Ectopic Pregnancy-Derived Human Trophoblastic Stem Cells Regenerate Dopaminergic Nigrostriatal Pathway to Treat Parkinsonian Rats

Tony Tung-Yin Lee1, Cheng-Fang Tsai2, Tsung-Hsun Hsieh3, Jia-Jin Jason Chen3, Yu-Chih Wang1, Mi-Chun Kao1, Ruey-Mei Wu4, Sher Singh5, Eing-Mei Tsai1,2, Jau-Nan Lee1*

1 Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 2 Graduate Institute of Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan, 3 Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 4 Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, 5 Department of Life Science, National Taiwan Normal University, Taipei, Taiwan

Abstract

Background: Stem cell therapy is a potential strategy to treat patients with Parkinson’s disease (PD); however, several practical limitations remain. As such, finding the appropriate stem cell remains the primary issue in regenerative medicine today. We isolated a pre-placental pluripotent stem cell from the chorionic villi of women with early tubal ectopic pregnancies. Our objectives in this study were (i) to identify the characteristics of hTS cells as a potential cell source for therapy; and (ii) to test if hTS cells can be used as a potential therapeutic strategy for PD.

Methods and Findings: hTS cells expressed gene markers of both the trophectoderm (TE) and the inner cell mass (ICM). hTS cells exhibited genetic and biological characteristics similar to that of hES cells, yet genetically distinct from placenta-derived mesenchymal stem cells. All-trans retinoic acid (RA) efficiently induced hTS cells into trophoblast neural stem cells (tNSCs) in 1-day. Overexpression of transcription factor Nanog was possibly achieved through a RA-induced non-genomic c-Src/Stat3/Nanog signaling pathway mediated by the subcellular c-Src mRNA localization for the maintenance of pluripotency in tNSCs. tNSC transplantation into the lesioned striatum of acute and chronic PD rats not only improved behavioral deficits but also regenerated dopaminergic neurons in the nigrostriatal pathway, evidenced by immunofluorescent and immunohistological analyses at 18-weeks. Furthermore, tNSCs showed immunological advantages for the application in regenerative medicine.

Conclusions: We successfully isolated and characterized the unique ectopic pregnancy-derived hTS cells. hTS cells are pluripotent stem cells that can be efficiently induced to tNSCs with positive results in PD rat models. Our data suggest that the hTS cell is a dynamic stem cell platform that is potentially suitable for use in disease models, drug discovery, and cell therapy such as PD.

Introduction

Parkinson’s disease (PD) is caused by the dysfunction or the loss of dopaminergic neurons in the nigrostriatal pathway of the midbrain, making it the second most common neurodegenerative disorder in humans. Current pharmacological drugs only provide symptomatic relief but do not retard the disease progression. Consequently, cell replacement by using human fetal mesenchymal stem (PDMS) cells have also shown promise; but outcomes remain uncertain [7]. In the search for a suitable cell source, we isolated and identified the ectopic pregnancy-derived human trophoblast stem (hTS) cells from the early chorionic villi of a tubal ectopic pregnancy. The characteristics of hTS cells suggest it as a potential alternative source of pluripotent stem cells for the treatment of PD and of other neurodegenerative diseases.

We investigated the microenvironmental factors that affect pluripotency and proliferation of hTS cells. In women, fertilization occurs in the fallopian tubes, where the distinction between the inner cell mass (ICM) and the trophectoderm (TE) [8] and the switch from totipotency to pluripotency takes place during embryogenesis [9]. When an ectopic pregnancy occurs in the...
Materials and Methods

hTS Cell Culture and Differentiation
Tiny villous tissues (Fig. S1A) were well-minced in serum-free α-MEM (Sigma-Aldrich, St. Louis, MO) followed by trypsinization with 0.025% trypsin/EDTA (Sigma-Aldrich) (15 min) that was halted by adding α-MEM containing 10% FBS. Adherent cells were cultured in α-MEM, 20% FBS, and 1% penicillin-streptomycin at 37°C in 5% CO2. Particularly, the doubling time of cell growth was 7.67 hr. Cell antibodies, primers, and differentiations used in this study are shown in Supporting Information (Table S1, Table S2).

Plasmids
Plasmid construct (F1B-GFP) used in this study is described in the Supporting Information (Text S1). hTS cells were co-transfected with a DNA mixture of F1B-GFP to yielded over 95% of transfection rate.

RT-PCR, Western Blots, Southern Blots, Immunoprecipitation, IP Assay, and Flow Cytometry
Methods performed in this work are described previously [18] and details are available in the Supporting Information (Text S1).

Chromatin Immunoprecipitation (ChIP)
Cells were serum-deprived for overnight and treated with RA (10 μM) for 30 min. The mixtures of protein G beads (Roche) and lysate were incubated with rocking at 4°C for 2 hr. After removing the beads by centrifugation, the lysate was added with IgG (Santa Cruz) and primary anti-Stat3 antibody (1:1,000, Santa Cruz) in accompany with new protein G beads. The mixtures were incubated with rocking overnight at 4°C. The immunoprecipitation complex was washed by RIPA lysis buffer and subjected for polymerase chain reaction (PCR) using Nanog promoter primer: forward, GACAGCCCCCAGTAAACAAA and reverse, GCTTTTCCCTCTGCGTCCTT).

