REVIEW

The effects of tumor-derived exosomes on T-cell function and efficacy of cancer immunotherapy

Yuanyuan Hao MD.1 | Panpan Chen MD. & Ph.D.1 | Xuzhao Zhang Ph.D.1
Yanping Shao MD.2 | Yang Xu Ph.D.1 | Wenbin Qian MD. & Ph.D.1

1 Department of Hematology (Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
2 Department of Hematology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical College, Linhai, Zhejiang, People’s Republic of China

Correspondence
Wenbin Qian, Department of Hematology (Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou 310009, People’s Republic of China.
Email: qianwb@zju.edu.cn
Yang Xu, Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou 310009, People’s Republic of China.
Email: yxu@zju.edu.cn
Yuanyuan Hao and Panpan Chen are Co-first authors.

Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 81800315, 81830006

Abstract
Tumor-derived exosomes (TEXs) are a class of extracellular vesicles which play an important role in the tumor microenvironment. These vesicles have multiple biological functions including promotion of cancer progression and reduction of anti-tumor immunity. Recently, interaction between TEXs and immune cells are of great interest in cell-based immunotherapy. Here, we review the effects of TEXs on the survival and functions of T cell subsets, as well as their clinical applications. Unraveling the immunoregulatory function of exosomes allows a better understanding of the molecular and cellular basis for cancer immunotherapy.

KEYWORDS
immunotherapy, T cells, tumor-derived exosomes, tumor microenvironment

1 | INTRODUCTION

Exosomes are a special group of extracellular vesicles (EVs) of 30–150 nm in diameter and released by almost all cells.1 In the early 1980s, Johnstone et al2 first discovered that some small vesicles loaded with transferrin receptors were released by the reticulocytes of sheep during their maturation. At one time exosomes were considered as “cell garbage collectors” to dispose of the cellular waste. Today, exosomes have been emerging as communication vehicles to transfer information between cells, and play a critical role in both health and disease.3–5

Tumor-derived exosomes (TEXs) have gained special research interests because of their unique functions, such as promoting tumorigenesis and metastasis, modulating anti-tumor immunity and neutralizing drugs to compromise therapeutic effects.5,7 Recently, immunotherapies, including immune checkpoint inhibitors (such as PD-1/PD-L1) and chimeric antigen receptor T (CAR-T) therapy, have revolutionized the field of cancer therapy and significantly improved the treatment responses and patients’ survival in both solid and blood cancers.6,8,9 However, there are still many patients resistant to immunotherapy, and the immunologic basis for differential treatment responses remain largely unknown. TEXs are a group of complex and highly...
heterogeneous carriers, containing various inhibitory lipids, proteins and nucleic acids, which have shown potential regulatory functions in immunotherapy. Since T lymphocytes are the major immune effector cells in anti-tumor immune responses, here we mainly focus on the effects of TEXs on T lymphocyte subsets, including CD4\(^+\), CD8\(^+\) and Treg cells, and review the complex mechanisms underlying the crosstalk between TEXs and T cells.

1.1 Three modes of interaction between TEXs and T cells

Generally, there are three pathways for TEXs to transfer information: (1) TEXs deliver intercellular signal through receptor-ligand binding; (2) TEXs fuse with the membrane of recipient cells and release their “cargo”; (3) Recipient cells can phagocytose and internalize TEXs.\(^{10}\)

In fact, how TEXs interact with T cells is still under debate. Muller et al.\(^{11,12}\) found that little PKH26-labeled TEXs are internalized by T cell subsets following 48–72 h co-incubation, suggesting that the receptor-ligand interaction alone is sufficient to affect T cell functions, while the internalization of TEXs is not required for signal delivery that causes changes in gene expression. In contrast, many authors argued that T cell functions can still be impaired by internalizing TEXs, although they are more difficult in internalizing TEXs than other immune cells. Vignard and colleagues\(^{13}\) found that resting or activated CD8\(^+\) T cells can internalize melanoma-derived exosomes as early as 5 h after exposure under electron microscopy or confocal microscopy, consistent with the previous studies.\(^{14}\) Moreover, the nucleic acids in the TEXs, especially mRNA and miRNAs, are also responsible for functional changes of T cells, which indicates that TEXs can reprogram the recipient T cells through internalization.\(^{15}\) For example, TEXs down-regulate the inhibitory genes in CD4\(^+\)T cells and result in a loss of CD69 expression on the surface of T cells.\(^{16}\) When transfected into normal T cells, the RNA purified from TEXs can change the T cell function.\(^{16}\) Together, TEXs can influence T cell functions through either receptor-ligand binding or internalization.

