The role of physical cues in the development of stem cell-derived organoids

Ilaria Tortorella1 · Chiara Argentati1 · Carla Emiliani1 · Sabata Martino1 · Francesco Morena1

Received: 23 April 2021 / Accepted: 3 June 2021 / Published online: 13 June 2021
© The Author(s) 2021

Abstract
Organoids are a novel three-dimensional stem cells’ culture system that allows the in vitro recapitulation of organs/tissues structure complexity. Pluripotent and adult stem cells are included in a peculiar microenvironment consisting of a supporting structure (an extracellular matrix (ECM)-like component) and a cocktail of soluble bioactive molecules that, together, mimic the stem cell niche organization. It is noteworthy that the balance of all microenvironmental components is the most critical step for obtaining the successful development of an accurate organoid instead of an organoid with heterogeneous morphology, size, and cellular composition. Within this system, mechanical forces exerted on stem cells are collected by cellular proteins and transduced via mechanosensing—mechanotransduction mechanisms in biochemical signaling that dictate the stem cell specification process toward the formation of organoids. This review discusses the role of the environment in organoids formation and focuses on the effect of physical components on the developmental system. The work starts with a biological description of organoids and continues with the relevance of physical forces in the organoid environment formation. In this context, the methods used to generate organoids and some relevant published reports are discussed as examples showing the key role of mechanosensing–mechanotransduction mechanisms in stem cell-derived organoids.

Keywords Mechanotransduction · Mechanosensing · Pluripotent stem cells · Adult stem cells · Stem cells specification

Organoids

In recent decades, there has been significant advancement of three-dimensional (3D)-cell culture systems to address the limitations of two-dimensional (2D) culture systems and to better mimic tissue structure and functionality. It is now commonly recognized that cells grown in 3D environments develop more specific biological multicellular structures than cells in 2D cultures, which typically acquire a monolayer morphology (Argentati et al. 2020a). In this context, stem cells, due to the staminal properties of self-renewal and differentiation toward cell types from multiple lineages, have been considered as useful tool for the building of faithful 3D models. When cultured in an appropriate environment, stem cells accomplish their intrinsic developmental programs, which result in self-organization and generation of biologically relevant 3D structures that recapitulate in vitro several features of tissues and organs and are therefore called “organoids” (Brassard and Lutolf 2019) (Figs. 1, 2).

Organoids technology takes advantage of the different characteristics of pluripotent stem cells (PSCs, both Embryonic Stem Cells and induced Pluripotent Stem Cells) and...
multipotent stem cells (Adult Stem Cells, AdSCs) to create 3D structures that could serve as in vitro models of different organs; therefore, offering the opportunity to observe important biological phenomena such as embryonic development and tissue regeneration and to develop personalized disease models through the building of patient-derived organoids (Lancaster and Huch 2019; Takahashi 2019; Schutgens and Clevers 2020; Zheng and Fu 2021).

On one hand, PSCs can differentiate toward all three germ layers (Endoderm, Ectoderm, Mesoderm) and are used for building more complex organoids useful for studying the embryonic development and are needed when the organ that has to be modeled is not easily accessible (e.g., the brain) (Brassard and Lutolf 2019; Liu et al. 2021; Yu et al. 2021). On the other hand, AdSCs, due to the more limited differentiation capability, are mostly used to generate organoids of their tissue of origin. AdSCs also offer the advantage of being isolated directly from patient’s biopsies thus making them a valuable tool for disease modeling and personalized medicine purposes. While the building of PSCs-derived organoids requires the reprogramming of somatic differentiated cells isolated from patients followed by expansion and differentiation, the use of AdSCs permits the production of healthy and diseased tissues in a shorter time: as a result, the latter allows a more manageable expansion of models from patients, potentially facilitating personalized medicine (Rossi et al. 2018; Lancaster and Huch 2019; Schutgens and Clevers 2020).

The generation of organoids requires also the addition of specific growth factors into the stem cell culture medium in the appropriate amount and spatiotemporal way. For instance, the step of germ-layer specification for PSCs is obtained through Activin A (Endoderm), Activin A and Bone Morphogenetic Protein 4 (BMP4, Mesoderm) and WNT + BMP4 (Ectoderm), which is then followed by a step in which tissue-specific growth factor cocktails and molecules activate particular signaling pathways, such as WNT and Fibroblast Growth Factors (FGF) (Yin et al. 2016; Lancaster and Huch 2019; Kim et al. 2020)(Figs. 1a, 2). The latter step allows the induction and maturation of organoids and is common also to the AdSCs-derived organoids maturation process (Figs. 1b, 2).

