Size of local finite field Kakeya sets

Ghurumuruhan Ganesan

Institute of Mathematical Sciences, HBNI, Chennai

gganesan82@gmail.com

Abstract. Let \(F \) be a finite field consisting of \(q \) elements and let \(n \geq 1 \) be an integer. In this paper, we study the size of local Kakeya sets with respect to subsets of \(F^n \) and obtain upper and lower bounds for the minimum size of a (local) Kakeya set with respect to an arbitrary set \(T \subseteq F^n \).

Keywords: Local Kakeya Sets, Minimum Size, Probabilistic Method

1 Introduction

The study of finite field Kakeya sets is of interest from both theoretical and application perspectives. Letting \(F \) be a finite field containing \(q \) elements and \(n \geq 1 \) be an integer, Wolff [1] used counting arguments and planes to estimate that the minimum size of a global Kakeya set covering all vectors in \(F^n \) grows at least as \(q^{n/2} \). Later Dvir [2] used polynomial methods to obtain sharper bounds (of the form \(C \cdot q^n \)) on the minimum size of global Kakeya sets and for further improvements in the multiplicative constant \(C \), we refer to Saraf and Sudan [3].

In this paper, we are interested in studying local Kakeya sets with respect to subsets of \(F^n \). Specifically, in Theorem 1, we obtain upper and lower bounds for the minimum size of a Kakeya set with respect to a subset \(T \subseteq F^n \).

The paper is organized as follows. In Section 2, we describe local Kakeya sets and prove our main result (Theorem 1) regarding the minimum size of a local Kakeya set.

2 Local Kakeya sets

Let \(F \) be a finite field containing \(q \) elements and for \(n \geq 1 \) let \(F^n \) be the set of all \(n \)-tuple vectors with entries belonging to \(F \).

We say that a set \(K \subseteq F^n \) is a Kakeya set with respect to the vector \(x = (x_1, \ldots, x_n) \in F^n \) if there exists \(y = y(x) \in F^n \) such that the line

\[
L(x, y) := \bigcup_{a \in F} \{y + a \cdot x\} \subseteq K,
\]

where \(a \cdot x := (ax_1, \ldots, ax_n) \). For a set \(T \subseteq F^n \), we say that \(K \subseteq F^n \) is a Kakeya set with respect to \(T \) if \(K \) is a Kakeya set with respect to every vector \(x \in T \).

The following result describes the minimum size of local Kakeya sets.
Theorem 1. Let $\mathcal{T} \subseteq \mathbb{F}^n$ be any set with cardinality $\# \mathcal{T}$ an integer multiple of $q - 1$ and let $\theta(\mathcal{T})$ be the minimum size of a Kakeya set with respect to \mathcal{T}. We then have that

$$q \sqrt{M} + \min\left(0, q - \sqrt{M}\right) \leq \theta(\mathcal{T}) \leq q^n \left(1 - \left(1 - \frac{1}{q^{n-1}}\right)^{M-1}\right)$$

(2.2)

where $M := \frac{\# \mathcal{T}}{q - 1}$.

For example suppose $M = \epsilon \cdot \left(\frac{q^n - 1}{q - 1}\right)$ for some $0 < \epsilon \leq 1$. From the lower bound in (2.2), we then get that $\theta(\mathcal{T})$ grows at least of the order of $q^n/2$. Similarly, using the fact that $1 - x \geq e^{-x - x^2}$ for $0 < x \leq \frac{1}{2}$, we get that

$$\left(1 - \frac{1}{q^{n-1}}\right)^{M-1} \geq \exp\left(-\frac{M - 1}{q^{n-1}}\left(1 + \frac{1}{q^{n-1}}\right)\right) \geq e^{-\Delta},$$

where $\Delta := \frac{\epsilon}{q - 1} \left(1 + \frac{1}{q^{n-1}}\right)$. From (2.2) we then get that

$$\theta(\mathcal{T}) \leq q + q^n \left(1 - e^{-\Delta}\right).$$

In what follows we prove the lower bound and the upper bound in Theorem 1 in that order.

Proof of Lower Bound in Theorem 1

The proof of the lower bound consists of two steps. In the first step, we extract a subset \mathcal{N} of \mathcal{T} containing vectors that are non-equivalent. In the next step, we then use a high incidence counting argument similar to Wolff (1999) and estimate the number of vectors in a Kakeya set \mathcal{K} with respect to \mathcal{N}.

Step 1: Say that vectors $x_1, x_2 \in \mathbb{F}^n$ are equivalent if $x_1 = a \cdot x_2$ for some $a \in \mathbb{F} \setminus \{0\}$. We first extract a subset of vectors in \mathcal{T} that are pairwise non-equivalent. Pick a vector $x_1 \in \mathcal{N}$ and throw away all the vectors in \mathcal{T} that are equivalent to x_1. Next, pick a vector x_2 in the remaining set and again throw away the vectors that are equivalent to x_2. Since we throw away at most $q - 1$ vectors in each step, after r steps, we are left with a set of size at least $\# \mathcal{T} - r(q - 1)$. Thus the procedure continues for

$$M = \frac{\# \mathcal{T}}{q - 1}$$

(2.3)

steps, assuming henceforth that M is an integer.

