RESEARCH PAPER

High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H$_2$O$_2$ production in tomato (Solanum lycopersicum)

Changyu Yi1, Kaiqian Yao1, Shuyu Cai1, Huizi Li1, Jie Zhou1, Xiaojian Xia1, Kai Shi1, Jingquan Yu1,2, Christine Helen Foyer3 and Yanhong Zhou1,2,*

1 Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China

2 Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China

3 Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK

* To whom correspondence should be addressed. E-mail: yanhongzhou@zju.edu.cn

Received 24 May 2015; Revised 10 August 2015; Accepted 8 September 2015

Editor: Uwe Ludewig

Abstract

Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO$_2$ levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol$^{-1}$) or high (760 μmol mol$^{-1}$) CO$_2$ in the absence or presence of sodium chloride (100 mM). The higher atmospheric CO$_2$ level induced the expression of RESPIRATORY BURST OXIDASE 1 (SIRBOH1) and enhanced H$_2$O$_2$ accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO$_2$ levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SIRBOH1 abolished high CO$_2$-induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na$^+$ accumulation in the plants. The higher atmospheric CO$_2$ level increased the abundance of a subset of transcripts involved in Na$^+$ homeostasis in the controls but not in the SIRBOH1-silenced plants. It is concluded that high atmospheric CO$_2$ concentrations increase salt stress tolerance in an apoplastic H$_2$O$_2$ dependent manner, by suppressing transpiration and hence Na$^+$ delivery from the roots to the shoots, leading to decreased leaf Na$^+$ accumulation.

Key words: CO$_2$ enrichment, Na$^+$/K$^+$ homeostasis, NADPH oxidase, reactive oxygen species, salt overly sensitive (SOS) signalling pathway, transpiration.

Introduction

Crop productivity and food security are threatened by global climate change factors, such as projected temperature increases of more than 3.5 °C (Warren et al., 2011; Meehl et al., 2012). Moreover, atmospheric CO$_2$ levels are likely to double by the end of this century (Solomon et al., 2007). Crop yields are already limited in some areas by soil salinization,
due in part to rising sea levels and agricultural practices such as irrigation and fertilization. Moreover, greenhouse crops, which are often grown with elevated levels of CO2, can experience salinity because of frequent irrigation and fertilization, which are common practices in greenhouse agriculture.

High atmospheric CO2 levels are likely to have a profound effect on oxidative signalling in plants, particularly because of the suppression of photorespiration (Munne-Bosch et al., 2013). Atmospheric CO2 enrichment increases photosynthetic efficiencies, at least in the short term, leading to increased growth and biomass production (Foyer et al., 2012). In contrast, salt stress decreases crop yields. Moreover, soil salinity is an important factor leading to the continuous loss of arable land (Shabala and Cuin, 2008). While many studies have focused either on plant responses to atmospheric CO2 enrichment or salt stress, there is a dearth of literature on plant responses to the combined effects of salinity and high CO2. High CO2 is known to induce salt tolerance (Yu et al., 2015) but the molecular and metabolic mechanisms that underpin this response are poorly understood.

High salt concentrations have a severe impact on plant growth and metabolism, decreasing water uptake and inhibiting key metabolic processes such as photosynthesis (Flowers and Yeo, 1995; Mäser et al., 2002; Deimlein et al., 2014). High soil salinity enhances the production of reactive oxygen species (ROS), a process that is accompanied by increased membrane lipid peroxidation (Mittler, 2002; Miller et al., 2010). Recent studies suggest that ROS are involved in the regulation salt tolerance (Bose et al., 2013; Schmidt et al., 2013). For example, Arabidopsis thaliana knockout mutants lacking the respiratory burst oxidase (ArbBoh) F or D proteins, which are NADPH oxidases that catalyse the production of ROS in the apoplast, show increased salt sensitivity and altered Na+/K+ homeostasis (Ma et al., 2012; Jiang et al., 2012, 2013).

Many plants have evolved protective mechanisms to cope with salinity and minimize salt toxicity (Zhu, 2002; Munns and Tester, 2008). For example, in Arabidopsis the salt overly sensitive (SOS) signalling pathway is considered to mediate salt stress responses that regulate ion homeostasis (Ji et al., 2013). The SOS1 transporter functions in long-distance transport of Na+ through the xylem from roots to shoots during salt stress (Shi et al., 2002). The SOS2 gene encodes a putative serine-threonine type protein kinase that is required for intracellular Na+ and K+ homeostasis (Liu et al., 2000). Moreover, SOS3 encodes a myristoylated calcium-binding protein that functions as a primary calcium (Ca2+) sensor, perceiving increases in cytosolic Ca2+ that are triggered by excess Na+ (Liu and Zhu, 1998; Halfter et al., 2000; Liu et al., 2000). As a result of SOS3-SOS2 interactions, SOS2 is recruited to the plasma membrane, a process that leads to the downstream activation of SOS1 and the extrusion of excess Na+ from the cytosol (Qiu et al., 2002; Quintero et al., 2011). In addition to SOS, other components such as Na+/H+ exchanger (NHX), high-affinity K+ transporter (HKT) transporters and mitogen-activated protein kinase (MAPK) are also important in salt stress tolerance and in root-to-shoot Na+ partitioning (Horie et al., 2009; Bassil and Blumwald, 2014; Li et al., 2014).

High atmospheric CO2 levels increase the photosynthesis/photorespiration ratio (Foyer et al., 2012). The enhanced photosynthesis rates triggered by high CO2 levels are accompanied by decreased water loss through transpiration due to partial stomatal closure (Drake et al., 1997; Robredo et al., 2007). Elevated atmospheric CO2 levels also lead to the activation of carbonic anhydrase (CA) proteins (Hu et al., 2010), a process that coincides with the activation of the open stomata 1 (OST1) protein kinase and the SLAC1 (slow anion channel 1) anion channel, which are involved in the regulation of stomatal movement (Tian et al., 2015).

