Code as Policies: Language Model Programs for Embodied Control

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, Andy Zeng

*Robotics at Google

Abstract—Large language models (LLMs) trained on code-completion have been shown to be capable of synthesizing simple Python programs from docstrings [1]. We find that these code-writing LLMs can be re-purposed to write robot policy code, given natural language commands. Specifically, policy code can express functions or feedback loops that process perception outputs (e.g., from object detectors [2], [3]) and parameterize control primitive APIs. When provided as input several example language commands (formatted as comments) followed by corresponding policy code (via few-shot prompting), LLMs can take in new commands and autonomously re-compose API calls to generate new policy code respectively. By chaining classic logic structures and referencing third-party libraries (e.g., NumPy, Shapely) to perform arithmetic, LLMs used in this way can write robot policies that (i) exhibit spatial-geometric reasoning, (ii) generalize to new instructions, and (iii) prescribe precise values (e.g., velocities) to ambiguous descriptions (“faster”) depending on context (i.e., behavioral commonsense). This paper presents Code as Policies: a robot-centric formulation of language model generated programs (LMPs) that can represent reactive policies (e.g., impedance controllers), as well as waypoint-based pick and place, trajectory-based control, demonstrated across multiple real robot platforms. Central to our approach is prompting hierarchical code-gen (recursively defining undefined functions), which can write more complex code and also improves state-of-the-art to solve 39.8% of problems on the HumanEval [1] benchmark. Code and videos are available at https://code-as-policies.github.io

I. INTRODUCTION

Robots that use language need it to be grounded (or situated) to reference the physical world and bridge connections between words, percepts, and actions [4]. Classic methods ground language using lexical analysis to extract semantic representations that inform policies [5]–[7], but they often struggle to handle unseen instructions. More recent methods learn the grounding end-to-end (language to action) [8]–[10], but they require copious amounts of training data, which can be expensive to obtain on real robots.

Meanwhile, recent progress in natural language processing shows that large language models (LLMs) pretrained on Internet-scale data [11]–[13] exhibit out-of-the-box capabilities [14]–[16] that can be applied to language-using robots e.g., planning a sequence of steps from natural language instructions [16]–[18] without additional model finetuning. These steps can be grounded in real robot affordances from value functions among a fixed set of skills i.e., policies pretrained with behavior cloning or reinforcement learning [19]–[21]. While promising, this abstraction prevents the LLMs from directly influencing the perception-action feedback loop, making it difficult to ground language in ways that (i) generalize modes of feedback that share percepts and actions e.g., from "put the apple down on the orange" to "put the apple down when you see the orange", (ii) express commonsense priors in control e.g., "move faster", "push harder", or (iii) comprehend spatial relationships "move the apple a bit to the left". As a result, incorporating each new skill (and mode of grounding) requires additional data and retraining – ergo the data burden persists, albeit passed to skill acquisition. This leads us to ask: how can LLMs be applied beyond just planning a sequence of skills?

Herein, we find that code-writing LLMs [1], [11], [22] are proficient at going further: orchestrating planning, policy logic, and control. LLMs trained on code-completion have shown to be capable of synthesizing Python programs from docstrings. We find that these models can be re-purposed to write robot policy code, given natural language commands (formatted as comments). Policy code can express functions or feedback loops that process perception outputs (e.g., object detectors [2], [3]) and parameterize control primitive APIs (see Fig. 1). When provided with several example language commands followed by corresponding policy code (via few-shot prompting, in gray), LLMs can take in new commands (in green) and autonomously re-compose the API calls to generate new policy code (highlighted) respectively:

Code-writing models can express a variety of arithmetic operations as well as feedback loops grounded in language. They not only generalize to new instructions, but having been trained on billions of lines of code and comments, can also prescribe precise values (e.g., velocities) to ambiguous descriptions (“faster” and “to the left”) depending on context – to elicit behavioral commonsense:

Representing code as policies inherits a number of benefits from LLMs: not only the capacity to interpret natural language, but also the ability to engage in human-robot dialogue and Q&A simply by using "say(text)" as an available action primitive API:
We present **Code as Policies (CaP):** a robot-centric formulation of language model generated programs (LMPs) executed on real systems. Pythonic LMPs can express complex policies using:

- Classic logic structures e.g., sequences, selection (if/else), and loops (for/while) to assemble new behaviors at runtime.
- Third-party libraries to interpolate points (NumPy), analyze and generate shapes (Shapely) for spatial-geometric reasoning, etc.