Microarray Data Analysis
Cells, with or without treatment of RA (10 μM), were cultured overnight and total RNAs were extracted using TRIzol reagent (Invitrogen) and subjected for Affymetrix microarray by using Affymetrix Human Genome U133 plus 2.0 GeneChip according to the manufacturer’s guidance (Santa Clara, CA, http://www. affymetrix.com) performed at Genomic Medicine Center of National Taiwan University College of Medicine, Taipei, Taiwan). Data analysis was performed by using softwares of MetaCore, GeneSpring GX (version 7.3), and IPA Ingenuity System (version 8.8).

Immunofluorescence
For immunocytochemistry, after fixation with 4% paraformaldehyde in PBS (room temperature, 5 min) and washes, cells were permeabilized with 2% FBS/0.4% Triton X-100 in PBS (15 min), followed by 5% FBS blocking solution (2 hr) and rinsed three times. After incubation with specific primary antibody in PBS at 4°C overnight, appropriate FITC or PE or Texas Red or DyLight 488 or DyLight 594 conjugated secondary antibody was added for 1 hr at room temperature. By DAPI staining, nucleus (5 min) cells were subjected for microscopy.

For immunohistochemistry, brain sections were fixed in 4% paraformaldehyde (2 hr) and dehydrated in 30% sucrose in 0.02 M PBS (2 days) followed by processes in a freezing microtome (Leica). Coronal sections (30 μm) were treated with 0.3% H2O2 and Ready-To-Use blocking solution (IHC-101b, Bethyl Laboratories, Montgomery, TX) for 15 min followed by incubation with primary anti-TH antibody (1:1,000, Temecula, CA) at 4°C. Anti-rabbit secondary antibody (IHC-101d, Bethyl Laboratories) was used with DAB kit (Bethyl) for microscopic analysis.

Immunofluorescence Tissue Analysis
Coronal brain sections were immunostained with primary antibodies: TH (1:250; H-196, sc-14007; Santa Cruz), NeuN (1:100; MAB377; Millipore, Temecula, CA), and GFAP (1:200; BSB 5566, Declere; Bio SB, Santa Barbara, CA) in accompany with FITC-anti-TH, Cy-3-anti-NeuN, or Cy-3-anti-GFAP. Data were analyzed by TissueGnostics (TissueGnostics GmbH, Vienna, Austria). Evaluation was made by comparison between the lesioned (or the cell-implanted) side and the normal side. Cells with bizarre size or intensity of GFAP outside the normal (e.g., artifact or unusually heavy stain area or intensity in cell overlapping with Wilson’s pencils) were excluded.

Animal Studies and Behavioral Assessments
Animal preparations were licensed and well-described previously [19], (Text S1). Before experiment, the apomorphine-induced rotation test after 6-OHDA injection was pre-evaluated weekly in PD rats to achieve a stable hemiparkinsonian status to avoid bias. In acute PD rats (body weight, 225–230 g), cells (3×10⁶ cells/5 μl/5 min) were transplanted into the lesioned striatum at
site (AP +1.0 mm, Lat +2.7 mm, Dep 6.4 mm) under anesthesia. The cell viability remained stable between 96% and 98% during the implantation procedures. In chronic PD rats, the body weight of rats was controlled between 560±63 g at pre-test and 549±46 g at post-test. Cells (1.5×10^5) were grafted at the same site. To obtain the brain sections, rats were anesthetized by sodium pentobarbital (60 mg/kg, i.p., Apoteksbolaget, Sweden) and trans-cardially perfused with saline (50 ml, 0.9% w/v) followed by ice-cold paraformaldehyde (200 ml, 10% w/v in 0.02 M PBS) were performed at 18- and 12-weeks in the acute and chronic PD rats, respectively. Brain sections were subjected for immunocytochemistry, and immunofluorescence tissue analysis as indicated. All behavioral assessments were performed as described previously [19], (Text S1).

Ethics Statement
Patient consent and sourcing of human tissue were approved by the Institutional Review Board on Human Subjects Research and Ethics Committees of Kaohsiung Medical University Hospital (KMUH-IRB-950140). The animal experiments were conducted according to the guideline and Approval of Animal Use Protocol of National Cheng Kung University (IACUC Approval No. 98010). The NCUK IACUC guidelines aim to reduce animal suffering by use of anesthesia, use of analgesics, and provide nutritional and fluid support.

Statistical Analysis
Data obtained from RT-PCR and flow cytometry were calculated by Student’s t-test. For behavioral assessments, data were expressed as mean ± SEM. In acute PD rats, data of apomorphine-induced rotation tests were analyzed by using repeated measure analysis of variance (ANOVA) tests (SPSS Release 12.0 software) and applied least significant difference test (LSD) post hoc comparisons after repeated measure ANOVA tests between two groups. In chronic PD rats, paired Student’s t-test was used to compare the two groups. p-value <0.05 was considered statistically significant.

Results
Ectopic Pregnancy Gives Rise to hTS Cells
A unique population of adherent cells was isolated from the early chorionic villi of embryos (gestational age: 5–7 weeks) in tubal ectopic pregnancies (Text S1). Neither feeder cells nor multiple inducers were used in the cell culture and the differentiation of hTS cells, as distinct from hES cells [3], [4], [5], circumventing potential side-effects and contaminations. After growth factor depletion, the main differentiated lineage of trophoblasts should be mature syncytiotrophoblast. However, we only isolated mononuclear cytotrophoblast cells that adhered to the dish, as mature cells were removed in the isolation process. The population doubling time of hTS cells was 8 hr, which is distinct from the 48 hr population doubling time of the first trimester placenta-derived cytotrophoblasts [20]. These cells expressed markers for hES cell-related specific stage embryonic antigen (SSSEA)-1, −3 and −4 with immunolocalization identical to cytotrophoblasts in the villus (Fig. 1A). By immunocytochemistry, the cells expressed pluripotency transcription factors Oct4, Sox2, Nanog and Cdx2 in the nuclei at passage 9 and 17 (Fig. 1B, Fig. S1B).

