Global Studies of Using Fecal Biomarkers in Predicting Relapse in Inflammatory Bowel Disease

Fang Liu¹,², Seul A. Lee², Stephen M. Riordan³, Li Zhang²* and Lixin Zhu¹*

¹ Department of General Surgery and Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China, ² School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia, ³ Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract mainly comprising two forms including Crohn’s disease (CD) and ulcerative colitis (UC). IBD is a lifelong relapsing remitting disease and relapses occur at random patterns which are unpredictable. Fecal biomarkers have been increasingly used to assess disease activity in IBD due to their positive correlations with intestinal inflammation. Recent studies have also assessed the use of fecal biomarkers in predicting relapse and post-operative recurrence. This review provides information from global studies of using fecal calprotectin, lactoferrin and S100A12 to predict relapse in IBD. Strategies for further studies and the use of these fecal biomarkers for personalized management in IBD are also discussed.

Keywords: inflammatory bowel disease, Crohn’s disease, ulcerative colitis, fecal biomarkers, prediction, calprotectin, lactoferrin, S100A12

INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract comprising of two major subsets, Crohn’s disease (CD) and ulcerative colitis (UC) (1). Inflammatory bowel disease is a lifelong disease and patients often experience multiple episodes of relapse and remission. Relapses in IBD occur at a random pattern, which are unpredictable. Endoscopy is not used routinely for disease monitoring due to its invasiveness and cost. Current monitoring of disease relapses in patients with IBD is symptom based (1). In order to improve patient management, various studies have assessed the use of fecal biomarkers in predicting disease relapse (2).

Fecal biomarkers have attracted a great attention owning to their non-invasiveness and cost effectiveness. Fecal biomarkers used in IBD are bioproducts resulted from inflammatory responses in the intestinal mucosa. Calprotectin is the most studied fecal biomarker. Lactoferrin, S100A12 and other fecal biomarkers have also been examined in recent years. Most of the studies have reported that these biomarkers correlate well with the endoscopic score and histological inflammation in patients with IBD (3–12).

Recent studies have also assessed the use of fecal biomarkers in predicting relapse and post-operative recurrence. In this review article, we provide comprehensive and updated information from global studies on the use of fecal calprotectin, lactoferrin and S100A12 to predict relapse in IBD. We have also discussed strategies for further studies and the use of these fecal biomarkers for personalized management in IBD.
BIOLOGY OF CALPROTECTIN, LACTOFERRIN, AND S100A12

Fecal biomarkers used in IBD are either actively secreted by or released from necrotic immune cells during inflammatory responses at the intestinal mucosa. They have a wide variety of biological functions including antimicrobial activity, proinflammatory activity, degradation of extracellular matrix and intracellular pathogens, as well as cellular and metabolic activities.

Calprotectin
Calprotectin is a cytoplasmic protein prominently found in neutrophils that accounts for more than 40% of the cytosolic proteins in neutrophils, and to a lesser extent in monocytes and macrophages. Calprotectin is released to extracellular environment during inflammatory responses upon neutrophil activation or necrosis and induces neutrophil chemotaxis and adhesion. Calprotectin is stable for up to 1 year when stored at −20°C, and stable for 7 days when stored at 4°C and room temperature (13–15).

The physiologically active conformation of calprotectin is a heterodimer complex consisting of S100A8 and S100A9 and both proteins belong to the S100 family. The S100A8 and S100A9 subunits consist of 93 and 113 amino acids with molecular weight of 10.8 and 13.2 kDa, respectively (16, 17). Each subunit is able to bind two calcium ions. In addition to the calcium binding site, each heterodimer displays two transition metal binding sites at the interface of S100A8/S100A9, the first site binds manganese and zinc, while the second site binds zinc only (18–21).

As a metal chelating agent, calprotectin binds transition metals with high affinity and efficiently sequester them away from invading microbial pathogens, thereby starves invading pathogens, limiting their growth and resulting in a process called “nutritional immunity” (22–25). At the site of infection, calprotectin is not only abundantly released by neutrophils, but also epithelial cells and other immune cells, thereby playing a critical role in host defense against various bacterial species such as Listeria monocytogenes, Salmonella Typhimurium, Borrelia burgdorferi, Helicobacter pylori, Staphylococcus aureus, as well as fungal pathogens including Candida albicans (26–33). Interestingly, some bacterial pathogens harbor mechanisms allowing them to evade the harmful environment created by calprotectin. For examples, H. pylori is able to alter its outer membrane via lipid A modification, thus evading the antimicrobial activity of calprotectin. The growth of S. Typhimurium was actually elevated over competing commensal microbes in the presence of calprotectin due to the presence of ZnuABC zinc transporter, which enables the bacterium to acquire zinc under zinc-limiting conditions (34, 35).

Lactoferrin
Lactoferrin is present in most exocrine secretions such as milk, saliva, tears, mucosal secretions, and plasma (36). Secretory epithelia and neutrophils are the main sources of lactoferrin. Lactoferrin is stable for up to 7 days when stored at 4°C or room temperature (37–39).

Human lactoferrin is an 80 kDa glycoprotein containing ~700 amino acids. The single polypeptide chain forms two homologous globular domains, namely N-terminal and C-terminal domain, respectively, depending on their localization, and each terminal domain contains two domains (N1, N2, C1, and C2), resulting in a deep cleft conformation for iron-binding (40).

Lactoferrin has antimicrobial activity. Lactoferrin binds free iron, which inhibits the growth of iron-dependent bacterial species and reduces bacterial biofilm formation (41). Lactoferrin can also bind to receptors on bacterial surface, which induces death of Gram-negative bacteria due to a disruption in the cell wall and inhibits the formation of bacterial biofilms. Under inflammatory conditions, the levels of lactoferrin are increased.

