Literature meta-analysis about the efficacy of anti-programmed death protein 1 and anti-programmed death ligand 1 re-challenge in cancer patients

CURRENT STATUS: POSTED

Elisa Gobbini
Centre Hospitalier Universitaire Grenoble Alpes
elisa.gobbini@hotmail.it

Julie Charles
Centre Hospitalier Universitaire Grenoble Alpes

Anne-Claire Toffart
Centre Hospitalier Universitaire Grenoble Alpes

Marie-Thérèse Leccia
Centre Hospitalier Universitaire Grenoble Alpes

Denis Moro-Sibilot
Centre Hospitalier Universitaire Grenoble Alpes

Matteo Giaj Levra
Centre Hospitalier Universitaire Grenoble Alpes

DOI: 10.21203/rs.3.rs-18268/v1

SUBJECT AREAS
Oncology Cancer Biology

KEYWORDS
Anti-programmed death protein 1, Anti-programmed death ligand 1, Immune checkpoint inhibitor, Re-challenge, Solid cancer, Meta-analysis
Abstract

Background

Immune checkpoint inhibitor (ICPis) re-challenge could be an attractive therapeutic option considering its good safety profile. However, little data is available regarding anti-PD-1/anti-PD-L1 retreatment. We conducted a meta-analysis focusing on outcomes of solid cancer patients performing this strategy.

Methods

Fourteen full papers involving 74 patients were included. Individual data about best response or progression-free survival (PFS) upon the first and second course of anti-PD-1/ anti-PD-L1 were collected.

Results

Non-small-cell lung cancer (53%) and melanoma (34%) were the most represented cancers. Higher objective response (46% versus 24%, p = 4.10 -4) and disease control rates (73% versus 52%, p = 7.10 -3) were obtained upon the first ICPl course compared to re-challenge. No association between responses obtained with the two ICPis courses was found (p = 3.10 -1). The PFS upon the first ICPl (PFS1) was longer than that after re-challenge (PFSR) (6.6 versus 2.8 months, hazard ratio (HR) 0.57, p = 2.10 -3). A longer PFSR was obtained in patients with a longer PFS1 (p = 6.10 -3), in those who discontinued the first ICPl due to toxicity or per protocol (8.8 versus 2.1 months if disease progression occurs, p = 2.10 -3), and in those not receiving intercalated treatment between the two ICPis (6.6 versus 2.1 months for the treated ones, p = 1.10 -3).

Conclusion

Anti-PD-1/anti-PD-L1 re-challenge showed interesting clinical activity in selected patients, mainly in those achieving a long-term response upon the first ICPl course, that do not discontinue therapy because of disease progression, or that are able to keep a treatment-free period.

