The limit theorem for dependent Bernoulli tests

V T Dubrovin¹, F G Gabbasov², V Yu Chebakova¹ and M S Fadeeva¹

¹Kazan Federal University, 18 Kremlin street, Kazan, 420008, Russia
²Kazan State University of Architecture and Engineering, 1 Zelenaya St., 420043, Kazan, Russia

E-mail: vchebakova@mail.ru

Abstract. There is considered the generalized Bernoulli tests scheme in which it is assumed that the tests are connected unlike the usual Bernoulli tests scheme. There is defined the condition of weak dependence of tests. The integral limit theorem is proved for the distribution of the number of successes in carrying out a finite set of tests. There is investigated the convergence rate in the limit theorem. There is obtained the optimal remainder.

1. Formulation of problem. Definitions
In the study of various processes, for example, underground filtration of non-Newtonian fluids [1–7] nonlinear deformation of plates and shells [8–14] and multilayer structures [15–21], the interaction of low-temperature plasma with materials [22–28], etc., it becomes necessary to use relationships that link various characteristics of processes. These relationships are empirical, they are obtained as a result of processing the results of natural experiments. The Bernoulli scheme is often used for data processing, this work is devoted to the study of this scheme. This article belongs to the category of articles devoted to the investigation of the remainders in limit theorems. In articles [31-35] we study the convergence rate in various limit theorems for weakly dependent random terms.

Quite often it is necessary to meet with tasks consisting of a series of identical tests in which the same outcome appears repeatedly, for example, in the Monte Carlo simulation [36-40] which is used in modeling processes occurring in plasma, in the modeling of financial processes. Often in such problems it is required to be able to determine the probability of any given number of favorable outcomes in a series of tests. This question is well researched in the case of independent tests, and in the case of weakly dependent tests it is not completely resolved. Only special cases were subject to investigation. In this article there is proved the theorem of Moivre-Laplace on finding the limiting distribution of the number of favorable outcomes with the optimal convergence rate under the condition of weak dependence on the random factor.

The subject of our research is random testing. In this case a random test is the implementation of a certain set of conditions as a result of which some event may or may not occur.

Let consider the sequence of random tests \(E_1, \ldots, E_n, \ldots\). Each test \(E_k\) has two outcomes: “success” and “failure”, which we denote by \(e_1^{(k)}\) and \(e_2^{(k)}\) respectively. Thus, the space of elementary outcomes of the test \(E_k\) \(\Omega^{(k)} = e_1^{(k)} + e_2^{(k)}\). We assume that \(P(e_1^{(k)}) = p\), \(P(e_2^{(k)}) = 1 - p = q\), for any \(k=1,2,\ldots\).

1.1. Definition 1
The tests E_1,\ldots,E_n are called independent if $P(e_1^{(i)} \ldots e_n^{(n)}) = P(e_1^{(i)}) \cdot P(e_n^{(n)})$ where $i_j = 1$ or 2

1.2. Definition 2
We say that the tests E_1,\ldots,E_n are connected in a simple Markov chain if under the condition that event $e_1^{(k)}$ appears in test E_k the probability that the event $e_1^{(k+1)}$ will again appear in the test E_{k+1} is α; the probability of the event $e_1^{(k+1)}$ happening in the test E_{k+1} if it is known that in the test E_k $e_1^{(k)}$ happens is equal to β. Thus, the transition probabilities are given by matrix $\begin{pmatrix} \alpha & 1-\alpha \\ \beta & 1-\beta \end{pmatrix}$. Here it is assumed that α and β are different from 0 and 1. It is obvious that such a tests scheme is a generalization of the independent tests scheme.

1.3. Definition 3
Let say that the tests E_1,\ldots,E_n are weakly dependent and in this case they satisfy the strong mixing condition with the coefficient $\alpha(\tau)$ if

$$\sup_{A\in h'_1, B\in h_n'} \left| p(AB) - p(A)p(B) \right| = \alpha(\tau)$$

Here h'_1 is a σ-algebra of random events generated by random events E_1,\ldots,E_n, h_n' is a σ-algebra of random events generated by random events E_{i_2},\ldots,E_n.

