P-Sasakian Manifold with Quarter-Symmetric Non-Metric Connection

Oğuzhan Bahadır

Department of Mathematics, Faculty of Arts and Sciences, K.S.U. Kahramanmaras, Turkey

Abstract The object of the present paper is to study on a P-Sasakian manifold with quarter symmetric non-metric connection. In this paper, we consider some properties of the curvature tensor, projective curvature tensor, concircular curvature tensor, conformal curvature tensor with respect to quarter symmetric non-metric connection in a P-Sasakian manifolds. Finally, we give an example.

Keywords Para-Sasakian Manifold, Quarter-symmetric Connections

AMS Classification: 53C15, 53C25, 53C40.

1 Introduction

In [3], Friedmann and Schouten introduced the idea of semi-symmetric connection on a differentiable manifold. Many Authors have studied the properties of Riemannian manifolds with semi-symmetric (symmetric) and non-metric connection ([5], [1], [2], [4], [6], [13], [15]). In [4], S.Golab introduced the idea of quarter-symmetric linear connections in a differential manifold. A linear connection is said to be a quarter-symmetric connection if its torsion tensor T is of the form

$$T(X, Y) = u(Y)\varphi X - u(X)\varphi Y,$$

for any vector fields X, Y on a manifold, where u is a 1–form and φ is a tensor of type $(1, 1)$. If $\varphi = I$, then the quarter-symmetric connection is reduced to a semi-symmetric connection. Hence quarter-symmetric connection can be viewed as a generalization of semi-symmetric connection. The connection ∇ is said to be a metric connection if there is a Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric. In [12], Sharfuddin and Hussain defined a semi-symmetric metric connection in an almost contact manifold, by setting

$$T(X, Y) = \eta(Y)X - \eta(X)Y.$$

Ajit Barman and Gopal Ghosh studied P-Sasakian manifolds admitting a semi-symmetric non-metric connection whose concircular curvature tensor satisfies certain curvature conditions. Moreover, some properties of a quarter-symmetric non-metric connection on P-sasakian manifolds are investigated in [11].
In the present paper, we will study P-Sasakian manifold with quarter symmetric non-metric connection. Section 2 is devoted to preliminaries. In section 3, we introduce quarter symmetric non-metric connection on a Para-Sasakian manifold. We calculate curvature tensor and Ricci tensor and scalar curvature of a P-Sasakian manifold with respect to quarter symmetric non-metric connection, respectively. Moreover we show that if a Para-Sasakian manifold with quarter symmetric non-metric connection is Ricci semi-symmetric, then the manifold is η–Einstein manifold with respect to quarter symmetric non-metric connection. In section 4, we find some results for concircular curvature tensor with respect to quarter symmetric non-metric connection. In section 5, it is shown that if a Para-Sasakian manifold is ϕ–projectively flat with respect to quarter symmetric non-metric connection, then the manifold is an η–Einstein manifold with respect to quarter symmetric non-metric connection. In section 6, we have proved that if a Para-Sasakian manifold is conformally flat with respect to quarter symmetric non-metric connection, then the manifold is an Einstein manifold with respect to quarter symmetric non-metric connection. In section 7, we give an example which verify the results of Section 3, Section 4 and Section 5.

2 Preliminaries

A differentiable manifold of dimension n is called an almost paracontact Riemannian structure [8, 9, 10], if it admit a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a 1–form η and Riemannian metric g which satisfy

\begin{align*}
\eta(\xi) &= 1, \quad (3) \\
\phi\xi &= 0, \quad \eta(\phi X) = 0, \quad (4) \\
\phi^2(X) &= X - \eta(X)\xi, \quad (5) \\
g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad (6) \\
g(X, \xi) &= \eta(X), \quad (7) \\
(\nabla_X \eta)Y &= g(X, \phi Y) \quad (8)
\end{align*}

for any vector field X and Y, where ∇ is Levi-Civita connection with respect to the Riemannian metric g. If we write $g(X, \phi Y) = \Phi(X, Y)$, then the tensor field ϕ is a symmetric $(0,2)$ tensor field. If (ϕ, ξ, η, g) satisfy the relations

\begin{align*}
\nabla_X \xi &= \phi X, \quad (9) \\
(\nabla_X \phi)(Y) &= -g(X, Y)\xi - \eta(Y)X + 2\eta(X)\eta(Y)\xi, \quad (10) \\
d\eta &= 0 \quad (11)
\end{align*}

then the manifold is called para-Sasakian manifold (briefly, P-Sasakian).

