Anopheles stephensi: a guest to watch in urban Africa

Eliningaya J. Kweka 1,2,3

Abstract

Malaria vector control programs in Sub-Saharan Africa have invested many efforts and resources in the control of eight-sibling species of Anopheles gambiae complex and An. funestus group. The behaviour of sibling species of these vectors is well known and used for implementing the current intervention tools. The reports of An. stephensi in urban Africa with different habitats breeding behaviour is an alert on the success of malaria vector control efforts achieved so far. This communication intends to give an insight on what should be considered as a challenge for the management of An. stephensi in urban Africa to retain the achievement attained in malaria control.

Keywords: Malaria, Insecticide, Resistance, Habitat types, Breeding sites

Background

Malaria vectors have been managed well for the past two decades with significant progress in preventing malaria and related adverse outcomes [1]. From 2018 to 2019 the malaria mortalities have been stalled with an increase in 2020, the efforts done so far through the distribution of long-lasting insecticidal nets (LLINs), indoor residual spray (IRS) and urban larval source management have increased the coverage [1, 2]. The gradual changes in land use, interventions and climate changes have led to species shift and re-distribution [3–6].

For a decade now in different countries of Africa there are reports of An. stephensi invasion [7–9]. This vector has been for long a malaria vector in south-eastern Asia [10]. The countries reported having An. stephensi are Djibouti, Ethiopia, Sudan and Somalia [9]. These reports have been confirmed after the DNA molecular analysis [11]. Anopheles stephensi is quite different from An. gambiae s.l. (Table 1). This species invasion has prompted the author to make a commentary on An. stephensi in urban Africa and its control challenges.

Main text

The introduction of Anopheles stephensi in African countries from Asia has alerted the national malaria control programmes in re-designing vector control strategies. The author indicates the main factors which are expected to be challenges in the efforts to control the species. These challenges are;

(i) An. stephensi is different from the current malaria vectors available in Africa with its breeding habitats mostly utilizing containers, holes in trees, water storage tanks and roof gutters used by Aedes aegypti species [13] (Table 1). Also, they were found to co-habit with culicine species in polluted habitats [13]. In Sri Lanka the An. stephensi has been found colonizing large water bodies breeding sites [14] which for larviciding are difficult to attend effectively. This vector possess a risk of occurrence in more countries Africa as a first case was reported in Djibouti in 2012 [15], Ethiopia in 2016 [16] and in Sudan 2019 [17]. The distribution rate of An.
Table 1 Differences between *An. gambiae* s.l. and *An. stephensi*

Factor	Differences	Comment
Oocyte prevalence	If both feed in the same infected blood meal source *An. stephensi* have higher oocyst development rate than *An. gambiae* s.s [12].	This means *An. stephensi* are more susceptible to parasites than *An. gambiae* s.l.
Breeding sites	*An. stephensi* breeds in containers and water cans indoors and outdoors while *An. gambiae* s.l. breeds in the natural habitats away from human dwellings.	*An. stephensi* has advantage of transmissions of malaria based on breeding sites and man access point.
Feeding and Resting preferences	*An. stephensi* higher densities are found cattle sheds than human dwellings while for *An. gambiae* s.l. feeding and resting depend on species. *An. stephensi* rests both indoor and outdoor while *An. gambiae* s.l. depend on the species. Most of *An. stephensi* feed on cattle while *An. gambiae* s.l. depends on species.	The feeding and resting behaviour of *An. stephensi* suggests having contribution to malaria transmission for been in contact with man either indoor or outdoor

stephensi is very high covering a long distance from Djibouti to Sudan in 6 years.

(ii) Insecticide resistance has been reported as the main challenge for insecticides used in IRS and in LLINs for other documented existing vector species [18]. In *An. stephensi*, the insecticides resistance has been reported in Sudan and Ethiopia [8, 19, 20]. Insecticides resistance confirmation is important for the vector control and insecticides based tools selection.

(iii) The *An. stephensi* in Asia do feeding on human and bovines, resting indoors and outdoors [12]. Due to variations on host availability in Africa it’s not well known in which host apart from humans shall feed on. The *An. stephensi* resting and feeding behaviour in all reported areas has not been yet established in African countries.

(iv) Monitoring of anthropogenic factors. Due to high rural-urban migration areas in sub-Saharan Africa, the emerging of urban agriculture, unplanned settlements, and poorly organized drainage systems effective habitats have been created [21–24]. The new species of *An. stephensi* is well known to be urban and peri urban malaria vector.

The way forward

(i) To strengthen the entomological surveillance system with the ability to capture the presence of this invasive *An. stephensi* mosquitoes.

(ii) To coordinate capacity building for laboratory and field entomologists in identification of *An. stephensi*. This is of priority to ensure sustainency of achieved malaria vector species control and cases in two decades, 2000 to 2020.

(iii) To establish the continuous monitoring of insecticide resistance profile of *An. stephensi* where the species will be reported to avoid impairing the existing tool efficacy.

(iv) To identify the potential breeding habitats for *An. stephensi* in urban and peri urban for appropriate control design.

(v) To establish the sentinel sites for continues data collection in all zones. These sentinels’ sites should operate on proposed standard operating procedures for species sampling, identification and insecticides resistance status.

Conclusion

The NMCPs of sub-Saharan Africa have been awaken on insuring that, the attained malaria control efforts are not compromised by the new invasive species. The way forward plans should be considered for proper management and control of this new species vector.

