GEOMETRIC PROGRESSION-FREE SEQUENCES WITH SMALL GAPS II

XIAOYU HE

Abstract. When k is a constant at least 3, a sequence S of positive integers is called k-GP-free if it contains no nontrivial k-term geometric progressions. Beiglböck, Bergelson, Hindman and Strauss first studied the existence of a k-GP-free sequence with bounded gaps. In a previous paper the author gave a partial answer to this question by constructing a 6-GP-free sequence S with gaps of size $O(\exp(6 \log n / \log \log n))$. We generalize this problem to allow the gap function k to grow to infinity, and ask: for which pairs of functions (h, k) do there exist k-GP-free sequences with gaps of size $O(h)$? We show that whenever $(k(n) - 3) \log h(n) \log \log h(n) \geq 4 \log 2 \cdot \log n$ and h, k satisfy mild growth conditions, such a sequence exists.

1. Introduction

Let S be an increasing sequence of positive integers. We say that S is k-GP-free if it contains no k-term geometric progressions with common ratio not equal to 1, where $k \geq 3$ for the problem to be nontrivial. Let h be a nondecreasing function $\mathbb{N} \to \mathbb{R}^+$. We say that a sequence S has gaps of size $O(h)$ if there exists a constant $C > 0$ such that for every pair $m, N \in \mathbb{N}$ with $m \leq N$, the sequence S intersects the interval $[m, m + Ch(N))$.

The maximal asymptotic density of a k-GP-free sequence is well-studied [3, 10, 11, 15]. Beiglböck et al. [2] originally posed the related question:

Problem 1. Does there exist $k \geq 3$ and a k-GP-free sequence S such that S has gaps of size $O(1)$?

The standard example of a 3-GP-free sequence is the sequence Q of positive squarefree numbers $1, 2, 3, 5, 6, 7, 10, \ldots$, which has asymptotic density $6/\pi^2$. Despite its large density, the size of its largest gaps is not known. The best unconditional result available is that of Filaseta and Trifonov [5] that Q has gaps of size $O(N^{1/5} \log N)$, and Trifonov also established a generalization that the sequence of k-th-power-free numbers has gaps of size $O(N^{1/(2k+1)} \log N)$ [16]. Assuming the abc conjecture, Granville showed that the gaps of Q are of size $O(N^\varepsilon)$ for all $\varepsilon > 0$ [7].

All of these bounds can be improved immensely if we assume the conjecture of Cramér that the gaps between consecutive primes are $O(\log^2 N)$ [4]. For a discussion of Cramér’s model and implications, see the article of Pintz [12]. The problem of bounding largest gaps between consecutive primes, both from above and below, is notoriously difficult, and the best known lower bound is

$$p_{n+1} - p_n \geq \frac{C \log p_n \log \log p_n \log \log \log \log p_n}{\log \log \log p_n}$$

for some $C > 0$ and infinitely many n, due to Ford, Green, Konyagin, Maynard, and Tao [6], an improvement by $\log \log \log p_n$ over the longstanding bound of Rankin [14]. The best
unconditional upper bound is \(p_{n+1} - p_n = O(N^{0.525}) \), due to Baker, Harman, and Pintz [1], with \(O(N^{1/2} \log N) \) possible assuming the Riemann hypothesis.

Instead of pursuing these notoriously difficult problems, in a previous paper the author showed that by replacing \(Q \) by a randomly constructed analogue, we can improve on Granville’s bound unconditionally.

Theorem 2. [8] There exists a 6-GP-free sequence \(T \) and a constant \(C > 0 \) such that the gaps of \(T \) are of size \(O(\exp(C \log N / \log \log N)) \). In fact \(C \) can be taken to be any positive real greater than \(\frac{5}{6} \log 2 \).

In this paper we generalize the Problem 1 as follows. Henceforth \(k \) is no longer a constant but a nondecreasing function \(k : \mathbb{N} \rightarrow \mathbb{R} \geq 3 \). We say that \(S \) is \(k \)-GP-free if for every \(N \in \mathbb{N} \), the finite subsequence \(S \cap \{1, 2, \ldots, N\} \) does not contain any nontrivial geometric progressions of length at least \(k(N) \).

Problem 3. For which pairs of functions \((h, k)\) do there exist \(k \)-GP-free sequences \(S \) such that \(S \) has gaps of size \(O(h) \)?

