Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review

Rafaela Guimarães 1,†, Catarina Milho 1,†, Ângela Liberal 2,*, Jani Silva 1, Carmélia Fonseca 3, Ana Barbosa 3, Isabel C. F. R. Ferreira 2*, Maria José Alves 1,2,* and Lillian Barros 2,*

1 AquaValor–Centro de Valorização e Transferência de Tecnologia da Água–Associação, Rua Dr. Júlio Martins nº 1, 5400-342 Chaves, Portugal; rafaela.guimaraes@aquavalor.pt (R.G.); catarina.milho@aquavalor.pt (C.M.); jani.silva@aquavalor.pt (J.S.)
2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apoúlia, 5300-253 Bragança, Portugal; angela.liberal@ipb.pt (Â.L.); iferreira@ipb.pt (I.C.F.R.F.)
3 Instituto Politécnico de Bragança, Escola Superior de Saúde (ESSa), Campus de Santa Apólia, 5300-253 Bragança, Portugal; carmeliaamaralfonseca@hotmail.com (C.F.); pbarbosatb@gmail.com (A.B.)
* Correspondence: maria.alves@ipb.pt (M.J.A.); lillian@ipb.pt (L.B.)
† These authors contributed equally to this work.

Abstract: The use of natural products to promote health is as old as human civilization. In recent years, the perception of natural products derived from plants as abundant sources of biologically active compounds has driven their exploitation towards the search for new chemical products that can lead to further pharmaceutical formulations. Candida fungi, being opportunistic pathogens, increase their virulence by acquiring resistance to conventional antimicrobials, triggering diseases, especially in immunosuppressed hosts. They are also pointed to as the main pathogens responsible for most fungal infections of the oral cavity. This increased resistance to conventional synthetic antimicrobials has driven the search for new molecules present in plant extracts, which have been widely explored as alternative agents in the prevention and treatment of infections. This review aims to provide a critical view and scope of the in vitro antimicrobial and antibiofilm activity of several medicinal plants, revealing species with inhibition/reduction effects on the biofilm formed by Candida spp. in the oral cavity. The most promising plant extracts in fighting oral biofilm, given their high capacity to reduce it to low concentrations were the essential oils extracted from Allium sativum L., Cinnamomum zeylanicum Blume. and Cymbopogon citratus (DC) Stapf.

Keywords: Candida spp.; oral disease; oral biofilm; infections; medicinal plants; plant extracts; natural compounds; antibiofilm strategies

1. Introduction

Medicinal plants have been used for several centuries to treat a wide variety of ailments. In recent years, the investigation into molecules derived from these plants, which play a fundamental role in the resistance of various pathogens, has boosted the study of their antibacterial and/or antibiofilm properties [1–3]. Some plant compounds can interact with bacterial proteins and cell membrane structures, damaging them and reducing their fluidity, while inhibiting their nucleic acid synthesis and interfering with the energy metabolism of the microorganisms themselves [2,4,5]. Additionally, the study of the antibiofilm properties associated with these molecules has revealed that, in addition to their fungicidal/bactericidal effect, other underlying mechanisms can lead to biofilm suppression, namely, disturbances at the level of bacterial regulation mechanisms [6].

The biofilm is a more resistant form of microbial existence on solid surfaces and air–liquid interfaces in which microorganisms multiply in a matrix of self-produced extracellular polymeric substances (EPS) [7]. Its resistance is directly related to the natural survival characteristics of the microbial cells that live in these communities. The slower
growth of cells associated with the biofilm, as opposed to free-living microbial cells, and the tight regulation of the cellular processes, stand out, and are mainly caused by the more restricted contact of the cells inside the biofilm with external nutrients. In addition, the presence of an EPS matrix that hinders the action of antimicrobials contributes even more to the resistance of biofilms, since this matrix acts as a diffusion barrier against small molecules [8,9].

