ON THE EXISTENCE OF INFINITE, NON-TRIVIAL F-SETS

ANDREA FERRAGUTI AND GIACOMO MICHELI

Abstract. In this paper we prove a conjecture of J. Andrade, S. J. Miller, K. Pratt and M. Trinh, showing the existence of a non trivial infinite F-set over $\mathbb{F}_q[x]$ for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number encoding the complexity of the set.

1. Introduction

Throughout this paper, q is a prime power and I_q is the set of all monic, irreducible polynomials in $\mathbb{F}_q[x]$.

Definition 1.1. An F-set is a subset A of I_q such that for any $f(x) \in A$, all monic irreducible polynomials dividing $f(x) - f(0)$ are also in A.

It is easy to construct finite F-sets but, on the other hand, it is not a priori clear whether there exist infinite F-sets which do not coincide with I_q. We will call an F-set non-trivial if it is different from I_q. In this paper we are going to address [1, Conjecture 1.2]. Let us recall it here for completeness.

Conjecture 1.2. For every prime power q, there exist an infinite, non-trivial F-set.

In [1] the authors provide nice constructions which solve the conjecture in the special cases of q prime and congruent to 2 or 5 modulo 9. In what follows we will prove both the conjecture and a stronger statement, which takes into account the cardinality of the set of prime divisors of the elements of the form $f(x) - f(0)$, for f in the F-set.

The paper is structured as follows. In Section 2, we outline a proof of this conjecture, by explicitly exhibiting infinite non-trivial F-sets, sieving out the cases in terms of the factorization of $q - 1$. The examples we produce are in some sense the easiest possible. This is made precise in Section 3, where we introduce the notion of width of an F-set. The width of an F-set is an element of $\mathbb{N} \cup \{\infty\}$ which measures the “complexity” of the F-set itself. For example, an F-set has width 0 if and only if it is finite, whereas the F-sets constructed in Section 2 have width 1. Some properties of the width are proved in Proposition 3.5. Section 4 contains two technical lemmata that enable us to build F-sets of width 2 and ∞. Explicit examples of such sets are constructed in Section 5. We end the paper with a new Conjecture 5.2 involving the notion of width of an F-set.
2. Constructing infinite F-sets

In this section, we explain how to construct simple examples of infinite, non-trivial F-sets in $\mathbb{F}_q[x]$ for every prime power q. Recall that if $f(x) \in \mathbb{F}_q[x]$ is such that $f(0) \neq 0$, the order of f is defined as the smallest integer e such that $f(x) \mid x^e - 1$. See [6, Lemma 3.1] for a proof of the existence of the order. In particular, let us recall [6, Theorem 3.3] for completeness.

Theorem 2.1. Let $f \in \mathbb{F}_q[x]$ be an irreducible polynomial of degree m such that $f(0) \neq 0$ and let $\alpha \in \mathbb{F}_{q^m}$ be one of its roots. Then the order of f equals the order of α in the multiplicative group $\mathbb{F}_{q^m}^\times$.

The following is another classical result (see [6, Theorem 3.35]) which will be useful later on.

Theorem 2.2. Let q be a prime power. Let $f(x) \in \mathbb{F}_q[x]$ be an irreducible polynomial of degree m and order e. Let t be a positive integer such that the prime factors of t divide e but not $(q^m - 1)/e$. Assume also that $q^m \equiv 1 \mod 4$ if $t \equiv 0 \mod 4$. Then $f(x^t)$ is irreducible.

Finally, we recall another very nice result [4, Proposition 2.3] by Nigel Boston and Rafe Jones which characterizes stable degree 2 polynomials. We state it in a slightly more specific form, which can be adapted from [3, Theorem 2.2] or [4, Lemma 2.5].

Theorem 2.3. Let \mathbb{F}_q be a finite field of characteristic $\neq 2$, let $\gamma, m \in \mathbb{F}_q$ and let $f(x) := (x - \gamma)^2 + \gamma + m \in \mathbb{F}_q[x]$. For every $k \in \mathbb{N}$, let $f_k(x)$ denote the k-th fold composition of f with itself. Then $f_k(x)$ is irreducible if and only if the set $\{-f(\gamma), f_2(\gamma), f_3(\gamma), \ldots, f_{k-1}(\gamma)\}$ does not contain any square.

Proof. In the statement of [3, Theorem 2.2], just observe that an element of a finite field is a square if and only if its norm is a square. \hfill \Box

Theorem 2.4. Let q be a prime power. Then there exists an infinite, non-trivial F-set in $\mathbb{F}_q[x]$.

