The status of hepatitis B control in the African region

Lucy Breakwell1-4, Carol Tevi-Benissan2, Lana Childs1-3, Richard Mihigo2, Rania Tohme1

1Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA, 2World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo, 3Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention, Atlanta, GA, USA

&Corresponding author:
Lucy Breakwell, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA

Cite this: The Pan African Medical Journal. 2017;27 (Supp 3):17. DOI: 10.11604/pamj.supp.2017.27.3.11981
Received: 13/02/2017 - Accepted: 10/04/2017 - Published: 22/06/2017

Key words: Hepatitis B control, vaccination, hepatitis B prevalence

© Lucy Breakwell et al. The Pan African Medical Journal - ISSN 1937-8688. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author: Lucy Breakwell, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA (xdc3@cdc.gov)

Available online at: http://www.panafrican-med-journal.com/content/series/27/3/17/full

Abstract

The World Health Organization (WHO) African Region has approximately 100 million people with chronic hepatitis B virus (HBV) infection. This review describes the status of hepatitis B control in the Region. We present hepatitis B vaccine (HepB) coverage data and from available data in the published literature, the impact of HepB vaccination on hepatitis B surface antigen (HBsAg) prevalence, a marker of chronic infection, among children, HBsAg prevalence in pregnant women, and risk of perinatal transmission. Lastly, we describe challenges with HepB birth dose (HepB-BD) introduction reported in the Region, and propose strategies to increase coverage. In 2015, regional three dose HepB coverage was 76%, and 16 (34%) of 47 countries reported ≥ 90% coverage. Overall, 11 countries introduced HepB-BD; only nine provide universal HepB-BD, and of these, five reported ≥ 80% coverage. From non-nationally representative serosurveys among children, HBsAg prevalence was lower among children born after HepB introduction compared to those born before HepB introduction. However, some studies still found HBsAg prevalence to be above 2%. From limited surveys among pregnant women, the median HBsAg prevalence varied by country, ranging from 1.9% (Madagascar) to 16.1% (Niger); hepatitis B e antigen (HBeAg) prevalence among HBsAg-positive women ranged from 3.3% (Zimbabwe) to 28.5% (Nigeria). Studies in three countries indicated that the risk of perinatal HBV transmission was associated with HBeAg expression or high HBV DNA viral load. Major challenges for timely HepB-BD administration were poor knowledge of or lack of national HepB-BD vaccination guidelines, high prevalence of home births, and unreliable vaccine supply. Overall, substantial progress has been made in the region. However, countries need to improve HepB3 coverage and some countries might need to consider introducing the HepB-BD to help achieve the regional hepatitis B control goal of < 2% HBsAg prevalence among children < 5 years old by 2020. To facilitate HepB-BD introduction and improve timely coverage, strategies are needed to reach both facility-based and home births. Strong political commitment, clear policy recommendations and staff training on HepB-BD administration are also required. Furthermore, high quality nationally representative serosurveys among children are needed to inform decision makers about progress towards the regional control goal.
Introduction
About 100 million persons in the World Health Organization (WHO) African Region have chronic hepatitis B virus (HBV) infection, and all countries in the Region have an intermediate (2%-7%) or high (≥ 8%) population prevalence of chronic HBV infection [1, 2]. Chronically infected individuals have a 15%-25% estimated lifetime risk of developing liver cancer or cirrhosis, dependent upon age at infection [1]. About 70%-90% of infants infected before 1 year of age will develop chronic HBV infection, compared with 20%-50% of those infected between 1-5 years of age, and with 5%-10% of those infected after 5 years of age [1]. About 90% of babies born to hepatitis B surface antigen (HBsAg) positive (a serologic marker of chronic HBV infection) and hepatitis B e antigen (HBeAg) positive (a marker of infectivity) mothers become chronically infected, compared with about 35% of babies born to HBsAg-negative chronically infected mothers [1]. In areas of intermediate or high endemicity, the majority of chronic HBV infections in the population are attributable to mother-to-child (perinatal) and early childhood transmission [1]. Childhood transmission is effectively prevented by administration of hepatitis B vaccine (HepB) in the routine childhood vaccination schedule, and perinatal transmission is effectively prevented by the timely administration of a HepB birth dose (HepB-BD). WHO recommends that all infants receive hepatitis B vaccine at birth, preferably within 24 hours, followed by two or three additional doses with a minimum interval of four weeks [1].

In November 2014, the WHO African Regional Committee endorsed a resolution for a hepatitis B control goal to reduce chronic HBV infection prevalence to < 2% in children less than 5 years of age by 2020 [8]. In this paper, we present the status of hepatitis B control in the Region, including national policies for routine childhood hepatitis B vaccination and HepB-BD, coverage estimates for the HepB series and the HepB-BD, available HBsAg prevalence data among children pre- and post-HepB introduction, and available data on the risk of mother-to-child transmission of HBV. We also describe common challenges associated with HepB-BD introduction, and propose strategies to facilitate increased HepB-BD coverage in the African Region.

Methods
For each country in the WHO African Region, we compiled data on hepatitis B vaccination (WHO-UNICEF coverage estimates) [4, 5], the number of annual births [6], the proportion of institutional births, the proportion of births attended by a skilled birth attending (SBA), and an estimate of at least one antenatal care (ANC) visit [7].

We also conducted a review of published literature from January 1995 to October 2016 using MEDLINE with the search criteria "(Country Name) AND hepatitis B". The search time frame accounted for women of childbearing age and the exponential rise of HIV cases in the 1980s and early 1990s, which could have affected the risk of HBV transmission if babies born to HBeAg-negative chronically infected mothers [1]. In areas of intermediate or high endemicity, the majority of chronic HBV infections in the population are attributable to mother-to-child (perinatal) and early childhood transmission [1]. Childhood transmission is effectively prevented by administration of hepatitis B vaccine (HepB) in the routine childhood vaccination schedule, and perinatal transmission is effectively prevented by the timely administration of a HepB birth dose (HepB-BD). WHO recommends that all infants receive hepatitis B vaccine at birth, preferably within 24 hours, followed by two or three additional doses with a minimum interval of four weeks [1].

In November 2014, the WHO African Regional Committee endorsed a resolution for a hepatitis B control goal to reduce chronic HBV infection prevalence to < 2% in children less than 5 years of age by 2020 [8]. In this paper, we present the status of hepatitis B control in the Region, including national policies for routine childhood hepatitis B vaccination and HepB-BD, coverage estimates for the HepB series and the HepB-BD, available HBsAg prevalence data among children pre- and post-HepB introduction, and available data on the risk of mother-to-child transmission of HBV. We also describe common challenges associated with HepB-BD introduction, and propose strategies to facilitate increased HepB-BD coverage in the African Region.

Current status of knowledge
Current status of Hepatitis B control in the African region
Childhood hepatitis B vaccination
All 47 countries in the WHO Africa Region have introduced HepB into the routine infant immunization schedule; 44 (94%) countries use pentavalent vaccine (diphtheria, tetanus, pertussis, Haemophilus influenzae type B and hepatitis B vaccines) and 33 (70%) countries follow a three-dose schedule at 6, 10, and 14 weeks of age (Table 1). As of December 2016, nine countries, representing 28% of the regional birth cohort, have introduced universal HepB-BD policy (Table 2). Two countries, Sao Tome and Principe and Mauritius, only provide HepB-BD for babies born to HBsAg-positive mothers [10].