S100A12
S100A12 is also a protein of the S100 family that is predominately expressed and secreted by neutrophils. Human S100A12 contains 91 amino acids with a molecular weight of 10.4 kDa and the protein is stable for 7–10 days when stored at room temperature (42–44). Similar to calprotectin, S100A12 is able to bind calcium, iron and zinc. As a metal chelating agent, S100A12 also has antimicrobial activity (45–47). Furthermore, S100A12 has chemotactic characteristic that recruits mast cells and monocytes to the site of inflammation (48–50). S100A12 is able to bind a number of cellular receptors. Recent evidence suggest that S100A12 stimulate proinflammatory responses in monocytes via Toll-like receptor 4, leading to upregulated monocyte expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, and IL-8 (51). S100A12 is overexpressed in inflammatory conditions.

CALPROTECTIN, LACTOFERRIN, AND S100A12 IN PREDICTING RELAPSE IN IBD

The gold standard of defining clinical remission or relapse relies on endoscopic mucosal healing and histological scoring of inflammation. Majority of the quiescent IBD patients have residual inflammation in the colonic mucosa, and when the degree of inflammation reaches a critical level, symptomatic relapse occurs (52). Various research groups have examined the use of fecal biomarkers as predictive markers for relapse and they are summarized in Table 1. Most of these studies assessed calprotectin and few examined lactoferrin and S100A12. Of the 31 studies listed in Table 1, 29 studies examined calprotectin, three studies examined lactoferrin and one study examined S100A12. Some of these studies have examined multiple fecal biomarkers.

The reported sensitivities, specificities and the cut-off values in different studies assessing fecal calprotectin as a biomarker in predicting relapse varied greatly. Of the 29 studies of calprotectin listed in Table 1, the sensitivities for predicting CD, UC, and IBD ranged from 28 to 100%, 31 to 100%, and 38 to 100%, respectively. The specificities for predicting CD, UC, and IBD ranged from 43 to 52%, 63 to 100%, and 69 to 100%, respectively. The cut-off values for CD, UC, and IBD varied from 106.5 to 462 µg/g, 120
References	Location	Age median or mean* (range)	Disease	N	Time interval	Optimal cut-off	Median/mean*	P-value	Sensitivity/ specificity	PPV/NPV %	Method	
Calprotectin												
Buisson et al. (53)	US	25.9*	CD	112	1 yr	100 µg/g	-	-	-	76/86	77/85	ELISA (Genova diagnostics)
Ferreiro-Iglesias et al. (54)	Spain	44 (18–78)	CD	71	4 mons	>300 µg/g	477 µg/g	65 µg/g	<0.005	100/80	78.3/100	Lateral flow assay (Buhlmann)
Kittanakom et al. (55)	Canada	CD: 14.6 (11–17) UC: 14.1 (11–17)	IBD	40	-	400 µg/g	-	-	-	100/75.9	58.8/100	ELISA (PhiCal)
Diederen et al. (56)	Netherlands	14.9 (all <18)	IBD	114	6 mons	350 µg/g	370 µg/g	122 µg/g	0.003	82/79	41/96	-
Roblin et al. (57)	France	35	CD	119	>250 µg/g and TLI < 2 µg/mL	-	-	-	94/84	73/97	Lateral flow assay (Buhlmann)	
Theede et al. (58)	Denmark	39*	UC	70	6 and 12 mons	321 mg/kg	-	-	-	46.7/85.5	46.7/85.5	ELISA (Buhlmann)
Delefortrie et al. (61)	Belgium	43	CD	29	6 mons	183.5 µg/g	667 µg/g	109 µg/g	<0.05	100/76.2	61/100	Lateral flow assay (Buhlmann)
Mooiweer et al. (62)	Netherlands	50 (19–71)	CD	20	12 mons	56 µg/g⁶⁷	284 µg/g	37 µg/g	<0.01	64/100	20/100	ELISA (Ridascreen)
Yamamoto et al. (63)	Japan	35 (18–74)	UC	80	40 wks	Elevated level ≥55 µg/g	76.5 µg/g	15.5 µg/g	<0.0001	88/80	66/94	ELISA (Cell sciences)
Scaioli et al. (64)	Italy	40 (16–69)	UC	74	1 yr	190 µg/g	216 µg/g	40 µg/g	<0.01	65/96	93/88	ELISA (Calprest)
Yamamoto et al. (65)	Japan	36.1* (20–75)	UC	80	12 mons	170 µg/g	173.7 µg/g[*]	135.5 µg/g[*]	0.02	76/76	-	ELISA (Cell sciences)
Jauregui-Aizmendi et al. (66)	Spain	46*	UC	64	1 yr	250 µg/g	200 µg/g	75 µg/g	0.75	41/85	-/80	ELISA (Cerba internacional)
Naismith et al. (67)	UK	47* (>18)	CD	92	12 mons	240 µg/g	414 µg/g	96 µg/g	0.005	80.8/74.4	28/97	ELISA (Buhlmann)
Vos et al. (68)	Belgium and Norway	48* (19–79)	UC	87	52 wks	300 µg/g	125 µg/g⁶⁷	27 µg/g⁶⁷	<0.001	58.3/90.3	-	ELISA (PhiCal)
Lasson et al. (69)	Sweden	33 (18–74)	UC	69	1 yr	169 µg/g	263 µg/g	102 µg/g	0.009	64.4/70.8	80.6/51.5	ELISA (Buhlmann)

