Balloon Pulmonary Angioplasty in Patients With Chronic Thromboembolic Pulmonary Hypertension
— A Systematic Review and Meta-Analysis —

Giacomo Zoppellaro, MD, PhD; Mostafa Rabea Badawy, MD; Alessandro Squizzato, MD, PhD; Gentian Denas, MD; Giuseppe Tarantini, MD, PhD; Vittorio Pengo, MD

Background: Balloon pulmonary angioplasty (BPA) is a percutaneous treatment option for patients affected by chronic thromboembolic pulmonary hypertension (CTEPH) and either judged inoperable or with persistent symptoms after pulmonary endarterectomy. Current data regarding BPA are sparse and results vary according to local center experience. A systematic review of the literature was performed to better understand the effectiveness and safety of BPA in the treatment of CTEPH.

Methods and Results: PubMed and EMBASE were searched for studies reporting BPA results in patients with CTEPH. Differences in clinical and hemodynamic parameters before and after the procedure were analyzed. Weighted mean proportion and 95% confidence intervals (CIs) of adverse events were calculated. In total, 14 studies were included (725 patients). BPA was associated with a reduction in mean pulmonary artery pressure (from 43 to 32.5 mmHg), reduction in pulmonary vascular resistance (from 9.94 to 5.06 Woods units), increase in cardiac index (from 2.35 to 2.62 L/min/m²), and improvement of 6-minute walking distance (from 345 to 442 m). Periprocedural mortality occurred in 2.1% of patients (95% CI 0.8–4.1) while reperfusion and pulmonary vessel injuries occurred in 9.3% (95% CI 3.1–18.4) and 2.3% (95% CI 0.9–4.5) of total BPA sessions, respectively.

Conclusions: Our systematic review suggested that BPA for CTEPH patients was an effective and relatively safe treatment option.

Key Words: Balloon pulmonary angioplasty; Chronic thromboembolic pulmonary hypertension; Pulmonary embolism; Pulmonary endarterectomy

Chronic thromboembolic pulmonary hypertension (CTEPH) is defined as the persistence of thrombi and vascular remodeling in the pulmonary circulation associated with a mean pulmonary artery pressure (mPAP) ≥ 25 mmHg.1,2 It affects 0.5–4% of patients within 2 years of the first episode of pulmonary embolism (PE).3 CTEPH has a poor prognosis because it produces high pulmonary vascular resistance (PVR) leading to right heart failure and death.4 Patients with untreated CTEPH are likely to develop progressive disease and, therefore, all patients should receive appropriate treatment.5

Pulmonary endarterectomy (PEA) is the treatment of choice in symptomatic patients, but operability assessment excludes approximately 30% of eligible patients, because of peripheral lesions, extreme PVR or high surgical risk. Moreover, one-third of surgical patients still suffer from residual pulmonary hypertension and symptoms after surgery (recurrent or persistent CTEPH).6,7 In these cases, options for alternative treatment consist of life-long anticoagulant therapy, oxygen supply and a pulmonary vasodilator such as the soluble guanylate cyclase agonist, riociguat.8,9

Balloon pulmonary angioplasty (BPA) is a percutaneous technique aimed at widening stenotic or opening obstructed pulmonary arteries with a balloon catheter guided by fluoroscopy. It has already been established in patients with congenital pulmonary stenosis, but is now emerging as an alternative treatment of symptomatic CTEPH patients.10 However, current data regarding the efficacy and feasibility of BPA are sparse and results vary according to local center experience.

We performed a systematic review and meta-analysis to better understand the effectiveness and safety of BPA in the treatment of CTEPH.

Methods
The systematic review was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.11

Received March 11, 2019; revised manuscript received May 25, 2019; accepted May 28, 2019; J-STAGE Advance Publication released online June 21, 2019 Time for primary review: 13 days
Cardiology Clinic, Department of Cardiology, Thoracic and Vascular Sciences, University of Padua, Padua (G.Z., M.R.B., G.D., G.T., V.P.); Cardiology, Ospedale Civile Venezia, Azienda ULSS 3 Serenissima, Venice (G.Z.); and Department of Medicine and Surgery, Università degli Studi dell’Insubria, Varese (A.S.), Italy
Mailing address: Giacomo Zoppellaro, MD, PhD, Cardiology, Ospedale Civile Venezia, Azienda ULSS 3 Serenissima, Sestriere Castello 6777, 30122 Venice, Italy. E-mail: giacomozopp@gmail.com
ISSN-1346-9843 All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
Search Strategy
Two investigators (M.R.B. and G.Z.) independently searched PubMed and EMBASE, without language restriction, from database inception until 30 November 2017, for studies reporting BPA results in CTEPH patients. We used the following search terms as textword or MeSh: “Pulmonary artery”, “Pulmonary embolism”, “Pulmonary hypertension”, “Chronic”, “Angioplasty”, “Balloon”. Reference lists of included articles and those relevant to the topic were hand-searched for identification of additional, potentially relevant articles.

