A Review on Coastal Urban Ecology: Research Gaps, Challenges, and Needs

Giorgia Graells1,2,3#, Nao Nakamura4, Juan L. Celis-Diez5, Nelson A. Lagos3,6, Pablo A. Marquet1,7, Patricio Pliscoff1 and Stefan Gelcich1,2,3

1 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, 2 Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile, 3 Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile, 4 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia, 5 Pontificia Universidad Católica de Valparaíso, Escuela de Agronomía, Quillota, Chile, 6 Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile, 7 Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile

Coastal urban areas have dramatically increased during the last decades, however, coastal research integrating the impacts and challenges facing urban areas is still scarce. To examine research advances and critical gaps, a review of the literature on coastal urban ecology was performed. Articles were selected following a structured decision tree and data were classified into study disciplines, approaches, type of analysis, main research objectives, and Pickett’s paradigms in-, of-, and for- the city, among other categories. From a total of 237 publications, results show that most of the research comes from the USA, China, and Australia, and has been carried out mostly in large cities with populations between 1 and 5 million people. Focus has been placed on ecological studies, spatial and quantitative analysis and pollution in coastal urban areas. Most of the studies on urban ecology in coastal zones were developed at nearshore terrestrial environments and only 22.36% included the marine ecosystem. Urban ecological studies in coastal areas have mainly been carried out under the paradigm in the city with a focus on the disciplines of biology and ecology. Results suggest a series of disciplinary, geographical, and approach biases which can present a number of risks. Foremost among these is a lack of knowledge on social dimensions which can impact on sustainability. A key risk relates to the fact that lessons and recommendations of research are mainly from developed countries and large cities which might have different institutional, planning and cultural settings compared to developing and mid-income countries. Scientific research on coastal urban areas needs to diversify toward an ecology of and for the cities, in order to support coastal development in a diversity of countries and settings.

Keywords: coastal urban ecology, marine urbanization, coastal cities, urban ecology paradigms, coastal urbanization

INTRODUCTION

The world's population is increasing annually. In 2018, 55% of the human population lived in urban areas and cities have been constantly growing in number and size, forming large cities. The so-called megacities have reached over 10 million inhabitants (according to the United Nations, 2018, presenting 33 settlements). The high levels of urbanization during the last decades have triggered
increasing research and policy interest on the impacts and sustainability of these human-dominated ecosystems (Grimm et al., 2000; Griggs et al., 2013). Initial research hypothesized urban areas were not able to sustain wildlife and complex ecological processes. However, this began changing in the first part of the '70s when urban ecology began studying species distributions in cities and its drivers (Noyes and Progulske, 1974; Dorney et al., 1984; Sukopp, 1998; Grimm et al., 2008). Since then, urban ecology research topics have evolved to include ecological and social science approaches (Grimm et al., 2000) and currently, urban ecosystems are recognized as a complex coupling of ecological processes and human dynamics, as defined by Alberti (2008) and Pickett et al. (2008). Research on urban ecology is diverse and includes studies on biodiversity patterns [e.g., urban biodiversity in Faeth et al. (2011); biotic homogenization in McKinney, 2006], species distributions (e.g., birds in Marzluff, 2001), ecosystem functions (Groffman et al., 2004; Rosenzweig et al., 2018), development processes (e.g., Antrop, 2004), drivers of change (e.g., Grimm et al., 2008), ecosystem services (Bolund and Hunhammar, 1999; Daily, 2003), human well-being (Pacione, 2003; Van Kamp et al., 2003; Dallimer et al., 2012), social-ecological systems (Barthel et al., 2010; Grimm et al., 2013), and sustainability (Wu, 2008, 2014).

Pickett et al. (2016) introduced three phases in the way urban ecology has evolved. They provide a typology of paradigms for urban ecology, which are termed: in, of, and for the city. Each one of these paradigms exposes historical differences according to changes in urban ecology research, and resulted by the comparison of three variables: chronology, model approach, and complexity. Studies under the paradigm in the city fall mainly into using ecological approaches, studies of the city are mainly based on social-ecological interactions, and studies for the city represent research about environmental policies and planning. The urban ecology paradigms also represent increasing level of complexity of the system studied, where research which subscribe to the paradigm include interdisciplinary research; the urban ecology for the city is more intricate and includes in and of the city studies, engaging scientific knowledge in practice for action (Pickett et al., 2016).

Most of the theoretical and empirical developments in urban ecology have used green areas (e.g., Chiesura, 2004; Tzoulas et al., 2007; Wolch et al., 2014), freshwater streams (e.g., Allan et al., 1997; Paul and Meyer, 2001; Walsh et al., 2005), and organisms such as birds (e.g., Blair, 1996; Chace and Walsh, 2006) or plants (e.g., Ulrich, 1984; Donovan and Prestemon, 2012; Donovan et al., 2013) as their preferred research subjects. Coastal settings and species have not received the attention they deserve, and only 5% of urban ecology research in Web of Science is focused in coastal or marine ecosystems. This is unfortunate because coastal cities present a variety of environments, including the land-marine ecotone interaction, and they are an important place for people to settle (Weinstein, 2009). According to the (United Nations, 2017), 40% of the world’s population live <100 Km from the sea, and these cities have increased their population 6.6 times between 1945 and 2012 (Barragán and de Andrés, 2015). These factors and specific features such as interactions with watersheds in estuaries, the establishment of structures in ports (Cadenasso et al., 2006), and the social importance of access to the waterfront (Sairinen and Kumpulainen, 2006) reflect a particular vulnerability for coastal urban areas. During recent decades, studies on risks have increased due to predicted changes in winds, waves or sea-level rise due to climate change (Torresan et al., 2008; Kumar et al., 2010; Benveniste et al., 2019). Despite recent interest on vulnerabilities, research has mainly focused on geomorphological contexts (Arns et al., 2017; Vitousek et al., 2017; Luijendijk et al., 2018; Benveniste et al., 2019).

This article reviews scientific publications of coastal urban ecology with the aim of examining spatial and temporal changes in time and evaluating the evolution of urban ecology in these vulnerable areas through identifying the interconnection in existing literature given by the urban ecology paradigms (Pickett et al., 2016). Here, studies are classified according to theoretical and empirical dimensions of urban ecology. Biases in the literature are highlighted as a way to call attention to the needs for developing coastal urban ecology studies that can inform ongoing urbanization trends, especially in developing and mid-income countries.

METHODS

A review of the literature was performed through the Web of Science database (https://webofknowledge.com/). Eligibility criteria included any publication following keywords in the topic, using Boolean operators to combine concepts and keywords: ("urban ecology" or "urban environment" or

coast* or marine). The period of the search included from 1975 until December 2019. We based our search on systematic mapping in order to collate, describe and catalog available evidence relating to the topic, allowing to address open-frame or closed-frame questions (James et al., 2016). Selection of articles was made with a decision tree (Figure 1), where the urban center, marine studies, and biodiversity approach had to be checked for any articles to be included. Fulfilling the requirement for inclusion, publications were classified in ecology in the city, ecology of the city or ecology for the city following the paradigms established by Pickett et al. (2016). Studies were counted just once for each paradigm. Gray-literature was not incorporated in the selection.

