Large-Scale Annotation and Evolution Analysis of MiRNA in Insects

Xingzhou Ma1,2,†, Kang He1,1,†, Zhenmin Shi1, Meizhen Li1, Fei Li1,*, Xue-Xin Chen 1

1State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
2College of Plant Protection, Nanjing Agricultural University, China

*Corresponding author: E-mail: lifei18@zju.edu.cn.
Accepted: 19 April 2021
†These authors contributed equally to this work.

Abstract

Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.

Key words: miRNA, annotation, evolution, pterygota, endopterygota, gain and loss.

Significance

As part of a class of well-studied noncoding RNA genes, miRNAs play a crucial role in phenotype canalization and robustness. However, little is still known about the miRNA evolutionary history in insects. In this study, we identified 16,212 miRNA genes from 152 arthropod species, and analyzed the patterns of gain and loss by comparing the number of miRNA families across insect multiple clades. This constitutes the most comprehensive data set of insect miRNAs to date. Our results demonstrate that the gain and loss of miRNAs are closely associated with insect morphological innovation and trait biodiversity.

Introduction

Insects are among the most diverse clades of eukaryotes, in terms of morphology, biomass, species numbers, and ecological niches (Grimaldi and Engel 2005; Mayhew 2007). After diverging from their crustacean ancestors, insects went through at least two morphological innovations. The emergence of wings was the first of these innovations and occurred during the early evolution of Pterygota. This
The recent availability of insect genomes over the past years makes it possible to obtain a relatively complete miRNA annotation in a high number of insect species (Dannemann et al. 2012; Fromm et al. 2015). Here, we assembled the largest curated data set of miRNAsomes, comprising 16,212 miRNA genes sampled from 152 arthropod species. We used these data to build an insect phylogeny with both miRNA and PCGs, and to reconstruct the evolution of miRNAs in insects.

Results

MiRNA Annotation and Family Analysis in Insects

To reflect the evolution of different insect clades, we analyzed 152 arthropod species, including 134 insects and 17 noninsect arthropods (supplementary data set S1, Supplementary Material online). The miRNA annotation of *Drosophila melanogaster* was downloaded from MirGeneDB (Fromm et al. 2020). For the other 151 species, we annotated 36 species with public available small RNA-seq data (supplementary data set S2, Supplementary Material online) using both evidence-based (miRDeep2) and homology searching-based methods (MapMi and BLAST). For the remaining species, for which only the genome data were available, we annotated using the homology searching-based method (see Methods). We annotated a repertoire of 16,212 miRNA genes from the 152 arthropod species (supplementary table S1 and data set S3, Supplementary Material online). The miRNA annotation of *D. melanogaster* was downloaded from MirGeneDB (Fromm et al. 2020). For the other 151 species, we annotated 36 species with public available small RNA-seq data limited our approach and we were only able to identify homologous miRNAs in the 115 species. Although this slightly impacts analysis on miRNA gains, this is still the most comprehensive data set presently available, and sufficiently reliable for large scale evolution analysis, especially the loss of conserved miRNAs.

In this study, we defined miRNA family as a true evolutionary homologous group of miRNA descendants from one common ancestor. Generally, one seed family represents one true family if its members share highly conserved mature (De Wit et al. 2009; Wheeler et al. 2009; Bartel 2018). To assign miRNAs into families, we first grouped miRNAs with identical mature (nucleotides 2–8) into “seed families.” Nevertheless, a small portion of “seed families,” for example, nMIR-989 and nMIR-BgeN1, their mature sequences are highly divergent. If these miRNAs with homologous flanking regions, we still assigned them into the same family. The miRNAs without such evidence were divided into different families in case the mature identity was <0.7 or if they were not locate in a monophyletic gene group (contradictory to insect phylogeny). For the miRNAs belonging to the same family but having different names in miRBase or MirGeneDB, we used the earliest named ID as the family name (supplementary table S2, Supplementary Material online). For example, nMIR-956 in Diptera and nMIR-3850 in *Tribolium* share the same seed sequence and homologous flanking region and were thus grouped into nMIR-956 (supplementary fig. S1, Supplementary Material online). Even though some miRNA families shared evidence of homology, they nevertheless contained different seeds (e.g., nMIR-10 family) and were regarded...
as different miRNA families. In total, we obtained 513 miRNA families, including 263 newly described families (supplementary table S3, Supplementary Material online).

We divided the insect miRNA families into four categories based on sequence conservation. The families presenting only in one species or genus were assigned as lineage-specific miRNAs (354). Those conserved in both insects and other arthropods were assigned as highly conserved miRNAs (62). The families conserved only in insects or crustaceans were assigned to insect-conserved miRNAs (90) and crustacean-conserved miRNAs (7), respectively. Because lineage-specific miRNAs can only be identified by the expression-evidence method, the number of these miRNAs mainly depends on the quality of the small-RNA libraries (Tarver et al. 2018). Hence, we focused on conserved miRNAs for the phylogenetic and gain/loss analyses.

