ESTIMATES FOR THE SHIFTED CONVOLUTION SUM INVOLVING FOURIER COEFFICIENTS OF CUSP FORMS OF HALF-INTEGRAL WEIGHT

ABHASH KUMAR JHA AND LALIT VAISHYA

Abstract. In this article, we obtain certain estimate for the shifted convolution sum involving the Fourier coefficients of half-integral weight cusp forms.

1. Introduction

The estimates for the shifted convolution sums involving the Fourier coefficients of automorphic forms have been investigated by several authors. Selberg [15] started the study of shifted convolution sums and obtained the analytic properties of the \(L \)-function associated with cusp forms. Goldfeld [4], by using the analytic and arithmetic property of Poincaré series obtained an estimate of the following shifted convolution sum:

\[
\sum_{n \geq 1} a_f(n)a_g(n + m)e^{-n/X},
\]

where \(f \) and \(g \) are cusp forms of weight \(k \) and \(l \), respectively for the full modular group, and \(a_f(n) \) (respectively \(a_g(n) \)) denotes the \(n \)-th Fourier coefficient of \(f \) (respectively \(g \)).

Hafner [5] extended the result of Goldfeld [4] for congruence subgroups by using spectral decomposition method. Similar sums have also been considered for other kinds of automorphic forms, see the list [2, 7, 10, 13, 14, 17, 18]. Recently, Luo [11] obtained an estimate for the following shifted convolution sum:

\[
S(f, g, b) := \sum_{n \geq 1} a_f(n + b)a_g(n)G(n),
\]

where \(f \) is a cusp form of weight \(k + \frac{1}{2} \) for the group \(\Gamma_0(4N) \), \(g \) is a cusp form of weight \(l \) or a Maass cusp form for the group \(\Gamma_0(1) \), and \(G \) is a smooth function with the support in \([\frac{X}{2}, \frac{3X}{2}]\) satisfying \(G^{(p)}(x) \ll (\frac{X}{P})^{-p} \) for all integer \(p \geq 0 \), where \(P \) is a real number with \(1 \leq P \leq X \). The aim of this paper is to obtain an estimate for \(S(f, g, b) \) when \(f \) and \(g \) are both half-integral weight cusp forms by using a similar method as in [11]. Now, we state the main result of the paper.

Let \(f \) be a cusp form of weight \(k + \frac{1}{2} \) and level \(4N \) with Fourier series expansion

\[
f(\tau) = \sum_{n \geq 1} a_f(n)n^{k/2-1/4}e(n\tau),
\]
and g be a newform of weight $l + \frac{1}{2}$ and level $4N$ with Fourier series expansion

$$g(\tau) = \sum_{n \geq 1} a_g(n)n^{l+1/4}e(n\tau).$$

For a fixed positive integer b and a smooth function $G(x)$ as in (1), we consider the following sum:

$$S(f, g, b) = \sum_{n \geq 1} a_f(n+b)a_g(n)G(n).$$

Theorem 1.1. Let f, g and G be as above, and N be an odd and squarefree positive integer. Then, we have

$$S(f, g, b) \ll_{\epsilon,f,g,b,G} X^{\frac{3}{4}+\epsilon} P\frac{3}{2},$$

2. **Notation and Preliminaries**

Let \mathcal{H} denote the complex upper-half plane. For a complex number τ, we use the notation $e(\tau) := e^{2\pi i \tau}$. The full modular group $SL_2(\mathbb{Z})$ and the congruence subgroup $\Gamma_0(N)$ of level $N \in \mathbb{N}$ is defined as follows;

$$SL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\},$$

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}.$$

The group $SL_2(\mathbb{Z})$ acts on the complex upper half-plane \mathcal{H} via fractional linear transformation as follows;

$$\gamma \tau := \frac{a\tau + b}{c\tau + d}, \text{ where } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \text{ and } \tau \in \mathcal{H}.$$

