Rice cultivation on dry land during dry season supported by deep well irrigation and soil amelioration

N Al Viandari¹* and A Anshori²

¹Indonesian Agricultural Environment Research Institute. Jalan Raya Jakenan-Jaken Km 5 Pati Central Java Indonesia
²Assesment Institute for Agricultural Technology of Yogyakarta. Karangsari, Wedomartani, Ngemplak, Sleman, Special Region of Yogyakarta, Indonesia

Email: nourmaviandari@yahoo.com

Abstract. Dryland has a great potential regardless of limitations. Increasing rice productivity can be done by water and land management on the dryland especially on dry season. This study aimed to determine rice cultivation in dry land during the dry season which is supported by deep well irrigation and soil amelioration with organic fertilizers and rice husk charcoal. The research was conducted on dry land at Logandeng, Playen, Gunung Kidul, Special Region of Yogyakarta Indonesia during the 2019 dry season, July to November. Water requirement was fulfilled from deep well irrigation. Soil quality was improved through amelioration with organic fertilizers and rice husk charcoal, with the treatments without amelioration (TA), amelioration with organic fertilizer 3 ton ha⁻¹ (AB), amelioration with organic fertilizer 3 ton ha⁻¹ plus rice husk charcoal 1 ton ha⁻¹ (ABS) and amelioration with organic fertilizer 3 ton ha⁻¹ plus rice husk charcoal 1 ton ha⁻¹ and mulch of rice husk charcoal 0.5 ton ha⁻¹ (ABSM). This research used a randomized completely block design, with 4 treatments and 5 replications. The results showed by 5 cm of flooding was reached the zero level in 8 hours and the water depth reached 20 cm for the next 16 hours. Supplementary irrigation every two days, with a flooding of 5-10 cm, was sufficient for rice cultivation during the dry season. ABS treatment can increase the yield component such as dry grain yield by 7.10 ton ha⁻¹, dry straw by 5.98 ton ha⁻¹, and dry root by 2.76 ton ha⁻¹ and carbon absorption from grain by 3.81 ton ha⁻¹, straw by 2.68 ton ha⁻¹ and root by 1.18 ton ha⁻¹ (p<0.05 ; n=20). ABS was decreased soil Eh (p<0.05; n=20), and increased soil organic carbon and cation exchange capacity (p<0.05; n=15). ABS was the best ameliorant for rice cultivation on dry land during dry season.

1. Introduction
Rice is one of the most primary food and the main sector in Indonesia. As yet, rice cultivation are considerately full filled on lowland, both irrigated and rainfed condition. Paddy fields actually decrease and convert into industrial, residential and other non-agricultural areas [1]. Indonesia's rice harvested area was 16.11 million ha on 2018 and has decreasing by 33.7% or around 10.68 million ha on 2019 [2]. Just relying on lowland rice cultivation cannot realize increased rice productivity. Increasing rice productivity can be done by optimizing dry land.

Dry land has a great potential to increase food productivity [3]. Asnah et al. [4] suggested dry land has a chance to cultivated, including rice [5]. Indonesia's dry land area is 144.5 million ha (76.2% of the total land area) including forest areas [6], with a wet and dry climate [7]. Dry land should take a part the important role in supporting food self-sufficiency [8].
The main problem of dry land is lack of water [9] [10], low nutrients and low organic matter content [11, 12, 13, 14, 15]. In general, dry land has low productivity [16].

Increasing the productivity of dry land can be supported by groundwater irrigation [17]. Groundwater withdrawal does not exceed aquifer ability [18, 19]. Groundwater is used together with surface water and reused water [20]. Paddy water infiltration during irrigation contributes to groundwater replenishment, significantly [21].

Soil organic carbon greatly determines the quality of dry land [15]. Organic carbon determines the physical, chemical and biological properties of soil, as well as plant growth [14], although its proportion is small in soil [22]. Organic fertilizers from livestock are widely used as ameliorants, a source of nutrients and carbon [23].

Biochar is resistant to the decomposition process, has a higher surface area so that it is able to absorb ions better [24]. Biochar ameliorant significantly improves all indicators of soil quality [25], health and soil status [26]. Biochar is a soil ameliorant that is beneficial for plants [27].

This study aimed to determine rice cultivation in dry land during the dry season which is supported by deep well irrigation and soil amelioration with organic fertilizers and rice husk charcoal.