Regional reported coverage with 3 doses of HepB (HepB3) increased from 5% in 2000 to 76% in 2015. However, coverage has plateaued at 70%-75% since 2009 (Figure 1) [11]. This is below the 2015 global HepB3 coverage of 84%. Country-specific HepB3 coverage estimates for 2015 ranged from 16% in Equatorial Guinea to 98% in Rwanda, The Seychelles, Swaziland, and United Republic of Tanzania; 16 (34%) countries reported national HepB3 coverage of at least 90% (Table 1) [4]. Regional reported HepB-BD coverage increased from 0% in 2000 to 10% in 2015, although coverage has plateaued at 10% since 2010 [12]. This is below the 2015 global HepB-BD coverage of 39% (Figure 1). Among countries that have introduced the birth dose, HepB-BD coverage ranged from 19% in Angola to 99% in Angola and Botswana (Table 2) [5]. Angola, Botswana, Cabo Verde, and The Gambia, all of which had introduced the birth dose over a decade ago, reported at least 90% national HepB-BD coverage (Table 2).

A recent situational report of the WHO African Region indicated HepB-BD introduction has been recommended or is under consideration in Cameroon, Cote d’Ivoire, Guinea Bissau, Mozambique, Nigeria, the Republic of Congo, Sierra Leone, South Africa, and Uganda [10]. In Ethiopia and Gabon, Hep-B-BD introduction has been proposed for the next comprehensive multi-year plan. In Rwanda, the national Expanded Programme on Immunization (EPI) reported that it has received approval from the Ministry of Health but is waiting for endorsement from the Interagency Coordination Committee (ICC). Ghana has included HepB-BD introduction in its comprehensive multi-year strategic plan for immunization and the National Viral Hepatitis Control Plan, but so far, Hep-BD introduction has been postponed due to competing priorities [10]. Countries have reported multiple barriers to Hep-BD introduction, including lack of financial support from Gavi, the vaccine alliance (10 countries), the need for evidence on the burden of chronic HBV infection and the risk of perinatal transmission in Africa (6 countries), insufficient cold chain storage (3 countries), lack of trained healthcare workers (HCW) to attend births or conduct post-natal visits (2 countries), and a high proportion of home births (2 countries) [10].

HBsAg and HBeAg prevalence estimates among pregnant women were calculated for each country using data from relevant studies. Minimum and maximum estimates are also presented.
Table 1: childhood hepatitis B vaccine 3-dose (HepB3) coverage by country in the World Health Organization African Region, 2011–2015

Country1	Year Introduced2	HepB3 Coverage %2	2011	2012	2013	2014	2015
Algeria	2001		95	95	95	95	95
Angola	2006		72	75	77	64	64
Benin	2005		75	81	74	75	79
Botswana	1995		95	95	95	95	95
Burkina Faso	2006		91	90	88	91	91
Burundi	2004		96	96	96	95	94
Cabo Verde	2002		90	94	93	95	93
Cameroon	2005		82	85	89	87	84
Central African Republic	2008		47	47	23	47	47
Chad	2008		33	45	48	46	55
Comoros	2003		83	86	83	80	80
Congo	2007		80	79	85	90	80
Cote d’Ivoire	2001		62	82	80	76	83
DR of Congo	2007		74	75	74	80	81
Equatorial Guinea	2013		-	-	-	20	16
Eritrea	2002		96	94	94	94	95
Ethiopia	2007		65	69	72	77	86
Gabon	2004		75	82	79	70	80
Gambia	1990		96	98	97	96	97
Ghana	2002		91	92	90	98	88
Guinea	2006		63	62	63	51	51
Guinea-Bissau	2008		80	80	80	80	80
Kenya	2002		96	94	93	92	89
Lesotho	2003		96	95	93	93	93
Liberia	2008		77	80	76	50	52
Madagascar	2002		73	70	74	73	69
Malawi	2002		97	96	89	91	88
Mali	2003		66	68	71	77	68
Mauritania	2005		75	80	80	84	73
Mauritius	1997		98	98	98	97	97
Mozambique	2001		76	76	78	79	80
Namibia	2009		82	84	89	88	92
Niger	2008		75	71	67	68	65
Nigeria	2004		46	42	45	49	56
Rwanda	2002		97	98	98	98	98
Sao Tome and Principe	2003		96	96	97	95	96
Senegal	2004		92	91	92	89	89
Seychelles	1995		99	99	99	99	98
Sierra Leone	2007		89	91	92	83	86
South Africa	1995		76	73	65	74	71
South Sudan	2014		-	-	-	-	31
Swaziland	1996		91	95	98	98	98
Togo	2008		85	84	84	87	88
Uganda	2002		82	78	78	78	78
United Republic of Tanzania	2002		90	92	91	97	98
Zambia	2005		81	78	79	86	90
Zimbabwe	2000		94	97	95	91	87

1All countries provide pentavalent (DTwPHibHepB) vaccine, except for Algeria and Mauritius which provide monovalent hepatitis B vaccine and South Africa which provides monovalent and hexavalent (DTaPIPVHibHepB) vaccines. All countries follow a 3-dose schedule at 6, 10, and 14 weeks of age, except for Algeria (0, 1, 5 months), Angola (0, 2, 4, 5 months), Botswana (0, 2, 3, 4 months), Burkina Faso (8, 12, 16 weeks), Cabo Verde (0, 2, 4, 6, 18 months), Congo (8, 12, 16 weeks), Gambia (0, 2, 3, 4 months), Mauritania (0, 6, 10, 14 weeks), Namibia (0, 6, 10, 14 weeks), Nigeria (0, 6, 10, 14 weeks), Sao Tome and Principe (0, 6, 10, 14 weeks), Senegal (0, 6, 10, 14 weeks), Seychelles (3, 4, 5 months), and South Africa (6, 10, 14 weeks, 18 months for hexavalent vaccine). 2Vaccine introduction year and annual coverage estimates were derived from WHO UNICEF Joint Reporting (updated July 2016) http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucov_barhepb3.html.
Country	Year HepB-BD introduced	HepB-BD Coverage %¹	Annual Births (1000s)²	Institutional deliveries %³	Births attended by SBA %³	>1 ANC visit %³
Algeria	2004	99	99	99	99	99
Angola	2015	-	-	-	19	1,128
Botswana	Pre 2000	99	99	99	99	55
Cabo Verde	2002	99	99	94	99	11
Gambia	1990	90	97	93	96	83
Mauritania	2013	-	-	-	-	134
Mauritius⁵	n.a.	-	-	-	14	99
Namibia	2014	-	-	1	87	72
Nigeria	2004	31	32	32	32	7,133
Sao Tome and Principe⁵	2002	-	-	-	-	-
Senegal	2016	-	-	-	-	-
Benin		388	87	77	83	68
Burkina Faso		717	66	66	94	54
Burundi		488	60	60	99	34
Cameroon		847	61	65	83	92
Central African Republic		164	53	54	68	22
Chad		630	22	24	53	92
Comoros		26	76	82	92	93
Congo		167	92	94	93	37
Cote d’Ivoire		838	57	59	91	46
DR of Congo		3,217	80	80	88	40
Equatorial Guinea		29	67	68	91	92
Eritrea		175	34	34	89	45
Ethiopia		3,176	16	16	41	89
Gabon		51	90	89	95	34
Ghana		884	73	71	91	55
Guinea		460	40	45	85	68
Guinea-Bissau		68	44	45	92	55
Kenya		1,571	61	62	96	55
Lesotho		61	77	78	95	55
Liberia		156	56	61	96	60
Madagascar		831	38	44	82	55
Malawi		665	89	87	96	55
Mali		758	45	49	70	55
Mozambique		1,087	55	54	91	55
Niger		983	59	40	83	55
Rwanda		363	91	91	99	55
Seychelles		2	-	-	-	-
Sierra Leone		229	54	60	97	55
South Africa		1,111	95	94	97	55
South Sudan		446	-	19	62	55
Swaziland		38	88	88	99	55
Togo		256	73	59	73	55
Uganda		1,665	57	57	93	55
United Republic of Tanzania		2,064	50	49	88	55
Zambia		645	67	64	96	55
Zimbabwe		539	80	80	94	55

