Hyperon Polarization from Unpolarized \textit{pp} and \textit{ep} Collisions

YUJI KOIKE

\textit{Department of Physics, Niigata University, Ikarashi, Niigata 950–2181, Japan}

\textbf{Abstract:} Cross section formulas for the Λ polarization in \textit{pp} → Λ↑(ℓ\textsubscript{T})X and \textit{ep} → Λ↑(ℓ\textsubscript{T})X are derived and its characteristic features are discussed.

In this report we discuss the polarization of Λ hyperon produced in unpolarized \textit{pp} and \textit{ep} collisions relevant for the ongoing RHIC-SPIN, HERMES and COMPASS experiments. According to the QCD factorization theorem, the polarized cross section for \textit{pp} → Λ↑X consists of two twist-3 contributions:

\begin{align*}
(A) \quad & E_a(x_1, x_2) \otimes q_b(x') \otimes \delta \hat{q}_c(z) \otimes \hat{\sigma}_{ab\rightarrow c}, \\
(B) \quad & q_a(x) \otimes q_b(x') \otimes \hat{G}_c(z_1, z_2) \otimes \hat{\sigma}'_{ab\rightarrow c},
\end{align*}

where the functions \(E_a(x_1, x_2) \) and \(\hat{G}_c(z_1, z_2) \) are the twist-3 quantities representing, respectively, the unpolarized distribution in the nucleon and the polarized fragmentation function for Λ↑. \(\delta \hat{q}_c(x) \) is the transversity fragmentation function for Λ↑. \(a, b \) and \(c \) stand for the parton’s species, sum over which is implied. \(E_a \) and \(\delta \hat{q}_c \) are chiral-odd. Corresponding to the above (A) and (B), the polarized cross section for \textit{ep} → Λ↑X (final electron is not detected) receives two twist-3 contributions:

\begin{align*}
(A') \quad & E_a(x_1, x_2) \otimes \delta \hat{q}_a(z) \otimes \hat{\sigma}_{ea\rightarrow a}, \\
(B') \quad & q_a(x) \otimes \hat{G}_a(z_1, z_2) \otimes \hat{\sigma}'_{ea\rightarrow a}.
\end{align*}

The (A) contribution for \textit{pp} → Λ↑X has been analyzed in [1], where it was shown that (A) gives rise to growing \(P_\Lambda \) at large \(x_F \) as observed experimentally. Here we extend the study to the (B) term (see also [2]) at RHIC energy and also for the \textit{ep} collision.

The unpolarized twist-3 distribution \(E_{F,D}(x_1, x_2) \) is defined in [1]. Likewise the twist-3 fragmentation function for a polarized Λ (with momentum \(\ell \)) is defined as the lightcone correlation function as \((w^2 = 0, \ell \cdot w = 1) \)

\begin{align*}
\frac{1}{N_c} \sum_X \int \frac{d\lambda}{2\pi} \int \frac{d\mu}{2\pi} e^{-i\lambda(\frac{1}{2} - \frac{1}{2})} \langle 0|\psi_i(0)|\pi X\rangle \langle \pi X|gF_{\alpha\beta}(\mu w)w_\beta\bar{\psi}_j(\lambda w)|0\rangle \\
= \frac{M_N}{2z_2} (\gamma\ell)_{ij} e^{i\ell_\perp S_\perp} \hat{G}_F(z_1, z_2) + \frac{M_N}{2z_2} (\gamma_5\ell)_{ij} S_\perp \hat{G}_F^5(z_1, z_2) + \cdots.
\end{align*}
Note that we use the nucleon mass M_N to normalize the twist-3 fragmentation function for Λ. There is another twist-3 fragmentation functions which are obtained from (1) by shifting the gluon-field strength from the left to the right of the cut. The defined functions $\hat{G}_{FR}(z_1, z_2)$ and $\hat{G}_{FR}^5(z_1, z_2)$ are connected to $\hat{G}_F(z_1, z_2)$ by the relation $\hat{G}_F(z_1, z_2) = \hat{G}_{FR}(z_2, z_1)$ and $\hat{G}_F^5(z_1, z_2) = -\hat{G}_{FR}^5(z_2, z_1)$, which follows from hermiticity and time reversal invariance. Unlike the twist-3 distributions, the twist-3 fragmentation function does not have definite symmetry property. Another class of twist-3 fragmentation functions $\hat{G}_{D}^{(5)}(z_1, z_2)$ is also defined from (1) by replacing $gF^{\alpha \beta}(\mu \nu)w_\beta$ by $D^{\alpha}(\mu \nu) = \partial^\alpha - igA(\mu \nu)$. Note, however, this is not independent from the above (1).