All steps of differentiation protocols aim at supplying stem cells with a range of biochemical and biophysical signals that mimic the in vivo stem cell niche, which is essential to create a good organoid model (Figs. 1, 2).
correlates with the concept that tissue and organ development, including cell specification, differentiation, survival, and proliferation, is heavily reliant on complex networks and coordination of cell-to-cell, and cell-Extracellular Matrix (ECM) interactions, as cooperative cell activity differs significantly from individual cell behavior (Dahl-Jensen and Grapin-Botton 2017).

The strict dependence of organoids formation and biochemical and biophysical environmental conditions is a crucial aspect that contributes deeply to the successful development of accurate models but also inevitably introduces a certain grade of randomness into organoids formation, resulting in heterogeneous morphology, size, and cellular composition (Hofer and Lutolf 2021). The concept of reproducibility in organoids research is one of the major obstacles for their scalability and full use in preclinical applications, hence fine-tuning the culture microenvironment is unquestionably essential for the advancement of this technology (Rossi et al. 2018; Lehmann et al. 2019; Brassard and Lutolf 2019; Zahmatkesh et al. 2021).

The delicate balance required to maintain homogeneous organoids cultures highlights the role of the environment in controlling the cellular polarization in a context-dependent manner (Brassard and Lutolf 2019). Thus, is now widely recognized that organoids formation is deeply influenced by small changes in the culture condition (Hofer and Lutolf 2021). Therefore, all methods used for organoids generation consist in the inclusion of stem cells in an environment characterized by specific biophysical and biochemical components (Fig. 3). These elements mimic the role of the structure as well as of soluble biomolecules in the in vivo stem cell niche, allowing for better regulation of cellular growth and differentiation and, as a result, more physiological applicable model systems that can be translated into clinical practice (Hofer and Lutolf 2021).

The commonest method currently used for the generation of organoids is the ECM-scaffold based (Shah and Singh 2017; Velasco et al. 2020). In this technique, organoids are generated by including stem cells in an environment consisting of a biophysical component, generally natural (Matrigel, Collagen, Alginate, Fibrin, Laminin) or synthetic (e.g., Polyethylene Glycol, PEG) hydrogels, and biochemical component, such as different types of soluble bioactive chemical/
biological molecules (Sato et al. 2009; Kurmann et al. 2015; Workman et al. 2017; McCracken et al. 2017; Hohwieler et al. 2017; Shah and Singh 2017; Chen et al. 2017; Camp et al. 2017; Yan et al. 2018). Alternatively, organoids can be generated with the (i) suspension culture procedure accompanied by the use of *spinner flasks* or *rotating bioreactors*, which can be described as rotating cell culture systems (Nakano et al. 2012; Qian et al. 2018; Hoarau-Véchot et al. 2018; Przepiorski et al. 2018; Capowski et al. 2019; Velasco et al. 2020; Sander et al. 2020); (ii) Air–liquid interface (ALI), where stem cells are exposed to culture medium on one side and to air on the other for maximizing the oxygen and nutrient supply (Takasato et al. 2015; Neal et al. 2018; Choi et al. 2020; Lo et al. 2020; Esser et al. 2020; Gunti et al. 2021); (iii) Magnetic levitation, which poses its bases in tagging cells with magnetic nanoparticles and then exposing them to a magnetic field that levitates them to the liquid–air interface where they aggregate and generate ECM components (Desai et al. 2017; Tseng et al. 2018; Ferreira et al. 2019; Velasco et al. 2020); (iv) 3D bioprinting, which incorporates extracellular matrix (ECM) or hydrogel scaffolds, bioprinting techniques, and/or cell-free strategies.

