Development and validation of a low-cost polymer selective laser sintering machine

Martin Mapley a,b,* , Yidi Lu b,c, Shaun D. Gregory a,b,d, Jo P. Pauls a,b, Geoff Tansley a,b, Andrew Busch a

a School of Engineering and Built Environment, Griffith University, Queensland, Australia
b Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Brisbane, Queensland, Australia
c University of Queensland, Brisbane, Queensland, Australia
d Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia

A R T I C L E I N F O

Article history:
Received 23 April 2020
Received in revised form 22 June 2020
Accepted 22 June 2020

Keywords:
Additive manufacturing
3D printing
Powder bed fusion
Thermal control
Laser diode
Polymer

A B S T R A C T

Due to manufacturer implemented processing parameter restrictions and the cost prohibitive nature of selective laser sintering (SLS) machines, researchers have limited opportunities to explore the processing of new materials using this additive manufacturing (3D printing) process. Accordingly, this article aimed to overcome these limitations by describing the build and operation of a customizable low-cost polymer SLS machine. The machine boasts a three piston powder bed with the center build piston heated by PID controlled ceramic heaters. Thermal energy for powder consolidation was provided via a 2.44 W solid state diode laser which was mechanically traversed using stepper motor driven belt drives. New layers of powder were deposited by a counter-rotating roller system. The SLS machine was controlled by executing G-code in Mach3 allowing full customization of processing parameters. The machine demonstrated the production of parts from polyamide-12 reaching densities of 918 ± 9 kg/m^3 while achieving an elastic modulus of 358.36 ± 3.04 MPa and elongation at break of 11.13 ± 0.02%. With part properties similar to those achievable with a commercial machine, this low-cost SLS machine could be a vital tool in assisting researchers to explore the processing of new materials.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications table:

Hardware name	Selective Laser Sintering Machine
Subject area	Engineering and Material Science
Hardware type	Electrical engineering and computer science
	Mechanical engineering and materials science
Open Source License	CC BY 4.0
Cost of Hardware	$1,162.32 - AUD
Source File Repository	https://doi.org/10.17605/OSF.IO/YKSPG

* Corresponding author.
E-mail address: mmapley@gmail.com (M. Mapley).

https://doi.org/10.1016/j.ohx.2020.e00119
2468-0672/© 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Hardware in context

Additive manufacturing (AM), colloquially known as 3D printing, is a technique where parts are formed from materials in a layer-by-layer fashion based on information provided by a computer aided design (CAD) file. Recently there has been growing interest in AM processes as parts can be rapidly prototyped which leads to significant reductions in product development costs and time to market [1]. Of specific interest is a powder-based AM manufacturing process known as selective laser sintering (SLS). The SLS process involves directing the beam of a high-powered laser over a thin layer of powder which is selectively consolidated by traversing the beam in the required pattern. On the completion of consolidation of the powder layer, further layers are subsequently added and the consolidation repeated until a 3D part is produced which resembles the CAD file. A diagram showing the essential components of an SLS machine is shown in Fig. 1.

While many materials (ceramics, metals and polymers) can be processed using SLS, a vast majority of machines use pure or alloys of polyamide-12 as the feedstock [2]. The growing popularity of polymer SLS is due to several inherent advantages of the process such as the absence of the requirement for support material, the high densities achievable and the isotropic mechanical properties of the parts [3]. However, despite there being a multitude of commercial SLS systems available, their high cost and low flexibility to process non-manufacturer specified materials limits their widespread use for the experimental processing of new and existing materials. Although recently there has been increasing interest in reducing the cost of SLS systems with some companies releasing systems capable of processing polymers for less than AUD$10,000, they still do not allow flexibility in low level control of processing parameters [4]. Therefore, this article provides the necessary information for researchers to construct and operate a customisable SLS machine which is capable of producing high quality parts from polymer-based materials.

2. Hardware description

This low-cost SLS machine was designed to give users complete control over all of the processing parameters which contribute to material consolidation enabling different processing strategies to be implemented depending on the material being processed. The following section briefly describes the function of each major component within the SLS machine.

2.1. Radiation source and positioning system

To supply the required optical energy to selectively sinter particles on the surface of the powder bed, a 15 W (manufacturer rated peak power) laser diode (LMC450B, EleksMaker, Hong Kong, China) was chosen that emits light radiation at a wavelength of 450 nm. Laser diodes are inherently more robust and compact than other forms of laser modules (such as CO₂) which alleviates the need for complex and expensive scanning systems, such as galvanically controlled mirrors, as the laser can be tracked directly over the powder bed. Therefore to traverse the laser diode, a belt-driven overhead gantry design was adopted (Fig. 2).

2.2. Powder bed

A powder bed in its simplest form is comprised of one or more pistons, one of which serves as the build platform with the others serving as powder feeders and/or to collect excess material. A simple design involving three adjacent pistons was chosen (Fig. 3). The outside pistons were designated as powder feeders which contain the virgin material to be deposited on the
build platform by the recoater. The center piston was designed as the build platform in which virgin material was deposited and then selectively consolidated by the laser.

2.3. Recoater

In order to apply another layer of powder to the build platform after the fusion of each layer, a counter-rotating roller was attached to linear rails suspended above the pistons (Fig. 4).

2.4. Hardware

A hardware interface (Fig. 5) was required to convert the low voltage signals from the computer into drive currents for the motors. The stepper and DC motor drivers were optically isolated from the computer’s parallel ports via interface cards to avoid damage to components of the computer.

2.5. Control software

The system was controlled using a hobbyist CNC control application known as Mach3 (Newfangled Solutions LLC, Livermore Falls, Maine, USA) (Fig. 6). This allowed real-time adjustment of processing parameters via the graphical user interface as well as pre-processing adjustment of parameters by editing the input instruction set (G-code). Although not open-source
software, the freely available trial version allows full program usage with execution of up to 500 lines of G-code which is enough for some small models. The G-code instructions were generated from model data using Slic3r (Alessandro Ranel-lucci, Rome, Italy) and then modified for compatibility with the SLS process by a MATLAB (Mathworks, Natick, Massachusetts, USA) or Scilab (Scilab Enterprises, Orsay, France) script.

Fig. 4. Recoater setup for deposition of new powder layers on the build piston.

