GENERIC SYZYGY SCHEMES

HANS-CHRISTIAN GRAF V. BOTHMER

Abstract. For a finite dimensional vector space G we define the k-th generic syzygy scheme $\text{Gensyz}_k(G)$ by explicit equations. If $X \subset \mathbb{P}^n$ is cut out by quadrics and f is a p-th syzygy of rank $p + k + 1$ we show that the syzygy scheme $\text{Syz}(f)$ of f is a cone over a linear section of $\text{Gensyz}_k(G)$. We also give a geometric description of $\text{Gensyz}_k(G)$ for $k = 0, 1, 2$, in particular $\text{Gensyz}_2(G)$ is the union of a Plücker embedded Grassmannian and a linear space. From this we deduce that every smooth, non-degenerate projective curve $C \subset \mathbb{P}^n$ which is cut out by quadrics and has a p-th linear syzygy of rank $p + 3$ admits a rank 2 vector bundle \mathcal{E} with $\text{det} \mathcal{E} = \mathcal{O}_C(1)$ and $h^0(\mathcal{E}) \geq p + 4$.

1. Introduction

Let $X \subset \mathbb{P}^n$ be a projective variety that is cut out by quadrics. One can then look at the linear strand of its minimal free resolution and ask whether a p-th linear syzygy f carries some geometric information about X. For this purpose Ehbauer [Ehb94] introduced the syzygy scheme $\text{Syz}(f)$, which is cut out by the quadrics involved in f. The syzygy scheme always contains X and can be explicitly calculated in some cases. Ehbauer studied this construction when X is a set of points in uniform position.

Another geometric invariant of a p-th syzygy f is the space G^* of linear forms involved in f. Its dimension is called the rank of f. Interesting syzygy varieties often arise from syzygies of low rank.

In [Sch91] Schreyer observed that for $p = 1$ the syzygy scheme $\text{Syz}(f)$ is always a cone over a linear section of a generic syzygy scheme Gensyz_k with $k = \text{rank } f - 2$ and gave explicit equations for Gensyz_k in this case. Eusen and Schreyer found a geometric description of these schemes for $k \in \{0, \ldots, 4\}$ and $p = 1$ in [ES94].

In this paper we define more general generic syzygy schemes $\text{Gensyz}_k(G)$ by explicit equations depending on a finite dimensional vector space G. With these schemes we prove:

Theorem 3.4 Let $I \subset R$ be a homogeneous ideal generated by quadrics and f a p-th rank $p + k + 1$ linear syzygy of I. Then the syzygy scheme $\text{Syz}(f)$ is isomorphic to a cone over a linear section of $\text{Gensyz}_k(G)$ where G is the space of $(p - 1)$-st syzygies involved in f.

Date: October 6, 2021.

Supported by the Schwerpunktprogramm “Global Methods in Complex Geometry” of the Deutsche Forschungs Gemeinschaft.
We also obtain a geometric description of Gensyz\(_k\)(G) for \(k = 0, 1, 2\) and arbitrary \(G\). We show that Gensyz\(_0\)(G) is always the union of a hypersurface with a point and that Gensyz\(_1\)(G) is a Segre-embedded \(\mathbb{P}^1 \times \mathbb{P}^{\text{rank} f-1}\). The main new result of this paper is

Theorem 6.1. Let \(G\) be a \(g\) dimensional vector space, then

\[
\text{Gensyz}_2(G) = \mathcal{G}(\mathbb{C} \oplus G^*, 2) \cup \mathbb{P}\left(\bigwedge^2 G^*\right) \subset \mathbb{P}(G^* \oplus \bigwedge^2 G^*),
\]

where \(\mathcal{G}(\mathbb{C} \oplus G^*, 2)\) is the Grassmannian of two dimensional quotient spaces of \(\mathbb{C} \oplus G^*\). Moreover the second generic syzygy ideal \(I\) of \(G\) is reduced and saturated.

The geometric descriptions of Gensyz\(_k\)(G) allow us to draw a number of conclusions:

Corollary 4.2. Let \(X \subset \mathbb{P}^n\) be a projective variety, \(I_X\) generated by quadrics and \(f \in F_p\) a \(p\)-th syzygy of rank \(p + 1\). Then \(X\) is either contained in a hyperplane or reducible.

This result seems to be well known, but we include it since it follows directly from our methods.

Corollary 5.2. Let \(X \subset \mathbb{P}^n\) be a non-degenerate irreducible projective variety, \(I_X\) generated by quadrics and \(f \in F_p\) a \(p\)-th syzygy of rank \(p + 2\). Then the syzygy scheme \(\text{Syz}(f)\) of \(f\) is a scroll of degree \(p + 2\) and codimension \(p + 1\).

