Mohammed Ali Makki Al Rubaee

1Animal Production Department, College of Agriculture, Wasit University, Iraq

Email: poultman76@yahoo.com

Abstract
This study was conducted in the Poultry house of the animal Production Department at the ministry of science. 360 day-old chicks [Ross-308] were randomly weighed and distributed to eighteen cages by six treatments, each treatment took three replicates, each replicate had 20 birds. herbs plants were added to the diets [Table 1] as follows: [T1 control], Turmeric 0.2% [T2], Turmeric 0.4% [T3], cubeb 0.2% [T4], cubeb 0.4% [T5], Turmeric 0.2% + cubeb 0.2% [T6]. Chicks were fed the experimental diet from 7-42 days of age. Data were collected and analyzed by the Completely Randomized Design, the means were compared using the Duncan’s multiple range test[15] by the statistical package for social sciences [16].

1.Introduction
The utilization of anti-biotics as feed additives related with capacity of maintaining residues in the meat and eggs of poultry, which had a harmful effects to man when consumed. Antibiotics have been restricted or banned in numerous nations due to these suspected residual effects [1]. The herbs and restorative plants have stood out because of their wide scope of potential beneficial impacts [2]. These alternatives should be good for animals and people, environment friendly [3]. Phytobiotics, mixes of plant source, are incorporated into poultry feed to support productivity through the improvement of digestibility, nutrient ingestion and end of pathogens in the animal gut [4]. Plants [for example turmeric and cubeb] have phenolics substances which have solid calming and hostile to oxidative properties and apply significant enemy of cancer-causing . Turmeric have bioactive substances such as curcumin, bisdemethoxycurcumin, demethoxycurcumin, which are disengaged from rhizomes of turmeric powder[5]. The substance of turmeric is curcumin [diferuloylmethane], which is insoluble in water and quite stable in the acidic pH of the stomach [6]. Curcumin , is yellowish turmeric colors and possess many pharmacological exercises including antioxidative,anticarcinogenic [7].

[8] demonstrated that the chickens fed supplemented turmeric eats less and had improved humoral immunity as evaluated by serum antibodies to Eimeria and enhanced cellular insusceptibility as estimated by concanavalin An induced spleen cell multiplication. Turmeric supplementation improved the cancer prevention agent limit of birds by increasing SOD levels and diminishing serum MDA concentrations [9]. cubeb is utilized as a flavor or as medicine in conventional medication for the treatment of stomach torment, asthma, looseness of the bowels, diarrhea, gonorrhea, and syphilis [10]; [11]. Studies have indicated that Piper cubeba has a few natural substances, which are generally referred to its lignans [12]; [13]. lignans of Piper cubeba have been recognized, which includes cubebin, hinokinin, and yatein are available in more noteworthy extent [4-5%] [14]. Disregarding the numerous studies on the natural properties of Piper cubeba, there are no reports assessing its effects in poultry nutrition. the current experiment studies the effect of feeding Cubeb [Piper Cubeba] AND Turmeric [Curcuma longa] on some blood traits , immune system and gut microbiota content in broiler chickens

2.Materials and methods
This study was conducted in the Poultry house of the animal Production Department at the ministry of science. 360 day-old chicks [Ross-308] were randomly weighed and distributed to eighteen cages by six treatments, each treatment took three replicates, each replicate had 20 birds. herbs plants were added to the diets [Table 1] as follows: [T1 control], Turmeric 0.2% [T2], Turmeric 0.4% [T3], cubeb 0.2% [T4], cubeb 0.4% [T5], Turmeric 0.2% + cubeb 0.2% [T6]. Chicks were fed the experimental diet from 7-42 days of age. Data were collected and analyzed by the Completely Randomized Design, the means were compared using the Duncan’s multiple range test[15] by the statistical package for social sciences [16].
Table 1. The composition and calculated analysis of experimental diets.

