Mitochondrial DNA alterations in the progression of gastric carcinomas: Unexplored issues and future research needs

Luciana Rigoli, Rosario Alberto Caruso

Abstract

Gastric cancer is the second most frequent cause of cancer death worldwide. Patients infected with Helicobacter pylori (H. pylori) are at increased risk of gastric cancer. H. pylori induces genomic instability in both nuclear and mitochondrial (mt) DNA of gastric epithelial cells. Changes in mtDNA represent an early event during gastric tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis in gastric carcinoma. This review article summarizes the mtDNA mutations that have been reported in gastric carcinomas and their precancerous conditions. Unexplored research topics, such as the role of mtDNA alterations in an alternative pathway of gastric carcinogenesis, are identified and directions for future research are suggested.

INTRODUCTION

Mitochondria are cytoplasmic organelles that play an essential role in numerous biological processes such as ATP production, iron and calcium homeostasis, production of reactive oxygen species, autophagic cell death and apoptosis[6]. Mitochondrial (mt) DNA was initially considered to be naked, unprotected, and vulnerable to injuries. However, recently several works have shown that mtDNA is protein-coated and packaged into aggregates called nucleoids[2-3]. Nucleoids are also important for the biogenesis of mtDNA, as they contain proteins that mediate DNA replication, repair, and recombination[4-5]. Human mtDNA is a 16.6-kb double-stranded closed-circular DNA molecule, and a few hundreds to several thousand copies are present in each cell[6-7]. It contains 37 genes, including the structural genes for 13 polypeptides of the electron transport chain involved in oxidative phosphorylation, two ribosomal RNAs, and a complete set of 22 tRNAs that are required for translation of the mtDNA-encoded mRNAs[8]. In addition, mtDNA contains a non-coding region: the displacement loop (D-
Diffuse-type gastric carcinomas develop through the histogenesis and classification of distal gastric cancer. In semantic confusion, particularly with clinicians, the introduction of these new terms may be a source of some cases of intestinal-type adenocarcinomas a gastric-type differentiation has been demonstrated in classification carcinoma may be distinguished according to the Laurèn adenocarcinomas appears to be the main causative agent for distal gastric esophagitis, whereas Helicobacter pylori infection as intestinal or diffuse subtypes. Recently, a gastric-type differentiation has been demonstrated in some cases of intestinal-type adenocarcinomas, but the introduction of these new terms may be a source of semantic confusion, particularly with clinicians.

This review article discusses controversies regarding histogenesis and classification of distal gastric cancer. In addition, it summarizes the mtDNA changes that have been reported in gastric carcinomas and their precancerous conditions. Future research directions on the role of mtDNA in gastric carcinogenesis are suggested.

CLASSIFICATION AND PATHOLOGY OF DISTAL GASTRIC ADENOCARCINOMAS

Based on histopathological features, several classification systems of gastric cancer have been proposed. The two most commonly used classifications are the Lauren’s and the World Health Organization (WHO) systems. The WHO classification distinguishes five major types of gastric carcinoma. This is based on the predominant morphologic component of the tumour and includes: papillary, tubular, mucinous, poorly cohesive (including signet-ring cells and other variants) and mixed carcinomas. In Lauren's classification, gastric adenocarcinomas are divided into two main types: intestinal (Figure 1A) and diffuse (Figure 1B). Intestinal adenocarcinomas usually arise in an older population with an increased incidence in men (male/female ratio of 2:1). These tumours have the gross appearance of an exophytic mass, and histologically show a glandular structure resembling the glandular pattern of the intestine, although some solid or papillary areas are often present. Diffuse-type carcinomas do not show gender predominance, tend to develop in younger subjects, and have a poorer prognosis than intestinal-type tumours. Grossly, these tumours appear as ulcerative lesions or involve the entire thickness of the stomach wall, causing the thickening and increased firmness that has been called “linitis plastic”. Histologically, they are made up either of separated single cells with or without signet ring cell configuration or small aggregates of malignant cells with little or no gland formation. It is thought that diffuse-type gastric carcinomas develop through the loss of function of E-cadherin, as germline mutations of the CDH1 gene (encoding E-cadherin) have been found in 30%-40% of hereditary diffuse gastric cancer cases. Furthermore, CDH1 is also frequently inactivated in sporadic diffuse-type gastric cancers through genetic and epigenetic alterations. A neoplastic precursor lesion associated