Study Selection and Eligibility Criteria
We included all full-text studies reporting outcome of BPA performed in inoperable, persistent, or recurrent CTEPH. Specifically, we selected studies enrolling at least 5 patients reporting the following data: (1) total number of patients or total number of BPA sessions or the number of sessions per patient; (2) at least 1 hemodynamic measurement among mPAP, PVR and cardiac output or index (CO/CI) or exercise capacity evaluated as New York Heart Association functional class (NYHA) and/or 6-minute walking distance (6MWD); and (3) hemodynamic measurements and/or clinical characteristics reported both before the first BPA session and after the last procedure. To increase consistency, we focused on studies reporting results immediately or up to 6 months after the last BPA session.

To assess the safety of the procedure, studies reporting BPA complications were also included. If at least 2 papers from the same institution were present, the corresponding author was contacted to avoid duplicates, and publication with the most recent and/or the largest sample size was included. Two investigators (G.Z. and M.R.B.) evaluated the titles and abstract of all selected references. Articles that met the initial eligibility criteria were selected for full-text screening and review. Discrepancies were resolved by a third investigator (V.P.). Conference abstracts were excluded. Only 1 abstract satisfying all 3 conditions listed was included.12

Data Extraction
One author (M.R.B.) extracted data using a standardized spreadsheet under the supervision of a second investigator (G.Z.). Demographic characteristics (age and sex of patients, BPA indication, and concomitant pulmonary vasodilator medical therapy) are reported in Supplementary Table 1A. The following data were extracted (Supplementary Table 1B): (1) author, year, country and affiliation; (2) number of patients, number of BPA sessions or sessions per patient; (3) hemodynamic measurements before and after BPA (mPAP, PVR and CI); (4) exercise capacity before and after BPA (NYHA and 6MWD); (5) time at which hemodynamic measurements and clinical characteristics were reassessed after the last procedure; and (6) periprocedural complications, defined as pulmonary artery dissection or perforation, reperfusion injury (i.e., post-
Results

The search identified 1,084 potentially eligible studies. After excluding 941 papers through title and abstract selection, 97 from full-text examination and 7 duplicates, 40 studies were included (Figure 1, Supplementary Table 1B). The database search produced only retrospective observational studies. Among studies from the same affiliation, we selected the most recent and/or the largest sample size study according to the outcome measured. These studies included:

- 6 cohorts from Keio University School of Medicine, Tokyo, Japan
- 5 cohorts from Tohoku University Graduate School of Medicine, Sendai, Japan
- 3 cohorts from National Cerebral and Cardiovascular Center, Suita, Japan
- 2 cohorts from National Hospital Organization Okayama Medical Center, Japan
- 2 cohorts from Oslo University, Norway
- 6 multicenter studies from Keio and Kiorin University School of Medicine, Tokyo, Japan
- 1 multicenter study from Tohoku University, Tokyo University, Kyorin University, Mie University, National Cardiovascular Research Center, Kobe University, National Hospital Organization Okayama Medical Center (Japan)
- 1 multicenter study from Tokyo Women’s Medical University and Kyushu University, Fukuoka (Japan)

Study Characteristics (Supplementary Table 1A)

The largest group of treated patients was 308, while the smallest study comprised 7 patients. Median number of patients per study was 26. Median patient age was 63 years and 73% were female. Most of the studies (31 of 40) were performed in Japan, 8 in Europe (Norway, Poland, Russia, Germany and Spain) and 1 in the USA. When reported, the main indication to perform BPA was inoperable disease. A small proportion of the total number was treated with procedural pulmonary edema, visualized on chest X-ray or requiring supplemental oxygen and diuretics, mechanical ventilation, or cardiopulmonary support) and/or periprocedural mortality. Definitions of periprocedural complications are shown in Supplementary Table 2.

