Comparative Evaluation of Intron Prediction Methods and Detection of Plant Genome Annotation Using Intron Length Distributions

Long Yang¹ and Hwan-Gue Cho²*

¹Tobacco Laboratory, Shandong Agricultural University, Shandong 271-018, China, ²Graphics Application Laboratory, Department of Computer Science and Engineering, Pusan National University, Busan 609-735, Korea

Abstract

Intron prediction is an important problem of the constantly updated genome annotation. Using two model plant (rice and Arabidopsis) genomes, we compared two well-known intron prediction tools: the Blast-Like Alignment Tool (BLAT) and Sim4cc. The results showed that each of the tools had its own advantages and disadvantages. BLAT predicted more than 99% introns of whole genomic introns with a small number of false-positive introns. Sim4cc was successful at finding the correct introns with a false-negative rate of 1.02% to 4.85%, and it needed a longer run time than BLAT. Further, we evaluated the intron information of 10 complete plant genomes. As non-coding sequences, intron lengths are not limited by a triplet codon frame; so, intron lengths have three phases: a multiple of three bases (3n), a multiple of three bases plus one (3n + 1), and a multiple of three bases plus two (3n + 2). It was widely accepted that the percentages of the 3n, 3n + 1, and 3n + 2 introns were quite similar in genomes. Our studies showed that 80% (8/10) of species were similar in terms of the number of three phases. The percentages of 3n introns in Ostreococcus lucimarinus was excessive (47.7%), while in Ostreococcus tauri, it was deficient (29.1%). This discrepancy could have been the result of errors in intron prediction. It is suggested that a three-phase evaluation is a fast and effective method of detecting intron annotation problems.

Keywords: intron length distributions, intron prediction, plant, three phases

Introduction

With more and more species’ genomes completely sequenced, noncoding sequences have become a focus of researchers’ attention, especially for the study of introns. In order to facilitate further research, a number of intron databases have been developed (Table 1). The number of plant intron databases is much smaller than that in mammals and only in several model plants (such as Arabidopsis and rice). Using known genome sequences and coding sequences (expressed sequence tags [ESTs] or cDNA), introns can be detected by aligning coding sequences with genome sequences. Many tools were developed to detect introns in eukaryotes (Table 2) [1-16]. These tools used different algorithms and computer languages (such as Java, C++, and Python) to predict introns.

Therefore, the question is: there are many intron databases, algorithms, and detection methods for the study of eukaryotes, but which among them are the most suitable for the detection of plant introns? Among these tools, the Blast-Like Alignment Tool (BLAT) and Sim4cc are the most commonly used tools, BLAT applies in genome-wide alignment [11]. Sim4cc is a tool for aligning cDNA and genomic sequences between species at various evolutionary distances [2]. Rice and Arabidopsis, as monocotyledonous and dicotyledonous model plants, are widespread with regard to in-depth research. Their genome sequences have been annotated in detail, including their gene sequences, complementary DNA (cDNA) sequences, coding DNA sequence (CDS) sequences, exon sequences, intron sequences, and intergene sequences. Therefore, it is possible to use this model plant information to test these intron prediction tools.

