Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review

Viral Maru1, Uma Dixit2, Rucha Shivajirao Bhise Patil3, Rupanshi Parekh4

ABSTRACT

Background: Knowledge of the cytotoxicity and bioactivity of endodontic materials may assist in understanding their ability to promote dental pulp stem cell activity and pulp healing in primary teeth.

Materials and methods: This systematic review was carried out by searching the electronic databases such as PubMed, Google Scholar, and Cochrane reviews for the articles published between January 2000 and December 2018 using the appropriate MeSH keywords. An independent investigator evaluated the abstracts and titles for possible inclusion, as per the stipulated inclusion and exclusion criteria. The topics considered for extracting data from each study were: cell lineage, cytotoxicity assay used, and type of material tested.

Results: Seven eligible studies were selected for assessing the quality of evidence on the bioactivity of bioactive endodontic cements (BECs) (1 human cell line, 2 animal cell lines, and 4 in vitro animal, and human studies) and 13 studies were selected for reviewing the quality of evidence on cytotoxicity (7 human cell lines, 4 animal cell lines, and 2 animal model studies). Very limited studies had been conducted on the bioactivity of materials other than mineral trioxide aggregate (MTA). With regards to cytotoxicity, the studies were diverse and most of the studies were based on MTT assay. Mineral trioxide aggregate is the most frequently used as well as studied root-end filling cement, and the literature evidence corroborated its reduced cytotoxicity and enhanced bioavailability.

Conclusion: There was a lack of sufficient evidence to arrive at a consensus on the ideal material with minimal cytotoxicity and optimal bioactivity. More focused human/cell line-based studies are needed on the available root filling materials.

Clinical significance: The present systematic review provides an update on the available literature evidence on the cytotoxicity and bioactivity of various BECs including MTAs and their influence on the different cells with respect to their composition and strength.

Keywords: Bioactive endodontic cements, Bioactivity, Cytotoxicity, Mineral trioxide aggregate.

INTRODUCTION

Bioactive endodontic cements (BECs) are bioactive materials that form apatite in body fluids, including synthetic body fluids and they are mainly used for pulp capping, pulp therapy, pulpotomy, apexogenesis, apexification, perforation repair, root canal filling, and root canal sealing.1-2 Despite the differences in chemical composition, the bioactivity of BECs is similar.1 The commonly used BECs include calcium-based materials, mineral trioxide aggregate (MTA), Biodentine, root repair material (iRoot), calcium-enriched mixture (CEM), bioaggregate, endosequence root repair material, MTYA1-Ca filler, TheraCal, and bioactive glass.3-4 Mineral trioxide aggregates are the most commonly used BECs owing to their high biocompatibility, sealing ability, and desirable outcomes.5-6 Mineral trioxide aggregate consists of tricalcium silicate, dicalcium silicate, and some traces of tricalcium aluminate and calcium aluminoferrite.7-9 The various MTAs available are ProRoot MTA (gray), tooth-colored ProRoot, Angelus MTA, Biodentine, MTA Bio, and MTA Plus (white and gray). The availability of a variety of bioactive materials needs a proper understanding and guidance for the appropriate use of material for different clinical conditions.10-12 Due to some disadvantages of MTAs such as high cost, long setting time, and tooth discoloration; several newer BECs have been recently introduced to the market.13

Cytotoxicity assays are carried out to study the toxicity of the materials used in BECs, and the damage or irritation they cause when used for various endodontic procedures. Cytotoxicity is tested using in vivo and in vitro methods and the choice of test depends on the chemical composition of the test materials.14-15 The in vitro cytotoxic assays are most relevant and suitable for evaluation due to their reproducibility, simplicity, and cost-effectiveness.16 Cellular viability is influenced by the materials used in filling or treating.17 It is tested by cytotoxicity tests, which measures the biocompatibility of the materials.18 Cell viability and bioactivity tests are significant to assess cellular damage and the biological effect of new biomaterials.19,20 Bioactive endodontic cements materials should possess adequate...
biocompatibility and bioactivity to promote dental pulp stem cell activity and pulp healing in primary teeth. Bioactivity index is the measure of hydroxyapatite formation when used for filling. Bioactivity index is measured to know the activity, which further depends on the capacity of bone conduction and the material composition but total cytocompatibility needs to be checked for complete characterization of bioactive materials. However, a critical evaluation and assessment are required to know the complete cytotoxicity and bioactivity of MTA and other BECs.

The present systematic review is intended to provide an update on the available literature evidence on the cytotoxicity and bioactivity of various BECs including MTAs and their influence on the different cells with respect to their composition and strength.

Materials and Methods

Search Strategy

The protocol for this systematic review has been registered with the PROSPERO International prospective register of systematic reviews, registry No. CRD42021227636 and this review followed PRISMA guidelines.

