Supplemental folic acid in pregnancy and childhood cancer risk

Jan Helge Seglem Mortensen1,2, Nina Øyen1,3, Tatiana Fomina1, Mads Melbye4,5,6, Steinar Tretli7, Stein Emil Vollset1,8 and Tone Bjørge*,1,7

1Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, Bergen N-5018, Norway; 2Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; 3Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; 4Department of Epidemiology Research, National Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark; 5Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; 6Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; 7Cancer Registry of Norway, Oslo, Norway and 8Norwegian Institute of Public Health, Oslo, Norway

Background: We investigated the association between supplemental folic acid in pregnancy and childhood cancer in a nationwide study of 687,406 live births in Norway, 1999–2010, and 799 children diagnosed later with cancer.

Methods: Adjusted hazard ratios (HRs) compared cancer risk in children by approximated periconceptional folic acid levels (folic acid tablets and multivitamins (0.6 mg), only folic acid (0.4 mg), only multivitamins (0.2 mg)) and cancer risk in unexposed.

Results: Any folic acid levels were not associated with leukemia (e.g., high-level folic acid HR 1.25; 95% CI 0.89–1.76, PTrend 0.20), lymphoma (HR 0.96; 95% CI 0.42–2.21, PTrend 0.51), central nervous system tumours (HR 0.68; 95% CI 0.42–1.10, PTrend 0.32), neuroblastoma (HR 1.05; 95% CI 0.53–2.06, PTrend 0.85), Wilms’ tumour (HR 1.16; 95% CI 0.52–2.58, PTrend 0.76), or soft-tissue tumours (HR 0.77; 95% CI 0.34–1.75, PTrend 0.90).

Conclusions: Folic acid supplementation was not associated with risk of major childhood cancers.

Health authorities in many countries recommend women planning pregnancy to take folic acid before and during pregnancy to reduce offspring risk of neural tube defects (SACN, 2006). A large number of countries also fortify flour with folic acid (CDC, 2008). Mandatory food fortification with folic acid is debated in some countries because of the suggested cancer risk in adults (Kim, 2004; Mason et al, 2007; Smith et al, 2008). However, in case–control studies on children, cancer risks (leukemia, brain tumours) were reduced if the mother had been exposed to perigestational maternal folic acid supplementation (Thompson et al, 2001; Milne et al, 2010; Milne et al, 2012; Metayer et al, 2014). And, in ecological studies from Canada and the United States of America, the childhood cancer incidence (Wilms’ tumour, primitive neuroectodermal tumours, neuroblastoma) has been reduced after mandatory folic acid flour fortification (French et al, 2003; Grupp et al, 2011; Linabery et al, 2012).

The aim of our study was to investigate the association between maternal intake of folic acid supplementation in pregnancy and offspring risk of childhood cancer in a nation-wide cohort study in Norway.

MATERIALS AND METHODS

Data sources. The unique personal identification number assigned to all Norwegian residents enabled linkage of information between the Medical Birth Registry of Norway (MBRN) (Irgens, 2000), the Cancer Registry of Norway (CRN) (Larsen et al, 2009), and the Norwegian National Education Database that holds information on all individuals’ education (Kinge et al, 2015).

Folic acid and multivitamin supplementation exposure. Folic acid and multivitamin supplementation use has been registered in...
the MBRN since December 1998. The registration form uses check boxes with the items ‘folic acid before pregnancy’, ‘folic acid during pregnancy’, ‘multivitamins before pregnancy’, and ‘multivitamins during pregnancy’. During the study period, the folic acid content was 0.4 mg in folic acid supplements and approximately 0.2 mg in multivitamin supplements. Children were defined as exposed to folic acid if their mothers used folic acid supplements and/or multivitamins before and/or during pregnancy. Maternal folic acid intake was categorised by increasing folic acid content; no supplement use (0 mg), only multivitamins (approximately 0.2 mg), only folic acid supplements (0.4 mg), or intake of both folic acid supplements and multivitamins (approximately 0.6 mg).

Childhood cancer

Childhood cancer cases were identified through linkage with CRN. For each child, the first cancer diagnosis was used. The childhood cancers were categorised according to the International Classification of Childhood Cancer, version 3, which is based on ICD-O-3 (Steliarova-Foucher et al, 2005).

Study cohort

The study cohort consisted of all live births in Norway, 1 January 1999 through 31 December 2010 (excluding children with mothers with a prebirth cancer diagnosis (3371)), with follow-up until a cancer diagnosis, emigration, death, or 31 December 2010.

