Abstract

The Tri-bimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on structure of the neutrino mass matrix and on underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM mass relations. As a result, the mass matrix may have an “anarchical” structure with random values of elements or it may have some symmetry which differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain “flavor alignment” as well as hierarchical matrices with a two-component structure, where the dominant and sub-dominant contributions have different symmetries. This opens up new approaches to understand the lepton mixing.
1 Introduction

The lepton mixing determined from the results of neutrino experiments can be well described by the so-called Tri-Bimaximal Mixing (TBM) matrix \[1\]:

\[
U_{TBM} = \begin{pmatrix}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{i}{\sqrt{6}} & \frac{i}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{6}} & \frac{i}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}.
\]

(1)

In terms of the standard parameterization of lepton mixing matrix,

\[
U_{PMNS} = U_{23} \Gamma_\delta U_{13} \Gamma_\delta^* U_{12},
\]

where \(\Gamma_\delta \equiv \text{diag}(1,1,e^{i\delta})\), the TBM matrix corresponds to maximal 2-3 mixing, zero 1-3 mixing and “democratic” 1-2 mixing:

\[
\sin^2 \theta_{23} = \frac{1}{2}, \quad \sin \theta_{13} = 0, \quad \sin^2 \theta_{12} = \frac{1}{3}.
\]

(2)

The Dirac CP-phase is irrelevant \[2\].

The result (1, 2) is very suggestive of certain underlying symmetry and this has triggered enormous activity in the model-building \[2\]. It is assumed that TBM is a consequence of some symmetry of the neutrino mass matrix in certain (often flavor) basis. We will refer to this as to the TBM-symmetry.

For the Majorana neutrinos in the flavor basis \((\nu_e, \nu_\mu, \nu_\tau)\), the mass matrix which leads to the TBM mixing equals

\[
m_{TBM} = U_{TBM} m_{\nu}^{\text{diag}} U_{TBM}^T,
\]

(3)

where \(m_{\nu}^{\text{diag}} \equiv \text{diag}(m_1, m_2, m_3)\) is the matrix of neutrino mass eigenstates. In general, \(m_i\) are complex and we can represent them as

\[
m_1 = |m_1|, \quad m_2 = |m_2|e^{i\phi_2}, \quad m_3 = |m_3|e^{i\phi_3}.
\]

Here \(\phi_1\) and \(\phi_2\) are the Majorana CP-violating phases. Using (3) and (1) we find explicitly

\[
m_{TBM} = \begin{pmatrix}
a & b & b \\
... & \frac{1}{2}(a + b + c) & \frac{1}{2}(a + b - c) \\
... & \frac{1}{2}(a + b - c) & \frac{1}{2}(a + b + c)
\end{pmatrix},
\]

(4)

where the parameters \(a, b, c\) are determined by the neutrino masses as

\[
a = \frac{1}{3}(2m_1 + m_2), \quad b = \frac{1}{3}(-m_1 + m_2), \quad c = m_3.
\]

(5)

\[1\] There is an ambiguity in the form of the mixing matrix related to the sign of rotation.

\[2\] In (2) \(U_{ij} = U_{ij}(\theta_{ij})\) is the rotation in \(ij\) - sub-space on the angle \(\theta_{ij}\).
Elements of the $\mu\tau -$block of the mass matrix (4) equal

\[a + b + c = \frac{1}{3}m_1 + \frac{2}{3}m_2 + m_3, \quad a + b - c = \frac{1}{3}m_1 + \frac{2}{3}m_2 - m_3. \]

According to (4), the elements of matrix, $||m_{\alpha\beta}||$, $\alpha, \beta = e, \mu, \tau$, which leads to the TBM mixing, satisfy the following three conditions:

\[m_{e\mu} = m_{e\tau}, \quad (6) \]
\[m_{\mu\mu} = m_{\tau\tau}, \quad (7) \]
\[m_{ee} + m_{e\mu} = m_{\mu\mu} + m_{\mu\tau}. \quad (8) \]

(The latter is equivalent to $\sum_\alpha m_{e\alpha} = \sum_\beta m_{\mu\beta}$.) Inversely, the mass matrix, which satisfies these relations leads to the TBM mixing independently of values of neutrino masses. The form of relation (8) changes under the field rephasing: $\nu_e \rightarrow -\nu_e$, etc. Recall that in the case of bi-maximal mixing instead of the condition (8) we would have $m_{ee} = m_{\mu\mu} + m_{\mu\tau}$.

In general fixing any specific set of values of three mixing angles would imply three relations between the elements of mass matrix. The point is that in the TBM case these relations are very simple: they are just equalities of certain elements and equality of sums of elements of columns, and therefore have a good chance to follow from certain symmetry.

The TBM symmetry can appear as a residual of the flavor symmetry of the Lagrangian. (In all the models the underlying flavor symmetry for TBM is broken.) Indeed, the TBM mass matrix (4) is invariant under transformations $[3, 4]

\[V_i m_{TBM} V_i^T = m_{TBM}, \]

where

\[V_1 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ ... & -1 & 2 \\ ... & ... & -1 \end{pmatrix}, \quad V_2 = \begin{pmatrix} 1 & 0 & 0 \\ ... & 0 & 1 \\ ... & ... & 0 \end{pmatrix}. \quad (9) \]

At the same time, the mass matrix of charged leptons can be diagonal due to symmetry with respect to transformation $V_3 = diag(1, \omega, \omega^2)$, where $\omega \equiv e^{i2\pi/3}$. The transformations V_1, V_2, V_3 are generators of the group S_4.

Some recent developments have risen doubts in that the TBM is of fundamental character, i.e. follows from certain approximate (broken) symmetry. The TBM mixing can be accidental - just a numerical coincidence of parameters without underlying symmetry. The arguments follow.

1. Analysis of experimental data shows deviations from the TBM mixing. According to two recent global analyses [5], [6], the best fit values as well as the 1σ allowed ranges for the mixing angles deviate from the TBM values (see Table 1). Notice, however, that the latest analysis of the atmospheric neutrino data only [7] gives the best fit values (and the 90% CL allowed regions) as $\sin \theta_{13} = 0.00 \ (< 0.2)$ in the case of normal mass hierarchy (NH) and $\sin \theta_{13} = 0.077 \ (< 0.3)$ for the inverted mass hierarchy (IH). So, no significant deviation of
Table 1: The best fit values and 1σ intervals for the mixing angles according to global oscillation analysis of different groups. The analysis GM-I uses the solar neutrino neutrino spectrum according to the solar model with high metallicity (GS98) and normal Gallium cross-section, whereas GM-II is based on the high surface metallicity (AGSS09) and modified Gallium cross-section; see [6] for details.

	Bari group [5]	GM-I [6]	GM-II [6]
$\sin \theta_{13}$	$0.126_{-0.049}^{+0.053}$	$0.127_{-0.055}^{+0.036}$	$0.118_{-0.048}^{+0.038}$
$\sin^2 \theta_{23}$	$0.466_{-0.058}^{+0.073}$	$0.463_{-0.048}^{+0.071}$	$0.463_{-0.048}^{+0.071}$
$\sin^2 \theta_{12}$	$0.312_{-0.018}^{+0.019}$	$0.319_{-0.016}^{+0.016}$	$0.321_{-0.016}^{+0.016}$

the 1-3 mixing from zero is found, but the upper bound is in agreement with the global fit results. For the 2-3 mixing, essentially no deviation from maximal value is obtained: $\sin^2 \theta_{23} = 0.50$ (NH) and $\sin^2 \theta_{23} = 0.53$ (IH). At the same time, larger deviations from the maximal mixing are allowed in comparison to the global fit: $0.407 < \sin \theta_{23} < 0.583$ (90% CL). Comparing the results of the Table 1 with those in (2), we find that significant deviations from the TBM values are allowed.

2. No simple and convincing model for the TBM-mixing has been proposed so far, although the simplest possibilities have been explored almost systematically. The proposed models have rather complicated structure with large number of assumptions, new elements (fields) new parameters, ad hoc quantum number assignments, and yet additional auxiliary symmetries. Attempts to realize the proposal “TBM from symmetry” can be qualified as the “symmetry building” by introduction and tuning of complicated structure of models. The mixing does not appear as an immediate consequence of symmetry. On the other hand, if true, this means that there is rich physics behind observed lepton mixing.

One should add however, that from simple assumption of existence of discrete symmetry which has irreducible triplet representation one gets structures which resemble the TBM mixing but often with the wrong mass spectrum.

3. In most proposed models there is no immediate relation between the masses and mixing angles and different physics should be introduced to explain the mass hierarchies. This is still a matter of opinion and some authors do not consider lack of the relations as shortcoming in spite of existence of the Fritzsch or Gatto-Sartory-Tonin type relations in the quark sector.

4. The quark sector has small mixing and in the first approximation it can be neglected so that the quark mixing matrix is diagonal, as a consequence of certain symmetry. This
drastically differs from the lepton mixing and therefore further complications are required to include the quark sector into a model. The Grand unification puts further additional requirements [8]. Of course, it is difficult to expect that quark and lepton mixings are similar: values of neutrino masses strongly differ from values of quark masses. And furthermore the neutrino mass may have different nature being of the Majorana type.

5. The quark-lepton complementarity [9] with different underlying physics leads to mixing which is very close to the TBM mixing.

There are several possible implications of these statements:

- The TBM mixing is not accidental in spite of arguments 1) - 5) and there is certain flavor symmetry behind this mixing. This symmetry can not be exact symmetry of the Lagrangian (in the proposed models it is broken spontaneously or explicitly), and therefore deviations from the TBM mixing at some level are expected anyway. The deviations can originate from (i) renormalization group effects [10], (ii) deviations from “correct” VEV alignment [11] [12], (iii) a soft breaking of the $\mu - \tau$ and CP symmetries [13], (iv) higher order corrections of a flavor symmetry breaking and higher dimensional mass operators [14], (v) perturbation of the TBM mass matrix and contribution from charged lepton sector [15], (vi) breaking of the mass degeneracy of three heavy (right-handed) Majorana neutrinos [16], etc..

- The approximate TBM-mixing is not accidental but is a manifestation of some other structure or other symmetry which differs from the flavor symmetries proposed so far for explanation of TBM. A viable alternatives are the quark-lepton complementarity [9] and weak complementarity [17], when the bi-maximal mixing is obtained as a result of flavor symmetry.

- The approximate TBM mixing is accidental: it results from an interplay of different and to a large extent independent factors or/and contributions. Some other physics apart from the flavor symmetry is involved. The mixing results from many step construction and fixing various parameters by introduction of additional auxiliary symmetries and structures.

The main question we address in the paper is how to disentangle these possible implications. Clearly, the conclusive way to answer the question is to check predictions of specific models which explain the TBM mixing. Unfortunately, most of the proposed models do not give new generic or strict predictions. Therefore interpretation of results will be rather ambiguous. Furthermore, in many cases the underlying physics is at very high mass scales (GUT or even higher), so that its direct tests are not possible.

The symmetry, if exists, is realized in terms of mass matrix and not mixing matrix. Therefore, the step is to explore violation of the TBM symmetry of the mass matrix. If the deviations of the mass matrix from m_{TBM} are large (enhanced), and the symmetry is broken strongly, the symmetry explanation of the TBM is less plausible. If in the large region of
parameters (which would correspond to large variety of different structures of matrix) the mass matrix leads to the approximate TBM mixing, the TBM looks accidental.

Somewhat similar question ("is TBM hidden or accidental symmetry?") has been discussed in [18]. In a sense, the inverse problem has been considered: small ("soft") $\sim 20\%$ relative corrections (perturbations) to the TBM mass matrix elements have been introduced and consequences of these perturbations for mixing angles have been studied, depending on the mass hierarchy and phases. Our approach, criteria of accidental, and conclusions differ from those obtained in [18] (see sect. 4).

The paper is organized as follows. In sect. 2 we present simple formalism which accounts for the effects of deviations from the TBM on the structure of neutrino mass matrix. Using this formalism in sect. 3 we study properties of the neutrino mass matrices (in the presence of the deviations) for different mass spectra and values of the CP-phases. In sect. 4 we consider implications of the obtained results for the flavor symmetries. We search for some alternative structures of mass matrix, and correspondingly, alternative explanation of the observed mixing. Conclusions are given in sect. 5.

table 2: Central values and 1 σ allowed intervals for the TBM deviation parameters according to the global analysis of different groups (for more explanation see caption for the Table 1).

Deviation	Bari group [5]	GM-I [6]	GM-II [6]
$\sin \theta_{13}$	$0.126 (0.077 \div 0.179)$	$0.127 (0.071 \div 0.163)$	$0.118 (0.069 \div 0.156)$
D_{23}	$0.034 (-0.039 \div 0.092)$	$0.037 (-0.034 \div 0.085)$	$0.037 (-0.034 \div 0.085)$
D_{12}	$0.021 (0.002 \div 0.040)$	$0.014 (-0.0016 \div 0.027)$	$0.012 (-0.0036 \div 0.028)$

2 Deviations of the mass matrix from the TBM form

2.1 Deviations from the TBM mixing

Let us define the parameters which characterize the deviation of mixing angles from the TBM values as

$$D_{12} \equiv \frac{1}{3} - s_{12}^2, \quad D_{23} \equiv \frac{1}{2} - s_{23}^2, \quad D_{13} \equiv s_{13},$$

(10)

where $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$. Using results of the Table 1, we find the central values and the 1σ allowed intervals of these deviations (see the Table 2). For the 1-2 and 1-3 mixings the relative deviations equal correspondingly, $3D_{12}$ and $2D_{23}$. The central values of these deviations and maximal allowed values at 1σ level are $(3 - 6)\%$ and $(6 - 12)\%$ for the 1-2 mixing, and $(8 - 10)\%$ and $(18 - 19)\%$ for the 2-3 mixing. Thus, typical size of the relative deviations is about 10% for 1-2 mixing and 20% for 2-3 mixing. The 1-3 mixing can be compared with values of other mixings: for central value $s_{13}/s_{12} = 0.23$ and in 1σ
interval: $s_{13}/s_{12} = 0.33$. The 1-3 mixing can be smaller but not much smaller than other mixings.

Instead of D_{12} and D_{23} we could introduce deviations for sines:

$$d_{12} \equiv \frac{1}{\sqrt{3}} - s_{12}, \quad d_{23} \equiv \frac{1}{\sqrt{2}} - s_{23}.$$ \hspace{1cm} (11)

In the lowest order there are linear relations between d_{ij} and D_{ij}: $d_{23} = D_{23}/\sqrt{2}$, $d_{12} = D_{12}\sqrt{3}/2$ in contrast to s_{13}, which gives the deviation from zero. Furthermore, in contrast to s_{13}, the linear deviations D_{12}, D_{23} are smaller than quadratic ones. For the linear deviations we have $s_{13} \gg d_{12} \sim d_{23}$, and for the present best fit values:

$$s_{13}^2 \sim d_{12} \sim d_{23}.$$ \hspace{1cm} (12)

It can be a hierarchy of the deviations.

