Supporting Information

for Adv. Mater. Interfaces, DOI: 10.1002/admi.202101784

Diblock and Random Antifouling Bioactive Polymer Brushes on Gold Surfaces by Visible-Light-Induced Polymerization (SI-PET-RAFT) in Water

Andriy R. Kuzmyn, Lucas W. Teunissen, Pina Fritz, Barend van Lagen, Maarten M. J. Smulders, and Han Zuithof*
Supporting Information

Diblock and Random Antifouling Bioactive Polymer Brushes on Gold Surface by Light-induced Polymerization (SI-PET-RAFT) in Water

Andriy R. Kuzmyn, Lucas W. Teunissen, Pina Fritz, Barend van Lagen, Maarten M. J. Smulders, Han Zuilhof*

(a)

(b)

Figure S1. XPS survey-scan spectrum of poly(HPMA)-poly(CBMA) random (a) and diblock (b) copolymer brush.
Figure S2. XPS depth profiling. Narrow N1s XPS spectra (1) of a poly(HPMA)-poly(CBMA) polymer brush (50 nm initial thickness). Panel 1 shows the initial spectra, while the following 2-9 panels show the spectrum with 10 second interval between each step, panel 10 (100 s) 11 (120 s) 12 (180s).

Fouling from human serum (HS). Non-specific adsorption of undiluted HS was assessed in real-time by SPR. Table S1 presents the fouling after 15 min exposure to HS.

Table S1. Fouling from undiluted HS.

Surface	Fouling from undiluted human serum fouling (pg⋅mm⁻²)
Au	4910 ± 189
Poly(CBMA)	14 ± 2
Pol(HPMA)	10 ± 3
Poly(MeOEGMA)	126 ± 31
Poly(HPMA)-poly(CBMA)(10%) random	53 ± 35
Poly(HPMA)-poly(CBMA) diblock	40 ± 18
Previously reported values of fouling from human serum and plasma on surfaces designed by different methods such as SI-ATRP are presented in Table S2.

Table S2. The protein fouling on different surfaces exposed to HS according to previously reported experiments.

Surface	Fouling from undiluted human serum/plasma fouling (pg⋅mm⁻²)
Au (unmodified gold surface)	3000 – 4000 [1, 2]
Poly(carboxybetaine) and poly(sulfobetaine) brushes	10 – 30 [3-5]
Pol(HPMA)	3 – 10 [3, 5-7]
Poly(MeOEGMA) and oligoethylene glycol-based polymer brushes	10 – 150 [1-3]
poly(HPMA)-poly(CBMA) (7.5%) random	0 ± 0.3 [8]
poly(HPMA)-poly(CBMA) (15%) random	29 ± 8 [8]

Note: during AntiBSA immobilizations measurements before injection of AntiBSA there was a temporary stop of the measurements of the sensor that created a jump in the sensogram just before the injection of AntiBSA that was corrected for during data processing (Figure S3).

Figure S3. Example of raw SPR sensogram on diblock poly(HPMA)-poly(CBMA) diblock, showing the spike in SPR response upon switching to the AntiBSA-containing medium.
References

[1] A. R. Kuzmyn, A. de los Santos Pereira, O. Pop-Georgievski, M. Bruns, E. Brynda, C. Rodriguez-Emmenegger, *Polym. Chem.* **2014**, *5*, 4124.

[2] C. Rodriguez Emmenegger, E. Brynda, T. Riedel, Z. Sedlakova, M. Houska, A. B. Alles, *Langmuir* **2009**, *25*, 6328.

[3] A. de los Santos Pereira, C. Rodriguez-Emmenegger, F. Surman, T. Riedel, A. B. Alles, E. Brynda, *RSC Adv.* **2014**, *4*, 2318.

[4] S. Jiang, Z. Cao, *Adv. Mater.* **2010**, *22*, 920.

[5] C. Rodriguez-Emmenegger, E. Brynda, T. Riedel, M. Houska, V. Šubr, A. B. Alles, E. Hasan, J. E. Gautrot, W. T. S. Huck, *Macromol. Rapid Commun.* **2011**, *32*, 952.

[6] M. Vorobii, A. de los Santos Pereira, O. Pop-Georgievski, N. Y. Kostina, C. Rodriguez-Emmenegger, V. Percec, *Polym. Chem.* **2015**, *6*, 4210.

[7] E. van Andel, S. C. Lange, S. P. Pujari, E. J. Tijhaar, M. M. J. Smulders, H. F. J. Savelkoul, H. Zuilhof, *Langmuir* **2019**, *35*, 1181.

[8] H. Lísalová, E. Brynda, M. Houska, I. Višová, K. Mrkvová, X. C. Song, E. Gedeonová, F. Surman, T. Riedel, O. Pop-Georgievski, J. Homola, *Anal. Chem.* **2017**, *89*, 3524.