LMPs can be **hierarchical:** prompted to recursively define new functions, accumulate their own libraries over time, and self-architect a dynamic codebase. We demonstrate across several robot systems that LLMs can autonomously interpret language commands to generate LMPs that represent reactive low-level policies (e.g., PD or impedance controllers), and waypoint-based policies (e.g., for vision-based pick and place, or trajectory-based control).

Our main contributions are: (i) code as policies: a formulation of using LLMs to write robot code, (ii) a method for hierarchical code-gen that improves state-of-the-art on both robotics and standard code-gen problems with 39.8% P@1 on HumanEval [1], (iii) a new benchmark to evaluate future language models on robotics code-gen problems, and (iv) ablations that analyze how CaP improves metrics of generalization [23] and that it abides by scaling laws – larger models perform better. Code as policies presents a new approach to linking words, percepts, and actions; enabling applications in human-robot interaction, but is not without limitations. We discuss these in Sec. V. Full prompts and generated outputs are in the Appendix, which can be found along with additional results, videos, and code at code-as-policies.github.io

II. Related Work

Controlling robots via language has a long history, including early demonstrations of human-robot interaction through lexical parsing of natural language [5]. Language serves not only as an interface for non-experts to interact with robots [24], [25], but also as a means to compositionally scale generalization to new tasks [9], [17]. The literature is vast (we refer to Tellex et al. [4] and Luketina et al. [26] for comprehensive surveys), but recent works fall broadly into the categories of high-level interpretation (e.g., semantic parsing [25], [27]–[32]), planning [14], [17], [18], and low-level policies (e.g., model-based [33]–[35], imitation learning [8], [9], [36], [37], or reinforcement learning [38]–[42]). In contrast, our work focuses on the code generation aspect of LLMs and use the generated procedures as an expressive way to control the robot.

Large language models exhibit impressive zero-shot reasoning capabilities: from planning [14] to writing math programs [43]; from solving science problems [44] to using trained verifiers [45] for math word problems. These can be improved with prompting methods such as Least-to-Most [46], Think-Step-by-Step [15] or Chain-of-Thought [47]. Most closely related to this paper are works that use LLM capabilities for robot agents without additional model training. For example, Huang et al. decompose natural language commands into sequences of executable actions by text completion and semantic translation [14], while SayCan [17] generates feasible plans for robots by jointly decoding an LLM weighted by skill affordances [20] from value functions. Inner Monologue [18] expands LLM planning by incorporating outputs from success detectors or other visual language models and uses their feedback to re-plan. Socratic Models [16] uses visual language models to substitute perceptual information (in teal) into the language prompts that generate plans, and it uses language-conditioned policies e.g., for grasping [36]. The following example illustrates the qualitative differences between our approach versus the aforementioned prior works. When tasked to “move the coke can a bit to the right”:

```
# tell me why you stopped moving.
robot.say("I stopped moving because I saw a banana.")
```

plans generated by prior works assume there exists a skill that allows the robot to move an object a bit right. Our approach differs in that it uses an LLM to directly generate policy code (plans nested within) to run on the robot and avoids the requirement of having predefined policies to map every step in the plan:

```
Code as Policies (ours)
while not obj_in_gripper("coke can"):
  robot.move_gripper_to("coke can")
robot.close_gripper()
pos = robot.gripper.position
robot.move_gripper(pos.x, pos.y*0.1, pos.z)
robot.open_gripper()
```

Our approach (CaP) not only leverages logic structures to specify feedback loops, but it also parameterizes (and write parts of) low-level control primitives. CaP alleviates the need to collect data and train a fixed set of predefined skills or language-conditioned policies – which are expensive and often remain domain-specific.

