Effectiveness and Safety of Oral Anticoagulants Among Nonvalvular Atrial Fibrillation Patients With Active Cancer

Steven Deitelzweig, MD,a,b Allison V. Keshishian, MPH,c,d Yan Zhang, PhD,e Amiee Kang, MPH,e Amol D. Dhamane, MS,e Xuemei Luo, PhD,f Christian Klem, PharmD,g Mauricio Ferri, MD,g Jenny Jiang, MS,g Huseyin Yuce, PhD,d Gregory Y.H. Lip, MDg,h

ABSTRACT

BACKGROUND Patients with cancer are more likely to develop nonvalvular atrial fibrillation (NVAF). Currently there are no definitive clinical trials or treatment guidelines for NVAF patients with concurrent cancer.

OBJECTIVES This subgroup analysis of the ARISTOPHANES study compared the risk of stroke/systemic embolism (stroke/SE) and major bleeding (MB) among NVAF patients with active cancer who were prescribed non–vitamin K antagonist oral anticoagulants (NOACs) or warfarin.

METHODS A retrospective observational study was conducted in NVAF patients with active cancer who newly initiated apixaban, dabigatran, rivaroxaban, or warfarin from January 1, 2013, through September 30, 2015, with the use of Medicare and 4 U.S. commercial claims databases. Cox models were used to estimate the risk of stroke/SE and MB in the pooled propensity score-matched cohorts.

RESULTS A total of 40,271 patients were included, with main cancer types of prostate (29%), female breast (17%), genitourinary (14%), and lung (13%). Compared with warfarin, apixaban was associated with a lower risk of stroke/SE (hazard ratio [HR]: 0.59; 95% confidence interval [CI]: 0.45-0.78) and MB (HR: 0.58; 95% CI: 0.50-0.68); dabigatran and rivaroxaban had similar risks of stroke/SE (dabigatran: HR: 0.88 [95% CI: 0.54-1.41]; rivaroxaban: HR: 0.82 [95% CI: 0.62-1.08]) and MB (dabigatran: HR: 0.76 [95% CI: 0.57-1.01]; rivaroxaban: HR: 0.95 [95% CI: 0.85-1.06]). Risks of stroke/SE and MB varied among NOAC-NOAC comparisons, while consistent treatment effects were seen for all treatment comparisons across key cancer types.

CONCLUSIONS Among this cohort of NVAF patients with active cancer, the risk of stroke/SE and MB varied among oral anticoagulants and were consistent across cancer types. (J Am Coll Cardiol CardioOnc 2021;3:411-424) © 2021 Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Atrial fibrillation (AF) is a heart rhythm condition that may lead to substantial morbidity and mortality, specifically in aging populations (1). In the U.S., 2.3 million individuals are considered to have AF, with an expected increase to 5.6 million by 2050 (1,2). AF occurs with many coexisting health conditions, including hypertension, coronary heart disease, chronic kidney disease, and diabetes mellitus (3). In addition, there is accumulated evidence suggesting an association between the incidence of AF and cancer (4,5).

A recent systematic review and meta-analysis of the association between cancer and AF revealed that patients with solid cancer were at a higher risk of developing AF compared with noncancer patients (4). Similarly, in the REGARDS (Reasons for Geographic and Racial Differences in Stroke Study), cancer patients were more likely to have prevalent AF than those without cancer (5). In addition, gastric, ovarian and cervical cancer patients have been associated with a higher risk of ischemic stroke compared to non-cancer patients (6-8), and it has been reported that major bleeding (MB) occurs in ~10% of all cancer patients (9).

Traditionally AF has been managed with the use of oral anticoagulants (OACs), such as vitamin K antagonists, but non-vitamin K antagonist oral anticoagulants (NOACs) are increasingly being used. However, there are no specific clinical trials or guidelines for AF treatment in cancer patients (10). Post hoc analyses of clinical trials such as the ROCKET AF (An Efficacy and Safety Study of Rivaroxaban With Warfarin for the Prevention of Stroke and Non-Central Nervous System Systemic Embolism in Patients With Nonvalvular Atrial Fibrillation; NCT00403767) and ARISTOTLE (Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation; NCT00412984) trials have shown that the relative efficacy and safety of NOACs do not statistically differ from warfarin in patients with and without a history of cancer for the prevention of stroke/systemic embolism (SE) and the occurrence of MB (11,12). There was, however, a greater benefit seen in the composite of thrombotic events (stroke/SE, myocardial infarction, and death) among apixaban users with active cancer versus no cancer when compared to warfarin users in the ARISTOTLE trial (12).

Real-world studies, though limited, have also shown largely consistent results with the clinical trials regarding the generally uniform benefits seen among NOAC users regardless of cancer status (13-16). Increased risk of cardiac complications, such as stroke and MB, among AF patients with cancer (4-9) necessitates a comprehensive evaluation of available treatment strategies for this population. This subgroup analysis of ARISTOPHANES (Anticoagulants for Reduction In Stroke: Observational Pooled Analysis on Health Outcomes and Experience of Patients; NCT03087487), through the use of several data sources, aimed to respectively compare the risk of stroke/SE and MB among the nonvalvular AF (NVAF) population with active cancer newly prescribed to apixaban, dabigatran, rivaroxaban, or warfarin.

