Fibration theorem for Waldhausen K-theory

Satoshi Mochizuki

Abstract

The goal of this note is to give a variant of the generic fibration theorem for Waldhausen K-theory without assuming the factorization axiom.

Introduction

The main purpose of this short note is giving a variant of the generic fibration theorem for Waldhausen K-theory. The theorem is first proven in [Wal85] and improved in [Sch06]. To give a more precise information, let C be a small category with cofibrations in the sense of [Wal85] and $v \subset w$ sets of weak equivalences in C such that w is extensional. Then the full subcategory C^w of C spaned by those of objects x such that the canonical morphism $0 \to x$ is in w is a subcategory with cofibrations in C and the inclusion functor $C^w \hookrightarrow C$ and the identity functor of C induces a sequence of simplicial categories:

$$vS \cdot C^w \to vS \cdot C \to wS \cdot C.$$

The original theorem in [Wal85] or [Sch06] says that if w is saturated and the pair (C, w) satisfies the factorization axiom, then the sequence above is a fibration sequence up to homotopy. But in practice, the factorization axiom is a strong condition for applications. In this paper we give an another sufficient applicable condition which makes the sequence above a fibration sequence up to homotopy. (See Theorem 2.2.)

Conventions. We mainly follows the notations in [Wal85]. For a pair of small categories X and Y, we write Y^X for the category whose objects are functors from X to Y and whose morphisms are natural transformations.

Acknowledgements. The author wishes to express his deep gratitude to Marco Schlichting for stimulating discussions.

1 Sets of morphisms in a small category

In this section, let C and D be small categories and we write $\text{Mor} C$ for the set of all morphisms in C. We mainly study heritability of properties for sets of morphisms in C by taking a right cofinal subset in $\mathbb{1.3}$, a pull-back by a functor in $\mathbb{1.5}$ and simplicial constructions in $\mathbb{1.7}$ We start by giving a glossary about properties for sets of morphisms.

Definition 1.1. Let S and T be sets of morphisms in C.

(1) We set

$$T \circ S := \{fg \in \text{Mor} C; \bullet \xrightarrow{g} \bullet \quad \text{where } g \in S \text{ and } f \in T\}.$$

(2) We say that S is a multiplicative set (resp. strictly multiplicative set, saturated set or satisfies the saturated axiom) if S is closed under finite compositions (resp. closed under isomorphisms and is a multiplicative set, resp. satisfies the two out of three property.) Namely it satisfies the following condition(s) (a) and (c) (resp. (b) and (c), resp. (d)):

(a) For any object x in C, the identity morphism id_x of x is in w.
(b) All isomorphisms in C are in w.
(c) For any pair of composable morphisms $\bullet \xrightarrow{f} \bullet \xrightarrow{g} \bullet$ in S, gf is also in S.

(d) For any pair of composable morphisms \(f \circ g \circ \bullet \circ \bullet \circ \bullet \in C \), if two of \(f, g \) and \(g f \) are in \(S \), then the other one is also in \(S \).

For a multiplicative system \(S \), we regard it as a subcategory of \(C \).

(3) We say that \(S \) is right permutative (resp. right reversible, resp. right Ore) with respect to \(T \) if it satisfies the following condition(s) (a) (resp. (b), resp. (a) and (b)):

(a) For any morphisms \(a : x \to z \) in \(S \) and \(b : y \to z \) in \(T \), there are an object \(u \) in \(C \) and morphisms \(a' : u \to y \) in \(S \) and \(b' : u \to x \) in \(T \) such that \(ba' = ba \).

(b) For any morphisms \(a, a' : x \to y \) in \(T \), if there exists a morphism \(b : y \to z \) in \(S \) such that \(ba = ba' \), then there exists a morphism \(c : u \to x \) in \(S \) such that \(ac = a'c \).

(4) We say that \(S \) is right localizing (in \(C \)) if \(S \) is a multiplicative and right Ore set with respect to \(\text{Mor} C \).

(5) We say that \(T \) is right cofinal in \(S \) if \(T \subset S \) and for any morphism \(x \to y \) in \(S \), there is a morphism \(z \to x \) in \(T \) such that the composition \(z \to y \) is also in \(T \).

