A bifunctional cerium phosphate catalyst for chemoselective acetalization†

Shunsuke Kanai,a Ippei Nagahara,a Yusuke Kita,a Keigo Kamataa and Michikazu Harab

Acid–base solid catalysts synthesized with structurally controlled uniform active sites can lead to unique catalysis. In this study, a CePO₄ catalyst was synthesized using a hydrothermal method and found to exhibit high catalytic performance for the chemoselective acetalization of 5-hydroxymethylfurfural with alcohols, in sharp contrast to other homogeneous and heterogeneous acid and/or base catalysts. In the presence of CePO₄ various combinations of carbonyl compounds and alcohols are efficiently converted into the corresponding acetal derivatives in good to excellent yields. Mechanistic studies show that CePO₄ most likely acts as a bifunctional catalyst through the interaction of uniform Lewis acid and weak base sites with 5-hydroxymethylfurfural and alcohol molecules, respectively, which results in high catalytic performance.

Introduction

Synergistic and cooperative activation by two or more catalytically active sites with acidic, basic or redox properties can allow high catalytic activity and specific selectivity.¹ In particular, acid–base bifunctionality has received much attention because such concepts are widely applied to catalyses related to hydrocarbon conversion, atom-efficient functional group transformation, tandem reactions, and asymmetric syntheses.² In the fields of heterogeneous catalysis, the acid–base properties of metal oxide-based materials have been extensively studied, and various effective simple and mixed oxide catalysts have been reported.³ However, difficulty in the construction of uniform electronically and structurally controlled acid–base sites often leads to a problem where the fine-tuning of the catalyst structure and the reactivity are restrained. While the modification of oxide surfaces with organic acids and/or bases is a powerful method,⁴ the susceptibility of the organic parts to oxidative/thermal degradation has limited the usefulness of such catalysts. Therefore, the design and development of new high-performance all-inorganic heterogeneous acid–base catalysts remains a strongly desired and challenging subject of research.

We have recently reported unique base catalysis using oxoanions including [WO₄]²⁻ and [PO₄]³⁻.⁵ Despite their basicities being weaker than those of inorganic and organic strong bases, their specific activation of nucleophiles such as alcohols and amines results in atom-efficient reactions such as the chemical fixation of CO₂, regioselective N-alkylation of indoles, and chemoselective acylation of alcohols. On the other hand, rare earth (RE) metal species act as Lewis acid catalysts for various carbon–carbon bond forming reactions through the activation of carbonyl compounds.⁶ Against this background, we anticipated that RE orthophosphates, REPO₄, would be good candidates as bifunctional acid–base catalysts that can work in concert to promote electrophilicity and nucleophilicity in reactive partners. In this communication, we report the highly chemoselective acetalization of 5-hydroxymethylfurfural (1a), which has alcohol and aldehyde functionalities,⁷ with alcohols using a monoclinic CePO₄ catalyst synthesized by a hydrothermal method (Fig. 1(a)). Compound 1a is a versatile carbonyl compound with sensitive functional groups. For reactions of 1a with alcohols in the presence of acid catalysts,⁸ ethers or a complex mixture of products are typically obtained due to the presence of the Brønsted acid-sensitive hydroxyl groups in 1a.⁹ The present system has the following significant advantages: (i) high yields and chemoselectivity toward acetals, even for substrates with hydroxyl groups, (ii) applicability to various combinations of substrates and larger-scale syntheses, and (iii) reusability as a heterogeneous catalyst system. While metal phosphates and related materials have been extensively investigated for the conversion of carbohydrates into 1a,¹⁰ acid–base catalysis over CePO₄ has not been reported to date¹¹ and the present bifunctionality can lead to the chemoselective acetalization of carbonyl compounds containing sensitive functional groups, such as 1a.
Results and discussion

