Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term *Mycobacterium tuberculosis*-Infected Individuals in Colombia

Leonar Arroyo,* Mauricio Rojas,† Kees L. M. C. Franken,‡ Tom H. M. Ottenhoff,§ and Luis F. Barrera*†

*Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; †Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands;
‡Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands; §Outlet of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands

Multifunctional T cells have been shown to be protective in chronic viral infections. In mycobacterial infections, however, evidence for a protective role of multifunctional T cells remains inconclusive. Short-term cultures of peripheral blood mononuclear cells stimulated with the *Mycobacterium tuberculosis* RD1 antigens 6-kDa early secretory antigenic target (ESAT6) and 10-kDa culture filtrate antigen (CFP10), which are induced in the early infection phase, have been mainly used to assess T cell multifunctionality, although long-term culture assays have been proposed to be more sensitive than short-term assays for assessment of memory T cells, which are essential for long-term immunity. Here we used a long-term culture assay system to study the T cell immune responses to the *M. tuberculosis* latency-associated DosR antigens and reactivation-associated Rpf antigens, compared to ESA76 and CFP10, in patients with pulmonary tuberculosis (PTB) and household contacts of PTB patients with long-term latent tuberculosis infection (ltLTBI), in a community in which *M. tuberculosis* is endemic. Our results showed that the DosR antigens Rv1737c (narK2) and Rv2029c (pjkB) and the Rv2389c (rgpD) antigen of *M. tuberculosis* induced higher frequencies of CD4+ or CD8+ mono- or bifunctional (but not multifunctional) T cells producing interferon gamma (IFN-γ) and/or tumor necrosis alpha (TNF-α), and interleukin 2 (IL-2) in ltLTBI, compared to PTB. Moreover, the frequencies of CD4+ and/or CD8+ T cells with a CD45RO+CD27+ phenotype were higher in ltLTBI than in PTB. Thus, the immune responses to selected DosR and Rpf antigens may be associated with long-term latency, correlating with protection from *M. tuberculosis* reactivation in ltLTBI. Further study of the functional and memory phenotypes may contribute to further discrimination between the different states of *M. tuberculosis* infections.

Upon *Mycobacterium tuberculosis* infection, T cell populations (including Th1, Th2, Th17, and T regulatory cells) are induced that display both proinflammatory and anti-inflammatory responses, which are finely coordinated by secreted cytokines. Among the cytokines, interferon gamma (IFN-γ), tumor necrosis alpha (TNF-α), and interleukin 2 (IL-2) are considered major players in the Th1 response. Targeting of the *ifng* gene in mice, leading to deficient IFN-γ production, resulted in increased susceptibility to *M. tuberculosis* infection, identifying this cytokine as critical for host defense (1, 2). Regulated levels of IFN-γ are also important for the control of mycobacterial infections in humans. Mutations in the *IFNGR* genes or in genes that control IFN-γ production or signal transduction, such as *IL12B, IL12RB1, IFNGRI, IFNGR2, STAT1, ISG15, IRF8, NEMO*, and CYBB, have been all associated with susceptibility to mycobacterial infections (3, 4). In addition to IFN-γ, TNF-α plays a significant role in the promotion of monocyte and macrophage effector mechanisms and the maintenance of granuloma integrity (5, 6), contributing to infection control. The increased incidence of tuberculosis (TB) in autoimmune disease patients treated with anti-TNF-α antibodies (7) underscores the importance of this cytokine. Finally, IL-2 is essential for T cell differentiation and survival, the maintenance of effector functions, cell renewal, and T cell memory (8). Low levels of IL-2 have been observed in patients with active TB, compared to healthy controls (9, 10), and restoration of normal levels upon anti-TB treatment has been reported (11).

T cells capable of simultaneously producing two (bifunctional) or three (multifunctional) cytokines have been described in recent years. In chronic viral infections such as HIV and hepatitis C virus (HCV) infections, such multifunctional T cells have been associated with protective immune responses (12, 13). These data were extended to murine models of leishmaniasis (14), suggesting that similar immune responses might be important in protection against mycobacterial infections. To date, however, results have been inconclusive. A higher frequency of multifunctional CD4+ T cells, producing IFN-γ, TNF-α, and IL-2, in peripheral blood mononuclear cells (PBMCs) from patients with active pulmonary tuberculosis (PTB), compared to individuals with latent TB infection (LTBI), was reported (15–17) and decreased following anti-TB treatment (16, 17). However, others observed a lower frequency of multifunctional T cells in PTB, compared to LTBI (18–20), which increased after anti-TB treatment (18, 19). Furthermore, an increase in the frequency of bifunctional CD4+ T cells producing IFN-γ and IL-2 was reported for PTB patients.
Our results showed that NarK2, PfkB, and RpfD antigens induced healthy for a long time (5 to 7 years) after initial exposure to the index case (i.e., ltLTBI), and continuing to live in the same area with endemic disease as at the time of original contact. All of the HHCs were healthy at the time of blood sample collection, and all were negative for HIV. In this study, the HHCs did not receive anti-TB treatment (according to the regulations of the Colombian Ministry of Health). PTB patients had received a recent diagnosis of PTB, which was confirmed microbiologically or by culture, with no more than 2 weeks of antibiotic treatment. Mycobacterium bovis BCG vaccination status was determined according to the presence or absence of the typical scar.

Ethical clearance. Blood samples were collected only after written informed consent was obtained. Study protocols were approved by the Ethics Committee of the Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (Medellín, Colombia).

Reagents. RPMI 1640 medium and Dulbecco’s phosphate-buffered saline (DPBS) were obtained from Gibco (Grand Island, NY); Ficoll-Hypaque and penicillin-streptomycin solution from Bio-Whittaker (Walkersville, MD); dimethyl sulfoxide (DMSO), brefeldin A (BFA), bovine serum albumin (BSA), and sodium azide from Sigma-Aldrich (St. Louis, MO); pooled human serum (PHS) from Invitrogen (Eugene, OR); paraformaldehyde (PFA) from Mallinckrodt Baker (Phillipsburg, NJ); and Tween 20 from Promega (Madison, WI). The antibodies anti-CD4-fluorescein isothiocyanate (FITC)-Cy7 (clone OKT4), anti-CD25-peridinin chlorophyll protein (PerCP)-Cy5.5 (clone O323), anti-CD45RO-Pacific blue (clone UCHL1), anti-IFN-γ-PE (clone B27), anti-TNF-α-allophycocyanin (APC) (clone Mab11), and anti-IL-2 (clone MQ1-17H12) were obtained from BioLegend (San Diego, CA), and the antibody anti-CD8-APC-H7 (clone SK1) was obtained from Becton Dickinson (San Diego, CA).

