A regularized penalty-multiplier method for approximating cavitation solutions with prescribed cavity volume size

Pablo V. Negrón–Marrero
Department of Mathematics
University of Puerto Rico
Humacao, PR 00791-4300
pablo.negron1@upr.edu

Jeyabal Sivaloganathan
Department of Mathematical Sciences
University of Bath, Bath
BA2 7AY, UK
masjs@bath.ac.uk

December 14, 2017

Abstract

Let $\Omega \in \mathbb{R}^n$ be the region occupied by a body and let x_0 be a flaw point in Ω. Let $E(\cdot)$ be an energy functional (defined on some appropriate admissible set of deformations of Ω). For $V > 0$ fixed, we let u_V be a minimizer of $E(\cdot)$ among the set of deformations constrained to form a hole of volume V at x_0. In this paper we describe a regularized penalty–multiplier method and its convergence properties for the computation of both u_V and $E(u_V)$. In particular, we show that as the regularization parameter goes to zero, the regularized constrained minimizers converge weakly in $W^{1,p}(\Omega \setminus B_{\delta}(x_0))$ to u_V for any $\delta > 0$. We describe as well the main features of a numerical scheme for approximating u_V and $E(u_V)$ and give a numerical example for the case of a stored energy for an elastic fluid.

1 Introduction

When certain materials, such as rubber, are subjected to sufficiently large triaxial loading, holes or bubbles begin to appear inside of the stressed specimen (see, e.g., Gent and Lindley [4], Gent [3]). The first variational model, based on the equations of nonlinear elasticity, that predicts this phenomenon of void formation was given by Ball in [2]. In
this paper, Ball modelled a spherical body composed of an isotropic “soft” material and showed that, in the class of radial deformations, any minimiser of the stored energy functional must open a hole at the centre of the deformed ball for sufficiently large boundary displacements (the phenomenon of cavitation). After this seminal paper, many others appeared on different aspects of radial cavitation, e.g., [1], [9], [10], [11], [17], [20], among others. For results on general nonsymmetric cavitation in elasticity we refer to [12], [14], [6] and [18]. A fundamental problem in studies of cavitation is to mathematically or computationally characterize the boundary displacements for which cavitation occurs. In [15] the authors introduced the concept of the volume derivative as a tool for characterizing these boundary displacements. For a large class of materials, the onset of cavitation–type instabilities can be characterized as the zero level set of the volume derivative.

Central to any scheme for approximating the volume derivative is the computation of minimizers of the corresponding stored energy functional satisfying the constraint of forming or developing a hole inside the body of a prescribed volume. This is the problem that concerns us in this paper, in particular we describe a regularized penalty–multiplier method and its convergence properties for the computation of such minimizers. This question was partially addressed in [15] where a penalty method on a punctured domain is discussed. The convergence of this method as the penalty parameter increased to infinity was established, but no result was given as the radius of the spherical “regularizing” incision goes to zero. We provide such a result in this paper. Moreover, the use of a penalty–multiplier technique leads to a more a stable numerical scheme as compared to a standard penalty method. For more details on the penalty–multiplier method, also called augmented Lagrangians, we refer to [13] and the references therein.

This paper is similar in spirit to [19] in which a regularization method for cavitating solutions is described. However the problem considered in [19] is without the constraint that the deformation opens a hole inside the body of a prescribed volume. The presence of this nonlinear volume constraint leads to various technical difficulties among which is that of constructing variations satisfying this constraint. The use of the penalty–multiplier technique eliminates the need for constructing such variations by replacing the original constrained problem with a sequence of unconstrained problems.

To introduce the results in the paper, consider a nonlinear hyperelastic body occupying the bounded region \(\Omega \subset \mathbb{R}^n \) in its reference state. A deformation of the body is a mapping \(u : \Omega \to \mathbb{R}^n \) satisfying the local invertibility condition

\[
\det \nabla u(x) > 0 \quad \text{a.e. } x \in \Omega.
\]

(1.1)
The energy stored in the deformed body under a deformation u is given by

$$E(u) = \int_{\Omega} W(\nabla u(x)) \, dx,$$ \hspace{1cm} (1.2)

where $W : M_{+}^{n \times n} \to \mathbb{R}$ is the stored energy function of the material and $M_{+}^{n \times n}$ denotes the set of $n \times n$ matrices with positive determinant. In this paper we consider the displacement boundary value problem in which we fix a matrix $A \in M_{+}^{n \times n}$ and consider deformations satisfying

$$u(x) = Ax \text{ for } x \in \partial \Omega,$$ \hspace{1cm} (1.3)

We next fix a “flaw” point $x_0 \in \Omega$, and for any fixed $V > 0$ we take the admissible set of deformations to be

$$A_{A,V} = \left\{ u \in W^{1,p}(\Omega) \mid \det \nabla u = \det \nabla u \mathcal{L}^n + V \delta_{x_0}, \det \nabla u > 0 \text{ a.e.}, \right. \left. u(x) = Ax \text{ on } \partial \Omega, \right. \left. u \text{ satisfies INV on } \Omega \right\}.$$ \hspace{1cm} (1.4)

Here $\det \nabla u$ denotes the distributional determinant of u, defined by

$$<\det \nabla u, \phi> = -\frac{1}{n} \int_{\Omega} \nabla \phi \cdot (\text{adj} \nabla u) u \, dx, \quad \forall \phi \in C_0^\infty(\Omega),$$ \hspace{1cm} (1.5)

\mathcal{L}^n denotes n-dimensional Lebesgue measure, $p > n - 1$, δ_{x_0} denotes the Dirac measure supported at $x_0 \in \Omega$, and (INV) denotes the condition, relating to invertibility, introduced in Definition 3.2 of [14]. Results in [18] give conditions on the stored energy function W under which a minimiser for (1.2) exists on the set $A_{A,V}$. The results of Henao and Mora-Corral [6] give conditions under which a minimiser also exists in the case $p = n - 1$ and their work in [7] includes justification of the interpretation of V in (1.4) as the volume of the hole formed by the deformation. Hence, if $u \in A_{A,V}$, then the deformation u produces a hole of volume V in the deformed body.

In Appendix A we show that the requirement on deformations of producing a hole of volume V in the deformed body is equivalent to the following integral constraint:

$$\int_{\Omega} \det \nabla u \, dx = (\det A) |\Omega| - V.$$ \hspace{1cm} (1.6)

(Here $|\Omega|$ is the volume of Ω.) Thus we replace the minimization of (1.2) over (1.4) with

$$\left\{ \begin{array}{l} \inf_{u \in A_{A,V}} E(u), \\ \text{subject to } c(u) = 0, \end{array} \right.$$
where now
\[\mathcal{A}_A = \left\{ u \in W^{1,p}(\Omega) \mid \exists \alpha \geq 0 \text{ such that } \text{Det} \nabla u = \text{det} \nabla u \mathcal{L}^n + \alpha \delta_{x_0}, \right. \\
\left. \text{det} \nabla u > 0 \text{ a.e., } u(x) = Ax \text{ on } \partial \Omega, \ u \text{ satisfies INV on } \Omega \right\}, \]

and
\[c(u) = \int_{\Omega} \text{det} \nabla u \, dx - (\text{det} A) |\Omega| + V. \] (1.7)

For any \(\varepsilon > 0 \), let
\[\Omega_\varepsilon = \Omega \setminus \overline{B_\varepsilon(x_0)}. \]

(Here and henceforth, we use the notation \(B_\varepsilon(x_0) \) for the open ball of radius \(\varepsilon \) centered at \(x_0 \).) The regularized constrained minimization problem is given by:
\[
\begin{cases}
\inf_{u \in \mathcal{A}_A} & E_\varepsilon(u), \\
\text{subject to} & c_\varepsilon(u) = 0.
\end{cases}
\] (1.8)

where
\[E_\varepsilon(u) = \int_{\Omega_\varepsilon} W(\nabla u(x)) \, dx, \] (1.9)
\[c_\varepsilon(u) = \int_{\Omega_\varepsilon} \text{det} \nabla u \, dx - (\text{det} A) |\Omega| + V, \] (1.10)
and
\[\mathcal{A}_A^\varepsilon = \{ u \in W^{1,p}(\Omega_\varepsilon) \mid \text{Det} \nabla u = (\text{det} \nabla u) \mathcal{L}^n, \text{ det} \nabla u > 0 \text{ a.e.,} \right. \\
\left. u(x) = Ax \text{ on } \partial \Omega, \ u \text{ satisfies INV} \}, \]

We set \(\mathcal{A}_A^0 = \mathcal{A}_A \) and \(c_0 = c \). In Appendix B we show that the admissible sets
\[C^\varepsilon_A = \{ u \in \mathcal{A}_A^\varepsilon \mid c_\varepsilon(u) = 0 \}, \]
are nonempty for \(\varepsilon \) sufficiently small.

Remark 1.1. The hypotheses and results of [18] are easily adapted to prove that a (not necessarily unique) minimiser \(u_{V,\varepsilon} \) of \(E_\varepsilon \) on \(\mathcal{A}_A^\varepsilon \) exists for each \(\varepsilon \geq 0 \) and \(V > 0 \) small enough.
To compute approximations of the constrained problem (1.8), we use a penalty–
multiplier method in which the functional in (1.9) is replaced with:

\[E_{\varepsilon, \mu, \eta}(u) = E_\varepsilon(u) + \mu c_\varepsilon(u) + \frac{1}{2} \eta c_\varepsilon(u)^2. \]

(1.11)

Here \(\eta \) is a “large” positive parameter and \(\mu \in \mathbb{R} \). Thus we replace the constrained problem (1.8) with the “unconstrained” problem:

\[\inf_{u \in \mathcal{A}_\varepsilon} E_{\varepsilon, \mu, \eta}(u). \]

(1.12)

In Proposition 2.1 we show that a minimizer \(u_{V,\varepsilon,\mu,\eta} \) of (1.12) actually exists. This result is then used in Theorem 2.2 to show that for fixed \(\varepsilon, V > 0 \), there exist sequences \(\{\mu_j\} \), \(\{\eta_j\} \) such that \(\{u_{V,\varepsilon,\mu_j,\eta_j}\} \) converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to a solution \(u_{V,\varepsilon} \) of (1.8), and \(c_\varepsilon(u_{V,\varepsilon,\mu_j,\eta_j}) \to 0 \). We conclude Section 2 with a result on the weak form of the Euler–
Lagrange equations for the minimizer \(u_{V,\varepsilon} \) (Theorem 2.3) and a result on the sensitivity of the minimum energy \(E_\varepsilon(u_{V,\varepsilon}) \) to variations on the boundary data \(\mathcal{A} \) (Theorem 2.4).