¹Coverage estimates are derived from WHO UNICEF Joint Reporting (updated July 2016) http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragehepb_bd.html. ²Annual birth data is derived from the WHO Immunization Monitoring System (updated May 2016) http://apps.who.int/immunization_monitoring/globalsummary. ³Data derived from UNICEF (updated February 2016) www.data.unicef.org, SBA-skilled birth attendant, ANC-Antenatal care. ⁴2015 coverage data reported to SAGE 2016 in WHO review of hepatitis B birth dose. ⁵Sao Tome and Principe and Mauritius do not offer the birth dose universally, but follow a selective policy where infants of mothers that test HBsAg are offered vaccine.n.a.-not available.
Table 3: Hepatitis B surface antigen seroprevalence among children pre- and post-vaccine introduction by country — World Health Organization African Region

Country	Year of study	Sample size	Study population	Age groups	HBsAg prevalence %	Year of study	Sample size	Study population	Age groups	HBsAg prevalence %
Nigeria	1996-2010	219	Sabandiga-Ora town [21]	1-4yrs	2001 223	1-4yrs	1.3	100%		

Table 4: Hepatitis B surface antigen and e antigen prevalence among pregnant women by country within the World Health Organization African Region, 1995-2016

Country	No. of studies	Year of studies	Study site (no. of studies)	Study setting1	Median No. participants per study (min, max)	Median % HBsAg prevalence (min %, max %)	Median % HBeAg prevalence among HBsAg positive women (min %, max %)	
Western Africa	(n=75)	Single	Multiple	Urban	Rural			
Benin	3	2011	1	-	1	283	15.5 (9.7)	11.4 (13.7)
Burkina Faso	7	1995-2009	4	3	7	321 (129, 917)	8.1 (5.8, 17.1)	38 (44)
Côte d’Ivoire	3	1995-2002	1	2	2	498 (295, 4385)	8.0 (0.0, 18.2)	45 (47)
Ghana	4	2000-2013	1	1	2	727 (168, 1308)	12.0 (9.5, 19.3)	89 (91)
Mali	2	1994-2009	1	1	2	2244 (829, 3595)	11.8 (8.0, 16.5, 52, 53)	-
Mauritania	1	2008-2009	1	-	1	1020	10.7 (5.4)	-
Niger	1	2008	1	1	1	499	16.2 (75)	-
Nigeria	26	1997-2015	20	6	23	358 (156, 5760)	6.9 (1.4, 16.5, 58, 81)	28.5 (6.5, 36.4) (41, 70, 72)
Sierra Leone	4	2005	-	1	1	302	6.3 (6.3, 16.4)	-
Central Africa	(n=8)	-	-	-	-	-	-	-
Cameroon	7	2000-2015	1	6	4	349 (176, 7069)	7.7 (4.4, 20.4)	83 (89)
Gabon	1	2005	-	1	1	1186	9.2 (90)	10.1 (90)

Table 5: Hepatitis B surface antigen and e antigen prevalence among pregnant women by country within the World Health Organization African Region, 1995-2016

Country	No. of studies	Year of studies	Sample size	Study site (no. of studies)	Study setting1	Median No. participants per study (min, max)	Median % HBsAg prevalence (min %, max %)	Median % HBeAg prevalence among HBsAg positive women (min %, max %)
Western Africa	(n=75)	Single	Multiple	Urban	Rural			
Benin	3	2011	1	-	1	283	15.5 (9.7)	11.4 (13.7)
Burkina Faso	7	1995-2009	4	3	7	321 (129, 917)	8.1 (5.8, 17.1)	38 (44)
Côte d’Ivoire	3	1995-2002	1	2	2	498 (295, 4385)	8.0 (0.0, 18.2)	45 (47)
Ghana	4	2000-2013	1	1	2	727 (168, 1308)	12.0 (9.5, 19.3)	89 (91)
Mali	2	1994-2009	1	1	2	2244 (829, 3595)	11.8 (8.0, 16.5, 52, 53)	-
Mauritania	1	2008-2009	1	-	1	1020	10.7 (5.4)	-
Niger	1	2008	1	1	1	499	16.2 (75)	-
Nigeria	26	1997-2015	20	6	23	358 (156, 5760)	6.9 (1.4, 16.5, 58, 81)	28.5 (6.5, 36.4) (41, 70, 72)
Sierra Leone	4	2005	-	1	1	302	6.3 (6.3, 16.4)	-
Central Africa	(n=8)	-	-	-	-	-	-	-
Cameroon	7	2000-2015	1	6	4	349 (176, 7069)	7.7 (4.4, 20.4)	83 (89)
Gabon	1	2005	-	1	1	1186	9.2 (90)	10.1 (90)
Impact of hepatitis B vaccination in children

To document the impact of HBV vaccination on chronic HBV infection prevalence in the African Region, we identified HBSAg serosurveys conducted pre- and post-HepB introduction among children in seven countries: the Gambia, Nigeria, Cameroon, Ghana, Senegal, South Africa, and Tanzania (Table 3) [13-36]. All studies were limited to a few areas, districts, villages, hospitals, or clinics, resulting in HBsAg prevalence estimates that were not representative of the true burden of chronic HBV infection among children in those countries. Some studies that were conducted post-HepB introduction, only included children that had three documented doses of HepB [17, 18, 21, 28, 33]. These studies reported HBSAg prevalence among fully vaccinated children, but they do not reflect the true burden among these age groups.

Countries that have introduced the birth dose

In The Gambia, surveys conducted between 1990 and 2008, most of which were associated with the Gambia Hepatitis Intervention Study (GHIS) an initiative which progressively introduced HepB into the Gambian routine immunization program during 1986–1990, showed that HBSAg prevalence decreased from 8%-14.6% among 6 month–9 year old children to < 2% among 1–5 year old children post-HepB introduction (Table 3) [13-19]. However, two of these three post-HepB introduction studies were conducted among children that had received at least 3 doses of HepB verified by vaccination records [17, 18]. Therefore, the true HBSAg prevalence may be higher. Available data from convenience and non-representative samples in Nigeria also found a decrease in HBSAg prevalence among children after vaccine introduction (Table 3) [20-24]. However, in three of four post-HepB introduction studies that found HBSAg prevalence to be < 2%, the majority of participants had documented HepB receipt [21, 22, 24]. In the remaining study, hepatitis B vaccination history was available for 27% of the participants, thus some of the participants without vaccination history may not have received HepB, which is likely given national HepB3 coverage was 46% in 2011 in Nigeria (Table 1), resulting in the higher HBSAg prevalence of 14.1% [23].