2 TEXS DELIVER IMMUNOSTIMULATORY SIGNALS TO T CELLS

A variety of molecules on the surface of TEXs, such as major histocompatibility complex (MHC) I and II, tumor-associated antigens (TAA), HSP70 and CD40, are thought to enhance T cell-mediated immunity against tumor through dendritic cells (DCs).\(^{17-19}\) DCs that were stimulated by TEXs can simultaneously promote the proliferation of both CD4\(^+\) and CD8\(^+\) T cells and promote the differentiation of CD8\(^+\) T cells into CTLs, thereby enhancing the anti-tumor ability in vitro and in vivo.\(^{20,21}\) Thus, TEXs can serve as cancer vaccines for immunotherapy.\(^{22,23}\) Recently, an increasing number of studies focus on the modified TEXs, which can be efficiently uptaken by DCs to elicit a strong immunostimulatory response. Chen et al.\(^{17}\) demonstrated that exosomes secreted from heat-shocked (HS-Exo) lymphoma cells, with high expression of costimulatory molecules, can induce robust immune responses in vivo. Furthermore, HSP70 on the HS-Exo can also induce DCs to release IL-6 to block Treg cell differentiation, which is TGF-β-dependent, and promote Th17 cell differentiation.\(^{24}\) Interestingly, IL-12-anchored exosomes can directly induce T cell proliferation and enhance their cytotoxic effect by reversing the suppressed JAK2/STAT5 pathway.\(^{25,26}\)

3 TEXS DELIVER INHIBITORY SIGNALS TO DIFFERENT T CELL SUBSETS

3.1 TEXs deliver inhibitory signals to CD8\(^+\) T cells

When binding to their cognate receptors, the inhibitory ligands on the TEXs, such as TGF-β, PD-L1, CD39 and CD73, can deliver negative signals to recipient T cells. The TEXs-induced immunoinhibitory responses vary among different T cells subsets (Figure 1). TEXs mainly inhibit CD8\(^+\) T cell activation and promote its apoptosis and exhaustion. Several mechanisms have been described to inhibit their activation. First, through TGF-β pathway TEXs suppress the response of CD8\(^+\)T cells to IL-2, a key cytokine essential for T-cell activation and proliferation.\(^{27,28}\) Second, the JAK/STAT pathway is crucial for the function of cytokines sharing the γ-chain of the IL-2 receptors, such as IL-2, IL-7 and IL-15; TEXs can reduce JAK3 expression and diminish cytokine productions, thereby inhibiting activation of CD8\(^+\) T cells.\(^{28-30}\) Third, TEXs are able to activate NF-κB signaling pathway of CD8\(^+\) T through Toll-like receptor 2/4 (TLR2/4), which leads to IL-6 upregulation and subsequent STAT3 activation.\(^{31-33}\) Fourth, TEXs containing PD-L1 can down-regulate CD69 expression on activated CD8\(^+\) T cells and decrease INF-γ production, which was partially blocked by anti-PD-1 monoclonal antibodies, suggesting that TEXs inhibited T cells activity through PD-1/PD-L1 interaction.\(^{32,34}\) Furthermore, Yang et al.\(^{35}\) found TEX-PD-L1 significantly inhibited CD3/CD28-induced ERK phosphorylation and NF-κB activation of T cells. Ricklefs et al.\(^{36}\) also suggested PD-L1 on TEXs blocked CD8+ T cells activation in response to TCR stimulation. Interestingly, CD80 is also a binding partner of PD-L1. Thus PD-L1 can inhibit the activation of T cells through PD-L1/CD80 signaling pathway.\(^{37}\) The signaling pathway after PD-1 binding to PD-L1 may involve SHP-1/2, TCR and their downstream signaling, such as ZAP70, PI3K, PKB/akt, mTOR, RAS, MAPK/MEK and ERK.\(^{37}\) Additionally, exosome PD-L1 was significantly increased in the responders during the early stages of immunotherapy, suggested that TEX-PD-L1 is a marker of adaptive immune activation.\(^{38}\)

The mechanisms underlying the induction of CD8\(^+\) T cell apoptosis by TEXs have been extensively studied.\(^{39,40}\) TEXs express FasL (Fas Ligand), a transmembrane type II protein belonging to the TNF protein superfamily, which plays a pivotal role in Fas receptor-mediated apoptosis of CD8\(^+\) T cells.\(^{41-43}\) Priyanka et al.\(^{32}\) found that apoptosis of CD8\(^+\) T cells is TEXs dose-dependent, and can be neutralized by anti-Fas (ZB4) mAbs. Moreover, the FasL on the TEXs downregulates the TCR/CD3ζ expression in T cells, which is correlated with a poor
prognosis in several tumors. TEXs can also reduce the expression of JAK3 and up-regulate the proapoptotic Bax levels of CD8+ T cells to induce apoptosis. Alternatively, TEXs promote p38MAPK phosphorylation that induces endoplasmic reticulum stress, which activates the PERK-eIF2α-ATF4-CHOP signaling axis, eventually leading to CD8+ T cell apoptosis. Of note, TEXs expression PD-L1 also promote CD8+ T cells apoptosis through PD-1/PD-1 interaction. Interestingly, even in models resistant to anti-PD-1 mAb, the removal of exosomal PD-L1 can still inhibit tumor growth and enhance systemic memory immune activity, which has become a new strategy for immunotherapy. Of note, PD-L1 can transfer to both tumor cells and immune cells, such as macrophages and DCs, through TEX-PD-L1, which play an important role in the regulation of immunity in TME. Particularly, it was reported that CLL cell-derived exosomes also express PD-L1 and induce CD19-directed chimeric antigen receptor T (CAR-T) cell exhaustion. TGF-β is another inhibitory receptor. Chatterjee et al. found that the level of PD-L1 expressed on TEXs was highly correlated with the level of TGF-β in tumors. In other words, TGF-β may induce the expression of PD-L1 in TEXs, thereby synergistically impair CD8+ T-cell function.
these SP phenotypes of CD8+ T cells lack CD27/CD28 expression, and suppress the function of normal T cells.16,56,57 The inhibitory NKG2D ligand, MIC A/B, binds to NKG2D, down-regulates NKG2D expression and inhibits CD8+ T cells-mediated cytolysis.58 In hepatocellular carcinoma, TEXs induce CD8+ T cell exhaustion by delivering 14-3-3ε, an immunosuppressive molecule that promotes the proliferation of cancer cells and induces epithelial-mesenchymal transition (EMT).59 The miRNA within TEXs play an important role in T cell exhaustion. For example, Hsa-miR-498 can inhibit cytokine synthesis such as TNF-α and CD8+ T cells-mediated cytotoxicity in vivo and in vitro.60,61

