SHORT COMMUNICATION

Effect of dietary β-glucan supplementation on growth performance, nutrient digestibility, and characteristics of feces in weaned pigs

Jae-Hong Park, Sang-In Lee and In-Ho Kim

Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea

ABSTRACT

A total of 150 crossbred weaned pigs [(Yorkshire × Landrace) × Duroc] with an average body weight of 6.75 ± 0.49 kg were used in a 6-wk trial to determine the effects of dietary supplementation of β-glucan on growth performance, nutrient digestibility, and characteristics of feces (fecal score, microbiota, moisture, and pH) in weaned pigs. The corn-soybean meal based dietary treatments included: 1) antibiotic (30 ppm Tiamulin), 2) 0% β-glucan, 3) 0.1% β-glucan, 4) 0.2% β-glucan, and 5) 0.4% β-glucan. Dietary supplementation with β-glucan resulted in no significant differences in growth performance, nutrient digestibility, or characteristics of feces compared with that of Tiamulin supplementation. Pigs fed β-glucan exhibited a linearly increasing average daily gain and feed/gain ratio. Dietary supplementation of β-glucan linearly increased apparent total tract digestibility of dry matter and energy during 1–14 and 1–42 d as dietary β-glucan increased from 0.1 to 0.4%. In addition, pigs fed β-glucan had linearly decreasing coliform bacterial counts. In conclusion, dietary supplementation with β-glucan from rice bran improved growth performance, nutrient digestibility and coliform bacteria in weaned pigs, and β-glucan had the same effect as Tiamulin supplementation on growth performance, nutrient digestibility, and characteristics of feces. Thus, we suggest that β-glucan from rice bran can be used as an alternative to antibiotics, and will improve productivity of weaned pigs.

1. Introduction

Antibiotic supplementation in pig diets is well known to improve growth rate, feed utilization, and reduce mortality from clinical disease (Cromwell 2002). Because the use of antibiotics results in a reservoir of drug-resistant bacteria, the use of antibiotics in livestock diets as a growth promoter has been banned in many countries. Many researchers have focused on the development of alternatives to antibiotics, including probiotics (Simon 2010; Jacela et al. 2010b; Cho et al. 2011), prebiotics (Jacela et al. 2010b), enzymes (Thacker 2000; Adeola and Cowieson 2011), acidifiers (Kil et al. 2011), plant extracts (Jacela et al. 2010b; Liu et al. 2011), copper (Jacela et al. 2010a), and zinc (Jacela et al. 2010a) to maintain pig health and performance.

β-glucan, a polysaccharide of D-glucose monomers linked by β-glycosidic bonds, is present in cellulose in plants, bran of cereal grains, cell walls of baker’s yeast, certain fungi, mushrooms, and bacteria. It is well known that β-glucan activates the immune system by binding to receptors on the surface of innate immune cells and maintains normal blood cholesterol concentrations (Braaten et al. 1994; Brown and Gordon 2001; Vetvicka et al. 2007). In addition, it has been reported that pig fed dietary β-glucan exhibited increased plasma leucocytes counts, increased lymphocyte proliferation activity, decreased TNF-α concentration and fecal E. coli numbers, and benefited from the composition and metabolic activity of gastric microbiota, and caecal and colonic microbiota (Metzler-Zebeli et al. 2011; Zhou et al. 2013). However, β-glucan from different sources results in variable effects on growth and the immune response (Dritz et al. 1995; Decuypere et al. 1998; Fortin et al. 2003; Hisan and Sauerwein 2003).

In the present study, we used water soluble β-glucan from rice bran as a dietary supplementation and investigated the effects of their different concentrations on growth performance, nutrient digestibility, and fecal microbiota, score, moisture, and pH in weaned pigs.

2. Materials and methods

The animal care and used protocol were approved by the Animal Care and Use Committee of Dankook University.