Mycobacterial antigens. The RD1 ESAT6-CFP10 (E6-C10) fusion protein, DosR (Rv1273c, Rv2029c, and Rv2628c) and Rpf (Rv0867c and Rv2389c) antigens used throughout this study were described previously (34, 47). Additionally, PPD (RT50) from Staten Serum Institute (Copenhagen, Denmark) was included in this study. The concentrations of the DosR, Rpf, and RD1 antigens tested were the same as those reported previously (34).

Isolation of PBMCs and culture conditions. PBMCs were collected from sodium heparin-anticoagulated venous blood (10 ml) and were separated by Ficoll-Hypaque density gradient centrifugation. PBMCs were washed twice in DPBS and counted in a hemocytometer, and cell viability was determined by trypan blue exclusion (>94% for all experiments). The cell culture protocol was described previously (34, 36). In summary, 1.5 × 10^5 cells/well were seeded in triplicate in 96-well U-bottom plates (Corning Costar Inc., Corning, NY), in a final volume of 200 µl/well of RPMI 1640 medium supplemented with 100 U/ml of penicillin, 100 µg/ml of streptomycin, and 10% PHS. Cells were cultured in the presence or absence of 5 µg/ml (final concentration) of PPD, the fusion protein ESAT6-CFP10, or the selected DosR and Rpf antigens. Cell cultures were incubated for 168 h (7 days) at 37°C in 5% CO2 and 90% relative humidity.

Flow cytometric data analysis. To determine T cell phenotypes and cytokine production, cells were treated with 10 µg/ml of BFA 4 h before the end of culture, collected in polystyrene tubes, washed with DPBS,
incubated with blocking buffer (2% PHS, 0.05% NaN₃) for 20 min at 4°C, and then stained with anti-CD4-PE-Cy7, anti-CD8-APC-H7, anti-CD45RO-Pacific blue, and anti-CD27-PerCp-Cy5.5, fixed, permeabilized, and stained with anti-IFN-γ-PE, anti-TNF-α-APC, and anti-IL-2-FITC. A representative experiment with a sample from a latently infected individual and PPD stimulation is shown. Analyses were similar for CD4⁺ and CD8⁺ T cells. Briefly, after exclusion of doublets, CD4⁺ and CD8⁺ T cells were gated versus FSC-A and analyzed for intracellular IFN-γ, TNF-α, and IL-2. Analysis was performed with FlowJo v7.6.1, using the combination gate tool in order to obtain the frequencies of single- and multiple-cytokine-producing cells.

Statistical analysis. A chi-square test was used to test for differences in gender and the presence or absence of a BCG scar. The frequencies of the different combinations of IFN-γ, IL-2, and TNF-α-positive cells following antigenic stimulation were calculated within the total population of CD4⁺ and CD8⁺ T cells. Net values were obtained by subtracting the background values (nonstimulated cells). Data normality was tested with the Shapiro-Wilk normality test. The significance of median differences in the frequencies of single- or multiple-producer cells and the memory phenotype between individuals with ltLTBI and PTB patients was determined with the nonparametric Mann-Whitney U test. All statistical analyses were performed using GraphPad Prism v6.0 (GraphPad Software, San Diego, CA). Statistical differences were considered significant for P values of ≤0.05.

RESULTS

Study population. This study focused on a previously characterized community in the city of Medellín, Colombia, in which TB is endemic, with a high prevalence of M. tuberculosis infections (45). HHCs for whom peripheral blood cultures stimulated with the RD1 antigen CFP10 produced ≥22 pg/ml IFN-γ in a 7-day culture assay were considered infected (79.4%) (45). In the present study, we included 22 previously identified HHCs who had remained healthy for at least 5 years, with no clinical signs of active TB, and negative for HIV (individuals with ltLTBI) and 20 patients with confirmed (spum and/or culture) PTB from the same community. The median age was 37 years (range, 18 to 65 years) in the
ltLTBI group; 54% of the subjects were male, and 82% had been vaccinated with \textit{M. bovis} BCG. The PTB group showed a median age of 29 years (range, 19 to 58 years), 60% of the subjects were male, and 95% had been vaccinated with BCG. No significant differences in age and BCG vaccination rates were found between the ltLTBI and PTB groups (Table 1).

Multifunctional CD4\(^+\) and CD8\(^+\) T cell responses to DosR and Rpf antigens in ltLTBI and PTB. Most studies evaluating T cell responses to \textit{M. tuberculosis} DosR and Rpf antigens in LTBI and PTB have been based on IFN-\(\gamma\) detection (31, 32, 34, 35, 40, 52–54). Here, we used a 7-day stimulation assay to optimize sensitivity to detect latent infection, since short-term cultures (25, 55–57) are less sensitive in settings of high levels of endemicity, where mixtures of recent and old infections are commonly found (55).

Figure 2 and Table 2 show the responses of CD4\(^+\) T cells to E6-C10 and DosR and Rpf antigens. Individuals with ltLTBI displayed higher frequencies of monofunctional TNF-\(\alpha\)\(^+\) CD4\(^+\) T cells (\(P < 0.05\)) and bifunctional IFN-\(\gamma\)-TNF-\(\alpha\)\(^+\) CD4\(^+\) T cells (\(P < 0.05\)), compared to PTB patients; similar differences were observed for Rv2029c (PfkB) (\(P < 0.01\) and \(P < 0.05\), respectively). No significant differences in the frequencies of mono- and bifunctional CD4\(^+\) T cells in the ltLTBI and PTB groups in response to Rv1737c (Nark2) and Rv2628 were observed, although there was a trend for increasing frequencies in the ltLTBI group, compared to the PTB group. The frequency of monofunctional TNF-\(\alpha\)\(^+\) CD4\(^+\) T cells in response to the Rpf antigen Rv2389c (\(P < 0.05\)), but not Rv0867c, was higher for individuals with ltLTBI (Fig. 2). In response to PPD, individuals with ltLTBI displayed higher frequencies of monofunctional CD4\(^+\) TNF-\(\alpha\)\(^+\) (\(P < 0.05\)) and CD4\(^+\) IFN-\(\gamma\)\(^+\) (\(P < 0.05\)) T cells.

Characteristic	ltLTBI (\(n = 22\))	PTB (\(n = 20\))
Age (median [range]) (yr)	37 (18–65)	29 (19–58)
Male/female (%)	54/46	60/40
BCG scar positive (%)	82	95

TABLE 1 Characteristics of the study population

FIG 2 Frequencies of single- and multiple-cytokine-producing CD4\(^+\) T cells in ltLTBI and PTB. A total of 1.5 \(\times\) 10\(^5\) PBMCs from individuals with ltLTBI or PTB were cultured in triplicate for 7 days in the presence or absence of PPD, E6-C10, and DosR and Rpf antigens. CD4\(^+\) T cells were stained as described in Materials and Methods and then analyzed for intracellular production of IFN-\(\gamma\), TNF-\(\alpha\), and IL-2. The frequencies of single- and multiple-cytokine-producing CD4\(^+\) T cells were evaluated using the combination gate tool from FlowJo v7.6.1. Statistical differences between the groups were calculated with the Mann-Whitney U test. *, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\).
cells and bifunctional IFN-γ+ TNF-α+ CD4+ T cells (P < 0.001), compared to PTB patients (Fig. 2).

