Fabrication of a new photo-sensitized solar cell using TiO2/ZnO Nanocomposite synthesized via a modified sol-gel Technique

Ahmed Mahdi Rheima¹, Dhia Hadi Hussain ², Hayder Jawad Abed³

¹Wasit University, College of Science, Department of Chemistry. Iraq.
²Mustansiriyah University, College of Science, Department of Chemistry. Iraq
³Rostock University, Leibniz institute for catalysis, Germany.

*Corresponding author email: arahema@uowasit.edu.iq

Abstract

The current research synthesized was carried out using a modified sol-gel Technique for titanium dioxide (TiO2) and zinc oxide (ZnO) nanocomposite. The morphology and optical properties of the synthesized nanocomposite were examined using a transmission electron microscope (TEM) and UV-Visible spectroscopy. The structure of the synthesized nanocomposite was proved using X-ray Diffraction (XRD). The particle size of the ZnO/TiO2 nanocomposites was found to be range between 11 to 27.37 nm. The product of TEM has proof of the inclusion in the ZnO matrix of spherical TiO2 particles. Also found were TiO2 sections attached to the ZnO-like rod-like particles., the ZnO / TiO2 Nanocomposites had better optical absorbing properties. The nanocomposite has been used to create a new photosensitizer solar cell with the efficiency of energy conversion of approximately 4.6%, using (E)-ethyl 4- ((4-nitrobenzylidene)) aminobenzoate as organic photo-sensitized (OPS) by (ITO/ TiO2/ZnO nanocomposite/POS/iodine/ silver (Ag) nanofilm/ ITO).

Keywords: solar cell, ZnO/TiO2 nanocomposite, modified sol-gel, organic photo-sensitized.

Introduction

Nanoscience is one of the emerging sciences which had an overwhelming appeal for scientists in all fields of life to concentrate on [1-6]. This research has become the most exciting and important field as it has high expectations and large opportunities [7-9]. semiconductor oxides have been modified in recent years to achieve the necessary properties for the intended purpose [10-12]. Specific methods have been employed such as doping and hybridization to improve the properties of these oxides, The synthesis of 1D nanostructures is one of the methods, for example, ZnO is known to have a variety of morphologies of nanostructures such as nanoneedles, nanocombs,
and nanostructures [13-15]. Doping is another way to improve their characteristics. Research has shown that adding second metal oxide increases the spectrum of the light harvest to increase more electron pairs. To improve its photocatalysis, transition metals like nickel, copper, lanthanum, and vanadium have been doped into TiO$_2$ [16-20]. Finally, semiconductor oxides were incorporated into their network to form composites with improved properties. Nevertheless, much work has been done in the past on the combination of TiO$_2$ and ZnO. ZnO and TiO$_2$ have both wideband gaps that only absorb UV light at 385 nm [21-23]. A composite can absorb − in 400 nm visible light and thus improve photoreaction [24]. The problem of electron-hole recombination can be overcome by an increase in the charge separation in the composite. It is proving beneficial to combine the two oxides to create a nanocomposite with improved physicochemical properties as ZnO and TiO$_2$ have a similar pH. Second, they also have approximate energy gap and nearly the same energy levels [25-28]. In the context of global warming, energy requirements, and fossil fuel decline, the development of clean and renewable energy technology plays a crucial part. One of the most feasible technologies is to turn solar power directly into electricity through solar cells [29,30]. According to its quick production process, low manufacturing costs and environmentally friendly benefits photo-sensitive solar cells are an alternative to traditional silicon-based solar cells. The photo-sensitized solar cell is a promising potential for silicon-based solar cell replacement. The performance of modern Photo-sensitized solar cells is becoming more and more competitive with advances in nanostructured semiconductors, high-performance sensitizers, and robust electrolytes [31]. Simple treatment, cheap materials, and a wide range of applications are a breakthrough for the development of the new photovoltaic cells on the Photo-sensitized solar cell market. The inverted device architecture in organic solar cell configurations has greater longevity than conventional architecture due to the use of air-stable high-work metal as an anodic electrode. The inverted device in organic solar cell configurations is longer than traditional architecture [32-34].