Let M be an n-dimensional P-Sasakian manifold. Then the following relations hold:

\begin{align*}
g(R(X, Y)Z, \xi) &= \eta(R(X, Y)Z) = g(X, Z)\eta(Y) - g(Y, Z)\eta(X), \quad (12) \\
R(\xi, X)Y &= \eta(Y)X - g(X, Y)\xi, \quad (13) \\
R(X, Y)\xi &= \eta(X)Y - \eta(Y)X, \quad (14) \\
S(X, \xi) &= -(n-1)\eta(X), \quad (15) \\
S(\phi X, \phi Y) &= S(X, Y) + (n-1)\eta(X)\eta(Y) \quad (16)
\end{align*}

for any vector fields X, Y and Z, where R and S are the curvature and Ricci tensors of M, respectively [7, 8].

A P-Sasakian manifold M is said to be η–Einstein if its Ricci tensor S is of the form

\begin{align*}
S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y) \quad (17)
\end{align*}

for any $X, Y \in \Gamma(TM)$, where a, b are scalar functions such that $b \neq 0$. If $b = 0$ then M is called Einstein manifold.
3 Quarter-Symmetric Non-Metric Connection

Let M be an n-dimensional P-Sasakian manifold with Levi-Civita connection ∇. If we set

$$\nabla_X Y = \nabla_X Y + \eta(Y)\phi X$$ \hspace{1cm} (18)

for any vector field X and Y, then ∇ is a linear connection on M. We know that the torsion tensor T with respect to connection ∇ is given

$$T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y].$$

From (18) we get

$$T(X, Y) = \eta(Y)\phi X - \eta(X)\phi Y.$$ \hspace{1cm} (19)

Furthermore (18) we have

$$(\nabla_X g)(Y, Z) = -\eta(Y)\Phi(X, Z) - \eta(Z)\Phi(X, Y)$$ \hspace{1cm} (20)

for any vector field X and Y, which implies that ∇ is a quarter symmetric non-metric connection on M. Also by using (4), and (20) we get

$$(\nabla_\xi g)(Y, Z) = 0,$$

which means that the metric g is ξ-parallel with respect to quarter symmetric non-metric connection.

From (5),(9),(10), (4) and (18) we have the following proposition:

Proposition 1. Let M be a P-Sasakian manifold. Then we have the following equations:

$$\nabla_X \xi = 2\phi X,$$ \hspace{1cm} (21)

$$(\nabla_X \phi)Y = -g(X, Y)\xi - 2\eta(Y)X + 3\eta(X)\eta(Y)\xi.$$ \hspace{1cm} (22)

The curvature tensor \mathcal{R} of the quarter symmetric non-metric connection ∇ on M is defined by

$$\mathcal{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$ \hspace{1cm} (23)

From (8), (18) and (23) we have

$$\mathcal{R}(X, Y)Z = R(X, Y)Z + \Phi(X, Z)\phi Y - \Phi(Y, Z)\phi X + \eta(Z)\{\eta(X)Y - \eta(Y)X\},$$ \hspace{1cm} (24)

where

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$ \hspace{1cm} (25)

is the curvature tensor with respect to the Levi-Civita connection ∇. Using (24) and the first Bianchi identity we have the following proposition

Proposition 2. Let M be an n-dimensional P-Sasakian manifold with quarter symmetric non-metric connection. Then the first Bianchi identity of the quarter-symmetric nonmetric connection ∇ on M is provided.
From (14) and (24) we have
\[
\mathcal{K}(X,Y,Z,U) = K(X,Y,Z,U) + \Phi(X,Z)\Phi(Y,U) - \Phi(Y,Z)\Phi(X,U) \\
+ \eta(Z)K(X,Y,\xi,U)
\]
(26)
where \(K\) and \(\mathcal{K}\) are given by
\[
K(X,Y,Z,U) = g(R(X,Y)Z,U)
\]
\[
\mathcal{K}(X,Y,Z,U) = g(\mathcal{R}(X,Y)Z,U).
\]

