Weighted Hurwitz numbers, τ-functions and matrix integrals

J. Harnad1,2

1Department of Mathematics and Statistics, Concordia University
1455 de Maisonneuve Blvd. W. Montreal, QC H3G 1M8 Canada
2Centre de recherches mathématiques, Université de Montréal,
C. P. 6128, succ. centre ville, Montréal, QC H3C 3J7 Canada

Abstract

The basis elements spanning the Sato Grassmannian element corresponding to the KP τ-function that serves as generating function for rationally weighted Hurwitz numbers are shown to be Meijer G-functions. Using their Mellin-Barnes integral representation the τ-function, evaluated at the trace invariants of an externally coupled matrix, is expressed as a matrix integral. Using the Mellin-Barnes integral transform of an infinite product of Γ functions, a similar matrix integral representation is given for the KP τ-function that serves as generating function for quantum weighted Hurwitz numbers.

1 Hurwitz numbers: classical and weighted

The fact that KP and 2D-Toda τ-functions of hypergeometric type serve as generating functions for weighted Hurwitz numbers was shown in [2–5], generalizing the case of simple (single and double) Hurwitz numbers [8, 9]. Sections 1.1 and 1.2 below, and Section 2 give a brief review of this theory, together with two illustrative examples: rational and quantum weighted Hurwitz numbers. In Section 3 it is shown how evaluation of such τ-functions at the trace invariants of a finite matrix may be expressed either as a Wronskian determinant or as a matrix integral. The content of subsections 3.2–3.4 are largely drawn from [6,7], in which further details and proofs of the main results may be found.

*Text of invited presentation at: Quantum Theory and Symmetries, XIth International Symposium, Centre de recherches mathématiques, Montréal, July 1-5, 2019.

†e-mail: harnad@crm.umontreal.ca
1.1 Geometric meaning of classical Hurwitz numbers

The Hurwitz number \(H(\mu^{(1)}, \ldots, \mu^{(k)})\) is the number of inequivalent branched \(N\)-sheeted covers \(\Gamma \to \mathbb{P}^1\) of the Riemann sphere, with \(k\) branch points \((Q_1, \ldots, Q_k)\), whose ramification profiles are given by \(k\) partitions \((\mu^{(1)}, \ldots, \mu^{(k)})\) of \(N\), normalized by dividing by the order \(|\text{aut}(\Gamma)|\) of its automorphism group. The Euler characteristic \(\chi\) and genus \(g\) of the covering curve is given by the Riemann-Hurwitz formula:

\[
\chi = 2 - 2g = 2N - d, \quad d := \sum_{i=1}^{k} \ell^*(\mu^{(i)}),
\]

where \(\ell^*(\mu) := |\mu| - \ell(\mu) = N - \ell(\mu)\) is the colength of the partition.

The Frobenius-Schur formula gives \(H(\mu^{(1)}, \ldots, \mu^{(k)})\) in terms of \(S_N\) characters:

\[
H(\mu^{(1)}, \ldots, \mu^{(k)}) = \sum_{\lambda, |\lambda|=N} h^{k-2}(\lambda) \prod_{j=1}^{k} \chi_{\lambda}(\mu^{(j)}) z_{\mu^{(j)}}, \quad |\mu^{(j)}| = N,
\]

where \(h(\lambda) = \left(\det \frac{1}{(\lambda_i - i + j)!}\right)^{-1}\) is the product of the hook lengths of the partition \(\lambda = (\lambda_1 \geq \cdots \geq \lambda_{\ell(\lambda)} > 0)\), \(\chi_{\lambda}(\mu^{(j)})\) is the irreducible character of representation \(\lambda\) evaluated on the conjugacy class \(\mu^{(j)}\), and

\[
z_{\mu^{(j)}} := \prod_i i^{m_i(\mu^{(j)})}(m_i(\mu^{(j)}))!\]

is the order of the stabilizer of any element of cyc(\(\mu^{(j)}\)) (and \(m_i(\mu^{(j)}) = \#\) parts of partition \(\mu^{(j)}\) equal to \(i\))

1.2 Weighted Hurwitz numbers [2–5]

Define the weight generating function \(G(z)\), or its dual \(\widetilde{G}(z)\), as an infinite (or finite) product or sum (formal or convergent).

