Data Article

Metabolite data of germinated Bambara groundnut flour and starch extracted with two different solvents

Ajibola Bamikole Oyedeji a,*, Chiemela Enyinnaya Chinma b,c,*, Ezekiel Green a,*, Oluwafemi Ayodeji Adebo a,*

a Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Gauteng, South Africa
b Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
c Africa Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria

A R T I C L E I N F O

Article history:
Received 12 May 2021
Revised 9 August 2021
Accepted 12 August 2021
Available online 14 August 2021

Keywords:
Metabolites
GC-HRTOF-MS
Bambara groundnut
Germination
Solvent extraction

A B S T R A C T

The data presented in this study represents the profile of metabolites of germinated Bambara groundnut flour (GBF) and starch (GBS) extracted using two different extraction solvents. Bambara groundnuts obtained from a local agro market in Minna, Niger State, Nigeria were germinated at 28 ± 1°C for 24, 48 and 72 h, dried and then processed into flour and starch. Raw Bambara groundnuts (0 h) were also processed into flour and starch and served as controls. Samples at the different germination times were extracted using methanol/water (80:20 v/v) and acetonitrile/methanol/water (40:40:20 v/v/v), concentrated, reconstituted and analysed on a gas chromatography-high resolution time of flight-mass spectrometer (GC-HRTOF-MS). Data obtained were classified into compound groups such as acids, alcohols, cyclic compounds, esters, ketones, phytosterols, vitamins and many others, and their characteristics such as the retention time, observed mass, molecular formular and mean peak areas were reported. These data represent the collection of metabolites in GBF and GBS and may be useful for the identification and utilization of functional compounds in foods.

* Corresponding authors.
E-mail addresses: jibank2@gmail.com (A.B. Oyedeji), chinmachiemela@futminna.edu.ng (C.E. Chinma), egreen@uj.ac.za (E. Green), oadebo@uj.ac.za (O.A. Adebo).
Social media: twe (A.B. Oyedeji), twe (O.A. Adebo)

https://doi.org/10.1016/j.dib.2021.107288
2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Food Science and Technology
Specific subject area	Germination; Food composition and analysis; Metabolomics
Type of data	Tables
How data were acquired	Flour and starch prepared from previously germinated Bambara groundnut were subjected to two different solvent extraction methods to determine their metabolites composition. The first combination of organic solvents used for extraction was methanol/water (80:20 v/v) while the second combination was acetonitrile/methanol/water (40:40:20 v/v/v). These individual solvent combinations were used to extract metabolites from germinated Bambara groundnut flour (GBF) and germinated Bambara groundnut starch (GBS) which were sprouted between 0-72 h. Analyses of these extracts was done on LECO Pegasus GC-HRTOF-MS system (LECO Corporation, St Joseph, USA) fitted with resolution of 50,000 FWHM (full peak with at one half maximum), with mass accuracies/errors of < 1 ppm and acquisition rates of up to 200 spectra/s. The system is equipped with an Agilent 7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE, USA). This GC-HRTOF-MS operates at high resolution and is equipped with a Gerstel MPS multipurpose autosampler (Gerstel Inc., Mülheim an der Ruhr, Germany) and a Rxip®-5ms column (30 m × 0.25 mm ID × 0.25 μm) (Restek, Bellefonte, USA).
Data format	Raw and analyzed data; spectra of identified compounds
Parameters for data collection	Samples were extracted in triplicate and data were also obtained from the GC-HRTOF-MS were also collected in triplicate.
Description of data collection	Samples were freeze-dried and solvent extraction of metabolites was performed on freeze-dried samples (1 g), using the solvent mixture (10 mL) in each case. Thereafter, samples were concentrated and reconstituted in 1 mL methanol (99.9% pure chromatography grade) and thereafter filtered into dark vials using 0.22 μm syringe filters. For sample analyses in GC-HRTOF-MS machine, 1 μL of samples were auto-injected into the system and metabolite identities were determined using NIST, Mainlib and Feinhab metabolomics databases.
Data source location	Bambara groundnut were sources from a local agro market in Minna, Niger State Nigeria (9.5836° N, 6.5463° E) while Bambara flour and starch samples were produced at the Food Science laboratory of the Federal University of Technology, Minna, Niger State Nigeria (9.6564° N, 6.5278° E). Extraction of metabolites and instrumental analyses were carried out at the University of Johannesburg (Doornfontein Campus), Johannesburg, South Africa (S26°11′32.6″E28°03′28.9″).
Data accessibility	Raw and processed dataset have been deposited in Mendeley repository and is accessible using the link: https://data.mendeley.com/datasets/3fhfsz5gv9/4

Value of the Data

- The data gives information of the identity of metabolites present in Bambara groundnut flour and starch samples germinated at different times.
- The data represents the effect of germination at different times on the metabolite profile of samples, relative to the ungerminated ones, to understand the progression of germination as a metabolic process and its effect on the production and retention of metabolites at different sprouting times.
- The data gives information about the extractability of metabolites using different mixtures of extraction solvents, to show the efficiency or versatility of each solvent and their applicability in food systems.
• The data represents a cocktail of untargeted metabolites derived from Bambara flour and starch samples as a result of germination at different times, which could lead to the identification and utilization of compounds of functional importance in food production.
• Information provided through this data will be helpful in the determination of germination conditions for Bambara groundnuts and related legumes to produce their flour and starch products to obtain similar or improved production of relevant and functional metabolites.

1. Data Description

The data presented in this study is the information of metabolites obtained from germinated Bambara flour (GBF) and germinated Bambara starch (GBS) using different mixtures of organic solvents for extraction. Table 1 represents the metabolites obtained from GBF and GBS using a mixture of methanol/water (80:20 v/v) as extraction solvent while Table 2 shows the metabolite profile of GBF and GBS using acetonitrile/methanol/water (40:40:20 v/v/v) as extraction solvent. Each table shows information about retention time, observed mass, metabolite name, molecular formula and average peak area for each metabolites in different samples obtained from the peaks generated from GC-HRTOF-MS analysis and comparison of spectra obtained with NIST, Mainlib and Feihn metabolite databases. Subsequent mass spectra of some compounds are presented in supplementary files, deposited in the Mendeley database (https://data.mendeley.com/datasets/3fhfsz5gv9/4).