METHODS

DATA SOURCES AND PATIENT SELECTION. NVAF patients with active cancer who were newly treated with apixaban, dabigatran, rivaroxaban, edoxaban, or warfarin were selected (17). Data were pooled from the U.S. Centers for Medicare and Medicaid Services (CMS) database and 4 U.S. commercial claims databases: the IBM MarketScan Commercial Claims and Encounter Database, the IQVIA PharMetrics Plus Database, the Optum Clininformatics Data Mart, and the Humana Research Database. Patients prescribed edoxaban were not included in this study given an insufficient sample size. Detailed data description and pooling processes can be found in previously published ARISTOPHANES reports (17,18).

From the ARISTOPHANES study population, NVAF patients with active cancer were selected if they had at least 1 OAC pharmacy claim from January 1, 2013, to September 30, 2015 (identification period). Active cancer was identified in patients who had at least 2 claims for cancer diagnosis or 1 claim for cancer diagnosis plus at least 1 claim for cancer treatment (eg, chemotherapy, radiation, cancer-related surgery) within 6 months before OAC treatment initiation (Supplemental Table I). The first NOAC pharmacy claim during the identification period was designated as the index date for patients with any NOAC claim; the first warfarin prescription date was designated as the index date for those without a NOAC claim (19). Patients were required to have an AF diagnosis before or on the index date and needed continuous medical and pharmacy health plan enrollment for =12 months before the index date (baseline period). Patients were not required to be newly diagnosed with AF or cancer, but patients with OAC use during the baseline period were excluded. Detailed exclusion criteria are listed in Figure 1.

OUTCOME MEASURES. The primary outcomes were time to first stroke/SE and time to first MB. Hospitalizations with stroke/SE or MB as the principal or first-listed diagnosis were used as the primary outcome measures. The primary effectiveness
outcome of stroke/SE was further stratified by ischemic stroke, hemorrhagic stroke, and SE. The primary safety outcome of MB was further stratified by gastrointestinal (GI) bleeding, intracranial hemorrhage (ICH), and MB in other key sites (17,20,21). Patients were followed from the day after the index date to the earliest of 30 days after the date of discontinuation, switch, end of continuous medical and pharmacy enrollment, death (all-cause deaths from Medicare and hospitalization deaths from commercial datasets), or end of study period (September 30, 2015). Discontinuation was defined as no evidence of index OAC prescription for 30 days from the last day of the last filled prescription days’ supply.

STATISTICAL ANALYSIS. All variables were stratified by cohort and analyzed descriptively. Mean ± SD were provided for continuous variables. Frequencies and percentages were provided for categoric variables. One-to-one propensity score matching (PSM) was conducted in each database for all comparisons before the datasets were pooled: NOAC versus warfarin (apixaban vs warfarin, dabigatran vs warfarin, and rivaroxaban vs warfarin) and NOAC versus NOAC (apixaban vs dabigatran, apixaban vs rivaroxaban, and dabigatran vs rivaroxaban) (17,18). Propensity scores were generated by logistic regression with the use of the following variables: demographics, Deyo-Charlson comorbidity index (CCI), comorbidities, baseline medications, cancer metastasis, and cancer-related treatment (variables are listed in Tables 1, 2, 3, and 4). Patients were matched by nearest neighbor matching without replacement (with a caliper of 0.01). The PSM-adjusted baseline variables were compared based on standardized differences, with a threshold of 10% for balance (22).

Kaplan-Meier curves were used to illustrate cumulative incidence rates, and log-rank tests were used to compare the curves across cohorts. Cox proportional hazard models were used to evaluate the risk of stroke/SE and MB with robust sandwich estimates to account for correlation within the matched populations (23). All matched confounders were balanced after PSM; therefore, only OAC treatment was included as an independent variable in the Cox models. Hazard ratios (HRs) are expressed with 95% confidence intervals (CIs). P values of <0.05 were considered as statistically significant. Data analysis was performed with the use of SAS statistical software version 9.4 (SAS Institute).

SUBGROUP ANALYSIS. Subgroup analysis was conducted for the following key cancer types across the OAC cohorts: breast cancer, lung cancer, hematologic cancer, genitourinary (GU) cancer, and upper/lower GI cancer. Patients in the dabigatran cohort and those with other cancer types were not included for the subgroup analysis owing to limited sample size. The PSM cohorts were stratified by the included cancer type, and interactions between treatment comparisons and cancer types on stroke/SE and MB were evaluated. P values of <0.10 were considered as statistically significant for the interaction analysis.

ETHICAL APPROVAL. Because this study did not involve the collection, use, or transmittal of individually identifiable data, it was exempt from institutional review board review. Both the datasets and the security of the offices where analysis was completed (and where the datasets are kept) meet the requirements of the Health Insurance Portability and Accountability Act of 1996.

RESULTS

After applying the selection criteria, a total of 40,271 NVAF patients in the pooled datasets were identified as also having active cancer, accounting for 9% of the total ARISTOPHANES NVAF patient population (N = 466,991) (Figure 1). Among the NVAF patients with active cancer, the index users of warfarin, apixaban, dabigatran, and rivaroxaban numbered 15,371 (38%), 9,517 (24%), 2,742 (7%), and 12,641 (31%), respectively.

Before PSM, the majority of patients included in the analysis had solid nonhematologic tumors (92%), with prostate cancer being the most common cancer site (29%), followed by female breast cancer (17%), GU cancer (14%), lung cancer (13%), and GI cancer (13%). More than one-half of the patients in each cohort reported receiving a cancer-related treatment 6 months before or on the index date (Supplemental Table 2).