Code generation has been explored with LLMs [1], [48] and...
III. Method

In this section, we characterize the extent to which pretrained LLMs can be prompted to generate code as policies – represented as a set of language model programs (LMPs). Broadly, we use the term LMP to refer to any program generated by a language model and executed on a system. This work investigates Code as Policies, a class of LMPs that maps from language instructions to code snippets that (i) react to perceptual inputs (i.e., from sensors or modules on top of sensors), (ii) parameterize control primitive APIs, and (iii) are directly compiled and executed on a robot, for example:

without [49]. Program synthesis has been demonstrated to be capable of drawing simple figures [50] and generating policies that solve 2D tasks [51]. We expand on these works, showing that (i) code-writing LLMs enable novel reasoning capabilities (e.g., encoding spatial relationships by leaning on familiarity of third-party libraries) without additional training needed in prior works [35], [36], [52]–[56], and (ii) hierarchical code-writing (inspired by recursive summarization [57]) improves state-of-the-art code generation. We also present a new robotics-themed code-gen benchmark to evaluate future language models in the robotics domain.

A. Prompting Language Model Programs

Prompts to generate LMPs contain two elements:

1. Hints, e.g., import statements that inform the LLM which APIs are available and type hints on how to use those APIs.

2. Examples are instruction-to-code pairs that present few-shot "demonstrations" of how natural language instructions should be converted into code. These may include performing arithmetic, calling other APIs, and other features of the programming language. Instructions are written as comments directly preceding a block of corresponding solution code. We can maintain an LMP "session" by incrementally appending new instructions and responses to the prompt, allowing later instructions to refer back to previous instructions, like "undo the last action".

B. Example Language Model Programs (Low-Level)

LMPs are perhaps best understood through examples, to which the following section builds up from simple pure-Python instructions to more complex ones that can complete robot tasks. All examples and experiments in this paper, unless otherwise stated, use OpenAI Codex code-davinci-002 with temperature 0 (i.e., deterministic greedy token decoding). Here, the prompt (in gray) starts with a Hint to indicate we are writing Python. It then gives one Example to specify the format of the return values, to be assigned to a variable called `ret_val`. Input instructions are green, and generated outputs are highlighted:

```
import numpy as np
from utils import get_obj_names, put_first_on_second
```

Third-party libraries. Python code-writing LLMs store knowledge of many popular libraries. LMPs can be prompted to use these libraries to perform complex instructions without writing all of the code e.g., using NumPy to elicit spatial reasoning with coordinates. Hints here include import statements, and Examples define cardinal directions. Variable names are also important to indicate that `pts_np` and `pt_np` are NumPy arrays. Operations with 2D vectors imply that the points are also 2D Example:

```
import numpy as np
# move all points in pts_np toward the right.
ret_val = pts_np + [0.3, 0]
# move a pt_np toward the top.
ret_val = pt_np + [0, 0.3]
# get the left most point in pts_np.
ret_val = pts_np[np.argmin(pts_np[:, 0]), :]
# get the center of pts_np.
ret_val = np.mean(pts_np, axis=0)
# the closest point in pts_np to pt_np.
ret_val = pts_np[np.argmin(np.sum((pts_np - pt_np)**2, axis=1))]
```

First-party libraries. LMPs can also use first-party libraries (perception or control primitive APIs) not found in the training data if those functions have meaningful names and are provided in Hints/Examples. For example (full prompt in B.2):
The Hints import two functions for a robot domain: one to obtain the 2D position of an object by name (using an open vocabulary object detector [2]) and another to put the first object on the second target, which can be an object name or a 2D position. Note the LMP’s ability to adapt to new instructions — the first modifies the movement magnitude by using “a bit,” while the second associates the object with “the same color.”