(Continued)
TABLE 1 | Continued

References	Location	Age median or mean* (range)	Disease	N	Time interval	Optimal cut-off	Median/mean*	P-value	Sensitivity/specificity %	PPV/NPV %	Method
Liu et al. (70)	France and Belgium	32	CD	79	3 yrs	262 μg/g	280 μg/g	0.01	52.2/85.7	88.9/45.0	ELISA (PhiCal)
van Rheenen et al. (71)	Netherlands	14.1* (<18)	CD	31	3 mons	500 μg/g	-	-	-/-	-/-	ELISA (Calpro)
Louis et al. (72)	France and Belgium	13* (<18)	UC	31	-	-	-	-	-/-	-/-	ELISA (PhiCal)
Laharie et al. (73)	France	30.4 (15–69)	CD	65	14 wks	130 μg/g	200 μg/g	Ns	61/48	-/-	ELISA (Buhlmann)
Garcia-Sánchez et al. (74)	Spain	36.9*	CD	66	1 yr	200 μg/g	524 μg/g	<0.01	80/65	46/88	ELISA (Calprest)
Meuwis et al. (70)	France and Belgium	40.4*	UC	69	-	120 μg/g	298 μg/g	<0.01	81/63	49/88	ELISA (Calprest)
Kallel et al. (75)	Tunisia	33 (15–66)	CD	53	12 mons	340 μg/g	380.5 μg/g	<0.001	80/90.7	-/-	ELISA (PhiCal)
Sipponen et al. (76)	Finland	12.9 (2–17)	IBD	72	12 mons	108.5 μg/g	409 μg/g	0.44	38/72	-/-	ELISA (PhiCal)
Sipponen et al. (76)	Finland	12.9 (2–17)	IBD	72	12 mons	108.5 μg/g	409 μg/g	0.44	38/72	-/-	ELISA (PhiCal)
García-Sánchez et al. (74)	Spain	43*	IBD	163	12 mons	220.1 μg/g	220.5 μg/g	0.395	87/43	50/83	ELISA (Calprest)
Díaz et al. (77)	Spain	43*	IBD	163	12 mons	220.1 μg/g	220.5 μg/g	0.395	87/43	50/83	ELISA (Calprest)
Cost et al. (80)	Italy	41*	UC	41	-	275 μg/g	-	-	94/95	-/-	ELISA (In-house)
Däbritz et al. (83)	Germany	37.4 (3.5–74.6)	IBD	181	Predicting relapse 8–12 wks earlier	0.43 μg/g	-	70/83	-/-	ELISA (Inhouse)	

Time interval: cut-off values for predicting relapse within a specified period. Concentrations of fecal markers in relapsers and non-relapsers are expressed as mean (*) or median. Age of patients are presented as mean (*) or median. Studies on pediatric patients are in italic. *: cut-off value for prediction of absence of relapse. **: Positive lactoferrin test was more frequent in relapsing than in non-relapsing patients. TLI, trough level of infliximab; IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; IBD-U, inflammatory bowel disease-unclassified; PPV, positive predictive value; NPV, negative predictive value; Ns, Not statistically significant; Wk, week; Mon, month; Yr, year. *-, information not available.
to 321 μg/g, and 100 to 800 μg/g, respectively (Table 1). Twenty-one studies compared the levels of calprotectin of relapsed and non-relapsed patients, of which 18 studies (85.7%) found that the levels of fecal calprotectin in relapsed patients were significantly higher, indicating that the levels of fecal calprotectin reflect the levels of inflammation in the intestinal mucosal tissues. A meta-analysis by Mao et al. analyzed combined data from six studies in Table 1, comprising a total of 672 adult IBD patients (318 UC and 354 CD) (84). They reported that the pooled sensitivity and specificity of fecal calprotectin in predicting relapse in quiescent IBD to be 78 and 73%, respectively (84). However, this meta-analysis did not state the cut-off values of the pooled data, the cut-off values in the six original studies varied from 100 to 340 μg (74, 75, 77, 78, 80, 81).

The time intervals observed in studies examining fecal calprotectin in Table 1 were from 2 months to 3 years. More than 50% of these studies observed patients for a time interval of 1 year or above. The remaining studies observed patients for shorter terms such as 2, 4, or 6 months. There were no specific traits associated with observation term intervals in respect of cut-off values, sensitivities and specificities.

Most of the studies on fecal calprotectin in predicting IBD relapse were from Europe. Of the 29 studies examining calprotectin in Table 1, 23 were from Europe, two from North America, two from UK, one from Africa, and there were only two studies from Asian populations, both of which were from the same research group in Japan (63, 65).

Enzyme-linked immunosorbent assay (ELISA) was used in quantifying the levels of calprotectin in stools in 23 out of the 29 studies in Table 1. The remaining studies used other methods such as Lateral Flow Assay, chemiluminescent immunoassay, colloidal gold agglutination assay, and fluorescence enzyme immunoassay. The ELISA kits used by these studies were from eight different manufacturers and one study used in-house ELISA. The studies by Kittanakom et al. and Delefortrie et al. have compared different methods in quantifying fecal calprotectin for predicting relapse of IBD and CD, respectively (55, 61). Kittanakom et al. (55) reported the cut-off values of 400 and 500 μg/g when using ELISA kits supplied by two different manufacturers, however the cut-off was of a much higher value (800 μg/g) when fluorescence enzyme immunoassay was used. Delefortrie et al. showed cut-off values of 124.5 and 106.5 μg/g when the same chemiluminescent immunoassay was performed with different sample extraction methods, but the cut-off was much higher (183.5 μg/g) when Lateral Flow Assay was used (61). These results showed that variations can be introduced due to different detection methods used in various studies.

To date, only three studies have investigated the use of fecal lactoferrin in predicting relapse in IBD, of which only the study from Japan was able to identify an optimal cut-off value (65). However, this study did not find a statistically significant difference of fecal lactoferrin levels between relapsed and non-relapsed patients. The remaining two studies from Spain and US, although have found a significant difference of fecal lactoferrin levels between relapsed and non-relapsed patients, but they did not report optimal cut-off values for prediction of relapse (77, 82). Only one study had examined the use of S100A12 for predicting relapse in IBD. By using an in-house ELISA, Däbritz et al. showed that a cut-off value of 0.43 μg/g was able to predict relapse 8–12 weeks earlier with sensitivity and specificity being 70 and 83% respectively.

