MERGER-INDUCED SHOCKS IN THE NEARBY LIRG VV 114 THROUGH METHANOL OBSERVATIONS WITH ALMA

Toshiki Saito1,2, Daisuke Iono2,3, Daniel Espada2,3, Kouichiro Nakani2,3, Junko Ueda4, Hajime Sugai5, Shuro Takano6, Min S. Yun7, Masatoshi Imanishi1,2, Satoshi Ohashi1,2, Minju Lee1,2, Yoshiaki Higurara1,8, Kentaro Motohara9, and Ryohbei Kawabe1,2,3

1 Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; toshiki.saito@nao.ac.jp
2 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-0015, Japan
3 The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
5 Kavli Institute for The Physics and Mathematics of The Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Chiba, Japan
6 Physics Department, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tomura, Koriyama, Fukushima, 963-8642, Japan
7 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA
8 Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720, USA
9 Natural Science Laboratory, Toyo University, 5-28-20, Hakusan, Bunkyo-ku, Tokyo 112-8606, Japan
10 Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan

Received 2016 August 30; revised 2016 October 10; accepted 2016 November 3; published 2016 December 22

ABSTRACT

We report the detection of two CH\textsubscript{3}OH lines ($J_K = 2K - I_K$ and $3K - 2K$) between the progenitor’s disks (“Overlap”) of the mid-stage merging galaxy VV 114 obtained using the Atacama Large Millimeter/submillimeter Array (ALMA) Band 3 and Band 4. The detected CH\textsubscript{3}OH emission shows an extended filamentary structure (\textsim 3 kpc) across the progenitor’s disks with relatively large velocity width (FWZI \textsim 150 km s\(^{-1}\)). The emission is only significant in the “overlap” and not detected in the two merging nuclei. Assuming optically thin emission and local thermodynamic equilibrium, we found the CH\textsubscript{3}OH column density relative to H\textsubscript{2} (X_{CH\textsubscript{3}OH}) peaks at the “Overlap” (\textsim 8 \times 10\(^{-9}\)), which is almost an order of magnitude larger than that at the eastern nucleus. We suggest that kpc-scale shocks driven by galaxy–galaxy collision may play an important role in enhancing the CH\textsubscript{3}OH abundance at the “Overlap.” This scenario is consistent with shock-induced large velocity dispersion components of ionized gas that have been detected in optical wavelength at the same region. Conversely, low X_{CH\textsubscript{3}OH} at the nuclear regions might be attributed to the strong photodissociation by nuclear starbursts and/or a putative active galactic nucleus, or inefficient production of CH\textsubscript{3}OH on dust grains due to initial high-temperature conditions (i.e., desorption of the precursor molecule, CO, into gas phase before forming CH\textsubscript{3}OH on dust grains). These ALMA observations demonstrate that CH\textsubscript{3}OH is a unique tool to address kpc-scale shock-induced gas dynamics and star formation in merging galaxies.

Key words: galaxies: individual (VV 114, IC 1623, Arp 236) – galaxies: interactions – radio lines: galaxies

1. INTRODUCTION

Bright thermal rotational transitions of methanol (CH\textsubscript{3}OH) are often used as a tracer of extragalactic shocks, which are established by a large number of unbiased wide-band mm/sub-mm molecular line surveys toward galaxies over the last decade (Takano et al. 2014, and references therein). Extragalactic CH\textsubscript{3}OH observations found that some of the galaxies have X_{CH\textsubscript{3}OH} larger than \textsim 10\(^{-8}\) at the nuclei, arms, and bars with \textsim 100 pc resolution (e.g., IC 342; Meier & Turner 2005). Purely gas-phase chemistry cannot explain these observational evidences, because the formation process of CH\textsubscript{3}OH in gas phase is not efficient to produce X_{CH\textsubscript{3}OH} greater than \textsim (1–3) \times 10\(^{-9}\) (Lee et al. 1996). Alternatively, high CH\textsubscript{3}OH abundance is believed to arise from a series of hydrogenations of CO on dust-grain surfaces under a low-temperature (\textsim 10 K) condition (Watanabe et al. 2003), because interstellar icy mantles are rich in CH\textsubscript{3}OH (\textsim 10\(^{-4}\); e.g., Schutte et al. 1991). After the production on dust, it requires high temperature (i.e., hot-core chemistry; e.g., Garrod et al. 2008) or energetic heating (i.e., shock chemistry; e.g., Viti et al. 2011) mechanisms to heat the dust and then sublime CH\textsubscript{3}OH into gas phase. On the other hand, CH\textsubscript{3}OH molecules are easily destroyed by UV radiation due to starburst or active galactic nucleus (AGN) without shielding ($A_V \sim 5$; Martín et al. 2009). Thus, CH\textsubscript{3}OH requires hot-core-like or shocked interstellar matter (ISM) without strong UV radiation field to achieve an observable abundance. When hot-core-like environment is excluded, CH\textsubscript{3}OH lines become an excellent extragalactic shock tracer in molecular ISM.

