Harpalycin 2 inhibits the enzymatic and platelet aggregation activities of PrTX-III, a D49 phospholipase A₂ from Bothrops pirajai venom

Rafael M Ximenes¹, Renata S Alves², Ticiane P Pereira², Renata M Araújo³,⁴, Edilberto R Silveira⁴, Marcelo M Rabello⁵, Marcelo Z Hernandes⁵, Veronica CG Soares⁶,⁷, Daniel Bristo⁷, Camila L Pires⁷, Daniela O Toyama⁸, Henrique H Gaeta⁷, Helena SA Monteiro¹ and Marcos H Toyama⁷*

Abstract

Background: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A₂ are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A₂ drugs.

Methods: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated.

Results: HP-2 inhibited the enzymatic activity of PrTX-III (IC₅₀ 11.34 ± 0.28 μg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA₂ inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid.

Conclusion: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.

Keywords: PrTX-III, Phospholipase A₂, Bothrops pirajai, Harpalyce brasiliana, Isoflavone
Background

Medicinal plants have been used in traditional medicine as an alternative and supplementary therapy to treat snakebite poisoning, and many other health problems, such as inflammatory disorders [1]. In 1982, Nakagawa et al. [2] tested the anti-ophidian activity of “Específico Pessoa”, a Brazilian phytotherapeutic tincture used in folk medicine to treat snakebite, mainly in the Amazon region. Two prenylated pterocarpans, the cabenegrins A-I and A-II, had been pointed out as responsible for this activity. Several years later, the same compounds were found in Harpalyce brasiliana Benth (Papilionoideae), popularly known in the Northeast of Brazil as “raiz-de-cobra” (Port. Lit.: snake-root). Its roots have been used to treat snakebite [3], while its leaves are claimed to be anti-inflammatory [Personal ethnopharmacological survey].

Secretory phospholipases A₂ (sPLA₂) are present in most snake venoms and show important neurotoxic and myotoxic activities, and most of them are not fully neutralized by commercial antivenom sera [4]. Flavonoids exhibit different inhibitory levels in group I sPLA₂ from porcine pancreas and Naja naja venom, and in group II sPLA₂ from Vipera russelli and Crotalus atrox venoms. The most important regions involved in the inhibition of sPLA₂ have been reported to be the hydroxyl groups at 30- and 40-positions [5,6]. Iglesias et al. [7] showed that flavonoids such as morin can modify the secondary structure of the snake venom sPLA₂. Toyama et al. [8] showed that 7-hydroxycoumarin interacts with sPLA₂ and causes some structural modifications, indicating its potential use to suppress inflammation induced by sPLA₂.

Group II sPLA₂ enzymes have been found in inflammatory sites in animal models, as well as in synovial fluids from patients with rheumatoid arthritis and a number of inflammatory diseases, in which, a correlation between serum sPLA₂ levels and disease activity has been observed [9,10]. Exogenous administration of sPLA₂, such as snake venom sPLA₂, induces and/or exacerbates inflammatory response in animals [11,12]. Structural analyses revealed that snake venom sPLA₂ has a similar molecular profile to those of human secretory PLA₂ as well as a conserved catalytic site [13], thus making them useful tools for the search of new anti-phospholipase A₂ drugs.

Pterocarpans have been pointed out as possible compounds involved in snakebite protection of “Específico Pessoa”. These molecules are characterized as a group of isoflavonoids formed from isoflavones. Here, the anti-phospholipasic activity of harpalycin 2 (HP-2) was found [14]. These molecules are characterized as a group of isoflavonoids formed from isoflavones. Here, the anti-phospholipasic activity of harpalycin 2 (HP-2) was found [14].

Methods

Venom

Bothrops pirajai venom was purchased from Bio-Agents Serpentarium in the city of Batatais (São Paulo, Brazil).

Plant material

Leaves of Harpalyce brasiliana Benth. were collected at the Chapada do Araripe, Barbalha (Ceará, Brazil) by Prof. Edilberto Rocha Silveira. Botanical authentication was made by Prof. Edson P. Nunes of the Department of Biology, Federal University of Ceará. Voucher specimen (number: 32 525) has been deposited at the Prisco Bezerra Herbarium (EAC), Department de Biologia, Federal Universidade of Ceará, Fortaleza (Ceará, Brazil).