Furthermore, the majority of apixaban, dabigatran, and rivaroxaban users (73%, 81%, and 69%, respectively) were on standard doses of each medication. Before PSM, the incidence rates (per 100 person-years) for stroke/SE and MB, respectively, were as follows: warfarin: 2.64 and 10.56; apixaban: 1.45 and 6.01; dabigatran: 1.92 and 5.38; and rivaroxaban: 1.72 and 8.01.

After 1:1 PSM, the following NOAC-warfarin comparison cohorts were formed: apixaban-warfarin with 8,236 pairs, dabigatran-warfarin with 2,470 pairs, and rivaroxaban-warfarin with 9,988 pairs (Table 1 and 2). The NOAC-NOAC comparison cohorts were formed as apixaban-dabigatran with 2,413 pairs, apixaban-rivaroxaban with 8,608 pairs, and dabigatran-rivaroxaban with 2,553 pairs (Table 3 and 4). The mean follow-up time for the 6 matched cohorts ranged...
from 6 to 8 months. All baseline variables included in the PSM logistic model were balanced with a standardized difference of <10%, resulting in well-balanced demographic and clinical characteristics between pairs. The Kaplan-Meier curves for cumulative incidence rates of stroke/SE and MB in the matched populations can be seen in Supplemental Figures 1 to 12.

NOAC-WARFARIN COMPARISONS. Among the NOAC cohorts, apixaban patients had a lower risk for stroke/

TABLE 1 Post-PSM Baseline Characteristics of NOAC-Warfarin Cohorts

	Apixaban vs Warfarin	Dabigatran vs Warfarin	Rivaroxaban vs Warfarin
	n or Mean % or SD	n or Mean % or SD	n or Mean % or SD
Sample size	8,236 100%	8,236 100%	9,988 100%
Age, y	78.00 7.60	77.90 7.51	77.41 7.40
18-54	24 0.29%	25 0.30%	24 0.24%
55-64	174 2.11%	160 1.94%	258 2.58%
65-74	2,617 31.78%	2,633 31.97%	2,617 31.78%
≥75	5,421 65.82%	5,418 65.78%	5,421 65.82%
Sex	Male	Female	Male
	4,945 60.04%	3,291 39.96%	4,945 60.04%
	3,291 39.96%	4,945 60.04%	3,291 39.96%
U.S. geographic region			
Northeast	1,636 19.86%	1,620 19.67%	1,636 19.86%
Midwest	1,838 22.32%	1,865 22.64%	1,838 22.32%
South	3,353 40.71%	3,331 40.44%	3,353 40.71%
West	1,394 16.93%	1,406 17.07%	1,394 16.93%
Baseline comorbidity			
Deyo-Charlson comorbidity index	4.64 3.56 4.62 3.55	4.12 3.42 4.08 3.35	4.61 3.55 4.62 3.58
CHA2DS2-VASc score	4.12 1.48 4.13 1.46	3.92 1.50 3.82 1.45	4.06 1.48 4.07 1.46
HAS-BLED score	0 17.00 0.21%	13 0.77%	37 0.37%
	1 274 3.33%	108 4.37%	356 3.56%
	2 1,400 18.21%	1,087 4.37%	3,561 3.61%
	3 6,445 78.25%	6,433 78.11%	6,445 78.25%
Bleeding history	2,889 35.08%	2,804 35.26%	2,889 35.08%
Heart failure	2,666 32.37%	2,661 32.31%	2,666 32.37%
Diabetes mellitus	3,129 37.99%	3,078 37.46%	3,129 37.99%
Hypertension	7,514 91.23%	7,485 91.10%	7,514 91.23%
Renal disease	2,656 32.25%	2,614 31.74%	2,656 32.25%
Liver disease	799 9.70%	776 9.42%	799 9.70%
Myocardial infarction	861 10.45%	898 10.90%	861 10.45%
Dyspepsia or stomach discomfort	2,367 28.74%	2,340 28.41%	2,367 28.74%
Non-stroke/SE peripheral vascular disease	4,952 60.13%	4,956 60.17%	4,952 60.13%
Stroke/SE	1,121 13.61%	1,158 14.06%	1,121 13.61%
Transient ischemic attack	673 8.17%	612 8.64%	673 8.17%
Anemia and coagulation defects	3,680 44.68%	3,648 44.29%	3,680 44.68%
Alcoholism	179 2.17%	178 2.04%	179 2.17%
Peripheral artery disease	2,121 25.75%	2,130 25.86%	2,121 25.75%
Coronary artery disease	4,252 51.63%	4,295 52.55%	4,252 51.63%
Dose of the index prescription			
Standard dose	5,920 71.88%	NA NA	5,920 71.88%
Low dose	2,316 28.12%	NA NA	2,316 28.12%

Continued on the next page
TABLE 1 Continued

	Apixaban vs Warfarin	Dabigatran vs Warfarin	Rivaroxaban vs Warfarin
	n or Mean % or SD	n or Mean % or SD	n or Mean % or SD
Follow-up time, days	181.10 169.61 228.54 214.08	222.27 233.36 229.25 214.07	214.88 207.85 227.94 212.57
Median	120 145	121 147	129 145
Reasons for censoring			
Discontinuation	3,183 38.65% 4,835 58.71%	1,442 58.38% 1,460 59.11%	5,206 52.12% 5,952 59.59%
Switch	320 3.89% NA NA	269 10.89% NA NA	677 6.78% NA NA
Death	461 5.60% 801 9.73%	160 6.48% 208 8.42%	711 7.12% 962 9.63%
End of continuous medical/pharmacy enrollment	98 1.19% 168 2.04%	40 1.62% 61 2.47% 230 2.30% 222 2.22%	
End of study period	4,174 50.68% 2,432 29.53%	599 22.63% 741 30.00% 3,164 31.68% 2,852 28.55%	

