Tracking and Variability in Childhood Levels of BMI: The Bogalusa Heart Study

David S. Freedman1, Hannah G. Lawman2, Deborah A. Galuska1, Alyson B. Goodman1, and Gerald S. Berenson3

Objective: Although the tracking of BMI levels from childhood to adulthood has been examined, there is little information on the within-person variability of BMI.

Methods: Longitudinal data from 11,591 schoolchildren, 3,096 of whom were reexamined as adults, were used to explore the tracking and variability of BMI levels. This article focuses on changes in age-adjusted levels of BMI.

Results: There was strong tracking of BMI levels. The correlation of adjusted BMI levels was \(r = 0.88 \), and 78% of children with severe obesity at one examination had severe obesity at the next examination (mean interval, 2.7 years). Further, an increase in adjusted BMI from \(+5 \text{ kg/m}^2\) (above the median) to \(+10 \text{ kg/m}^2\) increased the risk for adult BMI \(\geq 40 \) by 2.7-fold. However, BMI levels among children and adolescents were variable. Over a 9- to 15-month interval, the SD of adjusted BMI change was 0.9 kg/m², and 0.7% of children had an absolute change \(\geq 3.5 \). This variability was associated with the interval between examinations and with the initial BMI.

Conclusions: Despite the high degree of tracking of BMI, annual changes of 3.5 kg/m² or more are plausible. Knowledge of this variability is important when following a child over time.

Obesity (2018) 26, 1197–1202. doi:10.1002/oby.22199

Introduction

Despite information on the tracking of BMI levels from childhood to adulthood (1-4), there is relatively little information on the within-person variability of BMI changes in childhood (5-7). Further, although there are recommendations from the Centers for Disease Control and Prevention (CDC) (8) concerning the identification of implausible BMI values at a single examination, few studies have examined the distribution of BMI changes over time (9).

BMI \(z \) scores derived from the 2000 CDC growth charts (10) are widely used in analyses to adjust for sex and age. However, these \(z \) scores are known to be inaccurate for very high BMIs and to have an upper bound of about 3 SDs at most ages (11-14). These limitations have led to the use of 120% of the 95th percentile of BMI in the classification of severe obesity (15). Further, because change in BMI \(z \) scores is inversely associated with the initial BMI \(z \) score level (16), it has been suggested that longitudinal analyses should focus on changes in BMI rather than BMI \(z \) score (17,18).

There is, however, little information on the persistence of severe obesity or on the distribution of BMI changes during childhood. The objectives of the current analyses of children and adults in the Bogalusa Heart Study are to (1) examine the variability of BMI levels over time and (2) examine the prediction of severe obesity in adulthood (BMI \(\geq 40 \)) from BMI levels in childhood. We focus on BMI values that are adjusted for sex and age, and we examine the consistency of changes in BMI with those for the arm circumference and triceps skinfold. We use data from 11,591 2- to 17-year-olds who were examined at least two times between 1973 and 1994; 3,096 children were reexamined as adults.

Methods

Study sample

The Bogalusa Heart Study (19) examines the natural history of risk factors for cardiovascular disease in a biracial community (Ward 4 of Washington Parish, Louisiana). All procedures were in accordance with the ethical standards of the institutions, and approval was obtained from the relevant committees on human subjects.

Seven cross-sectional studies of schoolchildren were conducted from 1973 to 1974 through 1992 to 1994, and on average, each of these studies examined about 3,500 children. Preschool
schoolchildren ($n = 714$) were also examined in 1973. Overall, there were 27,232 examinations from 11,665 children in these studies. Eight studies of adults were conducted from 1982 through 2008 (20).

Among the schoolchildren, we excluded 342 examinations. These exclusions included 95 records with missing data for weight or height, 23 records in which a girl reported being pregnant, 41 records in which sex was coded inconsistently across examinations, 20 records for which the body size measurements were considered to be implausible (8), 81 records in which height decreased by more than 1 inch, 13 records in which BMI levels differed substantially from levels of both arm circumference and triceps skinfold thickness, and 69 records in which there were inconsistencies in the date of birth. These exclusions resulted in a sample of 26,890 records from 11,591 children.

