The Advantage is at the Ladies: Brain Size
Bias-Compensated Graph-Theoretical Parameters are
Also Better in Women’s Connectomes

Balázs Szalkaia, Bálint Vargaa, Vince Grolmusza,b,*

aPIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
bUratim Ltd., H-1118 Budapest, Hungary

Abstract
In our previous study we have shown that the female connectomes have significantly better, deep graph-theoretical parameters, related to superior “connectivity”, than the connectome of the males. Since the average female brain is smaller than the average male brain, one cannot rule out that the significant advantages are due to the size- and not to the sex-differences in the data. To filter out the possible brain-volume related artifacts, we have chosen 36 small male and 36 large female brains such that all the brains in the female set are larger than all the brains in the male set. For the sets, we have computed the corresponding braingraphs and computed numerous graph-theoretical parameters. We have found that (i) the small male brains lack the better connectivity advantages shown in our previous study for female brains in general; (ii) in numerous parameters, the connectomes computed from the large-brain females, still have the significant, deep connectivity advantages, demonstrated in our previous study.

1. Introduction

While the neuronal-scale mapping of the connections of the whole human brain with more than 80 billion neurons is not possible today, a diffusion MRI-based workflow is available for mapping these connections with much less resolution \[1, 2, 3, 4\]. The result of that workflow is the connectome, or the braingraph of the subject: the several hundred nodes of this graph correspond to distinct areas of the gray matter of the brain, and two nodes are connected by an edge if the workflow finds fibers of axons connecting the areas, corresponding to these two nodes.

These connectomes describe tens of thousands of connections between distinct cerebral areas in a much more detailed manner than was possible before

*Corresponding author

Email addresses: szalkai@pitgroup.org (Balázs Szalkai), varga@pitgroup.org (Bálint Varga), grolmusz@pitgroup.org (Vince Grolmusz)
the era of diffusion MRI imaging. Additionally, the braingraphs make possible the quantitative analysis of the connections of the human brain.

One natural question is finding the connections that are present in a majority of healthy subjects. In [5] we described the Budapest Reference Connectome Server http://connectome.pitgroup.org that generates and visualizes the consensus braingraph of healthy individuals according to selectable parameters.

Another related question is the mapping of the individual variability of the connectomes in distinct areas of the gray matter. Using data from 392 healthy individuals, we have mapped the surprisingly different variability of the connections in distinct lobes and smaller cortical areas in [6].

An interesting area is characterizing the significant differences in the brain-connections of distinct groups of subjects. Hundreds of publications appear describing differences of the connectomes of healthy and diseased individuals (e.g., [7, 8, 9, 10, 11]).

Much fewer articles deal with sex differences of the structural properties of the connectomes. The authors of [12] and [13] have applied statistics for the numbers of edges connecting larger, fixed anatomical areas of the cortex in men and women, and have found significant differences between the sexes in these numbers. The work [13] analyzed the 95-vertex graphs of 949 subjects aged from 8 through 22 years on a publicly unavailable dataset. One of the main results of [13] is showing that males have more intra-hemispheric edges while females have more inter-hemispheric edges.

Instead of simple edge-counting, we have applied much deeper – even some NP-hard – graph-theoretical algorithms for discovering sex differences between the connectomes in [14]. The graph dataset examined in [14] contained the data of 96 subjects of ages between 22 and 35 years, from the Human Connectome Project [3]. From the data of each subject five graphs were computed with different resolutions and each graph with five different edge weights. The graph dataset is publicly available (without any registration) at http://braingraph.org/download-pit-group-connectomes/ for independent verification and further analysis.

We have found in [14] that the female brain has such graph-theoretical properties that are associated with “better connectivity” in computer interconnection networks [15] and elsewhere. Namely, women’s braingraphs have

(i) more edges;
(ii) larger minimum bisection width (balanced minimum cut) within each hemisphere, even when normalized with the edge number;
(iii) larger eigengap;
(iv) more spanning forests;
(v) larger minimum vertex cover
than the braingraphs of men.

Property (i), the larger edge number, is a straightforward characteristic of a “better connected” graph. In computer interconnections networks, the quantity (ii) is a standard measure of the “quality” of the network [15]: the higher the width is the better the network. We note that the advantage remains valid even if we normalize the bisection width with the larger edge-number of the female connectomes! Quantity (iii) is related to the expander property of the graphs [16]: the larger the eigengap, the better expander is the graph. Good expander graphs have good intrinsic “connectivity” properties, such as a fast convergence to the stationary distribution of a random walk on an expander graph [16].

A minimum vertex cover is the smallest subset S of the nodes of the graph such that each edge contains at least one vertex from S (i.e., each edge is “covered” by an element of S). The result in [14] says that the edges in the braingraph of females need more vertices to cover than in the case of males.

It is known for a long time that on the average, the female brain weights less and is smaller than the brain of males [17, 18]. Clearly, this statistical difference may have implications for the diffusion MR imaging workflow, and, consequently, to the construction of the braingraphs from the imaging data.

For example, larger brains have longer axonal fibers, and those longer fibers are more difficult to follow in the tractography phase of the data processing workflow: if we assume that there is a fixed error probability at every step of the tractography algorithm, then longer fibers will produce more errors, and, consequently, are much harder to follow and discover than short ones [19, 20].

Therefore, it might happen that the statistically significant differences in the graph properties of the connectomes of different sexes are due to simple size differences. Clearly, any brain-size dependent “artificial” correction of the diffusion MRI data or the tractography results would meet well-founded criticism, and is not a realistic choice for data analysis.

The article [21] states that the sex differences in the ratio of the intrahemispheric/interhemispheric connections in the connectome are due to the differences in the brain size. In order to show this, they have selected 69 small brain subjects (55 females and 14 males) and 69 large brain subjects (14 females and 55 males), and after acquiring and analyzing their — publicly unavailable — data, they have found that the ratio of the intrahemispheric/interhemispheric streamlines (the authors of [21] called it “connectivity ratio”) is significantly larger in the small brain group than in the large brain group (0.218 vs. 0.201, $p=0.005$ from Table 1 of [21]).

We do not think that the results of [21] are really decisive on the question since the large brain group contained mostly males and the small brain group mostly females.

In our present work, we have computed braingraphs from the data of more than 400 subjects of the Human Connectome Project’s [3] anonymized 500 Subjects Release, and from this large set we were able to choose two rather unusual sets of subjects: 36 large-brain females and 36 small-brain males such that every single female brain is of larger volume than every single male brain in the set. Therefore, the sex-related differences in the connectomes in this set will be free
Table 1: The list of subject-IDs, their sex and their brain volumes in the present study. The subjects are listed in the increasing order according to their brain volumes. The IDs refer to the Human Connectome Project’s [3] anonymized 500 Subjects Release. The corresponding brain graphs can be downloaded from the site http://braingraph.org/download-pit-group-connectomes/. The first six columns contain the data for 36 small-brain males, the last six columns the data of the 36 large-brain females. The columns with header FS Mask Vol contains the FreeSurfer-computed Brain Mask Volumes in mm3 [22].

ID	Sex	FS_Mask Vol									
75605	M	1358429	10244	M	1601802	96778	F	1642544	62759	F	1695382
729254	M	1307373	13683	M	1601888	70256	F	1644699	178142	F	1698996
138534	M	1351655	134324	M	1602993	268850	F	1646027	179309	F	1701729
217126	M	152329090	107422	M	1603895	901339	F	1647983	784565	F	1707127
211417	M	1531553	142626	M	1608980	187547	F	1648110	155281	F	1709262
212136	M	1538421	101107	M	1615636	162733	F	1648240	167743	F	1712277
137996	M	1549600	695768	M	1618175	957974	F	1649595	290136	F	1719074
148941	M	1551979	849971	M	1619444	199150	F	1650276	161630	F	1730584
12620	M	1556604	572451	M	1626578	851938	F	1650682	105621	F	1738241
163331	M	1557239	101309	M	1631429	872764	F	1652110	113619	F	1738878
171683	M	1561084	994273	M	1631997	702133	F	1653573	148335	F	1751817
394150	M	1567397	837509	M	1632384	807127	F	1693436	714672	F	1758402
16329	M	1577975	133928	M	1632517	120111	F	1667579	562446	F	1761754
108525	M	1575224	395958	M	1632986	638049	F	1683759	793790	F	1776129
992774	M	1584556	230418	M	1633225	709551	F	1686019	113215	F	1792647
599971	M	1587970	156129	M	1633937	135932	F	1686291	872128	F	1794216
540439	M	1594532	126628	M	1635888	436229	F	1687330	258501	F	1813101
558976	M	1595758	106341	M	1639025	173453	F	1689523	170534	F	1831788

from the size bias.

2. Results and Discussion

Here we consider the diffusion MRI data of small-brain males and large-brain females in order to compensate for the possible brain-size bias in the data acquisition and the data processing steps.

We have chosen a set of 36 female and 36 male brains from the Human Connectome Project’s [3] anonymized 500 Subjects Release, such that each female brain in the set is larger than every male brain in the set (see Table 1). Next, as in [14], for every subject we have computed brain graphs of five different resolutions: 83, 129, 234, 463 and 1015 vertices, and for all graphs we have constructed five different edge weights:

- **Unweighted**: Every edge has the same, unit weight.
- **FiberN**: The number of fiber tracts that define the edge.
- **FAMean**: The average of the fractional anisotropies [23] of the fiber tracts, belonging to the edge.
• **FiberLengthMean**: The average length of the fiber tracts belonging to the edge.

• **FiberNDivLength**: The count of the fiber tracts of the edge, divided by their average length.

The most relevant weight function in our present study is the fractional anisotropy **FAMean**. This quantity, for each voxel, gives a measure of anisotropy with a real number between 0 and 1: 0, if the diffusion-ellipsoid in the voxel is a perfect sphere, and its value is getting closer to 1, if the ellipsoid has one large and two small axes, and it is 1 if the ellipsoid reduces to a line segment. More exactly, one can assign a fractional anisotropy to fiber tracts by averaging the value for each voxels on the tract. The **FAMean** weight is the average of the fractional anisotropies, taken for all fiber tracts defining the graph-edge in question.

