Case Report: Spontaneous Fetal Demises at Third Trimester of Pregnancy Due to a Double Lopped Nuchal Cord in Camelus dromedarius

Young-Bum Son¹, Mohammad Shamim Hossein¹, Xianfeng Yu², Yeon Ik Jeong¹, P. Olof Olsson¹ and Woo Suk Hwang¹,³*

¹ UAE Biotech Research Center, Abu Dhabi, United Arab Emirates, ² Jilin Provincial Key Laboratory of Animal Model College of Animal Science, Jilin University, Changchun, China, ³ Department of Biology, North-Eastern Federal University, Yakutsk, Russia

The umbilical cord acts as the critical lifeline of the developing fetus by providing nutrients and oxygen to it. Umbilical cord abnormalities are considered the leading cause of stillbirth in humans, but information on stillbirths associated with umbilical cord abnormalities is very scant in the clinical practice of animals. Here, we described a case of fetal demise in camels indicated to be caused by fetal death from strangulation by its umbilical cord, which is commonly known as the nuchal cord. A pregnant camel at its 36 weeks of gestation spontaneously aborted a single fetus. The camel was 5 years old and nullipara. A 6-day-old cloned embryo was transferred transcervically to the recipient. Pregnancy was confirmed 50 days after embryo transfer by ultrasonography, and the pregnant camel was maintained under a standard nutritional plan. The neck of the aborted fetus was strangulated tightly by a double loop of the umbilical cord. There was no congenital anomaly or other malformation in the fetus. We concluded that the nuchal cord was tightly coiled around the neck of the fetus and interfered with the blood flow in the fetus by collapsing the umbilical vein and subsequently causing fetal death and abortion. To the authors’ knowledge, this is the first reported case of a nuchal cord in camels.

Keywords: nuchal cord, abortion, third trimester, clone, camels

INTRODUCTION

Intrauterine life is maintained by the umbilical cord, which is the conduit between the developing fetus and the placenta. The fetus receives oxygenated and nutrient-rich blood from the placenta through umbilical veins, and umbilical arteries send back low oxygen and nutrient-depleted blood to the placenta. Any kind of lesions to the umbilical cord originating from structural, mechanical, hamartomatous, infectious, or other damage may lead to an indisputable cord failure which eventually prejudices the life or wellbeing of the fetus (1).

A nuchal cord develops when the umbilical cord becomes wrapped around the fetal neck. The prevalence of nuchal cord is very common in humans, and at parturition, it ranges between 6 and 36% (2, 3). It could have single or multiple loops and be loose or tightly wrapped. Shi and Eastman (4) studied 1,007 human infants at delivery and reported that 20.6% of the infants had a single loop,
stimulation of oocyte donor, synchronization of oocyte donor and recipient camels, embryo transfer, and pregnancy diagnosis (7–9). Pregnancy was confirmed 50 days after embryo transfer by ultrasonography (Figure 2). The camel was maintained under a standard nutrition plan.

A fetal sac was observed on the ground in the morning. The recipient had obvious signs of abortion. On autopsy, a full-grown fetus was found. The neck of the fetus was strangulated tightly by double loops of the umbilical cord (Figure 3). There was no congenital anomaly or other malformation in the fetus. On macroscopic examination of the umbilical cord, no lesion was observed. As the recipient aborted at mid to late gestation, the brucellosis test was performed in the mother’s blood and fetal tissue which was negative. A microsatellite analysis of 13 specific loci for Camelus dromedarius confirmed the reliability of cloned calves from donor cells (data may be provided upon request).

DISCUSSION

Pregnancy loss is a common ailment that affects a large number of camel pregnancies. However, there is no complete study on the incidence and causes of abortion in Camelidae. Here, we describe the first reported case of pregnancy loss in a camel by fetal death from strangulation by its umbilical cord, which is commonly known as nuchal cord. Although this is the first reported case of fetal strangulation in camel, it is likely not unique. We assume that this may be a fairly common event, although there is little supportive evidence, and to our knowledge, no direct data are reported.

The possible connotation between nuchal cord and stillbirth is unclear. Hammad et al. (10) reported that 19% of all stillbirths and 28% of stillbirths at or beyond 32 weeks were associated with umbilical cord abnormalities in humans. Most studies are in consensus that the nuchal cord is the most prevalent type of umbilical cord abnormality; however, the detrimental effects of nuchal cord on infants depend on its nature and extent, such as the number and tightness of the loops. A single or loosely wrapped nuchal cord is not associated with increased adverse perinatal outcome (11, 12). A nuchal cord that is tightly wrapped or has more than two loops may be associated with increased risk of stillbirth or compromised neonatal status at delivery (13).

