Dissemination and Characterization of Plasmids Carrying $oqxAB$-bla_{CTX-M} Genes in *Escherichia coli* Isolates from Food-Producing Animals

Bao-Tao Liu*, Qiu-E Yang*, Liang Li, Jian Sun, Xiao-Ping Liao, Liang-Xing Fang, Shou-Shen Yang, Hui Deng, Ya-Hong Liu*

College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, Guangdong, China

Abstract

Background: The association of PMQR and ESBLs in negative-bacteria isolates has been of great concern. The present study was performed to investigate the prevalence of co-transferability of $oqxAB$ and bla_{CTX-M} genes among the 696 *Escherichia coli* (E. coli) isolates from food-producing animals in South China, and to characterize these plasmids.

Methods: The ESBL-encoding genes (bla_{CTX-M}, bla_{TEM} and bla_{SHV}), and PMQR ($qnrA$, $qnrB$, $qnrS$, $qnrC$, $qnrD$, $aac(6')$-$lb-cr$, $qepA$, and $oqxAB$) of these 696 isolates were determined by PCR and sequenced directionally. Conjugation, S1 nuclease pulsed-field gel electrophoresis (PFGE) and Southern blotting experiments were performed to investigate the co-transferability and location of $oqxAB$ and bla_{CTX-M}. The EcoRI digestion profiles of the plasmids with $oqxAB$-bla_{CTX-M} were also analyzed. The clonal relatedness was investigated by PFGE.

Results: Of the 696 isolates, 429 harbored at least one PMQR gene, with $oqxAB$ (328) being the most common type; 191 carried bla_{CTX-M} with $bla_{CTX-M,43}$ the most common. We observed a significant higher prevalence of bla_{CTX-M} among the $oqxAB$-positive isolates (38.7%) than that (17.4%) in the $oqxAB$-negative isolates. Co-transferability of $oqxAB$ and bla_{CTX-M} was found in 18 of the 127 isolates carrying $oqxAB$-bla_{CTX-M}. These two genes were located on the same plasmid in all the 18 isolates, with $floR$ being on these plasmids in 13 isolates. The co-dissemination of these genes was mainly mediated by F33:A- and HI2 plasmids with highly similar EcoRI digestion profiles. Diverse PFGE patterns indicated the high prevalence of $oqxAB$ was not caused by clonal dissemination.

Conclusion: bla_{CTX-M} was highly prevalent among the $oqxAB$-positive isolates. The co-dissemination of $oqxAB$-bla_{CTX-M} genes in *E. coli* isolates from food-producing animals is mediated mainly by similar F33:A- and HI2 plasmids. This is the first report of the co-existence of $oqxAB$, bla_{CTX-M}, and $floR$ on the same plasmids in *E. coli*.

Introduction

Quinolone resistance was thought to be mediated only by chromosomal mutations, until plasmid-mediated quinolone resistance (PMQR) was described in 1998 [1]. Since then, a number of plasmid-mediated quinolone resistance (PMQR) mechanisms have been described: the pentapeptide repeat family Qnr proteins (QnrA, QnrB, QnrS, QnrC, and QnrD) [1,2,3,4,5], AAC(6')-lb-cr, an aminoglycoside acetyltransferase that is responsible for reduced susceptibility to ciprofloxacin by modifying ciprofloxacin [6], QepA, an efflux pump belonging to the major facilitator subfamily [7], and OqxAB, a multidrug efflux pump that confers resistance to multiple agents, which has been recently reported to reduce susceptibility to ciprofloxacin and nalidixic acid [8]. The PMQR genes confer only low-level resistance to quinolones; however, they can be spread horizontally among enterobacteria and facilitate the selection of resistant mutants following exposure
Antimicrobial susceptibility testing

Susceptibilities to enrofloxacin, ciprofloxacin, levofloxacin, nalidixic acid, amikacin, gentamicin, florfenicol, chloramphenicol, ampicillin, ceftriaxone, cefotaxime, doxycycline, and tetracycline of the 696 isolates were assayed by the agar dilution method, according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [19]. *Escherichia coli* ATCC 25922 was used as the control strain. Isolates were classified as either susceptible or resistant according to the interpretative standards recommended by the CLSI [19]. As there are no CLSI breakpoints for florfenicol and cefotaxime that are applicable to *E. coli* of animal origin, the breakpoints of florfenicol (≥16mgL⁻¹) and cefotaxime (≥8mgL⁻¹) were sourced from the Danish Integrated Antimicrobial Resistance Monitoring and Research Program [20] and a previous report [21]. ESBL-producing isolates were screened by double-disc synergy test using both cefotaxime and cefazidime in the presence or absence of clavulanic acid as recommended by the CLSI.

Detection of PMQR determinants

PMQR genes including *qnrA*, *qnrB*, *qnrS*, *qnrC*, *qnrD*, *aac(6’)-Ib-cr*, *qepA*, *oqxAB*, and *oqxAB* among the 696 clinical *E. coli* isolates were analyzed by PCR amplification using previously described primers [2,5,16,21,22]. The association of IS26 with *oqxAB* was investigated by PCR as reported previously [23], using forward primer IS26-F (5'-GCTGTTACGAGGAGAG-3') and reverse primer *oqxAB*-R (5'-AGGTTTTGATAGTGGAGG-3'). The DNA sequences obtained after direct sequencing of the amplification products were confirmed using the BLAST algorithm available through the National Center for Biotechnology Information (NCBI).