Following the method of [3] we present the analysis of the (C) term. The detailed analysis shows $\hat{G}_F(z, z)$ appears as soft-gluon-pole contribution ($z_1 = z_2 = z$), while $\hat{G}_D(z_1, z_2)$ appears as a soft fermion pole ($z_1 = 0$ or $z_2 = 2$). Physically, the latter is expected to be suppressed, and we include only the former contribution. This observation also applies to $E_{F,D}(x_1, x_2)$ relevant for the (A) term. In the large x_F region, the main contribution comes from large-x and large-z (and small x') region. Since E_F and \hat{G}_F behaves as $E_F(x, x) \sim (1 - x)^\beta$ and $\hat{G}_F(z, z) \sim (1 - z)^{\beta'}$ with $\beta, \beta' > 0$, $|(d/dx)E_F(x, x)| \gg |E_F(x, x)|$, $|(d/dz)\hat{G}_F(z, z)| \gg |\hat{G}_F(z, z)|$ at large x and z. In particular, the valence component of E_F and \hat{G}_F dominates in this region. We thus keep only the valence quark contribution for the derivative of these soft-gluon pole function (“valence-quark soft-gluon approximation”) for the pp collision. For the ep case, we include all the soft-gluon pole contribution, since the calculation is relatively simple compared to the pp case.

In general P_Λ is a function of $S = (P + P')^2 \simeq 2P \cdot P'$, $T = (P - \ell)^2 \simeq -2P \cdot \ell$ and $U = (P' - \ell)^2 \simeq -2P' \cdot \ell$ where P and P' are the momenta of the two nucleons, and ℓ is the momentum of Λ. In the following we use

$$S = \frac{2E}{\sqrt{S}} = \frac{T}{S}$$

and

$$x_T = \frac{2E}{\sqrt{S}}$$

as independent variables. The polarized cross section for the (B) term reads

$$E_\Lambda \frac{d^3 \Delta \sigma(S_{\perp})}{d \ell^3} = \frac{2\pi M_N \alpha^2 e^2 \sigma}{S} \sum_a \int_{z_{\min}}^{1} \frac{dz}{z^2} \int_{x_{\min}}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dx'}{x'} \left \{ \right.$$

$$\times \delta \left (x' + \frac{xT}{xS + U/z} \right)$$

$$\times \left \{ \right.$$

$$\sum_{b,c} q^a(x)q^b(x') \left [-z_1^2 \frac{\partial}{\partial z_1} \hat{G}_F^a(z_1, z) \right]_{z_1 = z} \left (\frac{-2p_\alpha}{T} \hat{\sigma}_{ab \rightarrow c}^I + \frac{-2p'_\alpha}{U} \hat{\sigma}_{ab \rightarrow c}^H \right) \right \}$$

$$+ \sum_{b,c} q^a(x)q^b(x') \left [-z^2 \frac{\partial}{\partial z} \hat{G}_F^a(z, z) \right] \frac{xp_\alpha + x'p'_\alpha}{|xT + x'U|} \left (\hat{\sigma}_{ab \rightarrow c}^I + \hat{\sigma}_{ab \rightarrow c}^H \right) \right \}$$

2
+q^a(x)G(x') \left[-z_2^2 \frac{\partial}{\partial z_1} \tilde{G}_F^a(z_1, z) \right]_{z_1=z} \left(\frac{-2p_\alpha}{T} \tilde{\sigma}_{ag \to a}^{I} + \frac{-2p'_\alpha}{U} \tilde{\sigma}_{ag \to a}^{II} \right) \\
+q^a(x)G(x') \left[-z_2^2 \frac{d}{dz} \tilde{G}_F^a(z, z) \right] \frac{x p_\alpha + x' p'_\alpha}{x T + x' U} \left(\tilde{\sigma}_{ag \to a}^{I} + \tilde{\sigma}_{ag \to a}^{II} \right) \right], \quad (2)

where the lower limits for the integration variables are \(z_{\text{min}} = -(T + U)/S = \sqrt{x_F^2 + x_T^2} \) and \(x_{\text{min}} = -U/z(S + T/z) \). The partonic hard cross sections are written in terms of the invariants in the parton level, \(\hat{s} = (x p + x' p')^2 = x x' S \), \(\hat{t} = (x p - \ell/z)^2 = x T/z \) and \(\hat{u} = (x' p' - \ell/z)^2 = x' U/z \). They read

