REVIEW

Medicinal plants with hepatoprotective potentials against carbon tetrachloride-induced toxicity: a review

Chidiebere Emmanuel Ugwu* and Stephen Monday Suru

Abstract
Background: Carbon tetrachloride (CCl₄) is a well-characterized hepatotoxic agent. With rising cases of liver diseases, the identification, assessment, and development of hepatoprotective agents from plants source has become imperative.

Main body: With arrays of literature on plants with hepatoprotective potentials, this review sourced published literatures between 1998 and 2020 and systematically highlighted about 92 medicinal plants that have been reported to protect against CCl₄-induced liver injury in animal models. The results show that herbal plants provide protection for the liver against CCl₄ by downregulation of the liver marker enzymes and activation of antioxidant capacity of the liver cells with the restoration of liver architecture. We also provided the traditional and accompanying pharmacological uses of the plants. A variety of phytochemicals mostly flavonoids and polyphenols compounds were suggested to offer protection against liver injuries.

Conclusion: It can be concluded that there are a variety of phytochemicals in plant products with hepatoprotective activity against CCl₄-induced toxicity in animal models.

Keywords: Carbon tetrachloride, Medicinal plants, Hepatoprotective, Silymarin, Folkloric medicine

Background
The liver being an important organ is often exposed to array of threats [1]. Injury to the liver can lead to deterioration of its functions and may culminate in organ failure [2]. The likely risk factors for the development of the liver diseases have been suggested to include pathogenic microorganisms and viruses, hepatotoxins, overdose and duration of drugs, obesity and malnutrition, alcohol, autoimmune disorders, type-2 diabetes, and genetic factors [1]. The diseases of the liver are of public health concern because orthodox remedies for liver diseases produce limited results with attendant side effects. As such, utilization of complementary and alternative herbal medicine has attracted research interest for novel plausible hepatoprotective agents capable of ameliorating or reversing liver injury with little side effects [3, 4]. Over the years, this search has gained impetus with many studies focusing on hepatoprotective potentials of plant drugs.

Carbon tetrachloride (CCl₄) is a known hepatotoxicant in humans and animal models [5]. It has been successfully used in hepatotoxicity research as a model and to appraise hepatoprotective agents [6, 7]. With reports on the rise of liver diseases and numerous literature reports on plants with potential hepatoprotective activity, this review highlighted the mechanism of CCl₄ toxicity, the significance, effectiveness, and underlying mechanisms of herbal plant extracts on CCl₄-induced toxicity in experimental animal models.
Main text

Insight on the mechanism of carbon tetrachloride hepatotoxicity

Prior to the Montreal Protocol, CCl₄ was formerly and widely used as a fire suppressant, as a precursor to refrigerants, propellants for aerosol cans, as a cleaning agent, a widely used solvent in organic chemistry, as a pesticide, and anesthetics [8, 9]. However, it is rarely used today because of adverse health effects and environmental safety concerns. Symptoms associated with acute inhalation of low-medium doses include headache, weakness, lethargy/general anesthesia, nausea, vomiting, and respiratory arrest. For medium to high oral exposure, the liver is known to be the primary site of CCl₄-induced toxicity beginning with acute but progressive centrilobular injury that may culminate in cell death [10].

Experimental deductions

Due to the complex nature of CCl₄-induced liver damage, there have emerged several independent mechanisms to explain each of the facets of the associated changes. The interrelationship among diverse mechanisms proposed for each of these associated changes has not been well-established/outlined. This is primarily because early and later changes associated with the hepatotoxic development have been mixed up. As a result, a harmonized understanding of the intricate mechanisms involved in hepatic damage has become partly elusive. However, this has not obscured the following experimental deductions (Fig. 1):

- Changes in endoplasmic reticulum (ER) function due to decrease in glucose-6 phosphatase [11], which may not be unconnected with CCl₄-induced glycogen depletion and attendant protection from carbohydrate-rich diets [12, 13]. Besides, CCl₄-induced disruption and disassociation of polyribosomes from ER alters its anabolic function as manifested in decreased incorporation of amino acids into proteins such as albumin and fibrinogen [14]. Additionally, CCl₄-induced hypomethylation of 2′-O-ribose moieties in rRNA might have resulted from transient increase in cytosolic Ca²⁺. This increase may activate the selective destruction of rRNA methylases via

![Fig. 1 Hepatotoxic mechanism of CCl₄](image-url)
the action of demethylases or proteases. Overall, the protein synthetic function of ER in the centrilobular region may be hampered with an attendant defects in the ability of the liver to effectively respond to additional insults [10].

- Calcium homeostasis underlies some aspects of CCl₄ hepatotoxicity (plasma membrane blebbing and fatty accumulation- steatosis); CCl₄ may elicit dramatic redistribution of intracellular Ca²⁺ stores, albeit no total cellular change [10]. Calcium ion (Ca²⁺) homeostasis is maintained by 3 mechanisms: (i) Ca²⁺ extrusion by plasma membrane ATPase, (ii) Ca²⁺ sequestration by mitochondria, and (iii) Ca²⁺ sequestration by liver ER. So, CCl₄ may cause decreased Ca²⁺ sequestration by ER and mitochondria, decreased extrusion by plasma membrane ATPase, as well as blockage of gap junctional intercellular communication may favor increase cytosolic Ca²⁺. An ATP-dependent Ca²⁺ sequestration by hepatic ER has been shown to be disrupted by CCl₄ [15]. Endoplasmic reticulum membrane permeability may also be altered, being one indicator of impending cell death [16].

- Rapid destruction/decrease in cytochrome P₄₅₀ in centrilobular regions (suggesting that CCl₄ was metabolized by ER mixed-function oxidase system), which is orchestrated by low levels of reduced glutathione (GSH) and low oxygen tension. In turn, low level oxygen tension may limit competition between O₂ and CCl₄ for cytochrome P₄₅₀ binding (i.e., CCl₄ may readily bind to cytochrome P₄₅₀).

- Metabolic products [trichloromethyl (CCl₃⁺) or peroxoxytrichloromethyl (CCl₃-OO⁺) free radical] elicit damage: lipid peroxidation of vulnerable unsaturated fatty acids in membrane phospholipids and destruction of haem moiety of cytochrome P₄₅₀.

- Blockage of gap junctional communication by CCl₄ thereby shutting down intercellular communication.

- Changes in mitochondrial function: disruption of oxidative phosphorylation due partly to chelation of calcium [17].

Making sense out of experimental deductions

The hepatic biotransformation of CCl₄ primarily involves metabolic activation to transient reactive intermediates. Under low oxygen partial pressure, cytochrome P₄₅₀ catalyzes the reductive de-halogenation of CCl₄ resulting in predominant formation of CCl₃⁻ and CHCl⁻ radicals [18, 19]. These reactive intermediates may bind covalently to cellular components (membranes, microsomes) and impinge on mostly lipid metabolism (increased synthesis, decreased transport out of the hepatocyte) thereby culminating in hepatic steatosis (fatty liver) [20, 21].

Dianzani [22] reported that covalent modification of lipoproteins occurs prior to their decreased transport out of hepatocytes. Intracellular maturation of lipoproteins in the Golgi apparatus is dependent on galactosylation which is catalyzed by glucosyl- and galactosyltransferases [23]. The CCl₄-induced damage of Golgi apparatus and eventual reduction in the activities of these enzymes may explain the observed decrease in lipoprotein secretion associated with CCl₄ intoxication. Thus, CCl₄-induced inhibition of lipoprotein secretion, and its attendant hepatic steatosis mainly result from covalent binding of CCl₄ metabolites to cell constituents, but not due to lipid peroxidation.

Under high oxygen partial pressure, however, CCl₃⁺ may interact with oxygen to form CCl₃-OO⁺. The peroxo radicals may elicit the peroxidation of unsaturated fatty acids especially in membrane phospholipids of intracellular and plasma membranes [24]. Some of the lipid peroxidative products may inflict further damage leading to increased membrane permeability and a comprehensive loss in membrane integrity [25]. Thus, both covalent binding of CCl₄ metabolites and lipid peroxidation work in tandem to elicit the hallmark of damage seen in CCl₄-induced hepatotoxicity.

The consequences of loss of membrane integrity are enormous and may lead to cascade of events culminating in liver necrosis. These events may include disturbed Ca²⁺ homeostasis/dramatic redistribution of Ca²⁺ in hepatocytes, leakage/efflux of K⁺, and influx of Na⁺ [10, 26].

Beside the peroxidative action, CCl₄-derived free radicals and their attendant oxidative stress have been shown to enhance NF-kB expression, which in turn initiates the synthesis of cytotoxic cytokines, which may be partly responsible for liver injury [27]. Tumor necrosis alpha (TNF-α) has been implicated in CCl₄-induced hepatocellular damage [28]. At lower doses of CCl₄, inflammatory responses prevail. Healthy hepatocytes are insensitive to tissue necrosis factor alpha (TNF-α) action, but become sensitive once protein and RNA synthesis are inhibited [29].

