Recurrent Lorentzian Weyl spaces and Riccati equation

Andrei Dikarev and Anton S. Galaev

Abstract. We describe the local form of all non-closed Lorentzian Weyl structures (M, c, ∇) with recurrent curvature tensor. If the dimension of the manifold is bigger than 3, then the conformal structure is flat, and recurrent structures are in one-to-one correspondence with the solutions to the Riccati equation. The recurrent curvature tensor turns out to be a weighted parallel tensor.

Keywords: Weyl connection; recurrent curvature; holonomy group; Riccati equation.

1. Introduction and Main results

Let (M, c, ∇) be a Weyl manifold of Lorentzian signature, i.e., c is a conformal class of Lorentzian metrics on a smooth manifold M, and ∇ is a torsion-free affine connection on M such that, for each $g \in c$, there exists a 1-form ω with

$$\nabla g = 2\omega \otimes g.$$ \hfill (1)

A metric $g \in c$ and the corresponding 1-form ω determine the connection ∇, it holds

$$\nabla = \nabla^g + K, \quad g(K_X(Y), Z) = g(Y, Z)\omega(X) + g(X, Z)\omega(Y) - g(X, Y)\omega(Z),$$ \hfill (2)

where ∇^g is the Levi-Civita connection of the metric g, and X, Y, Z are vector fields on M. The attention to Lorentzian Wayl structures is payed by many reasons in various recent works, e.g., [1, 4, 8, 10].

Let R denote the curvature tensor of the affine connection ∇. The aim of the paper is to give a description of the Lorentzian Weyl structures with recurrent curvature tensors R, i.e., satisfying

$$\nabla R = \theta \otimes R$$ \hfill (3)

for a 1-form θ. A Weyl structure is called closed if $d\omega = 0$ for a $g \in c$ (equivalently, for all $g \in c$). If the structure is closed, then ∇ is locally the Levi-Civita connection for some metric from the conformal class. The structure of Lorentzian recurrent spaces is known [12].

In what follows the dot over the function denotes the partial derivative in the direction of the coordinate u.

Theorem 1. Let (M, c, ∇) be a connected non-closed Lorentzian Weyl structure of dimension $n + 2 \geq 4$ with recurrent curvature tensor. Then the conformal class c is flat; around each point of M there exist coordinates v, x^1, \ldots, x^n, u such that the class c is represented by the metric

$$g = 2dvdu + \sum_{i=1}^{n-1} (dx^i)^2 + e^{-2F}(dx^n)^2 + a(u) \sum_{i=1}^{n-1} (x^i)^2(du)^2,$$

where

1Department of Mathematics and Statistics, Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czech Republic.
2University of Hradec Králové, Faculty of Science, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
E-mail: anton.galaev(at)uhk.cz.
the corresponding 1-form \(\omega \) is given by
\[
\omega = \dot{F}du,
\]
where \(F = F(x^n, u) \) is a function such that \(\dot{F} \) satisfies the Riccati
\[
\dot{F} - \dot{F}^2 = -a(u)
\]
and such that \(\partial_u \dot{F} \) is non-vanishing.

Let \(G = G(u, c) \) be the general solution of the Riccati equation \(\dot{G} - G^2 = -a(u) \), where \(c \) is the constant of integration, then the function \(F \) may be found form the condition \(\dot{F}(x^n, u) = G(u, c(x^n)) \), where \(c(x^n) \) is a function such that \(c'(x^n)\partial_x\dot{G} \) is non-vanishing. It is remarkable that the Riccati equation is also related to the Einstein-Weyl equation in dimension 2 \[2\] \[3\]. Similarly, the Einstein-Weyl equation in Lorentzian signature and dimension 3 is equivalent to the dKP equation, and that has led to many interesting results \[1\] \[6\] \[7\] \[8\].

Theorem 2. Let \((M, c, \nabla)\) be a connected non-closed Lorentzian Weyl structure of dimension 3 with recurrent curvature tensor. Then one of the following holds:

- around each point of \(M \) there exist coordinates \(v, x, u \) such that \(c = [g] \),
 \[
g = 2dvdu + e^{-2F}(dx)^2, \quad \omega = \dot{F}du,
\]
 where \(F = F(x, u) \) is an arbitrary function with non-vanishing \(\partial_x \dot{F} \);
- around each point of \(M \) there exist coordinates \(v, x, u \) such that \(c = [g] \),
 \[
g = 2dvdu + (dx)^2 + H(du)^2, \quad \omega = a(u)xdu,
\]
 \[
H = H(v, x, u) = a(u)vx + \frac{1}{12}a^2(u)x^4 - \frac{1}{3}a'(u)x^3 + c(u)x,
\]
 where the function \(a(u) \) is non-vanishing.