Fig. 5. Parallel port interface system.
Design files

Design files summary

Design file name	File type	Open source license	Location of the file
final_assembly.sldasm	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
pid_temp.jpg	Image	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
system.jpg	Image	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
gcode_conversion_script_flowchart.jpg	Image	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
gcode_sls_transform2.m	MATLAB script	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
C_gantry_part_i.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
D_gantry_part_i.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
E_gantry_part_ii.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
F_gantry_part_ii.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
H_powder_bed.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
I_powder_bed.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
J_powder_bed.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG
K_powder_bed.dxf	CAD	CC BY 4.0	https://doi.org/10.17605/OSF.IO/YKSPG

(continued on next page)

![Mach3 graphical user interface](image)
- Final assembly – CAD file showing the assembled machine. This file is supplementary to the photographs and mill profiles so that the machine can be viewed from perspectives not shown in the document.
- PID temperature controller circuit diagram – shows the connections required for the PID temperature controller and the ceramic heaters.
- System circuit diagram – shows the connections for the hardware interface system between the computer and the motors/laser.
- G-code conversion flowchart – designed to accompany the MATLAB script for G-code conversion.
- G-code SLS transform – MATLAB script which converts the G-code which is output from Slic3r from fused deposition modelling into SLS.
- All of the .dxf CAD files are mill profiles for the corresponding aluminium parts that make up the frame of the machine.

4. Bill of materials

4.1. Bill of materials

The extruded aluminium sections are of standard dimensions and should be available from most aluminium suppliers. All of the fixing hardware (bolts and nuts) is available at any hardware store.

Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type	
Electrical Components							
Computer	Windows XP/ Vista PC	1	Recycled	Other			
Gantry Part II	LMC450B Laser Module	1	$167 - AUD	$167 - AUD	eBay.com.au	Other	
Computer	DB25 Parallel Port PCI Controller (CH351Q)	1	$5.83 - AUD	$5.83 - AUD	eBay.com.au	Other	
Control Box	24 VDC Power Supply (5A)	1	$17.99 - AUD	$17.99 - AUD	eBay.com.au	Other	
Control Box	LPT Port Breakout Board ST-V2	2	$7.69 - AUD	$15.38 - AUD	eBay.com.au	Other	
Control Box	TB6560 Stepper Motor Driver	6	$10.29 - AUD	$61.74 - AUD	eBay.com.au	Other	
Control Box	L298N Dual H-bridge	1	$2.71 - AUD	$2.71 - AUD	eBay.com.au	Other	
Gantry Part I/ Gantry Part II/ Powder Bed	26 Ncm Bipolar Stepper Motor	3	$11.37 - AUD	$34.11 - AUD	omc-stepperonline.com	Metal	
Powder Bed	59 Ncm Bipolar Stepper Motor	3	$17.31 - AUD	$51.93 - AUD	omc-stepperonline.com	Metal	
Powder Bed	12 VDC 20 RPM Gear Motor	1	$16.99 - AUD	$16.99 - AUD	eBay.com.au	Metal	
Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type	
------------	---	--------	--------------------------	-----------------------	---------------------	---------------	
Powder Bed	Berme REX-C-100 PID Temperature Controller	1	$24.59 - AUD	$24.59 - AUD	eBay.com.au	Other	
Powder Bed	K-type Thermocouple	1				Metal	
Powder Bed	Fotek 40 A Solid State Relay	1				Other	
Powder Bed	200 W Ceramic Heater	2	$10.77 - AUD	$21.54 - AUD	eBay.com.au	Composite	
Control Box	DB25 Male-to-Female 1.5 m Cable	2	$4.27 - AUD	$8.54 - AUD	eBay.com.au	Other	
Control Box	AWG18 PVC Multi-strand Copper Wire	20 m	$0.54/m - AUD	$10.80 - AUD	Jaycar Electronics	Composite	
					(Booval, QLD, Australia)		
Powder Bed	10 A Silicon Wire	2 m	$6.23/m - AUD	$12.46 - AUD	Jaycar Electronics	Composite	
					(Booval, QLD, Australia)		
Control Box	20 cm Male-to-Male Jumpers	3 × 40pcs	$1.63 - AUD	$4.89 - AUD	eBay.com.au	Composite	
Powder Bed	GX-16 2 Pin Plug + Socket	1	$1.72 - AUD	$1.72 - AUD	eBay.com.au	Metal	
Powder Bed	GX-16 4 Pin Plug + Socket	4	$1.72 - AUD	$6.88 - AUD	eBay.com.au	Metal	
Powder Bed	500 mm Cable Chain (7 mm × 7 mm)	1	$10.88 - AUD	$10.88 - AUD	eBay.com.au	Polymer	
Powder Bed	Ø = 10 mm Split Loom Tube	1 m	$2.50 - AUD	$2.50 - AUD	Jaycar Electronics	Polymer	
					(Booval, QLD, Australia)		
Control Box	Steel Box (W = 0.5 m, D = 0.35 m, H = 0.1 m)	1			Recycled Computer Case	Metal	
Mechanical Components	Powder Bed	Ø = 17 mm (W = 225 mm) Rubber Coated Roller	1		Recycled from Laser Printer	Composite	
Gantry Part II/Powder Bed	GT2 Timing Belt	1 @ 180 mm, 1 @ 700 mm, 1 @ 880 mm		$6.49 (2 m length) - AUD	$6.49 - AUD	eBay.com.au	Polymer
Gantry Part II	GT2 Timing Belt Clamp	2	$1.40 - AUD	$1.40 - AUD	eBay.com.au	Metal	
Gantry Part I/	GT2 Timing Belt Pulley	3	$1.29 - AUD	$3.87 - AUD	eBay.com.au	Metal	
Gantry Part I/	GT2 Idler	3	$1.54 - AUD	$4.62 - AUD	eBay.com.au	Metal	