\[
G(z) = \prod_{i=1}^{\infty} (1 + zc_i) = 1 + \sum_{j=1}^{\infty} g_j z^j
\]

\[
\widetilde{G}(z) = \prod_{i=1}^{\infty} (1 - zc_i)^{-1} = 1 + \sum_{j=1}^{\infty} \tilde{g}_j z^j.
\]

The weight for a branched covering with ramification profiles \((\mu^{(1)}, \ldots, \mu^{(k)})\) is defined to be:

\[
\mathcal{W}_G(\mu^{(1)}, \ldots, \mu^{(k)}) := \frac{1}{k!} \sum_{\sigma \in S_k} \sum_{1 \leq \iota_1 < \cdots < \iota_k} \ell^*(\mu^{(1)}) \cdots \ell^*(\mu^{(k)})
\]
\[
\tilde{W}_G(\mu^{(1)}, \ldots, \mu^{(k)}) := \frac{(-1)^{\sum_{i=1}^{k} \ell^*(\mu^{(i)}) + k}}{k!} \sum_{\sigma \in S_k} \sum_{1 \leq i_1 \leq \ldots \leq i_k} c_{\nu^{(1)}}^{\ell^*(\mu^{(1)})} \cdots c_{\nu^{(k)}}^{\ell^*(\mu^{(k)})}
\]

Weighted double Hurwitz numbers \(H^d_G(\mu, \nu), \tilde{H}^d_G(\mu, \nu) \) for \(n \)-sheeted branched coverings of the Riemann sphere having a pair of unweighted branch points \((Q_0, Q_\infty)\), with ramification profiles of type \((\mu, \nu)\), and \(k \) additional weighted branch points \((Q_1, \ldots, Q_k)\) with ramification profiles \((\mu^{(1)}, \ldots, \mu^{(k)})\) are defined as:

\[
H^d_G(\mu, \nu) := \sum_{k=1}^{d} \sum_{\mu^{(1)}, \ldots, \mu^{(k)}}^{\sum_{i=1}^{k} \ell^*(\mu^{(i)}) = d} W_G(\mu^{(1)}, \ldots, \mu^{(k)}) H(\mu^{(1)}, \ldots, \mu^{(k)}, \mu, \nu),
\]

\[
\tilde{H}^d_G(\mu, \nu) := \sum_{k=1}^{d} \sum_{\mu^{(1)}, \ldots, \mu^{(k)}}^{\sum_{i=1}^{k} \ell^*(\mu^{(i)}) = d} \tilde{W}_G(\mu^{(1)}, \ldots, \mu^{(k)}) \tilde{H}(\mu^{(1)}, \ldots, \mu^{(k)}, \mu, \nu),
\]

where \(\sum'\) denotes the sum over all partitions other than the cycle type of the identity element \((1)^n\). If \(Q_\infty\) is not a branch point; i.e. \(\nu = (1)^n\), we have a weighted single Hurwitz number

\[
H^d_G(\mu) := H^d_G(\mu, (1)^n).
\]

Two cases of particular interest are: rational weight generating functions:

\[
G_{c,d}(z) := \prod_{l=1}^{L} \frac{1 + cz}{1 - d_m z},
\]

and quantum weight generating function (quantum exponential):

\[
\tilde{G}(z) = H_q(z) := \prod_{i=0}^{\infty} (1 - q^i z)^{-1} = \sum_{n=0}^{\infty} \frac{z^n}{(q; q)_n},
\]

where

\[
(q; q)_n := (1 - q)(1 - q^2) \cdots (1 - q^n)
\]

for some parameter \(q\), with \(|q| < 1\).