Nodes	Property Group	Property	(F	M) means	p (1st)	p (2nd)	p (corrected)
83	All_AdjMaxDivD	FAMean	1.353	1.899	0.00195	0.00003	0.00155
234	All_MinVertexCover	FAMean	52.243	49.132	0.00298	0.00098	0.00379
129	All_MinVertexCover	FAMean	29.504	28.027	0.00867	0.00073	0.03505
129	All_MinSpanningForest	FAMean	30.710	27.945	0.005129	0.00096	0.04507
234	Left_MinVertexCover	FAMean	18.693	17.688	0.00408	0.00120	0.05407
83	All_MaxMatching	FAMean	1.353	1.899	0.00195	0.00003	0.00155
83	Right_LogSpanningForest	FAMean	51.672	47.347	0.00422	0.00197	0.08681
83	All_MaxFractMatching	FAMean	18.744	17.975	0.00283	0.00199	0.08575
83	All_MinSpanningForest	FAMean	18.744	17.975	0.00283	0.00199	0.08376
83	All_LogSpanningForest	FAMean	110.058	101.687	0.00287	0.00365	0.14977
83	All_MinSpanningForest	FAMean	20.162	18.323	0.00538	0.00428	0.22122
129	Left_MinVertexCover	FAMean	14.647	13.925	0.00217	0.00585	0.22122
234	All_LogSpanningForest	FAMean	344.237	308.236	0.00428	0.00593	0.21951
83	Left_LogSpanningForest	FAMean	53.522	48.713	0.00990	0.00746	0.26874
129	All_LogSpanningForest	FAMean	192.234	179.953	0.00714	0.00833	0.29154
234	All_LogSpanningForest	FAMean	683.263	630.432	0.00295	0.01170	0.39796
129	All_LogSpanningForest	FAMean	95.757	89.284	0.00401	0.01603	0.52333
83	All_LogSpanningForest	FAMean	217.684	201.464	0.00510	0.01788	0.55437
83	Left_LogSpanningForest	FAMean	9.242	8.803	0.00192	0.02533	0.76004
83	Left_LogSpanningForest	FAMean	9.242	8.803	0.00192	0.02533	0.74470
83	Left_MaxMatching	FAMean	9.187	8.742	0.00408	0.02558	0.71621
129	All_LogSpanningForest	FAMean	386.878	360.531	0.00566	0.02624	0.70860
83	Left_LogSpanningForest	FAMean	339.278	313.589	0.00264	0.03174	0.90314
129	Right_LogSpanningForest	FAMean	799.795	733.002	0.00616	0.05527	1.21692
83	Right_LogSpanningForest	FAMean	7.967	7.066	0.00644	0.05603	1.17663
234	All_LogSpanningForest	FAMean	339.278	313.589	0.00264	0.03174	0.90314
234	Left_LogSpanningForest	FAMean	799.795	733.002	0.00616	0.05527	1.21692
83	Right_LogSpanningForest	FAMean	7.967	7.066	0.00644	0.05603	1.17663
234	All_LogSpanningForest	FAMean	5347.159	4942.425	0.00624	0.03583	0.89570
129	All_LogSpanningForest	FAMean	1671.711	1639.914	0.00419	0.03734	0.86922
83	Left_LogSpanningForest	FAMean	193.159	179.854	0.00640	0.04110	0.94530
83	Right_LogSpanningForest	FAMean	799.795	733.002	0.00616	0.05527	1.21692
83	Left_LogSpanningForest	FAMean	7.967	7.066	0.00644	0.05603	1.17663
129	All_LogSpanningForest	FAMean	1671.711	1639.914	0.00419	0.03734	0.86922
83	Left_LogSpanningForest	FAMean	799.795	733.002	0.00616	0.05527	1.21692
83	All_LogSpanningForest	FAMean	5347.159	4942.425	0.00624	0.03583	0.89570
129	All_LogSpanningForest	FAMean	1671.711	1639.914	0.00419	0.03734	0.86922
83	Left_LogSpanningForest	FAMean	799.795	733.002	0.00616	0.05527	1.21692
Table 2: Statistical analysis of the differences in graph-theoretical parameters of connectomes computed from 36 small-brain male and 36 large-brain female cerebral MRIs. The first column gives the number of vertices. The second column gives the graph-parameters computed: Each parameter-name is separated by two "," symbols into three segments: The first segment describes the hemisphere or the whole connectome using descriptors Left, Right or All. The second segment gives the graph-parameter computed (defined in the "Methods" section, e.g., MaxMatching), and the third segment specifies the weight function applied, the choices are Unweighted, FiberK, FAMean, FiberLengthMean, FiberNDivLength. The third and the fourth columns contain the average values for the female and the male groups, respectively. The fifth column describes the p-values of the first round, the sixth column in the second round, and the seventh column the Holm-Bonferroni corrections for the p-values. With p=0.05 all the first four rows describe significantly different graph theoretical properties between sexes. One-by-one, each row with italic values in column 6 describe differences between sexes, with significance p=0.05. For the details we refer to the section “Statistical analysis”.

The lack of both significant and non-significant advantages of males with small brains

Suppose that the statistically significant differences of the graph-theoretical parameters, describing better connectivity of the female braingraphs in [14], are due solely to the brain volume differences and not to the sex differences of the subjects. Then in our subject-sets of small-brain men and large-brain women the same, significant differences in the graph-theoretical parameters should have been observed showing the advantage of the small-brain males.

Surprisingly, this is not true, with one single exception:

As one can observe in the first row of Table 2, All AdjLMMaxDivD_FAMean (the largest eigenvalue of the generalized adjacency matrix, divided by the average (generalized) degree, computed with the FAMean weight function) is significantly larger for men than for women in the 83-vertex resolution. All the other parameters that were significant statistically (denoted by an italic font in the sixth column) are still larger for the female group, showing better connections in that group.

This means that the lower cerebral volume will not imply better connectivity, therefore the results of [14] are due to sex differences and not size differences or other artifacts.

FAMean-weighted significant connectivity advantages of females

We need to remark that almost all graph-parameters, implying better connectivity for the connectomes of women in Table 2, were weighted by FAMean. We think that fiber tracts with high FAMean values were tracked very reliably and were able to produce statistically significant results.

More exactly, we have found (in Table 2) the following parameters significantly differing in both tests:

MinVertexCover for the whole brain, and also just for the left hemisphere in several resolutions: this quantity gives the minimum number of vertices that is needed to cover all edges in the graph. We note that the meaning of this NP-hard quantity and also its computing needs much deeper tools than the numerous edge-counting statistics published elsewhere.
Sum describes the number of edges in the graph; we have significant differences within the left and the right hemispheres, as well as in the whole connectome. The number of spanning forests also give significant advantages for the female connectomes. Similarly, the maximum matching and the maximum fractional matching is also significantly larger in female connectomes for several resolutions.

In the ANOVA round 1, when only the data from group 0 were analyzed, we have found lots of significant-looking results showing the better connectivity of the female brains even in our large-brain set with other weight functions as well. For example, in the Appendix, in the 463 node resolution, the minimum number of the vertices that are needed to cover all the edges in the whole brain graph is larger in female connectomes than in male ones even with the FiberN weight function, with $p = 0.017$. Or, in the same 463-node resolution, the minimum balanced bisection width, normalized with the number of edges in the right hemisphere is larger for women than in men with $p = 0.05$ in the unweighted graph. We say that these are “significant-looking” results since our strict analysis in the holdout set did not find all of these to be significant (see the “Statistical Analysis” section for details).

In summary, with the FAMean weight function several (but not all) differences we have found between the graph parameters of male and female connectomes remained valid for the small-brain men - large-brain women datasets. Additionally, with numerous other weight functions the advantage of the female connectomes in connectivity related parameters is shown in the Appendix.

3. Methods

The data source is the Human Connectome Project’s [3] anonymized 500 Subjects Release. The workflow that produces the brain graphs or connectomes are detailed in [14] and in [5]: the Connectome Mapper Toolkit [4] (http://cmtk.org) was used for segmentation, partitioning, tractography and for the graph construction. For partitioning, FreeSurfer was applied with the Desikan-Killiany anatomical atlas that produced 83, 129, 234, 463 and 1015 regions of interests. Tractography was performed with randomized seeding by the Connectome Mapper Toolkit [4], applying the deterministic streamline method with the MRtrix processing tool [24]. We have computed the graphs from more than 400 diffusion MR images.

Choosing two sets of the same cardinality: large female brains and small male brains

The selection of large female and small male brains were done using the following mathematical scheme:

There is such a brain size B that an equal number of men have smaller brains than B as the women who have larger brains than B. This is true because each person has a different brain size, and when we increase B from the minimum possible brain size to the maximum possible brain size, at each step we either
encounter a man (in this case the number of men with smaller brains than B increases by 1), or we encounter a woman (in this case the number of women with larger brains than B decreases by 1). Since at the beginning the number of small-brain men was 0 and the number of large-brain women was \(N_W \) (the number of women in the study), and at the end the number of small-brain men will be \(N_M \) (the number of men in the study) and the number of large-brain women will be 0, this means that at some point the two numbers will be equal because, at each step, both change by 1 in the proper direction. This is a well-defined interval between two consecutive brain sizes. We looked for this division point B, and then considered only the men with smaller brains and the women with larger brains.

This way we were able to select 36 female and 36 male brains, such that all the female brains have larger volumes than all the male brains in the set.

Graph parameters and their descriptions

The generalized adjacency matrix is an \(n \times n \) matrix, where \(n \) denotes the number of vertices of the graph. Its rows and columns correspond to the nodes of the graph, and the element in the intersection of row \(i \) and column \(j \), \(a_{ij} \), is zero if the \(i^{th} \) and the \(j^{th} \) vertices are not connected by an edge, and \(a_{ij} \) is the weight of the edge, connecting the \(i^{th} \) and the \(j^{th} \) vertices otherwise.

The degree of a node is the number of the edges, incident to the vertex. The generalized degree of a vertex is the sum of the weights of the edges, incident to the vertex.

The following graph-parameters were computed for the graphs of different resolutions and weights:

- Number of edges (\(\text{Sum} \)). The sum of the weights of the edges. If the graph is unweighted, then it is equal to the number of edges in the graph.

- Normalized largest eigenvalue (\(\text{AdjLMaxDivD} \)): The largest eigenvalue of the generalized adjacency matrix, divided by the average (generalized) degree.

- Eigengap of the transition matrix (\(\text{PGEigengap} \)): The transition matrix \(P_G \) can be constructed after dividing the rows of the generalized adjacency matrix by the generalized degree of the vertex, corresponding to the row. Since the (generalized) degree of any vertex is equal to the sum of its row in the generalized adjacency matrix, the sum of any row of \(P_G \) is 1. If the weights are non-negative, then the rows of \(P_G \) define a probability distribution, which corresponds to the transition probabilities in a random walk. The eigengap of matrix \(P_G \) is the difference between its largest and the second largest eigenvalues. The eigengap is closely related to the expander property of the graph: the larger the gap, the better expander is the graph [16].
• Hoffman’s bound (HoffmanBound) is defined by

\[1 + \frac{\lambda_{\text{max}}}{|\lambda_{\text{min}}|}, \]

where \(\lambda_{\text{max}} \) and \(\lambda_{\text{min}} \) denote the largest and smallest eigenvalues of the adjacency matrix. It bounds the chromatic number of the graph from below.

• Logarithm of the number of spanning forests (LogAbsSpanningForestN): The famous matrix-tree theorem of Kirchoff [25, 26] computes the number of the spanning trees in a connected graph from the spectrum of its Laplacian matrix. Heuristically, more “connected” graphs have more spanning trees, since the addition of a new edge to the graph may give rise to the number of the spanning trees. For non-connected graphs, the number of spanning forests equals the product of the numbers of the spanning trees of the components of the graph. The quantity \(\text{LogAbsSpanningForestN} \) is defined as the logarithm of the number of spanning forests in the unweighted case; and in the weighted case it equals to the sum of the logarithms of the weights of the spanning trees in the forests. Note that this value can be negative if all the weights are small.

• Minimum bisection width, or the balanced minimum cut, divided by the number of edges (MinCutBalDivSum): Suppose we want to partition the graph into two sets whose size may differ by at most 1, in a way that the the number (or the sum of the weights) of the edges, crossing the cut, is minimal. For the whole brain graph, one would expect that this minimum cut corresponds to the edges in the corpus callosum between the two hemispheres of the brain. Indeed, our results show exactly this. Therefore, this quantity is more interesting when computed only for the left- or the right hemisphere, and not for the whole brain.

• Minimum cost spanning tree (MinSpanningForest), computed with the algorithm of Kruskal.

• Minimum vertex cover (MinVertexCoverBinary): is the size of the minimum set of vertices selected in a way that each edge is incident to at least one of the selected vertices. We have computed this NP-hard graph-parameter only for unweighted graphs by an integer-program solver named SCIP (http://scip.zib.de), [27, 28], which provided exact solutions.

• Minimum weighted vertex cover (MinVertexCover): We assign a fractional weight to each vertex such that, for each edge, the sum of the weights of its two endpoints is greater or equal to 1, then we minimize the sum of all weights for all vertices. This is a relaxation of the vertex-cover problem above [29], and can be computed by a linear programming approach.
• Maximum matching (MaxMatching): A matching is a set of edges that do not share any vertices; or, equivalently: each vertex covered by the matching edges are covered by exactly one edge from the matching. A maximum matching is the matching in a graph containing the largest number of edges. A maximum matching in a weighted graph is the matching with the maximum sum of weights taken on its edges.

• Maximum fractional matching (MaxFracMatching): is the linear-programming relaxation of the maximum matching problem. In the unweighted case, we are searching for non-negative values \(x(e) \) for each edge \(e \) in the graph, such that for each vertex \(v \) in the graph, the sum of \(x(e) \)-s for the edges that are incident to \(v \) is at most 1. The maximum of the sums of \(\sum_e x(e) \) is the maximum fractional matching for a graph. For the weighted version with weight function \(w \), instead of \(\sum_e x(e) \), \(\sum_e x(e)w(e) \) needs to be maximized.