For $k \in \mathbb{Z}_+$, $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$, and a holomorphic function $f : \mathcal{H} \to \mathbb{C}$, define the weight $k + \frac{1}{2}$ slash operator as follows;

$$f|_{k+\frac{1}{2}} \gamma(\tau) := \left(\frac{c}{d} \right) \epsilon_d^{2k+1}(c\tau + d)^{-\left(k+\frac{1}{2}\right)} f(\gamma \tau),$$

where $\left(\frac{c}{d} \right)$ is the Kronecker symbol and $\epsilon_d = \begin{cases} 1 & \text{if } d \equiv 1 \pmod{4}, \\ i & \text{if } d \equiv 3 \pmod{4}. \end{cases}$

Definition 2.1. A modular form of weight weight $k + \frac{1}{2}$ for $\Gamma_0(4N)$ is a complex-valued holomorphic function $f : \mathcal{H} \to \mathbb{C}$ satisfying the following properties:

1. $f|_{k+\frac{1}{2}} \gamma(\tau) = f(\tau)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$.

2. f is holomorphic at the cusps of $\Gamma_0(4N)$ with the Fourier series expansion given by

$$f(\tau) = \sum_{n \geq 0} a_f(n)e(n\tau).$$

Further, a modular form f of weight $k + \frac{1}{2}$ for $\Gamma_0(4N)$ is said to be a cusp form if it vanishes at every cusp of $\Gamma_0(4N)$.
We denote by $M_{k+\frac{1}{2}}(\Gamma_0(4N))$ and $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ the space of modular forms and the space of cusp forms of weight $k + \frac{1}{2}$ for $\Gamma_0(4N)$, respectively. The Kohnen plus space $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is the subspace of cusp forms in $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ whose n-th Fourier coefficient vanishes whenever $(-1)^k n \equiv 2, 3 \pmod{4}$. Kohnen using certain operators developed the theory of newforms of half-integral weight parallel to the Atkin-Lehner theory of newforms in integral weight case. For more details on the theory of modular forms and newforms of half-integral weight, we refer to [8, 9, 12, 16]. We assume the Ramanujan-Petersson conjecture for the Fourier coefficients of half-integral weight newforms, i.e., for any $\epsilon > 0$, we have $a_f(n) \ll \epsilon n^{k/2-1/4+\epsilon}$.

3. Preparatory Lemmas

In this section, we state some lemmas and recall some of the properties of Poincaré series which will be used in the proof of Theorem [11]. First we state the Poisson-Voronoi summation formula for half-integral weight cusp forms.

For $f(\tau) = \sum_{n \geq 1} a_f(n) n^{k/2-1/4} e(n \tau) \in S_{k+\frac{1}{2}}(4N)$ and a smooth function $G(x)$ with compact support in $(0, \infty)$, the Poisson-Voronoi summation formula is given by the following lemma.

Lemma 3.1. For any positive integers c and a with $\gcd(a, c) = 1$, we have

$$
\sum_{n=1}^{\infty} a_f(n) e\left(\frac{an}{c}\right) G(n) = \frac{2\pi i^{k+\frac{1}{2}}}{c} \left(\frac{c}{d}\right) e^{2k+1} \sum_{d=1}^{\infty} a_f(n) e\left(\frac{dn}{c}\right) H(n),
$$

where $H(n) = \int_{0}^{\infty} G(x) J_{k+\frac{1}{2}} \left(\frac{4\pi\sqrt{nx}}{c}\right) dx$, d is the multiplicative inverse of a modulo c, and $J_{\nu}(z)$ denotes a Bessel function of order ν.

Proof. For a proof, we refer to [3, Section 5]. \hfill \square

For every positive integer m, we define the m-th Poincaré series $P_m(\tau)$ of weight $k + \frac{1}{2}$ on the congruence subgroup $\Gamma_0(4N)$ by

$$
P_m(\tau) := \sum_{\gamma \in \Gamma_{\infty,4N} \setminus \Gamma_0(4N)} e^{2\pi im\tau} \left|_{k+\frac{1}{2}} \gamma(\tau)\right.,
$$

where $\tau \in \mathcal{H}$ and $\Gamma_{\infty,4N} = \left\{ \pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} | n \in \mathbb{Z} \right\} \cap \Gamma_0(4N)$.