The hTS cells expressed specific genes of the TE (i.e., Cdx2, Fgfr-2, Eomes, and BMP4), the ICM (i.e., Oct4, Nanog, FGF4, and Sox2) (Fig. 1C), as well as the three primary germ layers (Fig. 1D). We then evaluated for cellular homogeneity. With TissueGnostics analysis, we found that these cells expressed 100% and 97.3% Oct4-positive cells at passages 9 and 17, respectively (Fig. 1E). Flow cytometry with Oct4, Sox2, Nanog and Cdx2 at passage 15 demonstrated 97.9%, 95.0%, 98.7%, and 94.0% positive cells, respectively (Fig. 1F). Flow cytometry with surface markers CD44, CD73, CD105 and HLA-ABC at passages 3 and 9 also demonstrated over 97% positive (Fig. S1C). These results show that hTS cells are a highly homogenous population.

Flow cytometric analysis demonstrated that hTS cells expressed mesenchymal, but not hematopoietic, stem cell characteristics (Fig. S1D). Upon appropriate induction (Table S2), they gave rise to a variety of specific cell phenotypes such as osteoblasts, chondrocytes, myocytes, and adipocytes (Fig. S1E). Neither change in karyotype (46, XY) by chromosome analyses (Fig. S1F) nor in telomere length by Southern blots (Fig. 1G) was observed in a series of cell cultures. We defined these isolated cells as hTS cells.

An important question is whether hTS cells are distinct from PDMS cells. To investigate, we utilized the Affymetrix platform to compare global gene expressions between them. The results showed that the gene distribution differed not only with their histogram patterns (Fig. 1H), but also with their intensity values (Fig. 1I). Of the total 54,675 genes, 4,864 genes (8.9%) were distinct between them, including molecular and cellular functions and physiological system development (Table S3). Furthermore, both exhibited unique genes with respect to immune and mesenchymal characteristics (Fig. 1J and Table S4). Therefore, we concluded that hTS cells represented a unique TE-derived stem cell population distinct from PDMS cells obtained from the uterus.

LIF Maintains the Proliferative Capability of hTS Cells
Previous studies show that gradient levels of LIF exist in the fallopian tube [11] and that in the absence of LIF, ES cells differentiate into the TE fate [14]. To mimic the environment, we investigated the effect of LIF on hTS cells. We treated hTS cells with different concentrations of LIF (i.e., 500, 250, and 125 IU/ml) for 3-days each. Of the pluripotency-associated transcription factors, LIF (500 IU/ml) induced overexpressions of Oct4 and Sox2, but not Nanog and Cdx2 by RT-PCR (Fig. 2A). By flow cytometry, withdrawal of LIF (500 IU/ml) overexpressed Nanog and Cdx2; however, it suppressed Oct4 and Sox2 in a dose-dependent manner (Fig. 2B, Fig. 2C, and Fig. S2A). As the hTS cells travel from a high LIF environment to a low LIF environment along the fallopian tube, the relative Nanog/Cdx2 ratio increases (>2-fold), but the Oct4/Cdx2 ratio decreases (Fig. 2D). By using siRNAs and shRNAs, we also show that knockout of Nanog promoted expressions of Cdx2, and knockout of Cdx2 promoted Nanog (Fig. 2E, Fig. 2F, and Fig. S2B). Similar to the reciprocal relationship between Oct4 and Cdx2 in ES cells [21], we showed the existence of a reciprocal relationship between Nanog and Cdx2 in hTS cells. Expression of Cdx2 is required for maintaining the trophoblastic phenotype. These results suggested that Oct4 is involved in the maintenance of pluripotency at the early TE cells and Nanog enhanced the pluripotent capability in hTS cells at a later stage during transportation in the tube.

RA Generates Trophoblast Neural Stem Cells in vitro
We then attempted to generate neural cells by treating hTS cells with RA over time (i.e., 1-, 3-, 5- and 7-days). A population of neural stem cells (NSGs) was generated with phenotypes similar to those neural restricted precursor subtypes described in previous studies [22], including glial restricted precursors (GRP), neuronal restricted precursors (NRP), multipotent neural stem cells (MNS),...
Human Trophoblast Stem Cells Treat Parkinson Rats

A

B

C

D

E

F

G

H

I

J

Immune-related genes

Mesenchymal genes
astrocytes (AST), and undefined trophoblast giant cells (TGC) (Fig. 3A, left panel). Notably, the composition of these phenotypes remained relatively stable within 5 days of RA treatment. However, at 7 days, most of the NSCs became undefined TGC (Fig. 3A, right panel), compatible with previous reports [23]. The precursor cells expressed neurofilament protein, nestin, and astrocyte-specific glial fibrillary acidic protein (GFAP) measured at day-3 and day-5 after treatment (Fig. 3C). Immunocytochemically, we found that they expressed NSC-specific markers, for example: GFAP and fibroblast growth factor receptor-1 (FGFR1) for GRP; βIII-tubulin and microtubule-associated protein 2 (MAP2) for NRP; and GFAP and vimentin for MNS (Fig. 3C). We found consistency in cellular characteristics of the RA-induced NSCs, hereby defined as trophoblast neural stem cells (tNSCs) in the following studies.

