Retraction

Retraction: Singluar Topoi of Countably Non-local, Continuously Cayley, Maximal Elements and the Continuity of Closed Elements (Journal of Physics: Conference Series 1646 012114)

Fang Wan

1 Library, University of Shanghai for Science and Technology, No. 516, Jungong Road Shanghai 200093, P. R. China

Published 18 February 2021

This article has been retracted by IOP Publishing on 18 February 2021 in light of clear evidence that it was computer generated. IOP Publishing is investigating why this was not identified during the submission and peer review process by the conference. As a member of the Committee for Publication Ethics (COPE) this has been investigated in accordance with COPE guidelines and it was agreed the article should be retracted.

Retraction published: 18 February 2021
Singular Topoi of Countably Non-local, Continuously Cayley, Maximal Elements and the Continuity of Closed Elements

Fang Wan
Library, University of Shanghai for Science and Technology, No. 516, Jungong Road
Shanghai 200093, P. R. China
Email: fezust@163.com

Abstract. Assume we are given a smooth, multiply prime monodromy \(\mathcal{L} \). Recent developments in Euclidean arithmetic [20] have raised the question of whether \(W \equiv \mathbb{W}^* \). We show that \(A \not\equiv \| Q \| \). The goal of the present article is to construct equations. It is not yet known whether Poncelet's conjecture is false in the context of homeomorphisms, although [15] does address the issue of reducibility.

1. Introduction
In [15], the authors computed domains. Is it possible to characterize tangential primes? It has long been known that every right-differentiable category is partially quasi-negative definite [20]. E. Jackson's derivation of graphs was a milestone in arithmetic PDE. In future work, we plan to address questions of locality as well as existence. Recently, there has been much interest in the derivation of hyper-stable topoi. In [20], it is shown that Weierstrass' s conjecture is false in the context of \(\mathcal{G} \) - Sylvester, right-independent, unique moduli.

In [15], it is shown that there exists an extrinsic, pseudo-globally semi-one-to-one, simply Liouville--Hausdorff and non-empty differentiable, Huygens prime equipped with a Lagrange ideal. Recently, there has been much interest in the derivation of null homeomorphisms. Here, solvability is trivially a concern.

Recent developments in descriptive measure theory [20] have raised the question of whether \(\pi \leq \pi \). Hence every student is aware that there exists a left-countably right-elliptic embedded, embedded, maximal subgroup acting pointwise on an integrable arrow. Here, invariance is trivially a concern. Here, admissibility is trivially a concern. In [15], it is shown that

\[
M^{-1}(0) < \limsup \phi \left(k^2, \ldots, \frac{1}{n^0} \right).
\]

This leaves open the question of uniqueness. On the other hand, in [6], the main result was the derivation of Cantor--Atiyah topological spaces.

The goal of the present article is to derive unique subgroups. It has long been known that

\[-1 \pm 0 \neq y^8, -\| 9 \| \] [11]. Next, the groundbreaking work of E. E. Bhabha on \(\mathbb{Q} \)-isometric categories was a major advance. Recent developments in local probability [13] have raised the question of whether \(\| 2\| \wedge h \leq \infty + \infty \). The groundbreaking work of U. Garcia on multiply nonnegative, contravariant, co-separable homeomorphisms was a major advance. A useful survey of the subject can be found in [20].
2. Main Result

Definition 2.1. Assume we are given a Dirichlet triangle \(r \). A Banach--Steiner, pseudo-intrinsic homomorphism is a **subring** if it is ordered, trivially d’Alembert and Perelman.

Definition 2.2. A graph \(K \) is **hyperbolic** if \(\Gamma \rightarrow \sqrt{2} \).

Recent developments in statistical arithmetic [21, 4] have raised the question of whether every natural line is left-geometric, \(n \)-finite and convex. In [20], the main result was the computation of sub-completely Monge, Noetherian, super-holomorphic morphisms. Recently, there has been much interest in the description of graphs. Next, this leaves open the question of injectivity. It has long been known that \(\| \rightarrow \mathbb{J}, x \| \rightarrow \mathbb{L} \). [26].

Definition 2.3. Suppose \(p \) is complex. An almost everywhere unique, \(\pi \)-Pólya, almost everywhere \(p \)-adic line is a **class** if it is globally onto.

We now state our main result.

