Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution

Irwin Jungreis a,b,*,1, Chase W. Nelson c,d,1, Zachary Arderne e, Yaara Finkel f,
Nevan J. Krogan g,h,1, Kei Sato j, John Ziebuhr k, Noam Stern-Ginossar f, Angelo Pavesi l,
Andrew E. Firth m, Alexander E. Gorbalenya h,o,2, Manolis Kellis h,i,2

a Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
b Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
c Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
d Institute for Comparative Genomics, American Museum of Natural History, New York City, NY, 10024, USA
e Chair of Microbial Ecology, Technical University of Munich, 85354, Germany
f Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
g Quantum Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
h Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
i J. David Gladstone Institutes, San Francisco, CA, 94158, USA
j Division of Systems Virology, Department of Infectious Disease Control, Institute of Medical Science, The University of Tokyo, 1088639, Tokyo, Japan
k Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
l Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
m Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
n Department of Medical Microbiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
o Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899, Moscow, Russia

ARTICLE INFO

Keywords:
Accessory protein
Alternative reading frame
Nomenclature
Open reading frame
ORF3b
ORF3d
ORF9a
ORF9b
Overlapping ORF
SARS-CoV-2
ORF3c
ORF2b

ABSTRACT

At least six small alternative-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronavirus Study Group of the International Committee on Taxonomy of Viruses. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity caused by prior usage of alternative names.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently identified strain (F.Wu et al., 2020a; Zhou et al., 2020; Zhu et al., 2020) of the species Severe acute respiratory syndrome-related coronavirus in the family Coronaviridae (subgenus Sarbecovirus, genus Betacoronavirus, subfamily Orthocoronavirinae) (Gorbalenya et al., 2020) that is the causative agent of coronavirus disease 2019 (COVID-19). Characterization of the SARS-CoV-2 proteome is vital for understanding its molecular biology and for development of countermeasures against the COVID-19 pandemic. Of particular interest are proteins that are unique to SARS-CoV-2, differ substantially from their SARS-CoV

https://doi.org/10.1016/j.virol.2021.02.013
Received 26 November 2020; Received in revised form 21 February 2021; Accepted 22 February 2021
Available online 17 March 2021
0042-6822/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Coronaviruses have positive-sense single-stranded RNA genomes that encode proteins expressed from genomic and subgenomic RNAs using complex regulation at the transcriptional, translational, and post-transcriptional levels (Fung et al., 2016; Fung and Liu, 2018; Sola et al., 2015). Some of the protein-coding open reading frames (ORFs) are conserved across coronaviruses, with homologs in all strains, and were named according to a uniform coronavirus-wide nomenclature (de Groot et al., 2012). At the 5' end are two large ORFs, ORF1a and ORF1b. ORF1a encodes polyprotein pp1a, and the combination of ORF1a and ORF1b encodes polyprotein pp1ab via a programmed frameshift. Polyproteins pp1a and pp1ab are proteolytically processed to yield 11 and 15 non-structural proteins (“nsps”), respectively (16 unique, nsps1-nsps16). These include the 3C-like cysteine proteinase (nsps5), RNA-dependent RNA polymerase (nsp12), helicase (nsp13), and exonuclease (nsp14) (Snijder et al., 2003). The name ORF1ab is sometimes used to refer to the two ORFs combined via the frameshift. However, we refer to ORF1a and ORF1b as separate ORFs following common practice in the nidovirus field motivated by their large sizes and small overlap, despite the fact that ORF1b begins at a frameshift site rather than a start codon, unlike the other ORFs we discuss here. The other ORFs conserved across coronaviruses encode, from 5' to 3', S (Spike protein), E (Envelope), M (Membrane), and N (Nucleocapsid). Other “accessory” ORFs, located in the region downstream of ORF1b, may be species-specific or present only in some strains of a species.

