Residue Classes of the PPT Sequence

Subhash Kak

Abstract. Primitive Pythagorean triples (PPT) may be put into different equivalence classes using residues with respect to primes. We show that the probability that the smaller odd number associated with the PPT triple is divisible by prime \(p \) is \(\frac{2}{(p+1)} \). We have determined the autocorrelation function of the Baudhāyana sequences obtained from the residue classes and we show these sequences have excellent randomness properties. We provide analytical explanation for the peak and the average off-peak values for the autocorrelation function. These sequences can be used specifically in a variety of key generation and distribution problems and, more generally, as pseudorandom sequences.

Introduction

The theory of primitive Pythagorean triples (PPTs) [1],[2],[3] is related to other number theory areas such as Gaussian numbers, modular forms and spinors [4]. A Pythagorean triple \((a, b, c)\) is a set of integers that are the sides of a right triangle and thus \(a^2 + b^2 = c^2 \). In this triple \(a \) is the smaller of the two odd numbers in the triple.

A primitive Pythagorean triple (PPT) consists of numbers that are relatively prime. To generate PPTs, one may start with different odd integers \(s \) and \(t \) that have no common factors and compute:

\[
\begin{align*}
a &= st; \\
b &= \frac{s^2 - t^2}{2}; \\
c &= \frac{s^2 + t^2}{2}
\end{align*}
\]

In earlier papers [2],[3] we considered properties of PPTs that had been put into 6 classes based on divisibility by 3, 4, and 5. Once the sequence of the PPTs has been listed in terms of the classes, one can determine the separation between elements of the same class and thus obtain a numerical sequence. We have named these sequences Baudhāyana sequences [3] after the ancient mathematician who described Pythagorean triples before Pythagoras [5],[6]. (For those not familiar with the historical context, please see [7]-[10].)

Here we consider properties of residue classes of the PPT sequence. We show that the probability that a PPT is divisible by prime \(p \) is \(\frac{2}{(p+1)} \). We provide an analytical explanation for the general characteristics of the autocorrelation function and show that just like the sequences in 6 classes that were considered in [2], these sequences have excellent randomness properties.
Residue Classes

We first prove a result on the number \(a \) (of the triple \(a, b, c \)) of PPTs for it to have zero residue with respect to mod \(p \). This result is useful in determining the characteristics of the autocorrelation function.

Theorem. The probability that \(a \) (of the triple \(a, b, c \)) of the PPTs is exactly divisible by prime \(p \) is \(\frac{2}{p + 1} \).

Proof. PPTs are generated by the array shown below where the entries are odd.

\[
\begin{array}{ccccccc}
3 & 5 & 7 & 9 & 11 & 13 & \ldots \\
1 & (1,3) & (1,5) & (1,7) & (1,9) & (1,11) & (1,13) & \ldots \\
3 & & (3,5) & (3,7) & (3,11) & (3,13) & \ldots \\
5 & & & (5,7) & (5,9) & (5,11) & (5,13) & \ldots \\
t & 7 & & & (7,9) & (7,11) & (7,13) & \ldots \\
9 & & & & & (9,11) & (9,13) & \ldots \\
11 & & & & & & (11,13) & \ldots \\
\ldots & & & & & & & \ldots \\
\end{array}
\]

Table 1. Array of PPTs ordered by \(s \) and \(t \) numbers [note that (3,9) is not a PPT]

For prime \(p \), the number of a divisible entry along the horizontal and vertical directions will occur every \(p \) times. Of these \(p^2 \) items, exactly one is divisible by the corresponding \(s \) and \(t \) elements that are multiples of \(p \) and thus it does not qualify to be PPT; in other words we need to consider only \(p^2 - 1 \) items. There are \(p - 1 \) items in one row and \(p - 1 \) items in a column that are divisible by \(p \) for a total of \(2(p - 1) \) items. Therefore, in each such repeating two-dimensional pattern, the number of elements that are divisible by \(p \) divided by total elements that qualify as PPT is:

\[
\frac{2(p - 1)}{p^2 - 1} = \frac{2}{p + 1}.
\]

The value will be closer to the above as the number of points in the PPT sequences increases for then the effect of the items close to the diagonal will be reduced. A list of the first 100,000 PPTs that are exactly divisible by prime numbers in the range 3 through 29 is given in Table 2.
Table 2. Number of elements exactly divisible by primes in the top row (from 3 to 29)

