SUPPLEMENTARY MATERIAL

Application of near infrared spectroscopy (NIR), X-Ray Fluorescence (XRF) and chemometrics to the differentiation of marmora samples from the Mediterranean basin

Federico Marini1, Mauro Tomassetti1,*, Mario Piacentini2, Luigi Campanella1, Paola Flamini1

1 Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, I-00185 Rome, Italy

2 Dept. of Basic Applied Sciences for Engineering, University of Rome “La Sapienza”, Via Scarpa 14, I-00161 Roma – Italy.

ABSTRACT
Near Infrared (NIR) and X Ray Fluorescence (XRF) spectra were recorded for 15 different samples of marmora, from the Mediterranean Basin and of different colors. After appropriate pre-treatment (SNV transform + second derivative), the results were subjected to Principal Component Analysis (PCA) treatment with a view to differentiating them. The observed differences among the samples were chemically interpreted by highlighting the NIR wavelengths and minerals, respectively, contributing the most to the PCA models. Moreover, a mid-level data fusion protocol allowed integrating the information from the different techniques and, in particular, to correctly identify (based on the distance in the score space) three test samples of known type. Moreover, it should be stressed that positive results on the differentiation and identification of marmora were obtained using two completely non-invasive, non-destructive and relatively inexpensive techniques, which can also be used in situ.

KEYWORDS
Marmora; Near infrared spectroscopy (NIR); X-Ray Fluorescence (XRF); Principal component analysis (PCA); Chemometrics.
*Corresponding author:

tel. +39 06 49913722

fax + 39 06 49913725.

e-mail: mauro.tomassetti@uniroma1.it
Samples	Inhomogeneity	Provenance	Dominant Colour
Giallo antico (1)	Inhomogeneous	Africa	Pinkish
Breccia verde (2)	Highly Inhomogeneous	Asia	Grey/Green
Serpentino (3)	Highly Inhomogeneous	Asia	Dark green
Portosante (4)	Highly Inhomogeneous	Asia	Burgundy
Cipollino (5)	Slightly Inhomogeneous	Asia	Grey/light green
Bordiglio (6)	Inhomogeneous	Italy	Light grey
Calcare (8)	Slightly Inhomogeneous	Italy	White/yellowish
Basalto (9a and 9b)	Inhomogeneous	Italy	Brown/light green
Porfido rosso (10)	Inhomogeneous	Africa	Dark red
Africano (11)	Highly Inhomogeneous	Africa	Light green/reddish
Granito grigio (12)	Fairly Inhomogeneous	Africa	Green
Breccia grigia delle Alpi (13)	Highly Inhomogeneous	Italy	Black
Rosso antico (14)	Fairly Inhomogeneous	Africa	Fire brick
Travertino (16)	Slightly Inhomogeneous	Italy	Very light yellow
Figure S1 - PCA analysis on NIR spectra after SNV and first derivative preprocessing. Spectral-like graphical representation of the variable loadings onto the first two components.
Figure S2 - PCA analysis on XRF data after autoscaling preprocessing: Loadings plot for the first two components.
Figure S3 – Picture of the 15 analyzed marmora samples. Sample numbering corresponds to the one reported in Table 1: Giallo antico (1); Breccia verde (2); Serpentino (3); Portosante (4); Cipollino (5); Bordiglio (6); Calcare (8); Basalto (9a and 9b); Porfido rosso (10); Africano (11); Granito grigio (12); Breccia grigia delle Alpi (13); Rosso antico (14); Travertino (16).
Figure S4 – NIR spectra collected on marmora samples before (a) and after (b) pretreatment by SNV and first derivative; (c) XRF spectra collected on marmora samples (the inset contains a magnification of the low energy region). Legend: black continuous line – reference marmora; red dashed line - test samples.