(continued on next page)
Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type
Gantry Part II /	Pulley		$1.88 - AUD	$5.64 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 5 mm to 10 mm Shaft Coupling	3				
Powder Bed	Ø = 6.35 to 8 mm Shaft Coupling	1	$1.90 - AUD	$1.90 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 10 mm Trapezoidal Lead Screws + Brass Nuts	3 @ 150 mm	$13.26 - AUD	$39.78 - AUD	eBay.com.au	Metal
Gantry Part II	Ø = 6 mm Linear Rail	2 @ 200 mm	$11.76 - AUD	$11.76 - AUD	eBay.com.au	Metal
Gantry Part I	Ø = 10 mm Linear Rail	2 @ 500 mm	$13.06 - AUD	$26.12 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 12 mm Linear Rail	3 @ 500 mm, 6 @ 200 mm	$14.61 (500 mm), $11.91 (400 mm) - AUD	$64.95 - AUD	eBay.com.au	Metal
Gantry Part II	Ø = 6 mm Linear Rail Support	4	$18.08 (4 pcs) - AUD	$18.08 - AUD	eBay.com.au	Metal
Gantry Part I	Ø = 10 mm Linear Rail End Support	4	$3.12 (2 pcs) - AUD	$6.24 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 12 mm Linear Rail Support	4	$3.12 (2 pcs) - AUD	$6.24 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 12 mm Linear Rail End Support	12	$3.12 (2 pcs) - AUD	$18.72 - AUD	eBay.com.au	Metal
Gantry Part II	Ø = 6 mm Linear Bearing – Short	4	$10.92 (2 pcs) - AUD	$21.84 – AUD	eBay.com.au	Metal
Powder Bed	Ø = 8 mm Swivel Bearing	2	$1.10 - AUD	$2.20 – AUD	eBay.com.au	Metal
Gantry Part II	Ø = 10 mm Linear Bearing – Short	2	$13.49 (2 pcs) - AUD	$13.49 - AUD	eBay.com.au	Metal
Gantry Part II	Ø = 10 mm Linear Bearing – Long	2	$21.04 (2 pcs) - AUD	$21.04 - AUD	eBay.com.au	Metal
Powder Bed	Ø = 12 mm Linear Bearing – Short	8	$14.03 (2 pcs) - AUD	$56.12 - AUD	eBay.com.au	Metal

Materials

Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type
Powder Bed	Cork Sheet (H = 94 mm, W = 94 mm, TH = 6 mm)	4	$13.90 (6 pcs) - AUD	$13.90 - AUD	Bunnings Warehouse (Bundamba, QLD, Australia)	Other
Powder Bed	Copper Plate (H = 94 mm, W = 94 mm, TH = 3 mm)	1	$19.95 - AUD	$19.95 - AUD	Primary Metals & Alloys (Carole Park, QLD, Australia)	Metal
Powder Bed	Aluminium Plate (H = 94 mm, W = 94 mm, 6 mm)	8	$32.00 - AUD	$32.00 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Gantry Part I /	Aluminium Flat Bar (W = 100 mm, 506 mm, 1)	1	$7.50 - AUD	$7.50 – AUD	Aluminium Warehouse	Metal
Gantry Part II						
Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type
------------	-----------	--------	--------------------------	----------------------	---------------------	--------------
Gantry Part II	Aluminium Angle (H = 30 mm, W = 30 mm, TH = 1.6 mm)	1 @ 100 mm	$2.20 - AUD	$2.20 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Gantry Part II	Aluminium Angle (H = 40 mm, W = 25 mm, TH = 1.6 mm)	2 @ 30 mm	$1.80 - AUD	$1.80 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Gantry Part I	Aluminium Angle (H = 75 mm, W = 75 mm, TH = 3 mm)	2 @ 285 mm	$9.00 - AUD	$9.00 AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Powder Bed	Aluminium Angle (H = 75 mm, W = 25 mm, TH = 1.6 mm)	2 @ 30 mm	$1.80 - AUD	$1.80 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Gantry Part I	Aluminium Angle (H = 125 mm, W = 50 mm, TH = 3 mm)	2 @ 550 mm	$44.00 - AUD	$44.00 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Powder Bed	Aluminium Angle (H = 125 mm, W = 50 mm, TH = 3 mm)	2 @ 100 mm	$7.50 - AUD	$7.50 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Gantry Part I	Aluminum Box (H = 25 mm, W = 50 mm, TH = 3 mm)	2 @ 510 mm	$12.00 - AUD	$12.00 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Powder Bed	Aluminum Box (H = 100 mm, W = 100 mm, TH = 3 mm)	3 @ 200 mm	$44.00 - AUD	$44.00 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal
Powder Bed	Aluminium C-section (H = 65 mm, W = 150 mm, TH = 6 mm)	2 @ 500 mm	$55.00 - AUD	$55.00 – AUD	Aluminium Warehouse (Yamanto, QLD, Australia)	Metal

Hardware

Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type
Gantry Part I/ Gantry Part II	M3 SS Nylon Lock Nut	12	$1.47 (10 pcs) – AUD	$2.94 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Composite
Gantry Part I/ Gantry Part II	M3 SS Flat Washer	12	$2.75 (100 pcs) - AUD	$2.75 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Powder Bed	M3 × 20 mm Brass Stand Off	4	$2.86 - AUD	$11.44 - AUD	eBay.com.au	Metal
Powder Bed	M3 × 6 mm SS Socket Head Bolt	4	$1.47 (10 pcs) – AUD	$1.47 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part I/ Gantry Part II	M3 × 8 mm SS Socket Head Bolt	10	$1.47 (10 pcs) – AUD	$1.47 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal

(continued on next page)
Designator	Component	Number	Cost per unit - currency	Total cost - currency	Source of materials	Material type
Powder Bed	M3 × 12 mm SS Countersunk Bolt	8	$1.83 (10 pcs) - AUD	$1.83 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part II	M3 × 16 mm SS Socket Head Bolt	8	$1.83 (10 pcs) - AUD	$1.83 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Powder Bed	M3 × 25 mm Socket Head Bolt	8	$2.20 (10 pcs) - AUD	$2.20 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part I/ Gantry Part II/ Powder Bed	M4 SS Nylon Lock Nut	50	$1.47 (10 pcs) - AUD	$7.35 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Composite
Gantry Part I	M4 × 12 mm SS Socket Head Bolt	12	$1.83 (10 pcs) - AUD	$3.66 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part II	M4 × 12 mm SS Countersunk Bolt	8	$1.83 (10 pcs) - AUD	$1.83 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part II/ Powder Bed	M4 × 20 mm SS Socket Head Bolt	42	$1.83 (10 pcs) - AUD	$9.15 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part I/ Gantry Part II/ Powder Bed	M5 SS Nylon Lock Nut	38	$1.47 (10 pcs) - AUD	$5.88 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Composite
Gantry Part I/ Gantry Part II/ Powder Bed	M5 SS Flat Washer	6	$2.75 (100 pcs) - AUD	$2.75 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part I	M5 × 25 mm SS Socket Head Bolt	8	$2.93 (10 pcs) - AUD	$2.93 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Powder Bed	M5 × 25 mm SS Hex Head Bolt	24	$2.45 (10 pcs) - AUD	$7.35 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Gantry Part I/ Gantry Part II/ Powder Bed	M5 × 35 mm Socket Head Bolt	3	$3.48 (10 pcs) - AUD	$3.48 - AUD	Nutz & Boltz (Raceview, QLD, Australia)	Metal
Powder Bed	M8 Galvanized Nuts	4	$0.17 - AUD	$0.68 - AUD	Bunnings Warehouse (Bundamba, QLD, Australia)	Metal
Powder Bed	M8 Galvanized Threaded Rod	2 @ 230 mm	$5.50 - AUD	$5.50 - AUD	Bunnings Warehouse (Bundamba, QLD, Australia)	Metal

