Report of SARS-CoV-2 B1.1.7 Lineage in Morocco

Mouna Ouadghiri,a Tarik Aanniz,a Abdelomunim Essabbar,a Myriam Seffar,a,b Hakima Kabbaj,a,b Ghizlane El Amin,b Amal Zouaki,b Saaid Amzazi,c Lahcen Belyamani,d Azeddine Ibrahimi,a

aMedical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
bLaboratoire Central de Virologie, Centre Hospitalo-Universitaire Ibn Sina, Hôpital des Spécialités, Rabat, Morocco
cLaboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
dEmergency Department, Military Hospital Mohammed V, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco

ABSTRACT

Here, we report the near-complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harboring the N501Y mutation assigned to the B.1.1.7 lineage. The sample was collected from a nasopharyngeal swab of a female patient from Temara, Morocco, and the sequencing was done using Ion S5 technology.

A new Betacoronavirus strain of the Coronaviridae family named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 19 (COVID-19) (1–3). The identification of new mutations may contribute to characterizing the virus, mapping its spread, and better understanding its biological and clinical features (4, 5). In this report, near-whole-genome sequencing (WGS) of SARS-CoV-2 was carried out using Ion S5 sequencing technology to detect new variants (6).

The sampling was carried out on 8 January 2021. RNA was extracted from a nasopharyngeal swab sample of a 48-year-old female from Temara, Morocco, at the Central Laboratory of Virology, Hospital of Specialties of Rabat, using a Maxwell RSC blood DNA extraction kit (Promega, USA). The patient was identified as positive for COVID-19 by reverse transcriptase quantitative PCR using a SARS-CoV-2 kit (MAScIR, Morocco) and exhibited cycle threshold (Ct) values of 19 for both S and RdRp genes. The cDNA was prepared using a SuperScript VILO cDNA synthesis kit (Invitrogen, Thermo Fisher Scientific, USA). A total of 15 ml of cDNA was used to prepare a SARS-CoV-2 library by using an Ion AmpliSeq kit for Chef DL8 (Thermo Fisher Scientific, USA). The library was adjusted to 30 pM and loaded onto the Ion Chef instrument (Thermo Fisher Scientific, USA) for emulsion PCR, enrichment, and loading onto the Ion S5 530 chip. WGS was performed using the Ion AmpliSeq SARS-CoV-2 research panel designed by Thermo Fisher Scientific for complete viral genome sequencing according to instructions for use on an Ion Gene Studio S5 Prime series system.

Raw data were analyzed using Torrent Suite software v 5.12.0. The NGS QC Toolkit v 2.3.3 was used to remove low-quality and short reads. Variant Caller v 5.10.1.19 was used to detect variants compared to the reference genome (Wuhan-Hu-1, GenBank accession number MN908947.3), while the consensus sequence was generated using IRMAreport v 1.3.0.2. The annotation was carried out using COVID19AnnotateSnpEff v 1.3.0.2, a plugin specifically developed for SARS-CoV-2. Default parameters were used for all software (7).

Our analysis allowed us to obtain a near-complete SARS-CoV-2 genome of 29,805 bp length with an average read length of 206 bp and an overall DNA G+C content of 37.98%. From 879,763 reads, 862,414 reads were correctly mapped, covering 97.56% of the total genome with a mean depth of 5,726×.

The genetic variant process revealed a total of 34 variations, including 15 in open reading frame 1ab (ORF1ab; 7 synonymous variants, 6 missense variants, 1 conservative in-frame...
TABLE 1 Types and effects of identified gene variations compared to the reference strain, Wuhan-Hu-1 (GenBank accession number MN908947.3)

Gene	Nucleotide position	Nucleotide change	Residue change	Effect
ORF1a	c.−25C>T	No change assigned	Upstream gene variant	
913	c.648C>T	p.Ser216Ser	Synonymous variant	
3037	c.2772C>T	p.Phe924Phe	Synonymous variant	
3267	c.3002C>T	p.Thr1001Ile	Missense variant	
5388	c.5123C>A	p.Ala1708Asp	Missense variant	
5986	c.5721C>T	p.Phe1907Phe	Synonymous variant	
6954	c.6689T>C	p.Ile2230Thr	Missense variant	
10277	c.10012C>T	p.Leu3338Phe	Missense variant	
11287	c.11023_11031delTCTGGTTTT	p.Ser3675_Phe3677del	Conservative in-frame deletion	
14408	c.14144C>T	p.Pro4715Leu	Missense variant	
14676	c.14412C>T	p.Pro4804Pro	Missense variant	
14925	c.14661C>T	p.Val4887Val	Missense variant	
15279	c.15015C>T	p.His5005His	Missense variant	
16176	c.15912T>C	pThr5304Thr	Synonymous variant	
17615	c.17351A>G	p.Lys5784Arg	Missense variant	
S	c.204_209delACATGT	p.His69_Val70del	Disruptive in-frame deletion	
21990	c.432_434delTTTA	p.Tyr145del	Disruptive in-frame deletion	
23063	c.1501A>T	p.Asn501Tyr	Missense variant	
23271	c.1709C>A	p.Ala570Asp	Missense variant	
23403	c.1841A>G	p.Asp614Gly	Missense variant	
23604	c.2042C>A	p.Pro681His	Missense variant	
23709	c.2147C>T	p.Thr716Ile	Missense variant	
24506	c.2944T>G	p.Ser982Ala	Missense variant	
24914	c.3352G>C	p.Asp1118His	Missense variant	
ORF8	c.79C>T	p.Gln27*	Stop gained	
28048	c.155G>T	p.Arg52Ile	Missense variant	
28111	c.218A>G	p.Tyr73Cys	Missense variant	
N	c.7G>C	p.Asp3His	Missense variant	
28281	c.8A>T	p.Asp3Val	Missense variant	
28282	c.9T>A	p.Asp3Glu	Missense variant	
28881	c.608G>A	p.Arg203Lys	Missense variant	
28882	c.609G>A	p.Arg203Arg	Synonymous variant	
28883	c.610G>C	p.Gly204Arg	Missense variant	
28977	c.704C>T	p.Ser235Phe	Missense variant	