Countries that have NOT introduced the birth dose

Studies conducted in Cameroon, Ghana, Senegal, South Africa and Tanzania, countries that did not have a HepB-BD in their schedule at the time of the surveys, reported a drop in HBsAg prevalence among children born after HepB introduction (Table 3) [25-36]. However, none of the studies were nationally representative. More specifically, estimated HBSAg prevalence among children born post-HepB introduction was less than 2% in Cameroon, Ghana, South Africa, and Tanzania [25-29, 32-36]. These estimates were derived from studies that only included children with documented verified 3 doses of HepB (Ghana, South Africa), where documented vaccination history was only available for a small proportion of participants (Cameroon), or vaccination history was not reported (Ghana, South Africa, Tanzania). In Senegal, HBSAg prevalence was > 2% in a 1993 post-HepB introduction study [30]. This study was a cluster survey conducted a year after HepB introduction in a pilot region; hepatitis B vaccination history was available for 86% of participants, of which only 40% had received 3 doses of HepB. In comparison, another study conducted in 2009 reported a HBSAg prevalence of 0.2% among hospitalized children at one hospital in Dakar; hepatitis B vaccination history was available for 43% of participants and all had received HepB [26]. Since at the time of the latter study, national HepB3 coverage would have been around 90% (Table 1) it is likely that most of the participants without vaccination history were vaccinated.

Evidence for perinatal transmission of HBV infection in Africa

Understanding the prevalence of HBSAg and HBeAg among pregnant women or women of child-bearing age helps to assess the risk of perinatal HBV transmission and the need for a HepB-BD. From 1995 to 2016, we identified 175 studies from 18 countries that reported HBSAg prevalence among pregnant women (Table 4) [37-111]. Of these, 24 reported HBeAg prevalence [37-39, 45-47, 61, 70-72, 85, 88-90, 96, 100-102, 104-106, 108, 109, 111]. Of these one third of the studies were conducted in Nigeria. Nearly all studies were cross-sectional or cohort designs that recruited participants through convenience sampling, many times at a single study site, and were subject to selection bias. Reported median HBSAg prevalence by country varied widely, from 1.9% in Madagascar to 16.2% in Niger (Table 4). For most of the countries with multiple studies, HBSAg and HBeAg prevalence estimates varied widely, reflecting the different HBV infection risks in different parts of each country and among distinct population groups, e.g. groups of differing ethnicities, socio-economic status and education levels. Although none of the studies were nationally representative, they highlight that the prevalence of chronic HBV infection among the pregnant women surveyed was intermediate to high, and that the proportion of chronically-infected mothers who were HBeAg-positive varied widely by country.

Perinatal transmission of HBV in the African region

In addition to serosurveys conducted among pregnant women, we identified four studies that assessed perinatal transmission of HBV infection [38,45,49,108]. Among women of unknown or negative HIV status in Burkina Faso, Cote d'Ivoire, and Ghana, perinatal transmission of HBV was more frequent when mothers expressed HBeAg or had a high HBV DNA viral load (≥10^4 IU/ml) [38, 45, 49]. In Cote d'Ivoire, 9 (38%) of 24 infants born to HBSAg-positive/HBeAg-positive mothers tested HBSAg-positive at six weeks of age, compared with none (0%) of 42 infants born to HBSAg-positive/HBeAg-negative mothers [45]. In Ghana, 5 (5.2%) of 97 infants born to HBSAg-positive mothers tested HBV DNA positive at two weeks of age; the relative risk of perinatal transmission associated with high maternal HBV DNA viral load (≥10^4 IU/ml) compared with low maternal HBV DNA viral load was 2.4 (95% CI:1.1-5.4, p=0.048) [49]. One study from Burkina Faso reported that 7 (32%) of 22 infants born to HBSAg-positive/HBeAg-negative and 2 (29%) of 7 infants born to HBSAg-positive/HBeAg-positive mothers tested HBSAg-positive within 24 hours of birth [38].

Challenges and strategies for improving hepatitis B vaccine birth dose coverage in Africa

Despite the introduction of HepB by all countries in the Region, for 31 countries (66%) HepB3 coverage is below the 90% recommended coverage level. Given the high chronic HBV infection prevalence throughout the Region, particularly among pregnant women, and the importance of perinatal and early childhood transmission, intermediate and high endemicity settings, countries need to improve HepB3 coverage and those without a birth dose might need to consider introducing the HepB-BD to reach the regional hepatitis B control goal by 2020. In African countries that have already introduced the HepB-BD, several challenges, including timely administration of the HepB-BD, high prevalence of home births, the lack of services available to reach infants born at home and unreliable vaccine supply have limited HepB-BD implementation. In this section we present those challenges and list some strategies that could help overcome them to improve HepB-BD coverage.

Challenges associated with birth dose implementation in Africa

HepB-BD assessments conducted in the Region have consistently identified timely HepB-BD administration (within 24 hours of birth)
as a challenge (BD workshop report, Regional Consultation on Viral Hepatitis Control, Mauritania CDC trip report, Botswana & Namibia BD assessments, unpublished reports). National policy recommendations for HepB-BD administration varied from within 24-hours in Nigeria to up to two weeks after birth in Namibia (Nigeria & Namibia BD assessments, unpublished reports). Restricting HepB-BD administration time to within 24 hours after birth, as recommended in Nigeria in February 2015, might limit coverage by preventing vaccination of infants born outside a health facility. In Nigeria, median timely HepB-BD administration was 1% (range: 0%-20%) and total HepB-BD coverage was 4% (range: 0%-22%) among health facilities visited prior to the birth dose assessment conducted in September 2015 (Nigeria BD assessment, unpublished report). HepB-BD administration among children admitted to an emergency room in Nigeria, the mean age at HepB-BD receipt was 28 days, and only 13 (32%) of 41 infants received a HepB-BD within 7 days of birth [23]. In the Gambia, a review of 10 years of district HepB-BD vaccination coverage data showed that only 1% of infants were vaccinated within 1 day of birth, 5% were vaccinated within 7 days, and 58% were vaccinated within 28 days [112]. In Botswana, 78% of the facilities visited during a birth dose assessment administered the vaccine within 24 hours of birth (Botswana BD Assessment, unpublished report).

Other challenges identified included high prevalence of home births and the lack of services available to reach infants born at home, unreliable vaccine supply and inappropriate forms to document HepB vaccination (Botswana BD workshop report, Regional Consultation on Viral Hepatitis Control, Mauritania CDC trip report, Botswana & Namibia BD assessments, unpublished reports). In The Gambia and Nigeria, where the proportion of home births was high, cultural factors such as waiting until after a child’s naming day (around 7 days) to bring him/her to a healthcare facility delayed vaccination (BD workshop report, Botswana & Nigeria BD assessments, unpublished reports). Vaccine stock outs or limited vaccination sessions hindered the provision of timely HepB-BD in Botswana, The Gambia, Mauritania, Namibia, and Nigeria (BD workshop report; Botswana, Namibia, & Nigeria BD assessment, Mauritania CDC trip report, unpublished reports) [112]. In Botswana, despite daily HepB immunization sessions, HepB stock outs lasting over one month were reported at two of 16 visited facilities; and in Namibia, two events of HepB stock outs were reported in the six months before the assessment visit. Monitoring HepB-BD coverage is dependent upon having appropriate documentation tools to record both timely and total HepB-BD coverage. For all assessed countries, documentation of HepB-BD administration was suboptimal (BD workshop report; Botswana, Namibia, Nigeria, Sao Tome and Principe BD assessments; unpublished reports). In Nigeria, only doses administered within 24 hours could be recorded, while in most other countries there was no place to record timely HepB-BD.

Strategies for improving birth dose coverage

Many of the challenges identified in the HepB-BD assessments in Africa can be overcome based on the experiences in the WHO Western Pacific Region (WPR) and South East Asian Region (SEAR), where several countries had high HBsAg endemicity and high home birth rates. By implementing hepatitis B vaccination strategies, including HepB-BD administration, the WPR decreased chronic HBV infection prevalence among children at least 5 years of age from 8.3% in 1990 to 0.9% in 2012 [113]. The strategies described below could help to improve HepB-BD coverage and promote the achievement of the hepatitis B control goal in the Africa Region.