Detection of ESBL-encoding genes

ESBL-encoding genes (*bla*RTEM, *bla*SHV, *bla*CTX-M-1G, *bla*CTX-M-9G, *bla*CTX-M-25G, and *bla*(CTX-M-35G)) among the ESBL-producing isolates were analyzed by PCR amplification using previously published primers and protocols [24,25,26]. Among the 136 isolates harboring *bla*(CTX-M-35G), 89 were selected randomly to be directly sequenced using the PCR products, and 33 out of the 63 *bla*(CTX-M-1G)-positive isolates were randomly selected to be sequenced. The DNA sequences obtained were compared with genes in GeneBank (http://www.ncbi.nlm.nih.gov/) to confirm the subtypes of ESBL-encoding genes.

Conjugation experiment

Isolates harboring *oqxAB* and genes encoding ESBLs, were selected for conjugation experiments by the broth-mating method using *E. coli* C600 as the recipient [27]. Transconjugants were selected on MacConkey agar plates containing streptomycin (1,000mg/L) and cefotaxime (2mg/L). The transconjugants harboring *oqxAB* and ESBL-encoding genes mentioned above were confirmed by PCR as previously and antimicrobial susceptibility testing for the transconjugants, recipient, and donors.
Plasmids analysis of transconjugants

Incompatibility (Inc) groups were assigned by PCR-based replicon typing of transconjugants [28]. To better clarify IncF plasmids, replicon sequence typing of IncF plasmids was carried out according to the method reported previously [29]. Alleles were assigned by submitting the amplicon sequence to the plasmid multilocus sequence typing (pMLST) database (http://www.pubmlst.org/plasmid/).

To analyze the location of the oqxAB gene and ESBL-encoding genes of transconjugants, S1 nuclease-PFGE and Southern blot analysis were performed. Briefly, whole-cell DNA of the transconjugants co-harboring oqxAB and ESBL-encoding genes embedded in agarose gel plugs was treated with S1 nuclease (TaKaRa, Dalian, China) and separated by PFGE alongside a standard lambda ladder PFGE Marker (NEB, UK). Subsequently, Southern blot hybridization was performed with DNA probes specific for oqxAB, blaCTX-M-1G or blaCTX-M-9G, which were non-radioactively labeled with a DIG High Prime DNA labeling and detection kit (Roche Diagnostics, Mannheim, Germany). Plasmid DNA extraction was performed using a QIAGEN Plasmid Midi kit (QIAGEN, Germany). Plasmids of transconjugants were digested with the endonuclease EcoRI (TaKaRa Biotechnology, Dalian, China) to analyze the restriction fragment length polymorphism (RFLP) profiles.

Molecular typing

To determine their genetic relatedness, chromosomal DNAs of 109 E. coli isolates randomly selected from the oqxAB-harboring isolates were digested with XbaI and subjected to pulsed-field gel electrophoresis (PFGE) according to a protocol described previously [30]. The DNA banding patterns were analysed using BioNumerics software version 2.5 (Applied Maths), and a cut-off value of 95% of the similarity values was chosen to indicate identical PFGE types. Salmonella enterica serotype Braenderup H9812 standards served as size markers.

Results

Antimicrobial susceptibility testing

Almost all the 696 clinical E. coli isolates in this study were highly resistant to nalidixic acid (96.1%), ampicillin (95.1%) and tetracycline (96.3%). The antimicrobial resistance rates to other antibiotics were as follows: chloramphenicol (85.3%), enrofloxacin (82.6%), doxycycline (79.6%), ciprofloxacin (76.3%), streptomycin (74.0%) levofloxacin (73.6%), florfenicol (73.1%), gentamicin (64.4%) cefotaxime (46.3%), and amikacin (26.6%). Of the 696 isolates, 228 (32.8%) (97 from pigs, and 131 from avian) showed reduced susceptibility to cefotaxime (76.3%), streptomycin (74.0%) levofloxacin (73.6%), florfenicol (73.1%) enrofloxacin (82.6%), doxycycline (79.6%), ciprofloxacin (76.3%), streptomycin (74.0%) levofloxacin (73.6%), florfenicol (73.1%), gentamicin (64.4%) cefotaxime (46.3%), and amikacin (26.6%). Of the 696 isolates, 228 (32.8%) (97 from pigs, and 131 from avian) showed reduced susceptibility to cefotaxime (76.3%), streptomycin (74.0%) levofloxacin (73.6%), florfenicol (73.1%), gentamicin (64.4%) cefotaxime (46.3%), and amikacin (26.6%).

