Research article

Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative

Tianyong Han\(^1\), Zhao Li\(^1\) and Jun Yuan\(^2\),*

\(^1\) College of Computer Science, Chengdu University, Chengdu, Sichuan 610106, China
\(^2\) School of Information Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China

* Correspondence: Email: yuanjun_math@126.com.

Abstract: This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.

Keywords: Biswas-Arshed equation with beta-time derivative; optical soliton; traveling wave solution; complete discrimination system method

Mathematics Subject Classification: 35C05, 35Q55

1. Introduction

It is common knowledge that fractional partial differential equations are often used to establish mathematical models to fit experiments or practices. In order to better fit the experimental data more accurately, many scholars have studied partial differential equations (PDEs) involving a variety of fractional derivatives for decades, such as the Riemann-Liouville derivative \([1]\), Caputo fractional derivative \([2]\), conformable derivative \([3–11]\) and beta derivative \([12–18]\). Investigating the traveling wave solutions to nonlinear PDEs plays an important role in the study of nonlinear physical phenomena \([19–22]\).

The Schrödinger equation is an important submicroscopic model in quantum mechanics. In recent
years, researchers have established so many optical models based on the Schrödinger equation. Among these models, the Biswas-Arshed equation (BAE) is a generalization of the Schrödinger equation; it describes pulse propagation through optical fiber [23]. Due to the significant improvement of related technologies, the telecommunications industry has experienced great growth in the past few decades. In order to further study nonlinear optics, ignoring the self phase modulation, Anjan Biswas and Ssima Arshed established the BAE with the beta-time derivative [23]:

\[
i \frac{\partial \beta}{\partial t} \psi + p_1 \frac{\partial^2 \psi}{\partial x^2} + p_2 \frac{\partial^2}{\partial \beta^2} \left(\frac{\partial u}{\partial x} \right) + i \left(q_1 \frac{\partial u}{\partial x} + q_2 \frac{\partial^2}{\partial \beta^2} \left(\frac{\partial^2 u}{\partial x^2} \right) \right) - i \left(\lambda \frac{\partial |\psi|^2 \psi}{\partial x} + \phi \frac{\partial |\psi|^2}{\partial x} + \delta |\psi|^2 \frac{\partial \psi}{\partial x} \right) = 0, \quad (1.1)
\]

where \(\psi = \psi(x,t) \) is a complex-valued function. Also, \(x \) and \(t \) are spatial and temporal variables, respectively. The parameters \(p_1 \) and \(p_2 \) are the coefficients for the group velocity dispersion and the spatio-temporal dispersion, respectively. The parameters \(q_1 \) and \(q_2 \) are the coefficients for the third-order dispersion and the spatio-temporal third-order dispersion, respectively. The parameter \(\lambda \) is the coefficient for the self-steepening effect while \(\phi \) and \(\delta \) present the coefficients for nonlinear dispersions.

A large number of methods for finding the traveling wave solutions of the BAE without fractional derivatives have been proposed, such as dynamical system methods [24], undetermined coefficients and Kudryashov’s methods [25], the \(\Phi^6 \) model expansion method [26], the sine-Gordon equation method [27], the modified simple equation method [28], extended sinh-Gordon equation expansion and modified \((G'/G) \)-expansion schemes [29], the trial equation technique [30], Jacobi’s elliptic function approach [31], extended simplest equation methods [32], improved modified extended tanh-function methods [33] and various other methods [34–42].

However, the special methods can yield a special kind of solution. In this paper, we look for more optical solitons and single traveling wave solutions of the BAE with the beta time derivative by using the complete discrimination system method. Recently, the effectiveness of the method has been examined by some authors. For example, Xu et al. adopted the complete discrimination system method to study soliton transmission dynamics [24]. Tang studied the exact solutions to a conformable time-fractional Klein-Gordon equation with high-order nonlinearities [41].

In 2020, Biswas and Arshed first introduced the beta-time derivative into the BAE. As far as we know, there are few studies on the optical solitons traveling wave solutions of Eq (1.1). In 2020, Demiray obtained the hyperbolic function solution of the BAE with beta-time derivative [17]. Hosseini and his partners used Jacobi and Kudryashov methods to obtain the solutions of the BAE with the beta-time derivative, which include hyperbolic function solutions and Jacobian elliptic functions [18]. Using the polynomial discriminant system method, we obtain the classification of all single wave solutions of (1.1), including solutions in the forms of rational functions and trigonometric functions, in addition to the solutions in [17, 18].

Definition 1.1. Let \(f(t) \) be a function defined for all non-negative \(t \). Then, the beta derivative of \(f(t) \) is given by [18]:

\[
T^\beta(f(t)) = \frac{d^\beta f(t)}{d\beta^\beta} = \lim_{a \to 0} \frac{f \left(t + a \left(t + \frac{1}{\Gamma(\beta)} \right)^{1-\beta} \right) - f(t)}{a}, \quad \beta \in (0, 1],
\]

where \(\Gamma(\beta) = \int_0^\infty e^{-t} t^{\beta-1} dt, \beta > 0 \).
Theorem 1.2. Let \(f(t) \) and \(g(t) \) be \(\beta \)-differentiable functions for all \(t > 0 \) and \(\beta \in (0, 1] \). Then
\[
T^\beta (k_1 f(t) + k_2 g(t)) = k_1 T^\beta (f(t)) + k_2 T^\beta (g(t)), \quad \forall k_1, k_2 \in R.
\]
\[
T^\beta \left(\frac{1}{g(t)} \right) = \frac{g(t)^{1-\beta} f'(t)}{g(t)^\beta}.
\]
\[
T^\beta (f(t)) = (t + \frac{1}{\Gamma(\beta)})^{1-\beta} \frac{d f(t)}{dt}.
\]

The outline of this paper is as follows. In Section 2, the reduced form of the BAE with the beta-time derivative is presented in a detailed manner, and the complete discrimination system is also reviewed. In Section 3, optical solitons and other solutions of the BAE with the beta-time derivative are derived. In Section 4, the graphical interpretation of some traveling wave solutions are given by using 2D and 3D graphics. The conclusion is given in the last section.