In tNSCs, RA induction promoted expressions of NSC-related markers (e.g., nestin, neurofilament, Nestin, MAP-2, NeuroD, CD133, and Oct4), of RA receptors (e.g., RARα, RARβ, RARγ, RXRα, and RXRβ), and most importantly, of RA-synthesizing enzymes RALDH-2 and -3 (Fig. 3D). The expression of RALDH-2 and -3 in hTS cells and NSCs was unique because hES cells or even the retinol-treated ES cells do not express RALDH-2 and -3 [24]. By flow cytometry and immunocytochemistry, results showed that RA induced significant overexpression of Nanog and Oct4 but less so Cdx2 in hTS cells (Fig. 3E and Fig. 3F). To this end, we showed that RA efficiently induced hTS cells into tNSCs, maintaining a steady state within 5 days.

Withdrawal of LIF Promotes Nanog Expression for Pluripotency of tNSCs

Given that LIF can interplay with RA on neural differentiation of ES cells [25], we examined the effect of LIF on the RA-induced Nanog expression in tNSCs. To mimic the microenvironment of the fallopian tube, we first incubated hTS cells with LIF in variable concentrations (i.e., 500, 250, 125 IU/ml). On the 3rd day, we added RA (10 μM) for 1-day before analysis. Flow cytometry showed that a higher level of LIF significantly repressed the RA-induced Nanog (Fig. 3E and Fig. 3F). These results suggested that as hTS cells move towards the isthmus, the better the RA’s ability to maintain cellular pluripotency by Nanog expression.

RA Induces Nanog through Non-genomic Signaling Pathway

How does RA induce Nanog expression? We explored the molecular mechanisms of RA-induced Nanog in hTS cells. Previous studies report that eukaryotic Initiation factor 4B (eIF4B) is involved in the initiation phase of eukaryotic translation [26] through binding to internal ribosome entry site (IRES) [27]. c-Src mRNA has also been reported to contain an IRES element [28]. Activation of eIF4B might also be associated with c-Src mRNA activity for translation initiation [26], [29]. In the developing striatum and hippocampus, an increased Src kinase activity coincides not only with the peak period of neuronal differentiation and growth [30], but also the characteristics of self-renewal [31].

We found that RA promoted production of eIF4B in between 1–4 hr of incubation but faded away at 24 hr (Fig. 4A). This action was inhibited with eIF4B siRNA (Fig. 4B). We found that RA induced a rapid and transient expression of c-Src mRNA, peaking at 15 min (Fig. 4C), followed by production of c-Src protein at 1 hr (Fig. 4D). Notably, RA failed to induce c-Src mRNA elevation by qPCR at 1-day treatment (Fig. 4E).

Subsequently, we found that active c-Src bound directly to signal transducer and activator of transcription 3 (Stat3) (Fig. 4F) by phosphorylation at site Tyr705 to produce protein, which was inhibited by c-Src siRNA (Fig. 4G). This action was also inhibited by a selective c-Src inhibitor PP-1 analog (Fig. 4H). We identified a direct action of Stat3 on the Nanog gene promoter by chromatin immunoprecipitation (ChIP) assay (Fig. 4I). Nanog was produced in 4 hr, which was inhibited by PP1 analog (Fig. 4I) and by Stat3 siRNA (Fig. 4J).

For hTS cells, we propose the possibility of an RA-activated non-genomic eIF4B/c-Src/Stat3/Nanog signaling pathway through subcellular c-Src mRNA localization (Fig. 4K). The mechanism of RA-induced activation of eIF4B and the direct relationship between eIF4B and c-Src will require further study. How the RA-activated Nanog maintains hTS cell pluripotency will also require further study.

Cell Therapy Regenerates Nigrostriatal Pathway and Improves Behavioral Deficits in Acute and Chronic PD Rats

To determine the efficacy of cell therapy and the cell fate potential of tNSCs in animal studies, we grafted the cells into the brain of PD rats. We produced 6-hydroxydopamine (6-OHDA)-caused PD rats (Text S1). In acute PD rats, we performed the apomorphine-induced rotation test every 3-weeks up to 12-weeks post-cell therapy. Then we examined GFP-tagged hTS cells for cell fate at 18-weeks post-cell therapy. In chronic PD rats, we bred PD rats for over one year (average 12.3 months) in order to mimic the pathologically progressive nature of PD. After cell therapy, behavioral tests and validation of regeneration of dopaminergic nigrostriatal pathway were performed.

In Acute PD Rats

We transplanted hTS cells with F1B(-540)-GFP plasmid construct (kindly provided by Dr. I. M. Chiu) to yield a success rate of over 95%. For cell therapy, acute PD rats were divided into three groups: group (a) received the GFP-tagged 1-day RA-induced tNSCs (n = 4); group (b) received GFP-tagged 5-day RA-induced tNSCs (n = 4); and group (c) received PBS solution as control.
We transplanted the tNSCs into the lesioned striatum (STR) under anesthesia. We performed the apomorphine-induced rotation test every 3 weeks post-cell therapy (Fig. 5A). The results of group (a) showed a significant improvement in rotational behavior from 3-weeks to 12-weeks post-cell therapy. The results of group (b) showed significant improvement during the initial 6-weeks, but the improvement was gradually lost after the 6th week. No improvement was observed in control group (c).

Next we verified the recovery of the nigrostriatal pathway by immunocytochemical studies. In group (a), abundant newly generated TH-positive neurons appeared in the lesioned substantia nigra pars compacta (SNC) with multiple outgrowths.
to form neural circuitries with the surrounding host tissues (Fig. 5B and Fig. 5C). We did not observe such phenomena in group (b) (Fig. 5D) and in control group (c) (Fig. 5E). No immuno-suppressive agent was used and no teratoma formation was found.