Prevalence of PMQR genes

Four hundred and twenty-nine (61.6%) of the 696 isolates were found to have at least one PMQR gene by PCR and sequencing of the PCR products. oqxAB, found in 328 isolates (47.1% of the total), was the most prevalent PMQR gene, followed by qnrS (14.5%) and aac(6’)-Ib-cr (14.4%). The number of isolates harboring qnrB and qepA was 48 (7.0%) and 21 (3.0%), respectively, but no isolate was positive for qnrA, qnrC or qnrD. In addition, 180 of the 328 oqxAB-positive isolates were detected to be linked with IS26. The combination types of PMQR genes in E. coli of different origin were listed in Table 1.

ESBL-encoding genes detection

ESBL-encoding genes were detected in most E. coli isolates with a cefotaxime MIC ≥ 2 μg/mL. CTX-M-type genes were found to be dominant in the isolates with ESBL production, and 191 isolates carried one or two CTX-M genes, representing 27.4% of the total 696 clinical E. coli isolates. blaSHV and blaTEM type ESBL-encoding genes were not found in any of these isolates. Among the 191 blaCTX-M-positive isolates, the number of isolates carrying blaCTX-M-1G and blaCTX-M-9G were 63 and 136, respectively, with 8 isolates carrying both blaCTX-M-1G and blaCTX-M-9G included. As the data of randomly sequenced blaTXT-M that shown in Table 2, the most predominant CTX-M-encoding gene was blaCTX-M-14 (n=36), followed by blaCTX-M-65 (n=29). The most common CTX-M type in isolates from pigs was blaCTX-M-14 whereas blaCTX-M-27 was the most common type among isolates from avian (Table 2).

blaCTX-M genes among the PMQR-positive isolates

The distribution of ESBL-encoding genes among the 429 PMQR-positive E. coli isolates was shown in Table 1. One hundred and sixty of the 429 PMQR-positive isolates were detected to harbor CTX-M type genes, whereas, blaCTX-M genes were detected in 31 of the 267 PMQR-negative isolates (P<0.001). As shown in Table 1, the detection of CTX-M type genes in isolates carrying oqxAB (127/326) was significantly higher than that in oqxAB-negative isolates (64/368) (P<0.001). For avian, the number of isolates carrying oqxAB-blaCTX-M-9G-oqxAB-blaCTX-M-9G-blaCTX-M-1G, and oqxAB-blaCTX-M-9G-blaCTX-M-9G-blaCTX-M-1G were 48, 20, and 3, respectively. And there were 37, 15 and 4 isolates from pigs were found to harbor oqxAB-blaCTX-M-9G-oqxAB-blaCTX-M-9G-blaCTX-M-1G, and oqxAB-blaCTX-M-9G-blaCTX-M-1G, respectively (Table 1).

Molecular typing

Of the 109 isolates, 97 were successfully typed by PFGE, and a total of 88 different PFGE profiles were obtained, suggesting that most of the isolates in the study were from epidemiologically unrelated E. coli clones.

Co-transferability of oqxAB and blaCTX-M genes and plasmid analysis

In this study, 84 transconjugants carrying blaCTX-M were obtained from the 127 isolates with oqxAB-blaCTX-M. Eighteen of the 84 transconjugants were found to be also positive for oqxAB. Among the 18 transconjugants, 8 carried oqxAB, blaCTX-M-9G and aac(6’)-Ib-cr simultaneously (Table 3). The result of S1 nuclease-PFGE shown in Figure 1A revealed that 14 transconjugants except FS3Z3GT, FS9Y1CT, 70zuT and 5weiT, carried only one plasmid (FS3Z3GT also harboring a...
Table 1. Distribution of ESBL genes among 429 PMQR-positive *E. coli* isolates of food-producing animals.

PMQR genes (total number of isolates)	Origin (No. of isolates)	ESBL genes	No. of isolates producing ESBLs
oqxAB (207)	Avian (91)	blCTX-M-9G	18
		blCTX-M-1G	15
oqxAB, aac(6’)-Ib-cr (39)	Avian (19)	blCTX-M-9G	15
		blCTX-M-1G	2
qnrS (40)	Avian (17)	blCTX-M-9G	4
		blCTX-M-1G	3
qnrS, aac(6’)-Ib-cr (3)	Swine (3)	blCTX-M-9G	1
		blCTX-M-1G	1
qnrS, qnrB (3)	Swine (1)	blCTX-M-9G	0
		blCTX-M-1G	0
qnrS, qepA (6)	Swine (5)	blCTX-M-9G	4
		blCTX-M-1G	0
qnrS, qepA (2)	Swine (2)	blCTX-M-9G	0
		blCTX-M-1G	0
qnrB (13)	Swine (1)	blCTX-M-9G	1

Table 1 (continued).

