FALSE POSITIVE PHENOTYPIC DETECTION OF METALLO-BETA-LACTAMASES IN \textit{ACINETOBACTER BAUMANNII}

Branka Bedenić1,2, Ranko Ladavac3, Mirna Vranić-Ladavac4, Nada Barišić4, Natalie Karčić4, Katherina Bernadette Sreter5, Slobodan Mihaljević6, Luka Bielen7, Haris Car8 and Nataša Beader1,2

1Department of Microbiology, School of Medicine, University of Zagreb, Zagreb, Croatia; 2Department of Clinical and Molecular Microbiology, Zagreb University Hospital Centre, Zagreb, Croatia; 3Department of Nephrology, Pula General Hospital, Pula, Croatia; 4Department of Microbiology, Public Health Institute of Istra County, Pula, Croatia; 5Department of Clinical Immunology, Pulmonology and Rheumatology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 6Department of Anesthesiology, Zagreb University Hospital Centre, Zagreb, Croatia; 7Department of Internal Medicine, Zagreb University Hospital Centre, Zagreb, Croatia; 8Zagreb Secondary Medical School, Zagreb, Croatia

SUMMARY – Phenotypic detection of metallo-\(\beta\)-lactamases (MBLs) in \textit{Acinetobacter (A.) baumannii} is a serious challenge to clinical microbiologists. MBLs are inhibited by metal chelators such as ethylenediaminetetraacetic acid (EDTA). Production of MBLs cannot be recognized based on resistance phenotype. Therefore, phenotypic tests using EDTA are recommended. The aim of this study was to investigate the sensitivity and specificity of inhibitor based tests (EDTA) for detection of MBL. A total of 172 \textit{A. baumannii} strains (123 carbapenemase positive and 49 carbapenemase negative) were analyzed. Phenotypic detection of MBLs was performed by the combined disk test with EDTA (CDT-EDTA) and EPI-dilution test (EPI-DT). Both tests were positive in all 11 isolates possessing VIM-1 MBL, showing 100% sensitivity. However, false positive results were observed in strains with class D carbapenemases using both tests, i.e. all OXA-23 and OXA-24/40 producing organisms and most OXA-58 positive strains (77% with CDT-EDTA vs. 65% with EPI-DT). False positive results can occur because oxacillinases are converted to a less active state in the presence of EDTA, leading to augmentation of the inhibition zone around the carbapenem disk or reduction of carbapenem minimum inhibitory concentrations. This study showed high sensitivity but low specificity of phenotypic methods in the detection of MBLs.

Key words: \(\beta\)-lactamases; Imipenem; Meropenem; \textit{Acinetobacter baumannii}; Edetic acid

Introduction

\textit{Acinetobacter (A.) baumannii} is a glucose non-fermentative gram-negative coccobacillus, considered a relevant nosocomial pathogen occurring particularly in intensive care units (ICUs), as well as in burn therapy units1. The most frequent healthcare-associated infections are urinary tract infections, bacteremia, surgical site infections, and ventilator-associated pneumonia. \textit{A. baumannii} strains become resistant to almost all antimicrobial agents, including carbapenem2. Beta-lactamase-mediated resistance is the most common mechanism of carbapenem resistance in this species. The most important mechanism of carbapenem resistance is the production of carbapenemases of class A.
Branka Bedenić et al. Detection of metallo-beta-lactamases (KPC)3, class B (metallo-beta-lactamases: metallo-beta-lactamases (MBLs) of IMP, VIM or SIM family)4-8 or class D carbapenem-hydrolyzing class D carbapenemases (CHDL)9. However, \textit{Acinetobacter} may develop resistance to carbapenems through various combined mechanisms, including decreased permeability, altered penicillin binding proteins (PBPs), and rarely, efflux pump overexpression10. The production of MBLs cannot be detected based on conventional susceptibility testing. Isolates co-harboring CHDL and MBLs have also been reported11-14, complicating the phenotypic detection. The genes encoding MBLs are located on integrons that frequently contain genes encoding extended spectrum beta-lactamases (ESBLs) and other resistance determinants, thus reducing therapeutic options15. Therefore, simple screening and inexpensive non-molecular methods need to be implemented in routine practice of diagnostic clinical laboratories. MBLs are inhibited by chelating agents such as ethylenediaminetetraacetic acid) (EDTA) and thiol compounds that are frequently used in inhibitor based detection methods16. Several tests have been proposed for the detection of MBLs in gram-negative bacteria with Epsilometer test (E-test) and combined disk test most commonly used17,24-25. Augmentation of the inhibition zone around imipenem and meropenem disk by at least 7 mm in the presence of EDTA was considered to be a positive result in disk diffusion, whereas an 8-fold (three dilutions) reduction in the minimum inhibitory concentration (MIC) of imipenem or meropenem by EDTA was indicative of the production of MBL in dilution test. The genes encoding MBLs (IMP, VIM, NDM, SIM) and carbapenem-hydrolyzing oxacillinases were detected by polymerase chain reaction (PCR) and sequencing in previous studies14,19,20.

