ARM STRUCTURE IN ANEMIC SPIRAL GALAXIES

DEBRA MELOY ELMEGREEN,1 BRUCE G. ELMEGREEN,2 JAY A. FROGEL,3,4 PAUL B. ESKRIDGE,5 RICHARD W. POGGE,3 ANDREW GALLAGHER,4 AND JOEL IAM5,6

Received 2002 March 21; accepted 2002 May 2

ABSTRACT

Anemic galaxies have less prominent star formation than normal galaxies of the same Hubble type. Previous studies showed they are deficient in total atomic hydrogen but not in molecular hydrogen. Here we compare the combined surface densities of H I and H2 at mid-disk radii with the Kennicutt threshold for star formation. The anemic galaxies are below the threshold, which explains their lack of prominent star formation, but they are not much different than other early-type galaxies, which also tend to be below threshold. The spiral wave amplitudes of anemic and normal galaxies were also compared, using images in B and J passbands from the OSU Bright Spiral Galaxy Survey. Anemic galaxies have normal spiral wave properties too, with the same amplitudes and radial dependencies as other galaxies of the same arm class. Because of the lack of gas, spiral waves in early-type galaxies and anemics do not have a continuous supply of stars with low velocity dispersions to maintain a marginally stable disk. As a result, they are either short lived, evolving toward lenticulars and S0 types in only a few rotations at mid-disk, or they are driven by the asymmetries associated with gas removal in the cluster environment.

Key words: galaxies: clusters: individual (Virgo) — galaxies: evolution — galaxies: spiral — galaxies: structure

1. INTRODUCTION

Galaxies with smooth spiral arms in their main disks on the Palomar Sky Survey were classified as anemic by van den Bergh (1976). He described them as spirals that are gas-poor with characteristics intermediate between S0’s and normal spirals.

Anemics are most often in rich clusters, but they are also in the field. The field population of anemics may not be different than normal galaxies because nearly all Sa galaxies, even those in the field, were classified as anemic by van den Bergh (1976) as a result of their generally indistinct spiral arms (Rubin et al. 1978; Bothun & Sullivan 1980).

Anemics in clusters seem to result from gas stripping (van den Bergh 1976). Not all cluster spirals have H I deficiencies (Bothun 1982; Giovanelli & Haynes 1985), and even when they do there is not a good correlation between H I deficiency, red color, and anemic type (Kennicutt, Bothun, & Schommer 1984). In Virgo, where gas stripping is clear (Chamaraux, Balkowski, & Gérard 1980; Cayatte et al. 1994), the star formation rates and colors of stripped galaxies are about normal for their relative H I contents, and all three properties are similar to those of field galaxies with earlier Hubble types (Kennicutt 1983). This implies that stripping is a gradual process for a galaxy as a whole, mimicking in some respects normal galaxy evolution (Kennicutt 1983). Stripped galaxies that are anemics may be somewhat special, having radial orbits in the cluster (Vollmer et al. 2001a).

Gas stripping in clusters has a much more obvious signature in the distribution of the H I gas. Stripped galaxies in the centers of clusters have relatively small radii for their H I disks compared with their optical disk (Giovanelli & Haynes 1983; van Gorkom & Kotanyi 1985; Warmels 1988; Cayatte et al. 1994; Bravo-Alfaro et al. 2000), and, where the H I remains, the H I surface density can be relatively low too (Kenney & Young 1989). Anemics have the largest H I anomalies, with the smallest relative H I radii and the largest inner disk H I deficiencies (Cayatte et al. 1994; Bravo-Alfaro et al. 2001).

Gas stripping in H I hardly affects the molecular mass and surface density, however (Kenney & Young 1989; Casoli et al. 1991; Boselli et al. 1997; Vollmer et al. 2001b). The H2 mass may even be enhanced relative to H I in the inner regions, as if the increased pressure associated with stripping produces denser clouds (Kenney & Young 1989; Cayatte et al. 1994). This stripping pressure can also increase the star formation rates along the leading edges of galaxies if stripped gas falls back (Vollmer et al. 2001b), and it can make the inner CO disk asymmetric (Kenney et al. 1990; Hidaka & Sofue 2002).