Recently, accumulating evidence suggest that TEXs can reprogram the cell metabolism to facilitate cancer progression, angiogenesis, metastasis, drug resistance and immunosuppression.10,61 Similarly, TEXs also can modulate CD8+ T cell function through alteration of cellular metabolism.62,63

3.2 TEXs deliver inhibitory signals to CD4+ T cells

TEXs inhibit proliferation of CD4+ T cells by impairing its response to IL-2 through TGF-β pathway and promote cell apoptosis.64 Huang et al.65 found that silencing TGF-β in TEXs promotes CD4+ T-cell proliferation and Th1 cytokines production. The immuno-inhibitory molecules, CD39 and CD73, are expressed on the surface of TEXs, and can convert ATP into adenosine, which significantly suppresses CD4+ T cell proliferation.12,66

Besides inhibiting cell proliferation, TEXs also induce CD4+ T cell apoptosis. Zhou et al.67 found that TEXs activate the mitochondria caspase pathway in vivo and in vitro. Among the key players in the apoptosis of CD4+ T cell subsets, galectin-9, a ligand for the membrane receptor Tim-3, tiggers apoptosis in Th1 lymphocytes;68,69 Fas, Fasl and TRAIL induce Th2 cells apoptosis through caspase 8 activation.70 Additionally, Ali et al.70 found that neuroblastoma cell-derived exosomes also impair tumor cytotoxicity of CD4+ CD171+ specific CAR T cells.

Unlike CD8+ T cells, CD4+ T cells can differentiate into Treg cells that are CD25+ and Foxp3+, and suppress immune response.71 TEXs can induce Treg cell differentiation through PD-L1/PD-1 signaling pathway, and block differentiation towards CD4+ IFN-γ+ Th1 cells.72 Also, TGF-β is essential for FOXP3 expression, which not only inhibits T cell proliferation but also promotes Treg cell phenotype differentiation.55,73 Conversely, when TGF-β is neutralized with mAb or silenced by shRNA, the immunosuppressive effect of TEXs on other immune cells will be alleviated.74 TEXs also promote the expansion of Treg cells and confers the resistance to apoptosis via TGF-β and IL-10.75,76 Moreover, TEXs can recruit Treg cells to the tumor through CCL20, thereby inhibiting the proliferation of other T cell subsets.75,76 TEXs also enhance the immune inhibitory function of Treg cells, which is mainly mediated by the CD73 and CD39 on the surface of TEXs.12,77 What’s more, MHC class II molecules, as ligands of LAG3, may enhance Treg cells function through TEXs.78 Additionally, the inhibitory molecules, such as galectin-9 (TIM3 ligand), CD160 (BTLA ligand), can also exert immunosuppressive effects through TEXs.30

3.3 Indirect T cell inhibition by TEXs

Besides direct signal transfer to T cells, TEXs can regulate T cell functions through other immune cells, such as DCs, macrophages, myeloid-derived suppressor and NK cells (Figure 2).

