Detweiler’s redshift invariant for extended bodies orbiting a Schwarzschild black hole

Donato Bini\textsuperscript{1,2}, Andrea Geralico\textsuperscript{1}, and Jan Steinhoff\textsuperscript{3}

\textsuperscript{1} Istituto per le Applicazioni del Calcolo “M. Picone,” CNR, I-00185 Rome, Italy
\textsuperscript{2} INFN, Sezione di Roma Tre, I-00146 Rome, Italy
\textsuperscript{3} Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany

(Dated: March 31, 2020)

We compute the first-order self-force contribution to Detweiler’s redshift invariant for extended bodies endowed with both dipolar and quadrupolar structure (with spin-induced quadrupole moment) moving along circular orbits on a Schwarzschild background. Our analysis includes effects which are second order in spin, generalizing previous results for purely spinning particles. The perturbing body is assumed to move on the equatorial plane, the associated spin vector being orthogonal to it. The metric perturbations are obtained by using a standard gravitational self-force approach in a radiation gauge. Our results are accurate through the 6.5 post-Newtonian order, and are shown to reproduce the corresponding post-Newtonian expression for the same quantity computed by using the available Hamiltonian from an effective field theory approach for the dynamics of spinning binaries.

I. INTRODUCTION

The detection of the first binary neutron star inspiral by the LIGO-Virgo interferometers\textsuperscript{1}, which was likely already accompanied by a second one\textsuperscript{2} and is expected to be followed by hundreds of similar events during the next observing runs, has provided us an unique opportunity for improving our knowledge about the internal structure of neutron stars and the equation of state of neutron star matter. The analysis of the associated gravitational wave signal has allowed one to impose tight constraints on the component masses, spins and tidal polarizability parameters as well as to measure their radii and equation of state\textsuperscript{3,4}.

Spin effects may significantly modify both the orbital motion and the rate of the inspiral, since each neutron star gets deformed due to its own rotation\textsuperscript{5}. As a result, such a spin-induced quadrupole moment introduces additional variations in the emitted gravitational wave signal, which are expected to dominate with respect to tidal effects in the case of rapidly rotating neutron stars\textsuperscript{6}. Furthermore, the quadrupole moment of a rotating neutron star is different from that of a spinning black hole, depending on the equation of state\textsuperscript{7}, so that any deviation from the black hole value can be used to constrain the binary black hole nature of the compact binary system\textsuperscript{8,9}.

Finite size effects on the motion of two bound compact objects are taken into account in the literature by a number of different methods and at different levels of approximation. At the lowest level, the dynamics of an extended body in a given gravitational background field is commonly described according to the Mathisson-Papapetrou-Dixon (MPD) model\textsuperscript{10–12}. The orbit is no longer geodesic due to the coupling between spin and higher multipole moment tensors with the background curvature tensor and its derivatives, and the spin vector is no more Fermi-Walker transported along the orbit due to the same type of couplings. Such a feature complicates the discussion of the motion, which already at this simplest level cannot be performed exactly, but only within some approximation scheme and under some simplifying assumption\textsuperscript{13–21}. A canonical Hamiltonian formulation of the dynamics of a spinning test particle in a curved spacetime has been developed, e.g., in Ref.\textsuperscript{22} (see also Refs.\textsuperscript{23,24}), later generalized to extended bodies endowed with spin-induced quadrupole moment in Ref.\textsuperscript{26}.

When the mass of the extended body cannot be considered as a test mass, backreaction effects cannot be neglected, and the situation worsens immediately. Analytical methods are still available: post-Newtonian (PN)\textsuperscript{27–30} and post-Minkowskian (PM)\textsuperscript{31,32} approximations, for arbitrary values of the mass ratio, possibly implemented using effective field theory (EFT) techniques\textsuperscript{33–35}; the gravitational self-force (GSF) formalism\textsuperscript{36–38}, valid in the extreme-mass-ratio limit. The formalism which encompasses all these approaches is nowadays the effective-one-body (EOB) model\textsuperscript{39,40}, which is currently used to build waveform models for LIGO and Virgo data analysis. It represents the most versatile framework which allows one to convert information coming from both analytical approaches and numerical relativity (NR) simulations of binary inspirals to provide even more accurate predictions for the analysis of gravitational wave signals.

Up to now the PN description of the conservative orbital features of a two-body system is at the 4PN level of accuracy\textsuperscript{41–46}. The spin part of the conservative dynamics is complete to 4.5PN order (for rapidly rotating compact objects), which includes next-to-next-to-leading-order (NNNLO) effects at the spin-orbit level\textsuperscript{47} (see also Ref.\textsuperscript{48}), next-to-next-to-leading-order (NNLO) effects at the spin-squared level\textsuperscript{49–53} and next-to-leading-order (NLO) at cubic order in spin\textsuperscript{54} (see also Refs.\textsuperscript{55–57}). The PM description has provided recently a 3PM orbital Hamiltonian\textsuperscript{58–63} and the leading PM order in the spin part for black holes\textsuperscript{64,65} (with the spin-orbit part being un-
II. MPD DESCRIPTION OF QUADRUPOLAR BODIES

The motion of an extended body endowed with structure up to the quadrupole in a given spacetime is described by the MPD equations\cite{10,12}

\[
\frac{DP^\mu}{d\tau} = -\frac{1}{2} R^\mu_{\nu\alpha\beta} U^\nu S^{\alpha\beta} - \frac{1}{6} J^{\alpha\beta\gamma\delta} \nabla^\mu R_{\alpha\beta\gamma\delta}
\equiv F^{(\text{spin})} + F^{(\text{quad})},
\]

\[
\frac{DS^{\mu\nu}}{d\tau} = 2 P[\mu U^\nu] + \frac{4}{3} J^{\alpha\beta\gamma\delta} R^{\alpha\beta} R^{\gamma\delta}
\equiv D^{(\text{spin})} + D^{(\text{quad})},
\]

where

1. \( U = \frac{dx^\mu}{d\tau} \) is the (timelike, \( U \cdot U = -1 \)) unit tangent vector to the “center of mass world line” (\( C \), with parametric equations \( x^\alpha = x^\alpha(\tau) \)) used to make the multipole reduction, parametrized by the proper time \( \tau \).

2. \( P = m u \), with \( u \cdot u = -1 \) and \( P \cdot P = -m^2 \), is the (timelike) generalized 4-momentum of the body with mass \( m \). Note that, in general, \( U \) and \( u \) are not aligned; \( P \) (i.e., \( u \)) has support only along \( C \); \( m \) does not coincide with the “bare mass” of the body, but depends on its structure.

3. \( S^{\mu\nu} \) is a antisymmetric spin tensor \( S^{\mu\nu} \) (with support only along \( C \), like \( P \)), which is assumed to satisfy the Tulczyjew-Dixon supplementary conditions\cite{12,84}

\[
S^{\mu\nu} u_\nu = 0. \tag{2.2}
\]

As standard, the spin vector (orthogonal to \( u \)) associated with the spin tensor \( S^{\alpha\beta} \) is given by

\[
S(u)^\alpha = \frac{1}{2} \eta(u)^{\alpha\beta\gamma} S_{\beta\gamma}, \tag{2.3}
\]

where \( \eta(u)^{\alpha\beta\gamma} = u^\mu \eta_{\mu\alpha\beta\gamma} \) is the spatial unit volume 3-form (with respect to \( u \)) built from the unit volume 4-form \( \eta_{\alpha\beta\gamma\delta} = \sqrt{-g} \epsilon_{\alpha\beta\gamma\delta} \), with \( \epsilon_{\alpha\beta\gamma\delta} \) (\( \epsilon_{0123} = 1 \)) being the Levi-Civita alternating symbol and \( g \) the determinant of the metric.

Its signed magnitude \( s \) is such that

\[
s^2 = S(u) \cdot S(u) = \frac{1}{2} S^{\mu\nu} S^{\nu\mu} = -\frac{1}{2} \text{Tr}[S^2], \tag{2.4}
\]

with \([S^2]^\alpha_{\beta} = S^{\mu\nu} S_{\mu\beta} \), and is not constant in general along the trajectory of the extended body. For a later use, it is convenient to introduce the symmetric-tracefree part (STF) of the square of the spin tensor (or, equivalently, of the spin vector) \( S^2 \), i.e.,

\[
[S^2]_{\text{STF}}^{\alpha\beta} = [S^2]^{\alpha\beta} - \frac{1}{3} P(u)^{\alpha\beta} \text{Tr}[S^2], \tag{2.5}
\]

We use geometrical units \( G = 1 = c \). Greek indices refer to spacetime coordinates and vary from 0 to 3, whereas Latin indices, ranging from 1 to 3, label space coordinates.
where $P(u) = g + u \otimes u$ projects orthogonally to $u$. One finds

$$[S^2]^{\text{TF}} = [S(u) \otimes S(u)]^{\text{TF}},$$

$$\text{(2.6)}$$

4. $J^{\alpha \beta \gamma \delta}$ is the quadrupole tensor, with support only along $C$, like $P$ (and $u$) and $S^{\mu \nu}$ (and $S(u)$). It shares the same symmetries of the Riemann tensor and is completely specified by two symmetric and trace-free spatial tensors, i.e., the mass quadrupole (electric) and the current quadrupole (magnetic) tensors.

We will consider here the case of a spin-induced quadrupole tensor of the electric-type only, i.e.,

$$J^{\alpha \beta \gamma \delta} = 4u^{[\alpha} \dot{X}(u)^{\beta]\gamma \delta]} \equiv \dot{X}(u) = \frac{3}{4m}[S^2]^{\text{STF}},$$

$$\text{(2.7)}$$

where $C_Q$ is a constant parameter. For neutron stars its value depends on the equation of state and varies roughly between 4 and 8 [7], whereas it is exactly $C_Q = 1$ for black holes [87].