Summarily, CCl₄ hepatotoxicity may be due to a combination of factors such as the thorough inhibition of protein synthesis, the severe derailment of intracellular Ca²⁺ sequestration, and the effect on membrane integrity. These factors may result and progress through a series of steps that contribute to various extents to the ultimate damage: reductive dehalogenation, covalent binding of resulting radicals; inhibition of protein synthesis (in particular, apolipoprotein synthesis), assembly, packaging and release of VLDL and HDL, fat accumulation;
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
1	Abelmoschus manihot (L) medic	Malvaceae	Flower, ethanol	Treatment of jaundice and hepatitis, control of fertility, easing of child birth and stimulation of lactation.	Anti-inflammatory, antioxidant, antibacterial, anticonvulsant, cardioprotective, and neuroprotective actions	[32]
2	Acacia mellifera	Fabaceae	Leaves, acetate/aqueous/n-butanol	Treatment of cold, malaria, syphilis, and bowel problems.	Antimalarial, antimicrobial, antiviral activity against HIV-1, and herpes simplex virus	[33]
3	Aegle marmelos correa ex Roxb	Rutaceae	Pulp/seed, aqueous	Treatment of jaundice, hepatitis, piles, tuberculosis and antidiarrheal. Used as stomach tonic.	Antidiarrhoeal, anti-inflammatory, and wound healing effects	[34]
4	Aegle marmelos correa ex Roxb with piperine	Rutaceae	Leaves, 70% ethanol	Used as astringent, laxative and expectorant. Treatment of inflammation, cataract, diabetes, diarrhea, and asthma.	Antifungal, ulcer healing, anti-inflammatory, antidiabetic, diuretic, anti-cancer, and antioxidant properties	[35]
5	Alangium salviifolium	Alangiacea	Stem bark, methanol	Treatment of rheumatism, cancer and hemorrhoids. Root used to manage skin diseases, diarrhea, fever, carminative, and purgative expectorant.	Antiarthritic, androgenic, anthelmintic, anti-diabetic, hepatoprotective and anti-inflammatory effects	[36]
6	Alhagi maurorum (camel thorn)	Fabaceae	Leaves, methanol	As a remedy for rheumatic pains, bilharziasis, liver disorders, and urinary tract infection.	Antioxidant, antidiarrheal, and antiulcerogenic activities	[37]
7	Alhagi maurorum Medikus	Fabaceae	Aerial parts, 90% ethanol	Treatment of liver problems, migraine and cataract. As tonic, digestive, antipyretic, laxative, diuretic, and aphrodisiac	Antiulcer, antibacterial, antioxidant, anti-inflammatory, analgesic, antipyretic, antifungal, and hepatoprotective effects	[38]
8	Allium sativum (Single clove garlic)	Amaryllidaceae	Garlic bulbs, 70% ethanol	Used as nutraceuticals	Antidiabetic, anticancer, antioxidant, immune modulation activities, and lowering of blood pressure.	[39]
9	Amaranthus spinosus	Amaranthaceae	Whole plant, 50% ethanol	Prevent swelling around the stomach. Used in the treatment of jaundice	Anti-inflammatory, antimalarial, antibacterial, antidiuretic, antiviral, immunomodulatory, and antioxidant effects	[40]
10	Amorphophallus campanulatus (Roxb)	Araceae	Tubers, aqueous	Treatment of piles, abdominal pain, tumors, enlargement of spleen, asthma, and rheumatism	Antibacterial, antifungal, and cytotoxic activities	[41]
11	Argyemone Mexicana L	Papaveraceae	Crude powder leaf	Treatment of malaria, fevers, abdominal pains, and jaundice	Antibacterial, anti-inflammatory, wound-healing, antifertility, anti-stress, anti-allergic, cytopoietic, antidiabetic, and antihypertensive activities	[42]
12	Artemisia iwayomogi	Compositae	Aqueous	Treatment of hepatic disorders	Antioxidant, cytoprotection, choleretic, hepatoprotection, antimicrobial, anti-inflammatory and anti-fibrotic effects	[43]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	------------------------------	--------------	-------------------	---	--	-----------
13	Bauhinia variegata	Leguminasea.	Stem bark, alcohol	Treatment of bronchitis, leprosy, diarrhea, piles, and tumor. Used as astringent	Hypoglycaemic, haemagglutinating, antibacterial, and antifungal effects	[44]
14	Bougainvillea spectabilis	Nyctaginaceae	Esceletin	Treatment of liver damage, cough, pertussis, and bronchitis	Antimicrobial, anticancer, anti-diabetic, anti-inflammatory, antihyperlipidaemic, antioxidant, antinociception, and antihypertensive activities	[45]
15	Bryonia dioica Jacq	Cucurbitaceae	Leaves, 80% ethanol	Treatment of various inflammatory conditions, bronchial complaints, asthma, intestinal ulcer, hypertension, and arthritis. Applied as a rubefacient to muscular pains. Treatment of fever and bronchitis	Antinociceptive, antimicrobial, antioxidant, anti-inflammatory, cytototoxic, and hepatoprotective	[46]
16	Bryocarpus cocCineus Schum	Conneraiceae	Leaves, aqueous	Mouth and skin sores, swellings, tumors, earache, muscular pain, and jaundice	Antioxidant and hepatoprotective	[47]
17	Cajanus cajan	Leguminosae.	Aerial, 70% ethanol	Jaundice and stomach disorders	Anthelmintic, antioxidant and protection against alcohol-induced liver damage	[48]
18	Calotropis gigantean R.Br	Asclepiadaceae	Stem, 50% ethanol	In tooth ache and ear ache, sprain, anxiety, pain, epilepsy, and in mental disorders	Antidiarreheal, analgesic, CNS activity, and pregnancy interceptive properties	[49]
19	Camellia nitidissima Chi	Theaceae	Leaves, 10 % ethanol	Treatment of dysentery, hypertension, diarrhea, faucitis, hepatitis, jaundice, liver cirrhosis and sores	Leaves show antioxidative, antitumor, antibacterial, anti-inflammatory, hypoglycaemic, hypolipidemic, antidepressant, antiallergic, and immunomodulatory activities	[1]
20	Canna indica L	Cannaceae	Aerial part, methanol	Treatment of diuresis, fever, dropsy, earache, and eye disease	Analgesic, antioxidant, and hepatoprotective effects	[50]
21	Capparis spinosa	Cappridaceae	Root bark, 80% ethanol	Treatment of hepatic diseases. Reducing flatulence, treatment of rheumatism, anemia, and gout. Used as diuretics	Antidiabetic, hypoglycaemic, antioxidant, antitumor, antibacterial, antihyperlipidaemic, antifungal, and hepatoprotective effects	[51]
22	Capsella busa-pastoris (L) Medik	Brassicaceae	Aerial parts, 90% ethanol	Remedy for liver hemorrhages, respiratory problem, and as diuretic	Antimicrobial, antioxidant, antinociceptive, and sedative effects	[38]
23	Carissa opaca	Apocynaceae	Leaves, 95% methanol	Treatment of asthma, cardiac disorder and cough	Antioxidant, membrane stabilization, antipyretic and aperient activities	[52]
24	Carthamus tinctorius L	Asteraceae	Flower, hydroxysafflor yellow A	Treatment of dysmenorrea, amenorrhea, postpartum abdominal pains and pains of the joints. As antidote to poisoning and purgative	Antioxidant, antidiabetic, hepatoprotective, anti-inflammatory, antifungal, antimicrobial, and hepatoprotective effects	[53]
s/n	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
-----	-------------------------	---------------	-------------------	--	---	-----------
25	*Carthamus tinctorius* L	Asteraceae	Flower, Na$_2$CO$_3$	Treatment of gynecological diseases, osteoporosis, cardiovascular diseases, and angiitis	Nutraceutical, hepatoprotective, antioxidant, promoting blood circulation, and inhibiting platelet aggregation, anti-inflammatory, antipyretic, anti-tumor, and anti-diabetic activities	[54]
26	*Carum carvi*	Apiaceae	Fruit, aqueous	Treatment of jaundice, indigestion and pneumonia. As appetizer, diuretic and gastric stimulant	Anti-inflammatory, spasmolytic, antimicrobial, antioxidant, camphor, antidiabetic, immunomodulatory, antitumor, and hypolipidaemic properties	[55]
27	*Cassia angustifolia* Vahl	Caecalpiniaceae	Leaves, ethanol.	Used in jaundice, rheumatoid arthritis, blood disease, diarrhea, ringworm, skin diseases, dysentery and as laxatives	Hepatoprotection and antioxidant activities	[56]
28	*Cassia angustifolia* Vahl	Leguminosea	Leaves, 90% alcohol	Used as laxative, febrifuge, treatment of anemia, typhoid, jaundice and tumors	Hepatoprotection and antioxidant activities	[57]
29	*Cassia fistula* Linn	Caesalpinacea	Leaves, 90% ethanol	Treatment of Jaundice and rheumatism. Used as a laxative.	Hepatoprotective and antioxidant properties	[58]
30	*Cichorium intybus*	Asteraceae	Esculetin	Treatment of acne, inflammation of throat, jaundice, enlargement of spleen, diarrhea, vomiting, and rheumatism	Hepatoprotection, antihelminthic, antimicrobial, antidiabetic, and analgesic effects	[45]
31	*Cichorium intybus*	Asteraceae	Seed, ethanol	Treatment of acne, inflammation of throat, jaundice, enlargement of spleen, diarrhea, vomiting, and rheumatism	Hepatoprotection, antihelminthic, antimicrobial, antidiabetic, and analgesic effects	[59]
32	*Cichorium intybus*	Asteraceae	Seed, 0.03% methanol	Treatment of acne, inflammation of throat, jaundice, enlargement of spleen, diarrhea, vomiting and rheumatism	Hepatoprotection, antihelminthic, antimicrobial, antidiabetic, and analgesic effects	[59]
33	*Cichorium intybus*	Asteraceae	Leaves, hydroethanol (1:1)	Treatment of acne, inflammation of throat, jaundice, enlargement of spleen, diarrhea, vomiting, and rheumatism	Hepatoprotection, antihelminthic, antimicrobial, antidiabetic and analgesic effects.	[60]
34	*Cinnamomum verum*	Lauraceae	Cinnamon powder, 95% ethanol	Treatment of diabetes, respiratory, and gynecological ailments	Enhancement of glycogen synthesis, antioxidant, antidiabetic, hypolipidemic, antipyretic, and analgesic activities	[61]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	--------------------------------	------------	----------------------------	--	---	-----------
35	*Cinnamomum verum*	Lauraceae	Bark essential oil, dichloromethane	Preventing heart diseases, reduction in cholesterol and as an antidiabetic	Antioxidant, boosting cognitive activity, antiangiogenesis, anti-inflammatory, antimicrobial, and protection against Parkinson’s disease	[62]
36	*Cinnamomum zeylanicum* L	Lauracea	Bark, 80% ethanol	Flavoring for foods and in traditional medicine to treat variety of health conditions	Antimicrobial, insecticidal, antitrypanosomal, anti-inflammatory, hypotensive, and cholesterol-lowering effects	[63]
37	*Citrus aurantium* (essential oil)	Rutaceae	Peel skin, aqueous oil	Treatment of liver ailments and jaundice. Treatment of sluggish liver, rheumatism, fever, and febrile diseases	Analgesic, anti-inflammatory, anti-fungal, and antibacterial activities	[64]
38	*Citrus limon* (L.) Burm.F	Rutaceae	Fruit, 70% ethanol	Treatment of liver ailments and jaundice. Treatment of sluggish liver, rheumatism, fever, and febrile diseases	Chemoprevention, lipid peroxidation inhibitor, hypcholesterolemic, and antioxidant effects	[65]
39	*Clerodendrum volubile*	Verbenaceae	Leaves, 50% methanol	Treatment of diabetes, ulcer, arthritis, and rheumatism	Antidiabetic, antihypertensive, antioxidant, and anticancer effects	[66]
40	*Clitoria ternatea* L	Fabaceae	Leaves, ethanol	Treatment of liver diseases, insect bites, asthma, leukoderma, and inflammation	Antihelminthic, antihistaminic, antimicrobial, cytotoxic, anti-inflammatory, wound healing, proteolytic, hypoglycemic, and antioxidant activities	[67]
41	*Corianderum sativum* L	Apiaceae	Leaves, ethanol	Treatment of jaundice	Anxiolytic, antidepressant and sedative-hypnotic effects. Neuroprotective, antibacterial, anti-inflammatory, analgesic, anti-diabetic, antifungal, and hypolipidemic effects	[68]
42	*Corianderum sativum* L (essential oil)	Apiaceae	Fruits, aqueous	Recommended for spastic condition of the gastro intestinal oral tract, flatulence, fullness and loss of appetite due to their antispasmodic, and antimicrobial activities	Anxiolytic, antidepressant and sedative-hypnotic effects. Neuroprotective, antibacterial, anti-inflammatory, analgesic, anti-diabetic, antifungal, and hypolipidemic effects	[69]
43	*Coriandrum sativum*	Umbellifera	Leaves/stem, 70% ethanol	Treatment of ailments like spasm, rheumatism, neuralgia, gastric complaint, bronchitis, diarrhea, carminative and diuretic tonic	Hypoglycemic, antibacterial, antifungal, free radical scavenging, and lipid peroxidation properties	[70]
44	*Cortex dictamni*	Rutaceae	Whole plant, aqueous	Treatment of Jaundice, chronic hepatitis, cough rheumatism and some skin diseases. To clear heat, dry dogmamess, displace wind, treatment of arthritis, eczema, rubella, and urticarial	Good scavenger of free radicals and inhibition of lipid peroxide	[71]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	--------------------------------	---------------------------	--------------------	--	--	-----------
45	*Curcuma longa* L	Zingiberaceae	Rhizome(root), 50% ethanol and curcumin	Used for the treatment of chronic diseases like diabetes mellitus, dermatological infection, and depression	Anti-inflammatory, immunoregulatory, and antioxidant effects	[70]
46	*Cytisus scoparius* L	Leguminosae	Aerial, 70% ethanol	As a diuretic hypnotic, sedative, and antidiabetic	Used as diuretic, hypnotic, sedative, antidiabetic, and hepatoprotector	[71]
47	*Dicoma anomala* Sond	Asteraceae	Root, aqueous	Treatment of cold and cough, fever, ulcer, and dermatosis	Antiplasmodial, antibacterial, antihelminthic, antiviral, antioxidant, and anti-inflammatory effects	[72]
48	*Dioscorea alata* peel	Dioscoreaceae	Peel, aqueous	To strengthen stomach function, anorexia, and to eliminate diarrhea	Anti-inflammatory effect	[73]
49	*Eclipta alba* (L) Hassk	Asteraceae	Leaves, aqueous	Treatment of Jaundice. Juice used in treatment of hair problem, typhoid, dysentery, and skin diseases	Hepatoprotection, antidiabetic, analgesic, antimicrobial, antioxidant, anticancer, anti-inflammatory, and immunoregulatory activities	[74]
50	*Emblica officinalis* (Gaertn)	Euphorbiaceae	Fruit, methanol	Relieving cough and skin diseases	Antidiabetic, cytoprotective, anti-ulcerogenic, immunomodulatory, antioxidant, and antinocaragenic effects	[75]
51	*Entada puraetha* DC	Fabaceae	Stem, 85% ethanol	Used as narcotic. Treatment of Jaundice. As an anthelmintic, incurring eye diseases, diarrhea, and skin diseases	Hepatoprotective and antioxidant effects	[76]
52	*Ephedra foliate* Boiss	Ephedraceae	Aerial parts, 90% ethanol	Treatment of allergies, asthma, lung congestion, chills and cold	Antidiabetic, anticancer, antimicrobial, antioxidant, anti-inflammatory, and hepatoprotective effects	[38]
53	*Euphorbia draconcoloides* L	Euphorbiaceae	Aerial part, 95% methanol	Curing skin disorders and edema. Used as diuretic and laxative and in the treatment of rheumatism, snake bite and edema	Anti-inflammatory, analgesic and antioxidant activities. Hepatoprotection against hepatocyte cell lines	[5]
54	*Fagonia schweinfurthii* (Hadidi) Hadidi	Zygophyllaceae.	Whole plant, ethanol	Treatment of Jaundice, diabetes, joint pains, asthma and dropsy.	Antioxidant, hepatoprotective, anti-inflammatory, wound healing and analgesic activities.	[77]
55	*Ficus carica* Linn	Moraceae	Leaves, ethyl acetate	Treatment of vitiligo, diabetes, cough, asthma, constipation, and gingivitis.	Cytotoxic, hypoglycemic and antihelminthic activities	[78]
56	*Flemingia macrophylla*	Fabaceae/Leguminosae	Root, aqueous	Treatment of rheumatism, arthropathy, chronic nephritis, menaliga, and menopausal syndrome.	Antioxidative, anti-inflammatory, analgesic, hypotetic-sedative and anxiolytic effects.	[79]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	--------------------------------	-----------------------	--------------------------------	--	--	-----------
57	Ginkgo biloba	Ginkgoaceae	Leaves, aqueous	Treatment of Alzheimer’s dementia and other cognitive dysfunctions.	Antioxidant, cardioprotective, antiasthmatic, antidiabetic, management of cerebral insufficiency, and decreased gastric injury caused by ethanol.	[80]
58	Glyphae brevis	Tiliaceae	Leaves, 50% methanol	Treatment of hepatitis, jaundice and impotence.	Carminative, anticonvulsant effects, anti-inflammatory, antioxidant and improvement of lipid metabolism.	[81]
59	Graptopetalum paraguayense E, Walther	Crassulaceae	Leaves, aqueous	Regulation, alleviation of hepatic disorders, relief of pain, detumescence and carbuncles	Antioxidant, anti-inflammatory, neuroprotective, hypertension regulation, antioxidant activity, and inhibition of cancer cells	[82]
60	Hibiscus sabdariffa L	Malvaceae	Aerial parts, 90% ethanol	Used to prepare herbal drinks and as a flavoring agent. As diuretic and choleretic	Antibacterial, antioxidant, nephroprotective, antidiabetic and antihypertensive effects	[38]
61	Hippophae rhhamnoides L	Elaegnaceae	Seabuckthorn berry polysaccharide, alcohol.	Treatment of asthma and circulatory disorders	Antioxidative, antimicrobial, antithromogenic, cardioprotective, hepatoprotective, radioprotective, and anti-inflammatory effects	[83]
62	Indigofera oblongifolia	Leguminaceae	Whole plant, 90% ethanol	Treatment of hepatic diseases and dysentery, enlargements of liver and spleen. An antidote of poison	Antimicrobial, anti-inflammatory and analgesic activities	[84]
63	Launaea procumbens	Asteraceae	Aerial parts, chloroform	Treatment of kidney disorders, hormonal imbalance, and sexual diseases	Spasmogenic, cardiovascular, anticarcinogenic, anti-inflammatory, hepatoprotective, and antioxidant properties	[85]
64	Lawsonia inermis L (Henna)	Lythraceae	Leaves, 99% methanol	Used as astringent, hypotensive, sedative against headache. Treatment of jaundice, leprosy, and nervous disorder	Antimicrobial, anti-tumorigenic, anti-inflammatory, anti-apoptotic, anti-hyperglycaemic, antilipidaemic, antidiabetic, antiviral, and hepatoprotective effects	[86]
65	Lawsonia inermis Linn	Lythraceae	Leaves, aqueous	Treatment of liver diseases, jaundice, and burn	Anti-inflammatory, antipyretic, analgesics, antimicrobial, anticancer, and hepatoprotective properties	[87]
66	Leucas cephalotes Linn	Labiatae	Whole plant, methanol	Treatment of liver disease, snake bite, and bronchitis. Inflammation and jaundice.	Antifilarial and antidiabetic activities.	[88]
67	Lobularia maritima	Brassicaceae	Leaves, 10% ethanol	Antiscorbutic, diuretic, and as an astringent	Antioxidant and anti-inflammatory effects	[7]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	--------------------------------	-------------------------	----------------------------------	--	---	-----------
68	Luffa acutangula (Var) amara	Cucurbitaceae	Leaves, ethanol	As a laxative and carminative digestible. Treatment of anemia, jaundice, biliary disease, bronchitis, asthma, and piles	CNS depressant, antioxidant, and larvicidal activities	[89]
69	Lygodium flexuosum (L.) Sw	Lygodiaceae	Whole plant, n-hexane	Treatment of jaundice and liver disorders	Hepatoprotection against CCl₄	[90]
70	Madhuca indica Syn	Sapotaceae	Bark, methanol	Used as stimulants, demulcent, astringents, remedy of itching, and swelling	Anti-inflammatory, analgesic, hepatoprotective, antipyretic, antihyperglycaemic, antiulcer, and anti-diabetic effects	[91]
71	Madhuca indica Syn	Sapotaceae	Leaves, 70% ethanol, 90% ethanol	Treatment of piles, emetic, laxative toxic, anti-burn, and wound healing	Antidiabetic, anti-inflammatory, analgesic, anti-pyretic, anti-asthmatic, antiulcer, anticancer, hepatoprotective, and antibacterial effects	[92]
72	Mahonia aiwaken Hayata	Berberidaceae	Root, 90% ethanol	Rheumarthritis, dysentery, hepatitis, antidote, and antiphlogistic agent	Hepatoprotection, antioxidant, and anti-inflammatory	[3]
73	Mallotus philippensis Muell-Arg	Euphorbiaceae	Leaves, methanol	Treatment of jaundice, threadworm, hookworm, and roundworm infections. As a pungent and carminative	Anticestodal, antibacterial, wound healing, antifilarial, antioxidant, anti-inflammatory, and immunoregulatory effects	[93]
74	Memondica tuberosa Cogn	Cucurbitaceae	Tubers, 70% ethanol	Used as abortifacient	Antioxidant, anti-phytogenic, anticancer, anti-inflammatory, anticoagulant, and nephroprotective activities	[94]
75	Mentha piperita L	Lamiaceae	Leaves (essential oil)	Treatment of nausea, bronchitis, flatulence, liver complaints, ulcerative colitis, and as carminative	Antioxidant and anti-inflammatory effects	[95]
76	Menthe arvensis Linn	Lamiaceae	Leaves, aqueous, chloroform, ethanol	Carminative, antispasmodic, and anti-peptic ulcer agent	Radioprotective, antispasmodic, antibacterial, antihelminitic, antifertility, hepatoprotective, antiulcer, and anti-inflammatory	[96]
77	Mimosa pudica 2009	Fabaceae/ Leguminosae	Leaves, methanol	Treatment of piles, fistula, insomnia, traumatic injury and jaundice	Hyperglycemic, antioxidant, anti-hepatotoxic, anti-diabetic, wound healing, anti-inflammatory, and antimicrobial effects	[97]
78	Mimosa pudica Linn	Fabaceae/ Leguminosae	Leaves, ethanol	Treatment of wound, oedema, allergy, fever, diabetes, and indigestion	Hyperglycemic, antioxidant, anti-hepatotoxic, anti-diabetic, wound healing, anti-inflammatory, and antimicrobial effects	[98]
79	Momordica dioica Roxb	Cucurbitaceae	Leaves, ethanol	Treatment of Jaundice, hepatic diseases, fever, asthma, and as anthelmintic. Used as stomach laxative	Hypoglycemic, gastroprotective, ulcer healing, and hepatoprotective effects	[99]
Table 1 (continued)

