Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside

Phiwayinkosi V. Dludla1,2*, Elizabeth Joubert3,4, Christo J.F. Muller1,2,5, Johan Louw1,5 and Rabia Johnson1,2

Abstract
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counterparts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.

Keywords: Diabetes mellitus, Hyperglycemia, Oxidative stress, Cardiomyopathy, Rooibos, Polyphenols

Background
The prevalence of diabetes mellitus (DM) is increasing at an alarming rate worldwide. According to recent data by the International Diabetes Federation, the number of individuals living with DM is 415 million, and this figure is estimated to reach 642 million by the year 2040 [1]. Type 2 DM, which is associated with insulin resistance and obesity, represents approximately 90% of diabetic cases worldwide [2]. Type 1 DM is characterized by deficient insulin secretion and chronic hyperglycemia. Chronic hyperglycemia remains the leading causal factor for the development of cardiovascular disease (CVD) and heart failure (HF) in a diabetic state [3, 4]. Chronic hyperglycemia alters the myocardial substrate preference in cardiomyocytes and augments production of free radical species, giving rise to oxidative stress [5]. Oxidative stress may directly induce cardiac structural remodeling, a prominent sign of diabetic cardiomyopathy (DCM) [6, 7]. DCM is a distinct clinical entity that was first described about four decades ago [7]. The diagnosis of DCM remains nebulous and the precise mechanism explaining DCM has been partially explained. Although...
they remain mainly non-ischemic, distinctively affecting the heart muscle, cardiomyopathies play a pre-dominant role in inducing HF and are one of the major causes of death in Africa [8, 9]. Currently, there is no specific treatment for DCM; however, therapeutic drugs certainly play a significant role in the treatment of diabetes and its cardiovascular complications.

Insulin and metformin are the commonly used therapies for the treatment of DM and have been shown to present limited cardiac protective properties [10–12]. It is known that CVD-related deaths in individuals with DM are still a major concern [13]. Furthermore, lifestyle intervention of restricted energy intake and physical activity in persons with impaired glucose tolerance has been shown to improve CVD function. Nonetheless, most individuals do not adhere to such lifestyle interventions. On the other hand, antioxidants are among the leading therapies being investigated for their efficacy against various metabolic complications [14, 15]. In the last decade, there has been much interest in the potential health benefits of plant polyphenols, such as resveratrol, mangiferin and aspalathin as dietary antioxidants [16–18]. The rooibos flavonoid and dihydrochalcone, aspalathin, has been investigated and reported to contribute to the anti-diabetic properties of rooibos extract as reviewed by Muller and colleagues [18]. This flavonoid and others have been shown to exert their therapeutic effects by mainly regulating the expression of key genes involved in energy metabolism and oxidative stress. Prime examples include 5′-adenosine monophosphate-activated protein kinase (AMPK), which is crucial for maintenance of myocardial substrate metabolism and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor that is upregulated in response to oxidative stress [18, 19]. This review will discuss the cardioprotective potential of rooibos flavonoids and the phenylpropenoic acid, phenylpyruvic acid-2-β-D-glucoside (PPAG), against hyperglycemia-induced injury and heart disease. Physiological context is provided by a short overview of the role of oxidative stress in a diabetic heart.

Mechanisms of oxidative stress leading to cardiac tissue damage

Chronic hyperglycemia is strongly associated with enhanced oxidative stress-induced myocardial injury [13, 20]. This has been confirmed by various laboratory studies showing strong correlation between oxidative stress and matrix remodeling in cardiomycocytes isolated from diabetic heart tissue [21, 22]. Oxidative stress is aggravated by enhanced levels of Reactive Oxygen Species (ROS) within cardiomycocytes [21, 23, 24]. Abnormal ROS production elicits an increased pro-inflammatory response resulting in myocardial apoptosis [25]. Some of the well-known reactive oxygen substances, associated with myocardial damage include superoxide anion (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$). Generation of ROS is generally a cascade of reactions that starts with the formation of O$_2^-$ [26]. Superoxide anion rapidly dismutates to H$_2$O$_2$, either spontaneously or catalytically by superoxide dismutase (SOD), while H$_2$O$_2$ is decomposed by catalase (CAT) to water and oxygen. However, the mitochondrial electron transport chain and the actions of the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase; Nox) enzymes remain the foremost sources of stress in cardiomycocytes (Fig. 1). Mitochondrial structural modification is affiliated with reduced endogenous antioxidant status in cardiomycocytes from diabetic heart tissue [24, 27]. Correspondingly, augmented activity of NADPH oxidase is demonstrated in the myocardium of diabetic animals at the same rate as oxidative damage [28].

The mitochondrion is an essential organelle for intracellular energy production. Increasing the cellular demand of the mitochondrion to produce energy is associated with accelerated ROS production. Given that a diabetic heart has a diminished mitochondrial antioxidant capacity [29], it is therefore not surprising that minor alterations in mitochondrial structure or function induced by increased ROS are associated with major changes in the heart muscle [30]. Increased ROS and mitochondrial depolarization, subsequent to diastolic dysfunction, have been reported in patients with metabolic disturbances [31, 32]. However, data explaining the precise role of mitochondrial dysfunction in a diabetic heart are still lacking.

Concurrent with energy generation is the constant generation of ROS within the mitochondria [33]. Accumulation of these radicals results in the induction of mitochondrial permeability transition (MPT) and the opening of high conductance permeability transition pores [34]. MPT formation has been reported to lead to an altered redox state of the mitochondria [30]. With disease states, the MPT opening is unique for being nonselective and allowing for the accumulation of excessive calcium (Ca$^{2+}$) and other toxic compounds [35, 36]. The fate of the cell after an insult depends on the extent of MPT pore formation [36–38]. If MPT pore formation occurs only to a limited extent, the cell may recover through cell recovery mechanisms such as activation of mitophagy/ubiquitination, whereas if MPT pore formation is exacerbated, it accelerates apoptosis [38]. If it occurs to an even larger degree, the cell is likely to undergo necrotic cell death [38]. Thus, prevention of mitochondrial membrane depolarization may play a role in reducing myocardial injury associated with chronic hyperglycemia.

On the other hand, Nox is another system that plays a notable role in the generation of ROS in many cell types,
including cardiomyocytes. Nox generates intracellular ROS by transferring electrons from NADPH across the cell membrane and coupling these to molecular oxygen to produce O$_2$$^•$-. Nox exists in different isoforms, i.e. Nox1 to Nox4, with Nox2 and Nox4 predominant in the heart muscle [39, 40]. Nox1 has been identified to be the major source of ROS production in vascular tissues, resulting in low levels of nitric oxide [41, 42]. Decreased levels of nitric oxide are connected to impaired endothelium-dependent vasodilation of coronary arteries [43]. Human aortic endothelial cells exposed to high glucose concentrations display amplified expression of Nox1 concomitant to enhanced oxidative damage [44]. The same study showed that diabetic mice lacking Nox1 had profound anti-atherosclerotic outcome related to reduced ROS generation. Although Nox2 and Nox4 are predominant in the heart muscles, these two ROS producing enzymes are also expressed in other cell types and are implicated in agonist-stimulated redox-sensitive signal transduction [39]. Nox2 has been shown to play a central role in insulin resistance-mediated oxidative damage in vascular tissue [45, 46]. Nox2 knockout transgenic mice with endothelial-specific insulin resistance present reduced ROS production and vascular dysfunction [45]. On the other hand, the Nox4 isoform is specifically expressed in mitochondria of cardiomyocytes; and mice lacking the Nox4 gene show reduced free radical damage [28]. Its overexpression in the mouse heart deteriorates cardiac dysfunction by initiating apoptosis through cytochrome c release [28]. Cytochrome c is a vital component of the mitochondrial electron transport chain, acting as an electron shuttle during redox generation of ATP [47]. Its release and mitochondrial depolarization are considered key physiological events of apoptosis [48]. In cardiomyocytes exposed to high glucose concentrations, cytochrome c release is enough to cause apoptosis, independent of mitochondrial depolarization status [49]. Complex systems within the apoptotic pathway exacerbate myocardial injury through cytochrome c release [50]. Therefore, interventions that could inhibit pro-apoptotic proteins and mitochondrial cytochrome c release could salvage myocardial injury.