Total | | | $1,162.32 - AUD | | | |

Legend: Ø – diameter; SS – stainless steel; H – height; W – width; TH – wall thickness

NOTE: All prices are in Australian dollars (AUD) and inclusive of the 10% Goods and Services Tax.

5. Build instructions

This section describes the fabrication and assembly of each part of the SLS machine. The tools required for fabrication and assembly are found in most laboratory spaces and workshops with the exception of an end mill. It is not an absolute necessity to use an end mill to cut all of the holes in the aluminium as a drill press and an angle grinder could perform the same
actions. However, as this would increase fabrication time and potentially lead to inaccuracies in the final product, the use of an end mill is highly recommended.

5.1. Gantry Part I

The fabrication and assembly of the gantry is broken into two sections (I & II) to avoid confusion between parts which make up the X and Y axes. To begin, use an end mill or drill to make all attachment holes in the aluminium sections for Gantry Part I (Figs. 7 & 8) according to the supplied CAD files.

1) Use four M4x25 mm bolts to attach the 75x75 mm aluminium angle sections (B) to the top of the 25x50 mm aluminium box sections (A).
2) Attach the 25x125 mm aluminium angle sections (C) to the inside of the 75x75 mm aluminium angle sections (B) perpendicular to the base with four M4x25 mm bolts. Use a set square to ensure that the angle between them is as close to 90° as possible so that the laser remains the same distance from the powder bed as it traverses.
3) Using four M4x25 mm bolts, attach the 100 mm aluminium flat bar (D) to the uprights (C).
4) Fit the 10 mm linear rail end supports to the inside of the uprights (C) using eight M5x25 mm bolts.

Fig. 7. Gantry Part I (front view).

Fig. 8. Gantry Part I (rear view).
5) Mount a 26 Ncm stepper motor to the 100 mm aluminium flat bar (D) using four M3x8 mm bolts with the shaft facing towards the front of the machine. Then place a 16 T T2 timing pulley on the shaft of the stepper motor and tighten the grub screw.

6) Using an M5x35 socket head bolt, two M5 flat washers and two M5 nylon locking nuts, mount a T2 idler pulley to the 100 mm aluminium flat bar (D). Ensure that the idler pulley is in line with the pulley on the stepper motor.

7) Attach the laser’s constant current driver to the rear of the 100 mm aluminium flat bar using two M3x8 mm bolts and M3 flat washers.

5.2. Gantry Part II

Use a drill or end mill to make all attachment holes in the aluminium sections for Gantry Part II (Figs. 9, 10, 11 & 12) according to the supplied CAD file.

1) Attach the four 6 mm linear bearings back-to-back onto the 25x25 mm aluminium angle section (F) using eight M3x16 mm bolts and M3 nylon locking nuts.

2) Insert the 6 mm linear rails into the 6 mm linear bearings whilst being careful not to damage the ball races inside. Attach these 6 mm linear rails to the 100 mm aluminium flat bar (E) using four 6 mm linear rail end mounts and eight M4x12 mm countersunk bolts and M4 nylon locking nuts.

![Fig. 9. Gantry Part II (front view).](image1)

![Fig. 10. Gantry Part II (top view).](image2)
3) Attach a 26 Ncm stepper motor, 16 T T2 pulley and idler pulley to the 100 mm aluminium flat bar (E) ensuring that the idler pulley is aligned with the pulley on the stepper motor.

4) Feed the 180 mm long T2 timing belt around the stepper motor and idler pulleys and while tensioned, clamp to the 25x25 mm aluminium angle section using a timing belt clamp, an M4x20 mm bolt and M4 nylon locking nut.

5) Mount the 10 mm linear bearings (short to the left and long to the right) back-to-back to the 100 mm aluminium flat bar (E) using eight M4x20 mm bolts and M4 nylon locking nuts.

6) Using a timing belt clamp, an M4x20 mm bolt and M4 nylon locking nut, attach the 700 mm long T2 timing belt to a 25x40 mm aluminium right angle section (G). Then, using two M4x20 mm bolts and M4 nylon locking nuts, attach the 25x40 mm aluminium right angle section (G) to the 100 mm aluminium flat bar (E).

7) Attach Gantry Part II to Gantry Part I by inserting the 10 mm linear rails into the bearings then clamping them inside the linear rail supports by tightening the grub screws. Ensure that Gantry Part II slides freely from one end to the other. If there is any resistance, adjust the alignment of the 10 mm linear rails in relation to each other by tweaking the position of the linear rail supports.

8) Feed the 700 mm T2 timing belt around the stepper motor and idler pulleys which are mounted on the 100 mm aluminium flat bar (D).

9) Mount the laser diode module to the 25x25 mm aluminium angle section (F) using two M3x8 mm bolts and M3 flat washers. Use a set square or level to ensure the laser module is mounted at an angle of 90° relative to the gantry base.

10) Using cable ties, attach the wires for the laser module to the 10 mm linear bearings allowing for some slack to account for movement of the laser.
The following section describes the fabrication and assembly of the powder bed inclusive of the recoater mechanism (Figs. 13 - 23). If an end mill is not available, this section will require several parts to be slightly modified to cater for the use of different tools. Suggestions of the modifications will be made, however specific details (such as images) are not available as this machine was constructed from end milled parts.

1) Use an end mill to machine the inset channels (Fig. 13) which are used to locate the pistons into the top of the powder bed's lower section (H, 65x150 mm aluminium c-section). The dimensions for this can be found in the supplied CAD file. If an end mill is not available, it is suggested to attach (glue or bolt) locaters in the same position so that the piston sleeves remain centrally located during assembly.