Cells with n < 11 are not reported (NR). *Variable used in propensity score matching. †5 mg apixaban, 150 mg dabigatran, 20 mg rivaroxaban. ‡2.5 mg apixaban, 75 mg dabigatran, 10 or 15 mg rivaroxaban; 560 and 2,809 patients received 10 mg and 15 mg rivaroxaban, respectively, in the rivaroxaban-warfarin matched cohort.

Central Illustration

0.59; 95% CI: 0.45-0.78 (Central Illustration). Dabigatran and rivaroxaban patients had a similar risk for stroke/SE compared with warfarin patients (dabigatran: HR: 0.88 [95% CI: 0.54-1.41]; rivaroxaban: HR: 0.82 [95% CI: 0.62-1.08]). Ischemic stroke was the most common embolic event, with a lower risk in apixaban patients (HR: 0.72; 95% CI: 0.52-0.99) and similar risks in dabigatran (HR: 0.95; 95% CI: 0.54-1.66) and rivaroxaban (HR: 1.02; 95% CI: 0.76-1.37) patients compared with warfarin patients.

The apixaban cohort was the only cohort that had a significantly lower risk for MB compared with the warfarin cohort (HR: 0.58; 95% CI: 0.50-0.68). Dabigatran and rivaroxaban patients had a similar risk of MB compared with warfarin patients (dabigatran: HR: 0.76 [95% CI: 0.57-1.01]; rivaroxaban: HR: 0.95 [95% CI: 0.85-1.06]).

Apixaban patients experienced a lower risk for all 3 types of MB compared with warfarin patients. Dabigatran patients had a lower risk for other MB compared with warfarin patients (HR: 0.65; 95% CI: 0.44-0.95), and rivaroxaban patients had a reduced risk for ICH compared with warfarin patients (HR: 0.49; 95% CI: 0.35-0.69).

NOAC-NOAC COMPARISONS. Apixaban patients had a lower risk for stroke/SE compared with dabigatran patients (HR: 0.41; 95% CI: 0.22-0.77) (Figure 2). Similar risks for stroke/SE were seen in the apixaban-rivaroxaban comparison (HR: 0.81; 95% CI: 0.60-1.08) and the dabigatran-rivaroxaban comparison (HR: 0.90; 95% CI: 0.50-1.63).

When evaluating MB, apixaban patients had a lower risk compared with rivaroxaban patients (HR: 0.66; 95% CI: 0.54-0.80) and a similar risk compared with dabigatran patients (HR: 0.83; 95% CI: 0.58-1.19). Dabigatran patients also experienced a lower risk for MB compared with those prescribed rivaroxaban (HR: 0.71; 95% CI: 0.52-0.95). The apixaban cohort continued to show a lower risk for MB compared with the rivaroxaban cohort in terms of GI bleeding (HR: 0.56; 95% CI: 0.45-0.69) and bleeding in other major sites (HR: 0.70; 95% CI: 0.54-0.91). The other NOAC-NOAC comparisons for the MB components all yielded similar risks to one another.

SUBGROUP ANALYSIS. No significant interactions were seen between treatment comparisons and the included cancer types for stroke/SE and MB. Treatment effects were consistent across different cancer types (Figures 3 and 4). Owing to the small sample size of patients with the included cancer types, the subgroup analysis was not evaluated for the dabigatran cohorts.

DISCUSSION

As far as we are aware, this is the largest contemporary cohort of NVAF patients with active cancer treated with NOACs and warfarin. Our principal findings in this subgroup analysis of the ARISTOTEL-PHANES study of NVAF patients with active cancer are that compared with warfarin, apixaban was associated with a lower risk of stroke/SE and MB and dabigatran and rivaroxaban had similar risks of stroke/SE and MB. Second, risks of stroke/SE and MB varied among NOAC-NOAC comparisons: apixaban patients had a lower risk of stroke/SE compared with dabigatran users, and a lower risk of MB compared with rivaroxaban users; and dabigatran patients experienced a lower risk in MB compared with those prescribed rivaroxaban. Third, when evaluating...
patients according to major cancer types, consistent treatment effects on stroke/SE or MB were seen for the NOAC-warfarin and NOAC-NOAC comparisons across the different cancer types. As an ad hoc analysis of the ARISTOPHANES study focusing on patients with active cancer, the results of this analysis were generally consistent with the findings of the main ARISTOPHANES analysis on the whole patient population regardless of active cancer status (17). Both analyses showed that NOACs were associated with better or similar safety and effectiveness compared with warfarin. In addition, the present analysis showed consistent treatment effects across key cancer types.

Active cancer patients are more susceptible to developing not only cardiac disturbances such as NVAF, but also other thromboembolic and bleeding complications, such as ischemic stroke and MB,
compared with noncancer individuals (4-9). Owing to these increased risks, this patient population poses a unique challenge regarding anticoagulation management (24). However, current AF guidelines for cancer patients have yet to strongly recommend any specific treatment owing to the lack of evidence and research conducted within this at-risk patient population (25,26). This underscores the urgency in evaluating the potential risks and benefits of available treatment strategies for NVAF active cancer patients.

