Alternative approaches to identify core bacteria in *Fucus distichus* microbiome and assess their distribution and host-specificity

Jungsoo Park1*, Katherine Davis1, Geneviève Lajoie1,3 and Laura Wegener Parfrey1,2*

Abstract

Background: Identifying meaningful ecological associations between host and components of the microbiome is challenging. This is especially true for hosts such as marine macroalgae where the taxonomic composition of the microbiome is highly diverse and variable in space and time. Identifying core taxa is one way forward but there are many methods and thresholds in use. This study leverages a large dataset of microbial communities associated with the widespread brown macroalgae, *Fucus distichus*, across sites and years on one island in British Columbia, Canada. We compare three different methodological approaches to identify core taxa at the amplicon sequence variant (ASV) level from this dataset: (1) frequency analysis of taxa on *F. distichus* performed over the whole dataset, (2) indicator species analysis (IndVal) over the whole dataset that identifies frequent taxa that are enriched on *F. distichus* in comparison to the local environment, and (3) a two-step IndVal method that identifies taxa that are consistently enriched on *F. distichus* across sites and time points. We then investigated a *F. distichus* time-series dataset to see if those core taxa are seasonally consistent on another remote island in British Columbia, Canada. We then evaluate host-specificity of the identified *F. distichus* core ASVs using comparative data from 32 other macroalgal species sampled at one of the sites.

Results: We show that a handful of core ASVs are consistently identified by both frequency analysis and IndVal approaches with alternative definitions, although no ASVs were always present on *F. distichus* and IndVal identified a diverse array of *F. distichus* indicator taxa across sites on Calvert Island in multiple years. Frequency analysis captured a broader suite of taxa, while IndVal was better at identifying host-specific microbes. Finally, two-step IndVal identified hundreds of indicator ASVs for particular sites/timepoints but only 12 that were indicators in a majority (>6 out of 11) of sites/timepoints. Ten of these ASVs were also indicators on Quadra Island, 250 km away. Many *F. distichus*-core ASVs are generally found on multiple macroalgal species, while a few ASVs are highly specific to *F. distichus*.

Conclusions: Different methodological approaches with variable set thresholds influence core identification, but a handful of core taxa are apparently identifiable as they are widespread and temporally associated with *F. distichus* and enriched in comparison to the environment. Moreover, we show that many of these core ASVs of *F. distichus* are found on multiple macroalgal hosts, indicating that most occupy a macroalgal generalist niche rather than forming highly specialized associations with *F. distichus*. Further studies should test whether macroalgal generalists or specialists are more likely to engage in biologically important exchanges with host.

*Correspondence: jungsoo.park@botany.ubc.ca; lwparfrey@botany.ubc.ca
1 Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
Full list of author information is available at the end of the article
Background

There is an increasing recognition that bacteria closely associated with hosts play important roles in host development, survival, and fitness [1, 2]. With the advent of high-throughput sequencing techniques, the interest in understanding ecological and evolutionary relationships with bacteria in a variety of host systems has been explosive in multiple contexts, including epidemiology, species conservation given climate change, and microbial manipulation to improve crop yields [3–6]. The goal is often to identifying the functionally important taxa so that they can be monitored or manipulated. This is straightforward in obligate symbioses where one or a small number of symbionts and their host are consistently engaging with each other, such as for bobtail squid and Allilvibrio fischeri [7, 8] and for siboglinid tube worms and endosymbiotic bacteria [9]. However, other hosts have a much greater degree of variability in their microbial associates; the microbiota associated with plants and macroalgae is generally comprised of hundreds to thousands of species with spatial and temporal variation across environmental gradients [10–13]. The complex nature of the microbiota in these systems complicates the task of identifying meaningful relationships between host and microbe despite the large amount of microbiome data being generated for them.

In variable host-microbe systems, a core microbiome approach might be valuable to generate hypotheses about which bacterial taxa are functionally important for host biology [14, 15]. A core microbiome generally refers to a set of microbes consistently associated with a given host [15]. Their consistent presence, often in high abundance, is thought to be a product of evolutionary and ecological processes that govern host-microbe interactions [15]. Recent studies suggest that core taxa can predict an animal’s health/disease status [16] and be used as targets for manipulation to improve crop yields or resilience in sustainable agroecosystems [17]. The rationale for spotlighting a small number of microbial taxa that are the most likely to be functionally important symbionts is clear [18–20], but there are many and varied approaches for identifying the core. Across studies, core taxa have been identified spatially [21–23] and/or temporally [24] as those above some arbitrary frequency threshold. These thresholds vary across studies, from 50% frequency in seagrasses [25] to 80% in corals [26] to 90% in amphibians [27] reflecting both the differences in the microbiota distribution and fidelity across hosts and author preferences. Another approach is to require microbes to be specifically associated with a host, defined as enriched compared to the background environment, in addition to high frequency to qualify as core [28], or to require high abundance [29]. Such inconsistent methods and flexible parameters have called into question the robustness of a core microbiome approach [30]. Taking a more conservative approach to defining the core by considering enrichment compared to the environment and/or using broad sampling across sites and over time, will likely improve the utility of the core microbiota approach, particularly for host systems with highly variable microbiomes.

The epiphytic bacteria on macroalgae, and surface bacterial communities in general, tend to be heavily influenced by environmental conditions [31, 32] and often composed of functionally redundant taxa [33]. Yet, within this variability a suite of taxa frequently found on macroalgal surfaces is emerging across studies, including Saprospiraceae, Granulosicoccus, and Flavobacteria [34–36]. Earlier studies reported a handful of core bacterial taxa consistently associated with particular populations in a few macroalgal species, including Kelp [37], Agarophyton vermiculophyllum [38], Fucus vesiculosus [28], Ulva australis [39] and Ascophyllum nodosum [40]. However, these studies were limited in scope, focusing on one location at one point in time, often without corresponding sampling of the macroalga’s environment. Thus, outstanding questions include whether core bacteria on macroalgae are specific to host species or macroalgal clades [41] and whether they are maintained over time in multiple locations against environmental variations in bacterial communities [32].

