Household air conditioners (hereinafter referred to as ACs) are household appliances where the fungi tend to grow easily, and many users still suffer from the fungus contamination of ACs. Although a wide variety of fungi contaminates ACs, the dematiaceous fungi such as genus \textit{Toxicocladosporium} and genus \textit{Cladosporium} are particularly grown a lot in the blowers inside household ACs according to Hamada and Abe (2016). The authors examined fungal contamination of ACs in nearly 20 cases and often encountered cases in which large numbers of white filamentous fungal colonies presumed to be of the family Cordycipitaceae were isolated. Therefore, in this study, we attempted to identify the fungal species by identifying the colonies isolated from the four household room ACs, which were highly contaminated with Cordycipitaceae. In addition, since the \textit{Toxicocladosporium} could be isolated together with Cordycipitaceae, the species was also identified by the molecular phylogenetic analysis.

Household air conditioners are known to be contaminated with dematiaceous fungi such as genus \textit{Toxicocladosporium} and genus \textit{Cladosporium}. We frequently encounter cases in which a large amount of fungi, which are presumed to belong to the family Cordycipitaceae, are isolated from the blowout air of the household air conditioners. Therefore, the Cordycipitaceae isolated in the survey of four cases of the air conditioners were identified by genetic analyses. As a result, all of them were found to be \textit{Simplicillium sympodiophorum}. The concentration of airborne fungi, \textit{S. sympodiophorum} in the blowout air was high ($> 10^4$ cfu/m3) as exceeding the upper limit of quantification in three of four cases, and 5,000 cfu/m3 in one case. This study revealed that \textit{S. sympodiophorum} contaminated multiple air conditioners. Genus \textit{Toxicocladosporium} was also isolated from the two air conditioners, and it was found to be \textit{Toxicocladosporium irritans} by the genetic analysis.

\textbf{Key words}: Airborne fungi / \textit{Aspergillus} / \textit{Penicillium} / Air conditioning / Mold contamination.

*Corresponding author. Tel: +81-3-6891-8505, Fax: +81-3-6891-8517, E-mail: hashimoto(a)fcg-r.co.jp
Fungi collected on DG18 plates were cultured at 25°C for seven days for subsequent counting. Feller’s formula (Feller, 1950; Karwowska, 2005) was used to correct for coincidence loss in the number of isolated colonies. Isolates were identified based on their colony and microscopic characteristics after subculturing on PDA (potato dextrose agar; Nissui, Japan), MEA (malt extract agar; Difco, USA), CYA (czapek yeast extract agar; Samson et al., 2019) plates. Isolation was identified based on the description of Samson et al. (2019). When large numbers of colonies of the same species presumed to be major contaminated fungi were isolated, one

Strains isolated in this study	GenBank accs. No.	Air conditioner
NBRC 114579 Simplicillium sympodiophorum	LC545405	Case 1
FCG 2097 Simplicillium sympodiophorum	LC545406	Case 2
NBRC 114578 Simplicillium sympodiophorum	LC545404	Case 3
FCG 1835 Simplicillium sympodiophorum	LC545403	Case 4
FCG 2024 Toxicocladosporium irritans	LC545408	Case 1
NBRC 114583 Toxicocladosporium irritans	LC545407	Case 3

Table 1. Strains used for drawing the phylogenetic tree (ITS region).

Strains isolated in this study	GenBank accs. No.	Air conditioner
NBRC 114579 Simplicillium sympodiophorum	LC545405	Case 1
FCG 2097 Simplicillium sympodiophorum	LC545406	Case 2
NBRC 114578 Simplicillium sympodiophorum	LC545404	Case 3
FCG 1835 Simplicillium sympodiophorum	LC545403	Case 4
FCG 2024 Toxicocladosporium irritans	LC545408	Case 1
NBRC 114583 Toxicocladosporium irritans	LC545407	Case 3