Zinc Oxide (ZnO) is the only one that is considered a good type of inorganic material that is given extensive attention to its quality features and novel applications in a wide field of expertise and devices. This has chemical, piezoelectric, pyroelectric, catalytic, and optoelectronic properties. In the making of optoelectronic sensors, displays and photovoltaic devices ZnO’s optical features play a significant role. The first semiconductor in Photo-sensitized solar cell development was this material. This material, ZnO is close to the titanium dioxide (TiO$_2$) bandgap and conductivity bands. ZnO’s mobility is higher than TiO$_2$, which helps the transportation of electron. In recent years, the use of ZnO and TiO$_2$ in a solar cell has significantly increased. The material was widely studied and synthesized with various morphologies [35-38]. Nanocomposites start as absorbed photon energy in a haliconductor with the advance of an electron from the valence band into the conduction band vacant. The electron is stimulated, and the valence band rises, creating electron and hole pair (e$^-$ and h$^+$)[39, 40]. In the present research, we have considered hybrid approaches to increase the performance of organic Photo-sensitized solar cells using the combinations of TiO$_2$/ZnO synthesized by a modified sol-gel technique with an organic compound as a Photo-sensitizer.

Experimental

Materials:

Before further purifying, all of the chemicals are qualitative and used as obtained. from Sigma-Aldrich.

Synthesis of ZnO/TiO$_2$ nanocomposite
In a modified sol-gel method, TiO$_2$\ZnO nanocomposite has been synthesized by adding 25 ml of 0.01 mole TiO$_2$ nanopowder to 25 ml of zinc-acetate dehydrate with magnetic stirring at 80 °C for 6 h. The pH has been adjusted to 11.5 after cooling at room temperature by gradually adding about 10 ml (drop by drop) of 1 M sodium hydroxide solution, stirring at 60 °C for 60 minutes. The gel product has been extracted and de-ionized water washed many times, and then dehydrated at 105 °C and calcinated at 550 °C for 3 h.

synthesis of an organic photosensitizer

The organic compound ((E)-ethyl 4-((4-nitrobenzylidene)amino) benzoate has been produced using the Microwave irradiation Method (Scheme1). Ethyl-4-aminobenzoit (30 ml, 0.001 mole) has added to 4-nitrobenzaldehyde (30 ml, 0.001 mole) using ethyl alcohol as a solvent. The blend was mixed and irradiated for 1 minute at six hundred watts microwave. The mixture was then cooled for 60 minutes in an ice bath. Dark yellow participants were isolated and recrystallized by cold methanol multiple times.

![Scheme 1. Procedure to synthesized organic photosensitizer (Schiff base compound)](image)

Fabrication of organic photo-sensitized solar cell

ITO glass (Indium tin oxide coated Glass) that has properties 10 ohm resistant and 85 % transmission was washed in an ultrasonic bath several times with ethanol, and deionized water, and then dried with an air blower for the extraction of the impurities. The following method was used to create an organic photo-sensitized solar cell (2 X 1 x 0.1 cm). 0.6 g of ZnO\TiO$_2$ nanopowder was mixed with 30 ml of ethyl alcohol to form a colloidal solution of the nanocomposite. The photoanode is collected with the colloidal solution using a dropper in the conductive side of the glass, then, for half an hour in the air, annealed at 200 °C. Upon cooling ZnO\TiO$_2$ nanocomposite, it was immersed overnight in ethanol at room temperature, using a solution of 0.3 M (OPS). The silver nanofilm is covered by an electrode counter with a conductive glass side. [41]. The electrolyte solution (I$^-$/I3) was drop penetrates between photoanode and counter electrode to the working space by capillary action. Using binder clips, both electrodes were held together [see Fig 1].
Results and discussions