Let give one more definition of the dependence of the random tests E_1,\ldots,E_n.

Let E be a random factor associated with two events: the e_1 - the factor acts, the e_2 - the factor does not act. Let h be the σ-algebra generated by the random events e_1 and e_2, that is the random factor E. We introduce the notation $\beta^{(k)}_{ij} = P(A_i^{(k)}|A_j) - P(A_i^{(k)})$. Here $A_i^{(k)}$ is the elementary event of σ-algebra h'_1 generated by the test E_k and $A_i^{(k)}$ is the elementary event of σ-algebra generated by the random factor E.

1.4. Definition 4
If for any k, in any row of the matrix $\{\beta^{(k)}_{ij}\}$ there exists a positive element, then we say that the tests E_1,\ldots,E_n weakly depend on the random factor E. If, in addition, the elements of the matrix $\{\beta^{(k)}_{ij}\}$ do not depend on k, then we say that E_1,\ldots,E_n weakly depend on E equally.

Let consider the random tests E_1,\ldots,E_n such that $P(e_i^{(k)}) = p$ for any $k=1,\ldots,n$. Let μ_n be the number of “successes” in the implementation of tests E_1,\ldots,E_n.

We are interested in the asymptotic demeanor of the distribution function of μ_n ($n \to \infty$) under various conditions of the E_1,\ldots,E_n dependence.

Let assume that E_1,\ldots,E_n are independent tests. It is known that expected value $M\mu_n = np$ and dispersion $D\mu_n = npq$. We denote $F_n(x) = P\left(\frac{\mu_n - np}{\sqrt{npq}} < x \right)$. Then the Muawr-Laplace theorem states that

$$\sup_{-\infty < x < \infty} |F_n(x) - \Phi(x)| \to 0 \quad (n \to \infty)$$

(1)
Here $\Phi(x)$ is the distribution function of the standard normal distribution. To the question of how rapidly the tendency to zero in (1) increases with increasing n the Berry-Essen theorem [41] answers. From this theorem, as a particular case, follows

$$\sup_{-\infty < x < \infty} |F_n(x) - \Phi(x)| \leq \frac{p^2 + q^2}{\sqrt{npq}}$$

(2)

It should be noted that the order of estimate in (2) cannot be improved [41]. In the case of tests E_1, \ldots, E_n connected in a simple Markov chain (Def. 2), the limiting demeanor of $F_n(x)$ is investigated by Gnedenko B.V. and a result similar to (1) is obtained [42], but in this case the convergence rate is not investigated.

If the tests E_1, \ldots, E_n are weakly dependent and satisfy the strong mixing condition with the coefficient $\alpha(\tau) \leq c \tau^{-\omega}$ (c is a constant, ω is an arbitrarily large positive number), then in [36] there is obtained an estimate for the convergence rate of the following form

$$\sup_{-\infty < x < \infty} |F_n(x) - \Phi(x)| = O\left(\frac{1}{\sqrt{n}}\right)$$

where ε is an arbitrarily small positive number.

There is should be noticed that Definition 3 is more general than Definition 2.

We are interesting in the limiting demeanor of $F_n(x)$ ($n \to \infty$) the random tests E_1, \ldots, E_n (Def. 3) satisfy the strong mixing condition and the condition of the same weak dependence on the random factor E (Def. 4).

