A note on the critical nuclear charge that binds \(N \) electrons

Gabriel Gil and Augusto González

Instituto de Cibernética, Matemática y Física, Calle E 309, Vedado, Ciudad Habana, Cuba

The critical charge, \(Z_c \), that binds \(N \) electrons in an atom is known to satisfy the relation, \(Z_c = N - 1 - \delta \). Numerical calculations show that \(\delta \) exhibits a correlation with the electron affinity, \(E_a \), of the neutral atom with \(N - 1 \) electrons, and that \(\delta < 0.48 \) for \(N < 90 \). We re-examined \(Z_c \) by means of a very simple model that treats the interaction of the outermost electron with the core electrons through a zero-range force theory, whereas the residual Coulomb interaction is included in first-order perturbation theory. The relation, \(\delta = 0.836 \sqrt{E_a} \), coming from our model, is fairly well observed by the computed \(\delta \) and the experimental \(E_a \).

PACS numbers: 32.30.-r, 32.10.Hq, 31.15.-p

I. INTRODUCTION

Qualitative understanding of phenomena come from very simple models that capture their essence. In atoms, perhaps the most successful simple models are the famous Thomas-Fermi (TF) Theory\(^8\) and the large-\(D \) expansion\(^9\), leading, the latter, to a qualitative picture similar to the one devised by Lewis long ago\(^10\).

The theory by Thomas and Fermi is a mean-field one in which the scaling properties of the kinetic energy and Coulomb potentials are apparent. This fact leads to a universal relation for the energy of the atom with \(N \) electrons and charge \(Z \) \(E_{TF}(N, Z) = N^{7/3} f(N/Z) \), or for the ionization potential \(\delta \) \(I_p(N, Z) = N^{4/3} g(N/Z) \), where the universal functions \(f \) and \(g \) depend only on the combination \(N/Z \).

For a fixed ratio \(N/Z \), the ionization potential (or the electron affinity, \(E_a \)) should behave as \(E_a \sim N^{4/3} \), when \(N \) increases. This dependence holds extremely well for cations \((N < Z) \), even for small \(N \) values, as can be seen in the upper panel of Fig. 1 but breaks down for neutral atoms \((N = Z) \), where \(I_p \) or \(E_a \), apart from fluctuations due to shell effects, take roughly a constant value (Fig. 1 lower panel).

The reason for such a breaking down of TF predictions for neutral atoms, in certain situations, is the proximity of the anionic instability threshold, that is, the fact that atoms become unstable when \(Z < Z_c \lesssim N - 1 \).

Rigorous bounds for the critical nuclear charge, \(Z_c \), that binds \(N \) electrons have proven to be of little use\(^5\). Numerical computations for atoms with up to 89 electrons\(^9\) on the other hand, lead to:

\[
Z_c = N - 1 - \delta, \quad (1)
\]

where the magnitude \(\delta < 0.48 \) shows a correlation with the electron affinity of the neutral atom with \(N - 1 \) electrons.

In the present paper, we use a very simple model, similar in spirit to the one used in Refs. \(^10\), from which we obtain (in atomic units):

\[
\delta = 0.836 \sqrt{E_a}. \quad (2)
\]

Relation \(^2\) is fairly well observed by the calculated \(\delta \) when the experimental \(E_a \) of the neutral atoms with \(N - 1 \) electrons are introduced, as shown in Fig. 2.

II. THE MODEL

When \(Z \approx N - 1 \), we may use a very simple model to get reasonable results. The interaction of the outermost electron with the neutral core is described by a square

![Figure 1](image-url)
well potential of depth V and radius R. V and R enter in a combination such that the binding energy of the electron is E_a.

At this level, the parameter R is not determined, as in a theory with zero-range forces, and the details of the potential for $r < R$ are not important. The only magnitude that matters is E_a, which determines the wave function in the outer region:

$$\psi \sim \sqrt{2\kappa} \exp(-\kappa r),$$

where $\kappa = \sqrt{2E_a}$. This function can be used to perturbatively compute the contribution to the energy coming from the Coulomb interaction with the almost neutral core:

$$\Delta E = (N - 1 - Z) 2\kappa \int_R^{\infty} \frac{dr}{r} \exp(-2\kappa r)$$

$$= (N - 1 - Z) \sqrt{E_a} F(\sqrt{E_a} R),$$

where the explicit expression $F(x) = 2\sqrt{2}(\ln 1/(2\sqrt{2}x) - 0.5772) + 8\pi$ comes from the assumption that $1/\kappa$ should be greater than the radius R.

The energy of the anion with N electrons and charge $Z \approx N - 1$ is, thus:

$$E = -E_a + (N - 1 - Z) \sqrt{E_a} F(\sqrt{E_a} R).$$

We may use the freedom left in the definition of the parameter R in order to minimize the energy. It may be seen that F takes a minimum value, 1.196, when $R = 0.35/\sqrt{E_a}$ (Fig. 2 upper panel).

