Mining Large Quasi-Cliques with Quality Guarantees from Vertex Neighborhoods

Aritra Konar
and
Nicholas D. Sidiropoulos

Department of Electrical and Computer Engineering

KDD 2020 Research Track
Dense Subgraph Discovery

- **Problem:** Given a graph, find list of “dense” subgraphs
 - A key primitive in graph mining

- **Applications:**
 - Detecting correlated genes [Tsourakakis et al. 2013]
 - Anomaly detection in e-commerce and social networks [Hooi et al. 2016]
 - Story identification in Twitter streams [Angel et al. 2012]
What is a dense subgraph?

- **Archetype:** Cliques
 - NP-hard, restrictive definition

- **Other notions:** Quasi-cliques
 - Core decomposition [Seidman 1983]
 - Average Degree [Goldberg 1984], k-Clique Densest Subgraph [Tsourakakis 2015]
 - Optimal Quasi-clique [Tsourakakis et al. 2013]

- **Algorithms:**
 - Maximum-flow [Goldberg 1984, Tsourakakis 2015, Mitzenmacher et al. 2015]
 - Semidefinite Relaxation [Cadena et al. 2016]
 - Greedy [Charikar 2000, Batagelj-Zaversnik 2003, Tsourakakis et al. 2013, Tsourakakis 2015]
 - Local-search [Tsourakakis et al. 2013]
Our approach

- Look at vertex neighborhoods!
 - List all triangles in graph [Schank 2005, Lapaty 2008, Suri-Vassilvitskii 2011]
 - Compute the local clustering coefficient (LCC) of each vertex
 - $LCC = \text{edge density of one-hop neighborhood of } v$
 - Output neighborhood with highest LCC

- But why do this?
Obtained a list of non-trivial (maximal) cliques and quasi-cliques without using any specialized methods!
- Comparison with triangle-densest subgraph [Tsourakakis 2015, Mitzenmacher et al. 2015]
 - Best neighborhood consistently outperforms dedicated algorithm!

Graph	Max-Flow	Neighborhood								
	$	S	$	$\delta(S)$	$\tau(S)$	$	S	$	$\delta(S)$	$\tau(S)$
arXiv-HepPh	239	1	1	239	1	1				
arXiv-AstroPh	76	0.80	0.59	57	1	1				
arXiv-CondMat	30	0.93	0.72	23	1	1				
arXiv	146	0.49	0.25	74	1	1				
DBLP	114	1	1	114	1	1				
Facebook-A	195	0.79	0.54	50	0.94	0.85				
blogCatalog3	621	0.31	0.05	12	0.95	0.87				
Facebook-B	198	0.36	0.08	20	0.95	0.85				
loc-Gowalla	311	0.27	0.04	36	0.94	0.85				
web-Stanford	684	0.17	0.02	53	1	1				
web-Google	66	0.85	0.64	54	0.93	0.84				
ppi-Human	361	0.42	0.14	81	0.93	0.89				
email-Enron	388	0.19	0.02	14	0.93	0.82				
router-Caida	75	0.55	0.20	12	0.92	0.94				
Amazon	50	0.19	0.02	7	1	1				

size $|S|$, edge-density $\delta(S)$, and triangle-density $\tau(S)$
Why does this happen?

- **Observation:**
 - Recurring traits of real-world graphs:
 - High clustering coefficients [Watts-Strogatz 98]
 - Power-law degree distributions [Faloutsos (x3) 99, Barabasi-Albert 99]

- **Main question:**
 - Do these properties imply that vertex neighborhoods harbor dense subgraphs of non-trivial sizes?
A note on clustering coefficients

- **Global clustering coefficient (GCC):**
 - The probability that a path of length 2 has its endpoints closed

 \[
 C_g = \frac{3(\text{# triangles in } G)}{\text{(\# paths of length 2 in } G)}
 \]

- **Useful Result:** [Gleich-Seshadhri 12]