However, most of the previous studies have so far mainly focused on nearby, bright galaxies, or their nuclear regions (Henkel et al. 1987; Meier & Turner 2005; Martín et al. 2006a, 2006b; Usero et al. 2006; García-Burillo et al. 2010; Aladro et al. 2011; Costagliola et al. 2011; Martín et al. 2011; Meier & Turner 2012; Davis et al. 2013; Meier et al. 2014; Takano et al. 2014; Watanabe et al. 2014; Aladro et al. 2015; Costagliola et al. 2015; Nakajima et al. 2015; Galametz et al. 2016; Nishimura et al. 2016). In this paper, we present multiple CH\textsubscript{3}OH line observations toward the nearby merging galaxy VV 114, which are follow-up observations of our previous CH\textsubscript{3}OH ($2K - I_K$) detection at Overlap (Saito et al. 2015), in order to test kpc-scale shocks in molecular ISM due to a gas-rich galaxy–galaxy collision.

VV 114 is one of the local luminous infrared galaxies ($D_L = 87$ Mpc, $L_{IR} = 10^{11.60} L_{\odot}$; Armus et al. 2009). It is considered to be a mid-stage gas-rich major merger with the nuclear separation of \textsim 6 kpc. The system has a (molecular and ionized) gaseous and dust filamentary structure (\textsim 4 kpc) across...
Note.

a Noise rms in the data, which have a velocity resolution of Δv.

the galaxy disks (Yun et al. 1994; Frayer et al. 1999; Iono et al. 2004, 2013; Wilson et al. 2008; Rich et al. 2011; Sliwa et al. 2013; Saito et al. 2015; Tateuchi et al. 2015), which is not found in optical, far-UV (FUV), and X-ray images (Scoville et al. 2000; Goldader et al. 2002; Grimes et al. 2006).

Our previous Atacama Large Millimeter/Submillimeter Array (ALMA) observations (Iono et al. 2013; Saito et al. 2015) revealed that the filament has multiple star-forming dense gas clumps at Overlap, one of which only has a CH$_3$OH (2$_{1}-1$_{K}) peak. In contrast, two massive clumps in the eastern nucleus, which harbor compact starbursts ("SB") and putative hard X-ray AGN ("AGN"), are bright in CN, HCN, and HCO$^+$ lines. This indicates that the filament has kpc-scale chemical variations along the filament. However, since we were only able to observe 10 molecular lines, the chemical composition in the filament is not fully understood, and thus we followed up VV 114 with ALMA spectral scan mode.

We assumed $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$ (1$^\circ = 420$ pc) throughout this paper.

2. OBSERVATIONS AND DATA OVERVIEW

We observed VV 114 using Band 3 and Band 4 of ALMA with the spectral scan mode (Mathys 2013) as a cycle 2 program (ID: 2013.1.01057.S). The correlator was configured to cover 84–111 GHz and 127–154 GHz using eight tunings. In this paper, we present the tunings containing the multiple CH$_3$OH (2$_{3}-2$_{K}) ($\nu_{obs} \sim 94.84$ GHz) and CH$_3$OH (3$_{1}-2$_{K}) ($\nu_{obs} \sim 142.24$ GHz) lines. We observed blended sets of thermal rotational transitions of CH$_3$OH. Detected transitions are listed in Table 1. Other transitions (e.g., $J_K = 0_{0}-1_{-1}$) are not robustly detected. Since such nondetections do not put meaningful upper limits in the analysis shown later, we ignore them in this paper. We will discuss some nondetected molecular lines in T. Saito et al. (2016, in preparation). The CH$_3$OH (2$_{3}-2$_{K}) data (Band 3) were obtained on 2014 July 3, 2014 July 4, and 2015 June 11 with the double-sideband system temperature (T_{sys}) of 39–103 K, whereas the CH$_3$OH (3$_{1}-2$_{K}) data (Band 4) was obtained on 2015 May 25 with T_{sys} of 47–124 K. 31 to 38 (36) 12 mm antennae with the projected baseline length of 19–778 m (21–539 m) were assigned for the Band 3 (Band 4) observations. Each tuning has four spectral windows to cover each sideband. The spectral windows have a bandwidth of 1.875 GHz with 1.938 MHz resolution, while they were binned together to create better signal-to-noise ratio data cubes. The total onsource time of the Band 3 and Band 4 observations are 47.4 minutes and 20.0 minutes, respectively. Neptune and Uranus were used for the flux calibration of both the bands. J0137-2430 and J2258-2758 were used for the bandpass calibration of both the bands. Either J0116-2052 or J0110-0741 was used for the phase calibration of Band 3, whereas J0110-0741 was used for the phase calibration of Band 4.

