Decision theory analysis of airport driver and management based on linear regression analysis

Jingmin Yao¹, Zhenbo Lu² and Zicheng Wang³

¹School of Applied Science and Technology, Hainan University, Danzhou, Hainan, 571737, China
²Marine Engineering College, Dalian Maritime University, Dalian, Liaoning, 116026, China
³School of Civil Engineering, Central South University, Changsha, Hunan, 410075, China

Abstract. In this paper, we turn the driver decision problem into: the game theory between the revenue generated by the driver after waiting for the waiting in the storage pool and the return to the urban area. When the driver chooses to wait for the yield greater than the return to the urban area, he chooses to wait. On the contrary, we return directly to the urban area. Meanwhile, we collect, analyze and process the information about the taxi in Shanghai Pudong Airport and Shanghai, and calculate the proportion of passengers choosing taxi after arriving at the airport through the Nested Logit model. And multiple linear regression equation model is used to deal with airport passenger throughput, forecast the take-off and landing of flights, speed analysis of taxis and the driving range of taxis under different weather conditions, and ultimately determine the drivers' different decisions.

Keywords: taxi drivers, queuing theory, linear regression analysis.

1. Introduction
Since twenty-first Century, with the rapid development of domestic aviation industry and economy, people have chosen aviation as a convenient mode of transportation. Because of the continuous development of the aviation industry, the traffic environment and traffic management of the airport area have higher requirements, and also bring huge passenger traffic to the airport area. Correspondingly, it has also led to the economic effect of the transportation industry in the region. The promotion of economic effects has had a huge impact on the competition in various industries, and these competitions will be reflected in the actual problems faced by some taxi drivers. Therefore, as an important part of airport traffic, taxis are especially important for passengers to travel reasonably. In addition, taking into account the principle of carrying passengers at airports. It is not allowed to refuse to load. The uncertainty of the passenger destination will greatly affect the taxi drivers' income. In order to balance this difference, the airport needs a reasonable plan to properly regulate taxi drivers to better maintain airport traffic patency.
2. The establishment and solution of the first problem model

2.1. Analysis
We can see that the topic is a decision-making problem. We take the driver's income and the number of airport passengers as the starting point. We consider making a decision by comparing the net income generated by the two schemes. After analysis, we can see that the net income of PA is the \(w_1 \) of the passenger's return to the urban area after waiting. The net income of PB is \(w_2 \) within the same waiting time of PA in the urban area, which means that the final decision can be obtained by comparing the difference between the two incomes and comparing with zero.

2.2. Model establishment
According to the analysis, drivers will make decision analysis on PA and PB, where PA will return to the urban area after waiting for passengers, and PB will directly return to the urban area.

First, we discuss the choice of PA. At this point, the driver needs to enter the waiting queue. There are two main factors that affect the waiting queue flow: the number of queued teams and the number of passengers waiting to get on the bus. As a result of the assumption that the \(t_1 \) can be landed at the same time and the number of landing is \(F \), \(F \) is directly observed by the driver. That is, \(F \) is a fixed value. By finding data, we can get the average number of passengers per airport of an airport \(K \) and then establish the Nested LogitModel model to calculate the proportion of taxi passengers after arriving at the airport.

It can be concluded that the number of taxi drivers arriving at a taxi in a certain period of time is as follows:

\[
L = F \times K \times \eta
\]

(1)

By calculating the occupancy ratio of the taxi passengers, we can see that each vehicle will carry \(m \) passengers on average, that is, the driver needs at least a critical value. The passengers are waiting at the waiting point. Combined with the arrangements of the airport for the driving points, we can calculate a reasonable number of vehicles that can be carried away by \(M \) per unit time:

\[
N_m = \chi
\]

(2)

Considering that if the threshold value is greater than the waiting point of the passenger point, that is, the driver is not able to receive passengers, then it will take an additional \(t_1 \) time for each occasion.

With the above parameters, the expression of waiting time \(t \) can be obtained as follows:

\[
t = \frac{N}{M} \left(\frac{\chi}{L} \right) t_1
\]

(3)

When the driver gets the passengers back to the urban area, assuming that the distance from the airport to the city centre is fixed at \(S \), the local taxi’s charging function is \(s \) (the standard of taxi charges all over the country). PA’s income is \(W_1 \):

\[
W_1 = \varphi (s)
\]

(4)

Then we discuss the PB, because the assumption is the same destination, that is, the length of the airport to the urban area, so the time for PB to work in the urban area is the waiting time in PA. \(t \) is not difficult to find that the profit generated by PB is the profit generated by the drivers in the urban area during the waiting time in PA. We also call this profit the time cost of PA in the waiting time.