Therefore, the quadrupole tensor can be decomposed as

$$J^{\alpha \beta \gamma \delta} = \frac{3}{4} C_Q [J_{SS} - \frac{1}{3} \delta^{\alpha \beta} J_{\perp}]^{\alpha \beta \gamma \delta},$$

$$\text{(2.8)}$$

where

$$J^{\alpha \beta \gamma \delta}_{SS} \equiv u^\alpha S(u)^\beta S(u)^\gamma u^\delta - u^\alpha S(u)^\beta u^\gamma S(u)^\delta,$$

$$- S(u)^\alpha u^\beta S(u)^\gamma u^\delta + S(u)^\alpha u^\beta u^\gamma S(u)^\delta,$$

$$J^{\alpha \beta \gamma \delta}_{\perp} \equiv u^\alpha P(u)^\beta u^\gamma + u^\alpha P(u)^\beta u^\gamma - u^\alpha S(u)^\beta u^\gamma S(u)^\delta,$$

$$\text{(2.9)}$$

and in $J_{\perp}$ one can replace $P(u)$ by the metric $g$.

The MPD equations (2.1)-(2.2) imply that the unit vectors $U$ and $u$ are related by

$$u^\mu = U^\mu + \frac{1}{m_0} \Pi^{\mu \nu}_{(\text{quad})} U_\nu + \frac{1}{m_0} S^{\mu \nu} F_{(\text{spin})\nu} + O(S^3),$$

$$\text{(2.10)}$$

where $m_0$ denotes the (conserved) bare mass of the extended body. The spin-dependent effective mass $m$ is instead given by

$$m = m_0 + m_J + O(S^3),$$

$$\text{(2.11)}$$

where

$$m_J = \frac{1}{6} J^{\alpha \beta \gamma \delta} R_{\alpha \beta \gamma \delta}.$$

$$\text{(2.12)}$$

Finally, in stationary and axisymmetric spacetimes endowed with Killing symmetries there exist conserved quantities associated with the timelike Killing vector $\xi = \partial_t$ (the energy $E$) and the azimuthal Killing vector $\eta = \partial_\phi$ (the total angular momentum $J$) to all multipolar orders [88], i.e.,

$$E = - \xi_\alpha P^\alpha + \frac{1}{2} S^{\alpha \beta} \nabla_\beta \xi_\alpha,$$

$$J = \eta_\alpha P^\alpha - \frac{1}{2} S^{\alpha \beta} \nabla_\beta \eta_\alpha,$$

$$\text{(2.13)}$$

respectively, where $\nabla_\beta \xi_\alpha = g_{[\alpha, \beta]} \xi_\alpha$ and $\nabla_\beta \eta_\alpha = g_{[\alpha, \beta]} \eta.$

III. CIRCULAR MOTION IN A SCHWARZSCHILD SPACETIME

Let us consider the Schwarzschild spacetime, with line element written in standard spherical-like coordinates $(t, r, \theta, \phi)$ given by

$$ds^2 = - f dt^2 + f^{-1} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2),$$

$$\text{(3.1)}$$

where $f = 1 - 2M/r$. A natural orthonormal frame (adapted to the static observers, at rest with respect to the spatial coordinates) is the following

$$e_i = f^{-1/2} \partial_t, \quad e_i = f^{1/2} \partial_r,$$

$$e_\theta = \frac{1}{r} \partial_\theta, \quad e_\phi = \frac{1}{r \sin \theta} \partial_\phi,$$

$$\text{(3.2)}$$

where $\{\partial_t, \partial_r, \partial_\theta, \partial_\phi\}$ is the coordinate frame. The orthonormal component along $-\partial_\phi$, which is perpendicular to the equatorial plane will be referred to as “along the positive $z$-axis,” and will be denoted by the index $\hat{z}$, so that $e_\hat{z} = -e_\phi$.

It is convenient to decompose the spin vector $S(u)$ in magnitude ($s$) and direction ($N(u)$): $S(u) = s N(u)$, with $N(u)$ unitary, spacelike and orthogonal to $u$, namely $u \cdot N(u) = 0$, $N(u) \cdot N(u) = 1$. The spin-induced quadrupole tensor (2.3) thus reads

$$J^{\alpha \beta \gamma \delta} = \frac{3}{4} C_Q \left[ J_{SS} - \frac{1}{3} \delta^{\alpha \beta} J_{\perp} \right]^{\alpha \beta \gamma \delta},$$

$$\text{(3.3)}$$

since $J_{SS} = s^2 J_{NN}$. Let us assume that $N(u)$ be aligned with the $z$-axis of an orthonormal frame adapted to $u = e_0$: $N(u) = e_\hat{z} = -e_\phi$, so that

$$J^{\alpha \beta \gamma \delta} = \frac{3}{4} C_Q \left[ (e_0 \wedge e_\phi)^{\alpha \beta} (e_0 \wedge e_\phi)^{\gamma \delta} - \frac{1}{3} \delta^{\alpha \beta} \right].$$

$$\text{(3.4)}$$

To make this expression more compact we can introduce an orthonormal frame adapted to $u$, $\{e_\alpha\}$, with $e_0 = u$ and $e_2 = e_\phi$ and $e_1$ and $e_3$ spanning the $\theta =$-const. hyperplane. By using this frame one finds the following representation for $P(u)$:

$$P(u) = e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3,$$

$$\text{(3.5)}$$

and hence one can replace the various terms in (3.4) with tensor products of frame vectors. For example,

$$u^\alpha P(u)^{\beta \gamma} u^\delta = e^\alpha_0 (e^\beta_1 e^\gamma_1 + e^\beta_2 e^\gamma_2 + e^\beta_3 e^\gamma_3) e^\delta_0$$

$$= [E_{0110} + E_{0220} + E_{0330}]^{\alpha \beta \gamma \delta},$$

$$u^\alpha P(u)^{\beta \gamma} u^\gamma = [E_{0101} + E_{0202} + E_{0303}]^{\alpha \beta \gamma \delta},$$

$$u^\alpha P(u)^{\beta \gamma} u^\gamma = [E_{0101} + E_{0202} + E_{0303}]^{\alpha \beta \gamma \delta},$$

$$\text{(3.6)}$$

where we have adopted the multi-tensor product notation

$$E^{\alpha \beta \gamma \delta}_{0112} = e^\alpha_0 e^\beta_1 e^\gamma_1 e^\delta_0,$$

$$\text{(3.7)}$$
etc.

The final expression of the quadrupole tensor is the following
\[
J^{\alpha\beta\delta} = J \left( e_{\alpha \beta}^0 e_{\delta 0}^1 - 2 e_{\alpha \beta}^0 e_{\delta 2} + e_{\alpha \beta}^3 e_{\delta 3} \right),
\]
where
\[
J = \frac{1}{4} C Q \frac{m^2}{s^2},
\]
and we have used the wedge-product notation
\[
e_{\alpha \beta}^0 = e_0 e_2 - e_0 e_0,
\]
etc. The compact and elegant expression (3.8) for the quadrupole tensor makes trivial any tensor contraction. For instance, the quadrupole correction (2.12) to the mass of the body turns out to be
\[
m_J = -2J \frac{M}{r^3} \gamma_0^2 (1 + 2\nu_u^2).
\]

Under the assumptions of equatorial motion and spin vector aligned with the z-axis the MPD equations imply that the signed spin magnitude \( s \) is a constant of motion (see e.g., [21]). Therefore, we introduce the dimensionless spin parameter
\[
\hat{s} = \frac{s}{m_0 M},
\]
which we will take as a smallness indicator. Hereafter, all spin-dependent quantities are then understood to be evaluated up to the order \( O(\hat{s}^3) \).

1. Frequencies \( \zeta \) and \( \zeta_u \)

The solutions for the frequencies \( \zeta \) and \( \zeta_u \) are
\[
M \zeta = u_0^{3/2} \left[ 1 - \frac{3}{2} u_0 \hat{s} \right] + \frac{3}{4} u_0^2 \left( \frac{7}{2} u_0 + C Q (1 - 2u_0) \right) \hat{s}^2 + O(\hat{s}^3),
\]
\[
M \zeta_u = u_0^{3/2} \left[ 1 - \frac{3}{2} u_0 \hat{s} \right] + \frac{3}{4} u_0^2 \left( -\frac{1}{2} u_0 + C Q (1 + 2u_0) \right) \hat{s}^2 + O(\hat{s}^3),
\]
so that \( M (\zeta_u - \zeta) = 3(C Q - 1) u_0^{3/2} \hat{s}^2 + O(\hat{s}^3) \), where we have used the dimensionless (inverse) radial variable
\[
u_0 = \frac{M}{r_0},
\]
Both \( M \zeta \) and \( M \zeta_u \) correspond to spin and spin-square modifications of the circular geodesic (Keplerian) value \( M \zeta_K = u_0^{3/2} \).

It is useful to introduce the dimensionless frequency variable \( y = (M \zeta)^{2/3} \), which to second order in spin reads
\[
y = u_0 \left( 1 - u_0^{3/2} \hat{s} + \frac{1}{2} u_0^3 \hat{s}^2 \right) + \frac{1}{2} u_0^3 \left[ 1 + (C Q - 1)(1 - 2u_0) \right] \hat{s}^2 + O(\hat{s}^3),
\]
with inverse
\[
u_0 = y \left( 1 + y^{3/2} \hat{s} - \frac{1}{2} y^2 [1 - 4y + (C Q - 1)(1 - 2y)] \hat{s}^2 \right) + O(\hat{s}^3).
\]

2. Normalization factors $\Gamma_0$ and $\Gamma_u$

The normalization factors $\Gamma$ and $\Gamma_u$ are given by

\[
\Gamma = \frac{1}{\sqrt{1-3u_0}} - \frac{3u_0^{5/2}}{2(1-3u_0)^{3/2}} \delta + \frac{3u_0^3}{4(1-3u_0)^{3/2}} [C_Q(1-2u_0)] \\
+ \frac{1}{2} \left[ \frac{u_0}{1-3u_0} 10 \right] \delta^2 + O(\delta^3),
\]

\[
\Gamma_u = \frac{1}{\sqrt{1-3u_0}} - \frac{3u_0^{5/2}}{2(1-3u_0)^{3/2}} \delta + \frac{3u_0^3}{4(1-3u_0)^{3/2}} [C_Q(1+2u_0)] \\
+ \frac{1}{2} \left[ \frac{u_0}{1-3u_0} 2 + \frac{3u_0}{1-3u_0} \right] \delta^2 + O(\delta^3).
\]

(3.23)

so that $\Gamma - \Gamma_u = -3(C_Q-1)u_0^4 \delta^2 / (1-3u_0)^{3/2} + O(\delta^3)$.