In the settings of Theorem \[1\] the curvature tensor \(R \) satisfies
\[
\nabla R = \theta \otimes R, \quad \theta = \partial_u(F + \ln |\partial_u \dot{F}|)dx^n.
\]

It holds \(d\theta = -3d\omega \), and
\[
\theta = -3\omega + d\varphi, \quad \varphi = F + \ln |\partial_u \dot{F}|.
\]

Consider the metric
\[
\tilde{g} = e^{-\frac{1}{3}\varphi}g.
\]
Then it holds
\[
\nabla \tilde{g} = \tilde{\omega} \otimes \tilde{g}, \quad \nabla R = -3\tilde{\omega} \otimes R, \quad \tilde{\omega} = \omega - \frac{1}{3}d\varphi = -\frac{1}{3}\theta.
\]

Consider the density bundle with weight \(w \),
\[
\mathcal{L}^w = P_{CO} \times_{|\det \Omega|^\frac{1}{|\det \Omega|}} \mathbb{R},
\]
where \(P_{CO} \) is the conformal frame bundle. Each metric \(g \in c \) defines the section
\[
l_g = |\text{vol} g|^{-1} \tilde{\omega} \in \mathcal{L}^1
\]
satisfying
\[
\nabla l_g = \omega \otimes l_g.
\]
We conclude that
\[
\nabla (R \otimes l_g^3) = 0,
\]
i.e., the tensor field \(R \) is weighted parallel with the weight 3.

The curvature tensor of the first Weyl structure from Theorem \[2\] satisfies
\[
\nabla R = \theta R, \quad \theta = \partial_x(F + \ln |\partial_x \dot{F}|)dx + \partial_u(-2F + \ln |\partial_x \dot{F}|)du.
\]
Again we obtain \(\nabla (R \otimes l_g^3) = 0 \) for \(\tilde{g} = e^{-\frac{1}{3}\varphi}g, \ \varphi = F + \ln |\partial_x \dot{F}|. \)
For the second structure from Theorem 2 it holds\[
\nabla R = \theta \otimes R, \quad \theta = \left(\partial_u \ln |a(u)| - \frac{5}{2}a(u)x \right) du.
\]
In this case, \(\nabla (R \otimes \tilde{g}) = 0\) for \(\tilde{g} = e^{-\frac{5}{2}\varphi}g, \varphi = \ln |a(u)|\).

We conclude that

Corollary 1. If the curvature tensor of a non-closed Weyl Lorentzian structures is recurrent, then it is weighted parallel.

Corollary 2. Let \((M, c, \nabla)\) be a Lorentzian Weyl structure with \(\nabla R = 0\), then the structure is closed.

Non-closed Weyl structures with weighted parallel curvature tensors provide generalization of pseudo-Riemannian symmetric spaces, this is probably related to the work [9].

Finally note that the obtained spaces have another remarkable property: they admit a rather big number of weighted parallel spinors [5].

Corollary 3. Let \((M, c, \nabla)\) be a non-closed recurrent Lorentzian Weyl spin structure on a simply connected manifold \(M\) of dimension \(n + 2 \geq 4\), then it admits the space of weighted parallel spinors of complex dimension \(2\sqrt{2}\).

A similar result is know in Lorentzian geometry [11]: each simply connected indecomposable Cahen-Wallach spin manifold of dimension \(n + 2\) admits the space of parallel spinors of complex dimension \(2\sqrt{2}\) (Cahen-Wallach spaces are symmetric Lorentzian spaces represented by a special class of pp-waves).

2. The holonomy algebra of recurrent Lorentzian Weyl spaces

Let us first recall the classification of the holonomy algebras of Lorentzian Weyl structures [4]. Let \((M, c, \nabla)\) be a Weyl manifold of Lorentzian signature \((1, n + 1), n \geq 1\). Then its holonomy algebra is contained in the conformal Lorentzian algebra

\[\mathfrak{co}(1, n + 1) = \mathbb{R}
d_{1,n+1} \oplus \mathfrak{so}(1, n + 1).\]

If the Weyl structure is closed, then the holonomy algebra is contained in \(\mathfrak{so}(1, n + 1)\) and it is well-studied [11]. By that reason we suppose that the Weyl structure is non-closed, and the holonomy algebra is not contained in \(\mathfrak{so}(1, n + 1)\).

Fix a Witt basis \(p, e_1, \ldots, e_n, q\) of the Minkowski space \(\mathbb{R}^{1,n+1}\). With respect to that basis the subalgebra of \(\mathfrak{so}(1, n + 1)\) preserving the null line \(\mathbb{R}p\) has the following matrix form:

\[
\mathfrak{so}(1, n + 1)_{\mathbb{R}p} = \left\{ \begin{pmatrix} a & X^t & 0 \\ 0 & A & -X \\ 0 & 0 & -a \end{pmatrix} : \begin{array}{c} a \in \mathbb{R} \\
A \in \mathfrak{so}(n) \\
X \in \mathbb{R}^n \end{array} \right\}.
\]

We identify the Lie algebra \(\mathfrak{so}(1, n + 1)\) with the space of bivectors \(\wedge^2 \mathbb{R}^{1,n+1}\) in such a way that

\[(X \wedge Y)Z = (X, Z)Y - (Y, Z)X.\]

Under this identification the above element of \(\mathfrak{so}(1, n + 1)_{\mathbb{R}p}\) corresponds to

\[-ap \wedge q + A - p \wedge X.\]

We get the decomposition

\[\mathfrak{so}(1, n + 1)_{\mathbb{R}p} = (\mathbb{R}p \wedge q \oplus \mathfrak{so}(n)) \ltimes p \wedge \mathbb{R}^n.\]

The holonomy algebra \(\mathfrak{g} \subset \mathfrak{co}(1, n + 1)\) of a non-closed Lorentzian Weyl structure of dimension \(n + 2, n \geq 1\), satisfies one of the following 3 conditions:

1. \(\mathfrak{g} \subset \mathfrak{co}(1, n + 1)\) is irreducible. In this case \(\mathfrak{g} = \mathfrak{co}(1, n + 1)\).
2. \(g \subseteq \mathfrak{co}(1, n + 1) \) preserves an orthogonal decomposition
\[
\mathbb{R}^{1,n+1} = \mathbb{R}^{1,k+1} \oplus \mathbb{R}^{n-k}, \quad -1 \leq k \leq n - 1.
\]
In this case \(g \) is one of the following:
- \(\mathbb{R} \operatorname{id}_{\mathbb{R}^{1,n+1}} \oplus \mathfrak{so}(1, k + 1) \oplus \mathfrak{so}(n - k), \quad -1 \leq k \leq n - 1; \)
- \(\mathbb{R} (\operatorname{id}_{\mathbb{R}^{1,n+1}} + p \wedge q) \oplus \mathfrak{t} \oplus \mathfrak{so}(n - k) \ltimes p \wedge \mathbb{R}^{k} \subseteq \mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}}, \quad 0 \leq k \leq n - 1; \)
- \(\mathbb{R} \operatorname{id}_{\mathbb{R}^{1,n+1}} \oplus \mathfrak{t} \oplus \mathfrak{so}(n - k) \ltimes p \wedge \mathbb{R}^{k} \subseteq \mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}}, \quad 1 \leq k \leq n - 1. \)
Here \(\mathfrak{t} \subseteq \mathfrak{so}(k) \) is the holonomy algebra of a Riemannian manifold.

3. \(g \) is contained in \(\mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}}, \) and it does not preserves any proper non-degenerate subspace of \(\mathbb{R}^{1,n+1}. \) Such algebras may be divided into 6 types. For the results of the current paper it is enough to know that each such \(g \) contains the ideal \(p \wedge \mathbb{R}^{n}. \)

Theorem 3. Let \((M, c, \nabla) \) be a recurrent non-closed Lorentzian Weyl structure of dimension \(n + 2 \geq 3, \) then one of the following conditions holds:

- \(n = 1 \) and the holonomy algebra of \(\nabla \) is one of the following
 \[
 g = \mathbb{R} \operatorname{id}_{\mathbb{R}^{1,2}} + p \wedge q, \quad \mathbb{R} (2 \operatorname{id}_{\mathbb{R}^{1,2}} + p \wedge q) \ltimes p \wedge \mathbb{R} e_{1};
 \]
- \(n \geq 2 \) and the holonomy algebra of \(\nabla \) is
 \[
 \mathbb{R} (\operatorname{id}_{\mathbb{R}^{1,n+1}} + p \wedge q) \ltimes p \wedge \mathbb{R}^{n-1} \subseteq \mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}}.
 \]

Proof of Theorem Let \((M, c, \nabla) \) be a recurrent non-closed Lorentzian Weyl structure and let \(g \subseteq \mathfrak{co}(1, n + 1) \) be its holonomy algebra at a point \(x \in M. \) Let us denote the tangent space \(T_{x}M \) by \(\mathbb{R}^{1,n+1}. \) Suppose that \(R_{x} \neq 0. \) Since \(R \) is recurrent, from the Ambrose-Singer Theorem it follows that
\[
(4) \quad g = \text{span}\{R_{x}(X, Y) | X, Y \in \mathbb{R}^{1,n+1}\}.
\]
Consider the space of algebraic tensors of type \(g \):
\[
\mathcal{R}(g) = \{ R \in \text{Hom}(\wedge^{2}\mathbb{R}^{1,n+1}, g) | R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 \quad \forall X, Y, Z \in \mathbb{R}^{1,n+1}\}.
\]
From the Bianchi identity it follows that \(R_{x} \in \mathcal{R}(g). \) The holonomy algebra \(g \) acts on the space \(\mathcal{R}(g) \) in the following natural way
\[
(5) \quad \xi : R \mapsto \xi \cdot R, \quad (\xi \cdot R)(X, Y) = [\xi, R(X, Y)] - R(\xi X, Y) - R(X, \xi Y).
\]
Since the curvature tensor \(R \) is recurrent, by the holonomy principle, \(g \) preserves the line \(\mathbb{R}R_{x}, \) i.e., there exists a 1-form \(\rho \) on \(g \) such that
\[
(6) \quad \xi \cdot R_{x} = \rho(\xi)R_{x} \quad \forall \xi \in g.
\]
Now we are going to describe the holonomy algebras \(g \) of non-closed Weyl connections and elements \(R \in \mathcal{R}(g) \) satisfying the properties (4) and (5). Consider the 3 possibilities for \(g \) as above.

Case 1. Suppose that \(g = \mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}} \) does not preserves any proper non-degenerate subspace of \(\mathbb{R}^{1,n+1}. \) There exists an isomorphism of \(\mathfrak{so}(1,n+1) \)-modules
\[
\mathcal{R}(\mathfrak{co}(1, n + 1)) \cong \mathcal{R} (\mathfrak{so}(1, n + 1)) \oplus \wedge^{2}\mathbb{R}^{1,n+1},
\]
where an element \(A \in \wedge^{2}\mathbb{R}^{1,n+1} \) defines an algebraic curvature tensor \(R_{A} \) by the equality
\[
(7) \quad R_{A}(X, Y) = AX \wedge Y + X \wedge AY + 2(A X, Y) id_{\mathbb{R}^{1,n+1}}.
\]
Let \(R \in \mathcal{R}(\mathfrak{co}(1, n + 1)). \) Property (6) implies that \(R \in \mathcal{R}(\mathfrak{so}(1, n + 1)). \) Such \(R \) does not satisfy property (4).

