Diversity and Distribution of *Phytophthora* Species in Protected Natural Areas in Sicily

Thomas Jung 1,2, Federico La Spada 3, Antonella Pane 3, Francesco Aloi 3,4, Maria Evoli 3, Marilia Horta Jung 1,2, Bruno Scanu 5, Roberto Faedda 3, Cinzia Rizza 3, Ivana Puglisi 3, Gaetano Magnano di San Lio 6, Leonardo Schena 6 and Santa Olga Cacciola 3,*

1 Phytophthora Research Centre, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic; dr.t.jung@t-online.de (T.J.); marilia.horta@mendelu.cz (M.H.J.)

2 Phytophthora Research and Consultancy, Am Ra 9, 83131 Nussdorf, Germany

3 Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; federicolaspada@yahoo.it (F.L.S.); apane@unict.it (A.P.); francescaoloi88@gmail.com (F.A.); marevoli@gmail.com (M.E.); rfaedda@unict.it (R.F.); cinziarizza@libero.it (C.R.); ipuglisi@unict.it (I.P.)

4 Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Ed., 4, 90128 Palermo, Italy

5 Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia (SPaVE), Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; bscanu@uniss.it

6 Dipartimento di Agraria, Mediterrane University of Reggio Calabria, località Feo di Vito, 89122 Reggio Calabria, Italy; gmagnano@unirc.it (G.M.d.S.L); lschena@unirc.it (L.S.)

* Correspondence: olgacacciola@unict.it; Tel.: +39-095-7147371

Received: 17 February 2019; Accepted: 8 March 2019; Published: 14 March 2019

Abstract: The aim of this study was to investigate the occurrence, diversity, and distribution of *Phytophthora* species in Protected Natural Areas (PNAs), including forest stands, rivers, and riparian ecosystems, in Sicily (Italy), and assessing correlations with natural vegetation and host plants. Fifteen forest stands and 14 rivers in 10 Sicilian PNAs were studied. *Phytophthora* isolations from soil and stream water were performed using leaf baits. Isolates were identified using both morphological characters and sequence analysis of the internal transcribed spacer (ITS) region. A rich community of 20 *Phytophthora* species from eight phylogenetic clades, including three new *Phytophthora* taxa, was recovered (17 species in rhizosphere soil from forest stands and 12 species in rivers). New knowledge about the distribution, host associations, and ecology of several *Phytophthora* species was provided.

Keywords: soilborne pathogens; invasive species; natural ecosystems; streams; vegetation type; baiting; ITS region

1. Introduction

Due to its location in the central Mediterranean Sea and its vast area of 25,708 km², Sicily is one of the most important biodiversity areas in Europe and in the Mediterranean basin [1,2] harboring more than 3000 plant species [3], 321 of which are endemic to Sicily [4]. Sicily’s outstanding floristic and ecological diversity was acknowledged by the establishment of numerous Protected Natural Areas (PNAs; Italian National Law 394/91), including three Regional Parks, 72 Regional Natural Reserves and 223 Sites of Community Importance (Habitats Directive 92/43/EEC).

During a recent monitoring of the health conditions of oak and beech trees in forests of the Etna, Madonie, and Nebrodi Regional Parks in Sicily (southern Italy), severe symptoms of crown decline were observed, indicating fine root losses caused by soilborne pathogens from the genus
Phytophthora [5]. With more than 150 described species grouped in twelve multigenic phylogenetic Clades [6], this oomycete genus comprises some of the most aggressive plant pathogens of forests and other natural ecosystems [7–16]. Several studies highlighted the diversity of Phytophthora species in native vegetation and their potential impact on natural ecosystems [17–26]. The presence of exotic, potentially invasive Phytophthora species often represents a threat for the survival of native plant species and may alter the stability of the entire ecosystem. In Sardinia, a survey in the National Park of the La Maddalena archipelago demonstrated the involvement of exotic Phytophthora species in the widespread mortality of Quercus ilex trees and Mediterranean maquis vegetation [25,27,28]. Outplanting of infected nursery stock is considered a primary pathway for the introduction of non-native Phytophthora species into forest ecosystems [10,29–36]. In recent years, great attention has been paid to surface water as a source of Phytophthora inoculum in natural ecosystems. Surveys of rivers, streams, and riparian ecosystems in several continents have revealed a huge diversity of Phytophthora species, including primarily aquatic species which are considered as opportunistic pathogens, but also soilborne and airborne primary pathogens [8,20,21,37–41]. However, all Phytophthora species have the potential to be disturbance factors in natural ecosystems, in particular, those of exotic origin, provided that the environmental conditions are conducive to disease development [9,10,32]. The number of species known in the genus Phytophthora has increased dramatically during the past decade, mainly due to extensive surveys in previously unexplored ecosystems such as natural forests, riparian ecosystems, streams, and irrigation systems [6,20,21,25,42,43]. The ecological role of most of these new species and their distribution in natural ecosystems are still largely unknown, although the knowledge of the Phytophthora community and its potential impact on native vegetation is a prerequisite for proper management of PNAs. Despite the large number of Phytophthora species reported from nurseries and agricultural crops in Sicily, their occurrence and ecology in natural environments have received little attention. The aims of this study were to examine (i) the diversity and distribution of Phytophthora species in forest stands and river systems of Sicilian PNAs and (ii) their association with natural vegetation and potential host plants.

2. Materials and Methods

2.1. Sampling and Phytophthora Isolation

Ten PNAs in northern and eastern Sicily, including the three Regional Parks (RP), five Regional Nature Reserves (RNR), and two Sites of Community Importance (SCI), characterized by different ecological conditions were included in this study (Table S1, Figure S1). Twenty sites in 15 characteristic Sicilian forest stands (FS) in seven PNAs and 14 rivers running through nine PNAs were included in the survey of distribution and diversity of Phytophthora species (Table 1 and 2, Figure 1 and 2). Sampling activities were carried out during the spring of 2013 and 2015.

In total, 83 rhizosphere soil samples from mature specimens of 17 tree species were collected in the 15 forest stands (Table 1). Soil sampling and isolation methodologies were performed according to Jung [9]. Subsamples of ca. 200 mL soil were used for baiting tests at 18–20 °C in a walk-in growth chamber with 12 h natural daylight. Young leaves of native species (mainly Ceratonia siliqua and Quercus spp.) were used as baits floated over flooded soil. Necrotic segments (2 × 2 mm) from Infected leaves were plated onto selective PARPNH-agar [11]. Petri dishes were incubated at 20 °C in the dark. Outgrowing Phytophthora hyphae were transferred onto V8-juice agar (V8A) under the stereomicroscope. Phytophthora isolations from rivers were performed using an in situ baiting technique [21]. At each site, 10 non-wounded young leaves of C. siliqua, Quercus spp. and Citrus spp. were placed in a mesh-bag styrofoam raft (25 × 30 cm) [21] rigged to float on the water surface. In total 35 rafts were placed in 14 rivers (Table 2, Figure 2) and collected after 3–5 days. Isolations from necrotic leaf lesions were carried out as described before. All obtained isolates were maintained on V8A and stored at 6 °C in the dark.
Table 1. Vegetation, geological substrate, municipality, geographic coordinates, and altitude of the 15 forest stands sampled in seven Protected Natural Areas in Sicily, tree species sampled and *Phytophthora* taxa isolated.

Forest Stand (FS) No.	Protected Natural Area	Vegetation (Natura 2000 Code, Forest Stand Type, Phytoocoenosis)	Geological Substrate	Municipality	Sampling Site No.	Geographic Coordinates (DATUM WGS84)	Altitude (m a.s.l.)	Sampled Tree Species (No. of Phytophthora-Positive Soil Samples/Sampled Trees)	Phytophthora spp. (No. of Positive Soil Samples)	
FS-1	Etna RP	Natura 2000 CODE: 9340. Forest stand type: Meso-Mediterranean evergreen oak forest. Phytoocoenosis: *Teucrio siculi-Quercetum ilicis* subass. *Teucrietosum siculi*.	Volcanic (Alkali Basalt-Na)	Zafferana Etnea (CT)	I	37°41'44.53"	30.5100.04"	E 1030	*Quercus ilex* L. (3/5)	MUL (1); QUE (2)
FS-2	Etna RP	Natura 2000 CODE: 91M0. Forest stand type: Supra-Mediterranean turkey oak forest. Phytoocoenosis:*Vicio cassubicae-Quercetum cerridis*.	Volcanic (Alkali Basalt-Na)	Sant’Alfo (CT)	II	37°41'05.94"	30.5101.34"	E 890	*Quercus pubescens* Willd. s. l. (4/5)	PSY (4)
FS-3	Etna RP	EUNIS CODE: G1.916 <. Forest stand type: Supra-Mediterranean birch forest. Phytoocoenosis: Aggregation with *Betula aetnensis*.	Volcanic (Alkali Basalt-Na)	Sant’Alfo (CT)	III	37°46'26.02"	30.5103.73"	E 1345	*Q. pubescens* s. l. (3/6)	PSY (3)
FS-4	Etna RP	Natura 2000 CODE: 9220. Forest stand type: Supra-Mediterranean beech forest. Phytoocoenosis: *Epipactido meridionalis-Fagetum sylvaticae*.	Volcanic (Alkali Basalt-Na)	Castiglione di Sicilia (CT)	IV	37°46'14.90"	30.5103.34"	E 1667	*Betula aetnensis* Raf. (0/1)	-
FS-5	Nebro di RP	Natura 2000 CODE: 9210. Forest stand type: Supra-Mediterranean beech	Sedimentary – M. Soro Flysh (Marly)	Militello Rosmarino (ME)	VI	37°56'22.20"	30.5104.15"	E 1450	*Fagus sylvatica* L. (1/1)	CAM (4); MEG (1)