s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
80	Nerium oleander Linn	Apocynaceae	Flower, methanol	Treatment of malaria and venereal diseases. Used as diuretic, insecticide, abortifacient, and cardiotonic. Relieves Indigestion.	Cardiac insufficiency, anticonvulsant, antitumor, and antioxidant effects.	[100]
81	Nicotiana plumbaginifolia L	Solanaceae	Whole plant, methanol	Treatment of cuts, wounds, toothache, and rheumatic swelling.	Antispasmodic, leaves are effective laxative, antioxidant, and antimicrobial.	[101]
82	Nymphaea alba L	Nymphaeaceae	Leaves, 76% ethanol	Used as antiseptic, an astringent and as a rubefacient in insomnia.	Antioxidant, anti-inflammatory, and hepatoprotective effects.	[6]
83	Olea europaea L	Oleaceae	Leaves, 20% oleuropein	Treatment of malaria and associated fever.	Antimicrobial, anti-inflammatory, antioxidant, blood pressure lowering, lipid lowering, anticancer, and cardioprotective activities.	[102]
84	Origanum vulgare	Lamiaceae	Leaves, aqueous	Treatment of respiratory disorders, indigestion, and rheumatoid arthritis.	Antihyperglycaemic, anti-inflammatory, cytotoxic, antioxidant, antithrombin, antimutagenic, and anti-carcinogenic effects.	[103]
85	Persea Americana mill	Lauraceae	Leaves, aqueous	Remedy for pyorrhea. Toxic to silkworms.	Antifungal, hypotensive, anti-inflammatory, anticonvulsant, antidiabetic, antioxidant, and vasorelaxant effects.	[104]
86	Phyllanthus niruri	Phyllanthaceae	Aerial part, 80% ethanol	Treatment of urinary and bladder disorders, hepatic disorders, dyspepsia, influenza jaundice, and kidney stone.	Hepatoprotective, antioxidant, antihyperuricemic, and lipid lowering effects.	[105]
87	Physalis peruviana (Golden berry)	Solanaceae	Leaves, 50% methanol	Used as antispasmodic, diuretic, antiseptic, sedative, analgesic, and hepatitis	Antisulox, antimicrobial, anti-inflammatory and antihypercholesterolemic activities.	[106]
88	Pleogynium timorense (DC) Leenh	Anacardiaceae	Bark, 70% methanol	–	Antimicrobial, hepatoprotective, antioxidant, anti-inflammatory, hypoglycemic, and cytotoxic effects.	[107]
89	Pleurotus ostreatus	Pleurotaceae	Whole mushroom, 95% ethanol	Preventing heart disease, reduction in cholesterol, and treatment of diabetes.	Inhibition of platelet aggregation, reduction of blood glucose and cholesterol, antibacterial, viral, and parasitic pathogens, and antioxidant activities.	[108]
90	Polygonum cuspidatum sieb et Zucc	Polygonaceae	Rhizome, methanol	Treatment of jaundice, and to clear heat toxin, to promote blood circulation, Dispel stasis, suppress cough, and treat snake bites.	Antidiabetic, anti-hepatitis B virus, antibacterial, anti-inflammatory, and antioxidant properties.	[4]
91	Premna esculenta Roxb	Verbenaceae	Leaves, 95% ethanol	Treatment of hepatocellular jaundice, gout, hook worm infection, and snake bite	Antihyperlipidemic, hepatoprotective, antioxidant, analgesic, and anti-inflammatory activities.	[109]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	-----------------------------------	-----------------	-------------------	---	--	-----------
92	Raphanus sativus	Brassicaceae	Leaves, aqueous and ethanol	Treatment of indigestion, abdominal bloating, diarrhea, bronchitis, intestinal parasites, and asthma	Antimicrobial, anticancer, antidiabetic, gastrointestinal, uterine tone modulatory, and cardio-modulatory activities	[110]
93	Rouea induta planch	Connaraceae	Leaves, 99% ethanol	Treatment of respiratory and kidney diseases. Treatment of blood diarrhea, and as diuretics	Anti-inflammatory, hepatoprotective, antioxidant, and antiapoptotic activities	[111]
94	Rubia cordifolia Linn	Rubiaceae	Root, 50% ethanol	Treatment of jaundice	Potent antioxidant property, inhibit lipid peroxidation, anti-inflammatory, immunomodulatory, anticongestant, anxiolytic and antitumor activities	[112]
95	Rumex vasicarius L	Polygonaceae	Whole plant, methanol	Aperients, diuretic and cooling agent. Treatment of jaundice and dysentery. Curing stomach heat, toothache, and to promote appetite	Antimicrobial, anti-inflammatory, antioxidant, wound healing, and antitumor activities	[113]
96	Semen celosia Cristatae.L	Amaranthaceae	Dry seeds, 60% ethanol	Treatment of hypertension, palsy, cataract, keratitis, diabetes, indolcylitis, calico corneal, and sarcoidosis	Antibacterial, antacnes, antidiarhoeal and anti-inflammatory effects	[114]
97	Solanum trilobatum Linn	Solanaceae	Whole plant, 90% ethanol	Used as an expectorant in the treatment of respiratory diseases, asthma, tuberculosis, and liver diseases	Broad spectrum antibiotic, antibacterial, antimitotic, antitumor, and antioxidant properties	[115]
98	Solanum xantholarpum	Solanaceae	Fruit, 50% ethanol	Laxative, treatment of enlargement of liver, anthelmintic, antipyretic, anti-inflammatory, antiasmatic, and aphrodiasic activities.	Antiasthmatic, anti-nociceptive, anti-fungal, molluscicide, antispasmodic, antitumor, cardiotoxic, hypotensive, antianaphylactic, and anti-urolithic activities	[116]
99	Spondias mombin	Anacardiaceae	Leaves and stem, 50% methanol	Treatment of hepatitis	Antimicrobial, antiviral, anti-inflammatory, anthelmintic, hematinic sedative, antioxidant, and hepatoprotective effects	[117]
100	Stachys pilifera Benth	Lamiaceae	Leaves, 70% ethanol	Treatment of asthma, rheumatoid arthritis, and asthma	Anti-inflammatory, antioxidant, anti bacterial, antitumor, and antimicrobial effects	[118]
101	Vitis thunbergii Var	Vitaceae	Aerial part, ethanol	Treatment of hepatitis, jaundice, diarrhea, and arthritis	Antioxidant, anti-inflammatory, antihypertensive, neuroprotective, antibiotic, and inhibition of adipocyte differentiation	[119]
102	Xylaria nigripes (Koltz) Sacc	Xylariaceae	Solid cultured mycelia, aqueous	Treatment of insomnia, trauma, diuretic, and nerve tonic	Antioxidant and hepatoprotective effects	[120]
s/n.	Botanical name	Family	Plant part/extract	Folkloric use	Pharmacological use	Reference
------	--------------------------------------	----------------	--------------------	--	---	-----------
103	Zingiber officinale (Roscoe) rhizome	Zingiberaceae	Rhizome, 90% methanol	Nutraceutical. Treatment of stomach aches, nausea, diarrhea, as carminative, appetite stimulant, and choleretic	Antioxidant, anti-inflammatory, antitumor, antidiabetic, antimicrobial, neuro-protective, and gastro-protective potentials	[121]
104	Zizyphus jujube Mill	Rhamnaceae	Fruit, 70% ethanol	Invigorating the spleen, treatment of anorexia, lassitude, and control of hepatitis	Antioxidant and anti-inflammatory activities	[122]
Table 2 In vivo studies on medicinal plants with hepato protection against acute tetrachloride toxicity

