Partial Identification of Marginal Treatment Effects With Discrete Instruments and Misreported Treatment

SANTIAGO ACERENZA†

This Draft: April 2023 Abstract This paper provides partial identification results for the marginal treatment effect (MTE) when the binary treatment variable is potentially misreported and the instrumental variable is discrete. Identification results are derived under smoothness assumptions. Bounds for both the case of misreported and no misreported treatment are derived. The identification results are illustrated in identifying the marginal treatment effects of food stamps on health.

Keywords: Treatment effects, instrumental variables, measurement error, partial identification. JEL Codes: C21, C26. Word Count: 11688.

*We would like to thank Désiré Kédagni and Otavio Bartalotti for their guidance; Nestor Gandelman, Joydeep Bhattacharya, Kyunghoon Ban, Vitor Possebom, participants at the events of Sociedad de Economistas del Uruguay (SEU) and Seminars at Iowa State University for their useful comments; and Brent Kreider for sharing the data of the empirical application.

†Universidad ORT Uruguay, Departamento de Economía, Blv. España 2633, 11300 Montevideo, Uruguay (email: acerenza@ort.edu.uy).
I Introduction

This paper provides partial identification results for the Marginal Treatment Effect (MTE) in the presence of measurement error in the treatment variable when only a discrete instrument is available. The discrete instrument case is relevant as many applications in the literature rely on these type of instruments. See for example Angrist and Krueger (1991), Angrist (1990), Angrist and Evans (1998) and Krueger (1999). The discrete nature of the instrument requires identification strategies to recover the MTE that differ from those explored in the previous literature with continuous instruments.

The results of this paper are relevant since it is often true that researchers have access to an instrument with discrete variation (for example, assignment to treatment via an institutional rule), and it is also true that misreporting is a common problem in survey data which is one of the main sources of empirical research.

In a more general way, our results can serve as a sensitivity analysis tool for when researchers are interested in recovering the MTE in the presence of a discrete instrument and suspect measurement error and have doubts about their parametric assumptions.

Researchers mostly work with self-reported data from surveys; such data systematically present reporting problems that lead to measurement error of the treatment status and, consequently, to bias in the treatment effect of interest. The combination of measurement error with discrete instruments has not been explored in the literature, and it is a fairly common situation to encounter. The results in this paper are useful for identifying MTE (which can be used to recover average effects or policy-relevant effects) in the presence of the two previously mentioned problems for identification.

In most cases, researchers observe a discrete (often binary) instrument such as assignment to treatment. In these cases, point identification of the MTE (even without measurement error) is not possible, relying only on the standard assumptions of instrument exogeneity and relevance (See for example Brinch et al. (2017)). In this paper, under a set of restrictions on the severity of measurement error and shape restrictions, we provide partial identification results for the MTE in the presence of measurement error when a discrete instrument is
available.

The MTE can help reveal the heterogeneity in the treatment effect. The MTE is relevant in recovering Policy Relevant Treatment Effect parameters ($PRTE$s), Average Treatment Effect (ATE), Average Treatment on the Treated (ATT), Average Treatment on the Untreated (ATU), Local Average Treatment Effects ($LATE$), etc.\(^1\)

To achieve partial identification, we introduce smoothness conditions on the marginal treatment responses ($E[Y_d|V = v]$). To deal with the misreporting of the binary treatment, the analysis relies on treating the unconditional probability of misreporting as given.\(^2\) This can be either interpreted as the researcher having prior knowledge on the possible value of the misclassification rates or as a sensitivity analysis tool where the researcher allows for the possibility of misclassification up to a certain level. Relevance and independence of the instrument is required. Although partial identification of the MTE will do not imply in general sharp bounds on the ATE. It is still a useful tool to move from local effects and generate bounds on an aggregate relevant effect.

Empirical research usually combines a measurement error problem with endogeneity and heterogeneity. Ura (2018) documents in his work, as an example of this, that there is a substantial measurement error in educational attainments in the 1990 U.S. Census. At the same time, educational attainments are endogenous as treatment variables in return to schooling analyses because, among other possibilities, unobserved individual ability affects both schooling decisions and wages. Labor supply response to welfare program participation, in which the outcome is employment status, and the treatment is welfare program participation is subject to similar issues. Self-reported program participation in survey datasets can be misreported as stated by Hernandez and Pudney (2007). The psychological cost of welfare program participation affects job search behavior and welfare program participation simultaneously.

\(^1\)See Heckman and Vytlacil (2005), Heckman et al. (2006), who show the link between the MTE and those parameters via properly weighting the MTE.

\(^2\)One could alternatively take the results from this paper and assume a known upper bound of this probability and take the union of the bounds derived here.
Related literature

This subsection lists some relevant papers related to the current research paper based on their connections to different aspects of the problem. Namely, misreporting and partial identification of marginal treatment effects.

Partial identification of \(\text{LATE}, \text{MTE} \) and \(\text{ATE} \) with endogenous misreported binary treatments and heterogeneous effects

[Ura (2018)] using a binary instrumental variable, derives bounds for \(\text{LATE} \) with a binary misreported treatment when an instrument is available, and monotonicity of the true (not observed) treatment in the instrument holds. Identification is achieved by exploiting the relationship between the probability of being a complier and the total variation distance between people assigned to treatment and the ones that are not. The under-identification for \(\text{LATE} \) is a consequence of the under-identification for the size of compliers; with no measurement error, one could compute the size of compliers based on the measured treatment and, therefore, \(\text{LATE} \) would be the Wald estimand. The total variation distance plays a key role in determining the sharp identified set in [Ura (2018)]. First, it measures the strength of the instrumental variable; when the total variation distance is positive, the identified set of \(\text{LATE} \) is a strict subset of the whole parameter space, which implies that \(Z \) has some identifying power. Secondly, as shown in [Ura (2018) lemma 3], the total variation distance is a lower bound for the proportion of compliers which is the under-identified element in the presence of measurement error. [Calvi et al. (2021), Tommasi and Zhang (2020)] extend Ura (2018)’s results for the case where the instrument can take multiple discrete values. [Acerenza et al. (2021)] focuses on bounding the marginal treatment effects when there is a continuous instrument. [Kreider et al. (2012)] using auxiliary information about the possibility of misreporting and under different combinations of the outcome, treatment, and instrumental monotonicity

3The total variation distance between two probability measures \(P \) and \(Q \) on a sigma-algebra \(\mathcal{F} \) of subsets of the sample space \(\Omega \) is defined via \(\delta(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \). It can alternatively be defined for probability measures that have densities to be \(\frac{1}{2} \int |p - q| \, d\nu \) where \(\nu \) is a measure dominating both probability measures. In the context of [Ura (2018)] paper the total variation distance calculated is \(TV_{Y,D} = \frac{1}{2} \int \left(\sum_{d=0,1} |f_{y,d|Z=1}(y,d) - f_{y,d|Z=0}(y,d)| \right) \, d\nu \) where \(f_{y,d|z} \) is the joint density of the observed outcome variable and the observed treatment variable conditional on the value of the instrument.
bounds the ATE for a binary outcome. Possebom (2021) focuses on partially identifying the MTE with a continuous instrument and imposing sign and functional relationships between the derivatives of the true propensity score and the observed one with respect to the continuous instrument.

This current paper complements the previously mentioned papers. Fundamentally this paper focuses on identifying the MTE when discrete instruments are available. Such a task requires a different set of assumptions than the ones used to recover directly ATE, $LATE$, or MTE with continuous instruments. We complement Ura (2018), Kreider et al. (2012) and Tommasi and Zhang (2020) because we are interested in identifying MTE (which can then be used to achieve identification of $LATE$ and ATE) instead of the $LATE$ and ATE. It is also complementing Acerenza et al. (2021) since their analysis relies on the continuity of the instrument. It is worth noticing that it is more common to observe discrete (mostly binary) instruments such as random selection to receive treatment like in medical studies or random selection to receive a treatment conditional on covariates in social sciences (e.g., Supplemental Nutrition Assistance Program, SNAP). We complement Possebom (2021) since we provide an alternative set of assumptions to identify the MTE, and also, we are focusing on a discrete instrument.

Identifying marginal treatment effects with discrete instruments

Brinch et al. (2017) show how a discrete instrument can be used to identify the marginal treatment effects under a functional structure that allows for treatment heterogeneity among individuals with the same observed characteristics and self-selection based on the unobserved gain from treatment. This paper builds upon Brinch et al. (2017) results by considering the case with (endogenous) misreporting and more flexible restrictions (such as shape restrictions instead of parametric assumptions) at the cost of losing point identification. The second one is Mogstad et al. (2018) which using the observed instrumental variables estimates, develops a linear programming approach to recover policy-relevant treatment effects such as the MTE. This paper differs from it by finding analytical bounds under the different smoothness and shape restrictions. Such bounds permit one to have a first-hand insight into how the assump-
tions are aiding identification. Estimation of the analytical bounds is simple since it can be performed using their respective sample analogs. Additionally, Mogstad et al. (2018) does not allow for the possibility of the treatment to be misreported while here is allowed. In the presence of misreporting, the results from Mogstad et al. (2018) do not apply directly while the ones derived here do. In the case of no misreporting, our bounds remain valid; in that sense, our results complement the ones from Mogstad et al. (2018) and Brinch et al. (2017).

Outline of the paper

The rest of the paper is organized as follows, section II introduces the main framework and assumptions. Section III shows the main identification results and illustrates them. Section IV has an application of the identification results to Kreider et al. (2012). Section V concludes. Additional results are collected in the online appendix. Non analytical results on partial identification without additional shape restrictions extending Mogstad et al. (2018) are included in the online appendix section A. Sections B and C of the appendix focuses on inference for the ATE. Section D discusses how to choose the tuning parameter \(b \). Section E illustrates the bounds for the ATE. Section F illustrates the analytical results on a DGP. Section G extends the results with additional monotonicity assumptions. Sections H and I derives the results for the case when the instrument takes more than 2 values. Finally, section J collects all the figures from the document.

II Analytical Framework

Consider the following framework (Acerenza et al. (2021), Heckman et al. (2006) and Heckman and Vytlacil (1999)):

\[
\begin{align*}
Y &= Y_1 D + Y_0 (1 - D) \\
D &= 1\{p(Z) - V \geq 0\} \\
D^* &= D(1 - \varepsilon) + (1 - D)\varepsilon
\end{align*}
\] (1)

\[\text{The case of an instrument taking more than two values can also be seen as the generalization to the case of multiple discrete instruments. This is the case because multiple discrete instruments can be combined in one single multi-valued discrete instrument.}\]
Where Y is an outcome variable that can be discrete, continuous, or mixed, the potential outcomes are denoted by Y_d, which is the outcome realization for when treatment $D = d$, $D = \{0, 1\}$ is a binary unobserved endogenous treatment. Let $Z \in Z = \{z_0, z_1, \ldots, z_k\}$ be a discrete instrument\(^5\) V is a latent scalar random variable normalized to be uniformly distributed between $(0, 1)$. D^* is a misreported binary proxy of D, the true unobserved treatment status. $\varepsilon \in \{0, 1\}$ is a random variable indicating the presence of misreporting or not. The vector (Y, D^*, Z) is the observed data while $(Y_1, Y_0, D, \varepsilon, V)$ are latent (unobserved). In the rest of the document, small case letters denote realizations of the respective random variables.

Object of interest: In this paper, we care about identifying the $MTE(v^*)$ which is the marginal treatment effect at a particular level $V = v^*$, more precisely, it is defined as $E[Y_1 - Y_0|V = v^*]$.

