INTRODUCTION

Spinal schwannomas are benign tumors arising from the sheath of the spinal nerve roots and occasionally occur in the cauda equina. Tumors in the cauda equina often attain considerable size without painful symptoms, because of the mobility of the roots and the wide intradural space. Giant schwannomas of the cauda equina that involve many nerve roots are rare. Those that occur, however, are usually observed in an intrasacral region, and are rarely ossified. We describe here an unusual case of giant schwannoma of the cauda equina with dystrophic calcification, which was completely removed without any neurological deterioration.

CASE REPORT

A 21-year-old man presented with a 12-month history of urinary dysfunction and numbness below the buttocks. Plain radiography showed scalloping of the posterior surface of the vertebral bodies from L4 to the sacrum, and magnetic resonance imaging and computed tomography revealed a giant cauda equina tumor with dystrophic calcification. The tumor was completely removed, with intraoperative neurophysiologic monitoring. Histopathologic examination showed that the tumor was a schwannoma. The patient's postoperative course was uneventful, with urinary function and numbness gradually improving. Although a giant schwannoma accompanied by dystrophic calcification is extremely rare, such a tumor can be removed safely and completely by meticulous dissection and careful neuromonitoring of the cauda equina spinal nerves involved in the tumor.

Key Words: Giant schwannoma · Cauda equina · Complete excision · Calcification · Neuromonitoring.
laminae were fixed by insertion of mini-plates and screws. Because the patient had good bone quality and a stable vertebral column, further spinopelvic reconstruction was not performed. Histologic examination of the resected tumor revealed that it was a schwannoma. Total operating time was 6 hours and blood loss was estimated to be 750 mL. The postoperative course was uneventful and the patient experienced significant relief of urinary dysfunction. Sensation and sphincter function gradually improved. After one week of bed rest, the patient was permitted to walk using a hard brace and walker. At the most recent follow-up, his urinary and anal sphincter dysfunction almost disappeared, and the hypesthesia in both buttocks was mild. He walks smoothly without a cane or any aid. MR and plain imaging 3 years after surgery showed no evidence of any residual tumor, vertebral fracture, or instability (Fig. 4).

DISCUSSION

Giant schwannomas of the cauda equina of the spinal canal, with pedicle erosion and/or widening of the neural foramen, have been described\(^6\,^{10,14,15}\). However, because of dystrophic calcification, an accurate preoperative diagnosis was difficult in the present patient. Scallopion of the posterior surface of the vertebral bodies strongly suggested a disease of long-standing etiology. Although we suspected that the symptoms were attributable to a slow-growing tumor, such as a schwannoma, such tumors are rarely calcified or ossified. Thus, these situations led us to perform CT-guided needle biopsy. Our preoperative differential diagnoses included ganglioneuroma and schwannoma of the ancient type, both of them are benign mesenchymal tumors.

By searching the English language literature using the terms ‘schwannoma,’ ‘cauda equina,’ ‘giant,’ and ‘tumor’ since 1960, we identified reports describing 29 patients with giant cauda equina schwannomas. After excluding five patients, four with malignant peripheral nerve sheath tumors and one without enough clinical information, 24 patients remained, including the patient described here. Table 1 summarizes data on patients with giant schwannoma of the cauda equina\(^4,6,10,14,17,19\), including seven with intrasacral schwannoma\(^8,11,13,15,16,18\) and one with intrasosseous schwannoma\(^3\) arising from nerves within bones. Only one patient with a giant cauda equina schwannoma associated with a small ossification has been reported to date\(^6\). Thus, to the best of our knowledge, a giant schwannoma in the

Fig. 1. Preoperative sagittal magnetic resonance images of our patient. A : T2-weighted image. B : T1-weighted image. C : Gadolinium-enhanced T1-weighted image. Note the giant cauda equina tumor growing into the vertebral bodies and neural foramina from L3 to S2.
Fig. 2. CT scans showing a large calcified mass in the enlarged spinal canal and neural foramen.
Fig. 3. Intraoperative photograph showing a large calcification (arrow) in the tumor.
Giant Calcified Schwannoma of the Cauda Equina

SJ Hyun and SC Rhim

Giant calcified schwannoma of the cauda equina accompanied by dystrophic calcification has not been previously reported.

