STANDARD EXAMPLES AS SUBPOSETS OF POSETS

CSABA BIRÓ, PETER HAMBURGER, AND ATTILA PÓR

Abstract. We prove that a poset with no induced subposet \(S_k \) (for fixed \(k \geq 3 \)) must have dimension that is sublinear in terms of the number of elements.

1. Introduction

Dushnik and Miller (1941) first studied order dimension. Let \(P \) be a poset. A set of its linear extensions \(\{L_1, \ldots, L_d\} \) forms a realizer, if \(L_1 \cap \cdots \cap L_d = P \). The minimum cardinality of a realizer is called the dimension of the poset \(P \). This concept is also sometimes called the order dimension or the Dushnik-Miller dimension of the partial order.

The standard example \(S_n \) on \(2^n \) elements is the poset formed by considering the 1-element subsets, and the \((n-1)\)-element subsets of a set of \(n \) elements, ordered by inclusion. It is known that the dimension of \(S_n \) is half of the number of elements of \(S_n \), that is, \(\dim(S_n) = \frac{n}{2} \). It is also known that there are posets of arbitrarily large dimension without an \(S_3 \) subposet. For further study of the dimension of posets we refer the readers to the monograph [7], and to the survey article [8].

We use the notation \(|P|\) for the number of elements (of the ground set) of the poset \(P \), and we use the standard notation \([n]\) for the set \(\{1,2,\ldots,n\} \). The upset (sometimes called ideal) of the element \(x \) is the set \(U(x) = \{y \in P : y > x\} \). Similarly, the downset of the element \(x \) is \(D(x) = \{y \in P : y < x\} \). The symbol \(x \parallel y \) is used to denote that \(x \) is incomparable with \(y \) in the poset.

Let \(P \) and \(Q \) be two posets. \(Q \) is a subposet of \(P \), if there is an induced copy of \(Q \) in \(P \). More precisely, \(Q \) is a subposet of \(P \) if there is a bijection \(f \) from a subset of the ground set of \(P \) to the ground set of \(Q \) with the property that \(f(x) < f(y) \) if and only if \(x < y \). If \(P \) does not contain \(Q \) as a subposet, \(P \) is called \(Q \)-free. Note that some authors use the term “subposet” in the “non-induced” sense. We conform to the more standard usage, and we say “an extension of \(Q \) is a subposet of \(P \)” if we ever need the non-induced meaning.

Hiraguchi [5] proved that for any poset with \(|P| \geq 4 \), \(\dim(P) \leq |P|/2 \). Bogart and Trotter [3] showed that if \(|P| \geq 8 \), then the only extremal examples of Hiraguchi’s theorem are the standard examples \(S_n \) with \(\dim(S_n) = |S_n|/2 \). A natural question arises: if the dimension is just a bit less than the maximum, can we expect largely the same structure as in the extremal case?

Biró, Füredi, and Jahanbekam [2] conjectured the following.

Conjecture 1.1. For every \(t < 1 \), but sufficiently close to 1 there is a \(c > 0 \) and \(N \) positive integer, so that if \(|P| \geq 2n \geq N \), and \(\dim(P) \geq tn \), then \(P \) contains \(S_{\lfloor cn \rfloor} \).
Conjecture 1.1 was mentioned at the “Problems in Combinatorics and Posets” workshop [1] in 2012 and it is listed as Problem #1 of the workshop. Even the existence of an S_3 was unclear.

In this paper we show that a poset with no induced subposet S_k (for fixed $k \geq 3$) must have dimension that is sublinear in terms of the number of elements.

A few more definitions are needed. The height of a poset is the size of a maximum chain. Height two posets are called bipartite. A bipartition of a bipartite poset P is a partition (A, B) of its ground set together with a fixed linear order on the parts, such that $x < y$ in P implies $x \in A$ and $y \in B$. Note that the bipartition includes a linear ordering on both A and B, respectively. They are not denoted to avoid clutter, but they are important in the discussion.