We call \(h \) the gap function and \(k \) the length function, and a pair \((h, k)\) feasible if such an \(S \) exists. Thus far we have only dealt with constant length function; in particular Theorem 2 shows that the pair \((\exp(C \log N / \log \log N), 6)\) is feasible. At the other end of the spectrum, it is trivial that \((1, \log N / \log 2)\) is a feasible pair, simply because the longest possible geometric progression in \(1, \ldots, N \) has length at most \(\log N / \log 2 \). In the last section of this paper we show in fact that \((1, \varepsilon \log N)\) is feasible for any \(\varepsilon > 0 \).

To interpolate between these two situations, we prove the following theorem, extending the method used in [8] to prove Theorem 2.

For two functions \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \) we write \(f = O(g) \) if there exists a constant \(C > 0 \) such that \(f(n) \leq Cg(n) \) for all \(n \in \mathbb{N} \) and \(f = o(g) \) if for every \(C > 0 \) the inequality \(f(n) \leq Cg(n) \) holds for all \(n \) sufficiently large. We also write \(f = \Omega(g) \) if \(g = O(f) \).

Theorem 4. Let \((h, k)\) be nondecreasing functions \(\mathbb{N} \rightarrow \mathbb{R}^+ \) such that \(h(n) = \Omega((\log x)^{1/(1-\log 2)}) \) and for all sufficiently large \(n \), \(k(n) > 5 \). If they satisfy

\[
(k(n) - 3) \log h(n) \log \log h(n) \geq 4 \log 2 \cdot \log n,
\]

for all sufficiently large \(n \), then there exists a \(k \)-GP-free sequence \(T \) with gaps of size \(O(h) \).

As a corollary, if \(k \) is constant we recover Theorem 2 with a weaker constant.

2. Preliminaries

In this section we generalize the GP-free process of [8] to probabilistically construct a \(k \)-GP-free sequence. First we simplify Theorem 4 by reducing the set of possible length functions \(k \). It suffices to show the following.

Theorem 5. If \(k \) is a nondecreasing function \(\mathbb{N} \rightarrow \{6, 8, \ldots\} \) taking on even positive integer values at least 6, and \(h : \mathbb{N} \rightarrow \mathbb{R}^+ \) is a function satisfying \(h(n) = \Omega((\log x)^{1/(1-\log 2)}) \), \(h(n) = o(\sqrt{n}) \) and

\[
(k(n) - 2) \log h(n) \log \log h(n) \geq 4 \log 2 \cdot \log n,
\]

for all \(n \) sufficiently large, then there exists a \(k \)-GP-free sequence \(T \) with gaps of size \(O(h) \).
Proof. (that Theorem 5 implies Theorem 4). Suppose Theorem 5 is true, and let k be as in Theorem 4. We can certainly round up k to the nearest integer to begin with. It is also possible to ignore the finite set of n for which k ≤ 5, since we only care about n sufficiently large. If we round k down to the nearest even integer, if it originally satisfied the inequality of Theorem 4, then it has decreased by at most 1 uniformly, so the inequality above holds. Finally, if we prove the theorem for all h(n) = o(√n), then it follows for all larger h as well, so we may as well assume h(n) = o(√n).

Let G_k be the family of all geometric progressions of positive integers such that if t is the largest term, then the length is at least k(t). Enumerate them as G_{k,i} in order lexicographically as sequences of positive integers. We assume that each G_{k,i} has common ratio r_{k,i} > 1.

Furthermore, there may be longer G_{k,i} containing shorter ones; let G_{k}^* denote the result of removing from G_k all G_{k,i} which contain some G_{k,j} with j ≠ i. Thus to find a k-GP-free sequence it suffices to construct a sequence T_k missing at least one element from each progression in G_{k}^*. Let G_{k,i}^* denote the i-th progression in G_{k}^*.

Definition 6. For a nondecreasing function k : N → {6, 8, . . .}, define the k-GP-free process as follows. Define an integer-sequence valued random variable U_k = (u_1, u_2, . . .) where u_i ∈ G_{k,i}^* such that if

\[G_{k,i}^* = (a_i b_i^{k-1}, a_i b_i^{k-2} c_i, \ldots, a_i c_i^{k-1}), \]

then u_i is chosen from \(a_i b_i^{k/2-1} c_i^{k/2}\) and \(a_i b_i^{k/2} c_i^{k/2}\) with equal probability \(\frac{1}{2}\). Each u_i is picked independently of the others. Then T_k is the random variable whose value is the sequence of all positive integers never appearing in U_k, sorted in increasing order.

