SUPPLEMENTARY MATERIALS

A new tool TSSPlant for prediction of plant Pol II promoters
I.A.Shahmuradov, R.Kh.Umarov, V.V.Solovyev

Table S1. Promoter sets used in training and testing procedures

Source	Species	Number of promoters in Learning Set	Number of promoters in Test Set 1	Number of promoters in Test Set 2						
		TATA	TATA	Total	TATA	TATA	Total	TATA	TATA	Total
ppdb	Arabidopsis	1,199	1,653	2,852	175	325	500	0	0	0
	Rice	1,899	6,630	8,529	103	397	500	0	0	0
PlantProm DB	Dicots¹	178	90	268	0	0	0	12	12	24
	Arabidopsis	40	45	85	0	0	0	10	11	21
	Monocots²	48	42	90	0	0	0	4	2	6
	Rice	26	20	46	0	0	0	2	2	4
	Other³	5	18	23	0	0	0	0	0	0
	Total	**3,395**	**8,498**	**11,893**	**178**	**722**	**1,000**	**28**	**27**	**55**

¹ Except *A. thaliana*. ² Except *O. sativa*. ³ Other species: *Chlamydomonas reinhardtii, Chlorella vulgaris, Chlorococcum littorale, Dunaliella tertiolecta, Pinus sylvestris, Pinus thunbergii, Pseudotsuga menziesii, Pyrenomonas salina, Scenedesmus obliquus* and *Volvox carteri* (for details see: Table S2).
Table S2. List of species represented in PlantProm DB and classification of promoters

Species	Taxon	Number of TATA promoters	Number of TATA-less promoters	Total number of promoters
Aegilops tauschii	Monocot	-	1	1
Avena fatua	Monocot	2	-	2
Avena sativa	Monocot	2	-	2
Dendrobium grex Madame Thong-IN	Monocot	-	3	3
Hordeum vulgare	Monocot	19	13	32
Lophopyrum elongatum	Monocot	-	1	1
Musa x paradisiaca	Monocot	-	1	1
Oryza sativa	Monocot	30	22	52
Sauromatum guttatum	Monocot	1	-	1
Triticum aestivium	Monocot	14	5	19
Zea mays	Monocot	16	20	36
Actinidia deliciosa	Dicot	1	-	1
Antirrhinum majus	Dicot	2	1	3
Arabidopsis thaliana	Dicot	52	57	109
Atropa belladonna	Dicot	1	-	1
Bertholletia excelsa	Dicot	1	-	1
Beta vulgaris	Dicot	1	2	3
Betula pendula	Dicot	1	2	3
Brassica juncea	Dicot	1	-	1
Brassica napus	Dicot	6	2	8
Canavalia gladiata	Dicot	1	-	1
Capsicum annuum	Dicot	2	-	2
Catharanthus roseus	Dicot	3	2	5
Citrus sinensis	Dicot	-	1	1
Craterostigma plantagineum	Dicot	2	4	6
Cucumis sativus	Dicot	3	-	3
Daucus carota	Dicot	3	-	3
Dianthus caryophyllus	Dicot	2	1	3
Eucalyptus gunnii	Dicot	2	-	2
Flaveria brownie	Dicot	1	-	1
Flaveria trinervia	Dicot	1	-	1
Glycine max	Dicot	21	10	31
Gossypium hirsutum	Dicot	6	-	7
Helianthus annuus	Dicot	7	1	8
Hevea brasiliensis	Dicot	1	-	1
Ipomoea batatas	Dicot	2	-	2
Ipomoea nil	Dicot	-	1	2
Linum usitatissimum	Dicot	1	-	1
Lotus japonicus	Dicot	2	-	2
Lupinus luteus	Dicot	2	-	2
Lycopersicon esculentum	Dicot	17	8	25
Lycopersicon penellii	Dicot	1	-	1
Lycopersicon peruvianum	Dicot	1	-	1
Lycopersicon pimpinellifolium	Dicot	1	-	1
Madagascar periwinkle	Dicot	1	-	1
Table S2 (continued)