Note: ^a Etna Regional Park; ^b Forest stand type: Supra-Mediterranean turkey oak forest; ^c Forest stand type: Meso-Mediterranean evergreen oak forest; ^d Phytoocoenosis: *Teucrio siculi-Quercetum ilicis* subass. *Teucrietosum siculi*. ^e Volcanic (Alkali Basalt-Na); ^f Geological Substrate; ^g Municipality; ^h Sampling Site No.; ⁱ Geographic Coordinates; ^j Altitude (m a.s.l.); ^k Sampled Tree Species (No. of Phytophthora-Positive Soil Samples/Sampled Trees); ^l Phytophthora spp. (No. of Positive Soil Samples).
FS-6	Nebrodi RP	Natura 2000 CODE: 9340. Forest stand type: Meso-Mediterranean evergreen oak forest. Phytoocoenosis: *Teucrio siculi-Quercetum ilicis*.	Cersaro (ME)	IX	37°55'40.90"N-14°41'35.48"E	1783	*F. sylvatica* (1/3)	CAM (1)				
		Sedimentary-M. Soro Flysh (Marly claystones and limestones, grading upward to quarzarenites)	San Fratello (ME)	VII	37°57'16.38"N-14°37'18.34"E	1050	*Q. ilex* (3/5)	CAM (1); GON (2); PSY (1)^1				
FS-7	Nebrodi RP	Natura 2000 CODE: 91M0. Forest stand type: Meso-Mediterranean turkey oak forest. Phytoocoenosis: *Arrhenathero nebrodensis-Quercetum cerridis*.	Randazzo (CT)	VIII	37°56'40.81"N-14°54'17.89"E	1420	*F. sylvatica* (1/1)	CAM (1)^1				
		Sedimentary-M. Soro Flysh (Marly claystones and limestones, grading upward to quarzarenites)	Geraci Siculo (PA)	XVII	37°53'22.33"N-14°8'10.77"E	710	*Quercus cerris* L. (1/1)	CAM (1)^1				
FS-8	Nebrodi RP	Natura 2000 CODE: 9330. Forest stand type: Meso-Mediterranean cork oak forest. Phytoocoenosis: *Genisto aristatae-Quercetum suberis*.	Geraci Siculo (PA)	XVII	37°53'46.39"N-14°3'55.22"E	1390	*Ilex aquifolium* L. (1/1)	CAM (1)				
		Sedimentary-Numidian Flysch (quarzarenites and clays)	Petralia Sottana (PA)	XVIII	37°53'46.39"N-14°3'55.22"E	1390	*Ilex aquifolium* L. (1/1)	CAM (1)				
FS	Location	Description	Stand Type	Phytocoenosis	Sedimentary - Numidian Flysch	Castelbuono (PA)	XIX, XIV	Degree (N)	Degree (E)	Code	Q. pubescens s.l.	CAM
----	----------	-------------	------------	--------------	-------------------------------	-----------------	--------	----------	----------	------	----------------	-----
FS-10	Madonie RP	Natura 2000 CODE: 91AA. Forest stand type: Meso-Mediterranean Quercus pubescens forest. Phyto coenosis: Quercetum leptobalani.	Sedimentary – Numidian Flysch (quarzarenites and claystones)	Castelbuono (PA)	37°53′51.02″	N–14°3′58.77″	E	1412	Q. pubescens s.l. (1/3)	CAM (1)		
FS-11	Madonie RP	Natura 2000 CODE: 9380. Forest stand type: Meso-Mediterranean evergreen oak and holly forest. Phyto coenosis: Geranio versicoloris - Quercetum ilicis.	Sedimentary – Numidian Flysch (quarzarenites and claystones)	Castelbuono (PA)	37°54′20.46″	N–14°4′29.39″	E	1110	I. aquifolium (0/3)	CAM (1)		
FS-12	Pantalica RNR	Natura 2000 CODE: 92C0. Forest stand type: Thermo-Mediterranean riparian plane tree forest. Phyto coenosis: Platanus orientalis - Salicetum pedicellatae.	Sedimentary (algal calcarenites and calcirudites)	Sortino (SR)	37°07′48.00″	N–15°01′26.55″	E	236	Populus nigra L. (1/1)	PSC (1)		
FS-13	Ciane RNR	Natura 2000 CODE: 92A0. Forest stand type: Thermo-Mediterranean riparian willow, poplar, and ash forest. Phyto coenosis: Salicetum albo–pedicellatae.	Alluvial sediments (loam and sandy limestone)	Siracusa (SR)	37°02′40.3″	N–15°14′40.7″	E	4	Populus nigra L. (1/1)	PSC (1)		

Note: The table above contains data on different forest stands, their characteristics, and geographical locations. The table lists the forest type, stand type description, phytocoenosis, sedimentary deposits, location details, and geographic coordinates. The table also includes the species names and their codes, which are used for classification and mapping purposes.
Forest management and biodiversity

Natura 2000 CODE: 92C0. Forest stand type: Thermo-Mediterranean riparian plane tree forest. Phytocoenosis: *Platano-Salicetum pedicellatae.*

Site	Vegetation	Geographical Coordinates	Species			
FS-14 Cavagrande RNR	Alluvial sediments (loam and sandy limestone)	Siracusa (SR) XV	36°57′2.62″N–15°11′8.15″E	8	*Salix caprea* L. (2/2)	LAC (2); POL (1)
	Sedimentary (calcarenites and marls)	Ragusa (RG) XVI	37°00′1.9″N–14°46′31.5″E	430	*P. orientalis* (3/3)	CAC (1); PSC (3); MUL (2); PLU (1);

Etna RP = Etna Regional Park; Nebrodi-RP = Nebrodi Regional Park; Madonie-RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande del Cassibile RNR; Irmìnio SCI = IATA080002 — Alto corso del Fiume Irmìnio Site of Community Importance (SCI).

Vegetation features are in accordance with Natura 2000 sites data and respective management plans: ftp://ftp.minambiente.it/PNM/Natura2000/Trasmissione_CE_2016/schede_mappe/Sicilia/SIC_schede/; *Natura 2000 habitats: [http://www.minambiente.it/sites/default/files/archivio/allegati/rete_natura_2000/int_manual_eu28.pdf.](http://www.minambiente.it/sites/default/files/archivio/allegati/rete_natura_2000/int_manual_eu28.pdf).*

Teucrio sicii-Quercetum ilicis subass. Teucrietosum siculi: Meso-Mediterranean acidophilous oak stand characterized by *Quercus ilex* L. mixed with calcifuge downy oaks (*Quercus dalechampii* and *Quercus congesta*). *Vicio cassubicae-Quercetum cerridis*: Supra-Mediterranean deciduous turkey oak stand characterized by *Quercus coccifera* mixed with downy oaks (*Q. congesta* and *Q. dalechampii*). *Fraxinus ornus* and *Acer obtusatum*. Aggregation with *Betula aetnensis*: Supra-Mediterranean pioneer vegetation dominated by the endemic *B. betulifolia mixed with beech, turkey oak, and Pinus nigra subsp. calabrica*. *Epipactido melandriosum-Fagetum sylvaticae*: Supra-Mediterranean beech forest dominated by *Fagus sylvatica*. *Anemono apenninae-Fagetum sylvaticae*: Acidophilous Supra-Mediterranean beech forest characterized by *F. sylvatica* in association with *Ilex aquifolium*. *Teucrio sicii-Quercetum ilicis*: Meso-Mediterranean acidophilous oak forest stand characterized by *Q. ilex* mixed with deciduous oaks (*Quercus virgiliana* and *Q. congesta*). *Arrhenathero nebrodensis-Quercetum cerridis*: Meso-Mediterranean acidophilous turkey oak forest stand typified by *Q. cerris*; at the higher altitude (ca. 1400 m) it is mixed with beech forest stands (*Anemono apenninae-Fagetum sylvaticae*). *Genisto aristatae-Quercetum suberis*: Meso-Mediterranean acidophilous cork oak forest stand. *Ilici aquifolii-Quercetum austrotyrrhenicus*: Acidophilous supra-Mediterranean forest community dominated by arborescent *ilex aquifolium* mainly associated with *Quercus petraea* subsp. *austrotyrrhenica* and other plant species (*Acer obtusatum*, *Acer campestris*, *Ulmus glabra*). *Quercetum leptobalanii*: Acidophilous meso-Mediterranean deciduous community typified by *Quercus leptobalanus* growing together with other oak species (*Q. dalechampii*, *Q. congesta*, *Quercus amplifolia*, *Q. ilex*). *Geranio versicoloris-Quercetum ilicis*: Meso-Mediterranean forest of *Q. ilex* growing on flysch at an altitude of 900–1200 m. This acidophilous plant community is characterized by the dominance of *Q. ilex*, growing together with *I. aquifolium*. *Platano-Salicetum pedicellatae*: Thermo-Mediterranean Hayleian plateau riparian forest dominated by *Platanus orientalis* growing in association with *Salix* spp., *Populus* spp., *Fraxinus oxycarpa*, and *Nerium oleander*. *Salicetum albo-pedicellatae*: Thermo-Mediterranean riparian forest growing on soils with a high water table. It is characterized by *Salix* spp. and *Populus* spp. in association with *F. oxycarpa*.

† EUNIS habitats: http://eunis.eea.europa.eu/habitats/1176.

‡ *CAC = Phytophthora cactorum*; *CAM = P. cambivora* (previously *P. cambivora*); *CIP = P. citrophthora*; *CIT = Phytophthora citricola*; *CRA = P. brassicaceae*; *GON = P. gonapodyides*; *KEL = Phytophthora sp. kalmania*; *LAC = P. lacustris*; *MEG = P. megasperma*; *MUL = P. multivora*; *PLU = P. plurivora*; *POL = P. polonica*; *QUE = P. quercina*; *PS = P. pseudocryptogea*; *PSY = P. psychrophila*; *TYP = P. tyrhenica*; *VUL = P. vulgaris.*

§ *Pythium* sp. alternarium–like isolated.

× *Gibberella moniliformis* also isolated.

†† *Pythium* and *Phytophthum* spp. also isolated.
Table 2. Vegetation and geological features of drainage basins of 14 rivers surveyed in nine Protected Natural Areas in Sicily; location of sites with baiting rafts, and *Phytophthora* taxa isolated.

