WEAK DIAMOND, WEAK PROJECTIVITY, AND TRANSFINITE EXTENSIONS OF SIMPLE ARTINIAN RINGS

JAN TRLIFAJ

Abstract. We apply set-theoretic methods to study projective modules and their generalizations over transfinite extensions of simple artinian rings R. We prove that if R is small, then the Weak Diamond implies that projectivity of an arbitrary module can be tested at the layer epimorphisms of R.

The classic Baer’s Criterion, saying that a module M is injective, iff it is R-injective, is a basic tool of the structure theory of injective modules over an arbitrary ring R. However, unless R is a perfect ring, there are no criteria available for the dual case, that is, for testing projectivity using a set of epimorphisms, [10].

For many non-perfect rings, it can be proved that there exist small (e.g., countably generated) non-projective R-projective modules (e.g., when R is commutative noetherian of Krull dimension ≥ 1). However, for each cardinal κ, there exists a non-right perfect ring R_{κ} such that all $\leq \kappa$-generated R_{κ}-projective modules are projective, [12]. This is the best one can achieve in ZFC, because it is consistent with ZFC + GCH that if R is not right perfect, then there always exist (large) R-projective modules that are not projective, cf. [1].

Consistency (and hence independence) of the coincidence of R-projectivity and projectivity for certain commutative non-noetherian rings was proved in [11]. This answered in the positive a question from [11, 2.8], and clarified the set-theoretic status of an old problem by Carl Faith [6, p.175]. The consistency result was extended in [12] to further classes of rings that are finite Loewy length extensions of simple artinian rings. The set theoretic tool used in [11] and [12] was Jensen’s Diamond.

The goal of the present paper is twofold: to enhance the algebraic tools to cover infinite Loewy length extensions of simple artinian rings, and to weaken the set-theoretic assumptions used in the proofs. In Theorem 3.2 below, we show that the Weak Diamond Principle Φ and CH are sufficient to prove coincidence of the classes of all weak R-projective, R-projective, and projective modules, in the case when R has cardinality at most \aleph_1, its Loewy length is countable, and each proper layer of R is countably generated. That is, in this case, Φ and CH imply that the projectivity of a module M is equivalent to the factorization of all morphisms from M with finitely generated images through the layer epimorphisms of R. The latter are just the canonical projections $\pi_{\alpha} : S_{\alpha+1} \to S_{\alpha+1}/S_{\alpha}$ ($\alpha < \sigma$), where $(S_{\alpha} \mid \alpha \leq \sigma + 1)$ is the socle sequence of R.

For basic notions and facts needed from ring and module theory, we refer to [2] and [8]; our references for set-theoretic homological algebra are [4] and [7].
1. Weak projectivity

We start by recalling the classic notion of relative projectivity from [2 §16]:

Definition 1.1. Let R be a ring and M, N be modules. Then M is **N-projective** provided that for each submodule P of N, each homomorphism $f : M \rightarrow N/P$ has a factorization through the canonical projection $N \rightarrow N/P$. That is, the functor $\text{Hom}_R(M, -)$ is exact on all short exact sequences whose middle term is N.

The following Lemma is well-known (see [2, 16.12 and 16.14]):

Lemma 1.2. The class of all modules M such that M is N-projective is closed under submodules, homomorphic images, and finite direct sums.

In particular, each finitely generated R-projective module is projective.

Let R be a right semiartinian ring with the right socle sequence $(S_\alpha \mid \alpha \leq \sigma + 1)$. We will call $\sigma + 1$ the **Loewy length of R**. To avoid trivialities, we will tacitly assume that $\sigma > 0$, that is, that R is not completely reducible.

For each $\alpha \leq \sigma$, we will call the completely reducible module $L_\alpha = S_{\alpha+1}/S_\alpha$ the αth layer of R. The layers L_α for $0 < \alpha < \sigma$ are called proper. For each $\alpha \leq \sigma$, the canonical epimorphism $\pi_\alpha : S_{\alpha+1} \rightarrow L_\alpha$ is the αth layer epimorphism of R.

In this setting, the following definition of weak R-projectivity was introduced in [2, 3.6]

Definition 1.3. A module M is called **weakly R-projective** provided that for each $0 < \alpha \leq \sigma$, each $f \in \text{Hom}_R(M, L_\alpha)$ with a finitely generated image has a factorization through the αth layer epimorphism π_α.

Note that by Lemma [2] each R-projective module is weakly R-projective. The following easy observation [2, 2.3] shows that weak R-projectivity can equivalently be stated in a stronger form:

Lemma 1.4. Let R be a right semiartinian ring with the right socle sequence $(S_\alpha \mid \alpha \leq \sigma + 1)$. Let M be a module. Then the following are equivalent:

1. M is weakly R-projective,
2. For each $\alpha \leq \sigma$, each submodule K such that $S_\alpha \subseteq K \subseteq S_{\alpha+1}$ and each $f \in \text{Hom}_R(M, S_{\alpha+1}/K)$ with a finitely generated image, there exists $g \in \text{Hom}_R(M, S_{\alpha+1})$ such that $f = \pi_K g$, where $\pi_K : S_{\alpha+1} \rightarrow S_{\alpha+1}/K$ is the canonical projection.

In the proof of the next lemma, we will verify N-projectivity of a finitely generated module M by a recursive procedure using a filtration of N.

Here, we call a chain $(N_\alpha \mid \alpha \leq \tau)$ of α-submodules of a module N a **filtration of N**, provided that τ is an ordinal, $N_0 = 0$, $N_\alpha \subseteq N_{\alpha+1}$ for each $\alpha < \tau$, $N_\alpha = \bigcup_{\beta < \alpha} N_\beta$ for each limit ordinal $\alpha \leq \tau$, and $N_\tau = N$.