To investigate the viability of those implanted GFP-tagged tNSCs in the brain, PD rats were sacrificed at 18-weeks post-implantation and their brain sections were examined by immuno-fluorescent analysis. The results revealed that the GFP-tagged tNSCs remained sporadically in clusters in the lesioned STR and SNC (Fig. 5F).

In Chronic PD Rats

During the breeding period, we performed the apomorphine-induced rotation test monthly to ascertain the rats’ PD state until cell therapy. Behavioral assessments were performed every 3 weeks post-cell therapy, including the apomorphine-induced rotation test, the bar test for akinesia, the stepping test for rigidity, and the
footprint analyses for postural imbalance and gait disorder as described previously [19]. Group I (n = 6) was the control, while Group II (n = 6) received 1-day RA-induced tNSCs. In group II, we observed a significant improvement of the apomorphine-induced rotations from 3 weeks to 12 weeks post-cell therapy (Fig. 6A), similar to the previous acute PD rats study. The bar test showed that the grasping time of the affected forelimb was significantly shortened at 3-weeks and continued to improve at 12-weeks (Fig. 6B). Assessments by step length (Fig. 6C), stride length (Fig. 6D), walking speed (Fig. 6E), and base of support (Fig. 6F) revealed significant improvement from 3-weeks to 12-weeks post-cell therapy. These studies were performed on a transparent walkway recorded by video camera (Fig. 6G). These results indicated that cell therapy with tNSCs was able to regenerate the dopaminergic nigrostriatal pathway and functionally improved the behavioral impairments in both acute and chronic PD rats.

Figure 4. A Non-genomic RA Signaling Pathway. (A) Time course of RA induced production of eIF4B. (B) Activation of c-Src was inhibited by using eIF4B siRNA. (C) RA (10 μM) induced a rapidly transient elevation of c-Src mRNA peaking at 15 min in hTS cells. Data represent mean ± SD (n = 3); *p<0.01 in Student’s t test. (D) RA induced fast production of c-Src and phosphorylation of Stat3 in 1 hr by Western blots. β-actin control. (E) qPCR assay showed that RA did not induce expression of c-Src mRNA at 1 day incubation and expression c-Src mRNA was not affected by using 2 different eIF4B siRNAs. (F) Stat3 directly interacted with c-Src by IP assay. (G) c-Src siRNA inhibited expression of Stat3. (H) c-Src inhibitor PP1 analog (4 μM) inhibited the RA-induced phosphorylation of Stat3 and RA induced overexpression of Nanog in hTS cells by Western blots. (I) RA induced binding interaction of Stat3 and Nanog promoter by ChIP assay. (J) Nanog expression was inhibited by Stat3 siRNA. (K) Schematic of the RA-induced c-Src/Stat3/Nanog pathway via subcellular c-Src mRNA localization in hTS cells. Dotted line indicates undetermined mechanism(s).

doi:10.1371/journal.pone.0052491.g004

Figure 5. Transplantation of tNSCs in Acute PD Rats. (A) Apomorphine-induced rotation tests. Group (a) (blue line, n = 4) received 1-day RA-induced tNSCs. Group (b) (green line, n = 4) received 5-day RA-induced NSCs. Group (c) indicated control (red line, n = 4). Statistic analysis by repeated measure ANOVA: p-value = 0.001. LSD post hoc comparisons after repeated measure ANOVA in between two groups: *p<0.05; **p<0.01. (B) Regeneration of TH-positive cells at the STR (upper) and the SNC (lower) of lesioned side 18-week after cell therapy. Scale bar: 100 μm. (C) Amplified dopaminergic neuronal circuitry in the lesioned SNC (upper). A comparative normal feature shown in the lower panel. (D) No TH-positive immunoreactivity was found in the lesioned STR (upper panel) and subthalamic nucleus (STN, lower panel) of group (b) and (E) group (c). Arrow: needle track. (F) Presence of GFP-tagged tNSCs (arrow) at the STR (upper panel) and the SNC (lower panel) 18-weeks post-cell therapy.

doi:10.1371/journal.pone.0052491.g005
Human Trophoblast Stem Cells Treat Parkinson Rats

A

B

C

D

E

F

G

(a) Normal side

(b) Affected side

(c) Normal side

(p<0.001)

(p<0.001)

(p<0.001)

(p<0.01)

(p<0.001)

(p<0.001)
tNSCs Regenerate the Dopaminergic Nigrostriatal Pathway *in vivo*

Next, we compared the regeneration of the dopaminergic nigrostriatal pathway after cell therapy with tNSCs by immunofluorescence tissue analysis between acute and chronic PD rats. We investigated brain sections of post-cell therapy acute PD rats (*n* = 2 at 1-week post-injury, *n* = 2 at 6-weeks post-injury, *n* = 2 as sham control for post-injury, *n* = 6 at 12-weeks post-cell therapy, and *n* = 2 as sham control for cell therapy) and post-cell therapy chronic PD rats (*n* = 2 at 12-weeks post-cell therapy and *n* = 2 as sham control for cell therapy).