Figure 1 Intestinal-type adenocarcinoma. Intestinal metaplastic epithelium is adjacent to the carcinoma (A), diffuse-type carcinoma composed of signet-ring cells showing foamy cytoplasm and an eccentrically located nucleus (B).
with the development of diffuse-type gastric cancer, and familial gastric cancer related to E-cadherin mutations, is usually referred to as “tubule neck dysplasia” and consists of signet ring cells that line the deep foveolar pits in a pagetoid fashion without mucosal involvement[34-36]. However, this lesion is rarely found and is not readily recognizable. Distinctive clinicopathological features of intestinal and diffuse type of gastric carcinoma are shown in Table 1.

Recently, a new classification of gastric carcinomas based on mucin expression has been proposed[21-24]. Inestinal gastric carcinomas were reclassified as gastric or intestinal phenotype on the basis of mucin expression by surface mucous cells, glandular mucous cells, and intestinal columnar and goblet cells[21-24,35]. Histologically, gastric-type adenocarcinoma shows a papillary growth pattern in the upper portion and irregular branching/fusion in the deeper portion. Papillary projections are lined by columnar cells with clear mucinous cytoplasm and basally oriented enlarged nucleoli (Figure 2). Tajima et al[30] showed that gastric-type adenocarcinomas were significantly associated with a high risk of peritoneal recurrence and a poorer outcome after surgical resection compared with those with intestinal phenotype adenocarcinoma. Immunohistochemically, gastric type adenocarcinoma is positive for MUC5AC, and negative for CD10 and MUC2. Instead, intestinal-type adenocarcinoma is positive for CD10 and MUC2 and negative for MUC5AC[22,34]. Diffuse-type carcinoma shows a variable positivity for MUC1, MUC2, MUC5AC and MUC6[26].

The main clinicopathologic features of gastric-type adenocarcinoma compared to intestinal and diffuse type carcinomas are shown in Table 1.

H. pylori, mtDNA Copy Number and Gastric Carcinogenesis

Several studies show that both intestinal and diffuse types of gastric cancer are equally associated with *H. pylori* infection[13]: a Gram-negative bacterium classified as a Class I carcinogen by the WHO[38]. However, only a subset, 1%-2% of infected individuals develop gastric malignancies[13]. Clinical outcome of *H. pylori* infection may be correlated with specific virulence-associated bacterial genotypes such as cagA and VacA s1/m1. This genetic variability of *H. pylori* has been extensively studied in numerous laboratories and results have been summarized in previous publications[39-41].

Experimental studies investigating the role of *H. pylori* on the mitochondrial genome of gastric epithelial cells have recently been reviewed by Strickertson et al[42]. *H. pylori* infection has been associated with an increase of mtDNA mutations both in the mitochondrial D-loop region and in several genes encoding subunits of the electron transport chain[43,44]. Deletion/insertion mutations have been described in the D-loop region[43-45,46]. The increase in the number of mutations was mainly attributed to a rise of transitions, possibly a consequence of oxidative damage, and was correlated with bacterial virulence-associated cagA and vacA s1/m1 genotypes[46]. mtDNA D-loop mutations may provoke a decrease in the copy number of the mitochondrial genome and alteration in gene expression. mtDNA depletion is a common event in gastric cancers[47,48]. Over 55% of gastric cancers have a lower mtDNA copy number than their corresponding non-tumoural gastric mucosa[47,48]. These results suggest that the mtDNA mutations in the D-loop region, due to *H. pylori* infection, contribute to the decrease in the mtDNA copy number in gastric cancer. Recently, Zhang et al[49] demonstrated that variable mtDNA content (either decreased or increased mtDNA content) markedly increased the risk of lymph node metastasis and high mortality in patients with advanced gastric carcinomas. These observations suggest that copy number variations of mtDNA may be involved in gastric cancer progression. However, the disparity of these findings in the alteration of mtDNA copy number among gastric carcinomas needs further study.