Association between MiRNA and Genome Completeness

Before using miRNAs for phylogenetic analysis, we first tested whether genome completeness affects the integrity of the miRNA repository. Here, we defined miRNA completeness as the proportion of highly conserved miRNAs that are present in each species. We compared this number with the genome completeness as measured by the Benchmarking Universal Single-Copy Orthologs (BUSCO). The results showed no correlation exists between miRNA and genome completeness (Pearson’s $r = 0.152$) (fig. 1 and supplementary data set S4, Supplementary Material online). Instead, despite the considerable variation in genome completeness for clades like Lepidoptera, we observed no such differences in the miRNA completeness of different species. For example, the genome of Chilo suppressalis had a low BUSCO completeness (40.2%) but showed a high miRNA completeness (88.8%), similar to most Lepidoptera species with a more complete genome as the proportion of highly conserved miRNAs that are present across 74 insect species under the stochastic Dollo model (supplementary data set S7, Supplementary Material online).

The miRNA tree topology is generally consistent with the PCG phylogeny (fig. 3A). Nevertheless, in miRNA tree, the extremely morphologically reduced endoparasite Strepsiptera, belonging to the Endopterygota group and considered a sister group to Coleoptera, was grouped with a high confidence (0.94) inside Hemiptera (Paraneoptera) and as a sister group to Coccoidea and Aphidoidea. Moreover, the miRNA tree failed to support the monophyly of Paraneoptera.

The miRNA tree also failed to support internal relationships in Hymenoptera, especially for parasitoid wasps. However, after removing the clades containing morphologically simplified and parasitoid taxa, we were able to reconstruct a modified miRNA tree that supports the known relationships between the four major orders in Endopterygota (fig. 3B). Interestingly, Endopterygota in both the miRNA trees display a closer relationship to Polynoeoptera than Paraneoptera. This may be caused by extensive miRNA losses in Paraneoptera.

Discrepancy between Insect Phylogenetic Trees Constructed by PCGs and MiRNAs

To study the evolution of miRNA gain and loss, we first reconstructed a phylogenetic tree of 152 arthropods based on single-copy PCGs using a maximum likelihood (ML) method. The PCG phylogenetic tree was in, general, concordant with that obtained by Misof et al. (2014) (fig. 2 and supplementary data set S5 and S6, Supplementary Material online). Interestingly, the Phthiraptera and Thysanoptera clades form a sister group with Hemiptera rather than Endopterygota, and the Diplura taxon is closer to Collembola than Insecta.

The miRNA binary data have been widely used to construct the phylogeny of Diptera, Tardigrada and basal Hexapoda (Campbell et al. 2011; Wiegmann et al. 2011; Liu et al. 2020). Hence, we conducted a phylogenetic analysis using presence/absence binary data for 159 conserved miRNAs across seven insect species from Exopterygota to Endopterygota (supplementary data set S8, Supplementary Material online). Gene Ontology analysis showed these target genes were enriched in biological regulation (GO: 0065007), the regulation of biological process (GO: 0050789), response to stimulus (GO: 0050896), localization (GO: 0051179), signaling (GO: 0050896), and metabolic process (GO: 0008150).
Extensive MiRNA Losses in Paraneopteran with Apparent Trait Loss

The common ancestor of Paraneoptera shared a comprehensive set of miRNA families with 67 conserved families. Only one miRNA was lost at the stem of Paraneoptera, and the common ancestor of Sternorrhyncha contains 65 conserved families (supplementary table S4, Supplementary Material online). However, extensive miRNA losses occurred in various Paraneopteran clades (fig. 5A), including eight families in Phthiraptera and six in Thysanoptera. Most major Sternorrhynchan clades included in our analysis are supported by small RNA-seq data, suggesting these losses were not result from the limitation in homologous searching.

In Hemiptera, only two miRNAs were lost, in Auchenorrhyncha (leafhoppers and froghoppers) and Heteroptera (bugs), which are among the least specialized Hemiptera groups. Sternorrhyncha show more severe miRNA losses, with a total of 26 independent losses along each major branch (fig. 5A and supplementary table S5, Supplementary Material online).

Among the different Sternorrhyncha clades, Coccoidea underwent several episodes of miRNA loss throughout the evolution of Sternorrhyncha, making it one of the groups with the least miRNA families in Paraneoptera (52 families). All these miRNAs are absent in five species in Pseudococcidae, suggesting these loss events occurred before the radiation of this clade. Such massive loss can also be found in Strepsiptera in Endopterygota. Since only one species was analyzed in Strepsiptera, it is difficult to determine the origin of these loss events to a specific period. A total of ten miRNAs were lost in the same family in both Coccoidea and Strepsiptera (fig. 5B), which explained the erroneous placement of these two clades in our miRNA tree. Since both Coccoidea and Strepsiptera share a similar trend of morphological simplification (Beutel et al. 2014), we propose a connection with homoplastic miRNA loss.

We then explored the function of lost miRNAs by searching for their target genes in the red flour beetle Tribolium castaneum (Strepsiptera) and the true bug Halyomorpha halys (Coccoidea). We found the targets of these lost miRNAs are enriched in the Wnt and MAPK signaling pathways and dorso-ventral axis formation in both species (supplementary data set S9, Supplementary Material online). This observation corroborates possible miRNA implication in morphogenesis.

Interestingly, the Psyllidae and Aphidoidea clades gained novel miRNAs, an observation that was supported by small RNA-seq data. In Aphidoidea, 14 of these newly gained miRNAs are conserved across the four Aphid species. Importantly, these new miRNAs may be connected with specific phenotypical changes in these groups, including polymorphism.