Here we examine the surface densities at mid-radii for the total atomic and molecular gas in Virgo galaxies and other galaxies and compare them with the surface density threshold for star formation found by Kennicutt (1989). We find that the total surface densities are below the threshold in the main disks of anemics, as is often the case for early-type galaxies (Caldwell et al. 1991), but they exceed the threshold in later-type galaxies. This threshold difference at mid-disk radius explains the low star formation activity in anemic galaxies.

The spiral arm strength in anemics is examined next using blue and near-infrared images from the OSU Bright Spiral
Galaxy Survey. We find that anemics have normal arm/interarm contrasts for their spiral arm classes (grand design vs. flocculent). The presence of normal stellar density waves in galaxies with low gas densities is unusual because gas is a strong amplifier for stellar wave instabilities (Bertin & Romeo 1988). Either the stripping process and the associated gas asymmetries (Kenney et al. 1990) are driving the stellar spirals, or the stripping took place very recently.

2. GAS SURFACE DENSITIES IN ANEMIC AND NORMAL GALAXIES

Anemic galaxies have normal total CO masses for their Hubble types (Kenney & Young 1989). Previous studies did not compare the H$_2$ surface densities in anemics and normal galaxies, nor did they compare the total atomic and molecular surface densities in anemic galaxies with the Kennicutt (1989) threshold for star formation.

The bottom panel in Figure 1 shows all of the detected H$_2$ surface densities, Σ, in the study by Rownd & Young (1999). Multiple detections in the same galaxy are plotted as multiple points, and nondetections are plotted at the bottom of the panel, where $\log \Sigma = -1$. The anemic nature of the galaxies was determined from the classifications in van den Bergh (1976) and van den Bergh, Pierce, & Tully (1990). Anemic galaxies are plotted with open circles in the figure (NGC 3718, 4293, 4450, 4522, 4548, 4569, 4579, 4651, 4689, 4710, 4826), and normal galaxies are plotted with dots. The abscissa is the morphological T type in the Third Reference Catalogue of Galaxies (de Vaucouleurs et al. 1991, hereafter RC3); $T = 1$ is approximately equivalent to Hubble type Sa, $T = 8$ is equivalent to Sd. The conversion factor from CO to H$_2$ varies with Hubble type (Boselli, Lequeux, & Gavazzi 2002), as do fractional gas masses and other gas properties, so we plot all our results as a function of T type to remove these effects from our discussion. The figures indicate that there is no significant difference in the point-by-point distribution of H$_2$ surface density for anemics and normal galaxies. This is consistent with the lack of any such difference in the total H$_2$ mass and the average H$_2$ surface density (e.g., Kenney & Young 1989).

The top panel of Figure 1 shows the average central H$_i$ surface density versus the T type for all of the galaxies in Warmels (1988) and Cayatte et al. (1994). This average is the integral of the radius times the H$_i$ surface density out to half of the optical radius ($D_0/4$ for corrected optical diameter D_0 in the RC3), divided by the integral of the radius out to this same distance (as tabulated by Cayatte et al. for their galaxies and calculated here from data in Warmels). The average surface density inside half the optical radius is usually representative of the inner disk surface density because the intensity of H$_i$ is relatively constant there. There is a well-known correlation between average H$_i$ surface density and morphological type, with later types having higher H$_i$ surface densities, and there is another well-known correlation with anemics having lower mid-disk surface densities than normal galaxies within a T type (Kenney & Young 1989; Cayatte et al. 1994). The anemics in this figure are NGC 4450, 4548, 4569, 4579, 4651, and 4689.

The sum of the H$_i$ and H$_2$ surface densities determines the star formation properties in a galaxy. Kennicutt (1989) and Martin & Kennicutt (2001) found that stars tend to form where the summed surface density Σ_{tot} exceeds about 0.7 times the Toomre (1964) critical surface density $\Sigma_{crit}=kc/(3.36G)$ for an assumed velocity dispersion of $c = 6 \text{ km s}^{-1}$ and an epicyclic frequency κ derived from the rotation curve. To determine Σ_{tot} for this study, we used the average H$_i$ surface density inside $D_0/4$, as plotted in Figure 1, and the H$_2$ surface density at the radius $D_0/4$ from Rownd & Young (1999). We determined κ at $D_0/4$ from the H$_i$ rotation curves in Guhathakurta et al. (1988). There are five anemics in this overlapping sample, NGC 4548, 4550, 4569, 4579, and 4689.