CALPROTECTIN, LACTOFERRIN, AND S100A12 IN PREDICTING POST-OPERATIVE RECURRANCE IN CD

A non-invasive biomarker with predictive potential to identify patients without recurrence would be desirable to avoid post-operative endoscopies. In recent years, the use of fecal calprotectin in predicting post-operative recurrence in CD has been evaluated by various studies. Limited studies have also examined lactoferrin and S100A12. These studies are listed in Table 2.

These studies again reported varied sensitivities, specificities and cut-off values. Studies examining calprotectin reported sensitivities between 46 and 95% and specificities between 45.9 and 97%. The cut-off values also ranged from 60 to 274 μg/g. In the study by Lasson et al. (95) three different cut-off values (100, 200, and 250 μg/g) were assessed, and the corresponding sensitivities were 85, 54, and 46%, respectively. Nevertheless, this study did not detect a significantly different levels of fecal calprotectin in patients with and without post-operative recurrence while the other studies did (Table 2). A meta-analysis performed by Tham et al. on examining the use of fecal calprotectin for detection of post-operative endoscopic recurrence in CD showed that a significant threshold effect was observed for fecal calprotectin values of 50, 100, 150, and 200 μg/g; while the optimal diagnostic accuracy was obtained for fecal calprotectin value of 150 μg/g, with a pooled sensitivity and specificity being 70 and 69%, respectively (100).

Four studies have examined lactoferrin, which all showed significantly different fecal lactoferrin levels in patients with and without post-operative recurrence. However, the cut-off values ranged from 3.4 to 140 μg/g (Table 2). Only one study has examined S100A12 in pediatric patients using an in-house ELISA, which reported a sensitivity of 90% and specificity of 12%, and no significant difference in fecal S100A12 levels was observed in patients with and without post-operative recurrence (Table 2).

DISCUSSION AND SUGGESTIONS

Studies from diverse geographical regions of the world, mainly from Europe, have examined the use of fecal biomarkers in predicting disease relapse and post-operative recurrence in patients with IBD. Calprotectin is the most studied marker, and several studies also examined lactoferrin and few have investigated S100A12. The consistent information from these studies is that the level of calprotectin increases along with the intestinal mucosal inflammation, which is consistent with the biological functions of this protein. However, whether it can be used to predict disease relapse and post-operative recurrence is inconclusive from the current studies.
TABLE 2 | Summary of studies investigating fecal biomarkers for the prediction of post-operative recurrence in patients with Crohn’s disease.

References	Location	Age median or mean* (range)	N	Time interval	Optimal cut-off	Median/mean*	P-value	Sensitivity/ specificity %	PPV/NPV %	Method
Cerrillo et al. (85)	Spain	40.7* (18–74)	61	24 mons	160 µg/g	-	-	85/70	26/98	ELISA (Calprest)
Baillet et al. (86)	France	34.9*	30	< 1 yr	100 µg/g	354.8 µg/g*	0.0014	67/93	89/77	Lateral Flow Assay (Buhlmann)
Verdejo et al. (87)	Spain	48.2	86	< 1 mon	62 µg/g	172.5 µg/g*	0.0018	85.7/45.9	67.7/70.8	Lateral flow assay (Buhlmann)
Garcia-Planella et al. (88)	Spain	40	119	~24 mons	100 µg/g and 5 mg/L of CRP	205 µg/g* 94 µg/g*	<0.0001	82/53	54/81	ELISA (Calprest)
Wright et al. (89)	Australia and New Zealand	36	135	18 mons	135 µg/g	275 µg/g	<0.001	87/66	56/91	ELISA (Buhlmann)
Lopes et al. (90)	Portugal	45*	99	25 mons*	100 µg/g	196.5 µg/g	<0.001	74/75	61/91	Fluorescence enzyme immunoassay (Thermo Fisher Scientific)
Huikkinen et al. (91)	Finland	13.6 (≤18)	22	5.7 yrs*	139 µg/g	-	-	73/64	68/70	ELISA (PhiCal)
Herranz Bachiller et al. (92)	Spain	48.6*	97	-	60 µg/g	192.45 µg/g	0.0001	88/58	51.7/83.9	ELISA (Calprest)
Yamamoto et al. (93)	Japan	32 (21–48)	30	24 mons*	140 µg/g	199 µg/g	0.002	75/91	75/91	Colloidal gold agglutination assay (Alfresa Pharma Corp.)
Boschetti et al. (94)	France	39.3* (18–70)	86	18 mons	100 µg/g	473 µg/g*	<0.0001	95/54	69/93	ELISA (Buhlmann)
Lasson et al. (95)	Sweden	36 (17–63)	30	1 yr	100 µg/g	227 µg/g	0.25	85/35	50/75	ELISA (Buhlmann)
"Yamamoto et al. (96)	Japan	32*	20	12 mons	140 µg/g	229.5 µg/g*	0.005	70/70	70/70	ELISA (Cell sciences)
Lobatón et al. (97)	Spain	40	115	-	272 µg/g	788.5 µg/g*	<0.001	79/97	98/76	Lateral flow assay (Buhlmann)
Yamamoto et al. (98)	Japan	-	20	12 mons	274 µg/g	1211.9 µg/g*	<0.001	77/97	98/75	ELISA (Buhlmann)
Orlando et al. (99)	Italy	38	50	3 mons	170 µg/g	-	-	83/93	-/-	ELISA (Manufacturer not specified)
Wright et al. (89)	Australia and New Zealand	36	135	18 mons	3.4 µg/g	5.7 µg/g	1.6 µg/g	0.007	70/68	ELISA (TechLab)
Lopes et al. (90)	Portugal	45*	99	25 mons*	7.25 µg/g	23.27 µg/g*	<0.001	74/68	61/91	ELISA (TechLab)
"Yamamoto et al. (96)	Japan	32*	20	12 mons	125 µg/g	161.4 µg/g*	0.02	70/60	64/67	Colloidal gold agglutination assay (Alfresa Pharma Corp.)
Yamamoto et al. (98)	Japan	-	20	12 mons	140 µg/g	-	-	67/71	-/-	Colloidal gold agglutination assay (Manufacturer not specified)
Wright et al. (89)	Australia and New Zealand	36	135	18 mons	10.5 µg/g	2.0 µg/g	0.8 µg/g	0.188	91/12	ELISA (In-house)

