Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria

Mathew Adamu1, Milana Troskie2, David O Oshadu1, Dikeledi P Malatji2,3, Barend L Penzhorn2* and Paul T Matjila2,4

Abstract

Background: Canine babesiosis caused by Babesia rossi, transmitted by Haemaphysalis elliptica in South Africa, has also been reported from Nigeria. Although H. leachi (sensu lato) is widespread in sub-Saharan Africa, published literature on the occurrence of canine babesiosis is meagre. It has been postulated that the genotype of Babesia rossi Erythrocyte Membrane Antigen 1 (BrEMA1) may be linked to virulence of the specific isolate. The primary objective of this study was to detect and characterise tick-borne pathogens in dogs presented to a veterinary hospital using molecular techniques. In B. rossi-positive specimens, we aimed to determine whether the BrEMA1 gene occurred and to compare genotypes with those found in other isolates. Lastly, we wished to identify the tick species that were recovered from the sampled dogs.

Methods: Blood specimens (n = 100) were collected during January to March 2010 from domestic dogs presented at an animal hospital in Jos, Plateau State, Nigeria. They were screened for the presence of Babesia/Theileria and Ehrlichia/Anaplasma genomic DNA using PCR and Reverse Line Blot (RLB) assays. Positive B. rossi specimens were tested for the presence of the BrEMA1 gene using an RT-PCR. In addition, ticks were collected from dogs found to be infested during sampling.

Results: On RLB, 72 (72%) of the specimens were positive for one or more haemoparasites. Of the positive specimens, 38 (53%) were infected with B. rossi; 9 (13%) with Theileria sp. (sable); 5 (7%) with either Ehrlichia canis or Anaplasma sp. Omatjenne, respectively; 3 (4%) with Theileria equi; and 1 (1%) with B. vogeli and E. ruminantium, respectively. Co-infections were detected in 13 (18%) of the specimens. Results of RT-PCR screening for the BrEMA1 gene were negative. A total of 146 ticks belonging to 8 species were collected and identified: Rhipicephalus sanguineus 107 (73%), Haemaphysalis leachi (sensu stricto) 27 (18%), R. turanicus 3 (2%), and Amblyomma variegatum, H. elliptica, R. lunulatus, R. muhsamae and R. senegalensis 1 (1%), respectively.

Conclusions: Up to 8 tick-borne pathogens possibly occur in the dog population at Jos, with B. rossi being the most prevalent. The absence of the BrEMA1 gene suggests that B. rossi occurring in that area may be less virulent than South African isolates.

Keywords: Babesia rossi, BrEMA1, Haemaphysalis leachi, Haemaphysalis elliptica, Rhipicephalus sanguineus, Domestic dogs, Nigeria

* Correspondence: banie.penzhorn@up.ac.za
2Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
Full list of author information is available at the end of the article

© 2014 Adamu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Tick-borne pathogens remain an important cause of disease among canine populations world-wide. Canine babesiosis caused by *Babesia rossi* is the most common and economically important tick-borne disease in South Africa [1], where the known vector is *Haemaphysalis elliptica* (formerly lumped with *H. leachi*) [2]. Presence in Africa of the less virulent *Babesia vogeli*, transmitted by *Rhipicephalus sanguineus*, was confirmed in 2004 [3]. Although *H. leachi* (sensu lato) is a ubiquitous tick of tropical and southern Africa [2,4], the published literature on the occurrence of canine babesiosis in Africa is surprisingly meagre. Apart from South Africa, where the disease has been studied intensively, and Nigeria, the only published references traced were from Zimbabwe [5], Zambia [6,7], the Sudan [8] and the Cape Verde islands [9].

