Refining student’s creative thinking through problem oriented project-based learning and student team achievement division

Supratman1,2*, S Zubaidah1, AD Corebima1 and Ibrohim1

1Biologi Education Study Program, Post-Graduate School, Universitas Negeri Malang, Jl. Semarang No 5, Sumbersari, Lowokwaru, Malang 65145, Indonesia
2Biologi Education Study Program, Universitas Samawa Sumbawa Besar, Jl. Bay Pass Sering, Kerato, Unter iwes, Kabupaten Sumbawa, Indonesia

*corresponding author: supratman_2011@yahoo.co.id

Abstract. One of the biggest calls for educators to take part in the 21st century learning is to make sure students equipped with creative thinking. To empower these skills, a variety of effective learning models can be implemented. The current study aimed to develop a learning model that has the potential to improve student creative thinking by integrating Problem-Oriented Project-Based Learning (POBPL) and Student Team Achievement Division (STAD), hence called POPBLSTAD. Plop design was used as the procedures for developing this product. It consisted of preliminary investigation, design, realization/construction, test, evaluation, and revision. The model was examined through a quasi-experiment. The participants’ creative thinking was evaluated based on five indicators: fluency, originality, elaboration, flexibility, and metaphorical thinking, using an essay test. The POPBLSTAD learning model was confirmed valid with a score of 3.47. The results of the ANACOVA analysis showed that the implementation of POPBLSTAD improved student creative thinking significantly. This finding suggests that POPBLSTAD can be used as an alternative learning model that is effective to refine student creative thinking.

1. Introduction
Designing an innovative learning model for biology instruction is crucial in preparing creative, critical, and competitive future generation who are capable of solving problems and making decisions in the 21st century. Creative thinking is one of the skills that need to be mastered by the students [1]. Among the other important skills, creative thinking plays the most dominant role in learning; thus, the development of student creative thinking is vital [2].

Creative thinking refers to the ability to uncover the truth, explore issues, discover ideas, and find the solution to the problems [3]. Creative thinking is a mental process that involves cognitive processing [4] or a cognitive activity performed by an individual in problem-solving [5]. Creative thinking is used to understand an object, formulate and test a hypothesis, and communicate the result [6]. Creative thinking is aimed at exploring student various ideas and stimulating student curiosity [7]. The indicators of creative thinking cover fluency, flexibility, originality, elaboration, and metaphorical thinking [8].

Research in Indonesia has highlighted issues in student creative thinking empowerment [9]. Some studies also reported student poor creative thinking skills [10], and poor mastery of creative thinking...
aspects (36.18%) [11]. These have originated from learning that provides no opportunity for the students to freely express their ideas [12]. Learning which is rarely focused on students is a primary factor leading to student low creative thinking [13].

One of the solutions to these issues is to implement an appropriate learning model in the classroom. Problem-Oriented Project-Based Learning (POPBL) is one of the examples of the learning models that have potentials to refine student poor creative thinking. POPBL is a collaborative learning model that incorporates problem-solving into project-based learning [14]. POPBL is part of problem-based learning (PBL) [15]. The major principles of POPBL include problem oriented, project-based, multidisciplinary approached, student-centered, and collaborative [16] [17]. POPBL has a primary benefit as a learning model that can support sustainable [18] and contextual education [19] as well as enhance student creative thinking [20]. However, in the real classroom setting, POPBL tasks only incorporate small parts of curriculum core and the characteristics of the materials are likely to be definite and fixed. The POPBL tasks are professionally realistic and big [21]. Another noticeable weakness of POPBL is the absence of the teacher’s material delivery in the beginning of the lesson. Instead of presenting the materials, the teacher directly assigns students to groups. The learning process of POPBL is entirely conducted by the teacher; thus, there is a chance that the teacher-centered learning activities exist in the classroom [14].

To complement POPBL shortcomings, Student Team Achievement Division (STAD) is introduced. STAD model is one of the simplest and most practical cooperative learning that is commonly used by the teacher at schools [22]. STAD emphasizes on establishing student interaction so that the students can motivate and help each other in accomplishing their goals [23]. STAD consists of five stages, including classroom presentation, group work, quiz, assessment, and rewarding [24]. STAD can be considered appropriate for biology instruction because biology contains a large number of concepts that require discussion and teamwork to understand [25]. STAD needs to be integrated into project-based learning in order that students can perform effective problem-solving. Research also showed that STAD can empower student creative thinking [26]. In this study, Problem-Oriented Project-Based Learning (POPBL) and Students Team Achievement Division (STAD) were combined to investigate the formula of how both learning models can complement each other. In addition, the effect of the POPBLSTAD model on student creative thinking skills was also examined.