2) Attach all six 12 mm linear bearings to the top of the lower section of the powder bed (H) as shown in Fig. 13. Use M4x20 mm bolts with M4 nylon locking nuts as fixings.

3) Mount a 59 Ncm stepper motor to the 94x94 mm aluminium plate (I) using four M3x8 mm bolts, then attach a 10 mm lead screw to the stepper motor's shaft using a 5 to 10 mm shaft coupler.

4) Attach the two 94x94 mm aluminium plates (I & J) together by bolting the linear rail supports to two corners of each plate, then slide the 12 mm linear rails inside the linear rail supports until the upper 94x94 mm aluminium plate (J) is firmly against the stepper motor. Proceed to tighten the grub screws in each of the linear rail supports.
5) Attach the upper 94x94 mm aluminium plates (J & K) to each other using M3x25 mm bolts and M3 nylon locking nuts with a 94x94 mm cork spacer in between. Tighten until firm, over tightening may result in bending of the aluminium plate.

6) Repeat for the other two pistons with the exception of the build piston (center). For this piston, the upper 94x94 mm plate is copper and the two ceramic heaters and thermocouple are placed between the 94x94 mm cork spacers and the copper plate.

7) To mount each piston to the lower section of the powder bed (H), screw the lead screw of each piston into the corresponding brass nut while aligning the 12 mm linear rails with the linear bearings. Screw the lead screw into the brass nut until the linear rails are visible from the underside of the assembly.

8) Attach the lengths of M8 threaded rod to the outer edges of the lower section of the powder bed (H) using two M8 nuts and flat washers.

9) Using a die grinder (or similar tool) cut a hole in the front of the powder bed base to mount the PID temperature controller. Mount the solid state relay using two M4x20 mm bolts and nylon locking nuts in the position shown in Fig. 16. All connections should be insulated using appropriately rated heat shrink sleeving. The AC system should then be inspected and certified by qualified personnel.

10) Connect the PID controller, solid state relay, thermocouple and 240 VAC power source according to the circuit diagram in Fig. 17. All connections should be insulated using appropriately rated heat shrink sleeving. The AC system should then be inspected and certified by qualified personnel.

11) Attach the geared DC motor to one side (outside) of the 40x40 mm aluminium box section (L) using four M3x6 mm socket head bolts. Mount an 8 mm bore swivel bearing to the inside of the box section using two M4x20 mm socket head bolts and nylon locking nuts.
12) Mate the rubber coated roller to the motor shaft using the 6.35 to 8 mm shaft coupler and tighten the grub screws.

13) Mount the other 8 mm bore swivel bearing to the inside of the other 40x40 mm aluminium box section (M) using two M4x20 mm socket head bolts and nylon locking nuts.

14) Mount a 12 mm linear bearing to each 40x40 aluminium box section (L & M) using four M4x14 mm socket head bolts for each.

15) Attach all four lengths of 75x25 mm aluminium angle (O, P, Q & R) to each corner of the machined aluminium 65x150 mm c-section top plate (N) at each corner. To attach each corner, insert two M5x25 mm socket head bolts through a 12 mm linear rail support, then through the holes in the aluminium angle and c-section and fix using nylon locking nuts.

16) Attach a 26 Ncm stepper motor to the inside of the front left length of aluminium angle (O) along with the 20 tooth GT2 pulley. Mount the idler pulley to the aluminium angle opposite (R) using an M5x35 mm mild steel bolt and two nylon locking nuts.

17) Combine the recoater assembly and the top plate by feeding the 12 mm linear rails through the linear bearings and rail supports.

18) To improve the rigidity of the recoater assembly, attach the remaining length of 75x25 mm aluminium angle (S) to the 40x40 mm box sections (L & M) using two M4x20 mm socket head bolts and nylon locking nuts.

Fig. 17. Wiring schematic for the powder bed heating system.

Fig. 18. Recoater assembly (driven end).
19) Push each of the piston sleeves (100x100 mm aluminium box section) over each piston. Mate the lower and upper parts of the assembly by sliding the lower section into the underneath of the upper section. Fix the two sections together by placing two galvanized M8 washers and nuts on the threaded rod and tightening.

20) To finalize the assembly, place the powder bed inside the gantry. The fit should be very tight, however, if the powder bed has movement, fix the two pieces together using G-clamps or similar.

5.4. Control Electronics

This section describes the connection of the control box consisting of the parallel port isolation boards, motor drivers and power supply. Once assembled, the system should be inspected and certified by qualified personnel prior to operation.

1) Remove the cover of the control PC (ensuring the power is disconnected) and fit the parallel port expansion card (CH351Q) into a spare PCI slot. If the computer chosen runs an operating system newer than Windows XP, it is possible that two expansion cards may be necessary or the installation method may be different. Once the expansion card has been secured, replace the cover of the control PC.

2) Mount the two parallel port isolation boards, six stepper motor drivers, h-bridge and power supply inside the recycled computer case (or chosen variant) with adequate separation distance so that each of the screw terminals can be accessed.
3) Using the 20 cm male-to-male jumpers, connect the logic level components of the system together according to the schematic in Fig. 24. A larger format version of this figure can be found in the data repository associated with this document (system.jpg).

4) For each of the stepper motors, cut four 0.5 m lengths of 18 AWG wire and solder them to a 4 pin GX16 plug. Fix the other end of each wire into the screw terminals on each of the associated stepper motor driver boards.

5) To finalize the wiring, connect each of the GX16 motor plugs to their corresponding axes on the main body of the SLS machine and connect each of the parallel port interface cards to their corresponding parallel ports on the control PC using the DB25 cables.

5.5. Control software setup

The interface program chosen was Mach3 (Newfangled Solutions LLC, Livermore Falls, Maine, USA) which is a parallel port based CNC control suite popular among the hobbyist community. Mach3 converts a G-code instruction set into control signals based upon user-defined output parameters such as axis pin selection and motor movement profiles. The motor movement profiles are preset according to the physical properties of the stepper motors, belt drives and lead screws. Accordingly, this section describes the process of setting up the control software for the SLS machine.

1) Install the drivers for the PCI parallel port expansion card as per the instructions supplied with the device. Download and install the Mach3 CNC control software and begin a new profile.
2) Open the dialog box “Ports and Pins” under the menu “Config”. Under the first tab enter the base addresses of each of the two parallel ports (Fig. 25). If unsure of the base addresses, they can be found under the port properties in device manager.