Because we are talking about the actual situation, we can get the current time period. Under the weather condition, the empty load rate of taxis in the urban area is \(\alpha \), the average speed of taxis is \(V_t \), and the average distance of each taxi is \(S_0 \).
It can be concluded that real load time = total time*(1-no-load rate); real load distance=real load time*average speed; actual load times=real load distance/average distance; urban profit=real load frequency*per single income.

Bring the relevant variables to the PB (PA's time cost):

$$W_1 = t(1-\alpha) \times \frac{\psi}{S_0} \times \phi(S_0)$$ \hspace{1cm} (5)

Taking all the above into account, in order to facilitate drivers' decision making, the decision decision of drivers is D.

2.3. Model solution

In order to make decisions on the two plans, we analyze them by calculating the critical value.

According to the actual situation analysis, the data in the model are positive, that is, in order to determine the positive and negative of D and make d=0 solve the critical value, the range of the critical value is analyzed.

Let D=w1-w2=0 bring in (4) (5) formula: the actual load times.

$$D = \frac{\psi}{S_0} \times (1-\alpha)$$

That is to say, under the current circumstances, the number of times that can be completed in the urban area is equal to the ratio of airport to urban income and the average per capita income in the urban area, the two schemes have the same benefit, and the critical load is a.

The critical number a is introduced into (5) formula.

$$D = \frac{\psi}{S_0} \times (1-\alpha)$$

Where S_0/ψ is the average time spent per unit, (1- alpha) is the real load rate of the taxi, we can get the algebraic expression on the right side of the upper form to indicate the time needed to complete the critical load time A single in the current situation. We note that the time is T_L and then T_L is brought into (3):

$$T_L = \frac{N}{M} + \left(\frac{M}{L}\right) t_i$$

(9)

Remember $t_i = \left(\frac{\chi}{L}\right) t_i$ the number of passengers who choose to take taxis in the time of arrival is exactly enough to accommodate all the waiting vehicles in the pool. $t_y = \frac{N}{M}$ required for passengers to leave the waiting vehicles in all pools. The total waiting time is $t=t_x+t_y$.

Combined with the critical value, we have:

When $t>T_L$, that is, $D<0$, we should choose PB with higher income.
When \(t=T_L \), or \(D=0 \), the two options yield the same returns.
When \(T<T_L \), i.e. \(D>0 \), PA should be chosen for higher income.

3. Establishment and solution of second problem models

3.1. Analysis
This problem is based on the previous issue. The information collected from Shanghai Pudong Airport and Shanghai taxi is analyzed and processed, and the proportion of trip mode after arriving at the airport is calculated through the Nested Logit model. And multiple linear regression equation is used to establish the relationship between taxi demand and weather factors. By collecting and forecasting information, the basic traffic parameters of taxi cab can be obtained.

3.2. Model establishment
In this paper, the Nested Logit model is applied to the choice of different modes of transportation, according to its inherent mechanism, the model of determining the choice tree and determining the mode of choice is determined, and then the proportion of the taxi choice is predicted. The result can reflect the waiting time of taxi drivers. A double-layer NL model is established.

According to the theory of Nested Logit model, we can see the probability of a travelers choosing the mode of trip in I.

\[
P_{X,a} = P(I_{a}X)P_{Xa}
\]

where, \(P_{Xa} \) is the probability of a passengers choosing the mode of transportation I; \(X_i \) is the probability of selecting the I of the I under a certain traffic mode. \(P(I_{a}X) \) is the probability of a passenger selecting a certain way.

\[
P_{(i/X)a} = \frac{e^{\alpha_i Q_{(i/X)a}}}{\sum_{i=1}^{N} e^{\alpha_i Q_{(i/X)a}}}
\]

\[
P_{Xa} = \frac{e^{\alpha Xa}}{\sum_{X=1}^{2} e^{\alpha Xa}}
\]

\[
Q_{xa} = Q'_{xa} Q_{xa} = \frac{1}{\alpha} \ln \sum_{i=1}^{N} \exp(\alpha_i Q_{(i/X)a})
\]

\[
R_{X,a} = Q(I_{a}X) + Q'_{xa} + \mu(I_{a}X) + \mu_{xa}
\]

