Mapping post crises the European job growth in travel agencies and tour operator reservation services

Adriana Grigorescua, Cristina Lincarub, Speranta Pirciogb and Razvan-Ion Chitescua

aDepartment of Public Management, National University of Political Studies and Public Administration, Bucharest, Romania; bDepartment of Labour Market, National Institute for Scientific Research for Labour and Social Protection- INCSMPS, Bucharest, Romania

\textbf{ABSTRACT}

World Tourism Organisation, declares the Tour Operators as tourism engine of strategically importance to support jobs and inclusive growth in all regions. Tour operators emerges following the 2008 crises, as a global job engine. Its atypical profile of highest human capital concentrator in tourism, attract and retain talents, works digital with a high-intensity information use. Is a rapid adopter of technological innovation, generate high value added in highly competitive global markets.

We look in this paper to understand why employment is growing or declining in a regional tourism tour operator sector during 2008–2018, in some EU28 regions? We use Exploratory Spatial Data Analysis to map the indicator ‘tour operator’s employment growth’ components decomposed by the Shift Share Analysis Method. Analysed Eurostat data for 266 regions (281 regions) indicates that for the average regional tour operators employment growth heterogeneity is driven almost at half by region-specific factors. The main contributions are: identifying this indicator as appropriate to be a core one in OECD (2013) tourism competitiveness framework & redefine tour operator sector as a core sector of tourism in the Global model of tourism of Harrison.

\textbf{ARTICLE HISTORY}

Received 26 May 2020
Accepted 1 December 2020

\textbf{KEYWORDS}

Advantaged regions; jobs growth; knowledge intensive activities; travel & tourism

\textbf{SUBJECT CLASSIFICATION CODES: (JEL CLASSIFICATION)}

J08; O30; O52; Z32

\section*{Introduction}

In the last two decades, tourism become the world’s largest industry (Xin, 2015), acting globally it brings together ‘regions, tourists, business suppliers, economies, governments, communities and environments’. Tourism industry and traveling according to Turner (2018) creates jobs, contributes substantially to prosperity and global development. Tribe (1997) and Bhatia (2007) defined the tourism industry structure as being made from producers (carriers, accommodation and man-made attractions) and support service suppliers (private or public). Tour operators and travel agents are
Tour operators play an increasingly important role in the tourism industry, aiming to maximize customer value and gain a competitive advantage in the global market. This is achieved through the involvement of various stakeholders, including tourists, tour operators, and service suppliers, who work together as a complete tourism supply chain. This framework is particularly evident in European tourism, where the sector is closely linked to country competitiveness (Shang-Yu Liu and Wei-Shuo Lo, 2016; Dupeyras and MacCallum, 2013).

Tour operators are key players in the tourism industry, as evidenced by the employment figures for the sector in 2018. The sector accounted for 668,794 persons employed, an increase of 70,814 compared to the previous year, representing a growth rate of 11.8%, which is 4.6% higher than the overall employment growth rate.

The tourism operators sector is one of the key sectors in terms of human capital concentration, with a tertiary share in employment of 47.6%, classified as Knowledge Intensive Activities (KIA, over 33%). This indicates a strong presence of technology and knowledge usage, as classified by the OECD (2007) as a Less Knowledge-Intensive Market Services (LKIMS). This classification highlights the sector's role in innovation and technological advancement.

Europe, and particularly Spain, continues to be a leading destination in the global tourism market, with half of the world’s international tourist arrivals (UNWTO, 2018). This position is critical in supporting jobs and inclusive growth in various regions.

The study we are addressing focuses on the competitiveness of the tourism industry through employment growth, using a multi-perspective spatial analysis of the tourism potential in 28 countries at the NUTS2 level for the N79 category (the national change effect, industrial mix effect, and regional competitiveness effect). Starting from Moretti’s (2012) conclusion that aggregations of high human capital predict the success of locations and provide a multiplier effect, we selected the indicator ‘Employment growth in tour operators sector, in a region in a time period’ as a tool to measure the destination’s ability to generate competitive tourism services through employment growth.
Research question: What regions in EU, during 2008–2018, registered employment growth tourism industry (N79) and where is located a high potential of his sector?

Our research topic informs about the key theoretical perspective of global tourism competitiveness in the development paradigm. The key theoretical perspective is that talents changes the tourism structure adopting in a accelerate manner the digital transformation opportunities, increasing competitiveness of destination region. The global tourism paradox is that mass tourism push pressure for a tourist region, regardless development level, to be competitively at global scale. The optimal tourism structure is a mainly spatial analysis object.

This study introduction presents the tour operators broader framework, employment growth effect for tourism industry. Literature review looks for tourism theory and tourism operators, tourism competitiveness for a destination and tourism operator’s regional employment growth. The methodology is a mix of standardised methods: Exploratory Spatial Data Analysis (ESDA) as a tool for map the tour operator’s employment growth components at regional level, decomposed by the Shift Share Analysis (SSA)’s (National Share, Industrial Mix Share and Competitive Effect).

Results and discussions picture the maps and details for regions with competitive advantage, relative specialisation and high endogenous effect on tour operator’s employment growth. Paper ends with the findings of the study, highlighting the theoretical and practical contributions and the limitations of the methods and indicators used in this study. Moreover, we articulate further developments in research development and guidelines for policy makers.

Literature review

Tourism theory and tourism operators

Cukier (2006) recently consecrate tourism as an academic discipline and the tourism complexity needs interdisciplinary approach in its study (Tribe, 1997). According to Jennings (2006) ‘epistemologies and hegemony no longer represent an accountable tourism research agenda in a twenty-first century world of flux and unpredictability’, while Xin (2015) bring in the conceptual inquiry. Stergiou and Airey (2018) conclude that the elusive and eclectic character of tourism theory make it difficult to delineate, reflecting its immaturity. Ritchie et al. (2008) conceptualises the Core-foundational Model of Tourism as a result of interpretation of the interface between Tourism Theory and its Foundation Disciplines, emphasising its highly disciplinary pluralism. The economic and management stream brings the richest theoretical contributions and according to Stergiou and Airey (2018) Smart Tourism emerges as new research field. Ye et al. (2020) points, on the context of 5G technology adoption, that ‘the prevalence of Internet of Things (IoT), mobile applications (apps), location-based services, geo-tag services, Virtual Reality (VR), Augmented Reality (AR), social media, and smart devices offers immense opportunities for tourism stakeholders to generate, store, and retrieve big data that serve various purposes’.

Tour operators could be reflected by the area of event tourism as field of study and area of professional practice of planned events (Getz & Page, 2016). Tour
operators as KIS, should evolve towards ‘tour information service support system, core agents for smart tourism’ (Li et al., 2017).

Harrison (2015) distinguish the Global model of tourism political economy that incorporates both developed and developing societies, under the development theory paradigm. Sharpley (2009) identifies the evolution of Development Theory from 1950s in the following process stages: Modernisation theory (MT), MT& dependency theory, Neoliberalism, Alternative development, Sustainable development, Post-development and the demand for a New Paradigm.

Tourism competitiveness for a destination

One topic representative for tourism management perspective is the destination competitiveness. OECD build in 2013 a shared definition of tourism competitiveness for a destination: ‘is about the ability of the place to optimise its attractiveness for residents and non-residents, to deliver quality, innovative, and attractive (e.g. providing good value for money) tourism services to consumers and to gain market shares on the domestic and global market places, while ensuring that the available resources supporting tourism are used efficiently and in a sustainable way’ (Dupeyras & MacCallum, 2013).

Salinas-Fernández et al. (2020) show that ‘tourism destination competitiveness is a multidimensional concept that is widely studied in the academic literature’, but difficult to measure. Travel & Tourism Competitiveness Index, is the most popular compound index designed by Word Economic forum since 2007, Guaita-Martinez et al. (2019) are proposing a new methodology for TTCI to classify the 136 country.

Dupeyras and MacCallum (2013) identifies two practical approaches: strong chains as potential for development or weakness in chains to improve competitiveness.

In 2013 the 31 OECD members and partner countries creates the Framework for comparative measurement of competitiveness in tourism (Dupeyras & MacCallum, 2013). The Framework comprises three types of indicator that can be applied to measure competitiveness in tourism — 11 core indicators, 5 supplementary indicators and 4 for future development indicators. The ‘Employment in tourism by age, education levels and type of contracts’ is an additional non-core indicators. This indicator measures ‘Assessment of Ability of a destination to deliver quality and competitive tourism services through employment growth’. Interpretation is seen as ‘a measure that would assess ability to attract, retain and develop talent in the industry to enable improved competitiveness’ (Dupeyras & MacCallum, 2013).

Tourism operators employment growth and regional competitiveness

The growth performance difference of the relative to national average is explained by Classical Shift Share Analysis (SSA) as the result its economic structure and/or the growing rate of its sectors. Sentz (2011) describes SSA as ‘a standard regional analysis method that attempts to determine how much of regional job growth can be attributed to national trends and how much is due to unique regional factors’. Its research question is: Why employment is growing or declining in a regional industry, cluster,
or occupation? According to Lailani (2014) SSA is a relative simple analysis ‘especially useful for understanding what is happening in an industry that is growing locally but declining nationally (or the reverse)’. SSA and Local Quotient Techniques (LQT) are used also in tandem to analyse the behaviour of regional economies. Munawir (2014) identify through SSA the Bandung sectors with a competitive advantage when compared to West-Java and Indonesia. Prats and Ramirez (2018) asses using SSA the levels of efficiency in the regional structure in the state of Tabasco from 2003 to 2013.

