NGC: Lossless and Lossy Compression of Aligned High-throughput Sequencing Data
Supplementary Materials

Niko Popitsch¹, Arndt von Haeseler

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr Gasse 9, A-1030, Vienna, Austria

Contents
I. Supplementary Description of Variant Calling Pipelines ... 2
 GATK pipeline ... 3
 SAMTOOLS pipeline ... 3
II. Definitions .. 4
 Counting horizontal and vertical run-lengths ... 4
III. Compression parameters ... 5
 NGC v0.0.1 .. 5
 Cram v0.85 .. 5
 Goby v2.1 .. 5
IV. Computing Environment ... 6
V. Supplementary Data Tables .. 6

¹ Corresponding author
I. Supplementary Description of Variant Calling Pipelines

The Reseq/chr20 (human) data set corresponds to the file NA12878.HiSeq.WGS.bwa.cleaned.recal.hg19.20.bam that was downloaded from the GATK resource bundle v1.5 b37 (available at ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/1.5/b37, be sure to login as user gsapubftp-anonymous/<blank>). The file can be found in the subfolder bundle/1.5/b37). This file contains mapped reads of the NA12878 individual’s chromosome 20. Note that this data set contains all original q-values of the reads (probably the ones before q-value recalibration) stored in OQ tags which makes this file less compressible in comparison to the others.

All other data sets were downloaded from the SRA respectively given to us as FASTQ files and were mapped using bwa v 0.6.1-r104 (http://bio-bwa.sourceforge.net/) with standard parameters for single respectively paired end data. The following reference sequences were used for mapping:

- *Homo sapiens* genome human g1k v37, available at ftp://ftp.sanger.ac.uk/pub/1000genomes/tk2/main_project_reference/human_g1k_v37.fasta.gz
- *Mus musculus* genome mm9, NCBI Build 37, available at http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/mm9.2bit
- *Escherichia coli* str. K-12 substr. MG1655 genome, available at ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/NC_000913.fna
- *Arabidopsis thaliana* TAIR10 genome, available at ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/

Note that we pruned unmapped reads from the data sets using SAMTOOLS v0.1.18 (http://samtools.sourceforge.net/) before our tests and that our algorithm expects the input SAM/BAM file to be sorted by mapping coordinates. Note also that our solution preserves also hard- and soft-clipped bases that actually break the order in such a coordinate-sorted file by storing those in some extra data streams (cf. main paper, Figure 1).
GATK Pipeline
Our pipeline for GATK (17) variant calling consisted of the following steps:

- Addition of read groups using Picard v1.56 (http://picard.sourceforge.net), AddOrReplaceReadGroups
- INDEL realignment with GATK v1.4 RealignerTargetCreator and IndelRealigner
- Duplicate removal with Picard MarkDuplicates
 - *Duplicates were removed from the alignment*
 - *Note that this step was omitted for the RNA-seq (e.coli) data set!*
- Variant calling with GATK UnifiedGenotyper
- Variant filtration with GATK VariantFiltration
 - For SNPs, we filtered for low coverage (<5), low quality (<50), variant confidence (<1.5), strand bias and mapping quality
 - For INDELs, we filtered for variant confidence, read position bias and strand bias
- Both variant sets were then combined using GATK CombineVariants
- *Note that the first three pipeline stages were omitted for the Reseq/chr20 (human) data set as comparable preprocessing was already done for the respective BAM file*

SAMTOOLS Pipeline
Our pipeline for variant calling with SAMTOOLS consisted of the following steps:

- Addition of read groups using Picard AddOrReplaceReadGroups
- INDEL realignment with GATK RealignerTargetCreator and IndelRealigner
- Duplicate removal with Picard MarkDuplicates
 - *This step was omitted for the RNAseq data set.*
- Variant calling with SAMTOOLS v0.1.18 mpileup/bcftools/vcfutils
 - Variants were filtered by minimum (5) and maximum (2000) read depth
- *Note that the first three pipeline stages were omitted for the Reseq/chr20 (human) data set as comparable preprocessing was already done for the respective BAM file*

Note that we did not do any quality score recalibration in this evaluation pipeline as such a step would affect all quality scores in the data sets which would blur the effects of the different quantization scenarios.

