Localization of SOX2-positive stem/progenitor cells in the anterior lobe of the common marmoset (*Callithrix jacchus*) pituitary

Saishu YOSHIDA1–3), Ken FUJIWARA4), Takashi INOUE5), Erika SASAKI5, 6), Yoshie KAMETANI7), Susumu TAKEKOSHI8), Naoko INOSHITA9), Takako KATO2, 3) and Yukio KATO1, 3, 10)

1) Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
2) Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan
3) Institute of Endocrinology, Meiji University, Kanagawa 214-8571, Japan
4) Division of Histology and Cell Biology, Department of Anatomy, Ichiyi Medical University School of Medicine, Tochigi, 329-0498, Japan
5) Central Institute for Experimental Animals, Kanagawa 210-0821, Japan
6) Keio Advanced Research Center, Keio University, Tokyo 160-8582, Japan
7) Keio University School of Medicine, Division of Basic Medical Science, Kanagawa 259-1193, Japan
8) Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa 259-1193, Japan
9) Department of Pathology, Toranomon Hospital, Tokyo 105-8470, Japan
10) Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan

Abstract. Studies on mouse and rat pituitaries reported that Sox2-expressing cells play roles as stem/progenitor cells in the adult pituitary gland. The presence of cells with stem cell-like properties in the pituitary adenoma and SOX2-positive cells has been demonstrated in the human pituitary. However, considering the difficulty in fully examining the stem/progenitor cell properties in the human pituitary, in the present study, we analyzed the SOX2-positive cells in the pituitary of the adult common marmoset (*Callithrix jacchus*), which is used as a non-human primate model. Immunohistochemistry demonstrated that localization pattern of SOX2-positive cells in the common marmoset pituitary was similar to that observed in the rodent pituitary, i.e., in the two types of niches (marginal cell layer and parenchymal-niche) and as scattered single cells in the parenchyma of the anterior lobe. Furthermore, most of the SOX2-positive cells express S100 and were located in the center or interior of LAMININ-positive micro-lobular structures. Collectively, the present study reveals properties of SOX2-positive cells in the common marmoset pituitary and suggests that the common marmoset proves to be a useful tool for analyzing pituitary stem/progenitor cells in a non-human primate model.

Key words: Common marmoset pituitary, Micro-lobular structure, Stem/progenitor cells, S100

The pituitary gland is a master endocrine tissue composed of the anterior, intermediate, and posterior lobes. Among them, the anterior lobe has five endocrine cell-types: somatotropes, which produce growth hormone (GH); lactotropes, which produce prolactin (PRL); thyrotropes, which produce thyroid-stimulating hormone (TSH); gonadotropes, which produce follicle-stimulating hormone (FSH) and luteinizing hormone (LH); and corticotropes, which produce adrenocorticotropic hormone (ACTH) [1, 2].

Accumulating evidence from studies on mouse and rat pituitaries demonstrated that Sex-determining region Y-box 2 (Sox2)-expressing cells play roles as stem/progenitor cells in the adult pituitary gland [3, 4]. These SOX2-positive cells form two types of niches (stem/progenitor cell microenvironment); the marginal cell layer (MCL)-niche facing the residual lumen of Rathke’s pouch (Rathke’s cleft) and the dense SOX2-positive cell clusters scattered in the parenchyma of the adult rodent anterior lobe (parenchymal-niche), in addition to being singly scattered in the parenchyma [2, 5, 6]. Moreover, SOX2-positive stem/progenitor cells in the adult rodent anterior pituitary are composed of sub-populations based on the expression of a calcium-binding protein, S100β; approximately 82% of SOX2-positive cells in the adult rat anterior lobe [7] and 60% in the mouse anterior lobe [3] express S100β.