Fig. 2 presents the Nano ZnO\TiO₂ sample XRD pattern as synthesized. The sample of nano ZnO\TiO₂ is defined by standard JCPDS 01-082-1438 hexagonal structure. Only one reflection peak of Ti atom is present (2θ = 37.6° as figure 2). Observed in ZnO\TiO₂ nanocomposite, small atom integration in ZnO lattice sites Ti⁴⁺ ions are substituted for Zn²⁺ ions [42]. Due to the high diffracting peaks in XRD are higher and more symmetrical in the peak areas, the nanocomposites are highly crystalline and close to those reported by other researchers [43,44]. The Scherrer equation has been used to determine the crystallite size [45]:

\[D = \frac{K \lambda}{\beta \cos \theta} \]

Where, D is the crystallite size, K constant equal 0.9, λ is a wavelength of Cu-Kα radiations (0.15406 nm), β is the full width of the diffraction peak at half maximum (FWHM) and, θ is the angle of Bragg diffraction. The crystallite size ZnO\TiO₂ nanocomposite was 15.21 nm.
Fig. 3 exhibits the TEM images of ZnO-TiO$_2$ nanocomposite calcinated in the air at 550 °C for 3 h. Around homogeneous, sphere-like particles seemed to disperse well according to the XRD test, with an average size of around 26.12 nm.

The ZnO / TiO$_2$ UV-Vis spectra are shown in fig. 4. The absorption spectrum shows that the ZnO / TiO$_2$ nanocomposite absorption edge was 401 nm. The equation (Eg
\[\frac{1240}{\lambda} \] was used for calculating the band gaps [26,27]. The bandgap of TiO\textsubscript{2} \textbackslash ZnO nanopowder was 3.1 eV.

![UV-Visible spectra of TiO\textsubscript{2} \textbackslash ZnO nanopowder](image)

Figure (4) UV-Visible spectra of TiO\textsubscript{2} \textbackslash ZnO nanopowder

Fig. 5 indicates the produced ((E)-ethyl 4-(4-nitrobenzylidene)amino) benzoate FTIR spectrum. With our group's ongoing desire to develop reliable, efficient, and environmentally friendly synthesis strategies for organic compounds obtained from Benzocaine, we report in the current study on the microwave-assisted synthesis of Schiff base compound, So further properties and characteristics of this compound were studied by IR spectroscopy of elementary analysis. The configuration of this compound was verified by their physical and spectroscopic properties. The compound's FTIR spectrum reveals the absence of (NH\textsubscript{2}) stretching bands at (3226, 3422) cm-1 and presence of (C = O) stretching bands at (1702) cm-1, (C = N) stretching bands at (1632) cm-1 and NO\textsubscript{2} group stretching at 1509 cm-1 (asymmetric) and 1345 cm-1 (symmetric).

![FTIR spectrum of the Schiff base compound](image)
Figure. (5) FTIR spectrum of organic compound

The photosensitized solar cell parameter

fig 6. View the parameter of the photo-sensitized solar cell as a working electrode based on ZnO/TiO$_2$ nanocomposite synthesized. A solar simulator is made up of a 100mW / cm2 halogen lamp for lighting the solar cell. Also, the solar cell energy conversion efficiency was measured:

$$\eta = \frac{p_{\text{max}}}{p_{\text{in}}} = \frac{V_{\text{oc}} \cdot J_{\text{sc}} \cdot FF \cdot P_{\text{in}}} {p_{\text{in}}} \times 100 \quad (2)$$

Where, V_{oc} = photovoltaic open circuit, J_{sc} = short circuit density, and P_{in} = light power. The fill factor (FF) is also indicated by:

$$FF = \frac{V_{\text{max}} \cdot J_{\text{max}}}{V_{\text{oc}} \cdot J_{\text{sc}}} \quad (3)$$

Where, V_{max} = maximum output voltage and J_{max} = the and the current density, [12].

The solar cell parameters are $V_{\text{oc}} = 0.62 \text{ V}$, $J_{\text{sc}} = 0.017 \text{ A/cm}^2$, $V_{\text{max}} = 0.306 \text{ V}$, $J_{\text{max}} = 0.015 \text{ A/cm}^2$, and $FF = 0.435$. The conversion Efficiency is 4.6 %. by curent- voltage characteristics, the high parameter (circuit current and open-circuit voltage) are observed in our photo-sensitized solar cell. This is due to the ZnO/TiO$_2$ molecular structure (favorable for electron/hole pair separation) and redox-electrolyte diffusion rates.