Fuchs et al. (2000) make with SSA the Asian regions profile by the relative competitive advantage in tourism. Yasin et al. (2004) apply SSA to characterise the Portuguese tourism industry in the context of the challenges and opportunities of the global tourism.

Dogru and Sirakaya-Turk (2017) improved the SSA method with the Shift-share regression for measuring the tourism industry’s performance in a South Carolina in the USA. Shi et al. (2007) in Jiangsu Province and Firgo and Fritz (2017) in Australia applies a spatially extended SSA and a modified dynamic shift-share model to analyse the spatial competitiveness of international tourism in in comparison with its neighbours. Traistaru and Wolff (2002) apply SSA on employment data at county level, counting 89 regions for Bulgaria, Hungary and Romania for the period 1990–1999. Their results confirm that the regional employment growth heterogeneity is driven almost entirely by region-specific factors, while the industry mix and regional competitiveness factors play only a minor role.

Capello and Fratesi (2011) evidenced that the degree of participation of the local economy dimension next to the presence of mega cities is a measure of the degree of integration of a local economy in a global economy. Artige and Neuss (2013) compare the two growth effects of a geographical unit with those of any other geographical unit without defining a reference territory, eliminating the flaws identified by Dunn (2005) and Esteban-Marquillas (1972).

You et al. (2010) apply the spatial expansion model with SSA to the six provinces of central China. Authors concludes that ‘if the competition component difference is positive, it indicates that the neighbourhoods increase the competitiveness of that industry, if not, it means that it hinders the enhancement of the competitiveness of the industry, and so on’. Goschin (2014) emphasise for Romania that that the developed regions recovers more easily from the crisis due to their economic potential, but appropriate regional policies are requested. Zaman et al. (2015) show that tour operators employment growth could support the sustainable regional growth in the sense endogenous development.

Methodology

Classical SSA, is an old and ease of use method to study regional growth patterns. Was developed by Creamer since 1942 and formalised by Fuchs (1962) and Ashby (1964). Buck (1970) examines empirically the usefulness of shift and share analysis as applied to regional employment growth.

Herzog and Olsen (1977) points about the Problem of ‘Weights’ and The Problem of ‘Interwoven Effects’ of the SSA. The SSA in the Problem of ‘Weights’ do not take into
account the ‘changes in regional industrial structure over the analysis period’ (Dunn, 2005; Fuchs, 1959; Klæsven & Paelinck, 1972) and for The Problem of ‘Interwoven Effects of regional structure determines the magnitude of both the industry-mix and competitive effects, therefore the competitive advantage/disadvantage is relative’.

Casler (1989) propose a theoretical context for SSA, based on standard microeconomic theory. Graham Shaw and Spence (1998) recommends modifications to the labour demand SSM, including input price and technological growth effects.

Argues among the advantages of deterministic SSM is the result to Blien et al. (2014) recommend dynamic SSA to show the structural effect. O’Leary and Webber (2015) apply for 181 European regions from 1980 to 2007 dynamic SSA shows the ‘importance of structural change for growth and convergence’.

Esteban-Marquillas (1972) redefines the competitive position and creates a fourth shift-share component, the ‘allocation effect’.

Shift share equations

In 1992 Selting and Loveridge defines the ‘SSM as a method of decomposing employment patterns into expected (share) and differential (shift) components’. In this context, Selting and Loveridge (1992) uses SSM for analysing: (a) spatial heterogeneities at national level and at regional level; (b) examining lateral variations in growth (the case of two regions with similar economic structure but with different growth performance); (c) the one industry performance levels differentiated by region. SSM, decompose the regional change in employment growth during a period of time, in the following effects (or components): the national growth effect, the industrial mix effect, and the competitive effect:

\[
\Delta E_{ij} = E^t_{ij} - E^{t-1}_{ij} = NE_{ij} + IM_{ij} + CE_{ij}
\]

- \(E_i\) = employment level
- \(i = \) the number of sectors or industries in a region or nation (\(i = 1,2,\ldots s\))
- \(j = \) the number of regions in an geographical area (\(j = 1,2,\ldots r\))
- \(E_{ij}\) = employment in the \(i^{th}\) sector in the \(j^{th}\) region
- \(\Delta E_{ij}\) = Change in Employment in a certain industry (\(i\)) from the region (\(j\)) during [\(t-1:t\]) period
- \(E^t_{ij}\) = Employment in a certain industry (\(i\)) in the (\(j\)) region at the time (\(t\))
- \(NE_{ij}\) = Change due to National Trends; National Growth Effect
- \(IM_{ij}\) = Change due to Industrial Mix; Industrial Mix Effect
- \(CE_{ij}\) = Change due to Regional shift or Competitive Effect

National share

The national growth effect is the ‘amount that total regional employment would have grown if it grew at precisely the same rate as total employment in the nation as a whole’ (Stilwell, 1969, p.163). Implicitly, the model asserts that the industries in a region will grow at approximately the rate of national industries unless the region has a comparative
advantage or disadvantage (Bishop & Simpson, 1972; Knudsen & Barff, 1991; Loveridge 1995; Selting & Loveridge, 1992, p.4)

\[
NS_i = E_{ij}^{-1} \ast (e_{00}) = E_{ij}^{-1} \ast \frac{E_{t0}^{t-1} - E_{i0}^{t-1}}{E_{t0}^{t-1}}
\]

(2)

\[E_{ij}^{t-1} = \text{Employment in the region in that industry in the first year } [t-1];\]

\[(e_{00}) = \text{the percentage change in nationwide employment; National employment growth rate in } [t-1: t] \text{ period}\]

\[E_{t0}^{t-1} = \text{total national employment } \sum_i \sum_j E_{ij}^{t-1} \text{ at initial moment } t-1\]

\[E_{t0}^{t} = \text{total national employment } \sum_i \sum_j E_{ij}^{t} \text{ at final moment } t\]

Industrial mix share

Regions differ by their economic structure and performance. Each region could be characterised by a sectorial pattern with different combinations of slow-growing sectors and specialised in sectors with high growth rates, both relative to the national average. In SSA the Industry Mix Effect dimension describes the regional variations in industrial composition. Selting and Loveridge (1992) defines the industry mix as ‘the amount of growth attributable to differences in the sectorial makeup of the region versus that of the nation. The summation of the industry mix over each of the industries in the region, IM_{ip}, provides a total industry mix effect for all sectors in the region. A positive total industry mix implies the region is specialized in industries that, nationally, are experiencing greater growth than the overall national average. A negative total industry mix means that a region has higher than average proportions of people employed in industries that are sluggish relative to the average growth of all national industries’.

\[
IM_i = E_{ij}^{t-1} \ast (e_{i0} - e_{00}) = E_{ij}^{t-1} \ast \left(\frac{E_{i0}^{t} - E_{i0}^{t-1}}{E_{i0}^{t-1}} - \frac{E_{t0}^{t} - E_{t0}^{t-1}}{E_{t0}^{t-1}}\right)
\]

(3)

\[e_{i0} = \text{the percentage change in nationwide employment for industry } i\]

\[E_{i0}^{t-1} = \text{national employment in the } i^{th} \text{ industry } \sum_j E_{ij}^{t-1} \text{ at initial moment } t-1\]

\[E_{i0}^{t} = \text{national employment in the } i^{th} \text{ industry } \sum_j E_{ij}^{t} \text{ at final moment } t\]

Regional shift (Or local share)/competitive effect

‘If industry i in region j grows at anything other than the sum of the national growth effect and the industry mix (i.e. the region’s share), the residual is ascribed to the competitive effect. The competitive effect as a “shift” from what would be expected if the region’s industry grew at exactly the proportion of national growth and industry mix’ (Selting & Loveridge, 1992). The ‘implicit in shift-share analysis is the assumption that regional economies should grow at national growth rates unless there are comparative advantages or disadvantages operating at the regional level’ (Bishop and Simpson, 1972). In the classical SSA, is considered that ‘A positive competitive effect means that a region’s industry is growing faster than the national average industry growth rate and
a negative competitive effect implies that a region’s industrial growth is lagging behind national industries manufacturing the same products’ (Stevens and Moore, 1980, cited by Selting & Loveridge, 1992). The growth attributed to the competitive effect is the value that is left after the national growth effect and industry mix are subtracted. This residual is inferred to result from factors that are unique to the region. The competitive effect arises ‘from interregional differences affecting a given area’s attractiveness to the activity’ (James and Hughes, 1973, p.223). These differences are developed because of endogenous factors inherent to the region (Dawson, 1982). The competitive effect can be thought of as a measurement of a region’s competitive edge or comparative advantage in the production of the goods in the ith industry.

