Basic Science/Methodology

A TL1 Team Approach to CNS-Localized Delivery of Glial Cell-Derived Neurotrophic Factor for Treatment of Parkinson’s Disease

Shaheen Farhadi1, Adithya Gopinath1, Wolfgang Streit2, Gregory A Hudalla2, and Habibe Khoshbouei2
1University Of Florida Clinical and Translational Science Institute; 2University of Florida

OBJECTIVES/GOALS: Develop a strategy to restrict GDNF diffusion at an injected CNS tissue site for dopamine neuron rescue by endowing it with binding affinity for carbohydrates that are abundant on the cell surface and extracellular matrix. METHODS/STUDY POPULATION: GDNF will be fused to galectin-3 (G3), a human protein that binds to β-galactoside residues of cell surface and matrix glycoproteins. We characterized the binding of G3 fusion proteins to various glycoproteins and primary human myeloid cells. We incubated G3 fusions with CNS tissue ex vivo to measure their binding and depth of penetration via diffusion. We next plan to administer GDNF-G3 via CNS intracranial infusion in a murine PD model and then conduct behavioral PD phenotype testing via rotarod and pole descent to compare to non-parkinsonian controls. We will further examine the effects of GDNF-G3 on degeneration using immunohistochemical examination of post-mortem brain tissue. RESULTS/ANTICIPATED RESULTS: Based on results from previous clinical trials of GDNF delivery, we anticipate that a successful intervention using GDNF-G3 will result in rescue of midbrain dopaminergic neurons in a murine PD model. In murine CNS tissue, we observed binding to glycans at the tissue surfaces when incubated with G3 fusion proteins ex vivo, suggesting GDNF-G3 will remain localized to the injection site. Next we will administer GDNF-G3 via CNS intracranial infusion in a murine PD model and assess efficacy by behavior and histopathology. GDNF-G3-mediated dopamine neuron rescue are expected to slow or reverse the progression of PD in these animal models. DISCUSSION/SIGNIFICANCE OF IMPACT: The pro-inflammatory effects of aging and smoking contribute to worse outcomes with these stroke comorbidities. We investigated the impact of age and smoking on acute outcomes after stroke and assessed whether increased complement activation contributes to the worsening outcomes with these stroke comorbidities. METHODS/STUDY POPULATION: Mouse brain endothelial cells (bEnd3) were exposed to hypoxia followed by exposure to serum that was derived from either cigarette smoke (CS)-exposed mice or naïve mice, and IgM and C3d deposition assessed. Adult (12 weeks) and aged (1 year) mice were subjected to 1h transient middle cerebral artery occlusion. Animals were exposed to CS for 3-6 months (5hr/day, 5days/week) by burning 3R4F cigarettes using a smoking machine. Animals were treated with B4Crry or vehicle intravenously 2h post-MCAO. Survival analysis and neurological deficit scores were performed up to 7 days. Brains were examined for histological and molecular analyses. RESULTS/ANTICIPATED RESULTS: Following hypoxia, bEnd3 cells exposed to serum from CS-exposed mice had higher C3d and IgM deposition compared to naïve serum. Older and CS-exposed mice had significantly worse neurological deficits and mortality compared to younger adults post-MCAO. B4Crry reduced mortality and motor deficits in young, old and old+CS mice with a higher effect size in comorbid animals. Age and/or CS exposure resulted in larger infarct volumes, and increased levels of C3d deposition and microglial activation compared to young adults, but aged/CS animals treated with B4Crry fared comparable to young adults. DISCUSSION/SIGNIFICANCE OF IMPACT: The pro-inflammatory effects of aging and smoking contribute to worse stroke outcomes, and these effects can be successfully mitigated by injury site-targeted complement inhibition.

Aging and Smoking Exacerbates Post-Stroke Complement Driven Neuroinflammation

Christine Couch1
1Medical University of South Carolina

OBJECTIVES/GOALS: Following stroke, complement-dependent neuroinflammation exacerbates secondary injury and worsens acute and chronic outcomes. We have shown that an injury site-targeted complement inhibitor (B4Crry), that targets specifically to the ischemic brain, inhibits complement activation leading to improved outcomes. Stroke comorbidities have been shown to promote a pro-inflammatory environment in the brain and systemically, and to exacerbate inflammatory responses after injury. We investigated the impact of age and smoking on acute outcomes after stroke and assessed whether increased complement activation contributes to the worsening outcomes with these stroke comorbidities. METHODS/STUDY POPULATION: Mouse brain endothelial cells (bEnd3) were exposed to hypoxia followed by exposure to serum that was derived from either cigarette smoke (CS)-exposed mice or naïve mice, and IgM and C3d deposition assessed. Adult (12 weeks) and aged (1 year) mice were subjected to 1h transient middle cerebral artery occlusion. Animals were exposed to CS for 3-6 months (5hr/day, 5days/week) by burning 3R4F cigarettes using a smoking machine. Animals were treated with B4Crry or vehicle intravenously 2h post-MCAO. Survival analysis and neurological deficit scores were performed up to 7 days. Brains were examined for histological and molecular analyses. RESULTS/ANTICIPATED RESULTS: Following hypoxia, bEnd3 cells exposed to serum from CS-exposed mice had higher C3d and IgM deposition compared to naïve serum. Older and CS-exposed mice had significantly worse neurological deficits and mortality compared to younger adults post-MCAO. B4Crry reduced mortality and motor deficits in young, old and old+CS mice with a higher effect size in comorbid animals. Age and/or CS exposure resulted in larger infarct volumes, and increased levels of C3d deposition and microglial activation compared to young adults, but aged/CS animals treated with B4Crry fared comparable to young adults. DISCUSSION/SIGNIFICANCE OF IMPACT: The pro-inflammatory effects of aging and smoking contribute to worse stroke outcomes, and these effects can be successfully mitigated by injury site-targeted complement inhibition.