s.no	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components.	Reference	
1	Abelmoschus manihot (L) medic	Ku-Ming mice	500mg/kg/b.w. (oral)	0.1 ml/kg/bw(0.12% v/v olive oil), i.p	Biphenyl dicarboxylate (BDP) 150 mg/kg/b.w., oral	ALT, AST, ALP, γ-GT, TNF-α, IL-1β, NO, MDA↓, GSH, SOD, GPx, CAT, GST↑	Flavonoids, quercetin, hyperin, isoquercetin, quercetin-3′-O-glucoside, hibifolin, myricetin	[32]	
2	Acacia mellifera	Wistar rats	500mg/kg/ b.w.	1.25 ml/kg/ b.w. (1:1 liquid paraffin) i.p	Silymarin, 100 mg/kg/bw	ALT, AST, GGT, ALP, T.B↓, T.P↑, MDA, NP-SH, F-chol, TG↓, NP-SH↑, (Nonprotein sulfhydryl)	Flavonoids, saponin, tannins, triterpenoids	[33]	
3	Aegle marmelos correa ex Roxb	Albino Wistar rats	- (oral)	0.2 ml/100g/bw, (olive oil), i.p	–	AST, ALT, ALP, T.B↓	Rutin, piperine	[34]	
4	Aegle marmelos correa ex Roxb	Wistar albino rats	50mg/kg/b.w. (oral)	3ml/kg/bw, , i.p	Silymarin 200 mg/kg/bw, (oral)	ALP, AST, ALT, T.B, LDH, MDA↓, SOD, CAT, GR, GSH, GST, GPx, G6PD, TP↑, IL-10, TNF-α↓	Flavonoids, rutin, piperine	[35]	
5	Alangium salviifolium	Swiss albino mice	50mg/kg/b.w. (oral)	1 ml/kg/b.w. (1:1 in olive oil).	–	AST, ALT, ALP, MDA, LDH, CYT-P450 reductase, cyt b5 reductase↓, SOD, CAT, DT-diaphorase, glutathione S-transferase↑	Piperine, γ-sisosterol	[36]	
6	Alhagi maurorum (camel thorn)	Wistar rats	660 mg/kg/b.w. (oral)	1 ml/kg/b.w. (maize oil) oral	–	ALT, AST↑	Flavonoids, phenols	[37]	
7	Alhagi maurorum Medikus	Wistar rats	500 mg/kg/b.w.	0.125 ml/kg (liquid paraffin, 1:1), i.p	Silymarin, 10 mg/kg (oral)	SGOT, SGPT, ALP, T.B	Flavonoids, tannins	[38]	
8	Allium sativum (Single clove garlic)	Male rabbits	0.8 g (oral)	3 ml/kg/b.w. (1:1, olive oil)	–	ALT, AST, ALP, T.B↑	–	–	[39]
9	Amaranthus spinosus	Sprague-Dawley rats	400 mg/kg/b.w. (oral)	1 ml/kg/bw. (v/v olive oil), i.p	–	ALT, ALP, MDA↓, SOD, CAT↑	Flavonoids, phenols, betalains	[40]	
10	Amorphophallus campanulatus (Roxb)	Wistar albino rats and mice	500 mg/kg/b.w. (oral)	1 ml/kg/b.w, oral.	Silymarin, 50 mg/kg (oral)	MDA, Hydroperoxides↓, GSH, SOD, CAT↑	Flavonoids	[41]	
11	Argemone Mexicana L	Wistar rats	500 mg/kg/b.w. (oral)	0.5 ml/kg/b.w., i.p	Silymarin, 100mg/kg (oral)	SGOT, SGPT, ALP, Total bilirubin↓	Leutolin, quercetin, quercetrin	[42]	
12	Artemisia iwayomogi	Sprague-Dawley rats.	500 mg/ kg/b.w. (oral)	2 ml/kg/bw. (50% olive oil), i.p	–	ALT, AST, ALP, MDA↓, TAC, GSH, SOD↑, Hydroxy proline↓	Scoparone	[43]	
13	Bauhinia variegate	Sprague-Dawley rats	200 mg/kg/b.w. (oral)	1 ml/kg/b.w. (liquid paraffin, 1-1%) subcutaneous	–	AST, ALT, ALP, GGT↓, T.P↑, Total lipid↓	–	–	[44]
14	Bougainullra spectabilis	Wistar rats.	6 mg/kg/bw. (oral)	1.5 ml/kg, oral.	–	AST, ALP, ALT↓	Esculetin	[45]	
15	Bryonia dioica Jacq	Wistar albino rats	250 mg/kg/bw. (gavage)	1 ml/kg/bw. (corn oil,1:1 v/v)	–	AST, AST↓	Flavonoids, terpenoids	[46]	
s.no.	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result	Active components	Reference	
-------	---------------------------	--------------	---	----------------------------------	---	--------	---	-----------	
16	Brysocarpus coCClneus.	Albino rats	1000 mg / kg /b.w. (oral)	0.7 ml/kg/b.w. (1:1 in olive oil)	livolin®, 200 mg / kg/b.w., (oral)	ALT, AST, ALP, MDA ↓, T.P, Albumin, CAT, SOD, Gpx, GSH↑	Alkaloids, flavonoids	[47]	
17	Cajanus cajan.	Wistar albino rats	400 mg/kg/b.w. (oral)	2 ml/kg/b.w. (1:1 liquid paraffin), oral	Liv 52, 100 mg/kg/b.w. (oral)	AST, ALT↑, T.P↑	Alkaloid, flavonoids	[48]	
18	Calotropis gigantean R.Br.	Wistar rats	500 mg/kg/b.w. (oral)	2 ml/kg/b.w. (1:1 olive oil), subcutaneous.	Silymarin, 100 mg/kg/bw, (oral)	AST, ALT, LPO↓, GSH, SOD, GPX, CAT↑	Calotropin Di and Dil, calotropin Fl and Fil.	[49]	
19	Camellia nitissima Chi.	Sprague-Dawley rats	160 mg/kg/day (i.p)	2 ml/kg (50% w/v, olive oil), i.p	Thiopronin 20 mg/kg/day, (i.p)	AST, ALT, MDA↓, GSH, SOD↑, TNF-α, IL-6, IL-1β, NF-κB signaling↓, NF2 signaling partway. HO-1, GSH↑	Polyphenols, flavonoids	[1]	
20	Canna indica L.	Sprangue-Dawley rats	200 mg/kg/b.w. (oral)	1.0 ml/kgliquid paraffin,1:2, p.	Silymarin, 25 mg/kg, (i.p)	SGPT, SGOT, ALP, T.B, L.P↓, GSH, CAT, TP↑	Lutein	[50]	
21	Capparis spinosa.	Mice	400 mg/kg/b.w. (oral)	0.2 ml/kg (olive oil 1:1), oral	–	ALT, AST↓	Flavonoids, phenols, rutin, quercetin-3-O-glucoside, kaempherol, 3-O-rutinoside	[51]	
22	Capsella bursa-pastoris (L.) Medik.	Wistar rats	500 mg/kg/b.w.	0.125 ml/kg (liquid paraffin, 1:1), i.p.	Silymarin, 10 mg/kg, (i.p)	SGOT, SGPT, ALP, T.B	–	[38]	
23	Carissa opoca	Sprague-Dawley rats	200 mg/kg/b.w. (intra-gastrically)	0.5 ml/kg/b.w. (20% v/v olive oil), i.p	Silymarin, 50 mg/kg/bw, (intragastro-	AST, ALT, ALP, LDH↑, GGT↓, GSH-Px, GSR, SOD, GST, CAT, Peroxidase, Quinone reductase (QRI)↑, TBARS, GSH, H2O2↓, TP↑	Isoquercetin, hyperoside, vitexin, myicetin, kaempherol	[52]	
24	Carthamus tinctorius L.	Sprangue-Dawley rats	5 mg/kg/day	1.0 ml/kg (olive oil).	–	ALT, AST, Hydroxy proline↓	Hydroxyaffl sor yellow A, isocarthusin, carthamin, luteolin	[53]	
25	Carthamus tinctorius L.	Sprangue-Dawley rats	20 mg/kg/b.w. (oral)	2 ml/kg/b.w. (1:1 olive oil), i.p.	Silymarin, 50 mg/kg/bw, (oral).	ALT, AST, ALP, T.P↑, NF2, G6, NQOl expression, GSH↑, TBARS↓, SOD, CAT↑	Carthamin, carthaminidin, carthamin, luteolin	[54]	
26	Carum carvi	NMRI mice	0.13 g/kg/b.w. (oral)	2 ml/kg/b.w. (olive oil, 1:2), i.p.	–	AST, ALT, L.P↓, GSH, GSH-Px↑, Px, XOD↓, Protein↑	Carvon	[55]	
27	Cassia angustifolia Vahl	Wistar albino rats	300 mg/kg/bw (oral)	2.5 ml/kg/b.w.	Silymarin, 100 mg/kg/bw, (oral)	AST, ALT, ALP, Acid phosphatase (ACP), LDH, T.B↑, TP↑	Flavonoid, terpenoids, tannin, steroid	[56]	
28	Cassia angustofolia vahl	Wistar rats	500 mg/kg/bw(oral)	4 ml/kg/b.w. (50% olive oil) oral	–	T.B, GOT, GPT↓, T.P, GSH↑, LPQ↓	Flavonoids	[57]	
Table 2 (continued)