Susceptibility testing

Susceptibility to imipenem and meropenem was tested by disk diffusion and broth microdilution test, and interpreted according to the CLSI criteria21-23.

Detection of metallo-beta-lactamases

Phenotypic detection of MBLs was performed by combined disk test with the addition of EDTA and by EPI-broth microdilution test with the addition of 1,10-phenanthroline and EDTA (0.5 mM)17,24-25. Augmentation of the inhibition zone around imipenem and meropenem disk by at least 7 mm in the presence of EDTA was considered to be a positive result in disk diffusion, whereas an 8-fold (three dilutions) reduction in the minimum inhibitory concentration (MIC) of imipenem or meropenem by EDTA was indicative of the production of MBL in dilution test. The genes encoding MBLs (IMP, VIM, NDM, SIM) and carbapenem-hydrolyzing oxacillinases were detected by polymerase chain reaction (PCR) and sequencing in previous studies14,19,20.

Results

Susceptibility testing

All carbapenemase positive strains, including MBL and CHDL were found to be resistant or intermediate susceptible to carbapenems with MICs of imipenem and meropenem ranging from 8 to \(>128\) mg/L. The carbapenemase negative strains were predominantly susceptible or intermediate susceptible to carbapenems with 10 strains exhibiting resistance to meropenem due to the insertion sequence IS\textit{Aba1} upstream of \textit{bla}_{\text{OXA-51}} gene.

Characterization of beta-lactamases

Twenty-seven strains were positive for \textit{bla}_{\text{OXA-23}}-like, 74 for \textit{bla}_{\text{OXA-40}}-like, and 22 for \textit{bla}_{\text{OXA-58}}-like genes.

Materials and Methods

Bacteria

A total of 172 (123 carbapenem-resistant and 49 carbapenem-susceptible) \textit{A. baumannii} strains were collected in this multicenter study (Pula General Hospital, Zagreb University Hospital Centre, Varaždin General Hospital, Sisak General Hospital, Merkur University Hospital, Dr Fran Mihaljević University Hospital for Infectious Diseases, Bjelovar General Hospital and Godan Nursing Home from Zagreb) during the 2009-2014 period from various clinical specimens and analyzed in our previous studies14,19,20.
Eleven of the bla_{OXA-23}–like positive isolates co-har-bored bla_{VIM-1} gene. Sequencing of representative bla genes revealed the presence of bla_{OXA-23}, bla_{OXA-72}, bla_{OXA-58}, and bla_{VIM-1} genes. Forty-nine strains were negative for acquired carbapenemases and were used as negative control strains.

Detection of metallo-β-lactamases

Combined disk test with EDTA and EPI-dilution test were positive in all 11 isolates possessing VIM-1 MBL, showing sensitivity of 100%, as illustrated in Table 1. However, false positive results in inhibitor based disk tests were observed in all OXA-23 and OXA-24/40 producing organisms with both disks, and in 77% and 73% of OXA-58 positive strains with imipenem and meropenem disk, respectively. Thus, the specificity of inhibitor based disk test was 0% for both OXA-23 and OXA-24/40, and 23% and 27% for OXA-58 producing strains, depending on the indicator disk. EPI dilution method yielded false positive results in all OXA-23 positive and OXA-24/40 positive strains and 68% of OXA-58 organisms (Table 1). For EPI-dilution test, the specificity was 0% for OXA-23 and OXA-24/40 positive isolates and 32% for OXA-58 producers. The carbapenemase negative strains yielded false positive results in disk test in 4 (8%) and 5 (10%) out of 49 strains with imipenem and meropenem disk, respectively. Only one strain demonstrated a false positive result in dilution method (2%).