Further note, that the Picard algorithm for the removal of redundant sequences (stemming mainly from PCR amplification) also incorporates read bases qualities and will therefore also lead to different read-sets depending on the used q-value quantization strategy.
II. Definitions
True positives (tp), false positives (fp) and false negatives (fn) were determined by comparing the sets of called variants from the BAM files created by compressing and uncompressing the original alignment using (1) the lossless mode (unquantized) and (2) the respective quantization mode.

Compression ratio is defined as $cr = \frac{\text{compressed size}}{\text{uncompressed size}}$.

Compression rates are, in contrast, usually measured in bits per sample.

Space savings is defined as $1 - cr$.

Precision is defined as $\text{prec} = \frac{tp}{tp + fp}$.

Sensitivity (aka recall rate) is defined as $\text{sens} = \frac{tp}{tp + fn}$.

Genotype preservation percentage was calculated as $\text{gpp} = 1 - \frac{\text{cgt}}{tp}$ where cgt is the number of variants from the set of true positives that changed their genotype classification from homozygous to heterozygous or vice versa.

Coverage was calculated as $\text{cov} = \frac{sb}{\text{ref}}$ where sb is the number of sequenced bases and ref is the length of the reference sequence.

Counting Horizontal and Vertical Run-lengths
For counting the run-lengths (RLs) presented in Figure 2 of the main paper we considered two streams of read bases. The “horizontal” one was created by simply iterating over the reads in their given order in the alignment file. The “vertical” one was produced as described in the paper (cf. Figure 2). Note that clipped bases are not counted and that RLs are also counted within insertions. In the vertical mode, we consider each inserted “column” as follows: for each read spanning the insertion, we consider either its inserted base character (A,C,T,G,N and all other IUPAC/FASTA characters) in this column or, if none, (e.g., in padded regions) a special character “X”. These base characters are then “diffed” against the reference character “X” (so that a padded position finally results in an “E” character). Note that this method slightly penalizes the vertical mode, i.e., a more optimized method would count even less required RLs in the vertical mode.

Further note that the given numbers are the “theoretical” numbers of required run-lengths as described in the paper. In practice, however, not only these numbers but also the amount of bits needed to represent this information is relevant. For representing the length-values of the RLs one could, for example, use fixed-sized 8-bit code words. This would mean that RLs with a length value greater than 256 have to be split-up, which again increases the number of required code words. Reserving more bits would again reduce the number of code words but would require more disc space per code word. With our data we actually found that using one byte per RL length was the best tradeoff in this regard (data not shown).
III. Compression Parameters

We used the following commandline parameters for the evaluation experiments:

NGC v0.0.1

Lossless: -best --truncateNames

- **m1:** -best -q1levels standard -qvalRleEncoding -truncateNames
- **m2:** -best -q1levels standard -q2levels standard -qvalRleEncoding -truncateNames
- **m3:** -best -q1levels standard -qvalRleEncoding -truncateNames
- **m4:** -best -q1levels 30 -q2levels 30 -qvalRleEncoding -truncateNames
- **m5:** -best -q1levels 30 -q2levels 30 -q4levels standard -qvalRleEncoding -mmq 20 -q5levels 30 -truncateNames

recovery: -best -q1levels 30 -q2levels standard -qvalRleEncoding -truncateNames -variantList <variants.vcf>

drop all: -best -q1levels 30 -q2levels 30 -q3levels 30 -q4levels 30 -qvalRleEncoding -truncateNames

Cram v0.85

lossless compression: --capture-all-quality-scores --capture-all-tags

lossy compression: --capture-insertion-quality-scores --capture-piled-quality-scores --capture-substitution-quality-scores

--capture-unmapped-quality-scores --capture-all-tags

decompression: --calculate-md-tag --calculate-nm-tag

Goby v2.1

lossless compression: --sorted --preserve-all-tags --preserve-soft-clips --preserve-all-mapped-qualities --ambiguity-threshold 1000000

decompression: <no options>

NOTE: Goby could compress/decompress the Reseq/hm (human) data set, however, the resulting BAM file contained less reads than the original. Goby could not compress the Reseq/chr20 (human) with 16GByte of dedicated RAM within two days after which we stopped the job.
IV. Computing Environment

The evaluation experiments were conducted on a server equipped with 2 Xeon E5520 processors and a total of 32GBytes of RAM. Both, cram and NGC, were executed using Java 1.7.0_02 64Bit with 4Gbytes of maximum heap size (-Xmx switch). Goby was executed using Java 1.6.0_27 64Bit as the latest version we used (v 2.1) did not run with Java 1.7. We also used 4Gbytes of maximum heap size, except for compressing the Reseq (E. coli, PE) data set where we used 16GByte as we ran into OutOfMemory errors.