SARS-CoV-2 has a full complement of ORFs previously identified in other viruses of the species Severe acute respiratory syndrome-related coronavirus, which includes the prototype SARS-CoV, the causative agent of the 2002–2003 SARS outbreak. In addition to the ORFs common to all coronaviruses these include, from 5' to 3', the accessory genes ORF3a, ORF6, ORF7a, ORF7b, and ORF8 (split into ORF8a and ORF8b in some SARS-CoV isolates) (Cui et al., 2019; Liu et al., 2014; Wu et al., 2020a). Because of the unprecedented interest in SARS-CoV-2, its proteome has been extensively investigated by various experimental and computational techniques. One additional independent ORF, ORF10, and several additional ORFs overlapping S, ORF3a, and N in alternative positive-sense reading frames have been hypothesized to encode functional proteins. Some of these alternative-frame ORFs are unique to SARS-CoV-2, some are completely or partially homologous to ones already described for SARS-CoV, and one is present in SARS-CoV but was not identified until the SARS-CoV-2 genome was investigated. Alternative-frame ORFs could be translated from the same subgenomic RNA as the main ORF via leaky scanning or internal ribosome entry, from a subgenomic RNA specific to the alternative-frame ORF, or via a translational frameshift (Di et al., 2017; Firth and Brierley, 2012; Iri-goyen et al., 2016; Kim et al., 2020b; Liu and Inglis, 1992; O'Connor and Brian, 2000; Thiel and Siddell, 1994). Due in part to the biological and evolutionary complexity of these ORFs and the incremental nature of scientific discovery, different research groups have assigned different names to the alternative-frame ORFs, which has complicated clear scientific communication.

Here we propose a standard set of names for these overlapping SARS-CoV-2 ORFs for use by the scientific community in order to facilitate unambiguous communication and minimize confusion while the coding potential and biological function of these ORFs continues to be investigated.

2. Results and discussion

2.1. SARS-CoV-2 overlapping ORFs and their ambiguous names

The term “open reading frame” or “ORF” has been used with slightly different meanings by different authors. Here we use the term to mean any contiguous stretch of RNA codons beginning with a start codon, ending with a stop codon, and with no intermediate in-frame stop codons. Given appropriate evidence, the 5' end of the ORF might be moved to a site with a known stop codon readthrough or frameshift signal, as in the case of ORF1b, in order to accommodate the complexity of genome expression in viruses. (Note that, although we require an ORF to end with a stop codon, we do not include the stop codon when we report the lengths and coordinates of the ORF.) We do not require that an ORF exceeds some minimum length or that undisputed evidence is available for its translation into a protein. In what follows, we will only be discussing ORFs with AUG start codons, but our definition would include ORFs with other start codons (typically near-cognate to AUG, such as CUG). By this definition, the conceptual translation of the nucleotide sequence using a codon table determines whether a genome region is an ORF, whereas experimental or computational evidence is needed to determine if an ORF is indeed translated and encodes a functional protein during virus infection. This evidence may come from, but is not limited to, ribosome profiling, protein or peptide detection, and observation of evolutionary signals. Although a large number of ORFs satisfy our definition, we will only be discussing ORFs for which some evidence has suggested translation. Their consideration would benefit from having agreed nomenclature, even if for some of them this evidence may not pass the test of time.

At least six ORFs overlapping S, ORF3a, and N in alternative reading frames have been hypothesized to encode functional proteins. These ORFs are detailed in Fig. 1 and Table 1, and issues relating to their naming are discussed in the following paragraphs.