Efficacy and Safety Outcomes

The efficacy outcome was the change from baseline of hemodynamic measurements (mPAP, PVR and CI) and exercise capacity (6MWD and NYHA). The safety outcome was the rate of periprocedural complications.

Risk of Bias Assessment

The Newcastle Ottawa Scale (NOS) was used to assess the quality of included studies. The NOS assigns a maximum of 9 points based on 3 quality parameters: selection, comparability, and outcome, with a cutoff ≤5 being indicative of high risk of bias. The risk of bias ratings for each study is reported in Supplementary Table 3.

Statistical Analysis

For assessing efficacy outcomes, we calculated and compared the median of the mean values reported in each single study before and after BPA; 2 studies reporting values as median were excluded from the final analysis. Weighted mean proportion and 95% confidence intervals (CoI) of adverse events were calculated; these data were pooled using a random-effects model, given the high statistical heterogeneity. Statistical heterogeneity was evaluated using the I² statistic, which assesses the appropriateness of pooling the individual study results. The I² value provides an estimate of the amount of variance across the studies as a result of heterogeneity rather than chance. I² <30% indicates mild heterogeneity, 30–50% moderate and >50% severe heterogeneity. A funnel plot of the effect size vs. the standard error was designed, to highlight possible publication bias. The analysis was performed using StatsDirect (Version 2.7; StatsDirect Ltd, Altrincham, UK).

Figure 2. Hemodynamic parameters (A–C) and 6-minute walking distance (D) before and after BPA procedure. BPA, balloon pulmonary angioplasty; CI, cardiac index; mPAP, mean pulmonary artery pressure; PVR, pulmonary vascular resistances; 6MWD, 6-minute walking distance.
BPA because of recurrent or persistent PH after PEA or refusal to undergo PEA.

Risk of Bias
The quality of the observational studies was judged moderate (median=6; range: 3–6) (Supplementary Table 3), with the most common source of bias being the absence of a control group.

Analysis of Outcomes
Subsequent reporting of BPA patients from the same institution was analyzed and only the last report was considered. Thus, the final cohort included 14 studies with a total population of 725 patients (Supplementary Table 1C).12,23,28,39,42,44,51,52

Hemodynamic Parameters
Median of the mean mPAP was 43 mmHg (interquartile range (IQR) 40.5–49.25 mmHg) before BPA and 32.5 mmHg (IQR 25–33.5 mmHg) after BPA (Figure 2A). Median of the mean CI of included studies was 2.35 L/min/m² (IQR 2.23–2.70 L/min/m²) before BPA and 2.62 L/min/m² (IQR 2.5–2.92 L/min/m²) after BPA (Figure 2B). Median of the mean PVR decreased from 9.94 Woods units (IQR 7.58–13.5 Woods units) before BPA to 5.06 Woods units (IQR 4.7–21.7; I²=97.8%; Supplementary Figure 2) with a high risk of publication bias according to the funnel plot.

Exercise Capacity
Median of the mean 6MWD before BPA was 345 m (IQR 322–369 m), increasing to 442 m (IQR 403–466 m) after BPA (Figure 2D). Functional status (NYHA class) before and after BPA (Figure 3). Functional New York Heart Association (NYHA) class before and after balloon pulmonary angioplasty (BPA).

Complications
Complications were differently defined across the studies (Supplementary Table 2) and reported in 12 papers (Supplementary Table 3).12,15,18,28,34,42,44,46,49,51,52 According to the meta-analysis (Figure 4), periprocedural mortality was 2.1% (95% CI 0.8–4.1; I²=37.7%; random-effect model) with a low risk of publication bias according to the funnel plot. Meta-analysis was also performed for reperfusion and pulmonary vessel injuries. Reperfusion injuries occurred in 9.3% (95% CI 3.1–18.4; I²=97.8%; Supplementary Figure 1) and pulmonary vessel injuries in 2.3% of total BPA sessions (95% CI 0.9–4.5; I²=87.7%; Supplementary Figure 2). Funnel plots suggested a high risk of publication bias for the rate of reperfusion injuries and pulmonary vessel injuries. A combined analysis of reperfusion and vessel injuries was also performed. The composite endpoint occurred in 11.8% of total BPA sessions (95% CI 4.7–21.7; I²=97.8%; Supplementary Figure 3) with a high risk of publication bias according to the funnel plot.