In Section 3 we prove the main result of this paper, namely Theorem 3.2. We show that for a sequence \(\{\varepsilon_j\} \) converging to zero, the regularized constrained minimizers \(\{u_{V,\varepsilon_j}\} \) converge weakly in \(W^{1,p}(\Omega_\delta) \) to a solution \(u_V \) of (1.6), for any \(\delta > 0 \). The first part of the proof of this result, dealing with the convergence and the existence of the limit \(u_V \), is very similar to that in [19, Theorem 4.1] and uses a “diagonalization” argument. However showing that the limiting function \(u_V \) is actually a solution of (1.6) is more subtle, again due to the presence of the integral volume constraint in (1.6). A key ingredient to get this result is Lemma 3.1 which shows that the energy of any function \(u \in \mathcal{C}_\Delta^{0} \) can be arbitrarily approximated by the energies of functions in \(\mathcal{C}_\Delta \). The proof of this lemma involves the construction of certain diffeomorphisms of regularized sets where we needed to assume the convexity of \(\Omega \). We close Section 3 with a result on the weak form of the Euler–Lagrange equations for the minimizer \(u_V \) (Theorem 3.3).

Finally in Section 4 we describe the main features of a numerical scheme for approximating solutions of the problem (1.6). Also we give a numerical example for the case of an elastic fluid (\(\mu = 0 \) in (1.13)). For this class of materials and for a spherical domain, an exact solution of (1.6) is known and thus we can check the various convergence results in the paper in this case.

A simple class of polyconvex isotropic stored energy functions to which the results in this paper can be applied is given by

\[W(F) = \frac{\mu}{q} \| F \|_q^q + h(\det F), \]

(1.13)
where $\kappa > 0$, $q \in [n - 1, n)$ and $h : (0, \infty) \to (0, \infty)$ is such that

\begin{equation}
\text{h is a } C^2, \text{ convex function and } \tag{1.14a}
\end{equation}

\begin{equation}
h(\delta) \to \infty \text{ and } \frac{h(\delta)}{\delta} \to \infty \text{ as } \delta \to 0, \infty \text{ respectively.} \tag{1.14b}
\end{equation}

However, we note that the results of this paper apply to more general polyconvex stored energy functions under varied hypotheses.

\section{The regularized penalty–multiplier method}

In this section we study the unconstrained problem (1.12), in particular the convergence properties of the penalty–multiplier method. We assume that the stored energy function $W(F)$ satisfy the following:

H1: (Polyconvexity) There exists with $G : (M^+_{n \times n})^{n-1} \times (0, \infty) \to \mathbb{R}$ continuous and convex such that

\[W(F) = \begin{cases}
G(F, \det F) & n = 2, \\
G(F, \text{adj} F, \det F) & n = 3.
\end{cases} \]

H2: (Growth) For $p \in (n - 1, n)$, $c_1 > 0$, and a C^2 function h, we have that

\[W(F) \geq K + c_1 |F|^p + h(\det F) \quad \text{for } F \in M^+_{n \times n}, \]

where the function h satisfies conditions (1.14).

We begin by showing that the minimizers in (1.12) actually exists.

\textbf{Proposition 2.1.} For any $\mu \in \mathbb{R}$, $\eta > 0$, the infimum

\[\inf_{u \in \mathcal{A}_\lambda^*} E_{\varepsilon, \mu, \eta}(u), \]

exists and is attained for a function $u_{\varepsilon, \mu, \eta} \in \mathcal{A}_\lambda^*$. Moreover, for any $\delta > 0$, the parameter η can be chosen sufficiently large such that the minimizer $u_{\varepsilon, \mu, \eta}$ satisfies that $|c_\varepsilon(u_{\varepsilon, \mu, \eta})| < \delta$.

\textbf{Proof:} Since $\mathcal{A}_\lambda^* \neq \emptyset$, the infimum above is less than ∞. If the infimum were $-\infty$, there would exists a sequence $\{u_k\}$ in \mathcal{A}_λ^* such that $E_{\varepsilon, \mu, \eta}(u_k) \to -\infty$ as $k \to \infty$, i.e.,

\[\int_{\Omega_\varepsilon} W(\nabla u_k(x)) \, dx + \mu c_\varepsilon(u_k) + \frac{1}{2} \eta c_\varepsilon(u_k)^2 \to -\infty, \quad k \to \infty. \]

6
Since the first and third terms above are bounded below, and for \(u_k \in A_\lambda^\varepsilon \) we have that \(c_\varepsilon(u_k) \) is bounded below as well, it follows that if \(\mu \geq 0 \), the above limit can not be \(-\infty\). If \(\mu < 0 \), for the above limit to be \(-\infty\), we would need to have (for a subsequence) that \(c_\varepsilon(u_k) \to \infty \). In this last case:

\[
\int_{\Omega_\varepsilon} W(\nabla u_k(x)) \, dx + \mu c_\varepsilon(u_k) + \frac{1}{2} \eta c_\varepsilon(u_k)^2 \geq c_\varepsilon(u_k) \left(\mu + \frac{1}{2} \eta c_\varepsilon(u_k) \right),
\]

\[
\to \infty, \quad \text{as } k \to \infty,
\]

where we used that \(\eta > 0 \). Thus in any case we arrive at a contradiction and we must have that

\[
\inf_{u \in A_\lambda^\varepsilon} E_{\varepsilon, \mu, \eta}(u) = g^* \in \mathbb{R}.
\]

Let now \(\{ u_k \} \) in \(A_\lambda^\varepsilon \) be an infimizing sequence, i.e., \(E_{\varepsilon, \mu, \eta}(u_k) \to g^* \). An argument similar to the one above implies that \(\{ c_\varepsilon(u_k) \} \) must be bounded. If \(\mu c_\varepsilon(u_k) \geq -L \) for all \(k \), where \(L > 0 \), then for \(k \) sufficiently large we get that

\[
\int_{\Omega_\varepsilon} W(\nabla u_k(x)) \, dx - L \leq g^* + 1.
\]

It follows now from the growth hypotheses (H1)–(H2) that there exists a subsequence \(\{ u_{k_j} \} \) which converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to a function \(u^* \), and that \(\{ \det \nabla u_{k_j} \} \) converges weakly in \(L^1(\Omega_\varepsilon) \) to a function \(\theta \). Since \(p \in (n-1, n) \), it follows from [14, Theorem 4.2], that \(u^* \) satisfies condition INV, \(\theta = \det \nabla u^* \), and \(\det \nabla u^* > 0 \) almost everywhere. Thus \(u^* \in A_\lambda^\varepsilon \).

Upon adapting the lower continuity results in [18], it follows that \(E_{\varepsilon, \mu, \eta} \) is sequentially weakly lower semicontinuous. Thus we have that

\[
E_{\varepsilon, \mu, \eta}(u^*) \leq \liminf_{k_j} E_{\varepsilon, \mu, \eta}(u_{k_j}) = g^* = \inf_{u \in A_\lambda^\varepsilon} E_{\varepsilon, \mu, \eta}(u),
\]

i.e., that \(u_{V_{\varepsilon, \mu, \eta}} = u^* \in A_\lambda^\varepsilon \) is a minimizer.

For the last part of the proposition, we argue by contradiction. Thus we assume that for some \(\delta_0 \) there exists a sequence \(\eta_j \to \infty \) such that the corresponding minimizers \(\{ u_j \} \) satisfy \(c_\varepsilon(u_j) \geq \delta_0 \) for all \(j \). Note that for all \(j \),

\[
E_{\varepsilon, \mu, \eta_j}(u_j) \leq \left\{ \begin{array}{l}
\inf_{u \in A_\lambda^\varepsilon} \int_{\Omega_\varepsilon} W(\nabla u(x)) \, dx, \\
\text{subject to } c_\varepsilon(u) = 0.
\end{array} \right.
\]

(2.1)

Since \(c_\varepsilon(u_j) \geq -C \) with \(C > 0 \), if \(\mu \geq 0 \), we get that

\[
f_\varepsilon^* \geq \mu c_\varepsilon(u_j) + \frac{1}{2} \eta_j c_\varepsilon(u_j)^2 \geq -\mu C + \frac{1}{2} \eta_j \delta_0^2 \to \infty,
\]

\[
\int_{\Omega_\varepsilon} W(\nabla u_k(x)) \, dx + \mu c_\varepsilon(u_k) + \frac{1}{2} \eta c_\varepsilon(u_k)^2 \geq c_\varepsilon(u_k) \left(\mu + \frac{1}{2} \eta c_\varepsilon(u_k) \right),
\]

\[
\to \infty, \quad \text{as } k \to \infty,
\]

where we used that \(\eta > 0 \). Thus in any case we arrive at a contradiction and we must have that

\[
\inf_{u \in A_\lambda^\varepsilon} E_{\varepsilon, \mu, \eta}(u) = g^* \in \mathbb{R}.
\]
as \(j \to \infty \) which is a contradiction. If \(\mu < 0 \) and \(\{c_\varepsilon(u_j)\} \) is unbounded above, we can argue as before to get a contradiction as well. If \(\{c_\varepsilon(u_j)\} \) is bounded, then

\[
f^*_\varepsilon \geq \mu c_\varepsilon(u_j) + \frac{1}{2} \eta_j c_\varepsilon(u_j)^2 \geq \mu c_\varepsilon(u_j) + \frac{1}{2} \eta_j \delta_0^2 \to \infty,
\]

which is a contradiction once again and this completes the proof. \(\square \)

We now show how to construct sequences \(\{\mu_j\} \) and \(\{\eta_j\} \) such that the computed minimizers in (1.12), converge to the solution of (1.8).

Theorem 2.2. Let the stored energy function \(W \) satisfy the conditions H1–H2. Let \(\gamma \in (0,1) \), \(\beta > 1 \), \(\eta_1 > 0 \), \(\mu_1 \in \mathbb{R} \), and \(u_0 \in A_\varepsilon \) be given. Let the sequences \(\{\mu_j\} \), \(\{\eta_j\} \), and \(\{u_j\} \) be given by:

\[
E_{\varepsilon,\mu_j,\eta_j}(u_j) = \min_{u \in A_\varepsilon} E_{\varepsilon,\mu_j,\eta_j}(u), \tag{2.2a}
\]
\[
\mu_{j+1} = \mu_j + \eta_j c_\varepsilon(u_j), \tag{2.2b}
\]
\[
\eta_{j+1} = \begin{cases}
\eta_j, & \text{if } |c_\varepsilon(u_j)| \leq \gamma |c_\varepsilon(u_{j-1})|, \\
\beta \eta_j, & \text{otherwise.}
\end{cases} \tag{2.2c}
\]

Assume that \(\{\mu_j\} \) is bounded. Then \(c_\varepsilon(u_j) \to 0 \), and \(\{u_j\} \) has a subsequence \(\{u_{j_k}\} \) that converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to \(u_\varepsilon \in A_\varepsilon \) where

\[
E_\varepsilon(u_\varepsilon) = \begin{cases}
\min_{u \in A_\varepsilon} & \int_{\Omega_\varepsilon} W(\nabla u(x)) \, dx, \\
subject to & c_\varepsilon(u) = 0.
\end{cases} \tag{2.3}
\]

Proof: By Proposition 2.1 a function \(u_j \in A_\varepsilon \) satisfying (2.2a) exists for each \(j \). From (2.1) we get that

\[
E_{\varepsilon,\mu_j,\eta_j}(u_j) \leq f^*_\varepsilon, \quad \forall \ j. \tag{2.4}
\]

From this inequality and using that \(W \) is nonnegative, we get that

\[
\mu_j c_\varepsilon(u_j) + \frac{1}{2} \eta_j c_\varepsilon(u_j)^2 \leq f^*_\varepsilon, \quad \forall \ j. \tag{2.4}
\]

Note that the sequence \(\{\eta_j\} \) is increasing. Thus in (2.2c) we have two possibilities:

i) the sequence \(\{\eta_j\} \) remains bounded, in which case, \(|c_\varepsilon(u_j)| \leq \gamma |c_\varepsilon(u_{j-1})| \) is satisfied for all but but finitely many indexes \(j \). Clearly \(c_\varepsilon(u_j) \to 0 \) in this case.

ii) Otherwise (for a subsequence) \(\eta_j \to \infty \), in which case (2.4) would imply that \(c_\varepsilon(u_j) \to 0 \).
Thus in any case we have that \(c_\varepsilon(u_j) \to 0 \).