River	Protected Natural Area	Location of Drainage Basin	Forest Vegetation in Drainage Basin (Natura 2000 Code, Forest Stand Type, Phytocoenosis)	Geological Features of Drainage Basin	Raft No.	Municipality	Geographic Coordinates (DATUM WGS84)	Altitude (m a.s.l.)	Phytophthora spp.
Anapo	Pantalica RNR	Northern area of eastern sector of the Hyblean plateau	Natura 2000 CODE: 92C0 Forest stand types: Riparian forests. Phytocoenosis: *Platano-Salicetum pedicellatae*	Limestone (algal calcarenites and calcirudites)	1	Sortino (SR)	37°07′48.0″N–15°01′26.5″E	294	LAC
					2	Sortino (SR)	37°07′48.0″N–15°01′26.5″E	294	LAC
					3	Sortino (SR)	37°08′19.3″N–15°02′13.3″E	219	CIP, LAC, PSC
					4	Sortino (SR)	37°08′19.3″N–15°02′13.3″E	219	-
Ciane	Ciane RNR	Eastern area of eastern sector of the Hyblean plateau	Natura 2000 CODE: 92A0 Forest stand types: Riparian forests. Phytocoenosis: *Salicetum albo-pedicellatae*	Alluvial sediments (derived from loam and sandy limestone)	5	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	KEL, LAC, PSC
					6	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	FRI, LAC
					7	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC, MUL
		Eastern area of eastern sector of the Hyblean plateau	Natura 2000 CODE: 92A0 Forest stand types: Riparian forests. Phytocoenosis: *Salicetum albo-pedicellatae*	Alluvial sediments (derived from loam and sandy limestone)	8	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC, PSC
					9	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC
Cassibile	Cavagrande RNR	Eastern area of western sector of the Hyblean plateau	Natura 2000 CODE: 92C0 Forest stand types: Riparian forests. Phytocoenosis: *Platano-Salicetum pedicellatae*	Limestone (algal calcarenites and calcirudites)	10	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC
					11	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC
					12	Siracusa (SR)	37°02′34.4″N–15°13′37.5″E	4	LAC
Iminio	Iminio SCI	Northwestern area of western sector of the Hyblean plateau	Natura 2000 CODE: 92C0 Forest stand types: Riparian forests. Phytocoenosis: *Platano-Salicetum pedicellatae*	Limestone and claystone (calcarenites and marns)	13	Siracusa (SR)	36°57′2.05″N–15°11′11.22″E	8	HYD, LAC, PSC
					14	Siracusa (SR)	36°57′2.05″N–15°11′11.22″E	8	HYD, LAC
					15	Ragusa (RG)	37°00′23.3″N–14°46′45.1″E	400	-
					16	Ragusa (RG)	37°00′23.3″N–14°46′45.1″E	400	-
					17	Ragusa (RG)	36°57′20.7″N–14°46′06.2″E	300	LAC
Location	Regional Park	Area of Nebrodi mountains	Natura 2000 Code	Forest stand types	Phytocoenosis	Coordinates	Code	Data Sources	
--------------	---------------	----------------------------	------------------	---	--	------------------------------	------	-------------	
Alcantara	Nebrodi RP	Southeastern area of Nebrodi mountains	92A0	Riparian forests, Phytoocoenosis: *Salicetum albo-purpureae*	Numidian Flysch (quartzarenites and clay stones)	18: Randazzo (CT)	718	GON, LAC	
Fiume di Troina	Nebrodi RP	Southeastern area of Nebrodi mountains	91AA, 91M0, 92A0	Forest stand types: Woodlands and riparian forests, Phytoocoenosis: *Erico-Quercetum virgilianae; Arrhenathero nebrodensis-Quercetum cerridis; Salicetum albo-purpureae.*	Numidian Flysch (quartzarenites and clay stones)	19: San Teodoro (ME)	605	LAC	
Flascio	Nebrodi RP	Southeastern area of Nebrodi mountains	92A0	Forest stand types: Riparian forests, Phytoocoenosis: *Salicetum albo-purpureae*	Numidian Flysch (quartzarenites and clay stones)	20: Randazzo (CT)	856	LAC	
Della Saracena	Nebrodi RP	Southeastern area of Nebrodi mountains	91AA, 92A0	Forest stand types: Woodlands and riparian forests, Phytoocoenosis: *Erico-Quercetum virgilianae; Salicetum albo-purpureae.*	Numidian Flysch (quartzarenites and clay stones)	22: Bronte (CT)	811	CAM, GON, LAC, POL	
Martello	Nebrodi RP	Southeastern area of Nebrodi mountains	91M0	Forest stand types: Woodlands and riparian forests, Phytoocoenosis: *Arrhenathero nebrodensis-Quercetum cerridis; Salicetum albo-purpureae.*	Numidian Flysch (quartzarenites and clay stones)	23: Maniace (CT)	676	LAC	
Cutò	Nebrodi RP	Southern area of Nebrodi mountains	92A0	Forest stand types: Riparian forests, Phytoocoenosis: *Salicetum albo-purpureae*	Numidian Flysch (quartzarenites and clay stones)	24: Maniace (CT)	708	LAC	
Sciambro
Etna RP

Northeastern area of Volcano Etna

Forest stand types: Woodland

Phytocoenosis: *Juniperus hemisphaericae-Pinetum calabricae.*

Volcanic (Alcali-Basalt-Na)	27	Lingua lossa (CT)	37°46'58.9"N-15°3'04.7"E	1656	GON
28	Lingua lossa (CT)	37°46'58.4"N-15°3'02.5"E	1669	-	
29	Lingua lossa (CT)	37°46'57.0"N-15°2'01.8"E	1682	GON	

Fiumefreddo
Fiumefreddo RNR

Northeastern boundary of Volcano Etna

Forest stand types: Riparian Forests

Phytocoenosis: *Junipero hemisphaericae-Pinetum calabricae.*

Volcanic (Alcali-Basalt-Na)	30	Fiumefreddo di Sicilia (CT)	37°47'22.15"N-15°13'55.63"E	6	LAC, MUL, PLU, PSC, THE
31	Fiumefreddo di Sicilia (CT)	37°47'25.98"N-15°14'3.89"E	6	LAC, PSC, THE	

Fiumara d’Agrò
Agrò SCI

Southeastern area of Peloritani mountains

Forest stand types: Woodland and Riparian Forests.

Phytocoenosis: *Erico-Quercetum virgilianae; Spartio-Nerietum oleandri.*

Metamorphic (Phyllites)	32	Limina (ME)	37°57'22.4"N-15°16'20.8"E	202	LAC, PLU, PSC
33	Limina (ME)	37°57'22.4"N-15°16'20.8"E	202	-	

Fiumedinisi
Fiumedinisi RNR

Southeastern area of Peloritani mountains

Forest stand types: Woodland and Riparian Forests.

Phytocoenosis: *Erico-Quercetum virgilianae; Platano-Salicetum gussonei; Salicetum albo-purpureum.*

Metamorphic (mainly green shists and amphibolites)	34	Fiumedinisi (ME)	38°01'47.8"N-15°22'21.3"E	214	-
35	Fiumedinisi (ME)	38°01'47.8"N-15°22'21.3"E	214	CIP, LAC	

Footnotes:

- Etna RP = Etna Regional Park; Nebrodi RP = Nebrodi Regional Park; Madonie RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande di Cassibile RNR; Fiumedinisi RNR = Fiume Fiumedinisi e Monte Scuderi RNR; Agrò SCI = ITA030019 — Tratto Montano del Bacino della Fiumara di Agrò—Site of Community Importance (SCI); Irminio SCI = ITA080002 — Alto corso del Fiume Irminio SCI. Forest vegetation features were in accordance with Natura 2000 sites and respective management plans: ftp://ftp.minambiente.it/PNM/Natura2000/TrasmissioneCE_2016/schede_mappe/Sicilia/SIC_schede/. Natura 2000 Habitats: http://www.minambiente.it/sites/default/files/archivio/allegati/rete_natura_2000/int_manuale_eu28.pdf. Platano-Salicetum pedicellatae: Thermo-Mediterranean Hyblean plateau riparian forest dominated by *Platanus orientalis* growing in association with *Salix spp.*, *Populus spp.*, *Fraxinus oxycarpa*, and *Nerium oleander*. Salicetum albo-pedicellatae: Thermo-Mediterranean riparian forest communities that grow on soils with a high water table. It is characterized by *Salix spp.* and...
Populus spp. in association with F. oxycarpa. Salicetum albo-purpureae: thermo-meso-Mediterranean riparian forest dominated by Salix purpurea, Salix alba, and Salix pedicellata in association with Populas spp. Arrhenathero nebrodensis-Quercetum cerridis: meso-Mediterranean acidophilous turkey oak forest stand typified by Quercus cerris; at higher altitudes (ca. 1400 m) it is mixed with beech forests (Anemono apenninae-Fagetum sylvaticae). Populetalia albae: riparian forests characterized by communities of S. alba and Populas alba. Erico-Quercetum virgilianae: meso-Mediterranean acidophilous woodland dominated by Quercus dalechampii in association with Fraxinus ornus. Sparto-Nerietum oleandri: thermo-Mediterranean community characteristic of Sicilian “Fiumara” streams, dominated by N. oleander in association with Salix ssp. and Populas ssp. Platano-Salicetum gussonei: thermo-Mediterranean community characteristic of Sicilian “Fiumara” streams, typified by P. orientalis and Salix gussonei. Juniperoboschus hemisphaericus-Pinetum calabricae: supra-Mediterranean Calabrian laricio pine forest with a dense structure. * CAM = Phytophthora × cambivora; CIP = P. citrophthora; FRI = P. frigida, GON = P. gonapodyides; HYD = P. hydropathica; KEL = P. sp. kelmania; LAC = P. lacustris; MUL = P. multivora; PLU = P. plurivora; POL = P. polonica, PSC = P. pseudocryptogea; THE = P. thermophila. f Pythium sp. JN6-like also isolated. g Pythium sp. strain 1-9-like also isolated. h Pythium sp. F-1509-like also isolated. i Pythium sp. dissotocum-like also isolated. j Pythium sp. FL-2016d-like also isolated.
Figure 1. Geographical location of the 15 forest stands and the seven Protected Natural Areas included in the *Phytophthora* survey of natural forests in Sicily, projected using the Universal Transverse Mercator (UTM) (a). Location of the sampled forest sites within the Etna (b), Nebrodi (c), and Madonie (d) Regional Parks; and in the “Pantalica, valle dell’Anapo e torrente Cavagrande”, “Fiume Ciane e Saline di Siracusa”, “Cavagrande del Cassibile” Regional Natural Reserves and the “ITA080002—Alto Corso del Fiume Irminio” Site of Community Importance (SCI) (e).
Figure 2. Geographical location of the nine Protected Natural Areas and the 14 river systems included in the Phytophthora survey of rivers in Sicily, projected using the Universal Transverse Mercator (UTM) (a). Riparian sampling sites (R) along the river systems running through: “Pantalica, valle dell’Anapo e Torrente Cavagrande” Regional Natural Reserve (RNR) and “ITA080002—Alto Corso del Fiume Irminio” Site of Community Importance (SCI) (b); “Fiume Ciane e Saline di Siracusa” and “Cavagrande del Cassibile” RNRs (c); “Nebrodi” (d) and “Etna” (e) Regional Parks; “ITA030019—Tratto Montano del Bacino della Fiumara d’Agrò” SCI and “Fiumedinisi e Monte Scuderi” RNR (f); and “Fiumefreddo” RNR (g).
2.2. Morphological Characterization of Isolates

Seven-days-old cultures grown at 20 °C in the dark on V8A were used to group all obtained isolates into morphotypes on the basis of their colony growth patterns. In addition, morphological features of sporangia, oogonia, antheridia, chlamydospores, hyphal swellings, and aggregations were examined [20,42] and compared with species descriptions in the literature.