A recent systematic review and meta-analysis of post hoc analyses from the ROCKET AF, ENGAGE AF-TIMI 48 (Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis In Myocardial Infarction 48), and ARISTOTLE trials, and 2 other cohort studies that compared NOACs with warfarin among AF patients with cancer showed results similar to those found in our analysis (25). The meta-analysis found that NOAC use was significantly associated with a reduced risk of stroke/SE (risk ratio [RR]: 0.52; 95% CI: 0.28-0.99) and a decreased risk of intracranial or GI bleeding (RR: 0.65; 95% CI: 0.42-0.98). In addition, NOAC use had a tendency toward significantly reducing the risk of MB (RR: 0.73; 95% CI: 0.53-1.00) in NVAF cancer patients.

Real-world studies that have investigated the impact of NOAC treatments in NVAF patients with active cancer are limited (13-16). In a Korean retrospective study, NVAF active cancer patients using NOACs (apixaban, dabigatran, and rivaroxaban) experienced lower stroke/SE, MB, and all-cause death incidence rates than those in the PSM warfarin cohort (13). A U.S. study using the MarketScan claims database identified 16,096 AF patients who were actively treated for cancer during the time of anticoagulation initiation (15). In that MarketScan study, patients initiating apixaban had significantly lower rates of severe bleeding (HR: 0.37; 95% CI:

Table 2	Post-PSM Cancer-Related Baseline Characteristics of NOAC-Warfarin Cohorts											
	Apixaban vs Warfarin	Dabigatran vs Warfarin	Rivaroxaban vs Warfarin									
Sample size	n %	n %	n %	n %	n %	n %						
Cancer site												
Prostate	2,483	30.15	2,343	28.45	745	30.16	740	29.96	2,938	29.42	2,780	27.83
Female breast	1,497	18.18	1,398	16.97	468	18.95	430	17.41	1,757	17.59	1,704	17.06
Gastrointestinal(GI)	1,004	12.19	1,100	13.36	288	11.66	312	12.63	1,338	13.40	1,403	14.05
Lung	946	11.49	1,156	14.04	269	10.89	357	14.45	1,228	12.29	1,448	14.50
Lymphoma	935	11.35	895	10.87	285	11.54	266	10.77	1,160	11.61	1,094	10.95
Lower GI	751	9.12	792	9.62	200	8.10	219	8.87	972	9.73	1,000	10.01
Bladder	669	8.12	703	8.54	204	8.26	171	6.92	789	7.90	792	7.93
Leukemia	479	5.82	480	5.83	144	5.83	132	5.34	559	5.60	561	5.62
Renal cell carcinoma	368	4.47	386	4.69	90	3.64	99	4.01	408	4.08	453	4.54
Gynecologic	256	3.11	255	3.10	80	3.24	79	3.20	350	3.50	326	3.26
Multiple myeloma	217	2.63	250	3.04	71	2.87	69	2.79	285	2.85	295	2.95
Upper GI	133	1.61	169	2.05	37	1.50	52	2.11	193	1.93	209	2.09
Pancreas	79	0.96	106	1.29	24	0.97	33	1.34	96	0.96	130	1.30
Stomach	66	0.80	98	1.19	24	0.97	33	1.34	96	0.96	130	1.30
Brain tumor	67	0.81	73	0.89	28	1.13	20	0.81	87	0.87	96	0.96
Testicular	11	0.13	NR	NR	NR	NR	NR	NR	24	0.24	11	0.11
Cancer metastasis	1,231	14.95	1,237	15.02	308	12.47	306	12.39	1,612	16.14	1,601	16.03
Cancer type												
Hematologic	1,328	16.12	1,293	15.70	400	16.19	379	15.34	1,591	15.93	1,567	15.69
Nonhematologic	7,621	92.53	7,618	92.50	2,260	91.50	2,284	92.47	9,257	92.68	9,221	92.32
Cancer-related treatment	4,458	54.13	4,399	53.41	1,258	50.93	1,239	50.16	5,411	54.18	5,423	54.30
Chemotherapy	3,793	46.05	3,753	45.57	1,033	41.82	1,018	41.21	4,583	45.89	4,572	45.77
Hormone therapy	593	7.20	565	6.86	189	7.65	191	7.73	722	7.23	716	7.17
Radiation	708	8.60	697	8.46	217	8.79	214	8.66	936	9.37	922	9.23
Cancer-related surgery	245	2.97	224	2.72	66	2.67	63	2.55	323	3.23	313	3.13

Cells with n < 11 are not reported (NR). Immunotherapy was also assessed as a cancer-related treatment but had too few patients to report (n < 11). GI cancer includes esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum, and anus cancers. Lower GI cancer includes small intestine, large intestine, rectum, and anus cancers. Gynecologic cancer includes uterus, cervix, placenta, ovary, and other female genital organ cancers. Upper GI cancer includes esophagus and stomach cancers. *Variable used in propensity score matching.

Abbreviations as in Table 1.
0.17-0.79) and had similar rates of ischemic stroke and other bleeding compared with warfarin users. Dabigatran and rivaroxaban had similar rates of ischemic stroke and severe bleeding compared with warfarin users. These MarketScan results are generally consistent with those of our study; however, our analysis included significantly more patients and additional comparisons.

