Some inequalities for Cesàro means of double Vilenkin–Fourier series

T. Tepnadze and L. E. Persson

Abstract
In this paper, we state and prove some new inequalities related to the rate of L^p approximation by Cesàro means of the quadratic partial sums of double Vilenkin–Fourier series of functions from L^p.

MSC: 42C10; 42B25

Keywords: Inequalities; Approximation; Vilenkin system; Vilenkin–Fourier series; Cesàro means; Convergence in norm

1 Introduction
Let N_+ denote the set of positive integers, and let $N := N_+ \cup \{0\}$. Let $m := (m_0, m_1, \ldots)$ be a sequence of positive integers not less than 2. Denote by $Z_{m_j} := \{0, 1, \ldots, m_j - 1\}$ the additive group of integers modulo m_j. Define the group G_m as the complete direct product of the groups Z_{m_j} with the product of the discrete topologies of Z_{m_j}.

The direct product of the measures

$$\mu_k(j) := \frac{1}{m_k} \quad (j \in Z_{m_k})$$

is the Haar measure on G_m with $\mu(G_m) = 1$. If the sequence m is bounded, then G_m is called a bounded Vilenkin group. In this paper, we consider only bounded Vilenkin groups. The elements of G_m can be represented by sequences $x := (x_0, x_1, \ldots, x_j, \ldots) (x_j \in Z_{m_j})$. The group operation \times in G_m is given by

$$x \times y = ((x_0 + y_0) \mod m_0, \ldots, (x_k + y_k) \mod m_k, \ldots)$$

for $x := (x_0, \ldots, x_k, \ldots)$ and $y := (y_0, \ldots, y_k, \ldots) \in G_m$. The inverse of \times will be denoted by \times^{-1}.

It is easy to give a base for the neighborhoods of G_m:

$$I_0(x) := G_m,$$

$$I_n(x) := \{ y \in G_m | y_0 = x_0, \ldots, y_{n-1} = x_{n-1} \}$$

for $x \in G_m$ and $n \in N$. Define $I_n := I_n(0)$ for $n \in N_+$. Set $e_n := (0, \ldots, 0, 1, 0, \ldots) \in G_m$, where the nth coordinate of which is 1, and the rest are zeros ($n \in N$).
We define the so-called generalized number system based on m as follows: $M_0 := 1$, $M_{k+1} := m_k M_k$ ($k \in N$). Then every $n \in N$ can be uniquely expressed as $n = \sum_{j=0}^{\infty} n_j M_j$, where $n_j \in Z_{m_j}$ ($j \in N$, and only a finite number of n_j differ from zero. We also use the following notation: $|n| := \max\{k \in N : n_k \neq 0\}$ (i.e., $M_{|n|} \leq n < M_{|n|+1}$, $n \neq 0$). For $x \in G_m$, we denote $|x| := \sum_{j=0}^{\infty} x_j M_{j+1}$ ($x_j \in Z_{m_j}$).

Next, we introduce on G_m an orthonormal system, which is called the Vilenkin system. First, we define the complex-valued functions $r_k(x) : G_m \rightarrow C$, the generalized Rademacher functions, as follows:

$$r_k(x) := \exp \frac{2\pi i x_k}{m_k} \quad (i^2 = -1, x \in G_m, k \in N).$$

Now we define the Vilenkin system $\psi := (\psi_n : n \in N)$ on G_m as

$$\psi_n(x) := \prod_{k=0}^{\infty} r_k^{n_k}(x) \quad (n \in N).$$

In particular, if $m = 2$, then we call this system the Walsh–Paley system. Each ψ_n is a character of G_m, and all characters of G_m are of this norm. Moreover, $\psi_n(-x) = \overline{\psi_n(x)}$.

The Dirichlet kernels are defined by

$$D_n := \sum_{k=0}^{n-1} \psi_k \quad (n \in N),$$

Recall that (see [20] or [23])

$$D_{M_n}(x) = \begin{cases} M_n & \text{if } x \in I_n, \\ 0 & \text{if } x \notin I_n. \end{cases} \quad (1)$$

The Vilenkin system is orthonormal and complete in $L^1(G_m)$ (see [1]).

Next, we introduce some notation from the theory of two-dimensional Vilenkin system. Let \tilde{m} be a sequence like m. The relation between the sequences (\tilde{m}_n) and (M_n) is the same as between sequences (m_n) and (M_n). The group $G_m \times G_{\tilde{m}}$ is called a two-dimensional Vilenkin group. The normalized Haar measure is denoted by μ as in the one-dimensional case. We also suppose that $m = \tilde{m}$ and $G_m \times G_m = G_{2m}$.

The norm of the space $L^p(G_{2m})$ is defined by

$$\|f\|_p := \left(\int_{G_{2m}} |f(x,y)|^p \, d\mu(x,y) \right)^{1/p} \quad (1 \leq p < \infty).$$

Denote by $C(G_{2m})$ the class of continuous functions on the group G_{2m} endowed with the supremum norm.

For brevity in notation, we write $L^\infty(G_m)$ instead of $C(G_{2m})$.

The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier series, and the Dirichlet kernels with respect to the two-dimensional Vilenkin system are
defined as follows:

\[
\hat{f}(n_1, n_2) := \int_{G_m} f(x, y) \overline{\psi_{n_1}(x)} \overline{\psi_{n_2}(y)} \, d\mu(x, y),
\]

\[
S_{n_1, n_2}(x, y, f) := \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \hat{f}(k_1, k_2) \psi_{k_1}(x) \psi_{k_2}(y),
\]

\[
D_{n_1, n_2}(x, y) := D_{n_1}(x)D_{n_2}(y),
\]

Denote

\[
S^{(1)}_m(x, y, f) := \sum_{l=0}^{m-1} \hat{f}(l, y) \overline{\psi_l}(x),
\]

\[
S^{(2)}_m(x, y, f) := \sum_{r=0}^{m-1} \hat{f}(x, r) \overline{\psi_r}(y),
\]

where

\[
\hat{f}(l, y) = \int_{G_m} f(x, y) \psi_l(x) \, d\mu(x)
\]

and

\[
\hat{f}(x, r) = \int_{G_m} f(x, y) \psi_r(y) \, d\mu(y).
\]