While the shift-share competitive effect describes whether regional conditions favour or discourage growth, it does not provide answers as to why a strongly positive shift exists in one region but not in another. Reasons for differential growth arise from an amalgam of factors, which may include different levels of resource endowments, multiplier effects, agglomeration economies, or policy measures such as low business taxes or high investments in human capital formation. By itself, shift-share cannot ferret out which factors are at work in various regions. (Selting & Loveridge, 1992, p.4)

\[
CE_{ij} = E_{ij}^{t-1} \times (e_{ij} - e_{i0}) = E_{ij}^{t-1} \times \left(\frac{E_{ij}^{t} - E_{ij}^{t-1}}{E_{ij}^{t-1}} - \frac{E_{i0}^{t} - E_{i0}^{t-1}}{E_{i0}^{t-1}} \right)
\]

\(e_{ij} = \) the percentage of change in employment in industry i, region j relative to a base year

While the shift share competitive effect is known also as Endogenous versus Exogenous Growth Differentiation a definition from which shift-share derives part of its name is that of the regional share. The sum of the national growth effect and the industry mix (\(NE_{0j} + IM_{0j}\)) are together called the ‘region’s proportion or share of growth’. Both, the national growth effect and the industry mix effect, are exogenous factors that are determined by national growth rates, not local or regional economic conditions. Together, they comprise the region’s expected growth, or the growth that would occur in the region if each of the industries grew at the same rate as the nation as a whole (Selting & Loveridge, 1992).

Exploratory spatial data analysis (ESDA)

From the ESDA techniques we use the Choropleth Maps which represents ‘Counterpart of Histogram, where are values/attributes for discrete spatial units with associate colours palette (Anselin, 2002). The maps uses geocoded data and we represents the variables using 5 classes Natural Breaks (Jenks) Classification. This classification technique is an optimisation method for Choropleth Maps, minimises variation in each group, applied in Arc GIS desktop 9.3. This method allows identifying clusters where data values are ‘placed into a single class. Class breaks occur where there is a gap between clusters’. In this case, ‘data is unevenly distributed; that is, many features have the same or similar values and there are gaps between groups of values’ (ArcGIS 9.2. Desktop Help, 2008).
Data collection

Tour operators (N79) are fully included in the Eurostat (2019) lately selection of NACE Rev.2 classes, at 4 digits. Eurostat methodology reports in 2016 over 13.36 million persons employed in the EU28 tourism industries, from which 521.34 thousand persons in tour operators’ sector. Employment in tourism industries is concentrated, more than 2/3 in top five countries: Germany, United Kingdom, Spain, Italy and France. Tour operator’s employment is 3.9% in total employment for Spain and France, share equal with the EU28 mean. This share is over the Eu28 mean in Germany (4.2%) and United Kingdom (4%) and below in Italy (3.2%).

Employment data used to apply SSA standard at national level for each EU28 countries are provided by Eurostat: at national level [lfsa_egana2] and at regional (NUTS2) level for 266 from a total of 281 regions [sbs_r_nuts06_r2]. General time frame is 2008–2016.

Results and discussions

The classical SSA has some limits: cannot explain whether changes in employment are significant, economic structure dynamics effect is ignored, the absence of tests of the evaluations, etc. Also, economic growth is difficult to measure directly, changes in the level of regional employment (in our case) have become accepted surrogates for economic growth.

Our results are reliable as consistency or repeatability by the Eurostat indicator, fully comparable across time and space, used in the methodology.

National Growth Effect in EU28 during 2008–2016 period points that 173 regions from 12 countries present positive national share of tour operator’s employment. The Figure 1 illustrate the National Share component of N79 employment, calculated independently by each country, applying ESDA technique. These regions have a comparative advantage provided by studied sector, compared to all other economic sectors and present a Centre-Periphery pattern, across EU28 map.

Table 1 indicate that the regions with competitive advantage in tour operators are clustered in countries with 80% total regions with this characteristic. Regions with competitive advantage in tour operators sector covers in average 61.1% from total regions at EU28 level.

In Table 2 are presented the selected regions by countries with N79 regional employment positive modification, higher than 406 employees, during 2008–2016 period, in EU28. These are the EU 28’s regions with competitive advantage a best employment performance [employed persons] with a threshold given by Jenks classification ESDA method. The map result is in line with (You et al., 2010) neighbourhood pattern – the best performance in employment growth regions are surrounded by regions with relative advantage in N79 employment relative to nationwide employment.

Frankfurt, Paris, London, Budapest, Stockholm, Köln – metropolis are at the heart of these regions, tendency in line with (WTTC, 2019).

Industrial mix present in Figure 2 the 144 regions that are relatively specialised in tour operators sector that, nationally, are experiencing greater growth than the overall...
national average. In Table 3 are presented the 14 countries which presents the shares of regions specialised in N79 over 66%, while the average share at EU28 is 51.2%.

Figure 2 reveals one spatial pattern base on relative contiguity, from South West to North (Portugal, Spain, France, Germany and Poland) and down to South East (Poland, Slovenia, Romania, Bulgaria, Macedonia and Greece) in a U revers shape. In this pattern is connected also Denmark and Latvia, Ireland is an ‘island’ in terms of

Table 1. Number of regions by countries with regional employment growth in N79 higher than total growth employment rate during 2008–2016 in EU28: number of regions with competitive advantage in the N79 sector [number of regions].

	Nuts0	NS0816 > 0 (FILTER)	Total NUTs2 regions at the country level	Share of regions with comparative advantage provided by N79 in total number of regions
1	GB	37	37	100.0
2	NL	12	12	100.0
3	BE	11	11	100.0
4	AT	9	9	100.0
5	CZ	8	8	100.0
6	SE	8	8	100.0
7	SK	4	4	100.0
8	MT	1	1	100.0
9	DE	38	39	97.4
10	PL	16	17	94.1
11	HU	7	8	87.5
12	FR	22	27	81.5
Total	173	281	61.6	

Source: Eurostat data, table results calculated by authors.

Figure 1. Employment change in N79 due to National Trends; National Growth Effect in EU28 during 2008–2016 period at NUTS 2 level.
Source: Map made by authors, ESRI SHAPE file.
specialisation. The Specialisation effect is spread in a pattern of U reverse shape, indicating a contiguity & connectivity effect presence. High degree of specialisation indicate involvement in globalisation (Capello & Fratesi, 2011).

In Table 4 are presented the 5 selected regions by countries with a positive total industry mix effect higher than 1216 employees. These are the EU 28’s regions with competitive advantage a best employment performance [employed persons].

Table 2. Selected regions by countries with N79 regional employment positive modification, higher than 406 employees, during 2008–2016 period, in EU28: the regions with competitive advantage a best employment performance [employed persons].

Nuts 0	Nuts2	Region Name	NS10816
DE	DE71	Darmstadt	763
DE	DE21	Oberbayern	475
	DEA2	Köln	407
FR	FR10	Île-de-France	579
GB	UK1	Inner London	1273
	UK2	Outer London	636
	UK2	Surrey, East and West Sussex	589
	UKD3	Greater Manchester	486
HU	HU10	Central Hungary (Közép-Magyarország)	605
MT	MT00	Malta	615
SE	SE11	Stockholm	459
Total			11

Source: Eurostat data, table results calculated by authors.
Notes: DE71: Darmstadt is one of the three Regierungsbezirke of Hesse, Germany, located in the south of the state. Frankfurt (Main). This region includes the independent cities: Darmstadt, Frankfurt (Main), Offenbach and Wiesbaden; DE21: Upper Bavaria, Kreisfreie Städte (district-free cities): Ingolstadt, Munich (München), Rosenheim; DEA2 District-free towns; Aachen, Bonn, Cologne, Leverkusen; FR10 Paris Region; HU10 Budapest.

Figure 2. Employment change in N79 due to Industrial Mix; Industrial Mix Effect in EU28 during 2008–2016 period at NUTS 2 level.
Source: Map made by authors, ESRI SHAPE file.
relative specialisation in tour operator’s profile, providing the best employment performance [employed persons] with a threshold given by Jenks classification ESDA method. Among the 5 leading regions 4 are from Germany, again Darmstadt on the first place and one is from Greece, Attiki having the second rank by employment growth. Frankfurt, the geographical centre of EU enlarged, ‘is an alpha world city and a global hub for commerce, culture, education, tourism and transportation’, major city from Darmstadt. Also, Attiki have Athens as capital, a capital with a Smart Specialisation Platform.8

Figure 3 present the 116 regions that have a positive competitive effect, respectively high endogenous growth effect, experiencing greater growth than the sector employment in N79 and the employment growth at national level. (Table 5) Supplementary we add the last overall rankings in 2019 and rank change since 2017 of the Travel & Tourism Competitiveness Index (TTCI). Calderwood et al. (2019) Our results are convergent with TTCI ranking for the best performer. There are 4 countries (United Kingdom, Germany, Italy and France, exception for Spain) from the top 5 TTCI rank, with large numbers of regions (over 12) that have high endogenous growth effect for Employment growth in tour operators. But all these countries keep their

Table 3. Number of regions by countries specialised in N79 during 2008–2016 in EU28 [number of regions].

Nuts 0	Number of regions specialised in N79, IMi0816 > 0 (FILTER)	Total NUTs2 regions in the country	Share of regions specialised in N79
ES	19	19	100.0
GR	13	13	100.0
RO	8	8	100.0
PT	7	7	100.0
BG	6	6	100.0
DK	5	5	100.0
SK	4	4	100.0
SI	2	2	100.0
LV	1	1	100.0
DE	38	39	97.4
PL	16	17	94.1
FR	22	27	81.5
IE	2	3	66.7
Total	144	281	51.2

Source: Eurostat data, table results calculated by authors.