2.3. Molecular Identification of Isolates

Molecular analyses were performed with 387 (184 from soil and 203 from rivers) of the 841 obtained isolates, representative of all morphotypes, soil samples, and baiting rafts. DNA was extracted from pure cultures grown on V8A using the PowerPlant® Pro DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA), following the manufacturer’s protocol. DNA was stored at −20 °C until further use.

The identification of Phytophthora species was performed by sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA). For amplification, forward primers ITS6 or ITS1 [44] and reverse primer ITS4 were used [45]. The PCR amplification mix and thermocycler conditions were as in [44]. PCR products were purified and sequenced by Macrogen Europe (Amsterdam, The Netherlands) in both directions with the primers used for amplification. Sequences were analyzed using FinchTV v.1.4.0 (https://digitalworldbiology.com/FinchTV) for species identification, blast searches in GenBank (http://www.ncbi.nlm.nih.gov/BLAST/) and in a local database containing sequences of ex-type or key isolates from published studies were performed. Isolates were assigned to a species when their sequences were at least 99% identical to a reference isolate. ITS sequences from representative isolates of this study were deposited at GenBank (www.ncbi.nlm.nih.gov/GenBank; accession numbers are given in Table S2).

3. Results

Morphological and ITS sequence analyses revealed the occurrence of multiple Phytophthora species in each of the sampled PNAs. ITS sequence analyses showed that 351 of the 387 (90.7%) analyzed isolates (162 from forest soils and 189 from rivers) matched with 99–100% identity reference sequences of 16 known Phytophthora species and the designated Phytophthora sp. kelmania [46]. Nine isolates belonged to two species recently described as Phytophthora vulcanica and Phytophthora tyrrenica [6] from Clade 7a, and to a new, yet undescribed species from Clade 2, while 27 isolates (7.0%) were assigned to other oomycete genera (Table 1 and 2).

3.1. Phytophthora Diversity and Distribution in Forest Stands

In all oak and beech forests sampled, the majority of trees showed disease symptoms including thinning and dieback of crowns, fine root losses and, in some cases, bleeding stem cankers, whereas in riparian forests diseased trees had a scattered distribution. Noteworthy, in the riparian forest FS-13 along the Ciane river, is the fact that almost all Fraxinus oxycarpa Bieb. trees showed severe dieback and mortality. Overall, in all seven selected PNAs, Phytophthora species were found in 14 of 15 sampled forest stands (93.3%). In total, 17 Phytophthora species from eight of the 12 known phylogenetic clades [6] were isolated from 61 of the 83 (73.5%) soil samples collected from 16 of the 17 tree species sampled (94%) (Table 1, Figure 3a,c, 4a,b, and S2a,e). Only in one forest
Figure 3. Distribution and diversity of *Phytophthora* species in sampled forest stands from Protected Natural Areas in Sicily. (a) Etna RP = Etna Regional Park; Nebrodi RP = Nebrodi Regional Park; Madonie RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande del Cassibile RNR; Irminio SCI = ITA080002 — Alto corso del Fiume Irminio Site of Community Importance (SCI), (b) isolation frequency (%) of *Phytophthora* species from *Phytophthora*-positive soil samples, (c) occurrence (%) of *Phytophthora* species in sampled forest stands, (d) distribution (%) of *Phytophthora* species in the sampled forest stands.
Figure 4. Association of *Phytophthora* species with different tree species in Protected Natural Areas in Sicily. Dark-green color represents a *Phytophthora* — host tree association, (a) diversity of *Phytophthora* species in different tree species (in % of all *Phytophthora* species found), (b) association of *Phytophthora* species with the sampled tree species (in % of all tree species sampled).
stand (FS-3) could no Phytophthora isolates be obtained from the only tested tree species Betula aetnensis Raf.

Species from Clade 7, i.e., Phytophthora × cambivora (previously P. cambivora), Phytophthora vulcanica, and Phytophthora tyrhenica, were isolated from 53% of the sampled forest stands (Figure 3 and S2b) in three of the seven protected natural areas (Etne, Nebrodi, and Madonie RPs) (Table 1, Figure 3a, and S2a,d). Phytophthora × cambivora was isolated from all sampled meso-, and supra-Mediterranean forest stands: in the Etne RP (FS-1) from Quercus pubescens Willd. sensu latu (s.l.); in the Nebrodi RP from Fagus sylvatica L., Quercus cerris L., Quercus ilex L., and Q. pubescens s.l. and all sampled forest stands (FS-5 to FS-7); and in the Madonie RP (FS-9, FS-10) from Ilex aquifolium L. and Q. pubescens s.l. (Table 1, Figure 3a,b,d, and 4). Phytophthora × cambivora occurred in an altitude range between 660 and 1780 m above sea level (a.s.l.). Phytophthora vulcanica and P. tyrhenica were recovered from F. sylvatica in FS-4 and from Q. ilex in FS-11, respectively (Table 1).

Four Clade 6 species, Phytophthora gonapodyides, Phytophthora megasperma, Phytophthora lacastris, and Phytophthora cassiniana, were found in 40% of the sampled forest stands in five PNAs (Figure 3 and S2b). Phytophthora gonapodyides occurred between 700 and 1000 m a.s.l. in the rhizosphere of Q. ilex and Quercus suber L. in meso-Mediterranean evergreen (FS-6) and cork oak (FS-8) woodlands, respectively (Table 1, Figure 4). Phytophthora megasperma was isolated from supra-, meso-, and thermo-Mediterranean forest stands in three PNAs: In the Nebrodi RP from F. sylvatica (FS-5); in the Madonie RP from Q. suber (FS-8); and in the Fiume Ciane e Saline di Siracusa RNR (Ciane RNR) from Fraxinus oxycaarpa (FS-13). This Phytophthora species inhabited a wide altitudinal range between 4 and 1450 m a.s.l. (Table 1, Figure 3a,b,d, and 4). Phytophthora lacastris was isolated from the rhizosphere of eight different tree species between 4 and 236 m a.s.l. in three thermo-Mediterranean riparian forest stands (FS-12 to FS-14) located in three PNAs (Table 1, Figure 3a,b,d, and 4). Phytophthora cassiniana only occurred in the rhizosphere of F. oxycaarpa in the Ciane RNR (FS-13) (Table 1, Figure 4).

Species from Phytophthora Clade 2 were present in six of the seven monitored PNAs (Figure S2a,b,d). Phytophthora plurivora was most widespread, occurring in 25% of the Phytophthora-positive soil samples taken from eight different tree species in 33% of the sampled forest stands (FS-11 to FS-15) and in five PNAs (Table 1, Figure 3a,b,d, and 4). Interestingly, this pathogen was recovered from seven trees species in the riparian thermo-Mediterranean plane tree stand (FS-12) of the Pantalica RNR. The altitudinal distribution of P. plurivora ranged from an altitude of 4 to 850 m a.s.l. Phytophthora multitona was associated with Q. ilex in the Etne RP (FS-1) and with Platanus orientalis L. in the Cassibile RNR (FS-14) (Table 1, Figure 3a,b,d). Phytophthora citrophthora was only found in the rhizosphere of P. orientalis in FS-12 (Table 1). A previously unknown species from the ‘Phytophthora citricola complex’, informally designated here as P. citricola 12, was recovered from the rhizosphere of Q. pubescens s.l. in riparian stand FS-15 in Irminio SCI (Table 1).

The Clade 1 species Phytophthora cactorum occurred in two riparian thermo-Mediterranean plane tree forests in two PNAs (Table 1, Figure S2a,b,d, and 3a,b,d). In the Pantalica RNR (FS-12) and the Cassibile RNR (FS-14), P. cactorum was associated with P. orientalis and Populus nigra L., respectively (Figure 4).

The Clade 3 species Phytophthora psychrophila was found associated with Q. pubescens s.l. in two forest stands (FS-1, FS-2) of the Etne RP and with Q. ilex in stand FS-6 of the Nebrodi RP. The altitudinal distribution ranged from 890 to 1345 m a.s.l. (Table 1).

Phytophthora pseudocyptoidea from Clade 8 was frequently isolated at an altitude between 4 and 240 m from rhizosphere soil of six different tree species in four riparian thermo-Mediterranean forest stands (FS-12 to FS-15) located in four distinct PNAs (Table 1, Figure 3a,b,d). Another Clade 8 taxon, Phytophthora sp. kelmania, was detected in only one soil sample from Populus alba L. in stand FS-12 (Table 1, Figure 4).

Phytophthora polonica from Clade 9 was associated with Celtis australis L. and Salix caprea L. in two riparian thermo-Mediterranean forest stands, FS-12 in the Pantalica RNR and FS-14 in the Cavagrande RNR, respectively (Table 1, Figure 3a,b,d, and 4).
The oak-specific pathogen *Phytophthora quercina* from the recently described Clade 12 [6] was recovered between 660 and 1110 m a.s.l. from *Q. ilex* and *Q. pubescens* s.l. at two sites of FS-1 in the Etna RP and from *Q. ilex* in the Madonie RP (FS-11) (Table 1, Figure 3a,b,d and 4).

3.2. *Phytophthora* Diversity and Distribution in Rivers within PNAs

In total 12 *Phytophthora* species from five phylogenetic clades were detected in all monitored rivers running through all nine selected PNAs (Table 2, Figure 5a,c, and S3a–f); 29 of the 35 baiting rafts (83%) were *Phytophthora*-positive.

Most common were mainly aquatic *Phytophthora* species from ITS Clade 6 that were recovered from all monitored river systems and PNAs (Figure S3a,d,e). *Phytophthora lacustris* occurred between 4 and 850 m a.s.l. in 77% of the baiting rafts and in all watercourses except for the Sciambro river (Table 2, Figure 5a,b,d), a torrential high altitude stream, which only flows seasonally during snowmelt. In five rivers, *P. lacustris* was the only *Phytophthora* species detected. *Phytophthora gonapodyides* was found in an altitudinal range between ca. 700 and 1700 m a.s.l. in the Alcantara and Della Saracena rivers (Nebrodi RP) and in the Sciambro river (Etna RP); in the latter it was the only *Phytophthora* species isolated (Table 2, Figure 5a,b,d). The third mainly aquatic Clade 6 species, *Phytophthora thermophila*, was exclusively found in the Fiumefreddo river (Table 2, Figure 5a,b,d).