General procedures

The mass spectra were obtained on a Hewlett-Packard 5971 mass spectrometer by electron impact ionization (70 eV). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz for ¹H and 125 MHz for ¹³C); chemical shifts were expressed in ppm and were referenced to residual DMSO (2.5 and 39.5 ppm). Silica Gel 60 (Merck, 70–230 mesh) was used for analytical TLC. Column chromatographies were performed over silica gel (Merck, 60 F254 230–400 mesh).

Extraction and isolation of harpalycin 2

Leaves of Harpalyce brasiliana were pulverized and extracted with EtOH at room temperature. The solvent was removed under reduced pressure which produced a dark viscous extract (HBFE). Liquid-liquid partition of a water suspension of HBFE (110 g) using petrol ether, CHCl₃, EtOAc and n-BuOH yielded five fractions after solvent evaporation or lyophilization: HBFEep (24.5 g), HBFEc (22.4 g), HBFEa (6.8 g), HBFeb (30.4 g) and HBFebra (21.2 g).

Flash chromatography of HBFC (12.0 g) using n-hexane and EtOAc as binary mixtures of increasing polarity afforded 30 fractions, which were pooled in 9 fractions after thin layer chromatography (TLC) analysis. HBFEc (10–12) presented a yellow precipitate, yielding 120.0 mg of a white amorphous solid (m.p. 206.9–208.9°C). Spectrometric analysis showed the structure of the isoflavone harpalycin 2. The fractions HBFEc (8–9) and HBFEc (13–17) were purified, using the same method, yielding more 200.0 mg of harpalycin 2 (HP-2).

Purification of PrTX-III

Bothrops pirajai venom was first fractioned in two consecutive chromatographic steps as described by Toyama et al. [15]. Approximately 20 mg of the lyophilized venom was dissolved in 250 μL of 0.05 M ammonium bicarbonate, pH 7.8 (Buffer A). After homogenization, venom solution was clarified by centrifugation at 10,000 rpm for 3 min. The supernatant was inserted into a Protein Pack SP 5PW
column (0.78 x 7.0 cm) and the elution performed using a linear gradient of concentration between 0.05 and 1.0 M ammonium bicarbonate with 750 μL of 0.1% (v/v) trifluoroacetic acid (Buffer B). The fractions were collected, lyophilized and clarified by centrifugation and the supernatant inserted into a μ-Bondapack C18 column (0.78 cm x 30 cm) (Waters 991-PDA system). Elution of peaks proceeded with a linear gradient between 0% and 66.5% (v/v) acetonitrile (solvent B) in 0.1% (v/v) trifluoroacetic acid, at a flow rate of 2.0 mL/min. Absorbances were monitored at 280 nm. Fractions were collected, lyophilized and stored at −20°C. The PrTX-III fraction was identified by the retention time and the measurement of the catalytic activity (since PrTX-III is the activity isoform of B. pirajai venom). The purity degree of PrTX-III was evaluated by Tricine SDS-PAGE and by mass spectrometry on a MALDI-TOF mass spectrometer, as previously described [12,16].

Measurement of sPLA₂ activity

sPLA₂ activity was measured following the protocols described by Lee et al. [13] and modified by Toyama et al. [12] for 96-well plate, using 4-nitro-3-octanoyloxy-benzoic acid (4N3OBA, manufactured by BIOMOL, USA) as the substrate. Enzyme activity was calculated based on the increase in absorbance after 20 min. All assays were performed using n = 12 and absorbances at 425 nm were measured using a SpectraMax 340 multiwell plate reader (Molecular Devices, Sunnyvale, CA). After the addition of sPLA₂ (20 μg), the reaction mixture was incubated for 40 min at 37°C, and the absorbance read at 10 min intervals. For the estimation of the IC₅₀ of harpalycin 2 for PrTX-III, different concentrations of HP-2 (5, 10, 20, 40 and 80 μg) were added to each well. The remaining enzymatic assay was conducted as described above. Harpalycin 2 was previously dissolved in DMSO 1%.