Several studies addressing the human pituitary stem/progenitor cells have been reported, including the demonstration of their stem cell-like properties in the human pituitary adenoma [8, 9]. Immunohistochemical analysis also demonstrated that SOX2-positive cells exist in the human pituitary gland [10]. However, considering the limitations in conducting sufficient examination of the property...
Animals

Five-year-old common marmosets (Callithrix jacchus), both female and male, were obtained from CLEA Japan (Tokyo, Japan). The animals were housed in pairs, in stainless steel cages, in a conditioned animal room maintained at 22°C and 40–60% humidity with a 12:12 h light/dark cycle. The animals were fed a commercial New World primate diet (CMS-1M, CLEA Japan) with added vitamins, and tap water was available ad libitum; the food was moistened with hot water to vary the texture. The marmosets were also fed supplemental food, such as sponge cake, apple jelly, or biscuits. The animals were exsanguinated under anesthesia with intramuscular injection of 50 mg/kg of ketamine (Fujita Pharmaceutical, Tokyo, Japan) and 4 mg/kg xylazine (Bayer, Leverkusen, Germany), and inhalation of isoflurane (Pfizer Japan, Tokyo, Japan). The animal experimental protocol was approved by the CIEA Institutional Animal Care and Use Committee (approval no. 17029A).

Wistar-Imamichi rats (10-week-old males) were housed individually in a temperature-controlled room under a 12:12 h light/dark cycle. Rats were sacrificed by cervical dislocation under anesthesia.

Immunohistochemistry

The pituitary glands of the female and male common marmosets (part of the intermediate lobes were missing upon removal) and those of the male rats were fixed with 4% paraformaldehyde in 20 mM phosphate buffer (pH 7.5) overnight at 4°C, followed by immersion in 30% trehalose in 20 mM HEPES to cryoprotect the tissues. They were embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek Japan, Tokyo, Japan) and frozen immediately. Frozen sections (6-μm thick) were prepared from the coronal planes of the pituitaries. Depending on the antibody, the sections were subjected to antigen retrieval by an ImmunoSaver (0.05% citraconic anhydride solution, pH 7.4). The sections were incubated with 10% (v/v) fetal bovine serum and 0.4% (v/v) Triton X-100 in HEPES buffer (blocking buffer) for 60 min at room temperature. After washing, the sections were incubated with primary antibodies (Table 1) in blocking buffer at 4°C overnight.

Materials and Methods

Animals

Five-year-old common marmosets (Callithrix jacchus), both female and male, were obtained from CLEA Japan (Tokyo, Japan). The animals were housed in pairs, in stainless steel cages, in a conditioned animal room maintained at 26–28°C and 40–60% humidity with a 12:12 h light/dark cycle. The animals were fed a commercial New World primate diet (CMS-1M, CLEA Japan) with added vitamins, and tap water was available ad libitum; the food was moistened with hot water to vary the texture. The marmosets were also fed supplemental food, such as sponge cake, apple jelly, or biscuits. The animals were exsanguinated under anesthesia with intramuscular injection of 50 mg/kg of ketamine (Fujita Pharmaceutical, Tokyo, Japan) and 4 mg/kg xylazine (Bayer, Leverkusen, Germany), and inhalation of isoflurane (Pfizer Japan, Tokyo, Japan). The animal experimental protocol was approved by the CIEA Institutional Animal Care and Use Committee (approval no. 17029A).

Table 1. List of primary antibodies

Antigen-retrieval	Antibody description	Vendor	Dilution
Goat IgG against human SOX2	Neuromics, Edina, Minn., USA	1:500	
Guinea pig antiserum against rat αGSU	kindly provided by the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) through the courtesy of Dr. A.F. Parlow	1:10,000	
Guinea pig antiserum against rat FSHβ		1:5,000	
Guinea pig antiserum against rat LHβ		1:5,000	
Guinea pig antiserum against rat TSHβ		1:30,000	
Guinea pig antiserum against human ACTH		1:10,000	
Guinea pig antiserum against human GH	kindly provided by Dr. S. Tanaka at Shizuoka University, Shizuoka, Japan	1:6,000	
Rabbit IgG against human PRL	Dako, Troy, MI., USA	1:800	
Rabbit IgG against rat pan-Laminin *	Neuromics, Edina, Minn., USA	1:700	
Rabbit IgG against cow S100	Dako, Troy, MI., USA	1:1,000	

* Pan-Laminin isolated from a rat yolk sac tumor cell line.

of stem/progenitor cells in the human pituitary, studies using a non-human primate model would be preferable.

In recent decades, the common marmoset (Callithrix jacchus), or New World monkey, has been increasingly employed as a non-human primate model. The common marmosets have an early onset of puberty (at 1.5 years of age), a relatively short gestation period (145–148 days), high reproductive efficiency (an approximately 28-day ovarian cycle, similar to humans), and a relatively high frequency of deliveries (twice a year), along with its small size [11]. Therefore, the common marmoset is an important primate model in various areas of biomedical research, such as neuroscience, toxicology, reproductive biology, and regenerative medicine, to bridge the gap between rodent studies and clinical applications [12].