2. BAE with beta time derivative and its reduction

In order to construct the optical solitons and single traveling wave solutions of Eq (1.1), we consider the following traveling wave transformation
\[
\psi(x, t) = u(\xi) e^{ip(x-t)} = x - \frac{\rho}{\beta} \left(t + \frac{1}{\Gamma(\beta)} \right)^{\beta}, \quad \varphi(x, t) = -\gamma x + \omega \left(t + \frac{1}{\Gamma(\beta)} \right)^{\beta} + \varphi_0,
\]
where \(\rho\) is the speed of the wave. The parameters \(\gamma, \omega\) and \(\varphi_0\) are the frequency, wave number and phase constant respectively, and \(u(\xi) \) is a real function representing the amplitude portion of the traveling wave solution.

Substituting Eq (2.1) into Eq (1.1), and separating the real and imaginary parts gives
\[
(2\gamma p q_2 - 3\gamma q_1 + \omega q_2 + \rho p_2 - p_1) \frac{d^2 u(\xi)}{d\xi^2} + (\gamma^2 q_1 - \gamma^2 q_2 + \gamma^2 p_1 - \gamma \omega p_2 + \omega) u(\xi) + (\gamma \lambda + \gamma \delta) u'(\xi) = 0,
\]
\[
(\rho q_2 - q_1) \frac{d^3 u(\xi)}{d\xi^3} + (\gamma^2 p_1 - 2\gamma \omega q_2 - \gamma \omega p_2 + 2\gamma p_1 - \omega p_2 + \rho) \frac{du(\xi)}{d\xi} + (3\lambda + 2\phi + \delta) u'(\xi) \frac{du(\xi)}{d\xi} = 0.
\]

Multiplying Eq (2.2) by \(\frac{du(\xi)}{d\xi} \) and integrating once gives
\[
(2\gamma p q_2 - 3\gamma q_1 + \omega q_2 + \rho p_2 - p_1) \left(\frac{du(\xi)}{d\xi} \right)^2 + (\gamma^2 q_1 - \gamma^2 q_2 + \gamma^2 p_1 - \gamma \omega p_2 + \omega) u'(\xi) + \frac{1}{2}(\gamma \lambda + \gamma \delta) u''(\xi) = C_0,
\]
where \(C_0\) is the integral constant.

First, we find the general solutions of Eq (2.4) by assuming \(C_0 = 0 \):
\[
2\gamma p q_2 - 3\gamma q_1 + \omega q_2 + \rho p_2 - p_1 = 0, \gamma^2 q_1 - \gamma^2 q_2 + \gamma^2 p_1 - \gamma \omega p_2 + \omega = 0, \gamma \lambda + \gamma \delta = 0.
\]

In this case Eq (2.3) is satisfied and from Eq (2.5), we have
\[
\lambda = -\delta, \omega = \frac{\gamma^2 q_1 - \gamma^2 q_2 + \gamma^2 p_1 - \gamma \omega p_2 + \omega}{\gamma^2 q_2 + \gamma p_2 - 1}, \rho = \frac{2\gamma^2 q_1 q_2 + 3\gamma^2 p_1 q_1 + \gamma (p_1 p_2 - 3q_1) - p_1}{(2\gamma q_2 + p_2)(\gamma^2 q_2 + \gamma p_2 - 1)}.
\]

Integrating Eq (2.3) once, we obtain the equation
\[
(\rho q_2 - q_1) \frac{d^2 u}{d\xi^2} + (-\gamma^2 p_2 + 3\gamma^2 q_1 - 2\gamma \omega q_2 - \gamma \omega p_2 + 2\gamma p_1 - \omega p_2 + \rho) u(\xi) + \frac{1}{3}(3\lambda + 2\phi + \delta) u(\xi) = C_1.
\]
Multiplying both sides of Eq (2.7) by \(\frac{du}{d\xi} \) and integrating once, we get

\[
(\rho q_2 - q_1) \left(\frac{du}{d\xi} \right)^2 + (-\gamma^2 \rho q_2 + 3 \gamma^2 q_1 - 2 \gamma \omega q_2 - \gamma \omega p_2 + 2 \gamma p_1 - \omega p_2 + \rho) \ u^2(\xi) \\
+ \frac{1}{6}(3\lambda + 2\phi + \delta) \ u(\xi)^4 = 2C_1 \ u(\xi) + C_2,
\]

where \(C_1 \) and \(C_2 \) are integral constants.

Substituting Eq (2.5) into Eq (2.8), we have

\[
\left(\frac{du}{d\xi} \right)^2 = d_4 \ u^4(\xi) + d_2 \ u^2(\xi) + d_1 \ u(\xi) + d_0,
\]

where

\[
d_4 = \frac{3(\rho q_2 + p_2) (\gamma^2 q_2 + \gamma \omega p_2 - 1)(6 - \phi)}{(3\rho q_2 + (-\delta q_1 + 3) p_2)^2 + 3\rho q_1 + p_1}, \quad d_2 = \frac{6\gamma^2 (q_1 - 1) \gamma^2 + 9 \rho q_2 (q_1 - 1) \gamma^4 + (-\rho q_2 - 5 q_1 + 6) q_2 + 4 \rho^2 \gamma \gamma (q_1 - \frac{1}{2}) \gamma^3)}{(p_1 q_2 q_3 + (-\delta q_1 + 3) p_2)^2 + 3\rho q_1 + p_1}, \quad d_1 = \frac{64 \rho^2 \gamma \gamma (q_1 - 1) \gamma^2 + (-\rho q_2 - 5 q_1 + 6) q_2 + 4 \rho^2 \gamma \gamma (q_1 - \frac{1}{2}) \gamma^3)}{(p_1 q_2 q_3 + (-\delta q_1 + 3) p_2)^2 + 3\rho q_1 + p_1}, \quad d_0 = \frac{C_2 (\rho q_2 q_3 + (-\delta q_1 + 3) p_2)^2 + 3\rho q_1 + p_1}{(p_1 q_2 q_3 + (-\delta q_1 + 3) p_2)^2 + 3\rho q_1 + p_1}.
\]