\(Q_{(i/X)a} \) in formula (11) represents the part of utility changing with X when a passenger selects mode I; \(Q_{Xa} \) in formula (12) is the effect of a passenger selecting mode I, \(Q^*Xa \) and \(Q'Xa \) are respectively the part of effect changing with I when a passenger selects mode X, which is independent of I; \(\mu(I_{a}X) \) in formula (14) is the utility probability term of I selection branch when a passenger selects mode X, and \(\mu_{I_{a}Xa} \) is the effect when a passenger selects mode X Using probability term

Then, the maximum likelihood function method is used to estimate the parameters, and the likelihood function \(k^* \) is constructed.
5

\(K^* = \prod_{a=1}^{N} \prod_{m} \prod_{r=1}^{M} P_a(\phi)^{\gamma(\phi)_n} \) \hspace{1cm} (15)

\(\gamma(\phi)_n = \begin{cases}
1, & \text{traveler n, select i} \\
0, & \text{other}
\end{cases} \) \hspace{1cm} (16)

The logarithm of the final \(k^* \) is obtained, and then the maximum value of the formula is obtained to get the estimated value of the parameter.

3.3. Model solution

Based on the convenience of finding data, we chose Shanghai Pudong International Airport as a practical problem.

For the solution of the problem, that is to say, under the decision model established by the first problem, the range or the determined value of all objective variables under different environmental factors can be solved through a series of processes, and then a lot of simulation analysis is carried out on the actual situation, and finally the decision plan for the problem is obtained.

3.3.1. Average passenger number \(k \). Because of the development of science and technology and the increase of people's travel times, we cannot simply represent the future data through past data. Therefore, we can get the predicted model by analyzing the data in recent years by means of linear regression analysis.

Through information available, the annual passenger throughput and the total number of flights taken off and landing at Shanghai Pudong Airport in 2004~2014.

Considering the scheduling and average state of flights in different months of the year, we think that passenger throughput / take-off and landing is equal to the average number of passengers on average.

By calculating the average passenger carrying capacity in 2004~2014, we made a linear regression analysis of the ten sets of data and got the future prediction model (see Table 1).

\(K = 2.3079 + 105.6 \) \hspace{1cm} (17)

\[R^2 = 0.7869 \]

Table 1. Prediction results and errors

year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Forecast results (number of passengers/set)	124,0682	126,3711	128,679	130,9869	133,2948	135,6027	137,9106	139,2183	141,5264	144,8343	147,1422
error	16.78%	13.98%	5.93%	8.74%	7.43%	6.66%	7.29%	4.38%	3.63%	2.78%	0.37%

By comparing the predicted and actual values in 2015~2018, we found that the error is within the acceptable range. We think the regression model is reasonable, that is to say, the average number of passengers carrying \(k=149.52 \) passengers in 2019 is acceptable.

3.3.2. Average driving speed of each period \(V_t \). Then we discuss the average driving speed of \(V_t \) in the urban area. We get the average driving speed of vehicles in different periods of Shanghai and sunny and rainy days under different conditions. We consider that the average driving speed is less affected by other factors, and the average speed of each period is the average of the data.
3.3.3. Distribution of no-load rate at each time period. Similarly, we have done a lot of data analysis of the taxi load rate in Shanghai urban area. We find that the idle rate of taxis is entirely dependent on the distribution of weather and time periods. We do not consider the special circumstances. We believe that the no-load rate of each period is the arithmetic mean of the set of sets.

3.3.4. Average taxi ride distance under different conditions. We analyzed the average effective distance of six kinds of multiplying intervals (0-3km; 3-5km; 5-7km; 7-10km; 10-20km; >20km) of two kinds of weather in Shanghai taxi in 2013~2018, and found that the effective distance of each interval increased significantly with the growth of the year. We can regress the data again to get two kinds of weather in 2019. The effective distance and multiplying interval of different multiplying distances account for the proportion of all intervals, as shown in Table 2.