The augmentation of the inhibition zone around imipenem disk in the presence of EDTA ranged from 8 to 16 mm with a median of 11 mm for OXA-23 MBL negative strains, 8 to 17 mm for OXA-24/40 (median 14 mm), and 4 to 18 mm for OXA-58 producers, as shown in Table 1. MBL positive strains showed an increase of the inhibition zone around imipenem disk of 8 to 15 mm (median 13 mm), as seen in Table 1. No significant increase of the inhibition zone was observed in carbapenemase negative strains (0 to 10 mm, median 5 mm).

The increase of the inhibition zone around the meropenem disk ranged from 9 to 17 mm for OXA-23 MBL negative strains (median 13 mm), 8 to 17 mm for OXA-24/40 positive strains (median 15 mm), and 5 to 19 mm for OXA-58 (median 13 mm). The true MBL positive strains showed enlargement of the inhibition zone around imipenem disk ranging from 12 to 18 mm (median 16 mm), as depicted in Table 1. Car-

Type of carbapenemase negative	Minimum inhibition concentrations (MICs)	Increase of the inhibition zone around the imipenem disk (range and median)	Increase of the inhibition zone around the meropenem disk (range and median)
VIM-OXA-23	11/11 (100%)	11/11 (100%)	11/11 (100%)
OXA-23	16/16 (100%)	16/16 (100%)	16/16 (100%)
OXA-24/40	74/74 (100%)	74/74 (100%)	74/74 (100%)
OXA-58	15/22 (68%)	15/22 (68%)	15/22 (68%)
Carbapenemase negative	1/49 (2%)	1/49 (2%)	1/49 (2%)

*both microdilution method with imipenem as indicator; †EDTA and 1,10-phenanthroline; ‡combined disk test with imipenem or meropenem disk as indicator
bapenemase negative strains yielded an increase of the inhibition zone around the imipenem disk ranging from 0 to 8 mm (median 5 mm).

The median enlargement of the inhibition zone for imipenem was highest with true MBL positive strains and OXA-24 producers (14 mm), followed by OXA-23 positive strains (11 mm) and OXA-58 (10.5 mm). The median increase of the meropenem inhibition zone in the presence of EDTA was highest with true MBL positive strains and OXA-24 producers (14 mm), followed by OXA-23 positive strains (11 mm) and OXA-58 (10.5 mm). EDTA embedded blank disks produced growth inhibition zones ranging from 4 to 7 mm due to the bactericidal effect of EDTA causing increased membrane permeability.

The positive predictive value of the combined disk test with imipenem disk among the carbapenemase positive isolates was very low (9.48%) due to the very high number of false positive results. However, the negative predictive value was 100% with carbapenem-resistant strains.

Discussion

Taken all together, the specificities of the combined disk test and EPI dilution test among OXA positive strains were very low (4.46% and 6.25%, respectively). Their specificities for MBL detection were much higher among *A. baumannii* strains that were carbapenemase negative (91.8% and 98%, respectively). The difference between false positive rates of MBL detection with imipenem as indicator among OXA positive and carbapenemase negative *A. baumannii* strains was found to be statistically significant (p<0.001).

High sensitivity of inhibitor based tests was previously reported in *A. baumannii*.

The difficulty to detect MBLs in *A. baumannii*, variable MICs of carbapenem, together with their potential to disseminate, highlights the need for an accurate screening method. E-test MBL is an easy and simple but expensive method. Inhibitor based test
with EDTA, although inexpensive and simple to perform, lacks specificity. Dilution method is both laborious and time consuming, and was also shown to have low specificity. Molecular methods are expensive and require well-equipped laboratories and educated staff. Therefore, detection of MBLs in A. baumannii is a huge challenge to clinical microbiologists, particularly in isolates with multiple carbapenem-resistance mechanisms, such as those co-harboring CHDL and MBL. The difficulties with phenotypic detection have also been reported for OXA-48 β-lactamase in Enterobacteriaceae.

Acknowledgment

This study was supported by grant BM 013, University of Zagreb, Croatia.