2. Experimental Design, Materials and Methods

2.1. Germination of Bambara groundnut

Brown variety of Bambara groundnut (Vigna subterranean) were physically cleaned to remove seed broken and extraneous materials. Thereafter, a portion of 250 g was sterilized in 1000 mL of food-grade sodium hypochlorite, blotted dry and soaked in water at 28 ± 1°C for 6 h prior to germination. Hydrated seeds were germinated at 28 ± 1°C for 24, 48 and 72 h and uniformly sprouted seeds were dried at 40°C for 24 h for subsequent processing into flour and starch. Raw Bambara groundnut seeds were equally processed into flour and starch and represents 0 h samples which served as control in each case.

2.2. Production of Bambara groundnut flour and starch

Raw and germinated (dried) seeds were milled (Brook Crompton Series 2000, Christy Hunt Agriculture Ltd., South Humberside, England) and sieved (100 µm mesh-size) to obtain raw and germinated Bambara groundnut flour (GBF) [1]. The method of Oyeyinka et al. [2] was used to extract starch from Bambara groundnut flour samples for each germination time (0-72 h). Flour was dispersed in 0.3% (w/v) NaOH solution at 1:10. The mixture was shaken vigorously, allowed to settle and the supernatant was decanted. Afterwards, distilled water was added to the residue and the slurry was sieved. The suspension was left to stand overnight and the starch obtained was repeatedly washed with distilled water, centrifuged (K24IR, Centurion Scientific Ltd, Stoughton, Chichester, UK) at 10,000 × g for 20 min at 25°C, neutralized with 0.1N HCl and the resulting germinated Bambara starch (GBS) was freeze dried (LGJ-18, SHKY, China) at a set temperature (-40°C) and pressure (40 Pa) for 24 h, and uniformly blended (BLX750RD, Kenwood, Sheffield, UK).
Table 1
Metabolites identified in Bambara groundnut flour (GBF) and starch (GBS) using methanol and water (80:20 v/v) as extraction solvent.

Rt (mins)	Observed ion m/z	Name	MF	Flour	Starch						
			MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
Alcohol											
6.83	87.0439	Glycerol	C₃H₆O₃	ND	ND	ND	307634	ND	ND	ND	ND
Amides											
19.12	154.1225	Dodecanamide, N-(2-hydroxyethyl)-	C₁₆H₃₀NO₂	ND	ND	ND	246097	ND	ND	ND	ND
19.80	212.2011	Dodecanamide	C₁₂H₂₂NO	ND	ND	229538	ND	ND	ND	272443	ND
20.32	161.0963	3-Cyclopentylpropionamide, N,N-dimethyl-	C₁₀H₁₈NO	ND	ND	356253	ND	ND	ND	ND	
21.27	140.1075	Nonanamide	C₈H₁₀NO	ND	ND	ND	356772	ND	ND	ND	ND
21.84	100.0326	Bis(2-(Dimethylamino)ethyl) ether	C₁₈H₃₆NO₃	ND	ND	161840	212288	118436	148731	207178	201073
22.80	126.0910	Hexadecanamide	C₁₆H₃₂NO	ND	ND	347814	ND	ND	ND	ND	
22.81	140.1067	Benzeneethanamine	C₁₁H₁₆NO₃	ND	ND	161840	212288	118436	148731	207178	201073
24.34	294.2779	9-Octadecenamide, (Z)-	C₁₈H₃₆NO	1354600	ND	2055194	4063967	ND	ND	ND	3197280
Cyclic compounds											
18.75	108.0932	E.Z-3-Ethylidenecyclohexene	C₆H₁₂	ND	ND	687948	ND	ND	ND	ND	
22.28	227.0701	Benzenehexanenitrile	C₁₆H₁₈N₂O	191620	ND	ND	ND	ND	ND	ND	
24.17	279.2317	Benzene, 2-methoxy-1-(2-nitroethenyl)-3-(phenylmethoxy)-	C₁₆H₁₈NO₄	ND	ND	657003	ND	ND	ND	ND	
Esters											
12.73	177.0547	Diethyl Phthalate	C₁₂H₂₄O₄	ND	ND	102107	ND	ND	ND	ND	
16.32	223.0961	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	C₁₆H₂₄O₄	ND	ND	296119	ND	ND	ND	ND	
16.32	223.0960	1,2-Benzenedicarboxylic acid, butyl octyl ester	C₂₀H₃₂O₄	ND	ND	449868	ND	ND	ND	ND	
16.33	223.0959	Phthalic acid, butyl oct-3-yl ester	C₂₀H₂₄O₄	ND	ND	130139	ND	ND	ND	ND	
17.36	224.0995	Dibutyl phthalate	C₁₂H₂₄O₄	ND	ND	1365627	280866	302235	170104	830621	ND
17.38	150.0265	1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester	C₁₆H₂₄O₄	158769	ND	129430	ND	ND	ND	ND	

(continued on next page)
Table 1 (continued)