It is well-known that $P_m(\tau) \in S_{k+\frac{1}{2}}(\Gamma_0(4N))$ for $m \geq 1$. The m-th Poincaré series $P_m(\tau)$ has a Fourier series expansion given by

$$
P_m(\tau) = \sum_{n=1}^{\infty} a_{P_m}(n) n^{k/2-1/4} e(n \tau),
$$

where $a_{P_m}(n)$ is defined to be

$$
m^{k/2-1/4} a_{P_m}(n) = \delta_{m,n} + 2\pi i^{k+1/2} \sum_{c \geq 1, 4N | c} \epsilon^{-1} S_{k}(m, n; c) J_{k-\frac{1}{2}} \left(\frac{4\pi\sqrt{mn}}{c}\right),
$$
where $J_\nu(z)$ denotes a Bessel function of order ν, and $S_k(m, n; c)$ denotes the Kloosterman sum defined by

$$S_k(m, n; c) = \sum_{a \equiv (m, c) \mod{c}, \gcd(a,c)=1} e^{-2\pi i (2k+1)(\frac{c}{a})} e^{\left(\frac{md + na}{c}\right)},$$

here d denotes the multiplicative inverse of a modulo c. For more details on Poincaré series we refer to [3, Section 6].

The Weil-Salié bound for the Kloosterman sum is given by [11, pp. 241 3):

$$S_k(m, n; c) \ll \gcd(m, n, c)^{1/2} d(c)^{1/2},$$

where for a positive integer n, $d(n)$ denotes the number of positive divisors of n.

Lemma 3.2. For any integer $p \geq 0$ and fixed $m, b \in \mathbb{N}$, we have

$$\int_0^\infty G(x) J_{k-1/2} \left(\frac{4\pi \sqrt{m(x+b)}}{c} \right) J_{l-1/2} \left(\frac{4\pi \sqrt{nx}}{c} \right) dx \ll X (|P_c(Xn)|^{-\frac{1}{2}} + n^{-\frac{1}{2}})$$

$$\times \min \left(\left(\frac{\sqrt{X}}{c} \right)^{1 \over 2}, \left(\frac{\sqrt{X}}{c} \right)^{k-1 \over 2} \right) \min \left(\left(\frac{\sqrt{nx}}{c} \right)^{-1 \over 2}, \left(\frac{\sqrt{nx}}{c} \right)^{l-1 \over 2} \right).$$

Proof. For a proof, we refer to [11, Lemma 3].

Lemma 3.3. For sufficiently large X and any arbitrarily small $\epsilon > 0$, we have

$$\sum_{c \leq X} d(c) \frac{1}{c} = \frac{1}{2} (\log X)^2 + 2\gamma \log X + O(1) \ll (\log X)^2 \ll X^\epsilon,$$

where γ is the Euler constant.

Proof. Proof is an application of Abel’s partial summation formula and we refer to [11, pp.70].

4. Proof of Theorem 1.1

It is sufficient to obtain the estimate of $S(f, g, b)$ when f is a Poincaré series, because the space of cusp forms $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ is generated by the Poincaré series $\{P_m(\tau) \mid m \geq 1\}$. Thus, we obtain the estimate for $S(P_m, g, b) = \sum_{n \geq 1} a_{P_m}(n + b) a_g(n) G(n)$, where $a_{P_m}(n)$ is the n-th Fourier coefficient of m-th Poincaré series. We assume that X is sufficiently large depending on m.

Substitute the expression of $a_{P_m}(n)$ from (9) to obtain

$$S(P_m, g, b) = \sum_{n \geq 1} a_{P_m}(n + b) a_g(n) G(n) \left(\frac{1}{2\pi i^{k+1/2}} \delta_{m,n+b} + \sum_{c \geq 1, 4N \mid c} c^{-1} S_k(m, n+b; c) J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(n+b)}}{c} \right) \right).$$
which yields

\[|S(P_m, g, b)| \ll \sum_{c \geq 1, 4N|c} c^{-1} \sum_{a \equiv (\text{mod} \ c)} \epsilon_{a}^{-(2k+1)} \left(\frac{c}{a} \right) e \left(\frac{md + ba}{c} \right) \times \sum_{n \geq 1} a_{g}(n)G(n) e \left(\frac{na}{c} \right) J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(n+b)}}{c} \right) | . \]

Now, we apply Poisson-Voronoi summation formula to obtain

\[|S(P_m, g, b)| \ll \sum_{c \geq 1, 4N|c} c^{-2} \sum_{n \geq 1} a_{g}(n)S_{k}(m - n, b; c) \times \int_{0}^{\infty} G(x)J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(x+b)}}{c} \right) J_{l-\frac{1}{2}} \left(\frac{4\pi \sqrt{nx}}{c} \right) dx | . \]

(11)

Without loss of generality, we may assume \(n \ll X^{4} \), for a fixed large constant \(A > 0 \). We now break the sum in (11) into three parts as follows:

Part I: \(n \ll X^{4} \).

