Article

Chiral Perturbation Theory vs. Linear Sigma Model in A Chiral Imbalance Medium

Alexander Andrianov 1,2,∗, Vladimir Andrianov 1,‡ and Domenec Espriu 2,‡

1 V. A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 199034, St. Petersburg, Russia; a.andrianov@spbu.ru; v.andrianov@rambler.ru
2 Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; espriu@icc.ub.edu
* Correspondence: a.andrianov@spbu.ru; Tel.: +7-921-44-35355
‡ These authors contributed equally to this work.

Abstract: We compare Chiral Perturbation Theory (ChPT) and the Linear Sigma Model (LSM) as realizations of low energy QCD for light mesons in a chirally imbalanced medium. The relations between the low-energy constants of the Chiral Lagrangian and the corresponding constants of the Linear Sigma Model are established as well as the expressions for the decay constant of π-meson in the medium and for the mass of the a0. In the large Nc count taken from QCD the correspondence of ChPT and LSM is remarkably good and give a solid ground for search of chiral imbalance manifestation in pion physics. A possible experimental detection of chiral imbalance (and therefore a phase with Local Parity Breaking) is outlined in the charged pion decays inside the fireball.

Keywords: chiral imbalance; Chiral Perturbation Theory; Linear Sigma Model; charged pion decay in chiral medium; local parity breaking

1. Introduction

The possible generation of a phase with Local Parity Breaking (LPB) in nuclear matter at extreme conditions such as those reached in heavy ion collisions (HIC) at RHIC and LHC [1] has been examined recently [2–4]. It has been suggested in [2] that at increasing temperatures an isosinglet pseudoscalar background could arise due to large-scale topological charge fluctuations (studied recently in lattice QCD simulations [5]).

These considerations led eventually to the observation of the so-called Chiral Magnetic Effect (CME) [2] in the STAR and PHENIX experiments at RHIC [6]. The effect should be most visible for non-central HIC where large angular momenta induce large magnetic fields contributing to the chiral charge separation. For central collisions it was proposed in [3] that the presence of a phase where parity was spontaneously broken could be a rather generic feature of QCD at finite baryon density. Local parity breaking can be induced by difference between the densities of the right- and left-handed chiral fermion fields (Chiral Imbalance).

In the hadron phase we shall assume that as a consequence of topological charge fluctuations, the environment in central HIC generates a pseudoscalar background growing approximately linearly in time. This background is associated with a constant axial vector whose zero component is identified with a chiral chemical potential. In such an environment one could search for possible manifestation of LPB in electromagnetic and lepton probes. In particular, in [7] it was shown that a good part of the excess of dileptons produced in central heavy-ion collisions [8] might be a consequence of LPB due to the generation of a pseudoscalar isosinglet condensate whose precise magnitude and time variation depends on the dynamics of the HIC.
The complete description of a medium with chiral imbalance should also take into account thermal fluctuations of the medium. But in the paper the description in zero temperature limit is considered and to understand the changes for non-zero temperatures we rely on the results of lattice computations of quark matter with chiral imbalance and a temperature of order 150 MeV undertaken [9]. Thus our calculations keep the tendency of increase of chiral condensate and decrease of pion masses when temperature grows.

This paper is mostly concerned with the possibility of identifying LPB in the hadron phase of QCD in HIC. Such a medium would be simulated by a chiral chemical potential $\mu_5$. Adding to the QCD Lagrangian the term $\Delta L_q = \mu_5 q^+ \gamma_5 q \equiv \mu_5 \rho_5$, we allow for non-trivial topological fluctuations [7] in the nuclear (quark) fireball, which are ultimately related to fluctuations of gluon fields. The transition of the quark-glue medium characteristics to a hadron matter reckons on the quark-hadron continuity [10] after hadronization of quark-gluon plasma. The behavior of various spectral characteristics for light scalar and pseudoscalar ($\sigma, \pi^0, a_0^0$ ) - mesons by means of a QCD-motivated $\sigma$-model Lagrangian was recently derived for $SU_L(2) \times SU_R(2)$ flavor symmetry including an isosinglet chiral chemical potential $\mu_5$. The structural constants of the $\sigma$-model Lagrangian were taken as input parameters suitable to describe the light meson properties in vacuum and then they are extrapolated to a chiral medium. In this way ad hoc there is no reliable predictability in the determination of the hadron system response on chiral imbalance, and reaching quantitative predictions requires a phenomenologically justified hadron dynamics. To increase predictability, we extend the vacuum Chiral Lagrangians [12,13] with phenomenological low-energy structural constants taking into account the chiral medium in the fireball with a chiral imbalance. It is shown that $\sigma$-model parametrization of [11] fits well the pion phenomenology at low energies as derived from ChPT.