2.2 Corrections to the neutrino mass matrix

To account for the effects of deviation from the TBM mixing on structure of the mass matrix we will perform expansion of the matrix in powers of the deviation parameters D_{ij}. In the lowest approximation the correction due to D_{ij} equals

$$U_{TBM} m^{\text{diag}} \delta U_{ij}^{(1)T} + \text{trponent},$$ \hspace{1cm} (13)

where $\delta U_{ij}^{(1)}$ is the first order correction to U_{TBM} due to the deviation D_{ij}. Eq.(13) can be also rewritten in the form $m_{TBM} U_{TBM} \delta U_{ij}^{T} + \text{trponent}$. Because of hierarchy (12) we compute also corrections of the order s_{13}^2 which are given by

$$U_{TBM} m^{\text{diag}} \delta U_{13}^{(1)T} + U_{13}^{(2)} m^{\text{diag}} U_{TBM}^{T} + \delta U_{13}^{(1)T} m^{\text{diag}} \delta U_{13}^{(1)T}.$$ \hspace{1cm} (14)

Here $U_{13}^{(2)}$ is the matrix of second order in s_{13}^2. Using (13) and (14) we find the mass matrix in the lowest order approximation as

$$m_\nu = m_{TBM} + s_{13} \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} e^{-i\delta} g & \frac{1}{\sqrt{2}} e^{-i\delta} \\ & \cdots & \cdots \\ & \cdots & \cdots \end{pmatrix} + s_{13}^2 \begin{pmatrix} 2 e^{-2i\delta} g & -b & -b \\ & \cdots & -g & g \\ & \cdots & \cdots & \cdots \end{pmatrix} + D_{23} \begin{pmatrix} 0 & b & -b \\ & \cdots & a + b - c & 0 \\ & \cdots & \cdots & -(a + b - c) \\ & \cdots & \cdots & \cdots \end{pmatrix} + 3b D_{12} \begin{pmatrix} -1 & -\frac{1}{2} & -\frac{1}{2} \\ & \cdots & \frac{1}{2} & \frac{1}{2} \\ & \cdots & \cdots & \cdots \end{pmatrix},$$ \hspace{1cm} (15)
where
\[g \equiv c - ae^{2i\delta}, \]

(16)
a, b, c are combinations of the neutrino masses defined in Eq.(5). Notice that corrections are proportional to the elements of the TBM matrix and therefore correlate with the original TBM structure. It follows from the expression (15) immediately that

(i) \(s_{13} \) as well as \(D_{23} \) corrections break all three TBM-conditions (6 - 8);
(ii) \(s_{13}^2 \) and \(D_{12} \) corrections violate only the third condition.

Corrections due to non-zero 1-3 mixing depend on \(b \) and combination \(g \) of original parameters \(a \) and \(c \).

The expression for mass matrix (15) can be rewritten in terms of matrices which explicitly violate the TBM conditions:

\[
m_\nu = m_{\text{TBM}} + m'_{\text{TBM}} + \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ ... & ... & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ ... & ... & 0 \end{pmatrix}.
\]

(17)

Here \(m_{\text{TBM}} \) is the original TBM-matrix (4) for a given mass spectrum. The matrix \(m'_{\text{TBM}} \) has exact TBM-form with the following parameters:

\[
a' = \frac{b}{2} \left(\frac{15}{2} D_{12} + s_{13}^2 \right), \quad b' = -\frac{b}{2} \left(\frac{3}{2} D_{12} + s_{13}^2 \right), \quad c' = -gs_{13}^2. \]

Notice that, all the elements of \(m'_{\text{TBM}} \) are suppressed in comparison to the zero order matrix \(m_{\text{TBM}} \) by small deviations: \(D_{12} \sim s_{13}^2 \leq 0.02 \). In Eq.(17) \(x \) and \(y \) are the strengths of violation of the first and second TBM-conditions, and \(z \) is the correction to \(m_{ee} \):

\[
x = -\frac{s_{13}}{\sqrt{2}} ge^{-i\delta} + bD_{23},
\]

(18)

\[
y = \sqrt{2}s_{13}be^{i\delta} + (a + b - c)D_{23} = \sqrt{2}s_{13}be^{i\delta} + 2m_{\mu\tau}^{\text{TBM}} D_{23},
\]

(19)

\[
z = -\frac{27}{4} bD_{12} + \left[ge^{-2i\delta} - \frac{b^2}{2} \right] s_{13}^2.
\]

(20)

The corrections to TBM structure have the following properties. Contributions to \(x \) and \(y \) from \(s_{13} \) and \(D_{23} \) can sum up, thus enhancing violation of the TBM structure. All corrections to the elements \(m_{e\mu} \) and \(m_{e\tau} \) but those of \(s_{13} \) are proportional to \(b \); \(z \) depends on the smallest deviation \(D_{12} \) and second order in \(s_{13} \). In general, parameters \(x \) and \(y \) are independent. If \(b \ll a, c \) which, as we will see, is realized in many situation, then \(x \propto s_{13} \), whereas \(y \propto D_{23} \). If \(b \sim a, c \), one can obtain \(x \gg y \) or \(x \ll y \) selecting particular value of the phase \(\delta \). In some cases correlation between corrections \(x \) and \(y \) and structure of the original TBM mass matrix appear.

The total correction to the \(ee \)- element is

\[
\Delta m_{ee} = a' + z = -3bD_{12} + e^{-2i\delta} gs_{13}^2.
\]

(21)
Although D_{12} is small, it enters Δm_{ee} with the coefficient 3. In other places its effect is small. Correction to the $\mu\tau$ element originates from $m'_{TB M}$:

$$\Delta m_{\mu\tau} = \frac{3}{2} b D_{12} + \frac{1}{2} g s_{13}^2.$$ \hfill (22)

It is about 2 times smaller than Δm_{ee} and has additional phase difference between the two terms; $\Delta m_{\mu\tau} = -\frac{1}{2} \Delta m_{ee}$ at $\delta = \pi/2$. Apart from some special cases this correction is negligible.

Exact expression for the mass matrix is simplified substantially if $D_{12} = \delta = 0$:

$$m_\nu = \begin{pmatrix}
a & c_{13} b \sqrt{1 + 2 D_{23}} - \xi_- &_{\begin{smallmatrix} \vdots \\ \vdots \\ \vdots \end{smallmatrix}} & c_{13} b \sqrt{1 - 2 D_{23}} + \xi_+ \\
\frac{1}{2} (a + b + c) + y & \frac{1}{2} (a + b - c) \sqrt{1 - 4 D_{23}^2} & \frac{1}{2} (a + b - c) - y & 0 \\
\frac{1}{2} (a + b - c) + y & 0 & -D_{23} - \frac{1}{2} & 0 \\
\frac{1}{2} (a + b - c) - y & 0 & -D_{23} - \frac{1}{2} & 0 \\
\end{pmatrix}.$$ \hfill (23)

Here

$$\xi_\pm \equiv \frac{1}{\sqrt{2}} s_{13} c_{13} \sqrt{1 \pm 2 D_{23}} (c - a),$$

$$y \equiv \sqrt{2} b s_{13} \sqrt{1 - 4 D_{23}^2} + (a + b - c) D_{23}.$$ \hfill (24)

The next order corrections, being proportional to $s_{13} D_{23}$, appear in the off-diagonal elements: $m_{\mu\tau}, m_{e\mu}$ and $m_{e\tau}$. From (24) we have

$$\xi_+ = \xi_- = \xi \equiv \frac{1}{\sqrt{2}} s_{13} c_{13} (c - a), \quad y = D_{23} (a + b - c) + \sqrt{2} s_{13} b,$$

where the second term gives the same corrections to $m_{e\mu}$ and $m_{e\tau}$. In the lowest order we obtain

$$\xi_+ = \xi_- = \xi \equiv \frac{1}{\sqrt{2}} s_{13} c_{13} (c - a), \quad y = D_{23} (a + b - c) + \sqrt{2} s_{13} b,$$

so that

$$m_\nu = \begin{pmatrix}
a & b \sqrt{1 + 2 D_{23}} - \xi & b \sqrt{1 - 2 D_{23}} + \xi \\
\frac{1}{2} (a + b + c) + y & \frac{1}{2} (a + b - c) & \frac{1}{2} (a + b - c) - y \\
\frac{1}{2} (a + b - c) + y & 0 & \frac{1}{2} (a + b - c) - y \\
\frac{1}{2} (a + b - c) - y & 0 & \frac{1}{2} (a + b - c) - y \\
\end{pmatrix}.$$
on CP-phases see [19]). According to (15), corrections are proportional to the deviations multiplied by different original matrix elements:

$$\Delta m_{\alpha\beta} = \sum_{i>j} \sum_{\gamma \delta} f^{ij}_{\gamma\delta} D_{ij} m_{\gamma\delta},$$

where \((i, j = 1, 2, 3), (\alpha, \beta, \gamma, \delta = e, \mu, \tau)\) and \(f^{ij}_{\gamma\delta}\) are numerical coefficients which can contain also the phase factors \(e^{i\delta}\) and \(e^{-i\delta}\). Inserting into (15) \(a = m_{ee}^0, b = m_{e\mu}^0, \) and \(c = m_{\mu\mu}^0 - m_{\mu\tau}^0, \) we find that the \(s_{13}\)-corrections mix the \(e\)-line and \(\mu\tau\)-block elements: the corrections to the \(e\)-line elements \(m_{e\mu}\) and \(m_{e\tau}\) are proportional to the elements of \(\mu\tau\)-block as well as to \(m_{ee}\), whereas the corrections to the \(\mu\tau\)-block are proportional to \(m_{e\mu}^0\). The \(D_{23}\) -corrections do not mix elements from different blocks: \(\Delta m_{\mu\mu} = f^{23}_{\mu\mu} D_{23} m_{\mu\tau}\). The \(D_{12}\) -corrections to all elements are proportional to \(m_{\mu\mu}^0\). \(s_{13}\)-corrections mix the \(\mu\tau\)-block elements and \(m_{ee}\). The correction to the subdominant elements can be proportional to the element of the dominant block and be much larger than the original element. The elements of the dominant block can get relative corrections of the order \((20 - 30)\%\) because the corrections can be enhanced by some additional numerical factors 2 - 3. In turn, these factors originate from the correction itself as well as some smallness of the original element (say by factor 1/2 - 1/3). In the cases when the original flavor matrix has no hierarchy, the corrections of the order 30\% can lead to “anarchical” character of the matrix with random values of elements.

An alternative parameterization of deviations from the TBM mass matrix is proposed in [20] in which the element \(m_{ee}\) is unchanged.

2.3 Basis corrections

Basis in which the symmetry is introduced may differ from the flavor basis. In the symmetry basis, the elements of mass matrix equal \(m_{\alpha\beta}^{(sym)} = m_{\alpha\beta} + \Delta m_{\alpha\beta}^b\), where \(\Delta m_{\alpha\beta}^b\) is the basis corrections. Taking into account mixing in the quark sector one can assume that the symmetry basis differs from the flavor basis by the CKM-type rotation. To get some idea about possible effects we will consider for simplicity 1-2 rotation only, with the angle \(\theta_b\) of the order of Cabibbo angle: \(s_b \equiv \sin \theta_b \sim \sin \theta_C \sim 0.2\). This rotation gives the following basis corrections:

\[
\begin{align*}
\Delta m_{ee}^b &= -2s_b c_b m_{e\mu} + s_b^2 (m_{\mu\mu} - m_{ee}), \\
\Delta m_{\mu\mu}^b &= -\Delta m_{ee}, \\
\Delta m_{\mu e}^b &= s_b c_b (m_{\mu\mu} - m_{ee}) - 2s_b^2 m_{e\mu}, \\
\Delta m_{e\tau}^b &= -s_b m_{\mu\tau} + (1 - c_b) m_{e\tau} \approx -s_b m_{\mu\tau} + \frac{s_b^2}{2} m_{e\tau}, \\
\Delta m_{\mu\tau}^b &= s_b m_{\mu\tau} + (1 - c_b) m_{e\tau} \approx s_b m_{\mu\tau} + \frac{s_b^2}{2} m_{e\tau}.
\end{align*}
\]

(25)
Apparently certain correlations between corrections to different elements exist, especially for some original structures of mass matrix. For instance, if $m_{\mu e}$ and $m_{e\tau}$ are small (as, e.g., in the case of strong normal mass hierarchy), then $\Delta m^b_{ee} = \tan \theta_b \Delta m^b_{\mu e}$ corrections to $\Delta m^b_{\mu e}$ and $\Delta m^b_{e\tau}$ are large, $\Delta m^b_{e\tau} = -\Delta m^b_{\mu e} m_{\mu\tau}/(m_{\mu\mu} - m_{ee})$, etc..

Alternatively, the basis corrections can be accounted for by further deviation of the mixing angles from their TBM values: $\theta_{ij} \rightarrow \theta_{ij} + \Delta \theta_{ij}$. Therefore, in our consideration this can be taken into account by enlarging possible intervals for D_{ij}. For instance, change of the 1-2 mixing by θ_C leads to the interval $\theta_{12} = 20^\circ \div 45^\circ$. The upper value corresponds to maximal 1-2 mixing and the QLC case. This interval corresponds to $D_{12} = -0.17 \div 0.22$.

We will comment on possible additional changes of structure of mass matrix due to these corrections.

2.4 Violation of the TBM conditions

Violation of the TBM symmetry of neutrino mass matrix can be characterized by parameters which describe violation of the equalities (6-8). For the first two equalities we can introduce

$$
\Delta_e \equiv \frac{m_{\mu e} - m_{e\tau}}{m_{\mu e}},
\Delta_{\mu\tau} \equiv \frac{m_{\mu\mu} - m_{\tau\tau}}{m_{\tau\tau}}.
$$

(26)

(27)

Since the difference $(m_{ee} + m_{e\tau}) - (m_{\mu\mu} + m_{\mu\tau})$ depends on Δ_e and $\Delta_{\mu\tau}$ ³ we define the third violation parameter in different way to avoid the strong correlation between the parameters. The third TBM condition (8) can be rewritten using (6) and (7) as $\Sigma_L = \Sigma_R$, where

$$
\Sigma_L \equiv m_{ee} + \frac{m_{\mu e} + m_{e\tau}}{2}, \quad \Sigma_R \equiv m_{\mu\tau} + \frac{m_{\mu\mu} + m_{\tau\tau}}{2}.
$$

Then the third TBM violation parameter can be introduced as

$$
\Delta_\Sigma \equiv \frac{\Sigma_L - \Sigma_R}{\Sigma_R}.
$$

(28)

In Δ_Σ effects of large violations of the 1st and 2nd conditions are excluded.

Specific values of the violation parameters correspond to certain features of the mass matrix. For instance, $\Delta_e = 1$ corresponds to the texture zero $m_{e\tau} = 0$, $\Delta_{\mu\tau} \rightarrow \infty$ gives condition for $m_{\tau\tau} = 0$, etc.. These values, in turn, can testify for some new symmetries of the mass matrix.