2.1. Experimental design, animals and diets

A total of 150 crossbred weaned barrows [(Yorkshire × Landrace) × Duroc] with an average BW of 6.75 ± 0.49 kg were used in a 6-wk trial. The pigs were sorted into pens with five pigs per pens and six pens per treatments. The diets were based on corn-soybean meal. The dietary treatments were 1) 30 ppm Tiamulin (Yuhan Co., Ltd., Seoul, South Korea), 2) 0% β-glucan, 3) 0.1% β-glucan, 4) 0.2% β-glucan, and 5) 0.4% β-glucan. A tested product, β-glucan comprises 86% β-1, 3/1, 6-glucan (STR Biotech. Co., Ltd., Chuncheon, South Korea), which was added to basal diets from 0.1 to 0.4%.
environmentally controlled room with a slatted plastic floor requirement (Table 1) (NRC 2012). All pigs were housed in an
with 2% Cr2O3 (chromic oxide) as an indigestible marker for
and the feed/gain (F/G) ratio.
average daily gain (ADG), average daily feed intake (ADFI),
recorded on a pen basis during the experiment to calculate
d 42 of the experimental period, and feed consumption was
Individual pig BW was recorded at the beginning, d 7, d 21, and
2.2. Sampling and measurements

Provided per kg of complete diet: Cu, 12 mg; Zn, 85 mg; Mn, 8 mg; I, 0.28 mg; and Se, 0.15 mg.

All diets were formulated to meet or exceed the NRC nutrition requirement (Table 1) (NRC 2012). All pigs were housed in an environmentally controlled room with a slatted plastic floor, which proved 0.26 m² of space per pig. Each pen was equipped with a self-feeder and nipple waterer to allow ad libitum access to feed and water throughout the experimental period.

2.2. Sampling and measurements

Individual pig BW was recorded at the beginning, d 7, d 21, and d 42 of the experimental period, and feed consumption was recorded on a pen basis during the experiment to calculate average daily gain (ADG), average daily feed intake (ADFI), and the feed/gain (F/G) ratio.

During the experimental period, pigs were fed diets mixed with 2% Cr2O3 (chromic oxide) as an indigestible marker for the determination of apparent total tract digestibility (ATTD) for dry matter (DM) and nitrogen (N). On d 7, d 21, and d 42, fecal samples were collected from at least two pigs in each pen via rectal massage. All feed and fecal samples were freeze-dried, finely ground, passed through a 1-mm screen, and analyzed for DM, N, and energy. DM and N concentrations were determined by the Kjeldahl method according to the AOAC (2007). Gross energy was determined using a Parr 6100 oxygen bomb calorimeter (Parr instrument Co., Moline, IL, USA). Chromium was analyzed via UV absorption spectrophotometry (Shimadzu UV-1201, Shimadzu, Kyoto, Japan).

Fecal scores were determined twice each day on d 7, d 14, d 21, d 28, d 35, and d 42, the score scale was (1) hard and dry pellet, but small mass, (2) hard and formed stool, (3) soft and formed stool but moist, (4) soft and unformed stool, and (5) watery, liquid stool. The fecal moisture contents were determined by randomly collecting feces from each pen at wk 6 via massaging the rectum. The fecal samples were dried at 60°C for 72 h to allow determination of fecal moisture content. Fecal pH was determined with pH-meter (model 720P, IsteK, Inc., Seoul, Korea) by diluting 10 g of feces collected at wk 6.

Fecal samples were collected via rectal massage from two pigs in each pen, pooled, placed on ice for transportation to the laboratory, and analyzed for microfloral counts. Viable counts of bacteria in the fecal samples were determined by plating serial 10-fold dilutions (in 1% peptone solution) onto Lactobacilli medium III agar plates (Medium 638, DSMZ, Braunschweig, Germany), MacConkey agar plates (Difco Laboratories, Detroit, MI), and Salmonella-Shigella (SS) agar (Difco Laboratories, Detroit, MI) to isolate Lactobacillus, coliform bacteria, and Salmonella, respectively. The lactobacilli medium III agar plates were then incubated for 48 h at 37°C under anaerobic conditions. The MacConkey and SS agar plates were incubated for 24 h at 37°C under aerobic conditions. The coliform bacteria and Lactobacillus colonies were counted immediately after removal from the incubator and the results were presented as log10 colony-forming units (CFU) per gram.