Making the transformation as follows

\[
u(\xi) = |d_4|^{-\frac{1}{4}} w(\xi_1), \quad \xi_1 = |d_4|^{-\frac{1}{4}} \xi.
\]

Substituting the transformation of Eq (2.10) into Eq (2.9) will change it into the following form:

\[
\left(\frac{dw}{d\xi_1} \right)^2 = \varepsilon \left(w^4 + pw^2 + qw + r \right),
\]

where

\[
p = \begin{cases} d_2 |d_4|^{-\frac{1}{4}}, & d_4 > 0 \\ -d_2 |d_4|^{-\frac{1}{4}}, & d_4 < 0 \end{cases}, \quad q = \begin{cases} -d_1 |d_4|^{-\frac{1}{4}}, & d_4 > 0 \\ d_1 |d_4|^{-\frac{1}{4}}, & d_4 < 0 \end{cases}, \quad r = \begin{cases} -d_0, & d_4 > 0 \\ d_0, & d_4 < 0 \end{cases}
\]

and

\[
\varepsilon = \begin{cases} 1, & d_4 > 0 \\ -1, & d_4 < 0 \end{cases}.
\]

Denote \(F(w) = w^4 + pw^2 + qw + r \). Then Eq (2.11) can be written in the integral form:

\[
\pm (\xi_1 - \xi_0) = \int \frac{dw}{\sqrt{\varepsilon F(w)}}.
\]

Let

\[
D_1 = -p, \quad D_2 = -2p^3 + 8pr - 9q, \quad D_3 = -p^3 \gamma^2 + 4p^2 r + 36pq^2 r - 32p^2 r^2 - \frac{27}{4} q^2 + 64r^3 \quad \text{and} \quad D_4 = 9p^2 - 32pr.
\]

The system consisting of \(D_1 - D_4 \) defined by Eq (2.13) is called the complete discriminant system of the function \(F(w) \). According to the complete discriminant method, we can determine the root of the function \(F(w) \) from the signs of \(D_1, D_2, D_3 \) and \(D_4 \); then we can obtain the solution of Eq (2.12).

3. Optical solitons and traveling wave solutions of the BAE with the beta-time derivative

Case 1. \(D_1 < 0, D_2 = D_3 = 0 \). \(F(w) \) has a pair of conjugate complex roots. Without losing generality, let us set

\[
F(w) = [(w - l)^2 + s^2]^2, \quad l \in \mathbb{R}, \quad s \in \mathbb{R}^+.
\]
When $\varepsilon = 1$, Eq (2.12) has the solution

$$w_1 = s \tan \left[s \left(\xi_1 - \xi_0 \right) \right] + l.$$

With the help of Eq (2.1), we get the solution of Eq (1.1) as follows:

$$\psi_1 = |d_4|^{-\frac{1}{4}} \left\{ s \tan \left[s \left(|d_4|^{-\frac{1}{4}} \xi - \xi_0 \right) \right] + l \right\} e^{k(x,t)}. \quad (3.1)$$

Case 2. $D_1 = D_2 = D_3 = 0$. $F(w)$ has a quadruple root. So we set $F(w) = w^4$. When $\varepsilon = 1$, we can get the solution of Eq (2.12)

$$w_2 = \pm \frac{1}{\xi_1 - \xi_0}.$$

Then, the solution of Eq (1.1) is:

$$\psi_2 = \pm |d_4|^{-\frac{1}{4}} \frac{1}{|d_4|^{-\frac{1}{4}} \xi - \xi_0} e^{k(x,t)}. \quad (3.2)$$

Case 3. $D_1 > 0, D_2 = D_3 = 0, D_4 > 0$. $F(w)$ has two different double real roots. Without losing generality, let $F(w) = (w - \alpha_2)^2(w - \alpha_1)^2$, $\alpha_2 > \alpha_1$.

When $\varepsilon = 1$, we get that:

1. When $w > \alpha_2$ or $w < \alpha_1$, Eq (2.12) can be written in the following form:

$$\pm (\xi_1 - \xi_0) = \int \frac{dw}{(w - \alpha_1)(w - \alpha_2)} = \frac{1}{\alpha_1 - \alpha_2} \ln \left| \frac{w - \alpha_2}{w - \alpha_1} \right|.$$

We get the solution of Eq (1.1) as follows:

$$\psi_3 = |d_4|^{-\frac{1}{4}} e^{k(x,t)} \left\{ \frac{\alpha_1 - \alpha_2}{2} \left[\coth \left(\frac{(\alpha_2 - \alpha_1)(|d_4|^{-\frac{1}{4}} \xi - \xi_0)}{2} \right) - 1 \right] + \alpha_1 \right\}. \quad (3.3)$$

2. When $\alpha_1 < w < \alpha_2$, we get the solution of Eq (2.12) as follows:

$$w_4 = \frac{\alpha_1 - \alpha_2}{2} \left[\tanh \left(\frac{(\alpha_2 - \alpha_1)(\xi_1 - \xi_0)}{2} \right) - 1 \right] + \alpha_1.$$

Then, the solution of Eq (1.1) is:

$$\psi_4 = |d_4|^{-\frac{1}{4}} \left\{ \frac{\alpha_1 - \alpha_2}{2} \left[\tanh \left(\frac{(\alpha_2 - \alpha_1)(|d_4|^{-\frac{1}{4}} \xi - \xi_0)}{2} \right) - 1 \right] + \alpha_1 \right\} e^{k(x,t)}. \quad (3.4)$$

Case 4. $D_1 > 0, D_2 > 0, D_3 = 0$. $F(w)$ has a double real root and real roots with two multiplicities, namely, $F(w) = (w - \alpha_2)^2(w - \alpha_1)(w - \alpha_3)$, where α_1, α_2, and α_3 are real numbers and $\alpha_1 > \alpha_3$.