Conventional Methods for Organoids Generation

Method	Description	Types of Organoid	Stem Cells	Microenvironment
ECM-Scaffold Based	- Inclusion of PSCs or ASCs in a natural or synthetic hydrogel	Intestine	PSCs/AdSCs	Natural Or Synthetic ECM
	- Plating, Gel Polymerization	Stomach	PSCs/AdSCs	
	- Addition of tissue-specific medium and Incubation and Organoid formation	Pancreas, Liver	PSCs/AdSCs	
Suspension Cultures	- Suspension Culture of PSCs or ASCs in containers that are agitated by stirring or agitation	Lung and Airways	PSCs/AdSCs	
	- Placing of cell suspension in spinner flasks or bioreactors with tissue-specific medium and with/without agents to increase medium viscosity	Brain, Optic Cup, Retina	PSCs/AdSCs	
Air-Liquid Interface	- Culture of PSCs or ASCs or minced Tissue in Collagen Matrix placed above a porous membrane	Brain, Renal Cell Carcinoma Tumors	PSCs/AdSCs	Collagen Matrix, Medium, Porous Membrane
	- Plating, Gel Polymerization	Brain, Renal Cell Carcinoma Tumors	PSCs/AdSCs	Collagen Matrix, Medium, Porous Membrane
	- Addition of tissue-specific medium at the basal side and air exposure at the top	Brain, Renal Cell Carcinoma Tumors	PSCs/AdSCs	Collagen Matrix, Medium, Porous Membrane
Magnetic Levitation	- Incubation of PSCs or ASCs with magnetic nanoparticles	Adipose Tissue	PSCs/AdSCs	Magnetic Lid
	- Plating on low-adherent plates	Silyar Gland-like Liver	PSCs/AdSCs	Magnetic Lid
	- Placement of magnetic lid, attraction of cells at the air-liquid interface	Silyar Gland-like Liver	PSCs/AdSCs	Magnetic Lid
3D Bioprinting	- Generation of composite bioinks with PSCs, ASCs or Organoids and specific extracellular components	Liver Mammary Gland Tumors	PSCs/AdSCs	Printing in 3D space
	- Controlled deposition (printing) of cells and external components in a pre-established 3D spatial organization	Liver Mammary Gland Tumors	PSCs/AdSCs	Printing in 3D space
	- Incubation and Organoid formation/maturity	Liver Mammary Gland Tumors	PSCs/AdSCs	Printing in 3D space

Fig. 3 Conventional methods for organoids generation. Schematic representation of the main steps required in the techniques most frequently used for organoids generation: ECM-scaffold-based, suspension culture, air–liquid interface, magnetic levitation and 3D bioprinting (grey column) with related examples of produced organoids (Blue column, references in the text). Schematic representation of method used for organoids generation: biological elements (cells) and microenvironment required for organoids maturation (biophysics and biochemical components). Pluripotent stem cells (PSCs); adult stem cells (AdSCs).
which could allow controlling the spatial positioning of cells and other biological components such as growth factors and ECM structural components (Fig. 3)(Duelen et al. 2019; Reid et al. 2019; Sun et al. 2020; Kupfer et al. 2020; Rawal et al. 2021; Yang et al. 2021).

Organoids and mechanobiology

Mechanical forces and spatiotemporally coordinated cellular signaling patterning are now recognized as essential factors in tissues organization and acquisition of their functional adult state in vivo (Jansen et al. 2015; Weaver 2017; Mohammed et al. 2019; Argentati et al. 2019; Kim et al. 2021). The mechanical forces that regulate and act on the 3D adult tissue organization, are transmitted within the tissue by individual cells that are confined in the ECM (Humphrey et al. 2014; Stanton et al. 2019; Argentati et al. 2019; Kim et al. 2021). In this section, we will discuss the relevance of mechanobiology in organoids development. To be clear, the section starts with some notes on mechanobiology.

Pills of mechanobiology

Over the last two decades, evidence has accumulated demonstrating how the physico-chemical properties of the cellular microenvironment, as well as the physical forces exerted by cells and tissues, are critical in the regulation of physiological conditions (such as tissue development, repair, and homeostasis, cell motility, proliferation, metabolism and differentiation) (Mammoto and Ingber 2010; Morena et al. 2017, 2020; Argentati et al. 2018, 2019; Wolfenson et al. 2019) but also pathological states (Jansen et al. 2015; Jensen et al. 2015; Alcaraz et al. 2018; Kim et al. 2019; Lee et al. 2019; Argentati et al. 2019, 2020b; Hall et al. 2020). In both contexts, cells must adapt their behavior using their capability to sense the external physical forces—mechanosensing—and to transduce these forces into biochemical signals—mechanotransduction (Trubelja and Bao 2018; Martin et al. 2018; Argentati et al. 2019). Both mechanisms collect the activity of several intracellular and extracellular components (Table 1) that, working together in a spatial–temporal manner, transmit the signaling to the cell DNA and change the cell gene expression (Trubelja and Bao 2018; Martin et al. 2018; Argentati et al. 2019; Janota et al. 2020). The most known pathways include (i) integrins—ECM—Focal adhesion (FAs) complexes—cytoskeleton—nucleoskeleton proteins (Weinberg et al. 2017; Jansen et al. 2017; Morena et al. 2017; Martino et al. 2018; Luzi et al. 2020; Argentati et al. 2021); (ii) Adherens Junctions (AJs) complexes for cell–cell interaction—cytoskeleton—nucleoskeleton proteins (Morena et al. 2017; Martino et al. 2018; Yap et al. 2018; Liebman et al. 2020). The overall interconnection also influences the behavior of neighboring cells and can remodel constantly the ECM environment through synthesis, degradation, and chemical modification processes (Humphrey et al. 2014; Stanton et al. 2019; Argentati et al. 2019).