The redshift variable $z_1^{(0)} = \Gamma^{-1}$ as a function of $y$ is then given by

\[
z_1^{(0)}(y) = \sqrt{1-3y} - \frac{3y^4}{2\sqrt{1-3y}} \delta^2 + O(\delta^3) \\
= 1 - \frac{3}{2} y - \frac{9}{8} y^2 - \frac{27}{16} y^3 - \frac{405}{128} y^4 \\
- \frac{1701}{256} y^5 - \frac{15309}{1024} y^6 + O(y^7) \\
+ \left( \frac{3}{2} y^4 - \frac{9}{4} y^5 - \frac{81}{16} y^6 + O(y^7) \right) \delta^2 + O(\delta^3).
\]

(3.24)

Furthermore, the quadrupole correction (3.17) to the mass of the body turns out to be

\[
m_J = -m_0 C_Q \frac{u_0^3}{2(1-3u_0)} \delta^2.
\]

(3.25)

3. Conserved energy and angular momentum

The conserved energy and angular momentum (2.13) as functions of the frequency variable $y$ are given by

\[
E = \frac{1-2y}{\sqrt{1-3y}} - \frac{y^{5/2}}{(1-3y)^{1/2}} \delta + \frac{y^3[(1-3y)(1-4y) + (C_Q-1)(1-2y)]}{2(1-3y)^{3/2}} \delta^2 \\
+ O(\delta^3),
\]

\[
J = \frac{1}{\sqrt{y(1-3y)}} + \frac{1-4y}{\sqrt{1-3y}} \delta \\
+ \frac{y^{3/2}[(1-3y)(2-7y) + (C_Q-1)(2-5y)]}{2(1-3y)^{3/2}} \delta^2 \\
+ O(\delta^3).
\]

(3.26)

IV. ENERGY MOMENTUM TENSOR

Following Ref. [13], the energy momentum tensor of a quadrupolar particle is given by

\[
T^{\alpha\beta} = \int dt \frac{1}{\sqrt{-g}} T^{\alpha\beta},
\]

(4.1)

where

\[
T^{\alpha\beta} = \left( U(\alpha P^\beta) + \frac{1}{3} R_{\delta\epsilon\gamma}(\alpha J^\beta)\delta^\gamma \right) \delta^{(4)} \\
- \nabla_\gamma \left( S^{\gamma(\alpha U^\beta)} \delta^{(4)} \right) \\
- \frac{2}{3} \nabla_\delta \nabla_\gamma \left( J^{(\alpha\beta)} \delta^{(4)} \right).
\]

(4.2)

Here $\delta^{(4)}$ denotes the 4-dimensional delta function centered on the particle’s worldline, i.e.,

\[
\delta^{(4)} = \delta^{(4)}(x^\alpha - x^\alpha(t)) \\
= \delta(t - \Gamma t) \delta^{(3)}(x^3 - x^3(t)) \\
= \frac{1}{\Gamma} \delta \left( \tau - t \right) \delta^{(3)}(x^3 - x^3(t)),
\]

(4.3)

where

\[
\delta^{(3)}(x^3 - x^3(t)) = \delta(r - r_0) \delta(\theta - \pi/2) \delta(\phi - \zeta t) \equiv \delta^{(3)}.
\]

(4.4)

Integration over $\tau$ then yields

\[
T^{\alpha\beta} = \frac{1}{\sqrt{-g}} \frac{1}{\Gamma} \left( m U^{(\alpha u^\beta)} + \frac{1}{3} R_{\gamma\delta\epsilon}(\alpha J^\beta)\delta^\gamma \right) \delta^{(3)} \\
- \frac{1}{\sqrt{-g}} \frac{1}{\Gamma} S^{\gamma(\alpha U^\beta)} \delta^{(3)} \\
- \frac{2}{3} \frac{1}{\sqrt{-g}} \frac{1}{\Gamma} \nabla_\delta \nabla_\gamma \left( J^{(\alpha\beta)} \delta^{(4)} \right).
\]

(4.5)

The energy momentum tensor thus results in the sum of three pieces

\[
T_{\mu\nu} = T_{\mu\nu}^0 + \delta T_{\mu\nu}^1 + \delta^2 T_{\mu\nu}^2,
\]

(4.6)

which are listed below. We use the following notation for the first derivatives of delta functions

\[
\delta^{(3)} = \delta'(t - t_0) \delta(\theta - \pi/2) \delta(\phi - \zeta t),
\]

\[
\delta^{(3)} = \delta(r - r_0) \delta'(\theta - \pi/2) \delta(\phi - \zeta t),
\]

\[
\delta^{(3)} = \delta(r - r_0) \delta(\theta - \pi/2) \delta'(\phi - \zeta t),
\]

(4.7)

and similarly for the second derivatives.

1. The $\delta^0$ term is given by

\[
T_{\mu\nu}^0 = m_0 u_0 \begin{pmatrix} \frac{(1-2u_0)^2 u_0}{M^2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{pmatrix}
\]

(4.8)
Here, we identify the tensor which is multiplied by $\delta^{(3)}$, through the prefactor $\frac{m_0 u_0}{\sqrt{1 - u_0^2}}$ and its nonzero components: $tt$, $t\phi$ and $\phi\phi$. This notation is used in Table I.

2. The $\dot{s}^1$ term is given by

$$ T_{\dot{\mu} \dot{\nu}} = X_{\mu \nu} \delta^{(3)} + X_{\mu \nu} \delta^{(3)} + X_{\dot{\mu} \dot{\nu}} \delta^{(3)}, $$

(4.9)

where the nonvanishing components of the tensors $X_{\mu \nu}$, $X_{\mu \nu}$ and $X_{\dot{\mu} \dot{\nu}}$ are listed in Table I.

3. The $\dot{s}^2$ term is given by

$$ T_{\dot{\mu} \dot{\nu}} = T_{\dot{\mu} \dot{\nu}}^{\dot{\delta}^2 C_{0}} + C_{Q} T_{\dot{\mu} \dot{\nu}}^{\dot{\delta}^2 C_{1}}, $$

(4.10)

with

$$ T_{\dot{\mu} \dot{\nu}}^{\dot{\delta}^2 C_{0}} = Y_{\mu \nu} \delta^{(3)} + Y_{\mu \nu} \delta^{(3)} + Y_{\dot{\mu} \dot{\nu}} \delta^{(3)}, $$

(4.11)

and

$$ T_{\dot{\mu} \dot{\nu}}^{\dot{\delta}^2 C_{1}} = Z_{\mu \nu} \delta^{(3)} + Z_{\mu \nu} \delta^{(3)} + Z_{\dot{\mu} \dot{\nu}} \delta^{(3)}. $$

(4.12)

The nonvanishing components of the various tensors are listed in Table I.

V. FIRST-ORDER METRIC PERTURBATIONS AND DETWEILER’S REDSHIFT INVARIANT $z_1$

Let us consider now an extended body as above still moving along an accelerated equatorial circular orbit with spin vector aligned with the $z$-axis according to the MPD model, but in a perturbed Schwarzschild spacetime. We are interested in computing Detweiler’s redshift invariant

$$ z_1 = \sqrt{1 - 2u_0 - \frac{y^3}{u_0^2} - Q_{\dot{h}_{kk}}}, $$

(5.1)

to first order in the mass ratio $q \equiv m_0/M \ll 1$, where $h_{kk}^{\dot{R}} = h_{aa}^{\dot{R}} k^a k^b$ is the regularized value of the double contraction of the metric perturbation $h_{\alpha\beta}(x^\mu)$ induced by the extended body with the helical Killing vector $k = \partial_t + \zeta \partial_\phi$. Therefore, we need $h_{kk}^{\dot{R}}$ to second order in spin

$$ h_{kk}^{\dot{R}} = h_{kk}^{\dot{R}(0)}(y) + \dot{h}_{kk}^{\dot{R}}(y) + \dot{s}^2 h_{kk}^{\dot{R}}(y), $$

(5.2)

(hereafter, we remove the label R for simplicity) as well as the perturbed relation between the variables $u_0$ and $y$

$$ u_0 = y \left[ 1 + y^3 \frac{\dot{s}}{s} - \frac{1}{2} y^2 [1 - 4y + (C_Q - 1)(1 - 2y)] \dot{s}^2 \right] $$

(5.3)

+ $q [ f_{0}(y) + \dot{s} f_{s}(y) + \dot{s}^2 f_{ss}(y) ]$, where the functions $f_{0}(y)$, $f_{s}(y)$ and $f_{ss}(y)$ are determined by solving the MPD equations in the perturbed Schwarzschild spacetime. Inserting these relations in Eq. (5.1) and expanding to first order in $\dot{s}$ and to second order in $\dot{s}$ then gives

$$ z_1(y) = z_1^{(0)}(y) + q \left( z_1^{(1)}(y) + \dot{z}_1^{(1)}(y) + \dot{s} z_1^{(1)}(y) + \dot{s}^2 z_1^{(1)}(y) \right), $$

(5.4)

where the unperturbed value $z_1^{(0)}(y)$ is given by Eq. (5.2) and the first-order self-force (ISF) contributions are

$$ z_1^{(1)}(y) = \frac{-1}{2\sqrt{1 - 3y}} h_{kk}(0)(y), $$

$$ z_1^{(1)}(y) = \frac{-1}{2\sqrt{1 - 3y}} \left[ \frac{3y^4}{2(1 - 3y)} h_{kk}(0)(y) \right], $$

$$ z_1^{(1)}(y) = \frac{-1}{2\sqrt{1 - 3y}} \left[ \frac{6y^3}{3(1 - 3y)} h_{kk}(0)(y) \right] $$

+ $6y^3/2 f_{s}(y) + h_{kk} s(y) \right]. $$

(5.5)