For the longitudinal analyses of BMI levels throughout childhood, we also excluded 229 examinations that occurred within 9 months of or more than 7 years after the previous examination, resulting in a sample of 11,591 children. Of these children, 6,828 were examined multiple times: 2,536 were examined two times, 1,802 were examined three times, 1,412 were examined four times, and 1,078 were examined five to seven times.

Of the 11,591 children, 3,106 were reexamined in adulthood. We excluded 10 children who had a final adult age that was within 5 years of their mean childhood age, resulting in a sample of 3,096 children who were followed to adulthood.

Body size measures and BMI metrics

Height was measured to the nearest 0.1 cm and weight was measured to the nearest 0.1 kg; BMI was calculated as kilograms divided by meters squared. Arm circumference was measured to the nearest centimeter with a nonstretchable tape, and the triceps skinfold thickness was measured to the nearest millimeter using Lange Skinfold Calipers (19pp127-47).

Obesity is defined as BMI ≥ 95th age-specific percentile of the CDC growth charts for each sex. Because of the inaccuracies of the CDC z scores and percentiles among heavier children (11,15), severe obesity is defined as BMI ≥ 120th of the 95th percentile (%BMIp95). We consider children who have a %BMIp95 between 100 and 119 to have “moderate obesity.” A child with a %BMIp95 of 100 has BMI that is at the CDC 95th percentile.

Although changes in BMI z scores, which are derived from the transformation for normality (L), median (M), and dispersion (S) parameters (12,21), have frequently been used to standardize BMI levels for sex and age, the compression of very high z scores into a narrow range limits the usefulness of this metric for very high BMIs (14,22). BMI z score values approach an upper bound that varies by sex and age so that among children with very high BMIs, large BMI differences can correspond to only small differences in BMI z score.

Because of these limitations, we accounted for the difference in BMI by sex and age by subtracting the median BMI in the CDC growth charts (for each sex and age) from a child’s BMI. We refer to this metric, which was has been used in previous longitudinal analyses (17), as “adjusted BMI.” The current study focuses on changes (in units of kg/m2) in adjusted BMI. We also examined the annualized change in this metric.

Statistical methods

All analyses were performed in R (The R Foundation for Statistical Computing, Vienna, Austria). Levels of various characteristics of the sample are presented, and because multiple examinations from the same children are not independent, we used generalized estimating equations (23) to assess the statistical significance of differences across BMI categories.

We then examined the tracking and within-person variability of adjusted BMI levels between consecutive examinations. In general, a child with N measurements would contribute $N - 1$ pairs of consecutive measurements to the longitudinal analysis. For example, a child who was examined at ages 6, 9, and 12 years of age would contribute two pairs of measurements: the change in adjusted BMI between ages 6 and 9 years and the change in adjusted BMI between 9 and 12 years. There were 15,070 pairs of examinations for these analyses. The tracking of adjusted BMI levels among these children was examined using cross classifications of initial and final BMI categories, Spearman correlations, and intraclass correlation coefficients.

Because an objective was to describe the tracking of severe obesity among children, we focus on the prediction of severe (class 3) obesity (BMI ≥ 40) in analyses that followed children into adulthood. For children who were examined multiple times, we used the mean adjusted BMI in these analyses. Logistic regression models were used to estimate the probability of class 3 obesity according to adult age, race-sex group, and mean levels of adjusted BMI and childhood age. The relative risk associated with an increase of mean adjusted BMI (1) from 0 to +5 and (2) from +5 to +10 was estimated in Poisson regression models (24,25).

Results

Table 1 shows levels of various characteristics according to BMI status in the 26,890 examinations. Children had moderate obesity (%BMIp95 of 100-119) at about 7% of these examinations and severe obesity (%BMIp95 ≥ 120) at about 2% of these examinations. As compared with examinations in which BMI was below the 85th percentile, children at examinations in which they had severe obesity were older (mean difference, 10 months), occurred in later years of the study (1985 vs. 1981), were more likely to be black (45% vs. 38%), and had a 14.3 higher mean adjusted BMI. As assessed in generalized estimating equations that account for the multiple examinations from some children, all of these comparisons were statistically significant at the 0.001 level.

