We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Determination of Genetic Variation Between Populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf According to some Seed Characteristics

Hakan Sevik¹, Zeki Yahyaoglu² and Ibrahim Turna²

¹Kastamonu University, Forestry Faculty, Landscape Architecture Dep., Kastamonu
²Karadeniz Technical University, Forestry Faculty, Silviculture Dep., Trabzon

Turkey

1. Introduction

The success of any sustainable reforestation program, among other things, hinges on a continuous supply of high quality seeds for the production of the desired quantity of seedlings in nurseries or for successful stand establishment by direct sowing out in the field. What is seed quality then? Seed quality is defined as “a measure of characters or attributes that will determine the performance of seeds when sown or stored” (Hampton 2002). It is a multiple concept encompassing the physical, physiological, genetic, pathological and entomological attributes that affect seed lot performance (Basu, 1995).

Several factors affect the production of high quality seeds, such as insect infestation (El Atta 1993, Dajoz 2000, Bates et al. 2000, 2001), pollination failure and post-zygotic degeneration (Owens et al. 1990, El-Kassaby et al. 1993), infection by seed borne pathogens (Pritam and Singh 1997), environmental conditions during seed development (Gutterman 2000) as well as the genetic constitution (Bazzaz et al. 2000).

Genetic diversity is the richness of the hereditary information in the gene pole of one species. High level of inter-species genetic diversity is an assurance for adaptation to changing environmental conditions, an indication for adaptation potential of the species and an important part of the ecosystem stability. Also genetic diversity is a raw material for tree improvement studies. As such, most of the researches about the genetic diversity are in high priority in forest trees improvement programs (Şevik et al., 2010a, 2010b).

Genetic variation is the fundamental component, which ensures survival and thus the stability of forest ecosystems as its quantity and quality determines the potential of population to adapt the changing in environmental condition. This is particularly important with changing population and climatic condition and when the long-term stability of forest ecosystems is increasingly threatened by environmental stress. Thus, a genetic characterization of natural forest resources is the first step necessary for a better understanding of genetic resources for implementation of insitu and exsitu conservation activities (Şevik, 2010; Turna et al., 2006; Şevik et al. 2010a).
Up to now, in Turkey, studies about genetic diversity of the main forest trees have been concentrated on pine species, neglecting other main forest tree species. Turkish fir is among the one of the neglected species.

Turkish fir (Abies nordmannianan subsp. bornmüllariana) has a special importance for Turkey because of its increasing economic value in marketplace and decorative characteristic in landscape architecture. Furthermore, being an endemic species for Turkey, very decorative species, for this reason the species is the most widely preferred Noel tree in the world (Şevik et al, 2011). Turkish fir is distributed from Kızılırmak River to Mount Uludag in Western Blacksea region, particularly in Ayancik, Ilgaz Mountains, Bolu Seben Mountains, Boyabat-Göktepe forests, Abant and Mount Uludag. Stands of fir species occupy roughly 600.000 ha at Turkey (Anonymous, 2006).

The objectives of this study were to investigate the Genetic diversity among Turkish fir populations in Turkey, and determine the extent of between population variation, using 13 different morphological characters.

2. Materials and methods

Seed collection and sowing: Open pollinated seed materials from seventeen different natural populations of Turkish fir collected from Western Black Sea Region. Locations and description of the studied population are indicated in Fig. 1 and Table 1 in this study.

Seed and seedling morphological variables studied and data collection: In this study, width, thickness, length and weight of seeds, carpel width, length and weight, carpel scape width and length, wings width and length were determined from total 303 sample trees. All length and width were measured with digital micro-compass (0,01 mm) from 10 samples for each sample tree. All weight was measured with digital weighing machine (0,001 gr).

Statistical Analyses: Data were subjected to multi-way analysis of variance, Duncan test and Hierarchical Cluster analysis with SPSS statistical package program. Relationships between 13 related characters were tested using correlation analyses.
Determination of Genetic Variation Between Populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf According to some Seed Characteristics

Pop. No	Population Name	City	Number of Sample Trees	Altitude (m)	Longitude (E)	Latitude (N)
1	Bafra1	Samsun	10	828	35°21'18"	41°34'01"
2	Bafra2	Samsun	10	1012	35°21'33"	41°33'28"
3	İskilip1	Amasya	20	1673	33°46'11"	41°22'36"
4	İskilip2	Amasya	20	1852	34°13'34"	40°49'01"
5	Türkeli	Sinop	13	1348	34°16'15"	41°44'58"
6	İlgaz1	Kastamonu	20	1430	33°49'17"	41°09'27"
7	İlgaz2	Kastamonu	20	1624	33°49'11"	41°08'60"
8	İlgaz3	Kastamonu	20	1995	33°50'58"	41°07'47"
9	Ballıdağ1	Kastamonu	20	1056	33°29'02"	41°37'11"
10	Ballıdağ2	Kastamonu	20	1374	33°25'29"	41°34'12"
11	Ballıdağ3	Kastamonu	20	1640	33°22'37"	41°31'58"
12	Samatlar	Kastamonu	20	1497	33°15'32"	41°22'06"
13	Eflani	Karabük	20	1102	32°51'45"	41°29'02"
14	Aladağ	Bolu	10	968	31°37'15"	40°40'21"
15	Kibrsciık2	Bolu	20	1499	32°00'42"	40°25'46"
16	Kibrsciık1	Bolu	20	1791	32°02'22"	41°28'43"
17	Göynük	Bolu	20	1270	30°41'27"	40°30'08"

Table 1. Description of the studied populations in Turkey

Moreover, collected data was determined with Penrose formula. Data were standardized before the calculations and the morphological distance among populations were estimated as:

\[Z_{i,k} = \frac{(X_{i,k} - \bar{x})^2}{S_k} \]

Where \(Z_{i,k} \) is standardized values of the \(k^{th} \) characteristics of the \(i^{th} \) population, \(X_{i,k} \) is original average of the \(k^{th} \) characteristics of the \(i^{th} \) populations for the \(k^{th} \) characteristics and \(S_k \) is the standard deviation of the studied populations for the \(k^{th} \) characteristics (Şevik, 2005, 2010).

\[D_{i,j} = \sum_{k=1}^{n} \frac{(\mu_{i,k} - \mu_{j,k})^2}{p V_k} \]

Where, \(D_{i,j} \) is the morphological distance between the \(i^{th} \) population and the \(j^{th} \) populations, \(n \) is the number of studied characteristics, \(\mu_{i,k} \) is the standardized values of the \(k^{th} \) of the \(i^{th} \) population, \(\mu_{j,k} \) is the standardized values of the \(k^{th} \) characteristics of the \(j^{th} \) population, \(V_k \) is the variance of standardized averages of the \(k^{th} \) characteristics (Yahyaoğlu et al, 2001) was applied by standardized values in SPSS statistical package program (Şevik, 2010).
3. Results

The analysis of variance showed that there were significant differences among populations at 0.01 for seed width and 0.001 for other characters. Mean values and multiple comparisons of studied morphological characters shown in Tables 2.

