 2012	Unremarkable	Neither obvious bone erosion nor sclerosis	NA	Hyper	NA	Iso	Iso	Marked, homogeneous	NA	
Ko et al. [60] 2012	Unremarkable	An irregular inner cortical bone margin	Vascularization from ECA circulation.	Iso	Well, diffuse	Iso to hypo	Iso to hypo	Enhanced	A choline peak on MRS	NA
Kosugi, et al. 2013	HCV positive, increase in sIL2R	NA	NA	NA	Iso to hypo	Iso to hypo	NA	Uptake on bone scintigraphy	NA	
Mishra et al. [86] 2013	N/A	Moth-eaten lytic lesion	NA	NA	NA	Iso to hypo	Iso to hypo	NA	NA	
Salunke et al. [87] 2013	Unremarkable	NA	NA	Hypo	Hyper	Enhanced	Uptake on PET-CT	NA	NA	
Sanjayan et al. [88] 2013	N/A	NA								
Rasouli et al. [83] 2014	N/A	NA								

(Contd...)
Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional
Sugimoto et al.,[92] 2014	Anemia	Osteolytic bone destruction	NA	NA	NA	NA	NA	NA	Uptake on bone scintigraphy and FDG-PET
Tashiro et al.,[96] 2015	N/A (HIV negative)	NA	NA	NA	NA	Hypo	Hyper	Homogeneous	
Wang et al.,[106] 2015	N/A (HIV negative)	NA	NA	NA	Hyper	NA	Hypo	Hyper	Homogeneous
Akamatsu et al.,[4] 2016	N/A	NA	Uptake on FDG-PET						
Bhatoe and Ambastha,[8] 2016	Unremarkable	Erosion of the calvarium	NA	NA	NA	NA	NA	NA	Enhanced
Issara et al.,[93] 2016	N/A	NA	Slight, heterogeneous						
Jaiswal et al.,[94] 2016	Unremarkable	NA	NA	Well, diffuse	NA	NA	Hypo	Hyper	Uptake on FDG-PET
Lv et al.,[34] 2016	Unremarkable	NA	Hyper	NA	Hypo	NA	Iso	Marked	
Mascolo et al.,[59] 2016	Unremarkable	NA	NA	NA	NA	NA	NA	Heterogeneous	
Kanaya et al.,[40] 2017	N/A	NA	Uptake on FDG-PET						
Naama et al.,[46] 2017	Unremarkable	NA	NA	Hyper	Well, diffuse	Hypo	Hyper	Heterogeneous	
Chan et al.,[11] 2018	Increase in LDH	NA	NA	NA	NA	Hyper	NA	Uptake on FDG-PET	
Lee and Yun,[31] 2018	Unremarkable	NA	NA	NA	Hyper	NA	Iso	Hyper	Homogeneous
Salvo et al.,[87] 2018	Unremarkable	NA	NA	Hyper	NA	Iso to iso	Hypo	Iso to hypo	Homogeneous
Huang et al.,[30] 2019	Increase in WBCs	NA	NA	No vascular malformations	NA	NA	Iso	Iso	Hypointense on ADC map
Umemura et al.,[102] 2019	Chronic renal failure	NA	Hyper	NA	Iso	Iso	NA	NA	Hyperintense on DWI
Xing et al.,[108] 2019	Unremarkable	NA	NA	NA	Hypo	Hyper	Iso	Hyper	Homogeneous
N/A	NA	Hyper	NA	Iso	Hyper	Homogeneous			

(Contd..)
Author year (reference)	Labo data	Plain skull X-ray	Angiogram	Density on CT	Enhancement on CECT	Intensity on T1WI	Intensity on T2WI	Enhancement on CET1WI	Additional
N/A	NA	NA	NA	NA	NA	Hypo	Hyper	Homogeneous	NA
N/A	NA	NA	NA	Iso	Iso	Iso	Iso	Homogeneous	NA
N/A	NA	NA	NA	Hyper	NA	Hypo	Hyper	Homogeneous	NA
Increase in WBCs	NA	NA	NA	NA	NA	NA	NA	NA	NA

