Real world SOF/VEL/VOX retreatment outcomes and viral resistance analysis for HCV patients with prior failure to DAA therapy

David A. Smith1,2 | Daniel Bradshaw3 | Jean L Mbisa3 | Carmen F. Manso3 | David F Bibby3 | Joshua B Singer4 | Emma C Thomson4 | Ana da Silva Filipe4 | Elihu Aranday-Cortes4 | M. Azim Ansari1 | Anthony Brown1 | Emma Hudson1 | Jennifer Benselin5 | Brendan Healy6 | Phil Troke7 | John McLauchlan4 | Eleanor Barnes1,2 | William L. Irving5

1Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
2NIHR Oxford Biomedical Research Centre, Oxford, UK
3National Infection Service, Public Health England, London, UK
4MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
5NIHR Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
6Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
7Gilead Sciences Ltd, London, UK

Correspondence
Daniel Bradshaw, National Infection Service, Public Health England, Colindale, 61 Collindale Avenue, London, NW9 5EQ, UK.
Email: daniel.bradshaw@phe.gov.uk

Abstract
Sustained viral response (SVR) rates for direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) infection routinely exceed 95%. However, a small number of patients require retreatment. Sofosbuvir, velpatasvir and voxilaprevir (SOF/VEL/VOX) is a potent DAA combination primarily used for the retreatment of patients who failed by DAA therapies. Here we evaluate retreatment outcomes and the effects of resistance-associated substitutions (RAS) in a real-world cohort, including a large number of genotype (GT)3 infected patients. 144 patients from the UK were retreated with SOF/VEL/VOX following virologic failure with first-line DAA treatment regimens. Full-length HCV genome sequencing was performed prior to retreatment with SOF/VEL/VOX. HCV subtypes were assigned and RAS relevant to each genotype were identified. GT1a and GT3a each made up 38% (GT1a n = 55, GT3a n = 54) of the cohort. 40% (n = 58) of patients had liver cirrhosis of whom 7% (n = 4) were decompensated, 10% (n = 14) had hepatocellular carcinoma (HCC) and 8% (n = 12) had received a liver transplant prior to retreatment. The overall retreatment SVR12 rate was 90% (129/144). On univariate analysis, GT3 infection (50/62; SVR = 81%, p = .009), cirrhosis (47/58; SVR = 81%, p = .01) and prior treatment with SOF/VEL (12/17; SVR = 71%, p = .02) or SOF+DCV (14/19; SVR = 74%, p = .012) were significantly associated with retreatment failure, but existence of pre-retreatment RAS was not when viral genotype was taken into account. Retreatment with SOF/VEL/VOX is very successful for non-GT3-infected patients. However, for GT3-infected patients,
INTRODUCTION

Sustained virological response (SVR) rates for patients chronically infected with hepatitis C virus (HCV) and treated with direct-acting antiviral (DAA) therapies in clinical trials and real-world cohorts are often >95%. Treatment failure is associated with multiple host and viral factors including advanced fibrosis or cirrhosis, HCV subtype and the presence of resistance-associated substitutions (RAS) in HCV-encoded proteins that are targeted by DAA. This leaves a small percentage of HCV-infected patients who have been failed by first-line therapies and are therefore by definition “difficult to treat.” For patients who have been failed by pan-genotypic regimens such as SOF/VEL and glecaprevir and pibrentasvir, (GLE/PIB) retreatment options are limited. Currently the European Association for the Study of the Liver (EASL) and American Association for the Study of Liver Disease (AASLD), recommend a combination of sofosbuvir, velpatasvir and voxilaprevir (SOF/VEL/VOX) for these patients.

