1. Introduction

Current Korean medical treatments are not only confined to acupuncture, moxibustion, and herbal medication. Rather, various other treatments have been developed and are already being used clinically, and great challenges seem to be ahead. Dermatology in Korean medicine is no exception. Constant effort should be made to develop new therapies and to renew existing treatments, with a view of expanding the scope of Korean medicine.

Dermatology in Korean medicine is a field that chiefly deals with diseases that develop on the skin and requires the more frequent usage of diverse external ointments than other fields of study do. However, in reality, the present external ointments developed by Korean medical dermatologists are no more than in-house manufactured products. The experimental research on external applications of medicinal herbs is quite insufficient.

Alum (AL) is one of the astringent herbal medicines that features a strong ability to dry dampness. Upon external use, it has the effects of detoxifying and killing worms in addition to an antipruritic effect. Upon internal use, it has a hemostatic effect and can check diarrhea and dispel wind-phlegm. Thus, with external use, it cures eczema, pruritus, and otitis media, while with internal use, it treats chronic diarrhea, bloody stool, flooding and spotting, epilepsy, and delirium [1]. Burnt Alum (BAL) heals wounds, has a hemostatic effect, and resolves putridity, curing eczema, otitis media, pruritus vulvae, vaginal discharge, nosebleeds, gum bleeding, and nasal putridity [1]. Generally, AL is used internally, and BAL is used externally [1,2]. However, based on many other Korean medicine clinical records, AL has also been used externally [3]. Furthermore, existing experimental research on AL and BAL has not put...
much emphasis on differentiating these two medicines [4-7]. Thus, finding the obvious differences between AL and BAL through this experimental study of their anti-oxidant and anti-inflammatory effects is worthwhile in order to make them more conducive to Korean medicine clinical practice afterward.

2. Experimental materials and methods

2.1. Materials

2.1.1. Medicinal herbs

The AL and the BAL used in this study were discretely selected from the pharmacy in the Korean medicine hospital affiliated with Sangji University.

2.1.2. Strain and cell line

The human keratinocyte cell line (HaCaT) used for measuring the cytotoxicity was cultured in the Biochemistry Department of Gangwon University, and the mouse macrophage cell line (RAW 264.7) for measuring the anti-inflammatory effects was obtained from Technology Innovation Center of Hanlim University.

2.1.3. Reagents and equipment

Reagents such as 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), N\textsubscript{o}-methyl-L-arginine acetate salt (L-NMMA), 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and lipopolysaccharide (LPS) were bought from Sigma (USA); fetal bovine serum (FBS), penicillin-streptomycin and dulbecco’s modified Eagle’s medium (DMEM)/high glucose were bought from Hyclone (USA); dimethyl sulfoxide (DMSO) and 2-propanol were bought from Merck (USA). Equipment such as an ELISA reader (Perkin-Elmer, Foster City, CA), a spectrophotometer (UNICO, USA), and a micro-centrifuge (Hettich, Germany) were also utilized in this study.

2.2. Methods

2.2.1. Reagents

AL and BAL, 25 g each, were mixed with secondary distilled water and boiled for 150 mins at 100°C. After having been filtered through a filter bed (Whatman 42), the filtrate was completely condensed by using a rotary decompressing concentrator. After the H\textsubscript{2}O was removed at 70°C, 13.5 g of AL (yield rate: 54%) and 13 g of BAL (yield rate: 52%) were obtained. Lastly, the AL and the BAL were each put into a micro-tube and diluted to 20 µg/mL by using 100% DMSO.

2.2.2. Culturing strain and cell line

HaCaT cells and RAW 264.7 cells were cultivated in the DMEM medium containing 10% fetal bovine serum, penicillin (100 units/mL), and streptomycin (100 units/mL) under 5% CO\textsubscript{2} at 37°C. The medium was regularly replaced every three or four days and then subcultured after 90% of the cultivation had been completed.