The data reduction, calibration, and imaging were carried out using CASA (McMullin et al. 2007). All maps were reconstructed with the natural weighting to minimize rms noise levels. We made the data cubes with a velocity resolution of 50 km s$^{-1}$ (~ 14.4 MHz) for CH$_3$OH (2$_{3}-2$_{K}) and 20 km s$^{-1}$ (~ 9.8 MHz) for CH$_3$OH (3$_{1}-2$_{K}). Before imaging, we combined the cycle 0 CH$_3$OH (2$_{3}-2$_{K}) data (ID: 2011.0.00467.S) in order to increase the sensitivity, and continuum emission was subtracted in the uv-plane. We note that we recalibrated the cycle 0 data using the Butler-JPL-Horizons 2012 model. Other imaging properties are listed in Table 1, and will be introduced in detail by T. Saito et al. (2016, in preparation). The systematic error of absolute flux scaling factor using a solar system object is 5% for Band 3 and Band 4 (Lundgren 2013). The flux densities of the bandpass and phase calibrators were in good agreement with measurements provided by the ALMA Calibrator Source Catalogue.11 We ignore the difference of the missing flux effect between Band 3 and Band 4, since the maximum recoverable scale of the assigned configuration for the Band 3 and Band 4 observations (18$^\circ$ and 13$^\circ$, respectively) is comparable or larger than the filament of VV 114 detected in 13CO (1–0) and dust continuum (Saito et al. 2015).

3. RESULTS

Images of the integrated intensity, velocity field, and velocity dispersion are shown in Figure 1. The total CH$_3$OH (2$_{3}-2$_{K}) and CH$_3$OH (3$_{1}-2$_{K}) integrated intensities are 0.91 \pm 0.11 and 2.31 \pm 0.18 Jy km s$^{-1}$, respectively. We checked possible blending with other species using the molecular line database Splatalogue,12 and also line detections reported by Watanabe et al. (2014), Aladro et al. (2015) and Costagliola et al. (2015),

11 https://almascience.nrao.edu/sc/
12 http://www.splatalogue.net/
Figure 1. (a) Integrated intensity contour of CH$_3$OH (2_{K-1}) overlaid on the velocity field. The contours are 0.32 \times (0.16, 0.32, 0.64, and 0.96) Jy beam$^{-1}$ km s$^{-1}$. (b) Integrated intensity contour of CH$_3$OH (2_{K-1}) overlaid on the velocity dispersion. (c) The same as (a), but for CH$_3$OH (3_{K-2}). The contours are 0.67 \times (0.08, 0.16, 0.32, 0.64, and 0.96) Jy beam$^{-1}$ km s$^{-1}$. (d) The same as (c), but for CH$_3$OH (3_{K-2}). The crosses show the peak positions of the HCO$^+$ (4–3) emission. AGN, SB, and Overlap correspond to E0, E1, and W0, respectively, as defined by Iono et al. (2013). The synthesized beams are shown in the bottom-left corner. The diamonds show the K$_s$-band stellar nuclei.

Figure 2. Integrated intensity contour of CH$_3$OH (3_{K-2}) overlaid on (a) 880 μm dust emission, (b) Paschen α emission, and (c) K$_s$-band (Saito et al. 2015; Tateuchi et al. 2015). The synthesized beam of the CH$_3$OH (3_{K-2}) image is shown in the bottom-left corner. The beam size of each color image is shown in the bottom-right corner. The 11 gray circles shown in Figure 2(a) are used for the photometry along the filament.
because some extragalactic line surveys reached line confusion limits. We found no potential bright lines around CH$_3$OH (2$_K$–1$_K$). Although there is c-C$_3$H$_2$ (3$_{12}$–2$_{21}$) (ν_{rest} = 145.08961 GHz) around CH$_3$OH (3$_K$–2$_K$) (ν_{rest} = 145.09–145.14 GHz), its contribution to the CH$_3$OH (3$_K$–2$_K$) intensities may be negligible, because any other c-C$_3$H$_2$ transitions are not robustly detected toward the Overlap region in our Band 3/4 data. This is consistent with the starburst galaxy NGC 253 that is thought to be dominated by shocks, and shows weaker c-C$_3$H$_2$ line emissions than the CH$_3$OH (2$_K$–1$_K$) line (Aladro et al. 2015). Toward SB (Figure 2), we detected some c-C$_3$H$_2$ transitions (e.g., $J_{K\alpha}K\nu = 4_{13}-3_{13}$), which were not stronger than CH$_3$OH (3$_K$–2$_K$), and so CH$_3$OH (3$_K$–2$_K$) intensity might be slightly overestimated. However, this does not change our discussion and conclusion (see Section 4).

