Nanotechnology: an approach for water purification -review

Rama Sharma
Department of Biotechnology, GLA University, Mathura
E-mail: rama.sharma@gla.ac.in

Abstract. Clean water is the global need and need of life for all the human kinds. But the clean water resources are being contaminated in present time. Nanotechnology is an easy and practical approach to clean waste water by using different methods. Different types of bacteria, toxic chemicals like arsenic, mercury etc., and sediments can be removed by using nanotechnology. Nanomaterial based devices are being used for water purification. Nano filtration method has advantages over other conventional method as low pressure is required to pass the water through filters and these filters can be cleaned easily by back flushing. Smooth interior of carbon nanotubes make them convenient for the removal of almost all types of water contaminants. Because of larger surface area nanostructured materials have advantages over conventional micro structured materials.

1. Introduction
Water is the need of life for all the human kinds and now a days clean and pure drinking water is a big challenge as the quality of supplying fresh water is decreasing continuously[1,2]. So, there is need of such type of technology which can overcome this challenge and make available pure water for human kinds as pure water is essential for healthy life.

By improving water quality economy of any developed country can grow as techniques of water purification like chlorination, filtration and disinfection can give profit of 5- 10 dollars for 1 dollar investment [3]. In developing countries water treatment is a big issue due to poor maintenance ,irregular supply, contamination and dearth of chlorination[4–7]. Nanotechnology can help very well in this purpose to supply clean potable water for growing population. This technology refers to techniques using particles in nano range. These nanoparticles due to large surface area have unique physicochemical properties. Nanotechnology technique for water purification depends upon that at which stage of purification this technology has been applied. Different types of bacteria, toxic chemicals like arsenic, mercury etc., and sediments can be removed by using nanotechnology. Although risks are involved with nanomaterials because of high reactivity due to large surface area to volume ratio but in case of water purification done by nanotechnology no problem related to human health and environment have been reported.

In present era nanomaterial based devices are being used for water purification[8]. Nanomaterial based devices have advantages over other methods because of larger surface area[9]. These nanotechnology based chlorine free methods of water purification have advantage because chloramine or chlorine used in chlorine method produce carcinogenic byproducts[10]. Nanomembranes coated with photocatalytic titania are of great interest for water purification as titania has capability to degrade organic contaminants as well as destroy microorganisms[11,12] when irradiated by UV light.

These nanomembranes can also be coated by antimicrobial and photocatalytic material by applying atomic layer deposition method[13,14]. These nanomembranes may be useful for the development of water purification systems in developing countries. Nanostructured materials like magnetic nanoparticles, iron zeolite, carbon nanotubes can be engaged in water treatment for the removal of...
toxic metal ions like Hg(II), Pb(II), Cr(III), Cr(VI), Ni(II), Co(II), Cu(II), Cd(II), Ag(I), As(V) and As(III)]. These metal ions cause severe health issues[15]. Nanosized zero valent ions are used as adsorbents and also destruct persistent contaminants by catalyzing photochemical oxidation[16]. Because of extensive adsorption properties, carbon nanotubes and dendrimers are frequently being used for the development of advanced water systems[9,17].

2. Methods for Water Treatment
Adsortion is a very common techniques used for water treatment. Nanomaterials can be used as adsorbents for water treatment in various forms such as catalytic membranes, biomimetic membranes and thin film nanocomposite membrane etc. Carbon nanotubes(CNT) absorb chemicals more efficiently than activated carbon[18]. Organic compounds having functional groups like carboxylic, hydroxyl and amide has tendency to form hydrogen bond with CNT surface which donates electrons[19] and CNTs have high capacity to adsorb metal ions[20–22] that’s why good substitute of activated carbon. Nanoadsorbents are used in the form of either as powder or porous granules encumbered with nano-adsorbants.