Table 4. Selected regions by countries with a positive total industry mix effect higher than 1216 employees in N79 at NUTs 2 level, during 2008–2016 period, in EU28. The amount of growth regarded as being caused by the differences in sectoral employment in N79 and the employment growth at national level. [Employed persons].

Nuts0	No	Nuts2	Region Name	IMi0816 >1216 (FILTER)
DE	1	DE71	Darmstadt	2899
	2	DE21	Oberbayern	1804
	3	DEA2	Köln	1544
	4	DE92	Hannover	1448
	5	DEA1	Düsseldorf	1216
GR	1	EL30	Attiki	1907
Total	N			5

Source: Eurostat data, table results calculated by authors.
rank in 2017 compared to 2019 (exception for United Kingdom that lose one place). In terms of progress of increasing competitiveness, among studied countries, Romania reached the highest score positive modification of 12 during 2017–2019 for TTCI driven by 2 regions. Denmark increases its rank with 10 places in 2 regions from total 5 regions. Slovenia (in 1 region from 2) and Finland (in all its 5 regions) also increases their rank with 5 places. Our indicator offers complementary information’s, at regional level for TTCI, allowing deep insights.

Among best performers, Italy proves to be more competitive in 13 regions from its 21 regions with a regional coverage of 61.9%, closed followed by United Kingdom with 51.4% endogenous regional coverage. Finland, Austria, Belgium and Slovenia, are small countries with high coverage of endogenous competitive effect, with coverage also higher than 50% from all regions.

Among the 21 countries with selected 116 regions there are 11 countries counting 96 regions presents a Share of regions with positive competitive effect provided by N79 higher than EU28 average of 40% (Table 6).

Regional conditions favour in the highest level employment growth in Darmstadt and Nord-Holland hosting mega cities like Frankfurt and Amsterdam working as Global Hubs (Harrison, 2015). Here the employment increases in the mentioned period with over 3225 person. Regions with a good competitive effect (second class in Figure 2) could improve the tour operator’s sector performance more if connect to the Global Hubs. Germany proves to be highly global connected and with the highest number of regions competitive endogenous for tour operators growth performance.

Figure 3. Employment change in N79 due to Regional shift or Competitive Effect in EU28 during 2008–2016 period at NUTS 2 level.
Source: Map made by authors, ESRI SHAPE file.
Figure 3 indicates a randomised spatial profile of competitive effect, the region-specific conditions to support tour operator’s employment growth, with small clusters national and cross-border. This result is similar with Batista e Silva et al. (2018) spatiotemporal patterns of tourism in Europe at high-resolution with conventional and big data sources.

Some of the results are simply snap shots that confirms the tourism megatrends announced by (WTTC, 2019) ‘today’s hyper-connected world, power and demographic shifts from West to East and nations to cities’.

Conclusion

In EU28 (266 from a total of 281 regions) during 2008–2016 period, the over 40% of the average regional tour operators employment growth heterogeneity is driven
almost by region-specific factors. This finding is in line with Traistaru and Wolff (2002)’s conclusion, at smaller scale. Following You et al. (2010), these 116 regions with a positive competitive component increases the competitiveness of tour operators sector as well as tourism industry.

Our main contribution is the decomposing with SSA of the Employment growth in tour operator’s sector analysis at regional level during 2008–2016 period. This indicator is highly relevant for:

a. Theory: tour operator sector is a core sector of tourism in the Global model of tourism announced by Harrison (2015). It plays the role of the ‘brain’ for the smart tourism (Stergiou & Airey, 2018), is not support service but creator for tourism products;
b. Practice: the identification of a core indicator appropriate for OECD (2013) tourism competitiveness framework.

This indicator allow deep analysis for endogenous competitive regions capacity to attract and retain talents, e-tourism and other innovative services proxy measure, insights regarding the structure of tourism supply chains, on innovation and use of social media in the tourism industry (Dupeyras & MacCallum, 2013) and a measure of industry thickness dynamics, clusters and competitiveness, existing/potential. Supplementary, we provide details regarding the spatial structure of agglomerations and clusters identified at regional level. Regions with high rates of tour operators indicates the Jacobian externalities agglomeration (Jacobs, 1961, 1969), acting as regional knowledge spill overs in a region, the variety of sectors are related or unrelated (Frenken et al., 2007). The Morettian Human capital spill over effect is tremendous important for education policy, for new talents attraction in the region (Moretti, 2004).

In short, the tour operator presence agglomeration increases the resilience of the hosted region and their cities.

Methodological limitations – SSA does not indicate why these industries are competitive, merely shows the sectors in which the region is outcompeting or under competing the nation (Sentz, 2011), considering that the competitive advantage is relative (Dunn, 2005; Fuchs, 1959; Klaassen & Paelinck, 1972).

Data and indicator limitations – Seasonality. Monthly frequency will be an improvement; activity structure of tour operators; employment contract type; county level are additional variables to be considered.

Further developments in research development in the field of tour operators are: the speed of digital transformation adoption assessment to fully beneficiate of the opportunities; platform employment (gig economy) from tourism impact on job creation; optimal tourism sector structure at the best spatial granularity; effects of global connectivity in networks and Global Hubs, relationship with smart cities for EU tourism network management.

The results of the present study offers guidelines for policy makers:

- The map of regions with effect on tour operators competitiveness as input for tourism policy and entrepreneurship development;
• Locations and inputs for priorities Human capital, active, investments in digital infrastructure policies;
• Benchmarking of EU28 the regions by endogenous Competitive Effect on tour operators employment growth;

The growth of employment in tour operators sector is an indicator that allow to provide diverse and deeper insight, useful for tourism understanding and practice improvement.

Our results goes beyond the ‘common sense’ of the touristic countries. Some of the results are simply snap shots that confirms the tourism megatrends announced by (WTTC, 2019) ‘today’s hyper-connected world, power and demographic shifts from West to East and nations to cities are redefining centres of influence and reshaping global markets, while individuals increasingly mobilise and demand accountability’.

Notes
1. https://ec.europa.eu/eurostat/statistics-explained/index.php/Tourism_industries_-_employment#Data_sources
2. OECD Science, Technology and Industry Scoreboard 2007, p2 10
3. Eurostat, 2018. Tourism industries – employment. Statistics Explained https://ec.europa.eu/eurostat/statistics-explained/pdfscache/46236.pdf
4. European Union Tourism Trends, https://www.e-unwto.org/doi/pdf/10.18111/9789284419470
5. https://ec.europa.eu/eurostat/statistics-explained/images/3/3f/Number_of_persons_employed%2C_by-economic_activity%2C_2016.png
6. Nomenclature of Territorial Units for Statistics (NUTS).https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Nomenclature_of_territorial_units_for_statistics_(NUTS)
7. Between Slovenia and Romania is a discontiguity, but in terms of distance is below 100 km. on the background of entire EU map we consider this situation as relative contiguity.
8. https://s3platform.jrc.ec.europa.eu/regions/EL30/tags/EL30

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by a grant from the Romanian Ministry of Research and Innovation in the Project Functional perspectives of local labor markets in Romania, in the context of smart and innovative economy, PN 19130101, coordinator Dr. Speranța Pircioag.

ORCID

Adriana Grigorescu http://orcid.org/0000-0003-4212-6974

References

Anselin, L. (2002). Mapping and analysis for spatial social science. http://www.csiss.org/events/conferences/2002/anselin_aaa.pdf
ArcGIS 9.2. Desktop Help. (2008). Classification methods. http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Classification_methods.

Artige, L., & Neuss, L.V. (2013). A new shift-share method (No. 1302), CREPP Working Papers. Centre de Recherche en Economie Publique et de la Population (CREPP) (Research Center on Public and Population Economics) HEC-Management School. University of Liège.

Ashby, L. D. (1964). The geographical redistribution of employment: an examination of the elements of change. Survey of Current Business, 44(10), 13–20.

Batista e Silva, F., Marin Herrera, M. A., Rosina, K., Ribeiro Barranco, R., Freire, S., & Schiavina, M. (2018). Analysing spatiotemporal patterns of tourism in Europe at high-resolution with conventional and big data sources. Tourism Management, 68, 101–115. https://doi.org/10.1016/j.tourman.2018.02.020

Bishop, K. C., & Simpson, C. E. (1972). Components of change analysis: problems of alternative approaches to industrial structure. Regional Studies, 6(1), 59–68.

Blien, U., Eigenhüller, L., Promberger, M., & Schanne, N. (2014). The shift-share regression: An application to regional employment development in Bavaria. In K. Kourtit, P. Nijkamp, & R. Stimson (Eds.), Applied regional growth and innovation models. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 109–137. https://doi.org/10.1007/978-3-642-37819-5_6

Bryson, J., Daniels, P. (2007). The handbook of service industries [WWW Document]. https://www.e-elgar.com/shop/the-handbook-of-service-industries

Buck, T. W. (1970). Shift and share analysis—A guide to regional policy? Regional Studies, 4(4), 445–450. https://doi.org/10.1080/09595237000185441

Calderwood, L. U., & Soshkin, M. (2019). The travel & tourism competitiveness report 2019. In World Economic Forum.