Figure 3 and Table 3 show the responses of CD8+ T cells. In this case, individuals with ltLTBI displayed higher frequencies of monofunctional IFN-γ+ T cells in response to Rv1737c and Rv2029c (P < 0.05), compared to patients with PTB. In addition, individuals with ltLTBI displayed higher frequencies of monofunctional TNF-α+ T cells (P < 0.05) and bifunctional IFN-γ+ TNF-α+ T cells (P < 0.001) in response to Rv2029c, compared to PTB patients. The frequency of monofunctional TNF-α+ CD8+ T cells in response to the Rpf antigen Rv2389c was also higher in the ltLTBI group (P < 0.01). In response to PPD, individuals with ltLTBI displayed higher frequencies of monofunctional TNF-α+ CD8+ T cells (P < 0.05) and bifunctional IFN-γ+ TNF-α+ T cells (P < 0.001), compared to PTB patients. No significant differences in the frequencies of mono- or bifunctional T cells in response to E6-C10, the DosR antigen Rv2628, or the Rpf antigen RpfA (Rv0867c) were observed, although similar trends could be observed.

Memory phenotypes of mono- and bifunctional CD4+ and CD8+ T cells. Joint analysis of T cell functions and phenotypes may help establish whether a particular immune response is associated with protective immunity (29). Therefore, we evaluated the memory phenotypes of monofunctional (IFN-γ+ or TNF-α+) (Fig. 4 and 5) and bifunctional (IFN-γ+ TNF-α+) (Fig. 6) CD4+ and CD8+ T cells upon stimulation with PPD, E6-C10, and the selected DosR and Rpf antigens in the same 7-day-stimulated PBMC cultures.

Increased frequencies of monofunctional (IFN-γ+ or TNF-α+) CD4+ T cells with a CD45RO+ CD27+ phenotype (T EM) were observed for individuals with ltLTBI, compared to PTB patients, in response to E6-C10 (P < 0.001 and P < 0.001, respectively), the DosR antigens Rv1737c (P < 0.05 and P < 0.001, respectively), Rv2029c (P < 0.05 and P < 0.001, respectively), and Rv2628 (P < 0.05 and P < 0.01, respectively), and the Rpf antigens Rv0867c (P < 0.05 and P < 0.01, respectively) and Rv2389c (P < 0.05 and P < 0.01, respectively) (Fig. 4 and 5); similar findings were observed upon stimulation with PPD (P < 0.01 and P < 0.001, respectively) (Fig. 4 and 5). In addition, individuals with ltLTBI displayed higher frequencies of bifunctional (IFN-γ+ TNF-α+) CD4+ T cells with a TEM phenotype in response to PPD (P < 0.001), E6-C10 (P < 0.001), Rv1737c (P < 0.01), Rv2029c (P < 0.001), Rv0867c (P < 0.05), and Rv2389c (P < 0.05) (Fig. 6).

In contrast, PTB patients displayed higher frequencies of monofunctional TNF-α+ CD4+ T cells with a CD45RO+ CD27+ (TEM) phenotype in response to PPD (P < 0.001) and the DosR antigen Rv2029c (P < 0.05) (Fig. 5). Also, PTB patients displayed higher frequencies of bifunctional IFN-γ+ TNF-α+ CD4+ T cells with a TEM phenotype upon stimulation with PPD (P < 0.001), E6-C10 (P < 0.001), Rv1737c (P < 0.01), Rv2029c (P < 0.001), Rv0867c (P < 0.05), and Rv2389 (P < 0.05) (Fig. 6).

DISCUSSION

In this study, which was performed in a community in Colombia in which TB is endemic, we characterized the functions and phenotypes of CD4+ and CD8+ T cells (by flow cytometry) in-
response to DosR regulon-encoded antigens and resuscitation Rpf antigens in individuals with ltLTBI and patients with PTB. We found that Rv1737c (NarK2), Rv2029c (PfkB), and Rv2389c (RpfD) antigens induced higher frequencies of CD4$^+$ or CD8$^+$ mono- or bifunctional T cells (producing IFN-γ and/or TNF-α) in ltLTBI, compared to PTB. In addition, higher frequencies of CD4$^+$ and/or CD8$^+$ mono- or bifunctional T cells with a TCM phenotype (CD45RO$^+$ CD27$^+$) in response to RD1, DosR, and Rpf antigens were observed in ltLTBI, compared to PTB. Conversely, higher frequencies of bifunctional CD4$^+$ or CD8$^+$ T cells with a TEM phenotype (CD45RO$^+$ CD27$^-$) in response to RD1, DosR, and Rpf antigens were observed in PTB, compared with ltLTBI. All of these data suggest that the response to $M. tuberculosis$ DosR and Rpf antigens may contribute to mycobacterial control in latent infection and may help to discriminate further between the different states of $M. tuberculosis$ infections.

In previous studies in the same community in which TB is endemic, we showed that HHCs with LTBI displayed higher frequencies of CD4$^+$ IFN-$\gamma$$^+$ T cells with a TCM phenotype (CD45RO$^+$ CD27$^+$) in response to $M. tuberculosis$ DosR and Rpf antigens, compared to PTB patients (34). More recently, we monitored the T cell immune responses to RD1, DosR, and Rpf antigens in HHCs with LTBI over a 12-month period after TB index case diagnosis. At 12 months, E6-C10$^+$ HHCs displayed decreases in IFN-γ levels in response to E6-C10, DosR, and Rpf antigens and a generalized decrease in cytokine production. Conversely, E6-C10$^-$ HHCs at the end of the follow-up period (12 months) showed increases in the IFN-γ responses and cytokine levels in response to E6-C10 (36). The maintenance of CD45RO$^+$ CD27$^+$ CD4$^+$ T cells in E6-C10$^+$ HHCs and their increase in E6-C10$^-$ HHCs suggested that CD45RO$^+$ CD27$^+$ T cells may play a protective role in the immune response controlling $M. tuberculosis$ infection and may be leading to a state of controlled latent infection (36). In viral infections, however, protective immune responses have been associated with the presence of multifunctional T cells, producing IFN-γ, TNF-α, and IL-2 (12, 13). Therefore, the presence and association of multifunctional T cell responses in TB have been examined by several groups, mostly...
in response to in vitro stimulation with ESAT6 and CFP10; as discussed above, however, results have been inconclusive (15–20).