As effective antigen present cells, DCs have dual regulatory functions in TME. DCs can extract and process TAAs from TEXs, and then present the antigens to T cells to elicit anti-tumor immune response.7 Therefore, TEX-loaded DCs may be used as cancer vaccines to improve therapeutic response. Marton et al.79 found that TEXs from melanoma activate DCs, which in turn promote CD4+ T cell proliferation. As for CD8+ T cells, on the one hand, TEX-loaded DCs strengthen CD8+ T cell cytotoxicity;80 TEXs attenuate DCs function through CD73/CD39 signaling pathway driven by prostaglandin E2 (PGE2), leading to decreased TNFα and IL-12 and increased immunosuppressive adenosine, and thus inhibit the cytotoxicity of CD8+ T cells.81 Therefore, TEX-loaded DCs have dual effects on the immune system, with immunosuppression predominates in vivo.7 To induce remarkable anti-tumor response, new strategies have been explored to retain strong immunogenicity and reduce immunosuppression simultaneously. For example, the use of TGF-β1 antibodies or TGF-β1 downregulation improves the anti-tumor capability;65 the addition of cytokines like IL-2 or GM-CSF enhances the cytotoxicity of TEXs-stimulated CD8+ T cells.82 Alternatively, exosome-based modification has been shown to improve the vaccine efficacies. For example, heat-stressed tumor cells-derived exosomes contain high level of HSP70, which stimulates DCs to secrete IL-6 for converting Treg into Th17 cells, and induce strong antitumor immune responses.21 Anchoring IL-12 to TEXs can improve the anti-tumor capacity of T lymphocytes because IL-12 abrogates the inhibitory effect conferred by TEXs alone.25,26 Besides, Rab27a plays a major role in the secretory pathway of exosomes,83 and TEXs derived from Rab27a-overexpressing cancer cells stimulate DCs maturation and promote CD4+ T cell proliferation.21

Macrophages, a group of essential innate immune cells, are able to differentiate into either M1 subtype which is mainly involved in the inflammatory response and produce considerable amount of pro-inflammatory cytokines, or M2 subtype which secrete anti-inflammatory cytokines (such as TGF-β and IL-10) and interfere with anti-tumor T cell response. Tumor-associated macrophages (TAMs) refer to the macrophages accumulated in cancer microenvironment.48 TEXs from gastric cancer could induce TAMs to differentiate into M2 subtype with PD-1 expression, leading to severely impaired CD8+ T-cell functions.84 TAMs usually display M2 phenotype that is pro-tumorigenic. Like Treg cells, TAMs produce inhibitory cytokines, such as IL-10 and TGF-β, to suppress T cell function. In glioblastoma patients, serum TEXs can drive transformation of macrophages into M2 phenotype, indicating a bias toward T-helper cell type 2 environment.85
TEXs induces the activation of NF-κB signaling pathway through MYD88 or Toll-like receptor 2 (TLR2) in macrophages, as a result, a number of pro-inflammatory cytokines such as G-CSF, CCL2, IL-6 are markedly increased to promote the immunosuppressive function of TAMs.86

Myeloid-derived suppressor cells (MDSCs), consist of a group of immune cells including monocytes, granulocytes, and precursors of DC, and typically express myeloid markers CD11b and CD33.87 MDSCs are considered to be immunosuppressive within tumor microenvironment. TEXs regulate MDSC functions through various signaling pathways, thereby inhibiting T cell activation and promoting T cell depletion. Ling et al.88 demonstrate that hypoxic TEXs enhanced the suppressive effect of MDSCs on T cells through a miR-21/PTEN/PD-L1. Additionally, TEXs-associated HSP72 restrains tumor immune surveillance by promoting MDSC suppressive functions through STAT3/TLR2/MYD88 signal pathway.89

Other immune cells, such as NK cells and stromal cells, are also influenced by TEXs, although it is not clear if these cells could induce T cell exhaustion. Usually, the NK cells and T cells are activated through the binding of NKG2D receptors to MICA/MICB. However, the NK cell cytotoxicity is suppressed when cells are exposed to MICA *008, a human NKG2D ligand releasing from TEXs.90 Also, TEXs can attenuate the response of NK cells to IL-2, a crucial cytokine that stimulate NK cell expansion and the release of perforin.91 TEXs from CLL can be internalized by stromal cells, and the microRNA and proteins are delivered to transform stromal cells into inflammatory phenotypes, which secrete inhibitory cytokines and promote CLL cell survival.92

4 TEXS FUNCTION AS CANCER BIOMARKERS AND TARGETS FOR CANCER IMMUNOTHERAPY

4.1 TEXs are valuable markers for the diagnosis, prognosis, and therapeutic choices in cancer patients

In the precedent years, TEXs have attracted increasing interest in the field of liquid biopsy. As previously described, they can be isolated from almost all human biological fluids, such as blood, urine, amniotic fluid and saliva. The proteins, nucleic acids and other molecules in TEXs contain a large amount of information about tumor antigens, genetic material, and immune stimulating molecules. Therefore, TEXs are helpful in the diagnosis of disease, especially for patients with difficulty in obtaining tissue biopsy.53 In addition, TEXs have important clinical prognostic value as biomarkers. Elevated levels of TEXs in liquid biopsies of cancer patients are usually associated with a higher tumor burden, and immunosuppressive molecules of TEXs, such as PD-L1, CTLA-4, TIM3 in the TEXs are also correlated with poor prognosis or disease progression.53,94 Also, genetic materials such as microRNA, lncRNA, circRNA and DNA are associated with cancer progression and prognosis.95–97 Exosome DNA usually contains a variety of clinically relevant tumor-specific mutations such as EGFR, BRAF, RAS, IDH, and HER2, which making it a promising therapy recommendations for “liquid biopsy.”98 Nowadays, TEXs are undergoing extensive clinical trials as a biomarker for disease diagnosis, prognosis and immunotherapy in different cancer patients, which will give us more insights in the future (Table 1)
TABLE 1 Clinical trials involving exosomes

