Deep spectroscopy of distant 3CR radio galaxies: the data

P. N. Best,1* H. J. A. Röttgering1 and M. S. Longair2

1Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands
2Cavendish Astrophysics, Madingley Road, Cambridge CB3 0HE

Accepted 1999 July 27. Received 1999 July 22; in original form 1999 April 28

ABSTRACT
Deep long-slit spectroscopic data are presented for a sample of 14 3CR radio galaxies at redshift \(z \sim 1 \), previously studied in detail using the Hubble Space Telescope, the Very Large Array, and the UK Infrared Telescope (UKIRT). Analysis of the \([\text{O} \ II] \) 3727 emission-line structures at \(\Delta \) spectral resolution is carried out to derive the kinematic properties of the emission-line gas. In line with previous lower resolution studies, a wide variety of kinematics are seen, from gas consistent with a mean rotational motion through to complex structures with velocity dispersions exceeding 1000 km s\(^{-1}\). The data confirm the presence of a high-velocity gas component in 3C 265 and detached emission-line systems in 3C 356 and 3C 441, and show for the first time that the emission-line gas in the central regions of 3C 324 is composed of two kinematically distinct components. Emission-line fluxes and the colour of the continuum emission are determined down to unprecedentedly low observed wavelengths, \(\lambda < 3500 \) Å, sufficiently short that any contribution of an evolved stellar population is negligible. An accompanying paper investigates the variation in the emission-line ratios and velocity structures within the sample, and draws conclusions as to the origin of the ionization and kinematics of these galaxies.

Key words: galaxies: active – galaxies: individual: 3C 324 – galaxies: individual: 3C 265 – galaxies: ISM – radio continuum: galaxies.

1 INTRODUCTION
The emission-line properties of powerful distant \((z \geq 0.5) \) radio galaxies are striking. Their emission-line luminosities are large, with the rest-frame equivalent width of the \([\text{O} \ II] \) 3727 line frequently exceeding 100 Å (e.g. Spinrad 1982). Indeed, the strong correlation between emission-line luminosity and radio power (e.g. Rawlings & Saunders 1991) was the key factor in enabling spectroscopic completeness to be achieved for a large sample of powerful radio galaxies (the revised 3CR catalogue; Laing, Riley & Longair 1983). The line emission of the distant 3CR radio galaxies is also seen to be spatially extended over regions that can be as large as 100 kpc and is frequently elongated along the direction of the radio axis (e.g. McCarthy 1988; McCarthy et al. 1995).

The source of ionization of this gas has been a long standing question. Robinson et al. (1987) found that optical emission-line spectra of most low redshift \((z \leq 0.1) \) radio galaxies are well explained using photoionization models, and a similar result was found for a composite spectrum of radio galaxies with redshifts \(0.1 < z < 3 \) (McCarthy 1993). Photoionization models are also supported by orientation-based unification schemes of radio galaxies and radio-loud quasars (e.g. Barthel 1989), in which all radio galaxies host an obscured quasar nucleus: the flux of ionizing photons required to produce the observed luminosities of the emission-line regions can be shown to be comparable to that produced by radio-loud quasars at the same redshift (e.g. McCarthy 1993). On the other hand, detailed studies of individual sources (e.g. 3C 277.3: van Breugel et al. 1985; 3C 171: Clark et al. 1998) have revealed features such as enhanced nebular line emission, high velocity gas components, and large velocity dispersions coincident with the radio hotspots or with bends in the radio jets, indicating that the morphology and kinematics of the gas in some sources are dominated by shocks associated with the radio source. The ionization state of the gas in these regions is also consistent with that expected from shock ionization (e.g. Villar-Martín et al. 1999). Bicknell, Dopita & O’Dea (1997) considered the energy input to the emission-line regions of gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sources from the shocks associated with the advance of the radio jet and cocoon, and showed that the energy supplied by the shocks to the interstellar medium is sufficient to account for the observed line emission. The relative importance of shocks and photoionization in producing the emission-line properties of the general radio galaxy population therefore remains an open question.

Another important issue is the varied kinematics seen in the emission-line regions. At low redshifts the emission-line properties...
of the 3CR radio galaxies have been intensively studied (e.g. Baum et al. 1992 and references therein); a variety of kinematics are seen, from galaxies consistent with simple rotation through to those classified as ‘violent non-rotators’ with large turbulent velocities. At higher redshifts, McCarthy et al. (1995, 1996) have studied a large sample of 3CR radio galaxies with low spectral and spatial resolution, and find that the velocity full width at half-maximum (FWHM) values are significantly higher than those at low redshifts (see also Baum, McCarthy & O’Dea 1998), often exceeding 1000 km s$^{-1}$, and large velocity shears are seen. The exceptional nature of the kinematics has been reinforced by more detailed studies of individual sources (e.g. Spinrad & Djorgovski 1984; Tadhunter 1991; Meisenheimer & Hippelein 1992; Hippelein & Meisenheimer 1992; Stockton, Ridgway & Kellogg 1996; Neeser, Hippelein & Meisenheimer 1997). The emission-line properties of these high-redshift radio galaxies are evidently more extreme than those at low redshift (and hence of lower radio power) in more than just their luminosities.

The origin of the emission-line gas itself is another unresolved issue. Typically 10^8 to $10^9 M_\odot$ of ionized gas are estimated to be present around these objects (McCarthy 1993 and references therein), significantly more than found in quiescent low-redshift ellipticals. The gas may have an origin external to the radio galaxy, being either as gas associated with the remnants of a galaxy merger (Heckman et al. 1986; Baum & Heckman 1989), or gas brought in by a massive cooling flow in a surrounding intracluster medium; some support for the latter hypothesis is given by the detection of extended X-ray emission around a number of powerful distant radio galaxies (Crawford & Fabian 1996 and references therein), although the higher-than-primordial metallicity of the gas (as indicated by the strong emission-lines of, for example, oxygen, neon, magnesium and sulphur) dictates that the gas must have been processed within stars at some point in its past. Alternatively, the gas may be left over from the formation phase of these massive galaxies, perhaps expelled from the galaxy either in a wind following an earlier starburst phase or more recently by the shocks associated with the radio source. If the gas has an origin external to the host galaxy, then it is important to know what, if any, connection there is between the origin of this gas and the onset of the radio source activity.