2.1. Nanomembranes
Nanomembranes modified with nanofibers are being utilized for the removal of microsized particles[23]. These membranes are used in pretreatment method of reverse osmosis. Inorganic nanomembranes doped with titanium oxide have been reported for the degradation of chemicals specially chlorinated compounds[24,25]. Polymeric membranes immobilized with titanium oxide are very effective for the degradation of chlorinated compounds[26,27]. Polymeric membranes doped with nanosilver are applied to inhibit biofilm formation on the membrane surface[28,29] and to incapacitates viruses so can reduce bio fouling[30]. Because of unique properties nanocatalysts are very effective for the removal of contaminants from water shreiks. These catalysts are capable to degrade environmental contaminants halogenated pesticides, herbicides and nitrogenous aromatic compounds[31]. Biological nanoparticles show great potential for waste water treatment. MgO nanoparticles and Cellulose acetate (CA) fibers implanted with Ag nanoparticles have been reported as antibacterial against gram positive as well gram negative bacteria[32] so can also be used in water treatment.

2.2. Nanofiltration
In reference of drinking water production, contaminants can be removed from ground water as well as from surface water by using nanofiltration (NF) method. Softening is the major application of nanofiltration (NF) but also frequently used for the removal of micropollutants, and microorganisms. These are successfully installed in industries which proves their reliability. Nanofiltration are majorily installed in the drinking water industry. The reason for their success in water industries is that they work as softening membranes[33]. Softening of water is the major purposes of nanofiltration. Nanofiltration is also applied in the production unit where surface water is treated as nanofiltration (NF) can remove natural organic matter (NOM) very easily [Figure1]. Removal of natural organic matter (NOM) and color is more efficient in NF membranes than reverse osmosis membranes[34] . This process is shown in Figure 1.
3. Nanomaterials for Water Treatment

3.1. Metal Nanoparticles

3.1.1. Silver Nanoparticles
Silver nanoparticles are strong antibacterial agents and highly toxic to different bacteria, viruses and fungi[35–37]. This antimicrobial properties of silver nanoparticles make them useful as disinfectant for water. Now a days silver nanoparticles are successfully applied as disinfectant in water treatment. Although direct application of these silver nanoparticles reduce their proficiency in long-term use and may cause problems as they have tendency to aggregate in aqueous medium[38], still filter materials incorporated with silver nanoparticles are used as water disinfectant because of their antimicrobial properties and cost-effectiveness[39].

From last two decades, silver nanoparticles doped membranes or ceramic materials are frequently used for the treatment of household water due to their disinfecting and antifouling behavior[40]. For example ceramic filters prepared by clay and doped with silver nanoparticles are capable to enhance efficiency of removing E.coli. It was also observed that filters having high porosity have greater tendency to remove bacteria than filters with low porosity[41]. It was reported that silver nanoparticles upgraded the filter enactment and increased the removal rate of E.coli up to 97.8% and 100%[42].

3.1.2. Iron Nanoparticles.
Nano zero valent iron (nZVI) due to their small size and large surface area have excellent absorption and reducing properties[43]. These properties make these nano zero valent iron (nZVI)effective agents for the removal of large range of contaminants like halogenated, nitrogenous compounds, dyes, phenols, inorganic ions ,heavy metals and radioactive components[44–52]. When these nano zero valent iron (nZVI) and contaminants come in contact, oxidation-reduction reaction takes place which oxidize Fe$^{2+}$ to Fe$^{3+}$ so ferric hydroxide, Fe(OH)$_3$ will form and this Fe(OH)$_3$ will facilitates the removal of heavy toxic metals[53].
3.2 Metal Oxides Nanoparticles

3.2.1 Titanium oxide Nanoparticles (TiO₂ NPs)
Photocatalytic degradation method is the best method now a days for the removal of contaminants from waste water. Titanium oxide nanoparticles are using as an efficient catalyst because of their photocatalytic activity, cost effective and stability. These catalyst when come in the contact of contaminants, gradually oxidize them into low molecular weight products like CO₂, H₂O, NO₃⁻, Cl⁻ etc.[54–56]. Titanium oxide nanoparticles are selective degradation agents and used for the degradation of heavy metals, cyanides, polycyclic aromatic hydrocarbons, chlorinated organic compounds, dyes and phenols[57–64]. These nanoparticles are also effective antimicrobials against a wide range of gram-negative and gram-positive bacteria, fungi and viruses[65]. The coupling technology of titanium oxide nanoparticles, (TiO₂ NPs) with membrane such as polyvinylidene fluoride, polyethersulfone, polymethyl methacrylate, and polyamide-imide[66–71] is much more promising to resolve the recovery problem of titanium oxide nanoparticles (TiO₂ NPs). By this coupling, titanium oxide nanoparticles can easily be separated just using simple filtration method[72].