The \((C, -\alpha)\) means of the double Vilenkin–Fourier series are defined as follows:

\[
\sigma^{-\alpha}_n(f, x, y) = \frac{1}{A^{-\alpha}_n} \sum_{j=1}^{n} A^{-\alpha-1}_{n-j} S_j(f, x, y),
\]

where

\[
A_0^{\alpha} = 1, \quad A_n^{\alpha} = \frac{(\alpha + 1) \cdots (\alpha + n)}{n!}.
\]

It is well known that (see [28])

\[
A_n^{\alpha} = \sum_{k=0}^{n} A_{k}^{\alpha-1}, \quad (2)
\]

\[
A_n^{\alpha} - A_{n-1}^{\alpha} = A_{n-1}^{\alpha-1}, \quad (3)
\]

and

\[
c_1(\alpha)n^\alpha \leq A_n^{\alpha} \leq c_2(\alpha)n^\alpha, \quad (4)
\]

where positive constants \(c_1\) and \(c_2\) depend on \(\alpha\).
The dyadic partial moduli of continuity of a function \(f \in L^p(G^2_m) \) in the \(L^p \)-norm are defined by

\[
\omega_1 \left(f, \frac{1}{M_n} \right)_p = \sup_{u \in I_n} \| f(\cdot + u, \cdot) - f(\cdot, \cdot) \|_p
\]

and

\[
\omega_2 \left(f, \frac{1}{M_n} \right)_p = \sup_{v \in I_n} \| f(\cdot, \cdot + v) - f(\cdot, \cdot) \|_p,
\]

whereas the dyadic mixed modulus of continuity is defined as follows:

\[
\omega_{1,2} \left(f, \frac{1}{M_n}, \frac{1}{M_m} \right)_p = \sup_{(u,v) \in I_n \times I_m} \| f(\cdot + u, \cdot + v) - f(\cdot + u, \cdot) - f(\cdot, \cdot + v) + f(\cdot, \cdot) \|_p.
\]

It is clear that

\[
\omega_{1,2} \left(f, \frac{1}{M_n}, \frac{1}{M_m} \right)_p \leq \omega_1 \left(f, \frac{1}{M_n} \right)_p + \omega_2 \left(f, \frac{1}{M_m} \right)_p.
\]

The dyadic total modulus of continuity is defined by

\[
\omega \left(f, \frac{1}{M_n} \right)_p = \sup_{(u,v) \in I_n \times I_n} \| f(\cdot + u, \cdot + v) - f(\cdot, \cdot) \|_p.
\]

The problems of summability of partial sums and Cesàro means for Walsh–Fourier series were studied in [2, 13–19, 21, 22, 25, 26].

The convergence issue of Fejér (and Cesàro) means on the Walsh and Vilenkin groups for unbounded case were studied in [3–11].

In his monograph [27], Zhizhinashvili investigated the behavior of Cesàro \((C, \alpha)\)-means for double trigonometric Fourier series in detail. Goginava [18] studied the analogous question in the case of the Walsh system. In particular, the following theorems were proved.

Theorem A Let \(f \) belong to \(L^p(G^2) \) for some \(p \in [1, \infty] \) and \(\alpha \in (0,1) \). Then, for any \(2^k \leq n < 2^{k+1} \) \((k, n \in \mathbb{N})\), we have the inequality

\[
\left\| \sigma_{2^k}^{(n)}(f) - f \right\|_p \leq c(\alpha) \left\{ 2^{ka} \omega_1 \left(f, 1/2^{k-1} \right)_p + 2^{ka} \omega_2 \left(f, 1/2^{k-1} \right)_p \right. \\
+ \left. \sum_{r=0}^{k-2} 2^{r-k} \omega_1 \left(f, 1/2^r \right)_p + \sum_{s=0}^{k-2} 2^{s-k} \omega_2 \left(f, 1/2^s \right)_p \right\}.
\]
Theorem B Let f belong to $L^p(G_2)$ for some $p \in [1, \infty]$ and $\alpha \in (0, 1)$. Then, for any $2^k \leq n < 2^{k+1}$ ($k, n \in \mathbb{N}$), we have the inequality
\[
\left\| \sigma_n^{\alpha}(f) - f \right\|_p \leq c(\alpha) \left\{ 2^{k\alpha} \omega_1(f, 1/2^{k-1})_p + 2^{k\alpha} \omega_2(f, 1/2^{k-1})_p \right. \\
\left. + \sum_{r=0}^{k-2} 2^{r\alpha} \omega_1(f, 1/2^r)_p + \sum_{s=0}^{k-2} 2^{s\alpha} \omega_2(f, 1/2^s)_p \right\}.
\]

In this paper, we state and prove analogous results in the case of double Vilenkin–Fourier series. Our main results are the following theorems.

Theorem 1 Let f belong to $L^p(G^m_2)$ for some $p \in [1, \infty]$ and $\alpha \in (0, 1)$. Then, for any $M_k \leq n < M_{k+1}$ ($k, n \in \mathbb{N}$), we have the inequality
\[
\left\| \sigma_{M_k}^{\alpha}(f) - f \right\|_p \leq c(\alpha) \left(\omega_1(f, 1/M_{k-1})_p M_k^\alpha + \omega_2(f, 1/M_{k-1})_p M_k^\alpha \right. \\
\left. + \sum_{r=0}^{k-2} M_r M_k \omega_1(f, 1/M_r)_p + \sum_{s=0}^{k-2} M_s M_k \omega_2(f, 1/M_s)_p \right).
\]

Theorem 2 Let f belong to $L^p(G^m_2)$ for some $p \in [1, \infty]$ and $\alpha \in (0, 1)$. Then, for any $M_k \leq n < M_{k+1}$ ($k, n \in \mathbb{N}$), we have the inequality
\[
\left\| \sigma_n^{\alpha}(f) - f \right\|_p \leq c(\alpha) \left(\omega_1(f, 1/M_{k-1})_p M_k^\alpha \log n + \omega_2(f, 1/M_{k-1})_p M_k^\alpha \log n \right. \\
\left. + \sum_{r=0}^{k-2} M_r M_k \omega_1(f, 1/M_r)_p + \sum_{s=0}^{k-2} M_s M_k \omega_2(f, 1/M_s)_p \right).
\]

To make the proofs of these theorems clearer, we formulate some auxiliary lemmas in Sect. 2. Some of these lemmas are new and of independent interest. Detailed proofs can be found in Sect. 3.