s.no.	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components	Reference
29	Cassia fistula Linn	Wistar albino rats	500 mg/kg/b.w. (oral)	0.1 ml/kg/b.w. (liquid paraffin)	-	MDA, AST, ALT, GSH, ALP, LDH, ɤ-glutamyltranspeptidase↓	Flavonoids	[58]
30	Cichorium intybus	Wister rats	6 mg/kg/b.w. (oral)	1.5 ml/kg (oral)	-	AST, ALP, ALT↓	Esculetin	[45]
31	Cichorium intybus	Albino wistar rats	500 mg/kg/b.w. (oral)	1.5 ml/kg (olive oil 50%)	Silymarin 10 mg/kg (oral)	SGOT, SGPT, ALKP↓, TP, albumin↑	Cichotyboside	[59]
32	Cichorium intybus	Albino wistar rats	500 mg/kg/b.w. (oral)	1.5 ml/kg olive oil 50%, i.p.	Silymarin 10 mg/kg (oral)	SGOT, SGPT, ALKP↓, TP, albumin↑	Cichotyboside	[59]
33	Cichorium intybus	Albino rats	500 mg/kg/b.w. (oral)	1.0 ml/kg olive oil 50%, i.p.	-	AST, ALP, ALT, T.B↓, TP, albumin↑	Esculetin and cichotyboside	[60]
34	Cinnamomum verum	Wistar albino rats	100 mg/ kg/b.w. (oral)	1.0 ml/kg/b.w. (olive oil), subcutaneous	-	AST, ALT, MDA↓, SOD, CAT↑	Flavonoids	[61]
35	Cinnamomum verum	Wistar albino rats.	100 mg/kg/b.w. (oral)	1 ml/kg/b.w. olive oil (oral)	Silymarin 50 mg/kg/b.w. (oral)	AST, ALP, ALT, ɤ-glutamyl transferase, LDH, TBARS↓	-	[62]
36	Cinnamomum zeylanicum L.	Wister rats	0.1 g/kg (oral)	0.5 ml/kg/b.w (50% olive oil)	-	AST, ALT, MDA↓, SOD, CAT↑	Flavonoids	[63]
37	Citrus aurantium (essential oil)	Sprangue-Dawley rats	0.8 ml/kg/b.w. (i.p.)	0.8 ml/kg (olive oil 1:1), i.p.	Silibinin 50 mg/kg (i.p.)	AST, ALT↓	Limonene, alpha-pinene	[64]
38	Citrus limon (L.) Burm.F.	Wistar rats	500 mg/kg/b.w. (oral)	1 ml/kg (olive oil 50.50)	Silymarin 100 mg/kg (oral)	AST, ALP, T, B, MDA↓, SOD, GSH, CAT, albumin↑	Coumarins, limonoids, flavonoids, eriocitrin, C-glycosyl flavones 6,8-di-C-β-glucosyldiosmin	[65]
39	Clerodendrum volubile.	Wistar albino rats	500 mg/kg/b.w. (oral)	1 ml/kg/b.w. (olive oil), i.p.	-	ALT, AST, ALP, LDH↓, HDL, GSH, CAT, SOD, GPx↑	Phenols	[66]
40	Clitoria ternatea L.	Wistar albino rats	300 mg/kg/b.w (oral)	2.5 ml/kg/b.w.	Silymarin, 100 mg/kg/bw. (oral)	ALT, AST, ALP, Acid phosphatase(ACP), LDH, TB↓, TP↑	Flavonoid, terpenoids, tannin, steroid, quercimetrin, rutin, sguettarein	[56]
41	Corianderum sativum L.	Wistar albino rats	300 mg/kg (i.p)	1 ml/kg/b.w. (liquid paraffin, 1:1), oral	Silymarin, 50 mg/kg (i.p)	SGOT, SGPT, ALP↓, TB↑	Caffeic acid, quercetin, gallic acid, flavonoids, essential oil	[57]
42	Corianderum sativum L. (essential oil)	NMRI mice	0.03 g/kg/b.w. (oral)	2 ml/kg/b.w. (olive oil 1:2), i.p.	-	AST, ALT, L.Px, XO↓, PX↑, GSH, GSH-Px, Protein↑	Caffon	[55]
s.no.	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components	Reference
-------	-----------------------------	-------------------------------	---	-----------------------------------	---	---------	--	-----------
43	Coriandrum sativum	Wistar albino rats	200 mg/kg/b.w. (i.p)	1 ml/kg b.w. (1:1 olive oil), i.p.	Silymarin, 25 ml/kg/b.w., (i.p)	ALP, AST, ALT†, TP†, TB†, MDA†, SOD, CAT, GPx†	Caffeic acid, ferulic acid, isoquercitrin, rutin, quercetin 3-glucuronide, Quercetin, hyperin, quercetin-3-O-β-glucopyranoside, quercetin-3-O-arabinose	[68]
44	Cortex dictamni	Sprague-Dawley rats	320 mg/kg/b.w. (oral)	2 ml/kg/b.w., i.p.	-	AST, ALT, ALP†, SOD, CAT, GSH-Px, GSHT†, MDA†	Limonoids, furqui-noline, flavonoids, fraxinellone	[69]
45	Curcuma longa. L.	Sprague-Dawley rats	300 mg/kg/b.w. (intra-gastrically)	0.1 ml/kg/b.w., i.p.	Curcumin, 200 mg/kg/b.w., (intragastrically)	AST, ALP, TBARS†, SOD, GPx†	Curcumin, memethoxycurcumin, bisdemethoxycurcumin	[70]
46	Cytisus scoparius L.	Wistar albino rats	500 mg/kg/b.w. (oral)	5 ml/kg/b.w. (50% olive oil), i.p.	Silymarin, 25 mg/kg/b.w., (oral)	SGOT, SGPT, LDH†, GSH†, SOD, CAT, GPx, GRx, GST†, MDA†	Rutin, quercetin, quercitrin, isorhamnetin, kaempferol	[71]
47	Diocoma anomala Sond.	Wistar rats; Rattus norvegicus	500 mg/kg/b.w. (oral)	1 ml/kg/b.w. (1:1, olive oil), i.p.	Silymarin, 100 mg/kg/b.w., (oral)	AST, ALT†, SOD, CAT, GPx†	Total flavonoids and phenol contents	[72]
48	Dioscorea alata peel	Wistar albino rats	433.42 mg/kg/b.w.	1 ml/kg/b.w. (20% olive oil)	Silymarin, 200 mg/kg/b.w.	AST, ALP, TBARS†, SOD, CAT, GSH-Px†, NO, TNF-α, TNF-Kβ, INOS, COX-2 expression†	Hesperetin, quercetin, hesperidin	[73]
49	Eclipta alba (L.) Hassk.	Male albino rats	500 mg/kg/b.w. (oral)	2 ml/kg/b.w. (olive oil), i.p.	Silymarin, 50 mg/kg/b.w., (i.p.)	ALT, ALP, TBJ†, TP†	Flavonoids, luteolin, demethylhexedolactone, hexedolactone	[74]
50	Emblica officinalis (Gaertn)	–	200 mg/kg/b.w.	1 ml/kg/b.w. (corn oil), oral	–	SGOT, SGPT, LDH†, MDA†, GSH, GST, GPx, GRx, TP†, DNA synthesis†	Quercetin, ascorbic acid, ellagic acid	[75]
51	Entada pursaetha	Colony bred male Wistar rats	300 mg/kg/b.w. (oral)	2 ml/kg/b.w. (1:1 olive oil)	Silymarin, 50 mg/kg/b.w. (2% polysorbate 80), (oral)	AST, ALP, TBJ†, TP†, LDH, MDA, Nitrate-nitrite, myeloperoxidase, SOD, CAT, GSH†	Flavonoids	[76]
52	Ephedra foliate Boiss	Wistar rats	500 mg/kg/b.w.	0.125 ml/kg (liquid paraffin, 1:1), i.p.	Silymarin, 10 mg/kg, (oral)	SGOT, SGPT, ALP, TP†	Flavonoids, tannins	[38]
53	Euphorbia dracunculoides L.	Sprague-Dawley rats	400 mg/kg/b.w.	1 ml/kg/b.w. (30% olive oil), i.p.	Silymarin 50 mg/kg/b.w.	AST, ALP, TBJ†, CAT, Peroxidase, SOD, GST, GSH†, Lipid peroxides, TBARS, nitrite, hydrogen peroxide, DNA damage†	Catechin, rutin, caffeic acid, mcinetin, coumarins, flavonoids	[51]
Table 2 (continued)

