Nutrition therapy with high intensity interval training to improve prostate cancer-related fatigue in men on androgen deprivation therapy: a study protocol

Brenton J. Baguley1*, Tina L. Skinner1, Michael D. Leveritt1 and Olivia R. L. Wright1,2

Abstract

Background: Cancer-related fatigue is one of the most prevalent, prolonged and distressing side effects of prostate cancer treatment with androgen deprivation therapy. Preliminary evidence suggests natural therapies such as nutrition therapy and structured exercise prescription can reduce symptoms of cancer-related fatigue. Men appear to change their habitual dietary patterns after prostate cancer diagnosis, yet prostate-specific dietary guidelines provide limited support for managing adverse side effects of treatment. The exercise literature has shown high intensity interval training can improve various aspects of health that are typically impaired with androgen deprivation therapy; however exercise at this intensity is yet to be conducted in men with prostate cancer. The purpose of this study is to examine the effects of nutrition therapy beyond the current healthy eating guidelines with high intensity interval training for managing cancer-related fatigue in men with prostate cancer treated with androgen deprivation therapy.

Methods/design: This is a two-arm randomized control trial of 116 men with prostate cancer and survivors treated with androgen deprivation therapy. Participants will be randomized to either the intervention group i.e. nutrition therapy and high intensity interval training, or usual care. The intervention group will receive 20 weeks of individualized nutrition therapy from an Accredited Practising Dietitian, and high intensity interval training (from weeks 12–20 of the intervention) from an Accredited Exercise Physiologist. The usual care group will maintain their standard treatment regimen over the 20 weeks. Both groups will undertake primary and secondary outcome testing at baseline, week 8, 12, and 20; testing includes questionnaires of fatigue and quality of life, objective measures of body composition, muscular strength, cardiorespiratory fitness, biomarkers for disease progression, as well as dietary analysis. The primary outcomes for this trial are measures of fatigue and quality of life.

Discussion: This study is the first of its kind to determine the efficacy of nutrition therapy above the healthy eating guidelines and high intensity interval training for alleviating prostate-cancer related fatigue. If successful, nutrition therapy and high intensity interval training may be proposed as an effective therapy for managing cancer-related fatigue and improving quality of life in men during and after prostate cancer treatment.

Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12615000512527. Trial registered on the 22/5/2015.

Keywords: Prostate cancer, Nutrition therapy, Exercise, Cancer related fatigue
Background
Prostate cancer has become the most significant major malignancy of men, severely impacting disease-specific morbidity and mortality [1–3]. Advances in treatment of the disease, particularly through the use of Androgen Deprivation Therapy (ADT; a primary and mainstay treatment of prostate cancer), has seen prostate cancer 5-year survival rate increase to 92% [2]. Despite ADT’s efficacy in disease control, the physiological alterations resulting from ADT have profound adverse effects, including increased fatigue [4, 5], metabolic risk [6–8], cardiovascular risk [6, 9], change in body composition (increased fat mass and decreased muscle mass) [10, 11], and reduced functional capacity [12]; the amalgamation of these side effects severely reduces quality of life [13–15].

Cancer-related fatigue (CRF) is a distressing, persistent, subjective sense of physical, emotional and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning [16]. CRF is the most common adverse effect of ADT, with up to 74% of men treated with ADT experiencing symptoms of CRF [4]. Incidence of CRF can be seen as early as 12 weeks after treatment initiation, and may last for longer than 12 months post-treatment in men treated with ADT [4, 5, 17]. Given the widespread use of ADT in managing prostate cancer progression, many men are living with ADT-related side effects during the course of treatment, and longer into prostate cancer survivorship. Current management strategies of CRF are predominantly through pharmacological therapy [16, 18]; yet more recently, natural therapies such as diet and exercise have demonstrated clinically significant reductions of CRF symptoms in men with prostate cancer treated with ADT [19, 20].

The benefits of aerobic exercise (performed at 65–80% age predicted maximum heart rate [APMHR] three times per week) and progressive resistance training (8–12 exercises, 2–4 sets of 8–12 repetitions performed 2–3 times per week) in isolation, or when prescribed together, are well established for improving CRF in men with prostate cancer [21–25]. Recently, there has been particular interest in the use of high intensity interval training [85–95% peak heart rate (HRpeak) interspersed with period of active recovery] for improving CRF, body composition, and quality of life in oncological populations for managing treatment-related side effects [26–28]. In colorectal cancer survivors, 12 supervised high intensity interval training sessions (4x4 min bouts of cycling at 85–95% HRpeak, interspersed with 3 min of active recovery at 50–70% HRpeak) performed over 4 weeks showed greater improvements in cardiorespiratory fitness and total body mass, when compared to 12 supervised moderate intensity exercise sessions (50 min of cycling at 50–70% HRpeak) [29]. Thus, high intensity interval training may provide an optimal exercise prescription for improving various aspects of health that are typically impaired with ADT; however exercise at this intensity is yet to be conducted in men with prostate cancer.

Combined nutrition therapy and exercise prescription has the potential to optimize management for CRF and other ADT related side effects. Aerobic exercise (55–80% APMHR) performed 2-3 times per week for 12-weeks, with healthy eating group based seminars every 2 weeks, has demonstrated clinically significant improvements in CRF and quality of life in sedentary men treated with ADT [19, 20]. In contrast individual nutrition advice to meet the United Kingdom Dietary guidelines [30] with 30 min per day of brisk walking for 24 weeks demonstrated no significant changes in CRF or quality of life compared to usual care [31]. Thus it appears CRF may be better managed with structured exercise prescription and concurrent healthy eating. Whilst Bourke and colleagues [19, 20] demonstrated significant improvements in CRF, the nutrition consults were group-based, which fails to consider individual dietary requirements and is not representative of standard dietetic practice. Thus the effects of tailored nutrition therapy beyond the healthy eating guidelines, with adjunctive structured exercise prescription on the burden of CRF remains to be elucidated.