Biofilms can be found in a variety of surfaces, both biotic and abiotic. Particularly in the oral cavity, biofilm can be found in the teeth and mucosal surfaces and are thought to consist of approximately 700 bacterial species, 100 fungal species, and some viruses [10]. Since these microorganisms coexist in the same environment, there is the possibility of interactions between different species, a factor that can make an oral infection more difficult to treat, creating an environment of protection and tolerance for microorganisms against conventional antimicrobial agents [11].

One of the main groups of microorganisms that can be found in the normal oral flora is the genus Candida, which is composed of dimorphic commensal yeast. Although Candida species are mainly nonpathogenic, when an imbalance in the oral microbiome occurs, they are the main pathogens responsible for the occurrence of fungal infections in the oral cavity [12]. One of the key virulence factors associated with these microorganisms is their ability to adhere to oral surfaces and form biofilms, which function as a reservoir for this type of fungi, both in teeth and mucosal surfaces [13,14]. Several factors contribute to the unbalanced colonization and biofilm formation in the oral cavity by Candida spp., namely, low salivary flow, low pH and poor oral hygiene among others [15]. As an opportunistic pathogen, this yeast can also cause disease when the host’s immune system is debilitated by the appearance of pathologies such as diabetes mellitus and Human Immunodeficiency Virus (HIV) infection, and by the use of broad-spectrum antibiotics, among others [16]. Additionally, as they are one of the largest acid producers in the oral cavity, Candida fungi can also be at the origin of oral infections through a localized infectious process [17–19].

Once the establishment of pathogenic oral biofilms occurs, the risk of the occurrence of systemic infections increases, as does the resistance of these infections to conventional antimicrobial therapies [20]. Currently, the treatment of Candida infections in the oral cavity is mostly done using broad-spectrum antimicrobials, however, conventional biocidal agents can cause substantial side effects if administered in high concentrations, including vomiting, diarrhea, mucosal desquamation, tooth discoloration, etc. [11,19]. Given the harmful effects of traditional antimicrobial agents, and the increasing microbial resistance to them, natural plant products have been pointed out as a safe and efficient alternative for the treatment of Candida infections in the oral cavity since, together with their anti-inflammatory, antioxidant, and analgesic properties, they also exert antimicrobial and antifungal effects over Candida spp [21].

2. The Bioactive Compounds of Plants

Folk knowledge about the medicinal use of plants has been transmitted for centuries [22]. In recent years, much of the ethnopharmaceutical research has been focused on more specific approaches in order to evaluate and understand the biological and pharmaceutical effects of medicinal and aromatic plants [22]. Plants are rich in a wide variety of secondary metabolites which play an important role in the defense against numerous pathogens. These molecules are also involved in adaptation to biotic and abiotic stresses, protection against ultraviolet radiation, oxidation of molecules, nutritional and water stresses, while performing functions at the tissue level structure, being able to add flavor and color to plant products [23].

Presently, about 200,000 different plant secondary metabolites have been isolated and identified [24]. They can be classified based on their chemical structures and/or biosynthetic pathways [25]. A simple classification includes three main groups: terpenoids (polymeric isoprene derivatives and biosynthesized from acetate via the mevalonic acid pathway), phenolics (biosynthesized from shikimate pathways, containing one or more
hydroxylated aromatic ring), and alkaloids (nonprotein nitrogen-containing compounds, biosynthesized from amino acids, such as tyrosine) [26]. Terpenoids, the condensation products of C5 isoprene units, are the main components of plant volatiles and essential oils [27]. They present many important properties, including anti-insect, antimicrobial, antiviral, and antiherbivore properties [28]. Phenolic compounds are widely found in fruits, seeds, leaves, roots, and stems, and are known for their strong antioxidant ability and their anticancer, anti-inflammatory, hypolipidemic, and hypoglycemic properties [29,30]. They have at least one aromatic ring with one or more hydroxyl groups attached, ranging from low molecular weight molecules to large and complex ones [31]. Alkaloids are usually cyclic organic compounds that contain at least one nitrogen atom in an amine-type structure [32]. These compounds are known to possess varied biological activities such as antimicrobial and antimalarial properties, among others [33].