Background

Immune checkpoint inhibitors (ICPis) have completely changed the treatment algorithm of several cancer types because of the impressive results obtained in this field. Some patients achieve a long-
term clinical benefit from this type of drugs. However, patients eventually discontinue ICPi due to disease progression or toxicities, as well as due to trial designs imposing discontinuation after a given treatment period. Primarily for those patients who achieve a long-term response without clinically-meaningful toxicities, ICPi re-challenge could represent an attractive therapeutic option, as the only possible alternative to chemotherapy. This strategy has already entered clinical practice in advanced melanoma patients who are permitted to being re-challenged with an anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA-4), as well as to being shifted across anti-programmed cell death 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) and anti-CTLA-4. This strategy has been supported by several studies that specifically addressed this issue in melanoma patients, reporting promising results concerning ICPi re-challenge efficacy, along with a low toxicity profile (1−8). However, most of these trials included selected patients exhibiting significant clinical benefits, without severe undesirable events upon the first ICPi course. Consequently, in spite of no widely-recognized recommendations being available concerning this strategy, the National Comprehensive Cancer Network (NCCN) guidelines allow for considering ICPi re-induction in progressing patients with an initial response or disease stabilization lasting ≥ 3 months (9). Much less is known about the efficacy and safety of re-challenge with anti-PD-1/anti-PD-L1 agents. The CheckMate-153 trial explored the clinical benefits of a fixed-duration nivolumab in second-line versus continuous treatment in advanced non-small-cell lung cancer (NSCLC) patients. In this trial, 39 patients in the fixed-duration arm progressed during the surveillance period and were retreated with the same anti-PD-1. The median time between progression and nivolumab reinduction was 0.6 months, and the median duration of retreatment 3.8 months (10). Moreover, the Keynote-010 trial selected PD-L1-positive (≥ 1%), pretreated, advanced NSCLC patients to receive two different schedules of pembrolizumab or docetaxel. In this trial, 14 patients received a second course of pembrolizumab, with the majority of them (78%) showing either partial response or stable disease(11,12). Recently, the UNIVOC study retrospectively analysed more than 1500 NSCLC patients that received an ICPi retreatment after a discontinuation period from nivolumab of at least 6 weeks. The median overall survival (OS) from re-challenge was 15 months for patients receiving a second course of PD-1
inhibitor after a treatment-free interval and 18.4 months for those who performed an intercalated chemotherapy. Interestingly, median OS was significantly longer in patients with an initial nivolumab treatment duration longer than 3 months(13). However, no information were reported about the nivolumab discontinuation reason, patients ‘clinical features such as the ECOG Performance Status (PS) and the retreatment tolerance. Consequently, it was not possible to know how selecting patients to these strategy according to clinical characteristics. Lastly, two large studies that investigated the safety of resuming anti-PD-1 agents in cancer patients were recently reported (14,15). According to these studies, 50–55% of patients experienced an immune-related adverse event (irAE) of any grade upon anti-PD1 resumption. Despite these encouraging data, the usefulness of anti-PD-1 and anti-PD-L1 re-challenge is still being debated because of the lack of prospective studies that specifically address this topic. While attempting to further investigate this issue, we have reviewed the literature and selected case reports and cases series that reported outcomes of adult solid cancer patients re-challenged with an anti-PD-1 or anti-PD-L1 agent during their disease history. Individual patient data were meta-analyzed regarding efficacy outcomes to possibly identify potential clinical features associated with greater clinical benefit.

Methods
PubMed and Google Scholar were searched for clinical trials, case series, and case reports containing data on solid cancer patients who were retreated with an anti-PD-1/anti-PD-L1. Key words used included “rechallenge”, “reintroduction”, “retreatment”, “immune checkpoint inhibitors”, “immune checkpoint blockades”, and “immunotherapy”. We considered only English-written articles reporting information on best response or progression-free survival (PFS) achieved upon either a first or second ICPi course. We did not find any prospective trial published on this issue and we identified 14 full papers (five case reports and nine case series) reporting the outcomes of 74 patients treated according to this strategy (Fig. 1, Table 1) (16–29). Data search ended the 25th January 2020. We then meta-analyzed the individual data of these patients.

Table 1: Case reports and case series reported outcomes of cancer patients receiving an anti-PD1/PDL1 re-challenge
Reference	Year	N° of patients	Histology	First ICPI
Lipson E.J. et al.	2012	1	Melanoma	anti-PD1
Nomura M. et al.	2017	8	Melanoma	nivolumab
Spain L. et al.	2017	3	Melanoma	ipilimumab + nicolumab
Martini D. et al.	2017	3	CCRCC	anti-PDL1 or pembrolizumab
Blasig H. et al.	2017	8	Melanoma	nivolumab or pembrolizumab
Delyon J. et al.	2018	2	Merkel Cell Carcinoma and Melanoma	avelumab or ipilimumab + nivolumab
Niki M. et al.	2018	11	NSCLC	nivolumab
Dizman N. et al.	2018	1	CRC	anti-PD1
Fujita K. et al.	2018	12	NSCLC	nivolumab
Bernard-Tessier A.	2018	8	NSCLC, Urothelial carcinoma, Melanoma, Breast cancer, CRC	anti-PD1 or anti-PDL1
Cabezas-Camarero S.	2018	1	Head and Neck cancer	anti-PDL1
Hakozaki T. et al.	2018	1	NSCLC	anti-PD1
Tedbirt B. et al.	2019	1	Melanoma	pembrolizumab
Watanabe H. et al.	2019	14	NSCLC	anti-PD1 or anti-PDL1

