Cardiovascular outcomes associated with Ultrathin bioresorbable polymer sirolimus eluting stents versus thin, durable polymer everolimus eluting stents following percutaneous coronary intervention in patients with type 2 diabetes mellitus

A meta-analysis of published studies

Shibing Deng, MBBSa, Xuying Yi, MBBSb, Zhiming Tian, MBBSa,∗

Abstract

Background: Percutaneous coronary intervention with the new generation drug eluting stents (DES) is among the revascularization procedures required to treat patients with coronary artery disease (CAD). Since late stent thrombosis and silent myocardial infarction are highly associated with type 2 diabetes mellitus (T2DM), an analysis comparing the newer generation DES in this specific subgroup of patients would be scientifically relevant.

In this analysis, we aimed to systematically compare the cardiovascular outcomes observed with the ultrathin bioresorbable polymer sirolimus eluting stents (SES) versus thin, durable polymer everolimus eluting stents (EES) following percutaneous coronary intervention in patients with T2DM.

Methods: Through online databases, relevant studies comparing ultrathin bioresorbable polymer SES versus the durable polymer EES were carefully searched. The cardiovascular outcomes were assessed during a follow-up time period of 1 year and more than 1 year (1–5 years) respectively. This meta-analysis was carried out by the latest version of the RevMan software. Following analysis, the results were represented by odds ratios (OR) with 95% confidence intervals (CI).

Results: A total number of 1967 patients with T2DM were included in this analysis. During a 1 year follow-up time period, target lesion failure (TLF) (OR: 0.59, 95% CI: 0.34–1.02; P = .06), target vessel revascularization (TVR) (OR: 0.97, 95% CI: 0.55–1.70; P = .91) and target lesion revascularization (TLR) (OR: 0.91, 95% CI: 0.44–1.87; P = .79) were similarly observed with ultrathin bioresorbable polymer SES versus the thin, durable polymer EES in these patients with T2DM. Other cardiovascular outcomes including myocardial infarction (MI), major adverse cardiac events, all-cause mortality (OR: 0.72, 95% CI: 0.37–1.40; P = .34), cardiac death and stent thrombosis (OR: 0.85, 95% CI: 0.45–1.62; P = .63) were also similarly observed with these 2 types of new stents. During a follow-up time period above 1 year (1–5 years), still no significant difference was observed in TLF, TVR, TLR, major adverse cardiac events, MI, all-cause mortality, cardiac death and stent thrombosis (OR: 0.62, 95% CI: 0.33–1.16; P = .14).

Ethics approval and consent to participate: Ethical approval was not applicable for this systematic review and meta-analysis. Consent for publication was not applicable.

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are publicly available.

How to cite this article: Deng S, Yi X, Tian Z. Cardiovascular outcomes associated with Ultrathin bioresorbable polymer sirolimus eluting stents versus thin, durable polymer everolimus eluting stents following percutaneous coronary intervention in patients with type 2 diabetes mellitus: a meta-analysis of published studies. Medicine 2020;99:52(e23810).

Received: 8 March 2020 / Received in final form: 1 September 2020 / Accepted: 19 November 2020

http://dx.doi.org/10.1097/MD.0000000000023810
Conclusions: The ultrathin bioresorbable polymer SES were similar to the durable polymer EES in these patients with T2DM. These 2 types of new generation stents were comparable in terms of cardiovascular outcomes. Hence, they might be recommended in patients with T2DM. Upcoming trials should be able to confirm this hypothesis.

Abbreviations: CI = confidence intervals, EES = durable polymer everolimus eluting stents, MACEs = major adverse cardiac events, OR = odds ratios, PCI = percutaneous coronary intervention, SES = ultrathin bioresorbable polymer sirolimus eluting stents, T2DM = type 2 diabetes mellitus.

Keywords: Cardiovascular outcomes, Durable polymer everolimus eluting stents, Percutaneous coronary intervention, Stent thrombosis, Type 2 diabetes mellitus, Ultrathin bioresorbable polymer sirolimus eluting stents.