• (OutBasalGanglia, OutBrainstem, OutFrontal, OutInsula, OutLimbic, OutOccipital, OutParietal, OutTemporal, OutThalamus) These quantities give the sum of the weights of the edges, crossing the border of the cerebral lobes noted.

All the parameters described above were computed for the graphs made of the left and the right hemispheres and also for the whole connectome, and for all the resolutions and with all the 5 weight functions (with the following exceptions: MinVertexCoverBinary and MaxMatching was computed only for the unweighted case, and the MinSpanningTree was not computed for the unweighted case). The results for each individual graph are made available as a large Excel file at the site http://uratim.com/big_table_sbmbbw.zip.

A note on the syntax of the results

Each parameter-name is separated by two “_” symbols into three segments (e.g., All_HoffmanBound_FAMean): The first segment describes the hemisphere or the whole connectome using descriptors Left, Right or All. The second segment gives the graph-parameter computed (defined in the “Methods” section, e.g., HoffmanBound), and the third segment specifies the weight function applied, the choices are Unweighted, FiberN, FAMean, FiberLengthMean, FiberNDivLength. The weight functions are defined in the “Results and discussion” section.

Statistical analysis

The statistical analysis of the sex differences in the graph-theoretical parameters were done similarly as in [14]:

The subjects were divided into two sets: set 0 and set 1, denoted in the first column of the large, detailed result file at http://uratim.com/big_table_sbmbbw.zip. The selection was done by the parity of the digits of the ID of the subjects: if the sum of the digits of the ID number of the subject was even,
the ID was assigned to group 0, and if it was odd, then to group 1. Group 0 was used for hypothesis-making while group 1 was the holdout set to verify hypotheses.

We applied the statistical null hypothesis [30] that the graph parameters do not differ between the male and the female groups. A small p value shows that the null-hypothesis is most probably false, i.e., the graph parameters significantly differ between the sexes.

We have used ANOVA (Analysis of variance) [31] to assign p-values for all parameters in each hemisphere and each resolution and each weight-assignment for data, originated from group 0.

We selected those parameters after the first ANOVA application where the p-values were less than 1%. These selected parameters were analyzed with a second ANOVA application for the holdout group 1. Next, the resulting p-values were adjusted with the Holm-Bonferroni correction method [32] with a significance level of 5%. The detailed results with the male and female average values of the parameters with the p-values of the first ANOVA are given in the Appendix, grouped by the resolution of the graph. The results of the second ANOVA and the Holm-Bonferroni corrections are given on Table 2.

In Table 2 those Holm-Bonferroni corrected p-values were highlighted in bold that all differs significantly between the male and the female groups, with a level of significance of 5%.

4. Conclusions

We have shown by analyzing the connectomes of 36 small-brain men and 36 large-brain women that the advantage of the female connectomes in numerous graph-connectivity related, deep graph theoretical parameters, are due to the sex differences, and not for the size differences.

Data availability:

The raw and the pre-processed MRI data are available at the Human Connectome Project’s website: http://www.humanconnectome.org/documentation/SS500 [3]. Unlike numerous braingraph-related articles, our graphs that we assembled in the present work can be downloaded from the site http://braingraph.org/download-pit-group-connectomes/. The results for each individual graph are made available as a large Excel file at the site http://uratim.com/big_table_smbbw.zip.

Acknowledgments

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
References

[1] P. Hagmann, P. E. Grant, D. A. Fair, Mr connectomics: a conceptual framework for studying the developing brain., Front Syst Neurosci 6 (2012) 43. doi:10.3389/fnsys.2012.00043. URL http://dx.doi.org/10.3389/fnsys.2012.00043

[2] R. C. Craddock, M. P. Milham, S. M. LaConte, Predicting intrinsic brain activity., Neuroimage 82 (2013) 127–136. doi:10.1016/j.neuroimage.2013.05.072. URL http://dx.doi.org/10.1016/j.neuroimage.2013.05.072

[3] J. A. McNab, B. L. Edlow, T. Witzel, S. Y. Huang, H. Bhat, K. Heberlein, T. Feiweier, K. Liu, B. Keil, J. Cohen-Adad, M. D. Tisdall, R. D. Folkther, H. C. Kinney, L. L. Wald, The Human Connectome Project and beyond: initial applications of 300 mT/m gradients., Neuroimage 80 (2013) 234–245. doi:10.1016/j.neuroimage.2013.05.074. URL http://dx.doi.org/10.1016/j.neuroimage.2013.05.074

[4] A. Daducci, S. Gerhard, A. Griffa, A. Lemkaddem, L. Cammoun, X. Gigandet, R. Meuli, P. Hagmann, J.-P. Thiran, The connectome mapper: an open-source processing pipeline to map connectomes with MRI., PLoS One 7 (12) (2012) e48121. doi:10.1371/journal.pone.0048121. URL http://dx.doi.org/10.1371/journal.pone.0048121

[5] B. Szalkai, C. Kerepesi, B. Varga, V. Grolmusz, The Budapest Reference Connectome Server v2. 0, Neuroscience Letters 595 (2015) 60–62.

[6] C. Kerepesi, B. Szalkai, B. Varga, V. Grolmusz, Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain, arXiv preprint arXiv:1507.00327.

[7] F. Agosta, S. Galauttucci, P. Valsasina, E. Canu, A. Meani, A. Marcone, G. Magnani, A. Falini, G. Comi, M. Filippi, Disrupted brain connectome in semantic variant of primary progressive aphasias., Neurobiol Aging doi:10.1016/j.neurobiolaging.2014.05.017. URL http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.017

[8] A. F. Alexander-Bloch, P. T. Reiss, J. Rapoport, H. McAdams, J. N. Giedd, E. T. Bullmore, N. Gogtay, Abnormal cortical growth in schizophrenia targets normative modules of synchronized development., Biol Psychiatry doi:10.1016/j.biopsych.2014.02.010. URL http://dx.doi.org/10.1016/j.biopsych.2014.02.010

[9] J. T. Baker, A. J. Holmes, G. A. Masters, B. T. T. Yeo, F. Krienen, R. L. Buckner, D. Öngür, Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder., JAMA Psychiatry 71 (2) (2014) 109–118. doi:10.1001/jamapsychiatry.2013.3469. URL http://dx.doi.org/10.1001/jamapsychiatry.2013.3469
[10] P. Besson, V. Dinkelacker, R. Valabregue, L. Thivard, X. Leclerc, M. Baulac, D. Sammler, O. Colliot, S. Lehéricy, S. Samson, S. Dupont, Structural connectivity differences in left and right temporal lobe epilepsy., Neuroimage 100C (2014) 135–144. doi:10.1016/j.neuroimage.2014.04.071. URL http://dx.doi.org/10.1016/j.neuroimage.2014.04.071

[11] L. Bonilha, T. Nesland, C. Rorden, P. Fillmore, R. P. Ratnayake, J. Fridriksson, Mapping remote subcortical ramifications of injury after ischemic strokes., Behav Neurol 2014 (2014) 215380. doi:10.1155/2014/215380. URL http://dx.doi.org/10.1155/2014/215380

[12] N. Jahanshad, I. Aganj, C. Lenglet, A. Joshi, Y. Jin, M. Barysheva, K. L. McMahon, G. De Zubicaray, N. G. Martin, M. J. Wright, et al., Sex differences in the human connectome: 4-tesla high angular resolution diffusion imaging (hardi) tractography in 234 young adult twins, in: Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, IEEE, 2011, pp. 939–943.

[13] M. Ingalhalikar, A. Smith, D. Parker, T. D. Satterthwaite, M. A. Elliott, K. Ruparel, H. Hakonarson, R. E. Gur, R. C. Gur, R. Verma, Sex differences in the structural connectome of the human brain., Proc Natl Acad Sci U S A 111 (2) (2014) 823–828. doi:10.1073/pnas.1316909110. URL http://dx.doi.org/10.1073/pnas.1316909110

[14] B. Szalkai, B. Varga, V. Grolmusz, Graph theoretical analysis reveals: Women’s brains are better connected than men’s, PLOS One 10 (7) (2015) e0130045. doi:doi:10.1371/journal.pone.0130045. URL http://dx.plos.org/10.1371/journal.pone.0130045

[15] R. E. Tarjan, Data structures and network algorithms, Vol. 44 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial Applied Mathematics, 1983.

[16] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (4) (2006) 439–561.

[17] A. S. Dekaban, Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights., Ann Neurol 4 (4) (1978) 345–356. doi:10.1002/ana.410040410. URL http://dx.doi.org/10.1002/ana.410040410

[18] J. S. Allen, H. Damasio, T. J. Grabowski, Normal neuroanatomical variation in the human brain: an mri-volumetric study., Am J Phys Anthropol 118 (4) (2002) 341–358. doi:10.1002/ajpa.10092. URL http://dx.doi.org/10.1002/ajpa.10092
[19] G. Girard, K. Whittingstall, R. Deriche, M. Descoteaux, Towards quantitative connectivity analysis: reducing tractography biases., Neuroimage 98 (2014) 266–278. doi:10.1016/j.neuroimage.2014.04.074. URL http://dx.doi.org/10.1016/j.neuroimage.2014.04.074

[20] S. Jbabdi, H. Johansen-Berg, Tractography: where do we go from here?, Brain Connect 1 (3) (2011) 169–183. doi:10.1089/brain.2011.0033. URL http://dx.doi.org/10.1089/brain.2011.0033

[21] J. Hänggi, L. Fővenyi, F. Liem, M. Meyer, L. Jäncke, The hypothesis of neuronal interconnectivity as a function of brain size—a general organization principle of the human connectome., Front Hum Neurosci 8 (2014) 915. doi:10.3389/fnhum.2014.00915. URL http://dx.doi.org/10.3389/fnhum.2014.00915

[22] M. Reuter, N. J. Schmansky, H. D. Rossas, B. Fischl, Within-subject template estimation for unbiased longitudinal image analysis., Neuroimage 61 (4) (2012) 1402–1418. doi:10.1016/j.neuroimage.2012.02.084. URL http://dx.doi.org/10.1016/j.neuroimage.2012.02.084

[23] P. J. Basser, C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor mri., J Magn Reson 213 (2) (1996) 560–570. doi:10.1016/j.jmr.2011.09.022. URL http://dx.doi.org/10.1016/j.jmr.2011.09.022

[24] J. Tournier, F. Calamante, A. Connelly, et al., Mrtrix: diffusion tractography in crossing fiber regions, International Journal of Imaging Systems and Technology 22 (1) (2012) 53–66.

[25] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Strömé geführt wird, Ann. Phys. Chem. 72 (12) (1847) 497–508.

[26] F. R. Chung, Spectral graph theory, Vol. 92, American Mathematical Soc., 1997.

[27] T. Achterberg, T. Berthold, T. Koch, K. Wolter, Constraint integer programming: A new approach to integrate CP and MIP, in: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, Springer, 2008, pp. 6–20.

[28] T. Achterberg, SCIP: solving constraint integer programs, Mathematical Programming Computation 1 (1) (2009) 1–41.

[29] D. S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems, SIAM Journal on Computing 11 (3) (1982) 555–556.

[30] P. G. Hoel, Introduction to mathematical statistics., 5th Edition, John Wiley & Sons, Inc., New York, 1984.
5. Appendix

In this Appendix we give the graph-theoretic parameters computed for the 83, 129, 234, 463 and 1015-vertex graphs. The table contains their arithmetic means in the male and female groups, and the corresponding p-values for group 0 (see the “Statistical analysis” subsection). The graph-parameters and the syntax of the data are defined in the “Methods” section. Significant differences ($p < 0.01$) are denoted with an asterisk in the last column.