Part II: \(n \gg X^{4} \) and \(Pc < (nX)^{1/2}X^{-\epsilon} \).

Part III: \(n \gg X^{4} \) and \(Pc \geq (nX)^{1/2}X^{-\epsilon} \).

Estimate for Part I: In this case, the contribution for the sum (11) denoted by \(S_{1} \), is at most \(X^{\frac{3}{2}+\epsilon} \) which is obtained as follows:

\[
S_{1} = \sum_{c \geq 1, 4N|c} c^{-2} \sum_{n \ll X^{4}} a_{g}(n)S_{k}(m - n, b; c) \times \int_{0}^{\infty} G(x)J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(x+b)}}{c} \right) J_{l-\frac{1}{2}} \left(\frac{4\pi \sqrt{nx}}{c} \right) dx .
\]

We apply the Weil-Salié bound for the Kloosterman sum \(S_{k}(m - n, b; c) \) and the Ramanujan-Petersson bound for the Fourier coefficients \(a_{g}(n) \), and then use Lemma 3.2 (with \(p = 0 \));

\[
|S_{1}| \ll \sum_{c \geq 1, 4N|c} c^{-2+1/2}d(c) \sum_{n \ll X^{4}} n^{4}X([Pc(Xn)^{-1/2}]^{p} + n^{-p/2}) \times \min((\sqrt{X}/c)^{-1/2}, (\sqrt{X}/c)^{k-1/2}) \times \min((\sqrt{nx}/c)^{-1/2}, (\sqrt{nx}/c)^{l-1/2}),
\]
Here we have used Lemma 3.3 and partial summation formula to obtain the estimate for first sum, and the last sum is an absolutely convergent series.

Estimate for Part II: In this case, the integral in Lemma 3.2 is of order $O(X^{-p\epsilon})$. Therefore, by choosing sufficiently large p, we see that the integral is of order $O(X^{-A})$. Hence the contribution for the sum in (11) is negligible.

Estimate for Part III: In this case, we again decompose the sum

$$\sum_{c \geq 1, 4Nc} c^{-2} \sum_{n > X^{4\epsilon}} \sum_{P \geq (nX)^{1/2}X^{-\epsilon}} a_g(n)S_k(m - n, b; c)$$

into sub-sums of type $M \leq n \leq 2M$ using the dyadic division method and break the sum over c into the following two parts;

Part (a): $c > \sqrt{2MX}$.

Part (b): $\sqrt{MX^X} \leq c \leq \sqrt{2MX}$.

Estimate for Part (a): In this case, the contribution for the sum, denoted by S_a, is at most $X^{\frac{3}{2} + \epsilon}$ which is obtained as follows:

$$S_a = \log X \max_{X^{4\epsilon} \leq M \leq X^4} \sum_{c > \sqrt{MX^{2\epsilon}}} c^{-2} \sum_{M \leq n \leq 2M} |a_g(n)S_k(m - n, b; c)|$$

$$\times \left| \int_0^{\infty} G(x)J_{k - \frac{1}{2}} \left(\frac{4\pi \sqrt{m(x + b)}}{c} \right) J_{l - \frac{1}{2}} \left(\frac{4\pi \sqrt{nx}}{c} \right) dx \right|.$$
Now, apply the Weil-Salïé bound for the Kloosterman sum, Ramanujan-Petersson bound for the Fourier coefficients $a_q(n)$, and then use Lemma 3.2 to obtain

\[
S_a \ll \log X \max_{X^{4^e} \leq M \leq X^A} \sum_{c > \sqrt{2M}/4N^e} c^{-2+1/2} d(c) \sum_{M \leq n \leq 2M} n^{\epsilon} \left([Pc(Xn)^{-1/2}]^p + n^{-p/2} \right)
\]