Capello, R., & Fratesi, U. (2011). ERSA Conference Papers. Globalization and endogenous regional growth (No. ersa10p677). European Regional Science Association.

Casler, S. D. (1989). A theoretical context for shift and share analysis. Regional Studies, 23(1), 43–48. https://doi.org/10.1080/00343408912331345272

Cukier, J. (2006). Tourism research: policy, planning and prospects. Department of Geography University of Waterloo.

Dogru, T., & Sirakaya-Turk, E. (2017). Engines of tourism’s growth: An examination of efficacy of shift-share regression analysis in South Carolina. Tourism Management, 58, 205–214. https://doi.org/10.1016/j.tourman.2016.10.021

Dunn, E. S. (2005). A statistical and analytical technique for regional analysis. Papers in Regional Science, 6(1), 97–112. https://doi.org/10.1111/j.1435-5597.1960.tb01705.x

Dupeyras, A., & MacCallum, N. (2013). Indicators for measuring competitiveness in tourism: A guidance document (OECD Tourism Papers No. 2013/02; OECD Tourism Papers, Vol. 2013/02). https://doi.org/10.1787/5k47t9q2t923-en

Eurostat. (2019). Tourism industries – Employment. Statistics explained. https://ec.europa.eu/eurostat/statisticsexplained/

Esteban-Marquillas, J. M. (1972). I. A reinterpretation of shift-share analysis. Regional and Urban Economics, 2(3), 249–255. https://doi.org/10.1016/0034-3331(72)90033-4

Firgo, M., & Fritz, O. (2017). Does having the right visitor mix do the job? Applying an econometric shift-share model to regional tourism developments. The Annals of Regional Science, 58(3), 469–490. https://doi.org/10.1007/s00168-016-0803-4

Frenken, K., Van Oort, F., & Verburg, T. (2007). Related variety, unrelated variety and regional economic growth. Regional Studies, 41(5), 685–697. https://doi.org/10.1080/00343400601120296

Fuchs, M., Rijken, L., Peters, M., & Weiermair, K. (2000). Modelling Asian incoming tourism: A shift-share approach. Asia Pacific Journal of Tourism Research, 5(2), 1–10. https://doi.org/10.1080/10941660008722067

Fuchs, V. R. (1959). Changes in the location of U.S. manufacturing since 1929. Journal of Regional Science, 1(2), 1–18. https://doi.org/10.1111/j.1467-9787.1959.tb01455.x

Fuchs, V. R. (1962). Statistical explanations of the relative shift of manufacturing among regions of the united States. Papers of the Regional Science Association, 8, 1–5.
Getz, D., & Page, S. J. (2016). Progress and prospects for event tourism research. *Tourism Management, 52*, 593–631. https://doi.org/10.1016/j.tourman.2015.03.007

Goschin, Z. (2014). Regional growth in Romania after its accession to EU: A shift-share analysis approach. *Procedia Economics and Finance, 15*, 169–175. https://doi.org/10.1016/S2212-5671(14)00471-7

Graham Shaw, D. J., & Spence, N. (1998). A productivity growth interpretation of the labour demand shift-share model. *Regional Studies, 32*(6), 515–525. https://doi.org/10.1080/00343409850119085

Guaita-Martínez, J. M., Martin-Martín, J. M., & Salinas-Fernandez, J. A. (2019). Innovation in the measurement of tourism competitiveness, Chapter 13. In M. A. Galindo-Martín, M. T. Mendez-Picazo, M. S. Castaño-Martínez, (Eds.), *Analyzing the relationship between innovation, value creation, and entrepreneurship* (pp. 268–288). IGI Global.

Harrison, D. (2015). Development theory and tourism in developing countries: what has theory ever done for us? *International Journal of Asia Pacific Studies, 11*(1), 53–82.

Herzog, H., & Olsen, R. (1977). Shift-share analysis revisited: The allocation effect and the stability of regional structure. Reg. Urban Stud. Sect. Energy Div. Oak Ridge Natl. Lab. Oak Ridge Tenn, 37830.

Jacobs, J. (1961). *The death and life of great American cities*. Vintage Books A Division of Random House.

Jacobs, J. (1969). The city. The economy of the cities. *National Civic Review, 58*(9), 447–448. https://doi.org/10.1002/ncr.4100580916

James Jr, F., & Hughes, J. (1973). A test of shift and share analysis as a predictive device. *Journal of Regional Science, 13*(2), 223–231.

Jennings, G. R. (2006). Advances in tourism research: Theoretical paradigms and accountability. In Á. Matias, P. Nijkamp, & P. Neto (Eds.), *Advances in modern tourism research* (pp. 9–35). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1718-8_2

Klaassen, L. H., & Paelinck, J. H. P. (1972). II. Asymmetry in shift- and share analysis. *Regional and Urban Economics, 2*(3), 256–261. https://doi.org/10.1016/0034-3331(72)90034-6

Knudsen, D. C., & Barff, R. (1991). Shift-share analysis as a linear model. *Environment and Planning A: Economy and Space, 23*(3), 421–431. https://doi.org/10.1068/a230421

Lailani. (2014). Shift share analysis for calculating regional competitive advantage.id blog. https://blog.id.com.au/2014/how-to/advanced-users-shift-share-analysis-for-calculating-regional-competitive-advantage/

Li, Y., Hu, C., Huang, C., & Duan, L. (2017). The concept of smart tourism in the context of tourism information services. *Tourism Management, 58*, 293–300. https://doi.org/10.1016/j.tourman.2016.03.014

Liu, S. Y., & Lo, W. S. (2016). The low-carbon operations in ecotourism service supply chain management. *Journal of Tourism and Hospitality Management, 4*(4), 147–159.

Loveridge, S. (1995). A practical approach to shift-share analysis. *Community Development Society. Journal, 26*(1), 110–124. https://doi.org/10.1080/15575339509490166

Moretti, E. (2004). Workers’ education, spillovers, and productivity: Evidence from plant-level production functions. *American Economic Review, 94*(3), 656–690. https://doi.org/10.1257/0002828041464623

Moretti, E. (2012). *The new geography of jobs*. Houghton Mifflin Harcourt.

Muller, E., & Doloreux, D. (2007). The key dimensions of knowledge-intensive business services (KIBS) analysis: a decade of evolution (No. U1/2007), Working Papers “Firms and Region.” Fraunhofer Institute for Systems and Innovation Research (ISI).

Munawir, R. (2014). Analysis of Bandung’s competitive sectors through LQ & Shift Share. O’Leary, E., & Webber, D. J. (2015). The Role of Structural Change in European Regional Productivity Growth. *Regional Studies, 49*(9), 1548–1560. https://doi.org/10.1080/00343404.2013.839868

Perles-Ribes, J. F., Ramón-Rodríguez, A. B., Rubia, A., & Moreno-Izquierdo, L. (2017). Is the tourism-led growth hypothesis valid after the global economic and financial crisis? The case
of Spain 1957–2014. Tourism Management, 61, 96–109. https://doi.org/10.1016/j.tourman.2017.01.003
Prats, G. M., & Ramirez, A. A. (2018). Analysis of the behavior of a regional economy through the shift share and location quotient techniques. Management Dynamics in the Knowledge Economy, 6, 553–568.
Ritchie, B., Sheehan, L. R., & Timur, S. (2008). Tourism sciences or tourism studies? Implications for the design and content of tourism programming. Teoros. Revue de Recherche En Tourisme, 27(1). https://journals.openedition.org/teoros/1621
Salinas-Fernández, J. A., Serdeira Azevedo, P., Martín Martín, J. M., & Rodríguez Martín, J. A. (2020). Determinants of tourism destination competitiveness in the countries most visited by international tourists: Proposal of a synthetic index. Tourism Management Perspectives, 33, 100582. https://doi.org/10.1016/j.tmp.2019.100582
Selting, A. C., & Loveridge, S. (1992). A summary of the literature on shift-share analysis. Staff Paper Series, Department of Agricultural and Applied Economics Staff Paper, P92–13.
Sentz, R. (2011). Understanding shift share. Emsi. https://www.economicmodeling.com/2011/12/05/understanding-shift-share-2/.
Sharpley. (2009). Tourism development and the environment: Beyond sustainability? Earthscan.
Shi, C., Zhang, J., Yang, Y., & Zhou, Z. (2007). Shift-share analysis on international tourism competitiveness—a case of Jiangsu Province. Chinese Geographical Science, 17(2), 173–178. https://doi.org/10.1007/s11769-007-0173-2
Stergiou, D. P., & Airey, D. (2018). Understandings of tourism theory. Tourism Review, 73(2), 156–168. https://doi.org/10.1108/TR-07-2017-0120
Stevens, B. H., & Moore, C. L. (1980). A critical review of the literature on shift-share as a forecasting technique. Journal of Regional Science, 20(4), 419–437.
Traistaru, I., & Wolff, G. B. (2002). Regional specialization and employment dynamics in transition countries (No. B 18-2002). ZEI - Center for European Integration Studies.
Tribe, J. (1997). The indiscipline of tourism. Annals of Tourism Research, 24(3), 638–657. https://doi.org/10.1016/S0160-7383(97)00020-0
Turner, R. (2018). Travel & tourism economic impact 2018. Romania.
World Tourism Organization (UNWTO). (2018). European Union tourism trends. World Tourism Organization (UNWTO). https://doi.org/10.18111/9789284419470
World Travel and Tourism Council: World, Transformed. (2019). World, Transformed: Megatrends and Their Implications for Travel and Tourism, in cooperation with Bloomberg Media Group. Retrieved July, 2019, from https://wttc.org/Research/Insights.
Xin, S. (2015). The theory and practice of conceptual research in tourism. 277. http://epubs.surrey.ac.uk/814163/1/revised%20thesis%20%28Shuang%20Xin%206100038%29.pdf
Yasin, M., Alavi, J., Sobral, F., & Lisboa, J. (2004). A shift-share analysis approach to understanding the dynamic of the portuguese tourism market. Journal of Travel & Tourism Marketing, 17(4), 11–22. https://doi.org/10.1300/J073v17n04_02
Ye, B. H., Ye, H., & Law, R. (2020). Systematic review of smart tourism research. Sustainability, 12(8), 3401. https://doi.org/10.3390/su12083401
You, S., Chen, Y., Yang, T., & Huang, B. (2010). Spatial shift-share method: A new method in the study of regional industrial structures. In Zhu, R., Zhang, Y., Liu, B., Liu, C. (Eds.), Information computing and applications. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 507–514. https://doi.org/10.1007/978-3-642-16339-5_67
Zaman, G., Georgescu, G., Goschin, Z., Antonescu, D., & Popa, F. (2015). Dezvoltarea economică endogenă la nivel regional. Cazul României. Editura Expert. https://doi.org/10.13140/rg.2.1.2731.4000
Annex 1. NUTS 2 regions with data in other years than the reference interval 2008 and 2016.