In particular a \(p\)-th syzygy of rank \(p + 1\) implies the existence of a special pencil \(|D|\) on \(X\) cut out by the fibers of the scroll. If \(X\) is a canonical curve \(|D|\) has low Clifford index. These pencils are the ones that play a role in Green’s conjecture [Gre84]. Our corollary above is therefore probably well known to experts in this field.

Our main new geometric result is

Theorem 6.7. Let \(C \subset \mathbb{P}^n\) be a smooth, irreducible non-degenerate curve. If \(C\) is cut out by quadrics and has a \(p\)-th syzygy \(f\) of rank \(p + 3\), then there exists a rank 2 vector bundle \(\mathcal{E}\) on \(C\) with \(\det \mathcal{E} = \mathcal{O}_C(1)\) and \(h^0(\mathcal{E}) \geq p + 4\).

In the case of a canonical curve these are rank 2 bundles with canonical determinant.

One can also use the methods of this paper to construct the Mukai-Lazarsfeld bundle on a \(K3\) surface directly from a syzygy \(f\). This is the vector bundle that played a central role in Voisin’s proof of Green’s conjecture [Voi02], [Voi03]. The Grassmannian used by Voisin in her proof is dual to the Grassmannian obtained as the generic syzygy scheme of \(f\).

This paper is structured as follows. In Section 2 we recall what we need about syzygies, syzygy ideals and syzygy schemes. In Section 3 we define the generic syzygy varieties and show that every syzygy scheme is a cone over a linear section of a generic syzygy scheme. In the last three sections we describe the \(k\)-th generic syzygy varieties for \(k = 0, 1, 2\) geometrically and study syzygies of rank \(p + 1, p + 2\) and \(p + 3\).
2. Syzygies, Syzygy Ideals and Syzygy Schemes

For the purpose of this paper let \(R = \mathbb{C}[x_0, \ldots, x_n] \) be the homogeneous coordinate ring of \(\mathbb{P}^n \). With \(R(-i) \) we denote \(R \) with its grading shifted, i.e. \(R(-i) = R_j \). Often we abbreviate the space of linear polynomials \(R_1 \subset R \) by \(V \) and write \(\mathbb{P}^n = \mathbb{P}(V) \) using the Grothendieck notation.

Definition 2.1. Let \(I \subset R \) be a homogeneous ideal, generated by quadrics, and

\[
F_\bullet : I \leftarrow F_0 \otimes R(-2) \leftarrow \cdots \leftarrow F_p \otimes R(-r - 2)
\]

the linear part of the minimal free resolution of \(I \). The elements of \(F_i \) are called \(i \)-th linear syzygies of \(I \).

Definition 2.2. Let \(I \subset R \) be a homogeneous ideal, generated by quadrics and \(f \in F_p \) a \(p \)-th linear syzygy. We define the space of \((p - 1)\)-st linear syzygies involved in \(f \) as the smallest vector space \(G \subset F_{p-1} \) such that there is a commutative diagram

\[
\begin{array}{cccccccc}
F_{p-1} \otimes R(-p - 1) & \leftarrow & F_p \otimes R(-p - 2) \\
| & & | \\
G \otimes R(-p - 1) & \leftarrow & f \otimes R(-p - 2).
\end{array}
\]

We define the rank of \(f \) as the dimension of \(G \).

The above diagram extends to a map from the Koszul complex of \(G \) to the linear strand of \(I \):

\[
\begin{array}{cccccccc}
I & \leftarrow & F_0 \otimes R(-2) & \leftarrow & \cdots & \leftarrow & F_p \otimes R(-p - 2) \\
| & & | & & | & & | \\
\wedge^{p+1} G \otimes R(-1) & \leftarrow & \wedge^p G \otimes R(-2) & \leftarrow & \cdots & \leftarrow & f \otimes R(-p - 2).
\end{array}
\]

The image of \(\wedge^p G \) in \(I \) is called the syzygy ideal \(I_f \) of \(f \).

Remark 2.3. Observe that by dualizing and twisting the morphism

\[
G \otimes R(-p - 1) \leftarrow f \otimes R(-p - 2)
\]

from above, \(G^* \) is exhibited as a space of linear forms on \(\mathbb{P}^n \). We therefore call \(G^* \) the space of linear forms involved in \(f \).

Lemma 2.4. In the map of complexes of Definition 2.2 all vertical maps are nonzero.