s.no	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components.	Reference
54	Fagonia schweinfurthii(Hadidi) Haddi	Wistar albino rats	400 mg/kg/ b.w. (oral)	1 ml/kg/b.w., i.p.	Silymarin 100 mg/kg/b.w., (oral).	ALT, AST, ALP, TB, MDA, SOD, CAT, GSH↑	Flavonoids, Phenolic Compounds, Quinines and Coumarin	[77]
55	Fiscus carica Linn	Wistar rats	100 mg/kg/bw. (oral)	1 ml/kg/bw(v/v olive oil), i.p.	Silymarin, 25 mg/kg/bw in carboxymethyl cellulose	ALT, AST, MDA, SOD, CAT, GSH↑, NO, TNF-α, IL-1β↓	Psoralen, Bergapten, Xantho Toxic, Calotropenyl Acetate, Lupeol Acetate	[78]
56	Flemingia macrophylla	Male SD rats	1.0 g/kg/bw. (oral)	15 ml/kg/bw. (20% olive oil), i.p.	Silymarin, 25 mg/kg/bw, (oral).	ALT, AST, ALP, TB, MDA, TP, HDL-c, GSH↑	Genistein, Lupeol, Rutin, Flavonoids, Isoflavones	[79]
57	Ginkgo biloba	Sprague-Dawley rats	150 mg/ kg/bw. (oral)	1 ml/kg/bw. (1:1 liquid paraffin),	Silymarin, 100 mg/kg (oral).	ALP, ALT, AST, MDA, TP, IL-1β↓	Kaempferol, Quercetin, Isorhamnetin, Diterpene Lactones	[80]
58	Glyphae brevis	Swiss albino mice	490 mg/kg/bw. (oral)	2 ml/kg/bw. (liquid paraffin),	Silymarin, 100 mg/kg (oral)	ALP, ALT, AST, MDA, TP, IL-1β↓	Gallic Acid, Genistin, Daidzin, Quercetin	[81]
59	Gaertnaria paraguayensis E. Walter	Sprague-Dawley rats	300 mg/kg/bw. (oral)	0.5 ml/kg/bw. (14 olive oil),	Silymarin, 200 mg/kg/bw, (oral).	ALT, AST, MDA, GSH, SOD, CAT, GR, IL-1β↑	Isorhamnetin, Quercetin, Chlorogenic Acid, Myricetin, Kaempferol, Catechins	[82]
60	Hibiscus sabdariffa L.	Wistar rats	500 mg/kg/bw.	0.125 ml/kg (liquid paraffin, 1:1), i.p.	Silymarin, 10 mg/kg (oral)	ALT, AST, ALP, T-chol, LDL, TG↓, TP↑	Gallic Acid, Genistin, Daidzin, Quercetin	[38]
61	Hippophae rhamnoides L.	C57BL/6 mice	200 mg/kg/bw. (oral)	5 ml/kg/bw. (20% in peanut oil), i.p.	Silymarin, 10 mg/kg (oral).	ALT, AST, TB↓, PALB, SOD, GSH↑, GST, CAT↑, TNF-α↑, iNOS, NO, TLR4, p38MAPK, p-ERK, p-JNK, NF-KB↓	Isorhamnetin, Quercetin, Chlorogenic Acid, Myricetin, Kaempferol, Catechins	[83]
62	Indigofera oblongifolia	Wistar albino rats	300 mg/kg/bw. (oral)	1 ml/kg/bw. (30% olive oil), i.p.	Silymarin, 100 mg/kg (oral)	ALT, AST, ALP, TB↓, SOD, CAT, GPX↑	Flavonoids, Coumarins, Indirubin	[84]
63	Launaea procumbens	Sprague-Dawley rats	200 mg/kg/bw. (oral)	3 ml/kg/bw. (30% olive oil), i.p.	Silymarin, 100 mg/kg (oral)	ALT, AST, ALP, TB, SOD, GST, CAT, POD, GSH↑	Salicylic Acid, Vanillic Acid, Synergic Acid, 2-Methyl-Esorcinol, and Gallic Acid	[85]
64	Lawsonia inermis L. (Henna)	Albino rats	200 mg/kg/bw. (oral)	2 ml/kg/bw. (1:1 olive oil),	Silymarin, 25 mg/kg/bw, (oral).	ALT, AST, ALP, TB↓, TP↑	Flavonoids	[86]
65	Lawsonia inermis Linn	Wistar albino rats	400 mg/kg/bw. (i.p)	1.25 ml/kg (1:1 liquid paraffin), i.p.	Silymarin, 100 mg/kg (b.w., l.p.)	Silymarin, 200 mg/kg (l.p)	Flavonoids	[87]
66	Leucas cephalotes Linn	Wistar albino rats	200 mg/kg/bw. (liq-uid paraffin) (l.p.)	1.25 mg/kg (1:1 liquid paraffin), i.p.	Silymarin, 200 mg/kg (l.p)	Silymarin, 200 mg/kg (l.p)	Flavonoids	[88]
s.no.	Botanical name	Animal model.	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components.	Reference
-------	----------------	----------------	---	----------------------------------	--	---------	-------------------	-----------
67	Lobularia maritima	Mice	500 mg/kg/b.w. (i.p)	1 ml/kg/b.w. (1:1 olive oil), i.p.	--	ALT, AST, MDA, ROS, TNF-a, IL-1β, IL-6↑, SOD, CAT, GPx↑	p-coumaric acid	[7]
68	Luffa acutangula (Var) amara	Colony bred strain of Wistar rats	600 mg/kg/b.w. (oral)	1 ml/kg/b.w., oral	Silymarin, 25 mg/kg/b.w. (oral)	SGOT, SGPT, ALP, TC ↓, TP ↑, GPx, GST, GSH, SOD, CAT↑, LPO↑, Vit E, Vit C↑	Flavonoids	[89]
69	Lygodium flexuosum(L.) Sw	Wistar rats	200 mg/kg/b.w.	150 μl/100 g (1:1 corn oil)	Silymarin, 50 mg/kg	AST, ALT, LDH, MDA↑, GSH↑	B-sitosterol, stigmasterol, kaempferol, tectoquinone	[90]
70	Madhuca indica Syn	Wistar rats	400 mg/kg/b.w. (oral)	2 ml/kg/b.w. (olive oil), (i.p)	Silymarin, 100 mg/kg/b.w.	T.B, SGOT, SGPT, ALP ↓	Flavonoids	[91]
71	Madhuca indica Syn	Wistar rats	300 mg/kg/b.w.	0.5 ml/kg/b.w., i.p.	Silymarin, 100 mg/kg/b.w.	SGOT, SGPT, ALP, T.B↓	Flavonoids	[92]
72	Mahonia owaken Hayata	Wistar albino rats	500 mg/kg/b.w. (oral)	1 ml/kg/b.w. (50% olive oil), i.p.	Silymarin, 200 mg/kg/b.w. (oral)	ALT, AST, MDA↓, SOD, GPx↑, TNF-a, NO↓	Berberine, palmatine, jatrorrhizine	[3]
73	Mallotus philippensis Muell-Arg	Wistar albino rats	200 mg/kg/b.w. (oral)	600 mg/kg/ml, oral	Silymarin, 25 mg/kg/b.w. (oral)	SGOT, SGPT, ALP, T.B↑, TP↑, CAT, SOD↑, LPO↓	Flavonoids, phenols, isocoumarins, bergenin	[93]
74	Memordica tuberosa Cogn	Wistar rats	400 mg/kg/b.w. (oral)	2 ml/kg/b.w(1:1 liquid paraffin), subcutaneous	Silymarin, 100 mg/kg, (oral)	ALT, AST, ALP, LDH, x-GT↓, TAG, MDA↓, GSH↑	Vitamin C, saponins, triterpenoids	[94]
75	Mentha piperita L.	Wistar rats	40 mg/kg/b.w. (oral)	1 ml/kg (olive oil), i.p.	Silymarin, 100 mg/kg/b.w.	T.B, SGOT, SGPT, ALP ↓	Flavonoids	[95]
76	Mentha arvensis Linn	Albino wistar rats	375 mg/kg/b.w (oral)	0.5 ml/kg/b.w., i.p.	Silymarin, 100 mg/kg/b.w.	SGPT, SGOT, ALP, T.B↓	Luteolin, mentholide, rutin, hesperidin, flavonoids, quercetin, isorhoidulin	[96]
77	Mimosa pudica 2009	Wistar albino rats	200 mg/kg/b.w. (oral)	1.25 ml/kg/b.w (1:1 liquid paraffin), i.p.	Silymarin, 100 mg/kg/b.w.	SPGT, SGOT, ALP, T.B↑, T.chol↑, TP↑, albumin↑	Flavonoids, alkaloids, glycosides	[97]
78	Mimosa pudica Linn	Wistar albino rats	400 mg/kg/b.w. (oral)	1 ml/kg/b.w (1:2 liquid paraffin), subcutaneous	Silymarin, 10 mg/kg/b.w. (oral)	SGOT, ALP, T.B, SGPT↓	Flavonoids, phenols, gallic acid	[98]
79	Momordica dioica Roxb	Wistar albino rats	200 mg/kg/b.w. (oral)	2 ml/kg/b.w(1:1 liquid paraffin).	Silymarin, 5 mg/kg/b.w. (oral)	ALT, ALT, ALP, T.B, MDA↓, SOD, CAT, GSH↑, Hydroperoxides↓	Flavonoids, phenolic compounds	[99]
80	Nerium oleander Linn	Wistar rats	400 mg/kg/b.w. (oral)	1 ml/kg/b.w(1:1 olive oil), i.p.	Silymarin, 100 mg/kg/b.w. (oral)	AST, ALT, ALP, T.B, MDA↓, SOD↑	Oleandrin, Oleandonic acid	[100]
81	Nicotiana plumbaginifolia L	Male chicks	200 mg/kg/b.w. (oral)	1 ml/kg/b.w (80% olive oil), i.p.	Silymarin, 100 mg/kg/b.w. (gavage)	AST, ALT, ALP, T.B, MDA↓, SOD↑	Rutin, chlorogenic acid, quercetin	[101]
s.no.	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result	Active components	Reference
-------	---------------------	-----------------------	---	----------------------------------	---	--------	---	-----------
82	Nymphaea alba. L.	Wistar albino rats	200 mg/kg/b.w. (oral)	0.5 ml/kg/b.w, i.p.	Silymarin, 100 mg/kg/b.w (oral)	MDA↓, GSH, CAT, SOD, TAC↑, TNF-α, Caspase-3↓	Phenols, flavonoids, quercetin, ellagic acid, gallic acid, kaempferol	[6]
83	Olea europaea L.	Sprague-Dawley rats	80 mg/kg/b.w. (oral)	0.2 ml/kg/b.w, i.p.	–	ALP↑, AST, ALP↑, CAT, SOD↑	Caffeic acid, diosmetin, verbascoside, oleuropein, luteolin 7-O-glucoside, rutin, luteolin 4′-O-glycoside, P-coumaric acid, vanillin	[102]
84	Origanum vulgare.	Wistar albino rats	150 mg/kg/b.w. (oral)	2 ml/kg/b.w (1:1 olive oil)	–	ALT↑, LPO↑, P-chol↑, CAT↑, SOD↑, GPx↑, GST↑	Carvacrol, thymol	[103]
85	Persea Americana mill	Wistar albino rats	200 mg/kg/day	3 ml/kg (1:1 olive oil) subcutaneous	reducdyn®, 100 mg/kg/day	ALT↑, ALP↑, TB↓, CAT↑, SOD↑, GPx↑, GST↑, Protease in carboxyl	Flavonoids	[104]
86	Phyllanthus niruri	Wistar rats	100 mg/kg/b.w. (oral)	1 ml/kg/b.w (50% in corn oil), i.p.	Silymarin, 1 mg/ml, (i.p.)	AST↑, ALT↑, LDH↑, T-chol↑, TB↓↑, TP↑↑, TAC↑↑, TNF-α↑, IL-6↑, IL-10↑, IL-13↑, GR↑↑, MDA↑, GSH↑↑, ROS↑↑	Quercetin, gallic acid, corilagin, isocorilagin, rhamnoside, brefirolin carboxylic acid	[105]
87	Physalis peruviana	Wistar albino rats	500 mg/kg/b.w. (oral)	0.5 ml/kg/b.w (olive oil), i.p.	legation® 100 mg/kg/b.w (oral)	MDA↑, SOD↑↑, NO↑, AST↑↑, ALT↑↑↑, ALP↑↑↑, TB↑↑↑, TP↑↑↑, TAC↑↑↑	Flavonoids, lupeol, ursolic acid	[106]
88	Pleogynium timorense (DQ Leenh)	Sprague-Dawley rats	300 mg/kg/b.w.	0.5 ml/kg (10% olive oil)	Silymarin 50 mg/kg/b.w.	AST↑, ALT↑↑, TAC↑↑↑	Catechin, gallic acid, kaempferol, quercetin, rutin, quercetin, β-sitosterol, lupeol	[107]
89	Pleurotus ostreatus	Wistar albino rats	200 mg/kg b.w. (i.p.)	2 ml/kg/b.w (olive oil), i.p.	–	AST↑, ALT↑↑↑, SGPT↑↑∪		
Table 2 (continued)

s.no.	Botanical name	Animal model	Maximum extract dose/route of administration	CCL4 dose/route of administration	Standard drug administered/route of administration	Result.	Active components.	Reference
94	Rubia cordifolia Linn	Sprague-Dawley rats	200 mg/kg/b.w (oral)	0.1 ml/kg/b.w, i.p.	Silymarin, 100 mg/kg/b.w, (oral).	SGPT, SGOT, SAKP, v-GT↓, GST, GR, GSH↑, MDA↓	Rubidin	[112]
95	Rumex vasicarius L	Wistar albino rats	200 mg/kg/ b.w (oral)	1.5 ml/kg/b.w (1% tween 80) i.p.	Silymarin 50 mg/kg/b.w.	SGOT, SGPT, ALP↓, TP↑, TB↓, CAT, SOD↑, MDA↓	Phenols, flavonoids	[113]
96	Semen celosia Cristatae L	Kunming mice	4.0 mg/kg/b.w (oral)	0.1% (edible oil), i.p.	Bilendate	AST, ALT, ALP, MDA↓, GSH-Px, CAT, SOD↑	Semenoside	[114]
97	Solanum trilobatum Linn	Wistar Albino rats	250 mg/ kg/ b.w (L.P)	1 ml/kg/bw(30% olive oil), i.p.	–	ALT, AST, ALP, LDH↓, TP, GSH, GPx, CAT, SOD↑, Lipid peroxide↓	Solatam, solasodine, β-solamarine, solaine	[115]
98	Solanum xantholarpum	Sprague-Dawley rats	400 mg/kg/bw (oral)	1 ml/kg (1:1 liquid paraffin)	Silymarin 100 mg/kg/b.w, (oral)	AST, ALP, T.B, MDA↓, CAT, GSH, SOD↑	Flavonoids, quercetin	[116]
99	Spondias mombim	Wistar rats	1000 mg/kg/bw (oral)	2 ml/kg/b.w. (1:1 liquid paraffin)	Silymarin 100 mg/kg/b.w, (oral)	ALT, ALP, T.B↓, GSH, CAT, SOD↑, TBARS↓	Flavonoids, phenols	[117]
100	Stachys pilifera Benth	Wistar rats	400 mg/kg/day (oral)	1 ml/kg/b.w. (50% olive oil)	–	AST, ALT, ALP, MDA↓, TP, TB↑	Flavonoids, phenylethanoid glycosides, diterpenes, terpenoids	[118]
101	Vitis thunbergii var	Male SD rats	400 mg/kg/b.w.	1.5 ml/kg/b.w (20% olive oil) i.p.	Silymarin, 200 mg/kg/bw. in carboxy methylcellulose	ALT, MDA↓, SOD, CAT, GPX, GSH↑, TNF-α, IL-1β, NO, INOS, COX-2↓	Resveratrol derivaives, polyphenols compounds, quercetin, oligostibenes	[119]
102	Xylaria nigripes(Koltz) Sacc	ICR mice	100 mg/kg/bw (intragastrically)	2 ml/kg/b.w. (40% olive oil). Subcutaneously	Silymarin, 100 mg/kg/bw, (intragastrically)	SGOT, SGPT, TBARS↓, SOD, CAT, GPX, ↑	Epicatechin, P-coumaric acid, catechin	[120]
103	Zingiber officinale (Roscoe)	Wistar rats	400 mg/kg/bw (oral)	0.7 ml/kg/b.w (11, olive oil)	Livolinfort®, 5.2 mg/kg/bw, (oral)	AST, ALT, ALP↓, TP,GSH, CAT↑	Flavonoids, 6-gingerol, shogaols	[121]
104	Zizyphus jujube	Male ICR mice	200 mg/kg/bw (intragastrically)	2 ml/kg/bw. (40% v/v olive oil), subcutaneously	Bilendate, 7.5 mg/ml/kg/bw, (intragastrically)	ALT, AST, MDA↓, SOD, CAT, GSH-Px, GSH↑	Flavonoids	[122]

↓ decrease in effect/activity; ↑ increase in effect/activity
formation of CCl₃⁺ and CHCl₃⁺ and CCl₃-OO⁻ radicals, lipid peroxidation, membrane damage, the severe derailment of intracellular Ca²⁺ sequestration, apoptosis, and fibrosis [10, 30, 31].