Discussion
CTEPH is a form of PH related to the persistence of thrombi on pulmonary arteries after an embolic event with vascular remodeling of lung circulation.5–8 The reason for clot persistence even after adequate anticoagulation is still debated, possibly driven by impaired fibrinolysis, endothelial dysfunction, thrombophilia or supra-infection causing delayed resolution.54

CTEPH occurs in 0.5–4% of patients with a history of PE, commonly with a latent phase between PE and the onset of CTEPH symptoms.3 On the other hand, previous PE is confirmed in approximately 75% of CTEPH patients,6 while in the other 25% the first PE event probably passed unnoticed.

This is the only form of PH that is treatable with PEA, a surgical procedure that may cure the disease especially in patients with fresh or organized thrombi of the proximal branches of pulmonary arteries (types 1 and 2 of the surgical classification).55 However, many CTEPH patients are not suitable for surgery (high surgical risk or disease involving distal segmental arteries) or may display recurrent symptoms after PEA.6 For these patients, percutaneous BPA or medical therapy are the only options. There are no clear data on the use and benefit of BPA, with only case series or small registries published. The first BPA procedure was reported in 1988,56 but was abandoned early because of the high rate of complications. The procedure was then refined, and subsequent published data suggest a possible role in the management of CTEPH patients.

The present systematic review included patients who underwent BPA for inoperable CTEPH, for persistent/recurrent PH after surgery or for refusing of surgery. Other studies have reviewed the hemodynamic impact of BPA on CTEPH,57,58 but none have focused on complications. Overall, the included studies were only observational and the assessed quality by NOS scale was considered moderate.
Most of the data came from the same geographical area and the generalization of results is an open issue. We found that BPA increased the 6MWD and decreased functional (NYHA) class status, parameters possibly associated with an improvement in patients’ quality of life. A consistent reduction of mPAP and PVR, as well as an increase in CI, was also observed.

Alternatively, riociguat is the only drug showing a significant functional improvement in these patients; in the CHEST-1 trial (9) the reported mean increase in 6MWD was 46 m (range, 25–67). Mean decrease in mPAP was 5 mmHg (range, 3–7), mean decrease in PVR was 246 dyn/s/cm² (range, 190–303) and the mean increase in cardiac output was 0.9 mL/min (range, 0.6–1.1).

Comparison of results between BPA and medical treatment with riociguat must be done with caution and direct comparison is currently under investigation (www.clinicaltrial.gov: NCT02634203). In the meantime, the choice of BPA over riociguat may depend on several factors. In particular, BPA should be considered in high-volume CTEPH centers where expertise and adequate facilities are present. Moreover, in patients who are unresponsive...
or intolerant to vasodilator medical therapy, BPA might be the only treatment option. Conversely, procedural complications, technical challenges in complex cases and the need for several hospitalizations to perform each session (currently, 3–10 sessions are usually required for each patient) must be taken into account. However, PEA, BPA and medical treatment are not mutually exclusive, even if the mortality rate seems acceptable. Large, international, multicenter randomized controlled trials comparing optimal medical therapy with BPA in inoperable CTEPH patients are warranted to better determine the efficacy and safety of BPA.

Disclosures

No conflicts of interest are reported.

Conclusions

BPA has emerged as an adjunctive therapy for CTEPH patients who are inoperable or with persistent–recurrent symptoms after surgery. The present review highlighted the potential of BPA in improving both hemodynamic parameters and clinical performance, although the evidence is not high quality. Assessment of the complication rate was probably highly imprecise because of publication bias, even if the mortality rate seems acceptable. Large, international, multicenter randomized controlled trials comparing optimal medical therapy with BPA in inoperable CTEPH patients are warranted to better determine the efficacy and safety of BPA.