Population Name	Carpel Length (mm)	Scale Length (mm)	Carpel width (mm)	Scale width (mm)			
Bafra1	33.31±.81	a	25.21±.82	ab	28.70±.01	abcd 4.87±.14	a
Bafra2	33.32±.98	a	24.70±.92	a	27.63±.12	a 5.12±.21	abc
Iskilip1	36.41±.68	cdef	27.36±.61	bcde	31.01±.71	cde 5.08±.11	abc
Iskilip2	36.18±.85	cdef	26.50±.63	abcde	31.07±.90	de 5.00±.12	ab
Türkeli	33.54±.87	a	25.69±.0.5	abc	27.86±.0.85	a 5.29±.14	abcd
Ilgaz1	33.71±.78	ab	25.33±.0.66	ab	28.39±.0.60	ab 5.18±.13	abc
Ilgaz2	36.39±.95	cdef	27.83±.67	cde	29.87±.82	abcd 5.41±.12	bcd
Ilgaz3	34.86±.64	abcd	26.95±.65	bcde	28.47±.82	abc 5.10±.12	abc
Ballıdağ1	36.99±.73	ef	28.69±.0.62	e	32.17±.0.69	e 5.71±.16	d
Ballıdağ2	36.56±.55	cdef	28.06±.0.66	de	31.53±.69	e 5.50±.11	cd
Ballıdağ3	36.30±.56	cdef	27.73±.53	cde	30.87±.61	bcde 5.65±.12	d
Samatlar	36.06±.52	bcdef	27.77±.52	cde	31.56±.68	e 5.67±.12	d
Eflani	34.04±.53	abc	26.34±.58	abcd	29.97±.63	abcde 5.18±.12	abc
Aladağ	37.43±.84	f	28.21±.1.2	de	32.07±.66	e 5.53±.15	cd
Kbrsck2	34.12±.76	abc	25.79±.69	abc	30.86±.64	bcde 5.29±.17	abcd
Kbrsck1	36.65±.70	def	27.93±.58	cde	31.93±.72	e 5.45±.15	bcd
Göynük	36.11±.70	bcdef	28.15±.68	de	30.67±.72	bcde 5.45±.11	bcd
Av.	35.41±.72		26.96±.65		30.27±.74		
F	3,194***		3,007***		3,420***	3.42***	

Table 2. Mean values of studied morphological characters and results of Duncan test.

According to Table 2, Population of Kbrsck2 is in the first homogeneity group according to all characters and population of Ilgaz1 is too except wing length. These populations showed lowest performance for thirteen characters. Populations of Aladağ, Ballıdağ1 and Ballıdağ2 showed highest performance. Aladağ population (except wing width), Ballıdağ1 and Ballıdağ2 populations (except carpel scape width) are in the last homogeneity group according to Duncan test. These populations showed the highest performance almost for all characters. The mean values and standard deviation of morphological characters by populations are shown in Table 2 (Sevik, 2010).

Average carpel length is 35.41 mm, carpel width is 30.27 mm, scale length is 26.96 mm and scale width is 5.32 mm. According to results of variance; carpel length 12.4%, carpel width...
16.4%, scale length 16.2%, scale width 17.2% change of minimum values to maximum values. Maximum values of scale length (28.69 mm), carpel width (32.17 mm) and scale with (5.71 mm) determined to population of Balldağ1. Minimum values of scale length (24.7 mm) and carpel width (27.63 mm) determined to Population of Bafr1. Minimum scale width is 4.87 mm (Bafr1), minimum carpel length is 33.54 mm (Türkeli). Maximum carpel length is 37.43 mm determined to population of Aladağ.

Popul. Name	Carpel Scape Length (mm)	Carpel Scape Width (mm)	Carpel Weight (mg)	Wing Length (mm)	Wing Width (mm)				
Bafr1	4.79±0.12	1.61±0.07	275.6±20.03	ab	15.3±0.47	bc	14.04±0.51	a	
Bafr2	4.17±0.12	a	1.41±0.09	245.6±22.69	a	14.74±0.91	ab	14.05±0.66	a
İskilip1	4.86±0.11	def	1.75±0.06	f	353.4±14.83	de	16.97±0.50	cde	
İskilip2	4.96±0.13	def	1.70±0.05	ef	358.3±20.35	e	17.37±0.59	def	
Türkeli	4.72±0.12	cdef	1.62±0.05	cdef	273.3±18.87	ab	13.27±0.58	a	
Ilgaz1	4.41±0.11	ab	1.41±0.04	ab	252.2±11.26	a	16.25±0.43	bcde	
Ilgaz2	4.89±0.14	def	1.58±0.04	bcdef	299.3±16.62	abcd	16.97±0.64	cde	
Ilgaz3	4.43±0.07	abc	1.51±0.06	abcde	251.0±12.66	a	16.31±0.55	bcde	
Balldağ1	4.74±0.12	bcdef	1.54±0.05	abcd	330.6±14.27	cde	17.60±0.46	def	
Balldağ2	5.13±0.12	f	1.54±0.04	abcde	339.4±11.48	cde	17.65±0.52	def	
Balldağ3	4.58±0.12	bcd	1.62±0.05	cdef	299.1±12.54	abcd	16.56±0.41	cde	
Samatlar	4.84±0.15	cdef	1.51±0.04	abcd	325.9±17.56	bcde	17.09±0.46	cde	
Eflani	4.64±0.10	bcde	1.40±0.05	a	286.6±12.46	abc	16.00±0.46	bcd	
Aladag	4.94±0.24	def	1.68±0.07	def	315.5±19.19	bcde	18.06±0.66	ef	
Kıbrıscık2	5.07±0.10	ef	1.49±0.05	abc	272.1±14.67	ab	17.60±0.54	def	
Kıbrıscık1	4.99±0.09	def	1.59±0.04	cdef	352.0±16.43	de	18.90±0.52	f	
Göynük	4.90±0.12	def	1.54±0.06	abcd	347.2±19.36	de	17.26±0.61	def	
Av.	4.77±0.12		1.56±0.05		304.8±15.79	ab	16.7±0.54		
F	3.80±0.06***	3.604***	5.675***	4.703***	3.376***				

Table 2. (Continue). Mean values of studied morphological characters and results of Duncan test.

Average carpel scape length is 4.77 mm, carpel width is 1.56 mm, carpel weight is 304.58 mg, wing length is 16.7 mm, wing width is 15.3 mm. According to results of variance; scale scape length 14.4%, scale scape width 25%, carpel weight 45.9%, wing length 42.4%, wing width 15.2% change of minimum values to maximum values.

According to the table, population of Bafr1 had shown minimum values of carpel scape length (4.17 mm) and carpel weight (245.60 mg). İskilip1 had shown Maximum values of carpel weight (358.38 mg) and wing width (16.4 mm). Minimum values; wing width is 14.04 mm (Bafr1), carpel scape width is 1.4 mm (Eflani) and wing length is 13.27 mm (Türkeli).
Maximum values; wing length is 18.9 mm (Kıbrıskı1), carpel scape width is 1.75 mm (İskiliıp1) and carpel scape length is 5.13 mm (Ballıdağ2).