V. Supplementary Data Tables

This section contains the absolute data values from our evaluation experiments.

id	Sample	Evaluation mode	mapped reads	Bases and qvalues	BAM [byte]	CRAM [byte]	Comp. ratio	Comp [s]	Decomp [s]	comp [min]	decomp [min]
1	Exome-seq (human)	lossless	3,239,217	323,921,700	199,019,319	129,302,897	0.65	67.52	166.60	1.1	2.8
		lossy	3,239,217	323,921,700	199,019,319	8,993,932	0.05	44.44	91.57	0.7	1.5
2	ChiP-seq (mouse)	lossless	13,824,441	497,679,876	637,462,912	282,756,168	0.44	200.71	468.84	3.3	7.8
		lossy	13,824,441	497,679,876	637,462,912	55,625,624	0.09	180.33	360.41	3.0	6.0
3	Reseq/hapma (human)	lossless	487,201	62,435,260	53,036,863	24,054,223	0.45	27.64	58.70	0.5	1.0
		lossy	487,201	62,435,260	53,036,863	4,342,572	0.08	27.45	50.81	0.5	0.8
4	RNA-seq (e.coli)	lossless	6,927,728	249,398,208	177,499,665	105,288,858	0.59	78.80	183.76	1.3	3.1
		lossy	6,927,728	249,398,208	177,499,665	4,979,867	0.03	61.80	124.19	1.0	2.1
5	Reseq (e.coli,PE)	lossless	44,938,891	4,538,790,538	2,945,453,583	2,308,990,877	0.78	1,212.96	2,976.40	20.2	49.6
		lossy	44,938,891	4,538,790,538	2,945,453,583	647,050,983	0.22	975.03	2,036.86	16.3	33.9
6	Reseq (e. coli)	lossless	19,379,287	697,654,332	654,501,526	339,334,229	0.52	218.61	521.37	3.6	8.7
		lossy	19,379,287	697,654,332	654,501,526	19,259,853	0.03	167.68	349.53	2.8	5.8
7	Reseq (a. thaliana)	lossless	11,651,942	419,469,912	503,542,318	235,324,311	0.47	159.18	376.83	2.7	6.3
		lossy	11,651,942	419,469,912	503,542,318	48,464,278	0.10	128.03	267.89	2.1	4.5
8	Reseq/chr20 (human)	lossless	50,663,069	5,116,969,969	5,867,598,471	4,055,011,808	0.69	1,572.47	3,894.58	26.2	64.9
		lossy	50,663,069	5,116,969,969	5,867,598,471	2,068,227,640	0.35	1,624.37	3,339.40	27.1	55.7