Endogenous cardioprotective mechanisms

Activation of AMPK

AMPK is a heterotrimeric protein composed of a catalytic alpha, non-catalytic beta and gamma subunit. The main function of this kinase is to preserve ATP or to promote alternative pathways of ATP generation. It functions as a sensor during low energy states such as ischemia to change substrate utilization and thereby increase or decrease ATP synthesis. Its activation is controlled by an increase in the AMP:ATP ratio [51]. Stimulation of AMPK leads to phosphorylation of many target proteins important for ATP synthesis and utilization while concurrently inhibiting ATP-consuming pathways such as fatty acid synthesis. In the diabetic heart, AMPK activation is linked to phosphorylation of both acetyl-CoA carboxylase and malonyl-CoA decarboxylase; however, its association with the latter in the heart remains to be fully elucidated [52–54]. Acetyl-CoA carboxylase and malonyl-CoA decarboxylase are both important for the interconversion of acetyl-CoA to malonyl-CoA (Fig. 2). Phosphorylation of acetyl-CoA carboxylase by AMPK
reduces the generation of malonyl-CoA; thus promoting the entry of FFAs for beta-oxidation into mitochondria through carnitine palmitoyltransferase I [55]. Resultant increased levels of ATP and citrate through beta-oxidation are responsible for the allosteric inhibition of glycolysis through phosphofructokinase-1 [56]. This causes accelerated ROS production and associated membrane peroxidation [24, 26]. Hence, adequate control of uptake and oxidation of FFAs remain crucial for optimal functioning of the myocardium, especially in a diabetic state.

Activation of Nrf2
Free radicals within mitochondria are generally removed by mitochondrial SOD, thereby generating H$_2$O$_2$. This process allows H$_2$O$_2$ to be further reduced to water by glutathione (GSH) or CAT. GSH remains an important intracellular antioxidant to prevent free radical damage. GSH can easily be oxidized to its disulfide form during oxidation reactions; thus, NADP transhydrogenase enzymes remain important to maintain the reduced form of this co-factor [57]. NADP transhydrogenase functions by transferring electrons from a reduced form of nicotinamide adenine dinucleotide (NADH) to NADP$^+$ in order to regenerate GSH [58]. Reduced expression of GSH is consistently reported in experimental models investigating a diabetic heart [21, 24]. This was confirmed when investigated in either human subjects at risk of CVD or mice that are chronically subjected to hyperglycemia and hyperlipidemia [59, 60].

Expression of antioxidant response genes, including GSH, is regulated by the redox-sensitive transcription factor, Nrf2 [61]. Nrf2 is a transcriptional regulator that is activated in response to intracellular stress (Fig. 3). Genes activated by Nrf2 can be classified into different groups, including phase II detoxifying and cytoprotective enzymes. Nrf2 resides in the cytoplasm, where it is subjected to continuous degradation by the ubiquitin-proteasome [62]. Under stressful conditions such as ischemia or oxidative stress, Nrf2 is activated by disassociating from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and translocates to the nucleus. Once in the nucleus, it forms a heterodimer with Maf protein before binding to the antioxidant response element (ARE) to initiate and activate antioxidant defence genes [63].

Cardioprotective potential of current antidiabetic agents
Primary interventions that may salvage a diabetic heart at risk from myocardial infarction mainly target maintaining low blood sugar levels [13]. While such interventions are achievable and beneficial to the heart, adherence to lifestyle changes remains a big challenge. Therefore, antidiabetic agents that could suppress postprandial and chronic hyperglycemia may be effective in decreasing the risk of HF. Despite evidence on the efficacy of antidiabetic and antidyslipidemic drugs such as dipeptidyl peptidase-4 inhibitors and statins [65, 66], metformin remains the leading first line antidiabetic drug for type 2 diabetic individuals with known cardiac complications [67, 68]. In addition to its accomplished antidiabetic properties [69, 70], metformin is associated with improved clinical outcomes in diabetic patients with HF [71, 72]. Although clinical data are lacking, metformin enhances the efficacy of a number of synthetic drugs and novel medicinal compounds currently screened for metabolic benefits in vitro [73–75]. Metformin monotherapy or its use as an add-on effect to...
Glibenclamide improves the intracellular antioxidant status of the myocardium in streptozotocin-induced diabetic Sprague-Dawley rats [76]. In addition to improving the antioxidant capacity of heart cells, metformin may benefit the heart by enhancing autophagy and inhibiting MPT opening [77, 78]. However, an increasing toll of cardiovascular related deaths in diabetic patients on treatment warrants further investigation into alternative treatment regimes.

Cardioprotective potential of rooibos

In recent years, the use of plant-derived products as a cardioprotective therapy is receiving increasing attention [59, 79, 80]. Rooibos (Aspalathus linearis) is an indigenous South African plant well-known for its potential health benefits. Rooibos tea is available in two forms: a “fermented” or oxidized form; and an “unfermented” or unoxidized form (Fig. 4). The unfermented product is also referred to as green rooibos. The “fermentation” process gives fermented rooibos its distinctive reddish-brown colour, while unfermented rooibos tea maintains its green colour (Fig. 4b). The fermentation process is important to develop the characteristic taste and aroma of rooibos tea, traditionally consumed [81]. Its effect on the health outcomes of rooibos is obscured if the products do not originate from the same bush due to large inherent variation in the phenolic content of the rooibos plant [81]. However, it is well established fermentation decreased the flavonoid content of rooibos [81]. Infusions and extracts prepared from unfermented rooibos have higher antioxidant capacity than those from fermented rooibos, largely due to higher levels of flavonoids, in particular aspalathin in the unoxidized plant material [81]. Consumption of a “ready-to-drink” unfermented rooibos beverage as opposed to one produced from fermented rooibos effected a 28% higher total radical-trapping antioxidant potential in the plasma of human subjects [82]. Nonetheless, both forms of rooibos are increasingly studied in experimental diabetes and related complications, given that fermented rooibos is more readily available and forms the bulk of rooibos production [81].

In a recent study, Oh and colleagues have demonstrated that the total flavonoid content of a water extract of rooibos, determined using a colorimetric assay based on aluminium complexation, is higher than that of lemongrass tea, mulberry leaf tea, bamboo leaf tea, lotus leaf tea, and persimmon leaf tea [83]. However, they further showed that the total flavonoid content of this extract is slightly lower than that of green and black tea. Von Gadow and colleagues have also previously shown that both fermented and unfermented rooibos, when tested together with green, oolong and black tea, present strong antioxidant properties in vitro [84]. They further showed that this antioxidant effect, as evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical assay, was reduced in the order: green tea > unfermented rooibos > fermented rooibos > semifermented rooibos > black tea > oolong tea. Accompanying its well-documented...
A profound relationship between a diet rich in polyphenols and health has given hope to long-term effective interventions that could prolong the onset of diabetes and its co-morbidities [102]. Flavonoids constitute a major sub-class of polyphenols, which can be further divided into different sub-groups such as dihydrochalcones, flavonols and flavones, the predominant rooibos flavonoid sub-groups. Variations in the hydroxylation pattern, glycosylation and chromone ring (Ring C) underpin their structural differences (Table 2). Structural features of flavonoids relevant for their antioxidant properties [103] also explain binding affinity to plasma proteins [104] and enzymes such as alpha-glucosidase [105]. Whilst in vitro data suggest flavonoid aglycones to be more effective than their glycosides, lack of in vivo data precludes broad generalizations concerning the effect of glycosylation on the benefits of flavonoids for human health [106].

In the following sections the focus will fall on flavonoids found in rooibos that have an ameliorative effect against various metabolic diseases. Of interest is the predominance of C-glucosyl flavonoids in rooibos, and in particular the dihydrochalcones (aspalathin and nothofagin) and their flavone derivatives (orientin, isoorientin, vitexin and isovitexin). The major flavonoids are O-glycosyl derivatives of quercetin, i.e. quercetin-3-O-glucobioside, hyperoside, isoquercitrin, and rutin. The aglycones, luteolin, chrysoeriol and quercetin, are present in low to trace levels in rooibos [107]. Discussion of their bioactivities is included to underscore the health potential of rooibos.