Next it is described how pions modify their dynamics in decays in a chiral medium, in particular, charged pions stop decaying into muons and neutrinos for a large enough chiral chemical potential. A possible experimental detection of chiral imbalance (and therefore a phase with Local Parity Breaking) is outlined in the charged pion decays inside the fireball.

2. Chiral Lagrangian with chiral chemical potential

The Chiral Lagrangian for pions describing their mass spectra and decays in the fireball with a chiral imbalance can be implemented with the help of softly broken chiral symmetry in QCD transmitted to hadron media, properly constructed covariant derivative

$$D_\nu \longrightarrow D_\nu - i \{ \bar{I}_q \mu_5 \delta_{0\nu}, \} = I_q \bar{\nu}_\nu - 2 I_q \mu_5 \delta_{0\nu},$$

where we skipped the electromagnetic field. The axial chemical potential is introduced as a constant time component of an isosinglet axial-vector field.

In the framework of large number of colors $N_c$ [13] the $SU(3)$ Chiral Lagrangian in the strong interaction sector contains the following dim=2 operators [13],

$$L_2 = \frac{F_0^2}{4} < -j_\mu j^\mu + \chi^\dagger U + \chi U^\dagger >,$$

where $< ... >$ denotes the trace in flavor space, $j_\mu \equiv U^\dagger \partial_\mu U$, the chiral field $U = \exp(i\pi / F_0)$, the bare pion decay constant $F_0 \simeq 92 MeV$, $\chi(x) = 2B_0 s(x)$ and $M_0^2 = 2B_0 m_u m_d$, the tree-level neutral pion mass. The constant $B_0$ is related to the chiral quark condensate $<q\bar{q}>$ as $F_0^2 B_0 = - <q\bar{q}>$. Taking now the covariant derivative in (1) it yields

$$L_2(\mu_5) = L_2(\mu_5 = 0) + \mu_5^2 N_f F_0^2.$$
Herein we have used the identity for \( U \in SU(n) \), \( j_\mu \geq 0 \). In the large \( N_c \) approach the \( \text{dim}=4 \) operators [13] in the Chiral Lagrangian are given by

\[
\mathcal{L}_4 = \bar{L}_3 < j_\mu j^\mu j_\nu j^\nu > + \bar{L}_0 < j_\mu j^\mu j_\nu j^\nu > - L_5 < j_\mu j^\mu (\chi^\dagger U + \chi U^\dagger) >, \tag{4}
\]

where \( L_0, L_3, L_5 \) are bare low energy constants. For \( SU(3) \) and \( SU(2) \) \( j_\mu \geq 0 \) and there is the identity

\[
< j_\mu j^\mu j_\nu j^\nu > = -2 < j_\mu j^\mu j_\nu j^\nu > + \frac{1}{2} < j_\mu j^\mu > < j_\nu j^\nu > + < j_\mu j_\nu > < j^\mu j^\nu >, \tag{5}
\]

whereas for \( SU(2) \) there is one more identity

\[
2 < j_\mu j^\mu j_\nu j^\nu > = < j_\mu j^\mu > < j_\nu j^\nu >. \tag{6}
\]

Applying these identities one finds the four-derivative Gasser-Leutwyler (GL) operators for the \( SU(3) \) chiral Lagrangian

\[
\mathcal{L}_4 = L_1 < j_\mu j^\mu > < j_\nu j^\nu > + L_2 < j_\mu j_\nu > < j^\mu j^\nu > + L_3 < j_\mu j^\mu j_\nu j^\nu > - L_5 < j_\mu j^\mu (\chi^\dagger U + \chi U^\dagger) > \tag{7}
\]

with

\[
L_1 = \frac{1}{2} L_0; \quad L_2 = L_0; \quad L_3 = L_3 - 2L_0.
\tag{8}
\]

For \( SU(2) \) one has a further reduction of the \( \text{dim}=4 \) lagrangian,

\[
\mathcal{L}_4 = \frac{1}{4} l_1 < j_\mu j^\mu > < j_\nu j^\nu > + \frac{1}{4} l_2 < j_\mu j_\nu > < j^\mu j^\nu > - \frac{1}{4} l_4 < j_\mu j^\mu (\chi^\dagger U + \chi U^\dagger) > \tag{9}
\]

with normalization so that

\[
l_1 = 4L_1 + 2L_3, \quad l_2 = 4L_2, \quad (l_1 + l_2) = 2L_3 + 6L_2; \quad l_4 = 4L_3. \tag{10}
\]

We stress that this chain of transformations is valid only if \( j_\mu \geq 0 \).