The mean values and standard deviation of morphological characters by populations are shown in Table 2 (Şevik, 2010).

Population Name	Seed Length (mm)	Seed Width (mm)	Seed Thickness (mm)	Seed Weight (mg)
Bafra1	11.00±0.34 ab	5.74±0.11 abc	3.97±0.09 ab	81.58±5.41 abcde
Bafra2	10.84±0.39 a	5.78±0.12 abcd	3.82±0.14 a	85.84±7.66 abcde
İskiliıp1	11.63±0.28 abcd	6.12±0.13 de	3.92±0.08 ab	84.55±4.38 abcde
İskiliıp2	11.46±0.22 abc	5.93±0.12 abcd	3.90±0.07 ab	72.94±4.29 ab
Türkeli	11.44±0.18 abc	5.95±0.14 abcd	3.94±0.10 ab	79.97±4.85 abc
İskiliıp1	11.63±0.28 abcd	6.12±0.13 de	3.92±0.08 ab	84.55±4.38 abcde
İskiliıp2	11.46±0.22 abc	5.93±0.12 abcd	3.90±0.07 ab	72.94±4.29 ab
Türkeli	11.44±0.18 abc	5.95±0.14 abcd	3.94±0.10 ab	79.97±4.85 abc
Ballıdağ1	12.46±0.21 ef	6.07±0.09 cde	4.22±0.09 ab	103.29±4.53 fg
Ballıdağ2	12.57±0.17 f	6.05±0.08 cde	4.33±0.08 b	109.11±3.82 g
Ballıdağ3	12.36±0.22 cdef	5.85±0.09 abcd	4.05±0.07 ab	94.71±3.90 cdefg
Samatlar	11.77±0.25 bcde	5.85±0.08 abcd	3.83±0.09 a	91.68±4.66 cdef
Eflani	11.16±0.24 ab	6.36±0.12 e	3.90±0.07 ab	87.96±4.29 bcde
Aladağ	11.99±0.26 cdef	5.99±0.12 bcd	4.07±0.14 ab	95.42±7.44 defg
Kibrıskı2	11.06±0.19 ab	5.61±0.08 a	3.77±0.05 a	71.72±2.78 a
Kibrıskı1	11.67±0.25 bcde	5.76±0.13 abcd	4.34±0.43 b	83.27±4.59 abcde
Göynük	12.15±0.24 cdef	5.96±0.08 abcd	3.93±0.1 ab	96.80±4.65 efg
Av.	11.64±0.23	5.89±0.1	3.97±0.1 ab	81.58±4.05
F	5.123***	3.451***	1.789**	5.942***

Table 2. (Continue). Mean values of studied morphological characters and results of Duncan test.

Average values of seed length (11.64 mm), seed width (5.89 mm), seed thickness (3.97) and seed weight (81.58 mg) are shown in the table. According to the table minimum seed length (10.83 mm) and seed thickness (3.73 mm) values are determined to population of İlgaz1, minimum seed width (5.61 mm) and seed weight (71.72 mg) values are determined to population of Kibrıskı2. Maximum values of seed length is 12.57 mm (Ballıdağ2), seed width is 6.36 mm (Eflani), seed thickness is 4.34 mm (Kibrıskı1) and seed weight is 109.11 mg (Ballıdağ2).

On the cluster dendrogram constructed on the basis of Euclidean distances with the use of the nearest neighbourhood method for 13 quantitative morphological traits, two distinct
groups can be noticed: the first is İskilip1, İskilip2, Ballıdağ2, Göynük, Samatlar, Aladağ, Kibrisck1 and the others. The second group can distinguish two groups, İlgaz1 and others. According to these results, it can be said that there are three main groups (Figure 2 and 3).

According to results of cluster analysis, red color is the first group, blue color is the second group and the yellow color is the third group in the figure 3 (Şevik, 2010).

Some populations are geographically and genetically close to each other like, Bafra1 and Bafra2, İlgaz2 and İlgaz3, İskilip1 and İskilip2 populations. Some of them are geographically close to each other even though genetically different from each other. For example Ballıdağ1 and Ballıdağ2, İskilip1 and İskilip2 populations. On the contrary, some populations are genetically close to each other even though geographically different from each other. For example Bafra1 and Kibrisck2, İskilip1 and Göynük populations (Figure 2 and 3).

The highest 16 values calculated between İlgaz1 and the other populations. Maximum 5 values are between the populations of İlgaz1 and Eflani (10,3635), Kibrisck1 (9,9517), İlgaz3 (9,2148), Türkeli and İlgaz2 (8,4679). Minimum 5 values are 0,3029 (Bafra1 and Samatlar), 0,4078 (Bafra1 and Göynük), 0,4107 (Ballıdağ3 and Samatlar), 0,4673 (Bafra1 and İlgaz2) and 0,5038 (Kibrisck2 and Göynük).

Results of correlation analyses are shown in Table 4. According to Table 4 there were positive significant correlation was found between all characters except carpellas width and seed length, seed thickness, seed weight. The correlation between carpellas length...
and carpel scape width is significant at the 0.05 level, other all correlations are significant at the 0.01 level (Table 4).

![Genetic Diversity in Plants](image)

Fig. 3. Geographic positions of populations and results of cluster analysis

Morphological distance and grouping according to Penrose formula are shown that Table 3.

Pop. No	1	2	3	4	5	6	7	8
2	1.0171							
3	0.8408	1.0587						
4	0.8715	1.2715	0.6238					
5	1.1440	1.4252	1.5351	1.5285				
6	7.1725	5.7758	7.4618	7.2740	8.8849			
7	0.4673	1.5966	1.3288	1.3045	1.6894	8.4679		
8	0.9812	1.4185	0.8796	0.8711	1.7620	9.2148	1.0019	
9	0.9410	1.2547	0.7509	1.0335	1.6805	7.2567	0.6187	1.0099
10	1.8281	2.0630	2.8355	2.1007	2.7878	4.6134	1.6283	1.9982
11	0.6217	2.0264	1.5577	1.8446	2.3340	8.0759	0.5578	1.3256
12	0.3029	1.3819	1.1421	1.2455	1.5132	8.0839	0.7395	0.6935
13	1.5400	2.5653	0.8524	1.9061	1.9414	10.3635	1.3006	1.2208
14	0.5383	0.8897	1.0649	1.2452	1.0398	5.2708	0.9439	1.5747
15	0.9053	1.1575	1.1795	0.8243	1.1764	7.5639	0.5617	0.5652
16	1.3048	2.1365	1.3576	1.6116	1.1450	9.9517	1.1685	0.7097
17	0.4078	1.0211	1.0387	0.8375	1.4796	7.0460	0.5381	0.7332

Table 3. Morphological distance among populations according to Penrose Formula
Determination of Genetic Variation Between Populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf According to some Seed Characteristics