We then assessed the cross classification of BMI status among the 15,070 pairs of examinations (Table 2) among children. The correlation between consecutive levels of adjusted BMI was $r = 0.88$, and 78% of the 243 subjects who had severe obesity at the initial examination had severe obesity at reexamination. (The intraclass correlation coefficient for levels of adjusted BMI was 0.85). Both the positive predictive value and specificity of severe obesity were high, but sensitivity was only moderate. About 50% ($n = 26 + 162$) of the children with severe obesity at the second examination did not have severe obesity at the previous examination.
Table 3 shows the variability of changes in adjusted BMI. The overall BMI SD was 1.9, with 99% of the children having an adjusted BMI change between −4.4 and +8.5. Although there was little difference in the variability of the changes in adjusted BMI by sex or race, the SD increased by more than threefold (from 0.9 to 3.2) as the interval between examinations increased, decreased with the age of the child, and increased with the initial BMI level. Additional analyses (not shown) indicated that this variability was more strongly related to the interval between examinations than to the child’s age.

Among the 2,721 children who were reexamined within 9 to 15 months, 99% of the changes in adjusted BMI change were between −3.0 and +3.4, and only 19 (0.7%) had an absolute change of ≥3.5. (Of these 19 children, 14 had an initial BMI that was >5 above the median and 8 had obesity at the initial examination.) Further, among these 2,721 children, the largest decrease in adjusted BMI was −9.3, and the largest increase was 14.2 (data not shown).

An examination of the annualized change in adjusted BMI (Table 4), calculated by dividing adjusted BMI change by the interval between examinations, indicated that the overall annualized BMI SD was 0.7. In contrast to analyses in Table 3 that did not account for the time between examinations, the only substantial difference in the variability of the annualized change was across categories of initial BMI. The BMI SD of the annualized adjusted changes ranged from 0.6 (nonobesity) to 1.4 (severe obesity).

We then examined the cross classification of levels of childhood %BMIp95 and adult BMI categories among 3,096 subjects who were reexamined as adults (Table 5). The mean follow-up interval was 21 years. Of the 55 children who had had a mean %BMIp95 >120, 69% had an adult BMI ≥40, and only 2 had an adult BMI <30. Despite this high positive predictive value, the sensitivity of childhood BMI was low. Of the 233 adults with BMI ≥40, 128 (55%) had had a mean adjusted BMI in childhood that was below the 95th percentile.

Figure 1 shows the predicted probabilities, based on logistic regression, of an adult BMI ≥40 according to race, sex, and mean adjusted childhood BMI. (Adult age and the mean childhood age were also included as covariates.) At a mean adjusted BMI of +10 and a mean childhood age of 12, the probabilities of severe obesity at age 32 years ranged from 37% (white males) to 64% (black females). As assessed in Poisson regression models, an increase in the mean adjusted BMI from 0 to +5 was associated with a 7.1-fold increase in the risk of an adult BMI ≥40. However, as compared with children who had a mean adjusted BMI of +5, those with a mean adjusted BMI of +10 had a 2.7-fold increased risk for class 3 obesity.

Discussion

The current results show that although high BMI levels are likely to persist into adulthood, there is a large amount of within-person variability in BMI levels among children. Although the intraclass correlation coefficient among adjusted BMI levels was 0.85 and the Spearman correlation between consecutive levels was $r = 0.88$, about 1% of the absolute changes over 9 to 15 months were greater than 5.

Table 2 Cross classification of initial and subsequent BMI status

Initial exam	Overall	Nonobesity	Moderate obesity	Severe obesity
Nonobesity	13,935	13,429 (96)	481 (4)	26 (0.2)
Moderate obesity	892	226 (25)	504 (56)	162 (18)
Severe obesity	243	6 (2)	47 (19)	189 (78)
Overall	15,070	13,661 (91)	1,032 (7)	377 (3)

Nonobesity category consists of children with BMI <95th percentile (%BMIp95 < 100). Moderate obesity represents %BMIp95 of 100 to 119, while severe obesity represents %BMIp95 ≥ 120.