2 Auxiliary lemmas

To prove Theorems 1 and 2, we need the following three lemmas (see [1, 12], and [8], respectively)

Lemma 1 Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be real numbers. Then
\[
\frac{1}{n} \int_{G^n_2} \left| \sum_{k=1}^{n} \alpha_k D_k(x) \right| \mu(x) \leq \frac{c}{\sqrt{n}} \left(\sum_{k=1}^{n} \alpha_k^2 \right)^{1/2}.
\]

Lemma 2 Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be real numbers. Then
\[
\frac{1}{n} \int_{G^n_2} \left| \sum_{k=1}^{n} \alpha_k D_k(x) D_k(y) \right| \mu(x, y) \leq \frac{c}{\sqrt{n}} \left(\sum_{k=1}^{n} \alpha_k^2 \right)^{1/2}.
\]
Lemma 3 Let $0 \leq j < n_s M_s$ and $0 \leq n_s < m_s$. Then

$$D_{n_s M_s - j} = D_{n_s M_s} - \psi_{n_s M_s - 1} \tilde{D}_j.$$

We also need the following new lemmas of independent interest.

Lemma 4 Let f belong to $L^p(G_m^2)$ for some $p \in [1, \infty]$. Then, for every $\alpha \in (0, 1)$, we have the inequality

$$I := \frac{1}{A_n^\alpha} \left\| \int_{G_m^2} A_{n-i}^{-\alpha-1} D_i(u) D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p \leq \frac{k-2}{M_k} \omega_1(f, 1/M_k)_p + \frac{k-2}{M_k} \omega_2(f, 1/M_k)_p,$$

where $M_k \leq n < M_{k+1}$.

Lemma 5 Let $\alpha \in (0, 1)$ and $p = M_k, M_k + 1, \ldots$. Then

$$II := \int_{G_m^2} \left\| \sum_{i=1}^{M_k} A_{p-i}^{-\alpha-1} D_i(u) D_i(v) \right\|_p d\mu(u, v) \leq c(\alpha) < \infty, \quad k = 1, 2, \ldots.$$

Lemma 6 We have the inequality

$$III := \int_{G_m^2} \left\| \sum_{i=1}^{n} A_{n-i}^{-\alpha-1} D_i(u) D_i(v) \right\|_p d\mu(u, v) \leq c(\alpha) \log n$$

3 The detailed proofs

Proof of Lemma 3 Applying Abel’s transformation, from (2) we get

$$I \leq \frac{1}{A_n^\alpha} \left\| \int_{G_m^2} A_{n-i}^{-\alpha-2} \sum_{i=1}^{M_k} D_i(u) D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p + \frac{1}{A_n^\alpha} \left\| \int_{G_m^2} A_{n-M_k}^{-\alpha-1} \sum_{i=1}^{M_k-1} D_i(u) D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p$$

$$:= I_1 + I_2,$$

where the first and second terms on the right side of inequality (5) are denoted by I_1 and I_2, respectively.
For I_2, we have the estimate

\[
I_2 \leq \frac{1}{A_{m_1}^{-\alpha}} \left| \int \mathcal{G}_{n-M_{k-1}}^2 A_{n-M_{k-1}}^{n-1} \sum_{r=1}^{k-2} \sum_{i=M_r}^{M_{r+1}-1} D_i(u)D_i(v) \right| \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v)
\]

\[
\times \left[f(\cdot - u, \cdot - v) - S_{M_r,M_r} (\cdot - u, \cdot - v, f) \right] d\mu(u, v)
\]

\[
\leq \frac{1}{A_{m_1}^{-\alpha}} \left| \int \mathcal{G}_{n-M_{k-1}}^2 A_{n-M_{k-1}}^{n-1} \sum_{r=1}^{k-2} \sum_{i=M_r}^{M_{r+1}-1} D_i(u)D_i(v) \right| \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v)
\]

\[
\times \left[S_{M_r,M_r} (\cdot - u, \cdot - v, f) - S_{M_r,M_r} (\cdot, \cdot, f) \right] d\mu(u, v)
\]

\[
+ \frac{1}{A_{m_1}^{-\alpha}} \left| \int \mathcal{G}_{n-M_{k-1}}^2 A_{n-M_{k-1}}^{n-1} \sum_{r=1}^{k-2} \sum_{i=M_r}^{M_{r+1}-1} D_i(u)D_i(v) \right| \left[S_{M_r,M_r} (\cdot, \cdot, f) - f(\cdot, \cdot) \right] d\mu(u, v)
\]

\[
\leq I_{21} + I_{22} + I_{23},
\]

where the first, second, and third terms on the right side of inequality (6) are denoted by I_{21}, I_{22}, and I_{23}, respectively.