The properties of the continuum emission of powerful distant radio galaxies are equally interesting. At near infrared wavelengths, the galaxies follow a tight K–z Hubble relation (Lilly & Longair 1984) and their host galaxies have colours and radial light profiles consistent with being giant elliptical galaxies which formed at large redshifts (Best, Longair & Röttgering 1998b). At optical wavelengths, however, powerful radio galaxies beyond redshift $z \approx 0.6$ show a strong, but variable, excess of blue emission, generally aligned along the radio axis (McCarthy et al. 1987; Chambers, Miley & van Breugel 1987). Using Hubble Space Telescope (HST) images of a sample of 3CR radio galaxies with redshifts $z \approx 1$, we have shown that the nature of this alignment differs greatly from galaxy to galaxy, in particular becoming weaker as the linear size of the radio source increases (Best, Longair & Röttgering 1996, 1997). It is clear that a number of different physical processes contribute to the continuum alignment effect, but less clear which processes are the most important (for reviews see, e.g., McCarthy 1993, Röttgering & Miley 1996).

To study the emission-line gas properties of these galaxies, our multiband imaging project on the redshift $z \approx 1$ 3CR galaxies has been expanded to include deep spectroscopic observations, producing a combined data set of unparalleled quality. In the current paper the basic results of the spectroscopic program are presented. The layout is as follows. In Section 2, details concerning the sample selection, the observations and the data reduction are presented. Section 3 contains the direct results of these observations, in the form of extracted one-dimensional spectra, two-dimensional studies of the [OII] 3727 emission-line structures, tables of spectral properties, and a brief description of the individual sources. The results are summarized in Section 4.

An accompanying paper (Best, Röttgering & Longair 1999, hereafter Paper II) investigates the emission-line ratios and velocity structures of the sample as a whole, and the consequences of these for the origin of the ionization and kinematics of these galaxies. A later paper will address the nature of the continuum emission.

Throughout the paper, values of the cosmological parameters of $\Omega = 1$ and $H_0 = 50\text{ km s}^{-1}\text{ Mpc}^{-1}$ are assumed. For this cosmology, 1 arcsec corresponds to 8.5 kpc at redshift $z = 1$.
CD was set to span from below the minimum useful wavelength (~3250 Å) to longward of the dichroic. During the 1998 February run, the (different) Loral CCD had a charge trap in the dispersion direction at about pixel 1000, reducing the credibility of data at longer wavelengths; the wavelength range was tuned to sample from 3275 Å up to the charge trap at about 5100 Å.

In the red arm of the spectrograph the R316R grating was used in combination with TEK CCD, providing a spatial scale of 0.36 arcsec per pixel, a dispersion of 1.49 Å per pixel and a spectral resolution of about 5 Å. The wavelength range of about 1500 Å was centred on the wavelength given in Table 1 for each galaxy, tuned to cover as much as possible of the range from approximately 3550 to 4300 Å in the rest frame of the galaxy whilst remaining below a maximum observed wavelength of 9000 Å. This higher spectral resolution set-up in the red arm allows a much more detailed investigation of the velocity structures of the emission-line gas as seen in the very luminous [O ii] 3727 emission-line, but still provides sufficient wavelength coverage to include the 4000 Å break, the Balmer continuum break at 3645 Å and a number of Balmer emission-lines.

2.2 Observations and data reduction

Long-slit spectra of the 14 galaxies were taken with total integration times of between 1.5 and 2 h per galaxy; the observations were split between three or four separate exposures in the red arm to assist in the removal of cosmic rays; the blue arm observations were split between only two exposures since shorter exposures would have had a more significant read-noise contribution. The slit was orientated either along the radio axis or along the axis of elongation of the optical–UV emission. Full details of the observations are provided in Table 1.

The seeing was typically 0.8 to 1 arcsec during the 1997 July run, and between 1 and 1.25 arcsec during the 1998 February observations. The first half of the 1998 February 23 night was partially cloudy, hampering the observations of 3C 65 and 3C 267 as discussed above. The observations of 3C 217 may have suffered partial cloud interference and be non-photometric, although the approximate agreement between the 7500 Å flux density determined from the spectrum and that extracted from the equivalent region of an HST image of this galaxy, convolved to the same angular resolution, suggest that this was not significant. Conditions during the second half of that night and the other three nights were photometric.

The data were reduced using standard packages within the IRAF NOAO reduction software. The raw data frames were corrected for overscan bias, and flat-fielded using observations of internal calibration lamps with the same instrumental set-up as the object exposures: i.e. in the red arm, separate flat fields were constructed for each galaxy, since each was observed with a different observed wavelength range; these flat-field observations were interspersed with the series of on-source exposures to minimize fringing effects. The sky background was removed, taking care not to include extended line emission in the sky bands. The different exposures of each galaxy were then combined, removing the cosmic ray events, and one-dimensional spectra were extracted. The data were wavelength calibrated using observations of CuNe and CuAr arc lamps, and accurate flux calibration was achieved using observations of the spectrophotometric standard stars GD190, EG79, G9937 and LDS749b, again observed using exactly the same instrumental set-up as each galaxy and corrected for atmospheric extinction.