Each article collected was categorized by publication year, author's name, type of publication, author's affiliation country, study country, and study city. After examining each paper they were categorized according to disciplinary focus, study approach, type of analysis, main research object, study model, and coastal environment. A list of categories, their definitions and example references can be found in Table 1. Articles were classified by two of the authors independently. Results were then compared and discrepancies resolved with the participation of a third author. For each category, articles were counted just once.

City's population data were obtained from the United Nations (2019) compendium. Urban centers classification was modified from the United Nations (2014) and Barragán and de Andrés (2015). This classification includes: (1) Non-urban areas, which have <100,000 inhabitants, (2) small cities, between 100,000 and 500,000 inhabitants, (3) medium cities, between 500,000 and 1
FIGURE 1 | Decision tree of articles selected based on a PRISMA flow diagram. Description of the selection process for articles in coastal urban ecology review. After four passes for selection filters, the remaining 237 studies where classified in three categories: urban ecological paradigms in, of, and for the cities.
million, (4) large cities, between 1 and 5 million, (5) very large cities, between 5 and 10 million, and (6) megacities, with more than 10 million.

Characterization of articles according to urban ecology paradigms included the number of studies found for each paradigm, countries, year of publications, disciplinary focus, research approach, type of analysis, and main research objective. To examine the interaction among articles’ paradigms, we analyzed the co-citations to other articles in our data base using the Web of Science database, and carried out a descriptive analysis of the network. We did not use topological measurements of the network, but rather describe its directionality. This analysis was developed with package bibliometrix (Aria and Cuccurullo, 2017), which allowed modifications in the code to create a new relationship between articles and their co-citations. The analysis included extracting every reference from each article that was selected in this review and the selection of cited articles that were already part of the article selection. Consequently, there was a tagging for each article cited with corresponding paradigm classification and these were plotted to unveil the relationship among paradigms used.

Classification, data analysis, and figures were prepared in R Core Team (2020) using RStudio Team (2019). For data analysis, packages tidyverse (Wickham et al., 2019a), dplyr (Wickham et al., 2019b), purrr (Henry and Wickham, 2017), broom (Robinson, 2014), and stringr (Wickham, 2019) were used. Graphs and maps were plotted with ggplot2 (Wickham, 2016) and gridextra (Auguie, 2016).

RESULTS

Coastal Urban Ecology Tendencies

Coastal urban ecology studies that met selection criteria included a total of 237 articles (Figure 1) from 51 countries, involving 137 different coastal cities. Most of the research was carried out in three countries: USA presenting 38 articles published, which included 20 different cities, China with 20 articles from 10 different cities, and Australia also with 20 articles, including 10 different cities (Figure 2). The timeline of publications shows that urban ecology in coasts appeared for the first time with Barcelona in 1979, however, it was not until 1995 that another study related to the field was published with Punda-Polić et al. (1995). Between 1995 and 2005, the number of publications was below five articles per year (Figure 3). After 2005 more articles can be found, particularly in years 2016, 2018, and 2019, which showed more than 20 publications per year. According to the type of publication found at the Web of Science database, publications are mostly journal articles with 84.97% of the total, proceedings papers represented 9.7% (e.g., Kulkova et al., 2011; Giovene di Girasole, 2014; Fu et al., 2018), indexed book chapters 2.11% (e.g., Race et al., 2010; Wong, 2011; Juchimiuk and Januszkiewicz, 2019), and reviews 2.11% (e.g., Garden et al., 2006; Cohen et al., 2013; Branoff, 2017).

General findings and tendencies since 1995 are shown in Figure 3. The main disciplinary focus of research has consistently come from ecology with an average representation of 48.79% of studies for the whole study period. Among ecological studies, those where coastal urbanization have modified ecological patterns stand out. For example Way et al. (2004), tracked movement and activity patterns of coyotes in northeastern North America, demonstrating that these mammals used more urbanized areas than natural ones. Other studies have assessed diets and feeding habitats of coastal birds to assess the interplay between natural and anthropogenic factors in determining diversity patterns (Washburn et al., 2013). Social-ecological studies were the second most common disciplinary focus with 24.47% (an average 2.2 publications per year between 2005 and 2009, 4.4 between 2010 and 2014, and 3.8 between 2015 and 2019; Figure 3). Social-ecological studies include those which focus on biodiversity and natural environment perceptions and human well-being. For instance, White et al. (2013) assessed human emotions toward different coastal environments and Burger et al. (2017) assessed human preferences toward protection and restoration. Environmental policy and planning studies have focused on developing guidelines for planning in order to contribute to the sustainability of the urban environment. For instance Alcoforado et al. (2009) identified climatic needs in a coastal city and discussed problems that arise when applying climatic knowledge to urban planning. Disciplinary focus of research showed high number of publications on traditional ecology, centered on how biodiversity patterns are affected by cities. However, despite noticeable exceptions, focus on human dimensions, such as studies which deal with perceptions and well-being associated to urban development and environmental footprint have received less attention. In addition multidisciplinary research on defining and designing solutions, associated to various forms of participatory approaches in order to move toward urban sustainability, are still scarce, showing a gap in knowledge.

Coastal ecology research has mainly considered spatial approaches searching for patterns based on differences in urban morphology. These spatial patterns include land cover and land use. For instance, research based on beach width and coastal slope that determine the most critical physical parameters to create coastal vulnerability maps (Kantamaneni et al., 2019). Study approaches have slowly included temporal dimensions (Figure 3). Spatio-temporal studies included articles such as Grossmann (2008) who discusses the consequences of current global technological, organizational and economic developments for a port. Temporal studies included Priestley et al. (2018) who assessed inorganic and organic compounds and their relation to photolysis and Martin et al. (2007) who studied management approaches for a coastal urban pest (White Ibis) along the east coast of Australia. Studies which use experimental approaches through time represent <1% of the articles. They included articles such as the study of Leclerc and Viard (2018), who studied how swimming predators influenced the early development of fauna associated with floating pontoons in marinas. A significant higher number of publications considering spatial instead of temporal approaches could generate a static representation of what happens in coastal cities. This is particularly relevant in the face of climate change scenarios, where temporal variability becomes important.
TABLE 1 | Classification of articles in coastal urban ecology.