In what follows we will express the TBM-breaking parameters in terms of D_{ij} and study their dependence on the absolute mass scale, type of mass spectrum and CP-phases. We identify situations when the TBM conditions can be strongly violated. It is convenient to present the diagonal mass matrix in (3) as

$$
m^{\text{diag}} = \text{diag}(m_1, m_2, m_3) = m_1 I + \text{diag}(0, m, M),
$$

³In the lowest order the difference equals $x - y + z - 3bD_{23} \approx m_{ee}\Delta_e/2 + m_{\tau\tau}\Delta_{\mu\tau}/2 + O((D_{12}, s_{13}^2)$.
\[s_{13} e^{-i\phi} / \tilde{s}_{13} \]

\(\Delta_e \)	\(-\frac{i}{2}\)	\(\frac{i}{3} \)	\(-1\)	\(1 \)	\(\gg 1 \)
mass relation	\(2m_{e\tau} = m_{e\mu} \)	\(m_{e\tau} = 2m_{e\mu} \)	\(m_{e\tau} = 0 \)	\(m_{e\mu} = 0 \)	\(m_{e\tau} = -m_{e\mu} \)

Table 3: Special values of the violation parameter \(\Delta_e \) and the corresponding relations between elements of the mass matrix. Here values of the ratio \(s_{13} e^{-i\phi} / \tilde{s}_{13} \) are given for \(\alpha = 0 \).

where \(m \equiv m_2 - m_1, M \equiv m_3 - m_1 \) and \(I \) is the unit matrix. For definiteness we will take \(s_{13} > 0 \).

1. The parameter \(\Delta_e \). According to (17) this parameter can be written as

\[\Delta_e = 2 s_{13} + \frac{s_{13} + \alpha}{s_{13} - \tilde{s}_{13} e^{i\phi}}, \]

where in the first approximation \(\alpha \) and \(\tilde{s}_{13} \) do not depend on \(s_{13} \), and furthermore, \(\alpha \propto D_{23} \). The factor 2 originates from the fact that \(m_{e\mu} - m_{e\tau} = 2x \), whereas \(m_{e\mu} = x + A \). The quantity \(\tilde{s}_{13} e^{i\phi} \) plays crucial role: It determines position of the pole of \(\Delta_e \) which corresponds to texture zero \(m_{e\mu} = 0 \). Also it determines values of \(s_{13} \) at which some other special features of the neutrino mass matrix can be realized. Indeed, a given value of \(\Delta_e \) corresponds to

\[s_{13} = \frac{\Delta_e \tilde{s}_{13} e^{i\phi} + \alpha}{\Delta_e - 2}. \]

So, if \(\alpha \) is zero or small, which is realized in many cases, \(\tilde{s}_{13} e^{i\phi} \) determines special values of \(\Delta_e \), and correspondingly, special mass relations (see the Table 3). Which of the possibilities in the Table can be realized depends on the upper bound on \(s_{13} \) and value of \(\tilde{s}_{13} \), which in turn is given by the mass spectrum and CP-phases. Realization of possibilities from the left to right in the Table 3 requires decreasing values of \(\tilde{s}_{13} \).

In terms of masses and mixing angles \(\Delta_e \) has the following expression

\[\Delta_e = \frac{m s_{12} c_{12} (c_{23} - s_{23}) - s_{13} s_{23} c_{23} - s_{13} s_{23}}{m s_{12} c_{12} (c_{23} - s_{23}) - s_{13} s_{23}}, \]

where

\[\kappa \equiv M e^{-i\delta} - m s_{12}^2 e^{i\phi} - 2i m_1 \sin \delta. \]

Consequently, the pole value and the phase equal

\[\tilde{s}_{13} \equiv s_{12} c_{12} \cot \theta_{23} \frac{m}{\kappa} \approx s_{12} c_{12} \frac{m}{\kappa} (1 + 2 D_{23}), \quad \tilde{\phi} \equiv \arg \left[\frac{m}{\kappa} \right]. \]

The expression for \(\Delta_e \) can be rewritten approximately as

\[\Delta_e \approx 2 \frac{s_{13} (1 + D_{23}) - \tilde{s}_{13} D_{23}}{s_{13} - \tilde{s}_{13} e^{i\phi}}. \]
Then
\[\alpha \approx (s_{13} - \tilde{s}_{13})D_{23}. \]

According to (29), \(\Delta_e = 1 \), which corresponds to \(m_{e\tau} = 0 \), is realized at
\[s_{13} = - (\tilde{s}_{13}e^{i\phi} + 2\alpha) = - \frac{\tilde{s}_{13}(e^{i\phi} - 2D_{23})}{1 + 2D_{23}}. \]

(31)

At
\[s_{13} = \frac{1}{3}(\tilde{s}_{13}e^{i\phi} - 2\alpha) = \frac{\tilde{s}_{13}(e^{i\phi} + 2D_{23})}{3 + 2D_{23}} \]
we obtain \(m_{e\tau} = 2m_{e\mu} \).

The strongest dependence of \(\Delta_e \) is on \(s_{13} \). In the case of maximal 2-3 mixing, \(D_{23} = 0 \), eq. (31) gives
\[\tilde{s}_{13}^0 = \left| \frac{s_{12}c_{12}m}{Me^{-\delta} - ms_{12}^2e^{i\delta} - 2im_1\sin\delta} \right|. \]

(32)

Since the CP phases are unknown, in general, \(\tilde{\phi} \) can take any value. Therefore, for a given mass hierarchy and \(s_{13} \) varying CP-phases, the maximal and minimal values of \(\Delta_e \) are realized for \(\tilde{\phi} = 0 \) and \(\pi \): \(\Delta_e = |2s_{13}/(s_{13} \pm \tilde{s}_{13})| \).

If \(\tilde{\phi} = 0 \), at \(s_{13} = \tilde{s}_{13} \), \(\Delta_e \) has a singularity. If \(\tilde{\phi} \neq 0 \), the function \(|\Delta_e|\) has the peak
\[|\Delta_e| = \frac{2s_{13}}{\sqrt{(s_{13} - \tilde{s}_{13}\cos\tilde{\phi})^2 + (\tilde{s}_{13}\sin\tilde{\phi})^2}}, \]

(33)

see fig. 1. The maximum is at \(s_{13} \simeq \tilde{s}_{13}\cos\tilde{\phi} \). For \(s_{13} \gg \tilde{s}_{13} \), \(\Delta_e \) approaches the asymptotic value \(\Delta_e^{as} = 2 \), which corresponds to the equality \(m_{e\mu} = -m_{e\tau} \).

The parameter \(\Delta_e \) depends on \(m_1 \) via \(\tilde{s}_{13} \). As we will see, changing \(m_1 \) one can increase or decrease \(\tilde{s}_{13} \) depending on CP-phases.

According to (31), a non-zero \(D_{23} \) shifts the pole: \(\tilde{s}_{13} = \tilde{s}_{13}^0(1 + 2D_{23}) \). For the present best fit value of \(s_{23} \) we obtain \(\tilde{s}_{13} = 1.07\tilde{s}_{13}^0 \), and for \(D_{23} \simeq 0.09 \), we have \(~10\%\) change of \(\Delta_e \). The asymptotic value of \(\Delta_e \) for large \(s_{13} \) becomes
\[\Delta_e = 1 + \cot\theta_{23} \approx 2 + D_{23}. \]

In the limit \(s_{13} \to 0 \) we obtain from (30) \(\Delta_e = 1 - \tan\theta_{23} \approx 2D_{23} \). Then the central and the 1\(\sigma \) allowed values for \(D_{23} \) \((D_{23} = 0.034 \text{ and } 0.09)\) give correspondingly \(\Delta_e = (0.07, 0.18) \).

If \(D_{23} > 0 \), the deviation \(\Delta_e \) is greater than that in the case of maximal 2-3 mixing. E.g. in the case of strong mass hierarchy \((m_1 \simeq 0)\) and for the best fit values of mixing angles, we obtain \(\Delta_e \sim 12 \) instead of 8.

2. The parameter \(\Delta_{\mu\tau} \). Similarly to the previous case and according to eq. (17), this violation parameter can be presented as
\[\Delta_{\mu\tau} = -2 \frac{D_{23} + \beta}{D_{23} - D_{23}}, \]

(34)
Figure 1: $|\Delta_e|$ as a function of s_{13} for different values of $\tilde{\phi}$. We take the best fit values of θ_{23} and θ_{12}.

$$D_{23}/\tilde{D}_{23} = \begin{array}{cccccc} \Delta_{\mu\nu} & -\frac{1}{\kappa_{23}} & \frac{1}{\kappa_{23}} & -1 & 1 & \gg 1 \\ mass relation & m_{\tau\tau} = 2m_{\mu\mu} & m_{\tau\tau} = m_{\mu\mu} & m_{\mu\mu} = 0 & m_{\tau\tau} = 0 & m_{\tau\tau} = -m_{\mu\mu} \end{array}$$

Table 4: Special values of the violation parameter $\Delta_{\mu\tau}$ and the corresponding relations between the elements of the mass matrix. Values of the ratio D_{23}/\tilde{D}_{23} are given for $\beta = 0$.

where in the lowest order β and the pole value \tilde{D}_{23} do not depend on D_{23}. In the limit $\beta \approx 0$, the parameter \tilde{D}_{23} determines special values of $\Delta_{\mu\tau}$, and consequently, special relations between the matrix elements (see Table 4).

Explicitly, in terms of deviation parameters, we obtain

$$\tilde{D}_{23} = -\frac{1}{2\kappa_{23}} \left[M c_{13}^2 + m c_{12}^2 + 2m_1 + 2m' \sqrt{1 - 4D_{23}^2} + s_{13}^2 \left(m s_{12}^2 e^{2i\delta} + m_1 (e^{2i\delta} - 1) \right) \right]$$

and

$$\beta = \frac{m'}{\kappa_{23}} \sqrt{1 - 4D_{23}^2} \approx \frac{m'}{\kappa_{23}},$$

where

$$m' = -ms_{13} s_{12} c_{12} e^{i\delta}$$
Figure 2: Dependence of $|\Delta_{23}|$ on D_{23} for different values of the lightest neutrino mass and $\phi_2 = \frac{\pi}{2}$. We take the best fit values of θ_{13} and θ_{12}. The value $m_3 = 0$ corresponds to the inverted mass hierarchy.
\[\kappa_{23} \equiv M_{e13}^2 - m_{e12}^2 + m_{s12}^2 s_{13} e^{2i\delta} + m_{s13}^2 (e^{2i\delta} - 1). \]

Neglecting \(s_{13}^2 \) terms we have in the first approximation

\[\beta \approx \frac{m'}{\kappa_{23}} = \frac{(m_2 - m_1)s_{13}s_{12}c\epsilon^{i\delta}}{m_3 - m_2 c_{12}^2 - m_1 s_{12}^2} \]

and

\[\tilde{D}_{23} \approx \frac{m_3 + m_2 c_{12}^2 + m_1 s_{12}^2 - 2(m_2 - m_1)s_{12}c_\theta s_{13} e^{i\delta}}{2(m_3 - m_2 c_{12}^2 - m_1 s_{12}^2)}. \]

For real values of \(\tilde{D}_{23} \), this quantity determines position of the pole of \(\Delta_{\mu\tau} \) which corresponds to \(m_{\tau\tau} = 0 \). According to (34) the equality \(\Delta_{\mu\tau} = -1, (m_{\mu\mu} = 0) \), is realized at \(D_{23} = -(\tilde{D}_{23} + 2\beta) \), and at \(D_{23} = \frac{1}{3}(\tilde{D}_{23} - 2\beta) \) we obtain \(m_{\mu\mu} = 2m_{\tau\tau} (\Delta_{\mu\tau} = 1) \). In many situations \(\beta \approx 0 \). Non-zero \(\beta \) leads to shift of the special points from values indicated in the Table 4.

In the lowest order \(\Delta_{\mu\tau} \) depends on the 1-3 mixing via \(m' \) only. Neglecting the \(s_{13}^2 \) corrections, we have \(m'_1 = m_1 \). The strongest dependence of \(\Delta_{\mu\tau} \) is the one on \(D_{23} \). For \(s_{13} = 0 \) we have \(m'_1 = 0, \beta = 0 \) and

\[\Delta_{\mu\tau} \approx \frac{2D_{23}}{|D_{23} - \tilde{D}_{23}|}. \]

(35)

In this case

\[\tilde{D}_{23} = -\frac{m_3 + m_2 c_{12}^2 + m_1 s_{12}^2}{2(m_3 - m_2 c_{12}^2 - m_1 s_{12}^2)}. \]

(36)

For maximal 2-3 mixing, \(D_{23} = 0 \) we obtain from (34)

\[\Delta_{\mu\tau} \approx \frac{4m'}{m_1 s_{12}^2 + m_2 c_{12}^2 + m_3 + 2m'}. \]

(37)

According to (19) in the first approximation the corrections are proportional to the \(e\mu \) element of the original TBM matrix: \(\sqrt{2}s_{13}b = \sqrt{2}s_{13}m'_{e\mu'} \).

If \(s_{13} \neq 0 \) and \(D_{23} \neq 0 \) simultaneously, \(\Delta_{\mu\tau} \) can be further enhanced. The dependence of \(\Delta_{\mu\tau} \) on \(D_{23} \) is shown in Fig.2.

Notice that the \(\mu \tau \)—block of the mass matrix in all the cases with strong enhancement of \(\Delta_{\mu\tau} \) can be presented as

\[m_\nu \approx 2m_0 \left(\begin{array}{ccc} D_{23} + \tilde{D}_{23} & \frac{1}{2} \sqrt{1 - 4D_{23}^2} & \cdots \frac{1}{2} \sqrt{1 - 4D_{23}^2} \\ \frac{1}{2} \sqrt{1 - 4D_{23}^2} & -D_{23} + \tilde{D}_{23} \end{array} \right). \]

(38)

This shows that when violation of the second condition is strong, the off-diagonal elements are much larger (by factor \((2D_{23})^{-1} > 5 \)) than the diagonal elements. In other words, violation of the TBM condition is large when \(m_{\mu\mu} \) and \(m_{\tau\tau} \) elements are sub-leading. This
means that structure of the whole mass matrix does not change substantially by these corrections.

The TBM parameters can be introduced in different way:

$$\Delta'_{e} \equiv \frac{m_{e\mu} - m_{e\tau}}{m_{e\mu} + m_{e\tau}},$$

(39)

thus, excluding the linear dependence of the denominator on s_{13}. The two parameters are related by

$$\Delta'_{e} = \frac{\Delta_{e}}{2 - \Delta_{e}}.$$

So, that the texture zero $m_{e\mu} = 0$ would correspond to $\Delta'_{e} = -1$ and the relation $m_{e\mu} = -m_{e\tau}$ is realized when $\Delta'_{e} \to \infty$, etc.. The pole value \tilde{s}_{13} is determined from the condition $\Delta'_{e}(\tilde{s}_{13}) = -1$.

