The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

Kanagaraju Ponnusamy,1 Maria Myrsini Tzioni,3 Murshida Begum,3 Mark E. Robinson,3 Valentina S. Caputo,3 Alexia Kat-sarou,1,2 Nikolaos Trasanidis,1 Xiaolin Xiao,1 Ioannis V. Kostopoulos,4,3 Deena Iskander,1,2 Irene Roberts,4 Pritesh Trivedi,5 Holger W. Auner,1,2 Kikkeri Naresh,5 Aristeidis Chaidos1,2 and Anastasios Karadimitris1,2

1Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London, UK; 2Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK; 3Section of Animal and Human Physiology, National and Kapodestrian University of Athens, Department of Biology, School of Science, Athens, Greece; 4Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK and 5Department of Cellular & Molecular Pathology, Northwest London Pathology, Imperial College Healthcare NHS Trust, London, UK

©2022 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.274480

Received: October 20, 2020.
Accepted: February 2, 2021.
Pre-published: February 18, 2021.
Correspondence: ANASTASIOS KARADIMITRIS - a.karadimitris@imperial.ac.uk
The innate sensor ZBP1-IRF3 axis regulates cell proliferation in multiple myeloma

Ponnusamy K et al.,

Supplementary methods

Cloning and lentiviral transduction

The puromycin selection gene was replaced with green fluorescent protein (eGFP) cDNA in Lentiviral pLKO.1 plasmid (Sigma). shRNA oligos (Sigma) were annealed by temperature ramp from 100°C to 25°C and cloned into pLKO.1 vector between AgeI and EcoRI sites. Doxycycline-inducible shRNAs were established using retroviral TRMPVIR vector (kind gift from Scott Lowe, Addgene plasmid #27994) as previously described.\(^1\) ZBP1-full cDNA construct was kindly gifted by Stefan Rothenburg, University of California, USA.\(^2\) The ZBP1 cDNA was amplified using forward (Forw): GGGAAATTCATGGCCCAGGCTCCTGCT and reverse (Rev): TAGCGGCCGCCTAAATCCCACCTCCCCA primers from pEGFPN.1 vector cloned into LeGO-iG2-ires-EGFP vector (Addgene plasmid #27341) between EcoRI and NotI sites followed by 5 repeats of strep-tag II (TGGAGCCATCCGCAGTTTGAAGAAA) sequences insertion between BamHI and EcoRI sites. ZBP1 ∆RHIM vector was constructed by amplifying strep-tagII-ZBP1 using forward: CCGGAATTAGGATCCATGTGGAGCCATCCG and reverse: TAGCGGCCGCTAGGCTGACTTTGCTCTTC from LeGO-strep-tagII-ZBP1 full vector. The genetic rescue experiment was performed by co-expression of ZBP1 cDNA with silent mutation at shRNA1 binding regions 5′-CAAGAGGAGCTAACTCGAGTTATATAAGATGAAGAAGGAGTGAAGTCTCCCT-3′ (here gray indicates sh1 ZBP1 target site and bold indicates mutated sequences) using LeGO-iC2 (mCherry) plasmid (addgene #27345) and anti-ZBP1 shRNA1 in MM.1S cells.

All viral particles were produced by calcium phosphate co-transfection of pRSV.REV, pMDLgpRRE and pMD2.VSVG (lentiviral) plasmids in HEK293T cells and concentrated by ultracentrifugation at 23,000 rpm for 100 minutes at 4°C. Myeloma and non-myeloma cells were treated with 8µg/ml polybrene (Sigma) and transduced with lentivirus by spinoculation at 2000 rpm, 37°C for 1hr followed by replacement of polybrene-media with appropriate culture media 24hr post-spinoculation.

shRNA sequences (5′-3′)
scramble (scr): GGCCCTCCCATCACAGTCTATA
sh1 ZBP1: CCAAGTCTCTACCGAATGAA
sh2 ZBP1: GCACAATCCAATCAACATGAT
sh3 ZBP1: GCGGATCAATAGGTCAGGAAA
sh1 IRF3: GATGAGCTACGTGAGGCATGT
sh2 IRF3: CCGCTTACCTGAGAATCTGATT
sh1 TBK1: GCAGAACGTAGTTAGCTTAT
sh2 TBK1: GCGGCAGAGTTAGGTGAAATT
sh1* ZBP1 seed control: CCAAGTCTCTCGCAATGAA

TRMPVIR-sh1 ZBP1 (5’-3’)
TCGAGAAGGTATATTGCTGTTGACAGTGAGCGCCAAGTCTCTACCGAATGAAATAGTGAA
GCCACAGATGTATTTTATCTCDGTAGAGACTTGCTCTACTGCCCTCGG

TRMPVIR-sh2 ZBP1 (5’-3’)
TCGAGAAGGTATATTGCTGTTGACAGTGAGCGCCAAGTCTCTACCGAATGAAATAGTGAA
GCCACAGATGTATTTTATCTCDGTAGAGACTTGCTCTACTGCCCTCGG

qPCR primers (5’-3’)
following primers used for ChIP and ChIP-re-ChIP
Negative: ACAGCCTAGGCCCATGGATTT (Forw) and CAGCGTCCCTCATCCAGTTC (Rev)
Peak 1: TCTCAGTTTTCACCGCTCGAT (Forw) and TCCTCTCTGATACGCTCTA (Rev)
Peak 2: TCTGACCGTGCCCACTTTAG (Forw) and AACCTCCAACCTGTGACT (Rev)
Peak 3: TGTTTGGAAGGCCACCCAGAT (Forw) and CGCTCTTACACACCACCGACTG (Rev)
E2F1: GTCTCGACTGCACCGACTTC (Forw) and GATCCGAATTTCGCGGCAC (Rev)
E2F2: GTCTCGACTGCACCGACTTC (Forw) and GATCCGAATTTCGCGGCAC (Rev)
MCM2: CTCCGTGTCCCTTCTGGTCG (Forw) and ACGATCCTCTCCGCCACTAC (Rev)
MCM3: AATCTCTCTGAGCCTCCCGC (Forw) and GTTCGGAAGTTTTCGCGCC (Rev)
MCM4: CCCTAGCACAAGCTAGAGGA (Forw) and CCCGTCGCATAACCAGAATGTA (Rev)
MCM5: GTTTTTCCCGCAACAACCTCGG (Forw) and CCAACTACACCGGAAATCCA (Rev)

Taqman probe for mouse Zbp1: Mm01247052_m1
Human ZBP1: GCCAACAACGAGGAAGA (Forw); ATCTTCTGGGCTGAAATCGT (Rev)
Human E2F1: GGACTCTTCGAGAATTTCA (Forw); TGGTGGTGACACTATGG (Rev)
Human Ki-67: CGTCCCAGTGGAAGAGTTGT (Forw); CGACCCCGCTCCTTTTGATA (Rev)
Human FOXM1: TCTTTTCTTTATGCTGCGC (Forw); CCCAGGCTGGATTTCTTCC (Rev)

Antibodies for Co-IP
anti-ZBP1 (ThermoFisher Scientific; catalog number: PA5-20455), anti-V5-Tag (ThermoFisher Scientific; catalog number: 37-7500), anti-IRF3 (BioLegend; clone number: 12A4A35).

Total cell lysis buffer
250mM NaCl, 1.5mM MgCl₂, 20mM HEPES pH 7.4, 0.5mM EDTA, 1% IGEPAL CA-630, 1% Triton X-100, 0.1% SDS, 10mM of PMSF (Sigma) supplemented with 1x halt protease & phosphatase Inhibitor cocktail (Fisher scientific).

Antibodies for immunoblot
anti-ZBP1 (1:1000; ThermoFisher Scientific; catalog number: PA5-20455), anti-ZBP1 (1:1000; SantCruz Biotech; sc-67259), anti-IRF3 (1:500; BioLegend; clone number: 12A4A35), anti-TBK1 (1:1000; SantCruz Biotech; sc-52957), anti-pTBK1(ser172) (1:250; Cell Signalling Technolog; catalog number: 5483), anti-V5-tag (1:500; Cell Signalling Technology; catalog number:132025), anti-pIRF3(S396) (1:500; ThermoFisher Scientific; Catalog number: 720012), GAPDH (1:2000; SantCruz Biotech; sc-47724).

Immunization
Zbp1⁻/⁻ animals,³ already cross-bred to C57BL/6 animals for 4-5 generations were obtained from Manolis Pasparakis, Institute of Genetics, Cologne, Germany. They were further cross-bred with wild type C57BL/6 mice for another three generations and their littermates used to study T-cell dependent humoral immune response to 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Keyhole Limpet Hemocyanin (NP-KLH) antigen (Santacruz Biotech). 6mg/kg NP-KLH prepared in Imject™ Alum Adjuvant (Thermoscientific) 3:1 ratio and injected intraperitoneally into 10-12 weeks old age-
matched Zbp1−/− and wild type littersmates. On day 4 post-immunization, 4mg/kg NP-KLH alone injected as booster dose and after 10 days post-immunization, blood samples were collected, and spleen was harvested. Single cell suspension of spleen cells were stained for B220 (BioLegend; clone: RA3-6B2), CD19 (BioLegend; clone: 6D5), CD95 (eBioscience; clone number: 15A7), GL7 (BioLegend; clone;GL7), CD138 (BioLegend; clone: 281-2) and analyzed for germinal center activated B cells (GCB), plasma cell (PC) development. GCB (B220+ CD19+ GL7+ CD95+) and PC (B220loCD138+) spleen cells were sorted using (FACSAria), and total RNA was isolated and quantified Zbp1 mRNA levels as described in qPCR methods. A standard ELISA method was used to quantify NP-KLH-specific IgG or IgM antibodies. Diluted (1:1000) serum samples used to detect levels of IgG by anti-IgG-HRP antibody (Bio-Techne) or IgM by anti-IgM-HRP antibody (Sigma) on 100μg/ml NP-KLH-coated plates. The antibody levels of immunized mice sera were normalized to their appropriate control alum-only immunized mice sera.

ChIP-seq and ChIP-re-ChIP

MM.1S cells were cross-linked with 1% formaldehyde (Alfa Aesar) at 10⁶ cells/ml density for 15min at room temperature with gentle mixing followed by addition of 0.125M Glycine to final volume for 5min at room temperature with gentle mixing. Cells were washed thrice with ice cold 1x PBS with 10mM phenylmethylsulfonyl fluoride (PMSF) and 10⁸ cells were lysed with hypotonic lysis buffer (10 mM Hepes-KOH, pH 7.8, 10 mM KCl, 0.1 mM EDTA, and 0.1% IGEPAL CA-630) for 15minutes on ice followed by centrifugation at 5000g for 5min. Further the cell pellet was lysed in nuclear lysis buffer (1% SDS, 50mM Tris-HCl pH 8.0, 10mM EDTA pH 8.0, 300mM NaCl supplemented with 1x halt protease & phosphatase Inhibitor cocktail (Fisher scientific) for 15min on ice. The lysate was diluted 10 times with dilution buffer (0.01% SDS, 1% Triton X-100, 1mM EDTA, 50mM Tris-HCl pH 8.0, 150mM NaCl) and sonicated to shear the chromatin DNA up to 500bp size. The lysates were precleared with 50 μl protein A/G magnetic beads (Life Technologies) and then IRF3-bound chromatins were pulled overnight, rotating at 4°C with either 5μg IRF3 antibody (BioLegend, clone:12A4A3S) or equivalent isotype control conjugated with protein A/G magnetic beads. Immunoprecipitated beads were washed twice with wash buffer A (0.1% SDS,
1% TritonX-100, 1mM EDTA, 10mM Trish-HCl pH 8.0, 150mM NaCl), buffer B (0.1% SDS, 1% TritonX-100, 1mM EDTA, 10mM Trish-HCl pH 8.0, 500mM NaCl) and buffer C (0.25M LiCl, 1% IGEPAL CA-630, 1% sodium deoxycholate, 1mM EDTA, 10mM Tris-HCl pH 8.0) for 5min, rotating at 4°C. The ChIP complex was treated with 10mg/ml RNase A, 20mg/ml proteinase K and reverse crosslinked with a buffer containing 1% SDS, 50mM Tris HCl pH 8.0, 4M NaCl, 1mM EDTA at 65°C overnight. ChIP DNA was collected with Ampure XP beads (Beckman) and quantified using Qubit High Sensitivity DNA kit (Life Technologies). 1ng of ChIP DNA was taken to prepare library using NEBNext kit for Illumina (New England Biolabs) following manufacturer’s instructions and the quality or fragment size was assessed using the Bioanalyser High Sensitivity DNA kit (Agilent). 2nM of 400-500bp DNA library was sequenced using Illumina NextSeq500 platform to obtain paired-end 150bp reads.

For ChIP-reChIP, above protocol to pull IRF3 or IRF4-bound chromatin using IRF3 antibody (BioLegend, clone:12A4A35) or IRF4 antibody (BioLegend, clone: IRF4.3E4) and their equivalent isotype control respectively was followed. The chromatin was eluted in 1% SDS with 1x halt protease & phosphatase Inhibitor cocktail (Fisher Scientific) followed by 10 times dilution with elution buffer and repeated ChIP with the appropriate antibody. The ChIP-reChIP DNA was quantified using Qubit High Sensitivity DNA kit (Life Technologies) and quantified specific DNA fragments by qPCR.

Immunohistochemistry

Immunohistochemistry was undertaken on one-micron formalin-fixed paraffin-embedded tissue sections on Leica Bond III automated immunohistochemistry stainer. Prior to the procedure, paraffin sections were placed in oven preheated to 60°C for 30 minutes. Ready to use antibodies were used for PAX5 (clone number: PA0552; 15 minutes incubation) and MUM.1 (IRF4) (clone number: PA0129; 15 minutes incubation) antigens. Antibodies for ZBP1 (Sigma-Aldrich; catalogue number: HPA041256; 20 minutes incubation), CD3e (clone: NCC-L-CD3-565; 20 minutes incubation) and CD21 (clone: NCC-L-CD21-269; 20 minutes incubation) were diluted 1:100. 1:100 and 1:25 respectively prior to incubation. Heat induced epitope retrieval was undertaken for 20 minutes (PAX5 (EDTA buffer), MUM.1 (EDTA buffer), ZBP1 (citrate buffer) and CD21 (citrate buffer)) and 30 minutes (CD3e (citrate buffer)).
Signal detection for single immunostains was performed using Bond Polymer Detection Kit (clone number: DS9800) with DAB (brown colour) as the chromogen. For double immunostains, the sections were initially stained for CD3e, CD21, MUM.1 or PAX5 antigens as for single immunostaining protocol. This was followed by a sequential step for staining for ZBP1 antigen, where is the ZBP1 signals were detected using Bond Polymer Refine Red Detection Kit (Red signals; catalogue number: DS9390).