It is now well established that, as a consequence of adaptation to the infected host cell intracellular milieu, *M. tuberculosis* changes its gene expression profile (37, 39). This implies that the immune response may develop a different specificity profile depending on the immunodominant antigens newly expressed by *M. tuberculosis* during its adaptation to the host. The DosR antigens become strongly expressed under stress conditions, including hypoxia, nutrient starvation, low pH, and high concentrations of reactive oxygen and nitrogen intermediates, all of which may mimic conditions inside granulomas (37–39). Also, expression patterns of rpfA-E genes have been observed during acute infection with *M. tuberculosis* (43, 44). Of note, the multifunctional T cell responses to DosR and Rpf antigens in communities in which *M. tuberculosis* is endemic have been poorly characterized.

With respect to the DosR antigens, our results showed that individuals with ltLTBI displayed higher frequencies of monofunctional CD4^+^H11001 and CD8^+^H11001 T cells producing IFN-γ/H9253 and/or TNF-α/H9251 in response to Rv2029c (pfkB), compared to PTB patients. Moreover, individuals with ltLTBI displayed a higher frequency of monofunctional CD8^+^H11001 IFN-γ/H9253/H11001 T cells in response to in vitro stimulation with ESAT6 and CFP10; as discussed above, however, results have been inconclusive (15–20).

It is now well established that, as a consequence of adaptation to the infected host cell intracellular milieu, *M. tuberculosis* changes its gene expression profile (37, 39). This implies that the immune response may develop a different specificity profile depending on the immunodominant antigens newly expressed by *M. tuberculosis* during its adaptation to the host. The DosR antigens become strongly expressed under stress conditions, including hypoxia, nutrient starvation, low pH, and high concentrations of reactive oxygen and nitrogen intermediates, all of which may mimic conditions inside granulomas (37–39). Also, expression patterns of rpfA-E genes have been observed during acute infection with *M. tuberculosis* (43, 44). Of note, the multifunctional T cell responses to DosR and Rpf antigens in communities in which *M. tuberculosis* is endemic have been poorly characterized.

With respect to the DosR antigens, our results showed that individuals with ltLTBI displayed higher frequencies of monofunctional CD4^+^ and CD8^+^ T cells producing IFN-γ and/or TNF-α in response to Rv2029c (pfkB), compared to PTB patients. Moreover, individuals with ltLTBI displayed a higher frequency of multifunctional CD8^+^ IFN-γ^+^ T cells in response to

TABLE 3

Frequencies of monofunctional (IFN-γ + or TNF-α +), bifunctional (IFN-γ + TNF-α +), and multifunctional (IFN-γ + TNF-α + IL-2 +) CD8^+^ T cells in ltLTBI and PTB

Antigen	CD8^+^ IFN-γ + T cells	CD8^+^ TNF-α + T cells	CD8^+^ IFN-γ + TNF-α + T cells	CD8^+^ IFN-γ + TNF-α + IL-2 + T cells
PPD	0.08 (0.00–0.22)	0.26 (0.09–0.66)	0.13 (0.03–0.33)	0.19 (0.11–0.39)
RD1				
E6-C10	0.06 (0.0–0.24)	0.14 (0.03–0.43)	0.22 (0.06–0.48)	0.14 (0.03–0.43)
DosR				
Rv1737c	0.01 (0.00–0.19)	0.05 (0.02–0.18)	0.06 (0.02–0.19)	0.08 (0.01–0.22)
Rv2029c	0.02 (0.00–0.16)	0.16 (0.02–0.37)	0.10 (0.03–0.18)	0.38 (0.20–0.49)
Rv2628	0.00 (0.00–0.03)	0.01 (0.00–0.06)	0.04 (0.00–0.13)	0.02 (0.00–0.11)
Rpf				
Rv0867c	0.08 (0.00–0.16)	0.05 (0.01–0.13)	0.11 (0.04–0.23)	0.21 (0.08–0.36)
Rv2389c	0.06 (0.0–0.19)	0.07 (0.03–0.16)	0.06 (0.0–0.12)	0.21 (0.05–0.35)

a P < 0.05.
b P < 0.001.
Rv1737c (narK2), compared to PTB patients, suggesting that a protective immune response may develop in ltLTBI in response to DosR antigens. Indeed, greater immune responses to Rv1737c and Rv2029c in ltLTBI, compared to PTB, were reported previously for different human populations (31,32, 34, 35). Furthermore, it has been reported that DosR antigens, including Rv2029c, induce predominant mono- and bifunctional (IFN-γ and/or TNF-α) CD4+ and/or CD8+ T cell responses in LTBI (33). Rv2029c (pfkB), a probable phosphofructokinase, is a key enzyme in glycolysis (58). A recent study suggests that, in M. tuberculosis, glycolysis leads to the accumulation of toxic metabolites, limiting M. tuberculosis survival under hypoxic conditions (58). Rv1737c

FIG 5 Memory phenotypes of monofunctional TNF-α+ CD4+ and TNF-α+ CD8+ T cells in ltLTBI and PTB. A total of 1.5×10^6 PBMCs from individuals with ltLTBI or PTB were cultured in triplicate for 7 days in the presence or absence of PPD, E6-C10, and DosR and Rpf antigens. CD4+ and CD8+ T cells were stained as described in Materials and Methods and then analyzed for intracellular production of IFN-γ, TNF-α, and IL-2. The frequencies of single- and multiple-cytokine-producing CD4+ and CD8+ T cells were evaluated using the combination gate tool from FlowJo v7.6.1. The memory phenotypes of monofunctional TNF-α+ CD4+ (A) and TNF-α+ CD8+ (B) T cells were evaluated by flow cytometry according the surface expression of CD45RO and CD27. Statistical differences between the groups were calculated with the Mann-Whitney U test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

FIG 6 Memory phenotypes of bifunctional IFN-γ+ TNF-α+ CD4+ and IFN-γ+ TNF-α+ CD8+ T cells in ltLTBI and PTB. A total of 1.5×10^6 PBMCs from individuals with ltLTBI or PTB were cultured in triplicate for 7 days in the presence or absence of PPD, E6-C10, and DosR and Rpf antigens. CD4+ and CD8+ T cells were stained as described in Materials and Methods and then analyzed for intracellular production of IFN-γ, TNF-α, and IL-2. The frequencies of single- and multiple-cytokine-producing CD4+ and CD8+ T cells were evaluated using the combination gate tool from FlowJo v7.6.1. The memory phenotypes of bifunctional IFN-γ+ TNF-α+ CD4+ (A) and IFN-γ+ TNF-α+ CD8+ (B) T cells were evaluated by flow cytometry according the surface expression of CD45RO and CD27. Statistical differences between the groups were calculated with the Mann-Whitney U test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Downloaded from http://cvi.asm.org on July 19, 2018 by guest
(narK2) is a probable nitrite/nitrate transporter that participates in the regulation of the nitrate reductase activity of \textit{M. tuberculosis} under hypoxic conditions (59, 60). It has been suggested that nitrate reduction may play an important role in \textit{M. tuberculosis} survival during dormancy (61). Thus, the evidence presented in this paper and a previous paper (34), as well as others (62), reinforces the notion that \textit{M. tuberculosis} DosR regulon-encoded antigens, including \textit{Rv1737c} and \textit{Rv2029c}, may be interesting biomarkers associated with a protective immune response and might be potential candidates for postexposure vaccines.