Statistical analysis

Risk of childhood cancers in children exposed to maternal folic acid and/or multivitamin supplements was compared with cancer risk in unexposed children and estimated with hazard ratios (HRs) using Cox proportional hazards regression models with time since birth as the time variable, adjusting for a priori selected covariates associated with maternal folic acid use and childhood cancer risk; that is, birth order (1, 2, >3), maternal smoking (never, sometimes, <10 cigarettes daily, >10 cigarettes daily, daily smoking of unknown amount), maternal and paternal age (<25, 25–34, >35 years), and maternal and paternal education (compulsory, intermediate, tertiary). P-values for linear trend were calculated for folic acid exposure levels (0 mg, 0.2 mg, 0.4 mg, 0.6 mg). Statistical analyses were performed in STATA version 14 (STATA, 2015).

Ethics

The Regional Committee for Medical and Health Research Ethics of Western Norway approved the study.

RESULTS

Among 687,406 children included in the study, 799 developed cancer. The mean follow-up time was 6 years (range 0.04–12 years), constituting 4,052,679 person-years (Table 1). Among all births, 4% were multiple births, and 2% were born after assisted reproductive technology. Mean maternal age at childbirth was 29 years (range 25–41 years). The proportion of children exposed to reproductive technology. Mean maternal age at childbirth was 29 years (range 25–41 years). The proportion of children exposed to assisted reproductive technology. Mean maternal age at childbirth was 29 years (range 25–41 years).

Table 1. Characteristics of the study population of 687 406 live births, Norway, 1999–2010

Characteristics	Cohort (n)	Person-years	%	Cancer cases (n)
Children	687 406	4,052,679	100	799

Sex

	Person-years	%	Cancer cases (n)	
Boys	352,604	2,077,322	51	423
Girls	334,802	1,975,357	49	376

Gestational age (weeks)

	Person-years	%	Cancer cases (n)	
<37	46,682	271,770	7	60
37–41	587,197	3,447,416	85	670
≥42	48,830	307,613	8	62
Missing	4,697	25,681	1	7

Birth weight (g)

	Person-years	%	Cancer cases (n)	
<2500	33,804	191,809	5	39
2500–3999	516,075	3,008,163	74	587
≥4000	136,760	847,264	21	173
Missing	476	5,443	0	0

Birth order

	Person-years	%	Cancer cases (n)	
1	284,468	1,651,442	41	339
2	244,834	1,446,964	36	281
≥3	158,104	954,274	24	179

Maternal age at child birth, years

	Person-years	%	Cancer cases (n)	
<25	117,065	697,604	17	133
25–34	452,481	2,709,049	67	539
>35	117,860	646,026	16	127

Paternal age at child birth, years

	Person-years	%	Cancer cases (n)	
<25	52,776	312,202	8	65
25–34	396,496	2,406,027	59	468
>35	231,836	1,307,428	32	257
Missing	6,298	27,023	1	9

Maternal education

	Person-years	%	Cancer cases (n)	
Compulsory	128,452	782,418	19	148
Intermediate	232,745	1,475,123	36	288
Tertiary	299,871	1,662,622	41	340
Missing	26,338	132,516	3	23

Paternal education

	Person-years	%	Cancer cases (n)	
Compulsory	129,537	779,208	19	142
Intermediate	301,918	1,842,424	45	373
Tertiary	227,910	1,297,762	32	251
Missing	28,041	133,286	3	33

Maternal smoking

	Person-years	%	Cancer cases (n)	
Did not smoke	459,617	2,678,139	66	529
Smoked	17,222	106,380	3	15
Sometimes	69,270	455,935	11	103
Smoked ≤10 cigarettes daily	25,210	144,005	4	30
Smoked >20 cigarettes daily	5,331	33,502	1	4
Smoked daily, unknown amount	110,756	634,718	16	118

Maternal supplementation

	Person-years	%	Cancer cases (n)	
No use	325,706	2,307,683	57	424
Folic acid only	46,958	309,597	8	61
Folic acid and multivitamin use	145,856	675,461	17	154
Folic acid and multivitamin use	169,246	759,938	19	160

*Compulsory education length was 9 years until 1996 and 10 years from 1997 onwards.

*a*Maternal supplement intake before and/or during pregnancy, categorised by folic acid content: No use; multivitamins (approximately 0.2 mg); folic acid supplements (0.4 mg); and folic acid and multivitamin use (approximately 0.6 mg).
changes in the risk estimates for neither cancer types. And excluding 867 children with Down syndrome from the analyses did not change the HR estimates for specific cancers.