If \(\mu_j c_\varepsilon(u_j) \geq -L \) for all \(j \), where \(L > 0 \), then from (2.1) we get that
\[
\int_{\Omega_\varepsilon} W(\nabla u_j(x)) \, dx - L \leq f_\varepsilon^*.
\]

As in the proof of Proposition 2.1, there exists a subsequence \(\{u_{j_k}\} \) which converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to a function \(u_\varepsilon \), that \(\{\det \nabla u_{j_k}\} \) converges weakly in \(L^1(\Omega_\varepsilon) \) to \(\det \nabla u_\varepsilon \), \(u_\varepsilon \) satisfies condition INV, and \(\det \nabla u_\varepsilon > 0 \) almost everywhere. Thus \(u_\varepsilon \in A^\varepsilon \) and \(c_\varepsilon(u_\varepsilon) = 0 \). Moreover, since \(\mu_j c_\varepsilon(u_j) \to 0 \) by the assumed boundedness in \(\{\mu_j\} \), we have that
\[
f_\varepsilon^* \leq E_\varepsilon(u_\varepsilon) \leq \liminf_k E_{\varepsilon,\mu_j} u_{j_k} \leq f_\varepsilon^*.
\]

It follows that
\[
E_\varepsilon(u_\varepsilon) = \begin{cases}
\min_{u \in A^\varepsilon} & \int_{\Omega_\varepsilon} W(\nabla u(x)) \, dx, \\
\text{subject to} & c_\varepsilon(u) = 0.
\end{cases}
\]

Our next results give conditions under which the minimizer \(u_\varepsilon \) in (2.3), satisfies a weak form of the Euler-Lagrange equations for this problem.

Theorem 2.3. Let \(\{u_j\} \) be the sequence of Theorem 2.2 generated according to (2.2), and \(\{u_{j_k}\} \) a subsequence that converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to a solution \(u_\varepsilon \) of (2.3). Assume that there exist constants \(K, \varepsilon_0 > 0 \) such that the stored energy function \(W \) satisfies:
\[
\left| \frac{dW}{dF}(CF) F^T \right| \leq K [W(F) + 1] \quad \text{for all } F \in M_{nXn}^+, \quad (2.5)
\]
whenever \(|C - I| < \varepsilon_0 \). Then \(\{\mu_j\} \) has a subsequence converging to \(\mu_\varepsilon \), where
\[
\int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_\varepsilon(x)) + \mu_\varepsilon(\text{adj} \nabla u_\varepsilon(x))^T \right] \cdot \nabla[v(u_\varepsilon)] \, dx = 0, \quad (2.6)
\]
for all \(v \in C^1(\mathbb{R}^n) \) with \(v = 0 \) on \(\mathbb{R}^n \setminus \mathcal{E} \), where \(\mathcal{E} = \{Ax : x \in \Omega\} \). Moreover if \(u_\varepsilon \in C^2(\Omega_\varepsilon) \cap C^1(\overline{\Omega_\varepsilon}) \) with \(\det \nabla u_\varepsilon > 0 \) in \(\Omega_\varepsilon \), then
\[
\text{div} \left[\frac{dW}{dF}(\nabla u_\varepsilon) + \mu_\varepsilon(\text{adj} \nabla u_\varepsilon)^T \right] = 0, \quad \text{in } \Omega_\varepsilon. \quad (2.7a)
\]

\(^1\mu_\varepsilon \) is the Lagrange multiplier corresponding to the volume constraint in (2.3) and is a measure of the Cauchy stress acting on the deformed inner cavity (cf. (3.11)).
\[u_\varepsilon(x) = Ax \quad \text{on} \quad \partial \Omega, \quad (2.7b) \]

\[
\left[\frac{dW}{dF}(\nabla u_\varepsilon) \right] + \mu \varepsilon (\text{adj} \nabla u_\varepsilon)^T \cdot n = 0 \quad \text{on} \quad \partial B_\varepsilon(x_0),
\]

\[
\int_{\Omega_\varepsilon} \text{det} \nabla u_\varepsilon \, dx = \frac{\omega_n}{n} \text{det} A - V. \quad (2.7d)
\]

Proof: To show (2.6), we first derive the corresponding equilibrium equation for each \(u_j \).

We use variations of \(u_j \) of the form \(u_s = u_j + s v(u_j) \) where \(v \in C^1(\mathbb{R}^n) \) with \(v = 0 \) on \(\mathbb{R}^n \setminus \mathcal{E} \). From [18, Corollary 6.4] it follows that for \(s \) small enough, the function \(u_s \in A_\varepsilon \).

(Note that the variation \(u_s \) is not required to satisfy the constraint \(c_\varepsilon(u) = 0 \) as \(u_j \) is a solution of an unconstrained problem.) To show (2.6) for \(u_j \), first note that

\[
\int_{\Omega_\varepsilon} [W(\nabla u_s) - W(\nabla u_j)] \, dx
\]

\[
= \int_{\Omega_\varepsilon} \int_0^1 \frac{dW}{dF}(t \nabla u_s + (1-t) \nabla u_j) \, dt \, dx,
\]

\[
= \int_{\Omega_\varepsilon} \int_0^1 \frac{dW}{dF}(t \nabla u_s + (1-t) \nabla u_j) \cdot (\nabla u_s - \nabla u_j) \, dt \, dx,
\]

\[
= s \int_{\Omega_\varepsilon} \left[\int_0^1 \frac{dW}{dF}(I + st \nabla v(u_j)) \nabla u_j \, dt \cdot \nabla v(u_j) \right] \, dx
\]

It follows now from (2.5) that for \(s \) small enough,

\[
\left| \int_0^1 \frac{dW}{dF}(I + st \nabla v(u_j)) \nabla u_j \nabla u_j^T \, dt \right| \leq K[W(\nabla u_j) + 1] \in L^1(\Omega_\varepsilon).
\]

Upon invoking the Dominated Convergence Theorem, we get that

\[
\lim_{s \to 0} \frac{1}{s} \int_{\Omega_\varepsilon} [W(\nabla u_s) - W(\nabla u_j)] \, dx = \int_{\Omega_\varepsilon} \frac{dW}{dF}(\nabla u_j) \nabla u_j^T \cdot \nabla v(u_j) \, dx \quad (2.8)
\]

Also

\[
\mu_j[\varepsilon(u_s) - \varepsilon(u_j)] + \frac{1}{2} \eta_j [\varepsilon^2(u_s) - \varepsilon^2(u_j)]
\]

\[
= [\mu_j + \frac{1}{2} \eta_j (\varepsilon(u_s) + \varepsilon(u_j))] [\varepsilon(u_s) - \varepsilon(u_j)].
\]

Now

\[
c_\varepsilon(u_s) - c_\varepsilon(u_j) = \int_{\Omega_\varepsilon} (\text{det} \nabla u_s - \text{det} \nabla u_j) \, dx,
\]
\[\begin{align*}
&= \int_{\Omega_\varepsilon} \int_0^1 \frac{d}{dt} \det(t \nabla u_s + (1 - t) \nabla u_j) \, dt \, dx, \\
&= \int_{\Omega_\varepsilon} \int_0^1 \left[\text{adj} \left(\left(I + s t \nabla v(u_j) \right) \nabla u_j \right) \right] \cdot \left(\nabla u_s - \nabla u_j \right) \, dt \, dx, \\
&= s \int_{\Omega_\varepsilon} \int_0^1 \left[\text{adj} \left(\left(I + s t \nabla v(u_j) \right) \nabla u_j \right) \right] \cdot \nabla v(u_j) \, dt \, dx.
\end{align*} \]

It follows now since \(v \in C^1(\mathbb{R}^n) \) with \(v = 0 \) on \(\mathbb{R}^n \setminus \mathcal{E} \), that
\[
\lim_{s \to 0} \frac{1}{s} [c_\varepsilon(u_s) - c_\varepsilon(u_j)] = \int_{\Omega_\varepsilon} [I \cdot \nabla v(u_j)] \, \det \nabla u_j \, dx.
\]

Combining this with (2.8) and using that \(c_\varepsilon(u_s) \to c_\varepsilon(u_j) \) as \(s \to 0 \), we get that
\[
\frac{d}{ds} E_{\varepsilon, \mu_j, \eta_j}(u_s) \bigg|_{s=0} = \int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_j) \nabla u_j^T \right. \\
+ \left(\mu_j + \eta_j c_\varepsilon(u_j) \right)(\det \nabla u_j) \nabla v(u_j) \cdot \nabla u_j \, dx.
\]

Since \(u_j \) is a minimizer, we must have that
\[
\int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_j) \nabla u_j^T + \left(\mu_j + \eta_j c_\varepsilon(u_j) \right)(\det \nabla u_j) \nabla v(u_j) \cdot \nabla u_j \right] \, dx = 0, \tag{2.9}
\]

for all such \(v \)'s. We now drop to the subsequence \(\{u_{j_k}\} \) that converges weakly in \(W^{1,p}(\Omega_\varepsilon) \) to \(u_\varepsilon \) and with \(\det \nabla u_{j_k} \to \det \nabla u_\varepsilon \) in \(L^1(\Omega_\varepsilon) \). Using (2.5) and the Dominated Convergence Theorem once again, we get that \(\{\mu_j\} \) has a subsequence converging to \(\mu_\varepsilon \) where
\[
\int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_\varepsilon) \nabla u_\varepsilon^T + \mu_\varepsilon(\det \nabla u_\varepsilon) \nabla v(u_\varepsilon) \cdot \nabla u_\varepsilon \right] \, dx = 0.
\]

Since \((\det \nabla u_\varepsilon)I = (\text{adj} \nabla u_\varepsilon)^T \nabla u_\varepsilon^T \) and \(\nabla[v(u_\varepsilon)] = \nabla v(u_\varepsilon) \nabla u_\varepsilon \), we get that the above equation can be written as
\[
\int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_\varepsilon) + \mu_\varepsilon(\text{adj} \nabla u_\varepsilon)^T \right] \cdot \nabla[v(u_\varepsilon)] \, dx = 0.
\]