3. The parameter Δ_{Σ}. Using (17) we find

$$\Sigma_L = a + b + \left(ce^{-2i\delta} - a - \frac{b}{2}\right)s_{13}^2 - \frac{15}{4}bD_{12},$$

$$\Sigma_R = a + b + 3bD_{12}.$$

And consequently,

$$\Delta_{\Sigma} \approx \frac{s_{13}^2(ce^{-2i\delta} - a - \frac{b}{2}) - \frac{27}{4}D_{12}b}{a + b + 3bD_{12}}$$

$$= \frac{s_{13}^2 \left[m_{3e}e^{-2i\delta} - \frac{1}{2}(m_1 + m_2) \right] - \frac{9}{4}D_{12}(m_2 - m_1)}{\frac{1}{3}m_1 + \frac{2}{3}m_2 + (m_2 - m_1)D_{12}}.$$

Δ_{Σ} reflects violation of the TBM structure by m_{ee} and $m_{\mu\tau}$. Therefore instead of Δ_{Σ} we can simply use the deviation of m_{ee} from its TBM value:

$$\Delta m_{ee} \equiv m_{ee} - m_{ee}^{TBM} = -(m_2 - m_1)D_{12} + \left[m_{3e}e^{-2i\delta} - m_1 - (m_2 - m_1)\left(\frac{1}{3} - D_{12}\right) \right] s_{13}^2.$$

This correction is not affected by the 2-3 mixing. Contribution of D_{12} is rather small. Larger effect can be due to s_{13}^2. If $m_1 \approx 0$ the last term can dominate: $m_{ee} \approx m_3s_{13}^2$. Expression (40) reproduces the one in (21) when high order terms $\sim D_{12}s_{13}^2$ are neglected. In the case of strong mass hierarchy and $s_{13} = 0$ we have $m_{ee} \approx m_2(1/3 - D_{12})$.

The proposed formalism allows us immediately (and very precisely) to trace an impact of deviations from the TBM mixing on structure of the neutrino mass matrix. Effect of future measurements of the mixing angles can be seen immediately.
3 Properties of neutrino mass matrix

Formulas obtained in the previous section allow us to “design” neutrino mass matrices with certain required properties which agree with observations. We reconstruct the neutrino mass matrix in the cases of TBM mixing and deviations from TBM for different mass hierarchies and CP-violation phases. Results of numerical computations are given in the Tables 6 and 5. The Tables illustrate maximal possible modifications of structures at certain confidence level. Apparently, any intermediate structure between the original TBM and matrices with deviations presented in the Table 5 are possible. As the best fit values we take $D_{12} = 0.012$, $D_{23} = 0.037$ and $s_{13} = 0.118$ and for 1σ deviations we use $D_{12} = 0.028$, $D_{23} = 0.085$ and $s_{13} = 0.156$.

Modification of the mass matrix (for fixed values of the deviations) depends on the CP-violating phases. The Table 5 corresponds to $\delta = 0$. For certain cases this does not correspond to maximal deviation of the mass matrix from the TBM form. In the Table 6 we show the mass matrices for $\delta = \pi$ when they lead to stronger deviations than in Table 5.

Due to hierarchy of the allowed deviations (12), the following combinations of mass matrix elements are approximately invariant under corrections:

$$m_{ee} + m_{\tau \tau} \approx \text{const}, \quad m_{\mu \mu} + m_{\tau \tau} \approx \text{const}. \quad (40)$$

The elements m_{ee} and $m_{\mu \tau}$ receive only small corrections.

We will consider several “benchmark” spectra determined by the mass hierarchy/ordering, and CP-parities. For each case we (i) compute the parameters of mass matrix and reconstruct the TBM matrix, (ii) find the lowest order corrections using (18 – 20) and identify conditions at which corrections are maximal, (iii) compute s_{13}, D_{23} and the TBM violation parameters, (iv) discuss properties of the mass matrix with corrections.

3.1 Normal mass hierarchy

In the case of strong normal mass hierarchy, we take $m_1 \approx 0$; see lines $NH(0,0)$ and $NH(0,\frac{\pi}{2})$ in the Table 5.

1). The parameters of mass matrix

$$a = b \approx \frac{m_2}{3} \approx \frac{\sqrt{\Delta m_{21}^2}}{3}, \quad a, b \ll c \approx m_3 \approx \sqrt{\Delta m_{31}^2}$$

give the TBM matrix

$$m_\nu \approx \begin{pmatrix} \frac{m_2}{3} & \frac{m_2}{3} & \frac{m_2}{3} \\ \frac{m_2}{3} & \frac{m_3}{2} + \frac{m_2}{3} & \frac{m_3}{2} + \frac{m_2}{3} \\ \frac{m_3}{2} + \frac{m_2}{3} & \frac{m_3}{2} + \frac{m_2}{3} & \frac{m_3}{2} + \frac{m_2}{3} \end{pmatrix}.$$
Table 5: Numerical examples of neutrino mass matrices in the cases of normal mass hierarchy (NH), partially degenerate spectrum (PD), inverted hierarchy (IH) and degenerate spectrum (D). The numbers in brackets of the scenario definition indicate the CP-phases (ϕ_2, ϕ_3). We show matrices for the exact TBM (left column), the best fit values of mixing angles (central column) and mixing angles allowed at 1σ level (right column). We take $\delta = 0$ and the elements of the matrices are in the unit 10^{-2} eV.
Notice that in \(\Delta \) same is in \(\Delta \) can substantially deviate from the TBM form. The lowest order corrections equal
\[
\begin{align*}
x & \approx -\frac{1}{\sqrt{2}}s_{13}m_3 e^{-i\delta}, \\
y & \approx -D_{23}m_3 + \frac{\sqrt{2}}{3}s_{13}m_2 e^{i\delta},
\end{align*}
\]
\[
\Delta m_{ee} \approx -m_2D_{12} + s_{13}^2m_3 e^{-2i\delta}, \\
\Delta m_{\mu\tau} \approx \frac{1}{2}(m_2D_{12} + m_3s_{13}^2).
\]
Notice that in \(y \) the two contributions can be of the same size and enhance each other. The same is in \(\Delta m_{ee} \) and \(\Delta m_{\mu\tau} \). For \(D_{23} > 0 \), maximal deviations are achieved if \(\phi_3 = \pi/2 \) and \(\delta = 0 \) or \(\phi_3 = 0 \) and \(\delta = \pi \). For the best fit values of mixing angles, the maximal deviations equal (in the units \(10^{-2} \) eV) \(|\Delta m_{ee}| \sim 0.10 \), \(|x| \sim 0.45 \), \(|y| \sim 0.25 \), and the correction to the sub-leading elements are bigger than the original TBM elements. At 1\(\sigma \) level the corrections become \(|\Delta m_{ee}| \approx 0.15 \), \(|x| \approx 0.65 \), \(|y| \approx 0.5 \) and structure of the mass matrix can substantially deviate from the TBM form.

3). The parameters of violation of the TBM conditions: At \(D_{23} = 0 \), we have
\[
\tilde{s}_{13}^0 \approx s_{13}c_{12} \sqrt{\frac{\Delta m_{21}^2}{\Delta m_{31}^2}} \approx 0.09,
\]
and \(\tilde{\phi} \approx 2\phi_2 - 2\phi_3 + \delta \). Notice that \(\tilde{s}_{13}^0 \) in (42) is slightly smaller than the present best fit value of \(s_{13} \) and at 1\(\sigma \) level \(s_{13}/\tilde{s}_{13} \leq 2 \). Therefore all the possibilities indicated in the

Scenario	Best fit values	1σ deviation
NH(0, 0)	$\begin{pmatrix} 0.35 & 0.67 & -0.11 \\ \vdots & 2.5 & -2.1 \\ \vdots & \vdots & 2.9 \end{pmatrix}$	$\begin{pmatrix} 0.38 & 0.77 & -0.28 \\ \vdots & 2.3 & -2.0 \\ \vdots & \vdots & 3.1 \end{pmatrix}$
PD(0, 0)	$\begin{pmatrix} 2.1 & 0.32 & -0.21 \\ \vdots & 3.5 & -1.55 \\ \vdots & \vdots & 3.8 \end{pmatrix}$	$\begin{pmatrix} 2.1 & 0.38 & -0.32 \\ \vdots & 3.4 & -1.5 \\ \vdots & \vdots & 3.9 \end{pmatrix}$
PD($\frac{\pi}{2}, \frac{\pi}{2}$)	$\begin{pmatrix} 0.57 & -1.9 & -0.81 \\ \vdots & -2.6 & 2.1 \\ \vdots & \vdots & -3.4 \end{pmatrix}$	$\begin{pmatrix} 0.57 & -2.05 & -0.51 \\ \vdots & -2.4 & 2.0 \\ \vdots & \vdots & -3.7 \end{pmatrix}$
IH(0, 0)	$\begin{pmatrix} 4.8 & -0.41 & 0.39 \\ \vdots & 2.6 & 2.4 \\ \vdots & \vdots & 2.3 \end{pmatrix}$	$\begin{pmatrix} 4.7 & -0.51 & 0.55 \\ \vdots & 2.9 & 2.3 \\ \vdots & \vdots & 2.1 \end{pmatrix}$
IH($\frac{\pi}{2}, 0$)	$\begin{pmatrix} 1.75 & -3.44 & -2.91 \\ \vdots & -0.36 & -0.9 \\ \vdots & \vdots & -1.3 \end{pmatrix}$	$\begin{pmatrix} 1.9 & -3.6 & -2.6 \\ \vdots & -0.37 & -1.05 \\ \vdots & \vdots & -1.4 \end{pmatrix}$
D($\frac{\pi}{2}, \frac{\pi}{2}$)	$\begin{pmatrix} 6.7 & -15.8 & -10.2 \\ \vdots & -11.0 & 6.3 \\ \vdots & \vdots & -16.3 \end{pmatrix}$	$\begin{pmatrix} 7.1 & -16.7 & -8.4 \\ \vdots & -10.0 & 5.5 \\ \vdots & \vdots & -17.7 \end{pmatrix}$

Table 6: The same as in Table 5 for the Dirac phase $\delta = \pi$.

2). The lowest order corrections equal

Notice that \(1 \) level the...
Table 3 can be realized. For the best fit value of 1-3 mixing: $\Delta_\epsilon = 11.6$. For the 1σ upper bounds on 1-3 mixing, the parameter equals $\Delta_\epsilon = 6.4$. Thus, the first TBM-relation in (6) can be broken very strongly. Such a strong influence (even for small s_{13}) originates from the fact that s_{13} mixes the large and small mass scales in the mass matrix, and therefore the corrections to the sub-leading elements ($m_{e\mu}$, $m_{e\tau}$) are proportional to the large mass:
$$\sim s_{13} \sqrt{\Delta m_{31}^2}.$$

From (36) we have
$$\tilde{D}_{23} = -1/2, \quad \beta \approx s_{13} s_{12} c_{12} \frac{m}{\tilde{M}} \ll \tilde{D}_{23},$$
and therefore
$$\Delta_{\mu\tau} \approx \frac{4D_{23}}{1 + 2D_{23}} \approx 4D_{23}.$$

Since $D_{23}/\tilde{D}_{23} < 0.2$ (1σ), no texture zeros or special relations indicated in the Table 4 can be obtained. Effect of 1-3 mixing is very small, since the element b is small. According to (37):
$$\Delta_{\mu\tau} \approx 2s_{13} \sin 2\theta_{12} \sqrt{\Delta m_{21}^2/\Delta m_{31}^2} \sim s_{13}/3.$$

The examples of the Table 5 correspond to $\delta = 0$. For $\delta = \pi$, according to eq. (41), the values of $m_{e\mu}$ and $m_{e\tau}$ permute, see table 5. Also in this case m_{ee} is suppressed. Signs of corrections to the $\mu\tau-$ block and $e-$ line elements can be independently changed varying ϕ_3 and δ. Correction to m_{ee} is then fixed.

4). Properties of the mass matrix:
- The allowed corrections to the sub-leading $e\mu-$ and $e\tau-$ elements dominate the original TBM values: $x \gg b$; changes of elements of the $\mu\tau-$block can be of the order 1; m_{ee} can be suppressed by the corrections of the order s_{13}^2.
- Texture zeros appear: $m_{e\tau} = 0$ or $m_{e\mu} = 0$ at s_{13} determined by \tilde{s}_{13}.
- Special relations $m_{e\mu} = rm_{e\mu}$, with $r = 1/2, 2$ can be obtained.
- The equality $m_{ee} = -m_{e\mu}$ can be approximately realized.
- Sharp difference of the elements of the $\mu\tau-$ block and the $e-$ line disappears. So, one may have a smooth decrease of values of the elements from $m_{\tau\tau}$ to m_{ee} with additional smallness of $m_{e\tau}$. This structure resembles the structure of the quark mass matrices with, however, much larger expansion parameter $\lambda \sim 0.5 - 0.8$.
- Maximal deviation of m_{ν} from m_{TBM} corresponds to $m_2 > 0, m_3 > 0$ and $\delta = \pi$, which leads to strong increase of $m_{e\mu}$ and decrease of $m_{\mu\mu}$. In this case correction to m_{ee} is positive. The $ee-$ element is suppressed, if $m_2 > 0, m_3 < 0$ and $\delta = 0$. In this case the mass matrix has the following form

$$m_{\nu} = \begin{pmatrix}
0.4 & 0.8 & 0.2 \\
\vdots & 2.3 & -2.0 \\
\vdots & \vdots & 3.0
\end{pmatrix} \times 10^{-2} \text{eV}.$$
The basis corrections can further smear difference of the e-line and $\mu\tau-$ block elements. Varying S_b in the interval $-0.2 \div 0.2$ one finds $\Delta m_{ee}^b = (-0.24 \div 0.4)$, $\Delta m_{e\mu}^b = (0.32 \div -0.44)$, $\Delta m_{e\tau}^b = (0.4 \div -0.4)$ in the units 10^{-2} eV.

Total correction to m_{ee} can be as large as 0.002 eV which is still smaller than the original $a = 0.003$ eV. However, $m_{ee} = 0$ can be realized with increase of m_1. This can be achieved if

$$m_1 = -\frac{m_2}{2} + \frac{9}{4c_{13}^2} m_2 D_{12} + \frac{3}{2} m_3 \tan^2 \theta_{13}.$$

Numerically, $m_{ee} = 0$ if $m_1 \approx 5.2 \cdot 10^{-3}$ eV for TBM case, $m_1 \approx 3.3 \cdot 10^{-3}$ eV and $m_1 \approx 6 \cdot 10^{-3}$ eV for the best fit values of mixing angles with $\delta = 0$, $\frac{\pi}{2}$ respectively.

3.2 Partially degenerate spectrum

Suppose $|m_1| \approx |m_2| \approx \bar{m} < |m_3|$. Numerically this corresponds to $\bar{m} \sim (2 - 3) \cdot 10^{-2}$ eV and $m_3 = (5.5 - 6.0) \cdot 10^{-2}$ eV. The phase ϕ_2 becomes important.

