Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS\(_2\) Nanoflakes

Nengjie Huo\(^1\), Shengxue Yang\(^1\), Zhongming Wei\(^2\), Shu-Shen Li\(^1\), Jian-Bai Xia\(^1\) & Jingbo Li\(^1\)

\(^1\)State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China, \(^2\)Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen \(\phi\), Denmark.

The photoelectrical properties of multilayer WS\(_2\) nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm\(^2\)/Vs and exhibit high photosensitive characteristics with response time \(t_{\text{on}}\) of \(<20\) ms, photo-responsivity \((R_p)\) of 5.7 A/W and external quantum efficiency \((\text{EQE})\) of 1118\%. In addition, charge transfer can appear between the multilayer WS\(_2\) nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH\(_3\) molecules can serve as electron donors to enhance the \(R_p\) and EQE significantly. Under the NH\(_3\) atmosphere, the maximum \(R_p\) and EQE can even reach 884 A/W and 1.7 \(\times\) 10\(^5\)% respectively. This work demonstrates that multilayer WS\(_2\) nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS\(_2\)-based optoelectronics.

Graphene, the monolayer counterpart of graphite, has attracted extensive attention in recent years because of its unusual electrical, optical, magnetic and mechanical properties\(^1\)\(^-\)\(^4\). It displays an exceptionally high carrier mobility exceeding 10\(^6\) cm\(^2\)/V \(\cdot\) s at 2 K and 15000 cm\(^2\)/V \(\cdot\) s at room temperature\(^5\), and the linear dispersion of the Dirac electrons near the K point makes graphene be used as photodetector with high operation frequencies\(^6\) and ultrawide band operation\(^7\). However, the zero bandgap of graphene limits its applications in optoelectronics, for example, field-effect transistors (FETs) based on graphene cannot be effectively switched off due to the high OFF-currents. In contrast, 2D transition metal dichalcogenides (TMDCs) with chemical formula MX\(_2\) (M = Mo, W, Ga, etc. and X = S, Se, or Te) possess sizable bandgaps\(^8\)\(^-\)\(^10\) around 1–2 eV, which attracted widely interest due to their interesting physical properties and applications in nanoelectronics, sensing and photonics\(^11\)\(^-\)\(^13\). Particularly, the 2D TMDCs based FETs, photodetectors and gas sensors have been extensively studied. As one earliest TMDCs used in FETs, WSe\(_2\) crystal\(^17\) shows high mobility \((>500\) cm\(^2\)/V \(\cdot\) s\)\(^-\) at 60 K, ambipolar behavior and 10\(^8\) on/off ratio at 60 K. Afterwards, mono or few-layer MoS\(_2\) FETs with a back-gated\(^18\) and top-gated configuration\(^19\) are reported to exhibit an excellent on/off ratio \((>10^9)\) and room-temperature mobility of \(>200\) cm\(^2\)/V \(\cdot\) s. Although the high photodetection performance, several problems such as very low responsivity \((<10^{-2})\) A/W and external quantum efficiency \((0.1–0.2\%)\) still remain with graphene photodetectors\(^20\)\(^-\)\(^21\). Compared to graphene-based devices, photodetectors made from TMDCs thin layers can exhibit enhanced responsivity and selectivity. For example, a few-layer MoS\(_2\) photodetector is demonstrated with improved responsivity \((0.57\) A/W) and fast photosresponse \((\sim70–110\) μs), and the monolayer MoS\(_2\)-based devices\(^22\) show a maximum photoresponsivity of 880 A/W. Recently, 2D GaS and GaSe thin nanosheets are also reported as high performance photodetectors\(^3\)^\(^1\)\(^-\)^\(^2\)^\(^3\)\(^-\)^\(^2\)^\(^4\). Moreover, TMDCs suggest opportunities in molecular sensing applications due to the high surface-to-volume ratio. For instance, single and few-layer MoS\(_2\) sheets have been demonstrated to be sensitive detectors for NO, NO\(_2\), NH\(_3\) and triethylamine gas\(^25\)\(^-\)\(^28\). The detection mechanism is probably due to the n-doping or p-doping induced by the adsorbed gas molecular, changing the resistivity of the intrinsically n-doped MoS\(_2\). However, as a typical member of 2D TMDCs materials, WS\(_2\) thin layers are less studied on their photoelectrical properties. Particularly, no research has been reported for the potential application of WS\(_2\) in photodetector and gas sensors. Actually, WS\(_2\) possesses some advantages compared to MoS\(_2\). For example, MoS\(_2\) is usually procured from natural sources with no control over contaminations. WS\(_2\) exhibits higher thermal stability\(^29\) and wider operation temperature range as lubricants\(^30\).
recent calculation also shows that single layer WS$_2$ has the potential to outperform other 2D crystals in FETs applications due to its favorable bandstructure, and the transistors based on chemically synthesized layered WS$_2$ is also reported to exhibit room temperature modulation and ambipolar behavior.

