RESEARCH ARTICLE

Evolutionary history of burrowing asps (Lamprophiidae: Atractaspidinae) with emphasis on fang evolution and prey selection

Frank Portillo1, Edward L. Stanley2, William R. Branch3,4†, Werner Conradie5,6*, Mark-Oliver Rödel6, Johannes Penner67, Michael F. Barej6, Chifundera Kusamba6, Wandege M. Muninga6, Mwenebatu M. Aristote9, Aaron M. Bauer10, Jean-François Trape11, Zoltán T. Nagy12, Piero Carlino13, Olivier S. G. Pauwels14, Michele Menegon15, Ivan Ineich16, Marius Burger17,18, Ange-Ghislain Zassi-Boulou19, Tomáš Mazuch17, Kate Jackson17, Daniel F. Hughes1, Mathias Behangana22, Eli Greenbaum2,3,4†

1 Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America, 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America, 3 Port Elizabeth Museum, Humewood, South Africa, 4 Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa, 5 School of Natural Resource Management, George Campus, Nelson Mandela University, George, South Africa, 6 Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 7 Department of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany, 8 Laboratoire d'Herpétologie, Département de Biologie, Centre de Recherche en Sciences Naturelles, Luwo, South Kivu, Democratic Republic of the Congo, 9 Institut Supérieur d’Écologie pour la Conservation de la Nature, Katanga Campus, South Kivu, Democratic Republic of the Congo, 10 Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America, 11 Laboratoire de Paléontologie et Zoologie Médicale, Institut de Recherche pour le Développement, Dakar, Senegal, 12 Independent Researcher, Berlin, Germany, 13 Museo di Storia naturale dei Salento, Cilmera, Italy, 14 Département des Vertébrés Récents, Institut Royal des Sciences naturelles de Belgique, Brussels, Belgium, 15 Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom, 16 Muséum National d’Histoire Naturelle, Sorbonne Universités, Département Systématique et Evolution (Reptiles), ISyEB (Institut de Systématique, Évolution, Biodiversité), Paris, France, 17 African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa, 18 Flora Fauna & Man, Ecological Services Ltd. Tortola, British Virgin Islands, 19 Institut National de Recherche en Sciences Exactes et Naturelles, Brazzaville, Republic of Congo, 20 Independent Researcher, Dříteč, Czech Republic, 21 Department of Biology, Whitman College, Walla Walla, Washington, United States of America, 22 Department of Environmental Sciences, Makerere University, Kampala, Uganda

† Deceased.
* egreenbaum2@utep.edu

Abstract

Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred
predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.

1. Introduction

Recently, several studies generated phylogenies of advanced African snakes, including colubrids, lamprophiids, elapids, and vipers [1–9]. In contrast, there has been only one morphology-based, phylogenetic study that focused on atractaspidines [10]. The Family Atractaspidae was originally erected by Günther [11] for species of Atractaspis, renowned for their unique and exceptionally long and mobile fangs [12]. Based on skull morphology, Bourgeois [13] created the subfamily Aparallactinae (within Colubridae) to accommodate Atractaspis, Aparallactus, and other closely related fossorial snakes. This grouping was supported by jaw musculature studies of Heymans [14–15], who transferred Atractaspis to the Subfamily Atractaspidinae (Atractaspiniinae, sensu Kelly et al. [16]). Several recent molecular [7–9] and morphological studies [17–18] recovered a monophyletic group containing both aparrallactines and atractaspidines, and with few exceptions [19–21], current classification recognizes Aparallactinae and Atractaspidinae as sister taxa in the Family Lamprophiidae [2, 7–9, 22–25]. Phylogenetic relationships within atractaspidines are not well known, because many phylogenetic studies that included atractaspidines were limited by low sample sizes [2, 8–10, 21–23, 26–27].

Based on scale patterns and counts, Laurent [28] assigned the known species of Atractaspis into five groups (Sections A–E). Decades later, Underwood and Kochva [18] partitioned Atractaspis into two groups based on venom gland morphology and geographic distribution: the ‘bibronii’ group and the ‘microlepidota’ group. These authors defined the ‘bibronii’ group as having normal-sized venom glands and a sub-Saharan distribution, and it included the following species: A. aterrima, A. bibronii, A. boulengeri, A. conica, A. corpulenta, A. dahomeyensis, A. duerdeni, A. irregularis, and A. reticulata. The 2nd ‘microlepidota’ group has relatively elongated venom glands and is found in western, central and eastern Africa, including the distinctive horn of Africa, the Sinai Peninsula, and much of Arabia, Israel, and the Levant. The latter group consisted of the following species: A. engaddensis, A. engdahli, A. leucomelas, A. microlepidota, A. micropolhis, and A. scorteccii. Moyer and Jackson [10] reconstructed phylogenetic relationships among 14 species of Atractaspis with morphological data, incorporating Macrelaps and Homoroselaps as outgroups, based on previous studies [18]. However, the two groups of Underwood and Kochva [18] were not supported [10]. More recent molecular phylogenetic studies suggest that Homoroselaps is sister to Atractaspis, whereas Macrelaps is closely related to Amblyodipsas and Xenocalamus [8–9, 27].

The diversification of burrowing asps is particularly interesting because of their unique front fangs, which are starkly different from other lamprophiids [21, 29–32]. It has been hypothesized that foraging for nestling mammalian prey was a major driver in the evolution of front fangs and “side-stabbing,” which are unique to Atractaspis [31, 33]. Both Atractaspis and Homoroselaps have front fangs, which differs from the rear-fang morphology that is common in their aparrallactine sister group. Although Atractaspis and Homoroselaps both contain front fangs, Atractaspis fang morphology is more similar to vipers (Atractaspis was previously and erroneously classified in the Viperidae), whereas Homoroselaps fang morphology is more similar to elapids [25, 31]. Underwood and Kochva [18] suggested a Macrelaps-like ancestor for aparrallactines and atractaspidines, which may have foraged above ground and fed on a wide
variety of prey items. Specialization on elongated prey items (e.g., squamates and invertebrates) may have taken different evolutionary routes within aparallactines and atractaspidines, which involved morphological changes that facilitated foraging, capture, and envenomation of prey items [31]. Burrowing asps and their sister group Aparallactinae are ideal groups to study fang evolution, because they possess many fang types (i.e., rear fang, fixed front fang, and moveable front fang) [25, 29–32]. Additionally, collared snakes (aparallactines) and burrowing asps make interesting models to study fang evolution because of their dietary specializations, especially prevalent within the Aparallactinae, which feed on prey ranging from earthworms to blind snakes [25, 31].

Herein, we employ phylogenetic hypotheses in conjunction with temporal biogeographic information to gain a more comprehensive understanding of the evolutionary history of Atractaspidae. Specifically, we evaluate the following questions: Are currently recognized genera and species monophyletic? Are Atractaspis and Homoroselaps sister taxa? Are Atractaspis genetically partitioned into the 'bibronii' and 'microlepidota' groups as Underwood and Kochva [18] suggested? Additionally, we investigate patterns of diversification regarding character traits, including prey selection and fang morphology, within atractaspidines and aparallactines.

2. Materials and methods

2.1 Approvals and permissions

Permission for DFH, MB and EG to collect snakes in Uganda was obtained from the Uganda Wildlife Authority (UWA—permit no. 2888 issued on August 1, 2014, permit no. 29279 issued on August 11, 2015) and the Ministry of Tourism, Wildlife and Antiquities (permit no. GoU/008/2016). Permission for CK, WMM, MMA, and EG to collect snakes in Burundi was granted by the Institut National pour l'Environnement et la Conservation de la Nature (INECN—unnumbered permit from Directeur General de l'INECN dated December 27, 2011). Permission for CK, WMM, MMA, DFH, and EG to collect snakes in Democratic Republic of Congo (DRC) was granted by the Centre de Recherche en Sciences Naturelles (CRSN—LWI/28/BB/MM/BIR/050/07, unnumbered permit from 2008, LWI/27/BBa/ MUH.M/BBY/141/09, LWI/27/BBa/MUH.M/BBY/023/10, LWI/27/BBa/MUH.M/BBY/001/011, LWI/27/BBa/CIEL/BBY/003/012, LWI/27/BB/KB/BYY/60/2014, LWI/27/BBa/BYY/116/014), Institut Congolais pour la Conservation de la Nature (ICCN—unnumbered permit by Provincial Director of ICCN, Equateur Province in Mbundaka in August 2013, 004/ICCN/PNKB/2013, 06/ICCN/PNKB/2014, 02/ICCN/PNKB/2015), and Institut Superieur d'Ecologie Pour la Conservation de la Nature (ISSEC, Katana—ISEC/DG/SGAC/04/2015, ISEC/DG/SGAC/04/29/2016). The University of Texas at El Paso (UTEP) Institutional Animal Care and Use Committee (IACUC—A-200902-1) approved field and laboratory methods. Permits for WC to collect snakes in South Africa were granted by the Department of Economic Care and Tourism (permit nos. CRO 84/11CR and CRO 85/11CR). Permits for MOR and JP to collect snakes in Mozambique were granted by the Gorongosa Restoration Project and the Mozambican Departamento dos Serviços Científicos (PNG/DSci/C12/2013; PNG/DSci/C12/2014; PNG/DSci/C28/2015). Additional specimens and samples were obtained from natural history museums and university collections (Table 1) that followed appropriate legal guidelines and regulations for collection and loans of specimens.

2.2 Taxon sampling

Specimens from the Subfamily Atractaspidae were collected from multiple localities in sub-Saharan Africa (Fig 1). We generated sequences of three mitochondrial genes (16S, ND4, and
Table 1. Voucher numbers, localities, and GenBank accession numbers for genetic samples. DRC = Democratic Republic of the Congo; RC = Republic of Congo; SA = South Africa; GNP = herpetological collection of the E. O. Wilson Biodiversity Center, Gorongosa National Park, Mozambique. Other collection acronyms are explained in Sabaj [108]. Note that Lawson et al. [109] erroneously listed the specimen of *Atractaspis* sp. as MVZ 228653.

Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Eutropis longicaudata	SAMA R38916	—	Malaysia	—	—	—	—	—
Rena humilis	CAS 190589	—	—	—	—	—	—	—
Boa constrictor	—	—	—	—	—	—	—	—
Acrochordus granulatus	—	—	—	—	—	—	—	—
Agkistrodon piscivorus	—	—	—	—	—	—	—	—
Atheris nitschei	—	—	—	—	—	—	—	—
Crotalus viridis	—	—	—	—	—	—	—	—
Diadophis punctatus	—	—	—	—	—	—	—	—
Hypsiglena torquata	—	—	—	—	—	—	—	—
Natrix natrix	—	—	—	—	—	—	—	—
Thamnophis sirtalis	—	—	—	—	—	—	—	—
Boiga dendrophila	—	—	—	—	—	—	—	—
Bananophis dorri	—	—	—	—	—	—	—	—
Dolichophis jugularis	—	—	—	—	—	—	—	—
Dendroaspis polyepis	—	—	—	—	—	—	—	—
Naja kaouthia	—	—	—	—	—	—	—	—
Naja anulata	—	—	—	—	—	—	—	—
Bothrolycus ater	—	—	—	—	—	—	—	—
Gonionotophis brussauxi	IRSNB 16266	—	Gabon: Ogoué-Lolo Province: Offoué-Onoy Department: Mount Iboundji	—	—	—	—	—
Lycophidion capense	PEM R22890	CMRK 275	Botswana	—	—	—	—	—
Bothrophthalmus lineatus	—	—	Uganda	—	—	—	—	—
Lycodonomorphus laevissimus	PEM R5630	—	SA: Eastern Cape Province: Grahamstown District	—	—	—	—	—
Lycodonomorphus rufus	PEM R22892	CMRK 236	SA: Eastern Cape Province: Hole in the Wall	—	—	—	—	—
Boaedon upembae	UTEP 21002	ELI 205	DRC: Haut-Lomami Province: Kyolo	—	—	—	—	—
Boaedon upembae	UTEP 21003	ELI 208	DRC: Haut-Lomami Province: Kyolo	—	—	—	—	—
Boaedon fuliginosus 1	—	—	Burundi	—	—	—	—	—
Boaedon fuliginosus 2	PEM R5639	—	Rwanda: Butare District	—	—	—	—	—
Boaedon fuliginosus 3	PEM R5635	—	Rwanda: Nyagatare District	—	—	—	—	—
Psammophylax variabilis	—	IPMB J296	Burundi	—	—	—	—	—
Atractaspis andersonii	MVZ 236612	—	Yemen: Lahi Governorate	—	—	—	—	—
Atractaspis andersonii	MVZ 236613	—	Yemen: Lahi Governorate	MK621482	MK621565	MK621623	—	—
Atractaspis andersonii	MVZ 236614	—	Yemen: Lahi Governorate	MK621552	MK621609	—	—	—
Atractaspis cf. andersonii	—	TMHC 2013-10-336	Oman: Dhofar Mts.	MK621475	MK621552	MK621609	—	—
Atractaspis aterrima	IRD CI 208	CI 208	Ivory Coast: Drekre	MK621477	MK621558	MK621615	MK621672	MK621521
Atractaspis aterrima	IRD CI 267	CI 267	Ivory Coast: Allakro	MK621478	MK621557	MK621614	MK621671	MG775793
Atractaspis aterrima	IRD T.265	TR 265	Togo: Mt. Agou	—	—	—	MK621616	MK621673
Atractaspis aterrima	—	TR 649	Mali	MK621559	MK621617	—	—	—
Atractaspis bibronii	MCZ-R 184426	AMB 8268	SA: Limpopo Province	MK621481	MK621544	MK621602	—	—
Atractaspis bibronii	MCZ-R 184500	AMB 8364	SA: Limpopo Province	MK621545	MK621603	MK621667	—	—
Atractaspis bibronii	MCZ-R 184505	AMB 8369	SA: Limpopo Province	MK621543	MK621601	MK621509	—	—