NSCLC : Non-Small-Cell Lung Cancer; CCRCC: Clear Cell Renal Cell Carcinoma; CRC: Colon-Rectal-Cancer

Statistical analysis

The following information were collected: cancer histology, patients’ age and gender, number of treatments before the first ICPI, best response during the first ICPI and at re-challenge, progression-free survival (PFS) during the first ICPI and at re-challenge, first ICPI discontinuation reason and
intercalated treatments.

Descriptive analysis, including the mean, median, and range for continuous variables or frequencies and the percentage for categorical variables, was performed. Qualitative variable association and correlation were performed using the Chi-squared test and Pearson test, respectively. The overall response rate (ORR) was defined as the percentage of complete responses and partial responses obtained as best response, while the disease control rate (DCR) included the ORR and percentage of stable disease results achieved. Reported PFS values were simply collected; in the case of values not clearly indicated, PFS data were calculated from the ICPI start date (month and year) to the progression of disease or death (month and year). The median PFS in regard to the first anti-PD-1/anti-PD-L1 agent was termed PFS1, while PFSR defined the PFS reached upon re-challenge. The Kaplan-Meier method and a Cox model were used to calculate and compare the median PFS (30,31).

Statistical analysis was performed using XLStat (2018 Version).

Results

Patient’s general features

The patients’ clinical characteristics are described in Table 2. The mean age was 63 years [23–87], and most of the patients were male (n=45, 61%). NSCLC and melanoma were the most common tumors (n=39, 53% and n=25, 34%, respectively), while 10 patients (13%) had other cancer types. Notably, three patients exhibited clear cell renal cell carcinomas, two urothelial carcinomas, two colorectal cancers, one breast cancer, one Merkel carcinoma, and one head and neck carcinoma.

Patients received a median of two systemic treatments before the first ICPI, which was discontinued in most of cases because of either disease progression (n=56, 76%), toxicity (n=9, 12%), or per protocol for patients included in clinical trials (n=9, 12%). Approximately 72% of patients received at least 1 systemic agent with or without a local treatment, such as radiotherapy or surgery, between the two ICPIs courses (Table S1).

Table 2: Patients’ general features
Clinical feature

Clinical feature	N = 74
Mean age [range]	63 [23 - 87]
Gender N (%) (MD = 5)	
Male	45 (61)
Female	26 (35)
Mean number of previous treatments (MD = 9)	2
Histology N(%)	
Non-Small-Cell Lung cancer	39 (53)
Melanoma	25 (34)
Other histology	10 (13)
Clear Cell Renal Cell Carcinoma	3
Urothelial Carcinoma	2
Colon-rectal cancer	2
Breast cancer	1
Merkel carcinoma	1
Head and neck carcinoma	1
Reason of first ICPi discontinuation N(%)	
Disease progression	56 (76)
Toxicity	9 (12)
Per protocol	9 (12)
Treatments between the two ICPis N(%) (MD = 1)	
None	21 (28)
Systemic therapy	37 (50)
Systemic therapy + local treatment^a	16 (22)

MD= Missing data; a: radiotherapy or surgical resection

Response under Re-challenge

Best response achieved upon either the first or second ICPi course was available for 73 patients (Fig. 2). In the overall population, a higher ORR (46% versus 24%, \(p = 4.10^{-3} \)) and higher DCR (73% versus
52%, $p = 7.10^{-3}$) were obtained upon the first course of anti-PD-1 or anti-PD-L1 as compared to re-challenge. Focusing on NSCLC, a higher ORR (41% versus 15%, $p = 1.10^{-2}$) and higher DCR (64% versus 38%, $p = 1.10^{-2}$) were confirmed upon the first ICPi. In melanoma patients, neither the ORR (44% versus 32%, $p = 3.10^{-1}$) nor the DCR (76% versus 64%, $p = 3.10^{-1}$) were statistically different between the two ICPIs courses. However, no association was found between the best response achieved during the first ICPi exposition and that obtained at re-challenge in the whole population ($p = 3.10^{-1}$).