In addition to increasing photosynthetic CO2 assimilation rates, growth with high atmospheric CO2 levels can mitigate against the negative impacts of abiotic stresses (Ameye et al., 2012; Bauweraerts et al., 2013; Zinta et al., 2014). For example, growth under high CO2 led to enhanced tolerance to salinity, Fe deficiency and increased resistance to (hemi) biotrophic microbes such as tobacco mosaic virus and Pseudomonas syringae in tomato (Solunum lycopersicum; Jin et al., 2009; Takagi et al., 2009; Del Amor, 2013; Li et al., 2015). In contrast, growth under elevated CO2 enhanced susceptibility to the necrotrophic pathogen, Botrytis cinerea (Zhang et al., 2015). Atmospheric CO2 enrichment enhanced photosynthesis rates and increased the growth of several plant species under saline conditions (Bowman and Strain, 1987; Robredo et al., 2007; Del Amor, 2013). High CO2-induced salt tolerance is associated with reduced oxidative stress and transpiration rates, and with improved cellular hydration, intracellular Na+/K+ homeostasis and water use efficiency (Bowman and Strain., 1987; Maggio et al., 2002; Yu et al., 2015). However, the mechanisms by which high atmospheric CO2 levels suppress transpiration and hence decrease the delivery of Na+ from roots to shoots remain to be characterized.

The tomato respiratory burst oxidase RBOH1 gene, SIRBOH1, is a homologue of Arabidopsis RBOH. It has the highest transcript abundance within the RBOH family (Zhou et al., 2014b). SIRBOH1 is involved in the regulation of tolerance to oxidative stress and to high temperature stress. It also plays a key role in the regulation of stomatal movements mediated by the phytohormones, abscisic acid (ABA) and brassinosteroid (BR) (Nie et al., 2013; Xia et al., 2014; Zhou et al., 2014a). Apoplastic ROS are involved in the regulation of stomatal movement and Na+/K+ homeostasis (Jiang et al., 2012). In order to test the hypothesis that elevated CO2-induced salt tolerance is linked to apoplastic H2O2 accumulation, the impact of high atmospheric CO2 concentrations on the responses to tomato plants to salt stress was evaluated, with a particular focus on the role of SIRBOH1.

Materials and methods

Plant materials

Tomato (S. lycopersicum) cv. Ailsa Craig seeds were sown in perlite and kept at 28 °C for 2 weeks. Seedlings were then transferred to plastic tanks (20 cm×30 cm×15 cm, 4 seedlings per tank) filled with Hoagland nutrient solution in growth chambers. The growth conditions used for subsequent growth of the plants were as follows: a 14/10h (day/night) photoperiod, a temperature regime of
25/20 °C (day/night), a photosynthetic photo flux density (PPFD) of 600 μmol m⁻² s⁻¹ and a relative humidity of 85%. Plants at the 4-leaf stage were used for Experiment I.

Virus-induced gene silencing (VIGS) of RBOH1
The tobacco rattle virus (TRV) VIGS constructs used for silencing of the SI(RBOH1) gene were generated by cloning 311-bp RBOH1 cDNA fragment, which was amplified by PCR using the forward primer (5'-ATACGGCATGAGATGAGGGTTGAATGTT-3') and reverse primer (5'-CGGATTACCAACTTCAACCATCACCCCC-3'). The amplified fragment was digested with the restriction endonucleases, SacI and Xhol, and ligated into the same sites of the pTRV2 vector. The resulting plasmid was transformed into Agrobacterium tumefaciens strain GV3101, and VIGS was performed by infiltration of 15-d-old wild-type seedlings with a mix of A. tumefaciens strains harbouring pTRV1- or pTRV2 (Ekengren et al., 2003). Plants were then kept at 22 °C under a 14-h photoperiod for 30 d before they were used for Experiment II (Kandoth et al., 2007).

Salt and atmospheric CO₂ enrichment treatments
Both experiments involving salt and atmospheric CO₂ treatments were carried out in CO₂-controlled growth chambers (ConvironE15; Conviron, Manitoba, Canada). Plants were kept at 25/20 °C, with a 14-h photoperiod under 600 μmol m⁻² s⁻¹ PPFD and 85% humidity conditions. In Experiment I, tomato plants at the 4-leaf stage were exposed to ambient CO₂ concentrations (380 μmol mol⁻¹), ambient CO₂ concentration with 100 mM NaCl in the nutrient solution, elevated CO₂ (760 μmol mol⁻¹), and elevated CO₂ with 100 mM NaCl in the nutrient solution. In Experiment II, pTRV and pTRV-RBOH1 plants at the 5-leaf stage were exposed to two levels of CO₂ (380 and 760 μmol mol⁻¹) and a nutrient solution with or without NaCl (100 mM) for 11 d, giving a total of eight treatments for Experiment II. The nutrient solution was replaced every 3 d during the experiments and all measurements were performed with at least four replicates, with 20 plants per replicate. Leaf or root samples were frozen in liquid nitrogen and stored at −80 °C until used for the biochemical assays and gene transcript analyses. During the experiments, plants were harvested and oven-dried at 80 °C for 3 d before determination of dry weight and measurement of Na⁺ and K⁺ contents.

Physiological and biochemical measurements
The CO₂ assimilation rates (Pn), transpiration rates (Tr), and stomatal conductance (Gs) of the plants were determined with an infrared gas analyzer-based portable photosynthesis system (LI-6400; LI-COR, Lincoln, NE, USA). The air temperature, relative humidity, and PPFD were maintained at 25 °C, 85% and 1000 μmol m⁻² s⁻¹, respectively, with variable CO₂ concentrations. The maximum quantum yield of photosystem II (PSII) (Fv/Fm) was measured using an imaging-PAM chlorophyll fluorimeter equipped with a computer-operated PAM-control unit (IMAG-MAXI; Heinz Walz, Effeltrich, Germany) as previously described (Zhou et al., 2014a). The seedlings were kept in the dark for at least 30 min before the measurements were taken. Fv/Fm values were calculated as Fv/Fm = (Fm – Fo)/Fm, where Fo is the minimal chlorophyll fluorescence measured during the weak measuring pulses and Fm is the maximum fluorescence measured by a 0.8 s pulse light at 4000 μmol mol⁻² s⁻¹. Fv/Fm values were determined using the whole leaf.