1. Introduction

Percutaneous coronary intervention (PCI) with the new generation drug eluting stents (DES) is 1 among the revascularization procedures required to treat patients with coronary artery disease (CAD).\(^1\) Previously, 1 major disadvantage of the early generation DES was the delayed healing response of the stented coronary artery which would often result in the occurrence of late stent thrombosis.\(^2\) More precisely, newer DES have thinner struts which have a greater degree of re-endothelization compared to the early DES with thicker struts thereby showing that newer generation DES might be more effective and safe.\(^3\)

The new ultrathin biodegradable polymer sirolimus eluting stent (SES) has been compared with the thin, durable polymer everolimus eluting stent (EES).\(^4\) However, these new generation stents have seldom been studied in patients with type 2 diabetes mellitus (T2DM). In addition, previous studies were restricted to a follow-up time period of only 1 year.\(^4\) Observation of outcomes for a longer follow-up duration was rarely studied in patients with T2DM who were revascularized with the new generation stents.

Several recent epidemiological reports have demonstrated a worldwide annual increase in the total number of patients with T2DM. T2DM is associated with high platelet reactivity and inflammatory processes resulting in life threatening consequences.\(^1\) Since diabetes mellitus is among the major risk factors contributing to the high chance for the occurrence of late stent thrombosis and silent myocardial infarction,\(^6\) an analysis comparing the newer generation DES would be scientifically relevant.

In this analysis, we aimed to systematically compare the cardiovascular outcomes observed with the ultrathin biodegradable polymer SES versus the thin, durable polymer EES following PCI in patients with T2DM at 1 and above 1 year respectively.

2. Methods

2.1. Data sources

Web of Science, MEDLINE, http://www.ClinicalTrials.com, Cochrane Central, EMBASE and Google Scholar were searched for relevant studies comparing ultrathin biodegradable polymer SES versus durable polymer EES. The authors also went through references to search for suitable publications.

2.2. Search strategies

The following searched terms were used:

1. Ultrathin bioresorbable polymer SES versus durable polymer EES;
2. SES versus EES;
3. Ultrathin bioresorbable polymer SES, durable polymer EES and diabetes mellitus;
4. New generation drug eluting stents.

Only English publications were searched.

2.3. Inclusion and exclusion criteria

Inclusion criteria were:

1. Studies that compared ultrathin bioresorbable polymer SES versus durable polymer EES;
2. Studies that consisted of patients with T2DM;
3. Studies that reported cardiovascular outcomes.

Exclusion criteria were:

1. Studies that were literature reviews, meta-analyses, systematic reviews or case studies and letters of correspondence;
2. Studies that did not report cardiovascular outcomes;
3. Studies that did not involve patients with T2DM;
4. Studies that did not compare ultrathin bioresorbable polymer SES versus durable polymer EES;
5. Studies that were associated with the same clinical trial.

2.4. Outcomes and definitions

When comparing the cardiovascular events observed between the ultrathin bioresorbable polymer SES versus the thin, durable polymer EES, the following outcomes were assessed:

1. Target lesion failure (TLF) defined as the composite of clinically driven target lesion revascularization, myocardial infarction or cardiac death related to the target vessel;
2. Target vessel revascularization (TVR) defined as re-infarction leading to restenting in the previously treated target vessel;
3. Target lesion revascularization (TLR) which indicates a revascularization procedure with repeated stenting or other revascularization procedures for restenosed, or occluded culprit target lesion;
4. Myocardial infarction (MI);
5. Major adverse cardiac events (MACEs) which was defined as the combination of death, MI and revascularization;
6. All-cause mortality;
7. Cardiac death;
8. Stent thrombosis (ST) consisting of definite and probable stent thrombosis.

To have a better analysis, and to avoid mixing all the data irrespective of their follow-up time periods, these cardiovascular outcomes were assessed for a follow-up time period of:

1. 1 year;
2. More than 1 year (1–5 years).

Details concerning the outcomes reported in each study and their follow-up time periods have been listed in Table 1.
2.5. Data extraction and quality assessment

Three authors were involved in the data extraction process. The authors’ names, publication year, the corresponding cardiovascular outcomes, the follow-up time periods, the number of patients with T2DM assigned to the SES group and the EES group respectively, the baseline features of the participants, the time period of participants’ enrollment, the methodological features, the types of study, and the antiplatelet drugs which were used were all carefully extracted.