2. Statement of the theorem.

Let E_1, \ldots, E_n, \ldots be a sequence of independent Bernoulli tests and let the limit relation

$$F_n(x) = \Phi(x) + O\left(\frac{p^2 + q^2}{\sqrt{npq}}\right)$$

($n \to \infty, \ -\infty < x < \infty$)

Then if E_1, \ldots, E_n, \ldots satisfy the strong mixing condition (Def. 3) and the condition of the same weak dependence on the random factor E then relation

$$F_n(x) = \Phi(x) + O\left(\frac{p^2 + q^2}{\sqrt{npq}}\right) + O\left(\frac{1}{\sqrt{n}}\right)$$

($n \to \infty, \ -\infty < x < \infty$)

3. Auxiliary assertion.

Let formulate an auxiliary assertion, necessary for the proof of the theorem.

3.1. Lemma

If E_1, \ldots, E_n, \ldots satisfy the conditions of Definition 3 and Definition 4, then for any events $A \in \mathcal{H}_n, \ldots, A \in \mathcal{H}_n, B \in \mathcal{H}_n, \ldots, B \in \mathcal{H}_n$

$$|P(A_1 \ldots A_r B_1 \ldots B_t) - P(A_1 \ldots A_r) P(B_1 \ldots B_t)| \leq C_1 \frac{\sqrt{\alpha(d)}}{l + s}$$

Where $d = t_1 - r_1$ is the distance between sets $\{r_1, \ldots, r_r\}$ and $\{t_1, \ldots, t_t\}$ ($\{r_1, \ldots, r_r\}$ and $\{t_1, \ldots, t_t\}$ are subsets of $\{1, 2, 3, \ldots\}$, C_1 is a constant.
Further we denote some constants by C_i.

3.2. Proof of the lemma
We denote the conditional probability of the event $A_i^{(k)}$ under the condition that some events $A_i^{(m)},...,A_m^{(m)}$ have occurred by $\hat{P}(A_i^{(k)} | A_j), \ m=1,...,k-1$

From the condition of Definition 4 it follows that $\hat{P}(A_i^{(k)} | A_j) - P(A_i^{(k)}) > 0$ that is the matrix $\{ p_{ij}^k \}$ contains a positive element in each line. It is obviously that $\mu > 0$. The quantity μ does not depend on k because the tests E_k weakly depend on the factor E equally.

Further

$$\hat{P}(A_i^{(k)}) = \frac{\hat{P}(A_i^{(k)} | A_j)}{1 + (\hat{P}(A_i^{(k)} | A_j) - P(A_i^{(k)}))/\hat{P}(A_i^{(k)})} \leq \frac{1}{1 + \mu}$$

By the formula of multiplication of probabilities

$$P(A_1...A_i) \leq \left(\frac{1}{1 + \mu} \right)^i$$

$$P(B_1...B_i) \leq \left(\frac{1}{1 + \mu} \right)^i$$

(3)

$$P(A_1...A_iB_1...B_i) \leq \left(\frac{1}{1 + \mu} \right)^{i+1}$$

From the strong mixing condition it follows that

$$|P(A_1...A_iB_1...B_i) - P(A_1...A_i)P(B_1...B_i)| \leq \alpha(d)$$

(4)

Using the estimates (3) and (4) we obtain

$$|P(A_1...A_iB_1...B_i) - P(A_1...A_i)P(B_1...B_i)| = \sqrt{P(A_1...A_iB_1...B_i) - P(A_1...A_i)P(B_1...B_i)} \leq$$

$$\leq \sqrt{\alpha(d)P(A_1...A_iB_1...B_i) + P(A_1...A_i)P(B_1...B_i)} \leq C_2 \sqrt{\alpha(d) \left(\frac{1}{1 + \mu} \right)^{i+s}} \leq C_3 \sqrt{\alpha(d) \frac{1}{l+s}}$$

Lemma is proved.

4. Proof of the theorem.
We proceed directly to the proof of the theorem.

Let Π^{pl+p_0} be the set of all natural numbers of the form $pl + p_0, l=0,1,2,..., p$ and p_0 are natural numbers such that $p \geq 1$ and $p_0 \leq p - 1$.