Synthesis and characterization of CePO₄

Monoclinic CePO₄ was synthesized through the hydrothermal reaction of Ce(NO₃)₃ and (NH₄)₂HPO₄ at 180 °C, followed by calcination at 900 °C (see details in the ESI†). Fig. 1(b) shows the powder X-ray diffraction (XRD) pattern measured for CePO₄, which is in good agreement with that reported for the monoclinic CePO₄ structure, in which a Ce³⁺ ion connects to seven tetrahedral PO₄³⁻ groups [space group C12/n1]. The irmpurity phases of other cerium and phosphorus oxides were not observed. The infrared (IR) spectrum of CePO₄ is shown in Fig. S1.† Asymmetric stretching vibrations of the PO₄³⁻ groups were split into bands at 1091, 1062, 1028, 994, and 956 cm⁻¹ due to a decrease in the symmetry of PO₄³⁻ from Td to C1. The bands in the range of 500–700 cm⁻¹ are assigned to the bending of the P–O links in the distorted PO₄³⁻ tetrahedra, and these band positions are similar to those previously reported for monoclinic CePO₄. The elemental analysis of bulk CePO₄ using energy dispersive X-ray spectroscopy (EDX) revealed that the molar ratio of Ce : P is 1:1. The valence state of the surface Ce was investigated using X-ray photoelectron spectroscopy (XPS) (Fig. 1(c)). The Ce 3d₃/₂,₅/₂ spectra are composed of two multiplets (v and u), which correspond to the spin–orbit split 3d₅/₂ and 3d₃/₂ core holes. The Ce 3d spectrum of CePO₄ exhibits four peaks with binding energies of 904.9, 901.0, 806.5, and 883.0 eV, which correspond to the u', u₀, v', and v₀ peaks, respectively, and are in good agreement with the reported Ce 3d spectra for Ce(III) oxides. The specific surface area of CePO₄ calculated from a Brunauer–Emmett–Teller (BET) plot of the N₂ adsorption isotherm (77 K) was up to 37 m² g⁻¹. Fig. 1(d) shows a scanning electron microscopy (SEM) image of CePO₄ with rod-like shaped particles 100–500 nm long and 20–50 nm wide.

The acidic properties of CePO₄ were evaluated using IR spectroscopy for a sample with adsorbed pyridine as a probe base (see details in the ESI†). Differential IR spectra of CePO₄ with adsorbed pyridine are shown in Fig. 2(a) and S2.† The band at 1445 cm⁻¹ is assigned to the pyridine species coordinated to the Lewis acid sites, while no band due to pyridinium ions bonded to the Bronsted acid sites was observed at ca. 1540 cm⁻¹. The amount of Lewis acid sites on CePO₄ was estimated from the intensity of the band at 1445 cm⁻¹ to be 0.096 mmol g⁻¹. The difference IR spectrum for CePO₄ with adsorbed CHCl₃ is shown in Fig. 2(b). The red-shift of the original C–H stretching mode of the CHCl₃ molecule (from 3034 cm⁻¹ to 3008 cm⁻¹) indicates the presence of basic sites on the surface.† In addition, a new broad shoulder band appeared at 1250 cm⁻¹, which was assigned as δ(CIC–H) for the CHCl₃ molecules due to the interaction of the acidic hydrogen and chlorine atoms with the basic oxygen and Lewis acid sites, respectively. Thus, the base sites on CePO₄ could be located in close proximity to the Lewis acid sites, in agreement with the structure of CePO₄.

Catalytic acetalization of 1a with methanol

The reaction of 1a with methanol was examined first in the presence of various catalysts that have been reported to be effective for acetalization. The results are summarized in Table 1. The three products 5-(dimethoxymethyl)-2-furanmethanol (2a), 5-methoxymethylfurural (3a), and 2-(dimethoxymethyl)-5-(methoxymethyl)furan (4a) were mainly formed. The reaction did not proceed in the absence of a catalyst (entry 27). Among the catalysts tested, CePO₄ exhibited the highest activity for the acetalization of 1a to give 2a in 78% yield (entry 1). In this case, the selectivity toward 2a reached 96% without the formation of 3a or 4a. In the presence of homogeneous...
Bronsted acid catalysts (H₂SO₄, p-toluensulfonic acid (TsOH), and H₃PW₁₂O₄₀) and Lewis acid catalysts (scandium trifluoromethanesulfonate (Sc(OTf)₃) and Ce(OTf)₃), only 3a and/or 4a were obtained in low to moderate yields (entries 2–6). The reaction of 1a with methanol in the presence of these homogeneous acid catalysts was carried out by reducing the amounts of the catalysts to match the surface Ce content (i.e. 9.6 μmol) with the Lewis acid sites measured using pyridine-IR (Table 1a). The catalyst precursors of Ce(NO₃)₃, (NH₄)₂HPO₄, and a mixture of Ce(NO₃)₃ and (NH₄)₂HPO₄ were almost inactive (entries 7–9). Thus, homogeneous acid or base catalysts themselves are not deemed as effective for the chemoselective acetalization of 1a. Acetalization over Nb₂O₅ was less effective than over CePO₄, and other metal oxide catalysts including SiO₂, ZrO₂, CeO₂, Al₂O₃, MgO, TiO₂, and SnO₂ were almost inactive (entries 13–20). Typical solid acid catalysts such as sulfated zirconia, sulfonated carbon, NaF, mordenite, and montmorillonite gave complex mixtures of 2a, 3a, and 4a (entries 21–26). The catalyst precursors of Ce(NO₃)₃, (NH₄)₂HPO₄, and a mixture of Ce(NO₃)₃ and (NH₄)₂HPO₄ were not effective for acetalization (entries 10–12), which indicates that CePO₄ plays an important role in the acetalization reaction.¹⁸