Reference strains	Species	GenBank accs. No.	Status
JCM 18184 Simplicillium sympodiophorum	NR111027	Type	
IFM 63509 Simplicillium sympodiophorum	LC317790		
MAFF 242282 Simplicillium sympodiophorum	242282 a		
CGMCC 3.17943 Simplicillium calcicola	KU746706	Holotype	
CBS 116.25 Simplicillium lamellicola	NR111098	Type of Cephalosporium lamellicola	
CBS 311.74 Simplicillium obclavatum	NR111099	Type of Acremonium obclavatum	
JCM 18167 Simplicillium agashimaense	AB604002	Type	
JCM 18180 Simplicillium subtrropicum	NR111024	Type	
JCM 18169 Simplicillium cylindrosporum	NR111023	Type	
GY 11011 Simplicillium cicadellidae	MN006249	Holotype	
CBS 962.72 Simplicillium lanosoniveum	EF641862		
GY 29131 Simplicillium lepidopterorum	MN006251	Holotype	
JCM 18176 Simplicillium minatense	AB603992	Type	
COAD 2057 Simplicillium coffeanum	MF066034	Holotype	
URM 7918 Simplicillium filiforme	MH979338	Holotype	
CBS 102067 Lecanicillium lecanii	MH862778	Neotype of Cephalosporium lecanii	
CBS 504.83 Parenzyodontium album	LC092880	Epitype	
CBS 124157 Toxicocladosporium chlamydosporum	FJ790283	Holotype	
CBS 124159 Toxicocladosporium velox	NR155890	Type	
CPC 23639 Toxicocladosporium pini	KJ869160	Holotype	
CBS 126499 Toxicocladosporium protearum	HQ599586	Holotype	
CBS 128775 Toxicocladosporium pseudovelox	NR137774	Holotype	
CPC 21282 Toxicocladosporium ficiniae	KF777190	Holotype	
CBS 128215 Toxicocladosporium banksiae	HQ599598	Holotype	
URM 7489 Toxicocladosporium cacti	KY752806	Holotype	
CBS 185.58 Toxicocladosporium irritans	EU040243	Holotype	
CBS 140694 Toxicocladosporium hominis	LN834444	Holotype	
CBS 132535 Toxicocladosporium strelitziae	NR111765	Holotype	
CPC 19305 Toxicocladosporium posoqueriae	NR121555	Holotype	
URM 7491 Toxicocladosporium immaculatum	KY752815	Holotype	
CBS 119416 Cladosporium halotolerans	DQ780364	Holotype	

a Sequence ID of MAFF strains; data obtained from MAFF website (https://www.gene.affrc.go.jp/databases-micro_search.php).
strains per one AC was extracted and stored.

Stock cultures of fungi were identified by nuclear ribosomal internal transcribed spacer (ITS) region analysis, as described by Hashimoto et al. (2019). Molecular phylogenetic analysis was conducted in MEGA X (Kumar et al., 2018). A list of reference strains for drawing phylogenetic trees is shown in Table 1. The base sequence of each isolate was registered to GenBank, and some of the isolates were deposited and preserved at the NBRC.

Table 2 showed the changes in airborne fungal concentration before and after the operation of the ACs. In all cases, the airborne fungal concentration clearly increased after the operation, and three of them exceeded the maximum limit of quantitation. Cordycipitaceae, which were isolated in large quantities from four ACs, were identified as *Simplicillium sympodiophorum* by the ITS region of genetic analysis (Fig. 1 and Table 2). The four strains obtained from the air from each AC all corresponded to the type strain of *S. sympodiophorum* with the bootstrap probability (BP value) of 96% (Fig. 2). The concentration of *S. sympodiophorum* in the air before the operation of the ACs was 540 cfu/m³ in Case 1, whereas *S. sympodiophorum* was not detected in Cases 2, 3, and 4 (Fig. 1). The concentration of *S. sympodiophorum* sharply increased in the blowout air after the operation, and it exceeded the upper limit of quantification (>10⁴ cfu/m³) in Cases 1, 2, and 3, and was 5,000 cfu/m³ in Case 4 (Fig. 1).

Also in the ACs of Cases 1 and 3, mixing with a large amount of *S. sympodiophorum*, multiple colonies of dematiaceous fungi presumed to be the same species were isolated. As a result of molecular phylogenetic analysis, dematiaceous fungi isolated from the two ACs were all corresponded to *Toxicocladosporium irritans* with the BP value of 99% (Fig. 3). *T. irritans* was not detected in air before the operation of the ACs in Cases 1 and 3 (Fig. 1). The concentration of *T. irritans* increased in the blowout air after the operation, and it was 370 cfu/m³ and 14,000 cfu/m³ in Cases 1 and 3, respectively (Fig. 1).

Simplicillium belongs to the family Cordycipitaceae known as entomopathogenic fungi, and is mostly made up of anamorph species (Sung et al., 2007). *Simplicillium sympodiophorum* (Fig. 4) detected in large quantities in this study, was the new species proposed in 2013 (Nonaka et al., 2013). Its characteristics and distribution were not yet revealed due to its small numbers of isolated cases. The first case of its isolation was from the soil in Aogashima, Tokyo (Nonaka et al., 2013), and the second case was isolated from woodlice *Armadillidium vulgare* (Jaber et al., 2016). Since then, there has been a report, and this study revealed the fact that *S. sympodiophorum* contaminate multiple household room ACs for the first time. Although in common ACs, *Cladosporium, Toxicocladosporium, Penicillium*, and *Aspergillus* (Hamada and Abe, 2016; Moustafa, 2019) are found in large numbers, a much higher concentration of *S. sympodiophorum* was blown out in four cases this time.