ADC: Apparent diffusion coefficient, ALP: Alkaline phosphatase, CE: Contrast enhanced, Cre: Creatinine, CT: Computed tomography, DWI: Diffusion-weighted imaging, ECA: External carotid artery, ESR: Erythrocyte sedimentation rate, FDG: Fluorodeoxyglucose F 18, Ga: Gallium, HBV: Hepatitis B virus, HCV: Hepatitis C virus, HIV: Human immunodeficiency virus, HTLV-1: Human T-cell leukemia virus type 1, I: Iodine, ICA: Internal carotid artery, LDH: Lactate dehydrogenase, MDP: Methylene diphosphonate, MRI: Magnetic resonance imaging, MRS: Magnetic resonance spectroscopy, N/A: Not available, PET: Positron emission tomography, PLT: Platelet, SAP: Serum amyloid P, sIL2R: Soluble interleukin 2 receptor, T1WI: T1-weighted imaging, T2WI: T2-weighted imaging, Tc: Technetium, WBC: White blood cell
Table S2: Bone imaging, dural tail, brain invasion, and pathological features of patients with cranial vault lymphoma.

Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail	Invasion of brain	Histology	Lymphocyte subtype
Wichtl, \(^{[106]}\) 1949	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Strange and De Lorimier, \(^{[98]}\) 1954	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Ullrich and Bucy, \(^{[101]}\) 1958	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Piendak and Alder, \(^{[80]}\) 1959	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Block and Peck, \(^{[9]}\) 1964	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Topolnicki and White, \(^{[30]}\) 1969	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Wainwright, \(^{[104]}\) 1973	NA	NA	NA	NA	NA	Reticulum cell sarcoma	NA
Gawish, \(^{[27]}\) 1976	NA	NA	NA	NA	NA	Burkitt lymphoma	NA
Agbi et al., \(^{[1]}\) 1983	Intra	No change	Yes	NA	NA	Diffuse, non-Hodgkin malignant lymphoma with cleaved and notched nuclei	NA
Holtås et al., \(^{[30]}\) 1985	None	Permeative dissolution with preserved skull contour	Yes	NA	NA	Undifferentiated large cell malignant lymphoma	NA
	None	No change	Yes	NA	NA	Poorly differentiated non-Hodgkin lymphoma	NA
Kinjo and Satoh, \(^{[43]}\) 1985	None	Osteolytic skull defect	No	NA	NA	Malignant non-Hodgkin lymphoma, diffuse pleomorphic type Hodgkin disease	NA
Thomas and Kennedy, \(^{[99]}\) 1986	Extra	Osteolytic skull defect	No	NA	NA	Malignant lymphoma of mixed large and medium-sized cells type, some with cleaved nuclei	NA
Howat et al., \(^{[32]}\) 1987	NA	NA	NA	NA	NA	Lymphoblastic lymphoma	NA
Maiuri et al., \(^{[56]}\) 1987	Intra	Osteolytic skull defect	No	NA	NA	Diffuse lymphoma, mixed cell type	NA
Tagawa et al., \(^{[94]}\) 1987	None	Permeative dissolution with preserved skull contour	No	NA	NA		(Contd...)
Table S2: (Continued).

Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype
Kawakami et al.,[42] 1988	None	Osteolytic skull defect	No	NA	NA	Malignant lymphoma of diffuse medium-sized cell type
Morgello et al.,[63] 1989	NA	NA	No	NA	NA	Large cell lymphoma
Herkes et al.,[29] 1991	Extra	Permeative dissolution	Yes	Yes	Yes	Malignant lymphoma, diffuse mixed cell type
						NA
						NA
Kumon et al.,[49] 1991	Extra	Permeative dissolution with preserved skull contour	Yes	NA	No	Malignant lymphoma of large- or medium-sized cell type with noncleaved nuclei
						B-cell
Natsuda et al.,[68] 1991	Extra	NA	NA	Yes	NA	Malignant lymphoma, diffuse large or medium-sized cell type with cleaved nuclei
						T-cell
Lonjon et al.,[53] 1993	Extra	Osteolytic skull defect	No	NA	NA	B centroblastic lymphoma
Parekh et al.,[73] 1993	Intra	Preserved skull contour	Yes	NA	NA	Malignant B-cell non-Hodgkin lymphoma
						B-cell
Sato et al.,[69] 1993	None	NA	No	Yes	No	Diffuse large B-cell type
Kelleher et al.,[41] 1994	Extra	NA	NA	NA	NA	B-cell
						High-grade, B2/HL/1-positive, diffuse large-cell anaplastic lymphoma
Loembe et al.,[52] 1994	NA	NA	NA	NA	NA	NA
Morioka et al.,[64] 1994	Extra	Osteolysis with preserved skull contour	Yes	NA	NA	Malignant lymphoma with thick fibrous stroma
						B-cell
Vigushin et al.,[103] 1994	Intra	NA	NA	NA	NA	Lymphoplasmacytic lymphoma
Wittram et al.,[107] 1994	None	Permeative dissolution with preserved skull contour	Yes	NA	NA	Centrocytic/centroblastic low-grade non-Hodgkin lymphoma

(Contd...)
Table S2: (Continued).

Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype
Aslan et al.,[6] 1995	Extra	Permeative dissolution with preserved skull contour and periosteal reaction	Yes	Yes	NA	Undifferentiated Burkitt lymphoma B-cell
Landys et al.,[50] 1995	None	Osteolytic defect	No	NA	NA	High-grade, malignant non-Hodgkin lymphoma of centroblastic type NA
Paige and Bernstein,[72] 1995	None	Permeative dissolution with preserved skull contour	Yes	Yes	Yes	Large-cell malignant lymphoma NA
	Extra	Permeative dissolution with preserved skull contour	Yes	Yes	No	Large-cell malignant lymphoma NA
Isla et al.,[34] 1996	None	Permeative dissolution with preserved skull contour and periosteal reaction	Yes	NA	NA	Low-grade, malignant non-Hodgkin lymphoma, centroblastic-centrocytic type with follicular pattern B-cell
Bhatia et al.,[7] 1997	Extra	NA	NA	NA	No	Large B-cell lymphoma B-cell
Curty et al.,[14] 1997	Intra	Osteolytic skull defect	No	NA	NA	High-grade B-cell lymphoma B-cell
Muin et al.,[65] 1997	Intra	Hyperostosis	Yes	NA	NA	High-grade B-cell non-Hodgkin lymphoma B-cell
Jamjoom et al.,[37] 1998	Intra	Osteolytic skull defect	No	NA	NA	Large T-cell lymphoma, immunoblastic type T-cell
Jiménez Moragas et al.,[38] 1999	NA	Multiple osteolytic lesions	NA	NA	NA	Large B-cell non-Hodgkin lymphoma B-cell
Dai et al.,[16] 2000	None	NA	No	Yes	No	Diffuse large B-cell non-Hodgkin lymphoma B-cell
Pardhanani et al.,[74] 2000	None	Osteolytic skull defect	No	NA	NA	Diffuse large B-cell lymphoma of follicular center cell origin B-cell
Parker et al.,[76] 2001	NA	NA	NA	NA	NA	Anaplastic large-cell lymphoma NA
Thurnher et al.,[98] 2001	Extra	Permeative dissolution with preserved skull contour	Yes	NA	NA	Large B-cell lymphoma B-cell

(Contd...)
Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype
Duyndam et al.,[19] 2002	Extra	NA	Yes	Yes	No	Malignant B-cell non-Hodgkin lymphoma
Pernot et al.,[19] 2002	Extra	NA	Yes	Yes	No	B-cell lymphoma with small, cleaved cells
Kanai et al.,[39] 2003	Extra	Permeative dissolution with preserved skull contour	Yes	NA	No	Diffuse, medium-sized B-cell non-Hodgkin lymphoma
Kantarci et al.,[41] 2003	None	NA	Yes	Yes	Yes	Diffuse, large-cell-type lymphoma
Koral et al.,[47] 2003	None	Osteolysis of more than half of the skull thickness	No	NA	NA	Diffuse, histiocytic, large-cell NHL
Mongia et al.,[62] 2003	Extra	NA	NA	NA	NA	Non-Hodgkin lymphoma
Nishimoto et al.,[69] 2003	Extra	Permeative dissolution with preserved skull contour	Yes	Yes	No	Large B-cell lymphoma
Aquilina et al.,[5] 2004	None	Permeative dissolution with preserved skull contour	Yes	NA	NA	Small-to-intermediate B-cell lymphoma
Horstman et al.,[31] 2004	Extra	Osteolytic skull defect	Yes	NA	NA	Diffuse large B-cell non-Hodgkin lymphoma
Madan et al.,[55] 2004	Extra	Permeative dissolution with preserved skull contour	Yes	NA	NA	Diffuse B-cell lymphoma
Szucs-Farkas et al.,[93] 2005	Extra	Osteolytic skull defect	No	Yes	No	Peripheral B-cell lymphoma, Burkitt-like
Tanimura et al.,[93] 2005	Extra	Osteolytic skull defect	No	NA	No	Large B-cell non-Hodgkin lymphoma
Evliyaoglu et al.,[21] 2006	Intra	Permeative dissolution with preserved skull contour	Yes	NA	NA	Diffuse, small B-cell non-Hodgkin lymphoma
Galarza et al.,[23] 2006	Intra	No change	Yes	Yes	No	Diffuse, large B-cell lymphoma
Palled et al.,[13] 2006	None	Osteolysis with periosteal reaction	NA	NA	No	High-grade B-cell Burkitt-type non-Hodgkin lymphoma
Agrawal et al.,[2] 2007	Intra	Hyperostosis	Yes	NA	NA	Diffuse, large-cell non-Hodgkin lymphoma (MALToma type)