2.2.3. Measuring cytotoxicity

HaCaT cells were placed in the DMEM medium including penicillin (100 units/mL), streptomycin (100 units/mL), and 10% FBS and were cultivated inside the incubator at 37°C under 5% CO\textsubscript{2}. Thereafter, the HaCaT cells were diluted to a concentration of 1 x 104/well in a 96-well plate and were cultured for 24 hrs after the inoculation of 10 µL. All the media were removed after cultivation. Ninety-six well plates were cultured for 24 hrs with a 100 µL suspension containing 5 x 104/well RAW 264.7 cells. The medium was removed after cultivation. The AL and the BAL were processed until they reached concentrations of 20, 50, and 100 µg/mL each in a serumless medium; then, 100 ng/mL of LPS, an inflammatory reflex inducing factor, was introduced. The amount of NO produced was measured after a 24-h cultivation [9]. Fifty µL of cell culture liquid was compounded with Griess reagent, a mutual reaction was allowed for 10 mins, and then the extinction coefficient was measured at 570 nm by using an ELISA reader. As a positive control group, NMMA, an inhibitor of NO production, was processed until an amount of 50 µM was obtained in the same way as was done with the other experimental materials, so comparing the inhibitory effect on the NO production was possible.

2.2.4. Measuring the anti-inflammatory effect

Ninety-six well plates were cultured for 24 hrs with a 100 µL suspension containing 5 x 104/well RAW 264.7 cells. The medium was removed after cultivation. The AL and the BAL were processed until they reached concentrations of 20, 50, and 100 µg/mL each in a serumless medium; then, 100 ng/mL of LPS, an inflammatory reflex inducing factor, was introduced. The amount of NO produced was measured after a 24-h cultivation [9]. Fifty µL of cell culture liquid was compounded with Griess reagent, a mutual reaction was allowed for 10 mins, and then the extinction coefficient was measured at 570 nm by using an ELISA reader. As a positive control group, NMMA, an inhibitor of NO production, was processed until an amount of 50 µM was obtained in the same way as was done with the other experimental materials, so comparing the inhibitory effect on the NO production was possible.

2.2.5. Measuring the anti-oxidant effect

With the reducing property of DPPH, the DPPH radical scavenging effects of AL and BAL were measured. DPPH was dissolved in methanol and 1 µL of the 0.1 mM DPPH solution was mixed with 1 µL each of AL and BAL taken from the 20, 50, and 100 µg/mL preparations. The extinction coefficient was measured at 565 nm after allowing a chemical reaction for 10 mins at room temperature [10].

2.2.6. Statistical analysis

With SPSS 17.0 for Windows, experimental results were recorded in terms of averages ± standard deviations; the level of significance was p < 0.05. Statistical significance among experimental groups was confirmed by using a one-way ANOVA test, and a subsequent analysis was conducted based on Duncan’s multiple comparison test.

3. Experimental results

3.1. Cytotoxicity

This study showed no cytotoxicity for 20 and 50 µg/mL AL. The cell survival rate was 89% in 100 µg/mL AL, 87% in 20 µg/mL BAL, and 82% in 50 µg/mL BAL, while it was 75% in 100 µg/mL BAL (Table 1).

Group	Average viability (%)	D	p-value	
Control	100.0 ± 6.8	a		
AL	20 µg/mL	97.0 ± 3.3	a	
	50 µg/mL	94.0 ± 4.2	a,b	
	100 µg/mL	89.0 ± 3.1	b,c	
BAL	20 µg/mL	87.0 ± 2.5	b,c	
	50 µg/mL	82.0 ± 2.0	c	
	100 µg/mL	75.0 ± 1.6	D	

Statistical significance was tested by using a one-way ANOVA test among
3.2. Anti-oxidant effect

According to the DPPH radical scavenging experiments for AL and BAL, the concentration-dependent scavenging efficacies were shown to be 12.0 ± 6.0 for 20 µg/mL, 14.0 ± 5.2 for 50 µg/mL, and 17.0 ± 4.8 for 100 µg/mL in the case of AL. However, no meaningful differences based on concentrations were found. In the case of BAL, the scavenging efficacies were shown to be concentration-dependent: 2.0 ± 0.5 for 20 µg/mL, 3.0 ± 0.6 for 50 µg/mL, and 4.0 ± 0.2 for 100 µg/mL (Table 2).

