ENERGY FUNCTIONALS FOR THE PARABOLIC
MONGE-AMPERE EQUATION

ZUOLIANG HOU AND QI LI

1. Introduction

Because of its close connection with the Kähler-Ricci flow, the parabolic complex Monge-Ampère equation on complex manifolds has been studied by many authors. See, for instance, [Cao85, CT02, PS06]. On the other hand, theories for complex Monge-Ampère equation on both bounded domains and complex manifolds were developed in [BT76, Yau78, CKNS85, Kol98]. In this paper, we are going to study the parabolic complex Monge-Ampère equation over a bounded domain.

Let \(\Omega \subset \mathbb{C}^n \) be a bounded domain with smooth boundary \(\partial \Omega \). Denote \(Q_T = \Omega \times (0, T) \) with \(T > 0 \), \(B = \Omega \times \{0\} \), \(\Gamma = \partial \Omega \times \{0\} \) and \(\Sigma_T = \partial \Omega \times (0, T) \). Let \(\partial_p Q_T \) be the parabolic boundary of \(Q_T \), i.e. \(\partial_p Q_T = B \cup \Gamma \cup \Sigma_T \).

Consider the following boundary value problem:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \log \det (u_{,\alpha \bar{\beta}}) &= f(t, z, u) \quad \text{in} \ Q_T, \\
u &= \varphi \quad \text{on} \ \partial_p Q_T.
\end{aligned}
\]

where \(f \in C^\infty(\mathbb{R} \times \bar{\Omega} \times \mathbb{R}) \) and \(\varphi \in C^\infty(\partial_p Q_T) \). We will always assume that

\[
\frac{\partial f}{\partial u} \leq 0.
\]

Then we will prove that

Theorem 1. Suppose there exists a spatial plurisubharmonic (psh) function \(\underline{u} \in C^2(Q_T) \) such that

\[
\begin{aligned}
\underline{u}_t - \log \det (u_{,\alpha \bar{\beta}}) &\leq f(t, z, \underline{u}) \quad \text{in} \ Q_T, \\
\underline{u} &\leq \varphi \quad \text{on} \ B \quad \text{and} \quad \underline{u} = \varphi \quad \text{on} \ \Sigma_T \cap \Gamma.
\end{aligned}
\]

Then there exists a spatial psh solution \(u \in C^\infty(Q_T) \) of (1) with \(u \geq \underline{u} \) if following compatibility condition is satisfied: \(\forall z \in \partial \Omega \),

\[
\begin{aligned}
\varphi_t - \log \det (\varphi_{,\alpha \bar{\beta}}) &= f(0, z, \varphi(z)), \\
\varphi_{tt} - (\log \det (\varphi_{,\alpha \bar{\beta}}))_t &= f_t(0, z, \varphi(z)) + f_u(0, z, \varphi(z)) \varphi_t.
\end{aligned}
\]
Motivated by the energy functionals in the study of the Kähler-Ricci flow, we introduce certain energy functionals to the complex Monge-Ampère equation over a bounded domain. Given \(\varphi \in C^\infty(\partial \Omega) \), denote

\[
P(\Omega, \varphi) = \{ u \in C^2(\overline{\Omega}) \mid u \text{ is psh, and } u = \varphi \text{ on } \partial \Omega \},
\]

then define the \(F^0 \) functional by following variation formula:

\[
\delta F^0(u) = \int_\Omega \delta u \det (u_{\alpha \bar{\beta}}).
\]

We shall show that the \(F^0 \) functional is well-defined. Using this \(F^0 \) functional and following the ideas of [PS06], we prove that

Theorem 2. Assume that both \(\varphi \) and \(f \) are independent of \(t \), and

\[
f_u \leq 0 \quad \text{and} \quad f_{uu} \leq 0.
\]

Then the solution \(u \) of (1) exists for \(T = +\infty \), and as \(t \) approaches \(+\infty \), \(u(\cdot, t) \) approaches the unique solution of the Dirichlet problem

\[
\begin{cases}
\det (v_{\alpha \bar{\beta}}) = e^{-f(z,v)} & \text{in } Q_T, \\
v = \varphi & \text{on } \partial_p Q_T,
\end{cases}
\]

in \(C^{1,\alpha}(\Omega) \) for any \(0 < \alpha < 1 \).

