Bedford, Eric; Kim, Kyounghee
Periodicities in linear fractional recurrences: degree growth of birational surface maps. (English) Zbl 1171.37023
Mich. Math. J. 54, No. 3, 647-670 (2006).

The authors study periodicity of linear fractional recurrences and degree growth of birational surface mappings. They start with the family of birational transformations of the plane defined in affine coordinates by

\[f(x, y) = \left(\frac{a_0 + a_1 x + a_2 y}{b_0 + b_1 x + b_2 y} \right), \quad a = (a_0, a_1, a_2), \quad b = (b_0, b_1, b_2), \]

or its canonically induced map \(f_{a, b} : \mathbb{P}^2 \to \mathbb{P}^2 \). The authors study the degree growth of the iterates \(f_{a, b} \).

For a generic choice of parameters \(a \) and \(b \), \(f_{a, b} \) is not birationally conjugate to an automorphism. The remaining possibilities are thoroughly classified.

This family of mappings are usually used to construct examples with interesting dynamics.

Reviewer: Viorel Vâjâitu (Bucureşti)

MSC:
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
37B40 Topological entropy
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

Keywords:
natural mapping; degree growth; birational morphism; periodic mapping

Full Text: DOI arXiv

References:
[1] E. Bedford and J. Diller, Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift, Amer. J. Math. 127 (2005), 595–646. · Zbl 1083.37038 · doi:10.1353/ajm.2005.0015
[2] ———, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), 331–368. · Zbl 1076.37031 · doi:10.1215/S0012-7094-04-12824-6
[3] ———, Dynamics of a two parameter family of plane birational mappings: Maximal entropy, J. Geom. Anal. (to appear), arxiv.org/math.DS/0505062.
[4] E. Bedford and K. H. Kim, On the degree growth of birational mappings in higher dimension, J. Geom. Anal. 14 (2004), 567–596. · Zbl 1067.37054 · doi:10.1007/BF02922170
[5] M. J. Bertin, A. Decomps-Guilloux, M. Pathiaux-Delefosse, and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser, Basel, 1992. · Zbl 0772.11041
[6] G. I. Bischi, L. Gardini, and C. Mira, Plane maps with denominator. I. Some generic properties, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 119–153. · Zbl 0996.37052 · doi:10.1142/S0218127499000079
[7] ———, Invariant curves and focal points in a Lyness iterative process, Dynamical systems and functional equations (Murcia, 2000), Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1841–1852. · Zbl 1063.39016 · doi:10.1142/S0218127403007679
[8] S. Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math 328 (1999), 901–906. · Zbl 0943.37021 · doi:10.1016/S0764-4442(99)80294-8
[9] M. Cârstea and M. Lachowsk, Some periodic and non-periodic recursions, Monatsh. Math. 132 (2001), 215–236. · Zbl 1036.37002 · doi:10.1007/s006050170012
[10] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), 1135–1169. · Zbl 1112.37308 · doi:10.1353/ajm.2001.0038
[11] R. Dujardin, Laminar currents in \(\mathbf P^2 \), Math. Ann. 325 (2003), 745–765. · Zbl 1021.37018 · doi:10.1007/s00208-002-0402-9

[12] ——, Laminar currents and birational dynamics, Duke Math. J. 131 (2006), 219–247. · Zbl 1099.37037 · doi:10.1215/S0012-7094-06-13122-8

[13] J.-E. Fornæ ss and N. Sibony, Complex dynamics in higher dimension, II. Modern methods in complex analysis (Princeton, 1992), Ann. of Math. Stud., 137, pp. 135–182, Princeton Univ. Press, Princeton, NJ, 1995. · Zbl 0847.58059

[14] M. Gizatullin, Rational \(\mathbb G_1 \)-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 110–144, 239 (in Russian). · Zbl 0428.14022

[15] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, Addison-Wesley, Reading, MA, 1989. · Zbl 0836.00001

[16] E. A. Grove and G. Ladas, Periodicities in nonlinear difference equations, Adv. Discrete Math. Appl., 4, Chapman & Hall and CRC Press, Boca Raton, FL, 2005. · Zbl 1078.39009

[17] V. I. Kocic and G. Ladas, Global behaviour of nonlinear difference equations of higher order with applications, Math. Appl., 256, Kluwer, Dordrecht, 1993. · Zbl 0877.39001

[18] V. I. Kocic, G. Ladas, and I. W. Rodrigues, On rational recursive sequences, J. Math. Anal. Appl. 173 (1993), 127–157. · Zbl 0777.39002 · doi:10.1006/jmaa.1993.1057

[19] M. Kulenovic and G. Ladas, Dynamics of second order rational difference equations, CRC Press, Boca Raton, FL, 2002. · Zbl 0632.34070

[20] R. P. Kurshan and B. Gopinath, Recursively generated periodic sequences, Canad. J. Math. 26 (1974), 1356–1371. · Zbl 0313.26019 · doi:10.4153/CJM-1974-129-6

[21] R. C. Lyness, Notes 1581, 1847, and 2952, Math. Gazette 26 (1942), 62; 29 (1945), 231; 45 (1961), 201.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.