Majority of the studies have examined the use of fecal biomarkers for prediction of endoscopic recurrence, except the study performed by Yamamoto et al. (96) (*) which was on clinical recurrence. Time-interval: median (*) or maximum follow up period. Concentrations of fecal markers in patients with and without POR are expressed as mean (*) or median. Age of patients are presented as mean (*) or median. Studies on pediatric patients are in italic. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; POR, post-operative recurrence; CRP, C-reactive protein; PPV, positive predictive value; NPV, negative predictive value; -, information not available.
Several factors from these studies have contributed to the uncertainty of using fecal biomarkers in predicting disease relapse and post-operative recurrence. Firstly, the cut-off values used in these studies varied remarkably, making it difficult to draw reliable conclusion. Secondly, different detection methods were used, which may produce inconsistent results. Thirdly, the time intervals observed in different studies were random, which again makes it difficult to compare the results between studies. Further studies therefore are warranted to determine whether these fecal biomarkers are reliable predictive markers in the management of IBD. We suggest the following strategies.

Use Fecal Biomarkers as Markers for Personalized Management in IBD

The degree of mucosal inflammation, the level of inflammation that can cause clinical symptoms and the response to different therapeutic agents in individual patients with IBD vary greatly. Given this, fecal biomarkers are perhaps best used in personalized management. Fecal samples can be collected at different stages of IBD in individual patients and the levels of fecal biomarkers can then be measured. Changes in levels of fecal biomarkers can be used to monitor and predict disease progress in individual patients, which may lead to an enhanced patient management.

REFERENCES

1. Chang S, Malter L, Hudesman D. Disease monitoring in inflammatory bowel disease. *World J Gastroenterol*. (2015) 21:11246. doi: 10.3748/wjg.v21.i40.11246
2. Lopez RN, Leach ST, Lemberg DA, Duvoisin G, Geary RB, Day AS. Fecal biomarkers in inflammatory bowel disease. *J Gastroenterol Hepatol*. (2017) 32:577–82. doi: 10.1111/jgh.13611
3. Rseth A, Aadland E, Grøyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. *Scand J Gastroenterol*. (2004) 39:1017–20. doi: 10.1080/00365520410007971
4. Sipponen T, Savilahti E, Kärkkäinen P, Kolho K-L, Nuutinen H, Turunen T, et al. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn's disease. *Inflamm Bowel Dis*. (2008) 14:1392–8. doi: 10.1002/ibd.20490
5. Langhorst J, Eisenbruch S, Koelzer J, Rueffer A, Michalsen A, Dobos GJ. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. *Am J Gastroenterol*. (2008) 103:162. doi: 10.1111/j.1572-0241.2007.01556.x
6. Rseth AG, Aadland E, Jahnson J, Raknerud N. Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein. *Digestion*. (1997) 58:176–80. doi: 10.1159/000102441
7. Bunn SK, Bisset WM, Main MJ, Golden BE. Fecal calprotectin as a measure of disease activity in inflammatory bowel disease. *J Pediatr Gastroenterol Nutr*. (2001) 32:171–7. doi: 10.1097/00005176-200100002-00015
8. Schoepfer AM, Trummler M, Seeholzer P, Seibold-Schmid B, Seibold F. Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. *Inflamm Bowel Dis*. (2008) 14:32–9. doi: 10.1002/ibd.20275
9. Schoepfer AM, Beglinger C, Straumann A, Trummler M, Vavricka SR, Bruegger LE, et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn's disease (SES-CD) than CRP, blood leukocytes, and the CDAI. *Am J Gastroenterol*. (2010) 105:162–9. doi: 10.1038/ajg.2009.545
10. Sipponen T, Kärkkäinen P, Savilahti E, Kolho KL, Nuutinen H, Turunen U, et al. Correlation of faecal calprotectin and lactoferrin with an endoscopic score for Crohn's disease and histological findings. *Aliment Pharmacol Ther*. (2008) 28:1221–9. doi: 10.1111/j.1365-2636.2008.03835.x
11. Garnero P, Préaudat C, Vermeire S. Fecal S100A12 levels measured by a new ELISA are increased in ulcerative colitis (UC) and Crohn’s disease (CD) and correlates with intestinal damage. *J Transl Med*. (2010) 8:1. doi: 10.1186/1475-2872-8-S1-P40
12. Rogler G, Biedermann L. Clinical utility of biomarkers in IBD. *Curr Gastroenterol Rep*. (2015) 17:26. doi: 10.1007/s11894-015-0449-x
13. Ten H, Brandsnes Ø, Dale S, Holtlund J, Skuibina E, Schjønsby H, et al. Improved assay for fecal calprotectin. *Clin Chim Acta*. (2000) 292:41–54. doi: 10.1016/S0009-8981(99)00206-5
14. Haisma S-M, van Rheenen PF, Wagenmakers L, Kobold AM. Calprotectin instability may lead to undertreatment in children with IBD. *Arch Dis Child*. (2020) 105:996–8. doi: 10.1136/archdischild-2018-316584
15. Lasson A, Stotzer P-O, Öhmman L, Isaksen S, Sapnara M, Strid H. The intra-individual variability of faecal calprotectin: a prospective study in patients with active ulcerative colitis. *J Crohns Colitis*. (2015) 9:26–32. doi: 10.1016/j.jcjo.2014.06.002
16. Siegenthaler G, Roulin K, Chatellier-Gruaz D, Hotz R, Saurat JH, Hellman U, et al. A heterocomplex formed by the calcium-binding proteins MRp8 (S100A8) and MRp14 (S100A9) binds unsaturated fatty acids with high affinity. *J Biol Chem*. (1997) 272:9371–7. doi: 10.1074/jbc.272.14.9371
17. Shirley SH, von Maltzan K, Robbins PO, Kusewitt DF. Melanoctye and melanoma cell activation by calprotectin. *J Skin Cancer*. (2014) 2014:846249. doi: 10.1155/2014/846249
18. Kornrörf IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9) 2 heterotrimer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. *J Mol Biol*. (2007) 370:887–98. doi: 10.1016/j.jmb.2007.04.065