Many studies have been published regarding bioactive properties such as antioxidant [34,35], antitumoral [31,36], analgesic/anti-inflammatory [29,37], immunostimulant [38], antiseptic, and antimicrobial [39–41]. The antimicrobial and/or biofilm activity linked with some of these compounds is closely related to their ability to inhibit the synthesis of nucleic acids, disrupt the plasma membrane, inhibit efflux pumps, elicit mitochondrial dysfunction, impair cell division and/or growth, and impair cell-wall formation, as shown in Figure 1 [42,43].

Figure 1. Mechanisms of action of phytocompounds against Candida spp. (Created with BioRender.com).

Given their strong bioactive potential, various types of phytocompounds are currently used in a wide range of fields such as food, pharmaceuticals, biomaterials, and environmental purification [44]. Regarding the ability of these compounds as antimicrobials, multiple studies have been conducted to determine their capability to fight oral infections caused by opportunistic pathogens such as Candida species [45–48]. The increased virulence of some Candida species such as Candida albicans is largely related to their ability to form biofilms which, as mentioned before, makes oral infections caused by these microorganisms very difficult to treat [49]. Taking this information into account, the use of plant-derived products to fight oral pathologies caused by Candida appears as an alternative to conventional antifungal therapy. In oral care, the use of natural products to prevent candidiasis is receiving much attention and many studies have reported the effects of medicinal plant extracts on the inhibition of oral pathogen growth and inhibition of surfaces adhesion to surfaces [50]. Some of the most prescribed antifungal agents that are currently used target
the synthesis of fungal cell membrane components that are not found in human cells, such as ergosterol [51]. However, there are few available antifungal compounds that show low levels of cytotoxicity, given the similarities between human and fungal cells, making it urgent to search for and identify new molecules capable of disrupting biofilms formed by *Candida* spp. and increase the arsenal of antifungal agents [52,53]. Knowing this, screening plants as potential sources of molecules with antifungal and/or antibiofilm properties can be considered an excellent approach to combat the formation of *Candida* spp. oral biofilms and the establishment of infections [54].

3. Opportunistic Fungal Infections Caused by *Candida* spp.

Currently, fungal infections affect millions of people every year, being the fourth leading cause of hematogenous infections worldwide. *Candida* spp., commensal microorganisms present in the normal microbial flora of the skin and mucosal surfaces (oral cavity, gastrointestinal tract, and vagina) of healthy individuals [55], are presented as the main responsible for the development of candidiasis, the most common invasive fungal disease in developed countries [56]. As commensals, *Candida* species are harmless; however, if the balance of normal flora is disrupted or immune defenses are compromised, these fungi can overrun the normal flora and cause disease. When the host’s immune status is impaired, two main types of *Candida* infection can be observed: superficial or invasive candidiasis. Superficial infections of the mucosal epithelial tissues are frequent in immunocompromised patients and include chronic atrophic stomatitis, chronic mucocutaneous candidiasis, and vulvovaginitis. In more severe cases, *Candida* species can enter the bloodstream (candidemia) and penetrate almost every organ in the body [57].

Seven *Candida* species are classified as clinically relevant, namely, *C. albicans*, *C. tropicalis*, *C. glabrata*, *C. parapsilosis*, *C. stellatoidea*, *C. krusea*, and *C. kyfer*, with the species *C. albicans* being the most relevant since it is the most often isolated from deeper tissues, blood, and organs [58,59].

