Magnetic Properties of Itinerant Ferromagnet La$_{12}$Fe$_{57.5}$As$_{41}$

Bin Chen1,2, JinHu Yang1, Sho Takehara1, Hiroto Ohta1, Chishiro Michioka1, Kazuyoshi Yoshimura1

1 Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
2 Department of Physics, Hangzhou Normal University, Hangzhou 310036, China

E-mail: chenbin@kuchem.kyoto-u.ac.jp
E-mail: kyhv@kuchem.kyoto-u.ac.jp

Abstract. We successfully synthesized the single crystal of the itinerant ferromagnetic compound La$_{12}$Fe$_{57.5}$As$_{41}$ by Sn-flux method and studied its magnetic properties by magnetization measurements. The temperature dependence of magnetic susceptibility obeys the modified Curie-Weiss law, $\chi^{-1} = (\chi_0 + C/(T - \theta))^{-1}$, quite well in the high temperature region. The effective moment P_{eff} and the Weiss temperature θ are estimated to be 1.13 μ_B/Fe and 128.5 K, respectively. The magnetization of La$_{12}$Fe$_{57.5}$As$_{41}$ shows the convex behavior when plotted in a form of M^2 vs H/M at low temperatures, while the M^4 shows the linear relation against H/M in a wide temperature range near T_C.

1. Introduction
La$_{12}$Fe$_{57.5}$As$_{41}$ is a newly discovered itinerant ferromagnet with the Curie temperature $T_C = 125$ K$[1]$. It has the orthorhombic crystal structure with the space group of $Pnmn$. The complex three-dimensional network of La$_{12}$Fe$_{57.5}$As$_{41}$ is composed of novel wave-like layers of connected As-centered trigonal prisms$[1]$. The Fe atoms form the wave-like square lattice, which is parallel to the ab plane$[1]$. It is quite different with the FeAs layers in the mother compounds of Fe-based superconductors and the three-dimensional network in the CaFe$_4$As$_3$$[2]$, both of which show the antiferromagnetic order at low temperatures. Therefore, it is very interesting to investigate the magnetic properties of La$_{12}$Fe$_{57.5}$As$_{41}$ due to the rare examples of ferromagnetic order in Fe-As contained compounds.

However, the ferromagnetic impurities are often introduced into the polycrystalline samples, which mask the intrinsic magnetic properties of La$_{12}$Fe$_{57.5}$As$_{41}$$[1]$. The high quality samples are strongly needed to elucidate the magnetic properties of this compound. In this work, we successfully synthesized the single crystal samples of La$_{12}$Fe$_{57.5}$As$_{41}$ and investigated its magnetic properties by the measurements of magnetic susceptibilities and isothermal magnetizations with the applied magnetic field parallel to the ac plane.

2. Experiments
The single crystal of La$_{12}$Fe$_{57.5}$As$_{41}$ was synthesized by the Sn-flux method. A 2 g mixture of La (Lump 99.9%), Fe (bulk 99.99%), and As powder (99.999%) in a molar ratio of 1:5:3 was
placed in an evacuated silica tube together with 12 g of Sn (99.99%). The mixture was heated to 1050°C over 12 h, held at this temperature for 12 h, and then slowly cooled to 600°C with 3°C/h, followed by furnace cooling to room temperature. Black needle-shaped crystals of the ternary arsenides La$_{12}$Fe$_{57.5}$As$_{41}$, together with crystals of binary-phase byproduct FeAs, were gained after dissolving excess Sn flux in diluted acid HCl. The magnetization was measured using a superconducting quantum interference device magnetometer in the temperature range between 2 and 300 K with an applied magnetic field H up to 5 T.

3. Results and Discussion

Figure 1 shows the temperature dependence of the magnetization divided by the external magnetic field M/H (■) and the inverse magnetic susceptibility (□) for La$_{12}$Fe$_{57.5}$As$_{41}$ measured under $H = 0.5$ T with the magnetic field parallel to the ac plane. The ferromagnetic phase transition manifest itself by a rapid increase of the magnetic susceptibility at about 125 K with further decreasing the temperature, which is similar to the result of reference 1. However, the absolute magnitude of the susceptibility at low temperature is only about 25% of the value of susceptibility reported previously[1]. As we will point out below, this indicates that our sample is very pure without any magnetic impurities. On the other hand, the magnetic susceptibility obeys the modified Curie-Weiss law, $\chi^{-1} = (\chi_0 + C/(T - \theta))^{-1}$, quite well in high temperature region (150 K ~ 300 K) as shown in Fig. 1 by solid line. As a result, the temperature independent part χ_0, Curie constant C and Weiss temperature θ are estimated to be 0.016 emu/mol, 9.14 emu K/mol and 128.5 K, respectively. From the Curie constant C we obtained the effective moment $P_{eff} = 1.13 \mu_B$/Fe.

Figure 1. Temperature dependence of the magnetization divided by the external magnetic field M/H (■) and the inverse magnetic susceptibility (□) for La$_{12}$Fe$_{57.5}$As$_{41}$ with the external magnetic field applied parallel to the ac plane.

Figure 2 shows the isothermal magnetization curves of La$_{12}$Fe$_{57.5}$As$_{41}$ from 2 K to 190 K under the external magnetic field up to 5 T. The magnetization saturates in the field of 2 T at 2 K. Moreover, with the increase of temperature, the saturated magnetization decreases continuously in the ferromagnetic ordered state. The linear relationship between M and H
can be found at the temperature higher than 170 K. Our results are quite different with that reported by S. S. Stoyko et al., where the linear relation is absent even in the paramagnetic state with the temperature up to 300 K[1]. This is because of the existence of the magnetic impurities in their sample as they claimed. These results suggest our sample is of high quality.