Figure. (6) the properties of the photo-sensitized solar cell

Conclusion

One significant benefit of using the hexagon-shaped nanocomposite over all the other nanocrystalline geometric shapes is that their six arms can be easily attached to create a porous network. Branched nanocomposite increases the production of electrons in photovoltaic cells relative to other nanomaterials. The modified sol-gel technique was used in this project to synthesized ZnO/TiO$_2$ nanocomposite and diagnosis by transmission electron microscope and X-ray Diffraction. the size of ZnO/TiO$_2$
nanocomposite, about 11 to 27.37 nm. That whole-synthesized ZnO-TiO$_2$ nanocomposite bandgap is 3.1 eV which calculated by UV-Visible spectroscopy. The nanocomposite was used to create new photosensitization solar cells with a power conversion efficiency of approximately 4.6 %, using OPS as a photo-organic sensitizer.

Reference
1. Rheima AM, Mohammed MA, Jaber SH, Hameed SA. Synthesis of Silver Nanoparticles Using the UV-Irradiation Technique in an Antibacterial Application. Journal of Southwest Jiaotong University. 2019;54(5).
2. Rheima AM, Mohammed MA, Jaber SH, Hasan MH. Inhibition effect of silver-calcium nanocomposite on alanine transaminase enzyme activity in human serum of Iraqi patients with chronic liver disease. Drug Invention Today. 2019 Nov 15;12(11).
3. Ali AA, Al-Hassani RM, Hussain DH, Rheima AM, Meteab HS. Synthesis, spectroscopic, characterization, pharmacological evaluation, and cytotoxicity assays of novel nano and micro scale of copper (II) complexes against human breast cancer cells. Drug Invention Today. 2020; 14(1).
4. Ismail AH, Al-Bairmani HK, Abbas ZS, Rheima AM. Nanoscale Synthesis of Metal (II) Theophylline Complexes and Assessment of Their Biological Activity. Nano Biomed. Eng. 2020;12(2):139-47
5. Abdulah HI, Hussain DH, Rheima AM. Synthesis of α-Fe2O3, γ-Fe2O3 and Fe3O4 Nanoparticles by Electrochemical Method. Journal of Chemical, Biological and Physical Sciences 6(4):1288-1296
6. Hussain DH, Rheima AM, Jaber SH, Kadhim MM. Cadmium ions pollution treatments in aqueous solution using electrochemically synthesized gamma aluminum oxide nanoparticles with DFT study. Egyptian Journal of Chemistry. 2020 Feb 1;63(2):417-24
7. Rheima AM, Hussain DH, Almijbilee MM. Graphene-Silver Nanocomposite: Synthesis, and Adsorption Study of Cibacron Blue Dye from Their Aqueous Solution. Journal of Southwest Jiaotong University. 2019;54(6).
8. Ismail AH, Al-Bairmani HK, Abbas ZS, Rheima AM. Synthesis, characterization, spectroscopic, and biological activity studies of Nano scale Zn(II), Mn (II) and Fe (II) theophylline complexes. Journal of Xi'an University of Architecture & Technology. 2020; XII (II): 2775-2789.
9. Ali AA, Al-Hassani RM, Hussain DH, Rheima AM, Abd AN, Meteab HS. Fabrication of Solar Cells Using Novel Micro-and Nano-Complexes of Triazole Schiff Base Derivatives. Journal of Southwest Jiaotong University. 2019;54(6).
10. Mohammed MA, Rheima AM, Jaber SH, Hameed SA. The removal of zinc ions from their aqueous solutions by Cr2O3 nanoparticles synthesized via the UV-irradiation method. Egyptian Journal of Chemistry. 2020 Feb 1;63(2):5-6.
11. Jabber SH, Hussain DH, Rheima AM, Faraj M. Comparing study of CuO synthesized by biological and electrochemical methods for biological activity. Al-Mustansiriyah Journal of Science. 2019;30(1):94-8.