Category	Classification	Description	Examples
Disciplinary focus	Ecological	Study of relationships and interaction between organisms and their coastal urban environment.	Tait et al., 2005; Smith and Munro, 2010
Social	Study of social behavior, including its origin, evolution and organization within a coastal urban environment.	Abarca-Álvarez et al., 2018	
Social-ecological	Study of interaction between humans and their coastal urban environment, using multidisciplinary approaches including anthropology, geography, sociology and ecology.	White et al., 2013; Burger et al., 2017	
Environmental policy	Study of the environment with a focus on organization, law, regulations or policy solutions.	Alcoforado et al., 2009; Vye and Rousseaux, 2010	
Social policy	Provides practical guidelines and principles to improve human welfare.	Jonkman et al., 2013; Guerrero Valdebenito and Alarcon Rodriguez, 2018	
Study approach	Spatial	Focus on landscape, land cover, or urban geomorphology changes.	Garden et al., 2006; Yamazaki et al., 2007
Spatiotemporal	Landscape, land cover, or urban geomorphology changes, including some changes over time on small scale.	Grossmann, 2008; Li et al., 2011	
Temporal	Focus in changes over time.	Semadeni-Davies et al., 2008; Yu et al., 2019	
Temporal experiment	Focus in changes over time in a controlled environments and simulations.	Chabas et al., 2015; Leclerc and Viard, 2018	
Experimental	Including all lab procedures.	Zhen et al., 2007; Charalambous et al., 2012	
Type of analysis	Qualitative analysis	Non-numerical descriptions and ethnographic studies.	Gardner, 2003; Arif, 2017
Quantitative analysis	Collection and evaluation of measurable data of either social or environmental aspects.	Gallimany et al., 2013; Branoff, 2017	
Modeling studies	Mostly computational simulations.	Sahai et al., 2013; Santos and Freire, 2015	
Main research object	City design	Mainly urban planning.	Alcoforado et al., 2009; Kantamaneri et al., 2019
Demographic change	Variation in the population in terms of size, average age, life expectancy, family structures, or birth rates, among others.	Race et al., 2010, Abarca-Álvarez et al., 2018	
Habitat use	Variation in the distribution of species within cities.	Lim and Sodhi, 2004; Reyes-López and Carpintero, 2014	
Human adaptation	People’s reaction to urban changes and creation of new spaces	Weinstein, 2009; Chen et al., 2015	
Natural disaster	City's risks or damage associated to floods, hurricanes, storms, tsunamis, or another geophysical process.	Yin et al., 2016; Su et al., 2019	
Pollution and human impacts	Effects of city growth and/or increase in urbanization as a measurement of contamination.	Ip et al., 2007; Arruti et al., 2011	
Shoreline changes	New infrastructure in the shoreline, waterfronts and other constructions.	Wu, 2007; Alberico et al., 2018	
Study model	Physical	Physical space comprises research with aerosol, geomorphological elements, land structures, meteorological elements, pollutants, remote sensing data, risk models, seawater, surface deterioration, and water resources.	Pollutants: Pallarés et al., 2019
Social-ecological-technological.	Includes marine and green structures, eco-cities, and sustainable cities.	Marine structures: Gumusay et al., 2016	
Social	Social space comprises bioclimatic comfort, demographic, human activities and cultural heritage, perceptions, public health, and sustainable development.	Eco-cities: Surian and Shaw, 2008	
Biological-species	Biological in terms of studied organisms or their parts, including algae, antibiotics, bacteria, birds, fishes, invertebrates, lichens, mammals, and plants.	Human activities and cultural heritage: Cieland et al., 2015	
Biological-ecosystems	Biological in terms of studied ecosystems, including studies in diversity, ecological processes and patterns, ecosystems, and environmental management.	Perceptions: Nunkoo and Ramkssoon, 2010	
		Birds: Belant, 1997	
		Fishes: Naidoo et al., 2016	
Study habitat	Near-shore terrestrial	Includes dunes, coastal xeromorphic habitats, rocky and sandy shores, urban, agricultural and industrial landscapes in the coast.	Watson, 2015; Whisson et al., 2015
Intertidal	Estuaries, deltas, mangrove forests, coastal lagoons, salt marshes, other coastal wetlands, marinas and ports.	Jonkman et al., 2013; Kuwae et al., 2016	
Near-shore coastal benthic	Seagrass beds, artificial structures and soft bottom environments above the continental shelf.	Eddy and Roman, 2016; Bolton et al., 2017	
Coastal pelagic	Open waters above the continental shelf.	Zhen et al., 2007; Wang et al., 2010	
Coastal atmosphere	The aerial space.	Clarkson et al., 1996; Dominick et al., 2018	
Quantitative studies have dominated the literature during the past 20 years and have focused on ecological approaches. For example, Tzortzakaki et al. (2018) studied the effect of different land-cover types on bird species richness and abundance and concluded that open green spaces are the most significant factor favoring bird diversity in a coastal city in Greece. Qualitative studies represent 20% of the articles. These mainly use a social-ecological approach. Studies use qualitative interviews to assess urban coastal environmental constructs and preferences (Cleland et al., 2015). Other qualitative studies have been used to design green infrastructure in urban cities (Chen et al., 2015). Policy studies such as Guerrero Valdebenito and Alarcon Rodriguez (2018) used qualitative approaches to assess tensions and threats to traditional small-scale artisanal fishers coexisting with larger urbanized systems such as mega infrastructures, ports and cities. Modeling studies which include simulation of urban conditions, have begun to emerge in the past 6 years (Figure 3) to address a wide variety of issues. For example, Stathopoulou and Cartalis (2007) modeled the thermal urban environment and urban heat island phenomenon in major urban areas in Greece. Su et al. (2019) used modeling to determine realistic flooding scenarios. Other modeling studies have contributed to assess social-ecological dimensions. Sahal et al. (2013) used macro-simulators and micro-simulators with multi-agent-based modeling to select shelter points and choose evacuation routes for future tsunamis. Song et al. (2016) modeled urban environmental benefits, such as green infrastructure, industrial upgrade, and environmental management, in China, testing social-economic and demographic variables. The use of modeling to inform environmental policies has been approached mainly through mapping and risk assessments. For instance, Storch and Downes (2011) quantified and mapped current and future city-wide flood risks, combining climate change scenarios with urban land use scenarios. A key finding is that qualitative research approaches have been underrepresented. This has important consequences especially when assessing how the general public engage with urbanization and its impacts in coastal zones. Accordingly, there are important gaps of knowledge in this area.

When looking at the main research objectives it is interesting to note that the study of pollution and human impacts have dominated the literature (Figure 3). These articles mainly focus on the effects of stressors over coastal urban ecosystems and cities. For instance, Jartun and Pettersen (2010) collected sediments from urban stormwater runoff and analyzed various contaminants, showing that several active pollution sources are supplying the runoff systems. Studies that focus on habitat use in urban areas are also common. For example, studies have focused on differences in communities between fixed and floating structures (Holloway and Connell, 2002) or on abundance and survival rates of charismatic species in highly industrialized bays (Eguchi et al., 2010). Studies which focus on different aspects of city design are less frequent, but they have been increasing in the last 10 years. Some of these studies have developed climatic guidelines for planning and identifying climatic needs in coastal cities (e.g. Alcoforado et al., 2009),
others have applied multi-criteria decision analysis to explore local stakeholders' perceptions in terms of priority actions for waterfront development (Papatheochari and Coccossis, 2019).

According to study models used (Figure 4), a significant number of publications focused on physical aspects (48.10%) such as pollutants and risk toward natural hazards (Buggy and Tobin, 2008; Dominick et al., 2018). The second most frequent study model was biological, centered on specific species (21.94%). In this group, birds were the most studied (e.g., Kalinowski and Johnson, 2010, studying a suburban bird community; Sainz-Borgo et al., 2016, studying the house sparrow; Blight et al., 2019, studying an urban-nesting gull population). Invertebrates were the second most studied group including marine (Galimany et al., 2013; Eddy and Roman, 2016); and terrestrial species (Bizzo et al.,

![Figure 3](image_url)

Figure 3: Temporal distribution of categories. Articles in coastal urban ecology were categorized according to disciplinary focus, research approach, type of analysis, and main research objectives.
While other marine species such as fishes received less attention, some noticeable examples include the study by Bolton et al. (2017) of fish communities. Studies centered on specific ecosystems (Ehrenfeld, 2000; Branoff, 2017) or social-eco-technological systems showed <10 articles published. Foremost among these are those on eco-cities (e.g., Wong, 2011). This evidence indicates that study models have been frequently replicated. The dominance of certain study models has allowed progress in the field on certain issues. But at the same time, there are some fields that have not progressed at all such as those that include organisms like algae or marine microorganism.