Coordinated Multi-Center Analysis

Coordinated multi-center studies from different geographic regions are needed in order to determine whether fecal biomarkers can be used as reliable predictive markers for patients with IBD globally. Samples in different centers should be collected at multiple but consistently defined timepoints. Given that ELISA was the most commonly used quantification method in previous studies, perhaps this method should still be used. However, ELISA kits provided by different manufacturers should be compared. Consistently defined cut-off values should be used for data analysis. This approach is more likely to produce conclusive data regarding whether fecal biomarkers can be used as cohort markers to predict disease relapse in patients with IBD.

AUTHOR CONTRIBUTIONS

FL played a major role in writing the manuscript. LZhu and LZha conceived the project. LZhu, LZha, SL, and SR provided critical feedback and helped in editing the manuscript. All authors have approved the final version of the manuscript.

FUNDING

This work was supported by National Natural Science Foundation of China under Grant Number 51672003.
19. Wei L, Liu M, Xiong H. Role of Calprotectin as a Biomarker in Periodontal Disease. Mediators Inflamm. 2019;2019:10. doi: 10.1155/2019/3515026

20. Domo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy W, et al. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. PNAS. (2013) 110:3841–6. doi: 10.1073/pnas.1220341110

21. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe. (2011) 10:158–64. doi: 10.1016/j.chom.2011.07.004

22. Brophy MB, Hayden JA, Nolan EM. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc. (2012) 134:18089–100. doi: 10.1021/ja303794e

23. Besold AN, Gilston BA, Radin JN, Ramsoomair C, Culbertson EM, Li CX, et al. Role of calprotectin in withholding zinc and copper from Candida albicans. Infect Immun. (2018) 86:e00779–17. doi: 10.1128/IAI.00779-17

24. Nakashige TG, Zygiel EM, Drennan CL, Nolan EM. Nickel sequestration by the host-defense protein human calprotectin. J Am Chem Soc. (2017) 139:8828–36. doi: 10.1021/jacs.7b02112

25. Besold AN, Gilston BA, Radin JN, Ramsoomair C, Culbertson EM, Li CX, et al. Role of calprotectin in withholding zinc and copper from Candida albicans. Infect Immun. (2018) 86:e00779–17. doi: 10.1128/IAI.00779-17

26. Champaiboon C, Sappington KJ, Guenther BD, Ross KF, Herzberg MC. Measurements of fecal lactoferrin as a marker of fecal leukocytes. J Clin Microbiol. (2012) 50:259–64. doi: 10.1128/JCIM.00544-15

27. Jackson E, Little S, Franklin DS, Gaddy JA, Damo SM. Expression, purification, and antimicrobial activity of S100A12. J Biol Chem. (2017) 292:35557–55567. doi: 10.1074/jbc.M117.803820

28. Foell D, Wittkowski H, Kessel C, Weinhage T, Varga G, et al. Raised faecal calprotectin is associated with subsequent colorectal diseases: a prospective pilot study. Intern Med. (2000) 39:778–82. doi: 10.2169/internalmedicine.39.778

29. Leerdam E, Prieur A, Eys V, De Pauw L, Herdewijn P, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. (2008) 178:1324–34. doi: 10.1164/rccm.200809-1602OC

30. Jackson E, Little S, Franklin DS, Gaddy JA, Damo SM. Expression, purification, and antimicrobial activity of S100A12. J Biol Chem. (2017) 292:35557–55567. doi: 10.1074/jbc.M117.803820

31. Foell D, Wittkowski H, Kessel C, Weinhage T, Varga G, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. (2008) 178:1324–34. doi: 10.1164/rccm.200809-1602OC

32. Foell D, Wittkowski H, Kessel C, Weinhage T, Varga G, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. (2008) 178:1324–34. doi: 10.1164/rccm.200809-1602OC

33. Jackson E, Little S, Franklin DS, Gaddy JA, Damo SM. Expression, purification, and antimicrobial activity of S100A12. J Biol Chem. (2017) 292:35557–55567. doi: 10.1074/jbc.M117.803820

34. Doornbos J, Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol. (2017) 8:1438. doi: 10.3389/fimmu.2017.01438

35. Vrabie R, Kane S. Noninvasive markers of disease activity in inflammatory bowel disease. Gastroenterol Hepatol. (2014) 10:576.