Gastritis Classification

The most widely used grading system for gastritis is the Update Sydney System[50]. The system classifies chronic gastritis on the basis of topography, morphology, and, when possible, etiology. Topographic information provides further opportunities for assessing the risk of *H. pylori* gastritis. These are: (1) the predominance or restriction of *H. pylori*-related gastritis in the antrum strongly correlates with an increased risk of peptic ulcer disease, and of duodenal ulcer in particular; and (2) the occurrence of corpus-predominant or pangastritis is associated with a high risk of gastric cancer[51]. In particular, patients with pangastritis are at high risk of diffuse-type gastric cancer, whereas those with corpus-predominant gastritis are at high risk of intestinal type gastric cancer (Table 1)[52].
Table 1 Clinicopathologic features of intestinal, gastric and diffuse types of distal gastric adenocarcinomas

	Intestinal-type adenocarcinoma	Gastric-type adenocarcinoma	Diffuse-type carcinoma
Age	Old age	Old age	Young age
Sex (Male: Female)	2:1	Unknown data	1:1
Precancerous condition	Corpus-predominant gastritis	Corpus-predominant gastritis with pseudopyloric metaplasia	Pangangitis
Precancerous lesion	Intestinal-type adenoma	Pyloric-gland adenoma	Tubular-neck dysplasia: signet-ring cell in situ
Gross feature	Exophytic lesion	Exophytic lesion	Ulcerative lesion and linitis plastic
Microscopy	Tubulopapillary glands lined by columnar cells with eosinophilic cytoplasm	Tubulopapillary glands lined by columnar cells with clear mucinous cytoplasm	Discohesive cells or signet ring cells
Immunohistochemistry	CD10 and MUC2 immunoreactivity	MUC5AC immunoreactivity	Variable positivity for MUC1, MUC2, MUC5AC, MUC6
Liver metastasis	Frequent	Rare	Rare
Peritoneal spread	Low	Frequent	Frequent
Malignant potential			High

OLGA system considers gastric atrophy as the lesion that indicates disease progression. Atrophy is distinguished in a non-metaplastic (shrinkage or complete disappearance of glandular units, replaced by expanded (fibrotic) lamina propria) and a metaplastic form including intestinal metaplasia and pseudopyloric metaplasia also known as spasmyotic polypeptide-expressing metaplasia. The OLGA staging system ranks gastric cancer risk according to the extent and severity of gastric atrophy and includes 5 stages: 0, I, II, III, and IV, or low-grade atrophy associated with a low risk of gastric cancer, and III and IV, or high-grade atrophy associated with a high risk of gastric cancer[25]. The histopathological diagnosis of pseudopyloric metaplasia requires the endoscopist to communicate a correct identification of the location of the biopsy specimen in the body mucosa otherwise the pathologist considers antral-like mucosa as non-metaplastic[25]. As atrophic gastritis and pseudopyloric metaplasia remain difficult histopathologic diagnoses with low interobserver agreement, a gastritis staging system has recently been proposed as an alternative to the OLGA (OLGIM system)[34]. In the OLGIM system only intestinal metaplasia is considered as the key lesion to score for staging purposes[34]. Although replacement of atrophic gastritis by intestinal metaplasia in the staging of gastritis considerably increases interobserver agreement, the OLGIM system disregards pseudopyloric metaplasia that is now recognized as an important step in the tumorigenesis of gastric-type adenocarcinoma. By focusing on intestinal metaplasia only, the OLGIM system might be less sensitive in identifying patients with high-risk gastritis[34].

HISTOGENETIC PATHWAY OF INTESTINAL-TYPE GASTRIC CARCINOMA

According to the Correa model, histogenesis of intestinal type gastric cancer follows a pathway of chronic active gastritis due to *H. pylori* infection leading to multifocal atrophy, intestinal metaplasia, followed by gastric dysplasia and finally invasive adenocarcinoma[35]. Previous studies[36-38] showed a sequential accumulation of mitochondrial microsatellite instability (MSI) in the histological progression from chronic gastritis to cancer via intestinal metaplasia and dysplasia. These findings supported an important role of mtMSI in the progression of gastric carcinogenesis. Recent studies[39] using mtDNA mutations as a marker of clonal expansion demonstrated that intestinal metaplastic epithelium shares a common mtDNA mutation and spreads by fission: a process characterized by a bud arising from the isthmus/neck region that continues until a new gland and foveolus is formed. Furthermore, they showed that dysplasia can arise from a single clone of mutated intestinal metaplastic glands and expand to form the entire dysplastic lesion[40]. These morphologic and mtDNA findings strongly support Correa’s hypothesis of intestinal-type gastric carcinogenesis[38].