In Nigeria, canine babesiosis was first mentioned in an annual report of the Veterinary Department in 1926 [10]. The disease occurred more frequently in imported dogs, while puppies born in the country, especially those of indigenous breeds, developed the disease in a milder form and usually recovered. This situation has persisted over many years [11]. In a survey of 400 dogs sampled randomly from many parts of Nigeria, only eight dogs (2.3%) were positive for *B. rossi*, while a single dog was positive for *B. vogeli* [12]. Blood smears made from 500 dogs presented to veterinary clinics in Ibadan, Oyo State, were examined microscopically; 53 (26.0%) were found to be infected with *B. canis* (sensu lato), while 41 (20.2%) were infected with *B. gibsoni* [13]. *Babesia canis* (sensu lato) was reported from Zaria, Kaduna State [14,15]. A low prevalence (2.8%) of *B. canis* (sensu lato) infection was found in a blood-smear-based survey among slaughtered dogs in Maiduguri, Borno State [16]. Using molecular detection and characterisation on blood specimens of 181 dogs presented to veterinary hospitals in four states, *B. rossi* was detected in 2/17 dogs (11.8%) in Rivers State, while in Plateau State it was found in 6/41 (14.6%) dogs in Jos North and in 4/64 (4.8%) dogs in Jos South [17]. A single dog in Kaduna state was found to be positive for *B. vogeli* [17]. Interestingly, *B. canis* (sensu stricto) and *B. rossi* co-infection was found in a dog that had never left Vom, Plateau State [18]. This stimulated renewed interest in the epidemiology of canine babesiosis in Africa, as it was the first confirmation of the occurrence of *B. canis* in a geographical region were *Dermacentor reticulatus*, the only confirmed vector of *B. canis*, does not occur [18].

Clinical signs of canine babesiosis always include fever and splenomegaly, while inappetence, weakness, lethargy, generalised lymphadenopathy, anaemia and haemoglobinuria due to erythrolysis may also occur [19]. In some cases infection remains sub-clinical [20]. The clinical manifestation of *B. rossi* infection is classified as either uncomplicated or complicated [21,22]. It is regarded as uncomplicated if the clinical signs can be attributed solely to mild or moderate anaemia [21]. On the other hand, complicated cases are those where there is evidence of non-solid-organ failure characterised by severe anaemia and haemoconcentration or organ dysfunction/failure [22]. The mechanisms resulting in *B. rossi* being associated with such diverse clinical manifestations remain unknown. One possibility is that it may be due to genotypic differences among *B. rossi* strains, as has been suggested for *B. canis* (sensu stricto) [23]. A polymorphic phosphoprotein localised on the cytoplasmic surface of *B. rossi*-infected erythrocytes has been named *Babesia rossi* erythrocyte membrane antigen 1 (*BrEMA1*) [19]. *BrEMA1* genes of various laboratory strains code for polymorphic proteins that contain various numbers of repetitive hexapeptide motifs [19]. The exact function of this gene is unknown, but it is hypothesised that it may be related to virulence [19].

The primary objective of this study was to detect and characterise tick-borne pathogens in dogs presented to a veterinary hospital in Jos, Plateau State, Nigeria, using molecular techniques (Polymerase Chain Reaction and Reverse Line Blot). In *B. rossi*-positive specimens, we aimed to determine whether the *BrEMA1* gene occurred and to compare genotypes with those found in other isolates. Lastly, we wished to identify the tick species that were present on the sampled dogs.

Methods

Collection of samples
The study was carried out on dogs presented for treatment at the Evangelical Church Winning All (ECWA) Animal Hospital at Jos, Plateau State, Nigeria (9°56’N, 8°53’E; altitude 1217 m), virtually in the geographical centre of Nigeria. A total of 100 dogs were examined over a 3-month period (Jan-Mar 2010): 55 females and 43 males; in 2 cases the gender/age were not recorded. Of the 55 female dogs, 41 were < 18 months old and 14 were regarded as adult. Of the 43 male dogs, 25 were < 18 months old and 18 were regarded as adults. Dogs were clinically examined upon presentation. If detected, ticks were collected, stored in 70% alcohol and sent to the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa, for identification by stereomicroscopy [24]. Blood specimens were collected into EDTA tubes from the cephalic vein. From the EDTA tubes 80 μl of blood were micro-pipetted onto the Whatman FTA classic card (GE Healthcare UK Limited). These cards were dried and sent to the Department of Veterinary Tropical Diseases of the Faculty of Veterinary Science University of Pretoria, South Africa.
DNA extraction

DNA was extracted from the filter paper specimen. The QiaAmp blood and tissue kit (Qiagen, Hilden, Germany) was used for DNA extractions following the manufacturer’s protocols.