Plant Name	Taxonomic Class	1	2	3	4	5
Malus domestica	Dicot		3	-	3	
Medicago sativa	Dicot		2	1	3	
Medicago truncatula	Dicot		1	-	1	
Nicotiana benthamiana	Dicot		2	-	2	
Nicotiana glutinosa	Dicot		4	2	6	
Nicotiana plumbaginifolia	Dicot		7	2	9	
Nicotiana tabacum	Dicot		21	10	31	
Papaver somniferum	Dicot		3	-	3	
Petroselinum crispum	Dicot		3	5	8	
Petunia hybrida	Dicot		6	2	8	
Petunia integrifolia	Dicot		1	-	1	
Pharbitis nil	Dicot		1	-	1	
Phaseolus coccineus	Dicot		1	-	1	
Phaseolus vulgaris	Dicot		9	3	12	
Pisum sativum	Dicot		20	11	31	
Populus balsamifera subsp.	Dicot		-	1	1	
Populus kitakamiensis	Dicot		-	2	2	
Prunus persica	Dicot		1	-	1	
Psophocarpus tetragonolobus	Dicot		1	-	1	
Pyrus serotina	Dicot		1	-	1	
Ricinus communis	Dicot		1	1	2	
Sesbania rostrata	Dicot		1	-	1	
Sinapis alba	Dicot		1	-	1	
Solanum commersonii	Dicot		1	1	2	
Solanum melongena	Dicot		2	-	2	
Solanum tuberosum	Dicot		9	5	14	
Spinacia oleracea	Dicot		-	7	7	
Striga hermonthica	Dicot		-	1	1	
Vicia faba	Dicot		2	1	3	
Vigna radiate	Dicot		1	-	1	
Pinus sylvestris	Conifers		1	1	2	
Pinus thunbergii	Conifers		1	-	1	
Volvox carteri	Chlorophyta		-	2	2	
Pseudotsuga menziesii	Conifers		1	-	1	
Pyrenomonas salina	Cryptophyta		-	1	1	
Scenedesmus obliquus	Chlorophyta		-	2	2	
Dunaliella tertiolecta	Green algae		-	2	2	
Chlamydomonas reinhardtii	Chlorophyta		2	8	10	
Chlorrella vulgaris	Chlorophyta		-	1	1	
Chlorococccum littorale	Chlorophyta		-	1	1	

1For the gene content of PlantProm DB visit: http://www.softberry.com/data/plantprom/Links/Taxon_Table_2.htm.
Table S3. Negative sets used in training and testing procedures

Species	Number of sequences in Learning Set	Number of sequences in Test Set 1		
TATA	TATA	TATA'	TATA	TATA'
Arabidopsis	3,533	8,858	278	861
Rice	2,467	6,142	222	639
Total	**6,000**	**15,000**	**500**	**1,500**

TATA' indicates TATA-less promoters.

EXPECTATION MAXIMIZATION ALGORITHM

In a simple implementation of Expectation Maximization (EM) algorithm (1), a sequence of a motif \(X=(x_1,x_2,\ldots,x_l)\) is considered, where \(l\) is a motif length. If \(p_i(x_j)\) is an empiric frequency of a nucleotide \(x_j\) (A, C, G, G) in position \(i\) (computed in previous iteration), then weight of such motif is computed as

\[W(X) = \frac{(\log \prod p_i(x_j))}{0.25}\]

COMPUTATION OF FEATURE WEIGHTS (SCORES)

To compute weight for features used to distinguish between promoter and non-promoter sequences, the following approach was used. Assume that a given promoter or non-promoter sequence is \(Y=(y_1,y_2,\ldots,y_L)\), where \(L\) is a sequence length, \(y_j\) is nucleotide (A or C or G or T) in position \(i\) (computed in previous iteration). Let’s also assume that \(q_1,q_2,q_3\) and \(q_4\) are frequencies of A, C, G and T in a sequence and a feature weight is computed for the search region \([T_1:T_2]\), where \(1 \leq T_1 \leq L\), \(1 \leq T_2 \leq L\).