Ingredient	Starter	Finisher
Corn	52.10	54.00
Soybean meal	21.30	19.30
Vegetable oil	1.20	1.20
Rice bran	16.80	17.70
Fish meal	5.00	4.00
Calcium carbonate	0.80	1.00
Premix	0.80	1.00
Methionine	1.00	0.90
Lysine	1.00	0.90
Total	100	100

Total Nutrient Composition NRC [1994]

	ME [kcal/kg]	Crude Protein [%]	Crude Fat [%]	Crude Fiber [%]	Methionine [%]	Lysine [%]	Calcium [%]	Phosphor [%]
Starter	2900.71	20.32	5.04	6.22	1.26	1.55	1.24	0.72
Finisher	2902.62	19.02	5.09	6.31	1.14	1.42	1.36	0.68

Premixes contributed the following nutrients per kilogram of complete feed: vitamin A, 2,300 IU; vitamin D3, 400 IU; vitamin E,1.8 mg; vitamin B12, 3.5 mg; riboflavin, 1.4 mg; panthotenic acid, 2 mg; nicotinic acid, 7 mg; pyridoxine, 0.25 mg; folic acid, 0.15 mg; menadione, 0.3 mg; thiamin, 0.15 mg; manganese oxide, 35 mg; ferrous sulfate 35 mg; zinc oxide, 30 mg; copper sulfate, 60 mg; cobalt carbonate, 5 mg; potassium iodine, 0.6 mg; selenium vanadate,0.09 mg. Based on NRC [17].

2.1 Blood sampling

at the age of 42 days, three chicks from each treatment were injected intravenously in brachial vein with 0.2 ml of 10% suspension of sheep red blood cells to determine the activity of antibody. Blood samples were collected in heparin antiagglutination tubes as a substance for further blood physical characteristics study.

2.2 Hematological traits

The total red blood corpuscles [RBC’s] were counted using the double improved Neubauer chamber as described by [18]. Hemoglobin concentration [gm/dl] was determined using cyano- methemoglobin method [19]. haematocrit, packed cell volume, [PCV %] was measured by the metod described by [18]. Calculation of the absolute values or the erythrocyte indices, [MCV], mean corpuscular he- moglobin [MCH] and mean corpuscular hemoglobin concentration [MCHC] were calculated according to [20].Specific antibodies were estimated quantitatively by ELISA according to [21].

3. Result and Discussion

Results from table 1 and table 2 showed no differences between experimental treatments for broiler’s RBC’s, Hemoglobin %, PCV %, MCV , MCH, MCHC and broiler’s Lymphocytes %, H/L Ratio, Monocytes %, Eosinophils %, Basophiles % cells. In table 3 we can notice that the experimental diets had better immune response [table 4] compared to control diet, they recorded higher Cellular Immunity by 0.227, 0.223, 0.227, 0.232 For T3, T4, T5 and T6 respectively. The same trend was noticed for Newcastle immunity For T3, T4, T5 and T6 who recorded 2915.7, 2917.2, 2921.6, 2910.6 respectively. the treatments had higher relative weight of bursa of Fabricius by 0.121, 0.124, 0.125, 0.127 respectively. and Bursa of Fabricius index by 1.554, 1.848, 1.854, 1.860 respectively.
Table 2. Effect of cubeb and turmeric dietary inclusion on broiler's RBC's, Hemoglobin %, PCV%, MCV, MCH, MCHC.

Traits	T1	T2	T3	T4	T5	Significance
RBC's n x 106/μl liter	5.54	5.12	5.33	5.00	5.28	NS
Hemoglobin %	10.20	10.60	11.13	10.61	10.54	NS
PCV%	42.00	42.66	42.50	41.66	42.33	NS
MCV*10^-5 [fl]	65.67	65.22	64.69	65.89	66.88	NS
MCH*10^-5 [pg]	1.94	1.90	1.96	1.91	2.00	NS
MCHC [g/dl]	2.34	2.35	2.35	2.40	2.32	NS

[T1 control], Turmeric 0.2% [T2], Turmeric 0.4% [T3], cubeb 0.2% [T4], cubeb 0.4% [T5], Turmeric 0.2% + cubeb 0.2% [T6].

These results agree with those of [8], who found that the chicks fed turmeric had enhanced humoral and cellular immune responses. And with the results of [22], who recorded an increase in the antibody titer value against Newcastle disease for broilers fed black pepper, turmeric which might be due to the mutual effect of active substances in black pepper and turmeric.