In this paper, multilayer WS$_2$ nanoflakes are exfoliated from the commercially available WS$_2$ crystals (Lamellae Co.) onto 300 nm SiO$_2$/Si substrates using conventional mechanical exfoliation technique. The multilayer WS$_2$ nanoflakes transistors show excellent field-effect properties with a high electron mobility of 12 cm2/V\cdots and high sensitive to red light (633 nm) with R_l (defined as the photocurrent generated per unit power of the incident light on the effective area) of 5.7 A/W and high EQE (defined as the number of photo-induced carriers detected per incident photons) of 1118%, indicating the 2D WS$_2$ will be a new promising material for high performance photodetectors. Moreover, the sensing of various gas molecules on this transistor is preliminary investigated for the first time. We find strong response upon exposure to reducing gas of ethanol and NH$_3$, which can serve as electron donors, enhancing n-type and conductivity of WS$_2$ nanoflakes. On the contrary, the oxidizing gas of oxygen can act as electron acceptors to withdraw substantial electrons from the WS$_2$ nanoflakes, depleting its n-type and reducing the conductivity. We also observe the enhanced R_l and prolonged response to the reducing gas, caused by temporary charge perturbation in the WS$_2$ nanoflakes from the adsorbed electron donors. Remarkably, the maximum R_l of the device can reach 884 A/W under light illumination of 50 μW/cm2 at the NH$_3$ atmosphere, which is 106 times higher than the first graphene-based photodetectors and 105 times higher than previous reports for monolayer MoS$_2$ phototransistors. Here, the excellent electrical, photosensitive and gas sensing properties of the multilayer WS$_2$ nanoflakes transistors are studied systematically, suggesting great potential practical applications in FETs, photodetectors and gas sensors.

Results

Characterization of multilayer WS$_2$ nanoflakes. Bulk WS$_2$ is an indirect-bandgap (1.4 eV) semiconductor, but can turn into a direct-bandgap (2.1 eV) material when exfoliated into the monolayer state. Each single plane of WS$_2$ comprises a trilayer composed of a tungsten layer sandwiched between two sulfur layers in a trigonal prismatic coordination as shown in Figure 1a. The multilayer WS$_2$ nanoflakes based transistors were fabricated with a coplanar electrode geometry by “gold-wire mask moving” technique. Through the AFM (Figure 1b and Figure S1) and SEM (Figure 1c) images of actual devices with SiO$_2$ as bottom gating, the thickness of the WS$_2$ nanoflakes is about 42 nm, and the width and length of the channel are 20 μm and 15 μm, respectively. Figure 1d shows the schematic diagram of the device. EDX (Figure S2) results indicate the existence of S and W elements with an atom ratio of 2 in the WS$_2$ nanoflakes.

The first-order Raman spectra of the WS$_2$ nanoflakes showed two optical phonon modes at the Brillouin zone center ($E_{1,2g}^\Gamma$ and A_{1g}^Γ) and one longitudinal acoustic mode at the M point ($LA(M)$). $E_{1,2g}^\Gamma$ was an in-plane optical mode, A_{1g}^Γ corresponded to out-of-plane vibrations of the sulfur atoms, and the longitudinal acoustic phonons $LA(M)$ were in-plane collective movements of the atoms (Figure S3). Raman spectra of the WS$_2$ nanoflakes were performed with the 532 nm laser excitations (Figure 1e). The first-order Raman peaks are identified at 175, 356.5 and 420.6 cm$^{-1}$, which are attributed to the $LA(M)$, $E_{1,2g}^\Gamma$ and A_{1g}^Γ modes, respectively. Additional peaks correspond to the second-order Raman modes which are multiphonon combinations of these first-order modes. Our Raman results for the multilayer WS$_2$ nanoflakes agree well with the previous reports.