2.3. Statistical analysis

All data were analyzed using the mixed procedures for repeated measures (PROC MIXED) in SAS software (version 9.0, SAS Institute, Cary, NC, USA) with the following statistical model of

\[Y_{ijk} = \mu + t_i + r_k + e_{ijk}, \]

where \(Y_{ijk} \) was an observation on the dependent variable, \(\mu \) was the overall population mean, \(t_i \) was the fixed effect of treatments, \(r_k \) was the pen as a random effect, and \(e_{ijk} \) was the random error associated with the observation \(ijk \). Orthogonal contrasts used to separate treatments means were antibiotic vs. \(\beta \)-glucans (0.1, 0.2, and 0.4%). Furthermore, means were separated using orthogonal polynomial contrasts to examine effects of \(\beta \)-glucan diets. For statistical analysis, the pen means served as the experimental unit. Variability in the data was expressed as the pooled standard error of the mean (SEM). \(P \) values < 0.05 were considered statistically significant.

3. Results

3.1. Growth performance

Effects of dietary \(\beta \)-glucan supplementation on growth performance are shown in Table 2. In phase 1, supplementation of \(\beta \)-glucan linearly increased ADG and the F/G ratio (\(P = 0.009 \) and 0.003, respectively). In phase 2, supplementation of \(\beta \)-glucan linearly increased the F/G ratio (\(P = 0.04 \)). Overall, supplementation of \(\beta \)-glucan linearly increased ADG and the F/G ratio (\(P = 0.009, 0.022 \), respectively). Levels of ADG, ADFI, and F/G did not differ between supplementation with \(\beta \)-glucan and Tiamulin.

3.2. Nutrient digestibility

Effects of dietary \(\beta \)-glucans supplementation on ATTD are shown in Table 3. In wk 1, supplementation of \(\beta \)-glucan linearly increased the ATTD of dry matter (\(P = 0.002 \). In addition, pigs

| Table 1. Feed compositions of control diet (as-fed basis). |
|----------------|----------------|
| **Item** | **Phase I (d 1–14)** | **Phase II (d 15–42)** |
| Extruded corn | 44.49 | 61.97 |
| Soybean meal (48% CP) | 21.20 | 27.80 |
| Fish meal (66% CP) | 3.50 | - |
| Soy oil | 2.55 | 1.05 |
| Lactose | 8.30 | - |
| Whey | 10.00 | 5.00 |
| Decalci Phosphate| 1.50 | 1.50 |
| Sugar | 3.00 | - |
| Lysin-HCl | 0.39 | 0.46 |
| DL-Methionine | 0.30 | 0.24 |
| L-Threonine | 0.19 | 0.20 |
| Choline chloride| 0.10 | 0.10 |
| Vitamin a | 0.10 | 0.10 |
| Vitamin E | 0.10 | 0.10 |
| Mineral b | 0.20 | 0.20 |
| L-Lysine-HCl | 0.98 | 1.13 |
| Salt | 0.20 | 0.25 |
| Total | 100 | 100 |
| **Calculated energy content** |
Metabolizable energy, kcal/kg	3540	3410
Crude protein	20.24	19.10
Lysin	1.48	1.37
Methionine + Cysteine	0.96	0.84
Calcium	0.94	0.89
Total Phosphorus	0.74	0.69
Avail Phosphorus	0.53	0.42
Beta-glucan increased in apparent total tract digestibility of energy (linear, $P = 0.015$; quadratic, $P = 0.037$). Dietary supplementation of beta-glucan linearly increased the ATTD of dry matter ($P = 0.001$) and nitrogen ($P = 0.03$) in wk 3. In wk 6, dietary supplementation of beta-glucan linearly increased the ATTD of dry matter ($P = 0.009$) and energy ($P = 0.004$). Dry matter, nitrogen, and energy with dietary beta-glucan supplementation did not differ compared to Tiamulin supplementation.

3.3. Characteristics of feces

Effects of dietary supplementation of beta-glucans from rice bran on characteristics of feces (fecal score, microbiota, moisture, and pH) are shown in Table 4. Dietary beta-glucan supplementation linearly decreased coliform bacteria counts ($P = 0.033$). Dietary beta-glucan supplementation did not affect fecal score, *Lactobacillus*, coliform bacteria and *Salmonella* counts, moisture, and pH compared to that with Tiamulin supplementation.