PCR

The Babesia/Theileria PCR was performed with primers RLB-F2 (5’-GAC ACAGGG AGG TAG TGA CAA G-3‘) and RLB-R2 (biotin-5‘-CTA AGA ATT TCA CCT CTG ACA GT-3‘) amplifying a fragment of 460–540 bp from the 18S rRNA gene spanning the V4 region [3,25]. The *Ehrlichia/Anaplasma* PCR was performed with primers Ehr-R (5‘-biotin-CGG GAT CCC GAG TTT GCC GGG ACT TYT TCT-3‘) and Ehr-F (50-GGA ATT CAG ATG TGG ATC MTG GYT CAG-30) amplifying a fragment of 460–520 bp from the V1 hypervariable region of the 16S SSU rRNA gene [26,27]. The conditions for the PCR included an initial step of 3 min at 42°C, 10 min at 94°C, 10 cycles of 94°C (20 s)–67°C (30 s)—72°C (30 s), with lowering of the annealing step after every second cycle by 2°C (touchdown PCR). The reaction was then followed by 40 cycles of denaturation at 94°C for 30 s, annealing at 57°C for 30 s and extension at 72°C for 30 s.

Reverse line blot hybridisation

RLB was subsequently conducted on amplified products (*Babesia, Theileria, Anaplasma* and *Ehrlichia*) as previously described [3]. The probes and their sequences used for detecting pathogen DNA are listed in Table 1. Each control that is included with every RLB test.

Real-time PCR

Primers FrepBrEMA1 (5‘-CCA ACA TTG ATG ACA A-3‘) and RepBrEMA1 (5‘-CTG CAT GTC AGC TTC ATC A-3‘) for real-time PCR were used to specifically amplify the BrEMA1 gene on samples that tested positive for *B. rossi* on RLB. The eBox Light Cycler DNA Master SYBR Green 1 Kit was used (Roche Diagnostics). The real-time PCR reaction mixture consisted of 13.4 μl of water PCR-grade, 1.6 μl MgCl2 (5 pmol), 1 μl (5 pmol) of each primer, 2 μl Light Cycler® DNA Master SYBR Green I and 1 μl of DNA to a total volume of 19 μl. The real-time PCR was performed in 32 capillaries. Light Cycler 2.0 (Roche Diagnostics) was used to amplify genomic DNA.

Sequencing

Two samples (RLB 42 and 67) that tested positive on RLB for *B. rossi* were randomly selected for 18S rRNA gene sequencing. The full-length 18S rRNA gene of both samples was amplified using 20 pmol of primers Nbab-1 F (5‘-AAGCCATGCATGTCAAGTATAAGCTTTT-T-3‘) and reverse primer TB 18S-Rev (5‘-GAATAATTACCGGGATCTACTCG-3‘) [28,29] to give a PCR amplicon of ca. 1700 base pairs. PCR amplification was done with 2.5 μl of extracted DNA in a final volume of 25 μl of PCR reaction containing 10 μl PCR grade water, 10 μM of each primer, and 12.5 μl of High Fidelity PCR Master. The cycling conditions consisted of an initial cycle of 5 min at 94°C, 30 cycles of amplification (94°C for 30 sec, 55°C for 30 sec and 72°C for 1 min) and 1 cycle of 7 min at 72°C. The PCR products were purified using the QIAquick PCR Purification Kit (Qiagen, Germany) and sent to a commercial laboratory (Inqaba Biotech) for sequencing.

Phylogenetic analysis

Sequence data for the full-length 18S rRNA gene were assembled and edited to a total length of 1532 bp using GAP4 of the Staden package (Version 1.6.0 for Windows) and deposited in Genbank [30]. The sequences were aligned with sequences of related genera using ClustalX (Version 1.81 for Windows). The alignments were adjusted manually using the BioEdit program (version 7.0.5.2) [31]. Two generated sequences and 18 Genbank sequences with 1532 characters where analysed. A phylogenetic tree was generated using the ‘GeneBee’ (www./genebee.msu.su/genebee.html) programme. Phylogenetic analyses using cluster distance algorithm method were carried out (Phylip, Multiline) into the program format from the aligned nucleotide sequences. In the cluster algorithm, the notion of distance between groups of sequences was used for setting the branching order (www./genebee.msu.su/genebee.html).

Nucleotide sequence accession numbers

The 18S rRNA gene sequences obtained from this study were submitted to GenBank under the following accession numbers: *B. rossi* RLB42: JQ 613104 and *B. rossi* RLB67: JQ 613105, respectively.