Although we found evidence for parallel loss of some miRNA families in distantly related lineages, the majority of miRNA losses in Paraneoptera occurred independently in different lineages. For example, MiR-33 was independently lost in Heteroptera, Aleyrodoide and Aphidoidea. These results suggest homoplastic loss often occurs in parallel across morphologically reduced lineages.

No Apparent MiRNA Innovations in the Appearance of Holometabolous Endopterygota

The development of complete metamorphosis is a process that emerged during the evolution of Endopterygota and
We constructed a phylogenomic tree representing the phylogeny of all 152 arthropod species. Gains and losses of miRNA families were reconstructed on the tree using the Dollo parsimony model. The size of the pie chart on the branches represents the total number of events at the corresponding branch. The red fraction denotes miRNA gain events and the blue denotes loss events. The species annotated with both publicly available small RNA-seq data and homologous searching are marked in bold and dark red. Lineages with morphology reduction are marked in pink. The important reduced characters with miRNA loss are listed in supplementary table S5, Supplementary Material online and identified with Roman numerals. Lineages leading to parasitic lifestyle are marked with a dotted line. The bars on the right denote the number of conserved miRNA families in each species.

Fig. 2.—The evolution of miRNA families in insects. We constructed a phylogenomic tree representing the phylogeny of all 152 arthropod species. Gains and losses of miRNA families were reconstructed on the tree using the Dollo parsimony model. The size of the pie chart on the branches represents the total number of events at the corresponding branch. The red fraction denotes miRNA gain events and the blue denotes loss events. The species annotated with both publicly available small RNA-seq data and homologous searching are marked in bold and dark red. Lineages with morphology reduction are marked in pink. The important reduced characters with miRNA loss are listed in supplementary table S5, Supplementary Material online and identified with Roman numerals. Lineages leading to parasitic lifestyle are marked with a dotted line. The bars on the right denote the number of conserved miRNA families in each species.
which contributes significantly to the biodiversity of insect life (Truman and Riddiford 1999; Mayhew 2007). The important changes in development patterns and the emergence of holometabolan metamorphosis were accompanied by only up to 2 miRNA gains at the transition from Exopterygota to Endopterygota (fig. 6).

Ylla et al. (2016) previously suggested that two additional miRNAs, MIR-1006 and MIR-1007, were gained during the transition from Exopterygota to Endopterygota, but they analyzed only four Endopterygota species. We revisited the history of these two miRNAs by including more taxa and suggest they do not have an Endopterygota origin. While Ylla et al. claimed Mir-1006 was present in *Apis mellifera* and *D. melanogaster* and was thus of Endopterygota origin, we could not find any Mir-1006 homologue in other Hymenopteran insects. The structure of the *A. mellifera* Mir-1006 precursor in miRBase only forms a hairpin-like structure with a minimum free energy (MFE) of -7.10 kcal/mol, and the
extension of this precursor leads to the loss of the hairpin-like structure (supplementary fig. S4A, Supplementary Material online). Moreover, no reads matched to the A. mellifera Mir-1006 when using both the miRBase records and the small RNA-seq data. The only work including Mir-1006 in the Apis genus was reported by Chen et al. (2010), but that study was based on a small amount of reads mapping to the 3' arm, and had no reads from 5' arm. These observations, together with our analysis suggest Mir-1006 was spuriously annotated in A. mellifera.

Mir-1007 is another interesting case, and its seeds are identical in Drosophila and Hymenoptera, with nearly all pairwise identities between respective miRNAs above 0.7 (our threshold for miRNA family assignment) (supplementary fig. S4C, Supplementary Material online). However, the phylogenetic assignment of these two miRNAs is complex. We were only able to find MIR-1007 in Drosophila, and the miRNA is missing in any other Ditpera, Amphiphasmenoptera and Coleoptera species. Hence, in case MIR-1007 is indeed homologous to MIR-6037, at least 8 independent miRNA losses occurred (supplementary fig. S4B, Supplementary Material online). This number seems unreasonably high. Moreover, the precursor of these two miRNAs showed great disparity (supplementary fig. S4D, Supplementary Material online), whereby it is likely they arose from two independent events and were thus assigned to different families. MIR-1007 and MIR-6037 provide a good example of homoplasy in miRNAs.

There are another three enigmatic miRNAs that may have originated in the common ancestor of Endopterygota, namely MIR-2941 in mosquito, MIR-3841 in Coleoptera and MIR-6000 in Hymenoptera. These three miRNAs share the same seeds but are otherwise highly divergent (fig. 7A). In miRBase, these miRNAs were assigned into three different families. In MiRGeneDB, MIR-6000 was not included, whereas MIR-2941 and MIR-3841 belong to different families. These three miRNAs share no homologous synteny (fig. 7B) but were featured as tandem clusters in many species. In beetles Nicrophorus vespilloides and sawflies Andrena rosae, MIR-3841 and MIR-6000 both formed tandem duplication clusters.

Fig. 4.—MiRNA evolution in Exopterygota.