4. Discussion

Because of the limitation of antibiotics, there have been increasing efforts to minimize their use as growth promoters in livestock. Alternatives to antibiotics, such as probiotics and prebiotics, have attracted considerable attention. Among these, prebiotics, primarily derived from nondigestible oligosaccharides, inulin, and beta-glucan, are nondigestible food substances that selectively stimulate the growth of favourable species of bacteria in the gut (Kaplan and Hutkins 2000; Smiricky-Tjardes et al. 2003; Loh et al. 2006; Arena et al. 2014). Supplementation with beta-glucan is the most desirable alternative to antibiotics because it is well established that beta-glucan activates the immune system and maintain normal blood cholesterol concentration (Braaten et al. 1994; Brown and Gordon 2001; Vetvicka et al. 2007). In the present study, beta-glucan supplementation in pig diets improved ADG and F/G. Many studies have reported relatively positive effects of beta-glucan supplementation on pig performance, although its functions in growth improvement remain controversial. In agreement with the present data, beta-glucan supplementation enhanced growth performance in pigs (Dritz et al. 1995; Hahn et al. 2006; Li et al. 2006). Dritz et al. (1995) reported that pigs fed diets containing 0.025% beta-glucan had higher ADG and ADFI and were heavier on d 28 after weaning than pigs fed the control diet. In addition, they reported that supplementation with beta-glucan increased growth performance and.

Table 2. The effects of beta-glucan from rice bran on growth performance in weaned pigs*.

Items, %	Ant*	0	0.1	0.2	0.4	SEMb	P-value	beta-glucan effect
ADG, g	251	242	244	255	262	5.42	0.940	0.009
ADFI, g	285	285	280	277	284	3.03	0.332	0.075
F/G	1.135	1.178	1.148	1.086	1.084	0.02	0.642	0.003

*Each mean represented by six replications per treatment ($n = 6$).

*Antibiotic (30 ppm Tiamulin).

bStandard error of means.

cAverage daily gain.

dAverage daily feed intake.

Table 3. Effects of beta-glucan from rice bran on apparent total tract nutrient digestibility in weaned pigs*.

Items, %	Ant*	0	0.1	0.2	0.4	SEMb	P-value	beta-glucan effect
Dry matter	84.32	82.22	82.52	82.77	83.96	0.44	0.540	0.002
Nitrogen	68.04	78.78	79.29	79.64	79.83	0.42	0.470	0.237
Energy	84.43	82.23	82.63	82.93	83.37	0.45	0.470	0.237

*Each mean represented by six replications per treatment ($n = 6$).

*Antibiotic (30 ppm Tiamulin).

bStandard error of means.
susceptibility to Streptococcus suis infection via a complex interaction between growth performance and disease susceptibility in nursery pigs. In another study, Li et al. (2006) discussed the effects of β-glucan, extracted from Saccharomyces cerevisiae, on growth performance and the immunological and somatotrophic responses of pigs challenged with Escherichia coli lipopolysaccharide. β-glucan is considered a biological response modifier that exert a variety of biological and immunopharmaceutical properties. These immunomodulators have the capacity to stimulate both innate and specific immunity (Vetvicka et al. 2014). Weaned piglets experience biological stress including physiological, environmental and social challenges that results in intestinal, immunological, and behavioural changes. Therefore, the period after weaning is an extremely important time in the life of pigs. The findings of the current study suggest that β-glucan inclusion in the diet might improve both the growth and F/G in weaned pigs.