Code	Region (NUTS 2013)	Year interval
DE40	Brandenburg - Nordost (NUTS 2006)	2008-2010
DE41	Brandenburg - Nordost (NUTS 2006)	2008-2010
DE42	Brandenburg - Südost (NUTS 2006)	2008-2010
DE51	Chemnitz (NUTS 2006)	2008-2010
DE52	Chemnitz (NUTS 2006)	2008-2010
DE53	Chemnitz (NUTS 2006)	2008-2010
DE55	Leipzig (NUTS 2006)	2008-2010
DE56	Leipzig (NUTS 2006)	2008-2010
EL11	Anatoliki Makedonia, Thraki (NUTS 2010)	2008-2012
EL12	Kentrikí Makedonia (NUTS 2010)	2008-2012
EL13	Dríyiki Makedonia (NUTS 2010)	2008-2012
EL14	Thessalíka (NUTS 2010)	2008-2012
EL21	Iepros (NUTS 2010)	2008-2011
EL22	Ionía Nisia (NUTS 2010)	2008-2012
EL23	Dríyiki Elláda (NUTS 2010)	2008-2011
EL24	Sterea Elláda (NUTS 2010)	2008-2011
EL25	Peloponéssos (NUTS 2010)	2008-2012
EL31	Anatoliki Makedonia, Thraki	2013-2016
EL32	Kentrikí Makedonia	2013-2016
EL33	Dríyiki Makedonia	2013-2016
EL34	Iepros	2013-2016
EL35	Thessalíka	2013-2016
EL36	Ionía Nisia	2013-2016
EL37	Dríyiki Elláda	2013-2016
EL38	Sterea Elláda	2013-2016
EL39	Peloponéssos	2013-2016
FR13	Île-de-France	2008-2010
FR18	Eski-Suenn (NUTS 2006)	2008-2010
FR19	Holezouk-Uoamza	2010-2016
FIC1	Eski-Suenn	2010-2016
FID1	Południowy-wschodni Krym	2010-2014
FID2	Adur	2008-2014
FR	France	2010-2010
FR19	Île-de-France	2010-2010
FR23	Champagne-Ardenne (NUTS 2013)	2010-2015
FR27	Picardie (NUTS 2013)	2010-2015
FR23	Haute-Normandie (NUTS 2013)	2010-2015
FR24	Centre-Val de Loire (NUTS 2013)	2010-2015
FR25	Basse-Normandie (NUTS 2013)	2010-2015
FR26	Bourgogne (NUTS 2013)	2010-2015
FR30	Nord-Pas-de-Calais (NUTS 2013)	2014-2016
FR41	Lorraine (NUTS 2013)	2010-2015
FR42	Alsace (NUTS 2013)	2010-2015
FR43	Franche-Comté (NUTS 2013)	2010-2015
FR51	Pays de la Loire (NUTS 2013)	2010-2015
FR52	Bretagne (NUTS 2013)	2010-2015
FR53	Poitou-Charentes (NUTS 2013)	2010-2015
FR81	Aquitaine (NUTS 2013)	2012-2015
FR82	Midi-Pyrénées (NUTS 2013)	2010-2015
FR83	Languedoc-Roussillon (NUTS 2013)	2012-2015
FR87	Rhône-Alpes (NUTS 2013)	2010-2015
FR72	Auvergne (NUTS 2013)	2010-2015
FR73	Limousin (NUTS 2013)	2010-2015
FR82	Provence-Alpes-Côte d'Azur (NUTS 2013)	2010-2014
FR83	Languedoc-Roussillon (NUTS 2013)	2010-2013
FR87	Rhône-Alpes (NUTS 2013)	2010-2013
FR88	Auvergne (NUTS 2013)	2010-2013
FR91	Franche-Comté (NUTS 2013)	2010-2013
FR95	Pays de la Loire (NUTS 2013)	2010-2013
FR96	Bretagne (NUTS 2013)	2010-2013
FR97	Poitou-Charentes (NUTS 2013)	2010-2013
FR81	Aquitaine (NUTS 2013)	2012-2015
FR82	Midi-Pyrénées (NUTS 2013)	2010-2015
FR83	Languedoc-Roussillon (NUTS 2013)	2012-2015
FR87	Rhône-Alpes (NUTS 2013)	2010-2015
FR72	Auvergne (NUTS 2013)	2010-2015
FR73	Limousin (NUTS 2013)	2010-2015
FR82	Provence-Alpes-Côte d'Azur (NUTS 2013)	2010-2014
FR83	Languedoc-Roussillon (NUTS 2013)	2010-2013
FR87	Rhône-Alpes (NUTS 2013)	2010-2013
FR88	Auvergne (NUTS 2013)	2010-2013
FR91	Franche-Comté (NUTS 2013)	2010-2013
FR95	Pays de la Loire (NUTS 2013)	2010-2013
FR96	Bretagne (NUTS 2013)	2010-2013
FR97	Poitou-Charentes (NUTS 2013)	2010-2013
FR81	Aquitaine (NUTS 2013)	2012-2015
FR82	Midi-Pyrénées (NUTS 2013)	2010-2015
FR83	Languedoc-Roussillon (NUTS 2013)	2012-2015
Annex 2. National Share of N79 employment EU countries profiles at NUTS 2 level.

NUTS 0	No	NUTS 2	Name	NSi0816
AT	1	AT13	Wien	229
	2	AT33	Tirol	91
	3	AT31	Ober+ÁRsterreich	86
	4	AT12	Nieder+ÁRsterreich	64
	5	AT32	Salzburg	60
	6	AT22	Steiermark	57
	7	AT21	K+Árnten	37
	8	AT34	Vorarlberg	25
	9	AT11	Burgenland	8
		Total		9
BE	1	BE10	Brussels Hoofdstedelijk Gewest	80
	2	BE21	Provincie Antwerpen	57
	3	BE23	Provincie Oost-Vlaanderen	43
	4	BE24	Provincie Vlaams-Brabant	33
	5	BE25	Provincie West-Vlaanderen	24
	6	BE22	Provincie Limburg	17
	7	BE33	Provincie Luik	16
	8	BE32	Provincie Henegouwen	13
	9	BE31	Provincie Waals-Brabant	7
	10	BE34	Provincie Luxemburg	7
	11	BE35	Provincie Namen	6
		Total		11
CZ	1	CZ01	Prague	165
	2	CZ06	Jihovýchod (Southeast)	67
	3	CZ05	Severovýchod (Northeast)	27
	4	CZ02	Střední Čechy (Central Bohemia)	27
	5	CZ04	Severozápad (Northwest)	26
	6	CZ03	Jihozápad	23
	7	CZ08	Moravskoslezsko (Moravian-Silesian)	21
	8	CZ07	Severovýchod (Northwest)	16
		Total		8
DE	1	DE71	Darmstadt	763
	2	DE21	Oberbayern	475
	3	DEA2	Köln	407
	4	DE92	Hannover	381
	5	DEA1	Düsseldorf	320
	6	DE60	Hamburg	235
	7	DE11	Stuttgart	222
	8	DE50	Bremen	213
	9	DEA3	Münster	212
	10	DE30	Berlin	210
	11	DE13	Freiburg	175
	12	DE94	Weser-Éms	160
	13	DEA5	Arnsberg	148
	14	DEF0	Schleswig-Holstein	126
	15	DE12	Karlsruhe	117
	16	DE02	Dresden	111
	17	DE25	Mittelfranken	106
	18	DE01	Koblenz	91
	19	DEB3	Rheinhessen-Pfalz	70
	20	DEB4	Chemnitz	69
	21	DE05	Leipzig	69
	22	DE40	Brandenburg	69
	23	DE23	Oberpfalz	66
	24	DE93	Lüneburg	63
	25	DEA4	Detmold	62
	26	DE22	Niederbayern	61
	27	DEG0	Thüringen	60
	28	DE00	Sachsen-Anhalt	58
	29	DE26	Unterfranken	57

(continued)
Annex 2. Continued.