\[
\times \min \left(\left(\frac{\sqrt{X}}{c} \right)^{-\frac{1}{2}}, \left(\frac{\sqrt{X}}{c} \right)^{k-1/2} \right) \min \left(\left(\frac{\sqrt{MX}}{c} \right)^{-\frac{1}{2}}, \left(\frac{\sqrt{MX}}{c} \right)^{l-1/2} \right),
\]

\[
\ll X^{1+\epsilon} \max_{X^{4^e} \leq M \leq X^A} \left(M^{1+\epsilon} \sum_{c > \sqrt{2M}} c^{-3/2} d(c)(\sqrt{X}/c)^{k-1/2} \right) \times (\sqrt{MX}/c)^{l-1/2}.
\]

Finally (by taking $p = 0$), we obtain

\[
S_a \ll X^{1+\epsilon} \max_{X^{4^e} \leq M \leq X^A} \left(M^{1+\epsilon} \sum_{c > \sqrt{2M}} c^{-3/2} d(c)(\sqrt{X}/c)^{k-1/2} \right)
\]

\[
\ll X^{1+\epsilon} \max_{X^{4^e} \leq M \leq X^A} \left(M^{1+\epsilon} \int_{x=\sqrt{2M}}^{\infty} x^{-k+1+\epsilon} dx \right),
\]

\[
\ll X^{1+\epsilon} \max_{X^{4^e} \leq M \leq X^A} \left(M^{1+\epsilon} \frac{k-1/2}{2} (MX)^{-k/2+\epsilon} \right),
\]

\[
\ll X^{1+\epsilon} \max_{X^{4^e} \leq M \leq X^A} \left(M^{1+\epsilon} X^{-\frac{1}{2}} (X^{1+\epsilon}) \right) \ll X^{1+\epsilon}.
\]

Estimate for Part (b): $\sqrt{MX^{1-\epsilon}}/p \leq c \leq \sqrt{2MX}$.
If $\sqrt{X} \geq \sqrt{MX^{1-\epsilon}}/p$, then we have $M \leq P^2 X^{2\epsilon}$. In this case, the contribution, denoted by $S_{b,1}$, is at most $X^{1+\epsilon} P^2 \ll X^{1+\epsilon}$. Which is obtained as follows:

\[
S_{b,1} = \log X \max_{X^{4^e} \leq M \leq P^2 X^{2\epsilon}} \sum_{\sqrt{MX^{1-\epsilon}}/4N^e \leq c \leq \sqrt{2MX}} c^{-2} \sum_{M \leq n \leq 2M} |a_q(n)S_k(m - n, b, c)|
\]

\[
\times \left| \int_0^\infty G(x) J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(x + b)}}{c} \right) J_{l-\frac{1}{2}} \left(\frac{4\pi \sqrt{n x}}{c} \right) dx \right|.
\]
Now, apply the Weil-Salié bound for the Kloosterman sum, Ramanujan-Petersson bound for the Fourier coefficients $a_g(n)$, and then use Lemma 3.2 to obtain

$$S_{b,1} \ll \log X \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} \sum_{\sqrt{M} X^{1/4} \leq \nu \leq \sqrt{2MX}} c^{-2+1/2} d(c) \sum_{M \leq n \leq 2M} n^{\epsilon} X([Pc(Xn)^{-1/2}]^p + n^{-p/2})$$

$$\times \min \left(\left(\frac{X}{c} \right)^{-\frac{1}{2}}, \left(\frac{X}{c} \right)^{k-1/2} \right) \min \left(\left(\frac{MX}{c} \right)^{-\frac{1}{2}}, \left(\frac{MX}{c} \right)^{l-1/2} \right),$$

$$\ll X^{1+\varepsilon} \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} M^{1+\varepsilon} \left\{ \sum_{\sqrt{M} X^{1/4} \leq \nu \leq \sqrt{2MX}} c^{-3/2} d(c) \min \left(\left(\frac{X}{c} \right)^{-\frac{1}{2}}, \left(\frac{X}{c} \right)^{k-1/2} \right) \right. \left. \times \left(\frac{MX}{c} \right)^{-1/2} \right\}$$

