VOLUME MINIMIZATION AND ESTIMATES FOR CERTAIN ISOTROPIC SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES

EDWARD GOLDSTEIN

Abstract. In this note we show the following result using the integral-geometric formula of R. Howard: Consider the totally geodesic $\mathbb{R}P^m$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also the totally geodesic $\mathbb{R}P^{m-1}$ minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$. As a corollary we’ll give estimates for volumes of Lagrangian submanifolds in complete intersections in $\mathbb{C}P^n$.

1. Introduction

On a Kähler n-fold M there is a class of isotropic submanifolds. Those are submanifolds of M on which the Kähler form ω of M vanishes. The maximal dimension of such a submanifold is n (the middle dimension) in which case it is called Lagrangian.

In this papers we’ll exhibit global volume-minimizing properties among isotropic competitors for certain submanifolds of the complex projective space. In general global volume-minimizing properties of minimal/Hamiltonian stationary Lagrangian/isotropic submanifolds in Kähler (particularly Kähler-Einstein) manifolds are still poorly understood. In dimension 2 there is a result of Schoen-Wolfson [ScW] (extended to isotropic case by Qiu in [Qiu]) which shows existence of Lagrangian cycles minimizing area among Lagrangians in a given homology class. Still it is not clear whether a given minimal Lagrangian has any global volume-minimizing properties.

The only instance where we have a clear cut answer to global volume-minimizing problem is Special Lagrangian submanifolds which are homologically volume-minimizing in Calabi-Yau manifolds [H]. In Kähler-Einstein manifolds of negative scalar curvature, besides geodesics on Riemann surfaces of negative curvature, we have some examples [Lee] of minimal Lagrangian submanifolds which are homotopically volume-minimizing. The author has a program for studying homotopy volume-minimizing properties for Lagrangians in Kähler-Einstein manifolds of negative scalar curvature [Gold], but so far there are no satisfactory results.

In positive curvature case there is a result of Givental-Kleiner-Oh which states that the canonical totally geodesic $\mathbb{R}P^n$ in $\mathbb{C}P^n$ minimizes volume in its Hamiltonian deformation class, [GK]. The proof uses integral geometry and Floer homology to study intersections for Hamiltonian deformations of $\mathbb{R}P^n$. Those arguments can be generalized to products of Lagrangians in a product of symmetric Kähler manifolds, [LOS]. There is a related conjecture due to Oh that the Clifford torus minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$, [Oh]. Some progress towards
this was obtained in [Gold2]. Also general lower bounds for volumes of Lagrangians in a given Hamiltonian deformation class in \(\mathbb{C}^n \) were obtained in [Vit].

In this note we extend and improve the result of Givental-Kleiner-Oh to isotropic totally geodesic \(\mathbb{R}P^k \) sitting canonically in \(\mathbb{C}P^n \). Our main result is the following theorem:

Theorem 1. Consider the totally geodesic \(\mathbb{R}P^{2m} \) in \(\mathbb{C}P^n \). Then it minimizes volume among the isotropic submanifolds in the same \(\mathbb{Z}/2 \) homology class in \(\mathbb{C}P^n \) (but not among all submanifolds in this \(\mathbb{Z}/2 \) homology class). Also consider the totally geodesic \(\mathbb{R}P^{2m-1} \) in \(\mathbb{C}P^n \). Then it minimizes volume in its Hamiltonian deformation class.

A corollary of this is:

Corollary 1. Let \(f_1, \ldots, f_k \) be real homogeneous polynomials of odd degree in \(n+1 \) variables with \(2m+k = n \). Let \(N \) be the zero locus of \(f_i \) in \(\mathbb{C}P^n \) and \(L \) be their real locus. Then \(\text{vol}(L) \leq \Pi \text{deg}(f_i) \text{vol}(\mathbb{R}P^{2m}) \) and if \(L' \) is a Lagrangian submanifold of \(N \) homologous mod 2 to \(L \) in \(N \) then \(\text{vol}(L') \geq \text{vol}(\mathbb{R}P^{2m}) \).