Advocate for strong political commitment

Strong political commitment is essential to identify resources in the country’s budget or to seek financial support from donors to introduce HepB-BD. In order to engage decision makers, initial steps need to be taken, including gathering the evidence on the prevalence of chronic HBV infection in pregnant women and risk of perinatal transmission, to present to the national immunization technical advisory group or equivalent technical bodies within each country to review [114]. All potential decision makers and opinion leaders from a wide variety of organizations should be engaged, including Ministries of Health and Finance, professional societies, medical associations, donor agencies, non-governmental organizations, as well as community and religious leaders [114]. Advocacy with partners in different but related sectors, such as cancer prevention, chronic disease prevention, safe motherhood and essential newborn care, might also strengthen political commitment [114]. It will be important to highlight that monovalent HepB is affordable, varying from US $0.16 per dose for a 10-dose vial to US $0.38 per dose for a single dose vial [115]. In addition, the vaccine is 95% effective in preventing infection in newborns [1].

Develop clear policy recommendations

HepB-BD guidelines and policies should be consistent with the WHO Strategic Advisory Group of Experts (SAGE) recommendations. All infants should receive their first dose of HepB as soon as possible after birth, preferably within 24 hours and up until the time of the first primary dose, since vaccination up until 7 days after birth can still be effective at preventing perinatal HBV transmission [116]. Infants born to HBsAg-positive mothers vaccinated after 7 days post-birth, compared with those vaccinated 1-3 days after birth, had an increased risk of HBV infection (OR = 8.6) [1]. HepB-BD administration is needed for all infants, because selective vaccination of infants born to HBsAg-positive mothers identified by screening as is the current policy for Sao Tome and Principe and Mauritius, has been found to miss at-risk babies [117].

In China, an effective policy to ensure timely administration of the HepB-BD was to assign responsibility for vaccine administration to whoever delivered the infant (“who delivers the infant gives the birth dose”) [118]. All countries providing or considering HepB-BD introduction should ensure that staff at health facilities, hospitals, and public health departments, including MCH and perinatal care staff, are well-trained on the policy recommendations and reporting requirements to help address challenges that have been identified during the HepB-BD assessments.

Ensure relevant documentation for monitoring birth dose administration is available

To appropriately monitor HepB-BD coverage, countries need to record separately birth dose administered within 24 hours of birth and birth dose provided after 24 hours. Countries in the Africa Region that have introduced the birth dose and were recently assessed, had insufficient tools for documenting both timely and total birth dose. Therefore, all immunization reporting tools, including immunization cards, EPI registers, and electronic data management systems, should have a place to record the date of HepB-BD administration and to track whether it was provided within 24 hours of birth. Synergy of data collection forms across EPI and Maternal and Child Health (MCH) programs could also improve data monitoring.

Maximize HepB-BD coverage among health facility births

In just under one third of countries (14 out of 47) in the Region, ≥ 80% of births occurred in health facilities (Table 2). In these countries, high HepB-BD coverage can be achieved among children born in health facilities. Utilizing ANC visits to promote health facility deliveries could improve post-natal care and maternal health as well as facilitate administration of HepB-BD. In 81% of countries (38 out of 47) in the WHO African Region, ≥ 80% of pregnant women had at least one ANC visit and in 57% of countries (27 out of 47), ≥ 90% of pregnant women had at least one ANC visit (Table 2). Also, engaging local community and religious leaders to promote hospital births may be helpful. In China, increasing hospital deliveries resulted in improving timely HepB-BD coverage and contributed to decreasing maternal mortality, and eliminating maternal and neonatal tetanus [118].

Appropriate training for MCH and EPI staff is also essential and can improve timely HepB-BD coverage. In the Philippines, assessment and correction of HCWs through on-the-spot training increased timely HepB-BD coverage among hospital births [119]. In China, strong collaboration between MCH and EPI programs, supervision of low performing sites, and HCW training led to high timely HepB-BD coverage among hospitals [118]. Further improvements could be made through well-managed vaccine delivery and procurement to avoid vaccine stock outs at health facilities. Availability of HepB-BD policies on-site and standing orders for birth dose vaccination led to higher HepB-BD coverage in the Philippines [119].

Reach children born at home within 24 hours of birth

Across Africa, one of the major challenges for timely administration of the HepB-BD is the large proportion of home births. In nine countries, institutional births accounted for ≥ 50% of births (Table 2). In settings
where births are attended by an SBA, the HepB-BD can be administered by SBAs who have been trained to administer monovalent HepB and provided access to the vaccine. In the African Region, SBAs attend > 70% of births in 18 countries (Table 2).

In settings where births are not attended by SBAs, activities that could improve timely HepB-BD coverage include tracking pregnancies to increase HCW awareness of potential births in their community, educating pregnant women about the importance of timely HepB-BD administration during antenatal care visits and training community health workers (CHWs) or volunteers to organize outreach visits to vaccinate the newborn in a timely manner. Birth notification using village health volunteers was piloted in Lao PDR and resulted in more health facility deliveries and improved HepB-BD coverage [120]. Training CHWs or traditional birth attendants (TBAs) to vaccinate newborns with compact single-dose pre-filled auto-disable injection devices (CPAD) of monovalent HepB (Unjict™) has been conducted in Indonesia to provide HepB-BD during outreach activities for home births, improving timely access to the vaccine [121].

Storage of HepB outside the cold chain

A strategy for reaching newborn infants in areas that lack or have unreliable cold chain is to store monovalent Hep B outside the cold chain (OCC). Data from several HepB manufacturers indicate that the vaccine is thermostable for at least 4 weeks at temperatures of 37°C and 40°C–45°C and that HepB stored OCC induces a similar level of protection and seroconversion as vaccine stored between 2°C–8°C. Recently, WHO SAGE issued recommendations that support countries that choose to purchase the OCC policy for monovalent HepB vaccination [116, 122]. Storing monovalent HepB OCC has been shown to significantly improve HepB-BD coverage in Indonesia, China, Lao, and Vietnam [123-126]. Therefore, countries in the African Region, where the proportion of home births is high and/or cold chain storage might not be optimal, might want to consider storing monovalent HepB OCC to promote timely HepB-BD administration and subsequently prevent perinatal infections.

Conclusion

Substantial progress has been made to introduce routine infant hepatitis B vaccination in the WHO African Region; however, in 2015 the Region had the lowest HepB3 coverage estimate (76%) compared with other WHO Regions [11]. Only 11 (23%) countries have introduced the Hep-B-D of these, five had total HepB-BD coverage ≥ 80%. Limited data from non-representative serosurveys conducted to date suggest hepatitis B vaccination has decreased HBsAg prevalence among children born after HepB introduction in some countries. However, several studies reported > 2% HBsAg prevalence among children born after vaccination introduction. Given the HBsAg prevalence data among pregnant women and children is limited and not nationally representative, the prevalence estimates presented for each country may not reflect the true situation. High quality nationally representative serosurveys among children born after implementation of routine infant hepatitis B vaccination are needed to inform local decision makers about progress towards and actions needed to achieve the African Region hepatitis B control goal.

Competing interests

The authors declare no competing interest.