Candida species has been related, majorly, to *C. albicans* species, a dimorphic fungal organism that is normally present in the oral cavity in a nonpathogenic state but which, under propitious conditions, can transmute into pathogenic hyphae form due to changes in the normal conditions of the oral cavity, especially in patients with reduced immune function or in antibiotic treatment [60–62]. A variety of local and systemic predisposing factors can lead to the transition from commensal to pathogenic *Candida*, namely the use of dentures, corticosteroid inhalers, and xerostomia, and systemic factors such as immunosuppressive states, HIV infection, malnutrition, diabetes, systemic chemotherapy, and radiotherapy, among others [63]. Therefore, about 65% of oral candidiasis are identified in the elderly, usually due to the use of dentures, and other pathologies associated with this age group, and about 16.7% in patients with hematological disorders [64]. Other factors, such as the diversity of microorganisms, the presence of saliva, vascularization, contamination by food residues, and trauma resulting from lack of hygiene, increase the inflammatory process, healing time, and patient discomfort [65,66].

Candida spp. express a variety of virulence factors so that it can cause disease. Biofilm formation in *Candida* spp. and the transition from planktonic to sessile form are mainly associated with a high resistance to antimicrobials. Other mechanisms include the expression of resistance genes, particularly those encoding efflux pumps, and the presence of persistent cells [67]. The interaction of bacteria and *Candida* within the biofilm is increasingly evident, however, the role of fungi in the progression of inflammation and the prognosis of oral infections remains uncertain [68].

Currently, there are only four main classes of antifungals in clinical use: azoles, polyenes, echinocandins, and pyrimidine analogs. The lack of antifungal diversity dramatically decreases the chances of treatment success and increases the probabilities of a fatal outcome if the pathogen is resistant to one or more drugs [69]. Therefore, the search for alternative products and phytochemicals isolated from plants and used in traditional medicine is considered a good alternative to conventional synthetic drugs, offering
a wide range of molecules with antimicrobial and/or antibiofilm properties to combat oral candidiasis.

4. Plant Extracts against Oral Biofilm Formed by *Candida* spp.

Most of the available antifungals are either ineffective against *Candida* biofilms or exhibit activity at very high concentrations [70]. Concerning microbial resistance, pharmacotherapy has reached its limit, threatening the effective prevention and treatment of an ever-increasing range of infections. These limitations have led to the search for novel molecules with antibiofilm potential. Plants are rich sources of bioactive molecules exhibiting various biological and pharmaceutical properties. Therefore, in recent years, new clinical approaches using natural phytocompounds have been the subject of several types of research, considering the composition of natural plant products in molecules with antimicrobial and/or antibiofilm potential. Table 1 presents some of the plant species whose extracts hold compounds with antifungal/antibiofilm activity against *Candida* spp. Moreover, extracts able to inhibit biofilm formation and/or eradication in more than 99%, at concentrations ≤ 1 mg·mL\(^{-1}\), were chosen for discussion.

Allium sativum L. (Amaryllidaceae) is an aromatic herbaceous annual plant, one of the oldest authenticated and most important herbs that have been used since ancient times in traditional medicine. It is one of the most described plant species with proven antifungal, antimicrobial, anti-aging, as well as anticancer properties, which have been confirmed by epidemiological data from human clinical studies [71]. This specie and its active components have been also reported to reduce the risk of diabetes and cardiovascular diseases [72,73]. *A. sativum* antibiofilm properties against oral cavity yeast were studied by Fahim et al. [74] who demonstrated that, for a concentration of 8.00 µg·mL\(^{-1}\), *A. sativum* L. essential oil presented > 99.9% of growth reduction on biofilm of *C. albicans* ATCC 14053. The ability of this essential oil to inhibit biofilm formation seems to be correlated with its phenolic profile, with allicin, alliin and ajoene being the major compounds found in it [75].