In the post-injury PD rats at 6-weeks, the 6-OHDA caused progressive neural degeneration in the SNC, resulting in various cavities immunohistochemically (Fig. 7A). Quantitative analysis indicated that the number of DA neurons in the SNC reduced to 48% at 1-week post-injury and to 13% at 6-weeks post-injury compared to the intact side (Fig. 7B and Fig. S4). In the STR, DA neurons were reduced to 78% at 1-week post-injury and to 4% at 6-weeks post-injury (Fig. 7B). In acute PD rats at 12-weeks post-cell therapy, tNSCs generated numerous DA neurons at the cavity wall with TH-positive nervous terminals projecting into the cavity (Fig. 7A, insert). We found that DA neurons had regenerated to 67% in the SNC and to 73% in the STR.

In chronic PD rats at 12-weeks post-cell therapy, immunohistochemical study indicated that DA neuronal circuities were substantially regenerated in the therapeutic side of the SNC, mirroring the intact side (Fig. 7C), consistent with our previous studies. The recovery of DA neurons reached 78% in the SNC (Fig. 7D).

Glial cells are known to play as mediators in guiding the migration of neurons to their destinations or as sources of neural regeneration [32]. We found that in the STR, 6-OHDA in chronic PD rats caused not only degeneration of both GFAP(+) cells and DA neurons, but also disarrangement of the striatopallidal fibers (pencils of Wilson) and nigral axons. These phenomena were improved after tNSC therapy, showing numerous GFAP(+) cells embedded in the fine myelinated fibers (Fig. 7E). The GFAP(+) cells regenerated from 66% at 6-weeks post-injury to 94% at 12-weeks post-cell therapy in the lesioned STR (Fig. 7F). These results indicated that transplantation of tNSCs regenerated the dopaminergic nigrostriatal pathway in chronic PD rats. No teratoma formation was found in both the acute and the chronic PD rats. Longer term studies beyond 18-weeks post-transplantation may be useful.

tNSCs Exhibit Immune Advantages for Transplantation

Translation of stem cells into cell therapies requires the understanding of their antigenicity and immunogenicity for any clinical application to be useful. We first implanted the hTS cells into male severe combined immunodeficient (SCID) mice intramuscularly for 6–8 weeks. Histologically, no teratoma was found; but we observed myxoid-like bizarre cells between the muscle fibers (Fig. 7G). hTS cells appear to indicate immune advantages compared to hES cells with respect to teratoma formation [33], [34].

We then compared the expressions of immune-related genes among hTS cells, tNSCs, and hES cells. In *vitro*, HLA-ABC (MHC-I) was expressed highly in hTS cells (99.4%) and in tNSCs (99.7%), but lower in hES cells (12.9%); however, no surface HLA-DR (MHC-II) was expressed among them (Fig. 7F). No major difference was found among the three cells for innate immune system marker CD14, for effector-memory T-cells marker CD44, and for human endothelial cell proliferation marker CD105. Surprisingly, hES cells and tNSCs expressed the immature hematopoietic and endothelial cell marker CD34, linked to neurogenesis and angiogenesis [35], while hTS cells expressed significantly less. Both hTS and hES cells expressed a myeloid leukemia-associated marker CD33 and cancer stem cell marker CD133, while tNSCs expressed significantly less.

Discussion

The search for an alternative cell source for treatment of PD has been challenging [1], [2], [3], [4], [5], [6]. Here, we isolated hTS cells from preimplantation embryos in women with ectopic pregnancy. hTS cells are not only distinct from PDMS cells, but also exhibit hES cell-like qualities in pluripotency and viability in proliferation. Given that hTS cells originate from the TE and not from the ICM of the blastocyst, hTS cells circumvent the socio-ethical issues that surround the use of hES cells. Furthermore, ectopic pregnancies account for 1 to 2% of all pregnancies in industrialized countries and even higher in developing countries; thus, providing a locally abundant source of stem cells with relatively closer genetic make-up for patients in need of cell therapy.

It is interesting to note that hTS cells express both the markers of the ICM and TE. In murine embryos, Oct4 protein is detected in the ICM but not the TE. However, in porcine and bovine blastocysts, Oct4 protein is detected in both the ICM and the TE [36]. In human blastocysts, there is 31 times higher concentration of Oct4 mRNA in the ICM than that in the TE [37]. In hTS cells, we show co-expressions of pluripotent markers such as Oct4 and SSEA-4 along with TE-specific marker Cdx2. This may be specific to ectopic pregnancy-derived hTS cells and possibly due to the microenvironment of a tubal ectopic pregnancy. Further study of this microenvironment is required.

At the preimplantation stage, extrinsic factors like LIF [9] may influence the epigenetic gene regulation in embryos. Not surprisingly, LIF affected the fate choice of hTS cells similar to its action on ES cells [9], [25]. Mimicking the microenvironment in the fallopian tube, we showed that withdrawal of LIF in hTS cells downregulated Oct4, but upregulated Nanog and Cdx2. This fact suggested that Oct4 was initially responsible for the pluripotent state. However, hTS cell pluripotency became dependent of Nanog at a later stage, consistent with the notion that Nanog plays a crucial role in cell fate specification following the formation of the blastocyst [38]. The elevation of both Nanog and Nanog/Cdx2 ratio maybe responsible for the maintenance of pluripotency in hTS cells. Further study of this direct relationship is required. The overexpression of Cdx2 indicates hTS cell’s trophoblastic phenotype as it enhances the formation of TS cells in ES cells [14].