Figure 1 shows an extended filamentary structure, which coincides with previous molecular gas and dust images (Iono et al. 2013; Saito et al. 2015). The strongest peak is located at Overlap, whereas the emission is only marginally detected in the stellar nuclei seen in the Ks-band (Figure 2(c)). The global distribution is consistent with 13CO and HCO$^+$ lines (molecular gas; Iono et al. 2013; Saito et al. 2015) and 880 μm continuum (dust; Figure 2(a)), although all of them except for CH$_3$OH show strong peaks at AGN and SB. In contrast, CH$_3$OH does not coincide with Paschen α emission (H$_2$ regions and/or ionized gas shocks; Figure 2(b)). The Ks-band continuum, mainly tracing an old stellar component (Figure 2(c)), has no peaks at Overlap. This indicates that the CH$_3$OH filament of VV 114 is a relatively young structure compared with the age of the progenitor galaxies, which is likely due to a galaxy–galaxy collision as predicted by numerical simulations of a gas-rich major merger (Saitoh et al. 2009; Teyssier et al. 2010). These morphological comparisons suggest that CH$_3$OH lines trace a kpc-scale gas structure at the collision interface of the galaxy–galaxy interaction. To determine the physical properties of Overlap, we employ the rotation diagram method (Goldsmith & Langer 1999) in the next section.

4. LOCAL THERMODYNAMIC EQUILIBRIUM (LTE) CALCULATION OF ROTATION TEMPERATURE AND COLUMN DENSITY

Assuming LTE and optically thin conditions for the CH$_3$OH lines, we can estimate the column density ($N_{\text{CH}_3\text{OH}}$) and rotation temperature (T_{rot}) using the rotation diagram. However, we need a special treatment in the case of VV 114, because the detected CH$_3$OH emission was blended by multiple A-type and E-type rotational transitions (e.g., Rabli & Flower 2010) due to the coarse velocity resolution and observed large velocity widths (FWZI \approx 150 km s$^{-1}$) as seen in a spectrum toward Region 6 (Figure 3(a)) and a position–velocity diagram along the CH$_3$OH filament (Figure 3(b)). By assuming that both types of CH$_3$OH have the same beam-averaged column density ($N_{\text{CH}_3\text{OH}}$), the CH$_3$OH flux can be expressed by using the least squares method with the following equation (e.g., Martín et al. 2006b; Watanabe et al. 2014),

$$W_{\nu} = \sum \frac{8\pi^3 S_{\nu} R_{\nu} N_{\text{CH}_3\text{OH}}}{3kQ_{\text{rot}}} \left\{ 1 - \frac{\exp(h\nu/kT_{\text{rot}}) - 1}{\exp(h\nu/kT_{\text{bg}}) - 1} \right\} \times \exp\left(-\frac{E_{\nu,\text{u}}}{kT_{\text{rot}}} \right).$$

where W_{ν} is the flux density, S_{ν} is the line strength, μ_0 is the dipole moment, ν_i is the frequency of the transition, Q_{rot} is the rotational partition function, k is the Boltzmann constant, h is the Planck constant, T_{bg} is the cosmic microwave background temperature (\approx 2.73 K), and $E_{\nu,\text{u}}$ is the upper-state energy. We take the transition parameters necessary for calculating the equation (Table 1) from Splatalogue (see footnote 12) and the Cologne Database for Molecular Spectroscopy (Müller et al. 2001, 2005).

We performed the calculation for 11 apertures of 3$''$ diameter along the filament shown in Figure 2, and an example for Region 6 is shown in Figure 4(a). Parameters used for the calculation and the results are listed in Table 2. Each point in Figure 4(a) corresponds to the upper-state column density of each unresolved transition, which decomposed by using the best-fit T_{rot}. The average T_{rot} is 7.4 ± 0.5 K for regions detected in both blended CH$_3$OH sets (i.e., Region 5–8). For regions without CH$_3$OH (2$_K$–1$_K$) detection (Region 1–4 and 9–11), we used $T_{\text{rot}} = 7.4$ K to derive $N_{\text{CH}_3\text{OH}}$. The average $N_{\text{CH}_3\text{OH}}$ is $(2.3 \pm 1.0) \times 10^{14}$ cm$^{-2}$, although this is an average.