An immune response to Rpf antigens of \textit{M. tuberculosis} has been preferentially associated with individuals with LTBI (34, 36, 40, 42). In a previous study, we reported a higher frequency of CD4\(^+\) IFN-\(\gamma\) T cells in HHCs with LTBI, compared to PTB, in response to RpfD (\textit{Rv2389c}) (34). The higher frequencies of monofunctional CD4\(^+\) TNF-\(\alpha\) and CD8\(^+\) TNF-\(\alpha\) T cells in HHCs with LTBI that we observed in the present study are concordant with the observation of the presence of monofunctional CD4\(^+\) TNF-\(\alpha\) and CD8\(^+\) TNF-\(\alpha\) T cells in \textit{M. tuberculosis}-infected nonprogressors of Norwegian origin (41). Thus, monofunctional CD4\(^+\) TNF-\(\alpha\) T cells may play an important role in controlling \textit{M. tuberculosis} reactivation in latently infected individuals. We previously observed a lower frequency of IFN-\(\gamma\) T cells and lower levels of IFN-\(\gamma\) production in response to \textit{rpfA} (RpfA), compared to RpfD (34, 36). It has been reported that the \textit{rpfA} and \textit{rpfD} genes are differentially expressed during \textit{M. tuberculosis} growth and under stress conditions (63). It is tempting to speculate that differences in the expression and/or function of \textit{RpfA} and \textit{RpfD} in \textit{M. tuberculosis} may lead to different immune responses during latency.

Our results showed that HHCs with LTBI displayed significant increases in the frequencies of monofunctional (IFN-\(\gamma\) or TNF-\(\alpha\)) or bifunctional (IFN-\(\gamma\) TNF-\(\alpha\)) CD4\(^+\) and CD8\(^+\) T cells in response to stimulation with the RD1 and PPD antigens. Both IFN-\(\gamma\) and TNF-\(\alpha\) play important roles in the protective immune response against \textit{M. tuberculosis} infection, participating in the activation of effector mechanisms of monocytes and macrophages and in granuloma integrity (5, 6). Thus, our observations may suggest that mono- and bifunctional CD4\(^+\) and CD8\(^+\) T cells producing IFN-\(\gamma\) and/or TNF-\(\alpha\) can contribute to effective mycobacterial growth control in individuals with LTBI (34, 48, 64). Although in other studies higher frequencies of mono- and bifunctional CD4\(^+\) T cells producing IFN-\(\gamma\) and/or TNF-\(\alpha\) in response to RD1 were found in PTB, compared to LTBI (18, 19, 27, 28), the difference in the lengths of the \textit{in vitro} cultures might explain this difference. Short-term cultures (24 h) have been mainly associated with the detection of a T cell effector memory phenotype, while long-term cultures (5 to 7 days), as used in this study, have been mainly associated with the detection of a T central memory phenotype (25, 36, 56, 57, 64). An alternative explanation for the observed reductions in the frequencies of mono- and bifunctional CD4\(^+\) T cells in peripheral blood samples from PTB patients may involve the previously reported sequestration of CD4\(^+\) T cells at the site of infection (65, 66).

T cell memory generation is critical for specific immune responses. Studies in viral models of chronic infection showed that effector T cells expanded during viral replication, while memory cells were detected upon virus control (30). Memory generation is also critical for protective immunity to \textit{M. tuberculosis} (67). PBMCs from tuberculin skin test-positive and cured TB patients that were stimulated with RD1 antigens displayed a higher frequency of CD4\(^+\) T cells with a TCM phenotype, compared to patients with moderate or severe TB, who displayed a preferential TEM phenotype (23). In a previous study, we found a higher frequency of CD4\(^+\) T cells with a TCM phenotype (CD45RO\(^+\) CD27\(^+\)) in LTBI, compared to PTB, in response to the fusion protein ESAT6-CFP10 (34). Furthermore, BCG vaccination induces the expansion of a CD4\(^+\) T cell population with a TCM phenotype (68), although it is not clear whether this expansion may result in long-term protection. In the present study, we found that individuals with LTBI displayed higher frequencies of mono- and bifunctional CD4\(^+\) and/or CD8\(^+\) TCM cells that produced IFN-\(\gamma\) and/or TNF-\(\alpha\), compared to PTB patients. Conversely, higher frequencies of bifunctional CD4\(^+\) and CD8\(^+\) T cells with a TEM phenotype (CD45RO\(^+\) CD27\(^-\)) that produced IFN-\(\gamma\) and TNF-\(\alpha\) were found in PTB patients, compared to individuals with LTBI. Overall, these results suggest that mono- and bifunctional T cells with a TCM phenotype may play an important role in \textit{M. tuberculosis} infection control in latently infected individuals, while TEM cells may be associated with the presence of replicating mycobacteria in PTB patients and may represent biomarkers of the mycobacterial load. Commandeur and colleagues reported higher frequencies of mono- and bifunctional T cells with a TEM phenotype in response to stimulation with DosR and Rpf antigens in LTBI (33, 41). This difference from our results may be explained by the length of the \textit{in vitro} cultures. While we used long-term cultures (7 days), Commandeur and colleagues used short-term cultures (24 h) (33, 41). It has been argued that long-term cultures (5 to 7 days), in contrast to short-term cultures (24 h), select potentially long-lived T cells, particularly central memory T cells (55–57). This may also explain the absence (or lower levels) of effector T cells (CD45RO\(^+\) CD27\(^+\)) for single-cytokine-producing CD4\(^+\) and CD8\(^+\) T cells. Under our experimental conditions using long-term cultures, we have observed enrichment of the TCM phenotype (CD45RO\(^+\) CD27\(^+\)) T cells (25, 34, 36, 64).