12. Hussain DH, Abdulah HI, Rheima AM. Synthesis and Characterization of γ-Fe2O3 Nanoparticles Photo Anode by Novel Method for Dye Sensitized Solar Cell. International Journal of Scientific and Research Publications. 2016;6(10):26-31.
13. Soares VA, Xavier MJ, Rodrigues ES, de Oliveira CA, Farias PM, Stingl A, Ferreira NS, Silva MS. Green synthesis of ZnO nanoparticles using whey as an effective chelating agent. Materials Letters. 2020 Jan 15;259:126853.
14. Massaro M, Casiello M, D'Accolli L, Lazzara G, Nacci A, Nicotra G, Noto R, Pettignano A, Spinella C, Riel S. One-pot synthesis of ZnO nanoparticles supported on halloysite nanotubes for catalytic applications. Applied Clay Science. 2020 May 1;189:105527
15. Din MI, Najeeb J, Hussain Z, Khalid R, Ahmad G. Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorganic and Nano-Metal Chemistry. 2020 Jan 31:1-7
16. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy. 2020 Mar 6;45(13):7764-78.
17. Hafez HS, Saif MM, Soliman H, Abdel-Mottaleb MS. Facile Hydrothermal Synthesis of Sm and Eu doped TiO2/Graphene Oxide Nanocomposites for Photocatalytic Applications. Egyptian Journal of Chemistry. 2020 Apr 1;63(4):7-8.
18. Ramalingam RJ, Lohedan HA, Al-Dhayyan MD, Ibrahim SN, Syed SR. synthesis and optical property characterization of metal ion and hetero atom doped tiO2 nanocomposite fabrication for photo catalysis. Journal of Ovonic Research Vol. 2020 Jan 1;16(1):1-9
19. Nguyen TM, Bark CW. Synthesis of Cobalt-Doped TiO2 Based on Metal–Organic Frameworks as an Effective Electron Transport Material in Perovskite Solar Cells. ACS omega. 2020 Jan 30;5(5):2280-6.
20. Jiang L, Luo Z, Li Y, Wang W, Li J, Li J, Ao Y, He J, Sharma VK, Wang J. Morphology-and Phase-Controlled Synthesis of Visible-Light-Activated S-doped TiO2 with Tunable S4+/S6+ Ratio. Chemical Engineering Journal. 2020 May 21:125549
21. Behravesh S, Mirghaffari N, Alemrajabi AA, Davar F, Soleimani M. Photocatalytic degradation of acetaminophen and codeine medicines using a novel zeolite-supported TiO2 and ZnO under UV and sunlight irradiation. Environmental science and pollution research international. 2020 May 8.
22. Nimpoeno WA, Lintang HO, Yuliati L. Methyl red dye-sensitized zinc oxide as photocatalyst for phenol degradation under visible light. InAIP Conference Proceedings 2020 Jun 2 (Vol. 2237, No. 1, p. 020048). AIP Publishing LLC.
23. Lee SY, Kang D, Jeong S, Do HT, Kim JH. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS omega. 2020 Feb 18;5(8):4233-41.
24. Zulfikar MA, Chandra AD, Setiyanto H, Handayani N, Wahyuningsrum D. TiO2/ZnO nanocomposite photocatalyst: Synthesis, characterization and their application for degradation of humic acid from aqueous solution. Songklanakarin Journal of Science & Technology. 2020 Mar 1;42(2)
25. Gurusamy, S., Kulanthaisamy, M.R., Hari, D.G., Veleeswaran, A., Thulasinathan, B., Muthuramalingam, J.B., Balasubramani, R., Chang, S.W., Arasu, M.V., Al-Dhabi, N.A. and Selvaraj, A., 2019. Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterials for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. Journal of Photochemistry and Photobiology B: Biology, 193, pp.118-130.
26. Moradi S, Aberoomand-Azar P, Raies-Farshid S, Abedini-Khorrami S, Givianrad MH. The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. Journal of Saudi Chemical Society. 2016 Jul 1;20(4):373-8
27. Pugazhendhi K, D’Almeida S, Kumar PN, Mary JS, Tenkyong T, Sharmila DJ, Madhavan J, Shyla JM. Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation. Materials Research Express. 2018 Apr 27;5(4):045053