(Continued)
Table 1. (Continued)

Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Atractaspis bibronii	PEM R20775	624	SA: Limpopo Province: Ngala	—	MK621534	MK621593	MK621663	—
Atractaspis bibronii	PEM R9768	629	Malawi: Mt. Mulanje	—	MK621535	MK621594	—	—
Atractaspis bibronii	PEM R20951	MB 21278	SA: Northern Cape Province: Kathu	—	MK621536	MK621595	—	—
Atractaspis bibronii	NMB R10815	MBUR 00961	SA: Limpopo Province: Tshipise region	MK621466	—	—	—	—
Atractaspis bibronii	NMB R10866	MBUR 20911	SA: Northern Cape Province: Boegeoeberg Dam	MK621537	—	—	—	—
Atractaspis bibronii	—	MCZ-R	SA: Limpopo Province	MK621546	—	—	—	—
Atractaspis bibronii	—	LV 004	SA: North West Province: Lephalale	MK621535	—	—	—	—
Atractaspis bibronii	—	RSP 489	—	MK621540	—	—	—	—
Atractaspis bibronii	—	TGE-T2-36	SA: KwaZulu-Natal Province	MK621467	—	—	—	—
Atractaspis bibronii rostrata	—	GPN 191	Mozambique: Gorongosa National Park	MK621474	—	—	—	—
Atractaspis bibronii rostrata	—	GPN 353	Mozambique: Gorongosa National Park	MK621487	—	—	—	—
Atractaspis bibronii rostrata	—	GPN 421	Mozambique: Gorongosa National Park	MK621486	—	—	—	—
Atractaspis bibronii rostrata	—	MTSN 8354	Tanzania: Nguru Mts.	MK621490	—	—	—	—
Atractaspis bibronii rostrata	—	MTSN 8473	Tanzania: Usambara Mts.	MK621491	—	—	—	—
Atractaspis bibronii rostrata	MUSE 13889	—	Tanzania: Udzungwa Mts.	MK621489	—	—	—	—
Atractaspis cf. bibronii rostrata	UTEP 21661	ELI 038	DRC: Haut-Katanga Province: Pweto	MK621459	MK621532	MK621591	MK621661	MK621507
Atractaspis cf. bibronii rostrata	UTEP 21662	ELI 144	DRC: Haut-Katanga Province: Kabongo	MK621460	MK621533	MK621592	MK621662	MK621508
Atractaspis boulenieri	—	IPMB J355	Gabon: Ogooué-Maritime Province: Rabi	AY611833	FJ404334	AY612016	AY611925	—
Atractaspis boulenieri	—	29392	Gabon	MK621469	MK621551	MK621605	MK621658	MK621513
Atractaspis boulenieri	RBINS 18606	KG 063	DRC: Tshopo Province: Longala	MK621550	—	—	—	—
Atractaspis boulenieri	—	MSNS Rept 220	Gabon: Ivindo National Park: Ipassa	MK621493	—	—	—	—
Atractaspis boulenieri	IRSEN 00162	MBUR 03483	RC: Niari: Gnie-Gnie	MK621472	—	—	—	—
Atractaspis congica	PEM R18087	CT 375	DRC	MK621462	MK621588	—	—	—
Atractaspis congica	PEM R22035	PVPL5 WRB	Angola: Luanda	MK621574	—	—	—	—
Atractaspis corpulenta	—	IPMB J369	Gabon: Ogooué-Maritime Province: Rabi	AY611837	FJ404335	AY612020	AY611929	—
Atractaspis corpulenta	PEM R22707	MBUR 03936	RC: Niari: Tsinguidi	MK621465	MK621548	MK621606	MK621654	MG775790
Atractaspis corpulenta kivuensis	RBINS 18607	CRT 4264	DRC: Tshopo Province: Lieki	MK621547	—	—	—	—
Atractaspis corpulenta kivuensis	UTEP 21663	ELI 2992	DRC: Tshopo Province: Bombole	MK621471	MK621549	MK621607	MK621656	MK621514
Atractaspis dahomeyensis	IRD 2193.N	2193N Trape	Chad: Baibokoum	MK621561	MK621619	—	—	—
Atractaspis dahomeyensis	IRD 2197.N	2197N Trape	Chad: Baibokoum	MK621479	MK621560	MK621618	MK621674	—

(Continued)
Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Atractaspis dahomeyensis	IRD 5011.G	5011G	Trape Guinea: Kissidougou	MK621484	MK621562	—	—	—
Atractaspis duerdeni	—	MB 21346	SA: Northern Cape Province: Kuruman region	MK62146	MK621530	MK621589	MK621652	MG775789
Atractaspis duerdeni	—	MBUR 0229	SA: Limpopo Province: Senwabarwana region	MK62146	MK621531	MK621590	MK621653	MK621502
Atractaspis cf. duerdeni	—	—	Zimbabwe	U49314	AY188008	AY187969	—	—
Atractaspis engaddensis	TAUM 16030	—	Israel: Merav	MK62155	MK621610	—	—	—
Atractaspis engaddensis	TAUM 17072	—	Israel: Yeroham	MK621476	MK621535	MK621612	MK621669	MK621519
Atractaspis engaddensis	TAUM 17094	—	Israel: Arad	MK621556	MK621613	MK621670	MK621670	MK621520
Atractaspis irregularis	IRD 5010.G	5010G	Guinea: Kissidougou	MK621573	MK621625	—	—	—
Atractaspis irregularis	ZMB 87809	LI 10 104	Liberia: Nimba County	MK621568	MK621627	MK621646	MK621515	
Atractaspis irregularis	ZMB 87867	LI 10 118	Liberia: Nimba County	MK621569	MK621628	MK621647	MK621516	
Atractaspis irregularis	ZMB 88015	PLI 12 089	Liberia: Nimba County	MK621570	MK621629	MK621648	MK621517	
Atractaspis irregularis	IRD T.269	T 269	Togo: Mt. Agou	MK621566	MK621669	—	—	—
Atractaspis irregularis	IRD T.372	T 372	Togo: Diguengue	MK621567	MK621649	—	—	—
Atractaspis cf. irregularis	UTEP 21657	AKL 392	DRC: South Kivu Province: Lwiro	MK621492	—	—	—	—
Atractaspis cf. irregularis	UTEP 21658	EBG 1190	DRC: South Kivu Province: Lwiro	MG776014	MG746785	MG755898	—	—
Atractaspis cf. irregularis	UTEP 21659	EBG 2671	DRC: South Kivu Province: Lwiro	MK621545	MK621672	MK621669	MK621643	MK621518
Atractaspis cf. irregularis	UTEP 21660	EBG 2725	DRC: South Kivu Province: Lwiro	MK621458	—	—	—	—
Atractaspis cf. irregularis	UTEP 21654	ELI 1208	Burundi: Bubanza Province: Mpiishi	MK621456	MK621630	MK621644	MG775787	
Atractaspis cf. irregularis	UTEP 21655	ELI 1635	DRC: South Kivu Province: Lwiro	MG746901	MG776015	MG775899	MG775786	
Atractaspis cf. irregularis	MUSE 10470	—	DRC: South Kivu Province: Itombwe Plateau, Mulenge	MK621485	MK621626	—	—	—
Atractaspis microlepidota	No voucher	MBUR 08561	Ethiopia: Benishangul-Gumuz Province: Kutaworke region	MK621496	—	—	—	—
Atractaspis microlepidota	No voucher	MBUR 08365	Ethiopia: Benishangul-Gumuz Province: Kutaworke region	MK621494	—	—	—	—
Atractaspis microlepidota	No voucher	MBUR 08542	Ethiopia: Benishangul-Gumuz Province: Kutaworke region	MK621495	—	—	—	—
Atractaspis micropholis	IRD 1833.N	1833N	Togo: Arninga Malick	MK621483	MK621575	—	—	—
Atractaspis cf. micropholis	—	IPMB J283	Togo	AY611823	FJ40336	AY612006	AY619195	—
Atractaspis reticulata heterochilus	UTEP 21664	ELI 2882	DRC: Tshopo Province: rd between Nia Nia and Kisangani	MK621470	MK621528	MK621586	—	—
Atractaspis reticulata heterochilus	UTEP 21665	ELI 3625	DRC: Maniema Province: Katopa, near Lomami National Park	MK621458	—	MK621608	—	—
Atractaspis reticulata heterochilus	RBINS 18605	KG 219	DRC: Tshopo Province: Uma	MK621527	MK621585	MK621643	—	—
Atractaspis reticulata heterochilus	—	KG 495	DRC: Tshopo Province: Bagwase	MK621526	MK621584	MK621642	MK621501	
Atractaspis watsoni	IRD 2523.N	2523N	Chad: Balani	MK621480	MK621563	MK621620	MK621675	MK621522
Atractaspis watsoni	IRD 2565N	2565N	Chad: Balani	MK621564	MK621621	MK621676	MK621523	
Atractaspis sp.	MVZ 229653	—	—	—	—	—	—	—
Homoroselaps dorsalis	PEM R:TBA	—	SA: Gauteng Province: Pretoria	MK621500	—	—	—	—
Homoroselaps lacteus	—	28676	SA: Gauteng Province: Pretoria	MK621497	MK621634	—	—	—
Homoroselaps lacteus	LSUMZ 57229	AMB 4483	SA: Eastern Cape Province: Port Elizabeth	MK621498	MK621581	MK621638	—	—
Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	e-mos	RAG1
-------------------------	----------------	-----------	-----------------------------------	-----------	-----------	----------	----------	----------
Homoroselaps lacteus	LSUMZ 55386	—	—	—	—	—	—	—
Homoroselaps lacteus	—	MCZ-R 28142	SA: Western Cape	—	MK621579	MK621636	—	—
Homoroselaps lacteus	—	MCZ-R 28271	SA: Western Cape: Mauritzaai	—	MK621580	MK621637	—	—
Homoroselaps lacteus	PEM R17097	—	SA: Eastern Cape Province: Port Elizabeth	—	FJ404339	MK621635	FJ404241	—
Homoroselaps lacteus	PEM R17128	—	SA: Eastern Cape Province: Sundays River Mouth	—	MK621577	MK621633	—	MK621525
Homoroselaps lacteus	PEM R17129	—	SA: Eastern Cape Province: Sundays River Mouth	—	MK621576	MK621632	MK621677	MK621524
Homoroselaps lacteus	PEM R21097	WC 2688	SA: Eastern Cape Province: Thomas River	—	—	MK621640	—	—
Homoroselaps lacteus	PEM R19176	WC 10 092	SA: Free State Province: Reitz	MK621499	MK621583	MK621641	—	—
Homoroselaps lacteus	—	WC DNA 1261	SA: Mpumalanga Province: Wakkerstroo	—	MK621582	MK621639	—	—
Amblyodipsas concolor	—	634	SA: KwaZulu-Natal Province	—	MG775916	MG746801	MG775806	MG775720
Amblyodipsas concolor	PEM R17369	618	SA: KwaZulu-Natal Province: Cape Vidal	—	MG775917	MG746802	MG775807	MG775721
Amblyodipsas concolor	NMB R11375	MBUR 01624	SA: Limpopo Province: Wolberg Wilderness Area	MG746916	MG775920	MG746804	MG775810	MG775724
Amblyodipsas concolor	NMB R11376	MBUR 01659	SA: Limpopo Province: Wolberg Wilderness Area	—	MG775918	MG746803	MG775808	MG775722
Amblyodipsas concolor	NMB R11377	MBUR 01660	SA: Limpopo Province: Wolberg Wilderness Area	MG746915	MG775919	—	MG775809	MG775723
Amblyodipsas concolor	PEM R19437	WC 373	SA: Eastern Cape Province: Hluleka	—	MG775922	MG746806	MG775812	MG775726
Amblyodipsas concolor	PEM R19795	WC 483	SA: Eastern Cape Province: Dwesa Point	—	MG775923	MG746807	MG775813	MG775727
Amblyodipsas concolor	PEM R20284	WC 975	SA: Eastern Cape Province: Mazeppa Bay	—	MG775921	MG746805	MG775811	MG775725
Amblyodipsa dimidiata	CMRK 311	—	Tanzania	—	DQ486322	DQ486346	DQ486170	—
Amblyodipsa dimidiata	PEM R15626	—	—	—	—	—	—	—
Amblyodipsa microphthalmalma	—	SP3	SA: Limpopo Province: Soutpansberg	MG746914	MG775927	MG746808	MG775818	MG775729
Amblyodipsa polylepis	AMB 6114	—	SA: Limpopo Province: Farm Guernsey	MG775932	—	—	MG775823	MG775734
Amblyodipsa polylepis	MCZ-R 190174	AMB 7960	Namibia: East Caprivi	MG775931	MG746812	MG775822	MG775733	—
Amblyodipsa polylepis	RBINS 18604	UP 052	DRC: Haut-Katanga Province: Kiubo	MG775929	MG746810	MG775820	MG775731	—
Amblyodipsa polylepis	PEM R22492	MBUR 00353	SA: Limpopo Province: Westphalia	MG746921	MG775928	MG746809	MG775819	MG775730
Amblyodipsa polylepis	PEM R18986	632	SA: Limpopo Province: Phalaborwa	—	MG759390	MG746811	MG775821	MG775732
Amblyodipsa polylepis	—	PVP9 WRB	Angola	MG746922	MG775933	MG746813	—	—
Amblyodipsa polylepis	—	MTSN 7571	Tanzania: Ruaha	MG746923	—	MG746814	—	—
Amblyodipsa polylepis	—	3128WW	—	MG746924	—	—	—	—
Amblyodipsa polylepis	PEM R23535	WC 4651	Angola: Mexico	MG746925	—	—	—	—
Amblyodipsa unicolor	—	PB-11-500	Guinea: Kankan	MG746917	MG75924	MG746815	MG775814	MG775728
Amblyodipsa unicolor	ZMB 88018	PGL-15-116	Ivory Coast: Yamassoukro	—	—	MG746816	MG775815	—
Amblyodipsa unicolor	IRD 2209.N	2209N Trape	Chad: Baibokoum	MG746918	MG775925	MG746817	MG775816	—
Amblyodipsa unicolor	IRD 2286.N	2286N Trape	Chad: Baibokoum	—	MG775926	MG746818	MG775817	—
Amblyodipsa ventrimaculata	PEM R23320	WC 3920	Angola: Mexico Province: Cuito River Source	MG746919	—	MG746819	—	—
Amblyodipsa ventrimaculata	—	R-SA	SA: Limpopo Province: Lephalele	MG746920	—	—	—	—

