FODEIN 2020

por RICARDO ALBERTO FORERO RUBIANO
DECUINTA CONVOCATORIA PARA EL FOMENTO DE LA INVESTIGACIÓN Y LA INNOVACIÓN 2020

Título del proyecto
Evaluación de la extracción de principios activos de ortiga (*Urtica dioica*) y agraz (*Vaccinium mendionale*) mediante el uso de hidrocavitación

Campo de acción
Ambiente

Transdisciplinariedad - Aporte al PIM
Proyección Social e Investigación pertinentes: El proyecto aborda un problema y busca una solución técnica que permita valorizar especies nativas del país. Esto permitirá contribuir al posicionamiento y visibilidad nacional e internacional de la USTA.

Articulación con funciones sustantivas y el sector social y productivo
Este proyecto busca dar solución a un problema que se presenta en el sector productivo, ya que aunque el país cuenta con una enorme riqueza en su flora, esta no genera riqueza al país. Mediante el desarrollo de este proyecto se busca utilizar un equipo desarrollado por la USTA para avanzar en la consolidación de riqueza para el país. Ello contribuirá en que la investigación no solamente aporte productos académicos sino que contribuya a resolver problemas de país, lo cual es un aporte a la proyección social de la Universidad; además que se enriquecerá la docencia en la medida en que la información generada se utilice en el currículo en el área de termofluidos, y por último la investigación se fortalecerá con la generación de ponencias y artículos de investigación.

Grupo de investigación
GEAMEC-Termofluidos

Línea de investigación en la que se inscribe el proyecto

Nombre del Investigador principal	Enlace CvLAC	Enlace ORCID	Enlace Google Académico
Dionisio Humberto Malagón Romero	http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculum.do?cod_rh=0000167061	https://orcid.org/0000-0003-2890-2180	https://scholar.google.com/citations?user=bfOdfcAAAAJ&hl=es&oi=ao
División	Programa	Grupo de investigación	
Ingeniería	Ingeniería Mecánica	Ingeniería Mecánica	GEAMEC
Nombre del Co-investigador	Enlace CvLAC	Enlace ORCID	
Ricardo Alberto Forero Rubiano	http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculum.do?cod_rh=0001094947	https://orcid.org/0000-0001-7683-3541	https://scholar.google.com/citations?user=EvAX1aEAAAAJ
División	Facultad	Programa	Grupo de investigación
-------------------	------------------	------------------	------------------------
Ingeniería	Ingeniería Mecánica	Ingeniería Mecánica	GEAMEC
Nombre del Co-investigador	Enlace CvLAC	Enlace ORCID	Enlace Google Académico
Gloria Astrid Nausa Galeano	http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculum?ocv.do?cod_rh=0000013766	https://orcid.org/0000-0002-5905-6151	https://scholar.google.es/citations?hl=es&user=ImHiQtnkAAAAA

División	Facultad	Programa	Grupo de investigación
Ingeniería	Ingeniería	Ingeniería Industrial	GIDMYM

Resumen de la propuesta

Colombia cuenta con condiciones geográficas privilegiadas, gracias a lo cual, tiene una gran variedad de especies vegetales disponibles. Sin embargo, la mayoría de los productos obtenidos a partir de estas suelen tener una baja transformación y por ende bajo valor agregado. El presente proyecto pretende obtener extractos naturales de dos plantas, ortiga (Urtica dioica) y agraz (Vaccinium meridionale), las cuales son ampliamente cultivadas en el país y que tienen una gran proyección para la formulación de productos en las industrias alimenticia, cosmética y farmacéutica. Para tal fin, se evaluará la hidroavilación como método novedoso de extracción, que no ha sido reportado hasta el momento en la literatura y con el que la Universidad Santo Tomás cuenta, gracias al desarrollo propiciado en la Facultad de ingeniería Mecánica. Entendiendo que el presente proyecto cubre únicamente la primera etapa, la obtención de los extractos, este será el punto de partida para la futura formulación de productos con alto valor agregado.

Palabras clave

Hidroavilación, extracción, principios activos, ortiga, agraz
La biodiversidad y posición geográfica de Colombia, conlleva a la tenencia de gran variedad de especies que como la ortiga (Urtica dioica) y el agraz (Vaccinium meridionale), son ideales para la obtención de sustancias de principios activos. Este privilegio no ha sido aprovechado apropiadamente, pese a que se han adelantado distintos trabajos de investigación a escala laboratorio, en los cuales, se han mostrado los beneficios de diferentes especies tanto en el campo alimentario, como en el farmacéutico.

