Asymptomatic Bacteriuria, Prevalence Report during Antenatal Period at PUMHSW Nawabshah, Pakistan

Sikander Ali Sial1, Bhojo Mal Tanwani2, Amir Bux Detho1, Kousar Parveen1, Fouzia Rasool Memon3, Sadia Bukhari1 and Arslan Ahmer4

1Department of Pathology, People’s University of Medical and Health Sciences for Women (PUMHSW), Nawabshah, Sindh, Pakistan.
2Department of Physiology, People’s University of Medical and Health Sciences for Women (PUMHSW), Nawabshah, Sindh, Pakistan.
3Consultant Obstetrician and Gynaecologist, North Cumbria University hospital, United Kingdom.
4Institute of Pharmaceutical Sciences, People’s University of Medical and Health Sciences for Women (PUMHSW), Nawabshah, Sindh, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. Author SAS designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors BMT, ABD, KP, FRM, SB and AA managed the analyses of the study and managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i27A31488
Editor(s):
(1) Dr. Syed A. A. Rizvi, Nova Southeastern University, USA.
Reviewers:
(1) Naser Sabah Hussein, Al Karima Teaching Hospital, Iraq.
(2) Monireh Rahimkhani, Tehran University of Medical Sciences, Iran.
Complete Peer review History: http://www.sdiarticle4.com/review-history/67934

Original Research Article

ABSTRACT

Objective: The aim of study is the determination of prevalence of asymptomatic bacteriuria during antenatal period in PUMHSW, with prevalence of antenatal asymptomatic bacteriuria in neighboring countries.

Methodology: This study is Cross Sectional-Prospective, and conducted at the Department of Pathology Peoples University of Medical & Health Sciences (PUMHS) for Women Nawabshah (Shaheed Benazir Abad). All the samples (417) were obtained from the pregnant women attending the Outpatient Department of Gynecology and Obstetrics PUMHS Hospital Nawabshah. All midstream clean catch collected urine sample in sterile container processed for urine detailed report.

*Corresponding author: E-mail: arslan.ahmer@gmail.com;
decreased due to increase in plasma volume, it Pregnant women concentration of urine stasis of urine and ureteral tone causes decreased urethral tone and increased urinary pregnancy develop dilatation of urethra with decreased tone causes 26-30yrs n=33(44%). The total prevalence of asymptomatic bacteriuria (ASB) was 83(19.9%). Age when compared with asymptomatic bacteriuria revealed statistically significant value p value 0.000 with an increased incidence seen among age group of 26-30yrs. The association of antenatal asymptomatic bacteriuria is ended with untoward pregnancy adverse outcome, as well as may cause symptomatic UTI in human being affecting both males and females. The term ASB is used to describe a state in which bacteria are present in significant counts in the properly collected urine of a person without apparent symptoms of UTI [3].

The association of antenatal asymptomatic bacteriuria is ended with untoward pregnancy outcome, as well as may cause symptomatic UTI during pregnancy, which may results in adverse maternal-fetal health outcomes [4].

During pregnancy there is high risk of urinary tract infection starting from 6th week and reaching at peak level during 22nd to 24th week. Approximately 90% women during pregnancy develop dilatation of urethra with decreased urethral tone and increased urinary bladder volume with decreased tone causes stasis of urine and ureterovesical reflex [5]. In pregnant women concentration of urine decreased due to increase in plasma volume, it is physiological process which causes glycosuria and favors growth of bacteria in urine [6]. Also due to decline in immunity during pregnancy favor the growth of normal habitantand exogenous microorganisms of urinary tract. Untreated bacteriuria may lead to develop uritheritis, cystitis, pyelonephritis, pre-eclampsia and cause 70 adverse obstetric outcomes [7-9].