In addition, several studies have identified molecular components involved in the mechano-sensing and—transduction processes, which respond to various mechanical forces such as compression (cells contract as a result of compressive forces applied from the outside to the center of cells) (Takemoto et al. 2015; Vining and Mooney 2017; Argentati et al. 2019), tension (external stimuli that stretch cells in opposite directions, resulting in cell elongation) (Spadaro et al. 2017; Martino et al. 2018; Rossy et al. 2018; Argentati et al. 2019), hydrostatic pressure (force exercised by the surrounding fluid to cells membranes, with non-directional nature influencing microtubule stability of cell cytoskeleton) (Becquart et al. 2016; Hadi et al. 2018; Pattappa et al. 2019), and fluid shear stress (two opposing forces applied tangentially to a cell’s surface, causing changes in cell morphology and adhesion properties) (Becquart et al. 2016; Alfieri et al. 2019; Argentati et al. 2019) that in turn lead to the deformation and regulation of particular cellular environment properties including elasticity (the ability of an object to revert to its original shape and size after a force has been removed) (Grady et al. 2016; Argentati et al. 2019), stiffness (the ability of an object to resist deformation after being subjected to a force) (Islam et al. 2017; Argentati et al. 2019; Janney et al. 2020) and viscoelasticity (an object’s elastic and viscous properties that contrast deformation) (Wang et al. 2016a; Argentati et al. 2019; Chaudhuri et al. 2020). (Table 1). These processes are likely activated when stem cells generate organoids (Bayir et al. 2019; Hofer and Lutolf 2021).

Mechanical forces involved in stem cell-derived organoids formation

The engineering of the organoid microenvironment focuses on controlling diverse mechanical properties such as topography, porosity, permeability, stiffness, shape, and elasticity (Bayir et al. 2019). The combination of all these properties creates a specific microenvironment characterized by a particular set of forces that are exerted on cells indirectly via the ECM, allowing them to mechanosense and respond to these forces when forming an organoid (Fig. 4) (Dahl-Jensen and Grapin-Botton 2017; Park et al. 2019).

The identification of the appropriate pattern of forces that have to be present in culture is fundamental for steering stem cells toward the right differentiation state (Vining and Mooney 2017). Performing experiments could fully elucidate how mechanics affect particular cells or tissues in vivo, in fact several studies clarified how substrates with different mechanical properties allowed lineage-specific
differentiation of stem cells. For example, matrix elasticity regulates the differentiation of Mesenchymal Stem Cells (MSCs) with the general concept that rigidity is associated with chondrogenic/osteogenic lineages and softer matrices induce neuronal or fat differentiation (Engler et al. 2006; Huebsch et al. 2010; Khetan et al. 2013; Vinning and Mooney 2017; Romani et al. 2021).