It is evident that

\[
\int \mathcal{G}_{n-M_{k-1}}^2 A_{n-M_{k-1}}^{n-1} \sum_{i=M_r}^{M_{r+1}-1} D_i(u)D_i(v) \left[S_{M_r,M_r} (\cdot - u, \cdot - v, f) - S_{M_r,M_r} (\cdot, \cdot, f) \right] d\mu(u, v)
\]

\[
= \sum_{i=M_r}^{M_{r+1}-1} \left(\int \mathcal{G}_{n-M_{k-1}}^2 D_i(u)D_i(v) S_{M_r,M_r} (\cdot - u, \cdot - v, f) d\mu(u, v) - S_{M_r,M_r} (\cdot, \cdot, f) \right)
\]

\[
= \sum_{i=M_r}^{M_{r+1}-1} (S_i (\cdot, \cdot, f) - S_{M_r,M_r} (\cdot, \cdot, f))
\]

\[
= \sum_{i=M_r}^{M_{r+1}-1} (S_{M_r,M_r} (\cdot, \cdot, f) - S_{M_r,M_r} (\cdot, \cdot, f)) = 0.
\]

Hence

\[
I_{22} = 0.
\]
Moreover, by the generalized Minkowski inequality, Lemma 2, and by (1) and (4) we obtain

\[I_{21} \leq \frac{1}{A^a} \left| A_{n-M_k-1}^{a-1} \int_{G_m^2} \sum_{i=M_r}^{M_{r+1}-1} D_i(u)D_i(v) \right| \]

\[\times \left\| f(\cdot - u, \cdot - v) - S_{M_r, M_r}(\cdot - u, \cdot - v, f) \right\|_p d\mu(u, v) \]

\[\leq \frac{c(\alpha)}{M_k} \sum_{r=1}^{k-2} \left(\omega_1(1/M_r) + \omega_2(1/M_r) \right)^p \]

\[\times \int_{G_m^2} \left| \sum_{i=M_r}^{M_{r+1}-1} A^a_{n-i} \sum_{l=1}^i D_i(u)D_i(v) \right| d\mu(u, v) \]

\[\leq c(\alpha) \sum_{r=1}^{k-2} \frac{M_r}{M_k} \left(\omega_1(1/M_r) + \omega_2(1/M_r) \right)^p. \] (8)

The estimation of \(I_{23}\) is analogous to that of \(I_{21}\):

\[I_{23} \leq c(\alpha) \sum_{r=1}^{k-2} \frac{M_r}{M_k} \left(\omega_1(1/M_r) + \omega_2(1/M_r) \right)^p. \] (9)

Analogously, we can estimate \(I_1\) as follows:

\[I_1 \leq \frac{1}{A^a} \sum_{r=1}^{k-2} \int_{G_m^2} \left| \sum_{i=M_r}^{M_{r+1}-1} A^a_{n-i} \sum_{l=1}^i D_i(u)D_i(v) \right| \]

\[\times \left[f(\cdot - u, \cdot - v) - S_{M_r, M_r}(\cdot - u, \cdot - v, f) \right] d\mu(u, v) \]

\[+ \frac{1}{A^a} \sum_{r=1}^{k-2} \left| \sum_{i=M_r}^{M_{r+1}-1} A^a_{n-i} \sum_{l=1}^i D_i(u)D_i(v) \right| \]

\[\times \left[S_{M_r, M_r}(\cdot - u, \cdot - v, f) - S_{M_r, M_r}(\cdot , \cdot , f) \right] d\mu(u, v) \]

\[+ \frac{1}{A^a} \sum_{r=1}^{k-2} \left| \sum_{i=M_r}^{M_{r+1}-1} A^a_{n-i} \sum_{l=1}^i D_i(u)D_i(v) \right| \]

\[\times \left[S_{M_r, M_r}(\cdot , \cdot , f) - f(\cdot , \cdot) \right] d\mu(u, v) \]

\[\leq \frac{1}{A^a} \sum_{r=1}^{k-2} \int_{G_m^2} \left| \sum_{i=M_r}^{M_{r+1}-1} A^a_{n-i} \sum_{l=1}^i D_i(u)D_i(v) \right| \]

\[\times \left[f(\cdot - u, \cdot - v) - S_{M_r, M_r}(\cdot - u, \cdot - v, f) \right] d\mu(u, v) \]
\[+ \frac{1}{A_n^{\alpha}} \sum_{r=1}^{k-2} \int_{G^2_m} \left| \sum_{i=M_r}^{M_{r+1}-1} A_{n-r}^{\alpha-2} \sum_{l=1}^{i} D_l(u)D_l(v) \right| \times \left\| S_{M_r,M_r}(\cdot,\cdot) - f(\cdot,\cdot) \right\|_\mu d\mu(u,v) \]

\[\leq c(\alpha)M_k^2 \sum_{r=1}^{k-2} \sum_{i=M_r}^{M_{r+1}-1} (n-i)^{\alpha-2}i \left(\omega_1(f,1/M_r)_p + \omega_2(f,1/M_r)_p \right) \]

\[\leq c(\alpha)M_k^2 \sum_{r=1}^{k-2} \sum_{i=M_r}^{M_{r+1}-1} (n-M_{r+1}-1)^{\alpha-2}i \left(\omega_1(f,1/M_r)_p + \omega_2(f,1/M_r)_p \right) \]

\[\leq c(\alpha) \sum_{r=0}^{k-2} \frac{M_r}{M_k} \left(\omega_1(f,1/M_r)_p + \omega_2(f,1/M_r)_p \right). \quad (10) \]

By combining (7)–(9) with (10) for \(I \) we find that

\[I \leq c(\alpha) \sum_{r=0}^{k-2} \frac{M_r}{M_k} \left(\omega_1(f,1/M_r)_p + \omega_2(f,1/M_r)_p \right). \quad (11) \]

The proof of Lemma 3 is complete. \(\square \)

Proof of Lemma 4

It is evident that

\[II \leq \int_{G^2_m} \left| \sum_{i=1}^{M_k-1} A_{p-M_k}^{\alpha-1} R_{M_k-i}(u)R_{M_k-i}(v) \right| d\mu(u,v) \]

\[+ \left| A_{p-M_k}^{\alpha-1} \right| \int_{G^2_m} R_{M_k}(u)R_{M_k}(v) d\mu(u,v) \]

\[:= II_1 + II_2, \quad (12) \]

where the first and second terms on the right side of inequality (12) are denoted by \(II_1 \) and \(II_2 \), respectively.