ALTERNATIVE PATHWAYS OF GASTRIC CARCINOGENESIS

However, recent studies based on minute EGC less than 3 mm in diameter have not confirmed the association between intestinal metaplasia and intestinal type gastric cancer[41]. Some authors consider intestinal metaplasia a paracancerous lesion rather than a precancerous condition, a withered branch in the histogenetic evolution of gastric carcinoma[42,43]. Detailed mapping studies of resected stomachs from patients with intestinal-type gastric cancer have shown that atrophic gastritis, but not intestinal metaplasia, is present in every case[44-46]. Gastric atrophy therefore appears to be a better indicator of gastric cancer risk than intestinal metaplasia. Atrophy is generally present as either a multifocal or a diffuse pattern in gastric
null
alternative pathways of carcinogenesis. This review article reveals that most research efforts regarding mtDNA alterations focus on genetic carcinogenesis according to the Correa model. Further studies are needed to define with greater clarity the possible role of mtDNA mutations in alternative pathways of gastric carcinogenesis, such as pseudopyloric metaplasia-gastric type adenocarcinoma.

REFERENCES
1. Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 2014; 20: 282-292 [PMID: 24508276 DOI: 10.1016/j.molmed.2014.01.005]
2. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 2005; 6: 815-825 [PMID: 16304597]
3. Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. JUBMB Life 2010; 62: 19-32 [PMID: 20014006 DOI: 10.1002/jub.282]
4. Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505: 335-343 [PMID: 24429632 DOI: 10.1038/nature12985]
5. Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2008; 283: 3665-3675 [PMID: 18063579]
6. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457-465 [PMID: 7219534]
7. Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 1985; 93: 93-145 [PMID: 3891661]
8. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 1997; 66: 409-435 [PMID: 9242913]
9. Clayton DA. Replication of animal mitochondrial DNA. Cell 1982; 28: 693-705 [PMID: 6178513]
10. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet 2001; 106: 18-26 [PMID: 11579421]
11. Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversions in cancer. Cancer Prev Res (Phila) 2011; 4: 638-654 [PMID: 21543432 DOI: 10.1186/1940-6207-CAPR-10.026]
12. Ishikawa K, Takegoshi K, Akimoto M, Koshikawa N, Yamaguchi A, Inamishi H, Nakada K, Honma Y, Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661-664 [PMID: 18388260 DOI: 10.1126/science.1156906]
13. de Marval C, Forman D, Plummer M. Gastric cancer: epidemiology and risk factors. Gastroenterol Clin North Am 2013; 42: 219-240 [PMID: 23696388 DOI: 10.1016/j.gtc.2013.01.003]
14. Caruso IR, Iato E, Branca G, Finocchiaro G, Fedele F, Amese A. Gastric adenocarcinoma incidence in the province of Messina (Insular Italy): A cancer registry study. Oncol Lett 2014; 7: 861-865 [PMID: 24520303]
15. Corea P. Gastric cancer: overview. Gastroenterol Clin North Am 2013; 42: 211-217 [PMID: 23696387 DOI: 10.1016/j.gtc.2013.01.002]
16. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol 2013; 107: 230-236 [PMID: 23219495 DOI: 10.1002/jso.23262]
17. Shah MA, Khanin R, Tang L, Janjigian YY, Klimstra DS, Gerdes H, Kelsen DP. Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res 2011; 17: 2693-2701 [PMID: 21403069 DOI: 10.1158/1078-0432.CCR-10-2283]
18. Navarro Silvera SA, Mayne ST, Gammon MD, Vaughan TL, Chow WH, Dubin JA, Dubrow R, Stanford JL, West AB, Rotardam H, Blot WJ, Risch HA. Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Ann Epidemiol 2014; 24: 50-57 [PMID: 24293095 DOI: 10.1016/j.annepidem.2013.10.009]