Abbreviations

IRS: Indoor residual spray; LLINs: Long lasting insecticidal nets; NMCP: National malaria control program; WHO: World health Organisation

Acknowledgements

I appreciate the help rendered by Ms. Lucy Kisima at TPRI library for provision of literature access. Dr. Bilali Kabula and Dr. Prosper Chaki are thanked for his contractive comments on first draft.

Author’s contributions

EJK conceived the idea and search literature, write, and reviewed to the final submission version. All author(s) read and approved the final manuscript.

Funding

This rapid review had no financial resources, authored used available internet to search for literature.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Author declare to have no competing interest.

Author details

1Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania. 2Division of Livestock and Human Diseases Vector Control, P.O. Box 3024, Arusha, Tanzania. 3Current:...
Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania.

Received: 14 October 2021 Accepted: 4 January 2022
Published online: 01 April 2022

References

1. WHO. World malaria report 2020: 20 years of global progress and challenges. In: World malaria report 2020: 20 years of global progress and challenges. Geneva: WHO; 2020. p. 299.

2. WHO. World malaria report 2021. In: World malaria report 2021. Geneva: WHO; 2021. p. 299.

3. Wanjala CL, Kweka EJ. Impact of Highland topography changes on exposure to malaria vectors and immunity in Western Kenya. Front Public Health. 2016;4:227. https://doi.org/10.3389/fpubh.2016.00227.

4. Himedian Y, Kweka E. Malaria in east African highlands during the past 30 years: impact of environmental changes. Front Physiol. 2012;3:315. https://doi.org/10.3389/fphys.2012.00315.

5. Kweka EJ, Kimaro EE, Munga S. Effect of deforestation and land use changes on mosquito productivity and development in Western Kenya highlands: implication for malaria risk. Front Public Health. 2016;4:238. https://doi.org/10.3389/fpubh.2016.00238.

6. Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Mdigia JT, Nzovu J, et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:1–9.

7. Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci. 2020;117(40):24900–8. https://doi.org/10.1073/pnas.2003976117.

8. Ahmed A, Khogali R, Elnour M-AB, Nakao R, Salim B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum state, Central Sudan. Parasit Vectors. 2021;14(1):311. https://doi.org/10.1186/s13071-021-05026-4.

9. Balkew M, Mumba P, Denga D, Yohannes G, Getachew D, Yared S, et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors. 2020;13(1):1–8. https://doi.org/10.1186/s13071-020-3904-y.

10. Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4(1):89. https://doi.org/10.1186/1756-3305-4-89.

11. Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Southern Ethiopia, 2018–2020. Malar J. 2021;20:263.

12. Thomas S, Ravishankaran S, Justin NJA, Asokan A, Mathai M, Valecha N, et al. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16(1):1–7. https://doi.org/10.1186/s12936-017-1745-5.

13. Sharma S, Hamzakoya K. Geographical spread of Anopheles stephensi vector of urban malaria, and Aedes aegypti, vector of dengue/DHF, in the Arabian Sea islands of Lakshadweep, India. 2001.

14. Gayan Dharmasiri AG, Perera AY, Harishchandra J, Herath H, Asavindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J. 2017;16(1):236. https://doi.org/10.1186/s12936-017-1745-5.

15. Faufde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, horn of Africa. Acta Trop. 2014;139:39–43. https://doi.org/10.1016/j.actatropica.2014.06.016.

16. Carter TE, Yared S, Gebreslasie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6. https://doi.org/10.1016/j.actatropica.2018.09.030.

17. WHO. Vector alert: Anopheles stephensi invasion and spread. Horn of Africa, the Republic of the Sudan and surrounding geographical areas, and Sri Lanka: information note. Geneva: World Health Organization; 2019.

18. Oroondo PW, Nyanjom SG, Atieli H, Githure J, Onondo BM, Owchbedo KO, et al. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors. 2021;14(1):335. https://doi.org/10.1186/s13071-021-04833-z.

19. Enayati A, Hanafi-Bojd AA, Sedaghat MW, Zaim M, Hemingway J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO eastern Mediterranean region. Malar J. 2020;19(1):1–12. https://doi.org/10.1186/s12936-020-03335-0.

20. Yared S, Gebreslasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide resistance in Anopheles stephensi in Somali region, eastern Ethiopia. Malar J. 2020;19(1):1–7. https://doi.org/10.1186/s12936-020-03252-2.

21. Dongus S, Nyaka D, Kannady K, Mtiwa D, Mshinda H, Gosoniu L, et al. Urban agriculture and Anopheles habitats in Dar Es Salaam, Tanzania. Geospat Health. 2009;3(2):189–210. https://doi.org/10.4018/gjh.2009.03.220.

22. Akono PN, Mbida JAM, Tonga C, Belong P, Nigo Hondt CE, Magne GT, et al. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the south region of Cameroon. Parasit Vectors. 2015;8(1):293. https://doi.org/10.1186/s13071-015-0906-2.

23. Mathania MM, Munisi DZ, Silayo RS. Spatial and temporal distribution of Anopheles mosquito’s larvae and its determinants in two urban sites in Tanzania with different malaria transmission levels. Parasit Epidemiol Control. 2020;11:e00179. https://doi.org/10.1016/j.parepi.2020.e00179.

24. Klinkenberg E, McCall PJ, Wilson MD, Amerasinghe FP, Donnelly MJ. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malaria J. 2008;7(1):151. https://doi.org/10.1186/1475-2875-7-151.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.