Location	Proteins	Mechanical forces to which proteins respond	References
ECM (Extracellular Matrix)	Collagens	Compression Elasticity Hydrostatic pressure	(Saini and Kumar 2015; Chooi and Chan 2016; Argentati et al. 2019)
	Elastin	Compression Elasticity	(Andrikakou et al. 2016; Cocciolone et al. 2018; Argentati et al. 2019)
	Fibrillin	Elasticity	(Schrenk et al. 2018; Argentati et al. 2019)
	Fibulin	Stiffness	(Nakasaki et al. 2015; Argentati et al. 2019)
	Fibronectin	Elasticity Stiffness	(Wang et al. 2016b; Martino et al. 2018; Argentati et al. 2019)
	Laminin	Shear stress	(Di Russo et al. 2017)
	Tenascin	Elasticity	(Imanaka-Yoshida and Aoki 2014; Argentati et al. 2019)
Cell Membrane	Integrins	Elasticity Hydrostatic pressure	(Jang and Beningo 2019; Kechagia et al. 2019; Argentati et al. 2019)
FAs (Focal adhesion complex)	Tensin	Tension	(Argentati et al. 2019)
	Vinculin	Stiffness	(Atherton et al. 2016; Omachi et al. 2017; LaCroix et al. 2018)
	Paxillin	Stiffness	(Zhou et al. 2017; Argentati et al. 2019)
	Talin	Stiffness	(Kumar et al. 2016)
	FAK	Elasticity Stiffness	(Bell and Terentjev 2017; Argentati et al. 2019)
AJs (Adherens Juctions)	βCatenin	Compression Shear stress	(Sheng et al. 2018; Argentati et al. 2019)
	αCatenin	Tension	(Sarpal et al. 2019)
	Cadherins	Tension	(Pannekoek et al. 2019; Argentati et al. 2019)
	ZO-1	Shear stress Stiffness	(Demaio et al. 2001; Haas et al. 2020)
	ICAM1	Viscoelasticity	(Wiesolek et al. 2020)
Cytoskeleton	F-actin	Compression Elasticity Hydrostatic pressure Shear stress	(Galkin et al. 2012; Fan et al. 2019; Argentati et al. 2019; Wei et al. 2020)
	Microtubule	Tension Elasticity Hydrostatic pressure	(Brouhard and Rice 2018; Argentati et al. 2019; Hamant et al. 2019)
	Vimentin	Stiffness Viscoelasticity	(Charrier and Janmey 2016; Argentati et al. 2019)
	Titin	Elasticity Stiffness	(Herrero-Galán et al. 2019; Argentati et al. 2019)
	Myosin II	Compression Elasticity	(Argentati et al. 2019; Fujita et al. 2019; Lou et al. 2021)
	Filamin	Stiffness	(Mezawa et al. 2016; Zhou et al. 2017; Martino et al. 2018; Argentati et al. 2019; Janney et al. 2020)
	α-Actinin	Stiffness	(Meacci et al. 2016; Argentati et al. 2019)
	Arp2/3	Tension	(Argentati et al. 2019)
	Formin	Tension	(Zimmermann and K殴ar 2019)
	Cofilin	Compression Tension	(Gupta et al. 2016; Ikawa and Sugimura 2018)
Nucleoskeleton	Lamin A/C	Stiffness	(Chen et al. 2018; Argentati et al. 2019; Koushki et al. 2020)
	Emerin	Stiffness	(Willer and Carroll 2017; Fernandez et al. 2021)
Indeed, stiffness is a decisive parameter for mimicking the stem cells’ niche and it can be tuned using synthetic matrices which, in this way, offer the possibility of investigating its effect on organoids formation (Gjorevski et al. 2016). About this, new mechanical refined materials such as complex hydrogels with tunable architecture and composition that offer the possibility of precisely control the orientation of functional groups showed that the regulation of matrix viscoelasticity and gel degradability is of particular importance for a successful organoid formation and culture (Cruz-Acuña et al. 2017; Chaudhuri et al. 2020).
As far as understanding the sensing of mechanical stimuli by organoids is concerned, the clarification of how forces exactly influence organoids formation is even more difficult because they are a more complex model (compared to 2D cultures) (Chan et al. 2017) in which cells establish interactions among them and the external ECM; however, several studies explored this issue (Park et al. 2019; Bayir et al. 2019).

In this regard, in a recent study, the laboratory of H. Clevers investigated the role of matrix stiffness on the behavior of Intestinal Stem Cells (ISCs). In this work, they evidenced how Intestinal Stem Cells cultured on a stiff matrix underwent expansion enhancement, but when grown on a soft matrix differentiated and formed organoids (Gjorevski et al. 2016). In particular, first, they cultured ISC s in PEG hydrogels functionalized with the RGD (Arg-Gly-Asp) peptide and observed that ISCs expanded on the matrix with intermediate stiffness and did not on softer ones (1.3 vs 300 Pa), and afterward they used hybrid PEG hydrogels constituted by a mechanically static and a mechanically dynamic PEG to control over time the gel’s stiffness: when functionalized with RGD and laminin-111, organoids were generated only when gel stiffness was about 190 Pa and Yes-associated protein (YAP) activation was greater in these softening matrices. This study, therefore, shed light on the mechanistic role of the 3D microenvironment (Gjorevski et al. 2016).

Acknowledged the importance of mechanical forces in embryogenesis and organogenesis, the control of the biophysical microenvironment answer to the need of enhancing the reliability of organoid models. For this reason, it is now becoming clear that it is necessary to build culture systems in which is possible to produce biomechanical cues that are as physiological as possible. Recent advancement in this field is the synergic combination of organoids and organ-on-a-chip (OOC) technology: while organoids have the advantage of following self-organization, OOC offers the possibility of precisely regulate the cellular microenvironment to replicate the physiological environmental conditions (Park et al. 2019; Zheng et al. 2021). There are several OOC available on the market that employ dynamic biomechanical stimulation and that can be used to develop complex 3D tissues like spheroids, organoids, and tissues interfaces (Thompson et al. 2020).