**Results**

The RLB results showed that 72 (72%) of the specimens were positive for one or more haemoparasites (Table 2). In the 72 infected dogs, single infections occurred in 49 (68.1%) and co-infections occurred in 23 (31.9%). Seven tick-transmitted pathogens were detected, while further undescribed species or species variants were also captured: in 6/72 (8%) specimens by the *Theileria/Babesia* catch-all probe and in 4/72 (6%) specimens by the *Ehrlichia/Anaplasma* catch-all probe. *Babesia rossi*, present in 53% of the dogs, was by far the more prevalent pathogen. Non-specific clinical signs such as inappetance, pyrexia, pale mucous membranes, rough hair coat, emaciation and weakness were observed, with 90% of the dogs showing 2 or 3 of these clinical signs. None of the
Table 1 List of organisms and their corresponding probe sequences used to detect pathogen DNA (Continued)

| Organism | Probe Sequence 1 | Probe Sequence 2 |
|----------|------------------|------------------|
| Ehrlichia/Anaplasma | GTA TGG TGC TAT GAG A | TGC GCA TTG CCA TCT CTG |
| Ehrlichia canis | GGA CGG AGT TCG CTT TG | GCC TGA AAT CCG CTT GGT |
| Babesia vogeli | GCC TTC CTT TG GAC TTG | CTG CAT TGG TTC TTG |
| Theileria annae | TGG CAT TGC TAT GAG C | TGC GCA TTC TCT CTC C |
| Theileria anulata | AGT ATC TGC TAG TGG CAG | AGT ATC TGC TAG TGG CAG |
| Theileria/Babesia catch-all | CCG AAG GTG ATG TTA TTA | CAA GGA AAC GTG AAT TTA TTA |
| Theileria bicornis | CAA GGA AAC GTG AAT TTA TTA | TTT GGG CCG CTC GGT CAG |
| Theileria buffelli | GGC TTA TGG CGT TTT GTG | TGC CTA TGG CCA TCA |
| Theileria catch-all | CTC GAG ATC CTC TCT TTG | CGG TTC TGG TCG TTT TGG |
| Theileria equi | ACC ATG CTT CTA TTA | TTA AAT TTA TTA AAT |
| Theileria lestoquardi | CTT GTG GCC TTC TGC | TTT GGG CCG CTC CTC |
| Theileria mutans | TCT GTG TCC CTC CGG | GCC TGG TGG TGC TTT |
| Theileria ovis | TTT GGG CCG CTC CTC | CTC CTC CTC CTC |
| Theileria parva | GGA CGG AGT TCG CTT TG | GGA CGG AGT TCG CTT TG |
| Theileria separatula | GGT CGT GGT CGT | AGC GAG GTG TTT ACT TTT |
| Theileria sp. (buffalo) | TTT GGG CCG CTC CTC | CAG ACG GAG TTT ACT TTT |
| Theileria sp. (duiker) | CAT TTT GGT TAT TGC ATT GTG | TTT GGG CCG CTC CTC |
| Theileria sp. (giraffe) | CGT CAT TGG TTC TTG | TTT GGG CCG CTC CTC |

Discussion

The main objective of this study was to use molecular techniques such as PCR/RLB to screen for the presence of tick-borne pathogens in a dog population in Nigeria. In addition, we aimed to determine whether the BrEMA1 gene, which has been postulated to be associated with virulence in *B. rossi*-infected dogs, was present [19]. The results of this study indicate the presence of a wide range of tick-borne pathogens circulating among the sampled dog population of Jos, Nigeria. The RLB results showed that 72% of the dogs screened harboured one or two tick-borne haemoparasites. The most common parasite recorded in this study was *B. rossi* (53%). The presence of *B. rossi* in dogs in Nigeria had been reported previously, but the prevalences found were much lower than the 53% that we report: 8/400 (2%) in a general survey [12] and 12/181 (6.6%) in dogs presented to veterinary hospitals [17]. At the Onderstepoort Veterinary Academic Hospital in South Africa, around 12% of all sick dogs presented at the outpatient clinic are diagnosed with babesiosis [32]. We found a single dog positive for *B. vogeli*, which confirms the very low prevalences reported in other studies.
Table 2 Number of dogs infected with single or multiple tick-borne pathogens