The response of the Chiral Lagrangian on chiral imbalance is derived with the help of the covariant derivative (1) applied to the Lagrangian (4),

\[
\Delta \mathcal{L}_4(\mu_5) = -j_5^2 \{ 8(l_1 + l_2) < j_\mu j^\mu > -4(l_1 + l_2) < j_\mu j_\nu > -4 < \chi^\dagger U + \chi U^\dagger > \}. \tag{11}
\]

We notice that this result is drastically different from what one could obtain from the final Lagrangian (9). This is because the identities (5) and (6) are violated if \( j_\mu \neq 0 \). The above modifications change differentely the coefficients in the dispersion law in energy \( p^0 \) and three-momentum \( |\vec{p}| \) for the mass shell as well as modify the mass term for pions (all together it gives the inverse propagator of pions),

\[
\mathcal{D}^{-1}(\mu_5) = \left( l_0^2 + 32\mu_5^2(l_1 + l_2) \right) p_0^2 - \left( l_0^2 + 16\mu_5^2(l_1 + l_2) \right) |\vec{p}|^2 - \left( l_0^2 + 4l_4\mu_5^2 \right) m_\pi^2 \rightarrow 0. \tag{12}
\]

In the leading order of large \( N_c \) expansion (neglecting the RG logarithm as a contribution next-to-leading in the large \( N_c \) expansion ) the empirical values of the \( SU(2) \) GL constants [12] are

\[
\begin{align*}
l_1' &= (-0.4 \pm 0.6) \times 10^{-3}; \quad l_2' = (8.6 \pm 0.2) \times 10^{-3}; \\
l_1' + l_2' &= (8.2 \pm 0.8) \times 10^{-3}; \quad l_4' = (2.64 \pm 0.01) \times 10^{-2}. \tag{13}
\end{align*}
\]

They can be obtained also if they are normalized at the Renormalization Group scale \( \mu \simeq M_\pi \simeq 140 \text{MeV}, \log \left( \frac{m_\pi}{\mu} \right) \simeq 0 \).
Thus in the pion rest frame
\[ F_\pi^2(\mu_5^2) \simeq F_0^2 + 32\mu_5^2(l_1 + l_2); \quad m_\pi^2(\mu_5^2) \simeq \left(1 - \frac{4\mu_5^2}{F_0^2} (8(l_1 + l_2) - l_4)\right)m_\pi^2(0), \quad (14) \]

i.e. the pion decay constant is growing and its mass is decreasing in the chiral media.

3. Linear Sigma Model for light pions and scalar mesons in the presence of chiral imbalance: comparison to ChPT

Let us compare these constants with those ones estimated from the Linear Sigma Model built in [14,15]. The Sigma Model was build with realization of SU(2) chiral symmetry to describe pions and isosinglet and isotriplet scalar mesons. Its Lagrangian reads
\[ L = N_c \left\{ \frac{1}{4} < (D_\mu H (D^\mu H)^\dagger) + \frac{B_0}{2} < m(H + H^\dagger) + \frac{M^2}{2} < HH^\dagger > - \frac{\lambda_1}{2} < (HH^\dagger)^2 > - \frac{\lambda_2}{4} < (HH^\dagger)^2 >^2 + \frac{\xi}{2} (\det H + \det H^\dagger) \right\}, \quad (15) \]

where \( H = \xi \Sigma \xi \) is an operator for meson fields, \( N_c \) is a number of colours, \( m \) is an average mass of current \( u, d \) quarks, \( M \) is a “tachyonic” mass generating the spontaneous breaking of chiral symmetry, \( B_0, c, \lambda_1, \lambda_2 \) are real constants.