Retreatment of patients previously failed by predominantly first-generation NS5A inhibitor-containing DAA therapy with SOF/VEL/VOX has been evaluated in both the POLARIS-1 and POLARIS-4 phase-II and III studies. In these studies, SOF/VEL/VOX showed a very high SVR rate in GT1-infected patients (222/228; 97% SVR); however, a slightly lower SVR rate was observed in GT3 patients (126/132; 95% SVR). In addition, a number of studies have evaluated the observed real-world outcomes of SOF/VEL/VOX retreatment. The largest cohort (n = 573) reported by Belpiero et al. showed lower SVR rates than in the POLARIS 1 and 4 studies for all genotypes (GT1: 429/473; 91% SVR, GT2: 18/20; 90% SVR, GT3: 42/46; 91% SVR, GT4: 12/12; 100% SVR). This study also showed that the SVR rate for those who had received SOF/VEL as first-line therapy, was reduced for GTs 1-3 (GT1: 15/19; 79% SVR, GT2: 13/15; 87% SVR, GT3: 11/13; 85% SVR). In an Italian cohort, the SVR rate was 95% (162/169) with cirrhosis and hepatocellular carcinoma (HCC) being associated with treatment failure; however, there was no significant difference between the SVR rates of patients with different genotypes (GT1: 98/101; 97% SVR, GT2: 17/17; 100% SVR, GT3: 33/36; 91% SVR, GT4: 14/15; 93% SVR). Finally, Llaneras et al. reported an overall SVR rate of 95% (128/135) with 100% in patients with GT1 (82/82) and GT2 (7/7) infection, 80% (24/30) in GT3 and 93% (13/14) in GT4. SVR rates were significantly lower in patients with cirrhosis (89%, p = .05), or those with GT3 infection (80%, p < .001), whilst patients with GT3 infection and cirrhosis had the lowest SVR rate (69%).

Despite these studies there remains limited data on SOF/VEL/VOX retreatment from the real-world setting, particularly for patients with GT3 infection following unsuccessful therapy with pan-genotypic DAA regimens. These data are required to inform optimal retreatment strategies. In this paper, we report the outcomes of 144 patients failed by first-line DAA therapy and retreated with SOF/VEL/VOX. We then analyse the effect of clinical characteristics and RAS on SOF/VEL/VOX retreatment.

METHODS

2.1 Patients and samples

This study included 215 individuals from across England who did not achieve SVR with previous interferon-free DAA treatment. Blood samples were taken prior to retreatment and samples sent to Oxford and Glasgow for HCV whole-genome sequencing (WGS). Clinical, demographical and treatment outcome data were collected from patients, who were enrolled in HCV Research UK (n = 37), following informed consent and ethical approval. For patients not enrolled in HCV Research UK, whole-genome HCV sequences and anonymised clinical data were provided by Public Health England (PHE), collected as part of the Virus Reference Department’s HCV antiviral resistance testing service. This provides a clinical service for National Health Service Trusts, which send patients’ blood samples for HCV genotyping and resistance testing by WGS and receive results in real time to inform clinical management. Approval for the use of data from this service was granted under Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002. For retreatment, SVR has defined a minimum of 12 weeks after the end of treatment.

This project has been supported by the Hepatitis C Trust an organisation which campaigns for issues affecting patients with HCV in the UK. A patient representative was present at all STOP-HCV steering group committee meetings where the plans for this study were discussed in detail with direct patient involvement in the planning at all stages. In addition, both HCV Research UK and Public Health England have a Patient and Public Involvement Strategy and engage with patients and the public about how the data collected by them is used.

2.2 Whole genome sequencing of HCV

Whole HCV genome sequencing was conducted at three sites to define HCV subtype and identify RAS: (i) The MRC-University of...
SMITH et al.

Glasgow Centre for Virus Research (CVR), (ii) The Peter Medawar Building for Pathogen Research, University of Oxford, and (iii) The Virus Reference Department, National Infection Service, Public Health England. These sites have previously collaborated to ensure uniform standards for HCV sequencing. Briefly, RNA was isolated from patient plasma samples and reverse transcribed to produce cDNA. An Illumina sequencing library was generated and enriched for HCV viral sequences using specific oligonucleotide probes. Illumina sequencing reads were then processed and mapped to the closest HCV reference genome. Precise details of how the sequencing was performed at each site are described in the supplementary materials.

2.3 Resistance-associated substitution calling using HCV-GLUE

HCV subtypes were assigned and NS3, NS5A and NS5B RAS relevant to each genotype were identified (15% of reads cut off) using HCV-GLUE and RAS definitions provided by PHE (Supplementary Table 3). A RAS was considered relevant if there is in-vitro evidence of a >50 Fold change in EC50 and/or in-vivo evidence that the RAS is treatment emergent or associated with treatment failure. HCV-GLUE is a resource created as part of the STOP-HCV consortium based on the GLUE (Genes Linked by Underlying Evolution) platform. HCV-GLUE uses the ICCT HCV reference sequences and collates publicly available HCV sequences, to construct phylogenies using RAxML to assign sequences to HCV clades. It also contains a database of HCV RAS created by PHE and this is used to identify RAS relevant to the HCV genotype and subtype.