It is clear that T_k is k-GP-free by definition, as it misses at least one term out of each G_{k,i}. We now bound the probability that a given n ∈ N lies in T_k generated as above. For i, j ≥ 1, let d(n; i, j) count the number of ways to factorize n = ab^c for some a, b, c ∈ N.

Lemma 7. For a positive integer n, the sequence T_k constructed in Definition 6 contains n with probability

\[\mathbb{P}[T_k \ni n] \geq 2^{-d(n; k(m)/2, k(m)/2 - 1)}, \]

where m is any positive integer such that any G_{k,i}^* containing n in its middle two terms has largest term at least m.

Proof. The inequality is equivalent to the statement that n is one of the middle two terms in at most d(n; k(m)/2, k(m)/2 - 1) progressions of G_{k}^*. We form an injective correspondence from progression G_{k,i}^* containing n in the middle two terms to factorizations of n as n = ab^{k(m)/2} c^{k(m)/2 - 1}. If a progression

\[G_{k,i}^* = (a_i b_i^{k'-1}, a_i b_i^{k'-2} c_i, \ldots, a_i c_i^{k'-1}) \]

with \(b_i < c_i\) and \(k' \geq k(a_i c_i^{k'-1})\) contains n as one of the middle two terms, then certainly \(k(m) \leq k'\). Supposing \(n = a_i b_i^{k'/2-1} c_i^{k'/2}\), we map G_{k,i}^* to the factorization n = ab^{k(m)/2} c^{k(m)/2 - 1} with a = a_i b_i^{(k'-k(m))/2} c_i^{(k'-k(m))/2}, b = c_i and c = b_i. Similarly if n = a_i b_i^{k'/2} c_i^{k'/2 - 1} we take a = a_i b_i^{(k'-k(m))/2} c_i^{(k'-k(m))/2}, b = b_i and c = c_i. It is easy to see from the assumptions that \(b_i < c_i\) and that no progression in G_{k}^* strictly contains another that the correspondence above is injective, as desired.

\[\square \]
From here we can control the total probability that \(T_k \) misses an entire interval of the form \([x, x + Ch(x)]\).

Lemma 8. For a gap function \(h(x) = o\left(x^{1-1/(k(x)-1)}\right) \) and a constant \(C > 0 \), the sequence \(T_k \) constructed in Definition 6 satisfies \(T_k \cap [x, x + Ch(x)] = \emptyset \) with probability

\[
\mathbb{P}[T_k \cap [x, x + Ch(x)] = \emptyset] \leq \exp\left(- \sum_{n \in [x, x + Ch(x)]} \exp\left(- \log 2 \cdot d\left(n; \frac{k(x)}{2}, \frac{k(x)}{2} - 1\right)\right)\right)
\]

for all \(x \) sufficiently large.

Proof. We first prove that the events \(\mathbb{P}[T_k \ni n] \) for \(n \in [x, x + Ch(x)] \) are mutually independent whenever \(x \) is sufficiently large. It suffices to show that no progression in \(G^*_k \) has both middle terms in the interval. Considering the difference between the two middle terms in a \(G^*_{k,i} \), and assuming both lie inside \([x, x + Ch(x)]\), we have

\[
\left|a_i b_i^{k/2-1} c_i^{k/2} - a_i b_i^{k/2} c_i^{k/2-1}\right| \geq \frac{x}{b_i} \geq x^{1-1/(k(m)-1)} \geq x^{1-1/(k(x)-1)}
\]

where \(k \geq k(m) \) depends on the largest term \(m = a_i c_i^{k-1} > x \). It follows that assuming \(h(x) = o\left(x^{1-1/(k(x)-1)}\right) \), for any \(C > 0 \) the middle two terms in any \(G^*_{k,i} \) with largest term at most \(x \) are further apart than \(Ch(x) \) for any \(x \) sufficiently large.

Thus the events corresponding to each \(n \) in the interval are mutually independent, and we can bound the probability involved by a product

\[
\mathbb{P}[T_k \cap [x, x + Ch(x)] = \emptyset] \leq \prod_{n \in [x, x + Ch(x)]} \left(1 - 2^{-d(n; k(m)/2, k(m)/2-1)}\right),
\]

by Lemma 7. Since the inequality \(1 - t \leq e^{-t} \) holds for all real \(t \) we arrive at the bound

\[
\mathbb{P}[T_k \cap [x, x + Ch(x)] = \emptyset] \leq \exp\left(- \sum_{n \in [x, x + Ch(x)]} \exp\left(- \log 2 \cdot d\left(n; \frac{k(m)}{2}, \frac{k(m)}{2} - 1\right)\right)\right).
\]

Here each \(m = m(n) \) can certainly be chosen as any number at most \(n \). Thus we replace them all by \(x \), arriving at the desired bound. \(\square \)

Note that since we assumed \(h(x) = o(\sqrt{x}) \) the growth condition in Lemma 8 is automatically satisfied.