In the present study, we analyzed the stem/progenitor cells in the adult common marmoset pituitary, focusing on SOX2-positive cells.

Table 1. List of primary antibodies

Antigen-retrieval	Antibody description	Vendor	Dilution
Goat IgG against human SOX2	Neuromics, Edina, Minn., USA	1:500	
Guinea pig antiserum against rat αGSU	kindly provided by the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) through the courtesy of Dr. A.F. Parlow	1:10,000	
Guinea pig antiserum against rat FSHβ		1:5,000	
Guinea pig antiserum against rat LHβ		1:5,000	
Guinea pig antiserum against rat TSHβ		1:30,000	
Guinea pig antiserum against human ACTH		1:10,000	
Guinea pig antiserum against human GH	kindly provided by Dr. S. Tanaka at Shizuoka University, Shizuoka, Japan	1:6,000	
Rabbit IgG against human PRL	Dako, Troy, MI., USA	1:800	
Rabbit IgG against rat pan-Laminin *	Neuromics, Edina, Minn., USA	1:700	
Rabbit IgG against cow S100	Dako, Troy, MI., USA	1:1,000	

* Pan-Laminin isolated from a rat yolk sac tumor cell line.

Wistar-Imamichi rats (10-week-old males) were housed individually in a temperature-controlled room under a 12:12 h light/dark cycle. Rats were sacrificed by cervical dislocation under anesthesia.
Results

Localization of SOX2-positive cells in the anterior pituitary of adult common marmosets

We first analyzed the localization of SOX2-positive cells in the adult common marmoset pituitary. Immunohistochemistry for SOX2 clearly demonstrated that SOX2-positive cells exist in the MCL of both anterior and intermediate lobes (Fig. 1, dotted lines). In the parenchyma of the anterior lobe, although most of the SOX2-positive cells were singly scattered, dense SOX2-positive cell clusters were also detected (Fig. 1, arrowhead). The proportion of SOX2-positive cells in the parenchyma of the anterior lobe was approximately 14.9 ± 0.9% and 15.4 ± 0.3% in the female and male animals, respectively. In the mouse pituitary, but not that of the rat, immuno-positive signals for SOX2 were also detected (Fig. 1). The proportion of SOX2-positive cells was positively correlated with LAMININ expression. As a result, LAMININ-positive micro-lobular structures were not observed, and sections (Fig. 3A, asterisks). On the contrary, in the MCL-niche, the existence of parenchymal-niches has not been shown yet. The present study demonstrated that the localization pattern of SOX2-positive cells in the common marmoset pituitaries was similar to that in rodents. In relation to the niches of the rodent pituitary, the formation of the parenchymal-niche occurs during the neonatal period by migration of SOX2-positive cells from the MCL-niche, which is formed during the early embryonic period [5]. These data suggest that the parenchymal-niche might have important roles in pituitary function, especially in postnatal pituitary across species. While there are some conserved points of pituitary SOX2-positive cells between rodents and the common marmoset, the present study also showed distinct cellular localization patterns of SOX2, unlike that in the mouse pituitary, cytoplasmic-SOX2 was not observed in the adult common marmoset pituitaries as that in rats [7, 13]. Vankelecom and colleagues reported that cytoplasmic-SOX2 in the mouse pituitary tend to be co-localized with hormones, and hypothesized that the cytoplasmic localization by post-translational regulation promoted the initiation of differentiation [2, 13]. Although SOX2 must be a common factor showing undifferentiated cells in the anterior lobe of the pituitary of common marmoset as well as rodent ones (Fig. 4 and Supplementary Fig. 1: online only). Furthermore, most of the hormone-positive cells were attached to the LAMININ-positive basement membranes in the common marmoset pituitary of both female (Fig. 4) and male animals (Supplementary Fig. 1). In addition, a few hormone-positive cells were located in the center of the LAMININ-positive micro-lobular structure (Fig. 4 and Supplementary Fig. 1). Especially, GH-positive cells, but not PRL-positive cells, tended to remain attached to LAMININ-positive basement membranes (Fig. 4 and Supplementary Fig. 1).