19. Carr JS, Zafar SF, Saba N, Khuri FR, El-Rayes BF. Risk factors for rising incidence of esophageal and gastric cardia adenocarcinoma. J Gastrointest Cancer 2013; 44: 143-151 [PMID: 23435833 DOI: 10.1007/s10229-013-9480-z]
20. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Stand 1965; 64: 4-24 [PMID: 1422675]
21. Yamazaki K, Tajima Y, Makino R, Nishino N, Aoki S, Kato M, Sakamoto M, Morohara K, Kaetsu T, Kusano M. Tumor differentiation phenotype in gastric differentiated-type tumors and its relation to tumor invasion and genetic alterations. World J Gastroenterol 2006; 12: 3803-3809 [PMID: 16804692]
22. Tajima Y, Yamazaki K, Makino R, Nishino N, Aoki S, Kato M, Morohara K, Kaetsu T, Suzuki S, Tsunoda A, Tachikawa T, Kusano M. Gastric and intestinal phenotypic marker expression in early differentiated-type tumors of the stomach: clinicopathologic significance and genetic background. Clin Cancer Res 2006; 12: 6467-6474 [PMID: 17085661]
23. Morohara K, Tajima Y, Nakao K, Nishino N, Aoki S, Kato M, Sakamoto M, Yamazaki K, Kaetsu T, Suzuki S, Tsunoda A, Tachikawa T, Kusano M. Gastric and intestinal phenotypic cell marker expressions in gastric differentiated-type carcinomas: association with E-cadherin expression and chromosomal changes. J Cancer Res Clin Oncol 2006; 132: 363-375 [PMID: 16447046]
24. Namikawa T, Hanakazi K. Mucin phenotype of gastric cancer and clinicopathology of gastric-type differentiated adenocarcinoma. World J Gastroenterol 2010; 16: 4634-4639 [PMID: 20872962 DOI: 10.3748/wjg.v16.i37.4634]
25. Lauwers GY, Carneiro F, Graham DY, Curado MP, Francechi S, Montgomery E, Tatenuma M, Hattori T. Gastric carcinoma. In: Bosman FT, Carneiro F, Hruban RH and Theise ND, editors. WHO Classification of Tumors of the Digestive System. 4th Edition. Lyon: IARC; 2010: 48-68
26. Nguyen MD, Psilas B, Wen P, Frankel WL. Mucin profiles in signet-ring cell carcinoma. Arch Pathol Lab Med 2006; 130: 799-804 [PMID: 16740030]
27. Mimata A, Fukushima H, Eishi Y, Yuasa Y. Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci 2011; 102: 942-950 [PMID: 21276134 DOI: 10.1111/j.1349-7006.2011.01890.x]
28. Yamamoto E, Suzuki H, Takamaru H, Yamamoto H, Toyota M, Shinomura Y. Role of DNA methylation in the development of diffuse-type gastric cancer. Digestion 2011; 83: 241-249 [PMID: 21275772 DOI: 10.1159/000320453]
29. Nobili S, Bruno L, Landini I, Napoli C, Bechi P, Tonelli F, Rubio CA, Mini E, Nesi G. Genomic and genetic alterations influence the progression of gastric cancer. World J Gastroenterol 2011; 17: 290-299 [PMID: 21253837 DOI: 10.3748/wjg.v17.i3.290]
30. Fitzgerald RC, Hardwick RH, Huntsman D, Carneiro F, Guilford P, Blair V, Chung DC, Norton J, Ragunath K, Van Kriek J. 1349-7006.2011.01890.x
31. Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer 2010; 13: 1-10 [PMID: 20373070 DOI: 10.1007/s10120-009-0531-x]
32. Barber ME, Save V, Carneiro F, Dwerryhouse S, Lao-Sirieix P, Hardwick RH, Caldas C, Fitzgerald RC. Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications
Carneiro F, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, Caldas C, Sobrinho-Simões M. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol 2004; 203: 681-687 [PMID: 15143383]

Ghander-Munyemhe L, Paz J, Roldan E, Cassidy J. Dysplasia of nonmetaplasic gastric mucosa. A proposal for its classification and its possible relationship to diffuse-type gastric carcinoma. Ann J Surg Pathol 1988; 12: 96-114 [PMID: 33415157]