1. $\varepsilon = 1$.

When $\alpha_2 > \alpha_1$ and $w > \alpha_1$, or when $\alpha_2 < \alpha_1$, and $w < \alpha_3$, we get the implicit solution of Eq (2.12):

$$\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3)} \ln \left| \frac{\sqrt{(w - \alpha_1)(\alpha_2 - \alpha_3)} - \sqrt{(\alpha_2 - \alpha_1)(w - \alpha_3)}}{|w - \alpha_2|} \right|. \quad (3.5)$$
When \(\alpha_2 > \alpha_1 \), and \(w < \alpha_3 \), or when \(\alpha_2 < \alpha_3 \), and \(w < \alpha_1 \), we have the implicit solution of Eq (2.12):

\[
\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3)} \ln \left[\frac{\sqrt{(w - \alpha_1)(\alpha_3 - \alpha_2)} - \sqrt{(\alpha_1 - \alpha_2)(w - \alpha_3)}}{|w - \alpha_2|} \right]. \tag{3.6}
\]

When \(\alpha_1 > \alpha_2 > \alpha_3 \), we have the implicit solution of Eq (2.12):

\[
\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)} \arcsin \left(\frac{(w - \alpha_2)(\alpha_2 - \alpha_3) + (\alpha_2 - \alpha_1)(\alpha_2 - \alpha_3)}{|(w - \alpha_2)(\alpha_1 - \alpha_3)|} \right). \tag{3.7}
\]

(2) \(\varepsilon = -1 \).

When \(\alpha_2 > \alpha_1 \), and \(w > \alpha_3 \), or when \(\alpha_2 < \alpha_3 \), and \(w < \alpha_3 \), the following solution of Eq (2.12) can be obtained:

\[
\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)} \ln \left[\frac{\sqrt{(\alpha_1 - w)(\alpha_2 - \alpha_3)} - \sqrt{(\alpha_1 - \alpha_2)(w - \alpha_3)}}{|w - \alpha_2|} \right]. \tag{3.8}
\]

When \(\alpha_2 > \alpha_1 \), and \(w < \alpha_3 \), or when \(\alpha_2 < \alpha_3 \), and \(w < \alpha_3 \), the following solution of Eq (2.12) can be obtained:

\[
\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)} \ln \left[\frac{\sqrt{(\alpha_2 - w)(\alpha_2 - \alpha_3)} - \sqrt{(\alpha_1 - \alpha_2)(w - \alpha_3)}}{|w - \alpha_2|} \right]. \tag{3.9}
\]

When \(\alpha_1 > \alpha_2 > \alpha_3 \), the following solution of Eq (2.12) can be obtained:

\[
\pm (\xi_1 - \xi_0) = \frac{1}{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)} \arcsin \left(\frac{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3) + (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)}{|(w - \alpha_2)(\alpha_1 - \alpha_3)|} \right). \tag{3.10}
\]

From Eqs (3.5), (3.6), (3.7), (3.8), (3.9) and (3.10), we get the implicit solution of Eq (2.12) which involves logarithmic and inverse trigonometric functions.

Especially, substituting \(\delta = 1, \phi = 3, \gamma = 1, p_1 = 2, p_2 = 1, q_1 = 3, q_2 = 3, c_1 = 0, c_2 = 0, \xi_0 = 0, \alpha_1 = \frac{\sqrt{6}}{\sqrt[3]{7}}, \alpha_2 = 0 \) and \(\alpha_3 = -\frac{\sqrt{6}}{\sqrt[3]{7}} \) into Eq (2.12), we construct the periodic solutions involving trigonometric functions of Eq (1.1):

\[
\psi_5 = 2 \sqrt{\frac{1}{1 + \sin \left(\sqrt[3]{7} \xi \right)}} e^{i \rho(x,t)}, \tag{3.11}
\]

\[
\psi_6 = 2 \sqrt{\frac{1}{1 - \sin \left(\sqrt[3]{7} \xi \right)}} e^{i \rho(x,t)}. \tag{3.12}
\]

Case 5. \(D_1 > 0, D_2 = D_3 = D_4 = 0 \). \(F(w) \) has real roots with three multiplicities and real roots with one multiplicity, namely,

\[
F(w) = (w - \alpha_1)^3 (w - \alpha_2),
\]

where \(\alpha_1 \) and \(\beta \) are real numbers.
(1) $\varepsilon = 1$. When $w > \max \{\alpha_1, \alpha_2\}$, we get the solution of Eq (1.1) as follows:

$$
\psi_7 = |d_4|^\frac{1}{4} \left[\frac{4(\alpha_1 - \alpha_2)}{\left(\alpha_1 - \alpha_2\right)^2 \left(|d_4|^\frac{1}{4} \xi - \xi_0\right)^2 - 4} + \alpha_1 \right] e^{\lambda(x,t)}.
$$
(3.13)

(2) $\varepsilon = -1$. When $\min \{\alpha_1, \alpha_2\} < w < \max \{\alpha_1, \alpha_2\}$, we get the solution of Eq (1.1) as follows:

$$
\psi_8 = |d_4|^\frac{1}{4} \left[\frac{4(\alpha_1 - \alpha_2)}{\left(\alpha_1 - \alpha_2\right)^2 \left(|d_4|^\frac{1}{4} \xi - \xi_0\right)^2 - 4} + \alpha_1 \right] e^{\lambda(x,t)}.
$$
(3.14)

Now, we have the rational function solutions given by Eqs (3.13) and (3.14).