PMQR genes (total number of isolates)	Origin (No. of isolates)	ESBL genes	No. of isolates producing ESBLs
oqxAB, qepA (4)	Swine (6)	blCTX-M-9G	3
		blCTX-M-1G	1
qnrS	Swine (2)	blCTX-M-9G	1
		blCTX-M-1G	1
qepA (6)	Avian (3)	blCTX-M-9G	1
		blCTX-M-1G	1
qnrB	Swine (3)	blCTX-M-9G	1
		blCTX-M-1G	1
aac(6’)-Ib-cr, qepA (2)	Swine (2)	blCTX-M-1G	1
		blCTX-M-9G	4
avian	blCTX-M-9G	21	
avian	blCTX-M-14	16	
avian	blCTX-M-65	5	
avian	blCTX-M-125	3	
avian	blCTX-M-24	1	
avian	blCTX-M-14	1	
avian	blCTX-M-55	1	
avian	blCTX-M-55	18	
avian	blCTX-M-15	1	
avian	blCTX-M-3	1	
swine	blCTX-M-14	15	
swine	blCTX-M-65	11	
swine	blCTX-M-27	4	
swine	blCTX-M-24	3	
swine	blCTX-M-125	2	
swine	blCTX-M-104	2	
swine	blCTX-M-90	1	
swine	blCTX-M-14	4	
swine	blCTX-M-55	6	
swine	blCTX-M-15	1	
swine	blCTX-M-3	1	

doi: 10.1371/journal.pone.0073947.0001

Table 2. Distribution of CTX-M subgroups and alleles amongst *Escherichia coli* isolates from different animal sources.

origin	ESBL(s) gene	No. of isolates
avian	blCTX-M-27	21
avian	blCTX-M-14	16
avian	blCTX-M-65	5
avian	blCTX-M-125	3
avian	blCTX-M-24	1
avian	blCTX-M-14	1
avian	blCTX-M-55	1
avian	blCTX-M-55	18
avian	blCTX-M-15	1
avian	blCTX-M-3	1
swine	blCTX-M-14	15
swine	blCTX-M-65	11
swine	blCTX-M-27	4
swine	blCTX-M-24	3
swine	blCTX-M-125	2
swine	blCTX-M-104	2
swine	blCTX-M-90	1
swine	blCTX-M-14	4
swine	blCTX-M-55	6
swine	blCTX-M-15	1
swine	blCTX-M-3	1

doi: 10.1371/journal.pone.0073947.0002

very small plasmid not detected using S1-PFGE). As listed in Table 3, the IncFII (5 different alleles) replicon types were detected in 13 transconjugants, 7 of them carrying two
Table 3. Characteristics of the 18 E. coli transconjugants with plasmids harboring both oqxAB and bla_{CTX-M}-1G/9G

Strain	Origin	Year	genes	MICs	Other resistance profiles	Plasmid replicon type	EcoRI PlasmidRFLP^a			
					NAL	CIP	CTX	AMP, TET, CTI	F2: A:- B:-	E
A6T	Duck	2007	b^la_{CTX-M-24}, oqxAB, aac(6')-Ib-cr	32	0.06	256	AMP, TET, CTI	F2: A:- B:-	E	
42-2T	Duck	2010	b^la_{CTX-M-55}, oqxAB, floR	8	0.06	64	AMP, CHL, FFC, TET, CTI	F3: A:- B:-	A1	
FS5E1DT	Goose	2012	b^la_{CTX-M-55}, oqxAB, floR	8	0.06	64	AMP, CHL, FFC, TET, CTI	F3: A:- B:-	A1	
FS6J2CT	Chicken	2012	b^la_{CTX-M-14}, oqxAB	64	0.125	16	AMP, CHL, TET, DOX, CTI	F14: A:- B:-	B	
CB3J3CT	Chicken	2012	b^la_{CTX-M-14}, oqxAB, floR	32	0.06	16	AMP, CHL, FFC, GEN, CTI	HII, N	F3	
FS1Z4AST	Pig	2012	b^la_{CTX-M-14}, oqxAB, aac(6')-Ib-cr, floR	32	0.125	8	AMP, CHL, FFC, TET, GEN, KAN, CTI	HII	F1	
FSZ33CT	Pig	2012	b^la_{CTX-M-55}, oqxAB	8	0.06	128	AMP, CHL, TET, DOX, CTI	F18: A:- B1	C	
FSZ33GT	Pig	2012	b^la_{CTX-M-55}, oqxAB, floR	8	0.06	128	AMP, CHL, TET, DOX, FFC, GEN, CTI	F18: A:- B1	NA	
A78T	Duck	2007	b^la_{CTX-M-27}, oqxAB, aac(6')-Ib-cr, floR	32	0.25	64	AMP, CHL, TET, FFC, GEN, AMK, CTI	HII F2: A:- B:-	F4	
7ganT	Pig	2010	b^la_{CTX-M-27}, oqxAB, aac(6')-Ib-cr, floR	64	0.25	64	AMP, CHL, TET, DOX, FFC, CTI	NT	G	
70zuT	Pig	2010	b^la_{CTX-M-14}, oqxAB	16	0.125	16	AMP, CHL, GEN, CTI	F43: A:- B16	NA	
5weiT	Pig	2010	b^la_{CTX-M-65}, oqxAB, aac(6')-Ib-cr, floR	64	0.25	16	AMP, CHL, TET, DOX, FFC, GEN, CTI	F2: A:- B:-	NA	
A64T	Duck	2007	b^la_{CTX-M-27}, oqxAB, floR, aac(6')-Ib-cr	32	0.25	32	AMP, CHL, TET, DOX, FFC, AMK, GEN, CTI	HII F2: A:- B:-	F5	
2YG4T	Duck	2011	b^la_{CTX-M-14}, floR, oqxAB, aac(6')-Ib-cr	64	0.25	2	AMP, CHL, TET, FFC, CTI, GEN	HII	F2	
F59Y1CT	Duck	2012	b^la_{CTX-M-55}, oqxAB	64	0.25	32	AMP, CHL, TET, DOX, CTI	F3: A:- B-N	NA	
FS2Y1XT	Duck	2012	b^la_{CTX-M-55}, floR, oqxAB	64	0.06	16	AMP, CHL, DOX, TET, FFC, CTI	F3: A:- B1	A2	
33-2T	Duck	2010	b^la_{CTX-M-55}, oqxAB, floR	64	0.125	32	AMP, CHL, DOX, TET, FFC, GEN, CTI	F18: A:- B1	D	
45-6T	Duck	2010	b^la_{CTX-M-14}, oqxAB, floR	32	0.125	32	AMP, CHL, DOX, TET, FFC, GEN, CTI	HII	F1	
C600					4	0.015	0.125			