La separación de las sustancias biológicamente activas de los materiales inertes o inactivos de una planta se realiza con cierta facilidad a escala laboratorio, mediante el empleo de procesos como son el de extracción con solventes, donde se obtienen por lo menos dos componentes: la solución extraída en su disolvente (el extracto) y el residuo (el bagazo), así como por otros procesos tales como: el de medio de arrastre por vapor, por ultrasonido u otras técnicas existentes. Sin embargo, el escalamiento de estos resulta bastante complejo debido a que no son rentables al realizarse a escala piloto y aún más a nivel industrial. Las dificultades principalmente se encuentran en el almacenamiento y manejo de los volúmenes de solvente a usar, en el calentamiento requerido y la generación del ultrasonido, lo que conlleva, a que la extracción de la sustancia activa a esta escala sea costosa, así como el deterioro de las vitaminas, las proteínas y otros elementos aprovechables, presentes en el precursor.

Una tecnología adecuada, muy versátil y la cual se puede utilizar para extraer principios activos, es la hidroacavitación, una aplicación prometedora en la extracción de productos microbiológicos tales como pectina, carotenos, taninos y otras preciadas sustancias que se obtienen de compuestos biológicos. Muchas de las sustancias medicinales se pueden obtener mediante extracción sometiendo previamente a la materia prima biológica a procesos hidromecánicos y cavitación.

La principal ventaja de esta tecnología es que se puede extraer los componentes a bajas temperaturas, lo cual, conlleva un estado más estable de los productos obtenidos, además de requerir menor consumo de energía y menos tiempo de proceso. Los campos donde hoy se puede aplicar esta tecnología son variados, se puede emplear en la industria alimentaria, biocombustibles, petróleo y gas, refinación, industria química, agricultura, construcción y tratamiento de aguas, entre otras.

En la Universidad Santo Tomás se ha realizado el diseño, fabricación y puesta en marcha de un equipo de hidroacavitación, con el cual, ya que no se han trabajado con varias especies de consecución local, se propone realizar pruebas para la extracción de componentes activos a partir de la ortiga (Urtica dioica) y el agraz (Vaccinium meridionale), de manera que se evalúe su eficiencia y pertinencia a nivel de laboratorio y en una fase posterior plantear una planta piloto, que permita hacer de esta tecnología una posibilidad de generación de empresa.

A partir de lo anterior, se propone como pregunta de investigación: ¿Qué tan eficiente es la tecnología de hidroacavitación en la extracción de principios activos a partir de la ortiga (Urtica dioica) y el agraz (Vaccinium meridionale)?
La diversidad de plantas es un componente esencial de la biosfera y sustenta el desarrollo de la sociedad en todo el mundo. Las necesidades básicas de la humanidad son abastecidas por las plantas, sin plantas que mantengan y renueven la biosfera, no habría lugar en ella para los seres vivos. Las plantas proporcionan el oxígeno del mundo y producen los componentes bioquímicos no solo para los alimentos, sino también para medicamentos, farmacológicos, cosmológicos, herbicidas, biocombustibles, entre otros. A pesar del desarrollo global y la creciente sofisticación de la agricultura, la horticultura y la silvicultura, las plantas silvestres siguen proporcionando una gran diversidad de subsistencia como producto de gran valor financiero. Millones de personas en todo el mundo dependen directamente de los recursos de plantas silvestres para al menos parte de sus medios de vida, ya sea para alimentos, medicinas, materiales de construcción, leña o ingresos financieros.

Colombia, es un país privilegiado por la naturaleza, donde la diversidad de climas que se crean a través de grandes gradientes de altitud generan una variedad de ecosistemas representados en punas, bosques de montaña, valles secos, desiertos altos y salinas, entre otras; paisajes que tienen diversidad de plantas y animales; está catalogado como uno de los países como la mayor diversidad en el mundo, precedidos solo por Brasil y seguidos por Indonesia, China y México. Colombia tiene 28.000 plantas y lúquenes; siendo un patrimonio invaluable que puede brindarle ventajas competitivas en el descubrimiento y desarrollo de ingredientes activos para la industria farmacéutica y cosmética mediante el uso sostenible de su biodiversidad. Sin embargo, a pesar de nuestra riqueza incalculable, aún estamos sujetos a la importación de ingredientes naturales para el desarrollo de productos, medicamentos cosméticos y fitoterapéuticos.