Fig. 5.—Extensive miRNA loss during Paraneoptera evolution. (A) MiRNA loss events in Paraneoptera Clades, the species whose miRNA annotation is supported by small RNA-seq reads are marked in bold red. (B) Comparison of miRNA family losses in Coccoidea and Mengenilla moldrzyki (Sterpsiptera).
Fig. 6.—Gain and loss of miRNA families in major Endopterygota lineages.

Fig. 7.—MIR-6000, MIR-3841, and MIR-2941 in Endopterygota insects. (A) Sequence alignments of MIR-6000, MIR-3841, and MIR-2941. The two seed types (AGUACGG and AGUACGA) were aligned separately. (B) Flanking genomic regions of MIR-6000, MIR-3841, and MIR-2941 in different Endopterygota lineages. (C) MIR-3851 clusters in Tribolium castaneum. Green stripes denote the members sharing the same seed sequence with MIR-2941. (D) Alignment of mature sequences of MIR-3851 members in T. castaneum.
with more than ten units. In *Tribolium*, miR-3841 share the same seeds as a variety of other members of MIR-3851 (fig. 7C and D). As a specific fast-evolving miRNA, MIR-3851 forms large tandem duplication clusters in the *Tribolium* genome (Ninova et al. 2016), implying that these clustered miRNAs probably belong to a fast evolving miRNA family in Endopterygota.

Eip93F is a Target of MIR-989 in Endopterygota

Specifically, MIR-989 was gained at the branch leading from Exopterygota to Endopterygota, together with the loss of MIR-BgeN1 (which corresponds to BGE-NOVEL-1 in the MirGeneDB and to miR-bg5 in a previous analysis [Ylla et al. 2016]). Even though is derives from a different arm, the mature MIR-BgeN1 (5′-arm in Exopterygota) and MIR-989 (3′-arm in Endopterygota) share an identical seed (fig. 8A). This opens the possibility that MIR-989 in Endopterygota originated from a hairpin-shifting event of MIR-BgeN1 in Exopterygota. Instead, it might have arisen independently as a result of convergent evolution. We searched the flanking region of both miRNAs and found they share no homologous synteny. In Endopterygota, MIR-989 is located upstream of the gene Prosap, whereas in Exopterygota no deep conserved synteny relationship exists. However, in cockroach and termites (Blattaria), MIR-BgeN1 is linked with the genes Dyrk3 and Zir (fig. 8B). Hence, MIR-989 more likely arose independently due to convergent evolution in Endopterygota, whereby we placed the two miRNAs in two independent families.

To further investigate the role of the MIR-989 family in insects, we implemented a search for its targets among four Endopterygota insects (*A. mellifera*, *T. castaneum*, *B. mori*, *D. melanogaster*), and performed a similar approach for the MIR-BgeN1 family in three Exopterygota species (*Acyrthosiphon pisum*, *D. halys*, and *Zootermopsis nevadensis*) (supplementary data sets S10 and S11, Supplementary Material online). We found that the transcription factor Eip93F (E93), which is related to metamorphosis, is targeted by MIR-989 in all four Endopterygota insects (fig. 8C). The inclusion of more Endopterygota taxa allowed to unveil this relationship between MIR-989 and Eip93F and confirms it is widely distributed in Endopterygota (supplementary data set S12, Supplementary Material online). Moreover, the target site was conserved at both the seed and the 3′-complementary regions across in *Drosophila* and *Apis* (fig. 8D and supplementary fig. S5, Supplementary Material online). Nevertheless, we failed to find any target-site relationship between MIR-BgeN1 and Eip93F in the three analyzed Exopterygota species. This implies that the relationship between Eip93F and miRNAs is unique to Endopterygota, and perhaps explains the origin of this group. In both Exopterygota and Endopterygota, Eip93F plays key roles in promoting adult metamorphosis and is essential for the transition between nymphal (pupal) and adult states (Mou et al. 2012; Urena et al. 2014). Hence, the origin of MIR-989 with its target Eip93F in Endopterygota might have played a very important role in the development of metamorphosis in this clade.

MiRNA Explosion and Collapse within Endopterygota

Despite a very limited number of miRNA gains during early Endopterygota evolution, we estimated a total of 27 gain events occurred at the major branches after Endopterygota diversification (fig. 6 and supplementary table S4, Supplementary Material online). A total of nine families were gained on the branch leading to Hymenoptera, making this clade second in terms of highest number of miRNA gains in Endopterygota insects. These miRNAs are shared by sawfly *A. rosae* and other Hymenoptera insects but do not exist in other species. In Hymenoptera, parallel miRNA losses occurred across the clades of parasitoid wasps. As observed in Sternorrhyncha, the ancestor of parasitoid wasps also retained a relatively complete miRNA complement and several loss events only occurred in parallel after the radiation of parasitoid wasps (supplementary fig. S6A, Supplementary Material online). For example, two subfamilies of Braconidae, namely Microgatrinae and Opiniae, lost three miRNAs in different miRNA families, indicating these loss events happened very recently during their evolution.