The matrix \( \Sigma \) includes the singlet scalar meson \( \sigma \), its vacuum average \( \sigma \) and the isotriplet of scalar mesons \( a_0^0, a_0^-, a_0^+ \), the details see in [14,15]. The covariant derivative of \( H \) including the chiral chemical potential \( \mu_5 \) is defined in (1). The operator \( \xi \) realizes a nonlinear representation (see (2)) of the chiral group \( SU(2)_L \times SU(2)_R \), namely, \( \xi^2 = U_l \).

The diagonal masses for scalar and pseudoscalar mesons read
\[ m_\sigma^2 = -2 \left( M^2 - 6(\lambda_1 + \lambda_2)F_\pi^2 + c + 2\mu_5^2 \right) \]
\[ m_a^2 = -2 \left( M^2 - 2(3\lambda_1 + \lambda_2)F_\pi^2 - c + 2\mu_5^2 \right) \]
\[ m_\pi^2(\mu_5) = \frac{2b}{F_\pi} m_\pi^2(0) \left(1 - \frac{\mu_5^2}{2(\lambda_1 + \lambda_2)F_\pi^2}\right) \quad (16) \]
\[ F_\pi^2(\mu_5) = \frac{M^2 + 2\mu_5^2 + c}{2(\lambda_1 + \lambda_2)} = F_0^2 + \frac{\mu_5^2}{\lambda_1 + \lambda_2}. \]

From spectral characteristics of scalar mesons in vacuum one fixes the Lagrangian parameters, \( \lambda_1 = 16.4850, \lambda_2 = -13.1313, c = -4.46874 \times 10^4 \text{MeV}^2, B_0 = 1.61594 \times 10^3 \text{MeV}^2 \) [14].

The change of pion coupling constant \( F_0 \) is determined by potential parameters as compared to the ChPT definition,
\[ \Delta F_\pi^2 = \frac{1}{\mu_5^2} \approx 0.3 \quad \text{vs} \quad 32(l_1 + l_2) \approx 0.26. \quad (17) \]

It is a quite satisfactory correspondence.

Analogously, in the rest frame using the pion mass correction,
\[ m_\pi^2(\mu_5)F_\pi^2(\mu_5) \simeq 2m_\pi B_0 F_\pi(\mu_5) \] it is easy to find the estimation for
\[ l_4 \approx 2.64 \times 10^{-2} \quad \text{vs} \quad \frac{1}{8(\lambda_1 + \lambda_2)} \approx 3.8 \times 10^{-2}, \quad (18) \]

wherefrom one can also guess the relation \( 4(l_1 + l_2) \sim l_4 \) following from the LSM.
For moving mesons with $|\vec{p}| \neq 0$ and the CP breaking mixing of scalar and pseudoscalar mesons the effective masses $m_{\text{eff}}^2$ take the form,

$$m_{\text{eff}^-}^2 = \frac{1}{2} \left( 16 \mu_5^2 + m_\pi^2 + m_\rho^2 - \sqrt{(16\mu_5^2 + m_\pi^2 + m_\rho^2)^2 - 4 \left(m_{\text{eff}}^2 - 16\mu_5^2 \mu_5^2 \right)} \right),$$

$$m_{\text{eff}^+}^2 = \frac{1}{2} \left( 16 \mu_5^2 + m_\pi^2 + m_\rho^2 + \sqrt{(16\mu_5^2 + m_\pi^2 + m_\rho^2)^2 - 4 \left(m_{\text{eff}}^2 - 16\mu_5^2 \mu_5^2 \right)} \right).$$

(19)

For small $\mu_5^2, m_\pi^2 \ll m_\rho^2 \approx 1GeV^2$ one can approximate the dependence on the wave vector $\vec{p}$

$$m_{\text{eff}}^2 \approx m_\pi^2 - 16\mu_5^2 |\vec{p}|^2.$$  

Comparing with (12) one establishes the relationship of isotriplet scalar mass and GL constants

$$m_a = \frac{F_0}{\sqrt{l_1 + l_2}} \approx 1GeV,$$

(21)

which reproduces the PDG value within the experimental error bars[16].