Los extractos de plantas crudas se han utilizado en medicina popular para el tratamiento de abscesos, picaduras de insectos, miconia, inflamaciones, helmintos intestinales, diarrea, entre otras enfermedades. Este potencial medicinal ha llevado a la industria farmacéutica a buscar agentes más efectivos, con el objeto de descubrir componentes activos potencialmente más útiles que puedan servir como nuevas moléculas o plantillas medicinales para la síntesis de nuevas entidades farmacológicas.

Por lo anterior, es una oportunidad innegable la generación de proyectos de investigación, que puedan convertirse en alternativas de negocio, a partir del estudio para el aprovechamiento de la biodiversidad existente en Colombia. Sin embargo, no solo se requiere hacer análisis de la riqueza en elementos activos de diferentes especies nativas, sino a sí mismo, estudiar la viabilidad del proceso productivo que permita hacer del proyecto sustentable y productivo en el tiempo. Mediante la ejecución de este proyecto de investigación se busca evaluar la posibilidad de extraer principios activos de dos plantas con un alto potencial en el campo farmacéutico y alimenticio, aplicando una tecnología que se viene trabajando e implementando en la Universidad Santo Tomás como es el de hidroavivación.

El agraz no tiene un mercado grande en Colombia como si lo tiene el mercado Europeo, por lo que se perfilan como un producto importante de exportación. Por otro lado, la ortiga también presenta un mercado importante a nivel internacional. Luego la posibilidad de generar oportunidades de negocio a partir de la biodiversidad colombiana es una realidad en la cual la Universidad puede aportar y aprovechar para generar procesos agroindustriales.
Los resultados esperados permitirían obtener publicaciones de alto impacto, ya que según la revisión bibliográfica no se han empleado reactores de hidrocavitación para dicha extracción. Adicionalmente, los resultados obtenidos podrían dar origen a un escalamiento del proceso de laboratorio a escala de planta piloto y posteriormente industrial para la obtención de principios activos usando la tecnología desarrollada en la Universidad Santo Tomás.

Objetivo general

Estar a la extracción de principios activos de ortiga y agraz mediante el uso de hidrocavitación

Objetivos específicos

- Establecer el contenido de principios activos en ortiga y agraz a escala laboratorio.
- Escalar el proceso de extracción de principios activos de ortiga y agraz en reactor de hidrocavitación.
- Caracterizar el extracto obtenido a partir del uso de la hidrocavitación.

Estado del arte y marco conceptual

Ortiga.

La ortiga (Urtica dioica) es muy común en la industria farmacéutica ya que contiene una gran variedad de componentes químicos como polifenol, fenol, ácido graso, carotenoides y minerales como el calcio, cobalto, magnesio, fosforo, cobre, potasio y zinc. Devido a su contenido de polifenoles y fenoles es ampliamente utilizada para la producción de antibióticos, analgésicos, antinflamatorios, antimicrobianos y antioxidantes, que ayudan a la prevención y mejoramiento de la salud en el ser humano. Adicionalmente, se emplea en tratamientos para pacientes con enfermedades como: deficiencia crónica cardiovascular, cáncer, hiperplasia prostática, infecciones urinarias, úlceras producidas por la diabetes y antiplaquetario. Existen muchos métodos para extraer propiedades de una planta como la maceración, destilación, extracción por Soxhlet, ultrasonido, fluidos super críticos, microondas, centrifugadoras y cavitation.

Métodos de extracción de principios activos a partir de la ortiga

Distintos métodos se han reportado para la extracción de principios activos a partir de la ortiga. Dentro de los más importantes se tienen:

- **Maceración:** En este método la planta es sometida a maceración en mortero y luego se realiza la extracción con solventes. Se han evaluado distintos solventes como metanol (50%, 75% y 100%), etanol (50%, 75% y 96%) y agua, logrando la extracción de sustancias fenólicas, derivadas del ácido hidroxicinamico y flavonoides, mediante el análisis de HPLC se cuantificaron los
fenólicos más abundantes hasta un total de 76.5% del total de compuestos que son: ácido 2-O cafeína maleico y ácido clorogénico.

- **Extracción por ultra sonido**: Otra alternativa para la extracción usa utilizando ultrasónico, usando agua como solvente a 40°C con una potencia máxima de 300 W y 20 kHz, logrando la extracción de 1.209 mg/g de ácido galo, 1.289 mg/g de ácido cafeico, 4.453 mg/g de ácido clorogénico, 1.100 mg/g de ácido p-cumarico, 5.735 mg/g de naringenina y 0.784 mg/g de naringín. Desafortunadamente este método de extracción no es escalable a un nivel industrial.