A. The case $\phi_2 = 0$, lines $PD(0,0)$ and $PD(0,\frac{\pi}{2})$ in the Table 5.

1). The parameters of the mass matrix

$$m_1 \approx m_2 \approx \bar{m} > 0, \ a \approx \bar{m}, \ b = \epsilon \equiv \frac{\Delta m_{21}^2}{6\bar{m}} \approx 7 \cdot 10^{-4} \text{ eV},$$

give the TBM mass matrix

$$m_{\nu} \approx \begin{pmatrix} \bar{m} & \epsilon & \epsilon \\ ... & \frac{1}{2}(m_3 + \bar{m}) & -\frac{1}{2}(m_3 - \bar{m}) \\ ... & ... & \frac{1}{2}(m_3 + \bar{m}) \end{pmatrix}.$$

The main feature of this matrix is strong (factor of 30) suppression of the $m_{e\mu}$ and $m_{e\tau}$ elements in comparison with the other elements which are of the same order. Now $\bar{m} \sim m_3$, and consequently, strong difference of $m_{\mu\mu}$ and $m_{\mu\tau}$ can appear.

2). The lowest order corrections equal

$$x = -\frac{1}{\sqrt{2}} s_{13} \left(m_3 e^{-i\delta} - \bar{m} e^{i\delta} \right), \ y = D_{23}(\bar{m} - m_3), \ \Delta m_{ee} = s_{13}^2 \left(m_3 e^{-2i\delta} - \bar{m} \right).$$

In the case of $PD(0,0)$ the corrections are not large: m_3 and \bar{m} terms partially cancel each other in x and y. Although $x \gg \epsilon$, the elements $m_{e\mu}$ and $m_{e\tau}$ are small and structure of the matrix with the dominant $\mu\tau-$ block does not change.

The situation is different for $\phi_3 = \pi/2$, see line $PD(0,\frac{\pi}{2})$ of the Table 5. Corrections are maximal if $m_3 < 0$ and $\delta = 0$:

$$x = -\frac{1}{\sqrt{2}} s_{13} (|m_3| + \bar{m}), \ y = D_{23}(\bar{m} + |m_3|), \ \Delta m_{ee} = -s_{13}^2 (|m_3| + \bar{m}).$$
For \(\delta = \pi \) the correction \(x \) changes the sign and values of \(m_{e\mu} \) and \(m_{e\tau} \) interchange.

3). Violation of the TBM conditions: According to (31)

\[
\tilde{s}_{13} = s_{12}c_{12} \frac{\Delta m_{21}^2}{2\tilde{m}_K} \sim 10^{-2},
\]

so that for maximal allowed \(s_{13}^{\text{max}} \), we have \(s_{13}^{\text{max}} / \tilde{s}_{13} \sim 20 \) and therefore all special mass relations of the Table 3 can be satisfied. \(\alpha = (s_{13} - \tilde{s}_{13})D_{23} \), and since \(s_{13}^{\text{max}} \gg \tilde{s}_{13} \), the corrections of the order \(s_{13}D_{23} \) become important.

From (36) we find \(\tilde{D}_{23} = -(m_3 + \tilde{m})/2(m_3 - \tilde{m}) \sim 3/2 \) which is larger than in the case of strong mass hierarchy, and correspondingly, effect of violation of the 2nd condition is weaker. In this case \(\beta \approx 0 \).

4). Properties of mass matrix \(PD \left(0, \frac{\pi}{2} \right) \):

- Corrections to the sub-leading elements are large: about order of magnitude larger than the TBM values. Therefore the sub-leading mass matrix can be modified completely.

- At 1\(\sigma \) level the mass matrix has all elements of the same order (within factor of 3). This can be considered as a realization of the anarchical structure.

- Equality \(m_{e\mu} \approx -m_{e\tau} \) can be achieved. Exact zero of one of these elements is realized for very small \(s_{13} \). Equalities \(m_{e\mu} = -m_{\mu\mu} \) or \(m_{ee} = -m_{\mu\mu} \) can be obtained.

Basis corrections can further “equilibrate” elements. For \(s_b = 0.2 \), they equal \(\Delta m_{ee}^b = 0.04 \), \(\Delta m_{\mu e}^b = 0.31 \), \(\Delta m_{e\tau}^b = 0.32 \) and \(\Delta m_{\mu\tau}^b = -0.31 \) in the units \(10^{-2} \) eV. They are of the order of the TBM violation corrections for the \(e\mu - e\mu \) and \(e\tau - e\tau \) elements.

B. \(\phi_2 = \pi/2 \); see line \(PD \left(\frac{\pi}{2}, 0 \right) \) and \(PD \left(\frac{\pi}{2}, \frac{\pi}{2} \right) \).

1). The parameters of the mass matrix

\[
m_1 \approx \tilde{m}, \quad m_2 \approx -\tilde{m}, \quad a \approx \frac{\tilde{m}}{3}, \quad b \approx -\frac{2\tilde{m}}{3}
\]

lead to the TBM mass matrix

\[
m_\nu \approx \begin{pmatrix}
\frac{1}{3}\tilde{m} & -\frac{2}{3}\tilde{m} & -\frac{2}{3}\tilde{m} \\
... & \frac{m_3}{2} - \frac{\tilde{m}}{6} & -\frac{m_3}{2} - \frac{\tilde{m}}{6} \\
... & ... & \frac{m_3}{2} - \frac{\tilde{m}}{6}
\end{pmatrix}.
\]

All the elements are of the same order, so that corrections do not change the structure strongly. The \(ee \) element is the smallest one.
2). The lowest order corrections equal

\[x = -\frac{1}{\sqrt{2}} s_{13} m_3 e^{-i\delta} - \frac{2}{3} \bar{m} D_{23}, \quad y = -\frac{2\sqrt{2}}{3} s_{13} \bar{m} e^{i\delta} - D_{23} \left(\frac{1}{3} \bar{m} + m_3 \right), \]

\[\Delta m_{ee} = s_{13}^2 m_3 + 2\bar{m} D_{12}, \quad \Delta m_{\mu\tau} = \frac{1}{2} \Delta m_{ee} - \bar{m} D_{12}. \]

For \(D_{23} > 0 \) the largest deviations appear when \(\delta = 0 \) and \(m_3 > 0 \) (\(\phi_3 = 0 \)) or \(\delta = \pi \) and \(\phi_3 < \pi/2 \). For the bf-values of mixing parameters (and 1σ) we have \(x \sim -0.5 \) (-0.8), \(y \sim -0.3 \) (-0.7), \(\Delta m_{ee} \sim 0.15 \) (0.3) (in the units \(10^{-2} \) eV). Corrections to the \(e\mu- \) and \(e\tau- \) elements are of the order 1; corrections to other elements are up to 20 – 30%.

3). The parameters of violation of the TBM conditions: The poles of \(\Delta_e \) and \(\Delta_{\mu\tau} \) are at

\[\bar{s}_{13} = \frac{-\bar{m} \sin 2\theta_{12}(1 + 2D_{23})}{Me^{-i\delta} + 2\bar{m} s_{13}^2 e^{i\delta} - 2im_1 \sin \delta}, \]

\[\bar{D}_{23} = -\frac{m_3 - \bar{m}(1 - s_{13} \tan 2\theta_{12} e^{i\delta})}{2(m_3 + \bar{m})} \gg D_{23}^{\text{max}}, \]

where \(D_{23}^{\text{max}} \) is maximal allowed value of \(D_{23} \) at 1σ, so no texture zeros are realized in the \(\mu\tau- \) block.

4). Properties of mass matrix:

- texture zero \(m_{e\tau} = 0 \), is realized at \(s_{13} \approx (0.13, 0.19, 0.34) \) for \(m_1 = (0.005, 0.01, 0.02) \) eV;
- in the case of \(PD \left(\frac{\pi}{2}, 0 \right) \) the structure is possible with all elements being of the same order and \(m_{ee} \) and \(m_{e\tau} \) being the smallest ones.

The basis corrections for \(s_0 = 0.2 \) equal \(\Delta m_{ee}^b = 0.6, \Delta m_{u\mu}^b = 0.43, \Delta m_{e\tau}^b = 0.58 \) and \(\Delta m_{\mu\tau}^b = -0.63 \) in the units \(10^{-2} \) eV. They are of the order of the TBM violation corrections for the \(e\mu- \) and \(e\tau- \) elements and large for the \(ee- \) and \(\mu\tau- \) elements.

3.3 Inverted mass hierarchy

If \(m_3 \approx 0 \), we obtain \(|m_1| \approx |m_2| \approx \bar{m}, \bar{m} \sim \sqrt{\Delta m_{31}^2} \approx 5 \cdot 10^{-2} \) eV. Structure of the mass matrix is similar to that in the partially degenerate case. Similarly, the results strongly depend on the phase \(\phi_2 \).

A. \(\phi_2 = 0 \), line \(IH(0, 0) \).

1). Parameters of the mass matrix

\[m_1 \approx m_2 \approx \bar{m} > 0, \quad a \approx \bar{m}, \quad b = \epsilon \sim 2.7 \cdot 10^{-4} \text{ eV}, \]
give the TBM mass matrix

\[m_\nu \approx \begin{pmatrix} \bar{m} & \epsilon & \epsilon \\ \frac{1}{2} \bar{m} & \frac{1}{2} \bar{m} \\ \frac{1}{2} \bar{m} \end{pmatrix}. \]

The elements \(m_{e\mu} \) and \(m_{e\tau} \) are suppressed by 2 orders of magnitude in comparison to the other elements.

2). The lowest order correction:

\[x = \frac{1}{\sqrt{2}} s_{13} \bar{m} e^{i\delta}, \quad y = D_{23} \bar{m}, \quad \Delta m_{ee} = -s_{13}^2 \bar{m}, \quad \Delta m_{\mu\tau} = \frac{1}{2} \Delta m_{ee}. \]

Corrections strongly correlate with the TBM structure: they suppress the \(ee\)– and \(\tau\tau\)– elements, and enhance the \(\mu\mu\)– element (if \(D_{23} > 0 \)). Corrections to \(m_{e\mu} \) and \(m_{e\tau} \) dominate, so that \(m_{e\mu} \approx -m_{e\tau} \). The matrix with corrections can be written as

\[m_\nu \approx \bar{m} \begin{pmatrix} 1 - s_{13}^2 & \frac{1}{\sqrt{2}} s_{13} e^{i\delta} & -\frac{1}{\sqrt{2}} s_{13} e^{i\delta} \\ \frac{1}{2} + D_{23} & \frac{1}{2} \\ \frac{1}{2} - D_{23} \end{pmatrix}. \]

Corrections are small to \(m_{ee} \) and at the bf-values (1σ level) of the deviation they equal approximately 10% (20%) for elements of the \(\mu\tau\)– block.

3). The parameters of violation of the TBM conditions: If \(D_{23} = 0 \), we obtain from (32) very small pole value

\[\bar{s}_{13} \approx s_{12} c_{12} \frac{\Delta m_{21}^2}{2 \Delta m_{31}^2} \approx 0.008. \]

Consequently, for the central values of the 1-3 mixing we have nearly maximal TBM violation, \(\Delta_e \approx 2 \). All the relations in the Table 3 can be satisfied.

For \(s_{13} = 0 \) we have \(\bar{D}_{23} \approx 0.5 \), and as can be immediately seen from Eq. (43),

\[\Delta_{\mu\tau} = 4D_{23} \frac{1}{1 - 2D_{23}} \approx 4D_{23}, \]

independently of the phase \(\phi_2 \).

If \(D_{23} = 0 \) we obtain from (37) \(\Delta_{\mu\tau} \approx s_{13} \sin 2\theta_{12} \frac{\Delta m_{21}^2}{2 \Delta m_{31}^2} \) which is strongly suppressed.

4). Properties of the mass matrix, (line \(IH(0,0) \)):

- Structure of the dominant block of the mass matrix does not change substantially in comparison to the TBM form.
• No texture zeros can be obtained in the $\mu\tau-$ block.

• Matrix has no special structure apart from some trend of increase of elements from $m_{\tau\tau}$ to m_{ee}, with m_{ee} being the largest one.

• Equality $m_{e\mu} \approx -m_{e\tau}$ can be achieved. Texture zeros $m_{e\mu}$ or $m_{e\tau}$ are possible for very small values of s_{13}.

The basis corrections for $s_b = 0.2$ equal $\Delta m_{ee}^b = -0.08$, $\Delta m_{e\mu}^b = -0.47$, $\Delta m_{e\tau}^b = -0.48$ and $\Delta m_{\mu\tau}^b = 0.48$ in the units 10^{-2} eV. They are of the order of the TBM corrections for $e\mu-$ and $e\tau-$ elements.

B. $\phi_2 = \pi/2$, line $IH(\frac{\pi}{2}, 0)$:

1). The parameters of the mass matrix

$$m_1 \approx \bar{m}, \ m_2 \approx -\bar{m}, \ a \approx \frac{\bar{m}}{3}, \ b \approx -\frac{2\bar{m}}{3}, \ c = 0$$

give the TBM matrix equals

$$m_\nu \approx \bar{m} \begin{pmatrix}
\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\
\ldots & -\frac{1}{6} & -\frac{1}{6} \\
\ldots & \ldots & -\frac{1}{6}
\end{pmatrix}.$$

Now the elements of the $e-$ row dominate.

2). Lowest order corrections equal

$$x = \frac{\bar{m}}{3} \left(\frac{1}{\sqrt{2}} s_{13} e^{-i\delta} - 2D_{23} \right), \ y = -\frac{\bar{m}}{3} \left(2\sqrt{2} s_{13} e^{i\delta} - D_{23} \right),$$

$$\Delta m_{ee} = \bar{m} \left(2D_{12} - \frac{1}{3} s_{13}^2 \right), \ \Delta m_{e\mu} = -\bar{m} \left(D_{12} + \frac{1}{6} s_{13}^2 \right).$$

For the $bf-$ (and 1σ) values of mixing parameters, we have $x \sim -0.25 (-0.5)$, $y \sim 0.2 (0.3)$, $\Delta m_{ee} \sim 0.2 (0.3)$ in the units 10^{-2} eV. Maximal values of the corrections can be achieved for $\delta = \pi$ see Table 6.