A further two miRNAs, MIR-314 and MIR-970, were obtained in the common ancestors of Coleopterodea and Panorpida, after the split from Hymenoptera. Strepsiptera showed an extensive loss of 19 miRNA families (supplementary table S4, Supplementary Material online), one of which (MIR-3849) was gained in Coleoptera and is shared by both *Pogonus chalceus* (Adephaga) and Polyphaga. Moreover, miR-988 first appeared in the common ancestor of Panorpida and is shared by Diptera, Trichoptera, and Lepidoptera. As for MIR-2755 and MIR-2768, both are shared by Lepidoptera and Trichoptera and were gained at the root of Amphipholomenoptera. We also observed a significant miRNA burst in Lepidoptera, with a total of 11 families gains. This is in agreement with a previous study (Quah et al. 2015) and makes Ditrysia Lepidoptera the clade with the highest miRNA gains in Endopterygota.

In Diptera, the miRNA families MIR-999 and MIR-957 are shared by both mosquitoes and flies and first emerged at the root of this group. We also observed a series of miRNA gains and losses from basal Diptera to crown Schizophora (supplementary fig. S6B, Supplementary Material online), which provides support to the paraphyly of the old taxon Nematocera. The MIR-994 family is shared by *Mayetiola destructor* (Bibionomorpha) and Brachycera, suggesting a closer relationship between these groups. Furthermore, MIR-284 and MIR-958 are shared by *Proctacanthus coquilletti* (Asiloidea) and upper Brachycera and were gained at the root of
Brachycera. This branch also witnessed the loss of three conserved miRNAs, which was followed by another two loss events at the stem of Cyclorrhapha. The gain of MIR-987 occurred after the split of Platypezoidea at during basal Schizophora evolution, and this phylogenetic relationship is consistent with a previous analysis of Diptera miRNA (Wiegmann et al. 2011).

Discussion

Multicellular animals developed a complex system of genomic innovations, including the expansion of key signaling pathways, transcription factors and regulatory DNA and RNA classes (Sogabe et al. 2019). High degrees of noncoding DNA elements and a large number of expressed noncoding RNAs are believed to confer organisms the ability to coordinate the biological complexity of morphology (Taft and Mattick 2003). However, the miRNA repertoires of a limited number of insect taxa have so far failed to provide convincing evidence to explain the evolution of miRNAs in detail. In this study, we extend the miRNA annotation to 152 arthropod species and thus provide the most comprehensive data set of miRNA complements to date. This allowed us to reconstruct the evolutionary relationship between miRNAs in different insect species. The completeness of the miRNA annotation shows no correlation to genome completeness, suggesting our pipeline works equally well even in the cases of low genome quality. By including trace data for searching, short-length miRNAs are easier to retrieve in fragmented genomes compared with PCGs. Notably, only homologous miRNAs could be found in the 115 species lacking small RNA library data. Hence, we needed to be more stringent in analyzing the gain of novel miRNAs in some lineages because we might unintentionally exclude some newly evolved miRNAs due to the lack of small RNA library data (Guerra-Assunção and Enright 2012; Tarver et al. 2018). Despite this, we present the first large-scale analysis of miRNA evolution across more than one hundred insect species, and our data provide the most reliable analysis of miRNA gain/loss in insects at present.

Reconsidering the Use of MiRNAs in Phylogenetic Analysis

The use of miRNAs as phylogenetic markers to infer species relationships was successfully implemented in many eukaryotes, including metazoan (Tarver et al. 2013), Tardigrada (Campbell et al. 2011), and arthropods (Rota-Stabelli et al. 2013). However, the use of miRNAs as phylogenetic markers has been limited due to the lack of high-throughput sequencing data and the complexity of miRNA evolution. In this study, we provide a comprehensive analysis of miRNA evolution across a large number of insect species, which allows us to evaluate the potential of miRNAs as phylogenetic markers. The results suggest that miRNAs can be useful for inferring species relationships in insects, but further studies are needed to explore the potential of miRNAs as phylogenetic markers in this group.
The Gain and Loss of MiRNAs in Insects

Morphological innovations, such as the appearance of insect wings and holometabolon metamorphosis, significantly contributed to the success of insects (Grimaldo and Engel 2005). Here, we found five miRNAs that were gained in basal Pterygota, at the origin of winged insects. These newly gained miRNAs may thus have played crucial roles in the development of Pterygota morphological innovations, in particular wing vein formation, as well as stress resistance. These likely provided winged insects with the ability to explore previously unexplored terrestrial niches. In contrast, we found extensive miRNA losses in Paraneoptera and Parasitoid wasps. The common ancestor of Paraneoptera still had a complete miRNA compliment, and miRNA loss events occurred after the radiation of the clade. We suggest these miRNA losses may be connected to the independent morphological reduction observed in each clade. Paraneoptera insects are good examples to understand how miRNA loss drives morphological reduction (or vice versa). The loss of miRNAs in Parasitoid wasps likely resulted from parasitic lifestyle. Considering the conservation of miRNA sequences across distantly related taxa, parasitoid wasps may be able to exploit the miRNAs present in the host by using parasitism factors (like virus). In fact, it has been demonstrated that parasitic wasps can adopt miRNAs from virus to modulate host development (Wang et al. 2018).