| Nature of infection | B. rossi | B. vogeli | E. canis | E. ruminantium | A. sp. (Omatjenne) | T. equi | T. sp. (sable) | B/T | E/A | Total |
|---------------------|----------|-----------|----------|----------------|-------------------|--------|---------------|-----|-----|-------|
| Single infection    | 31       | 0         | 1        | 0              | 4                 | 1      | 8             | 3   | 1   | 49    |
| Co-infection with:  |          |           |          |                |                   |        |               |     |     |       |
| B. rossi            | -        | 1         | 3        | 0              | 0                 | 2      | 1             | -   | 1   | 8     |
| B. vogeli           | 1        | -         | 0        | 0              | 0                 | 0      | 0             | -   | 0   | 1     |
| E. canis            | 3        | 0         | -        | 1              | 0                 | 0      | 0             | -   | 0   | 4     |
| E. ruminantium      | 0        | 0         | 1        | -              | 0                 | 0      | 0             | 0   | -   | 1     |
| A. sp. (Omatjenne)  | 0        | 0         | 0        | 0              | -                 | 0      | 0             | 1   | -   | 1     |
| T. equi             | 2        | 0         | 0        | 0              | 0                 | -      | 0             | -   | 0   | 2     |
| T. sp. (sable)      | 1        | 0         | 0        | 0              | 0                 | 0      | -             | -   | 2   | 3     |
| B/T                 | -        | -         | 0        | 0              | 1                 | -      | -             | -   | 0   | 1     |
| E/A                 | 0        | 0         | -        | -              | -                 | 0      | 0             | 2   | -   | 2     |
| Total               | 38       | 1         | 5        | 1              | 5                 | 3      | 9             | 6   | 4   | 72    |

B. rossi = Babesia rossi; B. vogeli = Babesia vogeli; E. canis = Ehrlichia canis; E. ruminantium = Ehrlichia ruminantium; A. sp. (Omatjenne) = Anaplasma species (Omatjenne); T. equi = Theileria equi; T. sp. (sable) = Theileria species (sable); B/T = Babesia/Theileria catch-all; E/A = Ehrlichia/Anaplasma catch-all.

Figure 1 Neighbor-joining tree, with the Kimura two-parameter distance [47] calculation showing the phylogenetic relationship of RLB 42 and 67 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains.
1/400 (0.25%) [12] and 1/181 (0.6%) [17]. This is interesting since the known vector, *R. sanguineus*, was the most numerous tick encountered in our study. While *H. leachi* (sensu stricto) was the second most abundant tick encountered, we found a single *H. elliptica*, the proven vector of *B. rossi* in South Africa. This suggests that *H. leachi* may also be a competent vector of *B. rossi* in Nigeria.

To our knowledge, these are the first reports of the possible occurrence in dogs of *Theileria equi*, *Theileria* sp. (sable), *Ehrlichia ruminantium* and *Anaplasma* sp. (Omatjennê) in Nigeria. The only *Theileria* sp. currently known to cause severe disease in domestic dog is *T. annae*, which was originally reported to occur in Spain [33,34]. *Theileria annae* has also been reported in North America, Portugal and Sweden [35-39]. *Theileria equi* and *T. annulata* have also been isolated from dogs in Spain [34,40]. The clinical significance of *T. equi* and/or *T. annulata* parasites in dogs remains unknown. *Theileria* sp. (sable), possibly found in 9 dogs in our study, is known to cause mortalities in sable antelopes, but is also reported from other species where it appears to be an incidental finding [41]. A parasite similar to *Theileria* sp. (sable), designated *Theileria* sp. (dog), has been reported as an incidental finding in South African dogs [42], while a single dog from Jos South, Nigeria, was reported to be positive for *Theileria* sp. [17]. Parasites known to be virulent in particular hosts may infect accidental hosts without causing disease [40]. This may also apply to *E. ruminantium* and *A. sp.* (Omatjennê) possibly detected in our specimens. Since *B. rossi* was the focus of our study, the presence of the DNA of the other haemoparasites found was not confirmed by DNA sequencing. This should be followed up to rule out possible contamination or misidentification.

The *BrEMA1* gene appears to be unique to *B. rossi* as it is absent in *B. vogeli* and *B. canis* isolates investigated [19]. At least 12 different *BrEMA1* genotypes have been reported in South Africa, of which 4 are associated with poor prognosis in *B. rossi*-infected dogs [19]. The negative results of the real-time PCR indicated that the *BrEMA1* gene was absent in all 38 specimens tested. This was surprising, but could possibly account for the absence of severe, complicated canine babesiosis cases in our sample. The question arises whether the *BrEMA1* gene is absent from *B. rossi* in other parts of Nigeria, as well as from other countries in sub-Saharan Africa.