Electrical properties under dark and light illumination. Owing to the lack of dangling bonds, structural stability and high mobility, 2D TMDCs were promising materials for FETs. To evaluate the
electrical performance of the multilayer WS₂ nanoflakes, the bottom-gated transistors on SiO₂/Si were fabricated. Figure 2a and 2b show the typical output and transfer characteristics respectively, performing an n-type behavior. According to the previous reports⁴¹,⁴², in the case of $V_G > V_T$ and $|V_{DS}| \ll |V_G - V_T|$, the FETs are turned on. The positive gate voltage (V_G) can induce large amounts of electrons in the interfaces between the WS₂ nanoflakes and SiO₂ substrate, and a conducting channel is created which allows the current to flow between the source and drain. The FETs operate like a resistor and work at linear region, thus the source-drain current (I_{DS}) can linearly depend of source-drain voltage (V_{DS}) as shown in the inset of Figure 2a. In this case, the I_{DS} and V_{DS} can satisfy the formula $I_{DS} = W L / \mu C_i (V_G - V_T) V_{DS}$, where L is channel length (20 μm), W is channel width (15 μm), and C_i is the gate capacitance which can be given by equation $C_i = e \rho_{d}/d$, ε_0 (8.85 \times 10^{-12} F/m) is vacuum dielectric constant, and ε_r (3.9) and d (300 nm) are dielectric constant and thickness of SiO₂ respectively. The field-effect carrier mobility (μ) and threshold voltage (V_T) of WS₂ nanoflakes based FETs can be calculated from the linear region of the output properties by supplying the values of I_{DS} and V_{DS} at different V_G into the above equation. We get that $V_T = -3.5$ V, and the electrons mobility is up to 12 cm²/Vs. To estimate the intrinsic doping level of the prepared WS₂ nanoflakes, I_{DS} at zero V_G was modeled as $I_{DS} = q n_{2D} W \mu (V_{DS} / L)$, where n_{2D} is the 2D carrier concentration, q is the electron charge. From the output characteristics of WS₂ nanoflakes (Figure 2a), n_{2D} is extracted to be $\sim 1.4 \times 10^{11}$ cm⁻². We have also performed Hall-effect measurements with four-probes on the WS₂ nanoflakes to accurately determine μ and n_{2D}, and the results are very similar with the field-effect μ and n_{2D} (Figure S4).

The multilayer WS₂ nanoflakes FETs were also illuminated with white light from LED and red light from red laser, and the output characteristics of the devices are shown in Figure 2c and 2d, respectively. The transfer characteristic curves under dark and light are shown in Figure 2e. The curves are obviously improved under both white and red light illumination, indicating the photosensitive property to the visible light. As discussed above, our prepared WS₂ nanoflakes perform n-type behavior with an intrinsic density of electrons of about 1.4×10^{11} cm⁻². The carriers density can be modulated by supplying the electrical gating, which can be explained simply using the parallel-plate capacitor model. When positive V_G is added on the bottom of dielectric (SiO₂), much electrons will be induced in the interface between WS₂ nanoflakes and SiO₂, serving as conducting channel and increasing the drain current. In contrast, negative V_G will deplete the electrons in the interface and reduce the drain current. In addition, the increased V_{DS} can increase the carrier drift velocity and reduce the carrier transit time T_t (defined as $T_t = L^2 / \mu V_{DS}$), thus contributing to the increased drain current (Figure 2e and 2f).

Photodetector based on WS₂ nanoflakes. Few- or monolayer MoS₂ was demonstrated as ultrasensitive photodetectors based on the previous reports⁴¹,⁴²,⁴³. In contrast to the widely studied MoS₂, used for photodetectors, little attention has been paid to the 2D WS₂. According to the above analysis, the multilayer WS₂ nanoflakes can response to the visible light especially the red light with

Figure 2 | Field effect of the multilayer WS₂ nanoflakes. (a) Output characteristics of the transistor based on multilayer WS₂ nanoflakes using Au/Au as the drain/source electrodes. The inset is linear region at low source drain voltage. (b) Transfer characteristics of the device at a fixed V_{DS} of 1 V on a log scale (left y axis) and on a linear scale (right y axis). All measurements were performed in air at room temperature with the absence of light. Output characteristics of the device with (c) white light (15 mW/cm²) from LEDs and (d) red light (633 nm, 15 mW/cm²) from red lasers. (e) Transfer characteristics of the devices in dark and under light illumination. (f) Output characteristics of the devices with V_{DS} ranging from 0 to 3 V.
633 nm since the energy of the red light approximates the band gap of WS\(_2\). Therefore, the photosensitive properties of the WS\(_2\) nanoflakes based photodetectors for the red light was measured systematically. Figure 3a shows the output characteristics under chopped red light irradiation with zero \(V_G\). The drain current can be modulated rapidly by the chopped light, and the current is significantly increased under the light irradiation compared to that in dark, implying a quick response to red light. As shown in Figure 3b, with light irradiation on/off, the device can work between low and high impedance states fast and reversibly with an on/off ratio (defined as \(I_{\text{photo}}/I_{\text{dark}}\) of 25, allowing the device to act as a high quality photosensitive switch. The device also exhibits very fast dynamic response for both rise and decay process (Figure 3c), the response and recovery time is shorter than the detection limit of our measurement setup (20 ms), which is shorter than values for phototransistors based on monolayer MoS\(_2\) and hybrid graphene quantum dot\(^{12,44}\), and it is also orders of magnitude shorter than the amorphous oxide semiconductors phototransistors\(^{45}\). Stability test of photo-switching behavior of the WS\(_2\) nanoflakes is also performed by switching the light on/off quickly and repetitively, accordingly the photocurrent of the device can change instantly between "ON" state and "OFF" state (Figure 3d). After hundreds of cycles, the photocurrent can still change with light switching on/off, displaying a high reversibility and stability of the device. Figure 3e shows the output characteristics under different light illumination densities. When the WS\(_2\) nanoflakes absorb the incident photons, large amounts of electron-pairs generate, forming like a conductive channel, and then being extracted by \(V_{\text{DS}}\) to form the photocurrent. With increasing light density, the photocurrent is increased significantly. From the "output" characteristics shown in Figure 3f, our phototransistor can be open by the incident light of about 10 mW/cm\(^2\). So, like the electrical field effect, the incident light field can also act as a "gating" to modulate the density of carries in the source drain channel and make important effect on the electrical properties of the device.