Values are number of examination pairs (2 consecutive examinations). Values in parentheses are row percentages.
than +3.5 kg/m². The within-person variability was most strongly related to the number of years between examinations and the initial BMI level. Despite this variability, during a 22-year (mean) follow-up, adjusted BMI levels among children were strongly associated with an adult BMI ≥ 40. As compared with children who had BMI at the median of the CDC growth charts, those who had a mean adjusted BMI of +5 had a 7.1-fold increased risk for an adult BMI ≥ 40. Our results concerning the tracking of BMI, along with those of others (1-4), provide little justification for the criteria used to identify these values. For example, Kim et al (33) excluded 1-year score changes of more than 3 SDs (about 4% of the sample), while an analysis from the Early Childhood Longitudinal Study (34) excluded the smallest and largest 1% of BMI changes. Other studies have had pediatric endocrinologists review cases that were flagged according to various criteria (e.g., more than a 15% change in BMI change over 1 year) (3).

The few studies that have examined longitudinal changes in BMI among schoolchildren have emphasized the substantial variability of the observed changes (5-7). For example, Brannsether et al. (7) reported that the 90th percentile of annual BMI changes among Norwegian children varied from 1.1 to +2.5 across sex-age groups. Further, the distribution of BMI z score changes had heavy tails, with 6% of the changes being greater than 2 SDs. Other investigators have focused on BMI changes thought to be errors but have provided little justification for the criteria used to identify these values. For example, Kim et al (33) excluded 1-year z score changes of more than 3 SDs (about 4% of the sample), while an analysis from the Early Childhood Longitudinal Study (34) excluded the smallest and largest 1% of BMI changes. Other studies have had pediatric endocrinologists review cases that were flagged according to various criteria (e.g., more than a 15% change in BMI change over 1 year) (3).

Our results add to the literature by showing the distribution of BMI changes in a carefully measured, diverse sample. This information may be useful when deciding whether a large BMI change is plausible or may have resulted from a transcription error. Because the variability of BMI changes was strongly influenced by the time interval between examinations, the changes that we observed over a 9- to

TABLE 3 Variability of change in adjusted BMI

N^a	SD	Percentiles	Spearman correlation^b					
Overall	15,070	1.9	0.5	2.5	50	97.5	99.5	0.88
Sex			4.4	2.4	0.8	5.4	8.5	0.88
Boys	7,635	1.8	-4.4	-2.3	0.7	5.1	8.0	0.87
Girls	7,435	2.0	-4.5	-2.6	0.9	5.7	9.0	0.87
Race^c			4.5	2.2	8.3	12.1	0.43^d	
White	9,063	1.9	-4.5	-2.6	0.8	5.2	8.3	0.87
Black	6,005	1.9	-4.0	-2.2	0.8	5.7	9.0	0.89
Initial age (y)			4.5	2.2	8.3	12.1	0.43^d	
2 to 6	3,431	2.0	-2.2	-1.6	0.7	6.7	10.1	0.82
7 to 9	4,397	1.9	-3.1	-1.8	0.8	5.8	9.0	0.88
10 to 13	5,724	1.8	-4.8	-3.0	0.9	4.6	7.0	0.89
14 to 17	1,518	1.5	-5.7	-3.4	0.7	3.1	4.5	0.92
Interval between examinations			4.5	2.2	8.3	12.1	0.43^d	
0.75 to 1.25 y	2,721	0.9	-3.0	-1.7	0.5	2.3	3.4	0.95
1.25 to 2.4 y	3,130	1.4	-4.7	-2.4	0.7	3.2	4.9	0.90
2.5 to 3.4 y	6,642	1.8	-4.6	-2.7	0.9	5.0	6.8	0.87
3.5 to 4.9 y	1,516	2.5	-4.0	-2.3	1.1	7.5	10.6	0.83
5 to 6.9 y	1,061	3.2	-4.5	-2.8	1.5	10.1	12.8	0.76
Initial BMI category (%BMIp95)			4.5	2.2	8.3	12.1	0.43^d	
<100	13,936	1.7	-3.4	-2.2	0.7	4.7	7.7	0.85^d
100 to 119	892	3.2	-7.2	-4.5	2.2	8.3	12.1	0.43^d
≥120	242	3.7	-8.7	-5.9	2.7	9.0	13.0	0.50^d

^aPairs of examinations. Adjusted BMI calculated by subtracting CDC 50th sex- and age-specific percentile of BMI from child’s BMI. Change in adjusted BMI represents adjusted BMI at second examination minus adjusted BMI at first examination.