STUDY LIMITATIONS. To the best of our knowledge, this study represents the largest cohort of NVAF...
TABLE 3

Continued

Follow-up time, days	Apixaban	Dabigatran	Apixaban vs Dabigatran	Rivaroxaban	Dabigatran vs Rivaroxaban
n or Mean % or SD			n or Mean % or SD		n or Mean % or SD
Median	122	122	121	132	120

Reasons for censoring

- **Discontinuation**: 930 (38.54%) for Apixaban, 1,407 (58.31%) for Dabigatran, 3,344 (38.85%) for Apixaban, 4,531 (52.64%) for Rivaroxaban, and 1,495 (58.56%) for Dabigatran.
- **Switch**: 87 (3.61%) for Apixaban, 255 (10.57%) for Dabigatran, 337 (3.91%) for Apixaban, 557 (6.47%) for Rivaroxaban, and 157 (6.15%) for Dabigatran.
- **Death**: 96 (3.98%) for Apixaban, 158 (6.55%) for Dabigatran, 453 (5.26%) for Apixaban, 599 (6.96%) for Rivaroxaban, and 157 (6.15%) for Dabigatran.
- **End of continuous medical/pharmacy enrollment**: 27 (1.12%) for Apixaban, 35 (1.45%) for Dabigatran, 125 (1.45%) for Apixaban, 201 (2.34%) for Rivaroxaban, and 49 (1.92%) for Dabigatran.
- **End of study period**: 1,273 (52.76%) for Apixaban, 558 (23.12%) for Dabigatran, 4,349 (50.52%) for Apixaban, 2,720 (31.60%) for Rivaroxaban, and 578 (22.64%) for Dabigatran.

Cells with n < 11 are not reported (NR). aVariable used in propensity score matching. b5 mg apixaban, 150 mg dabigatran, 20 mg rivaroxaban. c2.5 mg apixaban, 75 mg dabigatran, 10 or 15 mg rivaroxaban. 507 and 2,373 patients received 10 mg and 15 mg rivaroxaban, respectively, in the apixaban-rivaroxaban matched cohort and 133 and 627 patients received 10 mg and 15 mg rivaroxaban, respectively, in the dabigatran-rivaroxaban matched cohort. Abbreviations as in Table 1.

TABLE 4

Post-PSM Cancer Related Baseline Characteristics of NOAC-NOAC Cohorts

Cancer site	Apixaban	Dabigatran	Apixaban vs Dabigatran	Rivaroxaban	Dabigatran vs Rivaroxaban			
Sample size	2,413	2,413	100	100	100			
Cancer site								
Prostate	762	31.58	738	30.58	2,650	30.79	2,573	29.89
Female breast	446	18.48	467	19.35	1,593	18.51	1,536	17.84
Gastrointestinal(GI)*	286	11.15	286	11.15	1,015	11.79	1,120	13.01
Lung	268	11.11	263	10.90	962	11.18	997	11.58
Lymphoma	276	11.44	253	10.48	991	11.51	1,032	11.99
Lower GI†	218	9.03	204	8.45	756	8.78	830	9.64
Bladder	188	7.79	194	8.04	671	7.80	682	7.92
Leukemia	139	5.76	138	5.72	480	5.58	466	5.41
Renal cell carcinoma	98	4.06	89	3.69	372	4.32	341	3.96
Gynecologicc	75	3.11	79	3.27	265	3.08	289	3.36
Multiple myeloma	57	2.36	67	2.78	218	2.53	238	2.76
Upper GI†	40	1.66	34	1.41	140	1.63	178	2.07
Pancreas	19	0.79	29	1.20	82	0.95	88	1.02
Stomach	15	0.62	28	1.16	68	0.79	70	0.81
Brain tumor	18	0.75	22	0.91	72	0.84	89	1.03
Testicular	NR	NR	NR	NR	NR	NR	NR	NR
Cancer metastasisb	296	12.27	283	11.73	1,242	14.43	1,233	14.32
Cancer type								
Hematologic	384	15.91	373	15.46	1,357	15.76	1,363	15.83
Nonhematologic	2,243	92.95	2,222	92.08	7,975	92.65	7,971	92.60
Cancer-related treatment	1,228	50.89	1,230	50.97	4,608	53.53	4,629	53.78
Chemotherapy*	1,017	42.15	1,003	41.57	3,883	45.11	3,896	45.26
Hormone therapy*	165	6.84	187	7.75	656	7.62	641	7.45
Radiation*	231	9.57	213	8.83	762	8.85	764	8.88
Cancer-related surgery*	66	2.74	70	2.90	257	2.99	265	3.08

*Cells with n < 11 are not reported (NR). Immunotherapy was also assessed as a cancer-related treatment but had too few patients to report (n < 11). GI cancer includes esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum, and anus cancers. Lower GI cancer includes small intestine, large intestine, rectum, and anus cancers. Gynecologic cancer includes uterus, cervix, placenta, ovary, and other female genital organ cancers. Upper GI cancer includes esophagus and stomach cancers. Variable used in propensity score matching. Abbreviations as in Table 1.
Deitelzweig, S. et al. J Am Coll Cardiol CardioOnc. 2021;3(3):411–424.