2. Material and methods

2.1 Experimental site condition

This study was conducted at Logandeng, Playen, Gunung Kidul, Special Region of Yogyakarta, Indonesia on July to November 2019 during dry season. The study field had coordinates of 7°56'0"N, 110°34'43"E, and a height of 212 m above sea level. The existing cropping pattern are rice/corn - corn/peanut - corn/peanuts/vegetables. In this study, rice was planted in the third growing season to replace another plants cultivation such corn, vegetables, or peanuts. The average of annual rainfall is 1,852 mm, with consecutively seasons are 5 months of wet and 6 months of dry season. Soil and climatic properties can be seen in Table 1.

Table 1. Soil and climate properties
pH

Top soil

Treatments and experimental design

On dry land, plant growth and plant productivity are limited by water availability and soil fertility, so as the solution are providing the water and improving soil properties. This study was used deep wells for water supply, with irrigation every 3 days. Organic fertilizer and husk charcoal treatments were used to find the best ameliorant, to improve soil properties. This research used a randomized completely block design, with 4 treatments and 5 replications. The treatment were without amelioration (TA), amelioration with organic fertilizer 3 ton ha(-1) (AB), amelioration with organic fertilizer 3 ton ha(-1) plus rice husk charcoal 1 ton ha(-1) (ABS) and amelioration with organic fertilizer 3 ton ha(-1) plus rice husk charcoal 1 ton ha(-1) and mulch of rice husk charcoal 0.5 ton ha(-1) (ABSM). AB treatment was TA plus 3 ton ha(-1) of organic fertilizer, ABS was AB plus 1 ton ha(-1) of rice husk charcoal. ABSM was ABS plus 0.5 ton ha(-1) rice husk charcoal mulch. Combination of treatment to determine the role of ameliorant for improving soil quality.

2.2 Cultivation details

The tillage was carried out twice before planting. The first and second tillage was a week difference. Organic matter and rice husk charcoal given during the first tillage by hand tractor. A rice variety, Inpari-19, was planted using jajar legowo system of 2:1 and transplanted 4−5 seedlings of 15 days after sowing (DAS).
The experiment fields were supplied by 200 kg ha\(^{-1}\) of 46% N and 300 kg ha\(^{-1}\) of 15:15:15 NPK. The fertilizer was given three times with 1/3 of fertilizer was applied as the basic fertilizer, 2/3 fertilizer was provided on 10 days after transplanting (DAT) and the last 1/3rd at tillering initiation stage or 25 DAT. Liquid fertilizer was sprayed at 10, 20, 30, and 40 DAT.

The weeds properly controlled at 10, 20, 30 DAT and if still needed. The pest and diseases also controlled. Irrigation was carried out from deep well every two days and irrigated until 76 DAT with the water level around 5-10 cm. The water content was not less than pF 4.20 of permanent wilting point. Rice was harvested at 103 DAT.

2.3 Sampling and measurement of parameters
Water level was carried out at 5 cm and measured per hour for 24 hours. pH and Eh are measured once per two weeks during the irrigation stage. Soil samples were taken to determine soil properties such as pH, total organic carbon, total nitrogen, cation exchange capacity, pF and soil permeability [28]. Incubation of soil plus ameliorant were used to determine the organic carbon content and cation exchange capacity at the initial and TA, AB, ABS, and ABSM at the end, with three replication. Harvested dry grain, straw and roots were taken after harvest drying. The carbon content of grain, straw and roots is determined based on the carbon content in the tissue.

2.4 Statistical Analysis
The observed data were analysed using the IBM SPSS 25 64-bit (PC/Windows 8-10) to determine the variance of the various parameters. The significant treatments was determined by the F test and Duncan Multiple Range Test (DMRT) to find the interaction effect of the treatments to estimate Least Significant Difference (LSD) at <0.05 level of significance [29].

3. Results and discussion
3.1 Water availability
This study utilizes groundwater from deep wells. There are various factors that impact the height of the groundwater levels such as droughts, seasonal variations in rainfall, and pumping affect the height of the ground water levels [30]. The depth of the well is 120 meters, the water flow rate was 25 liters per second. Deep well irrigation for paddy does not disturb other crops.

Study on water infiltration in a 5 cm flooding as the basis for determining the need for irrigation water (Figure 1). Infiltration was calculated based on the water level.

![Figure 1](image)

Figure 1. Water levels of the experiment field by flooding 5 cm water each 24 hours

This study showed that 5 cm of flooding was reached the 0 level of water after 8 hours and the water depth level reached 20 cm after the next 16 hours. During this study, there was no rain which affected the water levels. Irrigation every two days with a height of 5-10 meters was the optimum condition as observed. The water content was not less than pF 4.20 of permanent wilting point. Irrigation from deep well was sufficient to support rice cultivation in the dry season.
3.2 Yield components and carbon absorption

Table 2 presents the parameters such as yield, straw, root, and carbon content in varied treatment. The ABS treatment resulted in dry grain 7.12 ton ha\(^{-1}\), dry straw 5.98 ton ha\(^{-1}\) and dry root 2.77 ton ha\(^{-1}\), significantly different from TA and AB, but not from ABSM. Carbon absorption in ABS treatment was 3.82 ton ha\(^{-1}\) for grain, 2.68 ton ha\(^{-1}\) for straw and 1.19 ton ha\(^{-1}\) for root, higher than TA and AB, and it is no different from ABSM (p <0.05; n=20).