For example, Lee et al. implemented peristaltic fluid flow in human stomach organoids; therefore, introducing contraction and stretching to mimic gastric contractions, which enabled the construction of a more solid and physiologically relevant model amenable for disease modeling and drug screening (Lee et al. 2018). To do so, human gastric organoids (GOs) generated from hPSCs were cultured in a 3D-printed device equipped with micropipettes connected to a peristaltic pump filled with FITC-dextran: following the fluorescent fluid flow, they observed a regular distribution of luminal fluid overtime and demonstrated the feasibility of GOs long-term culturing associated to nutrient and therapeutic agents delivery (Lee et al. 2018).

Berger et al. enhanced the vitality and differentiation of Midbrain organoids using a fluidic system that generated continuous laminar fluid flow (Berger et al. 2018). They compared a new milli-fluidic culture technique with the orbital shaker (commonly used for brain organoids generation) and observed that it allowed a better differentiation of Neuroepithelial Stem Cells to midbrain Dopaminergic neurons and a reduction of the inner area of cell death: interestingly, this work highlighted that different fluid dynamics have distinct effects on organoids development suggesting that the resulting diverse mechanical stimuli are involved in their homeostasis (Berger et al. 2018).

Another promising result was obtained by Tao et al. that generated iPSCs-derived Pancreas organoids in a microfluidic system that improved their viability and organ-specific functionality, like insulin secretion stimulated by glucose and higher Ca\(^{2+}\) flux (Tao et al. 2019). In accordance with the study previously proposed, this work showed that the culture of organoids under perfused conditions highlights the role of biomimetic mechanical signals in improving the functionality and maturation of islet organoids (Tao et al. 2019).

In another study, Homan et al. exploited shear stress generated with a milli-fluidic system and co-culture with endothelial cells to greatly improve the maturation of Kidney organoids managing to enhance vasculature and their tubular and glomerular compartments (Homan et al. 2019). In particular, they determined the effect of fluidic shear stress by culturing hPSCs in a chip with controlled fluid flow and observed that the vascular network formation was greatly improved under high fluidic shear stress condition compared to low, in the order of fivefold increase, indicating that shear stress is a significant cue for the vascularization of kidney organoids in vitro as it is associated to the endogenous upregulation of the vascular endothelial growth factor (Homan et al. 2019).

Conclusion

In this mini review, we have discussed recent key findings on the development of organoid technology (Fig. 3). In particular, we have highlighted the relevance of the environment as an active counterpart on inducing stem cells toward the generation of a specific organoid, describing the role of exogenous soluble bioactive molecules and foremost the role of the environmental physical components, and the way in which both mimic the structure and function of the stem cell niche. The role of mechanical forces has been demonstrated to significantly orchestrate the interaction of
the cells with the ECM or with neighboring cells and how these interconnections are fundamental for cell functions. These roles have been confirmed also in organoids formation. Of note, to date, there are different medical applications of organoid mechanobiology-based technology such as novel drug screening, regenerative medicine application, molecular research (Fig. 5).

In this regard, many studies focused on organoids mechanobiology are ongoing and will help to elucidate the mechanism behind the biophysical aspects of organoid cultures. For instance, the European Project “Mechanoids” (Grant agreement ID: 797,621, H2020-EU.1.3.2.) aims at manipulating the mechanobiology of healthy Gut and Colorectal Cancer organoids to assess their role in disease and development processes (HORIZON 2020a) The characterization of organoids mechanobiology will be useful also for disease modeling as planned in the project “ROMB” (Grant agreement ID: 850,691, H2020-EU.1.1.) where Retina organoids mechanobiology will be investigated to model Alzheimer’s Disease and will shed light on mechanically related neuronal diseases (HORIZON 2020b). In conclusion, despite the challenges that must be addressed, considering the advantages of ongoing technology development, organoid technology holds great promise in research and in the developing clinical translational strategies.

Fig. 5 Organoids applications Organoids can be used for different biomedical applications such as Fundamental Research, Drug Screening and Development, Disease Modelling, Biobanking, Cell Based Therapy, Personalized Medicine and Genome Analysis

Funding Open access funding provided by Università degli Studi di Perugia within the CRUI-CARE Agreement. This research received no external funding.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alcaraz J, Otero J, Jorba I, Navajas D (2018) Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 73:71–81

Altfieri R, Vassalli M, Viti F (2019) Flow-induced mechanotransduction in skeletal cells. Biophys Rev 11:729–743

Andrikakou P, Vickraman K, Arora H (2016) On the behaviour of lung tissue under tension and compression. Sci Rep 6:1–10. https://doi.org/10.1038/srep36642

Argentati C, Morena F, Bazzucchi M et al (2018) Adipose stem cell translational applications: from bench-to-bedside. Int J Mol Sci 19:3475. https://doi.org/10.3390/ijms19113475