Proof. When $q = 2$, a non-trivial, infinite F-set is constructed in [1, Theorem 1.1]. Let now $q = 3$ (or, more generally, suppose that 2 is not a square in \mathbb{F}_q). Let $f(x) = x^2 - 2 \in \mathbb{F}_2[x]$, and define the following sequence: $f_0(x) = x$ and $f_k(x) := f(f_{k-1}(x))$ for every $k \in \mathbb{N}$. We claim that the set $A := \{x, x+2, x-2\} \cup \{f_k(x)\}_{k \geq 1}$ is an infinite F-set. First, we have to check that $f_k(x)$ is irreducible for every k. This follows directly from Theorem 2.3 as $-f(0) = f_k(0) = 2$ for every $k \geq 2$. Next, the reader should notice that $f_k(0)$ can be easily controlled for any k: $f_0(0) = 0$, $f_1(0) = -2$ and finally $f_k(0) = 2$ for any $k \geq 2$, as already observed.

We claim now that for $k \geq 2$ the factorization of $f_k(x) - 2$ can be controlled as follows:

\begin{equation}
(1) \quad f_k(x) - 2 = (x - 2)(x + 2)f_0(x)^2 \cdots f_{k-2}(x) \text{ for } k \geq 2.
\end{equation}
Let us show this by induction. For \(k = 2 \) we have \(f_2(x) - 2 = (x^2 - 2)^2 - 4 = (x - 2)(x + 2)f_0(x)^2 \). Let the claim be true for \(k \). We have that

\[
f_{k+1}(x) - 2 = f_k^2(x) - 4 = (f_k - 2)(f_k + 2) = (x - 2)(x + 2)f_0(x)^2 \cdots f_{k-2}(x)(f_{k-1}(x)^2 - 2 + 2),
\]

which completes the proof. Hence, \(A \) is an infinite \(F \)-set and it is non-trivial as only three elements of \(A \) have odd degree.

Finally, let \(q \) be a prime power different from 2 and 3. Let \(\alpha \) be a generator of the multiplicative group \(F_q^* \), and let \(f(x) = x - \alpha \). Then the order of \(f(x) \) is clearly \(q - 1 \). Now pick a prime \(l \) dividing \(q - 1 \) in the following way: if \(q \equiv 3 \mod 4 \), choose \(l \) to be odd, otherwise choose any \(l \). Then by Theorem 2.2, the polynomial \(f(x^l) \) is irreducible for every \(k \in \mathbb{N} \). The set \(A := \{x, f(x^k)\}_{k \in \mathbb{N}} \) is therefore an infinite, non-trivial \(F \)-set.

The reader should notice that the same type of strategy to address the analogous problem over the integers (for additional details see [1, Section 1]) is beyond the reach of known results. In fact, in order to apply the same strategy as in the polynomial case, one would require in particular the existence of a polynomial of the form \(f(x) = kx^2 + 1 \), where \(k \in \mathbb{N} \), such that \(f(n) \) is prime for infinitely many \(n \). Unfortunately, the existence of polynomials in \(\mathbb{Z}[x] \) of degree \(> 1 \) which assume infinitely many prime values is still an open question (see for example [2]).

3. \(F \)-sets and their width

The examples constructed in the proof of Theorem 2.4 are, for \(q \neq 2, 3 \), in some sense “minimal”. In fact, the set of all the irreducible factors of \(f(x) - f(0) \), where \(f \) runs over all the elements of the \(F \)-set, is finite. It is therefore natural to ask whether, for every fixed \(q \), one can construct an \(F \)-set in \(\mathbb{F}_q[x] \) where the subset of irreducible divisors (of elements of the form \(f(x) - f(0) \), for \(f \) in the \(F \)-set) is infinite. This happens for the examples constructed in [1]. The following definitions formalize the notion of minimality for an \(F \)-set.

Definition 3.1. Let \(A \subseteq I_q \) be an \(F \)-set. We define the nullity of \(A \) as

\[
N(A) = \{ f(x) \in A : f(x) \not| g(x) - g(0), \ \forall g(x) \in A \}.
\]

It is easy to check that if \(A \) is an \(F \)-set, then \(A \setminus N(A) \) is again an \(F \)-set. Thus, given an \(F \)-set \(A \), it is possible to define a sequence of \(F \)-sets as follows:

\[
A_0 := A \\
A_n := A_{n-1} \setminus N(A_{n-1}) \quad \forall n \geq 1.
\]

This gives us a filtration on \(A \):

\[
A_0 \supseteq A_1 \supseteq \ldots \supseteq A_n \supseteq \ldots
\]

which we will call nullity filtration.
Definition 3.2. The minimal $n \in \mathbb{N}$ such that A_n is finite, if it exists, is called width of A, and is denoted by $w(A)$. If such n does not exist, we set $w(A) = \infty$.

Notice that an F-set A is finite if and only if $w(A) = 0$. Therefore, Theorem 2.4 can be restated as follows: for every prime power q, there exists a non-trivial F-set of non-zero width. In particular, the F-sets constructed in the proof of the theorem have width 1 when $q \neq 2, 3$, and infinite width when $q = 2, 3$. It is clear that F-sets of width 1 are in some sense the simplest possible infinite F-sets.