Pop. No	9	10	11	12	13	14	15	16
10	1.9756							
11	1.1810	1.7470						
12	1.2355	1.8239	0.4107					
13	0.8475	3.3882	1.4892	1.5608				
14	0.8184	1.3315	0.8540	0.7276	1.7854			
15	0.5766	0.9610	1.2016	0.9795	1.3299	0.9168		
16	1.3074	2.0367	1.4842	1.1814	0.7464	1.6195	0.6667	
17	1.0942	1.2490	1.0541	0.6694	1.6872	1.0009	0.5038	1.1633

Table 3. (Continue). Morphological distance among populations according to Penrose Formula

	CL	SL	CW	SW	CSL	CSW	CWe	WL	WW	SeL	SeW	SeT	SeWe
SL													
CW	0.81**	0.55**											
SW	0.51**	0.51**	0.60**										
CSL	0.50**	0.49**	0.29**										
CSW	0.27**	0.29**	0.19**	0.20**	0.14*								
CWe	0.78**	0.70**	0.45**	0.48**	0.38**								
WL	0.60**	0.47**	0.80**	0.43**	0.38**	0.18**	0.63**						
WW	0.77**	0.69**	0.58**	0.35**	0.30**	0.28**	0.71**	0.63**					
SeL	0.62**	0.57**	0.57**	0.41**	0.39**	0.09*	0.54**	0.41**	0.55**				
SeW	0.39**	0.41**	0.40**	0.21**	0.22**	0.20**	0.43**	0.27**	0.51**	0.46**			
SeT	0.32**	0.31**	0.54**	0.30**	0.25**	0.04*	0.30**	0.28**	0.44**	0.28**	0.28**		
SeWe	0.64**	0.62**	0.56**	0.42**	0.38**	0.06*	0.58**	0.44**	0.60**	0.77**	0.55**	0.45**	

*: Non significant, **: significant at the 0.01 level, *: significant at the 0.05 level.

Table 4. Pearson correlation coefficients among 13 morphological characters

According to results of correlation analysis the highest relations are between the carpel length and seed length (0,81), carpel width and wing length (0,80) and carpel length and carpel weight (0,78). The minimum values are determined between carpel scape width and carpel scape length (0,14), wing length (0,18) and carpel width (0,19).

4. Discussion

According to results of the cluster analysis and variance analysis, Ilgaz1 population is very different to other populations. It could be because of its longitude and different ecological and genetical material condition. Results of the cluster analysis (Figure 2) were well accordance with morphological distances. For instance, morphological distances of Ilgaz1 were the highest than the others. Similarly population of Ilgaz1 is very different to other populations according to cluster analysis. These results could be used in preparation of...
gene map, seed transfer zones, determination of breeding populations, gene conservation areas, geographic variation and resulting of provenance trials of the species in short period. Preparation of forest gene maps and determination of seed transfer zones and geographical variation by morphological distance were also suggested by Yahyaoglu et al 2001.

Genetic variation can be determined with morphological characters (Güney, 2009; Kulaç et al., 2010; Şevik, 2010), isosymes analysis (Bilgen and Kaya, 2007; Turna, 2003) and DNA markers (Clark et al., 2000; Goldstein, 1995). Many researchers use these methods for determination to genetic variation on Abies species; Messaoud et al. (2007) Abies balsamea, Okada et al., (1973) Abies sachalinensis, Parker et all. (1981) Abies balsamea and Abies lasiocarpa, Kolotelo (1998) Abies amabilis, Abies grandis and Abies lasiocarpa e.c.

Shea (1990) reported that the variation among the populations is small (1,3%) but significant in Abies Lasiocarpa. Sorensen and Franklin (1977) reported that, year effect including interactions with places and trees in places made up an estimated 45 % of the variance in seed weight and 25% of the variance in cotyledon number. Among population genetic variance was much lower than within population variance, ranging from 6.6 to 6.8% for drought resistance traits to 7.8–14.0% for bud-break dates and a maximum of 10.0–17.9% for height growth traits to Abies alba. Therefore, genetic variance was predominantly within population (Sagnard et al, 2002).

The average genetic distance for all pair-wise comparisons between the ten populations of Abies alba in Italy was 0.014 (Parducci and Szmidt, 1997). 7,3% of the total genetic variation was due to differences among populations for gymnosperms (Hamrick et al., 1992) and 10% for eight Abies species (Shea and Furnier 2002). 13.3% of the total diversity is distributed among populations in Abies alba (Vendramin et al 1999). Great variation was observed in the heterozygosity among the population studied and ranged from 0.010 (A. pinsapo) to 0.328 (A. cephalonica). The inter population genetic diversity was about 26% of the total genetic diversity. The average coefficient of gene differentiation (Gst) was 0.255, which means that approximately 26% of the total diversity of the Mediterranean firs exist among the populations. In particular, the geographical Area III (Turkey) has scored the highest value of Gst (25.8%), (Scaltsoyianne, 1999).

The proportion of genetic diversity among the populations of Abies sachalinensis is 1,5 % (El-Kassaby, 1992), populations of Abies mariesii is 2,6 % (Suyama et al. 1992) and populations of Abies cephalonica is 4.8% (Fady and Conkle 1993).

Conte (2004) reported that ANOVA analysis of Abies nebrodensis indicated that most of genetic variation resides within subsets (84%). More than 10% of the total genetic diversity was due to differences among populations of Abies nebrodensis (Vicario et al., 1995).

Total percentage of genetic variation present in the population explained by interplot or among subpopulation differences is 0,35% of Abies fraseri. Thus, more than 99% of the genetic variation is due to within plot (i.e. tree to tree) variation (Diebel and Feret 1991). Most of the genetic diversity lies within populations to Abies cephalonica (Fady and Conkle 1993). Less than 10% of the total observed variation appeared among populations of Abies cephalonica (Hamrick, 1989) and the variation among the populations is 11% in Abies alba (Vicario et al. 1995). Vendramin et al. (1999) reported that 13.3% of the total diversity is distributed among populations in Abies alba. On average, the genetic diversity among populations of Abies species has been found to be 6,3 % (Hamrick et al. 1992).
The high within-population genetic diversity and low among-population differentiation observed in conifers have been attributed to common lifehistory traits, such as longevity and extensive gene flow (Hamrick et al., 1992; Streiff et al., 1998). The biogeographic history of a species should also contribute significantly to current patterns of genetic variation (Planter et al. 2000).

Despite the comparatively low levels of allozyme variation and the small genetic distances between populations, geographical differentiation among silver fir populations at different spatial scales could be demonstrated with markers (Konnert and Bergmann 1995). A large difference in cone length, seed germination and seed weight was observed among the sites and among mother trees to Abies sachalinensis in Japan (Okada, 1973).

Contrary other Abies species, there are not enough study for Turkish fir. For this, it can be suggested that all populations, especially Ilgaz1 population, be considered for a gene conservation program. Also, future studies are necessary to provide deeper insights in to the subject. It may be concluded from the present study that studied characteristic were the important factors on morphological distance among populations. Ecological and geographical differentiation is important factors which influence the breeding and sampling strategies of tree crops. It is also essential to consider the relationship between population structure in natural and domesticated populations (Chalmers et al. 1992; Şevik, 2010; Şevik et al. 2011b). Results of this study could be taken into consideration in silvicultural purpose (afforestation, artificial regeneration) and breeding strategies (i.e. determination of breeding populations, gene conservation areas, seed transfer zones, seed sources and geographic variation, resulting of provenance trial; establishment of seed orchard) of this species.