Any disagreement during the data extraction and collection process was further discussed and then a decision was made by the corresponding author.

The quality assessment was carried out by specific tools:

The Cochrane collaboration tool was used to assess the randomized trials whereas the Newcastle Ottawa Scale (NOS) was used to assess the methodological quality of the observational cohorts. Following assessment, a grade was given ranging from grade A implying low risk of bias and grade C implying high risk of bias. Moderate risk was represented by grade B.

2.6. Statistical analysis

This meta-analysis was carried out by the latest version of RevMan (Version 5.4). Following analysis, the results were represented by odds ratios (OR) with 95% confidence intervals (CI).

Since heterogeneity is common in meta-analyses, it was assessed by 2 methods:

(1) The Q statistic test whereby a subgroup analysis with a P value less or equal to .05 was considered statistically significant;
(2) The I² statistic test whereby heterogeneity increased with an increasing I² percentage.
(3) A fixed effect statistical model (I² < 50%) or a random effect statistical model (I² > 50%) was used based on the heterogeneity value which was obtained.
(4) Sensitivity analysis was carried out by an exclusion method.

Publication bias was visually observed through funnel plots.

2.7. Ethical approval

Ethical approval was not required for this study since data were obtained from previously published studies. The authors were not involved in any experiment carried out on humans or animals for this study.

3. Results

3.1. Search outcomes

The PRISMA guideline was followed. Since only a few studies were published based on the comparison of ultrathin biodegradable polymer SES versus thin, durable polymer EES, a total number of only 102 publications were obtained following the search process.

The authors carefully assessed the titles and abstracts. 68 articles were not related to the scope of this study and were therefore eliminated after an initial assessment. 34 full text articles were assessed for eligibility.

Further eliminations of the full text articles were due to the following reasons:

(1) Systematic reviews and meta-analyses/network meta-analyses;
(2) Pooled analyses of randomized trials;
(3) Case studies;
(4) DES were included without specifying which stents were used (EES or another);
(5) Studies involving data which could not be used;
(6) Studies based on similar trials.

Finally, only 5 studies [4,8,9,10,12] were included in this meta-analysis (Fig. 1).

3.2. Main features of the studies

A total number of 1967 patients with T2DM were included in this analysis. One thousand and 3 (1003) participants were assigned to SES and 964 patients were assigned to EES. Four studies were randomized controlled trials whereas 1 study was an observational cohort. The time period for participant enrollment was between the years 2007 to 2016. The main features of the studies which were included in this analysis have been listed in Table 2.

Based on the quality assessment, either a grade A or B was allotted to the studies denoting low and moderate risk of bias respectively.

3.3. Baseline features of the participants

Table 3 lists the baseline features of the participants. Among these patients with T2DM, 7.70% to 34.1% were on insulin therapy. The mean age varied from 62.7 to 67.7 years. 70.0 to 78.2% of
Table 2

Main features of the studies.

Studies	Patients’ enrollment	Type of study	No of T2DM patients with SES (n)	No of T2DM patients with EES (n)	Bias risk grade
Kandzari 2017	2015–2016	RCT	300	166	A
Kandzari 2018	2015–2016	RCT	300	166	A
Lansky 2016	2007–2013	RCT	30	184	A
Leferve 2018	2011–2012	RCT	88	44	A
Pilgrim 2018	2012–2013	RCT	257	229	A
Roguin 2018	2015–2016	RCT	154	82	A
Yamaji 2018	2011–2015	OS	328	341	B
Total No of patients (n)	1003		964		

EES = durable polymer everolimus eluting stents, OS = observational studies, RCT = randomized controlled trials, SES = ultrathin strut biodegradable polymer sirolimus eluting stents, T2DM = type 2 diabetes mellitus.

* These studies were repeated studies with a different follow-up time period. Hence, their number of participants were not repeated or were not added in the final total number of participants to avoid repetition.
the participants were males. The percentages of participants with hypertension, dyslipidemia and current smokers were also shown in Table 3.

The anti-platelet agents which were used by the participants have been listed in Table 4. In most of the studies, dual anti-platelet therapy with aspirin and clopidogrel was used.