3) Select the next tab called “Motor Outputs” and enter all of the pin and port numbers as shown in Fig. 26. These are the designated pins that the stepper motor drivers are connected to in the control box.
4) Select the tab called “Output Signals” and enable outputs #1, #2 and #3 while assigning the pins as shown in Fig. 27. Output #1 is the laser control pin while outputs #2 and #3 are the forward and reverse directions of the recoater roller.

5) Select the tab called “Spindle Setup” and set the relay control to switch on output #1 when an M3 or M4 command is executed. Set the mist (M7 command) and flood (M8 command) controls to turn on outputs #2 and #3 respectively. Check the box enabling PWM control of the spindle and set the base frequency to 1000 Hz while setting all of the spindle delays to zero (Fig. 28). Apply the changes made and close the dialog box.

6) Open the dialog box “Pulley Selection” under the menu “Config” and enter the maximum and minimum speeds as 100 and 0 respectively under “Pulley Number 1” (Fig. 29). These values represent the maximum and minimum values corresponding to the maximum and minimum PWM on output #1 for laser control.

7) Open the dialog box “Motor Tuning and Setup” under the menu “Config”. For each axis, set the steps per unit, velocity and acceleration values according to Table 1 and Fig. 30. The velocities, particularly the ones representing scan speed, can be adjusted in the G-code up to these maximum values.

1) Once this setup has been completed, the machine can be operated by the G-code commands described in Table 2.

5.6. Slicing software setup

Conversion of the 3D model into a G-code instruction set was performed by an open source program called Slic3r (Alessandro Ranellucci, Rome, Italy). Slic3r is based on the fused deposition modeling (FDM) process, however, most processing parameters were directly translatable to the SLS process with the appropriate settings. Accordingly, this section describes the setup procedure of Slic3r so that the G-code is output in a format that can be converted by the supplied MATLAB script.

1) Under the tab “Print Settings”, the following settings should be entered under their corresponding subsection:

- Layers and perimeters – the layer height and first layer height should be set to 0.1 mm. Vertical shells should be set to 1 and horizontal shells to 0.
- Infill – the fill density should be set to 100% in a rectilinear pattern which is filled every layer at an angle of 45°.
- Skirt and brim – the number of loops and brim width should both be set to 0.
- Support material – uncheck the generate support material box and set number of raft layers to 0.
2) Under the tab “Printer Settings”, the following settings should be entered under their corresponding subsection:

- General – set the bed shape according to Fig. 31.
- Custom G-code – add an M6 command after the layer change.
- Extruder 1 – set the nozzle diameter to 0.22 mm (this corresponds to the default scan spacing of 0.35 mm or 0% overlap of the laser spot).

The aforementioned Slic3r settings are the defaults which were used to process the polyamide-12 powder (Section 7), however, as this machine was intended for processing novel materials, it is likely that many of these parameters will require adjustment according to the user’s specific application requirements.

6. Operation instructions

The section describes the step-by-step operation of the SLS machine which will enable the user to produce parts using powdered polyamide-12 feedstock. NOTE: Laser safety glasses (of appropriate wavelength) and a lockable workspace are required for safe operation of this machine.

1) Select or create a 3D model using any desired CAD software and save the model as an .STL file.
2) Open Slic3r and add the model(s) to the workspace. Perform any orientation/translation movements of models and then export the G-code (Fig. 32).
3) Open the G-code post-processing script in MATLAB and set the laser power to 30%, scan speed to 1800 mm/min and enter the number of objects (models) that were placed in the workspace. Run the script with the input file as the G-code generated previously by Slic3r.
4) Open Mach3 and load the G-code that was generated by the MATLAB script.
5) Turn the power on for the SLS machine control box. Using the Mach3 console, actuate the feed pistons (axes B and C) in the downward direction by at least half of the height of the model being built. While placing a straight edge across the build piston (Fig. 33), actuate it in the upward direction at least 1 mm above the piston assembly then actuate it in the downward direction until the surface of the piston is level with the top of the piston assembly. This is done to account for any backlash in the lead screw.

6) Load the feed pistons to the top with polyamide-12 powder.

7) Turn the power on for the PID controller then set the temperature to 180 °C by pressing SET and then using the arrows to change the value. From this moment on, care should be taken when touching the metal surfaces as they could be very hot.

8) Put the laser safety glasses on and turn the power on for the laser module. From this point onwards it is important that laser safety glasses are worn at all times to avoid eye damage – also ensure other people are isolated from any radiation – e.g. by locking the door.

9) The build sequence can now be initiated by clicking “Cycle Start” on the Mach3 interface. For the first couple of operations, it is recommended that the build sequences are closely monitored to ensure that the machine has been set up correctly.

10) When the build has completed, the power to the heater and laser can be switched off and the build piston allowed to cool for at least 30 min.

11) Once the powder bed has had sufficient time to cool, the powder can be removed from the build piston and feed pistons using a small wet and dry vacuum cleaner. If the powder cake is to be re-used it is recommended that a new vacuum cleaner is purchased and dedicated to this job to avoid contamination.

12) Remove the part(s) using a paint scraper or similar (Fig. 34). Once the build volume is empty, use a rag and solvent (ethanol or similar) to wipe the build plate clean.

It is recommended that all of the moving parts are inspected periodically for wear and lubricated using a low viscosity grease.
Table 1

Motor movement profiles.

Axis	Steps Per Millimeter	Velocity (mm/min)	Acceleration (mm/min²)
X	50	3000	2500
Y	50	3000	2500
Z (build piston)	100	50	50
A (recoater)	100	75	200
B (left feed piston)	100	50	50
C (right feed piston)	100	50	50
7. Validation and characterization

The validation of the SLS machine was performed in two parts. The first part evaluated the individual components and operations of the machine such as the stepping accuracy, optical power supplied by the laser and laser spot size. The second part examined the geometrical accuracy, density and mechanical (tensile) properties of parts produced from polyamide-12.

7.1. Characterization of Machine components

7.1.1. Positioning accuracy

The accuracy of the positioning of the laser and build platform are key contributors to obtaining parts which exhibit high levels of geometrical resemblance to the model data. Therefore, it was important to characterize the variation in the positioning of the laser and the built platform. To characterize the registration error in the movement of the laser in the X and Y planes and the build platform in the negative Z direction, a dial indicator (Mitutoyo, Tokyo, Japan) with a measurement resolution of 0.01 mm was used (Fig. 35).

Table 2

G-code instructions used to control the SLS machine.

