Supplemental information

Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis

Shantanu Nandi, Shuvam Mondal, and Ranjan Jana
Scheme S1. Preparation of ethyl esters of 2-iodo/bromo benzoic acids or salicylic acids, related to STAR Methods

Scheme S2. Preparation of methyl 2-(((trifluoromethyl)sulfonyl)oxy)benzoate from methyl salicylates, related to STAR Methods

Scheme S3. Suzuki coupling between 2-alkyl aryl boronic acid and 2-iodo/bromo benzoate or methyl 2-(((trifluoromethyl)sulfonyl)oxy)benzoate, related to STAR Methods

Scheme S4. Hydrolysis of methyl esters, related to STAR Methods

Scheme S5. Total synthesis of Alterlactone 21, related to Scheme 5
Scheme S6. Synthesis of Dibenzo[c,e]oxepan-5-thione (DOT, 19), related to Scheme 6

Scheme S7. Synthesis of 2'-((hydroxymethyl)-[1,1'-biphenyl]-2-carboxylic acid (20), related to Scheme 6

Scheme S8. Intramolecular benzylic C-H oxidation of 2'-methyl-[1,1'-biphenyl]-2-carboxylic acid in copper bottle without any external catalyst, related to Scheme 6
Scheme S9. Copper-catalyzed chemo- and regioselective intramolecular benzylic C–H oxidation of 2'-methyl-[1,1'-biphenyl]-2-carboxylic acid 1a in gram-scale, related to Scheme 6.

Scheme S10. Radical quenching experiment, related to Scheme 8.

Scheme S11. Competitive experiment between C(sp²)–H and C(sp³)–H activation, related to Scheme 8.
Scheme S12. Addition of external substituted benzoic acids, related to Scheme 8
Scheme S13. Lactonization reaction of 20 under condition B, related to STAR methods

Scheme S14. Proposed mechanism of double benzylic C(sp^3)-H activation, related to Scheme 9