Traditional plants with anti-hepatotoxic potential

In this review, numerous experimental studies on the medicinal plants effectiveness to ameliorate CCl₄-induced hepatotoxicity in animal models were presented. The botanical names, ethnopharmacological and pharmacological uses of plants traditionally used to treat liver-related diseases were presented in Table 1. The comprehensive details on in vivo studies of medicinal plants with hepatoprotection against CCl₄-induced hepatotoxicity alongside the active phytochemicals and their probable mechanisms of action are presented in Table 2.

Discussion

For about three decades, extracts from different natural products have been identified to be hepatoprotective at varied doses against CCl₄-induced toxicity by reducing oxidative stress on liver enzymes. The findings from this review show that only few studies tested these natural products on hepatic cell lines (Table 2). Without separating the whole extract to identify the active components, a large number of hepatoprotective products will increase without corresponding clinical relativity [123]. There is an urgent need to study individual components of the plant extract especially in experimental animal models. The major drawback of herbal medicine is its potential hepatotoxicity in man which could cause acute to chronic liver injury with underlining mechanism of toxicity not clearly understood due to factors such as the synergistic and multi-organ targeted nature of the various components [124–127].

The protection provided by herbal plants against CCl₄-induced hepatotoxicity is basically due to the inhibitory nature of the phytochemicals present in them [70, 101]. These phytochemicals are able to inhibit the microsomal enzymes to restrict the generation of free radicals and stop lipid peroxidation through its antioxidant ability [66]. They can also enhance the regeneration of liver cells, radical scavenging, and stimulation of the anti-inflammatory ability of the liver cells against the inflammation induced by CCl₄ [102].

The treatment of the animal models with these herbal extracts showed beneficial effects through several biochemical and histological results. From the results in Table 2, it is clear that these plants extract downregulated serum liver marker enzymes like aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, and malondialdehyde (MDA) while upregulating the activity of antioxidant enzymes and total protein. The medicinal plants also downregulated the inflammatory markers expression in the hepatic cells. Some of these reported studies confirmed the hepatoprotective effectiveness of these medicinal plant products through histological reports [43, 54]. This review also reported numerous phytochemicals with possible hepatoprotective potentials ranging from flavonoids (quercetin, kaempferol), phenols, sobatum, coumarins, gallic acid, rutin, alkaloids, saponins, vitamin C, caffeic acid, etc. This review presented a number of plant species with ethnopharmacological relevance in the treatment of liver injury and their medicinal/pharmacological uses from literature.

Conclusion

We, therefore, conclude that there are a variety of phytochemicals in plant products with hepatoprotective activity against CCl₄-induced toxicity by downregulation of liver marker enzymes, and activation of antioxidative capacity of the liver cells that leads to the restoration of the liver architecture.

Future perspectives

There is need to validate the efficacy of some of the reported active components which can be likely candidate for therapeutic purposes. Research should move from whole plant extract experiment to isolation of bioactive components and testing the extract on culture cell lines.

Abbreviations

ALT: Alanine transaminase; AST: Aspartate transaminase; ALP: Alkaline phosphatase; γ-GT: Gamma glutamyltransferase; LDH: Lactate dehydrogenase; MDA: Malondialdehyde; GSH: Glutathione; GPx: Glutathione peroxidase; CAT: Catalase; SOD: Superoxide dismutase; POD: Peroxidase; GST: Glutathione S-transferase; GSTα: Glutathione S-transferase alpha; GR: Glutathione reductase; TBARS: Thiobarbituric acid reactive substance; NO: Nitric oxide; H₂O₂: Hydrogen peroxide; TNF-α: Tumor necrosis factor alpha; NF-κB: Nuclear factor-kappa B; INOS: Inducible nitric oxide synthase; COX-2: Cyclooxygenase-2; IL-1β: Interleukin-1 beta; TNF-α: Tumor necrosis factor alpha; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; HD-1: Heme oxygenase-1; NQO1: Quinine oxidoreductase; p-ERK: Extracellular signal-regulated kinase; p-JNK: C-jun N-terminal kinase; CYT: Cytochrome; DT-diaphorase: A phase II enzyme; T-cho: Total cholesterol; TG: Triglycerides; LDL: Low-density lipoprotein; TAG: Triacylglycerol; HDL: High-density lipoprotein; TP: Total protein; TB: Total bilirubin; XOD: Xanthine oxidase; Vit. A: Vitamin A; Vit. E: Vitamin E; Vit. C: Vitamin C; CNS: Central nervous system.

Acknowledgements

Not applicable.

Authors’ contributions

CEU conceived the idea and wrote the initial draft. SMS did the literature search and data collection. Both authors proof read the final manuscript.

Funding

Not applicable.
Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declared no competing interests.

Received: 1 December 2020 Accepted: 23 November 2021
Published online: 09 December 2021

References
1. Zhang X, Feng J, Su S, Huang L (2020) Hepatoprotective effects of *Camellia* *nissima* aqueous ethanol extract CCl4-induced acute liver injury in SD rats related to Nrf2 and NF-kB signaling. Pharm Biol 58(1):239–246
2. Wang S, Luan JJ, Lv XW (2019) Inhibition of endoplasmic reticulum stress attenuated ethanol-induced exosomal miR-122 and acute liver injury in mice. Alcohol Alcohol 54:465–471
3. Chao J, Lee M-S, Amagaya S, Liao J-W, Ho L-K, Peng W-H (2009) Hepatoprotective effect of *Shiadagano* on acute liver injury induced by carbon tetrachloride. Am J Chin Med 37(6):1085–1097
4. Zhang H, Yu C-H, Jiang Y-P, Peng C, He K, Tang J-Y, Xin H-L (2012) Protective effects of polydatin from *Polygonum cuspidatum* against carbon tetrachloride-induced liver injury in mice. PLoS One 7(9):e46574. https://doi.org/10.1371/journal.pone.0046574
5. Batool R, Khan MR, Majid M (2017) *Euphoria dracunculoides* L. abrogates carbon tetrachloride induced liver and DNA damage in rats. BMC Complement Altern Med 17:23. https://doi.org/10.1186/s12906-017-1562-2
6. Bakr RO, El-Naa MM, Zaghloul SS, Omar MM (2017) Profile of bioactive compounds in *Nymphapha obi* L. leaves growing in Egypt: hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complement Altern Med 17:52. https://doi.org/10.1186/s12906-017-1560-4
7. Hisouna AB, Dhibi S, Dhifi W, Saad RB, Brini F, Hfaidh N, da Silva Almeida JRG, Mnif W (2020) Protective effects of *Euphoria dracunculoides* L. on acute liver injury induced in rats. BMC Complement Altern Med 17:52. https://doi.org/10.1186/s12906-017-1560-4
8. Jones I (1983) Chloroform anaesthesia in Liverpool. Anaesthesia 38:578–580
9. Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for carbon tetrachloride. U.S. Department of Health and Human Services, Public Health Service, Atlanta
10. Clawson GA (1989) Mechanism of carbon tetrachloride toxicity. Pathol Immunopathol Res 8:104–112
11. Recknagel R, Lombardi B (1961) Studies of biochemical changes in subcellular particles of rat liver and their relationship to a new hypothesis regarding the pathogenesis of carbon tetrachloride fat accumulation. J Biol Chem 236:564–569
12. Judah J (1969) Biochemical disturbances in liver injury. Br Med Bull 25:274–277
13. de Vries J (1983) Induction and prevention of biochemical disturbances in hepatic necrosis. Trends Pharmacol Sci 4:393–394
14. Smuckler E, Iseri O, Bendit E (1962) An intracellular defect in protein synthesis induced by carbon tetrachloride. J Exp Med 116:55–72
15. Moore L, Chen J, Knapp H, Landon E (1975) Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem 250:4562–4568
16. Fulceri R, Benedetti A, Compotti M (1984) On the mechanisms of the inhibition of calcium sequestering activity of liver microsomes in bromothrichloromethane intoxication. Res Commun Chem Pathol Pharmacol 46:235–243
17. Christie G, Judah J (1954) Mechanism of action of CCl4 on liver cells. Proc R Soc Lond Ser B 142:241–257
18. de Groot L, Littauer A, Hugo-Wissemann D, Wissemann P, Noll T (1988) Lipid peroxidation and cell viability in isolated hepatocytes in a redesigned oxystat system: Evaluation of the hypothesis that lipid peroxidation, preferentially induced at low oxygen partial pressure, is decisive for CCl4 liver cell injury. Arch Biochem Biophys 264:591–599
19. Masuda Y, Nakamura Y (1990) Effects of oxygen deficiency and calcium omission on carbon tetrachloride hepatotoxicity in isolated perfused livers from phenobarbital-pretreated rats. Biochem Pharmacol 40:1865–1876
20. Kieczka H, Kappus H (1980) Oxygen dependence of CCl4-induced lipid peroxidation *in vitro* and *in vivo*. Toxicol Lett 5:191–196
21. Dianzani MU, Poli G (1985) Lipid peroxidation and haloalkylation in CCl4-induced liver injury. In: Poli G, Cheeseman KH, Dianzani MU, Slater TF (eds) Free Radicals in Liver Injury. IRL Press, Oxford
22. Dianzani MU (1984) Lipid peroxidation and haloalkylation: Two distinct mechanisms for CCl4-induced liver damage. In: Calandra S, Carulli N, Salviodi G (eds) Liver and Lipid Metabolism. Excerpta Medica, Elsevier, Amsterdam, New York, Oxford
23. Marinini UM, Pronzato MA, Cortalasso D, Zicca-Cadoni A, Nanni G, Poli G, Chiapotteto E, Albano E, Biasi F, Dianzani MU (1985) CCl4-induced early functional impairments of rat liver Golgi apparatus. In: Poli G, Cheeseman KH, Dianzani MU, Slater TF (eds) Free Radicals in Liver Injury. IRL Press, Oxford
24. Cheeseman KH, Albano EF, Tomasi A, Slater TF (1985) Biochemical studies on the metabolic activation of halogenated alkanes. Environ Health Perspect 84:65–81
25. Boll M, Weber LWD, Becker E, Stampfl A (2001a) Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C J Biosci 56(7-8):649–659
26. Ozaki M, Masuda Y (1993) Carbon tetrachloride-induced cell death in perfused livers from phenobarbital-pretreated rats under hypoxic conditions and various ionic milieu. Further evidence for calcium-dependent irreversible changes. Biochem Pharmacol 46:2039–2049
27. Liu SL, Degli Esposti S, Yao T, Diehl AM, Zern MA (1995) Vitamin E therapy of acute CCl4-induced hepatic injury in mice is associated with inhibition of nuclear factor Kappa B binding. Hepatology 22:1474–1481
28. Czaja MJ, Xu J, Alt E (1995) Prevention of carbon tetrachloride-induced liver injury by soluble tumor necrosis factor receptor. Gastroenterology 108:1849–1854
29. Kull FC, Cuacresas P (1981) Possible measurements of internalization in the mechanism of *in vitro* cytotoxicity of tumor necrosis serum. Cancer Res 41:4885–4890
30. Boll M, Weber LWD, Becker E, Stampfl A (2001b) Pathogenesis of carbon tetrachloride-induced hepatocyte injury. Bioactivation of CCl4 by cytochrome P450 and effects on lipid homeostasis. Z Naturforsch 56c:111–121
31. Boll M, Weber LWD, Becker E, Stampfl A (2001c) Hepatocyte damage induced by carbon tetrachloride. Inhibited lipoprotein secretion and altered lipoprotein composition. Z Naturforsch 56c:283–290
32. Al G, Liu Q, Hua W, Huang Z, Wang D (2013) Hepatoprotective evaluation of the total flavonoids extracted from flowers of *Aegle marmelos* manihot (L) Medic. *In vivo* and *in vitro* studies. J Ethnopharmacol 146:794–802
33. Arbab AH, Parvez MK, Al-Dosai AS, Al-Rehaili AJ, Al-Sohabani M, Zarouq EE, Alsaid MS, Rafatullah S (2015) Hepatoprotective and antiviral efficacy of *Acazia millifera* leaves fractions against Hepatitis B virus. Biomed Res Int. https://doi.org/10.1155/2015/929131
34. Singh R, Rao HS (2008) Hepatoprotective effect of the pulp/seed of *Aegle marmelos* corea ex *Roxb* against carbon tetrachloride induced liver damage in rats. Inter J Green Pharm 2:232–234
35. Rathee D, Kamboj A, Sidhu S (2018) Augmentation of hepatoprotective potential of *Aegle marmelos* in combination with piperine in carbon tetrachloride model in wistar rats. Chem Cent J 12:94. https://doi.org/10.1186/s3065-018-0463-9
79. Hsieh PC, Ho YL, Huang GJ, Huang MH, Chiang YC, Huang SS, Hou WC, Chang YS (2012) Hepatoprotective activity of the aqueous extract of *Flemingia macrophylla* on carbon tetrachloride-induced acute hepatotoxicity in rats through anti-oxidant activities. Am J Chin Med 40(2):349–365