We denote $\delta(A,B) = P(AB) - P(A)P(B); \ A^l (i=1,...,n)$ are events from σ-algebra $h^{(i)}$ generated by random tests $E_i, N=\{1,...,n\}; \bigcap_{i=1}^{pl+p_0} \cap_N A^{pl+p_0}$ is an elementary volume.

Let carry out the transformation:
\[P(A_1\ldots A^n) = P(A_1\ldots A^n) - P(A_{2l})P(A_{2l+1}) + P(A_{2l})P(A_{2l+1}) = \\
= \delta(A_{2l}, A_{2l+1}) + P(A_{2l})P(A_{2l+1}) = \delta(A_{2l}, A_{2l+1}) + \left[\delta(A_{4l}, A_{4l+2}) + P(A_{4l})P(A_{4l+2}) \right] * \\
* \left[\delta(A_{4l+1}, A_{4l+3}) + P(A_{4l+1})P(A_{4l+3}) \right] = \delta(A_{2l}, A_{2l+1}) + \delta(A_{4l}, A_{4l+2}) * \delta(A_{4l+1}, A_{4l+3}) + \\
+ P(A_{4l})P(A_{4l+2})P(A_{4l+1})P(A_{4l+3}) = \text{etc} \\
\]

By doing \(k = C_i \log_2 n \) we get

\[P(A_1\ldots A^n) = \prod_{i=1}^n P(A_i') + \sum_{k=1}^{C_i \log_2 n} C_k \max \delta(A^{2i+0}, A^{2i+0'}) \tag{5} \]

Let \(E_1, \ldots, E_n \ldots \) be the set of independent Bernoulli tests with probability of “success” \(p, \mu_n \) is the number of “successes” in the implementation of \(E_1, \ldots, E_n \). Further let \(E_1^*, E_2^*, \ldots, E_n^* \) be the set of Bernoulli tests satisfying the strong mixing condition (Def. 3) and the condition of the same weak dependence on the random factor \(E \) (Def. 4) with probability of “success” equal to \(p \) in each test; \(\mu_n^* \) is the number of “successes” in the implementation of \(E_1^*, E_2^*, \ldots, E_n^* \). Then

\[P \left(\frac{\mu_n - np}{\sqrt{npq}} < x \right) = \sum_{\mu_n - np} P(A_1\ldots A^n) \]

\[P \left(\frac{\mu_n^* - np}{\sqrt{npq}} < x \right) = \sum_{\mu_n - np} P(A_1\ldots A^n) \]

From this and from (5) it follows that

\[\left| P \left(\frac{\mu_n^* - np}{\sqrt{npq}} < x \right) - P \left(\frac{\mu_n - np}{\sqrt{npq}} < x \right) \right| = \\
= \left| \sum (P(A_1\ldots A^n) - P(A_1)\ldots P(A^n)) \right| = \\
= \sum_{\mu_n - np} \sum_{i=1}^{C_i \log_2 n} C_i (\max \delta(A^{2i+0}, A^{2i+0'}) \leq \\
\leq \sum_{i=1}^{C_i \log_2 n} \left| \sum_{\mu_n^* - np} \delta(A^{2i+0}, A^{2i+0'}) \right| \]

where \(\hat{p}_0, \hat{p}_0' \) are the values at which the maximum of the sum on the right in (6).

Let \(\Omega \) be the set of all elementary volumes of \(A_1, \ldots, A_n \). It is obvious that the inequality

\[\left| \sum_{\mu_n^* - np} \delta(A^{2i+0}, A^{2i+0'}) \right| \leq \max \sum_{G} \delta(A^{2i+0}, A^{2i+0'}) \]

where \(G \) is an arbitrary subset of \(\Omega \).
Further it can be shown that there exists a constant C_8 such that the inequality

$$\max_G \sum_{A_i \times B_j} \delta \left(A_i^{q_{ij} \hat{p}_0}, A_j^{q_{ij} \hat{p}_0} \right) \leq C_8 \max_{A_i \times B_j} \left| \sum_{A_i \times B_j} \delta \left(A_i^{q_{ij} \hat{p}_0}, A_j^{q_{ij} \hat{p}_0} \right) \right|$$

(7)

where $A_i^{q_{ij} \hat{p}_0} \in A_i$, $A_j^{q_{ij} \hat{p}_0} \in B_j$, $A_i \times B_j$ is a direct multiplication of sets A_i and B_j from Ω.