From (1) by \(|A_{p-M_k}^{\alpha-1}| \leq 1 \) we get that

\[II_2 \leq 1. \quad (13) \]

Moreover, by Lemma 3 we have that

\[II_1 \leq \int_{G^2_m} \left| \sum_{i=1}^{M_k-1} A_{p-M_k}^{\alpha-1} \tilde{R}_i(u)\tilde{R}_i(v) \right| d\mu(u,v) \]

\[+ \int_{G^2_m} R_{M_k}(u) \left| \sum_{i=1}^{M_k-1} A_{p-M_k}^{\alpha-1} \tilde{R}_i(v) \right| d\mu(u,v) \]

\[+ \int_{G^2_m} R_{M_k}(v) \left| \sum_{i=1}^{M_k-1} A_{p-M_k}^{\alpha-1} \tilde{R}_i(u) \right| d\mu(u,v) \]
\[
+ \sum_{i=1}^{\lfloor M_k \rfloor - 1} A_{p-M_k + i} \int_{G_m^2}^{M_k - 1} \sum_{i=1}^{M_k - 1} A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(u) D_l(v) \, d\mu(u, v)
\]

\[= II_{11} + II_{12} + II_{13} + II_{14}, \quad (14)\]

where the first, second, third, and fourth terms on the right side of inequality (14) are denoted by \(II_{11}, II_{12}, II_{13}, \) and \(II_{14}\) respectively.

From (1) and (4) it follows that

\[II_{14} \leq c(\alpha) \sum_{i=1}^{\infty} v^{-\alpha - 1} < \infty. \quad (15)\]

By applying Abel’s transformation, in view of Lemma 2, we have that

\[II_{11} \leq \int_{G_m^2} \sum_{i=1}^{M_k - 2} A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(u) \, d\mu(u, v)
\]

\[+ \int_{G_m^2} A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(v) \, d\mu(u, v)
\]

\[\leq c(\alpha) \left\{ \sum_{i=1}^{M_k - 2} (p - M_k + i)^{-\alpha - 1} i + (p - 1)^{-\alpha - 1} M_k \right\}
\]

\[\leq c(\alpha) \left\{ \sum_{i=1}^{\infty} i^{-\alpha - 1} + M_k^{-\alpha} \right\} < \infty. \quad (16)\]

The estimation of \(II_{12}\) and \(II_{13}\) are analogous to the estimation of \(II_{11}\). Applying Abel’s transformation, in view of Lemma 1, we find that

\[II_{12} \leq \int_{G_m^2} D_{M_k}(u) \sum_{i=1}^{M_k - 2} A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(v) \, d\mu(u, v)
\]

\[+ \int_{G_m^2} D_{M_k}(u) A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(v) \, d\mu(u, v)
\]

\[\leq c(\alpha) \left\{ \sum_{i=1}^{M_k - 2} (p - M_k + i)^{-\alpha - 1} i + (p - 1)^{-\alpha - 1} M_k \right\}
\]

\[\leq c(\alpha) \left\{ \sum_{i=1}^{\infty} i^{-\alpha - 1} + M_k^{-\alpha} \right\} < \infty \quad (17)\]

and

\[II_{13} \leq \int_{G_m^2} D_{M_k}(v) \sum_{i=1}^{M_k - 2} A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(u) \, d\mu(u, v)
\]

\[+ \int_{G_m^2} D_{M_k}(v) A_{p-M_k + i} \sum_{l=1}^{M_k - 1} D_l(u) \, d\mu(u, v)
\]
\[
\leq c(\alpha) \left\{ \sum_{i=1}^{M_k-2} (p - M_k + i)^{-\alpha - 2} i + (p - 1)^{-\alpha - 1}M_k \right\} \\
\leq c(\alpha) \left\{ \sum_{i=1}^{\infty} i^{-\alpha - 1} + M_k^{-\alpha} \right\} < \infty.
\]

(18)

The proof is complete by combining (12)–(18). \qed

Proof of Lemma 5 Let

\[n = n_{k_1}M_{k_1} + \cdots + n_{k_s}M_{k_s}, \quad k_1 > \cdots > k_s \geq 0. \]

Denote

\[n^{(i)} = n_{k_i}M_{k_i} + \cdots + n_{k_s}M_{k_s}, \quad i = 1, 2, \ldots, s. \]

Since (see [20])

\[D_{j^{(n)MA}} = D_{nAM} + nAM_{D_j}, \quad (19) \]

we find that

\[
III \leq \int_{G_m^2} \left| \sum_{i=1}^{n^{(k_1)}} A_{n^{-\alpha - 1}} D_i(u)D_i(v) \right| d\mu(u, v) \\
+ \int_{G_m^2} \left| \sum_{i=1}^{n^{(2)}} A_{n^{(2)-1}} D_i(u)D_i(v) \right| d\mu(u, v) \\
+ \int_{G_m^2} D_{n^{(k_1)}M_{k_1}}(u)D_{n^{(k_1)}M_{k_1}}(v) \sum_{i=1}^{n^{(2)}} A_{n^{(2)-1}} \left| D_i(u) \right| d\mu(u, v) \\
+ \int_{G_m^2} D_{n^{(k_1)}M_{k_1}}(v) \sum_{i=1}^{n^{(2)}} A_{n^{(2)-1}} \left| D_i(u) \right| d\mu(u, v) \\
+ \int_{G_m^2} D_{n^{(k_1)}M_{k_1}}(v) \sum_{i=1}^{n^{(2)}} A_{n^{(2)-1}} \left| D_i(v) \right| d\mu(u, v) \\
:= III_1 + III_2 + III_3 + III_4 + III_5 \tag{20}
\]

where the first, second, third, fourth, and fifth terms on the right side of inequality (20) are denoted by \(III_1, III_2, III_3, III_4, \) and \(III_5 \), respectively.