13 http://www.astro.uni-koeln.de/cdms/catalog/#partition
of the beam-averaged column densities due to the uncorrected beam filling factor (η_B). To ignore the unknown η_B effect, we divided the $N_{\text{CH}_3\text{OH}}$ by the H$_2$ column density ($N_{\text{CH}_3\text{OH}}/N_{\text{H}_2} = X_{\text{CH}_3\text{OH}}$), assuming that the N_{H_2} tracer has the same η_B. In this paper, we employed the 880 μm dust continuum map (Figure 2(a)) to derive molecular gas mass (i.e., N_{H_2}) using the formulation described in Scoville et al. (2016). Assuming a constant dust temperature (T_{dust}) of 25 K, we derived $X_{\text{CH}_3\text{OH}}$ along the filament. As shown in Figure 4(b), the $X_{\text{CH}_3\text{OH}}$ distribution is clearly peaked around Overlap (Region 6–8), whereas the AGN (Region 1) and SB (Region 3) positions show almost an order of magnitude lower values. The errors shown in Figure 4(b) do not include the systematic uncertainty due to the 880 μm to N_{H_2} conversion.

The adopted T_{rot} of 7.4 K for Region 1–2 and 9–11 is consistent with the nondetections of the observed CH$_3$OH (2_K-1_K) flux, although Region 3 and 4 should be detected when assuming 7.4 K. This might be attributed to (a) higher T_{rot} than 7.4 K and/or (b) CH$_3$OH (3_K-2_K) overestimation due to a contamination from ϵ-C$_2$H$_2$ (3_2-2_1) emission. In case (a), since we need to increase T_{rot} to \sim10 K at least, the derived $N_{\text{CH}_3\text{OH}}$ will decrease (\sim20%), and thus $X_{\text{CH}_3\text{OH}}$ will decrease. In case (b), the intrinsic CH$_3$OH (3_K-2_K) fluxes will decrease 15% and 30% at Region 3 and 4, respectively, so that $X_{\text{CH}_3\text{OH}}$ will decrease. For both cases, $X_{\text{CH}_3\text{OH}}$ will decrease by a few tens of % around the eastern nucleus, so that our discussion and conclusion will not change. We note that the global $X_{\text{CH}_3\text{OH}}$ trend is robust even if AGN and SB have higher T_{rot} and T_{dust} conditions, since $X_{\text{CH}_3\text{OH}}$ only increases twice at most when adopting $T_{\text{rot}} = 7.4$–14.8 K and $T_{\text{dust}} = 25$–50 K.

Comparing with CH$_3$OH observations toward giant molecular complexes in the spiral arm of M51 with 1 kpc resolution ($X_{\text{CH}_3\text{OH}} \sim 3 \times 10^{-5}$; Watanabe et al. 2014) as a reference of the extragalactic (i.e., kpc scale) quiescent regions, Region 1–3 of VV 114 show a few times lower $X_{\text{CH}_3\text{OH}}$, although Region 5–9 show a few times higher $X_{\text{CH}_3\text{OH}}$.

5. DISCUSSION AND SUMMARY

To understand the characteristic CH$_3$OH distribution along the filament of VV 114, we compare $X_{\text{CH}_3\text{OH}}$ with star formation rate surface density (Σ_{SFR}) as shown in Figure 4(c). We employed 110 GHz continuum (Saito et al. 2015), assuming that free–free (bremsstrahlung) emission dominates, and applied the free–free flux to SFR conversion (e.g., Yun & Carilli 2002). Such assumption is appropriate for starburst galaxies (e.g., M82; Condon 1992) and starburst-dominated LIRGs (e.g., NGC 1614; Saito et al. 2016). The 110 GHz image has a similar MRS (\sim21") and synthesized beam (\sim2") to CH$_3$OH images. We note that Σ_{SFR} for Region 1 and Region 2 are upper limits, because of the presence of the putative AGN (i.e., contribution from nonthermal synchrotron emission). The derived log Σ_{SFR} shows a decreasing trend as a function of $X_{\text{CH}_3\text{OH}}$ with the correlation coefficient of -0.94. When we exclude a putative AGN contribution (i.e., Region 2), the correlation coefficient becomes -0.97. This can be explained by efficient photodissociation of CH$_3$OH due to massive star formation and putative AGN in the nuclear region (e.g., Martín et al. 2009) or desorption of CO (i.e., the precursor molecule of CH$_3$OH) from dust-grain surfaces into gas phase before forming CH$_3$OH molecules due to initial high-temperature conditions. This is consistent with two orders of magnitude lower Σ_{SFR} at the spiral arm of M51 (Watanabe et al. 2014).