Lemma 1.5. Let R be a ring and N be a module with a filtration $N = (N_\alpha \mid \alpha \leq \tau)$.

Let M be a finitely generated module such that for each $\alpha < \tau$, each submodule K such that $N_\alpha \subseteq K \subseteq N_{\alpha+1}$ and each $f \in \text{Hom}_R(M, N_{\alpha+1}/K)$, there exists $g \in \text{Hom}_R(M, N_{\alpha+1})$ such that $f = \pi_K g$, where $\pi_K : N_{\alpha+1} \rightarrow N_{\alpha+1}/K$ is the canonical projection.

Then M is N-projective.

Proof. We claim that M is N_α-projective for each $\alpha \leq \tau$. If so, then for $\alpha = \tau$, we get that M is N-projective.

The claim will be proved by induction on α. There is nothing to prove for $\alpha = 0$.

Assume that the claim is true for some $\alpha < \tau$. Let K be a submodule of $N_{\alpha+1}$. Let $\pi_K : N_{\alpha+1} \rightarrow N_{\alpha+1}/K$, $\rho : N_{\alpha+1} \rightarrow N_{\alpha+1}/(N_\alpha + K)$, $\eta : N_{\alpha+1}/K$ →
$N_{\alpha+1}/(N_{\alpha} + K)$, and $\theta : N_{\alpha} \to N_{\alpha}/(N_{\alpha} \cap K)$ denote the canonical projections. Also, let $\iota_{\alpha} : N_{\alpha}/(N_{\alpha} \cap K) \to (N_{\alpha} + K)/K$ be the canonical isomorphism (given by the assignment $\iota_{\alpha}(x + N_{\alpha} \cap K) = x + K$).

These homomorphisms fit in the following commutative diagram with exact rows (where, except for the zero maps, all the unnamed single arrows are inclusions):

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & N_{\alpha} + K & \longrightarrow & N_{\alpha+1} & \longrightarrow & \frac{N_{\alpha+1}}{(N_{\alpha} + K)} & \longrightarrow & 0 \\
\end{array}
$$

Let $f \in \text{Hom}_R(M, N_{\alpha+1}/K)$. We have to show that f factorizes through π_K.

By our assumption on M, there exists $g \in \text{Hom}_R(M, N_{\alpha+1})$ such that $\rho g = \eta f$. Since $\rho = \eta \pi_K$, $\eta(f - \pi_K g) = 0$. It follows that $\delta = f - \pi_K g$ maps M into $\ker(\eta) = (N_{\alpha} + K)/K$, whence $\iota_{\alpha}^{-1}\delta \in \text{Hom}_R(M, N_{\alpha}/(N_{\alpha} \cap K))$. By the inductive premise, there exists $\epsilon : M \to N_{\alpha}$ such that $\iota_{\alpha}\epsilon = \delta$. As $\iota_{\alpha}\theta = \pi_K$, we conclude that $f = \pi_K g + \delta = \pi_K g + \pi_K \epsilon = \pi_K(g + \epsilon)$, which is the desired factorization of f through π_K.

Let $\alpha \leq \tau$ be a limit ordinal. Let K be a submodule of $N_{\alpha} = \bigcup_{\beta < \alpha} N_{\beta}$ and $f \in \text{Hom}_R(M, N_{\alpha}/K)$. Since M is finitely generated, there exists $\beta < \alpha$ such that $f : M \to (N_{\beta} + K)/K$. Let $\iota_{\beta} : N_{\beta}/(N_{\beta} \cap K) \to (N_{\beta} + K)/K$ be the canonical isomorphism, and $\theta : N_{\beta} \to N_{\beta}/(N_{\beta} \cap K)$ the canonical projection. Then $\pi_K \mid (N_{\beta} + K) = \iota_{\beta}\theta$, and we have the following commutative diagram with exact rows (again, except for the zero maps, all the unnamed single arrows are inclusions):

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & K & \longrightarrow & N_{\alpha} & \longrightarrow & \frac{N_{\alpha}}{K} & \longrightarrow & 0 \\
\end{array}
$$

By the inductive premise for β, there exists $g \in \text{Hom}_R(M, N_{\beta})$ such that $\theta g = \iota_{\beta}^{-1} f$. Then $f = \iota_{\beta}\theta g = \pi_K g$, which yields the desired factorization of f through π_K.

The results above imply that weak R-projectivity is sufficient to guarantee projectivity for each finitely generated module:

Corollary 1.6. Let R be any right semiartinian ring. Let M be a finitely generated weakly R-projective module. Then M is projective.

Proof. Since weak projectivity can be expressed in the stronger form of Lemma 1.4, we can apply Lemma 1.5 for $N = R$ and $N' = \text{the right socle sequence of } R$. Thus, M is R-projective, and by Lemma 1.2, M is projective. □
The question of the coincidence of weak R-projectivity, R-projectivity, and projectivity for infinitely generated modules over semiartinian rings, that is, whether projectivity can be tested at the layer epimorphisms of R, is much more delicate. We will see that for some semiartinian rings, it is actually independent of $\text{ZFC} + \text{GCH}$.

On the one hand, there is the following set-theoretic barrier for all non-right perfect rings R, given by Shelah’s Uniformization Principle (SUP). This principle is consistent with $\text{ZFC} + \text{GCH}$ (see [4, XIII.1.5] or [5, §2] for more details):

Lemma 1.7. Assume SUP. Let R be a non-right perfect ring. Let κ be a singular cardinal of cofinality ω such that $\text{card}(R) < \kappa$. Then there exists a κ^+ generated module M of projective dimension equal to 1, such that $\text{Ext}^1_R(M,I) = 0$ for each right ideal I of R. In particular, M is R-projective, but not projective.