PPAG is per definition not a phenolic compound due to the absence of a hydroxyl group on the phenyl ring. This compound is a biosynthetic precursor of flavonoids [108] and rooibos is one of the few plants demonstrated to date to be a substantial source.

Rooibos dihydrochalcones

The dihydrochalcone, aspalathin is unique to rooibos, while its 3-deoxy analogue, nothofagin, is relatively rare with its presence also confirmed in *Notofagus fusca* and *Schoepfia chinensis* [81]. Unfermented rooibos tea beverage contains 10-fold or more aspalathin and nothofagin when compared to the fermented product [107, 109]. Despite C-glycosides having very low bioavailability due to the inability of intestinal enzymes to hydrolyze the C-C bond linking the sugar moiety to the aglycone and thus influencing their absorption process [111], aspalathin has been reported in the plasma of subjects who consumed 500 mL of green rooibos infusion, containing 287 mg aspalathin [112]. However, generally as reported for other dihydrochalcones [113, 114], the human gut
Rooibos/compounds	Model	Experimental outcome	References
Rooibos	Aqueous extract of fermented rooibos on cardiomyocytes isolated from diabetic rats	Prevented experimentally induced oxidative stress and ischemia	[21]
	Fermented rooibos tea for 6 weeks in human subjects at risk of cardiovascular disease (CVD)	Reduced CVD risk by improving lipid profile and redox status	[59]
	Aqueous extract of fermented rooibos in endothelial cells from human umbilical veins (HUVECs)	Prevented vascular-induced inflammation by enhancing nitric oxide production	[86, 92, 93]
	Aqueous extract of fermented rooibos on non-diabetic rats	Acted as a bronchodilator, antispasmodic and blood pressure lowering effects	[97]
	Fermented rooibos tea in healthy human subjects	Prevented myocardial infarction by inhibiting angiotensin-converting enzyme (ACE)	[98–100]
	Aqueous extracts of fermented and unfermented rooibos in non-diabetic rats	Reversed ischemia-reperfusion injury	[101]
Aspalathin and nothofagin	Aspalathin and nothofagin on high glucose-induced vascular in HUVEC and mice	Prevented inflammation and thrombosis by suppressing TNF-α, IL-6 and NF-kB	[118, 119]
	Aspalathin in H9c2 cardiomyocytes exposed to high glucose and cardiomyocytes isolated from insulin resistant rats	Prevented cell apoptosis by reducing phosphorylation of AMPK; decreasing inflammation and lipid accumulation; and attenuated oxidative damage via increasing Nrf2 expression	[73, 124–126]
Orientin and isoorientin	Orientin on isolated hearts of nondiabetic rats, rabbits and guinea pigs as well as H9c2 cells	Prevented ischemia-reperfusion injury and platelet aggregation by inhibiting mPTP formation and apoptosis	[137–139]
Orientin and isoorientin	Orientin on rats	Prevented myocardial infarction	[134]
	Isoorientin in low density lipoprotein isolated from human plasma	Prevented formation of atherosclerotic lesions by inhibiting low density lipoprotein (LDL) oxidation	[135]
	Orientin in non-diabetic rats	Attenuated ventricular remodeling associated with myocardial infarction	[136]
Orientin and isoorientin in lipopolysaccharide-induced reperfusion injury	Orientin and isoorientin in lipopolysaccharide-induced reperfusion injury	Protected vascular barrier integrity by inhibiting hyperpermeability	[223]
Vitexin and isovitexin	Vitexin on primary cardiomyocytes and isolated rat hearts and on rats	Prevented ischemia-reperfusion injury by reducing calcium overload and modulating ERK1/2 signaling and MAPK pathway	[146, 149, 224]
	Vitexin on primary rat cardiomyocytes	Prevented cardiac hypertrophy by inhibiting calcineurin and CaMKII signaling pathways	[151]
	Vitexin on dogs	Reduced aortic pressure, arterial and pulmonary capillary pressure and heart rate	[150, 225]
	Vitexin on rats	Attenuated acute doxorubicin cardiotoxicity by reducing oxidative stress and apoptosis	[226]
Luteolin and chrysoeriol	Luteolin on isolated rat cardiomyocytes, rabbit hearts and anesthetized pigs	Prevented ischemia-reperfusion injury and enhanced relative coronary flow	[157, 159, 162]
	Luteolin on rat endothelium-denuded aortic rings	Induced vasorelaxation by regulating calcium and potassium channels and reducing oxidative stress	[227]
microbiota can possibly enhance the absorption of aspalathin and nothofagin in the small intestine by splitting off the aglycone from the glucose moiety [115]. In vivo, the low levels of aspalathin are difficult to detect in serum, however metabolites (glucuronides and sulfates) of aspalathin and nothofagin have been detected in urine of human subjects 5 h after consumption of 500 mL of either fermented or unfermented rooibos [109]. Recent data have demonstrated that aspalathin is absorbed and metabolized in mice to mostly sulphate conjugates detected in urine, while the mode of absorption is hypothesized to occur through the monolayer paracellularly [116].

The biological activity of aspalathin and nothofagin has been primarily associated with their known strong antioxidant properties [73, 117]. Both compounds protected against high glucose-induced vascular inflammation and platelet aggregation when tested in endothelial cells and mice; however, nothofagin did not have any anticoagulant effect in mice [118, 119]. Increasing research is presented focusing on aspalathin and its enhanced efficacy to prevent metabolic-associated complications in vitro and in vivo models [18, 120–122]. Our laboratory has presented recent evidence that aspalathin reversed palmitate-induced insulin resistance in cultured adipocytes [123], while it prevented high glucose-induced apoptosis by improving substrate metabolism in H9c2 cells exposed to high glucose or cardiomyocytes from insulin resistant rats [73, 124, 125]. In addition to regulating AMPK and enhancing Nrf2 expression, aspalathin can modulate the expression of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein 1/2, transcriptional factors involved in lipid metabolism, in addition to inhibiting inflammation via interleukin-6/Janus kinase 2 pathways, leading to reduced myocardial apoptosis [73, 124, 126].

Table 1 The cardioprotective effect of rooibos, its flavonoids and a phenylpropenoic acid (Continued)

Compound	Effect	
Luteolin on vascular smooth muscle cells and rats	Prevented hypertensive vascular remodeling	[160]
Luteolin on diabetic and normal rats	Alleviated vascular complications associated with insulin resistance through the Ppary pathway	[161]
Luteolin-7-glucoside on isolated primary rat cardiomyocytes	Prevented ischemia-reperfusion injury and increased of coronary flow	[228]
Chrysoeriol in rats under anesthesia and H9c2 cells	Reduced arterial blood pressure and protected against doxorubicin-induced cardiotoxicity	[97, 172]
Quercetin on rats	Protected against diabetic cardiomyopathy, autoimmune myocarditis, LDL-oxidation, and doxorubicin-induced lipid peroxidation	[185–192]
Quercetin in either endothelial cells or rats	Present antihypertensive potential and reduced cardiac hypertrophy by increasing antioxidant capacity	[229–233]
Hyperoside in vitro and in vivo	Protected against hyperglycemia induced inflammation	[208]
Hyperoside in ECV304 cells	Prevented advanced glycation end products and promoted via the c-Jun N-terminal kinases (JNK) pathway	[205]
Hyperoxide in vitro and in vivo	Hydrogen peroxide induced cell damage and ischemia reperfusion injury	[209, 211, 212]
Rutin on rats	Protected against advanced glycation end products, oxidative stress and myocardial infarction	[199, 234, 235]
PPAG on high-glucose exposed H9c2 cells	Protected against substrate impairment, mitochondrial depolarization and cell apoptosis	[221]

Rooibos flavones

The major flavones present in rooibos include orientin and isoorientin, the flavone derivatives of aspalathin, and vitexin and isovitexin, the flavone derivatives of nothofagin. Minor flavones include the aglycones, luteolin, and chrysoeriol (Table 2). Lower levels of flavones are present in fermented rooibos [81]. Food processing may also change their content. The orientin and isoorientin content of a ready-to-drink rooibos beverage showed a slight change as a result of pasteurization and storage,
postulated to be due to the conversion of aspalathin to these compounds [110, 127]. Except for luteolin, there is very limited data on the characteristic metabolism and transportation of these flavone glucosides. The absorption of orientin, isoorientin and vitexin has been reported on Caco-2 cell monolayers [128, 129], with transporter mediated efflux in addition to passive diffusion shown to be the predominant mode of transportation. In a pharmacokinetics study using Sprague–Dawley rats, intravenous administration of a 20 mg/kg dose of orientin was found to be highly recovered in plasma and eliminated within 90 min after intravenous administration [130]. On the other hand, permeability and absorption rate of luteolin has been shown to be significantly greater in the colon and ileum compared to the duodenum and jejunum in rats [131].