The Clade 2 species, *P. plurivora*, *P. multivora*, *P. citrophthora*, and *P. frigida*, were isolated from 36% of the rivers in five PNAs at lowland sites ranging from 6 to 220 m a.s.l. (Table 2, Figure 5a,b,d, and S3a,d,e). While *P. frigida* was only found in Ciane river, each of the other species of Clade 2 occurred in two rivers: *P. plurivora* in the Fiumara d’Agrò and Fiumefreddo rivers, *P. multivora* in the Fiumefreddo and Ciane rivers, and *P. citrophthora* in the Anapo and Fiumedinisi rivers (Table 2, Figure 5).

Phytophthora ×cambivora from Clade 7 and *P. polonica* from Clade 9 were both exclusively detected in the Della Saracena river in the Nebrodi RP (Table 2, Figure 5).

Two species from Clade 8 were found in five watercourses running through five PNAs (Table 2, Figure S3a,d,e). *Phytophthora pseudocryptoega* was widespread, occurring between 4 and 220 m a.s.l. in the Anapo, Ciane, Cassibile, Fiumefreddo, and Fiumara d’Agrò rivers, whereas *P. sp. kelmania* was exclusively isolated from the Ciane river (Table 2, Figure 5a,b,d).

Phytophthora hydropathica from Clade 9 was only found in the Cassibile river (Table 2, Figure 5a,b,d).
Figure 5. Distribution and diversity of *Phytophthora* species in sampled rivers from Protected Natural Areas in Sicily. (a) Etna RP = Etna Regional Park; Nebrodi RP = Nebrodi Regional Park; Madonie RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande del Cassibile RNR; Fiumedinisi RNR = Fiume Fiumedinisi e Monte Scuderi RNR; Agrò SCI = ITA030019—Tratto Montano del Bacino della Fiumara di Agrò—Site of Community Importance (SCI); Irminio SCI = ITA080002—Alto corso del Fiume Irminio SCI, (b) isolation frequency (%) of *Phytophthora* species from *Phytophthora*-positive baiting rafts, (c) occurrence (%) of *Phytophthora* species in sampled rivers, (d) distribution (%) of *Phytophthora* species in the sampled rivers.
4. Discussion

This is the first study of *Phytophthora* diversity in Europe using conventional isolation methods and covering both a wide range of natural forest types and watercourses crossing these areas. Previously, the only surveys of *Phytophthora* diversity in both forests and rivers within the same region in Europe used only a metabarcoding approach which is based on DNA identification technologies and high-throughput DNA sequencing. In Spain, 13 and 35 *Phytophthora* phylotypes were detected in forest soils and streams, respectively [37]. Using a different molecular method, a survey in Scotland demonstrated the presence of 10 and 9 *Phytophthora* phylotypes in soil and water samples, respectively [47]. The present survey unveiled a rich community of 20 *Phytophthora* species in the Sicilian PNAAs studied. With 17 different species from 8 of the 12 known phylogenetic clades, including the two newly described species *P. tyrrenica* and *P. vulcanica* [6], *Phytophthora* diversity in 15 natural forest stands was higher than in previous broadleaved forest surveys in Europe using similar isolation methods. In oak forests across Italy, northeastern France, Austria, and Turkey, and in oak and beech forests in Bavaria 11, 8, 5, 7, and 13 *Phytophthora* species, respectively, were found [9,13,17,48,49]. However, the lower *Phytophthora* diversity in these surveys may partly be due to the limited number of tree species and forest types included. With nine similar isolation methods [9,13,17,48,49] limited number of tree species and forest types included. With nine similar isolation methods [9,13,17,48,49], 15 natural forest stands was higher than in previous broadleaved forest surveys in Europe using similar isolation methods. In oak forests across Italy, northeastern France, Austria, and Turkey, and in oak and beech forests in Bavaria 11, 8, 5, 7, and 13 *Phytophthora* species, respectively, were found [9,13,17,48,49]. However, the lower *Phytophthora* diversity in these surveys may partly be due to the limited number of tree species and forest types included. With nine similar isolation methods [9,13,17,48,49].

The high diversity of *Phytophthora* species in natural forests and rivers in Sicily is particularly impressive considering the relatively small area of less than 10,000 km² covered by this survey. This may be explained by the diversity of forest types and altitudinal zones surveyed and Sicily’s long and changing history of human colonization and the introduction of non-native horticultural plants. Thirteen of the 20 *Phytophthora* species occurring in the sampled Sicilian ecosystems are considered introduced pathogens: *P. cactorum*, *P. ×cambivora*, *P. citricola* 12, *P. citrophthora*, *P. crassamura*, *P. frigida*, *P. hydropathica*, *P. multivorum*, *P. plurivorum*, *P. polonica*, *P. pseudocryptogea*, *P. thermophila*, and *P. sp. kelmania* [21,25,32,42,53,54]. In contrast, *P. psychrophila*, *P. quercina*, *P. tyrrenica*, and *P. vulcanica* are considered endemic to Europe resulting from species radiation following adaptation to different Fagaceae species [6].

Amongst the 17 *Phytophthora* species obtained from forest stands, *P. ×cambivora*, *P. plurivorum*, and *P. pseudocryptogea* were the most widespread whereas the other species had a more scattered or even punctual distribution. The allopolyloid hybrid pathogen *P. ×cambivora* was most common, occurring in the majority of meso- and supra-Mediterranean forest stands sampled in the Nebrodi, Etna, and Madonie Regional Parks. In a previous study, *P. ×cambivora* was also found in Corleone near Palermo [49]. Although the recovery from *L. aquifolium* extended the known host range of *P. ×cambivora*, this pathogen was mainly associated with known susceptible host species like *Quercus* spp. and *F. sylvatica* [9,13,42,49]. In most cases, oak and beech trees showed typical disease symptoms like thinning and dieback of crowns, fine root losses, and in some cases bleeding stem cankers, all indicative of *Phytophthora* infections. Due to the high aggressiveness of *P. ×cambivora* to oaks and beech [6,11,42,55] it seems likely that this pathogen is associated with the widespread decline and dieback of oak and beech stands recently reported in Sicily [5]. The results of this work confirm previous studies in Germany and Italy demonstrating that *P. ×cambivora* preferentially occurs in acidic and clayey soils [9,11,13,49,56]. Of note, *P. ×cambivora* was not isolated from riparian thermo-Mediterranean forests in Sicily. Compared to *P. ×cambivora*, *P. plurivorum* showed an opposite distribution pattern, being the most common species in riparian thermo-Mediterranean forest stands dominated by willows, poplars, plane, and ash trees. However, it was only infrequently isolated from seasonally dry, meso- and supra-Mediterranean forests. This distribution is most likely caused by the thin oospore walls which make *P. plurivorum* susceptible to droughts [53]. Although *P. plurivorum* was already reported from more than 80 woody host species including *Castanea sativa* Mill., *F. sylvatica*, *F. excelsior* ssp., *Quercus* spp., and *Salix* spp. [10,11,13,14,21,32,53,57–
61], the recoveries from rhizosphere soil of *P. nigra*, *P. orientalis*, *Nerium oleander* L., and *Ostrya carpinifolia* Scop. in the present study constituted first-time records for this wide host range pathogen. Interestingly, *P. plurivora* showed a similar upper limit of vertical distribution as in the Bavarian Alps (ca. 870 m a.s.l.) [53]. Despite being an aggressive beech pathogen across Europe and in the USA [9,14,32,60,62,63], *P. plurivora* did not occur in the rhizosphere of *F. sylvatica* forests in Sicily, which at this southern latitude grow at altitudes above ca. 1400 m a.s.l. However, in contrast to Bavaria, in Sicily this vertical limit is most likely caused by extremely dry summers, causing desiccation of the thin-walled oosporos [53], rather than by deep winter temperatures. In Taiwan, *P. plurivora* occurs at altitudes around 2000 m in regions with mild winters and humid summers [21]. *Phytophthora multivora*, the second species from the ‘*Phytophthora citricola* complex’ found in this survey, was less common than *P. plurivora*, being isolated only from *Q. ilex* and *P. orientalis* in each one of the meso-Mediterranean evergreen oak and riparian thermo-Mediterranean forest stand, respectively, and in the Ciane and Fiumefreddo rivers. Due to its particularly thick oospore walls, *P. multivora* has adapted perfectly to severe summer droughts in Mediterranean regions such as Western Australia and South Africa, where it is widespread in both native vegetation and urban environments [51,64–66]. In Europe, *P. multivora* was recently introduced and is currently spreading through the nursery sector and in young plantings [32,67]. Prior to this study, it had only been occasionally recovered from the wider environment [60,68]. Hitherto, *P. frigida* from Clade 2 was only known from *Eucalyptus* plantations in South Africa and from rainforests in eastern Australia [54,69]. The number of known species of Clade 2 is rapidly increasing; besides *P. plurivora* and *P. multivora* it includes numerous other aggressive *Phytophthora* species. Many Clade 2 species pose serious threats to natural ecosystems across the world [10,43,53,70,71]. The findings of *P. frigida* and the new species *P. citricola* 12, and the widespread occurrence of *P. plurivora* and *P. multivora* in Sicilian PNAs are of serious concern.

In the present study, *P. pseudocryptogea* from Clade 8 was frequently recovered from six tree species in riparian thermo-Mediterranean forest stands and from five rivers. It is the first report of this species in Sicily. While *P. pseudocryptogea* was previously not reported from Sicily, its close relative *P. cryptogea* commonly causes damage to several non-native ornamentals in nurseries and tomato crops under plastic-houses [72–76]. *Phytophthora cryptogea* has a scattered, but widespread, distribution in periodically dry Mediterranean natural ecosystems [25,56,58]. In Europe, *P. cryptogea* is an established exotic pathogen, whereas *P. pseudocryptogea* and the phylogenetically close taxon *P. sp. kelmania* [46], are considered as recently introduced emerging pathogens [32].