References

1. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148-65.
2. Mammina C, Palma DM, Bonura C, Aleo A, Fasciana T, Sodano C, et al. Epidemiology and clonality of carbapenem-resistant Acinetobacter baumannii from an intensive care unit in Palermo, Italy. BMC Res Notes. 2012;5:365, DOI: 10.1186/1756-0500-5-365.
3. Robledo IE, Aquino EE, Santé MI, Santana JL, Otero, DM, León CF, et al. Detection of KPC in Acinetobacter spp. as nosocomial pathogens in Europe. Lancet. 1999;353(9156):899-900, DOI: 10.1016/S0140-6736(98)05954-6.
4. Cornaglia G, Riccio ML, Mazzariol A, Lauretti L, Fontana R, Rossolini GM. Appearance of IMP-1 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus. 2016;5(1):1308, DOI: 10.1186/s40064-016-2986-7.
5. Bošnjak Z, Plečko V, Budimir A, Mareković I, Bedenić B. First report of NDM-1-producing Acinetobacter guillouiei. Chemotherapy. 2014;60(4):250-2, DOI: 10.1159/000381256.
6. Bedenić B, Beader N, Godič-Torkar K, Vranić-Ladavac M, Čipušič M, Pompe K, Luxner J, Veir Z, et al. Nursing home as a reservoir of carbapenem-resistant Acinetobacter baumannii. Microb Drug Resist. 2015;21(3):270-8, DOI: 10.1089/mdr.2014.0157.
7. Walsh TR, Bolmström A, Qvarnström A, Gales A. Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 2005;43(2):306-25, DOI: 10.1128/CMR.18.2.306-325.2005.
8. Walsh TR, Bolmström A, Qvarnström A, Gales A. Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 2005;43(2):306-25, DOI: 10.1128/CMR.18.2.306-325.2005.
9. Chatterjee S, Datta S, Roy S, Ramanan L, Saha A, Viswanathan R, et al. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: focus on NDM-1 and its linkage to ISAba1. Front Microbiol. 2016;7:1126, DOI: 10.3389/fmicb.2016.01126.
10. Kateete DP, Nakankujo R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus. 2016;5(1):1308, DOI: 10.1186/s40064-016-2986-7.
11. Chatterjee S, Datta S, Roy S, Ramanan L, Saha A, Viswanathan R, et al. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: focus on NDM-1 and its linkage to ISAba1. Front Microbiol. 2016;7:1126, DOI: 10.3389/fmicb.2016.01126.
12. Kateete DP, Nakankujo R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus. 2016;5(1):1308, DOI: 10.1186/s40064-016-2986-7.
13. Brown S, Amyes S. OXA (β)-lactamases in Enterobacteriaceae. Pseudomonas and Acinetobacter. Trends Microbiol. 2006;14(9):413-20, DOI: 10.1016/j.tim.2006.07.008.
14. Bedenić B, Beader N, Godič-Torkar K, Vranić-Ladavac M, Čipušič M, Pompe K, Luxner J, Veir Z, et al. Nursing home as a reservoir of carbapenem-resistant Acinetobacter baumannii. Microb Drug Resist. 2015;21(3):270-8, DOI: 10.1089/mdr.2014.0157.
15. Walsh TR, Bolmström A, Qvarnström A, Gales A. Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 2005;43(2):306-25, DOI: 10.1128/CMR.18.2.306-325.2005.
16. Walsh TR, Bolmström A, Qvarnström A, Gales A. Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 2005;43(2):306-25, DOI: 10.1128/CMR.18.2.306-325.2005.
17. Ratkai C, Quinteira S, Grosso F, Monteiro N, Nagy E, Peixe L. Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-beta-lactamases. J Antimicrob Chemother. 2005;56(4):620-3, DOI: 10.1093/jac/dki425.
18. Villalón P, Valdezate S, Medina-Pascual MJ, Rubio V, Vindel A, Saez-Nieto JA. Clonal diversity of nosocomial epidemic Acinetobacter baumannii strains isolated in Spain. J Antimicrob Chemother. 2005;56(4):620-3, DOI: 10.1093/jac/dki425.
19. Vrančić-Ladavac M, Bedenić B, Minandri F, Istoč M, Bojinak J, Frančula-Zaninović S, et al. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009-2010. Eur J Clin Microbiol Infect Dis. 2014;33(3):471-8, DOI: 10.1007/s10096-013-1991-9.
20. Vrančić-Ladavac M, Bedenić B, Minandri F, Istoč M, Bojinak J, Frančula-Zaninović S, et al. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009-2010. Eur J Clin Microbiol Infect Dis. 2014;33(3):471-8, DOI: 10.1007/s10096-013-1991-9.
21. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility testing. Approved 10th edition. CLSI document M02-A10. Clinical and Laboratory Standards Institute, Wayne, PA; 2009.