(Continued)
Table 1. (Continued)

Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Aparallactus capensis	MCZ-R 184403	AMB 8180	SA: Eastern Cape Province: Farm Newstead	MG746971	MG776002	MG746888	MG775885	—
	MCZ-R 184404	AMB 8181	SA: Eastern Cape Province: Farm Newstead	MG776003	MG746889	MG775886	—	—
	MCZ-R 184501	AMB 8365	SA: Limpopo Province	MG776004	MG746890	MG775887	—	—
	ZMB 83295	GPN 134	Mozambique: Gorongosa National Park	MG746988	MG776000	MG746886	MG775883	MG775781
	ZMB 83260	GPN 310	Mozambique: Gorongosa National Park	MG746983	—	—	—	—
	ZMB 83260	GPN 333	Mozambique: Gorongosa National Park	MG746979	—	—	—	—
	ZMB 83342	GPN 351	Mozambique: Gorongosa National Park	MG746977	—	—	—	—
	ZMB 83343	GPN 394	Mozambique: Gorongosa National Park	MG746976	—	—	—	—
	ZMB 83261	GPN 429	Mozambique: Gorongosa National Park	MG746975	—	—	—	—
	—	KB 2	Rwanda: Akagera National Park	MG775996	MG746882	MG775879	—	—
	—	KB 5	Rwanda: Akagera National Park	MG746987	MG775995	MG746881	MG775878	MG775777
	—	KB 8	Tanzania: Kigoma	MG775998	MG746884	MG775881	MG775779	—
	—	KB 23	Rwanda: Akagera National Park	MG775997	MG746883	MG775880	MG775778	—
	PEM R17909	648	Malawi: Mt. Mulanje	MG775984	MG746870	MG775867	MG775765	—
	PEM R17453	657	DRC: Lualaba Province: Kalakundi	MG746970	MG775986	—	MG775869	MG775767
	PEM R17332	659	Tanzania: Klein’s Camp	MG775985	MG746871	MG775868	MG775766	—
	HLMD J156	—	SA: Eastern Cape Province: Midleton	MG775987	MG775870	MG775768	—	—
	NMB R10885	MBUR 01229	SA: KwaZulu-Natal Province: Manyiseni	MG746985	—	MG746878	MG775876	—
	NMB R11380	MBUR 01592	SA: Limpopo Province: Haenentsburg region	MG746984	MG746876	MG775875	MG775773	—
	NMB R11381	MBUR 01593	SA: Limpopo Province: Haenentsburg region	MG775991	MG746875	MG775874	MG775772	—
	NMB R11382	MBUR 01609	SA: Limpopo Province: Haenentsburg region	MG746984	MG775993	MG746877	MG775774	—
	NMB R11383	MBUR 01642	SA: Limpopo Province: Haenentsburg region	MG746984	MG775993	MG746877	MG775774	—
	—	WC 1352	Mozambique: Cabo Delgado Province: Pemba	MG775999	MG746885	MG775882	MG775780	—
	PEM R20693	2612	SA: Eastern Cape Province: Tsolewana	MG775994	MG746880	MG775877	MG775776	—
	—	MCZ-R 27164	SA: Limpopo Province	MG746973	—	MG746892	—	—
	PEM R18438	677	SA: Limpopo Province	MG775988	MG746872	MG775871	MG775769	—
	NMB R10997	MBUR 00871	SA: Limpopo Province: Cleveland Nature Reserve	MG746986	—	MG746879	—	MG775775
	NMB R11379	MBUR 01554	SA: Limpopo Province: near Sentrum	MG746972	MG776005	MG746891	—	—
	—	MCZ-R 27805	SA: Limpopo Province	MG746972	MG776005	MG746891	—	—
	—	GPN 242	Mozambique: Gorongosa National Park	MG746989	MG776001	MG746887	MG775884	MG775782
	—	GPN 357	Mozambique: Gorongosa National Park	MG746982	—	—	—	—
	ZMB 83344	GPN 403	Mozambique: Gorongosa National Park	MG746980	—	—	—	—
	—	2118 WW	SA: Limpopo Province: Bela Bela	MG746969	—	—	—	—
	—	2119 WW	SA: Limpopo Province: Bela Bela	MG746968	—	—	—	—
	—	MTSN 8341	Tanzania: Nguru Mts	MG746974	—	MG746899	—	—

(Continued)
Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1		
Aparallactus cf. guentheri	PEM R5678	—	Tanzania: Usambara Mts	—	—	—	—	—		
Aparallactus jacksonii	PEM R20739	649	Tanzania: Mt. Kilimanjaro	MG746960	MG775980	MG746866	—	—		
Aparallactus jacksonii	PEM R17876	650	Tanzania: Oldonyo Sambu	MG746962	MG775983	MG746869	MG775866	MG775764		
Aparallactus jacksonii	PEM R17874	651	Tanzania: Oldonyo Sambu	MG746961	MG775981	MG746867	MG775864	MG775762		
Aparallactus jacksonii	PEM R17875	654	Tanzania: Ndukusiki	—	—	—	MG775982	MG746868	MG775865	MG775763
Aparallactus jacksonii	—	MTSN 8301	Tanzania: Nguru Mts	MG746963	—	—	—	—		
Aparallactus jacksonii	—	MTSN 8303	Tanzania: Nguru Mts	MG746967	—	—	—	—		
Aparallactus jacksonii	—	MTSN 8323	Tanzania: Nguru Mts	MG746964	—	—	—	—		
Aparallactus jacksonii	—	MTSN 8352	Tanzania: Nguru Mts	MG746965	—	—	—	—		
Aparallactus jacksonii	—	MTSN 8353	Tanzania: Nguru Mts	MG746966	—	—	—	—		
Aparallactus lunulatus	IRD 2158.N	2158N	Chad: Baibokoum	MG776009	MG746896	MG775888	—	—		
Aparallactus lunulatus	IRD 2178.N	2178N	Chad: Baibokoum	MG746993	MG776010	MG775897	MG775889	—		
Aparallactus lunulatus	TMHC 2013-09-315	—	Ethiopia: Borana	MG746992	MG776008	MG746895	—	—		
Aparallactus modestus	—	WBR 957	NE of Lake Albert	MG746990	—	—	MG746893	MG775890	MG775783	
Aparallactus modestus	—	IPMB J284	Gabon: Ogooué-Maritime Province: Rabi	AY611824	FJ404332	—	—	—		
Aparallactus modestus	MCZ-R 182624	—	RC: Bomassa	—	—	—	MG746863	MG775862	—	
Aparallactus modestus	MCZ-R 182625	—	RC: Bomassa	—	—	—	MG746864	MG775863	—	
Aparallactus modestus	MVZ 252411	—	Ghana: Ajenjua Bepo	MG746957	MG775978	MG746865	—	—		
Aparallactus modestus	USNM 584365	—	RC: Impongui	MG746949	MG775958	MG746844	MG775844	MG775747		
Aparallactus modestus	ZFMK 87627	—	—	MG746959	—	—	—	—		
Aparallactus modestus	IRD 5009.G	5009G Trappe	Guinea: Kissidougou	MG746958	MG775979	—	—	—		
Aparallactus modestus	RBINS 18608	CRT 4045	DRC: TshoPro Province: Bomane	MG746850	MG775964	MG746850	MG775850	—		
Aparallactus modestus	CRT 4181	CRT 4256	DRC: TshoPro Province: Lieki	MG746966	MG775966	MG746852	—	MG775752		
Aparallactus modestus	No voucher	ELI 2138	DRC: Equateur Province: Npenda Village	MG746948	MG775957	MG746843	—	—		
Aparallactus modestus	UTEP 21601	ELI 2221	DRC: Equateur Province: Npenda Village	MG746953	MG775962	MG746848	MG775848	—		
Aparallactus modestus	UTEP 21602	ELI 2222	DRC: Equateur Province: Npenda Village	MG746954	MG775963	MG746849	MG775849	MG775750		
Aparallactus modestus	UTEP 21605	ELI 2914	DRC: TshoPro Province: Kisangani	MG746955	MG775968	MG746853	MG775852	—		
Aparallactus modestus	KG 457	DRC: TshoPro Province: Bagwase	MG746970	MG746855	MG775855	MG775755				
Aparallactus modestus	KG 467	DRC: TshoPro Province: Bagwase	MG746972	MG746858	MG775858	MG775758				
Aparallactus modestus	KG 499	DRC: TshoPro Province: Bagwase	MG746973	MG775859	MG775759					
Aparallactus modestus	KG 501	DRC: TshoPro Province: Bagwase	MG746971	MG746857	MG775857	MG775757				
Aparallactus modestus	KG 503	DRC: TshoPro Province: Bagwase	MG746969	MG746854	MG775854	MG775754				
Aparallactus modestus	KG 511	DRC: TshoPro Province: Bagwase	MG746975	MG746860	MG775861	MG775761				
Aparallactus modestus	KG 528	DRC: TshoPro Province: Bagwase	MG746956	MG746856	MG775856	MG775756				

(Continued)
Table 1. (Continued)

Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Aparallactus modestus	KG 572	DRC: Tshopo Province: Bagwase	MG775974	MG746859	MG775860	MG775760		
Aparallactus modestus	MSNS REPT 34	Gabon: Ougoué-Lolo Province: Mt. Iboudjii	MG746862					
Aparallactus modestus	PB 11-733	Guinea: Nzerekore	MG775976	MG746861	MG775853			
Aparallactus modestus	UAC 038	DRC: Tshopo Province: Yoko	MG775965	MG746851	MG775851	MG775751		
Aparallactus modestus	PB 11-733	Guinea: Nzerekore	MG746999	MG776011	MG746898	MG775892		
Aparallactus modestus	MSNS REPT	DRC: Tshopo Province: Bagwase	MG775965	MG746851	MG775851	MG775751		
Aparallactus modestus	RBINS 18603	DRC: Tshopo Province: Yoko	MG775965	MG746851	MG775851	MG775751		
Aparallactus modestus	PEM R22331	MBUR 03449	RC: Niaro: Doumani	MG746956				
Aparallactus modestus	IRD 8075.5X	Gabon: Ougoué-Lolo Province: Mount Iboudji	MG746994					
Aparallactus modestus	PEM R18882	635	Zambai: Kalumbila	MG746995	MG776012	MG746900	MG775893	MG775785
Aparallactus modestus	PEM R20944	SA: KwaZulu-Natal Province: Hillcrest	MG746927	MG775938				
Aparallactus modestus	PEM R19791	WC DNA 511	SA: Eastern Cape Province: Dwessa Nature Reserve	MG746926	MG775934	MG746820		
Aparallactus modestus	PEM R20167	WC DNA 928	SA: Eastern Cape Province: Hogsback	MG775937	MG746823			
Aparallactus modestus	PEM R20295	WC DNA 973	SA: Eastern Cape Province: Mazepa Bay	MG775936	MG746822			
Micrelaps bicoloratus	CMRK 330	—	—	DQ486349	DQ486173			
Micrelaps muelleri	TAUM 15654	—	Israel: Salti	MG746781				
Micrelaps muelleri	TAUM 16469	—	Israel: Malkshua	MG746782	MG775895			
Micrelaps muelleri	TAUM 16738	—	Israel: Bet Nehemya	MG746783	MG775896			
Micrelaps muelleri	TAUM 16944	—	Israel: Ein Hod	MG776013	MG746824	MG775897		
Micrelaps cf. muelleri	TAUM 16426	—	Israel: Afiq	MG746780	MG775894			
Polemon acanthias	PEM R1479	Ivory Coast: Haute Dodo	AY611848	FJ404341	AY612031	AY611940		
Polemon acanthias	ZMB 88016	PLI-12-053	Liberia: Nimba County	MG746841	MG775841	MG775745		
Polemon acanthias	ZMB 88017	PLI-12-208	Liberia: Nimba County	MG746946	MG775955	MG746842	MG775842	MG775746
Polemon acanthias	IRD T.266	T266 Trape	Togo: Mt. Agou	MG746947	MG775956	MG775843		
Polemon ater	PEM R17452	DRC: Luala Province: Kalakundi	MG746943	MG775951	MG746838	MG775839	MG775743	
Polemon ater	PEM R20734	DRC: Luala Province: Fungurume	MG746944	MG775952	MG746839	MG775840	MG775744	
Polemon christyi	UTEP 21618	DFH 535	Uganda: Western Region: road to Budongo Central Forest Reserve	MG746945	MG775953	MG746840		
Polemon collaris	PEM R19893	TB 28	Angola: North-west region	MG746931	MG775943	MG746827	MG775829	
Polemon collaris	UTEP 21612	ELI 561	DRC: South Kivu Province: vicinity of Byonga	MG746928	MG775939	MG746824	MG775825	MG775735
Polemon collaris	UTEP 21613	ELI 1317	DRC: South Kivu Province: Fizi	MG746930	MG775941	MG746826	MG775827	MG775737
Polemon collaris	UTEP 21614	ELI 2464	DRC: Tshuapa Province: Watsi Kengo, Salonga River	MG746929	MG775940	MG746825	MG775826	MG775736
Polemon collaris	KG 523	DRC: Tshopo Province: Bagwase	MG775944	MG746828	MG775830			
Polemon collaris	MSNS REPT 110	Gabon: Ougoué-Lolo Province: Mt. Iboudjii	MG746934					
Polemon collaris	RBINS 18544	UAC 62	DRC: Tshopo Province: Yoko	MG746933	MG775942			
Polemon collaris	PEM R22747	MBUR 03862	RC: Niaro: Tsinguidi region	MG746932				
Polemon fulvicollis	PEM R5388	Gabon: Ougoué-Maritime Province: Rabi	AY611846	AJ403432	AY612029	AY611938		
Polemon fulvicollis	UTEP 21615	ELI 3046	DRC: Tshopo Province: Bombole Village	MG746942	MG775949	MG746837	MG775837	
Polemon graueri	RBINS 18543	CRT 4007	DRC: Tshopo Province: Bomanee	MG775947	MG746833	MG775834	MG775740	
cyt b) and two nuclear genes (c-mos and RAG1) for 91 atractaspine individuals (Tables 1 and 2). This study included sequences from both atractaspine genera (14/22 species of Atractaspis; 2/2 species of Homoroselaps) [24, 34]. Sequences from some of these individuals have been published previously [2, 7], and new sequences were deposited in GenBank (Table 1). Concatenated trees were rooted with Acrochordus granulatus (not shown on Fig 2). Three