When compared the reported prevalence of antenatal asymptomatic bacteria with symptomatic UTI is 2% to 15% respectively [10]. ASB is defined as the presence of bacterial organisms more than 10 ⁵ per ml of urine, in a midstream of properly collected urine sample, without symptoms organisms, with a positive urine culture growth [11]. There is increasing the risk of ASB and symptomatic bacteriuria in pregnancy due to several hormonal and anatomical changes such as pressure of gravid uterus on ureters and urinary bladder which causes bacteriuria due to stasis of urine and reduced immunity [12]. Silent antenatal asymptomatic bacteriuria if not treated timely may progress to severe adverse obstetric and renal outcomes [13]. The estimated prevalence of antenatal asymptomatic bacteriuria is in between 1.9-15% [10]. The major number of reports from developing countries showing similar rates of prevalence [3]. The higher prevalence rates are observed in the studies from Nigeria [14]. The prevalence in other parts of world is as 12.4% in Pakistan [15], 7.32% in Ghana [16], 4-7% in Canada [17], 7% in Ethiopia [18] Ethiopia [19].

In some cases, asymptomatic bacteriuria in pregnant women is caused by uncommon

Keywords: Urinary tract infection; antenatal; asymptomatic bacteriuria.

1. INTRODUCTION

A most common health issue the Urinary tract infection or UTI in human being affecting both males and females, but females are more prone to develop urinary UTI when compared with males as the urethra is wide and short in females, resulting in easier communication of faecalmicroorganisms with urinary tract, pregnancy, lack of prostatic secretions, and repeated trauma due to sexual activity [1].

One in every third women during childbearing age experiencing UTI, could be symptomatic or asymptomatic [2]. The term ASB is used to describe a state in which bacteria are present in significant counts in the properly collected urine of a person without apparent symptoms of UTI [3].

The estimated prevalence of antenatal asymptomatic bacteriuria is in between 1.9-15% [10]. The major number of reports from developing countries showing similar rates of prevalence [3]. The higher prevalence rates are observed in the studies from Nigeria [14]. The prevalence in other parts of world is as 12.4% in Pakistan [15], 7.32% in Ghana [16], 4-7% in Canada [17], 7% in Ethiopia [18] Ethiopia [19].

In some cases, asymptomatic bacteriuria in pregnant women is caused by uncommon

(physical, chemical and microscopic examination). All the demographic details were entered and analyzed by SPSS 20. More than 8 international as well as national databases were searched to the year 2020, consisting of google, Pub-med, Science direct, Web of Science, Medline. The data obtained were analyzed and their results reported with a random-effects model with confidence level 95%.

Result: Out of 417 patients the mean age of the pregnant female was 29.32± 5.74 years. There were females with mean parity of 2.66 ±2.42 and mean gestational age was 25.84± 11.80. Age when compared with asymptomatic bacteriuria revealed statistically significant value p value 0.000 with an increased incidence seen among age group of 26-30yrs.

Conclusion: Asymptomatic bacteriuria during pregnancy is increasingly found in younger age women, with increasing gestational age. Therefore urine cultures during antenatal period should be done to diagnose asymptomatic bacteriuria in order to make preventative planning and control of asymptomatic bacteriuria among pregnant women.
bacteria included Mycoplasma genitalium or Chlamydia trachomatis [20].

2. METHODOLOGY

The study type is Cross Sectional-Prospective, and conducted at the Department of Pathology Peoples University of Medical & Health Sciences (PUMHS) for Women Nawabshah (Shaheed Benazir Abad). The 417 Samples were collected during routine antenatal visits from the pregnant women attending the Outpatient Department of Gynecology and Obstetrics PUMHS-W Hospital Nawabshah during 2015-20. The patient did not present with any clinical symptom of urinary tract infection. Patients were advised to collect midstream urine sample of 10-15 ml in a sterile container after cleaning their perineal region under the observation of a midwife. The specimen was processed for physical, chemical, microscopic examination and culture on the blood agar, CLED agar and Mac Conkey’s agar. On the basis of culture results, sample was further processed for gram staining, biochemical tests and antibiotic sensitivity on Mueller Hinton agar according to standardized methods. All the demographic details were entered and analyzed by SPSS 20. More than 8 national and international studies were searched up to 2020, by google, Elsevier, Web of Science, Med Sci, Medline, Pub-med. The collected data were analyzed and the results were documented using a random-effects model with confidence level 95%.