The overall structure of the mass matrix does not change substantially. Corrections correlate with zero order structure being proportional to the same \bar{m}:

$$m_\nu \approx \frac{1}{3} \bar{m} \begin{pmatrix}
1 + 6D_{12} - s_{13}^2 & -2 + \frac{1}{\sqrt{2}} s_{13} e^{-i\delta} - 2D_{23} & -2 - \frac{1}{\sqrt{2}} s_{13} e^{-i\delta} + 2D_{23} \\
\ldots & -\frac{1}{2} - 2\sqrt{2} s_{13} e^{i\delta} + D_{23} & -\frac{1}{2} + 2\sqrt{2} s_{13} e^{i\delta} - D_{23} \\
\ldots & \ldots & \ldots
\end{pmatrix}.$$
3). The parameters of violation of the TBM conditions: Since the $e\mu-$ and $e\tau-$ elements are dominant the relative corrections are small. Indeed, the “pole” value of s_{13} equals

$$\tilde{s}_{13} \approx \frac{2s_{12}c_{12}}{(1 - 2s_{12}^2)} \sim 3,$$

and for the allowed range, $s_{13} \ll \tilde{s}_{13}$, the TBM-violation is suppressed:

$$\Delta_e \approx \frac{2s_{13}}{\tilde{s}_{13}} \approx \frac{2}{3}s_{13}. $$

In contrast, since the original elements of the $\mu\tau-$ block are suppressed, the relative corrections to $m_{\mu\mu}$ and $m_{\tau\tau}$ can be large, thus strongly violating the 2nd TBM-condition. For $\Delta_{\mu\tau}$ we find the pole at $\tilde{D}_{23} = \frac{1}{2} - s_{13} \tan 2\theta_{12}e^{i\delta}$. At 1$\sigma$ level, $\tilde{D}_{23} \approx 0.09$, and one can achieve $m_{\tau\tau} = 0$, as is shown in the Table 5.

For $D_{23} = 0$ we have

$$\Delta_{\mu\tau} \approx \frac{4s_{13}\sin 2\theta_{12}}{\cos 2\theta_{12} - 2s_{13}\sin 2\theta_{12}}.$$

This dependence has a pole at $s_{13} = 0.5\cot 2\theta_{12} \approx 0.17-0.20$, at the maximal allowed values of 1-3 - mixing. Thus $\Delta_{\mu\tau} \to \infty$ and violation of the TBM structure is strongly enhanced. According to (43) the $s_{13}-$ corrections are enhanced by additional factor $2\sqrt{2} \sim 3$. For smaller values of s_{13}: $\Delta_{\mu\tau} \approx 4s_{13}\tan 2\theta_{12}$.

4). Properties of mass matrix:

- the matrix can show “inverted flavor hierarchy” with $m_{\tau\tau}$ being the smallest element;
- depending on δ, $m_{\mu\mu} = 0$ or $m_{\tau\tau} = 0$ texture zero can be obtained at 1σ level.

The basis corrections are $\Delta m_{ee}^b = 1.16$, $\Delta m_{\mu e}^b = -0.19$, $\Delta m_{e\tau}^b = 0.09$ and $\Delta m_{\mu\tau}^b = -0.22$ in the units of 10^{-2} eV. Correction to m_{ee} is large.

3.4 Degenerate spectrum

In the case of degenerate spectrum, $m_1 \approx m_2 \approx m_3 \approx m_0$, the structure of the mass matrix depends strongly on values of both Majorana phases.

A. $\phi_2 = \phi_3 = 0$, line $D(0, 0)$.

1). Parameters of the mass matrix equal

$$a \approx m_0, \quad b \approx \epsilon_S \equiv \frac{\Delta m_{21}^2}{6m_0}, \quad c = m_0 + \epsilon_A, \quad a + b + c = 2m_0 + \epsilon_A,$$

$$a + b - c \approx -\epsilon_A \equiv -\frac{\Delta m_{31}^2}{2m_0}.$$
Numerically, for \(m_0 = 0.2 \text{ eV} \) we find \(\epsilon_S = 6.7 \cdot 10^{-5} \text{ eV} \) and \(\epsilon_A = 6.2 \cdot 10^{-3} \text{ eV} \). The TBM mass matrix is very close to the unit matrix:

\[
m_\nu \approx \begin{pmatrix}
 m_0 & \epsilon_S & \epsilon_S \\
 \ldots & m_0 + \frac{1}{2}\epsilon_A & -\frac{1}{2}\epsilon_A \\
 \ldots & \ldots & m_0 + \frac{1}{2}\epsilon_A
\end{pmatrix}
= m_0 I + \begin{pmatrix}
 0 & \epsilon_S & \epsilon_S \\
 \frac{1}{2}\epsilon_A & -\frac{1}{2}\epsilon_A & \ldots \\
 \ldots & \ldots & \frac{1}{2}\epsilon_A
\end{pmatrix}.
\]

Furthermore, there is a strong hierarchy of the sub-leading (off-diagonal) elements.

2). The lowest order corrections: Neglecting terms proportional to \(\epsilon_S \) we find

\[
x = -\frac{1}{\sqrt{2}} s_{13} [(m_0 + \epsilon_A)e^{-i\delta} - m_0 e^{i\delta}], \quad y = -\epsilon_A D_{23}, \quad \Delta m_{ee} = s_{13}^2 [(m_0 + \epsilon_A)e^{-2i\delta} - m_0],
\]

and the size of corrections strongly depends on \(\delta \):

\[
x \approx \begin{cases}
 -\frac{1}{\sqrt{2}} s_{13} \epsilon_A & \delta = 0 \\
 i\sqrt{2} s_{13} m_0 & \delta = \pi/2
\end{cases}.
\]

For \(\delta = \pi/2 \) the correction \(\Delta m_{ee} \) is maximal: \(\Delta m_{ee} = -2m_0 s_{13}^2 \).

3). Parameters of violation of the TBM-conditions: For \(\phi_2 = 0 \), the \(e\mu- \) and \(e\tau- \) elements are very small, so that they can be canceled at very small \(\tilde{s}_{13} \). Indeed,

\[
\tilde{s}_{13} \approx s_{12} c_{12} \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.015.
\]

Correspondingly, the singularity and the peak move to small values of \(s_{13} \).

The pole value \(\tilde{D}_{23} \approx -1/s_{13}^2 e^{2i\delta} \rightarrow \infty \), so that

\[
\Delta_{\mu\tau} \approx D_{23} \frac{\Delta m_{21}^2}{2m_0^2}
\]

turns out to be strongly suppressed as a consequence of dominance of the \(\mu\mu- \) and \(\tau\tau- \) elements. For \(s_{13} \neq 0 \) and \(D_{23} = 0 \): \(\Delta_{\mu\tau} \approx s_{13} \sin 2\theta_{12} \Delta m_{21}^2 / 2m_0^2 \), and for \(m_0 = 0.2 \text{ eV} \) the breaking is very strongly suppressed due to smallness of \(b \): \(\Delta_{\mu\tau} \approx -10^{-3} s_{13} \).

4). Properties of the mass matrix:

- Corrections do not affect the dominant elements but can change completely the subdominant structure.
- The only significant change in neutrino mass matrix is violation of equality of \(m_{e\mu} \) and \(m_{e\tau} \): \(\Delta_\epsilon \approx 2 \) can be achieved, which corresponds to \(m_{e\tau} \approx -m_{e\mu} \):

\[
m_\nu \approx m_0 I + \begin{pmatrix}
 \Delta m_{ee} & x & -x \\
 \ldots & y & -\frac{1}{2}\epsilon_A + \Delta m_{\mu\tau} \\
 \ldots & \ldots & -y
\end{pmatrix}.
\]
Notice that due to corrections the elements of the second sub-dominant matrix in (43) can be of the same order: \(|x| \sim |y| \sim \epsilon_A\), or can obey certain symmetry.

- Since \(\tilde{s}_{13}\) is very small all special mass relations indicated in the Table 3, including texture zeros, can be achieved.

The basis corrections equal \(\Delta m_{ee}^b = 0.01\), \(\Delta m_{\mu e}^b = 0.06\), \(\Delta m_{\mu\tau}^b = 0.06\) and \(\Delta m_{\tau\mu}^b = -0.06\) (in the units \(10^{-2}\) eV). They are of the order of the TBM deviation corrections for \(\epsilon\mu\)– and \(\tau\epsilon\)– elements.

B. \(\phi_2 = 0, \phi_3 = \pi/2\); line \(D(0, \frac{\pi}{2})\).

1). The parameters of TBM mass matrix

\[
a \approx m_0, \quad b \approx \epsilon_S, \quad c = m_0 - \epsilon_A, \quad a + b + c \approx -\epsilon_A, \quad a + b - c \approx 2m_0 + \epsilon_A, \quad a - c = 2m_0 + \epsilon_A
\]

give TBM matrix

\[
m_\nu \approx \begin{pmatrix} m_0 & \epsilon_S & \epsilon_S \\ \ldots & -\frac{1}{2}\epsilon_A & m_0 + \frac{1}{2}\epsilon_A \\ \ldots & \ldots & -\frac{1}{2}\epsilon_A \end{pmatrix} = m_0T + \begin{pmatrix} 0 & \epsilon_S & \epsilon_S \\ \ldots & -\frac{1}{2}\epsilon_A & \frac{1}{2}\epsilon_A \\ \ldots & \ldots & -\frac{1}{2}\epsilon_A \end{pmatrix},
\]

where \(T\) is the “triangle” matrix with the only non-zero elements \(m_{ee} = m_{\mu\tau} = m_{\tau\mu}\). The elements of the matrix are strongly hierarchical.

2). The lowest order corrections equal

\[
x = \frac{1}{\sqrt{2}}s_{13}[(m_0 + \epsilon_A)e^{-i\delta} + m_0e^{i\delta}], \quad y = -2m_0D_{23}, \quad \Delta m_{ee} = 2s_{13}^2m_0.
\]

The largest deviation is for \(\delta = 0\): \(x \approx \sqrt{2}s_{13}m_0\).

3). The parameters of violation of the TBM conditions:

\[
\tilde{s}_{13} \approx s_{12}c_{12}\frac{\Delta m_{21}^2}{4m_0^2} = 2.5 \cdot 10^{-4}
\]

for \(m_0 = 0.2\) eV. The reason for this smallness is that the original elements of the \(e\)-row are very small. For the allowed values of \(s_{13}\) the maximal TBM-violation, \(\Delta_e \approx 2\), can be nearly achieved and all special mass relations of the Table 3 can be realized.

The \(\mu\mu\)– and \(\tau\tau\)– elements are strongly suppressed and corrections dominate. The pole of \(\Delta_{\mu\tau}\), which corresponds to \(m_{\tau\tau} = 0\), is at

\[
\tilde{D}_{23} \approx -\frac{\Delta m_{31}^2}{8m_0^2} = -0.008
\]
and is achieved for the negative values of D_{23} ($\theta_{23} > \pi/4$). Then from (35) we obtain

$$\Delta_{\mu\tau} \approx 2 \frac{D_{23}}{D_{23} + \frac{\Delta m^2_{23}}{8 m_0^2} (1 + 2 D_{23})}.$$

Numerically, we have $\tilde{D}_{23} = -(0.03, 0.0075, 0.0033)$ for $m_0 = (0.1, 0.2, 0.3)$ eV correspondingly. This pole value is well within the 1σ allowed range for D_{23}, so, all special mass relations of the Table 4 can be obtained. In particular, for positive D_{23} at $D_{23} \approx -\tilde{D}_{23}$, we have $\Delta_{\mu\tau} = 1$ which corresponds to $m_{\mu\mu} = 0$. For $|D_{23}| \gg |\tilde{D}_{23}|$, $\Delta_{\mu\tau} \to 2$ independently of the sign of D_{23}. This value of $\Delta_{\mu\tau}$ corresponds to $m_{\mu\mu} \simeq -m_{\tau\tau}$. Notice that for $m_0 = 0.2$ eV and 1σ allowed D_{23} the ratio $D_{23}/\tilde{D}_{23} \approx 12$, so that the limit can be realized with a good accuracy.

For non-zero 1-3 mixing but $D_{23} = 0$:

$$\Delta_{\mu\tau} \approx 2 s_{13} \sin 2\theta_{12} \frac{\Delta m^2_{23}}{4 m_0^2 s_{13}^2 + \Delta m^2_{21} \epsilon_{12}^2}.$$

For $s_{13} >> c_{12} \sqrt{\Delta^2_{21}/2m_0} \sim 10^{-2}$ we have

$$\Delta_{\mu\tau} \approx \frac{\sin 2\theta_{12} \Delta m^2_{21}}{s_{13} 2m_0^2}.$$

The deviation increases with decrease of s_{13}, however, even in maximum $\Delta_{\mu\tau}$ does not exceed 0.03.

4). Properties of the mass matrix:

• With corrections the neutrino mass matrix takes the following form

$$m_\nu \approx m_0 \begin{pmatrix} 1 & \sqrt{2} s_{13} & -\sqrt{2} s_{13} \\ \ldots & 2 D_{23} - \frac{1}{2m_0} \epsilon_A & 1 + \frac{1}{2m_0} \epsilon_A \\ \ldots & \ldots & -2 D_{23} - \frac{1}{2m_0} \epsilon_A \end{pmatrix}.$$

Here two TBM-conditions are maximally broken, however $x \ll a$. Corrections have completely different symmetry from that of the dominant block which has the “triangle” form.

• Corrections to the dominant triangle structure can be all of the same order and of the size of Cabibbo angle with respect to the dominant structure:

$$m_\nu = m_0 [T + 0.2 D],$$

where D is the “democratic” matrix or matrix with elements of the same order.

• Since both \tilde{s}_{13} and \tilde{D}_{23} are very small, special relations for elements of the e-line and $\mu\tau$ – block can be satisfied simultaneously.
The basis corrections are \(\Delta m^b_{ee} = -0.81 \), \(\Delta m^b_{\mu e} = -4.0 \), \(\Delta m^b_{e\tau} = -4.1 \) and \(\Delta m^b_{\mu\tau} = 4.1 \) (in the units \(10^{-2} \) eV). The corrections to the \(e\mu \) and \(e\tau \) elements are of the order of corrections due to the TBM mixing deviations.

C. \(\phi_2 = \pi/2 \) and \(\phi_3 = 0 \); line \(D(\frac{\pi}{2},0) \).

1). The parameters of the mass matrix

\[
\begin{align*}
m_2 &\approx -m_0, \quad a = \frac{m_0}{3}, \quad b = -\frac{2m_0}{3}, \quad c = m_0, \quad a + b + c \approx \frac{2m_0}{3}, \quad a + b - c \approx -\frac{4m_0}{3}
\end{align*}
\]

lead to TBM-matrix

\[
m_\nu \approx m_0 \left(\begin{array}{ccc}
\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\
\cdots & \frac{1}{3} & -\frac{2}{3} \\
\cdots & \cdots & \frac{1}{3}
\end{array} \right) = m_0 I - \frac{2}{3} m_0 D,
\]

where \(D \) is the democratic matrix.

2). The lowest order corrections equal

\[
\begin{align*}
x &= -\frac{1}{\sqrt{2}} s_{13} (e^{-i\delta} - \frac{1}{3} e^{i\delta}) m_0 - \frac{2}{3} D_{23} m_0, \\
y &= -\frac{2}{3} m_0 \left(2D_{23} + \sqrt{2} s_{13} e^{i\delta} \right), \\
\Delta m_{ee} &= 2m_0 \left(D_{12} + \frac{1}{3} s_{13}^2 \right), \\
\Delta m_{\mu\tau} &= m_0 \left(-D_{12} + \frac{1}{3} s_{13}^2 \right).
\end{align*}
\]

Relative corrections are enhanced because the elements of original matrix are suppressed by numerical factors. Corrections equal 50%, (100%) for \(y \), 20% (30%) for \(x \) and 10(20%) for the \(ee \)–element.