3.2.2 Zinc Oxide Nanoparticles (ZnO NPs)
ZnO NPs are also very efficient photocatalysis agents for waste water treatment due to their specific characteristics like band gap in the near-UV spectral region, and oxidizing power[73–75]. Biocompatibility of these nanoparticles make them suitable for waste water treatment[76].

3.2.3 Iron Oxides Nanoparticles
As iron oxides nanoparticles are simple and can easily be synthesized so these are frequently being used now a days for the removal of heavy metals. This is typical to recover nanosorbent materials from contaminated water because of their small size but magnetite and maghemite can be used as adsorbents because of their magnetic behavior. Because of magnetic behavior these iron oxide nanoparticles as a nanosorbants can be recovered from solution by applying external magnetic field. Therefore these nanoparticles are being magnificently working as nanosorbents for removing heavy metal ions from water[77–79].

3.3 Carbon Nanotubes (CNT)
Carbon nanomaterials (CNMs) are interesting adsorption agents because of their structural and electronic properties. Because of large surface area and selective nature for aromatics CNMs have advantages in wastewater treatment. CNTs, due to their structure are more efficiently being used than other carbon nanomaterials[80]. CNTs show specific adsorption capacity for cations, dyes and ethyl benzene etc.[22,81–84]. Functionalization of CNTs enhance their adsorption capacity by increasing surface area and dispersibility[85–88]. Nanocomposite adsorbent formed by the combination of CNTs having adsorption properties and iron oxide having magnetic properties, are capable in removing chromium from water.

3.4 Nanocomposites
Among nanomaterials nanocomposites are the most prominent materials now a days because of their magnetic properties and these properties make them easy to separate from the solution[89]. Nanofiltration membrane can be prepared by incorporating titanium oxide nanoparticles including the fabrication of co-polyamide network on a polyimide backing. Nanocomposites also have specific binding capacity through chelation, ion exchange and play active role in the different forms like polymer nanocomposites, carbon nanocomposites and metal oxide nanocomposites.

3.5 Dendrimers
Dendrimers are monodispersed nanosized distinct 3-D macromolecules having symmetric core, inner shell and outer shell. More complex nano-structured materials can be synthesized by using dendrimers
as nanoscale building blocks, e.g., dendrimer encapsulated NPs find use in materials engineering applications. Other materials can also be functionalize with dendrimers to enhance recovery rate of different metal ions from water. Dendrimers can also be used as chemical sensors and removal of heavy metals for water treatment. Dendrimers are water soluble ligands and this property make these useful for the absorption of toxic heavy metal ions in water purification[90]. Different nanomaterial can be represented by flow diagram given in Figure 2.

![Image](image_url)

Figure 2. Different Nanomaterials used in water purification

4. Nanofabrication
Nanomaterials can be fabricated by using basic two methods, one is bottom-up and other is top-down[91]. Bottom-up is a single step approach while top-down is a two step method. One of the popular one step approach is direct evaporation[92]. Chemical reaction method can also be used for the same purpose[93]. Two step method is commonly used for the fabrication process due to the low cost of material. In this two step method nanoparticles are dispersed in basefluid[94–101]. This process is most popular method for producing large scale of nanofluids[102].

5. Conclusion
Although risks are involved with nanomaterials because of high reactivity due to large surface area to volume ratio but in case of water purification done by nanotechnology no problem related to human health and environment have been reported. These nanotechnology based chlorine free methods of water purification have advantage because chloramine or chlorine used in chlorine method produce carcinogenic byproducts. By improving water quality economy of any developed country can grow, as techniques of water purification like chlorination, filtration and disinfection can give profit of 5-10 dollars for 1 dollar investment.