RNA-seq and ChIP-seq data analysis

For RNA sequencing analysis, reads were aligned and transcripts were quantified using STAR (v2.5.3a), for shRNAs targeting ZBP1 in MM.1S and H929 cells; related to figure 2, against GRCh38 release 79 or with Salmon (v0.12.0), for shRNAs targeting ZBP1 or IRF3 in MM.1S; related to figure 4, against GRCh38 Gencode v28 transcript annotations. Differential expression analysis was performed in R (R Core Team, 2020) with DESeq2 (v1.24.0) from STAR output or Salmon output using tximport (v1.12.3), and limma-voom for processing CCLE data with cut off p adj <0.05. IRF3 ChIP sequencing reads were aligned with BWA MEM (v0.7.15) to GRCh38 genome (Gencode v28) with standard settings. QC and duplicate marking were performed with Picard (v2.6.0) and samtools (v1.2). Tracks were generated with Deeptools (v3.3.1), and peaks were called with MACS2 (v2.1.1). Motif enrichment was performed with Homer (v4.10). The peaks were visualized using Integrative Genomes Browser (IGV) (v2.5.2). Binding and Expression Target Analysis (BETA)-plus package (v1.0.7) was used to integrate IRF3 cistrome, with the peaks within 2kb distance to TSS, and a complete transcriptome of IRF3-depleted MM.1S cells with cut off padj <0.05. Bigwig and BED files of ATAC-seq and Pol II, H3K27ac, H3K27me3, H3K4me3, H3K4me2, H3K4me1 and IRF4 ChIP-seq files of MM.1S cells were collected from Cistrome Data Browser.

Bedtools (v2.25.0) Intersect was used to identify the common genome-wide binding of IRF3 and IRF4 factors. Deeptools computeMatrix and plotHeatmap (v3.4.1) with 2kb distance in reference to center of the region were used to visualize genome-wide binding of histone marks, Pol II, with IRF3, and IRF4 transcription factors. Homer (v4.10) was used for annotation of the genomic regions that are plotted in the
heatmap. Gene Set Enrichment Analysis (GSEA) (v4.0.3) software14 was used for pathway annotation of differentially regulated genes with p adj < 0.05 to analyse the pathways of Hallmark gene sets. Enrichr online web tool15 was used for pathways enrichment analysis of differentially regulated genes from RNA-seq and output of BETA-plus for integration of ChIP-seq and RNA-seq data. Significant pathways enriched with p adj < 0.05 were selected to create the figures and listed in the tables.

Statistical analysis

Data graph and statistical analysis were performed using GraphPad Prism 8.0 software under institute licence. All experiments were repeated at least three times except for RNA-seq and ChIP-seq which were performed in replicates. Fold changes for *in vivo* data that were obtained in different time points were calculated by comparing the immunized groups to median value of control group. Comparison of two groups were performed using two-tailed unpaired Student t-test. All the information on sample size, replicates, statistical method and significance are indicated in the figure legends. GraphPad Prism 8.0 or Morpheus (https://software.broadinstitute.org/morpheus) was used for heatmap creation with log2 transformed values of RNA-seq data.

References

1. Zuber J, McJunkin K, Fellmann C, et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol 2011;29(1):79–83.

2. Deigendesch N, Koch-Nolte F, Rothenburg S. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res 2006;34(18):5007–5020.

3. Ishii KJ, Kawagoe T, Koyama S, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008;451(7179):725–729.

4. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15–21.
5. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 2017;14(4):417–419.

6. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550.

7. Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44(W1):W160-165.

8. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008;9(9):R137.

9. Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010;38(4):576–589.

10. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14(2):178–192.

11. Wang S, Sun H, Ma J, et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 2013;8(12):2502–2515.

12. Zheng R, Wan C, Mei S, et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res 2019;47(D1):D729–D735.

13. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26(6):841–842.

14. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102(43):15545–15550.
15. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90-97.
Supplementary Figure S1 (related to Figure 1)

(A) Heat map showing the top 30 differentially expressed genes between 27 MM and >800 non-myeloma cancer cell lines (raw data collected from the Cancer Cell Line Encyclopedia Portal (CCLE)). ZBP1 is boxed. ALL: Acute Lymphoblastic B Cell Leukaemia, BILD: Biliary Tract Carcinoma, BLCA: Bladder Carcinoma, BRCA: Breast Carcinoma, COLR: Colorectal Carcinoma, DLBC: Burkitt Lymphoma, DLHN: Lymphoma Hodgkin, ESCA: Squamous Cell Carcinoma, GBM: glioma HighGrade, HNSC: Upper Aerodigestive Tract, KIRC: Clear Cell Renal Cell Carcinoma, LAML: Acute Myeloid Leukaemia, LCML: Blast Phase Chronic Myeloid Leukaemia, LIHC: Hepatocellular Carcinoma, LGG: Glioma, LUAD: Lung Non-Small Cell Carcinoma, LUSC: Lung Squamous Cell Carcinoma, MB: Medulloblastoma, MESO: Mesothelioma, NB: Neuroblastoma, OV: Ovary Carcinoma, PAAD: Pancreas Carcinoma, PRAD: Prostate Carcinoma, SARC: Ewings Sarcoma, SCLC: Lung Small Cell, SKCM: Skin Melanoma, STAD: Stomach Gastric Carcinoma, THCA: Thyroid Carcinoma, UCEC: Endometrium Carcinoma, MM: Plasma Cell Myeloma.

(B) mRNA expression levels of ZBP1 in >800 cancer cell lines (non-myeloma) including 27 MMCL (myeloma) from CCLE data sets. Box-whiskers plot shows minimum to maximum log2 TPM values. Elaborated form of all the cell line names shown in Online Supplementary Figure S1A legend.

(C) mRNA expression level of ZBP1 in GSE4581 data set. Expression of ZBP1 is not different between normal, MGUS and myeloma PC. However, in the hyperdiploid group expression of ZBP1 is significantly higher than normal and total myeloma PC. BMPC (n=22), normal bone marrow PC; MGUS (n=44); Myeloma (n=414). Molecular subgroups: PR: proliferative; LB: lytic bone; MS: over-expression of MMSET in t(4;14); HY: hyperdiploid; CD1 and CD2: Cyclin D1 and D2 over-expression groups; MF: MAF over-expression in t(14;16).

(D) mRNA expression levels of ZBP1 in purified myeloma PC (n=767 MM patients) compared to PC-lineage defining transcription factors IRF4, XBP1 and PRDM1 from MMRF data sets. Bar graph shows the mean values.

(E) ZBP1 mRNA expression in human common lymphoid progenitors (CLP), naïve, class switch memory (CSM) and germinal centre (GC) B cells as well as tonsillar plasma cells (data from the Blueprint DCC Portal; data shown as mean ± SEM).

(F, G) Immunoblot shows lack of ZBP1 expression in non-myeloma hematopoietic cell lines K562 (erythroleukemia), Jurkat (T cell lymphoblastic) and C1R (EBV-transformed B cell) cells, and 293T cells, and solid tumor cell lines HCC95 (squamous cell lung carcinoma), SF295 (glioblastoma), HT29 (colon adenocarcinoma), DU145 and LNCaP (prostate carcinoma) and MCF7 (breast cancer).

(H, I) ZBP1 mRNA and protein expression as assessed by qPCR (H) and immunoblotting (I) respectively in FACSPurified primary human bone marrow erythroblasts (ErythroB), peripheral blood CD14+ monocytes, CD19+ B cells, CD4+ T cells. The MMCL H929 and MM.1S are shown as positive controls.
(J) *ZBP1* mRNA expression in 53 healthy human tissues. *ZBP1* expression is only detected in organs with lymphoid tissue (data obtained from the GTEx Portal).

(K) *ZBP1* expression in lymph nodes, tonsil, and healthy bone marrow as assessed by immunohistochemistry on paraffin-embedded tissue section. Within lymph nodal and tonsillar germinal centres, *ZBP1* expression is mostly restricted to PCs. Germinal centre B cells are mostly negative. *ZBP1* is also strongly expressed in PCs outside the follicles. There is weaker *ZBP1* expression in mantle cells and other interfollicular B cells. *ZBP1* expression is mostly restricted to PCs in normal bone marrow (BM#1 & BM#2).

(L) *ZBP1* expression in tonsillar germinal centres co-stained with CD3e (T cells), CD21 (follicular dendritic cells) or MUM.1 (IRF4) as identified by immunohistochemistry on paraffin-embedded tonsil tissue section. *ZBP1* is not expressed in CD3e+ T cells or CD21+ follicular dendritic cells, but is co-expressed with IRF4 (MUM.1)+ PCs.

(M) *ZBP1* expression in bone marrow tissue sections of another two MM patients.
Supplementary Figure S2 (related to Figure 2)

Zbp1 mRNA expression levels in murine follicular B cells (FoB), marginal-zone B cells (MZB), B1, splenic plasmablasts (splPB) and splenic and bone marrow plasma cells (splPC, BMPC) compared to PC-lineage defining transcription factors (data were reanalysed from previously published RNA-seq experiments by Shi et al., REF. #4).
Supplementary Figure S3 (Related to Figure 3)

(A) Schematic of ZBP1 mRNA exonic structure, positions of Za1, Za2 and RHIM domains and shRNA1 (sh1)-, shRNA2 (sh2)- and shRNA3 (sh3)-targeting sites with reference to the two main ~48 and ~40 kDa ZBP1 isoforms are shown.

(B) Immunoblotting shows shRNA1- or shRNA2-mediated depletion of ZBP1 isoforms in MMCL H929 cells on day 4 post-transduction with sh1 or sh2 or sh3 or scr control that had >90% transduction efficiency. GAPDH is shown as loading control. Two ZBP1 isoforms i.e. isoform 1 (iso-1) and isoform 2 (iso-2) are indicated.

(C) Typical example of gating strategies of flow cytometry plots (top) and applied formula (bottom) for calculation of the %GFP+ cells to analyse cytostatic effects of shRNA- or scramble-transduced cells. Live cells were determined by negative for DAPI staining.

(D) Immunoblotting for ZBP1 in MMCL MM.1S cells on day 4 post-transduction with sh1 or sh2 or scr control that had >90% transduction efficiency. GAPDH is shown as loading control.

(E) Immunoblotting for ZBP1 expression in the epithelial cancer cell line HeLa.

(F) %GFP+ cells after co-transduction of MM.1S myeloma cells with ZBP1-targeting sh1 with empty vector (mock) or ZBP1-targeting sh1 with ZBP1 cDNA with silent mutation at sh1 seed annealing sequences (ZBP1*). (n=4)

(G) ZBP1 expression assessed by immunoblotting in MM.1S cells transduced with shRNA1 targeting ZBP1 (sh1), ‘seed’ shRNA1 control (sh1*) or scr control.

(H) %GFP+ cells after transduction with ZBP1-targeting sh1, ‘seed’ shRNA1 (sh1*) control or scr control in MM.1S cells. The %GFP+ cells were normalised to day 3 %GFP expression levels for all the time points for each shRNA or scr control shown. (n=3)

(I, J) Representative flow-cytometric analysis of doxycycline inducible shRNA targeting ZBP1 in MMCL before and after dox treatment. Transduced cells are GFP+, and express dsRed+ after dox-treatment. Quantitative data for %GFP+ or %GFP+dsRed+ H929 (I) and MM.1S (J) myeloma cells without and with dox treatment in vitro. (n=3)

(K, L) Photographs of tumors explanted at sacrifice from control (i.e., non-dox-treated) or dox-treated animals engrafted with MMCL MM.1S transduced with dox-inducible shRNA1 or shRNA2 targeting ZBP1. Tumor weight at sacrifice in animals engrafted with MM.1S (K) and H929 (L) myeloma cells transduced with anti-ZBP1 shRNAs for control or dox-treated.

The error bars of all the cumulative data indicate mean ± SEM. Two-tailed unpaired t-test was applied to determine the P values. ** p≤0.01, *** p≤0.001. The number of experiments performed for the study are indicated separately in each figure legend.
Supplementary Figure S4 (Related to Figure 3)

(A) Heatmap showing log2-fold change in expression of key cell cycle genes from RNA-seq data after sh1- or sh2-mediated ZBP1 depletion in MM.1S and H929 cells (p adj <0.05).

(B) Expression of cell cycle genes FOXM1, E2F1, Ki-67 validated at mRNA level using qPCR on day 4 post-transduction with anti-ZBP1 sh1 or sh2 or scr control in MM.1S cells.

(C) Immunoblotting for indicated cell cycle proteins following dox-induction of inducible anti-ZBP1 sh1 or sh2 in MM.1S myeloma cells. Protein lysates were prepared from FACS-purified GFP+dsRed+ or GFP+ live cells on day 3 after dox-treatment or control respectively.

(D, E) A representative flow-cytometric histogram of Ki-67 expression in MM.1S cells (D) and its cumulative data shows reduction of cell proliferation marker Ki-67 in anti-ZBP1 sh1- or sh2-transduced cells as compared to scramble control cells on day 4 post-transduction in MMCL H929 and MM.1S (E). (n=3)

(F) Flow-cytometric analysis of Annexin V staining and its cumulative data shows apoptosis induction following ZBP1-depletion in MMCL MM.1S and H929. (n=3)

(G) Representative flow-cytometric example of MM patient-derived bone marrow myeloma PC purity before and after CD138+ selection using CD138 immunomagnetic microbeads.

(H) Gene set enrichment analysis with reference to Molecular Signatures Database v7.1 Hallmark gene sets for transcriptomes of ZBP1-depleted MM.1S and H929 MMCL.

(I) GSEA of highest 5% vs lowest 90% ZBP1-expressing myeloma PC. Analysis was performed using RNA-seq transcriptomes of purified myeloma PC (n=767 patients) and the inbuilt GSEA tool in the multiple myeloma research foundation (MMRF) research gateway portal.

(J) GSEA example of reactome pathway for cell cycle, mitotic genes enriched in the top 5% ZBP1-expressing cohort as compared to lowest 90% ZBP1-expressing myeloma PC cells.