Source of Exosomes	Role in cancer therapy	Trial
NSCLC	immunotherapy	NCT03236675
NSCLC	diagnosis	NCT04529915
NSCLC	diagnosis	NCT03228277
NSCLC	diagnosis, prognosis, monitor	NCT04499794
NSCLC	immunotherapy monitor	NCT04427475
NSCLC	immunotherapy	NCT02890849
NSCLC	immunotherapy	NCT02869685
Lung Cancer	diagnosis	NCT03830619
Lung Cancer	diagnosis, prognosis, monitor	NCT04629079
Lung Cancer	diagnosis	NCT04315753
Lung Cancer	diagnosis	NCT04323579
Lung Cancer	diagnosis	NCT03317080
Lung Cancer	diagnosis, prognosis	NCT04182893
Lung Cancer	diagnosis	NCT03542253
Breast Cancer	diagnosis, prognosis	NCT01344109
Breast Cancer	diagnosis	NCT03974204
Breast Cancer	immunotherapy	NCT04288141
Breast Cancer	monitor, Metastatic	NCT04258735
Breast Cancer	diagnosis	NCT04781062
Triple Negative Breast Cancer	diagnosis, prognosis	NCT04530890
Prostate Cancer	diagnosis, prognosis	NCT02702856
Prostate Cancer	diagnosis	NCT03032913
Prostate Cancer	immunotherapy	NCT03236688
Prostate Cancer	diagnosis	NCT04556916
Prostate Cancer	diagnosis	NCT03694483
Prostate Cancer	diagnosis	NCT04661176
Prostate Cancer	diagnosis, monitor	NCT03911999
Pancreatic Cancer	diagnosis, prognosis	NCT03821909
Pancreatic Cancer	prognosis	NCT02393703
Pancreatic Cancer	diagnosis	NCT03711890
Pancreatic Cancer	diagnosis	NCT03791073
Pancreatic Cancer	diagnosis	NCT04636788
Colorectal Cancer	diagnosis	NCT04394572
Colorectal Cancer	diagnosis, prognosis	NCT04523389
Rectal Cancer	monitor	NCT03874559
Rectal Cancer	prognosis	NCT04852653
Gastric Cancer	diagnosis	NCT01779583
Oropharyngeal Squamous Cell Carcinoma	diagnosis	NCT02147418

(Continues)

TABLE 1 (Continued)

Source of Exosomes	Role in cancer therapy	Trial
Thyroid Cancer	prognosis	NCT02862470
Thyroid Cancer	prognosis, monitor, Therapy	NCT03488134
Malignant Glioma	immunotherapy	NCT01550523
Malignant Glioma	immunotherapy	NCT02507583
DLBCL	immunotherapy	NCT03985696
Lymphoma, T-Cell, Peripheral	prognosis, monitor	NCT02535247
Gallbladder carcinoma	prognosis	NCT03581435
Cholangiocarcinoma	prognosis	NCT03102268
Ovarian Cancer	diagnosis, prognosis	NCT03738319
Ovarian Cancer	prognosis	NCT02063464
Bladder cancer	diagnosis	NCT04155359
Melanoma	Treatment, drug resistance	NCT02310451
Sarcoma	monitor, prognosis	NCT03800121
Osteosarcoma	biomarker for lung metastases	NCT03108677
Bone Metastases	diagnosis	NCT03895216
Malignant solid tumor	diagnosis	NCT02662621

4.2 | **TEX-targeted cancer immunotherapy**

TEXs play an important role in tumor progression, drug resistance and metastasis. Previously, we found that TEXs stimulated T cells via DC cells in vitro, while in vivo it was beneficial for tumorigenesis. There are two ways to treat cancer patients. One is to inhibit the immuno-suppressive molecules on the surface of TEXs or/and enhance the immunostimulatory molecules on the surface of TEXs, thereby bias the balance in the direction of the immune stimulation. Immune checkpoint inhibitors are the most promising approach to neutralize the immuno-suppressive effect of TEXs. Poggio et al found that gene blockade of exosomal PD-L1 can significantly extend the survival period of mice, thereby exosomal PD-L1 represents a new therapeutic target to improve the therapeutic effect. Gao et al revealed that increased level of plasma exosomal Tim-3/Galectin-9 in NSCLC patients, was correlated with an aggressive phenotype, and Tim3/Galectin-9 may represent another novel therapeutic target. In order to enhance immunostimulatory molecules, exosomes derived from heat-shocked mouse B lymphoma cells contain more HSP90, HSP60, CD40 and CD86, which are benefit for anti-tumor effects.17,24 Another approach is to look for TEXs release inhibitors to enhance the antitumor effect of chemotherapy. Nowadays, a number of compounds have the ability to block or at least limit the formation and release of exosomes, such as Y27632, GW4869, bisyndoylmaleimide I and dimethyl amiloride.99 Kosgodage et al reported that chloramidine/Bisindolylmaleimide, a kind of microvesicles release inhibitors, is effective to enhance...
cancer chemotherapy efficacy. In addition, the reduction of TEXs may also improve the TME, thus enhance the function of immune cells, especially T cells.