Co-localization of SOX2 and S100 in the anterior lobe of adult common marmosets

We performed double-immunohistochemistry for SOX2 and S100 in the adult common marmoset pituitary. Double-immunohistochemistry demonstrated that most of the SOX2-positive cells were positive for S100 in the MCL (Fig. 2A). In the parenchyma of the anterior lobe, SOX2 mostly co-localized with S100 at a high frequency, while SOX2-positive/S100-negative cells (Fig. 2A and 2B, closed-arrowheads) and SOX2-negative/S100-positive cells (Fig. 2C, open-arrowheads) were also detected. The proportion of S100-positive in SOX2-positive cells in the anterior lobe was approximately 88.7 ± 1.2% and 89.2 ± 2.1% in female and male animals, respectively. The proportion of S100-positive in SOX2-positive cells showed three localization patterns: lining the MCL (MCL-niche, also known as a primary niche), clustering in the parenchyma (parenchymal-niche, also known as secondary niches), and singly scattered in the parenchyma [2, 5, 6]. In the human pituitary, although the immunohistochemistry demonstrated that SOX2-positive cells exist in the MCL around the Rathke’s cleft and parenchyma of the anterior lobe, the existence of parenchymal-niches has not been shown yet. The present study demonstrated that the localization pattern of SOX2-positive cells in the common marmoset pituitary is similar to that in rodents. In relation to the niches of the rodent pituitary, the formation of the parenchymal-niche occurs during the neonatal period by migration of SOX2-positive cells from the MCL-niche, which is formed during the early embryonic period [5]. These data suggest that the parenchymal-niche might have important roles in pituitary function, especially in postnatal pituitary across species. While there are some conserved points of pituitary SOX2-positive cells between rodents and the common marmoset, the present study also showed distinct cellular localization patterns of SOX2, unlike that in the mouse pituitary, cytoplasmic-SOX2 was not observed in the adult common marmoset pituitaries as that in rats [7, 13]. Vankelecom and colleagues reported that cytoplasmic-SOX2 in the mouse pituitary tend to be co-localized with hormones, and hypothesized that the cytoplasmic localization by post-translational regulation promoted the initiation of differentiation [2, 13]. Although SOX2 must be a common factor showing undifferentiated cells in the anterior lobe of the pituitary of common marmoset as well as rodents, further post-translational regulation and functional analysis of SOX2 are needed.

Localization of hormone-positive cells and SOX2-positive cells in the micro-lobular structure of the anterior lobe of the adult common marmoset pituitary

Finally, we performed immunohistochemistry for each pituitary hormone, SOX2, and LAMININ. Immunostaining demonstrated that SOX2-positive cells exist as non-hormone-producing cells in the common marmoset pituitary as well as rodent ones (Fig. 4 and Supplementary Fig. 1: online only). Furthermore, most of the hormone-positive cells were attached to the LAMININ-positive basement membranes in the common marmoset pituitary of both female (Fig. 4) and male animals (Supplementary Fig. 1). In addition, a few hormone-positive cells were located in the center of the LAMININ-positive micro-lobular structure (Fig. 4 and Supplementary Fig. 1). Especially, GH-positive cells, but not PRL-positive cells, tended to remain attached to LAMININ-positive basement membranes (Fig. 4 and Supplementary Fig. 1).

Discussion

Accumulating evidences from rodent models show that SOX2-positive cells exist as stem/progenitor cells in the anterior lobe of the adult pituitary. In the present study, we performed immunohistochemical analysis of SOX2-positive cells in the pituitary of the common marmosets, a non-human primate model.