Using (6) and (7) we obtain

$$\Delta = \left| P \left(\frac{\mu_n^* - np}{\sqrt{npq}} < x \right) - P \left(\frac{\mu_n - np}{\sqrt{npq}} < x \right) \right| \leq \sum_{i=1}^{C_{l1} \log_2 n} C_i \left| \delta \left(A_i^{q_{ij} \hat{p}_0}, A_j^{q_{ij} \hat{p}_0} \right) \right|$$

Here A_i, B_j are sets on which a maximum is reached. Taking into account the additivity of $\delta(o, o)$ and the assertion of the lemma in which we set the mixing coefficient $\phi(d) = \frac{C_{10}}{d}$ we have

$$\Delta \leq \sum_{i=1}^{C_{l1} \log_2 n} C_{l1} \frac{1}{n} \leq C_{l2} \frac{1}{\sqrt{n}}$$

(8)

The assertion of the theorem follows from (8).

5. Conclusion.
In the article there is considered the Bernoulli tests scheme with dependent tests. The condition for weak dependence of the tests is defined. For this condition it is established that the convergence rate in the integral limit theorem for the number of occurrence of an event in the realization of a finite number of dependent tests coincides with the convergence rate in the case of independent tests.

Acknowledgments
This work was supported by Russian Science Foundation, project no. 16-11-10299.

References
[1] Badriev I B, Zadvornov O A, Ismagilov L N and Skvortsov E V 2009 Solution of plane seepage problems for a multivalued seepage law when there is a point source Journal of Applied Mathematics and Mechanics 73 (4) 434-42 DOI: 10.1016/j.jappmathmech.2009.08.007
[2] Badriev I B, Kalacheva N V, Shangaraeva A I and Sudakov V A 2018 Numerical solving of highly viscous fluids filtration in porous media for nonlinear filtration laws with power growth IOP Conference Series: Earth and Environmental Science 155 (1) 012015 DOI: 10.1088/1755-1315/155/1/012015
[3] Badriev I B and Fanyuk B Y 2012 Iterative methods for solving seepage problems in multilayer beds in the presence of a point source Lobachevskii Journal of Mathematics 33 (4) 386-99 DOI: 10.1134/S1995080212040026
[4] Badriev I B, Banderov V V, Lavrentyeva E E and Pankratova O V 2016 On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory IOP Conference Series: Materials Science and Engineering 158 (1) 012012 DOI: 10.1088/1757-899X/158/1/012012
[5] Badriev I B 1983 Difference-schemes for linear-problems of the filtration theory with discontinuous law Izvestiya Vysshikh Uchebnykh Zavedenii Matematika 3 5-12
[6] Badriev I B and Nechaeva L A 2013 Mathematical simulation of steady filtration with multivalued law PNRPU Mechanics Bulletin (3) 37-65
[7] Badriev I B and Karchevskii M M 1989 Convergence of the iterative Uzawa method for the
solution of the stationary problem of seepage theory with a limit gradient Journal of Soviet Mathematics 45 (4) 1302-9. DOI: 10.1007/BF01097083

[8] Solov’ev S I 2016 Eigenvibrations of a beam with elastically attached load Lobachevskii Journal of Mathematics 37, 597-609 DOI: 10.1134/S1995080216050115

[9] Solov’ev S I 2017 Eigenvibrations of a bar with elastically attached load Differential Equations 53(3) 409-23 DOI: 10.1134/S0374064117030116