Generally, our results show that large genetic diversity exist in Turkish fir to explain its great ecological plasticity and evolutionary. This results of study showed that the populations are not homogeneous with regard to the morphological characteristics. Populations consist of the trees having more or less different characteristics. The reason of the fact that the grouping and differences existed among the studied population in terms of the morphological characters may explain that there were different origins or varieties forming the Turkish fir stands. Variation in most of these characteristics appeared to be related altitude, divergent gene and genotype frequencies.

As is known, the morphological and physiological characteristics of forest trees are inherited. These features, with the growing effects of climate and environmental conditions can vary very little. As an example; needle length, the number of needles, cones, seed and leaf characteristics, branching characters as show some morphological features. In fact, many researchers in determining the genetic diversity of forest trees, one or a few of the uses of these characters. (Matziris, 1989; Cregg, 1994; Matziris, 1984; Komar, 2000; Fan ve Grossnickle, 1999; Lamhamedi, 2000; Matziris, 1997; John, 1948; Schmidtling et. al., 2005; Kathleen and Furnier 2002; Erkan, 2008; Bilir, 2002; Tylek ve Walczyk 2002, Güney et al., 2011, Kulaç et al. 2011a, 2011b; Torna and Güney, 2009; Torna, 2003, 2004). Seed size, parameters in terms of quality seeds is the most widely used classification also reflects the morphological diversity of values within and between populations. (Güney, 2009). Seeds in the trees, cones and cone elements, least affected by environmental conditions and thus genetic structure of the tree is considered the beginning of the elements that represent the most healthy way. Therefore especially in studies of genetic diversity of seeds, cones, and cones from the studies of the elements has a special place because it results is quite healthy (Torna et al., 2009).
Erkuloğlu (1993) reported that average weight of Abies bornmulleriana Mattf. Seeds from Bolu are 57.13 mg. Okada et al., (1973) Abies sachalinensis Masters in their study, in Japan, studied on 7 population and thousand grain weight of seed on the basis of population varied between 9.3 g to 12.3 g have identified. Also Skrzyszewska and Chlanda (2009) Abies alba Mill. thousand grain weight of seed on the basis of population, have found varied between 38.92 g and 53.27 grams. Edwards (1982), Fowells (1965) to refer to Abies lasiocarpa var. arizonica (Merriam) Lemra. subalpine fir, compared to other types of seeds, the seeds of its much larger that represents about 70%. Kolotelo (1998) Abies amabilis seed weight (Dong.) Forbes has changed between 25 mg and 55.6 mg and is the average of 34.5 mg, also Abies grandis Lindl. varied between 17.5 mg and 27.6 mg and average is 21.7 mg and Abies lasiocarpa (Hook.) Nutt. average of 7.2 mg to 18.5 mg and 12 mg of states that have changed. According to these results, the seeds of Uludag Fir, Abies alba Mill., Abies amabilis (Dong.) Forbes, be said to be heavier than the seeds of Abies lasiocarpa (Hook.) Nutt. and Abies grandis Lindl. Also Sorensen and Franklin (1977) Abies Procera Rehd. state that the seed weight varied between 33 mg and 102.6 mg. In our study, the average seed weight ranged between 71.72 mg and 109.11 mg, the average was determined to be 81.58 mg. Gökmen (1970), indicates that Abies nordmanniana Mattf. seeds is 1 cm in length. According to these results, seeds of Uludag Fir with Abies Procera Rehd. seeds appear to be close to each other in weight. Franklin (1974) Abies Procera Rehd. carpel averaging 2.5 x 3 cm in size, seeds indicates that the average size of 12 x 6 mm. Macvean (2007) Abies guatemalensis Rehder indicates seed length about 8-10 mm and wings about 15 mm long.

Nowadays; because of its increasing economical value in market and decorative characteristic in landscape architecture, Turkish fir (Abies nordmanniana subsp. bornmulleriana Mattf.) is taking more importance. In addition to this being an endemic species of Turkey and widely preferred Noel tree in the world. Turkish fir is one of the most important trees to Christmas tree and for these there are very much studies on this species (Frampton and McKinley, 1999; Frampton et al. 2009; Talgø et. al., 2009; Newton et al., 2009; Hart et al., 2009; Langdren et al., 2008; Frampton and Işık, 2008; Talgø and Stensvand, 2008).

In this study, the genetic diversity of Turkish fir determined with respect to the some morphological characteristics. In this sense construction of genetic diversity, basic morphological characteristics, geographical variations and the morphological differences between tree species in the optimal and extreme distribution area of Turkish fir was determined.

Until now a few studies have been conducted about Turkish fir (Kaya et al., 2008; Şimşek, 1991; Velioğlu, 1999; Kaya and Raynal, 2000; Nielsen and Chastagner, 2005). But there is no comprehensive study to disclose the spatial distribution of Turkish fir and provide background information for future studies. In the near future; the studies done with the morphological characters about genetical variations are should also be analysed with DNA markers and isosymes analysis.

5. References

Anonymous, 2006. Orman Varlığımuz, T.C. Çevre ve Orman Bakanlığı Orman Genel Müdürlüğü, Orman İdaresi ve Planlama Dairesi Başkanlığı, Ankara, 160 s.
Basu, R.N. 1994. Seed viability. In Seed Quality: Basic Mechanisms and Agricultural Implications (ed. A.S Basra), pp. 1-44. Food products press, New York.

www.intechopen.com
Determination of Genetic Variation Between Populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf According to some Seed Characteristics

Bates, S.L., Borden, J.H., Savoie, A. and Blatt, S.E. 2000. Impact of feeding by *Leptoglossus occidentalis* (Hemiptera: Coreidae) on the major storage reserves of mature Douglas-fir (Pinaceae) seeds. Canadian Entomologist 132: 91-102.

Bates, S.L., Lait, C.G., Borden, J.H. and Kermode, A.R. 2001. Effect of feeding by the western conifer seed bug, *Leptoglossus occidentalis*, on the major storage reserves of developing seeds and on seedling vigour of Douglas-fir. *Tree Physiology* 21: 481-487.

Bazzaz, F.A., Ackerly, D.D. and Reekie, E.G. 2000. Reproductive allocation in plants. In *Seeds: the Ecology of Regeneration in Plant Communities* (ed. M. Fenner), 2nd ed., pp. 1-29. CAB International Publishing, Wallingford, UK and New York, USA.

Bilgen BB, Kaya N (2007). Allozyme Variations in Six Natural Populations of Scots Pine (*Pinus sylvestris* L.) in Turkey. *Biologia*, Volume: 62: 697-703.

Bilir, N., 2002. Doğu Karadeniz Bölgesinde Kurulan Toros Sediri (*Cedrus libani* A. Rich) Orijin Denemelerinin İlk Sonuçları, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, Doctorate Thesis, Trabzon, 116 p.