Most of the articles published in coastal urban ecology have been developed in large cities of 1 to 5 million inhabitants (41%), while other city categories do not exceed 18%. More than 55% of articles were carried out in cities with more than 1 million people, including very large cities such as Los Angeles in USA (Barcelona, 1979), Osaka in Japan (Yamazaki et al., 2007), Tianjin in China (Peng et al., 2011), Bangkok in Thailand (Burnett et al., 2007), and megacities with more than 10 million people such as Shanghai in China (Li et al., 2018), Tokyo in Japan (Krishnan et al., 2019), New York in USA (Washburn et al., 2013), Buenos Aires in Argentina (Cardo et al., 2014). Coastal areas with <100,000 inhabitants presented only 10% of articles. These are dominated by articles from the USA (e.g., Kalinowski and Johnson, 2010; Wolsko and Marino, 2016). There is a clear focus on large cities and important knowledge gaps remain in studying urbanization processes and differences associated to growth of smaller cities and the social-ecological complexities they confront.

Research in coastal urban ecology has focused mostly in near-shore terrestrial environments, presenting more than 68% of articles. These have focused on urban environments (e.g., Parzych et al., 2016), anthropogenic constructions (Günel, 2018), green areas (Callaghan et al., 2018), and urban watersheads (Pinheiro and Hokugo, 2019). Intertidal areas presented 17.30% of the publications. Some of these focused on coastal defenses (e.g., Jonkman et al., 2013), estuarine and shallow coastal systems (Kuwae et al., 2016), estuarine mullet in an urban harbor (Naidoo et al., 2016) and predation on a threatened coastal seabird (Greenwell et al., 2019). Near-shore coastal benthic habitats accounted for 3.38% and included studies such as those which assess community structure (e.g., Holloway and Connell, 2002; Eddy and Roman, 2016), impacts of light on communities (Bolton et al., 2017) and spatial distribution patterns (e.g., Heery et al., 2018 for the giant Pacific octopus (Enteroctopus dofleini)). Studies which focus on pelagic environments near the coast account for only 1.69%. These relate mostly to sea water studies such as Zhen et al. (2007) and ocean thermal energy (Wang et al., 2010). Coastal atmosphere showed 8.86% of total articles published (e.g., aerosol: Castro et al., 1999; PM10 pollution episodes: Vicente et al., 2012; atmospheric deposition: Shanquan et al., 2016; and chemical composition of fine-aerosol fraction: Theodosi et al., 2018).

Current research evidence suggests studies in coastal urban systems deal greatly with pollutants and ecological implications, with emerging interests in planning and social interactions and responses. The ways in which these areas interact in time and space and across different city sizes and configurations could provide to be particularly novel research endeavors. Important issues such as the environmental footprint and social-ecological tradeoffs of coastal configurations of few large or a series of smaller cities settled along the coast are some key areas which need further development (Weinstein, 2009; Kaniewski et al., 2013; Barragán and de Andrés, 2015). Ultimately, coastal urban ecology still has important research opportunities in addressing the interactive effects of urban...
Coastal Urban Ecology in, of, and for the City

Paradigms in, of, and for the city have been addressed globally (Figure 5). The focus in the city is represented in more than 60% of articles, including 37 countries. The US showed the highest number of articles with 29 publications (e.g., Way et al., 2004; Eddy and Roman, 2016; Maguire and Fulweiler, 2019). The focus of the city is shown at a lower percentage than the previous paradigm, with 20.25% of publications and performed in 21 countries. The US also dominated this paradigm with 9 articles (e.g., Gasper et al., 2011; Douglas et al., 2012; Burger et al., 2017). Research addressing the for the city paradigm represented 19.41% of total articles and came from 25 different countries. China presents six articles (e.g., Li et al., 2011, 2017; Peng et al., 2011), which is the highest number of papers in a country which addresses this paradigm. This result indicates that coastal urban ecology is dominated by research with a focus in the city and only few countries have attended to develop the three paradigms.

Paradigms in, of, and for the cities have shown differences, not only in the total number of articles published (143, 48, and 46, respectively) but also in their first year of publishing and drivers, social-ecological responses and how planning processes accommodate these complex system dynamics.
subsequent tendencies (Figure 6). In this way, it is not until 2004 that the paradigm for the city appeared in coastal urban ecology studies (Patz et al., 2004). Before that, the paradigm in the city (since the beginning with Barcelona, 1979) dominated this research area, with some occurrence of the paradigm of the city since 1997 (Belant, 1997). The three paradigms show to be increasing in the number of publications during the last decade, although the paradigm in the city is doing it faster than the others. This could result in an even larger gap between the number of publications focused on each paradigm.

Evidence suggests that the three paradigms are different according to disciplinary focus, research approach, type of analysis, and the main research objectives presented in their articles (Figure 7). As expected, categorization by discipline showed that the paradigm in the city is mostly focused in ecological research, the paradigm of the city in social-ecological research, and paradigm for the city in environmental policies, and also some social-ecological and social policies. Research approaches are similar among paradigms, the spatial approach of studies is the most common (e.g., ecology in the city: Hosannah and Gonzalez, 2014; ecology of the city: Bulleri, 2006; ecology for the city: Santos and Freire, 2015), followed by spatio-temporal approach (e.g., ecology in the city: Castro et al., 1999; ecology of the city: Serre et al., 2010; ecology for the city: Storch and Downes 2011). Experiments and the interplay with temporal approaches are poorly represented in coastal urban ecology studies. Studies in the city presented mostly quantitative assessments, however, studies presented under paradigms of and for the city showed similar proportions between quantitative and qualitative analysis. The paradigm of the city has centered research on themes related to human adaptation (e.g., Wolsko and Marino, 2016, integrated research on disasters and climate change-induced migration with environmental psychology and the psychology of natural disasters), this topic also appears in the paradigm for the city in combination with city design, a consequence of the predominant focus on policy and planning implications of these studies. An example of human adaptations can be found in Villagra et al. (2016) who described the “resilience thinking” approach in urban planning, in order for a coastal city to adapt to extreme natural events such as tsunamis. Also, Conticelli and Tondelli (2018) proposed an urban regeneration of a coastal territory considering the local coastal landscape as a key element for boosting local sustainable growth.

When analyzing the whole database of coastal urban ecology articles, only 34 publications showed connections among citations, presenting a total of 24 interactions (Figure 8). These interactions varied in strength from one article citing a single article of the one included in our study, two cited the same article (Lopes et al., 2011; Chen et al., 2018), three cited the same article (Campbell, 2010; Washburn et al., 2013; Shepard et al., 2016), or four cited the same article (Campbell, 2010; Bertocci et al., 2017; Heery et al., 2018; Leclerc and Viard, 2018; Bugnot et al., 2019). Network analysis showed a marginal interaction among articles’ paradigms. Here the paradigm in the city cited only seven in the city articles from a total of 16 citations, the paradigm of the city cited three articles in the city and one of the city from a total of seven citations, paradigm for the city cited only one article under the paradigm of the city. These results suggest that coastal urban ecology article citation have a subtle connection among publications, and it is not reinforced when the three paradigms are considered.