Proof. Suppose there exists an integer \(k \) such that in the diagram

\[
\begin{array}{cccccccc}
F_{k-1} \otimes R(-k - 1) & \leftarrow & F_k \otimes R(-k - 2) \\
| & & \varphi_{k-1} & & \varphi_k & & | \\
\wedge^{p-k+1} G \otimes R(-k - 1) & \leftarrow & \wedge^{p-k} G \otimes R(-k - 2)
\end{array}
\]
the morphism φ_{k-1} is zero, but φ_k is nonzero. Then the image of φ_k is a free summand of $F_k \otimes R(-k - 2)$ which maps to zero in the linear strand of the minimal free resolution of I. This contradicts the minimality of the resolution. \hfill \Box

Corollary 2.5. Let f be a p-th linear syzygy of $I \subset R$. Then $\text{rank } f \geq p+1$.

Proof. If $\text{rank } f \leq p$ then $\bigwedge^{p+1} G$ vanishes and the first vertical map of the map of complexes in Definition 2.2 would have to be zero. \hfill \Box

Definition 2.6. Let $I \subset R$ be an ideal generated by quadrics, $f \in F_p$ a p-th linear syzygy and I_f the syzygy ideal of f. Then the vanishing set $\text{Syz}(f) = V(I_f)$ is called the syzygy scheme associated to f.

Remark 2.7. Observe that $\text{Syz}(f) \subset \mathbb{P}^n$ is always a strict subset, since the syzygy ideal I_f is never empty by Lemma 2.4.

3. Generic Syzygy Schemes

Definition 3.1. Let G be a vector space of dimension g and consider the ring $S = \mathbb{C}[G^* \oplus \bigwedge^k G^*]$. The ideal I defined by the natural inclusion

$$I = \bigwedge^{k+1} G^* \subset G^* \otimes \bigwedge^k G^* \subset S^2 \left(G^* \oplus \bigwedge^k G^* \right) \subset S$$

is called the k-th generic syzygy ideal of G. Its vanishing set $\text{Gensyz}_k(G)$ is called the k-th generic syzygy scheme of G.

Proposition 3.2. Let I be the k-th generic syzygy ideal of G. Then the linear strand of I has the last $g - k$ steps of the Koszul complex associated to G^* as a natural subcomplex, i.e. we have a commutative diagram:

$$\begin{array}{cccccc}
I & \leftarrow & F_0 \otimes S(-2) & \leftarrow & \cdots & \leftarrow & F_{g-k-1} \otimes S(-g + k - 1) \\
\bigwedge^{k+1} G^* \otimes S(-2) & \leftarrow & \cdots & \leftarrow & \bigwedge^g G^* \otimes S(-g + k - 1) \\
\end{array}$$

Proof. The inclusion $I = \bigwedge^{k+1} G^* \subset G^* \otimes \bigwedge^k G^* \subset S^2 \left(G^* \oplus \bigwedge^k G^* \right) \subset S$ induces a commutative diagram of free S-modules

$$\begin{array}{cccc}
I & \leftarrow & F_0 \otimes S(-2) & \\
\bigwedge^k G^* \otimes S(-1) & \leftarrow & \bigwedge^{k+1} G^* \otimes S(-2). \\
\end{array}$$

The top arrow is resolved by the minimal free resolution of I and the bottom arrow by the rest of the Koszul complex. Since both complexes are exact and minimal, the maps above lift to a map of complexes. This map is injective in each new step since it is injective in the F_0 step. For degree reasons, the image of this map of complexes must lie in the linear strand of I. \hfill \Box
Corollary 3.3. The k-th generic syzygy scheme of G has a natural 1-dimensional space of rank g linear syzygies in step $g - k - 1$. The space of $(g - k - 2)$-nd syzygies involved in anyone of these is isomorphic to G.

Proof. The $(g - k - 1)$-st syzygies given by Proposition 3.2 have rank at most g since $\wedge^{g-1} G^* \cong G$ has dimension g. The rank of these syzygies cannot be smaller, since the last map of the Koszul complex is surjective in degree $g - k$. \qed

Theorem 3.4. Let $I \subset R$ be a homogeneous ideal generated by quadrics and f a p-th rank $p + k + 1$ linear syzygy of I. Then the syzygy scheme $\text{Syz}(f)$ is isomorphic to a cone over a linear section of $\text{Gensyz}_k(G)$ where G is the space of $(p - 1)$-st syzygies involved in f.