In previous reports, the digestibility of DM, GE, CP, EE, Ca, and P linearly increased in weaned pigs as the dietary concentrations of β-glucan increased (Hahn et al. 2006). However, a few studies have reported inconsistent results; specifically, β-glucan supplementation showed no effect on the digestibility of DM, GE, CP, ash, or P in growing or finishing pigs (Bae et al. 1999; Ko et al. 2000). Consumption of nonstarch polysaccharides such as β-glucan has been associated with decreased nutrient digestibility (Lynch et al. 2007). However, β-glucan has been shown to have prebiotic properties because they have the ability to pass undigested through the gastrointestinal tract, where they act as a substrate for microbial fermentation and selectively stimulate the growth and activity of a small number of beneficial bacteria (Gibson 2004). Prebiotics have been found to enhance the ATTD of DM, N, and other minerals (Scholz-Ahrens et al. 2001; Zhao et al. 2015), which is believed to be caused by improvements in the intestinal environment. β-glucan may have different effects on growth performance and immune function depending upon processing methods in weaned piglets. β-glucan from different sources may also vary in structure, chemical composition, or both, which may influence its activity and the amount that should be added for a growth response (O’Shea et al. 2010). In the present study, inclusion of β-glucan derived from rice bran appeared to elevate the ATTD of DM, N, and energy.

Dietary β-glucan decreased the numbers of coliform bacteria in feces in the present study. Similarly, piglets receiving feed supplemented with β-glucan for 2 weeks after weaning showed decreased susceptibility to enterotoxigenic E. coli, which is a major cause of diarrhea in neonatal, suckling, and newly weaned piglets (Stuyven et al. 2009). Shen et al. (2012) suggested that β-glucan might exert favourable effects on intestinal functions and health by increasing Lactobacillus and Bifidobacterium and decreasing Enterobacteriaceae. Therefore, decreased fecal E. coli numbers in this study caused by dietary β-glucan supplementation may be related to improvement of the intestinal environment, although no significant difference was detected in Lactobacillus and Salmonella populations.

In conclusion, the present study indicated that dietary supplementation of β-glucan from rice bran improved growth performance, nutrient digestibility, and fecal microbiota in weaned pigs. In addition, β-glucan had the same effect as antibiotic supplementation on growth performance, nutrient digestibility, and characteristics of feces. Thus, we suggest that β-glucan from rice bran could have alternative antibiotic effects and improve productivity of weaned pigs.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Adeola O, Cowieson AJ. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci. 89:3189–3218.

[2] AOAC. 2007. Official methods of analysis. 18th ed. Gaithersburg, MD: Association of Official Analytical Chemists.

[3] Arena MP, Caggianiello G, Fiocco D, Russo P, Torelli M, Spano G, Capozzi V. 2014. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci. 15:3025–3039.
[4] Bae KH, Ko TG, Kim JH, Cho WT, Han YK, Han IK. 1999. Use of metabolically active substances to substitute for antibiotics in finishing pigs. Kor J Anim Sci. 41:23–30.

[5] Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. 1994. Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr. 48:465–474.

[6] Brown GD, Gordon S. 2001. Immune recognition: A new receptor for β-glucans. Nature. 413:36–37.

[7] Cho JH, Zhao PY, Kim IH. 2011. Probiotics as a dietary additive for pigs: a review. J Anim Vet Adv. 10:2127–2134.

[8] Cromwell GL. 2002. Why and how antibiotics are used in swine production. Anim Biotechnol. 13:7–27.

[9] Doherty JV. 2007. Effects of prebiotics on mineral metabolism. J Anim Feed Sci. 19:230–243.

[10] Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, Ganzle MG. 2011. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal normal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol. Ecol. 75:402–413.

[11] Dritz SS, Shi J, Kielian TL, Goodband RD, Nelssen JL, Tokach MD, Chengappa MM, Smith JE, Blecha F. 1995. Influence of dietary β-glucan on growth performance, nonspecific immunity, and resistance to Streptococcus suis infection in weaning pigs. J Anim Sci. 73:3341–3350.

[12] Gibson GR. 2004. Fibre and effects on probiotics (the prebiotics concept). Clin Nutr Suppl. 1:25–31.

[13] Hahn TW, Lohakare JD, Lee SL, Moon WK, Chae BJ. 2006. Effects of supplementation of β-glucans on growth performance, nutrient digestibility, and immunity in weaning pigs. J Anim Sci. 84:1422–1428.

[14] Hisa S, Sauerwein H. 2003. Influence of dietary ss-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J Anim Physiol Anim Nutr. 87:2–11.