Proof. See [1, 2.4 and 2.5]. □

On the other hand, there are different extensions of $\text{ZFC} + \text{GCH}$ where weak R-projectivity, R-projectivity, and projectivity coincide for suitable semiartinian rings. These rings will be studied in the next section.

2. Transfinite extensions of simple artinian rings

Recall that a ring R is *von Neumann regular* if for each $r \in R$ there exists $s \in R$ such that $rsr = r$. We refer to [8] for properties of von Neumann regular rings. A ring R is said to have (right) *primitive factors artinian*, or (right) *pfa* for short, if R/P is (right) artinian for each (right) primitive ideal of R.

If R is von Neumann regular, then minimal right (left) ideals of R correspond to primitive idempotents of R, so the right and left socle sequences of R coincide. In particular, R is right semiartinian, iff R is left semiartinian. Similarly, by [8, 6.2], a von Neumann regular ring has right pfa, iff it has left pfa. The latter condition can equivalently be stated as a property of the module category $\text{Mod–}R$: each homogenous completely reducible module is injective, see [8, 6.28].

Let R be a semiartinian von Neumann regular ring with pfa, and $(S_\alpha | \alpha \leq \sigma + 1)$ be its socle sequence. (Notice that $\sigma > 0$ implies that R is not right perfect, because the Jacobson radical of any von Neumann regular ring is 0; thus, Lemma 1.7 applies here.)

By the following theorem from [9], semiartinian von Neumann regular rings with pfa can be viewed as transfinite extensions of full matrix rings over skew-fields (i.e., of simple artinian rings):

Theorem 2.1. Let R be a right semiartinian ring and $(S_\alpha | \alpha \leq \sigma + 1)$ be the right socle sequence of R. The following conditions are equivalent:

1. R is von Neumann regular with pfa.
2. For each $\alpha \leq \sigma$ there is a cardinal λ_α, positive integers $n_{\alpha \beta}$ ($\beta < \lambda_\alpha$) and skew-fields $K_\alpha\beta$ ($\beta < \lambda_\alpha$), such that $L_\alpha \varphi_\alpha \cong \bigoplus_{\beta < \lambda_\alpha} M_{n_{\alpha \beta}}(K_\alpha\beta)$, as rings without unit. Moreover, λ_α is infinite iff $\alpha < \sigma$.

 The pre-image of $M_{n_{\alpha \beta}}(K_\alpha\beta)$ in the isomorphism φ_α coincides with the βth homogenous component of $\text{Soc}(R/S_\alpha)$, and it is a finitely generated as right R/S_α-module for all $\beta < \lambda_\alpha$.

The structure of the rings characterized by Theorem 2.1 can be depicted as follows:
Here, \(\sigma + 1 \) is the Loewy length of \(R \). The rows in this picture represent the layers of \(R \); \(\lambda_\alpha \) is the number of homogenous components in the \(\alpha \)th layer \(L_\alpha = S_{\alpha + 1}/S_\alpha \) for each \(\alpha \leq \sigma \) (this number is infinite except for \(\alpha = \sigma \)).

\(n_{\alpha \beta} \) is the (finite) rank of the \(\beta \)th homogenous component of \(L_\alpha \), and \(K_{\alpha \beta} \) is the endomorphism ring (skew-field) of each simple module in the \(\beta \)th homogenous component of \(L_\alpha \) (for all \(\alpha \leq \sigma, \beta < \lambda_\alpha \)).

In particular, \(\sigma, \lambda_\alpha (\alpha \leq \sigma), n_{\alpha \beta}, \) and \(K_{\alpha \beta} (\alpha \leq \sigma, \beta < \lambda_\alpha) \) are invariants of the ring \(R \).

Lemma 2.2. Let \(R \) be a semiartinian von Neumann regular ring with pfa. Then the following hold:

1. The class of all weakly \(R \)-projective modules is closed under submodules.
2. All countably generated weakly \(R \)-projective modules are projective.

Proof. (1) This follows from the fact [8, 6.28] that all homogenous semisimple modules are injective, whence so are all finitely generated semisimple modules, and thus all finitely generated submodules of each of the layers \(L_\alpha (\alpha < \sigma) \).

(2) Let \(C \) be a countably generated weakly \(R \)-projective module. So \(C = \bigcup_{n < \omega} F_n \) where \((F_n \mid n < \omega) \) is a chain of finitely generated submodules of \(C \). By part (1), each \(F_n \) is weakly \(R \)-projective, hence projective by Corollary [1.6]

Since \(R \) is von Neumann regular, \(F_n \) is a direct summand in \(F_{n+1} \) for each \(n < \omega \), whence \(C \) is projective. \(\square \)

From Lemma 2.2(1), we see that if the classes of all weak \(R \)-projective and projective modules coincide, then \(R \) is a right hereditary ring. What that means in out setting is partially clarified in the next lemma:

Lemma 2.3. Let \(R \) be a semiartinian von Neumann regular ring with pfa. Consider the following two conditions:

1. \(R \) is (left and right) hereditary.
2. \(\sigma \) is a countable ordinal, and all proper layers of \(R \) are countably generated

(i.e., \(\lambda_\alpha \) is countable for each \(0 < \alpha < \sigma \)).

Then (2) implies (1). Moreover, if \(\lambda_0 \) is countable, then (1) and (2) are equivalent.