Table 2 Scavenging efficacies of AL and BAL on DPPH radicals

Group	Average viability (%)	D	p-value
Quercitin	20 µg/mL	43.0 ± 2.2	a
AL	20 µg/mL	12.0 ± 6.0	b
	50 µg/mL	14.0 ± 5.2	b
	100 µg/mL	17.0 ± 4.8	b
BAL	20 µg/mL	2.0 ± 0.5	d
	50 µg/mL	3.0 ± 0.6	d
	100 µg/mL	4.0 ± 0.2	C

Statistical significance was tested by using the one-way ANOVA test among groups. The same letters indicate non-significant differences among groups based on Duncan’s multiple comparison test. AL: Alum. BAL: Burnt Alum.

4. Discussion

Many herbal medicines have been clinically administered through a unique form of processing called “Xi Zhi,” which eliminates toxicity, softens the nature of the medicines, and broadens the range of treatment so that it can maximize the therapeutic effects. Relevant documentary records and methods have been scientifically proven already. Especially, mineral medicinals have frequently been processed because of their solid nature, which would otherwise make them unavailable. The most typical processing method for mineral medicines is “DuAnFā (burning),” which generally burns medicines directly or in a heat-resistant container so that the chemical structures break down and become soft and suitable for grinding and boiling, thereby reducing side effects and enhancing therapeutic effects [1].

AL belongs to the group of astringent medicines and is a refined crystal processed from alunite [KAl(SO₄)₂(OH)₆], which has antibiotic, anti-trichomonas, antiviral, and antitumor activities. Because of its high reactivity, it is considered to cause oxidation reactions on cell membranes produced by the breakdown of chemical compounds, and it has been reported to cause oxidation reactions on cell membranes or DNA based on its high reactivity. However, it is conceivable that many herbal medicines can be more efficiently utilized after appropriate processing. The purpose of this study was to make AL and BAL, which have been commonly used as external treatments, more clinically useful by comparing their anti-oxidant and anti-inflammatory effects.

Prior to the overall experiment, no cytotoxicity of HaCaT cells was found for 20 and 50 µg/mL AL. The cell survival rates were 89% in 100 µg/mL AL, 87% in 20 µg/mL BAL, 82% in 50 µg/mL BAL, and 75% in 100 µg/mL BAL. Thus, BAL had a higher, more concentration-dependent cytotoxicity than AL.

Active oxygen is a term applied to oxygen containing radicals produced by the breakdown of chemical compounds, and it has been reported to cause oxidation reactions on cell membranes or DNA based on its high reactivity. However, it is considered to be an important factor in the anti-inflammation and anti-oxidant effects, because it plays essential roles in the immune system related to the anti-inflammatory reflex.

DPPH is a stable free radical that can be reduced to amino acids such as cysteine, glutathione, ascorbic acid, aromatic amine, etc. and that can be utilized for measuring anti-oxidant effects [17]. According to the DPPH radical scavenging experiment for AL, the concentration-dependent scavenging efficacies were shown to be 12.0 ± 6.0 for 20 µg/mL, 14.0 ± 5.2 for 50 µg/mL, and 17.0 ± 4.8 for 100 µg/mL in the case of AL, but the differences by concentration were not statistically meaningful. In the case of BAL, the scavenging efficacies were shown to be concentration-dependent: 2.0 ± 0.5 for 20 µg/mL, 3.0 ± 0.6 for 50 µg/mL, and 4.0 ± 0.2 for 100 µg/mL. A significant difference was found for...
100 μg/mL. AL showed superior effectiveness in terms of anti-
oxidant efficacy.

Inflammation is a self-protective attempt by an organism to
remove the injurious stimuli. It is a complicated process that is
usually triggered by many chemical factors in connective
tissues. The amount of iNOS is generally increased by injurious
stimuli, such as LPS and cytokine, and bacterial toxin also
transforms L-arginine into L-citrulline in order to produce NO,
which is a highly reactive free radical, a large amount of which
triggers an inflammation reflex. According to the experiment on
the inhibitory effects of AL and BAL on NO production conducted
on LPS-induced RAW 264.7 cells, no anti-inflammatory effects
were seen in the cases of 20 and 50 μg/mL AL, but a slight 2.0 ±
0.2 anti-inflammatory effect was found in the case of 100 μg/mL
AL. In the case of BAL, a significant concentration-dependent
anti-inflammatory effect was found in the case of 100 μg/mL AL.
However, BAL groups showed a concentration-dependent
scavenging effect on DPPH radicals. The scavenging effects
inhibitory effects on NO production, but AL groups did not.