Therefore, only the unknown functions $f_{0}(y)$ and $f_{s}(y)$ entering the relation (5.3) between $u_0$ and $y$ are needed. They have been already determined in Ref. [69],

$$ f_{0}(y) = \frac{1}{6y} M \{ \partial_t h_{kk}(0) \}, $$

$$ f_{s}(y) = 2y^3/2 f_{0}(y) - \frac{2}{3y^1/2} M \Omega_{1s}(y), $$

(5.6)

where $M \Omega_{1s} = u_0^{3/2} \Omega_{1s}(u_0)$ evaluated at $u_0 = y$, with $\Omega_{1s}$ given by Eq. (B11) of Ref. [69], i.e.,
TABLE I: List of nonvanishing components (modulo symmetries) of the various symmetric source tensors

| Tensor   | prefactor component | component | component | component |
|----------|---------------------|-----------|-----------|-----------|
| \(X_{\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}}{(1-3u_0)^{1/2}}\) | \(tt\) | \((1-2u_0)(36u_0^2-23u_0+4)u_0^2\) | \((18u_0^2-14u_0+3)u_0^3/2\) | \((27u_0^2-16u_0+2)\) |
| \(X_{\tau\nu}\) | \(-m_0\frac{u_{\mu\nu}^{3/2}(1-2u_0)}{(1-3u_0)^{1/2}}\) | \(tt\) | \((1-2u_0)u_0^2\) | \((1-u_0)u_0^{1/2}\) | \(M\) |
| \(X_{\phi\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}(1-3u_0)^{1/2}}{2M(1-2u_0)}\) | \(tr\) | \(u_0^{1/2}(1-2u_0)\) | \(1\) |
| \(Y_{\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}}{2(1-3u_0)^{1/2}}\) | \(tt\) | \((1-2u_0)^2u_0^2(27u_0^2-50u_0+8)\) | \((56u_0^2-60u_0^2+7u_0+15u_0^2)\) | \((123u_0^2-122u_0^2+40u_0^2)=4\) |
| \(Y_{\tau\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}(1-2u_0)^{1/2}}{2(1-3u_0)^{1/2}}\) | \(tt\) | \(3u_0^2(1-2u_0)^2\) | \((3(7u_0-3)u_0^3)\) | \(3M(1-2u_0)\) |
| \(Y_{\phi\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}}{4M(1-3u_0)^{1/2}}\) | \(tr\) | \(u_0^{3/2}\) | \(\frac{1-4u_0}{2u_0}\) |
| \(Z_{\tau\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}(1-2u_0)}{8(1-3u_0)^{1/2}}\) | \(tt\) | \(u_0(1-2u_0)^2\) | \(u_0^{1/2}(1-2u_0)M\) | \(M^2\) |
| \(Z\phi\mu\nu\) | \(-m_0\frac{u_{\mu\nu}^{3/2}(1-2u_0)^{1/2}}{6(1-3u_0)^{1/2}}\) | \(tt\) | \(u_0(1-2u_0)^2\) | \(-\frac{1-2u_0}{u_0}\) | \(M\) |
| \(Z_{\phi\mu\nu}\) | \(-m_0\frac{u_{\mu\nu}^{3/2}(3-4u_0)(1-3u_0)}{4M^2(1-3u_0)^{1/2}}\) | \(tt\) | \(u_0^{1/2}\) | \(\frac{1}{1-2u_0}\) |
| \(Z_{\phi\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}(1-3u_0)^{1/2}}{3M}\) | \(tr\) | \(u_0^{1/2}\) | \(\frac{1}{1-2u_0}\) |
| \(Z_{\mu\nu}\) | \(m_0\frac{u_{\mu\nu}^{3/2}}{3(1-3u_0)^{1/2}}\) | \(tt\) | \(\frac{(468u_0^2-432u_0^2+125u_0-12)u_0(1-2u_0)}{4(1-3u_0)^{1/2}}\) | \(\frac{(72u_0^2-54u_0^2+13)(1-2u_0)u_0^{1/2}}{4M(1-3u_0)}\) | \(18u_0^2-63u_0+22\) |

\[\Omega_{15} = -\frac{u_0^{3/2}}{4(1-2u_0)}h_{kk}^{(0)} + \frac{5}{4}(3-4u_0(1-3u_0))h_{kk}^{(0)} - \frac{u_0^3}{2M(1-2u_0)^2}h_{k\phi}^{(0)} - \frac{(1-3u_0)(2-5u_0+4u_0^2)u_0^{5/2}}{4M^2(1-2u_0)^2}\]

\[\frac{M^2}{4}u_0^{3/2}[\partial_r h_{kk}^{(0)}]_{r=M/u_0} = \frac{M}{4u_0}(1-3u_0)[\partial_r h_{kk}^{(0)}]_{r=M/u_0} - \frac{M}{4u_0}(1-3u_0)[\partial_r h_{kk}^{(0)}]_{r=M/u_0}\]

\[\frac{1}{4}(1-3u_0)[\partial_r h_{kk}^{(0)}]_{r=M/u_0} + \frac{M}{4u_0}u_0^{1/2}[\partial_r h_{kk}^{(0)}]_{r=M/u_0} - \frac{M}{4u_0}u_0^{1/2}[\partial_r h_{kk}^{(0)}]_{r=M/u_0}\]

\[\frac{M}{4}(1-2u_0)(1-3u_0)u_0^{-1/2}[\partial_r h_{kk}^{(0)}]_{r=M/u_0} + (1-3u_0)[\partial_r h_{kk}^{(0)}]_{r=M/u_0}\]

\[\frac{(1-3u_0)(2-3u_0)u_0^{3/2}}{4M(1-2u_0)}[\partial_r h_{kk}^{(0)}]_{r=M/u_0} \cdot (5.7)\]
The second order in spin 1SF contribution to the redshift finally reads

\[
\begin{align*}
\tilde{z}_1^{(1)2}(y) &= -\frac{3y^4}{4(1-3y)^{3/2}}h_{kk}(0)(y) \\
&+ \frac{y(4y-1)(C_Q-1)}{4\sqrt{1-3y}} M[\partial_r h_{kk}(0)](y) \\
&+ \frac{2y^{3/2}}{\sqrt{1-3y}} \Omega_{1x}(y) - \frac{1}{2\sqrt{1-3y}} h_{kk}(y) .
\end{align*}
\]

(5.8)

Its determination requires the separate GSF computations of \( h_{kk}(0) \), \( \partial_r h_{kk}(0) \), \( \Omega_{1x} \) and \( h_{kk}(y) \). Each of such terms is gauge-dependent and only their combination \( z_1^{(1)2} \) leads to the gauge-invariant quantity \( z_1^{(1)2} \). We use here the Teukolsky formalism in a radiation gauge and the related CCK procedure to reconstruct the radiative part of the metric perturbation. This method is well established in the literature (see, e.g., Ref. [88]), so we will skip all unnecessary details. The nonradiative part of the metric is, instead, evaluated by using the RWZ approach as in our previous work [69].

We refer to that work and references therein for a detailed account of the non-spinning terms. Ref. [69] also contains the necessary information to determine the linear-in-spin 1SF correction to the frequency \( \Omega_{1x} \). Therefore, we will provide below some details on the computation of the quadratic-in-spin term \( h_{kk}(y) \).

### A. Computing \( h_{kk}(y) \)

The radiation-gauge metric perturbation approach gives a PN expansion of the radiative \( \ell \)-modes (\( \ell \geq 2 \)), \( h_{kk}^{(\ell)\text{rad}} \), of the retarded value of \( h_{kk} \). These PN-type solutions provides information on the large-\( \ell \) behavior of the modes, and should be combined with MST-type solutions (for certain low values of \( \ell = 2, 3, \ldots \)) in order to reach a high-PN level of accuracy of the final result. The non-radiative part of the perturbation (\( \ell = 0, 1 \)) must be computed separately, and corresponds to mass and angular momentum perturbations of the background, up to gauge modes. The relevant components of the exterior (+) and interior (−) metric perturbations (evaluated at \( \theta = \pi/2 \)) are found to be

\[
q_{\ell\ell}^{(\text{nonrad})} = \frac{\delta M}{r} , \quad q_{\ell\phi}^{(\text{nonrad})} = -\frac{\delta J}{r} ,
\]

(5.9)

and

\[
q_{\ell\ell}^{(\text{nonrad})} = \frac{2\delta M w_0 f}{M_0} \left[ 1 - \frac{u_0^{3/2}}{f_0} (2 - 3u_0) \hat{s}(1 + \mathcal{B}_0 \hat{s}) \right] ,
\]

\[
q_{\ell\phi}^{(\text{nonrad})} = -\frac{2\delta J w_0^{1/2}}{M_0} \left[ 1 - \frac{3}{2} u_0^{1/2} (1 - u_0) \hat{s}(1 + \mathcal{D}_0 \hat{s}) \right] ,
\]

(5.10)

respectively (see Appendix A for details). Here \( \delta M \equiv E \) and \( \delta J \equiv J \) are given by the conserved energy and angular momentum \([3, 20]\) of the extended body, respectively, whereas the coefficients \( \mathcal{B}_0 \) and \( \mathcal{D}_0 \) are given by Eqs. \([A4]\) and \([AM]\), respectively.

The full retarded solution is then

\[
h_{kk}^{\text{R}} = \sum_{\ell=2}^{\infty} h_{kk}^{(\ell)\text{rad}} + h_{kk}^{(\text{nonrad})} = \sum_{\ell=0}^{\infty} h_{kk}^{\ell} ,
\]

(5.11)

which needs to be suitably regularized, being divergent at the location of the source. This is done standardly by removing the divergent large-\( \ell \) behavior of the radiative modes as well as by taking the average between the two radial limits \( r \rightarrow r_0^- \) (left) and \( r \rightarrow r_0^+ \) (right), leading to the following regularized value \( \bar{h}_{kk} \) of \( h_{kk} \)

\[
\bar{h}_{kk}^{\ell} = \sum_{\ell} \left[ (h_{kk}^{\ell}) - B(y; \ell) \right] ,
\]

(5.12)

where

\[
\langle h_{kk}^{\ell} \rangle = \frac{1}{2} (h_{kk}^{\ell}(+) + h_{kk}^{\ell}(-)) ,
\]

(5.13)

and the “subtraction term” \( B(y; \ell) \) is of the type

\[
B(y; \ell) = \ell (\ell + 1) b_0(y) + b_1(y) ,
\]

(5.14)

with \( b_0(y) = O(s^2) \). The subtraction terms for \( h_{kk}(0) \) and \( h_{kk}(\hat{s}) \) are given by Eqs. \((5.12)-(5.13)\) of Ref. [69], where a slight different notation is used (\( B(0) \) and \( \bar{B} \) stand for \( b_0(0) \) and \( b_1(y) \), respectively). The subtraction term for \( h_{kk}(y) \) is given by Eq. \((5.14)\) above with

\[
\begin{align*}
\bar{b}_0^{\ell}(y) &= \frac{1}{2} C_Q y^3 - \frac{27}{16} C_Q y^4 + \frac{15}{128} C_Q y^5 + \frac{545}{2048} C_Q y^6 \\
&+ \frac{19965}{32768} C_Q y^7 + \frac{368847}{262144} C_Q y^8 + \frac{687541}{2097152} C_Q y^9 \\
&+ O(y^{10}) ,
\end{align*}
\]

\[
\begin{align*}
\bar{b}_1^{\ell}(y) &= -\frac{1}{2} C_Q y^3 + \frac{51}{64} C_Q y^4 + \left( \frac{23}{4} - \frac{765}{256} C_Q \right) y^5 \\
&+ \left( \frac{6205}{8192} C_Q + \frac{9}{8} \right) y^6 + \left( \frac{31659}{16384} C_Q + \frac{1131}{512} \right) y^7 \\
&+ \left( \frac{2657}{512} + \frac{5229453}{1048576} C_Q \right) y^8 \\
&+ \left( \frac{54578889}{4194304} C_Q + \frac{938349}{65536} \right) y^9 + O(y^{10}) ,
\end{align*}
\]

(5.15)

The final result for the regularized value of the quadratic-in-spin term \( \bar{h}_{kk}^{\ell} \) (including the MST solutions for \( l = 2, 3, 4 \)) is given in Table I together with the corresponding expressions for the other quantities needed to compute the redshift invariant (which require the MST solutions up to \( l = 6 \)).