Proof. That (2) implies (1) was proved in [12, 3.10].

Assume \(\lambda_0 \) is countable and \(R \) is right hereditary. Since all the homogenous components of \(\text{Soc}(R) \) are injective, and hence finitely generated, \(\text{Soc}(R) \) is countably generated.

Assume (2) fails. If \(\sigma \) is uncountable, then \(\sigma = \tau + n \) for an uncountable limit ordinal \(\tau \) and some \(n < \omega \), whence \(I = S_\tau \) is not countably generated. If \(\lambda_\alpha \) is uncountable for some ordinal \(0 < \alpha < \sigma \), then the \(\alpha \)th layer \(L_\alpha \) is not countably generated, and the same is true of \(I = S_{\alpha + 1} \).

Since projective modules over von Neumann regular rings are isomorphic to direct sums of cyclic modules generated by idempotents of \(R \), in either case there is a cardinal \(\kappa > \lambda_0 \) such that \(I \cong \bigoplus_{\gamma < \kappa} e_\gamma R \) where \(e_\gamma^2 = e_\gamma \in R \) for each \(\gamma < \kappa \). Since \(R \) is semiartinian, \(\text{Soc}(I) \cong \bigoplus_{\gamma < \kappa} \text{Soc}(e_\gamma R) \) is a direct sum of uncountably many non-zero completely reducible modules, in contradiction with \(\text{Soc}(I) \) being a direct summand in the countably generated module \(\text{Soc}(R) \). \(\square \)
Notice that Lemma 2.3 implies that all semiartinian von Neumann regular rings with pfa of Loewy length 2 are hereditary. The simplest such example is the K-subalgebra R_1 of all eventually constant sequences in K^ω for a field K, studied in [11]. The corresponding picture for R_1 is a follows:

\[
\begin{array}{c}
L_1 = K \\
L_0 = K(\omega) \\
K \oplus \ldots \oplus K \oplus \ldots
\end{array}
\]

However, semiartinian von Neumann regular rings with pfa of Loewy length 3 need not be hereditary: for an example, take a set S of cardinality ω_1 consisting of almost disjoint infinite subsets of ω, and consider the K-subalgebra R' of K^ω generated (as a K-linear space) by $B \cup C \cup \{1\}$ where 1 is the unit of K^ω, B is the canonical basis of $K^{(\omega)}$ and C is the set of characteristic functions of all the sets in S. By Lemma 2.3, R' is not hereditary. The corresponding picture for R' is

\[
\begin{array}{c}
L_2 = K \\
L_1 = K(\omega_1) \\
L_0 = K(\omega) \\
K \oplus \ldots \oplus K \oplus \ldots
\end{array}
\]

The following recursive construction shows that hereditary semiartinian von Neumann regular rings with pfa of Loewy length $\alpha + 1$ do exist for each countable ordinal $\alpha > 0$. The induction step makes use of a construction of semiartinian von Neumann regular rings from [3, 2.4]:

Example 2.4. Let K be a field. By induction on $0 < \alpha < \omega_1$, we will construct semiartinian von Neumann regular K-algebras with pfa, R_α, of Loewy length $\alpha + 1$ such that R_α has countably generated layers, together with K-algebra embeddings $\nu_\alpha : R_\alpha \to K^\omega$, and for each $0 < \beta < \alpha$, non-unital K-algebra monomorphisms $f_{\alpha\beta} : R_\beta \to R_\alpha$ and $g_{\alpha\beta} : K^\omega \to K^\omega$ such that the squares

\[
\begin{array}{c}
R_\beta \xrightarrow{f_{\alpha\beta}} R_\alpha \\
\nu_\alpha \downarrow \quad \downarrow \nu_\alpha \\
K^\omega \xrightarrow{g_{\alpha\beta}} K^\omega
\end{array}
\]

are commutative, $g_{\alpha\beta}$ splits, and the complement of $\text{Im}(g_{\alpha\beta})$ in K^ω is isomorphic to K^ω.

For $\alpha = 1$, we let R_1 be the K-algebra of all eventually constant sequences of elements of K mentioned above. In particular, R_1 is a K-subalgebra of K^ω of Loewy length 2, and ν_1 is defined as the inclusion of R_1 into K^ω.

The induction step is modeled on [3, 2.4]: Assume the construction is done up to some $0 < \alpha < \aleph_1$. Let $I = \bigoplus_{i<\omega} R_\alpha$. Then $\iota_\alpha = \bigoplus_{i<\omega} \nu_\alpha$ embeds I into $D = \bigoplus_{i<\omega} K^\omega \subseteq K^{\omega^\omega}$. As in [3], ω^ω denotes the ordinal exponentiation, so $\omega^\omega = \sup_{i<\omega} \omega^i$ and $\omega^{i+1} = \omega^i \times \omega$ for each $0 < i < \omega$. Note that $\iota_\alpha(I)$ is a non-unital K-subalgebra of K^{ω^ω}.

Since the ordinal ω^ω is countable, there is a K-algebra isomorphism $\psi : K^{\omega^\omega} \to K^\omega$. Let $R_{\alpha+1} = \psi(S_{\alpha+1})$, and let $\nu_{\alpha+1}$ denote the inclusion of $R_{\alpha+1}$ into K^ω.

