A NEW CRITERION TO A TWO-CHEMICAL SUBSTANCES CHEMOTAXIS SYSTEM WITH CRITICAL DIMENSION

XUELI BAI* AND SUYING LIU
Department of Applied Mathematics, Northwestern Polytechnical University
127 West Youyi Road, Xi’an 710072, Shaanxi, China

ABSTRACT. We mainly investigate the global boundedness of the solution to the following system,
\[
\begin{aligned}
 u_t &= \Delta u - \chi \nabla \cdot (u \nabla v) \quad \text{in } \Omega \times \mathbb{R}^+, \\
 v_t &= \Delta v - v + w \quad \text{in } \Omega \times \mathbb{R}^+, \\
 w_t &= \Delta w - w + u \quad \text{in } \Omega \times \mathbb{R}^+,
\end{aligned}
\]
under homogeneous Neumann boundary conditions with nonnegative smooth initial data in a smooth bounded domain \(\Omega \subset \mathbb{R}^n \) with critical space dimension \(n = 4 \). This problem has been considered by K. Fujie and T. Senba in [5]. They proved that for the symmetric case the condition \(\int_\Omega u_0 < (8\pi)^2 \chi \) yields global boundedness, where \(u_0 \) is the initial data for \(u \). In this paper, inspired by some new techniques established in [3], we give a new criterion for global boundedness of the solution. As a byproduct, we obtain a simplified proof for one of the main results in [5].

1. Introduction. Consider the following chemotaxis system
\[
\begin{aligned}
 u_t &= \Delta u - \chi \nabla \cdot (u \nabla v) \quad \text{in } \Omega \times \mathbb{R}^+, \\
 v_t &= \Delta v - v + w \quad \text{in } \Omega \times \mathbb{R}^+, \\
 w_t &= \Delta w - w + u \quad \text{in } \Omega \times \mathbb{R}^+,
\end{aligned}
\]
in a smooth and bounded domain \(\Omega \subset \mathbb{R}^n \) \((n \leq 4)\), where \(\chi \) is a positive constant. Suppose that the initial data \((u_0, v_0, w_0) \) satisfies
\[
\begin{aligned}
 u_0 \in C^0(\overline{\Omega}), \quad u_0 \geq 0, \quad \text{in } \Omega, \\
 v_0 \in C^2(\overline{\Omega}), \quad v_0 \geq 0, \quad \text{in } \Omega, \\
 w_0 \in C^2(\overline{\Omega}), \quad w_0 \geq 0, \quad \text{in } \Omega, \\
 \frac{\partial u_0}{\partial \nu} = \frac{\partial v_0}{\partial \nu} = 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]

2010 Mathematics Subject Classification. Primary: 35B45, 35K45; Secondary: 35Q92, 92C17.

Key words and phrases. New criterion, chemotaxis, critical dimension, global boundedness, interpolation inequality.

The first author is supported by Alexander von Humboldt Foundation, NSF (No.11501207), Postdoctoral Science Foundation of China (No. 2016M600812) and Special financial aid to postdoctoral research fellow (No.2017T100768). The second author is supported by NSF (No.11701453) and Postdoctoral Science Foundation of China (No. 2016M600811).

* Corresponding author: mybxl1109163.com.
A detailed introduction of this model could be found in K. Fujie and T. Senba in [5] and for more discussion related to chemotaxis models, we refer the reader to survey papers [2, 7, 8]. In this paper, we intend to give an extension as well as a simplified proof for one of the main results in [5] in the critical case \(n = 4 \). In particular, we establish the following result.

Theorem 1.1. Assume that \(n = 4 \) and (2) is valid. Then there exists a maximal existence time \(T_{\max} \in (0, \infty] \) and a uniquely determined triple \((u, v, w) \in [C^{2,1}(\bar{\Omega} \times (0, T)) \cap C(\bar{\Omega} \times [0, T))]^3 \) which solves (1) classically in \(\Omega \times (0, T_{\max}) \). Moreover, if \(T_{\max} < \infty \) then

\[
\sup_{t \in [0, T_{\max})} \left(\|u(t)\|_{L^\infty(\Omega)} + \|v(t)\|_{W^{2,\infty}(\Omega)} + \|w(t)\|_{W^{1,\infty}(\Omega)} \right) = \infty.
\]