Example 1.2 (Set of all isomorphisms). We write \(i_C \) or shorty \(i \) for the class of all isomorphisms in \(C \). Then \(i_C \) is a saturated, strictly multiplicative, right localizing set in \(C \).

Lemma 1.3. Let \(T \subset S \) and \(\mathcal{U} \) be sets of morphisms in \(C \). Assume that \(T \) is right cofinal in \(S \).

(1) If \(S \) is right permutative with respect to \(\mathcal{U} \) and \(\mathcal{U} \circ T \subset \mathcal{U} \), then \(T \) is also right permutative with respect to \(\mathcal{U} \).

(2) If \(S \) is right reversible with respect to \(\mathcal{U} \), then \(T \) is also right reversible with respect to \(\mathcal{U} \).

(3) If \(T \) is right permutative with respect to \(\mathcal{U} \) and \(T \circ \mathcal{U} \subset \mathcal{U} \), then \(S \) is also right permutative with respect to \(\mathcal{U} \).

(4) Assume that \(S \) is saturated and right localizing in \(C \) and \(T \) is a multiplicative set. Then the inclusion functor \(i : T \to S \) is a homotopy equivalence.

Proof. (1) For any morphisms \(f : a \to c \) and in \(\mathcal{U} \) and \(s : b \to c \) in \(T \), there are morphisms \(f' : d \to b \) in \(\mathcal{U} \) and \(s' : d \to a \) in \(S \) such that \(fs' = s'f' \). Since \(T \) is right cofinal in \(S \), there is a morphism \(s'' : e \to d \) in \(T \) such that the composition \(s's'' : e \to a \) is in \(T \). By the condition \(\mathcal{U} \circ T \subset \mathcal{U} \), the morphism \(f's'' \) is in \(\mathcal{U} \).

(2) For any morphisms \(f, g : a \to b \) in \(\mathcal{U} \), assume that there is a morphism \(s : b \to c \) in \(T \) such that \(sf = s'g \). Then there is a morphism \(s' : d \to a \) in \(S \) such that \(fs' = g s' \). Since \(T \) is right cofinal in \(S \), there is a morphism \(s'' : e \to d \) such that the composition \(s's'' : e \to a \) is in \(T \).

(3) Let \(f : a \to c \) and \(s : b \to c \) be morphisms in \(\mathcal{U} \) and \(S \) respectively. Then there is a morphism \(s' : b' \to b \) in \(T \) such that the composition \(s' \) : \(b' \to c \) in \(T \). Then there are morphisms \(s'' : d \to a \) in \(T \) and \(f' : d \to b' \) in \(\mathcal{U} \) such that \(ss'f' = fs'' \). By assumption the composition \(s'f' : d \to b' \) is in \(\mathcal{U} \).

(4) Let \(x \) be an object in \(S \). We write \(i/x \) for the category whose object is a pair \((y, a)\) of an object \(y \) in \(T \) and a morphism \(a : y \to x \) in \(S \) and whose morphism \((y, a) \to (z, b) \) is a morphism \(\alpha : y \to z \) in \(T \) such that \(a = ba \). Since the object \((x, i_d)\) is in \(i/x \), the category \(i/x \) is a non-empty category.

Claim. \(i/x \) is a cofiltering category. Namely

(a) For any objects \((y, a)\) and \((z, b)\) in \(i/x \), there are morphisms \(\alpha : (w, c) \to (y, a) \) and \(\beta : (w, c) \to (z, b) \) in \(i/x \).

(b) For any morphisms \(\alpha, \beta : (y, a) \to (z, b) \) in \(i/x \), there is a morphism \(\gamma : (w, c) \to (y, a) \) such that \(\alpha \gamma = \beta \gamma \).

Proof of Claim.

(a) Since \(S \) is right permutative with respect to \(\text{Mor} C \), there are morphisms \(b' : w' \to y \) and \(a' : w' \to z \) such that \(a' \) is in \(S \). Then by the saturated axiom for \(S \), \(ba' = ab' \) and \(b' \) are also in \(S \). By right cofinality of \(T \) in \(S \), there is a morphism \(\alpha : \gamma' \to \gamma \) such that the composition \(a' \) is in \(T \). By right cofinality of \(T \) in \(S \), there is a morphism \(\alpha : \gamma' \to \gamma \) such that the composition \(b' \gamma' \) is in \(T \). Then we set \(\alpha : \gamma' \to \gamma \) and \(c : = ac = ba \).