G-code Instruction	Designated Operation
E1P1/E1P0	Laser On/Off
M3 S(0–1000)	Laser Ready + Set Laser Power (0–100%)
G1 X****	Advance X axis by a millimetre value
G1 Y****	Advance Y axis by a millimetre value
G1 Z****	Advance build piston by a millimetre value
G1 A****	Advance recoater by a millimetre value
M7/M9	Rotate roller clockwise/anticlockwise
G1 B****	Advance feed piston 1 by a millimetre value
G1 C****	Advance feed piston 2 by a millimetre value

![Fig. 30. Mach3 motor tuning and setup.](image-url)
The dial indicator was placed parallel to the direction of movement for each axis. Using the machine’s software interface, the X and Y axes were traversed between 2.5 and −2.5 mm in steps of 0.1 mm while the position on the dial gauge was recorded at each interval. As backlash was not an important characteristic of the build piston as it was always moved in the negative Z direction, it was traversed between 0 and −5.0 mm in steps of 0.1 mm. The acquired positional data for each axis can be found in Fig. 35, Fig. 36 and Fig. 37 for the X-axis, Y-axis and Z-axis respectively.

The positional data for both the X-axis and Y-axis (Fig. 35 & Fig. 36) show that there was some registration error in the drive mechanism which was a major contributor to the absolute average error of both axes which was calculated to be 0.016 mm and 0.021 mm respectively (Table 3). However, as mentioned previously, the maximum theoretical accuracy of a part produced using SLS is half the diameter of the largest particle in the powder used. With this being the case, it can be seen that with the absolute average error being less than half of the average particle diameter ($D_{50} = 43 \mu m$), the positional accuracy of the laser is not a limiting factor of part accuracy in the X-axis and Y-axis. Results in Fig. 37 demonstrate that the

Fig. 31. Slic3r bed shape.

Fig. 32. Slic3r workspace preview with model inserted (a small pump impeller).
Fig. 33. Zeroing the build piston with a straight edge.

Fig. 34. Finished polyamide-12 impeller.

Fig. 35. Dial gauge set up to measure the positional accuracy of the X axis.
Fig. 36. Recorded positional data for X-axis.

Fig. 37. Recorded positional data for Y-axis.

Axis	Absolute Average Error (mm)	Standard Deviation (mm)	Percentage Error <= 0.1 mm	Percentage Error <= 0.2 mm	Percentage Error > 0.2 mm
X	0.016	0.020	36%	59%	41%
Y	0.021	0.025	20%	47%	53%
Z	0.005	0.008	77%	100%	0%

Table 3
Summary of positional error statistics for all axes.
positioning accuracy of the build piston far exceeds that of the other axes with an average absolute error of 0.005 mm (Table 3). Again, this indicates that the positional accuracy of the Z-axis is not a limiting factor in part accuracy and will assist in controlling the uniformity of transmitted laser energy between layers.

7.1.2. Laser power measurements

To accurately determine the optical energy supplied by the laser, the output power was measured using a 15 W average laser power meter (UP19K-15S-W5-D0, Gentec Electro-Optics Inc., Quebec, Canada) calibrated to the wavelength of the laser. The laser was mounted 50 mm from the power meter to minimise the amount of light scattered by particles in the air (Fig. 38). An Arduino (Mega 2560, Somerville, Massachusetts, USA) was used to supply a PWM signal with a variable duty cycle to the laser’s constant current controller and the voltage and current supplied to the diode was monitored using two digital multimeters. The PWM signal was varied between 5% and 100% duty cycle in steps of 5% which operating in continuous wave mode. The optical power, voltage and current measurements were taken after 60 s of continuous operation at each data point to allow the diode to reach operating temperature. The results were then used to determine the required supplied PWM duty cycle for the desired optical power output.

Fig. 38. Recorded positional data for Z-axis.

Fig. 39. Setup of the experiment to measure laser input and output power.
The results from the laser power measurements (Fig. 39) show that the optical power output of the laser linearly increases with the increasing duty cycle of the PWM signal until 80% where the output reaches a maximum of 2.44 W. Further increases in the duty cycle of the PWM signal appear to result in a linear decrease in optical power. The likely cause of this is overheating of the PN junction of the laser diode causing it to increase its resistance resulting in decreased optical power [5]. From this it can be determined that the duty cycle of the PWM signal should be kept to 80% or lower to avoid damage to the laser diode through overheating.

7.1.3. Laser spot size

To determine the minimum scan spacing value, the laser spot size was measured. Usually this measurement would be performed using a beam profiler, however due to the high cost of these machines, it is likely that not all researchers would have access to this measurement technique. Therefore, a simple procedure involving the marking of a material using the laser and then measuring the width of the mark was employed. To perform this measurement, the laser was made to mark a piece of medium-density fibreboard with a series of 20 × 20 mm boxes which was placed at the same focal distance as the powder layer from the laser. A calibrated digital microscope was then used to capture high resolution images of the markings which were then post processed using ImageJ (National Institutes of Health, Bethesda, Maryland, USA) determine the spot size (Fig. 40).

From measurements taken by scaling the pixels of the microscope using the supplied calibration grid (Fig. 40b), the laser spot size was calculated to be 0.35 mm in both the X and Y planes. This indicates that the minimum scan spacing required for 100% infill of parts is 0.35 mm.

7.2. Characterization of produced parts

7.2.1. Feedstock

The feedstock chosen for processing using this SLS machine was a polyamide-12 powder (SP301, Guangdong Silver Age Sci. & Tech. Co. Ltd., China) produced using precipitation. The powder was designed specifically for a machine equipped with a laser emitting radiation with a short wavelength (towards ultraviolet) which involved increasing the optical absorption in that spectrum by the addition of tinting dyes. The resulting powder had a near spherical particle morphology (Fig. 41). A summary of the material characteristics, as reported in the datasheet provided by the manufacturer, can be found in Table 4.

The particle size distribution (Fig. 42) shows a near normal monomodal distribution about the D50 of the powder.

![Fig. 40. Laser input and output power measurements with calculated efficiency.](image-url)
Fig. 41. a) Macroscopic image of the square burnt by the laser and microscopic images of the b) calibration grid, c) horizontal section and d) vertical sections of the square.

Table 4
Feedstock material characteristics.