Electronic databases such as PubMed, Google Scholar, and Cochrane reviews were searched for eligible articles published from January 2000 to December 2018. This particular study period was selected for the following two reasons: (1) several studies with a focus on bioactivity and cytotoxicity of BECs had been published during this study period; (2) several newer BECs had been introduced to the market during this period. The search was conducted using all the appropriate MeSH keywords including MTAs and the names of all the available BECs and MTAs for both cytotoxicity and bioactivity.

The present review considered in vitro studies using animal and human cells, and those conducted in animal models and pulp tissues. References in the retrieved articles were also explored for potentially relevant studies. Complete versions of all the potentially relevant studies were obtained. The same investigator scrutinized and selected the studies for systematic review based on the inclusion and exclusion criteria.

Inclusion criteria were limited to articles written in English and published in a peer-reviewed journal. All eligible studies were included, regardless of the journal. An independent investigator evaluated the abstracts and titles for possible inclusion. The inclusion and exclusion criteria were as follows:

Inclusion Criteria

- Studies on cytotoxicity and bioactivity of BECs.
- Original article.
- Original data available (results).
- English language full-text publication.
- Description of methodology completion, which includes usage of multiple dilution and reporting of duration.

Exclusion Criteria

- Data not available or only abstract available.
- Case reports or letters.
- Duplicate studies.
- Systematic studies.
- Non-English studies.

To extract data from each study, the investigator considered the following topics: cell lineage, cytotoxicity assay used, and type of material tested.

Results

With regard to bioactivity, around 11 full-text articles were selected based on the literature search using the aforementioned keywords (Flowchart 1). Two animal studies and 2 cell line-based studies were excluded due to insufficient data based on the pre-defined inclusion and exclusion criteria. After the exclusion, seven eligible studies were selected for assessing the quality of evidence on the bioactivity of BECs (one human cell line, two animal cell lines, and four in vitro, animal, and human studies).

For evaluating the available literature on cytotoxicity, around 120 articles were identified on a literature search using the specific keywords (Flowchart 2). The total number of articles were 118 after the removal of duplicates and multiple publications. Studies not pertaining to dentistry (1) preliminary report (1) and those with the title (130) and abstract bias (66) were excluded. Out of the 37 full-text articles selected, 24 were excluded due to insufficient data based on the pre-defined inclusion and exclusion criteria. After the exclusion, 13 eligible studies were selected for reviewing the quality of evidence on cytotoxicity of BECs (7 human cell lines, 4 animal cell lines, and 2 animal model studies).

Flowchart 1: The screening and selection of studies on the bioactivity of various BECs

Records identified through database searching (n = 11) → Records screened (n = 11) → Full-text articles assessed for Bioactivity and pulp tissue reactions (n = 11) → Studies assessed for eligibility for pulp tissue reaction (n = 7) → Human cell line (n = 1) → Animal cell line (n = 2) → in vitro, animal and human studies (n = 4) → Full-text articles excluded, with reasons (n = 4) → Animal study-2 Bioactivity: Insufficient data (n = 2) → Human cell line-2 Bioactivity: Insufficient data (n = 2)
Cell Line-based Bioactivity Studies

Cell line-based studies were distinct with respect to the assay used for the assessment of bioactivity. Güven et al. compared MTA with iRoot SP using ALP and Von Kossa staining. After 14 days of exposure, the iRoot SP-treated group showed less ALP activity and the mineralization through Ca\(^{2+}\) deposits was found to be more for MTA through light microscopic examination.\(^\text{26}\)

Haglund et al. noted that the MTA, IRM, amalgam, and Retroplast had inhibited the cell growth of mouse fibroblasts and macrophages. The cell morphology was examined under a phase-contrast microscope and individually detached cells were counted. The retroplast group showed fewer cell numbers when compared to MTA and amalgam. No cytokine production was detected for the four root filling materials, but this could be attributed to the difference in cell type used.\(^\text{27}\)

Portland cement (PC) is commonly used in clinical practice due to its comparatively less price. It has a similar composition as that of MTA, except for increased calcium aluminate and calcium sulfate levels. Saidon et al. reported the greater tolerability of both MTA and PC and both did not show any cell reaction in, in vivo and in vitro tests conducted using L929 culture cells.\(^\text{28}\)

Table 1 briefs about the bioactivity studies conducted using cell lines.