However, the photodissociation scenario is not enough to fully explain the CH$_3$OH distribution in VV 114, because Overlap shows higher $X_{\text{CH}_3\text{OH}}$ and also higher Σ_{SFR} than M51. Thus, we need another efficient mechanism, such as hot-core or shock, in order to explain high $X_{\text{CH}_3\text{OH}}$ at Overlap. Here, we estimate a possible CH$_3$OH (2_K-1_K) flux assuming that hot-core-like environments dominate Overlap. We used a single-dish measurement toward one of the local hot-cores NGC 2264 CMM3 (deconvolved major FWHM \sim 0.076 pc, $M = 40 M_\odot$, $\nu_{\text{FWHM}}(2_K-1_K) = 39.7$ K km s$^{-1}$, $D = 738$ pc), which is believed to form a massive star of 8 M_\odot (Watanabe et al. 2015, and references therein). To account for all the molecular gas mass of Region 6 (\sim8.1 \times 10$^8 M_\odot$) of VV 114, we need \sim2.0 \times 107 CMM3. Since the CH$_3$OH (2_K-1_K) flux of CMM3 at 87 Mpc is \sim2.9 \times 10$^{-9}$ K km s$^{-1}$, the total flux of CMM3-like hot-cores at Region 6 is \sim0.058 K km s$^{-1}$. This is 0.5% of the observed CH$_3$OH (2_K-1_K) flux at Region 6 (11.9 \pm 1.4 K km s$^{-1}$). On average, between Region 5 and Region 9, the possible contribution from hot-core-like environments is only 0.6%. When we use other representative hot-core environments OMC-1, Sgr B2(N), and Sgr B2(M) (Lis et al. 1993; Jones et al. 2008; Bally et al. 2011; Watanabe et al. 2014), the Σ_{SFR} is still higher than that of Overlap. Therefore, we need to invoke extra mechanisms to account for the CH$_3$OH properties in Overlap. One possibility is a cosmic ray-driven hot-core or shock site in Overlap. This could increase the CH$_3$OH column density and contribute to the observed high CH$_3$OH emission in Overlap. Further observations with higher spatial resolution and sensitivity are needed to investigate the detailed structure and origin of CH$_3$OH in Overlap.
of hot-core at Region 6 are associated to hot-cores. Similar estimation of a possible CH$_3$OH flux from large collections of a molecular outflow from a massive star shows a similar conclusion (Meier et al. 2014). Therefore, we suggest that kpc-scale shocks are only applicable mechanisms to explain the high $X_{\text{CH}_3\text{OH}}$ at Overlap. The possible origin of the large-scale shocks is a gas-rich galaxy–galaxy collision, because Overlap is located between the progenitor’s galaxies without apparent progenitor’s spiral arms, bars, or nuclei. This shocked CH$_3$OH scenario at Overlap is consistent with the explanation of large velocity dispersion components of ionized gas detected at the same region (Rich et al. 2011). The shocked ionized gas shows the same systemic velocity as the CH$_3$OH. This shows the evidence that ionized gas shocks collocate with molecular gas shocks at Overlap, indicating that merger-induced shocks can affect both molecular and ionized gas ISM.

In summary, merger-induced shocks are the most likely scenario to explain the kpc-scale CH$_3$OH filament (and large dispersion components of ionized gas) across the progenitors of VV 114. The $X_{\text{CH}_3\text{OH}}$ distribution peaks at Overlap, although the eastern nucleus, which harbors dense clumps associated with a compact starburst and a putative AGN, shows almost an order of magnitude lower abundances. $X_{\text{CH}_3\text{OH}}$ clearly anticorrelates with Σ_{SF}, indicating that strong photodissociation (i.e., efficient destruction) or desorption of CO (i.e., inefficient production) on dust grains due to star-forming activities or AGN plays an important role to suppress CH$_3$OH emission at the nuclear regions. This is the first result of merger-induced shocks in molecular gas ISM through CH$_3$OH lines. As a future development, higher-J CH$_3$OH observations are required to address more realistic, finite optical depth and non-LTE excitation conditions (e.g., Goldsmith & Langer 1999; Magun & Shirley 2015). Avoiding the multiple K-ladder blending, isolated transitions (e.g., $J_K = 0_{0-1} - 1_{-1} - 1_{-1}$ at 108.8936 GHz) are also important. Followup observations of shock tracers in other wavelengths (e.g., near-IR warm H$_2$; Sugai et al. 1999; Herrera et al. 2012) can be used to confirm the shock scenario at Overlap. We will discuss other molecular lines detected and not detected in the Band 3 and Band 4 spectral scan in a forthcoming paper.

The authors thank an anonymous referee for constructive comments that improved the contents of this paper. The authors thank S. Aalto, R. Aladro, P. Sanhueza, Y. Shimajiri, and K. Sliwa for useful discussion. TS and the other authors thank the ALMA staff for their kind support, and H. Nagai for the instruction of ALMA data reduction. TS and ML are financially supported by a Research Fellowship from the Japan Society for the Promotion of Science for Young Scientists. TS was supported by the ALMA Japan Research Grant of NAOJ Chile Observatory, NAOJ-ALMA-0089, NAOJ-ALMA-0105, and NAOJ-ALMA-0114. RK was supported by JSPS KAKENHI grant number 15H02073. DI was supported by JSPS KAKENHI grant number 15H02074. This paper makes use of the following ALMA data: ADS/JOALMA#2011.000467.S and ADS/JOALMA#2013.1.01057.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan).