UniProt (The UniProt Consortium, 2019) annotates two ORFs overlapping N in a different reading frame, namely a 97 codon ORF with coordinates 28284–28574, which they call ORF9b, and a 73 codon ORF with coordinates 28734–28952, which they call ORF14. (As a result of our recommendation, the 73 codon ORF is called ORF9c beginning with UniProt release 2021.01.) The name ORF14, which is out of sequence from the other SARS-CoV-2 ORF names, dates back to the 2003 paper that introduced the SARS-CoV genome (Marra et al., 2003), which numbered all ORFs sequentially, including overlapping ORFs. Later papers renumbered so that overlapping ORFs were distinguished using different letters following a shared number, but the name ORF14 continued to be used by some authors whereas others used the name ORF9c. Various authors have referred to the 97 and 73 codon SARS-CoV-2 ORFs overlapping N, respectively, as ORF9a and ORF9b (Caglioni et al., 2020; Davidson et al., 2020; Wu et al., 2020a), ORF9b and ORF9c (Gordon et al., 2020; Michel et al., 2020; Nelson et al., 2020), or ORF13 and ORF14 (Lu et al., 2020), resulting in ambiguity about whether ORF9b refers to the 97 or 73 codon ORFs.

Biological and evolutionary complexity have engendered even greater confusion about the names of ORFs overlapping ORF3a. SARS-CoV contains an alternative-frame 154 codon ORF, ORF3b, that partially overlaps both ORF3a and E (Chan et al., 2005), but the homologous 155 codon region in SARS-CoV-2 contains several in-frame stop codons. The longest alternative-frame ORF overlapping SARS-CoV-2 ORF3a is the 57 codon ORF with coordinates 25524–25694 that overlaps a 5'-proximal portion of ORF3a that has no homology to SARS-CoV-ORF3b (Fig. 1), though this ORF is truncated to 13 codons in a substantial fraction of isolates (Lu et al., 2020). Because there is no SARS-CoV-2 ORF of comparable length in the region homologous to SARS-CoV ORF3b, Chan et al. (2020) referred to this 57 codon ORF as ORF3b (the paper does not explicitly state the length or coordinates, and ORF3b is not included in the corresponding NCBI record, accession MN975262), but the ORF can be inferred from the amino acid sequence specified in their Fig. 4). However, Konno et al. used the name ORF3b to refer to the 22 codon ORF with coordinates 25814–25879 at the 5' end of the region homologous to SARS-CoV ORF3b, which they reported to be an interferon antagonist when expressed from a plasmid (Konno et al., 2020b), a property that had previously been reported for the much longer SARS-CoV ORF3b (Kopecky-Bromberg et al., 2007). Adding to the potential for confusion, the non-homologous 57 codon ORF overlapping ORF3a has also been reported to function as an interferon
antagonist in a paper that also referred to it as ORF3b (Lu et al., 2020).

The 57 codon ORF was predicted to be translated and functional based on a statistical test (Schlub et al., 2018) for unexpectedly long over-

As this example illustrates, some proteins have more than one potential start site and it can be difficult to determine which are functionally important. Other studies that discuss the 22 or 57 codon ORFs are listed in Table 2 and Supplementary Table 1.

A third ORF overlapping ORF3a, the 41 codon ORF with coordinates 25457-25579, was proposed to be translated based on synonymous constraint across 6 closely-related strains of the species and called ORF3h (Caglioni et al., 2020). This ORF was independently identified using ribosome profiling (Finkel et al., 2020), by synonymous constraint in a larger group of strains (Firth, 2020), and using evolutionary signatures of protein-coding regions (Jungreis et al., 2021), and referred to as ORF3a.iORF1, ORF3c, and ORF3e in these three respective studies, with additional evidence of purifying selection reported by comparing different SARS-CoV-2 isolates (Nelson et al., 2020b). Adding to the confusion, this ORF has also been referred to as 3b protein (Pavesi, 2020). Interestingly, the 41 codon and 57 codon ORFs have a 59-nucleo-

Lastly, the 39 codon ORF with coordinates 21744-21860 overlapping the Spike protein was found to show evidence of translation in a ribo-

Ambiguity in the usage of the name ORF3b has been particularly confusing. Two of the earliest papers about the SARS-CoV-2 genome used the term ORF3b to mean different genomic regions: Wu et al. show ORF3b as the region homologous to SARS-CoV ORF3b in their Fig. 1 and their Supplementary Table 6 without noting the in-frame stop codons (F. Wu et al., 2020a), whereas Chan et al. use the name ORF3b to refer to the 57 codon ORF, which has no homology to SARS-CoV ORF3b (Chan
ORF3b studies. Thirty two studies that use the name “ORF3b”, but do not distinguish the 22 codon and 57 codon ORFs as separate entities. Information about what each study was investigating and how we determined the ORF referred to is provided in Supplementary Table 1.