Let $\mathcal{N} = \{x_1, \ldots, x_M\} \subseteq \mathcal{T}$ be a set of size M and let \mathcal{K} be a Kakeya set with respect to \mathcal{N}, of minimum size. By definition (see (2.1)), there are vectors y_1, \ldots, y_M in \mathbb{F}^n such that the line $L(x_i, y_i) \subseteq \mathcal{K}$ for each $1 \leq i \leq M$. Moreover, since \mathcal{K} is of minimum size, we must have that

$$\mathcal{K} = \bigcup_{j=1}^{M} \{L(x_i, y_i)\}.$$
Step 2: To estimate the number of distinct vectors in K, suppose first that each vector in K belongs to at most t of the lines in $\{L(x_i, y_i)\}_{1 \leq i \leq M}$. Since each line $L(x_i, y_i)$ contains q vectors, we get that the total number of vectors in K is bounded below by

$$\#K \geq \frac{Mq}{t}. \quad (2.5)$$

Suppose now that there exists a vector v in K that belongs to at least $t + 1$ lines $L_1, \ldots, L_{t+1} \subseteq \bigcup_{1 \leq i \leq M} \{L(x_i, y_i)\}$. Because the vectors $\{x_i\}_{1 \leq i \leq M}$ are not equivalent, any two lines $L(x_i, y_i)$ and $L(x_j, y_j)$ must have at most one point of intersection. To see this is true suppose there were scalars $a_1 \neq a_2$ and $b_1 \neq b_2$ in \mathbb{F} such that

$$y_1 + a_1 \cdot x_1 = y_2 + b_1 \cdot x_2$$

for $i = 1, 2$. Subtracting the equations we would then get $(a_1 - a_2) \cdot x_1 = (b_1 - b_2) \cdot x_2$, contradicting the fact that x_1 and x_2 are not equivalent.

From the above paragraph, we get that any two lines in $\{L_i\}_{1 \leq i \leq t+1}$ have exactly one point of intersection, the vector v. Since each line L_i contains q vectors, the total number of vectors in $\{L_i\}_{1 \leq i \leq t+1}$ equals $(q - 1)(t + 1) + 1$, all of which must be in K. From (2.5), we therefore get that

$$\#K \geq \min\left(\frac{Mq}{t}, (q - 1)(t + 1) + 1\right)$$

and setting $t = \sqrt{M}$, we get

$$\#K \geq q\sqrt{M} + \min\left(0, q - \sqrt{M}\right).$$

From the expression for M in (2.3), we then get (2.2). \hfill \blacksquare

Proof of Upper Bound in Theorem 1

We use the probabilistic method. Let $\{x_1, \ldots, x_M\}$ be the set of non-equivalent vectors obtained in Step 1 in the proof of the lower bound with $M = \frac{\#T}{q - 1}$ (see (2.3)). Let Y_1, \ldots, Y_M be independently and uniformly randomly chosen from \mathbb{F}^n and for $1 \leq i \leq M$, set

$$S_i := \bigcup_{j=1}^{i} \{L(x_j, y_j)\},$$

where $L(x, y)$ is the line containing the vectors x and y as defined in (2.1).

By construction, the set S_M forms a Kakeya set with respect to T. To estimate the expected size of S_M, we use recursion. For $1 \leq i \leq M$, let $\theta_i := \mathbb{E}\#S_i$ be the expected size of S_i. Given S_{i-1}, the probability that a vector
chosen from \mathbb{F}^n, uniformly randomly and independent of \mathcal{S}_{i-1}, belongs to the set \mathcal{S}_{i-1} is given by $p_i := \frac{\theta_i}{q^n}$. Therefore

$$
\mathbb{E}\# \left(L(\mathbf{x}_i, \mathbf{Y}_i) \cap \mathcal{S}_{i-1} \right) = q \cdot \mathbb{E} \left(\frac{\#\mathcal{S}_{i-1}}{q^n} \right)
$$

and so

$$
\theta_i = \theta_{i-1} + q \left(1 - \frac{\theta_{i-1}}{q^n} \right) = \theta_{i-1} \left(1 - \frac{1}{q^{n-1}} \right) + q. \quad (2.6)
$$

Letting $a = 1 - \frac{1}{q^n}$, and using (2.6) recursively, we get

$$
\theta_i = a^{i-1} \cdot \theta_1 + q \cdot (1 + a + \ldots + a^{i-2}) = a^{i-1} \cdot \theta_1 + \frac{q(1 - a^{i-1})}{1 - a}.
$$

Using $\theta_1 = q$, we then get that

$$
\theta_M = a^{M-1} \cdot q + q^n \left(1 - \left(1 - \frac{1}{q^{n-1}} \right)^{M-1} \right)
\leq q + q^n \left(1 - \left(1 - \frac{1}{q^{n-1}} \right)^{M-1} \right).
$$

This implies that there exists a Kakeya set with respect to \mathcal{T} of size at most θ_M. ■

Acknowledgement

I thank Professors V. Guruswami, V. Arvind, C. R. Subramanian and the referees for crucial comments that led to an improvement of the paper. I also thank IMSc for my fellowships.

References

1. Wolff, T.: Recent work connected with the Kakeya problem. Prospects in Mathematics (Princeton, NJ), pp. 129–162 (1999).
2. Dvir, Z.: On the size of Kakeya sets in finite fields. Journal of the American Mathematical Society, 22, pp. 1093–1097 (2009).
3. Saraf, S., Sudan, M.: Improved lower bound on the size of Kakeya sets over finite fields. Analysis and PDE, 1, pp. 375–379 (2008).