Remark: Similar energy functionals have been studied in [Bak83, Ts90, Wan94, TW97, TW98] for the real Monge-Ampère equation and the real Hessian equation with homogeneous boundary condition \(\varphi = 0 \), and the convergence for the solution of the real Hessian equation was also proved in [TW98]. Our construction of the energy functionals and the proof of the convergence also work for these cases, and thus we also obtain an independent proof of these results. Li [Li04] and Blocki [Bl05] studied the Dirichlet problems for the complex \(k \)-Hessian equations over bounded complex domains. Similar energy functional can also be constructed for the parabolic complex \(k \)-Hessian equations and be used for the proof of the convergence.

2. A priori \(C^2 \) estimate

By the work of Krylov [Kry83], Evans [Eva82], Caffarelli etc. [CKNS85] and Guan [Gua98], it is well known that in order to prove the existence and smoothness of (1), we only need to establish the a priori \(C^{2,1}(\overline{Q}_T) \) estimate, i.e. for solution \(u \in C^{4,1}(\overline{Q}_T) \) of (1) with

\[
u(\cdot, t) = u \quad \text{on } \Sigma_T \cup \Gamma \quad \text{and} \quad u \geq u \quad \text{in } Q_T,
\]

then

\[
\| u \|_{C^{2,1}(Q_T)} \leq M_2,
\]

where \(M_2 \) only depends on \(Q_T, u, f \) and \(\| u(\cdot, 0) \|_{C^2(\Omega)} \).

\(^{1}C^{m,n}(Q_T)\) means \(m \) times and \(n \) times differentiable in space direction and time direction respectively, same for \(C^{m,n} \)-norm.
Proof of (10). Since u is spatial psh and $u \geq u$, so

$$\underline{u} \leq u \leq \sup_{\Sigma_T} u$$

i.e.

(11) $||u||_{C^0(\bar{Q}_T)} \leq M_0$.

Step 1. $|u_t| \leq C_1$ in \bar{Q}_T.

Let $G = u_t(2M_0 - u)^{-1}$. If G attains its minimum on \bar{Q}_T at the parabolic boundary, then $u_t \geq -C_1$ where C_1 depends on M_0 and u_t on Σ. Otherwise, at the point where G attains the minimum,

(12) $G_t \leq 0$ i.e. $u_{tt} + (2M_0 - u)^{-1}u_t^2 \leq 0$,

$G_\alpha = 0$ i.e. $u_{t\alpha} + (2M_0 - u)^{-1}u_t u_\alpha = 0$,

$G_{\bar{\beta}} = 0$ i.e. $u_{t\bar{\beta}} + (2M_0 - u)^{-1}u_t u_{\bar{\beta}} = 0$,

and the matrix $G_{\alpha\bar{\beta}}$ is non-negative, i.e.

(13) $u_{t\alpha\bar{\beta}} + (2M_0 - u)^{-1}u_t u_{\alpha\bar{\beta}} \geq 0$.

Hence

(14) $0 \leq u^{\alpha\bar{\beta}}(u_{t\alpha\bar{\beta}} + (2M_0 - u)^{-1}u_t u_{\alpha\bar{\beta}}) = u^{\alpha\bar{\alpha}} u_{t\alpha\bar{\beta}} + n(2M_0 - u)^{-1}u_t$,

where $(u^{\alpha\bar{\beta}})$ is the inverse matrix for $(u_{\alpha\bar{\beta}})$, i.e.

$$u^{\alpha\bar{\beta}} u_{\gamma\bar{\beta}} = \delta^\alpha_\gamma.$$

Differentiating (11) in t, we get

(15) $u_{tt} - u^{\alpha\bar{\beta}} u_{t\alpha\bar{\beta}} = f_t + f_u u_t$,

so

$$ (2M_0 - u)^{-1}u_t^2 \leq -u_{tt}$$

$$ = -u^{\alpha\bar{\beta}} u_{t\alpha\bar{\beta}} - f_t - f_u u_t$$

$$ \leq n(2M_0 - u)^{-1}u_t - f_u u_t - f_t,$$

hence

$$u_t^2 - (n - (2M_0 - u)f_u)u_t + f_t(2M_0 - u) \leq 0.$$

Therefore at point p, we get

(16) $u_t \geq -C_1$

where C_1 depends on M_0 and f.

Similarly, by considering the function $u_t(2M_0 + u)^{-1}$ we can show that

(17) $u_t \leq C_1$.