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
17.38	223.0959	1,2-Benzenedicarboxylic acid, dipropyl ester	C_{14}H_{18}O_{4}	ND	ND	ND	352860	ND	ND	ND	ND
18.69	294.2546	Ethyl 9,12-hexadecadienoate	C_{18}H_{22}O_{2}	ND	ND	5252360	8018935	ND	ND	ND	ND
19.19	174.0936	2,2',2''-Nitrilotriethanol, triethyl ether	C_{12}H_{27}NO_{3}	ND	ND	ND	662787	ND	ND	ND	ND
19.33	213.0752	1-Propene-1,2,3-tricarboxylic acid	C_{18}H_{26}O_{6}	ND	ND	107599	107436	ND	ND	ND	ND
20.20	273.0963	1,2,3-Propanetricarboxylic acid, 2-(acetyloxy)-, tributyl ether	C_{20}H_{34}O_{8}	249357	ND	280433	8018935	222530	242690	764578	260777
20.38	144.1019	Carbonic acid, 2-dimethylaminoethyl isobutyl ester	C_{9}H_{19}NO_{3}	348980	ND	698929	ND	ND	ND	ND	
20.48	283.2628	Succinic acid, 3,4-dimethylphenyl 2-(dimethylamino)ethyl ester	C_{16}H_{23}NO_{4}	ND	ND	1466928	ND	ND	ND	ND	
21.85	152.1196	Carbonic acid, 2-dimethylaminoethyl 2-methoxyethyl ester	C_{8}H_{17}NO_{4}	331038	ND	ND	ND	ND	ND	ND	
21.91	144.1017	Carbonic acid, 2-dimethylaminoethyl ethyl ester	C_{7}H_{15}NO_{3}	ND	ND	500886	ND	ND	ND	ND	
22.57	280.1631	Bis(2-ethylhexyl) phthalate	C_{22}H_{26}O_{4}	ND	ND	1000108	668139	ND	ND	ND	ND
22.58	280.0729	Dicyclohexyl phthalate	C_{20}H_{26}O_{4}	ND	ND	495234	ND	ND	ND	ND	
22.62	279.1580	1,2-Benzenedicarboxylic acid, monononyl ester	C_{17}H_{24}O_{4}	ND	ND	368535	202911	ND	ND	ND	ND
22.64	279.1590	1,2-Benzenedicarboxylic acid, dicyclohexyl ester	C_{20}H_{26}O_{4}	ND	ND	ND	202911	ND	ND	ND	ND
24.87	280.2392	Oxalic acid, di(1-menthyl) ester	C_{15}H_{20}O_{4}	ND	ND	ND	288311	ND	ND	ND	ND
29.87	530.4706	Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, octadeyl ester	C_{35}H_{62}O_{3}	120035	ND	592440	ND	ND	ND	ND	

FAEEs

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
17.61	241.2157	Dodecanoic acid, ethyl ester	C_{14}H_{26}O_{2}	ND	ND	ND	233196	ND	ND	ND	ND
20.60	131.0950	Octanoic acid, 2-dimethylaminoethyl ester	C_{12}H_{25}NO_{2}	ND	ND	ND	352802	ND	ND	ND	ND
22.29	299.2574	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C_{16}H_{29}O_{4}	ND	ND	1415101	ND	ND	4688360	2053117	

(continued on next page)
Rt (mins)	Observed ion m/z	Name								
23.74	336.2648	9,12-Octadecadienoic acid (Z,Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester	C\text{_{21}}H\text{_{36}}O\text{_{4}}							
			ND	ND	7924939	4287462	ND	ND	ND	ND

FAMEs

Rt (mins)	Observed ion m/z	Name								
16.90	228.2038	Tridecanoic acid, methyl ester	C\text{_{14}}H\text{_{20}}O\text{_{2}}							
			4940778	ND	ND	ND	ND	330722	ND	850485
16.91	270.2551	Hexadecanoic acid, methyl ester	C\text{_{17}}H\text{_{24}}O\text{_{2}}							
			10471598	ND	ND	ND	ND	11366836	8939116	4237592
18.65	263.2357	16-Octadecadienoic acid, methyl ester, (E,E)-	C\text{_{19}}H\text{_{34}}O\text{_{2}}							
			ND	ND	865286	0	ND	ND	ND	ND

Rt (mins)	Observed ion m/z	Name								
16.90	228.2038	Tridecanoic acid, methyl ester	C\text{_{14}}H\text{_{20}}O\text{_{2}}							
			4940778	ND	ND	ND	ND	330722	ND	850485
16.91	270.2551	Hexadecanoic acid, methyl ester	C\text{_{17}}H\text{_{24}}O\text{_{2}}							
			10471598	ND	ND	ND	ND	11366836	8939116	4237592
18.65	263.2357	16-Octadecadienoic acid, methyl ester, (E,E)-	C\text{_{19}}H\text{_{34}}O\text{_{2}}							
			ND	ND	865286	0	ND	ND	ND	ND

Rt (mins)	Observed ion m/z	Name								
23.74	336.2648	9,12-Octadecadienoic acid (Z,Z)-2-hydroxy-1-(hydroxymethyl) ethyl ester	C\text{_{21}}H\text{_{36}}O\text{_{4}}							
			ND	ND	7924939	4287462	ND	ND	ND	ND

Furan

Rt (mins)	Observed ion m/z	Name								
12.69	111.1168	Furan, 2-butyltetrahydro-	C\text{_{4}}H\text{_{16}}O							
			ND	ND	301109	ND	ND	ND	ND	ND

Ketones

Rt (mins)	Observed ion m/z	Name								
14.21	105.0335	Methanone, (1-hydroxy cyclohexyl)phenyl-7,9-di-tert-butyl-1-oxaspiro(4,5)decadiene-2,8-dione	C\text{_{13}}H\text{_{16}}O\text{_{2}}							
			101939	164821	187249	149732	146197	159302	ND	
16.91	232.1823	Methanone, (1-hydroxy cyclohexyl)phenyl-7,9-di-tert-butyl-1-oxaspiro(4,5)decadiene-2,8-dione	C\text{_{17}}H\text{_{24}}O\text{_{3}}							
			ND	ND	32318	ND	ND	ND	ND	ND