A wide range of beneficial and detrimental interactions occur between macroalgae and their associated bacteria [42, 43]. These interactions primarily occur at the macroalgal surface, which is the physiological and ecological interface with marine bacteria and is involved in the exchange of nutrients and chemical signals [44]. The microbes involved are known only in a few striking examples, such as Ulva mutabilis and growth-promoting Proteobacteria (i.e., Roseobacter, Sulfitobacter, and Halomonas) [45]. Several bacterial taxa that directly alter macroalgal growth or development have also been identified by culture-based studies (e.g., Pseudomonas [46], Rhodopseudomonas [47] and Pseudoalteromonas [47]), and these readily culturable taxa that are widely found on marine surfaces [48–50]. Identifying core components of the host microbiome promises to improve our understanding of microbiome assembly and enable further investigation of bacterial roles in macroalgal hosts.
The identification of macroalgae core microbes will also allow us to test the assumption that taxa that most influence macroalgal biology and physiology are part of the core or not.

Marine macroalgae are extremely diverse globally and belong to three evolutionarily distinct macroalgal clades (Rhodophyta, Chlorophyta, Phaeophyceae) that have converged ecologically [51]. Earlier studies have observed distinct epiphytic bacterial community structures across diverse macroalgal species [52]. This likely reflects the fact that differences in morphology, chemistry, and habitat result in host-species specific niches that shape bacterial communities. Macroalgae species have an extensive chemical defense system against grazers and pathogens [53, 54]. For example, Fucus species (Phaeophyceae) produce a variety of defensive secondary metabolites, such as phlorotannins and fucoxanthin, that likely represent selective filters for the bacteria that colonize these macroalgae [55–58]. Macroalgae also exude various polysaccharides that bacteria feed upon [59], and in some cases function as antibiotics to protect the host against pathogens or fouling organisms [60, 61].

In this study, we investigate the core microbiome of a focal brown macroalga, Fucus distichus, by combining multiple datasets that encompass a wide range of small spatial and temporal sampling schemes. We use a simple frequency threshold as well as indicator species analysis (hereinafter referred to as "IndVal") as a tool to capture core bacterial taxa that are constantly frequent and abundant on F. distichus across sites in multiple years. While the frequency method is based on data from the macroalgae alone, the IndVal method also identifies core taxa based on their enrichment compared to environmental samples (i.e. water and rock) acting as a control. We conduct these analyses at the amplicon sequence variant (ASV) level to better understand the distribution of common taxa at the finest resolution possible. We first ask (1) whether there are bacterial ASVs consistently associated with F. distichus across different sites and years using three approaches for the core identification, and (2) how the core ASVs defined at one place are distributed in a comparison site, 250 km away. We then ask (3) whether the core ASVs fall within macroalgal-associated clades or have been broadly characterized from other hosts and environments using broadly sampled phylogenetic trees. Finally, we ask (4) whether the core ASVs are specifically associated with F. distichus or are general colonizers on diverse macroalgal species by comparing to a dataset sampled from 32 sympatric macroalgal species [62].

Methods

Dataset description and study design

We analyzed four 16S rRNA gene amplicon datasets of the F. distichus microbiome, along with neighboring environmental samples from multiple intertidal locations on Calvert Island and Quadra Island, BC, Canada (Table 1). These four datasets were originally collected to address other research questions and present an opportunity to identify core bacterial taxa on F. distichus across multiple sites and time-points. One dataset surveyed epiphytic microbiota associated with 33 sympatric macroalgal species, including F. distichus on Calvert Island in March 2015 [52]. The Calvert 2018 dataset surveyed the microbiome of F. distichus at five sites on Calvert island in June 2018 separated by hundreds of meters to a few kilometers and found that the microbiome differed across these sites [13]. This study included common garden and transplant experiments and found that microbiome differences

Dataset	Data type	Sample type	North Beach (n)	Pruth bay (n)	West Beach high-tide zone (n)	West Beach low-tide zone (n)	West Beach wall (n)	Quadra (n)
2015 Calvert	Small spatial	Fucus distichus	0	0	8	15	0	0
		32 Other seaweeds	0	0	38	208	0	0
		Seawater	0	0	0	27	0	0
		Rock	0	0	6	23	0	0
2018 Calvert	Small spatial	Fucus distichus	5	34	7	31	8	0
		Seawater	0	7	0	3	0	0
		Rock	3	20	2	17	3	0
2019 Calvert	Small spatial	Fucus distichus	5	5	5	4	0	0
		Seawater	3	3	3	3	0	0
		Rock	3	3	3	3	0	0
2017 Quadra	Temporal	Fucus distichus	0	0	0	0	0	247
		Rock	0	0	0	0	0	114

Bold face indicates sample numbers included in this study
were stable over short time periods [13]. To avoid possible confounding effects of experimental treatments we included only samples from day 1, prior to experimental manipulation. We resampled four of these sites in June 2019 for this study to assess stability over time (Calvert 2019 dataset). The last dataset is a monthly timeseries of *F. distichus* and nearby environment from rock on Quadra Island (~250 km away from Calvert Island) from 2017 March through 2018 January [63]. The combined dataset is comprised of a total of 1106 samples.

Sample collection

Microbial DNA samples were obtained by swab from the surface of apical tip (new growth of thallus; meristem tissue) of *F. distichus*. This area was targeted for sampling because the meristem tissues of macroalgae are younger and less subjected to fouling. In kelp (a related brown alga), the bacterial communities on meristem tissue have been shown to be more consistent over time than on older blade tissues [64]. Seawater was sterilized using a 0.22 µm filter at each site and used to rinse the *F. distichus* meristematic tissue for 10 s to remove loosely associated microbes. Then this area (approximately ~2 cm²) was swabbed by rubbing a Puritan® sterile swab back and forth for 15 s. Bare rock substrates near *F. distichus* were sampled as a comparison to non-host associated microbial communities by swabbing with the same method. Adjacent seawater was filtered onto a 0.22 µm Millipore Sterivex™ unit at each sampling site to characterize microbial source pool communities; at West Beach where multiple tide heights from the same location were sampled. We used the same water for comparison to high and low intertidal sites. Swabs were stored in 2 mL sterile cryovials and Sterivex filters stored in WhirlPak™ in the field and transferred to ~80 °C freezer within 6 h until DNA extraction. Microbial DNA on sympatric macroalgal species at West beach, Calvert Island, BC was also sampled with similar methods but meristem samples could not be taken for all species; described in [52].