Incubation of sPLA₂ with harpalycin 2 and purification of HP-2 treated sPLA₂ (PrTX-III: HP-2) and amino acid analysis

The incubation of sPLA₂ with HP-2 (w: w; 4:1), followed the procedures described by Iglesias et al. [7]. Briefly, HP-2 was dissolved in DMSO 1%. 250 μL of HP-2 solution was added to 1,000 μL of homogenized solution of PrTX-III. The mixed solution was incubated for 60 min in a water bath at 37°C. Samples of 200 μL of this mixture were loaded into a preparative reverse phase HPLC column to separate the treated enzyme (PrTX-III: HP-2) from HP-2. After column equilibration with buffer A (aqueous solution of 0.1% TFA), samples were eluted using a discontinuous gradient of buffer B (66.6% of acetonitrile in 0.1% TFA) at a constant flow rate of 2.0 mL/min. The chromatographic run was monitored at 214 nm for detection of PrTX-III, PrTX-III: HP-2 and HP-2. 1 nmol of purified protein (PrTX-III or PrTX-III: HP-2) was hydrolyzed with 6 N HCl (200 μL) in the presence of 10μL of phenol solution for prevention of unspecific amino acid oxidation. Amino acid hydrolysis was performed at 106°C for 24 h. After this time, the excess HCl was removed and the hydrolyzed amino acids were rehydrated with a solution of ethanol: water: triethylamine (v: v; 2:2:1). Post-column derivatization was performed with an aqueous solution of phenylisothiocyanate (ethanol: water: triethylamine: phenylisothiocyanate; v: v; 7:1:1:1). Samples and amino acid standards were derivatized using a PICO-TAG amino acid analyzer system (Waters, USA).

Molecular exclusion chromatography

A molecular exclusion chromatography was initially performed using an AP-1 column (Waters, 1x60 cm) previous packed with Superdex 75 (GE Healthcare Pharmacia) as previously described by Oliveira et al. [17]. For molecular exclusion chromatography of the PrTX-III and PrTX-III: HP-2 as well as the protein marker, 1 mg of the protein sample was dissolved in the same buffer used for equilibration of the chromatographic column and sample elution (Potassium phosphate buffer 0.05 M, pH 7.5). Samples were dissolved in 250 μL of this buffer and then centrifuged at 4,500 g for 5 minutes. 200 μL of supernatant was recovered and taken at 37°C for 60 minutes before injection into the column. Injections of 25 μL of each sample were carried out through the column; and elution of fractions was performed under isocratic condition with constant flow rate of 0.2 mL/min and monitored at 280 nm.

Mass spectrometry

The molecular mass of PrTX-III and PrTX-III: HP-2 were determined by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry using a Voyager-DE PRO MALDI-TOF mass spectrometer (Applied Biosystems®, Life Technologies™, USA). One microliter of samples (PrTX-III and PrTX-III: HP-2) in 0.1% TFA was mixed with 2 μL of the matrix a-cyano-4-hydroxycinnamic acid, 50% acetonitrile, and 0.1% TFA (v/v). The matrix was prepared with 30% acetonitrile and 0.1% TFA (v/v). The equipment conditions were as follows: accelerating voltage of 25 kV, laser fixed at 2,890 μJ/com2, delay of 300 ns and linear analysis mode.

Circular dichroism spectroscopy

Purified enzymes - native and HP-2 treated PrTX-III – were dissolved in a 10 mM sodium phosphate buffer (pH 7.4) and the final protein concentrations were adjusted to 8.7 mM. After centrifugation at 4,000 g for 5 min, samples were transferred to a 1 mm pathlength quartz cuvette. Circular dichroism spectra in the wavelength range of 185–300 nm were acquired in-house with a J720 spectropolarimeter (Jasco®, Japan) using a bandwidth of 1 nm and a response time of 1 s. Data collection was performed at room temperature with a scanning speed of 100 nm/min. Nine scans were taken for each sample and all spectra were corrected by subtraction of buffer blanks.
Intrinsic fluorescence
The relative intrinsic fluorescence intensity of native PrTX-III or HP-2 treated PrTX-III (PrTX-III: HP-2) was monitored with a spectrofluorimeter (Shimadzu©, Japan). 2.0 mL of the reaction mixtures, consisting of 100 mM Tris–HCl buffer (pH 7.4), sPLA2 (200 μg/mL) and 5 mM CaCl2, were put into a 10 mm pathlength quartz cuvette. Fluorescence was measured at between 300 and 450 nm after excitation at 280 nm.