Progression-free survival under re-challenge

Paired PFS1 and PFSR were evaluable in 61 patients. As expected, the PFS1 was longer than the PFSR (6.6 [95% CI: 4.9–8.4] versus 2.8 months [95% CI: 2.0–4.0], HR 0.57 [95% CI: 0.00–0.87], $p = 2.10^{-3}$) (Fig. 3). The median PFS1 was 5.6 months [95% CI: 2.8–8.9] in NSCLC patients, 6 months [95% CI 3.9–8.4] in melanoma patients, and 15.8 months [95% CI: 8–22.9] in other cancer types. Interestingly, the median PFSR was quite similar among the NSCLC and melanoma patients at 2.1 months [95% CI: 1.6–3.3] and 2.7 months [95% CI: 1.8–7.0], respectively, while it reached 6 months [95% CI: 4.1–12.9] in the case of other histology. Note that a longer PFS1 can predict a longer PFSR, these values being positively correlated (Pearson correlation coefficient 0.347, $p = 6.10^{-3}$) (Fig. 4). Patients with a PFS1 ≥12 months were shown to display a longer PFSR compared to those presenting a PFS1 <12 months (5.1 [95% CI: 2.0–11.1] versus 2.4 months [95% CI: 1.7–3.4], $p = 4.10^{-2}$) (Fig. 4). Shorter cut-offs were also tested (3, 6, and 9 months), whereas no statistically significant differences were obtained. As expected, a longer PFSR was achieved in patients who discontinued the first anti-PD-1/anti-PD-L1 agent due to toxicity or per protocol as compared to those who experienced disease progression (8.8 [95% CI 5.1–15] versus 2.1 months [95% CI: 1.8–3.1], $p = 2.10^{-3}$), as well as in patients who did not receive another treatment between the two ICPIs courses compared to those who did (6.6 months [95% CI: 2.3 – 14.8] versus 2.1 months [95% CI: 1.6 – 3.3], $p = 1.10^{-3}$) (Fig. 4). Similar results were obtained, without considering the eight patients receiving ipilimumab (anti-CTLA-4) between the two
ICPis (data not shown).

Re-challenge safety profile

Concerning toxicities, a higher percentage of all grade adverse events occurred during the first anti-PD-1/anti-PD-L1 course, as compared to re-challenge (n = 58, 78% versus n = 43, 63%, \(p = 8.10^{-3} \)) (Table 3). Rash and diarrhea were the most commonly reported adverse events.

Table 3: All grade toxicities\(^a\) during first and second course of anti-PD1 or anti-PDL1

Adverse event	First ICPi	Re-challenge
Total	**58 (78)**	**43 (63)**
Fever	7 (10)	4 (5)
Appetite loss	3 (4)	4 (5)
Hepatitis	4 (5)	5 (7)
Pneumonitis	5 (7)	1 (1)
Mucositis	3 (4)	1 (1)
Fatigue	6 (8)	4 (5)
Rash	8 (11)	7 (10)
Diarrhea	7 (10)	8 (11)
Nausea/vomiting	1 (1)	3 (4)

\(^a\): Toxicities occurring in \(\geq 5\% \) of the overall population either during the first or the second course of anti-PD1 or anti-PDL1 have been detailed