Case 6. $D_3 = 0, D_1D_2 < 0$. $F(w)$ has one double real root and a pair of conjugate complex roots, namely,

$$
F(w) = (w - \alpha^2) \left[(w - l)^2 + s^2\right],
$$

where α, l and s are real numbers. Then, the solution of Eq (2.12) can be expressed as:

$$
w_{9,10} = \frac{e^{\pm (\xi + \xi_0)} \sqrt{(\alpha - l)^2 + s^2} + (2 - \gamma) \sqrt{(\alpha - l)^2 + s^2}}{\left[e^{\pm (\xi + \xi_0)} \sqrt{(\alpha - l)^2 + s^2} + (2 - \gamma) \right]^2 + 1},
$$

where $\gamma = \frac{\alpha - 2l}{\sqrt{(\alpha - l)^2 + s^2}}$ and $\delta = \sqrt{(\alpha - l)^2 + s^2} - \frac{\alpha(\alpha - 2l)}{\sqrt{(\alpha - l)^2 + s^2}}$, which is a solitary wave solution.

So, we get the solution of Eq (1.1) as follows:

$$
\psi_{9,10} = |d_4|^\frac{1}{4} \left[e^{\pm (\xi + \xi_0)} \sqrt{(\alpha - l)^2 + s^2} + (2 - \gamma) \sqrt{(\alpha - l)^2 + s^2} \right]^2 + 1 \right] e^{\lambda(x,t)}.
$$
(3.15)

Case 7. $D_1 > 0, D_2 > 0, D_3 > 0$. $F(w)$ has four distinct real roots, namely,

$$
F(w) = (w - \alpha_1)(w - \alpha_2)(w - \alpha_3)(w - \alpha_4),
$$

where $\alpha_1, \alpha_2, \alpha_3$ and α_4 are real numbers, and $\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4$.

(1) $\varepsilon = 1$.

When $w > \alpha_1$, or when $w < \alpha_4$, we consider the following transformation:

$$
w = \frac{\alpha_2(\alpha_1 - \alpha_4)\sin^2\varphi - \alpha_1(\alpha_2 - \alpha_4)}{(\alpha_1 - \alpha_4)\sin^2\varphi - (\alpha_2 - \alpha_4)}.
$$

From Eq (2.12), we obtain

$$
\pm (\xi + \xi_0) = \frac{2}{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}} \int \frac{d\varphi}{\sqrt{1 - m^2\sin^2\varphi}},
$$

where $m^2 = \frac{(\alpha_1 - \alpha_4)(\alpha_2 - \alpha_3)}{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}$.
According to the definition of the Jacobian elliptic sine function, we obtain that
\[\sin \varphi = \pm \text{sn} \left((\xi_1 - \xi_0) \sqrt{\frac{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}{2}}, \frac{m}{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}} \right). \]

Then, we construct the solution of Eq (1.1) to be
\[\psi_{11} = |d_4|^{-\frac{1}{4}} \frac{\alpha_2 (\alpha_1 - \alpha_4)}{\alpha_2 - \alpha_3} \text{sn}^2 \left(\left| d_4 \right|^{-\frac{1}{4}} \xi - \xi_0 \right) \frac{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}}{2}, m \alpha_1 (\alpha_2 - \alpha_4) - \alpha_1 (\alpha_2 - \alpha_4) e^{k_x(x,t)}. \]

(3.16)

When \(\alpha_3 < w < \alpha_2 \), we make the following transformation:
\[w = \frac{\alpha_4 (\alpha_2 - \alpha_3) \sin^2 \varphi - \alpha_3 (\alpha_2 - \alpha_4)}{(\alpha_2 - \alpha_3) \sin^2 \varphi - (\alpha_2 - \alpha_4)}. \]

By using Eq (2.12), we obtain
\[\pm (\xi_1 - \xi_0) = \frac{2}{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}} \int \frac{d\varphi}{\sqrt{1 - m^2 \sin^2 \varphi}}. \]

We construct the solution of Eq (1.1) to be:
\[\psi_{12} = |d_4|^{-\frac{1}{4}} \frac{\alpha_4 (\alpha_2 - \alpha_3)}{\alpha_2 - \alpha_3} \text{sn}^2 \left(\left| d_4 \right|^{-\frac{1}{4}} \xi - \xi_0 \right) \frac{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}}{2}, m \alpha_3 (\alpha_2 - \alpha_4) - \alpha_3 (\alpha_2 - \alpha_4) e^{k_x(x,t)}. \]

(3.17)

(2) \(\varepsilon = -1 \).

When \(\alpha_1 > w > \alpha_2 \), we make the following transformation:
\[w = \frac{\alpha_3 (\alpha_1 - \alpha_2) \sin^2 \varphi - \alpha_2 (\alpha_2 - \alpha_3)}{(\alpha_1 - \alpha_2) \sin^2 \varphi - (\alpha_2 - \alpha_3)}. \]

We get the solution of Eq (2.12):
\[\pm (\xi_1 - \xi_0) = \frac{2}{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}} \int \frac{d\varphi}{\sqrt{1 - n^2 \sin^2 \varphi}}. \]

where \(n^2 = \frac{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}{(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)}. \)

By the definition of the Jacobian elliptic sine function, we obtain that
\[\sin \varphi = \pm \text{sn} \left((\xi_1 - \xi_0) \sqrt{\frac{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}{2}}, \frac{n}{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}} \right). \]

Then, we construct the solution of Eq (1.1):
\[\psi_{13} = |d_4|^{-\frac{1}{4}} \frac{\alpha_3 (\alpha_1 - \alpha_2)}{\alpha_1 - \alpha_2} \text{sn}^2 \left(\left| d_4 \right|^{-\frac{1}{4}} \xi - \xi_0 \right) \frac{\sqrt{(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4)}}{2}, n \alpha_2 (\alpha_2 - \alpha_3) - \alpha_2 (\alpha_2 - \alpha_3) e^{k_x(x,t)}. \]