Genome annotation is a difficult and accurate project—even the best-annotated or most carefully studied genomes are continually re-released; e.g., release 7 of the Rice Genome Annotation Project was available on October 31, 2011 (http://rice.plantbiology.msu.edu/). But, determining the accuracy and detecting the inherent errors of the genome annotation is a problem. Since introns are removed from protein-coding transcripts, intron lengths are not expected to respect coding frames across the genome [17]. Using intron length distributions, Roy and Penny [18] point out a rapid and simple method for de-
Species	Note	Website
Arabidopsis	Seven eukaryotic organisms	http://66.170.16.154/ExDom/
Eukaryotic	Group I intron sequence and structure database	http://www.ma.whu.edu.cn/gissd/
Human	Database resource for alternative splicing analysis	http://www.caspur.it/ASPicDB
Wheat	A tool to provide best estimate of hexaploid wheat transcript sequence	http://www4.rothamsted.bbsrc.ac.uk/whets/
15 animal	Analysis and comparative genomics of alternative splicing in 15 animal species	http://www.bioinformatics.ucla.edu/ASAP2
Rice and Arabidopsis	Genomewide comparative analysis of alternative splicing in plants	http://www.plantgdb.org/ASIP
Mammalian	Bioinformatics resource on alternative splicing	http://www.ebi.ac.uk/asd
Eukaryotic	Advances in the Exon-Intron Database	http://www.medunio.edu/bioinfo/eid/
Human and mouse	Transcript pattern variants annotated for both alternative splicing and alternative polyadenylation	http://www.ebi.ac.uk/std/
Human	Database for genome-wide alternative splicing event detection using large scale ESTs and mRNAs	http://avatar.iecs.fcu.edu.tw/
Mammalian	The Alternative Splicing Database	http://www.ebi.ac.uk/asd
Eukaryotic	Database for ‘intronless’ genes in eukaryotic genomes	http://sege.ntu.edu.sg/wester/intronless
Nine eukaryotic	Extended Alternatively Spliced EST Database	http://eased.bioinf.mdc-berlin.de/
Human	Genome wide identification and classification of alternative splicing based on EST data	http://splicenest.molgen.mpg.de
Eukaryotic	Database of eukaryotic protein-encoding genes	http://origin.bic
Mammalian	The Alternative Splicing Annotation Project	http://www.bioinformatics.ucla.edu/ASAP
Bacteria and lower eukaryotic	Database for mobile group II introns	http://www.fp.ucalgary.ca/group2introns
NCBI Taxonomy Database	A web-site for intron statistics	http://www.ncbi.ti/introns
Eukaryotic	An exon-intron database	http://intron.bic.nus.edu.sg/extin/extin/extin.html,
Organeliar	Functional genomics of organeliar introns database	http://www.xacc.utexas.edu/~mkm530/introndata/main.htm
Eukaryotic	Generation of a database containing discordant intron positions in eukaryotic genes	http://intron.bic.nus.edu.sg/midb/midb.html
Mammalian	Database of canonical and non-canonical mammalian splice sites	http://www.softberry.com/spidb/SplideDB.html
Eukaryotic	Intron sequence and evolution databases	http://nutmeg.bio.indiana.edu/intron/index.html
Eukaryotic	The exon-intron database-an exhaustive database of protein-coding intron-containing genes	http://mcb.harvard.edu/gilbert/EID
Eukaryotic	An exon/intron database	http://intron.bic.nus.edu.sg/extin/extin.html
Yeast	The yeast intron database	http://www.embl-heidelberg

EST, expressed sequence tag.
Table 2. Tools for detection alternative-splicing/introns

Tools name	Description	Reference
FIRMA	A method for detection of alternative splicing from exon array data	Purdom et al. [1]
Sim4cc	A cross-species spliced alignment program	Zhou et al. [2]
Sircah	A tool for the detection and visualization of alternative transcripts	Harrington and Bork [3]
Splicy	A web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data	Rambaldi et al. [4]
WNETS	A tool to provide best estimate of hexaploid wheat transcript sequence	Mitchell et al. [5]
RRE	A tool for the extraction of non-coding regions surrounding annotated genes from genomic datasets	Lazzarato et al. [6]
ESTMAP	A system for expressed sequence tags mapping on genomic sequences	Milanesi and Rogozin [7]
MapSplice	Accurate mapping of RNA-seq reads for splice junction discovery	Wang et al. [8]
HMMSplicer	A tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data	Dimon et al. [9]
EUGNE-HOM	A generic similarity-based gene finder using multiple homologous sequences	Foissac et al. [10]
BLAT	The BLAST-like alignment tool	Kent [11]
ASAP	A novel method to predict the exon-intron structure of a gene that is optimally compatible to a set of transcript sequences	Lee et al. [12]
EVOPRINTER	A multigenomic comparative tool for rapid identification of functionally important DNA	Odenwald et al. [13]
GenoMiner	A tool for genome-wide search of coding and non-coding conserved sequence tags	Castrignano et al. [14]
Restauro-G	A rapid genome re-annotation system for comparative genomics	Tamaki et al. [15]
Scan Intron	Scan a database of introns confirmed by cDNA/EST alignments for patterns at either end	Kent and Zahler [16]