Kumarasingshe MP, Lim TK, Ooi CJ, Luman W, Tan SY, Koh M. Tubule neck dysplasia: precursor lesion of signet ring cell carcinoma and the immunohistochemical profile. Pathology 2006; 38: 468-471 [PMID: 17008295]

Lauwers GY, Srivastava A. Gastric preneoplastic lesions and epithelial dysplasia. Gastroenterol Clin North Am 2007; 36: 813-829, vi [PMID: 17996792]

Kushima R, Vieth M, Borchard F, Stolle M, Mukaihso K, Hat-tori T. Gastric-type well-differentiated adenocarcinoma and pyloric gland adenoma of the stomach. Gastrocancer 2006; 9: 177-184 [PMID: 16952035]

Chistosomes, liver flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcino Risks Hum 1994; 61: 1-241 [PMID: 7710506]

Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, Stremmel W. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cyto toxin production, and associated diseases. J Clin Microbiol 1998, 36: 944-948 [PMID: 9542913]

Galmiche A, Contamin S, Fassan M, Pizzi M, Farinati F, Sturniolo GC, Plebani M, Graham DY. Gastritis staging in clinical practice: the OLGA staging system. Gut 2007; 56: 631-636 [PMID: 17142647]

Rugge M, Pennelli G, Pilozzi E, Fassan M, Ingravallo G, Russo VM, Di Mario F, Gruppo Italiano Patologi Apparato Digerente (GIPAD), Societa Italiana di Anatomia Patologica e Citopatologia Diagnostica/International Academy of Pathology, Italian division (SIAPEC/IAP). Gastritis: the histology report. Dig Liver Dis 2011; 43 Suppl 4: S673-S684 [PMID: 21493433 DOI: 10.1016/j.dld.2010.12.029]

Rugge M, Fassan M, Pizzi M, Farinati F, Storniolo GC, Plebani M, Graham DY. Operative link for gastritis assessment vs operative link on intestinal metaplasia assessment. World J Gastroenterol 2011; 17: 4956-4961 [PMID: 21247965 DOI: 10.3748/wjg.v17.i41.4969]

Ling XL, Fang DC, Wang QY, Yang SM, Fang L. Mitochondrial microsatellite instability in gastric cancer and its precancerous lesions. World J Gastroenterol 2004; 10: 800-803 [PMID: 15040020]

Sui G, Zhou S, Wang J, Canto M, Lee EE, Eshleman JR, Montgomery EA, Sidransky D, Califano JA, Maitra A. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer 2006; 5: 73 [PMID: 17162688]

Jeong CW, Lee JH, Sohn SS, Ryu SY, Kim DK. Mitochondrial microsatellite instability in gastric cancer and gastric epithelial dysplasia as a precancerous lesion. Cancer Epidemiol 2010; 34: 323-327 [PMID: 20409774 DOI: 10.1016/j.canep.2010.03.015]

McDonald SA, Greaves LG, Gutierrez-Gonzalez L, Rodriguez-Justo M, Deheragoda M, Leedham SJ, Taylor RW, Lee CY, Preston SL, Lovell M, Hunt T, Elia G, Oukrif D, Harrison R, Novelli MR, Mitchell I, Stoker DL, Turnbull AC, Haringsma J, Ter Borg F, de Vries RA, Bruin MJ, van Dekken H, Meijer J, van Grieken NC, Kuipers EJ. The staging of gastritis with the OLGA system by using intestinal metaplasia as an accurate alternative for atrophic gastritis. Gastrointest Endosc 2010, 71: 1150-1158 [PMID: 20381801 DOI: 10.1016/j.gie.2009.12.029]

Rugge M, Fassan M, Pizzi M, Farinati F, Storniolo GC, Plebani M, Graham DY. Operative link for gastritis assessment vs operative link on intestinal metaplasia assessment. World J Gastroenterol 2011; 17: 4956-4961 [PMID: 21247965 DOI: 10.3748/wjg.v17.i41.4969]
Meining A, Morgner A, Miehlke S, Bayerdörffer E, Stolte M. Atrophy-metaplasia-dysplasia-carcinoma sequence in the stomach: a reality or merely an hypothesis? *Best Pract Res Clin Gastroenterol* 2001; 15: 983-998 [PMID: 11866488]