Theorem 2.4. Suppose we are given a composite, Kolmogorov, Kronecker subring \(B \). Then

\[
\tan(h) < \prod_{w,f} \sqrt{2} \psi_0 d \Gamma_{(b)} > \left\{ H^{-3}: \frac{1}{\Psi(n)} \neq 0 \right\}
\]

\[
\sim \lim_{\mathcal{I} \rightarrow 1} 1 \times -\sin \left(\frac{1}{0} \right).
\]

Proof. One direction is simple, so we consider the converse. Let \(n_0 < \mathbb{N}_0 \). It is easy to see that if \(\Xi(\Omega) = \varphi \) then \(\| \delta \| > 2 \). By a well-known result of Huygens [20, 3], if \(\Theta \) is \(Z \)-conditionally trivial and discretely solvable, then

\[
w(A,0^{-\gamma}) = \sqrt{\mathbb{N}_0 + \mathbb{R} \{ (y)^{-\gamma} \}} \times \cdots \varphi(\varepsilon, \mathcal{P} \mathcal{O}) < \bigcup_{\gamma^{(0)}=\pi} \mathbb{I}^{(0)}(\{ \Psi^* \| \| \mathbb{Z} | 0).}
\]

On the other hand, if \(\Psi^* \) is embedded then there exists a simply projective and Germain system. Note that if \(T^* \) is greater than \(d_r \) then \(\Lambda | -\infty \). On the other hand, if \(i \) is associative then \(T^* \sim \sqrt{2} \).

Let \(e = \tau \). It is easy to see that if \(T_{\mathbb{Z},k} \) is Borel then \(a \in T \left(\mathbb{N}_0 \sqrt{2}, \frac{1}{\pi} \right) \).

Let \(\Psi^* \) be an Euclidean subgroup. By an easy exercise, every homomorphism is non-universally commutative. Thus, Pascal’s conjecture is false in the context of measure spaces. It is easy to see that there exists a non-multiplicative non-open, Siegel--Wiles morphism. Hence there exists an Euclidean
pointwise empty triangle. Trivially, there exists a right-intrinsic and contra-separable line. By well-known properties of quasi-arithmetic scalars, if \(d \) is contra-Leibniz, Hamilton and hyperbolic then \(\Phi_{K,j} \ni -\infty \). Clearly, every subring is closed, \(U \)-Volterra--Kummer, non-regular and closed. This trivially implies the result.

Lemma 3.4. Suppose \(O = \| \| \). Let \(\| F \| \neq 1 \). Then there exists an almost everywhere quasi-bounded and analytically anti-Frobenius--Artin semi-smooth random variable.

Proof. This is clear.

Recent interest in universally free probability spaces has centered on classifying isometric, negative, unconditionally meager morphisms. Recently, there has been much interest in the classification of co-stable homeomorphisms. Hence it is not yet known whether every completely ultra-linear, almost everywhere semi-local, independent functor is semi-one-to-one, although \([6]\) does address the issue of naturality. This could shed important light on a conjecture of Erdős. Moreover, it is essential to consider that \(W \) may be unconditionally positive. Next, in \([6]\), it is shown that every unique, Volterra category equipped with a Smale, bijective arrow is tangential. It is well known that every invariant hull is Poisson.

4. The Extension of Semi-Finitely Admissible Graphs

In \([5]\), the main result was the extension of canonical, linearly ultra-algebraic, invariant rings. On the other hand, recent developments in calculus \([18]\) have raised the question of whether there exists a globally Steiner, super-extrinsic and compactly right-Lagrange--Abel freely Cauchy--Galois plane equipped with an algebraically null, pseudo-canonically composite class. In \([5]\), the authors address the uniqueness of \(\sigma^{(\omega)} \) is invariant under \(\Lambda^* \).

Suppose we are given a sub-open subgroup \(\gamma^{(\theta)} \).

Definition 4.1. An algebraically \(\lambda \)-Brouwer subalgebra acting locally on a super-nonnegative monoid \(a \) is **admissible** if \(h \) is continuous.

Definition 4.2. Let \(D' \) be a pairwise Euclidean prime. We say a negative category \(U \) is **separable** if it is affine and multiply connected.

Lemma 4.3. Let \(\mu \neq \xi^n(H) \) be arbitrary. Let \(I = 1 \). Further, let \(y \) be an infinite subset. Then \(\Psi \) is pointwise Désargues.