(b) Since \(S \) is right reversible with respect to \(\text{Mor} C \), the equalities \(ba = a = c \) implies that there is a morphism \(\gamma : \gamma' \to \gamma \) in \(S \) such that \(\alpha \gamma = \beta \gamma \). By right cofinality of \(T \) in \(T \), there is a morphism \(\gamma : \gamma' \to \gamma \) in \(T \) such that the composition \(\gamma \) is in \(T \). We set \(\gamma : = \gamma' \) and \(e : = a \gamma \).

By Corollary 2 and Theorem A in \([Qui73\, \S1]\), we obtain the desired result.
Definition 1.4. Let \(\phi : C \to D \) be a functor and \(S \) a non-empty set of morphisms in \(D \). We define the set of morphisms \(\phi^{-1} S \) in \(C \) the pull-back of \(S \) by \(\phi \) by the formula.

\[
\phi^{-1} S : = \{ f \in \text{Mor}_C; \phi(f) \in S \}.
\]

Lemma 1.5. Let \(\phi : C \to D \) be a functor and \(S \) a non-empty set of morphisms in \(D \). Then

1. If \(S \) is a multiplicative, (resp. strictly multiplicative, saturated) set in \(C \). Then \(\phi^{-1} S \) is also.
2. If \(\phi \) is full and essentially surjective and if \(T \) is right cofinal in \(S \), then \(\phi^{-1} T \) is right cofinal in \(\phi^{-1} S \).
3. If \(\phi \) is an equivalence of categories, \(S \) and \(T \) are strictly multiplicative sets (resp. \(S \) is a strictly multiplicative set) and \(S \) is right permutative (resp. reversible) with respect to \(T \), then \(\phi^{-1} S \) is right permutative (resp. reversible) with respect to \(\phi^{-1} T \).

Proof. (1) Since a functor sends an identity morphism (resp. isomorphism) to an identity morphism (resp. isomorphism), if \(S \) is closed under identity morphisms (resp. isomorphisms), then \(\phi^{-1} S \) is also. Let \(x \xrightarrow{a} y \xrightarrow{b} z \) be a pair of composable morphisms in \(C \). If two of \(ba \), \(b \) and \(a \) are in \(\phi^{-1} S \), then two of \(\phi(b)\phi(a) \), \(\phi(b) \) and \(\phi(a) \) are in \(S \). Therefore if \(S \) is closed under compositions (resp. a saturated set), then \(\phi^{-1} S \) is also.

(2) For any morphism \(s : x \to y \) in \(\phi^{-1} S \), there is a morphism \(t : z' \to \phi(x) \) in \(T \) such that the composition \(\phi(s)t \) is in \(T \). By essential surjectivity of \(\phi \), there are an object \(z \in C \) and an isomorphism \(t' : \phi(z) \cong z' \). By fullness of \(\phi \), there is a morphism \(t'' : z \to x \) in \(C \) such that \(\phi(t'') = t \). Since \(T \) is a strictly multiplicative set, the composition \(t'' \) is in \(T \) and therefore \(t'' \) is in \(\phi^{-1} T \).

(3) First assume that \(S \) is a strictly multiplicative, right permutative set with respect to \(T \) and \(T \) is a strictly multiplicative set. Let \(s : x \to z \) and \(t : y \to z \) be morphisms in \(\phi^{-1} S \) and \(\phi^{-1} T \) respectively. Then there are morphisms \(s' : w \to \phi(y) \) and \(t' : w' \to \phi(x) \) in \(S \) and \(T \) respectively such that \(\phi(s')t' = \phi(t)s' \). By essential surjectivity of \(\phi \), there are an object \(w \) in \(C \) and an isomorphism \(u : \phi(w) \cong w' \) in \(D \). Since \(S \) and \(T \) are strictly multiplicative sets, \(s'u \) and \(t'u \) are in \(S \) and \(T \) respectively. By fullness of \(\phi \), there are morphisms \(s'' : w \to y \) and \(t'' : w \to x \) in \(C \) such that \(s''u = \phi(s'') \) and \(t''u = \phi(t'') \). Notice that \(s''u \) and \(t''u \) are in \(\phi^{-1} S \) and \(\phi^{-1} T \) respectively. The equality \(\phi(st'') = \phi(s)t''u = \phi(t)s'u = \phi(ts'') \) and faithfulness of \(\phi \) imply the equality \(st'' = ts'' \).