Theorem 3. Let \(M\) be an \(n\)-dimensional P–Sasakian manifold with quarter symmetric non-metric connection. Then we have the following equations:
\[
\mathcal{K}(X,Y,Z,U) + \mathcal{K}(Y,X,Z,U) = 0,
\]
(27)
\[
\mathcal{K}(X,Y,Z,U) + \mathcal{K}(X,Y,U,Z) = \eta(Z)K(X,Y,\xi,U) \\
+ \eta(U)K(X,Y,\xi,Z),
\]
(28)
\[
\mathcal{K}(X,Y,Z,U) - \mathcal{K}(Z,U,X,Y) = \eta(X)\eta(U)g(Y,Z) \\
- \eta(Y)\eta(Z)g(X,U),
\]
(29)
for any \(X,Y,Z,U \in \Gamma(TM)\).

Proof. From (26) we obtain (27). By using (14) and (26) we get (28). Again from (26) we have (29).

Proposition 4. Let \(M\) be an \(n\)-dimensional P–Sasakian manifold with quarter symmetric non-metric connection. Then we have the following equations:
\[
g(\mathcal{R}(X,Y)Z,\xi) = \eta(\mathcal{R}(X,Y)Z) \\
= g(\mathcal{R}(X,Y)Z,\xi),
\]
(30)
\[
\mathcal{R}(X,Y)\xi = 2\mathcal{R}(X,Y)\xi,
\]
(31)
\[
\mathcal{R}(\xi,X)Y = -g(\phi X,\phi Y)\xi
\]
(32)
for any \(X,Y,Z \in \Gamma(TM)\).

Proof. From (7), (4) and (24) we obtain (30). By using (3), (14) and (24) we get (31). Again from (3), (13) and (24) we have (32).

The Ricci tensor \(\mathcal{S}\) of an P-Sasakian manifold \(M\) with respect to quarter symmetric non-metric connection \(\nabla\) is given by
\[
\mathcal{S}(X,Y) = \sum_{i=1}^{n} g(\mathcal{R}(e_i,X)Y,e_i).
\]
The scalar curvature of \(M\) with respect to quarter symmetric non-metric connection \(\nabla\) is defined by
\[
\mathfrak{r} = \sum_{i=1}^{n} \mathcal{S}(e_i,e_i)
\]
where \(X,Y \in \Gamma(TM)\), \(\{e_1,e_2,...,e_n\}\) is an orthonormal frame.

From (26) we have
\[
\mathcal{S}(X,Y) = \sum_{i=1}^{n} \left[g(\mathcal{R}(e_i,X)Y,e_i) + g(\phi X,\phi Y) - \Phi(X,Y)g(\phi e_i,e_i) \right] \\
+ \eta(Y)\eta(X) - n\eta(X)\eta(Y).
\]
(33)
Theorem 5. Let M be an n– dimensional P–Sasakian manifold. Then we have the following equations:

\[
\mathcal{S}(X,Y) = S(X,Y) + g(X,Y) - \beta \Phi(X,Y) - n\eta(X)\eta(Y),
\]

(34)

\[
\tau = r - \beta^2,
\]

(35)

where r is scalar curvature of Levi-Civita connection and $\beta = \text{trace}(\Phi)$.

Proof. Since the Ricci tensor of the Levi-Civita connection ∇ is given by

\[
S(X,Y) = \sum_{i=1}^{n} g(R(e_i, X), e_i),
\]

then by using (6) and (33) we get (34). Moreover from (6) and (34) we have (35). \qed

From (34) we have the following corollary

Corollary 6. Let M be an n– dimensional P–Sasakian manifold. Then the Ricci tensor \mathcal{S} of quarter symmetric non-metric connection ∇ is symmetric.

By using (3),(6), (4), (15), (16), (34), (36) and (37) we obtain

\[
\mathcal{S}(Y,U) = (1 - n)\{g(Y,U) + \eta(Y)\eta(U)\},
\]

(41)

This equation tell us M is an η Einstein manifold with respect to quarter symmetric non-metric connection. \qed

4 Concircular Curvature Tensor

Let M be an n– dimensional P–Sasakian manifold. The concircular curvature tensor of M with respect to quarter symmetric non-metric connection ∇ is defined by

\[
C^*(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)}\{g(Y,Z)X - g(X,Z)Y\}
\]