^bSpearman correlation between consecutive values of adjusted BMI.

^cAll children are non-Hispanic.

^dCorrelations within categories of initial BMI should be interpreted with caution, as range of initial BMI values is restricted.
Obesity

Predicted probabilities of adult BMI ≥ 40 kg/m² according to race-sex group and adjusted BMI in childhood. Adjusted BMI was calculated by subtracting the CDC sex- and age-specific 50th percentile of BMI from a child’s BMI. Probabilities were calculated for an adult age of 32 years.

![Figure 1](image-url)

TABLE 4 Variability of annualized change in adjusted BMI

N	SD	0.5	2.5	50	97.5	99.5	
Overall	15,070	0.7	−2.2	−1.1	0.3	1.8	2.6
Sex							
Boys	7,635	0.7	−1.9	−1.0	0.3	1.7	2.6
Girls	7,435	0.7	−2.3	−1.1	0.4	1.8	2.6
Race							
White	9,063	0.7	−2.2	−1.1	0.3	1.7	2.5
Black	6,005	0.7	−1.9	−1.0	0.3	1.8	2.8
Initial age (y)							
2 to 6	3,431	0.6	−0.9	−0.6	0.3	1.8	2.6
7 to 9	4,397	0.6	−1.2	−0.7	0.3	1.8	2.5
10 to 13	5,724	0.7	−2.3	−1.3	0.4	1.8	2.6
14 to 17	1,518	0.9	−3.2	−2.1	0.4	1.6	2.9
Interval between examinations							
0.75 to 1.25 y	2,721	0.9	−3.0	−1.7	0.5	2.2	3.4
1.25 to 2.4 y	3,130	0.7	−2.4	−1.2	0.3	1.6	2.5
2.5 to 3.4 y	6,642	0.6	−1.6	−0.9	0.3	1.6	2.3
3.5 to 4.9 y	1,516	0.6	−0.9	−0.5	0.3	1.7	2.3
5 to 6.9 y	1,061	0.6	−0.9	−0.5	0.3	1.8	2.4
Initial BMI category (%BMIp95)							
< 100	13,936	0.6	−1.8	−1.0	0.3	1.6	2.4
100 to 119	892	1.2	−4.0	−2.2	0.9	2.5	3.7
≥ 120	243	1.4	−5.3	−2.6	1.1	2.8	3.3

TABLE 5 Cross classification of childhood and adult BMI status

Mean %BMIp95 in childhood	Adult BMI (kg/m²)a
Overall	2.666 2.045 695 128
< 100	2.95 82 67 14
100 to 119	55 15 13 14
≥ 120	3.096 2.071 792 233

aBMI at last examination in adulthood.

15-month interval may be of most interest. Among these 2,721 children, the correlation between consecutive levels of adjusted BMI was $r = 0.95$, and the SD of adjusted BMI change was 0.9. However, 0.7% of these children had an adjusted BMI change of more than 3.5. It is possible that BMI changes of this magnitude should be assessed for potential transcription errors.

Over longer periods, however, the variability of BMI is much greater. Among the examinations that were separated by ≥5 years, for example, the SD of BMI change was about three times larger (3.2), and about 2.5% of the adjusted BMI changes were greater than 10. Although it is possible that the greater variability of BMI levels among older children could have contributed to this increased variability in adjusted BMI change, the annual rate of change differed only slightly according to the interval between examinations.

Our use of adjusted BMI levels in the current study separates the within-person variability from the age-related increases in BMI. Although this metric does not account for differences in the dispersion of BMI levels with age, the relatively short interval between examinations (2.7 years) may have reduced the effects of differences in dispersion. It should be realized, however, that other BMI metrics can account for differences in both the median and dispersion of BMI levels. For example, the L parameter in the LMS transformation (21) can be set to 0 or 1, and in the latter case, the LMS transformation becomes $BMI = M / (M \times S)$. This metric avoids the compression of very high BMIs into a narrow range of z scores. Further, it can be used to adjust for the differences in the median and dispersion of BMI levels by sex and age when multiplied by reference values of M and S. The reference values could be chosen to be those at age 20 years or at the mean age of the sample (35).