Acknowledgement
Author is thankful to the management of GLA University, Mathura for providing support to write this review article.
References

[1] Sandia D 2003 water purification roadmap--a report of the executive committee, US Department of the Interior, Bureau of Reclamation and Sandia National Laboratories DWPR Progr. Report 2003

[2] United State Environmental Protection Agency 1999 Alternative disinfectants and oxidants Guidance Manual - 7 . PEROXONE (OZONE / HYDROGEN PEROXIDE) (US Environmental Protection Agency, Office of Water)

[3] Supply W J W, Programme S M, Organization W H, for Water Supply W J M P, Sanitation and UNICEF. 2005 Water for life: making it happen (World health organization)

[4] Varghese A 2004 A comparative risk approach to assessing point-of-use water treatment systems in developing countries Comparative risk assessment and environmental decision making (Springer) pp 99–112

[5] Gleick P H 2003 Global freshwater resources: soft-path solutions for the 21st century Science (80-). 302 1524–8

[6] Haas C N 2000 Disinfection in the twenty-first century Am. Water Work. Assoc. J. 92 72

[7] Mintz E D, Reiff F M and Tauxe R V 1995 Safe water treatment and storage in the home: a practical new strategy to prevent waterborne disease Jama 273 948–53

[8] Ma N, Quan X, Zhang Y, Chen S and Zhao H 2009 Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification J. Memb. Sci. 335 58–67

[9] Savage N and Diallo M S 2005 Nanomaterials and water purification: opportunities and challenges J. Nanoparticle Res. 7 331–42

[10] Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D and Thruston A D 2006 Occurrence of a new generation of disinfection byproducts Environ. Sci. Technol. 40 7175–85

[11] Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D and Alvarez P J J 2008 Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications Water Res. 42 4591–602

[12] Danion A, Disdier J, Guillard C, Abdelmalek F and Jaffrezic-Renault N 2004 Characterization and study of a single-TiO2-coated optical fiber reactor Appl. Catal. B Environ. 52 213–23

[13] Narayan R J, Adiga S P, Pellin M J, Curtiss L A, Hryn A J, Stafslien S, Chisholm B, Shih C-C, Shih C-M, Lin S-J and others 2010 Atomic layer deposition-based functionalization of materials for medical and environmental health applications Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 2033–64

[14] Narayan R J, Monteiro-Riviere N A, Brigmon R L, Pellin M J and Elam J W 2009 Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: medical applications JOM 61 12–6

[15] Vouk V B 1979 Handbook on the Toxicology of Metals (Elsevier-North-Holland Biomedical Press)

[16] Nowack B 2008 Pollution prevention and treatment using nanotechnology Nanotechnology 2 1–15

[17] Obare S O and Meyer G J 2004 Nanostructured materials for environmental remediation of organic contaminants in water J. Environ. Sci. Heal. Part A 39 2549–82

[18] Pranjali G, Deepa M, Nair A N B and others 2013 Nanotechnology in waste water treatment: a
review. *Int. J. ChemTech Res.* **5** 2303–8

[19] Pan B and Xing B 2008 Adsorption mechanisms of organic chemicals on carbon nanotubes *Environ. Sci. Technol.* **42** 9005–13

[20] Yang K U N, Wu W, Jing Q and Zhu L 2008 Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes *Environ. Sci. Technol.* **42** 7931–6

[21] Rao G P, Lu C and Su F 2007 Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review *Sep. Purif. Technol.* **58** 224–31

[22] Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D and Wei B 2003 Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes *Carbon N. Y.* **41** 2787–92

[23] Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z and Ramaseshan R 2006 Electrospun nanofibers: solving global issues *Mater. today* **9** 40–50

[24] Choi H, Statthato E and Dionysiou D D 2006 Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications *Appl. Catal. B Environ.* **63** 60–7

[25] Wu L and Ritchie S M C 2008 Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles *Environ. Prog.* **27** 218–24

[26] Lin H F, Ravikrishna R and Valsaraj K T 2002 Reusuable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1, 2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst *Sep. Purif. Technol.* **28** 87–102

[27] Molinari R, Palmisano L, Drioli E and Schiavello M 2002 Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification *J. Membr. Sci.* **206** 399–415

[28] Mauter M S, Wang Y, Okemgb K C, Osuji C O, Giannelis E P and Elimelech M 2011 Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials *ACS Appl. Mater. Interfaces* **3** 2861–8

[29] Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q and Alvarez P J J 2009 Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal *Water Res.* **43** 715–23