2. Methods

2.1. Research design and method

This study employed the Research and Development (R&D) design [27] modified by Corebima [28]. It was carried out in four stages. The first stage was preliminary investigation which aimed to identify problems in biology instruction and other empirical facts found in the targeted schools as well as to analyze theories relevant to the development of the model to improve student creative thinking. At this stage, questionnaires were distributed. The second stage (design) aimed to design learning activities, learning environment, reaction principles, and systems to support the instruction and accompaniment impacts. At the third (Realization/Construction) stage, the prototype of the learning model was constructed. The fourth stage was to test, evaluation, and revision the prototype. Expert validation was performed at this stage by doctors and professors in biology education who have competences in learning model development. The expert validation was followed by revising the prototype to obtain a valid product.

Implementation stage was omitted from this study, so self-evaluation through small group trial was not conducted. Instead, the implementation stage was modified into a quasy experiment; therefore, it did not constitute a part of the R&D study. The quasi-experimental design used a pretest-posttest non-equivalent control group design. The experiment involved 129 tenth graders from four different public senior high schools in Sumbawa, Indonesia. Prior to sample determination, a placement test was conducted to analyze the students’ initial ability. The experimental, control positive 1, control positive 2, and control classes were taught using different models, namely POPBLSTAD, POPBL, STAD, and conventional, respectively. The instrument used in this study was
a creative thinking test with essay questions on Plantae, Animalia, ecosystem, and environmental changes. The test items had to undergo the validity and reliability tests. The Pearson Product Moment analysis showed that all of the test questions were valid (at a significance level of 0.00) and the Cronbach’s Alpha analysis indicated that all of the items were reliable (0.90). The results of the prerequisite analysis showed that the data were distributed normally (0.200) and homogeneously (0.989). The students’ test answers were evaluated using a creative thinking rubric [8] developed based on the following aspects of creative thinking: fluency, flexibility, originality, elaboration, and metaphorical thinking. The normality test was performed using Kolmogorov Smirnov and the homogeneity of the data was examined using Levene homogeneity test. ANCOVA statistics was run to investigate the effect of the learning model on student creative thinking. The control variables consisted of learning materials, teacher, time allocation, and instruments for data collection.

2.2. Research Subject and Location
The development of the POPBLSTAD learning model and learning tools was carried out at Universitas Negeri Malang, while the implementation of the learning model was conducted in senior high schools in Sumbawa, Indonesia.

3. Result and Discussion
3.1. The result of the learning model development
3.1.1. Preliminary investigation phase. The result of the preliminary investigation using a questionnaire suggested that the classrooms were mostly dominated by teacher lectures, instead of student-centered activities. In addition, the learning processes had not employed constructivism approaches which therefore led to the students’ unpreparedness to study. This finding was considered as the supporting theory to integrate the POPBL and STAD learning models to refine student creative thinking.

3.1.2. Design Phase. The design of the integrated POPBLSTAD was based on the results of the preliminary investigation. The syntax of the model was designed by incorporating the POPBL and STAD learning activities. At this stage, syllabus, lesson plans, student worksheets, and assessment worksheets were also developed.

3.1.3. Realization/Construction Phase. The realization/construction phase produced the prototype of the learning model which had been designed at the previous stage.

3.1.4. Test, Evaluation and Revision Phase. The result of the expert validation conducted in this phase confirmed that the learning model syntax and the learning tools were highly valid. The average score of the POPBLSTAD model and learning tools was 3.47. The result of the model validation is summarized in Table 1.

Table 1. The Result of the Expert Validation
Aspects to Evaluate
Learning Model
Syllabus
Lesson Plans
Student Worksheets
Average Score
3.2. The result of the quasi experiment

Table 2. ANCOVA Analysis on the Effect of the Learning Model on Creative Thinking Skills

Source	Type III Sum of Squares	Degrees of Freedom	Mean Square	F Ratio	Sig.
Corrected Score	10740.146 (a)	4	2685.036	37.119	0.000
Intercept	11652.699	1	11652.699	161.093	0.000
XB Creative	287.772	1	287.772	3.978	0.048
Models	9977.584	3	3325.861	45.979	0.000
Error	8969.544	124	72.335		
Total	45590.1563	129			
Corrected Total	19709.690	128			

R Squared = 0.545 (Adjusted R Squared = 0.530). Table 2 shows that the learning model had an effect on student creative thinking skills (F calculated 45.979 and p-value = 0.000, with p <α (α = 0.05).