Treatment	Grain (ton ha\(^{-1}\))	Straw (ton ha\(^{-1}\))	Root (ton ha\(^{-1}\))	Grain Carbon (ton ha\(^{-1}\))	Straw Carbon (ton ha\(^{-1}\))	Root Carbon (ton ha\(^{-1}\))
TA	5.99±0.05a	4.47±0.06a	1.73±0.15a	3.22±0.03a	2.01±0.03a	0.74±0.06a
AB	6.69±0.07b	5.24±0.17b	2.25±0.13b	3.59±0.04b	2.35±0.08b	0.97±0.06b
ABS	7.12±0.15c	5.98±0.21c	2.77±0.04c	3.82±0.08c	2.68±0.09c	1.19±0.02c
ABSM	7.23±0.10c	6.03±0.16c	2.80±0.10c	3.88±0.05c	2.71±0.07c	1.20±0.04c

Note: The numbers that followed by the same letter in the same column show no significantly different in the DMRT of 5%. Data source: primary research

This results indicated that organic fertilizer 3 ton ha\(^{-1}\) plus rice husk charcoal 1 ton ha\(^{-1}\) (ABS) can increase the yield component and carbon absorption on rice cultivation in the dry land during dry season. Organic fertilizer improves soil properties [14], plant growth and yield [22]. Rice Husk Charcoal (RHC) has positive impact on the parameters. Increasing the yield parameters can be due to the availability of nutrient since the increased water holding capacity of soil [31, 32], and soil fertility [33]. Sohi [34] stated that C and the other major nutrient in soil could be enriched by RHC. Knoblauch et al. [35] presented a higher carbon value of 43% in RHC. Providing organic fertilizer and RHC are advantageous for rice cultivation in dry land which is water and nutrients are lacked. The result in accordance with the recent study by [36, 37, 38] that the grain yield improved by the providing of RHC. Mulching is one of water-saving technique, and generally use in many crops, additionally to reduce soil evaporation and also soil water storage capacity [39], but not effective in this study.

3.3 Soil properties development

3.3.1 Soil pH and Eh

pH and soil redox potential (Eh) was observed and analysed to determine the soil properties development by providing various treatments. Flooding raised soil pH (Figure 2), but did not differ between treatments. Increasing pH has a positive impact. [40, 15] reported that neutral pH made the nutrients more available adsorbed by the plant that take an impact to plant growth and yield.

Figure 2. The average of soil pH and Eh on the various treatments
Soil Eh decreased due to flooding (Figure 2). On the 18th, 32nd, 46th, 60th and 74th days after transplanting, Eh in ABS was lower than TA and AB, but not different with ABSM. It is also for the Eh average (p<0.05; n=20). Organic carbon application to flooded soil accelerates the Eh decline [15], as in the treatment of AB, ABS dan ABSM. The biochar could enhance soil water-holding capacity and water stable aggregate [25, 41], potentially decreasing soil Eh, as in ABS and ABSM.

3.3.2 Soil organic carbon and Cation Exchange Capacity
Soil organic carbon content in ABS treatment was higher than TA, AB and initial soil, but not different from ABSM (p<0.05; n=15) (Figure 3). Organic fertilizer application of 3 ton ha$^{-1}$ was not sufficient to increase the soil organic carbon content, because the rapid loss of the soil organic carbon in dry land, which according [27] indicated a more active microbial process. ABS treatment, with the addition of rice husk charcoal by 1 ton ha$^{-1}$, was able to increase soil organic carbon content. Rice husk charcoal is more resistant to decomposition, so it last longer in the soil, like a statement Zimmerman et al. [42] Mulch of RHC by 0.5 ton ha$^{-1}$ is not effective to increase soil organic carbon content.

![Figure 3. The Organic carbon and cation exchange capacity on the various treatments](image)

The cation exchange capacity in ABS treatment was higher than TA, AB and initial soil, but not different from ABSM (p<0.05; n=15) (Figure 3), the same as in soil organic carbon. Organic fertilizers determine the soil cation exchange capacity [14], as well as RHC [25]. RHC also increase the soil condition by improving soil chemical properties [37, 43]. Organic carbon determines the cation exchange capacity. A positive correlation (p<0.05; n=5) occurs between soil organic carbon and soil cation exchange capacity.