36. de Jong NS, Leach ST, Day AS. Fecal S100A12: a novel noninvasive marker in children with Crohn’s disease. Inflamm Bowel Dis. (2006) 12:566–72. doi: 10.1097/01.ibd.0000227672.72271.91

37. Ilg EC, Troxler H, Bürgisser DM, Kuster T, Markert M, Guignard F, et al. Amino acid sequence determination of human S100A12 (P6, calgranulin C, CGRP, CAAFI) by tandem mass spectrometry. Biochem Biophys Res Commun. (1996) 225:146–50. doi: 10.1006/bbrc.1996.1144

38. Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol. (2017) 8:1438. doi: 10.3389/fimmu.2017.01438

39. Vrabie R, Kane S. Noninvasive markers of disease activity in inflammatory bowel disease. Gastroenterol Hepatol. (2014) 10:576.
58. Theede K, Holck S, Ibsen P, Kallemsø T, Nordgaard-Lassen I, Nielsen AM. Fecal calprotectin predicts relapse and histological mucosal healing in ulcerative colitis. *Inflamm Bowel Dis.* (2016) 22:1042–8. doi: 10.1097/MIB.0000000000000736

59. Ferreiro-Iglesias R, Barreiro-de Acua M, Otero Santiago M, Lorenzo González A, Alonso de la Pena C, Benitez Estevez AJ, et al. Fecal calprotectin as predictor of relapse in patients with inflammatory bowel disease under maintenance infliximab therapy. *J Clin Gastroenterol.* (2016) 50:145–71. doi: 10.1097/MCG.0000000000000312

60. Ferreiro-Iglesias R, Barreiro-de Acua M, Lorenzo-Gonzalez A, Dominguez-Munoz JE. Usefulness of a rapid fecal calprotectin test to predict relapse in Crohn's disease patients on maintenance treatment with adalimumab. *Sand J Gastroenterol.* (2016) 51:442–7. doi: 10.3109/00365521.2015.1115546

61. Delefortrie Q, Schatt P, Grimmelprez A, Gohy P, Deltour D, Collard G, et al. Comparison of the Liaison[®] calprotectin kit with a well established point of care test (Quantum Blue-Bühlmann-Alere[®]) in terms of analytical performances and ability to detect relapses amongst a Crohn population in follow-up. *Clin Biochem.* (2016) 49:268–73. doi: 10.1016/j.clinbiochem.2015.10.010

62. Mooiweer E, Severs M, Schipper ME, Fidder HH, Siersema PD, Laheij RJ, et al. Low fecal calprotectin predicts sustained clinical remission in inflammatory bowel disease patients: a plea for deep remission. *J Crohns Colitis.* (2015) 9:30–5. doi: 10.1093/ecco-jcc/jju003

63. Yamamoto T, Shioyama T, Matsumoto K. Consecutive monitoring of faecal calprotectin during mesalazine suppository therapy for active rectal inflammation in ulcerative colitis. *Aliment Pharmacol Ther.* (2015) 42:549–58. doi: 10.1111/apt.13308

64. Scioli E, Scagliarini M, Cardamone C, Liverani E, Uoglini G, Festi D, et al. Clinical application of faecal calprotectin in ulcerative colitis patients. *Eur J Gastroenterol Hepatol.* (2015) 27:1418–24. doi: 10.1097/MEG.0000000000000461

65. Yamamoto T, Shiraki M, Bamba T, Umegae S, Matsumoto K. Fecal calprotectin and lactoferrin as predictors of relapse in patients with quiescent ulcerative colitis during maintenance therapy. *Int J Colorectal Dis.* (2014) 29:485–91. doi: 10.1007/s00384-013-1817-3

66. Jáuregui-Amezaga A, López-Cerón M, Aceituno M, Jimeno M, Jauregui-Amezaga A, López-Cerón M, Aceituno M, Jimeno M, et al. Fecal Calprotectin is a Predictive Marker of Relapse in Crohn's Disease. *World J Gastroenterol.* (2016) 22:3420–5. doi: 10.3748/wjg.v22.i18.3420

67. García-Sánchez V, Iglesias-Flores V, González R, Gisbert JP, Gallardo-Valverde JM, González-Galilea A, et al. Does fecal calprotectin predict relapse in patients with Crohn's disease and ulcerative colitis? *J Crohns Colitis.* (2010) 4:144–52. doi: 10.1016/j.crohns.2009.09.008

68. Kallel L, Ayadi I, Matri S, Fekih M, Mahmoud NB, Feki M, et al. Fecal calprotectin is a predictive marker of relapse in Crohn's disease involving the colon: a prospective study. *Eur J Gastroenterol Hepatol.* (2010) 22:340–5. doi: 10.1097/MEG.0b013e3283382b49

69. Sipponen T, Kolho K-L. Fecal calprotectin in children with clinically quiescent inflammatory bowel disease. *Sand J Gastroenterol.* (2010) 45:872–7. doi: 10.1002/sde.20933

70. Gisbert JP, Bermejo F, Pérez-Calle J-L, Taxonera C, Vera I, McNicholl AG, et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. *Inflamm Bowel Dis.* (2009) 15:1190–8. doi: 10.1002/ibd.20688

71. D’Inca R, Dal Pont E, Di Leo V, Benazzato L, Martinato M, Lamboglia F, et al. Can calprotectin predict relapse risk in inflammatory bowel disease? *Am J Gastroenterol.* (2008) 103:2007–14. doi: 10.1111/j.1572-0241.2008.01870.x

72. Diamanti A, Colistro F, Basso M, Papadato B, Francalanci P, Bracci F, et al. Clinical role of calprotectin assay in determining histological relapses in children affected by inflammatory bowel diseases. *Inflamm Bowel Dis.* (2008) 14:1229–35. doi: 10.1002/ibd.20472

73. Costa F, Mumolo M, Ceccarelli L, Bellini M, Romano M, Sterpi C, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. *Gut.* (2005) 54:364–8. doi: 10.1136/gut.2004.034046

74. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. *Gastroenterology.* (2000) 119:15–22. doi: 10.1053/gast.2000.8523

75. Walker TR, Land ML, Kartashov A, Saslowsky TM, Lyerly DM, Boone JH, et al. Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. *J Pediatr Gastroenterol Nutr.* (2007) 44:114–22. doi: 10.1097/MPG.0b013e3180508d8e