Let μ_α be the embedding of the first copy of K^ω in D composed with the inclusion $D \subseteq K^{\omega^\omega}$. Notice that μ_α is a split non-unital embedding of K-algebras, and so is $\psi \mu_\alpha$. In fact, $\psi \mu_\alpha(K^\omega)$ is a direct summand in K^ω with a complement isomorphic to K^ω. Moreover, $\mu_\alpha \mid R_\alpha$ is a non-unital K-algebra embedding of R_α into $S_{\alpha+1}$.
We have the following commutative diagram, where the vertical maps are K-algebra embeddings, and the horizontal ones are non-unital K-algebra embeddings:

We let $f_{\alpha+1,0} = \psi_{0,\alpha} \mid R_\alpha$, $g_{0,0,0} = \psi_{0,0}$, and for each $0 < \beta < \alpha$, $f_{\alpha+1,\beta} = f_{\alpha+1,0} \cdot f_{0,\beta}$ and $g_{0,\alpha,0} = g_{0,0,0} \cdot g_{0,\beta}$.

By Lemma 2.3, the Loewy length of $R_{\alpha+1}$ is $\alpha + 2$. Moreover, for each $\beta \leq \alpha$, the βth layer of $R_{\alpha+1}$ is countably generated, while its $(\alpha + 1)$th layer, $R_{\alpha+1}/\psi_{\alpha}(I)$, is isomorphic to K.

If $\alpha < \omega_1$ is a limit ordinal, then $\alpha = \sup_{n<\omega} \beta_n$ for a strictly increasing chain of countable ordinals $(\beta_n \mid n < \omega)$. We fix one such chain with $\beta_0 > 0$. By the induction hypothesis, we have the following commutative diagram, where ν_{β_n} ($n < \omega$) are K-algebra embeddings, $f_{\beta_{n+1},0} : g_{\beta_{n+1},0} (n < \omega)$ are non-unital K-algebra embeddings, g_{β_{n+1},β_n} splits, and the complement of $\text{Im}(g_n)$ in K^ω is isomorphic to $K^\omega (n < \omega)$:

Let $T_\alpha = \lim_{n<\omega} R_{\beta_n}$. Since the direct limit of the split embeddings in the bottom row is isomorphic to $\bigoplus_{n<\omega} K^\omega$, we obtain a non-unital K-algebra embedding $\lim_{n<\omega} \nu_{\beta_n} : T_\alpha \to \bigoplus_{n<\omega} K^\omega$ which can be extended to a K-algebra homomorphism $\nu_\alpha : R_\alpha \to K^\omega$ by the same procedure as in the induction step above.

The direct limit of the non-unital K-algebra embeddings in the top row yields $f_{\alpha,0} : R_{\beta_n} \to T_\alpha \to R_\alpha$ for each $n < \omega$. Moreover, we have the split non-unital K-algebra embeddings $g_{\alpha,0} : K^\omega \to K^\omega$ that make the corresponding squares for β_n and α commute.

Since for each $\beta < \alpha$, there exists $n < \omega$ such that $\beta < \beta_n$, we can define $f_{\alpha,\beta} = f_{\alpha,\beta_n} \cdot f_{\beta_n,\beta}$ and $g_{\alpha,\beta} = g_{\alpha,\beta_n} \cdot g_{\beta_n,\beta}$. Then also the squares for β and α commute, by the induction premise. Finally, R_α is a semiarithmetic von Neumann regular ring with pfa of Loewy length $\alpha + 1$, all of whose layers are countably generated.

By Lemma 2.3, R_α is hereditary for each $0 < \alpha < \omega_1$. The corresponding picture for R_α is as follows:

```
L_0 = K  K
\ldots
L_\beta = K(\omega)
\ldots
L_1 = K(\omega)
L_0 = K(\omega)
```
Finally, we recall that in the hereditary setting of Lemma 2.3, there is a short exact sequence that tests for weak \(R \)-projectivity of any module \(M \):

Lemma 2.5. Let \(R \) be a semiartinian von Neumann regular ring with pfa. Assume \(\sigma \) is a countable ordinal and all proper layers of \(R \) are countably generated.

Then there exist a module \(B \) which is a countable direct product of certain ideals of \(R \), an injective module \(N \), and an epimorphism \(\pi : B \to N \), such that the following are equivalent for a module \(M \):

1. \(M \) is weakly \(R \)-projective.
2. The homomorphism \(\text{Hom}_R(M, \pi) : \text{Hom}_R(M, B) \to \text{Hom}_R(M, N) \) is surjective.

Proof. This follows by [12, 4.2]. □

Remark 2.6. By [12, 4.1], the epimorphism \(\pi \) is the product of restrictions of the layer epimorphisms \(\pi_\alpha \ (\alpha \leq \sigma) \) to the right ideals \(N_{\alpha, F} \), where \(F \) runs over all finite subsets of \(\Lambda \), \(S_\alpha \subseteq N_{\alpha, F} \subseteq S_{\alpha+1} \), and \(N_{\alpha, F}/S_\alpha \cong \bigoplus_{g \in F} M_{\alpha, g} \) is an injective module, cf. Theorem 2.1.

In particular, [12, 4.2] implies that if \(M \) is not weakly \(R \)-projective, then there exist an \(\alpha \leq \sigma \) and a finite subset \(F \) of \(\Lambda \) such that the homomorphism \(\text{Hom}_R(M, \pi_\alpha \mid N_{\alpha, F}) : \text{Hom}_R(M, N_{\alpha, F}) \to \text{Hom}_R(M, N_{\alpha, F}/S_\alpha) \) is not surjective.

3. **Weak diamond and weak projectivity**

By Lemma 2.3, if \(R \) is a semiartinian von Neumann regular ring with pfa, then the notions of a weak \(R \)-projective, \(R \)-projective, and projective module coincide for any countably generated module. In contrast with Lemma 1.7, we will show that in the extension of ZFC + CH where the prediction principle \(\Phi \) (Weak Diamond) holds, these notions coincide for arbitrary modules, provided that condition (2) of Lemma 2.3 holds (whence \(R \) is hereditary) and \(\text{card}(R) \leq \aleph_1 \).