2. A Formula from Integral Geometry

In this section we establish a formula from integral geometry for volumes of isotropic submanifolds of \(\mathbb{C}P^n \) following the exposition in R. Howard [How]. In our case the group \(SU(n+1) \) acts on \(\mathbb{C}P^n \) with a stabilizer \(K \simeq U(n) \). Thus we view \(\mathbb{C}P^n = SU(n+1)/K \) and the Fubini-Study metric is induced from the bi-invariant metric on \(SU(n+1) \). Let \(P^{2m} \) be an isotropic submanifold of \(\mathbb{C}P^n \) of dimension \(2m \) and let \(Q \) be a linear \(\mathbb{C}P^{n-m} \subset \mathbb{C}P^n \). For a point \(p \in P \) and \(q \in Q \) we define an angle \(\sigma(p, q) \) between the tangent planes \(T_pP \) and \(T_qQ \) as follows: First we choose some elements \(g \) and \(h \) in \(SU(n+1) \) which move \(p \) and \(q \) respectively to the same point \(r \in \mathbb{C}P^n \). Now the tangent planes \(g_*T_pP \) and \(h_*T_qQ \) are in the same tangent space \(T_r\mathbb{C}P^n \) and we can define an angle between them as follows: take an orthonormal basis \(u_1 \ldots u_{2m} \) for \(g_*T_pP \) and an orthonormal basis \(v_1 \ldots v_{2n-2m} \) for \(h_*T_qQ \) and define

\[
\sigma(g_*T_pP, h_*T_qQ) = |u_1 \wedge \ldots \wedge v_{2n-2m}|
\]

The later quantity \(\sigma(g_*T_pP, h_*T_qQ) \) depends on the choices \(g \) and \(h \) we made. To mend this we’ll need to average this out by the stabilizer group \(K \) of the point \(r \). Thus we define:

\[
\sigma(p, q) = \int_K \sigma(g_*T_pP, k_*h_*T_qQ) dk
\]

Since \(SU(n+1) \) acts transitively on the Grassmanian of isotropic planes and the complex planes in \(\mathbb{C}P^n \) we conclude that this angle is a constant depending just on \(m \) and \(n \):

\[
\sigma(p, q) = C_{m,n}
\]

There is a following general formula due to R. Howard [How]:

\[
\int_{SU(n+1)} \#(P \cap gQ) dg = \int_{P \times Q} \sigma(p, q) dp dq = C_{m,n} \text{vol}(P) \text{vol}(Q)
\]

Here \(\#(P \cap gQ) \) is the number of intersection points of \(P \) with \(gQ \), which is finite for a generic \(g \in SU(n+1) \). To use the formula we need to have some control over the intersection pattern of \(P \) and \(gQ \). We have the following lemma:
Lemma 1. Let P be the totally geodesic $\mathbb{RP}^{2m} \subset \mathbb{CP}^{n}$, let $Q = \mathbb{CP}^{n-m} \subset \mathbb{CP}^{n}$. Let $g \in SU(n+1)$ s.t. P and gQ intersect transversally. Then $\#(P \cap gQ) = 1$. Also let f_{1}, \ldots, f_{k} be real homogeneous polynomials in $n+1$ variables with $2m+k = n$ and let P' be their real locus. If P' is transversal to gQ then $\#(P' \cap gQ) \leq \Pi \deg(f_{i})$.

Proof: For the first claim we have gQ is given by an $(n-m+1)$-plane $H \subset \mathbb{C}^{n+1}$ and hence it is a zero locus of m linear equations on \mathbb{C}^{n+1}. Hence $(P \cap gQ)$ is cut out by $2m$ linear equations in \mathbb{RP}^{2m}.

For the second claim we note that as before $gQ \cap \mathbb{RP}^{n}$ is the zero locus of $2m$ linear polynomials h_{1}, \ldots, h_{2m} on \mathbb{RP}^{n}. Moreover P' is a zero locus of f_{1}, \ldots, f_{n-2m} on \mathbb{RP}^{n}. For generic $g \in SU(n+1)$ we’ll have that gQ and P' intersect transversally in \mathbb{RP}^{n}. By Bezout’s theorem (see [GH], p. 670) the common zero locus of h_{1}, \ldots, h_{2m} and f_{1}, \ldots, f_{n-2m} is \mathbb{CP}^{n} is $\Pi \deg(f_{i})$ points. Now $P' \cap gQ$ is a part of this locus, hence $\#(P' \cap gQ) \leq \Pi \deg(f_{i})$.