2.4 Statistical analysis

All statistical analysis was performed using custom code and R version 3.6.2. Logistic regression was used for the analysis of association between categorical variables.

3 RESULTS

3.1 Baseline characteristics of patients

Outcomes were available for 144 patients who were retreated with SOF/VEL/VOX. The mean age was 56 years (49–63 IQR) with 84% (n = 121) of the cohort being male. Overall, 40% (n = 58) had cirrhosis, with 7% (n = 4) decompensated. Of 10% (n = 14) had HCC and 8% (n = 12) had received a liver transplant prior to retreatment (Table 1). The median time from the end of previous treatment to pre-retreatment sequencing analysis was 13 months (2–32 Range).

| TABLE 1 Clinical characteristics of 144 patients prior to retreatment with SOF/VEL/VOX split by genotype |
|-----------------------------------------------|
| Demographics                                  |
| Median age (IQR), years                        | 54 (48-60) | 64 (56-67) | 57 (51-62) | 62 (57-75) | 27 (27-44) |
| Sex: Male                                     | 86% (56/65) | 67% (2/3) | 85% (53/62) | 70% (7/10) | 100% (3/3) |
| Liver disease State                           |
| Cirrhosis                                     | 24% (16/66) | 67% (2/3) | 60% (37/62) | 30% (3/10) | 0% (0/3) |
| Decompensated cirrhosis                       | 0% (0/16) | 0% (0/2) | 11% (4/37) | 0% (0/3) | 0% (0/0) |
| Hepatocellular carcinoma                      | 9% (6/66) | 0% (0/3) | 13% (8/62) | 0% (0/10) | 0% (0/3) |
| Prior liver transplant                        | 3% (2/66) | 33% (1/3) | 15% (9/62) | 0% (0/10) | 0% (0/3) |
| Mean baseline viral load, log10 IU/ml (IQR)   | 6.6 (6.0-6.7) | 6.0 (5.9-6.2) | 6.4 (5.5-6.5) | 7.1 (5.6-6.7) | 6.2 (6.0-6.3) |

Previous DAA treatment regimen

| SOF/LDV | 38% (25/66) | - | 10% (6/62) | 40% (4/10) | - |
| SOF/VEL | 2% (1/66) | - | 26% (16/62) | - | - |
| GLE/PIB | 2% (1/66) | - | 24% (15/62) | - | 100% (3/3) |
| SOF + DCV | - | - | 31% (19/62) | - | - |
| EBR/GZR | 15% (10/66) | - | - | 20% (2/10) | - |
| OBV/PTVr +/- DAS | 32% (21/66) | - | 2% (1/62) | 30% (3/10) | - |
| SOF | 2% (1/66) | 100% (3/3) | 6% (4/62) | - | - |
| Unknown | 11% (7/66) | - | 2% (1/62) | 10% (1/10) | - |

Abbreviations: DAS, Dasabuvir; DCV, Daclatasvir; EBR, Elbasvir; GLE, Glecaprevir; GZR, Grazoprevir; LDV, Ledipasvir; OBV, Ombitasvir; PIB, Pibrentasvir; PTV, Paritaprevir; r, Ritonavir; SOF, Sofosbuvir; VEL, Velpatasvir.

*Data missing for one patient.

*Full breakdown of previous treatment regimens including ribavirin and interferon use are in Supplementary Table 1.
GT1a and GT3a were the two most common subtypes, each making up 38% (GT1a n = 55, GT3a n = 54) of the cohort, 17 other subtypes were identified from genotypes 1, 2, 3, 4 and 6, with GT1b, GT4r and GT3b making up 6% (n = 9), 4% (n = 6), and 3% (n = 5) of the cohort respectively (Figure 1).