^a RFLP patterns differing by only a few bands (n=1 ~ 3) were assigned to the same RFLP profile. NA, not analysed.

AMP, ampicillin; CTX, cefotaxime; CTI, cefotiofur; AMK, amikacin; GEN, gentamicin; FFC, florfenicol; CHL, chloramphenicol; TET, tetracycline; DOX, doxycycline; NAL, nalidixic acid; CIP, ciprofloxacin.

doi: 10.1371/journal.pone.0073947.t003

replicons (FII in combination with FIB, HII, or N). HII replicon type was found in 6 transconjugants, with 3 carrying other replicons. All transconjugants showed extremely high-level resistance to ampicillin, cefotiofur and cefotaxime, at the same level as the donor strains. For quinolones, the transconjugants showed 2~16-, and 4~16-fold increases in the MICs of nalidixic acid, and ciprofloxacin, respectively, when compared with the recipient C600. As shown in Table 3, all the transconjugants were multidrug-resistant and showed resistance to more than two non-β-lactam antimicrobial agents. Notably, 13 transconjugants were found to show high-level resistance to florfenicol, a veterinary antibiotic commonly used in veterinary medicine and aquaculture. The floR gene, which confers resistance to florfenicol, was found in all the 13 transconjugants. The results of Southern blot hybridization revealed that oqxAB and bla_{CTX-M}-1G were located on the same plasmid in the all 18 transconjugants (Figure 1). And floR was also located on these plasmids in the 13 transconjugants resistant to florfenicol. Interestingly, isolates FS3Z3C and FS3Z3G sharing the same PFGE pattern were both resistant to florfenicol, however, the two F18: A:- B1 plasmids of their transconjugants were different (floR in FS3Z3GT, none in FS3Z3CT) (Table 3 and Figure 1E).

As shown in Figure 2, the two F33:A:- B- plasmids p42-2 and pFS5E1DT shared the same EcoRI digestion profiles. This result could be confirmed by the positions of the bands in lane 7 and 8 in Figure 1. The EcoRI digestion profile of plasmid from FS2Y1XT was only one band different from that of p42-2 and pFS5E1DT (Figure 2). As shown in Figure 2, the 6 HII plasmids carrying both oqxAB and bla_{CTX-M-1G} also showed the same or highly similar EcoRI digestion profiles. The plasmids...
from the other 5 transconjugants harboring only one plasmid, shared very different EcoRI digestion profiles.

Discussion

In the present study, the prevalence of ESBLs in PMQR-positive (especially oqxAB) clinical *E. coli* isolates from food-producing animals in South China was investigated and the characteristics of plasmids carrying *oqxAB-bla_{CTX-M}* were also achieved. Surveys on the coexistence of *oqxAB* and ESBLs among Enterobacteriaceae have been reported [12,15,31], however, the characteristics of plasmids with *oqxAB-bla_{CTX-M}* were not analyzed in these previous studies. In the present study, a high prevalence (61.6%) of PMQR determinants was found in the 696 *E. coli* isolates from diseased food-producing animals, similar to our previous work [32]. The positive rate of *oqxAB* in *E. coli* from pigs in this study was similar to that found in *E. coli* from pigs in China [33]. Though olaquindox, the main substrate of efflux pump OqxAB, has been forbidden in poultry since 2000 due to its toxic side effects, the positive rate of *oqxAB* (46.2%) in *E. coli* from avian was significantly higher than that in *E. coli* isolates from chicken in 2002 in China [33]. This indicated the rapid dissemination of *oqxAB* in *E. coli* from animals in China in recent years. In this study, *oqxA* was found to be flanked by IS26 in 54.9% of the *oqxAB*-carrying isolates, which suggests that the mobile element may play an important role in the dissemination of *oqxAB* among different *E. coli* strains. In this study, 322 isolates were resistant to ceftiofur and 70.8% of the ceftiofur-resistant isolates were found to be positive for ESBLs, which was similar to the result (68.3%) of a previous study [21]. There might be two reasons for the higher ceftiofur resistance rate: (i) there might be other β-lactamases not included in this study among these isolates, especially *bla_{CMY}-2*, often conferring resistance to ceftiofur rather than cefotaxime; (ii) ceftiofur, one of the good substrates of AcrAB efflux pump [34], is often used to treat animal diseases and this long-term pressure will contribute to the presence of ceftiofur-resistant isolates. Among the 696 *E. coli* isolates studied, 29.6% of them were ESBL-producers and 27.4% carried CTX-M-β-lactamases, which were both much higher than the