Table 3. Effect of cubeb and turmeric dietary inclusion on broiler's Lymphocytes %, H/L Ratio, Monocytes %, Eosinophils %, Basophiles % cells.

traits	T1	T2	T3	T4	T5	Sig.
Lymphocytes %	53.06	52.94	53.99	56.30	58.49	NS
H/L Ratio	38.03	37.56	38.64	33.81	38.56	NS
Monocytes %	16.00	15.91	15.80	15.82	15.84	NS
Eosinophils %	8.81	8.88	8.84	8.90	8.77	NS
Basophiles %	9.87	9.76	9.00	9.76	9.16	NS

[T1 control], Turmeric 0.2% [T2], Turmeric 0.4% [T3], cubeb 0.2% [T4], cubeb 0.4% [T5], Turmeric 0.2% + cubeb 0.2% [T6].

[23] noticed the elevated antibody titer production which lead to better immune responses as recorded in this study might be due to turmeric supplementation to broiler diets, which might be caused as it has immunomodulatory action that could modulate the activation of B cells [24].

Our study has shown that the addition of cubeb pepper and turmeric has positive immune response results of chickens which is also in agreement with previous findings [25] with the use of cubeb and [26] with the use of black pepper and ginger in broiler chicken nutrition. [22] showed that the addition of black pepper and mixture of black pepper and turmeric powder to broiler chicken diet led to improved immune response of broilers. In support of this, [27] observed that the chickens immunized with an Eimeria profilin protein and fed diets supplemented with carvacrol, cinamaldehyde and capsicum oleoresin or turmeric oleoresin and capsicum oleoresin had increased body weights and antibody levels compared with immunized and infected chickens fed a non-supplemented diet. Additionally, [27] also observed that in vitro exposure of spleen cells to an extract of turmeric increased lymphocyte proliferation compared with the control group.

Table 4. Effect of cubeb and turmeric dietary inclusion on broiler's immune response

traits	T1	T2	T3	T4	T5	T6	Sig.
Cellular Immunity [DTH]	0.213b	0.214 b	0.227 a	0.223 a	0.227 a	0.232 a	**
Newcastle immunity [ELISA]	2719.6 c	2846.7 b	2915.7 a	2917.2 a	2921.6 a	2910.6 a	**
relative weight of bursa of Fabricius	0.065 c	0.098 b	0.121 a	0.124 a	0.125a	0.127 a	**
Bursa of Fabricius index	1.000d	1.508 c	1.554 a	1.848 a	1.854a	1.860 a	**

[T1 control], Turmeric 0.2% [T2], Turmeric 0.4% [T3], cubeb 0.2% [T4], cubeb 0.4% [T5], Turmeric 0.2% + cubeb 0.2% [T6].
Conclusion
Broiler's diet supplemented with Cubeb [Piper Cubebaa] and turmeric [Curcuma longa] had no effect on Hemoglobin %, PCV %, MCV ,MCH, MCHC and Lymphocytes %, H/L Ratio, Monocytes %, Eosinophils %, Basophiles % cells, but the immune system response to the dietary supplementation of Cubeb and turmeric was higher than the control. Conflict of Interest: None of the authors have any conflicts of interest to declare. Source of Funding: The research was performed independently, there is no funding, influence over study design, analyses, manuscript preparation, or scientific publication. Ethical Clearance: The project was approved by the local ethical committee [College of Agriculture, Wasit University].