Discussion

Solid cancers can gain durable clinical benefit from ICPi therapy due to the effector memory T-cells’ differentiation resulting in a long-term immunological response that is able to respond to tumor antigen re-exposition (32–34). Thus, ICPi re-challenge may constitute a useful therapeutic approach, as it has already been successfully applied in advanced melanoma patients. However, while the anti-CTLA-4 re-challenge and sequential administration of anti-CTLA-4 and anti-PD-1/PD-L1 agents have previously been explored in several clinical trials (1,2,5–8), little data is available on the efficacy and
safety of anti-PD-1/anti-PD-L1 retreatment. Our meta-analysis of published case reports and case series has certainly improved our understanding of the clinical benefits associated with this strategy, possibly facilitating patient selection. As expected, patients achieved better outcomes over the first exposure to the anti-PD-1/anti-PD-L1 as compared to the re-challenge; however, the clinical benefits obtained with retreatment were quite interesting. Most patients (60%) achieved disease control, and 28% of cases even presented disease shrinking, consistent with the literature data reported about the re-challenging strategy with other ICPi (1,2,5-8,11,12). However, when considering different histology types separately, these results were confirmed in NSCLC patients only, whereas no differences were found in melanomas or other cancer patients. While this can be partially explained by the small number of patients included in these latter groups, it probably suggests a different pattern of antitumor immune response according to histology. More interestingly, patients reported a PFSR of 2.8 months upon re-challenge, which is very similar to what is expected when using anti-PD-1 or anti-PD-L1 agents in pretreated cancer patients. In fact, the median PFS obtained in pretreated patients receiving nivolumab or pembrolizumab within Phases II and III clinical trials ranged from 2.3 to 4.0 months in NSCLC patients and from 4.1 to 5.5 months in melanoma patients, representing the histology primarily included in the current analysis (11,12,35-37). These results suggest that anti-PD-1 and anti-PD-L1 efficacy in pretreated patients is not affected by previous ICPi treatment, thereby representing an attractive and certainly less toxic alternative to chemotherapy. In our analysis, no increased toxicities were registered upon the ICPi re-challenge, in line with previous studies (1,5-8,38). Nevertheless, no information pertaining to AE grades was available in most papers considered for this study.

The other primary issue we wished to investigate was as follows: which patients should be candidates for this strategy. Melanoma patients who achieve an objective response lasting ≥ 3 months with ICPi without experiencing Grade III or IV AEs can be considered for re-challenge with anti-CTLA-4 or a sequential treatment with another ICPi. Here, we consistently found a better PFS upon re-challenge for patients who achieved a longer PFS during the first ICPi course, especially if ≥ 12 months. Moreover, patients who did not receive any treatment between the two ICPi courses and those who
discontinued the first course without experiencing disease progression seem to be the best candidates. Conversely, the best response obtained in regard to the first ICPI was unable to predict the response upon re-challenge. These results are not surprising, given that patients with these characteristics are likely to have a more favorable prognosis with a more indolent disease. In addition, we cannot exclude the possibility that re-challenge did not specifically change their disease history, which would have been favorable even with another type of treatment. Nevertheless, the re-challenge strategy resulted in interesting clinical benefits in these selected patients.

Clinical cases/series considered in this retrospective analysis, included up to 14 patients maximum representing single center experiences about the re-challenge strategy. Consequently, clinical characteristics of patients, their history of disease and treatments received as well as the re-challenge setting are heterogeneous. Moreover, no information pertaining to patients’ performance status, grade of AEs, and survival was available, limiting the analysis of the clinical benefits provided by anti-PD-1/anti-PD-L1 re-challenge. However, our population currently represents the largest multi-disease cohort of patients treated with this strategy, providing detailed data on patient outcomes and possibly allowing for patient selection criteria to be considered. Several Phase II clinical trials (NCT03526887, NCT03847649, NCT02743819, NCT03262779, NCT03041181, NCT03847649, NCT03334617, and NCT03469960), either already ongoing or scheduled to start patient recruitment soon, have been designed to investigate the safety and efficacy of anti-PD-1/anti-PD-L1 re-challenge among different tumor types. These trials will certainly help better define both the clinical benefits and criteria for improved patient selection, as regards this promising strategy.