The error bars of all the cumulative data indicate mean ± SEM. Two-tailed unpaired t-test was applied to determine the P values. * p≤0.05, ** p≤0.01, *** p≤0.001. The number of experiments performed for the study are indicated separately in figure legends.
Supplementary Figure S5 (Related to Figure 4)

(A) Schematic illustration of V5-tagged IRF3 and strep-tag II-tagged full length ZBP1 and its deletion mutant. RHIM, RIP homotypic interaction motif.

(B, C) Strep-tag II ZBP1-full, ZBP1-ΔRHIM and mock GFP-expressing cDNA constructs, were transiently co-expressed with V5-tagged IRF3 in HEK293T cells. Cell lysates were co-immunoprecipitated with anti-V5 antibody or anti-strep-tag magnetic beads followed by immunoblotting with anti-ZBP1 or -IRF3 antibody. IRF3 can be readily co-immunoprecipitated with only full length ZBP1.

(D) Immunoblot for pIRF3/IRF3 and pTBK1/TBK1 following dox-induction of inducible anti-ZBP1 sh1 or sh2 in MM.1S cells. Lysates were prepared from FACS-purified GFP+dsRed+ or GFP+ live cells on day 3 after dox-treatment or control respectively.
Supplementary Figure S6 (Related to Figure 4)

(A) Immunoblot for IRF3 in MM.1S cells on day 4 post-transduction with scr or IRF3-targetting shRNA1 or shRNA2. Lysates were prepared from the cells with >90% transduction efficiency.

(B) Flow-cytometric analysis of cell cycle in MM.1S cells on GFP+ cells day 4 post-transduction with scr or anti-IRF3 shRNA1 or shRNA2. (n=3)

(C) Annexin V staining for flow cytometric-based assessment of apoptosis in H929 and MM.1S cells on day 4 post-transduction with scr or anti-IRF3 shRNA1 or shRNA2. (n=3)

(D) %GFP+ cells after transduction with scr control or shRNA1 or shRNA2 targeting TBK1 in H929 and MM.1S cells. All the time points were normalised to day 3 %GFP expression levels for each shRNA shown. (n=3)

(E, F) A representative flow-cytometric histogram for cell cycle analysis in GFP+ cells day 4 post-transduction with TBK1-depleting shRNA1 or shRNA2 or scr control and its quantitative data show cell cycle arrest in H929 (E) and MM.1S (F) cells. (n=3-4)

(G) Annexin V staining for flow cytometric-based assessment of apoptosis in MMCL H929 and MM.1S cells on day 4 post-transduction with TBK1-depleting shRNA1 or shRNA2 or scr control. (n=3)

The error bars of all the cumulative data indicate mean ± SEM. Two-tailed unpaired t-test was applied to determine the P values. * p≤0.05, ** p≤0.01, *** p≤0.001. The number of experiments performed for the study are indicated separately in each figure legend.
Supplementary Figure S7

A

IRF3 genome-wide binding

B

activated (770 genes)

- Cell Cycle
- Mitotic G1-G1/S phases
- Cell Cycle, Mitotic
- Epigenetic regulation of gene expression
- DNA Repair
- Cell Cycle Checkpoints
- Post-translational protein modification
- Asparagine N-linked glycosylation
- Transcriptional Regulation by TP53
- Metabolism of proteins

combined score (P adj < 0.01)

C

repressed (339 genes)

- Viral mRNA Translation
- 3' -UTR-mediated translational regulation
- Eukaryotic Translation Initiation
- Nonsense-Mediated Decay (NMD)
- SRP-dependent cotranslational protein targeting to membrane
- Influenza Viral RNA Transcription and Replication
- Major pathway of rRNA processing in the nucleolus
- Ribosomal scanning and start codon recognition
- Infectious disease
- NGF signalling via TRKA from the plasma membrane

combined score (P adj < 0.05)

D

sh1 IRF3

- downregulate (0)
- upregulate (1.52e-246)
- static (background)

Cumulative Fraction of Genes

Rank of genes based on Regulatory Potential Score (from high to low)

dsh2 IRF3

- downregulate (0)
- upregulate (9.19e-261)
- static (background)

Cumulative Fraction of Genes%
Supplementary Figure S7 (Related to Figure 5)

(A) Annotation of IRF3 genome wide binding according to genomic features. ~35% and ~41% of IRF3 binding observed in promoter and intergenic genomic regions respectively.

(B, C) Enrichr pathway enrichment analysis of the 770 and 339 genes predicted to be directly activated (B) and repressed (C) by IRF3 binding to their regulatory areas.

(D) Regulatory potential prediction models display significant activating (blue) and repressive (red) function of IRF3 in MM.1S cells. Models derived from BETA-plus analysis, after integrating the IRF3 cistrome with IRF3-depleted transcriptome for anti-IRF3 shRNA1 or shRNA2.

(E) IGV browser snapshots of IRF3 and Pol II binding, chromatin accessibility and histone mark enrichment at regulatory areas of several genes promoting cell cycle progression and cell proliferation. The red block on the top indicates 5kb genomic size.

(F) Heatmap shows the downregulation of MCM2-7 complex at mRNA levels in indicated mRNA-depleted RNA-seq data (p adj <0.05).

(G, H) IRF3 binding to IFN type I pathway genes (G), the red block on the top indicates 1kb genomic size, and mRNA expression changes of indicated genes (H). Note neither IFNA1 nor IFNB1 is expressed before or after IRF3 depletion in MM.1S cells.
Supplementary Figure S8 (Related to Figure 6)

(A, B) qPCR of IRF3 ChIP or IRF3 to IRF4 ChIP-re-ChIP (A) and qPCR of IRF4 ChIP or IRF4 to IRF3 ChIP-re-ChIP (B) at the promoter regions of genes involved in cell cycle regulation.
Supplementary Table S1. Differentially expressed genes that are common in both H929 and MM.1S cells and in both shRNAs (log2 fold change >1.0 and p adj <0.05)

down-regulated	up-regulated
NEDD1	NCAPD3
SLC1A4	KCNQ5
SURF4	CENPK
C17orf96	RPL39L
UBALD2	C21orf58
RCN2	CENPO
GPI	FANCM
TBL1X	SUV39H2
NUDT8	PDSS1
SLIT3	IQGAP3
NEDD9	CENPU
ADCY3	OIP5
MFSD2A	PRC1
KNTC1	GGH
ME2	DUT
MYH15	MCM8
ACBD7	BRCA2
YBX1	KIAA1161
DPF1	FANCD2
HNRNPUL1	SASS6
APOBEC3B	RAD18
ZNF367	ZGRF1
ACBD7	BRCA2
YBX1P1	PTMA
C12orf75	NRGN
NDC1	ANKR18D1
RTKN2	DIAHPH
RPLQ	LRRRC8C
LYAR	TMPO
AQP3	TCOF1
CHEK1	C17orf53
H2AFZ	ANP32B
NUDT1	DMC1
FBYO43	SG01
MMS22L	CIT
RANBP1	HELS
PRP38A	DONSON
YBX1P10	C1orf112
MIR1244-2	MSH2
CENPP	DEPDC1

NEDD1, NCAPD3, CHTF18, TTK, CDC25C, BIRC5, CENPA, IGHA1, SLC1A4, KCNQ5, GINS1, RFC5, KIF15, ORC6, CDC5A, GALC, SURF4, CENPK, DCLRE1B, CENPE, FANCI, RFC3, CDC5A, SNAP91, C17orf96, RPL39L, KIF11, RFC2, ZBP1, E2F2, NEIL3, ZBTB18, UBALD2, C21orf58, WDHD1, KIAA1524, RAD51AP, CDC3A, CDC2A, PLEKHA1, RCN2, CENPO, FAM72B, ZWINT, KIF4A, FEN1, RRM2, LRRN2, GPI, FANCM, MIS1A8A, KIF22, PTTG1, MYB, DEPD1C8, IGHA2, TBL1X, SUV39H2, SMC2, FANCB, HMMR, GINS2, CCNB1, KIF13A, NUDT8, PDSS1, BRC1A1, CKAP2L, KIF2C, ORC1, CDC20, SATB1, SLIT3, IQGAP3, C4orf46, STIL, FAM72A, SPCC5, DLGAP5, PPIC, NEDD9, CENPU, PRIM1, FANCG, NUSAP1, BR13BP, KIF20A, PLEKHH1, ADCY3, OIP5, CENPM, MCM6, POLA1, C16orf59, CDKN3, ZBTB10, MFSD2A, PRC1, PLCD1, CDC6, DTL, SKA1, CENPW, TMEM132B, KNTC1, GGH, CLSPN, ESPL1, UBE2C, CTSF, ME2, DUT, MELK, SUV39H1, MAD2L1, CDT1, FAM11B, TMEM232, MYH15, MCM8, CDC150, CHEK2, FBXO5, SHCBP1, CDC25A, NR2F2, ACBD7, BRCA2, FAM64A, WDR76, NCAPO, DDIAS, MCM10, TMEM74B, YBX1, KIAA1161, NUP35, MND1, GSG2, TRAIP, BLM, LINC0117, DPF1, FANCD2, SPDL1, BUB1B, ERCC6L, CDK1, UHRF1, ULK1, HNRNPUL1, SASS6, CHAF1B, TCF19, PARPB8, KIF23, PLK1, APOBEC3B, RAD18, POLA2, POC1A, KIF18A, AURKA, GTSE1, ZNF367, ZGRF1, CKS1B, NDC80, TUBA1C, ARHGAP11, CENPH, CNTN1, MCM3, UBE25, RRM1, SPAG5, EXO1, KIF18B, YBX1P1, PTMA, SLCO4A1, CHAF1A, TK1, NEK2, CCNF, C12orf75, NRGN, NCAPG2, KIF20B, DSCC1, INCENP, NDC1, ANKR18D1, ANLN, TUBB, SGO2, HJURP, RKN2, DIAPH3, EME1, H2AFX, MYBL2, NCAH, RPLQ, LRRRC8C, POLE2, HMGB2, NUF2, KIFC1, LYAR, TMPO, NCAPD2, PBK, CENPI, TROAP, AQP3, TCOF1, DHFR, GINS4, TONS1, PRR11, CHEK1, C17orf53, WDR62, KIAA0101, CCNA2, TUBA1B, H2AFZ, ANP32B, KNL1, FAM72D, FAM83D, MKI67, NUDT1, DMC1, ATAD2, AUNIP, MCM5, SKA3, FBXO43, SG01, BRIP1, KIF14, CDC45, UNG, MMS22L, CIT, MTFR2, TOP2A, ASPM, PKMYT1, RANBP1, HELS, UBE2T, MCM2, FOXM1, ESCO2, PRP38A, DONSON, LMNB1, PLK4, RECQL4, TPX2, YBX1P10, C1orf112, STMN1, MCM4, TACC3, RAD51, FAM72C, PSMC3IP, RACGAP1, SPCC24, CCNB2, XRCC2, MIR1244-2, MSH2, ASF1B, RFC4, TUBBP1, CEP55, CENPP, DEPDC1, CKS2, PTMAP5, AURKB, TRIP13
Supplementary Table S2. Reactome pathways

Enrichr pathway enrichment analysis of the 270 common genes downregulated in both MM.1S and H929 cells treated with anti-ZBP1 shRNAs