ORF called “ORF3b” in study	Recommended name	Study type	Studies (first author and citation)
22 codon ORF	ORF3b	Genome report	(Wu et al., 2020a)
		Empirical Review	(Konno et al., 2020b; Lokugamage et al., 2020; Xia et al., 2020; Zhang et al., 2020)
			Sa Ribero et al. (2020)
57 codon ORF	ORF3d	Genome Report	Chan et al. (2020)
		Empirical Review	(Janerjee et al., 2020; Gordon et al., 2020; Hachim et al., 2020; Hayn et al., 2020; Lam et al., 2020; Laurent et al., 2020; Samavarchi-Tehrani et al., 2020; Si-Germain et al., 2020)
		Laboratory resource - sequence clone collection	(Kim et al., 2020a)
		Computational Review	(Michel et al., 2020; Pasquier and Robichon, 2020; Sadegh et al., 2020)
			Celik et al., 2020; Gariñelo et al., 2020; Helmy et al., 2020; Tadefehshokr et al., 2020; Wu et al., 2020b; Yang et al., 2020; Yi et al., 2020; Yoshimoto, 2020; Zinula, 2020)
22 codon ORF	ORF3c	Computational Review	(Lei et al., 2020; Nabeel-Shah et al., 2020; Yuen et al., 2020)

At the time of writing, at least 30 subsequent published papers or preprints have used the term ORF3b to refer to one or both of these two ORFs, many of which provide little if any information from which the reader might deduce which ORF is being referred to (Table 2). For example, a recent report about the antibody response to SARS-CoV-2 ORF3b (Hachim et al., 2020) does not state which ORF3b is referred to, only that proteins were chosen based on previous studies, and citing the two aforementioned papers (Chan et al., 2020; Wu et al., 2020a), which have different definitions of ORF3b. We were able to infer from the PCR primers in their Supplementary Table S1 that the gated ORF3a as ORF3b, without providing coordinates, but we were able to communicate that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein. A subsequent report (Hachim et al., 2020) (confirmed by personal communication) that it refers to the 57 amino acid protein.
has sometimes been called ORF9c (though it has also been called ORF14).

Finally, we extend our convention by naming smaller isoforms of overlapping ORFs using alternative start codons according to the template ORF{'(Number1)'[letter]{'-'[Number2]}}. Specifically, we introduce the name ORF3d-2 for the 33 codon isoform of ORF3d. Whether either, both, or neither of these two isoforms encode a functional protein has yet to be determined, so we have chosen to name the shorter isoform in case it is the only functional isoform, but use a name that relates it to ORF3d in case both are functional. There are several other sub-ORFs that have been proposed to be translated (Finkel et al., 2020) but we have not assigned names to them because, as far as we know, ORF3d-2 is the only one for which anyone has proposed that the shorter form is translated but the longer one is not. If, in the future, names are needed for other smaller isoforms of overlapping ORFs using alternative start codons, we suggest using a naming strategy that is analogous to ORF3d-2.

While researchers have presented experimental or computational evidence of translation or function for each of the six overlapping ORFs discussed here, a final consensus in the community has not yet been achieved. We would like to emphasize that in choosing names we are not necessarily representing the official views of the National Institutes of Health. Additional support was provided by grant number NIH grant R01 HG004037 (IJ), an Academia Sinica Postdoctoral Research Fellowship (CWN), Leiden University Fund (AEG), Wellcome Trust grant 106207 (AEF), the German Federal Ministry of Education and Research (BMBF-COVINET) (JZ). This work has benefited from the equipment and framework of the COMP-HUB Initiative, funded by the 'Departments of Excellence’ program of the Italian Ministry for Education, University and Research (MIUR, 2018–2022) (AF).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.virol.2021.02.013.