Computing weights for TATA-box, INR, YP and DPE motifs. Consider sequence of a motif \(X=(x_1,x_2,\ldots,x_l)\), where \(l\) is a motif length and assume that \(p_i(x_j)\) is the empirical frequency of nucleotide \(x_j\) (A, C, G, G) in position \(i\), which is given by the corresponding Nucleotide Frequency Matrix (NFM). For a given \([T_1:T_2]\) search region of length \(T\) (\(T \leq l\)), \(K\) localizations \([t_1:t_2]\) for a motif are possible, where \(T=T_2-T_1+1\), \(k=T-l+1\). First, for every motif \(X_k\) \((k=1,2,\ldots,K)\) in \([t_1:t_2]\), weight is computed as

\[w_k(X_k) = \frac{(\log \prod p_i(x_j))}{q_j}\]

Then, the highest weight \(W(X)\) for motif \(X\) is found as

\[W(X)=\max(w_1,w_2,\ldots,w_K)\]

Search for putative TATA-box, INR and YP motifs in TATA promoter sequences was performed in \([-42:-19]\), \([-14:+14]\) and \([-50:+35]\) regions, respectively (+1 corresponds to the TSS); search for putative INR, YO and DPE motifs in TATA-less promoter sequences was performed in \([-14:+14]\), \([-50:+1]\) and \([+20:+35]\) regions, respectively.

Computing scores for \(d(TATA,TSS)\) and \(d(TSS,INR)\) distances. To obtain a frequency histogram (FH) for \(d(TATA,TSS)\), distance between TATA-box and TSS, and \(d(TATA,INR)\), distance between TATA-box and INR, for every entry from a positive learning set of TATA promoters we calculated distances between the following elements: \(d(TATA,TSS)\) and \(d(TATA,INR)\), which varied from 19 to 35 and from 0 to 14 bp,
respectively. Then, for every value of distance, (19-35) for d(TATA,TSS) and (0-14) for d(TATA,INR), we calculated frequency of its occurrence in sequences of a set and compiled the TATA-TSS and TATA-INR FHs. To get a score of d(TATA,TSS) for a given sequence, we calculated a distance between TATA-box and TSS, and for a score, we took the corresponding frequency from the TATA-TSS FH. To get a score of d(TATA,INR) for a given sequence, we calculated a distance between TATA-box and INR, and for a score, we took the corresponding frequency from the TATA-INR FH.

Computing oligomer scores. First, for positive and negative learning sets, we computed separate frequency tables for 2-mers and 3-mers in [-21:+20] region, for 4-mers, 5-mers and 6-mers in [-1:-200] and [+1:+51] regions. The final value in oligomer score table (OST) for a given k-mer was computed as a ratio of corresponding oligomer frequencies in positive and negative sets. To compute a score for k-mers (k=2,3,4,5) in a given sequence, to every k-mer, available in the corresponding search region, we assigned the corresponding score from the FH. Total k-mer score was calculated as a sum of these frequencies.

Computing scores for TFBS density. Data on transcription factor binding sites (TFBSs) were obtained from Regsite DB (www.softberry.com; Plant division) that contained 1,976 TFBSs. In both positive and negative learning sets, within [-200:+1] region of every sequence, we performed two kinds of search for motifs with similarity level 80% or higher: (1) search for motifs only in the sense strand of DNA; (2) search for motifs in both strands. We selected only TFBS motifs found in ≥5% of positive entries. We then, calculated frequencies of occurrence of each TFBS motif, separately in a positive and in a negative set, and as a final frequency for the corresponding TFBS, we took a ratio of corresponding frequencies in positive and negative sets. This way, we obtained two sets of TFBS and two corresponding TFBS score tables. To compute scores for TFBS density 1 and TFBS density 2 for a given sequence, within [-200:+1] region we performed search for TFBSs from two sets mentioned above. A total score for TFBS density 1 and 2 was computed as a sum of scores of TFBS found on a sense strand and on both strands, respectively.

Computing scores for CG skew and AC skew. To score the asymmetric nucleotide composition for a given DNA sequence, such as CG skew, \(sk(CG) \) and AC skew, \(sk(AC) \), we applied the following formulas, while number of nucleotides A (a), C (c), G (g) and T (t) in [-200:+20] region is given (2):

\[
sk(CG) = \frac{(c-g)}{(c+g)} \\
sk(AC) = \frac{(a+c-g-t)}{(a+c+g+t)}
\]

NEURAL NETWORK TECHNIQUE AND VISAN SOFTWARE

We used Neural Networks (NN) to get a recognition function for distinguishing between promoter and non-promoter sequences. The implementation used was part of VISAN software package (http://www.softberry.com/berry.phtml?topic=fdp.htm&no_menu=on).

