Dear Editor,

The shipbuilding industry in Iran is not a common industry and there are just a few welders working in this sector in each work shift. Therefore, access to all industry welders is practically not possible and we had to stick to the number of welders studied. Furthermore, the number of welders studied in most reports is in the same range.1-4

Drinking alcoholic drinks in Iran is illegal and thus, consumers are very unlikely to report it. In this study, in a briefing held for workers to clarify stages of the study, we noted that those consuming alcoholic beverage should not participate in this study. This is an unfortunate fact that most of the participants of studies conducted in Iran refuse to report alcohol consumption, if any, for legal and cultural reasons.

We excluded smokers from the study. The main factor is in fact, lack of smoking, not the duration of smoking.

We did not mean to investigate the relationship between age, weight, and respiratory function. That is why we do not mention such a relationship in the article. In addition to weight and age, other items such as exercise and physical fitness also affect the person’s respiratory function. In field and human studies, there are many confusing factors including psychological and personality factors that may affect the outcomes. Controlling of all these factors is obviously impossible.

We measured the total fume and six metals, \textit{i.e.}, chromium, manganese, zinc, copper, iron, and aluminum. In the final version, during the translation process, zinc was mistakenly mentioned as magnesium. In all Tables related to fumes, it is “zinc,” which is correct.

Air samples were taken from the respiratory zone of the welders, a region between 15 and 23 cm in front of individuals’ shoulders (according to OSHA) using a cellulose ester filter. In the article the “respiratory tract” mentioned in the Abstract and Materials and Method should have been read as “respiratory zone.” This was a translation mistake.

Since this study was the exposure of welders during the work shifts, we therefore calculated the time-weighted average (TWA) of welders’ exposure during the shift using the following equation:

\[
TWA_{mg/m^3} = \frac{\sum_{i=1}^{8} C_i T_i}{8}
\]

Where, \(TWA\) is the weighted averaging time during the shift (mg/m\(^3\) or ppm), \(C_i\) is the concentration of the measured material at a certain time \(T_i\).

The welders spent some time for having breakfast and lunch, and doing prayers and activities other than welding tasks (\textit{e.g.}, collecting and delivering parts). The welders work on welding from 8:00 to 10:00, from 10:45 to 12:30, and from 14:00 to 16:00. At each interval, concentrations and sampling time were calculated, and according to the above formula, the time weighted average of welders during the eight-hour shift was calculated. The reported numbers in the Table is TWA, which are compared to the threshold limit value (TLV). The above-mentioned procedures have not been included in the article because of the limited number of words in the body of the article in accordance to the journal standard. As in most studies, they refrain from mentioning the details of these steps.
Regarding the lack of sampling gas and fume in the workplace air of the control group, it should be said that

The control group included administrative staff whose office building was far away from the welders’ workplaces. The controls place had a good ventilation system. Therefore, there was no need of air sampling for the measurement of gas and fumes. In this study, the prevalence of respiratory and spirometric symptoms in the control group was also determined. The results showed normal pulmonary status. In many studies, concentrations of fume are not measured for the control group.\(^6\)\(^-\)\(^9\)

Younes Mehrifar\(^1\), Zahra Zamanian\(^2\), Hamideh Pirami\(^3\)

\(^1\)Student Research Committee, School of Health Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
\(^2\)Department of Occupational Health, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran.
\(^3\)Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
E-mail: hamide_pirami@yahoo.com

References

1. Hariri A, Paiman NA, Leman A, Yusof M. Pulmonary function status among welders in Malaysian’s automotive industries. *Journal of Clean Energy Technologies* 2014;2:108-11.
2. Ghani N, Tariq F, Hassan S. Respiratory and physical ailments correlated with occupational exposure among welders in Pakistan. *J Pak Med Assoc* 2017;67:1910-3.
3. Mulyana M, Adi NPP, Kurniawidjaja ML, *et al.* Lung function status of workers exposed to welding fume: a preliminary study. *The Indonesian Biomedical Journal* 2016;8:37-42.
4. Al-Otaibi ST. Respiratory health of a population of welders. *J family community med* 2014;21:162.
5. National Institute of Occupational Safety and Health (NIOSH). Particulates not otherwise regulated, total. Method 0500, issue 2. In: NIOSH manual of analytical methods. Atlanta (GA): NIOSH; 1994.
6. Hariri A, Mohamad Noor N, Paiman NA, *et al.* Heavy metals found in the breathing zone, toenails and lung function of welders working in an air-conditioned welding workplace. *Int J Occup Saf Ergon* 2018;24:646-51.
7. Pourtaghi GH, Kakooei H, Salem M, *et al.* Pulmonary effects of occupational exposure to welding fumes. *Aust J Basic Appl Sci* 2009;3:3291-6.
8. Cena LG, Chisholm WP, Keane MJ, Chen BT. A field study on the respiratory deposition of the nanosized fraction of mild and stainless steel welding fume metals. *J Occup Environ Hyg* 2015;12:721-8.
9. Bakri SF, Hariri A, Ismail M, *et al.* Evaluation of Respiratory Symptoms, Spirometric Lung Patterns and Metal Fume Concentrations among Welders in Indoor Air-Conditioned Building at Malaysia. *International Journal of Integrated Engineering* 2018;10:109-21.