- **Extracción por fluidos super críticos**: Mediante el uso de CO₂ presurizado es posible realizar la extracción a temperaturas entre 25°C y presiones entre 100 bar y 280 bar, con lo cual se obtienen 0.63mg/g de β-sitosterol y 0.058g/g de escopoletina.

- **Extracción por microondas**: Usando microondas y empleando agua como solvente con una potencia macro de 407 W se logran extraer 1.125 mg/g de ácido galo, 1.223 mg/g de ácido cafeico, 4.798 mg/g de ácido clorogénico, 1.157 mg/g de ácido p-cumarico, 5.582 mg/g de naringenina y 0.665 mg/g de naringín.

- **Extracción mediante centrífugación**: Otra alternativa para la extracción es mediante el uso de centrífugación, empleando una mezcla 50:50 de agua destilada y etanol, con una velocidad de giro de 300 rpm por dos horas.

Agradecimientos

El agraz (Vaccinium meridionale) es un fruto proveniente de un arbusto y perteneciente a la familia Ericaceae. Esta baya es nativa de Colombia y se cultiva también en países como Venezuela y Perú. Las condiciones adecuadas para el cultivo de agraz son altitudes entre 2000 y 3800 metros sobre el nivel del mar, lluvias entre los 958 y los 1350 mm por año, temperaturas entre los 13,5 y los 22,3°C y pH de suelo entre 4,4 y 5,4. En estas condiciones, los departamentos colombianos que se destacan por el mayor número de reportes de crecimiento de agraz son Boyacá, Cundinamarca y Antioquia. Para el año 2017, en Colombia se cultivó agraz en una extensión de 307,7 Ha, para una producción total de 2066,9 toneladas; consolidando un crecimiento sostenido desde 2013 equivalente al 156%.

En los últimos años, se ha despertado un importante interés tanto por su alto consumo doméstico, dado que desde 2006 está incluida en el listado de las especies aceptadas para compra en los Estados Unidos; como por el carácter promisorio de sus derivados, asociados particularmente a sus altos contenidos de antocianinas y fenoles. El contenido de antocianina reportado es de 329 mg de cianidina equivalentes de 3-glucósidos por cada 100 g de muestra y con un contenido fenólico total fue de 758.6 mg de ácido gálico equivalente por cada 100 g de muestra.

El efecto antioxidante y protector de los extractos de agraz ha sido evaluado en distintos campos y aplicaciones. Por ejemplo, para la industria de alimentos, se ha demostrado que retarda la oxidación de la grasa de hamburguesa. En el sector farmacéutico, el extracto de agraz ha mostrado actividad cardioprotectora en experimentos in vivo en ratas; así como un efecto antioxidante y capacidad oncoprotectora en modelos celulares de cáncer de colon. De otro lado, en la industria cosmética, el extracto de agraz ha sido reportado como promisorio gracias a la inhibición de la actividad de las enzimas elastasa y colagenasa en fibroblastos humanos, por lo que podría ser usado en la formulación de productos antienvejecimiento.
En este sentido, el carácter promisorio del fruto hace necesario explorar opciones eficientes de extracción que garanticen la preservación de los activos antioxidantes. Las aproximaciones realizadas hasta el momento han impuesto técnicas de extracción a escala laboratorio como licuado\(^9\) y macerado por Ultra-turrax\(^\circ\) y ultrasonido\(^40\). En aras de impulsar el desarrollo de una industria de alto valor agregado fundamentada en la explotación de agraz, resulta vital evaluar metodologías de extracción a mayor escala. De acuerdo con el conocimiento de los autores, la hidrocavitación no ha sido empleada como metodología de extracción, por lo que será objeto de estudio del presente trabajo.

Metodología

1. **Obtención del material Vegetal**

 Material vegetal
 Tanto las hojas de ortiga, como los frutos de agraz serán recolectadas en cultivos ubicados en el departamento de Cundinamarca. Con el fin de garantizar la homogeneidad del material vegetal este será recolectado al mismo tiempo y transportado al laboratorio. Una vez en el laboratorio, el material vegetal será pesado y clasificado de forma manual. Se removerán las hojas marchitas, las impurezas y los tallos más gruesos (ortiga); se rechazarán los frutos con evidencia de maltrato o descomposición (agraz). Se realizará un lavado con agua destilada.