To verify whether the observed catalysis is derived from solid CePO₄ or from leached cerium or phosphorus species, the reaction of 1a with methanol was conducted under the conditions described in entry 1 of Table 1, and CePO₄ was removed from the reaction mixture by hot filtration at ca. 30% conversion of 1a (at t = 15 min). The filtrate was then heated again under the same reaction conditions. In this case, no further production of 2a was observed, as shown in Fig. 3. No leaching of cerium or phosphorus species into the filtrate was observed using inductively coupled plasma atomic emission spectroscopy (ICP-AES, with detection limits for Ce and P atoms of ca. 1 and 3 ppb, respectively). Therefore, there was no contribution to the observed catalysis from cerium or phosphorus species leached into the reaction solution, and the nature of the observed catalysis is confirmed as true heterogeneous.¹⁹ The used CePO₄ catalyst could be readily recovered from the reaction mixture by simple filtration (96% recovery). The recovered CePO₄ catalyst could then be reused without a significant decrease in the yield of 2a or the selectivity: 78% yield of 2a at 81% conversion (fresh) and 78% yield of 2a at 80% conversion (reused). There was no significant difference in the XRD patterns of the fresh and reused CePO₄ catalysts, which indicates the high durability of CePO₄ (Fig. S3†).

Reaction mechanism for the CePO₄-catalyzed acetalization

While it has been reported that other metal oxides (e.g. CeO₂) can function as effective acid–base catalysts,¹⁷ only CePO₄ exhibited high catalytic activity and chemoselectivity for acetalization. Thus, the activation mode of substrates with CePO₄ and CeO₂ was confirmed using IR measurements of samples with adsorbed acetone and methanol. As shown in Fig. 2(c), one strong C=O stretching band of acetone adsorbed on CePO₄ was observed at a lower wavenumber (1699 cm⁻¹) than that of acetone in the gas phase (1731 cm⁻¹).²⁰ In addition, the IR spectrum of acetone adsorbed on CeO₂ exhibited a shoulder at 1700 cm⁻¹ and a strong band at 1673 cm⁻¹ due to acetone molecules coordinated to different types of Lewis acid sites, and absorptions at 1627 cm⁻¹ and 1570–1550 cm⁻¹ are assignable to condensed species (Fig. S4†).²¹ These results indicate the interaction between the carbonyl oxygen of the ketone and the

Fig. 2 Difference IR spectra for (a) pyridine-, (b) chloroform-, (c) acetone-, and (d) methanol-adsorbed CePO₄ at 25 °C.
uniform Lewis acid sites on CePO₄ without the promotion of aldol condensation.²¹,²²

Fig. 2(d) shows the IR spectrum of methanol adsorbed on CePO₄. In the ν(O-H) region, negative OH bands were observed with the appearance of broad bands between 3000 and 3500 cm⁻¹. In addition, the IR spectrum shows bands at 2952 and 2849 cm⁻¹ that are assigned to asymmetric and symmetric CH₃ stretching modes, respectively. The appearance of such broad bands and the band positions of ν(CH₃) indicate that methanol is adsorbed molecularly on CePO₄ via hydrogen bonds, which is consistent with previous reports for the non-dissociative adsorption of methanol on metal oxides.²³ On the other hand, the IR spectrum for methanol adsorbed on CeO₂ has bands at 2911 and 2805 cm⁻¹ that were assigned to the νas(CH₃) and νs(CH₃) modes of methoxide species, respectively (Fig. S4†). Therefore, CePO₄ most likely acts as a bifunctional catalyst through interaction of the uniform Lewis acid sites and weak base sites with 1a and alcohol molecules, respectively, which results in highly efficient and chemoselective acetalization.²⁴

The present acetalization of 1a with methanol possibly proceeds as follows (Fig. 4). First, the activation of both 1a and methanol by CePO₄ facilitates nucleophilic attack of the OH group in methanol on the carbon atom of the carbonyl group in 1a to give the corresponding hemiacetal derivative. Further reaction of the hemiacetal with methanol then occurs, most likely with the assistance of the CePO₄ catalyst, to give the corresponding acetal derivative.