5.1. 83 nodes, round 1

Property	Female	Male	p-value		
All AdjLMaxDivD_FAMean	1.35697	1.39840	0.00195		
All AdjLMaxDivD_FiberLengthMean	1.47297	1.42258	0.07853		
All AdjLMaxDivD_FiberN	2.06602	2.13826	0.22061		
All AdjLMaxDivD_FiberNDivLength	1.85001	1.87343	0.56770		
All AdjLMaxDivD_Unweighted	1.26011	1.26981	0.36427		
All HoffmanBound_FAMean	4.21756	4.11377	0.10446		
All HoffmanBound_FiberLengthMean	3.18204	3.21898	0.60378		
All HoffmanBound_FiberN	2.61190	2.58253	0.58132		
All HoffmanBound_FiberNDivLength	2.43437	2.49011	0.41972		
All HoffmanBound_Unweighted	4.48639	4.39983	0.21541		
All LeftRatio_FAMean	0.96460	0.95909	0.72266		
All LeftRatio_FiberLengthMean	1.01590	1.01323	0.89446		
All LeftRatio_FiberN	0.99308	0.99250	0.96520		
All LeftRatio_FiberNDivLength	0.98904	0.98939	0.97426		
All LeftRatio_Unweighted	0.99523	0.99065	0.63900		
All LogSpanningForestN_FAMean	107.94151	97.08760	0.00287		
All LogSpanningForestN_FiberLengthMean	455.16733	445.91974	0.02158		
All LogSpanningForestN_FiberN	395.24633	390.93348	0.03833		
All LogSpanningForestN_FiberNDivLength	146.08409	145.33936	0.72755		
All LogSpanningForestN_Unweighted	190.04825	186.55742	0.04411		
All MaxFracMatching_FAMean	18.60828	17.28793	0.00283		
All MaxFracMatching_FiberLengthMean	2036.50193	1821.53984	0.01830		
All MaxFracMatching_FiberN	2347.16667	2391.85714	0.49338		
All MaxFracMatching_FiberNDivLength	108.48762	109.71109	0.73742		
All MaxFracMatching_Unweighted	40.90000	40.85714	0.78684		
All MaxMatching_FAMean	18.54438	17.26157	0.00408		
All MaxMatching_FiberLengthMean	2041.39713	1823.19540	0.02283		
All MaxMatching_FiberN	2332.46667	2394.14286	0.32065		
All MaxMatching_FiberNDivLength	107.64318	109.83960	0.53256		
All MaxMatching_Unweighted	40.60000	40.57143	0.88134		
Category	FAMean	FiberLengthMean	FiberN	FiberNDivLength	Unweighted
----------------------------------	--------------	-----------------	---------------	-----------------	-------------
All_MinCutBalDivSum	0.03843	0.04534	0.09680		
All_MinCutBalDivSum_FiberLengthMean	0.02920	0.03626	0.15883		
All_MinCutBalDivSum_FiberN	0.02789	0.02766	0.09781		
All_MinCutBalDivSum_FiberNDivLength	0.03111	0.03071	0.09781		
All_MinCutBalDivSum_Unweighted	0.03567	0.04166	0.10640		
All_MultiSpanningForest	19.76563	17.81751	0.00538		
All_MultiSpanningForest_FiberLengthMean	1102.02369	1084.66325	0.19564		
All_MultiSpanningForest_FiberN	99.00000	104.00000	0.07431		
All_MultiSpanningForest_FiberNDivLength	3.47983	3.92020	0.19564		
All_MinVertexCoverBinary	59.33333	58.5714	0.16286		
All_MinVertexCover_FA	18.60828	17.28793	0.00283		
All_MinVertexCover_FiberLengthMean	2036.50193	1821.53984	0.01830		
All_MinVertexCover_FiberN	2347.16667	2391.85714	0.49384		
All_MinVertexCover_FiberNDivLength	108.48762	109.71109	0.00743		
All_PGEigengap	0.05014	0.05685	0.18480		
All_PGEigengap_FiberLengthMean	0.03839	0.04616	0.19918		
All_PGEigengap_FiberN	0.02904	0.02801	0.67953		
All_PGEigengap_FiberNDivLength	0.03133	0.03050	0.73932		
All_PGEigengap_Unweighted	0.04661	0.05229	0.18378		
All_SumFA	213.26306	1821.53984	0.00510		
All_SumFiberLengthMean	16550.10867	14481.75686	0.00895		
All_SumFiberN	10821.80000	10557.92857	0.15757		
All_SumFiberNDivLength	460.41013	467.08372	0.56140		
All_SumUnweighted	552.93333	530.78571	0.02924		
Left_AdjLMaxDiv_FA	1.33695	1.37581	0.01968		
Left_AdjLMaxDivD_FiberLengthMean	1.42381	1.39134	0.22194		
Left_AdjLMaxDivD_FiberN	1.99137	2.04882	0.55745		
Left_AdjLMaxDivD_FiberNDivLength	1.76567	1.79038	0.55969		
Left_AdjLMaxDivD_Unweighted	1.24206	1.24448	0.58912		
Left_HoffmanBound_FA	4.57409	4.41467	0.12060		
Left_HoffmanBound_FiberLengthMean	3.21652	3.27301	0.53075		
Left_HoffmanBound_FiberN	2.73899	2.63259	0.12894		
Left_HoffmanBound_FiberNDivLength	2.62082	2.66592	0.65419		
Left_HoffmanBound_Unweighted	4.68245	4.52121	0.04470		
Left_LogSpanningForestN_FA	52.24226	46.42507	0.00990		
Left_LogSpanningForestN_FiberLengthMean	227.92206	223.08226	0.00568		
Left_LogSpanningForestN_FiberN	198.01945	195.98984	0.14698		
Left_LogSpanningForestN_FiberNDivLength	72.92756	73.02259	0.54641		
Left_LogSpanningForestN_Unweighted	94.40670	92.55840	0.12817		
Left_MaxFracMatching_FA	9.21339	8.42291	0.00192		
Left_MaxFracMatching_FiberLengthMean	1063.15137	957.78591	0.04989		
Left_MaxFracMatching_FiberN	1143.30000	1167.75000	0.55643		
Left_MaxFracMatching_FiberNDivLength	54.05855	54.06370	0.09810		
Left_MaxFracMatching_Unweighted	20.73333	20.64286	0.44362		
Left_MaxMatching_FA	9.14568	8.41959	0.00489		
Left_MaxMatching_FiberLengthMean	1069.71962	956.71517	0.04596		
Left_MaxMatching_FiberN	1132.06667	1173.28571	0.30854		
Left_MaxMatching_FiberNDivLength	53.32822	53.95062	0.76065		
Left_MaxMatching_Unweighted	20.46667	20.50000	0.86371		

16
Metric	MinCutBalDivSum	MinSpanningForest	MinVertexCover	PGEigengap	Sum	MaxFracMatching	MaxMatching
FAMean	0.23163	0.21504	0.12105	0.30932	103.09873	9.16146	9.11447
FiberLengthMean	0.21678	0.20569	0.11721	0.28263	554.92086	957.31955	52.40863
FiberN	0.26822	0.54701	0.61607	0.18222	51.20000	1121.66667	52.12333
FiberNDivLength	0.23212	0.54701	0.61607	0.18222	51.20000	1121.66667	52.12333
Unweighted	0.00644	0.01578	0.024514	0.44362	274.93333	89.90052	19.80000
FiberLengthMean	0.00644	0.02104	0.024514	0.44362	274.93333	89.90052	19.80000
FiberN	0.05643	0.024514	0.024514	0.44362	274.93333	89.90052	19.80000
FiberNDivLength	0.05643	0.024514	0.024514	0.44362	274.93333	89.90052	19.80000
Unweighted	0.00644	0.02104	0.024514	0.44362	274.93333	89.90052	19.80000

* Marks indicate missing or non-applicable data.
Right MinCutBalDivSum FAMean 0.23842 0.21535 0.01075
Right MinCutBalDivSum FiberLengthMean 0.22416 0.20040 0.02688
Right MinCutBalDivSum FiberN 0.13019 0.11780 0.02021
Right MinCutBalDivSum FiberNDivLength 0.12662 0.12085 0.30422
Right MinCutBalDivSum Unweighted 0.23090 0.20775 0.00292