In Endopterygota, only few miRNAs were gained at the stem compared with numerous miRNAs that emerged after the radiation of the major Endopterygotan clades, especially in the branch leading to Hymenoptera and Lepidoptera. This result supports more of the pronymph theory that both larvae and pupa in Endopterygota derived from already exiting life stages in Exopterygota (pronymph and nymph). Hence, the increment in morphological complexity is not as high as expected. In Neuroptera and some basal Coleoptera, the larvae (Oligopod larvae) and pupa type (Decticous pupa) are considered more primitive and similar to the adult stage than Endopterygota groups like Hymenoptera and Lepidoptera. Since the primary development of organ systems in these taxa occurs during the larval stage, the metamorphosis has likely progressed slowly (Gillott 2005; Belles 2020). Hymenoptera is placed as the most basal lineage of Endopterygota in modern phylogenetic relationships. If the degree of metamorphosis in ancestral Endopterygota was still as rudimentary as observed in modern Megaloptera and Neuroptera, and advanced metamorphosis accumulated independently after radiation, it is possible to expect a concomitant accumulation of genes during this evolutionary process. Extensive analysis with PCs or other functional elements and more Endopterygotan taxa, such as Megaloptera and Neuroptera, might confirm this possibility.

Our work provides a more well-curated miRNA data set and a robust gain and loss phylogenetic analysis of insect miRNA families. Due to the shortage of 3'UTR sequences, it is still hard to accurately predict miRNA targets. This hampers a deeper understanding on the function of many of the gained and lost miRNAs. To fully elucidate the relationship between miRNA evolution and organism complexity and trait
diversity, it is necessary to develop more high-quality small RNA sequencing and genome data that improve the accuracy and coverage of miRNA prediction. Moreover, the biological functions of newly evolved miRNAs should be experimentally verified to confirm their putative roles in contributing to organismal complexity. The establishment of novel miRNA-target relationships may contribute to establish the time of appearance of certain important developmental features (Moran et al. 2017; Kawahara et al. 2019), which is very important for fully uncovering the roles played by miRNAs during insect evolution.

Materials and Methods

Data Sources and Preprocessing

The masked and unmasked genomes of 152 selected arthropod species were retrieved from the NCBI Assembly Database, Ensembl Metazoa, and BCM-HGSC (supplementary data set S1, Supplementary Material online). Genome completeness was assessed using BUSCO v4.1.4 with the library arthropoda_odb10 (Simão et al. 2015). The small RNA-seq libraries used for annotation were downloaded from the NCBI Sequence Read Archive (SRA) database (supplementary data set S2, Supplementary Material online). SRA files were decompressed by the fastq-dump program in the SRA toolkit package. The raw reads were filtered using Trimmomatic v0.38 (Bolger et al. 2014). The adaptors were removed by Cutadapt (Martin 2011). The Kraken package was used to remove low complexity reads and collapse redundant reads (Davis et al. 2013). The reads that mapped to Rfam (Kalvari et al. 2018) (except miRNA) and Repbase (Jurka et al. 2005) were also removed, and were those with <18 nt or >24 nt length. All samples in one species were combined as clean reads before proceeding with the miRNA annotation.

The miRNA sequences used for homology searches were downloaded from the miRBase v22 (Kozomara and Griffiths-Jones 2014) and the MirGeneDB 2.0 (Fromm et al. 2020) databases. For the latter, we selected the miRNA repertoires of seven arthropods (D. melanogaster, Aedes aegypti, Heliconius melpomene, T. castaneum, Blattella germanica, Daphnia pulex, and Xenodius scapularis), totaling 1,184 miRNAs. The miRNA repertoires of 12 arthropods were selected from miRBase, specifically: A. aegypti, Anopheles gambiae, A. mellifera, A. pisum, Bactrocera dorsalis, B. mori, Culex quinquefasciatus, H. melpomene, Plutella xylostella, Spodoptera frugiperda, Triops cancriformis, and T. castaneum. Considering that the miRNAs present in the miRBase reportedly contain numerous false positives, we used a homemade python script (available at https://git.ee/mamading/my_mi-rna_work) to filter these miRNAs (Fromm et al. 2020). These criteria include: 1) Reads with a size of 20–26 nt map to each of the miRNA hairpin precursor arms; 2) The 5’ end of >90% of the reads from the same arm are located at the same position; 3) The 5p and 3p of mature miRNAs show 2 nt overhang; 4) The loop length is equal to or longer than 8 nt. We set the maximum length of the loop to infinite given most insects contain two or more Dicer proteins (Fromm et al. 2015). This allowed us to obtain 1,087 high-confident miRNAs. The miRNAs from both sources were then combined and used as query for further BLAST analysis. The miRNA annotation of D. melanogaster was downloaded directly from MirGeneDB (Fromm et al. 2015).

MiRNA Annotation

To obtain a curated miRNA data set, we established a pipeline for miRNA annotation. First, we annotated miRNA repertoires of 36 species with publicly available small RNA-seq data using miRDeep2 (Friedlander et al. 2012) and MapMi (Guerra-Assunção and Enright 2010). In contrast, we only used MapMi for the remaining 115 species. For both two programs, we used masked genome data to build the indexes and unmasked genomes for sequence extraction. For miRDeep2, we set a cut-off score >5 and a Significant Randfold P-value = yes. For MapMi, we set a cut-off score ≥ 25 and MFE < −18 kcal/mol. The miRDeep2 predicted miRNAs that are currently not included in available databases were considered novel miRNAs if passing the criteria described by Fromm et al. (2015).