### B. Final result for \( \tilde{z}_1^{(1)2}(y) \)

Individual SF computations of the various terms give
the redshift invariant \( h_{kk(0)}^R \) is
\[
h_{kk(0)}^R(y) = -2y + 5y^2 + \frac{5}{4}y^3 + \left( \frac{1261}{24} + \frac{41}{16} \pi^2 \right) y^4 + O(y^5),
\]
and
\[
M[\partial_r h_{kk(0)}^R(y)] = y^2 - \frac{13}{2}y^3 + \frac{75}{8}y^4 + \left( -\frac{585}{16} + \frac{87}{32} \pi^2 \right) y^5 + O(y^6),
\]
so that
\[
\Omega_{12}^R(y) = -\frac{13}{4}y^{5/2} + \frac{45}{8}y^{7/2} + \frac{209}{32}y^{9/2} + O(y^{11/2}),
\]
and
\[
h_{kk SS}^R(y) = -\frac{1}{2}C_Q y^3 + \left( -\frac{7}{4}C_Q - 1 \right) y^4 + \left( \frac{213}{16}C_Q - \frac{7}{2} \right) y^5
\nonumber
+ \left[ \frac{117}{8} + \left( \frac{6929}{96} + \frac{2641}{1024} \pi^2 \right) C_Q \right] y^6 + O(y^7),
\]

Thus, using PN Hamiltonian \( H \) for the two-body system, the redshift invariant \( z_1 \) of body 1 to linear order in spin can be calculated from
\[
z_1 = \frac{\partial H(x^1, p_1, S^1, S^1_2; m_1, m_2)}{\partial m_1},
\]

which is proportional to \( C_Q \). Therefore, the ratio between \( z_1^{(1)2} \) and its limiting value in the black hole case \( (C_Q = 1) \) is exactly equal to the polarizability parameter, allowing to discriminate the nature of the extended body (either a black hole or a neutron star) and its equation of state.

VI. THE PN EXPECTATION

Using a PN Hamiltonian \( H \) for the two-body system, the redshift invariant \( z_1 \) of body 1 to linear order in spin can be calculated from
\[
z_1 = \frac{\partial H(x^1, p_1, S^1, S^1_2; m_1, m_2)}{\partial m_1},
\]

which follows from the “first law” of two-body dynamics [89]. In order to extend this formula to quadratic order in spin, one must add to the Lagrangian in Eq. (3.2) of Ref. [89] the spin-induced (SI) quadrupole interactions [53, 90],

\[
L_{SS}^{SI} \sim -\sum_{A=1}^{2} \frac{C_A(ES^2)}{2m_A} R_{\mu\nu\rho\beta} U^\mu U^\beta S(U)^\mu S(U)^\nu,
\]

where \( A = 1, 2 \) labels the two bodies of the binary, and \( U \) denotes the unit tangent vector to the center of mass world line. Now, if one takes \( C_A(ES^2) = C_A(ES^2)/m_A \) (instead of just \( C_A(ES^2) \)) as constant when varying the masses \( m_A \), then the contribution \( L_{SS}^{SI} \) is in fact irrelevant. That is, the arguments in Sec. III of Ref. [89] leading to the formula for the redshift apply unchanged. The
TABLE II: List of the regularized values of the various GSF quantities need to compute the redshift invariant.

| GSF quantity | PN expansion |
|--------------|--------------|
| \( h_{kk}^{(0)} \) | \(-2y + 5y^2 + \frac{5}{9}y^3 + (-2283 \gamma + 41 \pi^2)y^4 + (15789 900 - 2275 \pi^2 - 226 \gamma - 512 \ln(2) - 128 \ln(y))y^5 \) |
| | \( \frac{204801609}{204600} \gamma \ln(y) - 907 \ln(2) + 467 \ln(3) + 40088 \gamma + 228848029 \gamma y^6 \) |
| | \( + 2294000 \gamma^2 \gamma^2/9 + 11942523861 \gamma^2 - 3033373928985 \gamma^2 \) |
| | \( + 52177908 \gamma^4 \) |
| | \( + 11942523861 \gamma^4 - 3033373928985 \gamma^4 \) |
| | \( + 177104 \gamma^8 \) |
| | \( + 1841960 \gamma^8 \) |
| \( h_{kk}^{(1)} \) | \(-\frac{2}{7} C y^3 + \frac{1}{2} C y^2 - 1)y^6 + (\frac{200}{105} \gamma \ln(2) - 900 \gamma \ln(3) = 228848029 \gamma y^6 \) |
| \( h_{kk}^{(2)} \) | \(-\frac{1}{105} (3 - 2 \gamma) \ln(2)C y + \frac{1}{5} (3 - 2 \gamma) \ln(2)C y \) |
| | \( + \frac{1488281}{204600} \gamma \ln(2) - 900 \gamma \ln(3) = 228848029 \gamma y^6 \) |
| \( M[\partial, h_{kk}^{(0)}] \) | \( y^3 - \frac{y^2}{9} + \frac{y}{4}y + (-\frac{35}{10} + \frac{87}{2}) \gamma y^2 \) |
| | \( + \frac{204801609}{204600} \gamma \ln(y) - \frac{907}{900} \ln(2) + 467 \ln(3) + 40088 \gamma + 228848029 \gamma y^6 \) |
| | \( + \frac{204801609}{204600} \gamma \ln(y) - \frac{907}{900} \ln(2) + 467 \ln(3) + 40088 \gamma + 228848029 \gamma y^6 \) |
| | \( + \frac{204801609}{204600} \gamma \ln(y) - \frac{907}{900} \ln(2) + 467 \ln(3) + 40088 \gamma + 228848029 \gamma y^6 \) |
| \( \Omega^{H}_z \) | \(-\frac{1}{105} (3 - 2 \gamma) \ln(2)C y + \frac{1}{5} (3 - 2 \gamma) \ln(2)C y \) |

Using known results for the PN dynamics at quadratic order in spin from LO \[5, 91–94\], NLO \[90, 95–102\], and NNLO \[49, 53\], as summarized by the Hamiltonian in Eqs. (4.29)-(4.32) of Ref. \[102\] and Eqs. (3.5)-(3.6) of Ref. \[52\], it is now straightforward to compute the red-

formula for the redshift in the presence of spin-induced (SI) quadrupole interactions at quadratic order in spin hence reads

\[
\frac{\partial H(x^i, p_i, S_i^J, S_{Jz}, m_1, m_2, \tilde{C}_{1(ES^2)}, \tilde{C}_{2(ES^2)})}{\partial m_1}.
\]

(6.3)
shift invariant at the second order in spin, $z_1^{SS}$, which is relevant for the present analysis. Its expression in terms of the frequency-related variable $x = [(m_1 + m_2)\Omega]^{2/3}$ (with $\Omega = \frac{\partial H}{\partial p_\phi}$) is the following:

$$
\begin{align*}
  z_1^{SS}(x; \nu, \chi_1, \chi_2) &= \left\{ \left( \frac{1}{4} \Delta \nu - \frac{1}{2} \nu^2 + \frac{1}{4} \nu \right) C_1^{(ES^2)} \chi_1^2 + \chi_1 \chi_2 \nu^2 + \left[ \left( \frac{1}{4} \nu - \frac{1}{4} \right) \Delta - \frac{1}{4} \nu - \frac{1}{2} \nu^2 \right] C_2^{(ES^2)} \chi_2^2 \right\} x^3 \\
  &+ \left\{ \left[ \frac{17}{18} \nu^2 + \frac{4}{9} \nu \right] \Delta - \frac{4}{9} \nu - \frac{14}{9} \nu^2 + \frac{7}{9} \nu^3 \right\} \chi_1^2 \\
  &+ \left\{ \left( \frac{7}{24} \nu + \frac{5}{6} \nu^2 \right) \Delta - \frac{17}{12} \nu^2 + \frac{7}{12} \nu^3 + \frac{7}{24} \nu^4 \right\} C_1^{(ES^2)} \chi_1^2 \\
  &+ \left\{ \frac{7}{18} \nu^3 + \frac{1}{12} \nu^2 - \frac{1}{12} \Delta \nu^2 \right\} \chi_1 \chi_2 \\
  &+ \left\{ \left[ \frac{13}{18} \nu + \frac{1}{3} \nu - \frac{23}{18} \nu^2 \right] \Delta + \frac{7}{9} \nu^3 - \frac{61}{18} \nu^2 + \frac{1}{18} \nu + \frac{1}{3} \right\} C_2^{(ES^2)} \chi_2^2 \right\} x^4 \\
  &+ \left\{ \left[ \frac{23}{84} \nu - \frac{121}{27} \nu^2 + \frac{959}{216} \nu^3 \right] \Delta - \frac{23}{84} \nu - \frac{77}{54} \nu^3 + \frac{9469}{1512} \nu^2 + \frac{9563}{756} \nu^3 \right\} \chi_1^2 \\
  &+ \left\{ \left[ -\frac{224}{187} \nu - \frac{11}{144} \nu^4 - \frac{299}{504} \nu^2 + \frac{12245}{2016} \nu^3 \right] \Delta + \left[ \frac{325}{288} \nu^3 + \frac{2281}{1008} \nu^2 + \frac{187}{224} \nu^4 \right] C_1^{(ES^2)} \chi_1^2 \right\} x^5 + O(x^6), \quad (6.4)
\end{align*}
$$

with $\nu = m_1 m_2 / (m_1 + m_2)^2$ and $\Delta \equiv (m_2 - m_1) / (m_1 + m_2) = \sqrt{1 - 4\nu}$. Here we have used the spin-related quantities

$$
\chi_A = \frac{S_A}{m_A^2}, \quad (6.5)
$$

with $\chi_2 = 0$ in the Schwarzschild case, so that

$$
\chi_1 = \frac{S_1}{m_1^2} = \frac{S_1}{m_1 m_1 m_2} = \frac{1}{q} s, \quad (6.6)
$$

with $q = m_1 / m_2$, and $C_1^{(ES^2)} = 1 = C_2^{(ES^2)}$ in the black hole case (see also Ref. [104]).