A strength of the current study is that we were able to verify the BMI values with those for arm circumference and triceps skinfold thickness. An examination of BMI levels among the nine children who were examined three or more times and who showed the largest changes in adjusted BMI indicated that all were consistent with changes in arm circumference. Although there were differences between some of the BMI changes and changes in the triceps skinfold thickness, this may reflect the difficulties in accurately measuring skinfolds (36, 37).

At least three limitations of the current study should be considered. For the current analyses, we excluded values thought to be erroneous, but it is likely that errors remained which may have influenced our estimates of BMI variability. For example, one boy in our analyses had adjusted BMI values of +5.6 (age, 5 years), +10.5 (7 years), +1.2 (11 years) and +14.2 (16 years). Although both the arm circumference and triceps skinfold of this child showed similar
patterns, it is possible that the low value at age 11 years reflected an acute condition or that an incorrect identification number was assigned at that examination. It should also be realized that data for these analyses were collected in a period (1973 through 1994) in which the prevalence of obesity was relatively low (9% in Bogalusa vs. 18.5% in National Health and Nutrition Examination Survey 2015-2016 [39]). Because the variability of adjusted BMI change increases at higher BMIs, our results may underestimate the current variability of BMI over time. Finally, it should be realized that many of the children contributed more than one observation in several of the analyses focused on longitudinal change. As these changes are not independent, we were unable to assess the statistical significance of differences across categories.

In conclusion, these results show that although BMI levels track strongly throughout childhood and adolescence and are predictive of high adult BMIs, many children exhibit large changes in BMI as they age. The magnitude of these changes increases with the time between examinations and is greater among children with severe obesity than among other children. Over a period of 9 to 15 months, we found that about 0.7% of children had an absolute change in adjusted BMI of more than 3.5 kg/m². However, among children with severe obesity, adjusted BMI changes of more than 10 kg/m² may be observed over longer periods. These results may provide some guidance concerning the magnitudes of BMI changes among children that might be expected.