4. Conclusions
Supplementary irrigation from deep well every two days, with a flooding of 5-10 cm, was sufficient for rice cultivation during the dry season. The effectiveness of water can be increased through soil amelioration. Ameliorant with organic fertilizer 3 ton ha$^{-1}$ plus RHC 1 ton ha$^{-1}$ (ABS) was the best for rice cultivation on dry land during dry season. ABS resulted in dry grain 7.12 ton ha$^{-1}$, dry straw 5.98 ton ha$^{-1}$ and dry root 2.77 ton ha$^{-1}$. Carbon absorption by ABS was 3.82 ton ha$^{-1}$ for grain, 2.68 ton ha$^{-1}$ for straw and 1.19 ton ha$^{-1}$ for root. ABS was increased soil organic carbon and cation exchange capacity, but decreased soil Eh.

Acknowledgments
Author would like to thank all of those who have helped during the research conducted, to some colleagues, technicians, and agricultural extension agent, especially to Mr. Suradal, Mrs. Sulasmini, Mr. Suryanto, and Mr. Yono.

References
[1] Sihombing D, Arifin Z, and Handayati W 2019 Study of rice cropping index increasing on dry land in Malang-East Java AIP Conf. Proc. 2120
[2] BPS (Indonesian Statistic) Stat. Indones 2019 Indonesian Stat. (Jakarta: Badan Pusat Statistik)

[3] Pasandaran E and Suherman 2015 Kebijakan investasi dan pengelolaan sumberdaya lahan mendukung kemandirian pangan (in Bahasa) In: Pasandaran E, Rachmat M, Hermanto, Ariani M, Sumedi, Suridiasstra, K and Haryono (Eds.) Memperkuat kemampuan swasembada pangan (Jakarta:IAARD Press)

[4] Asnah A, Masyhuri M, Mulyo J H, and Hartono H 2018 Maize farming performance in dry land with biochar and manure in Kalitengah Village Panggungrejo District Blitar Regency Indonesia IOP Conf. Ser. Earth Environ. Sci. 215

[5] Irawan B 2015 Dinamika produksi padi sawah dan padi gogo : Implikasi terhadap kebijakan peningkatan produksi padi (in Bahasa) In: Pasandaran E, Rachmat M, Hermanto, Ariani M, Sumedi, Suridiasstra K and Haryono (Eds.) Memperkuat kemampuan swasembada panga (in Bahasa) (Jakarta:IAARD Press)

[6] Mulyani A 2015 Potensi ketersediaan lahan kering mendukung perluasan areal pertanian pangan (in Bahasa) In: Pasandaran E, Heriawan R and Syakir M (Eds.) Sumberdaya lahan dan air : Prospek pengembangan dan pengelolaan (Jakarta:IAARD Press)

[7] Ritung S, Suryani E, Subardja D, Sukarman, Nugroho K, Suparto, Hikmatullah, Mulyani A, Tafakresnanto C, Sulaeman Y, Subandiono R E, Wahyunto, Ponidi, Prasadjo N, Suryana U, Hidayat H, Priyono A and Supriatna W 2015 Sumberdaya lahan pertanian Indonesia (in Bahasa) (Jakarta:IAARD Press)

[8] Sutrisno N 2016 Pengembangan pengelolaan panen hujan mendukung kemandirian pangan (in Bahasa) In: Pasandaran E, Heriawan R and Syakir M (Eds.) Sumberdaya lahan dan air : Prospek pengembangan dan pengelolaan (Jakarta:IAARD Press)

[9] Bird J A, Van Kessel C and Horwath W R 2003 Stabilization of 13C-carbon and immobilization of 15N-nitrogen from rice straw in humic fractions Soil Sci Soc Am J 67 : 806–816

[10] Lakitan B, and Gofar N 2013 Kebijakan inovasi teknologi untuk pengelolaan lahan sub optimal berkelanjutan (in Bahasa) Prosiding Seminar Nasional Lahan Suboptimal (Palembang)

[11] Stevenson F J 1982 Humus chemistry : Genesis, composition and reaction ed J Willey and Sons (New York: Wiley) p 512

[12] Zhao J X, Dai F Q, He S J, Zhang Q and Liu G C 2017 Spatiotemporal variation of soil organic carbon in the cultivated soil layer of dry land in the South-Western Yunnan Plateau China JMS 14: 2484-97