Recent studies demonstrated that RD1 antigen stimulation induces greater proportions of multifunctional CD4\(^+\) T cells in individuals with LTBI, compared to patients with active TB (18–20). In this study, we found that mono- and bifunctional CD4\(^+\) and CD8\(^+\) T cells producing IFN-\(\gamma\) and/or TNF-\(\alpha\) were observed more frequently than monofunctional IL-2\(^+\) or multifunctional (IFN-\(\gamma\) TNF-\(\alpha\) IL-2\(^+\)) T cells, independent of the antigen and disease status, as observed by others (48). A similar observation in the macroae model was recently published (69). The low frequency of antigen-specific T cells uniquely producing IL-2 may be a consequence of the long-term culture used in our study, as reported previously (40, 48). In a recent study, Han and colleagues, using a short-term stimulation assay, reported that the T cell multifunctional response is the result of sequential production of cytokines for short times, during which T cells simultaneously secrete multiple cytokines (70). More recently, it has been shown that some methodological factors, including the source of T cells (fresh whole blood, fresh PBMCs, or frozen PBMCs), the length of the culture (short term versus long term), and the use of costimulatory antibodies, can affect the sensitivity of intracellular cytokine assays (71). These results may explain the contrasting results of the T cell cytokine profiles observed in our study. Another potential limitation of the present study is that we analyzed the immune responses of a relatively small number of
subjects in each group, which is why this constitutes a pilot study. Although larger populations and longitudinal studies are needed to confirm these observations, the results generated in this study are consistent with results observed in other human populations.

In this study, PTB patients are defined as having received a recent diagnosis of PTB, which was confirmed microbiologically or by culture, with no more than 2 weeks of antibiotic treatment. There is some evidence in the literature of changes to the transcriptome and cell populations as early as 1 week posttreatment, which may affect the composition of the T cell population responding to the infection (72). However, it has been reported that significant changes in the immune response and cell populations in the host are principally observed 1 to 3 or 6 months after the initiation of TB treatment (73–75), indicating that changes at a transcriptomic level are not translated immediately into protein and cellular changes in the host. We think that our results may not be affected by the anti-TB treatment. Also, some reports have presented evidence suggesting that the immune responses of patients with multidrug-resistant (MDR) TB may be different from those of patients with drug-sensitive TB (76, 77). Since all of our PTB samples were collected within the first 2 weeks of treatment, no testing for antibiotic resistance was performed. However, the frequency of MDR TB in our population is low (estimated rate, 2.4%) (78), and thus our results may not be affected by this factor.

In conclusion, we have shown that individuals with ILTbTI display prominent mono- and bifunctional (IFN-γ+ and/or TNF-α+) T cell responses, with a CD45RO+ CD27+ phenotype, to M. tuberculosis DosR and Rpf antigens, which we hypothesize are associated with maintenance of immune control of latent M. tuberculosis infection and protection from disease reactivation. To our knowledge, the present data represent the first description of the multifunctional T cell responses to DosR and Rpf antigens in individuals with ILTbTI and PTB in a community in which TB is endemic. Our results may contribute to a better understanding of latency and the definition of predictive biomarkers of latency and reactivation.

ACKNOWLEDGMENTS

We acknowledge the TB patients and latently infected individuals who consented to participate in this study.

FUNDING INFORMATION

This work, including the efforts of Luis Fernando Barrera, was funded by Colciencias, Bogota, Colombia (1115-459-21461). This work, including the efforts of Luis Fernando Barrera, was funded by Programa Sostenibilidad de la Investigacion (CODI) (01554). This work, including the efforts of Luis Fernando Barrera, was funded by Programa Sostenibilidad Universidad de Antioquia 2014-2015 (01554). This work, including the efforts of Tom H. M. Ottenhoff, was funded by EC FP7 NEWTBVAC (HEALTH.F3.2009 241745). This work, including the efforts of Tom H. M. Ottenhoff, was funded by EC HORIZON2020 TBVAC2020 (643381). This work, including the efforts of Tom H. M. Ottenhoff, was funded by EC FP7 VACTRAIN (FP7-INFRA-2012-312661).

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254. http://dx.doi.org/10.1084/jem.178.6.2249.
2. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. 1993. Disseminated tuberculosis in interferon gamma-disrupted mice. J Exp Med 178:2243–2247. http://dx.doi.org/10.1084/jem.178.6.2243.
3. Alcais A, Fieschi C, Abel L, Casanova JL. 2005. Tuberculosis in children and adults: two distinct genetic diseases. J Exp Med 202:1617–1621. http://dx.doi.org/10.1084/jem.2005230.
4. Ottenhoff TH, Verreck FA, Lichtenaar-Kaligis EG, Hoeve MA, Salan O, van Dissel JT. 2002. Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet 32:97–105. http://dx.doi.org/10.1038/ng9002-97.
5. Algood HM, Lin PL, Flynn JL. 2005. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(Suppl 3):S189–S193.
6. Jacobs M, Samarina A, Grivennikov S, Botha T, Allie N, Fremond C, Togbe D, Vasseur V, Rose S, Erard F, Monteiro A, Quesniaux V, Ryffel B. 2007. Reactivation of tuberculosis by tumor necrosis factor neutralization. Eur Cytokine Netw 18:5–13.
7. Keane J, Gershon S, Wise RP, Mireibale-levens E, Kasznica J, Schwimmer WD, Siegel JN, Braun MM. 2001. Tuberculosis associated with infiximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104. http://dx.doi.org/10.1056/NEJMoa011110.
8. Hoyer KK, Dooms H, Barron L, Abbas AK. 2008. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28. http://dx.doi.org/10.1111/j.1600-656X.2008.00697.x.
9. Zhang M, Lin Y, Iyer DV, Gong J, Abrams JS, Barnes PF. 1995. T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Eur J Immunol 25:832–837. http://dx.doi.org/10.1002/eji.200838336.
10. Millington KA, Innes JA, Hackforth S, Hinks TS, Deeks JJ, Dosanjh DP, Guyot-Revol V, Gunatheesan R, Klennerman P, Lalvani A. 2007. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 178:5217–5226. http://dx.doi.org/10.4049/jimmunol.178.8.5217.
11. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Kouop RA. 2006. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107:4781–4789. http://dx.doi.org/10.1182/blood-2005-12-4818.
12. Ciufofreda D, Comte D, Cavassini M, Gisstra E, Buhler L, Perruchoud M, Heim MH, Battegay M, Gennne D, Mulhard B, Malinverni R, Oneta C, Bernasconi E, Monnat M, Cerny A, Chuard C, Borovicka J, Mentha G, Pascual M, Gonvers JJ, Pantaleo G, Dutoit V. 2008. Polyclonal HCV-specific T-cell responses are associated with effective control of Hepatitis C virus replication. Eur J Immunol 38:2665–2677. http://dx.doi.org/http://dx.doi.org/1002/eji.200838336.
13. Day CL, Abraham DA, Lerumo L, Hanekom WA, Bart PA, Pantaleo G. 2007. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13:843–850. http://dx.doi.org/10.1038/nm1992.
14. Arroyo et al., 2018. Multifunctional CD4+ T cells correlate with mycobacterial antigens in TB disease and contraction post-treatment. PLoS One 5:e1100123. http://dx.doi.org/10.1371/journal.pone.01100123.
15. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, Cavassini M, Calandra T, Blanchet CL, Jaton K, Fieschi C, Abel L, Casanova JL. 2010. Multifunctional CD4+ T cells correlate with active Mycobacterium tuberculosis infection. Eur J Immunol 40:2211–2220. http://dx.doi.org/10.1002/eji.2010040455.
16. Young JM, Adetifa IM, Ota MO, Sutherland JS. 2010. Expanded polyfunctional T cell response to mycobacterial antigens in TB disease and contraction post-treatment. PLoS One 5:e110123. http://dx.doi.org/10.1371/journal.pone.01100123.
Small double- and monofunctional CD4+ T cells respond to Mycobacterium tuberculosis in actively and latently infected individuals from Colombia. Tuberculosis (Edinb) 97:97–107. http://dx.doi.org/10.1016/j.tube.2015.12.008.