In Nigeria, *Babesia* infections in dogs are usually mild and in some cases sub-clinical. This is contrary to the South African situation where *B. rossi* infections are often associated with clinical complications and mortalities. The reason for the virulence of the *B. rossi* isolates from South Africa may be due to the presence of wild canids, e.g., African wild dogs (*Lycaon pictus*) and black-backed jackals (*Canis mesomelas*), in the maintenance of the life cycle of *B. rossi* [43]. In Nigeria, wild canid populations have been persecuted to the point where there are no naturally occurring wild canids [44]. Given this fact, we can speculate that the life cycle of *B. rossi* is currently maintained only within the domestic dog population in Nigeria. This is contrary to the South African situation, where *B. rossi* has been detected and isolated from wild dogs. In addition *H. elliptica*, the known vector of *B. rossi*, has been collected from wild and domestic dogs in South Africa [45,46]. This may imply that *B. rossi* in Nigeria has through time and by natural selection lost its virulence, and by implication, the *BrEMA1* gene and its associated virulent genotypes. Thus, further studies will be required to investigate the role of wild canids in the maintenance of virulent *B. rossi* genotypes circulating within domestic dog populations.

Comparison of the *B. rossi* 18S rRNA gene sequences obtained indicates that the *B. rossi* sequences from Nigeria are closely related to the *B. rossi* from South Africa (Accession number: L 19079) and Sudan (Accession number: DQ 111760) with a 99% identity. Since the sequences are similar, this supports our conclusion that the *B. rossi* isolates circulating in domestic dogs in Nigeria are indeed true *B. rossi* (sensu stricto).

### Conclusions

At least 8 tick-borne pathogens possibly occurred in the sampled dog population at Jos, with *B. rossi* being the most prevalent. No severe or complicated cases of canine babesiosis were reported, suggesting either that the dogs cope fairly well with infection or that the *B. rossi* in that area is less virulent than elsewhere, e.g. in South Africa. The absence of the *BrEMA1* gene, which has been postulated as being linked with clinical outcome of infection, may possibly account for *B. rossi* occurring in that area being less virulent than South African isolates. The high prevalence of *B. rossi* infection indicates the presence of a competent vector of this pathogen; circumstantial evidence points to *H. leachi* (sensu stricto) being the vector.
Ethical consideration
This research was approved by the Research Committee of the College of Veterinary Medicine, University of Agriculture, Makurdi, Nigeria.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MA participated in designing the study and wrote the first draft; DOO collected the specimens; MT and DPM performed the laboratory work and did the phylogenetic analysis; BLP wrote the final draft of the manuscript; PTM supervised the project. All authors read and approved the final version of the manuscript.

Acknowledgements
We acknowledge all the clinicians at the ECWA Animal Hospital; Os, Plateau State, Nigeria, for their support and cooperation in collecting the samples and the clinical data made available to us. The first author thanks his employers, the University of Agriculture Makurdi and Tertiary Education Tax Fund (TETFund) Nigeria for sponsorship to the University of Pretoria. The National Research Foundation (NRF) South Africa is acknowledged for the financial support granted to PT Matijula under the Naledi Pandor Y-rated fund. National Research Foundation (NRF) South Africa is acknowledged for the financial support granted to PT Matijula under the Naledi Pandor Y-rated fund. Prof IG. Horak is sincerely acknowledged for identifying the collected ticks.

