The mitochondrial genome of a rare Chinese stag beetle \textit{Kirchnerius guangxii} (Coleoptera: Lucanidae)

Yong Ning Zhai, Shi Ju Zhou, Yong Jing Chen and Xia Wan
Department of Ecology, School of Resources and Engineering, Anhui University, Hefei, Anhui, P. R. China

ABSTRACT

We sequenced the mitochondrial genome of a rare Chinese stag beetle \textit{Kirchnerius guangxii} using the next-generation sequencing. The mitochondrial genome is 14,562 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs). The phylogenetic analyses showed that \textit{K. guangxii} was sister to the clade of \textit{Epidorcos gracilis} and \textit{Serrognathus platymelus}, and had a relatively low genomic affinity to \textit{Prosopocoilus}. Thus, \textit{K. guangxii} had a more close relationship with \textit{Epidorcos}, \textit{Serrognathus} and \textit{Dorcus} than \textit{Prosopocoilus}, which was different from previous morphological study. Our result can provide more available mitogenomic data for discussing the phylogeny of \textit{Kirchnerius} and facilitate the phylogenomic research of the family Lucanidae.

Stag beetles (The family Lucanidae Latreille) are one of the most popular insects due to their large size and decorative mandibles in males that resemble the antlers of stags, which has long received focus from taxonomists and collectors in terms of their fascinating appearance and interesting male–male fighting behavior (Tournant et al. 2012; Kim and Farrell 2015). So far, about 1800 species and subspecies within more than 100 genera are known worldwide (Krajcik 2001; Fujita 2010). The genus \textit{Kirchnerius} was originally described by Schenk (2009), inferring from the type species \textit{Kirchnerius guangxii} due to its unique mandible trait in large male. So far, this species is rarely noticed in the field distributed around the region of Mt. Damingshan in Guangxi. However, there were some different opinions about the systematic position of \textit{Kirchnerius} because the diagnosed characters of \textit{K. guangxii} at generic level partly overlapped with those in \textit{Prosopocoilus} (Huang and Chen 2011, 2013; Schenk 2012). The genetic data, as different datasets, could provide new point of view to deeply understand the systematics and future conservation of this stag beetle (Lin et al. 2017; Chen et al. 2018).

In this study, we sequenced a male specimen of \textit{K. guangxii} collected from Daming Mountain, Guangxi, China (108°2’E, 23°2’N), in July 2011. The sample was stored in 99% ethanol at ~20°C. Total genomic DNA was extracted using Blood and Tissue Kit (Qiagen, Germany) and then sequenced using Illumina HiSeq 2500 platform (GenBank accession number. MK134567). The voucher specimen (D10) was stored in the Museum of Anhui University, Hefei, Anhui, China. High-quality reads were de novo assembled using IDBA-UD (Peng et al. 2012). Preliminary annotations were done under MITOS Web Server (Bernt et al. 2013). The mitochondrial sequence of \textit{K. guangxii} is 14,562 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and partial control region. All 13 PCGs composition of the \textit{K. guangxii} is 38.28% T, 16.71% C, 31.45% A, and 13.56% G, with a strong bias toward A + T (69.73%). Similar situation occurs in the tRNAs and rRNAs, their A + T content were more than 70%. Among 13 PCGs, 12 used ATN (N represents A, C, G, T) as initiation codons, whereas the initiation codon of COX1 was AAC. Nine PCGs terminated with the stop codon TAA or TAG, whereas COX2, NAD5 and NAD4 ended with T; COX3 with TA.