In accord with previous studies in other areas of the world [38,39,41,50], Clade 6 species prevailed in rivers, indicating their adaptation to aquatic environments. Interestingly, two mainly aquatic opportunistic pathogens from Clade 6, *P. gonapodyidés* and *P. lacustris*, which often co-occur in river systems in temperate regions of North America, Europe, and Asia [40,77–79], showed opposite distribution patterns in Sicily. *Phytophthora gonapodyidés* occurred exclusively at altitudes above 620 m, where it was mainly associated with meso-Mediterranean oak stands on acidic non-calcareous soils and with rivers running through oak stands. In previous studies, *P. gonapodyidés* was also often found in oak stands and on acidic sites [11,13,49,77]. In contrast, in this study, *P. lacustris* was only isolated below 850 m altitude from *Salix*-dominated riparian forests on both silica-rich acidic and calcareous alkaline sites, and from rivers running through these forests. Both *Phytophthora* species co-occurred only in three rivers in a transition zone between 624 and 811 m a.s.l. The different altitudinal preferences of both species reflect their different cardinal temperatures for growth [79]. In this survey, two other species, *P. hydropathica* and *P. thermophila* from Clade 9, were exclusively detected in rivers confirming their mainly aquatic lifestyle. Prior to the present study, *P. hydropathica* was found in rivers and irrigation reservoirs in the Eastern USA [80–82] and in rivers in Galicia, Spain [83]. In Italy, this species was only reported from ornamental plants in commercial nurseries [84]. *Phytophthora thermophila* was previously exclusively detected in streams and native forests of *Eucalyptus* and *Banksia* spp. in Australia [20] and, hence, the finding in the Fiumefreddo river constitutes the first-time report for Europe. The presence of both a nursery
and a young Eucalyptus plantation close to the Fiumefreddo River suggests an introduction via infested nursery plants.

Phytophthora quercina is commonly occurring across Europe, causing chronic fine root losses in different oak species which, in interaction with climatic extremes and secondary pests and pathogens, lead to decline, dieback, and mortality of oak forests [10,13,14,17,32,49,85–87]. The present findings in Sicily extend the known distribution of this pathogen to the southern oak stands of Europe.

Two previously unknown Phytophthora species, which have been recently described as P. vulcanica and P. tyrrenica, were isolated from a beech stand on Mount Etna and a Q. ilex stand in the Madonie mountains, respectively. In a multigene phylogenetic study, both species were placed in Clade 7, closely related to P. uliginosa, a cryptic species which seems to be restricted to Europe [6,55]. Phytophthora tyrrenica was also detected in oak stands in Sardinia [6] whereas P. vulcanica was recovered in Sicily for the first time. Since decline symptoms in the infested stands were only mild and both species showed limited aggressiveness to their respective host species in pathogenicity tests; they are considered as endemic species in Europe resulting from species radiation driven by adaptation to different Fagaceae hosts [6].

With 11 Phytophthora species from five phylogenetic clades, the four thermo-Mediterranean riparian forest stands located at altitudes between ca. 4 and 430 m a.s.l. showed the highest Phytophthora diversity. In contrast, despite the higher number of 11 sampled forest stands and the wide altitudinal range between ca. 700 and 1900 m a.s.l., the meso- and supra-Mediterranean forests contained only seven Phytophthora species from three clades. Interestingly, only three Phytophthora species, P. megasperma, P. multicornis, and P. plurivora, occurred in both categories of forest stands. Similar to the La Maddalena archipelago in Sardinia [25], also in Sicily Q. ilex trees hosted with nine Phytophthora species the highest diversity of all tree species tested. The presence of a rich community of six Phytophthora species in the rhizosphere of P. orientalis trees was surprising and warrants further investigations of their potential involvement in the decline of Sicilian plane trees, in particular, in stands with the absence of the canker and wilt pathogen Centocystis fimбриata [88]. With five Phytophthora species, diversity in the rhizosphere of F. oxycarpa trees in Sicily was similar to Fraxinus excelsior forests in Denmark and Poland, where five Phytophthora species had also been recovered [26,61].

Analogous to the forest stands, altitude also had a strong influence on the diversity and composition of the Phytophthora populations in the rivers. While rivers below 400 m a.s.l. contained nine Phytophthora species from four phylogenetic clades, only two Phytophthora species, P. gonapodyides, and P. lacustris, from Clade 6 and, in one river, P. ×cambrica and P. polonica from Clades 7 and 9, respectively, could be recovered from rivers above 600 m altitude. Eight of the 12 Phytophthora species recovered from rivers, P. citrophthora, P. gonapodyides, P. lacustris, P. multicornis, P. plurivora, P. polonica, P. pseudocryptogea, and P. sp. kelmania, were also found in rhizosphere soil of the thermo-Mediterranean riparian forest stands. In contrast, only four of the nine Phytophthora species found in non-flooded meso- and supra-Mediterranean forests, P. gonapodyides, P. megasperma, P. multicornis, and P. plurivora, also occur in rivers. These results indicate that the mutual exchange of Phytophthora inoculum between river water and forest soils is largely dependent on seasonal or episodic flooding. The results also show that several typical forest Phytophthora species, in particular, P. cactorum, P. cassamama, P. quercina, and P. psychrophila, cannot establish in aquatic ecosystems. Similar results were found in forests and rivers in Taiwan [21].

5. Conclusions

This study demonstrated that in ecological and environmental studies the combined use of an efficient leaf baiting technique and a reliable molecular identification method is an efficient approach for studying the diversity and distribution of Phytophthora species in diverse protected natural ecosystems. Eleven of the 18 known Phytophthora species found in this survey, including P. cassamama, P. frigida, P. hydropathica, P. polonica, P. pseudocryptogea, P. quercina, P. thermophila, and P. sp. kelmania, were detected for the first time in Sicily. The findings of P. frigida, P. thermophila and
the three new species *P. vulcanica*, *P. tyrrhenica*, and *P. citricola* 12 are first-time records for Europe. Another four species, *P. cactorum*, *P. citrophthora*, *P. megasperma*, and *P. multivora*, were previously only recorded in Sicily from nurseries or ornamental and horticultural plantings, but not from natural environments [32,67,75,89,90]. *Phytophthora cactorum*, *P. plurivora*, *P. multivora*, and *P. ×cambivora* are exotic, invasive wide-host-range pathogens with high aggressiveness to many native European tree species. Since their widespread occurrence in protected natural areas in Sicily poses a serious threat to the long-term stability of the infested ecosystems, management concepts are urgently required to prevent further spread of these pathogens to non-infested areas and to increase tree vigor and ecosystem stability.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Table S1: Geographic location, geomorphological features, land area covered and ecological features of the 10 Protected Natural Areas included in the *Phytophthora* survey in Sicily; Table S2: Isolate details and GenBank accession numbers of *Phytophthora* isolates obtained during the *Phytophthora* survey of forest stands and river systems in 10 Protected Natural Areas in Sicily; Figure S1: Geographical location of Protected Natural Areas included in the *Phytophthora* survey of forest stands and river systems in Sicily, projected using the Universal Transverse Mercator (UTM); Figure S2: Distribution of phylogenetic *Phytophthora* Clades in sampled forest stands and protected natural areas in Sicily. Brown color represents the presence of a clade. (a) Etna RP = Etna Regional Park; Nebrodi RP = Nebrodi Regional Park; Madonie RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande del Cassibile RNR; Irminio SCI = ITA080002—Alto corso del Fiume Irminio Site of Community Importance (SCI), (b) proportion (%) of forest stands in which individual *Phytophthora* Clades were present, (c) proportion (%) of *Phytophthora* Clades present in individual sampled forest stands, (d) proportion (%) of protected natural areas in which individual *Phytophthora* Clades were present, (e) proportion (%) of *Phytophthora* Clades present in individual protected natural areas. Figure S3: Distribution of phylogenetic *Phytophthora* Clades in baited river systems and protected natural areas in Sicily. (a) Etna RP = Etna Regional Park; Nebrodi RP = Nebrodi Regional Park; Madonie RP = Madonie Regional Park; Pantalica RNR = Pantalica, Valle dell’Anapo e Torrente Cavagrande Regional Natural Reserve (RNR); Ciane RNR = Fiume Ciane e Saline di Siracusa RNR; Cavagrande RNR = Cavagrande del Cassibile RNR; Fiumeddisi RNR = Fiume Fiumeddisi e Monte Scuderi RNR; Agrò SCI = ITA050019—Tratto Montano del Bacino della Fiumara di Agrò—Site of Community Importance (SCI); Irminio SCI = ITA080002—Alto corso del Fiume Irminio SCI, (b) isolation frequency (%) of phylogenetic *Phytophthora* Clades from baiting rafts, (c) proportion (%) of *Phytophthora* Clades present in individual baited rivers, (d) proportion (%) of rivers from which phylogenetic *Phytophthora* Clades were isolated, (e) proportion (%) of natural protected areas from which phylogenetic *Phytophthora* Clades were isolated, (f) proportion (%) of *Phytophthora* Clades present in rivers of individual protected natural areas.

Author Contributions: Conceptualization: T.J., S.O.C., G.M.d.S.L.; data curation: T.J., F.L.S., M.H.J., S.O.C., B.S., L.S.; formal analysis: T.J., S.O.C., M.H.J., F.L.S., I.P., L.S.; investigation: T.J., C.R., R.F., M.E., F.L.S, A.P., F.A.; methodology: S.O.C., T.J., A.P.; project administration: A.P.; resources: A.P., G.M.d.S.L., S.O.C., T.J.; Supervision: S.O.C.; writing—original draft: F.L.S., S.O.C., T.J.; writing—review and editing: S.O.C., T.J., B.S., F.L.S., G.M.d.S.L.

Funding: Data assessment and sequence analyses were co-funded by the Czech Ministry for Education, Youth and Sports and the European Regional Development Fund via the Project *Phytophthora* Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453.

Acknowledgments: The authors are grateful to the Regional Forestry Board Agency (DRAFT—Dipartimento Regionale Azienda Foreste Demaniali), Luca Ferlito (Commissioner of Nebrodi Regional Park; formerly Head of the Provincial Operational Center) and Giovanni Granata for their invaluable professional assistance during surveys. The authors also warmly thank the Sicilian forest rangers for their qualified support and Ann Davi es for the English revision.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Martino, A.D.; Raimondo, F.M. Biological and chorological survey of the Sicilian Flora. *Webbia* 1979, 34, 309–335.

2. Schönfelder, I.; Schönfelder, P. *La Flora Mediterranea*; Istituto Geografico De Agostini: Novara, Italy, 1996.
3. Giardina, G.; Raimondo, F.M.; Spadaro, V. A Catalogue of Plants Growing in Sicily: Bocconea: Palermo, Italy, 2007; Volume 20; ISBN 9788879150224.

4. Conti, F.; Abbate, G.; Alessandri, A.; Blasi, C.; Bonacquisti, S.; Scassellati, E. La flora vascolare italiana: Ricchezza e originalità a livello nazionale e regionale. In Stato Delle Conoscenze Sulla Flora Vascolare D’Italia; Scoppola, A., Blasi, C., Eds.; Palombi Editori: Rome, Italy, 2005; pp. 18–22.