References

1. Kim NH, Delcroix M, Jenkins DP, Channick R, Dartevelle P, Jansa P, et al. Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2013; 62(Suppl): D92 – D99.
2. Piazza G, Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2011; 364: 351 – 360.
3. Pedrazzini V, Lensing AW, Prins MH, Marchiori A, Davidson BL, Tiozzo F, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolectomy. N Engl J Med 2004; 350: 2257 – 2264.
4. Klok FA, Delcroix M, Bogaard HJ. Chronic thromboembolic pulmonary hypertension from the perspective of patients with pulmonary embolectomy. J Thromb Haemost 2018; 16: 1040 – 1051.
5. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67 – 119.
6. Pepke-Zaba J, Delcroix M, Lang I, Mayer E, Jansa P, Ambroz D, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): Results from an international prospective registry. Circulation 2011; 124: 1973 – 1981.
7. Mayer E, Jenkins D, Liniger J, D’Armini A, Klok J, Meyns B, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry. J Thorac Cardiovasc Surg 2011; 141: 702 – 710.
8. Simonneau G, D’Armini A, Ghofrani HA, Grimminger F, Hoeper MM, Jansa P, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: A long-term extension study (CHEST-2). Eur Respir J 2015; 43: 1293 – 1302.
9. Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat, a novel pulmonary vasodilator, for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 2013; 369: 319 – 329.
10. Ogo T. Balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension. Curr Opin Pulm Med 2015; 21: 425 – 431.
11. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009; 339: b2535.
12. Danilov N, Matchin Y, Yarovsky S, Sagaydak O, Martynyuk T, Chizhova I. Short- and long-term remodeling of pulmonary arteries after balloon angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol 2016; 68: B37 – B38.
13. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603 – 605.
14. Ikeda N, Kubota S, Okazaki T, Hara H, Hiro Y. Comparison of intravascular optical frequency domain imaging versus intravascular ultrasound during balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Catheter Cardiovasc Interv 2016; 87: E268 – E274.
15. Roik M, Wretowski D, Labyk A, Kostrubiec M, Izyk K, Dzikowska-Diduch O, et al. Refined balloon pulmonary angioplasty driven by combined assessment of intra-arterial anatomy and physiology: Multimodal approach to treated lesions in patients with non-operative distal chronic thromboembolic pulmonary hypertension: Technique, safety and efficacy of 50 consecutive angioplasties. Int J Cardiol 2016; 203: 228 – 235.
16. Bland JM, Kerry SM. Statistics notes: Weighted comparison of means. BMJ 1998; 316: 129.
17. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539 – 1558.
18. Kimura M, Kohno T, Kawakami T, Kataoka M, Inohara T, Takei M, et al. Balloon pulmonary angioplasty attenuates ongoing myocardial damage in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiol 2016; 207: 387 – 389.
19. Kimura M, Kataoka M, Kawakami T, Inohara T, Takei M, Fukuda K. Balloon pulmonary angioplasty using contrast agents improves impaired renal function in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiol 2015; 180: 41 – 42.
20. Tsugui T, Murata M, Kawakami T, Yasuda R, Tokuda H,
Inami M, Kataoka M, Kawakami T, Kuwahira I, Fukuda K. Respiratory function and oxygenation after balloon pulmonary angioplasty. Int J Cardiol 2016; 212: 185–191.

Tsugi T, Kataoka M, Kawakami T, Minakata Y, Kanazawa H, Kataoka M, et al. Changes in right ventricular dysfunction after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Am J Cardiol 2016; 118: 1081–1087.

Kimura M, Kohno T, Kawakami T, Kataoka M, Tsugi T, Akita K, et al. Mild effect of balloon pulmonary angioplasty on hemodynamics and subclinical myocardial damage in chronic thromboembolic pulmonary hypertension. Can J Cardiol 2017; 33: 463–470.

Sugimura K, Fukumoto Y, Satoh K, Nochioka K, Miura Y, Aoki T, et al. Percutaneous transulmonary pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension. Circ J 2012; 76: 485–488.

Aoki T, Sugimura K, Nochioka K, Miura M, Tatebe S, Yamamoto S, et al. Effects of balloon pulmonary angioplasty on oxygenation in patients with chronic thromboembolic pulmonary hypertension: Importance of intrapulmonary shunt. Circ J 2016; 80: 2227–2234.

Sato H, Ota H, Sugimura K, Aoki T, Tatebe S, Miura M, et al. Balloon pulmonary angioplasty improves biventricular functions and pulmonary flow in chronic thromboembolic pulmonary hypertension. Circ J 2016; 80: 1470–1477.

Tatebe S, Sugimura K, Aoki T, Miura M, Nochioka K, Yaoita N, et al. Multiple beneficial effects of balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circ J 2016; 80: 980–988.