$$\ll X^{1+\varepsilon} \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} M^{1+\varepsilon} \left\{ \sum_{\sqrt{M} X^{1/4} \leq \nu \leq X} c^{-3/2} d(c) (\sqrt{X}/c)^{k-1/2} \times (\sqrt{MX}/c)^{-1/2} + \right. \left. \sum_{\sqrt{M} X^{1/4} \leq \nu \leq \sqrt{X}} c^{-3/2} d(c) (\sqrt{X}/c)^{-1/2} \times (\sqrt{MX}/c)^{-1/2} \right\}$$

$$\ll X^{1+\varepsilon} \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} M^{1+\varepsilon} \left\{ (MX)^{-1/4} \sum_{\sqrt{X} \leq \nu \leq \sqrt{2MX}} c^{-1} d(c) \right. \right.$$

$$X^{-1/2+1/4} M^{-1/4} \sum_{\sqrt{MX} X^{1/4} \leq \nu \leq \sqrt{X}} \left. \frac{d(c)}{c} \right\},$$

$$\ll X^{1+\varepsilon} \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} \left(M^{1+\varepsilon} \times (MX)^{-1/4} \sum_{\sqrt{MX} X^{1/4} \leq \nu \leq \sqrt{2MX}} \frac{d(c)}{c} \right),$$

$$\ll X^{1+\varepsilon} \max_{X^{4\varepsilon} \leq M \leq P^2 X^{2\varepsilon}} \left(M^{1+\varepsilon} \times (MX)^{3/2} \right) \ll X^{1+\varepsilon} P^{3/2}.$$

If $\sqrt{X} \leq \sqrt{MX} X^{-\varepsilon} P^{-1}$, then we have $M \geq P^2 X^{2\varepsilon}$. In this case, the contribution, denoted by $S_{b,2}$, is at most $X^{1+\varepsilon} P^{3/2}$ which is obtained as follows (by taking $p = 0$):

$$S_{b,2} = \log X \max_{P^2 X^{2\varepsilon} \leq M \leq X^A} \sum_{\sqrt{M} X^{1/4} \leq \nu \leq \sqrt{2MX}} c^{-2} \sum_{M \leq n \leq 2M} |a_g(n) S_k(m - n, b; c)|$$

$$\times \left| \int_0^\infty G(x) J_{k-\frac{1}{2}} \left(\frac{4\pi \sqrt{m(x + b)}}{c} \right) J_{l-\frac{1}{2}} \left(\frac{4\pi \sqrt{nx}}{c} \right) dx \right|.$$
Now, apply the Weil-Salié bound for the Kloosterman sum, Ramanujan-Petersson bound for the Fourier coefficients $a_q(n)$, and then use Lemma 3.2 to obtain

$$S_{b,2} = \log X \max_{p^2 X^{2\epsilon} \leq M \leq X^A} \sum_{\sqrt{M} \leq \frac{X^{\epsilon}}{4N|c|} \leq \sqrt{XM}} c^{-2} \sum_{M \leq n \leq 2M} |n^\epsilon c^{1/2}d(c)| \times X([Pc(Xn)^{-1/2}] + n^{-p/2})$$

$$\times \min((\sqrt{X}/c)^{-1/2}, (\sqrt{X}/c)^{k-1/2}) \times \min((\sqrt{nX}/c)^{-1/2}, (\sqrt{nX}/c)^{l-1/2}),$$

$$\ll X^{1+\epsilon} \max_{p^2 X^{2\epsilon} \leq M \leq X^A} M^{1+\epsilon} \sum_{\sqrt{M} \leq \frac{X^{\epsilon}}{4N|c|} \leq \sqrt{XM}} c^{-3/2}d(c)(\sqrt{X}/c)^{k-1/2} \times (\sqrt{MX}/c)^{-1/2}.$$