[10] Abdrakhmanova A I, Garifullin I R, Davydov R L, Sultanov L U and Fakhрутдинов L R 2015 Investigation of Strain of Solids for Incompressible Materials Applied Mathematical Sciences 9(118) 5907-14. DOI: 10.12988/ams.2015.57507

[11] Davydov R L, Sultanov L U and Kharzhavina V S 2015 Elastoplastic model of deformation of three- dimensional bodies in terms of large strains Global Journal of Pure and Applied Mathematics 11 (6) 5099-108

[12] Bereznoi D V, Balafendieva I S, Sachenkov A A and Sekaeva L R 2016 Modelling of deformation of underground tunnel lining, interacting with water-saturated soil IOP Conference Series: Materials Science and Engineering 158 (1) 012018. DOI: 10.1088/1757-899X/158/1/012018

[13] Bereznoi D V and Sagdatullin M K 2015 Calculation of interaction of deformable designs taking into account friction in the contact zone by finite element method Contemporary Engineering Sciences 8(21-24) 1091-8 DOI: 10.12988/ces.2015.58237

[14] Badriev and Shagidullin R R 1992 Study of monomeric equations of static state of soft envelope and algorithm of their solution Izvestiya vysshikh uchebnykh zavedenii. Matematika (1) 8-16

[15] Badriev I B, Makarov M V and Paimushin V N 2018 Geometrically Nonlinear Problem of Longitudinal and Transverse Bending of a Sandwich Plate with Transversally Soft Core Lobachevskii Journal of Mathematics 39(3) 448-57 DOI: 10.1134/S1995080218030046

[16] Badriev I B, Makarov M V and Paimushin V N 2016 Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies IOP Conference Series-Materials Science and Engineering 158(1) 012011 DOI: 10.1088/1757-899X/158/1/012011

[17] Badriev I B, Makarov M V and Paimushin V N 2017 Numerical investigation of a physically nonlinear problem of the longitudinal bending of the sandwich plate with a transversal-soft core PNRPU Mechanics Bulletin (1) 39-51 DOI: 10.15593/perm.mech/2017.1.03

[18] Badriev I B, Banderev V V, Gnedenkova V L, Kalacheva N V, Korablev A I and Tagirov R R 2015 On the finite dimensional approximations of some mixed variational inequalities Applied Mathematical Science 9 (113-6) 5697-705 DOI: 10.12988/ams.2015.57480

[19] Badriev I B, Makarov M V and Paimushin V N 2016 Geometrically Nonlinear Problem of Longitudinal and Transverse Bending of a Sandwich Plate with Transversally Soft Core Uchenye zapiski Kazanskogo universiteta-Seriya fiziko-matemicheskie nauki 158 (4) 453-68

[20] Badriev I B, Makarov M V and Paimushin V N 2017 Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core Russian Mathematics 61 (1) 69-75 DOI: 10.3103/S1066369X1701008X

[21] Badriev I B and Paimushin V N 2017 The Contact Problem of Interaction of a Thin Plate with Positioned on Both Sides Deformable Foundations Lobachevskii Journal of Mathematics 38 (5) 779-93 DOI: 10.1134/S1995080217050055

[22] Zheltukhin V S, Solov’ev S I, Solov’ev P S, Chebakova V Yu and Sidorov A M 2016 Third type boundary conditions for steady state ambipolar diffusion equation Conference Series: Materials Science and Engineering 158(1) 012102. DOI: 10.1088/1757-899X/158/1/012102

[23] Askhatov R M, Chebakova V Yu and Zheltukhin V S 2016 Capacitive coupled RF discharge: Modelling at the local and not local statement of the problem IOP Conference Series: Materials Science and Engineering 158(1) 012009 DOI: 10.1088/1757-899X/158/1/012009

[24] Zheltukhin V S, Solovyev S I, Solovyev P S and Chebakova V Yu 2016 Existence of solutions
for electron balance problem in the stationary radio-frequency induction discharges IOP Conference Series: Materials Science and Engineering 158 (1) 012103 DOI: 10.1088/1757-899X/158/1/012103