Argentati C, Morena F, Tortorella I et al (2019) Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int J Mol Sci 20:5337. https://doi.org/10.3390/ijms20215337

Argentati C, Tortorella I, Bazzucchi M et al (2020a) Harnessing the potential of stem cells for disease modeling: progress and promises. J Pers Med 10:8. https://doi.org/10.3390/jpm10010008

Argentati C, Tortorella I, Bazzucchi M et al (2020b) The other side of Alzheimer’s disease: influence of metabolic disorder features for novel diagnostic biomarkers. J Pers Med 10:2–36

Argentati C, Morena F, Fontana C et al (2021) Functionalized silica star-shaped nanoparticles and human mesenchymal stem cells: an in vitro model. Nanomaterials 11:779. https://doi.org/10.3390/nano11030779

Atherton P, Stutchbury B, Jethwa D, Ballestrem C (2016) Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res 343:21–27

Bayir E, Sendemir A, Missirlis YF (2019) Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 11:721–728

Becquart P, Cruel M, Hoc T et al (2016) Human mesenchymal stem cell responses to hydrostatic pressure and shear stress. Eur Cells Mater 31:160–173. https://doi.org/10.22203/ecm.v031a11

Bell S, Terentjev EM (2017) Focal adhesion kinase: the reversible molecular mechanosensor. Biophys J 112:2439–2450. https://doi.org/10.1016/bjp.2017.04.048

Berger E, Magliaro C, Pazzia N et al (2018) Milifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip 18:3172–3183. https://doi.org/10.1039/c8lc00206a
Ikawa K, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction-medi-
HORIZON (2020b) Retina Organoid Mechanobiology. ROMB Project,
HORIZON (2020a) Probing and controlling the three-dimensional
Janmey PA, Fletcher DA, Reinhart-King CA (2020) Stiffness sensing
Jang I, Beningo KA (2019) Integrins, CAFs and mechanical forces in
Koushki N, Ghagre A, Srivastava LK, et al (2020) Lamin A redis-
Kim S, Uroz M, Bays JL, Chen CS (2021) Harnessing mechanobiology
cells. Cell Stem Cell 17:527–542. https://doi.org/10.1016/j.stem.2015.09.004
Lu LaCroix AS, Lynch AD, Berginski ME, Hoffman BD (2018) Tunable
molecular tension sensors reveal extension-based control of vinculin
loading. Elife 7:3927. https://doi.org/10.7554/eLife.33927
Retina Organoid Mechanobiology. DMM Dis Model Mech 12:dmm039347. https://doi.org/10.1242/dmm.039347
LaCroix MA, Knoblich JA (2014) Organogenesis in a dish: Modeling
development and disease using organoid technologies. Science
Lee KJ, Koo BK, Knoblich JA (2020) Human organoids: model sys-
ters for human biology and medicine. Nat Rev Mol Cell Biol
Khetan S, Guvendiren M, Legant WR et al (2013) Degradation-
Kumar A, Ouyang M, Van den Dries K et al (2016) Talin tension sensor
Kupfer ME, Lin WH, Ravikumar V et al (2020) In situ expansion,
differentiation, and electromechanical coupling of human car-
diac muscle in a 3D bioprinted, chambered organoid. Circ Res
Kumar AA, Serra M, Hawkins F et al (2015) Regeneration of thy-
Kurmann AA, Serra M, Hawkins F et al (2015) Regeneration of thy-
Kusumaki K, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa K, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa S, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Kurokawa T, Sugimura K (2018) AIP1 and coflin ensure a resistance to
Shah SB, Singh A (2017) Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomater 53:29–45
Shen H (2018) Organoids have opened avenues into investigating numerous diseases. But how well do they mimic the real thing? Proc Natl Acad Sci U S A 115:3507–3509. https://doi.org/10.1073/pnas.1803647115
Sheng X, Sheng Y, Liu Y et al (2018) Effects of FSS on the expression and localization of the core proteins in two Wnt signaling pathways, and their association with ciliogenesis. Int J Mol Med 42:1809–1818. https://doi.org/10.3892/ijmm.2018.3758
Spadaro D, Le S, Laroche T et al (2017) Tension-dependent stretching activates ZO-1 to control the functional localization of its interactors. Curr Biol 27:3783-3795.e8. https://doi.org/10.1016/j.cub.2017.11.014
Stanton AE, Tong X, Yang F (2019) Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomater 96:310–320. https://doi.org/10.1016/j.actbio.2019.06.048
Sun W, Starby B, Daly AC et al (2020) The bioprinting roadmap. Biofabrication 12:022002
Takahashi T (2019) Organoids for drug discovery and personalized medicine. Annu Rev Pharmacol Toxicol 59:447–462. https://doi.org/10.1146/annurev-pharmtox-010818-021108
Takasato M, Er PX, Chiu HS et al (2015) Kidney organoids from human iPSCs contain multiple lineages and model human nephrogenesis. Nature 526:564–568. https://doi.org/10.1038/nature15695
Takemoto K, Ishihara S, Mizutani T et al (2015) Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenyl cyclase/protein kinase a signaling pathway. PLoS ONE 10:e0117937. https://doi.org/10.1371/journal.pone.0117937
Tao T, Wang Y, Chen W et al (2019) Engineering human islet organoids from iPS cells using an organ-on-chip platform. Lab Chip 19:948–958. https://doi.org/10.1039/C8LC01298A
Thompson CL, Fu S, Knight MM, Thorpe SD (2020) Mechanical stimulation: a crucial element of organ-on-chip models. Front Bioeng Biotechnol 8:602646
Trubelja A, Bao G (2018) Molecular mechanisms of mechanosensing and mechanotransduction in living cells. Extrem Mech Lett 20:91–98
Tseng H, Daquinag AC, Souza GR, Kolonin MG (2018) Three-dimensional magnetic levitation culture system simulating white adipose tissue: In: methods in molecular biology, Humana Press Inc., pp 147–154
Velasco V, Shariati SA, Esfandyarpour R (2020) Microtechnology-based methods for organoid models. Microsystems Nanoeng 6:1–13
Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18:728–742
Wang Z, Goleb MJ, Chelsey NC (2016a) Viscoelastic properties of cardiovascular tissues. In: Viscoelastic and viscoplastic materials. InTech
Wang K, Seo BR, Fischbach C et al (2016b) Fibronectin mechanobiology regulates tumorigenesis. Cel Mol Bioeng 9:1–11. https://doi.org/10.1007/s12195-015-0417-4
Weaver VM (2017) Cell and tissue mechanics: the new cell biology frontier. Mol Biol Cell 28:1815–1818
Wei F, Xu X, Zhang C et al (2020) Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-18584-5
Weinberg SH, Mair DB, Lemmon CA (2017) Mechanotransduction dynamics at the cell-matrix interface. Biophys J 112:1962–1974. https://doi.org/10.1016/j.bpj.2017.02.027