Miscellaneous

Rt (mins)	Observed ion m/z	Name									
3.98	60.0208	2H-1,2-Oxazine, 6-(4-chlorophenyl)tetrahydro-2-methylcyclooctasiloxane, hexadecamethyl-	C\text{_{11}}H\text{_{14}}C\text{_{NO}}								
			ND	1400596	ND	ND	ND	ND	ND	ND	
13.67	501.9715	2H-1,2-Oxazine, 6-(4-chlorophenyl)tetrahydro-2-methylcyclooctasiloxane, hexadecamethyl-	C\text{_{16}}H\text{_{46}}O\text{_{3}}Si\text{_{8}}								
			3282594	2169153	ND	ND	ND	ND	ND	ND	
Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
----------	------------------	------	----	-------	--------	--------	--------	------	-------	--------	-------
17.45	534.9914	Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl-	C_{16}H_{30}O_{5}Si_{8}	ND	2779445	2701270	ND	ND	1915391	928470	ND
17.46	533.9926	3-Isopropoxy-1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane	C_{18}H_{32}O_{5}Si_{7}	ND	ND	ND	ND	ND	2360859	ND	ND
18.65	219.9887	1,8,11-Heptadecatriene, (Z,Z)-	C_{17}H_{30}	ND	667023	770836	ND	ND	482944	854367	ND
19.07	210.2212	2,8,9-Trioxa-5-aza-1-silabicyclo(3.3.3)undecane, 1-methoxy-	C_{11}H_{40}O_{5}Si_{6}	ND	2660774	3284057	ND	ND	ND	ND	ND
20.27	434.0867	1,1,5,7,7-Heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane	C_{20}H_{23}F_{2}N_{2}O_{3}	ND	ND	ND	ND	ND	739228	ND	ND
22.07	372.2636	3-Methylbutyl N-heptafluorobutyryltryptophanate	C_{25}H_{42}	ND	1998765	887750	ND	ND	1698458	ND	ND
22.23	313.2550	1H-Indene, 1-hexadecyl-2,3-dihydro-Heptasiloxane, hexadecamethyl-	C_{25}H_{42}O_{6}Si_{7}	ND							

Phenols

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS	
11.32	206.1663	2,4-Di-tert-butylphenol	C_{14}H_{22}O	417837	626608	707602	563806	580774	701221	579501	651064	279502
21.61	340.2389	Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-(Z)-3-(Heptadec-10-en-1-yl)phenol	C_{22}H_{30}O	ND	230841	209691	ND	ND	ND	ND	482973	439076
22.07	161.0948	Stigmasterol	C_{23}H_{30}O	ND	ND	ND	ND	167128	ND	ND	ND	ND

Phytosterols

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
27.75	412.3692	d-Tocopherol	C_{29}H_{50}O	ND	ND	ND	390128	ND	ND	482973	439076
28.13	414.3854	β-Sitosterol	C_{29}H_{50}O	ND	230841	209691	ND	ND	ND	ND	ND
24.62	340.0400	Squalene	C_{29}H_{50}	ND	ND	ND	395205	ND	ND	ND	ND
24.62	430.0896	Supraene	C_{29}H_{50}	ND	757222	ND	ND	745590	833629		

Vitamin

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
25.54	402.3484	d-Tocopherol	C_{27}H_{46}O_{2}	ND	ND	ND	768559	1228631	ND	ND	ND

MF: Molecular formula; FAEE: Fatty acid ethyl ester; FAME: Fatty acid methyl ester; OGBF: Flour from Bambara groundnut germinated for 0 h; 24GBF: Flour from Bambara groundnut germinated for 24 h; 48GBF: Flour from Bambara groundnut germinated for 48 h; 72GBF: Flour from Bambara groundnut germinated for 72 h OGBS: Starch from Bambara groundnut germinated for 0 h; 24GBS: Starch from Bambara groundnut germinated for 24 h; 48GBS: Starch from Bambara groundnut germinated for 48 h; 72GBS: Starch from Bambara groundnut germinated for 72 h.
Table 2
Metabolites identified in Bambara groundnut flour (GBF) and starch (GBS) using acetonitrile/methanol/water (40:20:20 v/v/v) extraction solvent.