76. Dabritz J, Langhorst J, Lögering A, Heidemann J, Mohr M, Wittkowski H, et al. Improving relapse prediction in inflammatory bowel disease by neutral-derivation of S100A12. *Inflamm Bowel Dis.* (2013) 19:1130–8. doi: 10.1097/MIB.0b013e318280b1cd

77. Mao R, Xiao Y-L, Gao X, Chen B-I, He Y, Yang L, et al. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. *Inflamm Bowel Dis.* (2012) 18:1894–9. doi: 10.1002/ibd.22861

78. Cerrillo E, Moret I, Ibora M, Pamies J, Hervás D, Tortosa L, et al. A nomogram combining fecal calprotectin levels and plasma cytokine profiles for individual prediction of postoperative crohn’s disease recurrence. *Inflamm Bowel Dis.* (2019) 25:1681–91. doi: 10.1093/ibd/izy053

79. Baillet P, Cadiot G, Goutte M, Goutorbe F, Briai H, Hoeffle C, et al. Fecal calprotectin and magnetic resonance imaging in detecting Crohn’s disease endoscopic postoperative recurrence. *World J Gastroenterol.* (2018) 24:6461. doi: 10.3748/wjg.v24.i45.641

80. Verdejo C, Hervás D, Roncero Ó, Arias Á, Bouhmidi A, Lorente R, et al. Fecal calprotectin is not superior to serum C-reactive protein or the Harvey-Bradow index in predicting postoperative endoscopic recurrence in Crohn’s disease. *Eur J Gastroenterol Hepatol.* (2018) 30:1521–7. doi: 10.1097/MEG.0000000000001284

81. García-Planella E, Maftosa M, Cabré E, Marín L, Gordillo J, Zabana Y, et al. Fecal calprotectin levels are closely correlated with the absence of relevant mucosal lesions in postoperative Crohn’s disease. *Inflamm Bowel Dis.* (2016) 22:2879–85. doi: 10.1097/MIB.0000000000000960

82. Wright EK, Kamm MA, De Cruz P, Hamilton AL, Ritchie KJ, Keenan JL, et al. Comparison of fecal inflammatory markers in Crohn’s disease. *Inflamm Bowel Dis.* (2016) 22:1086–94. doi: 10.1097/MIB.0000000000000671

83. Lopes S, Andrade P, Afonso J, Rodrigues-Pinto E, Dias CC, Macedo G, et al. Correlation between calprotectin and modified Rutgeerts score. *Inflamm Bowel Dis.* (2016) 22:2173–81. doi: 10.1097/MIB.0000000000000830

84. Hukkinnen M, Pakarinen MP, Merras-Salmio L, Koivusalo A, Rintala R, Kolho K-L. Fecal calprotectin in the prediction of postoperative recurrence of Crohn’s disease in children and adolescents. *J Pediatr Surg.* (2015) 51:1467–72. doi: 10.1016/j.jpedsurg.2016.01.017
92. Herranz Bachiller MT, Barrio Andres J, Fernandez Salazar I, Ruiz-Zorrilla R, Sancho Del Val L, Atienza Sanchez R. The utility of faecal calprotectin to predict post-operative recurrence in Crohn’s disease. Scand J Gastroenterol. (2016) 51:720–6. doi: 10.3109/00365521.2015.1130164

93. Yamamoto T, Shimoyama T, Umegae S, Matsumoto K. Serial monitoring of faecal calprotectin for the assessment of endoscopic recurrence in asymptomatic patients after ileocolonic resection for Crohn’s disease: a long-term prospective study. Therap Adv Gastroenterol. (2016) 9:664–70. doi: 10.1177/1756283X16646562

94. Boschetti G, Moussata D, Stefanescu C, Roblin X, Philip G, Cotte E, et al. Levels of fecal calprotectin are associated with the severity of postoperative endoscopic recurrence in asymptomatic patients with Crohn’s disease. Am J Gastroenterol. (2015) 110:865–72. doi: 10.1038/aig.2015.30

95. Lasson A, Strid H, Ohman L, Isaksson S, Olson M, Rydström B, et al. Fecal calprotectin one year after ileocecal resection for Crohn’s disease: a comparison with findings at ileocolonoscopy. J Crohns Colitis. (2014) 8:789–95. doi: 10.1016/j.crohns.2013.12.015

96. Yamamoto T, Shiraki M, Bamba T, Umegae S, Matsumoto K. Faecal calprotectin and lactoferrin as markers for monitoring disease activity and predicting clinical recurrence in patients with Crohn’s disease after ileocolonic resection: a prospective pilot study. United Eur Gastroenterol J. (2013) 1:368–74. doi: 10.1177/2050640613501818

97. Lobatón T, López-García A, Rodríguez-Moranta F, Ruiz A, Rodríguez L, Guardiola J. A new rapid test for fecal calprotectin predicts endoscopic remission and postoperative recurrence in Crohn’s disease. J Crohns Colitis. (2013) 7:e641–51. doi: 10.1016/j.crohns.2013.05.005

98. Yamamoto T, Kotze PG. Is fecal calprotectin useful for monitoring endoscopic disease activity in patients with postoperative Crohn’s disease? J Crohns Colitis. (2013) 7:e712. doi: 10.1016/j.crohns.2013.08.005

99. Orlando A, Modesto I, Castiglione F, Scala L, Scimeca D, Rispo A, et al. The role of calprotectin in predicting endoscopic post-surgical recurrence in asymptomatic Crohn’s disease: a comparison with ultrasound. Eur Rev Med Pharmacol Sci. (2006) 10:17.

100. Tham YS, Yung DE, Fay S, Yamamoto T, Ben-Horin S, Eliakim R, et al. Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis. Therap Adv Gastroenterol. (2018) 11:1756284818785571. doi: 10.1177/1756284818785571

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Liu, Lee, Riordan, Zhang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.