Name of the enriched pathways (Homo sapiens)	Overlap	Adj P-value	Odds Ratio	Combined Score							
Cell Cycle_R-HSA-1640170	111/566	8.91E-98	14.527	3352.79							
Cell Cycle, Mitotic_R-HSA-69278	95/462	2.25E-84	15.232	3034.86							
DNA strand elongation_R-HSA-69190	18/32	4.48E-24	41.667	2427.56							
Unwinding of DNA_R-HSA-176974	10/12	6.71E-16	61.728	2410.61							
Mitotic Prometaphase_R-HSA-68877	36/107	2.88E-38	24.922	2302.45							
Activation of ATR in response to replication stress_R-HSA-17618	19/37	2.29E-24	38.038	2246.47							
Activation of the pre-replicative complex_R-HSA-68962	16/30	6.64E-21	39.506	2003.07							
Resolution of Sister Chromatid Cohesion_R-HSA-250025	32/99	3.05E-33	23.943	1929.67							
G1/S-Specific Transcription_R-HSA-69205	11/17	1.50E-15	47.93	1831.33							
E2F mediated regulation of DNA replication_R-HSA-113510	16/33	4.92E-20	35.915	1747.48							
M Phase_R-HSA-68886	50/268	8.22E-40	13.82	1329.89							
RHO GTPases Activate Formins_R-HSA-5663220	29/114	8.24E-27	18.843	1228.52							
Phosphorylation of Emi1_R-HSA-176417	5/6	5.60E-08	61.728	1221.09							
DNA Replication_R-HSA-69306	27/105	4.24E-25	19.048	1162.93							
Condensation of Prometaphase Chromosomes_R-HSA-2514853	7/11	7.92E-10	47.138	1153.01							
Chromosome Maintenance_R-HSA-73886	23/86	6.54E-22	19.811	1052.26							
Mitotic Metaphase and Anaphase_R-HSA-2555396	35/174	1.24E-28	14.9	1039.99							
S Phase_R-HSA-69242	28/124	1.87E-24	16.726	992.391							
Synthesis of DNA_R-HSA-69239	24/97	5.55E-22	18.328	977.428							
Mitotic Anaphase_R-HSA-68882	34/173	1.57E-27	14.558	974.934							
Cell Cycle Checkpoints_R-HSA-69620	35/182	5.56E-28	14.245	970.72							
G1/S Transition_R-HSA-69206	26/112	4.44E-23	17.196	961.438							
Mitotic G1-G1/S phases_R-HSA-45327	29/136	1.46E-24	15.795	942.258							
Polo-like kinase mediated events_R-HSA-156711	8/16	4.15E-10	37.037	932.413							
G2/M DNA replication checkpoint_R-HSA-69478	4/5	3.00E-06	59.259	927.032							
Cyclin B2 mediated events_R-HSA-157881	4/5	3.04E-06	59.259	927.032							
Separation of Sister Chromatids_R-HSA-2467813	32/162	5.44E-26	14.632	924.796							
E2F-enabled inhibition of pre-replication complex formation_R-HSA-113507	6/10	2.84E-08	44.444	914.853							
G2/M Checkpoints_R-HSA-69481	30/150	1.56E-24	14.815	883.889							
Leading Strand Synthesis_R-HSA-69109	7/14	6.54E-09	37.037	820.487							
Polymerase switching_R-HSA-69091	7/14	6.66E-09	37.037	820.487							
Polymerase switching on the C-strand of the telomere_R-HSA-174411	7/14	6.78E-09	37.037	820.487							
CDC6 association with the ORC:origin complex_R-HSA-68689	6/11	5.54E-08	40.404	800.287							
Event Description	Set ID	Count	p-value	Log2FoldChange	AverageLog2FoldChange						
--	--------------	-------	---------	----------------	----------------------						
Cyclin A/B1 associated events during G2/M transition R-HSA-69273	9/22	2.03E-10	30.303	785.311							
Telomere C-strand (Lagging Strand) Synthesis_R-HSA-174417	9/22	2.08E-10	30.303	785.311							
Homologous DNA Pairing and Strand Exchange_R-HSA-5693579	13/42	3.00E-13	22.928	748.394							
Telomere C-strand synthesis initiation_R-HSA-174430	4/6	8.11E-06	49.383	718.801							
DNA replication initiation_R-HSA-68952	4/6	8.20E-06	49.383	718.801							
Kinesins_R-HSA-983189	13/44	5.63E-13	21.886	699.358							
Presynaptic phase of homologous DNA pairing and strand exchange_R-HSA-5693616	12/39	3.36E-12	22.792	687.007							
Lagging Strand Synthesis_R-HSA-69186	8/20	3.33E-09	29.63	679.727							
Nucleosome assembly_R-HSA-774815	14/52	2.55E-13	19.943	655.432							
Deposition of new CENPA-containing nucleosomes at the centromere_R-HSA-606279	14/52	2.63E-13	19.943	655.432							
M/G1 Transition_R-HSA-68874	18/82	1.85E-15	16.26	616.625							
DNA Replication Pre-Initiation_R-HSA-69002	18/82	1.92E-15	16.26	616.625							
RHO GTPase Effectors_R-HSA-195258	36/255	2.93E-24	10.458	614.343							
Activation of NIMA Kinases NEK9, NEK6, NEK7_R-HSA-2980767	4/7	1.77E-05	42.328	580.703							
HDR through Homologous Recombination (HRR)_R-HSA-5685942	15/64	2.50E-13	17.361	570.378							
Extension of Telomeres_R-HSA-180786	9/28	2.29E-09	23.81	556.076							
Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA)_R-HSA-5693554	8/26	3.01E-08	22.792	467.079							
Homology Directed Repair_R-HSA-5693538	20/118	6.59E-15	12.555	459.744							
Resolution of D-loop Structures through Holliday Junction Intermediates_R-HSA-5693568	9/32	7.48E-09	20.833	458.353							
Resolution of D-Loop Structures_R-HSA-5693537	9/33	9.82E-09	20.202	438.268							
Signaling by Rho GTPases_R-HSA-194315	39/367	7.65E-22	7.8716	416.493							
DNA Repair_R-HSA-73894	33/285	1.55E-19	8.577	407.105							
HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)_R-HSA-5693567	18/112	5.01E-13	11.905	382.139							
Regulation of DNA replication_R-HSA-69304	14/75	5.16E-11	13.827	378.627							
DNA Double-Strand Break Repair_R-HSA-5693532	21/145	2.99E-14	10.728	376.244							
HDR through Single Strand Annealing (SSA)_R-HSA-5685938	9/37	2.83E-08	18.018	370.636							
PCNA-Dependent Long Patch Base Excision Repair_R-HSA-5651801	6/19	2.56E-06	23.392	370.176							
G0 and Early G1_R-HSA-1538133	7/25	6.10E-07	20.741	359.605							
G2/M DNA damage checkpoint_R-HSA-69473	14/78	8.86E-11	13.295	356.539							
Association of licensing factors with the pre-replicative complex_R-HSA-69298	5/15	1.83E-05	24.691	337.425							
Assembly of the pre-replicative complex_R-HSA-68867	12/67	2.78E-09	13.267	307.028							
Recognition of DNA damage by PCNA-containing replication complex_R-HSA-110314	7/28	1.38E-06	18.519	305.024							
Fanconi Anemia Pathway_R-HSA-6783310	8/35	3.58E-07	16.931	302.829							
Pathway	PPMs	PPM	PM	PNM	PNM	PPM	PPM	PM	PNM	PNM	
---	------	-----	----	-----	-----	-----	-----	----	-----	-----	-----
Telomere Maintenance_R-HSA-157579	11/59	9.22E-09	13.81	300.722							
Resolution of AP sites via the multiple-nucleotide patch replacement pathway_R-HSA-110373	6/22	6.41E-06	20.202	299.949							
Regulation of TP53 Activity through Phosphorylation_R-HSA-680476	14/89	5.13E-10	11.652	290.603							
COPI-dependent Golgi-to-ER retrograde traffic_R-HSA-6811434	13/81	2.00E-09	11.888	279.533							
Removal of licensing factors from origins_R-HSA-69300	12/72	6.20E-09	12.346	274.831							
Inhibition of replication initiation of damaged DNA by RB1/E2F1_R-HSA-113501	4/12	2.15E-04	24.691	274.648							
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex_R-HSA-75035	4/12	2.17E-04	24.691	274.648							
Regulation of mitotic cell cycle_R-HSA-453276	13/85	3.39E-09	11.329	259.251							
APC/C-mediated degradation of cell cycle proteins_R-HSA-174143	13/85	3.46E-09	11.329	259.251							
Condensation of Prophase Chromosomes_R-HSA-2299718	8/41	1.30E-06	14.453	239.275							
Orc1 removal from chromatin_R-HSA-68949	11/70	5.33E-08	11.64	231.184							
Switching of origins to a post-replicative state_R-HSA-69052	11/70	5.41E-08	11.64	231.184							
Processing of DNA double-strand break ends_R-HSA-569360	12/81	2.23E-08	10.974	228.72							
Golgi Cisternae Pericentriolar Stack Reorganization_R-HSA-162658	4/14	4.14E-04	21.164	220.96							
Removal of the Flap Intermediate_R-HSA-69166	4/14	4.18E-04	21.164	220.96							
Resolution of Abasic Sites (AP sites)_R-HSA-73933	7/35	6.47E-06	14.815	219.484							
Base Excision Repair_R-HSA-73884	7/35	6.55E-06	14.815	219.484							
SUMOylation of DNA replication proteins_R-HSA-4615885	8/44	2.24E-06	13.468	215.111							
Mitotic G2-G2/M phases_R-HSA-453274	19/175	1.15E-10	8.0423	213.395							
Meiotic recombination_R-HSA-912446	9/54	8.32E-07	12.346	210.066							
DNA Damage Bypass_R-HSA-73893	8/46	3.07E-06	12.882	201.076							
Processive synthesis on the lagging strand_R-HSA-69183	4/15	5.48E-04	19.753	200.313							
Depolymerisation of the Nuclear Lamina_R-HSA-4419969	4/15	5.54E-04	19.753	200.313							
Termination of translesion DNA synthesis_R-HSA-5656169	6/30	3.96E-05	14.815	190.577							
G2/M Transition_R-HSA-69275	18/173	7.94E-10	7.7071	188.67							
G2 Phase_R-HSA-68911	2/5	0.01932	29.63	187.796							
Translesion synthesis by REV1_R-HSA-110312	4/16	7.11E-04	18.519	182.664							
Gap-filling DNA repair synthesis and ligation in GG-NER_R-HSA-5696397	5/23	1.77E-04	16.103	182.574							
Mitotic Prophase_R-HSA-68875	13/107	5.03E-08	8.9997	179.527							
Nuclear Envelope Breakdown_R-HSA-2980766	8/51	6.66E-06	11.619	171.674							
Golgi-to-ER retrograde transport_R-HSA-8856688	13/110	6.61E-08	8.7542	171.61							
Translesion synthesis by POLI_R-HSA-5656121	4/17	8.96E-04	17.429	167.429							
Translesion synthesis by POLK_R-HSA-5655862	4/17	9.03E-04	17.429	167.429							
Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins	R-HSA-176814	10/75	1.30E-06	9.8765	163.412						
-----------------------------	----------------	--------	-----------	---------	---------						
APC-Cdc20 mediated degradation of Nek2A	R-HSA-179409	5/25	2.66E-04	14.815	161.528						
Recruitment of NuMA to mitotic centrosomes	R-HSA-380320	3/11	0.00436	20.202	159.608						
TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest	R-HSA-6804114	4/18	0.00113	16.461	154.165						
Regulation of TP53 Activity	R-HSA-5633007	15/151	5.04E-08	7.3584	146.888						
Assembly of the ORC complex at the origin of replication	R-HSA-68616	2/6	0.02812	24.691	146.706						
Phosphorylation of the APC/C	R-HSA-176412	4/19	0.00136	15.595	142.531						
Translesion Synthesis by POLH	R-HSA-110320	4/19	0.00137	15.595	142.531						
Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template	R-HSA-110313	6/37	1.41E-04	12.012	139.079						
Factors involved in megakaryocyte development and platelet production	R-HSA-983231	14/141	1.59E-07	7.3549	137.62						
AURKA Activation by TPX2	R-HSA-8854518	9/72	8.8E-06	9.2593	133.835						
Meiosis	R-HSA-1500620	10/85	3.98E-06	8.7146	133.643						
Inactivation of APC/C via direct inhibition of the APC/C complex	R-HSA-141430	4/20	0.00165	14.815	132.256						
Inhibition of the proteolytic activity of APC/C required for the onset of anaphase by mitotic spindle checkpoint components	R-HSA-141405	4/20	0.00166	14.815	132.256						
APC/C:Cdc20 mediated degradation of mitotic proteins	R-HSA-176409	9/74	1.11E-05	9.009	128.076						
Mitotic Telophase/Cytokinesis	R-HSA-68884	3/13	0.00724	17.094	125.993						
Mitotic Spindle Checkpoint	R-HSA-69618	4/21	0.002	14.109	123.126						
Regulation of APC/C activators between G1/S and early anaphase	R-HSA-176408	9/79	1.84E-05	8.4388	115.219						
SUMO E3 ligases SUMOylate target proteins	R-HSA-3108232	10/96	1.14E-05	7.716	109.44						
APC/C:Cdc20 mediated degradation of Cyclin B	R-HSA-174048	4/23	0.00285	12.882	107.647						
Transcriptional Regulation by TP53	R-HSA-3700989	23/348	1.05E-08	4.8957	105.782						
Nuclear Pore Complex (NPC) Disassembly	R-HSA-3301854	5/34	0.00114	10.893	101.815						
SUMOylation	R-HSA-2990846	10/101	1.77E-05	7.3341	100.55						
Regulation of PLK1 Activity at G2/M Transition	R-HSA-2565942	9/87	4.04E-05	7.6628	98.3472						
MHC class II antigen presentation	R-HSA-2132295	10/103	2.06E-05	7.1917	97.2915						
RHO GTPases activate CIT	R-HSA-5625900	3/16	0.01346	13.889	93.4529						
TP53 Regulates Transcription of Cell Cycle Genes	R-HSA-6791312	6/48	6.02E-04	9.2593	92.9528						
Dual Incision in GG-NER	R-HSA-5696400	5/39	0.00209	9.4967	82.3788						
Intra-Golgi and retrograde Golgi-to-ER traffic	R-HSA-6811442	13/179	1.64E-05	5.3797	74.2846						
Pathway Description	Count	p-value	Z-score	Fold Change							
---------------------	-------	--------	---------	-------------							
APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfaction of the cell cycle checkpoint	7/72	7.13E-04	7.2016	70.9443							
Recruitment of mitotic centrosome proteins and complexes	7/79	0.00123	6.5635	60.7414							
Centrosome maturation	7/79	0.00124	6.5635	60.7414							
Loss of proteins required for interphase microtubule organization?from the centrosome	6/69	0.00399	6.4412	51.5046							
Loss of Nlp from mitotic centrosomes	6/69	0.00403	6.4412	51.5046							
Cdc20:Phospho-APC/C mediated degradation of Cyclin A	6/71	0.00456	6.2598	49.0807							
APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1	6/71	0.00459	6.2598	49.0807							
CDT1 association with the CDC6:ORC:origin complex	5/58	0.01261	6.3857	43.4775							
The role of GTSE1 in G2/M progression after G2 checkpoint	5/59	0.01353	6.2775	42.2533							
TP53 Regulates Transcription of DNA Repair Genes	5/61	0.0155	6.0716	39.953							
Gap-filling DNA repair synthesis and ligation in TC-NER	5/62	0.01655	5.9737	38.8716							
Dual incision in TC-NER	5/63	0.01765	5.8789	37.8326							
Anchoring of the basal body to the plasma membrane	6/97	0.02186	4.5819	28.4081							
Transcription-Coupled Nucleotide Excision Repair (TC-NER)	5/76	0.03888	4.8733	27.3416							
Generic Transcription Pathway	24/812	0.00346	2.1894	17.8564							
Membrane Trafficking	14/420	0.01957	2.4691	15.6007							
Supplementary Table S3. Gene sets enriched in indicated reactome pathways; Gene set enrichment analysis between highest 5% and lowest 90% ZBP1-expressing myeloma PC from MMRF data sets