3.4. Main analysis

During a 1 year follow-up time period, TLF (OR: 0.59, 95% CI: 0.34–1.02; P = .06), TVR (OR: 0.97, 95% CI: 0.55–1.70; P = .91) and TLR (OR: 0.91, 95% CI: 0.44–1.87; P = .79) were similarly observed with the ultrathin bioresorbable polymer SES versus the thin, durable polymer EES in these patients with T2DM as shown in Figure 2.

Other cardiovascular outcomes including MI (OR: 0.65, 95% CI: 0.41–1.04; P = .08), MACEs (OR: 0.76, 95% CI: 0.54–1.07; P = .12), all-cause mortality (OR: 0.72, 95% CI: 0.37–1.40; P = .34), cardiac death (OR: 0.64, 95% CI: 0.28–1.46; P = .29) and stent thrombosis (OR: 0.83, 95% CI: 0.45–1.62; P = .63) were also similarly observed with these 2 types of new stents as shown in Figure 2.

During a follow-up time period above 1 year (1–5 years), still no significant difference was observed in TLF (OR: 0.90, 95% CI: 0.65–1.26; P = .56), TVR (OR: 0.99, 95% CI: 0.50–1.96; P = .97), TLR (OR: 0.48, 95% CI: 0.19–1.23; P = .13), MACEs (OR: 0.61, 95% CI: 0.28–1.33; P = .21), MI (OR: 0.75, 95% CI: 0.49–1.15; P = .19), all-cause mortality (OR: 1.20, 95% CI: 0.75–1.92; P = .45), cardiac death (OR: 1.01, 95% CI: 0.56–1.80; P = .98) and stent thrombosis (OR: 0.62, 95% CI: 0.33–1.16; P = .14) as shown in Figures 3 and 4.

The results have been summarized in Table 5.

3.5. Sensitivity analysis and publication bias

In this current analysis, taking into consideration an exclusion method, each study was excluded by 1 and a new analysis was carried out each time. However, consistent results were obtained throughout. Minimal evidence of publication bias was observed through funnel plots as shown in Figures 5 and 6.

4. Discussion

In patients with T2DM, our current results showed that the outcomes associated with the ultrathin bioresorbable polymer SES were similar to those of the durable polymer EES following PCI. A similar rate of mortality, target lesion failure, revascularization, MACEs and stent thrombosis was observed with these 2 types of new generation DES.

Similarly, in a recent systematic review and meta-analysis,[16] comparing the ultrathin bioresorbable polymer SES versus the thin durable polymer EES, no significant difference was observed in TLF, TVR, cardiac death, all-cause mortality and stent thrombosis. However, the authors concluded that the ultrathin bioresorbable polymer SES was associated with a significantly lower risk of MI when compared to the thin durable polymer EES. However, it should be noted that our analysis included only patients with T2DM whereas the other meta-analysis was based on the general population undergoing PCI.

In another pooled analysis,[17] involving only participants with T2DM from the BIOFLOW II, IV and V randomized trials, the authors demonstrated that these 2 new generation DES were associated with similar outcomes further supporting the results of this current analysis. It should also be noted that in their study, the proportion of participants with T2DM on insulin therapy or without insulin was similar.