VISAN is a software tool that provides a broad collection of machine learning algorithms. It allows users to quickly try out and compare different machine learning methods on new data sets. The machine learning algorithms include discriminant analysis, SVM, neural networks, random forests, and AdaBoost. The data and results can be visualized; both 2D and 3D visualization is possible. Statistical analysis of data is available as well. The main focus of VISAN is ease of use. It has a graphical user interface that enables easy access to the underlying functionality. Most tasks can be performed with a few clicks. The performance of different algorithms implemented in VISAN can be compared using accuracy histograms. We chose neural networks for our data analysis.
Neural networks are supervised learning algorithms inspired by biological neural networks, which can approximate any non-linear function. Supervised learning is a machine-learning task in which data labels are known. Neural networks consist of interconnected layers of neurons. The first layer is called an input layer. Its number of neurons is equal to the number of features in the data. The last layer is called an output layer and its number of neurons depends on the number of different data labels. The layers between input layer and output layer are called hidden layers. For the task at hand, we chose network architecture with one hidden layer of 15 neurons and two neurons for the output layer, as illustrated in Figure S1.

The neural network is trained using backpropagation algorithm, which calculates gradient of an error function with respect to weights in the network (for details of neural network based approaches see [2]). Each connection between neurons has an associated weight W_{ij}. Training a neural network involves tuning the weight corresponding to each connection. The weights are used to compute an output a^l of each neuron that is called neuron activation:

$$a^l = f(W^{l-1}x + b^{l-1}),$$

where l is the layer the neuron belongs to, x is an input from the previous layer, b^{l-1} is a bias, and f is called an activation function that is sigmoid in our case.

The neural network is trained using backpropagation algorithm, which calculates gradient of an error function with respect to weights in the network [2]. After the model is trained, we can get a score for a new input object o as a difference of values for neurons in the output layer:

$$F(o) = a^1_1 - a^1_2 + d,$$

where a^1_1 and a^1_2 are activations of output neuron 1 and 2 respectively for input o and d is threshold with default value 0.

STATISTICAL ESTIMATION OF PROMOTER PREDICTORS’ PERFORMANCE

To estimate performance of promoter predictors, we used the following statistical measures based on observed number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) predictions (5,6):

Recall (sensitivity or true positive rate, Sn): $Sn = TP/(TP+FN)$
Specificity (true negative rate, Sp): \(Sp = \frac{TN}{TN+FP} \)

F1-score (harmonic mean of Precision and Accuracy, F1): \(F1 = \frac{2TP}{2TP+FP+FN} \)

Mathew correlation coefficient (MCC):

\[
MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}
\]
Figure S2. General scheme for computation of scores (weights) of promoter features used in a NN algorithm that was implemented into TSSPlant program.
Figure S3. Distribution of distances between the closest TSSpr and gene start (annotated TSS, TSSan) for 38,702 protein-coding genes of *G. max*.

Figure S4. Distribution of distances between the closest TSSpr and gene start (annotated TSS, TSSan) for 17,645 protein-coding genes of *P. trichocarpa*.
Figure S5. Distribution of distances between the closest TSSpr and gene start (annotated TSS, TSSan) for 11,035 protein-coding genes of *V. vinifera*.

Figure S6. Relative location of TSSs mapped experimentally and predicted by TSSPlant program in upstream region of the AT2G41190 gene encoding a transmembrane amino acid transporter family protein. Chromosomal positions of TSSs correspond to TAIR *A. thaliana* genome annotation, ver6.0. The “unknown” indicates that promoter class for the corresponding TSS is unknown. Black arrows – experimental and grey arrows – predicted TSSs.
REFERENCES

1. Cardon, L.R. and Stormo, G.D. (1992) Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. *J Mol Biol*, 223: 159-170.

2. Lobry, J.R. (1996) Asymmetric Substitution Patterns in the Two DNA Strands of Bacteria. *Mol Biol Evol.*, 13: 660-665.

3. Haykin, S. (1998) Neural Networks: A Comprehensive Foundation, Prentice Hall, 842 p.

4. Bengio, Y. (2009) Learning Deep Architectures for AI. *Foundations and Trends in Machine Learning*, 2: 1-127.

5. Schneider, T.D., Stormo, G.D., Gold, L. and Ehrenfeucht, A. (1986) Information content of binding sites on nucleotide sequences. *J Mol Biol*, 188: 415-431.

6. Powers, D.M. (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. *J of Machine Learning Technologies*, 2: 37-63.