Dietary manipulation has been identified to be an important lifestyle factor to alleviate ADT related side effects [32–34]; yet the efficacy of dietary interventions in isolation during treatment or into prostate cancer survivorship are limited for supporting the adverse side effects seen from ADT. Importantly, prostate cancer-specific dietary guidelines provide limited support and guidance for alleviating adverse treatment-related side effects, including CRF [35, 36]. In non-oncological populations, structured individualized nutrition therapy by an Accredited Practising Dietitian is recommended for adults who are overweight, obese, insulin resistant, and have altered lipid and triglyceride metabolism [37–39]; all notable adverse side effects from ADT. Yet the translation of this nutrition therapy in prostate cancer is yet to be elucidated. Recently, a Mediterranean-style diet pattern has been shown to improve metabolic and cardiovascular parameters in men at risk of prostate cancer [40]. Adherence to an anti-inflammatory properties of a Mediterranean diet have shown small reductions in hypertension (reduced systolic blood pressure; SE = -1.44 mm Hg [95% CI -2.88 – 0.01]; and diastolic blood pressure; SE = -0.70 mm Hg [95% CI -1.34 – 0.07] [41], and risk of type 2 diabetes (RR = 0.93; 95% CI, 0.89 – 0.98) [42]; thus showing plausible metabolic and cardiovascular effects on known ADT related side effects. Yet practical application of the Mediterranean-style diet pattern to men treated with ADT for management of CRF and improving quality of life is yet to be elucidated.
Literature to date has encompassed general healthy eating guidelines for the management of prostate cancer treated related side effects [19, 20, 31], however general guidelines do not take into account the specific dietary requirements needed to manage the ADT-related side effects. Therefore, the role of specific individualized nutrition therapy tailored to alleviate the side effects of ADT, particularly CRF, and improve quality of life warrants investigation.

This study aims to:

1. Investigate whether 12-weeks of nutrition therapy, compared to 12 weeks of usual care, can improve prostate CRF and quality of life in men treated with ADT.
2. Assess the combined benefits of 20-weeks of nutrition therapy with 8-weeks of high intensity exercise (weeks 12–20), compared to 20 weeks of usual care, on CRF and quality of life in men treated with ADT.

We hypothesized that 12-weeks of nutrition therapy, compared to 12 weeks of usual care, will improve CRF and quality of life in men with prostate cancer treated with ADT. It is further hypothesized a 20-week nutrition therapy intervention with 8 weeks of high intensity interval training, compared to 20 weeks of usual care, will improve CRF and quality of life in men with prostate cancer treated with ADT. Secondary measures of body composition, functional capacity, metabolic syndrome and biomarkers such as prostate specific antigen, insulin like growth factor [43]-1, IGF-2, IGF binding protein-3, interleukin [IL]-6, and IL-8, will be measured and analyzed between and within groups. We hypothesis nutrition therapy alone, and with high intensity exercise will improve body composition, functional capacity, and biomarkers of metabolic syndrome and prostate cancer progression.

Methods/design
The study is a two-arm randomized controlled trial design conducted at The University of Queensland School of Human Movement and Nutrition Sciences. All primary and secondary outcomes will be measured at baseline, week 8, 12, and 20. A total of 116 men with prostate cancer treated with ADT (>3 months) will be randomized to either a 20-week nutrition therapy with 8 weeks of high intensity exercise (performed from weeks 12 to 20) or a control group of usual care. A person independent to the study will conceal participant allocation, after baseline testing using a random number generator into either group, with equal probability. The study will be guided by the CONSORT statement [44] (Fig. 1).

Participant eligibility
To be eligible to participate in this study, men must meet the following inclusion criteria: (a) aged ≥18 years, (b) non-smoker, or have quit smoking for ≥3 months, (c) a diagnosis of prostate cancer, and have been undertaking ADT for ≥3 months, (d) body mass index of 18.5-34.9 kg/m² (i.e. normal weight, overweight or obese class I). Exclusion criteria include: (a) taking any supplements other than a single multivitamin, unless stated for medical purposes, (b) have any musculoskeletal, neurological, respiratory, metabolic or cardiovascular conditions that may prevent safe completion of the exercise demands of the study, as determined by a Urologist, (c) current infection, (d) bone metastases, (e) currently undertaking high intensity exercise i.e. ≥90% heart rate max (HR_max) or ≥7 rating of perceived exertion (RPE; Borg’s rating of perceived exertion scale, category scale 0-10).

Recruitment and informed consent
Participants will be recruited from the Mater Adults Hospital, Brisbane, Australia; The University of Queensland, Australia; and the Cancer Council Queensland, Australia. Participants will also be recruited by way of media releases, presentations and advertisements in newsletters, newspapers, and noticeboards at The University of Queensland, Cancer Council Queensland, and the Prostate Cancer Foundation of Australia support groups. All participants will be complete a brief telephone screening questionnaire to verify eligibility. Eligible participants will be asked to seek guidance from their Urologist regarding participation in the study, and sign the consent form prior to participating in the study. Approval of the trial protocol was obtained from the Mater Research Ethics Committee (HREC/15/MHS/38) and The University of Queensland Human Research Ethics Committee (2015001245) prior to recruitment.

Randomisation
After baseline testing, participants will be randomly allocated to either the nutrition therapy with high intensity exercise or the standard care group using a 1:1 ratio. The randomisation process will be conducted by a computerized system using a random number generator, with equal probability, by a person external to the study.

Measurements
All measurements for primary and secondary outcomes will take place at baseline, week 8, week 12, and week 20 (see Table 1). A familiarization trial including the functional capacity and peak aerobic power (\(\text{VO}_{2\text{peak}}\)) tests will take place at least 7 days prior to baseline testing. Participants will be asked to refrain from vigorous exercise, caffeine, alcohol, food and beverages (except for water) for 12 h before all testing sessions.
Primary outcomes

Fatigue
Fatigue will be measured using The Functional Assessment of Cancer Therapy: Fatigue (FACT-F) questionnaire, which reports weekly fatigue on a scale of 0–52, with higher values indicating less fatigue [45]. The FACT-F has shown good reliability and validity (Cronbach’s α: 0.93-0.94) for predicting clinically significant treatment outcomes of CRF [46].

Cancer-specific quality of life
The European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 is a 30 item cancer-specific instrument including the following domains; physical, role, emotional, social, and cognitive, global quality of life, fatigue, pain, and emesis. The EORTC QLQ-C30 has shown a high reliability (Cronbach’s α; 0.63-.80) in cancer patients [47].