Wiesolek HL, Bui TM, Lee JJ et al (2020) Intercellular adhesion Molecule 1 functions as an efferocytosis receptor in inflammatory macrophages. Am J Pathol 190:874–885. https://doi.org/10.1016/j.ajpath.2019.12.006

Willer MK, Carroll CW (2017) Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin. J Cell Sci 130:2111–2118. https://doi.org/10.1242/jcs.197517

Wolfenson H, Yang B, Sheetz MP (2019) Steps in mechanotransduction pathways that control cell morphology. Annu Rev Physiol 81:585–605

Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23:49–59. https://doi.org/10.1038/nm.4233

Yan HHN, Siu HC, Law S et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23:882-897.e11. https://doi.org/10.1016/j.stem.2018.09.016

Yang H, Sun L, Pang Y et al (2021) Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut 70:567–574. https://doi.org/10.1136/gutjnl-2019-319960

Yap AS, Duszyc K, Viasnoff V (2018) Mechanosensing and mechanotransduction at cell–cell junctions. Cold Spring Harb Perspect Biol 10:a028761. https://doi.org/10.1101/cshperspect.a028761

Yin X, Mead BE, Safae H et al (2016) Engineering stem cell organoids. Cell Stem Cell 18:25–38

Yu L, Wei Y, Duan J et al (2021) Blastocyst-like structures generated from human pluripotent stem cells. Nature 591:620–626. https://doi.org/10.1038/s41586-021-03356-y

Zahmatkesh E, Khoshdel-Rad N, Mirzaei H et al (2021) Evolution of organoid technology: lessons learnt in Co-Culture systems from developmental biology. Dev Biol 475:37–53

Zheng Y, Fu J (2021) First complete model of the human embryo. Nature 591:531–532. https://doi.org/10.1038/d41586-021-00581-3

Zheng F, Xiao Y, Liu H, et al (2021) Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol 2000024. https://doi.org/10.1002/abdi.202000024

Zhou DW, Lee TT, Weng S et al (2017) Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions. Mol Biol Cell 28:1901–1911. https://doi.org/10.1091/mbc.E17-02-0116

Zimmermann D, Kovar DR (2019) Feeling the force: formin’s role in mechanotransduction. Curr Opin Cell Biol 56:130–140

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.