Figure 2 suggests that anemics are not significantly different from other early-type galaxies, which all have a low ratio Σ/Σ_{crit}, as found by Caldwell et al. (1991). The low value of this ratio for anemics and other early types is the result of a moderately low H$_2$ surface density compared with that in later-type spirals, a very low H$_i$ surface density, and a high κ in the early types, which comes from the relatively massive bulge.

Anemics have unusually weak star formation in their main disks, like other very early type spiral galaxies, because gravitational instabilities and other processes that normally promote star formation are not possible in these galaxies. This is true even though their total molecular masses are

![Figure 1](image-url)
normal for their Hubble types. Part of the reason for the normal molecular masses in anemics is their higher molecular fractions at mid-disk radii (Kennedy & Young 1989; Casoli et al. 1991). The motion of the anemics through the intergalactic medium causes higher disk pressures even in parts of the disk where it does not strip the gas away. Higher pressures are generally associated with greater molecular fractions as a result of increased cloud densities and self-shielding (e.g., Hidaka & Sofue 2002). Most of the extra molecular material is probably in the form of diffuse molecular clouds, which do not form stars.

Some anemics have active star formation in their inner regions, typically within 0.2R25. For example, NGC 4548, a strongly barred anemic galaxy, has star formation knots in the spiral arms at the ends of the bar. NGC 4580 and NGC 4689 have circumnuclear rings of star formation and smooth arms elsewhere. We have not checked whether the gas surface density exceeds the critical threshold in these inner regions. Our results apply only to the mid-disk positions, where H I and CO data are available.

Guiderdoni (1987) originally suggested that surface density might provide a threshold for star formation, based on the H I surface densities in anemics. He considered an absolute threshold, rather than a dynamical one that varies with σ, and did not include H2, but he was essentially correct in his conclusions about star formation.

3. SPIRAL ARM STRENGTHS IN ANEMIC AND NORMAL GALAXIES

3.1. Observations

Anemic galaxies have spiral arms, so the lack of star formation could in principle be related also to a low spiral arm strength. To check this, we measured arm-interarm contrasts in B and J bands for all the galaxies in Virgo that were observed as part of the Ohio State University Bright Spiral Galaxy Survey (Frogel, Quillen, & Pogge 1996; Eskridge et al. 2002). For those galaxies in which J-band data had poor flat fields or were unavailable, K- or H-band data were substituted. The images were obtained with the 1.8 m telescope at Lowell Observatory and the 1.5 m telescope at Cerro Tololo Inter-American Observatory, using the Ohio State Infrared Imager/Spectrometer (OSIRIS) and the Cerro Tololo Infrared Imager (CIRIM). The plate scale is between 1.05 and 1.055 arcsec in J band for the different instrument/telescope combinations. NIR passbands are particularly useful for highlighting the underlying old stellar populations, with average ages in excess of 1010 yr (see review in Frogel et al. 1996), whereas blue light is dominated by contributions from younger stellar populations.

Our sample consists of 30 galaxies: 12 anemics (classified by van den Bergh 1976) and 18 normal spirals, selected to have a wide variety of Hubble types, arm classes, and gas content. The OSU survey is magnitude-limited, and all anemic galaxies in that survey are included here. All galaxies with types S0 through Sb in our sample are barred or ovaly distorted, while later types include nonbarred galaxies. The properties of the observed galaxies are listed in Table 1 (anemics) and Table 2 (normal galaxies) with their NGC designation, morphological T type, optical arm class (from Elmegreen & Elmegreen 1987, where “F” is flocculent, “G” is grand design, and “M” is multiple arm), radius R25 (where the surface brightness drops to 25 mag arcsec−2) in arcseconds, arm-interarm magnitude contrast Δm in B and J bands, described below, and H I index (from RC3). High values of the H I index correspond to an H I deficiency. The images were flat-fielded and sky-subtracted following procedures described by Berlind et al. (1997). Combined images were deprojected by using the position angles and inclinations listed in the RC3. Because this study considers only relative magnitudes, absolute calibrations were not necessary. A polar plot of (r, θ), for distance r from the galaxy center and azimuthal angle θ around the galaxy, was made of each galaxy using a script written in IRAF. Azimuthal intensity cuts (corresponding to horizontal cuts on the r, θ plots) 3 pixels wide in radius were taken using the IRAF task PVECTOR. These cuts were repeated for several different radial distances from the center out to the optical edge of the galaxy at ~R25, in steps of 10 pixels in radius (approximately every 0.05 R25). From these profiles, the arm and interarm intensities and their magnitude differences (arm-
interarm contrasts) were measured. The results for each anemic galaxy were then compared with the results of normal galaxies of the same or similar type, considering also their arm class and H\textsc{i} index.