11
Now assume that \(u_\varepsilon \in C^2(\Omega_\varepsilon) \cap C^1(\overline{\Omega_\varepsilon}) \) with \(\det \nabla u_\varepsilon > 0 \) in \(\Omega_\varepsilon \). Note that (2.7b) and (2.7d) follow from the fact that \(u_\varepsilon \) is a solution of (2.3). The proof that (2.7a) holds is similar to the one given in [18, Theorem 5.1] and thus we omit it. Now multiply (2.7a) by \(v(u_\varepsilon) \) where \(v \in C^1(\mathbb{R}^n) \) with \(v = 0 \) on \(\mathbb{R}^n \setminus \mathcal{E} \), and integrate by parts using (2.6) to get that

\[
\int_{\partial \Omega_\varepsilon} \left(\left[\frac{dW}{dF}(\nabla u_\varepsilon) + \mu_\varepsilon (\text{adj } \nabla u_\varepsilon)^T \right] \cdot n \right) \cdot v(u_\varepsilon) \, ds(x) = 0.
\]

Since the normal \(n \) to \(\partial \Omega_\varepsilon \) is mapped by \(u_\varepsilon \) to \(\tilde{n}(u_\varepsilon) = (\det \nabla u_\varepsilon)(\nabla u_\varepsilon)^{-T} n \), upon setting \(y = u_\varepsilon(x) \), the previous equation is equivalent to:

\[
\int_{u_\varepsilon(\partial \Omega_\varepsilon)} \left([T(y) + \mu_\varepsilon I] \cdot \tilde{n}(y) \right) \cdot v(y) \, ds(y) = 0,
\]

where the Cauchy stress tensor \(T(u_\varepsilon) \) is given by

\[
T(u_\varepsilon) = (\det \nabla u_\varepsilon)^{-1} \frac{dW}{dF}(\nabla u_\varepsilon)(\nabla u_\varepsilon)^T.
\]

Since \(v = 0 \) on \(u_\varepsilon(\partial \Omega) \), we get that (2.10) implies that

\[
[T(y) + \mu_\varepsilon I] \cdot \tilde{n}(y) = 0, \quad \forall y \in u_\varepsilon(\partial \mathcal{B}_\varepsilon(x_0)).
\]

which after changing variables back to \(\Omega_\varepsilon \) yields (2.7c).

We now study the sensitivity of the attained minimum value in (2.3) with respect to changes in the matrix \(A \). In the usual sensitivity theorems of optimization theory, the parameters that change are in the right hand sides of the constraints. In our problem however, the matrix \(A \) appears both in the right hand side of the volume constraint and in the displacement boundary condition on \(\partial \Omega \) (c.f. (2.7b), (2.7d)). Thus our calculation picks up an additional term from \(\partial \Omega \). To emphasize the dependence of \(u_\varepsilon \) on \(A \), we use the notation \(u_\varepsilon(\cdot, A) \).

Theorem 2.4. Let \(u_\varepsilon(\cdot, A) \) be the minimizer in (2.3) and assume that \(u_\varepsilon(\cdot, A) \in C^2(\Omega_\varepsilon) \cap C^1(\overline{\Omega_\varepsilon}) \) and that \(u_\varepsilon \in C^2(\Omega_\varepsilon \times M_+^{n \times n}) \). Then for \(A = \text{diag}(\lambda_1, \ldots, \lambda_n) \), \(\lambda_i > 0 \) for all \(i \), we have that

\[
\frac{\partial}{\partial \lambda_i} E_\varepsilon(u_\varepsilon(\cdot, A)) = \int_{\partial \Omega} x_i e_i \cdot \left[\frac{dW}{dF}(\nabla u_\varepsilon) + \mu_\varepsilon (\text{adj } \nabla u_\varepsilon)^T \right] \cdot n \, ds
\]
where \(\{e_k\} \) is the standard basis of \(\mathbb{R}^n \).

Proof: Let \(u_{\varepsilon,i} = \frac{\partial u_{\varepsilon}}{\partial \lambda_i} \). By the assumed smoothness on \(u_{\varepsilon} \), we have that

\[
\frac{\partial}{\partial \lambda_i} E_{\varepsilon}(u_{\varepsilon}, A) = \frac{\partial}{\partial \lambda_i} \int_{\Omega_{\varepsilon}} W(\nabla u_{\varepsilon}) \, dx = \int_{\Omega_{\varepsilon}} \frac{dW}{dF}(\nabla u_{\varepsilon}) \cdot \nabla u_{\varepsilon,i} \, dx. \tag{2.12}
\]

If we multiply (2.7a) by \(u_{\varepsilon,i} \), integrate by parts, and use the boundary condition (2.7c), we get that

\[
\int_{\Omega_{\varepsilon}} \left[\frac{dW}{dF}(\nabla u_{\varepsilon}) + \mu_{\varepsilon} (\bm{adj} \, \nabla u_{\varepsilon})^T \right] \cdot \nabla u_{\varepsilon,i} \, dx = \int_{\partial \Omega_{\varepsilon}} \left[\frac{dW}{dF}(\nabla u_{\varepsilon}) + \mu_{\varepsilon} (\bm{adj} \, \nabla u_{\varepsilon})^T \right] \cdot n \cdot u_{\varepsilon,i} \, ds. \tag{2.13}
\]

Since (2.7b) implies that \(u_{\varepsilon,i}(x) = x_i e_i \) for \(x \in \partial \Omega \), the above equation can be written as

\[
\int_{\Omega_{\varepsilon}} \frac{dW}{dF}(\nabla u_{\varepsilon}) \cdot \nabla u_{\varepsilon,i} \, dx = \int_{\partial \Omega_{\varepsilon}} x_i \left(\frac{dW}{dF}(\nabla u_{\varepsilon}) + \mu_{\varepsilon} (\bm{adj} \, \nabla u_{\varepsilon})^T \right) \cdot n \cdot e_i \, ds - \mu_{\varepsilon} \int_{\Omega_{\varepsilon}} (\bm{adj} \, \nabla u_{\varepsilon})^T \cdot \nabla u_{\varepsilon,i} \, dx. \tag{2.13}
\]

We now differentiate (2.7d) with respect to \(\lambda_i \) to get that

\[
\int_{\Omega_{\varepsilon}} (\bm{adj} \, \nabla u_{\varepsilon})^T \cdot \nabla u_{\varepsilon,i} \, dx = \frac{\omega_n}{n} \frac{\partial}{\partial \lambda_i} (\det A) = \frac{\omega_n}{n \lambda_i} \det A. \tag{2.11}
\]

Combining this with (2.12) and (2.13), gives the result (2.11).

3 Convergence of the regularized constrained minimizers

We now show that the regularized constrained minimizers whose existence is given by Theorem 2.2 converge to a solution of the “non–regular” constrained problem (1.6). The first part of the proof of this result, dealing with the convergence and the existence of
the limit, is very similar to that in [19, Theorem 4.1] and consequently we sketch most of it. The second part in which we show that the limiting function is actually a solution of (1.6) is more subtle, again due to the treatment of the integral volume constraint in (1.6). In particular we need the following result which shows that given any function \(u \in C_0^0 \) and any sequence \(\varepsilon_j \to 0 \), we can approximate \(u \) with a sequence of functions \(\{ \hat{u}_j \} \) where \(\hat{u}_j \in C_\varepsilon^j \) for all \(j \).

Lemma 3.1. Let \(\Omega \) be a bounded, open, convex set, and let the stored energy function \(W \) satisfy the conditions H1–H2, and assume further that for some \(K, \gamma_0 > 0 \),

\[
|W(FC)| \leq K[W(F) + 1], \tag{3.1}
\]

whenever \(\|C - I\| < \gamma_0 \). Let \(u \in C_0^0 \). Then for any for any sequence \(\{ \varepsilon_j \} \) with \(\varepsilon_j \to 0 \), there exists a sequence of functions \(\{ \hat{u}_j \} \) in \(W^{1,p}(\Omega) \) such that

\[
\lim_{j \to \infty} \int_{\Omega} W(\nabla \hat{u}_j(x)) \, dx = \int_{\Omega} W(\nabla u(x)) \, dx.
\]

Moreover, \(\hat{u}_j|_{\Omega_{\varepsilon_j}} \in C_\varepsilon^j \).

Proof: For any \(0 < \eta < 1 \) and \(\varepsilon > 0 \), we let

\[
\Omega_\varepsilon^\eta = \{ x \in \Omega_\varepsilon : \text{dist}(x, \partial \Omega) > 1 - \eta \}.
\]

In terms of our previous notation, we have that \(\Omega_\varepsilon = \Omega_\varepsilon^1 \). Now \(\partial \Omega_\varepsilon^\eta = \partial B_\varepsilon(x_0) \cup \omega_\eta \) where

\[
\omega_\eta = \{ x \in \Omega_\varepsilon : \text{dist}(x, \partial \Omega) = 1 - \eta \}.
\]

For each \(y \in \omega_\eta \) there exists a unique \(x(y) \in \partial B_\varepsilon(x_0) \) such that

\[
\|x(y) - y\| = \text{dist}(y, \partial B_\varepsilon(x_0)).
\]

Since \(\Omega \) is convex, the segment

\[
|x(y), y| = \{ \gamma x(y) + (1 - \gamma)y : 0 < \gamma < 1 \},
\]

belongs to \(\Omega_\varepsilon^\eta \). Moreover, there exists a unique \(z(y) \in \partial \Omega \) such that

\[
|x(y), y| \subset |x(y), z(y)| \subset \Omega_\varepsilon.
\]
Since the segments \([x(y), y[, [x(y), z(y)] \) can be put into a one to one correspondence, after letting \(y \in \omega_{\eta} \) to vary over \(\omega_{\eta} \), this basically shows that we can construct a diffeomorphism \(\Gamma : \Omega_{\varepsilon} \rightarrow \Omega_{\varepsilon}^\eta \) such that \(\det \nabla \Gamma > 0 \) over \(\Omega_{\varepsilon} \) and with \(\Gamma(x) = x \) for \(x \in \partial B_{\varepsilon}(x_0) \).