References

Bakouche, N., Vandenbergroucke, A.-T., Gobau, P., Ruefle, J., 2013. Study of the HIV-2 Env cytoplastic tail variability and its impact on Tat, Rev and Nef. PloS One 8, e79129. https://doi.org/10.1371/journal.pone.0079129.

Banerjee, A.K., Blanco, M.R., Bruce, E.A., Hinson, D.D., Chen, L.M., Chow, A., Bhut, P., Olikkainen, N., Quindos, S.A., Loney, C., Thai, J., Miller, Z.D., Lin, A.E., Schmidt, M. M., Stewart, D.G., Goldfarb, D., De Lorenzo, G., Rihn, S.J., Voorhees, R.M., Botten, J. W., Majumdar, D., Gutmann, M., 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. https://doi.org/10.1016/j.cell.2020.10.004.

Bojkova, D., Klann, K., Koch, B., Widera, M., Krause, D., Ciezek, S., Cinatl, J., Münch, C., 2020. Proteomics of SARS-CoV-2-infected cells reveals therapy targets. Nature. https://doi.org/10.1038/s41586-020-2739-1.

Cagnolati, R., Forini, D., Clerici, M., Sironi, M., 2020. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses. Infection, Genetics and Evolution. https://doi.org/10.1016/j.igev.2020.104355.

Celik, O., Saglam, A., Baysal, B., Derwig, L.E., Celik, N., Ak, M. A., Aylan, S.N., Ulas, M., Ershahin, A., Tayyari, A.T., Duran, B., Aydin, S., 2020. Factors preventing maternal-fetal transmission of SARS-CoV-2. Placenta 97, 1–5. https://doi.org/10.1016/j.placenta.2020.06.012.

Chan, J.F.W., Kok, K.-H., Zhu, Z., Chu, H., To, K.-K.W., Yuan, S., Yuen, K.-Y., 2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emer. Microb. Infect. https://doi.org/10.1002/2221-751I.2020.1719902.

Chan, W.S., Wu, C., Chow, S.C.S., Cheung, T., To, K.-F., Leung, W.-K., Chan, P.K.S., Lee, K.-C., Ng, H.-K., Au, D.M.Y., Lo, A.W.L., 2021. Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Mod. Pathol. 18, 1432–1439. https://doi.org/10.1038/modpathol.2008.049.

Cui, J., Li, F., Shi, Z-L., 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0118-9.

Davidson, A.D., Williamson, M.K., Lewis, S., Shoemarck, D., Carroll, M.W., Hsuesh, K.J., Zambron, M., Ellis, J., Lewis, P.A., Hiscok, J.A., Matthews, D.A., 2020. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 12 (68) https://doi.org/10.1186/s13073-020-00763-0.

de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Poon, L., Rotter, P.J.M., Talbot, P.J., Others, 2012. Family Coronaviridae, p 806–828. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Academic Press, San Diego, CA.

Di, H., Madden Jr., J.C., Morantz, E.K., Tang, H.-Y., Graham, R.L., Baric, R.S., Brinton, M., 2016. Regulation of stress responses and translational evolution. Measles Virus Research. https://doi.org/10.1038/s41586-020-02739-1.

Gorbalenya, A.E., de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., 2017. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc. Natl. Acad. Sci. U. S. A. 114, E8895–E8904. https://doi.org/10.1073/pnas.1706596114.

Finkel, Y., Mizrahi, O., Nachshon, A., Weigarten-Gabbay, S., Morgenstern, D., Yahalom-Ronen, Y., Tamir, H., Achdout, H., Stein, D., Israeli, O., Ben-Din, A., Melamed, S., Weiss, S., Israely, T., Paran, N., Schwartz, M., Stern-Ginossar, N., 2020. The coding capacity of SARS-CoV-2. Front. Cell. Infect. Microbiol. 10, 9. https://doi.org/10.3389/fcimb.2020.00095.