The corresponding rationally weighted (single) Hurwitz numbers are:

\[
H^d_{G_{c,d}}(\mu, \nu) := \sum_{1 \leq k, l \leq \nu^{(1)}, \ldots, \nu^{(l)}}^{\mu^{(1)}, \ldots, \mu^{(k)}, \nu^{(1)}, \ldots, \nu^{(l)}} W_{G_{c,d}}(\mu^{(1)}, \ldots, \mu^{(k)}; \nu^{(1)}, \ldots, \nu^{(l)})
\]

\[
\times H(\mu^{(1)}, \ldots, \mu^{(k)}, \nu^{(1)}, \ldots, \nu^{(l)}, \mu),
\]

\[
3
\]
where the rational weight factor is:

$$W_{G,c,d}(\mu^{(1)}, \ldots, \mu^{(k)}; \nu^{(1)}, \ldots, \nu^{(l)}) := \frac{(-1)^{\sum_{j=1}^{l} e^{*(\nu^{(j)})}-l}}{k!^l} \sum_{\sigma \in S_k} \sum_{\sigma' \in S_l} \ell^*(\mu^{(1)}) \cdots \ell^*(\mu^{(k)}) d^*_{a_{\sigma(1)}} \cdots d^*_{a_{\sigma(k)}} \ell^*(\nu^{(1)}) \cdots \ell^*(\nu^{(l)}).$$

The quantum weighted (single) Hurwitz numbers are

$$H^d_{Hq}(\mu) := \sum_{k=1}^{d} \sum_{\mu^{(1)}, \ldots, \mu^{(k)}; \nu^{(1)}, \ldots, \nu^{(l)}, \mu^{(1)}=N} \tilde{W}_{Hq}(\mu^{(1)}, \ldots, \mu^{(k)}) H(\mu^{(1)}, \ldots, \mu^{(k)}, \mu), \quad (1.10)$$

where the quantum weight factor is

$$\tilde{W}_{Hq}(\mu^{(1)}, \ldots, \mu^{(k)}) := \frac{(-1)^{d-k}}{k!} \sum_{\sigma \in S_k} \prod_{j=1}^{k} \frac{1}{(1 - q^{\sum_{i=1}^{k} e^{*(\mu^{(i)})}})}.$$

2. **Hypergeometric τ-functions as generating functions for weighted Hurwitz numbers** [2–5]

To construct a KP τ-function of hypergeometric type that serves as generating function for weighted Hurwitz numbers for a given weight generating function G, choose a small parameter β and define coefficients $r^{(G,\beta)}_\lambda$ that are of content product form:

$$r^{(G,\beta)}_\lambda := \prod_{(ij) \in \lambda} r^{(G,\beta)}_{j-i} = \prod_{(ij) \in \lambda} G((j-i)\beta), \quad (2.1)$$

where

$$r^{(G,\beta)}_{j} := G(j\beta) = \frac{\rho^{(G,\beta)}_j}{\beta \rho^{(G,\beta)}_{j-1}}, \quad (2.2)$$

with

$$\rho^{(G,\beta)}_j := \beta^j \prod_{i=1}^{j} G(i\beta) =: e^{T^{G}_{(\beta)}}_j, \quad \rho_0 = 1, = \frac{\rho^{(G,\beta)}_j}{\beta \rho^{(G,\beta)}_{j-1}},$$

$$\rho^{(G,\beta)}_{-j} := \beta^{-j} \prod_{i=1}^{j-1} \frac{1}{G(-i\beta)} =: e^{T^{G}_{(\beta)}}_{-j}, \quad j = 1, 2, \ldots \, (2.3)$$

We then have [3,5]:

4
Theorem 2.1 (Hypergeometric Toda τ-functions associated to weight generating function $G(z)$). The double Schur function series

$$\tau(G, \beta)(t, s) := \sum_{\lambda} \beta|\lambda| r^{(G, \beta)}_{\lambda}(s) s_{\lambda}(t)$$

(2.4)

defines a 2D-Toda τ-function (at lattice value $n = 0$).

We now use the Frobenius character formula

$$s_{\lambda}(t) = \sum_{\mu, |\mu| = |\lambda|} \chi_{\lambda}(\mu) \frac{p_{\mu}(t)}{z_{\mu}}, \quad s_{\lambda}(s) = \sum_{\nu, |\nu| = |\lambda|} \chi_{\lambda}(\nu) \frac{p_{\nu}(s)}{z_{\nu}}$$

(2.5)

to change the basis of Schur functions to power sum symmetric functions

$$p_{\mu}(t) := \prod_{i=1}^{\ell(\mu)} p_{i}(t), \quad p_{j}(t) = jt_{j}, \quad p_{\nu}(s) := \prod_{i=1}^{\ell(\nu)} p_{i}(s), \quad p_{j}(s) = js_{j}.$$

(2.6)