Cell cycle, Mitotic pathway (5% ZBP1 highest/95% ZBP1 lowest); p-value <0.05

Gene	Fold-Change	Gene	Fold-Change	Gene	Fold-Change	Gene	Fold-Change	Gene	Fold-Change	Gene	Fold-Change
PSMB9	1.4871	KIF2A	1.8556	CDC45	2.1065	CEP76	1.8712	E2F2	1.6004		
MAD1L1	1.5331	PPP2R5B	1.4041	PPP1CB	1.4419	CEP192	1.7032	RCC2	1.2602		
CDC27	1.4889	NUP133	1.4911	CDC23	1.8488	PSMD10	1.5228	CLASP2	1.5275		
DHFR	2.2396	SMG6	1.4561	AAAS	1.4887	POLA1	1.7371	MAD2L1	2.2138		
UPF1	1.5695	PABPC1	1.4405	PSMD5	1.6736	STAG2	1.5055	LEMD3	1.7028		
DBF4	1.5907	CSNK2A2	1.4326	NUP188	1.7266	EMD	1.3580	LEMD2	1.3773		
PAFAH1B1	1.4217	PRKACA	1.4529	FGFR1OP	1.7308	CENPI	2.3121	PSMD2	1.5048		
PSMB1	1.3729	FBXW11	1.7771	PSMD8	1.5519	NUP93	2.9343	PSMD1	1.7307		
CDK11A	1.5529	NDE1	1.6296	MAPK1	1.4827	CENPT	1.4832	CDK1	2.6002		
NCPD2	1.8065	MCM2	2.1519	NUP62	1.6856	PSMD7	1.4589	NIPBL	1.6964		
PSMC4	1.4382	CLASP1	1.4175	MCM5	1.6225	CCP110	1.5745	ANAPC10	1.6061		
POLA2	1.9113	NUP37	1.5488	EP30	1.4826	CEPI52	1.8193	PSMD6	1.4762		
MNAT1	1.5902	MCM6	1.6880	RANAP1	1.5512	RAB2A	1.3231	PSMC3	1.6954		
VRK2	1.4907	DYN1C2	1.5534	POLE2	2.1134	PPP2CB	1.4167	DCTN2	1.3089		
NUP160	1.7894	POLD3	1.7212	PSMC6	1.5377	DCTN1	1.5079	RAD21	1.5428		
CENPQ	1.7299	PPP2R5C	2.0603	P5MA3	1.3713	CSNK2B	1.3568	ORC5	1.7811		
RFC1	1.5251	RBL1	1.6509	VRK1	1.6120	CCNE1	2.8558	PTTG1	2.3277		
TUBG2	1.7389	NDC80	2.6181	PSMC1	1.4951	PSMB8	1.5490	RFC4	1.7710		
CCDC99	2.0297	XPO1	1.7806	PSMB5	1.6025	FZR1	1.7622	AURKB	2.2140		
PSMA4	1.8814	PDS5B	1.7431	PSMA6	1.3837	LIG1	2.0206	CKAP5	1.9196		
OFD1	1.4891	SEH1L	1.6445	PSME2	2.0096	PPP2R1A	1.5547	FEN1	1.8576		
TPR	1.4568	ZW10	1.5717	GINS1	2.4646	RPA3	1.5353	UBB	1.4233		
RFC2	1.5440	PSMC5	1.5845	NINL	2.0324	PSMA2	1.7327	UBE2E1	1.8591		
ANAPC4	1.4572	AURKA	2.2797	MYBL2	2.1013	POLD2	1.7996	RAB8A	1.9369		
SDCAG8	1.3201	DYN1L1	1.5333	E2F4	1.3965	SMC3	1.6431	TK2	1.5051		
CUL1	1.4648	ANAPC5	1.4418	RAE1	1.8403	PSMB3	1.4316	BUB1	1.9658		
PPP1R12A	1.4814	BRC5	2.3403	PSMA7	1.4842	PSMD3	1.4378	YWHAG	1.6476		
WAPAL	1.4903	NUDC	1.5497	CDC25B	1.6696	NUP88	1.5362	ESCO2	2.2478		
PPP2R2A	1.5342	AC005522	1.5583	CSNK2A1	1.5780	PSMD11	1.4532	CDT1	2.1051		
POLD1	1.7550	ORC6	1.6600	PSMB10	1.8780	YWHAE	1.6662	PPP2R3B	1.5977		
MCM10	2.3261	PSE1	1.6085	MAPRE1	1.4897	SMG5	1.4840	GOLGA2	1.3450		
CSNK1E	2.0310	NUP50	1.6554	E2F1	1.9224	CEP290	1.4597	PSME4	1.3869		
NCPAG	2.7609	CENPK	2.3389	TUBGCP4	1.8073	CENPF	2.2820	SMC1A	1.5176		
TFD1P1	1.7336	CK2	1.4745	KIF23	2.7584	CDC8A	2.1978	BLZF1	1.3958		
CEP164	1.6417	B9D2	1.6184	HAUS2	1.9239	KIF2C	2.0871	NLS1	1.4647		
NUP98	1.6126	NUP85	1.6810	CASC5	2.1613	PPP2R5E	1.3319	SGOL2	2.0688		
PSM1D9	1.5436	PSMF1	1.3795	RAB8A	1.2818	SKA1	2.3352	NUMA1	1.6932		
FOXM1	1.9684	MCM8	1.8459	ACTR1A	1.3089	KS1B	1.7487	PMF1	1.4223		
RFC5	1.5372	MAX	1.3485	CENPO	1.8710	MIS12	1.3494	TAO1K	1.5894		
Gene	Fold-Change										
----------	-------------	----------	-------------	----------	-------------	----------	-------------	----------	-------------	----------	-------------
IFNA17	15.513	CAMK2G	1.6568	ITGB3	1.6369	KPN4	1.3309	NUP62	1.6856	IFNA8	10.747
IFNA8	10.747	EIF4A2	1.7911	EIF4G3	1.6245	DDX58	2.1343	IRF1	1.6817	IFNA7	8.4985
IFNA7	8.4985	EIF4A1	1.6722	EIF2AK2	1.6181	IRF3	1.8063	UBA7	1.6756	IFNA14	4.5365
IFNA14	4.5365	RNASEL	1.5408	IFITM2	1.6173	USP41	2.3186	PTPN2	1.6734	IFNA4	4.2438
IFNA4	4.2438	NUP205	1.7608	RP527A	1.5769	ARH1	1.7096	MX2	1.6644		

Interferon Signaling pathway (5% ZBP1 highest/95% ZBP1 lowest); p-value <0.05
Gene Symbol	Expression Value	Gene Symbol	Expression Value	Gene Symbol	Expression Value				
IFNB1	3.9058	HERC5	1.566	SUMO1	1.5739	IRF5	1.9069	NUP155	1.6571
IFIT2	2.6502	NCAM1	2.705	NUP37	1.5488	JAK2	1.6943	SEH1L	1.6445
CAMK2B	2.2713	NUP85	1.681	PPP2CA	1.5444	PPP2CB	1.4167	PIN1	1.8299
USP18	2.1842	IFNGR2	1.5434	NUP107	1.5405	OAS1	1.7109	IRF4	2.2322
IFI35	1.8975	TTN1	1.3977	KPNA1	1.5154	OAS3	2.2781	PPM1B	1.7106
HLA-G	1.8841	NUP1L1	1.5884	NUP133	1.4911	ADAR	1.4277	NUP93	2.9343
ISG20	1.8801	POM121	1.574	IRF9	1.4872	NUP214	1.4859	IFIT1	2.3023
UBE2E1	1.8591	NUP98	1.6126	PTPN11	1.4721	NUP35	1.8293	NUP188	1.7266
IP6K2	1.8488	AAAS	1.4887	STAT2	1.469	PPP2R1A	1.5547	MX1	2.3512
IFNAR1	1.8485	IRF2	1.6288	TPR	1.4568	IFNA21	3.7102	NUP153	1.3129
IFNAR1	1.847	PSMB8	1.549	KPNA2	1.4492	UBE2L6	1.9286	UBA52	1.3111
TRIM25	1.7993	TYK2	1.7651	EIF4E	1.4464	NUP210	1.9129	UBC	1.3084
NUP160	1.7894	NUP54	1.4714	EIF4A3	1.4336	EIF4E2	1.5914	PTPN6	1.2809
NEDD4	1.7797	RAE1	1.8403	GBP3	1.4251	IRF7	1.7838	EIF4G1	1.2793
NUP43	1.7715	ISG15	2.5585	UBB	1.4233	KPNB1	1.6639	MAPK3	1.2418
OAS2	1.7654	EIF4G2	1.5117	RANBP2	1.3975	PRKCD	1.8154	JAK1	1.1763
PLCG1	1.7514	IFNA10	7.5309	IFNA5	1.3942	IFNA16	3.0585	PML	2.1341
PIA51	1.7448	NUP50	1.6554	GRB2	1.3373	KPNAS	1.6881	NUP7L2	1.7165
SP100	1.7265	NUP88	1.5362	STAT1	1.3161	XAF1	1.7327	IFNAR2	1.7334
UBE2N	1.7013	KPNA3	1.758	PTPN1	1.3146	SRC	1.4247	RAP1B	1.3523
EIF4E3	1.4229	IFI27	2.2101	OASL	1.7928	SOCS3	0.2326		
Supplementary Table S4. Differentially expressed genes that are common between shZBP1 and shIRF3 in MM.1S cells (top50% log2 fold change and p adj <0.05)

down-regulated	up-regulated			
THRIL	AMOTL1			
DHCR24	PRPS2			
BLM	NASP			
RRM2	CALM3			
HES6	NCAPH2			
RAD51	PLEKHH2			
DDIAS	FADS1			
CCNF	TSPAN33			
CEP55	EMLIN1			
AURKA	MCC			
E2F8	INSI1G			
PRR11	LAM5			
MYB	LRRCC1			
EXO1	CCSAP			
SKA1	LRP8			
PKMYT1	CCNE1			
DTL	MCM8			
SHCBP1	MCM3			
BR13BP	ITPKA			
TONSL	HEMGN			
ERC6L	IMPA2			
FAM111B	LRRC20			
FEN1	SLC16A14			
MAD2L1	BARD1			
CDC45	MAL2			
DSCC1	CEP57L1			
POLA1	EAF2			
PROB1	CYP26A1			
RAD51AP1	TMEFF1			
KIF15	RELN			
WDR76	GRB14			
FANCG	RHBDL3			
CKAP2L	TMEM106C			
CENPJ	SCD			
CDC25C	ITPRIPL1			
MCM6	MYORG			
TP73	SMC1A			
Name of the enriched pathways (Homo sapiens)	Overlap	Adjusted P-value	Odds Ratio	Combined Score
---	--------	-----------------	------------	----------------
G1/S-Specific Transcription_R-HSA-69205	5/17	4.92E-06	53.97	943.0714
Unwinding of DNA_R-HSA-176974	4/12	4.70E-05	61.16	901.1077
DNA strand elongation_R-HSA-69190	7/32	1.80E-07	40.14	873.5304
E2F mediated regulation of DNA replication_R-HSA-113510	6/33	5.71E-06	33.36	587.6216
Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA)_R-HSA-5693554	5/26	3.36E-05	35.29	534.5948
Activation of the pre-replicative complex_R-HSA-68962	5/30	6.12E-05	30.58	440.2043
Resolution of D-loop Structures through Holliday Junction Intermediates_R-HSA-5693568	5/32	8.01E-05	28.67	403.0262
POLB-Dependent Long Patch Base Excision Repair_R-HSA-110362	2/7	0.02212	52.42	388.299
Resolution of D-Loop Structures_R-HSA-5693537	5/33	8.81E-05	27.8	386.366
Processive synthesis on the lagging strand_R-HSA-69183	3/15	0.00348	36.7	351.9814
Activation of ATR in response to replication stress_R-HSA-176187	5/37	1.41E-04	24.8	329.9524
Activation of PUMA and translocation to mitochondria_R-HSA-139915	2/8	0.02742	45.87	326.7286
Cell Cycle_R-HSA-1640170	26/566	4.91E-14	8.429	320.1011
Homologous DNA Pairing and Strand Exchange_R-HSA-5693579	5/42	2.56E-04	21.84	276.5402
G1/S Transition_R-HSA-69206	9/112	3.20E-06	14.74	270.955
Cell Cycle, Mitotic_R-HSA-69278	21/462	4.93E-11	8.34	253.3261
Lagging Strand Synthesis_R-HSA-69186	3/20	0.00778	27.52	239.2529
S Phase_R-HSA-69242	9/124	5.99E-06	13.32	232.8195
TP53 Regulates Transcription of Cell Cycle Genes_R-HSA-6791312	5/48	4.33E-04	19.11	229.098
DNA Replication_R-HSA-69306	8/105	1.65E-05	13.98	224.2559
CDC6 association with the ORC:origin complex_R-HSA-68689	2/11	0.04703	33.36	215.4542
Processive synthesis on the C-strand of the telomere_R-HSA-174414	2/11	0.04797	33.36	215.4542
Cell Cycle Checkpoints_R-HSA-69620	11/182	1.77E-06	11.09	212.8149
Telomere C-strand (Lagging Strand) Synthesis_R-HSA-174417	3/22	0.01012	25.02	210.176
Mitotic G1-G1/S phases_R-HSA-453279	9/136	9.71E-06	12.14	202.5136
HDR through Single Strand Annealing (SSA)_R-HSA-5685938	4/37	0.00262	19.84	197.2621
Presynaptic phase of homologous DNA pairing and strand exchange_R-HSA-5693616	4/39	0.00313	18.82	183.1741
Event	ID	Score	Fold	p-value
--	---------	--------	---------	------------
Synthesis of DNA_R-HSA-69239	7/97	9.08E-05	13.24	182.8151
G2/M Checkpoints_R-HSA-69481	9/150	1.85E-05	11.01	174.3159
M/G1 Transition_R-HSA-68874	6/82	4.16E-04	13.43	162.1024
DNA Replication Pre-Initiation_R-HSA-69002	6/82	4.37E-04	13.43	162.1024
HDR through Homologous Recombination (HRR)_R-HSA-5685942	5/64	0.00165	14.33	151.4058
Extension of Telomeres_R-HSA-180786	3/28	0.01787	19.66	150.7661
Resolution of Sister Chromatid Cohesion_R-HSA-250025	6/99	0.00113	11.12	122.1646
Mitotic Prometaphase_R-HSA-68877	6/107	0.00155	10.29	108.475
Homology Directed Repair_R-HSA-5693538	6/118	0.0026	9.33	93.21054
Assembly of the pre-replicative complex_R-HSA-68867	4/67	0.01833	10.95	83.45547
Regulation of DNA replication_R-HSA-69304	4/75	0.0262	9.786	70.36809
DNA Double-Strand Break Repair_R-HSA-5693532	6/145	0.00686	7.593	67.18344
G2/M DNA damage checkpoint_R-HSA-69473	4/78	0.02905	9.41	66.27318
HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)_R-HSA-5693567	5/112	0.01573	8.191	64.72335
RHO GTPases Activate Formins_R-HSA-5663220	5/114	0.01576	8.048	62.93194
DNA Repair_R-HSA-73894	9/285	0.00161	5.794	61.12078
Chromosome Maintenance_R-HSA-73886	4/86	0.04094	8.534	56.99652
Separation of Sister Chromatids_R-HSA-2467813	6/162	0.01146	6.796	56.04436
Regulation of TP53 Activity through Phosphorylation_R-HSA-6804756	4/89	0.04552	8.247	54.0272
Mitotic Anaphase_R-HSA-68882	6/173	0.01541	6.364	50.24109
Mitotic Metaphase and Anaphase_R-HSA-2555396	6/174	0.01547	6.327	49.75805
Transcriptional Regulation by TP53_R-HSA-3700989	9/348	0.00602	4.745	42.76202
Regulation of TP53 Activity_R-HSA-5633007	5/151	0.04459	6.076	39.80423
M Phase_R-HSA-68886	7/268	0.02379	4.793	35.03605
Supplementary Table S6. Commonly identified IRF3 target genes by integration of IRF3 binding within 2kb distance to TSS and both shRNAs-mediated IRF3 -depleted transcriptome of MM.1S cells