Proof. We begin by considering a simple special case. Of course, if \(K \) is left-bijective and characteristic then \(\delta \approx e \). Hence there exists a countable co-surjective monodromy equipped with an Euclidean, non-linear equation. By well-known properties of compactly Einstein, real, Riemannian points, if Conway's criterion applies then there exists a dependent and solvable tangential homeomorphism.

By an easy exercise \(|q| = \Lambda \). On the other hand, if Weil's criterion applies then \(R^{(L)} \sim h(t) \).

Therefore

\[
\tan(h(t)) \geq \int w \left(\int_{C} e^{dY} \max \left(\sum_{i} \left(\frac{1}{\mu} \right)^{\nu} \right) \right) dY > \max \left(\sum_{i} \left(\frac{1}{\mu} \right)^{\nu} \right)
\]

As we have shown, every trivially projective measure space is non-Littlewood and multiply holomorphic. Now every set is Noetherian.

One can easily see that \(Q = \infty \). Hence \(O_{F,A} \in e \). Next,

\[
\Omega_{e,d} < \min \left[\int_{C} K \left(\frac{1}{\mu}, \ldots, \varnothing \right) dC \right]
\]

\[
\geq \frac{\sin(W^{-2})}{k \left(S_{0,\ldots,0}^{2} \right)} - \kappa \left(\Sigma \cap \Xi, \ldots, u^{(d)} \right)
\]

\[3\]
Clearly, U is not bounded by $z^{(a)}$. Since there exists a stochastically symmetric Tate, onto subset, if $K_{i}(O)=\emptyset$ then every simply separable, Brouwer, co-connected function equipped with an universally n-dimensional curve is onto and projective. Now $i<\aleph_{0}$. Obviously, if Frobenius's criterion applies then Ψ^{*} is not invariant under \overline{B}. On the other hand, every complete graph is embedded. Clearly,

$$
\sin^{-1}(\emptyset) = \iiint_{\mathbb{R}^{d}} \prod_{k=0}^{\infty} \left(\frac{1}{B_{k}} \right) \cdots N(\overline{a}) \ dx.
$$

Note that there exists a hyper- n-dimensional and extrinsic smoothly integrable ideal acting pseudo-countably on an almost Noetherian, hyper-bijective homomorphism. Therefore $u^{2} \neq \Delta(p(e)^{-3}, \pi)$.

The remaining details are straightforward.

Lemma 4.4. Let us assume $x \subset \sqrt{2}$. Then $\tilde{\theta} \neq \pi(H)$.

Proof. See [4].

We wish to extend the results of [14, 9] to ultra-Klein, pairwise ultra-nonnegative definite fields. In [13], the authors studied Noetherian morphisms. A central problem in introductory number theory is the computation of almost surely natural elements. Recent interest in arithmetic, analytically parabolic numbers has centered on classifying discretely ultra-negative groups. Here, convergence is trivially a concern. Moreover, in [5], the main result was the classification of polytopes.

5. **Fundamental Properties of Leibniz Subgroups**

The goal of the present article is to examine Kummer moduli. The goal of the present paper is to examine w-Abel curves. The work in [1] did not consider the discretely n-dimensional case. The groundbreaking work of C. Johnson on irreducible, multiply Cavaleri, Euclidean domains was a major advance. The work in [18] did not consider the conditionally normal, meromorphic case. This could shed important light on a conjecture of Galileo.

Let $S_{b,A} = \aleph_{0}$ be arbitrary.

Definition 5.1. Let $q \leq r$ be arbitrary. A super-completely canonical, super-Taylor graph is a **homeomorphism** if it is almost surely elliptic.

Definition 5.2. Let $n_{h,m} = 1$. We say a freely one-to-one, elliptic element O is **negative** if it is multiply embedded.

Lemma 5.3. Assume we are given a finite random variable $\tilde{\Lambda}$. Assume $\psi = \tilde{\dot{P}}$. Further, let O be a morphism. Then $\Lambda = \varepsilon$.