Conclusion

Anti-PD-1/anti-PD-L1 re-challenge has been shown to display interesting clinical activity in selected cancer patients. Patients who achieve a long-term response upon the first ICPI course, do not discontinue therapy because of disease progression, or are able to keep a treatment-free period may be good candidates for this therapeutic strategy.

Abbreviations

NSCLC
Non-small-cell Lung Cancer
CCRCC
Clear Cell Renal Cell Carcinoma
CRC
Colon-Rectal-Cancer
ICPi
Immune checkpoint inhibitors
Anti-CTLA-4
anti-cytotoxic T-lymphocyte antigen 4
Anti-PD-1
anti-programmed cell death 1
Anti-PD-L1
anti-programmed cell death ligand 1
PFS
Progression free survival
PFS1
median PFS in regard to the first anti-PD-1/anti-PD-L1 agent
PFSR
median PFS at re-challenge
OS
Overall survival
ORR
Overall response rate
DCR
Disease control rate
AE
adverse event
irAE
immune-related adverse event
NCCN
National Comprehensive Cancer Network
ECOG PS
Eastern Cooperative Oncology Group Performance Status
Declarations
Ethics approval and consent to participate: Not applicable
Consent for publication: Not applicable

Availability of data and materials: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests: All the authors certify that they have NO affiliations with or involvement in any organization or entity with any financial or other interest

Funding: not applicable

Authors' contributions: E.G., J.C., A.T. and M.G.L. contributed to the conception and design of this review. E.G. wrote the manuscript. J.C., A.T., M.G.L., M.L. and D.M.S. revised the manuscript. All authors have approved the final article.

Acknowledgements: not applicable

References

1. Hamid O, Puzanov I, Dummer R, Schachter J, Daud A, Schadendorf D, et al. Final overall survival for KEYNOTE-002: pembrolizumab (pembro) versus investigator-choice chemotherapy (chemo) for ipilimumab (ipi)-refractory melanoma. Ann Oncol. 2016 Oct 1;27(suppl_6).

2. Larkin J, Minor D, D’Angelo S, Neyns B, Smylie M, Miller WH, et al. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator’s Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial. J Clin Oncol Off J Am Soc Clin Oncol. 2018 Feb 1;36(4):383–90.

3. Shreders A, Joseph R, Peng C, Ye F, Zhao S, Puzanov I, et al. Prolonged Benefit from Ipilimumab Correlates with Improved Outcomes from Subsequent Pembrolizumab. Cancer Immunol Res. 2016 Jul 1;4(7):569–73.

4. Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL, Lawrence DP, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 2016 Jul 1;17(7):943–55.
5. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015 Aug 1;16(8):908-18.

6. Robert C, Schadendorf D, Messina M, Hodi FS, O’Day S, MDX010-20 investigators. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res Off J Am Assoc Cancer Res. 2013 Apr 15;19(8):2232-9.

7. Chiarion-Sileni V, Pigozzo J, Ascierto PA, Simeone E, Maio M, Calabrò L, et al. Ipilimumab retreatment in patients with pretreated advanced melanoma: the expanded access programme in Italy. Br J Cancer. 2014 Apr 1;110(7):1721-6.

8. Lebbé C, Weber JS, Maio M, Neyns B, Harmankaya K, Hamid O, et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol. 2014 Nov 1;25(11):2277-84.

9. NCCN Guidelines Management of Immunotherapy-Related Toxicities https://www.nccn.org/professionals/physician_gls/default.aspx#site _Consulted the 5th, May 2019.

10. Spiegel DR, McLeod M, Hussein MA. Randomized results of fixed-duration (1-yr) vs continuous nivolumab in patients (pts) with advanced non-small cell lung cancer (NSCLC). Annals of Oncology (2017) 28 (suppl_5): v460-v496. In.

11. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet. 2016 Apr 9;387(10027):1540-50.