Next assume that \(S \) is a strictly multiplicative, right permutative set with respect to \(T \). Let \(a, b : x \to y \) be morphisms in \(\phi^{-1} T \) and \(s : y \to z \) a morphism in \(\phi^{-1} S \) such that \(sa = sb \). Then there is a morphism \(t : w' \to \phi(x) \) in \(S \) such that \(at = bt \). By essential surjectivity of \(\phi \), there are an object \(u \) in \(C \) and an isomorphism \(u : \phi(w) \cong w' \) in \(D \). Since \(S \) is a strictly multiplicative set, \(tu \) is in \(S \). By fullness of \(\phi \), there is a morphism \(t' : w \to x \) in \(C \) such that \(\phi(t') = tu \). Notice that \(t' \) is in \(\phi^{-1} S \). The equalities \(\phi(at') = \phi(a)tu = \phi(b)tu = \phi(bt') \) and faithfulness of \(\phi \) imply the equality \(at' = bt' \).

Definition 1.6. For a multiplicative set \(S \) of \(C \), we define the simplicial subcategory \(C(-, S) \) in \(C^{[-]} \)

\[
[m] \to C(m, S)
\]

where \(C(m, S) \) is the full subcategory of \(C^{[m]} \) consisting of those functors which take values in \(S \). For each \(m \), we denote an object \(x \) in \(C(m, S) \) by

\[
x : x_0 \xrightarrow{i_0^1} x_1 \xrightarrow{i_1^2} x_2 \xrightarrow{i_2^3} \cdots \xrightarrow{i_{m-1}^m} x_m.
\]

For a set \(T \) of morphisms in \(C \), we define \(TC(m, S) \) to be the set of morphisms in \(C(m; S) \) by the formula

\[
TC(m, S) : = \{ f \in \text{Mor}_C(m; S); f_i \text{ is in } T \text{ for any } 0 \leq i \leq m \}.
\]

Lemma 1.7. Let \(S, T, U \) and \(V \) be non-empty sets of morphisms in \(C \) and \(n \) a non-negative integer. Then

1. Assume that \(T \) is a multiplicative set and right cofinal in \(S \), \(S \) is right permutative with respect to \(U \) and \(U \circ T \subset T \circ U \). Then \(TC(n; U) \) is right cofinal in \(SC(n; U) \).
2. Assume that \(U \circ S \subset T \) and \(U \circ S \subset U \circ S \subset T \circ U \), \(S \) is right permutative with respect to both \(T \) and \(U \) and all morphisms in \(S \) are monomorphisms. Then \(SC(n; U) \) is right permutative with respect to
\(T\mathcal{C}(n;\mathcal{U}) \).

(3) Assume that \(\mathcal{V} \) is a multiplicative, right cofinal set in \(S, \mathcal{U} \circ \mathcal{V} \subset \mathcal{V} \circ \mathcal{U} \) and \(S \) is a multiplicative, right permutative and reversible set with respect to both \(\mathcal{U} \) and \(T \) respectively. Then \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) is right reversible with respect to \(T\mathcal{C}(n;\mathcal{U}) \).

Proof. We proceed by induction on \(n \). If \(n = 0 \), then the assertion is hypothesis. We assume that \(n \geq 1 \). Let \(i: [n-1] \to [n] \) be the inclusion functor. We write \(i^*: \mathcal{C}(n;\mathcal{U}) \to \mathcal{C}(n-1;\mathcal{C}) \) for the induced functor by the composition with \(i \).

