1. Introduction

Since the Fukushima Daiichi nuclear disaster, significant amounts of radioactive nuclides have been released to the environment, mainly in the North Pacific Ocean and eastern Japan.1 Japan has devoted substantial financial and technical resources to measuring radioactive nuclides in foodstuffs,2,3 and regulated radioactive nuclides include radioactive cesium (134Cs and 137Cs). Since April 2012, the regulated radioactivity level for total radioactive cesium has been set to 100 Bq/kg for general foods and 570 Bq/kg-dry for dried shiitake mushrooms (Lentinula edodes) under the Japanese domestic law.4-6 As of 2019, very few foods in markets exceeded the regulatory level. The detection of 134Cs (T1/2 = 2.06 y) is crucial for quantitative evaluation of the contamination sources (Fukushima Daiichi nuclear disaster or pre-Fukushima, such as earlier nuclear bomb incidents and tests or the Chernobyl disaster).7 134Cs is a gamma-emitted neutron activation product from stable 133Cs and representative of nuclides released to the environment by the Fukushima Daiichi nuclear disaster.

Many crops in Japan are harvested annually, and there are two major implications for high-accuracy gamma ray analysis of annual crops. First, at supermarkets, there can be many crops from all over Japan without any environmental sampling. Second, the ability to detect small amounts of 134Cs in foodstuffs in Japan is low due to its short half-life, pretreatment (concentration) is essential for quantification. For analyses using a 2-L Marinelli vessel and a conventional HPGe semiconductor detector (relative efficiency 25%), the detection limit for 134Cs was approximately 0.05 Bq/kg without pretreatment. For the 137Cs contamination source segregation in Japan in March 2020, the radioactivity in samples must be at least 0.83 Bq/kg of 137Cs. This study provided guideline requirements for sample volume and pretreatment.

2. Methods

A conventional HPGe semiconductor detector (GC2518-7500 SL-2002CSL) manufactured by Mirion Technologies, Canberra, was used to analyze gamma rays with a relative efficiency of 25% (actual catalog spec 27.7%). The absolute detection efficiencies at 0.6 and 1.4 MeV using a 2L Marinelli vessel were 0.81% and 0.4%, respectively. To determine 137Cs, the 662 keV photopeak was used, whereas the peaks at 604 and 795 keV were used for calculating 134Cs; the detection limit was set to 3 sigma.8 Studied food samples were purchased from markets and treated following the official methods in Japan.9

3. Results and discussion

3.1. Relationship between the detection limit and live time. Generally, the detection limit decreased with increasing measurement time. Table 1 presents the limit of quantification (LOQ) for 137Cs in a 2-L Marinelli vessel using the HPGe detector with a relative efficiency of 15%.10 The regulatory limit for milk in Japan since April 2012 has been 50 Bq/kg. The LOQ for 137Cs was 0.8 Bq/L when measuring gamma rays in a 2-L Marinelli vessel for one hour. Since the specific gravity of milk is approximately 1.03, a radioactivity of 0.8 Bq/L is

Sample	Sample amount	LOQ (live time)	Unit	
		(1 hour)	(10 hours)	
Milk	2 L	0.8	0.3	Bq/L
Green Vegetable	1 kg	1.6	0.5	Bq/kg-raw
Seaweed/Fish	2 kg	0.8	0.3	Bq/kg-raw
Grain/Meat/Egg	2 kg	0.8	0.3	Bq/kg-raw

*Corresponding author: cshozu@mail.ecc.u-tokyo.ac.jp

© 2020 The Japan Society of Nuclear and Radiochemical Sciences
Published on Web 06/03/2020
considered equivalent to 0.8 Bq/kg. Even one hour was too long to determine the 137Cs activity concentration in milk if it exceeded the regulatory level.

As described previously, although a measurement guideline is available, quantitative evaluation of the measurement time and the LOQ or detection limit remains sparse for gamma ray analysis. Here a general solution is examined using results from actual measurements.

Figure 1 presents the radioactivity of 134Cs, 137Cs, and 40K with respect to measurement time (live time) and detection limits for dried shiitake mushrooms that were manufactured and sold in Yugawara City, Kanagawa Prefecture, in January 2014. The dried mushroom sample had a density of 0.422 g/cm³ and weight of 0.844 kg and was crushed and measured in a 2-L Marinelli vessel without pretreatment.

The radioactivities of 134Cs, 137Cs, and 40K at a measurement time of 67,500 s (live time) were 26.3 ± 0.2, 120 ± 0.6, and 578 ± 5 Bq/kg, respectively. The radioactivity of radioactive cesium (sum of 134Cs and 137Cs) in the dried mushroom sample was 147 ± 0.6 Bq/kg at the time of measurement. This value was below the regulatory limit of 570 Bq/kg for dried shiitake mushrooms and thus suitable for distribution in Japan.

40K was first determined to be 774 ± 200 Bq/kg at a live time of 75 s. Since the detection limit was 420 Bq/kg/75 s after measurement started, it was determined in excess of 3σ. However, the coefficient of variation (c.v.), which is an indicator of accuracy, fell below 10% after the measurement time exceeded 1000 s.

Although the sum of the radioactivities of 134Cs and 137Cs was lower than the 40K activity concentration, the measurement time was not required to determine accuracy. The c.v. for the radioactivity of 134Cs and 137Cs were below 10% at 496 and 257 s, respectively. This was mainly because the detection efficiency near 0.6 MeV was approximately two times higher than that near 1.4 MeV.

The detection limit could be approximated as a function of the live time under ideal conditions, such that the gamma ray analysis ignored Compton scattering, summing peaks from the photopeaks of higher energy than targeted peaks. For foodstuffs, this approximation was applied because natural nuclides, except 40K, were often absent.