Proof. We have the map of complexes

$$
\begin{array}{c}
R & & F_0 \otimes R(-2) & & \cdots & & F_p \otimes R(-p - 2) \\
\alpha & & \downarrow & & \downarrow & & \downarrow \\
\wedge^{p+1} G \otimes R(-1) & & \wedge^p G \otimes R(-2) & & \cdots & & f \otimes R(-p - 2)
\end{array}
$$

from Definition 2.2. Consider the map

$$\varphi: G^* \oplus \wedge^k G^* \to V$$

given by mapping the elements of G^* to their corresponding linear forms and the elements of $\wedge^k G^* = \wedge^{p+1} G$ to their images under the map α. The induced diagram

$$
\begin{array}{c}
R & & F_0 \otimes R(-2) & & \cdots & & F_p \otimes R(-p - 2) \\
\alpha & & \downarrow & & \downarrow & & \downarrow \\
\wedge^{p+1} G \otimes R(-1) & & \wedge^p G \otimes R(-2) & & \cdots & & S & & \wedge^{k+1} G^* \otimes S(-2) \\
\wedge^k G^* \otimes S(-1) & & \wedge^{k+1} G^* \otimes S(-2)
\end{array}
$$

and its degree 2 part

$$
\begin{array}{c}
S^2 V & & F_0 \wedge & & \cdots & & F_p \wedge \\
\alpha & & \downarrow & & \downarrow & & \downarrow \\
\wedge^{p+1} G \otimes V & & \wedge^p G & & S^2 (G^* \oplus \wedge^k G^*) & & \wedge^{k+1} G^* \\
\wedge^k G^* \otimes (G^* \oplus \wedge^k G^*) & & \wedge^{k+1} G^*
\end{array}
$$
shows that φ maps the k-th generic syzygy ideal surjectively to the syzygy ideal I_f of f. Projectively the image of φ defines a linear subspace

$$\mathbb{P}(\text{Im} \varphi) \subset \mathbb{P}(G^* \oplus \bigwedge^k G^*).$$

The calculation above shows that $\text{Syz}(f)$ is a cone over $\mathbb{P}(\text{Im} \varphi) \cap \text{Gensyz}_k(G)$ with vertex $V(\text{Im} \varphi) \subset \mathbb{P}(V)$. □

4. Reducible Syzygies

Proposition 4.1. Let G be a g dimensional vector space, then

$$\text{Gensyz}_0(G) \cong \mathbb{P}(G^*) \cup \mathbb{P}(\mathbb{C}) \subset \mathbb{P}(G^* \oplus \mathbb{C}),$$

i.e $\text{Gensyz}_0(G)$ is the union of a hyperplane and a point. Moreover the generic syzygy ideal of I of $\text{Gensyz}_0(G)$ is reduced and saturated.

Proof. The ideal of the hyperplane $\mathbb{P}(G^*) \cong \mathbb{P}^{g-1}$ is generated by the linear forms in $\bigwedge^0 G^* \cong \mathbb{C}$. The ideal of the point $\mathbb{P}(\bigwedge^0 G^*) \cong \mathbb{P}^0$ is generated by the linear forms in G^*. Since the two ideals involve different sets of variables, their intersection is the same as their product:

$$I_{\mathbb{P}^{g-1}} \cap I_{\mathbb{P}^0} = (G^*) \cap (\bigwedge^0 G^*) = (G^*) \cdot (\bigwedge^0 G^*) = (G^* \otimes \bigwedge^0 G^*) = (\bigwedge^1 G^*)$$

This is the 0-th generic syzygy ideal of G. □

Corollary 4.2. Let $X \subset \mathbb{P}^n$ be a projective variety, I_X generated by quadrics and $f \in F_p$ a p-th syzygy of rank $p+1$. Then X is either contained in a hyperplane or reducible.

Proof. By Theorem 3.4 and Proposition 4.1 $\text{Syz}(f)$ is a cone over a linear section of a hyperplane and a point. Since $\text{Syz}(f)$ can not contain all of \mathbb{P}^n by Remark 2.7 $\text{Syz}(f) \subset \mathbb{P}^n$ must be the union of a hyperplane and possibly a second linear subspace. Since X is contained in $\text{Syz}(f)$ it must be either reducible or contained in one of the two linear subspaces. □

Definition 4.3. Let $X \subset \mathbb{P}^n$ be a projective scheme, whose ideal is cut out by quadrics. A p-th linear syzygy of X is called reducible, if it has rank $p+1$.

5. Scrollar Syzygies

Theorem 5.1. Let G be a g dimensional vector space, then

$$\text{Gensyz}_1(G) = \mathbb{P}(G^*) \times \mathbb{P}^1 \subset \mathbb{P}(G^* \oplus G^*).$$

Moreover the second generic syzygy ideal I of G is reduced and saturated.

Proof. Observe that $G^* \otimes (\mathbb{C} \oplus \mathbb{C}) = G^* \oplus G^*$. We can therefore consider the Segre embedding

$$\mathbb{P}^{g-1} \times \mathbb{P}^1 = \mathbb{P}(G^*) \times \mathbb{P}(\mathbb{C} \oplus \mathbb{C}) \subset \mathbb{P}(G^* \oplus G^*).$$
The ideal of $\mathbb{P}^{g-1} \times \mathbb{P}^1$ is generated by the Segre quadrics:

$$I_{\mathbb{P}^{g-1} \times \mathbb{P}^1} = \left(\bigwedge^2 G^* \otimes \bigwedge^2 (\mathbb{C} \oplus \mathbb{C}) \right) = \left(\bigwedge^2 G^* \right)$$

This is the first generic syzygy ideal of G.

