Complete genome sequence of *Lactobacillus rhamnosus* Pen, a probiotic component of a medicine used in prevention of antibiotic-associated diarrhoea in children

Piotr Jarocki, Marcin Podleśny, Mariusz Krawczyk, Agnieszka Glibowska, Jarosław Pawelec, Elwira Komór-Janczara, Oleksandr Kholiavskyi, Michał Dworniczak and Zdzisław Targoński

**Abstract**

**Background:** *Lactobacillus rhamnosus* Pen is a human endogenous strain with well-documented health promoting properties that is used for production of probiotics. It has a long safety history of application, and its effectiveness in the prevention of antibiotic-associated diarrhoea has also been confirmed in clinical trials.

**Results:** Here we present the complete genome sequence of *L. rhamnosus* Pen, which consists of a circular 2,884,496-bp chromosome with a GC content of 46.8%. Within 2907 open reading frames (ORFs), genes involved with probiotic properties were identified. A CRISPR locus, consisting of a 1092-nt region with 16 spacers, was also detected. Finally, an intact prophage of ~ 40.7 kb, 57 ORFs, GC content 44.8% was identified.

**Conclusions:** Genomic analysis confirmed the probiotic properties of *L. rhamnosus* Pen and may indicate new biotechnological applications of this industrially important strain.

**Keywords:** *Lactobacillus rhamnosus* Pen, Probiotics, Genome sequence, CRISPR–Cas locus, Prophage

**Introduction**

*Lactobacillus rhamnosus* has been isolated from the human intestinal tract, oral cavity, and vagina. Owing to their beneficial effects on human health, many strains of *L. rhamnosus* are also used in the dairy and pharmaceutical industries. Examples of such industrially important probiotic strains are *Lactobacillus rhamnosus* GG and *Lactobacillus rhamnosus* R0011, as well as *Lactobacillus rhamnosus* Pen, which is a component of a medicine commonly used to reduce the risk of diarrhoea development during antibiotic therapy [1–3]. Many characteristics of strain Pen have previously been reported, including carbohydrate utilisation, colony and cell morphology, antibiotic sensitivity, RAPD patterns, and SDS-PAGE and two-dimensional (2D) electrophoretic profiles of surface-associated proteins [4, 5]. Other properties, such as adhesion ability [6], survival rate in acidic pH [7], antiradical activity [8] and production of extracellular ferulic acid esterase [9] have also been analysed. Optimisation of medium composition to enhance growth of *L. rhamnosus* Pen using response surface methodology was reported by Polak-Berecka et al. [10].

**Methods**

Genomic DNA was isolated and purified using a Genomic Mini AX Bacteria + kit (A&A Biotechnology, Gdynia, Poland); DNA concentration was determined using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, USA). Sequencing was performed at Genomed SA. Briefly, a paired-end library was constructed by using the NEB-Next® DNA Library Prep Master Mix Set for Illumina (NEB, Ipswich, USA) and subsequently sequenced on an Illumina MiSeq with...
2 × 250 paired end sequencing chemistry (Illumina, San Diego, USA). Additionally, a 5–8 kb mate-pair library was constructed according protocol developed in BGI (Shenzhen, China) and sequenced on a HiSeq 4000 with 2 × 100 paired end sequencing chemistry (Illumina, San Diego, USA). A total of 1,270,358,608 bases and 362,759,422 paired reads were yielded. Read trimming and filtering was performed using Cutadapt 1.9.1 [11]. De novo assembly was conducted using SPAdes 3.1.1. [12], which yielded one major contig with 679-fold average coverage. Functional annotation of predicted genes was performed using the NCBI Prokaryotic Genome Annotation Pipeline [13]. The clusters of orthologous groups (COGs) of proteins were determined using eggNOG 4.5 [14]. Ribosomal RNA genes were detected using RNAmer 1.2 [15] and tRNA genes were identified using tRNAscan-SE v. 2.0 [16]. Sequences of proteins which may determine putative probiotic properties of *L. rhamnosus* Pen were individually search against Conserved Domains Database (NCBI) [17] and InterPro database (EMBL-EBI) [18]. Genes potentially involved in the biosynthesis of bacteriocins were identified using BAGEL [19]. The presence of antibiotic resistance genes was tested using ResFinder [20]. Phaster was used to search for prophage sequences [21] and the presence of a CRISPR/Cas system was predicted using CRISPRs finder [22] and the Crispr Recognition Tool [23]. Genome mapping and alignment visualisation were performed using CGView [24] and BRIG [25] respectively.