Relative electrolyte leakage was measured in the leaves as previously described (Cao et al., 2007) using a conductivity detector (FE30K, Mettler-Toledo Instruments Co., Ltd., Switzerland). Briefly, leaf segments (0.3 g) were vacuum-infiltrated in 20 ml deionized water for 20 min and kept in the water for 2 h, and the conductivity (C1) of the resulting solutions were then determined. The leaf segments were then boiled for 15 min, cooled to room temperature, and the conductivity (C2) of the resulting solutions were determined. The C1:C2 ratios (C1/C2 × 100%) were calculated and used as a measure of the relative electrolyte leakage. The level of lipid peroxidation in leaves was assessed by measuring the malonyl-dialdehyde (MDA) content using 2-thiobarbituric acid as described by Hodges et al. (1999). Leaf water potential of intact excised leaves was measured using a Dew point Potential Meter (WP4; Decagon Device, Pullman, USA). Plant cell death was detected by Trypan Blue staining as previously described (Bai et al., 2012). Briefly, leaves were boiled for 5 min in a 1:1 mixture of ethanol and staining solution (10 ml lactic acid, 10 ml glycerol, 10 ml phenol, and 10 mg Trypan Blue dissolved in 10 ml distilled water) for staining. The leaves were then de-stained with chloral hydrate (2.5 g ml⁻¹ distilled water), changing the solution every 12 h until the leaves were transparent. The stomatal apertures were measured as previously described (Xia et al., 2014) by peeling off the abaxial epidermis with forceps and floating it on a buffer containing 30 mM KC1 and 10 mM 2-(N-morpholino)-ethanesulfonic acid, at a temperature of 25 °C. All images were captured using a light microscope equipped with a digital camera (Leica Microsystems, Wetzlar, Germany). NADPH oxidase activity was determined in isolated plasma membrane vesicles as previously described (Zhou et al., 2014b).

Visualization of cellular H₂O₂ and Na⁺ accumulation
Hydrogen peroxide (H₂O₂) production in tissues was monitored using 2,7-dichlorofluorescein diacetate (H₂DCF-DA), as previously described (Pei et al., 2000; Milling et al., 2011; Xia et al., 2011) with minor modifications. Detached roots were washed with deionized water and incubated 15 min with 25 μM H₂DCF-DA in 200 mM phosphate buffer (pH 7.4) and then washed five times with the same buffer without the dye. As negative controls, the root segments were incubated with 1 mM ascorbate (ASC) or 100 U ml⁻¹ catalase (H₂O₂ scavenger) for 30 min. The stem and petiole were excised using a scalpel and incubated for 15 min in 200 mM phosphate buffer (pH 7.4), then incubated for 15 min with 25 μM H₂DCF-DA in 200 mM phosphate buffer (pH 7.4), and washed as described above. Fluorescence was observed using a Leica DM4000B microscope and images were captured using a Leica DFC425C camera and the Leica application suite V3.8 software (Leica Microsystems, Germany). H₂O₂ in the leaf apoplast was visualized using cytochemical CeCl₃ staining. Leaf fragments (3 mm²) were excised from inoculated leaf panels and infiltrated with freshly prepared 5 mM CeCl₃ in 50 mM Mops at pH 7.2 for 1 h at 28 °C, and then fixed and embedded according to Bestwick et al. (1997). Leaf sections were examined using a transmission electron microscope (H7650, Hitachi, Tokyo, Japan) at an accelerating voltage of 75 kV, to reveal any electron-dense CeCl₃ deposits that are formed in the presence of H₂O₂. H₂O₂ was extracted and analysed as previously described (Willekens et al., 1999), in which plant material was first ground in liquid nitrogen and HClO₃. After thawing and centrifugation, the supernatants were adjusted to pH 6.0 with KOH and passed through columns to remove lipid peroxides. H₂O₂ was then quantified using a glutathione peroxidase/horseradish peroxidase assay system.

The detection of Na⁺ in roots was carried out as described by Oh et al. (2009). Tomato plants were treated with 100 mM NaCl in Hoagland nutrition solution for 3 d, after which, whole root systems were incubated for 8 h in a Petri dish with the same media supplemented with 20 μM CoroNa Green-AM (Invitrogen). The tissue was washed with 200 mM phosphate buffer (pH 7.4) five times to remove excess dye and observed using a Leica DM4000B microscope (Leica Microsystems, Wetzlar, Germany). Images were captured using a Leica DFC425C camera and the Leica application suite V3.8 software.

Determination of ion content in tissues and xylem sap
The ion content in tissues and xylem sap was measured as previously described (Jiang et al., 2012). Dried root, stem, and leaf material (0.3 g) was digested in 5 ml concentrated HNO₃ (69%, v/v) for at least
12 h before extraction. The solution was then filtered, using quantitative filter paper and diluted with deionized water. Concentrations of Na\(^+\) and K\(^+\) in the diluted samples were determined in an air–acetylene flame using an atomic absorption spectrometer (A6300; Shimadzu, Kyoto, Japan). During the experiment, the xylem sap exuding from the cut stem surfaces of 12 replicate de-topped plants was collected and pooled, then diluted with deionized water for ion content measurement, prior to quantification by atomic absorption spectrophotometry.

RNA extraction and quantitative RT-PCR analysis
RNA was extracted from leaves and roots using the RNAprep pure Plant Kit (Tiangen biotech Co., Ltd. Beijing, China) and quantified using a NanoDrop ND-2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA), before quality assessment with a gel cartridge on a Bio-Rad platform (Bio-Rad, Hercules, CA, USA). RNA samples were used only if the ribosomal bands showed no degradation, and the 260/280 and 260/230 absorbance ratios were between 1.8 and 2.1. Total RNA (1 µg) was reverse transcribed using a ReverTra Ace quantitative (qPCR) RT Kit (Toyobo, Osaka, Japan), following the manufacturer’s instructions. qRT-PCR was performed using the LightCycler 480 Real-Time PCR System (Roche Diagnostics, Germany). Each reaction (20 µl) consisted of 10 µl SYBR Green PCR Master Mix (Takara, Chiga, Japan), 8.6 µl sterile water, 1 µl cDNA, and 0.2 µl forward and reserve primers (10 µM). PCR was performed with 40 cycles of 30 s at 95 °C, 30 s at 58 °C, and 1 min at 72 °C. Gene-specific primers are listed in Supplementary Table S1 (available at JXB online) and Actin2 was used as the reference gene. The relative gene expression was calculated according to Livak and Schmittgen (2001).

