c-Axis Twist Bi₂Sr₂CaCu₂O₈₊δ Josephson Junctions: A New Phase-Sensitive Test of Order Parameter Symmetry

R. A. Klemm,¹ C. T. Rieck² and K. Scharnberg²

¹Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA
²Fachbereich Physik, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg, Germany
(August 11, 2018)

Li et al. found that the critical current density \(J_c \) across atomically clean c-axis twist junctions of Bi₂Sr₂CaCu₂O₈₊δ is the same as that of the constituent single crystal, \(J_c^S \), independent of the twist angle \(\phi_0 \), even at \(T_c \). We investigated theoretically if a \(d_{x²−y²} \)-wave order parameter might twist by mixing in \(d_{xy} \) components, but find that such twisting cannot possibly explain the data near to \(T_c \). Hence, the order parameter contains an s-wave component, but not any \(d_{x²−y²} \)-wave component. In addition, the c-axis Josephson tunneling is completely incoherent. We also propose a c-axis junction tricrystal experiment which does not rely upon expensive substrates.

I. EXPERIMENTAL INTRODUCTION

It has recently become possible to prepare extraordinarily perfect bicrystal Josephson junctions with Bi₂Sr₂CaCu₂O₈₊δ (Bi2212). These junctions are prepared by cleaving a very high quality single crystal of Bi2212 in the \(ab \)-plane, quickly examining the cleaved parts under a microscope, rotating one part an arbitrary angle \(\phi_0 \) about the c-axis with respect to the other, placing them back together, and fusing them by heating just below the melting point for 30 h. A schematic view of the resulting c-axis bicrystal is shown in Fig. 1. By examining these bicrystals with high resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy, and energy dispersive x-ray spectroscopy, they were found to be atomically clean over the entire areas studied (\(\approx 10^2 \mu m^2 \)), and the periodic lattice distortion was atomically intact on each side of the twist junction.

To each of the 12 bicrystals measured, six electrical leads were attached using Ag epoxy, two on opposite sides of each of the two constituent single crystals, and two across the bicrystal. By applying the current \(I \) across the central leads straddling the bicrystal, and a voltage \(V \) across two of the other leads, it was possible to measure the \(I/V \) characteristics of the c-axis transport across each constituent single crystal, and across the twisted bicrystal junction in the same run. The critical current \(I_c \) was easily identified, as \(V \) dropped by 5-8 orders of magnitude at a well-defined \(I \) value, provided that the temperature \(T \) was less than the transition temperature \(T_c \). For each bicrystal junction, they measured the critical current \(I_c^J(T) \) and the junction area \(A^J \). Similarly, for each constituent single crystal, they measured the critical current \(I_c^S(T) \) and the area \(A^S \). \(I_c \) was often unmeasurable at low \(T \), so comparisons of all 12 samples were made at 0.9\(T_c \).

Of the 12 bicrystal junctions, 7 were prepared with \(40^0 \leq \phi_0 \leq 50^0 \), and one each at \(0^0 \) and \(90^0 \). Although \(I_c^S \) and \(I_c^J \) at \(T = 0.9T_c \) varied from sample to sample, and the critical current densities \(J_c^S = I_c^S/A^S \) and \(J_c^J/A^J \) also varied from sample to sample, with only one exception (probably due to a sample that had weakly attached leads), the ratio \(J_c^J/I_c^J \) of critical current densities was the same (1.00 ± 0.06) for each sample! In a sample with \(\phi_0 = 50^0 \), \(J_c^J(T)/I_c^J(T) = 1.0 \) over the entire range 10 K \(\leq T < T_c \), and \(I_c(T)/I_c(0) \) fit the Ambegaokar-Baratoff curve. As discussed in the following, these results comprise very strong evidence for an s-wave component of the superconducting order parameter (OP) at and below \(T_c \), and cannot be explained within a dominant \(d_{x²−y²} \)-wave scenario.

II. GROUP THEORY

Although the crystal structure of Bi2212 is orthorhombic, the orthorhombic distortion is different from that of YBa₂Cu₃O₇−\(\delta \), with different unit cell lengths \(a \) and \(b \) along the diagonals between the Cu-O bond directions in the CuO₂ planes. In addition, there is an incommensurate lattice distortion \(\mathbf{Q} = (0, 0.212, 1) \) along one of these diagonals, the \(b \)-axis, which is clearly seen in the HRTEM pictures of the twist junctions. Since \(\mathbf{Q} \) contains a c-axis component, only the \(bc \)-plane is a strict crystallographic mirror plane. Group theory and Bloch’s theorem dictate that the superconducting OP must reflect the crystal symmetry. In Table 1, we have presented the allowable forms of the OP eigenfunctions for Bi2212.