2.3 The non-linearity of the Loral CCD

At wavelengths below 4000 Å, the far greater efficiency of the Loral CCD as compared with any other CCD available at the time of these observations (~75 per cent as compared with ~35 per cent quantum efficiency at 3500 Å) offered an unrivalled opportunity for study at these wavelengths. However, the Loral CCD used during the 1997 July run had a slightly non-linear response curve, giving rise to a minor problem concerning flux calibration of the blue arm data from this run. In order to assess the extent of this problem, a sequence of flat-field observations of the internal calibration lamps were taken, with exposures of 0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60, 120, 300, 120, 60, 30, 20, 15, 10, 7, 5, 3, 2, 1 and 0 s, the average of the frames for each exposure time on the increasing and decreasing exposure time branches being taken to account for any systematic time variation in the intensity of the calibration lamp. A small (relatively uniform intensity) region of the CCD was selected and, after subtraction of the 0 s bias frame, the mean count per pixel in that region was measured for each different exposure time frame. The frame providing on average just over 100 count pixel$^{-1}$ was arbitrarily declared to be ‘correct’; the ‘expected’ count level for this CCD region in the other frames was then calculated by scaling by the exposure time, and was compared to the observed counts. This process was repeated for a large number of different regions on the CCD, and also with a smaller sample of flat-field observations taken the following night.

The results of this analysis are presented in Fig. 1, which shows that the Loral CCD is non-linear at the ~10 per cent level at count levels below ~800 count pixel$^{-1}$, but above that level the non-linearity increases sharply. The scatter around a parametrized fit to the non-linearity curve in the 300 to 500 count range can be explained by Poisson noise statistics alone, indicating that the non-linearity was highly repeatable, varying neither with time nor with position on the CCD, and thus allowing the small non-linearity at these count levels to be accurately calibrated out.

The faintness of the radio galaxies being studied meant that the detected counts per pixel in the on-source exposures, including both sky and object counts, fell automatically within the range 50 to 800 count pixel$^{-1}$. Both the flat-field and the standard star exposures in the blue arm during the 1997 July run were built up by summing a series of images, each of which was kept short to have maximum count levels below 1000 count pixel$^{-1}$. The parametrized curve shown in Fig. 1 was then divided into the scientific exposures, after bias subtraction but before flat fielding and other calibration. Such a correction was also applied to the flat-field exposures and to the observations of standard stars. In this way, any systematic offset introduced by the application of the non-linearity curve to the object will be roughly cancelled by its application to the calibrator, reducing any errors to ~2 per cent, far below the other uncertainties related to the calibration procedure.

3 RESULTS

The resulting one dimensional spectra, extracted from the central 4.3 arcsec (~35 kpc) region along the slit direction in each of the blue and red arms, are shown in Figs 2 to 15 (a & b). In Table 2 are tabulated the fluxes of the various emission-lines relative to [O ii]...
Table 1. Details of the ISIS observations.

Source	Observ. date	Slit width [arcsec]	Exp. time red arm [s]	Exp. time blue arm [s]	Red arm Cen. λ [Å]	Slit PA [deg.]	Notes
3C22	07/07/97	1.50	5400	5400	7645	103	[1]
3C217	23/02/98	1.54	7250	7200	7625	90	[2,3]
3C226	23/02/98	1.54	7200	7200	7260	145	[1]
3C247	24/02/98	1.70	6600	6660	7100	70	[1]
3C252	24/02/98	1.75	7140	7200	8235	105	[1]
3C265	23/02/98	1.54	5500	5500	7260	136	[4]
3C280	07/07/97	1.50	5400	5400	7860	90	[1]
3C289	08/07/97	1.50	2700	2700	7760	109	[1]
3C289	23/02/98	1.54	2200	2200	7820	109	[1]
3C324	07/07/98	1.50	5400	5400	7860	90	[1]
3C340	24/02/98	1.75	6900	7000	7105	85	[1]
3C352	08/07/98	1.50	5400	5400	7170	161	[1]
3C356	07/07/98	1.50	5400	5400	7860	147	[5]
3C368	08/07/98	1.50	5400	5400	8235	10	[1]
3C441	08/07/98	1.50	5400	5400	6830	150	[1]

[1] Slit aligned along the radio axis.
[2] Slit aligned intermediately between the radio axis (104°) and the elongation of the central optical knots (75°).
[3] Observations may be non-photometric (see text).
[4] Slit aligned along the extended UV emission, rather than the radio axis which has a PA of 106°.
[5] Slit aligned to include both of the two central galaxies; slightly offset from the true radio PA of 160°.

Figure 1. The non-linearity of the Loral CCD during the 1997 July run. The ‘expected’ counts were determined by defining (arbitrarily) for a given CCD region the frame in the exposure time sequence of flat-field frames (see text) that gave just over 100 counts per pixel to be ‘correct’, and scaling the expected counts for other frames by their exposure time; hence the string of 1.00s from 100 to 150 counts. The solid line represents a polynomial fit to the data points.

3727 and their equivalent widths, together with the mean flux density of the continuum in various wavelength regions. These flux ratios and flux densities (although not the plotted one-dimensional spectra, to allow comparison with previously published data) have been corrected for galactic extinction using the Milky Way H\(I\) column density data of Burstein & Heiles (1982), quoted in Table 2, and the parametrized galactic extinction law of Howarth (1983). These extinction corrections are \(\approx 10\) per cent for most sources, but exceed a factor of 2 at the shortest wavelengths for the low galactic latitude source 3C22.

The emission-line flux ratios and continuum flux densities are tabulated only for the single extracted spectrum. Even these very deep spectra do not have a high enough signal-to-noise ratio in the blue continuum of most of the galaxies to investigate in detail variations in the continuum colour along the spatial direction of the slit. Variations in the intensity, velocity and FWHM of the emission-lines along the spatial direction of the slit are readily apparent, and are considered below in the study of the [O\(\text{II}\)] 3727 emission-line.