Molecular methods

DNA was extracted from swabs and water filter for 16S rRNA amplicon sequencing using MoBio PowerSoil Kit (QIAGEN), following the manufacturer’s recommended protocols. PCR amplification for bacterial DNA targeted the V4 region of the 16S rRNA gene using primers, 515f: 5′–GTGYCAGCMGCCGCGGTAA–3′ and 806r: 5′–GGACTACHVGGGTWTCTAAT–3′ [65]. These primers included Illumina adapters and the forward included a 12 nucleotide Golay barcode. Then, we carried out amplicon library preparation, including PCR, quantification using Quant-IT Pico Green® ds DNA Assay Kit (Life Technologies) and pooled equal volumes (25 ng) of each sample, followed by purification using MoBio UltraClean® PCR clean-up kit. Sequencing with Illumina MiSeq using paired-end (2 x 300 bp) v3 chemistry were performed at the Integrated Microbiome Resource (IMR), Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB) at Dalhousie University according to published protocols [66].

Bioinformatics

Raw Illumina reads were demultiplexed in pairs using the idemp tool [67] without barcode error. Sequences were merged from four datasets following quality filtering, trimming, dereplication, chimera removal, and inference of true amplicon sequence variants (ASVs). Taxonomic assignment against the SILVA 132 [68] database were processed based on exact matching between ASVs and sequenced reference strains with a standard DADA2 pipeline tutorial found at https://benjineb.github.io/dada2/tutorial.html in R environment. In the process of filtering, we discarded ASVs if they were less than 0.1% of total number of reads or found in less than 5 samples. We also filtered ASVs with fewer than 5 reads in a sample to minimize any impact of barcode switching. Overall, we obtained 6348 amplicon sequence variants after filtering. The final products were then converted into phyloseq format in R for the downstream analysis. We then rarefied final 16S amplicon sequence products to 1500 reads per sample prior to beta-diversity analysis. We used non-metric multidimensional scaling (NMDS) to visualize similarity among samples included in our study based on Bray–Curtis dissimilarity [69]. We also conducted permutational analysis of variance (PERMANOVA) using adonis2 by margin in the vegan package [70] in R to test for differences among bacterial communities between *F. distichus* and environmental samples. The order of variables does not matter by ‘margin’ because the significance is tested against a model that includes all other variables in the formula. All PERMANOVA statistics were generated with 9,999 permutations.

Identifying Fucus distichus-core bacteria

The first method we used to identify core bacterial ASVs was a simple frequency threshold for all Calvert datasets combined. Frequency on *F. distichus* alone was calculated using the core members function within ‘microbiome’ package in R [71] with a 50% threshold. Secondly, we used indicator species (IndVal) analysis on all Calvert datasets combined to identify taxa that are both frequent on *F. distichus* and enriched on *F. distichus* compared to the nearby environment (rock and seawater). This is an extension of the frequency method. We performed IndVal analysis using multi-patt function within ‘indicspecies’ package [72] in R
IndVal calculates specificity (a measure of relative abundance compared to environmental rock and seawater samples) and fidelity (a measure of frequency on F. distichus) followed by permutation tests to evaluate the statistical significance of the bacterial association with F. distichus [74, 75]. We used a threshold of 0.7 IndVal value because this effectively required ASVs to be at 50% or greater frequency. The third method used was two-step IndVal analyses performed for each site and time point (a total of 11 sampling events) separately to identify indicator ASVs (those above 0.7 IndVal value). Then, the number of sampling events where an ASV was an indicator were tallied. Core ASVs were defined as those that were indicators in the majority of sites/time points, here >6 of 11 sampling events. This two-step approach offers an alternative way to leverage multiple datasets and highlights ASVs that are consistently associated with F. distichus, as well as partially correcting for biases arising from unequal sample sizes across sampling events that may influence overall IndVal. Identifying indicator taxa for each site and time point also shows the variability across the dataset and allows for comparison to studies using a single site and timepoint and makes annual and regional specificity visible.

We visualized core ASVs using ggplot2 [76] in R to show their spatial and temporal distribution, frequency, and specificity compared to environmental samples. The average relative abundance and frequency of core ASVs in F. distichus samples was calculated from the ASV table in excel. The overall Fucus-specificity of each ASV was calculated by dividing a total abundance of an ASV (in Fucus + environmental samples) by abundance of an ASV in F. distichus samples.

Phylogenetic analysis
To understand the habitat distribution of core bacteria and closely related taxa, we placed core bacterial sequences into phylogenetic trees using QIIME2 [77] with closely related sequences from the SILVA database [68] and NCBI, identified using BLAST [78]. We reformatted our data to fasta files for the QIIME2 environment using the ShortRead and seqinr package in R [79]. Sequences were aligned and the alignment masked to contain only alignment columns that are phylogenetically informative in q2-phylogeny pipeline in QIIME2 [77]. Phylogenetic tree visualization and annotation was performed in Interactive Tree of Life (iTOL) v4 [80].

Results
Bacterial communities of F. distichus
We first assessed the variability of bacterial community composition on F. distichus across all datasets in comparison to the environment. Bacterial communities on F. distichus are similar to each other across studies and distinct from the surrounding rock and seawater communities, as observed in the NMDS plot, and are significantly different from environmental samples (PERMANOVA: Pseudo-F(2:740) = 66.009, R² = 0.15, p < 0.001) (Fig. 1A). We then analyzed only F. distichus samples on Calvert Island and find significant differences by site and time point (PERMANOVA: Pseudo-F(11:365) = 10.222, R² = 0.23, p < 0.001) (Fig. 1B). The variability in F. distichus microbiome by sites and over time (a total of 11 sampling events) sets the context for identifying the core components of the microbiome. Overall, the F. distichus microbiome is distinct from the environment, suggesting there may be common core taxa that drive this difference. On the other hand, the variability in the F. distichus microbiome prompts us to look at the variation across sites and over time as well as the commonalities.

Core bacterial taxa of F. distichus in Calvert datasets
We used three approaches to identify taxa that are tightly associated with F. distichus as candidate core taxa based on frequency alone or in combination with specificity in comparison to the environment. Throughout, our decisions are guided by the expectation that bacteria considered part of the core should be present on a majority of individuals and/or sampling events. It is important to keep in mind that the core microbiome is not an entity that exists and awaits discovery. Rather, identifying the core taxa is fundamentally a hypothesis generation tool to identify a suite of taxa that can be further tested to assess their influence on the biology of the host and the traits that underlie their commonness. Microbiome composition and variability over space and time differ across host species, and so too will the relevance of different thresholds identifying core taxa. With this framing it becomes clear that the choice of specific thresholds for defining the core microbiome are inherently arbitrary, so we present the frequency, specificity, and abundance data to allow comparison of the distribution patterns of taxa across the range of these values.