If in addition we assume that either \(\int_{\Omega} u_0 \, dx \) is small enough or \(\{u(\cdot, t)\}_{t \in (0, T_{\max})} \) is uniformly integrable, that is, to each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(E \subset \Omega \) and \(|E| < \delta \) implies \(\sup_{t \in (0, T_{\max})} \int_E u(x, t) \, dx < \varepsilon \), then \(T_{\max} = \infty \) and the solution \((u, v, w)\) is globally bounded in time in the sense that

\[
\sup_{t \in [0, \infty)} \left(\|u(t)\|_{L^\infty(\Omega)} + \|v(t)\|_{W^{2,\infty}(\Omega)} + \|w(t)\|_{W^{1,\infty}(\Omega)} \right) < \infty.
\]

Remark 1. If \(\Omega = B_R(0) \), \(u_0, v_0, w_0 \) are radially symmetric and \(\int_{\Omega} u_0 < \frac{(8\pi)^2}{\chi} \), K. Fujie and T. Senba have shown that (1) admits a unique solution satisfying (see [5, Lemma 7.3])

\[
\sup_{t \in [0, T_{\max})} \int_{\Omega} u \log u \, dx < \infty,
\]

which implies that \(u \) is uniformly integrable. Therefore, our result can be considered as a new and shorter proof of [5, Theorem 1.3].

Without the radially symmetric assumption, we show that if \(\int_{\Omega} u_0 \, dx \leq \varepsilon_0 \) with \(\varepsilon_0 \) small enough, the solution is globally bounded. Here \(\varepsilon \) may be less than \(\frac{(8\pi)^2}{\chi} \). It is still open that whether the condition \(\int_{\Omega} u_0 \, dx < \frac{(8\pi)^2}{\chi} \) can ensure the global boundedness for solution of (1) when \(\Omega \) is general domain (see [5, Remark 1.5]).

2. **preliminaries.** In this part, we give several lemmas which are fatal to our proof, we will use the symbol \(\| \cdot \|_p \) to denote the \(L^p(\Omega) \) norm for simplicity. The first one is the optimal sobolev regularity lemma. Instead of using [6, Theorem 3.1] directly, we adopt [4, Lemma 2.5] (with appropriate modifications) here which is more effective for our purpose.

Lemma 2.1. Let \(\Omega \subset \mathbb{R}^n \) be a smooth and bounded domain, \(r, q \in (1, \infty) \). There exists \(C > 0 \) depending on \(q, r, \Omega \) such that for any \(f \in L^r((0, T); L^q(\Omega)) \), \(v_0 \in W^{2,q}(\Omega) \) satisfying \(\frac{\partial v_0}{\partial n} = 0 \) on \(\partial \Omega \) and \(T \in (0, \infty) \), if \(v \in W^{1,r}((0, T); L^q(\Omega)) \cap L^r((0, T); W^{2,q}(\Omega)) \) is the unique strong solution to the following evolution equation

\[
\begin{align*}
\frac{\partial v}{\partial t} &= \Delta v - v + f & \text{in } \Omega \times (0, T), \\
\frac{\partial v}{\partial n} &= 0 & \text{on } \partial \Omega \times (0, T), \\
v(x, 0) &= v_0(x), & \text{in } \Omega,
\end{align*}
\]

then

\[
\int_0^T e^{\frac{s}{T}} \| \Delta v(\cdot, s) \|_{L^r(\Omega)}^r \, ds \leq C \int_0^T e^{\frac{s}{T}} \| f(\cdot, s) \|_{L^r(\Omega)}^r \, ds + C \| v_0 \|_{W^{2,q}(\Omega)}.
\]

Lemma 2.2. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary and $\alpha \in (1, n)$. For all $s \in (0, \infty)$, there exists a constant $C > 0$ such that

$$\|\nabla v\|_{\infty} \leq C \|\Delta v\|_\alpha + C \|v\|_s, \forall v \in W^{2,\alpha}$$ with $\frac{\partial v}{\partial \nu} = 0$ on $\partial \Omega$, \hspace{1cm} (5)

and

$$\|v\|_{\infty} \leq C \|\Delta v\|_\alpha + C \|v\|_s, \forall v \in W^{2,\alpha}$$ with $\frac{\partial v}{\partial \nu} = 0$ on $\partial \Omega$. \hspace{1cm} (6)

Proof. Inequality (5) is just the conclusion of [4, Lemma 4.1]. The inequality (6) can be derived by Gagliardo-Nirenberg interpolation inequality and (5). \hspace{1cm} \Box

Lemma 2.3 (special case of [3, Lemma 2.2]). Let $\Omega \subset \mathbb{R}^4$ be smooth and bounded, $0 < q < 2$, $b = \frac{4-2q}{4-q}$ and $l = \frac{2-q}{2-q+4}$. Assume that $\delta : (0, 1) \to (0, \infty)$ is nondecreasing, then for each $\varepsilon > 0$, we can find $C_\varepsilon > 0$ such that

$$\|\varphi\|_2 \leq \varepsilon \|\nabla \varphi\|_2 \|\varphi\|_{q-1} + C_\varepsilon (b, q, \|\varphi\|_q)$$

for any $\varphi \in F_\delta := \{ \varphi \in W^{1,2}(\Omega) | \text{For all } \varepsilon' \in (0, 1), |E| < \delta(\varepsilon') \text{ implies } \int_E \psi dx < \varepsilon' \}$.