Incidence rates [IR] (per 100 person-years) and hazard ratios (with 95% confidence intervals [CIs]) of non-vitamin K oral anticoagulants (NOACs) vs warfarin. Apixaban was associated with a lower risk for stroke/systemic embolism (SE) and major bleeding (MB) compared with warfarin, and dabigatran and rivaroxaban were associated with similar risks for stroke/SE and MB compared with warfarin. Risk of SE is not reported for dabigatran versus warfarin comparison owing to small sample size. *P value is considered to be significant because the upper limit of the 95% CI was rounded from 0.997 to 1.00. GI – gastrointestinal; ICH – intracranial hemorrhage.
active cancer patients who have been treated with NOACs and warfarin. Using a pooled analysis of 5 U.S. claims databases, this study provides a significant sample size and sufficient statistical power. As a retrospective observational study, however, several limitations need to be noted for this analysis.

First, the results of this study can only be representative of statistical associations, not causal relationships, between the exposures of interest and study outcomes. Even with the use of PSM, the matched cohorts are subject to residual confounders, such as over-the-counter aspirin use or lack of laboratory values, which is especially important when interpreting NOAC-NOAC comparisons. These comparisons are primarily intended for hypothesis generation, given the lack of head-to-head clinical trials.

Second, claims database studies used only ICD-9-CM, CPT, and HCPCS codes to identify outcomes and clinical conditions. These codes lack crucial clinical information on pathology, and are prone to misclassification, which has been observed in cancer metastasis diagnosis (27,28). For example, detailed characteristics including cancer stage, progression, and primary versus secondary cancer diagnosis are lacking in our analysis, which may be pivotal in understanding potential variations in NVAF treatment outcomes as a result of severity of cancer status and/or type. The evaluation of label-adherent dosing for apixaban is also deterred because information on patient weight and renal function, which are needed to assess whether apixaban dose has been used appropriately or not, are not available in the claims data used in this study. Furthermore, because of the study period of this analysis, cancer treatment advancements that
have led to improvements in major health outcomes (eg, MB in hematologic cancers) also are not considered. In addition, this analysis had a relatively short mean follow-up time of 6-8 months.

It should also be noted that unobserved heterogeneity may exist across the 5 datasets used in this analysis. The likelihood of duplicate observations is relatively low, researched to be 0.5%, and is not likely to have a significant impact on study results (29). Although this study represents the largest-to-date real-world retrospective claims study of NOAC versus warfarin and NOAC versus NOAC comparisons among active cancer patients with NVAF, it is not reflective of the overall active cancer NVAF population in the US. Uninsured patients and patients solely covered by other public health insurance plans were not included in this analysis. More studies are needed to better understand the effectiveness and safety of OACs in specific cancer populations. Owing to limited sample size, especially for dabigatran patients, dose was not assessed in separate subgroup analyses. In addition, future analyses with increased sample sizes of dabigatran patients would allow more confidence in the present findings for this patient cohort (large confidence intervals in the risk estimates for dabigatran vs other OACs were observed because of small sample size).

CONCLUSIONS

Among NVAF patients with active cancer, apixaban was associated with a lower risk, and dabigatran and rivaroxaban with similar risks of stroke/SE and MB compared with warfarin. Apixaban users also had a
lower risk of stroke/SE compared with dabigatran users and a lower risk of MB compared with rivaroxaban users. Dabigatran was associated with a lower risk of MB compared with rivaroxaban. Treatment effects were consistent across several common cancer types for NOAC-warfarin and NOAC-NOAC comparisons. Subsequent real-world studies are warranted to further study the impact of NOAC treatment options in the NVAF cancer population, specifically addressing NOAC treatment outcomes within specific cancer subtypes.

FUNDING SUPPORT AND AUTHOR DISCOVERIES

This study was funded by Pfizer and Bristol Myers Squibb. Although the authors have financial relationships with these companies, neither business entity influenced the design, conduct, or reporting of the research. Dr Deitelzweig is a consultant for Bristol Myers Squibb Company/Pfizer Inc., Daiichi-Sankyo, Portola, and Boehringer Ingelheim; and has been on the Speakers Bureau for Janssen, Bristol Myers Squibb Company/Pfizer Inc., and Boehringer Ingelheim. Ms Keshishian is a paid employee of STATinMED Research, which is a paid consultant to Bristol Myers Squibb and Pfizer. Drs Kang, Zhang, Dhamane, Klem, Ferri, and Jiang are paid employees of Bristol Myers Squibb. Dr Luo is a paid employee of Pfizer. Dr Yuce has reported that he has no relationships relevant to the contents of this paper to disclose. Dr Lip is a consultant for Bayer/Janssen, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Novartis, Versense, and Daiichi-Sankyo; and is a speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, and Daiichi-Sankyo; no fees are directly received personally.

ADDRESS FOR CORRESPONDENCE: Dr Steven Deitelzweig, Ochsner Health 1514 Jefferson Highway, 11th floor, Hospital Medicine, New Orleans, Louisiana 70121, USA. E-mail: sdeitelzweig@ochsner.org. Twitter: @statinmedresearch.
COMPETENCY IN MEDICAL KNOWLEDGE: In NVAF patients with active cancer, initiation of NOACs is associated with a similar or reduced risk in thromboembolic and bleeding complications compared with treatment with warfarin. These findings were consistent across several common cancer types.

TRANSLATIONAL OUTLOOK: Future studies are needed to further understand patient- and dosing-specific characteristics to enhance the safety and effectiveness of NOACs in the cancer population. A more detailed evaluation of NOAC treatment outcomes according to specific cancer types and disease severity is necessary.