4.3 TEX-based cancer vaccines

TEXs have potential application in the development of cancer vaccines due to its ability to stimulate specific antitumor immune responses via TAA and costimulatory molecules within. The uptake of TEXs by DCs can induce antigen-specific CTL responses, increase the number of CD8+ T cells, and activate CD4+ T cells, thus enhancing antitumor immunity. In previous studies, TEX-carrying DC immunotherapy has been shown to improve survival. In addition, TEXs show stronger antitumor immunity compared with tumor lysates. In order to further improve the anti-tumor immune response, some studies aim to manipulate TEXs or insert specific microRNAs into dendritic cells to enhance immunogenicity. Recently, Shi et al identified a novel exosome vaccine (IFN-γ-modified prostate cancer cell-derived exosome vaccine) that increased the number of M1 macrophages, CD4+ T cells and CD8+ T cells, thus prolonging survival in mice with prostate cancer. Huang et al also found that exosomes from TGF-β1-silenced leukemia cells (L1210) could improve the efficacy of DC-based vaccine. However, in some types of tumors, stimulation of exosomes may lead to immune tolerance of DCs, therefore, another possibility to consider is to use exosomes of DCs that were previously stimulated by tumor cells.

5 CONCLUSIONS

Although having immunostimulatory effects on T cells, TEXs induce immunosuppressive effects predominantly in TME through both direct and indirect mechanisms. TEXs impair the function of CD8+ T cells by directly inhibiting the activation, proliferation and cytotoxicity, as well as promoting apoptosis. Other immune cells, such as DCs, macrophages, myeloid-derived suppressor cells and NK cells contribute to indirect immune suppression by TEXs. Of note, exosomes from CAR-T cells represent a novel strategy of cancer immunotherapy and merits further investigations.

ACKNOWLEDGEMENTS

This study was supported by funds from the National Natural Science Foundation of China (No. 81800315, 81830006).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

FUNDING

Not applicable.

CONSENT TO PUBLISH

Not applicable.

REFERENCES

1. Ludwig N, Yerneni SS, Azambuja JH, Gillespie DG, Menshikova EV, Jackson EK, et al. Tumor-derived exosomes promote angiogenesis via adenosine A(2B) receptor signaling. Angiogenesis. 2020;23(4):599-610.
2. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983:33(3):967-78.
3. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. 2016;126(4):1216-23.
4. van Niël G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-28.
5. Gao D, Jiang L. Exosomes in cancer therapy: a novel experimental strategy. Am J Cancer Res. 2018;8(11):2165.
6. Poggio M, Hu T, Pai C, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414-27.
7. Chen Z, You L, Wang L, Huang X, Liu H, Wei JY, et al. Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorregression in vivo. J Exp Clin Cancer Res. 2018;37(1):190.
8. Brown CE, Mackall CL. CAR T cell therapy: inroads to response and resistance. Nat Rev Immunol. 2019;19(2):73-4.
9. Liu H, Lei W, Zhang C, Yang C, Wei J, Guo Q, et al. CD19-specific CAR T cells that express a PD-1/CD28 chimeric switch-receptor are effective in patients with PD-L1–positive B-Cell lymphoma. Clin Cancer Res. 2021;27(2):473-484.
10. Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242.
11. Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6(1):20254.
12. Muller L, Simms P, Hong CS, Nishimura MI, Jackson EK, Watkins SC, et al. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology. 2017;6(8):e1261243.
13. Vignard V, Labbé M, Marc N, André-Grégoire G, Jouand N, Fonteneau JF, et al. MicroRNAs in tumor exosomes drive immune escape in melanoma. Cancer Immunol Res. 2020;8(2):255-67.
14. Shenoy GN, Loyall J, Maguire O, Iyer V, Kelleher RJ, Minderman H, et al. Exosomes associated with human ovarian tumors harbor a reversible checkpoint of T-cell responses. Cancer Immunol Res. 2018;6(2):236-47.
15. Fanini F, Fabbri M. Cancer-derived exosomal microRNAs shape the immune system within the tumor microenvironment: state of the art. Semin Cell Dev Biol. 2017;67:23-8.
16. Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR. Tumor-derived exosomes induce CD8+ T cell suppressors. J Immunother Cancer. 2017;5(1):65.

17. Chen W, Wang J, Shao C, Liu S, Yu Y, Wang Q, et al. Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol. 2006;36(6):1598-607.

18. Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia. 2017;31(6):1259-68.

19. Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.). 2020;367(6478):6977.