\[
\tilde{\sigma}_{ab \to c}^{I} = -\frac{1}{36} \frac{s^2 + \hat{u}^2}{\hat{t}^2} \delta_{ac} + \frac{7}{36} \frac{s^2 + \hat{t}^2}{u^2} \delta_{bc} + \frac{1}{54} \frac{s^2}{\hat{u}} \delta_{ab} \delta_{ac},
\]

\[
\tilde{\sigma}_{ab \to c}^{II} = \frac{7}{36} \frac{s^2 + \hat{u}^2}{\hat{t}^2} \delta_{ac} - \frac{1}{36} \frac{s^2 + \hat{t}^2}{u^2} \delta_{bc} + \frac{1}{54} \frac{s^2}{\hat{u}} \delta_{ab} \delta_{ac},
\]

\[
\tilde{\sigma}_{ab \to c}^{I} = -\frac{1}{36} \frac{s^2 + \hat{u}^2}{\hat{t}^2} \delta_{ac} + \frac{7}{36} \frac{\hat{u}^2 + \hat{t}^2}{s^2} \delta_{bc} \quad \tilde{\sigma}_{ab \to c}^{II} = \frac{1}{18} \frac{s^2 + \hat{u}^2}{\hat{t}^2} \delta_{ac} + \frac{1}{18} \frac{\hat{u}^2 + \hat{t}^2}{s^2} \delta_{ab},
\]

\[
\tilde{\sigma}_{ag \to q}^{I} = -\frac{1}{8} \left(1 - \frac{\hat{s} \hat{u}}{\hat{t}^2} \right) + \frac{1}{288} \left(\frac{-\hat{u}}{\hat{s}} - \frac{\hat{s}}{-\hat{u}} \right) - \frac{\hat{s}}{16 \hat{t}} - \frac{\hat{t}}{16 \hat{t}},
\]

\[
\tilde{\sigma}_{ag \to q}^{II} = \frac{9}{16} \left(1 - \frac{\hat{s} \hat{u}}{\hat{t}^2} \right) + \frac{\hat{u}}{32 \hat{s}} - \frac{\hat{s}}{4 \hat{u}} + \frac{9 \hat{u}}{16 \hat{t}}.
\] \quad (3)

Among these partonic cross sections, \(\tilde{\sigma}^I \) becomes more important at large \(x_F \) because of the \(1/T \) factor in (2).

To estimate the above contribution, we introduce a model ansatz as \(\tilde{G}_F^a(z, z) = K_a \tilde{q}_a(z) \) with twist-2 unpolarized fragmentation function \(\tilde{q}_a(z) \), noting that the Dirac structure of \(\tilde{G}_F^a(z, z) \) and \(\tilde{q}_a(z) \) is the same [3]. \(K_a \)'s are taken to be \(K_a = -K_d = 0.07 \) which are the same values used in the relation \(G_F(x, x) = K_a q^a(x) \) to reproduce \(A_N \) in \(p^+ p \to \pi X \) observed at E704 [4]. As noted before, \(\tilde{G}_F(z_1, z_2) \) does not have definite symmetry property unlike the twist-3 distribution \(\tilde{E}_F(x_1, x_2) \). Nevertheless we assume \(\left[(\partial/\partial z_1) \tilde{E}_F(z_1, z) \right]_{z_1 = z} = (1/2)(d/dz)\tilde{E}_F(z, z) \). The result for the \(\Lambda \) polarization \(P^\Lambda_{pp} \) at \(\sqrt{S} = 62 \) GeV is shown in Fig. 1 together with the R608 data. There (A) (chiral-odd) contribution studied in [1] is also shown for comparison. (For the adopted distribution and fragmentation functions, see [1].) One sees that the tendency of \(P^\Lambda_{pp} \) from the (B)(chiral-even) contribution is quite similar to the R608 data. Rising behavior of \(P^\Lambda_{pp} \) at large \(x_F \) comes from (i) the large partonic cross sections in (3) (\(\sim 1/\hat{t}^2 \) term) and (ii) the derivative of the soft-gluon pole functions. With these parameters \(K_a, P^\Lambda_{pp} \) at RHIC energy (\(\sqrt{S} = 200 \) GeV) is shown in Fig.2 at \(l_T = 1.5 \) GeV. Fig. 3 shows the \(l_T \) dependence of \(P^\Lambda_{pp} \) of
the (B) term, indicating large ℓ_T dependence at $1 \leq \ell_T \leq 3$ GeV. Experimentally, P_{Λ}^{pp} grows up as ℓ_T increases up to $\ell_T \sim 1$ GeV and stays constant at $1 \leq \ell_T \leq 3$ GeV. So the P_{Λ}^{pp} observed at R608 can not be wholly ascribed to the twist-3 effect studied here which is designed to describe large ℓ_T polarization.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig1.png}
\caption{P_{Λ}^{pp} at $\sqrt{S} = 62$ GeV.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig2.png}
\caption{P_{Λ}^{pp} at $\sqrt{S} = 200$ GeV.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig3.png}
\caption{ℓ_T dependence of P_{Λ}^{pp}.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig4.png}
\caption{P_{Λ}^{ep} at $\sqrt{S} = 20$ GeV.}
\end{figure}