(Contd...)
Table S2: (Continued).

Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype	
Fukushima et al.,[23] 2007	None	Osteolytic skull defect	No	No	No	Diffuse medium-sized B-cell non-Hodgkin lymphoma	B-cell
Mohindra et al.,[61] 2007	None	Preserved skull contour	Yes	Yes	Yes	Diffuse, large B-cell lymphoma	B-cell
Uff and Shieff,[101] 2007	Extra	Osteolytic destruction of more than half of the skull thickness	Yes	Yes	Yes	Diffuse, large B-cell lymphoma	B-cell
Gaitonde et al.,[24] 2008	None	Osteolysis	NA	NA	NA	Follicular lymphoma, grade 2	B-cell
Gonzalez-Bonet et al.,[25] 2008	None	Osteolytic skull defect	No	No	No	B-cell lymphoma	B-cell
Yoon et al.,[109] 2008	Intra	Permeative dissolution with preserved skull contour	Yes	NA	No	Small lymphocytic B-cell lymphoma	B-cell
Renard et al.,[44] 2009	None	Osteolysis of more than half of the skull thickness with periosteal bone formation	No	Yes	No	Diffuse, malignant, large B-cell non-Hodgkin lymphoma	B-cell
da Rocha et al.,[15] 2010	None	No change	NA	Yes	No	Diffuse, large B-cell lymphoma	B-cell
NA	No change	NA	NA	NA	Mantle cell lymphoma	B-cell	
NA	No change	NA	NA	NA	Small lymphocytic lymphoma	NA	
Khalid et al.,[44] 2010	None	Permeative dissolution with preserved skull contour	Yes	NA	NA	Low-grade B-cell non-Hodgkin lymphoma	B-cell
Ochiai et al.,[190] 2010	Intra	No change	Yes	Yes	Yes	Diffuse, large B-cell lymphoma	B-cell
Castro-Bouzas et al.,[191] 2011	Extra	Permeative dissolution	NA	NA	NA	ALK-negative, T-cell non-Hodgkin lymphoma	T-cell
Fadoukhair et al.,[22] 2011	Extra	Osteolytic skull defect	No	NA	NA	Diffuse, large B-cell non-Hodgkin lymphoma	B-cell
Ciarpaglini and Otten,[13] 2012	Extra	Osteolysis	NA	Yes	Yes	None-Hodgkin lymphoma (MALT type)	B-cell
El Asri et al.,[20] 2012	None	Sclerosis and hyperostosis	Yes	Yes	NA	Diffuse, B-cell lymphoma	B-cell
Martin et al.,[34] 2012	Extra	Permeative dissolution with preserved skull contour and periosteal bone formation	Yes	NA	NA	(Contd...)	
Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype	
-----------------------	---------------------------------	--	---	----------------------------	----------	--------------------	
Rezaei-Kalantari et al.,[85] 2012	None	Hyperostosis	Yes	Yes	No	Diffuse, large B-cell lymphoma	B-cell
Ko et al.,[46] 2013	None	Permeative dissolution with preserved skull contour and periosteal bone formation	Yes	Yes	No	Diffuse, large B-cell lymphoma	B-cell
Kosugi,[48] 2013	None	NA	No	NA	NA	Diffuse, large B-cell lymphoma	B-cell
Mishra et al.,[60] 2013	None	Permeative dissolution with preserved skull contour and periosteal bone formation	Yes	NA	NA	Diffuse, large B-cell lymphoma	B-cell
Salunke et al.,[86] 2013	None	Permeative dissolution with preserved skull contour, periosteal bone formation and sclerosis	Yes	Yes	Yes	Diffuse, large B-cell lymphoma	B-cell
Sanjayan et al.,[88] 2013	Intra	NA	Yes	Yes	No	Mixed small and large B-cell lymphoma	B-cell
Rasouli et al.,[83] 2014	Extra	Permeative dissolution with preserved skull contour	Yes	NA	NA	Extranodal marginal zone lymphoma (EMZL)	B-cell
Sugimoto et al.,[92] 2014	NA	Osteolysis of more than half of the skull thickness	NA	NA	NA	Spindle-shaped, diffuse, large B-cell lymphoma with a storiform pattern (germinal center type)	B-cell
Tashiro et al.,[96] 2015	Extra	Permeative dissolution with preserved skull contour	Yes	Yes	No	Diffuse, large B-cell lymphoma	B-cell
Extra	No change	Yes	Yes	No	Diffuse, large B-cell lymphoma	B-cell	
Wang et al.,[105] 2015	Intra	NA	Yes	Yes	No	Diffuse, large B-cell lymphoma	B-cell
Akamatsu et al.,[4] 2016	None	Osteolytic skull defect	No	NA	NA	Diffuse, large B-cell lymphoma	B-cell
Bhatoe and Ambastha,[8] 2016	Extra	Osteolytic skull defect	Yes	Yes	Yes	Extranodal marginal zone lymphoma (EMZL)	T-cell
Issara et al.,[35] 2016	No extension	Permeative dissolution with preserved skull contour	NA	No	No	Small B-cell lymphoma	B-cell