(1) Let \(s: a \to b \) a morphism in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \). Then there is a morphism \(t': c' \to a \) in \(T \) such that \(st' : c' \to b \) is in \(T \). Then since \(S \) is right permutative with respect to \(\mathcal{U} \), there is a morphism \(t'' : c'' \to a \) in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) such that \(d'' = c' \) and \(t'' = t' \). Applying the inductive hypothesis to \(i^*(st'')t'' \), there is a morphism \(i^*(st'')t'' \) in \(\mathcal{S}\mathcal{C}(n-1;\mathcal{U}) \) such that the composition \(i^*(st'')t'' \) is in \(\mathcal{S}\mathcal{C}(n-1;\mathcal{U}) \). Then by the condition \(\mathcal{U} \circ T \subset T \circ \mathcal{U} \), there are morphisms \(j: c_{n-1} \to c_{n} \) and \(t'' \) in \(\mathcal{U} \) and \(c_{n} \) in \(T \) such that \(j \). We define \(t : c \to b \) to be a morphism in \(\mathcal{T}\mathcal{C}(n;\mathcal{U}) \) by setting

\[
\begin{align*}
t_k: &= \frac{c_{n-1}^k}{c_k}, \quad t_k: = \frac{c_{n-1}^k}{c_k} \quad \text{for } 0 \leq k \leq n-2, \\
t_{n-1}: &= \frac{c_{n-1}}{c}, \quad t_n: = \frac{c_{n-1}}{c}
\end{align*}
\]

Then we can easily check that \(st : c \to b \) is in \(\mathcal{T}\mathcal{C}(n;\mathcal{U}) \).

(2) Let \(t: a \to b \) and \(s: c \to b \) be morphisms in \(\mathcal{T}\mathcal{S}(n;\mathcal{U}) \) and \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) respectively. Then there are morphisms \(p': d' \to a \) and \(q': d' \to c \) in \(S \) and \(T \) respectively such that \(s, q' \). By applying the inductive hypothesis to \(i^*(tq')q'' \), there is a morphism \(i^*(tq')q'' \) in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) such that \(i^*(tq')q'' \) is in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) respectively such that \(i^*(tq')q'' \). By assumption \(U \circ S \subset S \circ U \), there are morphisms \(j: d_{n+1}' \to d' \) and \(q'' \) in \(\mathcal{U} \) and \(p'' \) in \(\mathcal{U} \) such that \(p''j = i^*(p')p'' \) and \(q'' \). Notice that \(s_n \) is a monomorphism by assumption and we have equalities

\[
\begin{align*}
s_nq_{n+1}^d &= s_nq_{n+1}^d, \\
n_{n+1}^t &= t_n^d
\end{align*}
\]

Therefore we have the equality \(q_{n+1}^d = i_{n-1}^d \). Namely \(q : d \to c \) is actually a morphism in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \).

(3) Let \(f, g : a \to b \) be morphisms in \(\mathcal{T}\mathcal{C}(n;\mathcal{U}) \) and \(x: b \to c \) a morphism in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) such that \(sf = sq \). Then there is a morphism \(t': d' \to a \) in \(S \) such that \(fnt' = gn't' \). Since \(S \) is right permutative with respect to \(\mathcal{U} \), there is a morphism \(t'' : d'' \to a \) in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) such that \(d'' = d' \) and \(t'' = t' \). By applying the inductive hypothesis to \(i^*(ft'')i^*(gt'') \), there is a morphism \(i^*(ft'')i^*(gt'') \) in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) such that \(i^*(ft'')i^*(gt'') \) is in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) respectively such that \(i^*(ft'')i^*(gt'') \). Since \(\mathcal{V}(n-1;\mathcal{U}) \) is a right cofinal set in \(\mathcal{S}\mathcal{C}(n-1;\mathcal{U}) \) by (1), there is a morphism \(t'' \) in \(\mathcal{U} \mathcal{C}(n-1;\mathcal{U}) \) such that the composition \(t'' \) is in \(\mathcal{S}\mathcal{C}(n-1;\mathcal{U}) \). Then by the condition \(\mathcal{U} \circ T \subset T \circ \mathcal{U} \), there are morphisms \(j: d_{n-1} \to d'' \) and \(t'' \) in \(\mathcal{U} \) such that \(i^*(ft'')i^*(gt'') \). We define \(t : d \to a \) to be a morphism in \(\mathcal{S}\mathcal{C}(n;\mathcal{U}) \) by setting \(d_k = k_{n-1}^d \) and \(t_k = t_k^{d'^{(j)}}k_{n-1}^d \) for \(0 \leq k \leq n-1 \) and \(d_{n-1}^d = k_{n-1}^d \) for \(0 \leq k \leq n-2 \) and \(d_n = k_n^d \). Then \(f \) is strictly multiplicative. For any pair of sets of weak equivalences \(w \subset w \) in \(\mathcal{C} \) such that \(w \) is extensional, the inclusion functor \(\mathcal{C} \to \mathcal{C} \) and the identity functor of \(\mathcal{C} \) induce the sequence

\[
\mathcal{V}\mathcal{S}\mathcal{C} \to \mathcal{V}\mathcal{S}\mathcal{C} \to \mathcal{V}\mathcal{S}\mathcal{C}.
\]

\[\text{(1)}\]