Corollary 5.2. Let $X \subset \mathbb{P}^n$ be a non degenerate irreducible projective variety, I_X generated by quadrics and $f \in F_p$ a p-th syzygy of rank $p+2$. Then the syzygy scheme $\text{Syz}(f)$ of f is a scroll of degree $p+2$ and codimension $p+1$.

Proof. Let G be the $g = p + 2$ dimensional space of $(p - 1)$-st syzygies involved in f. By theorem 5.1, the syzygy scheme $\text{Syz}(f)$ is a linear section of a cone over $\mathbb{P}^{p+1} \times \mathbb{P}^1$. Since $\mathbb{P}^{p+1} \times \mathbb{P}^1$ has codimension $p+1$ and degree $p+2$ in $\mathbb{P}(G^* \oplus \Lambda^1 G^*)$ we only have to prove that this intersection is of expected codimension. By Eisenbud [Eis95, Ex. A2.19] this is the case if the matrix M whose 2×2-minors cut out $\mathbb{P}^{p+1} \times \mathbb{P}^1$ remains 1-generic after we apply the map

$$\varphi: G^* \oplus \Lambda^1 G^* \to V$$

from the proof of Theorem 3.4.

If $\varphi(M)$ is not 1-generic, we can choose bases of G^* and $\mathbb{C} \oplus \mathbb{C}$ such that $\varphi(M)$ has the form

$$M = \begin{pmatrix} l_1 & \ldots & l_i & l_{i+1} & \ldots & l_g \\ a_1 & \ldots & a_i & 0 & \ldots & 0 \end{pmatrix}$$

with l_1, \ldots, l_{p+1} a basis of G^* and a_1, \ldots, a_i linearly independent. Since the syzygy ideal I_f cannot be empty by Lemma 2.4, it has to be at least 1. In this situation I_f contains the 2×2 minor

$$\det \begin{pmatrix} l_1 & l_g \\ a_1 & 0 \end{pmatrix} = l_g \cdot a_1$$

which implies that X must be reducible or degenerate. This contradicts our assumptions.

Definition 5.3. Let $X \subset \mathbb{P}^n$ be a projective scheme, whose ideal is cut out by quadrics. A p-th linear syzygy of X is called scrollar, if it has rank $p+2$.

Example 5.4. Let $C \subset \mathbb{P}^{g-1}$ be a non hyperelliptic canonical curve of genus g and $|D|$ a pencil of Clifford index $\text{cliff}(D) = g - p - 3$. The p-th syzygy of C constructed by the method of Green and Lazarsfeld in [GL84] is scrollar.

With the above geometric description of scrollar syzygy varieties one can prove the following well known converse of the Green-Lazarsfeld construction:

Proposition 5.5. Let $C \subset \mathbb{P}^{g-1}$ be a non hyperelliptic canonical curve of genus g and $f \in F_p$ a p-th scrollar syzygy. Then there exists a linear system $|D|$ on C with Clifford index $\text{cliff}(D) \leq g - p - 3$.
Proof. Let G^* be the $p + 2$ dimensional space of linear forms involved in f. Then the syzygy scheme $\text{Syz}(f)$ of f is a scroll that contains C and has the vanishing set $V(G^*)$ as a fiber. Set $D = C \cap V(G^*)$. Since $C \subset \mathbb{P}^{g-1}$ is non-degenerate, D is a divisor on C. We consider the linear system $|D|$. Since D is cut out by the ruling of $\text{Syz}(f)$ we have $h^0(D) \geq 2$. Also $h^0(K - D) \geq p + 2$ since the linear forms in G^* cut out canonical divisors of C that contain D. Riemann-Roch now gives:

$$\text{cliff } D := d - 2r = (h^0(D) - h^0(K - D) - 1 + g) - 2h^0(D) + 2 =$$

$$= g + 1 - h^0(D) - h^0(K - D) \geq g + 1 - 2 - (p + 2) = g - p - 3.$$

\[\square\]

Remark 5.6. For general k-gonal canonical curves C Green’s conjecture is equivalent to the claim that every step of the linear strand C contains at least one scrollar syzygy. This was recently shown by Voisin [Voi02], [Voi03].

More generally one can make the following conjecture

Conjecture 5.7 (Generic Geometric Syzygy Conjecture). Let $C \subset \mathbb{P}^{g-1}$ be a general canonical curve of genus g. Then for every p the space of p-th linear syzygies of C is spanned by scrollar syzygies.

