Complete chloroplast genome sequences of *Hippophae neurocarpa*

Wu Zhou, Na Hu, Qi Dong, Honglun Wang and Yuwei Wang

ABSTRACT

Hippophae neurocarpa are dioecious deciduous shrubs, diffused in the Qinghai–Tibetan Plateau at high altitude. Here, we report the complete chloroplast genome of *H. neurocarpa*. The chloroplast genome is found to be 156,316 bp in length with 36.65% GC contents. The chloroplast genome sequences contained 124 genes, including 78 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The complete chloroplast genome of *H. neurocarpa* will be beneficial for identifying molecular markers for further conservation and utilization of these multipurpose natural resources.
Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the project of Qinghai Science & Technology Department [2016-ZJ-Y01], the open project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University [2018-ZZ-09], the Qinghai Provincial Science Foundation [2015-NK-509, 2019-ZJ-966Q, 2017-SF-A8].

ORCID
Wu Zhou http://orcid.org/0000-0001-5786-6970

References
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477.

Doyle JJ. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull. 19:11–15.

Elena T, Capraru G, Rosu CM, Zamfirache MM, Olteanu Z, Manzu C. 2011. Morphometric pattern of somatic chromosomes in three Romanian seabuckthorn genotypes. Caryologia. 64:189–196.

Lian YS. 2000. The plant biology and chemistry of Hippophae Lanzhou. Lanzhou, Gansu: Gansu Science and Technology Press; p. 36–41.

Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X. 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and genbank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 13:715.

Meng LH, Yang HL, Wu GL, Wang YJ. 2008. Phylogeography of Hippophae neurocarpa (Elaeagnaceae) inferred from the chloroplast DNA trnL-F sequence variation. J System Evol. 46:32–40.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574.

Ruan CJ, Xie QL, Li DQ. 2000. Function and benefits of sea buckthorn improving eco environment of loess plateaus. Environ Prot. 5:30–31.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57:758–771.

Walf D, Wegart F. 1993. Cultivation and utilization of wild fruit crops. Braunsweg, Germany: Bernhard Thalacker Verlage GmbH & Co. Experience gained in the harvesting and utilization of sea buckthorn; p. 22–29.

Figure 1. Maximum-likelihood phylogenetic tree inferred from 31 complete chloroplast genome sequences. The position of H. neurocarpa is marked in red and bootstrap values are listed for each branch.