Also presented in Table 2 are the observed strengths of the 4000 Å break, as determined by the ratio of the mean continuum flux between 4050 and 4250 Å to that between 3750 and 3950 Å (Bruzual 1983; note that because of the presence of the excess aligned optical–UV emission, the strength of this break cannot be used directly to age the stellar populations of these galaxies, although the galaxies with only weak alignment effects (e.g. 3C441) do show fairly strong breaks indicative of evolved stellar populations.

To study the velocity structure of the [O\(\text{II}\)] 3727 emission-line, a two-dimensional region around this emission-line was extracted [Figs 2 to 15(c)], and from this a series of one-dimensional spectra were extracted from spatial regions of width 4 pixel (1.44 arcsec), with the extraction centre stepped in units of 2 pixel (0.72 arcsec, \(\sim 2/3\) of a seeing profile). Each extracted spectrum was then analysed using the following automated procedure.

(i) The extracted spectrum was fitted to find the best-fitting Gaussian, allowing for continuum subtraction. If this had a velocity FWHM greater than the instrumental resolution, determined by measuring the FWHM of unblended sky lines, and had an integrated signal-to-noise ratio greater than 5, then it was accepted. Otherwise no fit was made at this spatial position.

(ii) The spectrum was then fitted using a combination of two Gaussians. This fit was preferred to the single Gaussian fit only if both fitted Gaussians were wider than the velocity resolution, had

\[1\] The exclusion on the basis of FWHM was necessary to avoid selection of single pixel spikes, but it should be noted that real features may have a measured FWHM less than the velocity resolution, and thus be excluded, if they are detected with only a low signal-to-noise ratio. However, all of the extracted Gaussian profiles are found to have deconvolved FWHM in excess of 200 km s\(^{-1}\) (Figs 2 to 15) and so it is extremely unlikely that any real features have been excluded by this method.

© 2000 RAS, MNRAS 311, 1–22
Table 2. Spectroscopic properties of the radio galaxies. The [O ii] 3727 integrated flux (measured within or scaled to a 1.5 arcsec slit width), in units of 10^{-16} erg s$^{-1}$ cm$^{-2}$, corresponds to the line flux along the entire length of the slit calculated by integrating the [O ii] 3727 intensities shown in Figs 2–15(d).

Source	3C22	3C217	3C226	3C247	3C252	3C265	3C280	3C289	3C294	3C340	3C352	3C356(N)	3C356(S)	3C358	3C414
Milky Way	0.13	0.12	0.10	0.08	0.07	0.05	0.04	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00
HeII 1640	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.02	0.01	0.00	0.00	0.00	0.00	0.00
CII 1335	0.2	0.18	0.15	0.12	0.10	0.08	0.06	0.05	0.04	0.03	0.02	0.00	0.00	0.00	0.00
[NeIII] 1256	0.05	0.05	0.04	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgII 2798	0.05	0.05	0.04	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[NeV] 3400	0.05	0.05	0.04	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[OII] 3727	0.1	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00
[OIII] 4959	0.2	0.18	0.15	0.12	0.10	0.08	0.06	0.05	0.04	0.03	0.02	0.00	0.00	0.00	0.00

In this way, it was possible to search for high-velocity gas components, and structures in the emission-line gas inconsistent with being a single velocity component (e.g. see 3C 324; Fig. 10). For each extracted Gaussian, the integrated emission-line flux was calculated, as was the velocity relative to that at the centre of the galaxy and the FWHM of the emission-line. The last of these was deconvolved by subtracting in quadrature the instrumental

an integrated signal-to-noise ratio in excess of five, and the reduced χ^2 of the two-Gaussian fit was below that of the single Gaussian fit. If these requirements were not satisfied, the single Gaussian fit was adopted. Note that the amplitude of a fitted Gaussian was allowed to be negative to detect absorption features (although none were observed).

(iii) This process was repeated using 3, 5, 4, etc., Gaussians.
Figure 2. The spectroscopic data for 3C 22. (a - upper left) The extracted one-dimensional blue arm spectrum. In this and in (b) the emission-lines are labelled and sky features are indicated by an open circle with a cross. (b - upper right) The one-dimensional spectrum extracted from the red arm. (c - middle left) The two-dimensional [O ii] 3727 emission-line structure. Offset zero corresponds to the continuum centroid, and the sky directions of ‘positive’ and ‘negative’ slit offsets are indicated on the plot. (d - middle right) The surface brightness of the [O ii] 3727 emission as a function of position along the slit. Where a second Gaussian component is fitted (see text; appropriate for later figures) this is plotted using open diamonds. (e - lower left) The velocity at the Gaussian peak of the [O ii] 3727 emission as a function of position along the slit. (f - lower right) The variation of the FWHM of the fitted Gaussian profile as a function of position along the slit.
FWHM, as determined from unblended sky lines. The errors on each of these three parameters were also determined. It should be noted that a Gaussian did not always provide an ideal fit to the velocity profile, for example with profiles showing slight wings in either the blue or red direction, perhaps associated with a weaker emission component at a different velocity that was too faint to be individually distinguished.

The variation of the intensity, velocity and FWHM of the [O\textsc{ii}] 3727 line emission with spatial location along the slit are presented in Figs 2 to 15(d to f). The large-scale variations in the three parameters measured here agree extremely well with those determined from lower spatial and spectral resolution data by McCarthy et al. (1996) for the seven galaxies in common between the two samples; the only significant exception is 3C 324.
for which the higher spectral resolution of the current data has shown that a single Gaussian component is clearly not sufficient to describe the velocity structure. Note also that the surface brightnesses of the [O\textsc{ii}] emission line determined from these spectra are comparable to those measured from the same region in narrow-band imaging of this emission-line by McCarthy et al. (1995).

Important features of the emission-line properties of individual galaxies are discussed briefly below. A full discussion of the continuum morphologies of these sources can be found in Best et al. (1997), and is not repeated here except where of direct relevance.