Theorem 2.2 (Hypergeometric Toda τ-functions as generating function for weighted double Hurwitz numbers [3, 5]). The τ-function $\tau(G, \beta)(t, s)$ can equivalently be expressed as a double infinite series in the bases of power sum symmetric functions as follows

$$\tau(G, \beta)(t, s) = \sum_{d=0}^{\infty} \sum_{\mu, |\mu| = |\nu|} \beta|\mu|+d H_{G}^{d}(\mu, \nu) p_{\mu}(t) p_{\nu}(s).$$

(2.7)

It is thus a generating function for the numbers $H_{G}^{d}(\mu, \nu)$ of weighted n-fold branched coverings of the sphere, with a pair of specified branch points having ramification profiles (μ, ν) and genus given by the Riemann-Hurwitz formula

$$2 - 2g = \ell(\mu) + \ell(\nu) - d, \quad d = \sum_{i=1}^{k} \ell^{*}(\mu^{(i)}).$$

(2.8)

Corollary 2.3 (Hypergeometric KP τ-functions as generating functions for weighted single Hurwitz numbers). Set: $s = \beta^{-1}t_{0} := (\beta^{-1}, 0, 0, \ldots)$. Then the series

$$\tau(G, \beta)(t, \beta^{-1}t_{0}) := \tau(G, \beta)(t) = \sum_{\lambda} (h(\lambda))^{-1} r^{(G, \beta)}_{\lambda}(s) s_{\lambda}(t)$$

$$= \sum_{d=0}^{\infty} \sum_{\mu} \beta^{d} H_{G}^{d}(\mu) p_{\mu}(t)$$

is a KP τ-function which is a generating function for weighted single numbers $H_{G}^{d}(\mu)$ for $|\mu|$-fold branched coverings of the sphere, with a branch point having ramification profile (μ) at Q_{0} and genus given by the Riemann-Hurwitz formula.

$$2 - 2g = |\mu| + \ell(\mu) - d.$$

(2.9)
3 Wronskian and matrix integral representation of $\tau^{(G,\beta)}([X])$

In [6, 7] new matrix integral representations were derived for the τ-functions that serve as generating functions for rationally and quantum weighted Hurwitz numbers. The main result is that, using Laurent series and Mellin-Barnes integral representations of the adapted bases for the respective elements of the infinite Grassmannian corresponding to these cases, the τ-functions may be expressed as Wronskian determinants or as matrix integrals.

3.1 Adapted basis, recursion operators, quantum spectral curve

Henceforth, we always set:

$$s = \beta^{-1}t_0 := (\beta^{-1}, 0, 0, \ldots)$$ \hspace{1cm} (3.1)

and

$$\tau^{(G,\beta)}(t) := \tau^{(G,\beta)}(t, \beta^{-1}t_0)$$ \hspace{1cm} (3.2)

is a KP τ-function of hypergeometric type.

For $k \in \mathbb{Z}$, define:

$$\phi_k(x) := \frac{\beta}{2\pi i x^{k-1}} \int_{|\zeta| = \epsilon} \rho^{(G,\beta)}(\zeta) e^{\beta^{-1}x\zeta} \frac{d\zeta}{\zeta^k},$$

$$= \beta x^{1-k} \sum_{j=0}^{\infty} \frac{\rho^{(G,\beta)}_{j-k}}{j!} \left(\frac{x}{\beta}\right)^j,$$ \hspace{1cm} (3.3)

where

$$\rho^{(G,\beta)}(\zeta) := \sum_{i=-\infty}^{k-1} \rho^{(G,\beta)}_{-i-1} \zeta^i.$$ \hspace{1cm} (3.4)

Then $\{\phi_k(1/z)\}_{k \in \mathbb{N}^+}$ is a basis for the element $w^{(G,\beta)}$ of the Sato Grassmannian that determines the KP τ-function $\tau^{(G,\beta)}(t)$ [1].