Case 3. Suppose that \(g \subseteq \mathfrak{co}(1, n + 1)_{\mathbb{R}^{p}}. \) Then \(g \) contains the ideal \(p \wedge \mathbb{R}^{n}. \) First suppose that \(n \geq 2. \) Let \(\xi = p \wedge Z, Z \in \mathbb{R}^{n}. \) Let \(R = R_{0} + R_{A}, \) where \(R_{0} \in \mathcal{R}(\mathfrak{so}(1, n + 1)) \) and an element \(A \in \wedge^{2}\mathbb{R}^{1,n+1} \) defines \(R_{A} \) by (7). The element \(A \) may be rewritten in the form
\[
A = ap \wedge q + p \wedge X + q \wedge Y + B, \quad a \in \mathbb{R}, \quad X, Y \in \mathbb{R}^{n}, \quad B \in \mathfrak{so}(n).
\]
The equality (6) implies
\[
[\xi, A] = \rho(\xi) A,
\]
or, equivalently,
\[aZ - BZ = \rho(\xi)X, \quad Z \wedge Y = \rho(\xi)B, \quad \rho(\xi)a = 0, \quad \rho(\xi)b = 0. \]
If \(\rho(\xi) \neq 0 \) for some \(\xi \in p \wedge \mathbb{R}^{n} \), then \(A = 0 \), and \(R \) does not satisfy property \([4]\). This implies that \(\rho(\xi) = 0 \) for all \(\xi \in p \wedge \mathbb{R}^{n} \). Consequently, \(a = 0, B = 0, Y = 0 \), i.e., \(A = p \wedge X \). Combining this with the description of the element \(R \in \mathfrak{co}(1, n + 1)_{\mathbb{R}p} \) given in \([4]\), we conclude that \(R \) is determined by the equalities
\[
R(p, q) = -\lambda p \wedge q - p \wedge X_0, \quad R(p, V) = 0, \\
R(U, V) = -p \wedge (P(V)U - P(U)V - 2g(V, X)U + 2g(U, X)V), \\
R(U, q) = \gamma(U) \id - g(U, 2X + X_0)p \wedge q + P(U) - p \wedge K(U),
\]
where
\[
\lambda \in \mathbb{R}, \quad X_0, \in \mathbb{R}^{n}, \quad P \in \text{Hom}(\mathbb{R}^{n}, \mathfrak{so}(n)), \quad K \in \odot^{2}\mathbb{R}^{n}, \quad S \in \mathcal{R}(\mathfrak{so}(n))
\]
are fixed, and \(U, V \in \mathbb{R}^{n} \) are arbitrary. The condition \(\rho \wedge \mathbb{R}^{n} \cdot R = 0 \) implies \(\lambda = 0, S = 0, \) and \(2P(V)U - P(U)V + 2g(U, X)V + g(V, X_0)U + (U, V)X_0 = 0 \) \(\forall U, V \in \mathbb{R}^{n} \).

Using this equality and the similar equality, where \(U \) is interchanged with \(V \), we get
\[
3P(V)U + g(U, 4X + X_0)V + 2g(V, X + X_0)V + 3g(U, V)X_0 = 0 \quad \forall U, V \in \mathbb{R}^{n}.
\]
The condition \(P(V) \in \mathfrak{so}(n) \) implies \(g(P(V)V, W) = -g(P(V)W, V) \) for all \(V, W \in \mathbb{R}^{n} \). Using this, we get \(X = X_0 \) and \(P(V) = -V \wedge X_0 \). Thus it holds
\[
R(p, q) = -p \wedge X_0, \quad R(p, V) = 0, \\
R(U, V) = -p \wedge (3(U \wedge X)0), \\
R(U, q) = -2g(U, X_0)\id - 3g(U, X_0)p \wedge q - U \wedge X_0 - p \wedge K(U).
\]
The condition \([4]\) implies \(X_0 \neq 0 \). We may suppose that \(X_0 = e_1 \). Since
\[
R(p, q) = -p \wedge e_1, \quad R(e_1 e_i) = 3p \wedge e_i, \quad R(e_i e_i) = -e_i \wedge e_i - p \wedge K(e_i), \quad i > 1,
\]
it holds \(-e_i \wedge e_i \in \mathfrak{g} \). From \([5]\) and \([6]\) for \(\xi = -e_i \wedge e_1, X = p, Y = q \) it follows that
\[
(\xi \cdot R)(p, q) = -p \wedge e_i = -\rho(\xi)p \wedge e_i,
\]
which gives a contradiction, i.e., it is impossible that \(\mathfrak{g} \) is contained in \(\mathfrak{co}(1, n + 1)_{\mathbb{R}p} \) and \(n \geq 2 \).