Furthermore, some of these compounds, including isoorientin may be deglycosylated to their aglycones by gut microbiota as reviewed by Muller et al. [18].

The strong antioxidant properties of flavones have been associated with their free radical scavenging properties [132]. Although very few studies are available on the antidiabetic properties of orientin and isoorientin, extracts with abundant levels of vitexin, orientin and isoorientin have been shown to inhibit adipogenesis in 3T3-L1 adipocytes [90, 133]. Relevant to the cardiovascular system, these compounds have been reported to inhibit high glucose-induced vascular inflammation [134], atherosclerosis [135], cardiac remodeling [136] and ischemia-reperfusion injury [137–139]. Additional protective effects of these compounds are summarized in Table 1 and are mainly mediated by nuclear factor kappa B, a transcriptional factor involved in diabetic-induced HF [140]. Moreover, isoorientin has been shown

Structures	Names
Dihydrochalcones	
Aspalathin: R₁ = OH; R₂ = H; R₃ = β-D-glucopyranosyl	
Nothofagin: R₁, R₂ = H; R₃ = β-D-glucopyranosyl	
Flavones	
Luteolin: R₁ = OH; R₂, R₃, R₄, R₅, R₆ = H	
Chrysoeriol: R₁ = OH; R₂, R₃, R₄, R₅ = H; R₆ = CH₃	
Orientin: R₁ = OH; R₂, R₃, R₄, R₅ = H; R₆ = β-D-glucopyranosyl	
Isoorientin: R₁ = OH; R₂, R₃, R₄, R₅ = H; R₆ = β-D-glucopyranosyl	
Vitexin: R₁, R₂, R₃, R₄ = H; R₅ = β-D-glucopyranosyl	
Isovitexin: R₁, R₂, R₃, R₄, R₅ = H; R₆ = β-D-glucopyranosyl	
Flavonols	
Quercetin-3-O-robinobioside: R = α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranosyl	
Isoquercitin: R = β-D-glucopyranosyl	
Rutin: R = α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl	
Hyperoside: R = β-D-galactopyranosyl	
Phenylpropenoids	
Phenylpyruvic acid-2-O-glucoside: R = β-D-glucopyranosyl	
to reduce other diabetic associated complications such as lipid toxicity and insulin resistance [141]. Together with direct radical scavenging activity, the protective mechanism of isoorientin has been linked to the induction of Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling [142]. On the other hand, oral administration of vitexin and isovitexin at 1 mg/kg has been shown to reduce postprandial blood glucose levels in sucrose loaded normoglycemic mice [143]. In addition to inhibiting α-glucosidase [144], vitexin and isovitexin rich extracts have been demonstrated to attenuate diabetes linked complications such as adipogenesis and AGEs in vitro [132, 145]. Vitexin reverses ischemia-reperfusion injury in perfused rat hearts and brain by attenuating inflammatory response and apoptosis [146–149]; it increased coronary artery blood flow and cardiac output in anesthetized animals [150]; and it improved cardiac hypertrophy by reducing the expression of calcium downstream effectors, calcineurin-NFATc3 and phosphorylated calmodulin kinase II (CaMKII), both in vitro and in vivo [151]. Other associated cardioprotective mechanisms of vitexin may include inhibiting cardiomyocyte apoptosis by reducing calcium overload and extracellular signal regulated kinase (ERK1/2) [152].

Furthermore, although available in trace levels in rooibos, release of luteolin from orientin and isoorientin in the gut may enhance the levels to physiological relevance. Accumulative evidence suggests strong ameliorative effect of luteolin against diabetes and CVD associated complications [153–155]. The antidiabetic properties of luteolin include improving hepatic insulin sensitivity by suppressing gluconeogenesis in diet-induced obese mice [153]; it prevented neuronal injury and cognitive performance by attenuating oxidative stress in rats [154]; and attenuated morphological destruction of the kidney in rats [155]. The anti-inflammatory properties of luteolin include inhibiting elevated levels of interleukin-1β and nuclear factor kappa B [156–158]. Relevant to the heart, luteolin reduced systolic and diastolic blood pressure of various animal models [159, 160]; it improved contractile function [161]; and blocked apoptosis following ischemia-reperfusion in adult rat cardiomyocytes via downregulating microRNA-208b-3p [162]; it attenuated HF in a rat model of DCM [163]; and protected against acute and chronic periods of isoproterenol-induced myocardial infarction by suppressing mitochondrial lipid peroxidation [164]. One of the important mechanisms linked to the cardioprotective effect of luteolin during ischemia-reperfusion injury include regulation of ERK1/2 and c-Jun N-terminal kinase (JNK), which are pathways implicated in generation of inflammation [165]. The number of functional hydroxyl groups on the structure of luteolin directly correlates to its scavenging effect of hydroxyl radicals [166].

Another flavone of interest that is present in very low quantities in rooibos is chrysoeriol [167]. Chrysoeriol has been previously shown to be more effective in the protection against lipid peroxidation than its glycoside (chrysoeriol-6-O-acetyl-4′-β-D-glucoside) when tested in vitro [168]. In addition to preventing H2O2-induced oxidative stress in osteoblasts [169], chrysoeriol protected Raw264.7 macrophages from lipopolysaccharide-induced inflammation by blocking activator protein 1, which is crucial in the transcriptional activation of inducible nitric oxide synthase [170]. A hydroalcoholic extract of *Tecoma stans*, containing 96% chrysoeriol presented an enhanced activity to inhibit pancreatic lipase [171]. Relevant to the heart, chrysoeriol can lower arterial blood pressure in rats under anesthesia [97]; and it can protect against doxorubicin-induced cardiotoxicity by inhibiting apoptosis in H9c2 cells [172]. However, no published study is available on the effect of chrysoeriol on a diabetic heart at present.

Rooibos flavonols Quercetin and its glycosides, quercetin-3-O-robinobioside, hyperoside, isoquercitrin, and rutin are classified by a distinct 3-hydroxyflavone backbone and are the major flavonols present in rooibos (Table 2). Generally, based on a specific population assessed, the average intake of flavonols may range between 20 to 35 mg/day [173, 174]. Although additional studies are required to validate their bioavailability, flavonol aglycones have been shown to be highly absorbed in the gut [175]. The type of sugar moiety and stability of aglycone largely affect the absorption of each compound as shown for quercetin glycosides from onions being better absorbed than pure aglycones [173, 176]. Another study has demonstrated that isoquercitrin and hyperoside are highly absorbable in rats [177]. Regular consumption of flavonols has been found to be protective against ischemic heart disease in some individuals [178]. Quercetin attenuated paracetamol-induced liver damage and impairment of kidney function such as intracytoplasmic vacuolization and brush border loss in rats [179]. Quercetin has a high affinity to inhibit AGEs such as methylglyoxal and glyoxal in a bovine serum albumin system [180].