Divisor (right) Length (below)	3	5	7	11	13	17	19	23	29
1000	514	341	255	180	153	116	116	80	80
2000	1035	672	505	384	324	227	227	171	117
3000	1537	1004	751	512	472	329	329	277	208
4000	2017	1349	992	674	595	462	381	320	240
5000	2772	1832	1405	947	797	640	544	448	376
10000	4997	3321	2481	1626	1431	1091	951	875	609
15000	7901	5192	3921	2619	2234	1818	1550	1372	1106
20000	10264	6857	5113	3327	2885	2255	2094	1773	1382
25000	12628	8424	6385	4248	3585	2883	2519	2110	1760
30000	15378	10241	7608	5130	4357	3424	2948	2581	1941
40000	21375	14267	10658	7247	6153	4745	4264	3513	2772
50000	26271	17503	13034	8783	7584	5792	5282	4544	3401
60000	30809	20554	15480	10110	8804	6828	6303	5157	3986
70000	35757	23842	17881	11836	10096	8072	7186	5836	4566
80000	40102	26732	20210	12393	11428	8848	7853	6598	5265
90000	45664	30441	22860	15217	13313	10199	9193	7753	6061
100000	50745	33845	25209	16769	14296	11046	9983	8625	6673

Table 2. Number of PPTs divisible by primes 3 through 29
For these primes, due to the boundary effect, the proportion would depart from the expected value of $\frac{2}{p+1}$ as the size of the prime increases. This is borne out by the entries of Table 2.

The problem in the divisibility of PPTs by composite numbers is slightly complicated as several other numbers in the group may share a divisor with the PPT. This interesting case will be taken up elsewhere.

Baudhāyana sequences for residue classes

We now consider Baudhāyana sequences for residues with respect to primes 3, 5, and 7.

Example 1. First consider residues of a with respect to 3 in the increasing order of c.

If $a \mod 3 = 0$; Class A,
If $a \mod 3 = 1$; Class B,
If $a \mod 3 = 2$; Class C

The sequence obtained when indexed by increasing c:

ACAACAABAACACABAAACCAAACACACAAABACACACABAAACAAACACAAAACABCAACCAC
ABAACCACAABAAAACABCACACAAAAACCAACCCABAAACAAACBAAACACABCAACAC
ABBAAACACAABAAA.......

The numerical sequence corresponding to As is: 2 1 2 1 2 2 1 1 ... We can now compute the non-normalized autocorrelation function:

$$C(k) = \frac{1}{n+1} \sum_{i=0}^{n} a(i)a(i+k)$$

![Figure 1. Autocorrelation of Class A for residue with respect to 3](image-url)
For a sequence of length \(n \), the number of A’s in the sequence is \(n/2 \). Therefore, the average distance between two As is 2. The autocorrelation function for non-zero values of the argument to be approximately 4:

\[
C(k) = E(a(i))E(a(i + k)) \approx 2 \times 2 \approx 4 \quad \text{(when \(i \neq k \))}
\]

The value of \(C(0) \) may be estimated by considering the separation between As as a random variable. It has a probability of \(\frac{1}{2} \) for 2 and for other values we may take the probability to go down as a power series of one-fourth, one-eighth, one-sixteenth, and so on.

\[
C(0) = \frac{1}{2} \times 4 + \frac{1}{4} \times 1 + \frac{1}{8} \times 9 + \frac{1}{16} \times 16 + \ldots = 6.7
\]

The actual value is somewhat less than this (Figure 1), which means that the assumption about the probability distribution made by us is not the best one.

If we consider the number of Bs and Cs in the sequence, the average separation between two Bs and Cs is 4. This makes the function for non-zero values of the argument to be approximately 16 as we find in Figure 2.

![Figure 2. Autocorrelation of Class B for residue with respect to 3](image)

Example 2. Consider residues of \(a \) with respect to 5 in the increasing order of \(c \)

- If \(a \mod 5 = 0 \); Class A,
- If \(a \mod 5 = 1 \); Class B,
- If \(a \mod 5 = 2 \); Class C,
- If \(a \mod 5 = 3 \); Class D,
- If \(a \mod 5 = 4 \); Class E
The sequence obtained when indexed by increasing c:

DAACBAEABDDADCEABACADDBAECDAACDBBBAEACDEABBACDAADDABEACC
AAABCABCECCADCBABBEDDAACCEEAABDDADDABBACCEBEAEACCBBAABEDCA
CDAEBADDA55EEDCDAADCAEBECDDDEABBAC..........