Firth, A.E., 2020. A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a. Journal of General Virology. https://doi.org/10.1099/jgv.0.001469.

Firth, A.E., Brierley, I., 2012. Non-canonical translation in RNA viruses. J. Gen. Virol. 93, 1185–1195.

Fung, T.S., Liao, Y., Liu, D.K., 2016. Regulation of stress responses and translational control by coronavirus. Viruses 8. https://doi.org/10.3390/v8070184.

Fung, T.S., Liu, D.K., 2018. Post-translational modifications of coronavirus proteins: role and function. Future Virol. 13, 405–430. https://doi.org/10.2217/fvl-2018-0008.
The UniProt Consortium, 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1049.
Thiel, V., Siddell, S.G., 1994. Internal ribosome entry in the coding region of murine hepatitis virus mRNA. J. Virol. 75 (Pt 11), 3041–3046. https://doi.org/10.1128/9737.1-11.3041.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Bai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E.C., Zhang, Y.-Z., 2020a. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. https://doi.org/10.1038/s41586-020-2025-3.
Wu, J., Yuan, X., Wang, B., Gu, R., Li, W., Xiang, X., Tang, L., Sun, H., 2020b. Severe acute respiratory syndrome coronavirus 2: from gene structure to pathogenic mechanisms and potential therapy. Front. Microbiol. 11 (1576) https://doi.org/10.3389/fmicb.2020.01576.
Xia, H., Cao, Z., Xie, X., Zhang, X., Chen, J.Y.-C., Wang, H., Menachery, V.D., Rajshaum, R., Shi, P.-Y., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33 (108234) https://doi.org/10.1016/j.celrep.2020.108234.
Yang, Y., Xiao, Z., Ye, K., He, X., Sun, B., Qin, Z., Yu, J., Yao, J., Wu, Q., Bao, Z., Zhao, W., 2020. SARS-CoV-2: characteristics and current advances in research. Virol. J. 17 (117) https://doi.org/10.1186/s12985-020-01369-z.
Yi, S., Lagrim, P.N.P., Ye, S., Li, E., 2020. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci.
Yoshimoto, F.K., 2020. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39, 198–216. https://doi.org/10.1007/s10930-020-09901-4.

Yuen, C.-K., Lam, J.-Y., Wong, W.-M., Mak, L.-F., Wang, X., Chu, H., Cai, J.-P., Jin, D.-Y., To, K.K.-W., Chan, J.F.-W., Yuen, K.-Y., Kok, K.-H., 2020. SARS-CoV-2 mp13, mp14, mp15 and orf6 function as potent interferon antagonists. Emerg. Microb. Infect. 9, 1418-1428. https://doi.org/10.1080/22221751.2020.1780953.
Zhang, J., Cruz-cosme, R., Zhuang, M.-W., Liu, D., Liu, Y., Teng, S., Wang, P.-H., Tang, Q., 2020. A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins. Cold Spring Harb. Lab. https://doi.org/10.1101/2020.08.02.233023.
Zhou, P., Li, H., Wang, H., Wang, L.-F., Shi, Z., 2012. Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J. Gen. Virol. 93, 275–281. https://doi.org/10.1099/033589-0.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Gao, H., Jiang, R.-D., Liu, M.-Q., Shen, X.-R., Wang, X., Zheng, X.-S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., Zhan, F.-X., Wang, Y.-Y., Xiao, G.-F., Shi, Z.-L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-2127-7.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020. A novel coronavirus from patients with pneumonia in China. 2019. N. Engl. J. Med. 382, 727–733. https://doi.org/10.1056/NEJMoa2001017.
Zinzula, L., 2020. Lost in deletion: the enigmatic ORF8 protein of SARS-CoV-2. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2020.10.045.