(3.18)
When $\alpha_3 > w > \alpha_4$, we apply the following transformation:

$$
w = \frac{\alpha_1 (\alpha_3 - \alpha_4) \sin^2 \varphi - \alpha_4 (\alpha_3 - \alpha_1)}{(\alpha_3 - \alpha_4) \sin^2 \varphi - (\alpha_3 - \alpha_1)}.
$$

Similarly, we get the solution of Eq (1.1):

$$
\psi_{14} = |d_4|^\frac{1}{2} \frac{\alpha_1 (\alpha_3 - \alpha_4) sn^2 \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \sqrt{\frac{(\alpha_3 - \alpha_4) \sin^2 \varphi - (\alpha_3 - \alpha_1)}{2}}, n \right) - \alpha_4 (\alpha_3 - \alpha_1)}{(\alpha_3 - \alpha_4) \sin^2 \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \sqrt{\frac{(\alpha_3 - \alpha_4) \sin^2 \varphi - (\alpha_3 - \alpha_1)}{2}}, n \right) - (\alpha_3 - \alpha_1)} e^{k \varphi(x,t)}. \quad (3.19)
$$

From Eqs (3.16), (3.17), (3.18) and (3.16), we obtain four biperiodic single traveling wave solutions of Eq (1.1).

Case 8. $D_1 D_2 \geq 0, D_3 < 0$. $F(w)$ has two different real roots and a pair of conjugate complex roots, namely,

$$
F(w) = (w - \alpha_1)(w - \alpha_2) \left((w - l)^2 + s^2 \right),
$$

where α_1, α_2, l and s are real numbers, and $\alpha_1 > \alpha_2$ and $l, s > 0$.

We make the following transformation:

$$
w = \frac{a \cos \varphi + b}{c \cos \varphi + d},
$$

where $a = \frac{\alpha_1 + \alpha_2}{2} c - \frac{\alpha_1 - \alpha_2}{2} d$, $b = \frac{\alpha_1 + \alpha_2}{2} d - \frac{\alpha_1 - \alpha_2}{2} c$, $c = \alpha_1 - l - \frac{s}{m}$, $d = \alpha_1 - l - sm_1$, $E = \frac{x^2 + (\alpha_2 - l)(\alpha_2 - l)}{2(\alpha_1 - \alpha_2)}$, $m_1 = E \pm \sqrt{E^2 + 1}$.

From Eq (2.12), we obtain

$$
(\xi_1 - \xi_0) = \frac{2mm_1}{\sqrt{+2sm_1 (\alpha_1 - \alpha_2)}} \int \frac{d\varphi}{\sqrt{1 - m^2 \sin^2 \varphi}},
$$

where $m^2 = \frac{1}{1 + m_1^2}$.

(1) $\varepsilon = 1$. By the definition of the Jacobian elliptic function, we obtain:

$$
\cos \varphi = cn \left((\xi_1 - \xi_0) \frac{\sqrt{-2sm_1 (\alpha_1 - \alpha_2)}}{2mm_1}, m \right).
$$

We get the solution of Eq (1.1):

$$
\psi_{15} = |d_4|^\frac{1}{2} \frac{acn \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \frac{\sqrt{-2sm_1 (\alpha_1 - \alpha_2)}}{2mm_1}, m \right) + b}{ccn \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \frac{\sqrt{-2sm_1 (\alpha_1 - \alpha_2)}}{2mm_1}, m \right) + d} e^{k \varphi(x,t)}. \quad (3.20)
$$

(2) $\varepsilon = -1$. The solution of Eq (1.1) is as follows:

$$
\psi_{16} = |d_4|^\frac{1}{2} \frac{acn \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \frac{\sqrt{-2sm_1 (\alpha_1 - \alpha_2)}}{2mm_1}, m \right) + b}{ccn \left(\left(|d_4|^{-\frac{1}{2}} \xi - \xi_0 \right) \frac{\sqrt{-2sm_1 (\alpha_1 - \alpha_2)}}{2mm_1}, m \right) + d} e^{k \varphi(x,t)}. \quad (3.21)
$$
Case 9. \(D_1D_2 \leq 0, D_3 > 0. \) \(F(w) \) has two pairs of conjugate complex roots, namely,

\[
F(w) = \left((w - l_1) + s_1^2 \right) \left((w - l_2) + s_2^2 \right),
\]

where \(l_1, l_2, s_1 \) and \(s_2 \) are real numbers, and \(s_1 \geq s_2 > 0. \)

If \(\epsilon = 1 \), Eq (2.12) will be meaningful. Then, we make the following transformation:

\[
w = \frac{a \tan \varphi + b}{c \tan \varphi + d},
\]

where \(a = l_1c + s_1d, \ b = l_1d - s_1c, \ c = -l_1 - \frac{l_2}{m_1}, \ d = l_1 - l_2, \ E = \frac{(l_1 - l_2)^2 + s_1^2 + s_2^2}{2s_1s_2}, \ m_1 = E + \sqrt{E^2 - 1}. \)

By using (2.12), we obtain

\[
(\xi_1 - \xi_0) = \frac{c^2 + d^2}{s_2 \sqrt{(c^2 + d^2)(m_1^2c^2 + d^2)}} \int \frac{d\varphi}{\sqrt{1 - m^2 \sin^2 \varphi}},
\]

where \(m^2 = \frac{m_1^2 - 1}{m_1^2}. \)

By the definition of the Jacobian elliptic function, we obtain that

\[
\sin \varphi = \text{sn} \left(s_2 (\xi_1 - \xi_0) \frac{\sqrt{(c^2 + d^2)(m_1^2c^2 + d^2)}}{c^2 + d^2}, m \right),
\]

\[
\cos \varphi = \text{cn} \left(s_2 (\xi_1 - \xi_0) \frac{\sqrt{(c^2 + d^2)(m_1^2c^2 + d^2)}}{c^2 + d^2}, m \right).
\]

Then, we get the solution of Eq (1.1):

\[
\psi_{17} = |d_4|^{-\frac{1}{4}} \frac{\text{asn} \left(\eta \left(|d_4|^{-\frac{1}{4}} \xi - \xi_0 \right), m \right) + \text{bcn} \left(\eta \left(|d_4|^{-\frac{1}{4}} \xi - \xi_0 \right), m \right)}{\text{csn} \left(\eta \left(|d_4|^{-\frac{1}{4}} \xi - \xi_0 \right), m \right) + \text{dcn} \left(\eta \left(|d_4|^{-\frac{1}{4}} \xi - \xi_0 \right), m \right)} e^{i\varphi(x,t)}. \quad (3.22)
\]

From Eqs (3.20), (3.21) and (3.22), we have obtained three biperiodic traveling wave solutions of Eq (1.1).