By (1) we have that

\[III_3 \leq c(\alpha). \tag{21} \]

Moreover, since (see [24])

\[\left| \sum_{i=1}^{n} A_{n^{-\alpha - 1}} D_i(u) \right| = O(|u|^{-\alpha - 1}), \tag{22} \]
for III_4, we get that

$$III_4 \leq \int_{G_m^2} D_{n_{k_1} M_{k_1}}(u) \langle |v|^{\alpha - 1} d\mu(u,v)$$

$$\leq \int_{G_m} \langle |v|^{\alpha - 1} d\mu(v) = \frac{1}{\alpha} < \infty.$$

(23)

Analogously, we find that

$$III_5 \leq \int_{G_m^2} D_{n_{k_1} M_{k_1}}(v) \langle |u|^{\alpha - 1} d\mu(u,v)$$

$$\leq \int_{G_m} \langle |u|^{\alpha - 1} d\mu(v) = \frac{1}{\alpha} < \infty.$$

(24)

For $r \in \{0, \ldots, M_A - 1\}$ and $0 \leq j < M_A$ (see [20]), this yields that

$$D_{j + r M_A} = \left(\sum_{q=0}^{r-1} \psi_{M_A}^q \right) D_{M_A} + \psi_{M_A}^r D_{j}.$$

Thus we have

$$\int_{G_m^2} \sum_{i=1}^{n_{k_1} M_{k_1} - 1} A_{n-i}^{\alpha-1} D_i(u) D_i(v) d\mu(u,v)$$

$$\leq \int_{G_m^2} \sum_{i=0}^{n_{k_1} M_{k_1} - 1} \sum_{r=0}^{n_{k_1} M_{k_1} - 1} A_{n-i-r M_{k_1}}^{\alpha-1} D_{i + r M_{k_1}}(u) D_{i + r M_{k_1}}(v) d\mu(u,v)$$

$$\leq \int_{G_m^2} \sum_{i=0}^{n_{k_1} M_{k_1} - 1} \sum_{r=0}^{n_{k_1} M_{k_1} - 1} A_{n-i-r M_{k_1}}^{\alpha-1} \left(\sum_{q=0}^{r-1} \psi_{M_A}^q \right) D_{M_{k_1}}(u)$$

$$\times \left(\sum_{q=0}^{r-1} \psi_{M_A}^q \right) D_{M_{k_1}}(v) d\mu(u,v)$$

$$+ \int_{G_m^2} \sum_{i=0}^{n_{k_1} M_{k_1} - 1} \sum_{r=0}^{n_{k_1} M_{k_1} - 1} A_{n-i-r M_{k_1}}^{\alpha-1} \left(\sum_{q=0}^{r-1} \psi_{M_A}^q \right) D_{M_{k_1}}(u) \psi_{M_A}^r D_i(v) d\mu(u,v)$$

$$+ \int_{G_m^2} \sum_{i=0}^{n_{k_1} M_{k_1} - 1} \sum_{r=0}^{n_{k_1} M_{k_1} - 1} A_{n-i-r M_{k_1}}^{\alpha-1} \psi_{M_A}^r D_i(u) \left(\sum_{q=0}^{r-1} \psi_{M_A}^q \right) D_{M_{k_1}}(v) d\mu(u,v)$$

$$+ \int_{G_m^2} \sum_{i=0}^{n_{k_1} M_{k_1} - 1} \sum_{r=0}^{n_{k_1} M_{k_1} - 1} A_{n-i-r M_{k_1}}^{\alpha-1} \psi_{M_A}^r D_i(u) \psi_{M_A}^r D_i(v) d\mu(u,v).$$

On the other hand, by (1) and (4) we obtain that

$$\int_{G_m^2} A_{n-n_{k_1} M_{k_1}}^{\alpha-1} D_{n_{k_1} M_{k_1}}(u) D_{n_{k_1} M_{k_1}}(v) d\mu(u,v) \leq c(\alpha).$$
Consequently, for III_1, we have the estimate

$$III_1 \leq \int_{G^2_n} D_{M_{k_1}}(u) D_{M_{k_1}}(v) \sum_{i=1}^{n_{k_1}-1} A_{n-i}^{\alpha-1} \left| \sum_{r=0}^{M_{k_1}} A_{n-i-r} D_i(u) D_i(v) \right| d\mu(u,v)$$

$$+ \int_{G^2_n} D_{M_{k_1}}(u) \sum_{r=0}^{n_{k_1}-1} A_{n-i}^{\alpha-1} D_i(v) \sum_{i=1}^{M_{k_1}} A_{n-i-r} D_i(u) d\mu(u,v)$$

$$+ \int_{G^2_n} D_{M_{k_1}}(v) \sum_{r=0}^{n_{k_1}-1} A_{n-i}^{\alpha-1} D_i(u) \sum_{i=1}^{M_{k_1}} A_{n-i-r} D_i(v) d\mu(u,v)$$

$$+ \int_{G^2_n} \sum_{r=0}^{n_{k_1}-1} A_{n-i}^{\alpha-1} D_i(u) D_i(v) \sum_{i=1}^{M_{k_1}} \sum_{i=1}^{M_{k_1}} A_{n-i-r} D_i(u) D_i(v) d\mu(u,v) + c(\alpha)$$

$$:= III_{11} + III_{12} + III_{13} + III_{14} + c(\alpha),$$

(25)

where the first, second, third, and fourth terms on the right side of inequality (25) are denoted by III_{11}, III_{12}, III_{13}, and III_{14}, respectively.

From Lemma 4 we have that

$$III_{14} \leq c(\alpha).$$

(26)

The estimation of III_{11} is analogous to that of III_3, and we find that

$$III_{11} \leq c(\alpha).$$

(27)

The estimation of III_{12} and III_{13} is analogous to that of III_4, and we obtain that

$$III_{12} < \infty$$

(28)

and

$$III_{13} < \infty.$$

(29)

After substituting (21) and (23)--(29) into (20), we conclude that

$$\int_{G^2_n} \sum_{i=1}^{n} A_{n-i}^{\alpha-1} D_i(u) D_i(v) d\mu(u,v)$$

$$\leq \int_{G^2_n} \sum_{i=1}^{n} A_{n-i}^{\alpha-1} D_i(u) D_i(v) d\mu(u,v) + c(\alpha)$$

$$\leq \cdots \leq \int_{G^2_n} \sum_{i=1}^{n} A_{n-i}^{\alpha-1} D_i(u) D_i(v) d\mu(u,v) + c(\alpha)$$

$$\leq c(\alpha) + c(\alpha)s \leq c(\alpha) \log n. $$

The proof is complete. ☐
Now we are ready to prove the main results.