The corresponding ISF expansion then reads

$$
\begin{align*}
z_1^{ISF}(y) &= y - y^2 - y^3 + \left( \frac{76}{3} - \frac{41}{32} \pi^2 \right) y^4 + O(y^5) \\
  &+ \left( -\frac{7}{3} y^{5/2} - \frac{13}{3} y^{7/2} - 23 y^{9/2} + O(y^{11/2}) \right) \chi_2 \\
  &+ \left[ C_2^{(ES^2)} y^3 + \left( \frac{17}{9} + \frac{11}{3} C_2^{(ES^2)} \right) y^4 \\
  &+ \left( \frac{832}{63} + \frac{215}{21} C_2^{(ES^2)} \right) y^5 + O(y^6) \right] \chi_2^2, \quad (6.7)
\end{align*}
$$

where we have introduced the variable $y$ such that $x = y(1 + q)^{2/3}$ with $\nu = \frac{q}{(q + 1)^2}$, reproducing known results in the black hole case $C_2^{(ES^2)} = 1$ (see, e.g., Ref. [105]).
In the test-body limit we get
\[
Z^{1\text{OSF}}_1(y) = 1 - \frac{3}{2} y - \frac{9}{8} y^2 - \frac{27}{16} y^3 - \frac{405}{128} y^4 \\
+ \left( 2 y^{5/2} + 3 y^{7/2} + \frac{27}{4} y^{9/2} \right) \chi_2 \\
+ \left[ \frac{1}{2} C_{2(ES^2)} y^3 + \left( \frac{2}{3} - \frac{7}{4} C_{2(ES^2)} \right) y^4 \\
+ \left( \frac{23}{28} - \frac{561}{112} C_{2(ES^2)} \right) y^5 \right] \chi_2^2, \tag{6.8}
\]
in agreement with the (exact) Kerr result \((\chi_2 = \hat{a}, C_{2(ES^2)} = 1)\)
\[
Z^{1\text{Kerr}}_1 = \left( 1 - 3 y' + 2 \hat{a} y'^3/2 \right)^{1/2} \bigg|_{y' = y/(1 - \hat{a} y'^3/2)^{2/3}}, \tag{6.9}
\]
namely
\[
Z^{1\text{Kerr}}_1 \approx 1 - \frac{3}{2} y + \ldots \\
+ \left( 2 y^{5/2} + 3 y^{7/2} + \frac{27}{4} y^{9/2} + \ldots \right) \hat{a} \\
+ \left( -\frac{1}{2} y^3 - \frac{13}{12} y^4 - \frac{67}{16} y^5 \right) \hat{a}^2 \\
+ O(y^{11/2}, \hat{a}^3), \tag{6.10}
\]
in its expanded form.

Let us discuss the same results in terms of the spin variable \(s\) instead of \(\chi_1\). In the test-body limit we get
\[
Z^{1\text{OSF}}_1(y) = 1 - \frac{3}{2} y - \frac{9}{8} y^2 - \frac{27}{16} y^3 - \frac{405}{128} y^4 \\
+ \left( 2 y^{5/2} + 3 y^{7/2} + \frac{27}{4} y^{9/2} \right) \chi_2 \\
+ \left[ \frac{1}{2} C_{2(ES^2)} y^3 + \left( \frac{2}{3} - \frac{7}{4} C_{2(ES^2)} \right) y^4 \\
+ \left( \frac{23}{28} - \frac{561}{112} C_{2(ES^2)} \right) y^5 \right] \chi_2^2 \\
+ \left( \frac{3}{2} y^4 - \frac{9}{4} y^5 \right) s^2, \tag{6.11}
\]
which agrees with Eq. \((6.23)\) for \(\chi_2 = 0\) and \(C_{1(ES^2)} = C_Q\).

The 1SF expansion is
\[
Z^{1\text{SF}}_1(y) = y - y^2 - y^3 + \left( \frac{76}{3} - \frac{41}{32} \pi^2 \right) y^4 + O(y^5) \\
+ \left( -\frac{7}{3} y^{5/2} - \frac{13}{3} y^{7/2} - 23 y^{9/2} + O(y^{11/2}) \right) \chi_2 \\
+ \left( y^7/2 - 3 y^9/2 \right) \hat{s} \\
+ \left[ C_{2(ES^2)} y^3 + \left( \frac{17}{9} + \frac{11}{3} C_{2(ES^2)} \right) y^4 \\
+ \left( \frac{561}{63} + \frac{215}{21} C_{2(ES^2)} \right) y^5 + O(y^6) \right] \chi_2^2 \\
+ \left( y^3 + \frac{16}{3} y^5 \right) \hat{s} \chi_2 \\
+ \left( \frac{1}{2} y^3 - \frac{1}{2} y^4 - \frac{5}{4} y^5 \right) C_{1(ES^2)} s^2, \tag{6.12}
\]
which agrees with Eq. \((5.17)\) for \(\chi_2 = 0\) and \(C_{1(ES^2)} = C_Q\).

VII. CONCLUDING REMARKS

We have studied the perturbations induced by a classical extended object endowed with both dipolar and (spin-induced) quadrupolar structure moving along an equatorial circular orbit on the Schwarzschild background, the spin vector being orthogonal to the motion plane. The metric perturbations have been obtained by using the standard Teukolsky formalism in a radiation gauge within the framework of first-order gravitational self-force. We have computed for the first time the spin-squared contribution to Detweiler’s redshift invariant at a high-PN order, checking also the agreement of the first terms of the expansion with the corresponding PN expectation. For the purpose of the latter, we utilize that Detweiler’s redshift invariant has a counterpart in the PN Hamiltonian formalism: the PN redshift follows from the “first law” of two-body dynamics, which we extended from the linear-in-spin level \([59]\) to quadratic level (including spin-induced quadrupole interactions).

The transcription of this new result into other formalisms like the EOB one requires some care, since there is the choice, dictated by the Kerr solution, to include them (eventually in a resummed form) in the orbital sector of the Hamiltonian (as in Ref. \([106, 107]\) and/or in an external spin-squared Hamiltonian (as in Ref. \([108]\)). Following the method in Refs. \([47, 109, 110]\) which utilize self-force results to derive new PN results (making crucial use of the mass-ratio dependence of the scattering angle), it is also conceivable that an extension of the results in the present paper to eccentric orbits could be sufficient to derive the NNNLO spin-squared conservative PN Hamiltonian at 5PN for aligned spins (see Ref. \([111]\) for partial results), complementing efforts to complete the knowledge of the 5PN order in the nonspinning
mass and angular momentum to the background space-time. These problems will be discussed elsewhere.

Acknowledgments

DB thanks T. Damour for many useful discussions.

Appendix A: Completion of the metric: the non-radiative modes

The completion of the metric with the addition of the gauge modes is solved here by studying the perturbation equations corresponding to the lowest multipoles \( l = 0, 1 \) in a spherical harmonic decomposition of the metric, following the original approach of Zerilli. The derivation of these equations and the associated solutions (listed below) closely follow what has been done recently case of a spinning particle, Ref. \[69\]. We distinguish the case of the monopole, \( l = 0 \) and the dipole \( l = 1 \) (with both its even and odd parts), corresponding to the addition of mass and angular momentum to the background space-time.

1. The monopole mode \( l = 0 \)

The nonvanishing metric components are

\[
q_{tt} = \frac{r f}{r_0 f_0} \left( 1 - \frac{2r_0 - 3M}{r_0 f_0} \right) \frac{M \zeta K \hat{s}(1 + B_0 \hat{s})}{r_0 f_0} \frac{H(r_0 - r) + H(r - r_0)}{\delta M},
\]

\[
q_{rr} = \frac{r f}{r_0 f_0} \frac{2 \delta M}{r_0 f_0} \frac{H(r - r_0)}{H(r - r_0) + H(r_0 - r)} + B_0 \delta \hat{M} \hat{s} \delta (r - r_0),
\]

and the perturbation functions \( H_0 \) and \( H_2 \) satisfy the following equations

\[
\frac{dH_2}{dr} + \frac{H_2}{rf} = A_0 \delta (r - r_0) + A_1 \delta' (r - r_0) + A_2 \delta'' (r - r_0),
\]

\[
\frac{dH_0}{dr} + \frac{H_0}{rf} = B_0 \delta (r - r_0),
\]

with spin-dependent coefficients \( A_0, A_1, A_2 \) and \( B_0 \) listed in Table III. The solution for the monopole perturbation is thus found to be

\[
q_{tt} = \frac{2 \delta M}{r f} \left( 1 - \frac{2r_0 - 3M}{r_0 f_0} \right) \frac{M \zeta K \hat{s}(1 + B_0 \hat{s})}{r_0 f_0} \frac{H(r_0 - r) + H(r - r_0)}{\delta M},
\]

\[
q_{rr} = \frac{2 \delta M}{r f} \frac{H(r - r_0)}{H(r - r_0) + H(r_0 - r)} + B_0 \delta \hat{M} \hat{s} \delta (r - r_0),
\]

2. The dipole mode \( l = 1 \) (odd)

The only nonvanishing metric component is

\[
q_{t \phi} = -\frac{\sqrt{3}}{4 \pi} \frac{h_0^{(\text{odd})}}{r_0} \sin^2 \theta,
\]

where the perturbation function \( h_0^{(\text{odd})} \) satisfies the equation

\[
\frac{dh_0}{dr} - \frac{2}{r^2} h_0 = C_0 \delta (r - r_0) + C_1 \delta' (r - r_0) + C_2 \delta'' (r - r_0),
\]

where the coefficients \( C_0, C_1 \) and \( C_2 \) are listed in Table III. The solution for the odd dipole perturbation is thus found to be

\[
q_{t \phi} = \left\{ -2 \frac{\delta J}{r} \left( 1 - \frac{3}{2} (r_0 - M) \zeta K \hat{s}(1 + D_0 \hat{s}) \right) \frac{H(r_0 - r) + H(r - r_0)}{\delta J \hat{s} \delta (r - r_0)} \right\} \sin^2 \theta.
\]
where
\[ D_0 = u_0^{1/2} - 2u_0(1 - 2u_0)C_Q + 9u_0 - 13u_0^2 - 2(1 - u_0) \]
\[ D_1 = u_0^2(1 - 2u_0)C_Q, \tag{A9} \]
and \( \delta J \) is given by the conserved Killing angular momentum \([3.20]\) of the extended body.