![Plasmid analysis of transconjugants carrying oqxAB and bla_{CTX-M}](image)

Discussion

In the present study, the prevalence of ESBLs in PMQR-positive (especially oqxAB) clinical *E. coli* isolates from food-producing animals in South China was investigated and the characteristics of plasmids carrying *oqxAB-bla_{CTX-M}* were also achieved. Surveys on the coexistence of *oqxAB* and ESBLs among Enterobacteriaceae have been reported [12,15,31], however, the characteristics of plasmids with *oqxAB-bla_{CTX-M}* were not analyzed in these previous studies. In the present study, a high prevalence (61.6%) of PMQR determinants was found in the 696 *E. coli* isolates from diseased food-producing animals, similar to our previous work [32]. The positive rate of *oqxAB* in *E. coli* from pigs in this study was similar to that found in *E. coli* from pigs in China [33]. Though olaquindox, the main substrate of efflux pump OqxAB, has been forbidden in poultry since 2000 due to its toxic side effects, the positive rate of *oqxAB* (46.2%) in *E. coli* from avian was significantly higher than that in *E. coli* isolates from chicken in 2002 in China [33]. This indicated the rapid dissemination of *oqxAB* in *E. coli* from animals in China in recent years. In this study, *oqxA* was found to be flanked by IS26 in 54.9% of the *oqxAB*-carrying isolates, which suggests that the mobile element may play an important role in the dissemination of *oqxAB* among different *E. coli* strains. In this study, 322 isolates were resistant to ceftiofur and 70.8% of the ceftiofur-resistant isolates were found to be positive for ESBLs, which was similar to the result (68.3%) of a previous study [21]. There might be two reasons for the higher ceftiofur resistance rate: (i) there might be other β-lactamases not included in this study among these isolates, especially *bla_{CMY}-2*, often conferring resistance to ceftiofur rather than cefotaxime; (ii) ceftiofur, one of the good substrates of AcrAB efflux pump [34], is often used to treat animal diseases and this long-term pressure will contribute to the presence of ceftiofur-resistant isolates. Among the 696 *E. coli* isolates studied, 29.6% of them were ESBL-producers and 27.4% carried CTX-M-β-lactamases, which were both much higher than the
detection rates (13.1% and 12.4% respectively) in *E. coli* from healthy animals in a recent report [35] (P<0.001). The different incidence of ESBLs amongst *E. coli* isolates from food animals may be due to the use of third-generation cephalosporins in the diseased or dead food-producing animals in this study. At least ten types of *bla*$_{CTX-M}$ genes were found in this study, indicating the *bla*$_{CTX-M}$ genes in *E. coli* from food-producing animals in China were diverse. The predominant *bla*$_{CTX-M}$ type in this study was *bla*$_{CTX-M-14}$, similar result was also reported in *E. coli* isolates from humans and animals in China [35,36,37], however, *bla*$_{CTX-M-1}$ was the most common type in some countries in Europe like England, and France [38,39].

We observed a significantly higher prevalence of CTX-M genes in the 429 PMQR-positive isolates (37.3%) than that (11.6%) in PMQR-negative isolates. This result supports previous findings that PMQR genes are often linked with ESBL production [9]. In addition, the detection rate of CTX-M type genes in *oqxAB*-positive isolates (38.7%) was significantly higher than that in *oqxAB*-negative isolates (17.4%) (P<0.001), indicating *bla*$_{CTX-M}$ might have significant relationship with the new PMQR determinant, *oqxAB*. Among the 127 isolates with *oqxAB*-bla$_{CTX-M}$ plasmids carrying *bla*$_{CTX-M}$ from 84 isolates (66.1%) were conjugatively transferable, similar to the rate in a previous report in China [35]. Co-transferability of *oqxAB* and *bla*$_{CTX-M}$ occurred in 18 (14.2%) of the 127 isolates, providing support for our previous hypothesis that *oqxAB* has correlation with ESBL. *oqxAB* and *bla*$_{CTX-M}$ were confirmed to be located on the same plasmids in all the 18 isolates. Among the 127 isolates with *oqxAB*-bla$_{CTX-M}$, plasmids carrying *bla*$_{CTX-M}$ from 84 isolates (66.1%) were conjugatively transferable, similar to the rate in a previous report in China [35]. Co-transferability of *oqxAB* and *bla*$_{CTX-M}$ occurred in 18 (14.2%) of the 127 isolates, providing support for our previous hypothesis that *oqxAB* has correlation with ESBL. *oqxAB* and *bla*$_{CTX-M}$ were confirmed to be located on the same plasmids in all the 18 isolates. To our knowledge, this is the first report of the prevalence of plasmids carrying *oqxAB* and *bla*$_{CTX-M}$. Association of multiple antibiotic resistance genes on the same transferable plasmids has been an important mechanism of dissemination of multidrug resistance, and the transferable *oqxAB*-bla$_{CTX-M}$ plasmids might explain in part the rapid increasing prevalence of *oqxAB* in *E. coli* of food-producing animals. Because OqxAB has a wide substrate specificity, the existence of its substrates in the environment will increase the resistances of *E. coli* isolates to fluoroquinolones and cephalosporins. In addition, *floR* was located on the plasmids carrying *oqxAB*-bla$_{CTX-M}$ in 13 transconjugants, indicating that the application of florfenicol, commonly used in veterinary medicine and aquaculture, will also increase the resistances of *E. coli* to fluoroquinolones and cephalosporins. In 8 transconjugants, *aac(6')-Ib-cr* was also located on the plasmids carrying *oqxAB*-bla$_{CTX-M}$, consistent with the findings that *aac(6')-Ib-cr* is linked to *bla*$_{CTX-M}$ in Enterobacteriaceae [9]. IncFII replicon types were detected in