3.2 Quantum and classical spectral curve

Theorem 3.1 (Quantum spectral curve and eigenvalue equations [1]). The functions $\phi_k(x)$ satisfy

$$\mathcal{L}\phi_k(x) := (xG(\beta D) - D) \phi_k(x) = (k - 1)\phi_k(x)$$ \hspace{1cm} (3.5)

where $D := x \frac{d}{dx}$ is the Euler operator.
The classical spectral curve is
\[y = G(\beta xy). \] (3.6)

3.2.1 Rational weighting case

For \(G(z) = G_{c,d}(z) \), denote \(\phi_k(x) =: \phi_k^{(c,d,\beta)}(x) \). Then
\[
\zeta \prod_{l=1}^{L} (D + \frac{1}{\beta c_l}) \phi_k^{(c,d,\beta)} + (D + k - 1) \prod_{m=1}^{M} (D - 1 - \frac{1}{\beta d_m}) \phi_k^{(c,d,\beta)} = 0, \tag{3.7}
\]
where
\[
\zeta := -\kappa_{c,d}x, \quad \kappa_{c,d} := (-1)^{M} \frac{\prod_{l=1}^{L} \beta c_l}{\prod_{m=1}^{M} \beta d_m}. \tag{3.8}
\]

3.2.2 Mellin-Barnes integral representation: Meijer G-functions [6][7]

It may be shown that \(\phi_k^{(c,d,\beta)} \) has the Mellin-Barnes integral representation:
\[
\phi_k^{(c,d,\beta)} = C_k^{(c,d,\beta)} \left[\begin{array}{c}
\frac{1}{\beta c_1}, \cdots, \frac{1}{\beta c_L} \\
1 - k, 1 + \frac{1}{\beta d_1}, \cdots, 1 + \frac{1}{\beta d_M}
\end{array} \right]_{k}^{-\kappa_{c,d}x} \]
\[
= \frac{C_k^{(c,d,\beta)}}{2\pi i} \int_{C_k} \frac{\Gamma(1 - k - s) \prod_{\ell=1}^{L} \Gamma \left(s + \frac{1}{\beta c_{\ell}} \right) (-\kappa_{c,d}x)^s}{\prod_{m=1}^{M} \Gamma \left(s + \frac{1}{\beta d_m} \right)} ds, \tag{3.9}
\]
\[
\sim \frac{\beta \rho - k(c,d)}{(\kappa x)^{k-1}} L F_M \left(\begin{array}{c}
1 - k + \frac{1}{\beta c_1}, \cdots, 1 - k + \frac{1}{\beta c_L} \\
1 - k - \frac{1}{\beta d_1}, \cdots, 1 - k - \frac{1}{\beta d_M}
\end{array} \right), \tag{3.10}
\]
where
\[
C_k^{(c,d,\beta)} := \frac{\prod_{j=1}^{M} \Gamma \left(-\frac{1}{\beta d_j} \right)}{(-\beta)^{k-1} \prod_{\ell=1}^{L} \Gamma \left(\frac{1}{\beta c_{\ell}} \right)}. \tag{3.10}
\]

The contour \(C_k \) is chosen so that the poles at \(1 - k, 2 - k, \cdots \) are to the right and the poles at \(\{ -i - \frac{1}{\beta c_{\ell}} \}_{j=1, \ldots, L}, i \in \mathbb{N}^+ \) to the left. (See Figure [I])
Figure 1: The contours of integration for the function $\phi_k^{(e,d,\beta)}$ in the case $L > M + 1$.

3.2.3 Quantum case expressed as Mellin-Barnes integrals \[7\]

The following is an integral representation of $\phi_k^{(H_q,\beta)}(x)$, valid for all $x \in \mathbb{C}$,

$$\phi_k^{(H_q,\beta)} = \frac{1}{2\pi i} \int_{C_k} A_{H_q,k}(s)x^s ds,$$ \hspace{1cm} (3.11)

where

$$A_{H_q,k}(z) := (-\beta)^{1-k}\Gamma(1-k-z) \prod_{m=0}^{\infty} \left((-\beta q^{-m})^{-z} \frac{\Gamma(-\beta^{-1}q^{-m})}{\Gamma(z-\beta^{-1}q^{-m})} \right).$$ \hspace{1cm} (3.12)

The contour C_k is defined as starting at $+\infty$ immediately above the real axis, proceeding to the left above the axis, winding around the poles at the integers $s = -k, -k+1, \ldots$ in a counterclockwise sense and continuing below the axis back to $+\infty$.