3C 22 has been identified as possessing a significant quasar component on the basis of a broad H\alpha emission line and its high luminosity and nucleated appearance in the K band (Dunlop &
Peacock 1993; Rawlings et al. 1995; Economou et al. 1995). The emission-line properties observed here, however, are by no means extreme (Fig. 2). The [O\textsc{ii}] line emission is confined to approximately the inner 2 arcsec (\approx17 kpc) radial distance along the slit (see also McCarthy et al. 1995) and is consistent with velocity variations \(\leq100 \text{ km s}^{-1}\). The FWHM seen for this line is high (700±800 km s\(^{-1}\)) but not exceptional with respect to the rest of the sample. The ratio of emission-line fluxes seen from this galaxy are intermediate within the sample, and similar to the combined radio galaxy spectrum of McCarthy (1993). The continuum emission at rest frame wavelengths \(\approx3000 \AA\) is somewhat bluer than average.

\textbf{3C 217} possesses by far the highest equivalent width [O\textsc{ii}] 3727 line emission of all of the galaxies in this sample. This intense line emission is relatively compact (Fig. 3; see also the narrow band [O\textsc{ii}] 3727 image of Rigler et al. 1992) and confined to the inner
2–3 arcsec radius, in the region in which the HST images also show very luminous and blue rest frame ultraviolet emission (Best et al. 1997). The [O ii] line shows a large velocity dispersion and a complex velocity profile, but with only small (≤ 200 km s$^{-1}$) variations along the slit in the mean velocity. Relative to the other galaxies in the sample, the lower ionization lines are strong in the spectrum of this object.

3C 226 shows a smooth, regular emission-line gas profile (Fig. 4). The [O ii] 3727 emission line shows a clear intensity peak at the centre of the galaxy, extended slightly to the north-west (see also the narrow-band image of McCarthy et al. 1995) where the HST image shows a faint blue knot of emission (Best et al. 1997). The relative velocity plot is consistent with a simple rotating halo; it may instead represent material infalling or outflowing along the radio axis, although the smooth slope of the velocity profile would be surprising in that case. The FWHM of the line profile is low.
relative to the other sources in the sample and fairly constant along the slit. At any given location along the slit, however, the dispersion in the line velocities is far greater than the mean offset velocity of the emission line at that location, indicating that whether the relative velocity plot represents a mean rotational motion or if it arises through inflow or outflow of material, there is in either case considerable scatter in the emission-line cloud velocities relative to these mean motions. The emission-line ratios of 3C 226 are fairly typical for the sample; the continuum emission in the blue-arm spectrum is redder than the average. 3C 247 has line emission extending for over 10 arcsec along the radio axis (Fig. 5; see also McCarthy et al. 1995). The inner approximately 2 arcsec radius of the line emission is almost symmetrical, with an intermediate velocity FWHM and a velocity.
profile which again may be consistent with a mean rotational motion or with infall/outflow of material. Further to the north-east there is a smooth transition into a region of [O\textsc{ii}] emission redshifted by 150 km s$^{-1}$ and with a lower velocity width. This second region has an associated continuum object, and it seems likely that what is seen here is an interaction of the radio galaxy with a companion. The radio galaxy itself shows a significant 4000 Å break of strength 1.61 ± 0.06; bearing in mind that the true strength of this break is diluted by aligned continuum emission, the host galaxy must contain a well-evolved stellar population. A strong CaK 3933 Å absorption feature is readily apparent in the red-arm spectrum (Fig. 5b).

3C 252 shows line emission extended over only a few arcsec, with a smooth velocity profile again representing simple rotation or infall/outflow (Fig. 6). The galaxy has the lowest velocity FWHM of any source in the sample, although still with a velocity dispersion significantly greater than the mean relative velocities. The integrated [O\textsc{ii}] 3727 flux is among the lowest in the

Figure 8. The spectroscopic data for 3C 280. Details as in Fig. 2.
sample, but many of the other emission-lines are strong by comparison.

3C 265 is an extreme radio galaxy in both its continuum and emission-line properties. More than a magnitude brighter at optical wavelengths than other radio galaxies at the same redshift, its continuum emission is composed of a large number of components extending over 80 kpc (10 arcsec) with a remarkably blue colour (Fig. 7a); its [O\ II] 3727 emission shows a similar, or even greater, extent (Fig. 7; see also Tadhunter 1991; Rigler et al. 1992; McCarthy et al. 1995, 1996; Dey & Spinrad 1996). From the galaxy centre the emission extends a considerable distance to the north-west with a fairly flat velocity profile and decreasing velocity width. The ‘blob’ of line emission offset 9 arcsec to the north-west of the galaxy centre is associated with a continuum emission region (e.g. see Best et al. 1997). The properties of the [O\ II] 3727 emission-line

Figure 9. The spectroscopic data for **3C 289**. Details as in Fig. 2.
are also observed with a lower signal-to-noise ratio in weaker emission-lines.

Tadhunter (1991) reported the presence of high-velocity gas components to the south-east of the nucleus, with velocities of ± 750 and ± 1550 km s$^{-1}$ with respect to the velocity at the continuum centroid, although these were not obvious in the data of Dey & Spinrad (1996) nor of McCarthy et al. (1996). The current data confirm the presence of the $+750$ km s$^{-1}$ component, the slightly higher velocity measured here being the result of a small offset between the continuum centroid position determined here and that of Tadhunter. This component is also detected clearly in the [Ne III] 3869 line. The $+1550$ km s$^{-1}$ component is, however, not detected; this may be a result of the difference in slit position angle of the two observations (136° versus 145°), and/or of the use

Figure 10. The spectroscopic data for 3C 324. Details as in Fig. 2.
of a narrower slit in the current observations. The origin of the high-velocity component is almost certainly related to the radio source activity (Tadhunter 1991).