In the adult rodent pituitary, SOX2-positive stem/progenitor cells showed three localization patterns: lining the MCL (MCL-niche, also known as a primary niche), clustering in the parenchyma (parenchymal-niche, also known as secondary niches), and singly scattered in the parenchyma [2, 5, 6]. In the human pituitary, although the immunohistochemistry demonstrated that SOX2-positive cells exist in the MCL around the Rathke’s cleft and parenchyma of the anterior lobe, the existence of parenchymal-niches has not been shown yet. The present study demonstrated that the localization pattern of SOX2-positive cells in the common marmoset pituitary is similar to that in rodents. In relation to the niches of the rodent pituitary, the formation of the parenchymal-niche occurs during the neonatal period by migration of SOX2-positive cells from the MCL-niche, which is formed during the early embryonic period [5]. These data suggest that the parenchymal-niche might have important roles in pituitary function, especially in postnatal pituitary across species. While there are some conserved points of pituitary SOX2-positive cells between rodents and the common marmoset, the present study also showed distinct cellular localization patterns of SOX2, unlike that in the mouse pituitary, cytoplasmic-SOX2 was not observed in the adult common marmoset pituitaries as that in rats [7, 13]. Vankelecom and colleagues reported that cytoplasmic-SOX2 in the mouse pituitary tend to be co-localized with hormones, and hypothesized that the cytoplasmic localization by post-translational regulation promoted the initiation of differentiation [2, 13]. Although SOX2 must be a common factor showing undifferentiated cells in the anterior lobe of the pituitary of common marmoset as well as rodents, further post-translational regulation and functional analysis of SOX2 are needed.

Several studies using rodent pituitary demonstrated that SOX2-positive stem/progenitor cells are composed of sub-populations based on the expression of several genes [2]. Among them, S100
is known to partially exist in the SOX2-positive cells of remnants of Rathke’s cleft cysts in the human pituitary [10]. In the common marmoset pituitary, characterization with S100 clearly showed that SOX2-positive cells were positive for S100 in the MCL-niche and parenchyma of the anterior lobe. Notably, the main population of SOX2 exists as S100-positive cells, while each SOX2-positive/S100-negative and S100-positive/SOX2-negative cells exists similar to that in the rat pituitary [7]. Recently, we reported that SOX2-positive cells isolated from the parenchymal-niches of the rat pituitary show different properties based on the difference in S100β expression, where S100β-expressing SOX2-positive cells exhibit high proliferation and differentiation activities than non-S100β-expressing cells [15]. Although we analyzed an insufficient number of common marmoset pituitaries (one female and one male) by only immunohistochemical
analysis, the present study suggests that a sub-population of SOX2-positive cells and their properties may be conserved across rodent and common marmoset pituitaries.

In the rat pituitary, scanning electron microscopy images demonstrated that micro-lobular-like structures, but not really micro-lobular, composed of basement membranes, exist in the anterior lobe [14]. Indeed, it is difficult to identify the micro-lobular-like structure by immunohistochemistry for LAMININ using rat pituitary sections (Supplementary Fig. 2: online only). In the present study using the common marmoset pituitary sections, LAMININ-positive cells outlined the micro-lobular structure more clearly than in rat sections. Notably, most of the SOX2-positive cells were located in the center or interior of the LAMININ-positive basement membranes,

Fig. 3. Immunohistochemistry for SOX2 and LAMININ in the anterior lobe of the adult female common marmoset pituitary. Immunohistochemistry for SOX2 and LAMININ in the parenchyma (A) and the MCL of the anterior lobe (B) was performed using 4% paraformaldehyde-fixed frozen sections of the anterior lobe of an adult female common marmoset. SOX2 visualized with Cy3 (red), LAMININ visualized with Cy5 (white), merged image showing both SOX2 and LAMININ, and those with nuclear DAPI staining (blue) are shown. AL, anterior lobe; RC, Rathke’s cleft. Asterisks in (A) indicate LAMININ-positive micro-lobular structures without SOX2-positive cells in the pituitary section. A dotted line in (B) indicates the MCL. Bar indicates 50 μm.

Fig. 4. Immunohistochemistry for SOX2, LAMININ, and each pituitary hormone in the anterior lobe of the adult female common marmoset pituitary. Immunohistochemistry for SOX2, LAMININ, and each pituitary hormone (A, adrenocorticotropic hormone [ACTH]; B, growth hormone [GH]; C, thyroid-stimulating hormone β [TSHβ]; D, prolactin [PRL]; E, follicle-stimulating hormone β [FSHβ]; F, luteinizing hormone β [LHβ]); and G, glycoprotein α-subunit [αGSU]) using 4% paraformaldehyde-fixed frozen sections of the anterior lobe of an adult female common marmoset. Merged images with SOX2 visualized with Cy3 (red), LAMININ with Cy5 (white), and each pituitary hormone with FITC (green), and merged images with nuclear staining by DAPI (blue) are shown. Bars indicate 50 μm.
whereas most of hormone-positive cells were located attached to the LAMININ-positive basement membranes. Since a few LAMININ-positive micro-lobular structures, having no SOX2-positive cells, exist in the section, the present study, lacking a three-dimensional analysis, could not conclude whether SOX2-positive cells exist in all micro-lobular structures. However, considering that most of the LAMININ-positive micro-lobular structures include SOX2-positive cells in the pituitary sections, these data suggest that SOX2/S100-double positive cells might generally exist in the micro-lobular structure of the anterior lobe. Moreover, the central localization of SOX2/S100-double positive cells might suggest the migration of some of the SOX2-positive cells to the outside for differentiation into hormone-producing cells.