Now suppose that \(n = 1 \). Results of \([4]\) show that \(\mathfrak{g} \) is one of the following:
\[
a. \quad \mathbb{R} \id_{\mathbb{R}^{1} \wedge 2} \oplus \mathbb{R} p \wedge q \ltimes \mathbb{R} p \wedge e_1; \\
b. \quad \mathbb{R} \id_{\mathbb{R}^{1} \wedge 2} \ltimes \mathbb{R} p \wedge e_1; \\
c. \quad \mathbb{R}(\alpha \id_{\mathbb{R}^{1} \wedge 2} + p \wedge q) \ltimes \mathbb{R} p \wedge e_1, \quad \alpha \in \mathbb{R}.
\]
Let \(\xi = p \wedge e_1 \). If \(\rho(p \wedge e_1) \neq 0 \), then it is easy to show that the Weyl structure is closed. If \(\rho(p \wedge e_1) = 0 \), then as above we obtain the following equalities for \(R \):
\[
R(p, q) = -\beta p \wedge e_1, \quad R(p, e_1) = 0, \quad R(e_1, q) = \beta(2 \id_{\mathbb{R}^{1} \wedge 2} + p \wedge q) - kp \wedge e_1, \quad \beta, k \in \mathbb{R}.
\]
This and the property \([4]\) imply that \(\mathfrak{g} \) is the algebra \(c \). Moreover, it holds \(\alpha = 2, \rho(2 \id + p \wedge q) = -5, \) and \(k = 0 \).

Case 2. First consider the holonomy algebra \(\mathfrak{g} = \mathbb{R} \id_{\mathbb{R}^{1} \wedge n + 1} \oplus \mathfrak{so}(1, k + 1) \oplus \mathfrak{so}(n - k), \) \(-1 \leq k \leq n - 1 \). In \([4]\), it is shown that
\[
\mathcal{R}(\mathfrak{g}) \cong \mathcal{R}(\mathfrak{so}(1, k + 1)) \oplus \mathcal{R}(\mathfrak{so}(n - k)) \oplus \mathbb{R}^{1, k+1} \otimes \mathbb{R}^{n-k}.
\]
There exists an invariant line in the \(\mathfrak{so}(1, k + 1) \oplus \mathfrak{so}(n - k) \)-module \(\mathbb{R}^{1, k+1} \otimes \mathbb{R}^{n-k} \) if and only if \(1 \leq k + 2 \leq 2 \) and \(n - k = 1 \). Hence, for \(n \geq 2 \) there is no \(R \in \mathcal{R}(\mathfrak{g}) \) satisfying \([4]\) and \([5]\). The only possible situation is \(k = 0, n = 1 \) and \(\mathfrak{g} = \mathbb{R} \id_{\mathbb{R}^{1} \wedge 2} \oplus \mathfrak{so}(1, 1) \oplus \mathfrak{so}(1) \cong \mathbb{R} \id_{\mathbb{R}^{1} \wedge 2} \oplus \mathbb{R} p \wedge q \subset \mathfrak{co}(1, 2)_{\mathbb{R}p} \).

According to \([4]\), \(R \) is uniquely determined by the following equalities:
\[
R(p, q) = -\lambda p \wedge q, \quad R(p, e_1) = 0, \quad R(e_1, q) = \gamma(\id_{\mathbb{R}^{1} \wedge 2} + p \wedge q), \quad \lambda, \gamma \in \mathbb{R}.
\]
From (6) for $\xi = a \text{id}_{\mathbb{R}^{1+2}}$, $a \in \mathbb{R}$ it follows that $\rho(a \text{id}_{\mathbb{R}^{1+2}}) = -2a$. Next, we use (5) and (6) for $\xi = bp \wedge q$, $b \in \mathbb{R}$. Substituting $X = e_1$, $Y = q$, we obtain $\rho(bp \wedge q) = -b$. Also, for $X = p$, $Y = q$ we have $\rho(bp \wedge q)R(p,q) = 0$ for all $b \in \mathbb{R}$; hence $\lambda = 0$ and R does not satisfy property (4) (g does not contain $\mathbb{R}p \wedge q$).

Suppose that $g = \mathbb{R}(\text{id}_{\mathbb{R}^{1+n+1}} + p \wedge q) \oplus \mathfrak{t} \oplus \mathfrak{so}(n-k) \ltimes p \wedge \mathbb{R}^k \subset \mathfrak{co}(1,n+1)_{\mathbb{R}^p}$, $0 \leq k \leq n-1$.

According to (4), each $R \in \mathcal{R}(g)$ may be written in the form $R = R_1 + R_2 + R_3$, where $R_1 \in \mathcal{R}(\mathfrak{t} \ltimes p \wedge \mathbb{R}^k)$, $R_2 \in \mathcal{R}(\mathfrak{so}(n-k))$, and after a proper choice of the basis it holds

$$
R_3(e_i, e_{k+1}) = ap_i, \quad 1 \leq i \leq k,
R_3(e_{k+1}, q) = -a(id_{\mathbb{R}^{1+n+1}} + p \wedge q),
R_3(e_j, q) = -ae_{k+1} \wedge e_j, \quad k + 2 \leq j \leq n
$$

for some $a \in \mathbb{R}$. If $n - k \geq 2$ and $j > k + 1$ then $e_{k+1} \wedge e_j \in g$ and from (4) we get

$$
((e_{k+1} \wedge e_j) \cdot R_3)(e_j, q) = -a(e_{k+1} \wedge e_j, e_{k+1} \wedge e_j) + R_3(e_{k+1}, e_j) = -R_3(e_{k+1}, q) = \rho(e_{k+1} \wedge e_j)R_3(e_j, q).
$$