Our analysis was further supported by the BIOSCIENCE Trial,[18] wherein the cardiovascular outcomes which were observed with ultrathin bioresorbable polymer SES were comparable to those from the thin, durable polymer EES during a 2 year follow-up time period. In the BIOSCIENCE Trial, the authors demonstrated that at 2 years, TLF occurred in 10.5% of the participants who were assigned to SES, and in 10.4% of the participants who were assigned to EES.
Study or Subgroup	SES	RES	Events	Total	Weight	Odds Ratio M-H, Fixed	95% CI	Odds Ratio M-H, Fixed	95% CI	Risk of Bias
1.1 Target Lesion Failure (TLF)										
Kanzari2017	19	300	16	166	7.9%	0.63 [0.39, 1.07]				
Lansky2016	1	30	4	184	1.6%	0.39 [0.20, 0.78]				
Regan2016	9	104	8	92	4.0%	0.57 [0.31, 1.06]				
Total events	29		38							
Heterogeneity: Ch² = 0.15, df = 2 (P = 0.93); I² = 0%										
Test for overall effect: Z = 1.088 (P = 0.29)										
1.1 Target Vessel Revascularization (TVR)										
Kanzari2017	6	300	4	166	2.1%	0.83 [0.43, 1.60]				
Lansky2016	1	30	4	184	3.4%	0.75 [0.27, 2.19]				
Regan2016	4	154	3	82	3.9%	0.70 [0.28, 1.91]				
Total events	27		27							
Heterogeneity: Ch² = 0.44, df = 3 (P = 0.93); I² = 0%										
Test for overall effect: Z = 0.51 (P = 0.61)										
1.1 Target Lesion Revascularization (TLR)										
Lansky2016	1	30	11	184	1.8%	0.58 [0.21, 1.59]				
Regan2016	5	154	3	82	4.5%	0.41 [0.14, 1.09]				
Yamagishi2018	9	328	9	341	3.7%	0.94 [0.41, 2.16]				
Total events	15		23							
Heterogeneity: Ch² = 0.32, df = 2 (P = 0.85); I² = 0%										
Test for overall effect: Z = 0.271 (P = 0.79)										
1.1.4 Myocardial Infarction (MI)										
Kanzari2017	15	300	14	166	7.0%	0.57 [0.27, 1.22]				
Regan2016	5	154	8	82	4.1%	0.31 [0.10, 1.00]				
Yamagishi2018	15	328	16	341	6.1%	0.97 [0.47, 2.00]				
Total events	35		38							
Heterogeneity: Ch² = 0.90, df = 2 (P = 0.33); I² = 31%										
Test for overall effect: Z = 1.19 (P = 0.238)										
1.1.5 Major Adverse Cardiac Events (MACCEs)										
Kanzari2017	21	300	17	166	9.4%	0.56 [0.34, 0.92]				
Regan2016	11	154	10	82	6.9%	0.56 [0.22, 1.39]				
Yamagishi2018	40	328	47	341	16.6%	0.87 [0.55, 1.37]				
Total events	72		74							
Heterogeneity: Ch² = 0.98, df = 2 (P = 0.61); I² = 0%										
Test for overall effect: Z = 1.57 (P = 0.12)										
1.1.6 All-cause mortality										
Kanzari2017	3	300	2	166	1.0%	0.83 [0.14, 5.01]				
Regan2016	2	154	1	82	0.9%	1.90 [0.10, 11.93]				
Yamagishi2018	12	328	18	341	7.0%	0.68 [0.32, 1.44]				
Total events	17		21							
Heterogeneity: Ch² = 0.15, df = 2 (P = 0.93); I² = 0%										
Test for overall effect: Z = 0.96 (P = 0.34)										
1.1.7 Cardiac Death										
Kanzari2017	1	300	2	166	1.1%	0.27 [0.02, 3.00]				
Regan2016	0	154	1	82	0.8%	0.18 [0.01, 4.37]				
Yamagishi2018	8	328	10	341	3.5%	0.83 [0.32, 2.12]				
Total events	9		13							
Heterogeneity: Ch² = 1.38, df = 2 (P = 0.50); I² = 0%										
Test for overall effect: Z = 1.06 (P = 0.29)										
1.1.8 Stent thrombosis (definite and probable)										
Kanzari2017	2	300	2	166	1.0%	0.55 [0.08, 3.94]				
Lansky2016	0	30	2	184	0.8%	1.92 [0.06, 35.64]				
Regan2016	1	154	1	82	0.5%	0.53 [0.03, 8.58]				
Yamagishi2018	15	328	17	341	5.0%	0.91 [0.45, 1.86]				
Total events	18		22							
Heterogeneity: Ch² = 0.39, df = 3 (P = 0.94); I² = 0%										
Test for overall effect: Z = 0.68 (P = 0.50)										
Total (95% CI)	5748	4941	100.0%	0.75 [0.62, 0.89]						
Total events	222		256							
Heterogeneity: Ch² = 0.11, df = 25 (P = 0.99); I² = 0%										
Test for overall effect: Z = 3.01 (P = 0.003)										
Test for subgroup differences: Ch² = 2.44, df = 7 (P = 0.93); I² = 0%										
Risk of bias overall:										
(A) Random sequences generation (selection bias)										
(B) Allocation concealment (selection bias)										
(C) Binding of participants and personnel (performance bias)										
(D) Blinding of outcome assessment (detection bias)										
(E) Incomplete outcome data (attrition bias)										
(F) Selective reporting (reporting bias)										
(G) Other bias										