2. **Secado natural**
 Tanto los frutos de agraz como las hojas de ortiga serán secadas de forma natural mediante secado solar. Para esto, el material será dispuesto en canastillas plásticas convencionales. En el caso de la ortiga, se mantendrá una profundidad de la capa de hojas menor a 1 cm y para el agraz una de 5 cm, con el fin de evitar el pudrimento. Las canastillas se mantendrán suspendidas para garantizar la circulación de aire por todos los costados. A lo largo del secado, se mantendrá un registro constante de temperatura y humedad para caracterizar el ambiente, haciendo uso de un termohigrómetro datalogger (94150, EBCHQ). Se determinará la humedad haciendo uso de una termobalananza (PMR 50, Radwag), donde el material se secará a 105°C hasta peso constante.

El material seco será reducido haciendo uso de un molino convencional. El tamaño de partícula será determinado haciendo uso de un tamiz (Gilson), con el fin de garantizar un tamaño inferior a 1 mm. El material seco y molido será empacado en bolsas plásticas y almacenado a -4°C hasta su uso, para evitar cualquier degradación\(^41\).

3. **Extracción de principios activos a nivel laboratorio y reactor de hidrocavitación**

 Obtención de extractos naturales
Para el método Soxhlet, 4 g del material vegetal seco serán cargados en un soporte de celulosa. Como solvente de extracción se emplearán 150 mL de una mezcla etanol/aqua. Se evaluarán distintas proporciones de etanol/aqua (25/75, 50/50, 75/25 y 100/0) por duplicado. La extracción se llevará a cabo durante dos horas; se tomarán muestras cada 15 minutos para ser determinada la absorbancia en espectrofotómetro. Una vez definidas las condiciones de extracción, se realizará la extracción de una muestra del material y se filtrará para quedarse con el extracto, el cual será sometido a condiciones de evaporación al vacío a 40°C (Hei-VAP Advantage, Heidolph). De esta manera se reportará el porcentaje de extracto.

Obtención de extractos naturales por hidrocavitación

Se evaluarán al menos 5 relaciones de material seco de ortiga y agraz a solvente. Para ello se pesará el material a extraer y se colocará en el equipo de hidrocavitación. Se adicionarán el solvente requerido, acorde al diseño experimental. Se podrá a funcionar el equipo en condiciones de presión que garanticen la extracción, teniendo en cuenta la diferencia de presión antes del reactor de hidrocavitación y después de pasar a través de él. Se registrará la temperatura, caudal, presión y potencia eléctrica a través del tiempo. Adicionalmente cada 5 minutos se tomarán muestras de 100 ml para registrar el contenido de extractos empleando evaporación al vacío. Para los dos extractos se realizará un diseño experimental y se determinará la relación material seco a solvente requerido para realizar la extracción, así como el tiempo requerido para llevarla a cabo.

4. Caracterización de extractos obtenidos.

Caracterización de ortiga

La ortiga será caracterizada de acuerdo con los métodos reportados por Đurović et al.\(^8\) El contenido de terpenos y de ácidos grasos será determinado por cromatografía de gases (GC), a través de servicios técnicos elaborados por terceros. En el primer caso, se empleará el extracto obtenido por hidrodestilación y se usará un detector FID y un detector de masas con una columna HP-5MS (30 m, 0.25 mm ID, 0.25 μm) y usando He como gas de arrastre a un flujo de 2 mL min\(^{-1}\). Las temperaturas de trabajo serán las siguientes: inyector 250°C, detector 300°C, horno iniciando en 60°C con un incremento lineal de 4°C min\(^{-1}\) hasta alcanzar 150°C. De otro lado, la determinación de ácidos grasos se hará sobre un extracto obtenido con foraldehído y etanol a partir de las hojas de ortiga. Se empleará un detector FID y una columna CP-Sil 88 (100m, 0.25 mm DI, 0.2 μm) con N\(_2\) como gas de arrastre a un flujo de 1 mL min\(^{-1}\). El flujo de N\(_2\) en el detector será de 25 mL min\(^{-1}\), el de aire 400 mL min\(^{-1}\) y el de H\(_2\) 30 mL min\(^{-1}\). Las temperaturas del cromatógrafo serán las siguientes: inyector 240°C, detector 270°C, temperatura inicial del horno 80°C (por 0.5 min) con un incremento lineal de 4°C min\(^{-1}\) hasta 220°C. Esta temperatura se mantendrá por 4 min, luego se hará un nuevo incremento lineal de 4°C min\(^{-1}\) hasta 240°C, que se mantendrá por 10 min. Así mismo, el contenido de metales en las muestras será determinado por Absorción Atómica. Adicionalmente, la cuantificación de beta-carotenos se realizará por espectrofotometría de acuerdo con el procedimiento establecido en la literatura\(^52\).