Table 1s: Cram evaluation data. The options for these modes are set as written above in Section III.
data set	compression	decompression	BIM [byte]	NGC [byte]	Comp. ratio	Space saving	NGC bases	% of total	decompression	BIM [byte]	Comp. ratio	Space saving	NGC bases	% of total	decompression	BIM [byte]	
(human)	requant (f)	1,319,417	557,158,510	194,019,319	0.56	0.13	43,462	0.00	557,158,510	194,019,319	0.56	0.13	43,462	0.00	557,158,510	194,019,319	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	(m3)	4,898,519	557,158,510	194,019,319	0.56	0.13	43,462	0.00	91,932,668	37,128,727	0.56	0.13	43,462	0.00	91,932,668	37,128,727	0.56
(human)	requant (f)	17,126,557	557,158,510	194,019,319	0.56	0.13	43,462	0.00	106,571,578	42,620,203	0.56	0.13	43,462	0.00	106,571,578	42,620,203	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	requant (f)	14,284,941	407,478,876	462,462,812	0.56	0.13	43,462	0.00	171,503,159	68,713,794	0.56	0.13	43,462	0.00	171,503,159	68,713,794	0.56
(human)	bestacc3	112,505,193	407,478,876	462,462,812	0.56	0.13	43,462	0.00	1,436,323	542,688	0.56	0.13	43,462	0.00	1,436,323	542,688	0.56
(human)	requant (f)	17,126,557	407,478,876	462,462,812	0.56	0.13	43,462	0.00	5,749,243	2,219,524	0.56	0.13	43,462	0.00	5,749,243	2,219,524	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	requant (f)	6,751,733	407,478,876	462,462,812	0.56	0.13	43,462	0.00	1,967,637	722,224	0.56	0.13	43,462	0.00	1,967,637	722,224	0.56
(human)	quant	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	dropall	1,432,519	407,478,876	462,462,812	0.56	0.13	43,462	0.00	1,432,519	542,688	0.56	0.13	43,462	0.00	1,432,519	542,688	0.56
(human)	requant (f)	72,766,925	407,478,876	462,462,812	0.56	0.13	43,462	0.00	72,766,925	2,973,219	0.56	0.13	43,462	0.00	72,766,925	2,973,219	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	requant (f)	60,955,660	407,478,876	462,462,812	0.56	0.13	43,462	0.00	60,955,660	2,496,888	0.56	0.13	43,462	0.00	60,955,660	2,496,888	0.56
(human)	requant (f)	10,061,098	407,478,876	462,462,812	0.56	0.13	43,462	0.00	10,061,098	4,207,201	0.56	0.13	43,462	0.00	10,061,098	4,207,201	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(human)	requant (f)	25,902,383	407,478,876	462,462,812	0.56	0.13	43,462	0.00	25,902,383	9,743,105	0.56	0.13	43,462	0.00	25,902,383	9,743,105	0.56
(human)	requant (f)	32,814,519	407,478,876	462,462,812	0.56	0.13	43,462	0.00	32,814,519	12,397,899	0.56	0.13	43,462	0.00	32,814,519	12,397,899	0.56
(human)	requant (f)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Table 2s: NGC compression ratios/times
Dataset	Q-value quantization strategy	Ty	Lp	Lr	Lc	Met	Nom	Metnome 融合	Nomnome 融合	Recommend	Recomen	Recommend	Recommen	Recommen
1	noquant (human)	3238	0	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
2	noquant (human)	3387	651	17	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
3	noquant (human)	3402	24	18	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
4	noquant (human)	3797	99	19	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
5	noquant (human)	3926	86	65	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
6	noquant (human)	31108	426	42	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
7	noquant (human)	31084	91	16	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
8	noquant (human)	31056	105	17	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%

Dataset	Q-value quantization strategy	Ty	Lp	Lr	Lc	Met	Nom	Metnome 融合	Nomnome 融合	Recommend	Recomen	Recommend	Recommen	Recommen
1	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
2	quant (human)	1397	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
3	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
4	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
5	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
6	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
7	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%
8	quant (human)	1287	100	0	0	0	100	0.000	0.000	0.000	0.000	0.000	100.0%	100.0%

Table 4s: Variant recovery (GATK)