Example 3.3. The set I_q of all monic irreducible polynomials in $\mathbb{F}_q[x]$ has infinite width. In fact, let $f(x) \in I_q$ and pick any $a \in \mathbb{F}_q^*$. By Dirichlet’s theorem for $\mathbb{F}_q[x]$ (see for example [5]), there exists at least one (in fact there exist infinitely many) polynomial $g(x)$ such that $h(x) := g(x) \cdot xf(x) + a$ is irreducible. Thus, $f(x) | h(x) - h(0)$ and this shows that $N(A) = \emptyset$. Therefore we have that $A_n = A$ for every n, which implies that $w(A) = \infty$.

The same argument used in the example above can be used to prove the following proposition.

Proposition 3.4. Let $A \subseteq I_q$ be an infinite F-set. Then either $A = I_q$ or $I_q \setminus A$ is infinite.

Proof. Suppose that $B \subseteq I_q$ is a finite set such that $A \cup B = I_q$ and let $f(x) \in B$. Fix $a \in \mathbb{F}_q^*$. Since there are infinitely many $g(x) \in \mathbb{F}_q[x]$ such that $g(x) \cdot xf(x) + a \in I_q$ is irreducible, it follows that there are infinitely many $g(x)$ such that $g(x) \cdot xf(x) + a \in A$. But since A is an F-set and $f(x) | g(x) \cdot xf(x)$, it follows that $f(x) \in A$. Therefore, $B = \emptyset$. □

The next proposition recollects some of the basic properties of the nullity and the width of an F-set. Notice that any union or intersection of F-sets is again an F-set.

Proposition 3.5. Let A, B be F-sets, then we have:

1. $N(A) \cup N(B) \subseteq N(A \cup B)$;
2. $N(A) \cap N(B) \supseteq N(A \cap B)$;
3. If $A \subseteq B$, then $w(A) \leq w(B)$. If moreover $B \setminus A$ is finite, then $w(A) = w(B)$;
4. If $w(A)$ and $w(B)$ are both finite, then $w(A \cup B)$ is finite;
5. If A is infinite and $N(A)$ is finite, then $w(A) = \infty$.

Proof. The claims (1) and (2) follow immediately from the definition of nullity. Let $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ be the nullity filtrations of A and B respectively. To prove (3), first note that $N(B) \cap A \subseteq N(A)$. Thus, if $f(x) \in A \setminus N(A)$, then $f(x) \notin N(B)$, since otherwise we would have $f(x) \in N(B) \cap A$. This shows that $A \setminus N(A) \subseteq B \setminus N(B)$.

The same argument shows that $A_n \subseteq B_n$ for every $n \in \mathbb{N}$, and this implies that $w(A) \leq w(B)$. If $|B \setminus A| < \infty$, notice the following:

$$B \setminus N(B) = (A \cup (B \setminus A)) \setminus N(B) = (A \setminus N(A)) \cup ((B \setminus A) \setminus N(B)) = (A \setminus N(A)) \setminus N(B)$$.

Now $(A \setminus N(B)) \setminus (A \setminus N(A)) = N(A) \setminus N(B)$, but if $f(x) \in N(A) \setminus N(B)$, then $f(x) | g(x) - g(0)$ for some $g \in B \setminus A$, and therefore $N(A) \setminus N(B)$ is finite. This shows
that $A \setminus N(B)$, and hence $B \setminus N(B)$, differs from $A \setminus N(A)$ by a finite set. Applying the same argument with A_n and B_n in place of A and B shows that $B_n \setminus A_n$ is finite for all $n \in \mathbb{N}$ and the claim follows.

For point (4), notice first that if C is an F-set, then $w(C)$ is infinite if and only if the following holds: for every $t \in \mathbb{N}$ there exists $r \geq t$ and a set $\{f_1(x), \ldots, f_r(x)\} \subseteq C$ such that:

$$f_1(x) \neq x \text{ and } f_i(x) \mid f_{i+1}(x) - f_{i+1}(0) \quad \forall i \in \{1, \ldots, r\}.$$