The detection limit for 137Cs was related to the live time by an exponent based on values for the 11 data points in Fig. 1. This relationship yielded a detection limit of 0.054 Bq/kg for measurements from 14 consecutive days.

Measurements of the radioactivity of cesium in approximately 259 food samples using 2L Marinelli vessels and the HPGe detector revealed that the detection limit for 134Cs or 137Cs was 0.05 Bq/kg for a reasonable live time (up to 2 weeks) regardless of the radioactivity or density. Thus, increasing the measurement time was an inefficient method for lowering the detection limit.

Conversely, sample concentration before counting gamma rays was very effective in lowering the detection limit. Removing water from samples by heating was a suitable method for concentrating radiocesium. According to our previous study,11 the 133Cs loss rate from heating was approximately 0.4%. Therefore, if the sample was prepared, radiocesium could be determined more efficiently by concentrating samples by heating for water removal.

3.2. Pretreatment conditions for the detection of 134Cs nine years after the Fukushima Daiichi nuclear disaster.

On the 8th anniversary of the Fukushima Daiichi nuclear disaster (March 11, 2020), the activity ratio of 134Cs to 137Cs was expected to be approximately 0.06.8 Therefore, if a conventional Ge semiconductor detector (134Cs detection limit 0.05 Bq/kg) was used, the theoretical required radioactivity of 137Cs would be at least 0.833 Bq/kg. This theoretical radioactivity assumed that all detectable 137Cs originated from the Fukushima Daiichi nuclear disaster.

In Japan, pre-Fukushima events, such as nuclear bombs in
Pretreatment conditions for detecting 134Cs - Eight years after the Fukushima

1945, atmospheric nuclear weapons testing in other countries (1950s and 1960s), and the Chernobyl disaster in 1986 introduced 137Cs to the environment. Therefore, 137Cs detected in most samples exceeded the theoretical radioactivity calculated from the 134Cs/137Cs ratio based on the Fukushima Daiichi nuclear disaster.

Pretreatment methods depended on the sample type. For large fish living and caught in the North Pacific Ocean, approximately 50% of the 137Cs content was attributed to the Fukushima Daiichi nuclear disaster. Therefore, 137Cs source discrimination for fish samples required quantification of at least 0.1 Bq/kg raw level. Therefore, 137Cs source discrimination for fish samples required quantification of at least 1.6 Bq/kg 137Cs after concentration. That is, concentration to 16 times by weight was required prior to gamma ray counting. This is not a realistic pretreatment method.

Conventional HPGe with a detection efficiency of 25% was used in this study; however, other approaches, such as using a Ge semiconductor detector with a higher detection efficiency, a higher peak over Compton ratio, or a low-back environment, could lower the detection limit.

Although the application range was limited to Japan, to efficiently detect 134Cs for investigating 137Cs sources, pre-measuring 137Cs radioactivity or extracting it from a database and calculating the concentration ratio from the 134Cs/137Cs ratio backwards from the radioactivity could be effective.

4. Conclusions

Several years after the Fukushima Daiichi nuclear disaster, the quantification of 134Cs over time has become difficult. The absolute detection efficiency of 134Cs for the conventional HPGe using a 2L Marinelli vessel was approximately 0.1%. Under these conditions, the achievable detection limit was approximately 0.05 Bq/kg, even if samples were measured for 2 weeks. Concentrating the sample by removing water was more effective for decreasing detection limits than extending the measurement time. As of March 2019, to quantitatively distinguish the sources of 137Cs from the Fukushima Daiichi nuclear disaster and previous events like the Chernobyl accident, a sample with 137Cs of approximately 0.1 Bq/kg-fresh would require at least 16 times 137Cs concentration on a weight ratio basis. Since such an enrichment of radioactivity levels is not feasible, a sample with higher radioactivity should be chosen, or a high-performance germanium semiconductor detector should be used.

References

(1) G. Steinhauser, Environ. Sci. Technol. 48, 4649 (2014).
(2) S. Merz, G. Steinhauser, and N. Hamada, Environ. Sci. Technol. 47, 1248 (2013).
(3) N. Hamada and H. Ogino, J. Environ. Radioact. 111, 83 (2012).
(4) N. Hamada, H. Ogino, and Y. Fujimichi, J. Radiat. Res. 53, 641 (2012).
(5) Ministry of Health, Labour Welfare, Japan, New standard limits for radionuclides in foods, http://www.mhlw.go.jp/english/topics/2011eq/dl/new_standard.pdf (accessed 23 December, 2019).
(6) Ministry of Health, Labour Welfare, Japan, About handling the testing method of radioactive materials in food, https://www.mhlw.go.jp/shinsai_jouhou/dl/shikenhou_120319.pdf (in Japanese) (accessed 23 December, 2019).
(7) M. Hori, T. Saito, and K. Shozugawa, Sci. Rep. 8, 16806 (2018).
(8) H. Kaiser, Fresenius’ Zeitschrift für Analytische Chemie. 209, 1 (1965).
(9) Ministry of Education, Culture, Sports, Science and Technology, Japan, The guideline of Gamma ray spectrometry for Ge semiconductor detector in Series of Radioactivity measurement (1992) (in Japanese).
(10) Ministry of Health, Labour Welfare, Japan, Reference for determination of radioactivity in foodstuff, https://www.mhlw.go.jp/stf/houdou/2r9852000001558e-img/2r98520000015cfn.pdf (in Japanese) (accessed 23 December, 2019).
(11) K. Shozugawa, T. Saito, M. Hori, and M. Matsuo, J. Radioanal. Nucl. 307, 2117 (2016).
(12) Ministry of Health, Labour Welfare, Japan, Database of radioactive substances in food, http://www.radioactivity-db.info/ (in Japanese).