Complete excision, taking care not to damage nerves, is the recommended treatment for such locally aggressive benign tumors, as partial resection carries a risk of local recurrence and re-operation is much more difficult and dangerous than the complete excision.

Table 1. Reported cases of giant cauda equina schwannomas from the currently available English literature since 1960

No.	Authors	Year	Age/Sex	Location	Resection	Spinal reconstruction	Neurological deterioration	Follow-up (+ : recurrence)
1	Dickson et al.	1971	51/F	L2–L4	Complete	+	-	2 years, NER
2	Natarajan et al.	1975	23/F	L2–L4	Complete	+	-	1 month, NER
3	Wu	1980	48/M	T11–L4	Incomplete	-	-	22 years, NER
4	Wu	1980	29/M	L2–L5	Incomplete	-	+	4 years, NER, RTx
5	Rengachary et al.	1981	28/M	S1–S4	Complete	-	+	3 months, NER, Intrasacral
6	Lesoin et al.	1984	15/M	L5–S5	Complete	-	+	6 months, NER, Intrasacral
7	Kogame et al.	1985	52/F	L2–L5	Incomplete	+	-	NA, NER
8	Kogame et al.	1985	34/F	T10–L5	Incomplete	-	-	NA, +
9	Fujikawa et al.	1985	34/M	T12–L4	Incomplete	-	-	9 months, NER
10	Yone et al.	1986	50/M	T11–L4	Incomplete	-	-	13 months, NER
11	Bursztyn and Prada	1986	49/F	L4–S1	Complete	-	+	NA
12	Shirasaki et al.	1988	44/F	L4–S2	Incomplete	+	+	1 year, NER
13	Enomoto et al.	1991	60/M	L1–S2	Incomplete	-	-	33 months, NER
14	Enomoto et al.	1991	59/F	L2–S2	Incomplete	+	-	1 year, NER
15	Kotoura et al.	1991	34/F	S1–S3	Incomplete	+	+	5 years, NER, Intrasacral, RTx
16	Turk et al.	1992	41/M	S2–S4	Complete	-	+	18 months, NER, Intrasacral
17	Santi et al.	1993	48/M	S1–S3	Complete	+	+	33 months, NER, Intrasacral
18	Salvant and Young	1994	32/M	NA	Complete	-	-	18 months, NER, Intrasacral
19	Ortolan et al.	1996	27/F	L5–S2	Complete	+	-	17 months, NER, Intrasacral
20	Kagaya et al.	2000	57/F	L3–S1	Incomplete	+	-	40 months, NER, Small ossification
21	Saito et al.	2004	65/F	T12–L3	Complete	-	-	18 months, NER, Dural ectasia
22	Türgut and Erkuş	2008	43/F	L1–L5	Incomplete	-	+	3 years, +, Revision operation
23	Hung et al.	2008	53/M	L1–L3	Complete	+	-	6 months, NER
24	Present case	2010	21/M	L4–S2	Complete	-	-	3 years, NER, Dystrophic calcification

NA: not available, NER: no evidence of recurrence, RTx: radiation therapy
primary operation4,14,16. However, tumors located in the lumbar spine region are usually incompletely excised because complete removal may risk the sacrifice of many nerve roots5. An earlier review found that complete excision of such tumors frequently results in neurologic deterioration6. In contrast, others have reported that the involved nerve roots were nonfunctional at the time of surgery and that the risk of neurologic deficit after sacrifice of such roots was thus small4,17. Although the tumor described here was extensive in size, it involved only two nerve roots, which were shown to be non-functional at the time of surgery by both free-running and triggered EMG. This tumor could therefore be completely excised, with sacrifice of the (non-functional) roots giving rise to the tumor.

Giant schwannoma of the cauda equina often results in considerable vertebral erosion12. In some previous reports, spinal fusion with instrumentation was performed after resecting a giant schwannoma to prevent vertebral fracture4,6. We found that one-third of reported patients who underwent complete removal of giant schwannomas of the cauda equina required spinal reconstruction because of spinal instability. The patient described here had good bone quality, with a stable vertical column, and required only a laminoplasty using miniplates and screws. Moreover, the patient requested less invasive surgery. Fortunately, no vertebral fracture or instability has been seen in to three years postoperatively.