(42)
By using (24), (35) and (42) we get

\[C^*(X,Y)Z = R(X,Y)Z + \Phi(X, Z)\phi Y - \Phi(Y, Z)\phi X + \eta(Z)\{\eta(X)Y - \eta(Y)X\} \]

\[+ \frac{\beta^2 - r}{n(n - 1)}(g(Y, Z)X - g(X, Z)Y) \]

(43)

and

\[C^*(X,Y)Z = C^*(X,Y)Z + \Phi(X, Z)\phi Y - \Phi(Y, Z)\phi X + \eta(Z)\{\eta(X)Y - \eta(Y)X\} \]

\[+ \frac{\beta^2}{n(n - 1)}(g(Y, Z)X - g(X, Z)Y), \]

(44)

where \(C^* \) is concircular curvature tensor with respect to Levi-Civita connection. If we consider \(C^* = C^* \), substituting \(Y \) by \(\xi \) in (44), from (3) and (7) we have

\[g(X, Z) = \eta(X)\eta(Z). \]

(45)

Using equations (5), (6) and (45) we obtain

\[\Phi(X, Z) = 0. \]

(46)

From (34), (45) and (46) we have the following theorem

Theorem 8. In a P-Sasakian manifold, if concircular curvature tensor is invariant under quarter symmetric non-metric connection then we have

\[\mathcal{S}(X,Y) = S(X,Y) + (1 - n)\eta(X)\eta(Y) \]

for any \(X, Y \in \Gamma(TM) \).

Definition 9. Let \(M \) be an \(n \)-dimensional P-Sasakian manifold. Then \(M \) is \(\xi \)-concirculary flat with respect to quarter symmetric non-metric connection if \(\mathcal{C}^*(X,Y)\xi = 0 \).

Taking \(Z = \xi \) in (43) and using (3), (5), (7), (4) and (15) we have

\[\mathcal{C}^*(X,Y)\xi = [2 + \frac{r - \beta^2}{n(n - 1)}\}\{\eta(X)Y - \eta(Y)X\} \]

(47)

From (47) we have the following theorem

Theorem 10. Let \(M \) be an \(n \)-dimensional P-Sasakian manifold. Then \(M \) is \(\xi \)-concirculary flat with respect to quarter symmetric non-metric connection if and only if the scalar curvature tensor with respect to Levi-Civita connection \(M \) is equal to \(\beta^2 - 2n(n - 1) \).

Definition 11. Let \(M \) be an \(n \)-dimensional P-Sasakian manifold. Then \(M \) is \(\phi \)-concirculary flat with respect to quarter symmetric non-metric connection if and only if \(g(\mathcal{C}^*(\phi X, \phi Y)\phi Z, \phi W) = 0 \).

Taking the inner product of (42) with \(W \), we get

\[\mathcal{C}'(X,Y,Z,W) = \mathcal{K}(X,Y,Z,W) \]

\[- \frac{r}{n(n - 1)}[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)], \]

(48)

where \(\mathcal{C}' \) is the concircular curvature tensor of type \((0, 4)\) with respect to quarter symmetric non-metric connection and \(\mathcal{C}'(X,Y,Z,W) = g(\mathcal{C}^*(X,Y)Z, W) \).
From (48) we have
\[
\nabla' \phi X, \phi Y, \phi Z, \phi W) = \nabla(\phi X, \phi Y, \phi Z, \phi W) \\
+ \frac{r}{n(n-1)} \left\{ \phi(\phi Y, \phi Z)g(\phi X, \phi W) - g(\phi X, \phi Z)g(\phi Y, \phi W) \right\}.
\]
(49)

Using (49), \(\phi \) - concircular flatness implies
\[
\nabla(\phi X, \phi Y, \phi Z, \phi W) = \frac{r}{n(n-1)} \left\{ \phi(\phi Y, \phi Z)g(\phi X, \phi W) \\
- g(\phi X, \phi Z)g(\phi Y, \phi W) \right\}.
\]
(50)

Let \(\{e_1, e_2, \ldots, e_{n-1}, \xi\} \) be a local orthogonal basis of the vector fields in \(M \) and using the fact that \(\{\phi e_1, \phi e_2, \ldots, \phi e_{n-1}, \xi\} \) is also a local orthogonal basis, putting \(X = W = e_i \) and summing up with respect to \(i = 1, 2, \ldots, n-1 \) we obtain
\[
\sum_{i=1}^{n-1} \nabla(\phi e_i, \phi Y, \phi Z, \phi e_i) = \frac{r}{n(n-1)} \sum_{i=1}^{n-1} \left\{ \phi(\phi Y, \phi Z)g(\phi e_i, \phi e_i) \\
+ g(\phi e_i, \phi Z)g(\phi Y, \phi e_i) \right\}.
\]
(51)