Quercetin and rutin further exhibit a broad range of pharmacological activities within the myocardium (Table 1). These compounds presented atherosclerosis lowering properties by reducing hepatic fatty acid synthesis in mice [181]. They enhanced glucose uptake in muscle cells subjected to oxidative stress [182] and prevented against dyslipidemia associated complications such as inflammation and lipid toxicity by enhancing antioxidant capacity in rats [183]. Interestingly, in the heart, quercetin and rutin have been shown to directly alleviate DCM by improving myocardial ultrastructure in diabetic animals through aldose reductase,
oxidative stress inhibitory activity and modulation of cardiac calcium homeostasis [184–187]. The use of quercetin at a dose of 10 mg/kg body weight for 28 days protected against autoimmune myocarditis by suppressing oxidative stress in rats [188]. Quercetin is thought to exert cardiac protection through quenching lipid peroxidation, as it is a known scavenger of peroxyl radicals [189–192]. In a double-blind randomized clinical trial on women (n = 72), quercetin supplementation (500 mg capsule daily) for 10 weeks significantly reduced systolic blood pressure but had no effect on other cardiovascular parameters and inflammatory biomarkers [193]. Likewise, rutin protected against myocardial damage in a diabetic state by decreasing postprandial hyperglycemia and slowing down formation of AGEs in various experimental models [194–197]. In combination with aspalathin, rutin reduced blood glucose concentrations of streptozotocin-induced diabetic rats over a 6 h monitoring period [95]. It further improved glucose homeostasis in streptozotocin-induced diabetic rats suppressing gluconeogenesis [197]. Regulation of glucose metabolism and increasing intracellular antioxidant capacity have been proposed to be the main cardioprotective effects of both quercetin and rutin [198, 199].

Like quercetin and chrysoeriol, hyperoside is often present in very low quantities in a cup of fermented rooibos tea [167]. Plants and extracts rich in hyperoside have been established to display antidiabetic properties [200–202]. Hyperoside prevented against diabetic nephropathy by inhibiting apoptosis and albuminuria in glomerular podocytes isolated from diabetic rats and mice [203, 204]. Other biological activities of hyperoside include reducing accelerated production of AGEs in ECV304 cells via the JNK pathway [205]; suppression of inflammation through reducing nuclear factor-κB activation in mouse peritoneal macrophages [206]; and inhibition of α-glucosidase and apoptosis in liver cells [207]. In the heart, hyperoside protected hyperglycemia-induced inflammation in vitro and in vivo [208]; hydrogen peroxide-induced oxidative damage [209, 210]; and it protected against ischemic-reperfusion injury in isolated rat hearts [211]. The protective mechanism of hyperoside against diabetes and heart associated complications has been mainly through suppressing cell apoptosis, improving mitochondrial function and regulating Nrf2 and extracellular signal-regulated protein kinase signaling [212, 213].

PPAG

PPAG is a phenylpropenoic glucoside (Table 2) that acts as a precursor in the flavonoid biosynthesis pathway and has been shown by various studies to be present in rooibos [18, 81, 108]. The occurrence of PPAG in rooibos was described for the first time about two decades ago [108] and its bioavailability profile is yet to be established. Phenylpyruvic acids apparently play a key role in the biosynthesis of a number of secondary metabolites, including PPAG [214]. The biological activity of a compound with similar structure to PPAG such as 3-phenylpyruvate has long been reported to display antioxidant activity [215, 216]. Exposure of cardiomyocytes isolated from diabetic rats to a low concentration of fermented rooibos that contains a relatively high level of PPAG (0.71 g/100 g extract) prevents oxidative stress and apoptosis [21]. Recent findings indicated that this compound attenuates insulin resistance and protects beta cells from obese and streptozotocin-induced mice against endoplasmic reticulum stress-induced apoptosis [217–219]. Data available on the cardioprotective properties of PPAG are limited to a study in H9c2 cardiomyocytes, showing that PPAG abolishes high glucose-induced altered myocardial substrate metabolism and apoptosis by increasing the Bcl2/Bax ratio and reducing caspase 3/7 activity [21]. This study further showed that PPAG displayed reduced capacity to protect H9c2 cells against oxidative stress. This result was anticipated since PPAG is not expected to be an active antioxidant as it lacks the phenolic structural features that are required for free radical scavenging ability [220]. Interestingly, PPAG used in combination with a known antidiabetic agent such as metformin demonstrated better protection of cardiomyocytes exposed to high glucose-induced oxidative stress than when used as a monotherapy [221]. Correspondingly, Patel et al. [222] recently showed that PPAG has no inhibitory effect on cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, which are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones and sulfonylureas. Supporting the potential use of nutraceutical agents such as PPAG, especially in combination with a current antidiabetic agent to attenuate oxidative stress-induced damage and protect diabetic individuals at risk of myocardial infarction needs further investigation.

Conclusions

Blood glucose lowering therapies such as metformin and insulin have played a major role in prolonging lives of diabetic patients. However, tight control of blood glucose remains a challenge in such patients. By contrast, ameliorative therapies for oxidative stress, including polyphenols as an adjunct to current blood lowering drugs, show promise in protecting diabetic hearts in experimental models. In recent years, rooibos has gained popularity due to its potential use as a dietary supplement that is rich in polyphenols. The presence of constituents such as aspalathin, nothofagin and PPAG that are unique to rooibos or rarely occur in other plants make it attractive for scientific investigation. The compounds present in rooibos continue to present robust biological properties that are associated with ameliorative effects on inflammation and apoptosis, leading to improved
cardiac function in different animal models. In addition, current evidence has suggested that the combinational use of some of these compounds with known antidiabetic agents such as metformin may enhance their biological efficacy. However, this review clearly highlights the evidence gap pertaining to the molecular mechanisms associated with the cardioprotective effect of rooibos and its polyphenols. Once these molecular mechanisms are established, in addition to verification of such findings in clinical studies, it could make a significant step in accelerating development of an evidenced-based rooibos nutraceutical. It is therefore imperative that we further investigate the mechanism(s) by which rooibos flavonoids and PPAG modulate diabetes-induced cardiovascular related complications thereby identifying new therapeutic candidates.

Abbreviations

ACE: Angiotensin-converting enzyme; AGEs: Advanced glycation end products; AMPK: 5′-adenosine monophosphate-activated protein kinase; ARE: Antioxidant response element; CaMKLII: Calmodulin kinase II; CAT: Catalase; CVD: Cardiovascular disease; DCM: Diabetic cardiomyopathy; DM: Diabetes mellitus; ERK1/2: Extracellular signal-regulated protein kinases 1 and 2; FFAs: Free fatty acids; Glut: Glutathione; H2O2: Hydrogen peroxide; HF: Heart failure; HUVECs: Human umbilical vein endothelial cells; IL-6: Interleukin-6; JNK: c-Jun N-terminal kinases; Keap1: Kelch-like ECH-associated protein 1; LDL: Low density lipoprotein; MAPK: Mitogen-activated protein kinases; MPT: Mitochondrial permeability transition; NF-kB: Nuclear factor kappa B; Nox: NADPH oxidase; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; PPAG: Phenylpyruvic acid-2-β-D-glucoside; ROS: Reactive oxygen species; SOD: Superoxide dismutase

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

This research was funded in part by the National Research Foundation (NRF) Thuthuka Programme Grant 87/836 and the South Africa Medical Research Council’s Biomedical Research and Innovation Platform. The grantholders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are those of the authors, and that the NRF accepts no liability whatsoever in this regard. Funding from Stellenbosch University and Ernst Ethel Erikson trust is also acknowledged. The PhD from which this study emanated was funded by the South African Medical Research Council under SAMRC Internship Scholarship Programme. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Authors’ contributions

PVD, EJ, CJF, JL and RJ performed literature search and wrote the manuscript. All authors reviewed, edited and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa. 2Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa. 3Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infrutece-Nietvoorbij, Stellenbosch, South Africa. 4Department of Food Science, Stellenbosch University, Stellenbosch, South Africa. 5Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa.

Received: 26 January 2017 Accepted: 23 June 2017

Published online: 10 July 2017

References

1. International Diabetes Federation (IDF). IDF Diabetes atlas 7th edition. idf.org [Internet]. Accessed at: http://www.diabetesatlas.org/. Accessed 12 December 2016.

2. World Health Organization (WHO). Global status report on noncommunicable diseases 2014. World Health 176. 2014; doi:ISBN 9789241564854.

3. Ginsberg BI, Mazze R. Clinical consequences of the diabetes control and complications trial. N J Med. 1994;91(4):221–4.

4. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.

5. Kukidome D, Nishikawa T, Soroda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsurama T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55(1):120–7.