A critical pair (x, y) is an ordered pair of elements of P with the properties $x \parallel y$, $D(x) \subseteq D(y)$, and $U(y) \subseteq U(x)$. A linear extension L reverses the critical pair (x, y), if $y < x$ in L. A set of linear extensions L reverses (x, y) if there is a linear extension in L that reverses (x, y). It is known that a set of linear extensions is a realizer if and only if it reverses every critical pair of P. This makes the investigation simpler in bipartite posets, where all incomparable minimum–maximum pairs are critical, and they are the only (interesting) critical pairs; the remaining critical pairs have a very special structure and can be usually handled in a simple way.

Let P be a poset. A poset Q is the dual of P, if Q is defined on the same ground set, but every order is reversed, that is, $x < y$ in P iff $x > y$ in Q. Obviously, $\dim(P) = \dim(Q)$.

2. Preliminaries

Definition 2.1. Let $k \geq 3$ integer. Let F_k denote the set of finite S_k-free posets.

\[D(n, k) = \max \{ \dim(P) : P \in F_k, |P| = n \} \]
\[\Delta(n, k) = \max \{ \dim(P) : P \in F_k, P \text{ is bipartite}, |P| = n \} \]

The main goal of the paper is to prove the following theorem.

Theorem 2.2.

\[D(n, k) = o(n). \]

The proof is in Section 4.

Let H be a hypergraph. A coloring of H is an assignment of positive integers (colors) to its vertices (with no restrictions). A ℓ-coloring is a coloring with ℓ colors. A subset H of $V(H)$ is monochromatic, if every edge $E \subseteq H$ receives the same color in the coloring.

K^k_n is used to denote the complete k-uniform hypergraph on n vertices. We need the following version of Ramsey’s Theorem.

Theorem 2.3. [9] For all k, q, ℓ positive integers there exists an N such that if $n \geq N$, then every ℓ-coloring of K^k_n contains a monochromatic set of size q.

The (hypergraph) Ramsey number $R(k, q, \ell)$ is the least N in Theorem 2.3. For a fixed k, the function $R(k, q, k)$ is a function of one variable; the following function may be regarded as its inverse.
Definition 2.4. Let \(k \geq 3 \) fixed. Let \(r(n) \) denote the minimum size of a largest monochromatic subset in a \(k \)-coloring of \(K_n^k \).

We use a simple corollary of Theorem 2.3, that is, we use that \(r(n) \to \infty \) as \(n \to \infty \).

Throughout this paper a positive integer \(k \geq 3 \) is fixed. The purpose of this is that most of the time we assume that our posets are \(S_k \)-free.

Let \(P \) be an \(S_k \)-free bipartite poset with bipartition \((A,B)\). We fix an ordering of the vertices of \(A \). Let \(S = \{a_1, \ldots, a_k\} \subseteq A \), and assume that the indexing preserves the ordering on \(A \). Call an element \(b \in B \) a mate of \(a_i \), if \(a_i \parallel b \), but \(a_j < b \) for all \(j \neq i \). Clearly any \(b \in B \) can not be a mate of more than one \(a_i \), so the set of mates of \(a_1, \ldots, a_k \) form disjoint subsets of \(B \). The condition that \(P \) is \(S_k \)-free means that there exists a \(a_{i_0} \) that has no mate. In this case, we say that \(i_0 \) is a valid color for \(S \).

An upset based coloring (or UB-coloring for short) of the \(k \)-element subsets of \(A \) is such that assigns a valid color to each subset. Note that UB-coloring is only defined in the context of \(S_k \)-free bipartite posets with a fixed ordering on the minimal elements.

3. Bipartite posets

We begin with a simple technical statement of probability that will contain the key computation.

Lemma 3.1. Let \(t,q \) be positive integers, \(2 \leq q \leq t,q \), and let \(r \geq \ell 2^t \ln q \). Let \(X = [x_{i,j}] \) be a random \(r \times q \) binary matrix, in which each entry is 1 independently with probability \(\frac{1}{2} \). Let \(E \) be the event that for all sequences \(1 \leq j_1 < j_2 < \cdots < j_t \leq q \) and all integers \(1 \leq \ell \leq t \) there is a row \(i \) in \(X \) with the property \(x_{i,j_1} = \cdots = x_{i,j_{\ell-1}} = x_{i,j_{\ell+1}} = \cdots = x_{i,j_t} = 0 \) and \(x_{i,j_\ell} = 1 \). Then \(\Pr(E) > 0 \).