 - Define probability distribution on vertices

 \[
 p_v = \frac{\text{(\# paths of length 2 centered at } v)}{\text{(\# paths of length 2 in } G)}, \forall \ v \in V
 \]

 - Then, \(E_p[C_v] = C_g \)
A note on clustering coefficients

- **Recall:**
 - LCC = edge density of one-hop neighborhood $\delta(\mathcal{N}_v)$

- **Corollary 1:**
 - $\mathbb{E}_p[\delta(\mathcal{N}_v)] = C_g$
 - Since $\Pr\{\delta(\mathcal{N}_v) \geq C_g\} > 0$, high GCC implies the existence of a vertex neighborhood with high edge-density

- **Corollary 2:**
 - $\text{Var}[\delta(\mathcal{N}_v)] \leq C_g(1 - C_g)$
 - High GCC implies presence of many vertex neighborhoods with high edge-density
A note on clustering coefficients

- Limitation:
 - High edge-density is necessary, but not sufficient for a neighborhood to be dense and of non-trivial size

- Counter-example:

 ![Diagram of neighborhoods](image)

 - Although $C_g = 1$, every neighborhood is simply an edge
Vertex neighborhoods as dense subgraphs

- **Desiderata:** Want to show existence of vertex neighborhood with
 - “High” edge-density
 - “large” size (degree)

- **Approach:** Invoke the probabilistic method [Alon-Spencer 16]
 - Define pair of “bad” events
 - (A) vertex sampled with probability p_v has a neighborhood with “low” edge-density
 - (B) vertex sampled with probability p_v has a “small” degree

- Suffices to show

$$\Pr\{A \cup B\} < 1 \Rightarrow \Pr\{A^c \cap B^c\} > 0$$
Vertex neighborhoods as dense subgraphs

- **Assumptions:**
 - (A): \mathcal{G} obeys a power-law distribution with exponent 2
 - (B): \mathcal{G} has no missing degrees

- **Main theorem:**
 - For every choice of $\beta \in \left(\frac{d_{\min}}{d_{\max}}, C_g\right)$
 - there exists a vertex neighborhood of size $|\mathcal{N}_v| \geq \beta d_{\max}$
 - and edge-density $\delta(\mathcal{N}_v) \geq \frac{C_g - \beta}{1 - \beta}$

- **Take-away:** high GCC and power-law distributions imply the presence of dense neighborhood subgraphs
Vertex neighborhoods as dense subgraphs

- Illustration: Facebook graph
Experiments

Datasets:

Graph	n	m	d_{max}	C_q	\bar{C}
arXiv-HepPh	12,008	112K	491	0.659	0.612
arXiv-AstroPh	18,772	198K	504	0.318	0.677
arXiv-CondMat	23,133	93,497	279	0.264	0.633
arXiv	86,376	517K	1,253	0.560	0.678
DBLP	317K	1.05M	343	0.306	0.632
Facebook-A	4,039	88,234	1,045	0.519	0.605
blogCatalog3	10,312	333K	3,992	0.091	0.463
Facebook-B	63,731	817K	1,098	0.148	0.221
loc-Gowalla	196K	950K	14,730	0.023	0.237
Flickr	513K	3.19M	4,369	0.159	0.168
web-Stanford	281K	2.31M	38,625	0.008	0.598
web-Google	875K	5.10M	6,332	0.055	0.514
PPI-Human	21,557	342K	2,130	0.119	0.207
email-Enron	36,692	183K	1,383	0.085	0.497
router-Caida	192K	609K	1,071	0.061	0.157
Amazon	334K	923K	549	0.205	0.397

What happens when GCC is small?
Experiments

- Best neighborhood can still outperform a dedicated algorithm!