3.2 | Effectiveness of retreatment with SOF/VEL/VOX

The overall SVR12 rate for patients retreated with SOF/VEL/VOX was 91% (n = 129) (Figure 2). The majority of patients who did not achieve an SVR (n = 15) experienced a post-treatment relapse (n = 10). One patient experienced an on-treatment breakthrough (patient’s HCV RNA was undetectable during treatment and then became detectable again during treatment) and two were non-responders (patients who never achieve undetectable HCV RNA). Relapse/breakthrough/non-response was not reported by the treating clinician for the remaining two patients. Poor adherence to retreatment was not reported for any of the patients who did not achieve an SVR.

Evaluating the factors associated with outcome using univariable logistic regression, GT3 infection (52/64; SVR = 81%, p = .009) and cirrhosis (47/58; SVR = 81%, p = .01) were both significantly associated with treatment outcome (Figure 3). Patients whose initial regimen was either SOF/VEL or SOF + DAC were also less likely to achieve SVR on retreatment (12/17, 71% = 0.02 and 14/19, 74%, p = .012 respectively). Patients with GT3 infection, cirrhosis and prior treatment with SOF/VEL had the lowest SVR rate of 42% (3/7). However, one of these patients only received 4 weeks of SOF/VEL/VOX (Supplementary Table 2). Multivariable analysis using logistic regression with SVR as the response variable and GT, presence/absence of cirrhosis and previous treatment regimen included as explanatory variables, revealed that prior treatment with SOF/VEL had the largest effect on SVR and remained the only variable significantly associated with outcome (p = .03) (Supplementary Figure 1). However, with the exception of one GT1 patient previously treated with SOF/VEL, all patients with prior SOF/VEL or SOF + DCV treatment had GT3 infection which confounded this result (Table 1). When GT3-infected patients were analysed separately, cirrhosis and prior treatment regimen were no longer significantly associated with outcome, in both the univariable and multivariable analysis.

3.3 | Effect of resistance-associated substitutions on retreatment outcome

Among the 144 patients retreated with SOF/VEL/VOX and with available outcomes, 70% (101/144) had detectable RAS prior to retreatment. 16% had NS3 inhibitor RAS, 51% NS5A inhibitor RAS and 34% SOF RAS. However, the majority of SOF RAS were detected in GT3a sequences (Supplementary Figure 2). Of the viral sequences in 15 patients failed by SOF/VEL/VOX retreatment, 12/15 (80%) had detectable RAS prior to retreatment compared to 89/129 (68%) in those subsequently achieving SVR. However, despite the high prevalence of RAS, the presence of a RAS in a particular protein or...
A combination of proteins was not significantly associated with the outcome (Table 2). When each RAS (Full list in Table 3) was considered independently using logistic regression, A30K and Y93H RAS in NS5A were associated with retreatment failure in the whole cohort (A30K \( p = .02 \), Y93H \( p = .01 \)) (Table 3). The A30K RAS is unique to GT3a (it is wild-type in GT3b) and the Y93H substitution was much more common in GT3 patients compared to other genotypes (Supplementary Figure 2). When the analysis is limited to GT3 patients, the SVR rates for patients with these RAS were still reduced (for A30K SVR, 71% and Y93H SVR, 78%) but this was no longer statistically significant (A30K \( p = .2 \), Y93H \( p = .3 \)). In addition, when the genotype is added as a cofactor to the logistic regression Y93H is no longer associated with the outcome. Whilst individually the A30K and Y93H RAS are common, the combination of A30K + Y93H is found rarely and is not associated with treatment outcome in this cohort (Supplementary Figure 3). No other RAS was significantly associated with outcome within the whole cohort or within a specific genotype of patients.

4 DISCUSSION

This cohort represents both the largest reported cohort of patients retreated with SOF/VEL/VOX in the UK, and one of the largest cohorts of GT3-infected patients retreated with SOF/VEL/VOX. Our results show that retreatment of patients with SOF/VEL/VOX who have been failed by first-line therapy is very effective for GT1. However, patients with GT3 infection, cirrhosis or prior treatment with SOF/VEL or SOF +DCV have significantly lower SVR rates with SOF/VEL/VOX retreatment.