Prostate cancer-specific quality of life
The EORTC QLQ–PR25 is a 25 question prostate cancer-specific instrument including domains; urinary, bowel, use of incontinence aids, treatment-related symptoms, sexual activity and sexual function [48]. The EORTC QLQ – PR25 questionnaire has shown good internal reliability (Cronbach’s α; 0.70-0.86) for prostate specific treatment-related side effects [49].

General health and well-being
The Medical Outcomes Study 36-Item Short-Form 36 Health Survey (SF-36) is scored by eight scales encompassing physical and mental measures [50]. The SF-36 questionnaire has widely been used to measure general health and well-being, with good construct validity (Cronbach’s α; > 0.85) in cancer patients [51].
Secondary outcomes

Physique traits and body composition

Height, body mass, and waist circumferences will be measured according to the International Society for the Advancement of Kinanthropometry (ISAK) procedures [52]. Body composition (fat mass, lean mass, body fat percentage and bone mineral density) will be assessed using dual energy X-ray absorptiometry (DXA; Hologic Discovery A, Waltham, MA, USA).

Muscular Strength and Power

Isometric strength of dominate and non-dominant hand-grip will be assessed using a spring-loaded grip dynamometer (TTM, Tokyo, Japan) to estimate physical performance [53], and muscular strength [54]. Participants will perform the test three times on each hand with the best result used for analysis. Muscular strength of the chest and legs will be measured using the one repetition maximum (1RM) chest and leg press methods, respectively [55]. The sit to stand test will be used to assess functional leg power [12]. Participants will perform the test three times with the best result used for analysis.

Exercise capacity and cardiorespiratory fitness

The six-meter walk test will involve participants walking a marked 10-m distance as quickly as safely possible,
with performance timed over the middle 6-m distance to minimize the influence of acceleration and deceleration [12]. The 400-m walk test will be used to estimate exercise capacity [12]; participants will be required to walk 10 laps out and back over a 20-m course (400 m total) as fast as safely possible.

Cardiorespiratory fitness will be assessed using a VO$_{2}$peak test. The test will involve a modified ramp protocol described by Wasserman et al [56] on a cycle ergometer. Participants will begin with 3 min of rest for respiratory normalization, followed by 4 min of warm-up at a resistance of 50 Watt. The electrical resistance provided by the cycle ergometer increases incrementally by 20-30 W.min$^{-1}$. Participants will cycle at a cadence between 60 and 70 revolutions per minute throughout the test. Heart rate will be continuously recorded throughout the exercise using a heart rate monitor (Polar FT1; Polar, Kempele, Finland) and blood pressure (Duraschock Sphygmomanometer; Welch Allyn, New York, USA) will be recorded every 2 min throughout the test. At the conclusion of each minute participants will indicate their rating of perceived exertion (RPE) on the Borg 6-20 scale [57]. The test will be terminated when the participant reaches volitional fatigue or at the discretion of the researchers with consideration for exercise testing termination criteria as outlined by the American Association of Cardiovascular and Pulmonary Rehabilitation [58]. The gas analyzers and ventilometer will be calibrated prior to and verified after each test. Sampled expired air will be measured every 15 s using a turbine ventilometer (Morgan, Model 096, Kent, England). The ramp VO$_{2}$peak protocol has good validity in comparison to the standard Bruce protocol [59]. VO$_{2}$peak will be recorded as the highest VO$_{2}$ reading averaged over two consecutive readings.

Blood collection and analysis
A trained phlebotomist will extract, treat and subsequently store the blood at approximately -80°C until later analysis. Analysis of blood samples through commercial ELISA kits (Thermo Fisher Scientific Australia Pty Ltd., Victoria, Australia; Randox Laboratories Ltd., West Virginia, USA; R&D Systems Inc., Minneapolis, USA) will be used for PSA, IGF-1, IGF-2, IGFBP3, IL-6, IL-8, Hepcidin, total cholesterol, and triglycerides analysis.

Dietary intake
Participants will complete the Wollongong Dietary Inventory [60] (a comprehensive dietary history of intake over the past month) with cross-checking quantification from an Accredited Practising Dietitian. Narrative approaches to diet histories have been shown to provide good reproducibility and reliability compared to food records [61]. Food models and pictures of food portions (Great Ideas in Nutrition, Coolangatta, Australia) will be utilized to improve the accuracy of food intake estimates [62].

Other measures

Psychosocial: Depression Anxiety Stress Scale (DASS)
The DASS is a 42-item self-report instrument design to measure the three related negative emotional states of depression, anxiety, and stress [63], and has been validated for measuring emotional states of depression (Cronbach’s α: 0.94), anxiety (Cronbach’s α: 0.88) and stress (Cronbach’s α: 0.93) in clinical populations [64].

Insomnia Severity Index (ISI)
The ISI questions relate to subjective qualities of the respondents sleep, including satisfaction with sleep patterns, the degree to which insomnia interferes with daily functioning, and how the respondent feels their insomnia is noticeable to others [65]. The ISI has shown excellent internal consistency (Cronbach’s α: 0.90) for detecting symptoms of insomnia.

Physical activity enjoyment scale (PACES)
The physical activity enjoyment scale (PACES) will be used to assess participant enjoyment of the high intensity interval exercise PACES consists of 17 subscales that each relate to an aspect of enjoyment; along a 7-point continuum for each subscale, participants are asked to provide a rating to reflect their agreement with one of two bi-polar statements (e.g. ‘I enjoy it’ – ‘I hate it’) [66]. The PACES questionnaire has shown high internal consistency (Cronbach’s α: 0.90) in measures of exercise enjoyment [67].

Godin leisure-time physical activity questionnaire
The Godin leisure-time physical activity questionnaire requires participants to recall during a typical 7-day week the frequency and duration of exercise completed at three separate intensities: mild, moderate, and strenuous intensity [68]. The Godin leisure-time physical activity questionnaire has shown high agreement and validation (agreement: 70.8%) with minutes spent physically active, in comparison to an accelerometer in breast cancer survivors [69].

Accelerometer
Participants will be asked to maintain their current level of physical activity outside of the testing sessions for the duration of the study. Physical activity will be objectively assessed using the Actigraph GT3X+ accelerometer (Actigraph, Pensacola, Florida), a small, waist-worn, non-invasive device. Few studies have been published on the validity of the GT3X+ version of the Actigraph accelerometer specifically, however previous versions of the Actigraph accelerometer (CSA and GT1M) have demonstrated waist-worn validity in treadmill
walking and running compared with direct calorimetry \((r = 0.56, p < 0.001\) and \(r = 0.53, p < 0.05\), respectively) in adults [70, 71].