REFERENCES

1. Yadava M, Hughey AB, Crawford TC. Post-operative atrial fibrillation: incidence, mechanisms, and clinical correlates. Heart Fail Clin. 2016;12:299-308.
2. Zimetbaum P. Atrial fibrillation. Ann Intern Med. 2017;166:ITC33-ITC48.
3. Allan V, Honarbaksh S, Casas JP, et al. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32 population-based cohorts of 20 million participants. Thromb Haemost. 2017;117:837-850.
4. Yuan M, Zhang Z, Tse G, et al. Association of cancer and the risk of developing atrial fibrillation: a systematic review and meta-analysis. Cardiol Res Pract. 2019;2019:8985273.
5. O’Neal WT, Lakoski SG, Qureshi W, et al. Relation between cancer and atrial fibrillation (from the Reasons for Geographic and Racial Differences in Stroke Study). Am J Cardiol. 2015;115:1090-1094.
6. Kuan AS, Chen SC, Yeh CM, et al. Risk of ischemic stroke in patients with gastric cancer: a nationwide population-based cohort study. Medicine (Baltimore). 2015;94:e1336.
7. Kuan AS, Teng CJ, Wu H, et al. Risk of ischemic stroke in patients with ovarian cancer: a nationwide population-based study. BMC Med. 2014;12:53.
8. Tsai SJ, Huang YS, Tung CH, et al. Increased risk of ischemic stroke in cervical cancer patients: a nationwide population-based study. Radiat Oncol. 2013;8:41.
9. Kamphuisen PW, Beyer-Westendorf J. Bleeding complications during anticoagulant treatment in patients with cancer. Thromb Res. 2014;133(suppl 2):S49-S53.
10. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63:945-953.
11. Chen ST, Hellkamp AS, Becker RC, et al. Efficacy and safety of rivaroxaban vs warfarin in patients with non-valvular atrial fibrillation and a history of cancer: observations from ROCKET AF. Eur Heart J Qual Care Clin Outcomes. 2019;5:145-152.
12. Melloni C, Dunning A, Granger CB, et al. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and a history of cancer: insights from the ARISTOTLE trial. Am J Med. 2017;130:1440-1448.e1.
13. Kim K, Lee YJ, Kim TH, et al. Effect of non-vitamin K antagonist oral anticoagulants in atrial fibrillation patients with newly diagnosed cancer. Korean Circ J. 2018;48:406-417.
14. Laube ES, Yu A, Gupta D, et al. Rivaroxaban for stroke prevention in patients with nonvalvular atrial fibrillation and active cancer. Am J Cardiol. 2017;120:213-217.
15. Shah S, Norby FL, Datta YH, et al. Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv. 2018;2:200-2009.
16. Oring I, Horváth-Puhó E, Adelborg K, Pedersen L, Prandoni P, Sørensen HT. Thromboembolic and bleeding complications during oral anticoagulation therapy in cancer patients with atrial fibrillation: a Danish nationwide population-based cohort study. Cancer Med. 2017;6:1165-1172.
17. Lip GYH, Keshishian A, Li X, et al. Effectiveness and safety of oral anticoagulants among non-valvular atrial fibrillation patients. Stroke. 2018;49:2933-2944.
18. Li XS, Deitelzweig S, Keshishian A, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in “real-world” clinical practice. A propensity-matched analysis of 76,940 patients. Thromb Haemost. 2017;117:1072-1082.
19. Yao X, Abraham NS, Sangaralingham LR, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016;5:e003725.
20. Thigpen JL, Dillon C, Forster KB, et al. Validity of international classification of disease codes to identify ischemic stroke and intracranial hemorrhage among individuals with associated diagnosis of atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2015;8:18-14.
21. Cunningham A, Stein CM, Chung CP, Daugherty JR, Smalley WE, Ray WA. An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol Drug Saf. 2011;20:560-566.
22. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083-3107.
23. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33:1242-1258.
24. Malavasi VL, Fantechi E, Gianioli L, et al. Atrial fibrillation in patients with active malignancy and use of anticoagulants: underprescription but no adverse impact on all-cause mortality. Eur J Intern Med. 2019;59:27-33.
25. Deng Y, Tong Y, Deng Y, Zou L, Li S, Chen H. Non-vitamin K antagonist oral anticoagulants versus warfarin in patients with cancer and atrial fibrillation: a systematic review and meta-analysis. J Am Heart Assoc. 2019;8:e012540.
26. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al, ESC Scientific Document Group. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768-2801.
27. Jagi R, Bekelman JE, Chen A, et al. Considerations for observational research using large data sets in radiation oncology. Int J Radiat Oncol Biol Phys. 2014;90:11-24.
28. Chawla N, Yabroff KR, Mariotto A, et al. Limited validity of diagnosis codes in Medicare claims for identifying cancer metastases and inferring stage. Ann Epidemiol. 2014;24:666-672.
29. Broder MS, Neary MP, Chang E, Cherepanov D, Katzenelson L. Treatments, complications, and healthcare utilization associated with acromegaly: a study in two large United States databases. JAMA Netw Open. 2020;3:e2024403.

KEY WORDS active cancer, anticoagulants, bleeding, nonvalvular atrial fibrillation, stroke

APPENDIX For supplemental tables and figures, please see the online version of this paper.