Table 3s: Variant recovery (SAMTOOLS)
Data set	Q-value quantization strategy	prec	sens	%	Sorted coverage (%)
eXome-seq	no quant (lossless)	1.000	1.000	1.000	100.0%
(human)	dropout (drop-call)	0.539	0.966	0.998	96.6%
	quant-bestcall 1 (m2)	0.984	0.994	0.998	99.6%
	quant-bestcall 2 (m3)	0.995	0.996	0.999	99.6%
	quant-bestcall 3 (m3)	0.978	0.993	0.997	99.3%
	quant-recover (recovery)	1.000	0.993	0.998	99.3%
	quant-bestcall (m4)	0.978	0.983	0.994	98.3%
	bestcomp (m5)	0.974	0.983	0.994	98.3%
ChIP-seq	no quant (lossless)	1.000	1.000	1.000	100.0%
(mouse)	dropout (drop-call)	0.773	0.838	0.984	85.8%
	quant-bestcall 1 (m2)	0.988	0.987	0.993	98.7%
	quant-bestcall 2 (m3)	0.995	0.995	0.999	99.5%
	quant-bestcall 3 (m3)	0.979	0.983	0.993	98.3%
	quant-recover (recovery)	0.992	0.994	0.997	99.4%
	quant-bestcall (m4)	0.980	0.969	0.984	96.9%
	bestcomp (m5)	0.957	0.972	0.984	96.7%
Reseq/hapmap	no quant (lossless)	1.000	1.000	1.000	100.0%
(human)	dropout (drop-call)	0.838	0.908	0.986	90.8%
	quant-bestcall 1 (m2)	0.998	0.994	0.999	99.9%
	quant-bestcall 2 (m3)	0.998	0.997	1.000	99.7%
	quant-bestcall 3 (m3)	0.997	0.991	0.999	99.9%
	quant-recover (recovery)	0.998	0.997	0.999	99.9%
	quant-bestcall (m4)	0.995	0.987	0.985	98.7%
	bestcomp (m5)	0.965	0.976	0.988	97.6%
RNA-seq	no quant (lossless)	1.000	1.000	1.000	100.0%
(e. coli)	dropout (drop-call)	0.326	0.784	0.996	78.4%
	quant-bestcall 1 (m2)	0.993	0.948	1.000	94.8%
	quant-bestcall 2 (m3)	0.997	0.980	1.000	99.0%
	quant-bestcall 3 (m3)	0.910	0.948	1.000	94.8%
	quant-recover (recovery)	0.997	0.997	1.000	99.7%
	quant-bestcall (m4)	0.846	0.886	1.000	88.6%
	bestcomp (m5)	0.843	0.879	1.000	87.9%
Reseq/hapmap	no quant (lossless)	1.000	1.000	1.000	100.0%
(mouse)	dropout (drop-call)	0.153	0.984	1.000	98.4%
	quant-bestcall 1 (m2)	0.970	1.000	1.000	100.0%
	quant-bestcall 2 (m3)	1.000	1.000	1.000	100.0%
	quant-bestcall 3 (m3)	0.824	1.000	1.000	100.0%
	quant-recover (recovery)	0.980	1.000	1.000	100.0%
	quant-bestcall (m4)	0.869	0.904	1.000	90.4%
	bestcomp (m5)	0.869	0.904	1.000	90.4%
Reseq	no quant (lossless)	1.000	1.000	1.000	100.0%
(e. coli)	dropout (drop-call)	0.467	0.986	1.000	98.6%
	quant-bestcall 1 (m2)	0.987	1.000	1.000	100.0%
	quant-bestcall 2 (m3)	0.994	1.000	1.000	100.0%
	quant-bestcall 3 (m3)	0.955	0.994	1.000	99.6%
	quant-recover (recovery)	0.980	1.000	1.000	100.0%
	quant-bestcall (m4)	0.948	0.973	1.000	97.3%
	bestcomp (m5)	0.941	0.973	1.000	97.3%
Reseq/hapmap	no quant (lossless)	1.000	1.000	1.000	100.0%
(a. thaliana)	dropout (drop-call)	0.921	0.958	0.991	95.8%
	quant-bestcall 1 (m2)	0.997	0.994	0.998	99.4%
	quant-bestcall 2 (m3)	0.999	0.988	1.000	99.8%
	quant-bestcall 3 (m3)	0.994	0.992	0.998	99.2%
	quant-recover (recovery)	0.998	0.997	1.000	99.7%
	quant-bestcall (m4)	0.994	0.985	0.999	98.9%
	bestcomp (m5)	0.984	0.987	0.999	98.7%
Reseq/hapmap	no quant (lossless)	1.000	1.000	1.000	100.0%
(human)	dropout (drop-call)	0.911	0.972	0.997	97.4%
	quant-bestcall 1 (m2)	0.998	0.999	0.999	99.9%
	quant-bestcall 2 (m3)	1.000	1.000	1.000	100.0%
	quant-bestcall 3 (m3)	0.996	0.998	0.999	99.8%
	quant-recover (recovery)	0.999	0.999	1.000	99.9%
	quant-bestcall (m4)	0.998	0.994	0.999	99.4%
	bestcomp (m5)	0.997	0.994	0.999	99.4%
Table 5: Variant recovery (averaged)					