The equation (51) turns into
\[
\nabla(\phi Y, \phi Z) = \frac{r(n-2)}{n(n-1)} g(\phi Y, \phi Z).
\]
(52)

From (3), (5), (7), (4), (35) and (38) we obtain
\[
\nabla(\phi Y, Z) = -g(Y, Z) + \beta \Phi(Y, Z) - (n-2)\eta(Y)\eta(Z) \\
+ \frac{(r-\beta^2)(n-2)}{n(n-1)} g(\phi Y, \phi Z).
\]
(53)

Then contracting the equation (53) over \(Y \) and \(Z \) and from (3), (5), (7), (4) we get
\[
r = \beta^2 - n(n-1).
\]
(54)

Then we have the following theorem:

Theorem 12. Let \(M \) be an \(n \)-dimensional \(P \)-Sasakian manifold. If \(M \) is \(\phi \) - concircular flat with respect to quarter symmetric non-metric connection, then the scalar curvature tensor with respect to Levi-Civita connection \(M \) is equal to \(\beta^2 - n(n-1) \).

5 Projective Curvature Tensor

Let \(M \) be an \(n \)-dimensional \(P \)-Sasakian manifold. Projective curvature tensor \(\nabla' \) of type \((1,3)\) of \(M \) with respect to quarter symmetric non-metric connection \(\nabla \) is defined by
\[
\nabla'(X, Y)Z = \nabla(X, Y)Z - \frac{1}{n-1} \{ \nabla(\nabla Y, Z)X - \nabla(\nabla X, Z)Y \}.
\]
(55)

From (24) and (34), using (55) we get
\[
\nabla'(X, Y)Z = P(X, Y)Z - \frac{1}{n-1} \left\{ g(Y, Z)X - g(X, Z)Y + \text{trace}(\Phi)\Phi(X, Z)Y \\
- \text{trace}(\Phi)\Phi(Y, Z)X - n\eta(Y)X + n\eta(X)\eta(Z)Y \right\} \\
+ \Phi(X, Z)\phi Y \\
- \Phi(Y, Z)\phi X + \eta(Z)\{ \eta(Y)X - \eta(Y)Y \}.
\]
(56)

where
\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{n-1} \{ S(Y, Z)X - S(X, Z)Y \}
\]
(57)
is the projective curvature tensor of \(M \) with respect to Levi-Civita connection \(\nabla \).
Definition 13. Let M be an $n-$ dimensional $P-$Sasakian manifold. Then M is said to be $\xi-$ projectively flat with respect to quarter symmetric non-metric connection ∇ if $\Gamma(X,Y)\xi = 0$ on M.

Using (31), (36) and (55) we have
\[\Gamma(X,Y)\xi = 0. \] (58)

From (58) we get the following theorem:

Theorem 14. Let M be an $n-$ dimensional $P-$Sasakian manifold. Then M is $\xi-$ projectively flat with respect to quarter symmetric non-metric connection.

Definition 15. Let M be an $n-$ dimensional $P-$Sasakian manifold. Then M is said to be $\phi-$ projectively flat with respect to quarter symmetric non-metric connection if $g(\Gamma(\phi X, \phi Y)\phi Z, \phi W) = 0$ on M.

From (55)
\[\Gamma(\phi X, \phi Y)\phi Z = \Gamma(\phi X, \phi Y)\phi Z - \frac{1}{n-1}\{S(\phi Y, \phi Z)\phi X - S(\phi X, \phi Z)\phi Y\}. \] (59)

Using (38) and (59), $\phi-$ projectively flatness implies
\[\mathcal{K}(\phi X, \phi Y, \phi Z, \phi W) = \frac{1}{n-1}\{[S(Y, Z) + g(Y, Z) - \beta\Phi(Y, Z) + (n-2)\eta(Y)\eta(Z)]g(\phi X, \phi U) \]
\[+ \ [S(X, Z) + g(X, Z) - \beta\Phi(X, Z) + (n-2)\eta(X)\eta(Z)]g(\phi Y, \phi U)\}. \] (60)