Bioactivity

In Vitro Animal and Human Studies

Studies had validated the effectiveness of MTA and PC in pulp capping. Bidar et al. had performed a histopathological evaluation of direct pulp capping involving MTA and PC in dog premolars \((n = 64)\). Although the researchers had confirmed the pulp protection benefits of these materials, they highlighted the need for conducting extensive research before using them in humans for a longer duration.\(^\text{29}\)

Two studies had reported the superiority of MTA over calcium hydroxide due to the formation of a highly thicker calcified bridge. Leye Benoist et al. had compared the effectiveness of MTA and Dycal in forming dentin bridge using specialized software. The software collected data regarding digitized images and surface length for 3 and 6 months. The researchers observed a statistically significant higher success rate for MTA than Dycal for 3 months, but no difference in dentin thickness was noted after 6 months.\(^\text{30}\)

The randomized control trial by Eskandarizadeh et al. had recommended both white and gray type MTA as the materials of choice for direct pulp capping, in contrast to the hard setting calcium hydroxide cement (Dycal). The study involving 90 intact first and second premolars showed the formation of a significantly thicker calcified bridge with gray MTA when compared to Dycal at 30 and 60 days \((p = 0.015\) and \(p = 0.002\), respectively), and the same was noted at 90 days for white MTA \((p = 0.02)\).\(^\text{31}\)

Shokouhinejad et al. had evaluated the bioactivity of bioaggregate (BA), endosequence root repair material (ERRM), and...
white ProRoot MTA. This study conducted on 60 horizontal root sections noted the formation of a substantially greater amount of apatite aggregate after 2 months on the surfaces of all the materials. The characteristics of in vitro human and animal studies are summarized in Table 2.

Cytotoxicity

Studies on Human Cell Lines

The selected literature on cytotoxicity assessment conducted in human cell lines demonstrated that the studies were diverse, especially with respect to the BECs compared. Whereas, most of the studies had evaluated the cytotoxicity using MTT assay (Table 3). A 2012 study by Hirschman et al. had reported a statistically significant cytotoxic effect with Dycal (Dentsply). Two studies had highlighted the increased cytotoxicity of MTA Fillapex. The cytotoxicity evaluation conducted by Yoshino et al. on human cultured periodontal ligament fibroblasts had noted that MTA Fillapex conferred the highest cytotoxic effect followed by white MTA and Portland cement. Similarly, Zhou et al. had reported increased toxicity of MTA Fillapex at ≥2 weeks when compared to fresh/1-week-old cement, but the toxicity was not seen at a concentration of ≥1:32. The study also ruled out the incidence of toxicity of AH plus after setting. An earlier study by Zhou et al. had concluded that the toxicity of Biodentine and MTA was less than the ionomer cement. The researchers used flow

Author and year	Assay	Materials evaluated	Results
Güven et al. (2013)²⁶	Type of assay (TA): Real-time polymerase chain reaction expression analysis (RT-PCR) and Von Kossa staining Cell lineage (CL): Teflon rings cultured with hTGSCs Type of contact (TC): Indirect	MTA and iRoot SP	MTA was found to be more efficient to mineralize than iRoot SP
Haglund et al. (2003)²⁷	TA: ELISA testing. CL: L929 mouse fibroblasts and mouse macrophage cell line RAW 264.7 TC: Direct	MTA, amalgam, IRM, and Retroplast	All the materials showed cell growth inhibition
Saidon et al. (2003)²⁸	TA: In Vitro: Cell morphology under a phase-contrast microscope In Vivo: Light microscope evaluation CL: L929 mouse fibroblasts TC: Direct and indirect	MTA and Portland cement	MTA and PC did not show any cell reaction differentiation and had great tolerability

Author and year	Assay	Materials evaluated	Results
Bidar et al. (2017)²⁹	TA: Light microscope evaluation Animal: 64 dog premolars TC: Direct	MTA and PC	Chronic inflammation in WMTA, GMTA, white, and gray PC were 45.5, 27.3, 57.1, and 34.1%, respectively
Leye et al. (2012)³⁰	TA: Mesurim Pro(*) software Human: 60 teeth TC: Indirect	MTA and Dycal	MTA and Dycal success rate 3 months: 93 and 73% 6 months: 89.6 and 73% Dentine thickness increased in both materials with time
Eskandarizadeh et al. (2011)³¹	TA: Mesurim Pro(*) software Human: 90 intact first and second premolars of human maxillary and mandibular teeth TC: Indirect	White MTA, Gray MTA, and Dycal	Calcified bridge of GMTA > Dycal at 30 and 60 days WMTA > Dycal at 90 days
Shokouhinejad et al. (2012)³²	TA: Scanning electron microscopy (SEM) observation and energy dispersive X-ray (EDX) instrument for elemental analysis Human: 60 horizontal root sections TC: Indirect	BA, EndoSequence Root Repair Material (ERRM), and white ProRoot Mineral trioxide aggregate (MTA)	MTA, BA, and ERRM showed increased precipitation with time
Cytotoxicity Studies on Animal Cell Lines