In fact, assume first that $w(C) = \infty$ and let $\{C_n\}_{n \in \mathbb{N}}$ be the nullity filtration of C. If there exists $m \in \mathbb{N}$ such that $N(C_m) = \emptyset$, the claim is obvious since then there exists an infinite set $\{f_1(x), \ldots, f_n(x)\} \subseteq C$ with $f_i(x) \mid f_{i+1}(x) - f_{i+1}(0)$ for all i. Otherwise, fix $t \in \mathbb{N}$ and pick $f_1(x) \in N(C_t)$, so that $f_1(x) \neq x$. Since $f_1(x) \notin N(C_{t-1})$, there exists $f_2(x) \in C_{t-1}$ such that $f_1(x) \mid f_2(x) - f_2(0)$. Now $f_2(x) \notin N(C_{t-2})$, thus there exists $f_3(x) \in C_{t-2}$ such that $f_2(x) \mid f_3(x) - f_3(0)$, and so on until we get a set $\{f_1(x), \ldots, f_r(x)\}$ as required. Vice versa, note that if $w(C) < \infty$, then there exists $n \in \mathbb{N}$ such that $C_n = \{x\}$. Therefore no sequence $\{f_1(x), \ldots, f_r(x)\}$ with the property described above can have more than n elements, as the smallest F-set containing the sequence is a subset of C and it cannot have larger width. Assume now that $w(A), w(B) < \infty$. If it holds that $w(A \cup B) = \infty$, then for every $t \in \mathbb{N}$ there exists $r \in \mathbb{N}$ such that $r \geq t$ and a set $\{f_1(x), \ldots, f_r(x)\} \subseteq A \cup B$ as above. Now notice that if $f_t(x) \in A$ (resp. B) by definition of F-set we have that $f_i(x) \in A$ (resp. B) for every $i \leq r$. Since t was arbitrary, this shows that $w(A) = \infty$ or $w(B) = \infty$, contradiction.

Finally, let us prove (5). For $n \geq 1$, let $f(x) \in N(A_n)$. By the definition of nullity, there exists $g(x) \in A_{n-1}$ such that $f(x) \mid g(x) - g(0)$ and $g(x) \in N(A_{n-1})$. This shows that $\deg f(x)$ is strictly smaller than $\deg g(x)$ for all $g(x) \in N(A_{n-1})$. Since $N(A)$ is finite, this argument proves inductively that $N(A_n)$ is finite for every n. Consider the sequence defined by

$$d_n := \max_{f \in N(A_n)} \{\deg f(x)\}.$$

We have showed that $\{d_n\}_{n \in \mathbb{N}}$ is strictly decreasing; hence there exists $j \in \mathbb{N}$ such that $N(A_j) = \emptyset$. Since A_j differs from A by a finite set, the claim follows by (3). \hfill \square

An F-set A has width ≤ 1 if and only if the set $A \setminus N(A) = \{f(x) \in A : f(x) \mid g(x) - g(0) \text{ for some } g(x) \in A\}$ is finite. It is therefore an interesting task to construct F-sets which have width greater than 1.

4. Preliminary results

In this section we prove some ancillary results which will allow the construction of F-sets of width strictly greater than 1. However, we state them separately, as they might have other applications.

Proposition 4.1. Let p be a prime number. Let K be a field containing a primitive p-th root of 1. Let $f(x) \in K[x]$ be a monic, irreducible polynomial such that $f(0)$ is
not a \(p \)-th power. If \(p = 2 \), assume in addition that \(-1\) is a square in \(K \) or that \(\deg f \) is even. Then for every \(k \geq 0 \), the polynomial \(f(x^p) \) is irreducible.

Proof. We prove the proposition by induction. For \(k = 0 \), there is nothing to do. Let the claim be true for \(0, \ldots, k - 1 \) and consider \(f(x^p) \). The proof can be reduced to proving the following statement:

\[\text{if } f(x^p) \text{ is reducible, then it can be written as } g(x^p)h(x^p) \text{ with } \deg g, \deg h > 0. \]

Indeed, notice that if the statement above is true, this concludes the proof as \(f(x^p) = g(x^p)h(x^p) \) and then setting \(x^p = y \) we get \(f(y^{p-1}) = g(y)h(y) \), which is a contradiction by the induction hypothesis.

Let now \(\xi \in K \) be a primitive \(p \)-th root of 1. Suppose one has the factorization

\[f(x^p) = g(x)h(x), \]

with \(g, h \) monic, \(g \) irreducible and \(\deg g, \deg h > 0 \). Note that \(g(x)h(x) = g(\xi x)h(\xi x) \).

We have to distinguish two cases:

1) \(g(x) \) is of the form \(s(x^p) \) for some \(s(x) \in K[x] \) of positive degree. Then \(f(x^p) = s(x^p)h(x) \), and therefore \(h(x) = h(\xi x) \). This shows that \(h(x) \) is of the form \(t(x^p) \) for some \(t(x) \) of positive degree. In this case, we are done.

2) \(g(x) \) is not of the form \(s(x^p) \). In this case, since \(g(x) \) is irreducible, we have that \(\gcd(g(\xi^i x), g(\xi^j x)) = 1 \) for every \(i, j \in \{0, \ldots, p-1\} \) such that \(i \neq j \). In fact, if this was not the case, then we would have \(g(x) = g(\xi^i x) \) for some \(i \in \{1, \ldots, p-1\} \) and this would imply that \(g(x) \) has the form \(s(x^p) \) for some \(s(x) \in K[x] \) of positive degree, which contradicts the fact that we are in case (2). Now let \(i \in \{1, \ldots, p-1\} \). Since \(g(x)h(x) = g(\xi^i x)h(\xi^i x) \), it follows that \(g(\xi^i x) \mid h(x) \) as \(g(\xi^i x) \) is coprime with \(g(x) \).