Gas sensing and its effect on photoresponse. Previous reports showed that the photoelectrical response properties were strongly affected by gas environment for the MoS\(_2\) monolayer-based phototransistors\(^{43}\). We also performed the photosensitive measurements of our devices in ambient air and under vacuum. The drain current under vacuum is higher than that in ambient air under both dark and light (Figure 4a), and the increment of current is more obvious under light illumination shown in the inset. Moreover, the photosensitivity is also enhanced under vacuum (Figure 4b). Density functional theory (DFT) calculations\(^{12}\) discover that the O\(_2\) and H\(_2\)O molecules can interact weakly to the TMDCs monolayer with binding energies ranging from 70 to 140 meV and substantial electrons can transfer into the physical-adsorbed gas molecules from the semiconductors. Large amounts of O\(_2\) and H\(_2\)O molecules exist in air and the WS\(_2\) nanoflakes display n-type behavior from the above Hall and field-effect results. In our case, O\(_2\) and H\(_2\)O molecules in ambient air can be physically adsorbed on the surface of the WS\(_2\) nanoflakes and withdraw numerous electrons from WS\(_2\), depleting the n-type of WS\(_2\) nanoflakes. Thus the resistance becomes larger due to the reduction of major conduction electrons.

Table 1	Threshold voltage (\(V_T\)), electron mobility (\(\mu\)), and density of electrons (\(n_{2D}\)) of a typical transistor under dark and light illumination		
Parameters	\(V_T\) (V)	\(\mu\) (cm\(^2\)/Vs)	\(n_{2D}\) (10\(^{10}\) cm\(^{-2}\))
Dark	-3.5	12	9.4
White light	-3.6	19.7	11
Red light	-4	25	17

![Figure 3](https://example.com/figure3.png)

Figure 3: The performance of the multilayer WS\(_2\) nanoflakes as photodetector. (a) Drain-source (\(I_{\text{DS}}-V_{\text{DS}}\)) characteristic of the device based on the WS\(_2\) nanoflakes under the chopped red light illumination (633 nm, 30 mW/cm\(^2\)). (b) Time-dependent photocurrent response during the light switching on/off at source drain voltage of 1.0 V. (c) Dynamic response characteristic of the device. The inset is corresponding to the rise (left) and decay (right) process. (d) Stability test of photo-switching behavior of the device with light switching on/off quickly and repetitively. (e) Source-drain (\(I_{\text{DS}}-V_{\text{DS}}\)) characteristics of the device under different incident optical power density from 0.1 to 62.8 mW/cm\(^2\) on a log scale. (f) "Output" characteristics of the device with light as "gating".
corresponding to the reduced I_{DS}. Upon light illumination in air, much electron-hole pairs generate and the density of electrons in the WS$_2$ nanoflakes is improved as discussed above. O$_2$ and H$_2$O molecules as electron acceptors will have more electrons to accept, corresponding to more gas molecules in ambient can be adsorbed and deplete more electrons, leading to the decreased photosensitivity. Moreover, the photocurrent shows a strong dependence on light intensity and the experimental data are fitted by a power equation

$$I_{ph} \propto P^a$$

where a is scaling constant, and a is exponent. Under vacuum, the photocurrent displays a power dependence of 0.91 (function: $I_{ph} \propto P^{0.91}$) as shown in Figure S5a, indicating a superior photocurrent capability and a high efficiency of photo-generated charge carriers from the adsorbed photons. However, the exponent a in air (function: $I_{ph} = 0.26P^{0.73}$) shown in Figure S5b is smaller than that under vacuum, indicating the route of the loss of the photo-excited carrier by the adsorbed O$_2$ or H$_2$O molecules in air. Similar phenomenon is also observed in MoS$_2$-based phototransistor43.