Step 2. $|\nabla u| \leq M_1$
Extend $u|_{\Sigma}$ to a spatial harmonic function h, then
\[u \leq u \leq h \text{ in } Q_T \quad \text{and} \quad u = u = h \text{ on } \Sigma_T. \]
So
\[|\nabla u|_{\Sigma_T} \leq M_1. \]

Let L be the linear differential operator defined by
\[Lv = \frac{\partial v}{\partial t} - u^{\alpha\beta}v_{\alpha\beta} - fuv. \]
Then
\[L(\nabla u + e^{\lambda|z|^2}) = L(\nabla u) + Le^{\lambda|z|^2} \]
\[\leq \nabla f - e^{\lambda|z|^2}(\lambda \sum u^{\alpha\bar{\alpha}} - fu). \]
Noticed that and both u and \dot{u} are bounded and
\[\det(u_{\alpha\bar{\beta}}) = e^{\dot{u} - f}, \]
so
\[0 < c_0 \leq \det(u_{\alpha\bar{\beta}}) \leq c_1, \]
where c_0 and c_1 depends on M_0 and f. Therefore
\[\sum u^{\alpha\bar{\alpha}} \geq nc_1^{-1/n}. \]
Hence after taking λ large enough, we can get
\[L(\nabla u + e^{\lambda|z|^2}) \leq 0, \]
thus
\[|\nabla u| \leq \sup_{\partial_p Q_T} |\nabla u| + C_2 \leq M_1. \]

Step 3. $|\nabla^2 u| \leq M_2$ on Σ.

At point $(p, t) \in \Sigma$, we choose coordinates z_1, \cdots, z_n for Ω, such that at $z_1 = \cdots = z_n = 0$ at p and the positive x_n axis is the interior normal direction of $\partial \Omega$ at p. We set $s_1 = y_1, s_2 = x_1, \cdots, s_{2n-1} = y_n, s_{2n} = x_n$ and $s' = (s_1, \cdots, s_{2n-1})$. We also assume that near p, $\partial \Omega$ is represented as a graph
\[x_n = \rho(s') = \frac{1}{2} \sum_{j,k<2n} B_{jk} s_j s_k + O(|s'|^3). \]
Since $(u - \bar{u})(s', \rho(s'), t) = 0$, we have for $j, k < 2n$,
\[(u - \bar{u})_{s_js_k}(p, t) = -(u - \bar{u})_{x_n}(p, t)B_{jk}, \]
hence
\[|u_{s_js_k}(p, t)| \leq C_3, \]
where C_3 depends on $\partial \Omega, u$ and M_1.
We will follow the construction of barrier function by Guan [Gua98] to estimate $|u_{x_n s_j}|$. For $\delta > 0$, denote $Q_\delta(p,t) = (\Omega \cap B_\delta(p)) \times (0,t)$.

Lemma 3. Define the function

$$ (28) \quad d(z) = \text{dist}(z, \partial \Omega) $$

and

$$ (29) \quad v = (u - \underline{u}) + a(h - \underline{u}) - N d^2. $$

Then for N sufficiently large and a, δ sufficiently small,

$$ (30) \quad L v \geq \epsilon (1 + \sum |u^{\alpha \bar{\beta}}|) \quad \text{in} \quad Q_\delta(p,t) $$

$$ v \geq 0 \quad \text{on} \quad \partial (B_\delta(p) \cap \Omega) \times (0,t) $$

$$ v(z,0) \geq c_3 |z| \quad \text{for} \quad z \in B_\delta(p) \cap \Omega $$

where ϵ depends on the uniform lower bound of the eigenvalues of $\{u^{\alpha \bar{\beta}}\}$.

Proof. See the proof of Lemma 2.1 in [Gua98]. \square

For $j < 2n$, consider the operator

$$ T_j = \frac{\partial}{\partial s_j} + \rho_{s_j} \frac{\partial}{\partial x_n}. $$

Then

$$ T_j(u - \underline{u}) = 0 \quad \text{on} \quad (\partial \Omega \cap B_\delta(p)) \times (0,t) $$

$$ |T_j(u - \underline{u})| \leq M_1 \quad \text{on} \quad (\Omega \cap \partial B_\delta(p)) \times (0,t) $$

$$ |T_j(u - \underline{u})(z,0)| \leq C_4 |z| \quad \text{for} \quad z \in B_\delta(p) $$

So by Lemma 3, we may choose C_5 independent of u, and $A >> B >> 1$ so that

$$ L(A v + B |z|^2 - C_5 (u_{y_n} - \underline{u}_{y_n})^2 \pm T_j(u - \underline{u})) \geq 0 \quad \text{in} \quad Q_\delta(p,t), $$

$$ A v + B |z|^2 - C_5 (u_{y_n} - \underline{u}_{y_n})^2 \pm T_j(u - \underline{u}) \geq 0 \quad \text{on} \quad \partial_p Q_\delta(p,t). $$

Hence by the comparison principle,

$$ A v + B |z|^2 - C_5 (u_{y_n} - \underline{u}_{y_n})^2 \pm T_j(u - \underline{u}) \geq 0 \quad \text{in} \quad Q_\delta(p,t), $$

and at (p,t)

$$ |u_{x_n y_j}| \leq M_2. $$

To estimate $|u_{x_n x_n}|$, we will follow the simplification in [Tru95]. For $(p,t) \in \Sigma$, define

$$ \lambda(p,t) = \min \{ u_{\xi \bar{\xi}} \mid \text{complex vector } \xi \in T_p \partial \Omega, \text{ and } |\xi| = 1 \} $$

Claim $\lambda(p,t) \geq c_4 > 0$ where c_4 is independent of u.