From the last equation it follows that $a = 0$, $R_3 = 0$ and R does not satisfy property (4). We conclude that $n - k = 1$ and

$$
g = \mathbb{R}(\text{id}_{\mathbb{R}^{1+n+1}} + p \wedge q) \oplus \mathfrak{t} \ltimes p \wedge \mathbb{R}^{n-1}.
$$

Using arguments as in Case 1, it is not hard to show that $\mathfrak{t} = 0$, and it holds $R = R_3$, where the non-zero values of R_3 are the following:

$$
R_3(U, e_n) = ap \wedge U, \quad R_3(e_n, q) = -a(id_{\mathbb{R}^{1+n+1}} + p \wedge q)
$$

for all $U \in \mathbb{R}^{n-1}$.

Finally applying the arguments we used just above, it is easy to check that the holonomy algebra

$$
g = \mathbb{R}(\text{id}_{\mathbb{R}^{1+n+1}} \oplus \mathbb{R}p \wedge q \oplus \mathfrak{t} \oplus \mathfrak{so}(n-k) \ltimes p \wedge \mathbb{R}^k \subset \mathfrak{co}(1,n+1)_{\mathbb{R}^p}, \quad 1 \leq k \leq n-1
$$

does not satisfy the required properties. This proves the theorem.

3. Proof of the Main results

Proof of Theorem 1. Let (M, c, ∇) be a non-closed Lorentzian Weyl structure of dimension $n + 2 \geq 4$ with recurrent curvature tensor. By Theorem 3 its holonomy algebra coincides with

$$
\mathbb{R}(\text{id}_{\mathbb{R}^{1+n}} + p \wedge q) \ltimes p \wedge \mathbb{R}^{n-1} \subset \mathfrak{co}(1,n+1)_{\mathbb{R}^p}.
$$

Using the results from \mathfrak{t}, we obtain that around each point of M there exists a coordinate neighborhood U with coordinates v, x^1, \ldots, x^n, u and a metric $g \in c$ such that

$$
g = 2dvdu + h + H(du)^2,
$$

$$
h = \sum_{i,j=1}^{n-1} \delta_{ij} dx^i dx^j + e^{-2F} (dx^n)^2,
$$

$$
\omega = f du, \quad f = \dot{F},
$$

where $H = H(x^1, \ldots, x^{n-1}, u)$ and $F = F(x^n, u)$ are functions. The Christoffel symbols of the connection ∇ are the following:

$$
\Gamma_v = 0,
$$

$$
\Gamma_i = \begin{pmatrix} 0 & -(\delta_{ik}\dot{F})_{k=1}^{n} & \frac{1}{2}\partial_i H \\ 0 & 0 & ((\delta_{ik}\dot{F})_{k=1}^{n})^t \\ 0 & 0 & 0 \end{pmatrix}, \quad i = 1, \ldots, n - 1
$$

$$
\Gamma_n = (-\delta_{bn}\delta_{kn}\partial_u F)_{b,c=1,\ldots,n,u},
$$

$$
\Gamma_{ii} = \frac{\partial_i \sqrt{G}}{\sqrt{G}} + \frac{\partial_i H}{2H} + \frac{\partial_i \varphi}{\varphi}.
$$
\[
\Gamma_u = \begin{pmatrix}
0 & \left(\frac{1}{2} \partial_k H\right)_{k=1}^{n-1} & 0 & 0 \\
0 & 0 & 0 & -((\frac{1}{2} \partial_k H)_{k=1}^{n-1})^t \\
0 & 0 & 0 & 2\hat{F} \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

The components of the curvature tensor are as it follows:

\[
R(\partial_v, \partial_u) = 0, \quad R(\partial_v, \partial_i) = 0, \quad R(\partial_v, \partial_n) = 0, \quad R(\partial_i, \partial_j) = 0, \quad i, j = 1, \ldots, n - 1,
\]

\[
R(\partial_i, \partial_n) = \partial_n \hat{F} \begin{pmatrix} 0 & 0 & 0 \\
0 & 0 & -((\delta_{ik})_{k=1}^{n-1})^t \\
0 & 0 & 0
\end{pmatrix},
\]

\[
R(\partial_i, \partial_n) = \partial_n \hat{F} \begin{pmatrix} 0 & 0 \\
0 & 1 \\
0 & 0 & 2
\end{pmatrix}.
\]

Consider the field of frames

\[
p = \partial_v, \quad e_i = \partial_i, \quad q = \partial_u - \frac{1}{2} H \partial_v.
\]

In notation of the proof of Theorem 3 it holds \(R = R_3 \), consequently \(R(\partial_i, \partial_n) \) must be equal to zero, in other words,

\[
\frac{1}{2} \partial_n \partial_k H + \delta_{ik} (\hat{F} - \hat{F}^2) = 0, \quad \text{for all} \quad i, k = 1, \ldots, n - 1.
\]

From this we find out that

\[
H(x^1, \ldots, x^{n-1}, u) = a(u) \sum_{i=1}^{n-1} (x^i)^2 + \sum_{i=1}^{n-1} b_i(u)x^i + c(u),
\]

where \(a(u), b_i(u), c(u) \) are functions and

\[
(12) \quad \hat{F} - \hat{F}^2 = -a(u).
\]