For any \(u \in C^0_{\Lambda} \), define \(\hat{u}_{\eta} \) on \(\Omega_{\varepsilon} \) by:

\[
\hat{u}_{\eta}(y) = \begin{cases}
 u(\Gamma^{-1}(y)), & y \in \Omega_{\varepsilon}^\eta, \\
 A_y, & y \in \Omega_{\varepsilon} \setminus \Omega_{\varepsilon}^\eta.
\end{cases}
\]

We now show that \(\hat{u}_{\eta} \in C^\varepsilon_{\Lambda} \) for \(\eta \) (depending on \(\varepsilon \)) sufficiently close to 1.

i) Clearly \(\hat{u}_{\eta}(x) = A x \) for \(x \in \partial \Omega \), and

\[
\det \left[\nabla (u(\Gamma^{-1}(y))) \right] = \det \nabla u(\Gamma^{-1}(y)) \det \nabla \Gamma^{-1}(y) > 0,
\]

a.e. on \(\Omega_{\varepsilon} \) since \(\det \nabla u > 0 \) a.e. on \(\Omega \), and \(\det \nabla \Gamma > 0 \) implies that \(\det \nabla \Gamma^{-1} > 0 \) on \(\Omega_{\varepsilon} \). Clearly \(\hat{u}_{\eta} \) satisfies INV in \(\Omega_{\varepsilon} \) and since \(\delta_{x_0}(\Omega_{\varepsilon}) = 0 \), it follows that \(\hat{u}_{\eta} \in C^\varepsilon_{\Lambda} \).

ii) Since \(u \in C^0_{\Lambda} \), we have that

\[
\int_{\Omega} \det \nabla u \, dx = (\det A) \, |\Omega| - V.
\]

Hence

\[
\int_{\Omega_{\varepsilon}} \det \nabla u \, dx = (\det A) \, |\Omega| - V_{\varepsilon} = V + \int_{\partial B_{\varepsilon}(x_0)} \det \nabla u \, dx.
\]

Note that \(V_{\varepsilon} > V \), and \(V_{\varepsilon} \searrow V \) as \(\varepsilon \searrow 0 \). Now

\[
\int_{\Omega_{\varepsilon}} \det \nabla \hat{u}_{\eta} \, dy = \int_{\Omega_{\varepsilon}^\eta} \det \nabla u(\Gamma^{-1}(y)) \det \nabla \Gamma^{-1}(y) \, dy \\
+ \int_{\Omega_{\varepsilon} \setminus \Omega_{\varepsilon}^\eta} \det A \, dy,
\]

\[
= \int_{\Omega_{\varepsilon}} \det \nabla u \, dx + (\det A) \, (|\Omega| - |\Omega_{\varepsilon}^\eta|),
\]

\[
= (\det A) \, |\Omega| - V_{\varepsilon} + (\det A) \, (|\Omega| - |\Omega_{\varepsilon}^\eta|),
\]

where

\[
\Omega_{\varepsilon}^\eta = \{ x \in \Omega : \text{dist}(x, \partial \Omega) > 1 - \eta \}.
\]

With \(\varepsilon \) fixed, choose \(\eta(\varepsilon) \) such that

\[
(\det A) \, (|\Omega| - |\Omega_{\varepsilon}^\eta|) = V_{\varepsilon} - V.
\]
Note that $\eta(\varepsilon) \nearrow 1$ as $\varepsilon \searrow 0$. With this choice of $\eta(\varepsilon)$, we get that
\[
\int_{\Omega_{\varepsilon}} \det \nabla \hat{u}_{\eta(\varepsilon)} \, dy = (\det A) |\Omega| - V.
\]
Combining this with result of part (i), we get that $\hat{u}_{\eta(\varepsilon)} \in C^\varepsilon_{\mathcal{A}}$. Henceforth we set $\hat{u}_{\varepsilon} = \hat{u}_{\eta(\varepsilon)}$. Since $\Gamma(x) = x$ for $x \in \partial B_{\varepsilon}(x_0)$, we can extend \hat{u}_{ε} to Ω by setting $\hat{u}_{\varepsilon}(x) = u(x)$ for $x \in B_{\varepsilon}(x_0)$ with the resulting \hat{u}_{ε} now in $W^{1,p}(\Omega)$ and with $\hat{u}_{\varepsilon}|_{\Omega_{\varepsilon}} \in C_{\mathcal{A}}$.

Now take $\{\varepsilon_j\}$ with $\varepsilon_j \to 0$ and set $\hat{u}_j = \hat{u}_{\varepsilon_j}$. Let $\Gamma_j : \Omega_{\varepsilon_j} \to \Omega_{\varepsilon_j}^{p(\varepsilon_j)}$ be the corresponding diffeomorphism in the definition of \hat{u}_j. Since Γ_j when restricted to $\partial B_{\varepsilon_j}(x_0)$ is equal to the identity mapping, it follows that it can be extended continuously into B_{ε_j} as the identity. Thus $\nabla \Gamma_j^{-1} \to I$ as $j \to \infty$ in $L^\infty(\Omega)$. These observations together with (3.1) imply that
\[
W(\nabla \hat{u}_j) \leq K[W(\nabla u) + 1],
\]
a.e. in Ω for j large enough. Now $\nabla \hat{u}_j \to \nabla u$ a.e. in Ω. The above inequality and the Dominated Convergence Theorem can be used now to conclude that
\[
\lim_{j \to \infty} \int_{\Omega} W(\nabla \hat{u}_j(x)) \, dx = \int_{\Omega} W(\nabla u(x)) \, dx.
\]

We now have the main result of this paper.

Theorem 3.2. Let the hypotheses in Lemma 3.1 hold. For $V \in (0, (\omega_n/n) \det A)$, let $\{\varepsilon_j\}$ be a sequence of positive numbers converging to zero, and for each ε_j, let u_j be the corresponding minimizer given by Theorem 2.2 and satisfying (2.3). Then $\{u_j\}$ has a subsequence $\{u_{j_k}\}$ such that for any $\delta > 0$,
\[
u_{j_k} \rightharpoonup u_V \quad \text{in} \quad W^{1,p}(\Omega_\delta),
\]
where the function u_V is a solution of (1.6), and with
\[
E(u_V) = \lim_{k} E_{\varepsilon_{j_k}}(u_{j_k}).
\]

Proof: We let
\[
C^\varepsilon_{\mathcal{A}} \equiv \{u \in A^\varepsilon_{\mathcal{A}} \mid c_{\varepsilon}(u) = 0\}, \quad \varepsilon \geq 0.
\]
It follows from Lemma B.1 that these sets are non empty for ε small enough. Thus each u_j satisfies:

$$E_{\varepsilon_j}(u_j) = \min_{u \in C_{\varepsilon_j}^A} \int_{\Omega_{\varepsilon_j}} W(\nabla u(x)) \, dx = \min_{u \in C_{\varepsilon_j}^A} E_{\varepsilon_j}(u).$$

Now we fix an index $J \in \mathbb{N}$ and take $j > J$. It follows from hypothesis (H2) on W that for some constants $c_1 > 0$ and $c_2 \in \mathbb{R}$:

$$E_{\varepsilon_j}(u_j) \geq c_1 \|\nabla u_j\|_{L^p(\Omega_{\varepsilon_j})}^p + c_2, \quad j > J.$$

Again, it follows from (H2) that we may assume that W is non negative. Hence

$$E_{\varepsilon_j}(u_j) \leq E_{\varepsilon_j}(u_j) \leq C, \quad j > J,$$

where the constant C is given by Lemma B.1. Combining this with the inequality above, and since $u_j = Ax$ on $\partial\Omega$, we get that (for a subsequence) \{u_j\} converges weakly in $W^{1,p}(\Omega_{\varepsilon_j})$ to a function u^J, and that $\{\det \nabla u_j\}$ converges weakly in $L^1(\Omega_{\varepsilon_j})$ to a function θ^J. Since $p \in (n-1,n)$, it follows from [14, Theorem 4.2], that u^J satisfies condition INV, $\theta^J = \det \nabla u^J$, and $\det \nabla u^J > 0$ almost everywhere. By choosing an appropriate diagonal sequence, it is shown in [19] that there exists a subsequence \{u_{jk}\} and a function $u_V \in W^{1,p}(\Omega)$ such that

$$u_{jk} \rightharpoonup u_V, \quad \text{in} \quad W^{1,p}(\Omega_{\varepsilon_j}).$$

The results in [19, Section 4.2] show that $u_V \in A_A$.

It remains to show that u_V is a solution of (1.6). By the results quoted in the previous paragraph, we get that the subsequence \{u_{jk}\} has the property that

$$\det \nabla u_{jk} \rightharpoonup \det \nabla u_V, \quad \text{in} \quad L^1(\Omega_{\varepsilon_j}).$$

Since $u_{jk} \in C^{\varepsilon_j,k}_A$, we also have that

$$\int_{\Omega_{\varepsilon_j,k}} \det \nabla u_{jk} \, dx = (\det A) |\Omega| - V, \quad \forall k.$$

Now we extend $\det \nabla u_{jk}$ to Ω as follows:

$$g_k(x) = \begin{cases}
\det \nabla u_{jk}(x), & x \in \Omega_{\varepsilon_j,k}, \\
0, & x \in \Omega \setminus \Omega_{\varepsilon_j,k}.
\end{cases}$$
Clearly \(g_k \in L^1(\Omega) \) and since \(\det \nabla u_{j_k} > 0 \ a.e. \ in \ \Omega_{\varepsilon j_k} \), we get that

\[
\|g_k\|_{L^1(\Omega)} = \int_{\Omega} g_k \, dx = \int_{\Omega_{\varepsilon j_k}} \det \nabla u_{j_k} \, dx = (\det A) \ |\Omega| - V, \quad \forall k.
\]

Writing

\[
\int_{\Omega} (\det \nabla u_V - g_k) \, dx = \int_{\Omega_{\varepsilon J}} (\det \nabla u_V - g_k) \, dx + \int_{\Omega \setminus \Omega_{\varepsilon J}} (\det \nabla u_V - g_k) \, dx,
\]

we observe that the second term on the right is bounded by a constant times \(|\Omega \setminus \Omega_{\varepsilon j}| \), and thus can be made arbitrarily small by taking \(J \) sufficiently large. Once \(J \) is fixed, the first term can be make arbitrarily small for \(k \) sufficiently large, as \(g_k = \det \nabla u_{j_k} \) over \(\Omega \) for \(k \) sufficiently large and by the weak convergence of \(\{ \det \nabla u_{j_k} \} \) to \(\det \nabla u_V \) in \(L^1(\Omega_J) \).

This essentially shows that

\[
\int_{\Omega} \det \nabla u_V \, dx = \lim_{k \to \infty} \int_{\Omega} g_k \, dx = (\det A) \ |\Omega| - V,
\]

Hence \(u_V \in C^0_A \). We now show that \(u_V \) is a minimizer over \(C^0_A \).

For any \(u \in C^0_A \) and for the subsequence \(\{ \varepsilon_{j_k} \} \) above, let \(\{ \hat{u}_{j_k} \} \) be the corresponding sequence given by Lemma 3.1 with the property that

\[
\lim_{k \to \infty} \int_{\Omega} W(\nabla \hat{u}_{j_k}(x)) \, dx = \int_{\Omega} W(\nabla u(x)) \, dx. \tag{3.2}
\]

As a function over \(\Omega_{\varepsilon j_k} \), we have that \(\hat{u}_{j_k} \in C^\varepsilon_{\varepsilon j_k} \). Since \(u_{j_k} \) is the minimizer over \(C^\varepsilon_{\varepsilon j_k} \), we have that

\[
\int_{\Omega_{\varepsilon j_k}} W(\nabla u_{j_k}(x)) \, dx \leq \int_{\Omega_{\varepsilon j_k}} W(\nabla \hat{u}_{j_k}(x)) \, dx. \tag{3.3}
\]

Let \(N > 0 \) be given. For \(k > N \) and the nonnegativity of \(W \) we get that

\[
\int_{\Omega_{\varepsilon j_N}} W(\nabla u_{j_k}(x)) \, dx \leq \int_{\Omega_{\varepsilon j_k}} W(\nabla \hat{u}_{j_k}(x)) \, dx. \tag{3.4}
\]

By the results in [2], the functional \(E_{\varepsilon j_N}(\cdot) \) (cf. (1.9)) is weakly lower semi–continuous over \(A^\varepsilon_{\varepsilon j_N} \). Using this and since \(u_{j_k} \rightharpoonup u_V \) in \(W^{1,p}(\Omega_{\varepsilon j_N}) \), we conclude that

\[
\int_{\Omega_{\varepsilon j_N}} W(\nabla u_V(x)) \, dx \leq \liminf_{k} \int_{\Omega_{\varepsilon j_N}} W(\nabla u_{j_k}(x)) \, dx. \tag{3.5}
\]
From the nonnegativity of W, it follows from (3.2)–(3.5) that
\[\int_{\Omega_{j,N}} W(\nabla u_V(x)) \, dx \leq \int_{\Omega} W(\nabla u(x)) \, dx. \]

Since N is arbitrary, we can conclude that
\[\int_{\Omega} W(\nabla u_V(x)) \, dx \leq \int_{\Omega} W(\nabla u(x)) \, dx. \]

Since $u \in C^0_A$ is arbitrary, we get that u_V is a minimizer over C^0_A. If we set $u = u_V$ in (3.2), then we get as well that
\[\int_{\Omega} W(\nabla u_V(x)) \, dx = \liminf_k \int_{\Omega_{j,k}} W(\nabla u_{j,k}(x)) \, dx, \]
from which the result about the energies follows upon taking another subsequence.