![Figure 3. Arrott Plot (M^2 versus H/M plot) for La_{12}Fe_{57.5}As_{41} at various temperatures.](image)

![Figure 4. M^4 versus H/M plot for La_{12}Fe_{57.5}As_{41} at various temperatures.](image)

On the basis of the Stoner model, the high field isothermal magnetization follows $M^2 = A + B(H/M)$, where the parameters A and B are independent of magnetic field H. This leads to a series of linear and parallel curves in M^2 versus H/M plots that are commonly so-called Arrott plots. This behavior has been observed in some magnetic materials, such as ZrZn$_2$[8], Y(Co-Al)$_2$[4, 5], Ni$_3$Al[6], Sc$_3$In[7]. Figure 3 shows the M^2 vs H/M plots at various temperatures from 2 K to 150 K. The linear relationship between M^2 and H/M can be found with the temperature lower than 80 K. Usually, the Curie temperature T_C can be determined at the temperature, where the intercept along the M^2 axis in the Arrott plot crosses the origin of the coordinate axes, whereas, in the temperature range between 90 K and 130 K, the M^2 does not show the linear relation but a convex curvature against H/M. It is difficult to determine the T_C from the Arrott plot in this case. However, if we plot them in a M^4 vs H/M form, it is clear that M^4 shows good linear relation with H/M in a wide temperature range near T_C in La$_{12}$Fe$_{57.5}$As$_{41}$ as shown in Fig. 4. This behavior has been observed in some weak itinerant ferromagnetic materials, such as MnSi[8], LaCoAsO[9]. The linear relationship of M^4 with H/M is explained on Takahashi’s theory of spin fluctuations, which assumed that the sum of zero-point and thermal spin fluctuations is independent of temperature[10]. Therefore, T_C is estimated to be 125 K approximately from the M^4 vs H/M plot.

In order to clarify a magnetic material belongs to the itinerant or a localized spin system, we estimate the Rhodes-Wohlfarth ratio of La$_{12}$Fe$_{57.5}$As$_{41}$, which is defined as the value of P_c/P_s, where $P_c(P_c + 2) = P_{\text{eff}}^2$ and P_s is the spontaneous magnetization at ground state[11]. In the case of the weak itinerant ferromagnet, Rhodes-Wohlfarth ratio is known to be much larger than the case of the localized spin system $P_c/P_s \equiv 1$. We estimate $P_c = 0.51\,\mu_B$/Fe by using the value $P_{\text{eff}} = 1.13\,\mu_B$/Fe. $P_s = 0.17\,\mu_B$/Fe is estimated from the Arrott plot as shown in Fig. 3. Using these values we obtained P_c/P_s of La$_{12}$Fe$_{57.5}$As$_{41}$ is about 3, larger than the 1, which indicates this material belongs to the itinerant ferromagnet class.
4. Summary
The itinerant ferromagnetic compound La$_{12}$Fe$_{57.5}$As$_{41}$ was synthesized successfully by Sn-flux method. The magnetic properties were studied by the measurements of magnetic susceptibility and magnetization with the external magnetic field applied in the ac plane. The temperature dependence of magnetic susceptibility obeys the modified Curie-Weiss law, $\chi^{-1} = (\chi_0 + C/(T - \theta))^{-1}$ quite well in high temperature region. The effective moment P_{eff} and Weiss temperature θ are estimated to be 1.13 μ_B/Fe and 128.5 K, respectively. We showed that the magnetization of La$_{12}$Fe$_{57.5}$As$_{41}$ has the linear behavior when plotted in the form of M^2 vs H/M in the lower and the higher temperature regions, while changes to the M^4 vs H/M in a wide temperature range near T_C. The Rhodes-Wohlfarth ratio is estimated to be about 3, suggesting that La$_{12}$Fe$_{57.5}$As$_{41}$ is an itinerant ferromagnet.

5. Acknowledgments
The authors thank the Yukawa Institute for Theoretical Physics at Kyoto University. Discussions during the YITP workshop YITP-W-10-12 on “International and Interdisciplinary Workshop on Novel Phenomena in Integrated Complex Sciences: from Non-living to Living Systems” were useful to complete this work. This workshop was supported in part by the Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work is also supported by a Grant-in-Aid for Scientific Research on Priority Areas, “Invention of anomalous quantum materials”, from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16076210), and by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (19350030, 22350029).

References
[1] Stanislav S Stoyko, Peter E R Blanchard and Arthur Mar 2010 Inorg. Chem. 49 2325-33
[2] I Todorov, D Y Chung, C D Malliakas, Q A Li, T Bakas, A Douvalis, G Trimarchi, K Gray, J F Mitchell, A J Freeman and M G Kanatzidis 2009 J. Am. Chem. Soc. 131 5405-07
[3] E A Yelland, S J C Yates, O Taylor, A Griffiths, S M Hayden and A Carrington 2005 Phys. Rev. B 72 184436
[4] K Yoshihura, M Takigawa, Y Takahashi, H Yasuoka and Y Nakamura 1987 J. Phys. Soc. Jpn. 56 1138
[5] K Yoshihura and Y Nakamura 1985 Solid State Communications. 56 767
[6] B Chen, C Michioka, Y Itoh and K Yoshihura 2008 J. Phys. Soc. Jpn. 77 103708
[7] T Hioki and Y Masuda 1977 J. Phys. Soc. Jpn. 43 1200
[8] M K Chattopadhyay, Parul Arora and S B Roy 2009 J. Phys.: Condens. Matter 21 296003
[9] H Ohta, K Yoshihura 2009 Phys. Rev. B 79 184407
[10] Y Takahashi 1986 J. Phys. Soc. Jpn. 55 3553
[11] P R Rhodes and E P Wohlfarth 1963 Proc. Roy. Soc. London 273 247