It is easy to see that the coordinates \(v, x^1, \ldots, x^{n-1} \) may be change in such a way that \(c(u) = 0 \) and all \(b_i(u) = 0 \). Now it is easy to check that the only non-zero component of \(\nabla R \) is the following:

\[
\nabla_n R(\partial_i, \partial_n) = (\partial_n^2 \hat{F} + \partial_n \hat{F} \cdot \partial_n \hat{F}) R(\partial_i, \partial_n).
\]

Let \(\theta = \theta_v dv + \sum_{i=1}^n \theta_i dx^i + \theta_u du \). We get the equality

\[
\theta_n \partial_n \hat{F} = \partial_n^2 \hat{F} + \partial_n \hat{F} \cdot \partial_n \hat{F}.
\]

Let \(U_0 \subset U \) be the open subset, where \(\partial_n \hat{F} \) is non-vanishing. Suppose that \(U_0 \neq \emptyset \). Then on \(U_0 \) it holds

\[
\theta = \theta_n dx^n, \quad \theta_n = \partial_n F + \partial_n \ln |\partial_n \hat{F}|.
\]

Since \(\theta_n \) is smooth function on \(U, U_0 = U \). Note that \(d\omega = \partial_n \hat{F} dx^n \wedge du \). We conclude that for each coordinate neighborhood \(U \), either \(d\omega|_U = 0 \) or \(d\omega|_U \) is non-vanishing on \(U \). Since \(M \) is connected, we conclude that \(d\omega \) is non-vanishing on \(M \).

Proof of Theorem 2. Let \((M, c, \nabla) \) be a non-closed Lorentzian Weyl structure of dimension \(n + 2 = 3 \) with recurrent curvature tensor. Then by Theorem 3 its holonomy algebra is one of the following:

\[
g = \mathbb{R}(id_{\mathbb{R}^2} + p \wedge q), \quad g = \mathbb{R}(2id_{\mathbb{R}^2} + p \wedge q) \cong \mathbb{R}p \wedge e_1.
\]

Consider the first case. Using the results from [7] we obtain that around each point of \(M \) there exist coordinates \(v, x, u \) and a metric \(g \in c \) such that

\[
g = 2dv du + e^{-2F}(dx)^2 + H(du)^2, \quad \omega = \hat{F} du,
\]
where $H = H(u)$ and $F = F(x, u)$ are functions. Applying a simple coordinate transformation, we may assume that $H = 0$. The only non-zero Christoffel symbols of the connection ∇ are the following:

$$\Gamma_{xx}^x = -\partial_x F, \quad \Gamma_{ux}^u = 2\dot{F}.$$

The components of the curvature tensor are as follows

$$R(\partial_v, \partial_x) = 0, \quad R(\partial_v, \partial_u) = 0, \quad R(\partial_x, \partial_u) = \partial_x \dot{F} A, \quad A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

For ∇R we obtain

$$\nabla R(\partial_v, \partial_x) = \nabla R(\partial_v, \partial_u) = 0, \quad \nabla_v R(\partial_x, \partial_u) = 0$$

$$\nabla_x R(\partial_x, \partial_u) = \left((\partial_x F)(\partial_x \dot{F}) + \partial^2_x \dot{F}\right) A,$$

$$\nabla_u R(\partial_x, \partial_u) = \left(\partial_x \dot{F} - 2(\partial_x F) \dot{F}\right) A.$$

The condition $\nabla R = \theta \otimes \mathbb{R}$ is equivalent to the following system of equations:

$$\theta_v \partial_v \dot{F} = 0, \quad \partial^2_x \dot{F} + (\partial_x F)(\partial_x \dot{F}) = \theta_x \partial_x \dot{F}, \quad \partial_x \dot{F} - 2(\partial_x F) \dot{F} = \theta_u \partial_u \dot{F}$$

where $\theta_\alpha = \theta(\partial_\alpha), \alpha = v, x, u$. Let U_0 be the set of non-zero points of the function $\partial_x \dot{F} = 0$. Then on U_0 it holds

$$\theta_v = 0, \quad \theta_x = \partial_x (F + \ln |\partial_x \dot{F}|), \quad \theta_u = \partial_u (-2\dot{F} + \ln |\partial_x \dot{F}|).$$

Hence, if $U_0 \neq \emptyset$, then U_0 is the entire coordinate neighbourhood.

Consider the second case. From the results of [5] we obtain that around each point of M there exist coordinates v, x, u and a metric $g \in \mathcal{C}$ such that

$$g = 2dvdu + (dx)^2 + H(du)^2,$$

where H is a function and the corresponding 1-form ω satisfies

$$\omega = fdu, \quad \partial_v H = f.$$

The Christoffel symbols for the connection ∇ are as follows

$$\Gamma_v = \begin{pmatrix} 0 & 0 & \frac{1}{2}f \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_x = \begin{pmatrix} 0 & -f & \frac{1}{2}\partial_x H \\ 0 & 0 & f \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma_u = \begin{pmatrix} \frac{1}{2}f & \frac{1}{2}\partial_x H & -\frac{1}{2}fH + \frac{1}{2}\dot{H} \\ 0 & f & -\frac{1}{2}\partial_x H \\ 0 & 0 & \frac{1}{2}f \end{pmatrix}.$$