3. Proof of the main result.

Proof of Theorem 1.1. Since the local existence and global boundedness under uniform L^p-prior estimate of u has been established in [5] (Proposition 4.1 and Lemma 5.4), we only need to show that there exists $p > 1$ such that $\sup_{0 < t < \tau_{max}} \|u(\cdot, t)\|_p$ is bounded. It is routine to check that $\|u\|_{L^1(\Omega)}$, $\|v\|_{L^1(\Omega)}$ and $\|v\|_{L^1(\Omega)}$ are uniformly bounded in t. Hence, throughout the rest of this paper, we always assume that C is a positive constant which may depend on $\sup_{0 < t < \tau_{max}} (\|u\|_{L^1(\Omega)} + \|v\|_{L^1(\Omega)} + \|w\|_{L^1(\Omega)})$ and change from place to place. Multiplying the first equation by $\frac{1}{p} u^{p-1}$, we obtain that

$$\frac{\partial}{\partial t} \left(\int_{\Omega} \frac{1}{p} u^p \right) = \int_{\Omega} u^{p-1} u_t dx$$

$$= - \frac{4(p-1)}{p^2} \int_{\Omega} \nabla u \nabla \frac{x}{u^2} dx + (p-1) \chi \int_{\Omega} u^{p-2} \nabla u \cdot \nabla v dx$$

$$= - \frac{4(p-1)}{p^2} \int_{\Omega} \nabla u \nabla \frac{x}{u^2} dx + \frac{2(p-1)}{p} \chi \int_{\Omega} u^{\frac{2}{p}} \nabla v \nabla \frac{x}{u^2} dx$$

$$\leq - \frac{2(p-1)}{p^2} \int_{\Omega} \nabla u \nabla \frac{x}{u^2} dx + \frac{(p-1)}{2} \chi \int_{\Omega} u^p |\nabla v|^2 dx. \hspace{1cm} (7)$$

Using Gagliardo-Nirenberg interpolation inequality and Young’s inequality, we can estimate $\int_{\Omega} u^p |\nabla v|^2 dx$ as follows:

$$\int_{\Omega} u^p |\nabla v|^2 dx \leq \|u^p\|_{L^p} \|\nabla v\|_{L^{p'}}^2$$

$$= \|u^{\frac{2}{2p}}\|_{L^{2p}} \|\nabla v\|_{2p}^2.$$
derive that

Then we see that

which implies that

θ

where

y

immediately.

ε

3720 XUELI BAI AND SUYING LIU

where θ ∈ (1, 2) is some constant to be determined, θ′ = \(\frac{θ}{θ-1} \) and α = \(\frac{2p-2/θ}{2p-1} \) ∈ (0, 1). By Gagliardo-Nirenberg inequality, we have

\[
\frac{1}{(1-a)p} \int_Ω u^p dx \leq \frac{p-1}{2p^2} \int_Ω |∇u|^2 dx + C \left(\int_Ω u dx \right)^θ.
\]

(9)

Substituting (8) and (9) into (7) and denoting y(t) := \(\int_Ω u^p dx \), r := \(\frac{2}{1-θ} \), we derive that

\[
y'(t) + \frac{r}{2} y(t) \leq C\|∇v\|_α^5 \int_Ω u^p dx + C, \tag{10}
\]

which implies that

\[
y(t) \leq e^{-\frac{r}{2}t} y(0) + C \int_0^t e^{\frac{r}{2}(s-t)} (\|∇v\|_α^5 - C^* \|∇u\|_2^2) ds + C. \tag{11}
\]

To estimate \(\int_0^t e^{\frac{r}{2}(s-t)} \|∇v\|_α^5 ds \), we utilize (5), (6) with s = 1 and Lemma 3 to derive that

\[
\int_0^t e^{\frac{r}{2}(s-t)} \|∇v\|_α^5 ds \leq C \int_0^t e^{\frac{r}{2}(s-t)} \||∇v|^α\|_α^5 ds + C
\]

\[
\leq C \int_0^t e^{\frac{r}{2}(s-t)} \|w\|_α^5 ds + C
\]

\[
\leq C \int_0^t e^{\frac{r}{2}(s-t)} \|\Delta v\|_α^5 ds + C
\]

\[
\leq C \int_0^t e^{\frac{r}{2}(s-t)} \|u\|_p^5 ds + C, \tag{12}
\]

where α, β satisfy α = \(\frac{4θ}{2+θ} \) and β = \(\frac{2α}{2+3θ} = \frac{4θ}{5θ-2} \) respectively.