Phylogenetic analysis was carried out using Bayesian inference (BI) method (Ronquist et al. 2012). The ingroup includes 16 lucanid species with the available mitogenomic data from the Genbank. Three scarab beetles (\textit{Cheirotorus jansoni}, \textit{Protaetia brevitarsis} and \textit{Rhopaea magnicornis}) were used as outgroups. The topology showed that \textit{K. guangxii} was a separated branch that was sister to the two species of \textit{Epidorcos gracilis} and \textit{Serrognathus platymelus}, and had a relatively low genomic affinity to those species of \textit{Prosopocoilus} (Figure 1). The phylogenetic analysis supported the original placement of \textit{Kirchnerius}, and determined the relationship with part of stag beetle species, which also suggested that mitogenomic data could provide useful signal for the phylogenetic study as they found in other beetle groups (Breeschoten et al. 2016; Timmermans et al. 2016; Nie et al. 2018, 2020). Furthermore, a large available mitogenomic data could be good molecular marker for resolving the phylogenetic
argument about the placements of other species in *Kirchnerius* and the phylogenetic framework of the family Lucanidae.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Acknowledgements

We would like to thank Mr. Cheng Hui Zhan (Shan Tou City, Guangdong, China) for his generous donation of the studied specimens of *K. guangxii*. We also thank Dr. Rui-e Nie (Institute of Zoology, Chinese Academy of Science, Beijing, China), Dr. Fan Song, Dr. Yun Fei Wu (Department of Entomology, China Agricultural University, West Campus, Beijing, China) and the lab member, Dan Chen, Ying Ying, Jiao Jiao Yuan for their assistance in this study.

Funding

This work was supported by the National Natural Science Foundation of China [No. 31872276, 31572311, 31201745].

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69 (2): 313–319.

Breeschoten T, Doorenweerd C, Tarasov S, Vogler AP. 2016. Phylogenetics and biogeography of the dung beetle genus *Onthophagus* inferred from mitochondrial genomes. Mol Phylogenet Evol. 105:86–95.

Chen YJ, Liu J, Cao YY, Zhou SJ, Wan X. 2018. Two new complete mitochondrial genomes of *Dorcus* stag beetles (Coleoptera, Lucanidae). Genes Genom. 40 (8):873–880.

Fujita H. 2010. The lucanid beetles of the world. Mushishi-Sha’s Iconographic series of insects. Tokyo: Mushishi-Sha.

Huang H, Chen CC. 2011. Notes on *Prosopocoilus* Hope (Coleoptera: Scarabaeoidea: Lucanidae) from China, with the description of two species. Zootaxa. 3126(1):39–54.

Huang H, Chen CC. 2013. Stag beetles of China II. Taipei: Formosa Ecological Company.

Kim SJ, Farrell BD. 2015. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin’s stag beetle. Mol Phylogenet Evol. 86:35–48.

Krajčík M. 2001. Lucanidae of the world. Catalogue – part I, checklist of the stag beetles of the world (Coleoptera: Lucanidae). Czech Republic: Hradec Králové.
Lin ZQ, Song F, Li T, Wu YY, Wan X. 2017. New mitogenomes of two Chinese stag beetles (Coleoptera, Lucanidae) and their implications for systematics. J Insect Sci. 17:1–9.

Nie RE, Andújar C, Gómez–Rodríguez C, Bai M, Xue HJ, Tang M, Yang CT, Tang P, Yang XK, Vogler AP. 2020. The phylogeny of leaf beetles (Chrysomelidae) inferred from mitochondrial genomes. Syst Entomol. 45 (1): 188–204.

Nie RE, Breeschoten T, Timmermans M, Nadein K, Xue HJ, Bai M, Huang Y, Yang XK, Vogler AP. 2018. The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. Cladistics. 34 (2):113–130.

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 28 (11):1420–1428.

Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Schenk KD. 2009. Description of a new genus, two new taxa and one new subspecies of the family stag beetles from China, province Guangxi (Coleoptera, Lucanidae). Beetles World. 2:1–6.

Schenk KD. 2012. Taxonomic notes to the family Lucanidae (Coleoptera, Lucanidae). Beetles World. 6:9–15.

Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen A, Dodsworth S, Foster PG, Bocak L, Vogler AP. 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol Evol. 8(1):161–175.

Tournant P, Joseph L, Goka K, Courchamp F. 2012. The rarity and overexploitation paradox: stag beetle collections in Japan. Biodivers Conserv. 21(6):1425–1440.