To identify the MTE in this context, we introduce baseline assumptions that additional assumptions will aid. The baseline assumptions are:

Assumption 1 (Random Assignment and Absolute Continuity) The following two conditions hold:

1. Z is independent of (Y_d, V, ε) for all $d = (0, 1)$.

2. The distribution of V is absolutely continuous.

The previous assumption and the model structure makes innocuous to say that V is uniform between $[0, 1]$ and that $p(Z) = P(D = 1|Z)$.

Assumption 2 (Relevance) Let Z be such that for any $z \in Z$:

1. $1 > p(z) > 0$.

2. $p(z) \neq p(z')$ for any $z, z' \in Z$.

3. For any $z, z' \in Z$, we can determine if either $p(z) \leq p(z')$ or $p(z) \geq p(z')$.

\(^5\)The results will focus on the binary z case but the generalization is natural for more than two values of z.

7
Assumption 12 include the instrument independence and validity assumption as in Heckman and Vytlacil (1999), Heckman et al. (2006) among others. Assumption 1 requires that Z be a valid instrument, in the sense that it is statistically independent of the unobservables in the selection equation and the outcome equation. This assumption was used in Acerenza et al. (2021). This assumption does not require the measurement error to be non-differential6. Non-differential measurement error combined with assumption 1 implies that misreporting is independent of the outcome conditional on the true treatment, which is in general restrictive. Note that the measurement error can still depend on z, but this is through the true treatment since $D^* = D + (1 - 2D)\varepsilon$. Assumption 1 is restricting the indicator of the existence of measurement error to be independent of z but not the measurement error itself. Assumption 2 requires the existence of an instrument that shifts the probability of selection into treatment. In addition, 2 says that, even though the propensity scores cannot be recovered from the observed data (because D is unobserved in practice), the ascending order of them in Z is still known. This can be seen as a structural restriction imposed on the true treatment D. See Tommasi and Zhang (2020).7 Under assumption 2, the sign of $p(z) - p(z')$ for any two z, z' is known.

Under Assumption 1, we are imposing that

\[
P(\varepsilon = 1) = P(\varepsilon = 1|Z = z) = P(\varepsilon = 1, D = 0|Z = z) + P(\varepsilon = 1, D = 1|Z = z) \]
\[
= P(\varepsilon = 1|D = 0, Z = z)P(D = 0|Z = z) + P(\varepsilon = 1|D = 1, Z = z)P(D = 1|Z = z) \]
\[
= P(\varepsilon = 1|V > P(z), Z = z)P(D = 0|Z = z) + P(\varepsilon = 1|V \leq P(z), Z = z)P(D = 1|Z = z) \]

With the false-positive probability $P(\varepsilon = 1|D = 0, Z = z)$ and the false-negative probability $P(\varepsilon = 1|D = 1, Z = z)$.

6Non-differential measurement error is that conditional on the unobserved heterogeneity that drives the selection into treatment, misreporting is independent of the potential outcomes.

7An example of sufficient condition is a constant-coefficient latent-index model. That is, suppose the treatment is generated by $D = 1(bZ > \epsilon)$, where b is a parameter and ϵ is an error term independent of Z. Then, the order of $p(z)$, is determined by the sign of b. It is plausible in many applications that the sign of b can be retrieved from economic theory. For example, in the study of the returns to schooling, distance to college is often used as an instrument for completed college education. In this specific example, the parameter b is negative.
We introduce the working example that will help interpret the assumptions and results through the rest of the document.

Example 1 The researcher is interested in measuring marginal returns of receiving the Supplemental Nutrition Assistance Program (SNAP) on food security. It is well documented that underreporting of SNAP exists. In this case, the variable Y is a binary outcome of being food secure, and D is the true indicator for being a SNAP recipient. The variable Z is the indicator of having certain assets in the household or having cars exempt from an asset test that recipients have to complete (see Kreider et al. (2012) and references therein).

The latent variable V could be interpreted as the stigma cost of SNAP as in Moffitt (1983). As stated by Contini and Richiardi (2012) stigma is acknowledged as one of the determinants of welfare participation, and there is wide evidence that it negatively affects take-up rates.

Let Y_1 be the potential food security status for someone on SNAP, and Y_0 when the same individual does not receive it. Y_d can be correlated with the stigma cost V. As noted by Palar et al. (2018), internalized stigma may lead to food insecurity if it causes or intensifies isolation from social support systems that would allow access to food. Additionally, as stated by Earnshaw and Karpyn (2020) stigma manifestations lead to food inequities through a series of mediating mechanisms experienced and enacted by targets of the stigma that undermine healthy food consumption, contribute to food insecurity, and ultimately impact diet quality. In that sense, psycho-social processes represent how individuals respond to stigma, which ultimately shapes their food selection, purchasing, and consumption behaviors. Enacted and anticipated stigma are characterized as significant stressors, and individuals may cope with these stressors through unhealthy eating behaviors or irrational choices that increase the likelihood of food insecurity. This is then implicitly saying that stigma could be correlated with the potential outcomes.

The variable D^* is the individual’s reported (observed) indicator for SNAP recipiency. In this context, the last part of assumption 1 is consistent with saying that the stigma cost is also determining the misreporting behavior of the individual says $\varepsilon = 1\{f(V) \geq e\}$, if the function of the stigma cost is big enough to pass some threshold e the individual chooses to misreport.
consistent with Hernandez and Pudney (2007). Additionally, the assumption is consistent with random misreporting; one could think that individuals make errors when answering the survey question about SNAP recipiency with no intention. In such case \(\varepsilon = 1 \{ f(\eta) \geq 0 \} \) where \(\eta \) is independent of \(V, Y_d \).

Remark 1 Imposing that the instrument is independent from the misclassification decision may not be appropriate in many empirical contexts although we claim it is valid here. To illustrate when it is not valid using the current example for instance, if in the SNAP example, the instrument \(Z \) is a result of the political forces that regulate SNAP implementation in each state the assumption would not hold. These political forces may influence how people perceive the benefits and costs associated with welfare participation. If those perceived costs are associated with individual willingness to lie about SNAP participation, then \(Z \) is not independent of the decision to misreport, implying that the assumption does not hold in this empirical example.

Besides the previously mentioned baseline assumptions, the following assumption is introduced.

Assumption 3 (Smoothness) There exists known constants, \(b \) such that for any pairs \(v_1 \neq v_2 \) in the support of \(V \):

\[
-b|v_1 - v_2| \leq E[Y_d|V = v_1] - E[Y_d|V = v_2] \leq b|v_1 - v_2| \tag{2}
\]

Kim et al. (2018) introduces smoothness conditions for \(E[Y_d|D = d] \) to bound the \(ATE \) without an instrument and treatment exogeneity; this approach has the same spirit. In this case, we can build on their insight to provide bounds for the \(MTE \) using similar smoothness conditions. The previous assumption states the degree of smoothness of the marginal treatment responses \((E[Y_d|V = v]) \). Generally speaking, we may interpret our identification analysis in this section as a conditional one indexed by \(b \). Furthermore, we may conduct a sensitivity analysis by looking at different values of \(b \). The parameter \(b \) is the Lipschitz constant.
which serves as a measure of smoothness. In this case we are assuming a maximum level of smoothness \(b \).

Assumption 3 is restricting the functional form for the marginal responses, but considering all possible functionals in the lipschitz family with smoothness parameter \(b \) or smaller instead of a particular parametric family (like for example linear functions). It is stating the degree of smoothness of the potential responses without assuming a particular functional form of it. In this sense \(E[Y_d|V = v] \) could be for example linear \(E[Y_d|V = v] = \mu_d + a_d v \) (in which case \(b = a_d \)) or quadratic \(E[Y_d|V = v] = \mu_d + a_d v + c_d v^2 \) (in which case \(b = a_d + 2c_d \)) among different possibilities. This assumption introduces constraints in the underlying selection mechanism since is imposing restrictions on how the potential outcomes behave in relationship to the underlying cost of selecting into treatment. The smoothness assumption also relies on the choice of the Lipschitz constant which makes the result sensitive to the choice. This later point is discussed in the online appendix. Assumption 3 might more appropriately be called something like bounded slope, bounded rate of change, or Lipschitz continuity of the \(MTR \) functions but they are directly impacting the degree of parsimony of the functions, so we call it smoothness.

The following remark adapted from [Kim et al. (2018)] is relevant to understand what this type of assumption is imposing on the marginal treatment responses.

Remark 2 An alternative way of bounding the rate of change in the marginal treatment responses is to impose further global restrictions in addition to monotonicity such as concavity. The approach used in this paper imposes restrictions directly on the rate of change in its nature, whereas the combination of concavity and monotonicity restricts the rate of change indirectly. There is no clear dominance between each of these ways of imposing restrictions except the belief the researcher has on the behaviour of the marginal treatment responses.

More generally one could say \(b|v_1 - v_2| \leq E[Y_d|V = v_1] - E[Y_d|V = v_2] \leq b|v_1 - v_2| \) as

\[\text{It is worth noticing that in the standard analysis on the } MTE, \text{ the normalization of } V \text{ does not change any content of the model, but it does change the interpretation of the Lipschitz condition. This is because it is not the same to impose a Lipschitz condition on the conditional mean of } Y_d \text{ on } E \text{ where } E \text{ has a normal distribution, than to put it on } V = F_E(E) \text{ which is uniform.} \]
stated by Kim et al. (2018), furthermore, letting \(b' = 0 \) and saying \(E[Y_d|V = v_1] - E[Y_d|V = v_2] \leq b|v_1 - v_2| \) for \(v_1 > v_2 \) would be combining monotonicity of the treatment responses with assumption 3. More precisely:

Assumption 4 There exists known constants, \(b_1, b_0 > 0 \) such that for any pairs \(v_1 \geq v_2 \) in the support of \(v \):

\[
0 \leq E[Y_1|V = v_1] - E[Y_1|V = v_2] \leq b_1(v_1 - v_2) \tag{3}
\]

\[
0 \leq E[Y_0|V = v_1] - E[Y_0|V = v_2] \leq b_0(v_1 - v_2) \tag{4}
\]

Or more generally:

\[
0 \leq E[Y_d|V = v_1] - E[Y_d|V = v_2] \leq b(v_1 - v_2) \tag{5}
\]

Where \(b = \max\{b_0, b_1\} \)

Example 2 (Continued) In the context of SNAP, a binary treatment, and food security, a binary outcome, one could model the relationship using a bivariate probit model. Nevertheless, this can be restrictive since it implies a known joint distribution of the unobservables and a parametric index structure. Alternatively, one could choose to allow for all the models with \(b \leq 0.5 \). This is consistent with the bivariate probit models and allows for more generality by relaxing the normality assumption.

Identification breakdown

Note that following Heckman et al. (2006) and their standard assumptions (1-2 above), without further restrictions the MTE at the level of heterogeneity \(v^* \) (\(E[Y_1 - Y_0|V = v^*] \)) is not identified in this setting with discrete instruments and a misreported treatment.
From standard results, we get:

\[E[Y | Z = z] = \int_0^{p(z)} E[Y_1 | V = v] dv + \int_{p(z)}^1 E[Y_0 | V = v] dv \]

\[E[Y | Z = z] - E[Y | Z = z'] = \int_{p(z)}^{p(z')} E[Y_1 | V = v] dv - E[Y_0 | V = v] dv \]

The second equation takes the difference of the first equation for any two values of the instrument connecting the observed shift in \(Y \) caused by changes in \(z \) and the underlying treatment effect for all the individuals affected by such a change of the instrument.

For any given \(z \), say \(z' \) we can get:

\[P[D^* = 1 | Z = z'] = P[D = 1] P[D^* = D, Z = z'] P[D^* = D | Z = z'] + P[D^* = 1] P[D^* = D, Z = z'] P[D^* = D | Z = z'] \]

Where the first equality is because we are conditioning on \(D^* = D, D^* \neq D \) and applying the properties of probabilities. This last equation reflects that the observed propensity score for the proxy of the true treatment variable conditional on \(z' \) equals the share of treated individuals who at that particular \(z' \) report treatment status correctly multiplied by the probability of reporting correctly, plus the share of not treated individuals who at that particular \(z' \) report treatment status incorrectly multiplied by the probability of reporting incorrectly.