Proof of Theorem 1 It is evident that

\[
\left\| \sigma_{M_k}^\alpha(f) - f \right\|_p \\
\leq \frac{1}{A_{M_k}^\alpha} \left\| \int_{G_2^m} \sum_{i=1}^{M_k} A_{M_k}^{-\alpha-1} D_i(u) D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p \\
+ \frac{1}{A_{M_k}^\alpha} \left\| \int_{G_2^m} \sum_{i=M_k+1}^{M_k} A_{M_k}^{-\alpha-1} D_i(u) D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p \\
:= I + II. \tag{30}
\]

From Lemma 5 it follows that

\[
I \leq c(\alpha) \sum_{r=0}^{k-2} \frac{M_r}{M_k} \left(\omega_1(f, 1/M_r)_p + \omega_2(f, 1/M_r)_p \right). \tag{31}
\]

Moreover, for II, we have the estimate

\[
II \leq \frac{1}{A_{M_k}^\alpha} \left\| \int_{G_2^m} \sum_{i=M_k+1}^{M_k} A_{M_k}^{-\alpha-1} D_i(u) D_i(v) \\
\times \left[f(\cdot - u, \cdot - v) - S_{M_k}^{(1)}(\cdot - u, \cdot - v, f) \right] d\mu(u, v) \right\|_p \\
+ \frac{1}{A_{M_k}^\alpha} \left\| \int_{G_2^m} \sum_{i=M_k+1}^{M_k} A_{M_k}^{-\alpha-1} D_i(u) D_i(v) \\
\times \left[S_{M_k}^{(1)}(\cdot - u, \cdot - v, f) - f(\cdot, \cdot) \right] d\mu(u, v) \right\|_p \\
:= II_1 + II_2, \tag{32}
\]

where the first and second terms on the right side of inequality (32) are denoted by II_1 and II_2, respectively.

In view of the generalized Minkowski inequality, by (4) and Lemma 5 we get that

\[
II_1 \leq \frac{1}{A_{M_k}^\alpha} \int_{G_2^m} \sum_{i=M_k+1}^{M_k} A_{M_k}^{-\alpha-1} D_i(u) D_i(v) \\
\times \left\| f(\cdot - u, \cdot - v) - S_{M_k}^{(1)}(\cdot - u, \cdot - v, f) \right\|_p d\mu(u, v) \\
\leq c(\alpha) M_k^\alpha \omega_1(f, 1/M_k)_p. \tag{33}
\]

The estimation of II_2 is analogous to that of II_1, and we find that

\[
II_2 \leq c(\alpha) M_k^\alpha \omega_2(f, 1/M_k)_p. \tag{34}
\]

Combining (30)–(34), we obtain the proof of Theorem 1. \qed
Proof of Theorem 2. It is evident that

\[
\| \sigma_n^{-\alpha}(f) - f \|_p \\
\leq \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=1}^{M_{i-1}} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u,v) \right) \\
+ \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=M_{k-1}+1}^{M_k} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u,v) \right) \\
+ \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=M_k+1}^{n} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u,v) \right) \\
:= I + II + III,
\] (35)

where the first, second, and third terms on the right side of inequality (35) are denoted by \(I, \) \(II, \) and \(III, \) respectively.

From Lemma 4 it follows that

\[
I \leq c(\alpha) \sum_{r=0}^{k-2} M_k \left(\omega_1(f, 1/M_k)_p + \omega_2(f, 1/M_k)_p \right).
\] (36)

Next, we repeat the arguments just in the same way as in the proof of Theorem 1 and find that

\[
II \leq c(\alpha) M_{k-1}^n \left(\omega_1(f, 1/M_{k-1})_p + \omega_2(f, 1/M_{k-1})_p \right).
\] (37)

On the other hand, for \(III, \) we have

\[
III \leq \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=M_k+1}^{n} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \\
\times \left[f(\cdot - u, \cdot - v) - f(\cdot, \cdot) \right] d\mu(u,v) \right) \\
\leq \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=M_k+1}^{n} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \\
\times \left[f(\cdot - u, \cdot - v) - S_{M_k,M_k}(\cdot - u, \cdot - v, f) \right] d\mu(u,v) \right) \\
\leq \frac{1}{A_{n-1}^{\alpha}} \left(\int_{G_m} \sum_{i=M_k+1}^{n} A_{n-1}^{-\alpha-1} D_i(u)D_i(v) \\
\times \left[S_{M_k,M_k}(\cdot - u, \cdot - v, f) - S_{M_k,M_k}(\cdot, \cdot, f) \right] d\mu(u,v) \right)
\]
\[
\begin{align*}
&\leq \frac{1}{A_n^{\alpha}} \left\| \int_{G_m} \sum_{i=M_k+1}^{n} A_{n-i}^{-\alpha} D_i(u)D_i(v) \
&\quad \times \left[S_{M_k,M_k} (\cdot, \cdot) f - f(\cdot, \cdot) \right] d\mu(u,v) \right\|_p \\
&:= III_1 + III_2 + III_3,
\end{align*}
\]

where the first, second, and third terms on the right side of inequality (38) are denoted by III_1, III_2, and III_3, respectively.