### 3. Nonradiative part of \( h_{kk} \)

The unsubtracted contribution to \( h_{kk}^{(\text{nonrad})} \) at the location of the extended body due to nonradiative multipoles is then given by
\[
h_{kk}^{(\text{nonrad})} = h_{tt}^{(+)\ell=0.1} + 2\zeta h_{t\phi}^{(+)\ell=0.1} = 2y(1 - 4y)\sqrt{1 - 3y}\hat{s} + y^3(1 - 3y)(3y^2 + y - 1) + (C_Q - 1)(24y^3 - 18y^2 + 6y - 1)\hat{s}^2, \tag{A10} \]
to second order in \( \hat{s} \), where we have used the unperturbed relation \([3.22]\) to replace \( u_0 \) with \( y \). The contribution \( h_{kk}^{(\text{nonrad})} \) from the interior metric perturbation is instead given by
\[
h_{kk}^{(\text{nonrad})} = h_{tt}^{(+)\ell=0.1} + 2\zeta h_{t\phi}^{(+)\ell=0.1} = 2y(1 - 4y)\sqrt{1 - 3y}\hat{s} + y^3(1 - 3y)(3y^2 + y - 1) + (C_Q - 1)(12y^2 - 18y + 5)\hat{s}^2. \tag{A11} \]
The final result for the needed left-right average is then
\[
\langle h_{kk}^{(\text{nonrad})} \rangle = \frac{1}{2} \left( h_{kk}^{(\text{nonrad})} + h_{kk}^{(\text{nonrad})} \right), \tag{A12} \]
with value
\[
\langle h_{kk}^{(\text{nonrad})} \rangle = 2y(1 - 4y)\sqrt{1 - 3y}\hat{s} - y^3(1 - 3y)(4y - 4 - 1) + (C_Q - 1)(12y^2 - 18y + 5)\hat{s}^2. \tag{A13} \]
TABLE III: List of the coefficients entering the source terms of the perturbation equations for the low multipole.

| Coefficient | Expression |
|-------------|------------|
| $A_0$ | $4 \sqrt{\pi m_0} m_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $A_1$ | $-4 \sqrt{\pi m_0} m_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $A_2$ | $2 \pi m_0 M MC_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $B_0$ | $4 \sqrt{\pi m_0} m_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $C_0$ | $-4 \sqrt{\pi m_0} m_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $C_1$ | $2 \pi m_0 M MC_0 (1 - 3 u_0^2) u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
| $C_2$ | $-2 \sqrt{\pi m_0} M MC_0 u_0^2 \left[ 1 - \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} \right] + \frac{u_0^2}{3} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)} + \frac{2(1 - 3 u_0^2)(3 u_0^2 - 4 u_0^4)}{4(1 - 3 u_0^2)(1 - u_0^2)}$ |
proach to the binary inspiral problem,” Gen. Rel. Grav. 46, 1726 (2014). doi:10.1007/s10714-014-1726-y

[35] C. Cheung, I. Z. Rothstein and M. P. Solon, “From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 121, no. 25, 251101 (2018) doi:10.1103/PhysRevLett.121.251101

[36] S. L. Detweiler, “A consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry,” Phys. Rev. D 77, 124026 (2008) doi:10.1103/PhysRevD.77.124026

[37] L. Baracco, “Gravitational self-force in extreme mass-ratio inspirals,” Class. Quant. Grav. 26, 213001 (2009) doi:10.1088/0264-9381/26/21/213001

[38] D. Bini and T. Damour, “Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation,” Phys. Rev. D 87, no. 12, 121501 (2013) doi:10.1103/PhysRevD.87.121501

[39] A. Buonanno and T. Damour, “Effective one-body approach to general relativistic two-body dynamics,” Phys. Rev. D 59, 084006 (1999) doi:10.1103/PhysRevD.59.084006

[40] A. Buonanno and T. Damour, “Transition from inspiral to plunge in binary black hole coalescences,” Phys. Rev. D 62, 064015 (2000) doi:10.1103/PhysRevD.62.064015

[41] T. Damour, P. Jaranowski and G. Schäfer, “Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems.” Phys. Rev. D 89, no. 6, 064058 (2014) doi:10.1103/PhysRevD.89.064058

[42] T. Damour, P. Jaranowski and G. Schäfer, “Fourth post-Newtonian effective one-body dynamics,” Phys. Rev. D 91, no. 8, 084024 (2015) doi:10.1103/PhysRevD.91.084024

[43] L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat, “Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order,” Phys. Rev. D 95, no. 4, 044026 (2017) doi:10.1103/PhysRevD.95.044026

[44] L. Bernard, L. Blanchet, G. Faye and T. Marchand, “Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order,” Phys. Rev. D 97, no. 4, 044037 (2018) doi:10.1103/PhysRevD.97.044037

[45] S. Foffa, R. A. Porto, I. Rothstein and R. Sturani, “Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach II: Renormalized Lagrangian,” Phys. Rev. D 100, no. 2, 024048 (2019) doi:10.1103/PhysRevD.100.024048

[46] J. Blümlein, A. Maier, P. Marquard and G. Schäfer, “Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach,” arXiv:2003.01692 [gr-qc].

[47] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff and J. Vines, “Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios,” arXiv:2003.11391 [gr-qc].

[48] M. Levi, A. J. Mcleod and M. Von Hippel, “N^3LO gravitational spin-orbit coupling at order C^4,” arXiv:2003.02827 [hep-th].

[49] J. Hartung and J. Steinhoff, “Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries,” Annalen Phys. 523, 919 (2011) doi:10.1002/andp.201100163

[50] M. Levi, “Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order,” Phys. Rev. D 85, 064043 (2012) doi:10.1103/PhysRevD.85.064043

[51] J. Hartung, J. Steinhoff and G. Schäfer, “Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians,” Annalen Phys. 525, 359 (2013) doi:10.1002/andp.201200271

[52] M. Levi and J. Steinhoff, “Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals,” JCAP 1412, no. 12, 003 (2014) doi:10.1088/1475-7516/2014/12/003

[53] M. Levi and J. Steinhoff, “Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 1601, no. 008 (2016) doi:10.1088/1475-7516/2016/01/008

[54] M. Levi and J. Steinhoff, “Spinning gravitating objects in the effective field theory in the post-Newtonian scheme,” JHEP 1509, 219 (2015) doi:10.1007/JHEP09(2015)219

[55] M. Levi and J. Steinhoff, “Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order,” arXiv:1607.04122 [gr-qc].

[56] M. Levi, S. Mougiakakos and M. Vieira, “Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order,” arXiv:1912.06276 [hep-th].

[57] N. S. Nielsen and J. Vines, “Test black holes, scattering amplitudes and perturbations of Kerr spacetime,” arXiv:1909.07361 [gr-qc].

[58] M. Levi and J. Steinhoff, “Leading order finite size effects with spins for inspiralling compact binaries,” JHEP 1506, 050 (2015) doi:10.1007/JHEP06(2015)059

[59] S. Hergt and G. Schäfer, “Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates,” Phys. Rev. D 77, 104001 (2008) doi:10.1103/PhysRevD.77.104001

[60] S. Hergt and G. Schäfer, “Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincare invariance,” Phys. Rev. D 78, 124004 (2008) doi:10.1103/PhysRevD.78.124004

[61] V. Vaidya, “Gravitational spin Hamiltonians from the S matrix,” Phys. Rev. D 91, no. 2, 024017 (2015) doi:10.1103/PhysRevD.91.024017

[62] Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P. Solon
and M. Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” Phys. Rev. Lett. 122, no. 20, 201603 (2019) doi:10.1103/PhysRevLett.122.201603 [arXiv:1901.04424 [hep-th]].

[63] Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P. Solon and M. Zeng, “Black Hole Binary Dynamics from the Double Copy and Effective Theory,” JHEP 1910, 206 (2019) doi:10.1007/JHEP10(2019)206 [arXiv:1908.01493 [hep-th]].

[64] C. Cheung and M. P. Solon, “Classical Gravitational Scattering at $O(G^2)$ from Feynman Diagrams,” arXiv:2003.08351 [hep-th].

[65] J. Blümlein, A. Maier, P. Marquard and G. Schäfer, “Testing binary dynamics in gravity at the sixth post-Newtonian level,” arXiv:2003.07145 [gr-qc].

[66] J. Vines, “Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,” Class. Quant. Grav. 35, no. 8, 084002 (2018) doi:10.1088/1361-6382/aaa3a8 [arXiv:1709.06016 [gr-qc]].

[67] M. Z. Chung, Y. t. Huang, J. W. Kim and S. Lee, “Complete Hamiltonian for spinning binary systems at first post-Minkowskian order,” arXiv:2003.06600 [hep-th].

[68] L. Barack and A. Pound, “Self-force and radiation reaction in general relativity,” Rept. Prog. Phys. 82, no. 1, 016904 (2019) doi:10.1088/1361-6633/aae552 arXiv:1805.10385 [gr-qc].

[69] D. Bini, T. Damour, A. Geralico and C. Kavanagh, “Detweiler’s redshift invariant for spinning particles along circular orbits on a Schwarzschild background,” Phys. Rev. D 97, no. 10, 104022 (2018) doi:10.1103/PhysRevD.97.104022 [arXiv:1801.09616 [gr-qc]].