- We next discuss the polarization P_{Λ}^{ep} in $pe \rightarrow \Lambda^+(\ell)X$ where the final electron is not observed. In our $O(\alpha_s^3)$ calculation, the exchanged photon remains highly virtual as far as the observed Λ has a large transverse momentum ℓ_T with respect to the ep axis. Therefore experimentally one needs to integrate only over those virtual photon events to compare with our formula.

Using the twist-3 distribution and fragmentation functions used to describe P_{Λ}^{pp}, we show in Fig. 4 the obtained P_{Λ}^{ep} corresponding to (A’)(chiral-odd) and (B’)(chiral-even) contributions. Remarkable feature of Fig. 4 is that in both chiral-even and chiral-odd contributions (i) the sign of P_{Λ}^{ep} is opposite to the sign of P_{Λ}^{pp} and (ii) the magnitude of P_{Λ}^{ep} is much larger than that of P_{Λ}^{pp}, in particular, at large x_F, and it even overshoots one. (In our convention, $x_F > 0$ corresponds to the production of Λ in the forward hemisphere of the initial proton in the ep case.) The origin of these features can be traced back to the color factor in the dominant diagrams for the twist-3 polarized cross sections in ep and pp collisions.
Of course, the P_Λ can not exceeds one, and thus our model estimate needs to be modified. First, the applied kinematic range of our formula should be reconsidered: Application of the twist-3 cross section at such small ℓ_T may not be justified. Second, our simple model ansatz of $E_F^a(x, x) \sim \delta q^a(x)$ (in (A) term) and $\hat{G}^a_F(z, z) \sim \hat{q}^a(z)$ should be modified at $x \to 1$ and $z \to 1$, respectively. The derivative of these functions, which is important for the growing P_{pp}^Λ at large x_F, eventually leads to divergence of P_Λ at $x_F \to 1$ as $\sim 1/(1 - x_F)$.

As a possible remedy for this pathology we tried the following: As an example for the (B) (chiral-even) contribution we have a model $\hat{G}^a_F(z, z) \sim \hat{q}^a(z) \sim z^{\beta + z}$ where $\beta = 1.83$ in the fragmentation function we adopted. Tentatively we shifted β as $\beta \to \beta(z) = \beta + z^8$, which suppresses the divergence of P_Λ at $x_F \to 1$ but still keeps rising behavior of P_Λ at large x_F. This avoids overshooting of one in P_{ep}^Λ but reduces P_{pp}^Λ seriously. The result obtained by this modification is shown in Figs. 5 and 6.

To summarize we have studied the Λ polarization in pp and ep collisions in the framework of collinear factorization. Our approach includes all effects for the large ℓ_T production. One needs to be cautious in interpreting the available pp data at relatively low ℓ_T in terms of the derived formula. Determination of the participating twist-3 functions requires global analysis of future pp and ep data.

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig5}
\caption{P_{pp}^Λ with modified \hat{G}_F.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig6}
\caption{P_{ep}^Λ with modified \hat{G}_F.}
\end{figure}

Acknowledgement: This work is supported in part by the Grant-in-Aid for Scientific Research of Monbusho.

References

[1] Y. Kanazawa and Y. Koike, Phys. Rev. D64 (2001) 034019.
[2] Y. Koike, hep-ph/0106260 (Proceedings of DIS2001, Bologna, Italy, April, 2001.)
[3] J. Qiu and G. Sterman, Phys. Rev. D59 (1999) 014004.
[4] Y. Kanazawa and Y. Koike, Phys. Lett. B478 (2000) 121; B490 (2000) 99.