3.2. Arm-Interarm Contrasts

As described in the previous section, the arm-interarm contrasts were measured for this sample of galaxies at regularly spaced radii throughout the disk. These contrasts were found to have the usual properties, namely, they are larger in grand design galaxies than in flocculent galaxies, they increase with radius for nonbarred galaxies and decrease with radius outside the bar for barred galaxies, and the arms are bluer in flocculent galaxies than in grand design galaxies. In addition, the blue arm-interarm contrasts fluctuate with radius much more in normal galaxies than in anemics, which is an obvious result of the smoother arms in anemics. The radial fluctuations of blue arm-interarm contrast for grand design normal galaxies is \(\Delta m_B^{\text{B}} \approx 0.7 \) mag, while in grand design anemic galaxies it is \(\Delta m_B^{\text{B}} \approx 0.1 \) mag.

The average arm-interarm \(B \)-band and \(J \)-band magnitude contrasts are shown as a function of galaxy \(T \) type in Figure 3, separated into different panels by color (top is blue, and bottom is \(J \)) and arm class (left is grand design or multiple arm, and right is flocculent). Normal galaxies have solid symbols and anemic galaxies have open symbols. The grand design and multiple arm galaxies of all Hubble types, whether anemic or normal, have higher average arm-interarm contrasts than the flocculent galaxies. For either arm class, there is no distinction in arm-interarm contrast between anemic and normal galaxies. Rubin et al. (1978) also noted that the arm-interarm contrast in an anemic galaxy looked normal.

This result implies that density waves in anemic galaxies are as strong as density waves in normal galaxies. Anemic structure is therefore the result of a low \(\Sigma_{\text{tot}} / \Sigma_{\text{crit}} \).

4. DISCUSSION AND CONCLUSIONS

Anemic galaxies are spiral galaxies of normal size that have lost gas over time from a combination of internal star formation and tidal stripping. They have normal spiral den-
sity wave properties, but those in clusters have truncated outer H ii disks and low total gas surface densities. Their main disk spiral arms are smoother than usual because of a lack of giant H ii regions and star complexes, but they have approximately normal star formation rates and colors for their gas content, i.e., normal star formation efficiencies (as determined from data in Rownd & Young 1999).

The lack of star formation in anemics seems to be the result of their low \(\Sigma/\Sigma_{\text{crit}} \). This is the first check on the utility of this star formation criterion that does not rely on a comparison between galaxies of intrinsically different types or between star formation regions with very different radii in a galaxy. For example, other studies of \(\Sigma_{\text{tot}}/\Sigma_{\text{crit}} \) emphasized the outer parts of late-type spirals (Kennicutt 1989; Martin & Kennicutt 2001) or nuclear starburst regions (Shlosman & Begelman 1989; Elmegreen 1994), or they were for elliptical galaxies (Vader & Vigroux 1991) or low surface brightness galaxies (van der Hulst et al. 1993). Here we see the effects of decreasing \(\Sigma/\Sigma_{\text{crit}} \) over time throughout the whole disk in an otherwise normal galaxy. When \(\Sigma/\Sigma_{\text{crit}} \) drops below 0.7 as a result of gas stripping or other gas removal processes, the star formation rate per unit area drops and the giant H ii regions and OB associations disappear.

The future of anemic galaxies may be understood from numerical models of disk galaxies that have no source of cooling for the stellar population and no continuous supply of fresh stars with low velocity dispersions. In these models (Sellwood & Carlberg 1984; Fuchs & von Linden 1998), the stellar disk rapidly heats up and the spiral waves stop. Anemics are therefore evolving toward lenticulars or S0’s as stellar disk rapidly heats up and the spiral waves stop.