[30] De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeke K, Fitte J P, Boon N and Verstraete W 2011 Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes *Water Res.* **45** 1856–64

[31] Zhao X, Lv L, Pan B, Zhang W, Zhang S and Zhang Q 2011 Polymer-supported nanocomposites for environmental application: a review *Chem. Eng. J.* **170** 381–94

[32] Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P and others 2011 Synthesis of AgNps By Bacillus cereus bacteria and their antimicrobial potential *J. Biomater. Nanobiotechnol.* **2** 155

[33] Duran F E and Dunkelberger G W 1995 A comparison of membrane softening on three South Florida groundwaters *Desalination* **102** 27–34

[34] Tan L and Sudak R G 1992 Removing color from a groundwater source *Journal-American Water Work. Assoc.* **84** 79–87

[35] Kalhapure R S, Sonawane S J, Sikwal D R, Jadhav M, Rambarose S, Mocktar C and Govender T 2015 Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA *Colloids Surfaces B Biointerfaces* **136**
[36] Borrego B, Lorenzo G, Mota-Morales J D, Almanza-Reyes H, Mateos F, López-Gil E, de la Losa N, Burmistrov V A, Pestryakov A N, Brun A and others 2016 Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo Nanomedicine Nanotechnology, Biol. Med. 12 1185–92

[37] Krishnaraj C, Ramachandran R, Mohan K and Kalaichelvan P T 2012 Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93 95–9

[38] Li X, Lenhart J J and Walker H W 2012 Aggregation kinetics and dissolution of coated silver nanoparticles Langmuir 28 1095–104

[39] Quang D V, Sarawade P B, Jeon S J, Kim S H, Kim J-K, Chaì Y G and Kim H T 2013 Effective water disinfection using silver nanoparticle containing silica beads Appl. Surf. Sci. 266 280–7

[40] Ren D and Smith J A 2013 Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment Environ. Sci. Technol. 47 3825–32

[41] Kallman E N, Oyanedel-Craver V A and Smith J A 2011 Ceramic filters impregnated with silver nanoparticles for point-of-use water treatment in rural Guatemala J. Environ. Eng. 137 407–15

[42] Oyanedel-Craver V A and Smith J A 2008 Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment Environ. Sci. Technol. 42 927–33

[43] Matheson L J and Tratnyek P G 1994 Reductive dehalogenation of chlorinated methanes by iron metal Environ. Sci. Technol. 28 2045–53

[44] Liang D, Yang Y, Xu W, Peng S, Lu S and Xiang Y 2014 Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics J. Hazard. Mater. 278 592–6

[45] Xiong Z, Lai B, Yang P, Zhou Y, Wang J and Fang S 2015 Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration J. Hazard. Mater. 297 261–8

[46] Hoag G E, Collins J B, Holcomb J L, Hoag J R, Nadagouda M N and Varma R S 2009 Degradation of bromothymol blue by “greener”nano-scale zero-valent iron synthesized using tea polyphenols J. Mater. Chem. 19 8671–7

[47] Wang X, Zhu M, Liu H, Ma J and Li F 2013 Modification of Pd–Fe nanoparticles for catalytic dechlorination of 2, 4-dichlorophenol Sci. Total Environ. 449 157–67

[48] Arancibia-Miranda N, Baltazar S E, Garcé\'ia A, Muñoz-Lira D, Sepúlveda P, Rubio M A and Allibir D 2016 Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution J. Hazard. Mater. 301 371–80

[49] Markova Z, Šišková K M, Filip J, Čuda J, Kolář M, Šafářová K, Medřík I and Zbořil R 2013 Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal Environ. Sci. Technol. 47 5285–93

[50] Muradova G, Gadjiyeva S, Di Palma L and Vilardi G 2016 Nitrates removal by bimetallic nanoparticles in water Chem. Eng. Trans. 47 205–10

[51] Ling L, Pan B and Zhang W 2015 Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV) Water Res. 71 274–81

[52] Ling L and Zhang W 2015 Enrichment and encapsulation of uranium with iron nanoparticle J.
Wang Y, Fang Z, Kang Y and Tsang E P 2014 Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI J. Hazard. Mater. 275 230–7