Most of the cytotoxicity studies on animal cell lines were based on MTT assay (Table 4). The genotoxic and cytotoxic study conducted on L929 mouse fibroblast cells by Naghavi et al. had suggested a calcium-enriched mixture (CEM) with comparable biocompatibility as an alternative to MTA. Another major finding was the increased damage of cells by MTA at higher concentrations than CEM (1,000 μg/mL). The researchers speculated high level of arsenic in the medium containing MTA as the reason for increased toxicity at higher concentrations.39

Alanezi et al. had concluded that the cytotoxicity of ERM was comparable to that of gray and white MTAs at both set and fresh conditions.40 The study also underscored the need for further investigating the solubility, sealing ability, and in vivo endodontic usage of ERM.41

Ma et al. had noted elevated cytotoxicity of MTA Fillapex at 1:1, 1:2, 1:4, and 1:8 dilutions, and that of AH plus at 1:1, 1:2, and 1:4 dilutions. In addition, both these sealers showed reduced cell viability rates and increased formation of micronuclei when compared to control. The study had concluded white MTA as a less cytotoxic material with cell viability >70%.42

Ribeiro et al. had shown that both MTA and Portland cement do not induce DNA damage and cellular death, which are important events in carcinogenesis. The study conducted on Chinese hamster ovary (CHO) cells using trypan blue staining further corroborated the use of MTA and Portland cement in dentistry.43

Cytotoxic Studies Conducted in Animal Models

Saidon et al. had evaluated the in vitro and in vivo biocompatibility of MTA and PCs using L929 cell lines and guinea pig models. In vitro study did not show any difference in cell reaction between ProRoot MTA and PC. The in vitro study and insertion of materials into the bone cavities of animal models showed bone healing and minimal inflammatory response adjacent to both the material implants. Though the study had suggested PC as a less expensive root-end filling material, the researchers highlighted the need for more human-based studies before the recommendation for unlimited clinical use (Table 5).28

Table 3: Characteristics of cytotoxic studies conducted in human cell lines

Study	Assay	Materials evaluated	Result
Hirschman et al. (2012)33	TA: MTT-based colorimetric assay	White mineral trioxide aggregate cement (AMTA, MTA-Angelus), Brasseler ERRM putty, Dycal, and Ultra-blend Plus (UBP)	AMTA, ERM, and UBP had statistically similar cytotoxicity levels. However, Dycal demonstrated a statistically significant cytotoxic effect
Ma et al. (2011)37	TA: MTT assay	ERRR Putty and Paste with gray MTA	(ERRR Putty) and Paste (ERM Paste) showed similar in vitro biocompatibility as that of gray MTA
Yoshino et al. (2013)34	TA: MTT assay	White MTA, MTA Fillapex®, and Portland cement (PC)	MTA Fillapex demonstrated the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC
Zhou et al. (2015)35	TA: Flow cytometry and electron microscopy	EndoSequence BC, MTA Fillapex, and AH Plus (control sealer)	The 2 calcium silicate-containing endodontic sealers demonstrated different cytotoxicities. MTA Fillapex of ≥2 weeks demonstrated more toxicity than fresh/1-week-old cement. MTA Fillapex did not show toxicity at concentration ≥ 1:3.2. AH plus was not toxic after setting
Mukhtar-Fayad (2011)38	TA: MTT assay	BioAggregate and iRoot SP	Both the materials had acceptable biocompatibility and their cytotoxic effects were concentration-dependent
Zhou et al. (2013)36	TA: Flow cytometry and electron microscopy	Biodentine, White ProRoot MTA, and glass ionomer cement	No significant difference in cell viability was noted between Biodentine and MTA, and they had a less cytotoxic effect than glass ionomer cement
The cytotoxicity of ProRoot MTA and DiaRoot BA, a bioceramic nanoparticulate cement, were compared in a study involving 50 Sprague-Dawley rats. The histopathologic evaluation carried out after implanting the materials into a dorsal connective tissue of rats for 7, 15, 30, 60, and 90 days showed that BA is more biocompatible than MTA.44 However, the results were more favorable for MTA in the presence of dystrophic calcification (Table 5).

Discussion

In dentistry, the bioactivity of a material signifies its ability to hydrolyze and produce calcium hydroxide, which in turn contributes to the formation of an interfacial layer and development of an apatite layer.45–49 The activity or bioactivity index is a measure of dental bone regeneration rate and apatite formation level. The dentin bridge is formed by the increased activity of pyrophosphates, which is augmented by the calcium ion release.50–52 The bioactivity assays are intended to evaluate the ability of different materials to form apatite and mineralization based on their composition and strength.53 Alkaline phosphatase (ALP) and simulating body fluid (SBF) medium are the most commonly used quantitative indicators of mineralization.56,57

Literature search shows that there are very limited studies with sufficient data on the bioactivity of BCCs. Such studies have been conducted mainly on cell lines such as human dental pulp cells (HDPCs), human tooth germ stem cells (hTGSCs), MG-63, etc.32,58 The available bioactivity studies are mainly on the comparison of MTAs with other popular sealing materials to characterize their effects and bioactivity. The literature evidence shows that MTA is more efficient with regard to mineralization and improved tolerability; however, it should be noted that very limited studies have been conducted on the bioactivity of materials other than MTAs.