4. Numerical simulation

In this section, we describe the use of the mathematical software Maple to obtain the dynamical features of Eq (1.1). The results of numerical simulations are presented here to show the amplitude functions of the obtained solutions. Upon choosing suitable parameters, the main features of \(\psi_2(x,t), \psi_5(x,t), \psi_{11}(x,t), \psi_{17}(x,t) \) are shown in Figures 1, 2, 3 and 4, respectively.

Figure 1 shows the amplitude of the rational function solution. Figures 2, 3 and 4 show the amplitudes of the three kinds of biperiodic function solutions.
Figure 1. 3D and 2D graphs of the rational function solution given by Eq (3.2) with \(\delta = 1, \phi = 1/2, \rho = 1, \beta = 1/3, \gamma = 1, p_1 = 1/4, p_2 = (\sqrt{19105} - 113)/88, q_1 = 1/5, q_2 = 1, c_1 = 0, c_2 = 0 \) and \(\xi_0 = 0 \).

Figure 2. 3D and 2D graphs of the trigonometric function solution given by Eq (3.11) with \(\delta = 1, \phi = 3, \gamma = 1, \rho = 1, \beta = 1/4, p_1 = 2, p_2 = 1, q_1 = 3, q_2 = 3, c_1 = 0, c_2 = 0 \) and \(\xi_0 = 0 \).
5. Conclusions

In this paper, a series of new optical solitons and single traveling wave solutions of the BAE in birefringent fibers with the beta-time derivative have been successfully obtained. These solutions include hyperbolic function solutions, rational wave solutions, Jacobi elliptic solutions and triangular functions solutions. The solutions obtained in this study not only contain the conclusions of the existing solutions, but they also contain the solutions in the forms of rational functions and trigonometric functions. These obtained solutions form a complete classification of single wave solutions. Finally, with the aid of the symbolic computational software Maple, we have presented 3D and 2D visualizations of some obtained solutions.
Compared with the existing results, the polynomial complete discriminant system method is a reliable and efficient technique. The author of [17] obtained a series of traveling wave solutions involving hyperbolic functions, and those of [18] obtained a series of traveling wave solutions involving hyperbolic functions and the Jacobian elliptic function. The traveling wave solution obtained in this study contains not only hyperbolic function and Jacobian elliptic function solutions, but also rational function and trigonometric function solutions. This method allows us to solve the single wave solutions of more types of PDEs. The results of this study may help us to explore new phenomena that may appear in Eq (1.1). In further research, we will use the idea proposed in this paper to study the optical solitons and single traveling wave solutions of BAE with random terms or other fractional derivative terms.

The limitations of this study are as follows. The references cited are this papers that have been published in SCI journals in the past 10 years, and thus do not include papers from less influential journals. Therefore, we remind the readers to pay attention to the limitations of the time and journal source when reading this article.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

The authors are grateful to the anonymous reviewers for their careful reading and useful suggestions, which have greatly improved the presentation of the paper. This work was supported by Scientific Research Funds from Chengdu University under grant no.2081920034.

References

1. Y. Chalco-Cano, J. J. Nieto, A. Ouahab, H. Romn-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative, *Fract. Calc. Appl. Anal.*, 16(2013), 682–694. http://dx.doi.org/10.2478/s13540-013-0043-6

2. Y. G. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, *Commun. Comput. Phys.*, 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019

3. R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, *J. Comput. Appl. Math.*, 264(2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002

4. A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, *Opt. Quant. Electron.*, 49 (2017), Article number 278. https://doi.org/10.1007/s11082-017-1116-2

5. K. U. Tariq, M. Younis, H. Rezazadeh, et al, Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, *Mod. Phys. Lett. B*, 32 (2018), Article number 1850317. https://doi.org/10.1142/S0217984918503177
6. Z. Li, T. Y. Han, Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation, *Adv. Differ. Equ-Ny.*, **2020** (2020), Article number 656. https://doi.org/10.1186/s13662-020-03119-5

7. T. Y. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrodinger equation, *Phys. Lett. A*, **395** (2021), Article number 127217. https://doi.org/10.1016/j.physleta.2021.127217

8. K. Hosseini, P. Mayeli, A. Bekir, O. Guner, D. O. Mathematics, R. Branch, Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions, *Commun. Theor. Phys.*, **69** (2018), 1–4. https://doi.org/10.1088/0253-6102/69/1/1

9. T. Lu, S. P. Chen, The classification of single traveling wave solutions for the fractional coupled nonlinear Schrodinger equation, *Opt. Quant. Electron.*, **54** (2022), Article number 105. https://doi.org/10.1007/s11082-021-03496-5

10. C. Huang, Z. Li, New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation, *Math. Probl. Eng.*, **2021** (2021), Article ID 1283083. https://doi.org/10.1155/2021/6640086

11. A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, et al., Resonant optical solitons with dualpower law nonlinearity and fractional temporal evolution, *Optik*, **165** (2018), 233–239. https://doi.org/10.1016/j.ijleo.2018.03.123

12. B. Ghanbari, J. F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative, *Revista Mexicana de Fsica*, **65** (2019), 503–518. https://doi.org/10.31349/RevMexFis.65.503