5. Conclusion

The conclusions drawn from this study are as follows:

1. BAL showed a higher level of cytotoxicity than AL.
2. AL groups showed a concentration-dependent scavenging
effect on DPPH radicals, but no significant relevance was found. BAL groups showed a concentration-dependent
scavenging effect on DPPH radicals. The scavenging effects of the BAL groups were almost insignificant, but the values
for the 20, 50, and 100 μg/mL trials were different.
3. BAL groups showed meaningful concentration-dependent
inhibitory effects on NO production, but AL groups did not.

Acknowledgment

This research was supported by a Pusan National University
Research Grant, 2010.

References

1. Professors of Herbology, College of Korean Medicine (Whole
Country). Herbology. Seoul: Youngrimsa; 1994. p.633.
2. Park JH, Kim MR, Kim DY. A philological study on poisoning
of Alumen. The Journal of East-West Medicine.
2008;33(3):13-23.
3. Gang GM, Po MH. Simplicity prescription dictionary. Shanghai:
Shanghai Science and Technology Publishing; 1989. p.325-6.
4. Kwag KH, Kim DI, Lee TK. A case of recovery of cervical ero-
tion treated by cervical-acupuncture and Gobakban-spread.
The Journal of Oriental Obstetrics & Gynecology.
2003;16(1):186-94.
5. Park OS, Kim YB, Kim HJ, Kim KS, Cha JH. Anti-inflamma-
tory effect of Alumen to experimental paranasal sinusitis of
Apis cerana L.) on inducible nitric oxide synthase and tumor
texts. The amount of iNOS is generally increased by injurious
stimuli, such as LPS and cytokine, and bacterial toxin also
transforms L-arginine into L-citrulline in order to produce NO,
which is a highly reactive free radical, a large amount of which
triggers an inflammation reflex. According to the experiment on
the inhibitory effects of AL and BAL on NO production conducted
on LPS-induced RAW 264.7 cells, no anti-inflammatory effects
were seen in the cases of 20 and 50 μg/mL AL, but a slight 2.0 ±
0.2 anti-inflammatory effect was found in the case of 100 μg/mL
AL. In the case of BAL, a significant concentration-dependent
anti-inflammatory effect was found in the case of 100 μg/mL AL.
However, BAL groups showed a concentration-dependent
scavenging effect on DPPH radicals. The scavenging effects
inhibitory effects on NO production, but AL groups did not.

5. Conclusion

The conclusions drawn from this study are as follows:

1. BAL showed a higher level of cytotoxicity than AL.
2. AL groups showed a concentration-dependent scavenging
effect on DPPH radicals, but no significant relevance was found. BAL groups showed a concentration-dependent
scavenging effect on DPPH radicals. The scavenging effects of the BAL groups were almost insignificant, but the values
for the 20, 50, and 100 μg/mL trials were different.
3. BAL groups showed meaningful concentration-dependent
inhibitory effects on NO production, but AL groups did not.

Acknowledgment

This research was supported by a Pusan National University
Research Grant, 2010.

References

1. Professors of Herbology, College of Korean Medicine (Whole
Country). Herbology. Seoul: Youngrimsa; 1994. p.633.
2. Park JH, Kim MR, Kim DY. A philological study on poisoning
of Alumen. The Journal of East-West Medicine.
2008;33(3):13-23.
3. Gang GM, Po MH. Simplicity prescription dictionary. Shanghai:
Shanghai Science and Technology Publishing; 1989. p.325-6.
4. Kwag KH, Kim DI, Lee TK. A case of recovery of cervical ero-
tion treated by cervical-acupuncture and Gobakban-spread.
The Journal of Oriental Obstetrics & Gynecology.
2003;16(1):186-94.
5. Park OS, Kim YB, Kim HJ, Kim KS, Cha JH. Anti-inflamma-
tory effect of Alumen to experimental paranasal sinusitis of
Apis cerana L.) on inducible nitric oxide synthase and tumor
neformation factor-α (TNF-α) on RAW 264.7 cell line. Korean J Apiculture.
2004;19(2):89-96.
6. Yoo JG, Choi KH, Kim YK, Kang SK, Jung SY, Jung JH, et al.
The comparative study of anti-inflammatory, anti-oxidant and anti-bacterial effects with regard to the extraction solvents of Cuscutae Semen. Journal of Pharmacopuncture. 2011;14(1):79-86.