We now derive an expression for a weak form of the equilibrium equations for the minimizer u_V in Theorem 3.2.

Theorem 3.3. Assume that (2.5) and the hypotheses in Theorem 3.2 hold. Let u_V be the minimizer in Theorem 3.2. Then there exists $\mu_V \in \mathbb{R}$ such that
\[\int_{\Omega} \left[\frac{dW}{dF}(\nabla u_V) + \mu_V (\text{adj} \nabla u_V)^T \right] \cdot \nabla [v(u_V)] \, dx = 0, \tag{3.6} \]
for all $v \in C^1(\mathbb{R}^n)$ with $v = 0$ on $\mathbb{R}^n \setminus \mathcal{E}$, where $\mathcal{E} = \{Ax : x \in \Omega\}$. Moreover, if $u_V \in C^2(\Omega \setminus \{x_0\}) \cap C^1(\overline{\Omega} \setminus \{x_0\})$ with $\det \nabla u_V > 0$ in $\Omega \setminus \{x_0\}$, then
\[\text{div} \left[\frac{dW}{dF}(\nabla u_V) + \mu_V (\text{adj} \nabla u_V)^T \right] = 0, \quad \text{in} \quad \Omega \setminus \{x_0\}, \tag{3.7} \]
and
\[\lim_{\delta \to 0} \int_{\partial B_\delta(x_0)} \left(\left[\frac{dW}{dF}(\nabla u_V) + \mu_V (\text{adj} \nabla u_V)^T \right] \cdot \mathbf{n} \right) \cdot v(u_V) \, ds(x) = 0. \tag{3.8} \]

Proof: Let $\{u_{j,k}\}$ be the subsequence given by Theorem 3.2 such that for any $\delta > 0$,
\begin{align*}
 u_{j,k} &\rightharpoonup u_V \quad \text{in} \quad W^{1,p}(\Omega_\delta), \tag{3.9a} \\
 \det \nabla u_{j,k} &\rightharpoonup \det \nabla u_V \quad \text{in} \quad L^1(\Omega_\delta), \tag{3.9b}
\end{align*}
and with
\[E(\mathbf{u}_V) = \lim_{k \to \infty} E_{\varepsilon_{jk}}(\mathbf{u}_{jk}). \] (3.10)
(We recall that \(\mathbf{u}_{jk} \) is the corresponding minimizer given by Theorem \[2.2 \] corresponding to \(\varepsilon_{jk} \).) From Theorem \[2.3 \] we have that
\[\int_{\Omega_{\varepsilon_{jk}}} \left[\frac{dW}{d\mathbf{F}}(\nabla \mathbf{u}_{\varepsilon_{jk}}) \nabla \mathbf{u}_{\varepsilon_{jk}}^T + \mu_{\varepsilon_{jk}} (\det \nabla \mathbf{u}_{\varepsilon_{jk}}) \mathbf{I} \right] \cdot \nabla \mathbf{v}(\mathbf{u}_{\varepsilon_{jk}}) \, dx = 0. \]
Let \(g_{\varepsilon_{jk}} \) and \(h_{\varepsilon_{jk}} \) represent the extensions (by the zero tensor) over \(\Omega \) of the functions
\[\frac{dW}{d\mathbf{F}}(\nabla \mathbf{u}_{\varepsilon_{jk}}) \nabla \mathbf{u}_{\varepsilon_{jk}}^T, \quad (\det \nabla \mathbf{u}_{\varepsilon_{jk}}) \mathbf{I}, \]
respectively. The sequence \(\{ \mathbf{u}_{\varepsilon_{jk}} \} \) can be extended (cf. \[19 \ p. 746 \]) as well to a sequence \(\{ \tilde{\mathbf{u}}_{\varepsilon_{jk}} \} \) over \(\Omega \) in such way that (3.9) holds now over \(\Omega \), with \(\tilde{\mathbf{u}}_{\varepsilon_{jk}} = \mathbf{u}_{\varepsilon_{jk}} \) over \(\Omega_{\varepsilon_{jk}} \), and with \(\tilde{\mathbf{u}}_{\varepsilon_{jk}}(\Omega) \subset \mathcal{E} \). Using \[2.5 \], \[3.9 \], and \[3.10 \] together with the Dominated convergence Theorem, we get that
\[\int_{\Omega} \frac{dW}{d\mathbf{F}}(\nabla \mathbf{u}_V) \nabla \mathbf{u}_V^T \cdot \nabla \mathbf{v}(\mathbf{u}_V) \, dx = \lim_{k \to \infty} \int_{\Omega} g_{\varepsilon_{jk}} \cdot \nabla \mathbf{v}(\tilde{\mathbf{u}}_{\varepsilon_{jk}}) \, dx, \]
\[\int_{\Omega} (\det \nabla \mathbf{u}_V) \mathbf{I} \cdot \nabla \mathbf{v}(\mathbf{u}_V) \, dx = \lim_{k \to \infty} \int_{\Omega} h_{\varepsilon_{jk}} \cdot \nabla \mathbf{v}(\tilde{\mathbf{u}}_{\varepsilon_{jk}}) \, dx. \]
But
\[0 = \int_{\Omega_{\varepsilon_{jk}}} \left[\frac{dW}{d\mathbf{F}}(\nabla \mathbf{u}_{\varepsilon_{jk}}) \nabla \mathbf{u}_{\varepsilon_{jk}}^T + \mu_{\varepsilon_{jk}} (\det \nabla \mathbf{u}_{\varepsilon_{jk}}) \mathbf{I} \right] \cdot \nabla \mathbf{v}(\mathbf{u}_{\varepsilon_{jk}}) \, dx \]
\[= \int_{\Omega} \left[g_{\varepsilon_{jk}} + \mu_{\varepsilon_{jk}} h_{\varepsilon_{jk}} \right] \cdot \nabla \mathbf{v}(\tilde{\mathbf{u}}_{\varepsilon_{jk}}) \, dx, \]
for all \(k \). Combining this with the two limits above we that there exists \(\mu_V \in \mathbb{R} \) such that \(\mu_{\varepsilon_{jk}} \rightarrow \mu_V \) and with
\[\int_{\Omega} \left[\frac{dW}{d\mathbf{F}}(\nabla \mathbf{u}_V) \nabla \mathbf{u}_V^T + \mu_V (\det \nabla \mathbf{u}_V) \mathbf{I} \right] \cdot \nabla \mathbf{v}(\mathbf{u}_V) \, dx = 0, \]
from which \[3.6 \] follows.
Now assume that $u, v \in C^2(\Omega \setminus \{x_0\}) \cap C^1(\Omega \setminus \{x_0\})$ with $\det \nabla u > 0$ in $\Omega \setminus \{x_0\}$. The proof of (3.7) is similar to the one given in [18, Theorem 5.1] and thus we omit it. Let $\delta > 0$ be given. If we multiply (3.7) by $v(u_V)$, where $v \in C^1(\mathbb{R}^n)$ with $v = 0$ on $\mathbb{R}^n \setminus E$, and integrate by parts over Ω_δ, we get that

$$\int_{\Omega_\delta} \left[\frac{dW}{dF}\nabla u_V + \mu_V (\text{adj} \, \nabla u_V)^T \cdot \nabla [v(u_V)] \right] dx$$

$$= \int_{\partial B_\delta(x_0)} \left(\left[\frac{dW}{dF}\nabla u_V + \mu_V (\text{adj} \, \nabla u_V)^T \right] \cdot n \right) \cdot v(u_V) ds(x).$$

Taking the limit as $\delta \searrow 0$ and using (3.6) we get that (3.8) holds.

\[\square\]

Remark 3.4. One could try to prove Theorem 3.3 by using variations directly onto the functional in (1.6). However this approach would require constructing variations that preserve the volume constraint $c_0(u) = 0$ (cf. (1.7)). Our proof using Theorem 2.3 avoids the technical complications of constructing such variations.

Remark 3.5. In terms of the Cauchy stress tensor:

$$T(u_V) = (\det \nabla u_V)^{-1} \frac{dW}{dF}(\nabla u_V)(\nabla u_V)^T,$$

(3.8) is equivalent to:

$$\lim_{\delta \rightarrow 0} \int_{u_V(\partial B_\delta(x_0))} ([T(y) + \mu_V I] \cdot \hat{n}(y)) \cdot v(y) ds(y) = 0,$$

where \hat{n} is the unit normal to $u_V(\partial B_\delta(x_0))$. If H is the region of volume V occupied by the cavity induced by u_V, then the limit above can be replaced by the corresponding integral over ∂H. It follows now that

$$\int_{\partial H} ([T(y) + \mu_V I] \cdot \hat{n}(y)) \cdot v(y) ds(y) = 0,$$

for all $v \in C^1(\mathbb{R}^n)$. Thus

$$[T(y) + \mu_V I] \cdot \hat{n}(y) = 0, \text{ over } \partial H,$$

(3.11) in the sense of trace.
4 Numerical results

In this section we describe some of the elements of a numerical procedure, based on the results of the previous sections, to compute a minimizer of (1.6). In addition we work a numerical example in which we check the convergence as $\varepsilon \to 0$ predicted by Theorem 3.2.