3. Proof of the Main Theorem

All that remains is to give lower bounds for the sum

\[
S(x, h, k, C) = \sum_{n \in [x, x + Ch]} \exp\left(- \log 2 \cdot d\left(n; \frac{k}{2}, \frac{k}{2} - 1\right)\right),
\]

where \(k = k(x) \) and \(h = h(x) \) are functions satisfying the conditions of Theorem 5. To this end we break down \([x, x + Ch]\) into two sets, one of which has few \((k/2 - 1)\)-power divisors, and restrict the sum to that set.
Lemma 9. There is a positive constant B independent of x such that for all sufficiently large x,

$$S(x, h, k, C) \geq BCh(x) \exp \left(-\log 2 \exp \left(\frac{4 \log 2 \cdot \log x}{(k(x) - 2) \log h(x)} \right) \right).$$

Proof. Fix an $x > 0$ and write $k = k(x), h = h(x)$. Denote by A the subset of $[x, x + Ch]$ consisting of all n divisible by some $p^{k/2-1}$, where $p \leq h$. We can bound the size of A by

$$|A| \leq \sum_{\text{prime } p \leq h} \left(\frac{Ch}{p^{k/2-1}} + 1 \right) \leq (\zeta(k/2 - 1) - 1)Ch + o(h),$$

where ζ is the Riemann zeta function and we used the elementary Chebyshev bound $\pi(h) = o(h)$ on the prime-counting function π. Since $k \geq 6$ and $\zeta(t) - 1 < 1$ uniformly on $t \geq 2$, there exists a constant B such that for x, and thus h, sufficiently large, $|A| \leq (1 - B)Ch$.

If $n \not\in A$, we can factor $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}n'$ where n' is $(k/2 - 1)$-th power free, each $\alpha_i \geq k/2 - 1$, and each $p_i \geq h$ is prime. As a result,

$$\sum_i \alpha_i \leq \frac{\log n}{\log h},$$

so by a smoothing argument we can bound $d(n; k^{k/2-1})$ subject to these assumptions,

$$d(n; k^{k/2-1}) \leq \exp \left(\log 2 \cdot \frac{\log n}{(k/2 - 1) \log h} + \log 2 \cdot \frac{\log n}{(k/2) \log h} \right),$$

where we simply bounded the number of pairs b, c satisfying $b^{k/2-1}|n$ and $c^{k/2}|n$. Summing up over all terms in $[x, x + Ch]$ outside A, we get

$$S(x, h, k, C) \geq BCh \exp \left(-\log 2 \exp \left(\left(\frac{1}{k} + \frac{1}{k - 2} \right) \frac{(2 \log 2) \cdot \log x}{\log h} \right) \right),$$

and finally replacing $1/k \leq 1/(k - 2)$ we have the desired inequality. \hfill \square

Finally, we prove Theorem 5 using Lemma 9.

Proof. (of Theorem 5). By Lemma 8 it suffices to pick h, k such that the sum of probabilities

$$\sum_{x \geq 1} \mathbb{P}[T_k \cap [x, x + Ch(x)) = \emptyset] \leq \sum_{x \geq 1} \exp(-S(x, h, k, C)) < 1$$

for C sufficiently large, forcing the probability of finding a T with gaps $O(h)$ to be nonzero. This will hold as long as the sum converges for some fixed C; making C large enough will make the sum arbitrarily small. Now, suppose that $(k - 2) \log h \log \log h \geq 4 \log 2 \cdot \log n$ as in Theorem 5. Then, applying the inequality of Lemma 9, we have

$$S(x, h, k, C) \geq BCh \exp(-\log 2 \log h) \geq BCh^{1 - \log 2},$$

and finally since $h = \Omega((\log x)^{1/(1 - \log 2)})$, we get

$$\sum_{x \geq 1} \exp(-S(x, h, k, C)) \leq \sum_{x \geq 1} x^{-BCh D},$$

for some constant $D > 0$, so picking C for which $BC > 1$ gives a convergent sum. \hfill \square
4. Closing Remarks

The goal of this paper was to interpolate smoothly between the two feasible pairs \((h, k) = (\exp(C \log N/ \log \log N), 6)\) and \((h, k) = (1, \log N/ \log 2)\), and we recover both pairs, up to constants, in the relation

\[(k(n) - 3) \log h(n) \log \log h(n) \geq 4 \log 2 \cdot \log n.\]

Unfortunately, when \(k\) is sufficiently close to \(\log n\), then the method of Theorem 4 fails because \(h = o((\log x)^{1/(1-\log 2)})\). Nevertheless, we expect all pairs \((h, k)\) which satisfy this inequality to be feasible. In the case that \(h = 1\) we can make an improvement on \((1, \log N/ \log 2)\).