5.2. 129 nodes, round 1

Property	Female	Male	p-value																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All AijLMaxDivD FAMean	1.41264	1.43719	0.17554																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All AijLMaxDivD FiberLengthMean	1.51388	1.48806	0.38135																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All AijLMaxDivD FiberN	2.16657	2.28753	0.15888																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All AijLMaxDivD FiberNDivLength	2.03504	2.11052	0.32365																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All AijLMaxDivD Unweighted	1.29906	1.29108	0.47042																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All HoffmanBound FAMean	4.34264	4.26186	0.14326																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All HoffmanBound FiberLengthMean	3.23922	3.23931	0.99908																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All HoffmanBound FiberN	2.50923	2.48179	0.69252																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All HoffmanBound FiberNDivLength	2.40134	2.40527	0.95531																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All HoffmanBound Unweighted	4.57882	4.48873	0.13289																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LeftRatio FAMean	0.99644	0.98958	0.69917																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LeftRatio FiberLengthMean	1.03985	1.02933	0.57321																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LeftRatio FiberN	0.98707	0.98873	0.89300																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LeftRatio FiberNDivLength	0.98306	0.98868	0.72266																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LeftRatio Unweighted	1.01804	1.01148	0.52537																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LogSpanningForest N FAMean	189.65029	175.14710	0.00714																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LogSpanningForest N FiberLengthMean	736.38352	723.03913	0.03944																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LogSpanningForest N FiberN	596.77500	590.36663	0.02532																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LogSpanningForest N FiberNDivLength	208.78477	208.06750	0.79579																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All LogSpanningForest N Unweighted	319.35263	315.28948	0.14715																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Metric	Mean	Std Dev	Corr																																																																																																																																																																																																																																																																																																																																																																																																																																																																
---------------------------------	------------	-------------	------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxFracMatching_FAMean	47.79299	47.73239	0.99309																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxFracMatching_FiberLengthMean	3255.53791	2885.46483	0.01034																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxFracMatching_FiberN	2450.83333	2354.17857	0.10402																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxFracMatching_FiberNDivLength	131.20093	128.48485	0.60374																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxFracMatching_Unweighted	63.90000	63.82143	0.62381																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxMatching_FAMean	47.61671	47.42748	0.97825																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxMatching_FiberLengthMean	3250.31191	2881.03276	0.01010																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxMatching_FiberN	2442.06667	2349.00000	0.11996																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxMatching_FiberNDivLength	130.78627	128.19811	0.61957																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MaxMatching_Unweighted	63.60000	63.50000	0.60403																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinCutBalDivSum_FAMean	0.04107	0.05867	0.03314																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinCutBalDivSum_FiberLengthMean	0.01648	0.02001	0.23049																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinCutBalDivSum_FiberN	0.02515	0.02466	0.87507																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinCutBalDivSum_FiberNDivLength	0.04344	0.05116	0.26759																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinCutBalDivSum_Unweighted	0.02012	0.02359	0.09504																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinSpanningForest_FAMean	29.80087	27.32132	0.00560																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinSpanningForest_FiberLengthMean	1660.12748	1619.59859	0.00419																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinSpanningForest_FiberN	140.73333	139.35714	0.42330																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinSpanningForest_FiberNDivLength	4.46488	4.57888	0.56445																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinSpanningForest_Unweighted	95.60000	95.50000	0.86573																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinVertexCoverBinary_FAMean	29.28164	27.54695	0.00867																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinVertexCoverBinary_FiberLengthMean	122.18259	120.33442	0.64280																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinVertexCoverBinary_FiberN	2450.83333	2354.17857	0.10402																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinVertexCoverBinary_FiberNDivLength	122.18259	120.33442	0.64280																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_MinVertexCoverBinary_Unweighted	63.90000	63.82143	0.62381																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_PGEigengap_FAMean	0.02962	0.03269	0.30221																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_PGEigengap_FiberLengthMean	0.02299	0.02684	0.28803																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_PGEigengap_FiberN	0.02534	0.02418	0.58917																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_PGEigengap_FiberNDivLength	0.02574	0.02491	0.67919																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_PGEigengap_Unweighted	0.02738	0.03019	0.25874																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_Sum_FAMean	383.21280	343.50552	0.00566																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_Sum_FiberLengthMean	29954.75727	26359.29258	0.01648																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_Sum_FiberN	12055.20000	11753.07143	0.08683																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_Sum_FiberNDivLength	539.10743	543.51648	0.72060																																																																																																																																																																																																																																																																																																																																																																																																																																																																
All_Sum_Unweighted	996.80000	960.07143	0.50695																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_AdjLMaxDivD_FAMean	1.38282	1.41735	0.01972																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_AdjLMaxDivD_FiberLengthMean	1.44089	1.42883	0.57130																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_AdjLMaxDivD_FiberN	1.88927	2.02446	0.08956																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_AdjLMaxDivD_FiberNDivLength	1.77179	1.86037	0.15990																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_AdjLMaxDivD_Unweighted	1.26569	1.26226	0.67723																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_HoffmanBound_FAMean	4.55896	4.42698	0.04890																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_HoffmanBound_FiberLengthMean	3.28256	3.25849	0.74494																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_HoffmanBound_FiberN	2.77133	2.69944	0.31545																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_HoffmanBound_FiberNDivLength	2.65783	2.64829	0.90792																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_HoffmanBound_Unweighted	4.74063	4.59434	0.01729																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_LogSpanningForestN_FAMean	94.16378	85.56169	0.00401																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_LogSpanningForestN_FiberLengthMean	370.60101	362.50884	0.02008																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_LogSpanningForestN_FiberN	299.54862	296.04072	0.04778																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_LogSpanningForestN_FiberNDivLength	104.45062	104.20143	0.88960																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Left_LogSpanningForestN_Unweighted	160.53642	157.70585	0.06838																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Parameter	Left MaxFracMatching_FAMean	Left MaxFracMatching_FiberLengthMean	Left MaxFracMatching_FiberN	Left MaxFracMatching_FiberNDivLength	Left MaxFracMatching_FiberUnweighted	Left MaxMatching_FAMean	Left MaxMatching_FiberLengthMean	Left MaxMatching_FiberN	Left MaxMatching_FiberNDivLength	Left MaxMatching_FiberUnweighted	Left MinCutBalDivSum_FAMean	Left MinCutBalDivSum_FiberLengthMean	Left MinCutBalDivSum_FiberN	Left MinCutBalDivSum_FiberNDivLength	Left MinCutBalDivSum_FiberUnweighted	Left MinSpanningForest_FAMean	Left MinSpanningForest_FiberLengthMean	Left MinSpanningForest_FiberN	Left MinSpanningForest_FiberNDivLength	Left MinSpanningForest_FiberUnweighted	Left MinVertexCoverBinary_FAMean	Left MinVertexCoverBinary_FiberLengthMean	Left MinVertexCoverBinary_FiberN	Left MinVertexCoverBinary_FiberNDivLength	Left MinVertexCoverBinary_FiberUnweighted	Left MinVertexCover_FAMean	Left MinVertexCover_FiberLengthMean	Left MinVertexCover_FiberN	Left MinVertexCover_FiberNDivLength	Left MinVertexCover_FiberUnweighted	Left PG Eigengap_FAMean	Left PG Eigengap_FiberLengthMean	Left PG Eigengap_FiberN	Left PG Eigengap_FiberNDivLength	Left PG Eigengap_FiberUnweighted	Left Sum_FAMean	Left Sum_FiberLengthMean	Left Sum_FiberN	Left Sum_FiberNDivLength	Left Sum_FiberUnweighted	Right AdjLMaxDivD_FAMean	Right AdjLMaxDivD_FiberLengthMean	Right AdjLMaxDivD_FiberN	Right AdjLMaxDivD_FiberNDivLength	Right AdjLMaxDivD_FiberUnweighted	Right HoffmanBound_FAMean	Right HoffmanBound_FiberLengthMean	Right HoffmanBound_FiberN	Right HoffmanBound_FiberNDivLength	Right HoffmanBound_FiberUnweighted	Right LogSpanningForestN_FAMean	Right LogSpanningForestN_FiberLengthMean	Right LogSpanningForestN_FiberN	Right LogSpanningForestN_FiberNDivLength	Right LogSpanningForestN_FiberUnweighted	20																																																																																																																																																																																																																																																																																																																																																																																																											
--	-----------------------------	--------------------------------------	-----------------------------	--------------------------------------	--------------------------------------	-----------------------------	-------------------------------	-----------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	-----------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	-----------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	-----------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	--------------------------------------	-------------------------------	--------------------------------------	---------------------------------------
Right_MaxFracMatching_FAMean | 23.64340 | 23.92987 | 0.93393
Right_MaxFracMatching_FiberLengthMean | 1550.30409 | 1379.09472 | 0.02294
Right_MaxFracMatching_FiberN | 1211.23333 | 1160.21429 | 0.17444
Right_MaxFracMatching_FiberNDivLength | 66.22967 | 64.18666 | 0.48841
Right_MaxFracMatching_Unweighted | 31.66667 | 31.67857 | 0.92581
Right_MaxMatching_FAMean | 23.56597 | 23.74101 | 0.95917
Right_MaxMatching_FiberLengthMean | 1547.55246 | 1376.37203 | 0.02307
Right_MaxMatching_FiberN | 1206.66667 | 1157.00000 | 0.18644
Right_MaxMatching_FiberNDivLength | 66.22967 | 64.18666 | 0.48841
Right_MaxMatching_Unweighted | 31.53333 | 31.35714 | 0.35824
Right_MinCutBalDivSum_FAMean | 0.37749 | 0.40030 | 0.65833
Right_MinCutBalDivSum_FiberLengthMean | 0.18310 | 0.16294 | 0.08674
Right_MinCutBalDivSum_FiberN | 0.10626 | 0.09805 | 0.06373
Right_MinCutBalDivSum_FiberNDivLength | 0.27529 | 0.26502 | 0.82417
Right_MinCutBalDivSum_Unweighted | 0.18178 | 0.16539 | 0.05282
Right_MinSpanningForest_FAMean | 15.54990 | 14.25185 | 0.02184
Right_MinSpanningForest_FiberLengthMean | 822.88287 | 798.47914 | 0.01294
Right_MinSpanningForest_FiberN | 71.06667 | 69.64286 | 0.33198
Right_MinSpanningForest_FiberNDivLength | 2.33231 | 2.35222 | 0.88466
Right_MinVertexCoverBinary_FAMean | 47.00000 | 47.07143 | 0.87068
Right_MinVertexCoverBinary_FiberLengthMean | 14.49525 | 13.89677 | 0.09572
Right_MinVertexCoverBinary_FiberN | 1211.23333 | 1160.21429 | 0.17444
Right_MinVertexCoverBinary_FiberNDivLength | 61.99819 | 60.10934 | 0.42599
Right_MinVertexCoverBinary_Unweighted | 31.66667 | 31.67857 | 0.92581
Right_PGEigengap_FAMean | 0.21510 | 0.18486 | 0.01701
Right_PGEigengap_FiberLengthMean | 0.21993 | 0.17854 | 0.01790
Right_PGEigengap_FiberN | 0.11815 | 0.09973 | 0.00710
Right_PGEigengap_FiberNDivLength | 0.09679 | 0.08770 | 0.03556
Right_PGEigengap_Unweighted | 0.19093 | 0.16211 | 0.01242
Right_Sum_FAMean | 183.61218 | 164.74653 | 0.01787
Right_Sum_FiberLengthMean | 13876.53350 | 12267.36700 | 0.03808
Right_Sum_FiberN | 5795.86667 | 5648.07143 | 0.17406
Right_Sum_FiberNDivLength | 259.38730 | 260.72185 | 0.82866
Right_Sum_Unweighted | 468.46667 | 451.42857 | 0.13292

5.3. 2334 nodes, round 1

Property	Female	Male	p-value
All_AdjLMaxDivD_FAMean	1.59803	1.64024	0.08803
All_AdjLMaxDivD_FiberLengthMean	1.73972	1.72166	0.69642
All_AdjLMaxDivD_FiberN	2.98297	3.17562	0.18871
All_AdjLMaxDivD_FiberNDivLength	2.90553	3.05789	0.32675
All_AdjLMaxDivD_Unweighted	1.43488	1.44187	0.69379
All_HoffmanBound_FAMean	4.05843	4.02343	0.43528
All_HoffmanBound_FiberLengthMean	3.10090	3.12089	0.78071
All_HoffmanBound_FiberN	2.37479	2.35909	0.81574
All_HoffmanBound_FiberNDivLength	2.32613	2.31582	0.89211
All_HoffmanBound_Unweighted	4.24417	4.19579	0.33435