[25] Badriev I B, Chebakova V Y and Zheltukhin V S 2017 Capacitive coupled RF discharge: Modelling at the local statement of the problem Journal of Physics: Conference Series 789 (1) 012004 DOI: 10.1088/1742-6596/789/1/012004

[26] Badriev I B, Zheltukhin V.S and Ju Chebakova V 2017 Numerical solution of the initial boundary value problems of radio-frequency capacitive coupled discharge Journal of Physics: Conference Series 927 (1) 012008. DOI: 10.1088/1742-6596/927/1/012008

[27] Chebakova V J and Badriev I B 2018 Mathematical simulation of the low-temperature plasma at the interaction with oil products IOP Conference Series: Earth and Environmental Science 107 (1) 012097 DOI: 10.1088/1755-1315/107/1/012097

[28] Chebakova V Y 2017 Modeling of radio-frequency capacitive discharge under atmospheric pressure in Argon Lobachevskii Journal of Mathematics 38 (6) 1165-78. DOI: 10.1134/S1995080217060154

[29] Solov’ev S I, Solov’ev P S and Chebakova V Y 2017 Finite difference approximation of electron balance problem in the stationary high-frequency induction discharges MATEC Web of Conferences 129 06014 DOI: 10.1051/matecconf/201712906014

[30] Chebakova V Ju, Gaisin A F and Zheltukhin V S 2016 Solution of the problem of interaction between capacitive coupled radio-frequency discharge and a sample IOP Conference Series: Materials Science and Engineering 158 (1) 012024 DOI: 10.1088/1757-899X/158/1/012024

[31] Aminev F A and Dubrovin V T 1989 A rate of convergence bound in the central limit theorem for weakly dependent homogeneous random fields. Journal of Soviet Mathematics 44 (5) 559-67.

[32] Dubrovin V T 2014 Convergence rate in limit theorems for weakly dependent random values. Lobachevskii Journal of Mathematics 35(4) 390-6

[33] Dubrovin V T, Gabbasov F G and Chebakova V Yu 2016 Multidimensional central limit theorem for sums of functions of the trajectories of endomorphisms Lobachevskii Journal of Mathematics 37(4) 409-17

[34] Dubrovin V T and Moskvin D A 1979 The central limit theorem for sums of functions of sequences with mixing. Toerinya veroyatnostej i eyo primenenie XXIV(3) 553-64

[35] Gabbasov F G and Dubrovin V T 1988 Probability that the normed sum of weakly dependent vectors falls in the exterior of a convex set Journal of Soviet Mathematics 43(1) 2187-93.

[36] Gabbasov F G, Dubrovin V T and Chebakova V Yu 2016 Vector random fields in mathematical modeling of electron motion. IOP Conference Series: Materials Science and Engineering 158 (1) 012032

[37] Askhatov R M, Badriev I B, Chebakova V Yu and Zheltukhin V S 2018 Simulation of electron moving in RF capacitively coupled discharge Journal of Physics: Conference Series 1058 (1) 012044

[38] Youref M, Hennad A and Alkaf A 1994 Monte Carlo simulation of electron swarms at low reduced electric fields Physical Review E 49 (4) 3264-73

[39] Hans Rau 2000 Monte Carlo simulation of a microwave plasma in hydrogen J. Phys. D: Appl. Phys. 33 3214–22

[40] Chebakova V J, Gerasimov A V and Kirpichnikov A P 2016 On the solving of one type of problems of mathematical physics IOP Conference Series: Materials Science and Engineering 158 (1) 012023 DOI: 10.1088/1757-899X/158/1/012023

[41] Petrov V V 1972 Sums of independent random variables (Moscow, Nauka) (in Russian)

[42] Gnedenko B V 1965 Course of probability theory (Moscow, Nauka) (in Russian)