Language reasoning can be few-shot prompted using code-writing LLMs (full prompt in B.1) to e.g., associate object names with natural language descriptions (“sea-colored block”), categories (“bowls”), or past context (“other block”):

```python
objs = ['blue bowl', 'red block', 'red bowl', 'blue block']
# the bowls.
ret_val = ['blue bowl', 'red bowl']
# sea-colored block.
ret_val = 'blue block'
# the other block.
ret_val = 'red block'
```

C. Example Language Model Programs (High-Level)

Control flows. Programming languages allow using control structures such as if-else and loop statements. Previously, we showed LMPs can express for-loops in the form of list comprehensions. Here we show how they can write a while-loop can form a simple feedback policy. Note that the prompt (same as the one in B.2) does not contain such Examples:

```python
objs = ['red block', 'blue bowl', 'blue block', 'red bowl']
# while the red block is to the left of the blue bowl, move it to the right 5cm at a time.
while get_pos('red block')[0] < get_pos('blue bowl')[0]:
    target_pos = get_pos('red block') + [0.05, 0]
    put_first_on_second('red block', target_pos)
```

LMPs can be composed via nested function calls. This allows including more few-shot examples into individual prompts to improve functional accuracy and scope, while remaining within the LLM’s maximum input token length. The following (full prompt in B.4) generates a response that uses `parse_obj`, another LMP that associates object names with language descriptions:

```python
objs = ['red block', 'blue bowl', 'blue block', 'red bowl']
# while the left most block is the red block, move it toward the right.
while block_name == 'red block':
    block_name = parse_obj('the left most block')
    target_pos = get_pos(block_name) + [0.3, 0]
    put_first_on_second(block_name, target_pos)
```

The `parse_obj` LMP (full prompt in Appendix B.5):

```python
objs = ['red block', 'blue bowl', 'blue block', 'red bowl']
# the left most block.
block_names = ['red block', 'blue bowl', 'blue block', 'red bowl']
left_block_name = block_names[get_pos('red block')[0] < get_pos('blue bowl')[0]]
ret_val = left_block_name
```

LMPs can hierarchically generate functions for future reuse:

```python
import numpy as np
from utils import get_obj_bbox_xyxy
# define function: total = get_total(xs).
def get_total(xs):
    return np.sum(xs)
def get_objs_bigger_than_area_th(obj_names, bbox_area_th):
    return [name for name in obj_names
            if get_obj_bbox_area(name) > bbox_area_th]
```

Function generation can be implemented by parsing the code generated by an LMP, locating yet-to-be-defined functions, and calling another LMP specialized in function-generation to create those functions. This allows both the prompt and the code generated by LMPs to call yet-to-be-defined functions. The prompt engineer would no longer need to provide all implementation details in Examples — a “rough sketch” of the code logic may suffice. High-level LMPs can also follow good abstraction practices and avoid “flattening” all the code logic onto one level. In addition to making the resultant code easier to read, this improves code generation performance as shown in Section IV-A. Locating yet-to-be-defined functions is also done within the body of generated functions. Note in the example above, `get_obj_bbox_area` is not a provided API call. Instead, it can be generated as needed:

```python
# define function: get_obj_bbox_area(obj_name).
def get_obj_bbox_area(obj_name):
    x1, y1, x2, y2 = get_obj_bbox_xyxy(obj_name)
    return (x2 - x1) * (y2 - y1)
```

Note the prompt did not specify exactly what `get_obj_bbox_xyxy` returns, but the name suggests that it contains the minimum and maximum xy coordinates of an axis-aligned bounding box, and the LLM is able to infer this and generate the correct code.

In Python, we implement hierarchical function generation by parsing a code block’s abstract syntax tree and checking for functions that do not exist in the given scope. We use the function-generating LMP to write these undefined functions and add them to the scope. This procedure is repeated on the generated function body, hierarchically creating new functions in a depth-first manner. **Combining control flows, LMP composition, and hierarchical function generation.** The following example shows how LMPs can combine these capabilities to follow more complex instructions and perform a task in the tabletop manipulation domain. Prompts are omitted for brevity, but they are similar to previous ones. The high-level LMP generates high-level policy behavior and relies on `parse_obj` to get object names by language descriptions:

```python
objs = ['red block', 'blue bowl', 'blue block', 'red bowl']
# while there are blocks with area bigger than 0.2 that are left of the red bowl, move them toward the right.
while len(block_names) > 0:
    block_names = parse_obj('blocks with area bigger than 0.2 that are left of the red bowl')
    for block_name in block_names:
        block_name = parse_obj('blocks with area bigger than 0.2 that are left of the red bowl')
        target_pos = get_pos(block_name) + np.array([0.1, 0])
        put_first_on_second(block_name, target_pos)
```