The study conducted by Guven et al. had concluded that MTA is superior and more bioactive compared to iRoot SP using hTGSCs cell line. Comparison of the same materials by Yuan et al. using RAW 264.7 had provided insights on the mechanism involving the use of MTA as a potential endodontic material for the treatment of persistent apical periodontitis. The researchers reported that both iRoot SP and MTA, induced by lipopolysaccharide, can augment the expression of IL-1β, TNF-α, and IL-6.61

The present review could identify the cell lines (Saidon et al.) and animal studies (Bidar et al.) suggesting comparable bioactivity of Portland cement and MTA. In concurrence with these findings, Bhagat et al. had concluded that the favorable biological response of PC to pulpotomy treatment was comparable to that ProRoot MTA.62 Shahi et al. had also advocated the use of PC as an alternative to MTA. The study reported no statistically significant difference between white MTA, gray MTA, white PC, and gray PC.63

The present review has quoted two human studies comparing the bioactivity of MTA and Dycal (Leye Benoist et al., Eskandarizadeh et al.). Both the studies had highlighted the superiority of MTA over Dycal; but activities such as solubility, dentin bridge formation, and biointeractivity varied between the studies. Similar to these findings, Gandolfi et al. had recommended MTA Plus as a substitute for conventional calcium silicate MTA-like cements owing to its enhanced reactivity, and prolonged potential to release calcium and increase the local pH.64 In contrast, a review by Al-Sabri had concluded calcium hydroxide as the first choice in clinical practice due to the high cost of MTA and the challenges associated with its mixing and handling.65

ProRoot MTA and MTA Angelus were found to be inert and viable.15 ProRoot MTA had demonstrated greater biological properties over OrthoMTA and Endocem MTA in root repair and excellent bioactivity over the traditional cements.66,67

Collado-González et al. reported better cytocompatibility and bioactivity of Biodentine than MTA Angelus, Theracal LC, and IRM when tested on stem cells from human exfoliated primary teeth.68 Biodentine has been reported to be more advantageous than MTA owing to its consistency, better mechanical properties, and improved handling.3,69

Though *in vitro* and *in vivo* studies corroborated the biocompatibility of MTAs, further human studies involving genotoxicity tissue implantation tests and sensitization tests are required to establish a more general outlook on the safety profile of these materials.70
The viability of periradicular cells following retrograde filling, pulp capping, and perforation repair may depend on the cytotoxicity of the root filling material used and they may induce apoptosis or necrosis.71,72 Hence, the use of materials that are toxic to pulpal and periapical tissues may impair the prognosis and clinical outcome.73

The present review has identified literature evidence from both human and animal cell lines suggesting increased cytotoxicity of Fillapex. A comparative study of odontoblast-like cells showed that MTA Fillapex possess more cytotoxicity than AH Plus.74–76 The cellular responses in human dental pulp stem cells noted by Khalil and Abunasef had reported that the implantation of ERRM and MTA produced injurious effects on subcutaneous connective tissue of rats for 7, 15, 30, 60, and 90 days.

One study had reported a statistically significant cytotoxic effect of Dycal to adult human dermal fibroblasts.33 In concurrence with this finding, a comparative study involving 7 pulp-capping materials had demonstrated the highest cytotoxic effect with Dycal (10% cell viability).80 The study compared the following pulp-capping materials in vitro: TheraCal LC, Dycal, Calcicur, Calcimol LC, ProRoot MTA, MTA-Angelus, and Biodentine. This study also reported the comparable cytotoxic effect of Biodentine with that of MTA, thereby suggesting it as an alternative pulp-capping material.81–83

Biodentine was introduced to the market in 2010 to overcome the limitations of the MTA such as increased cost, slow setting time, and difficulty in manipulation.29 Biodentine and MTA have been reported to be less toxic and more viable than glass isomers at all concentrations.84 Calcium-enriched mixture cement, Biodentine, and MTA exhibited similar cytotoxicity and can be considered equally for root-end surgery procedures.19,85–87 The cytotoxicity is dependent on the chemical composition and varies with the incubation period or setting time. ProRoot MTA and Biodentine with a greater incubation period of 48 hours showed less cytotoxicity than CEM and Biosealer.21,44 In the current review, the 2013 and 2015 studies by Zhou et al. have corroborated the reduced cytotoxicity of MTA-based products. The researchers used flow cytometry and electron microscopy-based assays for the evaluation of cytotoxicity.