Figure 2. *EcoRI* restriction digestion profiles of plasmids co-harboring *oqxAB*-bla$_{CTX-M}$ group genes from transconjugants containing only one plasmid. Lanes 1–14: A6T, 42-2T, FS5E1DT, FS2Y1XT, FS6J2CT, 7ganT, 33-2T, FS3Z3CT, 45-6T, 2YG4T, A64T, A78T, FS1Z4S, and CBJ3CT; Lane M1: λ-*Hind*III marker; Lane M2: DL15000.

doi: 10.1371/journal.pone.0073947.g002

Dissemination of Plasmids Carrying *oqxAB*-bla$_{CTX-M}$
13 of the 18 transconjugants, consistent with previous findings that most bla\text{CTX-M} genes or oqxAB were found to be linked with IncFI plasmids [33,35]. In addition, HI2 plasmids were also often found to be linked with the co-dissemination of oqxAB-bla\text{CTX-M} in this study. Three of the 6 HI2 plasmids were also positive for other replicon types (FII or N), and this might be explained by the presence of a multireplicon fusion of the HI2 plasmid with other replicon type plasmids, similar to a previous report [28]. Though the donors had different PFGE patterns, the F33:A- and HI2 plasmids with oqxAB-blala\text{CTX-M} genes shared highly similar RFLP profiles. This indicates that these two type plasmids might mediate the dissemination of oqxAB-bla\text{CTX-M} genes in \textit{E. coli} from food-producing animals, and whether this represents global dissemination of these plasmids in the future is unclear and further work is required to clarify this.

In conclusion, we report a high prevalence (37.3\%) of blala\text{CTX-M} among PMQR-positive \textit{E. coli} strains from diseased food-producing animals in China between 2002 and 2012. The co-dissemination of oqxAB, floR, and blala\text{CTX-M} genes in \textit{E. coli} isolates from food-producing animals is mediated mainly by the non-human primates in six zoos in China. Vet Microbiol 159: 53-59. doi: 10.1016/j.vetmic.2012.03.009. PubMed: 22487457.

13. Yuan J, Xu X, Guo Q, Zhao X, Ye X et al. (2012) Prevalence of the oqxAB gene complex in \textit{Klebsiella pneumoniae} and \textit{Escherichia coli} clinical isolates. J Antimicrob Chemother 67: 1655-1659. doi: 10.1093/jac/dks086. PubMed: 22438434.

14. Chen X, Zhang W, Pan W, Yin J, Pan Z et al. (2012) Prevalence of qnr, aac(6\prime)-Ib-cr, qepA, and oqxAB in \textit{Escherichia coli} isolates from humans, animals, and the environment. Antimicrob Agents Chemother 56: 3423-3427.

15. Liu BT, Liao XP, Yue L, Chen XY, Li et al. (2013) Prevalence of beta-lactamase and 16S rRNA Methylase Genes Among Clinical \textit{Escherichia coli} Isolates Carrying Plasmid-Mediated Quinolone Resistance Genes From Animals. Microb Drug Resist 19: 237-245. doi: 10.1089/mdr.2012.0179. PubMed: 23289437.

16. Liu BT, Wang XM, Liao XP, Sun J, Zhu HQ et al. (2011) Plasmid-mediated quinolone resistance determinants oqxAB and aac(6\prime)-Ib-cr and extended-spectrum beta-lactamase gene bla\text{CTX-M} co-located on the same plasmid in one \textit{Escherichia coli} strain from China. J Antimicrob Chemother 66: 1638-1639. doi: 10.1093/jac/dkr172. PubMed: 21546384.

17. Manian FA (2005) Asymptomatic nasal carriage of mupirocin-resistant, mupirocin-resistant \textit{Staphylococcus aureus} (MRSA) in a pet dog associated with MRSA infection in household contacts. Clin Infect Dis 36: e26-e28. doi: 10.1086/344772. PubMed: 12522764.

18. Pombia C, da Fonseca JD, Baptista BC, Correia JD, Martinez-Martinez L (2009) Detection of the pandemic O25-ST131 human virulent \textit{Escherichia coli} CTX-M-15-producing clone harboring the qnrB2 and aac(6\prime)-Ib-cr genes in a dog. Antimicrob Agents Chemother 53: 327-328. doi: 10.1128/AAC.00539-08. PubMed: 19001117.