**Quality assurance**

Genomic DNA used for sequencing was isolated from a pure culture of a single bacterial isolate of *Lactobacillus rhamnosus* Pen (Additional file 1: Figure S1). Additionally, the 16S rRNA gene sequence was determined and compared against NCBI database using BLAST (Additional file 2: Figure S2).

**Results and discussion**

The complete genome of *L. rhamnosus* Pen consists of a 2,884,966 nt circular chromosome (GC content of 46.8%) with no plasmid. Among the 2907 identified open reading frames, 2729 contain protein-coding genes. In addition, 59 tRNA genes, 5 rRNA operons, and 101 pseudogenes were identified (Table 1, Additional file 3: Figure S3). Of the identified coding sequences, 2422 (88.7%) were grouped into 20 COG classes. Coding sequences were identified as being involved in carbohydrate transport and metabolism (12%), transcription (7.3%), amino acid transport and metabolism (6.9%), translation, ribosomal structure and biogenesis (5.4%), and replication, recombination and repair of nucleic acids (4.8%) (Table 2, Additional file 3: Figure S3).

| Attribute | Value |
|-----------|-------|
| Genome size (bp) | 2,884,966 |
| Contig numbers | 1 |
| DNA G+C (%) | 46.8 |
| Total genes | 2907 |
| Protein-coding genes | 2729 |
| rRNA genes | 15 |
| tRNA genes | 59 |
| ncRNA genes | 3 |
| Pseudogenes | 101 |
| Plasmid | 0 |
| Prophages | 1 |
| CRISPR arrays | 1 |
| GenBank accession | CP020464.1 |

Pen genome with eleven other *L. rhamnosus* complete genome sequences showed the highest similarity with intestinal isolate *L. rhamnosus* LOCK900 (symmetric identity 98.76%, gapped identity 99.97; CP005484.1) [26] and substantially lower sequence similarity with the industrially important *L. rhamnosus* GG (symmetric identity 84.24%, gapped identity 97.50%; AP011548.1) [27] (Fig. 1).

Comparative genomic analysis of *L. rhamnosus* Pen showed the presence of numerous genes which may determine its putative probiotic properties, supporting use of the strain in prevention of various gastrointestinal disorders. Genetic factors involved in cell surface adherence, biofilm formation, and pathogen inhibition were identified (Additional file 4: Table S1). Such features are known to provide a survival advantage for probiotic strains and are important for effective bacterial colonisation of the human intestine [1, 28–32]. Additionally, detailed analysis of the genome did not reveal transmissible antibiotic resistance genes in the chromosome of *L. rhamnosus* Pen. It was previously described that such genetic determinants may constitute a reservoir of antibiotic resistance for food and gut pathogens. On the other hand, presence of intrinsic antibiotic resistance among probiotic strains is valuable factor in restoring the intestinal microbiota after antibiotic treatment [33].

The analysis performed using CRISPRs finder and the Crispr Recognition Tool indicated that the genome contains one regularly interspaced short palindromic repeat locus consisting of a 1092 nt region with 16 spacers (30–31 nt in length) (Fig. 2). The detected CRISPR–Cas system is of type II-A/LsaI1 (four cas genes; cas1, cas2, cas9, csn2, and one CRISPR array), similar to previously described CRISPR loci characteristic of *L. rhamnosus*.
strains [34]. BLASTN searches comparing all 16 spacers against the phage and plasmid NCBI databases revealed no sequence identity with known mobile genetic elements of lactobacilli. In a previous report, Douillard et al. [29] observed that many spacer sequences of L. rhamnosus strains fully or partially matched sequenced bacteriophage genomes, such as Lactobacillus rhamnosus phage Lc-Nu and Lrm1, as well as L. casei phages, including φAT3, A2, and PL-1. This phenomenon suggests that CRISPR modules may play an important role in protection against different mobile elements and also provide specific bacteriophage resistance [35]. Interestingly, similar results were not obtained for the CRISPR locus identified for Lactobacillus rhamnosus Pen.