As this holds for any \(i \in \{1, \ldots, p-1\} \), we have \(h(x) = g(\xi x)g(\xi^2 x) \ldots g(\xi^{p-1} x)u(x) \) for some \(u(x) \in K[x] \), so that

\[f(x^p) = g(x)g(\xi x) \ldots g(\xi^{p-1} x)u(x). \]

Notice that \(u(x) = u(\xi x) \), so if \(\deg u > 0 \) we are done again. Assume that this is not the case, i.e. let \(u(x) = u \) be a constant. If \(p > 2 \), the coefficient of the leading term of \(g(x)g(\xi x) \ldots g(\xi^{p-1} x) \) is

\[\xi^{\deg g} \sum_{i=1}^{p-1} i = \xi^{\deg g} \frac{\xi^{p-1} - 1}{p} = 1, \]

which implies that \(u = 1 \) because \(f(x) \) is monic. This yields a contradiction because the constant term of \(g(x)g(\xi x) \ldots g(\xi^{p-1} x) \) is a \(p \)-th power and it coincides with \(f(0) \).

If \(p = 2 \), then \(u \in \{1, -1\} \) because \(f, g, h \) are all monic. If \(-1\) is a square in \(K \), then the constant term of \(g(x)g(-x)u(x) \) is a square in any case, which is a contradiction. If the degree of \(f \) is even, then \(4 \mid \deg f(x^p) \) since \(k \geq 1 \) and thus \(\deg g \) is even, implying that \(u = 1 \) and that again the constant term of \(g(x)g(-x)u \) is a square, which is again a contradiction. \(\square \)

Remark 4.2. In the case \(K = \mathbb{F}_q \) it is easy to see that Proposition 4.1 can be deduced from Theorem 2.2. On the other hand our proposition holds for any field \(K \).
Lemma 4.3. Let $p > 2$ be a prime number, $n \in \mathbb{N}_{>0}$ and $q = p^n$. Then we have the following.

1. Let $a \in \mathbb{F}_q$, let k be a non-negative integer and let $f(x) = x^{2^k} - a \in \mathbb{F}_q[x]$. Then every irreducible factor of $f(x)$ either has degree 1 or is of the form $x^{2^{k+1}} + bx^{2^2} + c$ for some $t \in \mathbb{N}$ and $b, c \in \mathbb{F}_q$.

2. Let $s, m \in \mathbb{N}$ and $2 \nmid m$. Let $g(x)$ be an irreducible polynomial of order $2^s \cdot m$. Then $g(x)$ divides a polynomial of the form $x^{2^s} - a$, for some $k \in \mathbb{N}$ and $a \in \mathbb{F}_q$, if and only if $m \mid q - 1$.

Proof. Let us prove (1). If $a = 0$ the claim is obvious, therefore suppose $a \in \mathbb{F}_q^*$.

We first show that for any fixed $u \in \mathbb{F}_{q^2}^*$ and non-negative integer k, every irreducible factor of $g_k(x) := x^{2^k} - u \in \mathbb{F}_{q^2}[x]$ is of the form $x^{2^k} + w$, for some $i \in \mathbb{N}$ and $w \in \mathbb{F}_{q^2}$. Once again, we proceed by induction. If $k = 0$, the claim is trivially true, therefore let us assume it for k and consider $g_{k+1}(x) = x^{2^{k+1}} - u$. If $u = w^2$ for some $w \in \mathbb{F}_{q^2}$, then $g_{k+1}(x) = (x^{2^k} + w)(x^{2^k} - w)$, and by the induction hypothesis we are done. On the other hand, if u is not a square in \mathbb{F}_{q^2}, then also $-u$ is not a square (as -1 is always a square in \mathbb{F}_{q^2}) and therefore the polynomial $x^{2^k} - u$ is irreducible in $\mathbb{F}_{q^2}[x]$. Thus, the claim follows by Proposition 4.1.