Figure 2. Forest plot showing the comparison of cardiovascular outcomes between ultrathin bioresorbable polymer SES versus durable polymer EES at 1 year.
Study or Subgroup	SES	EES	Odds Ratio M-H, Fixed, 95% CI	Risk of Bias									
	Total	Total	Weight		A	B	C	D	E	F	G		
	Events	Events											
1.2.1 Target Lesion Failure (TLF)													
Kandzari2018	23	300	20	166	11.9%	0.61 [0.32, 1.14]							
Lansky2016	2	30	23	184	3.0%	0.50 [0.11, 2.24]							
Lefere2018	13	88	5	44	2.8%	1.35 [0.45, 4.07]							
Pilgrim2018	52	257	43	229	18.1%	1.10 [0.70, 1.72]							
Subtotal (95% CI)	675	623	36.8%	0.90 [0.65, 1.26]									
Total events	90	91											
Heterogeneity:	Chi² = 3.36, df = 3 (P = 0.34); I² = 11%												
Test for overall effect:	Z = 0.59 (P = 0.56)												
1.2.2 Myocardial Infarction (MI)													
Kandzari2018	16	300	16	166	9.7%	0.53 [0.26, 1.09]							
Lansky2016	1	30	6	184	0.8%	1.02 [0.12, 8.81]							
Lefere2018	4	88	1	44	0.6%	2.05 [0.22, 18.89]							
Pilgrim2018	27	257	28	229	13.2%	0.84 [0.48, 1.48]							
Subtotal (95% CI)	675	623	24.4%	0.75 [0.48, 1.15]									
Total events	48	51											
Heterogeneity:	Chi² = 1.94, df = 3 (P = 0.58); I² = 0%												
Test for overall effect:	Z = 1.30 (P = 0.19)												
1.2.3 All-cause mortality													
Kandzari2018	6	300	4	168	2.5%	0.83 [0.23, 2.97]							
Lansky2016	6	88	4	44	2.5%	0.73 [0.20, 2.74]							
Lefere2018	36	257	24	229	10.9%	1.39 [0.80, 2.21]							
Pilgrim2018	645	439	15.9%	1.20 [0.75, 1.92]									
Subtotal (95% CI)	48	32											
Total events	48	32											
Heterogeneity:	Chi² = 1.14, df = 2 (P = 0.56); I² = 0%												
Test for overall effect:	Z = 0.75 (P = 0.45)												
1.2.4 Cardiac Death													
Kandzari2018	2	300	1	166	0.6%	1.11 [0.10, 12.30]							
Lansky2016	1	30	4	184	0.5%	1.55 [0.17, 14.38]							
Lefere2018	1	88	3	44	2.6%	0.16 [0.02, 1.56]							
Pilgrim2018	22	257	17	229	8.2%	1.17 [0.60, 2.26]							
Subtotal (95% CI)	675	623	11.4%	1.01 [0.56, 1.80]									
Total events	26	25											
Heterogeneity:	Chi² = 2.87, df = 3 (P = 0.41); I² = 0%												
Test for overall effect:	Z = 0.02 (P = 0.98)												
1.2.5 Stent thrombosis (definite and probable)													
Kandzari2018	2	300	2	166	1.3%	0.55 [0.08, 3.94]							
Lefere2018	0	88	3	44	2.3%	0.07 [0.00, 1.33]							
Pilgrim2018	16	257	18	229	8.9%	0.78 [0.39, 1.56]							
Subtotal (95% CI)	645	439	12.5%	0.62 [0.33, 1.16]									
Total events	18	23											
Heterogeneity:	Chi² = 2.55, df = 2 (P = 0.28); I² = 21%												
Test for overall effect:	Z = 1.48 (P = 0.14)												
Total (95% CI)	3315	2747	100.0%	0.89 [0.73, 1.09]									
Total events	230	222											
Heterogeneity:	Chi² = 14.98, df = 17 (P = 0.60); I² = 0%												
Test for overall effect:	Z = 1.12 (P = 0.26)												
Test for subgroup differences:	Chi² = 3.55, df = 4 (P = 0.47); I² = 0%												
Risk of bias legend	(A) Random sequence generation (selection bias)												
	(B) Allocation concealment (selection bias)												
	(C) Blinding of participants and personnel (performance bias)												
	(D) Blinding of outcome assessment (detection bias)												
	(E) Incomplete outcome data (attrition bias)												
	(F) Selective reporting (reporting bias)												
	(G) Other bias												