Choosing p = β ∈ (1, \(\frac{2}{3} \)) and substituting (12) into (11), we get

\[
y(t) \leq e^{-\frac{r}{2}t} y(0) + C \int_0^t e^{\frac{r}{2}(s-t)} (\|u\|_p^5 - C^* \|∇u\|_2^2) ds + C. \tag{13}
\]

For the case that u(\cdot, t) is uniformly integrable, it is routine to check that \(u^p \) belongs to \(F_\beta \) with \(q = \frac{p}{2} \). Therefore, we can derive the following result by choosing \(q = \frac{2}{p} \) in Lemma 2.3:

\[
\|u\|_p^r = \|u^\frac{2}{p}\|_2^2 \leq ε \|∇u\|_2^2 \|u^\frac{2}{p}\|_2^{2(1-l)} + C_ε, \tag{14}
\]

where b = \(\frac{2p-2}{2p-1} \) and l ∈ (0, 1). Since p = β = \(\frac{4θ}{5θ-2} \) implies θ = \(\frac{2p}{5p-3} \), we have

\[
r = \frac{2}{p(1-α)} = \frac{2}{p(1-\frac{2p-2/θ}{2p-1})} = \frac{2p-2}{p(\frac{2}{3} - 1)} = \frac{2p-1}{2p-2}.
\]

Then we see that \(\frac{2p}{p} b = \frac{2(2p-2)}{4p-3} \cdot \frac{4-2θ}{4-θ} = 2 \). Choosing ε small enough such that \(ε(\int_Ω u_0 dx)^{(1-l)} < C^* \) in (14), and substituting it into (13), we get boundedness of y immediately.
A NEW CRITERION TO A TWO-CHEMICAL SUBSTANCES CHEMOTAXIS SYSTEM 3721

For the case that \(\int_{\Omega} u_0 dx \leq \varepsilon_0 \), by Gagliardo-Nirenberg inequality, we have
\[
\|u\|_p = \|u^\frac{b}{p}\|_2 \leq \tilde{C}\|\nabla u^\frac{b}{p}\|_2 (1-b)\|u^\frac{b}{p}\|_p^{(1-b)} + C\|u^\frac{b}{p}\|_p.
\]
(15)

Setting \(\varepsilon_0 = \left(\frac{C^*}{\tilde{C}} \right)^{\frac{1}{1-b}} \) and substituting (15) into (13), we get the boundedness of \(y \).

Acknowledgments. The authors would like to thank Dr. Xinru Cao for many inspiring discussions with her and her constant encouragement and support, without which this paper would not be possible. We sincerely thank to the reviewer for his/her careful reading of the original manuscript and for detecting a number of unpleasant typos and inconsistencies throughout it. The final form of the paper is really indebted to his/her excellent work.

REFERENCES

[1] N. D. Alikakos, \(L^p \)-bounds of solutions of reaction diffusion equations, *Comm. Partial Differential Equations*, 4 (1979), 827–868.

[2] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, *Math. Models Methods Appl. Sci.*, 25 (2015), 1663–1763.

[3] X. Cao, An interpolation inequality and its application in Keller-Segel model, preprint, *arXiv:1707.09235*.

[4] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, *Zeitschrift F"ur Angewandte Mathematik Und Physik*, 67 (2016).

[5] K. Fujic and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, *J. Differential Equations*, 37 (2017), 61–83.

[6] M. Hieber and J. Pr"uss, Heat kernels and maximal \(L^p - L^q \) estimate for parabolic evolution equations, *Comm. Partial Differential Equations*, 22 (1997), 1647–1669.

[7] T. Hillen and K. J. Painter, A user’s guide to PDE models in a chemotaxis, *J. Math. Biol.*, 58 (2009), 183–217.

[8] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, *I. Jber. DMV*, 105 (2003), 103–165.

Received September 2017; 1st revision November 2017; 2nd revision November 2017.

E-mail address: mybx11104163.com
E-mail address: liusuying03190126.com