First, we used a frequency threshold method, which does not consider the occurrence of host-associated bacteria in the surrounding environment. 33 ASVs are at 50% or greater frequency across all of the Calvert Island datasets (Fig. 2), out of a total of 3,197 ASVs present in
Fig. 1 Fucus microbiota composition in comparison to neighboring environments. NMDS plots constructed from Bray–Curtis dissimilarities. **A** Microbiota on *Fucus distichus* differs from neighboring environments (rock substrate and seawater). **B** *F. distichus* microbiota varies across sites and years.

Fig. 2 Scatter plots comparing the distribution ASVs identified as core to other *F. distichus*-indicator ASVs. Plot shows the 329 unique bacterial ASVs were detected as *Fucus*-indicators in at least one sampling event on Calvert. Frequency of bacterial ASVs across all Calvert datasets (y axis) is compared to **A** the number of sampling events in which an ASV was an indicator (0.7 IndVal) or **B** the specificity of an ASV to *Fucus* in comparison to environmental samples. Colors indicate which core definitions an ASV met.
the Calvert dataset. Thus, a small portion of ASVs are found above >50% frequency threshold within the variable Fucus-microbiome. We present the frequency of each ASV for ease of comparison (Additional file 2: Table S2).

Secondly, indicator species analysis (IndVal) analysis was performed over the whole Calvert Island dataset. This is an extension of frequency analysis that also incorporates specificity to *F. distichus* in comparison to the nearby environment. To define core taxa, we set >0.7 IndVal value of a threshold. This effectively constrained *Fucus*-indicator taxa to always at greater than 50% frequency and the set of 22 ASVs identified by this approach are a subset of those identified by frequency analysis on *F. distichus* alone (Fig. 2; Additional file 1: Table S1).

Finally, we used a two-step IndVal approach to identify the bacteria that are repeatedly indicative of *F. distichus* across sites and time points. In step 1 we ran IndVal for each sampling event to identify indicator ASVs that were significantly enriched on *F. distichus* compared to the environment and frequent across individuals at a threshold of >0.7 IndVal index value. Then in step 2 we asked which of these indicator taxa were consistent, using the criteria that an ASV had to be an indicator taxon in at least 6 of 11 sampling events. In step 1 we identified a total of 644 ASVs (329 unique ASVs) with 0.7 IndVal index threshold and found that indicator taxa are highly variable across sites and time points (Additional file 1: Table S1). In step 2, we identified 12 core bacterial ASVs (Additional file 2: Table S2). In this two-step IndVal approach, we identified a smaller set of core taxa than the other two approaches, resulting in an overlap of 11 ASVs identified by all approaches.

Core bacteria of *F. distichus* over time

We then asked whether the core bacteria identified on Calvert Island are found on a Quadra Island *F. distichus*, 250 km away. The Quadra dataset was sampled biweekly between 2017 March and 2018 January, allowing us to assess the persistence of the core ASVs over this timeseries. We used IndVal to identify the indicator ASVs from the Quadra dataset for April–June, as this was the timeframe of sampling on Calvert. We find 34 ASVs that
are above the 0.7 IndVal threshold (Additional file 3: Table S3), 16 of which are also identified as core taxa on Calvert by at least one method. Interestingly, nine of the 10 ASVs identified as core by all three methods on Calvert Island *Fucus* are also indicators for Quadra *Fucus* (Fig. 3).

To assess seasonality of the core ASVs, we plotted the frequency and relative abundance of the Calvert core ASVs each month. For comparison, we also plotted the distribution of the three most frequent ASVs from Quadra that are not part of the Calvert core suite (*Granulosicoccus* ASV11 and ASV120 and *Sulfitobacter* ASV21). We observe widespread seasonal variation in frequency and relative abundance, and there is a lot of variability in the seasonal patterns across ASVs (Fig. 4). For example, *Blastopirellula* ASV2 and *Granulosicoccus* ASV4 were strikingly overrepresented on *F. distichus* between March and June but decreased in relative abundance late summer to fall, whereas *Octadecabacter* ASV25 and *Croceitalea* ASV12 are more frequent and abundant July–October. Other taxa, such as whereas *Granulosicoccus* ASV1 and ASV11 and *Litorimonas* ASV5, more consistent across months (Fig. 4). Because the 16S amplicon data used in this study is compositional, it is not clear if changes in the relative abundance of core taxa are driven by decreases in absolute abundance or influenced by shifts in other taxa (Fig. 4).

Macroalgal host specificity of *F. distichus*-core bacteria

In 2015, *F. distichus* was sampled from Calvert Island alongside 32 other sympatric macroalgal species sampled at West Beach, Calvert Island, BC [52]. We used this dataset to ask whether the *F. distichus*-core ASVs were restricted to *Fucus* (*Fucus* specialists) or also associated
with diverse macroalgal species (macroalgal generalists). Here we defined macroalgal generalists as bacterial taxa associated with more than one macroalgal species. We note that the threshold for presence in Fig. 5 is 0.1% average relative abundance to minimize the influence of transient taxa that have settled on nearby macroalgae. This figure also includes only the 20 core ASVs present on 2015 Calvert Island samples. Our data showed that most of *F. distichus*-core ASVs are present on other macroalgal species (Fig. 5). For instance, *Granulosicoccus* sp. (ASV1 and ASV4) and *Litorimonas* sp. (ASV5 and ASV23) were generally found on most sympatric brown, green, and red macroalgae at West Beach (Fig. 5). This comparison also reveals that a few ASVs belonging to *Rubritalea* and *Roseibacillus* (Verrucomicrobia) are found almost exclusively on *F. distichus* (Fig. 5). An IndVal analysis of *Fucus* compared to the other 32 macroalgal species showed that these taxa are significantly enriched on and highly specific to *F. distichus*; *Rubritalea* ASV3 (specificity: 0.999, *p*-value: 0.001) and *Roseibacillus* ASV61 (specificity: 0.998, *p*-value: 0.001). Of course, determining whether ASVs are *Fucus*-specialists comes with the caveat that we might not have sampled the other hosts that harbors a *Fucus*-associated ASV, while macroalgal generalists can be more easily observed when ASVs are detected on multiple macroalgal species.