Statistical analysis
The experimental design was a completely randomized block design with four replicates. Each replicate contained 16 plants and at least four independent replicates were used for each determination. The data were subjected to analysis of variance, and the means were compared using Tukey’s test at the 5% level.

Results
CO\(_2\) enrichment attenuates salt-induced growth reduction, cellular membrane peroxidation, and Na accumulation but increases the levels of RBOH1 transcripts
Biomass accumulation was significantly higher (~47%) in tomato plants grown with CO\(_2\) enrichment than under ambient CO\(_2\) conditions (Fig. 1A). While biomass was reduced by growth in the presence of salt, the salt-induced reduction in biomass was

![Fig. 1. Salinity tolerance and RBOH1 transcript levels in tomato plants grown under elevated (Ele: 760 µmol mol\(^{-1}\)) or ambient (Amb: 380 µmol mol\(^{-1}\)) CO\(_2\) conditions. (A) Dry weight. (B) Relative electrolyte leakage. (C) Images of the maximum photochemical efficiency of PSII (Fv/Fm). The false colour code depicted at the bottom of the image ranges from 0 (black) to 1.0 (purple). The value at the top of the image indicates actual value. (D) MDA content in leaves. (E) RBOH1 transcript levels in leaves (left) and roots (right). Samples for dry weight, relative electrolyte leakage, and MDA analyses were harvested 11 d after salt treatment, while Fv/Fm were measured 3 d after salt treatment. The data values are the means ± standard deviation (SD) of four replicates. Means denoted by the same letter did not differ significantly according to Tukey’s test (P<0.05). For Fig. 1E, significant differences between treatments within the same time are indicated by different letters.](image-url)
significantly lower in plants grown with CO2 enrichment than under ambient CO2 conditions (Fig. 1A). High CO2-grown plants had lower levels of electrolyte leakage and of MDA, which is an end product of lipid peroxidation. They also showed lower salt-induced decreases in photosynthetic CO2 assimilation (Pn) and in the maximum quantum yield of photosystem II (PSII) (Fv/Fm, Fig. 1B–D, Supplementary Fig. S1 available at JXB online). However, stomatal conductance (Gs) values and transpiration rates (Tr) were lower in plants grown with CO2 enrichment than under ambient CO2 conditions, in the presence or the absence of salt stress (Supplementary Fig. S1).

Exposure to either salt stress or elevated CO2 increased the levels of RBOH1 transcripts in leaves and roots (Fig. 1E). However, the effects of high salt on RBOH1 transcripts were greatest in plants grown under high CO2. The levels of H2O2 were measured both qualitatively, using H2DCF-DA as a fluorescence probe, and quantitatively, using a spectrophotometric assay method. Both of these methods showed increased H2O2 accumulation in the roots and petioles of salt-treated plants that were grown under high CO2 compared with ambient CO2 conditions (Supplementary Figs S2A, B and S3). Moreover, the salt-induced fluorescence signal was greatly decreased in the presence of ascorbate or catalase, confirming the specificity of H2DCF-DA for H2O2 detection (Supplementary Fig. S2C). Crucially, growth with CO2 enrichment significantly decreased Na+ accumulation in roots, stems, and leaves but it increased K+ accumulation in roots, leading to a reduction in the Na⁺:K⁺ ratio in these organs (Fig. 2).

Silencing of RBOH1 compromises the salt tolerance conferred by elevated CO2 levels

RBOH1 transcript levels were reduced by 53.6% in tomato plants subjected to virus-induced gene silencing (pTRV-RBOH1) compared with empty vector (pTRV) controls (Supplementary Fig. S4). However, no significant changes were found in the transcript levels of other RBOHs in the pTRV-RBOH1 plants. NADPH oxidase activity was decreased by 38.1 % in the leaves of the pTRV-RBOH1 plants compared with the pTRV controls. Both CO2 enrichment and high salt conditions induced H2O2 accumulation in roots, stems, leaf petioles, and leaves in the pTRV plants (Fig. 3). Salt- and CO2-induced H2O2 accumulation was primarily localized within the parenchyma cells of the vascular tissue in the pericycle in the leaf petioles (Fig. 3C). Moreover, H2O2 was predominately localized in the apoplast/cell wall compartment of the salt-treated leaf cells (Fig. 3D). Salt and high CO2-dependent H2O2 accumulation was much lower in the pTRV-RBOH1 plants than the pTRV controls (Fig. 3; Supplementary Fig. S5).

While the growth of the pTRV-RBOH1 plants was not significantly different from that of the pTRV controls in the absence of salt, the negative effects of high salt on biomass accumulation, electrolyte leakage, lipid peroxidation, and cell viability were increased in pTRV-RBOH1 plants relative to pTRV controls (Fig. 4). CO2 enrichment attenuated the salt-induced decreases in biomass accumulation, tissue water potentials as well as reducing the salt-induced increases in electrolyte leakage and MDA contents in the pTRV controls, but not in the pTRV-RBOH1 plants (Fig. 4).

RBOH1-derived H2O2 is associated with Na+ transport from roots to leaves

Photosynthesis rates (Pn) were similar in the pTRV-RBOH1 plants and pTRV controls but the stomatal conductance (Gs)
values, stomatal aperture sizes, and transpiration rates (Tr) were slightly higher in the pTRV-RBOH1 leaves than the pTRV controls (Fig. 5). The salt-induced decreases in Gs and Tr were significantly higher in plants grown under high CO₂ than under ambient CO₂ conditions (Fig. 5). The RBOH1 silenced tomato plants had consistently higher Gs, Tr, and
stomatal aperture values (Fig. 5). High atmospheric CO2 had little effect on the Gs and Tr values (Fig. 5).