Our data shows that GT3-infected patients achieved lower SVR rates to SOF/VEL/VOX retreatment; the lowest SVR12 rates (42%) were observed in patients with GT3 infection, cirrhosis and prior SOF/VEL exposure. This is consistent with the data from Llaneras et al,\(^\text{13}\) which also showed a SVR rate of 81% for GT3-infected patients and 69% for GT3-infected patients with cirrhosis. However, Papaluca et al\(^\text{19}\) have shown an SVR rate of 90% in GT3 infected patients with cirrhosis. Belperio et al\(^\text{11}\) have shown that GT1-infected patients with prior SOF/VEL exposure had a reduced SVR rate of 79% (15/19), yet a GT3-infected group with prior SOF/VEL exposure had a SVR rate of 85% (11/13) which is greater than the 75%(12/16) that was observed in our study but, these numbers remain small.

The overall prevalence of RAS was very high, but the presence of RAS in the NS3, NS5A or NS5B protein was not associated with SVR; this is in line with the analysis of RAS data from the POLARIS-1 and 4 studies by Sarzin et al.\(^\text{20}\) When RAS were analysed separately the presence of the NS5A inhibitor RAS Y93H was significantly associated with treatment failure across the
whole cohort. However, when the genotype is included in the model used to test association, Y93H is no longer significantly associated with outcome. This data suggests that viral genotype is the more important viral factor for SOF/VEL/VOX retreatment outcome than the presence of RAS. PIB has been shown to be more effective than other NS5A inhibitors against viruses harbouring the Y93H RAS in vitro. This suggests that GLE/PIB may be a more effective treatment for patients with the Y93H RAS. Thus, RAS testing to guide retreatment therapy could be an effective way to increase retreatment SVR rates. One of the limitations of this study is that the time between previous treatment failure and pre-retreatment resequencing varied greatly in this cohort and in some cases was as long as 32 months. As RAS which have an effect on viral fitness tend to disappear over time, this study may underestimate the RAS present at previous DAA treatment failure.

At present SOF/VEL/VOX is the only recommended retreatment regimen for patients previously failed by a NS5A inhibitor-containing regimen in England. These data suggest that whilst SOF/VEL/VOX may be a preferred regimen for non-GT3 infected patients, an alternative retreatment regimen for GT3-infected patients should also be considered, particularly those with cirrhosis and previous exposure to a DAA regimen containing SOF/VEL or SOF +DCV. Prior exposure to NSSA inhibitors can result in the
emergence and long-term presence of RAS\textsuperscript{22,23} whereas the highly resistant SOF variant S282T in NS5B is rarely found after treatment failure and, when detected, it is more transient.\textsuperscript{24,25} This would suggest that prior exposure to NS5A inhibitors in VEL/SOF and DCV +SOF regimens has a greater impact on retreatment. In addition to using SOF/VEL/VOX for 24 rather than 12 weeks or adding ribavirin,\textsuperscript{26} one current alternative to SOF/VEL/VOX for GT3 patients is off-label use of GLE/PIB +SOF +/- RBV. This combination was effective in a small retreatment trial\textsuperscript{27} and could represent an effective retreatment option for GT3 patients with prior exposure to SOF/VEL. Further retreatment options include adopting a resistance guided approach to treatment, increasing the SOF/VEL/VOX treatment duration or adding ribavirin. Where SOF/VEL/VOX retreatment has failed there are rescue therapy options. A recent study by Dietz J et al\textsuperscript{28} also showed that SOF/VEL/VOX +/-RBV (Rescue SVR = 100% 4/4) and GLE/PIB +SOF +/- RBV (Rescue SVR = 79% 11/14) were effective rescue therapies in patients failed by SOF/VEL/VOX with GLE/PIB +/- RBV also being successfully used to retreat two patients.

In summary, our study shows that retreatment outcomes for patients failed by first-line DAA therapy are very successful for non-GT3-infected patients. However, for GT3-infected patients, particularly those with cirrhosis and failed by initial SOF/VEL treatment, SVR rates were significantly lower and alternative retreatment regimens such as GLE/PIB +SOF should be considered.

**ACKNOWLEDGEMENTS**

The authors acknowledge Gilead Sciences for funding this study. The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication. HCV Retreatment Group, ‘STOP-HCV Consortium’ and ‘HCV Research UK’: Co-authors.