35. Hozumi H, Tsujiymura K, Yamamura Y, Seto S, Uchiijima M, Nagata T, Miwa S, Hayakawa H, Fujisawa T, Hashimoto D, Imai N, Suda T, Chida K, Koide Y. 2013. Immunogenicity of dormancy-related antigens in individnals infected with Mycobacterium tuberculosis in Japan. Int J Tuberc Lung Dis 17:818–824. http://dx.doi.org/10.5888/ijtlvd.12.0095.

36. Franken KL, Rojas M, Ortiz BL, Franken KL, Garcia LF, Ottenhoff TH, Barrera LF. 2016. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of househould contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis (Edinb) 97:97–107. http://dx.doi.org/10.1016/j.tube.2015.12.008.

37. Voorkul MJ, Schnappinger D, Visconti KC, Harrell ML, Dolganov GM, Sherman DR, Schoonhuijzen G. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713. http://dx.doi.org/10.1084/jem.20030205.

38. Mehran S, Foreman TW, Didier PJ, Ahsan MH, Tudock TA, Kisses R, Golden NA, Gautam US, Johnson AM, Alvarez X, Russell-Lodrigue KE, Doyle LA, Roy CJ, Niu T, Blanchard JL, Khader SA, Lackner AA, Sherman DR, Kaushal D. 2015. The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am J Respir Crit Care Med 191:1185–1196. http://dx.doi.org/10.1164/rccm.201408-1502OC.

39. Boon C, Dick T. 2012. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol 7:513–518. http://dx.doi.org/10.2217/fmb.12.14.

40. Schuck SD, Mueller H, Kuen F, Neher A, Hoffmann H, Franken KL, Boleibler D, Ottenhoff TH, Kaufmann SH, Jacobsen M. 2009. Identification of T-cell antigens specific for latent Mycobacterium tuberculosis infection. PLoS One 4:e5590. http://dx.doi.org/10.1371/journal.pone.0005590.

41. Commandeur S, van Meijgaardens KE, Lin MY, Franken KL, Friggen AH, Drijfhout JW, Oftung F, Korsvolde GE, Gelak A, Ottenhoff TH. 2011. Identification of human T-cell responses to Mycobacterium tuberculosis resuscitation-promoting factors in long-term latently infected individuals. Clin Vaccine Immunol 18:676–683. http://dx.doi.org/10.1128/CVI.00390-12.

42. Meyers RA, Darrah PA, Roederer M. 2008. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8:247–258. http://dx.doi.org/10.1038/nri2274.

43. Stein CE, Whitwom HT, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapemba MS, Kon OM, Sampson RD, Taylor GP, Lalvani A. 2013. T-cell immunophenotyping distinguishes active from latent tuberculosis. J Infect Dis 208:952–968. http://dx.doi.org/10.1093/infdis/jit265.

44. Soder RA, Darrah PA, Roederer M. 2008. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8:247–258. http://dx.doi.org/10.1038/nri2274.

45. Ziefert JM, Tchernov M, Pinto D, Lanzavcchia A, Sallusto F. 2011. Dissecting the human immunologic memory for pathogens. Immunity 34:41–51. http://dx.doi.org/10.1016/j.immuni.2011.01.003.

46. Leyten EM, Lin MY, Franken KL, Friggen AH, Prins C, van Meij-gaardens KE, Voorkul MJ, Weldingh K, Andersen PS, Schoonhuijzen G, Arend SM, Ottenhoff TH, Klein MR. 2006. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect 8:2052–2060. http://dx.doi.org/10.1016/j.micinf.2006.03.018.

47. Black GF, Thiel BA, Ota MO, Parida SK, Adegbol A, Boom WH, Dockrell HM, Franken KL, Friggen AH, Hill PC, Klein MR, Lalar MK, Mayanja H, Schoonhuijzen G, Stanley K, Weldingh K, Kaufmann SH, Walz G, Ottenhoff TH. 2009. Immunogenicity of novelf DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high burden populations in Africa. Clin Vaccine Immunol 16:1203–1212. http://dx.doi.org/10.1128/CVI.00111-09.

48. Commandeur S, Lin MY, van Meijgaardens KE, Friggen AH, Franken KL, Drijfhout JW, Korsvolde GE, Oftung F, Gelak A, Ottenhoff TH. 2011. Double- and monofunctional CD4+ and CD8+ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol 41:2925–2936. http://dx.doi.org/10.1002/eji.201141602.

49. Riano F, Arroyo L, Paris S, Rojas M, Friggen AH, van Meijgaardens KE, Franken KL, Ottenhoff TH, Garcia LF, Barera LF. 2012. T-cell responses to DosR and Rpf proteins in actively and latently infected individuals from Colombia. Tuberculosis (Edinb) 92:148–159. http://dx.doi.org/10.1016/j.tube.2011.12.005.
treatment: antigen or bacteria persistence? Int J Tuberc Lung Dis 14:347–355.

51. Chatterjee S, Clark CE, Lugli E, Roederer M, Nutman TB. 2015. Filarial infection modulates the immune response to Mycobacterium tuberculosis through expansion of CD4^+IL-4-memory T cells. J Immunol 194:2706–2714. http://dx.doi.org/10.4049/jimmunol.1402718.

52. Goletti D, Butera O, Vanini V, Lauria FN, Lange C, Franken KL, Angelelli C, Ottenhoff TH, Girardi E. 2010. Response to Rv2628 latency antigens associated with cured tuberculosis and remote infection. Eur Respir J 36:135–142. http://dx.doi.org/10.1183/09031936.0014009.

53. Goyder L, Abel B, Hughes EJ, Scriba TJ, Kagina BM, de Kock M, Walzl G, Black G, Rosenkrands I, Hussey GD, Mohamed H, Andersen P, Hanekom WA. 2010. Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 29:51–57. http://dx.doi.org/10.1016/j.vaccine.2010.10.022.