2 Fibration theorem revisited

In this section, let \(\mathcal{C} \) be a small category with cofibrations and we write \(0 \) and \(\text{Cof} \mathcal{C} \) for the specific zero object and the set of all cofibrations in \(\mathcal{C} \) respectively. For any set of morphisms \(\mathcal{U} \) in \(\mathcal{C} \), we write \(\mathcal{C}^{\mathcal{U}} \) for the full subcategory of those objects \(x \) such that the canonical morphism \(0 \to x \) is in \(\mathcal{U} \). If a set of weak equivalences \(w \) in \(\mathcal{C} \) is extensional, then \(\mathcal{C}^{\mathcal{U}} \) is subcategory with cofibrations in \(\mathcal{C} \). For any set of weak equivalences \(w \subset w \) in \(\mathcal{C} \) such that \(w \) is extensional, the inclusion functor \(\mathcal{C}^{\mathcal{U}} \to \mathcal{C} \) and the identity functor of \(\mathcal{C} \) induce the sequence

\[
v\mathcal{S}\mathcal{C} \to v\mathcal{S}\mathcal{C} \to v\mathcal{S}\mathcal{C}.
\]

\[\text{(1)}\]
The main objective of this section, we will give a sufficient condition that the sequence (1) is a fibration up to homotopy. We start by looking into the proof of the generic fibration theorem in [Wal85].

Proposition 2.1. Let \(v \subseteq w \) be sets of weak equivalences in \(C \). Assume that \(w \) is extensional. Then the sequence (1) is a fibration up to homotopy if and only if the inclusion functor \(\bar{w}.C(_, v) \to w.S.C(_, v) \) of bisimplicial categories is a homotopy equivalence.

Proof. Since \(w \) is extensional, we have an isomorphism of bisimplicial categories

\[
\begin{bmatrix}
vS.Cw \\
\downarrow
\end{bmatrix} \simeq \begin{bmatrix}
\bar{w}.C(_, v) \\
\downarrow
\end{bmatrix}.
\]

(See [Wal85, p.352].) Let us consider the following commutative diagram:

\[
\begin{array}{ccc}
vS.Cw & \to & vS.C \\
\downarrow & & \downarrow \\
\bar{w}.C(_, v) & \to & w.S.C(_, v)
\end{array}
\]

Here the top line is a fibration sequence, up to homotopy and the map II is a homotopy equivalence by [Wal85, 1.5.7., 1.6.5.]. Hence the bottom line is a fibration sequence up to homotopy if and only if the map I is a homotopy equivalence.

Theorem 2.2 (Fibration theorem). Let \(v \subseteq w \) be sets of weak equivalences in \(C \) such that \(w \) is saturated, extensional and right localizing in \(C \) and right permutative with respect to both \(v \) and \(Cof \) \(C \) and \(v \circ \bar{w} \subseteq \bar{w} \circ v \) and assume that all cofibrations in \(C \) are monomorphisms. Then the sequence (1) is a fibration up to homotopy.

Remark 2.3. Let \(w \) be a set of weak equivalences \(w \) in \(C \) and \(v = i_C \) the set of all isomorphisms in \(C \). Then we have \(v \circ \bar{w} \subseteq \bar{w} \circ v \). Namely \(v = i_C \) always satisfies the assumption in Theorem 2.2.