DISCUSSION

Coastal urban ecology encompasses a diversity of disciplines and research models aimed at understanding the links between the natural and built environments. Results show that coastal urban ecology has focused primarily on ecological studies and
those studying physical characteristics of urban centers in coastal areas, dominated by research on pollution. However, there is an increasing contribution of studies on social dimensions. Studies that address coastal urban ecology from an in the city perspective have significantly increased during the last three decades. Interestingly, results show that coastal urban ecology is beginning to address issues which relate to planners and policy makers through some key studies on green infrastructure (Zhang et al., 2014; Chen et al., 2015), eco-cities (Surjan and Shaw, 2008; Wong, 2011), and sustainable cities (Pizarro, 2008; Song et al., 2016; Arif, 2017). Despite the diversity of research on coastal urban ecology, there are still important geographic and disciplinary gaps in research foci.

Coastal urban ecology research has drawn from ecological studies more than any other discipline (Figure 3). Even when it seems that social dimensions have been integrated slowly
during the years under the knowledge of human-nature coupling (Liu et al., 2007a,b) and the importance to include people and their relationship with the urban environment (Redman et al., 2004), interdisciplinary studies are still infrequent. An interesting interdisciplinary line of research is emerging associated with designing new infrastructures in coastal cities aimed at the provision of sustainable alternatives as new habitats for protection and even promotion of biodiversity (Kates et al., 2001; Perkol-Finkel et al., 2018; Burt and Bartholomew, 2019). However, these interdisciplinary efforts have been performed in a few coastal areas (Morris et al., 2019), showing similar geographical bias.

Coastal urban ecology has centered mainly in understanding spatial patterns and variability, showing a bias toward short time scale research (Figure 3). Consequently, there is a shortfall in long-term dynamic perspectives in the study of coastal cities. Results demonstrate research is also biased toward quantitative approaches with few qualitative analyses (e.g., Giovene di Girasole, 2014; Cleland et al., 2015; Villagra et al., 2016; Guerrero Valdebenito and Alarcon Rodriguez, 2018). This supports the results which show little social science research based on methods such as grounded theory or ethnography, among others (Creswell et al., 2007). Coastal urban ecology would benefit from encouraging these long-term and disciplinary dimensions.

Many coastal urban ecology studies focus on pollutants. The focus on pollution has been maintained during the whole period analyzed, with 35% of total articles dealing with this issue. Accordingly, the effects of urbanization over sea breeze and the reactions of aerosols have had an important increase in this line of research (Castro et al., 1999; Mejia and Morawska, 2009; Shanquan et al., 2016; Pushpawela et al., 2018). A predominant focus on pollution is not difficult to understand in coastal urban ecology given urbanization and increases in CO₂ emissions (Cole and Neumayer, 2004). Water pollution also has an important number of articles published (27.7% from the total of articles that mentioned pollution), considering marine (23 articles: e.g., Noble et al., 2006; Wang et al., 2010) and river basin pollution (four articles: e.g., Abdul-Aziz and Ahmed, 2019; Mgelwa et al., 2019), both important elements in coastal environments.

Risk assessments toward natural disasters and particularly flooding represented approximately 18% of the studies (Figure 4; e.g., Goh, 2019; Patel et al., 2019), which were carried out mainly in the USA and Japan. Expansion of coastal cities undermine natural protection (Sherbinin et al., 2007), hence an increase in natural disasters and city's vulnerability (Chang and Huang, 2015). While research has been performed in developed countries, developing ones are the most vulnerable in terms of natural disasters in coastal zones, such as flooding events (Ogie et al., 2020) or in specific areas under risk of tsunamis (Villagra et al., 2016). This same tendency is repeated in relation to studies which address mitigation strategies, with projections to make cities more resilient to natural disasters (Serre et al., 2010; Watson and Adams, 2010; Aerts et al., 2014; Sutton-Grier et al., 2015; Morris et al., 2020) and even ecoengineered shoreline strategies as nature-based alternative design (Bergen et al., 2001; Mitsch, 2012; Morris et al., 2019; O'Shaughnessy et al., 2020). As a consequence, there is an urgent need to extend this type of research toward developing and mid-income countries.

Our review shows that research on coastal urban ecology has mainly focused in cities between 1 and 5 million people in 15 different countries. However, more than a half of articles have been performed in the USA, China and Australia (Figure 2). While results from these specific studies can be important to develop theoretical frameworks and assess specific impacts, the focus on these high GDP countries makes it hard to extend insights to other cities in developing and mid-income countries, where growth dynamics, institutional support and adaptive capacity are very different (Chauvin et al., 2017; Nagendra et al., 2018). For example, urban concentration (when country resources are over-concentrated in one or two large cities, raising cost of production of goods) is described as part of country development, and decreases as income rises (Davis and Henderson, 2003). This phenomenon is often presented in coastal cities, where there is a physical infrastructure capital. Urban concentration can be affected significantly by a range of political variables, including democratization, federalism, and whether a country was a former planned economy (Davis and Henderson, 2003). We therefore strongly advocate for the need to support programs for coastal urban ecology research in these settings. Research in cities smaller than 1 million inhabitants would extend the variety of conditions in terms of the size of the human group, transitioning to bigger cities, and configuration of environmental variables, considering by 2017 more than 60% of cities in the world have between 100,000 and 1 million inhabitants (United Nations, 2019, data compilation).

Research has been mainly performed in near-shore terrestrial environments, resulting in a lack of information in coastal-marine urban environments that reveals the limited integration in the coastal urban interface (seawater-land configuration and dimensionality). This bias can have negative consequences such as generating false dichotomies for conservation, where marine and terrestrial ecosystems could meet as two isolated systems (Bulleri, 2006), which can undermine the effectiveness and
need for healthy marine ecosystems in urban areas (Bulleri,
2006; Shochet et al., 2006). It is key to extend research on
the interaction between marine and terrestrial realms associated
with urbanization.

Results show that more than half of the reviewed articles can
be classified as belonging to the paradigm in the cities. Studies
contributing to this paradigm have been growing in number,
farther than the others, during the last years (Figure 6). This result
synthesizes the main biases found in this review which relate
to the predominant focus on ecological research, understanding
urban impacts such as pollution, the non-human components,
and in spatial and quantitative analysis (Figure 7). Only 20% of
the articles in coastal urban ecology focused on interdisciplinary
research such as social-ecological studies (included in the
paradigm of the city). This represents an important research gap
associated to the lack of social knowledge in a system where
humans are both objects and subjects of urbanization, who use
space to live, extract subsistence and non-subsistence resources,
perform recreational activities, and deposit waste, among other
activities (Weinstein, 2009). Because of that, a lack of research
on people with nature represents the loss of understanding an
integral part of the ecosystem (McDonnell et al., 1993; Rees,
1997; Collins et al., 2000), decoupling human dynamics and
ecological processes of this urban ecosystem (Alberti, 2008).
Lessons from urban ecology in other systems have shown
the importance of transitioning toward these interdisciplinary
dimensions. Accordingly, coastal research in urban areas must
advance toward an urban sustainability-centered perspective,
transdisciplinary in terms of focuses and approaches, with
the ability to inform urban design and planning (Wu, 2014).
Current imbalance among paradigms and the lack of interaction
among research paradigms (Figure 8) can undermine urban
coastal sustainability. Under Pickett’s complexity of paradigms
(Pickett et al., 2016), ecology for the city should include the
knowledge generated by both ecology in and ecology of the city.
In order to understand coastal urban ecological systems, coastal
urban ecological paradigms need to build upon literature from
each other.