28. Jiang X, Liu H, Sun H, Duan L, Zhao X. Enhanced UV emission of TiO2–ZnO nanocomposite films synthesized by simplified sol–gel dip-coating method. Materials Express. 2018 Jun 1;8(3):288-93
29. Ahmadi MH, Ghazvini M, Alhuyi Maza M, Ahmadi MA, Pourfayaz F, Lorenzini G, Ming T. Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research. 2019 Mar 25;43(4):1387-410
30. Raina N, Sharma P, Slathia PS, Bhagat D, Pathak AK. Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology. InNanomaterials and Environmental Biotechnology 2020 (pp. 271-297). Springer, Cham
31. Dasari M, Balaraman RP, Kohli P. Photovoltaics and Nanotechnology as Alternative Energy. InEnvironmental Nanotechnology 2018 (pp. 211-241). Springer, Cham
32. Goodnick SM, Korkin A, Nemanich R, editors. Semiconductor Nanotechnology: Advances in Information and Energy Processing and Storage. Springer; 2018 Jul 26
33. Dan A, Basu B, Roychowdhury S, Biswas K, Raj B. 14 Nanotechnology and energy conversion: A solution using spectrally selective solar absorbers and thermoelectrics. Nanoscience and Nanotechnology: Advances and Developments in Nano-sized Materials. 2018 Jun 11:234
34. Tang A, Zhan C, Yao J, Zhou E. Design of diketopyrrolopyrrole (DPP)- Based small molecules for organic- solar- cell applications. Advanced Materials. 2017 Jan;29(2):1600013
35. Kirthika B, Sekar S, Saravanan S, Shivasankaran N, Balan AV, Kalirajan M. Performance analysis of synthesized ZnO nanoparticles coated photovoltaic cell. Materials Today: Proceedings. 2020 Jan 1;21:511-3
36. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018 Jan 1;81:536-51.
37. Li Y, Ma L, Yoo Y, Wang G, Zhang X, Ko MJ. Atomic layer deposition: A versatile method to enhance TiO2 nanoparticles interconnection of dye-sensitized solar cell at low temperature. Journal of Industrial and Engineering Chemistry. 2019 May 25;73:351-6.
38. Ullattil SG, Periyat P. Microwave-power induced green synthesis of randomly oriented mesoporous anatase TiO2 nanoparticles for efficient dye sensitized solar cells. Solar Energy. 2017 May 1;147:99-105
39. Mohammadi H, Ghorbani M. Synthesis photocatalytic TiO2/ZnO nanocomposite and investigation through anatase, wurtzite and ZnTiO3 phases antibacterial behaviors. InJournal of Nano Research 2018 (Vol. 51, pp. 69-77). Trans Tech Publications Ltd
40. Geetha N, Sivarajani S, Ayeshamariam A, Micheal MK, Saravankumar D, Fowziya SA, Mohideen AM, Jayachandran M. ZnO/TiO2 Nanocomposites Semiconductor for Bacterial Applications and Dye-Sensitized Solar Cell Applications. Journal of Advanced Microscopy Research. 2018 Mar 1;13(1):3-11
41. Rheima, A.M., D.H. Hussain, and H.I. Abdullah, Silver nanoparticles: Synthesis, Characterization and their used a counter electrodes in novel Dye sensitizer solar cell. IOSR Journal of Applied Chemistry, 2016. 9(10): p. 6–9.
42. Ayed S, Belgacem RB, Zayani JO, Matoussi A. Structural and optical properties of ZnO/TiO2 composites. Superlattices and Microstructures. 2016 Mar 1;91:118-28.
43. Boro B, Gogoi B, Rajbongshi BM, Ramchiary A. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable and Sustainable Energy Reviews. 2018 Jan 1;81:2264-70.
44. Prasannalakshmi P, Shanmugam N. Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Materials Science in Semiconductor Processing. 2017 Apr 1;61:114-24.
45. Muniz FT, Miranda MA, Morilla dos Santos C, Sasaki JM. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances. 2016 May 1;72(3):385-90