Figure 6. Behavioral Assessments in Chronic PD Rats. (A) Apomorphine-induced rotations analysis revealed a significant improvement in chronic PD rats that received tNSCs cell therapy (Group II, *n* = 6, black round line) compared to the control group (Group I, *n* = 6, blank round line). (B) Bar tests (sec) improved at 3-week post-cell therapy. (C) Shortened step length and (D) stride length were significantly improved after 3-week post-cell therapy in PD rats. (E) Significant improvement in walking speed (cm/sec) in PD rats at 3-week post-cell therapy. (F) Significant shortening in base of support (mm) was seen at 3-week post-cell therapy. (G) A well-designed cage with a video camera for footprint analyses. (a): in normal rats, (b): in PD rats pre-cell therapy, and (c): post-cell therapy. Asterisk: compared to the control. Student’s t test: *: *p* < 0.05; **: *p* < 0.01; and ***: *p* < 0.001. doi:10.1371/journal.pone.0052491.g006
Figure 7. \textit{in vivo} Regeneration of TH(+) and GFAP(+) Cells with Less Immuno-responses. (A) Immunohistofluorescence analysis. TH(+) and NeuN(+) motor neurons (arrow) in the SNC of control (left upper). Decreased TH(+) (arrow) at 1-week after 6-OHDA injury (right upper). Apparent reduction in TH(+) neurons with disarrangement of TH-positive neural terminals (green granules), and various degenerative cavity formation (red hollow circle) at 6-week post-injury (left lower). After transplantation at 12-weeks, TH(+) neurons (arrow) at wall of the degenerative cavity (red hollow circle) (right lower).
RA was capable of determining the neuronal fate choice of hTS cells. hTS cells expressed RA-LDH-2 and -3, which enables the metabolism of retinol into RA [15], while ES cells did not [25]. We have found some evidence to suggest that RA-activated hTS cell differentiation into stable tNSCs through a non-genomic eIF4B/c-Src/Stat3/Nanog signaling pathway via subcellular c-Src mRna localization. The fast transient production of c-Src was possibly related to the RA-triggered machinery in local protein synthesis rather than conventional genetic processes. We suggest that the RA-activated eIF4B is possibly and indirectly associated with subcellular c-Src mRNA localization in hTS cells. How RA induced eIF4B activation remains to be further evaluated. Critical details of the regulatory mechanisms between eIF4B and c-Src will require further study. A more comprehensive knowledge of this pathway in tNSC proliferation may provide helpful insight to why Src-kinase activity increases at the peak period of neurogenesis in the developing striatum and hippocampus [30] and why the disruption of Stat3 signaling contributes significantly to neuronal death in PD [39].

A potential therapeutic advantage of tNSCs is its proliferation of a variety of restricted neural precursor subtypes. Of which, GRP and astrocytes may be attributed to the regeneration of both DA neurons and glial cells in the lesioned nigrostriatal pathway, substantially promoting dopaminergic neurogenesis [6]. Another advantage is that tNSCs facilitated more site-specific integration rather than regional incorporation, as we observed neural regeneration only in the lesioned sites. Application of tNSCs in other central nervous system diseases must be researched.

Previous studies report that hES cell-derived DA neurons do not survive in the grafted striatum and fail to improve the behavioral deficits in PD rats [40]. Cell therapy with tNSCs regenerated the dopaminergic nigrostriatal pathway and functionally improved the behavioral impairments in both acute and chronic PD rats. It is interesting to note from our animal studies that 1-day RA-induced tNSCs maintain long term effectiveness while the 5-day RA-induced tNSCs showed behavioral improvement in the beginning, but failed to be effective after 6-weeks. We believe that the transplanted 5-day RA-induced tNSCs were near the end of their effective window; that is, when most of the tNSCs transition into undefined giant cells. Contrastingly, the 1-day RA-induced tNSCs were extremely viable and once transplanted, maintained its regenerative effect. It may be helpful that tNSCs were implanted into the striatum of the brain, where cells would favorably meet an RA-enriched microenvironment [17], facilitating continuous proliferation in vivo. Moreover, the implanted tNSCs increased glial cells in the striatum, which is compatible with previous reports that RA induces the expression of GFAP [41] and that GFAP+ progenitor cells may give rise to neurons and oligodendrocytes throughout the CNS [42]. The use of hTS cells in cell therapy may be optimal within an efficacy window: 1-day after RA-induction to tNSCs.

In chronic PD rats, tNSCs regenerated about two-thirds of the DA neurons in the nigrostriatal pathway at 12-weeks post-cell therapy. This positively suggests that tNSCs may also be effective for treatment of patients that have suffered PD symptoms over a longer period of time. However, the approximate dosage of tNSCs for treatment of PD remains to be evaluated.

Our investigation of hTS cell immune characteristics began with the intramuscular transplantation of hTS cells in SCID mice. Although we observed bizarre cells, we did not observe any teratoma formation. In subsequent animal studies, we neither used immunosuppressed mice nor immunosuppressants and no teratoma formation appeared. It has been reported that neural progenitor stem cells have immune privilege and have survived rejection in allografts [43]. It is interesting to note that by differentiation of hTS cells to tNSCs, RA-induced changes in expression of immune-related markers. For example, while the expression of CD34+ increased, expressions of CD133+ decreased. The biological significance is unclear. Nevertheless, it has been shown that autologous transplantation with CD34+ immune-selected grafts is feasible in children with high-risk neuroblastoma [44], linking positive expression to graft feasibility. Also consistent with a recent report [45], lower CD133 expression in tNSCs may decreased the probability of tumorigenesis, as CD133+ cells possess the capacity for unlimited self-renewal and can trigger brain tumor initiation [34]. Although it is promising that hTS cells were successfully employed for graft acceptance without teratoma formation in SCID mice and tNSCs in PD rats, further studies are warranted to investigate the possible immune responses of hTS cells or their derivatives after transplantation.