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	OGBS	24GBS	48GBS	72GBS	
Acids												
3.26	104.0293	Butanoic acid, 4-hydroxy-	C₁₀H₁₂O₁Si	ND	ND	ND	1379146	ND	ND	ND	ND	
4.06	102.0090	Pentanoic acid	C₈H₁₀O₂	ND	ND	ND	850250	ND	ND	1599442	420330	
15.20	228.2077	Tetradecanoic acid	C₁₄H₂₂O₂	ND	ND	ND	747974	ND	ND	ND	ND	
17.51	256.2398	n-Hexadecanoic acid	C₁₆H₃₂O₂	5839377	4563896	ND	ND	ND	6469462	67444726		
19.73	284.2714	Octadecanoic acid	C₁₈H₃₆O₂	ND	ND	ND	13076604	14514438	ND	ND	ND	ND
Alcohols												
5.26	92.0213	Glycerol	C₃H₆O₃	ND	ND	ND	83692530	27609	ND	ND	ND	
5.66	126.0311	Maltol	C₄H₆O₃	ND	ND	ND	5053284	ND	ND	ND	ND	
26.65	394.3588	Cholesta-4,6-dien-3-ol, (3β)-	C₂₇H₄₄O	218602	ND	ND	ND	ND	ND	ND	ND	
Aldehyde												
4.73	120.0570	Benzeneacetaldehyde	C₅H₅O	ND	ND	ND	559553	1873781	ND	ND	1278347	ND
Amide												
4.83	114.0312	Pentanamide	C₄H₆N₂O₃	ND	547511	ND	ND	ND	ND	ND	ND	
19.21	262.2290	Octadecanamide, N-(2-hydroxyethyl)-	C₂₇H₃₈N₂O₂	247931	ND	ND	ND	1637175	ND	ND	ND	ND
19.74	221.3520	Decanamide, N-(2-hydroxyethyl)-	C₂₃H₄₀NO	189552	ND	ND	ND	864547	ND	ND	ND	ND
21.24	229.1615	Tetradecanamide	C₂₇H₃₈NO	1042090	ND	ND	ND	1402093	ND	ND	ND	ND
24.48	281.2666	Hexadecanamide	C₂₉H₅₂NO	208553	ND	560386	ND	194632	ND	ND	ND	ND
21.97	139.0402	9-Octadecanamide, (Z)-	C₂₅H₄₄NO	208553	ND	560386	ND	194632	ND	ND	ND	ND
22.90	187.1137	Benzeneethanamine, 2-fluoro-ß,3,4-trihydroxy-N-isopropyl-	C₁₁H₁₆FNO₄	ND	ND	ND	1402093	ND	ND	ND	ND	
Cyclic compound												
29.06	268.0389	Benzenehexanenitrile, ß,ß-dimethyl-e-oxo-	C₁₄H₁₇NO	ND	ND	ND	140204	ND	ND	ND	ND	
Esters												
5.30	239.0847	Tetrahydropyran Z-10-dodecenoate	C₁₀H₇O₃	ND	ND	ND	3652891	ND	ND	ND	ND	
5.43	161.9902	1,2-Ethanediol, dipropanoate	C₇H₁₄O₄	ND	ND	ND	4801138	ND	ND	ND	ND	(continued on next page)
Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS	
----------	------------------	--	------------	------	-------	-------	-------	------	-------	-------	-------	
9.09	210.0302	2-t-Butyl-cyclopropene-2-carboxylic acid, 2,6-di-t-butyl-4-methyl-phenyl ester	C_{23}H_{30}O_{2}	ND	ND	ND	ND	ND	ND	ND	ND	
12.83	173.1176	Butyric acid, thio-, S-hexyl ester	C_{10}H_{20}OS	ND	ND	386699	ND	ND	ND	ND	ND	
12.84	178.0599	Diethyl Phthalate	C_{12}H_{16}O_{4}	364436	519366	766294	848101	ND	ND	426673	303655	
13.71	226.1560	Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester	C_{13}H_{22}O_{3}	ND	ND	330280	ND	ND	ND	ND	ND	
16.44	224.1005	1,2-Benzene dicarboxylic acid, bis(2-methylpropyl) ester	C_{16}H_{22}O_{4}	ND	ND	2147598	1318726	ND	ND	ND	ND	
16.96	227.0695	Phthalic acid, 2,7-dimethyloct-7-en-5-yn-4-yl ester	C_{22}H_{18}O_{4}	ND	ND	213001	ND	ND	ND	ND	ND	
17.26	292.2034	Benzenepropanoic acid, 3,5-bis(1,1-dimethyl-4-hydroxy-, methyl ester	C_{18}H_{26}O_{3}	ND	ND	120184	154149	67957	ND	137645	149942	
17.41	243.2109	Palmitic acid vinyl ester	C_{16}H_{34}O_{2}	ND	804464	775420	651709	ND	ND	ND	ND	
17.48	278.1511	Phthalic acid, hex-2-yn-4-yl nonyl ester	C_{22}H_{22}O_{4}	ND	ND	8078090	ND	ND	ND	ND	ND	
17.48	279.1548	Phthalic acid, 8-chloro octyl heptyl ester	C_{22}H_{26}ClO_{4}	ND	ND	5363168	ND	ND	ND	ND	ND	
17.48	223.0967	Diethyl phthalate	C_{6}H_{12}O_{4}	2222962	157059	2315416	ND	ND	ND	ND	4389732	
18.54	177.9567	Hexanoic acid, 2-ethyl-, vinyl ester	C_{16}H_{10}O_{2}	197316	ND							
19.41	214.0798	1-Propene-1,2,3-tricarboxylic acid, tributyl ester	C_{18}H_{18}O_{6}	129008	141974	385389	ND	ND	ND	ND	ND	
20.32	330.1635	1,2,3-Propanetricarboxylic acid, 2-(acetyl oxy)-, tributyl ester	C_{20}H_{34}O_{8}	1055443	482794	903051	95014	800796	742288	1494626	1524229	
20.52	219.0957	Octanoic acid, 2-dimethylaminoethyl ester	C_{12}H_{22}NO_{2}	ND	ND	ND	1115602	ND	ND	ND	ND	
21.98	197.1527	Carbonic acid, 2-dimethylaminoethyl 2-methoxyethyl ester	C_{6}H_{17}NO_{4}	ND	ND	17984410	3536432	1095483	ND	17481691	21767625	
22.16	185.0817	Carbonic acid, 2-dimethylaminoethyl isobutyl ester	C_{18}H_{19}NO_{3}	571722	1548371	3164765	274955	ND	ND	3164986	290625	
22.70	339.0385	Bis(2-ethylhexyl) phthalate	C_{24}H_{36}O_{4}	ND	ND	3584849	ND	ND	ND	ND	ND	
22.70	386.9516	Diisooctyl phthalate	C_{24}H_{38}O_{4}	1983617	ND							
22.70	326.9852	Dicyclohexyl phthalate	C_{26}H_{36}O_{4}	1790400	1212827	1113310	ND	ND	ND	ND	ND	
22.71	358.0683	Phthalic acid, di(hept-2-yl) ester	C_{22}H_{24}O_{4}	ND	ND	1263691	ND	ND	ND	ND	ND	
24.21	287.9999	Terephthalic acid, di(4-octyl) ester	C_{24}H_{34}O_{4}	ND	ND	85444	ND	ND	ND	ND	ND	
25.04	173.0630	cis-Cyclohex-4-en-1,2-dicarboxylic acid, di(phenethyl) ester	C_{24}H_{28}O_{4}	ND	ND	305523	ND	ND	ND	ND	ND	

(continued on next page)
Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
28.87	426.3870	Urs-12-en-24-oic acid, 3-oxo-, methyl ester, (+)-	C_{31}H_{48}O_{3}	ND	ND	ND	209859	ND	ND	ND	ND
30.05	530.4690	Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, octadecyl ester	C_{35}H_{62}O_{3}	123534	ND	ND	67852	1106099	3286798	ND	ND