6. Casalong-Verzosa G, Gersh BI, Tsang TS. Structural and functional remodeling of the left atrium: Clinical and therapeutic implications for atrial fibrillation. J Am Coll Cardiol. 2008;51(1):1–11.

7. Rubler S, Dlugash J, Yueceglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Pathol. 1972;30(6):595–602.

8. Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res. 2001;89(1):1191–8.

9. Kukidome D, Nishikawa T, Soroda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsurama T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55(1):120–7.

10. Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res. 2001;89(1):1191–8.
21. Dludla PV, Muller CJF, Louw J, Joubert E, Salie R, Opoku AR, Johnson R. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 2014;21(5):395–601.

22. Uemura S, Matsuhashi H, Li W, Glassford AJ, Asagami T, Lee KH, Hanson DG, Tiao PS. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res. 2001;88(12):1291–8.

23. Rajamani U, Essop MF. Hyperglycemia-mediated activation of the hexosamine biosynthetic pathway results in myocardial apoptosis. Am J Physiol Cell Physiol. 2010;299(1):C139–47.

24. Giacco F, Brower ME. Oxidative stress and diabetic complications. Circ. Res. 2010;107(9):1058–70.

25. Gai L, Li W, Wang G, Guo L, Jiang J, Yang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes. 2002;51(6):1938–48.

26. Sharma P, Jha AD, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms in plants under stressful conditions. J Bot. 2012;2012:217037.

27. Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 2013;229(2):232–41.

28. Kuorda J, Ago T, Matsuhashi S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A. 2010;107(35):15565–70.

29. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;143(3):375–415.

30. Marín-García J, Akhmedov AT, Moe GW. Mitochondria in heart failure: The emerging role of mitochondrial dynamics. Heart Fail Rev. 2013;18(4):439–56.

31. Sack MN. Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol. 2009;46(6):842–9.

32. Montaigne D, Marechal X, Lefebvre P, Modine T, Fayad G, Dehodt H, Hurt C, Coine A, Koussa M, Remy-Jouet I, Zenitreich F, Boulanger E, Lacroix D, Saels B, Neviere R. Mitochondrial dysfunction as an arrhythmogenic substrate: A translational proof-of-concept study in patients with metabolic syndrome developing post-operative atrial fibrillation. J Am Coll Cardiol. 2013;62(16):1466–73.

33. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Pett PX, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995;182(2):367–74.

34. Baines CP. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Biol. 2009;46(6):850–7.

35. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 1999;341(Pt 2):333–49.

36. Lemasters JJ, Nieminen AL, Qian T, Trotz LC, Elmore SP, Nishimura Y, Crowe RA, Paravincini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care. 2008;31(Suppl 2):S70–80.

37. Fu XJ, Peng YB, Hu YP, Shi YZ, Yao M, Zhang X. NADPH oxidase 1 and its derived reactive oxygen species mediated tissue injury and repair. Oxidative Med Cell Longev. 2014;2014:282854.

38. Stockklauser-Fäbker K, Ballhausen T, Laufer A, Rösen M. Influence of diabetes on cardiac nicotinic acid synthase expression and activity. Biochim Biophys Acta. 2000;1533(1):11–20.

39. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

40. Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: Spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol. 2016;310(2):H153–73.

41. Paravincini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care. 2008;31(Suppl 2):S70–80.

42. Dludla ET al. Nutrition & Metabolism 2017;14:45

43. Sambandam N, Steinmetz M, Chu A, Altarejos JY, Dyck JRB, Lopaschuk GD. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by AMPK- and IGF-1. Biochim Biophys Acta-Bioenerg. 2006;1757(5):548–52.

44. Yu XY, Song YH, Gong YJ, Lin QX, Shan ZX, Lin SG, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochim Biophys Acta Res Commun. 2008;376(3):548–52.

45. An J, Chen Y, Huang Z. Critical upstream signals of cytochrome c release induced by a novel Bcl-2 inhibitor. J Biol Chem. 2004;279(18):19133–40.

46. Zungu M, Schüler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol. 2011;178(1):14–11.

47. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochim Biophys Acta Res Commun. 2008;376(3):548–52.

48. Boekema EJ, Braun HP. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem. 2007;282(1):1–4.

49. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

50. Yu XY, Song YH, Gong YJ, Lin QX, Shan ZX, Lin SG, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochim Biophys Acta Res Commun. 2008;376(3):548–52.

51. An J, Chen Y, Huang Z. Critical upstream signals of cytochrome c release induced by a novel Bcl-2 inhibitor. J Biol Chem. 2004;279(18):19133–40.

52. Zungu M, Schüler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol. 2011;178(1):14–11.

53. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochim Biophys Acta Res Commun. 2008;376(3):548–52.

54. Park SH, Gammon SK, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol. 2002;92(6):2475–82.

55. Sambandam N, Steinmetz M, Chu A, Altarejos JY, Dyck JRB, Lopaschuk GD. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by AMPK-activated protein kinase (AMPK) studies using HK2 cells overexpressing AMPK and MCD and myocardial/endothelial cell gene transfer technique. Eur J Biochem. 2004;271(13):2831–40.

56. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Li Y. Regulation of acetyl-CoA carboxylase. Biochim Soc Trans. 2006;34(Pt 2):223–7.

57. Makaula S, Adam T, Essop MF, Upstream stimulatory factor 1 transactivates human promoter of the cardiac isoform of acetyl-CoA carboxylase. Arch Biochem Biophys. 2006;456(1):91–100.

58. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;2(7825):785–9.

59. Revollo JQ, Berkman BF, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Namp/PnktxF/vitamin in mammals. Curr Opin. 2007;23(2):164–70.

60. Rychly J. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta-Rev Bioenerg. 2006;1755(5–6):721–6.

61. Marnewick JL, Rautenbach F, Venter I, Neethling H, Blackhurst DM, Wolmarans P, MacHaria M. Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J Ethnopharmacol. 2011;133(1):46–52.

62. Bhatt MP, Lim YC, Hwang J, Na S, Kim YM, Ha KS. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes. 2013;62(1):243–53.

63. He X, Kan H, Cai L, Ma Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol. 2009;46(1):47–58.
Oral antidiabetic agents: anti-atherosclerotic

Joubert E, De Beer D. Rooibos (Aspalathus linearis). Food Res Int. 2014;63(1):14–21.

Papanas N, Maltezos E. Antioxidant and antimicrobial activities of rooibos tea (Aspalathus linearis) and its major flavonoids – potential against oxidative stress-induced conditions. InTech 2015;http://doi.org/10.5772/61614.

Sanderson M, Mazibuko SE, Joubert E, De Beer D, Johnson R, Pheiffer C, Louw J, Muller CJF. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine. 2014;21(2):109–17.

Mazibuko SE. In vitro and in vivo effect of Aspalathus linearis and its major polyphenols on carbohydrate and lipid metabolism in insulin resistant models. Doctoral dissertation, University of Zululand, 2014. Accessed 12 December 2016.

Baba H, Ohtsuya K, Haruna H, Lee T, Nagata S, Maeda M, Yamahiro Y, Shimizu T. Studies of anti-inflammatory effects of rooibos tea in rats. Pediatr Int. 2009;51(5):700–4.

Beltrán-Dobrón R, Rull A, Rodríguez-Sanabria F, Iswaldi I, Herranz-López M, Aragónés G, Camps J, Alonso-Villaverde C, Méndez MÁ, Micó V, Segura-Carretero A, Joven J. Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine. 2011;18(5):414–24.

Smith C, Swart AC. Rooibos (Aspalathus linearis) facilitates an anti-inflammatory state, modulating IL-6 and IL-10 while not inhibiting the acute glucocorticoid response to a mild novel stressor in vivo. J Funct Foods. 2016;27:42–54.

Muller CJF, Joubert E, De Beer D, Sanderson M, Malherbe CJ, Fey SJ, Louw J. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine. 2012;20(1):32–9.

Kamakura R, Son MJ, De Beer D, Joubert E, Muira Y, Yagasaki K. Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-A(y) mice. Cytotechnology. 2015;67(4):699–710.