Then, `parse_obj` uses `get_objs_bigger_than_area_th` (yet-to-be-defined function), to complete the query. This function is given through an import statement in the Hints of the `parse_obj` prompt, but it is not implemented. Hierarchical function generation would subsequently create this function as demonstrated above.
We describe more on prompt engineering in the Appendix A.

D. Language Model Programs as Policies

In the context of robot policies, LMPs can compose perception-to-control feedback logic given natural language instructions, where the high-level outputs of perception model(s) (states) can be programmatically manipulated and used to inform the parameters of low-level control APIs (actions). Prior information about available perception and control APIs can be guided through Examples and Hints. These APIs’ “ground” the LMPs to a real-world robot system, and improvements in perception and control algorithms can directly lead to improved capabilities of LMP-based policies. For example, in real-world experiments below, we use recently developed open-vocabulary object detection models like ViLD [3] and MDETR [2] off-the-shelf to obtain object positions and bounding boxes.

The benefits of LMP-based policies are threefold: they (i) can adapt policy code and parameters to new tasks and behaviors specified by unseen natural language instructions, (ii) can generalize to new objects and environments by bootstrapping off of open-vocabulary perception systems and/or saliency models, and (iii) do not require any additional data collection or model training. The generated plans and policies are also interpretable as they are represented in code, allowing for easy modification and reuse. Using LMPs for high-level user interactions inherits the benefits of LLMs, including parsing expressive natural language with commonsense knowledge, taking prior context into account, multilingual capabilities, and engaging in dialog. In the experiment section that follows, we demonstrate multiple instantiations of LMPs across different robots and different tasks, showcasing the approach’s flexible capabilities and ease of use.

IV. EXPERIMENTS

The goals of our experiments are threefold: (i) evaluate the impact of using hierarchical code generation (across different language models) and analyze modes of generalization, (ii) compare Code as Policies (CaP) against baselines in simulated language-instructed manipulation tasks, and (iii) demonstrate CaP on different robot systems to show its flexibility and ease-of-use. Additional experiments can be found in the Appendix, such as generating reactive controllers to balance a cartpole and perform end-effector impedance control (Appendix F). The Appendix also contains the prompt and responses for all experiments. Videos and Colab Notebooks that reproduce these experiments can be found on the website. Due to the difficulty of evaluating open-ended tasks and a lack of comparable baselines, quantitative evaluations of a robot system using CaP is limited to a constrained set of simulated tasks in IV-D, while in IV-B, IV-C, and IV-E we demonstrate the system’s full range of supported commands without quantitative evaluations.

TABLE I: Hierarchical code-generation solves more problems in RoboCodeGen (in % pass rates) and improves with scaling laws (as # model parameters increases).

Method	GPT-3 [12]	Codex [1]		
	Flat	Hierarchical		
	P@1	P@10	P@100	
	45.7	34.9	75.1	90.9
	53.0	39.8	80.6	95.7

A. Hierarchical LMPs on Code-Generation Benchmarks

We evaluate our code-generation approach on two code-generation benchmarks: (i) a robotics-themed RoboCodeGen and (ii) HumanEval [1], which consists of standard code-gen problems.