To simplify our notation, we introduce the following definition:

Definition 3.1. Let \(R \) be a semiartinian von Neumann regular ring with pfa. Then \(R \) is small, if \(\text{card}(R) \leq \aleph_1 \), \(\sigma \) is a countable ordinal, and all proper layers of \(R \) are countably generated.

Notice that our notion of smallness is more general than the one in [12, Definition 4.3] which required the ordinal \(\sigma \) to be finite rather than countable.

Before introducing the Weak Diamond Principle, we need to recall several basic set-theoretic notions:

Let \(\kappa \) be a regular uncountable cardinal. Let \(A \) be a set of cardinality \(\leq \kappa \). An increasing continuous chain, \((A_\gamma \mid \gamma < \kappa) \), consisting of subsets of \(A \) of cardinality \(< \kappa \), is a \(\kappa \)-filtration of the set \(A \) in case its union is \(A \). If \(A \) is moreover a module, we will also use the term \(\kappa \)-filtration of the module \(A \), which has the additional assumptions that all the \(A_\gamma \ (\gamma < \kappa) \) are submodules of \(A \), and \(A_0 = 0 \).

A subset \(C \subseteq \kappa \) is a club in \(\kappa \), if \(C \) is unbounded (i.e., \(\sup C = \kappa \)) and closed (i.e. for each \(D \subseteq C \), if \(s = \sup D < \kappa \) then \(s \in C \)). A subset \(E \subseteq \kappa \) is stationary in \(\kappa \), if \(E \cap C \neq \emptyset \) for each club \(C \) in \(\kappa \).

Now, we can introduce the Weak Diamond Principle, \(\Phi \). We will use it in the following form presented in [11, Lemma VI.1.7] and [7, Theorem 18.12]:

\begin{enumerate}
\item[(\(\Phi \))] Let \(\kappa \) be a regular uncountable cardinal and \(E \) a stationary subset in \(\kappa \). Let \(A \) and \(B \) be sets of cardinality \(\leq \kappa \). Let \((A_\gamma \mid \gamma < \kappa) \) be a \(\kappa \)-filtration of \(A \), and \((B_\gamma \mid \gamma < \kappa) \) a \(\kappa \)-filtration of \(B \). For each \(\gamma \in E \), let \(c_\gamma : A_\gamma B_\gamma \to 2 \).
Then there exists a function \(c : E \to 2 \), such that for each \(x \in A B \), the set \(E(x) = \{ \gamma \in E \mid x \in A_\gamma B_\gamma \text{ and } c(\gamma) = c_\gamma(x \mid A_\gamma) \} \) is stationary in \(\kappa \).
\end{enumerate}
The Weak Diamond Φ is easily seen to be a consequence the better known (and stronger) Jensen’s Diamond \Diamond, which in turn is a consequence of Gödel’s Axiom of Constructibility, and hence is consistent with $\text{ZFC} + \text{GCH}$. We refer to [4] §VI.1 and [7] §18 for more details.

We arrive at the promised generalization of [12] 4.4 requiring only the Weak Diamond (rather than the stronger Jensen’s Diamond), and allowing for arbitrary countable Loevy length of R:

Theorem 3.2. Assume $\text{CH} + \Phi$. Let R be small. Then all weakly R-projective modules, and hence all R-projective modules, are projective.

Proof. Let M be a weakly R-projective module. By induction on the minimal number of generators, κ, of M, we will prove that M is projective. For $\kappa \leq \aleph_0$, the result follows by Lemma 2.2. If κ is a singular cardinal, then we use the fact that the class of all weakly R-projective modules is closed under submodules (Lemma 2.2) and apply Shelah’s Singular Compactness Theorem (e.g., in the version from [7] 7.9, see also [4] XII.1.14).

Assume that κ is a regular uncountable cardinal. Let $A = \{m_\gamma : \gamma < \kappa\}$ be a minimal set of R-generators of M. For each $\gamma < \kappa$, let $A_\gamma = \{m_\delta : \delta < \gamma\}$. Let M_γ be the submodule of M generated by A_γ. By the inductive premise, M_γ is projective, and $M = (M_\gamma : \gamma < \kappa)$ is a κ-filtration of the module M. Possibly skipping some terms of M, we can w.l.o.g. assume that M has the following property for each $\gamma < \kappa$: If M_δ/M_γ is not weakly R-projective for some $\gamma < \delta < \kappa$, then also $M_{\delta+1}/M_\gamma$ is not weakly R-projective.

(\dagger) Let E be the set of all $\gamma < \kappa$ such that $M_{\gamma+1}/M_\gamma$ is not weakly R-projective. Also, let $\pi : B \to N$ be the epimorphism from Lemma 2.5. By that Lemma, for each $\gamma \in E$, we can choose an $h_\gamma \in \text{Hom}_R(M_{\gamma+1}/M_\gamma, N)$ such that h_γ does not factorize through π.

We claim that E is not stationary in κ. Assume this claim is not true. Note that CH implies $\text{card}(B) \leq \aleph_1 \leq \kappa$, so we can fix a κ-filtration of the set B, $(B_\gamma : \gamma < \kappa)$. Let $\gamma < \kappa$. For each $g \in \text{Hom}_R(M_\gamma, N)$, we choose $g^+ \in \text{Hom}_R(M_{\gamma+1}, N)$ such that $g^+ |_{M_\gamma} = g$. This is possible because N is an injective module. Further, for each $f \in \text{Hom}_R(M_\gamma, B)$, we choose $f^+ \in \text{Hom}_R(M_{\gamma+1}, B)$ such that $\pi f^+ = (\pi f)^+$. This is possible since $M_{\gamma+1}$ is projective. Notice that $\pi f^+ |_{M_\gamma} = (\pi f)^+ |_{M_\gamma} = \pi f$, so $\delta f := f^+ |_{M_\gamma} - f \in \text{Hom}_R(M_\gamma, K)$ where $K = \text{Ker}(\pi)$.