Chalmers, K. J., Waugh, R., Sprent J. I., Simons, A. J., Powell, W. 1992, Detection of Genetic Variation Between and Within Populations of *Giricidia Sepium* and *G. maculata* using RAPD markers, Heredity 69, 465-472.

Clark C. M. Wentworth T. R. O’Malley D. M., 2000. Genetic Discontinuity Revealed by Chloroplast Microsatellites in Eastern North American *Abies* (Pinaceae). American Journal of Botany 87: 774-782.

Conte, L., Cotti, C., Schicchi, R., Raimondo, F.M. and Cristofolini, G., 2004, Detection of ephemeral genetic sub-structure in the narrow endemic *Abies nebrodensis* (Lojac.) Mattei (Pinaceae) using RAPD markers, Plant Biosystems, 138 (3), 279-289.

Cregg, B. M. 1994. Carbon Allocation, Gas Exchange, and Needle Morphology of *Pinus ponderosa* Genotypes Known to Differ in Growth and Survival Under Imposed Drought, *Tree Physiology* 14, 883-898.

Dajoz, R. 2000. *Insects and Forests: The role and diversity of insects in the forest environment*. Intercept Ltd, London-Paris-New York. 668 pp.

Diebel KE, Feret, PP. 1991. Isozyme variation within the Fraser fir (*Abies fraseri* (Pursh) Poir.) population on Mount Rogers, Virginia: lack of microgeographic differentiation. *Silvae Genetica* 40: 79-85.

Edwards D.G.W., 1982. Collection, processing, testing and storage of true fir seeds: a review. In: Oliver CD, Kenady RM, eds. Proceedings, Symposium on the Biology and Management of True Fir in the Pacific Northwest; 1981; Seattle/Tacoma, WA. Contrib. 45. Seattle: University of Washington, Institute of Forest Resources: 113B137.

El Atta, H.A. 1993. The effect of *Caryedon serratus* Oliver (Col., Bruchidae) on viability and germination of seeds of *Acacia nilotica* (L. Willd. Ex Del.) in the Sudan. *Forest Ecology and Management* 57: 169-177.

El-Kassaby, Y.A., Chaisurisri, K., Edwards, D.G.W. and Taylor, D.W. 1993. Genetic control of germination parameters of Douglas-fir, *Stika* spruce, western red cedar and yellow cedar and its impact on container nursery production. In *Dormancy and Barriers to Germination* (ed. D.G.W. Edwards). pp. 37-42. Proc. on an international symposium of IUFRO project Group P2.04-00 (Seed problems), Victoria, British Colombia, Canada, April 23-26, 1991.
El-Kassaby, Y.A., Edwards, D.G.W., Taylor, D.W., 1992, “Genetic Control of Germination Parameters in Douglas-Fir and Its Importance For Domestication”, Silvae Genetica, 41 (1): 49-53

Erkan, S., 2008, Kastamonu Günülburun Karacağ Tohum Bahçesinde Klonal Farklılıklar, Yüksek Lisans Tezi, Gazi University, Graduate School of Natural And Applied Sciences, Msc Thesis, 96 p.

Ercoklu, Ö., S., 1993, Kayın, Göknar ve Sedir Tohumlarını Uzun Süre Saklama Olanakları Üzerine Araştırmalar, İç Anadolu Ormanlık Araştırma Enstitüsü Yayınları, Teknik Rapor Serisi No:62, ISSN 1300-7920, Ankara, s.59.

Fady B, Conkle MT. 1993. Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Gentica 42: 351-359.

Fan, S. ve Grossnickle, S, C., 1999, Genetic Variation in Response to Drought of Interior Spruce (Picea glauca (Moench) Voss X P. engelmannii Parry ex Engelm.), Scandinavian Journal of Forest Research, 251 – 261,

Frampton J. and McKinley C., 1999. Christmas Trees and Greenery in Denmark Production and Tree Improvement American Christmas Tree Journal. 1999. Vol. 43(2):4-11.

Frampton, J, and Işık, F.,2008, A Collection of Turkish (Abies bornmülleriana) and Trojan (Abies equi-trojani) Fir Seeds, Proceedings of the 8th International Christmas Tree Research & Extension Conference, Forest & Landscape Denmark, Hørsholm.

Frampton, J., Işık, F., Benson, M., Braham, A,M., 2009, Variation in resistance to Phytophthora root rot within Turkish and Trojan fir, Proceedings of the 9th International Christmas Tree Research & Extension Conference, (13-18 September 2009), 45-46, USA.

Franklin, Jerry F. 1974. Abies Mill. fir. In: Schopmeyer, C. S., Technical Coordinator. Seeds of Woody Plants in The United States. Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture, Forest Service: 168-183.

Gökmen, H., 1970, Abies nordmanniana (Stev.) Spach. Doğu Karadeniz Göknarı (Kafkas Göknarı), Açıktolumluğun Gymnospermae, T.C. Orman Bakanlığı OGM Yayınlarından, 523, 49, 75, Ankara.

Goldstein D. B. Ruiz Linares A. Cavalli-Sforza L. L. Feldman M. W.. 1995. An evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463-471

Güney, D., 2009, Doğu kaynaşında (Fagus orientalis lipsky) Bazı Coğrafik Varyasyonların Morfogenetik Olarak Belirlenmesi, Karadeniz Technical University, Graduate School of Natural And Applied Sciences, Doctorate Thesis, 173 s.

Güney, D., Şevik, H., Kulaç, Ş., 2011. “Kızılçam (Pinus brutia TEN) Tohum Meşererlerinde Tohum Öznelliklerine Bağlı Genetik Çeşitlilik”, Türkiye IV. Tohumeluk Kongresi, Bildiriler Kitabı-1, 454-458, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, 14-17 Haziran 2011, Samsun

Gutterman Y 2000. Maternal effects on seeds during development. In Seeds: the Ecology of Regeneration in Plant Communities (ed. M. Fenner). 2nd ed. pp 59-84. CABI Publishing, Wallingford New York.

Hampton, J.G. 2002. What is seed quality? Seed Science and Technology 30: 1-10.
Determination of Genetic Variation Between Populations of *Abies nordmanniana* subsp. *bornmulleriana* Mattf According to some Seed Characteristics

Hamrick, J. L., 1989: Isozymes and the analysis of genetic structure in plant populations. In SOLTIS, D. E., SOLTIS, E. S., (Eds): Isozymes in plant biology pp. 87-105. - Portland, Oregon: Dioscorides Press.

Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L., 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124

Hart, J., Landgren, C., Fletcher, R., Moody, J.T., Bondi, M., 2009, The influence of needle location and sampling technique on nutrient concentration, Proceedings of the 9th International Christmas Tree Research & Extension Conference, (13-18 September 2009), 94-98, USA.

John, W., J., 1948. Geographic Variation in Central Oregon Ponderosa Pine (*Pinus ponderosa* Laws.): Seed Germination; Seed, Wing, and Cone Morphology; Seed Color.