3.3 Determinantal representation of $\tau^{(G,\beta)}(t)$

If $\tau^{(G,\beta)}(t)$ is evaluated at the trace invariants of diagonal $X \in \text{Mat}^{n \times n}$

$$t_i = [X], \quad t_i = \frac{1}{i} \text{tr}X^i, \quad X := \text{diag}(x_1, \ldots, x_n),$$ \hspace{1cm} (3.13)

it is expressible as the ratio of $n \times n$ determinants

$$\tau^{(G,\beta)} ([X]) = \frac{\prod_{i=1}^{n} x_i^{n-1} \det (\phi_i(x_j))_{\leq i,j,\leq n}}{\prod_{i=1}^{n} \rho^{-i}} \Delta(x),$$ \hspace{1cm} (3.14)
where
\[\Delta(x) = \prod_{1 \leq i < j \leq n} (x_i - x_j) = \det(x_i^{n-j})_{1 \leq i, j \leq n} \] (3.15)
is the Vandermonde determinant.

3.3.1 Eulerian Wronskian representation

It follows from the recursion relations
\[\beta(D + k - 1)\phi_k = \phi_{k-1}, \quad k \in \mathbb{Z}, \] (3.16)
that
\[\tau^{(G,\beta)}([X]) = \gamma_n \left(\prod_{i=1}^{n} x_i^{n-1} \right) \frac{\det(D^{i-1}\phi_n(x_j))_{1 \leq i, j \leq n}}{\Delta(x)}, \] (3.17)
where
\[\gamma_n := \frac{\beta^{\frac{1}{2}n(n-1)}}{\prod_{i=1}^{n} \rho_i}. \] (3.18)

3.4 Matrix integral representation of $\tau^{(G,\beta)}([X])$ [6,7]

3.4.1 Wronskian representation: rational case

For rational weight generating functions $G = G_{c,d}$, and any $n \in \mathbb{N}^+$, let
\[\phi_n^{(c,d,\beta)}(e^y) = \int_{C_n} A_n^{(c,d,\beta)}(s)e^{ys} ds, \]
\[A_n^{(c,d,\beta)}(s) := \frac{G_n^{(c,d,\beta)}(1 - n - s) \prod_{i=1}^{L} \Gamma \left(s + \frac{1}{\beta c_i} \right) \left(-\kappa_{c,d} \right)^s}{2\pi i \prod_{m=1}^{M} \Gamma \left(s - \frac{1}{\beta d_m} \right)}. \]

Define the diagonal matrix $Y = \text{diag}(y_1, \ldots, y_n)$
\[X = e^Y, \quad Y = \ln(X), \quad x_i = e^{y_i}, \quad i = 1, \ldots, n. \] (3.19)

Then $\tau^{(G_{c,d,\beta})}([X])$ becomes a ratio of Wronskian determinants
\[\tau^{(G_{c,d,\beta})}([X]) = \gamma_n \left(\prod_{i=1}^{n} x_i^{n-1} \right) \frac{\det \left(\phi_n^{(c,d,\beta)}(e^y) \right)_{1 \leq i, j \leq n}}{\Delta(e^y)}. \] (3.20)
3.4.2 Matrix integral representation of $\tau^{(G, \beta)}([X])$: rational case

It follows [6] that

$$\tau^{(G_{c,d,\beta})}([X]) = \frac{\beta \frac{1}{2} (n-1) (\prod_{i=1}^{n} x_i^{n-1}) \Delta(\ln(x))}{(\prod_{i=1}^{n} i!) \Delta(x)} Z_{d\mu(c,d,\beta,n)}(X), \quad (3.21)$$

where

$$Z_{d\mu(c,d,\beta,n)}(X) = \int_{M \in \text{Nor}_{n \times n}^C} d\mu(c,d,\beta,n)(M) e^{\text{tr}YM}$$

and

$$d\mu(c,d,\beta,n)(M) := (\Delta(\zeta))^2 \det(A^{(c,d,\beta)}(M)) d\mu_0(U) \prod_{j=1}^{n} d\zeta_i$$

is a conjugation invariant measure on the space of normal matrices

$$M = UZU^\dagger \in \text{Nor}_{n \times n}^C, \quad U \in U(n), \quad Z = \text{diag}(\zeta_1, \ldots, \zeta_n)$$

with eigenvalues $\zeta_i \in \mathbb{C}$ supported on the contour \mathcal{C}_n.