21
Statistical Measure	FAMean	FiberLengthMean	FiberN	FiberNDivLength	Unweighted
All_LeftRatio	0.99382	0.98754	0.70349		
All_LogSpanningForestN	323.14013	299.07957	0.00428		
All_MatchMax	77.47689	86.69052	0.00298		
All_LogSpanningForestFiberN	146.3485	151.83590	0.00595		
All_LogSpanningForestFiberNDivLength	116.30000	116.10714	0.00624		
All_LogSpanningForestFiberUnweighted	77.32548	86.50399	0.10235		
All_LogSpanningForestFiberLengthMean	5267.90205	4680.07605	0.00624		
All_LogSpanningForestFiberN	2429.30000	2347.64286	0.00332		
All_LogSpanningForestFiberNDivLength	129.96605	128.35597	0.00495		
All_LogSpanningForestFiberUnweighted	116.26667	116.10714	0.00495		
All_Mean	663.03525	600.56092	0.00295		
All_LogSpanningForestFiberN	246.66667	244.21429	0.00338		
All_LogSpanningForestFiberNDivLength	8.09907	8.42327	0.00595		
All_LogSpanningForestFiberUnweighted	166.46667	164.50000	0.00595		
All_LogSpanningForestFiberLengthMean	5263.01339	4680.07605	0.00595		
All_LogSpanningForestFiberN	2429.30000	2347.64286	0.00595		
All_LogSpanningForestFiberNDivLength	129.96605	128.35597	0.00595		
All_LogSpanningForestFiberUnweighted	116.26667	116.10714	0.00595		
All_PGEigengapMean	0.00171	0.01917	0.00332		
All_PGEigengapFiberLengthMean	8.09907	8.42327	0.00595		
All_PGEigengapFiberN	0.00174	0.01917	0.00595		
All_PGEigengapFiberNDivLength	0.00136	0.01606	0.00595		
All_PGEigengapFiberUnweighted	166.46667	164.50000	0.00595		
All_PGEigengapFiberN	0.00171	0.01917	0.00595		
All_PGEigengapFiberNDivLength	8.09907	8.42327	0.00595		
All_PGEigengapFiberUnweighted	166.46667	164.50000	0.00595		
All_PGEigengapMean	0.00171	0.01917	0.00595		
All_PGEigengapFiberLengthMean	8.09907	8.42327	0.00595		
All_PGEigengapFiberN	0.00174	0.01917	0.00595		
All_PGEigengapFiberNDivLength	0.00136	0.01606	0.00595		
All_PGEigengapFiberUnweighted	166.46667	164.50000	0.00595		
All_PGEigengapMean	0.00171	0.01917	0.00595		
All_PGEigengapFiberLengthMean	8.09907	8.42327	0.00595		
All_PGEigengapFiberN	0.00174	0.01917	0.00595		
All_PGEigengapFiberNDivLength	0.00136	0.01606	0.00595		
All_PGEigengapFiberUnweighted	166.46667	164.50000	0.00595		
Metric	FAMean	FiberLengthMean	FiberN	FiberNDivLength	Unweighted
---	---------	----------------	----------	-----------------	-----------------
HoffmanBound	4.18213	4.15436	0.69068		
Left_HoffmanBound_FiberLengthMean	3.16103	3.13165	0.69090		
Left_HoffmanBound_FiberN	2.61131	2.59028	0.69022		
Left_HoffmanBound_FiberNDivLength	2.55253	2.52149	0.68292		
Left_HoffmanBound_Unweighted	4.36085	4.27881	0.19873		
LogSpanningForestN_FAMean	160.55086	145.36374	0.00043		
LogSpanningForestN_FiberLengthMean	666.51767	651.53600	0.00282		
LogSpanningForestN_FiberN	483.77617	475.96167	0.01381		
LogSpanningForestN_FiberNDivLength	131.44914	129.06273	0.45998		
LogSpanningForestN_Unweighted	288.07253	282.09224	0.01055		
MaxFracMatching_FAMean	39.10063	43.81774	0.48113		
MaxFracMatching_FiberLengthMean	2723.34243	2404.61807	0.00298		
MaxFracMatching_FiberN	1190.10000	1185.96429	0.87482		
MaxFracMatching_FiberNDivLength	74.54560	77.43346	0.48187		
MaxFracMatching_Unweighted	59.13333	59.07143	0.67471		
MaxMatching_FAMean	38.96026	43.61191	0.48363		
MaxMatching_FiberLengthMean	2733.15685	2414.02175	0.00300		
MaxMatching_FiberN	1183.86667	1183.50000	0.98840		
MaxMatching_FiberNDivLength	73.9551	77.20181	0.43128		
MaxMatching_Unweighted	58.93333	58.78571	0.92516		
MinCutBalDivSum_FAMean	0.17682	0.18449	0.88746		
MinCutBalDivSum_FiberLengthMean	0.13085	0.12088	0.40639		
MinCutBalDivSum_FiberN	0.09471	0.08283	0.10418		
MinCutBalDivSum_FiberNDivLength	0.17229	0.17870	0.92359		
MinCutBalDivSum_Unweighted	0.13170	0.12493	0.40732		
MinSpanningForest_FAMean	24.84043	23.74120	0.12903		
MinSpanningForest_FiberLengthMean	1429.01473	1418.56487	0.23304		
MinSpanningForest_FiberN	128.13333	128.28571	0.95846		
MinSpanningForest_FiberNDivLength	4.16924	4.54566	0.17006		
MinVertexCoverBinary_Unweighted	84.26667	82.64286	0.03625		
MinVertexCoverFAMean	25.73738	23.87149	0.00625		
MinVertexCoverFiberLengthMean	2733.68339	2414.02175	0.00300		
MinVertexCoverFiberN	1191.86667	1183.46429	0.75554		
MinVertexCoverFiberNDivLength	65.88611	66.10788	0.99047		
MinVertexCoverUnweighted	59.13333	59.03571	0.52377		
PGEigengap_FAMean	0.13049	0.12036	0.34190		
PGEigengap_FiberLengthMean	0.13090	0.12097	0.44738		
PGEigengap_FiberN	0.08739	0.07658	0.11542		
PGEigengap_FiberNDivLength	0.06688	0.06230	0.21569		
PGEigengap_Unweighted	0.11641	0.10433	0.20469		
Sum_FAMean	329.24155	296.86391	0.00264		
Sum_FiberLengthMean	25886.20314	22888.19605	0.00802		
Sum_FiberN	6488.00000	6345.21429	0.21051		
Sum_FiberNDivLength	305.60029	308.85699	0.67183		
Sum_Unweighted	902.66667	869.14286	0.02715		
Right_AdjLMaxDivD_FAMean	1.53535	1.54017	0.86686		
Right_AdjLMaxDivD_FiberLengthMean	1.66926	1.62871	0.45133		
Right_AdjLMaxDivD_FiberN	2.65172	2.83822	0.20338		
Right_AdjLMaxDivD_FiberNDivLength	2.33381	2.42285	0.35255		
Right_AdjLMaxDivD_Unweighted	1.39665	1.37491	0.26268		
Property	Female	Male	p-value		
----------------------------------	--------	----------	---------		
Right_HoffmanBound_FAMean	4.09368	4.05022	0.42998		
Right_HoffmanBound_FiberLengthMean	3.16159	3.26745	0.17945		
Right_HoffmanBound_FiberN	2.54589	2.48387	0.22658		
Right_HoffmanBound_FiberNDivLength	2.54987	2.56558	0.76972		
Right_HoffmanBound_Unweighted	4.23728	4.24321	0.55020		
Right_LogSpanningForestN_FAMean	158.11129	149.15728	0.09220		
Right_LogSpanningForestN_FiberLengthMean	638.28386	629.75250	0.21522		
Right_LogSpanningForestN_FiberN	463.35779	459.45680	0.33133		
Right_LogSpanningForestN_FiberNDivLength	125.05479	125.10653	0.98601		
Right_LogSpanningForestN_Unweighted	276.64016	274.35545	0.50947		
Right_MaxFracMatching_FAMean	38.29213	42.79551	0.47324		
Right_MaxFracMatching_FiberLengthMean	2525.80952	2252.33000	0.02297		
Right_MaxFracMatching_FiberN	1143.36667	1114.50000	0.29332		
Right_MaxFracMatching_FiberNDivLength	69.99586	73.89356	0.37323		
Right_MaxFracMatching_Unweighted	57.16667	57.03571	0.37184		
Right_MaxMatching_FAMean	38.08601	42.66424	0.46269		
Right_MaxMatching_FiberLengthMean	2518.15458	2250.19058	0.02492		
Right_MaxMatching_FiberN	1143.93333	1112.92857	0.25811		
Right_MinCutBalDivSum_FAMean	0.16974	0.17039	0.98933		
Right_MinCutBalDivSum_FiberLengthMean	69.89470	73.68388	0.38458		
Right_MinCutBalDivSum_FiberN	56.73333	56.78571	0.75261		
Right_MinCutBalDivSum_FiberNDivLength	0.16032	0.18258	0.71333		
Right_MinCutBalDivSum_Unweighted	0.12577	0.11149	0.05167		
Right_MinSpanningForest_FAMean	25.39625	24.04691	0.07033		
Right_MinSpanningForest_FiberLengthMean	1380.70294	1360.83076	0.09218		
Right_MinSpanningForest_FiberN	118.93333	117.35714	0.22005		
Right_MinSpanningForest_FiberNDivLength	3.97862	4.03133	0.77653		
Right_MinVertexCoverBinary_Unweighted	81.73333	81.35714	0.64589		
Right_MinVertexCover_FAMean	25.47790	24.31020	0.04371		
Right_MinVertexCover_FiberLengthMean	2524.64124	2253.53347	0.02391		
Right_MinVertexCover_FiberN	1147.73333	1115.07143	0.24439		
Right_MinVertexCover_FiberNDivLength	62.01048	61.37838	0.76647		
Right_MinVertexCover_Unweighted	57.13333	57.07143	0.67471		
Right_PGEigengap_FAMean	0.13264	0.10599	0.00210 *		
Right_PGEigengap_FiberLengthMean	0.14008	0.10493	0.00216 *		
Right_PGEigengap_FiberN	0.09018	0.07181	0.00216 *		
Right_PGEigengap_FiberNDivLength	0.07040	0.06006	0.00239 *		
Right_PGEigengap_Unweighted	0.11555	0.09106	0.00138 *		
Right_Sum_FAMean	325.09144	294.90648	0.01679		
Right_Sum_FiberLengthMean	23910.27439	21483.83489	0.04481		
Right_Sum_FiberN	6217.00000	6073.57143	0.22048		
Right_Sum_FiberNDivLength	292.73367	294.05788	0.84987		
Right_Sum_Unweighted	855.93333	828.42857	0.17741		