Since $k \geq 2$ and $\sqrt{MXX^{-\epsilon}} \leq c$, i.e., $\frac{\sqrt{X}}{c} \leq \frac{PX^\epsilon}{\sqrt{M}} \leq 1$, therefore

$$S_{b,2} \ll X^{1+\epsilon} \max_{p^2 X^{2\epsilon} \leq M \leq X^A} M^{1+\epsilon} \sum_{\sqrt{M} \leq \frac{X^{\epsilon}}{4N|c|} \leq \sqrt{XM}} c^{-3/2}d(c) \left(\frac{PX^\epsilon}{\sqrt{M}}\right)^{3/2} \times (\sqrt{MX}/c)^{-1/2},$$

$$\ll X^{1+\epsilon} P^{3/2} \max_{p^2 X^{2\epsilon} \leq M \leq X^A} M^{1+\epsilon} \sum_{\sqrt{M} \leq \frac{X^{\epsilon}}{4N|c|} \leq \sqrt{XM}} M^{-\frac{3}{4} - \frac{1}{2}\epsilon} c^{-1}d(c),$$

$$\ll X^{1+\epsilon} P^{3/2} \max_{p^2 X^{2\epsilon} \leq M \leq X^A} (M)^\epsilon \log(MX) \ll X^{1+\epsilon} P^{3/2} X^{A\epsilon} \ll X^{1+\epsilon} P^{3/2}.$$

Finally, all these estimates give us the required result.

Acknowledgements. The authors would like to thank Prof. B. Ramakrishnan for support and encouragement. The second author would like to thank HRI, Prayagraj for providing financial support through Infosys grant. Finally, the authors thank the referee for careful reading of the paper and many helpful suggestions.

References

[1] T. M. Apostol, Introduction to Analytic number theory, Undergraduate Text in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
[2] V. Blomer, Shifted convolution sums and subconvexity bounds for automorphic L-functions, Int. Math. Res. Not. 2004, no. 73, 3905–3926.
[3] W. Duke and H. Iwaniec, Bilinear forms in the Fourier coefficients of half-integral weight cusp forms and sums over primes, Math. Ann., 286 (1990), no. 4, 783–802.
[4] D. Goldfeld, Analytic and arithmetic theory of Poincaré series, Journées Arithmétiques Liminy, Astérisque, 61 (1979), 95–107.
[5] J. L. Hafner, Explicit estimates in the arithmetic theory of cusp forms and Poincaré series, Math. Ann., 264 (1983), no. 1, 9–20.
[6] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. math., 87 (1987), no. 2, 385–401.
[7] A. K. Jha and L. Vaishya, Estimates of shifted convolution sums involving Fourier coefficients of Hecke-Maass eigenform, Int. J. Number Theory, 17 (2021), no. 7, 1631–1643.
[8] N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97, Springer-Verlag, New York, 1993.
[9] W. Kohnen, New forms of half-integral weight, J. Reine Angew. Math., 333 (1982), 32–72.
[10] G. Lü and D. Wang, Averages of shifted convolutions of general divisor sums involving Hecke eigenvalues, J. Number Theory, 199 (2019), 342–351.
[11] W. Luo, On shifted convolution of half integral weight cusp form, *Sci. China Math.* 53 (2010), no. 9, 2411–2416.

[12] M. Manickam, B. Ramakrishnan and T. C. Vasudevan, On the Theory of Newforms of half integral weight, *J. Number Theory*, 34 (1990), no. 2, 210–224.

[13] R. Munshi, Shifted convolution sums for $GL(3) \times GL(2)$, *Duke Math. J.*, 162 (2013), no. 13, 2345–2362.

[14] N. J. E. Pitt, On shifted convolution sum of $\zeta^3(s)$ with automorphic L-functions, *Duke Math. J.*, 77 (1995), no. 2, 383–406.

[15] A. Selberg, On the estimation of Fourier coefficients of modular forms, *Proc. Sympos. Pure Math.*, AMS Vol. VIII (1965), 1–15.

[16] G. Shimura, On modular forms of half integral weight, *Ann. of Math. (2)*, 97 (1973), 440–481.

[17] S. K. Singh, On double shifted convolution sum of $SL(2, \mathbb{Z})$ Hecke eigenforms, *J. Number Theory*, 191 (2018), 258–272.

[18] Q. F. Sun, Averages of shifted convolution sums for $GL(3) \times GL(2)$, *J. Number Theory*, 182 (2018), 344–362.

Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India.
Email address: abhashkumarjha@gmail.com, abhash.mat@iitbhu.ac.in

Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Prayagraj - 211019, India.
Email address: lalitvaishya@gmail.com, lalitvaishya@hri.res.in