This conjecture is known for for $p = 1$ when $g \neq 8$ and for $p = 2$ when $g = 8$ by [vB00] and [vB02].

6. Grassmannian Syzygies

Theorem 6.1. Let G be a g dimensional vector space, then

$$\text{Gensyz}_2(G) = \mathbb{G}(\mathbb{C} \oplus G^*, 2) \cup \mathbb{P}(\bigwedge^2 G^*) \subset \mathbb{P}(G^* \oplus \bigwedge^2 G^*),$$

where $\mathbb{G}(\mathbb{C} \oplus G^*, 2)$ is the Grassmannian of two dimensional quotient spaces of $\mathbb{C} \oplus G^*$. Moreover the second generic syzygy ideal I of G is reduced and saturated.

Proof. Observe that $\bigwedge^2 (\mathbb{C} \oplus G^*) = G^* \oplus \bigwedge^2 G^*$. We can therefore consider the Plücker embedding

$$\mathbb{G} := \mathbb{G}(\mathbb{C} \oplus G^*, 2) \subset \mathbb{P}(G^* \oplus \bigwedge^2 G^*)$$

and the ideal of the Grassmannian \mathbb{G} which is generated by 4×4-pfaffians of a skew symmetric matrix. More precisely:

$$I_\mathbb{G} = (\bigwedge^2 (\mathbb{C} \oplus G^*)) = (\bigwedge^4 G^* \oplus \bigwedge^4 G^*) \subset S^2(G^* \oplus \bigwedge^2 G^*).$$

On the other hand $\mathbb{P}(\bigwedge^2 G^*) \cong \mathbb{P}(\mathbb{G})^{-1} =: \mathbb{P}$ is cut out by the linear forms in G^*, so $I_\mathbb{P} = (G^*)$. To prove the theorem we calculate the intersection of
these two irreducible ideals:

$$I_P \cap I_G = (G^*) \cap \left(\bigwedge^3 G^* \oplus \bigwedge^4 G^* \right) \cap \left(\bigwedge^3 G^* \right) = (G^*) \cap \left(\bigwedge^3 G^* \right) + (G^*) \cap \left(\bigwedge^4 G^* \right).$$

Now the quadrics in the ideal G^* are given by the image of

$$G^* \otimes \left(G^* \bigwedge^2 G^* \right) \rightarrow S^2 \left(G^* \bigwedge^2 G^* \right),$$

i.e

$$(I_P)_2 = S^2 G^* \otimes G^* \bigwedge^2 G^* = \left(\bigwedge^3 G^* \right) \bigwedge^2 G^*.$$

This shows that $\left(\bigwedge^3 G^* \right)$ is contained in G^*. For the second intersection of ideals notice that $\bigwedge^4 G^*$ is contained in $S^2(\bigwedge^2 G^*)$. So the generators of $\left(\bigwedge^4 G^* \right)$ and G^* involve different sets of variables and the intersection of the two ideals is the same as their product:

$$(G^*) \cap \left(\bigwedge^4 G^* \right) = (G^*) \cdot \left(\bigwedge^4 G^* \right) = (G^*) \otimes \left(\bigwedge^4 G^* \right) = \left(\bigwedge^5 G^* \oplus \bigwedge^{4,1} G^* \right) \subseteq G^* \otimes S^2 \left(\bigwedge^2 G^* \right) \subset S^3 \left(G^* \bigwedge^2 G^* \right).$$

On the other hand the cubics of $\left(\bigwedge^3 G^* \right)$ contain

$$\bigwedge^3 G^* \otimes G^* \bigwedge^2 G^* = \bigwedge^5 G^* \oplus \bigwedge^{4,1} G^* \subset G^* \otimes S^2 \left(\bigwedge^2 G^* \right).$$

Since these representations occur only once in $G^* \otimes S^2(\bigwedge^2 G^*)$ they must be the ones that generate the product of ideals above. In total we have shown

$$I_P \cap I_G = \left(\bigwedge^3 G^* \right)$$

which is the second generic syzygy ideal of G. \hfill \Box

Definition 6.2. Let $X \subset \mathbb{P}^n$ be a projective scheme, whose ideal is cut out by quadrics. A p-th linear syzygy of X is called grassmannian, if it has rank $p + 3$.

Example 6.3. Let X be a $K3$-surface of sectional genus g in \mathbb{P}^g with Picard group generated by a general hyperplane section H. Then X has grassmannian p-th syzygies for $p \leq \frac{g-4}{2}$.

Proof. X is cut out by quadrics. Since X is irreducible and non-degenerate, X has no reducible syzygies and does not lie on quadrics of rank 2 or 1. X can also not lie on a quadrics of rank 4 or 3, since in this case the rulings of the quadrics would cut out divisors of degree smaller than H on X. Hence, because scrolls are cut out by 2×2 minors of rank at most 4, X can have no scrollar syzygies.