References
1.  Collett MC: Survey of canine babesiosis in South Africa. J S Afr Vet Assoc 2000, 71:180–186.
2.  Apanaskevich DA, Horak IG, Camicas JL: Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida, Ixodidae). Onderstepoort J Vet Res 2007, 74:181–208.
3.  Matijula PT, Penzhorn BL, Bekker CP, Njihof AM, Jongejan F: Confirmation of occurrence of Babesia canis vogeli in domestic dogs in South Africa. Vet Parasitol 2004, 122:19–125.
4.  Hoogstraal H: African ixodides. I. Ticks of the Sudan (with special reference to Equatoria Province and with preliminary reviews of the genera Boophilus, Margaropus and Hyalomma). Cairo: US Naval Medical Research Unit 3, Research report No 005 00529.07.1956.
5.  Matthewman LA, Kelly PJ, Bobade M, Tagwira PR, Mason A, Majok A, Broosq P, Raoul D: Infections with Babesia canis and Ehrlichia canis in dogs in Zimbabwe. Vet Rec 1993, 133:344–364.
6.  Nalubamba KS, Hankaenga C, Mucumbwa NB, Musiku M: The epidemiology of canine Babesia infections in Zambia. Prev Vet Med 2011, 99:240–244.
7.  Williams BM, Berentsen A, Shock BC, Teixeira M, Dunbar MR, Becker MS, Yablonsky ML: Prevalence and diversity of Babesia, Hepatozoon, Ehrlichia and Bartonella in wild and domestic canivores from Zambia, Africa. Parasitol Res 2013, doi:10.1007/s00436-013-3722-7.
8.  Oyamada M, Davout B, Boni M, Dereure J, Bucheton B, Hammad A, Itamoto K, Okuda M, Inokuma H: Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in dogs in a village of eastern Sudan by using a screening PCR and sequencing methodologies. Clin Diagn Lab Immunol 2005, 12:1343–1346.
9.  Götsch S, Leschnik M, Duscher G, Burgstaller JP, Wille-Piazzi W, Joachim A: Ticks and haemoparasites of dogs from Praia, Cape Verde. Vet Parasitol 2009, 166:171–174.
10. Leeffang P: Tick-borne diseases of domestic animals in northern Nigeria. I. Historical review, 1923–1966. Trop Anim Hlth Prod 1977, 9:147–152.
11. Leeffang P, Iernobadé AK: Tick-borne diseases of domestic animals in northern Nigeria. II. Research summary, 1966 to 1976. Trop Anim Hlth Prod 1977, 9:211–218.
12. Sasaki M, Omowobale O, Tazuka M, Ohka K, Matsu A, Nottidge HO, Hirata H, Ikeda H, Oyamada T: Molecular survey of Babesia canis in dogs in Nigeria. J Vet Med Sci 2007, 69:1191–1193.
13. Odutayo OE, Opeolu OO: Blood parasites of dogs in Ilorin. J Small Anim Pract 1976, 17:331–337.
14. Abdullahi SU, Mohammed AA, Trimnell AR, Sannusi A, AlfaIyato R: Clinical and haematological findings in 70 naturally occurring cases of canine Babesiosis. J Small Anim Pract 1990, 31:145–147.
15. Uthe NM, Gladele SB, Adamu S, Ibrahim NDG, Mok AJ, Eseho KAN: Aetiology and prevalence of canine anaemia in Zaria: A review of 2139 cases observed at the Veterinary Teaching hospital of the Ahmadu Bello University, Zaria, Nigeria 1990–2003. Vet Q 2005, 25:150–154.
16. Adamu NB, Adamu Y, Salisu L: Prevalence of ecto-, endo- and haemoparasites in slaughtered dogs in Maiduguri, Nigeria. Rev Méd Vét 2012, 163:178–182.
17. Kamani J, Bannet G, Mumcuoglu KY, Waziri N, Catt K, Ilyinkhym Y, Harus M: Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis 2013, 7(12):e2108. doi:10.1371/journal.pntd.0002108.
18. Kamani J, Sannusi A, Dogo AG, Tanko JT, Egwu KO, Tafarki AE, Ogo IN, Keressa S, Omovoh E, Shadumoli D, Lomrin LB, Catto V, Birkenheuer AJ: Babesia canis and Babesia rossi co-infection in an untravelled Nigerian dog. Vet Parasitol 2010, 173:334–335.
19. Matijula PT, Carcy B, Leiseiwitz AS, Schetters T, Jongejan F, Goorenlot A, Penzhorn BL: Preliminary evaluation of the BiEAM1 gene as a tool for associating Babesia rossi genotypes and clinical manifestation of canine babesiosis. J Clin Microbiol 2009, 47(11):3586. doi:10.1128/JCM.01110-08.
20. Matijauk T, Torf M, Schetters TP: Canine babesiosis in Europe: how many diseases? Trends Parasitol 2012, 28:99–105.
21. Jacobson LS, Clarke IA: The pathophysiology of canine babesiosis: new approaches to an old puzzle. J S Afr Vet Assoc 1994, 65:134–145.
22. Jacobson LS: The South African form of severe and complicated canine babesiosis: clinical advances 1994–2004. Vet Parasitol 2006, 138:126–139.
23. Bourdaisou G: Canine babesiosis in France. Vet Parasitol 2006, 138:118–125.