The levels of Na+ were higher in the pTRV-\textit{RBOH1} leaves than the pTRV controls under salt stress. In contrast, in the presence of salt, the leaf K+ levels were lower in the pTRV-\textit{RBOH1} leaves than the pTRV controls (Fig. 6). When the pTRV controls were grown with high CO2, leaf Na+ accumulation decreased and leaf K+ levels increased. Hence, the Na+:K+ ratios were decreased in the salt-treated pTRV controls grown under high CO2 relative to plants grown under ambient CO2 conditions (Fig. 6). In contrast, the pTRV-\textit{RBOH1} plants did not show an alleviation of salt-induced changes in Na+ and K+ accumulation in either leaves or roots when these plants were grown under elevated CO2 concentrations. Moreover, the Na+:K+ ratios of the salt-treated pTRV-\textit{RBOH1} roots and shoots were similar under ambient or high CO2.

Visualization of Na+ accumulation in roots was performed on plants exposed to high salt using CoroNa Green, a green-fluorescent indicator, whose emission intensity increases upon Na+ binding (Oh et al., 2009). CoroNa-Green fluorescence was barely detectable in the roots of pTRV controls and pTRV-\textit{RBOH1} plants grown under ambient CO2 in the absence of salt stress. In contrast, a strong fluorescent signal was observed in the pericycle and vascular cells of the roots of both pTRV controls and pTRV-\textit{RBOH1} plants exposed to salt (Fig. 7A). When plants were grown under high CO2, fluorescence was only detected in one cell layer in the middle of the pTRV controls roots. In contrast, several cell layers in the high CO2-grown pTRV-\textit{RBOH1} roots showed high fluorescence.

The xylem-sap Na+ concentration increased progressively over time in both pTRV-\textit{RBOH1} plants and pTRV controls
following the onset of salt treatment (Fig. 7B). However, the increase in xylem-sap Na\(^+\) concentrations were consistently higher in the pTRV-\textit{RBOH1} plants than the pTRV controls (Fig. 7B). Exposure to high CO\(_2\) decreased xylem-sap Na\(^+\) concentrations in the pTRV control plants 3 d after the onset of the salt stress treatment but not in the pTRV-\textit{RBOH1} plants. The pTRV controls showed the lowest xylem sap Na\(^+\):K\(^+\) ratios under high CO\(_2\) growth conditions. In contrast, the pTRV-\textit{RBOH1} plants had the highest xylem sap Na\(^+\):K\(^+\) ratios under both ambient and high atmospheric CO\(_2\) levels.

\textbf{Apoplastic H\(_2\)O\(_2\) plays a role in CO\(_2\)-induced Na\(^+\) and K\(^+\) homeostasis}

When the pTRV-\textit{RBOH1} plants were grown under ambient CO\(_2\) in the absence of salt, the levels of transcripts encoding salt response genes such as \textit{SOS1}-3 and \textit{NHX1}-3 (Ji \textit{et al.}, 2013; Bassil and Blumwald, 2014) and \textit{MAPK1}-3 (Li \textit{et al.}, 2014) were similar to the pTRV controls (Fig. 8). Moreover, the abundance of transcripts encoding salt response genes was similar in plants grown under ambient or high CO\(_2\). However, \textit{SOS1}, \textit{SOS3}, and \textit{MAPK1} transcript levels in the leaves and \textit{SOS3}, \textit{NHX1}, \textit{NHX2}, and \textit{MAPK2} transcript levels in the roots, were significantly higher in plants grown under CO\(_2\) enrichment.

With the exception of \textit{SOS3}, growth with high salt significantly increased the levels of transcripts encoding salt response genes in pTRV leaves and roots. In contrast salinity had negligible effects on the levels of most of measured transcripts, except for \textit{NHX3} in the leaves, and \textit{SOS2}, \textit{NHX1}, \textit{NHX2}, and \textit{MAPK1} in the roots, which were significantly increased as a result of the salt treatment in pTRV-\textit{RBOH1} plants. Crucially, growth under high CO\(_2\) had no effect on the levels of transcripts encoding the salt response genes in the pTRV-\textit{RBOH1} plants.

\textbf{Discussion}

Although plant responses to atmospheric CO\(_2\) enrichment and soil salinity are well characterized, relatively little is known about the interactions between these environmental stresses. In general, high CO\(_2\) levels promote plant growth due to increased photosynthesis, while high salinity inhibits growth by disrupting cellular Na\(^+\)/K\(^+\) homeostasis (Zhu, 2003; Shabala and Cuiin, 2008). However, salt stress has milder effects on the metabolism and physiology of plants grown under high CO\(_2\) conditions than those grown in air (Kanani \textit{et al.}, 2010). The data presented here shows that growth under high CO\(_2\) alleviates the negative impacts of high NaCl on photosynthesis and biomass production (Figs 1 and 5; Supplementary Fig. S1). These findings agree with those of other studies concerning the relationships between elevated CO\(_2\) levels and high salinity in tomato and other plant species Takagi \textit{et al.}, 2009; (Del Amor, 2013; Zaghdoud \textit{et al.}, 2013; Pinero \textit{et al.}, 2014; Yu \textit{et al.}, 2015). High CO\(_2\) levels decreased leaf transpiration rates and stomatal conductance values, even in plants grown with high salt (Fig. 5A; Supplementary Fig. S1). The high CO\(_2\)-dependent decreases in transpiration resulted in a decreased Na\(^+\) accumulation and lower Na\(^+\):K\(^+\) ratios in
Elevated CO2-induced salt stress tolerance

These results suggest that the higher salt stress tolerance observed under elevated CO2 is largely dependent on the suppression of transpiration. This conclusion is supported by other studies showing that high CO2 alleviated the adverse effects of salinity by modulation of aquaporins leading to lower transpiration rates (Zaghdoud et al., 2013).