--- Clique returned by GreedyOQC
[Tsourakakis et al. 2013]
--- Max. degree
--- GCC
Experiments

- Use neighborhoods as seed sets for local search [Tsourakakis et al. 2013]

--- Clique returned by GreedyOQC [Tsourakakis et al. 2013]
--- Max. degree
--- GCC
Comparing quality of seeds

Graph	Core decomposition	Vertex neighborhoods								
	$	S	$	$\delta(S)$	Avg. degree	$	S	$	$\delta(S)$	Edge density
arXiv-AstroPh	57	1	81	0.75	57	1				
arXiv	146	0.49	147	0.52	75	0.95				
blogCatalog3	447	0.4	1550	0.08	12	0.95				
Facebook-B	699	0.12	723	0.07	20	0.95				
loc-Gowalla	183	0.41	162	0.27	36	0.94				
web-Stanford	387	0.29	694	0.17	71	0.95				
router-Caida	92	0.45	91	0.31	12	0.92				
Amazon	497	0.013	47	0.20	7	0.95				

- Vertex neighborhoods are good seeds: Consistently yield seeds of considerably higher quality.
Results: cliques

Graph	Cliques			
	NB	NB + LS	GreedyOQC	
arXiv-HepPh	239	239	239	
arXiv-AstroPh	57	57	57	
arXiv-CondMat	23	26	26	
arXiv	74	74	74	
DBLP	114	114	114	
Facebook-A	11	32	69	
blogCatalog3	10	29	31	
Facebook-B	12	25	25	
loc-Gowalla	15	28	16	
web-Stanford	53	53	14	
web-Google	25	43	44	
PPI-Human	81	130	130	
email-Enron	10	16	16	
router-Caida	9	15	6	
Amazon	7	7	5	

- **Neighborhoods are dense subgraphs:** Largest neighborhood cliques are no smaller than those computed by baselines on 6/15 datasets.
- **Vertex neighborhoods are good seeds:** Local search + proper seeds produce can produce cliques of non-trivial sizes; competitive with greedyOQC.
Results: quasi-cliques

Graph	$	S	$	$\delta(S)$	$\tau(S)$				
	NB	NB + LS	Greedy	NB	NB + LS	Greedy	NB	NB + LS	Greedy
arXiv-HepPh	246	247	-	0.95	0.95	-	0.92	0.91	-
arXiv-AstroPh	48	45	-	0.90	0.99	-	0.83	0.97	-
arXiv-CondMat	19	18	-	0.86	0.96	-	0.68	0.89	-
arXiv	75	60	-	0.95	0.98	-	0.92	0.94	-
DBLP	105	-	-	0.95	-	-	0.92	-	-
Facebook-A	50	53	118	0.94	0.98	0.97	0.85	0.94	0.92
blogCatalog3	12	52	52	0.95	0.96	0.96	0.87	0.88	0.88
Facebook-B	20	17	36	0.95	0.98	0.96	0.85	0.95	0.89
loc-Gowalla	36	32	23	0.94	0.99	0.95	0.85	0.97	0.86
web-Stanford	71	68	16	0.95	0.99	0.96	0.89	0.97	0.88
web-Google	54	48	48	0.93	0.99	0.99	0.84	0.98	0.98
ppi-Human	81	-	-	0.93	-	-	0.89	-	-
email-Enron	14	12	22	0.93	0.98	0.96	0.82	0.95	0.89
router-Caida	12	15	-	0.92	0.97	-	0.94	0.99	0.95
Amazon	7	8	7	0.95	0.96	0.90	0.86	0.90	0.72

- **Neighborhoods are dense subgraphs**: Best neighborhood quasi-cliques are competitive in general.
- **Vertex neighborhoods are good seeds**: Yield smaller quasi-cliques with higher triangle density compared to greedy.
- **Greedy can fail to capture spectrum of subgraphs**
Conclusions

- **Neighborhoods are dense subgraphs:**
 - High clustering coefficients and power-law degree distributions imply that graphs harbor dense neighborhoods
 - In practice:
 - Neighborhoods can form large maximal cliques and quasi-cliques
 - Can serve as good seeds for local search
 - Combined approach yields state-of-the-art results
 - Simple methods work very well!

- **Future Work:**
 - Additional theoretical analysis
 - Extensions to weighted, bipartite, time-evolving networks?
Thank you!