* A stop codon.

deletion, and 1 upstream gene variant), 9 in spike genes (7 missense variants and 2 disruptive in-frame deletions), 3 in ORF8 (2 missense variants and 1 stop gained), and 7 in the N gene (6 missense variants and 1 synonymous variant). The spike gene carries the mutation known as N501Y (Asn501Tyr; c.1501A>T). This mutation cooccurs with several mutations, including missense mutations (A570D, P681H, T716I, S982A, and D1118H), as well as disruptive in-frame deletions (H69-V70 and Y145) (8, 9). The genomic features of the sequenced sample are summarized in Table 1. The phylogenetic analysis using Phylogenetic Assignment of Named Global Outbreak (PANGO) lineages (10) revealed that the strain belongs to the B1.1.7 lineage.

Data availability. This sequence was deposited in the GenBank and GISAID databases under the accession numbers MW803167 and EPI_ISL_1137621, respectively. The raw reads were deposited in the NCBI Sequence Read Archive (SRA) under the accession number SRR13811335.

Acknowledgments

This work was carried out under national funding from the Moroccan Ministry of Higher Education and Scientific Research (COVID-19 program) to AI. This work was also supported by a grant from the Moroccan Institute of Cancer Research and the PPR-1 program to AI.
We declare no competing interests.

REFERENCES

1. Alouane T, Laamarti M, Essabbar A, Hakmi M, Bouricha EM, Chemao-Elfihi MW, Kartti S, Bouricha N, Bendani H, Laamarti R, Ghrif F, Allam L, Aanniz T, Ouadghiri M, El Hafidi N, El Jaoudi R, Benrahma H, El Attar J, Mentag R, Sbabou L, Nejari C, Amzazi S, Belyamani L, Ibrahim A. 2020. Genomic diversity and hotspot mutations in 30,983 SARS-CoV-2 genomes: moving toward a universal vaccine for the “confined virus”? Pathogens 9:829. https://doi.org/10.3390/pathogens9100829.

2. Laamarti M, Chemao-Elfihi MW, Kartti S, Laamarti R, Allam L, Ouadghiri M, Smyej I, Rahoui J, Benrahma H, Diawara I, Alouane T, Essabbar A, Siah S, Karra M, El HN, El JR, Sbabou L, Nejari C, Amzazi S, Mentag R, Belyamani L, Ibrahim A. 2020. Genome sequences of six SARS-CoV-2 strains isolated in morocco, obtained using oxford nanopore minion technology. Microbiol Resour Announc 9:e00767-20. https://doi.org/10.1128/MRA.00767-20.

3. Laamarti M, Alouane T, Kartti S, Chemao-Elfihi MW, Hakmi M, Essabbar A, Laamarti M, Hlali H, Bendani H, Boumajdi N, Benhri F, Allam L, El Hafidi N, El Jaoudi R, Allali I, Marchoudi N, Fekkak J, Benrahma H, Nejari C, Amzazi S, Belyamani L, Ibrahim A. 2020. Large scale genomic analysis of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of hotspots mutations. PLoS One 15:e0240345. https://doi.org/10.1371/journal.pone.0240345.

4. Zaide G, Cohen-Gihon I, Israeli O, Stein D, Shifman O, Weiss S, Simon I, Laskar O, Beth-Din A, Zvi A. 2021. Mutation profile of SARS-CoV-2 genome sequences originating from eight Israeli patient isolates. Microbiol Resour Announc 10:e01387-20. https://doi.org/10.1128/MRA.01387-20.

5. Soratto TAT, Darban H, Bjerkner A, Coorens M, Albert J, Allander T, Andersson B. 2020. Four SARS-CoV-2 genome sequences from late April in Stockholm, Sweden, reveal a rare mutation in the spike protein. Microbiol Resour Announc 9:e00934-20. https://doi.org/10.1128/MRA.00934-20.

6. Lopez-Rincon A, Perez-Romero CA, Tonda A, Mendoza-Maldonado L, Claassen E, Garssen J, Kranerveld AD. 2021. Design of specific primer sets for the detection of B.1.1.7, B.1.351 and P.1 SARS-CoV-2 variants using deep learning. bioRxiv https://doi.org/10.1101/2021.01.20.427043.

7. Alessandrini F, Caucci S, Onofri V, Melchionda F, Tagliabrecchi A, Bagnarelli P, Di Sante L, Turchi C, Menzo S. 2020. Evaluation of the Ion AmpliSeq SARS-CoV-2 research panel by massive parallel sequencing. Genes 11:929. https://doi.org/10.3390/genes11080929.

8. Conti P, Carafta A, Gallenga CE, Krittas SK, Frydas I, Younes A, Di Emidio P, Tete G, Pregliasco F, Ronconi G. 2021. The British variant of the new coronavirus-19 (SARS-CoV-2) should not create a vaccine problem. J Biol Regul Homeost Agents 35:1–4.

9. Kathy L, Marcus SHH, Gabriel LM, Tommy LTY, Joseph WT. 2021. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 26:2002106. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106.

10. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, Du Plessis L, Pybus OG. 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5:1403–1407. https://doi.org/10.1038/s41564-020-0770-5.