Authors’ contributions

Dr Breakwell designed the study, reviewed the literature, summarized the data and wrote the manuscript; Dr Tevi Benissan reviewed the manuscript; Ms Childs contributed to the data abstraction and analysis, and reviewed the manuscript; Dr Mihigo reviewed the manuscript; Dr Tohme contributed to the study design and reviewed the manuscript. All the authors have read and agreed to the final manuscript.

References

1. World Health Organization. Hepatitis B vaccines. Weekly Epidemiological Record. 2009;84(40):405-20.
2. World Health Organization. Hepatitis Fact Sheet. In: Regional Office for Africa, editor. 2016.
3. World Health Organization. Sixty-fourth session of the WHO Regional Committee for Africa. (cited 17 February 2017)
4. World Health Organization. WHO-UNICEF estimates of HepB3 coverage 2016 (updated 03/03/2017; cited 2017 04/3/2017).
5. World Health Organization. WHO-UNICEF estimates of HepB_BD coverage 2016 (updated 03/03/2017; cited 2017 04/03/2017).
6. World Health Organization. WHO Vaccine-Preventable Diseases: Monitoring System. 2016 Global Summary 2016 (updated 12/1/2016; cited 2016 10/3/2016).
7. UNICEF. UNICEF Data: Monitoring the Situation of Children and Women 2016 (updated 02/1/2016; cited 2016 10/3/2016).
8. UNAIDS. HIV estimates with uncertainty bounds 1990-2015 2016 (November 14, 2016).
9. Kourtis AP, Bullertys M, Hu DJ, Jamieson DJ. HIV-HBV coinfection—a global challenge. N Engl J Med. 2012 May 10;366(19):1749-52.
10. World Health Organization. Global compliance with Hepatitis B vaccine birth dose and factors related to timely schedule. A review (cited 2016 November 14, 2016).
11. World Health Organization. Hepatitis B (HepB3) immunization coverage estimates by WHO region 2016 (accessed 12/4/2016).
12. WHO/UNICEF. Coverage estimates for 1980-2015: Regional Global Coverage 2016 (cited 04/03/2017).

What is known about this topic

• There is a high prevalence of chronic hepatitis B virus (HBV) infection in the African Region, resulting in 100 million people being at risk of death from liver cancer and cirrhosis; • The Africa Region has established a hepatitis B control goal to reduce the prevalence of hepatitis B surface antigen (HBsAg, a marker of chronic HBV infection) to < 2% among children aged < 5 years by 2020; • Administering a Hepatitis B vaccine birth dose within 24 hours of birth and three additional doses during infancy protects children from acquiring chronic HBV infection through perinatal transmission and during early childhood when the risk of developing chronic infection is highest.
13. Chotard J, Inskip HM, Hall AJ, Loik F, Mandy M, Whittle H et al. The Gambia Hepatitis Intervention Study: follow-up of a cohort of children vaccinated against hepatitis B. J Infect Dis. 1992 Oct;166(4):764-8.

14. Vall Mayans M, Hall AJ, Inskip HM, Chotard J, Lindsay SW, Cornonia E et al. Risk factors for transmission of hepatitis B virus to Gambian children. Lancet. 1990 Nov 3;336(8723):1107-9.

15. Fortuin M, Chotard J, Jack AD, Maine NP, Mandy M, Hall AJ et al. Efficacy of hepatitis B vaccine in the Gambian expanded programme on immunisation. The Lancet. 1993 May 1;341(8853):1129-31.

16. Viviani S, Jack A, Hall AJ, Maine N, Mandy M, Montesano R et al. Hepatitis B vaccination in infancy in The Gambia: protection against carriage at 9 years of age. Vaccine. 1995 Dec;13(24):2946-50.

17. Whittle H, Jaffar S, Wansbrough M, Mandy M, D umpis U, Collinson A et al. Observational study on vaccine efficacy 14 years after trial of hepatitis B vaccination in Gambian children. BMJ. 2002 Sep 14;325(7364):569.

18. van der Sande MAB, Waight P, Mendy M, Rayco-Solon P, Hutt P, Fulford T et al. Long-Term Protection Against Carrierhood of Hepatitis B Virus after Infant Vaccination. The Journal of Infectious Diseases. 2006 Jun 1;193(11):1528-35. Epub 2006 Apr 25.

19. Peto TJ, Mendy ME, Lowe Y, Webb EL, Whittle HC, Hall AJ. Efficacy and effectiveness of infant vaccination against chronic hepatitis B in the Gambia Hepatitis Intervention Study (1986-90) and in the nationwide immunisation program. BMC Infectious Diseases. 2014;14(7):1-17.

20. Akemani FOT, Koskiniemi M, Ekanem EE, Bolarin DM, Vaheri A. Seroprevalence and coprevalence of HIV and HBsAg in Nigerian children with/without protein energy malnutrition. Acta Tropica. 1997;64:167-74.

21. Oduosanya GO, Alufihai FE, Meunice FP, Wellens R, Weil J, Abokhai Vi. Prevalence of hepatitis B surface antigen in vaccinated children in and controls in rural Nigeria. International Journal of Infectious Diseases. 2005 May;9(3):139-43.

22. Oduosanya GO, Alufihai E, Meurice FP, Abokhai VI. Five-year post vaccination efficacy of hepatitis B vaccine in rural Nigeria. Human Vaccines. 2011;7(6):625-9.

23. Sadoh AE, Ofili A. Hepatitis B infection among Nigerian children admitted to a children's emergency room. African Health Sciences. 2014 Jun;14(2):377-83.

24. Okonko I, Okerentugba P, Innocient-Adiele H. Detection of Hepatitis B virus in a rural district in Ghana. Am J Epidemiol. 1998 Mar 1;147(5):478-87.

25. Rapicetta M, Stroffolini T, Ngatchu T, Chionne P, Ciccaglione AR, Lantum D et al. Age- and sex-related study of HBV-DNA in HBsAg asymptomatic children from an enzootic area (Cameroon). Annals of Tropical Paediatrics. 1991.

26. Rey-Cuille MA, Njouom R, Bekondi C, Seck A, Gody C, Bata P et al. Prevalence of Hepatitis B Surface Antigen (HBsAg) among Children in Ibadan, Southwestern Nigeria. The Internet Journal of Tropical Medicine. 2012;10(1).

27. Martinson FE, Weigle KA, Royce RA, Weber DJ, Suchindran CM, Lantum D et al. Seroprevalence and coprevalence of HIV and HBsAg in Nigerian children with/without protein energy malnutrition. Acta Tropica. 1997;64:167-74.

28. De Paschale M, Ceriani C, Karou D, Nadembega WMC, Savadogo A, Djeneba O, Nsme RA, Coluzzi M, Pietra V et al. Seroprevalence of six different viruses among pregnant women and blood donors in rural and urban Burkina Faso: A comparative analysis. J Med Virol. 2006 May;78(5):683-92.

29. Ilboudo D, Karou D, Nadembega WM, Savadogo A, Djeneba O, Pignatelli S, Pietra V, Bare A, Simpore J, Traore AS. Prevalence of furious and non-furious forms of hepatitis B Virus amongst rural pregnant women in Burkina Faso. Human Diseases. 2005 May;9(3):139-43.

30. Apea-Kubi KA, Yamaguchi S, Sakyi B, Ofori-Adjei D. HTLV-1 and other sexually transmitted infections among pregnant women in the Asante Akim North District of Ghana. J Med Virol. 2006 Sep 1;12(17):1188-93.

31. Simpore J, Granato M, Santarelli R, Nsme RA, Coluzzi M, Pietra V et al. Infection of mother by HBV/HIV in rural Burkina Faso. Human Diseases. 2005 May;9(3):139-43.