We presented both the angular momentum (fixed \(k_F \), variable \(\phi_k \), with quantum numbers \(\ell \)) and the nearly tetragonal lattice (variable \(k_x, k_y \), with quantum numbers \(n, m \)) representations of the OP eigenfunction forms. As indicated, the two OP eigenfunction forms are respectively even and odd with respect to reflections about the \(bc \)-plane (the \(\sigma_b \) operation). Thus, in Bi2212, s-wave and \(d_{x²−y²} \)-wave OP components are completely incompatible, and do not mix except possibly below a second
(as yet unobserved) thermodynamic phase transition.

III. LAWRENCE-DONIACH MODEL

Previously, we investigated whether it might be possible to explain the lack of any dependence of the ϕ_0-dependence of the c-axis critical current from a purely d-wave scenario. We assumed that in the nth layer, the dominant OP component was $d_{x^2-y^2}$, the amplitude A_n of which became non-vanishing below $T_c = T_{cA}$. By choosing the sub-dominant OP component to be d_{xy} with amplitude B_n and bare transition temperature $T_{cB} < T_{cA}$, we considered whether the overall OP could “twist” by mixing $d_{x^2-y^2}$- and d_{xy}-wave components, to accommodate for the physical twist in the Josephson junction between the adjacent layers $n = 1$ and $n = -1$.

GT	OP	E	σ_{d1}	σ_{d2}	C_2	
A_1	$	s + d_{xy}\rangle$	+1	+1	+1	+1
	$\tilde{a}_0 + \sqrt{2} \sum_{n=1}^{\infty} \{\tilde{a}_n \times$					
	$\times \cos[2n(\phi_k - \pi/4)]\}$					
	$\sum_{n,m=0}^{\infty} \{[\tilde{a}_{nm} + \tilde{a}_{mn}] \times$					
	$\times \cos(nk_xa) \cos(mk_ya)$					
	$+[\tilde{c}_{nm} - \tilde{c}_{mn}] \times$					
	$\times \sin(nk_xa) \sin(mk_ya)]\}$					
A_2	$	d_{x^2-y^2} + g_{xy}(x^2-y^2)\rangle$	+1	-1	-1	+1
	$\tilde{b}_0 + \sqrt{2} \sum_{n=1}^{\infty} \{\tilde{b}_n \times$					
	$\times \sin[2n(\phi_k - \pi/4)]\}$					
	$\sum_{n,m=0}^{\infty} \{[\tilde{a}_{nm} - \tilde{a}_{mn}] \times$					
	$\times \cos(nk_xa) \cos(mk_ya)$					
	$+[\tilde{c}_{nm} + \tilde{c}_{mn}] \times$					
	$\times \sin(nk_xa) \sin(mk_ya)]\}$					

TABLE I. Singlet superconducting OP eigenfunctions in the angular momentum (ℓ) and lattice (n, m) representations, their group theoretic notations, and character table for the orthorhombic point group C_{2v} in the form appropriate for BSCCO. Although the σ_{d1} mirror plane symmetry is only approximate due to the c-axis component of Q, the σ_{d2} mirror plane symmetry is robust in most current samples.

There are basically two distinct, relevant energy scales in this problem. One is the relative amount of the two incompatible d-wave components. This is determined mainly by the different bare T_c values, T_{cA} and T_{cB}, arising from the pairing interactions. Assuming there is only one observable zero-field superconducting phase transition at $T_c = T_{cA}$, then $T_{cB} << T_{cA}$, the correspondingly suppressed bulk $T_{cB} < T_{cB}$, below which the OP is nodeless, and $|B_n| << |A_n|$ for $n \rightarrow \pm \infty$. This results in a strong locking of an anisotropic OP onto the lattice, with the anti-nodes of the purported $d_{x^2-y^2}$-wave OP component locking onto the Cu-O bond directions on each side of the twist junction. For $\phi_0 = 45^\circ$, these OP eigenfunctions are thus orthogonal, and $I_c(45^\circ) = 0$.