2015) instead of NGC 2264 CMM3, the contribution from hot-cores at Region 6 is still small (0.7%–0.9%, 6.2%, and 23.5%, respectively). We list parameters used for these comparisons in Table 3. We note that the derived percentages are upper limits, because we assumed an extreme case that all gas masses contained in Region 6 are associated to hot-cores. Similar estimation of a possible CH$_3$OH flux from large collections of a molecular outflow from a massive star shows a similar conclusion (Meier et al. 2014). Therefore, we suggest that kpc-scale shocks are only applicable mechanisms to explain the high $X_{\text{CH}_3\text{OH}}$ at Overlap. The possible origin of the large-scale shocks is a gas-rich galaxy–galaxy collision, because Overlap is located between the progenitor’s galaxies without apparent progenitor’s spiral arms, bars, or nuclei. This shocked CH$_3$OH scenario at Overlap is consistent with the explanation of large velocity dispersion components of ionized gas detected at the same region (Rich et al. 2011). The shocked ionized gas shows the same systemic velocity as the CH$_3$OH. This shows the evidence that ionized gas shocks collocate with molecular gas shocks at Overlap, indicating that merger-induced shocks can affect both molecular and ionized gas ISM.

In summary, merger-induced shocks are the most likely scenario to explain the kpc-scale CH$_3$OH filament (and large dispersion components of ionized gas) across the progenitors of VV 114. The $X_{\text{CH}_3\text{OH}}$ distribution peaks at Overlap, although the eastern nucleus, which harbors dense clumps associated with a compact starburst and a putative AGN, shows almost an order of magnitude lower abundances. $X_{\text{CH}_3\text{OH}}$ clearly anticorrelates with Σ_{SF}, indicating that strong photodissociation (i.e., efficient destruction) or desorption of CO (i.e., inefficient production) on dust grains due to star-forming activities or AGN plays an important role to suppress CH$_3$OH emission at the nuclear regions. This is the first result of merger-induced shocks in molecular gas ISM through CH$_3$OH lines. As a future development, higher-J CH$_3$OH observations are required to address more realistic, finite optical depth and non-LTE excitation conditions (e.g., Goldsmith & Langer 1999; Magun & Shirley 2015). Avoiding the multiple K-ladder blending, isolated transitions (e.g., $J_K = 0_{0-1} - 1_{-1} - 1_{-1}$ at 108.8936 GHz) are also important. Followup observations of shock tracers in other wavelengths (e.g., near-IR warm H$_2$; Sugai et al. 1999; Herrera et al. 2012) can be used to confirm the shock scenario at Overlap. We will discuss other molecular lines detected and not detected in the Band 3 and Band 4 spectral scan in a forthcoming paper.

The authors thank an anonymous referee for constructive comments that improved the contents of this paper. The authors thank S. Aalto, R. Aladro, P. Sanhueza, Y. Shimajiri, and K. Sliwa for useful discussion. TS and the other authors thank the ALMA staff for their kind support, and H. Nagai for the instruction of ALMA data reduction. TS and ML are financially supported by a Research Fellowship from the Japan Society for the Promotion of Science for Young Scientists. TS was supported by the ALMA Japan Research Grant of NAOJ Chile Observatory, NAOJ-ALMA-0089, NAOJ-ALMA-0105, and NAOJ-ALMA-0114. RK was supported by JSPS KAKENHI grant number 15H02073. DI was supported by JSPS KAKENHI grant number 15H02074. This paper makes use of the following ALMA data: ADS/JOALMA#2011.000467.S and ADS/JOALMA#2013.1.01057.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan),
together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