Figure 3. Forest plot showing the comparison of cardiovascular outcomes between ultrathin bioresorbable polymer SES versus durable polymer EES at more than 1 year (part I).
Figure 4. Forest plot showing the comparison of cardiovascular outcomes between ultrathin bioresorbable polymer SES versus durable polymer EES at more than 1 year (part II).

Table 5

Outcomes assessed	OR with 95% CI	P value	P value (%)
1 year follow up			
Target lesion failure	0.59 [0.34–1.02]	.06	0
Target vessel revascularization	0.97 [0.55–1.70]	.91	0
Target lesion revascularization	0.91 [0.44–1.87]	.79	0
Myocardial infarction	0.65 [0.41–1.04]	.08	31
Major adverse cardiac events	0.76 [0.54–1.07]	.12	0
All-cause mortality	0.72 [0.37–1.40]	.34	0
Cardiac death	0.64 [0.28–1.46]	.29	0
Stent thrombosis	0.85 [0.45–1.62]	.63	0
1 yr follow up			
Target lesion failure	0.90 [0.65–1.26]	.56	11
Target vessel revascularization	0.99 [0.50–1.96]	.97	56
Target lesion revascularization	0.91 [0.44–1.87]	.79	0
Myocardial infarction	0.65 [0.41–1.04]	.08	31
Major adverse cardiac events	0.76 [0.54–1.07]	.12	0
All-cause mortality	0.72 [0.37–1.40]	.34	0
Cardiac death	0.64 [0.28–1.46]	.29	0
Stent thrombosis	0.85 [0.45–1.62]	.63	0

CI = confidence intervals, OR = odds ratios.
This current analysis involved only patients with T2DM. Outcomes were assessed during a follow-up time period of 1 year and over 1 year (> 1 to 5 years). There was no significant difference in outcomes between SES and EES throughout this analysis. However, future trials with larger number of participants with T2DM will have to confirm this hypothesis.

4.1. Limitations

This current analysis has limitations. First of all, not many research papers were published comparing the ultrathin bioresorbable polymer SES versus the thin, durable polymer EES following PCI in patients with T2DM. Hence, the total number of participants were limited for this analysis. Important outcomes such as acute, sub-acute and late stent thrombosis could not be assessed since these endpoints were reported in only 1 original study. Even though each original study mentioned the antiplatelet agents which had been used, bleeding outcomes were reported only in 1 study and therefore, a subgroup analysis of the bleeding events was not possible. Another limitation of this study was the fact that duration of antiplatelet therapy was not available.

5. Conclusions

The ultrathin bioresorbable polymer SES were similar to the durable polymer EES in these patients with T2DM. These 2 types of new generation stents were comparable in terms of cardiovascular outcomes. Hence, they might be recommended in patients with T2DM. Upcoming trials should be able to confirm this hypothesis.