54. Sutherland P, Hanekom WA, Dockrell HM. 2007. Extended culture enhances sensitivity of a gamma interferon assay for latent Mycobacterium tuberculosis infection. Clin Vaccine Immunol 14:796–798. http://dx.doi.org/10.1128/CVI.00093-07.

55. Leyten EM, Arend SM, Prins C, Cobelens FG, Ottenhoff TH, van Dissel JT. 2007. Discrepancy between Mycobacterium tuberculosis-specific gamma interferon release assays using short and prolonged in vitro incubation. Clin Vaccine Immunol 14:880–885. http://dx.doi.org/10.1128/CVI.00132-07.

56. Hanekom WA, Dockrell HM, Ottenhoff TH, Doherty TM, Fletcher H, McShane H, Weichold FF, Hoft DF, Parida SK, Fruth UJ. 2008. Immunological outcomes of new tuberculosis vaccine trials: WHO panel recommendations. PLoS Med 5:e145. http://dx.doi.org/10.1371/journal.pmed.0050145.

57. Phong WY, Lin W, Rao SP, Dick T, Alonso S, Pethe K. 2013. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS One 8:e60337. http://dx.doi.org/10.1371/journal.pone.0060337.

58. Hutter B, Dick T. 2000. Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol Lett 188:141–146. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09185.x.

59. Golubkov CD, Wayne LG. 2003. Role of narK2 and narGHI genes in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256. http://dx.doi.org/10.1128/JB.185.24.7247-7256.2003.

60. Khan A, Sarkar D. 2012. Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology 158:301–307. http://dx.doi.org/10.1099/mic.0.054759-0.

61. Singh S, Saravar I, Sharma S. 2014. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 32:712–716. http://dx.doi.org/10.1016/j.vaccine.2013.11.065.

62. Gupta RK, Srivastava BS, Srivastava R. 2010. Comparative expression analysis of rpf-like genes of Mycobacterium tuberculosis H37Rv under different physiological stress and growth conditions. Microbiology 156:2714–2722. http://dx.doi.org/10.1099/mic.0.037622-0.

63. Rueda CM, Marin ND, Garcia LF, Rojas M. 2010. Characterization of CD4 and CD8 T cells producing IFN-γ in human latent and active tuberculosis. Tuberculosis (Edinb) 90:346–353. http://dx.doi.org/10.1016/j.tube.2010.09.003.

64. Jafari C, Thijsen S, Sotgiu G, Goletti D, Dominguez Benitez JA, Losi M, Eberhardt R, Kirsten D, Kalsdorff B, Bossink A, Latorre I, Migliori GB, Strassburg A, Wintercoll S, Greinert U, Richelid I, Ernst M, Lange C. 2009. Bronchoalveolar lavage enzyme-linked immunosorbent for a rapid diagnosis of tuberculosis: a Tuberculosis Network European Trials group study. Am J Respir Crit Care Med 180:666–673. http://dx.doi.org/10.1164/rccm.200904-0557OC.

65. Jafari C, Kessler P, Sotgiu G, Ernst M, Lange C. 2011. Impact of a Mycobacterium tuberculosis-specific interferon-γ release assay in bronchoalveolar lavage fluid for a rapid diagnosis of tuberculosis. J Intern Med 270:254–262. http://dx.doi.org/10.1111/j.1365-2796.2011.02378.x.

66. Prezemolo T, Gugino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. 2014. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front Immunol 5:180.

67. Soares AP, Kwong Chung CK, Choice T, Hughes EJ, Jacobs G, van Rensburg EJ, Khomba G, de Kock M, Lerumo L, Makhette L, Maneli MH, Pienaar BA, Nierra CK, Nyek W, Boom WH, Kaplan G, Scriba TJ, Hanekom WA. 2013. Longitudinal changes in CD4 T-cell memory responses induced by BCG vaccination of newborns. J Infect Dis 207:1084–1094. http://dx.doi.org/10.1093/infdis/jis941.

68. Gideon HP, Phauh J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PI, Flynn JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603. http://dx.doi.org/10.1371/journal.ppat.1004603.

69. Han Q, Bagheri N, Bradshaw EM, Hafner DA, Laufbunger DA, Love JC. 2012. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109:16067–1612. http://dx.doi.org/10.1073/pnas.1117194109.

70. Smith SG, Smits K, Joosten SA, van Meijgaard KE, Satti I, Fletcher HA, Caccamo N, Dieli F, Mascii F, McShane H, Dockrell HM, Ottenhoff TH. 2015. Intracellular cytokine staining and flow cytometry: considerations for application in clinical trials of novel tuberculosis vaccines. PLoS One 10:e0138042. http://dx.doi.org/10.1371/journal.pone.0138042.

71. Jaffé CA, Kaufmann SH, McShane H, van Helden P, O’Garra A. 2015. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol Rev 264:88–102. http://dx.doi.org/10.1111/imi.12269.

72. Mattos AMM, Almeida CBS, Franken KLMC, Alves CCDS, Abramo C, de Souza MA, L’Hotellier M, Alves MJM, Ferreira AP, Oliveira SC, Ottenhoff THM, Teixeira HC. 2010. Increased IgG1, IFN-γ, TNF-α and IL-6 responses to Mycobacterium tuberculosis antigens in patients with tuberculosis are lower after chemotherapy. Int Immunol 22:775–782. http://dx.doi.org/10.1093/intimm/dxq29.

73. Adetifi IM, Ota MO, Walther B, Hammond AS, Luogs MD, Jeffries DJ, Donkor SA, Adeghoba RA, Hill PC. 2010. Decay kinetics of an interferon gamma release assay with anti-tuberculosis therapy in newly diagnosed tuberculosis cases. PLoS One 5:e12502. http://dx.doi.org/10.1371/journal.pone.0012502.

74. Wang X, Cao Z, Jiang J, Niu H, Dong M, Tong A, Cheng X. 2010. Association of mycobacterial antigen-specific CD4^+ memory T cell subsets with outcome of pulmonary tuberculosis. J Infect Dis 200:133–139. http://dx.doi.org/10.1086/654079.

75. Tan Q, Xie WP, Min R, Dai GQ, Xu CC, Pan HQ, Miao CD, Yang Z, Xu WG, Wang H. 2012. Characterization of Th1- and Th2-type immune response in human multidrug-resistant tuberculosis, Eur J Clin Microbiol Infect Dis 31:1233–1242. http://dx.doi.org/10.1007/s10096-011-1434-4.

76. Li X, Xie WP, Kong H, Min R, Hu CM, Zhou X, Lu ZM, Ji XY, Wang H. 2015. Enrichment of regulatory T-cells in blood of patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 19:1230–1238. http://dx.doi.org/10.5588/ijtld.15.0148.

77. World Health Organization. 2015. Global tuberculosis report. World Health Organization, Geneva, Switzerland.