After this, and in order to reduce the possibility that real miRNAs might be neglected by the annotation programs or not covered by the genome assemblies, we also searched the missing miRNAs in genomic data. If one miRNA was missing in a certain species but present in another closely related species, we assumed this miRNA exists but corresponded to a false negative in the annotation programs. We then manually searched for its homologous sequence (BlastN, e-value <1e-5) and conserved genomic region. The putative sequence (if present) was filtered according to structural criteria (stem-loop or stem-apical bulge structure & MFE < −18 kcal/mol). In case the sequence was still missing, we assumed the miRNA exists but was not covered by the genome assembly. We searched raw genome sequencing data in the NCBI SRA database by online BlastN (e-value <1e-5). The hits were downloaded and assembled by Cap3 (Huang and Madan 1999). If no hit was found, we considered the miRNA as truly absent. We then removed redundant miRNAs. Finally, the miRNA annotations for all species were collected for further analysis.

MiRNA Family Classification

We first grouped miRNAs with identical seed (site 2–8 in mature sequence) into “seed families.” For each seed family, we checked the sequence identity of mature miRNAs and the corresponding flanking genomic regions. The miRNAs that shared the same seed and an homologous flanking sequence, independently of the discrepancy between their mature sequences, were assigned to the same miRNA family. For
those miRNAs with no homologous flanking sequence, we used the globaixa tool in the BioPython package (http://www.biopython.org) to align each pair of mature miRNA sequences in each seed family. The sequences showing an identity <0.7 or not locating in a monophyletic gene group (contradictory to insect phylogeny, like Mir-1007 and Mir-6037) were divided into different miRNA families. The family names of known miRNAs followed the nomenclature of MirGeneDB. For novel families predicted by mirDeep2, and in case they existed in MirGeneDB, we renamed them by abbreviating the species name, adding an “N” to represent “novel” and an index number. For example, the novel 1 family in *B. germanica* (termed BGE-NOVEL-1 in MirGeneDB) was renamed MIR-BgeN1 in this study.

Construction of Phylogenomic Trees

To place miRNA family gain and loss events in context, we constructed a phylogenomic tree for the 152 selected arthropod species using orthologous single-copy PCGs. To assign all genes into orthologous groups, we downloaded the protein gene annotations from 107 species with OGS data (supplementary data set S5, Supplementary Material online), and used the software Diamond to conduct all-versus-all BLASTp for their peptides (Buchfink et al. 2015). We then used OrthoMCL to assign genes into orthologous groups (Li et al. 2003) and obtained 2,380 single-copied orthologous genes. The groups that were present in single-copy in >95% of the species were selected as single-copy orthologous genes. Next, we identified the orthologous region of these selected genes in the 45 species for which no protein annotations were available. The protein sequences of orthologous groups obtained from closely related species were used as query, and the TBLastN program was applied to perform the search. The matched regions were extracted from the genome and confirmed by reciprocal BLASTp to the protein sets from the other species. The obtained sequences were selected as corresponding to single-copy orthologous genes in these species.

For each orthologous group, we aligned their respective amino acid sequences using mafft with L-INS-I algorithms (Katoh and Standley 2013). Low quality alignments and poly conserved sites were removed with Gblocks (we set -b1 = 0 and -b2 = 0) (Castresana 2000). The alignment of all the genes was then concatenated into a supermatrix using an in-house Python script. The obtained supermatrix contained a total of 365,877 amino acids (aa). This matrix was used to construct a ML phylogenetic tree using IQ-tree (Nguyen et al. 2015). We set the replacement model to LG+I+G and used the Ultrafast bootstrap method with a bootstrap value of 1,000. Next, we selected 18 nodes using the divergence time inferred from Misof et al. as calibration (supplementary table S6, Supplementary Material online) and the r8s to infer the divergence time of the whole tree (Sanderson 2003; Misof et al. 2014).

Phylogenetic Analysis Using MiRNAs

We reconstructed two binary matrices using the presence/absence of conserved miRNA families in 74 arthropod species. We removed the species from Sternorrhyncha, Thysanoptera, Phthiraptera, Strepsiptera and Phoridae in Diptera, and parasitoid wasps in Hymenoptera, as these species show some degree of morphological simplification. A conserved miRNA family was defined as a miRNA family that was present in more than one species but not in the same genus. The software BEAST v1.8.4 was used to perform the phylogenetic analysis under a Bayes stochastic Dollo model (Suchard et al. 2018). The clock model was set as an uncorrelated relaxed clock with Gamma relaxed distribution. The tree prior was set to Birth–Death process. The length of the chain was set to 10,000,000, with samples taken every 1,000 iterations. The final tree was summarized by TreeAnnotator, available in the BEAST package.

Gain and Loss Analysis

To investigate the miRNA evolution in insects, we analyzed the gain and loss events of miRNA families. We assumed that miRNA families evolved under a Dollo parsimony model (Rogozin et al. 2005). This model allows for each gene family to be gained only once in the course of evolution but poses no limitation on the secondary loss of each family after it is gained. We used this model by implementing the Dollo program in the PHYLIP package (http://evolution.genetics.washington.edu/phylip.html). The presence/absence of each family was used as input data and the constructed phylogenomic tree was used as a background tree. We manually mapped the gain and loss of each miRNA family to the corresponding branches of the tree. The obtained tree showing the gain and loss events on each branch was then used to explore the evolution of miRNAs in insects.