The excessive accumulation of Na+ in leaves of plants grown under salt stress is dependent on both the transpiration rate and also the Na+ concentration in the transpiration stream. In turn, the transpiration rate is controlled by the degree of stomatal closure, which is related to the apoplastic production of H2O2 (Desikan et al., 2005; Bright et al., 2006; Desikan et al., 2006). RBOH1-mediated H2O2 production not only plays a role in the control of stomatal movements but also in the acquisition of stress tolerance in tomato (Xia et al., 2014; Zhou et al., 2014a, b). The data presented here suggest that CO2-dependent stomatal movements are also linked to RBOH1-dependent H2O2 generation in tomato (Figs 3 and 5).

The data presented here show that high CO2 concentrations not only increase RBOH1 transcript levels in leaves but also result in higher H2O2 accumulation in the roots and leaves, with particular effects in the vascular system (Figs 1 and 3; Supplementary Figs S2, S3, and 5). These high CO2-mediated responses were significantly lower in the pTRV-RBOH1 plants compared with the pTRV controls. The observations presented here show that RBOH1 is important in the regulation of CO2-induced stomatal movements. Moreover, the high CO2-dependent alleviation of Na+ accumulation and salt-dependent growth inhibition were compromised in the pTRV-RBOH1 plants grown under high salt. These findings agree with previous results showing that the loss of AtRBOHF function in Arabidopsis enhanced salt sensitivity (Jiang et al., 2012). Taken together, these results provide evidence in support of the conclusion that growth under high CO2 enhances salt stress tolerance by increasing H2O2-dependent stomatal closure.

Earlier studies have suggested that salt-induced H2O2 accumulation in the vasculature is also involved in the regulation...
Na⁺ transport to the shoot (Jiang et al., 2012, 2013). The data presented here show that high atmospheric CO₂ levels not only increased the H₂O₂ in the vascular system but they also exacerbated salt-induced vascular H₂O₂ accumulation (Fig. 3; Supplementary Fig. S2B). Moreover, loss of RBOH1 function in the pTRV-RBOH1 plants led to lower H₂O₂ accumulation in the cells of the vascular tissues under both ambient CO₂ and high CO₂ conditions (Fig. 3). The pTRV-RBOH1 plants exhibited higher Na⁺ accumulation in the vascular cells and in the xylem sap and they showed lower high CO₂-induced decreases in Na⁺ accumulation in the vascular cells and in the xylem sap (Fig. 7). These results suggest that RBOH1-dependent H₂O₂ production is critical for the regulation of Na⁺ delivery to the leaves under high CO₂. Although stomatal conductance values and transpiration rates were substantially decreased after 3 d of salt treatment, the Na⁺ contents of the xylem sap and leaves increased. These findings are consistent with the concept that stomatal movement plays a significant role in CO₂-induced salt tolerance during the early stages of salt stress, while the rate of Na⁺ delivery via the xylem is more important at the later stages of the high salinity response.

The SOS and NHX families play a major role in maintaining cellular pH values, K⁺ concentrations and Na⁺/K⁺ ratios in order to prevent the perturbations in Na⁺/K⁺ homeostasis caused by high salinity (Zhu et al., 1998; Bassil and Blumwald, 2014; Reguera et al., 2014). Salt-induced increases in the levels of transcripts involved in salt tolerance and in Na⁺ homeostasis were higher in plants grown under high CO₂ compared with ambient CO₂ conditions (Fig. 8). Furthermore, the levels of the salt-induced and high CO₂-induced transcripts were lower in the pTRV-RBOH1 plants than the pTRV controls, a finding that can be linked to the higher Na⁺:K⁺ ratios in the former than the latter. Taken together, these results suggest that H₂O₂ production is involved in salt-induced expression of the SOS and NHX genes under high CO₂ conditions. RBOH-mediated increases in ROS accumulation are thought to enhance SOS1 mRNA stability, which contributes to the maintenance of ion homeostasis under salt stress conditions (Chung et al., 2008). In addition to regulating Na⁺ exclusion into the soil, SOS1 also functions in retrieving Na⁺ from the xylem under high salt stress (Shi et al., 2002). This function may explain the reduced Na⁺ levels observed in the xylem sap of plants grown under high CO₂. The authors are unaware of any published evidence demonstrating an effect of H₂O₂ on NHX expression or activity but it is possible that H₂O₂ may regulate NHX expression indirectly via the SOS pathway. It has already been shown that over-expression of SISOS2 in transgenic tomato plants confers salt tolerance by up-regulation of NHX genes (Huertas et al., 2012).

The mechanisms by which changes in apoplastic H₂O₂ levels regulate the abundance of salt response transcripts are
unknown. However, exposure to a range of abiotic stresses, including salt stress, generally induces ABA biosynthesis and accumulation (Tuteja, 2007), which regulates SOS2 gene expression (Ohta et al., 2003) and activates MAPKs such as MPK6 via RBOH-dependent H₂O₂ production (Kovtun et al., 2000; Samuel et al., 2000; Lu et al., 2002; Zhang et al., 2006; Zhang et al., 2007; Xing et al., 2008). The C-terminal region of the Arabidopsis SOS1 gene is phosphorylated by MPK6 under high NaCl conditions (Yu et al., 2010). It has been previously shown that RBOH1-triggered H₂O₂ accumulation activates MPK1/2 in tomato leaves and that silencing of RBOH1 impairs stress-induced ABA synthesis (Zhou

Fig. 8. Effects of NaCl treatments on the transcript levels of genes involved in the SOS pathway, NHXs, and MAPKs in the pTRV empty vector control and RBOH1 silenced tomato plants grown under elevated (Ele: 760 µmol mol⁻¹) or ambient (Amb: 380 µmol mol⁻¹) CO₂ conditions. (A) Transcript levels in leaves. (B) Transcript levels in roots. Gene expression was evaluated 2 d after salt treatment. The data are means ± SD of four replicates. Bars denoted by the same letter did not differ significantly according to Tukey’s test (P<0.05).
et al., 2014b). MAPK3/6 are involved in salinity tolerance in rice (Li et al., 2014). Here it is shown that the levels of $MAPK12$ and $MAPK3$ transcripts, which are homologues of the Arabidopsis $MAPK6$ and $MAPK3$ genes, respectively, were higher in plants grown under conditions of salinity and high CO$_2$ (Fig. 8). These findings suggest that MAPK signalling cascades are involved in the increased expression of SOS genes under these conditions.