Goldenring JR, Nam KT, Wang TC, Mills JC, Wright NA. Spasmodic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. *Gastroenterology* 2010; 138: 2207-2210, 2210.e1 [PMID: 20450866 DOI: 10.1053/j.gastro.2010.04.023]

Halldórsdóttir AM, Sigurdardóttir M, Jónasson JG, Oddsíðóttir M, Magnússon J, Lee JR, Goldenring JR. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. *Dig Dis Sci* 2003; 48: 431-441 [PMID: 12757153]

Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulson R, Wright NA, Goldenring JR. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. *Lab Invest* 1999; 79: 639-646 [PMID: 10578506]

El-Zimaity HM, Ota H, Graham DY, Akama T, Katayama T. Patterns of gastric atrophy in intestinal type gastric carcinoma. *Cancer* 2002; 94: 1428-1436 [PMID: 11920498]

Halldórsdóttir AM, Sigurdardóttir M, Jónasson JG, Oddsíðóttir M, Magnússon J, Lee JR, Goldenring JR. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. *Dig Dis Sci* 2003; 48: 431-441 [PMID: 12757153]

El-Zimaity HM. Gastritis and gastric atrophy. *Curr Opin Gastroenterol* 2008; 24: 682-686 [PMID: 19122515 DOI: 10.1097/MOG.0b013e328311d1cc]

Fox JG, Li X, Cahill RJ, Andrutis K, Rustgi AK, Odze R, Wang TC. Hypertrophic gastropathy in *Helicobacter felis*-infected wild-type C57BL/6 mice and p53 hemizygous transgenic mice. *Gastroenterology* 1996; 110: 155-166 [PMID: 8536892]

Yamaguchi H, Goldenring JR, Kaminiishi M, Lee JR. Identification of spasmodic polypeptide expressing metaplasia (SPEM) in remnant gastric cancer and surveillance post-gastrectomy biopsies. *Dig Dis Sci* 2002; 47: 573-578 [PMID: 11911345]

Abraham SC, Montgomery EA, Singh VK, Yardley JH, Wu TT. Gastric adenomas: intestinal-type and gastric-type adenomas differ in the risk of adenocarcinoma and presence of background mucosal pathology. *Am J Surg Pathol* 2002; 26: 1276-1285 [PMID: 12360042]

Vieth M, Kushima R, Borchard F, Stolte M. Pyloric gland adenoma: a clinico-pathological analysis of 90 cases. *Virchows Arch* 2003; 442: 317-321 [PMID: 12715167]

Park do Y, Srivastava A, Kim GH, Mino-Kenudson M, Deshpande V, Zuckerman LR, Song GA, Lauwers GY. Adenomatous and foveolar gastric dysplasia: distinct patterns of mucin expression and background intestinal metaplasia. *Am J Surg Pathol* 2008; 32: 524-533 [PMID: 18300795 DOI: 10.1097/PAS.0b013e31815b890e]

Chen ZM, Scudiere JR, Abraham SC, Montgomery E. Pyloric gland adenoma: an entity distinct from gastric foveolar type adenoma. *Am J Surg Pathol* 2009; 33: 186-193 [PMID: 18936123 DOI: 10.1097/PAS.0b013e31817d47f4]

Vieth M, Kushima R, Mukaihko K, Sakai R, Kasami T, Hattori T. Immunohistochemical analysis of pyloric gland adenomas using a series of Mucin 2, Mucin SAC, Mucin 6, CD10, Ki67 and p53. *Virchows Arch* 2010; 457: 529-536 [PMID: 20827489 DOI: 10.1007/s00428-010-0968-7]

Robinson JC, Hoffman B, Sun S. Gastric adenomas: Subtypes and their clinical significance. *Pathol Case Rev* 2013; 18: 70-74 [DOI: 10.1097/PCR.0b013e318282c337]

Rugge M, Capelle LG, Cappellesso R, Nitti D, Kuipers EJ. Precancerous lesions in the stomach: from biology to clinical patient management. *Best Pract Res Clin Gastroenterol* 2013; 27: 205-223 [PMID: 23809241 DOI: 10.1016/j.bpcg.2012.12.007]

Rigoli L et al. Mitochondrial DNA alterations in gastric carcinomas