In conclusion, hTS cells are a promising cell source for regenerative medicine. The source from tubal ectopic pregnancies is abundant. The culture requires no feeder layer. The induction to tNSCs is not only simple (RA) but also fast (1-day). tNSCs also show early indications of immune-privilege. hTS cells and hTS cell-derived tNSCs may be remarkable candidates for shortening research timeframes, creating new disease models, and also for the treatment of patients with PD and other neurodegenerative diseases.

Supporting Information

Figure S1 (A) Microscopic feature of ectopic pregnancy-derived chorionic villi dissected. (B) At passage 9 and 17, hTS cells co-expressed Oct4 (red) and Nanog (green) in a homogeneous distribution. Scale bar: 20 µm. Nucleus: blue DAPI color. (C) Flow cytometry with Oct4, Sox2, Nanog and Cdx2 at passage 15 demonstrated 97.9%, 95.0%, 96.7%, and 94.0% positive cells,
respectively. (D) Flow cytometric analyses revealed that hTS cells express markers of mesenchymal stem cells but not markers of hematopoietic stem cells. (E) Differentiation of hTS cells into specific phenotypes, including osteoblasts, chondrocytes, myocytes, and adipocytes by appropriate inductions. (F) Chromosome analyses revealed that normal karyotypes (44,XY) did not change at passages 3, 10, and 15 of cultivation in hTS cells.

Figure S2 (A) Withdrawal of LIF suppressed Oct4 and Sox2, but overexpressed Cdx2 by flow cytometry in hTS cells. (B) A reciprocal relationship between Nanog and Cdx2 evidenced by pretreatment with siRNAs (10^{-9}M, Sigma) by flow cytometry. Data represent mean ± SD, n = 3.

Figure S3 Flow cytometry showed that RA (10 μM) enhanced Nanog expression by withdrawal of LIF levels from 500, 250, 125, toward 0 IU/ml after 3-day incubation in hTS cells.

References

1. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 344: 710–719.

2. Olano CW, Goetz CG, Kordower JH, Stoeszl AJ, Sosin V, et al. (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 54: 403–414.

3. Ben-Hur T, Idelevich M, Khanev H, Pera M, Reinhardt E, et al. (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinisonian rats. Stem Cells 22: 1246–1255.

4. Cai J, Donaldson A, Yang M, German MS, Enikolopov G, et al. (2009) The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinsonian model. Stem Cells 27: 220–229.

5. Roy NS, Cleren C, Singh SK, Yang L, Beal SA, et al. (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telencephalon-immortalized midbrain astrocytes. Nat Med 12: 1259–1268.

Table S1 All antibodies, primers, and reagents used in this study.

Table S2 Recipes used for cell differentiations.

Table S3 Significant distinction in biological functions in 4,864 distinguishable genes (p<0.005, fold change >2) between hTS cells and PDMS cells.

Table S4 Comparison of immune-related gene expression in relative intensity value between hTS cells and PDMS cells from Metasearch.

Acknowledgments

We thank Dr. Robert Silman and Mr. Yuta Lee for comments on the preparation of manuscript, Dr. I. M. Chiu for providing F1B-540-GFP plasmid construct, C. P. Chen for PDMS cells, Y. S. Liu for hES cells and Ms. H. T. Lee for technical assistance.

Author Contributions

Conceived and designed the experiments: JNL EMT. Performed the experiments: TTYL THH JJC RMW CFT YCW MCK. Analysed the data: JNL EMT THH SS. Contributed reagents/materials/analysis tools: JNL EMT THH SS. Wrote the paper: JNL EMT TTYL.
28. Allam H, Ali N (2009) Initiation factor eIF2-independent mode of c-Src mRNA translation occurs via an internal ribosome entry site. J Biol Chem 285: 5713–5725.
29. Gilbert WV (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem. 285: 29033–29038.
30. Cartwright CA, Simantov R, Cowan WM, Hunter T, Eckhart W (1988) pp60c-src expression in the developing rat brain. Proc Natl Acad Sci USA 85: 3348–3352.
31. Annere´n C, Cowan CA, Melton DA (2004) The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem 279: 31590–31598.
32. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60: 430–440.
33. Singh SK, Hawkins C, Clarke ID, Spiere JA, Bayani J, et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401.
34. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, et al. (2009) Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res 2: 198–210.
35. Taguchi A, Soma T (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114: 330–338.
36. Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Scholer H, et al. (2000) Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63, 1698–1705.
37. Hansis C, Grifo JA, Krey LC (2000) Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod 6: 999–1004.
38. Cavaleri F, Scholer HR (2003) Nanog: a new recruit to the embryonic stem cell orchestra. Cell 113: 531–532.
39. Wang L, Xu S, Xu X, Chan P (2009) (-)-Epigallocatechin-3-Gallate protects SH-SY5Y cells against 6-OHDA-induced cell death through STAT3 activation. J Alzheimers Dis 17: 295–304.
40. Park CH, Minn YK, Lee JY, Choi DH, Chang MY, et al. (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92: 1265–1276.
41. Ying M, Wang S, Sang Y, Nun P, Lal B, et al. (2011) Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30: 3454–3467.
42. Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31: 676–684.
43. Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, et al. (2007) Neural progenitor cells lack immunogenicity and resist destruction as allografts. Ocul Immunol Inflamm 15: 261–273.
44. Mariebelle A, Merlin E, Halle P, Paillard C, Berger M, et al. (2011) CD34+-immunosel stem cells possess immune-privileged properties. Stem Cells 22: 448–456.