3C 280 has a complex emission-line structure extending over 11 arcsec (90 kpc; Fig. 8). The emission shows a strong central peak together with a large extension to the east where it forms a loop around the eastern radio lobe (Rigler et al. 1992; McCarthy et al. 1995). This loop of emission is redshifted with respect to the velocity at the continuum centroid by about 500 km s\(^{-1}\). The FWHM of the [O\(\text{II}\)] 3727 emission is moderately high and almost constant throughout the entire extent of the emission.

3C 289 shows a central peak of line emission, with a secondary emission region a couple of arcsec to the south-east (Fig. 9; see also Rigler et al. 1992), corresponding to a faint emission region on the HST image of Best et al. (1997). Both the integrated [O\(\text{II}\)] 3727 emission-line intensity and the FWHM of the emission line are relatively low for the sample. The velocity profile could represent rotation or infall/outflow of material.

![Figure 11. The spectroscopic data for 3C 340. Details as in Fig. 2.](https://academic.oup.com/mnras/article-abstract/311/1/1/990311)
weak CaK 3933 Å absorption line may be present in the red-arm spectrum.

3C 324 has previously been described as showing a velocity shear of 700 km s\(^{-1}\) along the radio axis (Spinrad & Djorgovski 1984; McCarthy et al. 1996), but the higher spectral and spatial resolution data presented in Fig. 10 clearly indicate that that is not the case. The emission-line gas is composed of two distinct components, with velocities separated by \(\sim\)800 km s\(^{-1}\). At the position corresponding to the continuum centroid, the two velocity components overlap; the adoption of the mean of these two as the true redshift of the system is necessarily uncertain, and the possibility that the true centre of 3C 324 lies coincident with either of the components determined here to be at +400 and −400 km s\(^{-1}\) cannot be excluded. The western emission-line component is slightly more luminous and has the higher FWHM, reaching over 1000 km s\(^{-1}\); note that the dissociation of the central emission into two separate components means that a FWHM as high as 1500 km s\(^{-1}\), determined by McCarthy et al.

Figure 12. The spectroscopic data for 3C 352. Details as in Fig. 2.
Spectroscopy of distant 3CR radio galaxies

for the blended pair, is not measured here. It is unclear whether these two emission-line regions represent different physical systems, perhaps undergoing a merger, or whether radial acceleration by radio jet shocks is responsible for the bimodality of the emission-line velocities.

This two-component structure of the emission-line properties of 3C 324 reflects the structure of its optical–UV continuum emission (Longair, Best & Röttgering 1995; Dickinson, Dey & Spinrad 1996). The HST images show bright emission regions to the east and west, but a central minimum corresponding to the radio core position and interpreted as extinction by a central dust lane. Narrow-band images of the [OII] 3727 emission-line also show an elongated clumpy morphology (Hammer & Le Fèvre 1990; Rigler et al. 1992). Cimatti et al. (1996) showed that the

© 2000 RAS, MNRAS 311, 1–22

Figure 13. The spectroscopic data for 3C 356. Details as in Fig. 2. The plotted one-dimensional spectra are for the northern galaxy.
polarization properties of the emission to the east and west of the nucleus also differ strongly.

3C 340 is another radio galaxy the emission-line structure of which is smooth and well-ordered (Fig. 11). The relative velocity plot is consistent with simple rotation or with infall or outflow of material, and the line widths are the second lowest in the sample. The emission is centrally concentrated, with a small (2 to 3 arcsec) extension along the radio axis to the west (see also the narrow-band image of McCarthy et al. 1995). The integrated [O\textsc{ii}] 3727 intensity is relatively low, with the emission-line ratios in the spectrum indicating a very high ionization state. The galaxy shows a significant 4000\AA{} break (1.52 ± 0.07), a broad CaK 3933\AA{} absorption feature, and a red colour for its short wavelength continuum emission.

3C 352 shows an elongated [O\textsc{ii}] 3727 emission region extending for 10 arcsec, and possibly further since the presence of a bright star to the north prohibits the detection of any further line emission in that direction. The velocity profile is smooth...
throughout the central regions of the source with a velocity shear exceeding 700 km s$^{-1}$, but distorts somewhat at larger distances (Fig. 12). The FWHM is large, reaching over 1000 km s$^{-1}$. These results are consistent with those of Hippelein & Meisenheimer (1992) from Fabry–Perot imaging. Relative to the rest of the sample, the lower ionization lines are strong in the spectrum. A broad CaK absorption feature can be seen at 3933 Å.

3C 356 has long been a puzzle, with two equally bright infrared galaxies separated by about 5 arcsec corresponding to the location of two radio core-like features. The identification of the true nucleus has been a matter of some debate, with different authors favouring the northern or the southern galaxy for different reasons (see Best et al. 1997 for a more complete discussion). For the current data, the slit was placed to include both components, with zero offset corresponding to the location of the northern galaxy (see Fig. 13). As is observed for the continuum emission (e.g. Rigler et al. 1992, Best et al. 1997), the line emission from the

Figure 15. The spectroscopic data for 3C 441. Details as in Fig. 2.
The northern region is compact whilst that from the southern region is more extended but gives a comparable integrated intensity (see also Lacy & Rawlings 1994; McCarthy et al. 1996). The northern region shows virtually no variation in its velocity with position, and a low velocity width; the southern region, redshifted by about 1200 km s\(^{-1}\) in 5 arcsec, consistent with rotation or with infalling/outflowing gas. A relatively large 4000 Å break is observed in the spectrum (1.64 ± 0.04), together with strong CaK 3933 Å absorption, consistent with the fact that this galaxy also shows only a very weak alignment effect at optical–UV wavelengths (Best et al. 1997).