Table 3. Ten plant species genome sequence sources

Species	Version	Source	Reference
Arabidopsis thaliana	TAIR, version 10	http://www.arabidopsis.org/	Swarbreck et al. [19]
Oryza sativa L, ssp. japonica	Release 7	http://rice.plantbiology.msu.edu/	Goff et al. [20]
Oryza sativa L, ssp. indica	28 Oct, 2008	http://rice.genomics.org.cn/	Yu et al. [21]
Zea mays	B73_RefGen_v2	http://www.maizegdb.org/	Schnable et al. [22]
Sorghum bicolor	Version 1,0	http://www.phytozone.net/sorghum.php	Paterson et al. [23]
Cucumis sativus	7 April, 2011	http://cucumber.genomics.org.cn/	Han et al. [24]
Chlamydomonas reinhardtii	Version 4,0	http://genome.jgi-psf.org/Chlr4/	Merchant et al. [25]
Ostreococcus lucimarinus	Version 2,0	http://genome.jgi-psf.org/Ost9901_3/	Palenik et al. [26]
Ostreococcus tauri	Version 2,0	http://genome.jgi-psf.org/Ostta4	Palenik et al. [26]
Medicago truncatula	M63,5,1	http://www.medicago.org/	Young et al. [27]

Ten plant genome sequences and transcript (EST, CDS, or cDNA) sequences were downloaded and indicated in Table 3 [19-27]. Table 3 contains the name of the 10 plant species, source websites, and genome sequence versions used in this study.

Methods

Genome sequences

In this study, we compared the advantages and disadvantages of BLAT and Sim4cc for model plants’ intron predictions, and we attempted to find a better way to predict the intron information of plants. Based on Roy’s method, we evaluated the intron information of 10 plant genomes and discuss a skew in genome wide intron length distributions that indicates systematic problems with intron predictions.
Comparative BLAT and Sim4cc analysis

Using cDNA sequences and gene sequences, we searched rice and Arabidopsis introns by two methods - BLAT and Sim4cc - and then compared the results with annotated information.

The steps of this method are as follows (Fig. 1): 1) Using the gene sequences of BLAT with its own cDNA sequences, we found intron information from the BLAT results by Perl script. 2) We sliced gene sequences and cDNA sequences to folders by Perl script. In these folders, there was one sequence per file, and the gene name was the file name. Using the same gene name of the gene and cDNA file, we blasted the gene sequences and cDNA sequences using Sim4cc. Then, we got intron information from the Sim4cc results by Perl script, 3) We compared the results of the two types of software (BLAT and Sim4cc) and then got the annotated intron information, 4) We aligned intron sequences with their own gene sequences to develop detailed intron information, such as the intron position in the gene, intron length, intron number, forward-exon length, and backward-exon length, etc, 5) We compared the results from the two types of software with the annotated information to validate the methods.

Intron length distributions analysis

Using Perl script, we extracted the intron information of the 10 plant genomes from the genome annotation. Then, we counted the number and percentage of 3n, 3n + 1, and 3n + 2 of these 10 plants' intron length distributions.

Results and Discussion

A comparison of BLAT and Sim4cc

As a prerequisite, it was assumed that the intron annotated information was correct and complete. Then, the software's results were compared with the annotated information. Three sets of results of intron information were obtained: two sets from the software (BLAT and Sim4cc) and one set from the annotated information (Table 4).