12. Herbst RS, Garon EB, Kim D-W. Herbst RS, Garon EB, Kim D-W, et al. Long-term
follow-up in the KEYNOTE-010 study of pembrolizumab (pembro) for advanced NSCLC, including in patients (pts) who completed 2 years of pembro and pts who received a second course of pembro. In ESMO 2018: Annal of Oncology;

13. Levra MG, Cotté F-E, Corre R, Calvet C, Gaudin A-F, Penrod JR, et al. Immunotherapy ICI after nivolumab treatment in advanced non-small cell lung cancer in the real-world setting: A national data base analysis. Lung Cancer. 2020 Feb 1;140:99-106.

14. Pollack MH, Betof A, Dearden H, Rapazzo K, Valentine I, Brohl AS, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018 Jan 1;29(1):250-5.

15. Simonaggio A, Michot JM, Voisin AL, Pavec JL, Collins M, Lallart A, et al. Evaluation of Readministration of Immune Checkpoint Inhibitors After Immune-Related Adverse Events in Patients With Cancer. JAMA Oncol [Internet]. 2019 Jun 6 [cited 2019 Jun 13]; Available from: https://jamanetwork.com/journals/jamaoncology/fullarticle/2735330

16. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res Off J Am Assoc Cancer Res. 2013 Jan 15;19(2):462–8.

17. Nomura M, Otsuka A, Kondo T, Nagai H, Nonomura Y, Kaku Y, et al. Efficacy and safety of retreatment with nivolumab in metastatic melanoma patients previously treated with nivolumab. Cancer Chemother Pharmacol. 2017 Nov;80(5):999–1004.

18. Spain L, Walls G, Messiou C, Turajlic S, Gore M, Larkin J. Efficacy and toxicity of rechallenge with combination immune checkpoint blockade in metastatic melanoma: a case series. Cancer Immunol Immunother CII. 2017;66(1):113–7.

19. Dizman N, Bergerot P, Bergerot C, Lanman RB, Raymond VM, Banks KC, et al.
Exceptional Response to Nivolumab Rechallenge in Metastatic Renal Cell Carcinoma with Parallel Changes in Genomic Profile. Eur Urol. 2018;73(2):308–10.

20. Niki M, Nakaya A, Kurata T, Yoshioka H, Kaneda T, Kibata K, et al. Immune checkpoint inhibitor re-challenge in patients with advanced non-small cell lung cancer. Oncotarget. 2018 Aug 17;9(64):32298–304.

21. Delyon J, Brunet-Possenti F, Leonard-Louis S, Arangalage D, Baudet M, Baroudjian B, et al. Immune checkpoint inhibitor rechallenge in patients with immune-related myositis. Ann Rheum Dis. 2018 Sep 21;

22. Bernard-Tessier A, Baldini C, Martin P, Champiat S, Hollebecque A, Postel-Vinay S, et al. Outcomes of long-term responders to anti-programmed death 1 and anti-programmed death ligand 1 when being rechallenged with the same anti-programmed death 1 and anti-programmed death ligand 1 at progression. Eur J Cancer Oxf Engl 1990. 2018;101:160–4.

23. Tedbirt B, De Pontville M, Branger P, Picard C, Baroudjian B, Lebbé C, et al. Rechallenge of immune checkpoint inhibitor after pembrolizumab-induced myasthenia gravis. Eur J Cancer Oxf Engl 1990. 2019 Apr 12;113:72–4.

24. Hakozaki T, Okuma Y, Kashima J. Re-challenging immune checkpoint inhibitor in a patient with advanced non-small cell lung cancer: a case report. BMC Cancer. 2018 20;18(1):302.

25. Blasig H, Bender C, Hassel JC, Eigentler TK, Sachse MM, Hiernickel J, et al. Reinduction of PD1-inhibitor therapy: first experience in eight patients with metastatic melanoma. Melanoma Res. 2017;27(4):321–5.

26. Cabezas-Camarero S, Cabrera-Martín MN, Pérez-Segura P. Response to immunotherapy rechallenge after interval chemotherapy in a patient with head and neck cancer. Anticancer Drugs. 2019 Feb;30(2):149–52.
27. Martini DJ, Lalani A-KA, Bossé D, Steinharter JA, Harshman LC, Hodi FS, et al. Response to single agent PD-1 inhibitor after progression on previous PD-1/PD-L1 inhibitors: a case series. J Immunother Cancer. 2017 15;5(1):66.