It is easy to show that

\[III_2 = 0. \]

By the generalized Minkowski inequality and Lemma 5, for III_1, we obtain that

\[
III_1 \leq \frac{1}{A_n^{\alpha}} \int_{G_m} \left\| \sum_{i=M_k+1}^{n} A_{n-i}^{-\alpha} D_i(u)D_i(v) \right\| \\
\times \left\| f(\cdot - u, \cdot - v) - S_{M_k,M_k}(\cdot - u, \cdot - v, f) \right\|_p d\mu(u,v) \\
\leq c(\alpha) M_k^{\alpha} \left(\omega_1(f, 1/M_k^{-1})_p + \omega_2(f, 1/M_k^{-1})_p \right) \\
\times \int_{G_m} \left\| \sum_{i=M_k+1}^{n} A_{n-i}^{-\alpha} D_i(u)D_i(v) \right\|_p d\mu(u,v) \\
\leq c(\alpha) M_k^{\alpha} \log n(\omega_1(f, 1/M_k^{-1})_p + \omega_2(f, 1/M_k^{-1})_p). \quad (40)
\]

The estimation of III_3 is analogous to that of III_2, and we find that

\[
III_3 \leq c(\alpha) M_k^{\alpha} \log n(\omega_1(f, 1/M_k^{-1})_p + \omega_2(f, 1/M_k^{-1})_p). \quad (41)
\]

After substituting (36)–(37) and (41) into (35), we obtain the proof of Theorem 2. \qed

Acknowledgements
The authors would like to thank the referees for helpful suggestions.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to the writing of this paper. Both authors approved the final version of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 August 2018 Accepted: 2 December 2018 Published online: 19 December 2018

References
1. Agaev, G.N., Vilenkin, N.Ya., Dzharali, G.M., Rubinshtein, A.I.: Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Ehlm, Baku (1981) (in Russian)
2. Fine, N.J.: Cesàro summability of Walsh–Fourier series. Proc. Natl. Acad. Sci. USA 41, 558–591 (1995)
3. Gát, G.: On the pointwise convergence of Cesàro means of two-variable functions with respect to unbounded Vilenkin systems. J. Approx. Theory 128(1), 69–99 (2004)
4. Gát, G.: Almost everywhere convergence of Fejér means of L^1 functions on rarely unbounded Vilenkin groups. Acta Math. Sin. Engl. Ser. 23(12), 2269–2294 (2007)
5. Gát, G.: On almost everywhere convergence of Fourier series on unbounded Vilenkin groups. Publ. Math. (Debr.) 75(1–2), 85–94 (2009)
6. Gát, G.: Some convergence and divergence results with respect to summation of Fourier series on one- and two-dimensional unbounded Vilenkin groups. Ann. Univ. Sci. Bp. Rolando Eotvos Nomin., Sect. Comput. 33, 157–173 (2010)
7. Gát, G., Blahota, I.: Norm summability of Norlund logarithmic means on unbounded Vilenkin groups. Anal. Theory Appl. 24(1), 1–17 (2008)
8. Gát, G., Goginava, U.: Almost everywhere convergence of (C, α)-means of quadratical partial sums of double Vilenkin–Fourier series. Georgian Math. J. 13(3), 447–462 (2006)
9. Gát, G., Goginava, U.: A weak type inequality for the maximal operator of (C, α)-means of Fourier series with respect to the Walsh–Kaczmarz system. Acta Math. Hung. 125(1–2), 65–83 (2009)
10. Gát, G., Goginava, U.: Norm convergence of double Fourier series on unbounded Vilenkin groups. Acta Math. Hung. 152(1), 201–216 (2017)
11. Gát, G., Goginava, U.: Norm convergence of logarithmic means on unbounded Vilenkin groups. Banach J. Math. Anal. 12(2), 422–438 (2018)
12. Glukhov, V.A.: On the summability of multiple Fourier series with respect to multiplicative systems. Mat. Zametki 39, 665–673 (1986) In Russian
13. Goginava, U.: On the uniform convergence of Walsh–Fourier series. Acta Math. Hung. 93(1–2), 59–70 (2001)
14. Goginava, U.: On the approximation properties of Cesàro means of negative order of Walsh–Fourier series. J. Approx. Theory 115(1), 9–20 (2002)
15. Goginava, U.: Uniform convergence of Cesàro means of negative order of double Walsh–Fourier series. J. Approx. Theory 124(1), 96–108 (2003)
16. Goginava, U.: On Cesàro means of double trigonometric Fourier series. Mat. Zametki 74(4), 502–507 (2003) (Russian), translation in Math. Notes 74(3–4), 477–482 (2003)
17. Goginava, U.: Cesàro means of double Walsh–Fourier series. Anal. Math. 30(4), 289–304 (2004)
18. Goginava, U.: Approximation properties of (C, α)-means of double Walsh–Fourier series. Anal. Theory Appl. 20(1), 77–98 (2004)
19. Goginava, U., Nagy, K.: On the maximal operator of Walsh–Kaczmarz–Fejér means. Czechoslov. Math. J. 61(3), 673–686 (2011)
20. Golubov, B.I., Efimov, A.V., Skvortsov, V.A.: Walsh Series and Transforms. Nauka, Moscow (1987) [in Russian]; English translation, Kluwer Academic, Dordrecht (1991)
21. Nagy, K.: Approximation by Cesàro means of negative order of Walsh–Kaczmarz–Fourier series. East J. Approx. 16(3), 297–311 (2010)
22. Schipp, F.: Über gewisse Maximaloperatoren. Ann. Univ. Sci. Bp. Rolando Eotvos Nomin., Sect. Math. 18, 189–195 (1975)
23. Schipp, F., Wade, WR, Simon, P.: Walsh Series, an Introduction to Dyadic Harmonic Analysis. Hilger, Bristol (1990)
24. Shavardenidze, G.: On the convergence of Cesàro means of negative order of Vilenkin–Fourier series. arXiv:1811.08367
25. Simon, P., Weiss, F.: Weak inequalities for Cesàro and Riesz summability of Walsh–Fourier series. J. Approx. Theory 151(1), 1–19 (2008)
26. Tevzadze, VI.: Uniform (C, α)-$(\alpha \leq \alpha \leq 0)$ summability of Fourier series with respect to the Walsh–Paley system. Acta Math. Acad. Paedagog. Nyházi. 22(1), 41–61 (2006)
27. Zhizhiashvili, L.V.: Trigonometric Fourier Series and Their Conjugates, Revised and updated translation of “Some problems of the theory of trigonometric Fourier series and their conjugate series” (in Russian) (Tbilis. Gos. Univ., Tbilisi, 1993), English translation: Kluwer Academic, Dordrecht (1996)
28. Zygmund, A.: Trigonometric Series, Vol. 1, Cambridge University Press, Cambridge (1959)