To further investigate the gas effect on the electrical and photosensitive properties of the multilayer WS$_2$ nanoflakes, the devices were placed in various gas environments during photoelectrical measurements. From the $I_{DS} - V_{DS}$ characteristics (Figure 4c) and time-dependent photocurrent response at various gas atmospheres during light switching on/off (Figure 4d), the WS$_2$ nanoflakes can obviously response to the given gas molecules which play an important and different roles in the conductivity and photosensitive properties of the devices. Figure 4e summarizes the drain current under these gas molecules both in dark and under light illumination, the drain current of the device is decreased in O$_2$ and air, but increased in ethanol and NH$_3$, compared to that under vacuum. The current

$$S = \left| \frac{I_{gas} - I_{vacuum}}{I_{vacuum}} \right|$$

and current change (B) (defined as $\Delta I = I_{gas} - I_{vacuum}$) under different conditions.

(h) The photo-responsivity R_p under various gas atmospheres, showing high sensitivity. The device exhibits a maximum R_p of 884 A/W with low light density of 50 mW/cm2.

Figure 4 | Gas sensing and its effect on photoresponse. (a) $I_{DS} - V_{DS}$ characteristics (on a log scale of y-axis) of the WS$_2$ nanoflakes photodetectors under dark or in the presence of light (633 nm, 30 mW/cm2) measured in air and in vacuum. The insert is corresponding curve on a linear scale of y-axis. (b) Time-dependent photocurrent response under air and vacuum during the light switching on/off. (c) $I_{DS} - V_{DS}$ characteristics (on a log scale of y-axis) of the device under dark or in the presence of light (633 nm, 40 mW/cm2) measured in various gas atmospheres. The inset is corresponding curves on a linear scale of y-axis. (d) Time-dependent photocurrent response under different gas atmospheres. (e) The extracted dark current and photocurrent under different gas atmospheres. (f) Schematic diagram of charge transfer process between adsorbed gas molecules and the multilayer WS$_2$ nanoflakes transistor. (g) The gas sensitivity (A) (defined as $S = \left| \frac{I_{gas} - I_{vacuum}}{I_{vacuum}} \right|$) and current change (B) (defined as $\Delta I = I_{gas} - I_{vacuum}$) under different conditions. (h) The photo-responsivity R_p under various gas atmospheres.
ethanol and NH₃ molecules, serving as electron acceptors, can donate electrons from WS₂, leading to a reduction in overall conductivity. In contrast, ethanol and NH₃ molecules, serving as electron donors, can donate electrons to the WS₂ nanoflakes, which enhance the total conducting electrons density, resulting in the increased current. The gas sensitivity is defined as $S = \left(I_{\text{gas}} - I_{\text{vacuum}} \right) / I_{\text{vacuum}}$, where I_{gas} is current of the device in target gas, and I_{vacuum} is current under vacuum, V_{DS} are 1 V. Figure 4g (A) shows the gas sensitivity of the device under different gas molecules. S is negative higher in O₂ than that in air, because of the higher concentration of O₂ acting as electron acceptor to deplete electrons. On the contrary, the ethanol and NH₃ molecules can act as electron donors to increase electrons in WS₂, displaying a positive S. Particularly, the sensitivity of NH₃ is much higher than that of other gas molecules, indicating the WS₂ nanoflakes are more sensitive to NH₃. Interestingly, we notice that the gas sensitivity of ethanol and NH₃ measured in dark is higher than that under light, but lower for O₂ and ambient air, the possible reason has been described in Supporting Information. In addition, the current change ΔI caused by gas adsorption represents the amounts of adsorbed gas molecules to some extent shown in Figure 4g (B). Obviously, both oxidizing (O₂) and reducing (NH₃, ethanol) gas molecules are easier to be adsorbed in the WS₂ nanoflakes under light illumination compared to under dark, ascribed to the redundant photo-excited electrons or holes.