Platelet aggregation studies
The platelet aggregation activities were conducted as described by Oliveira et al. [18] and dos Santos et al. [19]. Venous blood was collected with informed consent from healthy volunteers who formally denied taking any medication in the previous 14 days. All experiments using human material were carried out according to Helsinki Declaration and were approved by the Ethical Committee for Human Research of State University of Campinas under the no. 0323.0.1146.000-09. Blood was collected by a two-syringe technique using polypropylene syringes and 19-gauge needles, and immediately transferred into polypropylene tubes containing 1/10 of final volume of 3.8% trisodium citrate. After removing the platelet-rich plasma (PRP), the remaining blood was prepared by centrifugation at 200 g for 10 min and the washed platelet solution (WP) was obtained from the residue by centrifugation of citrated blood at 1,500 g for 20 min. The platelets were left for 1 hour at room temperature to recover their sensitivity to aggregating agents. Platelet counts were performed on a Coulter S Plus (Coulter Electronics, Hialeah, FL) or by phase-contrast microscopy. Platelet aggregation was carried out using 400 μL of the washed platelets solution in a cuvette and kept at 37°C with constant stirring. The desired concentration of protein was added and 3 minutes after to the addition, the aggregation was recorded for 5–10 min by using an aggregometer (Payton Scientific Inc., USA). Aggregation experiments were performed with 10 μg of PrTX-III and PrTX-III: HP-2, PrTX-III: aristolochic acid or PrTX-III: p-bromophenacyl bromide. In order to elucidate HP-2 mode of action, 10 μL of HP-2 (5 mg/mL), AACOCF3 (1 mM) and INDO (1 mM) were added 5 minutes before the addition of native PrTX-III (10 μg) or arachidonic acid (AA, 50 mM).

Docking studies
The structural optimizations of the harpalycin 2 (HP-2), aristolochic acid (Aris Ac) and p-bromophenacyl bromide (p-BPB) ligands were initially achieved using the AM1 method [20] implemented in the BioMedCache program [21] with default values for the convergence criteria. Docking calculations were performed with the GOLD 4.0 program [22] to obtain the in silico affinity of the ligands with respect to the PrTX-III target. The tridimensional coordinates of the target were taken from the RCSB Protein Data Bank (PDB), under the PDB code 1GMZ, as a dimeric quaternary structure. The “A” chain was chosen for all the calculations. The docking calculations were performed to consider the flexibility of all the ligands and the flexibility of the target, in order to represent the induced fit generated by the presence of non-native ligands, using the following approach: the residues Phe5, Ile9, Phe18, Tyr21, Val22, Tyr27, His47, Asp48, Lys60 and Phe96 were configured in such a way that their side-chain torsions were considered active during the calculations. The active site was defined as all the atoms within a radius of 8.0 Å from the co-crystallized isopropyl alcohol (IPA).
Results were expressed as mean ± S.E.M. and analyzed by ANOVA followed by Dunnett’s test using GraphPad Prism® 5.0 with significance set at p < 0.05*.

Statistical analysis

Results were expressed as mean ± S.E.M. and analyzed by ANOVA followed by Dunnett’s test using GraphPad Prism® 5.0 with significance set at p < 0.05*.