Let us assume that $\lambda(p,t)$ attains the minimum at (z_0, t_0) with $\xi \in T_{z_0} \partial \Omega$. We may assume that

$$ \lambda(z_0, t_0) < \frac{1}{2} u_{\xi \bar{\xi}}(z_0, t_0). $$
Take a unitary frame e_1, \cdots, e_n around z_0, such that $e_1(z_0) = \xi$, and $\Re e_n = \gamma$ is the interior normal of $\partial \Omega$ along $\partial \Omega$. Let r be the function which defines Ω, then

$$(u - \underline{u})_{11}(z, t) = -r_{11}(z)(u - \underline{u})_\gamma(z, t) \quad z \in \partial \Omega$$

Since $u_{11}(z_0, t_0) < \underline{u}_{11}(z_0, t_0)/2$, so

$$-r_{11}(z_0)(u - \underline{u})_\gamma(z_0, t_0) \leq \frac{1}{2}\underline{u}_{11}(z_0, t_0).$$

Hence

$$r_{11}(z_0)(u - \underline{u})_\gamma(z_0, t_0) \geq \frac{1}{2}\underline{u}_{11}(z_0, t_0) \geq c_5 > 0.$$

Since both ∇u and $\nabla \underline{u}$ are bounded, we get

$$r_{11}(z_0) \geq c_6 > 0,$$

and for δ sufficiently small (depends on r_{11}) and $z \in B_\delta(z_0) \cap \Omega$,

$$r_{11}(z) \geq \frac{c_6}{2}.$$

So by $u_{11}(z, t) \geq u_{11}(z_0, t_0)$, we get

$$\underline{u}_{11}(z, t) - r_{11}(z)(u - \underline{u})_\gamma(z, t) \geq \underline{u}_{11}(z_0, t_0) - r_{11}(z_0)(u - \underline{u})_\gamma(z_0, t_0).$$

Hence if we let

$$\Psi(z, t) = \frac{1}{r_{11}(z)}(r_{11}(z_0)(u - \underline{u})_\gamma(z_0, t_0) + \underline{u}_{11}(z, t) - \underline{u}_{11}(z_0, t_0))$$

then

$$(u - \underline{u})_\gamma(z, t) \leq \Psi(z, t) \quad \text{on } (\partial \Omega \cap B_\delta(z_0)) \times (0, T)$$

$$(u - \underline{u})_\gamma(z_0, t_0) = \Psi(z_0, t_0).$$

Now take the coordinate system z_1, \cdots, z_n as before. Then

$$(u - \underline{u})_{x_n}(z, t) \leq \frac{1}{\gamma_n(z)}\Psi(z, t) \quad \text{on } (\partial \Omega \cap B_\delta(z_0)) \times (0, T)$$

(34)

$$(u - \underline{u})_{x_n}(z_0, t_0) = \frac{1}{\gamma_n(z_0)}\Psi(z_0, t_0).$$

where γ_n depends on $\partial \Omega$. After taking C_6 independent of u and $A >> B >> 1$, we get

$$L(Av + B|z|^2 - C_6(u_{y_n} - \underline{u}_{y_n})^2 + \frac{\Psi(z, t)}{\gamma_n(z)} - T_j(u - \underline{u})) \geq 0 \quad \text{in } Q_\delta(p, t),$$

$$Av + B|z|^2 - C_6(u_{y_n} - \underline{u}_{y_n})^2 + \frac{\Psi(z, t)}{\gamma_n(z)} - T_j(u - \underline{u}) \geq 0 \quad \text{on } \partial \Omega Q_\delta(p, t).$$

So

$$Av + B|z|^2 - C_6(u_{y_n} - \underline{u}_{y_n})^2 + \frac{\Psi(z, t)}{\gamma_n(z)} - T_j(u - \underline{u}) \geq 0 \quad \text{in } Q_\delta(p, t),$$

and

$$|u_{x_n, x_n}(z_0, t_0)| \leq C_7.$$
Therefore at \((z_0, t_0)\), \(u_{\overline{\alpha}\beta}\) is uniformly bounded, hence
\[
u_{11}(z_0, t_0) \geq c_4
\]
with \(c_4\) independent of \(u\). Finally, from the equation
\[
det u_{\alpha\overline{\beta}} = e^{u-f}
\]
we get
\[
|u_{x_n x_n}| \leq M_2.
\]

Step 4. \(|\nabla^2 u| \leq M_2\) in \(Q\).