Now consider $f(x)$ as a polynomial in $\mathbb{F}_{q^2}(x)$. We denote by $\phi_q : \mathbb{F}_{q^2}[x] \to \mathbb{F}_{q^2}[x]$ the Frobenius morphism defined by $\sum a_i x^i \mapsto \sum a_i^q x^i$. Let $g(x)$ be an irreducible factor of $f(x)$ in $\mathbb{F}_{q^2}[x]$. Then $f(x) = g(x)h(x)$ for some $h(x) \in \mathbb{F}_{q^2}[x]$ and therefore $f(x) = \phi_q(f(x)) = \phi_q(g(x))\phi_q(h(x))$. This shows that $\phi_q(g(x))$ is also a factor of $f(x)$. By what we proved earlier, $g(x) = x^{2^i} + u$ for some $u \in \mathbb{F}_{q^2}$. If $\phi_q(g(x)) = g(x)$, this means that $u \in \mathbb{F}_q$, and therefore $g(x) \in \mathbb{F}_q[x]$ is an irreducible factor of $f(x)$ over $\mathbb{F}_q[x]$, and we are done. If $\phi_q(g(x)) \neq g(x)$, since both polynomials are monic and $g(x)$ is irreducible over $\mathbb{F}_{q^2}[x]$, it follows that also $\phi_q(g(x))$ is irreducible over $\mathbb{F}_{q^2}[x]$. This shows that $g(x)\phi_q(g(x))$ is an irreducible factor of $f(x)$ over $\mathbb{F}_{q^2}[x]$. It is immediate to see that $g(x)\phi_q(g(x))$ has the required form:

$$g(x)\phi_q(g(x)) = x^{2^{i+1}} + ((u + u^q)x^{2^i} + uu^q).$$

Now let us prove (2). First recall that, by Theorem 2.1, if $\deg g = t$ and α is a root of g, the order of α equals the order of α in the multiplicative group $\mathbb{F}_{q^s}^*$. Suppose first that $g(x) \mid x^{2^k} - a$, for some $k \in \mathbb{N}$ and $a \in \mathbb{F}_q$. Let α be a root of $g(x)$. Then $\alpha^{2^k} = a$ and therefore there exists $r \in \mathbb{N}$ with $r \mid q - 1$ such that $\alpha^{2^k r} = 1$, and the claim follows. Conversely, suppose that $\alpha^{2^k m} = 1$. Since $m \mid q - 1$ and $\mathbb{F}_{q^s}^*$ is cyclic, it follows that $\alpha^{2^k m} = a$ for some $a \in \mathbb{F}_q$, as there is only one subgroup of order m of $\mathbb{F}_{q^s}^*$, and it is entirely contained in \mathbb{F}_q. It follows that $g(x) \mid x^{2^k} - a$.}

5. Constructing F-sets of width 2 and ∞

Using the results of the previous section, we now prove a stronger version of Theorem 2.4. In particular, we show that we can always construct an infinite, non-trivial F-set A for which the set of prime divisors of all the elements of the form $f(x) - f(0)$ (for $f \in A$) is again infinite.
Theorem 5.1. Let \(p \) be a prime number, \(n \) a non negative integer and \(q = p^n \). Then:

a) if \(q \neq 2, 3 \), there exists an \(F \)-set of width 2;

b) there exists an \(F \)-set of infinite width in one of the following cases:

 i) \(p \equiv 2, 5 \mod{9} \) and \(n = 1 \);

 ii) \(p \equiv 5 \mod{8} \) and \(n \) is odd;

 iii) \(q \equiv 3 \mod{4} \).

Proof. a) Let us choose a prime \(l \) in the following way.

\[
l = \begin{cases}
2 & \text{if } q \equiv 1 \mod{4} \\
\text{any odd prime dividing } q - 1 & \text{if } q \equiv 3 \mod{4} \\
3 & \text{if } q = 4 \\
\text{any prime } \geq 5 \text{ dividing } q - 1 & \text{if } q = 2^n, \ n \geq 3.
\end{cases}
\]

Note that a prime as in the fourth case always exists in virtue of Catalan’s Conjecture (now Mihăilescu’s theorem, see [7]), which states that the only integer solution of the equation \(x^a - y^b = 1 \), with \(x, y > 0 \) and \(a, b > 1 \), is \(x = 3, y = 2, a = 2, b = 3 \).

We claim that there exist \(\alpha, \beta \in \mathbb{F}_q \) such that:

- both \(\alpha, \beta \) are not \(l \)-powers;
- the polynomial \(x^2 + \alpha x + \beta \) is irreducible.

We will show that this is possible for any choice of \(l \) as above.

Fix any \(\alpha \in \mathbb{F}_q^* \) and consider the bijection

\[
\varphi_\alpha : \mathbb{F}_q \rightarrow \mathbb{F}_q \\
y \mapsto \alpha^2 - 4y.
\]

When \(l = 2 \) and \(p > 2 \), notice that \(\varphi_\alpha(0) \) is a square. On the other hand, if \(\gamma \) is not a square, \(\varphi_\alpha(\gamma) \neq 0 \). Since the set of non-zero squares and that of non-squares have the same cardinality, there must be some non-square \(\beta \) such that \(\varphi_\alpha(\beta) \) is not a square.