Caracterización de agraz
El contenido de antocianinas en los extractos de agraz será determinado de acuerdo con el método estándar AOAC 2005.02. Así mismo, los fenoles totales en los extractos serán cuantificados por el método Folin-Ciocalteu de acuerdo con el procedimiento reportado por. De nuevo, se realizarán las caracterizaciones de ácidos grasos, polifenoles y contenido de metales descritos previamente en los frutos.

Resultados esperados

2 Artículos internacionales en Revista Indexada
1 Ponencia en Congreso Internacional
2 Tesis de Pregrado.

Cronograma

ACTIVIDADES	RESPONSABLES	FECHA
Obtención del material vegetal-Secado del stock	U ECCI-USTA	Febr 1 Febr 28
Evaluación de la extracción a nivel laboratorio	U ECCI	Marzo 1 Abril 30
Extracción de ortiga y agraz en equipo de hidrocavitación	USTA	Mayo 1 Junio 30
Caracterización de extractos de ortiga	USTA-ECCI	Julio 1 Agosto 30
Caracterización de extractos de agraz	USTA-ECCI	Sep 1 Oct 31
Redacción de artículos y ponencias	USTA-ECCI	Feb 1 Octu 31
Redacción de informe final	USTA-ECCI	Nov 1 Nov 30
FINANCIACIÓN

Rubro	Recurso	Descripción	Valor partida	Valor contrapartida (Externa)	Total ($)
RUBROS	Servicios Técnicos	Se requiere la contratación de servicios de cromatografía para la determinación de componentes en los extractos. La Universidad ECCI aportará los servicios de FTIR, SEM y absorción atómica, así como el uso de laboratorios para la realización de ensayos requeridos en el proyecto.	$ 8.000.000	$ 11.200.000	$ 19.200.000
Salidas de campo			0	0	0
Equipos		Se requiere la compra de un equipo termohigrómetro datalogger, un rataevaporador,	$ 8.000.000	$ 2.000.000 (uso de equipo de la U. ECCI)	$ 10.000.000
Materiales, insumos y software		Se requiere la compra de solventes, insumos para el equipo soxhlet, insumos de laboratorio, papel filtro,	$ 5.000.000	0	$ 5.000.000
BOLSAS	Papelería		0	0	0
	Fotocopias		0	0	0
	Material bibliográfico		0	0	0
	Auxilio de transporte		0	0	0
	Movilidad	Se requiere realizar presentación de resultados en congreso de corte internacional	$ 10.000.000	0	$ 10.000.000
	Publicaciones (Artículos, proceso editorial y traducción)	Se requiere el pago de las dos publicaciones comprometidas	$ 4.000.000	$ 4.000.000	$ 8.000.000

TOTAL DEL PROYECTO: $ 52.200.000

Presupuesto

Concepto	Nombre	Escalafón	Horas mes	Sede / Seccional o Externo	Total ($)
Horas Nomina (Investigador Principal)	Dionisio Humberto Malagón Romero	5	30	Principal	$ 12.789.600
Horas Nomina (Co-Investigadores)	Ricardo Alberto Forero Rubiano	2	20	Principal	$ 6.918.800
	Gloria Astrid Nausa		40	Externo (U. ECCI)	$ 25.952.480
1. Basso, L. A. *et al.* The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases - A Review. *Mem. Inst. Oswaldo Cruz* **100**, 475–506 (2005).

2. Berkem. Plant extraction - Berkem - Extraction végétale. Available at: http://www.berkem.com/en/expertise-en/plant-extraction. (Accessed: 29th July 2019)

3. S. Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram, L. Y. L. EXTRACTION, ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM PLANTS' EXTRACTS. *Afr J Tradit Complement Altern Med* **8**, 93–130 (2011).

4. Gogate, P. R. & Pandit, A. B. A review and assessment of hydrodynamic cavitation as a technology for the future. *Ultrason. Sonochem.* **12**, 21–27 (2005).

5. Sampath Kumar, K. & Moholkar, V. S. Conceptual design of a novel hydrodynamic cavitation reactor. *Chem. Eng. Sci.* **62**, 2698–2711 (2007).