Interventions

Nutrition therapy with high intensity exercise

Detailed diet histories will be conducted at baseline week 8, 12 and 20 using the Wollongong Dietary Inventory [60], and 24 h diet recalls every two weeks during the intervention. Each consult will take approximately 30-45 min and involves an Accredited Practising Dietitian asking detailed questions about the foods consumed and the amount and frequency of consumption. The 20-week diet emphasizes a total energy intake decrement using the Harris-Benedict predicted energy requirements [72]; with a dietary composition of 45-65% carbohydrate, 20-35% fat, saturated fat <10% total energy intake, and 15-25% protein sources. Dietary advice will be tailored according to current body composition classification as ‘normal, overweight or obese stage I’ (see Fig. 2). A dietary energy reduction of 2000-4000 kJ/day will be emphasized at baseline consultation if body composition and diet intake are classified average or poor according to Fig. 2: Nutrition therapy schematic representation. The diet intervention will encompass a Mediterranean-style diet containing cruciferous vegetables (broccoli, bok choy, cauliflower) [73], tomato and tomato-paste containing products (lycopene) [74, 75], fruits, calcium and vitamin D containing foods, polyunsaturated, monounsaturated, omega 3 and 6 fatty acids (<10–15% total energy intake) [76], and a reduced consumption of red meat (<2 a week) [77, 78]; as seen in Table 2: Nutrition recommendations. Each individual nutritional consultation, will aim to make gradual changes to the participants’ diets to best achieve a modified Mediterranean-style dietary pattern. Standard dietetics practice will be used to assess and providing guidance on managing the nutritional impact symptoms from treatment (including broader intolerances/allergies).

Each participant in the intervention group will be provided with a nutrition pamphlet for supportive education during the study to represent standard dietetic practice. The nutrition pamphlet will be provided at the first dietetic consult and is designed to facilitate the dietetic consultation to help maintain a Mediterranean-style diet pattern. The pamphlet consists of background information about nutrition requirements, optimal nutrition during prostate cancer based on current evidence.

![Fig. 2 Nutrition therapy assessment schematic representation. Legend: DEXA = Dual-energy X-ray absorptiometry, F = fruit, V = vegetable, Sat fat = saturated fat, EER = estimated energy requirement, HIIT = high intensity interval training, Std = standard drink, BMI = body mass index](image-url)
Table 2 Nutrition recommendations

Food/Nutrient	Serving summary	Recommendation
Total Energy Intake	As specified by your Accredited Practising Dietitian, using the Harris-Benedict equation.	Within requirements
Saturated fat	1 serve = 1 tablespoon of butter, 1 sweet biscuit. Excess fat on meat, full-cream dairy, take-away foods, cakes, bakery items, processed meats, vegetable oil.	<10% total energy
Refined Carbohydrates	Serving size = 1 (40g) Donut, 30g potato chips, 12 hot chips, 1 can of soft drink (375ml), ½ small chocolate bar (25g)	Limit consumption
Whole Grains	1 serve = 1 slice of multigrain bread, ½ cup oats,	4-6 serves per day
Fruits and Vegetables	One serving = 1 medium piece (apple, banana, orange, pear), 2 small pieces (e.g. apricot, kiwifruit, plums), ½ cup of tomato, ½ cup or carrot, ½ cup green beans, ½ cup of pumpkin, 100g mixed frozen vegetables	2 fruits and 5 vegetables per day
Fibre	Aim for 30g/day through your grains, vegetables, and fruit intake	30g/day through grains, fruits and vegetable intake
Lentils/Beans	1 cup per day of cooked or canned legumes/beans such as lentil, chick peas or split peas	1 cup per day
Lean Meats	Lean meats 3-4 times per week. Serving size of 65g include beef, lamb, veal, port, and 80g for chicken, turkey, duck, and 2 large eggs	Lean meats 3-4 times per week
Meats with carcinogenic properties	Red charred meat, visible from over cooking or burning the mean. Processed meats (i.e. salami, sausage)	Reduce or eliminate
Oily Fish	100g per serve of fresh salmon, tuna, trout	2-3 times per week
Dairy	1 cup of fresh, reduced fat milk, or soy milk	2-3 serves per day
Nuts and Seeds	30g (handful) of almonds, cashew nuts, walnuts, macadamia nuts, brazil nuts, pumpkin seed, sunflower seeds	30g per day
Alcohol and discretionary foods	1 standard drink of alcohol = 375ml mid strength beer, 1 glass of wine, 30ml spirit. Discretionary foods = biscuits	0-2 standard serves of alcohol, and reduce or eliminate discretionary foods.

Baguley et al. BMC Cancer (2017) 17:1 Page 8 of 12

(kilojoule/cal, fatty acids, carbohydrate, meats and protein, fruits and vegetables, cruciferous vegetables, lycopene, soy isoflavones, vitamin C and calcium, alcohol and discretionary foods) and exercise during prostate cancer treatment. The pamphlet further consists of Decision Balance Tools to help change dietary patterns if needed throughout the dietetic consults by identifying possible barriers to adopting the nutrition therapy. These form part of standard dietetics practice involving motivational interviewing.

Baseline body composition scans (DXA) will classify participants as normal, overweight, or obese state I, according to age specific normative Z values for percentage of body mass index and fat mass [79]. The current diet will be quantified into food groups, total energy intake, and saturated fat intake. From this the diet will be classified as ‘generally healthy’, ‘average’ or ‘poor’ compared to the Australian Dietary Guidelines [80] (as seen in Fig. 2: Nutrition therapy schematic representation). To improve adherence, the nutrition therapy will not be prescriptive, and instead utilize individualized food-based goals with the aim to progressively increase the intake of plant-based foods over the duration of the intervention to meet a modified Mediterranean-style diet pattern.