Multiplication interval (km)	2019 forecast			
Effective distance in sunny days	Effective distance in rainy days			
0-3	129.60	133.33		
3-5	109.26	115.30		
5-7	82.89	59.95		
7-10	47.48	47.27		
10-20	39.49	35.94		
>20	23.52	9.58		

Table 2. Average probability of different distances

Then the average value of the distance interval is S_i, and the multiplying distance is P_i, then the expected distance between the six intervals is:

$$E = \sum_{i=0}^{k} (S_i P_i)$$ \hspace{1cm} (18)

By calculating, the average taxi ride distance is 5.39km, and the average taxi ride distance is 4.69km. In rainy days.

3.3.5. Design simulation experiment. In order to simulate the actual situation reasonably, we set up four simulation quantities, namely, the weather (sunny and rainy days), the time (24 time periods), the number of queuing vehicles and the number of landing flights.

Taking into account the need for adequate test data and realistic rationality, the simulation is:

1) The number of queuing vehicles is $N = 10^i$ (i = 0,1,2,3...19)
2) The number of flights per unit time is $F = f$ (f = 0,1,2,3...12)
3) The weather was judged to be 0 or 1 (0 for sunny days; 1 for Yu Tian).
4) The time is $t = 0,1,2,3....23$
5) The simulation results are obtained after simulation of these simulates.

By analyzing the simulation results,
Table 3. Basis for decision making

waiting time (min)	sunny day	rain day
80~100	7:00-8:00	7:00-8:00 19:00-22:00
100~120	6:00-11:00	6:00-11:00 17:00-22:00
120~140	6:00-15:00 19:00-20:00	6:00-22:00
140~160	5:00-21:00	5:00-22:00
160~180		5:00-22:00 23:00-00:00
180~200	5:00-22:00	
200~220	4:00-22:00	4:00-22:00 23:00-00:00
220~240	3:00-22:00	
240~260	3:00-22:00 23:00-00:00	3:00-22:00 23:00-00:00
260~280	2:00-22:00 23:00-00:00	
280~300	1:00-22:00 23:00-00:00	
300~	1:00-22:00 23:00-00:00	

The final decision is:
Step 1: Drivers get a waiting time of t by passing the observed queuing vehicles and landing flights.
Step 2: Drivers determine whether t is less than 80min.
Step 3: If it is, no matter other factors directly choose to pool car queuing passengers.
Step 3: If not, decisions are made through current time and weather, and make decisions according to Table 3.

References
[1] Designated academic committee, Fuzhou Municipal People's government. Bus priority and mitigation measures: Proceedings of the 2012 annual conference of China's urban transport planning and twenty-sixth Academic Symposium [C]. Academic Committee on urban traffic planning of China Urban Planning Society, Fuzhou Municipal People's Government: China Urban Planning Association, 2012: 9.
[2] Yao Yanbin, Gao Jinhua. Prediction of Airport Rail Transit on land side traffic diversion [J]. Journal of East China Jiaotong University, 2006 (01): 48-51.
[3] Yuexi exhibition. Airport land side traffic demand forecast and distributed road design [J]. Jilin University, 2011.
[4] Geng Zhongbo, Song Guohua, Zhao Qi. Research on the comparison of the taxi boarding scheme of the capital airport based on VISSIM [J]. Journal of Civil Aviation University of China, 2013, 31 (06): 55-59.
[5] Li Yunlong. Feature classification of large aviation hub based on source matrix [J]. Journal of Chongqing Jiaotong University (SOCIAL SCIENCES), 2017, 17 (03): 42-46.
[6] Liu Xinmeng. Brief analysis on the coordinated development of civil aviation and one-stop travel platform -- Taking "drop trip" as an example [J]. Traffic accounting, 2017 (05): 70-74.
[7] LU Hong. Prediction of passenger throughput at Shanghai Hongqiao Airport. [J]. modern business, 2017 (26): 185-186.
[8] Huang Canbin, Yang Xiaoguang, valley Songyuan, Shanghai Hongqiao hub airport passenger flow characteristics analysis [J]. Traffic and transportation (Academic Edition), 2011 (01): 133-136.
[9] Meng Wei Yan. Application Research of intelligent station technology in airport taxi management. [A]. China Intelligent Transportation Association.2014 ninth China Intelligent Transportation
annual conference conference papers [C]. China Intelligent Transportation Association: China Intelligent Transportation Association, 2014: 5.

[10] Zhang Lanfang, Bian Tao, Zhang Liang. Selection of large airport connection modes based on NL model [J]. Urban traffic, 2017, 15 (02): 40-47.