CORRECTION

Correction to: Neuroendocrine characteristics of induced pluripotent stem cells from polycystic ovary syndrome women

Zheying Min1,2,3, Yue Zhao2, Jing Hang1,2, Yun Ren2, Tao Tan4a, Yong Fan1a, Yang Yu2a

1 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
2 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
3 Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
4 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China

a Correspondence: tant@lpbr.cn (T. Tan), yongfan011@gzhmu.edu.cn (Y. Fan), yuyang5012@hotmail.com (Y. Yu)

CORRECTION TO:
PROTEIN CELL 2019, 10(7):526–532
HTTPS://DOI.ORG/10.1007/S13238-018-0600-1

In the original publication the Fig. 2 and the Supplementary Material 1 was incorrect. The correct version of Fig. 2 and the Supplementary Material are provided in this correction article.

NESTIN should be corrected to PAX6 in Fig. 2C legend and at page 528 and Supplementary Material 1. NANOG should be corrected to PAX6 in Fig. 2C picture.

OPEN ACCESS
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The original article can be found online at https://doi.org/10.1007/s13238-018-0600-1.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13238-019-00664-y) contains supplementary material, which is available to authorized users.
Figure 2. Differentiation and identification of NSCs from PCOS-derived iPSCs. (A) Schematic procedure of NSCs differentiation from iPSCs. NSC: Neural stem cell; EB: embryoid body. (B) The phenotype of specific differentiated NSCs. Scale bars = 100 µm. (C) Immunofluorescence images of the NSC markers SOX2 and PAX6. Scale bars = 50 µm. ZOOM, scale bars = 25 µm. (D) The mitochondrial respiration function of PCOS- and non-PCOS-derived iPSCs and NSCs. (E) Quantitative analysis of basal oxygen consumption, ATP production, maximal respiration, and proton leak. (F) Proposed neuroendocrine state in normal and PCOS patients. In normal patients, the GnRH pulsatile frequency is critical for steroidogenesis and follicular development. Low frequency pulses prefer FSH, and high frequency pulses favour LH. In PCOS, the increased GnRH release led to a high level of LH pulsatility, impairing the preferential release of FSH and follicular maturation, thus leading to polycystic ovaries. Red: increased; Blue: decreased. Solid arrow: up regulated; Dotted arrow: down regulated.
Figure 2. continued.

E

Basal respiration

ATP production

Maximal respiration

Proton leak

F

Normal

Brain

GnRH neuron

GnRH

FSH

LH

T

E2

Ovary

Estrogen

AMH

PCOS

Brain

GnRH neuron

Insulin resistance

GnRH

FSH

LH

T

E2

Ovary

Androgen

AMH

Figure 2. continued.