6. Vitenko, T., Droździel, P. & Rudawska, A. Using Hydrodynamic Cavitation Device in the Industry. *Adv. Sci. Technol. Res. J.* **12**, 158–167 (2018).

7. Ghayal, D., Pandit, A. B. & Rathod, V. K. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. *Ultrason. Sonochem.* **20**, 322–328 (2013).

8. Suslick, K. S., Mdleleni, M. M. & Ries, J. T. Chemistry induced by hydrodynamic cavitation. *J. Am. Chem. Soc.* (1997). doi:10.1021/ja9721711

9. Beattie, A. J. *et al.* CH. 10 New Products and Industries from Biodiversity. *Ecosyst. Hum. Well-Being Curr. State Trends 273–295* (2005).

10. Niño, J., Mosquera, O. M. & Correa, Y. M. Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity. *Rev. Biol. Trop.* **60**, 1535–1542 (2012).

11. Sharrock, S., Oldfield, S. & Wilson, O. *Plant Conservation Report 2014: a review of progress towards the Global Strategy for Plant Conservation 2011-2020*. *CBD Technical Series* (2014).

12. BRAVO, K. & PEREÁNÉZ, J. A. Colombian Biodiversity, an Opportunity for the Strengthening of the Pharmaceutical and Cosmetic Industries. *Rev. Vitae* **23**, 163 (2017).

13. Gyllenhaal, C., Quinn, M. Lou & Soejarto, O. O. Research on Colombian Medicinal Plants: Roles and Resources for Plant Taxonomists. *Caudias* **15**, 199–217 (1983).
14. Holetz, F. B. et al. Screening Pl Medicinais 2. Pfd. 97, 1027–1031 (2002).
15. Pretorius, J. C., Magama, S. & Zietsman, P. C. Growth inhibition of plant pathogenic bacteria and fungi by extracts from selected South African plant species. South African J. Bot. 69, 186–192 (2003).
16. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).
17. Universidad Nacional de. Agraz en polvo. Agencia de Noticias UN 1 (2017).
18. Đurović, S. et al. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 32, 18–26 (2017).
19. Salih, N. A. Effect of nettle (Urtica dioica) extract on gentamicin induced nephrotoxicity in male rabbits. Asian Pac. J. Trop. Biomed. (2015). doi:10.1016/j.apjtb.2015.07.005
20. Domínguez-Rodríguez, G., Marina, M. L. & Plaza, M. Strategies for the extraction and analysis of non-extractable polyphenols from plants. J. Chromatogr. A 1514, 1–15 (2017).
21. Akalin, M. K., Karagöz, S. & Akyüz, M. Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions. J. Supercrit. Fluids (2013). doi:10.1016/j.supflu.2013.10.004
22. Di Virgilio, N. et al. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 68, 42–49 (2015).
23. Vajič, U. J. et al. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 74, 912–917 (2015).
24. XU, C. C., WANG, B., PU, Y. Q., TAO, J. S. & ZHANG, T. Advances in extraction and analysis of phenolic compounds from plant materials. Chin. J. Nat. Med. 15, 721–731 (2017).
25. Upton, R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J. Herb. Med. (2013). doi:10.1016/j.hermed.2012.11.001
26. Zenão, S., Aires, A., Dias, C., Saavedra, M. J. & Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med. 10, 53–58 (2017).
27. Potoroko, I. et al. Possibilities of Regulating Antioxidant Activity of Medicinal Plant Extracts. Human. Sport. Med. 17, 77–90 (2019).
28. Ince, A. E., Sahin, S. & Sumnu, G. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J. Food Sci. Technol. 51, 2776–2782 (2014).
29. Sajfrtová, M., Sovová, H., Opletal, L. & Bártlová, M. Near-critical extraction of β-sitosterol and scopeletin from stinging nettle roots. J.
30. Nencu, I. et al. THE SELECTION OF TECHNOLOGICAL PARAMETERS IN ORDER TO OBTAIN AN EXTRACT WITH IMPORTANT ANTIOXIDANT ACTIVITY FROM STINGING NETTLE LEAVES. 65, (2017).

31. Celis, M. E. M., Tobón, Y. N. F., Agudeo, C., Arango, S. S. & Rojano, B. Andean berry (vaccinium meridionale swartz). in Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition 2, 869–881 (2017).