Example 2.4. Let \(E \) be a small exact category, \(A \) a right \(s \)-filtering subcategory of \(E \) and \(w \) a set of all weak isomorphisms associated to \(A \) in \(E \) in the sense of [Sch04]. Then the sets \(w \) and \(v = i_E \) satisfy the assumptions in Theorem 2.2 by [Sch04]. Therefore we have the fibration sequence

\[
K(A) \to K(E) \to K(E; w).
\]

Proof of Theorem 2.2. Let \(n \) and \(m \) be a non-negative integer and a positive integer respectively. We set \(B : = C(n, v) \) and \(A : = B(m - 1; Cof B) \). We enumerate assumptions in Theorem 2.2:

(A) \(w \) is saturated and extensional.
(B) \(w \) is right permutative with respect to \(Mor C \).
(C) \(w \) is right permutative with respect to \(v \).
(D) \(w \) is right reversible with respect to \(Mor C \).
(E) \(\bar{w} \) is right cofinal in \(w \).
(F) \(\bar{w} \) is right permutative with respect to \(Cof C \).
(G) \(\bar{w} \) is right permutative with respect to \(v \).
(H) \(v \circ \bar{w} \subseteq \bar{w} \circ v \).
(I) All cofibrations in \(C \) are monomorphims.
Claim. We have the following:

(a) \(\bar{w} \) is right permutative with respect to \(\text{Mor} \mathcal{C} \).

(b) \(\bar{w} \mathcal{B} \) is right cofinal in \(w \mathcal{B} \).

(c) \(\bar{w} \mathcal{B} \) is right permutative with respect to \(\text{Mor} \mathcal{B} \).

(d) \(\bar{w} \mathcal{B} \) is right permutative with respect to \(\text{Cof} \mathcal{B} \).

(e) \(\bar{w} \mathcal{B} \) is right reversible with respect to \(\text{Mor} \mathcal{B} \).

(f) \(\bar{w} \mathcal{A} \) is right cofinal in \(w \mathcal{A} \).

(g) \(\bar{w} \mathcal{A} \) is extensional and saturated in \(\mathcal{A} \).

(h) \(\bar{w} \mathcal{A} \) is right permutative with respect to \(\text{Mor} \mathcal{A} \).

(i) \(\bar{w} \mathcal{A} \) is right permutative with respect to \(\text{Mor} \mathcal{A} \).

(j) \(\bar{w} \mathcal{A} \) is right reversable with respect to \(\text{Mor} \mathcal{A} \).

(k) \(\bar{w} \mathcal{A} \) is right reversable with respect to \(\text{Mor} \mathcal{A} \).

Proof of claim. (a) We apply Lemma 1.7 (1) to \(S = w \), \(T = \bar{w} \) and \(\mathcal{U} = \text{Mor} \mathcal{C} \). Assumptions in Lemma 1.3 (1) follow from (B), (E) and \(\text{Mor} \mathcal{C} \circ \bar{w} \subset \text{Mor} \mathcal{C} \).

(b) We apply Lemma 1.7 (1) to \(S = w \), \(T = \bar{w} \) and \(\mathcal{U} = v \). Assumptions in Lemma 1.7 (1) follow from assumptions (E) and (H). Hence we get the result.

(c) We apply Lemma 1.7 (2) to \(S = \bar{w} \), \(T = \text{Mor} \mathcal{C} \) and \(\mathcal{U} = v \). Assumptions in Lemma 1.7 (2) follow from assumptions (a), (C), (H), (I) and \(\text{Mor} \mathcal{C} \circ \bar{w} \subset \text{Mor} \mathcal{C} \). Hence we get the result.

(d) We apply Lemma 1.7 (2) to \(S = \bar{w} \), \(T = \text{Cof} \mathcal{C} \) and \(\mathcal{U} = v \). Assumptions in Lemma 1.7 (2) follow from assumptions (F), (G), (H), (I) and \(\text{Cof} \mathcal{C} \circ \bar{w} \subset \text{Cof} \mathcal{C} \). Hence we get the result.

(e) We apply Lemma 1.3 (3) to \(S = w \mathcal{B} \), \(T = \bar{w} \mathcal{B} \) and \(\mathcal{U} = \text{Cof} \mathcal{B} \). Assumptions in Lemma 1.3 (3) follow from (b), (d) and \(\bar{w} \mathcal{B} \circ \text{Cof} \mathcal{B} \subset \text{Cof} \mathcal{B} \). Hence we obtain the result.

(f) We apply Lemma 1.7 (3) to \(S = \bar{v} = w \), \(T = \text{Mor} \mathcal{C} \) and \(\mathcal{U} = v \). Assumptions in Lemma 1.7 (3) follow from assumptions (A), (C), (D) and \(w \circ v \subset w \circ v \). The last condition follows from assumption \(v \subset w \). Hence we get the result.