Using BLAT, we found 99.35% and 99.87% of the introns of all rice and Arabidopsis annotated introns, respectively. These introns were almost all of the introns in the genome - that is, only 0.13% to 0.65% of the introns were not found. In contrast, by using Sim4cc, 95.15% to 98.98% of the introns were found (1.02% to
4.85% of the introns were lost) of all rice and Arabidop-
sis annotated introns. In summary, BLAT got more of
the introns in a genome than Sim4cc. In light of this re-
result, it seems as though that BLAT produces better re-
results than Sim4cc.

We found 30,194 rice genes with at least one intron
by BLAT, but the number was 30,177 according to the
annotated information. Because the BLAT results were
larger than the annotated results, the BLAT results must
have predicted some new and different genes with
introns, In the BLAT results, many short-length introns
(less than 50 bp) were predicted, but in fact, these
short-length introns were part of transcript sequences
and were not real intron sequences. In contrast, Sim4cc
detected 29,875 genes with introns, and all of these
genes were contained in the annotation information. The
predicted intron accuracy rate of Sim4cc was 100%. On
accuracy, Sim4cc was better than BLAT.

If Sim4cc is used, the user has to splice a whole ge-
nome file to many files: one gene, one file. The comput-
ing process of Sim4cc was more complex than that of
BLAT, and each time, Sim4cc only calculated one cDNA
sequence to one gene sequence; so, the executing effi-
ciency and speed are not high. In comparison, BLAT
was easier and faster than Sim4cc.

In conclusion, BLAT and Sim4cc can be used to pre-
dict introns, but each of them has its advantages and
disadvantages. The comparative results are summarized
in Table 5, Sim4cc was a cross-species spliced align-
ment program. In our study, Sim4cc was used to find
introns by comparing cDNA sequences and gene se-
quences, The correct intron can be obtained by com-
paring one cDNA sequence with its own gene sequence.
But, a lot of introns were lost by Sim4cc, In other words,
Sim4cc was good at detecting the correct intron but not
at predicting the whole number of introns in a genome.
In contrast, BLAT can predict most of the introns - nearly
all of the total introns in a genome. But, there
were some false-positive predictions of introns. However,
the proportion of this error was very small. As a result,
BLAT will be proposed to annotate plant genome introns,

Intron length distribution of 10 plants

According to Roy’s method, many predicted introns in
the plant genomes had in-frame stop codons, and the
predicted introns in these genomes were equally as likely
to be a multiple of 3 bp (3n) as to contain a plus one
(3n + 1) or two (3n + 2) bp. Here was an example of
three phases from an Arabidopsis thaliana gene,
AT1G17600.1 (Fig. 2).

By analyzing genome sequence annotations, we got
three-phase intron distributions for 10 plant species
(Table 6). If the plant intron annotation is more accurate,
the number of three phases should be similar (one-third
each). For 80% (8/10) of species, there were similar
numbers of the three phases. It should be noted that
most of these plant species annotations were the best
annotations to date, but new annotations will be con-
tinually released to correct errors and false-positive
results.

Two-species 3n intron skew analysis

For all of the 10 genomes (Table 6), there were very
similar numbers of 3n + 1 and 3n + 2 introns, and the
percentages of 3n + 1 and 3n + 2 introns were within
0.8%. In contrast, the number of 3n introns varied much
more widely, from 29.1% to 47.7%. In this study, two
species’ genome introns showed strongly skewed per-
Intron 1 3n
... CAA GCC ACT Ggt aag cct ttt ttt gtt tac aca cat tta ctt tgt tta gca gca cac tgg aag gaa tta taa ttt tcc tgc tca att tca ata tta tta gTG TTG ATG AGG ...

Intron 2 3n + 2
... TCA GAG ACg taa gca tgt tct tga atc tat tct ttt tta att tca tga tgc atc tgg ace tta gaa gtt tct ggc ttt tgg ttt tgt tct tct tat cat cag **G GAG GAG AAC ...