REFERENCES

Aladro, R., Martín, S., Martín-Pintado, J., et al. 2011, A&A, 535, A84
Aladro, R., Martín, S., Riquelme, D., et al. 2015, A&A, 579, A101
Armus, L., Mazzarella, J. M., Evans, A. S., et al. 2009, PASP, 121, 559
Bally, J., Cunningham, N. J., Moeckel, N., et al. 2011, ApJ, 727, 113
Condon, J. J. 1992, ARA&A, 30, 575
Costagliola, F., Aalto, S., Rodriguez, M. I., et al. 2011, A&A, 528, A30
Costagliola, F., Sakamoto, K., Muller, S., et al. 2015, A&A, 582, A91
Davis, T. A., Heiderman, A., Evans, N. J., & Iono, D. 2013, MNRAS, 436, 570
Frayer, D. T., Ivison, R. J., Smail, I., Yun, M. S., & Armus, L. 1999, AJ, 118, 139
Galametz, M., Zhang, Z.-Y., Immer, K., et al. 2016, arXiv:1606.06225
García-Burillo, S., Usero, A., Fuente, A., et al. 2010, A&A, 519, A2
Garrod, R. T., Widicus Weaver, S. L., & Herbst, E. 2008, ApJ, 682, 283
Goldader, J. D., Meurer, G., Heckman, T. M., et al. 2002, ApJ, 568, 651
Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209
Grimes, J. P., Heckman, T., Hoopes, C., et al. 2006, ApJ, 648, 310
Henkel, C., Jacq, T., Mauersberger, R., Menten, K. M., & Steppe, H. 1987, A&A, 188, L1
Herrera, C. N., Boulanger, F., Nesvadba, N. P. H., & Falgarone, E. 2012, A&A, 538, L9
Iono, D., Ho, P. T. P., Yun, M. S., et al. 2004, ApJL, 616, L63
Iono, D., Saito, T., Yun, M. S., et al. 2013, PASJ, 65, 7
Jones, P. A., Burton, M. G., Cunningham, M. R., et al. 2008, MNRAS, 386, 117
Lee, H.-H., Bettens, R. P. A., & Herbst, E. 1996, A&AS, 119, 111
Lis, D. C., Goldsmith, P. F., Carlstrom, J. E., & Scoville, N. Z. 1993, ApJ, 402, 238
Mangum, J. G., & Shirley, Y. L. 2015, PASP, 127, 266
Martín, S., Krips, M., Martín-Pintado, J., et al. 2011, A&A, 527, A36
Martín, S., Martín-Pintado, J., & Mauersberger, R. 2006a, A&A, 450, L13
Martín, S., Martín-Pintado, J., & Viti, S. 2009, ApJ, 706, 1323
Martín, S., Mauersberger, R., Martín-Pintado, J., Henkel, C., & García-Burillo, S. 2006b, ApJS, 164, 450
Mathys, G. 2013, ALMA Cycle 2 Proposers Guide, Version 1.8, ALMA
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, adass XVI, 376, 127
Meier, D. S., & Turner, J. L. 2005, ApJ, 618, 259
Meier, D. S., & Turner, J. L. 2012, ApJ, 755, 104
Meier, D. S., Turner, J. L., & Beck, S. C. 2014, ApJ, 795, 107
Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, IMoSt, 742, 215
Müller, H. S. P., Thouwrieth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
Nakajima, T., Takano, S., Kohn, K., et al. 2015, PASJ, 67, 8
Nishimura, Y., Shimomishu, T., Watanabe, Y., et al. 2016, arXiv:1608.01099
Rabli, D., & Flower, D. R. 2010, MNRAS, 406, 95
Rich, J. A., Kewley, L. J., & Dopita, M. A. 2011, ApJ, 734, 87
Saito, T., Iono, D., Xu, C. K., et al. 2016, PASJ, 68, 20
Saito, T., Iono, D., Yun, M. S., et al. 2015, ApJ, 803, 60
Saitoh, T. R., Daisaka, H., Kokubo, E., et al. 2009, PASJ, 61, 481
Schutte, W. A., Tielens, A. G. G., & Sandford, S. A. 1991, ApJ, 382, 523
Scoville, N. Z., Sheth, K., Aussel, H., et al. 2016, ApJ, 824, 63
Scoville, N. Z., Evans, A. S., Thompson, R., et al. 2000, AJ, 119, 991
Siwa, K., Wilson, C. D., Krips, M., et al. 2013, ApJ, 777, 126
Sugai, H., Davies, R. I., Malkan, M. A., et al. 1999, ApJ, 527, 778
Takano, S., Nakajima, T., Kohno, K., et al. 2014, PASJ, 66, 75
Tateuchi, K., Konishi, M., Motohara, K., et al. 2015, ApJS, 217, 1
Teyssier, R., Chapon, D., & Bournaud, F. 2010, ApJL, 720, L149
Usero, A., García-Burillo, S., Martín-Pintado, J., Fuente, A., & Neri, R. 2006, A&A, 448, 457
Viti, S., Jimenez-Serra, I., Yates, J. A., et al. 2011, ApJL, 740, L3
Watanabe, N., Shiraki, T., & Kouchi, A. 2003, ApJL, 588, L121
Watanabe, Y., Sakai, N., López-Sepulcre, A., et al. 2015, ApJ, 809, 162
Wilson, C. D., Pettitas, G. R., Iono, D., et al. 2008, ApJS, 178, 189
Yun, M. S., & Carilli, C. L. 2002, ApJ, 568, 88
Yun, M. S., Scoville, N. Z., & Knop, R. A. 1994, ApJL, 430, L109

The Astrophysical Journal, 834:6 (7pp), 2017 January 1

Saito et al.