4. Possible experimental detection of chiral imbalance in the charged pion decays

The predicted distortion of the mass shell condition can be detected in decays of charged pions when the effective pion mass approaches to muon mass. Let us find the threshold value for the $\pi^+ \rightarrow \mu^+ \nu$ decay. If a charged pion was generated in chiral medium its mass is lower than in the vacuum and the condition for its decay follows from (12),

$$(1 - 16(l_1 + l_2)\frac{\mu_5^2}{F_0^2}) \left( |\vec{p}|^2 + m_{0,\pi}^2 \right) \geq |\vec{p}|^2 + m_\mu^2,$$

$$m_a^2 \frac{16\mu_5^2}{m_{0,\pi}^2 - m_\mu^2} \geq |\vec{p}|^2 + m_{0,\pi}^2,$$

(22)

where we have used the relations $4(l_1 + l_2) \approx l_4$ and (21). The decay channel is closed for $|\vec{p}|^2 \approx 0$ if $\mu_5 \approx 160MeV$. It must be detected as a substantial decrease of muon flow originated from pion decays in fireball. When considering the decay process of a charged pion into a muon + neutrino at values of the chiral chemical potential lower than $\mu_5 \approx 160MeV$ then still the muon yield from the fireball obviously decreases at sufficiently large momenta. It gives a chance to measure the magnitude of chiral chemical potential for sufficiently high statistics.

5. Results

- For light mesons in the chiral imbalance medium we compared the Chiral Perturbation Theory (ChPT) and the Linear Sigma Model (LSM) as realizations of low energy QCD. The relations between the low-energy constants of the Chiral Lagrangian and the corresponding constants of the Linear Sigma Model are established as well as the expressions for the decay constant of the pion in the medium and the mass of the $a_0$ meson are found.
- The low energy QCD correspondence of ChPT and LSM in the large $N_c$ limit is satisfactory and give a solid ground for search of chiral imbalance manifestation in pion physics at HIC.
- The resulting dispersion law for pions in the medium allows us reveal the threshold of decay of a charged pion into a muon and neutrino which can be suppressed with increasing of chiral chemical potential.
- [14], that at higher energies exotic decays of isoscalar mesons into three pions arise due to mixing of $\pi$ and $a_0$ meson states in the presence of chiral imbalance. It was shown [7,11,14] that a wider class of direct parity breaking at higher energies, in the framework of linear sigma model with isotriplet scalar ($a_0$) and pseudoscalar (pions) mesons their mixing arises with generation of $\pi \pi$
A manifestation for LPB in the presence of chiral imbalance in the sector of $\rho$ and $\omega$ vector mesons [3,4] can also happen and in this case the Chern-Simons interaction plays the main role. It turns out [3] that the spectrum of massive vector mesons splits into three components with different polarizations $\pm_{long}$ having different effective masses $m_{V,\pm} < m_{V,\pm_{long}} < m_{V,--}$.

Thus a possible experimental detection of chiral imbalance in medium (and therefore a phase with LPB) in the charged pion decays and vector meson polarizations inside of the fireball can be realized.

We draw also attention to the recent proposal to measure the photon polarization asymmetry in $\pi\gamma$ scattering [14,17,18] as a way to detect LPB due to chiral imbalance. It happens in the ChPT including electromagnetic fields due to the Wess-Zumino-Witten operators.

One may concern for appearance of changes in the properties of muons and neutrinos in the medium, but in our opinion, this does not change the main estimates in Eq. (22), as a possible influence of chiral chemical potential on lepton properties would be controlled by extra power of Fermi coupling constant, i.e. by a next order in weak interactions with a little hope to register it.

Acknowledgments: We express our gratitude to Angel Gómez Nicola for stimulating discussions of how to implement chiral imbalance in ChPT.

Conflicts of Interest: The authors declare no conflict of interest.

Funding: This research was funded by the Spanish MINECO under project MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘Maria de Maeztu’), grant FPA2016-76005-C2-1-P and grant 2017SGR0929 (Generalitat de Catalunya), by Grant RFBR 18-02-00264 and by SPbSU travel grants Id: 43179834, 43178702, 41327333, 36273714, 41418623.