Furthermore, the exponent z in O₂ ($1 \sim P^{0.62}$, Figure S6a) becomes very small, indicating the photo-excited carriers are continuously consumed by the adsorbed O₂ molecules with increasing light density. However, in ethanol ($1 \sim P^{1.02}$, Figure S6b) and NH₃ ($1 \sim P^{5.0}$, Figure S6c), the z is significantly enhanced, implying a high efficiency of photo-generated charge carriers, attributed to that more reducing gas (ethanol or NH₃) molecules can be adsorbed with increasing incident light density and more electrons can transfer from these adsorbates into the device. Thus, two physical processes upon light illumination including generation of photo-excited electrons and charge transfer from the adsorbed gas molecules can lead to the enhanced charge carrier density, demonstrating a high efficiency of photo-generated carriers. Figure 4h shows the R_0, acquired at different light power densities. At low illumination power density (50 μW/cm²) under NH₃ atmosphere, the device reaches a high R_0 of 884 A/W and EQE of 1.7 $\times 10^4$ %. The R_0 shows a monotonous decrease with increasing illumination intensity due to the saturation of trap states in the WS₂ nanoflakes, which is similar with the MoS₂-based photodetectors. While, at high light powers under the ethanol and NH₃ atmosphere, the R_0 presents a slight increase trend with increasing illumination intensity, further confirming that more reducing gas molecules can be adsorbed and transfer more electrons into the device under high illumination power. Moreover, the presence of gas molecules can also affect the dynamic response of the device, which is discussed in detail in Supporting Information (Figure S7). Briefly, unlike the single exponential formula for fitting the rise and fall photocurrent in other reports, the dynamic response for rise and fall in our device under the reducing atmosphere (ethanol and NH₃) can be perfectly fitted by double exponential formula, further indicating the existence of two physical mechanisms including rapid generation or recombination of photo-excited electron-hole pairs and gas adsorption or charge transfer process in the dynamic response to the light switching on/off.

Discussion

Based on the above experimental results, the multilayer WS₂ nanoflakes exhibit n-type behavior with relatively large electron mobility of 12 cm²/Vs, which is much higher than the CVD-grown monolayer WS₂ ($\mu = 0.01$ cm²/Vs) by three orders of magnitude and comparable to the widely studied few- or monolayer MoS₂ ($\mu = 0.1$–10 cm²/Vs) fabricated without high-k dielectrics but smaller than the top-gated transistors based on the monolayer MoS₂ (200 cm²/Vs) and WS₂ (~250 cm²/Vs) with high-k dielectrics which are studied more recently. According to the previous reports, the mobility could be improved significantly by deposition of high-k dielectric, such as HfO₂ ($\alpha = 19$), on the top of 2D materials (graphene or TMDCs) owing to dielectric screening of coulomb charging on charged impurities. The contact resistance or Schottky barrier could also influence the mobility extraction, and the low contact resistance would enhance the driven current and the electrons mobility by selecting the metal electrode with appropriate work function. However, in our device, Schottky barrier existed in the Au-WS₂ contacts from the non-linear characteristics of output curve. Thus, there is incredible room for improving the mobility of WS₂ nanoflakes FETs by using high-k dielectric and optimizing the contact fabrication. Besides, the multilayer WS₂ nanoflakes FETs display very small on/off ratio of only 13 times, ascribed to the high off-state current which is attributed to the large thickness of our WS₂ nanoflakes. It is predicted that mono- or few-layer WS₂ would exhibit high field-effect on/off ratio through reducing the off-state current. Therefore, we also fabricated few-layer WS₂ based FETs (Figure S8a). Through the transfer and output characteristics (Figure S8b–c), the few-layer WS₂ FETs exhibit ambipolar properties, the electron and hole mobility are calculated to be 0.47 and 0.79 cm²/Vs, respectively, and the on/off ratio is significantly improved to be >10⁴ attributed to the very low off-state current (10⁻¹⁴ A) which agrees well with our conjecture. Such results are different and showed higher on/off ratio but lower mobility of few-layer WS₂ compared to the multilayer WS₂ nanoflakes. Further study about the optoelectronic properties of few-layer WS₂ FETs is necessary for the next step.

As discussed above, the incident light field like the electrical field can also modulate the density of carriers in the source drain channel and make the multilayer WS₂ nanoflakes be used as ultrasensitive photodetectors with switching on/off ratio of 25 and fast response time of 20 ms. R_0 and EQE are critical parameters for evaluating the quality of photodetectors and large value of R_0 and EQE corresponds to high light-sensitivity. R_0 and EQE can be expressed as $R_0 = I_{ph}/PS$ and EQE = $hR_0/e\lambda$, where I_{ph} is the photo-excited current; P is the light power intensity; S is the effective illumination area; h is Planck’s constant; c is the velocity of light; e is electron charge; and λ is the excitation wavelength. From our experimental results, under light irradiation (633 nm) of 30 mW/cm² with V_{DS} of 1 V, the R_0 and EQE are calculated to be 5.7 A/W and 1118%, respectively, which are three orders of magnitude larger than the photodetectors reported for graphene or single-layer MoS₂, and even comparable to the reported GaSe and GaS-based photodetectors. The high R_0 and EQE are due to a high surface ratio which causes an efficient adsorption of photons. All of the optoelectronic parameters have been compared with those of other 2D materials (Table S1), demonstrating that the multilayer WS₂ nanoflakes have great potential in optoelectronics and highly sensitive photodetectors.