By the concavity of \(\log \det\), we have
\[
L(\nabla^2 u + e^{\lambda |z|^2}) \leq O(1) - e^{\lambda |z|^2}(\lambda \sum u^{\alpha\overline{\alpha}} - f_u)
\]
So for \(\lambda\) large enough,
\[
L(\nabla^2 u + e^{\lambda |z|^2}) \leq 0,
\]
and
\[
(35) \quad \sup |\nabla^2 u| \leq \sup_{\partial_p Q_T} |\nabla^2 u| + C_8
\]
with \(C_8\) depends on \(M_0, \Omega\) and \(f\).

\[\square\]

3. The Functionals \(I, J\) and \(F^0\)

Let us recall the definition of \(\mathcal{P}(\Omega, \varphi)\) in (5),
\[
\mathcal{P}(\Omega, \varphi) = \{ u \in C^2(\overline{\Omega} \mid u \text{ is psh, and } u = \varphi \text{ on } \partial \Omega \}.
\]
Fixing \(v \in \mathcal{P}\), for \(u \in \mathcal{P}\), define
\[
(36) \quad I_v(u) = -\int_\Omega (u - v)(\sqrt{-1} \partial \overline{\partial} u)^n.
\]

Proposition 4. There is a unique and well defined functional \(J_v\) on \(\mathcal{P}(\Omega, \varphi)\), such that
\[
(37) \quad \delta J_v(u) = -\int_\Omega \delta u((\sqrt{-1} \partial \overline{\partial} u)^n - (\sqrt{-1} \partial \overline{\partial} v)^n),
\]
and \(J_v(v) = 0\).

Proof. Notice that \(\mathcal{P}\) is connected, so we can connect \(v\) to \(u \in \mathcal{P}\) by a path \(u_t, 0 \leq t \leq 1\) such that \(u_0 = v\) and \(u_1 = u\). Define
\[
(38) \quad J_v(u) = -\int_0^1 \int_\Omega \frac{\partial u_t}{\partial t}((\sqrt{-1} \partial \overline{\partial} u_t)^n - (\sqrt{-1} \partial \overline{\partial} v)^n) dt.
\]
We need to show that the integral in (38) is independent of the choice of path \(u_t\). Let \(\delta u_t = w_t\) be a variation of the path. Then
\[
w_1 = w_0 = 0 \quad \text{and} \quad w_t = 0 \quad \text{on} \ \partial \Omega,
\]
and
\[
\delta \int_0^1 \int_\Omega \dot{u} \left((\sqrt{-1}\partial\bar{\partial}u)^n - (\sqrt{-1}\partial\bar{\partial}v)^n\right) dt
\]
\[
= \int_0^1 \int_\Omega \left(\dot{w}((\sqrt{-1}\partial\bar{\partial}u)^n - (\sqrt{-1}\partial\bar{\partial}v)^n) + \dot{u} n\sqrt{-1}\partial\bar{\partial}w(\sqrt{-1}\partial\bar{\partial}u)^{n-1}\right) dt,
\]

Since \(w_0 = w_1 = 0 \), an integration by part with respect to \(t \) gives
\[
\int_0^1 \int_\Omega \dot{w}((\sqrt{-1}\partial\bar{\partial}u)^n - (\sqrt{-1}\partial\bar{\partial}v)^n) dt
\]
\[
= -\int_0^1 \int_\Omega \frac{d}{dt}(\sqrt{-1}\partial\bar{\partial}u)^n dt = -\int_0^1 \int_\Omega \sqrt{-1}n\partial\bar{\partial}u(\sqrt{-1}\partial\bar{\partial}u)^{n-1} dt.
\]

Notice that both \(w \) and \(\dot{u} \) vanish on \(\partial\Omega \), so an integration by part with respect to \(z \) gives
\[
\int_\Omega \sqrt{-1}nw\partial\bar{\partial}\dot{u}(\sqrt{-1}\partial\bar{\partial}u)^{n-1} dt = -\int_\Omega \sqrt{-1}n\partial\bar{\partial}w(\sqrt{-1}\partial\bar{\partial}u)^{n-1} dt
\]
\[
= \int_\Omega \sqrt{-1}n\partial\bar{\partial}w(\sqrt{-1}\partial\bar{\partial}u)^{n-1} dt.
\]