[54] Guesh K, Mayoral Á, Márquez-Álvarez C, Chebude Y and D’íaz I 2016 Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia Microporous Mesoporous Mater. 225 88–97

[55] Imamura K, Yoshikawa T, Hashimoto K and Kominami H 2013 Stoichiometric production of aminobenzenes and ketones by photocatalytic reduction of nitrobenzenes in secondary alcoholic suspension of titanium (IV) oxide under metal-free conditions Appl. Catal. B Environ. 134 193–7

[56] Rawal S B, Bera S, Lee D, Jang D-J and Lee W I 2013 Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency Catal. Sci. Technol. 3 1822–30

[57] Ohsaka T, Shinozaki K, Tsuruta K and Hirano K 2008 Photo-electrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode Chemosphere 73 1279–83

[58] Guo M, Song W, Wang T, Li Y, Wang X and Du X 2015 Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective phase-microextraction of polycyclic aromatic hydrocarbons from environment water samples Talanta 144 998–1006

[59] Lee Y-S, Kim S-J, Venkateswaran P, Jang J-S, Kim H and Kim J-G 2008 Anion co-doped Titania for solar photocatalytic degradation of dyes Carbon Lett. (Carbon Lett.) 9 131–6

[60] Nguyen A T, Hsieh C-T and Juang R-S 2016 Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation J. Taiwan Inst. Chem. Eng. 62 68–75

[61] Alalm M G, Tawfik A and Ookawara S 2015 Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs J. Water Process Eng. 8 55–63

[62] Moon G, Kim D, Kim H, Bokare A D and Choi W 2014 Platinum-like behavior of reduced graphene oxide as a cocatalyst on TiO2 for the efficient photocatalytic oxidation of arsenite Environ. Sci. Technol. Lett. 1 185–90

[63] Kim S H, Lee S W, Lee G M, Lee B-T, Yun S-T and Kim S-O 2016 Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate Chemosphere 143 106–14

[64] Chen Z, Li Y, Guo M, Xu F, Wang P, Du Y and Na P 2016 One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr (VI) and Cr (III) J. Hazard. Mater. 310 188–98

[65] Foster H A, Ditta I B, Varghese S and Steele A 2011 Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity Appl. Microbiol. Biotechnol. 90 1847–68

[66] Wang Q, Wang X, Wang Z, Huang J and Wang Y 2013 PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2 J. Membr. Sci. 442 57–64

[67] Meng S, Mansouri J, Ye Y and Chen V 2014 Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes J. Membr. Sci. 450 48–59

[68] Razmjou A, Mansouri J, Chen V, Lim M and Amal R 2011 Titania nanocomposite
polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process J. Memb. Sci. 380 98–113

[69] Razmjou A, Resosudarmo A, Holmes R L, Li H, Mansouri J and Chen V 2012 The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes Desalination 287 271–80

[70] Hamming L M, Qiao R, Messersmith P B and Brinson L C 2009 Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer--matrix nanocomposites Compos. Sci. Technol. 69 1880–6

[71] Rajesh S, Senthilkumar S, Jayalakshmi A, Nirmala M T, Ismail A F and Mohan D 2013 Preparation and performance evaluation of poly (amide--imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances Colloids Surfaces A Physicochem. Eng. Asp. 418 92–104

[72] Kangwansupamonkon W, Jitbunpot W and Kiatkamjornwong S 2010 Photocatalytic efficiency of TiO2/poly [acrylamide-co-(acrylic acid)] composite for textile dye degradation Polym. Degrad. Stab. 95 1894–902

[73] Janotti A and de Walle C G 2009 Fundamentals of zinc oxide as a semiconductor Reports Prog. Phys. 72 126501

[74] Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Valence-band ordering in ZnO Phys. Rev. B 60 2340

[75] Chen Y, Bagnall D M, Koh H, Park K, Hiraga K, Zhu Z and Yao T 1998 Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization J. Appl. Phys. 84 3912–8

[76] Schmidt-Mende L and MacManus-Driscoll J L 2007 ZnO--nanostructures, defects, and devices Mater. today 10 40–8