Intron 3 3n + 1
... AAA CAA GGA Ggt gaa tac tgg gct tgg gct caf tca cta tta tga tgg atc tga ttt tta ccc ttg atc atc ttt ctt ctt tta tag *GC ACA TAC ACG ...

Fig. 2. An example of three phases of intron from an Arabidopsis gene, AT1G17600.1. Upper/lowercase sequence indicates exon/intron sequence. Asterisks indicate frameshifts introduced by non-3n introns; intronic in-frame stop codons are underlined. Intron 1 is a 99-bp intron (3n) with one in-frame stop codon. Intron 2 is a 100-bp intron (3n + 2), which has two in-frame stop codons and thus does not interrupt the open reading frame. Intron 3 is a 74-bp intron (3n + 1) with three stop codons.

Table 6. Intron three-phase distributions of 10 plant species

Species	Intron No.	3n	3n + 1	3n + 2	Excess 3n	(3n + 1) - (3n + 2)
Arabidopsis thaliana	175,513	0.333	0.334	0.334	0.001	0.000
Oryza sativa, ssp. japonica	251,812	0.353	0.322	0.324	-0.030	-0.002
Oryza sativa, ssp. indica	127,029	0.329	0.355	0.335	0.006	0.000
Zea mays	266,772	0.331	0.335	0.334	0.003	0.001
Sorghum bicolor	115,610	0.336	0.334	0.331	-0.004	0.003
Cucumis sativus	90,434	0.331	0.334	0.335	0.003	0.000
Chlamydomonas reinhardtii	104,660	0.355	0.323	0.322	-0.033	0.001
Ostreococcus lucimarinus	2,369	0.477	0.258	0.265	-0.215	-0.007
Ostreococcus tauri	4,334	0.291	0.358	0.350	0.063	0.008
Medicago truncatula	152,466	0.331	0.336	0.333	0.004	0.002

percentages, in that the 3n intron percentage was much lower or higher than the expected value (one-third). Such a skew suggests systematic errors in the intron prediction.

The green alga Ostreococcus lucimarinus has one of the highest gene densities known in eukaryotes, with many introns [28]. There was a striking excess of predicted 3n introns (47.7% of all predicted introns, 1,130) compared to 3n + 1 (25.8%, 611) and 3n + 2 (26.5%, 628) introns. In this case, many predicted 3n introns were not true introns but instead exons.

The unicellular green alga Ostreococcus tauri is the world’s smallest free-living eukaryote known to date [29]. These predicted introns showed a deficit of 3n introns (29.1%, 1,262), much lower than 3n + 1 (35.8%, 1,553) and 3n + 2 (35%, 1,519) introns. This result is very close to previous studies [18]. In this case, 3n introns may be mistakenly regarded as coding sequences, whereas a 3n + 1 or 3n + 2 intron may be inferred from the disruption of the coding frame.

Concluding remarks

By comparing the advantages and disadvantages of BLAT and Sim4cc in intron prediction, we found that BLAT is faster and can predict more introns than Sim4cc. Through using intron length distribution to detect introns’ annotations, it is a simple and fast method for detecting a variety of possible systematic biases in intron prediction or even for detecting problems with genome assemblies.

Acknowledgments

This study was funded by the Korea Science and Engineering Foundation, the National Natural Science Foundation of China (No. 30900780), the China Postdoctoral Science Foundation (No. 20090461260 & No. 201104647), and the Postdoctoral Foundation of Shandong Agricultural University (No. 76267).
References

1. Purdom E, Simpson KM, Robinson MD, Conboy JG, Lapuk AV, Speed TP. FIRMA: a method for detection of alternative splicing from exon array data, Bioinformatics 2008;24:1707-1714.

2. Zhou L, Pertea M, Delcher AL, Florea L, Sim4cc: a cross-species spliced alignment program, Nucleic Acids Res 2003;31:680.