© 2018 The Obesity Society

References
1. Power C, Lake JK. Cole TJ. Measurement and long-term health risks of childhood and adolescent obesity. Int J Obes Relat Metab Disord 1997;21:507-526.
2. Singh AS, Mulder C, Twisk JWR, van Mechelen W, Chinapaw MJM, Mechelen WV. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Res 2008;16:474-488.
3. Lo JC, Chandra M, Sinaiko A, et al. Severe obesity in children: prevalence, persistence and relation to hypertension. Int J Pediatric Endocrinol 2014;2014:3. doi: 10.1186/1678-0000-0000-0000
4. Simmonds M, Burch J, Liewellyn A, et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technol Assess 2015;19:1-336.
5. Siervo GM, Maynard LM, Wisemanande WA, et al. Annual changes in total body fat and fat-free mass in children from 8 to 18 years in relation to changes in body mass index. The Fels Longitudinal Study. Ann N Y Acad Sci 2000;904:420-423.
6. Inokuchi M, Matsuo N, Takayama JI, Hasegawa T. Tracking of BMI in Japanese children from 6 to 18 years of age: reference values for annual BMI incremental changes and proposal for size of increment indicative of risk for obesity. Ann Hum Biol 2011;38:146-149.
7. Brammesther B, Eide GE, Roelants M, Bjerknes R, Jølhusøn PB, BMI and BMI SDS in childhood: annual increments and conditional change. Ann Hum Biol 2017; 44:28-33.
8. Centers for Disease Control and Prevention. A SAS program for the 2000 CDC growth charts. https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Updated December 16, 2016. Accessed April 17, 2018.
9. Lawman HG, Ogden CL, Hassink S, Malya G, Vander Veur S, Foster GD. Comparing methods for identifying biologically implausible values in height, weight, and body mass index among youth. Am J Epidemiol 2015;182:359-365.
10. Kuczmannski RJ, Ogden CL, Guo SS, et al. 2000 CDC growth charts for the United States: methods and development. Vital and health statistics, series 11, no. 246. Hyattsville, MD: National Center for Health Statistics; 2002.
11. Flegel KM, Wei R, Ogden CL, Freedman DS, Johnson CL, Curtin LR. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am J Clin Nutr 2009;90:1314-1320.
12. Flegel KM, Cole TJ. Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts. National health statistics reports, no. 63. Hyattsville, MD: National Center for Health Statistics; 2013.
13. Freedman DS, Butte NF, Taveras EM, et al. BMI z-scores are a poor indicator of adiposity among 2- to 19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014. Obesity (Silver Spring) 2017;25:739-746.
14. Woo IG. Using body mass index Z-score among severely obese adolescents: a cautionary note. Int J Pediatr Obes 2009;4:405-410.
15. Kelly AS, Barlow SE, Rao G, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation 2013;128:1689-1712.
16. Paluch RA, Epstein LH, Roemmich JN. Comparison of methods to evaluate changes in relative body mass index in pediatric weight control. Am J Hum Biol 2007;19:487-494.
17. Cole TJ, Faith MS, Pietrobelli A, Heo M. What is the best measure of adiposity change in growing children: BMI, BMI%, BMI z-score or BMI centile? Eur J Clin Nutr 2005;59:419-425.
18. Berkery CS, Colditz GA. Adiposity in adolescents: change in actual BMI works better than change in BMI z score for longitudinal studies. Ann Epidemiol 2007;17:144-50.
19. Berenson GS, McMahan CA, Voors AW, et al. Cardiovascular Risk Factors in Children: The Early Natural History of Atherosclerosis and Essential Hypertension. New York, NY: Oxford University Press; 1980.
20. Croft JB, Webber LS, Parker FC, Berenson GS. Recruitment and participation of children in a long-term study of cardiovascular disease: the Bogalusa Heart Study, 1973-1982. Am J Epidemiol 1984;120:436-448.
21. Cole TJ. The LMS method for constructing normalized growth standards. Eur J Clin Nutr 1990;44:45-60.
22. Freedman DS, Berenson GS. Tracking of BMI z scores for severe obesity. Pediatrics 2017;140:e20171072. doi:10.1542/peds.2017-1072.
23. Hjøgjarl S, Yan, J, Halsekob U. The package groupfor for generalized estimating equations. J Stat Softw 2006;15. doi:10.18637/jss.v015.i02
24. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159:702-706.
25. Lumley T, Kronmal R, Shuangge M. Relative risk regression in medical research: models, contrasts, estimators, and algorithms. UW Biostatistics Working Paper Series. Working Paper 293. http://biostats.bepress.com/uwbiostat/paper293. Published July 2006. Accessed April 17, 2018.
26. Centers for Disease Control and Prevention. Modified z-scores in the CDC growth charts. https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/biv-cutoffs.pdf. Published 2017. Accessed April 17, 2018.
27. Cole TJ. The development of growth references and growth charts. Ann Hum Biol 2012;39:382-394.
28. Zemel BS. A commentary on the construction of weight velocity charts. Nutr Clin Pract 2009;24:651-653.
29. WHO Department of Nutrition for Health and Development. WHO child growth standards. Growth velocity based on weight, length and head circumference. Methods and development. Geneva: World Health Organization; 2009. http://www.who.int/childgrowthstandards/velocity3/velocity_report.pdf.
30. Cole TJ, Stanukov Y, Santhakumaran S, Pan H, Modi N. Birth weight and longitudinal growth in infants born below 32 weeks’ gestation: a UK population study. Arch Dis Child Fetal Neonatal Ed 2014;99:F34-F40.
31. Wright CM, Matthews JN, Waterston A, Aynsley-Green A. What is a normal rate of weight gain in infancy? Am J Clin Nutr 2009;90:1059-1068.
32. Centers for Disease Control and Prevention. Percentile data files with LMS values. http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/velocity/lvcharts.pdf. Accessed April 17, 2018.
33. Freedman et al. Tracking and Variability of Childhood BMI