Aoki T, Sugimura K, Tatebe S, Miura M, Yamamoto S, Yaoita N, et al. Comprehensive evaluation of the effectiveness and safety of balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension: Long-term effects and procedure-related complications. Eur Heart J 2017; 38: 3152–3159.

Fukui S, Ogo T, Morita Y, Tsuji A, Tatetsi E, Ozaki K, et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J 2014; 43: 1394–1402.

Fukui S, Ogo T, Goto Y, Ueda J, Tsuji A, Sanda Y, et al. Exercise intolerance and ventilatory inefficiency improve early after balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Int J Cardiol 2015; 180: 66–68.

Tsuji A, Ogo T, Ueda J, Fukui S, Morita Y, Fukuda T, et al. Predictors of residual pulmonary hypertension after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiol 2017; 226: 118–120.

Mizoguchi H, Kawagawa A, Munemasa K, Mikitani H, Ito M, Matsubara H. Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv 2012; 5: 748–755.

Kawakami T, Ogawa A, Miyaji K, Mizoguchi H, Shimokawahara H, Naito T, et al. Novel angiographic classification of each vascular lesion in chronic thromboembolic pulmonary hypertension based on selective angiogram and results of balloon pulmonary angioplasty. Circ Cardiovasc Interv 2016; 9: pii: e003318.

Andreasen AK, Ragnarsson A, Gude E, Geiran O, Andersen R. Balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Heart 2013; 99: 1415–1420.

Broch K, Murbrauch K, Ragnarsson A, Gude E, Andersen R, Fiane AE, et al. Echocardiographic evidence of right ventricular functional improvement after balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2016; 35: 80–86.

Kataoka M, Inami T, Hayashida K, Shimura N, Ishiguro H, Abe T, et al. Percutaneous transulmonary pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv 2012; 5: 756–762.

Inami T, Kataoka M, Shimura N, Ishiguro H, Yanagisawa R, Taguchi H, et al. Pulmonary edema predictive scoring index (PEPSI), a new index to predict risk of reperfusion pulmonary edema and improvement of hemodynamics in percutaneous transulmonary pulmonary angioplasty. JACC Cardiovasc Interv 2013; 6: 725–736.

Inami T, Kataoka M, Shimura N, Ishiguro H, Yanagisawa R, Fukuda K, et al. Pressure-guided percutaneous transulmonary pulmonary angioplasty: A breakthrough in catheter-interventional therapy for chronic thromboembolic pulmonary hypertension. JACC Cardiovasc Interv 2014; 7: 1297–1306.

Inami T, Kataoka M, Ando M, Fukuda K, Yoshino H, Satoh T. A new era of therapy for chronic thromboembolic pulmonary hypertension by two different interventional therapies; pulmonary endarterectomy and percutaneous transulmonary pulmonary angioplasty. PLoS One 2014; 9: e94587.

Yanagisawa R, Kataoka M, Inami T, Shimura N, Ishiguro H, Fukuda K, et al. Safety and efficacy of percutaneous transulmonary pulmonary angioplasty in elderly patients. Int J Cardiol 2014; 175: 285–289.

Shimura N, Kataoka M, Inami T, Yanagisawa R, Ishiguro H, Kawakami T, et al. Additional percutaneous transluminal pulmonary angioplasty for residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int J Cardiol 2015; 183: 138–142.

Ogawa A, Satoh T, Fukuda T, Sugimura K, Fukumoto Y, Emoto N, et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: Results of a multicenter registry. Circ Cardiovasc Qual Outcomes, doi:10.1161/CIRCOUTCOMES.117.004029.

Nagao M, Yamazaki Y, Abe K, Hosokawa K, Kawanami S, Kamitani T, et al. Energy efficiency and pulmonary artery flow after balloon pulmonary angioplasty for inoperable, chronic thromboembolic pulmonary hypertension: Analysis by phase-contrast MRI. Eur J Radiol 2017; 87: 99–104.

Feinstein JA, Goldhaber SZ, Lock JE, Fernandes SM, Landzberg MJ. Balloon pulmonary angioplasty for treatment of chronic thromboembolic pulmonary hypertension. Circulation 2001; 103: 10–13.

degregorio MA, Laborda A, Ortas R, Higuera T, Gomez-Arroyo J, Medrano J, et al. Image-guided minimally invasive treatment of pulmonary arterial hypertension due to embolic disease. Arch Pathol Lab Med 2008; 133: 229–233.