Let \{e_1, e_2, ..., e_{n-1}, \xi\} be a local orthogonal basis of the vector fields in M and using the fact that \{\phi e_1, \phi e_2, ..., \phi e_{n-1}, \xi\} is also a local orthogonal basis, putting $X = W = e_i$ and summing up with respect to $i = 1, 2, ..., n-1$ we obtain
\[\sum_{i=1}^{n-1} \mathcal{K}(\phi e_i, \phi Y, \phi Z, \phi e_i) = S(Y, Z) + g(Y, Z) - \beta\Phi(Y, Z) + (n-2)\eta(Y)\eta(Z) \]
\[- \frac{1}{n-1}\{\sum_{i=1}^{n-1} S(e_i, Z)g(\phi Y, \phi e_i) + g(\phi Y, \phi Z) - \beta\Phi(Y, Z)\}. \] (61)

We know that
\[\sum_{i=1}^{n-1} S(e_i, Z)g(\phi Y, \phi e_i) = S(\phi Y, \phi Z). \] (62)

Thus from (34), (38), (62), the equation (61) becomes
\[\sum_{i=1}^{n-1} \mathcal{K}(\phi e_i, \phi Y, \phi Z, \phi e_i) = \frac{n-2}{n-1}S(\phi Y, \phi Z). \] (63)

Moreover we have
\[\sum_{i=1}^{n-1} \mathcal{K}(\phi e_i, \phi Y, \phi Z, \phi e_i) = \mathcal{S}(\phi Y, \phi Z) - g(\mathcal{R}(\xi, Y)\phi Z, \xi). \] (64)

Using (12) and (64) we get
\[\sum_{i=1}^{n-1} \mathcal{K}(\phi e_i, \phi Y, \phi Z, \phi e_i) = \mathcal{S}(\phi Y, \phi Z) - g(\phi Y, \phi Z). \] (65)

Therefore by using (37), (63) and (65) we obtain
\[\mathcal{S}(Y, Z) = (n-1)\{g(Y, Z) - 3\eta(Y)\eta(Z)\}. \] (66)

From (66), we have the following theorem

Theorem 16. If a $P-$Sasakian manifold is $\phi-$ projectively flat with respect to quarter symmetric non-metric connection, then the manifold is an $\eta-$ Einstein manifold with respect to quarter symmetric non-metric connection.
6 Conformal Curvature tensor

Let M be an $n-$ dimensional P-Sasakian manifold. The conformal curvature tensor of M with respect to quarter symmetric non-metric connection ∇ is given by

$$\bar{C}(X, Y, Z, U) = \bar{K}(X, Y, Z, U)$$

\[= \frac{1}{n-2} \{g(Y, Z)S(X, U) - g(X, Z)S(Y, U)\}
+ S(Y, Z)g(X, U) - S(X, Z)g(Y, U)\]

\[= \frac{r}{(n-1)(n-2)} \{g(Y, Z)g(X, U) - g(X, Z)g(Y, U)\}. \tag{67}\]

Suppose that P-Sasakian manifold is conformally flat with respect to quarter symmetric non-metric connection, that is $\bar{C}(X, Y, Z, U) = 0$. By using (67) we get

$$\bar{K}(X, Y, Z, U) = \frac{1}{n-2} \{g(Y, Z)S(X, U) - g(X, Z)S(Y, U)\}$$

\[+ S(Y, Z)g(X, U) - S(X, Z)g(Y, U)\]

\[- \frac{r}{(n-1)(n-2)} \{g(Y, Z)g(X, U) - g(X, Z)g(Y, U)\}. \tag{68}\]

Putting $Y = Z = \xi$ in (68) and using (31), (35) and (36) we obtain

$$S(X, U) = \{\frac{r - \beta^2}{n-1} + 6 - 2n\}g(X, U) + \{\frac{\beta^2 - r}{n-1} - 4\}\eta(X)\eta(U). \tag{69}\]

from (69) we have the following theorem

Theorem 17. If a P-Sasakian manifold is conformally flat with respect to quarter symmetric non-metric connection, then the manifold is Einstein manifold with respect to quarter symmetric non-metric connection.