The present review has quoted the studies by Hirschman et al. and Jingzhi et al. suggesting the comparable cytotoxicity of ERRM putty with MTA. Contrary to these findings, a rat-model study by Khalil and Abunasef had reported that the implantation of both ERRM and MTA produced injurious effects on subcutaneous tissues.44

The present systematic review holds considerable significance, as to the best of our knowledge, there is no review evaluating the cytotoxicity and bioactivity of available BECs and MTAs. Moreover, following a more rigorous and prospectively defined objective process for the data collection, extraction, and compilation helped in critically scrutinizing the study methodologies and excluding those with vague study designs and unclear protocols. Another area of research is cytotoxicity of the freshly mixed material and its reduction with time. The present review showed that there is very limited data on the cytotoxicity of the freshly mixed materials.

The current study could not perform a meta-analysis of the available literature due to the diversity of the studies including the type of cell lines used and assays conducted. Since a meta-analysis could not be carried out, generalization of the study findings was not possible. Another limitation was the availability of a few studies on all the available BECs in the market, especially pertaining the bioactivity. Moreover, the majority of the studies have used MTA for comparison. Hence, the present literature evidence was inadequate to conduct a more credible review to arrive at a consensus on the ideal material with minimal cytotoxicity and optimal bioactivity.47,88–90 However, the present review confirmed that MTA is the most frequently used as well as studied root-end filling cement, and substantiates its reduced cytotoxicity and enhanced bioavailability.

Conclusion

The current review serves as an update on the available evidence on the cytotoxicity and bioactivity of available BECs and MTAs. It may assist researchers to conduct more focused human-based studies, thereby developing a general agreement on the available root filling materials. The available literature indicates MTA as the most frequently used endodontic filling material with reduced cytotoxicity and improved bioavailability.

References

1. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018;51(3):284–317. DOI: 10.1111/iej.12843.
2. Walsh RM, He J, Schweitzer J, et al. Bioactive endodontic materials for everyday use: a review. Gen Dent 2018;66(3):48–51.
3. Raghavendra SS, Jadhav GR, Gathani KM, et al. Bioceramics in endodontology – a review. J Istanb Univ Fac Dent 2017;51(3 Suppl 1): S128–S137. DOI: 10.17096/jiufd.63659.