19. CLSI (2012) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI Document M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute.

20. DANNAP (2007) Use of antimicrobial agents and occurrence of antimicrobial resistance bacteria in from food animals, foods and humans in Denmark. ISSN: 1600-2032.

21. Ma J, Zeng Z, Chen Z, Xu X, Wang X et al. (2009) High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6\prime)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 53: 519-524.

22. Yue L, Jiang HK, Liao XP, Liu JH, Li SJ et al. (2008) Prevalence of plasmid-mediated quinolone resistance qnr genes in poultry and swine clinical isolates of \textit{Escherichia coli}. Vet Microbiol 132: 414-420. doi: 10.1016/j.vetmic.2008.05.009. PubMed: 18573620.

23. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA et al. (2009) oqxAB encoding a multidrug efflux pump in human clinical isolates of
Enterobacteriaceae. Antimicrob Agents Chemother 53: 3582-3584. doi: 10.1128/AAC.01574-08. PubMed: 19528276.

24. Briñas L, Moreno MA, Zarazaga M, Porro C, Sáenz Y et al. (2003) Detection of CMY-2, CTX-M-14, and SHV-12 beta-lactamases in Escherichia coli fecal-sample isolates from healthy chickens. Antimicrob Agents Chemother 47: 2056-2058. doi: 10.1128/AAC.47.6.2056-2058.2003. PubMed: 12760899.

25. Liu JH, Wei SY, Ma JY, Zeng ZL, Lü DH et al. (2007) Detection and characterisation of CTX-M-14 and SHV-12 beta-lactamases in Escherichia coli isolates from farm animals in Guangdong Province of China. J Antimicrob Chemother 54: 1591-1599. doi: 10.1111/j.1365-2958.2007.04722.x. PubMed: 17314033.

26. Weill FX, Lailler R, Praud K, Kérouanton A, Fabre L et al. (2004) Emergence of extended-spectrum-beta-lactamase (CTX-M-9)-producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France. J Clin Microbiol 42: 5767-5773. doi: 10.1128/JCM.42.12.5767-5773.2004. PubMed: 15583311.

27. Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY et al. (2007) Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother 59: 880-885. doi: 10.1093/jac/dkm065. PubMed: 17353219.

28. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219-228. doi: 10.1016/j.mimet.2005.03.018. PubMed: 15935499.

29. Villa L, García-Fernández A, Fortini D, Carattoli A (2010) Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65: 2518-2529. doi: 10.1093/jac/dkq234. PubMed: 20935300.

30. Gautom RK (1997) Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J Clin Microbiol 35: 2977-2980. PubMed: 9350772.

31. Park KS, Kim MH, Park TS, Nam YS, Lee HJ et al. (2012) Prevalence of the Plasmid-Mediated Quinolone Resistance Genes, aac(6')-Ib-cr, qepA, and oqxAB in Clinical Isolates of Extended-Spectrum beta-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella pneumoniae in Korea. Ann Clin Lab Sci 42: 191-197.

32. Liu BT, Liao XP, Yang SS, Wang XM, Li LL et al. (2012) Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. J Med Microbiol 61: 1591-1599. doi: 10.1099/jmm.0.043307-0. PubMed: 22878251.

33. Zhao J, Chen Z, Chen S, Deng Y, Liu Y et al. (2010) Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farm workers, and the environment. J Antimicrob Chemother 54: 4219-4224. doi: 10.1111/j.1365-2958.2010.05320.x. PubMed: 19528276.

34. Norcia LJ, Silvia AM, Hayashi SF (1999) Studies on time-kill kinetics of different classes of antibiotics against veterinary pathogenic bacteria including Pasteurella, Actinobacillus and Escherichia coli. J Antimicrob Chemother 42: 5767-5773. doi: 10.1128/JCM.42.12.5767-5773.2004. PubMed: 15935499.

35. Zheng H, Zeng Z, Chen S, Liu Y, Yao Q et al. (2012) Prevalence and characterisation of CTX-M-14 beta-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents 39: 305-310. doi: 10.1016/j.ijantimicag.2011.12.001. PubMed: 22325120.

36. Li B, Sun JY, Liu QZ, Han LZ, Huang XD et al. (2011) High prevalence of CTX-M beta-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis 43: 170-174. doi: 10.3109/00365548.2010.538856. PubMed: 21122708.

37. Liu W, Chen L, Li H, Duan H, Zhang Y et al. (2009) Novel CTX-M-14 (beta)-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother 63: 895-900. doi: 10.1093/jac/dkp058. PubMed: 19297379.

38. Randall LP, Clouting C, Horton RA, Coldham NG, Wu G et al. (2011) Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother 66: 86-95. doi: 10.1093/jac/dkp039. PubMed: 21098542.

39. Bonnedahl J, Drobní M, Gauthier-Clerc M, Hernandez J, Granholm S et al. (2009) Dissemination of Escherichia coli with CTX-M-type ESBL between humans and yellow-legged gulls in the south of France. PLOS ONE 4: e5958. doi: 10.1371/journal.pone.0005958. PubMed: 19536298.