RoboCodeGen: we introduce a new benchmark with 37 function generation problems with several key differences from previous code-gen benchmarks: (i) it is robotics-themed with questions on spatial reasoning (e.g., find the closest point to a set of points), geometric reasoning (e.g., check if one bounding box is contained in another), and controls (e.g., PD control), (ii) using third-party libraries (e.g. NumPy) are both allowed and encouraged, (iii) provided function headers have no docstrings nor explicit type hints, so LLMs need to infer and use common conventions, and (iv) using not-yet-defined functions are also allowed, which can be created with hierarchical code-gen. Example benchmark questions can be found in Appendix E. We evaluate on four LLMs accessible from the OpenAI API. As with standard benchmarks [1], our evaluation metric is the percentage of the generated code that passes human-written unit tests. See Table I. Domain-specific language models (Codex model) generally perform better. Within each model family, performance improves with larger models. Hierarchical performs better across the board, showing the benefit of allowing the LLM to break down complex functions into hierarchical parts and generate code for each part separately.

We also analyze how code generation performance varies across the five types of generalization proposed in [23]. Hierarchical helps Productivity the most, which is when the new instruction requires longer code, or code with more logic layers than those in Examples. These improvements however, only occur with the two davinici models, and not cushman, suggesting that a certain level of code-generation capability needs to be reached first before hierarchical code-gen can bring further improvements. More results are in Appendix E.2.

Evaluations in HumanEval [1] demonstrate that hierarchical code-gen improves not only policy code, but also general-purpose code. See Table II. Numbers achieved are higher than in recent works [1], [11], [58]. More details in Appendix D.

B. CaP: Drawing Shapes via Generated Waypoints

In this domain, we task a real UR5e robot arm to draw various shapes by generating and following a series of 2D waypoints. For

TABLE II: Hierarchical code-gen performs better (% pass rate) on generic coding problems from HumanEval [1]. Greedy is decoding LLM with temperature=0. P@N evaluates correctness across N samples with temperature=0.8.

Method	Greedy P@1	P@10	P@100	
	67B	175B	cushman	davinci
	3	68	54	81
	5	84	57	95

2Two text models: the 6.7B GPT-3 model [12] and 175B InstructGPT [22]. Two Codex models [1]: cushman and davinci, trained to generate code. davinci is larger and better. Sizes of Codex models are not public.
perception, the LMPs are given APIs that detect object positions, implemented with off-the-shelf open vocabulary object detector MDETR [2]. For actions, an end-effector trajectory following API is provided. There are four LMPs: (i) parse user commands, maintain a session, and call action APIs, (ii) parse object names from language descriptions, (iii) parse waypoints from language descriptions, and (iv) generate new functions. Examples of successful on-robot executions of unseen language commands are in Fig. 2c. The system can elicit spatial reasoning to draw entirely new shapes from language commands. Additional examples which demonstrate the ability to parse precise dimensions, manipulate previous shapes, and multi-step commands, as well as full prompts, are in Appendix H.

C. CaP: Pick & Place Policies for Table-Top Manipulation

The table-top manipulation domain tasks a UR5e robot arm to pick and place various plastic toy objects on a table. The arm is equipped with a suction gripper and an in-hand Intel Realsense D435 camera. We provide perception APIs that detect the presences of objects, their positions, and bounding boxes, via MDETR [2]. We also provide a scripted primitive that picks an object and places it on a target position. Prompts are similar to those from the last domain, except trajectory parsing is replaced with position parsing. Examples of on-robot executions of unseen language commands are in Fig. 2 panels a and b, showing the capacity to reason about object descriptions and spatial relationships. Other commands that use historical context (e.g., "undo that"), reason about objects via geometric (e.g., "smallest") and spatial (e.g., "right-most") descriptions are in Appendix I.

D. CaP: Table-Top Manipulation Simulation Evaluations

We evaluate CaP on a simulated table-top manipulation environment from [16], [18]. The setup tasks a UR5e arm and Robotiq 2F85 gripper to manipulate 10 colored blocks and 10 colored bowls. We inherit all 8 tasks, referred as "long-horizon" tasks due to their multi-step nature (e.g., "put the blocks in matching bowls"). We define 6 new tasks that require more challenging and precise spatial-geometric reasoning capabilities (e.g., "place the blocks in a diagonal line"). Each task is parameterized by some attributes (e.g., "pick up <obj> and place it in <corner>"), which are sampled during each trial. We split the task instructions (I) and the attributes (A) into "seen" (SI, SA) and "unseen" categories (UI, UA), where "seen" means it’s allowed to appear in the prompts or be trained on (in the case of supervised baseline). More details in Appendix K. We consider two baselines: (i) language-conditioned multi-task CLIPort [36] policies trained via imitation learning on 30k demonstrations, and (ii) few-shot prompted LLM planner using natural language instead of code.