[15] Jacela JY, DeRouche JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS. 2010a. Feed additives for swine: fact sheets - high dietary levels of copper and zinc for young pigs, and phytase. J Swine Health Prod. 18:87–89.

[16] Jacela JY, DeRouche JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS. 2010b. Feed additives for swine: fact sheets - prebiotics and probiotics, and phytochemicals. J Swine Health Prod. 18:132–136.

[17] Kaplan H, Hutkins RW. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol. 66:2682–2684.

[18] Kil DY, Kwon WB, Kim BG. 2011. Dietary acidifiers in weaning pig diets: a review. Rev Colomb Cienc Pec. 24:231–247.

[19] Ko TG, Kim JD, Han YK, Han IK. 2000. Study for the development of antibiotics-free diet for growing pigs. Kor J Anim Sci. 42:45–54.

[20] Li J, Li DF, Xing J, Cheng ZB, Lai CH. 2006. Effects of β-glucan extracted from Saccharomyces cerevisiae on growth performance and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J Anim Sci. 84:2374–2381.

[21] Liu HW, Tong JM, Zhou DW. 2011. Utilization of Chinese herbal feed additives in animal production. Agr Sci China. 10:1262–1272.

[22] Loh G, Eberhard M, Brunner RM, Henning U, Kuhla S, Kleessen B, Metges CC. 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J Nutr. 136:1198–1202.

[23] Lynch MB, Sweeney T, Callan JJ, O’Doherty JV. 2007. Effects of increasing the intake of dietary β-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs. Animal. 1:812–819.

[24] Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, Ganzle MG. 2011. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol. Ecol. 75:402–413.

[25] National Research Council (NRC). 2012. Nutrient requirements of swine. 11th rev. ed.Washington, DC: National Academy Press.

[26] O’Shea CJ, Sweeney T, Lynch MB, Gahan DA, Callan JJ, O’Doherty JV. 2010. Effect of β-glucans contained in barley- and oat-based diets and exogenous enzyme supplementation on gastrointestinal fermentation of finisher pigs and subsequent manure odor and ammonia emissions. J Anim Sci. 88:1411–1420.

[27] Scholz-Ahrens KE, Schaffsma G, van den Heuvel EG, Schrezenmeir J. 2001. Effects of prebiotics on mineral metabolism. Am J Clin Nutr. 73:4595s–464s.

[28] Shen RL, Dang XY, Dong JL, Hu XZ. 2012. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora and intestinal bacterial metabolites in rats. J Agr Food Chem. 60:11301–11308.

[29] Simon O. 2010. An interdisciplinary study on the mode of action of probiotics in pigs. J Anim Feed Sci. 19:230–243.

[30] Smiricky-Tjardes MR, Flickinger EA, Grieshop CM, Bauer LL, Murphy MR, Fahey GC. 2003. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J Anim Sci. 81:2505–2514.

[31] Stuyven E, Cox E, Vancaneghem S, Arnouts S, Deprez P, Goddeeris BM. 2009. Effect of β-glucans on an ETEC infection in piglets. Vet Immunol Immunopathol. 128:60–66.

[32] Thacker PA. 2000. Recent advances in the use of enzymes with special reference to β-glucanases and pentosanases in swine rations. Asian-Australas J Anim Sci. 13:376–385.

[33] Vetrivcka V, Dvorak B, Vetrivckova J, Richter J, Krizan J, Sima P, Yvin JC. 2007. Orally administered marine (1→3)-β-D-glucan Phycarline stimulates both humoral and cellular immunity. Int J Biol Macromol. 40:291–298.

[34] Vetrivcka V, Vannucci L, Sima P. 2014. The effects of β-glucan on pig growth and immunity. Open Biochem J. 1:89–93.

[35] Zhao PY, Jung JH, Kim IH. 2015. Effects of mannan oligosaccharides and fructan on growth performance, nutrient digestibility, blood profile and diarrhea score in weanling pigs. J Anim Sci. 90:833–839.

[36] Zhou TX, Jung JH, Zhang ZF, Kim IH. 2013. Effect of dietary β-glucan on growth performance, fecal microbial shedding and immunological responses after lipopolysaccharide challenge in weaned pigs. Anim Feed Sci Technol. 179:85–92.