Kaya, Z., Raynal, D., 2000, Biodiversity and conservation of Turkish forests, Biological Conservation 97 (2001) 131-141

Kaya, Z., Skaggs, A., Neale, D.B., 2008, Genetic Differentiation of Abies equi-trojani (Asch. & Sint. ex Boiss) Mattf. Populations from Kazdağı, Turkey and the Genetic Relationship between Turkish Firs belonging to the *Abies nordmanniana* Spach Complex, Turk J. Bot, 32-(2008),1-10

Kolotelo, D., 1998. Abies Seed Problems, Forest Nursery Association of British Columbia Meetings, Proceedings, 1995, 1996, 1997, p.122-130.

Komar, E, T., 2000. Seed Production, Characteristics and Viability of A. Auriculiformis A. Cunn. From Provenance-Based Seedling Seed Orchard in Wonogiri, Central Java, Indonesia, IUFRO Joint Symposium on Tree Seed Technology, Physiology and Tropical Silviculture, 68-114

Konnerth M, Bergmann F. 1995. The geographical distribution of genetic variation of silver fir (*Abies alba* Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196: 1-2, 19-30.

Kulaç, Ş., Çağar, S., Güney, D., Turna, İ., Şevik, H., 2011a. “Sarıçam (*Pinus sylvestris* L.) Tohumlarında Morfolojik Özelliklerin Çimlenme Üzerine Etkileri”, Türkiye IV. Tohumculuk Kongresi, Bildiriler Kitabı-1, 465-471, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, 14-17 Haziran 2011, Samsun

Kulaç, Ş., Şevik, H., Güney, D., 2011b. “Karaçam (*Pinus nigra* Arnold.) Tohum Meşerelerinde Yükseltiye Bağlı Genetik Çeşitlilik”, Türkiye IV. Tohumculuk Kongresi, Bildiriler Kitabı-1, 448-453, Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, 14-17 Haziran 2011, Samsun

Lamhamedi, S, M., Chamberland, H., Bernier, P., Y., ve Tremblay, F, M., 2000. Clonal Variation in Morphology, Growth, Physiology, Anatomy and Ultrastructure of Container-Grown White Spruce Somatic Plants, Tree Physiology 20, 869-880.

Landgren, C., Chastagner, G., Riley, K., 2008, Provenance and progeny growth and postharvest needle retention test results from Nordmann (*Abies nordmanniana*) and Turkish fir (*A. bornmuelleriana*) trials in Oregon and Washington, Proceedings of the 8th International Christmas Tree Research & Extension Conference, Forest & Landscape Denmark, Hørsholm. Working Papers No. 26-2008, 1-5.
Macvean, A.L.E., 2007. *Abies guatemalensis*. Species Description in The Tropical Tree Seed Manual. 241-242

Matziris, D., 1984. Genetic Variation in Morphological and Anatomical Needle Characteristics in The Black Pine of Poleponnesos, Silvae Genetica, 33, 4-5, 164-166.

Matziris, D., 1997. Variation in Growth, Flowering and Cone Production in a Clonal Seed Orchard of Aleppo Pine Grown in Greece, Silvae Genetica, 46, 4, 224-228.

Matziris, D.I., 1989. Variation in Growth and Branching Characters in Black Pine (*Pinus nigra* Arnold.) of Poleponnesosos, Silvae Genetica, 38, 3-4, 77.

Messoud, Y., Bergeron, Y., ve Asselin, H., 2007. Reproductive Potential of Balsam Fir (*Abies balsamea*), White Spruce (*Picea glauca*), and Black Spruce (*Picea mariana*) at The Ecotone Between Mixed Wood and Coniferous Forests in The Boreal Zone of Western Quebec, American Journal of Botany 94(5): 746–754. 1-7

Newton, L., Hain, F., Frampton, F., 2009, Host resistance screening for balsam woolly adelgid: Early results from 13 fir species, Proceedings of the 9th International Christmas Tree Research & Extension Conference, (13-18 September 2009), 81-84, USA.

Nielsen, U, B. and Chastagner, G, A., 2005, Genetic variation in postharvest needle retention among Nordmann fir families and grafted clones, Scandinavian Journal of Forest Research, 2005; 20: 304_/312

Okada, S., Mukai, H., ve Sakai, A., 1973, Genetic variation in Sghalien fir from different areas of Hokkaido, Silvae Genetica, 22, 1-2

Owens, J.N., Colangeli, A.M. and Morris, S.J. 1990. The effect of self-, cross, and no pollination on ovule, embryo, seed, and cone development in western red cedar (*Thuja plicata*). Canadian Journal of Forest Research 20: 66-75.

Parducci L, Szmidt AE. 1997. Genetic variation among nine Mediterranean *Abies* species based on PCR-RFLP analysis of chloroplast DNA. Proceedings, International Conference on Biodiversity and Bioresources: Conservation and Utilization; Phuket, Thailand: 87.

Parker, W. H., Maze, J., Bradfield G, E. 1981 Implications of Morphological and Anatomical Variation in *Abies balsamea* and *Abies lasiocarpa* (Pinaceae) from Western Canada, Botanical Society of America, 68 (6); 843-854 USA

Planter, E.A., Furnier, G.R. and Eguiarte, L.E., 2000, Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala, American Journal of Botany 87(3): 362–371.

Pritam, S. and Singh, P. 1997. Forest tree seed pathogens and their management in sustainable forestry. *Journal of Mycology and Plant Pathology* 27: 138–147.

Sagnard, F., Barberot, C., Fady, B., 2002, Structure of Genetic diversity in *Abies alba* Mill. from southwestern Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France, Forest Ecology and Management 157 (2002) 175–189.

Scaltsoyiannes, A., Tsaktsira, M. and Drouzas, A.D., 1999, Allozyme differentiation in the Mediterranean firs (*Abies*, Pinaceae). A first comparative study with phylogenetic implications, P1. Syst. Evol. 216:289-307

Schmidtling, R.C., Myszewski, J.H. ve McDaniel, C.E., 2005. Geographic Variation in Shortleaf Pine (*Pinus echinata* Mill.) - Cortical Monoterpenes, 28th Southern Forest Tree Improvement Conference: June 21-23, 2005. Raleigh, NC: North Carolina State University, Department of Forestry and Environmental Resources, 161-167.
Determination of Genetic Variation Between Populations of Abies nordmanniana subsp. bornmulleriana Mattf According to some Seed Characteristics

Şevik, H., 2005, Batı Karadeniz Bölgesi Sarçam (Pinus sylvestris L.) Tohum Meşcерelerinde Populasyonlar Arası Farklıklar, Gazi University, Graduate School of Natural And Applied Sciences, Msc Thesis, 60p.

Şevik, H., 2010, Structure of Genetic Diversity in The Populations of Turkish fir (Abies nordmanniana subsp. bornmülleriana Mattf.), Karadeniz Technical University, Graduate School of Natural And Applied Sciences, Doctorate Thesis, 150p.

Şevik, H., 2011. Dallanma Karakterleri bakımından Noel Ağaç Üretimine Uygun Uludağ Göknarı Populasyonlarının Belirlenmesi, Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 11 (1): s. 102-107, Kastamonu.