Table S1. Optimization of condition A, related to Table 1
Entry	Catalyst Loading [mol%]	Ligand Loading (mol%)	Oxidant (equiv.)	Additive (mol%)	Solvent	Ratio 2a/3a
1	CuI (20)	-	DTBP (2)	-	DCE	52/25
2	CuI (20)	-	DTBP (2)	-	PhCl	60/27
3	CuI (20)	1,10-Phen (30)	DTBP (2)	-	MeCN	48/25
4	CuI (20)	1,10-Phen (30)	DTBP (2)	-	Benzene	25/45
5	CuI (20)	1,10-Phen (30)	DTBP (2)	-	DMSO	5/10
6	CuI (20)	1,10-Phen (30)	O₂	-	DMSO	trace/0
7	CuI (20)	1,10-Phen (30)	DTBP (2)	-	HFIP	10/25
8	CuI (20)	1,10-Phen (30)	DTBP (2)	-	DCE	55/30
9	CuI (20)	1,10-Phen (30)	DTBP (2)	-	EtOAc	trace/5
10	CuI (20)	1,10-Phen (30)	DTBP (2)	-	DMF	ND/27
11	CuI (20)	1,10-Phen (30)	DTBP (2)	-	1,4- dioxane	ND/5
12	CuI (20)	1,10-Phen (30)	DTBP (2)	-	PhCN	ND/60
13	Cu(OAc)₂·H₂O	-	DTBP (2)	-	DCE	20/35
14 a	CuI (20)	1,10-Phen (30)	DTBP (2)	-	DCE	30/35
15 b	CuI (20)	1,10-Phen (30)	DTBP (2)	-	DCE	35/32
16	CuI (20)	1,10-Phen (30)	DTBP (2)	HAuCl₄ (5)	DCE	40/32
17	CuI (20)	1,10-Phen (30)	DTBP (2)	Ag₂CO₃ (40)	DCE	ND/32
18	CuI (20)	Neocuproine (30)	DTBP (2)	-	DCE	48/36
19	Cu₂O (20)	1,10-Phen (30)	DTBP (2)	-	DCE	10/42
20	CuCl(20)	1,10-Phen (30)	DTBP (2)	-	DCE	35/30
21	[Cu(MeCN)₄]OTf(20)	1,10-Phen (30)	DTBP (2)	-	DCE	22/38
No.	Cu Source	Ligand 1	Ligand 2	Oxidant	Solvent	Temp.
-----	-----------	----------	----------	---------	---------	-------
22	CuTC (20)	1,10-Phen (30)	DTBP (2)	-	DCE	32/28
23	[Cu(MeCN)$_n$]PF$_6$ (20)	1,10-Phen (30)	DTBP (2)	-	DCE	20/30
24	CuOAc (20)	1,10-Phen (30)	DTBP (2)	-	DCE	10/30
25	CuBr (20)	1,10-Phen (30)	DTBP (2)	-	DCE	32/35
26	Cul (20)	1,10-Phen (30)	K$_2$S$_2$O$_8$ (2)	-	DCE	ND/ND
27	AgNO$_3$ (20)	-	K$_2$S$_2$O$_8$ (2)	-	DCE	ND/ND
28	Cul (20)	1,10-Phen (30)	Oxone (2)	-	DCE	ND/ND
29	Cul (20)	1,10-Phen (30)	NFSI (2)	-	DCE	ND/ND
30	Cul (20)	IPr-HCl (30)	DTBP (2)	-	DCE	20/25
31	Cul (20)	1,10-Phen (30)	DTBP (2)	DBU (200)	DCE	30/25
32	Cul (200)	1,10-Phen (30)	DTBP (2)	-	DCE	ND/68
33	Cul (20)	1,10-Phen (30)	BPO (2)	-	DCE	15/ND
34	Cul (20)	1,10-Phen (30)	TBHP (2)	-	DCE	38/33
35	Cul (20)	1,10-Phen (30)	TBPB (2)	-	DCE	38/20
36	Cul (20)	1,10-Phen (30)	DTBP (2)	NaO'Bu (110)	DCE	trace/15
37	Cul (20)	Pyridine (30)	DTBP (2)	-	DCE	27/40
38	Cul (20)	BPY (30)	DTBP (2)	-	DCE	25/35
39	Cul (20)	Terpyridine (30)	DTBP (2)	-	DCE	13/30
40	Cul (20)	X-Phos (30)	DTBP (2)	-	DCE	Trace/45
41	Cul (20)	Xantphos (30)	DTBP (2)	-	DCE	Trace/30
42	Cul (20)	1,10-Phen (30)	DTBP (2)	-	PhCF$_3$	61/28
43	Cul (20)	1,10-Phen (30)	DTBP (2)	-	THF	25/38
44	Cul (20)	-	DTBP (2)	-	PhCF$_3$	65/20
45	Cu(OAc)$_2$ (20)	-	DTBP (2)	-	PhCF$_3$	46/35
46	Cu(OTf)$_2$ (20)	-	DTBP (2)	-	PhCF$_3$	42/32
	Reactant 1	Reactant 2	Initiator	Product		
---	---------------	------------	-----------	---------		
47	CuO(20)	-	DTBP (2)	PhCF₃	35/40	
48	CuI(20)	-	TBHP (2)	PhCF₃	40/38	
49	CuI(20)	-	BPO (2)	PhCF₃	20/0	
50	CuI(20)	-	TBPB (2)	PhCF₃	38/20	
51	CuI (20)	-	DTBP (2)	PhCF₃	65/20	
52	Cu(OAc)₂(20)	-	DTBP (2)	PhCF₃	46/35	
53	CuNP (20)	-	DTBP (2)	PhCF₃	80/18	
54	Cu (20)	-	DTBP (2)	PhCF₃	82/12	
55	Cu (20)	-	DTBP (2)	TEMPO (200)	PhCF₃	83/0
56	Cu (20)	-	DTBP (2)	BHT (200)	PhCF₃	69/0
57^a	Cu (20)	-	DTBP (2)	PhCF₃	75/18	
58^b	Cu (20)	-	DTBP (2)	PhCF₃	56/27	
59	Cu (20)	1,10-Phen	DTBP (2)	PhCF₃	70/12	
60	Cu (20)	-	DTBP (2)	TBAI (120)	PhCF₃	65/12
61	Cu (20)	-	DTBP (2)	I₂ (120)	PhCF₃	51/12
62	Cu (20)	-	DTBP (2)	MnO₂ (200)	PhCF₃	60/15
63	Cu (20)	-	DTBP (2)	Mn(OAc)₃·2H₂O (200)	PhCF₃	76/17
64	Cu (20)	-	DTBP (2)	MnO₂ (200)	PhCF₃	73/8
65	Cu (20)	Yu-auxiliary (30)	DTBP (2)	PhCF₃	42/25	
66	Cu (20)	-	DTBP (2)	Mn(OAc)₃·2H₂O (100)	PhCF₃	78/15
67	Cu (20)	NMI (30)	DTBP (2)	Mn(OAc)₃·2H₂O (100)	PhCF₃	37/33
68	Cu (20)	4,4'-DTBPY (30)	DTBP (2)	PhCF₃	51/35	
69	Cu (20)	Quinox (30)	DTBP (2)	PhCF₃	48/15	
70	Cu (20)	-	DTBP (2)	BQ (200)	PhCF₃	38/35
Table S2. Optimization of condition B, related to Table 1