7 Example

We consider a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3. Let E_1, E_2, E_3 be a linearly independent global frame on M given by

$$E_1 = -x \frac{\partial}{\partial x}, \quad E_2 = x \frac{\partial}{\partial y}, \quad E_3 = x \frac{\partial}{\partial z}. \tag{70}$$

Let g be the Riemannian metric defined by

$$g(E_1, E_2) = g(E_1, E_3) = g(E_2, E_3) = 0, \quad g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1,$$

Let η be the 1-form defined by $\eta(U) = g(U, E_1)$, for any $U \in TM$. Let ϕ be the $(1, 1)$ tensor field defined by $\phi E_1 = 0, \phi E_2 = E_2$ and $\phi E_3 = E_3$. Then, using the linearity of ϕ and g we have $\eta(E_1) = 1, \quad \phi^2 U = U - \eta(U)E_1$ and $g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W)$ for any $U, W \in TM$. Thus for $E_1 = \xi$, (ϕ, ξ, η, g) defines a paracatonic structure on M.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then, we have

$$[E_1, E_2] = -E_2, \quad [E_1, E_3] = -E_3, \quad [E_2, E_3] = 0, \tag{71}$$

Using Koszul formula for the Riemannian metric g, we can easily calculate

$$\nabla_{E_1} E_1 = 0, \quad \nabla_{E_2} E_2 = 0, \quad \nabla_{E_3} E_3 = 0,$$

$$\nabla_{E_2} E_1 = E_2, \quad \nabla_{E_2} E_2 = -E_1, \quad \nabla_{E_2} E_3 = 0,$$

$$\nabla_{E_3} E_1 = E_3, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_3} E_3 = -E_1. \tag{72}$$
From the above relations, it can be easily seen that
\[\nabla_X \xi = \phi X, \quad (\nabla_X \phi) Y = -g(X, Y) \xi - \eta(Y) X + 2\eta(X) \eta(Y) \xi, \]
for all \(E_1 = \xi \) Thus the manifold \(M \) is an \(\xi \)-Sašakian with the structure \((\phi, \xi, \eta, g) \). Using (18) in the above equations, we get
\[
\begin{align*}
\nabla_{E_1} E_1 &= 0, \quad \nabla_{E_1} E_2 = 0, \quad \nabla_{E_1} E_3 = 0, \\
\nabla_{E_2} E_1 &= 2E_2, \quad \nabla_{E_2} E_2 = -E_1, \quad \nabla_{E_2} E_3 = 0, \\
\nabla_{E_3} E_1 &= 2E_3, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_3} E_3 = -E_1.
\end{align*}
\] (73)

Using the above relations, we can calculate the non-vanishing components of the curvature tensor as follows:
\[
\begin{align*}
R(E_1, E_2) E_1 &= E_2, \quad R(E_1, E_2) E_2 = -E_1, \quad R(E_1, E_3) E_1 = E_3 \\
R(E_1, E_3) E_3 &= -E_1, \quad R(E_2, E_3) E_2 = E_3, \quad R(E_3, E_3) E_3 = -E_2.
\end{align*}
\] (74)

and
\[
\begin{align*}
\overline{R}(E_1, E_2) E_1 &= 2E_2, \quad \overline{R}(E_1, E_2) E_2 = -E_1, \quad \overline{R}(E_1, E_3) E_1 = 2E_3 \\
\overline{R}(E_1, E_3) E_3 &= -E_1, \quad \overline{R}(E_2, E_3) E_2 = 2E_3, \quad \overline{R}(E_2, E_3) E_3 = -2E_2.
\end{align*}
\] (75)

From the equations (74) and (75), we can easily calculate the non-vanishing components of the Ricci tensor as follows:
\[
\begin{align*}
S(E_1, E_1) &= -2, \quad S(E_2, E_2) = -2, \quad S(E_3, E_3) = -2
\end{align*}
\] (76)

and
\[
\begin{align*}
\overline{S}(E_1, E_1) &= -4, \quad \overline{S}(E_2, E_2) = -3, \quad \overline{S}(E_3, E_3) = -3.
\end{align*}
\] (77)

Then the scalar curvature with respect to the Levi-Civita connection and quarter symmetric non-metric connection are \(r = -6 \) and \(\tau = -10 \). This expressions are verifying the some results of the section 3.