Table 5: Characteristics of cytotoxic studies conducted in animal models

Author and year	Assay	Materials evaluated	Results
Saidon et al. (2003)28	In vitro and in vivo assay	ProRoot MTA and Portland cement	Both in vitro and in vivo studies demonstrated that MTA and PC have comparative biocompatibility
Batur et al. (2013)36	In vivo assay	ProRoot MTA and DiaRoot BA	DiaRoot BioA was found to be more biocompatible than MTA
4. Asthana G, Bhargava S. Bioactive materials: a comprehensive review. Sch J App Med Sci 2014;2(6):3231–3237.
5. Parirukh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51(2):177–205. DOI: 10.1111/iej.12841.
6. Tsai C-L, Ke M-C, Chen Y-H, et al. Mineral trioxide aggregate affects cell viability and induces apoptosis of stem cells from human exfoliated deciduous teeth. BMC Pharmacol Toxicol [Internet] 2018;18(1):19. DOI: 10.1186/s40360-018-0214-5.
7. Camilleri J, Montesin FE, Brady K, et al. The constitution of mineral trioxide aggregate. Dent Mat 2005;21(4):297–303. DOI: 10.1016/j.dental.2005.05.010.
8. Camilleri J. The chemical composition of mineral trioxide aggregate. J Conserv Dent 2008;11(4):141–143. DOI: 10.4103/0972-0707.48834.
9. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40(6):462–470. DOI: 10.1111/j.1365-2591.2007.01248.x.
10. Malhotra N, Agarwal A, Mala K. Mineral trioxide aggregate: a review of physical properties. Compend Contin Educ Dent 2013;34(2):e25–e32.
11. Malhotra N, Agarwal A, Mala K. Mineral trioxide aggregate: part 2 - a review of the material aspects. Compend Contin Educ Dent 2013;34(3):e38–e43.
12. Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric dentistry. Int J Paediatr Dent 2009;19(1):34–47. DOI: 10.1111/j.1365-263X.2008.00959.x.
13. Monisha D, Manish C. MTA as A Revolution in Endodontics- A Review. In 2013.
14. Jaberiiansari Z, Naderi S, Tabatabaei FS. Cytotoxic effects of various mineral trioxide aggregate formulations, calcium-enriched mixture and a new cement on human pulp stem cells. Iran Endod J 2014;9(4):271–276.
15. Koulouzidou EA, Economides N, Beltes P, et al. In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA angels. J Oral Sci 2008;50(4):397–402. DOI: 10.2334/josnusd.50.397.
16. Ghoddusi J, Tavakkol Afshari J, Donyavi Z, et al. Cytotoxic effect of a new endodontic cement and mineral trioxide aggregate on L929 line culture. Iran Endod J 2008;3(2):17–23.
17. Crespo-Gallardo I, Hay-Levytska O, Martin-González J, et al. Criteria and treatment decisions in the management of deep caries lesions: is there endodontic overtreatment? J Clin Exp Dent 2018;10(8):e751–e760. DOI: 10.4317/jced.55050.
18. De Deus G, Ximenes R, Gurgel-Filho ED, et al. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J 2005;38(9):604–609. DOI: 10.1111/j.1365-2591.2005.00987.x.
19. Kucukkaya S, Gorduyus MÖ, Zeybek ND, et al. In vitro cytotoxicity of calcium-silicate-based endodontic cement as root-end filling materials [Internet]. Scientifica 2016;2016:9203932. DOI: 10.1155/2016/9203932.
20. Gomes-Cornelio AL, Rodrigues EM, Salles LP, et al. Bioactivity of MTA plus, b iodentine and an experimental calcium-silicate-based cement on human osteoblast-like cells. Int Endod J 2017;50(1):39–47. DOI: 10.1111/iej.12589.
21. Khedmat S, Dehghan S, Hadjati J, et al. In vitro cytotoxicity of four calcium-silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restor Dent Endod 2014;39(3):149–154. DOI: 10.3935/rde.2014.39.149.
22. Tanomaru-Filho M, Andrade AS, Rodrigues EM, et al. Bioocompatibility and mineralized nodule formation of Neo MTA plus and an experimental tricalcium silicate cement containing tantalum oxide. Int Endod J 2017;50(Suppl 2):e31–e39. DOI: 10.1111/iej.12780.
23. Krishnan V, Lakshmi T. Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 2013;4(2):78–83. DOI: 10.4103/2231-4040.111523.
24. Kaur M, Singh H, Dhillon JS, et al. MTA versus b iodentine: review of literature with a comparative analysis. J Clin Diagn Res 2017;11(8):ZG01–ZG05. DOI: 10.7860/JCDR/2017/25840.10374.
Surg Oral Med Oral Pathol Oral Radiol Endod 2006;10(2):258–261. DOI: 10.1016/j.trimed.2005.02.080.

44. Batur Y-B, Acar G, Yalcin Y, et al. The cytotoxic evaluation of mineral trioxide aggregate and bioaggregate in the subcutaneous connective tissue of rats. Med Oral Patol Oral Cir Bucal 2013;18(4):e745–e751. DOI: 10.4317/medoral.19095.

45. Sanz JL, Rodríguez-Lozano FJ, Llena C, et al. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials (Basel) 2019;12(7):1015.

46. Roberts HW, Toth JM, Berzins DW, et al. In vitro screening of the in vitro cytotoxicity of different pulp capping materials: a comparative study. Arh Dermatol S 2012.04.014.

47. Gandolfi MG, Taddei P, Tinti A, et al. Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J 2010;43(10):917–929. DOI: 10.1111/j.1365-2591.2010.01768.x.

48. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999;10(2):123–129. DOI: 10.1016/S0958-1669(99)80021-4.

49. Hoppe A, Gülwald NS, Boccaccini AR. A review of the biological response to ion exchange reaction products from bioactive glasses and glass-ceramics. Biomaterials 2011;32(11):2757–2774. DOI: 10.1016/j. biomaterials.2011.01.004.

50. Okiji T, Polan MAA, Izumikawa M, et al. Induction of reparative dentin formation on exposed pulpal dentin by tricalcium silicate and bioaggregate. J Endod 2012;38(8):1101–1105. DOI: 10.1016/j.jendod.2012.04.014.

51. Cho J, Shiozawa Y, Kitazono H, et al. In vitro evaluation of the in vitro cytotoxicity of various pulp capping materials: a comparative study. J Endod 2013;39(2):274–277. DOI: 10.1016/j.jendod.2012.04.014.

52. Koike T, Polan MAA, Izumikawa M, et al. Induction of reparative dentin formation on exposed pulpal dentin by tricalcium silicate and bioaggregate. J Endod 2012;38(8):1101–1105. DOI: 10.1016/j.jendod.2012.04.014.

53. Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants.

54. Modareszadeh MR, Di Fiore PM, Tipton DA, et al. Cytotoxicity and alkaline phosphatase activity evaluation of endodontic root repair materials. J Endod 2012;38(8):1101–1105. DOI: 10.1016/j.jendod.2012.04.014.

55. Okiji T, Yoshinaka K. Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J Dent 2009;2009:464280. DOI: 10.1155/2009/464280.