Species	Collection No.	Field No.	Locality	16S	ND4	cyt b	c-mos	RAG1
Polemon graueri	UTEP 21610	EBG 1376	DRC: South Kivu Province: Irangi	MG746940	—	MG746835	MG775836	MG775742
Polemon graueri	No voucher	EBG 2294	DRC: Ituri Province: Komanda	MG746938	—	MG746832	MG775833	—
Polemon graueri	UTEP 21611	ELI 2842	Uganda: Western Region: Rwenzori Mts National Park	MG746939	MG775948	MG746834	MG775835	MG775741
Polemon notatus	—	29395	Gabon	MG746935	—	MG746836	—	—
Polemon notatus	PEM R5404	—	Gabon: Ogoué-Maritime Province: Rabi	AY611847	FJ404343	AY612030	AY611939	—
Polemon cf. robustus	UTEP 21617	ELI 2594	DRC: Equateur Province: Salonga River	MG746936	MG775945	MG746830	MG775831	MG775738
Polemon robustus	UTEP 21616	ELI 2069	DRC: Mai-Ndombe Province: Isongo, Lake Mai-Ndombe	MG746937	MG775946	MG746831	MG775832	MG775739
Xenocalamus bicolor	—	MCZ-R 27160	SA: Limpopo Province	—	MG775911	MG746794	MG775800	—
Xenocalamus bicolor	PEM R17377	615	SA: Northern Cape Province: Kimberly	—	MG775903	—	MG775795	MG775710
Xenocalamus bicolor	PEM R17438	616	SA: KwaZulu-Natal Province	—	—	MG746787	—	—
Xenocalamus bicolor	PEM R17438	647	SA: Northern Cape Province: Kimberly, Rooipoort	—	MG775902	MG746786	MG775794	MG775709
Xenocalamus bicolor	NMB R10851	MBUR 00925	SA: Limpopo Province: Woudend	MG746904	MG775910	MG746793	MG775799	MG775716
Xenocalamus bicolor	NMB R11418	MBUR 01553	SA: Limpopo Province: Sentrum	—	MG775907	MG746790	MG775797	MG775714
Xenocalamus bicolor	—	TGE T3 28	SA: Northern Cape Province	—	MG775905	MG746788	MG775796	MG775712
Xenocalamus bicolor	—	TGE T3 29	SA: Northern Cape Province	—	MG775908	MG746791	MG775798	MG775715
Xenocalamus bicolor	—	TGE T3 32	SA: Northern Cape Province	—	MG775909	MG746792	—	—
Xenocalamus bicolor	—	TGE T4 14	SA: Free State Province	—	MG775906	MG746789	—	MG775713
Xenocalamus bicolor australis	PEM R22083	—	SA: Northern Cape Province: Kimberly	MG746906	MG775913	MG746796	MG775782	—
Xenocalamus bicolor lineatus	PEM R20771	666	Angola: Mozixo	MG746903	MG775904	—	—	MG775711
Xenocalamus mechwowi	PEM R23533	WC 4654	Angola: Mozixo	MG746908	—	—	—	—
Xenocalamus mechwowi	PEM R23463	WC 4695	Angola: Cuando Cubango	MG746907	—	—	—	—
Xenocalamus michelli	UTEP 21619	ELI 209	DRC: Haut-Lomami Province: Kyolo	MG746909	MG775914	MG746798	MG775804	MG775718
Xenocalamus michelli	UTEP 21620	ELI 355	DRC: Tanganika Province: near Manono airport	MG746910	MG775915	MG746799	MG775805	MG775719
Xenocalamus transvaalensis	NMB R10888	MBUR 01107	SA: KwaZulu-Natal Province: Ndumo Game Reserve	MG746913	—	MG746800	—	MG775717
Xenocalamus transvaalensis	—	FO57-51-51	SA: KwaZulu-Natal Province: Maputaland	MG746911	—	—	—	—
Xenocalamus transvaalensis	PEM R:TBA	—	SA: KwaZulu-Natal Province: Hluhluwe	MG746912	—	—	—	—
Xenocalamus transvaalensis	PEM R12103	—	SA: KwaZulu-Natal Province: Maputaland	AY611842	FJ404344	AY612025	AY61193	—

https://doi.org/10.1371/journal.pone.0214889.t001
genera of Viperidae (Agkistrodon, Atheris, and Crotalus; not shown on Fig 2), two genera of Elapidae (Naja and Dendroaspis), six genera of Lamprophiinae (Boaedon, Bothrophyphalus, Bothroydus, Gonionotophis, Lycodonemorphus, and Lycophidion), Psammophylax, and Micrelops were used as outgroups for the concatenated analyses (Table 1, Fig 2). Additionally, we included sequences from six of the eight known aparallactine genera (6/9 species of Amblyodipsas; 7/11 species of Aparallactus; 1/2 species of Chlororhinophis; 1/1 species of Macrelaps; 7/14 species of Polemon; 4/5 species of Xenocalamus) [24, 35] for concatenated analyses and ancestral-state reconstructions. For divergence-dating analyses, additional samples from the squamate taxa Scincidae, Leptotyphlopidae, Viperidae, Colubrinae, and Dipsadinae were included (Table 1).

Table 2. Primers used for sequencing mitochondrial and nuclear genes.

Gene Name	Primer Name	Primer Sequence ('5 to 3')	Primer Source
16S	L2510	CGCCTGTTTATCAAAAACAT	[110]
	H3059	CCCTCTGAACTCAGATACAGT	
	L2510mod/16Sar	CCGACTTTTAMCAAAAACAC	[111]
	H3056mod/16Sbr	CTCCGGTTGCACTCAGACGCTTTG	
ND4	ND4	CACCTATGACTACAAAAAGCTCTAGTGAAGGC	[64, 112]
	HIS1276	TTTCTTACTTTGTTGACTTTTCA	
cyt b	L14910	GACCTGTGATMTGAAAAACCAYCGTTG	[109, 113]
	H16064	CTGGTTTTTTTTAGGCAATTTTCTGA	
c-mos	S77	CATGGACTGGGATGCTAGTTATT	[114]
	S78	CCTGCGGTTTGGTTTTCTCACCCTT	
RAG1	G396 (R13)	TCTGATGGAAAATTCAAAGCTCT	[115]
	G397 (R18)	GATGCTGCTCGGTCGGCCACCTTT	

https://doi.org/10.1371/journal.pone.0214889.t002
2.3 Laboratory protocols

Genomic DNA was isolated from alcohol-preserved muscle or liver tissue samples with the Qiagen DNeasy tissue kit (Qiagen Inc., Valencia, CA, USA). Primers used herein are shown in Table 2. We used 25 μL PCR reactions with gene-specific primers with an initial denaturation step of 95°C for 2 min, followed by denaturation at 95°C for 35 seconds (s), annealing at 50°C for 35 s, and extension at 72°C for 95 s with 4 s added to the extension per cycle for 32 (mitochondrial genes) or 34 (nuclear gene) cycles. Amplification products were visualized on a 1.5% agarose gel stained with SYBR Safe DNA gel stain (Invitrogen Corporation, Carlsbad, CA, USA). Sequencing reactions were purified with CleanSeq magnetic bead solution (Agencourt Fig 2. Maximum-likelihood phylogeny of Atractaspideae with combined 16S, ND4, cyt b, c-mos, and RAG1 data sets. Closed circles denote clades with Bayesian posterior probability values ≥ 0.95. Diamonds denote clades with strong support in both maximum likelihood analyses (values ≥ 70) and Bayesian analyses (posterior probability values ≥ 0.95).

https://doi.org/10.1371/journal.pone.0214889.g002

PLOS ONE | https://doi.org/10.1371/journal.pone.0214889 April 17, 2019 13 / 32
Bioscience, La Jolla, CA) and sequenced with an ABI 3130xl automated sequencer at the University of Texas at El Paso (UTEP) Genomic Analysis Core Facility.

2.4 Sequence alignment and phylogenetic analyses
Phylogenetic analyses were conducted for our individual and five-gene concatenated data sets. Data were interpreted using the program SeqMan [36]. An initial alignment for each gene was produced in MUSCLE [37] in the program Mesquite v3.10 [38], and manual adjustments were made in MacClade v4.08 [39]. The Maximum Likelihood (ML) analyses of single gene and concatenated data sets were conducted using the GTRGAMMA model in RAxML v8.2.9 via the Cipres Science Gateway v3.3 [40]. All parameters were estimated, and a random starting tree was used. Support values for clades inferred by ML analyses were assessed with the rapid bootstrap algorithm with 1,000 replicates [40]. We also conducted Bayesian inference (BI) analyses with MrBayes v3.2.6 via the Cipres Science Gateway [40]. The model included 13 data partitions: independent partitions for each codon position of the protein-coding genes ND4, cyt b, c-mos, and RAG1, and a single partition for the mitochondrial gene 16S. Phylogenies were constructed based on concatenated data, which included 16S and the four protein-coding genes listed above. Concatenated data sets were partitioned identically for ML and BI analyses. The program PartitionFinder v1.1.1 [41–42] was used to find the model of evolution that was most consistent with our data for BI analyses. Bayesian analyses were conducted with random starting trees, run for 20,000,000 generations, and sampled every 1000 generations. Phylogenies were visualized using FigTree v1.3.1 [43].

2.5 Divergence dating
The program BEAST v1.8.3 via Cipres Science Gateway [40] was used to estimate divergence times across atractaspine phylogenetic estimates. The five-gene data set was used to estimate divergence dates in BEAST. Substitution and clock models were unlinked for all partitions; trees were unlinked across the nuclear loci, but were linked for the two mitochondrial partitions because these evolve as a single unit. We implemented an uncorrelated log-normal relaxed clock model with a Yule tree prior. Two independent analyses were run for 100 million generations, sampling every 10,000 generations. Primary calibration points were obtained from Head et al. [44] and a secondary calibration point was obtained from Kelly et al. [7] including: the split between Scolecodiphida and all other snakes (120–92 mya); split between Caenophidia and its nearest sister taxon, Booidae (72.1–66 mya); split between Colubridoidea and its nearest sister taxon (Acrochordus + Xenodermatidae) (72.1–50.5 mya); the divergence of Colubridae + Elapidae (30.9 ± 0.1 mya); and the split between Crotalinae and Viperinae (23.8–20.0 mya). All calibrations were constrained with a log-normal mean of 0.01, a normal standard deviation of 2.0 (first calibration point), and 1.0 (the last four calibration points). Parameter values of the samples from the posterior probabilities on the maximum clade credibility tree were summarized using the program TreeAnnotator v1.8.3 via Cipres Science Gateway [40].

2.6 Ancestral-state reconstructions
To understand the evolution of fang morphology and diet selection in atractaspines, we reconstructed the pattern of character changes on the ML phylogeny herein. For ancestral-state reconstructions, we included all samples of aparrallactines and atractaspines available to us in order to better characterize fang and diet characters. All ancestral-state reconstructions were conducted by tracing characters over trees in Mesquite v3.10 [38]. We scored taxa using descriptions from the literature [25, 30–31, 45–55], and from our own data. We evaluated the
following characters for fang morphology and diet selection: A. Fang morphology: (0) no fang, (1) rear fang, (2) fixed front fang, (3) moveable front fang, and (4) rear-front fang intermediate (anterior half of the maxilla, but not the anteriormost tooth); B. prey selection (0) rodents, (1) rodents, snakes, fossorial lizards, and amphibians, (2) snakes, (3) amphisbaenians, (4) snakes and fossorial lizards, (5) invertebrates, and (6) fish and amphibians. A ML approach was used for both analyses, because it accounts for and estimates probabilities of all possible character states at each node, thus providing an estimate of uncertainty [56]. A Markov K-state one-parameter model (Mk-1; [57]) that considers all changes as equally probable was implemented in our ancestral-state reconstructions. States were assigned to nodes if their probabilities exceeded a decision threshold; otherwise nodes were recovered as equivocal.

2.7 Morphology

Microcomputed tomography (CT) scans of specimens were produced using GE Phoenix V|Tome|X systems at the General Electric Sensing & Inspection Technologies in Scan Carlos, CA and University of Florida’s Nanoscale Research Facility. X-ray tube voltage and current, detector capture time, voxel resolution, and projection number were optimized for each specimen (S1 File). The radiographs were converted into tomograms with Phoenix Datos|R, and then rendered in three dimensions with volumetric rendering suite VGStudioMax 3.2 (http://www.volumeographics.com). Tomogram stacks and 3D mesh files for all scans are available on Morphosource.org (S1 File).