The second energy scale is the strength of the Josephson coupling η (η' across the twist junction) of the OP components between adjacent layers. This gives rise to a finite c-axis coherence length, which diverges as $T \rightarrow T_c$, allowing some real OP mixing (or twisting), suppressing $I_c(\phi_0)$ for $\phi_0 \neq 0$, as shown in Figs. 2 and 3. For strong interlayer coupling, $\eta \approx 1$, it is possible that $I_c(\phi_0) = 0$ for $T \approx 0.5T_c$, as pictured in Figs. 2 and 3. However, Bi2212 is extremely anisotropic, and we thus expect $\eta \approx \eta' \ll 1$. In Fig. 3, we recalculated $I_c(\phi_0, T)$ for this case. Clearly, for $\eta = \eta' = 0.001$, $I_c(45^\circ) \approx 0$ for $T \geq 0.5T_c$. Thus, it is extremely difficult, if not impossible to explain the data of Li et al. by assuming a dominant $d_{x^2-y^2}$-wave OP component with nodes at low T.

IV. CONCLUSIONS

We thus conclude that the superconducting OP in Bi2212 is the the group A_1, which contains the s-wave component, but does not contain any purported $d_{x^2-y^2}$-wave component near to T_c. However, these experiments also provide information about the nature of the interlayer tunneling processes. If there were a substantial amount of coherent interlayer tunneling, then the OP would be entirely isotropic s-wave in form. For free-particle Fermi surfaces, this scenario is possible, as rotated Fermi surfaces on opposite sides of the twist are degenerate. However, Bi2212 is generally thought to have a tight-binding Fermi surface. In this case, intertangle coherent tunneling is only possible for $\phi_0 \approx 0, 90^\circ$, for which a finite fraction of the rotated Fermi surfaces are degenerate. Thus coherent tunneling would result in a larger $I_c(\phi_0)$ for $\phi_0 = 0^\circ, 90^\circ$ than for any other ϕ_0 value, contrary to experiment. Hence, we conclude that the interlayer tunneling is entirely incoherent, without any discernible interlayer forward scattering, even between adjacent layers on the same side of the twist junction.

Thus, the OP eigenfunction is $|s + d_{xy}\rangle$ with GT notation A_1 (Table 1), which contains the s-wave component. This OP eigenfunction could exhibit nodes, but it
is even about reflections in the bc-mirror plane, and thus does not contain any amount of the odd $d_{x^2-y^2}$-wave OP component. This conclusion is further supported by new c-axis Josephson junction experiments between Bi2212 and Pb, which showed strong evidence for an s-wave component. This conclusion is further supported by new c-axis Josephson junction experiments between Bi2212 and Pb, which showed strong evidence for an s-wave component at low T. [7]

V. NEW TRICRYSTAL EXPERIMENT PROPOSAL

Since the c-axis junctions are qualitatively superior to the ab-plane thin film junctions, we propose a new tricrystal (or tetracrystal) experiment using c-axis junctions, as pictured in Fig. 4. This experiment does not require any expensive substrates, and the grain boundaries are intrinsically far superior to those of the planar junctions. [1,8] In addition, since I_{c} for the c-axis junctions is ordinarily much larger than for the ab-plane due to larger junction areas, it is much easier to satisfy the experimental requirement $L/L_{0} >> 1$, where L is the induction of the ring and Φ_0 is the flux quantum. [4]

VI. ACKNOWLEDGMENTS

Supported by USDOE-BES through Contract No. W-31-109-ENG-38, by NATO through Collaborative Research Grant No. 960102, and by the DFG through the Graduiertenkolleg “Physik nanostrukturierter Festkörper.” Send correspondence to klemm@anl.gov.

[1] Y. Zhu, Q. Li, Y. N. Tsay, M. Suenaga, G. D. Gu, and N. Koshizuka, Phys. Rev. B 57, 8601 (1998); Y. N. Tsay, Q. Li, Y. Zhu, M. Suenaga, G. D. Gu, and N. Koshizuka, in Superconducting Superlattices II: Native and Artificial, I. Bozovic and D. Pavuna, editors, Proceedings of SPIE 3480, 21 (1998); Y. Zhu, private communication.
[2] Q. Li, Y. N. Tsay, M. Suenaga, R. A. Klemm, G. D. Gu, and N. Koshizuka, submitted to Nature.
[3] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963); 11, 104 (1963).
[4] R. A. Klemm, C. T. Rieck, and K. Scharnberg, submitted to Phys. Rev. B (cond-mat/9811303).
[5] M. Tinkham, Group Theory in Quantum Mechanics (McGraw-Hill, New York, 1964).
[6] R. A. Klemm, C. T. Rieck, and K. Scharnberg, Phys. Rev. B 58, 1051 (1998).
[7] M. Mößle and R. Kleiner, Phys. Rev. B 59, 4486 (1999).
[8] C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994).