Powder	Theoretical Density (ρ_T) kg/m^3	Bulk Density (ρ_B) kg/m^3	Crystallisation Temperature (T_c) $^\circ\text{C}$	Melting Temperature (T_m) $^\circ\text{C}$	Median Particle Diameter (D_{50}) μm
SP301 (Black)	960	420	146	185	43

Fig. 42. An SEM image of the polyamide-12 powder.
7.2.2. Processing parameters

In literature, the primary processing parameters used in the SLS process are described by the layer height and the supplied energy density per unit area (Eq. (1)) [3].

\[E = \frac{P}{SS \times SP} \text{J/mm}^2 \]

where P is the laser power in watts, SS is the scan speed and SP is the scan spacing in millimetres.

To simplify the experimental determination of the required input energy, some parameters were fixed to some commonly used values. The layer height was selected to be 0.1 mm which is a value often reported in literature [3] and the scan spacing was set to the diameter of the laser spot (0.35 mm) so that there was no spacing between adjacent infill scans. The scan speed was set to 29.17 mm/s (or 1800 mm/min in Mach3). Once those values had been set, there was only one variable that could be altered which was laser power. Laser power was varied between 20% and 50% of the total power available in steps of 5% to deliver supplied energy density values of between 0.06 J/mm³ and 0.16 J/mm³. The scan strategy was set to rectilinear fill and the build plate was set at 180°C which is just below the melting temperature of the polyamide-12 material.

7.2.3. Measurements

For geometry and density measurements, four cuboids were produced at each energy level. Each produced part was measured in all planes using a digital caliper conforming to DIN 862 (Kincrome, Scoresby, Australia). The digital caliper was factory calibrated to ± 0.01 mm giving a maximum volumetric measurement error of 0.35%. The mass of each part was measured using a precision scale (GR-200, A&D Company Limited, Tokyo, Japan) allowing the density of each part to be calculated. Mechanical testing was performed as per ASTM D638 with type V (Fig. 43) tensile test samples (N = 4). An Instron (3367, Norwood, Massachusetts, USA) tensile test machine was used fitted with a 5kN load cell. The extension rate was set to 0.005 mm/s.

8. Results

Results show that an increase in energy density per unit area (Fig. 44) causes a somewhat predictable increase in part size in the X-Y plane. This can be explained by excess energy being conducted to adjacent particles in the powder bed [6].

Fig. 45 shows part density increasing almost linearly to a maximum density of 920 kg/m³ at a supplied energy density per unit area of 0.129 J/mm³. This corresponds to a part density of 96% of the theoretical density of the material.

The reduction in part density due to a further increase in supplied energy density has been noted previously [6,7]. This can be explained by an excess in thermal energy causing particles which are adjacent to the laser spot being attached to the part without undergoing full melting. It is therefore determined that the optimum energy to be supplied by the laser to achieve the highest part density without the risk of excess grain growth is 0.129 J/mm³.

![Fig. 43. Particle size distribution of the polyamide-12 powder.](image-url)
When the mechanical properties are examined against the supplied energy density (Table 5 and Figs. 46 & 47), elastic modulus indicates that the material becomes more brittle as the energy is increased. This indicates that an increase in the thermal gradient in the material makes it more resistant to deformation. However, when the elongation at the material’s failure point is examined against supplied energy density, it shows that a maximum value of 11.13 ± 0.02% is reached at an energy density of 0.129 J/mm². When the supplied energy exceeds this value, the failure point is reduced (Fig. 48).

When the mechanical properties are examined against the supplied energy density (Table 5 and Figs. 46 & 47), elastic modulus indicates that the material becomes more brittle as the energy is increased. This indicates that an increase in the thermal gradient in the material makes it more resistant to deformation. However, when the elongation at the material’s failure point is examined against supplied energy density, it shows that a maximum value of 11.13 ± 0.02% is reached at an energy density of 0.129 J/mm². When the supplied energy exceeds this value, the failure point is reduced (Fig. 48).

Supplied Energy (J/mm²)	0.064	0.081	0.097	0.114	0.129	0.143	0.156
Elongation at Break (%)	6.77 ± 0.50	7.77 ± 0.22	9.24 ± 0.92	11.03 ± 0.10	11.13 ± 0.02	10.06 ± 0.14	9.24 ± 0.32
Elastic Modulus (MPa)	177.44 ± 12.08	280.73 ± 6.04	257.58 ± 4.48	307.11 ± 8.03	358.36 ± 3.04	373.20 ± 16.58	385.90 ± 14.63
In this part characterization section, it was demonstrated experimentally that the supplied energy density could be varied and that this variation affected part growth in the X and Y planes, part density and mechanical properties. From the results of varying the supplied energy density, an upper limit (0.129 J/mm²) was chosen which represented the highest part density (918 ± 9 kg/m³) and mechanical properties (elastic modulus of 358.36 ± 3.04 MPa and elongation at break of 11.13 ± 0.02%). Furthermore this machine has been used to produce permanent magnets by processing mechanically alloyed neodymium-iron-boron and polyamide-12 powders [8]. The successful processing of these alloyed materials demonstrates one of the potential uses for this machine within a research environment.

Fig. 46. Part density as a function of supplied energy.

Fig. 47. Stress vs. strain curves for samples from each tested power level.
9. Human and animal rights

No human or animal studies were conducted in this work.

Funding

This work was supported by the Prince Charles Hospital Foundation, Brisbane, Australia [NI2017-28].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] T.T. Wohlers, Wohlers Associates Inc., Wohlers report 2009: state of the Industry: Annual Worldwide Progress Report, Wohlers Associates, 2009, ISBN 0-9754429-5-3.
[2] G.M. Vasquez et al, A targeted material selection process for polymers in laser sintering, Addit. Manuf. 1–4 (2014) 127–138.
[3] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., Springer New York, New York, NY, 2015.
[4] Coslow, T. 2019 SLS Printer Guide - All You Need to Know. [Accessed on 19/08/2019] Available from: https://all3dp.com/1/best-sls-3d-printer-desktop-industrial/.
[5] Y.Y. Kalisky, Knovel, I. Ebrary, The Physics And Engineering Of Solid State Lasers, SPIE Press, Bellingham, Wash, 2006.
[6] B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, J. Mater. Process. Technol. 182 (1) (2007) 477–488.
[7] I. Gibson, D. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyping Journal 3 (4) (1997) 129–136.
[8] M. Mapley et al, Selective laser sintering of bonded magnets from flake and spherical powders, Scr. Mater. 172 (2019) 154–158.