Simplicillium have species that have entomopathogenic and plant-parasitic, but there is no clear case showing its pathogenicity to humans (Wei et al., 2019). Allergy is one of the diseases caused by airborne fungi in humans. Only a few fungi, such as *Alternaria* and *Aspergillus fumi
gatus*, were identified as important inhaled allergens, and many aspects of other fungi are little known as allergen factors (Fukutomi and Taniguchi, 2015). However, inhalation of high concentration of airborne fungi, even if they are non-pathogenic, over medium to long term may cause allergic symptoms (Oshikaka et al., 2017). Some reports showed the ACs used by people with symptoms of allergic bronchitis and the asthmatic response had a higher number of fungi attached to the inside of them than ACs used by healthy people (Hamada and Abe, 2016). Since *S.

TABLE 2. Four air conditioners analyzed in this study and total concentration of fungi in the blowout air before and after the operation.

Prefecture	Fungal conc. [cfu/m³]	Measurement date		
	ACs off	Immediately after ACs on		
Case 1	Hyogo	660	>10⁵	Nov. 2018
Case 2	Hyogo	40	>10⁵	Jul. 2019
Case 3	Osaka	920	>10⁴	Jul. 2019
Case 4	Kanagawa	330	5,500	Jun. 2017

>10⁵ and >10⁴ show that the values exceeded the upper limit of quantitation.

Fig 1, Fig 2, Fig 3, Fig 4
FIG. 1. The change of fungal concentration of five fungi in the blowout air before and after the operation of the ACs. nd: not detected.
sympodiophorum has been a blind spot as fungi, which has a possibility to highly exposure in indoor environment, this study would like to pay attention to them.

According to the report of household AC study conducted in recent years, genus *Toxicocladosporium* was the most common fungi that adhered to internal blowers (Hamada and Abe, 2016). This time, our study showed that these species are highly likely to be *Toxicocladosporium irritans*. *Toxicocladosporium* was newly created in 2007, and *T. irritans* was proposed as a type species at the same time (Crous et al., 2007). The various isolation sources of *T. irritans*, such as paints, ancient laid-paper, and some plants, were reported (Bezerra et al., 2017). In addition, it was also isolated from the devices inside the International Space Station or the Space Shuttle (Satoh et al., 2016), and it is presumed to widely distributed in the environment. Although there are not many cases of isolation of the *Toxicocladosporium* in Japan, it has been revealed that they commonly exist in indoor environment in Japan as DNA was detected by the next generation sequencing (NGS) analysis in ACs ducts (Yanagi, 2020).
FIG. 3. Phylogenetic tree for the isolates and related species of *Toxicocladosporium* constructed based on the analysis of the ITS region. The method of drawing a phylogenetic tree is the same as of Fig 2. The strain numbers marked by black circles are the strains obtained in this study. T indicates a type strain.

FIG. 4. *Simplicillium sympodiophorum* (NBRC 114579)
A. Colonies cultivated on PDA at 25 °C for 14 days, form white floccose aerial mycelium.
B. Conidiophores.
house dust (Hasegawa, 2020) recently. Furthermore, *Toxicocladosporium* were also detected by NGS analysis of human skin (Sugita et al., 2013), and it was reported that they involve in atopic dermatitis (Zhang et al., 2011).

Hamada (2016) reported that the number of fungi increased when frequency of air conditioners usage were high or length of time per usage were long, and the reason was predicted that the condensation inside the ACs becomes chronic. Abe (1998) demonstrated that inside of ACs were high humidity environment where hygrophilous fungi can grow easily. However, since *S. sympodiophorum* and *T. irritans* are not isolated in bathrooms and washing machines containing much moisture (Hamada and Abe, 2008; Hashimoto et al., 2019), it cannot conclude that they are likely to grow if the humidity is simply high. Although bedding, which exist in the same environment (bedrooms) as ACs, are also contamination sources of fungi, *S. sympodiophorum* and *T. irritans* are not isolated, probably because of relatively low in water (Hashimoto et al., 2020). Some factors in ACs may be facilitating the growth of these fungi. We would like to clarify the mechanism of its occurrence in the future.

ACKNOWLEDGEMENT

The authors would like to thank Mrs. Sayaka Sato for useful comments.

REFERENCES

Abe, K. (1998) Fungal index and contamination in air conditioners when cooled (in Japanese). J. Soc. Indoor Environ. Jpn., 1, 41-50.