3. Proof of the Volume Minimization

Now we can prove the result stated in the Introduction:

Theorem 1. Consider the totally geodesic \mathbb{RP}^{2m} in \mathbb{CP}^{n}. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in \mathbb{CP}^{n} (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also consider the totally geodesic \mathbb{RP}^{2m-1} in \mathbb{CP}^{n}. Then it minimizes volume in its Hamiltonian deformation class.

Proof: Let P be an isotropic submanifold homologous to \mathbb{RP}^{2m} mod 2 and let $Q = \mathbb{CP}^{n-m}$. By Lemma 1, the intersection number mod 2 of P and gQ is 1. Hence the formula in the previous section tells that

$$C_{m,n} \vol(P) \vol(Q) = \int_{SU(n+1)} \#(P \cap gQ) dg \geq \vol(SU(n+1))$$

and

$$C_{m,n} \vol(\mathbb{RP}^{2m}) \vol(Q) = \int_{SU(n+1)} \#(\mathbb{RP}^{2m} \cap gQ) dg = \vol(SU(n+1))$$

and this proves the first part. We also note that that \mathbb{CP}^{1} is homologous to \mathbb{RP}^{2} mod 2 in \mathbb{CP}^{n} but

$$\vol(\mathbb{CP}^{1}) < \vol(\mathbb{RP}^{2})$$

The second assertion will follow from the first one. Consider \mathbb{C}^{n+1} and a unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$. We have a natural circle action on S^{2n+1} (multiplication by unit complex numbers). Let the vector field u be the generator of this action. We have a 1-form α on S^{2n+1},

$$\alpha(v) = u \cdot v$$

Also $d\alpha = 2\omega$ where ω is the Kähler form of \mathbb{C}^{n+1}. The kernel of α is the horizontal distribution. We have a Hopf map $p : S^{2n+1} \rightarrow \mathbb{CP}^{n}$. We have $\mathbb{RP}^{2m-1} \subset \mathbb{CP}^{n}$ and $S^{2m-1} \subset S^{2n+1}$ which is a horizontal double cover of \mathbb{RP}^{2m-1}.

Let f be a (time-dependent) Hamiltonian function on \mathbb{CP}^{n}. Then we can lift it to a Hamiltonian function on $\mathbb{C}^{n+1} - \{0\}$ and its Hamiltonian vector field H_{f} is horizontal on S^{2n+1}. Consider now the vector field

$$w = -2f \cdot u + H_{f}$$

The vector field w is S^{1}-invariant. We also have:
Proposition 1. The Lie derivative \(L_w \alpha = 0 \)

Proof: We have
\[
L_w \alpha = d(i_w \alpha) + i_w d\alpha = -2d\alpha + 2df
\]
Let now \(\Phi_t \) be the time \(t \) flow of \(w \) on \(S^{2m+1} \) and let \(\Xi_t \) be the Hamiltonian flow of \(f \) on \(\mathbb{C}P^n \). Then \(\Phi_t(S^{2m-1}) \) is horizontal and isotropic and it is a double cover of \(\Xi_t(\mathbb{R}P^{2m-1}) \). Hence
\[
\text{vol}(\Phi_t(S^{2m-1})) = 2 \text{vol}(\Xi_t(\mathbb{R}P^{2m-1}))
\]
Let \(S_t = \Phi_t(S^{2m-1}) \). We build a suspension \(\Sigma S_t \) of \(S_t \) in \(S^{2n+3} \subset \mathbb{C}P^{n+2} \);
\[
\Sigma S_t = \{(\sin \theta \cdot x, \cos \theta) \in \mathbb{C}P^{n+2} = \mathbb{C}^{n+1} \oplus \mathbb{C}|0 \leq \theta \leq \pi, \ x \in S_t\}
\]
One immediately verifies that \(\Sigma S_t \) is horizontal and it is a double cover of an isotropic submanifold \(L_t \) (with a conical singularity) of \(\mathbb{C}P^{n+1} \) with \(L_0 = \mathbb{R}P^{2m} \).

Also one readily checks that
\[
\text{vol}(\Sigma S_t) = \text{vol}(S_t) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1} \theta \ d\theta
\]
Hence
\[
2 \text{vol}(L_t) = \text{vol}(\Sigma S_t) = 2 \text{vol}(\Xi_t(\mathbb{R}P^{2m-1})) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1} \theta \ d\theta
\]
Now the first part of our theorem implies that \(\text{vol}(L_t) \geq \text{vol}(L_0) \). Hence we conclude that \(\text{vol}(\Xi_t(\mathbb{R}P^{2m-1})) \geq \text{vol}(\mathbb{R}P^{2m-1}) \). Q.E.D.