[70] D. Bini and A. Geralico, “Gravitational self-force corrections to tidal invariants for spinning particles on circular orbits in a Schwarzschild spacetime,” Phys. Rev. D 98, no. 8, 084021 (2018) doi:10.1103/PhysRevD.98.084021 [arXiv:1806.03495 [gr-qc]].

[71] M. Khalil, J. Steinhoff, J. Vines and A. Buonanno, “Fourth post-Newtonian effective-one-body Hamiltonians with generic spins,” arXiv:2003.04469 [gr-qc].

[72] A. Nagar, F. Messina, P. Rettegno, D. Bini, T. Damour, A. Geralico, S. Akcay and S. Bernuzzi, “Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries,” Phys. Rev. D 99, no. 4, 044007 (2019) doi:10.1103/PhysRevD.99.044007 [arXiv:1812.07923 [gr-qc]].

[73] S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185, 635 (1973). doi:10.1086/152444

[74] J. M. Cohen and L. S. Kegeles, “Electromagnetic fields in curved spaces - a constructive procedure,” Phys. Rev. D 10, 1070 (1974). doi:10.1103/PhysRevD.10.1070

[75] P. L. Chrzaniowski, “Vector Potential and Metric Perturbations of a Rotating Black Hole,” Phys. Rev. D 11, 2042 (1975). doi:10.1103/PhysRevD.11.2042

[76] L. S. Kegeles and J. M. Cohen, “Constructive Procedure For Perturbations Of Space-times,” Phys. Rev. D 19, 1641 (1979). doi:10.1103/PhysRevD.19.1641

[77] M. Sasaki and H. Tagoshi, “Analytic black hole perturbation approach to gravitational radiation,” Living Rev. Rel. 6, 6 (2003) doi:10.12942/lrr-2003-6 [gr-qc/0306120].

[78] T. S. Keidl, A. G. Shah, J. L. Friedman, D. H. Kim and L. R. Price, “Gravitational Self-force in a Radiation Gauge,” Phys. Rev. D 82, no. 12, 124012 (2010) Erratum: [Phys. Rev. D 90, no. 10, 109902 (2014)] doi:10.1103/PhysRevD.82.124012, 10.1103/PhysRevD.90.109902 [arXiv:1004.2276 [gr-qc]].

[79] S. Mano, H. Suzuki and E. Takasugi, “Analytic solutions of the Teukolsky equation and their low frequency expansions,” Prog. Theor. Phys. 95, 1079 (1996) doi:10.1143/PTP.95.1079 [gr-qc/9603020].

[80] S. Mano, H. Suzuki and E. Takasugi, “Analytic solutions of the Regge-Wheeler equation and the post-Minkowskian expansion,” Prog. Theor. Phys. 96, 549 (1996) doi:10.1143/PTP.96.549 [gr-qc/9605057].

[81] S. Mano and E. Takasugi, “Analytic solutions of the Teukolsky equation and their properties,” Prog. Theor. Phys. 97, 213 (1997) doi:10.1143/PTP.97.213 [gr-qc/9611014].

[82] T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108, 1063 (1957). doi:10.1103/PhysRev.108.1063

[83] F. J. Zerilli, “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2, 2141 (1970). doi:10.1103/PhysRevD.2.2141

[84] W. Tulczyjew, “Motion of multipole particles in General Relativity theory,” Acta Phys. Polon. 18, 393 (1959).

[85] W. G. Dixon, “Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector,” Proc. Roy. Soc. Lond. A 319, 509 (1970). doi:10.1098/rspa.1970.0191

[86] J. Ehlers and E. Rudolph, “Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity,” Gen. Rel. Grav. 8,197-217 (1977). doi:10.1007/BF00763547

[87] K. S. Thorne, “Multipole Expansions of Gravitational Radiation,” Rev. Mod. Phys. 52, 290 (1980). doi:10.1103/RevModPhys.52.290

[88] A. G. Shah, J. L. Friedman and T. S. Keidl, “EMRI corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole,” Phys. Rev. D 86, 084059 (2012) doi:10.1103/PhysRevD.86.084059 [arXiv:1207.5595 [gr-qc]].

[89] L. Blanchet, A. Buonanno and A. Le Tiec, “First law of mechanics for black hole binaries with spins,” Phys. Rev. D 87, no. 2, 024030 (2013) doi:10.1103/PhysRevD.87.024030 [arXiv:1211.1060 [gr-qc]].

[90] R. A. Porto and I. Z. Rothstein, “Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries,” Phys. Rev. D 78, 044013 (2008) Erratum: [Phys. Rev. D 81, 029905 (2010)] doi:10.1103/PhysRevD.78.044013 [arXiv:0804.0260 [gr-qc]].

[91] B. M. Barker and R. F. O’Connell, “Gravitational Two-Body Problem with Arbitrary Masses, Spins, and Quadrupole Moments,” Phys. Rev. D 12, 329 (1975). doi:10.1103/PhysRevD.12.329

[92] P. D. E’Dath, “Interaction of two black holes in the slow-motion limit,” Phys. Rev. D 12, 2183 (1975).
B. M. Barker and R. F. O’Connell, “The gravitational interaction: Spin, rotation, and quantum effects—a review,” Gen. Relativ. Gravit. 11 149 (1979). doi:10.1007/BF00756587

K. S. Thorne and J. B. Hartle, “Laws of motion and precession for black holes and other bodies,” Phys. Rev. D 31, 1815 (1984). doi:10.1103/PhysRevD.31.1815

J. Steinhoff, S. Hergt and G. Schäfer, “On the next-to-leading order gravitational spin(1)-spin(2) dynamics,” Phys. Rev. D 77, 081501 (2008) doi:10.1103/PhysRevD.77.081501 [arXiv:0712.1716 [gr-qc]].

R. A. Porto and I. Z. Rothstein, “The Hyperfine Einstein-Infeld-Hoffmann potential,” Phys. Rev. Lett. 97, 021101 (2006) doi:10.1103/PhysRevLett.97.021101 [gr-qc/0604099].

R. A. Porto and I. Z. Rothstein, “Spin(1)Spin(2) Effects in the Motion of Inspiring Compact Binaries at Third Order in the Post-Newtonian Expansion,” Phys. Rev. D 78, 044012 (2008) Erratum: [Phys. Rev. D 81, 029904 (2010)] doi:10.1103/PhysRevD.78.044012, 10.1103/PhysRevD.81.029904 [arXiv:0802.0729 [gr-qc]].

M. Levi, “Next to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reduction,” Phys. Rev. D 82, 064029 (2010) doi:10.1103/PhysRevD.82.064029 [arXiv:0802.1508 [gr-qc]].

J. Steinhoff, S. Hergt and G. Schäfer, “Spin-squared Hamiltonian of next-to-leading order gravitational interaction,” Phys. Rev. D 78, 101503 (2008) doi:10.1103/PhysRevD.78.101503 [arXiv:0809.2200 [gr-qc]].

S. Hergt, J. Steinhoff and G. Schäfer, “Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries,” Class. Quant. Grav. 27, 135007 (2010) doi:10.1088/0264-9381/27/13/135007 [arXiv:1002.2093 [gr-qc]].

S. Hergt, J. Steinhoff and G. Schäfer, “Elimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximation,” Annals Phys. 327, 1494 (2012) doi:10.1016/j.aop.2012.02.006 [arXiv:1110.2094 [gr-qc]].

A. Bohé, G. Faye, S. Marsat and E. K. Porter, “Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order,” Class. Quant. Grav. 32, no. 19, 195010 (2015) doi:10.1088/0264-9381/32/19/195010 [arXiv:1501.01529 [gr-qc]].

M. Levi and J. Steinhoff, “Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 1601, 011 (2016) doi:10.1088/1475-7516/2016/01/011 [arXiv:1506.05056 [gr-qc]].

S. Hergt, J. Steinhoff and G. Schäfer, “On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries,” J. Phys. Conf. Ser. 484, 012018 (2014) doi:10.1088/1742-6596/484/1/012018 [arXiv:1205.4530 [gr-qc]].

D. Bini and A. Geralico, “New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: redshift invariant,” Phys. Rev. D 100, no. 10, 104002 (2019) doi:10.1103/PhysRevD.100.104002 [arXiv:1907.11080 [gr-qc]].

S. Balmelli and T. Damour, “New effective-one-body Hamiltonian with next-to-leading order spin-spin coupling,” Phys. Rev. D 92, no. 12, 124022 (2015) doi:10.1103/PhysRevD.92.124022 [arXiv:1509.08135 [gr-qc]].

T. Damour, “Coalescence of two spinning black holes: an effective one-body approach,” Phys. Rev. D 64, 124013 (2001) doi:10.1103/PhysRevD.64.124013 [gr-qc/0103018].

E. Barausse and A. Buonanno, “An Improved effective-one-body Hamiltonian for spinning black-hole binaries,” Phys. Rev. D 81, 084024 (2010) doi:10.1103/PhysRevD.81.084024 [arXiv:0912.3517 [gr-qc]].

D. Bini, T. Damour and A. Geralico, “Novel approach to binary dynamics: application to the fifth post-Newtonian level,” Phys. Rev. Lett. 123, no. 23, 231104 (2019) doi:10.1103/PhysRevLett.123.231104 [arXiv:1909.02375 [gr-qc]].

T. Damour, “Classical and Quantum Scattering in Post-Minkowskian Gravity,” arXiv:1912.01213 [gr-qc].

M. Levi, A. J. McLeod and M. von Hippel, “NNNLO gravitational quadratic-in-spin interactions at the quartic order in G,” arXiv:2003.07890 [hep-th].

S. Foffa, P. Mastrolia, R. Sturani, C. Sturm and W. J. Torres Bobadilla, “Static two-body potential at fifth post-Newtonian order,” Phys. Rev. Lett. 122, no. 24, 241605 (2019) doi:10.1103/PhysRevLett.122.241605 [arXiv:1902.10571 [gr-qc]].

J. Blümlein, A. Maier and P. Marquard, “Five-Loop Static Contribution to the Gravitational Interaction Potential of Two Point Masses,” Phys. Lett. B 800, 135100 (2020) doi:10.1016/j.physletb.2019.135100 [arXiv:1902.11180 [gr-qc]].