Some theoretical calculations and experimental results about the gas sensing of graphene and MoS₂-based transistors have been reported to demonstrate high sensitive to various gases, and it is pointed out that O₂ and H₂O can act as electron acceptors, whereas NH₃ and ethanol are donors. In our case, the WS₂ nanoflakes transistors can also respond to these given gas molecules. The source drain current of the device is decreased in O₂ and air and increased in ethanol and NH₃, attributed to the charge transfer between the WS₂ nanoflakes and the adsorbed gas molecules, which makes WS₂ nanoflakes can be used in gas sensors. In brief, the multilayer WS₂ nanoflakes are very sensitive to reducing gases, especially NH₃ molecules, but relatively poor sensitive to O₂ molecules. Under light illumina-
tion, all the gas molecules can be further adsorbed due to the increased electron-hole pairs, and the gas sensitivity is increased for O₂, but decreased for ethanol and NH₃. To our best of knowledge, this is the first report that may create much interest in further study about the gas sensing performance or the mutual influence with light for monolayer WS₂ or other 2D materials.

The gas molecules play an important role in the photosensitive properties. As on/off ratio, R, and EQE are critical parameters to evaluate the performance of a phototransistor, the effects of various gas molecules adsorption on the photosensitive properties are demonstrated with these parameters (Figure 5). Table 2 summarizes the performance parameters of our device at different gas atmospheres. The on/off ratio at all the gas atmospheres is lower than that in vacuum (Figure 5a). As mentioned above, poorly O₂ molecules are adsorbed in dark, but the adsorption capacity of O₂ is increased under light illumination. Thus, the reduction of photocurrent outweighs the reduction of dark current, leading to the reduced on/off ratio. As high sensitive gases for our device, the ethanol and NH₃ have been strongly adsorbed in dark, leading to that the dark current becomes very large. When the light illuminates the device, the proportion of increased photocurrent is smaller among the total current, so that the on/off ratio is also decreased. However, the R, and EQE of our device are increased significantly in the presence of the ethanol and NH₃ as shown in Figure 5b. The reason is that more ethanol or NH₃ molecules will be adsorbed and donate more electrons when the light illuminated the device, and the number of photo-induced electrons detected per incident photons is overall increased. On the contrary, the oxidizing gases like O₂ serving as electron acceptors will deplete the photo-induced electrons, leading to the decreased R, and EQE. Remarkably, the device even reaches a high R, of 884 A/W and EQE of 1.7 × 10⁴ % at low illumination power density (50 μW/cm²) under NH₃ atmosphere.

Our experimental results also indicate that the gas molecules can influence the dependence of photoresponse on illumination intensity and the dynamic response to the light illumination. For example, at NH₃ atmosphere, the dependent exponent n is significantly enhanced into 2.5, implying a high efficiency of photo-generated charge carriers attributed to that more NH₃ molecules can be adsorbed with increased incident light density and more electrons can be transferred from these adsorbates. When the light is switched on, the response to light exhibits two stages including rapid rise and then slow increase process into saturation photocurrent, and the rise photocurrent curve is perfectly fitted by double exponential formula. All the results reveal that two kinds of physical process including the generation of photo-excited electron-hole pairs and charge transfer between the adsorbed gas molecules and the WS₂ nanoflakes play an important role in the efficiency of photo-generated carriers and dynamic response of the device. The reducing gases especially NH₃ would enhance the photosensitivity and efficiency of photogenerated charge carriers, and prolong the response due to their adsorption or desorption with light switching on or off.

To summarize, we report a comprehensive and systematic study about the optoelectronic properties including the field-effect, photosensitive and gas sensing behavior of the multilayer WS₂ nanoflakes. The multilayer WS₂ nanoflakes perform an n-type behavior with electron mobility of 12 cm²/Vs. The light can serve as “light gating” to modulate the carrier distribution in the WS₂ nanoflakes, and the electrons density and mobility are improved under light illumination. Further, the photosensitive characteristics to red light (633 nm) are performed, and the τ, R, and EQE of the multilayer WS₂ nanoflakes photodetectors are <20 ms, 5.7 A/W and 1118%, respectively, demonstrating that the 2D multilayer WS₂ nanoflakes can be effectively used in highly sensitive photodetectors and fast photoelectric switches. Moreover, our devices can response to both oxidizing gas (O₂) and reducing gas (ethanol, NH₃) at room temperature ascribed to the charge transfer between the surface of the WS₂ nanoflakes and physical-adsorbed gas molecules. Under the light illumination, more gas molecules would be adsorbed, and the O₂ molecules acting as “p-dopants” can reduce the R, and EQE due to the consumption of photo-excited electrons, while the ethanol and NH₃ molecules acting as “n-dopants” can significantly enhance the R, and EQE owing to the contribution of electrons. It is noted that the maximum R, and EQE can reach 884 A/W and 1.7 × 10⁴ % respectively under the NH₃, which is highest value of reports so far to our best knowledge. On the other hand, the dynamic response to light under ethanol and NH₃ indicates the existence of two physical mechanisms involving the photo-generation or recombination of electron-hole pairs and gas adsorption or charge transfer. This work would also attract new interests in nanoelectronic and optoelectronic device based on mono- or few-layer WS₂.