So
\[
(39) \quad \delta \int_0^1 \int_\Omega \dot{u} \left((\sqrt{-1}\partial\bar{\partial}u)^n - (\sqrt{-1}\partial\bar{\partial}v)^n\right) dt = 0,
\]
and the functional \(J \) is well defined. \(\square \)

Using the \(J \) functional, we can define the \(F^0 \) functional as
\[
(40) \quad F^0_v(u) = J_v(u) - \int_\Omega u(\sqrt{-1}\partial\bar{\partial}v)^n.
\]

Then by Proposition 4, we have
\[
(41) \quad \delta F^0_v(u) = -\int_\Omega \delta u(\sqrt{-1}\partial\bar{\partial}u)^n.
\]

Proposition 5. The basic properties of \(I, J \) and \(F^0 \) are following:

1. For any \(u \in \mathcal{P}(\Omega, \varphi) \), \(I_v(u) \geq J_v(u) \geq 0 \).
2. \(F^0 \) is convex on \(\mathcal{P}(\Omega, \varphi) \), i.e. \(\forall u_0, u_1 \in \mathcal{P} \),
\[
(42) \quad F^0 \left(\frac{u_0 + u_1}{2}\right) \leq \frac{F^0(u_0) + F^0(u_1)}{2}.
\]
3. \(F^0 \) satisfies the cocycle condition, i.e. \(\forall u_1, u_2, u_3 \in \mathcal{P}(\Omega, \varphi) \),
\[
(43) \quad F^0_{u_1}(u_2) + F^0_{u_2}(u_3) = F^0_{u_1}(u_3).
\]
To prove (42), let u and (44)

\[\text{Compare (44) and (45), it is easy to see that} \]

\[\int_{0}^{1} \int_{\Omega} \sqrt{-1} n w \partial \bar{w} (\sqrt{-1} \partial \bar{u}_t)^{n-1} dt \geq 0, \]

and

\[J_v(u) = \int_{0}^{1} \int_{\Omega} w((\sqrt{-1} \partial \bar{u}_t)^{n} - (\sqrt{-1} \partial \bar{v})^{n}) dt \]

\[= \int_{0}^{1} \int_{\Omega} w(\int_{0}^{t} \frac{ds}{ds} (\sqrt{-1} \partial \bar{u}_s)^{n} ds) dt \]

\[= \int_{0}^{1} \int_{\Omega} \int_{0}^{t} \sqrt{-1} n w \partial \bar{w} (\sqrt{-1} \partial \bar{u}_s)^{n-1} ds dt \]

\[= \int_{0}^{1} \int_{\Omega} (1 - s) \sqrt{-1} n \partial \bar{w} \bar{w} \wedge (\sqrt{-1} \partial \bar{u}_s)^{n-1} ds \geq 0. \]

Compare (44) and (45), it is easy to see that

\[I_v(u) \geq J_v(u) \geq 0. \]

To prove (42), let $u_t = (1 - t)u_0 + tu_1$, then

\[F^0(u_1/2) - F^0(u_0) = - \int_{0}^{\frac{1}{2}} \int_{\Omega} (u_1 - u_0) (\sqrt{-1} \partial \bar{u}_t)^{n} dt, \]

\[F^0(u_1) - F^0(u_1/2) = - \int_{\frac{1}{2}}^{1} \int_{\Omega} (u_1 - u_0) (\sqrt{-1} \partial \bar{u}_t)^{n} dt. \]

Since

\[\int_{0}^{\frac{1}{2}} \int_{\Omega} (u_1 - u_0) (\sqrt{-1} \partial \bar{u}_t)^{n} dt - \int_{\frac{1}{2}}^{1} \int_{\Omega} (u_1 - u_0) (\sqrt{-1} \partial \bar{u}_t)^{n} dt. \]

\[= \int_{0}^{\frac{1}{2}} \int_{\Omega} (u_1 - u_0) ((\sqrt{-1} \partial \bar{u}_t)^{n} - (\sqrt{-1} \partial \bar{u}_{t+1/2})^{n}) dt \]

\[= 2 \int_{0}^{\frac{1}{2}} \int_{\Omega} (u_{t+1/2} - u_t) ((\sqrt{-1} \partial \bar{u}_t)^{n} - (\sqrt{-1} \partial \bar{u}_{t+1/2})^{n}) dt \geq 0. \]