For a sequence of length \(n \), the number of A's in the sequence is \(n/3 \). Therefore, the average distance between two As is 3. The function for non-zero values of the argument will be approximately 9 (see Figure 3). The function for non-zero values of the Bs, Cs, Ds and Es will be approximately 36.

![Figure 3](image-url)

Figure 3. Autocorrelation of Class A for residue with respect to 5

Example 3. Consider residues of \(a \) with respect to 7 in the increasing order of \(c \)

If \(a \mod 7 = 0 \); Class A,
If \(a \mod 7 = 1 \); Class B,
If \(a \mod 7 = 2 \); Class C,
If \(a \mod 7 = 3 \); Class D,
If \(a \mod 7 = 4 \); Class E,
If \(a \mod 7 = 5 \); Class F,
If \(a \mod 7 = 6 \); Class G

The sequence obtained when indexed by increasing c:

DFBAAACDEFGAECBABFADDCCBBAEBGEGFAAEDAECDCCGDAEAEFBBABFGAC
CCADAGBDDBDFADBCABECGBAEGBAFFCEEDABDFACBADDCCBGDAEAEFBBABFGAC
GAEFGAGFAACDCGCGBECDGDAAFDFDDABDFFGAG.........
For a sequence of length n, the number of A's in the sequence is $n/4$. Therefore, the average distance between two As is 4. The function for non-zero values of the argument will be approximately 16 (Figure 4). The function for non-zero values of the Bs, Cs, Ds, Es, Fs and Gs will be approximately 64.

Conclusions

The paper shows that when we divide the PPTs into residue classes they exhibit excellent randomness properties for all the classes. We show that the probability that a (of the PPT triple a,b,c) is divisible by prime p is $2/(p+1)$. We have determined the autocorrelation function of the Baudhāyana sequences obtained from the residue classes and we show these sequences have excellent randomness properties. We provide analytical explanation for the peak and the average off-peak values for the autocorrelation function. Since PPTs can be seen most naturally as two-dimensional arrays (with holes when the gcd is not 1), the work reported here can be a different starting point for array computation [11]-[14].

The research in this paper can also be seen from the interesting perspective of considering primality with respect to some specified non-geometrical property of an array of odd numbers. We stress “non-geometrical” since primality can be trivially defined in terms of prime number of regular partitions of an array. In non-geometrical partition of the kind considered here for the s and t values of Table 1, the equivalence classes with respect to different primes are not defined in an obvious geometric way.

Acknowledgement. I thank Monisha Prabhu for helping with the computations associated with this research.
References

1. F. J. M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices. Math. Centrum Amsterdam Afd. Zuivere Wisk, ZW-011, 1963.
2. S. Kak, Pythagorean triples and cryptographic coding. 2010. arXiv:1004.3770
3. M. Prabhu and S. Kak, Random sequences from primitive Pythagorean triples. 2012. arXiv:1211.2751
4. A. Trautman, Pythagorean spinors and Penrose twistors. In The Geometric Universe, Edited by S.A. Hugget, L.J. Mason, K.P. Tod, S.T. Tsou, and N.M.J. Woodhouse, Oxford University Press, 1998.
5. J.J. O’Conner and E.F. Robertson, Baudhayana. History of Mathematics Project. http://www-history.mcs.st-and.ac.uk/~history/Biographies/Baudhayana.html
6. A. Seidenberg, The origin of mathematics. Archive for History of Exact Sciences 18: 301-342, 1978.
7. S. Kak, On the chronology of ancient India. Indian Journal of History of Science 22: 222-234, 1987.
8. S. Kak, Birth and early development of Indian astronomy. In Astronomy Across Cultures: The History of Non-Western Astronomy, Helaine Selin (editor). Kluwer Academic, Boston, 2000, pp. 303-340.
9. T.R.N. Rao and S. Kak, Computing Science in Ancient India. Munshiram Manoharlal, New Delhi, 2000.
10. S. Kak, The golden mean and the physics of aesthetics. Foarm Magazine 5: 73-81, 2006; arXiv:physics/0411195v3
11. M.L. Fredman, The complexity of maintaining an array and computing its partial sums. Journal of the ACM 29: 250-260, 1982.
12. S. Kak and N.S. Jayant, On speech encryption using waveform scrambling. Bell System Technical Journal 56: 781-808, 1977.
13. S. Kak, Multilayered array computing. Information Sciences 45, 347-365, 1988.
14. S. Kak, A two-layered mesh array for matrix multiplication. Parallel Computing 6, 383-385, 1988.