The previous expressions depend on unobserved components. While \(E[Y | Z = z'], P[D^* = 1 | Z = z'] \) are observed, \(P[D^* = D | Z = z'], P[D = 1] P[D^* = D, Z = z'] \) and \(p(Z) \) are not, which without further assumptions do not allow for identification of the true propensity score and also of the \(MTE \).

If \(p(z) \) was observed and \(z \) was continuous, then the \(MTE(v^*) \) would be identified as

\[\frac{\partial E[Y | P(Z) = v^*]}{\partial v^*} = \int_0^{v^*} E[Y_1 | V = v] dv + \int_{v^*}^1 E[Y_0 | V = v] dv \]

\[= E[Y_1 | V = v^*] - E[Y_0 | V = v^*] \]

So this displays the two main identification challenges, the non-continuity of \(z \) and the fact that \(p(z) \) is not observed.

Before proceeding to the identification results, it is worth showing the main elements of the current work and how they differentiate from previous identification results of \(MTE \) with
discrete instruments. It is also relevant to show the role of misreporting.

From the observed data if there is no misreporting from assumptions $[1, 2]$ one can identify:

$$E[Y D | Z = z] = E[Y_1 1\{p(Z) - V \geq 0\} | Z = z] = E[Y_1 | p(z) - V \geq 0, Z = z] p(z)$$

$$= E[Y_1 | p(z) - V \geq 0] p(z) = \int_0^{p(z)} E[Y_1 | V = v] dv$$

The first equality comes from the definition of the model, the second one from the laws of probability, the third one by the independence of Z from Y_1, V and the last one from the properties of conditional expectations and the normalization that V is marginally uniform.

Similarly, we have:

$$E[Y(1 - D) | Z = z] = \int_{p(z)}^1 E[Y_0 | V = v] dv$$

This then implies the equality expressed at the beginning of this subsection:

$$E[Y | Z = z] = \int_0^{p(z)} E[Y_1 | V = v] dv + \int_{p(z)}^1 E[Y_0 | V = v] dv \quad (7)$$

Without misreporting the propensity score $p(z)$ is identified and, given assumptions $[1, 2]$ index sufficiency holds and thus $E[Y D | Z = z] = E[Y D | p(Z) = p]$. So we can rewrite the previous equalities as functions of p instead of z. Where $p \equiv p(z)$.

In this context without differentiability of p the key insight from Brinch et al. (2017) is to introduce parametric restrictions that for example say that $E[Y_d | V = v] = \mu_d + a_d v$ and thus $E[Y_1 - Y_0 | V = v] = \mu + a v$, where $\mu \equiv \mu_1 - \mu_0$ and $a \equiv a_1 - a_0$. Additionally define $c = \mu_0 + \frac{a_0}{2}$. In this case

$$E[Y D | p(Z) = p] = \mu_1 p + \frac{a_1}{2} p^2$$

$$E[Y(1 - D) | p(Z) = p] = \mu_0 (1 - p) + \frac{a_0}{2} (1 - p^2)$$

$$E[Y | p(Z) = p] = c + \mu p + \frac{a}{2} p^2$$
Then from $E[YD|p(Z) = p]$ for different values of p (at least two which is enough with a binary instrument) we can solve for μ_1, a_1. Similarly for a_0, μ_0 from $E[Y(1 - D)|p(Z) = p]$.

Note that then given the marginal treatment responses, $E[Y_d|V = v]$ is identified, so it is the MTE as their difference.

One might not be willing to assume particular parametric specifications for the conditional expectations of the potential outcomes since they are restrictive. One of the contributions of the current work is relaxing such restrictions and still recovering analytically tractable expression for the bounds of the $MTE(v^*)$.

The current work relates [Mogstad et al. (2018)] in the following way. Mogstad et al. (2018) relies on recovering the set of marginal treatment responses consistent with observed IV-like estimands. In this setting, such strategy would rely on finding all the candidates $E[Y_d|V = v]$ functions consistent with:

$$
\frac{E[Y|Z = z] - E[Y|Z = z']}{p(z) - p(z')} = \int_0^{p(z)} \frac{E[Y_1|V = v]}{p(z) - p(z')} dv + \int_{p(z')}^{p(z)} \frac{E[Y_0|V = v]}{p(z) - p(z')} dv
$$

$$
= \int_0^1 \frac{E[Y_1|V = v]}{p(z) - p(z')} 1\{v \in (p(z'), p(z))\} dv
$$

$$
+ \int_0^1 \frac{-E[Y_0|V = v]}{p(z) - p(z')} 1\{v \in (p(z'), p(z))\} dv
$$

$$
\equiv \int_0^1 E[Y_1|V = v] w_1 dv + \int_0^1 E[Y_0|V = v] w_0 dv
$$

Their strategy relies on the fact that $w_1 w_0$ are known (or identified). In the case of misreporting, where we do not know exactly the rate of false positives and false negatives for every value of z, we have that $p(z)$, and thus, the weights are not identified. This makes the current work to differ from the existing literature since developed computational methods rely on the weights being known or identified. In this context one of the main contributions of the current paper is working in the context where the weights are not identified but actually can be partially identified.

In section III we start from the same insight as [Mogstad et al. (2018)], but instead of solving a linear problem, we aid identification with shape restrictions to get analytical bounds on the
In the online appendix an extension of Mogstad et al. (2018) is discussed without aiding identification with shape restrictions by solving the same linear problem as in Mogstad et al. (2018) but for different values of $p(z)$ score in the identified set. As the identified set of $p(z)$ is not finite, the solution can only be approximated.

III Identification results

In subsection III identification without misreporting will be discussed. Subsection III incorporates misreporting.

Identification without misreporting

Note than since

$$E[Y|Z = z] = \int_0^{p(z)} E[Y_1|V = v] dv + \int_{p(z)}^1 E[Y_0|V = v] dv.$$

For any values z and z' with $p(z) \geq p(z')$:

$$E[Y|Z = z] - E[Y|Z = z'] = \int_{p(z')}^{p(z)} E[Y_1|V = v] - E[Y_0|V = v] dv$$

$$= \int_{p(z')}^{p(z)} \left(E[Y_1|V = v] - E[Y_1|V = v^*] - E[Y_0|V = v] \right) dv$$

$$+ \int_{p(z')}^{p(z)} \left(E[Y_0|V = v^*] + E[Y_1|V = v^*] - E[Y_0|V = v^*] \right) dv$$

$$\leq \int_{p(z')}^{p(z)} 2b|v - v^*| dv + \int_{p(z')}^{p(z)} MTE(v^*) dv$$

$$= \int_{p(z')}^{p(z)} 2b|v - v^*| dv + MTE(v^*) (p(z) - p(z')).$$

Where we are adding and subtracting the marginal treatment responses ($E[Y_d|V = v^*]$) related to the marginal treatment effect at the v^* of interest ($E[Y_1|V = v^*] - E[Y_0|V = v^*]$), then using $E[Y_d|V = v] - E[Y_d|V = v^*] \leq b|v - v^*|$ twice and also the definition of MTE. Similarly
we can get:

$$E[Y|Z = z] - E[Y|Z = z'] \geq \int_{p(z')}^{p(z)} -2b|v - v^*|dv + MTE(v^*)(p(z) - p(z')).$$

Then:

$$\frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p(z')}^{p(z)} 2b|v - v^*|dv}{p(z) - p(z')} \leq MTE(v^*) \leq \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p(z')}^{p(z)} 2b|v - v^*|dv}{p(z) - p(z')}.$$

The bounds depend on the propensity score and the difference of the propensity score for different values of z.

Remark 3 Note that if one integrates the bounds for the MTE one does not point identify LATE. In particular, integrating v^* over $p(z')$ and $p(z)$ yields the following bounds for LATE:

$$\frac{E[Y|Z = z] - E[Y|Z = z'] - 2b(p(z) - p(z'))^3}{p(z) - p(z')} \leq \text{LATE}(p(z), p(z)) \leq \frac{E[Y|Z = z] - E[Y|Z = z'] + 2b(p(z) - p(z'))^3}{p(z) - p(z')}.$$

This is because the way the bounds are derived, a quantity that is bigger (or smaller) of the numerator of LATE is central to derive the bounds for the MTE. The method to derive bounds for the MTE is not exactly an extrapolation of LATE since there is no unique way to do that given assumption 3. More precisely, the way the bounds are computed, assumption 3 is applied at every point v^* without consideration of the joint restrictions for pairs of evaluation points such as v^*, v^{**}. Additionally, implications of 3 are not necessarily fully exploited in the constructive identification approach. In this sense, the bounds are neither functional nor point-wise sharp.

Remark 4 Then the partial identification analysis of the ATE starts from the well-known Manski’s worst-case bound. This formulation of the identification region reveals that the identification power becomes weak when the upper and lower bounds for Y_d are large. An advantage of the proposed method is that it does not require the existence of upper and lower bounds (although it requires a tuning parameter b). In this case as shown in the online appendix, for example, the ATE can be bounded above by:

$$\text{ATE} \leq \frac{E[Y|Z = z] - E[Y|Z = z']} {p(z) - p(z')} + \frac{2b(p(z)^3 - p(z')^3)}{3(p(z) - p(z'))} - b \frac{p(z)^2 - p(z')^2}{p(z) - p(z')} + b.$$

If Y_d is bounded, then the previous bound on the ATE is complemented with the Manski worst
case bounds:

$$ATE \leq \min\{Y_{a1} - Y_{00}, \frac{E[Y|Z = z] - E[Y|Z = z']}{p(z) - p(z')} + \frac{2b}{3} \frac{p(z)^3 - p(z')^3}{p(z) - p(z')} - \frac{b}{p(z) - p(z')} + b\}$$

Note there is a b such that the proposed bounds are numerically the same as the worst case bounds in the case the outcome variable is bounded.

Identification of the MTE with misreporting

In order to identify the MTE first we need to identify $p(z)$. In Acerenza et al. (2021) such identification is discussed. Subsequent subsections, builds upon the results from Acerenza et al. (2021).

For clarity, let $\Delta_p \equiv p(z) - p(z')$, $\Delta_{D*Z}(z', z) \equiv P(D^* = 1|Z = z) - P(D^* = 1|Z = z')$, $\alpha \equiv P(\varepsilon = 1)$, then let the bounds derived in Acerenza et al. (2021) be:

$$\Delta_{pl} \equiv \Delta_{D*Z}(z', z),$$

$$\Delta_{pu} \equiv \min\{1, 2\alpha + \Delta_{D*Z}(z', z), 2(1 - \alpha) - \Delta_{D*Z}(z', z)\},$$

$$p_l(z) \equiv \max\{P(D^* = 1|Z = z) - \alpha, \alpha - P(D^* = 1|Z = z)\},$$

$$p_u(z) \equiv \min\{P(D^* = 1|Z = z) + \alpha, (1 - \alpha) + P(D^* = 0|Z = z)\}.$$

The bounds on the propensity score rely on any given level of unconditional misreporting (α). Misreporting enters in two ways. First of all, if the probabilities of misreporting are unknown, $p(z)$ is no longer identified (see Acerenza et al. (2021) for more details), which then creates a problem since such quantity appears systematically in the bounding strategies. To solve this problem, we use the previously defined bounds on the misreporting probabilities.