Remark: One notes from the proof that for \(\mathbb{R}P^{2m-1} \) it would be sufficient to use exact deformations by isotropic immersions of \(\mathbb{R}P^{2m-1} \). A family \(L_t \) of isotropic immersions of \(\mathbb{R}P^{2m-1} \) is called exact if the 1-form \(i_w \omega \) is exact when restricted to each element of the family. Here \(v \) is the deformation vector field and \(\omega \) is the symplectic form. Thus embeddedness is not important for the conclusion of the theorem.

The theorem has the following corollary:

Corollary 1. Let \(f_1, \ldots, f_k \) be real homogeneous polynomials of odd degree in \(n+1 \) variables with \(2m+k = n \). Let \(N \) be the zero locus of \(f_i \) in \(\mathbb{C}P^n \) and \(L \) be their real locus. Then \(\text{vol}(L) \leq \Pi \text{deg}(f_i) \text{vol}(\mathbb{R}P^{2m}) \) and if \(L' \) is a Lagrangian submanifold of \(N \) homologous mod 2 to \(L \) in \(N \) then \(\text{vol}(L') \geq \text{vol}(\mathbb{R}P^{2m}) \).

Proof: We note that \(N \) is a complex 2m-fold and \(L \) is its Lagrangian submanifold. Since the degrees of \(f_i \) are odd, we have by adjunction formula that \(L \) and \(\mathbb{R}P^{2m} \) represent the same homology class in \(H_{2m}(\mathbb{R}P^n, \mathbb{Z}/2) \). Let \(Q \) be a linear \(\mathbb{C}P^{n-m} \) in \(\mathbb{C}P^n \) and \(g \in SU(n+1) \). The intersection number mod 2 of \(gQ \) with \(L' \) is 1. We have that
\[
C_{m,n} \text{vol}(\mathbb{R}P^{2m}) \text{vol}(Q) = \int_{SU(n+1)} 1 \ dg
\]
\[
C_{m,n} \text{vol}(L') \text{vol}(Q) = \int_{SU(n+1)} #(L' \cap gQ) \ dg
\]
Also using Lemma
\[
C_{m,n} \text{vol}(L) \text{vol}(Q) = \int_{SU(n+1)} #(L \cap gQ) \ dg \leq \Pi \text{deg}(f_i) \text{vol}(SU(n+1))
\]
and our claims follow. Q.E.D.

REFERENCES

[Giv] A. Givental: The Nonlinear Maslov index, London Mathematical Society Lecture Note Series 15 (1990), 35-43

[Gold1] Edward Goldstein: Strict volume-minimizing properties for Lagrangian submanifolds in complex manifolds with positive canonical bundle, math.DG/0301191

[Gold2] Edward Goldstein: Some estimates related to Oh’s conjecture for the Clifford tori in CP^n, math.DG/0311460

[GH] P. Griffiths, J. Harris, “Principles of Algebraic geometry,” Wiley and Sons, 1978.

[HaL] R. Harvey and H. B. Lawson: Calibrated Geometries, Acta Math. 148, 47-157 (1982).

[How] Howard, Ralph: The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 106 (1993), no. 509, vi+69 pp.

[IOS] Hiroshi Iriyeh, Hajime Ono, Takashi Sakai: Integral Geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in S^2 x S^2, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 10, 167-170

[Lee] Y.-I. Lee: Lagrangian minimal surfaces in Kähler-Einstein surfaces of negative scalar curvature. Comm. Anal. Geom. 2 (1994), no. 4, 579–592.

[Oh] Y.-G. Oh: Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds, Math. Z. 216, 471-482 (1994).

[Qiu] Qiu, Weiyang: Interior regularity of solutions to the isotropically constrained Plateau problem. Comm. Anal. Geom. 11 (2003), no. 5, 945–986

[ScW] Schoen, R.; Wolfson, J.: Minimizing area among Lagrangian surfaces: the mapping problem. J. Differential Geom. 58 (2001), no. 1, 1–86.

[Vit] C. Viterbo: Metric and isoperimetric problems in symplectic geometry. J. Amer. Math. Soc. 13 (2000), no. 2, 411–431

egold@ias.edu