Allopregnanolone Dose Finding for Status Epilepticus Treatment by Pharmacokinetic-Pharmacodynamic Modeling using Quantitative EEG in Dogs

Edward “Ned” Patterson1, Irene Vuur2, Dorota Zolkowska3, Chun-Yi Wu4, Ilo Leppik5, Greg Worrell5, Vaclav Kremen5, and James Cloyd4
1University of Minnesota CTSI; 2University of Minnesota College of Veterinary Medicine; 3University of California Davis Medical School; 4University of Minnesota College of Pharmacy; 5Mayo Clinic

OBJECTIVES/GOALS: Allopregnanolone (ALLO), a modulator of GABA_A receptors, may be useful as a treatment for human and canine benzodiazepine-refractory status epilepticus (SE). Our objective was to develop a pharmacokinetic-pharmacodynamic (PKPD) model relating ALLO plasma concentrations to electroencephalographic (EEG) effects in dogs. METHODS/STUDY POPULATION: Four healthy dogs and one dog with epilepsy that had implanted intracranial electrodes were utilized. ALLO doses ranging from 1-6 mg/kg were administered IV over 5 min. EEG data were collected during four IM doses (1-2 mg/kg). Blood samples were collected up to 6 hr following dosing. ALLO concentrations were measured using
HPLC-MS/MS. Power density was determined in EEG bands using a custom algorithm. A two-compartment link PKPD model was developed to describe the relation between ALLO plasma concentration and change in EEG power in the alpha, beta, delta and theta bands. RESULTS/ANTICIPATED RESULTS: ALLO caused a rapid increase in absolute power density in all EEG bands measured (1-4, >4 – 8, >8 – 12, >12 – 25, and >25 – 100 Hz). The onset of effect was rapid (1-3 min) and demonstrated by frequency band and dose analysis. Concentration-EEG data were best fit by a two-compartment PK model and sigmoideal Emx AD indirect link model. The beta frequency band was most sensitive, showing increases in power at the lowest ALLO concentrations. The EC50 concentration for the beta frequency was ~270 ng/mL. The EC50 values for effects on the other frequency bands were ~500-700 ng/mL. In conclusion, IV ALLO causes a rapid effect on EEG that can be used to determine minimal plasma concentrations associated with target engagement. DISCUSSION/SIGNIFICANCE OF IMPACT: Dose selection for future clinical trials will use the effective concentrations determined here in conjunction with studies in animal status epilepticus models. Studies are planned in client owned dogs with epilepsy to evaluate clinical efficacy in dogs and as nonclinical proof-of-concept evidence supporting translational studies in people. CONFLICT OF INTEREST DESCRIPTION: Michael Rogawski and Dorota Zolkowska are named as inventors on patent applications claiming evidence supporting translational studies in people.

Angiopoietin F-domain valency determines outcome of Tie2 receptor engagement and accelerates angiogenesis in tissue regeneration

Yan Ting Zhao1, Jorge Fallas1, Shally Saini1, George Ueda1, Logeshwaran Somasundaram1, Ziben Zhou1, Drew Seller1, David Baker1, and Hannele Ruohola-Baker1

1University of Washington

OBJECTIVES/GOALS: Lack of blood vessels remains a major obstacle in tissue regeneration. Angiopoietin 1 and 2 modulate angiogenesis through the Tie2 receptor tyrosine kinase. Ang1 activates pAKT to promote endothelial cell survival while Ang2 antagonizes these effects. We aim to dissect the Ang/Tie2 pathway to uncover the molecular basis for these opposing effects. METHODS/STUDY POPULATION: Ang1 and Ang2 bind Tie2 via nearly identical F-domains (Fd). To investigate the molecular basis regulating the Tie2 pathway, we generated a series of computationally designed self-assembling protein scaffolds presenting F-domains in a wide range of valencies and geometries using Rosette Molecular Modeling Suite. We examined the protein kinase activation, cell migration, and blood vessel formation produced by the designed proteins in human umbilical vein endothelial cells. RESULTS/ANTICIPATED RESULTS: Two phenotypic classes were demonstrated by the number of presented F domains: scaffolds presenting 3 or 4 Fd have Ang2 like activity, upregulating pFAK and pERK but not pAKT and failing to induce cell migration and tube formation; scaffolds presenting more than 6 Fd have Ang1 like activity, upregulating the three signaling branches and enhancing cell migration and tube formation. Scaffolds with 8 or more Fd show superagonist activity, producing significantly stronger phenotypes than Ang1. These results suggest that Fd valency largely determines Ang1 vs Ang2 signaling outcomes, and our designed superagonists can outperform Ang1 in vascularization and wound healing. In *in vivo* experiments, nanoparticles displaying 60 copies of Fd produce significant revascularization in hemorrhagic brains. DISCUSSION/SIGNIFICANCE OF IMPACT: Targeting the Tie2 pathway is a new paradigm in regenerative medicine. Our designed constructs will enable us to generate high-affinity Tie2 agonists and antagonists as drugs to control angiogenesis, enabling tissue regeneration that recapitulates the biological architecture of the native tissue physiology, improving organ transplant outcome.