The lack of point identification of $p(z)$ affects the strategy using smoothness restrictions. See for example that:

$$E[Y|Z = z] - E[Y|Z = z'] \leq \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv + MTE(v^*)(p(z) - p(z'))$$

The bound of MTE depends on the sign of it since it is not always true that $MTE(v^*)(p(z) -
\[p(z) \leq MTE(v^*)(p_u(z) - p_l(z)). \] These considerations are taken into account in theorem 1.

Smoothness assumptions for marginal treatment responses

The bounds from theorem 1 builds on the following inequalities due to assumption 3.

\[
E[Y|Z = z] - E[Y|Z = z'] \leq \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv + MTE(v^*)(p(z) - p(z')) \quad (8)
\]

\[
E[Y|Z = z] - E[Y|Z = z'] \geq -\int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv + MTE(v^*)(p(z) - p(z')) \quad (9)
\]

Where the inequalities use the smoothness assumption as in the previous section without misreporting and fact that \(\int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv \leq \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv. \) Note that we have a sufficient condition for identifying the sign of the \(MTE(v^*) \). If \(E[Y|Z = z] - E[Y|Z = z'] \geq 0 \) and \(MTE(v^*) \) is positive. If \(E[Y|Z = z] - E[Y|Z = z'] \leq 0 \) then the \(MTE(v^*) \) is negative.

If \(E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv \geq 0 \) then from equations 8 and 9 combined with the bounds on \(p(z) - p(z') \) we get:

\[
MTE^+(v^*)_{lb} = \frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv}{\Delta_{p_u}}
\]

\[
MTE^+(v^*)_{ub} = \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p_l(z')}^{p_u(z)} 2b|v - v^*|dv}{\Delta_{p_l}}
\]

Note that the form of the bounds depend on \(|v - v^*|\). In the integral of the absolute value is where the relative position of \(v^* \) with respect of \(p_l(z'), p_u(z) \) will matter. Note that if the \(v^* \) of interest is such that \(v^* \leq p_l(z') \), the integral involving \(|v - v^*|\) is \(\left[\frac{p_u(z)^2 - p_l(z')^2}{2} + v^*(p_l(z') - p_u(z)) \right] \). If the \(v^* \) of interest is such that \(v^* \geq p_u(z) \) then \(\left[\frac{-p_u(z)^2 + p_l(z')^2}{2} + v^*(-p_l(z') + p_u(z)) \right] \). If the \(v^* \) of interest is such that \(p_l(z') \leq v^* \leq p_u(z) \) then \(\left[v^2 - v^*(p_u(z) + p_l(z')) + \left(\frac{p_u(z)^2 + p_l(z')^2}{2} \right) \right] \)

The following theorem summarizes the previous discussion.

Theorem 1 If assumptions 1, 2, and 3 holds. Then the following bounds are valid:
1. If $E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')} 2b|v - v^*|dv \geq 0$:

$$MTE^+(v^*)_{lb} = \frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')} 2b|v - v^*|dv}{\Delta_{pu}}$$

$$MTE^+(v^*)_{ub} = \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p_l(z')} 2b|v - v^*|dv}{\Delta_{pl}}$$

2. If $E[Y|Z = z] - E[Y|Z = z'] + \int_{p_l(z')} 2b|v - v^*|dv \leq 0$:

$$MTE^-(v^*)_{lb} = \frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')} 2b|v - v^*|dv}{\Delta_{pl}}$$

$$MTE^-(v^*)_{ub} = \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p_l(z')} 2b|v - v^*|dv}{\Delta_{pu}}$$

3. Otherwise:

$$MTE(v^*)_{lb} = \max\{MTE^-(v^*)_{lb}, MTE^+(v^*)_{lb}\}$$

$$MTE(v^*)_{ub} = \min\{MTE^-(v^*)_{ub}, MTE^+(v^*)_{ub}\}$$

Remark 5 In some situations like in the case of SNAP, one could be willing to assume that for every level of heterogeneity v, $P(Y_1 < Y_0|V = v) = 1$ holds which means that receiving SNAP is not making anyone more food insecure. This is the “treatment cannot hurt” assumption or known as the monotone treatment response assumption in the partial identification literature. In such a case, we would be imposing the sign of the MTE even if we cannot extract it from $E[Y|Z = z] - E[Y|Z = z'] - \int_{p_l(z')} 2b|v - v^*|dv \geq 0$ or $E[Y|Z = z] - E[Y|Z = z'] + \int_{p_l(z')} 2b|v - v^*|dv \leq 0$

Remark 6 The previous bounds are not assuming there is a known support for Y if the nature of Y is bounded then the previous bounds change in the following way:

$$MTE(v^*)_{lb} = \max\{MTE(v^*)_{lb}, Y_{1l} - Y_{0u}\}$$
\[\hat{MTE}(v^*)_{ub} = \min \{ MTE(v^*)_{ub}, Y_{1u} - Y_{0u} \} \]

The previous theorem is extended for discrete instruments taking more than 2 values in the online appendix.

A researcher might be interested in combining the monotonicity assumption on the treatment responses and the smoothness assumption. So instead of using assumption 3, the researcher might be willing to use 4. This result is collected in the online appendix.

The choice of \(b \) is not arbitrary. The fact that it operates as a tuning parameter might lead to a discretionary use of it to get the desired result; different ways of choosing this parameter are discussed in the online appendix.

The previous identification results are illustrated in the appendix.

IV Application: \(MTE \) of SNAP on child health when participation is endogenous and misreported

In this section, the developed methods are applied to get bounds on the \(MTE \). We then integrate them over \(v^* \) to get bounds on the \(ATE \) of receiving SNAP on the outcome of being food insecure. As stated by Kreider et al. (2012) SNAP, formerly known as the Food Stamp Program, is by far the largest food assistance program in the United States and, as such, constitutes a crucial component of the social safety net in the United States. In any given month during 2009, SNAP assisted more than 15 million children, and it is estimated that nearly one in two American children will receive assistance during their childhood. Concluding about the program’s impact is complex due to two of the fundamental problems studied in this paper. First, a selection problem arises because the decision to participate in SNAP is unlikely to be exogenous. On the contrary, unobserved factors such as expected future health status, parents’ human capital characteristics, financial stability, and attitudes towards work and family are all thought to be jointly related to participation in the program and health outcomes such as food security. Families may decide to participate precisely because they expect to be food insecure or in poor health. Second, a nonrandom measurement error
problem arises because a large fraction of food stamp recipients fails to correctly report their program participation in household surveys. Using administrative data matched with data from the Survey of Income and Program Participation (SIPP), for example, Bollinger and David (1997) find that errors in self-reported receipt of food stamps exceed 12 percent and are related to respondents’ characteristics, including their true participation status, health outcomes, and demographic attributes. Meyer et al. (2009) provide evidence of extensive underreporting of food stamps in the SIPP, the Current Population Survey (CPS), and the Panel Study of Income Dynamics (PSID).

In this context, Kreider et al. (2012) studies the average effects using the December Supplement of the 2003 Current Population Survey (CPS). In the data, we can observe a self-reported measure of food stamp receipt over the past year, food insecurity over the past year, and the ratio of income to the poverty line.

As Kreider et al. (2012) states, the data is rich enough to allow the construction of instrumental variables for SNAP participation used in previous literature. In particular, state identifiers in the CPS apply a more traditional instrumental variable (IV) assumption based on cross-state variation in program eligibility rules. Merging the Urban Institute’s database of state program rules with the CPS data, Kreider et al. (2012) create two instrumental variables: an indicator for whether the state uses a simplified semi-annual reporting requirement for earnings and an indicator for whether cars are exempt from the asset test. These instrumental variables if valid and independent allows using the current methods to bound the MTE. For example, if one is willing to assume that the state variation in the asset test is

9 For further details about the data see Gundersen and Kreider (2008). In there, they state that just over 40 percent of the households report receiving food stamps, and the food insecurity rate among self-reported recipients is 17.9 percentage points higher than among eligible non-recipients (52.3 percent vs. 34.4).

10 In general terms, program eligibility rules are income requirements (most households must meet both gross and net income limits to qualify for SNAP benefits), resource requirements (households must also meet a resource limit in their bank accounts), work requirements (If you are an able-bodied adult without dependents, between the ages of 18 and 49, and able to work but currently unemployed, you may only be eligible for SNAP benefits for three months within a three-year period) and other eligibility requirements (to be eligible for SNAP benefits, households must also, meet other conditions in addition to the income and resource requirements, such as everyone in your household having, or have applied for, a social security number). To establish the income and resource requirements, each state computes asset tests, but there is variation in how these states evaluate the assets of individuals. More specifically, they may or may not include certain assets that will affect the individuals’ eligibility.

11 For more details on the construction see Kreider et al. (2012).

exogenous, then instrument independence is satisfied. It is worth noticing that only LATE can be identified from an instrumental variable regression under individual heterogeneity. In this sense, the methods developed here can be used to recover bounds on the average treatment effect, and complement [Kreider et al. (2012)] results. In this context, the MTE at a particular level of v^* represents the treatment effect receiving SNAP has for a particular level of stigma. Stigma mat is connected with the potential outcomes since, as stated by [Earnshaw and Karpyn (2020)] stigma manifestations affect health outcomes (and food security as such).

More precisely, in this context to illustrate our methods, Y is a food insecurity indicator over the past year, D^* is the self-reported SNAP participation (subject to potential measurement error as stated before), Z is a binary variable for cars exempt from the asset test.

Concerning choosing b for the sake of exposition, we present the results here for several potential values of b. In the online appendix we discuss different methods on how to choose b which could be used in this context. Intuitively choosing b is restricting the degree of smoothness the MTE would have. One can draw a parallelism between choosing a linear form (a low b) for the MTE versus choosing a high order polynomial (high b). The linear form is rather restrictive on the behavior of higher-order derivatives (and thus smoothness) compared with the polynomial. A researcher choosing b for SNAP should consider what he thinks the underlying decision-maker optimization problem looks like. If the expected utility, for example, has a quadratic form, or the optimal expected demand of food security is linear under both receiving and not receiving SNAP, then the expected benefit on the optimal choice of food security both under getting SNAP and not getting it could be considered linear.

Consistently with [Kreider et al. (2012)] a treatment cannot hurt assumption ($P(Y_1 < Y_0 | V = v) = 1$) will be introduced. Making then the conservative upper bounds of the MTE to be 0.

The following table summarizes the data and shows the average and median characteristics in the sample. We can see that around forty-two percent of the people are food insecure, while forty-one report receiving SNAP. Thirty percent have their cars excluded from the asset test, which implies that thirty percent of the individuals in the sample live in states where cars are
Table 1
Summary statistics

	Mean	Standard Deviation	Median
Food insecure (\(Y\))	0.42	0.49	0
Reporting being on SNAP (\(D\))	0.41	0.49	0
Cars exempt from the asset test (\(Z\))	0.30	0.46	0
Income to poverty line ratio	0.75	0.36	0.75
\(N\)	2707	-	-

excluded from the asset test. On average (and in the median), individuals in this sample are below the poverty line.

Each of the graphs in the following figure is computed in the following way. For any given level of \(b\) and \(\alpha\), point estimates of the bounds are constructed for the \(MTE\) at different values \(v^*\) using their sample analogs. To decide which type of bound to use, the relative position of the sample analog estimates of the bounds for the propensity score is calculated. The maximum level of \(\alpha\) is twenty percent which is chosen as an arbitrary big upper bound above the existing results from [Kreider et al. (2012)].

See Figure A.1.

In orange, we have the upper and lower bounds assuming \(\alpha = 0.2\). In blue, we have the upper and lower bounds assuming \(\alpha = 0.1\), and in red, we report the upper and lower bounds assuming \(\alpha = 0\) (no misreporting). The limits of the \(Y\)-axis are the worst-case upper bound (0 under treatment cannot hurt) and the worst-case lower bound (−1). The \(X\)-axis goes from 0 to 1, the different potential values of \(v^*\). We can see that the bounds have identification power over different regions of \(v^*\) support. We can see that when the level of misreporting decreases, the bounds become tighter since there is less lack of identification due to misreporting. Similarly, when \(b\) decreases, we also get tighter bounds consistent with reducing the potential functional forms of the marginal treatment responses.