Table 3. The Result of the LSD Test on Student Creative Thinking Skills

No	Models	XCreative	YCreative	Difference	BKrCor	LSD Notation
1	POPBLSTAD	30.3542	70.2083	39.8541	70.067	a
2	POPBL	30.1562	59.1797	29.0235	59.09	b
3	STAD	30.0417	55.7083	25.6666	55.648	b
4	Conventional	28.5887	45.4435	16.8548	45.759	c

Table 3 shows that the POPBLSTAD learning model obtained a significantly higher score compared to the other learning models. There was no significant difference in the LSD notation between the POPBL and STAD classes. The lowest score on creative thinking was found in the conventional class. This finding suggests that POPBLSTAD has the potential to refine student creative thinking. As reported by [11], [29], [30], student creative thinking can be improved through the integration of different learning.

The difference in the student’ creative thinking scores tested in this study has corroborated that POPBLSTAD possesses a higher level of interference and is more effective in refining student creative thinking skills. The integration of the POPBL and STAD learning activities is the primary reason why the students were able to achieve high creative thinking scores. The first stage of the POPBLSTAD model is classroom presentation. At this stage, the teacher describes the learning objectives to the students. This activity aims to provide students with initial understanding of the materials so that the students’ creative thinking can be promoted. Classroom presentation is done to accomplish the goals of the analysis, synthesis, and evaluation processes [25]. Student creative thinking can be enhanced through analytical thinking, ideas association, and problem evaluation [31]. Students will be able to think creatively if the learning atmosphere can provide an opportunity for them to develop creative ideas [32].

The second stage of the POPBLSTAD model is problem orientation. At this stage, the teacher presents a phenomenon through discourse and asks students questions related to the problem. The questions are aimed to stimulate student creative thinking skills. Inquisition is crucial in learning [33]. Asking questions in the beginning of the lesson can train student creative thinking and invigorate students to interact with one another [25]. Bruner’s theory underlying this stage suggests that in order to create effective learning, the teacher must provide a platform where s/he can initiate an interaction with the students by, for example, making an inquiry.

The third stage where the students are required to work in groups is based on the cognitive apprenticeship concept. The students work and interact with their peers in groups to determine
problems to be solved and organize a schedule before conducting data collection and data analysis, as the initial step of their project work that is going to be conducted outside the classroom hours (Stage 4). The group activities can support student academic achievement by enhancing their creative thinking [25].

Problem-solving constitutes the fifth stage of the POPBLSTAD model. At this stage, the teacher assists the students in solving the problems based on their hypothetical findings. Problem-solving is an essential learning activity to improve student creative thinking skills [5]. Students will be able to develop their creative thinking if the learning process is able to accommodate student creative ideas [34], and intelligent ability, especially in biology [35].

The evaluation and reflection stage allows the teacher to facilitate the students’ report presentation which is based on their group temporary findings. At this stage, the teacher also assists the students in doing a reflection on the investigation process they have carried out. In addition, to evaluate the students’ goal achievement, a test or a quiz is conducted. The final stage of this model is to give reward to the student individuals or groups who are able to attain the highest score. Through this activity, the students may be able to learn that all learning experiences they gained through the process can provide them guidance to act better in the future [36].

4. Conclusion
The integration of Problem-Oriented Project-Based Learning and Students Team Achievement Division, or POPBLSTAD was developed in this study. The learning model, the learning tools, and the instrument used in this study were confirmed valid. The findings of the quasi experiment showed that students who learned using the POPBLSTAD model achieved higher in creative thinking compared to those who learned using conventional, POPBL, or STAD learning model. In conclusion, the implementation of POPBLSTAD as an effective model to refine student creative thinking in biology instruction is very advisable.