Composite spectra have been produced for each of the red and blue arms of the spectrograph, by combining all of the presented spectra at the same rest frame wavelengths, giving each individual spectrum an equal weighting. 3C 368 was excluded from this combined spectrum because of the contribution of the foreground M star to its emission. The resulting total spectra, shown in Fig. 16, are equivalent to single spectra of over 20 h in duration. In Table 3 are tabulated the relative strengths of the emission-lines in this composite spectrum. These are quoted relative to the commonly adopted scale of H\(\beta\) = 100 by assuming H\(\gamma\)/H\(\beta\) = 0.47, appropriate for Case B recombination at T = 10 000 K (Osterbrock 1989); this value is also consistent with that obtained from the H\(\alpha\) line assuming H\(\alpha\)/H\(\beta\) = 0.26.

One feature is immediately apparent when comparing these relative line fluxes with those from the composite spectrum of radio galaxies with redshifts 0.1 < z < 3 constructed by McCarthy (1993): the emission lines at short wavelengths are less luminous by factors of 2 to 4, relative to H\(\beta\), than those of McCarthy’s spectrum. This may be a result of the wide range of redshifts of the radio galaxies making up McCarthy’s composite and the strong correlation between emission-line flux and redshift (Rawlings & Saunders 1991); the shortest wavelength lines in his composite spectrum are only observed in the highest redshift sources (with powerful line emission) whilst the H\(\beta\) line is seen in the lower redshift sources, introducing a bias towards lines at shorter rest frame wavelengths appearing more luminous. The composite spectra presented in Fig. 16 and Table 3 are much less prone to this bias, and so provide a fairly accurate measure of relative line fluxes at redshift z ~ 1.

As well as the emission lines, other features visible in the spectra include the broad CaK absorption feature at 3933 Å, with an equivalent width of 10 ± 2 Å, and a weaker G-band absorption at 4300 Å with an equivalent width of 7 ± 3 Å. A 4000 Å break is marginally visible, but there is little evidence for the spectral breaks at 2640 and 2900 Å (cf. Spinrad et al. 1997)

Table 3. Emission-line fluxes of the ‘average’ spectrum of the 3CR radio galaxies, relative to H\(\beta\) = 100.

Line	Flux	Line	Flux
He II 1640	95	[NeIII] 3869	65
O IIT 1663	19	H\(\alpha\) 3889	12
C II 1909	83	He + [NeIII] 3967	26
C IV 2326	27	[SII] 4072	9
[NeIV] 2425	33	H\(\alpha\) 4102	24
Mg II 2798	38	H\(\gamma\) 4340	47
[O I] 3727	256	[OIII] 4363	21

![Figure 16. A summation of the spectra for all of the radio galaxies.](https://academic.oup.com/mnras/article-abstract/311/1/1/990311)
expected from an old stellar population. This is not too surprising since the contribution from the old stars to the total flux density at these wavelengths, and indeed throughout all of the combined blue arm spectrum, is small compared to that of the aligned emission.

4 CONCLUSIONS

Extremely deep spectroscopic observations have been presented of an unbiased sample of the most powerful radio galaxies with redshifts $z \sim 1$. A broad range of emission lines is seen and a study, at intermediate spectral resolution, of the two-dimensional velocity structures of the emission-line gas is presented. The enhanced sensitivity of new CCDs at short wavelengths has enabled the measurement of emission-line ratios and continuum flux densities at unprecedentedly short wavelengths, $\lambda \leq 3500 \text{Å}$, corresponding to the near-UV in the rest frame of the sources where any continuum contribution from an evolved stellar population will be negligible.

The main results can be summarized as follows.

(i) Analysis of the velocity structures of these galaxies shows them to exhibit a wide range of kinematics. Some sources have highly distorted velocity profiles and velocity FWHM exceeding 1000 km s$^{-1}$. Other sources have lower velocity dispersions and more ordered emission-line profiles, with the variation of mean velocity along the slit being consistent with simple rotation. Even in these latter sources, however, the velocity FWHM are still a few hundred km s$^{-1}$, significantly larger than the variations in mean velocities, indicating that there is considerable scatter in the emission-line cloud velocities relative to any mean rotational motion.

(ii) A high-velocity (~ 750 km s$^{-1}$) gas component is confirmed close to the nucleus of 3C 265. This is unique amongst the sample, but other galaxies display gas with velocities ≥ 400 km s$^{-1}$ offset a few arcsec from the centre, either connected to the central emission-line region (3C 280, 3C 352, 3C 368) or as a discrete region (3C 356, 3C 441).

(iii) 3C 324 is shown to consist of two kinematically distinct components separated in velocity by 800 km s$^{-1}$.

(iv) For those galaxies in which the alignment effect is seen to be relatively weak in the HST images, and hence the spectra are not dominated by emission from these alignment processes, 4000-Å breaks from evolved stellar populations are clearly visible. CaK absorption features are also readily apparent in a number of the spectra.

(v) At rest frame wavelengths shortward of ~ 2500 Å, the continuum emission of the galaxies is, on average, relatively flat in f_λ, although considerable source-to-source variations are seen both in these continuum colours and in the emission-line ratios.

(vi) A composite spectrum gives the relative strengths of the emission lines at rest frame wavelengths between He II 1640 and [O III] 4363. Emission-lines at short rest frame wavelengths are systematically weaker (relative to Hβ) than those in the composite spectrum of McCarthy (1993). It is suspected that this is the result of a bias introduced in McCarthy’s spectrum by the emission-line strength versus redshift correlation, and the large redshift coverage of the radio galaxies which comprise his sample.

The broad variation in kinematical and ionization properties within the sample as a whole are investigated and compared against other radio source properties in the accompanying Paper II, and conclusions are drawn there concerning the origin of the ionization and kinematics of the emission-line gas.