Şevik, H., Ayan, S., Turna, İ., Yahyaöğlu, Z., 2010a. Genetic diversity among populations in Scotch pine (Pinus sylvestris L.) seed stands of Western Black Sea Region in Turkey, African Journal of Biotechnology Vol. 9(43), pp. 7266-7272

Şevik, H., Güney, D., Kulaç, Ş., 2011. Uludağ Göknarı (Abies nordmanniana subsp. bornmülleriana Mattf.) Tohumunun Farklı Ekim Zamanı ve Ekim Koşullarının Çimlenme Üzerine Etkisi”, III. Ulusal Karadeniz Ormanlık Kongresi, Bildiriler Kitabısı Cilt:II, s, 780-784, 20-22 Mayıs 2010, Artvin

Shea, K. L. 1990. Genetic variation between and within populations of Engelmann spruce and subalpine fir. Genome 33: 1–8.

Shea, L.S. and Furnier G.R., 2002, Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae), American Journal of Botany 89(5): 783–791.

Şimşek, Y., 1991, Türkiye orijini goknar türlerinin (Abies nordmanniana, Abies bornmülleriana, Abies equi-trojani) genetik yapılıları üzerine araştırmalar. OAE Yayınları, Teknik Bulteni 221.

Skryszewska, K. ve Chlanda, J., 2009. A Study on The Variation of Morphological Characteristics of Silver Fir (Abies alba Mill.) Seeds and Their Internal Structure Determined by X-ray Radiography in the Beskid Sądecki and Beskid Niski Mountain Ranges of the Carpathians (southern Poland), Journal of Forest Science, 55, 9, 403–414.

Sorensen, F.C. ve Franklin, J.F., 1977. Influence of Year of Cone Collection on Seed Weight and Cotyledon Number in Abies procura, Silvae Genetica, 26, 1, 41-43.

Streiff, R., T. Labbe, R. Bacilieri, H. Steinkellner, J. Glossl, and A. Kremer. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317–328

Suyama Y, Tsumura Y, Ohba K. 1992. Inheritance of isozyme variants and allozyme diversity of Abies mariesii in three isolated natural populations. Journal of the Japanese Forestry Society 74: 65-73.

Talgo, V. and Stensvand A., 2008, Delphinella abietis and Herpotrichia parasitica cause needle damage in Norwegian Christmas tree plantations, Proceedings of the 8th International Christmas Tree Research & Extension Conference, Forest & Landscape Denmark, Hørsholm. Working Papers No. 26-2008, 49-54.
Talgø, V., Chastagner, G.A., Thomsen, I.M., Cech, T., Riley, K., Lange, K., Klemmdal, S.S., and Stensvand A., 2009, *Sydowia polyspora* isolated from needles and seeds of true fir is associated with current-season needle necrosis (CSNN), Proceedings of the 9th International Christmas Tree Research & Extension Conference, (13-18 September 2009), 52-57, USA.

Turna, I., 2004. Variation of Morphological Characters of Oriental spruce (*Picea orientalis*) in Turkey, Biologia, Bratislava, 59, 4, 519-526.

Turna, İ., ve Güney, D., 2009. Altitudinal Variation of Some Morphological Characters of Scots Pine (*Pinus sylvestris* L.) in Turkey, African Journal of Biotechnology, 8, 2, 202-208.

Turna, İ., 2003, Variation of Morphological and Electrophoretic Characters of 11 Populations of Scots Pine in Turkey, Israel Journal of Plant Sciences, 51.

Turna, İ., Şevik, H. ve Yahyaoğlu, Z., 2009, Uludağ Göknarı (*Abies nordmanniana* subsp. *bornmüllera* mattt.) Populasyonlarında Morfoloji Özelliklerle Bağlı Genetik Çeşitlilik, Bartın Orman Fakültesi Dergisi 1.Ulusal Batı Karadeniz Ormanlık Kongresi Bildiriler Kitabı, Özel Sayı, ISSN: 1302-0943, II, 341-347.

Turna, İ., Z. Yahyaoğlu, F. Yüksel, F. A. Ayaz ve D. Güney., 2006. Morphometric and electrophoretic analysis of 13 populations of Anatolian black pine in Turkey, J. of Environmental Biology, Vol. 27 (3), 491-497.

Tylek, P. ve Walczyk, J., 2002. The Relationship Between The Viability and Geometric Characteristics of Beechnuts *Fagus sylvatica* L. El. J. of Polish Agr. Universities, Forestry, 5, 2.

Velioğlu, E., Çiçek, F. F., Kaya, Z. ve Çengel, B., 1999b. Kaz Dağlarındaki Doğal Kazdağ Gökneri (*Abies equi-trojani* Aschers. Et. Sint.) Populasyonlarında Genetik Çeşitliliğin Yapılanması, Orman Ağaçları ve Tohumları İşlah Araştırma Müdürlüğü, 3, 74, 10, 31, Ankara.

Vendramin, G. G., Degen, B. Petit, J. R. Anzidei, M. Madaghiele, A. and Ziegenhagen, B.1999. High level of variation at *Abies alba* chloroplast microsatellite loci in Europe. *Molecular Biology* 8: 1117–1126.

Vicario, F., Vendramin, G.G., Rossi, P., Liò, P. and Giannini, R., 1995, Allozyme, Chloroplast DNA and RAPD Markers for Determining Relationships between Abies alba and the Relic Population of Abies nebrodensis, Theor. Appl. Genet., vol. 90, pp. 1012-1018.

Yahyaoğlu, Z., Demirci, A., Bilir, N. ve Genç, M., 2001. Comparison of 22 Taurus Cedar (*Cedrus libani* A. Rich.) Origins by Seedling Morphological Distance, Turkish Journal of Biology, 25, Ankara, 221, 224.
Genetic diversity is of fundamental importance in the continuity of a species as it provides the necessary adaptation to the prevailing biotic and abiotic environmental conditions, and enables change in the genetic composition to cope with changes in the environment. Genetic Diversity in Plants presents chapters revealing the magnitude of genetic variation existing in plant populations. The increasing availability of PCR-based molecular markers allows the detailed analyses and evaluation of genetic diversity in plants and also, the detection of genes influencing economically important traits. The purpose of the book is to provide a glimpse into the dynamic process of genetic variation by presenting the thoughts of scientists who are engaged in the generation of new ideas and techniques employed for the assessment of genetic diversity, often from very different perspectives. The book should prove useful to students, researchers, and experts in the area of conservation biology, genetic diversity, and molecular biology.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hakan Sevik, Zeki Yahyaoglu and Ibrahim Turna (2012). Determination of Genetic Variation Between Populations of Abies nordmanniana subsp. bornmulleriana Mattf According to Some Seed Characteristics, Genetic Diversity in Plants, Prof. Mahmut Caliskan (Ed.), ISBN: 978-953-51-0185-7, InTech, Available from: http://www.intechopen.com/books/genetic-diversity-in-plants/determination-of-genetic-variation-between-populations-of-abies-nordmanniana-subsp-bornmulleriana-ma