Consider the field of frames

$$p = \partial_v, \quad e_1 = \partial_x, \quad q = \partial_u - \frac{1}{2}H \partial_v.$$

It holds $R^v_{uxx} = \partial_v f$. On the other hand, from [6] it follows that $R(\partial_v, \partial_x) = R(p, e_1) = 0$. Hence, $\partial_v f = 0$. Using this we find the components of the curvature tensor

$$R(\partial_v, \partial_x) = 0, \quad R(\partial_v, \partial_u) = \frac{1}{2} \partial_x f \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$R(\partial_x, \partial_u) = \begin{pmatrix} \frac{1}{2} \partial_x f & -\frac{1}{2}f^2 + \frac{1}{2} \partial^2_x H & -\frac{1}{2}(\partial_x f)H \\ 0 & \partial_x f & \frac{1}{2}f^2 - \frac{1}{2} \partial^2_x H \\ 0 & 0 & \frac{3}{2} \partial_x f \end{pmatrix}.$$

From [6] it follows that

$$\frac{1}{2}f^2 - \dot{f} - \frac{1}{2} \partial^2_x H = 0 \quad \text{and} \quad R(\partial_x, \partial_u) = \frac{1}{2} \partial_x f \begin{pmatrix} 1 & 0 & -H \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$
The covariant derivatives of R are as follows
\[\nabla_a R(\partial_v, \partial_x) = 0, \quad a = v, x, u, \]
\[\nabla_v R(\partial_v, \partial_u) = 0, \quad \nabla_x R(\partial_v, \partial_u) = \frac{1}{2} \partial_x^2 f \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \nabla_u R(\partial_v, \partial_u) = \frac{1}{2} \partial_x^2 f \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \]
\[\nabla_x R(\partial_x, \partial_u) = \frac{1}{2} \partial_x^2 f \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \nabla_x R(\partial_x, \partial_u) = \frac{1}{2} \partial_x^2 f \begin{pmatrix} 1 & 0 & -H \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \]
\[\nabla_u R(\partial_x, \partial_u) = \left(\frac{1}{2} \partial_x^2 f - \frac{5}{4} f \partial_x f \right) \begin{pmatrix} 1 & 0 & -H \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \]

The condition $\nabla R = \theta \otimes R$ is equivalent to the following system of equations:
\[\partial_x^2 f = 0, \quad \theta_v \partial_x f = 0, \quad \partial_x f = \theta_x \partial_x f, \quad \partial_x \dot{f} - \frac{5}{2} f \partial_x f = \theta_u \partial_x f, \]
where $\theta_\alpha = \theta(\partial_\alpha)$, $\alpha = v, x, u$. We see that $f = f(x, u) = a(u)x + b(u)$. Applying a conformal rescaling of the metric and a simple coordinate transformation we may assume that $b(u) = 0$. Let U_0 be the set of points where $a(u)$ is non-vanishing. Then on U_0,
\[\theta_u = \partial_u \ln |a(u)| - \frac{5}{2} f. \]

Since θ_u is smooth, U_0 is the entire coordinate neighborhood. This proves the theorem. \[\square\]

Acknowledgements. The authors are thankful to Eivind Schneider for useful suggestions. A.D. was supported by grant MUNI/A/1092/2021 of Masaryk University. A.G. was supported by grant no. 18-00496S of the Czech Science Foundation.

References

[1] S. Berjawi, E. V. Ferapontov, B.S. Kruglikov, V. S. Novikov, Second-Order PDEs in 3D with Einstein–Weyl Conformal Structure. Ann. Henri Poincaré (2021). doi.org/10.1007/s00023-021-01140-2
[2] D. M. J. Calderbank, Two dimensional Einstein-Weyl structures. Glasgow Math. J. 43 (2001) 419-424.
[3] D. M. J. Calderbank, Integrable background geometries. SIGMA 10 (2014), 034, 51 pages.
[4] A. Dikarev, On holonomy of Weyl connections in Lorentzian signature. Differential Geometry and its Applications 76 (2021), 101759.
[5] A. Dikarev, A. S. Galaev, Parallel spinors on Lorentzian Weyl spaces. Monatshefte für Mathematik 196 (2021), 39–58.
[6] M. Dunajski, P. Plansangkate, The quadric ansatz for the mn-dispersionless KP equation, and supersymmetric Einstein-Weyl spaces. J. Phys. A – Math. Theor. 55 (2022).
[7] M. Dunajski, J. Gutowski, W. Sabra, Einstein-Weyl spaces and near-horizon geometry. Classical Quantum Gravity 34 (2017), no. 4.
[8] M. Dunajski, L. J. Mason, P. Tod, Einstein-Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 37 (2001), 63-93.
[9] J. Gregorovič, L. Zalabova, Notes on symmetric conformal geometries. Archivum Mathematicum 51 (2015), iss. 5, 287–296.
[10] P. Meessen, T. Ortín, A. Palomo-Lozano, On supersymmetric Lorentzian Einstein–Weyl spaces. J. Geom. Phys. 62 (2012), no. 2, 301–311.
[11] Th. Leistner, On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (2007), no. 3, 423–484.
[12] A. G. Walker, On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36–64.