5. Rizza, C.; Scirotta, S.; Pane, A.; Maetzke, F.; La Mela Veca, D.S.; Culotta, S.; Granata, G.; La Spada, F.; Aloi, F.; Faeddà, R.; et al. A new approach in the monitoring of the phytosanitary conditions of forests: The case of oak and beech stands in the Sicilian Regional Parks. Italian J. Mycol. 2016, 45, 29–46.

6. Jung, T.; Horta Jung, M.; Cacciola, S.O.; Cech, T.; Bakonyi, J.; Serress, D.; Mosca, S.; Schena, L.; Seddaiu, S.; Pane, A.; et al. Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus 2017, 8, 219–244.

7. Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society (APS Press): St. Paul, MN, USA, 1996.

8. Hansen, E.M.; Reeser, P.W.; Sutton, W. Phytophthora Beyond Agriculture. Annu. Rev. Phytopathol. 2012, 50, 359–378.

9. Jung, T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009, 39, 73–94.

10. Jung, T.; Pérez-Sierra, A.; Durán, A.; Jung, M.H.; Balci, Y.; Scanu, B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia. Mol. Phylogeny Ecol. Fungi 2018, 40, 182–220.

11. Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 1996, 26, 253–272.

12. Frisullo, S.; Lima, G.; Magnano di San Lio, G.; Camele, I.; Melisano, L.; Puglisi, I.; Pane, A.; Agosteo, G.E.; Prudente, L.; Cacciola, S.O. Phytophthora cinnamomi Involved in the Decline of Holm Oak (Quercus ilex) Stands in Southern Italy. For. Sci. 2018, 64, 290–298.

13. Jung, T.; Blaschke, H.; Obwald, W. Involvement of soilborne Phytophthora species in Central Europe an oak decline and the effect of site factors on the disease. Plant Pathol. 2000, 49, 706–718.

14. Jung, T.; Vettriano, A.M.; Cech, T.; Vannini, A. The impact of invasive Phytophthora species on European forests. In Phytophthora: A Global Perspective; Lamour, K., Ed.; CABI: Wallingford, UK, 2013; pp. 146–158.

15. Ristaino, J.B.; Gumpertz, M.L. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the Genus Phytophthora. Annu. Rev. Phytopathol. 2000, 38, 541–576.

16. Rizzo, D.M.; Garbelotto, M.; Hansen, E.M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 2005, 43, 309–335.

17. Balci, Y.; Halsch, F. Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathol. 2003, 52, 694–702.

18. Balci, Y.; Balci, S.; Mac Donald, W.L.; Gottschalk, K.W. Pathogenicity of Phytophthora species isolated from rhizosphere soil in the eastern United States. In Proceedings of the Sudden Oak Death Third Science Symposium; Frankel, S.J., Klejuni, J.T., Palmieri, K.M., Eds.; Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2008; pp. 225–226.

19. Cooke, D.E.L.; Schena, L.; Cacciola, S.O. Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J. Plant Pathol. 2007, 89, 13–28.

20. Jung, T.; Stukely, M.J.C.; Hardy, G.E.S.J.; White, D.; Paap, T.; Dunstan, W.A.; Burgess, T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Persoonia Mol. Phylogeny Evolut. Fungi 2011, 26, 13–39.

21. Jung, T.; Chang, T.T.; Bakonyi, J.; Serress, D.; Pérez-Sierra, A.; Yang, X.; Hong, C.; Scanu, B.; Fu, C.H.; Hsu, K.L.; et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017, 66, 194–211.

22. Pérez-Sierra, A.; López-Garcia, C.; León, M.; García-Jiménez, J.; Abad-Campos, P.; Jung, T. Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For. Pathol. 2013, 43, 331–339.

23. Rea, A.J.; Burgess, T.I.; Hardy, G.E.S.J.; Stukely, M.J.C.; Jung, T. Two novel and potentially endemic species of Phytophthora associated with episodic dieback of Kwongan vegetation in the south-west of Western Australia. Plant Pathol. 2011, 60, 1055–1068.

24. Ruano-Rosa, D.; Schena, L.; Agosteo, G.E.; Magnano di San Lio, G.; Cacciola, S.O. Phytophthora oleae s.p.
25. Scianu, B.; Linaldeedu, B.T.; Deidda, A.; Jung, T. Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora cressamun and P. ornamentata sp. nov. PLoS ONE 2015, 10, e0143234.

26. Tkaczyk, M.; Nowakowska, J.A.; Ozsako, T. Phytophthora species isolated from ash stands in Białowieża Forest nature reserve. Forest Pathol. 2016, 46, 660–662.

27. Linaldeedu, B.T.; Scianu, B.; Maddau, L.; Franceschini, A. Diploida corticola and Phytophthora cinnamomi: The main pathogens involved in holm oak decline on Caprera Island (Italy). For. Pathol. 2014, 44, 191–200.

28. Scianu, B.; Hunter, G.C.; Linaldeedu, B.T.; Franceschini, A.; Maddau, L.; Jung, T.; Denman, S. A taxonomic re-evaluation reveals that Phytophthora cinnamoni and P. cinnamomi var. parrispora are separate species. For. Pathol. 2014, 44, 1–20.

29. Abad, Z.G.; Abad, J.A.; Cacciola, S.O.; Pane, A.; Faedda, R.; Moralejo, E.; Pérez-Sierra, A.; Abad-Campos, P.; Alvarez-Bernola, L.A.; Bakonyi, J.; et al. Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries. Mycologia 2014, 106, 431–447.

30. Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808.

31. Jung, T.; Blaschke, M. Phytophthora root and collar rot of alders in Bavaria: Distribution, modes of spread and possible management strategies. Plant Pathol. 2004, 53, 197–208.

32. Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguin Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163.

33. Migliorini, D.; Gheardi, L.; Tondini, E.; Luchi, N.; Santini, A. The potential of symptomless potted plants for carrying invasive soilborne plant pathogens. Divers. Distr. 2015, 21, 1218–1229.

34. Pérez-Sierra, A.; Jung, T. Phytophthora in woody ornamental nurseries. In Phytophthora: A Global Perspective; Lamour, K., Ed.; CAB: Wallingford, UK, 2013; pp. 166–177.

35. Prigigallo, M.I.; Mosca, S.; Cacciola, S.O.; Cooke, D.E.L.; Schena, L. Molecular analysis of Phytophthora diversity in nursery-grown ornamental and fruit plants. Plant Pathol. 2015, 64, 1308–1319.

36. Prigigallo, M.I.; Abdellattah, A.; Cacciola, S.O.; Faedda, R.; Sanzani, S.M.; Cooke, D.E.L.; Schena, L. Metabarcoding analysis of Phytophthora diversity using genus-specific primers and 454 pyrosequencing. Phytopathology 2016, 106, 305–313.

37. Catalá, S.; Pérez-Sierra, A.; Abad-Campos, P. The use of genus-specific amplicon pyrosequencing to assess Phytophthora species diversity using eDNA from soil and water in northern Spain. PLoS ONE 2015, 10, e019311.

38. Dunstan, W.A.; Howard, K.; Sti. Hardy, G.E.; Burgess, T.I. An overview of Australia’s Phytophthora species assemblage in natural ecosystems recovered from a survey in Victoria. IMA Fungus 2016, 7, 47–58.

39. Nagel, J.H.J.H.; Slippers, B.; Wingfield, M.J.M.J.; Gryzenhout, M. Multiple Phytophthora species associated with a single riparian ecosystem in South Africa. Mycologia 2015, 107, 915–925.

40. Reeser, P.W.; Sutton, W.; Hansen, E.M.; Remigi, P.; Adams, G.C. Phytophthora species in forest streams in Oregon and Alaska. Mycologia 2011, 103, 22–35.

41. Stamler, R.A.; Sanogo, S.; Goldberg, N.P.; Randall, J.J. Phytophthora species in rivers and streams of the southwestern United States. Appl. Environ. Microbiol. 2016, 82, 4696–4704.

42. Jung, T.; Horta Jung, M.; Scianu, B.; Seress, D.; Kovács, G.M.; Maia, C.; Pérez-Sierra, A.; Chang, T.T.; Chandelier, A.; Heungens, K.; et al. Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia Mol. Phylogen. Evolut. Fungi 2017, 38, 100–135.

43. Yang, X.; Tyler, B.M.; Hong, C. An expanded phylogeny for the genus Phytophthora. IMA Fungus 2017, 8, 355–384.

44. Cooke, D.E.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000, 30, 17–32.

45. White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc: San Diego, CA, USA, 1990; Volume 18, pp. 315–322.

46. Safaiefarahani, B.; Mostowfizadeh-Ghalamfaras, R.; Hardy, G.E.S.J.; Burgess, T.I. Re-evaluation of the Phytophthora cryptogea species complex and the description of a new species, Phytophthora pseudocryptogea sp. nov. Mycol. Prog. 2015, 14, 1–12.

47. Scibetta, S.; Schena, L.; Chimento, A.; Cacciola, S.O.; Cooke, D.E.L. A molecular method to assess...
Phytophthora diversity in environmental samples. *J. Microbiol. Methods* 2012, 88, 356–368.

48. Hansen, E.; Delatour, C. *Phytophthora* species in oak forests of north-east France. *Ann. For. Sci.* 1999, 56, 539–547.

49. Vettraino, A.M.; Barzanti, G.P.; Bianco, M.C.; Ragazzi, A.; Capretti, P.; Paololetti, E.; Luisi, N.; Anselmi, N.; Vannini, A. Occurrence of *Phytophthora* species in oak stands in Italy and their association with declining oak trees. *Forest Pathology* 2002, 32, 19–28.

50. Hüberli, D.; Hardy, G.E.S.J.; White, D.; Williams, N.; Burgess, T.I. Fishing for *Phytophthora* from Western Australia’s wate rways: A distribution and diversity survey. *Australasian Plant Pathol.* 2013, 42, 251–260.

51. Oh, E.; Gryzenhout, M.; Wingfield, B.D.; Wingfield, M.J.; Burgess, T.I. Surveys of soil and water reveal a goldmine of *Phytophthora* diversity in South African natural ecosystems. *IMA Fungus* 2013, 4, 123–131.

52. Shrestha, S.K.; Zhou, Y.; Lamour, K. Oomycetes baited from streams in Tennessee 2010–2012. *Mycologia* 2013, 105, 1516–1523.