High CO$_2$-induced ROS accumulation may also increase free cytosolic Ca$^{2+}$ concentrations (Foreman et al., 2003), which may in turn lead to an improved cellular Na$^+$/K$^+$ balance by enhancing Na$^+$ extrusion and maintaining K$^+$ influx (Demidchik et al., 2002; Zhu, 2002; Munns and Tester, 2008). These factors may also contribute to the response of tomato to salt stress that was observed under high CO$_2$ conditions in this study. Moreover, an increase in $RBOH$-dependent H$_2$O$_2$ production has been proposed as a mechanism to increase HKT-mediated Na$^+$ unloading from the xylem sap (Jiang et al., 2012). In turn, this process may trigger an antioxidant response to plant ROS metabolism and prevent further increases in ROS accumulation, resulting in a further mitigation of the negative impacts of salt stress (Ben et al., 2014).

In summary, the findings reported here demonstrate that high CO$_2$ concentrations can counteract the negative impact of salt stress on photosynthesis and biomass production in an apoplastic H$_2$O$_2$-dependent manner in tomato plants. The regulation of apoplastic H$_2$O$_2$ levels also makes a major contribution to the regulation of Na$^+$ transport from roots to shoots, a process that is influenced by stomatal movement and by Na$^+$ delivery from the xylem to leaf cells. Regulated changes in apoplastic H$_2$O$_2$ levels may therefore play an important role in triggering the mechanisms that underpin salt tolerance and associated detoxification pathways.

Supplementary data

Supplementary data are available at JXB online.

Table S1. Gene-specific primers designed for qRT-PCR.

Fig. S1. Gas exchange in tomato plants in response to salt treatments and elevated CO$_2$ levels.

Fig. S2. H$_2$O$_2$ accumulation in response to salt treatments and elevated CO$_2$ levels.

Fig. S3. Quantification of H$_2$O$_2$ in salt-treated plants under ambient and elevated CO$_2$ levels.

Fig. S4. Relative $RBOH$s transcript abundance and NADPH oxidase activity in the leaves from $RBOH1$-silenced tomato plants.

Fig. S5. Quantification of H$_2$O$_2$ in salt-treated pTRV control and $RBOH1$ silenced (pTRV-$RBOH1$) tomato plants under ambient and elevated CO$_2$ level.

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (31171999; 31372109) and the Special Fund for Agro-scientific Research in the Public Interest (201203004). C.F. thanks the Royal Society for an International Exchange/China award. We thank Prof. Jocelyn Rose of Cornell University for carefully reading and editing this manuscript.

References

Ameye M, Wertin TM, Bauweraerts I, Mcguire MA, Teskey RO, Steppe K. 2012. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO$_2$ atmospheres. New Phytologist 196, 448–461.

Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FL. 2012. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathogens 8, e1002752.

Bassil E, Blumwald E. 2014. The ins and outs of intracellular ion homeostasis: N^+_K-type cation/H$^+$ transporters. Current Opinion in Plant Biology 22, 1–6-

Bauweraerts I, Wertin TM, Ameye M, Mcguire MA, Teskey RO, Steppe K. 2013. The effect of heat waves, elevated CO$_2$ and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Global Change Biology 19, 517–528.

Ben RK, Benzarti M, Debez A, Bailly C, Savouré A, Abdely C. 2014. NADPH oxidase-dependent H$_2$O$_2$ production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology 174, 5–15.

Bestwick CS, Brown IR, Bennett M, Mansfield JW. 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. The Plant Cell 9, 209–221.

Bose J, Rodrigo-Moreno A, Shabala S. 2013. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65, 1241–57.

Bowman WD, Strain BR. 1987. Interaction between CO$_2$ enrichment and salinity stress in the C$_3$ nonhalophyte Andropogon glomeratus (Walter) BSP. Plant, Cell & Environment 10, 267–270.

Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H$_2$O$_2$ synthesis. The Plant Journal 45, 113–122.

Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS. 2007. Modulation of ethylene responses affects plant salt stress responses. Plant Physiology 143, 707–719.

Chung JS, Zhu JK, Hasegawa PM, Shi HH. 2008. Reactive oxygen species mediate Na$^+$-induced mRNA stability in Arabidopsis. The Plant Journal 53, 554–565.

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. 2014. The ins and outs of intracellular ion homeostasis: NHX-type cation/H$^+$ transporters. Current Opinion in Plant Biology 22, 67–107.

Del Amor FM. 1997. Variation in the leaf δ$_{13}^C$ is correlated with salinity tolerance under elevated CO$_2$ concentration. Journal of Plant Physiology 150, 283–290.

Demidchik V, Davenport RJ, Tester M. 2002. Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67–107.

Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. 2005. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiology 137, 831–834.

Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ. 2006. Ethylene-induced stomatal closure in Arabidopsis occurs via AtRbohF-mediated hydrogen peroxide synthesis. The Plant Journal 47, 907–916.

Drake BG, González-Meler MA, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO$_2$? Annual Review of Plant Biology 48, 609–639.

Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar S, Martin GB. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. The Plant Journal 36, 905–917.

Flowers T, Yeo A. 1995. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology 22, 875–884.

Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.

Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. Journal of Experimental Botany 63, 1637–1661.
Halter F, Ishitani M, Zhu JK. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America 97, 3735–3740.

Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611.

Horie T, Hauser F, Schroeder JI. 2009. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14, 660–668.

Hu H, Boisson-Dernier A, Israelsson-Nordstroem M, Bohemer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI. 2010. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology 12, 87–93.

Huertas R, Oláñ R, Eljakauzi Z, GAñvez FJ, Li JUN, De Morales PA, Belver A, Rodríguez-Rosales MP. 2012. Overexpression of SISOS2 (SICIPK24) confers salt tolerance to transgenic tomato. Plant, Cell & Environment 35, 1467–1482.