3. Results

3.1 Concatenated gene tree analyses

Our data set consisted of 3933 base pairs (16S [546 bp], ND4 [679 bp], cyt b [1094 bp], c-mos [605 bp], and RAG1 [1009 bp]). Individuals with missing data were included in the concatenated sequence analyses, because placement of individuals that are missing a significant amount of sequence data can be inferred in a phylogeny, given an appropriate amount of informative characters [8, 58–60]. Furthermore, Jiang et al. [61] showed that excluding genes with missing data often decreases accuracy relative to including those same genes, and they found no evidence that missing data consistently bias branch length estimates.

The following models of nucleotide substitution were selected by PartitionFinder for BI analyses: 16S (GTR+G), ND4 1st codon position (GTR+G), ND4 2nd codon position (TVM+G), and ND4 3rd codon position (HKY+I+G); cyt b 1st codon position (TVM+G), cyt b 2nd codon position (HKY+I+G) and cyt b 3rd codon position (GTR+G); c-mos and RAG1 1st, 2nd and 3rd codon positions (HKY+I). Preferred topologies for the ML and BI analyses were identical, with similar, strong support values for most clades (Fig 2), and single-gene mtDNA analyses recovered similar topologies (not shown). The ML analysis likelihood score was –46340.867388. The relationships of Elapidae, Lamprophiinae, Micrelaps, and Psammophylax with respect to the ingroup Atractaspidinae, were not strongly supported in ML and BI analyses. However, Atractaspidinae was recovered in a strongly supported clade. Atractaspis and Homoroselaps were strongly supported as sister taxa (Fig 2). The genus Homoroselaps was recovered as a monophyletic group, and H. lacteus was partitioned into several well-supported clades. There were several strongly supported clades within Atractaspis: (1) Atractaspis andersonii, (2) Atractaspis aterrima, (3) A. bibronii, (4) A. bibronii rostrata, (5) A. cf. bibronii rostrata, (6) A. boulengeri, (7) A. congica, (8) A. corpulenta corpulenta, (9) A. corpulenta kivuensis, (10) A. dahomeyensis, (11) A. duerdeni, (12) A. engaddensis, (13) A. irregularis, (14) A. cf. irregularis, (15) A. reticulata heterochilus, and (16) A. microlepidota. There was strong support for a western Asia/Middle East and Africa clade containing A. andersonii, A. engaddensis,
A. microlepida, A. micropholis, A. watsoni, and A. sp. Atractaspis andersonii did not form a monophyletic group, because one of the samples from Oman (AF471127) was recovered as sister to a clade of A. engaddensis with strong support (Fig 2). The western African species A. aterrima was recovered with strong support as sister to a clade containing A. reticulata heterochilus and A. boulengeri. Atractaspis corpulenta kivuensis samples from eastern DRC were strongly supported as sister to A. corpulenta from northwestern Republic of Congo (near Gabon, the type locality). A well-supported clade of Atractaspis irregularis samples was partitioned by strongly supported central (A. cf. irregularis) and western African (A. irregularis) subclades. Atractaspis duerdeni was recovered within a well-supported A. bibronii complex. Atractaspis bibronii rostrata samples were partitioned into two highly divergent clades from southeastern DRC and Tanzania/Mozambique.

For the analyses including all atractaspidine and aparallactine samples available to us (Fig 3), preferred topologies for the ML and BI analyses were identical, with similar, strong support values for most clades (Fig 3). The ML analysis likelihood score was –73090.650849. The concatenated ML and BI analyses recovered similar topologies to those from Portillo et al. [62] and Fig 2.

3.2 Divergence dating

Topologies from the BEAST (Fig 4) analyses were mostly consistent with the results from our concatenated tree analyses (Figs 2 and 3). BEAST results recovered A. corpulenta corpulenta/A. corpulenta kivuensis as sister to A. congica/A. dahomeyensis with strong support (Figs 2–4). Additionally, the relationship between Atractaspis irregularis and A. corpulenta/A. congica/A. dahomeyensis was strongly supported in BEAST analyses (Fig 4). Results from dating analyses suggested atractaspidines split from aparallactines during the early Oligocene around 29 mya (24.8–31.4 mya, 95% highest posterior densities [HPD]) (Table 3, Fig 4), which is similar to the results (34 mya) of Portillo et al. [62]. Subsequently, Atractaspis split from Homoroselaps in the mid-Oligocene, and most radiation events within each of the major clades associated with these genera occurred during the mid- to late Miocene and Pliocene (Fig 4). Specific dates with ranges are specified in Table 3.

3.3 Ancestral-state reconstructions

X-ray computer tomography of collared snakes and burrowing asps can be seen in Figs 3 and 5. Likelihood reconstructions of atractaspidine ancestral fang morphology inferred a rear fang condition for the ancestral condition of all lamprophiids (96.7%) (Fig 6[A]). Subsequently, the Subfamily Lamprophiinae lost a venom delivery fang condition. The common ancestor of aparallactines and atractaspidines was inferred to have a rear fang condition (97.8%). The analyses suggested a rear fang ancestor (72.5%) for the clade containing Homoroselaps and Atractaspis. The ancestor to Atractaspis was inferred to have a moveable front fang condition (97.4%). Results recovered a fixed front fang condition for the ancestor of all Homoroselaps (99.8%). The ancestor to all aparallactines was inferred to have a rear fang condition (99.6%), and this remained consistent throughout most aparallactine nodes with the exception of Polemon (rear/front fang intermediate, 97.8%) and Aparallactus modestus (no specialized fang, 99.7%).

For the analyses with diet data, likelihood reconstructions inferred a generalist diet of rodents, reptiles, and amphibians for the ancestral condition of all lamprophiids (99.7%) (Fig 6[B]). Several lamprophiines (Lycodonomorphus) subsequently adopted a more specialized diet of amphibians, reptiles, and fish. The common ancestor for aparallactines and atractaspidines was inferred to have a generalist diet of rodents, reptiles, and amphibians (92.4%). Results
Fig 3. Maximum-likelihood phylogeny of Atractaspidinae and Aparallactinae with combined 16S, ND4, cyt b, c-mos, and RAG1 data sets. Diamonds denote clades with maximum likelihood values ≥ 70 and Bayesian posterior probability values ≥ 0.95; closed circles denote clades with Bayesian posterior probability values ≥ 0.95.

https://doi.org/10.1371/journal.pone.0214889.g003
recovered a more specialized ancestral diet of snakes and lizards (64.5%) for aparallactines, which was favored over a generalist diet (27.7%). The condition of a snake and lizard diet (79.9%) was favored over a generalist diet (16.2%) for the ancestor of *Polemon/Chlorhinophis* and *Amblyodipsas/Macrelaps/Xenocalamus*. The latter dietary condition was retained for the ancestor of *Polemon/Chlorhinophis* (79.4%) and the ancestor of *Amblyodipsas/Macrelaps/Xenocalamus* (87.6%). Specialized dietary conditions were recovered for the genera *Aparallactus* (centipedes and other invertebrates, 99.7%), *Polemon* (snakes, 97.8%), and *Xenocalamus*.
is an African origin with a vicariance or dispersal event into the western Asia/Middle East

Table 3. Estimated dates and 95% highest posterior densities (HPD) of main nodes. Node labels correspond to those in Fig 4.

Node	Event	Estimated age in mya (95% HPD)
1	Split between Aparallactinae and Atractaspidae	29.1 (24.8–31.4)
2	Split between Homoroselaps and Atractaspis	27.2 (22.5–29.7)
3	Split between Homoroselaps dorsalis and H. lacteus	11.4 (5.3–16.8)
4	Basal divergence of Homoroselaps lacteus	6.0 (3.6–12.2)
5	Basal divergence of Atractaspis	26.4 (19.6–27.4)
6	Split between A. watsoni/A. microlepidota/A. sp. and A. micropholis/A. andersonii/A. cf. andersonii/A. engaddensis	14.8 (11.7–21.9)
7	Split between A. micropholis and A. cf. andersonii/A. engaddensis/A. andersonii	12.1 (7.8–17.6)
8	Split between A. cf. andersonii/A. engaddensis and A. andersonii	9.5 (5.7–14.4)
9	Split between A. cf. andersonii and A. engaddensis	6.0 (3.6–11.7)
10	Split between A. aterrima/A. boulengeri/A. reticulata and the remainder of Atractaspis	19.4 (16.1–23.7)
11	Split between A. aterrima and A. boulengeri/A. reticulata	13.2 (10.5–20.4)
12	Split between A. boulengeri and A. reticulata	11.7 (6.1–16.5)
13	Split between A. corpulenta/A. congica/A. dahomeyensis/A. irregularis and A. duerdeni/A. bibronii complex	16.8 (14.1–21.5)
14	Split between A. corpulenta/A. congica/A. dahomeyensis and A. irregularis	14.9 (12.1–19.6)
15	Split between A. corpulenta and A. dahomeyensis/A. congica	13.8 (10.2–17.6)
16	Split between A. corpulenta corpulenta and A. corpulenta kivuensis	3.6 (2.5–10.2)
17	Split between A. congica and A. dahomeyensis	10.4 (7.6–14.8)
18	Split between A. irregularis irregularis and A. cf. irregularis	10.5 (4.4–13.2)
19	Basal divergence of the A. bibronii complex	14.4 (10.1–18.3)
20	Split between A. cf. bibronii rostrata and A. duerdeni/A. bibronii rostrata	11.6 (7.6–15.7)
21	Split between A. bibronii rostrata and A. duerdeni	9.0 (5.8–13.4)
22	Basal divergence of A. bibronii	9.2 (5.6–12.9)

https://doi.org/10.1371/journal.pone.0214889.t003

(amihsbaenians, 98.8%). Results suggested a generalist diet for Atractaspidae (92.3%). The ancestor of Homoroselaps was inferred to have a diet consisting of mostly lizards and snakes (99.9%), whereas the ancestor of Atractaspis was inferred to have a broader diet of rodents, reptiles, and amphibians (99.2%).

4. Discussion

4.1 Biogeography

Atractaspidines are distributed throughout sub-Saharan Africa except for three species of Atractaspis that are found in western Asia/Middle East (Atractaspis andersonii, A. engaddensis, and A. microlepidota) [25, 29–31]. Based on our results, the most likely scenario for Atractaspis is an African origin with a vicariance or dispersal event into the western Asia/Middle East region in the late Miocene (Fig 4). Atractaspis from western Asia/Middle East and Africa last shared a common ancestor during the late Miocene around 12.1 mya (7.8–17.6). Other studies of African-western Asian/Middle Eastern complexes (e.g., Echis and Uromastyx) recovered similar dates during the late Miocene, with the Red Sea proving to be a strong biogeographic barrier [63–69]. However, lineages of Varanus from Africa and the Middle East split from each other 6.9 mya [70], and African and Middle Eastern Bitis arietans last shared a common ancestor around 4 mya [64]. These dating estimates suggest that there were multiple dispersal events, which were taxon specific. Many Middle Eastern amphibians and reptiles have
common ancestors in the Horn of Africa [63–71]. Our study lacked multiple *Atractaspis* species from the Horn of Africa, and future studies should include samples of *A. fallax*, *A. magrettii*, *A. leucomelas*, and *A. scorteccii* to improve understanding of likely Africa–Asia biogeographic patterns in atractaspidines.

Atractaspis began to diversify around the mid-Oligocene simultaneously with many aparallactine genera [62]. Many of the modern species split from recent common ancestors during the mid- to late Miocene (Table 3, Fig 4). The late Miocene was characterized by considerable xeric conditions, which led to the expansion of savannas globally [72–73]. Other studies on Central and East African herpetofauna, including squamates (*Adolfus*, *Atheris*, *Boaedon*, *Naja*, *Kinyongia*, and *Panaspis*) and frogs (*Amietia*, *Leptopelis*, and *Ptychadena*), have shown similar trends of species diversification during the late Miocene [3–5, 62, 74–78].