From weeks 12–20 participants will be required to visit The University of Queensland’s School of Human Movement and Nutrition Sciences three times per week to complete high intensity interval training sessions. Prior to exercising, participants’ heart rate and blood pressure will be measured for contraindications to commence exercising as outlined by the American College of Sports Medicine [81]. The high intensity exercise sessions will commence with 10 min of warm up at 50–70% HRpeak before completing 4 x 4 min bouts of cycling at 85–95% HRpeak. Each 4 min interval will be interspersed with a 3 min period of active recovery at 50–70% HRpeak, totaling 38 min for the session. The high intensity exercise sessions will be conducted on an air- and magnetically-braked cycle ergometer (Wattbike
data will be kept in a securely locked filing cabinet at
available to study investigators. All research notes and
be de-identified and password protected with access only
gators and research assistants for all outcome measures
reliability will be determined for data collecting investi-
gators.

Data Collection, Management and Monitoring
weeks 8, 12, and 20.

Usual Care
Participants randomized to usual care will continue their
usual medical care during this period. Participants in the
usual care group will be monitored for 20 weeks and
perform identical primary and secondary outcome mea-
ures at the same time points as outlined above for the
intervention group.

Sample Size Calculation
Sample size calculations were complete using Vanderbilt
Power and Sample Size software (Vanderbilt University,
TN). Combined diet and exercise interventions with
CRF as an outcome are relatively limited. A diet and ex-
ercise intervention in men treated with ADT showed
prostate cancer-specific CRF (as measured by FACT-F) scores improved by 3.7 – 14.2 (CI, 95%; adjusted mean
8.9 points) in the intervention group compared to the
control group [20]. Assuming FACT-F scores for this
group were normally distributed with a SD of 8.9, a true
difference between the experimental and control arms of
5.2, and a power of 0.8, we would need 47 experimental
and control participants to be able to reject the null
hypothesis. The type 1 error probability associated with
this test of the null hypothesis is 0.05. With an antici-
pated 20% attrition rate based on previous research from
our laboratory, we would need 58 experimental and
control group participants to be able to reject the null
hypothesis.

Statistical Analysis
Data will be analyzed using the SPSS statistical software
package (version 20.0, SPSS, Inc., Chicago, IL). Normality
of the distribution for all outcome measures will be
assessed using the Kolmogorov Smirnov test. Analyses will
include standard descriptive statistics, t tests, correlation,
regression and two-way repeated measures ANOVA or
the comparable non-parametric test as necessary to exam-
ine differences between and within groups, at baseline and
weeks 8, 12, and 20.

Discussion
CRF is a distressing and prolonged symptom associated
with prostate cancer treatment. Management of CRF is
critical for improving quality of life during and after
treatment for prostate cancer [4, 5, 82]. Nutrition ther-
apy and exercise prescription have the potential to
improve CRF and other prostate cancer disease- and
treatment-related side effects [19–21, 25, 83–85]. This
clinical trial is the first to investigate the efficacy of
nutrition therapy above the healthy eating guidelines in
managing prostate CRF. The lack of dietary guidelines
for men with prostate cancer is a limitation in the
current treatment and management of prostate cancer;
thus investigating individual structured nutrition therapy
provides novel insight to the efficacy of dietary modifica-
tion in managing CRF and other side effects from ADT.
This project will expand the exercise oncology literature
by investigating the efficacy of high intensity interval
training for reducing CRF and improving quality of life
in men with prostate cancer. Considering both individ-
ual nutrition therapy beyond general healthy eating
guidelines and high intensity interval training are yet to
be investigated in men with prostate cancer, this land-
mark study will provide novel evidence to support the
development of guidelines to optimise the management
of CRF and other side effects from ADT. It is hypo-
thesized that nutrition therapy alone, and with high
intensity interval training will improve CRF and
ADT-related side effects.

Dissemination of the results from this study to oncolo-
gists, urologists, prostate cancer nurses, dietitians, nu-
tritionists, exercise physiologists and other exercise
specialists will be important to ensure an evidence-based
approach to the use of nutrition and exercise in the
management of prostate CRF. Currently CRF is managed
primarily with medications. Natural therapies such as
diet and exercise provide a multi-faceted approach to

The University of Queensland School of Human Move-
ment and Nutrition Sciences. The investigators will
comply with the Good Clinical Practice (GCP) guidelines
adopted by the Therapeutic Goods Administration and
document all adverse events through the Human Re-
search Ethics Committee (HREC). The study investiga-
tors will permit study-related monitoring, audits, and
inspections by Mater HREC of all study related docu-
ments (eg. source documents, regulatory documents,
data collection instruments, study data) and study
facilities (eg. diagnostic laboratory). This study will be
conducted in full conformance with the principles of the
'Declaration of Helsinki' according to international
standards of GCP guidelines, applicable Australian gov-
ernment regulations and Institutional research policies
and procedures.

Usual Care
Participants randomized to usual care will continue their
usual medical care during this period. Participants in the
usual care group will be monitored for 20 weeks and
perform identical primary and secondary outcome mea-
ures at the same time points as outlined above for the
intervention group.

Sample Size Calculation
Sample size calculations were complete using Vanderbilt
Power and Sample Size software (Vanderbilt University,
TN). Combined diet and exercise interventions with
CRF as an outcome are relatively limited. A diet and ex-
ercise intervention in men treated with ADT showed
prostate cancer-specific CRF (as measured by FACT-F) scores improved by 3.7 – 14.2 (CI, 95%; adjusted mean
8.9 points) in the intervention group compared to the
control group [20]. Assuming FACT-F scores for this
group were normally distributed with a SD of 8.9, a true
difference between the experimental and control arms of
5.2, and a power of 0.8, we would need 47 experimental
and control participants to be able to reject the null
hypothesis. The type 1 error probability associated with
this test of the null hypothesis is 0.05. With an antici-
pated 20% attrition rate based on previous research from
our laboratory, we would need 58 experimental and
control group participants to be able to reject the null
hypothesis.

Statistical Analysis
Data will be analyzed using the SPSS statistical software
package (version 20.0, SPSS, Inc., Chicago, IL). Normality
of the distribution for all outcome measures will be
assessed using the Kolmogorov Smirnov test. Analyses will
include standard descriptive statistics, t tests, correlation,
regression and two-way repeated measures ANOVA or
the comparable non-parametric test as necessary to exam-
ine differences between and within groups, at baseline and
weeks 8, 12, and 20.