Now intersect X with a general hyperplane H. Then $X \cap H = C \subset \mathbb{P}^{g-1}$ is a canonical curve whose minimal free resolution is the restriction of the minimal free resolution of X to H. By the construction of Green and Lazarsfeld
C has scrollar p-th syzygies for $p \leq \frac{q-4}{2}$. The rank of a syzygy f can fall by at most one when restricting to a general hyperplane (i.e. when the linear form defining H is involved in f). Since X has no scrollar syzygies, the scrollar syzygies of C must come from grassmannian syzygies of X. □

We now describe some geometric consequences of grassmannian syzygies. For this let Q be the universal rank 2 quotient bundle on the Grassmannian $G = G(\mathbb{C} \oplus G^*, 2)$. The global sections of Q are given by $H^0(G, Q) = \mathbb{C} \oplus G^*$.

Lemma 6.4. Let $s \in H^0(G, Q)$ be a global section and I_s the ideal of its vanishing locus on G. Then I_s is generated by hyperplane sections of G, more precisely

$$I_s = (s \wedge H^0(G, Q)).$$

Proof. Consider the Koszul complex associated to s:

$$0 \to \mathcal{O}_G \to Q \to I_s \otimes H^2 \to 0$$

Taking cohomology shows $(s \wedge H^0(G, Q)) \subset I_s$. Since Q is globally generated, the converse also follows. □

Remark 6.5. Observe that for a section $s \in \mathbb{C} \subset \mathbb{C} \oplus G^* = H^0(G, Q)$ we have $I_G + I_P = I_s$. In other words a grassmannian syzygy f defines up to a constant a section of Q.

Lemma 6.6. Let $X \subset \mathbb{P}(V)$ be a projective variety cut out by quadrics, f a p-th grassmannian syzygy of X, G the space of $(p - 1)$-st syzygies involved in f, and $\varphi : G^* \oplus \bigwedge^2 G^* \to V$ the induced map. Then the natural map

$$H^0(G, Q) \to H^0(G \cap \mathbb{P}(\text{Im } \varphi), Q|_{G \cap \mathbb{P}(\text{Im } \varphi)})$$

is injective.

Proof. By construction $\text{Im } \varphi$ contains G^* so the non-zero elements of G^* are not contained in $I_{\mathbb{P}(\text{Im } \varphi)}$. On the other hand the vanishing ideal

$$I_s = (s \wedge (\mathbb{C} \oplus G^*))$$

contains the whole space $\mathbb{C} \wedge G^* = G^*$ if $s \in \mathbb{C}$, or a non-zero element of $G^* \wedge \mathbb{C} = G^*$ if $s \in G^*$. So I_s can never be contained in $I_{\mathbb{P}(\text{Im } \varphi)}$ and

$$H^0(Q \otimes I_{Gr \cap \mathbb{P}(\text{Im } \varphi)}/G) = 0.$$ The proposition then follows from the exact sequence

$$0 \to Q \otimes I_{Gr \cap \mathbb{P}(\text{Im } \varphi)}/G \to Q \to Q|_{G \cap \mathbb{P}(\text{Im } \varphi)}/G \to 0.$$ □

Theorem 6.7. Let $C \subset \mathbb{P}^n$ be a smooth, irreducible non-degenerate curve. If C is cut out by quadrics and has a p-th grassmannian syzygy f, then there exists a rank 2 vector bundle E on C with $\det E = \mathcal{O}_C(1)$ and $h^0(E) \geq p + 4$.

Proof. Let $\text{Syz}(f)$ be the syzygy scheme of f. By Theorems 3.4 and 6.7 $\text{Syz}(f)$ is a cone over a linear section of $G(p + 4, 2) \cup \mathbb{P}^{p+3}$. Now $\text{Syz}(f)$ contains C and C is irreducible and non-degenerate, so C must be contained in a cone Y over a linear section of G. The universal quotient bundle Q on
\(G \) restricts to \(G \cap \mathbb{P}(\text{Im} \, \phi) \) and pulls back to a rank 2 vector bundle \(Q_{Y^o} \) on \(Y^o = Y \setminus V(\text{Im} \, \phi) \). If \(C \) does not intersect the vertex \(V(\text{Im} \, \phi) \) of \(Y \) the restriction of \(Q_{Y^o} \) to \(C \) is a vector bundle \(\mathcal{E} \).