[77] Lei Y, Chen F, Luo Y and Zhang L 2014 Three-dimensional magnetic graphene oxide foam/Fe 3 O 4 nanocomposite as an efficient absorbent for Cr (VI) removal J. Mater. Sci. 49 4236–45

[78] Tan L, Xu J, Xue X, Lou Z, Zhu J, Baig S A and Xu X 2014 Multifunctional nanocomposite Fe 3 O 4@mPD/SP for selective removal of Pb (ii) and Cr (vi) from aqueous solutions RSC Adv. 4 45920–9

[79] Ngomsik A-F, Bee A, Talbot D and Cote G 2012 Magnetic solid--liquid extraction of Eu (III), La (III), Ni (II) and Co (II) with maghemite nanoparticles Sep. Purif. Technol. 86 1–8

[80] Khin M M, Nair A S, Babu V J, Murugan R and Ramakrishna S 2012 A review on nanomaterials for environmental remediation Energy Environ. Sci. 5 8075–109

[81] Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B and Jia Z 2003 Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes Chem. Phys. Lett. 376 154–8

[82] Lu C, Su F and Hu S 2008 Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions Appl. Surf. Sci. 254 7035–41

[83] Cho H-H, Wepasnick K, Smith B A, Bangash F K, Fairbrother D H and Ball W P 2010 Sorption of aqueous Zn [II] and Cd [II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon Langmuir 26 967–81

[84] Madrakian T, Afkhami A, Ahmadi M and Bagheri H 2011 Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes J. Hazard. Mater. 196 109–14
[85] Adeleye A S, Conway J R, Garner K, Huang Y, Su Y and Keller A A 2016 Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability Chem. Eng. J. 286 640–62

[86] Li Y-H, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D and Wei B 2002 Lead adsorption on carbon nanotubes Chem. Phys. Lett. 357 263–6

[87] Adeleye A S and Keller A A 2014 Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances Water Res. 49 236–50

[88] Gupta V K, Agarwal S and Saleh T A 2011 Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes Water Res. 45 2207–12

[89] Azari A, Babaie A-A, Rezaei-Kalantary R, Esrafili A, Moazzen M and Kakavandi B 2014 Nitrate removal from aqueous solution by carbon nanotubes magnetized with nano zero-valent iron J. Magn. Magn. Mater. 294 152–7

[90] Diallo M S, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard W A and Johnson J H 2004 Dendritic chelating agents. 1. Cu (II) binding to ethylene diamine core poly (amidoamine) dendrimers in aqueous solutions Langmuir 20 2640–51

[91] Chamsa-ard W, Brundavanam S, Fung C C, Fawcett D and Poinern G 2017 Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review Nanomaterials 7 131

[92] Akoh H, Tsukasaki Y, Yatsuya S and Tasaki A 1978 Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate J. Cryst. Growth 45 495–500

[93] Wagener M, Murty B S and Günther B 1996 Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids MRS Online Proc. Libr. Arch. 457

[94] Eastman J A, Choi U S, Li S, Thompson L J and Lee S 1996 Enhanced thermal conductivity through the development of nanofluids

[95] Zhu H, Lin Y and Yin Y 2004 A novel one-step chemical method for preparation of copper nanofluids J. Colloid Interface Sci. 277 100–3

[96] Tran P X and Soong Y 2007 Preparation of nanofluids using laser ablation in liquid technique

[97] Lo C-H, Tsung T-T and Chen L-C 2005 Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) J. Cryst. Growth 277 636–42

[98] Lo C-H, Tsung T-T and Chen L-C 2005 Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS) JSME Int. J. Ser. B Fluids Therm. Eng. 48 750–5

[99] Wang X, Xu X and Choi S U S 1999 Thermal conductivity of nanoparticle-fluid mixture J. Thermophys. heat Transf. 13 474–80

[100] Lee S, Choi S-S, Li S and and Eastman J A 1999 Measuring thermal conductivity of fluids containing oxide nanoparticles

[101] Murshed S M S, Leong K C and Yang C 2005 Enhanced thermal conductivity of TiO2—water based nanofluids Int. J. Therm. Sci. 44 367–73

[102] Kong L, Sun J and Bao Y 2017 Preparation, characterization and tribological mechanism of nanofluids Rsc Adv. 7 12599–609