56. Gandolfi MG, Siboni F, Polimeni A, et al. Ion release, porosity, and bioactivity of calcium silicate-based endodontic sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 2014;40(10):1649–1653. DOI: 10.1016/j.joen.2014.04.013.

57. Kim M, Yang W, Kim H, et al. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J Endod 2014;40(10):1649–1653. DOI: 10.1016/j.joen.2014.04.013.

58. Collado-González M, García-Bernal D, Oñate-Sánchez RE, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated permanent teeth. Int Endod J 2017;50(Suppl 2):19–e30. DOI: 10.1111/iej.12751.

59. Malkouðon O, Karapiná Kazandjá M, Kazazoğlu E. A review on bioceramic, a contemporary dentine replacement and repair material. Biomed Res Int 2014;2014:609591. DOI: 10.1155/2014/609591.

60. Anderson JM. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen Biomater 2016;3(2):73–77. DOI: 10.1093/rbj/rbw001.

61. Akbulut MB, Arpaci PU, Eldeniz AU. Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts. Restor Dent Endod 2018;43(3):e24. DOI: 10.5395/rde.2018.43.e24.

62. Samyuktha V, Ravikumar P, Nagesh B, et al. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts. J Conserv Dent 2014;17(5):467–470. DOI: 10.4103/0972-0707.139844.

63. Ghoddusi J, Forghani M, Parisay I. New approaches in vital pulp therapy in permanent teeth. Iran Endod J 2014;9(1):15–22.

64. Silva EJNL, Rosa TP, Herrera DR, et al. Evaluation of cytotoxicity and physicochemical properties of calcium-silicate-based endodontic sealer MTA Fillapex. J Endod 2013;39(2):274–277. DOI: 10.1016/j.jendod.2012.06.030.

65. Collado-González M, Tomáš-Catalá CJ, Oñate-Sánchez RE, et al. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod 2017;43(5):816–822. DOI: 10.1016/j.jendod.2017.01.001.

66. da Silva EJNL, Santos CC, Zaia AA. Long-term cytotoxic effects of contemporary root canal sealers. J Appl Oral Sci 2013;21(1):43–47. DOI: 10.1590/1678-775720130170.

67. Gandolfi MG, Siboni F, Polimeni A, et al. In vitro screening of the apatite-forming ability, bioactivity, and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dentis J 2013;1(4):41–60. DOI: 10.3390/dj1040041.

68. Collado-González M, Tomáš-Catalá CJ, Oñate-Sánchez RE, et al. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod 2017;43(5):816–822. DOI: 10.1016/j.jendod.2017.01.001.

69. Victoria-Escandell A, Ibañez-Cabellos JS, de Cutanda SB-S, et al. Cellular responses in human dental pulp stem cells treated with three endodontic materials. Stem Cells Int 2017;2017:8920356. DOI: 10.1155/2017/8920356.

70. Poggio C, Ceci M, Dagna A, et al. In vitro cytotoxicity evaluation of different pulp capping materials: a comparative study. Arch Hig Rada Toksikol 2015;66(3):181–188. DOI: 10.1515/aiht-2015-66-2589.

71. Sawicki L, Pameijer CH, Emerich K, et al. Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth. Am J Dent 2008;21:262–266.

72. Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J 2005;38(8):505–509. DOI: 10.1111/j.1365-2591.2005.00967.x.
83. Asgary S, Eghbal MJ, Parirokh M, et al. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106(4):609–614. DOI: 10.1016/j.tripleo.2008.06.006.

84. Kaup M, Dammann CH, Schäfer E, et al. Shear bond strength of biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med 2015;11(1):14. DOI: 10.1186/s13005-015-0071-z.

85. Saberi A, Farhadmollashahi E, Ghotbi N, et al. Cytotoxic effects of mineral trioxide aggregate, calcium enriched mixture cement, biodentine and octacalcium phosphate on human gingival fibroblasts. J Dent Res Dent Clin Dent Prospects 2016;10(2):75–80. DOI: 10.15171/joddd.2016.012.

86. Corral Nuñez CM, Bosomworth HJ, Field C, et al. Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line. J Endod 2014;40(3):406–411. DOI: 10.1016/j.joen.2013.11.006.

87. Köseoğlu S, Pekbağır Yan KT, Kucukyilmaz E, et al. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc Res Tech 2017;80(9):994–999. DOI: 10.1002/jemt.22891.

88. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36(3):400–413. DOI: 10.1016/j.joen.2009.09.009.

89. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part I: chemical, physical, and antibacterial properties. J Endod 2010;36(1):16–27. DOI: 10.1016/j.joen.2009.09.006.

90. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod 2010;36(2):190–202. DOI: 10.1016/j.joen.2009.09.010.