For given values of ε, V, we use the method outlined in Theorem 2.2 to compute the minimizer u_ε in (2.3). The minimizers in (2.2a) (dropping the subscript "j") are computed using the gradient flow equation:

$$\Delta u = -\text{div} \left[\frac{dW}{dF}(\nabla u) + (\mu + \eta c_\varepsilon(u))(\text{adj} \nabla u)^t \right], \text{ in } \Omega_\varepsilon,$$

where for all $t \geq 0$, $u(x, t) = A x$ over $\partial \Omega$ and

$$\left[\nabla u + \frac{dW}{dF}(\nabla u) + (\mu + \eta c_\varepsilon(u))(\text{adj} \nabla u)^t \right] \cdot n = 0, \text{ on } \partial B_\varepsilon(x_0).$$

The gradient flow equation leads to a descent method for the solution of (2.2a). (For more details about the gradient flow method and its properties we refer to [16], and for its use in problems leading to cavitation see [8].) After discretization of the partial derivative with respect to "t", one can use a finite element method to solve the resulting flow equation. In particular, if we let $\Delta t > 0$ be given, and set $t_{i+1} = t_i + \Delta t$ where $t_0 = 0$, we can approximate $u_t(x, t_i)$ with:

$$z_i(x) = \frac{u_{i+1}(x) - u_i(x)}{\Delta t},$$

where $u_i(x) = u(x, t_i)$, etc. (We take $u_0(x)$ to be some initial deformation satisfying the boundary condition on $\partial \Omega$, e.g., Ax.) Inserting this approximation into the weak form of (4.1), (4.2), and evaluating the right hand side of (4.1) at $u = u_i$, we arrive at the following iterative formula:

$$\int_{\Omega_\varepsilon} \nabla z_i : \nabla v \, dx + \int_{\Omega_\varepsilon} \left[\frac{dW}{dF}(\nabla u_i) + (\mu + \eta c_\varepsilon(u_i))(\text{adj} \nabla u_i)^t \right] : \nabla v \, dx = 0,$$

for all v vanishing on $\partial \Omega$ and sufficiently smooth so that the integrals above are well defined. Given u_i, one can solve the above equation for z_i via some finite element scheme, 2

\[\text{It follows from (2.4) that the Euler–Lagrange equations for (2.2a) are formally given by equating to zero the right hand side of (4.1).} \]
and then set $u_{i+1} = u_i + \Delta t \, z_i$. This process is repeated for $i = 0, 1, \ldots$, until $u_{i+1} - u_i$ is “small” enough (10^{-3} in the calculations below), or some maximum value of “t” is reached, declaring the last u_i as an approximation of u_ε. This whole process is repeated for smaller values of of ε, to obtain as a result an approximation of the minimizer u_ε in (1.6).

For the computations we used the stored energy function (1.13) in which:

$$h(d) = c_1 d^{e_1} + c_2 d^{e_2},$$

where $c_1, c_2 \geq 0$ and $e_1, e_2 > 0$. The reference configuration is stress free provided:

$$c_2 = \frac{\mu (\sqrt{n})^{q-2} + c_1 e_1}{e_2}.$$

The case $\mu = 0$ in (1.13) is called an elastic fluid.

For an elastic fluid in which $\Omega = B \equiv B_1(0)$ and $x_0 = 0$, the minimizer u_ε in (1.6) is given by (see [15]):

$$u_\varepsilon(x) = [d R^n + (1 - d)]^{1/n} \frac{Ax}{R}, \quad R = ||x||,$$

where d is given by

$$d = 1 - \frac{nV}{\omega_n \det A}. $$

(V is assumed to be sufficiently small as to guarantee that $d > 0$.) It follows that $\det \nabla u_\varepsilon = d \det A$. Thus we have that

$$E(u_\varepsilon) = \int_B h(\det \nabla u_\varepsilon) \, dx = \frac{\omega_n}{n} h(d \det A),$$

where ω_n denotes the area of the unit sphere in \mathbb{R}^n. We now consider the particular case in which $n = 2$, $c_1 = 1$, $e_1 = 2$, $e_2 = 1$, $V = \pi(0.15)^2$, and $A = \text{diag}(1.1, 1.4)$. Using the formulas above, we get that

$$E(u_\varepsilon) = \pi h((1.1)(1.4) - 0.15^2) = 11.3750.$$

For the parameters in Theorem 2.2 we used $\gamma = 0.25$, $\beta = 2$, with the stopping criteria in (2.2) given by $|\mu_{j+1} - \mu_j| < 10^{-3}|\mu_j|$, and for the solution of the sub–problems (4.3) we used the package freefem++ (see [5]). We show in Table I the results in this case for the method described at the beginning of this section. For each ε we clearly see the penalty–multiplier iterations converging as predicted in Theorem 2.2. Note that the
penalty parameters do not become too large, thus avoiding the ill-conditioning associated with large values of these parameters. As we move down along the table and look at the last computed energy for each \(\varepsilon \), we see that these values are approaching the exact energy 11.3750, to within the convergence tolerances in the gradient flow and penalty multiplier iterations and finite element approximation, in accordance with the result in Theorem 3.2.

5 Final Comments

In [15, Proposition 6.1] the authors introduced a regularized penalty method for approximating solutions of (1.6). They anticipated without proof, the convergence of the corresponding regularised minimizers to a solution of (1.6). The result in Theorem 3.2 fills that gap and by using a penalty-multiplier scheme we also obtained information on the Lagrange multiplier corresponding to the integral constraint on the volume of the hole produced in the deformed configuration. Moreover, the use of the penalty–multiplier technique leads to a more a stable numerical scheme as compared to a standard penalty method, as in general one achieves convergence to a minimum without having to make the penalty parameter excessively large, which could lead to numerical ill conditioning. We anticipate that the scheme introduced in this paper can be used as part of an efficient numerical scheme for the computation of the volume derivative introduced in [15].

A The integral constraint

In this section of the appendix we give a characterization of the condition on the distributional determinant in (1.4) in terms of an integral constraint.

Proposition A.1. For any \(u \in \mathcal{A}_{\Omega, \mathbf{v}} \), the following integral constraint holds:

\[
\int_{\Omega} \det \nabla u \, dx = (\det \mathbf{A}) \, |\Omega| - V. \tag{A.1}
\]

Moreover, for any \(u \in C^2(\Omega \setminus \{x_0\}) \cap C^1(\overline{\Omega} \setminus \{x_0\}) \) that satisfies (A.1), with \(\det \nabla u > 0 \) a.e., \(u(x) = \mathbf{A}x \) on \(\partial \Omega \), and \(u \) satisfies INV on \(\Omega \), it follows that

\[
\text{Det} \nabla u = \det \nabla u + V \delta_{x_0}. \tag{A.2}
\]

Proof: The first part of the proposition follows essentially from [14, Lemma 8.1] but we refer to [21] for a proof as well.
ε	j	$c_\varepsilon (u_j)$	$E_{\varepsilon, \mu, \eta_j} (u_j)$	μ_j	η_j
0.1	0	0.35566	10.3824	0	5
1	-0.108628	11.3609	-2.17783	10	
2	-0.0182435	11.3627	-3.26411	10	
3	-0.00175846	11.3637	-3.44654	10	
4	0.00123636	11.3636	-3.45177	20	
5	5.80666e-05	11.3636	-3.42781	40	
0.05	0	-0.208565	10.6179	0	5
1	-0.114678	11.2988	-2.04282	10	
2	0.0016487	11.3663	-3.1896	20	
3	0.000212224	11.3699	-3.22585	20	
4	0.00190667	11.3699	-3.41774	20	
5	-3.211286e-05	11.3699	-3.36514	80	
0.025	0	-0.201728	10.8508	0	5
1	-0.193863	11.149	-1.00664	10	
2	-0.0446432	11.3758	-2.94527	20	
3	0.00475689	11.3697	-3.83813	20	
4	0.015619	11.3684	-3.74299	20	
5	0.0201459	11.3716	-3.43661	40	
6	-9.222786e-05	11.3717	-3.35003	40	
7	-9.204566e-05	11.3717	-3.35372	40	
8	-9.204566e-05	11.3717	-3.3574	80	
9	-5.499993e-04	11.3717	-3.36971	160	
0.0125	0	-0.2027861	11.292	0	5
1	-0.0316523	11.385	-2.13731	10	
2	-0.0560048	11.2616	-1.10265	20	
3	-0.0281877	11.3806	-3.04235	40	
4	0.00372948	11.3698	-4.16986	80	
5	0.00570313	11.3705	-3.8715	80	
6	0.000615149	11.3724	-3.41525	160	
7	-0.000212007	11.3724	-3.31683	160	
8	-3.1888886e-05	11.3724	-3.35088	320	
9	1.109765e-06	11.3724	-3.62142	320	
0.00625	0	0.0374087	11.503	0	5
1	0.01714181	11.4372	0.188944	10	
2	0.0276714	11.4034	0.61225	20	
3	0.00229717	11.3836	0.514708	40	
4	-0.00539297	11.3545	0.606595	80	
5	-0.0106619	11.3448	0.17157	160	
6	-0.09686916	11.3674	-1.5374	320	
7	0.000534898	11.3724	-3.72887	640	
8	5.607e-05	11.3724	-3.3854	640	
9	5.31666e-07	11.3724	-3.3506	640	

Table 1: Convergence of the regularized penalty–multiplier minimizers for the case of a two dimensional elastic fluid.
For the second part of the proposition, let $u \in C^2(\Omega \setminus \{x_0\}) \cap C^1(\overline{\Omega} \setminus \{x_0\})$ with $\det \nabla u > 0$ a.e., $u(x) = Ax$ on $\partial \Omega$, and u satisfies INV on Ω. Assume that u satisfy (A.1). For any $\phi \in C_0^\infty(\Omega)$ and $\delta > 0$ sufficiently small,

$$
\int_{\Omega \setminus B_\delta(x_0)} \nabla \phi \cdot (\text{adj} \nabla u) u \, dx = \int_{\partial(\Omega \setminus B_\delta(x_0))} \phi \left((\text{adj} \nabla u) u \right) \cdot n \, ds \\
- \int_{\Omega \setminus B_\delta(x_0)} \phi \, \text{div} \left((\text{adj} \nabla u) u \right) \, dx, \\
= -\phi(x_0) \int_{\partial B_\delta(x_0)} \left((\text{adj} \nabla u) u \right) \cdot n \, ds \\
- n \int_{\Omega \setminus B_\delta(x_0)} \phi \, \det \nabla u \, dx,
$$

where $x_0 \in \partial B_\delta(x_0)$ and n in the last boundary integral is the unit outer normal to $\partial B_\delta(x_0)$. Thus:

$$
\langle \text{Det} \nabla u, \phi \rangle = \lim_{\delta \to 0} \left[-\frac{1}{n} \int_{\Omega \setminus B_\delta(x_0)} \nabla \phi \cdot (\text{adj} \nabla u) u \, dx \right] ,
$$

$$
= \phi(x_0) \lim_{\delta \to 0} \left[\frac{1}{n} \int_{\partial B_\delta(x_0)} \left((\text{adj} \nabla u) u \right) \cdot n \, ds \right] \\
+ \int_\Omega \phi \, \det \nabla u \, dx. \quad (A.3)
$$

Note that:

$$
\int_{\Omega \setminus B_\delta(x_0)} \det \nabla u \, dx = \frac{1}{n} \int_{\partial(\Omega \setminus B_\delta(x_0))} \left((\text{adj} \nabla u) u \right) \cdot n \, ds, \\
= \frac{1}{n} \int_{\partial \Omega} \left((\text{adj} \nabla u) u \right) \cdot n \, ds \\
- \frac{1}{n} \int_{\partial B_\delta(x_0)} \left((\text{adj} \nabla u) u \right) \cdot n \, ds. \quad (A.4)
$$