Velasquez Martin M, Albarran Gonzalez-Trevilla A, Alonso Charterina S, Garcia Tejada J, Cortina Romero JM, Escribano Subias P. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: Preliminary experience in Spain in a series of 7 patients. Rev Esp Cardiol (Eng Ed) 2015; 68: 535–537.

Akizuki M, Serizawa N, Ueno A, Adachi T, Hagiwara N. Effect of balloon pulmonary angioplasty on respiratory function in patients with chronic thromboembolic pulmonary hypertension. PloS One 2017; 151: 643–651.

Koike H, Sueyoshi E, Sakamoto I, Uetani M, Nakata T, Maemura K. Quantification of lung perfusion blood volume (lung PBV) by dual-energy CT in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after balloon pulmonary angioplasty (BPA): Preliminary results. Eur Radiol 2016; 85: 1610–1612.

Ogo T, Fukuda T, Tsuji A, Fukui S, Ueda J, Sanda Y, et al. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography. Eur J Radiol 2017; 89: 270–276.

Yamasaki Y, Nagao M, Abe K, Hosokawa K, Kawanami S, Kamitani T, et al. Balloon pulmonary angioplasty improves interventricular dysynchrony in patients with inoperable chronic thromboembolic pulmonary hypertension: A cardiac MR imaging study. Eur Heart J 2017; 38: 229–239.

Darocha S, Pietura R, Pietrasik A, Norwa J, Dobosiewicz A, Pilk A, et al. Improvement in quality of life and hemodynamics in chronic thromboembolic pulmonary hypertension treated with balloon pulmonary angioplasty. Circ J 2017; 81: 552–557.

Olsson KM, Wiedenroth CB, Kamp JC, Breithecker A, Figge J, Krombach GA, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: The initial German experience. Eur Respir J 2017; 49: pii: 1602409.

Keogh AM, Mayer E, Benza RL, Corris P, Dartevelle PG, Frost AE, et al. Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol 2009; 54(Suppl): S67–S77.

Wilkins H, Lang I, Behr J, Bergbath T, Grohe C, Guth S, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): Updated Recommendations of the Cologne Consensus Conference...
hybrid therapy with riociguat and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. *Int J Cardiol* 2016; 221: 227–229.

56. Voorburg JA, Cats VM, Buis B, Bruschke AV. Balloon angioplasty in the treatment of pulmonary hypertension caused by pulmonary embolism. *Chest* 1988; 94: 1249–1253.

57. Tanabe N, Kawakami T, Satoh T, Matsubara H, Nakanishi N, Ogino H, et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: A systematic review. *Respir Investig* 2018; 56: 332–341.

58. Phan K, Jo HE, Xu J, Lau EM. Medical therapy and balloon angioplasty for inoperable chronic thromboembolic pulmonary hypertension: A systematic review and meta-analysis. *Heart Lung Circ* 2018; 27: 89–98.

59. Wiedenroth CB, Liebetrau C, Breithecker A, Guth S, Lautze HJ, Ortmann E, et al. Combined pulmonary endarterectomy and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. *J Heart Lung Transplant* 2016; 35: 591–596.

60. Tsugu T, Murata M, Kawakami T, Kataoka M, Nagatomo Y, Tsuruta H, et al. Amelioration of right ventricular function after hybrid therapy with riociguat and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. *Int J Cardiol* 2016; 221: 227–229.

61. Lang I, Meyer BC, Ogo T, Matsubara H, Kurzyna M, Ghofrani HA, et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. *Eur Respir Rev* 2017; 26: pii: 160119.

62. Sueoka J, Kataoka M, Shimura N, Inami T, Yanagisawa R, Ishiguro H, et al. Therapeutic efficacy after percutaneous transluminal pulmonary angioplasty in CTEPH with and without clotting disorder according to anti-cardiolipin antibody. *Int J Cardiol* 2015; 191: 271–273.

63. Taniguchi Y, Miyagawa K, Nakayama K, Kinutani H, Shinke T, Okada K, et al. Balloon pulmonary angioplasty: An additional treatment option to improve the prognosis of patients with chronic thromboembolic pulmonary hypertension. *EuroIntervention* 2014; 10: 518–525.

Supplementary Files

Please find supplementary file(s):
http://dx.doi.org/10.1253/circj.CJ-19-0161