These bounds are computed by fixing a level of \(\alpha\). If, for example, in the case of \(b = 0.1\), the researcher is not interested in \(\alpha = 0.2\) rather in \(\alpha \leq 0.2\) then all the region between the upper orange curve and the lower orange curve is the identified set consistent with \(b = 0.1\).
and all the \(\alpha \)'s less or equal to twenty percent.

The length of the identified set becomes tighter in the region between the estimated observed propensity scores (\(\hat{P}[D^* = 1|Z = 1] = 0.49, \hat{P}[D^* = 1|Z = 0] = 0.38 \)) since there is more information being used to bound the \(MTE \).

The previous display also implies a simple way of computing bounds of a parameter of interest such as the \(ATE \). It is known that \(ATE = \int_0^1 MTE(v^*)dv^* \). Then we know that \(\int_0^1 MTE_{lb}(v^*)dv^* \leq ATE \leq \int_0^1 MTE_{ub}(v^*)dv^* \). So then we can approximate bounds for the \(ATE \) as:

\[
\frac{1}{N_{v^*}} \sum_{v^*} MTE_{lb}(v^*) \equiv \hat{ATE}_{lb} \\
\frac{1}{N_{v^*}} \sum_{v^*} MTE_{ub}(v^*) \equiv \hat{ATE}_{ub}
\]

Where \(N_{v^*} \) is the number of grid points where \(MTE(v^*) \) was evaluated and where \(\hat{MTE} \) are the bounds from the previous graphs. On the online appendix estimates of the bounds on the \(ATE \) are computed. In the online appendix, there is also an alternative way of estimating (and doing inference) on the \(ATE \) for the case of smoothness restrictions. On the online appendix a method for asymptotic normality for an outer-set of the \(ATE \) in the case of no misreporting and with smoothness conditions is developed. On the online appendix a method for asymptotic normality for an outer-set of the \(ATE \) in the case of misreporting, treatment cannot hurt assumption, and smoothness conditions can be found.

The \(ATE \) bounds are easily estimated and used for inference, since as shown in the appendix, each component can be replaced by their sample analogs, which themselves are asymptotically normal, and thus, by the continuous mapping theorem the upper bounds and lower bounds for the \(ATE \) are also. Then, an asymptotically valid bootstrap procedure can be used to build confidence intervals for the entire identified set, such as those constructed by Manski and Nagin (1998). The population identification region is an interval \([L, U] \), we can estimate each side of the interval with consistent and asymptotically normal estimators \(\hat{L}, \hat{U} \) and via this procedure we get confidence interval \(\left[\hat{L} - z_{\frac{\alpha}{2}} \hat{\sigma}_l / \sqrt{N}, \hat{U} + z_{\frac{\alpha}{2}} \hat{\sigma}_u / \sqrt{N} \right] \equiv [\hat{L}_\alpha, \hat{U}_\alpha] \)

25
such that

$$\lim_{N \to \infty} P([L, U] \in [\hat{L}_\alpha, \hat{U}_\alpha]) = 1 - \alpha$$

In order to control for covariates X such that independence of Z holds conditional on it in a tractable manner, we can assume $E[Y_d|V = v, X = x] = m_d(v) + \beta X$. Then,

$$E[Y|Z = z, X = x] = \int_0^{p(z,x)} E[Y_1|V = v, X = x] dv + \int_{p(z,x)}^1 E[Y_0|V = v, X = x] dv$$

$$= \int_0^{p(z,x)} m_1(v) dv + \int_{p(z,x)}^1 m_0(v) dv + \beta X$$

Where $P(z, x) = P(D = 1|X = x, Z = z)$. We can then any two values of Z:

$$E[Y|Z = z, X = x] - E[Y|Z = z', X = x] = \int_{p(z,x)}^{p(z',x)} [m_1(v) - m_0(v)] dv$$

We can then follow a similar display is in Section III In this case, we can estimate $E[Y|Z = z, X = x]$ with a partial linear regression while $p(z, x)$ is estimated with a non-parametric regression.

So far, we have reported results for the instrument taking only two values. The data set used in this problem counts with two potential instruments. The already used one, and an eligibility criterion specifying if earners report twice a year or not. Based on this, a three-valued instrument can be constructed related to the intensity of the likelihood of receiving SNAP. That is, it takes 0 if both instruments take the value 0, takes the value 1 if either of them takes the value 1, and it takes the value 2 if both of them take the value 1. The details of how the bounds look for more discrete non-binary instruments and the particular case of an instrument taking three values are collected in the online appendix. In such a case, the length of the identified set for the ATE becomes smaller; this is intuitive since we now have a more exogenous variation to exploit. We we illustrate it with the case of $b = 0.5, \alpha = 0.1$. Additionally, we can see that the form of the identified set of the MTE changes, since now the regions rely on the different exogenous variation in zones where previously, only the shape
restrictions could be used. These results are collected in the online appendix.

V Conclusions

In this paper, we provided partial identification results for the Marginal Treatment Effect in the presence of measurement error and a discrete instrument building over Mogstad et al. (2018), Brinch et al. (2017) and Acerenza et al. (2021). To do so, given the discrete nature of the instruments, we introduced smoothness restrictions.

Results are illustrated via a numerical example and quantifying the marginal treatment effect of SNAP on food insecurity, a case in which measurement error and endogeneity of treatment are known to be an issue.

In a more general way, our results can serve as a sensitivity analysis tool for when researchers are interested in recovering the MTE in the presence of a discrete instrument and suspect measurement error, and have doubts about their parametric assumptions. This sensitivity analysis is executed by varying α, b.

If no measurement error exists, the results from this paper provided analytical partial identification results of the MTE in the presence of discrete instruments that can serve as a complement for the already existing results.

References

Acerenza, S., K. Ban and D. Kédagni. 2021. ”Marginal Treatment effects with misclassified treatment.” Working paper.

Angrist, J. D. 1990. ”Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records” The American Economic Review 80(3):313-336.

Angrist, J. D. and W. N. Evans. 1998. ”Children and Their Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size” The American Economic Review 88(3):450-477.

Angrist, J. D. and A. B. Krueger. 1991. ”Does Compulsory School Attendance Affect Schooling and Earnings?” The Quarterly Journal of Economics 106(4):979-1014.

Armstrong, T and M. Kolesár. 2020. ”Simple and honest confidence intervals in nonparametric regression.” Quantitative Economics:1-39.
Bollinger, C., and M. David. 1997. "Modeling Discrete Choice with Response Error: Food Stamp Participation." *Journal of the American Statistical Association* 92(439): 827-835.

Brinch, C.N., M. Mogstad and M. Wiswall. 2017. "Beyond LATE with a Discrete Instrument." *Journal of Political Economy* 125(4): 985-1039.

Calvi, R., A. Lewbel and D. Tommasi. 2021. "LATE With Missing or Mismeasured Treatment." *Journal of Business and Economic Statistics*.

Contini, D. and A. M. Richiardi. 2012. "Reconsidering the effect of welfare stigma on unemployment." *Journal of Economic Behavior and Organization* 84(2):224-244.

Earnshaw, V. and A. Karpyn. 2020. "Understanding stigma and food inequity: a conceptual framework to inform research, intervention, and policy." *Translational Behavioral Medicine* 10(6): 1350–1357.

Gundersen, C., and B. Kreider. 2008. "Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Nonclassical Measurement Error?" *Journal of Human Resources* 43(2): 352-382.

Haider, S. and Stephens M. 2020. "Correcting for Misclassified Binary Regressors Using Instrumental Variables." *NBER Working paper series* Working Paper 27797.

Hausman, J.A., Abrevaya, J. and Scott-Morton, F.M. 1998. "Misclassification of the dependent variable in a discrete-response setting." *Journal of Econometrics* 87:239–269.

Heckman, J.J. and E. Vytlacil. 1999. "Local Instrumental variables and latent variable models for identifying and bounding treatment effects." *Proceedings of the National Academy of Sciences* 96:4730–4734.

Heckman, J.J. and E. Vytlacil. 2005. "Structural Equations, Treatment Effects, and Economic Policy Evaluation." *Econometrica* 73(3):669–738.

Heckman, J.J., S. Urzua and E. Vytlacil. 2006. "Understanding Instrumental Variables in models with essential heterogeneity." *The Review of Economics and Statistics* 88(3):389–432.

Hernandez, M. and S. Pudney. 2007. "Measurement error in models of welfare participation." *Journal of Public Economics* 91:327–341.

Kim, W., K. Kwon, S. Kwon and S. Lee. 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes." *Quantitative Economics* 9, 617–642.

Kreider, B., J.V. Pepper, C. Gundersen and D. Jolliffe. 2012. "Identifying the Effects of SNAP(Food Stamps) on Child Health Outcomes When Participation is Endogenous and Misreported." *Journal of the American Statistical Association* 107:432–441.

Krueger, A. B. 1999. "Experimental Estimates of Education Production Functions" *The Quarterly Journal of Economics* 114(2):497-532.

Machado, C., A.M. Shaikh and E.J. Vytlacil. 2019. "Instrumental variables and the sign of the average treatment effect." *Journal of Econometrics* 212(2):522–555.
Manski, C. F., and D. Nagin. 1998. "Bounding Disagreements About Treatment Effects: A Case Study of Sentencing and Recidivism." *Sociological Methodology* 28:99–137.

Masten, M.A. and Poirier, A. 2021. "Salvaging Falsified Instrumental Variable Models." *Econometrica* 89:1449–1469.

Meyer, B., D.W. Mok and J.X. Sullivan. 2006. "The Under-Reporting of Transfers in Household Surveys: Its Nature and Consequences." *Working Paper* University of Chicago, Harris School of Public Policy Studies.

Moffitt, R. 1983. "An Economic Model of Welfare Stigma." *The American Economic Review* 73(5):1023–1035.

Mogstad, M., A. Santos and A. Torgovitsky. 2018. "Using Instrumental Variables For Inference About Policy Relevant Treatment Parameters." *Econometrica* 86(5):1589–1619.

Palar, K., Frongillo, E. A., Escobar, J., Sheira, L. A., Wilson, T. E., Adedimeji, A., Merenstein, D., Cohen, M. H., Wentz, E. L., Adimora, A. A., Ofotokun, I., Metsch, L., Tien, P. C., Turan, J. M., and Weiser, S. D. 2018. "Food Insecurity, Internalized Stigma, and Depressive Symptoms Among Women Living with HIV in the United States." *AIDS and Behavior* 22(12):3869–3878.

Possebom, V. 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification." *Working Paper*.

Ratcliffe, C. and McKernan, S-M. 2010. "How Much Does Snap Reduce Food Insecurity?" *Contractor and Cooperator Report United States Department of Agriculture (USDA)* 60.

Tommasi, D and L. Zhang. 2020. "Bounding Program Benefits When Participation Is Misreported." *IZA IZA DP No. 13430*

Ura, T. 2018. "Heterogeneous treatment effects with mismeasured endogenous treatment." *Quantitative Economics* 9(3):1335–1370.
A Identification without shape restrictions

The object of interest as noted is $E[Y_1 - Y_0|V = v^*]$. Following [Mogstad et al. (2018)] this can be expressed as:

$$E[Y_1|V = v^*] - E[Y_0|V = v^*] = \int_0^1 E[Y_1|V = v]w_1dv + \int_0^1 E[Y_0|V = v]w_0dv \quad (A.1)$$

Where $w_1 = \delta(v^*)$, $w_0 = -\delta(v^*)$ and $\delta(v^*)$ is Dirac delta measure assigning all the mass at $V = v^*$.