So

\[F^0(u_1) - F^0(u_1/2) \geq F^0(u_{1/2}) - F^0(u_0). \]

The cocycle condition is a simple consequence of the variation formula.
4. The Convergence

In this section, let us assume that both \(f \) and \(\varphi \) are independent of \(t \). For \(u \in \mathcal{P}(\Omega, \varphi) \), define

\[
F(u) = F_0(u) + \int_{\Omega} G(z, u) dV,
\]

where \(dV \) is the volume element in \(\mathbb{C}^n \), and \(G(z, s) \) is the function given by

\[
G(z, s) = \int_{s}^{0} e^{-f(z, t)} dt.
\]

Then the variation of \(F \) is

\[
\delta F(u) = -\int_{\Omega} \delta u (\det(u_{\alpha\bar{\beta}}) - e^{-f(z, u)}) dV.
\]

Proof of Theorem 2. We will follow Phong and Sturm’s proof of the convergence of the Kähler-Ricci flow in [PS06]. For any \(t > 0 \), the function \(u(\cdot, t) \) is in \(\mathcal{P}(\Omega, \varphi) \). So by (47)

\[
\frac{d}{dt} F(u) = -\int_{\Omega} \dot{u} (\det(u_{\alpha\bar{\beta}}) - e^{-f(z, u)})
\]

Thus \(F(u(\cdot, t)) \) is monotonic decreasing as \(t \) approaches \(+\infty \). On the other hand, \(u(\cdot, t) \) is uniformly bounded in \(C^2(\Omega) \) by (10), so both \(F_0(u(\cdot, t)) \) and \(f(z, u(\cdot, t)) \) are uniformly bounded, hence \(F(u) \) is bounded. Therefore

\[
\int_{0}^{\infty} \int_{\Omega} (\log \det(u_{\alpha\bar{\beta}}) + f(z, u)) (\det(u_{\alpha\bar{\beta}}) - e^{-f(z, u)}) dt < \infty.
\]

Observed that by the Mean Value Theorem, for \(x, y \in \mathbb{R} \),

\[(x + y)(e^x - e^y) = (x + y)^2 e^\eta \geq e^{\min(x, -y)} (x - y)^2,
\]

where \(\eta \) is between \(x \) and \(-y \). Thus

\[(\log \det(u_{\alpha\bar{\beta}}) + f) (\det(u_{\alpha\bar{\beta}}) - e^{-f}) \geq C_9 (\log \det(u_{\alpha\bar{\beta}}) + f)^2 = C_9 |\dot{u}|^2
\]

where \(C_9 \) is independent of \(t \). Hence

\[
\int_{0}^{\infty} \|\dot{u}\|^2_{L^2(\Omega)} dt \leq \infty.
\]

Let

\[
Y(t) = \int_{\Omega} |\dot{u}(\cdot, t)|^2 \det(u_{\alpha\bar{\beta}}) dV,
\]

then

\[
\dot{Y} = \int_{\Omega} (2\dddot{u} + \dot{u}^2 u_{\alpha\bar{\beta}} \dddot{u}_{\alpha\bar{\beta}}) \det(u_{\alpha\bar{\beta}}) dV.
\]

Differentiate (11) in \(t \),

\[
\dddot{u} - u_{\alpha\beta} \dddot{u}_{\alpha\bar{\beta}} = f_u u,
\]
so

\[
\dot{Y} = \int_{\Omega} \left(2\dot{u}_{\alpha\beta} u^{\alpha\beta} + \ddot{u}^2 \left(2f_u + \ddot{u} - f_u \dot{u} \right) \right) \det(u_{\alpha\beta}) \, dV \\
= \int_{\Omega} \left(\dot{u}^2 \left(2f_u + \ddot{u} - f_u \dot{u} \right) - 2\dot{u}_{\alpha} \dot{u}_{\beta} u^{\alpha\beta} \right) \det(u_{\alpha\beta}) \, dV
\]

From (51), we get

\[
\ddot{u} - u^{\alpha\beta} \ddot{u}_{\alpha\beta} - f_u \ddot{u} \leq f_{uu} \ddot{u}^2
\]

Since \(f_u \leq 0 \) and \(f_{uu} \leq 0 \), so \(\ddot{u} \) is bounded from above by the maximum principle. Therefore

\[
\dot{Y} \leq C_{10} \int_{\Omega} \dot{u}^2 \det(u_{\alpha\beta}) \, dV = C_{10}Y,
\]

and

\[
Y(t) \leq Y(s) e^{C_{10}(t-s)} \quad \text{for } t > s,
\]

where \(C_{10} \) is independent of \(t \). By [49], (52) and the uniform boundedness of \(\det(u_{\alpha\beta}) \), we get

\[
\lim_{t \to \infty} \| u(\cdot, t) \|_{L^2(\Omega)} = 0.
\]