NUTS 0	No	NUTS 2	Name	NSI0816
30	DE91	Braunschweig		50
31	DE24	Oberfranken		49
32	DE80	Mecklenburg-Vorpommern		49
33	DE14	Tübingen		47
34	DE27	Schwaben		46
35	DECO	Saarland		43
36	DE73	Kassel		43
37	DE72	Gießen		41
38	DEB2	Trier		17

Total 38

FR				
1	FR10	Île-de-France		579
2	FR71	Rhône-Alpes		71
3	FR82	Provence-Alpes-Côte d'Azur		60
4	FR62	Midi-Pyrénées		54
5	FR52	Bretagne		30
6	FR51	Pays de la Loire		26
7	FR61	Aquitaine		23
8	FR30	Nord - Pas-de-Calais		21
9	FR81	Languedoc-Roussillon		17
10	FR24	Centre		15
11	FR25	Basse-Normandie		13
12	FR42	Alsace		12
13	FR41	Lorraine		11
14	FR23	Haute-Normandie		10
15	FR53	Poitou-Charentes		9
16	FR26	Bourgogne		9
17	FR21	Champagne-Ardenne		7
18	FR83	Corse		7
19	FR72	Auvergne		6
20	FR22	Picardie		4
21	FR43	Franche-Comté		2
22	FR63	Limousin		2

Total 22

GB				
1	UK1	Inner London		1273
2	UK2	Outer London		636
3	UKJ2	Surrey, East and West Sussex		589
4	UKD3	Greater Manchester		486
5	UKH1	East Anglia		376
6	UKM3	South Western Scotland		267
7	UKM2	Eastern Scotland		238
8	UKJ4	Kent		237
9	UKH2	Bedfordshire and Hertfordshire		235
10	UKE4	West Yorkshire		231
11	UKJ1	Berkshire, Buckinghamshire and Oxfordshire		228
12	UKK1	Gloucestershire, Wiltshire and Bristol/Bath area		211
13	UKD4	Lancashire		202
14	UKJ3	Hampshire and Isle of Wight		179
15	UKG3	West Midlands		177
16	UKF2	Leicestershire, Rutland and Northamptonshire		168
17	UKH3	Essex		157
18	UKK2	Dorset and Somerset		143
19	UKF1	Derbyshire and Nottinghamshire		142
20	UKC2	Northumberland and Tyne and Wear		133
21	UKG2	Shropshire and Staffordshire		119
22	UKD6	Cheshire		109
23	UKL2	East Wales		106
24	UKK4	Devon		104
25	UKE2	North Yorkshire		102
26	UKG1	Herefordshire, Worcestershire and Warwickshire		101
27	UKE3	South Yorkshire		96

(continued)
NUTS 0	No	NUTS 2	Name	NSI0816
			NSI0816 > 0 (FILTER)	
28		UKL1	West Wales and The Valleys	84
29		UKN0	Northern Ireland	81
30		UKD7	Merseyside	75
31		UKM5	North Eastern Scotland	61
32		UKE1	East Yorkshire and Northern Lincolnshire	56
33		UKD1	Cumbria	47
34		UKC1	Tees Valley and Durham	47
35		UKM6	Highlands and Islands	44
36		UKK3	Cornwall and Isles of Scilly	40
37		UKF3	Lincolnshire	29
			Total	37
HU	1	HU10	Central Hungary (Közép-Magyarország)	605
2		HU21	Central Transdanubia (Közép-Dunántúl)	46
3		HU22	Western Transdanubia (Nyugat-Dunántúl)	55
4		HU23	Southern Transdanubia (Dél-Dunántúl)	59
5		HU31	Northern Hungary (Észak-Magyarország)	33
6		HU32	Northern Great Plain (Észak-Alföld)	39
7		HU33	Southern Great Plain (Dél-Alföld)	45
			Total	7
MT	1	MT00	Malta	615
			Total	1
NL	1	NL32	Noord-Holland	47
2		NL33	Zuid-Holland	33
3		NL41	Noord-Brabant	15
4		NL21	Overijssel	12
5		NL22	Gelderland	12
6		NL31	Utrecht	10
7		NL42	Limburg (NL)	6
8		NL11	Groningen	4
9		NL12	Friesland (NL)	3
10		NL34	Zeeland	3
11		NL13	Drenthe	2
12		NL23	Flevoland	2
			Total	12
PL	1	PL12	Mazowieckie	144
2		PL21	Małopolskie	65
3		PL22	Śląskie	58
4		PL51	Dolnośląskie	40
5		PL41	Wielkopolskie	33
6		PL63	Pomorskie	32
7		PL42	Zachodniopomorskie	26
8		PL11	Łódzkie	22
9		PL62	Warmińsko-Mazurskie	15
10		PL32	Podkarpackie	12
11		PL52	Opolskie	11
12		PL34	Podlaskie	11
13		PL61	Kujawsko-Pomorskie	10
14		PL31	Lubelskie	9
15		PL43	Lubuskie	6
16		PL33	Świętokrzyskie	6
			Total	16
SE	1	SE11	Stockholm	459
2		SE23	West Sweden (Västsverige)	142
3		SE22	South Sweden (Sydsverige)	114
4		SE12	East Middle Sweden (Östra Mellansverige)	72
5		SE21	Småland and the islands (Småland med öarna)	49
6		SE31	North Middle Sweden (Norra Mellansverige)	40
7		SE33	Upper Norrland (Ovre Norrland)	36
8		SE32	Mellersta Norrland	28
			Total	8

(continued)
Annex 2. Continued.

NUTS 0	No	NUTS 2	Name	NSI0816
SK	1	SK01	Bratislava Region	24
	2	SK02	Western Slovakia (Západoslovensko)	10
	3	SK04	Central Slovakia (Stredoslovensko)	8
	4	SK03	Eastern Slovakia (Východoslovensko)	7
Total				4
Total				173

Annex 3. Industrial Mix Share over N79 employment EU countries profiles at NUTS 2 level.

nuts	Name	IMI0816 > 0 (FILTER)
BG		
1	BG41 Yugozapaden	719
2	BG33 Severoiztochen	218
3	BG42 Yuzhen tsentralen	117
4	BG34 Yugoiztochen	113
5	BG32 Severen tsentralen	39
6	BG31 Severozapaden	18
Total		6
DE		
1	DE71 Darmstadt	2899
2	DE21 Oberbayern	1804
3	DEA2 Köln	1544
4	DE92 Hannover	1448
5	DEA1 Düsseldorf	1216
6	DE60 Hamburg	890
7	DE11 Stuttgart	841
8	DE50 Bremen	809
9	DEA3 Münster	804
10	DE30 Berlin	799
11	DE13 Freiburg	665
12	DE94 Weser-Emms	609
13	DEA5 Arnsberg	561
14	DEF0 Schleswig-Holstein	479
15	DE12 Karlsruhe	443
16	DE02 Dresden	422
17	DE25 Mittelfranken	404
18	DEB1 Koblenz	346
19	DEB3 Rheinhessen-Pfalz	267
20	DED4 Chemnitz	262
21	DED5 Leipzig	260
22	DE40 Brandenburg	260
23	DE23 Oberpfalz	251
24	DE93 Lüneburg	239
25	DEA4 Detmold	237
26	DE22 Niederbayern	233
27	DEG0 Thüringen	229
28	DEE0 Sachsen-Anhalt	219
29	DE26 Unterfranken	215
30	DE91 Braunschweig	191
31	DE24 Oberfranken	186
32	DE80 Mecklenburg-Vorpommern	186
33	DE14 Tübingen	180
34	DE27 Schwaben	174
35	DE0 Saarland	164
36	DE73 Kassel	163
37	DE72 Gießen	154
38	DEB2 Trier	66
Total		38
DK		
1	DK01 Hovedstaden	94

(continued)
Annex 3. Continued.

nuts	Name	IMI0816 > 0 (FILTER)
2	DK04 Midtjylland	39
3	DK03 Syddanmark	23
4	DK05 Nordjylland	16
5	DK02 Sjælland	7
	Total	**5**
ES	1 ES30 Comunidad de Madrid	110
2	ES51 Catalonia	73
3	ES61 Andalusia	58
4	ES53 Illes Balears	36
5	ES70 Canarias	31
6	ES52 Comunidad Valenciana	29
7	ES21 Basque Community	17
8	ES11 Galicia	14
9	ES41 Castile-Leon	11
10	ES24 Aragon	9
11	ES42 Castilla-La Mancha	7
12	ES12 Principado de Asturias	6
13	ES62 Region of Murcia	5
14	ES13 Cantabria	4
15	ES22 Comunidad Foral de Navarra	4
16	ES43 Extremadura	4
17	ES23 La Rioja	2
18	ES63 Ciudad Autonoma de Ceuta	1
19	ES64 Ciudad Autonoma de Melilla	0
	Total	**19**
FR	1 FR10 Île-de-France	1037
2	FR71 Rhône-Alpes	127
3	FR82 Provence-Alpes-Côte d'Azur	107
4	FR62 Midi-Pyrénées	96
5	FR52 Bretagne	54
6	FR51 Pays de la Loire	46
7	FR61 Aquitaine	42
8	FR30 Nord - Pas-de-Calais	38
9	FR81 Languedoc-Roussillon	31
10	FR24 Centre	26
11	FR25 Basse-Normandie	23
12	FR42 Alsace	21
13	FR41 Lorraine	20
14	FR23 Haute-Normandie	19
15	FR53 Poitou-Charentes	17
16	FR26 Bourgogne	16
17	FR21 Champagne-Ardenne	13
18	FR83 Corse	12
19	FR72 Auvergne	10
20	FR22 Picardie	8
21	FR43 Franche-Comte	4
22	FR63 Limousin	3
	Total	**22**
GR	1 EL30 Attiki	1907
2	EL42 Notio Aigaio	479
3	EL43 Kriti	399
4	EL12 Kentriki Makedonia	387
5	EL22 Ionia Nisia	248
6	EL25 Peloponnisos	99
7	EL11 Anatoliki Makedonia, Thraki	97
8	EL14 Thessalia	93
9	EL23 Dytiki Ellada	83
10	EL41 Voreio Aigaio	74
11	EL21 Ipeiros	59
12	EL24 Sterea Ellada	50
13	EL13 Dytiki Makedonia	25

(continued)
Annex 3. Continued.