20. Yao Y, Chen L, Wei W, Deng X, Ma L, Hao S. Tumor cell-derived exosome-targeted dendritic cells stimulate stronger CD8+ CTL responses and antitumor immunities. Biochem Biophys Res Commun. 2013;436(1):60-5.

21. Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, et al. Exosomes derived from Rab27a-overexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep. 2013;8(6):1876-82.

22. Menay F, Herschlik L, De Torro J, Coccozza F, Tsacalain R, Gravissaco MJ, et al. Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front Immunol. 2017;8:286.

23. Liu H, Chen L, Peng Y, Yu S, Liu J, Wu L, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018;9(2):2887.

24. Guo D, Chen Y, Wang S, Yu L, Shen Y, Zhong H, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology. 2018;154(1):132-43.

25. Zhang Y, Wu X, Luo C, Zhang J, He B, Chen G. Interleukin-12-anchored exosomes increase cytotoxicity of T lymphocytes by revering the JAK/STAT pathway impaired by tumor-derived exosomes. Int J Mol Med. 2010;25(5):695.

26. Zhang Y, Luo C, He B, Zhang J, Cheng G, Wu X. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol. 2010;36(1):133.

27. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human Tumor-Derived Exosomes Selectively Impair Lympocyte Responses to Interleukin-2. Cancer Res. 2007;67(15):7458-66.

28. Wiekowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720-30.

29. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res. 2009;3(9):1133-9.

30. Kim JW, Wiekowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010-20.

31. Shen T, Huang Z, Shi C, Pu X, Xu W, Wu Z, et al. Pancreatic cancer-derived exosomes induce apoptosis of T lymphocytes through the p38 MAPK-mediated endoplasmic reticulum stress. Faseb J. 2020;34(6):8442-58.

32. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effecter function. J Exp Med. 1998;188(12):2205-13.

33. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.

34. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory molecule CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428-33.

35. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol. 2019;77:105999.

36. Cordonnier M, Nardin C, Chanteloup G, Derangere V, Algos MP, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9(1):1710899.

37. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7692):382-6.

38. Li C, Li C, Zhi C, Liang W, Wang X, Chen X, et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med. 2019;17(1):355.

39. Cox MJ, Lucien F, Sakemura R, Boysen JC, Kim Y, Horvei P, et al. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia. J Transl Med. 2019;17(1):355.
55. Chatterjee S, Chatterjee A, Jana S, Dey S, Roy H, Das MK, et al. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis. 2021;42(1):38-47.

56. Montes CL, Chapoval AI, Nelson J, Orhue V, Zhang X, Schulze DH, et al. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res. 2008;68(3):870-9.

57. Zhang Y, Pfannenstiel LW, Bolesa E, Montes CL, Zhang X, Chapoval AI, et al. Interleukin-17 inhibits tumor-induced CD27-CD28- suppressor T cells: implications for cancer immunotherapy. Clin Cancer Res. 2011;17(15):4975-86.

58. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008;180(11):7249-58.

59. Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, et al. 14-3-3 delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 2018;9(2):159.

60. Vignard V, Labbé M, Marec N, André-Grégoire G, Jouand N, Fontneau J, et al. MicroRNAs in tumor exosomes drive immune escape in melanoma. Cancer Immunol Res. 2020;8(2):255-67.

61. Razzo BM, Ludwig N, Hong CS, Sharma P, Fabian KP, Fecek RJ, et al. Tumor-derived exosomes promote carcinoma of murine oral squamous cell carcinoma. Carcinogenesis. 2020;41(5):625-33.

62. House IG, Petley EV, Beavis PA. Tumor-derived exosomes modulate T cell function through transfer of RNA. Febs J. 2018;285(6):1030-2.

63. Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W, Klinke DN. Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. Febs J. 2018;285(6):1033-50.

64. Troyer RM, Ruby CE, Goodall CP, Yang L, Maier CS, Albarqui HA, et al. Exosomes from osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells. Exp Cell Res. 2017;358(2):369-76.

65. Huang F, Wan J, Hu W, Hao S. Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-β1 expression. Cell Physiol Biochem. 2018;44(1):240-54.

66. Ludwig S, Floros T, Theodoraki M, Hong C, Jackson EK, Lang S, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res. 2017;23(16):4843-54.

67. Zhou J, Yang Y, Wang W, Zhang Y, Chen Z, Hao C, et al. Melanoma-released exosomes directly activate the mitochondrial apoptotic pathway of CD4+ T cells through their microRNA cargo. Exp Cell Res. 2018;371(2):364-71.

68. Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood. 2009;113(9):1957-66.

69. Czernek L, Düchler M. Functions of cancer-derived extracellular vesicles in immunosuppression. Arch Immunol Ther Ex. 2017;65(4):311-23.

70. Ali S, Toews K, Schwiebert S, Klaus A, Winkler A, Grunewald L, et al. Tumor-derived extracellular vesicles impair CD171-Specific CD4(+) T cell effector function. Front Immunol. 2020;11(531).