Results

Harpalycin 2 (HP-2) was isolated as a white amorphous solid with m.p. 232.6-234.4°C. Its molecular formula of C_{21}H_{18}O_{7} was established by the molecular ion at m/z 382 Daltons in the MS spectrum. Structure elucidation was performed by spectroscopic means, including 1D and 2D NMR, and comparison with the data from literature [3]. Harpalycin 2 (HP-2) showed a potent inhibitory capacity when compared to the classical sPLA_{2} inhibitor p-bromophenacyl bromide (p-BPB), with an IC_{50} calculated at 11.34 ± 0.28 μg per well, whereas p-BPB showed only a marginal inhibition of PrTX-III catalytic active (Figure 1a). The isolation of PrTX-III yielded 15% (w: w). Native PrTX-III subjected to molecular mass exclusion chromatography showed the presence of a main fraction with a molecular mass that was estimated at 25,000 Da and a minor fraction with molecular mass estimated at 14,000 Da. The chromatographic profile of PrTX-III: HP-2 revealed the presence of a main fraction, which had its molecular mass estimated at 14,000 Da, and a minor fraction with molecular mass of 20,000 Da. According to our data, the main fraction eluted from the sample of PrTX-III: HP-2 represented approximately 90% of the total. These results showed that HP-2 treatment of PrTX-III induced a reduction of the dimerization of PrTX-III, while the native PrTX-III showed a typical transition from the monomer to dimer (Figure 1b). The chromatographic results were also corroborated using a Tricine SDS-PAGE analysis (Figure 1c).
The reverse phase HPLC profile of native PrTX-III indicated that sPLA2 fraction was eluted at 31.7 minutes whereas PrTX-III: HP-2 was eluted at 32.3 minutes, showing a discreet shift in the retention time of this protein (Figure 2a). The amino acid analysis of native and PrTX-III previously treated with HP-2 did not revealed changes in the amino acid amount in both samples (Figure 2b). Mass spectrometry data from the native PrTX-III and PrTX-III: HP-2 showed masses of 13,750.3 Da and 13,736.2 Da, respectively. These results suggest that binding of the HP-2 with PrTX-III did not involve the formation of stable complexes. The discrepancy between results from the amino acid analysis and spectrometric studies is probably due to the presence of HCl 6 N used for rupturing the amino acid bond that could revert the acid condition of some amino acids or restore the H+ lost in the reaction with HP-2 with PrTX-III. This is true for the PICO-TAG amino acid analysis based in the post column derivatization and the final
results also did not differentiate Asp from Asn or Glu from Gln.

The CD spectra of the PrTX-III: HP-2 showed an evident decrease of total alpha-helix as well as an increase of beta-sheets when compared with the spectra of native PrTX-III, suggesting a partial unfolding of the protein induced by HP-2 treatment (Figure 3a). This data was reinforced by the increase in the tryptophan fluorescence of the treated protein as seen in Figure 3b.

The platelet aggregation observed for native PrTX-III was blocked by treatment of PrTX-III with HP-2, and partially inhibited by the treatment with aristolochic acid (ArisAc) p-BPB (Figure 4a). Figure 4a also shows that the PrTX-III treated with HP-2 was able to trigger an initial platelet aggregation of approximately 20%, which was rapidly reverted. This effect was not very evident for the treatment of PrTX-III with aristolochic acid. HP-2 previously added to the platelets inhibited the aggregating effect induced by arachidonic acid as well as the effect induced by PrTX-III (Figure 4b). The effect of HP-2 was similar that of AAOCF3 (arachidonyl trifluoromethyl ketone), a specific PLA2 inhibitor. Previous treatment with indomethacin only partially inhibited the aggregation induced by PrTX-III (Figure 4c), showing that the phospholipase A2

Figure 5 Superposition of the best docking solution for the ligands harpalycin 2, aristolochic acid and p-bromophenacyl bromide (stick models in orange, red and green colors, respectively). The co-crystallized isopropyl alcohol (IPA) is showed as a gray ball model. The hydrogen atoms were omitted for clarity reasons.

Figure 6 Detailed view of the best docking solution for the harpalycin 2 ligand. The hydrogen bonds are showed in black lines. The hydrogen atoms were omitted for clarity reasons.
activity is crucial to full platelet aggregation but that the PLA2 downstream cascade is also involved, which was corroborated by the fact that HP-2 also inhibited arachidonic acid induced platelet aggregation.