**CONFLICT OF INTEREST**

DB has received research grant support from Gilead Sciences. WLI has received speaker and consultancy fees from Roche, Janssen Cilag, Gilead Sciences and Novartis, educational grants from Boehringer Ingelheim, Merck Sharp and Dohme and Gilead Sciences,
and research grant support from GlaxoSmithKline, Pfizer, Gilead Sciences, Janssen Cilag, Abbvie and Bristol-Myers Squibb. The remaining authors have no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Clinical and viral sequencing data generated by HCVRUK and STOP-HCV can be requested at https://www.hcvresearchuk.org and https://www.expmedndm.ox.ac.uk/stop-hcv, respectively. The HCV-GLUE software used for resistance calling is available at http://hcv-glue.cvr.gla.ac.uk.

ORCID
Daniel Bradshaw https://orcid.org/0000-0001-7186-2482
Emma C Thomson https://orcid.org/0000-0003-1482-0889
William L. Irving https://orcid.org/0000-0002-7268-3168

REFERENCES
1. Wei L, Lim SG, Xie Q, et al. Sofosbuvir–velpatasvir for treatment of chronic hepatitis C virus infection in Asia: a single-arm, open-label, phase 3 trial. Lancet Gastroenterol Hepatol. 2019;4(2):127-134. https://doi.org/10.1016/S2468-1253(18)30343-1.
2. Everson GT, Towner WJ, Davis MN, et al. Sofosbuvir with velpatasvir in treatment-naive non-cirrhotic patients with genotype 1 to 6 hepatitis C virus infection. Ann Intern Med. 2015;163(11):818. https://doi.org/10.7326/M15-1000.
3. Hezode C, Reau N, Svarovskaia ES, et al. Resistance analysis in patients with genotype 1–6 HCV infection treated with sofosbuvir/velpatasvir in the phase III studies. J Hepatol. 2018;68(5):895-903. https://doi.org/10.1016/j.jhep.2017.11.032.
4. da Silva FA, Sreenu V, Hughes J, et al. Response to DAA therapy in the NHS England Early Access Programme for rare HCV subtypes from low and middle income countries. J Hepatol. 2017;67(6):1348-1350. https://doi.org/10.1016/j.jhep.2017.06.035.
5. Smith D, Magri A, Bonsall D, et al. Resistance analysis of genotype 3 HCV indicates subtypes inherently resistant to NS5A inhibitors. Hepatology. 2018;69:1861-1872. https://doi.org/10.1002/hep.29837.
6. Fourati S, Rodriguez C, Hézode C, et al. Frequent antiviral treatment failures in patients infected with hepatitis C virus genotype 4, subtype 4r. Hepatology. 2018; 69:513-523. https://doi.org/10.1002/hep.30225.
7. Nelson DR, Cooper JN, Lalezar J, et al. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology (Baltimore, MD). 2015;61(4):1127-1135. https://doi.org/10.1002/hep.27726.
8. Pawlotsky JM, Negro F, Aghemo A, et al. EASL recommendations on treatment of hepatitis C 2018. J Hepatol. 2018;69(2):461-511. https://doi.org/10.1016/j.jhep.2018.03.026.
9. American Association for the Study of Liver Diseases. Recommendations for Testing, Managing, and Treating Hepatitis C | HCV Guidance. American Association for the Study of Liver Diseases. Accessed December 8, 2017. http://www.hcvguidelines.org/
10. Bourlière M, Gordon SC, Flamm SL, et al. Sofosbuvir, velpatasvir, and voxilaprevir for previously treated HCV infection. N Engl J Med. 2017;376(22):2134-2146. https://doi.org/10.1056/NEJMoa1613512.
11. Belpiero PS, Shahouman TA, Loomis TP, Backus LI. Real-world effectiveness of sofosbuvir/velpatasvir/voxilaprevir in 573 direct-acting antiviral experienced hepatitis C patients. J Viral Hepatitis. 2019; 26:980-990. https://doi.org/10.1111/jvh.13115.
12. Degasperi E, Spinetti A, Lombardi A, et al. Real-life effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in hepatitis C patients with previous DAA failure. J Hepatol. 2019;71(6):1106-1115. https://doi.org/10.1016/j.jhep.2019.07.020.