DISCUSSION

In a nation-wide cohort study of all live births, estimated maternal intakes of multivitamins, folic acid, or combined intake of these supplements were not associated with childhood cancer.

Our results of no association between periconceptional folic acid supplementation and major childhood cancers are in discordance with case–control studies showing inverse associations between self-reported folic acid use and acute lymphoblastic leukemia (ALL) (Thompson et al., 2001; Milne et al., 2010; Metayer et al., 2014) and CNS tumours (Milne et al., 2012).

A recent large international collaborating study, including >7000 children with acute leukaemia and 11,000 controls, found reduced risks of ALL and acute myeloid leukaemia (AML) after maternal intake of folic acid supplements. And these reduced risks of ALL and AML did not vary by timing of the supplementation exposure (preconception, pregnancy, or pregnancy trimester) (Metayer et al., 2014). However, an Australian study found weak evidence of a reduced risk of ALL from folate supplementation before pregnancy, but no reduced risk from use during pregnancy (Milne et al., 2010). Also, another Australian study reported on an inverse association of childhood brain tumours and folic acid supplementation before and possibly also during pregnancy (Milne et al., 2012). In our study, a further stratification of the exposure data into preconceptional use and use during pregnancy was not feasible due to the limited statistical power of the analyses.

The strengths of our study include using comprehensive data from population-based registries covering the entire Norwegian population. To our knowledge, Norway is the only country where individual-level information on periconceptional folic acid and multivitamin intake has been collected for the entire birth population since 1999. All incident cancer cases have been reported to the Cancer Registry of Norway since 1952 (Larsen et al., 2009). And information on supplement use was collected before cancer diagnosis precluding recall bias.

Table 2. Children with first-time childhood cancer (n = 799) by age at diagnosis, year of diagnosis, and major cancer types (ICCC-3), identified among 687,466 livebirths, Norway, 1999–2010

Cancer cases	%	
Age at cancer diagnosis (years)		
<2	326	41
2–3	211	26
4–5	150	19
≥6	112	14
Year of cancer diagnosis		
1999–2001	59	7
2002–2004	172	22
2005–2007	239	30
2008–2010	329	41
Cancer types (ICCC-3)		
I Leukemias, myeloproliferative diseases, and myelodysplastic diseases		
Lymphoid leukemia	208	45
Acute myeloid leukaemias	268	34
II Lymphomas and reticuloendothelial neoplasms	42	5
III CNS and miscellaneous intracranial and intraspinal neoplasms	185	23
Ependymoma	26	
Astrocytoma	79	
Intracranial and intraspinal embryonal tumours	50	
IV Neuroblastoma and other peripheral nervous cell tumours	72	9
Neuroblastoma and ganglioneuroblastoma	71	
VI Renal tumours	53	7
Wilms’ tumour	52	
IX Soft tissue and other extrasosseous sarcomas	64	8
Rhabdomyosarcoma	24	
Other specified soft tissue sarcomas	28	
Other cancers	115	14
Total	799	100

Abbreviations: CNS = central nervous system; ICCC-3 = International Classification of Childhood Cancer, third edition (Steliarova-Foucher et al., 2005).

Table 3. Hazard ratios (HRs) with 95% confidence intervals (95% CI) of childhood cancer by perigestational supplementation of folic acid and/or multivitamins, among 687,466 children, Norway, 1999–2010

Cancer types	Supplements	Cancer cases	HRb	95% CI	P_Trend
All cancers	No supplements	424	1.00	Reference	
	Multivitamins only	61	1.05	0.78–1.42	
	Folic acid only	154	1.13	0.92–1.38	
	Folic acid and multivitamins	160	1.02	0.83–1.25	0.60
I Leukemias, myeloproliferative diseases, and myelodysplastic diseases					
No supplements	135	1.00	Reference		
Multivitamins only	21	1.23	0.75–2.01		
Folic acid only	50	1.13	0.79–1.63		
Folic acid and multivitamins	62	1.25	0.89–1.76	0.20	
(a) Lymphoid leukemia	No supplements	100	1.00	Reference	
Multivitamins only	16	1.30	0.75–2.27		
Folic acid only	42	1.30	0.87–1.95		
Folic acid and multivitamins	50	1.31	0.89–1.94	0.12	
(b) Acute myeloid leukemia	No supplements	28	1.00	Reference	
Multivitamins only	3	0.97	0.29–3.27		
Folic acid only	5	0.59	0.22–1.60		
Folic acid and multivitamins	9	0.96	0.43–2.17	0.67	
The study had some limitations. Even though our cohort was large, the numbers of several childhood cancer types were relatively low, which may limit the statistical power of our findings. The follow-up time of study participants were on average 6 years, and our results could only be generalised to younger children. Maternal folic acid intake could have been misclassified; in the beginning of the study period, folic acid users were under-reported to the MBRN (Nilsen et al., 2009). A possible misclassification of folic acid dose (independent of cancer risk) would bias risk estimates towards the null value and, in theory, could have concealed an association between folic acid intake and childhood cancer risk. Information on maternal smoking was missing for 16% of the births; however, HR estimates adjusting for maternal smoking were similar to HRs without smoking adjustments. Although we did not have information on dietary folate, residual confounding by dietary folate is less likely. In pregnant women, maternal plasma levels of serum folate is strongly related to intake of folic acid supplements (Bjorke-Monsen et al., 2013). And in other studies of maternal intake of folic acid supplements and offspring outcomes (oral clefts, autism), adjustment for dietary folate did not change overall risk estimates (Wilcox et al., 2007; Suren et al., 2013). We could not adjust for mother’s weight and height, physical activity, diet, use of alcohol, or use of contraceptive pills, as these covariates were not available in the MBRN.