The superposition of the best docking solutions for the harpalycin 2 (HP-2), aristolochic acid and p-bromophenacyl bromide ligands can be observed in Figure 5. The docking scores for these calculations were 36.78, 35.29 and 26.63, respectively, showing a better affinity between the PrTX-III target and harpalycin 2, in comparison with aristolochic acid and p-bromophenacyl bromide. A detailed inspection of the binding mode of HP-2 in PrTX-III can be found in Figure 6. The molecular reasons for the greater stability (greater docking score) of the harpalycin 2 ligand in the active site of PrTX-III can be explained mainly by the presence of some important intermolecular interactions, in particular, a hydrogen bond that harpalycin 2 establishes with the residue Asp48, with 2.88 Å (see Figure 6). The detailed comparison between the docking results obtained for these three ligands can be found in Table 1.

Discussion

Snake venoms are rich sources of phospholipase A2 and PLA2-homologues, active calcium-binding Asp49 enzymes and essentially inactive Lys49 proteins, respectively. They are responsible for multiple pharmacological effects, some of which are dependent on catalytic activity and others of which are not. The pharmacological or biological effects that do not depend on enzymatic activity are driven by other pharmacological regions or sites that include calcium-binding loop, beta-wing and C-terminal region [16,19,23,24]. The precise location or mapping of these pharmacological sites is not easy to find due to the fact that the residues involved in myotoxicity and neurotoxicity significantly overlap, suggesting that multiple biological effects observed in many snake venom PLA2s are a consequence of superposed structural determinants on the protein surface [24]. However, the consensual idea is that enzymatic activity of PLA2 is the major factor responsible for the majority of the pharmacological activity induced by the PLA2 in snake venom, such as inflammatory activity, especially due to the arachidonic acid cleavage [25]. PrTX-III showed a sigmoidal behavior on the substrate concentration, which implies cooperation of substrate binding. This effect has been described for other sPLA2 such as those isolated from Bothrops jararacussu [26] and Crotalus durissus terrificus [17] venoms. The transition between the monomers to dimmers increases the phospholipasic A2 activity 100 times, which could explain in part the inhibition of PrTX-III by HP-2, since the treatment with HP-2 showed an increase of the monomer form over the dimmeric form.

Crystallographic studies showed that PrTX-III has a putative dimmer interface identified in the crystal lattice which brings together the calcium-binding loops of neighboring molecules, along with the C-terminal regions which are disulfide bonded to those loops, thereby offering a possible route of communication between active sites. The interaction of HP-2 with PrTX-III seems to induce a chemical modification of crucial amino acid residues involved in the sPLA2 catalysis. It could also modify some important residues related to the dimmer formation, agreeing in CD spectra and fluorescence measurement which suggests that HP-2 induced a partial unfolding of PrTX-III. The N-terminal region as well as the calcium-binding loop and the alpha-helix of sPLA2 play an important role for the sPLA2 catalysis. The modification in these region leads to an irreversible lost of enzymatic activity of sPLA2 and/or its ability for binding to cell membrane [27].

PrTX-III induced a platelet aggregation in a dose dependent manner and this effect was abolished by

| Table 1 Details of the docking results and the intermolecular interactions identified for the harpalycin 2 (HP-2), aristolochic acid (Aris Ac) and p-bromophenacyl bromide (p-BPB) ligands with the PrTX-III target |
|-----------------|-----------------|-----------------|
| | Inhibition % of platelet aggregation | GOLD score | Residues |
| | HP-2 | Aris Ac | p-BPB |
| | 95 | 55 | 35 |
| HP-2 | 36.78 | 35.29 | 26.63 |
| Residues | HB | HP | HB | HP |
| LEU2 | − | yes | − | − |
| PHE5 | − | − | − | yes |
| ILE9 | − | − | yes | − |
| PRO17 | − | yes | − | − |
| PHE18 | − | yes | − | − |
| TYR21 | − | − | yes | − |
| ASP48 | 2.88 | − | − | − |
| PHE96 | − | − | yes | − |

The inhibition % of platelet aggregation data was included for comparison reasons.