13. A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, *Front. Phys.*, **7** (2019), Article number 34. https://doi.org/10.3389/fphy.2019.00034

14. M. Fa. Uddin, M. G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, *Waves Random Complex*, **31** (2020), 2135–2149. https://doi.org/10.1080/17455030.2020.1722331

15. K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, *Opt. Quant. Electron.*, **53** (2021), Article number 125. https://doi.org/10.1007/s11082-021-02739-9

16. A. Zafar, A. Bekir, M. Raheel, K. Soopy Nisar, S. Mustafa, Dynamics of new optical solitons for the Triki-Biswas model using beta-time derivative, *Mod. Phys. Lett. B*, **35** (2021), Article number 2150511. https://doi.org/10.1142/S0217984921505114

17. S. T. Demiray, New Solutions of Biswas-Arshed Equation with Beta Time Derivative, *Optik*, **222** (2020), Article number 165405. https://doi.org/10.1016/j.ijleo.2020.165405

18. K. Hosseini, M. Mirzazadeh, M. Ilić, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, *Optik*, **217** (2020), Article number 164801. https://doi.org/10.1016/j.ijleo.2020.164801

19. K. Khan, M. A. Akbar, Solitary and periodic wave solutions of nonlinear wave equations via the functional variable method, *J. Interdiscip. Math.*, **21** (2018), 43–57. https://doi.org/10.1080/09720502.2014.962839
20. K. Khan, M. A. Akbar, Solving unsteady Korteweg-de Vries equation and its two alternatives, *Math. Method. Appl. Sci.*, **39** (2016), 2752–2760. https://doi.org/10.1002/mma.3727

21. T. Y. Han, J. J. Wen, Z. Li, J. Yuan, New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation, *Math. Probl. Eng.*, **2022** (2022), Article ID 1312181, 9 pages. https://doi.org/10.1155/2022/1312181

22. T. Y. Han, J. J. Wen, Z. Li, Bifurcation Analysis and Single Traveling Wave Solutions of the Variable-Coefficient Davey-Stewartson System, *Discrete Dyn. Nat. Soc.*, **2022** (2022), 1–6. https://doi.org/10.1155/2022/9230723

23. A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, *Optik*, **174** (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037

24. W. R. Xu, L. F. Guo, C. Y. Wang, Optical solutions of Biswas-Arshed equation in optical fibers, *Mod. Phys. Lett. B*, **35** (2021), Article number 2150051. https://doi.org/10.1142/S0217984921500512

25. H. U. Rehman, S. Jafar, A. Javed, S. Hussain, M. Tahir, New optical solitons of Biswas-Arshed equation using different techniques, *Optik*, **206** (2019), Article number 163670. https://doi.org/10.1016/j.ijleo.2019.163670

26. N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly Φ⁶ model expansion method, *Optik*, **211** (2020), Article number 164564. https://doi.org/10.1016/j.ijleo.2020.164564

27. Y. Yıldırım, Optical solitons with Biswas-Arshed equation by sine-Gordon equation method, *Optik*, **223** (2020), Article number 165622. https://doi.org/10.1016/j.ijleo.2020.165622

28. M. Tahir, A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, *Optik*, **202** (2020), Article number 163523. https://doi.org/10.1016/j.ijleo.2019.163523

29. A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, *Optik*, **222** (2020), Article number 165355. https://doi.org/10.1016/j.ijleo.2020.165355

30. Y. Yıldırım, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, *Optik*, **182** (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.084

31. M.M.A. El-Sheikh, H. M. Ahmed, A. H. Arnous, et al, Optical solitons and other solutions in birefringent fibers with Biswas-Arshed equation by Jacobi’s elliptic function approach. *Optik*, **202** (2019), Article number 163546. https://doi.org/10.1016/j.ijleo.2019.163546

32. E. M. E. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, *Optik*, **185** (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112

33. A. Darwish, H. M. Ahmed, Ahmed H. Arnous, M. F. Shehab, Optical solitons of Biswas-Arshed equation in birefringent fibers using improved modified extended tanh-function method, *Optik*, **227** (2021), Article number 165385. https://doi.org/10.1016/j.ijleo.2020.165385

34. Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, *Optik*, **206** (2020), Article number 163332. https://doi.org/10.1016/j.ijleo.2019.163332
35. P. K. Das, Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method, *Optik*, **223**(2020), Article number 165293. https://doi.org/10.1016/j.ijleo.2020.165293

36. H. U. Rehman, M. S. Saleem, M. Zubair, S. Jafar, I. Latif, Optical solitons with Biswas-Arshed model using mapping method, *Optik*, **194** (2019), Article number 163091. https://doi.org/10.1016/j.ijleo.2019.163091

37. N. A. Kudryashov, Periodic and solitary waves of the Biswas-Arshed equation, *Optik*, **200** (2020), Article number 163442. https://doi.org/10.1016/j.ijleo.2019.163442

38. H. U. Rehman, M. Tahir, M. Bibi, Z. Ishfaq, Optical solitons to the Biswas-Arshed model in birefringent fibers using couple of integration techniques, *Optik*, **218** (2020), Article number 164894. https://doi.org/10.1016/j.ijleo.2020.164894

39. M. Munawar, A. Jhangeer, A. Pervaiz, F. Ibraheem, New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers, *Optik*, **228** (2021), Article number 165790. https://doi.org/10.1016/j.ijleo.2020.165790

40. N. A. Kudryashov, Solitary wave solutions of the generalized Biswas-Arshed equation, *Optik*, **219**(2020), Article number 165002. https://doi.org/10.1016/j.ijleo.2020.165002

41. L. Tang, Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. *Results Phys.*, **18** (2020), Article number 103289. https://doi.org/10.1016/j.rinp.2020.103289

42. A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, *Entropy*, **18** (2016), Article number 40. https://doi.org/10.3390/e18020040

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)