3). The violation of the TBM conditions: The original elements \(e\mu \)– and \(e\tau \)– are large and \(s_{13} \) produces relatively small effect. The pole value equals \(\tilde{s}_{13} \approx \cot \theta_{12} > 1 \), as a result, for the allowed values of \(s_{13} \) the breaking parameter is suppressed:

\[
\Delta_e = \frac{2s_{13}}{\cot \theta_{12} e^{i\delta} - s_{13}} \approx 2s_{13} \tan \theta_{12}.
\]

The pole of \(\Delta_{\mu\tau} \) is given by

\[
\tilde{D}_{23} = -\frac{1}{2} \tan^2 \theta_{12} \left(1 + 2 \cot \theta_{12} s_{13} e^{i\delta} \right) \approx -\frac{1}{4} \left(1 + 2 \sqrt{2} s_{13} e^{i\delta} \right).
\]

Consequently, \(\tilde{D}_{23} \gg D_{23}^{\text{max}} \) for \(\delta = 0 \). The minimal value of \(\tilde{D}_{23} \) is realized at \(\delta = \pi \) and maximal possible \(s_{13} \): \(\tilde{D}_{23} \sim 0.1 \) for which \(\tilde{D}_{23} \approx D_{23}^{\text{max}} \). Therefore one can reach the pole and \(m_{\tau\tau} \approx 0 \). Since \(\phi_2 = \pi/2 \), the parameter \(\beta \) is not suppressed and become important:

\[
\beta = \frac{s_{13} \sin 2\theta_{12} e^{i\delta}}{2(1 + \cos 2\theta_{12})}.
\]

31
Texture zero \(m_{\mu\mu} = 0 \) is realized if \(D_{23} = -(\bar{D}_{23} + \beta) \). For \(\delta = 0 \) we obtain at the 1\(\sigma \) level \(-(\bar{D}_{23} + \beta) \approx 0.085 \) which is close to the 1\(\sigma \) allowed value of \(D_{23} \). Consequently, \(m_{\mu\mu} \approx 0 \) can be achieved at 1\(\sigma \) level, as can be seen in the Table 5.

For \(s_{13} = 0 \) we have

\[
\Delta_{\mu\tau} \approx 4 \frac{D_{23}}{\tan^2 \theta_{12} + 2D_{23}}.
\]

(45)

For negative \(D_{23} \) the deviation can be substantially enhanced \(\sim 12D_{23} \), still the pole is not realized.

The 1-3 mixing effect (for \(D_{23} = 0 \)) on violation of the second TBM condition is given by

\[
\Delta_{\mu\tau} \approx 4s_{13} \frac{c_{12}}{s_{13} + 2s_{13}c_{12}} \approx 4s_{13} \cot \theta_{12} .
\]

Here correction is enhanced by the factor \(4 \cot \theta_{12} \sim 6 \), so that for maximal allowed 1-3 mixings we obtain \(\Delta_{\mu\tau} \approx 1 \).

4). Properties of the mass matrix:

- the \(e\mu- \) and \(e\tau- \) elements can differ by 50–60%,
- texture zeros \(m_{\mu\mu} = 0 \) or \(m_{\tau\tau} = 0 \) can be achieved;
- the equalities \(m_{ee} \approx -m_{e\tau}, m_{\mu\tau} = m_{\tau\tau} \) are possible;
- the matrix may have rather random “anarchical” character;
- at 1\(\sigma \) level the structure of the matrix can change strongly, and the TBM conditions can be strongly broken.

The basis corrections are \(\Delta m_{ee}^b = 5.2 \), \(\Delta m_{\mu\mu}^b = 1.1 \), \(\Delta m_{e\tau}^b = -2.4 \) and \(\Delta m_{\mu\tau}^b = 2.98 \) (in the units \(10^{-2} \) eV). They are of the order of TBM corrections for \(e\mu- \) and \(e\tau- \) elements and large for \(ee- \) elements.

D. \(\phi_2 = \phi_3 = \frac{\pi}{2} \), line \((D(\frac{\pi}{2}, \frac{\pi}{2}))\):

1). Parameters of the mass matrix

\[
\begin{align*}
m_1 &= m_0, \\
m_2 &\approx -m_0 - \epsilon_S, \\
m_3 &\approx -m_0 - \epsilon_A, \\
a &= \frac{m_0}{3}, \\
b &= -\frac{2m_0}{3}, \\
c &= -m_0, \\
a + b + c &\approx -\frac{4m_0}{3}, \\
a + b - c &\approx \frac{2m_0}{3}
\end{align*}
\]

give the TBM-mass matrix

\[
m_\nu \approx m_0 \begin{pmatrix}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
... & -\frac{2}{3} & \frac{1}{2} \\
... & ... & \frac{2}{3}
\end{pmatrix} = -m_0 V_1 = m_0 T - \frac{2}{3}m_0 D,
\]

(46)

32
where \(D \) is the democratic matrix. This matrix differs from the one in the previous case by permutation in the \(\mu\tau \)-block. It is proportional to the symmetry matrix \(V_1 \).

2). The lowest order corrections equal

\[
\begin{align*}
 x &= \frac{1}{\sqrt{2}} s_{13} (e^{-i\delta} + \frac{1}{3} e^{i\delta}) m_0 - \frac{2}{3} D_{23} m_0, \\
 y &= \frac{2}{3} m_0 \left(D_{23} + \sqrt{2} s_{13} e^{i\delta} \right), \\
 \Delta m_{ee} &= 2 m_0 \left(D_{12} - \frac{2}{3} s^2_{13} \right).
\end{align*}
\]

The deviation \(x \) is enhanced if \(\delta = \pi \):

\[
x = -\frac{2}{3} m_0 (\sqrt{2} s_{13} + D_{23}).
\]

In this case \(y = \frac{2}{3} m_0 (D_{23} - \sqrt{2} s_{13}) \). All the elements of the TBM matrix are of the same order and just differ by factor 2. The elements of the e-raw and \(\mu\tau \)-block affected by the corrections are large, and therefore effect of corrections is relatively small: for the bf-values and \(1\sigma \) we have \(12\% \), (25\%) for \(y \) (\(\mu\tau \)-block), and 25\% (45\%) for \(x \) and 8(10\%) for the \(ee \)-element.

3). The parameters of violation of the TBM conditions: Now \(\tilde{s}_{13} \approx \tan \theta_{12} \), so that

\[
\Delta_e \approx 2 s_{13} \cot \theta_{12} \approx 2 s_{13} \cot \theta_{12}.
\]

The violation parameter \(\Delta_{\mu\tau} \) equals

\[
\Delta_{\mu\tau} \approx 4 D_{23} \frac{D_{23}}{\cot^2 \theta_{12} + 2 D_{23}}.
\]

Here enhancement is weaker than in the previous case. For \(D_{23} = 0 \) we have

\[
\Delta_{\mu\tau} \approx 4 s_{13} \frac{s_{12}}{c_{12} - 2 s_{13} s_{12}} \approx 4 s_{13} \tan \theta_{12}.
\]

Since

\[
\tilde{D}_{23} = -\frac{c_{12}^2 - \sin \theta_{12} s_{13} e^{i\delta}}{2 s_{12}^2}, \quad |\tilde{D}_{23}| \gg D_{23}^{\text{max}},
\]

no zeros can be obtained in the \(\mu\tau \)-block.
4). Properties of mass matrix: It may have the form

\[
m_{\nu} \approx \begin{pmatrix} a & y & z \\ y & z & a \\ z & a & y \end{pmatrix} + \delta m_{\nu}
\]

\[
= m_0 \begin{pmatrix} \frac{1}{3} & -\frac{2}{3}(1 + D_{23}) + \frac{\sqrt{2}}{3} \sin 2\theta_{13} & -\frac{2}{3}(1 - D_{23}) - \frac{\sqrt{2}}{3} \sin 2\theta_{13} \\ \cdots & \frac{1}{3} & \frac{y}{m_0} \\ \cdots & \frac{y}{m_0} & \frac{1}{3} - \frac{\sqrt{2}}{3} \sin 2\theta_{13} \end{pmatrix}
\]

This matrix has approximate cyclic symmetry and the element of second diagonal are equal (see also the line \(D(\frac{\pi}{2}, \frac{\pi}{2}) \) in the Table 5).

If \(\delta = 0 \), then \(y \) is enhanced: \(y = \frac{2}{3}m_0(D_{23} + \sqrt{2}s_{13}) \), the two contributions sum up. At the same time in \(x \) the two contributions partially cancel each other. The elements of mass matrix have rather random spread within factor 3, without clear structure. The TBM conditions are broken by \(O(1) \) factors.

The basis corrections for \(s_0 = 0.2 \) equal \(\Delta m_{ee}^b = 4.4 \), \(\Delta m_{\mu e}^b = -2.9 \), \(\Delta m_{e\tau}^b = -1.6 \) and \(\Delta m_{\mu\tau}^b = 1.1 \) (in the units \(10^{-2} \) eV). They are large for the \(ee- \) element and significant for the \(e\mu- \) and \(e\tau- \) elements.

4 Deviations from TBM and flavor symmetry

Using results of the previous sections we will consider implications of the mass matrices with deviations from TBM structure for the flavor symmetries.

Recall that the TBM as well as other flavor structures could be immediate consequence of symmetry, if e.g. (i) single mechanism of neutrino mass generation dominates and various corrections are negligible; (ii) Higgses are flavorless, so that the problem of VEV alignment does not exist. In this case one needs to adjust the Yukawa coupling constants only. It can be shown, however, that flavor symmetry, should be broken to explain TBM. The flavor structures which can be obtained in this scenario do not reproduce TBM but they can serve as the dominant structures of the mass matrix.

The operator responsible for the Majorana neutrino masses has the form

\[
L = h_{ij} L_i L_j X,
\]

where, in general, the “Higgs factor” \(X \) is some combination of the Higgs fields.

4.1 Deviations from TBM and new flavor symmetries?

Do neutrino mass matrices with deviations from TBM have some new symmetry which differs from the TBM symmetry? Here we briefly mark some possibilities, their detailed realizations will be presented elsewhere [21].
As we have established in the previous sections the corrections can lead to new equalities between the matrix elements. In particular,

\[m_{e\mu} \approx -m_{e\tau}, \quad (48) \]
as well as \[m_{\mu\mu} = -m_{\tau\tau}, \] \[m_{e\mu} = m_{\mu\mu}, \] \[m_{e\mu} = nm_{e\tau} \] with, e.g., \(n = 2, 1/2, \text{etc.} \). Let us consider implications of the equality (48).

If \(b = m_{e\mu}^0 \) and the deviation \(D_{23} \) are very small, then the correction \(x \) dominates, \(y \) is negligible, and furthermore, the corrections of the order \(s_{13}D_{23} \), which contribute to \(m_{e\mu} \) and \(m_{e\tau} \) equally, are also small. In this case the mass matrix has the following approximate form:

\[
\begin{pmatrix}
a & -x & x \\
\frac{1}{2}(a + c) & \frac{1}{2}(a - c) & \frac{1}{2}(a + c) \\
... & ... & ...
\end{pmatrix}
\]

The conditions for this form of matrix are realized in the cases of spectra with quasi-degenerate first and second states: \(m_1 \approx m_2 \) and \(\phi_2 = 0 \): \(PD(0, 0), PD(0, \frac{\pi}{2}), IH(0, 0), D(0, 0), D(0, \frac{\pi}{2}) \). (Notice that in the Table 5 the examples of matrices correspond to maximal allowed value of \(D_{23} \), so that correction \(s_{13}D_{23} \) leads to violation of equality (48)).

In the case of inverted mass hierarchy, \(IH(0, 0) \), also \(c \approx 0 \). The matrix (49) is invariant under the transformation

\[
V_2' = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{pmatrix}
\]

which is one the generators of \(S_4 \). This is new residual symmetry, since the first TBM conditions is broken by the 1-3 mixing. As we have mentioned before, the equality (48) and symmetry with respect to \(V_2 \) (9) can be restored by redefinition: \(\nu_\mu \to -\nu_\mu \). In this case the \(\mu\tau \) element changes the sign: \(\frac{1}{2}(a - c) \to -\frac{1}{2}(a - c) \) and the third TBM condition turns out to be broken: \(\Sigma_L - \Sigma_R = a - c + x \). Now the matrix is invariant with respect to \(V_2 \) but not \(V_1 \).

In contrast to the TBM matrix, the matrices with deviations can contain texture zeros [22] and agree with observed neutrino masses. Interesting examples, which can testify for certain symmetries, follow:

1. The texture zeros \(m_{e\mu} = 0 \) or \(m_{e\tau} = 0 \) can be achieved in the cases of normal mass hierarchy: \(NH(0, 0), NH(0, \frac{\pi}{2}) \), partial degeneracy: \(PD(0, 0), PD(0, \frac{\pi}{2}) \), inverted hierarchy: \(IH(0, 0) \), degenerate spectrum: \(D(0, 0), D(0, \frac{\pi}{2}) \). In all these cases the original elements of the \(e \)-line are small.

2. The texture zeros \(m_{\mu\mu} = 0 \) or \(m_{\tau\tau} = 0 \) can be obtained in the cases of inverted mass hierarchy \(IH(\frac{\pi}{2}, 0) \), and degenerate spectrum \(D(0, \frac{\pi}{2}) \). The condition for that is \(m_{\mu\mu}^0 = m_{\tau\tau}^0 \ll m_{\mu\tau}^0 \).

3. Matrices with two texture zeros become allowed: various combinations of zeros in the \(e \)-line and \(\mu\tau \)-block (indicated above) can be obtained for the degenerate spectrum \(D(0, \frac{\pi}{2}) \). In particular, in the case of very small 1-3 mixing \(s_{13} = 0.001 \), \(D_{23} \sim 0.032, \delta = 0 \)
and $m_1 = 0.09 \text{ eV}$, all the elements of the second diagonal can be zero, $m_{\mu\mu} = m_{e\tau} = 0$. By changing the value of δ and the sign of D_{23}, we can change the positions of “zeros”. If $D_{23} \sim -0.032$, the two texture zeros $m_{\tau\tau} = m_{e\tau} = 0$ are achieved. If $\delta = \pi$, we get $m_{\mu\mu} = m_{e\mu} = 0$, so that the 1-2 mixing is induced. If $D_{23} \sim -0.032$ and $\delta = \pi$, we get $m_{\tau\tau} = m_{e\mu} = 0$.

4. An interesting possibility is the matrix with two texture zeros: $m_{e\mu} = m_{ee} = 0$ which can be achieved in the case of normal mass hierarchy with $m_1 \sim 0.0031 \text{ eV}$ at the best fit values of the mixing angles and $(\phi_2, \phi_3, \delta) = (\pi/2, 0, \pi)$. This is signature of yet another class of underlying symmetries.