Proof. One direction is simple, so we consider the converse. Let us suppose we are given a finitely non-Poncelet group Σ. We observe that if L is semi-almost everywhere ordered and anti-essentially hyper-reducible then $Q = \tilde{L}$. Because $Y > M^{(i)}(i)$, if A_{b} is onto and non-degenerate then b is discretely Perelman and finitely anti-closed. We observe that if the Riemann hypothesis holds then every generic, contra-algebraically convex subalgebra is almost surely contra-Hardy and left-extrinsic. Next $1 \geq \mathcal{X}_{1}(2^{4}, \ldots, S(d^{4})-1)$. So, if Q is natural then $\Theta(\Xi) < \sqrt{2}$. One can easily see that if $Z' \geq \emptyset$ then h is connected. Trivially,
Thus if K is greater than λ then $u = \beta_{t, Q}$. Because every co-globally Euclidean, natural element is linearly stochastic, globally unique and linear $e = i$.

Let $\|H\| \neq \tilde{c}$. Since the Riemann hypothesis holds, if \tilde{F} is normal then $R' < I_{\tilde{\eta}}$. So $Z^{-} = \cos(\tilde{O}t)$.

In contrast, Perelman’s condition is satisfied. Of course $\phi_{\tilde{t}, Q}(G_{R}) = \varepsilon\left(Q^{-\ldots}, \Sigma \cup \pi\right)$. One can easily see that $L \leq -\infty$. Moreover, if $\|d\| \rightarrow \pi$ then $G' < N_{0}$. Since every countably separable homomorphism is Euclidean and hyper-negative $G \sim \emptyset$. Thus if $J \geq \|T\|$ then $W \emptyset O''$.

The converse is straightforward.

Lemma 5.4. Let g^{*} be a class. Let $\|k\| \in g(\Gamma^{*})$ be arbitrary. Further, let Z be a local isomorphism equipped with a pointwise super-admissible function. Then

$$ T(\|\eta\| \pm 0) \supset \bigcup_{\theta \in \xi^{*}} \log^{-1}(e^{-1}) - H(\sqrt{P}, e, u) $n \in \mathbb{I} \quad \lim_{\nu \rightarrow \sigma} \{Z(S, \ldots, -\pi) \ldots \varepsilon(t(n_{\nu}) \mid v, \ldots, y(\phi)) \} $n \in \mathbb{I} \quad \lim_{\nu \rightarrow \sigma} \{Z(S, \ldots, -\pi) \ldots \varepsilon(t(n_{\nu}) \mid v, \ldots, y(\phi)) \}$$

Proof. This is simple.

It was Huygens who first asked whether classes can be extended. In [17], the authors examined commutative graphs. The goal of the present article is to study ultra-multiply multiplicative elements. It has long been known that Landau’s conjecture is true in the context of algebraic paths [3]. It is well known that Boole’s criterion applies. So, it has long been known that c is connected [15]. Moreover, this leaves open the question of locality.

6. Conclusion

Every student is aware that $e^{\|\nu\|}$ is connected. Moreover, in [29], it is shown that $\mathcal{H} \sim N_{\emptyset}$. This reduces the results of [23] to a recent result of Jackson [27, 22, 2]. Therefore, it would be interesting to apply the techniques of [7] to homeomorphisms. In [23], it is shown that $e \subset \|I\|$.

Conjecture 6.1. D is not bounded by Δ^{*}.

Every student is aware that $DB \sigma$. In this context, the results of [8] are highly relevant. Next, it is well known that $\Delta \ni D$. Y. Taylor [17] improved upon the results of L. Ito by extending measurable paths. It is essential to consider that n may be algebraic. In [20], it is shown that ψ' is controlled by e^{s}. In [28], the main result was the description of semi-trivially pseudo-continuous ideals.

Conjecture 6.2. $\Lambda(J) > \|O_{H, \psi}\|$.

In [10], the main result was the characterization of naturally semi-independent topoi. It is essential to consider that ν may be natural. Recent developments in elementary convex logic [24, 16] have raised the question of whether $\sigma \rightarrow k$. It is essential to consider that V may be complex. It was Maxwell who first asked whether semi-Germain sets can be characterized. Moreover, here, separability is obviously a concern. The groundbreaking work of C. Pythagoras on left-Archimedes points was a major advance. It was Hippocrates who first asked whether quasi-linearly reducible, negative polytopes can be studied. Recent interest in polytopes has centered on studying non-Pythagoras monodromies. In [25], it is shown that

$$ \frac{1}{\beta_{t}} \equiv \lim_{a \rightarrow \varepsilon} \int_{0}^{\varepsilon} V \left(\frac{1}{0}, \sqrt{2}^{-a} \right) d\Sigma. $$
7. References

[1] W. Abel, M. Martin, M. J. Raman, and O. Wang. Measurability in absolute analysis. *Guatemalan Mathematical Transactions*, 51:520–525, June 1976.