Bezerra, J. D., Sandoval-Denis, M., Paiva, L. M., Silva, G. A., Groenewald, J. Z., Souza-Motta, C. M., and Crous, P. W. (2017) New endophytic *Toxicocladosporium* species from cacti in Brazil, and description of Neocladosporium gen. nov. IMA fungus. 8, 77.

Crous, P. W., Braun, U., Schubert, K., and Groenewald, J. Z. (2007) Delimiting Cladosporium from morphologically similar genera. Stud. Mycol., 58, 33-56.

Feller, W. (1950) An introduction to the probability theory and its application. John Wiley & Sons Inc. New York.

Fukutomi, Y., and Taniguchi, M. (2015) Sensitization to fungal allergens: resolved and unresolved issues. Allergol. Int., 64, 321-331.

Hamada, N. (2016) Factors affecting contamination by thermophilic fungi in air conditioners (in Japanese). J. Antibact. Antifung. Agents, 44, 349-356.

Hamada, N., and Abe, N. (2008) Characteristics of recent fungal contamination in bathrooms (in Japanese). J. Urban Living Health Assoc. 52, 98-106.

Hamada, N., and Abe, N. (2016) Contamination of air conditioners by thermophilic fungi (in Japanese). J. Antibact. Antifung. Agents, 44, 395-402.

Hasegawa, K. (2020) The air-related microbial contamination in the building and its measures (2) Indoor air movement in air conditioning systems and its microbial contamination (in Japanese). J. Antibact. Antifung. Agents, 48, 137-142.

Hashimoto, K., Fuji, H., and Kawakami, Y. (2019) Genetic identification of dematiaceous fungi isolated from washing machine in Japan, and considering of fungal removal methods. Biocontrol Sci., 24, 89-96.

Hashimoto, K., Yamazaki, F., Kohyama, N., and Kawakami, Y. (2020) Analysis of fungal flora in the dust of bedding in Japanese houses and genetic identification of yeasts isolated by general enumeration media, DG18. Biocontrol Sci., 25, 193-202.

Hashimoto, K., and Kawakami, Y. (2018) Effectiveness of airborne fungal removal by using a HEPA air purifier fan in houses. Biocontrol Sci., 23, 215-221.

Jaber, S., Mercier, A., Knio, K., Brun, S., and Kambris, Z. (2016) Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasit. Vectors, 9, 491.

Karwowska, E. (2005) Microbiological air 273 contamination in farming environment. Pol. J. Environ. Stud. Vol., 14, 445-449.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35, 1547-1549.

Moustafa, S. (2019) Possibility of reducing presence of harmful fungi in air-conditioner windows using a transcendental antifungal chemical. Egypt. Acad. J. Biolog. Sci., 4, 57-70.

Nonaka, K., Kaifuchi, S., Ōmura, S., and Masuma, R. (2013) Five new *Simplicillium* species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience, 54, 42-53.

Oshikata, C., Watanabe, M., Saito, A., Ishida, M., Kobayashi, S., Konuma, R., Kamata, Y., Terajima, J., Cho, J., Yanai, M., and Tsurikisawa, N. (2017) Allergic bronchopulmonary mycosis due to exposure to *Eurotium herbariorum* after the great east Japan earthquake. Prehospital Disaster Med., 32, 688-690.

Samson, R. A., Houbren, J., Thrane, U., Frisvad, J.C., and Andersen, B. (2019) *Food and Indoor fungi* (2nd ed.). 481pp. CBS, Utrecht.

Satoh, K., Yamazaki, T., Nakayama, T., Umeda, Y., Alshahni, M. M., Makimura, M., and Makimura, K. (2018) *Cordyceps* classification of Cordyceps and the clavicipitaceous fungi. MycoKeys, 35, 69-92.

Sugita, T., Zhang, E., Tanaka, T., Nishikawa, A., Tajima, M., and Tsuboi, R. (2013) Recent Advances in Research on *Malassezia* Microbiota in Humans (in Japanese). Med. Mycol. J., 54, 39-44.

Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Shrestha, B., and Sapatfora, J. W. (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol., 67, 5-59.

Wei, D. P., Wanasinghe, D. N., Hyde, K. D., Mortimer, P. E., Xu, J., Xiao, Y. P., Bhunjun, C. S., and To-anun, C. (2019) The genus *Simplicillium*. MycoKeys, 60, 69-92.

Yanagi, U. (2020) The air-related microbial contamination in the building and its measures (3) Microbial contamination in the aerial duct and its restraint measures (in Japanese). J. Antibact. Antifung. Agents, 48, 185-190.

Zhang, E., Tanaka, T., Tajima, M., Tsuboi, R., Nishikawa, A., and Sugita, T. (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol. Immunol., 55, 625-632.