3. Harrington ED, Bork P, Sircah: a tool for the detection and visualization of alternative transcripts, Bioinformatics 2008;24:1959-1960.

4. Rambaldi D, Felice B, Praz V, Bucher P, Cittaro D, Guffanti A, Splicpy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probe set data, BMC Bioinformatics 2007;8 Suppl 1:S17.

5. Mitchell RA, Castellis-Brooke N, Taubert J, Verrier PJ, Leader DJ, Rawlings CJ. Wheat Estimated Transcript Server (WhETS): a tool to provide best estimate of hexaploid wheat transcript sequence, Nucleic Acids Res 2007;35:W148-W151.

6. Lazzarato F, Franceschinis G, Botta M, Cordero F, Calogero RA, RRE: a tool for the extraction of non-coding regions surrounding annotated genes from genomic datasets, Bioinformatics 2004;20:2848-2850.

7. Milanesi L, Rogozin IB. ESTMAP: a system for expressed sequence tags mapping on genomic sequences, IEEE Trans Nanobioscience 2003;2:75-78.

8. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery, Nucleic Acids Res 2010;38:e178.

9. Dimon MT, Sorber K, DeRisi JL. HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data, PLoS One 2010;5:e13875.

10. Foissac S, Bardou P, Moisan A, Cros MJ, Schiex T. EUGENE/HOM: A generic similarity-based gene finder using multiple homologous sequences, Nucleic Acids Res 2003;31:3742-3745.

11. Kent WJ. BLAT: the BLAST-like alignment tool, Genome Res 2002;12:656-664.

12. Lee C, Atanov L, Modrek B, Xing Y, ASAP: the Alternative Splicing Annotation Project, Nucleic Acids Res 2003;31:101-105.

13. Odenwald WF, Rasband W, Kuzin A, Brody T, EVOPRINTER, a multigene comparative annotation tool for rapid identification of functionally important DNA, Proc Natl Acad Sci U S A 2005;102:14700-14705.

14. Castrignanò T, De Meo PD, Grillo G, Liuni S, Mignone F, Talamo IG, et al. GenoMiner: a tool for genome-wide search of coding and non-coding conserved sequence tags, Bioinformatics 2006;22:497-499.

15. Tamaki S, Arakawa K, Kono N, Tomita M, Restauro-G: a rapid genome re-annotation system for comparative genomics, Genomics Proteomics Bioinformatics 2007;5:53-58.

16. Kent WJ, Zahler AM. The intronerator: exploring introns and alternative splicing in Caenorhabditis elegans, Nucleic Acids Res 2000;28:91-93.

17. Irimia M, Roy SW. Spliceosomal introns as tools for genomic and evolutionary analysis, Nucleic Acids Res 2008;36:1703-1712.

18. Roy SW, Penny D. Intron length distributions and gene prediction, Nucleic Acids Res 2007;35:4737-4742.

19. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, et al. The Arabidopsis Information Resource (TAIR): gene structure and function annotation, Nucleic Acids Res 2008;36:D1009-D1014.

20. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science 2002;296:92-100.

21. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science 2002;296:79-92.

22. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, P nasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics, Science 2009;326:1112-1115.

23. Paterson AH, Bowers JE, Brugmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses, Nature 2009;457:551-556.

24. Han YH, Zhang ZH, Liu JH, Lu JY, Huang SW, Jin WW. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization, Cytogenet Genome Res 2008;122:80-88.

25. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science 2007;318:245-250.

26. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation, Proc Natl Acad Sci U S A 2007;104:7705-7710.

27. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, et al. Sequencing the genespaces of Medicago truncatula and Lotus japonicus, Plant Physiol 2005;137:1174-1181.

28. Lanier W, Moustafa A, Bhattacharya D, Comeron JM. EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes, PLoS One 2008;3:e2171.

29. Derelle E, Ferraz C, Rombauds S, Rouzé P, Worden AZ, Robbens S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features, Proc Natl Acad Sci U S A 2006;103:11647-11652.