We can express $E[Y|Z = z] - E[Y|Z = z']$ our IV-like estimand as:

$$E[Y|Z = z] - E[Y|Z = z'] = \int_{p(z)}^{p(z')} E[Y_1|V = v]1\{v \in (p(z), p(z'))\}dv - \int_{p(z')}^{p(z)} E[Y_0|V = v]1\{v \in (p(z), p(z'))\}dv \quad (A.2)$$

Where $\omega_1 = 1\{v \in (p(z), p(z'))\}$ and $\omega_0 = -1\{v \in (p(z), p(z'))\}$.

Note that $1\{v \in (p(z), p(z'))\}$ is not known since $p(z)$ is not known. Nevertheless, for any fixed $\{p(z), p(z')\}$, for $E[Y_d|V = v] \in \mathcal{M}$, $d = 1, 0$ and \mathcal{M} being a convex space, we known from [Mogstad et al. (2018)] that since the equations $A.1$ and $A.2$ define linear operators convexity is carried onto the space of solutions of equation $A.1$ subject to $A.2$. Then this allows to define a linear programming as in [Mogstad et al. (2018)] and take into account the implementation considerations they make to get upper bounds and lower bound for the MTE.
by solving respectively:

$$\max(\min)_{E[Y_1|V=v], E[Y_0|V=v] \in M} \int_0^1 E[Y_1|V = v] w_1 dv + \int_0^1 E[Y_0|V = v] w_0 dv \quad (A.3)$$

Subject to

$$E[Y|Z = z] - E[Y|Z = z'] = \int_0^1 E[Y_1|V = v] \omega_1(p) dv + \int_0^1 E[Y_0|V = v] \omega_0(p) dv$$

Which then give as a solution an interval defined as $MTE_{lb}(v^*, p), MTE_{ub}(v^*, p)$. Where $\omega_d(p), MTE_{lb}(., p), MTE_{ub}(., p)$ is stating the dependence of the program to a particular $p(z), p(z')$.

The following procedure can be repeated for every $p(z), p(z') \in P$, the identification region of the propensity score (P defined in [Acerenza et al. 2021]) and then the set of possible values for the MTE is $\bigcup_{p \in P} (MTE_{lb}(v^*, p), MTE_{ub}(v^*, p))$. In practice the calculation cannot be made for every p since it is infinite-dimensional, but the solution can be approximated taking several grid points in the space P.

B Inference for the ATE with no misreporting and smoothness conditions

Let $\Delta_Y \equiv E[Y|Z = z] - E[Y|Z = z']$. Let $p_1 \equiv p(z)$ and $p_0 \equiv p(z')$. We can use the upper bounds on the MTE to construct upper bounds on the ATE (a similar display would apply for the lower bounds).

Note that from the bounds developed under smoothness conditions it is true that the following are upper bounds for the $MTE(v^*)$ (namely $MTE(v^*)_{ub}$):

$$MTE(v^*)_{ub1} \equiv \frac{\Delta_Y + 2b[\frac{p_1^2 - p_0^2}{2} + v^*(p_0 - p_1)]}{p_1 - p_0} \quad \text{if} \quad v^* < p_0 \quad (A.4)$$

$$MTE(v^*)_{ub2} \equiv \frac{\Delta_Y + 2b[v^*2 + \frac{p_1^2 + p_0^2}{2} - v^*(p_0 + p_1)]}{p_1 - p_0} \quad \text{if} \quad p_0 < v^* < p_1 \quad (A.5)$$
\[MTE(v^*)_{ub3} = \frac{\Delta_y + 2b[\frac{-p_1^3 + p_0^3}{2} + v^*(-p_0 + p_1)]}{p_1 - p_0} \quad \text{if } p_1 < v^* \]

(A.6)

Then from the fact that \(ATE = \int_0^1 MTE(v^*)dv^* \) we can see that:

\[
ATE_{ub} = \int_0^1 MTE(v^*)_{ub}
= \int_0^{p_0} MTE(v^*)_{ub1} + \int_{p_0}^{p_1} MTE(v^*)_{ub2} + \int_{p_1}^1 MTE(v^*)_{ub3}
\]

Which then combining equations (A.4) and (A.7) and after some calculus we get:

\[
ATE_{ub} = \frac{\Delta_y}{p_1 - p_0} + \frac{2b}{3} \frac{p_1^3 - p_0^3}{p_1 - p_0} - b \frac{p_1^2 - p_0^2}{p_1 - p_0} + b
\]

(A.8)

Which is a smooth continuous function of \(p_1, p_0, \Delta_y \) (except at \(p_1 = p_0 \) which is ruled out by assumption) then if the estimators of \(p_1, p_0, \Delta_y \) are asymptotically normal (which is the case under standard conditions since they are sample analogs) we get by the continuous mapping theorem that the estimator of \(ATE_{ub} \) is also asymptotically normal. Then we can perform valid asymptotic inference on the bounds on the \(ATE \). The bound is an outer set because, as pointed out in the main document, if the variables \(Y_1, Y_0 \) are naturally bounded then, so is the \(ATE \), the bounds here do not incorporate that aspect.

C Inference for the \(ATE \) with smoothness conditions and treatment cannot hurt assumption

As in section B let \(\Delta_Y \equiv E[Y|Z = z] - E[Y|Z = z'] \). Now as there is misreporting let \(p_{1u} \equiv p_u(z), p_{1l} \equiv p_l(z), p_{0u} \equiv p_u(zt) \) and \(p_{0l} \equiv p_l(zt) \).

Also let the lower bound of the difference of the probabilities as in the main text to be \(\Delta_{pl} \). In this case adding the assumption that \(Y_1 - Y_0 \leq 0 \) we are imposing an upper bound on the \(MTE \) and \(ATE \) to be 0. We are also imposing information on the sign of it which leads to the following lower bounds for the \(MTE(v^*) \)
\[
MTE(v^*)_{lb1} \equiv \frac{\Delta_y - 2b\left(\frac{p^2_{1u} - p^2_{0l}}{2} + v^*(p_{0l} - p_{1u})\right)}{\Delta_{pl}} \quad \text{if } v^* < p_{0l} \tag{A.9}
\]

\[
MTE(v^*)_{lb2} \equiv \frac{\Delta_y - 2b[v^2 + \frac{p^2_{1u} + p^2_{0l}}{2} - v^*(p_{0l} + p_{1u})]}{\Delta_{pl}} \quad \text{if } p_{0l} < v^* < p_{1u} \tag{A.10}
\]

\[
MTE(v^*)_{lb3} \equiv \frac{\Delta_y - 2b[-\frac{p^2_{1u} + p^2_{0l}}{2} + v^*(-p_{0l} + p_{1u})]}{\Delta_{pl}} \quad \text{if } p_{1u} < v^* \tag{A.11}
\]

Then from a similar display as in section B we get:

\[
ATE_{lb} = \frac{\Delta_y - 2b(\frac{p^3_{1u} - p^3_{0l}}{3} + b(p^2_{1u} - p^2_{0l}) - b(p_{1u} - p_{0l})}{\Delta_{pl}} \tag{A.12}
\]

We know that \(\Delta_y, \Delta_{pl}\) can be estimated with the sample analogs, and they are well-behaved estimators that, under standard central limit theory, are asymptotically normal. Note that from the main text \(p_{1u} \equiv \min\{P(D^* = 1|Z = z) + \alpha, (1 - \alpha) + P(D^* = 0|Z = z)\}\), \(p_{0l} \equiv \max\{P(D^* = 1|Z = z) - \alpha, \alpha - P(D^* = 1|Z = z)\}\) where the max, min operators make the asymptotic normality of their sample analogs not possible. But note that \(p_{1u} \leq P(D^* = 1|Z = z) + \alpha\) and \(p_{0l} \geq P(D^* = 1|Z = z) - \alpha\). So if the researcher is willing to assume he is using levels of \(\alpha\) that are such that \(P(D^* = 1|Z = z) + \alpha \leq 1\) and \(P(D^* = 1|Z = z) - \alpha \geq 0\) and also theirs sample analogs, then, he can use \(P(D^* = 1|Z = z) + \alpha, P(D^* = 1|Z = z) - \alpha\) instead of \(p_{1u}, p_{0l}\) as the bounds on the probabilities. In such a case, the sample analogs of these outer bounds are asymptotically normal by the usual central limit theory\(^{12}\). In this case then, since the bound on the \(ATE\) is a smooth continuous function of \(p_{1u}, p_{0l}, \Delta_y, \Delta_{pl}\) and since the sample analogs of \(P(D^* = 1|Z = z) + \alpha, P(D^* = 1|Z = z) - \alpha, \Delta_y, \Delta_{pl}\) are asymptotically normal, by standard results we get by the continuous mapping theorem that

\(^{12}\)Note that in the development of the bounds on the \(MTE\) with misreporting the particular form of the bounds for \(p(z)\) was never used. In that sense, the previous results still hold just that now we change tighter bounds of \(p(z)\) for wider ones.
the estimator of ATE_{lb} is also asymptotically normal. Then we can perform valid asymptotic inference on the bounds on the ATE. This bound is an outer set because, as pointed out in Section B and also because we are not using the tightest possible bounds on $p(z)$.

D The choice of b

In some applications, choosing b involves some subjective belief about the maximum size of treatment effects or, as above, on the underlying behavior of unobservable taste parameters. Identification results are obtained conditional on those beliefs. One possible route to choose b as proposed by Kim et al. (2018) formally is to rely on Bayesian inference using pre-samples or information from prior elicitation. Using existing experimental results or previous research, one may obtain a posterior distribution regarding b and use a high quantile of the posterior distribution as a possible value of b.

An alternative way of choosing b in the current paper and the application to SNAP is if there are previous results on $LATE$ or ATE for SNAP, we could choose b to be such that is consistent with previous studies on the topic.

Yet another way would be in the same spirit of Armstrong and Kolesárl (2020) and a-priory decide on the bigger (or worst case) class of functions the researcher is willing to accept as potential marginal treatment responses. In that sense, if the researcher is willing, for example, to accept the idea that all functions between 0 and 1 with $b = 2$ or less are candidates, then he should present the report for all the values of b consistent with this notion.

The previous ideas all rely on the researcher either having a belief ex-ante or auxiliary data. An alternative way of choosing the b from inside the given data itself is the following. Suppose the support of the instrument has at least three values, z_0, z_1, z_2 and respective propensity scores p_0, p_1, p_2. If the researcher was willing to use only information on z_0, z_2 to get bounds on the MTE at different values of v^* between 0 and 1 then notice the following equality:

$$E[Y|Z = z_2] - E[Y|Z = z_1] = \int_{p_1}^{p_2} MTE(v) dv$$
The obtained bounds on the MTE could be plugged in to get:

\[
E[Y|Z = z_2] - E[Y|Z = z_1] \leq \int_{p_1}^{p_2} MTE_{ub}(v) dv
\]

\[
E[Y|Z = z_2] - E[Y|Z = z_1] \geq \int_{p_1}^{p_2} MTE_{lb}(v) dv
\]

Similarly

\[
E[Y|Z = z_1] - E[Y|Z = z_0] \leq \int_{p_0}^{p_1} MTE_{ub}(v) dv
\]

\[
E[Y|Z = z_1] - E[Y|Z = z_0] \geq \int_{p_0}^{p_1} MTE_{lb}(v) dv
\]

Then the range of b could be chosen as consistent with the previous set of inequalities supported by the data. This strategy would require the instrument to take at least three values and would also imply not using all the information available to get the tightest possible bounds on the MTE conditional on b. Nevertheless, this would bring a way to discipline the value of b to be consistent with the observed data.