5. References
[1] Greenstein L 2012 Assessing skill 21 century A guide to evaluating mastery and authentic learning USA: Corwin pp 1-185.
[2] Hargrove R A 2012 Assessing the long-term impact of a metacognitive approach to creative skill development Int. J. Tech. Des Educ 23 3 pp 489-517.
[3] Sheu F R and Chen N S 2014 Taking a signal: A review of gesture-based computing research in education J. Comp. Educ 78 2 pp 268-277.
[4] Beyer B 1987 Practical strategies for the teaching of thinking Boston: Allynand Bacon Inc.
[5] Birgili B 2015 Creative and Critical Thinking Skills in Problem-based Learning Environments J. Gift. Educ.Creativ 2 2 pp 71-80.
[6] Böckers A Mayer C and Böckers T M 2014 Does learning in clinical context in anatomical sciences improve examination results, learning motivation, or learning orientation J. Anatomic. Sci. Educ. 7 1 pp 3-11.
[7] Anwar M N Aness M Khizar A Naseer M and Muhammad G 2012 Relationship of creative thinking with the academic achievements of secondary school students Int. Interdis J. Educ. 1 3 pp 44-47.
[8] Treffinger DJ Young GC Selby EC and Shepardson C 2002 Assessing creativity: A guide for educator. Center for creative learning. Florda: Sarasota.
[9] Fuad N M Zubaidah Mahanal S and Suarsini E 2015 The profile of learning outcomes, critical and creative thinking skills students and teacher learning strategy applied. Proceeding of the National Seminar and Workshop on Biology and Its Learning pp 807-815.
[10] Yang SC and Lin WC 2004 The Relationship Among Creative, Critical Thinking and Thinking Styles in Taiwan High School Students J. Instruct. Psychol. 31 1 pp 33-45.
[11] Yusnaeni Corebima AD Susilo H and Zubaidah S 2017 Creative Thinking of Low Academic Student Undergoing Search Solve Create and Share Learning Integrated with Metacognitive Strategy Int. J. Instruct. 10 2 pp 245-262.

[12] Castillo-vergara M Galleguillos NB Cuello L J Alvarez-marin A and Opazo C 2018 Does socioeconomic status in fl uence student creativity J. Think. Skills.Creatiev. 29 1 pp 142-152.

[13] Awang H and Ramly I 2008 Creative thinking skill approach through problem based learning: pedagogy and practice in the engineering classroom J. World Aca. Sci, Engin. Tech. 16 2 pp 635-640

[14] Rongbutrsi N 2017 Students Using Online Collaborative Tools in Problem-Oriented Project-Based Learning.

[15] Kolmos A and de Graaff E 2014 Problem-based and project-based learning in engineering education Cambridge handbook of engineering education research pp 141-61.

[16] Yasin R M and Rahman S 2011 Problem Oriented Project Based Learning (POPBL) in Promoting Education for Sustainable Development. Proc. Soc. Behav. Sci. 15 pp 289–293.

[17] Plomp T 1997 Education Design: Instroduction. In T. Plomp, Educational & Training System Design: Introduction. Utrecht (the Netherlands): Lemma Netherland Faculty of Educational Science and Technology, University of Twente.

[20] Yasin RM and Mustapha R 2008 Promoting Creativity Through Problem Oriented Project Based Learning in Engineering Education at Malaysian Polytechnics: Issues and Challeges Int. Conf. Educ. Tech. pp 253-258.

[21] Nayan NA 2014 Introduction to Project-Oriented Problem-Based Learning Fakulti of Engineering, Universiti Kebangsaan Malaysia

[22] Wulandari TSH Amin M Zubaidah S and Henie M 2017 Students’ Critical Thinking Improvement through PDEODE and STAD Combination in The Nutrition and Health Lecture. Int. J. Evol. Research. Educ. (IJERE). 6 2 pp110-117.
[31] Clinton G and Hokanson B 2012 Creativity in the training and practice of instructional designers: the Design/Creativity Loops model J. Educ. Tech. Research. Develop. 60 2 pp. 111-130.

[32] Kuo FR Chen NS and Hwang G 2014 A creative thinking approach to enhancing the web-based problem solving performance of university students. J. Comp. Educ. 72 2 pp 220-230.

[33] Duron R Limbach B and Waugh W 2006 Critical Thinking Framework For Any Discipline Int. J. Teac. Learn. Higher Educ. 17 2 pp160-166.

[34] Wheeler S J Waite and C Bromfield 2002 Promoting creative thinking through the use of ICT. J. Comp. Assisted Learning. 18 2 pp 367-378.

[35] Putra A Rahmad S Redjeki and T Hidayat 2018 Student’s ecological intelligence ability on the environmental knowledge course J. Phys. Conf. Ser. Phys. Ser. 1157 pp 1-4.

[36] Poore J A Cullen D L and Schaar G L 2014 Simulation-based interprofessional education guided by Kolb’s experiential learning theory J. Clinic. Sim. Nurs. 10 5 pp 241-247.

Acknowledgments

Our gratitude goes to Universitas Negeri Malang, Kemenristek DIKTI (The Ministry of Research, technology, and Higher Education), BUDI-DN, and LPDP (Indonesia Endowment Fund for Education). No: PRJ-6587/LPDP.3/2016 who have sponsored this study. We would also like to acknowledge all the people who have participated in the study. Constructive advice and criticism to improve this article are strongly encouraged.