Proof. For a fixed sequence \(s = (j_1, \ldots, j_t) \) and integer \(\ell \), let \(E_{s,\ell} \) be the event that at least one row has the property. Any given row has the property with probability \(2^{-t} \), so \(\Pr(E_{s,\ell}) = (1 - 2^{-t})^{r} \). Hence

\[
\Pr(E) = \Pr(\cap E_{s,\ell}) = 1 - \Pr(\cup E_{s,\ell}) \geq 1 - \sum \Pr(E_{s,\ell}) = 1 - t \binom{q}{t} (1 - 2^{-t})^{r} > 1 - q^r e^{-r2^{-t}} = 1 - e^{t \ln q - r2^{-t}} \geq 0,
\]

where the last inequality follows from the condition on \(r \). \(\square \)

Recall that \(k \geq 3 \) is a fixed integer.

Lemma 3.2. Let \(P \) be a bipartite poset with bipartition \((A,B)\). Let \(q \geq 2 \), and \(Q = \{a_1, \ldots, a_q\} \subseteq A \) be a monochromatic set in a UB-coloring, and assume that the indexing preserves the ordering on \(A \). Then there exists a set of linear extensions \(L = \{L_1, \ldots, L_{q'}\} \) with \(q' = 2\lceil k2^k \ln q \rceil \) that reverses every critical pair \((a_i, b)\) with \(b \in B \).

Proof. \(Q \) is a monochromatic set, denote its color by \(\ell \). Let \(t = \max\{\ell - 1, k - \ell\} \). Since \(t < k \), we have that \(q'/2 > t 2^t \ln q \), so we can apply Lemma 3.1 with \(t, q \), and \(r = q'/2 \). We conclude that there exists a matrix \(X \) with the property described in the lemma.
We construct the set \(L \) using \(X \). For each row of \(X \) we construct two linear extensions. For a given binary row \(\mathbf{x} = (x_1, \ldots, x_q) \), first construct two permutations \(\sigma_1 \) and \(\sigma_2 \) of \([q]\) as follows. For \(\sigma_1 \), first list elements of \([q]\) for which the corresponding bit of \(\mathbf{x} \) is 1 in order from left to right, then list the elements corresponding to 0 bits in order from left to right. For \(\sigma_2 \), do the same, except list the elements of \([q]\) from right to left.

In the next step, we construct a linear extension for each permutation. We refer to the permutation as \(\sigma \), which will be first \(\sigma_1 \), then \(\sigma_2 \), thereby resulting two linear extensions. Let \(U_i = \{ b \in U(a_{\sigma(i)}): b \notin U(a_{\sigma(j)}) \text{ for any } j < i \} \) for every \(i \in [q] \). In other words, \(\{U_i\} \) forms a partition of the union of the upsets of the elements of \(Q \) such that any element that belongs to multiple upsets will be placed into the first one, where the order is determined by \(\sigma \). Let \(R = P - Q - \bigcup_{i=1}^{q} U_i \). Then define the linear extension with

\[
U_1 > a_{\sigma(1)} > U_2 > a_{\sigma(2)} > \cdots > U_q > a_{\sigma(q)} > R
\]

where the order within each \(U_i \) and \(R \) are arbitrary (e.g. we can respect some predetermined order of the elements).

Repeating the process for every row we construct the set \(L \).

It remains to be shown that \(L \) reverses every critical pair of the form \((a_i, b)\) with \(b \in B \). Consider such a pair \((a_i, b)\). Let

\[
M_1 = \{ a_m \in D(b) : m < i \} \quad \text{and} \quad M_2 = \{ a_m \in D(b) : m > i \}.
\]

Since any \(k \)-subset \(K = \{a_{\ell_1}, \ldots, a_{\ell_k}\} \) with \((\ell_1 < \cdots < \ell_k)\) in which \(a_{\ell_i} = a_i \) is colored \(\ell \), we know that \(a_i \) cannot have a mate with respect to \(K \). Since \(a_i \parallel b \), we have that either

i) \(|M_1| \leq \ell - 2 \), or

ii) \(|M_2| \leq k - \ell - 1 \).