71. Kim JH, Kim BS, Lee SK. Regulatory T cells in tumor microenvironment and approach for anticancer immunotherapy. Immune Netw. 2020;20(1):e4.

72. Ying Y, Shen K, Wu Q, Sun X, Bai Y, Xie Y, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36-43.

73. Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y. Colorectal cancer cell-derived extracellular vesicles induce phe-notypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-beta1-mediated suppression. Oncotarget. 2016;7(19):27033-43.

74. Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T, et al. Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Res. 2010;30(9):3747-57.

75. Szajnik M, Czyslowksa M, Szczepanski MJ, Mandapathil M, White- side TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). Plos One. 2010;5(7):e11469.

76. Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS, Mustapha R, Niki T, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 2015;107(1):363.

77. Alipoor SD, Mortaz E, Vahramagh M, Kraneveld AD, Garssen J, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer. Front Immunol. 2018;9:819.

78. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64.

79. Marton A, Vizler C, Kuss E, Temesfisi V, Szathmary Z, Nagy K, et al. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immun Lett. 2012;148(1):34-8.

80. Bu N, Wu H, Sun B, Zhang G, Zhan S, Zhang R, et al. Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. J Neuro-Oncol. 2011;104(3):659-67.

81. Salimu J, Webber J, Gurney N, Al-Taei S, Clayton A, Tabi Z. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles. 2017;6(1):1368823.

82. Xu H, Li N, Yao N, Xu X, Wang H, Liu X, et al. CD8+ T cells stimulated by exosomes derived from RenCa cells mediate specific immune responses through the FastL/Fas signaling pathway and, combined with GM-CSF and IL-12, enhance the anti-renal cortical adenocarcinoma effect. Oncol Rep. 2019;42(2):866-79.

83. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(19):30-13, 1-13.

84. Wang F, Li B, Wei Y, Zhao Y, Wang L, Zhang P, et al. Tumor-derived exosomes induce PD1(+) macrophage population in human gastric cancer that promotes disease progression. Oncogenesis. 2018;7(5):41.

85. Harshyne LA, Nasca BJ, Kenyon LC, Andrews DW, Hooper DC. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol. 2015;17(15):4975-86.

86. Chow A, Zhou W, Liu L, Feng MY, Champer JV, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep-Uk. 2015;4(1):5750.

87. Bronte V. Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol. 2009;39(10):2670-2.

88. Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 2019;38(15):2830-43.

89. Chalmim F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457-71.
suppressed by exposure to the human NKG2D Ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2): 481-9.

91. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol. 2006;176(3):1375-85.

92. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126(9):1106-17.

93. Augustus E, Zwaenepoel K, Siozopoulou V, Raskin J, Jordaens S, Baggerman G, et al. Prognostic and predictive biomarkers in non-small cell lung cancer patients on immunotherapy—the role of liquid biopsy in unraveling the puzzle. Cancers. 2021;13(7):1675.

94. Gao J, Qiu X, Li X, Fan H, Zhang F, Lü T, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Bioph Res Co. 2018;498(3):409-15.

95. Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology. (New York, N.Y. 1943) 2019;156(1):108-18.

96. Shi M, Jiang Y, Yang L, Yan S, Wang YG, Lu XJ. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem. 2018;119(6):4711-6.

97. Zhou J, Li X, Chen Z, Chng W. Tumor-derived exosomes in colorectal cancer progression and their clinical applications. Oncotarget. 2017;8(59):100781-90.

98. Sharma A, Johnson A. Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 2020;235(3):1921-32.

99. Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9(1):1703244.

100. Kosgodage U, Trindade R, Thompson P, Inal J, Lange S. Chloramidine/bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int J Mol Sci. 2017;18(5):1007.

101. Yao Y, Chen L, Wei W, Deng X, Ma L, Hao S. Tumor cell-derived exosome-targeted dendritic cells stimulate stronger CD8+ CTL responses and antitumor immunities. Biochem Bioph Res Co. 2013;436(1):60-5.

102. Mahaweni NM, Kaijen-Lambers ME, Dekkers J, Aerts JG, Hegmans JP. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J Extracell Vesicles. 2013;2:1-6.

103. Liu H, Chen L, Peng Y, Yu S, Liu J, Wu L, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018;9(2):2887-94.

104. Lee E, Park K, Yoon YJ, Lee J, Moon H, Jang SC, et al. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. Plos One. 2012;7(3):e33330.

105. Shi X, Sun J, Li H, Lin H, Xie W, Li J, et al. Antitumor efficacy of interferon-γ-modified exosomal vaccine in prostate cancer. The Prostate. 2020;80(11):811-23.

106. Huang F, Wan J, Hao S, Deng X, Chen L, Ma L. TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model. Cancer Immunol Immunother. 2017;66(10):1321-31.

How to cite this article: Hao Y, Chen P, Zhang X, Shao Y, Xu Y, Qian W. The effects of tumor-derived exosomes on T-cell function and efficacy of cancer immunotherapy. Immunomedicine. 2021;1:e1029. https://doi.org/10.1002/imed.1029