Target Searching

To search for miRNA targets in the species of interested, we first extracted the 3′-UTR sequences of this species with a homemade python script. For each PCG, we selected the region extending from the stop codon to the 3′-end of the transcripts as 3′-UTR sequences. The mature miRNAs of interest were used as query. We used three different miRNA target prediction programs for target searching, namely Miranda (Enright et al. 2003), RNAhybrid (Kruger and Rehmsmeier 2006), and Pita (Kertesz et al. 2007). In Miranda, we set a cut-off score of <120 and a max energy <−18; in Pita, we set a cut-off value score <8; in RNAhybrid, we set the cut-off value to MFE <−18 kcal/mol. The targets that were predicted in more than two programs were selected as putative targets. The function of the target genes was annotated by comparing to homologous genes in *D. melanogaster* using BLASTp. Finally, we conducted KEGG and Gene Ontology enrichment
analyses of target genes using the clusterProfiler package available in R (Yu et al. 2012).

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 31972354, 31772238, 31701785), the National Science & Technology Fundamental Resources Investigation Program of China (2019FY100400), and the Fundamental Research Funds for the Central Universities (2020QNA6024).

Author Contributions

F.L. conceived the project and designed the research; X.M. annotated the miRNAs; X.M. and F.L. analyzed the data; X.M., K.H., Z.S., M.L., X.C., and F.L. interpreted and discussed the results; X.M., K.H., and F.L. wrote the manuscript.

Data availability

The source data are available as supplementary files. All data used for miRNA annotation, phylogenetic tree construction, and target analysis can also be accessed at http://insect-genome.com/miRNAomes/.

Literature Cited

Ambros V. 2004. The functions of animal microRNAs. Nature 431(7006):350–355.

Bai Y, et al. 2014. Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. BMC Genomics 15(1):736.

Bartel DP. 2018. Metazoan microRNAs. Cell 173(1):20–51.

Bejarano F, Smibert P, Lai EC. 2010. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev Biol. 338(1):63–73.

Belles X. 2017. MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 62:111–125.

Belles X, editor. 2020. Insect metamorphosis: from natural history to regulation of development and evolution. 1st ed. San Diego (CA): Academic Press is an Imprint of Elsevier.

Berezikov E. 2011. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 12(12):846–860.

Beutel RG, Friedrich F, Yang XK, Ge SQ. 2014. Insect morphology and phylology. Berlin, Boston: De Gruyter.

Biryukova I, Asmar J, Abdesselem H, Heitzler P. 2009. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Dev Biol. 328(1):487–496.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 12(1):59–60.

Campbell L, et al. 2011. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA. 108(38):15920–15924.

Castrasasna J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552.

Chen X, et al. 2010. Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera: honey bee microRNAs profiling by deep sequencing. Insect Mol Biol. 19(6):799–805.

Dai ZH, et al. 2009. Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev. 11(1):41–49.

Dannemann M, Nickel B, Lizano E, Burbano HA, Kelso J. 2012. Annotation of primate miRNAs by high throughput sequencing of small RNA libraries. BMC Genomics 13:116.

Davis MP, van Dongen S, Abreu-Gooodger C, Bartonicek N, Enright AJ. 2013. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63(1):41–49.

De Wit E, Linnen SEV, Cuppen E, Berezikov E. 2009. Repertoire and evolution of microRNA genes in four divergent nematode species. Genome Res. 19(11):2064–2074.

Deine B, et al. 2018. Evolution of metazoan morphological disparity. Proc Natl Acad Sci USA. 115(38):E8909–E8918.

Enright AJ, et al. 2003. MicroRNA targets in Drosophila. Genome Biol. 5(1):R1.

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40(1):37–52.

Fromm B, et al. 2015. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet. 49:213–242.

Fromm B, et al. 2020. MrGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res. 48(D1):D1172.

Fromm B, Warren MM, Hahn C, Hoving E, Bachmann L. 2013. Substantial loss of conserved and gain of novel microRNA families in flatworms. Mol Biol Evol. 30(12):2619–2628.

Gillott C. 2005. Entomology. Netherlands: Springer Science & Business Media.

Gomez-Orte E, Belles X. 2009. MicroRNA-dependent metamorphosis in hemimetabolan insects. Proc Natl Acad Sci USA. 106(51):21678–21682.

Grimaldi D, Engel MS. 2005. Evolution of the insects. New York, Cambridge University Press.

Guerra-Assunção JA, Engel AJ. 2010. MapMi: automated mapping of microRNA loci. BMC Bioinformatics 11:133.

Guerra-Assunção JA, Enright AJ. 2012. Large-scale analysis of microRNA evolution. BMC Genomics 13:218.

Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ. 2008. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA. 105(8):2946–2950.

Hertel J, Stadler PF. 2015. The expansion of animal microRNA families revisited. Life (Basel) 5(1):905–920.

Huang XQ, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Res. 9(9):868–877.

Jurka J, et al. 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110(1–4):462–467.

Kalvari I, et al. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46(D1):D335–D342.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kawahara AY, et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc Natl Acad Sci USA. 116(45):22657–22663.