Substrate scope for the CePO₄-catalyzed acetalization

To investigate the effectiveness of the bifunctional properties of CePO₄, CePO₄-catalyzed acetalization was explored with various substrates. In the presence of CePO₄, various combinations of carbonyl compounds and alcohols were efficiently converted into the corresponding acetal derivatives in good to excellent yields (Table 2). The acetalization of 1a with methanol and with diols such as ethylene glycol and 1,3-propanediol proceeded selectively (entries 1–3). CePO₄ efficiently catalyzed the acetalization of other aldehydes containing heteroatoms, such as furfural (1b) and 2-thiopheneacarboxaldehyde (1c), into the corresponding dimethyl acetals, while the acetalization of

![Fig. 4 Proposed reaction mechanism for the CePO₄-catalyzed acetalization of 1a with methanol.](image-url)
Table 2 Acetalization of carbonyl compounds with alcohols catalyzed by CePO₄

Entry	Carbonyl compound	Alcohol	Time (h)	Product (yield (%))
1		CH₃OH	1	
2ᵇ	1a		1	2a (78)
3ᵇ	1a		2	2aᵇ (79)
4	1b	CH₃OH	6	2b (79)
5	1c	CH₃OH	6	2c (70)
6	1d	CH₃OH	6	Not detected
7	1e	CH₃OH	6	2e (91)
8	1f	CH₃OH	6	2f (75)
9	1g	CH₃OH	6	2g (89)
10	1h	CH₃OH	20	2h (91)
11	1i	CH₃OH	6	2i (82)
12	1j	CH₃OH	20	2j (95)
13	1k	CH₃OH	20	2k (76)
14ᶜ	1l		6	2l (99)
15	1m		6	2m (46)
16	1n	CH₃OH	6	2n (85)

ⁿ Reaction conditions: CePO₄ (0.1 g), 1 (1.0 mmol), alcohol (5 mL), and reflux. Yields were isolated yields.ᵇ Yield determined using nuclear magnetic resonance spectroscopy (NMR).ᶜ 120 °C.
2-pyridinecarboxaldehyde (1d) did not proceed (entries 4–6). The catalytic reactivity of CePO₄ in the presence of pyridine was investigated. It was confirmed that the presence of pyridine strongly inhibited the reaction of 1a with methanol (Fig. 5). The yield of 2a decreased with an increase in the small amount of pyridine added (3–12 μmol; ca. 0.3–1.3 equivalents with respect to the Lewis acid sites on CePO₄). The nitrogen atom of pyridine would strongly coordinate to the cerium metal center, which would inhibit the reaction. The reactions of benzaldehydes with electron-donating and electron-withdrawing para-substituents (1e–1g) proceeded to afford the corresponding dimethyl acetal in high yields (entries 7–9). Even the bulkier aldehyde 1-naphthaldehyde (1h) could be efficiently acetalized when the reaction time was prolonged to 20 h (entry 10). The acetalization of cinnamaldehyde (1i) with methanol proceeded smoothly without influence on the C=C double bond (entry 11). Not only were aromatic and α,β-unsaturated aldehydes converted but also 3-phenylpropionaldehyde (1j) and cyclohexanecarboxaldehyde (1k) were efficiently converted into the corresponding acetals in high yields (entries 12 and 13). Furthermore, the present system could effectively catalyze aliphatic and aromatic ketones with ethylene glycol. Cyclohexanone (1l) was quantitatively converted into 2,2-pentamethylene-1,3-dioxolane (2l), and acetophenone (1m) gave its corresponding ketal (2m) in moderate yield (entries 14 and 15). Even in the presence of hydroxyl groups in the substrate (5-hydroxy-2-adamantanone (1n)), the corresponding ketal (2n) was obtained in good yield (entry 16).

The present catalytic system was applicable to a gram-scale reaction of 1a (10.5 mmol scale) with methanol and 1.46 g of analytically pure 2a could be isolated (eqn (1)). In this case, the turnover number (TON) based on surface Lewis acid sites reached 177 and the corresponding turnover frequency (TOF) was 44 h⁻¹. In addition, CePO₄ efficiently catalyzed the gram-scale regioselective acetalization of acetone (1o) with glycerol into the industrially important chemical 2,2-dimethyl-1,3-dioxolan-5-ol (solketal (2o)).²⁵,²⁶ Solketal has been used as a highly soluble additive to increase the octane number of fuel, and as such many catalyst systems to aid its synthesis have been reported.²⁵,²⁶ CePO₄ exhibited high regioselectivity (2o/2o’ = 98/2) and 1.29 g of analytically pure 2o was successfully isolated (eqn (2)), while the condensation of glycerol with 1o under acidic conditions sometimes affords a mixture of five- and six-membered acetals (2o and 2o’, respectively).²⁵