5.4. 463 nodes, round 1

Property	Female	Male	p-value		
MinVertexCover_Binary_Unweighted	81.73333	81.35714	0.64589		
MinVertexCover_FAMean	25.47790	24.31020	0.04371		
MinVertexCover_FiberLengthMean	2524.64124	2253.53347	0.02391		
MinVertexCover_FiberN	1147.73333	1115.07143	0.24439		
MinVertexCover_FiberNDivLength	62.01048	61.37838	0.76647		
MinVertexCover_Unweighted	57.13333	57.07143	0.67471		
PGEigengap_FAMean	0.13264	0.10599	0.00210 *		
PGEigengap_FiberLengthMean	0.14008	0.10493	0.00216 *		
PGEigengap_FiberN	0.09018	0.07181	0.00216 *		
PGEigengap_FiberNDivLength	0.07040	0.06006	0.00239 *		
PGEigengap_Unweighted	0.11555	0.09106	0.00138 *		
Sum_FAMean	325.09144	294.90648	0.01679		
Sum_FiberLengthMean	23910.27439	21483.83489	0.04481		
Sum_FiberN	6217.00000	6073.57143	0.22048		
Sum_FiberNDivLength	292.73367	294.05788	0.84987		
Sum_Unweighted	855.93333	828.42857	0.17741		
Metric	FAMean	FiberLengthMean	FiberN	FiberNDivLength	Unweighted
--------------------------------	--------	-----------------	---------	-----------------	------------
All_AdjLMaxDivD	2.15215	2.18281	0.42513		0.42513
All_AdjLMaxDivD_FiberLength	2.36923	2.43378	0.69871		0.69871
All_AdjLMaxDivD_FiberN	5.04437	5.35726	0.28513		0.28513
All_AdjLMaxDivD_FiberNDivLength	4.86199	5.11358	0.39426		0.39426
All_HoffmanBound	1.88052	1.87368	0.82914		0.82914
All_HoffmanBound_FiberLength	3.65420	3.58216	0.11960		0.11960
All_HoffmanBound_FiberN	2.96234	2.96941	0.90399		0.90399
All_HoffmanBound_FiberNDivLength	2.28012	2.25731	0.67430		0.67430
All_HoffmanBound_Unweighted	3.74999	3.70604	0.31877		0.31877
All_LeftRatio	0.98244	0.97722	0.77315		0.77315
All_LeftRatio_FiberLength	1.01576	1.00512	0.55466		0.55466
All_LeftRatio_FiberN	0.99557	0.99767	0.86144		0.86144
All_LeftRatio_FiberNDivLength	0.99550	0.99827	0.79576		0.79576
All_LeftRatio_Unweighted	1.00742	0.99995	0.52098		0.52098
All_LogSpanningForestN	432.44074	391.29116	0.01203		0.01203
All_LogSpanningForestN_FiberLengthMean	2312.59245	2271.99890	0.12674		0.12674
All_LogSpanningForestN_FiberN	1455.41884	1430.04191	0.08913		0.08913
All_LogSpanningForestN_FiberNDivLength	151.4709	146.9748	0.60236		0.60236
All_LogSpanningForestN_Unweighted	934.57222	921.32293	0.33372		0.33372
All_MaxFracMatching	97.96938	83.49934	0.1444		0.1444
All_MaxFracMatching_FiberLengthMean	8045.71403	7329.01371	0.02703		0.02703
All_MaxFracMatching_FiberN	2447.73333	2363.8286	0.1650		0.1650
All_MaxFracMatching_FiberNDivLength	139.63506	129.89153	0.2736		0.2736
All_MaxFracMatching_Unweighted	222.73333	221.32143	0.26994		0.26994
All_MaxMatching	97.83775	83.26860	0.12360		0.12360
All_MaxMatching_FiberLength	8061.55115	7311.80626	0.02059		0.02059
All_MaxMatching_FiberN	2440.86667	2360.00000	0.02188		0.02188
All_MaxMatching_FiberNDivLength	139.27123	129.37795	0.26989		0.26989
All_MaxMatching_Unweighted	222.53333	221.2143	0.26994		0.26994
All_MinCutBalDivSum	220.78571	220.78571	0.16702		0.16702
All_MinCutBalDivSum_FAMean	0.00992	0.01046	0.65496		0.65496
All_MinCutBalDivSum_FiberLengthMean	0.007362	0.00859	0.34951		0.34951
All_MinCutBalDivSum_FiberN	0.02206	0.02230	0.90244		0.90244
All_MinCutBalDivSum_FiberNDivLength	0.02344	0.02198	0.61537		0.61537
All_MinCutBalDivSum_Unweighted	0.00793	0.00915	0.15562		0.15562
All_MinCutBalDivSum_FiberLengthMean	96.29849	91.93390	0.03344		0.03344
All_MinCutBalDivSum_FiberN	5383.39943	5298.45575	0.02238		0.02238
All_MinCutBalDivSum_FiberNDivLength	487.20000	477.71429	0.02138		0.02138
All_MinCutBalDivSum_Unweighted	278.33333	272.57143	0.09750		0.09750
All_MinVertexCover	88.73179	83.39344	0.00209		0.00209
All_MinVertexCover_FiberLength	8045.57652	7329.01371	0.02708		0.02708
All_MinVertexCover_FiberN	2447.73333	2363.8286	0.1650		0.1650
All_MinVertexCover_FiberNDivLength	131.52437	129.89153	0.52678		0.52678
All_MinVertexCover_Unweighted	222.73333	221.32143	0.26994		0.26994
All_PGEigengap	0.01011	0.01058	0.82567		0.82567
All_PGEigengap_FiberLengthMean	0.00780	0.00905	0.51801		0.51801
All_PGEigengap_FiberN	0.01776	0.01454	0.32360		0.32360
All_PGEigengap_FiberNDivLength	0.01641	0.01372	0.37037		0.37037
All_PGEigengap_Unweighted	0.00888	0.00941	0.77175		0.77175
All_Sum_FA	996.96869	912.06881	0.00419	*	
All_Sum_FiberLengthMean	72569.22842	65893.58253	0.02827		
All_Sum_FiberN	3388.06667	13083.92857	0.07726		
All_Sum_FiberNDivLength	648.40984	652.62526	0.75437		
All_Sum_Unweighted	2741.13333	2671.07143	0.19764		
Left_AdjLMaxDivD_FA	2.13170	2.18356	0.10520		
Left_AdjLMaxDivD_FiberLengthMean	2.28554	2.29653	0.87385		
Left_AdjLMaxDivD_FiberN	4.01054	4.39629	0.03562		
Left_AdjLMaxDivD_FiberNDivLength	3.75976	4.06768	0.08089		
Left_AdjLMaxDivD_Unweighted	3.02537	2.97013	0.43552		
Left_HoffmanBound_FA	3.78621	3.74262	0.52408		
Left_HoffmanBound_FiberLengthMean	3.02537	2.97013	0.43552		
Left_HoffmanBound_FiberN	2.51327	2.46954	0.31630		
Left_HoffmanBound_FiberNDivLength	2.49736	2.45224	0.03936		
Left_HoffmanBound_Unweighted	3.86677	3.84281	0.72661		
Left_LogSpanningForestN_FA	209.08024	184.73327	0.00676	*	
Left_LogSpanningForestN_FiberLengthMean	1159.44215	1136.94931	0.06615		
Left_LogSpanningForestN_FiberN	727.97774	713.31628	0.05629		
Left_LogSpanningForestN_FiberNDivLength	73.75521	68.47575	0.04858		
Left_LogSpanningForestN_Unweighted	467.56327	458.41443	0.17067		
Left_MaxFracMatching_FA	48.19763	40.73958	0.12892		
Left_MaxFracMatching_FiberLengthMean	4050.62536	3692.90472	0.02154		
Left_MaxFracMatching_FiberN	1174.73333	1168.14286	0.82446		
Left_MaxFracMatching_FiberNDivLength	69.30024	65.10499	0.39737		
Left_MaxFracMatching_Unweighted	111.93333	111.17857	0.27767		
Left_MaxMatching_FA	48.18911	40.61401	0.12054		
Left_MaxMatching_FiberLengthMean	4081.33975	3683.49431	0.06615		
Left_MaxMatching_FiberN	1171.86667	1169.35714	0.93445		
Left_MaxMatching_FiberNDivLength	69.00646	64.86202	0.04792		
Left_MinCutBalDivSum_FA	0.09376	0.07990	0.23745		
Left_MinCutBalDivSum_FiberLengthMean	0.08212	0.07713	0.54194		
Left_MinCutBalDivSum_FiberN	0.06769	0.06039	0.16060		
Left_MinCutBalDivSum_FiberNDivLength	0.08034	0.05881	0.24301		
Left_MinCutBalDivSum_Unweighted	0.08572	0.07863	0.26173		
Left_MinSpanningForest_FA	46.72246	44.99254	0.11007		
Left_MinSpanningForest_FiberLengthMean	2703.40298	2683.84440	0.04792		
Left_MinSpanningForest_FiberN	245.80000	244.35714	0.65690		
Left_MinSpanningForest_FiberNDivLength	9.60443	10.12770	0.10870		
Left_MinVertexCoverBinary_Unweighted	139.60000	136.28571	0.06242		
Left_MinVertexCover_FA	43.55457	40.73958	0.00274	*	
Left_MinVertexCover_FiberLengthMean	4050.47768	3692.90472	0.02160		
Left_MinVertexCover_FiberN	1174.73333	1168.14286	0.82446		
Left_MinVertexCover_FiberNDivLength	65.21177	65.10499	0.95567		
Left_MinVertexCover_Unweighted	111.93333	111.17857	0.27767		
Left_PG_Eigengap_FA	0.07719	0.07158	0.82459		
Left_PG_Eigengap_FiberLengthMean	0.07879	0.07763	0.91292		
Left_PG_Eigengap_FiberN	0.06028	0.05746	0.65896		
Left_PG_Eigengap_FiberNDivLength	0.04513	0.04595	0.84639		
Left_PG_Eigengap_Unweighted	0.06588	0.06319	0.71316		
Parameter	Value 1	Value 2	Value 3	Significance
Left_Sum_FAMean	488.88692	446.37002	0.00653	*
Left_Sum_FiberLengthMean	36672.41589	33169.82857	0.01816	
Left_Sum_FiberN	6671.40000	6520.07143	0.20059	
Left_Sum_FiberNDivLength	322.99072	325.71679	0.73536	
Left_Sum_Unweighted	1377.06667	1338.42857	0.15161	
Right_AdjLMaxDivD_FAMean	2.04805	2.06086	0.77728	
Right_AdjLMaxDivD_FiberLengthMean	2.24439	2.20712	0.61096	
Right_AdjLMaxDivD_FiberN	4.21492	4.48300	0.23523	
Right_AdjLMaxDivD_FiberNDivLength	3.69704	3.82114	0.49290	
Right_AdjLMaxDivD_Unweighted	1.81231	1.78539	0.42677	
Right_HoffmanBound_FAMean	3.63851	3.57214	0.26281	
Right_HoffmanBound_FiberLengthMean	2.99319	2.98754	0.93061	
Right_HoffmanBound_FiberN	2.41840	2.32451	0.02875	
Right_HoffmanBound_FiberNDivLength	2.47438	2.42756	0.32797	
Right_HoffmanBound_Unweighted	3.75198	3.66399	0.14648	
Right_LogSpanningForestN_FAMean	218.30058	201.22233	0.10548	
Right_LogSpanningForestN_FiberLengthMean	1144.40045	1125.84150	0.25579	
Right_LogSpanningForestN_FiberN	719.43735	708.80001	0.25777	
Right_LogSpanningForestN_FiberNDivLength	72.66745	72.68775	0.99730	
Right_LogSpanningForestN_Unweighted	461.18676	456.60569	0.59800	
Right_MaxFracMatching_FAMean	49.63129	42.48039	0.11971	
Right_MaxFracMatching_FiberLengthMean	3981.63098	3624.50964	0.05864	
Right_MaxFracMatching_FiberN	1168.00000	1134.71429	0.16479	
Right_MaxFracMatching_FiberNDivLength	67.01619	63.26438	0.39830	
Right_MaxFracMatching_Unweighted	110.76667	110.10714	0.37162	
Right_MaxMatching_FAMean	49.46915	42.49032	0.12642	
Right_MaxMatching_FiberLengthMean	3967.99213	3616.44584	0.05694	
Right_MaxMatching_FiberN	1165.93333	1132.21429	0.16580	
Right_MaxMatching_FiberNDivLength	66.85747	63.07703	0.39386	
Right_MaxMatching_Unweighted	110.60000	109.71429	0.03836	
Right_MinCutBalDivSum_FAMean	0.10473	0.08130	0.03861	
Right_MinCutBalDivSum_FiberLengthMean	0.09399	0.07564	0.01969	
Right_MinCutBalDivSum_FiberN	0.07226	0.06309	0.03249	
Right_MinCutBalDivSum_FiberNDivLength	0.08560	0.06297	0.20320	
Right_MinCutBalDivSum_Unweighted	0.09014	0.07466	0.00456	*
Right_MinCutBalDivSum_Unweighted	49.66592	47.12049	0.06306	
Right_MinCutBalDivSum_FiberN	2674.03630	2607.48380	0.01248	
Right_MinCutBalDivSum_FiberN	241.86667	235.71429	0.05077	
Right_MinCutBalDivSum_FiberNDivLength	9.58006	9.56983	0.97811	
Right_MinCutBalDivSum_Unweighted	138.53333	136.07143	0.22210	
Right_MinVertexCover_FAMean	45.05370	42.48039	0.01411	
Right_MinVertexCover_FiberLengthMean	3981.62212	3624.50964	0.05865	
Right_MinVertexCover_FiberN	1168.00000	1134.71429	0.16479	
Right_MinVertexCover_FiberNDivLength	63.09396	63.26438	0.92752	
Right_MinVertexCover_Unweighted	110.76667	110.10714	0.37162	
Right_PG Eigengap_FAMean	0.07888	0.05424	0.02615	
Right_PG Eigengap_FiberLengthMean	0.08149	0.05411	0.02193	
Right_PG Eigengap_FiberN	0.06247	0.04384	0.03567	
Right_PG Eigengap_FiberNDivLength	0.04964	0.03607	0.05054	
Right_PG Eigengap_Unweighted	0.06734	0.04548	0.02094	
Right_Sum_FAMean | 498.59453 | 455.98757 | 0.02310
Right_Sum_FiberLengthMean | 35352.85906 | 32155.12919 | 0.07057
Right_Sum_FiberN | 6410.26667 | 6265.28571 | 0.23548
Right_Sum_FiberNDivLength | 310.98355 | 312.13891 | 0.87672
Right_Sum_Unweighted | 1341.33333 | 1307.64286 | 0.34831

Property	Female	Male	p-value
All_AdjLMaxDivD_FAMean	3.22321	3.30998	0.17241
All_AdjLMaxDivD_FiberLengthMean	3.66249	3.62589	0.72808
All_AdjLMaxDivD_FiberN	9.97079	10.49734	0.43959
All_AdjLMaxDivD_FiberNDivLength	9.57304	10.04031	0.47421
All_AdjLMaxDivD_Unweighted	2.78189	2.80864	0.62854
All_HoffmanBound_FAMean	3.15950	3.07640	0.01768
All_HoffmanBound_FiberLengthMean	2.72401	2.71081	0.74127
All_HoffmanBound_FiberN	2.19459	2.18310	0.77482
All_HoffmanBound_FiberNDivLength	2.19470	2.19370	0.98348
All_HoffmanBound_Unweighted	3.17194	3.14136	0.39570
All_LeftRatio_FAMean	0.99025	0.98498	0.73871
All_LeftRatio_FiberLengthMean	1.02275	1.01334	0.55556
All_LeftRatio_FiberN	0.99483	0.99842	0.76208
All_LeftRatio_FiberNDivLength	0.99506	0.99777	0.65608
All_LeftRatio_Unweighted	1.01401	1.00766	0.55464
All_LogSpanningForestN_FAMean	439.73425	375.35402	0.01834
All_LogSpanningForestN_FiberLengthMean	4042.68840	3930.97587	0.09979
All_LogSpanningForestN_FiberN	2126.38756	2075.02830	0.10526
All_LogSpanningForestN_FiberNDivLength	-361.54957	-347.10187	0.41626
All_LogSpanningForestN_Unweighted	1445.09048	1410.64529	0.23969
All_MaxFracMatching_FAMean	367.10422	392.82651	0.48563
All_MaxFracMatching_FiberLengthMean	1244.27073	11352.81900	0.02610
All_MaxFracMatching_FiberN	2520.13333	2450.71429	0.02355
All_MaxFracMatching_FiberNDivLength	421.16667	412.17857	0.11468
All_MaxMatching_FAMean	366.74831	392.78175	0.48563
All_MaxMatching_FiberLengthMean	12434.60538	11353.55886	0.02719
All_MaxMatching_FiberN	2518.53333	2447.42857	0.02355
All_MaxMatching_FiberNDivLength	346.48796	404.43920	0.23863
All_MinCutBalDivSum_FAMean	0.01048	0.01455	0.20028
All_MinCutBalDivSum_FiberLengthMean	0.00513	0.00628	0.17564
All_MinCutBalDivSum_FiberN	0.02219	0.02192	0.92608
All_MinCutBalDivSum_FiberNDivLength	0.03288	0.03669	0.66309
All_MinCutBalDivSum_Unweighted	0.00563	0.00672	0.06268
All_MinSpanningForest_FAMean	200.77063	190.16600	0.01194
All_MinSpanningForest_FiberLengthMean	10938.82203	10614.65056	0.02669
All_MinSpanningForest_FiberN	963.93333	939.50000	0.01860
All_MinSpanningForest_FiberNDivLength	43.76266	43.96543	0.83113
All_MinVertexCoverBinary_Unweighted	461.60000	448.21429	0.10356