22. Clinical and Laboratory Standards Institute. Twentieth informational supplement. (June 2010 update). CLSI document M100-S20. Clinical and Laboratory Standards Institute, Wayne, PA; 2010.

23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 24th informational supplement. M100-S24 Clinical and Laboratory Standards Institute, Supplement M100S, Wayne, PA; 2014.

24. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol. 2000; 38(1):40-3.

25. Migliavacca R, Docquier JD, Mugnaioli C, Amicosante G, Daturs R, Lee K, et al. Simple microdilution test for detection of metallo-beta-lactamase production in Pseudomonas aeruginosa. J Clin Microbiol. 2002;40(11):4388-90. DOI: 10.1128/JCM.40.11.4388-4390.2002

26. Anwar M, Ejaz H, Zafar A, Hamid H. Phenotypic detection of metallo-beta-lactamases in carbapenem resistant Acinetobacter baumannii isolates from pediatric patients in Pakistan. J Patherg. 2016;2016:8603964, DOI: 10.1155/2016/8603964

27. Pluquet E, Arlet G, Bingen E, Drieux L, Mammeri H. Sensitive and specific phenotypic assay for metallo-beta-lactamase detection in Enterobacteria by use of moxalactam disk supplemented with EDTA. J Clin Microbiol. 2011;49(7):2667-70, DOI: 10.1128/JCM.00328-11

28. Kim SY, Hong SG, Moland ES, Thomson KS. Convenient test using a combination of chelating agents for detection of metallo-beta-lactamases in the clinical laboratory. J Clin Microbiol. 2007;45(9):2798-801, DOI: 10.1128/JCM.02486-06

29. Jajić I, Benčić A, Siroglavić M, Zarfel G, Ruzić B, Pezelj I, Bedenić B. Klebsiella pneumoniae OXA-48 in a urology patient: a case report. Acta Clin Croat. 2017;56(1):166-71. DOI: 10.20471/acc.2017.56.01.23

Sažetak

LAŽNO POZITIVNA FENOTIPSKA DETEKCIJA METALO-BETA-LAKTAMAZA U ACINETOBACTER BAUMANNII

B. Bedenić, R. Ladavac, M. Vranić-Ladavac, N. Bartić, N. Karić, K.B. Sreter, S. Mihaljević, L. Boilen, H. Car i N. Beader

Fenotipska detekcija metalo-β-laktamaza (MBL) u Acinetobacter (A.) baumannii je velik izazov kliničkim mikrobioložima. MBL su inhibirane metalnim kelatorima kao što je etilendiamin tetraoctena kiselina (EDTA). Produkcija MBL ne može se prepoznati na temelju fenotipa rezistencije. Zbog toga se preporuča primjena fenotipskih testova koji rabe metalne kelatore kao što je EDTA. Cilj istraživanja bio je utvrditi osjetljivost i specifičnost testova s inhibitorom (EDTA) u otkrivanju MBL u A. baumannii. Analizirana su 172 izolata A. baumannii (123 carbapenemaza pozitivnih i 49 carbapenemaza negativnih). Fenotipska detekcija MBL je provedena metodom kombiniranih diskova (EDTA CDT-EDTA) i EPI-dilucijkom metodom (EPI-DT). Oba testa su bila pozitivna u svih 11 izolata pozitivnih na VIM-1 MBL, što odgovara osjetljivosti od 100%. Lažno pozitivni rezultati su dobiveni u carbapenem-rezistentnim izolatima pozitivnim na klasu D carbapenemaza u oba testa: svi OXA-23 i OXA-24/40 kao i većina OXA-58 pozitivnih sojeva (77% u CDT-EDTA i 65% u EPI-DT). Lažno pozitivni rezultati u testovima s inhibitorom nastaju zbog toga što oksaslinaze prelaze u stanje manje aktivnosti u prisustvu EDTA, što dovodi do smanjenja minimalne inhibitorne koncentracije carbapenema ili do uvećanja zone oko diska karbapenema. Studija je pokazala visoku osjetljivost, ali nisku specifičnost fenotipskih testova za dokaz MBL u A. baumannii, što ukazuje na neophodnost korištenja molekularnih metoda.

Ključne riječi: Beta-laktamaze; Imipenem; Meropenem; Acinetobacter baumannii; Etilen-diamin tetraoctena kiselina