REFERENCES

Berlind, A. A., Quillen, A. C., Pogge, R. W., & Sellgren, K. 1997, AJ, 114, 107
Bertin, G., & Romeo, A. B. 1988, A&A, 195, 105
Bowen, A., Gavazzi, G., Combes, F., Lequeux, J., & Casoli, F. 1994, A&A, 285, 69
Boselli, A., Gavazzi, G., Lequeux, J., Buat, V., Casoli, F., Dicke, J., & Donas, J. 1997, A&A, 327, 522
Boselli, A., Lequeux, J., & Gavazzi, G. 2002, A&A, 384, 33
Bothun, G. D. 1982, PASP, 94, 774
Bothun, G., & Sullivan, W. 1980, ApJ, 242, 903
Bravo-Alfaro, H., Cayatte, V., van Gorkom, J. H., & Balkowski, C. 2000, AJ, 119, 580
———. 2001, A&A, 379, 347
Bravo-Alfaro, H., Szomoru, A., Cayatte, V., Balkowski, C., & Sancisi, R. 1997, A&A, 126, 537
Calderwood, N., Kennicutt, R., Phillips, A. C. & Schommer, R. A. 1991, ApJ, 370, 526
Casoli, F., Boissé, P., Combes, F., & Dupraz, C. 1991, A&A, 249, 359
Cayatte, V., Kotanyi, C., Balkowski, C., & van Gorkom, J. 1994, AJ, 107, 1003
Chamaraux, P., Balkowski, C., & Gerard, E. 1980, A&A, 83, 38
de Vaucouleurs G., de Vaucouleurs, A., Corwin, Jr., H., Buta, R., Paturel, F., & Fouqué, P. 1991, Third Reference Catalogue of Bright Galaxies, (New York: Springer) (RC3)
Elmegreen, B. G. 1994, ApJ, 425, L73
Elmegreen, D., & Elmegreen, B. 1987, ApJ, 314, 3
Eskridge, P. B., et al. 2002, ApJS, submitted
Frogel, J. A., Quillen, A. C., & Pogge, R. W. 1996, in New Extragalactic Perspectives in the New South Africa, ed. D. L. Block & J. M. Greenberg (Dordrecht: Kluwer), 65
Fuchs, B., & von Linden, S. 1990, MNRAS, 294, 513
Giovanelli, R., & Haynes, M. 1983, AJ, 88, 881
Giovanelli, R., & Haynes, M. 1985, ApJ, 292, 404
Guhathakurta, P., van Gorkom, J. J., Kotanyi, C. G., & Balkowski, C. 1988, AJ, 96, 851
Guiderdoni, B. 1987, A&A, 172, 27
Hidaka, M., & Sofue, Y. 2002, PASJ, 54, 33
Jog, C. J., & Solomon, P. M. 1984, ApJ, 276, 114
Kenney, J. D. P., & Young, J. S. 1989, ApJ, 344, 171
Kenney, J. D. P., Young, J. S., Hasegawa, T., & Nakai, N. 1990, ApJ, 353, 460
Kennicutt, Jr., R. 1983, AJ, 88, 483
———. 1989, ApJ, 344, 685
Kennicutt, R. C., Jr., Bothun, G. D., & Schommer, R. A. 1984, AJ, 89, 1279
Martin, C. L., & Kennicutt, R. C., Jr. 2001, ApJ, 555, 301
Rownd, B., & Young, J. 1999, AJ, 118, 670
Rubin, V., Ford, W., Strom, K., Strom, S., & Romanishin, W. 1978, ApJ, 224, 782
Sellwood, J. A., & Carlberg, R. G. 1984, ApJ, 282, 61
Shlosman, I., & Begelman, M. C. 1989, ApJ, 341, 685
Toomre, A. 1964, ApJ, 139, 1217
Vader, J. P., & Vigroux, L. 1991, A&A, 246, 32
van den Bergh, S. 1976, ApJ, 206, 883
van den Bergh S., Pierce M., & Tully, R. 1990, ApJ, 359, 4
van der Hulst, J. M., Skillman, E. D., Smith, T. R., Bothun, G. D., McLaugh, S. S., & de Blok, W. J. G. 1993, AJ, 106, 548
van Gorkom, J. J., & Kotanyi, C. 1985, in ESOS Workshop on the Virgo Cluster of Galaxies (Garching: ESO), 61
Vollmer, B., Cayatte, V., Balkowski, C., Boselli, A., & Duschl, W. 2001a, Ap&SS, 276, 459
Vollmer, B., Cayatte, V., Balkowski, C., & Duschl, W. 2001b, ApJ, 561, 708
Warmels, R. H. 1988, A&A, 21, 724