If \(C \) intersects the vertex of \(Y \) in a divisor, we consider the blowup \(\tilde{Y} \) of \(Y \) in the vertex. \(Q \) then pulls back to a rank 2 vector bundle \(Q_{\tilde{Y}} \) on \(\tilde{Y} \). Since \(C \) is smooth the strict transform \(\tilde{C} \) of \(C \) is isomorphic to \(C \) and \(Q_{\tilde{Y}} \) restricts to a rank 2 vector bundle \(\mathcal{E} \) on \(\tilde{C} \cong C \).

Finally \(C \) can not be contained in the vertex of \(Y \) since \(C \) is non-degenerate.

By Lemma 6.6 we have \(h^0(Q|_{C \cap \mathbb{P}(\text{Im} \, \phi)}) \geq p + 4 \). These sections extend to \(Y^o \). By Lemma 6.4 the zero loci of sections of \(Q \) are cut out by linear forms and their closures contain the vertex of \(Y \). Since \(X \) is non-degenerate it can not lie in one of these zero loci, so all sections of \(Q \) descend to sections of \(\mathcal{E} \). \(\square \)

Example 6.8. Our method can is some cases also be used to obtain vector bundles on varieties of higher dimension. Let for example \(X \subset \mathbb{P}^g \) be a \(K3 \) surface of even sectional genus \(g = 2k \) whose Picard group is generated by a general hyperplane section. Then \(X \) has a grassmannian \((k - 2)\)-nd syzygy by the argument of Example 6.3. One can show that in this case the map

\[\varphi: G^* \oplus S^2 G^* \to V \]

is surjective. Therfore \(\text{Syz}(f) \) is not a cone, and \(Q \) restricts to a rank 2 vector bundle \(\mathcal{E} \) on \(X \) with \(\det \mathcal{E} = \mathcal{O}_X(1) \) and \(h^0(\mathcal{E}) \geq k + 2 \). This is the Mukai-Lazarsfeld bundle used by Voisin in her proof of Green’s conjecture \[Vo02\].

This example leads us to ask

Question 6.9. Let \(X \subset \mathbb{P}^n \) be a surface cut out by quadrics whose Picard group is generated by a general hyperplane section. Does every step of the linear strand of \(X \) contain a grassmannian syzygy?

Remark 6.10. Voisin’s Theorem about the syzygies of \(K3 \) surfaces in \[Vo02\] prove that the answer to this question is “yes” in the case of \(K3 \) surfaces \(X \subset \mathbb{P}^g \) with sectional genus \(g = 2k \).

Even more generally we ask

Question 6.11. Let \(X \subset \mathbb{P}^n \) be a surface cut out by quadrics whose Picard group is generated by a general hyperplane section. Is the space of \(p \)-th linear syzygies of \(X \) spanned by grassmannian syzygies?

Remark 6.12. The answer to this question is ”yes” for general \(K3 \) surfaces \(X \subset \mathbb{P}^g \) with sectional genus \(g \leq 8 \) by the methods of \[VdB02\].

References

[Ehb94] S. Ehbauer. Syzygies of points in projective space and applications. In F. Orecchia, editor, *Zero-dimensional schemes. Proceedings of the international conference held in Ravello, Italy, June 8-13, 1992*, pages 145–170, Berlin, 1994. de Gruyter.
[Eis95] D. Eisenbud. *Commutative Algebra with a View Toward Algebraic Geometry*. Graduate Texts in Mathematics 150. Springer, 1995.

[ES94] F. Eusen and F.O. Schreyer. A remark to a conjecture of Paranjape and Ramanan. http://www.math.uni-sb.de/~ag-schreyer/DE/publikationen.html, 1994.

[GL84] M. Green and R. Lazarsfeld. The non-vanishing of certain Koszul cohomology groups. *J. Diff. Geom.*, 19:168–170, 1984.

[Gre84] M.L. Green. Koszul cohomology and the geometry of projective varieties. *J. Differential Geometry*, 19:125–171, 1984.

[Sch91] F.O. Schreyer. A standard basis approach to syzygies of canonical curves. *J. reine angew. Math.*, 421:83–123, 1991.

[vB00] H.-Chr. Graf v. Bothmer. *Geometrische Syzygien von kanonischen Kurven*. Dissertation, Universität Bayreuth, 2000.

[vB02] H.-Chr. Graf v. Bothmer. Geometric syzygies of Mukai varieties and general canonical curves with genus ≤ 8. math.AG/0202133, 2002.

[Voi02] C. Voisin. Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface. *J. Eur. Math. Soc. (JEMS)*, 4(4):363–404, 2002.

[Voi03] C. Voisin. Green’s canonical syzygy conjecture for generic curves of odd genus. math.AG/0301359, 2003.

Institut für Mathematik, Universität Hannover, Welfengarten 1, D-30167 Hannover

E-mail address: bothmer@math.uni-hannover.de

URL: http://www-ifm.math.uni-hannover.de/bothmer