References

1. Kharzeev D. E. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys. 2014, 75, 133-151.
2. Kharzeev D. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B 2006, 633, 260-264; Kharzeev D. Topologically induced local $P$ and $CP$ violation in QCD x QED. Ann. Phys. (NY) 2010, 325, 205-218;
Kharzeev D. E.; McLerran L. D.; Warringa H. J. The Effects of topological charge change in heavy ion collisions: 'Event by event $P$ and $CP$ violation'. Nucl. Phys. A 2008, 803, 227-253;
Fukushima K.; Kharzeev D.E.; Warringa H.J. Electric-current Susceptibility and the Chiral Magnetic Effect. Phys. Rev. D 2008, 78, 074033;
Fukushima K.; Kharzeev D.E.; Warringa H.J. Electric-current Susceptibility and the Chiral Magnetic Effect. Nucl. Phys. A 2010, 836, 311-336.
3. Andrianov A.A.; Espriu D. Phys. Lett. B 663 (2008) 450-455;
Andrianov A.A.; Andrianov V.A.; Espriu D. Spontaneous $P$-violation in QCD in extreme conditions. Phys. Lett. B 2009, 678, 416-421.
4. Andrianov A.A.; Andrianov V.A.; Espriu D.; Planells X. Abnormal dilepton yield from parity breaking in dense nuclear matter. AIP Conf.Proc. 2011 1343 450-452.
5. Buividovich P. V.; Chernodub M. N.; Kharzeev D. E.; Kalaydzhyan T.; Luschevskaya E. V.; Polikarpov M. I. Magnetic-Field-Induced insulator-conductor transition in SU(2) quenched lattice gauge theory. Phys. Rev. Lett. 2010, 105, 132001.
6. Abelev B.I. et al. [STAR Collaboration]. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation. Phys. Rev. Lett. 2009, 103, 251601; Voloshin S. A. Local strong parity violation and new possibilities in experimental study of non-perturbative QCD. J. Phys. Conf. Ser. 2012, 30, 012021.
7. Andrianov A.A.; Andrianov V.A.; Espriu D.; Planells X. Dilepton excess from local parity breaking in baryon matter. Phys. Lett. B 2012, 710, 230-235; Andrianov A.A.; Andrianov V.A.; Espriu D.; Planells X. Implications of local parity breaking in heavy ion collisions Proc. Sci., QFTHEP2013, 025.
8. Adare A. et al. [PHENIX Collaboration]. Detailed measurement of the $e^+e^-$ pair continuum in $p + p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for direct photon production. Phys. Rev. C 2010, 81, 034911.

9. Braguta V. V. et al. Study of QCD Phase Diagram with Non-Zero Chiral Chemical Potential. Phys. Rev. D 2016, 93, 034509;

10. Braguta V. V.; Kotov A. Yu. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential Phys. Rev. D 2016, 93, 105025.

11. Fukushima K.; Hatsuda T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001.

12. Andrianov A.A.; Andrianov V.A.; Espriu D. QCD with Chiral Chemical Potential: Models Versus Lattice. Acta Phys. Polon. Supp. 2016, 9, 515-521; ibid. Decays of light mesons triggered by chiral chemical potential. Acta Phys. Polon. Supp. 2017, 10, 977-982.

13. Gasser J.; Leutwyler H. Annals Phys. 1984, 158, 142-210;

14. Bijnens J.; Ecker G. Annu. Rev. Nucl. Part. Sci. 2014, 64, 149-174.

15. Kaiser R., Leutwyler H. Large $N(c)$ in chiral perturbation theory. Eur. Phys. J. C 2000, 17, 623-649.

16. Andrianov A.A.; Andrianov V.A.; Espriu D.; Iakubovich A. V.; Putilova A. E. QCD with Chiral Chemical Vector: Models Versus Lattices Phys. Part. Nucl. Lett. 2015, 12, 357-361;

17. Putilova A. E.; Iakubovich A. V.; Andrianov A.A.; Andrianov V.A.; Espriu D. Exotic meson decays and polarization asymmetry in hadron environment with chiral imbalance. EPJ Web of Conferences 2018, 191, 05014.

18. Andrianov A.A.; Espriu D.; Planells X. An effective QCD Lagrangian in the presence of an axial chemical potential. Eur. Phys. J. C 2013, 73, 2294.

19. Tanabashi M. et al. (Particle Data Group). Phys. Rev. D 2018, 98, 030001.

20. Kawaguchi M.; Harada M.; Matsuzaki S.; Ouyang R. Charged pions tagged with polarized photons probing strong CP violation in a chiral-imbalance medium. Phys. Rev. C 2017, 95, 065204.

21. Andrianov A.A.; Andrianov V.A.; Espriu D.; Iakubovich A. V.; Putilova A. E. Chiral imbalance in hadron matter: its manifestation in photon polarization asymmetries,“ Phys. Part. Nucl. Lett. 2019, 16, 493-497.