For each $\gamma \in E$, we define $c_\gamma : A^\gamma B_\gamma \to 2$ as follows: If $x : A_\gamma \to B_\gamma$ is a restriction of a (necessarily unique) morphism $f \in \text{Hom}_R(M_\gamma, B)$ such that the morphism $\delta f = f^+ |_{M_\gamma} - f$ can be extended to a morphism from $\text{Hom}_R(M_{\gamma+1}, K)$, then we put $c_\gamma(x) = 1$. Otherwise, we let $c_\gamma(x) = 0$.

In this setting, Φ yields a function $c : E \to 2$ such that for each $x \in A^\gamma$, the set $E(x) = \{ \gamma \in E : x | A_\gamma \in A^\gamma B_\gamma \}$ and $c(\gamma) = c_\gamma(x | A_\gamma)$ is stationary in κ. We will use c to define a morphism $g \in \text{Hom}_R(M, N)$ as follows:

By induction on $\gamma < \kappa$, we define a sequence $(g_\gamma : \gamma < \kappa)$ such that $g_\gamma \in \text{Hom}_R(M_\gamma, N)$. First, $g_0 = 0$. If $\gamma < \kappa$, and g_γ is already defined, we distinguish two cases:

(I) $\gamma \notin E$ or $c(\gamma) = 0$. In this case, we put $g_{\gamma+1} = (g_\gamma)^+$.

(II) $\gamma \in E$ and $c(\gamma) = 1$. In this case, we let $g_{\gamma+1} = (g_\gamma)^+ + h_\gamma \rho_\gamma$, where $\rho_\gamma : M_{\gamma+1} \to M_{\gamma+1}/M_\gamma$ is the canonical projection modulo. M_γ.

Notice that in both cases $g_{\gamma+1} |_{M_\gamma} = g_\gamma$. We let $g_\gamma = \bigcup_{\delta < \gamma} g_\delta$ in case $\gamma < \kappa$ is a limit ordinal. Then $g = \bigcup_{\gamma < \kappa} g_\gamma \in \text{Hom}_R(M, N)$.

Since M is weakly R-projective, there exists $f \in \text{Hom}_R(M, B)$ such that $g = \pi f$.
By Φ, the set $E(f \upharpoonright A) = \{ \gamma \in E \mid f \upharpoonright A_{\gamma} \in \mathcal{A}_{\gamma} B_{\gamma} \}$ and $c(\gamma) = c(f \upharpoonright A_{\gamma})$ is stationary in κ. Let $\gamma \in E(f \upharpoonright A)$.
Assume that $c(\gamma) = 0$. Then we are in case (I), so $\pi(f \upharpoonright M_{\gamma+1}) = g_{\gamma+1} = (g_{\gamma})^+ = (\pi f \upharpoonright M_{\gamma})^\kappa = \pi(f \upharpoonright M_{\gamma})^\kappa$. Then the morphism $(f \upharpoonright M_{\gamma})^\kappa \to f \upharpoonright M_{\gamma+1} \in \text{Hom}_R(M_{\gamma+1}, K)$ is an extension of $\delta_{f|M_{\gamma}} = (f \upharpoonright M_{\gamma})^\kappa \upharpoonright M_{\gamma} = f \upharpoonright M_{\gamma} \upharpoonright M_{\gamma+1}$, in contradiction with $c_\gamma(f \upharpoonright A_{\gamma}) = c(\gamma) = 0$.

So necessarily $c(\gamma) = 1$, and we are in case (II), whence $g_{\gamma+1} = (g_{\gamma})^+ + h_{\gamma}\rho_{\gamma}$.
As $c_\gamma(f \upharpoonright A_{\gamma}) = c(\gamma) = 1$, the morphism $\delta_{f|M_{\gamma}} = (f \upharpoonright M_{\gamma})^\kappa \upharpoonright M_{\gamma} = f \upharpoonright M_{\gamma} \upharpoonright M_{\gamma+1}$ can be extended to a morphism $\Delta_{f|M_{\gamma}} \in \text{Hom}_R(M_{\gamma+1}, K)$.

Again, $g_{\gamma+1} = \pi(f \upharpoonright M_{\gamma+1})$ and $(g_{\gamma})^+ = \pi(f \upharpoonright M_{\gamma})^\kappa$, so
\[h_{\gamma}\rho_{\gamma} = \pi(f \upharpoonright M_{\gamma+1} - (f \upharpoonright M_{\gamma})^\kappa) = \pi u_{\gamma}, \]
where $u_{\gamma} = f \upharpoonright M_{\gamma+1} - (f \upharpoonright M_{\gamma})^\kappa + \Delta_{f|M_{\gamma}} \in \text{Hom}_R(M_{\gamma+1}, B)$. However, $u_{\gamma} \upharpoonright M_{\gamma} = f \upharpoonright M_{\gamma} - (f \upharpoonright M_{\gamma})^\kappa \upharpoonright M_{\gamma} + \delta_{f|M_{\gamma}} = 0$. Hence u_{γ} factorizes through ρ_{γ} by some $v_{\gamma} \in \text{Hom}_R(M_{\gamma+1}/M_{\gamma}, B)$, that is, $u_{\gamma} = v_{\gamma}\rho_{\gamma}$.