Data Collection, Management and Monitoring
The principle investigator and trained research assistants
will collect anthropometric, diet, exercise and lifestyle
data from the study participants. Inter- and intra-tester
reliability will be determined for data collecting investi-
gators and research assistants for all outcome measures
as appropriate. Computer files containing study data will
be de-identified and password protected with access only
available to study investigators. All research notes and
data will be kept in a securely locked filing cabinet at

The University of Queensland School of Human Move-
ment and Nutrition Sciences. The investigators will
comply with the Good Clinical Practice (GCP) guidelines
adopted by the Therapeutic Goods Administration and
document all adverse events through the Human Re-
search Ethics Committee (HREC). The study investiga-
tors will permit study-related monitoring, audits, and
inspections by Mater HREC of all study related docu-
ments (eg. source documents, regulatory documents,
data collection instruments, study data) and study
facilities (eg. diagnostic laboratory). This study will be
conducted in full conformance with the principles of the
'Declaration of Helsinki' according to international
standards of GCP guidelines, applicable Australian gov-
ernment regulations and Institutional research policies
and procedures.

Usual Care
Participants randomized to usual care will continue their
usual medical care during this period. Participants in the
usual care group will be monitored for 20 weeks and
perform identical primary and secondary outcome mea-
ures at the same time points as outlined above for the
intervention group.

Sample Size Calculation
Sample size calculations were complete using Vanderbilt
Power and Sample Size software (Vanderbilt University,
TN). Combined diet and exercise interventions with
CRF as an outcome are relatively limited. A diet and ex-
ercise intervention in men treated with ADT showed
prostate cancer-specific CRF (as measured by FACT-F) scores improved by 3.7 – 14.2 (CI, 95%; adjusted mean
8.9 points) in the intervention group compared to the
control group [20]. Assuming FACT-F scores for this
group were normally distributed with a SD of 8.9, a true
difference between the experimental and control arms of
5.2, and a power of 0.8, we would need 47 experimental
and control participants to be able to reject the null
hypothesis. The type 1 error probability associated with
this test of the null hypothesis is 0.05. With an antici-
pated 20% attrition rate based on previous research from
our laboratory, we would need 58 experimental and
control group participants to be able to reject the null
hypothesis.

Statistical Analysis
Data will be analyzed using the SPSS statistical software
package (version 20.0, SPSS, Inc., Chicago, IL). Normality
of the distribution for all outcome measures will be
assessed using the Kolmogorov Smirnov test. Analyses will
include standard descriptive statistics, t tests, correlation,
regression and two-way repeated measures ANOVA or
the comparable non-parametric test as necessary to exam-
ine differences between and within groups, at baseline and
weeks 8, 12, and 20.
managing CRF, which may in turn improve other associated side effects seen from ADT (e.g. metabolic and cardiovascular risk). With the rising incidence of prostate cancer and increasing survival rates, the primary outcome from this study will be to provide evidence to enhance clinical practice in nutrition, diet and exercise therapy to improve the lives of men suffering from the disease- and treatment-related side effects of prostate cancer.

Abbreviations

ADT: Androgen deprivation therapy; APVHR: Age predicted maximum heart rate; CRF: Cancer related fatigue; DASS: Depression Anxiety Stress Scale; DXA: Dual energy X-ray absorptiometry; EORTC QLQ-C30: European Organization for Research and Treatment of Cancer quality of life questionnaire for people with cancer; EORTC QLQ-PR25: European Organization for Research and Treatment of Cancer prostate cancer specific quality of life questionnaire for people with cancer; FACT-F: The Functional Assessment of Cancer Therapy: Fatigue; HRpeak: Heart rate peak; IGF: Insulin-like growth factor; IL: Interleukin; ISAK: International Society for the Advancement of Kinanthropometry; ISI: Insomnia Severity Index; PACES: Physical activity enjoyment scale; RPE: Rating of perceived exertion; SF-36: Short form 36 health survey; VO2peak: Peak volume of oxygen consumption

Acknowledgements

No other contributions are considered.

Funding

This study is funded by a Prostate Cancer Care Grant from Sanofi Aventis, through the Clinical Oncological Society of Australia.

Availability of data and material

Once data is obtained it will be made available after analysis and publication.

Authors’ contributions

BB, TS, and OW are the trial coordinators who developed the study concept and protocols. ML assisted in further development of the project. Primary investigator BB will implement the protocol with TS, OW and ML overseeing the collection and treatment of data. BB drafted the manuscript; all authors contributed to revision and approval of the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

All eligible participants will be explained individual details will be de-identified, and stored in a password-protected device only accessed by the research team. Participants will be informed data collected will be intended for publication.

Ethics approval and consent to participate

Institutional Human Research Ethics Approval, The University of Queensland (2015001245), and The Mater Health Services Human Research Ethics Committee (HREC/15/MHS/53).

Consent to participate

All eligible participants will have the protocol, timelines, and outcome measures of the study explained to them. Participants will be required to gain medical consent from their General Practitioner and provide their signed and witnessed participant consent form prior to baseline testing. Participants will be informed that they are free to drop out of the study at any time without consequence, and that their data may still be used in the analysis unless otherwise specified in the withdrawal of consent form.

Author details

1School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia. 2Mater Research Institute, University of Queensland, Kent Street, Woolloongabba, Brisbane QLD 4102, Australia.

Received: 22 December 2015 Accepted: 17 December 2016 Published online: 03 January 2017