3. RESULTS

Out of 417 the positive cases were 83 (19.9%) patients, mean age is 29.32± 5.74 years. There are 19.9% of the participants are suffering from asymptomatic bacteriuria in our study Table 1.

The age age groups in our study were 5 in number the higher frequency were noticed in 26-30 years of age group, which is 44% and the lower most frequency 7% were noticed in between 41-45 years age group. As the gravidity is concerned the most common group in which 72% were involved are multigravida and the least common group were primigravida Table 2.

When comparing our results with our neighboring countries and with other parts of world the available data of other countries from different internet resources the highest percentage was noticed in Nepal which is 42% and the lowest frequency seen in one Indian study which was 6.4%. Saudi Arabia, Bangladesh, Egypt and another study in Pakistan has 14.25%, 10.2%, 10%, 9% respectively while a study from Ethiopia shows 19.9% of cases Table 3.

4. DISCUSSION

In our study the prevalence of asymptomatic bacteriuria was 19.9%. The same results were seen in study carried out at Ethiopia [19]. The results from a study carried out at Visakhapatnam, India by SV Lavanya the prevalence recorded was 8.4% [21]. The prevalence of ASB eastern Saudi Arabia [4] was 14.25%, this frequency is close to the frequency of our study. In Nepal study by Yadav [22] the prevalence was 42% [16] a very high frequency, 7.3% of cases were recorded from another city of India Kanpur [23], Goyal [11] from Amritsar India document the prevalence was 15.6% and the prevalence 10.2% was recorded in Bangladesh a study carried by Jubaida [24]. The total recorded frequency of ASB in Egypt [25] was 10%. Another study at Andhra Pradesh India shows the prevalence of ASB 6.4% [26].

In Iran [27] a met analytic study shows the prevalence of significant ASB was 13%, in another study carried out at Katmandu Nepal by tripti [28] the prevalence was 7.1%. In US the prevalence of ASB despite the routine antenatal screening was 7% [29].

In our study the prevalence was 19.9 which is not as high as seen in Nepal by Yadav [22] which is 42%, but the lower prevalence seen is in Ghana 5.5% Brunei Drussalam 4.1% [30], and 3.7% were seen in Uganda, . The lower most prevalence rate of 1.9%, was seen in a study done at Malaysia by Mohammad M [31].

The risk of ASB is seen in between 26-30 years of age seen in our setup 44% of the pregnant women has had ASB, similar results were seen in Egypt [25] where the higher percentage were seen in between 20-30 yrs of age.

The parity has also an influence in occurrence of ASB, 72% cases were seen in multiparous women, same results were seen at Ghana 64.2% [32].
Table 1. Frequency of asymptomatic bacteriuria in antenatal period at Nawabshah

S.NO	Number of cases	Positive	Percentage
1.	417	83	19.9%

Table 2. Age, Gravidity and ASB wise distribution

Risk factors	Asymptomatic bacteriuria
AGE	N=83
17-25yrs	17 (20%)
26-30yrs	37 (44%)
31-35yrs	08 (10%)
36-40yrs	15 (18%)
41-45yrs	06 (07%)
PARITY	
Primigravida	09 (11%)
Para-1	14 (17%)
Multipara	60 (72%)

Table 3. Prevalence of antenatal asymptomatic bacteriuria in different countries

Prevalence Of Asymptomatic Bacteria (Meta-Analysis)
Place
Nawabshah
Nepal
Saudi
Ethiopia
Bangladesh
Egypt
Pakistan
Iran
United States
India
Brunei
Malasya
United Arab Emirates
Uganda
Ghana

5. CONCLUSION

The 19.9% of our pregnant female population is at risk of progression to symptomatic acute bacterial urinary tract infection if not treated on time.

The results of different studies on prevalence of asymptomatic bacteria between different regions/countries of world is variable. Despite antenatal screening for ASB at few countries the variability may concerned to the age, gestational age, parity, socioeconomical status, sexual activity and availability of nursing/health care.