[13] Brontowiyo W, Lupiyanto R, Yuwono E, Sulistiono B, Handayani S, Harjito D A 2013 Rainwater harvesting based marginal land irrigation technology : A case study in Ngawen Sub-district of Gunungkidul Regency Indonesia J-SustaIN 1: 63-67

[14] Rengganis H 2016 Potensi dan upaya pemanfaatan air tanah untuk irigasi lahan kering di Nusa Tenggara (in Bahasa) Jurnal Irigasi 11 p. 67-80

[15] Abdullah A F. and Mustafa W A W 2015 Groundwater conceptual model for paddy irrigation J Teknol. 78: 111–17

[16] Don N C, Hang N T M, Araki H, Yamanishi H and Koga K 2006 Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain Agric. Water Manag, 84 : 295–304
[20] Liu J and Chen H 2020 Conjunctive use of groundwater and surface water for paddy rice irrigation in Sanjiang plain North-East China Irrig. Drain., p 1–11

[21] Iwasaki Y, Ozaki M, Nakamura K, Horino H and Kawashima S 2013 Relationship between increment of groundwater level at the beginning of irrigation period and paddy field area in the Tedori River Alluvial Fan Area Japan Paddy Water Environ. 11: 551–558

[22] Magdoff F 1993 Building Soils for Better Crops 156

[23] Thangarajan R, Bolan N S, Tian G, Naidu R, and Kunhikrishnan A 2013 Role of organic amendment application on greenhouse gas emission from soil Sci. Total Environ. 465 pp. 72–96, 2013

[24] Lehmann J and Joseph S 2012 Biochar for environmental management: Science and technology Biochar Environ. Manag. Sci. Technol pp. 1–416

[25] Oladele S O 2019 Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice – Maize cropping sequence Geoderma 353 pp. 359–371

[26] Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W S and Crowley D 2012 Biochar effects on soil biota – a review Soil Biol. Biochem 43 : 1812-36

[27] Huang R, Lan M, Liu J, Gao M 2017 Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning Environ. Sci. Pollut. Res 24 p. 27942-52.

[28] Eviani and Sulaeman 2009 Petunjuk teknis analisis tanah, tanaman, air dan pupuk (in Bahasa) (Balai Penelitian Tanah Bogor)

[29] Steel R G D and Torrie J H 1978 Principles and procedures of statistics : Biometrical Approach. (Tokyo: Mac Graw Hill Inc. B. Co)

[30] USGS 2020 Drought and Ground Levels available on https://www.usgs.gov/special-topic/water-science-school/science/drought-and-groundwater-levels?qt-science_center_objects=0#qt-science_center_objects

[31] Major J, Rondon M, Molina D, Riha S J, and Lehmann J 2010 Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol Plant Soil 333 pp. 117–28

[32] Zhang X, Wang H, He L, Lu K, Sarmah A, Li J and Huang H 2013 Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 20 p 8472-83

[33] Alburquerque J A, Calero J M, Barrón V, Torrent J, del Campillo M C, Gallardo A and Villar R 2014 Effects of biochars produced from different feedstocks on soil properties and sunflower growth J. Soil Sci. Plant Nutr. 177 16-25

[34] Sohi S P 2012 Carbon storage with benefits Science 338 pp.1034–35

[35] Knoblach C, Maarifat A A, Pfeiffer E M, and Haefele S M 2011 Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils Soil Biol 43: 1768-78

[36] Koyama S, Katagiri T, Minamikawa K 2016 Effects of rice husk charcoal application on rice yield, methane emission, and soil carbon sequestration in andosol paddy soil JARQ 50 319 - 327

[37] Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X and Crowley D 2010 Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai lake plain China. Agric Ecosyst Environ 139 469-75

[38] Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S and Haszeldine S 2012 Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, part 1: context, chemical properties, environmental and health and safety issues Energy Policy 42 49-58

[39] Depar N, Shah J A, Memon M Y 2014 Effect of organic mulching on soil moisture conservation and yield of wheat (Triticum aestivum L.) Pak. J. Agric. Agric. Eng. Vet. Sci. 30 p 54–66

[40] Peng X, Ye L L, Wang C H, Zhou H and Sun B 2011 Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in
southern China 112 159-66

[41] Yang C G and Lu S G 2021. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops Soil Till Res 205

[42] Zimmerman A R, Gao B, and Ahn M Y 2011 Positive, negative carbon mineralization priming effects among a variety of biochar-amended soils Soil Biol Biochem 43 p.1169–79

[43] Asai H, Samson B K, Stephan H M, Songyikhangauthor K, Homma K, Kiyono Y and Horie T 2009 Biochar amendment techniques for upland rice production in Northern Laos. Field Crops Research 111 p.81–84