Results are in Table III. CaP compares competitively to the supervised CLIPort baseline on tasks with seen attributes and instructions, despite only few-shot prompted with one example rollout for each task. With unseen task attributes, CLIPort’s performance degrades significantly, while LLM-based methods retain similar performance. On unseen tasks and attributes, end-to-end systems like CLIPort struggle to generalize, and CaP outperforms LLM reasoning directly with language (also observed in [20]). Moreover, the natural-language planners [14], [16]–[18] are not applicable for tasks that require precise numerical spatial-geometric reasoning. We additionally show the benefits reasoning with code over natural language (both direct question and answering and Chain of Thought [47]), specifically the ability of the former to perform precise numerical computations, in Appendix C.

E. CaP: Mobile Robot Navigation and Manipulation

In this domain, a robot with a mobile base and a 7 DoF arm is tasked to perform navigation and manipulation tasks in real-world kitchen. For perception, the LMPs are given object detection APIs implemented via ViLD [3]. For actions, the robot is given APIs to navigate to locations and grasp objects via both names and coordinates. Examples of on-robot executions of unseen language commands are in Fig. 2. This domain shows that CaP can be deployed across realistic tasks on different robot systems with different APIs. It also illustrates the ability to follow long-horizon reactive commands with control structures as well as precise spatial reasoning, which cannot be easily accomplished by prior works [16], [17], [36]. See prompts and additional examples in Appendix J.

V. DISCUSSION AND LIMITATIONS

CaP generalizes at a specific layer in the robot stack: interpreting natural language instructions, processing perception outputs, then parameterizing low-dimensional inputs to control primitives. This fits into systems with factorized perception and control, and it imparts a degree of generalization (acquired from pretrained LLMs) without the magnitude of data collection needed for end-to-end learning. Our method also inherits LLM capabilities unrelated to code writing e.g., supporting instructions with non-English languages or emojis (Appendix N). CaP can also express cross-embodied plans that perform the same task differently depending on the available APIs (Appendix M). However, this ability is brittle with existing LLMs, and it may require larger ones trained on domain-specific code.

CaP today are restricted by the scope of (i) what the perception APIs can describe (e.g., no visual-language models to date can describe whether a trajectory is "bumpy" or "more C-shaped"), and (ii) which control primitives are available. Only a handful of named primitive parameters can be adjusted without over-saturating the prompts. CaP also struggle to interpret commands that are significantly longer or more complex, or operate at a different abstraction level than the given Examples. In the tabletop domain, it would be difficult for LMPs to "build a house with the blocks," since there are no Examples on building complex 3D structures. Our approach also assumes all given instructions are feasible, and we cannot tell if a response will be correct a priori.

ACKNOWLEDGEMENTS

Special thanks to Vikas Sindhwani, Vincent Vanhoucke for helpful feedback on writing, Chad Boodoo for operations and hardware support.
[56] A. Bobu, C. Paxton, W. Yang, B. Sundaralingam, Y.-W. Chao, M. Cakmak, and D. Fox, “Learning perceptual concepts by bootstrapping from human queries,” RA-L, 2022.

[57] J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and P. Christiano, “Recursively summarizing books with human feedback,” arXiv:2109.10862, 2021.

[58] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of large language models of code,” in MAPS, 2022.

[59] K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and D. Dwibedi, “Xirl: Cross-embodyment inverse reinforcement learning,” in CoRL. PMLR, 2022.

[60] A. Ganapathi, P. Florence, J. Varley, K. Burns, K. Goldberg, and A. Zeng, “Implicit kinematic policies: Unifying joint and cartesian action spaces in end-to-end robot learning,” arXiv:2203.01983, 2022.