5. Also the Fritzsch-type matrix with $m_{ee} = 0$, $m_{e\tau} = 0$ and relatively small $m_{\mu\mu}$ can be realized in the case of normal mass hierarchy and $m_1 \sim 0.0035 \text{ eV}$ at the best fit values of the mixing angles and $(\phi_2, \phi_3, \delta) = (\pi/2, 0, 0)$.

4.2 Two-component structure of the mass matrix

In a number of cases the neutrino mass matrix has strongly hierarchical structure with large elements forming the dominant block and small sub-dominant elements. This may indicate that the mass matrix has a two-component structure

$$m_\nu = M_d + \mu_s,$$

where M_d and μ_s are the dominant and sub-dominant contributions. The matrices M_d and μ_s may have different origins and different symmetries, the sub-dominant matrix μ_s may appear as a result of breaking of symmetry of M_d, and symmetry can be completely broken in μ_s.

As we have shown the relative corrections to the dominant block elements are of the order 30%, whereas corrections to the sub-dominant elements can be much larger than the original elements. Therefore if the mass matrix, indeed, has two different contributions, the corrections can completely change the structure and possible symmetries of the sub-dominant matrix. There are different scenarios for (49). The dominant M_d can be a consequence of unbroken symmetry, whereas the sub-dominant block appears as a result of symmetry breaking.

Here we briefly consider possible symmetries which lead to various dominant structures:

1. The $\mu - \tau-$ dominant block (the case of normal mass hierarchy) has, e.g., the $U(1)-$symmetry with the charge prescriptions $L(\nu_e) = 1$, $L(\nu_\mu) = L(\nu_\tau) = 0$ [23].

2. The matrix with the dominant block, which consists of the $\mu\mu-$, $\tau\tau-$, $\mu\tau-$ and $ee-$elements is realized in the case of partially degenerate spectrum $PD(0,0)$. Is is invariant under

$$\nu_e \to \nu_e, \quad \nu_\mu \to -\nu_\mu, \quad \nu_\tau \to -\nu_\tau.$$

Clearly this symmetry cannot be exact symmetry of the whole Lagrangian, but it can appear as a residual summy for neutrino Yukawa couplings.

3. The matrix proportional to the unit matrix, $M_d = m_0 I$, is the dominant structure for the degenerate spectrum $D(0,0)$. It can be a consequence of various discrete and continuous
symmetries. Suppose the lepton doublets, L_i, form triplet of some symmetry group G_f: $L \sim 3$, and Higgses are flavorless. Then to get invariant combination $3 \times 3 \sim 1$ the group G_f should be $SO(3)$ or some its subgroup. The smallest group with irreducible representation 3 is A_4 and the invariant combination L_iL_i produces the required unit matrix.

Suppose the Higgs factor X is singlet of symmetry group but not invariant, e.g. $X \sim 1'$ or $X \sim 1''$ of A_4, then L_iL_j should transform as $1''$ and $1'$ correspondingly. These combinations produce either zero mass (because of the antisymmetric nature of couplings) or the matrix proportional to the diagonal phase matrix: $m_\nu = m_0 \text{diag}(1, e^{2i\pi/3}, e^{4i\pi/3})$.

4. The triangle matrix $M_d = m_0 T$ is the dominant structure in the case of degenerate spectrum $D(0, \frac{\pi}{2})$. This structure can be a consequence of discrete or continuous symmetries, as in the previous case. In particular, the A_4 model with triplet L_i, in the complex representation leads to the triangle form.

Also the triangle dominant structure with $m_{ee} \neq m_{\mu\tau}$ is possible in the case of deviation from TBM. This structure can be produced in models where ν_μ and ν_τ form a doublet of some (discrete) symmetry group: $L_1 \sim 1$ and $\tilde{L} = (L_2, L_3)^T \sim 2$. The neutrino mass matrix is diagonal for real representation and of triangle form for complex representation. Such a situation can be realized in the case of S_3 group and its further embedding like S_4, etc..

If the lepton doublets transform as singlets of the symmetry group: e.g., $L_1 \sim 1, L_2 \sim 1', L_3 \sim 1''$ (and $X \sim 1$) the neutrino mass matrix is of the triangle form:

$$m_\nu = v \begin{pmatrix} h_{11} & 0 & 0 \\ 0 & 0 & h_{23} \\ 0 & h_{23} & 0 \end{pmatrix},$$

where h_{11} and h_{23} can be of the same order.

A possibility to get some flavor structures immediately from symmetry is to use a single Yukawa coupling, but X having non-trivial flavor structure. If $L \sim 3$ and $X \sim 3$, the neutrino mass matrix equals

$$m_\nu = h \begin{pmatrix} v_1 & v_3 & v_2 \\ v_3 & v_2 & v_1 \\ v_2 & v_1 & v_3 \end{pmatrix}.$$

The TBM form can be achieved if $v_2 = v_3$ but in this case $|m_1| = |m_2|$. With possible deviations from TBM we can easily reproduce the required structure (50) with $m_1 \neq m_2$. It appears in the case of degenerate spectrum $D\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ (see eq. (48)). The problem is reduced now to VEV alignment: $v_1 \approx 1/3, v_2 \approx -2/3 - x, v_2 \approx -2/3 + x$ and $x = -y$.

4.3 No-symmetry case

1. *Anarchical matrix* with random values of elements [24] is an extreme case. Matrix of this type appears for certain intervals of CP-phases in the cases of partial degeneracy or degenerate spectra: $PD\left(\frac{\pi}{2}, 0\right), D\left(\frac{\pi}{2}, \frac{\pi}{2}\right), D\left(\frac{\pi}{2}, 0\right)$ when the original TBM mass matrix has
no or weak hierarchy of elements. In these the “random” mass matrix leads accidentally to
strong degeneracy mass eigenstates. This implies fine tuning unless certain new symmetry
is introduced. Alternatively, this can imply that the mixing comes from the charged lepton
sector whereas neutrino mass matrix has diagonal quasi-degenerate form and obey certain
symmetry.

There are various possible origins of the anarchical structure, for instance, the see-saw
mechanism with many \((n \gg 3)\) right-handed neutrinos. Another possibility is when two
different and independent mechanisms give comparable contributions to the mass matrix.
Each of these contributions separately may have rather regular structure.

4.4 Matrices with flavor alignment

There are two possibilities:

1). Normal flavor alignment. In the case of normal mass hierarchy with \(m_1 \neq 0\) the
corrections due to deviations from TBM as well as basis corrections can wash out sharp
difference between the elements of the \(\mu\tau\)– block and \(e\)– line. As a result one obtains a
gradual decrease of size of elements from \(m_{\tau\tau}\) to \(m_{ee}\).

2). In the case of inverted mass hierarchy \((see \ IH(\frac{\pi}{2}, 0))\) the corrections can produce
an inverse flavor hierarchy when the values of matrix elements increase with moving from
\(\tau\)– to \(\mu\)– flavors.

These possibilities may indicate some perturbative origins and a kind of the Froggatt-
Nielsen mechanism [25] with large expansion parameter.

5 Conclusion

Is the TBM mixing accidental? The question is reduced, essentially, to the question whether
this mixing immediately follows from some (broken) symmetry or other principle, or it
appears as a result of many-step construction, and fixing various parameters by introduction
of additional symmetries and structures.

The symmetry is formulated at the level of mass matrix. Therefore if the data imply
very specific mass matrix with small deviations from the TBM form, we can say that TBM
is not accidental. We find the opposite: very strong deviations of \(m_\nu\) from \(m_{TBM}\) and strong
violations of the TBM conditions (immediate manifestation of the symmetry) are allowed.
This can be considered as an indication that TBM is accidental. We find that large variety
of the mass matrices with deviations from TBM explain experimental data.

Strong deviations of \(m_\nu\) from \(m_{TBM}\) opens up a possibility of the some alternative
approaches to explain the data. Namely, some other symmetry (which differs from the
TBM symmetry) or other principle can be involved. For instance, matrices with texture
zeros are allowed which indicates, e.g. \(U(1)\) underlying symmetry. Also matrices with
different relations between the elements are possible, which testify for yet another class of
symmetries.
We show that the mass matrix may show no trace of symmetry having random values of elements. However, this corresponds to the quasi-degenerate spectrum which implies another way to explain the data. In some cases the matrix has certain flavor alignment: gradual change of values of matrix elements from m_{ee} to $m_{\tau \tau}$.

For certain ranges of masses and CP-phases the mass matrix has structure with strong hierarchy between matrix elements: dominant and sub-dominant ones. We find that corrections can change the dominant elements by factors $O(1)$ and be much larger than the sub-dominant elements. This may support the idea of two-component structure of the mass matrix when the dominant block has certain (unbroken) flavor symmetry and appears at the lowest renormalizable level, whereas the sub-dominant structures can be result of symmetry breaking by, e.g., high order operators with flavon fields.

If it turns out that these new approaches lead to simpler and more straightforward explanation of the data, the TBM symmetry approach will be disfavored.

The 1-3 mixing leads to the most strong corrections. So, forthcoming measurements of this mixing will play crucial role in understanding of the underlying physics [26]. Corrections to other angles produce next order effect (as s_{13}^2), although in some cases they can be enhanced by additional numerical factors.

6 Acknowledgments

The authors are grateful to M. Frigerio ans S. Khalil for useful discussions.

References

[1] P.F. Harrison, D.H. Perkins, and W.G. Scott, Phys. Lett. B 458, 79 (1999) [arXiv:hep-ph/9904297]; Phys. Lett. B 530, 167 (2002) [arXiv:hep-ph/0202074].

[2] A selective list of publications includes: E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) [arXiv:hep-ph/0106291]; W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura and M. Tanimoto, JHEP 0407, 078 (2004) [arXiv:hep-ph/0407112]; J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, Prog. Theor. Phys. 109, 795 (2003) [Erratum-ibid. 114, 287 (2005)] [arXiv:hep-ph/0302196]; R. N. Mohapatra, M. K. Parida and G. Rajasekaran, Phys. Rev. D 69, 053007 (2004) [arXiv:hep-ph/031234]; C. Hagedorn, M. Lindner and R. N. Mohapatra, JHEP 0606, 042 (2006) [arXiv:hep-ph/0602244]; I. de Medeiros Varzielas, S. F. King and G. G. Ross, Phys. Lett. B 648, 201 (2007) [arXiv:hep-ph/0607045]; E. Ma, Phys. Lett. B 660, 505 (2008) [arXiv:0709.0507 [hep-ph]]; C. Luhn, S. Nasri and P. Ramond, Phys. Lett. B 652, 27 (2007) [arXiv:0706.2341 [hep-ph]]; E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) [arXiv:hep-ph/0106291]; E. Ma, Mod. Phys. Lett. A 17, 627 (2002) [arXiv:hep-ph/0203238]; K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003) [arXiv:hep-ph/0206292]; for recent publication and complete list of references see for
instance, C. Hagedorn, S. F. King and C. Luhn, arXiv:1003.4249 [hep-ph] and the
review G. Altarelli and F. Feruglio, arXiv:1002.0211 [hep-ph].

[3] C. S. Lam, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665 [hep-ph]]; Phys. Rev.
Lett. 101 (2008) 121602 [arXiv:0804.2622 [hep-ph]]; Phys. Rev. D 78 073015 (2008)
[arXiv:0809.1185 [hep-ph]]; arXiv:0907.2206 [hep-ph]

[4] W. Grimus, L. Lavoura and P. O. Ludl, J. Phys. G 36 115007 (2009) [arXiv:0906.2689
[hep-ph]].

[5] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rottunno, Phys. Rev. Lett.
101, 141801 (2008).

[6] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, arXive:1001.4524 [hep-ph]

[7] R. Wendell et al., arXiv:1002.3471 [hep-ex].

[8] R. d. A. Toorop, F. Bazzocchi and L. Merlo, arXiv:1003.4502 [hep-ph].

[9] A. Y. Smirnov, arXiv:hep-ph/0402264; M. Raidal, Phys. Rev. Lett. 93 161801 (2004);
H. Minakata and A. Y. Smirnov, Phys. Rev. D 70, 073009 (2004).

[10] S. Antusch, J. Kersten, M. Lindner, Nucl. Phys. B 674, 401 (2003), arXiv:hep-
ph/0305273v2; A. Dighe, S. Goswami and S. Ray, Phys. Rev. D 79, 076006 (2009)
[arXiv:0810.5680 [hep-ph]].

[11] J. Barry and W. Rodejohann, arXiv:1003.2385v1 [hep-ph].

[12] M. Honda and M. Tanimoto, Prog. Theor. Phys. 119, 583 (2008).

[13] S. F. Ge, H. J. He and F. R. Yin, arXiv:1001.0940 [hep-ph].

[14] A. Hayakawa, H. Ishimori, Y. Shimizu and M. Tanimoto, Phys. Lett. B 680, 334 (2009).

[15] F. Plentinger and W. Rodejohann, Phys. Lett. B 625, 264 (2005) [arXiv:hep-
ph/0507143].

[16] S. K. Kang, Zhi-zhong Xing and Shun Zhou, Phys. Rev. D 73, 013001 (2006).

[17] L. Merlo, Acta Phys. Polon. B 40, 3179 (2009) arXiv:0910.2810 [hep-ph].

[18] C. H. Albright and W. Rodejohann, Phys. Lett. B 665, 378 (2008) [arXiv:0804.4581
[hep-ph]]; C.H. Albright and W. Rodejohann, Eur. Phys. J. C 62, 599 (2009).

[19] M. Frigerio, A. Yu. Smirnov, Nucl. Phys. B 640, 233 (2002).

[20] C. D. Carone and R. F. Lebed, Phys. Rev. D 80, 117301 (2009) [arXiv:0910.1529
[hep-ph]].
[21] M. Abbas and A. Yu. Smirnov, work in progress.

[22] For references see the recent paper R. Verma, G. Ahuja, N. Mahajan, M. Randhawa and M. Gupta, arXiv:1004.5452 [hep-ph].

[23] A. Palcu, Mod. Phys. Lett. A 22, 939 (2007) [arXiv:hep-ph/0701066]; G. Altarelli and R. Franceschini, JHEP 0603, 047 (2006) [arXiv:hep-ph/0512202]; W. Grimus and L. Lavoura, J. Phys. G 31, 683 (2005) [arXiv:hep-ph/0410279]; S. T. Petcov and W. Rodejohann, Phys. Rev. D 71, 073002 (2005) [arXiv:hep-ph/0409135]; K. S. Babu and R. N. Mohapatra, Phys. Lett. B 522, 287 (2001) [arXiv:hep-ph/0110243].

[24] L. J. Hall, H. Murayama and N. Weiner, Phys. Rev. Lett. 84, 2572 (2000); A. de Gouvea and H. Murayama, Phys. Lett. B 573, 94 (2003); G. Altarelli, F. Feruglio and I. Masina, JHEP 0301, 035 (2003); Y. E. Antebi, Y. Nir, T. Volansky, hep-ph/0512211.

[25] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).

[26] M. Mezzetto and T. Schwetz, arXiv:1003.5800 [hep-ph].