Activated genes

| Gene |
|-------|
| CSRP1 | SEL1L | TYRO3 | Kat2b | Kpna6 | Fem1b | Sclca3 | Lsm10 | Cpox | Arhgap11a | Akap2 | Uhrf1bp | Cs | Lrrc20 | Irs1 | Calm3 | Hdac9 | Cdyll | Ncapg2 | Zdhhc7 | Rrbp1 | Rab3b | Hdgf | Naa50 | Smc6 | Ezy | Lonp1 | Eya3 | Cse1l | Hnrrnpul2b | Pgm1 | C19orf47 | Sf3b3 | Esrra | Pcnt | Rnpepl1 | Dsn1 | Nus1 | Suclg1 | Tomm40 | Lrrc59 | Ak2 | Lrig1 | Ccl3 | Cgn | Recql | Nxe3 | Ccm2 | Atp6ap1 | Faml11b | Clcl3 | Erc1 | Tbl1x | Hbs1l | Sipa1 | Slc2a4a | Lrrc57 | Cry1 | Stag1 | Pik3ap1 | Nudt3 | Slc37a4 | Nop9 | Hla-e | Mto1 | Slc39a7 | Pkeh2b | Npnt | Chchd2 | Rad51ap1 | Ssrp1 | Rnf168 | Cerk | Slc31a1 | Foxo3 | Mpc1 | Poles3 | Rap1b | Gstc4 | Cn0tl6 | Ddx2 | Mprps24 | Ybx1 | Pigx | Crebl2 | Mis18a | Btaf1 | Mcm5 | P2x5 | Rab11fip5 | Znf275 | Cdc25c | Eif4h | Rbbp5 | Ern1 | Usf2 | Arap1 | Tmc5 | Lrrc8a | Tmem106c | Xpo7 | Golim4 | Nrn1 | Polq1 | Tchp | Slc2a4a | Cbl | Uqcrfs1 | Cytip | Ug2t2b17 | Sclc38a1 | Tex261 | Rusc1 | Prps2 | Rbm3 | Amotl1 | Usf3 | Fanci | Spats2 | Slc36a1 | Scd | Lamp5 | M57 | Myh10 | Slk | Dhcr24 | Wdr7 | Stk24 | Slc2a5a | Srebfb1 | Samd9l | Emilin1 | Nin | Fkb4p | Slc4a7 | Sclca8 | Coa4 | Ubxn2a | Rad21 | Tp53inp2 | Casp3 | Feni | Tram2 | Cd3v | Pdik1l | Glcc1 | Ddost | Spag9 | Atfip10d | Ckap2l | Hac3d | Tpm3 | Snx12 | Eaf2 | Nek4 | Xiap | Pkmty1 | Slc16a14 | Tln1 | Trappcb6 | Tnxrdd | Hipk2 | Smc5 | Atpp6ap2 | Mfn2 | Dpf3 | KCna3 | Fuc2a | Slc4a2 | Hnrrph2 | Ralbp1 | Imm7 | Urb1 | Skap2 | Ampd1 | Noc3l | Stard4 | Gmpmb | Mfsd6 | Pradc1 | Myc1 | Otud7b | Arf1 | Uqccrc1 | Gde1 | Top3a | Prps1 | Prr15 | Sdf2l1 | Foxred2 | Adar | Tec | Ccd4c | Dennd5 | Cd2ap | Golt1b | Soat1 | Ddrkg1 | Lyar | Cdksrap2 | Mapk33 | Scl2a5a | Atppa | Prkci | Atppb3 | Tcf19 | Fancg | Snrnp25 | Endod1 | Kbtbd8 | Mprip | Synm1 | Pdia4 | Myo18a | Mcm3 | Tppp1 | Paps51 | Rad51d | Itpripl1 | Smdch1 | Gle1 | Idh3a | Tnnt2 | Cnnf | Mdfic | Cobll1 | Tacc1 | Akrb1 | Var2s | Ccdc28c5 | Diaph1 | Got1 | Ngly1 | C3orf70 | Mtus1 | Znf672 | Prdm1 | Colgal1t | Mrpl27 | Mcur1 | Srpk1 | Lrp8 | Nnt | Neus | Rcc2 | Tex2 | Maccl | Anln4 | Micu1 | Tor3a | Mcm8 | Chst15 | Bloc1s5 | Tnpo2 | Gltp | Insr | Cxox1b | Lmo7 | Rnmd5b | Sefh51 | Suz12 | Tiam1 | Mcc | Gdf11 | Dhfr | Cln6 | Arfgf2 | Sec24a | Stk26 | Mcm7 | Slamf7 | Foxn3 | Sptbn1 | Smtmn | Ef28 | Parg | St3gal6 | Rad51 | Mad2l1 | Tmem214 | Nf2 | Snx30 | Jgf2bp2 | Igf2b2 | Isg20 | Ndrg1 | Wdfy1 | Msh2 | Lrrk1 | Tcbd10b | Fnip2 | Idh2 | Fbxw4 | Dst | Ube3c | Srpk2 | Naga | C2orf88 | Arsb | Tnfrsf13b | Rablb6 | Micall1 | Dtl | Dlg5 | Tym5 | Cd99l2 | Man1a1 | Cdan1 | Atg3 | Mrps16 | Pja2 | N4bp2 | Manea | Cav1 | Hemgn | Tp73 | Lrrc8b | Cyp26a1 | Elk4 | Ndufb10 | Cap1 | Dennd3 | Ttl | Ocrl | Mcm2 | Lss | Utp23 | Dcps | Higda1 | Cep55 | Bicd2 | Alhds1a | Syk | Ccasp | Skal | Hydro1 | Pou2af1 | Znf770 | Psmg1 | Mef2d | Mast2 | Twf1 | Jrh2 | Abca5 | Smoc1 | Ankrd1 | Mrpl55 | Serpinb6 | Rgs9 | Hnrnpul2 | Irf4 | Stat2 | Afg3l2 | Paf1 | Gne | Pigu | Kif20b | Ell | Ap153 | Ccchrc1 | Znf106d | Dnacj3 | Rap2c | Br13bp | Zbed4 | Nab1 | Otul1n | Acere3 | Dnmt1 | Zdhhc20 | Tmed5 | Polr2d | Ab2 | Smc1a | Ldlr | Tcf4 | Grwd1 | Sec22c | Cd4 | Arhgold | Dcafl2 | Mthfd2 | Uspl | Sod2 | Rbsn | Grhl1 | Ncaph2 | Zwi4t | Nanp | Rfw3 | Vapa | Arfgf3e | Seama5a | Eif4e3 | Dvl2 | Rabla3 | Zdhhc23 | Kansl3 | Xylb | Sigmar1 | Kiaa0044 | Pm20d2 | Pdp2 | Mcm6 | Nasp | Shmt2 | RbBP4 | Polr3d | SMC2 | Rnaseh2a | St6gal1 | Ill10a | Uap1l1 | Ckap4 | Rrm2 | Phhl1n | Serinc5 | Aco2 | Glc18 | Kiaa0513 |
Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8	Gene 9	Gene 10	Gene 11
BAZ1B	MTCH2	HEXA	FADS1	POLA1	MAL2	HIRIP3	DLAT	HMGN5	TMEM201	
BMP6	REXO4	APEH	E2F1	CEP57	TONSL	HES6	TPD52	ATAD5	RAB11FIP4	
GUSB	KIF15	UGTT2	UHRF1	PFAS	HAUS2	ANO8	CEP57L1	SULF2	SLC25A45	
KIF13B	IMPA2	SVIP	KIF11	LCLAT1	NUSAP1	JAKMIP1	PHAX	STRBP	CAPD52	
POLH	ABCB10	ACO1	CHAF1B	NFIL3	CCP110	AARS	BLVRB	TAF9B	ANKRD13A	
SUB1	CTT8	FICD	PSMD11	RAD1	DNMBP	PASK	KIAA0232	SNX25	UBQLN2	
ZBED8	KCTD9	NUAK1	CAV2	ATP2A2	HEATR5	MAPK9	PAQR4	AYLYRE	ARHGAP33	
PDXK	COMTD1	MLLT3	SLC44A1	EXOC5	LANCL1	CENPJ	INPP4A	ARFRP1	AP1S2	
DSCC1	PDI6	LMO4	SPAG5	EZH2	DD1AS	DNAJC11	KLF12	NDUFA6	LGALS17A	
DMXL1	EXO1	CER56	E2F2	ID1	BZW2	LIME1	PRKACA	SLC20A1	MRPS18C	
CDT1	MSI2	AAK1	MRPS36	SLFN13	JADE1	LMNB1	KCTD1	RARGD	HNRNPR	
MCM4	GTF2A1	SP3	POM121	SHCBP1	CCL4L2	GB2	KCNQ5	NDUF51	HMCE5	
MYEOV	ZNF79I1	ATIC	IPO9	USP37	HMGN2	TP53NP1	NOLC1	SLC10A7	ANKRD33B	
BLM	PRRG4	KIF4A	HMGB3	KANK2	PABPC4	TCP1	MPC2	CHST12	HNRNPF	
POC1B	SPAG7	FDPS	LMBRD2	UBE2H	PPM1K	DEGS1	HSPA8	TMPO	SLC25A11	
SKIL	ATP8B2	PHIP	TTL5	RNGT	TWILCH	PAIP2B	RAB26	STIM1	RAB27A	
CBX3	WDR76	XRCC6	ITPKA	BARD1	DOCK8	SLC7A5	MTHFD1	TIMM21	TNFRSF21	
CDC4A7L	ACAA2	NAPB2	PIP5K1B	LRMP	CDC45	DONSON	CYC1	FZD5	GAPTCH11	
FZD3	BAMP8B	AARS2	SH3RF1	SEL1L3	EBP	ZNF142	HJURP	MBD2	PSMB8-AS1	
SAE1	DOCK9	HEYL	HYI	API5	ZFP91	FH	APPL1	PRKCE	TMEM109	
ZNF641A	ARID5B	IL6ST	STK35	GAB2	PYCR2	IPO7	SLBP	PSMC3P1	SUPT16H	
LAT2	WNK1	DHR5S	AFF4	RNF103	PRKDC	TBC1D30	HS2ST1	RASGRP3	ARHGAP10	
STT3A	XRCC5	STK4	FZD1	PLCB3	PRR11	MFAP3	TIMELESS	L3MBTL2	NDUF56	
SOS1	ASNSD1	HSPAA4L	EML6	CENPL	ERLN1L	LIG1	MAN2A2	ARL6IP6	KATNB1	
TTF2	L2GHGD	ADD2	PLEKHA7	DCK	CEPI92	PAXIP1	TRIM26	SFXN5	LRRC45	
NPC1	TPP6R3	DERA	ADM	HIF1X	YWHAQ	FNDC3B	RAB4A	SRGAP2	ANKRD10	
MSX1	PHYH	TTL7	VARS	CCNE1	PSMD3	GRCP5D	GINS3	ERGIC1	PGRMC2	
LRR8C8	GFL1	PIGO	INSIG1	POLE	DOT1L	ZBP1	UBQLN1	XRAA1	ZMPSTE24	
TRIB1	HPS3	AURKA	PNP	RCAN1	SLC38A2	TUBB	MIEF1	MLEC	DNMT3B	
CDH2	THOP1	DAZAP1	DPYS1L	NCAM1	NCAPD2	PLHPP1	ZNF215	MTMR12	HNRNPAB	
RTEL1	OSGN2	ASCC3	STK39	JAKMIP1	MYB	NSFL1C	GNPNAT1	DOLPP1	METTL21A	
ACTB	KIF18B	SFXN4	iTG4D	CDS2	LRCH3	CP2K	GHITM	KNOP1	SMARC2A	
KIF14	MMS22L	TLR4	URB2	SFXN2	LIMD1	TAPBP	SPCS2	PRPSAP1	C16orf95	
FKBPS	BBS7	JPH1	GALNT6	LIN54	PDK1	SLAIN1	MRPS1B	LRRCC1	DENND1B	
RMB47	UBR7	FRMD6	ST7	NANS	PUS7L	TRIM41	SRGAP2	SLC7A1	TNFRSF17	