32. Peto TJ, Mendy ME, Lowe Y, Webb EL, Whittle HC, Hall AJ. Efficacy and effectiveness of infant vaccination against chronic hepatitis B in the Gambia Hepatitis Intervention Study (1986-90) and in the nationwide immunisation program. BMC Infectious Diseases. 2014;14(7):1-17.
53. MacLean B, Hess RF, Bonvillain E, Kamate J, Dao D, Cosimano A et al. Seroprevalence of hepatitis B virus surface antigen among pregnant women attending the Hospital for Women & Children in Koutiala, Mali. S Afr Med J. 2011 Dec 14;102(1):47-9.

54. Mansour W, Malick FZ, Siddiya A, Ishagheh E, Chekanou MA, Veillon P et al. Prevalence, risk factors, and molecular epidemiology of hepatitis B and hepatitis delta virus in pregnant women and in patients in Mauritania. J Med Virol. 2012 Aug;84(8):1186-98.

55. Mamadou S, Idef M, Maazou AR, Aoula B, Labo S, Bozari M. HIV infection and hepatitis B seroprevalence among antenatal clinical attenders in Niger, West Africa. HIV AIDS (Auckl). 2012;4:1-4 Epub 2012 Jan 21.

56. Pennap GR, Muazu IF, Fatima M. Parallel and Overlapping Hepatitis B and C Virus Infection among Pregnant Women Attending Antenatal Clinic in Benin City, Nigeria. African Journal of Biomedical Research. 2008;11(3):194-7.

57. Ikeako L, Ezegwui H, Ajah L, Dim C, Okete T. Seroprevalence of Human Immunodeficiency Virus, Hepatitis B, Hepatitis C, Syphilis, and Co-infections among Antenatal Women in a Tertiary Institution in South-East, Nigeria. Ann Med Health Sci Res. 2014 Nov;4(6):954-8.

58. Kolawole OM, Wahab AA, Aderkanle DA, Sibanda T, Okoh AO. Seroprevalence of hepatitis B surface antigenemia and its effects on hematological parameters in pregnant women in Osogbo, Nigeria. Virol J. 2012 Dec 27;9:317.

59. Obasaju MA, Enemebia MNO, Okopi JA, Damen JG. Hepatitis B Virus (HBV) Infection among Pregnant Women in Makurdi, Nigeria. African Journal of Biomedical Research. 2008;11(3):155-9.

60. Oloko AB, Salawu FK, Danbaram A, Olokoba LB, Midala JK, Badung LH et al. Hepatitis B virus infection amongst pregnant women in North-Eastern Nigeria - a call for action. Niger J Clin Pract. 2011 Jan-Mar;14(1):10-3.

61. Omalu ICJ, Jibrin A, Olayemi IK, Hassan SC, Mgbemena A et al. Seroprevalence of Malaria and Hepatitis B (HBsAg) with Associated Risk Factors among Pregnant Women Attending Antenatal Clinic in General Hospital Minna, North-Central Nigeria. Annual Review & Research in Biology. 2012;2(4):83-8.

62. Onaokwu JU, Offor E, Okonofua FE. Maternal and neonatal seroprevalence of hepatitis B virus surface antigen (HBsAg) in Benin City, Nigeria. J Obstet Gynaecol. 2001 Nov;21(6):583-6.

63. Osazuwa F, Obinna VO, Chika AF. Sero-epidemiology of Human Immunodeficiency Virus, Hepatitis B and C among Pregnant Women in Rural Communities of Abaji Area Council, Nigeria. TAF Preventive Medicine Bulletin. 2012;11(4).

64. Oke EF, Jibrin AO, Muazu JF, Fatima M. Parallel and Overlapping Hepatitis B and C Virus Infection among Pregnant Women Attending Antenatal in a Rural Clinic in Northern Nigeria. International Journal of Current Microbiology and Applied Sciences. 2015;4(5):16-23.

65. Pennap GR, Osanga ET, Ubam A. Seroprevalence of Hepatitis B Surface Antigen among Pregnant Women Attending Antenatal Clinic in Federal Medical Center Keffi, Nigeria. Research Journal of Medical Sciences. 2011;5(2):80-2.

66. Ugbebor O, Aigbirior M, Osazuwa F, Enah C et al. Hepatitis B, Hepatitis C and Human Immunodeficiency Virus Co-Infection among Pregnant Women and Blood Donors in Cameroon. Infect Dis Obstet Gynecol. 2016;2016:4359401.

67. Ducancelle A, Abgueguen P, Birgue J, Mansour W, Pivert A, Le Guillou-Guillemette H, et al. High endemicity and low molecular diversity of hepatitis B virus infections in pregnant women in a rural district of the Far North Region of Cameroon. BMC Pregnancy Childbirth. 2013 Aug 08;13:158.

68. Frambo AA, Atashili J, Fon PN, Ndumbe PM. Prevalence of HBsAg and knowledge about hepatitis B in pregnancy in the Buea Health District, Cameroon: a cross-sectional study. BMC Res Notes. 2014 Jan 25;7:394.

69. Fafele TO, Adewumi MO, Ifeoram IA, Omoruyi EC, Bakare SA, Akere A et al. Detection of hepatitis B virus isolates with mutations associated with immune escape mutants among pregnant women in Ibadan, southwestern Nigeria. Springerplus. 2015;4:43.

70. Ikkouki CJ, Emechebe CJ, Ago BU, Njoku CO. Sero-prevalence of Hepatitis B infection and its risk factors among women admitted for delivery in Uchich, Calabar, Nigeria. British Journal of Medicine & Medical Research. 2015;8(4):324-33.

71. Olalaye OA, Kut L, Makinde NO, Ulah AO, Olalaye OA, Badewko OO et al. Perinatal transmission of hepatitis B virus infection in Ille-Ife, South Western, Nigeria. J Neonatal Perinatal Med. 2013;6(3):231-6.

72. Osazuwa O, Igboama MC, Ojo JA, Odewale G. Seroprevalence of Hepatitis B, HIV, HCV and HTLV in pregnant women in Southwestern Nigeria. Journal of Immunooassay and Immunochromometry. 2016;37(1):29-42.

73. Uto BT. Hepatitis B Surface antigenemia (HBsAg) among pregnant women in southern Nigeria. Afr Health Sci. 2013 Dec;13(4):1139-43.

74. Adeyemi AB, Enabor OO, Uguwu IA, Abraham OA, Bello FA, Olamuyi OB et al. Prevalence of antenatal hepatitis B infection in tertiary and non-tertiary health facilities in Ibadan, Nigeria. Niger J Med. 2014 Jul-Sep;23(3):248-53.

75. Akani CI, Ojule AC, Opurum HC, Ejimeea AA. Sero-prevalence of hepatitis B virus surface antigen (HBsAg) in pregnant women in Port Harcourt, Nigeria. J Obstet Gynaecol. 2010;20(3):203-11.

76. Baba MM, Onwuka IS, Baba SS. Hepatitis B and C virus infections among pregnant women in Maiduguri, Nigeria. Central European Journal of Public Health. 1999;7(2):60-2.

77. Onwere S, Chigbu B, Aluka C, Kamaniu CI, Okoro O, Ndukwu PE et al. Risk Factors for Hepatitis B Virus Infection during Pregnancy in South Eastern Nigeria. Afr J Med Med Sci. 2012 Mar;41(2):67-75.

78. Wurie IM, Wurie AT, Gueva SM. Sero-prevalence of hepatitis B virus among middle to high socio-economic antenatal population in Sierra Leone. West Afr J Med. 2005 Jan-Mar;24(1):18-20.