If \(l > 2 \) and \(p > 2 \), the subset of the elements of \(\mathbb{F}_q^* \) which are not \(l \)-powers has cardinality \(\frac{l - 1}{l} (q - 1) \), which is strictly larger than the number of squares in \(\mathbb{F}_q^* \). Thus, there exists a non-\(l \)-power \(\beta \) such that \(\varphi_\alpha(\beta) \) is not a square. This shows that, chosen any non-\(l \)-power \(\alpha \), there exists a non-\(l \)-power \(\beta \) such that \(\alpha^2 - 4\beta \) is not a square, and therefore the polynomial \(x^2 + \alpha x + \beta \) is irreducible.

If \(l = 3, p = 2 \) and \(n = 2 \), let \(\mathbb{F}_4 = \mathbb{F}_2(\alpha) \), where \(\alpha \) is a root of \(x^2 + x + 1 \). Then one checks that \(\alpha \) is not a cube and \(x^2 + \alpha x + \alpha \) is irreducible.

Finally, let \(p = 2, n \geq 3 \) and \(l \geq 5 \). The number of monic, irreducible polynomials of degree 2 in \(\mathbb{F}_q[x] \) is \(\frac{q^2 - q}{2} \). The number of polynomials of the form \(x^2 + \alpha x + \beta \) where both \(\alpha, \beta \) are not \(l \)-powers is

\[
\left(q - 1 - \frac{q - 1}{l} \right)^2.
\]
Thus our claim is proved whenever
\[
\frac{q^2 - q}{2} + \left(q - 1 - \frac{q-1}{l} \right)^2 > q^2 - 1,
\]
since \(q^2 - 1\) is the number of all polynomials of the forms \(x^2 + \alpha x + \beta\), with \((\alpha, \beta) \neq (0, 0)\). This inequality is equivalent to:
\[
S(q, l) := \left(\frac{1}{2}l^2 - 2l + 1 \right) q^2 + \left(-\frac{5}{2}l^2 + 4l - 2 \right) q + (l - 1)^2 + l^2 \geq 0.
\]
Let
\[
A(l) := \frac{1}{2}l^2 - 2l + 1, \quad B(l) := -\frac{5}{2}l^2 + 4l - 2 \quad \text{and} \quad C(l) := (l - 1)^2 + l^2.
\]
As \(l \geq 5\), we have that \(A(l) > 0\) and
\[
-B(l) + \sqrt{B(l)^2 - 4A(l)C(l)} < 12
\]
which shows that \(S(q, l) > 0\) whenever \(n \geq 4\) and \(l \geq 5\). One checks that \(S(8, 7) = 49 > 0\), and the claim is complete.

The main ingredient of the construction is now ready, as we can always produce an irreducible monic polynomial \(f(x) = x^2 + \alpha x + \beta\) where \(\alpha\) and \(\beta\) are not \(l\)-powers.

Let \(A := \{x\} \cup \{x^k + \alpha\}_{k \in \mathbb{N}} \cup \{f(x^k)\}_{k \in \mathbb{N}}\). By Proposition 4.1, the polynomials \(x^k + \alpha\) and \(f(x^k)\) are irreducible for every \(k \geq 0\). Thus \(A\) is an infinite, non-trivial \(F\)-set. Note that \(N(A) = \{f(x^k)\}_{k \in \mathbb{N}}\) by construction. Thus, \(A_1 = A \setminus N(A) = \{x\} \cup \{x^k + \alpha\}_{k \in \mathbb{N}}\) and \(A_2 = \{x\}\), implying that \(w(A) = 2\).

b) When \(p \equiv 2, 5 \mod 9\), an \(F\)-set of infinite width is constructed in [1, Theorem 1.1].

When \(p \equiv 5 \mod 8\) and \(n\) is odd, 2 is not a square in \(\mathbb{F}_q\) and therefore the \(F\)-set \(A\) constructed in the proof of Theorem 2.4 has infinite width, since \(N(A) = \emptyset\).

Let now \(q \equiv 3 \mod 4\) and \(A := \{f \in I_q: f | x^2 - a\} \text{ for some } k \in \mathbb{N} \text{ and } a \in \mathbb{F}_q\}\). By (1) of Lemma 4.3, this is an infinite, non-trivial \(F\)-set. Let us prove that \(N(A) = \emptyset\), so that \(w(A) = \infty\). This amounts to show that for every \(f(x) \in A\), there exist \(d, e \in \mathbb{F}_q\) and \(s \in \mathbb{N}\) such that:

- \(f(x) | x^{2s} + d\).
- \(x^{2s+1} + dx^s + e \in A\).

By construction, \(f(x)\) divides a polynomial of the form \(x^{2s} + d\) for some \(d \in \mathbb{F}_q\). Hence it is enough to find \(e \in \mathbb{F}_q\) such that \(x^{2s+1} + dx^s + e\) is in \(A\). In order to do so, we first prove a weaker statement and then show that the general fact easily follows by Proposition 4.1.