In conclusion, we found no association between maternal supplemental folic acid intake before and/or during pregnancy and risk of leukemia, lymphomas, CNS tumours, neuroblastoma, Wilms’ tumour, or soft tissue tumours among younger children.

ACKNOWLEDGEMENTS

This study was supported by the Norwegian Cancer Society and the Western Norway Regional Health Authority (911629) to Dr Nina Øyen.

Table 3. (Continued)

Cancer types	Supplementsa	Cancer cases	HRb	95% CI	P_Trend
II Lymphomas and reticuloendothelial neoplasms	No supplements	25	1.00	Reference	
	Multivitamins only	3	0.55	0.13–2.33	
	Folic acid only	5	0.40	0.12–1.34	
	Folic acid and multivitamins	9	0.96	0.42–2.21	0.51
III CNS and miscellaneous intracranial and intraspinal neoplasms	No supplements	107	1.00	Reference	
	Multivitamins only	14	1.08	0.60–1.94	
	Folic acid only	37	1.18	0.78–1.78	
	Folic acid and multivitamins	27	0.68	0.42–1.10	
(b) Astrocytoma	No supplements	44	1.00	Reference	
	Multivitamins only	8	1.57	0.72–3.40	
	Folic acid only	15	1.31	0.70–2.45	
	Folic acid and multivitamins	12	0.86	0.43–1.73	0.97
(c) Intracranial and intraspinal embryonal tumours	No supplements	28	1.00	Reference	
	Multivitamins only	2	0.61	0.14–2.59	
	Folic acid only	12	1.28	0.60–2.76	
	Folic acid and multivitamins	8	0.69	0.27–1.74	0.69
IV Neuroblastoma and other peripheral nervous cell tumours	(a) Neuroblastoma and ganglioneuroblastoma	No supplements	37	1.00	Reference
	Multivitamins only	5	0.99	0.35–2.82	
	Folic acid only	15	1.08	0.54–2.15	
	Folic acid and multivitamins	14	1.05	0.53–2.06	0.85
VI Renal tumours	(a) Wilms’ tumour	No supplements	28	1.00	Reference
	Multivitamins only	5	1.60	0.60–4.25	
	Folic acid only	9	1.51	0.42–2.40	
	Folic acid and multivitamins	10	1.16	0.52–2.58	0.76
IX Soft tissue and other extraosseous sarcomas	No supplements	32	1.00	Reference	
	Multivitamins only	5	1.12	0.39–3.22	
	Folic acid only	18	1.72	0.90–3.29	
	Folic acid and multivitamins	9	0.77	0.34–1.75	0.90

Abbreviation: CNS = central nervous system.

aMaternal supplement intake before and/or during pregnancy, categorised by folate content: No use; multivitamins (approximately 0.2 mg); folic acid supplements (0.4 mg); and folic acid and multivitamins (approximately 0.6 mg).

bHazard ratios (HR) with 95% confidence intervals (95% CI) adjusted for birth order (1, 2, 3), smoking (never, sometimes, ≤ 10 cigarettes daily, > 10 cigarettes daily, daily smoking of unknown amount), maternal and paternal age (< 25, 25–34, ≥ 35 years), and maternal and paternal education (compulsory, intermediate, tertiary) comparing cancer risk in children exposed to periconceptional folic acid (multivitamins, folic acid, folic acid and multivitamins) and cancer risk in children without perigestational folic acid exposure (reference).
The authors declare no conflict of interest.