* HB stands for Hydrogen Bonds and HP for Hydrophobic Interactions.
** All HB distance values are given in Å.
previous treatment with HP-2. At the beginning of the experiment, however, we observed a slight aggregation that was quickly reverted. Previous report by Polgár et al. [28] suggests that a glycosphosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA₂ on platelets. Some specific mutation studies carried out with PLA₂ have shown that the binding of secretory PLA₂ to this receptor involves a specific recognition of the CRD region of this receptor, which is located near the catalytic site of PLA₂ and calcium-binding loop [18]. The binding of HP-2 to the active site of PrTX-III could interfere with this ability. The HP-2 effect on the platelet resembles the effect induced by AACOCF₃, which is a selective PLA₂ inhibitor, showing a potential anti-inflammatory effect of harpaly cin 2 that could be derived from PLA₂ inhibition. Indomethacin partially inhibited the aggregating effect of PrTX-III pointing to the role of cyclooxygenases in this pharmacological action. HP-2 could also being acting in this pathway, since it can block the platelet aggregating effect induced by arachidonic acid, which is a step forward in the downstream cascade of PLA₂/COX-1/2/icosanoids.

These experimental results corroborate with the in silico observations, where harpaly cin 2 ligand presented a greater affinity for the PrTX-III active site, in comparison with the two other ligands (aristolochic acid and p-BPB). This trend implies that the ligands with the best activities have greater stabilities (high docking scores) within the PrTX-III target according to the docking results, and the ligands with the worst activities have weak interactions (low scores) with the same target. These results suggest that the inhibition of platelet aggregation is due to the inhibition of the interaction between platelet substrate and the sPLA₂.

Conclusions
Our results of the harpaly cin 2 effect on PrTX-III are important as they indicate a possible anti-ophidian and anti-inflammatory activity of this compound and, as well as in part, corroborate the ethnobotanical use that is described for H. brasiliiana in the Northeast of Brazil. The in silico results also gave us clues about how these molecules interact in the active site of phospholipases A₂ inhibiting their enzymatic activity.

References
1. Pithayanukul P, Ruenraongsgk P, Bovavoda R, Pakmanee N, Suttisri R, Saenoon S: Inhibition of Naja kaouthia venom activities by plants polyphenols. J Ethnopharmacol 2007, 97:527–533.
2. Nakagawa M, Nakanishi K, Darko LL, Vick IA: Structures of cabenegrins A-I and A-II, potent anti-snake venoms. Tetrahedron Lett 1982, 23:3835–3838.
3. Silva GL, Machado MIL, Matos FJA, Braz-Filho R, Silveira ER: A new isoflavone isolated from Harpalocyclus braziliana. J Braz Chem Soc 1999, 10:438–442.
4. Ximenes RM: Avaliação da atividade da cabenegrina A-II frente às alterações bioquímicas e hemotológicas e aos efeitos presônicos induzidos pelo veneno de Bothrops jararacussu em ratos. Dissertação de Mestrado. Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia 2009.
5. Lindahl M, Tagesson C: Flavonoids as phospholipase A₂ inhibitors: importance of their structure for selective inhibition of group II phospholipase A₂. Inflammation 1997, 21:347–453.
6. Rotelli AE, Guardia T, Juarez AO, de la Rocha NE, Pelzer LE: Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 2003, 48:601–606.
7. Iglesias CV, Aparicio R, Rodrigues-Simioni L, Camargo EA, Antunes E, Marangoni S, Toyama DO, Beriaim LO, Monteiro HS, Toyama MH: Effects of morin on snake venom phospholipase A₂ (PLA₂). Toxicon 2005, 46:751–758.
8. Toyama DO, Marangoni S, Diz-Filho EBS, Oliveira SCB, Toyama MH: Effect of Umbelliferone (7-hydroxycoumarin, 7-HOC) on the enzymatic, edematogenic and necrotic activities of secretory phospholipase A₂ (sPLA₂) isolated from Crotalus durissus collilineatus venom. Toxicon 2009, 53:417–426.
9. Cirino G: Multiple control in inflammation. Extracellular and intracellular phospholipase A₂, inducible and constitutive cyclooxygenase and inducible nitric oxide synthase. Biochem Pharmacol 1985, 35:105–111.
10. Fuentes L, Hernandez M, Nieto ML, Censpo MS: Biological effects of group IIA secreted phospholipase A₂, FEBS Lett 2002, 531:7–11.
11. Gil B, Sanz MJ, Terencio MC, Gunasegaran R, Payá M, Alcaraz MJ: Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A₂ with anti-inflammatory activity. Biochem Pharmacol 1997, 55:733–740.
12. Toyama MH, de Oliveira DG, Beriam LO, Novello JC, Rodrigues-Simioni L, Marangoni S. Structural, enzymatic and biological properties of new PLA2 (2) isoform from Crotalus durissus terrificus venom. Toxicon 2003, 41:1033–1038.