CONCLUSION

Giant schwannoma accompanied by dystrophic calcification is extremely rare. Such tumors can be safely and completely removed by meticulous dissection with neuromonitoring of the cauda equina spinal nerves involved in the tumor.

References

1. Bursztyn EM, Prada A : Intradural cauda equina schwannoma. *Surg Neurol* 26 : 567-570, 1986
2. Cervoni L, Celli P, Scarpinati M, Cantore G : Neurinomas of the cauda equina clinical analysis of 40 surgical cases. *Acta Neurochir (Wien)* 127 : 199-202, 1994
3. Dickson JH, Waltz TA, Fechner RE : Intraosseous neurilemoma of the third lumbar vertebra. *J Bone Joint Surg Am* 53 : 349-355, 1971
4. Hung CH, Tsai TH, Lieu AS, Lin CL, Lee KS, Hwang SL, et al. : Giant invasive schwannoma of cauda equina with minimal neurologic deficit : a case report and literature review. *Kaohsiung J Med Sci* 24 : 212-217, 2008
5. Leon JH, Hwang HS, Jeong JH, Park SH, Moon JG, Kim CH : Spinal schwannoma; analysis of 40 cases. *J Korean Neurosurg Soc* 43 : 135-138, 2008
6. KagaY, Abe E, Sato K, Shimada Y, Kimura A : Giant cauda equina schwannoma. A case report. *Spine (Phila Pa 1976)* 25 : 268-272, 2000
7. Kim P, Ebersold MJ, Onofrio BM, Quast LM : Surgery of spinal nerve schwannoma. Risk of neurological deficit after resection of involved root. *J Neurosurg* 71 : 810-814, 1989
8. Kotoura Y, Shikata I, Yamamuro T, Kasahara K, Iwasaki R, Nakashima Y, et al. : Radiation therapy for giant intrasacral schwannoma. *Spine (Phila Pa 1976)* 16 : 239-242, 1991
9. Lesoin F, Kivrosic I, Cama A, Jomin M : A giant intrasacral schwannoma revealed by lumbosacral pain. *Neurochirurgia (Stuttg)* 27 : 23-24, 1984
10. Natarajan M, Rajagopal T, Srinivasan K : A giant schwannoma of cauda equina. *Surg Neurol* 4 : 367-368, 1975
11. Ortolan EG, Sola CA, Gruenberg MF, Carballo Vazquez F : Giant sacral schwannoma. A case report. *Spine (Phila Pa 1976)* 21 : 522-526, 1996
12. Osborn RE, DeWitt JD : Giant cauda equina schwannoma : CT appearance. *AJNR Am J Neuroradiol* 6 : 835-836, 1985
13. Rengachary SS, O’Boynick P, Batnitzky S, Kepes JJ : Giant intrasacral Schwannoma : case report. *Neurosurgery* 9 : 573-577, 1981
14. Saito T, Shimode M, Azuma S, Seichi A : Giant schwannoma of the cauda equina with dural ectasia : a case report. *J Orthop Sci* 9 : 635-637, 2004
15. Salvant JB Jr, Young HF : Giant intrasacral schwannoma : an unusual cause of lumbosacral radiculopathy. *Surg Neurol* 41 : 411-413, 1994
16. Santi MD, Mitsunaga MM, Lockett JL : Total sacrectomy for a giant sacral schwannoma. A case report. *Clin Orthop Relat Res* : 285-289, 1993
17. Turgut M, Erkuş M : Giant schwannoma of the cauda equina : case report and review of the literature. *Zentralbl Neurochir* 69 : 99-101, 2008
18. Turk PS, Peters N, Libbey NP, Wanebo HJ : Diagnosis and management of giant intrasacral schwannoma. *Cancer* 70 : 2650-2657, 1992
19. Wu WQ : Management of two giant neurilemmomas of the cauda equina. *South Med J* 73 : 386-388, 1980