80. Khattab HAH (2012) Effect of *Ginkgo biloba* leaves aqueous extract on carbon tetrachloride induced acute hepatotoxicity in rats. Egypt J Hosp Med 48:483–495

81. Nwodu LL, Oboma YL, Elmorey C, Carter WG (2018) Alleviation of carbon tetrachloride-induced hepatocellular damage and oxidative stress with a leaf extract of *Glyphae brevis* (*Tiliaciaceae*). J Basic Clin Physiol Pharmacol 29(6):609–619

82. Duh P-D, Lin S-L, Wu S-C (2011) Hepatoprotective of *Graptopterum paraguayense* E. Walther on CCl₄-induced liver damage and inflammation. J Ethnopharmacol 134:379–385

83. Zhang W, Zhang X, Xie J, Zhao S, Liu J, Liu H, Wang J, Wang Y (2017) Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities. Food Funct. https://doi.org/10.1039/C7FO03999D

84. Shahjahan M, Vani G, Shyamala Devi CS (2005) Protective effect of *Mentha arvensis* Linn. on carbon tetrachloride induced acute hepatotoxicity in rats. J Ethnopharmacol 105:105–109

85. Khan RA, Khan MR, Ahmed M, Saheen S, Shah AN, Shah MS, Bokhari J, Rashid U, Ahmed B, Jan S (2012) Hepatoprotection with a chloroform extract of *Launaea procumbens* against CCl₄-induced injuries in rats. BMS Compl Altern Med 12:114 http://www.biomedcentral.com/1472-6882/12/114

86. Mohamed MA, Bidin IM, Mohamad AH, Hassan HM (2016) Effects of *Lawsonia inermis* L. (*Henna*) leaves' methanolic extract on carbon tetrachloride-induced hepatotoxicity in rats. J Tertiart Ethnopharma 5(1):22–26. https://dx.doi.org/10.4172/2155-9671.1000043

87. Hossain CM, Maji HS, Chakraborty P (2011) Hepatoprotective activity of *Leucas cephalotes* spreng on CCl₄-induced hepatic injury in Wistar rats. Asian J Pharm Clin Res 4(3):106–109

88. Salari GJ, Daudhreivy A, Seth AK, Maheshwari R, Shah N, Aundhia C (2010) Hepatoprotective effect of *Leucas cephalotes* spreng on CCl₄ induced liver damage in rats. Pharmacology Online 1:30–38

89. Uluganathan I, Divya D, Radha K, Vijayakumar TM, Dhanaraju MD (2010) Protective effect of *Luffa acuangular* (Var) amara against carbon tetrachloride-induced hepatotoxicity in experimental rats. Res J Biol Sci 5(9):615–624

90. Willis PJ, Asha VV (2006) Protective effect of *Lygodium flexuosum* (L.) Sw. extract against carbon tetrachloride-induced acute liver injury in rats. J Ethnopharmacol 108:320–326

91. Chaudhary A, Bhandari A, Pandurangan A (2011) Hepatic activity of methanolic extract of *Madhuca indica* on carbon tetrachloride-induced hepatotoxicity in rats. Pharmacology Online 1:803–808

92. Patel PK, Sahu J, Prajapati NK, Dubey BK, Alia A (2012) Hepatoprotective effect of ethanolic and hydro alcoholic leaf extract of *Madhuca indica* in carbon tetrachloride intoxicated rat. Res J Pharmaco Pharmacodynamics 4(5):311–314

93. Ramakrishna S, Geetha KM, Bhaskargopal PVVS, Ranjit Kumar P, Charan Madav P, Umachandr L (2011) Effect of *Mallotus philippensis* Muell-Arag leaves against hepatotoxicity of carbon tetrachloride in rats. JPSR 2(2):74–83

94. Pramod K, Deval RG, Lakshmayya RSS (2008) Antioxidant and hepatoprotective activity of tubers of *Momordica tuberosa* Cogn. against CCl₄-induced liver injury in rats. Indian J Exp Biol 46:510–513

95. Bellaisoued S, Houssna AB, Athmouni K, Pelt J, Ayadi FM, Rebai T, Elfeki M (2015) Hepatoprotective and antioxidant activity of methanolic extract of flowers of *Nerium oleander* against CCl₄-induced liver injury in rats. Asian Jt J Trop Med 5(9):677–683

96. Abdus SS, Rahmat AK, Moustah A, Nawshad M (2016) Hepatoprotective and antioxidant activity of *Nicotiana plumaginifolia* Linn. against carbon tetrachloride-induced injuries. Toxicol Ind Health 32(2):292–298. https://doi.org/10.1177/0748233714504848

97. Ustuner D, Colak E, Dincer M, Tekin N, Donmez DB, Akyuz F, Colak E, Kolac UK, Entek D, Ustuner MC (2018) Post treatment effects of *Olea europaea* L. leaf extract on carbon tetrachloride-induced liver injury and oxidative stress in rats. J Med Food 00(0):1–6

98. Sikander M, Malik S, Parveen K, Ahmad M, Yadav D, Hafeez B, Bansal M (2013) Hepatoprotective effect of *Ostegaria vulgaris* in Wistar rats against carbon tetrachloride-induced hepatotoxicity. Protoplasma 250:483–493

99. Wills P, Daudhreivy A, Seth AK, Maheshwari R, Shah N, Aundhia C (2010) Hepatoprotective effect of *Ostegaria vulgaris* leaves against CCl₄-induced damage in rats. Afr J Tradit Complement Altern Med 7:237–244

100. Ezzat MM, Okba MM, Ahmed SH, El-Banna AP, Mohamed SO, Ezzat SM (2020) In vitro hepatoprotection of *Anacardium occidentale* seeds against carbon tetrachloride-induced acute liver damage in rats. Am J Pharm Res 10(5):378–392

101. Abdel Raouf GF, Sadi AA, Mohamed KY, Gomaa HA (2020) Phytoconstituents and bioactivities of the bark of *Pleuropogon timorensis* (DC) Leenh (*Anacardiaceae*). J Herbsmed Pharmacol 9(1):20–27

102. Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, *Pleurotus ostreatus*, on CCl₄ induced liver injury in rats. Food Chem Toxicol 44:1989–1996

103. Mahmud ZA, Bachor QC, Qais N (2012) Antioxidant and hepatoprotective activities of ethanolic extracts of leaves of *Peruna esculenta* Roxb against carbon tetrachloride-induced liver damage in rats. J Young Pharm 4(1). https://doi.org/10.4103/0975-1483-103460

104. Syed SN, Rizvi W, Kumar A, Khan AA, Moiin S, Ahsan A (2014) In vitro antioxidant and in vivo hepatic protective activity of leave extract of *Rhapontichristus nitavi* in rats using CCL₄ model. Afr J Tradit Complement Altern Med 11(3):102–106

105. Kalegari M, Gemin CAB, Araujo-silva N, de Brito NJ, Lopez JA, Tozzeto S, Almeida M, Migue IMD, Stien D, Miguel OG (2014) Chemical composition, antioxidant activity and hepatoprotective potential of *Rourea induta* planch (*Connaraceae*) against CCl₄-induced liver injury in female rats. Nutr 30:173–718

106. Rao GMM, Rao CV, Pushpangadan P, Shrivakar A (2006) Hepatoprotective effects of rubadin, a major constituent of *Rudia cordifolia* Linn. J Ethnopharmacol 103:484–490

107. Tukiaoppo NK, Londonkar RL, Nayaka HB, Kumar SCB (2015) Cytotoxicity and hepatoprotective attributes of methanolic extract of *Rumex vesicarius* L. Biol Res 48(19). https://doi.org/10.1186/s40659-015-0009-8

108. Sun ZL, Gao GL, Xia YF, Qiao ZY (2011) A new hepatoprotective saponin from *Semen celosia cristata*. Fitoterapia 82(4):591–594

109. Shahjahan M, Sabitha KE, Jainu M, Shyamala Devi CS (2004) Effect of *Solanium tuberosum* against carbon tetrachloride induced hepatic damage in albino rats. Indian J Med Res 120:194–198

110. Gupta RK, Hussain T, Panigrahi G, Das A, Singh GN, Sweety K, Faiyazuddin MD, Rao CV (2011) Hepatoprotective effect of *Solanium xanthocar- pum* fruit extract against CCl₄-induced acute liver toxicity in experimental rats. Asian Pac J Trop Med 4(12):964–968

111. Nwodu LL, Elmosry E, Oboma YI, Carter WG (2018) Hepatoprotective and antioxidant activities of *Spondias mombin* leaf and stem extracts against carbon tetrachloride-induced hepatotoxicity. J Taibah Univ Med Sci 13(3):262–271

112. Kokhdan EP, Ahmad K, Sadeghi H, Dadgary F, Danene N, Aghamali MR (2017) Hepatoprotective effect of *Stachys pilifera* ethanol extract
in carbon tetrachloride-induced hepatotoxicity in rats. Pharm Biol 55(1):1389–1393

119. Deng J-S, Chang Y-S, Wen C-L, Liao J-C, Hou W-C, Amagaya S, Huang S-T, Huang G-J (2012) Hepatoprotective effect of the ethanol extract of Vitis thunbergii on carbon tetrachloride-induced acute hepatotoxicity in rats through anti-oxidative activities. J Ethnopharmacol 142:795–803

120. Song A, Ko HJ, Lai MN, Ng LT (2011) Protective effects of Wu-Liang-Shen (Xylaria nigripes) on carbon tetrachloride-induced hepatotoxicity in mice. Immunopharmacol Immunotoxicol 33(3):453–460

121. Oke GO, Abiodun AA, Imafidon CE (2019) Zingiber officinale (Rosco) mitigates CCl4-induced liver histology and biochemical derangements through antioxidant, membrane-stabilizing and tissue-regenerating potential. Toxicol Rep 6:416–425

122. Shen X, Tang Y, Yang R, Yu L, Fang T, Duan J (2009) The protective effect of Zizyphus jujube fruit on carbon tetrachloride-induced hepatic injury in mice by anti-oxidative activities. J Ethnopharmacol 122:555–560

123. Chang L, Xu D, Zhu J, Ge G, Kong X, Zhou Y (2020) Herbal therapy for the treatment of acetaminophen-associated liver injury: recent advances and future perspectives. Front Pharmacol 11:313. https://doi.org/10.3389/fphar.2020.00313

124. Stickel F, Shouval D (2015) Hepatotoxicity of herbal and dietary supplements: an update. Arch Toxicol 89(6):851–865

125. Janghel V, Patel P, Chandel SS (2019) Plants used for the treatment of icterus (jaundice) in Central India: A review. Ann Hepatol 18:658–672

126. Zhu J, Chen M, Borlak J (2019) The landscape of hepatobiliary adverse reactions across S3 herbal and dietary supplements reveals immunemediated injury as a common cause of hepatitis. Arch Toxicol 94(1):273–279

127. Shakya AK (2020) Drug-induced hepatotoxicity and hepatoprotective medicinal plants: a review. Indian J Pharm Edu Res 54(2):234–247

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com