Conclusions

In conclusion, CePO₄ efficiently catalyzes the acetalization of various aryl and aliphatic carbonyl compounds containing hydroxyl groups, C==C bonds, and heteroatoms with alcohols. This study suggests that the development of bifunctional solid catalysts with uniform active sites is of particular importance. This approach is a promising strategy for the development of highly efficient heterogeneously-catalyzed reactions through the non-dissociative activation of both electrophiles and nucleophiles under very mild conditions.

Acknowledgements

This work was supported in part by a Kakenhi Grant-in-Aid (No. 15K13802) from the Japan Society for the Promotion of Science (JSPS), the ALCA and CREST programs of the Japan Science and Technology Agency (JST), the Novel Cheap and Abundant Materials for Catalytic Biomass Conversion (NOVACAM) program of JST, and the European Commission Directorate-General for Research and Innovation.

Notes and references

1 Topics in Organometallics Chemistry—Bifunctional Molecular Catalysis, ed. T. Ikariya, and M. Shibasaki, Springer, Berlin, 2011.
2 (a) E. Iglesia, D. G. Barton, J. A. Biscardi, M. J. L. Gines and S. L. Soled, Catal. Today, 1997, 38, 339–360; (b) N. Mizuno and K. Yamaguchi, Synlett, 2010, 2365–2382; (c) M. J. Climent, A. Corma, S. Iborra and M. J. Sabater, ACS Catal., 2014, 4, 870–891; (d) D. H. Paull, C. J. Abraham, M. T. Scerba, E. Alden-Danforth and T. Leetka, Acc. Chem. Res., 2008, 41, 655–663; (e) J. A. Ma and D. Cahard, Angew. Chem., Int. Ed., 2004, 43, 4566–4583.
3 (a) R. A. Sheldon, I. W. C. E. Arends, and U. Hanefeld, in Green Chemistry and Catalysis, ed. R. A. Sheldon, I. W. C. E.
24 The C=O stretching band (1699 cm$^{-1}$) of acetone adsorbed on CePO$_4$ was observed at a higher wavenumber than that on CeO$_2$ (a strong band at 1673 cm$^{-1}$), indicating the lower Lewis acid strength of CePO$_4$. In addition, the chloroform- and methanol-adsorbed IR measurements also indicate the lower basicity of CePO$_4$. Therefore, not only the presence of moderate Lewis acid sites but also the weakening of the basicity by replacement of the strong basic sites of CeO$_2$ using PO$_4$ would suppress side reactions such as aldol condensation, resulting in the present high chemoselectivity.

25 (a) M. S. Khayoon and B. H. Hameed, Appl. Catal., A, 2013, 464–465, 191–199; (b) T. E. Davies, S. A. Kondrat, E. Nowicka, J. J. Graham, D. C. Apperley, S. H. Taylor and A. E. Graham, ACS Sustainable Chem. Eng., 2016, 4, 835–843; (c) G. S. Nair, E. Adrijanto, A. Alsalme, I. V. Kozhevnikov, D. J. Cooke, D. R. Brown and N. R. Shiju, Catal. Sci. Technol., 2012, 2, 1173–1179; (d) S. Zhang, Z. Zhao and Y. Ao, Appl. Catal., A, 2015, 496, 32–39.

26 (a) T. E. Souza, M. F. Portilho, P. M. T. G. Souza, P. P. Souza and L. C. A. Oliveira, ChemCatChem, 2014, 6, 2961–2969; (b) K. N. Tayade, M. Mishra, M. K. and R. S. Somani, Catal. Sci. Technol., 2015, 5, 2427–2440; (c) T. Mitsudome, T. Matsuno, S. Sueoka, T. Mizugaki, K. Jitsukawa and K. Kaneda, Heterocycles, 2012, 84, 371–376; (d) C. Crottì, E. Farnetti and N. Guidolin, Green Chem., 2010, 12, 2225–2231; (e) L. Li, T. I. Koranyi, B. F. Sels and P. P. Pescarmona, Green Chem., 2012, 14, 1611–1619; (f) A. W. Pierpont, E. R. Batista, R. L. Martin, W. Chen, J. K. Kim, C. B. Hoyt, J. C. Gordon, R. Michalczyk, L. A. Silks and R. Wu, ACS Catal., 2015, 5, 1013–1019.