Fig 5. Computed tomography (CT) scans of aparallactine and atractaspidine genera. *Homoroselaps lacteus* (CAS 173258) (A); *Atractaspis bibronii* (CAS 111670) (B); *Chlorhinophis gerardi* (CAS 159106) (C); *Polemon christyi* (CAS 147905) (D); *Aparallactus niger* (AMNH 142406) (E); *Aparallactus modestus* (CAS 111865) (F); *Aparallactus capensis* (G); *Macrelaps microlepidotus* (H); *Amblyodipsas polyplepis* (CAS 173555) (I); *Xenocalamus bicolor* (CAS 248601) (J). https://doi.org/10.1371/journal.pone.0214889.g005
The diversification of several western and central African *Atractaspis* was most likely a consequence of increasingly xeric conditions during the Miocene, when forest and other moist habitats were fragmented [72]. These *Atractaspis* were likely isolated in fragmented patches of forest during the mid- to late Miocene. *Atractaspis irregularis* is partitioned clearly by western African and central African lineages that diverged in the mid-Miocene, similar to *Aparallactus modestus* [62]. At this time, southern African and Middle Eastern *Atractaspis* also diversified. *Atractaspis* from the Near and Middle East (*A. andersonii*, *A. engaddensis*, and *A. microlepidota*) and southern Africa (*A. bibronii* and *A. duerdeni*) are not tropical forest species, and they inhabit deserts or semi-desert savannas and dry woodland [30, 79–80]. This adaptation to more xeric and open habitats would have allowed Near and Middle Eastern, and southern African *Atractaspis* to disperse into these habitats during the dry conditions of the mid- to late Miocene. Studies on mammals and birds show most diversification events during the Pliocene [81–84], which is consistent with the timing of diversification for *Atractaspis aterrima*, *A. congica*, *A. dahomeyensis*, and populations of South African *A. bibronii* (Fig 4).
In contrast to *Aparallactus jacksonii*, *Atractaspis bibronii rostrata* showed no clear genetic partitioning between populations in the Nguru, Usambara, and Udzungwa Mountains [62]. *Aparallactus jacksonii* clearly exhibited deep divergence between an extreme northern Tanzanian population, and a population from the Nguru Mountains. These two populations diverged from each other during the late Miocene, suggesting that the habitats of this taxon were fragmented with increased aridity [62]. Other vertebrate taxa that have shown substantial divergences between populations found in extreme northern Tanzania (Usambara, Taita, and Pare Mountains) and those slightly south (Uluguru, Ukaguru, Nguru, and Malundwe Mountains), include the reed frog *Hyperolius puncticulatus*, the green barbet (*Stactolaema olivacea*), and the streaky canary (*Serinus striolatus*) [82, 85]. But like *Atractaspis bibronii rostrata*, the hyperoliid reed frog *Hyperolius spinigularis* and the aparallactine *Aparallactus guentheri* showed no clear biogeographic patterns between populations in different areas of the Eastern Arc Mountains. These results support the hypothesis that the evolutionary history of species from the Eastern Arc Mountains is lineage specific [85]. *Atractaspis bibronii rostrata* inhabit low-elevation woodlands and grasslands, and transitional habitats, rather than montane forest (i.e., *Aparallactus jacksonii*) [25]. This would allow taxa such as *Atractaspis bibronii rostrata* to continuously disperse between the different mountains of the Eastern Arcs, despite increased aridity. Additionally, ecological niche requirements may also explain the different biogeographic patterns seen in *Aparallactus jacksonii* and *Atractaspis bibronii rostrata*.

Atractaspis bibronii has a generalist diet (mammals, squamates, and amphibians) and could have exploited more habitats than *Aparallactus jacksonii*, which is a centipede specialist [25].

4.2 Evolutionary relationships and taxonomy of Atractaspidinae

Our results indicate that both *Atractaspis* and *Homoroselaps* are strongly supported as monophyletic sister taxa. Results from Figueroa et al. [27] recovered a monophyletic group containing aparallactines and atractaspidines, but their results did not recover a monophyletic *Atractaspis* (*A. irregularis* was recovered as sister to aparallactines + atractaspidines). This sample was excluded from our analyses, because the only sequence available for this taxon was from *BDNF*, a gene not used herein. The results from Figueroa et al. [27] may be an artifact of sample size of atractaspidines, or incomplete lineage sorting of the *BDNF* nuclear gene. Results from our study indicate that *A. irregularis* is a monophyletic lineage within a strongly supported, monophyletic *Atractaspis*.

Underwood and Kochva [18] recognized two groups within *Atractaspis*: (1) the 'bibronii' group (represented in our study by *A. aterrima*, *A. bibronii*, *A. boulengeri*, *A. congica*, *A. corpulenta*, *A. dahomeyensis*, *A. irregularis*, and *A. reticulata*), characterized by a single posterior supralabial, three anterior infralabials, normal-sized venom glands, and a sub-Saharan distribution; and (2) the 'microlepidota' group (represented in our study by *A. andersonii*, *A. engadensis*, *A. microlepidota*, and *A. micropholis*), characterized by two anterior temporals, highly elongated venom glands, and a North African/Near and Middle Eastern distribution. Whereas our study did not include genetic samples of all known species of *Atractaspis*, results herein (Fig 2) support partitioning of the genus into two groups sensu Underwood and Kochva [18]. Our results indicated a clear partition between a ‘Middle Eastern + African’ clade (including *A. watsoni*, a species that was not included by Underwood and Kochva [18]) and a ‘sub-Saharan African’ clade (Figs 2 and 4). These results strengthen the notion that venom gland size and length in *Atractaspis* are homologous. Our support for the 'microlepidota' group is consistent with the "Section A" (*A. andersonii*, *A. fallax*, *A. leucomelas*, *A. microlepidota*, and *A. micropholis*) of Laurent [28] and the *A. micropholis/A. microlepidota/A. watsoni* clade recovered by Moyer and Jackson [10]. However, our phylogeny (Fig 2) contrasts with the remaining
“sections” of Laurent [28], most relationships depicted in the morphological phylogeny of Moyer and Jackson [10], and the molecular phylogenies of Pyron et al. [8–9] and Vidal et al. [22].

Based on relatively long branch lengths, several lineages of Atractaspis seem to be cryptic complexes of species. Because of the extensive geographic distribution of A. bibronii in central, eastern and southern Africa, it is unsurprising to find several highly divergent lineages that likely represent cryptic species. Given the proximity (ca. 167–333 km) of our Tanzanian localities of A. bibronii rostrata (Nguru, Usambara, and Udzungwa Mountains) to the insular type locality for this taxon (Zanzibar, Tanzania), the morphological similarity between our voucher specimens and the types [86], and the relatively long branch length and reciprocal monophyly of this clade compared to topotypic South African A. bibronii (Fig 2), it is likely that the former taxon is a valid species. However, additional comparisons to type specimens are needed to clarify the taxonomic status of populations in this clade, including samples from Haut-Katanga Province in southeastern DRC.

Our phylogenetic results indicated that several other species, including A. andersonii, A. boulengeri, A. congica, A. corpulenta, A. dahomeyensis, and A. irregularis likely represent more than a single species. For example, topotypic Angolan samples of A. congica are deeply divergent from our eastern DRC sample (Fig 2), which is likely attributable to A. congica orientalis [46]. Like Polemon fulvicollis fulvicollis (Gabon) and P. fulvicollis laurenti (DRC) [62], Gabonese Atractaspis corpulenta and eastern DRC populations of A. corpulenta kivuensis also showed marked genetic divergences between each other (Fig 2). The well-supported clade of A. irregularis from western Africa likely includes topotypic populations, because they straddle the type locality (Accra, Ghana) [87], whereas our Albertine Rift samples are likely attributable to one of the taxon’s many synonyms. One of these, Atractaspis bipostocularis from Mt. Kenya, was named for its two postocular scales, which distinguishes it from the single postocular of topotypic A. irregularis [88]. Because Mt. Kenya is located east of the Kenyan Rift, a major biogeographic barrier to several species of squamates [78], and moreover, all voucher specimens of A. cf. irregularis from the Albertine Rift have a single postocular (EG pers. obs.), A. bipostocularis is likely a distinct species that is endemic to the central Kenyan highlands. Other synonyms of A. irregularis that have one postocular and type localities in or near the Albertine Rift are likely attributable to our well-supported clade of A. cf. irregularis (Fig 2 in [87]), and include the following taxa: A. corradii Sternfeld, 1908 (type locality: Ukerewe Island, Lake Victoria, Tanzania [89]), A. schoutedeni de Witte, 1930 (type locality: Goma, North Kivu, DRC [90]), A. babaulti Angel, 1934 (type locality: Kadjuji [1500 m elevation] on the western border of Lake Kivu, 15 km north of Katana, DRC [91]), and A. irregularis loveridgei Laurent, 1945 (type locality: Bunia, DRC [46]). Additional sampling and morphological analyses are in progress that will help clarify the correct taxonomy for these lineages. Because of the relative lack of fieldwork in Central Africa in recent decades [92–93] and the relatively rare encounters of these snakes above ground (EG, pers. obs.), it is likely that genetic samples from the above topotypic populations will remain elusive for many years.

4.3 Evolution of dietary preference and fang morphology

Burrowing asps and collared snakes have unique ecologies, particularly in terms of dietary preferences. Atractaspis in particular have very distinctive fangs (solenoglyphous fangs, similar to viperids) that have made their taxonomic history complicated (e.g., previously classified as viperids) [25, 31, 94]. The fangs of Homoroselaps resemble fangs of elapid snakes more than vipers. In contrast, aparallactines tend to have rear fangs (Figs 3 and 6) [18, 25, 29–30]. Our ancestral-state reconstruction analysis of fang morphology suggested a rear fang ancestor for all collared
snakes and burrowing asps (Aparallactinae and Atractaspidae). Most lamprophiids are either rear fanged or lack fangs [25]. Our analyses also recovered dietary generalization as an ancestral-state for atractaspines and aparallactines. Both of these conditions support the hypothesis proposed by Underwood and Kochva [18], which postulated that collared snakes and burrowing asps likely had a Macrelaps-like ancestor (large and rear fanged) that foraged above ground or in burrows of other organisms, and these taxa subsequently evolved into more specialized forms with specialized diets. Several aparallactines are dietary specialists [25, 31], that feed on the following: Aparallactus specialize on centipedes and possibly other invertebrates like earthworms; Chlorhinophis and Amblyodipsas consume snakes and other small, fossorial reptiles; Polemon are ophiophagous [25, 31, 95], but may occasionally consume other squamate prey items; Macrelaps consume reptiles, amphibians, and rarely mammals [25]; and Xenocalamus consume amphisbaenians [25, 31].

Unlike several aparallactines, Atractaspis are dietary generalists that consume a diverse variety of squamates, rodents (particularly nesting rodents), and occasionally amphibians [25, 31, 33, 52, 96–100]. The venom glands of Atractaspis are anatomically distinct from those of other front-fanged snakes such as viperids and elapids, because atractaspines lack a distinct accessory gland and the presence of mucous-secreting cells at the end of each serous tubule [32, 101–103]. Similar to two other front-fanged snake groups (Elapidae and Viperidae), elongated venom glands have evolved within Atractaspis from western and northern African, and western Asia/Middle East species. These glands may be up to 12 cm long in A. engaddensis and 30 cm long in A. microlepidota [32]. Phylogenetically, Atractaspis is clearly partitioned according to venom gland length and geographic distribution (Figs 1 and 2). The purpose of these anatomical adaptations are unclear, although it is possible that they evolved to influence venom yield, as in Calliophis bivirgatus (Elapidae) [32]. The unique viper-like front fangs of Atractaspis may have evolved to facilitate the predation of rodent nestlings or squamates in tight burrows. Preying on animals in tight burrows limits mobility of the predator, because the body of the prey item can serve as a physical barrier, stopping the predator from further pursuit. Many lizards can detach their tails if a predator grabs the tails from behind. Shine et al. [31] postulated that it would be advantageous for a predator to push past the tail and envenomate or seize the prey by the body, a scenario ideal for Atractaspis. Deufel and Cundall [33] hypothesized that the evolution of the front fang in Atractaspis was likely the result of the following advantages: (1) greater envenomation efficiency resulting from the longer fangs; (2) closed mouth venom delivery system, allowing envenomation during head contact with any part of the prey; (3) capacity to quickly envenomate and release prey; and (4) potential for effective defense against adult rodents. Most prey consumed by Atractaspis (amphisbaenians, fossorial skinks, typhlolid snakes) [25] are also consumed by other atractaspines and aparallactines, including Amblyodipsas, Chlorhinophis, Homoroselaps, Macrelaps, Polemon, and Xenocalamus [25, 31, 97]. These observations suggest that squamate prey are consumed across all atractaspidine and aparallactine genera, and therefore, they may not be the only selective force driving the evolution of the unique fang in Atractaspis. However, rodents and other mammals are not commonly preyed on by other burrowing asps and collarad snakes [31, 104]. Deufel and Cundall [33] stated that it is unlikely that mammalian prey alone drove the evolution of a moveable front fang in Atractaspis, but the success and wide distribution of this genus may be partially attributed to mammalian prey. Unlike aparallactines, Atractaspis can quickly envenomate and dispatch all rodents in a nest [33]. A rear fang condition would require the snake to bite, hold and chew on every prey item, which is undoubtedly a more energetically costly form of envenomation compared with the predatory behavior of Atractaspis. Interestingly, in a feeding experiment, Atractaspis never attempted to ingest snake prey until the prey stopped reacting to fang pricks [33]. This observation suggests that Atractaspis will not risk injury until prey are
completely immobilized. The unique fang and predatory behavior of *Atractaspis* has its functional trade-offs; *Atractaspis* lack large mandibular and maxillary teeth that allow snakes to quickly consume prey [33], and therefore, they take longer to ingest prey items. Because *Atractaspis* forage, kill, and consume prey in the soil and below the surface, there were likely no negative selective pressures acting against slow ingestion of prey. Because they are fossorial, *Atractaspis* may be relatively safe from predators while feeding, which is when non-fossorial snakes may be vulnerable to predation or attacks from other animals [25, 33].

Results from this study indicate that the rear-fang condition can cover a wide variety of dietary specializations. But this condition is not ubiquitous among aparallactines. *Aparallactus modestus* clearly lacks enlarged fangs (Figs 5 and 6), but previous studies have found venom glands in this taxon [105]. Additionally, the venom gland of *A. modestus* is reported to differ from the venom gland of *A. capensis*, but further details of the discrepancies were not discussed [32, 105, 106]. Interestingly, this species may prey on earthworms rather than centipedes (II pers. obs. [30]), explaining the loss of a rear-fang condition, which is present in all other *Aparallactus* species used for this study, including *A. niger*, the sister species to *A. modestus* (Figs 5 and 6).

Polemon fangs are not easily classified. The fangs of *Polemon* are located on the anterior half of the maxilla, rather than the more typical posterior end (Figs 5 and 6). These fangs are large and deeply grooved, and resemble a fixed front-fang condition, but yet they are positioned behind one or two smaller maxillary teeth. The ophiophagous diet of *Polemon* likely influenced the evolution of a front-fang condition in this genus. *Polemon* are known to prey on large and formidable snake prey, which can rival the predator in size [35, 48, 95, 107]. With large, deeply grooved fangs positioned on the anterior side of the maxilla, *Polemon* can quickly envenomate and kill relatively large and powerful prey (snakes) more effectively than they would with a rear-fang condition like *Aparallactus*. Snakes with rear fangs must typically chew in a forward orientation until the rear fang can penetrate the flesh of the prey item [25]. Several front-fanged, elapid genera prey heavily on snakes (e.g., *Micrurus* and *Ophiophagus*). The front-fang condition may be a favorable trait to feed on snakes, in order to immobilize and kill more quickly.