Thus $h_{\gamma}\rho_{\gamma} = \pi v_{\gamma}\rho_{\gamma}$. Since ρ_{γ} is surjective, $h_{\gamma} = \pi v_{\gamma}$, in contradiction with our choice of h_{γ}.

This proves our claim about the set E. So there is a club C in κ such that $C \cap E = \emptyset$. Let $\gamma : \kappa \to \kappa$ be a strictly increasing continuous function whose image is C. For each $\gamma < \kappa$, let $N_{\gamma} = M_{\gamma(\gamma)}$. Then $(N_{\gamma} \mid \gamma < \kappa)$ is a κ-filtration of the module M such that $N_{\gamma+1}/N_{\gamma}$ is weakly R-projective for each $\gamma < \kappa$. By the inductive premise, $N_{\gamma+1}/N_{\gamma}$ is projective, hence $N_{\gamma+1} = N_{\gamma} \oplus P_{\gamma}$ for a projective module P_{γ}, for each $\gamma < \kappa$. We conclude that $M = N_0 \oplus \bigoplus_{\gamma < \kappa} P_{\gamma}$ is projective. This finishes the inductive step for the case when κ is a regular uncountable cardinal. □

Remark 3.3. As observed by Jan Šaroch, Remark 2.6 makes it possible to prove Theorem 3.2 without the assumption of CH, i.e., assuming only Φ. (That is indeed a weaker assumption, since unlike \Diamond, the Φ does not imply CH.) The only modification needed concerns the set E of all $\gamma < \kappa$ such that $M_{\gamma+1}/M_{\gamma}$ is not weakly R-projective, and the morphisms $h_{\gamma} (\gamma \in E)$ defined in part (i) of the proof of Theorem 3.2.

For each $\gamma \in E$, Remark 2.6 yields an $\alpha_{\gamma} \leq \sigma$, a finite subset F_{γ} of $\lambda_{\alpha_{\gamma}}$, and an $h_{\gamma} \in \text{Hom}_R(M_{\gamma+1}/M_{\gamma}, N_{\alpha_{\gamma}}/S_{\alpha_{\gamma}})$ which does not factorize through $\pi_{\alpha_{\gamma}} \upharpoonright N_{\alpha_{\gamma}} F_{\gamma}$. For each $\alpha \leq \sigma$ and each finite subset F of λ_{α}, let $E_{\alpha, F} = \{ \gamma \in E \mid \alpha = \alpha \land F_{\gamma} = F \}$. Then $E = \bigcup_{\alpha, F} E_{\alpha, F}$. Notice that since R is small, the set of all such pairs (α, F) is countable.

Thus, if E is stationary, then so is one of the $E_{\alpha, F}$ (see e.g. [4, II.4.3]), say $E_{\alpha', F'}$. The proof of a contradiction with the stationarity of E then proceeds as that of Theorem 3.2 in the parts following (i), but for $B = N_{\alpha', F'}$, $N = N_{\alpha', F'}/S_{\alpha'}$, $\pi = \pi_{\alpha'} \upharpoonright N_{\alpha', F'}$, and $E = E_{\alpha', F'}$. The point is that in this setting, the cardinality of B is $\leq \text{card}(R) \leq \aleph_0$ even without the assumption of CH.

Combining Lemma 1.7 and Theorem 3.2 we obtain

Corollary 3.4. Let R be small. Then the assertion ‘All weakly R-projective modules are projective’ is independent of ZFC + GCH.

Acknowledgment 3.5. The author thanks Kateřina Fuková for valuable comments on an earlier draft of this paper.
References

[1] H. Alhilali, Y. Ibrahim, G. Puninski, M. Yousif, *When R is a testing module for projectivity?*, J. Algebra 484(2017), 198-206.

[2] F. W. Anderson, K. R. Fuller, *Rings and Categories of Modules*, 2nd ed., GTM 13, Springer, New York 1992.

[3] P. C. Eklof, K. R. Goodearl, J. Trlifaj, *Dually slender modules and steady rings*, Forum Math. 9(1997), 61 – 74.

[4] P.C. Eklof, A.H. Mekler, *Almost free modules*, Revised ed., North-Holland, New York 2002.

[5] P. C. Eklof, S. Shelah, *On Whitehead modules*, J. Algebra 142(1991), 492 – 510.

[6] C. Faith, *Algebra II. Ring Theory*, GMW 191, Springer-Verlag, Berlin 1976.

[7] R. Göbel, J. Trlifaj, *Approximations and Endomorphism Algebras of Modules*, 2nd revised and extended ed., GEM 41, W. de Gruyter, Berlin 2012.

[8] K.R. Goodearl, *Von Neumann Regular Rings*, 2nd ed., Krieger Publ. Co., Malabar 1991.

[9] P. Ružička, J. Trlifaj, J. Žemlička, *Criteria of steadiness*, Abelian Groups, Module Theory, and Topology, M.Dekker, New York 1998, 359-371.

[10] J. Saroch, J. Trlifaj, *Test sets for factorization properties of modules*, Rend. Sem. Mat. Univ. Padova 144(2020), 217-238.

[11] J. Trlifaj, *Faith’s problem on R-projectivity is undecidable*, Proc. Amer. Math. Soc. 147(2019), 497-504.

[12] J. Trlifaj, *The dual Baer criterion for non-perfect rings*, Forum Math. 32(2020), 663-672.

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 186 75 Prague 8, Czech Republic

Email address: trlifaj@karlin.mff.cuni.cz