Since \(\Omega \) is bounded, the \(L^2 \) norm controls the \(L^1 \) norm, hence

\[
\lim_{t \to \infty} \| u(\cdot, t) \|_{L^1(\Omega)} = 0.
\]

Notice that by the Mean Value Theorem,

\[
|e^x - 1| < e^{|x|}|x|
\]

so

\[
\int_{\Omega} |e^{\ddot{u}} - 1| \, dV \leq e^{\sup |\ddot{u}|} \int_{\Omega} |\ddot{u}| \, dV
\]

Hence \(e^{\ddot{u}} \) converges to 1 in \(L^1(\Omega) \) as \(t \) approaches \(+\infty \). Now \(u(\cdot, t) \) is bounded in \(C^2(\overline{\Omega}) \), so \(u(\cdot, t) \) converges to a unique function \(\ddot{u} \), at least sequentially in \(C^1(\overline{\Omega}) \), hence \(f(z, u) \to f(z, \ddot{u}) \) and

\[
\det(\ddot{u}_{\alpha\beta}) = \lim_{t \to \infty} \det(u(\cdot, t)_{\alpha\beta}) = \lim_{t \to \infty} e^{\ddot{u} - f(z, u)} = e^{-f(z, \ddot{u})},
\]

i.e. \(\ddot{u} \) solves (8).

References

[Bak83] Ilya J. Bakelman. Variational problems and elliptic Monge-Ampère equations. *J. Differential Geom.*, 18(4):669–699 (1984), 1983.
[Blo05] Zbigniew Błocki. Weak solutions to the complex Hessian equation. *Ann. Inst. Fourier (Grenoble)*, 55(5):1735–1756, 2005.
[BT76] Eric Bedford and B. A. Taylor. The Dirichlet problem for a complex Monge-Ampère equation. *Invent. Math.*, 37(1):1–44, 1976.
[Cao85] Huai Dong Cao. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. *Invent. Math.*, 81(2):359–372, 1985.
[CKNS85] L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck. The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. *Comm. Pure Appl. Math.*, 38(2):209–252, 1985.

[CT02] X. X. Chen and G. Tian. Ricci flow on Kähler-Einstein surfaces. *Invent. Math.*, 147(3):487–544, 2002.

[Eva82] Lawrence C. Evans. Classical solutions of fully nonlinear, convex, second-order elliptic equations. *Comm. Pure Appl. Math.*, 35(3):333–363, 1982.

[Gu98] Bo Guan. The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. *Comm. Anal. Geom.*, 6(4):687–703, 1998.

[Ko98] Sławomir Kołodziej. The complex Monge-Ampère equation. *Acta Math.*, 180(1):69–117, 1998.

[Kry83] N. V. Krylov. Boundedly inhomogeneous elliptic and parabolic equations in a domain. *Izv. Akad. Nauk SSSR Ser. Mat.*, 47(1):75–108, 1983.

[Li04] Song-Ying Li. On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. *Asian J. Math.*, 8(1):87–106, 2004.

[PS06] Duong H. Phong and Jacob Sturm. On stability and the convergence of the Kähler-Ricci flow. *J. Differential Geom.*, 72(1):149–168, 2006.

[Tru95] Neil S. Trudinger. On the Dirichlet problem for Hessian equations. *Acta Math.*, 175(2):151–164, 1995.

[Tso90] Kaising Tso. On a real Monge-Ampère functional. *Invent. Math.*, 101(2):425–448, 1990.

[TW97] Neil S. Trudinger and Xu-Jia Wang. Hessian measures. I. *Topol. Methods Nonlinear Anal.*, 10(2):225–239, 1997. Dedicated to Olga Ladyzhenskaya.

[TW98] Neil S. Trudinger and Xu-Jia Wang. A Poincaré type inequality for Hessian integrals. *Calc. Var. Partial Differential Equations*, 6(4):315–328, 1998.

[Wan94] Xu Jia Wang. A class of fully nonlinear elliptic equations and related functionals. *Indiana Univ. Math. J.*, 43(1):25–54, 1994.

[Yau78] Shing Tung Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. *Comm. Pure Appl. Math.*, 31(3):339–411, 1978.

Mathematics Department, Columbia University, New York, NY 10027

E-mail address: hou@math.columbia.edu

Mathematics Department, Columbia University, New York, NY 10027

E-mail address: liqi@math.columbia.edu