Code	Code 2	Name	IMI0816 > 0 (FILTER)
HR	1	HR03 Jadranska Hrvatska	1060
IE	1	IE02 Southern and Eastern	252
	2	IE01 Border, Midland and Western	27
LV	1	LV00 Latvia	545
PL	1	PL12 Mazowieckie	347
	2	PL21 Małopolskie	157
	3	PL22 Śląskie	139
	4	PL51 Dolnośląskie	97
	5	PL41 Wielkopolskie	79
	6	PL63 Pomorskie	76
	7	PL42 Zachodniopomorskie	62
	8	PL11 Łódzkie	54
	9	PL62 Warmińsko-Mazurskie	36
	10	PL32 Podkarpackie	29
	11	PL52 Opolskie	27
	12	PL34 Podlaskie	26
	13	PL61 Kujawsko-Pomorskie	25
	14	PL31 Lubelskie	21
	15	PL43 Lubuskie	16
	16	PL33 Świętokrzyskie	15
PT	1	PT17 Lisboa	890
	2	PT11 Norte	448
	3	PT15 Algarve	241
	4	PT16 Centro	206
	5	PT30 Região Autónoma da Madeira	152
	6	PT20 Região Autónoma dos Açores	57
	7	PT18 Alentejo	46
RO	1	RO32 Bucuresti - Ilfov	457
	2	RO12 Centru	123
	3	RO22 Sud-Est	103
	4	RO11 Nord-Vest	100
	5	RO31 Sud - Muntenia	81
	6	RO21 Nord-Est	76
	7	RO42 Vest	75
	8	RO41 Sud-Vest Oltenia	46
SI	1	SI02 Zahodna Slovenija	190
	2	SI01 Vzhodna Slovenija	131
SK	1	SK01 Bratislava Region	514
	2	SK02 Western Slovakia (Západné Slovensko)	224
	3	SK04 Central Slovakia (Stredné Slovensko)	175
	4	SK03 Eastern Slovakia (Východné Slovensko)	157
Total		N	144
Annex 4. Regional Shift (Or Local Share)/Competitive Effect of N79 employment EU countries profiles at NUTS 2 level.

nuts0	Nuts 2	name	RSi0816 > 0 (FILTER)
AT	1	AT12 Niederösterreich	128
	2	AT11 Burgenland	94
	3	AT22 Steiermark	81
	4	AT21 Carinthia	64
	5	AT32 Salzburg	52
	6	AT34 Vorarlberg	40
Total	6		
BE	1	BE32 Provincie Henegouwen	161
	2	BE23 Provincie Oost-Vlaanderen	49
	3	BE25 Provincie West-Vlaanderen	47
	4	BE35 Provincie Namen	30
	5	BE24 Provincie Vlaams-Brabant	23
	6	BE31 Provincie Waals-Brabant	2
Total	6		
BG	1	BG34 Yugoiztochen	106
	2	BG32 Severen tsentralen	104
	3	BG33 Severoztochen	59
Total	3		
CZ	1	CZ06 Jihovychod	709
	2	CZ08 Moravskoslezsko	98
Total	2		
DE	1	DE71 Darmstadt	3512
	2	DE30 Berlin	1402
	3	DEA3 Münster	803
	4	DEF0 Schleswig-Holstein	640
	5	DE80 Mecklenburg-Vorpommern	560
	6	DE12 Karlsruhe	511
	7	DEB2 Trier	381
	8	DE27 Schwaben	356
	9	DE14 Tubingen	326
	10	DE21 Oberbayern	321
	11	DE91 Braunschweig	295
	12	DEA5 Arnsberg	253
	13	DE22 Niederbayern	203
	14	DE72 Gießen	161
	15	DEEO Sachsen-Anhalt	51
	16	DEG0 Thüringen	48
	17	DE40 Brandenburg	25
	18	DE26 Unterfranken	5
Total	18		
DK	1	DK01 Hovedstaden	542
	2	DK04 Midtjylland	4
Total	2		
ES	1	ESS3 Illes Balears	1422
	2	ESS70 Canarias	1115
	3	ESS1 Catalonia	1035
	4	ESS63 Ciudad Autonoma de Ceuta	103
	5	ESS64 Ciudad Autonoma de Melilla	36
Total	5		
FI	1	FI1B Helsinki-Uusimaa	273
	2	FI1D North & East Finland	92
	3	FI20 Åland	11
	4	FI1C South Finland	4
	5	FI19 West Finland	2
Total	5		
FR	1	FR71 Rhône-Alpes	306
	2	FR83 Corse	257
	3	FR22 Picardie	204
	4	FR43 Franche-Comte	201
	5	FR82 Provence-Alpes-Côte d’Azur	196

(continued)
Annex 4. Continued.

nuts0	Nuts 2	Name	RSIO816 > 0 (FILTER)
6	FR41	Lorraine	170
7	FR53	Poitou-Charentes	92
8	FR81	Languedoc-Roussillon	74
9	FR63	Limousin	55
10	FR26	Bourgogne	46
11	FR42	Alsace	39
12	FR51	Pays de la Loire	21
	Total		**12**
GB	1	UKJ2 Surrey, East and West Sussex	1344
	2	UKI1 Inner London	1257
	3	UKN0 Northern Ireland	1104
	4	UKJ3 Hampshire and Isle of Wight	919
	5	UKC6 Cheshire	833
	6	UKF1 Derbyshire and Nottinghamshire	541
	7	UKH2 Bedfordshire and Hertfordshire	314
	8	UKD7 Merseyside	251
	9	UKD1 Cumbria	164
	10	UKM2 Eastern Scotland	130
	11	UKG1 Herefordshire, Worcestershire and Warwickshire	111
	12	UKD3 Greater Manchester	105
	13	UKF3 Lincolnshire	97
	14	UKC1 Tees Valley and Durham	89
	15	UKE3 South Yorkshire	75
	16	UKJ4 Kent	59
	17	UKL1 West Wales and The Valleys	47
	18	UKM6 Highlands and Islands	47
	19	UKD4 Lancashire	19
	Total		**19**
GR	1	EL43 Kriti	759
	Total		**1**
HU	1	HU21 Central Transdanubia (Közép-Dunántúl)	41
	2	HU33 Southern Great Plain (Dél-Alföld)	28
	3	HU31 Northern Hungary (Észak-Magyarország)	28
	Total		**3**
IE	1	IE02 Southern and Eastern	340
	Total		**1**
IT	1	ITI4 Lazio	749
	2	ITF4 Puglia	560
	3	ITH5 Emilia-Romagna	451
	4	ITI1 Toscana	435
	5	ITH3 Veneto	277
	6	ITI3 Marche	171
	7	ITH2 Provincia Autonoma di Trento	143
	8	ITH1 Provincia Autonoma di Bolzano/Bozen	46
	9	ITF5 Basilicata	23
	10	ITH4 Friuli-Venezia Giulia	18
	11	ITF3 Campania	17
	12	ITF1 Abruzzo	6
	13	ITF2 Molise	1
	Total		**13**
NL	1	NL32 Noord-Holland	3225
	Total		**1**
PL	1	PL21 Małopolskie	245
	2	PL52 Opolskie	222
	3	PL22 Śląskie	159
	4	PL11 Łódzkie	155
	5	PL31 Lubelskie	73
	6	PL61 Kujawsko-Pomorskie	37
	7	PL43 Lubuskie	27
	8	PL33 Świętokrzyskie	6
	Total		**8**

(continued)
Annex 4. Continued.

nuts0	Nuts 2	name	RSO816 > 0 (FILTER)
PT	1	PT15	269
	2	PT20	85
	3	PT11	69
	Total	3	
RO	1	RO32	656
	2	RO42	38
	Total	2	
SE	1	SE23	140
	2	SE12	81
	3	SE33	65
	Total	3	
SI	1	SI01	61
	Total	1	
SK	1	SK02	199
	2	SK04	103
	Total	2	
Total	N	116	