In *Xenocalamus*, similar selective pressures (e.g., tight burrow foraging) that led to the evolution of fang and predatory behaviors in *Atractaspis*, may have led to the evolution of its unique quill-shaped snout [31]. Unlike *Amblyodipsas polyepis*, *Xenocalamus* possess relatively large maxillary teeth that gradually increase in size from the anterior to posterior side of the maxilla (Figs 3 and 5). This trait seems advantageous to improve their grasp of amphisbaenian prey.

It is not surprising that the rear fang and dietary generalist conditions were recovered as the ancestral-state condition for both atractaspidines and aparallactines, considering many lamprophids are dietary generalists [25, 30]. Collared snakes and burrowing asps seem to have experienced the opposite of niche conservatism as results herein indicated that foraging behaviors and diet have heavily and rapidly influenced the evolution of fang morphology, dietary specializations, and snout shape. In collared snakes (aparallactines), dietary specializations seem to have shaped variation (and loss) of fangs and snout shape, particularly for *Aparallactus, Polemon*, and *Xenocalamus*. These genera tend to have more specialized diets than *Macrelops, Chlorrhinophis* and *Amblyodipsas*, all of which possess more typical rear fangs (Figs 3 and 5) [25, 30–31]. A fundamental controversy in snake evolution is whether front and rear fangs share the same evolutionary and developmental origin. Burrowing asps and collared snakes possess all known types of snake dentition (no fang, rear fang, fixed front fang, and moveable front fang). Our results lend credence to the hypothesis that rear fangs and front fangs share a common origin [94]. Our results also indicated that snake dentition, specifically
alethinophidian groups such as atractaspines and aparallactines, may be highly plastic within relatively short periods of time to facilitate foraging and life history strategies.

Supporting information

S1 File. Settings for high-resolution CT scans and DOI numbers for supporting files on the Morphosource website, in Microsoft Excel format.

(XLSX)

Acknowledgments

Fieldwork by the last author in DRC was funded by the Percy Sladen Memorial Fund, an IUCN/SSC Amphibian Specialist Group Seed Grant, K. Reed, M.D., research funds from the Department of Biology at Villanova University, a National Geographic Research and Exploration Grant (no. 8556–08), UTEP, and the US National Science Foundation (DEB-1145459); EG, CK, WMM, and MMA thank their field companions M. Zigabe, A. M. Marcel, M. Luhumyo, J. and F. Akuku, F. I. Alonda, and the late A. M’Mema. We are grateful to F. B. Murutsi, former Chief Warden of the Itombwe Natural Reserve, for logistical support and permission for fieldwork in 2011; the Centre de Recherche en Sciences Naturelles et Institut Congolais pour la Conservation de la Nature provided project support and permits. We thank the Uganda Wildlife Authority of Kampala for necessary permits to work in Uganda, and Léonidas Nziyiympe of the Institut National pour l’Environnement et la Conservation de la Nature (INECN) of Burundi for logistical support and permit negotiations. Permits for samples from Gabon were granted by the Direction de la Faune et de la Chasse and CENAREST, Libreville. WC thanks National Geographic Okavango Wilderness Project (National Geographic Society grant number EC0715–15) for funding field work to Angola; Jan Venter, ex Eastern Cape Parks and Tourism Agency for fieldwork in the Wild Coast of South Africa, and Department of Economic Development, Environmental Affairs and Tourism (permit nos. CRO 84/11CR and CRO 85/11CR). MOR and JP thank all the respective West African institutions for collection and export permits; MOR is likewise grateful to the Gorongosa Restoration Project and the Mozambican Departamento dos Serviços Científicos (PNG/DSCI/C12/2013; PNG/DSCI/C12/2014; PNG/DSCI/C28/2015) for support and permits. The fieldwork of ZTN in DRC was supported by the Belgian National Focal Point to the Global Taxonomy Initiative. Fieldwork in the Republic of Congo was part of a rapid biodiversity initiative, commissioned by Flora Fauna & Man, Ecological Services Ltd (FFMES). Jerome Gaugris of FFMES conducted the study organization and design. Permits were issued by the Groupe d’Etude et de Recherche sur la Diversité Biologique. We thank S. Meiri, E. Maza, J. Smid, H. Farooq, W. Wüster, J. R. Nicolau, R. Deans, L. Kemp, L. Verbugt, South African National Biodiversity Institute (SANBI), Steinhardt Museum, Museum of Vertebrate Zoology, University of California, Berkeley, and Museum of Comparative Zoology, Harvard University, for tissues. We acknowledge A. Betancourt of the UTEP Border Biomedical Research Center Genomic Analysis Core Facility for services and facilities provided. This core facility is supported by grant 5G12MD007592 to the Border Biomedical Research Center (BBRC) from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of NIMHD or NIH. Dr. William R. Branch passed away before the submission of the final version of this manuscript. Dr. Eli Greenbaum accepts responsibility for the integrity and validity of the data collected and analyzed.
Author Contributions

Conceptualization: Frank Portillo, Daniel F. Hughes, Eli Greenbaum.

Data curation: Edward L. Stanley, Werner Conradie, Mark-Oliver Rödel, Johannes Penner, Michael F. Barej, Chifundera Kusamba, Aaron M. Bauer, Zoltán T. Nagy, Piero Carlino, Olivier S. G. Pauwels, Michele Menegon, Ivan Ineich, Marius Burger, Ange-Ghislain Zassi-Boulou, Tomáš Mazuch, Kate Jackson, Daniel F. Hughes, Mathias Behangana.

Formal analysis: Frank Portillo, Edward L. Stanley.

Funding acquisition: Eli Greenbaum.

Investigation: Frank Portillo, Edward L. Stanley, Wandege M. Muninga, Mwenebatu M. Aristote, Jean-François Trape, Daniel F. Hughes, Eli Greenbaum.

Methodology: Frank Portillo, Edward L. Stanley, Wandege M. Muninga, Mwenebatu M. Aristote, Jean-François Trape, Michele Menegon, Ange-Ghislain Zassi-Boulou, Daniel F. Hughes, Eli Greenbaum.

Project administration: Chifundera Kusamba, Wandege M. Muninga, Mwenebatu M. Aristote, Aaron M. Bauer, Jean-François Trape, Zoltán T. Nagy, Piero Carlino, Olivier S. G. Pauwels, Michele Menegon, Ivan Ineich, Marius Burger, Tomáš Mazuch, Kate Jackson, Daniel F. Hughes, Mathias Behangana, Eli Greenbaum.

Resources: William R. Branch, Chifundera Kusamba, Wandege M. Muninga, Ange-Ghislain Zassi-Boulou, Daniel F. Hughes, Mathias Behangana, Eli Greenbaum.

Software: Eli Greenbaum.

Supervision: Chifundera Kusamba, Eli Greenbaum.

Writing – original draft: Frank Portillo, Eli Greenbaum.

Writing – review & editing: Frank Portillo, Edward L. Stanley, William R. Branch, Werner Conradie, Mark-Oliver Rödel, Johannes Penner, Michael F. Barej, Chifundera Kusamba, Wandege M. Muninga, Mwenebatu M. Aristote, Aaron M. Bauer, Jean-François Trape, Zoltán T. Nagy, Piero Carlino, Olivier S. G. Pauwels, Michele Menegon, Ivan Ineich, Marius Burger, Tomáš Mazuch, Kate Jackson, Daniel F. Hughes, Mathias Behangana.

References

1. Wüster W, Crookes S, Ineich I, Mané Y, Pook CE, Trape J-F, et al. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: *Naja nigricollis* complex). Mol. Phylogenet. Evol., 2007; 45: 437–453. https://doi.org/10.1016/j.ympev.2007.07.021 PMID: 17870616

2. Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera *Lamprophis* Fitzinger 1843 and *Mehelya* Csiki 1903. Mol. Phylogenet. Evol., 2011; 58: 415–426. https://doi.org/10.1016/j.ympev.2010.11.010 PMID: 21095234

3. Menegon M, Loader SP, Marsden SJ, Branch WR, Davenport TRB, Ursenbacher S. The genus *Atheris* (Serpentes: Viperidae) in East Africa: Phylogeny and the role of rifting and climate in shaping the current pattern of species diversity. Mol. Phylogenet. Evol., 2014; 79: 12–22. https://doi.org/10.1016/j.ympev.2014.06.007 PMID: 24952316

4. Greenbaum E, Portillo F, Jackson K, Kusamba C. A phylogeny of Central African *Boaedon* (Serpentes: Lamprophiidae), with the description of a new cryptic species from the Albertine Rift. Afr. J. Herpetol., 2015; 64: 18–38. https://doi.org/10.1080/21564574.2014.996189

5. Wüster W, Chirio L, Trape J-F, Ineich I, Jackson K, Greenbaum E, et al. Integration of nuclear and mitochondrial gene sequences and morphology reveal unexpected diversity in the forest cobra (*Naja melanoleuca*) species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa, 2018; 4455: 68–98. https://doi.org/10.11646/zootaxa.4455.1.3 PMID: 30314221

6. Engelbrecht HM, Branch WR, Greenbaum E, Alexander GJ, Jackson K, Burger M, et al. Diversifying into the branches: Species boundaries in African green and bush snakes, *Philothamnus* (Serpentes: Elapidae). Mol. Phylogenet. Evol., 2017; 116: 84–97. https://doi.org/10.1016/j.ympev.2017.04.018 PMID: 28409045
Colubridae). Mol. Phylogenet. Evol., 130: 357–365. https://doi.org/10.1016/j.ympev.2018.10.023
PMID: 30366085

7. Kelly CMR, Barker NP, Villet MH, Broadley DG. Phylogeny, biogeography and classification of the
snake superfamily Elapoidea: A rapid radiation in the late Eocene. Cladistics, 2009; 25: 38–63. https://
doi.org/10.1111/j.1096-0031.2008.00237.x

8. Pyron RA, Burbrik FT, Colli GR, De Oca ANM, Vitt LJ, Kuczynski CA, et al. The phylogeny of
advanced snakes (Colubridae), with discovery of a new subfamily and comparison of support meth-
ods for likelihood trees. Mol. Phylogenet. Evol., 2011; 58: 329–342. https://doi.org/10.1016/j.ympev.
2010.11.006 PMID: 21074626

9. Pyron RA, Burbrik FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161
species of lizards and snakes. BMC Evol. Biol., 2013; 13: 93. https://doi.org/10.1186/1471-2148-13-
93 PMID: 23627680

10. Moyer K, Jackson K. Phylogenetic relationships among the Stiletto Snakes (genus Atractaspis
H. Smith) based on external morphology. Afr. J. Herpetol., 2011; 60: 30–46. https://doi.org/10.1080/
21564574.2010.520034

11. Günther ACLG. Catalogue of the Colubrine Snakes in the Collection of the British Museum. Trustees
of the British Museum, London; 1858.

12. Vitt L, Caldwell JP. Herpetology: An Introductory Biology of Amphibians and Reptiles. 3rd Edition.
Academic Press, USA; 2009.

13. Bourgeois M. Contribution à la morphologie comparée du crâne des Ophidiens de l’Afrique Centrale.
Publ. Univ. Off. Congo, 1986; XVIII: 1–293.

14. Heymans JC. La musculature mandibulaire et le groupe parotidien des Aparallactinae et Atractaspi-
dae (Serpentes Colubridae) à majorité fouisseurs. Rev. Zool. Afr., 1975; 89: 889–905.

15. Heymans JC. Contribution a la phylogénèse des ophidiens de l’Afrique centrale. Ann. Soc. Royale
Zool. Belgique, 1982; 112: 79–87.

16. Kelly CMR, Barker NP, Villet MR. Phylogenetics of advanced snakes (Caenophidia) based on four
mitochondrial genes. Syst. Biol., 2003; 52: 439–459. https://doi.org/10.1080/10635150309313 PMID:
12857637

17. McDowell SB. 1968. Affinities of the snakes usually called Elaps lacteus and E. dorsalis. J. Linn. Soc.,
Zoology, 1968; 47: 561–578. https://doi.org/10.1111/j.1096-3642.1968.tb00550.x

18. Underwood G, Kochva E. On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspi-
dae). Zool. J. Linn. Soc., 1993; 107: 3–64. https://doi.org/10.1006/zjls.1993.1002

19. Vidal N, Hedges SB. Higher-level relationships of caenophidian snakes inferred from four nuclear and
mitochondrial genes. C. R. Biol., 2002; 325: 987–995. https://doi.org/10.1016/S1631-0691(02)01509-3
PMID: 12481691

20. Branch WR. Snakes of Angola: An annotated checklist. Amphib. Reptile Conserv., 2018; 12: 41–82.

21. Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB. The phylogeny and classification of
cauenphidian snakes inferred from seven nuclear protein-coding genes. C. R. Biol., 2007; 330: 182–
187. https://doi.org/10.1016/j.crvi.2006.10.001 PMID: 17303545

22. Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, et al. Dissecting the major
African snake radiation: A molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophi-
dae). Zootaxa, 2008; 1945: 51–66. https://doi.org/10.1016/j.crvi.2009.11.003 PMID: 20176336

23. Vidal N, Hedges SB. The molecular evolutionary tree of lizards, snakes, and amphibaenians. C. R.
Biol., 2009; 332: 129–139. https://doi.org/10.1016/j.crvi.2008.07.010 PMID: 19281946

24. Uetz, P, Freed P, Hošek J (eds.). The Reptile Database, http://www.reptile-database.org, [accessed
March 2019]; 2019.