24. Walker AR, Bouattour A, Carmicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston GM: Ticks of domestic animals in Africa: a guide to identification of species. Atlanta: Houten, The Netherlands; 2003.
25. Gubbels JM, de Vos AP, Van der Weide M, Viseras J, Schouls LM, de Vries E, Jongejan F: Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol 1999, 37:1782–1789.
26. Bekker CP, de Vos S, Taufik A, Sparragano OA, Jeongej F: Simultaneous detection of Anaplasma and Ehrlichia species in ruminants and detection of Ehrlichia ruminantium and Amblyomma variegatum ticks by reverse line blot hybridization. Vet Microbiol 2002, 89:223–238.
27. Ebert D: Experimental evolution of parasites. Science (Washington) 1998, 282:432–435.
28. Oosthuizen MC, Zweegarth E, Collins NE, Trotkie M, Penzhorn BL: Identification of a novel Babesia sp. from sable antelope (Hippotragus niger, Harris 1838). J Clin Microbiol 2008, 46:2247–2251.
29. Brixoa R, Franssen R, Oosthuizen MC, Guthe A, Zweegarth E, Penzhorn BL, Jongejan F, Collins NE: Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa. Vet Parasitol 2009, 159:112–120.
30. Staden R, Beal NF, Bonfield JK: The Staden package, 1998. Methods Mol Biol 2000, 132:115–130.
31. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95–98.
32. Shakespeare AS: The incidence of canine babesiosis amongst sick dogs presented to the Onderstepoort Veterinary Academic Hospital. J S Afr Vet Assoc 1995, 54:57–51.
33. Camacho AT, Pellas E, Gestal JJ, Gunitan FJ, Olmeda AS, Goetert HK, Telford SR: Infection of dogs in North–West Spain with Babesia microti-like agent. Vet Rec 2001, 49:552–555.
34. Criado-Fornelio A, Martinez-Marcos A, Bulin-Sarana A, Barba-Carretero JC: Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe - Part II. Phylogenetic analysis and evolutionary history. Vet Parasitol 2003, 114:173–194.
35. Solano-Gallego L, Baneth G: Babesiosis in dogs and cats - expanding parasitological and clinical spectra. Vet Parasitol 2011, 181:48–60.
36. Diet P, Diet AK, Varshney JP: Evidence of new pathogenic Theileria species in dogs. J Parasitol Dis 2010, 34:29–32.
37. Yisachor-Mekuzas Y, Jaffe CL, Pastor J, Cardoso L, Baneth G: Identification of Babesia species infecting dogs using reverse line blot hybridization for six canine piroplasms and evaluation of co-infection by other vector-borne-pathogens. Vet Parasitol 2013, 191:367–373.
38. Yeagley TJ, Reichard MV, Hempstead JE, Allen KE, Parsons LM, White MA, Little SE, Meinkoth JH: Detection of Babesia gibsoni and the canine small Babesia "Spanish isolate" in blood samples obtained from dogs confiscated from dog fighting operations. J Am Vet Med Assoc 2009, 235:535–539.
39. Falkenö U, Tasker S, Osterman-Lind E, Tvedfen HW: Theileria annae in a young Swedish dog. Act Vet Scand 2013, 55:50–54.
40. Criado-Fornelio A, Gonzalez-del-Rio MA, Bulin-Sarana A, Barba-Carretero JC: The "expanding universe" of piroplasms. Vet Parasitol 2004, 119:337–345.
41. Nijhof AM, Pillay V, Steyl J, Prozesky L, Stoltz WH, Lawrence JA, Penzhorn BL, Jongejan F: Molecular characterization of Theileria species associated with mortality in four species of African antelopes. J Clin Microbiol 2005, 43:5907–5911.
42. Matjila PT, Leisewitz AL, Oosthuizen MC, Jongejan F, Penzhorn BL: Detection of a Theileria species in dogs in South Africa. Vet Parasitol 2008, 157:34–40.
43. Penzhorn BL: Why is Southern African canine babesiosis so virulent? An evolutionary perspective. Parasit Vectors 2011, 4:51. doi:10-1186/1756-3305-4-51.
44. Fanshawe JH, Frame LH, Ginsberg JR: The wild dog: Africa’s vanishing carnivore. Oryx 1991, 23:137–146.
45. Matjila PT, Leisewitz AL, Jongejan F, Bertschinger HJ, Penzhorn BL: Molecular detection of Babesia rossi and Hepatozoon sp. in African wild dogs (Lycaon pictus). Vet Parasitol 2008, 157:123–127.
46. Matjila PT, Leisewitz AL, Jongejan F, Penzhorn BL: Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa. Vet Parasitol 2008, 155:152–157.
47. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111–120.

Cite this article as: Adamu et al.: Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria. Parasites & Vectors 2014 7:119.