Entry	Catalyst Loading [mol%]	Co-catalyst loading (mol%)	Ligand Loading (mol%)	Solvent	Yield of 2a	
1	Cu (20)	-	-	PhCF₃	20	
2	Cu (20)	-	-	MeCN	18	
3	Cu (20)	-	-	DCE	18	
4	Cu (20)	-	-	Benzene	10	
5	Cu (20)	-	-	DMSO	trace	
6	Cu (20)	-	-	Toluene	14	
7	Cul (20)	-	-	PhCF₃	15	
8	Cu(OAc)₂.H₂O (20)	-	-	PhCF₃	10	
9	CuO (20)	-	-	PhCF₃	10	
10	[Cu(MeCN)]PF₆ (20)	-	-	PhCF₃	8	
11	Cu₂O (20)	-	-	PhCF₃	trace	
12	Cu(OTf)₂ (20)	-	-	PhCF₃	10	
13	Cu (20)	-	Et₃N (30)	PhCF₃	20	
14	Cu (20)	-	Ethylenediamine (30)	PhCF₃	ND	
15	Cu (20)	-	Pyridine (30)	PhCF₃	10	
16	Cu (20)	-	Bpy (30)	PhCF₃	Trace	
17	Cu (20)	-	Terpyridine (30)	PhCF₃	ND	
18	Cu (20)	-	TMEDA (30)	PhCF₃	30	
19	Cu (20)	nPrCHO (200)	-	PhCF₃	25	
	Cu (20)					
---	---------	-----	-----	-----	-----	---
20	CH₃CHO (200)	-	PhCF₃	22		
21	PhCHO (200)	-	PhCF₃	18		
22	¹PrCHO (200)	-	PhCF₃	22		
23	nPrCHO (200)	-	DCE	15		
24	nPrCHO (200)	TMEDA (30)	PhCF₃	32		
25	-	-	PhCF₃	45		
26	nPrCHO (200)	TMEDA (30)	PhCF₃	37		
27	nPrCHO (200)	-	PhCF₃	40		
28a	Cu (20)	-	PhCF₃	42		
29a	Cu (20)	Eosin Y (2)	-	PhCF₃	45	
30a	Cu (20)	RB (2)	-	PhCF₃	72	
31a	Cu (20)	Ru(bpy)₂Cl₂ (2)	-	PhCF₃	35	
32a	Cu (20)	Mes-Acr-BF₄ (2)	-	PhCF₃	48	
33a	Cu (20)	RB (2)	TMEDA (30)	PhCF₃	50	
34a	Cu (20)	nPrCHO (200)/RB (2)	TMEDA (30)	PhCF₃	42	
35a	Cu (20)	nPrCHO (200)/RB (2)	-	PhCF₃	44	
36a,b	Cu (20)	RB (2)	-	PhCF₃	0	
36a,c	Cu (20)	RB (2)	-	PhCF₃	25	

All reactions were carried out in 0.1 mmol scale. Yields refer to here are overall isolated yields. ¹irradiation from 32W white CFL. ²N₂ environment. ³under air.