A similar logic can be applied with the ATE. Take for example the bounds for the ATE derived above in the case of no misreporting.

\[
ATE \leq \frac{E[Y|Z = z] - E[Y|Z = z']}{p(z) - p(z')} + \frac{2b p(z)^3 - p(z')^3}{3 p(z) - p(z')} - b \frac{p(z)^2 - p(z')^2}{p(z) - p(z')} + b
\]

Then note that,

\[
\frac{ATE - E[Y|Z = z] - E[Y|Z = z']}{p(z) - p(z')} \leq \frac{2 p(z)^3 - p(z')^3}{3 p(z) - p(z')} - \frac{p(z)^2 - p(z')^2}{p(z) - p(z')} + 1 \leq b
\]

Now note that, from our data we have estimates for $E[Y|Z]$ and $p(z)$. Then plugging in these
estimates we get:

\[
\frac{ATE + 0.272727273}{0.510466667} \leq b
\]

Then say for example, we recover from Ratcliffe and McKernan (2010) that \(ATE = -0.162 \), then we get \(b = 0.22 \).

Note that this method also suggest an alternative way to choose \(b \) in the spirit of Matsen and Poirier (2021). In this sense, we can choose the maximum level of \(b \) to be the one such that there is no average treatment effect. Thus,

\[
b = \frac{E[Y|Z=z] - E[Y|Z=z']}{p(z) - p(z')} = \frac{2}{3} \frac{p(z)^2 - p(z')^2}{p(z) - p(z')} + 1
\]

Which would be in the example \(b = 0.534270483 \)

E Bounds on the ATE

\(\alpha = 0.2 \)	\(\alpha = 0.2 \)	\(\alpha = 0.2 \)			
\(b = 1 \)	\(b = 0.5 \)	\(b = 0.1 \)			
LB	UB	LB	UB	LB	UB
-1.00	0.00	-0.96	0.00	-0.48	-0.04

\(\alpha = 0.1 \)	\(\alpha = 0.1 \)	\(\alpha = 0.1 \)			
\(b = 1 \)	\(b = 0.5 \)	\(b = 0.1 \)			
LB	UB	LB	UB	LB	UB
-0.94	0.00	-0.81	0.00	-0.38	-0.09

\(\alpha = 0 \)	\(\alpha = 0 \)	\(\alpha = 0 \)			
\(b = 1 \)	\(b = 0.5 \)	\(b = 0.1 \)			
LB	UB	LB	UB	LB	UB
-0.72	-0.02	-0.50	-0.05	-0.28	-0.18
F Details of the DGP

To illustrate the results, we build the following DGP motivated by the application to SNAP. As stated by Kreider et al. (2012) the case of SNAP is sensitive to misreporting. It is more likely to observe people receiving SNAP and erroneously say they are not receiving it, than people not receiving it saying that they do. This is consistent with setting \((1 - D)\epsilon = 0\), which means no one misreports receiving when they do not receive it. Consider the following DGP:

\[
\begin{align*}
Y &= DV + (1 - D)\frac{V}{4} \\
D &= 1\{Z - V \geq 0\} \\
D^* &= D(1 - \epsilon) \\
\epsilon &= 1\{V \leq 0.15\}
\end{align*}
\]

(A.13)

\(V \sim U(0, 1)\), \(Z\) takes values be 0.7 or 0.1 with probability 1/2, \(Z\) is independent of \(V\). Note \(|E[Y_1|V = v_1] - E[Y_1|V = v_2]| = |v_1 - v_2|, |E[Y_0|V = v_1] - E[Y_0|V = v_2]| = \frac{1}{4}|v_1 - v_2|\) so \(b\) can be set to 1. Note \(MTE(v) = \frac{3}{4}v\). The marginal treatment responses \(E[Y_1|V = v] = v, E[Y_0|V = v] = \frac{1}{4}v\) are monotonic in \(v\). \(\alpha = P(\epsilon = 1) = 0.15\).

See Figure A.2.

The limit of the \(Y\) axis is the worst case upper bounds (1) and lower bounds (−0.25). The black dotted line is the true \(MTE\) curve. The red lines represent the bounds from using the smoothness assumption alone. We can see that even though it improves from the worst-case bounds in this particular DGP, it cannot recover the sign of the \(MTE\). Finally, the blue lines represent the combination of monotonicity of the treatment responses and smoothness. In such cases improvements over only smoothness are achieved, and the sign of the \(MTE\) is recovered in certain regions. In general, we can see that the bounds improve over the worst-case bounds and have identifying power on the \(MTE\).
G Identification with monotonicity assumption on the treatment responses and smoothness

This appendix collects the result for the case when the researcher is willing to assume both monotonicity and smoothness of the treatment responses. In such a case note then that for some \(v^* \) between \(p(z) \), \(p(z) \):

\[
E[Y|Z = z] - E[Y|Z = z'] = \int_{p(z)}^{p(z')} E[Y_1|V = v] - E[Y_0|V = v] dv
\]

\[
= \int_{p(z)}^{p(z')} \left(E[Y_1|V = v] - E[Y_1|V = v^*] - E[Y_0|V = v] \right) dv
\]

\[
+ E[Y_0|V = v^*] + E[Y_1|V = v^*] - E[Y_0|V = v^*] \right) dv
\]

\[
= [p(z) - p(z')]MTE(v^*)
\]

\[
+ \int_{p(z)}^{p(z')} E[Y_1|V = v] - E[Y_1|V = v^*]dv + \int_{p(z)}^{p(z')} E[Y_0|V = v^*] - E[Y_0|V = v] dv
\]

\[
= [p(z) - p(z')]MTE(v^*)
\]

\[
+ \int_{v^*}^{v^*} E[Y_1|V = v] - E[Y_1|V = v^*]dv + \int_{v^*}^{v^*} E[Y_0|V = v] - E[Y_1|V = v^*]dv
\]

\[
+ \int_{p(z)}^{v^*} E[Y_0|V = v^*] - E[Y_0|V = v] dv + \int_{v^*}^{p(z)} E[Y_0|V = v^*] - E[Y_0|V = v] dv
\]

Note that between \(p(z), v^* \), every \(v \) is smaller than \(v^* \). Then by assumption for \(v^* \) bigger than \(v \) we have \(0 \leq E[Y_1|V = v^*] - E[Y_1|V = v] \leq b(v^* - v) \), then \(0 \geq -E[Y_1|V = v^*] + E[Y_1|V = v] \geq b(v^* - v) \) thus between \(p(z) \) and \(v^* \), \(\int_{v^*}^{p(z)} E[Y_1|V = v] - E[Y_1|V = v^*]dv \leq 0 \).

Similarly between \(v^* \) and \(p(z) \) we get \(\int_{v^*}^{p(z)} E[Y_1|V = v] - E[Y_1|V = v^*]dv \leq \int_{v^*}^{p(z)} b(v^* - v)dv \). Also \(\int_{p(z)}^{v^*} E[Y_0|V = v^*] - E[Y_0|V = v]dv \leq \int_{v^*}^{v^*} b(v^* - v)dv \), \(\int_{p(z)}^{p(z)} E[Y_0|V = v^*] - E[Y_0|V = v]dv \leq 0 \). Then:

\[
E[Y|Z = z] - E[Y|Z = z'] \leq [p(z) - p(z')]MTE(v^*)
\]

\[
+ \int_{v^*}^{v^*} b(v^* - v)dv
\]

\[
+ \int_{p(z)}^{v^*} b(v^* - v)dv
\]

\[
= [p(z) - p(z')]MTE(v^*) + \int_{p(z)}^{p(z')} b|v - v^*|dv
\]

\[
\leq [p(z) - p(z')]MTE(v^*) + \int_{p(z)}^{p(z')} b|v - v^*|dv
\]
If assumptions 2.1-2.2 and 2.4 hold. Then the following bounds are valid:

Bounds based on no information about the sign, or based on the information contained in E[Y|Z = z] - E[Y|Z = z'] ± \int_{p(z|z')} p(v) b|v - v^*|dv. A similar logic applies for p(z) < v^* and v^* < p(z|z'). The following theorem summarizes this result.

Theorem A.1 If assumptions 2.1-2.2 and 2.4 holds. Then the following bounds are valid:

1. If E[Y|Z = z] - E[Y|Z = z'] - \int_{p(z|z')} p(v) b|v - v^*|dv \geq 0:

 \[
 \begin{align*}
 MTE^+(v^*)_{lb} &= \frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p(z|z')} p(v) b|v - v^*|dv}{\Delta_{pu}} \\
 MTE^+(v^*)_{ub} &= \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p(z|z')} p(v) b|v - v^*|dv}{\Delta_{pl}}
 \end{align*}
 \]

2. If E[Y|Z = z] - E[Y|Z = z'] + \int_{p(z|z')} p(v) b|v - v^*|dv \leq 0:

 \[
 \begin{align*}
 MTE^-(v^*)_{lb} &= \frac{E[Y|Z = z] - E[Y|Z = z'] - \int_{p(z|z')} p(v) b|v - v^*|dv}{\Delta_{pl}} \\
 MTE^-(v^*)_{ub} &= \frac{E[Y|Z = z] - E[Y|Z = z'] + \int_{p(z|z')} p(v) b|v - v^*|dv}{\Delta_{pu}}
 \end{align*}
 \]

3. Otherwise:

 \[
 MTE(v^*)_{lb} = \max\{MTE^-(v^*)_{lb}, MTE^+(v^*)_{lb}\}
 \]

 \[
 MTE(v^*)_{ub} = \min\{MTE^-(v^*)_{ub}, MTE^+(v^*)_{ub}\}
 \]

H Identification with instruments taking more than 2 values

Consider the case where instead of the instrument taking either the value 0 or 1 now it takes values \(Z = \{z_1, z_2, ..., z_K\} \). The developed identification strategy can be extended in this case. We will still be using the identified quantities \(E[Y|Z = z] - E[Y|Z = z'] \) as the main input for identification. Given we now have \(K \) possible values and we take combinations \(z_i, z_j \) to obtain \(E[Y|Z = z] - E[Y|Z = z'] \), we will have \(\frac{K^2 - K}{2} \) elements of the
form $E[Y|Z = z] - E[Y|Z = z']$.