REFERENCES

Bjorke-Monsen AL, Roth C, Magnus P, Midttun O, Nilsen RM, Reichborn-Kjennerud T, Stoltenberg C, Susser E, Vollset SE, Ueland PM (2013) Maternal B vitamin status in pregnancy week 18 according to reported use of folic acid supplements. Mol Nutr Food Res 57(4): 645–652.

CDC (2008) Trends in wheat-flour fortification with folic acid and iron—worldwide, 2004 and 2007. MMWR Morb Mortal Wkly Rep 57: 8–10.

French AE, Grant R, Weitzman S, Ray JG, Vermeulen MJ, Sung L, Greenberg M, Koren G (2003) Folic acid food fortification is associated with a decline in neuroblastoma. Clin Pharmacol Ther 74(3): 288–294.

Grupp SG, Greenberg ML, Ray JG, Busto U, Lanctot KL, Nulman I, Koren G (2011) Pediatric cancer rates after universal folic acid flour fortification in Ontario. J Clin Pharmacol 51(1): 60–65.

Irgens LM (2000) The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. Acta Obstet Gynecol Scand 79(6): 435–439.

Kim YI (2004) Will mandatory folic acid fortification prevent or promote cancer? Am J Clin Nutr 80(5): 1123–1128.

Kinge JM, Steingrimsdottir OA, Moe JO, Skirbekk V, Naess O, Strand BH (2015) Educational differences in life expectancy over five decades among the oldest old in Norway. Age Ageing 44(6): 1040–1045.

Larsen IK, Smastuen M, Johannesen TB, Langmark F, Parkin DM, Bray F, Moller B (2009) Data quality at the Cancer Registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer 45(7): 1218–1231.

Linabery AM, Johnson KJ, Ross JA (2012) Childhood cancer incidence trends in association with US folic acid fortification (1986-2008). Pediatrics 129(6): 1125–1133.

Mason JB, Dickstein A, Jacques PF, Hagarty P, Selhub J, Dallal G, Rosenberg IH (2007) A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev 16(7): 1325–1329.

Metayer C, Milne E, Dockerty JD, Clavel J, Pombo-de-Oliveira MS, Wesseling C, Spector LG, Schuz J, Petridou E, Ezzat S, Armstrong BK, Rudant J, Korfman S, Kaatsch P, Moschovi M, Rashed WM, Selvin S, McCauley K, Hung RJ, Kang AY, Infante-Rivard C (2014) Maternal supplementation with folic acid and other vitamins and risk of leukemia in offspring: a Childhood Leukemia International Consortium study. Epidemiology 25(6): 811–822.

Milne E, Greenop KR, Bower M, Miller M, van Bockxmeer FM, Scott RJ, de Klerk NH, Ashton LJ, Gottardo NG, Armstrong BK, Aus CBTC (2012) Maternal use of folic acid and other supplements and risk of childhood brain tumors. Cancer Epidemiol Biomarkers Prev 21(11): 1933–1941.

Milne E, Royle JA, Miller M, Bower C, de Klerk NH, Bailey HD, van Bockxmeer F, Attia J, Scott RJ, Norris MD, Haber M, Thompson JR, Fritschi L, Marshall GM, Armstrong BK (2010) Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. Int J Cancer 126(11): 2690–2699.

Nilsen RM, Vollset SE, Gjessing HK, Skjaerven R, Mølve KK, Schruder P, Alsaker ER, Haug K, Daltveit AK, Magnus P (2009) Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol 23(6): 597–608.

SACN (2006) Folate and Disease Prevention. TSO (The Stationery Office), Scientific Advisory Committee on Nutrition: London, UK.

Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87(3): 517–533.

STATA (2015) Stata Statistical Software: Release 14. StataCorp LP: College Station, TX, USA.

Stelarova-Foucher E, Stillier C, Lacour B, Kaatsch P (2005) International Classification of Childhood Cancer, third edition. Cancer 103(7): 1457–1467.

Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, Schjolberg S, Davey Smith G, Oyen AS, Susser E, Stoltenberg C (2013) Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309(6): 570–577.

Thompson JR, Gerald PF, Willoughby ML, Armstrong BK (2001) Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet 358(9297): 1935–1940.

Wilcox AJ, Lie RT, Solvoll K, Taylor J, Conneally DR, Abyholm F, Vindenes H, Vollset SE, Drevon CA (2007) Folic acid supplements and risk of facial clefts: national population based case-control study. BMJ 334(7591): 464.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.