Phylogenetic placement of core bacteria

We used broadly sampled phylogenetic trees to identify the close relatives of the *F. distichus*-core ASVs. We annotated the tree with information on the isolation source from GenBank reporting the environment or host or from which sequences were isolated. This allowed us to determine whether the *F. distichus* core ASVs fall within macroalgal-associated clades or clades that have been broadly characterized from other hosts and abiotic environments. In cases where we identified multiple core ASVs belonging to the same genus, phylogenetic analysis also allowed us to determine whether the core ASVs are clustered together or fall within distinct clades. We investigated four bacterial genera among the *Fucus* core. We found the four core ASVs within *Granulosicoccus* genus fall within distinct clades (Additional file 4: Fig. S1). The closest relatives of ASV4 were previously detected on brown macroalgae. On the other hand, close relatives of ASV1 were isolated from the environment (i.e., marine sediment and ice) (Additional file 4: Fig. S1). The close relatives of ASV16 and ASV40 did not have

![Fig. 5](image-url) Distribution of *Fucus distichus*-core ASVs across diverse macroalgal species. The 20 *F. distichus*-core ASVs identified for Calvert (Fig. 3) that are present in the 2015 Calvert dataset (Lemay et al. 2021) are shown. Frequency and abundance are calculated from data merged across tide heights for *F. distichus* and 32 sympatric macroalgal species. Other notes as in Fig. 2.
sequences with isolation source information were clustered with. Closely relatives of ASV5 and ASV23 within *Litorimonas* were previously isolated from brown and green macroalgae respectively (Additional file 4: Fig. S2). The closest relatives of *Blastopirellula* (Planctomycetes), core ASV2 were dominantly detected with *Fucus* species, while no sequences are clustered with ASV93 (Additional file 4: Fig. S3). Another core ASV3 within *Rubritalea* was enriched in *F. distichus* samples but nearly absent in other 32 macroalgal samples. However, we did not find any sequence that closely matched core ASV3 (Additional file 4: Fig. S4). Interestingly, *Rubritalea* ASV38 has a close relative previously detected on *Fucus vesiculosus*, but ASV38 is widespread across multiple macroalgal species (Fig. 5). Overall, the core ASVs detected in this research are all phylogenetically distinct from each other and are not artifacts. Some core ASVs have relatives that were also isolated from macroalgae, but this is not always the case.

Discussion

Identifying core taxa has been proposed as a way to gain new insight into the complex and variable microbial communities associated with a host. However, the best approaches and thresholds to define the core are unclear. In this study, we used three approaches and an expansive dataset to identify the core bacterial ASVs associated with *Fucus distichus*. We considered 50% frequency across individuals and/or sampling events (alone or embedded in the >0.7 threshold for IndVal) as a common sense threshold to identify core bacterial ASVs. Identifying indicator taxa at each sampling event highlights the variability in the *Fucus* microbiome (Fig. 2); there are 329 unique ASVs that are indicators in at least one sampling event (Additional file 1: Table S1). These results align with the strong differences in overall community composition previously reported for *Fucus* across sites [13] and tide heights [81] and the variable list of purported core taxa identified from one time and place [28]. Considering the common indicators across a majority of sampling events yields a much smaller set (11 ASVs) of putative core taxa and highlights the power of broad sampling.

The intersection of the three approaches is a robust suite of 10 taxa that are clearly and consistently associated with *F. distichus* (Fig. 2). While we observe a clear and consistent suite of core taxa, there are no ASVs present across all *Fucus* individuals as might be expected in the case of obligate symbionts. Interestingly, 9 of the 10 core taxa identified by all methods are also part of the core for Quadra Island *Fucus*, more than 250 km away from the focal Calvert Island *Fucus* (Fig. 3). This result provides further support for the notion that core taxa identified from multiple sites and timepoints and by multiple methods are more likely to be common in other locations. Frequency analysis of the combined dataset alone or in conjunction with measuring specificity on *Fucus* compared to the environment (by IndVal) also capture these common core taxa. As expected, high frequency taxa are sometimes also common in the environment (lower specificity and excluded by IndVal). Our results suggest frequency alone captures many of the same taxa, especially when assessed across multiple sampling events, and enables using datasets that do not have environmental comparison samples. Of course, consistency does not equal functional relevance. Experimental work is needed to test the hypothesis that distribution and specificity of host-associated taxa is a good predictor of the functional influence a microbe has on the host.

We ran core microbiome analyses at the finest taxonomic resolution (ASVs) available so we could distinguish different entities within the same genus based on phylogenetic relationships and distribution. This allows us to better understand variation in host-specificity and the potential for seasonal and regional trade-offs in distribution within a genus. We find that there are multiple ASVs associated with *Fucus* within the many of the common genera that are phylogenetically distinct (Additional file 4: Figs. S1–S4) and distinct in their distribution over space (Fig. 2) and time (Fig. 3). For example, within *Granulosicoccus* there are ASVs that are consistent in relative abundance across seasons (e.g. ASV1; ASV11) and others that are rare in fall and winter (ASV4; ASV120; Fig. 3). *Granulosicoccus* also shows geographic structure: ASV11 is much more common in Quadra (100% frequency between April–June) compared to Calvert (40% frequency overall), while *Granulosicoccus* ASV1 is at 94% frequency on Calvert but at 76% frequency on Quadra. *One Litorimonas* ASV is specific to *Fucus* (ASV5), while others are common in the surrounding environment. This suggests high genetic and functional diversity within bacterial genera commonly associated with macroalgae that underlie differences in their environmental tolerance, specificity to *Fucus*, and other aspects of their functional repertoire. This variation is lumped together in studies at genus level or above.

The trade-offs in the dominant taxa and across sites and over time suggests that local population dynamics among diverse but functionally redundant ASVs could allow different microbes adapted to different abiotic conditions to fill host-associated niches across sites and seasons. Functional redundancy is common in marine microbial systems [33, 82, 83], in plants [84] and is generally a widespread pattern [83].

Host species specificity of microbial symbionts has been a long interest in many host microbiome systems [85–87], including macroalgae [88]. It is commonly
suggested that a mutualist within a host ecosystem is a specialist because it has been associated with a specific lineage of symbionts over its evolutionary history [89] and a frequent microbial association (core relationship) may also be the product of evolutionary processes of host microbiomes [90]. Long-term specific associations can lead to phylogenetic congruence between symbiont and host lineages that can arise from congruent speciation for microbe and host. Recent studies found core bacterial are specialized in coral with evidence of phylogenetic congruence between symbiont and host lineages [91] and in earthworms without phylogenetic congruence. However, Host-specificity is expected to be lower for microbes that live at the interface of hosts and the free-living environment, as in the macroalgal microbiome [92].