Define:

$$
\Delta_1y = E[Y|Z = z_1] - E[Y|Z = z_2]
$$

$$
\Delta_2y = E[Y|Z = z_1] - E[Y|Z = z_3]
$$

$$
\vdots
$$

$$
\Delta_{K-1}y = E[Y|Z = z_1] - E[Y|Z = z_K]
$$

$$
\Delta_{K}y = E[Y|Z = z_2] - E[Y|Z = z_3]
$$

$$
\vdots
$$

$$
\Delta_{K^2-K}y = E[Y|Z = z_{K-1}] - E[Y|Z = z_K]
$$

Similarly, define $\Delta_1p = p(z_1) - p(z_2), \Delta_1v^* = 2b \int p(y|z_1)\, |v - v^*|\, dv$. Furthermore let $\Delta_{1u,p}$ and $\Delta_{1l,p}$ be respectively the upper and lower bound of the difference between $p(z_1), p(z_2)$. Define similarly the quantities for the other combinations of instruments. Following the display of the main text we then have the following set of equations for any given v^* of interest:

$$
\Delta_{1y} - \Delta_{1v^*} \leq MTE(v^*)\Delta_{1p}
$$

$$
\vdots
$$

$$
\Delta_{K^2-K}y - \Delta_{K^2-K}v^* \leq MTE(v^*)\Delta_{K^2-K}p
$$

$$
\Delta_{1y} + \Delta_{1v^*} \geq MTE(v^*)\Delta_{1p}
$$

$$
\vdots
$$

$$
\Delta_{K^2-K}y + \Delta_{K^2-K}v^* \geq MTE(v^*)\Delta_{K^2-K}p
$$

As before the previous equations contain sufficient conditions for the sign of the MTE at that particular v^*. These can be exploited in the following way:

If $\max_k\{\Delta_{1y} - \Delta_{1v^*}, \ldots, \Delta_{k}y - \Delta_{k}v^*, \ldots, \Delta_{K^2-K}y - \Delta_{K^2-K}v^*\} \geq 0$ then $MTE(v^*) \geq 0$ \hspace{1cm} (A.15)

If $\min_k\{\Delta_{1y} + \Delta_{1v^*}, \ldots, \Delta_{k}y + \Delta_{k}v^*, \ldots, \Delta_{K^2-K}y + \Delta_{K^2-K}v^*\} \leq 0$ then $MTE(v^*) \leq 0$ \hspace{1cm} (A.16)
Solving the system \[A.14 \] for \(MTE(v^*) \) and taking in consideration \[A.15 \] A.16 we know the following bounds summarized in this proposition:

Proposition 1 If assumptions 2.1-2.2 and 2.4 holds. Then the following bounds are valid:

1. If \[A.15 \] holds, then:
\[
MTE^+(v^*)_lb = \max\left\{ \frac{\Delta_{1y} - \Delta_{1v^*}}{\Delta_{1up}}, \frac{\Delta_{K^2-K} - \Delta_{K^2-K}v^*}{\Delta_{K^2-K}_{up}} \right\}
\]
\[
MTE^+(v^*)_ub = \min\left\{ \frac{\Delta_{1y} + \Delta_{1v^*}}{\Delta_{1lp}}, \frac{\Delta_{K^2-K} + \Delta_{K^2-K}v^*}{\Delta_{K^2-K}_{lp}} \right\}
\]

2. If \[A.16 \] holds, then:
\[
MTE^-(v^*)_lb = \max\left\{ \frac{\Delta_{1y} - \Delta_{1v^*}}{\Delta_{1lp}}, \frac{\Delta_{K^2-K} - \Delta_{K^2-K}v^*}{\Delta_{K^2-K}_{lp}} \right\}
\]
\[
MTE^-(v^*)_ub = \min\left\{ \frac{\Delta_{1y} + \Delta_{1v^*}}{\Delta_{1up}}, \frac{\Delta_{K^2-K} + \Delta_{K^2-K}v^*}{\Delta_{K^2-K}_{up}} \right\}
\]

3. Otherwise:
\[
MTE(v^*)_lb = \max\{MTE^-(v^*)_lb, MTE^+(v^*)_lb\}
\]
\[
MTE(v^*)_ub = \min\{MTE^-(v^*)_ub, MTE^+(v^*)_ub\}
\]

The special case of the instrument taking 3 values and the treatment cannot hurt assumption

In this subsection the previous bounds are computed for the particular case that \(Z = \{z_0, z_1, z_2\} \), \(P(Y_1 < Y_0) = 1 \), the upper bound of \(Y \) is 1, the lower bound is 0 and \(p_{l0} \leq p_{l1} \leq p_{u1} \leq p_{u2} \). This computation pretends to illustrate how the bounds would look like in this particular case and also serves the empirical application. In such application we impose the treatment cannot hurt assumption \((P(Y_1 < Y_0) = 1) \) and the point estimates for \(\alpha = 10\% \) of the upper and lower bounds of the propensity scores are consistent with \(p_{l0} \leq p_{l1} \leq p_{u1} \leq p_{u2} \).
Also the outcome Y in the application has a bounded support. Computing the bounds under these conditions we get the following result for the different positions of the v^* of interest:

1. If $v^* \leq p_{l0} \leq p_{l1} \leq p_{u1} \leq p_{u2}$. Then:

$$\begin{align*}
MTE^-(v^*)_{lb} &= \max \left\{ -1, \frac{\Delta_{y_{22z1}} - 2b\left[p_{01} - p_{u2}\right]}{\Delta_{l_{p2z1}}}, \frac{\Delta_{y_{22z0}} - 2b\left[p_{01} - p_{u2}\right]}{\Delta_{l_{p2z0}}} \right\} , \\
MTE^-(v^*)_{ub} &= \min \left\{ 0, \frac{\Delta_{y_{22z1}} + 2b\left[p_{01} - p_{u2}\right]}{\Delta_{u_{p2z1}}}, \frac{\Delta_{y_{22z0}} + 2b\left[p_{01} - p_{u2}\right]}{\Delta_{u_{p2z0}}} \right\} .
\end{align*}$$

2. If $p_{l0} \leq v^* \leq p_{l1} \leq p_{u1} \leq p_{u2}$. Then:

$$\begin{align*}
MTE^-(v^*)_{lb} &= \max \left\{ -1, \frac{\Delta_{y_{22z1}} - 2b\left[p_{01} - p_{u2}\right]}{\Delta_{l_{p2z1}}}, \frac{\Delta_{y_{22z0}} - 2b\left[v_{l2} - v^*(p_{u2} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{l_{p2z0}}}, \frac{\Delta_{y_{21z0}} - 2b\left[v_{l2} - v^*(p_{u1} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{l_{p2z0}}} \right\} , \\
MTE^-(v^*)_{ub} &= \min \left\{ 0, \frac{\Delta_{y_{22z1}} + 2b\left[p_{01} - p_{u2}\right]}{\Delta_{u_{p2z1}}}, \frac{\Delta_{y_{22z0}} + 2b\left[v_{l2} - v^*(p_{u2} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{u_{p2z0}}}, \frac{\Delta_{y_{21z0}} + 2b\left[v_{l2} - v^*(p_{u1} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{u_{p2z0}}} \right\} .
\end{align*}$$

3. If $p_{l0} \leq p_{l1} \leq v^* \leq p_{u1} \leq p_{u2}$. Then:

$$\begin{align*}
MTE^-(v^*)_{lb} &= \max \left\{ -1, \frac{\Delta_{y_{22z1}} - 2b\left[v_{l2} - v^*(p_{u2} + p_{l1}) + p_{01}^2\right]}{\Delta_{l_{p2z1}}}, \frac{\Delta_{y_{22z0}} - 2b\left[v_{l2} - v^*(p_{u2} + p_{l0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{l_{p2z0}}}, \frac{\Delta_{y_{21z0}} - 2b\left[v_{l2} - v^*(p_{u1} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{l_{p2z0}}} \right\} , \\
MTE^-(v^*)_{ub} &= \min \left\{ 0, \frac{\Delta_{y_{22z1}} + 2b\left[v_{l2} - v^*(p_{u2} + p_{l1}) + p_{01}^2\right]}{\Delta_{u_{p2z1}}}, \frac{\Delta_{y_{22z0}} + 2b\left[v_{l2} - v^*(p_{u2} + p_{l0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{u_{p2z0}}}, \frac{\Delta_{y_{21z0}} + 2b\left[v_{l2} - v^*(p_{u1} + p_{0}) + p_{01}^2 + p_{10}^2\right]}{\Delta_{u_{p2z0}}} \right\} .
\end{align*}$$
\[
\begin{align*}
\Delta_{y_{z_2z_0}} + 2b[v^* - v^*(p_{u2} + p_{l0}) + \frac{p_{u2}^2 + p_{l0}^2}{2}] &= \frac{\Delta_{y_{z1z_0}} + 2b[v^* - v^*(p_{u1} + p_{l0}) + \frac{p_{u1}^2 + p_{l0}^2}{2}]}{\Delta_{u_{p2z_0}}},
\end{align*}
\]

4. If \(p_{l0} \leq p_{l1} \leq p_{u1} \leq v^* \leq p_{u2} \). Then:

\[
\begin{align*}
MTE^-(v^*)_{lb} &= \max \left\{ -1, \frac{\Delta_{y_{zz_1}} - 2b[v^* - v^*(p_{u2} + p_{l1}) + \frac{p_{u2}^2 + p_{l1}^2}{2}]}{\Delta_{l_{pzz_1}}}, \frac{\Delta_{y_{zz_0}} - 2b[v^* - v^*(p_{u2} + p_{l0}) + \frac{p_{u2}^2 + p_{l0}^2}{2}]}{\Delta_{l_{pzz_0}}}, \frac{\Delta_{y_{z_1z_0}} - 2b[p_{l0}^2 - p_{u1}^2 + v^*(p_{u1} - p_{l0})]}{\Delta_{l_{pzz_0}}}, \right\}
\end{align*}
\]

\[
\begin{align*}
MTE^-(v^*)_{ub} &= \min \left\{ 0, \frac{\Delta_{y_{zz_1}} + 2b[v^* - v^*(p_{u2} + p_{l1}) + \frac{p_{u2}^2 + p_{l1}^2}{2}]}{\Delta_{u_{pzz_1}}}, \frac{\Delta_{y_{zz_0}} + 2b[v^* - v^*(p_{u2} + p_{l0}) + \frac{p_{u2}^2 + p_{l0}^2}{2}]}{\Delta_{u_{pzz_0}}}, \frac{\Delta_{y_{z_1z_0}} + 2b[p_{l0}^2 - p_{u1}^2 + v^*(p_{u1} - p_{l0})]}{\Delta_{u_{pzz_0}}}, \right\}
\end{align*}
\]

5. If \(p_{l0} \leq p_{l1} \leq p_{u1} \leq p_{u2} \leq v^* \). Then:

\[
\begin{align*}
MTE^-(v^*)_{lb} &= \max \left\{ -1, \frac{\Delta_{y_{zz_1}} - 2b[p_{l0}^2 - p_{u2}^2 + v^*(p_{u2} - p_{l1})]}{\Delta_{l_{pzz_1}}}, \frac{\Delta_{y_{zz_0}} - 2b[p_{l0}^2 - p_{u2}^2 + v^*(p_{u2} - p_{l0})]}{\Delta_{l_{pzz_0}}}, \frac{\Delta_{y_{z_1z_0}} - 2b[p_{l0}^2 - p_{u1}^2 + v^*(p_{u1} - p_{l0})]}{\Delta_{l_{pzz_0}}}, \right\}
\end{align*}
\]

\[
\begin{align*}
MTE^-(v^*)_{ub} &= \min \left\{ 0, \frac{\Delta_{y_{zz_1}} + 2b[p_{l0}^2 - p_{u2}^2 + v^*(p_{u2} - p_{l1})]}{\Delta_{u_{pzz_1}}}, \frac{\Delta_{y_{zz_0}} + 2b[p_{l0}^2 - p_{u2}^2 + v^*(p_{u2} - p_{l0})]}{\Delta_{u_{pzz_0}}}, \frac{\Delta_{y_{z_1z_0}} + 2b[p_{l0}^2 - p_{u1}^2 + v^*(p_{u1} - p_{l0})]}{\Delta_{u_{pzz_0}}}, \right\}
\end{align*}
\]

Remark 7 When the values the instrument take grows, it can be cumbersome to compute the integral, so instead of that, a researcher might be willing to solve it numerically and apply proposition [7]

I Illustration of results in appendix [H]

See Figure A.3
Table A.2

Bounds on the ATE, comparison with extra values of the IV for $b = 0.5$, $\alpha = 0.1$

3-valued IV	2-valued IV		
Lower Bound	**Upper Bound**	**Lower Bound**	**Upper Bound**
-0.7	-0.1	-0.8	0.0
Length of the set	Length of the set		
0.6	0.8		

J Figures

Figure A.1: Bounds for the MTE (Y axis is the MTE and X axis is the value of v^*)
Figure A.2: Results from the DGP

Figure A.3: Bounds for the MTE with a discrete IV, $b = 0.2$ and $\alpha = 0.1$ (Y axis is the MTE and X axis is the value of v^*)