Finally, one intact prophage of ~ 40.7 kb with a GC content of 44.8% was identified. This prophage sequence showed only 94% (query coverage 59%) and 91% (query coverage 21%) similarity with two previously described L. rhamnosus bacteriophages, Lrm1 (EU246945.1) and Lc-Nu (AY131267.2), respectively [36, 37]. However, nearly identical prophage sequences were detected in the genomes of L. rhamnosus CLS17 (NZ_YCS0100023.1), L. rhamnosus B1 (NZ_NXE01000011.1), and L. rhamnosus ASCC 3029 (NZ_MLJZ01000021.1). In our previous study, we described the release of phage particles by L. rhamnosus Pen [38]. Although the physiological role of continuous phage particle release in Lactobacillus is not evident, it may be beneficial for the bacterial host. It was previously suggested that such behaviour may enhance biofilm formation and promote horizontal gene transfer. On the other hand, by facilitating binding to human platelets, spontaneous prophage induction may also play an important role in bacterial virulence [39, 40]. Additionally, considering that such bacteriophages may be simultaneously released to the culture medium and that this phenomenon does not lead to complete lysis of the culture, microorganisms containing such phages may have high potential for application as safe food-grade

| COG class | Description | Count | % |
|-----------|-------------|-------|---|
| Information storage and processing | | | |
| [J] | Translation, ribosomal structure and biogenesis | 153 | 5.4 |
| [A] | RNA processing and modification | 0 | 0.0 |
| [K] | Transcription | 208 | 7.3 |
| [L] | Replication, recombination and repair | 135 | 4.8 |
| [B] | Chromatin structure and dynamics | 0 | 0.0 |
| Cellular processes and signaling | | | |
| [D] | Cell cycle control, cell division, chromosome partitioning | 34 | 1.2 |
| [Y] | Nuclear structure | 0 | 0.0 |
| [V] | Defense mechanisms | 101 | 3.6 |
| [T] | Signal transduction mechanisms | 97 | 3.4 |
| [M] | Cell wall/membrane/envelope biogenesis | 130 | 4.6 |
| [N] | Cell motility | 9 | 0.3 |
| [Z] | Cytoskeleton | 0 | 0.0 |
| [W] | Extracellular structures | 0 | 0.0 |
| [U] | Intracellular trafficking, secretion, and vesicular transport | 23 | 0.8 |
| [O] | Posttranslational modification, protein turnover, chaperones | 57 | 2.0 |
| Metabolism | | | |
| [C] | Energy production and conversion | 91 | 3.2 |
| [G] | Carbohydrate transport and metabolism | 339 | 12.0 |
| [E] | Amino acid transport and metabolism | 195 | 6.9 |
| [F] | Nucleotide transport and metabolism | 87 | 3.1 |
| [H] | Coenzyme transport and metabolism | 57 | 2.0 |
| [I] | Lipid transport and metabolism | 62 | 2.2 |
| [P] | Inorganic ion transport and metabolism | 103 | 3.6 |
| | Secondary metabolites biosynthesis, transport and catabolism | 27 | 1.0 |
| Poorly characterized | | | |
| [R] | General function prediction only | 303 | 10.7 |
| [S] | Function unknown | 211 | 7.5 |
vectors for presenting or producing various biological factors such as antigens, receptors, or virulence proteins [38, 41].

In conclusion, genomic analysis has confirmed the probiotic properties of *L. rhamnosus* Pen and may indicate new biotechnological applications of this industrially important strain. However, to understand the nature of the relationship between this probiotic bacterium and its phage, further studies for molecular and physiological characterisation of the released bacteriophage should be performed. We hope that future studies may further our knowledge of phage biology and shed new light on interactions between phages and bacteria.
Abbreviations
ORF: open reading frame; COG: cluster of orthologous groups; CRISPR: clustered regularly interspaced short palindromic repeats.

Authors’ contributions
Conceived and designed the experiments: PJ, MP, MK, ZT. Performed the experiments: PJ, MK, AG, JP, OK, MD. Analyzed the data: PJ, MK, EKJ. Contributed reagents/materials/analysis tools: PJ, MP, MK. Wrote the paper: PJ. All authors read and approved the final manuscript.

Author details
1 Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland. 2 Process and Development Department, Grupa Azoty Zakłady Azotowe “Puławy” S.A, Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland. 3 Genomed SA, Poncjuszewo 12, 02-971 Warsaw, Poland. 4 Laboratory of Electron Microscopy, Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The complete genome sequence of Lactobacillus rhamnosus Pen has been deposited in GenBank under Accession Number CP020464.1. L. rhamnosus Pen is available at the Institute of Biochemistry and Biophysics, The Polish Academy of Sciences under the Number 2593.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was financially supported by the National Science Centre, Poland [Grant Numbers UMO-2013/09/N/NZ9/01617 and UMO-2016/23/D/NZ9/02661].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 January 2018 Accepted: 20 February 2018 Published online: 22 February 2018

References
1. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human–mucus binding protein. Proc Natl Acad Sci USA. 2009;106:17193–8.
2. Foster LM, Tompkins TA, Dahl WJ. A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. Benef Microb. 2011;2:319–34.
3. Ruszczyński M, Radzikowski A, Szaferewska H. Clinical trial: Effectiveness of Lactobacillus rhamnosus (strains E/N, Oxy and Pen) in the prevention of antibiotic-associated diarrhoea in children. Aliment Pharmacol Ther. 2008;28:154–61.
4. Bardowski J, Görecki RK, Kryszeawska A, Szymkowska A. Characterisation of three probiotic strains of Lactobacillus rhamnosus present in Lakcid.
3rd probiotics probiotics new foods. Rome: ATTI Abstracts; 2005. p. 157. http://www.probiotics-prebiotics-newfood.com/pdf/3rd_Protibo_tics_Prebiotics.pdf.