13. Lee WH, Toyama MH, Soares AM, Giglio JR, Marangoni S, Polikarpov I. Crystallization and preliminary X-ray diffraction studies of piratoxin II, a D-49 phospholipase A2 from the venom of Bothrops pirajai. Acta Crystallogr D: Biol Crystallogr 1999, 55:1229–1230.

14. Soares AM, Andrião-Escarso SH, Bortoleto RK, Rodrigues-Simioni L, Arni RK, Ward RJ, Gutiérrez JM, Giglio JR. Dissociation of Enzymatic and Pharmacological Properties of Piratoxins-I and –III, two myotoxic phospholipases A2 from Bothrops pirajai sanke venom. Arc Biochem Biophys 2001, 387:188–196.

15. Toyama MH, Costa PD, Novello JC, Oliveira B, Giglio JR, da Cruz-Höfling MA, Marangoni S. Purification and amino acid sequence of MP-III 4R D-49 phospholipase A2 from Bothrops pirajai snake venom, a toxin with moderate PLA2, and anticoagulant activities and high myotoxic activity. J Protein Chem 1999, 18:371–378.

16. Toyama MH, Toyama DO, Joazeiro PP, Cameiro EM, Beriam LO, Marangoni S, Boscher AC. Biological and structural characterization of a new PLA2 from the Crotalus durissus collilineatus venom. Protein J 2005, 24:103–112.

17. Oliveira DG, Toyama MH, Novello JC, Beriam LO, Marangoni S. Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom. J Protein Chem 2002, 21:161–168.

18. Oliveira SC, Fonseca IV, Antunes E, Camargo EA, Morgante PP, Aparício R, Toyama DO, Beriam LO, Nunes EV, Cavada BS, Nagano CS, Sampaio AH, Nascimento KS, Toyama MH. Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isoelectric isolated from the Bryothamnian triquetrum red alga. BMC Biochem 2008, 9:16.

19. dos Santos ML, Fagundes FH, Teixeira BR, Toyama MH, Aparício R. Purification and Preliminary Crystallographic Analysis of a New Lys49-PLA2 from B Jararacussu. Int J Mol Sci 2008, 9:736–750.

20. Dewar MJ, Zobisch EG, Healy EF, Stewart JP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985, 107:3902–3909.

21. BioMedCache version 6.1, Copyright© 2000–2003 Fujitsu Limited, Copyright© 1989–2000 Oxford Molecular Ltd. http://www.CACheSoftware.com.

22. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking. J Mol Biol 1997, 267:727–748.

23. Lomonte B, Angulo Y, Calderón L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 2003, 42:885–901.

24. Chiolet L, Ward RJ. Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 2003, 42:869–883.

25. Yadgar S, Cohen Y, Shoseyov D. Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim Biophys Acta 2006, 1761:1373–1382.

26. Bonfim VL, Toyama MH, Novello JC, Hyslop S, Oliveira CR, Rodrigues-Simioni L, Marangoni S. Isolation and enzymatic characterization of a basic phospholipase A2 from Bothrops jararacussu snake venom. J Protein Chem 2001, 20:239–254.

27. Berg OG, Geib MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A2-paradigm. Chem Rev 2001, 101:2613–2653.

28. Polglár J, Kramer RM, Um SL, Jakubowski JA, Clementon KJ. Human group II 14 kDa phospholipase A2 activates human platelets. Biochem J 1997, 327:259–265.

Cite this article as: Ximenes et al.: Harpalycein 2 inhibits the enzymatic and platelet aggregation activities of PrTX-III, a D49 phospholipase A2 from Bothrops pirajai venom. BMC Complementary and Alternative Medicine 2012, 12:139.