While biophysical and ecological approaches to coastal urban
systems are important, urban ecology necessarily operates in
a human context. Results highlight the need for coastal cities
to be seen from the point of view of people, their interaction
with the environment and the implementation of concepts that
contribute to sustainability in cities through public policies and
planning. Developing regional learning platforms to address
these dimensions should be a priority. Results of this review
also recommend research needs to focus on the three paradigms
equally. In addition, better consideration of the diversity of
cities, the integration across marine and terrestrial ecosystems,
and the inclusion of developing country coastal urban areas
will allow to support ongoing urbanization trends and cultural
settings in coastal zones across the globe. Clear research agendas
that include trans-disciplinary collaborations will provide the
opportunity to fill these knowledge gaps.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
GiorgiaGraells/CoastalReviewGit.

AUTHOR CONTRIBUTIONS

GG and SG contributed to design of the study. GG and NN
organized the database. GG performed the statistical analysis
and wrote the first draft of the manuscript. SG, NN, JLC-D,
NAL, PP, and PAM wrote sections of the manuscript. All authors
contributed to conception and manuscript revision, read, and
approved the submitted version.

FUNDING

This work was supported by the National Agency for Research
and Development (ANID) Scholarship Program, National
graduate scholarship [21171829, 2017], ANID—Millennium
Science Initiative Program [Code ICN2019_015], Center of
Applied Ecology and Sustainability (CAPES) [ANID PIA/BASAL
FB0002], and Fondecyt 1190109.

REFERENCES

Abarca-Álvarez, F. J., Campos-Sánchez, F. S., and Reinoso-Bellido, R.
(2018). Signs of gentrification using g Artificial Intelligence: identification
during the Dwelling Census. Bitac. Urbán. Territ. 28, 103–114.
doi: 10.15466/bitacora.v28n2.70145
Abdul-Aziz, O. I., and Ahmed, S. (2019). Evaluating the emergent controls
of stream water quality with similitude and dimensionless numbers. J. Hydrol.
Eng. 24:04019010. doi: 10.1061/(ASCE)HE.1943-5584.0001769
Aerts, J. C., Botzen, W. W., Emanuel, K., Lin, N., De Moel, H., and Michiel-Kerjan,
E. O. (2014). Evaluating flood resilience strategies for coastal megacities.
J. Coastal Conserv. 20, 961–970. doi: 10.1007/s11852-017-0573-x
Alberti, M. (2008). Advances in Urban Ecology: Integrating Humans and Ecological
Processes in Urban Ecosystems (No. 574.5268 A4). New York: Springer.
doi: 10.1007/978-0-387-75510-6
Alcoforado, M. J., Andrade, H., Lopes, A., and Vasconcelos, J. (2009). Application
of climatic guidelines to urban planning: the example of Lisbon (Portugal).
Landscape Urban Plan. 90, 56–65. doi: 10.1016/j.landurbplan.2008.10.006
Allan, D., Erickson, D., and Fay, J. (1997). The influence of catchment land use
on stream integrity across multiple spatial scales. Freshwater Biol. 37, 149–161.
doi: 10.1046/j.1365-2427.1997.d01-546.x
Antrop, M. (2004). Landscape change and the urbanization process in Europe.
Landscape Urban Plan. 67, 9–26. doi: 10.1016/S1016-4966(03)00026-4
Aria, M., and Cuccurullo, C. (2017). Bibliometrix: An r-tool for comprehensive
science mapping analysis. J. Inform. 11, 959–975. doi: 10.1016/j.joi.2017.08.007
Ari, A. A. (2017). “Green city Banda Aceh: city planning approach
and environmental aspects,” in IOP Conference Series: Earth and
Environmental Science (Vol. 56) (Banda Aceh: IOP Publishing), 012004.
doi: 10.1088/1755-1315/56/1/012004
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and Pattiaratchi, C. (2017). Sea-level rise induced amplification of coastal protection design heights. *Sci. Rep.*, 7, 1–9. doi: 10.1038/srep40171

Arruti, A., Fernández-Ólmo, L., and Irabien, A. (2011). Regional evaluation of particulate matter composition in an Atlantic coastal area (Cantabria region, northern Spain): Spatial variations in different urban and rural environments. *Atmosph. Res.*, 101, 280–293. doi: 10.1016/j.atmosres.2011.03.001

Auguié, B. (2016). *GridExtra: Miscellaneous Functions for “Grid” Graphics*. Available online at: https://CRAN.R-project.org/package=gridExtra (accessed May 4, 2021).

Barcelona, M. J. (1979). Human exposure to chlorofluor in a coastal urban environment. *J. Environ. Sci. Health Part A*, 14, 267–283. doi: 10.1080/10934527909374879

Barragán, J. M., and de Andrés, M. (2015). Analysis and trends of the world's coastal cities and agglomerations. *Ocean Coastal Manag.*, 114, 11–20. doi: 10.1016/j.ocecoaman.2015.06.004

Barthel, S., Folke, C., and Colding, J. (2010). Social–ecological memory in urban gardens—Retaining the capacity for management of ecosystem services. *Global Environ. Change*, 20, 255–265. doi: 10.1016/j.gloenvcha.2010.01.001

Belant, J. L. (1997). Gulls in urban environments: level-management to reduce conflict. *Landscape Urban Plan.*, 38, 245–258. doi: 10.1016/S0169-2046(97)00037-6

Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., et al. (2019). Requirements for a coastal hazards observing system. *Front. Mar. Sci.* 6, 634. doi: 10.3389/fmars.2019.00348

Bergen, S. D., Bolton, S. M., and Fridley, J. L. (2001). Design principles for ecological engineering. *Ecol. Eng.*, 18, 201–210. doi: 10.1006/s0925-8574(01)00078-7

Bertocci, I., Arenas, F., Cabacélos, E., Martins, G. M., Seabra, M. I., Álvaro, N. V., et al. (2017). Nowhere safe? Exploring the influence of urbanization across mainland and insular seashores in continental Portugal and the Azorean Archipelago. *Mar. Pollut. Bull.*, 114, 644–655. doi: 10.1016/j.marpolbul.2016.10.045

Bizzo, L., Gottschalk, M. S., Toni, D. C. D., and Hofmann, P. R. (2010). Seasonal dynamics of a drosophilid (Diptera) assemblage and its potential as a bioindicator in open environments. *Heritiera*. Series 30, 100, 185–191. doi: 10.5093/s003-4721201000030001

Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. *Ecol. Appl.*, 6, 506–519. doi: 10.2307/2269387

Blight, L. K., Bertram, D. F., and Kroc, E. (2019). Towards more sustainable coastal development in the Arabian Gulf: Opportunities for ecological engineering in an urbanized seascape. *Mar. Pollut. Bull.*, 142, 93–102. doi: 10.1016/j.marpolbul.2019.03.024

Berten, P., Tondelli, S. (2018). Regenerating with the green: a proposal for garden—Retaining the capacity for management of ecosystem services. *Global Environ. Change*, 20, 255–265. doi: 10.1016/j.gloenvcha.2010.01.001