5.5. 1015 nodes, round 1
| Metric | All_MinVertexCover_FAMean | All_MinVertexCover_FiberLengthMean | All_MinVertexCover_FiberN | All_MinVertexCover_FiberNDivLength | All_MinVertexCover_Unweighted | All_PGEigengap_FAMean | All_PGEigengap_FiberLengthMean | All_PGEigengap_FiberN | All_PGEigengap_FiberNDivLength | All_PGEigengap_Unweighted | All_Sum_FAMean | All_Sum_FiberLengthMean | All_Sum_FiberN | All_Sum_FiberNDivLength | All_Sum_Unweighted | Left_AdjLMaxDivD_FAMean | Left_AdjLMaxDivD_FiberLengthMean | Left_AdjLMaxDivD_FiberN | Left_AdjLMaxDivD_FiberNDivLength | Left_AdjLMaxDivD_Unweighted | Left_HoffmanBound_FAMean | Left_HoffmanBound_FiberLengthMean | Left_HoffmanBound_FiberN | Left_HoffmanBound_FiberNDivLength | Left_HoffmanBound_Unweighted | Left_LogSpanningForestN_FAMean | Left_LogSpanningForestN_FiberLengthMean | Left_LogSpanningForestN_FiberN | Left_LogSpanningForestN_FiberNDivLength | Left_LogSpanningForestN_Unweighted | Left_MaxFracMatching_FAMean | Left_MaxFracMatching_FiberLengthMean | Left_MaxFracMatching_FiberN | Left_MaxFracMatching_FiberNDivLength | Left_MaxFracMatching_Unweighted | Left_MaxMatching_FAMean | Left_MaxMatching_FiberLengthMean | Left_MaxMatching_FiberN | Left_MaxMatching_FiberNDivLength | Left_MaxMatching_Unweighted | Left_MinCutBalDivSum_FAMean | Left_MinCutBalDivSum_FiberLengthMean | Left_MinCutBalDivSum_FiberN | Left_MinCutBalDivSum_FiberNDivLength | Left_MinCutBalDivSum_Unweighted | Left_MinSpanningForest_FAMean | Left_MinSpanningForest_FiberLengthMean | Left_MinSpanningForest_FiberN | Left_MinSpanningForest_FiberNDivLength | Left_MinSpanningForest_Unweighted | Left_MinVertexCoverBinary_Unweighted |
|----------------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|---------------------------|
| Value | 152.79728 | 12421.62501 | 2526.33333 | 139.35018 | 421.96667 | 0.00000 | 0.00000 | 2.69638 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 | 7.25286 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 | 7.25286 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 |
| Standard Deviation | 142.97533 | 11383.69815 | 2449.85714 | 137.84455 | 413.28571 | 0.00107 | 0.00103 | 8.08325 | 7.51631 | 2.74517 | 3.18000 | 2.71714 | 8.08325 | 3.26128 | 3.50359 | 8.08325 | 7.51631 | 2.74517 | 3.18000 | 2.71714 | 8.08325 | 3.26128 | 3.50359 | 8.08325 | 7.51631 | 2.74517 | 3.18000 | 2.71714 | 8.08325 | 3.26128 | 3.50359 |
| Mean | 152.79728 | 12421.62501 | 2526.33333 | 139.35018 | 421.96667 | 0.00000 | 0.00000 | 2.69638 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 | 7.25286 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 | 7.25286 | 6.94687 | 2.40776 | 3.22364 | 2.75210 | 7.25286 | 3.15407 | 3.48214 |
| Metric | All_MinVertexCover_FAMean | All_MinVertexCover_FiberLengthMean | All_MinVertexCover_FiberN | All_MinVertexCover_FiberNDivLength | All_MinVertexCover_Unweighted | All_PGEigengap_FAMean | All_PGEigengap_FiberLengthMean | All_PGEigengap_FiberN | All_PGEigengap_FiberNDivLength | All_PGEigengap_Unweighted | All_Sum_FAMean | All_Sum_FiberLengthMean | All_Sum_FiberN | All_Sum_FiberNDivLength | All_Sum_Unweighted | Left_AdjLMaxDivD_FAMean | Left_AdjLMaxDivD_FiberLengthMean | Left_AdjLMaxDivD_FiberN | Left_AdjLMaxDivD_FiberNDivLength | Left_AdjLMaxDivD_Unweighted | Left_HoffmanBound_FAMean | Left_HoffmanBound_FiberLengthMean | Left_HoffmanBound_FiberN | Left_HoffmanBound_FiberNDivLength | Left_HoffmanBound_Unweighted | Left_LogSpanningForestN_FAMean | Left_LogSpanningForestN_FiberLengthMean | Left_LogSpanningForestN_FiberN | Left_LogSpanningForestN_FiberNDivLength | Left_LogSpanningForestN_Unweighted | Left_MaxFracMatching_FAMean | Left_MaxFracMatching_FiberLengthMean | Left_MaxFracMatching_FiberN | Left_MaxFracMatching_FiberNDivLength | Left_MaxFracMatching_Unweighted | Left_MaxMatching_FAMean | Left_MaxMatching_FiberLengthMean | Left_MaxMatching_FiberN | Left_MaxMatching_FiberNDivLength | Left_MaxMatching_Unweighted | Left_MinCutBalDivSum_FAMean | Left_MinCutBalDivSum_FiberLengthMean | Left_MinCutBalDivSum_FiberN | Left_MinCutBalDivSum_FiberNDivLength | Left_MinCutBalDivSum_Unweighted | Left_MinSpanningForest_FAMean | Left_MinSpanningForest_FiberLengthMean | Left_MinSpanningForest_FiberN | Left_MinSpanningForest_FiberNDivLength | Left_MinSpanningForest_Unweighted | Left_MinVertexCoverBinary_Unweighted |
	FAMean	FiberLengthMean	FiberN	FiberNDivLength
Left_MinVertexCover	75.44749	70.49228	0.00733	*
Left_MinVertexCover	6259.654	5759.90766	0.03606	
Left_MinVertexCover	1218.167	1210.60714	0.77425	
Left_MinVertexCover	69.27402	69.53888	0.88850	
Left_FiberLengthMean	211.7333	207.50000	0.17616	
Left_FiberLengthMean	6259.654	5759.90766	0.03606	
Left_FiberLengthMean	1218.167	1210.60714	0.77425	
Left_FiberLengthMean	69.27402	69.53888	0.88850	
Left_FiberN	1218.167	1210.60714	0.77425	
Left_FiberN	69.27402	69.53888	0.88850	
Left_FiberN	0.00689	0.01269	0.34893	
Left_FiberN	0.00976	0.01522	0.50417	
Left_FiberN	703.6334	641.32910	0.00531	
Left_FiberN	50902.69	46025.48488	0.01756	
Left_FiberN	6766.1333	6615.71429	0.20853	
Left_FiberN	334.5174	336.88634	0.7548	
Left_FiberN	2004.6667	1920.57143	0.10019	
Right_AdjLMaxDivD	3.11058	3.17176	0.44453	
Right_AdjLMaxDivD	3.48779	3.51830	0.79334	
Right_AdjLMaxDivD	7.76024	8.14382	0.37225	
Right_AdjLMaxDivD	6.83772	7.07156	0.52127	
Right_AdjLMaxDivD	2.70744	2.71957	0.83883	
Right_AdjLMaxDivD	3.14757	3.04963	0.02036	
Right_AdjLMaxDivD	2.77024	2.68725	0.05471	
Right_AdjLMaxDivD	2.32441	2.23300	0.01858	
Right_AdjLMaxDivD	2.38419	2.30535	0.07109	
Right_AdjLMaxDivD	3.16199	3.09316	0.07931	
Right_LogSpanningForestN_FAMean	223.08908	190.45255	0.05945	
Right_LogSpanningForestN_FiberLengthMean	2000.50088	1948.56703	0.17197	
Right_LogSpanningForestN_FiberN	1048.39181	1024.37929	0.19504	
Right_LogSpanningForestN_FiberNDivLength	-187.57760	-181.71216	0.49112	
Right_LogSpanningForestN_Unweighted	710.28043	694.54365	0.34901	
Right_MaxFracMatching_FAMean	182.91341	195.61348	0.49409	
Right_MaxFracMatching_FiberLengthMean	6136.77547	5605.35278	0.05092	
Right_MaxFracMatching_FiberN	1194.00000	1169.53571	0.23073	
Right_MaxFracMatching_FiberNDivLength	186.50824	201.72223	0.44500	
Right_MaxFracMatching_Unweighted	209.40000	205.17857	0.18566	
Right_MaxMatching_FAMean	182.80549	195.43970	0.49551	
Right_MaxMatching_FiberLengthMean	6133.19214	5607.85845	0.05338	
Right_MaxMatching_FiberN	1193.33333	1168.92857	0.23115	
Right_MaxMatching_FiberNDivLength	186.33486	201.44535	0.44822	
Right_MaxMatching_Unweighted	209.20000	205.21429	0.21712	
Right_MinCutBalDivSum_FAMean	0.10194	0.10852	0.79465	
Right_MinCutBalDivSum_FiberLengthMean	0.05798	0.05045	0.10536	
Right_MinCutBalDivSum_FiberN	0.04848	0.04187	0.01462	
Right_MinCutBalDivSum_FiberNDivLength	0.22021	0.21702	0.95938	
Right_MinCutBalDivSum_Unweighted	0.05808	0.04940	0.01406	
Right_MinSpanningForest_FAMean	103.51247	97.80199	0.02535	
Right_MinSpanningForest_FiberLengthMean	5449.19539	5284.24222	0.05427	
Right_MinSpanningForest_FiberN	482.53333	470.00000	0.08846	
Right_MinSpanningForest_FiberNDivLength	21.91228	22.07628	0.81623	
Right_MinVertexCover_FAMean	229.06667	222.71429	0.16269	
Right_MinVertexCover_FAMean	77.19144	72.32630	0.01652	
-----------------------------	-----------	-----------	-----------	
Right_MinVertexCover_FiberLengthMean	6150.67656	5612.96934	0.04968	
Right_MinVertexCover_FiberN	1200.03333	1171.71429	0.16130	
Right_MinVertexCover_FiberNDivLength	66.59407	66.55426	0.97982	
Right_MinVertexCover_Unweighted	209.93333	205.64286	0.18522	
Right_PGEigengap_FAMean	0.01467	0.00967	0.56364	
Right_PGEigengap_FiberLengthMean	0.01533	0.00998	0.55712	
Right_PGEigengap_FiberN	0.01218	0.00779	0.54063	
Right_PGEigengap_FiberNDivLength	0.00960	0.00631	0.56034	
Right_PGEigengap_Unweighted	0.01225	0.00787	0.54125	
Right_Sum_FAMean	709.28257	651.61088	0.02201	
Right_Sum_FiberLengthMean	48529.39175	44331.93496	0.07380	
Right_Sum_FiberN	6514.80000	6355.14286	0.19297	
Right_Sum_FiberNDivLength	322.73850	322.68174	0.99406	
Right_Sum_Unweighted	1932.06667	1875.71429	0.28274	