Let \(X, Y, Z \) and \(U \) be any four vector fields given by
\[
X = A_1 E_1 + A_2 E_2 + A_3 E_3, \quad Y = B_1 E_1 + B_2 E_2 + B_3 E_3, \quad Z = C_1 E_1 + C_2 E_2 + C_3 E_3 \quad \text{and} \quad U = D_1 E_1 + D_2 E_2 + D_3 E_3,
\]
where \(A_i, B_i, C_i, D_i \), for all \(i = 1, 2, 3 \), are the non-zero real numbers.

Using above relations and from (42), (49), (59) we get
\[
\begin{align*}
\nabla'(X, Y) \xi &= \frac{3}{4} (A_1 B_2 - B_1 A_2) E_2 + (A_1 B_3 - B_1 A_3) E_3, \\
\nabla'(\phi X, \phi Y, \phi Z, \phi W) &= -\frac{3}{4} (B_3 A_2 - A_3 B_2)(C_3 D_2 - C_2 D_3),
\end{align*}
\]

and
\[
\begin{align*}
g(\overline{P}(\phi X, \phi Y) \phi Z, \phi W) &= 2(A_3 B_2 - B_3 A_2)(C_3 D_2 - C_2 D_3).
\end{align*}
\]

Then we see that \(P- \) Sašakian manifold \(M \) will be \(\xi- \) concircular flat with respect to quarter symmetric non-metric connection if \(\frac{A_1}{B_1} = \frac{A_2}{B_2} = \frac{A_3}{B_3} \). We also see the that the manifold is \(\phi- \) concircular flat with respect to quarter symmetric non-metric connection if \(\frac{A_1}{B_1} = \frac{A_2}{B_2} \) or \(\frac{C_1}{D_1} = \frac{C_2}{D_2} \). Moreover we see that \(P- \) Sašakian manifold \(M \) is \(\phi- \) projectively flat with respect to quarter symmetric non-metric connection if \(\frac{A_1}{B_1} = \frac{A_2}{B_2} \) or \(\frac{C_1}{D_1} = \frac{C_2}{D_2} \). This is verifying some results of section 4 and section 5.

Acknowledgements

The authors are thankful to the referee for his/her valuable comments and suggestions towards the improvement of the paper.
REFERENCES

[1] N. S. Agashe and M. R. Chafle, A semi symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.

[2] U. C. De and D. Kamilya, Hypersurfaces of Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci. 75 (1995), 707-710.

[3] A. Friedmann, J. A. Schouten, Über die geometrie der halbsymmetrischen Übertragung, Math. Zeitschr. 21 (1924), 211-223.

[4] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor 29 (1975), 249-254.

[5] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.

[6] Y. Liang, On semi-symmetric recurrent-metric connection, Tensor 55 (1994), 107-112.

[7] Adati, T. and Matsumoto, K, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13, 25-32, 1977.

[8] I. Sato, On a structure similar to the almost contact structure, Tensor new series, vol. 30, no. 3, pp. 219-224, 1976.

[9] T. Adati and T. Miyazawa, On P-Sasakian manifolds satisfying certain conditions, Tensor new series, vol. 33, no. 2, pp. 173-178, 1979.

[10] S. Kaneyuki, M. Konzai, Paracomplex structure and affine symmetric spaces, Tokyo J. Math., 8 (1985), 301-318.

[11] Abdul Kalam Mondal and U.C. De, Quarter-symmetric Nonmetric Connection on P-sasakian manifolds, ISRN Geometry, (2012), 14 pages

[12] A. Sharfuddin, S. I. Husain, Semi-symmetric metric connexions in almost contact manifolds, Tensor. 30 (1976), 133-139.

[13] B. G. Schmidt, Conditions on a connection to be a metric connection, Commun. Math. Phys. 29 (1973), 55-59.

[14] J. A. Schouten, Ricci calculus, Springer, 1954.

[15] M.M Tripathi, A new connection in a Riemannian manifold, International Journal of Geometry. 1 (2006), 15-24.

[16] Gyanvendra Pratap Singh, Sunil Kumar Srivastava. On Kenmotsu Manifold With Quarter Symmetric Non Metric-Connection, International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828, Volume 9, Number 1 (2016), pp. 67-74.

[17] Ajit Barman and Gopal Ghosh, Concircular Curvature Tensor of a Semi-symmetric Non-metric Connection on P-Sasakian Manifolds, Analele Universitatii de Vest Timisoara Seria Matematica-informatica, LIV, 2. (2016), 47-58