(g) We apply Lemma 1.7 (1) to \(S = w \mathcal{B} \), \(T = \bar{w} \mathcal{B} \) and \(\mathcal{U} = \text{Cof} \mathcal{B} \). Assumptions in Lemma 1.7 (1) follow from (e) and \(\bar{w} \mathcal{B} \circ \text{Cof} \mathcal{B} \subset \text{Cof} \mathcal{B} \circ \text{Cof} \mathcal{B} \). The last condition follows from \(\bar{w} \mathcal{B} \circ \text{Cof} \mathcal{B} \subset \text{Cof} \mathcal{B} \circ \text{Cof} \mathcal{B} \). Hence we obtain the result.

Assertion (h) follows from (A) as in [Wal85].

(i) We apply Lemma 1.7 (2) to \(S = \bar{w} \mathcal{B} \), \(T = \text{Mor} \mathcal{B} \) and \(\mathcal{U} = \text{Cof} \mathcal{B} \). Assumptions in Lemma 1.7 (2) follow from assumptions (e) and \(\text{Cof} \mathcal{C} \circ \bar{w} \mathcal{B} \subset \bar{w} \mathcal{B} \circ \text{Cof} \mathcal{C} \) and \(\text{Mor} \mathcal{C} \circ \bar{w} \mathcal{B} \subset \text{Mor} \mathcal{B} \). Hence we get the result.

(j) We apply Lemma 1.3 (3) to \(S = w \mathcal{A} \), \(T = \bar{w} \mathcal{A} \) and \(\mathcal{U} = \text{Mor} \mathcal{A} \). Assumptions in Lemma 1.7 (3) follow from assumptions (g), (i) and \(\bar{w} \mathcal{A} \circ \text{Mor} \mathcal{A} \subset \text{Mor} \mathcal{A} \). Hence we get the result.

(k) We apply Lemma 1.7 (3) to \(S = w \mathcal{B} \), \(T = \text{Mor} \mathcal{B} \) and \(\mathcal{U} = \text{Cof} \mathcal{B} \) and \(V = \bar{w} \mathcal{B} \). Assumptions in Lemma 1.7 (2) follow from assumptions (b) and (e) and (f) and the facts that \(\text{Cof} \mathcal{B} \circ \bar{w} \mathcal{B} \subset \bar{w} \mathcal{B} \circ \text{Cof} \mathcal{B} \) and \(\bar{w} \mathcal{B} \) and \(w \mathcal{B} \) are multiplicative sets in \(B \). Hence we get the result.

Since the forgetful functor gives an equivalence of categories with cofibrations

\[
S_m \mathcal{A} \overset{\sim}{\to} B(m - 1; \text{Cof} \mathcal{B}),
\]

it turns out that \(\bar{w}S_m \mathcal{C}(n; v) \) is right cofinal in \(wS_m \mathcal{C}(n; v) \) and \(wS_m \mathcal{C}(n; v) \) is saturated, extensional and right localizing in \(S_m \mathcal{C}(n; v) \) by Lemma 1.5. Therefore the inclusion functor

\[
\bar{w}S_m \mathcal{C}(n; v) \hookrightarrow wS_m \mathcal{C}(n; v)
\]

is a homotopy equivalence by Lemma 1.3 (4). Hence by the realization lemma in [Seg74 Appendix A] or [Wal78, 5.1], the inclusion functor between bisimplicial categories

\[
\bar{w}S.C(\cdot; v) \hookrightarrow wS.C(\cdot; v)
\]

is a homotopy equivalence. Then the sequence (1) is a fibration sequence up to homotopy by Proposition 2.1.

\[\square\]
References

[Qui73] D. Quillen, Higher algebraic K-theory I, In Higher K-theories, Springer Lect. Notes Math. 341 (1973), p.85-147.

[Sch04] M. Schlichting, Delooping the K-theory of exact categories, Topology 43 (2004), p. 1089-1103.

[Sch06] M. Schlichting, Negative K-theory of derived categories, Math. Z. 253 (2006), p. 97-134.

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974), p.293-312.

[Wal78] F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), p.135-256.

[Wal85] F. Waldhausen, Algebraic K-theory of spaces, In Algebraic and geometric topology, Springer Lect. Notes Math. 1126 (1985), p. 318-419.