In summary, immunohistochemistry of the common marmoset pituitary demonstrated that localization of SOX2-positive stem/progenitor cells in the common marmoset pituitary is similar to that in rodent pituitary, and has some commonalities with the human pituitary as well. Therefore, the common marmoset might prove to be a useful experimental animal to analyze pituitary stem/progenitor cells and their functions in non-human primate models.

Acknowledgments

The authors wish to thank Dr AF Parlow and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) for antibodies against pituitary hormones, and Dr S Tanaka at Shizuoka University for antibodies against human GH. This work was partially supported by JSPS KAKENHI (grant numbers 16K18818 and 15J11564 to SY, 24580435 to TK, and 26292166 to YK); the MEXT-supported Program for the Strategic Research Foundation at Private Universities; a research grant (A) to YK from the Institute of Science and Technology, Meiji University; Meiji University International Institute for Bio-Resource Research (MUIIR); and a research grant to ES, the Strategic Research Program for Brain Science, “Maintenance of Systems for Creation and Spread of Primate Model Animals” from the Agency for Medical Research and Development (AMED), Japan.

References

1. Castinetti F, Davis SW, Brue T, Camper SA. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 2011; 32: 453–471. [Medline] [CrossRef]
2. Vankelecom H, Chen J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014; 385: 2–17. [Medline] [CrossRef]
3. Andoniadou CL, Matsushima D, Moussavy Gharavy SN, Signore M, Mackintosh AJ, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 2013; 13: 433–445. [Medline] [CrossRef]
4. Fanouller T, Rizzotti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 2008; 105: 2907–2912. [Medline] [CrossRef]
5. Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y. Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 2013; 354: 823–836. [Medline] [CrossRef]
6. Yoshida S, Kato T, Kato Y. Regulatory system for stem/progenitor cell niches in the adult rodent pituitary. Int J Mol Sci 2016; 17: 75. [Medline] [CrossRef]
7. Yoshida S, Kato T, Yako H, Susa T, Cai L-Y, Osuna M, Inoue K, Kato Y. Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 2011; 23: 933–943. [Medline] [CrossRef]
8. Chang CN, Araujo HV, Cirqueira CS, Cani CM, Matsushita H, Cesnatto VA, Fragoso MC, Bronstein MD, Zerbini MC, Mendonca BB, Carvalho LR. Differential expression of stem cell markers in human adamantinomatous craniopharyngioma and pituitary adenoma. Neuroendocrinology 2017; 104: 183–193. [Medline] [CrossRef]
9. Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Rose H, Govaere O, Roskams T, Cristina C, Beci-Villalobos D, Jorisse M, Snoeck VV, Bex M, van Loon J, Vankelecom H. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer 2015; 22: 481–504. [Medline] [CrossRef]
10. García-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV. A GFRα2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 2009; 4: e8415. [Medline] [CrossRef]
11. Okano H, Hikishima K, Iriki A, Sasaki E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin Fetal Neonatal Med 2012; 17: 336–340. [Medline] [CrossRef]
12. Mansfield K. Marmoset models commonly used in biomedical research. Comp Med 2003; 53: 383–392. [Medline]
13. Gremeaux L, Fu Q, Chen J, Vankelecom H. Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 2012; 21: 801–813. [Medline] [CrossRef]
14. Soji T, Herbert DC. Intercellular communication between rat anterior pituitary cells. Anat Rec 1989; 224: 523–533. [Medline] [CrossRef]
15. Yoshida S, Nishimura N, Yurino H, Kobayashi M, Horiguchi K, Yano K, Hashimoto SI, Kato T, Kato Y. Differentiation capacities of PS-clusters, adult pituitary stem/progenitor cell clusters located in the parenchymal-niche, of the rat anterior lobe. PLoS One 2018; 13: e0196029. [Medline] [CrossRef]