Khan AU, Gillani AH. Selective bronchodilatory effect of rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol. Eur J Nutr. 2006;45(8):463–9.

Persson IA, Persson K, Hägg S, Anderson RG. Effects of green tea, black tea and rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010;13(5):730–7.

Persson IA, Josefsson M, Persson K, Anderson RG. Tea flavonoids inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. J Pharm Pharmacol. 2006;58(8):1139–44.

Persson IA. The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, rooibos and enalaprilat—a study on enzyme kinetics. Phytother Res. 2012;26(4):517–21.

Pantsi WG, Mamewick JL, Estehuyse AJ, Rautenbach F, van Rooyen J. Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine. 2011;18(4):699–710.

Chaya AU, Garg SN, Khan S, Kher P, Amin T. The beneficial effects of rooibos tea on dyslipidemia in 26 diabetic patients. Diabetes Metab Syndr. 2013;7(3):239–42.

Persson IA, Persson K, Hägg S, Anderson RG. Effects of green tea, black tea and rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010;13(5):730–7.

Persson IA, Josefsson M, Persson K, Anderson RG. Tea flavonoids inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. J Pharm Pharmacol. 2006;58(8):1139–44.

Persson IA. The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, rooibos and enalaprilat—a study on enzyme kinetics. Phytother Res. 2012;26(4):517–21.

Pantsi WG, Mamewick JL, Estehuyse AJ, Rautenbach F, van Rooyen J. Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine. 2011;18(4):699–710.

Chayan AU, Garg SN, Khan S, Kher P, Amin T. The beneficial effects of rooibos tea on dyslipidemia in 26 diabetic patients. Diabetes Metab Syndr. 2013;7(3):239–42.

Persson IA, Persson K, Hägg S, Anderson RG. Effects of green tea, black tea and rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010;13(5):730–7.

Persson IA, Josefsson M, Persson K, Anderson RG. Tea flavonoids inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. J Pharm Pharmacol. 2006;58(8):1139–44.

Persson IA. The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, rooibos and enalaprilat—a study on enzyme kinetics. Phytother Res. 2012;26(4):517–21.

Pantsi WG, Mamewick JL, Estehuyse AJ, Rautenbach F, van Rooyen J. Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine. 2011;18(4):699–710.
Aspalathus linearis phenolics on conventional high performance liquid chromatographic instrumentation. J Chromatogr A. 2012;1219:28–39.

108. Marais C, Steenkamp JA, Ferreira D. Occurrence of phenylpropyric acid in woody plants: Biosynthetic significance and synthesis of an enolic glucoside derivative. J Chem Soc Perkin Trans. 1. 1996(24):2915–2918.

109. Stalmach A, Mullen W, Percorat M, Serafini M, Crozier A. Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J Agric Food Chem. 2009;57(15):7104–11.

110. Joubert E, Beer D. Antioxidants of rooibos beverages: role of plant composition and processing. In: Preedy V. Processing and impact on antioxidants in beverages, 1st edition. Academic Press; 2014. p. 131–143.

111. Courts FL, Williamson G. The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr. 2015;55(10):1352–67.

112. Breiter T, Lauz C, Kressel G, Gröll S, Engelhardt UH, Hahn A. Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations. Food Chem. 2011;128(2):338–47.

113. Cuervo A, Hevia A, López P, Suárez A, Sánchez B, Margellos A, González S. Association of polyphenols from oranges and apples with specific intestinal microorganisms in systemic lupus erythematosus patients. Nutrients. 2015; 7(2):1301–17.

114. Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal characteristics and metabolism of C-glycosyl dihydrochalcone, aspalathin. Molecules. 2017;22(4):554.

115. Snijman PW, Joubert E, Ferreira D, Li XC, Ding Y, Green IR, Gelderblom WC. Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavans in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. J Agric Food Chem. 2009; 57(15):6678–84.

116. Bowles S, Joubert E, De Beer D, Louw J, Brunschwig C, Njoroge M, Capanoglu E. The reciprocal characteristics and metabolism of C-glucosyl dihydrochalcone, aspalathin. Planta Med. 2013;79(14):1387–90.

117. Liu L, Wu Y, Huang X. Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol. 2016;776:90–8.

118. Lu N, Sun Y, Zheng X. Orientin-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Planta Med. 2011;77(10):984–91.

119. Lam KY, Ling AP, Koh KY, Wang YP, Say YH. A review on medicinal properties of orientin. Adv Pharmacol Sci. 2016;2016:4105495.

120. Ku SK, Kwak S, Bae JS. Orientin inhibits high glucose-induced vascular inflammation in vitro and in vivo. Inflammation. 2014;37(6):2164–73.

121. Orrego R, Leiva E, Cheel J. Inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus (Lemon grass) on human low density lipoprotein oxidation. Molecules. 2009;14(10):3906–13.

122. Liu Y, Ma QQ, Li Y, Xu Y, Yuan L, Li JP, Huang XL. The therapeutic effect of orientin on myocardial infarction rats. Lishizhen Medicine and Materia Medica Research. 2013;24(11):3189–93.

123. Liu L, Wu Y, Huang X. Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol. 2016;776:90–8.

124. Lu N, Sun Y, Zheng X. Orientin-induced cardioprotection against reperfusion injury of myocardium of orientin on ischaemic/reperfused myocardium. J Asian Nat Prod Res. 2006;8(3):265–72.

125. Yuan L, Han X, Li W, Ren D, Yang X. Isoorientin prevents hyperlipidemia and liver injury by regulating lipid metabolism, antioxidant capability, and inflammatory cytokine release in high-fructose-fed mice. J Agric Food Chem. 2016;64(13):2682–9.

126. Lim JH, Park HS, Choi JK, Lee IS, Choi HJ. Isoorientin induces Nr2f2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Arch Pharm Res. 2007;30(12):1590–8.

127. Choo CY, Sulong NY, Fan MF, Wong TW. Vitexin and iso vitexin from the leaves of Ficus deltoides with α-glucosidase inhibition. J Ethnopharmacol. 2012;142(3):776–81.

128. Yao Y, Cheng X, Wang L, Wang S, Ren G. A determination of potential α-glucosidase inhibitors from Azuki Beans (Vigna angularis). Int J Mol Sci. 2011;12(10):4645–51.

129. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mug bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation end products. Food Chem. 2008; 106(2):475–81.

130. Johnson R, Diulda PV, Muller CJ, Huisman B, Essop MF, Louw J. The transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in vitro H9c2 model. Molecules. 2017; 22(19):219.

131. Smit SE. An investigation into the effects of aspalathin on myocardial glucose transport using cardiomyocytes, and terminally differentiated H9c2 cells. MSc (Medical Physiology) Thesis; Stellenbosch University; 2016.

132. Diulda PV, Muller CIFT, Joubert E, Louw J, Essop MF, Gabaou NB, Ghoor S, Huisman B, Johnson R. Aspalathin protects the heart against hyperglycaemia-induced oxidative damage by up-regulating Nrf2 expression. Molecules. 2017;22(1):129.