13. Llaneras J, Riveiro-Barciela M, Lens S, et al. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAA. J Hepatol. 2019;71(4):666-672. https://doi.org/10.1016/j.jhep.2019.06.002.
14. McAulachlan J, Innes H, Dillon JF, et al. Cohort profile: the hepatitis C virus (HCV) research UK clinical database and biobank. Int J Epidemiol. 2017;46(5):1391-1391h. https://doi.org/10.1093/ije/dyw362.
15. Thomson E, Ip CLC, Badhan A, et al. Comparison of next-generation sequencing technologies for comprehensive assessment of full-length hepatitis C viral genomes. J Clin Microbiol. 2016;54(10):2470-2484.
16. Bradshaw D, Mbisa JL, Geretti AM, et al. Consensus recommendations for resistance testing in the management of chronic hepatitis C virus infection: Public Health England HCV Resistance Group. J Infect. 2019;79(6):503-512. https://doi.org/10.1016/j.jinf.2019.10.007.
17. Singer JB, Thomson EC, McAulachlan J, Hughes J, Gifford RJ. GLUE: a flexible software system for virus sequence data. BMC Bioinformatics. 2018;19(1): https://doi.org/10.1186/s12859-018-2459-9.
18. Singer J, Thomson E, Hughes J, et al. Interpreting viral deep sequencing data with GLUE. Viruses. 2019;11(4):323. https://doi.org/10.3390/v11040323.
19. Papaluca T, Roberts SK, Strasser SI, et al. Efficacy and safety of sofosbuvir/velpatasvir/voxilaprevir for HCV NS5A-inhibitor experienced patients with difficult to cure characteristics. Clin Infect Dis. 2020;24:1-8 https://doi.org/10.1093/cid/ciaa1318.
20. Sarrazin C, Cooper CL, Manns MP, et al. No impact of resistance-associated substitutions on the efficacy of sofosbuvir, velpatasvir, and voxilaprevir for 12 weeks in HCV DAA-experienced patients. J Hepatol. 2018;69(6):1221-1230. https://doi.org/10.1016/j.jhep.2018.07.023.
21. Gottwein JM, Pham LV, Mikkelsen LS, et al. Efficacy of NS5A inhibitors against hepatitis C virus genotypes 1–7 and escape variants. Gastroenterology. 2017;154(5):1435-1448. https://doi.org/10.1053/j.gastro.2017.12.015.
22. Yoshida K, Hai H, Tamori A, et al. Long-term follow-up of resistance-associated substitutions in hepatitis C virus in patients in which direct acting antiviral-based therapy failed. Int J Mol Sci. 2017;18(5):962. https://doi.org/10.3390/ijms18050962.
23. Yoshimi S. Long term persistence of NS5A inhibitor-resistant hepatitis C virus in patients who failed daclatasvir and asunaprevir therapy. J Med Virol. 2015;87(11):1913-1920.
24. Gane EJ, Metivier S, Nahass R, et al. The emergence of NS5B resistance associated substitution S282T after sofosbuvir-based treatment. Hepatol Commun. 2017;1(6):538-549.
25. Svarovskaia ES, Dvory Sobol H, Parkin N, et al. Infrequent development of resistance in genotype 1-6 hepatitis C virus-infected subjects treated with sofosbuvir in phase 2 and 3 clinical trials. Clin Infect Dis. 2014;59(12):1666-1674. https://doi.org/10.1093/cid/ciu697.
26. Liu CH, Su TH, Liu CJ, Chen PJ, Chen DS, Kao JH. Sofosbuvir/velpatasvir/voxilaprevir plus ribavirin for chronic hepatitis C patients with direct acting antiviral failures: implications for viral elimination in Taiwan. J Forms Med Assoc. 2020;119(12):1871-1875. https://doi.org/10.1016/j.jfma.2020.06.013.
27. Wyles D, Weiland O, Yao B, et al. Treatment of patients who failed glecaprevir/pibrentasvir treatment for
hepatitis C virus infection. *J Hepatol.* 2019;70(5):1019-1023. https://doi.org/10.1016/J.JHEP.2019.01.031.

28. Dietz J, Di Maio VC, de Salazar A, et al. Failure on voxilaprevir, velpatasvir, sofosbuvir and efficacy of rescue therapy. *J Hepatol.* 2020; 74:801-810. https://doi.org/10.1016/j.jhep.2020.11.017

**SUPPORTING INFORMATION**

Additional supporting information may be found online in the Supporting Information section.