The increasing number of studies of macroalgal microbiomes illuminates common patterns and many genera frequently associated with a diverse array of macroalgal species. For example, the most common *F. distichus*-associated core genera in this study were *Granulosicoccus* and *Litorimonas*, which are also dominantly found in the broad range of brown, green and red macroalgal species: *Fucus* species [93, 94], *Nereocystis luetkeana* [95], *Laminaria setchellii* [62], *Macrocystis pyrifera* [35], *Ecklonia cava* [96], *Caulerpa cylindracea* [97], *Ulva rigida* [98], *Porphyra umbilicalis* [99] and *Gelidium lingulatum* [100]. Are these generalists or are there specialized lineages within each genus that specifically associate with each species? We analyzed the distribution of *F. distichus* core ASVs across 36 other macroalgal species to answer this question. We find that *F. distichus* core ASVs are generalists: most are also associated with a broad range of other macroalgae (Fig. 5). There are multiple distinct ASV lineages within most of the common genera that are part of the core (Fig. 3). A few potential specialists in the Verrucomicrobia (*Roseibacillus* ASV61, ASV67 and *Rubritalea* ASV3) also emerged in our comparison of 32 sympatric macroalgae (Fig. 5). Interestingly, these are not found at high frequency in the overall *Fucus* microbiome datasets. Thus, the expectation that more tightly associated bacteria are more likely to be host specific is not supported. Overall, our research suggests the generality at the ASV level is common and co-evolution at the host species level is very unlikely to be occurring in macroalgae.

The large number of core taxa identified for *F. distichus* and high degree of variation in the indicator taxa are potentially related to the observation that most of the *F. distichus*-core are macroalgal generalists. These patterns suggest that *Fucus*:microbe associations are flexible and likely arise because bacteria that colonize *Fucus* are responding to signals that are widespread, and/or that the mechanisms that promote *Fucus*:microbe association are general in nature [92]. Specific marine bacterial strains may colonize on the surface of diverse macroalgae for the degradation of the polysaccharides from macroalgae [101, 102]. For example, major cell wall polysaccharides are widely distributed across green, red and brown macroalgae [103, 104]. Dimethylsulfoniopropionate (DMSP) is another widely produced molecule that marine bacteria have been shown to respond to and it is produced by a wide array by marine algae. [105–107]. Bacterial symbionts of the green macroalga *Ulva* attracted by DMSP and appear to use it as a reliable indicator of a food source, in this case glycerol [108]. DMSP can also be used directly as a food source by some bacteria including *Granulosicoccus* and *Litorimonas* [109, 110]. The ability to recognize and metabolize DMSP could promote their ability to colonize diverse macroalgal species, and may underly bacteria:macroalgal associations in other cases.

Next research steps should include directly testing the prevailing hypothesis that core bacteria are more likely to play a functional role in host biology [15]. Though cultivating marine bacteria remains a major challenge, recent efforts using different types of media enabled the culture of a remarkably high portion of the bacteria associated with brown macroalga, *Ectocarpus* [111] and put direct, culture-based tests within the realm of possibility. Such studies should be carefully designed and adequately test the alternative possibility that many marine and biofilm-associated bacteria influence macroalgal biology. Earlier studies showed bacterial strains that are readily culturable are commonly among the strains with growth promoting effects [112, 113] or defense against macroalgal pathogens [114, 115].

Conclusion

We identified a suite of core taxa that are consistently associated with the macroalgae *Fucus distichus* using three alternative approaches. We expect these methods will be useful in other systems for identifying core taxa when different types of data are available. Visualizing the distribution of frequency and specificity are likely to aid in identifying appropriate thresholds across a range of host:microbe systems that differ in their biology and the fidelity of microbial interactions, and will be helpful in uncovering ASVs with distributions that are restricted by region, over time, or to particular hosts. We argue that broader sampling schemes are more likely to yield a robust suite of core microbes overall and identify the distribution patterns of taxa restricted in place and time. These data can be used to inform robust experimental tests of the hypothesis that the core microbiomes are more likely to be biologically important symbionts.
Acknowledgments
We acknowledge that this research was carried out on the traditional and contemporary territories of many First Nations, including but not limited to the Hul’qumi’num, We Wai Kai, We Wai Kум, Klahoose, and K’ómoks, Kwakwaka’wakw, Heiltsuk, Wuikinuxv, Musqueam, Squamish and Tsleil-Waututh. We thank the field team at the Hakai Institute Calvert Island and Quadra Island field stations for logistical support. Many thanks to Parfrey lab members for feedback on drafts and analyses.

Author contributions
JP and LWP conceived the study. KMD and JP collected samples on Calvert Island in 2018 and 2019 respectively and performed molecular methods. KMD and JP contributed to Quadra 2017 dataset used for this core microbiome study. JP contributed analyses and wrote the manuscript with input from all authors. LWP supervised the project. All the authors reviewed and approved the manuscript.

Funding
JP was supported by the UBC International Doctoral Fellowship. KMD was supported by a UBC Four Year Fellowship. GL was supported by a Hakai Coastal Initiative postdoctoral fellowship. This work was funded by an NSERC Discovery Grant to LWP (2021-03160) and a Grant from the Tula Foundation to LWP.

Availability of data and materials
All datasets within phyloseq format and bioinformatic scripts from this study are available at https://github.com/Jungsooparkuc/Fucus-Core-Microbiome. Sequences and metadata are deposited in the European Nucleotide Archive under the project accession PRJEB57342. All relevant data for Indicator Species Analysis are within the main paper and its Additional files 1, 2, 3 and 4.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada. 2 Department of Zoology, University of British Columbia, Vancouver, BC, Canada. 3 Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.

Received: 9 May 2022 Accepted: 9 November 2022 Published online: 16 November 2022

References
1 Rosenberg E, Koren O, Reshef L, Efros R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5(5):355–62. https://doi.org/10.1038/nrmicro1635.
2 Sweet MJ, Bulling MÁ. On the importance of the microbiome and pathobiome in coral health and disease. Front Marine Sci. 2017;4:9.