133. Joubert E, Beelders T, Beer D, Malherbe CJ, de Villiers AJ, Sigge GO. Variation in phenolic content and antioxidant activity of fermented rooibos herbal tea infusions: Role of production season and quality grade. J Agric Food Chem. 2012;60(36):9171–9.
213. Li ZL, Hu J, Li YL, Xue F, Zhang L, Xie JQ, Liu ZH, Li H, Yi DH, Liu JC,
Hou JY, Liu Y, Liu L, Li XM. Protective effect of hyperoside on cardiac
Ku SK, Kwak S, Kwon OJ, Bae JS. Hyperoside inhibits high-glucose-
199. Umarani V, Muvvala S, Ramesh A, Lakshmi BV, Sravanthi N. Rutin
Prince P, Kamalakkannan N. Rutin improves glucose homeostasis in
cardiovascular disease. Angiogenesis. 2013;16(2):311–20.
205. Zhang Z, Sethiel MS, Shen W, Liao S, Zou Y. Hyperoside downregulates the
204. Zhang J, Fu H, Xu Y, Niu Y, An X. Hyperoside reduces albuminuria in
207. Liu X, Zhu L, Tan J, Zhou X, Xiao L, Yang X, Wang B. Glucosidase inhibitory
206. Kim SJ, Um JY, Lee JY. Anti-inflammatory activity of hyperoside through the
208. Ku SK, Kwak S, I reperfused isolated rat heart: potential involvement of the
211. Dezsi S, Bádádus AS, Bishcin C, Vodnar DC, Silaghi-Dumitrescu R, Ghelidi AM,
Mocan A, Vase L. Antimicrobial and antioxidant activities and phenolic
profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) KD. Hill
and L.A.S. Johnson leaves. Molecules. 2015;20(3):4720–34.
209. Wang SS, Wang DM, Pu WJ, Li DW. Photochemical profiles, antioxidant and
antimicrobial activities of three Potentilla species. BMC Complement Alter Med.
2013;13(1):331.
202. Zhang Z, Sethiel MS, Shen W, Liao S, Zou Y. Hyperoside down regulates the
receptor for advanced glycation end products (RAGE) and promotes
proliferation in EC9304 cells via the c-Jun N-terminal kinases (JNK) pathway
following stimulation by advanced glycation end-products in vitro. Int J Mol Sci.
2013;14(11):22697–707.
203. Kim SJ, Um JY, Lee JY. Anti-inflammatory activity of hyperoside through the
suppression of nuclear factor-κB activation in mouse peritoneal macrophages.
Ann Chin Med. 2011;31(1):171–81.
201. Liu X, Zhu L, Tan J, Zhou X, Xiao L, Yang X, Wang B. Glucosidase inhibitory
activity and antioxidant activity of flavonoid compound and triterpenoid
compound from Agrimonia Pilosa Ledeb. BMC Complement Altern Med.
2014;14:12.
200. Xu SK, Kvak S, Kwon OJ, Bae JS. Hyperoside inhibits high-glucose-
induced vascular inflammation in vitro and in vivo. Inflammation. 2014;
37(5):380–400.
198. Li ZL, Liu JC, Hu J, Li QX, Wang SW, Yi DH, Zhao MG. Protective effects of
hyperoside against human umbilical vein endothelial cell damage induced by
hydrogen peroxide. J Ethnopharmacol. 2012;139(2):388–94.
197. Pashikanti S, de Alba DR, Boissonneault GA, Cervantes-Laurean D. Rutin
potentially attenuates fluoride-induced oxidative stress-mediated
Cardiovascular Disease. 2015;35(1):2–16.
196. Cervantes-Laurean D, Schramm DD, Jacobson EL, Halaweish I, Bruckner GG,
195. Malaise WJ, Sener A, Welsh M, Malaise-Lage F, Hellerman C, Christophe
J. Mechanism of 3-phenylpyruvate-induced insulin release. Metabolic
aspects Biochem J. 1983;203(1):921–7.
194. Ben-Abraham R, Gazit V, Zohi O, Ben-Shlomo I, Reznick AZ, Katz Y. Beta-
phenylpyruvate and glucose uptake in isolated mouse soleus muscle and
cultured C2C12 muscle cells. J Cell Biochem. 2003;90(3):957–63.
193. Prince P, Kamalakkannan N. Rutin improves glucose homeostasis in
streptozotocin diabetic animals by altering glycolytic and gluconeogenic enzymes.
J Biochem Mol Toxicol. 2006;20(2):96–102.
192. Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is
mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res
Commun. 2008;373(4):545–9.
191. Umarani V, Muvvala S, Ramesh A, Lakshmi BV, Sravanthi N. Rutin
potentially attenuates fluoride-induced oxidative stress-mediated
cardiotoxicity, blood toxicity and dyslipidemia in rats. Toxicol Mech Methods.
2015;25(2):143–9.
190. Liang T, Yue W, Li Q. Comparison of the phenolic content and antioxidant
activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative
species. Int J Mol Sci. 2010;11(1):652–64.
189. Dezi S, Bădădăus AS, Bishcin C, Vodnar DC, Silaghi-Dumitrescu R, Ghelidi AM,
Mocan A, Vase L. Antimicrobial and antioxidant activities and phenolic
profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) KD. Hill
and L.A.S. Johnson leaves. Molecules. 2015;20(3):4720–34.
188. Wang SS, Wang DM, Pu WJ, Li DW. Photochemical profiles, antioxidant and
antimicrobial activities of three Potentilla species. BMC Complement Alter Med.
2013;13(1):331.
187. Zhou L, An XF, Teng SC, Liu JS, Shang WB, Zhang AH, Yuan YG, Yu YJ.
Pretreatment with the total flavane glycosides of Flos Abelia chinensis manihot
and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-
induced diabetic nephropathy. J Med Food. 2012;15(S5):461–8.
186. Zhang J, Fu H, Xu Y, Niu Y, An X. Hyperoside reduces albuminuria in
diabetic nephropathy at the early stage through ameliorating renal damage
and podocyte injury. J Nat Med. 2016;70(4):748–90.
185. Zhang Z, Sethiel MS, Shen W, Liao S, Zou Y. Hyperoside down regulates the
receptor for advanced glycation end products (RAGE) and promotes
proliferation in EC9304 cells via the c-Jun N-terminal kinases (JNK) pathway
following stimulation by advanced glycation end-products in vitro. Int J Mol Sci.
2013;14(11):22697–707.
184. Kim SJ, Um JY, Lee JY. Anti-inflammatory activity of hyperoside through the
suppression of nuclear factor-κB activation in mouse peritoneal macrophages.
Ann Chin Med. 2011;31(1):171–81.
183. Liu X, Zhu L, Tan J, Zhou X, Xiao L, Yang X, Wang B. Glucosidase inhibitory
activity and antioxidant activity of flavonoid compound and triterpenoid
compound from Agrimonia Pilosa Ledeb. BMC Complement Altern Med.
2014;14:12.
182. Xu SK, Kvak S, Kwon OJ, Bae JS. Hyperoside inhibits high-glucose-
induced vascular inflammation in vitro and in vivo. Inflammation. 2014;
37(5):380–400.
181. Li ZL, Liu JC, Hu J, Li QX, Wang SW, Yi DH, Zhao MG. Protective effects of
hyperoside against human umbilical vein endothelial cell damage induced by
hydrogen peroxide. J Ethnopharmacol. 2012;139(2):388–94.
180. Piao MJ, Kang KA, Zhang R, Ko DO, Wang ZH, You HJ, Kim HS, Kim JS, Kang
SS, Hyun JW. Hyperoside prevents oxidative damage induced by hydrogen
peroxide in lung fibroblast cells via an antioxidant effect. Biochem Biophys Acta.
2008;1780(12):1448–57.
179. Han J, Xuan JL, Hu HR, Chen ZW. Protective effect against myocardial
ischemia reperfusion injuries induced by hyperoside preconditioning and its
relationship with PKA/PKA signaling pathway in rats. Zhongguo Zhong Yao
Za Zhi. 2015;40(1):118–23.
178. Hou JY, Liu Y, Liu L, Li XM. Protective effect of hyperoside on cardiac
ischemia reperfusion injury through inhibition of ER stress and activation of
Nrf2 signaling. Asian Pac J Trop Med. 2016;9(1):76–80.
177. Li ZL, Hu J, Li YL, Xue F, Zhang L, Xie QJ, Liu ZH, Li H, Yi DH, Liu JC,
Jiang SW. The effect of hyperoside on the functional recovery of the ischemic/reperfused isolated rat heart: potential involvement of the
extracellular signal-regulated kinase 1/2 signaling pathway. Free Radic Biol Med.
2013;57:132–40.
176. Joubert E, Beer D, Malherbe CJ, Muller N, Bonnet SL, Van Der Westhuizen
JH, Ferreira D. Occurrence and sensory perception of Z-2-(β-D-glucopyranosyl)-3-
phenylpropenoic acid in rooibos (Aspalathus linearis). Food Chem. 2013;136(2):
1078–85.
234. Panchal SK, Poudyal H, Arumugam TV, Brown L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J Nutr. 2011;141(6):1062–9.

235. Saklani R, Gupta SK, Mohanty IR, Kumar B, Srivastava S, Mathur R. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem. 2016;420(1–2):65–72.