(Contd...)
Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype
Jaiswal et al.,[36] 2016	Extra	Osteolysis of more than half of the skull thickness	Yes	Yes	Yes	Diffuse, large B-cell lymphoma
Lv et al.,[54] 2016	Intra	Permeative dissolution with preserved skull contour and periosteal bone formation	Yes	Yes	Yes	Diffuse, large B-cell lymphoma
Mascolo et al.,[59] 2016	Extra	Permeative dissolution with preserved skull contour	Yes	Yes	No	Diffuse, large B-cell lymphoma
Kanaya et al.,[40] 2017	NA	Osteolytic skull defect	No	NA	NA	Diffuse, large B-cell lymphoma
Naama et al.,[66] 2017	None	Permeative dissolution with preserved skull contour	Yes	Yes	Yes	Diffuse, large B-cell lymphoma
Chan et al.,[11] 2018	Extra	Preserved skull contour	Yes	Yes	NA	Diffuse, large B-cell lymphoma
Lee and Yun,[51] 2018	None	Sclerosis and osteolysis	Yes	Yes	No	Diffuse, large B-cell lymphoma
Salvo et al.,[87] 2018	None	Sclerosis	Yes	Yes	Yes	Diffuse, large B-cell lymphoma
Huang et al.,[33] 2019	Extra	Osteolysis	No	Yes	No	Plasmablastic non-Hodgkin lymphoma (a rare subtype of DLBCL)
Umemura et al.,[102] 2019	Extra	Permeative dissolution with preserved skull contour	Yes	NA	NA	Diffuse, large B-cell lymphoma
	None	Osteolysis of more than half of the skull thickness	No	Yes	No	Diffuse, large B-cell lymphoma
Xing et al.,[108] 2019	NA	Permeative dissolution with preserved skull contour	NA	Yes	NA	B-cell non-Hodgkin lymphoma
	NA	Permeative dissolution with preserved skull contour	NA	Yes	NA	B-cell non-Hodgkin lymphoma
	NA	Permeative dissolution with preserved skull contour	NA	Yes	NA	B-cell non-Hodgkin lymphoma
	NA	Permeative dissolution with preserved skull contour	NA	Yes	NA	B-cell non-Hodgkin lymphoma

(Contd...)
Author year reference	Predominance in tumor extension	Findings of skull bone on CT and/or MRI	Disproportionately small amount of cortical destruction	Dural tail invasion of brain	Histology	Lymphocyte subtype	
Ahmad et al.,[3] 2020	Extra	Osteolysis	NA	Yes	Yes	Diffuse, large B-cell lymphoma	B-cell
Nasim et al.,[67] 2020	Intra	NA	NA	NA	NA	Low-grade B-cell lymphoma	B-cell

CT: Computed tomography, Extra: Extracranial extension is much larger than intracranial extension, Intra: Intracranial extension is much larger than extracranial extension, Both: Intra- and extracranial extensions are of similar size, MRI: Magnetic resonance imaging, NA: Not available