Berto, M., Vezzani, D., Rubio, A., and Carbajo, A. E. (2014). Integrating ecological theory. *Atmosph. Environ.* 33, 2771–2781. doi: 10.1016/j.atmosres.2011.03.001

Bertocci, I., Arenas, F., Cabacélos, E., Martins, G. M., Seabra, M. I., Álvaro, N. V., et al. (2017). Nowhere safe? Exploring the influence of urbanization across mainland and insular seashores in continental Portugal and the Azorean Archipelago. *Mar. Pollut. Bull.*, 114, 644–655. doi: 10.1016/j.marpolbul.2016.10.045

Bizzo, L., Gottschalk, M. S., Toni, D. C. D., and Hofmann, P. R. (2010). Seasonal dynamics of a drosophilid (Diptera) assemblage and its potential as a bioindicator in open environments. *Heritiera*. Series 30, 100, 185–191. doi: 10.5093/s003-4721201000030001

Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. *Ecol. Appl.*, 6, 506–519. doi: 10.2307/2269387

Blight, L. K., Bertram, D. F., and Kroc, E. (2019). Evaluating UAV-based techniques to census an urban-nesting gull population on Canada's Pacific coast. *J. Unmanned Vehicle Sys.*, 7, 312–324. doi: 10.1139/juvu-2019-0005

Bolton, D., Mayer-Pinto, M., Clark, G. F., Dafforn, K. A., Brassil, W. A., Becker, A., et al. (2017). Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. *Sci. Total Environ.*, 576, 1–9. doi: 10.1016/j.scitotenv.2016.10.037

Bolund, P., and Hunhammar, S. (1999). Ecosystem services in urban areas. *Ecol. Soc.*, 29, 293–301. doi: 10.5093/so003-00013-0

Brannock, B. L. (2017). Quantifying the influence of urban land use on mangrove biology and ecology: a meta-analysis. *Global Ecol. Biogeogr.*, 26, 1339–1356. doi: 10.1111/geb.12638

Bugg, C. J., and Tobin, J. M. (2008). Seasonal and spatial distribution of metals in surface sediment of an urban estuary. *Environ. Poll.* 155, 308–319.

Bugnot, A. B., Hose, G. C., Walsh, C. J., Floerl, O., French, K., Dafforn, K. A., et al. (2019). Urban impacts across realms: making the case for inter-realm monitoring and management. *Sci. Total Environ.*, 648, 711–719. doi: 10.1016/j.scitotenv.2018.08.134

Bulleri, F. (2006). Is it time for urban ecology to include the marine realm? *Trends Ecol. Evolut.*, 21, 658–659. doi: 10.1016/j.tree.2006.09.004

Burger, J., Tsipoura, N., Simnor, A., Pittfield, T., Jeitner, C., Mizrahi, D., et al. (2017). Perceptions of Caucasian users about avian resources and beach restoration following hurricane Sandy. *Urban Ecosyst.*, 20, 363–373. doi: 10.1007/s11252-016-0598-1

Burnett, W. C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojusiporn, P., Runugsupa, S., et al. (2007). Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. *Conti. Shelf Res.*, 27, 176–190. doi: 10.1016/j.csr.2006.09.006
Daily, G. C. (2003). “What are ecosystem services,” in Global Environmental Challenges for the Twenty-First Century: Resources, Consumption and Sustainable Solutions, ed D. E. Loreley (Wilmington, DE: Scholarly resources Inc.), 227–231.

Dallimer, M., Irivne, K. N., Skinner, A. M., Davies, Z. G., Rouquette, J. R., Malby, L. L., et al. (2012). Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. *BioScience* 62, 47–55. doi: 10.1525/bio.2012.62.1.9

Davis, J. C. and Henderson, J. V. (2003). Evidence on the political economy of the urbanization process. *J. Urban Eco.* 53, 98–125. doi: 10.1016/S0094-1190(02)00504-1

Dominick, D., Wilson, S. R., Paton-Walsh, C., Humphries, R., Guérette, E. A., Keywood, M., et al. (2018). Characteristics of airborne particle number size distributions in a coastal-urban environment. *Atmosph. Envir.* 186, 256–265. doi: 10.1016/j.atmosenv.2018.05.031

Donovan, G. H., Butry, D. T., Michael, Y. L., Prestemon, J. P., Liebhold, A. M., Gatziolis, D., et al. (2013). The relationship between trees and human health: evidence from the spread of the emerald ash borer. *Am. J. Prevent. Med.* 44, 139–145. doi: 10.1016/j.amepre.2012.09.066

Giovene di Girasole, E. (2014). The hinge areas for urban regeneration in seaside cities: The High Line in Manhattan, *NYC. Adv. Eng. Forum* 102–108. doi: 10.4028/www.scientific.net/AEF.11.102

Goh, K. (2019). Urban waterscapes: the hydrologics of flooding in a sinking city. *Int. J. Urban Region. Res.* 43, 250–272. doi: 10.1111/1468-2427.12756

Greenwell, C. N., Calver, M. C., and Loneragan, N. R. (2019). Cat gets its tern: a case study of predation on a threatened coastal seabird. *Animals* 9:445. doi: 10.3390/ani9070445

Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shiyamunsundar, P., et al. (2013). Policy: Sustainable development goals for people and planet. *Nature* 495:305. doi: 10.1038/495305a

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., et al. (2008). Global change and the ecology of cities. *Science* 319, 756–760. doi: 10.1126/science.1150195

Grimm, N. B., Grove, J. G., Pickett, S. T., and Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems: Urban ecological systems present multiple challenges to ecologists—pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. *BioScience* 50, 571–584. doi: 10.1641/0006-3568(2000)050[0571:IALTSO]2.0.CO;2

Grimm, N. B., Redman, C. L., Boone, C. G., Childers, D. L., Harlan, S. L., and Turner, B. L. (2013). “Viewing the urban socio-ecological system through a sustainability lens: Lessons and prospects from the central Arizona–Phoenix LTER programme,” in *Long Term Socio-Ecological Research* (Dordrecht: Springer), 217–246. doi: 10.1007/978-94-007-1177-8_10

Grofman, P. M., Law, N. L., Belt, K. T., Band, L. E., and Fisher, G. T. (2004). Nitrogen fluxes and retention in urban watershed ecosystems. *Ecosystems* 7, 393–403. doi: 10.1007/s10021-003-0039-x

Grossmann, I. (2008). Perspectives for Hamburg as a port city in the context of a changing global environment. *Geoforum* 39, 2062–2072. doi: 10.1016/j.geoforum.2008.04.011

Guerrero Valdebenito, R. M., and Alarcon Rodriguez, M. L. (2018). Neoliberalism and socio-spatial transformations in urban covens of the Metropolitan Area of Concepcion. The cases of Calera Los Bagres and Calera Coholque, *Tome. Rev. Urban.* 38:48666. doi: 10.3554/0717-5051.2018.48666

Gumusay, M. U., Koseoglu, G., and Bakirman, T. (2016). An assessment of site suitability for marina construction in Istanbul, Turkey, using GIS and AHP multicriteria decision analysis. *Environ. Monitor. Assess.* 188:677. doi: 10.1007/s10661-016-5677-5

Gutierrez, G. (2018). Air conditioning the arabian peninsula. *Int. J. Middle East Studies.* 50, 573–579. doi: 10.1017/S0070473818000570

Heery, E. C., Olsen, A. Y., Feist, B. E., and Sebens, K. P. (2018). Urbanization-related distribution patterns and habitat-use by the marine mesopredator, giant pacific octopus (enteroctopus dofleini). *Urban Ecosyst.* 21, 707–719. doi: 10.1007/s11225-018-0742-1

Henry, L., and Wickham, H. (2017). *Purrr: Functional Programming Tools*. Available online at: https://CRAN.R-project.org/package=purrr (accessed May 4, 2021).