When E_a is small enough, one may expect that the slope of the energy curve at $Z = N - 1$, i.e., $-1.2 \sqrt{E_a}$, is practically the same as the slope computed at Z_c. The linear behaviour at Z_c was demonstrated in Ref. [12]. Thus, we may use this slope to estimate Z_c, leading to the expression for δ given in Eq. (2) of section I.

III. DISCUSSION

We put together in Fig. 2 the computed values of δ [9,10] and the experimental E_a [4]. Most of the points are grouped around the line given by Eq. (2). There are, however, a few exceptions that we want to comment. They may correspond to inconsistencies in the computed δ or the measured E_a.

The point with $N = 86$ is the only one for which E_a is not measured, but computed [13]. The reported electron affinity of At seems to be underestimated.

The points with $N = 60$ and 70 are related to the E_a of Pr and Tm, respectively. Both measurements were performed by the same group using the same experiment...
tions are the systems with very low electrons, as shown in Fig. 3, lower panel. The exceptions in between the covalent radius and the radius used by Kais and co-workers\cite{10} for the neutral atom with $N = 1$ electrons, as shown in Fig. 3, lower panel. The exceptions are the systems with very low E_a, for which R becomes higher than the covalent radius. The magnitude R is simply a parameter in our model, not directly related to the real potential that experiences the electron. It is remarkable that the theory, in the $\kappa R \rightarrow 0$ limit, assigns to R “reasonable” values.

IV. CONCLUSIONS

We use a kind of “zero-range force theory” in order to compute, for the atom with N electrons and charge Z, the slope of the curve E vs Z at the point where $Z = N - 1$. The obtained slope, $1.2 \sqrt{E_a}$, allows us to estimate the critical charge for binding N electrons, $Z_c = N - 1 - 0.836 \sqrt{E_a}$. Comparison between the computed Z_c and measured E_a shows that this simple relation holds. Some points lying far from the curve are characterized by discrepancies between the experimental and theoretical values for E_a.

The case $E_a = 0$, $Z_c = N - 1$ is also contained in our curve. There is an additional property of the energy curve in this situation. Due to the fact that it is precisely the residual Coulomb interaction which binds the electron, the energy should behave as: $E \sim -(Z - N + 1)^2$, for Z close enough to $N - 1$. We did not find computed data to check this behaviour.

Acknowledgments

The authors are grateful to the participants of the Theory Seminar at the ICIMAF for discussions and remarks. Support by the Caribbean Network for Quantum Mechanics, Particles and Fields (ICTP, Trieste, Italy) is acknowledged.

1. L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927); E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).
2. D.A. Kirzhnits, Yu.E. Lozovik, and G.V. Shpatakovskaya, Sov. Phys. Usp. 18, 649 (1975); E.H. Lieb, Rev. Mod. Phys. 53, 603 (1981); L. Spruch, Rev. Mod. Phys. 63, 1512 (1991).
3. D.R. Herschbach, J. Avery, and O. Goscinski (eds.), Dimensional scaling in chemical physics, Kluwer Academics, Dordrecht, 1993.
4. G.N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).
5. R. Carcasses, A. Gonzalez, Phys. Rev. A 80, 024502 (2009).
6. Yu. Raichenko, A.E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5). Available Online: http://physics.nist.gov/asd3 [2009, January 13]. National Institute of Standards and Technology, Gaithersburg, MD.
7. Royal Society of Chemistry website http://www.rsc.org/periodic-table/. Data References: W.M. Haynes (ed.) CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2011; G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants, Longman, Essex, 1995.
8. E.H. Lieb, J.P. Solovej, and J. Yngvason, Phys. Rev. B 51, 10646 (1995).
9. H. Hogreve, J. Phys. B 31, L439 (1998).
10. A.V. Sergeev and S. Kais, Int. J. Quant. Chem. 75, 533 (1999); S. Kais and P. Serra, Int. Rev. Phys. Chem. 19, 97 (2000).
11. H. A. Bethe, Phys. Rev. 76, 38-50 (1949); L.D. Landau and Ya.A. Smorodinsky, Lectures on Nuclear Theory, Plenum Press, New York, 1959.
12. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and B. Simon, J. Phys. A 16, 1125 (1983).
13. R. J. Zollweg, J. Chem. Phys. 50, 4251 (1969).
14. V. T. Davis, J. S. Thompson, J. Phys. B 35, L11/L14 (2002); V. T. Davis, J. S. Thompson, Phys. Rev. A 65, 010501(R) (2001).
15. K. Dinov, D. R. Beck, Phys. Rev. A 51, 2 (1995); J. A. Chevary and S. H. Vosko, J. Phys. B 27, 657 (1994).
16. D. G. Leopold, W. C. Lineberger, J. Chem. Phys. 85, 51 (1986); C. S. Feigerle, R. R. Corderman, S. V. Bobashev, and W. C. Lineberger, J. Chem. Phys. 74, 1580 (1981).
17. N. B. Balabanova, K. A. Peterson, J. Chem. Phys. 125, 074110 (2006).
18. V. A. Dzuba, G. F. Gribakin, Phys. Rev. A 55, 2443 (1997).
19. H. H. Andersen, V. V. Petrunin, P. Kristensen, T. Andersen, Phys. Rev. A 55, 3247 (1997).