FAEE

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
22.44	312.2648	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C_{19}H_{38}O_{4}	ND	ND	8701469	11891657	ND	ND	ND	ND

FAMEs

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS	
17.02	270.2556	Hexadecanoic acid, methyl ester	C_{17}H_{34}O_{2}	ND	13693362	35747181	33880749	18186155	4686779	35059912	54595941	
17.02	270.2552	Pentadecanoic acid, 14-methyl-, methyl ester	C_{17}H_{34}O_{2}	ND	ND	ND	ND	ND	ND	ND	ND	
18.79	266.2227	9,12-Hexadecadienoic acid, methyl ester	C_{17}H_{36}O_{2}	ND	ND	ND	ND	ND	ND	ND	ND	
18.79	294.2544	9,12-Octadecadienoic acid, methyl ester	C_{19}H_{38}O_{2}	ND	ND	ND	ND	ND	ND	ND	ND	
18.82	296.2714	trans-13-Octadecenoic acid, methyl ester	C_{19}H_{38}O_{2}	3255171	ND	ND	1152194	2341413	ND	ND	ND	ND
19.05	298.2860	Methyl stearate	C_{19}H_{38}O_{2}	ND	4471317	17709835	5259746	3046077	14396244	ND	ND	
20.85	227.2010	Tridecanoic acid, methyl ester	C_{13}H_{28}O_{2}	1025025	713908	1152194	2341413	ND	ND	ND	ND	
20.86	200.1731	Undecanoic acid, methyl ester	C_{11}H_{22}O_{2}	ND	ND	ND	697166	ND	ND	ND	ND	
22.50	356.3561	Hexacosanoic acid, methyl ester	C_{24}H_{40}O_{2}	ND	ND	ND	5563687	ND	ND	ND	ND	
25.01	282.2511	Oxalic, di(1-menthyl) ester	C_{10}H_{16}O_{2}	ND	ND	ND	943438	ND	ND	ND	ND	

Ketones

Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
3.25	108.0683	Imidazo[4,5-d]imidazole, 1,6-dihydro-1,2-Cyclopentanedione	C_{4}H_{4}N_{4}	ND	ND	ND	17682	ND	ND	ND	ND
3.41	98.0364	7-Chloro-1,3,4,10-tetrahydro-10-hydroxy-1-[2-[1-pyrrolidinyl]ethyl]imin]-3-[3-(trifluoromethyl)phenyl]-9(2H)-acridinone	C_{14}H_{10}O_{2}	ND	ND	ND	1169975	2802233	ND	ND	ND
3.68	375.9799	Imidazo[4,5-d]imidazole, 1,6-dihydro-1,2-Cyclopentanedione	C_{14}H_{10}O_{2}	ND	ND	ND	1169975	2802233	ND	ND	ND

(continued on next page)
Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS	
3.94	191.0011	1-Pentanone, 1-(2-thienyl)-	C₄H₁₂OS	ND								
5.40	85.0523	2-Pyrrolidinone	C₄H₈N	ND								
8.34	150.0676	Ethanone, 1-(2-hydroxy-5-methylphenyl)-	C₄H₁₀O₂	ND								
10.95	170.0398	Ethanone, 1-[4-[1-hydroxy-1-methylthyl]phenyl]-	C₁₁H₴O₂	ND	ND	1021014	582086	ND	ND	325492	ND	
12.41	180.0781	2′,4′-Dimethoxyacetophenone	C₈H₁₂O₃	ND	ND	1613696	ND	ND	ND	ND	ND	
12.41	180.0781	Ethanone, 1-(3,4-dimethoxyphenyl)-	C₁₀H₁₃O₃	ND								
13.00	189.1515	2-Butanone, 4-(2,3-dihydro-1H-indol-1-yl)-	C₁₁H₁₄O₂	85005	53880	ND	ND	ND	ND	ND	ND	
13.44	182.0727	Benzenophenone	C₁₃H₁₀O	ND	ND	ND	282691	ND	138491	163689	ND	
14.34	188.1198	Methanone, (1-hydroxycyclohexyl)phenyl-	C₁₃H₁₆O₂	386301	595229	885838	1073775	ND	415036	347436	788474	584284
16.63	269.0482	2-Morpholin-4-ylmethyl-5-phenoxymethyl-4-phenyl-2,4-dihydro-[1,2,4]triazole-3-thione	C₁₂H₁₅NO	133625	ND							
17.05	262.1520	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	C₁₇H₂₄O₃	165132	292457	202831	ND	ND	ND	ND	ND	ND
24.44	158.0821	2-Octen-4-one, 2-methoxy-	C₉H₁₆O₂	ND	ND	236995	ND	ND	ND	ND	ND	
28.80	410.3543	4,22-Stigmastadiene-3-one	C₂₀H₄₀O	ND	ND	ND	533139	ND	ND	ND	ND	ND

Miscellaneous

4.00	138.1040	Furan, 2-pentyl-	C₅H₁₄O	911826	ND						
4.40	123.0680	4(H)-Pyridine, N-acetyl-	C₇H₅NO	ND	ND	ND	391733	ND	ND	ND	ND
5.53	120.0684	1,3,5,7-Tetraoxane	C₄H₂₀O₄	ND	ND	ND	ND	ND	99462₉₃₆	ND	ND
5.58	120.0683	3-Pyridinecarbonitrile, 1,4-dihydro-1-methyl-	C₇H₅N₂	ND							
5.98	359.0650	Cyclopentasiloxane, decamethyl-	C₁₀H₂₀O₅Si₅	2178743	ND						
6.88	143.0860	1,2,4,5-Tetroxane, 3,3,6,6-tetramethyl-	C₆H₁₂O₄	ND	ND	4276079	ND	ND	ND	ND	ND
8.30	431.0862	Cyclohexasiloxane, dodecamethyl-	C₁₂H₁₆O₅Si₆	5186795	724478	ND	9273629	192507	315644	778968	ND