79. Abongwa LM, Clara AM, Edouard NA, Ngum NH. Sero-Prevalence of Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV) Co-Infection among Pregnant Women Residing in Bamenda Health District, Cameroon. International Journal of Current Microbiology and Applied Sciences. 2015;4(12):473-83.

80. Dionne-Odom J, Mbah R, Rembert NJ, Tancho S, Halle-Ekane GE, Enah C et al. Hepatitis B, HIV, and Syphilis Seroprevalence in Pregnant Women and Blood Donors in Cameroon. Infect Dis Obstet Gynecol. 2016;2016:4359401.

81. Ducancelle A, Abgueguen P, Birgue J, Mansour W, Pivert A, Le Guillou-Guillemette H, et al. High endemicity and low molecular diversity of hepatitis B virus infections in pregnant women in a rural district of North Cameroon. PLoS One. 2013;8(11):e80346.

82. Formoto NJ, Morfaw FL, Torimiro JN, Nana P, Koh MV, William T. Prevalence, correlates and pattern of hepatitis B among antenatal clinic attenders in Yaounde-Cameroon: is perinatal transmission of HBV neglected in Cameroon?. BMC Pregnancy Childbirth. 2013 Aug 08;13:158.

83. Frambo AA, Atashili J, Fon PN, Ndumbe PM. Prevalence of HBsAg and knowledge about hepatitis B in pregnancy in the Buea Health District, Cameroon: a cross-sectional study. BMC Res Notes. 2014 Jan 25;7:394.

84. Kfutwah AKW, Teijjokem MC, Njouom R. A low proportion of HBeAg among HBsAg-positive pregnant women with known HIV status could suggest low perinatal transmission of HBV in Cameroon. Virology Journal. 2012;9(62).

85. Nsouib J, Nansseu JR, Ndoula ST, Bigna JG, Jingu AM, Fokom-Dongue J. Prevalence, infectivity and correlates of hepatitis B virus infection among pregnant women in a rural district of the Far North Region of Cameroon. BMC Public Health. 2015 May 02;15:454.

86. Makuwa M, Caron M, Souquiere S, Malonga-Mouelet G, Mahe A, Kazanjii M. Prevalence and genetic diversity of hepatitis B and delta viruses in pregnant women in Gabon: molecular evidence that hepatitis delta virus clade 8 originates from and is endemic in Gabon. PLoS One. 2008 Feb;3(2):754-6.

87. Awode M, Gebre-Selasie S. Seroprevalence of HBsAg and its risk factors among pregnant women in Jimma, Southwest Ethiopia. J Obstet Gynaecol. 2016;2016:4359401.
93. Metaviera Y, Dessie W, Ali I, Amsalu A. Seroprevalence and associated risk factors of hepatitis B virus among pregnant women in southern Ethiopia: a hospital-based cross-sectional study. Epidemiol Health. 2016;38(1):e2016022.

94. Molla S, Munshea A, Nibret E. Seroprevalence of hepatitis B surface antigen and anti HCV antibody and its associated risk factors among pregnant women attending maternity ward of Felege Hiwot Referral Hospital, north-west Ethiopia: a cross-sectional study. Virol J. 2015 Dec 02;12:204.

95. Ramos JM, Toro C, Reyes F, Amor A, Gutierrez F. Seroprevalence of HIV-1, HBV, HTLV-I and Treponema pallidum among pregnant women in a rural hospital in Southern Ethiopia. Journal of Clinical Virology. 2011 May;51(1):83-5.

96. Tegegne D, Desta K, Tegbaru B, Tilahun T. Seroprevalence and transmission of Hepatitis B virus among delivering women and their newborn in selected health facilities, Addis Ababa, Ethiopia: a cross sectional study. BMC Res Notes. 2014 Apr 15;7:239.

97. Yohannes T, Zerdo Z, Chufamo N. Seroprevalence and Predictors of Hepatitis B Virus Infection among Pregnant Women Attending Routine Antenatal Care in Arba Minch Hospital, South Ethiopia. Hepat Res Treat. 2016;2016:9290163.

98. Zenebe Y, Mulu W, Yimer M, Abera B. Sero-prevalence and risk factors of hepatitis B virus infection among pregnant women in Bahir Dar city, Northwest Ethiopia: a cross sectional study. BMC Infect Dis. 2014 Mar 01;14:118.

99. Tiruneh M. Seroprevalence of multiple sexually transmitted infections among antenatal clinic attendees in Gondar Health Center, northwest Ethiopia. Ethiop Med J. 2008;46(4):359-66.

100. Okoth F, Mbitutha J, Gatheru Z, Munuza F, Kanyingi F, Mugo F et al. Seroprevalence of hepatitis B markers in pregnant women in Kenya. East Afr Med J. 2006 Sep;83(9):485-93.

101. Randriamahazo TR, Raherinaivo AA, Rakotovaoirello ZH, Contamin B, Rakoto Alson OA, Andrianapananalirina HR et al. Prevalence of hepatitis B virus serologic markers in pregnant patients in Antananarivo, Madagascar. Med Mal Infect. 2015 Jan-Feb;45(1-2):17-23.

102. Anderson MJ, Maponga TG, Ijaz S, Barnes J, Theron GB, Meredith SA et al. The epidemiology of hepatitis B virus infection in HIV-infected and HIV-uninfected pregnant women in the Western Cape, South Africa. Vaccine. 2013 Nov 12;31(47):5579-84.

103. Burnett RJ, Ngobeni JM, Francois G, Hoonen AA, Leroux-Roels G, Meheus A et al. Increased exposure to hepatitis B virus infection in HIV-positive South African antenatal women. Int J STD AIDS. 2007 Mar;18(3):152-6.

104. Diagne Q, Pattinson R, Chokoe R, Masenyetse L, Mayaphi S. Antenatal screening for hepatitis B virus in HIV-infected and uninfected pregnant women in the Tshwane district of South Africa. S Afr Med J. 2015 Dec 16;106(1):97-100.

105. Thumbira NV, Moodley D, Parboosing R, Moodley P. Hepatitis B and HIV co-infection in pregnant women: indication for routine antenatal hepatitis B virus screening in a high HIV prevalence setting. S Afr Med J. 2014 Apr;104(4):307-9.

106. Bayo P, Ochola E, Oleo C, Mwaka AD. High prevalence of hepatitis B virus infection among pregnant women attending antenatal care: a cross-sectional study in two hospitals in northern Uganda. BMJ Open. 2014 Nov 11;4(11):e008589.

107. Croce F, Fedeli P, Dahoma M, Deho L, Ramsan M, Adorni F et al. Risk factors for HIV/AIDS in a low HIV prevalence site of sub-Saharan Africa. Trop Med Int Health. 2007 Sep;12(9):1011-7.

108. Menendez C, Sanchez-Tapias JM, Kahigwa E, Mshinda H, Costa J, Vidal J et al. Prevalence and mother-to-infant transmission of hepatitis viruses B, C and D in Southern Tanzania. J Med Virol. 1999 Jul;58(3):215-20.

109. Rashid S, Kilewo C, Aboud S. Seroprevalence of hepatitis B virus infection among antenatal clinic attendees at a tertiary hospital in Dar es Salaam, Tanzania. Tansan J Health Res. 2014 Jan;16(1):9-15.

110. Mavenyengwa RT, Moyo SR, Ndzoro SA. Streptococcus agalactiae colonization and correlation with HIV-1 and HBV seroprevalence in pregnant women from Zimbabwe. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2009;150:34-8.