32. Forero Cabrera, N. M. Evaluación de parámetros de calidad físicos y químicos en agraz (Vaccinium meridionale Swartz) con el uso de espectroscopía de infrarrojo cercano – NIR. (Universidad Nacional de Colombia, 2017).

33. Ministerio de Agricultura y Desarrollo Rural. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Agronet (2019).

34. Garzón, G. A., Narváez, C. E., Riedl, K. M. & Schwartz, S. J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 122, 980–986 (2010).

35. López-Padilla, A. et al. Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient. J. Sci. Food Agric. (2018). doi:10.1002/jsfa.8483

36. Loper, Y. E. et al. Antioxidant activity and cardioprotective effect of a nonalcoholic extract of Vaccinium meridionale Swartz during ischemia-reperfusion in rats. Evidence-based Complement. Altern. Med. 2013, (2013).

37. Maldonado-Celis, M. E., Arango-Varela, S. S. & Rojano, B. A. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. against colon cancer cell lines. Rev. Cuba. Plantas Med. 19, 172–184 (2014).

38. Guzmán, M. & Cortázar, T. Inhibición de las actividades colagenasa y elastasa en fibroblastos humanos estimulados con UVB. Cosmos Medicina Ortopédica 2, 19–23 (2011).

39. Martínez Zambrano, J. J., Rojas Sarmiento, H. A., Borda Guerra, G. del C., Hastamorir Caro, A. N. & Medina Riaño, M. F. Estabilidad de Antocianinas en Jugo y Concentrado de Agraz (Vaccinium meridionale Sw.). Rev. Fac. Nac. Agron. 64, 6015–6022 (2011).

40. Bernal Roa, L. J. Evaluación de las Propiedades Bioactivas de Mora (Rubus glaucus) y Agraz (Vaccinium meridionale Swartz), en Fresco y Durante Procesos de Transformación. (Universidad Nacional de Colombia, 2012).

41. Rutto, L. K., Xu, Y., Ramirez, E. & Brandt, M. Mineral properties and dietary value of raw and processed stinging nettle (Urtica dioica L.). Int. J. Food Sci. 2013, (2013).

42. Yanza, E. G. & Maldonado, L. Y. Determinación del contenido de α-Tocoferol y β-Caroteno en el zumo y el liofilizado de tomate de arbol (Cyphomandra Betacea Cav Sendt). Rev. la Fac. Ciencias Básicas 10, 28–35 (2012).

43. AOAC. AOAC Official Method 2005.02 Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants,
44. Garzón, G. A., Narváez, C. E., Riedl, K. M. & Schwartz, S. J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. *Food Chem.* **122**, 980–986 (2010).
| Fuente Primaria | Título | Tipo de Trabajo | Porcentaje |
|----------------|--------|----------------|------------|
| 1 | Submitted to Universidad Santo Tomas | Trabajo del estudiante | 1 % |
| 2 | www.buenastareas.com | Fuente de Internet | 1 % |
| 3 | tecnidos.com | Fuente de Internet | 1 % |
| 4 | Submitted to Universidad Cooperativa de Colombia | Trabajo del estudiante | 1 % |
| 5 | Submitted to Institución Universitaria Tecnológico de Antioquia | Trabajo del estudiante | 1 % |
| 6 | Submitted to Universidad Nacional de Colombia | Trabajo del estudiante | 1 % |
Julian Quintero Quiroz, Ana Maria Naranjo Duran, Mariluz Silva Garcia, Gelmy Luz Ciro Gomez, John Jairo Rojas Camargo. "Ultrasound-Assisted Extraction of Bioactive Compounds from Annatto Seeds, Evaluation of Their Antimicrobial and Antioxidant Activity, and Identification of Main Compounds by LC/ESI-MS Analysis", International Journal of Food Science, 2019
| Núm. | Referencia |
|------|--|
| 14 | www.industria.gob.ar |
| 15 | Botello-Álvarez, José E., Colecio-Juárez, María C., Jiménez-Islas, Hugo, Martínez-González, Gloria M., Navarrete-Bolaños, José L. and Rubio-Núñez, Rubria E. "CHARACTERIZATION OF VOLATILE COMPOUNDS IN THE ESSENTIAL OIL OF SWEET LIME (Citrus limetta Risso)", Instituto de Investigaciones Agropecuarias, INIA, 2012. |
| 16 | repository.javeriana.edu.co |
| 17 | portal.myecu.net |

Excluir citas: Activo
Excluir bibliografía: Activo
Excluir coincidencias: < 10 words