(continued on next page)
Rt (mins)	Observed ion m/z	Name	MF	Flour	Starch
11.06	504.1074	3-Isoproxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane	C_{18}H_{22}O_{12}Si_{7}	ND	ND
11.07	504.1062	3-Butoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethylsiloxy)tetrasiloxane	C_{19}H_{34}O_{12}Si_{7}	432330	ND
11.35	186.0257	Tetraglyme	C_{10}H_{22}O_{5}	ND	ND
12.35	219.1747	(4S,5S)-(+)5-Amino-2,2-dimethyl-4-phenyl-1,3-dioxane	C_{12}H_{17}NO_{2}	ND	ND
11.93	183.0446	6-Hepteno-2-one, 5,7,7-trichloro-	C_{19}H_{42}O_{7}Si_{7}	ND	ND
12.72	157.0885	3-Methyl-4-phenyl-1H-pyrrole	C_{11}H_{11}N	ND	ND
13.35	179.0680	Thiazolo[3,2-a]pyridinium, 8-hydroxy-2,5-dimethyl-	C_{9}H_{9}NOS	ND	ND
13.81	416.0373	Cyclooctasiloxane, hexadecamethyl-	C_{16}H_{40}O_{8}Si_{8}	ND	ND
14.57	168.0782	Thiophene, 2-buty1-5-ethyl-	C_{10}H_{18}S	ND	ND
15.88	433.0855	1,1,5,7,7,7-Heptamethyl-3,3-bis(trimethylsiloxy)tetrasiloxane	C_{15}H_{40}O_{5}Si_{6}	ND	ND
17.36	154.0738	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-	C_{11}H_{18}N_{2}O_{2}	ND	ND
17.58	533.9922	Octasiloxane, 1,1,3,3,5,5,7,7,9,11,11,13,13,15,15-hexadecamethyl-	C_{16}H_{30}O_{8}Si_{8}	ND	ND
18.85	145.1009	Cyclopropene, 1-ethenyl-2-hexenyl-[1a,2ß(E)](-)-	C_{11}H_{18}	ND	ND
19.23	201.1132	2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecane, 1-ethenyl-	C_{8}H_{15}NO_{3}Si	ND	ND
21.13	220.2181	4,8,12,16-Tetramethylenptadecan-4-olide	C_{21}H_{40}O_{2}	ND	ND
21.14	167.1431	2H-Pyran-2-one, tetrahydro-6-pentyl-Indoline, 2-(hydroxydipheny1methyl)-	C_{16}H_{18}O_{2}	ND	ND
22.19	267.2684	2-Octen-4-one, 2-methoxy-	C_{16}H_{16}O_{2}	ND	ND
24.45	156.9946	Heptasiloxane, hexadecamethyl-	C_{16}H_{40}O_{6}Si_{7}	3291323	ND
25.69	532.9916				

(continued on next page)
Rt (mins)	Observed ion m/z	Name	MF	0GBF	24GBF	48GBF	72GBF	0GBS	24GBS	48GBS	72GBS
25.79	309.2793	Propanedinitrile, 2-(1-methyl-2,6-di phenyl-1H-pyrindilidene)-1'-Oxocannabinol	C$_{31}$H$_{35}$N$_{3}$	ND	ND	47194	ND	ND	ND	ND	ND
25.80	310.2833	Stigmastan-6,22-dien, 3,5-dedihydro-	C$_{28}$H$_{46}$	ND							
27.89	394.3603	Pyidine, 3-phenyl-	C$_{11}$H$_{14}$N	ND	ND	ND	150868	ND	ND	ND	ND
28.21	155.0859	Methylenbis(2,4,6-trisopropylphenolphosphine)	C$_{31}$H$_{50}$P$_{2}$	ND	94708	ND	ND	ND	ND	ND	ND
28.79	453.0684	Methyl 38-hydroxyolean-18-en-28-oate	C$_{31}$H$_{50}$O$_{3}$	ND	ND	696769	ND	ND	ND	ND	ND

Phenolic compounds

8.83	154.0625	Phenol, 2,6-dimethoxy-	C$_{6}$H$_{10}$O$_{3}$	ND	ND	ND	288311	ND	ND	ND	ND
9.57	164.1196	Phenol, 4-(1,1-dimethylpropyl)-	C$_{11}$H$_{20}$O	ND	ND	332332	ND	ND	ND	ND	
11.48	220.1823	Butylated Hydroxytoluene	C$_{10}$H$_{24}$O	95604	ND	ND	ND	ND	ND	ND	
11.49	206.1665	2,4-Di-tert-butylphenol	C$_{14}$H$_{22}$O	ND	167604	ND	78267	ND	ND	ND	
14.12	234.1980	Phenol, 2,4-bis(1,1-dimethylpropyl)-	C$_{16}$H$_{26}$O	ND	ND	157473	ND	ND	ND	ND	
21.74	340.2401	Phenol, 2,2'-methylenebis[6-(1,1-dimethylhexyl)4-methyl-	C$_{23}$H$_{32}$O$_{2}$	69972	1728704	ND	ND	ND	ND	ND	
28.79	646.4521	Phenol, 2,4-bis[1,1-dimethylhexyl]-phosphite (3:1)	C$_{42}$H$_{60}$O$_{3}$P	216841	ND						

Phytosterols

27.69	400.3700	Campesterol	C$_{26}$H$_{48}$O	ND	ND	265916	ND	ND	ND	ND
27.89	412.3710	Stig masterol	C$_{26}$H$_{48}$O	753259	603033	1163792	ND	ND	ND	1771221
28.27	414.3861	β-Sitosterol	C$_{26}$H$_{48}$O	ND	345695	ND	ND	ND	ND	ND
28.57	409.3783	β-Am yrin	C$_{10}$H$_{50}$O	ND	283324	ND	ND	ND	ND	ND

Terpene and Terpenoid

| 13.90 | 216.1511 | aR-Turmerone | C$_{10}$H$_{20}$O | ND | ND | 577405 | ND | ND | ND | ND |
| 24.78 | 231.2116 | Supraene | C$_{10}$H$_{50}$O | ND | ND | 1139640 | ND | ND | ND | ND |