In case \(\square \), find a row \(\mathbf{z} \) of \(X \) such that \(x_j = 0 \) for all \(j \) for which \(a_j \in M_1 \), and \(x_i = 1 \). Such a row exists, because \(|M_1| + 1 \leq t \) (we need to force a few more zeros in the row to directly use the lemma, if \(|M_1| < t - 2 \)). The first linear extension corresponding to this row places \(a_i \) over \(b \). In case \(\square \), find a row \(\mathbf{x} \) of \(X \) such that \(x_j = 0 \) for all \(j \) for which \(a_j \in M_2 \), and \(x_i = 1 \). The second linear extension corresponding to this row places \(a_i \) over \(b \). \(\square \)

Lemma 3.3. Let \(P \) be a bipartite \(S_k \)-free poset with a bipartition \((A, B)\), and \(|A| \geq n\), where \(n \) is such that \(r(n) \geq 2 \), (see \(r(n) \) in Definition 2.4). Then there exist \(c = c(k) \) such that for all \(q = 2, 3, \ldots, r(n) \) there exists \(Q \leq A \) with \(|Q| = q\) such that \(\dim(P) \leq \dim(P - Q) + c \ln q \).

Proof. We show that \(c = 3k2^k \) works. Let \(2 \leq q \leq r(n) \) be an arbitrary integer. Consider a UB-coloring of the \(k \)-subsets of \(A \). By Ramsey’s Theorem there is a monochromatic subset \(Q \) with \(|Q| = q \). Let \(P' = P - Q \), and let \(\mathcal{L}' \) be a realizer of \(P' \). By Lemma 2.2, there exists a set of linear extensions \(\mathcal{L}'' \) of size \(2k2^k \ln q \) that reverses every critical pair in \(P \) of the form \((a, b)\), where \(a \in Q \), and \(b \in B \). Now consider the set \(M \), the set of all minimal elements of \(P \). Add a linear extension \(L \) in which we reverse the order of elements of \(M \) (compared to a fixed element of, say, \(\mathcal{L}'' \)) but the rest of the elements are inserted arbitrarily.
Hence \(\Delta(n, k) \geq o(n) \)

Theorem 3.4. Let \(k \geq 3 \) integer.

\[
\Delta(n, k) = o(n)
\]

Proof. Fix \(\epsilon > 0 \). Let \(c \) be as in Lemma 3.3 and let \(q \geq 2 \) be such that \(c \ln q / q \leq \epsilon / 2 \). Furthermore, let \(N \) be such that \(r([N/2]) \geq q \). We show that for all \(\ell \geq 0 \) integer,

\[
\Delta(N + \ell q, k) \leq \Delta(N, k) + \ell \frac{\epsilon}{2} q.
\]

To show this we use induction on \(\ell \). It is obvious for the case \(\ell = 0 \). Assume \(\ell \geq 1 \). Consider an \(S_k \)-free bipartite poset \(P \) on \(N + \ell q \) elements with \(\dim(P) = \Delta(N + \ell q, k) \). Without loss of generality we may assume that \(P \) has a bipartition \((A, B)\) with \(|A| \geq \lfloor N/2 \rfloor \), for otherwise we may consider the dual of \(P \) instead.