Repressed genes

Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8	Gene 9	Gene 10
CRYBB1	IQCH	GASS	HIF1A	RNF123	TMED4	CSTB	WDR48	PCYOX1	TNFRSF10D
E124	VPS9D1	SMOX	IQSEC1	NAT9	MCAT	GALNT18	DAZAP2	CSNK1G3	TMEM80
SF3B3	BIRC3	HDAC10	WNT10A	KDM3A	ARL6IP5	MFSD10	GRHL3	INAFA2	PAX8-AS1
BMF	CRTC2	MRPL10	IL27A	RPS7	HIVEP3	LY86	PCDH1	TARB1	ATP6V1C2
BSPRY	EML4	DNAJA1	GNA12	POLDIP	SYTL2	CLTA	PCED18-A	GOLM1	CDC42E1
MIAT	IFNGR2	RPS6K1A	RPL7A	P2RX1	SLC16A3	RPS24	RPL31	TYW1	FAM86C2P
RPS28	IER5	HOOK2	KPTN	FAH2	ARSA	DLGAP4	STK17A	NEK6	CAPRIN2
RPL8	LPIN1	PRPSAP2	RPS19	CD70	STAT4	WDR60	FTSJ3	CCR10	L3MBTL1
MAPT	LRWD1	C3AR1	RPRG	SGK1	DTX3L	IDNK	GOLGA8A	RPS3	ASB16-AS1
SYF2	NMRK1	RPL36	RPL23	FTL	NPR3	PIP5K1	UNC93B1	CTNNB1	MAPKAPK2
PHPT1	RCSD1	APOL2	CSK	RPL34	SLC39A4	TRMT1	POMT1	PPP1R10	LINC00893
-------	-------	-------	-----	-------	---------	-------	-------	----------	-------------
IL2RG	PLEKH01	RPL15	DEF6	ARL2	NARF	CASP8	RPS23	NFKB2	ARHGEF40
GNA12	RPS29	TP53I11	ZNF644	KY	NFKB1A	TRAF1	RPL17	SCNN1G	C11orf68
MKNK2	PTTG1IP	RFL	IZUMO4	DDIT4	EHD1	PIGQ	ASB13	HMOX1	GALNT10
SYNGR2	CCDC92	R3HDM4	RPL27A	TMC6	ARPC5	GALNT2	RNF207	CCDC24	APOBEC3F
JAK3	STAT6	B4GALTS	NABP1	AZIN2	RPL21	ALDH1B1	RPS27L	RPL27	THUMP3D-AS1
UBA52	LRC1	SSBP4	ZBTB10	RPS3A	RPS8	CD86	PARP9	LUC7L3	DENND5A
PSMB5	VT1B	ZMIZ2	IFI16	RPL35A	SOAT2	SECTM1	RPL10	RPL18A	SLC25A23
PEA15	SPPL2B	UNC119	ACADVL	APOL1	CRK	RPS9	ZNF276	KL3F	ATP6V0E1
MX1	PLXNA3	OFD1	CLSTN1	RPL6	PRNP	BLVRA	CTDNEP1	COMT	NIPSNAP1
SCNN1B	IGF1R	ZF3P6L1	MRFAP1	WASF1	GPR137	BAX	WDR73	CFAP70	SRP14-AS1
BSG	RPL22	RPS10	OGT	SUMF2	RPS21	ARPC1A	CCDC86	IKBKE	ZSCAN30
MOB3A	RGS14	AMPD3	GPR108	RPS6	FAS	ARL1	RALY-AS1	HRAS	STX16-NPEPL1
RALGDS	ELK3	C11orf1	VAMP3	PARP8	GABPB2	TSPAN31	EIF3F	NEK11	FAM171A1
PLXNB2	ERC1	LMAN2L	OXL1	CXXC5	GATC	RPS14	GALNT7	SLC2A11	KCNQ1OT1
ECE1	NOTCH2	NRBP1	Dyrk2	ARHGA	RPL38	RGL1	CABIN1	Clorf52	TMEM255B
SF1	TXLB	FAU	IRF5	GNB1L	MZF1	GBP4	CCDC71L	VASP	TNFRSF10B
SNRPA1	DMWD	EIF3G	TMC8	GTF3C2	ARID5A	MAP2K3	CSNK1G2	CLPMT1	DENND6A
SLC2A1	LARS	RPL36A	BCL3	UBXN8	CYB5R1	PPFIA4	GRB2	TRADD	SYNGAP1
FJK1	SLC41A3	RPLP0	ST14	CUL7	EME2	IRF2BP2	ABHD17A	NINJ1	TMEM259
CTSA	NMI	ZNF580	ANXA4	ZMAT1	RPS15	RPL10A	ATP6V1B2	RPL37A	CDC42BPA
MR1	VPS28	ISCU	UBFD1	ICK	RPL13	ZNF467	RNF170	EIF3D	NAPA-AS1
REL2	POLN	EPAS1	HSF4	YBX3	CC2D1A	C1RL-AS1	TGIF2	GRINA	HRNRPA0
TRIP11	CDK6	TPCN1	RHPN1	E1F4G3	LENG8	C6orf62	VEGFA	PHLD3	
Supplementary Table S7. Reactome pathways_Enrichr pathway enrichment analysis of the 770 genes predicted to be directly activated by IRF3 binding to their regulatory areas

Name of the enriched pathways (Homo sapiens)	Overlap	Adjusted P-value	Odds Ratio	Combined Score
Unwinding of DNA_R-HSA-176974	9/12	1.79E-08	19.48	468.9
DNA strand elongation_R-HSA-69190	12/32	4.14E-07	9.74	201.0831
G1/S-Specific Transcription_R-HSA-69205	8/17	1.16E-05	12.22	199.2733
Activation of the pre-replicative complex_R-HSA-68962	11/30	1.83E-06	9.524	178.5999
Pyruvate metabolism and Citric Acid (TCA) cycle_R-HSA-71406	13/48	3.48E-06	7.035	124.5455
Citric acid cycle (TCA cycle)_R-HSA-71403	7/19	2.99E-04	9.569	118.7075
IRS activation_R-HSA-74713	3/5	0.01784	15.58	117.3632
Cell Cycle_R-HSA-164017	65/566	4.39E-12	2.983	99.87958
Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA)_R-HSA-5693554	8/26	3.00E-04	7.992	99.4886
Activation of ATR in response to replication stress_R-HSA-176187	10/37	7.77E-05	7.02	97.6146
E2F mediated regulation of DNA replication_R-HSA-113510	9/33	2.40E-04	7.084	90.13903
Mitotic G1-G1/S phases_R-HSA-453279	23/136	6.71E-07	4.393	87.58288
Cell Cycle, Mitotic_R-HSA-69278	54/462	2.67E-10	3.036	87.0802
G1/S Transition_R-HSA-69206	20/112	2.03E-06	4.638	85.77785
Signal attenuation_R-HSA-74749	4/10	0.01419	10.39	81.81775
S Phase_R-HSA-69242	21/124	2.03E-06	4.399	80.76056
DNA Replication_R-HSA-69306	18/105	1.25E-05	4.453	71.86397
POLB-Dependent Long Patch Base Excision Repair_R-HSA-110362	3/7	0.04371	11.13	70.53198
M/G1 Transition_R-HSA-68874	15/82	4.55E-05	4.751	69.16752
DNA Replication Pre-Initiation_R-HSA-69002	15/82	4.86E-05	4.751	69.16752
Resolution of D-Loop Structures_R-HSA-5693537	8/33	0.0015	6.297	66.13454
Synthesis of DNA_R-HSA-69239	16/97	7.73E-05	4.284	59.84078
DNA Double-Strand Break Repair_R-HSA-5693532	21/145	2.05E-05	3.762	58.5392
Assembly of the pre-replicative complex_R-HSA-68867	12/67	5.10E-04	4.652	54.40799
IRF3-mediated induction of type I IFN_R-HSA-3270619	4/13	0.03282	7.992	53.88441
The citric acid (TCA) cycle and respiratory electron transport_R-HSA-1428517	21/153	4.79E-05	3.565	52.19291
Resolution of D-loop Structures through Holliday Junction Intermediates_R-HSA-5693568	7/32	0.00731	5.682	49.09321
DNA Repair_R-HSA-73894	32/285	9.61E-06	2.916	48.36416
Early Phase of HIV Life Cycle_R-HSA-162594	4/14	0.04018	7.421	47.76672
HDR through Homologous Recombination (HRR)_R-HSA-5685942	11/64	0.00156	4.464	46.55633
Regulation of DNA replication_R-HSA-69304	12/75	0.00155	4.156	43.65912
Homologous DNA Pairing and Strand Exchange_R-HSA-5842	8/42	0.0073	4.947	42.8895
Pathway	Overlap	Adjusted P-value	Odds Ratio	Combined Score
--	--------	------------------	------------	----------------
G2/M Checkpoints_R-HSA-69481	19/150	3.60E-04	3.29	40.04601
Synthesis of substrates in N-glycan biosynthesis_R-HSA-446193	10/63	0.00611	4.123	36.71012
Cholesterol biosynthesis_R-HSA-191273	5/23	0.04087	5.647	36.43604
Cell Cycle Checkpoints_R-HSA-69620	21/182	4.76E-04	2.997	35.38072
Presynaptic phase of homologous DNA pairing and strand exchange_R-HSA-5693616	7/39	0.02082	4.662	34.28883
Homology Directed Repair_R-HSA-5693538	15/118	0.00236	3.302	32.8438
Sialic acid metabolism_R-HSA-4085001	6/33	0.03831	4.723	30.85951
Regulation of TP53 Activity through Phosphorylation_R-HSA-6804756	12/89	0.00665	3.502	30.78408
Orc1 removal from chromatin_R-HSA-68949	10/70	0.01299	3.711	29.73416
Switching of origins to a post-replicative state_R-HSA-69052	10/70	0.01333	3.711	29.73416
AURKA Activation by TPX2_R-HSA-8854518	10/72	0.01486	3.608	28.07016
Removal of licensing factors from origins_R-HSA-69300	10/72	0.01521	3.608	28.07016
Regulation of cholesterol biosynthesis by SREBP (SREBF)_R-HSA-1655829	8/55	0.03296	3.778	25.59725
Post-translational protein modification_R-HSA-597592	42/521	3.74E-04	2.094	25.31411
HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)_R-HSA-5693567	13/112	0.01432	3.015	23.78714
Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein_R-HSA-446193	10/78	0.02488	3.33	23.75895
SUMOylation_R-HSA-2990846	12/101	0.01708	3.086	23.44182
Asparagine N-linked glycosylation_R-HSA-446203	24/259	0.00327	2.407	23.08093
Transcriptional Regulation by TP53_R-HSA-3700989	30/348	0.0018	2.239	22.95018
Loss of proteins required for interphase microtubule organization?from the centrosome_R-HSA-380284	9/69	0.03412	3.388	22.59023
Loss of Nlp from mitotic centrosomes_R-HSA-380259	9/69	0.03473	3.388	22.59023
Mitotic Prometaphase_R-HSA-68877	12/107	0.02593	2.913	20.60454
SUMO E3 ligases SUMOylate target proteins_R-HSA-310	11/96	0.03264	2.976	20.13795
Mitotic G2/G2/M phases_R-HSA-453274	17/175	0.01527	3.252	19.50638
Sphingolipid metabolism_R-HSA-4281517	9/74	0.04999	3.159	19.49119
Regulation of PLK1 Activity at G2/M Transition_R-HSA-2	10/87	0.04516	3.867	18.77097
Regulation of TP53 Activity_R-HSA-5633007	15/151	0.0236	2.58	18.5986
Metabolism of proteins_R-HSA-392499	69/1074	0.00122	1.669	17.99519
Epigenetic regulation of gene expression_R-HSA-212165	12/115	0.04069	2.71	17.45593
G2/M Transition_R-HSA-69275	16/173	0.03196	2.402	16.39538
HIV Infection_R-HSA-162906	19/222	0.03	2.223	15.3561
Metabolism_R-HSA-1430728	105/190	0.00503	1.429	13.04787

Enrichr pathway enrichment analysis of the 339 genes predicted to be directly repressed by IRF3 binding to their regulatory areas
Pathway	**Gene IDs**	**Log2 Fold Change**	**Estimate**	**SE**
Formation of a pool of free 40S subunits	42/96	6.6E-46	25.81	2874.639
3' -UTR-mediated translational regulation	42/106	2.4E-44	23.38	2481.838
L13a-mediated translational silencing of Ceruloplasmin expression	42/106	3E-44	23.38	2481.838
GTP hydrolysis and joining of the 60S ribosomal subunit	42/107	3.2E-44	23.16	2447.439
Peptide chain elongation	39/84	3.3E-44	27.39	2913.375
Viral mRNA Translation	39/84	4.9E-44	27.39	2913.375
Eukaryotic Translation Termination	39/87	7.2E-44	26.45	2766.136
Selenocysteine synthesis	39/87	8.2E-44	26.45	2766.136
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)	39/89	1.8E-43	25.85	2674.693
Eukaryotic Translation Elongation	39/89	2E-43	25.85	2674.693
Eukaryotic Translation Initiation	42/114	4.1E-43	21.74	2227.01
Cap-dependent Translation Initiation	42/114	4.4E-43	21.74	2227.01
Selenoamino acid metabolism	40/111	1.5E-40	21.26	2051.558
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)	39/106	5.4E-40	21.71	2063.111
Nonsense-Mediated Decay (NMD) R-HSA-975957	39/106	5.8E-40	21.71	2063.111
SRP-dependent cotranslational protein targeting to membrane R-HSA-1799339	39/107	7.8E-40	21.5	2034.399
Translation R-HSA-72766	42/151	2.4E-37	16.41	1457.546
Influenza Life Cycle R-HSA-168255	40/136	1.3E-36	17.35	1511.003
Influenza Viral RNA Transcription and Replication R-HSA-168273	39/128	2.3E-36	17.98	1554.129
Influenza Infection R-HSA-168254	40/147	3.8E-35	16.05	1342.074
Major pathway of rRNA processing in the nucleolus R-HSA-6791226	40/166	7.3E-33	14.22	1112.89
rRNA processing R-HSA-72312	40/180	2.2E-31	13.11	980.9076
Metabolism of amino acids and derivatives R-HSA-71291	43/335	1.6E-23	7.573	429.397
Infectious disease R-HSA-5663205	43/348	7.1E-23	7.29	402.021
Formation of the ternary complex, and subsequently, the 43S complex R-HSA-72695	19/50	1.6E-19	22.42	1062.841
Translation initiation complex formation R-HSA-72649	19/57	2.7E-18	19.67	874.6005
Ribosomal scanning and start codon recognition R-HSA-72702	19/57	2.9E-18	19.67	874.6005
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S R-HSA-72662	19/58	3.9E-18	19.33	852.1469
Disease R-HSA-1643685	51/725	2.4E-16	4.15	165.6816
Metabolism of proteins R-HSA-392499	58/1074	1.7E-13	3.186	106.1788
Gene Expression R-HSA-74160	66/1631	1.1E-09	2.387	58.50422
Metabolism R-HSA-1430728	65/1908	1.7E-06	2.01	34.50708
Regulation of necroptotic cell death R-HSA-5675482	5/14	0.00011	21.07	272.6659
RIPK1-mediated regulated necrosis R-HSA-5213460	5/16	0.00022	18.44	224.7141
Regulation	#/Total	P-value	Log2FoldChange	CombinedScore
--	---------	---------	---------------	---------------
Regulated Necrosis_R-HSA-5218859	5/16	0.00023	18.44	224.7141
Death Receptor Signalling_R-HSA-73887	7/48	0.00065	8.604	95.389
Dimerization of procaspase-8_R-HSA-69416	4/11	0.00096	21.45	227.8933
Regulation by c-FLIP_R-HSA-3371378	4/11	0.00098	21.45	227.8933
CASP8 activity is inhibited_R-HSA-5218900	4/11	0.00101	21.45	227.8933
Toll-Like Receptors Cascades_R-HSA-168898	11/140	0.00105	4.635	48.70507
TRIF-mediated TLR3/TLR4 signaling_R-HSA-937061	9/97	0.00143	5.474	55.4238
Toll Like Receptor 3 (TLR3) Cascade_R-HSA-168164	9/97	0.00146	5.474	55.4238
MyD88-independent TLR3/TLR4 cascade_R-HSA-166166	9/97	0.0015	5.474	55.4238
Toll Like Receptor 4 (TLR4) Cascade_R-HSA-166016	10/122	0.00153	4.836	48.50032
Activated TLR4 signalling_R-HSA-166054	9/112	0.0042	4.741	42.66809
Programmed Cell Death_R-HSA-5357801	11/166	0.00428	3.909	35.02182
Ligand-dependent caspase activation_R-HSA-140534	4/17	0.00517	13.88	121.1514
Regulation of TNFR1 signaling_R-HSA-5357905	5/31	0.00523	9.516	83.13201
Innate Immune System_R-HSA-168249	28/807	0.00896	2.047	16.69644
SHC-related events triggered by IGF1R_R-HSA-2428933	3/9	0.0115	19.67	155.0901
Apoptosis_R-HSA-109581	10/163	0.01436	3.619	27.66884
Immune System_R-HSA-168256	44/1547	0.01469	1.678	12.75707
Regulation of gene expression by Hypoxia-inducible Factor_R-HSA-1234158	3/10	0.01531	17.7	133.4916
TNF signaling_R-HSA-75893	5/41	0.01748	7.195	53.17565
Iron uptake and transport_R-HSA-917937	5/43	0.02144	6.86	49.17444
Cellular response to hypoxia_R-HSA-2262749	4/26	0.02381	9.076	63.62731
Cytosolic sensors of pathogen-associated DNA_R-HSA-1834949	6/66	0.02395	5.363	37.75556
Signaling by PTK6_R-HSA-8848021	6/67	0.02421	5.283	36.77103
Regulation of Hypoxia-inducible Factor (HIF) by oxygen_R-HSA-1234174	4/26	0.02423	9.076	63.62731
TP53 Regulates Transcription of Death Receptors and Ligands_R-HSA-6803211	3/12	0.02458	14.75	102.6747
Caspase activation via extrinsic apoptotic signalig pathway_R-HSA-5357769	4/27	0.02623	8.74	59.98581
VEGFA-VEGFR2 Pathway_R-HSA-4420097	14/320	0.02953	2.581	17.36617
p38MAPK events_R-HSA-171007	3/13	0.02955	13.61	91.37597
Signalling to ERKs_R-HSA-187687	12/253	0.03206	2.798	18.50882
TRAF6 Mediated Induction of proinflammatory cytokines_R-HSA-168180	6/72	0.0326	4.916	32.36066
Signaling by VEGF_R-HSA-194138	14/328	0.035	2.518	16.35759
NGF signalling via TRKA from the plasma membrane_R-HSA-187037	15/374	0.04364	2.366	14.81257
Supplementary Table S8. commonly co-regulated genes by both IRF3 and IRF4 in MM.1S cells; Integration of intersection of IRF3 and IRF4 binding within 2kb distance to TSS and both shRNAs-mediated IRF3-depleted transcriptome of MM.1S cells