25. Greene HW. Snakes: The Evolution of Mystery in Nature. University of California Press, Berkel-
ey; 1997.

26. Nagy ZT, Vidal N, Vences M, Branch WR, Pauwels OSG, Wink M, et al. Molecular systematics of Afri-
can Colubroidea (Squamata: Serpentes). In Huber B.A., Sinclair B.J., and Lampe K.-H. (Eds.), African
Biodiversity: Molecules, Organisms, Ecosystems. Proceedings of the 5th International Symposium in
Tropical Biology. Museum Koenig, Bonn; 2005. Pp. 221–228.

27. Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lalvaux SP. A species-level phylogeny of extant
snakes with description of a new colubrid subfamily and genus. PLoS ONE, 2016; 11: e0161070.
https://doi.org/10.1371/journal.pone.0161070 PMID: 27603205

28. Laurent RF. Révision du genre Atractaspis A. Smith. Mém. Mus. R. Hist. Nat. Belgique, 1950; 38: 1–
49.
29. Branch WR. A Field Guide to the Snakes and Other Reptiles of Southern Africa, revised edition. Struik Publishing, South Africa; 1998.

30. Marais J. A Complete Guide to the Snakes of Southern Africa. Struik Publishers, Cape Town; 2004.

31. Shine R, Branch WR, Harlow PS, Webb JK, Shine T. Biology of burrowing asps (Atractaspidae) from Southern Africa. Copeia, 2006; 2006: 103–115. https://doi.org/10.1643/0045-8511(2006)006[0103:BOBAAF]2.0.CO;2

32. Jackson TN, Young B, Underwood G, McCarthy CJ, Kochva E, Vidal N, et al. Endless forms most beautiful: The evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. Zoomorphology, 2017; 136: 1–24. https://doi.org/10.1007/s00435-016-0332-9

33. Rödel M-O, Kucharzewski C, Mahlow K, Chirio L, Pauwels OSG, Carlino P, et al. A new stiletto snake (Lamprophiidae, Atractaspidae, Atractaspis) from Liberia and Guinea, West Africa. Zoosyst. Evol., 2019; 95: 107–123.

34. Portillo F, Branch WR, Tilbury CR, Nagy ZT, Hughes DF, Kusamba C, et al. A cryptic new species of Polemon (Squamata: Lamprophiidae, Aparallactinae) from the miombo woodlands of Central and East Africa. Copeia, 2019; 107: 22–35. https://doi.org/10.1643/CH-18-098

35. Swindell SR, Plasterer TN. SEQMAN: Contig assembly. Method. Mol. Biol., 1997; 70: 75–89. https://doi.org/10.1385/0-89603-358-9:75

36. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 2004; 32: 1792–1797. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

37. Miller, MA, Pfeiffer W, Schwartz T. The CIPRES Science Gateway, Version 3.3 https://www.phylo.org; 2017.

38. Rambaut A, Drummond A. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, UK; 2010.

39. Head JJ, Mahlow K, Möller J. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoaidea, Colubridae. Palaeontol. Electronica, 2016; 19: 1–21.

40. Loveridge R. Further revisions of African snake genera. Bull. Mus. Comp. Zool. (Harvard), 1944; 95: 121–247.

41. Wilson VJ. The snakes of the eastern province of Zambia. The Puku, 1965; 3: 149–170.

42. Broadley DG. A revision of the African snake genera Amblyodipsas and Xenocalamus. Occas. Pap. Nat. Hist. Mus. Rhodesia, 1971; 4: 629–697.

43. Pitman CRS. A Guide to the Snakes of Uganda. Wheldon and Wesley. Codicote, UK; 1974.

44. Hughes B. A rare snake not so rare: Polemon neuwiedi in Ghana. Nigerian Field, 1978; 43: 86–88.

45. Spawls S, Howell K, Drewes R, Ashe J. A Field Guide to the Reptiles of East Africa: Kenya, Tanzania, Uganda, Rwanda and Burundi. Natural World, London, UK; 2002.

46. Spawls S, Howell K, Hinkel H, Menegon M. Field Guide to East African Reptiles. Bloomsbury Natural History, London, UK; 2018.
74. Portillo F, Greenbaum E, Menegon M, Kusamba C, Dehling JM. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol., 2015; 82: 75–86. https://doi.org/10.1016/j.ympev.2014.09.024 PMID: 25291074

75. Larson T, Castro D, Behangana M, Greenbaum E. Evolutionary history of the river frog genus Amietia (Anura: Pyxicephalidae) reveals extensive diversification in Central African highlands. Mol. Phylogenet. Evol., 2016; 99: 168–181. https://doi.org/10.1016/j.ympev.2016.03.017 PMID: 27026115

76. Medina MF, Bauer AM, Branch WR, Schmitz A, Conradie W, Nagy ZT, et al. Molecular phylogeny of Panaspis and Afroablephas skinks (Squamata: Scincidae) in the savannas of sub-Saharan Africa. Mol. Phylogenet. Evol., 2016; 100: 409–423. https://doi.org/10.1016/j.ympev.2016.04.026 PMID: 27118179

77. Hughes DF, Kusamba C, Behangana M, Greenbaum E. Integrative taxonomy of the Central African forest chameleon, Kinyongia adolfifischeri (Sauria: Chamaeleonidae), reveals underestimated species diversity in the Albertine Rift. Zool. J. Linn. Soc., 2017; 181: 400–438. https://doi.org/10.1093/zoolinnean/zlx005

78. Greenbaum E, Dowell Beer SA, Wagner P, Anderson CG, Villanueva CO, Malonza P, et al. Phylogeography of Jackson’s Forest Lizard Adolphiis jacksoni (Sauria: Lacertidae) reveals cryptic diversity in the highlands of East Africa. Herpetol. Monogr., 2018; 32: 51–68. https://doi.org/10.1655/HERPMONOGRAPHS-D-18-00005.1

79. Al-Quran S. The Herpetofauna of the Southern Jordan. American-Eurasian J. Agric. & Environ. Sci., 2009; 6: 385–391.

80. Ismail M, Memish Z. Venomous snakes of Saudi Arabia and the Middle East: A keynote for travellers. Int. J. Antimicrob. Agents, 2003; 21: 164–169. PMID: 12615381

81. Huhndorf MH, Kerbis Peterhans JC, Loew SS. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol., 2007; 16: 663–674. https://doi.org/10.1111/j.1365-294X.2007.03153.x PMID: 17257121

82. Fjeldså J, Bowie RCK. New perspectives on the origin and diversification of Africa’s forest avifauna. Afr. J. Ecol., 2008; 46: 235–247. https://doi.org/10.1111/j.1365-2028.2008.00992.x

83. Voelker G, Outlaw RK, Bowie RCK. Pliocene forest dynamics as a primary driver of African bird speciation. Global Ecol. Biogeogr., 2009; 19: 111–121. https://doi.org/10.1111/j.1466-8238.2009.00500.x

84. Demos TC, Kerbis Peterhans JC, Agwanda B, Hickerson MJ. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol. Phylogenet. Evol., 2014; 71: 41–54. https://doi.org/10.1016/j.ympev.2013.10.014 PMID: 24184338

85. Lawson LP. The discordance of diversification: Evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. Mol. Ecol., 2010; 19: 4046–4060. https://doi.org/10.1111/j.1365-294X.2010.04788.x PMID: 20735741

86. Günther ACLG. Sixth account of new species of snakes in the collection of the British Museum. Ann. Mag. Nat. Hist., London, 1868; 1: 413–429 + pl. 17–19.

87. Wallach V, Williams KL, Boundy J. Snakes of the World: A Catalogue of Living and Extinct Species. CRC Press, Boca Raton, London and New York; 2014.

88. Boulenger GA. Description of a new snake of the genus Atractaspis from Mount Kenya, British East Africa. Ann. Mag. Nat. Hist., London, 1905; 15: 190.

89. Sternfeld R. Neue und ungenügend bekannte afrikanische Schlangen. Sitzungsb. Ges. Naturf. Freunde Berlin, 1908; 1908: 92–95.

90. de Witte GF. Description d’un vipe¯ride nouveau du Kivu (Atractaspis Schoutedenii sp. n.). Rev. Zool. Bot. Afr., 1930; 19: 224–225 + figs.

91. Angel F. Description d’un vipe¯ride nouveau du Congo belge, et de deux batraciens de Madagascar. Bull. Soc. Zool. Fr., Paris, 1934; 59: 169–172.

92. Tolley KA, Alexandar GJ, Branch WR, Bowles P, Maritz B. Conservation status and threats for African reptiles. Biol. Cons., 2016; 204: 63–71. https://doi.org/10.1016/j.biocon.2016.04.006

93. Greenbaum E. Emerald Labyrinth: A Scientist’s Adventures in the Jungles of the Congo. ForeEdge, Lebanon, NH, USA; 2017.

94. Vonk FJ, Admiaraal JF, Jackson K, Reshef R, de Bakker MAG, Vandershoot K, et al. Evolutionary origin and development of snake fangs. Nature (London), 2008; 454: 630–633. https://doi.org/10.1038/nature07178 PMID: 18668106

95. Kusamba C, Resetar A, Wallach V, Lulengo K, Nagy ZT. Mouthful of snake: An African snake-eater’s (Polemon fulvicollis graueri) large typhlopid prey. Herpetol. Notes, 2013; 6: 235–237.

96. Deufel A, Cundall D. Feeding in stiletto snakes. Am. Zool., 2000; 40: 996–997.
97. Marais J. Natural History Notes—Atractaspididae—Atractaspis bibronii Smith, 1894—Diet. African Herp News, 2010; 9.
98. Rasmussen JB. A review of the slender stiletto-snake, Atractaspis aterrima Günther 1863 (Serpentes Atractaspididae). Trop. Zool., 2005; 18: 137–148. https://doi.org/10.1080/03946975.2005.10531216
99. Broadley DG. A review of the southern African stiletto snakes of the genus Atractaspis A. Smith (Serpentes: Atractaspididae). Arnoldia, Zimbabwe, 1991; 9: 495–517. https://doi.org/10.1080/03946975.2005.10531216
100. Akani GC, Luiselli LM, Angelici FM, Corti C, Zuffi MAL. The case of rainforest stiletto snakes (genus Atractaspis) in southern Nigeria. Evidence of diverging foraging strategies in grossly sympatric snakes with homogeneous body architecture? Ethol. Ecol. Evol., 2001; 13: 89–94. https://doi.org/10.1080/08927014.2001.9522790
101. Kochva E, Shayer-Wollberg M, Sobol R. The special pattern of the venom gland in Atractaspis and its bearing on the taxonomic status of the genus. Copeia, 1967; 1967: 763–772. https://doi.org/10.2307/1441887
102. Wollberg M, Kochva E, Underwood G. On the rictal glands of some atractaspid snakes. Herpetol. J., 1998; 8: 137–143. https://doi.org/10.1655/0018-0831(2002)058[0001:OTRSOS]2.0.CO;2
103. Kochva E. The origin of snakes and evolution of the venom apparatus. Toxicon, 1987; 27: 65–106.
104. Broadley DG. FitzSimons’ Snakes of Southern Africa. Delta Books, Johannesburg, South Africa; 1983.
105. Kochva E, Gans C. Salivary glands of snakes. Clin. Toxicol., 1970; 3: 363–387. https://doi.org/10.3109/15569657008990115 PMID: 4937763
106. Kochva E, Wollberg M. The salivary glands of Aparallactinae (Colubridae) and the venom glands of Elaps (Elapidae) in relation to the taxonomic status of the genus. Zool. J. Linn. Soc., 1970; 49: 217–224. https://doi.org/10.1111/j.1096-3642.1970.tb00727.x
107. Broadley DG, Craig DT, Wigge J. Snakes of Zambia. Chimaira, Frankfurt, Germany; 2003.
108. Sabaj, MH. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 6.5 (16 August 2016), 2016; electronically accessible at http://www.asih.org/, American Society of Ichthyologists and Herpetologists, Washington, DC.
109. Lawson R, Slosing JB, Crother BI, Burbright FT. Phylogeny of the Colubridae (Serpentes): New evidence from mitochondrial and nuclear genes. Mol. Phylogenet. Evol., 2005; 37: 581–601. https://doi.org/10.1016/j.ympev.2005.07.016 PMID: 16172004
110. Palumbi SR. Nucleic acids II: The polymerase chain reaction. In: Hillis D.M., Moritz C., Mable B.K. (Eds.), Molecular Systematics. Sinauer Associates, MA, USA; 1996. Pp. 205–207.
111. Zaher H, Grazziotin FG, Cadle JE, Murphy RW, Moura-Leite JCD, Bonatto SL. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: A revised classification and descriptions of new taxa. Pap. Avulsos Zool., São Paulo, 2009; 49: 115–153. https://doi.org/10.1590/S0031-10492009001100001
112. Arévalo E, Davis SK, Sites JW Jr. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Syst. Biol., 1994; 43: 387–418. https://doi.org/10.1093/sysbio/43.3.387
113. Burbright FT, Lawson R, Slowinski JP. 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution, 2000; 54: 2107–2118. https://doi.org/10.1554/0014-3820(2000)054[2107:MDPOTP]2.0.CO;2 PMID: 11209786
114. Slowinski JB, Lawson R. Snake phylogeny: Evidence from mitochondrial genes. Mol. Phylogenet. Evol., 2002; 24: 194–202. https://doi.org/10.1016/S1055-7903(02)00239-7 PMID: 12144756
115. Groth JG, Barrowclough GF. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol., 1999; 12: 115–123. https://doi.org/10.1006/mpev.1998.0603 PMID: 10381315