Hui P, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X. 2013. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant 6, 275–286.

Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP. 2012. ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. The EMBO Journal 31, 4359–4370.

Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. 2013. An Arabidopsis salt-salinity–tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell 25, 3535–3552.

Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ. 2009. Elevated CO2 conditions and salinity stress on the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 210, 272–280.

Kanani H, Dutta B, Klapa MI. 2010. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress under iron-limited conditions in tomato. Carbon dioxide improves plant iron nutrition through enhancing the iron-sulfur protein content. The EMBO Journal 29, 3735–3740.

Kovtun Y, Chiu WL, Tena G, Sheen J. 2002. Calcium channels activated by hydrogen peroxide and stress tolerance. Plant, Cell & Environment 25, 4359–4370.

Kveton Y, Chiu WL, Tenag SH, Sheen J. 2000. Functional analysis of oxidative-stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America 97, 2940–2945.

Li CH, Wang G, Zhao J, Zhang Q, Zheng X, et al. 2014. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physiologia Plantarum 151, 375–389.

Liu J, Zhu JK. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280, 1943–1945.

Li J, Ishitani M, Halfter U, Zhu JK. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97, 3730–3734.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

Ma L, Zhang H, Sun L,iao Y, Zhang G, Miao C, Hao F. 2012. NADPH oxidase AtrobhD and AtrobohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany 63, 305–317.

Maggio A, Dalton FN, Piccinini G. 2002. The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance. European Journal of Agronomy 16, 197–206.

Mäser P, Eckelman B, Vaidyanathan R, et al. 2002. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters 531, 157–161.

Meethal G, Washington WM, Arblaster JM, et al. 2012. Climate system response to external forcings and climate change projections in CCSM4. Journal of Climate 25, 3661–3683.

Miller G, Suzuki N, Cifci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment 33, 453–467.

Milling A, Babujee L, Allen C. 2011. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in will-resistant tomato plants. PLoS One 6, e15853.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410.

Munne-Bosch S, Queval G, Foyer CH. 2013. The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiology 161, 5–19.

Muriana R, Tester M. 2009. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.

Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen ZX, Yu JQ. 2013. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment 36, 789–803.

Oh DH, Leidi E, Zhang Q, et al. 2009. Loss of halophytism by interference with SOS1 expression. Plant Physiology 151, 210–222.

Ohta M, Guo Y, Halfter U, Zhu JK. 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences of the United States of America 100, 11771–11776.

Pei ZM, Murata Y, Benning G, Thimme S, Klüsener B, Allen GJ, Grill E, Schroeder JI. 2000. Calcium channels activated by hydrogen peroxide mediate acidic acid signaling in guard cells. Nature 406, 731–734.

Pinero MC, Hou dredse F, Garcia-Mina JM, Garnica M, Del Amor FM. 2014. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physiologia Plantarum 151, 375–389.

Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99, 8436–8441.

Quintero FJ, Martinez-Aitiena J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK. 2011. Activation of the plasma membrane Na+/H+ antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America 108, 2611–2616.

Reguera M, Bassil E, Blumwald E. 2014. Intracellular NHX-type cation/H+ antiporters in plants. Molecular Plant 7, 261–283.

Robredo A, Pérez-López U, De La Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany 59, 252–263.

Samuel MA, Miles GP, Ellis BE. 2000. Ozone treatment rapidly activates MAP kinase signalling in plants. The Plant Journal 22, 367–376.

Schmidt R, Mieulet D, Hubberten HM, et al. 2013. SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. The Plant Cell 25, 2115–2131.

Shabala S, Guin TA. 2009. Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.

Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14, 465–477.

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H. 2007. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Takagi M, El-Shemy HA, Sasaki S, Toyama S, Kanai S, Saneoka H, Fujita K. 2009. Elevated CO2 concentration alleviates salinity stress in tomato plant. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 59, 87–96.

Tian W, Hou C, Ren Z, et al. 2015. A molecular pathway for CO2 response in Arabidopsis guard cells. Nature Communications 6, 6057.

Tuteja N. 2007. Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior 2, 135–138.

Warren R, Price J, Fischlin A, De La Nava Santos S, Midgley G. 2011. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change 106, 141–177.

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inze D, van Camp W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16, 4806–4816.

Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen ZX, Yu JQ. 2011. Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytologist 191, 706–720.

Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ. 2014. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell & Environment 37, 2036–2050.

Xing Y, Jia W, Zhang J. 2008. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. The Plant Journal 54, 440–451.

Yu J, Sun L, Fan N, Yang Z, Huang B. 2015. Physiological factors involved in positive effects of elevated carbon dioxide concentration on Bermudagrass tolerance to salinity stress. Environmental and Experimental Botany 115, 20–27.

Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist 188, 782–773.

Zaghdoud C, Mota-Cadenas C, Carvajal M, Muries B, Ferchichi A, Martinez-Ballesta MD. 2013. Elevated CO2 alleviates negative effects of salinity on broccoli (Brassica oleracea L. var Italica) plants by modulating water balance through aquaporins abundance. Environmental and Experimental Botany 95, 15–26.

Zhang A, Jiang M, Zhang J, Tan M, Hu X. 2006. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology 141, 475–487.

Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. 2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist 175, 36–50.

Zhang S, Li X, Sun ZH, Shao SJ, Hu LF, Ye M, Zhou YH, Xia XJ, Yu JQ, Shi K. 2015. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany 66, 1951–1963.

Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen ZX, Yu JQ. 2014a. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany 65, 4371–4383.

Zhou J, Xia XJ, Zhou YH, Shi K, Chen ZX, Yu JQ. 2014b. RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany 65, 556–567.

Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review Plant Biology 53, 247–273.

Zhu JK, Liu J, Xiong L. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell 10, 1181–1191.

Zhu JK. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441–445.

Zinta G, Abdelgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GTS, Asard, H. 2014. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Global Change Biology 20, 3970–3985.