The total recorded number of ASB among pregnant women is noticeable in Nawabshah and among the neighboring countries as well, therefore the preventive measures and planning for its control due to the resulting materno-fetal complications are required and implemented on urgent basis by health care units at required setups.

CONSENT AND ETHICS APPROVAL

Ethical Review Committee of PUMHSW gave the approval to conduct the study. After written informed consent from pregnant women on designed proforma for this study.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Abdelrazik M, Abdelzaher M, Alqahtani AA, Al-Quraini BM, Alsauyri AO. Prevalence of Asymptomatic Bacteriuria in Pregnant Women in AL-Kharj city, Saudi Arabia. International Journal. 2015; 3(3):925-32.
2. Duarte G, Marcolin AC, Quintana SM, Cavalli RC. Urinary tract infection in pregnancy. Rev Bras Ginecol Obstet. 2008; 30:93–100.
3. Schnarr J, Smail F. Asymptomatic bacteriuria and symptomatic urinary tract infections in pregnancy. Eur J Clin Invest. 2008;38(2):50–57.
4. A Quadri S, al-Turki HS, abdullaTif al-Zaid Z, abdullaH al-OMair M. Prevalence and Characteristics of Asymptomatic Bacteriuria among Pregnant Women in Eastern Saudi Arabia. Journal of Clinical & Diagnostic Research. 2019;13(3).
5. Colgan R, Nicolle LE, Mcglone A, et al. Asymptomatic Bacteriuria in Adults. Am FAM Physician. 2006;74:985–990.
6. Akerele P, Onkonofua JA. Prevalence of asymptomatic bacteriuria in pregnant women in Benin City, Nigeria. J Obstet Gynaecol. 2001;21(2):141–144.
7. Haider G, Zehra, Munir AA, Haider A. Risk factors of urinary tract infection in pregnancy. JPMAM. 2010; 60(3):213-216.
8. Dafnis E, Sabatini S. The effect of pregnancy on renal function: Physiology and pathophysiology. Am J Med Sci. 1992; 303(3):184–205.
9. Seseon NI, Garingalo-molina FD, Yeasiano CJ. Prevalence of asymptomatic bacteriuria and associated risk factors in pregnant women. Phil J. Microbial Infect Dis. 2003;32:63-69.
10. Ipe DS, Sundac L, Benjamin Jr WH, Moore KH, Ulett GC. Asymptomatic bacteriuria: prevalence rates of causal microorganisms, etiology of infection in different patient populations, and recent advances in molecular detection. FEMS microbiology letters. 2013;346(1):1-0.
11. Goyal R, Sharma S, Singh K, Madan A. Screening for asymptomatic bacteriuria during pregnancy; 2014.
12. Gehani M, Kapur S, Bhardwaj P, Nag V, Balasubramaniam SM, Kamnili N, Madhuri SD. Unmet need of antenatal screening for asymptomatic bacteriuria: A risk factor for adverse outcomes of pregnancy. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine. 2019; 44(3):193.
13. Jain V, Das V, Agarwal A, Pandey A. Asymptomatic bacteriuria & obstetric outcome following treatment in early versus late pregnancy in north Indian women. The Indian journal of medical research. 2013;137(4):753.
14. liAN O, Okafor CI, Ibezim EC, Akuiobi CN, Onwunzo MC. The prevalence and bacteriology of asymptomatic bacteriuria among antenatal patients in Nnamdi Azikiwe University Teaching Hospital Nnewi; South Eastern Nigeria. Niger J Clin Pract. 2010;13(4):409-12.
15. Shuja S, Pario S, Muneeb A. Asymptomatic Bacteriuria in Women Presenting to Antenatal Clinic at a Tertiary Care Hospital in Karachi, Pakistan. Pakistan Armed Forces Medical Journal. 2018;68(5):1138-42.
16. Turpin CA, Minkah B, DansokoA, et al. Asymptomatic Bacteriuria in pregnant women attending antenatal clinic at KomfoAnokye teaching hospital, Kumasi, Ghana. Ghana Med J, 2007;41:26–29.
17. Nicolle LE. Screening for asymptomatic bacteriuria in pregnancy. Ottawa Health, Canada: Canadian guide on preventive health care. 1994;100–106.
18. Gabre-Selassie S. Asymptomatic bacteriuria in pregnancy; epidemiological clinical and microbiological approach. Ethiop Med J. 1998;36:185–192.
19. Edae M, Teklemariam Z, Weldegebreal F, Abate D. Asymptomatic Bacteriuria among Pregnant Women Attending Antenatal Care at HiwotFana Specialized University Hospital, Harar, Eastern Ethiopia: Magnitude, Associated Factors, and Antimicrobial Susceptibility Pattern. International Journal of Microbiology. 2020 20.
20. Rahimkhani M, Mordadi A, Gilanpour. Detection of urinary Chlamydia trachomatis, Mycoplasma genitalium and human papilloma virus in the first trimester of pregnancy by PCR method. Annals of Clinical Microbiology and Antimicrobials. 2018;17(1):25.
21. Lavanya SV, Jogalakshmi D. Asymptomatic bacteriuria in antenatal women. Indian journal of medical microbiology. 2002;20(2):105.