Activated genes
HNRNP
AKAP2
LRRC59
RRBP1
CCL3L1
PGM1
NUDT3
DOLPP1
IRF4
SSRP1
CASP3
SLC37A4
RALBP1
DIAPIH1
RABL6
IL10RA
SCD
MAP3K3
CAP1
TPM3
RFX2
SRPK1
RNF168
SEL1L
MTHFD2
ADAR
FNP2
MCM8
CERK
ERC1
GLE1
PMD2RO
KIAA0040
TRIM41
SAMD9L
CS
XPO7
POLR2D
MICAL1
MCC
Gene 1

ZNF106
NPC1
STT3A

Repressed genes

Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7	Gene 8	Gene 9	Gene 10	Gene 11	Gene 12	Gene 13	Gene 14	Gene 15	Gene 16	Gene 17	Gene 18	Gene 19	Gene 20																																																																																																																																																							
CRYBB1	ALDH1B1	B4GALT5	RFFL	PPP1R10	TARBP1	TXLN5B	MCAT	NAPA-AS1	SCNN1G	ISCU	P2RX1	RPL36A	NFKB2	NFKBIA	ICK	EHD1	IZUMO4	EI24	SLC2A11	EME2	RPL27	PIP5K1L	OXLD1	BLVRA	R3HDM4	CC2D1A	DAZAP2	LENG8	BAX	RPS9	PHPT1	ARSA	CCDC71L	POLDP2	ZMAT1	BMF	GALNT18	CCDC44	CLPTM1	SECTM1	CFAP70	LUC7L3	RPL22	ATGP61C2	RPS28	TP5311	UNC119	LRWD1	CLTA	RPS7	DLGAP4	RPL35A	TRIP11	GNA12	HMOMX1	SSBP4	STAT6	RCD51	UBD51	RPS29	RPL38	ASB16-AS1	UNC93B1	FAM171A	GNBI1	RPL6	WDR60	RPS5K1A	HNRNPAO	APOL1	STX16-NPE11	BS6	RALGDS	RPS15	RPS10	GALNT2	OGT	RALLY-AS1	RPL34	SLC41A3	SNRPA1	IJK8E	APOL2	C1orf52	HRAS	CSNK1G2	RPS25L1	C3AR1	PCEOB1-AS1	RGS14	CTDNEP1	ARL6IP5	CRK	NINJ1	KDM3A	TGF2	RPL17	C11orf1	SLC2A1	RPL36	PIGQ	YBX3	SF3B6	RPL7A	RPL15	HIVEP3	SRP14-AS1	CTNNB1	FTL	MAP2K3	RPS19	VAMP3	RNF123	BIRC3	GRB2	RPL0P	MAPT	ECE1	CASP8	CRT2C	GFP137	HOOK2	SGK1	SOAT2	TFNRSF10D	MOB3A	EIF3D	RPS14	STK17A	CAPR1N2	ZSCAN30	CUL7	GABBP2	CDC42SE1	RPS24	PFP1A4	GBP4	WASF1	CXX5C	PAPR9	RPL10A	ERCC1	ARID5A	RPL8	COMT	LMAN2L	EIF3G	ELK3	DEF6	NMI	KY	RNF170	SCNN1B	LY86	ZMIZ2	ARPC5	DMWD	MIAT	PTTG1P1	RP58	TFNRSF10B	MXI1	UBA52	NIPSNAP1	FJX1	IGF1R	SYNGAP1	ZNF580	RPL31	TMEM259
PEA15	ARL1	RPL18A	RPS6	CSNK1G3	PARP8	PAX8-AS1	VPS28	CCDC86																																																																																																																																																																		
-------	------	--------	------	---------	-------	----------	-------	--------																																																																																																																																																																		
MFSD10	WDR73	DNAJA1	MRPL10	CTSA	VASP	RPS23	RPS3	TMEM255B																																																																																																																																																																		
JAK3	ZFP36L1	ST14	GTF3C2	GAS5	INAFM2	HSF4	SYF2	APOBEC3F																																																																																																																																																																		
RGL1	TRMT1	ARPC1A	ABHD17A	RPS3A	RPL23	THUMPD3	ASB13	ARHGEF40																																																																																																																																																																		
IQCH	ARL2	RPL37A	IRF5	SYTL2	ATP6V1B2	CDK6	SPPL2B	SLC25A23																																																																																																																																																																		
MKNK2	NEK11	TRADD	NAT9	LARS	WDR48	MAPKAPK	PCDH1	DENND5A																																																																																																																																																																		
MZF1	LRRC1	ZNF467	GNAI2	IER5	IDNK	EIF4G3	C11orf68	LINC00893																																																																																																																																																																		
FTSJ3	WNT10A	MR1	NARF	UBXN8	IQSEC1	RHPN1	IL27RA	PLEKHO1																																																																																																																																																																		
EML4	RPGR	CYB5R1	DTX3L	GALNT10	EIF3F	C1RL-AS1	RPL27A																																																																																																																																																																			
MRFAP1	KPTN	BCL3	CSK	C6orf62	IFNGR2	CLSTN1	CABIN1																																																																																																																																																																			
ZNF644	AZIN2	CD70	SF1	GRHL3	ATP6V0E1	GOLGA8A	LPIN1																																																																																																																																																																			
Table S9. Reactome pathways_Enrichr pathway enrichment analysis of genes predicted to be activated by IRF3-IRF4 co-binding

Name of the enriched pathways (Homo sapiens)	Overlap	Adjusted P-value	Odds Ratio	Combined Score
Cell Cycle_R-HSA-1640170	53/566	7.12E-10	3.06	86.8934
Cell Cycle, Mitotic_R-HSA-69278	42/462	1.74E-07	2.971	64.7629
Unwinding of DNA_R-HSA-176974	8/12	2.50E-07	21.79	475.8844
DNA Repair_R-HSA-73894	29/285	6.33E-06	3.325	59.57776
DNA strand elongation_R-HSA-69190	10/32	7.19E-06	10.21	179.3957
DNA Double-Strand Break Repair_R-HSA-5693532	19/145	2.51E-05	4.282	69.0833
Activation of the pre-replicative complex_R-HSA-68962	9/30	3.90E-05	9.804	152.3381
Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA)_R-HSA-5693554	8/26	1.35E-04	10.06	142.4407
Mitotic G1-G1/S phases_R-HSA-453279	17/136	1.55E-04	4.085	56.8172
Activation of ATR in response to replication stress_R-HSA-176187	9/37	1.78E-04	7.949	107.8471
S Phase_R-HSA-69242	16/124	1.89E-04	4.217	57.35635
G1/S Transition_R-HSA-69206	15/112	1.94E-04	4.377	58.28267
Pyruvate metabolism and Citric Acid (TCA) cycle_R-HSA-71406	10/48	1.95E-04	6.808	91.1551
G2/M Checkpoints_R-HSA-69481	17/150	3.66E-04	3.704	46.43759
DNA Replication_R-HSA-69306	14/105	3.68E-04	4.357	54.32801
HDR through Homologous Recombination (HRR)_R-HSA-5685942	11/64	3.75E-04	5.617	70.67104
The citric acid (TCA) cycle and respiratory electron transport_R-HSA-1428517	17/153	4.23E-04	3.631	44.54305
Resolution of D-Loop Structures_R-HSA-5693537	8/33	4.40E-04	7.922	96.41805
M/G1 Transition_R-HSA-68874	12/82	5.43E-04	4.782	56.69911
DNA Replication Pre-Initiation_R-HSA-69002	12/82	5.72E-04	4.782	56.69911
Synthesis of DNA_R-HSA-69239	13/97	5.84E-04	4.38	51.39002
Homology Directed Repair_R-HSA-5693538	14/118	0.00106	3.877	43.01631
Homologous DNA Pairing and Strand Exchange_R-HSA-5693579	8/42	0.0023	6.225	63.94539
HDR through Homologous Recombination (HR) or Single Strand Annealing (SSA)_R-HSA-5693567	13/112	0.00245	3.793	38.55949
Resolution of D-loop Structures through Holliday Junction Intermediates_R-HSA-5693568	7/32	0.00257	7.149	72.05244
Cell Cycle Checkpoints_R-HSA-69620	17/182	0.00272	3.053	30.47478
Post-translational protein modification_R-HSA-597592	33/521	0.00406	2.07	19.75569
G1/S-Specific Transcription_R-HSA-69205	5/17	0.00657	9.612	86.75117
Presynaptic phase of homologous DNA pairing and strand exchange_R-HSA-5693616	7/39	0.0084	5.866	51.2962
Assembly of the pre-replicative complex_R-HSA-68867	9/67	0.00993	4.39	37.50475
Citric acid cycle (TCA cycle)_R-HSA-71403	5/19	0.0106	8.6	72.63125
Metabolism of proteins_R-HSA-392499	54/1074	0.01138	1.643	13.7095
Mitotic G2-G2/M phases_R-HSA-453274	15/175	0.01515	2.801	22.48218
Pathway	Rank	p-value	e-value	q-value
--	------	---------	---------	---------
AURKA Activation by TPX2_R-HSA-8854518	9/72	0.01524	4.085	32.64071
E2F mediated regulation of DNA replication_R-HSA-113510	6/33	0.01916	5.942	45.9442
Regulation of DNA replication_R-HSA-69304	9/75	0.01959	3.922	30.12717
IRF3-mediated induction of type I IFN_R-HSA-3270619	4/13	0.02059	10.06	76.47073
Cholesterol biosynthesis_R-HSA-191273	5/23	0.02262	7.104	53.17071
Epigenetic regulation of gene expression_R-HSA-212165	11/115	0.03165	3.126	22.2642
HDR through Single Strand Annealing (SSA)_R-HSA-5685938	6/37	0.03173	5.299	37.59699
G2/M Transition_R-HSA-69275	14/173	0.0337	2.645	18.53759
SUMOylation_R-HSA-2990846	10/101	0.03847	3.236	22.1746
Loss of proteins required for interphase microtubule organization?from the centrosome_R-HSA-380284	8/69	0.03952	3.789	25.52021
Loss of Nlp from mitotic centrosomes_R-HSA-380259	8/69	0.04039	3.789	25.52021
STING mediated induction of host immune responses_R-HSA-1834941	4/16	0.04097	8.17	55.09649
Organelle biogenesis and maintenance_R-HSA-1852241	21/326	0.04109	2.105	14.23895
Orc1 removal from chromatin_R-HSA-68949	8/70	0.04163	3.735	24.80183
Regulation of cholesterol biosynthesis by SREBP (SREBF)_R-HSA-1655829	7/55	0.04215	4.159	27.3989
Switching of origins to a post-replicative state_R-HSA-69052	8/70	0.04252	3.735	24.80183
Regulation of PLK1 Activity at G2/M Transition_R-HSA-2565942	9/87	0.04253	3.381	22.30836
Removal of licensing factors from origins_R-HSA-69300	8/72	0.0471	3.631	23.44438
Activation of gene expression by SREBF (SREBP)_R-HSA-2426168	6/42	0.04841	4.669	29.92483