References
[1] Kholfi A.E, 2018 Extract of Moringa oleifera Leaves Improves Feed Utilization of Lactating Nubian Goats, Small Ruminant Research 158, 69-75.
[2] Poddseked A. 2007 Natural antioxidants and antioxidant capacity of Brassica vegetables: a review; LWT - Food Sci. Technol 40:1–11
[3] Cabuk M. 2006 Effect of a dietary essential oil mixture on performance of laying hens in the summer season; Can Basar Biology.
[4] Al Rubaee, Mohammed A. M., et al.: Impact of cubeb [piper cubeba] and turmeric [curcuma longa] dietary inclusion on broiler's performance and carcass cuts. Plant Archives Vol. 20 No. 1, 2020 pp. 501-504.
[5] Nouzarian R., S.A. Tabeidian, G. Ghalamkariand M. Toghyani :2011. Effect of turmeric powder on performance, carcass traits, humoral immune responses, and serum metabolites in broiler chickens. J. Anim. Feed Sci.2020 , 20: 389 -400.
[6] Jurenka J.S., 2009 Anti-inflammatory properties of curcumin, a major constituent of curcuma longa: A review of preclinical and clinical research Altern. Med. Rev. 14 , pp. 141-153
[7] Nishiyama T., 2005 Curcuminoids and Sesquiterpenoids in Turmeric [Curcuma longa L.] Suppress an Increase in Blood Glucose Level in Type 2 Diabetic KK-A y Mice .Journal of Agricultural and Food Chemistry. 53(4):959-63.
[8] Kim Y.J.I. 2013 Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction. Agrid Food Chem. 20:6146:10911-8.
[9] Wang, X.Y., 2014 Unfolding and inactivation during thermal denaturation of an enzyme that exhibits phytase and acid hosphatase activities. Int J Biochem Cell B 36, 447 -459.
[10] Silva M.L.A., etal.: Evaluation of Piper cubeba extract, cubebin and its semisynthetic derivatives against oral pathogens. Phytotherapy Research. 2007,21:420 –422.
[11] Maistro E.L., 2011 Genotoxic effects of cubebin in somatic cells of mice. Journal Applied Toxicology:31:185–189.
[12] Medola J.F., 2007 Hinokinin causes antigenotoxicity but not genotoxicity in peripheral blood of Wistar rat. Food and Chemical Toxicology,45:638-642.
[13] Yam J., 2008 Piper cubeba targets multiple aspects of the androgen-signalling pathway. A potential phytotherapy against prostate cancer growth. Planta Medica ,74:33-38.
[14] Ekä Widjaya., 2017 Evaluation of Piper betle L. aqeous extract on Salmonella sp. isolates from small intestine of quails. Res. J. Med. Plants,11:62-67.
[15] Duncan, B.D. 1955. Multiple rang and Multiple F tests . Biometrics. 11 :1 – 24.
[16] SAS 2001 SAS / STAT Users Guide for Personal Computers Release 6.12. SAS. Institute Inc. Cary , NC, USA.
[17] National Research Council .. Nutrient Requirements of Poultry. 9th ed. National Academic Press, Westington ,DC. 1994.
[18] Dacie, J. V. 1991 Lewis, S. M.; : Practical Haematology. Churchill Livingstone. Edinburgh. Seventh edition,Pp 521 - 534.
[19] Abd El- Latif -.S.A., 2019 Effect of Dietary Onion, Garlic, Red Pepper and Anise as Natural Feed Additives on Some Hematological Studies of Japanese Quail Chicks. Acta Scientific Nutritional Health ,Volume 3 Issue 9 September.
[20] Konuk T., Practice of Physiology-1 “Pratik Fizyoloji-1”. Ankara: Ankara University Veteriner Fakultesi. A.U. Basimevi,314.
[21] Voller, A., 1975 A microplate enzyme immunoassay for toxoplasma antibody. Journal of clinicalpathology, 1976,29: 150-153.
[22] Abou-Elkhair R., 2014 Effects of black pepper [Piper nigrum], turmeric powder [Curcuma longa] and coriander seeds [Coriandrum sativum] and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian Australasian Journal of Animal Science, 27(6):847-54
[23] Emadi M., Keramanshahi H. 2007 Effect of turmeric rhizome powder on the activity of some blood enzymes in broiler chickens. International Journal of Poultry Science, 6: 48-51.
[24] Ganesh C J , Bharat B A. 2007 Spicing up of the immune system by curcumin. Journal of Clinical Immunology .27: 19 –35.
[25] Al-Kassie Galib., 2011 Use of Black pepper [Piper nigrum] as feed additive in broilers diet, 2221-1806.169-173.
[26] Laurentiz, R.S., 2015 Evaluation of the activities antimicrobacteriana da ligananadiidro cubebina extraída da Piper cubeba e de seus derivados semissintéticos. Revista Brasileira de Plantas Medicinais .17: 782-789
[27] Lee T. T., 2012Growth performance and antioxidant capacity of broilers supplemented with Echinacea purpurea L. in the diet. The Journal of Applied Poultry Research , 21 484-491.