ACKNOWLEDGMENTS

This work was supported in part by the Formation and Evolution of Galaxies network set up by the European Commission under contract ERB FMRX-CT96-086 of its TMR programme. The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roche de los Muchachos of the Instituto de Astrofísica de Canarias. We thank the referee, Mike Dopita, for his careful consideration of the original manuscript and a number of useful suggestions.

REFERENCES

Barthel P. D., 1989, ApJ, 336, 606
Baum S. A., Heckman T. M., 1989, ApJ, 336, 681
Baum S. A., Heckman T. M., van Breugel W. J. M., 1992, ApJ, 389, 208
Baum S. A., McCarthy P. J., O’Dea C. P., 1998, in Röttgering H. J. A., Best P. N., Lehnert M. D., eds, The most distant radio galaxies. Royal Netherlands Acad. Arts & Sci., Amsterdam, p. 97
Best P. N., Longair M. S., Röttgering H. J. A., 1996, MNRAS, 280, L9
Best P. N., Longair M. S., Röttgering H. J. A., 1997, MNRAS, 292, 758
Best P. N., Carilli C. L., Garrison T. S., Longair M. S., Röttgering H. J. A., 1998a, MNRAS, 299, 357
Best P. N., Longair M. S., Röttgering H. J. A., 1998b, MNRAS, 295, 549
Best P. N., Röttgering H. J. A., Longair M. S., 1999, MNRAS, 311, 23 (Paper II, this issue)
Bicknell G. V., Dopita M. A., O’Dea C. P., 1997, ApJ, 485, 112
Bruzual G., 1983, ApJ, 273, 105
Burstein D., Heiles C., 1982, AJ, 87, 1165
Chambers K. C., Miley G. K., van Breugel W. J. M., 1987, Nat, 329, 604
Cimatti A., Dey A., van Breugel W., Antonucci R., Spinrad H., 1996, ApJ, 465, 145
Clark N. E., Axon D. J., Tadhunter C. N., Robinson A., O’Brien P., 1998, ApJ, 494, 546
Crawford C. S., Fabian A. C., 1996, MNRAS, 282, 1483
Dey A., Spinrad H., 1996, ApJ, 459, 133
Dickinson M., Dey A., Spinrad H., 1996, Hippelein H., Meisenheimer K., Röser H.-J., eds, Galaxies in the Young Universe. Springer Verlag, Berlin, p. 164
Dickson R., Tadhunter C., Shaw M., Clark N., Morganti R., 1995, MNRAS, 273, L29
Dunlop J. S., Peacock J., 1993, MNRAS, 263, 936
Economou F., Lawrence A., Ward M. J., Blanco P. R., 1995, MNRAS, 272, L5
Hammer F., Le Fèvre O., 1990, ApJ, 357, 38
Hammer F., Le Fèvre O., Proust D., 1991, ApJ, 374, 91
Heckman T. M., Smith E. P., Baum S. A., van Breugel W. J. M., Miller G. K., Illingworth G. D., Bothun G. D., Balick B., 1986, ApJ, 311, 526
Hippelein H., Meisenheimer K., 1992, A&A, 264, 472
Howarth I. D., 1983, MNRAS, 203, 501
Lacy M., Rawlings S., 1994, MNRAS, 270, 431
Lacy M., Rawlings S., Blundell K. M., Ridgway S. E., 1998, MNRAS, 298, 966
Laing R. A., Riley J. M., Longair M. S., 1983, MNRAS, 204, 151
Lilly S. J., Longair M. S., 1984, MNRAS, 211, 833
Longair M. S., Best P. N., Röttgering H. J. A., 1995, MNRAS, 275, L47
McCarthy P. J., 1988, PhD thesis, Univ. California, Berkeley CA

© 2000 RAS, MNRAS 311, 1–22

Spectroscopy of distant 3CR radio galaxies 21

II, and conclusions are drawn there concerning the origin of the ionization and kinematics of the emission-line gas.
P. N. Best, H. J. A. Röttgering and M. S. Longair

McCarthy P. J., 1993, ARA&A, 31, 639
McCarthy P. J., van Breugel W. J. M., Spinrad H., Djorgovski S., 1987, ApJ, 321, L29
McCarthy P. J., Spinrad H., van Breugel W. J. M., 1995, ApJS, 99, 27
McCarthy P. J., Baum S. A., Spinrad H., 1996, ApJ Supp., 106, 281
Meisenheimer K., Hippelein H., 1992, A&A, 264, 455
Neese M. J., Hippelein H., Meisenheimer K., 1997, ApJ, 491, 522
Osterbrock D. E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. University Science Books, Mill Valley CA
Rawlings S., Saunders R., 1991, Nat, 349, 138
Rawlings S., Lacy M., Sivia D. S., Eales S. A., 1995, MNRAS, 274, 428
Rigler M. A., Lilly S. J., Stockton A., Hammer F., Le Fèvre O., 1992, ApJ, 385, 61
Robinson A., Binette L., Fosbury R. A. E., Tadhunter C. N., 1987, MNRAS, 227, 97
Röttgering H. J. A., Miley G. K., 1996 in Bergeron J., ed, The Early Universe with the VLT. Springer Verlag, Berlin, p. 285
Spinrad H., 1982, PASP, 94, 397
Spinrad H., Djorgovski S., 1984, ApJ, 280, L9
Spinrad H., Dey A., Stern D., Dunlop J., Peacock J., Jimenez R., Windhorst R., 1997, ApJ, 484, 581
Stockton A., Ridgway S. E., Kellogg M., 1996, AJ, 112, 902
Tadhunter C. N., 1991, MNRAS, 251, 46
van Breugel W. J. M., Miley G. K., Heckman T. M., Butcher H., Bridle A., 1985, ApJ, 290, 496
Villar-Martín M., Tadhunter C., Morganti R., Axon D., Koekemoer A., 1999, MNRAS, 307, 24

This paper has been typeset from a \TeX/L\TeX file prepared by the author.