By Lemma 3.3, \(P \) has a subset \(Q \) of size \(q \), such that \(\dim(P) \leq \dim(P - Q) + c \ln q \). Hence

\[
\Delta(N + \ell q, k) \leq \dim(P - Q) + c \ln q \leq \Delta(N + (\ell - 1)q, k) + c \ln q
\]

\[
\leq \Delta(N, k) + (\ell - 1) \frac{c}{2} q + c \ln q \leq \Delta(N, k) + (\ell - 1) \frac{c}{2} q + \frac{\epsilon}{2} q = \Delta(N, k) + \ell \frac{\epsilon}{2} q.
\]

This, with the fact that \(\Delta(n, k) \) is a monotone increasing sequence of \(n \), finishes the proof. \(\square \)

4. KIMBLE SPLITS AND GENERAL POSETS

We need the notion of a “split” of a poset. Kimble \([6]\) introduced this notion. We only need a special version of his definition, and a special case of his theorem; we only mention those.

Definition 4.1. Let \(P \) be a poset with ground set \(\{x_1, \ldots, x_n\} \). The Kimble split of \(P \) is the poset on the ground set \(\{x_1', x_1'', \ldots, x_n', x_n''\} \) with \(x_i' \leq x_i'' \) if and only if \(x_i \leq x_j \) in \(P \).

Theorem 4.2. \([6]\) Let \(P \) be a poset and \(Q \) be its Kimble split. Then

\[
\dim(P) \leq \dim(Q) \leq \dim(P) + 1
\]

We also need the following simple lemma.

Lemma 4.3. Let \(P \) be an \(S_k \)-free poset and \(Q \) be its Kimble split. Then \(Q \) is \(S_k \)-free.

Proof. Suppose \(Q \) has an \(S_k \) subposet, call the set of its vertices \(S \). If all \(2k \) elements of \(S \) come from distinct elements of \(P \), then they formed an \(S_k \) in \(P \). Otherwise there is a pair \(a', a'' \in S \) such that \(a' < a'' \) in \(Q \), and they are the split versions of the original vertex \(a \) of \(P \). Since \(k \geq 3 \), there is \(b', c'' \in S \) with \(b' > a' \), and \(c'' < a'' \), and \(b' \parallel c'' \in Q \). Clearly \(b' \) and \(c'' \) came from distinct elements of \(P \), because they are incomparable, and these elements are also distinct from \(a \); call them \(b \) and \(c \) respectively. Due to the definition of the Kimble split, \(b < a < c \) in \(P \), but then \(b' < c'' \) in \(Q \), a contradiction. \(\square \)
4.1. **Proof of Theorem 2.2.** Lemma 4.3 and the first inequality of Theorem 4.2 imply that

\[D(n, k) \leq \Delta(2n, k), \]

so the theorem is a consequence of Theorem 3.4.

We end the discussion with a corollary in the style of (the still open) Conjecture 1.1.

Corollary 4.4. For all \(k \geq 3 \) integer, and \(t < 1 \) there is an \(N \) integer, so that if \(|P| \geq 2n \geq N \), and \(\dim(P) \geq tn \), then \(P \) contains \(S_k \).

References

[1] Problems in combinatorics and posets workshop, Jagiellonian University, Kraków, Poland, 2012.

[2] Csaba Biró, Zoltán Füredi, and Sogol Jahanbekam, *Large chromatic number and Ramsey graphs*, Graphs Combin. 29 (2013), no. 5, 1183–1191.

[3] Kenneth P. Bogart and William T. Trotter, *Maximal dimensional partially ordered sets. II. Characterization of 2n-element posets with dimension n*, Discrete Math. 5 (1973), 33–43.

[4] Ben Dushnik and Edwin W. Miller, *Partially ordered sets*, Amer. J. Math. 63 (1941), 600–610.

[5] Toshio Hiraguchi, *On the dimension of orders*, Sci. Rep. Kanazawa Univ. 4 (1955), no. 1, 1–20.

[6] R. J. Kimble, *Extremal problems in dimension theory for partially ordered sets*, Ph.D. thesis, Massachusetts Institute of Technology, 1973.

[7] William T. Trotter, *Combinatorics and partially ordered sets*, The Johns Hopkins University Press, 1992.

[8] William T. Trotter, *Partially ordered sets*, Handbook of Combinatorics (Ronald L. Graham, Martin Grötschel, and László Lovász, eds.), vol. 1, Elsevier Science B. V., 1995, pp. 433–480.

[9] Douglas B. West, *Introduction to graph theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.