Claim: there exists \(e \in \mathbb{F}_q \setminus \mathbb{F}_q^2\) such that \(h(x) = x^2 + dx + e\) is irreducible and has order \(2^r \cdot n\) with \(2 \nmid n\) and \(n \mid q - 1\).

Proof of the claim. Let \(r\) be the largest positive integer such that \(2^r \mid q^2 - 1\). Notice that since \(q \equiv 3 \mod 4\), we have that \(r \geq 3\). Let \(a \in \mathbb{F}_q^*\) be any element of order \(2^r\). Clearly \(a\) is not a square as otherwise \(2^{r+1}\) would divide \(q^2 - 1\). In addition, \(\text{Tr}(\alpha)\), namely the trace of \(\alpha\), is non-zero, since otherwise the minimal polynomial of \(\alpha\) would

\[
\alpha^2 = a, \quad \alpha^{2^r} = a^2, \quad \alpha^{2^r+1} = a^3, \quad \ldots, \quad \alpha^{2^{r+1}-1} = a^{2^r-1}
\]

so that
\[
\alpha^{2^r+1} = a^{2^r+1} \equiv 1 \mod q,
\]

hence \(\alpha^{2^r+1} \in \mathbb{F}_q\). Thus, \(\text{Tr}(\alpha) \neq 0\) and
\[
\frac{q^2 - q}{2} + \left(q - 1 - \frac{q-1}{l} \right)^2 > q^2 - 1.
\]
be of the form $x^2 + u$, for some $u \in \mathbb{F}_q$. This would imply that $\alpha^2 \in \mathbb{F}_q$ and this would imply in turn the existence of an element of \mathbb{F}_q of order 2^{r-1} with $r - 1 \geq 2$, which is in contradiction with the assumption $q \equiv 3 \mod 4$. On the other hand, since α is not a square in \mathbb{F}_{q^2}, its norm $N(\alpha)$ is not a square in \mathbb{F}_q (this is a standard fact for finite fields). Let $u := \text{Tr}(\alpha)$ and consider the element $\beta := \frac{d}{u} \alpha$. Then $\text{Tr}(\beta) = d$ and $e := N(\beta) = \frac{d^2}{u} N(\alpha)$ is again not a square in \mathbb{F}_q. Finally, the order of β is $2^l \cdot n$ for some $l \in \mathbb{N}$ and $n \mid q - 1$ by construction. This concludes the proof of the claim as $x^2 + dx + e$ is the minimal polynomial of β.

Now we are ready to complete the proof. Consider $h(x) = x^2 + dx + e$ as in the claim: as e is not a square and the degree of $h(x)$ is even, we can apply Proposition 4.1, getting that $h(x^2) = x^{2^{l+1}} + dx^{2^l} + e$ is irreducible. One observes also that the order of $h(x)$ is $2^{l+1}n$ and $n \mid q - 1$. By Lemma 4.3 it follows that $h(x)$ divides $x^{2^{l+1}} - a$, as required.

Notice that if $q = 3$, we have two different examples of F-sets of infinite width: the one just constructed above and the one described in the proof of Theorem 2.4. □

It is natural to formulate the following generalization of Conjecture 1.2.

Conjecture 5.2. For every prime power q, there exist non-trivial F-sets in $\mathbb{F}_q[x]$ of arbitrary width.

6. Acknowledgements

The authors want to thank Violetta Weger for useful discussions and suggestions. The second author is thankful to the SNSF grant number 161757.

References

[1] Julio C. Andrade, Steven J. Miller, Kyle Pratt, and Minh-Tam Trinh. Special sets of primes in function fields. *Integers*, 14:Paper No. A18, 4, 2014.

[2] Richard K. Guy. *Unsolved problems in number theory*. Problem Books in Mathematics. Springer-Verlag, New York, third edition, 2004.

[3] Rafe Jones. An iterative construction of irreducible polynomials reducible modulo every prime. *J. Algebra*, 369:114–128, 2012.

[4] Rafe Jones and Nigel Boston. Settled polynomials over finite fields. *Proc. Amer. Math. Soc.*, 140(6):1849–1863, 2012.

[5] Heinrich Kornblum and Edmund Landau. Über die Primfunktionen in einer arithmetischen Progression. *Math. Z.*, 5(1-2):100–111, 1919.

[6] Rudolf Lidl and Harald Niederreiter. *Finite fields*, volume 20 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, second edition, 1997. With a foreword by P. M. Cohn.

[7] Preda Mihăilescu. Primary cyclotomic units and a proof of Catalan’s conjecture. *J. Reine Angew. Math.*, 572:167–195, 2004.
ON THE EXISTENCE OF INFINITE, NON-TRIVIAL F-SETS

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland,
E-mail address: andrea.ferraguti@math.uzh.ch

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG Oxford, UK
E-mail address: giacomo.micheli@maths.ox.ac.uk