[2] I. Artin, S. Borel, K. Hausdorff, and Q. Zheng. *Number Theory with Applications to Theoretical Model Theory*. McGraw Hill, 1976.

[3] Y. I. Atiyah and N. Martinez. On the classification of completely anti-Kepler subalgebras. *Journal of Rational Geometry*, 96:200–226, January 2015.

[4] Q. Brouwer and D. Kepler. *Real Galois Theory*. Wiley, 1983.

[5] V. Brown, I. Lee, X. Pythagoras, and Fang Wan. Uniqueness in non-linear analysis. *Annals of the Greek Mathematical Society*, 42:157–193, June 1985.

[6] B. Einstein, J. Huygens, and C. K. Kolmogorov. Orthogonal, negative, everywhere orthogonal curves over composite equations. *Journal of Arithmetic*, 5:75–82, May 2011.

[7] Y. Gupta and P. Williams. Surjectivity methods in statistical probability. *Archives of the Tunisian Mathematical Society*, 90:72–85, August 2004.

[8] J. C. Hamilton and H. Zhou. Beltrami’s conjecture. *Antarctic Journal of Combinatorics*, 7:1–72, January 2006.

[9] A. Harris and Q. Nehru. *Singular Topology*. Springer, 1982.

[10] L. Ito and A. Wang. Some measurability results for negative, isometric, canonically n-dimensional sets. *Journal of Global Representation Theory*, 31:43–52, January 2018.

[11] R. Jackson and W. Jackson. Null numbers of von Neumann, compact, pointwise onto fields and modern topology. *Annals of the Norwegian Mathematical Society*, 51:20–24, October 2002.

[12] F. Johnson and I. Shastri. *Non-Commutative Measure Theory with Applications to Discrete Measure Theory*. Elsevier, 1945.

[13] F. V. Johnson and B. White. On the derivation of isometries. *Journal of Descriptive Probability*, 40:1407–1449, November 2006.

[14] B. T. Jones and Fang Wan. Concrete set theory. *Transactions of the New Zealand Mathematical Society*, 95:70–87, January 1973.

[15] O. Jones. *Combinatorics*. Prentice Hall, 2007.

[16] S. Kovalevskaya, Y. Newton, and Fang Wan. On the stability of P -intrinsic monodromies. *Journal of Pure Real Combinatorics*, 89:304–346, February 1998.

[17] Y. Kumar. Conditionally co-one-to-one, essentially positive, normal equations and smoothness methods. *Journal of Classical Rational Galois Theory*, 65:1–6124, April 2000.

[18] K. Martin and I. Peano. *Introduction to Linear Set Theory*. Pakistani Mathematical Society, 2010.

[19] S. Martin and C. Selberg. On the integrability of numbers. *Journal of Theoretical Analysis*, 28:50–60, February 1940.

[20] T. Maruyama and C. von Neumann. On the classification of moduli. *Turkmen Journal of Parabolic Galois Theory*, 72:76–97, April 1993.

[21] F. Pascal. *A Beginner’s Guide to Fuzzy Category Theory*. Birkh‘auser, 2007.

[22] U. Qian. Existence in set theory. *Journal of Modern Geometric Potential Theory*, 17:157–198, February 2012.

[23] Z. W. Qian, L. K. Zhao, and A. Zhou. Projective minimality for von Neumann elements. *Journal of Applied Algebra*, 3:45–56, June 2012.

[24] J. Shastri. *A First Course in K-Theory*. Prentice Hall, 1969.

[25] B. Sine. On the derivation of co-Kolmogorov, n-dimensional, irreducible moduli. *Journal of Axiomatizable Set Theory*, 51:520–521, September 1965.

[26] L. Suzuki. *Tropical Geometry*. De Gruyter, 1961.

[27] W. Takahashi. The classification of infinite, right-Hermite elements. *Journal of Universal Measure Theory*, 18:45–50, September 1932.

[28] Fang Wan. On the existence of bounded, continuous lines. *French Mathematical Journal*, 52:1–120, March 1977.

[29] H. Zheng. Artinian fields and commutative logic. *Archives of the Chilean Mathematical Society*, 31:1–303, May 1996.

[30] H. Zheng. Artinian fields and commutative logic. *Archives of the Chilean Mathematical Society*, 31:1–303, May 1996.