Assuming that (A.1) holds, we get that:

$$
\lim_{\delta \to 0} \left[\frac{1}{n} \int_{\partial B_\delta(x_0)} \left((\text{adj} \nabla u) u \right) \cdot n \, ds \right] = \frac{1}{n} \int_{\partial \Omega} \left((\text{adj} \nabla u) u \right) \cdot n \, ds - \int_{\Omega} \det \nabla u \, dx, \\
= \frac{1}{n} \int_{\partial \Omega} \left((\text{adj} \nabla u) Ax \right) \cdot n \, ds + V - (\det A) |\Omega|. \quad (A.4)
$$
Since \(u \in C^1(\overline{\Omega} \setminus \{x_0\}) \) and \(u(x) = Ax \) for all \(x \in \partial \Omega \), we have that \(\nabla u(x) = A \) for all \(x \in \partial \Omega \). Hence
\[
\int_{\partial \Omega} ((\text{adj} \, \nabla u)Ax) \cdot n \, ds = \int_{\partial \Omega} ((\text{adj} \, A)Ax) \cdot n \, ds,
\]
\[
= \det A \int_{\partial \Omega} x \cdot n \, ds = n (\det A) |\Omega|.
\]
(A.5)

Using this above we get that
\[
\lim_{\delta \to 0} \left[\frac{1}{n} \int_{\partial B(x_0)} ((\text{adj} \, \nabla u)u) \cdot n \, ds \right] = V.
\]
Thus combining this with (A.3) we get that:
\[
< \text{Det} \nabla u, \phi > = \int_{\Omega} \phi \det \nabla u \, dx + V \phi(x_0), \quad \forall \phi \in C^\infty_c(\Omega),
\]
i.e., that (A.2) holds.
\[\square\]

B The constrained admissible set

We now show that for \(\varepsilon \) sufficiently small, the admissible sets in (1.8) are non–empty. In the proof we make use of the following result. Let \(B_1(0) \) be the unit ball with centre at the origin and for any \(d \in (0, 1) \), define \(u_d(x) = [dR^n + (1 - d)]^{1/n} \frac{x}{R}, \quad R = \|x\|, \quad x \in B_1(0). \)

(B.1)

It follows from [2, Lemma 4.1], that \(u_d \in W^{1,p}(B_1(0)) \) for \(p \in [1, n) \). An easy calculation shows as well that \(\det \nabla u_d = d \).

Lemma B.1. There exists \(V_0, \varepsilon_0 > 0 \) such that
\[
C_\varepsilon^e \equiv \{ u \in A_\varepsilon^e \mid c_\varepsilon(u) = 0 \} \neq \emptyset,
\]
for all \(\varepsilon \in [0, \varepsilon_0] \) and \(0 < V < V_0 \). Moreover, if \(W \) is nonnegative and for any \(0 < \gamma < \delta \) there exists a constant \(K > 0 \) such that
\[
W(F) \leq K(\|F\|^p + 1), \quad \text{whenever} \ \det F \in [\gamma, \delta],
\]
(B.2)
then for any nonnegative sequence $\varepsilon_j \to 0$, there exists a sequence $z_{\varepsilon_j} \in C_A^{\varepsilon_j}$ such that

$$E_{\varepsilon_j}(z_{\varepsilon_j}) \leq C, \quad \forall \ j,$$

for some constant $C > 0$.

Proof: Let $\eta > 0$ be such that $B_\eta(x_0) \subset \Omega$ and define

$$V_0 = \eta^n \frac{\omega_n}{n} \det A, \quad \varepsilon_0 = \frac{nV}{\omega_n \det A}.$$

For $0 < V < V_0$ and $\varepsilon \in [0, \varepsilon_0)$, let

$$d_\varepsilon = \frac{1}{\eta^n - \varepsilon^n}\left(\eta^n - \frac{nV}{\omega_n \det A}\right).$$

It follows now that $d_\varepsilon \in (0, 1)$ and that $B_\varepsilon(x_0) \subset B_\eta(x_0)$. Now define $w_\varepsilon = u_{d_\varepsilon}$ and let

$$v_\varepsilon(x) = \begin{cases} \eta A w_\varepsilon \left(\frac{x-x_0}{\eta} + x_0\right) + Ax_0 - \eta A x_0, & x \in B_\eta(x_0), \\ Ax, & x \in \Omega \setminus B_\eta(x_0). \end{cases}$$

Clearly $v_\varepsilon(x) = Ax$ on $\partial \Omega \cup \partial B_\eta(x_0)$. Since $w_\varepsilon \in W^{1,p}(B_1(0))$ for $p \in [1, n)$, it follows that $v_\varepsilon \in W^{1,p}(\Omega)$ for $p \in [1, n)$. Hence in particular, if $z_\varepsilon = v_\varepsilon|_{\Omega_\varepsilon}$, then $z_\varepsilon \in A^{\varepsilon}_A$ for $\varepsilon \geq 0$. That $z_0 \in A^{0}_A$ follows from the following result:

$$\text{Det} \nabla w_0 = \text{Det} \nabla w_0 + \frac{\omega_n}{n}(1 - d_0)\delta_0,$$

where δ_0 is the Dirac delta measure at the origin. An easy calculation now shows that

$$\det \nabla z_\varepsilon = \begin{cases} d_\varepsilon \det A, & x \in B_\eta(x_0) \setminus B_\varepsilon(x_0), \\ \det A, & x \in \Omega \setminus B_\eta(x_0). \end{cases}$$

Using the definition of d_ε, we get now that

$$\int_{\Omega_\varepsilon} \det \nabla z_\varepsilon \, dx = \int_{B_\eta(x_0) \setminus B_\varepsilon(x_0)} \det \nabla z_\varepsilon \, dx + \int_{\Omega \setminus B_\eta(x_0)} \det \nabla z_\varepsilon \, dx,$$

$$= (\det A) \frac{\omega_n}{n} d_\varepsilon (\eta^n - \varepsilon^n) + \det A \left(|\Omega| - \frac{\omega_n}{n} \eta^n\right),$$

$$= (\det A) |\Omega| - V,$$

that is, $c_\varepsilon(z_\varepsilon) = 0$. Hence $z_\varepsilon \in C_A^{\varepsilon_j}$. 28
For the second part of the lemma, we observe that for any nonnegative sequence \((\varepsilon_j)\) converging to zero, we can conclude from [2, Eqn. (4.5)] that \((v_{\varepsilon_j})\) is a Cauchy sequence in \(W^{1,p}(\Omega)\). Since \(v_{\varepsilon_j} \to v_0\) a.e., we have that \(v_{\varepsilon_j} \to v_0\) in \(W^{1,p}(\Omega)\). From \((B.2)\) and since \((\det \nabla v_{\varepsilon_j})\) converges a.e. to

\[
\begin{cases}
 d_0 \det A & , \quad x \in B_\eta(x_0), \\
 \det A & , \quad x \in \Omega \setminus B_\eta(x_0).
\end{cases}
\]

we get that

\[
E_{\varepsilon_j}(z_{\varepsilon_j}) = \int_{\Omega_{\varepsilon_j}} W(\nabla z_{\varepsilon_j}) \, dx \leq \int_\Omega W(\nabla v_{\varepsilon_j}) \, dx \leq K(\|\nabla v_{\varepsilon_j}\|^p + 1) \leq C,
\]

for some constant \(C > 0\).

\[\square\]

Acknowledgements: This research was sponsored in part by an International Joint Project Grant from the Royal Society of London. The work of Negrón–Marrero also was sponsored in part by the NSF–PREM Program of the UPRH (Grant No. DMR–1523463).

References

[1] Antman, S.S. and Negrón-Marrero, P.V., *The Remarkable Nature of Radially Symmetric Equilibrium States of Aelotropic Nonlinearly Elastic Bodies*, J. Elasticity, 18, 131-164, 1987.

[2] Ball, J.M., *Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity*, Phil. Trans. Royal Soc. London A 306, 557-611, 1982.

[3] Gent, A.N., *Cavitation in Rubber: A Cautionary Tale*, Rubber Chemistry and Technology, G49-G53, 1990.

[4] Gent, A. N. and Lindley, P. B., *Internal Rupture of Bonded Rubber Cylinders in Tension*, Proc. R. Soc. Lond. A 249, 195-205, 1958.

[5] Hecht, F., *New development in FreeFem++*, J. Numer. Math., 20, No. 3-4, 251–265, 2012.

[6] Henao, D. and Mora-Corral C., *Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity*, Arch. Rational Mech. Anal., 197, 619–655, 2010.
[7] Henao, D. and Mora-Corral C., *Lusins condition and the distributional determinant for deformations with finite energy*, Adv. Calc. Var., 5, 355–409, 2012.

[8] Henao, D. and Xu, X., *An efficient numerical method for cavitation in nonlinear elasticity*, Mathematical Models and Methods in Applied Sciences, in press, 2010.

[9] Horgan, C.O., *Void nucleation and growth for compressible non–linearly elastic materials: an example*, Int. J. Solids Structures, Vol. 29, No. 3, 279–291, 1992.

[10] Horgan, C.O. and Polignone, D.A., *Cavitation for incompressible anisotropic non-linearly elastic spheres*, Journal of Elasticity, 33, 1993, 2765.

[11] Horgan, C.O. and Polignone, D.A., *Cavitation in Nonlinearly Elastic Solids: A Review*, Appl. Mech. Rev., Vol. 48, No. 8, 1995.

[12] James, R. and Spector, S.J., *Remarks on $W^{1,p}$–quasiconvexity, interpenetration of matter, and function spaces for elasticity*, J. Mech. Phys. Solids 39, Pages 783–813, 1991.

[13] Luenberger, D. G., *Linear and nonlinear programming*, Springer–Verlag, NY, 2008.

[14] Müller, S. and Spector, S.J., *An existence theory for nonlinear elasticity that allows for cavitation*, Arch. Rational Mech. Anal., 131, 1–66, 1995.

[15] Negrón-Marrero, P. V. and Sivaloganathan, J., *A characterisation of the boundary displacements which induce cavitation in an elastic body*, Journal of Elasticity, Vol. 109, Issue 1, pp 1–33, 2012.

[16] Neuberger, J. W., *Sobolev Gradients and Differential Equations*, Lecture Notes in Math. 1670, Springer, Berlin, 1997.

[17] Sivaloganathan, J., *Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity*, Arch. Rat. Mech. Anal., 96, 97–136, 1986.

[18] Sivaloganathan, J. and Spector, S. J., *On the existence of minimisers with prescribed singular points in nonlinear elasticity*, J. Elasticity, 59, 83–113, 2000.

[19] Sivaloganathan, J., Spector, S. J. and Tilakraj, V., *The convergence of regularised minimisers for cavitation problems in nonlinear elasticity*, SIAM Journal of Applied Mathematics, 66, 736–757, 2006.
[20] Stuart, C. A., *Radially symmetric cavitation for hyperelastic materials*, Ann. Inst. H. Poincaré 2, 33–66, 1985.

[21] Varvaruca, L., Singular minimizers in the calculus of variations and nonlinear elasticity, doctoral dissertation, University of Bath, Department of Mathematical Sciences, April 2007.