Methods

The transistors based on multilayer WS₂ nanoflakes were fabricated with coplanar electrode geometry by “gold-wire mask moving” technique (Figure S9). Firstly, multilayer WS₂ nanoflakes were exfoliated from the WS₂ crystals onto 300 nm SiO₂/Si substrates using mechanical exfoliation technique, and with vacuum-annealing at 350 °C for 2 hours to remove the residual glue. Secondly, a micron...
gold-wire serving as a mask was fixed tightly on the top surface of WS 2 nanoflakes, and then a pair of Au electrodes was deposited onto the substrate by thermal evaporation. To avoid the scattering of metallic atoms onto the side-face of SiO/Si substrates, the sides of the substrate were covered with tinfoil.

Moreover, the distance between the thermal evaporation boat and the sample was increased to 15 cm and the deposition rate was controlled at around 0.5 A/s in order to minimize the heat influence. Finally, by slightly removing the Au wire mask and tinfoil, the Au electrodes were fabricated and a micron size gap was produced between the two electrodes.

1. Geim, A. K. Graphene: Status and Prospects. Science 324, 1530–1534 (2009).
2. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007).
3. Rao, N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
4. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
5. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).
6. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
7. Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).
8. Khan, M. A., Kuznia, J. N., Olson, D. T., Blasingame, M. & Bhattarai, A. R. Schottky-barrier photodetector based on Mg Doped P-type GaN films. Appl. Phys. Lett. 63, 2455–2456 (1993).
9. Wilson, J. A. & Yoffe, A. D. Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).
10. Yoffe, A. D. Layer compounds. Annu. Rev. Mater. Sci. 3, 147–170 (1973).
11. Tsai, D. S. et al. Few-Layer MoS 2 with High Bandwidth Photogain and Fast Optical Switching for use in Harsh Environments. ACS Nano 7, 3905–3911 (2013).
12. Tongay, S. et al. Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physioposition Gating. Nano Lett. 13, 2831–2836 (2013).
13. Hu, P. A. et al. Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Lett. 13, 1649–1654 (2013).
14. Hu, P. A., Wen, Z., Wang, L., Tan, P. & Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 6, 5988–5994 (2012).
15. Liu, W. et al. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe 2 Field Effect Transistors. Nano Lett. 13, 1893–1900 (2013).
16. Mak, K., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS 2 . Nat. Nanotechnol. 7, 494–498 (2012).
17. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).
18. Ayari, A., Cobas, E., Ogundadege, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).
19. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS 2 Transistors. Nano Lett. 6, 147–150 (2011).
20. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).
21. Nair, R. R. et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science 320, 1308–1308 (2008).
22. Lopez-Sanchez, O., Lembke, D., Kayci, M. & Kis, A. Ultrasmall photodetectors based on monolayer MoS 2 . Nat. Nanotechnol. 8, 497–501 (2013).
23. Xue, D. J. et al. Anisotropic Photoresponse Properties of Single Micron-Sized GeSe Nanosheet. Adv. Mater. 24, 4528–4533 (2012).
24. Late, D. J. et al. GaSe and GaSe Ultrathin Layer Transistors. Adv. Mater. 24, 3594–3594 (2012).
25. Li, H. et al. Fabrication of single- and multilayer MoS 2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012).
26. He, Q. et al. Fabrication of flexible MoS 2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).
27. Late, D. J. et al. Sensing Behavior of Atomically Thin-Layered MoS 2 Transistors. ACS Nano 7, 4879–4891 (2013).
28. Perkins, F. K. et al. The Chemical Vapor Sensing with Monolayer MoSe 2 . Nano Lett. 13, 668–673 (2013).
29. Brainard, W. A. The Thermal Stability And Friction Of The Disulfides, Diisulides, And Distearilures Of Molybdenum And Tungsten In Vacuum (10−6 torr to 10−5 torr). NASA, Washington, 1969.
30. Prasad, S. V., McDevitt, N. T. & Zabinski, J. S. Tribology of tungsten disulfide–nanocrystalline zinc oxide adhesive lubricants films from ambient to 500°C. Wear 237, 186–196 (2000).
31. Leiiao, L., Kumar, S. B., Yijian, O. & Jing, G. Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).