28. Fujita K, Uchida N, Kanai O, Okamura M, Nakatani K, Mio T. Retreatment with pembrolizumab in advanced non-small cell lung cancer patients previously treated with nivolumab: emerging reports of 12 cases. Cancer Chemother Pharmacol. 2018 Jun;81(6):1105–9.

29. Watanabe H, Kubo T, Ninomiya K, Kudo K, Minami D, Murakami E, et al. The effect and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer. Jpn J Clin Oncol. 2019 May 15;

30. Schoenfeld D. Partial Residuals for The Proportional Hazards Regression Model. Biometrika. 1982;69(1):239–41.

31. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc. 1958;53(282):457–81.

32. Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol Res. 2016 Mar;4(3):194–203.

33. Harty JT, Badovinac VP. Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol. 2008 Feb;8(2):107–19.

34. Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014 Jan;14(1):24–35.

35. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med. 2015 Oct 22;373(17):1627–39.

36. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer.
N Engl J Med. 2015 Jul 9;373(2):123-35.

37. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015 Jun 25;372(26):2521-32.

38. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015 Jul 2;373(1):23-34.

Figures
Figure 1

Consort diagram. anti-PD-1, anti-programmed cell death 1; anti-PD-L1, anti-programmed cell death ligand 1.
Figure 1

Consort diagram. anti-PD-1, anti-programmed cell death 1; anti-PD-L1, anti-programmed cell death ligand 1.
SD: stable disease, PR: partial response, CR: complete response, PD: progression disease

Figure 2

Best responses upon first course of anti-PD1 or anti-PDL1 and re-challenge. NSCLC, non-small-cell lung cancer; anti-PD-1, anti-programmed cell death 1; anti-PD-L1, anti-programmed cell death ligand 1; SD, stable disease; PR, partial response; CR, complete response; PD, progression disease.
SD: stable disease, PR: partial response, CR: complete response, PD: progression disease

Figure 2

Best responses upon first course of anti-PD1 or anti-PDL1 and re-challenge. NSCLC, non-small-cell lung cancer; anti-PD-1, anti-programmed cell death 1; anti-PD-L1, anti-programmed cell death ligand 1; SD, stable disease; PR, partial response; CR, complete response; PD, progression disease.
Figure 3

PFS1 and PFR comparison in the overall population and across histology. PFS, progression-free survival; PFR, progression-free recurrence; HR, hazard ratio; NSCLC, non-small-cell lung cancer.
Figure 3

PFS1 and PFR comparison in the overall population and across histology. PFS, progression-free survival; PFR, progression-free recurrence; HR, hazard ratio; NSCLC, non-small-cell lung cancer.
Figure 4

PFSR according to PFS1, discontinuation reason and treatment received between the two anti-PD1/PDL1 courses. aPD, progression disease; PFS1, progression-free survival; Other, toxicity or per protocol; bNo, no treatment received between the two immune checkpoint inhibitor courses; Yes, systemic therapy with or without local treatment (surgery or radiotherapy) between the two immune checkpoint inhibitor courses.

a. PD: progression disease, Other: toxicity or per protocol; b. No: no treatment received between the two ICI courses, Yes: systemic therapy with or without local treatment (surgery or radiotherapy) between the two ICI courses.
Figure 4

PFSR according to PFS1, discontinuation reason and treatment received between the two anti-PD1/PDL1 courses. aPD, progression disease; PFS1, progression-free survival; Other, toxicity or per protocol; bNo, no treatment received between the two immune checkpoint inhibitor courses; Yes, systemic therapy with or without local treatment (surgery or radiotherapy) between the two immune checkpoint inhibitor courses.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Supplementary Material.docx
PRISMA 2009 checklist.doc
Supplementary Material.docx
PRISMA 2009 checklist.doc