Antwes RE, Griffiths SM, Harrison KA, Aranega-Bou P, Arce A, Bettridge AS, et al. Fifty important research questions in microbial ecology. FEMS Microbiol Ecol. 2017;93(5):fi504. https://doi.org/10.1093/femsdc/fi504.

Engel P, Kwong WK, McFrederick Q, Anderson KE, Baribeau SM, Chandler JA, et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. 2016;7(2):e02164-15.

Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28(8):2405–29.

Malmuthuge N. Understanding host-microbiota interactions in rumen: searching the best opportunity for microbiota manipulation. J Anim Sci Biotechnol. 2017;8(1):1–7.

Bongrand C, Koch EJ, Moriano-Gutierrez S, Cordero OX, McGill-Ngai M, Polz MF, et al. A genomic comparison of 13 symbiotic Vibrio Fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 2016;10(12):2907–17.

Nyholm SV, McFall-Ngai M. The winnowing: establishing the squid-Vibrio symbiosis. Nat Rev Microbiol. 2004;2(8):632–42.

Lee YM, Noh H-J, Lee D-H, Kim J-H, Jin YK, Paull C. Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea. Polar Biol. 2019;42(2):2305–12.

Rogers TJ, Leppanen C, Brown V, Fordye JA, LeBude A, Ranney T, et al. Exploring variation in phylosphere microbial communities across four hemlock species. Ecosphere. 2018;9(12):e02524.

Han Q, Ma Q, Chen Y, Xu B, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14(8):1915–28.

Campbell AH, Marzinelli EM, Gelber J, Steinberg PD. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front Microbiol. 2015;6:239.

Davis KM, Mazel F, Parfrey LW. The microbiota of intertidal macroalgae Fucus distichus is site-specific and resistant to change following transplanted Environ Microbiol. 2021;23:2617–31.

Björk J, O’Hara R, Ribes M, Coma R, Montoya J. The dynamic core microbiome: structure, dynamics and stability. bioRxiv 137885. In. 2018.

Risely A. Applying the core microbiome to understand host-microbe systems. J Anim Ecol. 2020;89:1549–58.

Wang J, Lang T, Shen J, Dai J, Tian L, Wang X. Core gut bacteria analysis of healthy mice. Front Microbiol. 2019;10:887.

Toju H, Peay KG, Yarnamichi M, Narisawa K, Hiruma K, Naito K, et al. Memberships of the human microbiome. PLOS ONE. 2013;8(5):e63139.

Simonin M, Dasilva C, Terzi V, Ngoneu EL, Diouf D, Kane A, et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS Microbiol Ecol. 2020;96(6):fiaa067.

Trevizan Segovia B, Sanders-Smith R, Adamczyk EM, Forbes C, Hessing-Lewis M, O’Connor MI, et al. Microeukaryotic communities associated
with the seagrass Zostera marina are spatially structured. J Eukaryot Microbiol. 2021;68(1):e12827.

21. Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9(10):2261–74.

22. Schmitt S, Hentschel U, Taylor MW. Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. In: Ancient animals, New Challenges. Springer; 2011. p. 341–51.

23. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

24. Björk JR, O’Hara RB, Ribes M, Coma R, Montoya JM. The dynamic core microbiome: structure, stability and resistance. bioRxiv. 2017:137885.

25. Sanders-Smith R, Trevizan Segovia B, Forbes C, Hessing-Lewis M, Morien E, Lemay MA, et al. Host-specificity and core taxa of seagrass leaf microbiome identified across tissue age and geographical regions. Front Ecol Evol. 2020;8:459.

26. Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. MBio. 2018;9(5):e00812-18. https://doi.org/10.1128/mBio.00812-18.

27. Loudon A, Kurtz A, Esposito E, Ulmele T, Minbiole K, Parfrey L, et al. Columbia spotted frogs (Rana luteoviridis) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. Ecosphere. 2020;11(16):168.

28. Parrot D, Blümel M, Utermann C, Gianese G, Krause S, Kovalov A, et al. Mapping the surface microbiome and metabolome of brown seaweed Fucus vesiculosus by amplicon sequencing, integrated metabolomics and imaging techniques. Sci Rep. 2019;9(1):1–17.

29. Shade A, Stopnisek N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr Opin Microbiol. 2019;49:50–8.

30. Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 2021;15:2708–22.

31. Rusukanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modeling spatial patterns in host-associated microbial communities. Environ Microbiol. 2021;23:2387–8.

32. Saha M, Ferguson RM, Dove S, Künzel S, Meichssner R, Neulinger SC, Lemay MA, et al. Host-specificity and core taxa of seagrass leaf microbiome: structure, stability and resistance. bioRxiv. 2017:137885.

33. Ruuskanen MO, Sommeria-Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modeling spatial patterns in host-associated microbial communities. Environ Microbiol. 2021;23:2387–8.

34. Saha M, Fergusson RM, Dove S, Künzel S, Meichssner R, Neulinger SC, Lemay MA, et al. Salinity and time can alter epibacterial communities of an invasive seaweed. Front Microbiol. 2020;10:2870.

35. Burke C, Steinberg P, Rutsch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci. 2011;108(34):14288–93.

36. Lemay MA, Martone PT, Parfrey LW. Kelp-associated microbiome altered in the presence of epiphytes. Limnol Oceanogr. 2014;59(6):1433–47.

37. Hay ME, Fenical W. Marine plant-herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst. 1988;19(1):111–45.

38. Shammugapriya S, Manilal A, Sujith S, Selvin J, Kiran GS, Natarajan-seenivasan K. Antibacterial activity of seaweeds extracts against multiresistant pathogens. Ann Microbiol. 2008;58(3):535–41.

39. Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F. Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling. 2011;27(4):423–33.

40. Lachnit T, Wahl M, Harder T. Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling. 2009;26(3):247–55.

41. Baiz P, Othmani A, Debras D, Culioli G, Brand JF. Temporal covariation of epibacterial community surface and metabolic function of the Mediterranean seaweed holobiont Taonia atomaria. Environ Microbiol. 2020;22(3):534–62.

42. King NG, Moore PJ, Thorpe JM, Smale DA. Consistency and variation in the kelp microbiota: patterns of bacterial community structure across spatial scales. Microbiol Ecol. 2022;1–11.

43. Bonthond G, Bayer T, Krueger-Handfield SA, Barboza FR, Nakaoka M, Valero M, et al. How do microbiota associated with an invasive seaweed vary across scales? Mol Ecol. 2020;29(11):1094–108.