References

1. Australian Institute of Health and Welfare. Cancer in Australia: actual incidence and mortality data from 1982 to 2007 and projections to 2010. Asia Pac J Clin Oncol. 2011;7(4):325–38.
2. Australian Institute of Health and Welfare. Cancer in Australia. Actual incidence data from 1991 to 2009 and mortality data from 1991 to 2010 with projections to 2012. Asia Pac J Clin Oncol. 2013;9:199–213.
3. Australian Institute of Health and Welfare. Cancer survival and prevalence in Australia: period estimates from 1982 to 2010. Asia Pac J Clin Oncol. 2013;9(1):29–39.
4. Langston B, Armes J, Levy A, Tiddy E, Ream E. The prevalence and severity of fatigue in men with prostate cancer: a systematic review of the literature. Support Care Cancer. 2013;21(6):1761–71.
5. Storey DJ, McLaren DB, Atkinson MA, Butcher I, Frew LC, Smyth JF, Sharpe M. Clinically relevant fatigue in men with hormone-sensitive prostate cancer on long-term androgen-deprivation therapy. Ann Oncol. 2012;23(6):1542–9.
6. Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24(27):4448–56.
7. Kintzel PE, Chase SL, Schultz LM, O’Rourke TJ. Increased risk of metabolic syndrome, diabetes mellitus, and cardiovascular disease in men receiving androgen deprivation therapy for prostate cancer. Pharmacotherapy. 2008;28(12):1511–22.
8. Milena B-B, Adrian SD, Denis CM, Michael AC, Majnu J, Josephine E, Shehzad B. Metabolic Syndrome in Men With Prostate Cancer Undergoing Long-Term Androgen-Deprivation Therapy. J Clin Oncol. 2006;24(24):3979–83.
9. Collier A, Ghosh S, McGlynn B, Hollins G. Prostate cancer, androgen deprivation therapy, obesity, the metabolic syndrome, type 2 diabetes, and cardiovascular disease: a review. Am J Clin Oncol. 2012;35(5):504–9.
10. Keogh JW, MacLeod RD. Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: a systematic review. J Pain Symptom Manag. 2012;43(1):106–110.
11. Haseen F, Murray LJ, Cardwell CR, O'Sullivan JM, Cantwell MM. The effect of androgen deprivation therapy on body composition in men with prostate cancer: Systematic review and meta-analysis. J Cancer Surviv. 2010;4(2):128–39.
12. Galvao DA, Taaffe DR, Sproy N, Joseph D, Turner D, Newton RJ. Reduced muscle strength and functional performance in men with prostate cancer undergoing androgen suppression: a comprehensive cross-sectional investigation. Prostate Cancer Prostatic Dis. 2009;12(2):198–203.
13. Drummond F, Kinneir H, O'Leary E, Donnelly, Gavin A, Sharp L. Long-term health-related quality of life of prostate cancer survivors varies by primary treatment. Results from the PiCTure (Prostate Cancer Treatment, your experience) study. J Cancer Surviv. 2015;11.
14. DaCal K, Sereika SM, Greenspan SL. Quality of life in prostate cancer patients taking androgen deprivation therapy. J Am Geriatr Soc. 2006;54(1):85–90.
15. Luo HC, Cheng LP, Cheng HH, Fu ZC, Liao SG, Li DS, Zheng WF, Lin GS, Zhu JF, Xu JF, et al. Long-term quality of life outcomes in patients with locally advanced prostate cancer after intensity-modulated radiotherapy combined with androgen deprivation. Med Oncol. 2014;31(6):591.
16. Berger AM, Abemethy AP, Atkinson A, Basevick AM, Brittlebass WT, Cella D, Cimprich B, Cleeland C, Eisenberger MA, Escalante CP, et al. Cancer-related fatigue. J Natl Compr Canc Netw. 2010;8(8):904–31.
17. Wang XS, Zhao F, Fisch MJ, O’Mara AM, Cella D, Mendoza TR, Cleeland CS. Prevalence and characteristics of moderate to severe fatigue: a multicenter study in cancer patients and survivors. Cancer. 2014;120(3):425–32.
18. Denlinger CS, Lipibel JA, Are M, Baker KS, Demark-Wahnefried W, Friedman DL, Goldman M, Joness L, King A, Ku GH, et al. Survivorship: fatigue, version 1.2014. J Natl Compr Canc Netw. 2014;12(6):876–87.
19. Bourke L, Doll H, Crank H, Daley A, Rosano D, Saxton JM. Lifestyle intervention in men with advanced prostate cancer receiving androgen suppression therapy: a feasibility study. Cancer Epidemiol Biomark Prev. 2011;20(4):647–57.
20. Bourke L, Gilbert S, Hooper R, Steed LA, Joshi M, Catto JMF, Saxton JM, Rosario DJ. Lifestyle Changes for Improving Disease-specific Quality of Life in Sedentary Men on Long-term Androgen-Deprivation Therapy for Advanced Prostate Cancer: A Randomised Controlled Trial. Eur Urol. 2014;65(5):865–72.
21. Segal RJ, Reid RD, Courneya KS, Sigal RJ, Kenny GP, Prud'Homme DG, Maloney SC, Wells GA, Scott CG, SlovinsC'OAngelo ME. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51.
22. Santa Mina D, Alibhai SM, Matthew AG, Luglietti CL, Pirbagli M, Trachtenberg J, Rino P. A randomized trial of aerobic versus resistance exercise in prostate cancer survivors. J Aging Phys Act. 2013;21(4):457–78.
23. Galvao DA, Nosaka K, Taaffe DR, Spyr N, Kristjanson LJ, McGuigan MR, Suzuki K, Yamaya K, Newton RU. Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc. 2006;38(12):2045–52.
24. Culos-Reed SN, Robinson JW, Lau H, Stephenson L, Keats M, Norris S, Kline F. Physical activity for men receiving androgen deprivation therapy for prostate cancer: benefits from a 16-week intervention. Support Care Cancer. 2010;18(5):591–9.
25. Cormie P, Galvao DA, Spyr N, Joseph D, Chee R, Taaffe DR, Chambers SK, Newton RU. Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: A randomized controlled trial. BJU Int. 2014;115(5):526–66.
26. Edvardsen E, Skjonsberg OH, Holme I, Nordsletten L, Borchsenius F, Edvardsen E, Skjonsberg OH, Holme I, Nordsletten L, Borchsenius F. Adverse effects in prostate cancer patients. Med Sci Sports Exerc. 2013;45(12):2045–52.
27. Buffart LM, De Backer IC, Schep G, Vreugdenhil A, Brug J, Chinapaw MJ. Adverse effects in prostate cancer patients. Med Sci Sports Exerc. 2013;45(12):2045–52.
28. Nguen PL, Alibhai SMH, Barasi S, d'Amico AV, Kantoff PW, Keating NL, Penson DF, Rosario DJ. Adverse Effects of Androgen Deprivation Therapy and Strategies to Mitigate Them. Eur Urol. 2014;66(7):S25–S36.
29. Grossmann M, Zalar JD. Androgen deprivation therapy in men with prostate cancer: how should the side effects be monitored and treated? Clin Endocrinol (Oxf). 2011;74(3):289–93.
30. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Trachtenberg J, Ritvo P. A randomized trial of aerobic versus resistance exercise in prostate cancer survivors. J Aging Phys Act. 2013;21(4):455–67.
31. O'Neill RF, Haseen F, Murray LJ, O'Sullivan JM, Cantwell MM. A randomized controlled trial. Thorax. 2015;70(3):244–50.
32. Trachtenberg J, Ritvo P. A randomized trial of aerobic versus resistance exercise in prostate cancer survivors. J Aging Phys Act. 2013;21(4):455–67.
33. Nguyen PL, Alibhai SMH, Barasi S, d'Amico AV, Kantoff PW, Keating NL, Penson DF, Rosario DJ, Tombal B, Smith MR. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2014;66(7):S25–S36.
34. Grossmann M, Zalar JD. Androgen deprivation therapy in men with prostate cancer: how should the side effects be monitored and treated? Clin Endocrinol (Oxf). 2011;74(3):289–93.
35. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, Bandera EV, Hamilton KK, Grant B, McCulloch M, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2009;24 Suppl 2:S389–94.
36. Skolarus TA, Wolf AM, Erb NL, Brooks DD, Rivers BM, Underwood 3rd W, Sailer AL, Zelefsky MJ, Aragon-Ching JB, Slovin SF, et al. American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin. 2015;105(6):679–74.
37. Skolarus TA, Wolf AM, Erb NL, Brooks DD, Rivers BM, Underwood 3rd W, Sailer AL, Zelefsky MJ, Aragon-Ching JB, Slovin SF, et al. American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin. 2015;105(6):679–74.
38. Skolarus TA, Wolf AM, Erb NL, Brooks DD, Rivers BM, Underwood 3rd W, Sailer AL, Zelefsky MJ, Aragon-Ching JB, Slovin SF, et al. American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin. 2015;105(6):679–74.
39. Skolarus TA, Wolf AM, Erb NL, Brooks DD, Rivers BM, Underwood 3rd W, Sailer AL, Zelefsky MJ, Aragon-Ching JB, Slovin SF, et al. American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin. 2015;105(6):679–74.
40. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
41. American Association of Cardiovascular Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs. Champaign, IL: Human Kinetics; 2004.
42. Poole DC, Willerson DP, Jones AM. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):403–10.
43. Martin GS. The interviewer-administered, open-ended diet history method for assessing usual dietary intakes in clinical research: relative and criterion validation studies. Woollongong: The University of Woollongong; 2004.
44. Tapsell LC, Pettengell J, Denmeade SL. Assessment of a narrative approach to the diet history. Public Health Nutr. 1999;2(1):61–7.
45. Williams T. This is that: a life-size photo guide to food serves. Toowong, Qld: Trudy Williams Nutrition & Dietetics; 2011.
46. Lovibond SH, Lovibond PF. Psychology Foundation of A: Manual for the depression anxiety stress scales. Sydney, N.S.W: Psychology Foundation of Australia; 1995.
64. Nieuwenhuijsen K, de Boer AGEM, Verbeek JHAM, Blonk RWB, van Dijk FJH. The Depression Anxiety Stress Scales (DASS): detecting anxiety disorder and depression in employees absent from work because of mental health problems. Occup Environ Med. 2003;60 suppl 1:77–82.