Author contributions

The authors Dr Shibing Deng, Dr Xuying Yi and Dr Zhiming Tian were responsible for the conception and design, acquisition of data, analysis and interpretation of data, drafting the initial manuscript and revising it critically for important intellectual content. Dr Shibuing Deng and Dr Xuying Yi are the first co-authors and they wrote this manuscript. All the authors agreed and approved the manuscript as it is.
Conceptualization: Shibing Deng, Xuying Yi, Zhiming Tian.
Data curation: Shibing Deng, Xuying Yi, Zhiming Tian.
Formal analysis: Shibing Deng, Xuying Yi, Zhiming Tian.
Funding acquisition: Shibing Deng, Xuying Yi, Zhiming Tian.
Investigation: Shibing Deng, Xuying Yi, Zhiming Tian.
Methodology: Shibing Deng, Xuying Yi, Zhiming Tian.
Project administration: Shibing Deng, Xuying Yi, Zhiming Tian.
Resources: Shibing Deng, Xuying Yi, Zhiming Tian.
Software: Shibing Deng, Xuying Yi, Zhiming Tian.
Supervision: Shibing Deng, Xuying Yi, Zhiming Tian.
Visualization: Shibing Deng, Xuying Yi, Zhiming Tian.
Writing – original draft: Shibing Deng, Xuying Yi.
Writing – review & editing: Shibing Deng, Xuying Yi.

References
[1] Piccolo R, Giustino G, Mehran R, et al. Stable coronary artery disease: revascularisation and invasive strategies. Lancet 2015;386:702-13.
[2] Windecker S, Meier B. Late coronary stent thrombosis. Circulation 2007;116:1952–65.
[3] Windecker S, Stortecky S, Stefanini GG, et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ 2014;348:g3859.
[4] Kandzari DE, Mauri L, Koolen JJ, et al. BIOFLOW V Investigators-Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet 2017;390:1843–52.
[5] Yaribeygi H, Atkin SL, Jamialahmadi T, et al. A review on the effects of new anti-diabetic drugs on platelet function. Endocr Metab Immune Disord Drug Targets 2020;20:328–34.
[6] Yuan J, Xu GM. Early and late stent thrombosis in patients with versus without diabetes mellitus following percutaneous coronary intervention with drug-eluting stents: a systematic review and meta-analysis. Am J Cardiovasc Drugs 2018;18:483–92.
[7] Kandzari DE, Koolen JJ, Doros G, et al. BIOFLOW V Investigators-Ultrathin bioresorbable polymer sirolimus-eluting stents versus thin durable polymer everolimus-eluting stents. J Am Coll Cardiol 2018;72:3287–97.
[8] Lansky AJ, Kastrati A, Edelman ER, et al. Comparison of the absorbable polymer sirolimus-eluting stent (MiStent) to the durable polymer everolimus-eluting stent (Xience) (from the DESSOLVE I/II and ISAR-TEST-4 Studies). Am J Cardiol 2016;117:532–8.
[9] Lefèvre T, Haude M, Neumann FJ, et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: 5-year outcomes of the randomized BIOFLOW-II Trial. JACC Cardiovasc Interv 2018;11:995–1002.
[10] Pilgrim T, Piccolo R, Heg D, et al. Ultrathin-strut, biodegradable-polymer, sirolimus-eluting stents versus thin-strut, durable-polymer, everolimus-eluting stents for percutaneous coronary revascularisation: 5-year outcomes of the BIOSCIENCE randomised trial. Lancet 2018;392:737–46.
[11] Roguin A, Kandzari DE, Marcusohn E, et al. Subgroup analysis comparing ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in acute coronary syndrome patients. Circ Cardiovasc Interv 2018;11:e007331.

[12] Yamaji K, Zanchin T, Zanchin C, et al. Unselected use of ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for coronary revascularization. Circ Cardiovasc Interv 2018;11:e006741.

[13] Higgins JP, Altman DG, Gotzsche PC, et al. Cochrane Bias Methods Group; Cochrane Statistical Methods Group The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.

[14] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.

[15] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.

[16] Zhai ZY, Li JX. Comparison of efficacy and safety between ultrathin biodegradable polymer sirolimus-eluting stents and thin durable polymer drug-eluting stents: a systematic review and meta-analysis of the literature. Coron Artery Dis 2019;30:590–9.

[17] Waksman R, Shlomfritz E, Windelker S, et al. Efficacy and safety of ultrathin, bioresorbable-polymer sirolimus-eluting stents versus thin, durable-polymer everolimus-eluting stents for coronary revascularization of patients with diabetes mellitus. Am J Cardiol 2019;124:1020–6.

[18] Zbinden R, Piccolo R, Heg D, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stent for percutaneous coronary revascularization: 2-year results of the BIOSCIENCE trial. J Am Heart Assoc 2016;5:e003255.