Vitamin

| 25.67 | 402.3495 | d-Tocopherol | C$_{27}$H$_{46}$O$_{2}$ | ND | ND | 4693356 | 1276396 | ND | ND | 7647813 |

MF: Molecular formula; FAEE: Fatty acid ethyl ester; FAME: Fatty acid methyl ester; 0GBF: Flour from Bambara groundnut germinated for 0 h; 24GBF: Flour from Bambara groundnut germinated for 24 h; 48GBF: Flour from Bambara groundnut germinated for 48 h; 72GBF: Flour from Bambara groundnut germinated for 72 h 0GBS: Starch from Bambara groundnut germinated for 0 h; 24GBS: Starch from Bambara groundnut germinated for 24 h; 48GBS: Starch from Bambara groundnut germinated for 48 h; 72GBS: Starch from Bambara groundnut germinated for 72 h.
2.3. Extraction of metabolites and GC-HRTOF-MS analysis

Two different mixtures of extraction solvents were used to extract GBF and GBS at the different germination times. The first solvent mixture was methanol/water at 80:20 v/v while the second mixture was acetonitrile/methanol/water at 40:40:20 v/v/v. Extraction of metabolites followed the method previously described by Kewuyemi et al. [3]. Briefly, one gram each of the samples (flour and starch), at the different germination times was weighed into 50 mL centrifuge tubes. Then, 10 mL of each extraction solvent was added, the mixture vortexed vigorously to achieve thorough and even mixing. Thereafter, samples were sonicated (Scientech 704, Labotech, South Africa) for 1 h, centrifuged at 3500 rpm for 5 min at 4 °C (Eppendorf 5702R, Merck South Africa). Supernatants from centrifuge tubes where then taken into fresh tubes and concentrated in a vacuum concentrator (Eppendorf Plus, Merck South Africa). Dried extracts were then reconstituted in 1 mL chromatography-grade methanol, vortexed to ensure even dissolution of extracts and filtered through 0.22 μm microfilters into dark amber vials for GC-HRTOF-MS analyses. Extraction was carried out in triplicate in each case.

Reconstituted extracts were analysed on the GC-HRTOF-MS system (LECO Corporation, St. Josheph, MI, USA), having a resolution of 50,000 FWMH (full peak width at one half maximum), with mass accuracies/errors of < 1 ppm and acquisition rates of up to 200 spectra/s. The system is equipped with a multipurpose sampler (Gerstel Inc., Mülheim an der Ruhr Germany) and Rx®-5 ms column (30 m × 0.25 mm ID × 0.25 μm) (Restek, Bellefonte, USA). From the three replicates of each sample, 1 μL of extracts were injected in a spitless mode and pumped at a constant flow rate of 1 mL/min, with helium as the carrier gas. Inlet and transfer line temperature were set at 250 and 225 °C, respectively and the ion source temperature was at 250 °C. The oven temperature cycle used was: initial temperature of 70 °C for 0.5 min; then an increase of 10 °C/min to 150 °C held for 2 min; then ramped at 10 °C/min to 330 °C and held for 3 min for the column to ‘bake-out’. Experiments for solvent blanks were also carried out to observe possible impurities and contamination. To identify metabolites, spectra were matched with NIST1, Mainlib2 and Flehn3 reference library databases, and their identities determined. To process raw data, parameters such as signal to noise ratio of 100, similarity match of above 70% and the occurrence of metabolites at least two times out of the triplicate data were strictly adopted [4]. Therefore, data obtained and reported in Tables 1 and 2 represent the mean of values obtained from triplicate runs of samples after prior processing of raw data.

Ethics Statement

The authors have no competing financial interests or personal relationships that may have influenced the data reported in this work

CRediT Author Statement

Ajibola Bamikole Oyedeji: Sample preparation, Formal data analysis, Methodology, Visualization, Validation, Writing – original draft; Chiemela Enyinaya Chinma: Conceptualization, Project administration, Writing – review & editing; Ezekiel Green: Funding acquisition, Resources, Writing – review & editing; Oluwafemi Ayodeji Adebo: Funding acquisition, Data curation, Methodology, Formal analyses, Project administration, Resources, Software, Validation, Writing – review & editing.

1 https://www.nist.gov/
2 https://www.mainlib.org/
3 https://fiehnlab.ucdavis.edu/projects/softwaredev.
Declaration of Competing Interest

None.

Acknowledgments

This study was supported financially by the Faculty of Science, University of Johannesburg (UJ) Research Committee (URC) postdoctoral research fellowship received by Ajibola B. Oyedeji, the UJ Global Excellence and Stature (GES) 4.0 Catalytic Initiative Grant and Thuthuka grant (number 121826) of the National Research Foundation (NRF), South Africa.

References

[1] C.E. Chinma, J.O. Abu, B.N. Asikwe, T. Sunday, O.A. Adebo, Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours, LWT 140 (2021) 110749.
[2] S.A. Oyeyinka, S. Singh, P.O. Adebola, A.S. Gerrano, E.O. Amonsou, Physicochemical properties of starches with variable amylose contents extracted from Bambara groundnut genotypes, Carbohydr. Polym. 133 (2015) 171–178.
[3] Y.O. Kewuyemi, P.B. Njobeh, E. Kayitesi, J.A. Adebiyi, A.B. Oyedeji, M.A. Adefisoye, O.A. Adebo, Metabolite profile of whole grain ting (a Southern African fermented product) obtained using two strains of Lactobacillus fermentum, J. Cereal Sci. 95 (2020) 103042.
[4] J.A. Adebiyi, P.B. Njobeh, E. Kayitesi, O.A. Adebo, GC-HRTOF-MS dataset of metabolites extracted from sorghum and ting (a fermented product) produced using two strains of Lactobacillus fermentum (singly and in combination), Data Br. 36 (2021) 107102.