44. James AK, English CJ, Nidzko NJ, Carlson CA, Wilbanks EG. Giant kelp microbiome altered in the presence of epiphytes. Limnol Oceanogr Lett. 2020;5(5):342–62.

45. Bonthond G, Bayer T, Krueger-Handfield SA, Barboza FR, Nakaoka M, Valero M, et al. How do microbiota associated with an invasive seaweed vary across scales? Mol Ecol. 2020;29(11):1094–108.

46. van der Loos LM, D’hondt S, Engelen AH, Favia H, Toth GB, Willems A, van der Loos LM, D’hondt S, Engelen AH, Favia H, Toth GB, Willems A, Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-poly saccharide-degrading bacteria. Front Microbiol. 2015;6:1467.

47. Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev. 2013;37(3):462–76. https://doi.org/10.1111/1574-6976.12011.

48. Hollants J, Leiarii F, De Clerck O, Willems A. What can we learn from sushi: a review on seaweed–bacterial associations. FEMS Microbiol Ecol. 2013;83(1):11–16.

49. Singh RR, Reddy CR. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. Microbes Ecol. 2014;68(2):213–30. https://doi.org/10.1111/1574-6941.12297.

50. Saha M, Weinberger F. Microbial “gardening” by a seaweed holobiont: surface metabolites attract protective and deter pathogenic epibacterial settlement. J Ecol. 2019;107(6):2255–65.

51. Spönenner M, Wichard T, Bachhuber T, Straatmann J, Oertel W. Growth and thallus morphology of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J Phycol. 2012;48(6):1433–47.

52. Chisholm J, Dauga C, Ageron E, Grimont P, Jaumert JR. Roots in mixotrophic algae. Nature. 1996;381(6583):566–71.

53. Flores JZ, Camus C, Hengst MB, Buschmann AH. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front Microbiol. 2017;8:2561.

54. Zeng Y. Phylogenetic diversity of dimethylsulfoniopropionate-dependent demethylase gene demA in distantly related bacteria isolated from Arctic and Antarctic marine environments. Acta Ocean Sin. 2011;39(8):64–71.

55. Tout J, Jeffries TC, Webster NS, Stocker R, Ralph PJ, Seymour JR. Variability in microbial community composition and function between different niches within a coral reef. Microb Ecol. 2014;67(3):540–52.

56. Gutierrez-Barranquero JA, Reen FF, Parages ML, McCarthy R, Dobson AD, O’garra A. Disruption of N-acyl-homoserine lactone-specific signalling and virulence in clinical pathogens by marine sponge bacteria. Microbial Biotechnol. 2019;12(5):1049–63.

57. Singh RP, Reddy CR. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. Microbes Ecol. 2014;68(2):213–30. https://doi.org/10.1111/1574-6941.12297.

58. Bonthond G, Bayer T, Krueger-Hadfield SA, Barboza FR, Nakaoka M, van der Loos LM, D’hondt S, Engelen AH, Favia H, Toth GB, Willems A, van der Loos LM, D’hondt S, Engelen AH, Favia H, Toth GB, Willems A, Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-poly saccharide-degrading bacteria. Front Microbiol. 2015;6:1467.
65. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis of the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2012.8.

66. Corneau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems. 2017;2(1):e00127–e016.

67. Wu Y. Barcode demultiplex for Illumina I1. R1, R2 fastq gz files (https://github.com/ywu/demdup). 2014.

68. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(1):D590–6.

69. Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27(4):325–49.

70. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.: Vegan: community ecology package. In: R package version 2.4–6; 2018; 2019.

71. Lahti L, Shetty S, Blake T, Salojarvi J. Tools for microbiome analysis in R. Version. 2017;15(3):28.

72. De Caceres M, Jansen F, De Caceres MM. Package indicspecies. Indicators. 2016:8.

73. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al: Community ecology package. In: R package version 2.0–2; 2011.

74. Legendre P. Indicator species: computation. 2016;8:1.

75. Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3(2):180–5.

76. Charif D, Lobry JR. SeqinR 1.0–2: a contributed package to the R project for sequence analysis. In: Structural approaches to sequence evolution. Springer; 2003. p. 207–32.

77. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol. 2004;6(2):121–30.

78. Ambika Manirajan B, Ratering S, Rusch V, Schwartz A, Geissler-Plaum R, Cardinael M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol. 2016;18(12):5161–74.

79. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, et al. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for induction of rapid coral bleaching in Acropora muricata. Front Microbiol. 2016;7:316.

80. Cheek WJ, Dufresne J, Hovenkamp LC, Louchart S, Bento F, et al. Ectocarpus microbiome. Front Microbiol. 2017;8:2456.

81. O’Brien PA, Andreakis N, Tan S, Miller DJ, Webster NS, Zhang G, et al. Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Mol Ecol. 2021;30(15):3768–82.

82. Lajoie G, Parfrey LW. Beyond specialization: re-examining routes of host influence on symbiont evolution. Trends Ecol Evol. 2022;37:590–6.

83. Quigley CT, Capistrant-Fossa KA, Morrison HG, Johnson LE, Morozov A, Hertzberg VS, et al. Bacterial communities show algal host (Fucus spp.)/biota be functional. Trends Plant Sci. 2017;22(7):583–95.

84. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the core microbiome inform the global ocean microbiome. Science. 2016;353(6305):1272–7.

85. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, et al. Diversity and streamlined workflow for microbiome research. MSystems. 2017;2(1):e00127–e016.

86. Taylar M, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol. 2004;6(2):121–30.

87. Ambika Manirajan B, Ratering S, Rusch V, Schwartz A, Geissler-Plaum R, Cardinael M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol. 2016;18(12):5161–74.

88. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, et al. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for induction of rapid coral bleaching in Acropora muricata. Front Microbiol. 2016;7:316.

89. Cheek WJ, Dufresne J, Hovenkamp LC, Louchart S, Bento F, et al. Ectocarpus microbiome. Front Microbiol. 2017;8:2456.
112. Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol. 2003;5(1):25–35.

113. Grueneberg J, Engelen AH, Costa R, Wichard T. Macroralgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS ONE. 2016;11(1):e0146307.

114. Rao D, Webb JS, Holmstrom C, Case R, Low A, Steinberg P, et al. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol. 2007;73(24):7844–52.

115. Wang Y, Xu Z, Bach S, McAllister T. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian Australas J Anim Sci. 2009;22(2):238–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.