Proposition 10. For any \(\varepsilon > 0\), if \(k(n) = \varepsilon \log n\) then there exists a \(k\)-GP-free sequence \(T\) with gaps of size \(O(1)\).

Proof. We say a positive integer \(m\) is divisible by a \(k\)-th power if \(p^{\lceil k(m) \rceil} \mid m\) for some prime \(p\), and that \(m\) is \(k\)-free otherwise. Consider the sequence \(T\) of all \(k\)-free integers; we claim that its gaps are uniformly bounded. In fact, note that if \(p^{\lceil k(m) \rceil} \mid m\) then

\[
p^{k(m)} \leq m, \\
\varepsilon \log m \cdot \log p \leq \log m, \\
\log p \leq \frac{1}{\varepsilon},
\]

and so \(p\) lies in the finite set of all primes less than \(e^{1/\varepsilon}\). In particular, for \(x\) sufficiently large, the interval \([x, x + e^{1/\varepsilon} + 1]\) will contain at least one \(k\)-free number. Indeed, it is easy to check that each \(p \leq e^{1/\varepsilon}\) contributes at most one multiple of \(p^{k(x)}\) to that interval. \(\square\)

Further improvement in the case of \(h\) small or constant along these lines is blocked by the Chinese Remainder Theorem. In particular, for \(k = o(\log n)\) and any constant \(h\) we can find infinitely many intervals \([x, x + h]\) in which each positive integer in \([x, x + h]\) is divisible by arbitrarily many \(k(x)\)-th powers of primes.

The probabilistic method in Definition 6 is by no means optimal, but is defined in such a way to guarantee the independence of events in an interval \([n, n + Ch]\). We expect that a sophisticated study of redundancies in our method can substantially improve at least the constant in Theorem 4.

5. Acknowledgements

I would like to thank Levent Alpoge and Joe Gallian for correcting many mistakes.

References

[1] R. C. Baker, G. Harman, J. Pintz, *The difference between consecutive primes, II*, Proc. London Math. Soc. 3 (2001) 83, 532–562.
[2] M. Beiglböck, V. Bergelson, N. Hindman and D. Strauss, *Multiplicative structures in additively large sets*, J. Combin. Theory Ser. A (2006) 13-7, 1219-1242.
[3] B. E. Brown and D. M. Gordon, *On sequences without geometric progressions*, Math. Comp. (1996) 65, no. 216, 1749-1754.
[4] H. Cramér, *On the order of magnitude of the difference between consecutive prime numbers*, Acta Mathematica (1936) 2, 23–46.
[5] M. Filaseta and O. Trifonov, *On gaps between squarefree numbers II*, J. London Math. Soc. 2 (1992) 45, 215–221.
[6] K. Ford, et al. Long gaps between primes. preprint (2014), arXiv:1412.5029.

[7] A. Granville. ABC Allows Us to Count Squarefrees. International Mathematics Research Notices (1998) 991–1009.

[8] X. He. Geometric progression-free sequences with small gaps. J. Number Theory 151 (2015), 197-210 arXiv:1501.04121.

[9] H. Maier, Primes in short intervals, Michigan Math. J. (1985) 32, 221-225.

[10] N. McNew, On sets of integers which contain no three terms in geometric progression, preprint (2014), arXiv:1310.2277.

[11] M. B. Nathanson and K. O'Bryant, Irrational numbers associated to sequences without geometric progressions, preprint (2013), arXiv:1307.8135.

[12] J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes, Funct. Approx. Comment. Math. (2007) 37-2, 361-376.

[13] R. A. Rankin, The difference between consecutive prime numbers, Proc. Edinburgh Math. Soc., (1962-1963) 13, 331-332.

[14] J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J. (1969) 10, 137-146.

[15] O. Trifonov, On gaps between k-free numbers, J. Number Theory (1995) 55, 46-59.