Holloway, M. G., and Connell, S. D. (2002). Why do floating structures create novel habitats for subtidal epibionts? *Mar. Ecol. Progress Series.* 235, 43–52. doi: 10.3354/meps235043

Hosannah, N., and Gonzalez, J. E. (2014). Impacts of aerosol particle size distribution and land cover land use on precipitation in a coastal urban environment using a cloud-resolving mesoscale model. *Adv. Meteorol.* 2014:904571. doi: 10.1155/2014/904571

Ij, C. C., Li, X. D., Zhang, G., Wai, O. W., and Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. *Environ. Pollut.* 147, 311–323. doi: 10.1016/j.envpol.2006.08.028

James, K. L., Randall, N. P., and Haddaway, N. R. (2016). A methodology for systematic mapping in environmental sciences. *Environ. Evid.* 5, 1–13. doi: 10.1186/s13750-016-0059-6

Jurt, M., and Pettersen, A. (2010). Contaminants in urban runoff to Norwegian fjords. *J. Soils Sediments.* 10, 155–161. doi: 10.1161/sj.s1368-009-0181-y

Jonkman, S. N., Hillen, M. M., Nicholls, R. J., Kanning, W., and van Leeden, M. (2013). Costs of adapting coastal defences to sea-level rise—new estimates and their implications. *J. Coastal Res.* 29, 1212–1226. doi: 10.2112/JCOASTRES-D-12-0230.1
Juchimiuk, J., and Januszkiewicz, K. (2019). “ENVironmental infrastructure to reduce disaster’s impact to cities during the climate change area being elements of smart cities,” in IOP Conference Series: Earth and Environmental Science (Vol. 214) (Krakow: IOP Publishing), 012141. doi: 10.1088/1755-1315/214/1/012141

Kalinsowski, R. S., and Johnson, M. D. (2010). Influence of suburban habitat on a wintering bird community in coastal northern California. Condor. 112, 274–282. doi: 10.1525/cond.2010.090037

Kaniewski, D., Van Campo, E., Morhange, C., Guiot, J., Zivery, D., Shaked, I., et al. (2013). Early urban impact on Mediterranean coastal environments. Scient. Rep. 3, 1–5. doi: 10.1038/srep03540

Kantamaneni, K., Gallagher, A., and Du, X. (2019). Assessing and mapping regional coastal vulnerability for port environments and coastal cities. J. Coastal Conserv. 23, 59–70. doi: 10.1016/j.jcc.2018.06-056-7

Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., et al. (2001). Sustainability science. Science 292, 641–642. doi: 10.1126/science.1059386

Krushin, S., Lin, J., Simanjuntak, J., Hooimeijer, F., Bricker, J., Daniel, M., et al. (2019). Interdisciplinary design of vital infrastructure to reduce flood risk in tokyo's edogawa ward. Geosciences 9:357. doi: 10.3390/geosciences9080357

Kulkova, M., Chadov, F., and Davidochkina, A. (2011). Radiocarbon in vegetation composition at schools in a coastal region in Spain. Ecol. Evol. 8, 477–492. doi: 10.1002/ece3.3654

Li, Y., Qiu, J., Zhao, B., Pavao-Zuckerman, M., Bruns, A., Qureshi, S., et al. (2017). Li, Y., Qiu, J., Zhao, B., Pavao-Zuckerman, M., Bruns, A., Qureshi, S., et al. (2017). Converting urban mullet Mugil cephalus (Mugilidae) in an urban harbour, KwaZulu-Natal, South Africa. Afr. J. Mar. Sci. 38, 145–149. doi: 10.2989/1814232X.2016.1159616

Noble, R. T., Griffith, J. F., Blackwood, A. D., Fuhrman, J. A., Gregory, J. B., Hernandez, X., et al. (2006). Multitiered approach using quantitative PCR to track sources of fecal pollution affecting Tampa Bay, Florida. Appl. Environ. Microbiol. 72, 1604–1612. doi: 10.1128/AEM.72.7.1604-1612.2006

Noyes, J. H., and Progulske, D. R. (Eds.). (1974). A Symposium on Wildlife in an Urbanizing Environment, November 27-29. Springfield, MA: (No. 28). Cooperative Extension Service, University of Massachusetts.

O'Shaughnessy, K. A., Hawkins, S. J., Evans, A. J., Hanley, M. E., Lunt, P., Thompson, R. C., et al. (2020). Design catalogue for eco-engineering of coastal artificial structures: a multifunctional approach for stakeholders and end-users. Urban Ecosyst. 23, 431–443. doi: 10.1007/s11252-019-00924-z

Pacione, M. (2003). Urban environmental quality and human wellbeing—a social geographical perspective. Landscape Urban Plan. 65, 19–30. doi: 10.1016/S0169-2046(02)00234-7

Parralès, S., Gómez, E., Martínez, A., and Jordán, M. M. (2019). The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain. Heliyon 5:e02270. doi: 10.1016/j.heliyon.2019.e02270

Papatheochari, T., and Coccossis, H. (2019). Development of a waterfront regeneration tool to support local decision making in the context of integrated coastal zone management. Ocean Coastal Manag. 169, 284–295. doi: 10.1016/j.ocecoaman.2018.12.013

Patz, J. A., Angermeier, P., Bruckman, J., et al. (2004). Geospatial analysis of human–bird interactions in coastal systems. in Avian Ecology and Conservation in an Urbanizing World, eds J. M. Marzluff, R. Bowman, and R. Donnelly (Boston: Springer), 19–47. doi: 10.1007/978-1-4615-1531-9

McDonnell, M. J., Pickett, S. T., and Pouyat, R. V. (1993). “The application of the ecological gradient paradigm to the study of urban effects,” in Humans as Components of Ecosystems, eds G. E. Likens, and W. J. Cronon (New York, NY: Springer), 175–189. doi: 10.1007/978-1-4612-0905-8_15

McKinney, M. (2006). Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260. doi: 10.1016/j.biocon.2003.09.005

Meija, J. F., and Morawaska, L. (2009). An investigation of nuclear events in a coastal urban environment in the Southern Hemisphere. Atmosph. Chem. Phys. 9, 2195–2222. doi: 10.5194/acp-9-2195-2009

Mgelwa, A. S., Hu, Y. L., Liu, J. F., Qiu, Q., Liu, Z., and Ngaba, M. J. Y. (2019). Differential patterns of nitrogen and ^{15}N in soil and foliar along two urbanized rivers in a subtropical coastal city of southern China. Environ. Pollut. 244, 907–914. doi: 10.1016/j.envpol.2018.10.083

Mitsch, W. J. (2012). What is ecological engineering? Ecol. Eng. 45, 5–12. doi: 10.1016/j.ecoleng.2012.04.013