53. Jung, T.; Burgess, T.I. Re-evaluation of *Phytophthora cťricola* isolates from multiple woody hosts in Europe and North America reveals a new species, *Phytophthora plurivora* sp. nov. *Persoonia* 2009, 22, 95–110.

54. Maseko, B.; Burgess, T.I.; Coutinho, T.A.; Wingfield, M.J. Two new *Phytophthora* species from South African Eucalyptus plantations. *Mycol. Res.* 2007, 111, 1321–1338.

55. Jung, T.; Hansen, E.M.; Winton, L.; Oswald, W.; Delatour, C. Three new species of *Phytophthora* from European oak forests. *Mycol. Res.* 2002, 106, 397–411.

56. Scanu, B.; Vannini, A.; Franceschini, A.; Vettraino, A.M.; Ginetti, B.; Moricca, S. *Phytophthora* spp. in Mediterranean forests. In *Proceedings of the Second International Congress of Silviculture*, Florence, 26–29 November 2014; Ciancio, O., Ed.; Accademia Italiana di Scienze Forestali: Florence, Italy, 2014; pp. 402–407.

57. Vettraino, A.M.; Natili, G.; Anselmi, N.; Vannini, A. Recovery and pathogenicity of *Phytophthora* species associated with a resurgence of ink disease in *Castanua sativa* in Italy. *Plant Pathol.* 2001, 50, 90–96.

58. Vettraino, A.M.; Morel, O.; Perlerou, C.; Robin, C.; Diamandis, S.; Vannini, A. Occurrence and distribution of *Phytophthora* species in European chestnut stands, and their association with Ink Disease and crown decline. *Eur. J. Plant Pathol.* 2005, 111, 169.

59. Jung, T.; Hudler, G.W.; Jensen-Tracy, S.L.; Griffiths, H.M.; Fleischmann, F.; Oswald, W. Involvement of *Phytophthora* species in the decline of European beech in Europe and the USA. *Mycologist* 2005, 19, 159–166.

60. Mrázková, M.; Černý, K.; Tomšovský, M.; Strnadová, V.; Gregorová, B.; Holub, V.; Pánek, M.; Havrdová, L.; Hejná, M. Occurrence of *Phytophthora megasperma* and *Phytophthora plurivora* in the Czech Republic. *Plant Prot. Sci.* 2013, 49, 155–164.

61. Orlikowski, L.B.; Ptaszek, M.; Rodziewicz, A.; Nechwatal, J.; Thinggaard, K.; Jung, T. *Phytophthora* root and collar rot of mature *Fraxinus excelsior* in forest stands in Poland and Denmark. *Forest Pathol.* 2011, 41, 510–519.

62. Jung, T.; Blaschke, H. *Phytophthora* root rot in declining forest trees. *Phytom (Austria)* 1996, 36, 95–102.

63. Weiland, J.E.; Nelson, A.H.; Hudler, G.W. Aggressiveness of *Phytophthora cactorum*, *P. citricola* I, and *P. plurivora* from European Beech. *Dis. 2010, 94, 1009–1014.*

64. Barber, P.A.; Paap, T.; Burgess, T.I.; Dunstan, W.; Hardy, G.E.S.J. A diverse range of *Phytophthora* species are associated with dying urban trees. *Urban For. Urban Green.* 2013, 12, 569–575.

65. Burgess, T.I.; White, D.; McDougall, K.M.; Garnas, J.; Dunstan, W.A.; Catalá, S.; Carnegie, A.J.; Worboys, S.; Cahill, D.; Vettraino, A.M.; et al. Distribution and diversity of *Phytophthora* across Australia. *Pac. Conserv. Biol.* 2017, 23, 150–162.

66. Scott, P.M.; Burgess, T.I.; Barber, P.A.; Shearer, B.L.; Stukely, M.J.C.; Hardy, G.E.S.J.; Jung, T. *Phytophthora megasperma* sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. *Persoonia* 2009, 22, 1–13.

67. Pane, A.; Granata, G.; Cacciola, S.O.; Puglisi, I.; Evoli, M.; Aloë, F.; La Spada, F.; Magnano di San Lio, G.; Zambounis, A. First Report of Root Rot of White Mulberry Caused by Simultaneous Infections of *Phytophthora megasperma* and *P. plurivora* in Italy. *Plant Dis.* 2017, 101, 260.

68. Szabó, I.; Lakatos, F.; Sipos, G. Occurrence of soilborne *Phytophthora* species in declining broadleaf forests in Hungary. *Eur. J. Plant Pathol.* 2013, 137, 159–168.

69. Scarlett, K.; Daniel, R.; Shuttleworth, L.A.; Roy, B.; Bishop, T.F.A.; Guest, D.I. *Phytophthora* in the Gondwana Rainforests of Australia World Heritage Area. *Australasian Plant Pathol.* 2015, 44, 335–348.

70. Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Barber, P.A.; Alvarado, P.; Barnes, C.W.; Buchanan, P.K.; Heykoop, M.; Moreno, G.; et al. Fungal planet description sheets. *Persoonia Mol. Phylogeny Evolut. Fungi* 2017, 558–624, doi:10.3767/003158517X698941.

71. Puglisi, I.; De Patrizio, A.; Schena, L.; Jung, T.; Evoli, M.; Pane, A.; Van Hoa, N.; Van Tri, M.; Wright, S.;
Ramstedt, M.; et al. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam. *PLoS ONE* **2017**, *12*, e0172085.

72. Cacciola, S.O.; Pane, A.; Raudino, F.; Davino, S. First Report of Root and Crown Rot of Sage Caused by *Phytophthora cryptogea* in Italy. *Plant Dis.* **2002**, *86*, 1176–1176.

73. Cacciola, S.O.; Chimento, A.; Pane, A.; Cooke, D.E.L.; Magnano di San Lio, G. Root and Foot Rot of Lantana Caused by *Phytophthora cryptogea*. *Plant Dis.* **2005**, *89*, 909.

74. Pane, A.; Agosteo, G.E.; Cacciola, S.O. *Phytophthora* species causing crown and root rot of tomato in southern Italy. *EPPO Bull.* **2000**, *30*, 251–255.

75. Pane, A.; Faedda, R.; Cacciola, S.O.; Rizza, C.; Scibetta, S.; Magnano di San Lio, G. Root and Basal Stem Rot of Mandevilla Caused by *Phytophthora* spp. in Eastern Sicily. *Plant Dis.* **2010**, *94*, 1374.

76. Pane, A.; Faedda, R.; Granata, G.; Puglisi, I.; Aoi, F.; La Spada, F.; Evoli, M.; Stracquandario, C.; Cacciola, S.O. First Report of Root and Basal Stem Rot Caused by *Phytophthora cryptogea* and *P. inundata* on Dwarf Banana in Italy. *Plant Dis.* **2018**, *102*, 684.

77. Brasier, C.M.; Cooke, D.E.L.; Duncan, J.M.; Hansen, E.M. Multiple new phenotypic taxa from trees and riparian ecosystems in *Phytophthora* gonapodyides- *P. megasperma* ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. *Mycol. Res.* **2003**, *107*, 277–290.

78. Huai, W.X.; Tian, G.; Hansen, E.M.; Zhao, W.X.; Goheen, E.M.; Grünwald, N.J.; Cheng, C. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan province, China. *Forest Pathol.* **2013**, *43*, 87–103.

79. Nechwatal, J.; Bakonyi, J.; Cacciola, S.O.; Cooke, D.E.L.; Jung, T.; Nagy, Z.A.; Vannini, A.; Vettraino, A.M.; Brasier, C.M. The morphology, behaviour and molecular phylogeny of *Phytophthora* taxon Salixs oil and its redesignation as *Phytophthora lacustris* sp. nov. *Plant Pathol.* **2013**, *62*, 355–369.

80. Copes, W.E.; Yang, X.; Hong, C. *Phytophthora* Species Recovered From Irrigation Reservoirs in Mississippi and Alabama Nurseries and Pathogenicity of Three New Species. *Plant Dis.* **2015**, *99*, 1390–1395.

81. Hong, C.X.; Gallely, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W.; Lea-Cox, J.D.; Ross, D.S. *Phytophthora hydropathica*, a new pathogen identified from irrigation water, *Rhododendron catawbiense* and *Kalmia latifolia*. *Plant Pathol.* **2010**, *59*, 913–921.

82. Hulvey, J.; Gobena, D.; Finley, L.; Lamour, K. Co-occurrence and genotypic distribution of *Phytophthora* species recovered from watersheds and plant nurseries of eastern Tennessee. *Mycologia* **2010**, *102*, 1127–1133.

83. Pintos, C.; Rial, C.; Aguín, O.; Ferreirao, V.; Mansilla, J.P. First report of *Phytophthora hydropathica* in river water associated with riparian alder in Spain. *New Dis. Rep.* **2016**, *33*, 25.

84. Vitale, S.; Luongo, L.; Galli, M.; Belisario, A. First Report of *Phytophthora hydropathica* Causing Wilting and Shoot Dieback on *Viburnum* in Italy. *Plant Dis.* **2014**, *98*, 1582.

85. Jönsson, U.; Lundberg, L.; Sonesson, K.; Jung, T. First records of soilborne *Phytophthora* species in Swedish oak forests. *Forest Pathol.* **2003**, *33*, 175–179.

86. Jonsson, U.; Jung, T.; Sonesson, K.; Rosengren, U. Relationships between health of *Quercus robur*, occurrence of *Phytophthora* species and site conditions in southern Sweden. *Plant Pathol.* **2005**, *54*, 502–511.

87. Jung, T.; Cooke, D.E.L.; Blaschke, H.; Duncan, J.M.; Öfwald, W. *Phytophthora quercina* sp. nov., causing root rot of European oaks. *Mycol. Res.* **1999**, *103*, 785–798.

88. Granata, G.; Pennisi, A.M. Estese morie di platani orientali in forestazioni naturali causate da *Centrocystis fimbriatia* (Ell. Et. Halst.) Davidsson f. platani Walter Inf. *Fitopatol.* **1989**, *12*, 59–61.

89. Cacciola, S.O.; Pane, A.; Cooke, D.E.L.; Raudino, F.; Magnano di San Lio, G. First Report of Brown Rot and Wilt of Fennel Caused by *Phytophthora megasperma* in Italy. *Plant Dis.* **2006**, *90*, 110.

90. Cacciola, S.O.; Scibetta, S.; Pane, A.; Faedda, R.; Rizza, C. *Callistemon citrinus* and *Cistus salviifolius*, Two New Hosts of *Phytophthora* taxon *niederhauserii* in Italy. *Plant Dis.* **2009**, *93*, 1075.