The utilization of advanced reproductive biotechnologies in camels has increased substantially in recent years. Our group alone has produced hundreds of cloned pregnancies in the past 3 years (7–9), and the number of offspring produced from embryo transfer increases every year. The increased value of these pregnancies along with the accessibility of veterinary care provides the potential for routine ultrasonographic examination. In this report, we described an observation that may contribute to veterinary obstetrics and increase the understanding of late-term fetal loss. This report described one of several potential causes for the high rate of fetal loss in camels and described the first report of nuchal strangulation in the species. This observation and similar case reports should increase awareness and allow for a more detailed examination of...
pregnancies, with the intended result being decrease in late-term fetal loss.

In conclusion, although no nuchal strangulation reports are known in veterinary medicine, reports on human are prevalent. Ultrasonographic evaluation of pregnancy in camels at the later period of gestation is particularly difficult. No non-surgical methods exist at present to address the nuchal cord, and induction of parturition may be the only recourse. The umbilical cord may be affected by a number of abnormalities that may originate during pregnancy, labor, or delivery. It is important
to investigate the underlying mechanisms of the development of cord morphology and possible pathologies associated with it, because this may provide important insights regarding fetal growth in the intrauterine environment and its impact on later life.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Management of Scientific Centers and Presidential Camels (Accession No: PC4.1.5).

REFERENCES

1. Peesay M. Nuchal cord and its implications. *Matern Health Neonatal Perinatol.* (2017) 3:28. doi: 10.1186/s40748-017-0068-7

2. Rhoades DA, Latza U, Mueller BA. Risk factors and outcomes associated with nuchal cord. A population-based study. *J Reprod Med.* (1999) 44:39–45.

3. Clapp JF 3rd, Stepanchak W, Hashimoto K, Ehrenberg H, Lopez B. The natural history of antenatal nuchal cords. *Am J...*
Son et al. Abortion Due to Nuchal Cord

Obstet Gynecol. (2003) 189:488–93. doi: 10.1067/S0002-9378(03)00 371-5

4. Shui KP, Eastman NL. Coiling of the umbilical cord around the fetal neck. J Obstet Gynaecol Br Emp. (1957) 64:227–8. doi: 10.1111/j.1471-0528.1957.tb02625.x

5. Giacomello F. Ultrasound determination of nuchal cord in breech presentation. Am J Obstet Gynecol. (1988) 59:531–2. doi: 10.1016/S0002-9378(88)80123-6

6. Sherer DM, Ward K, Bennett M, Dalloul M. Current perspectives of prenatal sonographic diagnosis and clinical management challenges of nuchal cord(s). Int J Womens Health. (2020) 12:613–31. doi: 10.2147/IJWH.S211124

7. Hossein MS, Yu X, Son YB, Jeong YI, Jeong YW, Choi EJ, et al. The resurrection of Mabrokan: production of multiple cloned offspring from decade-old vitrified tissue collected from a deceased champion show camel. Animals. (2021) 11:2691. doi: 10.3390/ani11092691

8. Son YB, Jeong YI, Jeong YW, Yu X, Olsson PO, Cai L, et al. Comparison of pregnancy outcomes following the transfer of early-developmental stage embryos and blastocysts produced by somatic cell nuclear transfer in Camelus dromedarius. Anim Reprod Sci. (2021) 233:106842. doi: 10.1016/j.anireprosci.2021.106842

9. Olsson PO, Tinson AH, Al Shamsi N, Kuhad KS, Singh R, Son YB, et al. Blastocyst formation, embryo transfer and breed comparison in the first reported large scale cloning of camels. Sci Rep. (2021) 11:14288. doi: 10.1038/s41598-021-92465-9

10. Hammad IA, Blue NR, Allhousse AA, Silver RM, Gibbins KJ, Page JM, et al. Umbilical cord abnormalities and stillbirth. Obstet Gynecol. (2020) 135:644–52. doi: 10.1097/AOG.0000000000003676

11. Carey JC, Rayburn WF. Nuchal cord encirclements and risk of stillbirth. Int J Gynaecol Obstet. (2000) 69:173–4. doi: 10.1016/S0020-7292(99)00219-2

12. Narang Y, Vaid NB, Jain S, Suneja A, Guleria K, Faridi MM, et al. Is nuchal cord justified as a cause of obstetrician anxiety? Arch Gynecol Obstet. (2014) 289:795–801. doi: 10.1007/s00404-013-3072-9

13. Blickstein I, Shoham-Schwartz Z, Lancet M. Predisposing factors in the formation of true knots of the umbilical cord—analysis of morphometric and perinatal data. Int J Gynaecol Obstet. (1987) 25:395–8. doi: 10.1016/0020-7292(87)90346-8

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Son, Hossein, Yu, Jeong, Olsson and Hwang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.