3.4.3 Wronskian representation: quantum case

For quantum weight generating functions $G = H_q$, and any $n \in \mathbb{N}^+$, let

$$\phi_n^{(H_q,\beta)}(e^y) = \int_{\mathcal{C}_n} A^{(c,d,\beta)}(s)e^{ys} ds,$$

$$A_{H_q,n}(z) := (-\beta)^{1-n}\Gamma(1-n-z) \prod_{m=0}^{\infty} \left((-\beta q^m)^{-z} \frac{\Gamma(-\beta^{-1}q^{-m})}{\Gamma(z-\beta^{-1}q^{-m})} \right).$$

Define the diagonal matrix $Y = \text{diag}(y_1, \ldots, y_n)$

$$X = e^Y, \quad Y = \ln(X), \quad x_i = e^{y_i}, \quad i = 1, \ldots, n, \quad (3.24)$$

Then $\tau^{(H_q,\beta)}([X])$ becomes a ratio of Wronskian determinants

$$\tau^{(H_q,\beta)}([X]) = \gamma_n \left(\prod_{i=1}^{n} x_i^{n-1} \right) \frac{\text{det} \left(\phi_n^{(c,d,\beta)}(1) (e^y) \right)}{\Delta(e^y)} 1 \leq i, j \leq n. \quad (3.25)$$

3.4.4 Matrix integral representation of $\tau^{(G,\beta)}([X])$: quantum case

It similarly follows [7] that

$$\tau^{(H_q,\beta)}([X]) = \beta \frac{1}{2} (n-1) (\prod_{i=1}^{n} x_i^{n-1}) \Delta(\ln(x)) \frac{Z_{d\mu_q} (\ln(X))}{(\prod_{i=1}^{n} i!) \Delta(x)}, \quad (3.26)$$
where \(Z_{d\mu(q,n)}(X) = \int_{M \in \text{Nor}_{n \times n}^C} d\mu(q,n)(M) e^{\text{tr}YM} \),
and \(d\mu(q,n)(M) := (\Delta(\zeta))^2 \det(A_{H,q,n}(M)) \)

is a conjugation invariant measure on the space of normal matrices

\[M = U Z U^\dagger \in \text{Nor}_{n \times n}^C, \quad U \in U(n), \quad Z = \text{diag}(\zeta_1, \ldots, \zeta_n) \] (3.27)

with eigenvalues \(\zeta_i \in \mathbb{C} \) supported on the contour \(\mathcal{C}_n \).

Acknowledgements. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec, Nature et technologies (FRQNT).

References

[1] A. Alexandrov, G. Chapuy, B. Eynard and J. Harnad, “Weighted Hurwitz numbers and topological recursion: an overview”, *J. Math. Phys.* 59, 081102: 1-20 (2018).

[2] M. Guay-Paquet and J. Harnad, “2D Toda \(\tau \)-functions as combinatorial generating functions”, *Lett. Math. Phys.* 105, 827-852 (2015).

[3] J. Harnad and A. Yu. Orlov, “Hypergeometric \(\tau \)-functions, Hurwitz numbers and enumeration of paths”, *Commun. Math. Phys.* 338, 267-284 (2015).

[4] J. Harnad, “Weighted Hurwitz numbers and hypergeometric \(\tau \)-functions: an overview”, *AMS Proceedings of Symposia in Pure Mathematics* 93, 289-333 (2016).

[5] M. Guay-Paquet and J. Harnad, “Generating functions for weighted Hurwitz numbers”, *J. Math. Phys.* 58, 083503 (2017).

[6] M. Bertola and J. Harnad, “Rationally weighted Hurwitz numbers, Meijer \(G \)-functions and matrix integrals”, *J. Math. Phys.* 60, 103504 (2019).

[7] J. Harnad and B. Runov, “Matrix model generating function for quantum weighted Hurwitz numbers”, *J. Phys. A* 53, 065201 (2020).

[8] A. Okounkov, “Toda equations for Hurwitz numbers”, *Math. Res. Lett.* 7, 447-453 (2000).

[9] A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz theory and completed cycles,” *Ann. Math.* 163, 517-560 (2006).