65. Morin CM, Belleville G, Belanger L, Ivers H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34(5):601–8.

66. Kendzierski DKD. Physical Activity Enjoyment Scale: Two validation studies. J Sport Exerc Psychol. 1991;13(1):50–64.

67. Latorre Roman PA, García Pinillos F, Navarro Martínez AV, Izquierdo Rus T. Validity and reliability of Physical Activity Enjoyment Scale questionnaire (PACES) in children with asthma. J Asthma. 2014;51(6):633–8.

68. Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10(3):141–6.

69. Amireault S, Godin G, Lacombe J, Sabiston C. Validation of the Godin-Shephard Leisure-Time Physical Activity Questionnaire classification coding system using accelerometer assessment among breast cancer survivors. J Cancer Surviv. 2015;9(2):332–40.

70. Abel MG, Hannon JC, Sell K, Lillie T, Conlin G, Anderson D. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Appl Physiol Nutr Metab. 2008;33(6):1155–64.

71. Swartz AM, Strath SJ, Bassett Jr DR, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000;32(9):5450–6.

72. Frankenfield DC, Muth ER, Rowe WA. The Harris-Benedict studies of human basal metabolism: history and limitations. J Am Diet Assoc. 1998;98(4):439–45.

73. Bosetti C, Filomeno M, Riso P, Pollesel J, Levi F, Talamini R, Montella M, Negri E, Franceschi S, La Vecchia C. Cruciferous vegetables and cancer risk in a network of case-control studies. Ann Oncol. 2012;23(8):2198–203.

74. Etminan M, Takkouche B, Caamano-Isorna F. The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev. 2004;13(3):340–5.

75. Chen J, Song Y, Zhang L. Lycopene/tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J Nutr Sci Vitaminol. 2013;59(3):213–23.

76. Pelser C, Mondul AM, Hollenbeck AR, Park Y. Dietary fat, fatty acids, and risk of prostate cancer in the NIH-AARP diet and health study. Cancer Epidemiol Biomarkers Prev. 2011;22(4):697–707.

77. Lee S-A, Zheng W. Well-Done Meat Intake, Heterocyclic Amine Exposure, and Cancer Risk. Nutr Cancer. 2009;61(4):437–46.

78. Mandair D, Rossi RE, Periculous M, Whyand T, Caplin ME. Prostate cancer and the influence of dietary factors and supplements: a systematic review. Nutrition & metabolism. 2014;11:30.

79. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4(9):e7038.

80. National Health and Medical Research Council. Australian dietary guidelines. Canberra: NHMRC; 2013. Available from: http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/n55_australian_dietary_guidelines_130530.pdf.

81. American College of Sports Medicine. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013;12(4):215–7.

82. Köhler N, Gansera L, Holze S, Friedrich M, Rebmann U, Stolzenburg J-U, Dnistrian AM, Weinstein J, Ngo TH, Mendell NR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70.

83. Ornish D, Barnard RJ, Aronson WJ, McCormac P, McKnight DJ, Fein JD, Mandair D, Rossi RE, Periculous M, Whyand T, Caplin ME. Prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 radar. Eur Urol. 2014;65(5):856–64.