22. Yadav K, Prakash S. Prevalence of Asymptomatic Bacteriuria during Pregnancy at a Tertiary Care Hospital of Province No. 2, Nepal. Tribhuvan University Journal of Microbiology. 2019;6:32-8.

23. Sujatha R, Nawani M. Prevalence of asymptomatic bacteriuria and its antibacterial susceptibility pattern among pregnant women attending the antenatal clinic at Kanpur, India. Journal of clinical and diagnostic research: JCDR. 2014;8(4):DC01.

24. Jubaide N, Kawar NM, Elora N, Rahimgir M, Shapla NR, Muid SA. Prevalence of asymptomatic bacteriuria in pregnant women.Journal of Armed Forces Medical College, Bangladesh. 2013;9(2):64-9.

25. Elzayat MA, Barnett-Vanes A, Dabour MF, Cheng F. Prevalence of undiagnosed asymptomatic bacteriuria and associated risk factors during pregnancy: a cross-sectional study at two tertiary centres in Cairo, Egypt. BMJ open. 2017;7(3):e013198.

26. Goruntla N, Jampala S, Mallela V, Bandaru V, Thamineni R, Bhupalam P. Epidemiology and antibiotic sensitivity pattern of asymptomatic bacteriuria during pregnancy: A cross-sectional study. Journal of Health Research and Reviews. 2019;6(1):5.

27. Ghafari M, Baigi V, Cheraghi Z, Doosti-Irani A. The prevalence of asymptomatic bacteriuria in Iranian pregnant women: a systematic review and meta-analysis. PloS one. 2016;11(6):e0158031.

28. Shrestha T, Baral G. Asymptomatic bacteriuria in pregnancy. Nepal Journal of Obstetrics and Gynaecology. 2019;14(2):31-5.

29. Kim SJ, Parikh P, King AN, Marnach ML. Asymptomatic Bacteriuria in Pregnancy Complicated by Pyelonephritis Requiring Nephrectomy. Case Rep Obstet Gynecol. 2018;2018:8924823. Published 2018 Sep 19. DOI:10.1155/2018/8924823.

30. Muharram SH, Ghazali SN, Yaakub HR, Abiola O. A preliminary assessment of asymptomatic bacteriuria of pregnancy in brunei. Malays J Med Sci. 2014;21(2):34-39.

31. Mohammad M, Mandy ZA, Omar J, Maan N, Jamil MA. Laboratory aspects of asymptomatic bacteriuria in pregnancy. Southeast Asian J Trop Med Public Health. 2002;33(3):575–580.

32. Labi AK, Yawson AE, Ganyaglo GY, Newman MJ. Prevalence and associated risk factors of asymptomatic bacteriuria in ante-natal clients in a large teaching hospital in Ghana. Ghana medical journal. 2015;49(3):154-8.

© 2021 Sial et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/67934