Figure S1. X-ray determined molecular structure of 2b, **CCDC: 2105616**, related to STAR Methods
Figure S2. X-ray determined molecular structure of 2t, CCDC: 2105617, related to STAR Methods.

Figure S3. Time by time colour of reaction mixture (condition A), related to Figure 2.

Figure S4. UV-VIS absorption spectra of standard reaction with condition A, related to Figure 2.
Figure S5. UV-VIS absorption spectra of reaction with condition A excluding 1a and DTBP, related to Figure 2

Figure S6. UV-VIS absorption spectra of reaction with condition A excluding 1a, related to Figure 2

Figure S7. UV-VIS absorption spectra of standard reaction with condition B, related to Figure 2
Figure S8. UV-VIS absorption spectra of reaction with condition B excluding 1a, related to Figure 2.

Figure S9. UV-VIS absorption spectra of reaction with condition B excluding RB, related to Figure 2.

Figure S10. XPS analysis, related to Figure 2.
Figure S11. Turbidity after reactions, related to Figure 2.

Figure S12. TEM images after completion of reactions, related to Figure 2.

Figure S13: In situ GC data under condition A, related to STAR methods.
Data S1. NMR spectra, related to STAR Methods
1H and 13C spectra of 2a
1H and 13C spectra of 2b
1H and 13C spectra of 2c
1H and 13C spectra of 2d
1H and 13C spectra of 2e
^{1}H and ^{13}C spectra of 2f
1H and 13C spectra of 2g
1H and 13C spectra of 2h
1H and 13C spectra of 2i
H and C^{13} spectra of $2j$

H and C^{13} spectra of $2j$
^{1}H and ^{13}C spectra of 2k
1H and 13C spectra of 21
1H and 13C spectra of 2m
1H and 13C spectra of 2n
1H and 13C spectra of 2o
^{1}H and ^{13}C spectra of 2p
1H and 13C spectra of 2q
\(^1\text{H}\) and \(^{13}\text{C}\) spectra of 2r
1H and 13C spectra of 2s
1H and 13C spectra of 2t
1H and 13C spectra of 2u
1H and 13C spectra of 2v
1H and 13C spectra of 2w
1H and 13C spectra of 2x
\[^1H \text{ and } ^{13}C \text{ spectra of } 2y \]
^1H and ^{13}C spectra of $2z$
\(^{1}\text{H}\) and \(^{13}\text{C}\) spectra of 2aa
1H and 13C spectra of 4a
1H and 13C spectra of 4b
^1H and ^{13}C spectra of 4c
1H and 13C spectra of 4d
^{1}H and ^{13}C spectra of 4e
1H and 13C spectra of 4f
1H and 13C spectra of $4g$
1H and 13C spectra of 4h
1H and 13C spectra of 4i
1H and 13C spectra of 4j
1H and 13C spectra of 4k
$^{1} \text{H and }^{13} \text{C spectra of 4l}$
^1H and ^{13}C spectra of 4m
\(^1\)H and \(^{13}\)C spectra of 9
19F spectra of 9
1H and 13C spectra of 13
1H and 13C spectra of 14
1H and 13C spectra of 16
1H and 13C spectra of 17
13H and 13C spectra of 18
1H and 13C spectra of 19
1H and 13C spectra of 20
1H and 13C spectra of 24
\(^{1}\text{H}\) and \(^{13}\text{C}\) spectra of 27
1H and 13C spectra of 29

S67
\(^1\)H and \(^{13}\)C spectra of 31