5. Jarocki P, Podleśny M, Waśko A, Suda A, Targorański Z. Differentiation of three Lactobacillus rhamnosus strains (E2N, Ozy, and Pern) by SDS-PAGE and two-dimensional electrophoresis of surface-associated proteins. J Microbiol Biotechnol. 2010;20:558–62.

6. Polak-Berecka M, Waśko A, Paduch R, Skrzypek T, Stoka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek, vol. 106. Springer International Publishing; 2014. p. 751–62. http://link.springer.com/10.1007/s10482-014-0245-x. Accessed 20 Dec 2017.

7. Goderska K, Czarnecka M, Czarnecki Z. Survival rate of chosen Lactobacillus bacteria type in media of different pH. Electron J Polish Agric Univ. 2002;5:1–7.

8. Skrzyczek K, Gustaw W, Waśko A. Selected technological and probiotic characteristics of strains of Lactobacillus helveticus species. ZywionoŚĆ. Nauka. Technologia. Jakość. Food Sci Technol Qual. 2015;5:61–72. http://pztz.org/zywowy/1cyzas/2015,5(l02)/05_Skrzypczak.pdf.

9. Szwajgier D, Jakubczyk A. Production of extracellular ferulic acid esterases. Int J Food Sci Technol. 2013;48:1561–8. http://onlinelibrary.wiley.com/doi/10.1111/ijfs.12240/abstract.

10. Durmaz E, Miller MJ, Azcarate-Peril MA, Toon SP, Klaenhammer TR. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet. 2013;9:e1003683.

11. Jarocki P, Podleśny M, Pawelec J, Malinowska A, Kowalczyk S, Targoński Z. Differentiation of three Lactobacillus rhamnosus DSM isolates, their comparison with strain GG and their recognition by commercial probiotic products. Microbiol Res. 2017;205:88–98.

12. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. EGGNOG 4.5: a hierarchical orthology framework with improved annotation of proteins. Nucleic Acids Res. 2011;39:225–9.

13. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W. Prokaryotic genome annotation pipeline. NCBI Handbook. 2nd ed. National Center for Biotechnology Information (US); 2013. https://www.ncbi.nlm.nih.gov/books/NBK172480/. Accessed 20 Dec 2017.

14. Nissilä E, Douillard FP, Ribbera A, Kant R, Pietila TE, Järvinen HM, Messing M, et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS ONE. 2013;8:e75073.

15. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO Journal. 2011;17:10. http://journal.embnet. org/index.php/embnetjournal/article/view/200.

16. Bankevich A, Nurk S, Antipov D, Gurevich LV, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0221.

17. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufos LF, W. Prokaryotic genome annotation pipeline. NCBI Handbook. 2nd ed. National Center for Biotechnology Information (US); 2013. https://www.ncbi.nlm.nih.gov/books/NBK172480/. Accessed 20 Dec 2017.

18. Jarocki P, Podleśny M, Pawelec J, Malinowska A, Kowalczyk S, Targoński Z. Differentiation of three Lactobacillus rhamnosus DSM isolates, their comparison with strain GG and their recognition by commercial probiotic products. Microbiol Res. 2017;205:88–98.

19. van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuijpers OP. Genome sequence and characteristics of L. rhamnosus ATCC 53103. J Bacteriol. 2009;191:7630–1.

20. Toh H, Oshima K, Nakano A, Takahata M, Murakami M, Takaki T, et al. Genomic adaptation of the Lactobacillus casei group. PLoS ONE. 2013;8:e75073.

21. Arndt D, Grant JR, Marcu A, Sajied T, Pon A, Liang Y, et al. PHASTER: a new genome analysis tool that visualizes large genomic features and predicts CRISPR loci. Nucleic Acids Res. 2013;41:448–53.

22. Grassl L, Vergnau G, Proucer C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:52–7.

23. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrdpides NC, et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209.

24. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005;21:537–9.

25. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.