Essential oils from some plants have shown high antifungal and/or antibiofilm activity against *Candida* species. An example of this are the species of *Cinnamomum cassia* (L.) J. Presl, *Cinnamomum zeylanicum* Blume, *Cymbopogon citratus* (DC.) Stapf, *Cymbopogon nardus* L. Rendle, and *Cymbopogon winterianus* Jowitt. *C. cassia* (L.) J.Presl (Lauraceae), also known as “Chinese cinnamon,” is a well-known aromatic plant that has been widely cultivated and utilized to treat diabetes, ovarian cysts, stomach spasms, kidney disorders, high blood pressure, and menstrual disorders [76], and presents antimicrobial, antioxidant and antifungal properties [77]. *C. zeylanicum* Blume (Lauraceae) is an ever-green perennial plant that is used as a culinary herb [78]. This species presents several pharmacological properties such as antimicrobial, antioxidant, antifungal, and anticancer [79]. When it comes to oral health, a study performed by Almeida et al. [80] demonstrated that *C. cassia* essential oil, at a concentration of 1.00 mg·mL\(^{-1}\), exerts more than 99.9% reduction in oral biofilm formation caused by *C. albicans* ATCC 90028, while *C. zeylanicum*, at a concentration of 1.6 µg·mL\(^{-1}\), leads to more than 99.75% reduction in oral biofilm formation caused by *C. albicans* ATCC 10231. The high percentage of biofilm reduction shown by these two plants is attributed to the major phytocompound found in both species, the cinnamaldehyde. Cinnamaldehyde is a phenylpropanoid that may act on the cell membrane, likely binding to enzymes involved in the formation of the cytoplasmic membrane in fungal cells [81].

C. citratus (DC.) Stapf (Poaceae), commonly known as lemongrass, is an aromatic plant widely distributed around the world. It is used as a food flavouring, and is commonly consumed in teas and soups, but it may also be served with poultry, fish, beef, and seafood. Lemongrass essential oil exhibits a number of biological activities, including antioxidant [82], anti-inflammatory [83], antimicrobial [84], antifungal, and antibiofilm properties [85]. Almeida et al. [80] used the essential oil from *C. citratus* as an antifungal agent against *C. albicans* ATCC 10231 biofilms, and reported that, at the concentration of 6.4 µg·mL\(^{-1}\), this essential oil was able to reduce the number of viable cells present in the
biofilm by 99.79%. In this case, citral and neral were two of the main compounds found, which are known to hold antifungal properties [86,87].

C. nardus L. (Poaceae), popularly known as citronella, is a grass cultivated in subtropical and tropical regions of Asia, Africa, and America, including Brazil [88]. The essential oil extracted from its leaves is commonly used in perfumes, the production of cosmetics, and as an insect repellent. Several studies have demonstrated the antiviral [89], antibacterial [90], and antifungal activities [91] of this oil. *C. winterianus* Jowitt (Poaceae) is an important aromatic plant cultivated in India and Brazil. In folk medicine, it is used for the treatment of anxiety, as a sedative, and for pain disorders [92]. Some studies demonstrated that the plant has anticonvulsant effects [93], anti-larvicidal effects against *Aedes aegypti* [94], and antibacterial and antifungal effects, including anti-*Candida* action [95]. The essential oils extracted from *C. nardus* L. and *C. winterianus* Jowitt species showed, in different studies, to be highly effective in combating *C. albicans* oral biofilms. *C. nardus* showed, at a concentration of 32.0 µg·mL⁻¹, an adherence inhibition of *C. albicans* ATCC 76645 higher than 99.0%, [68] and the application of *C. winterianus* essential oil, at a concentration of 1.00 mg·mL⁻¹, led to a reduction of *C. albicans* ATCC 90028 oral biofilm formation by more than 99.0%. In both species, the authors attributed the antibiofilm potential to the main compound identified in these species, namely citronellal. Citronellal is known to affect *C. albicans* cell growth by interfering with cell-cycle progression through the arrest of cells in S phase and affecting membrane integrity [96].

Solidago virgaurea L. (Asteraceae), commonly known as goldenrod, is a medicinal plant that is common throughout the world. In the literature, this plant is described as possessing a variety of medicinal properties such as antioxidant, anti-inflammatory, analgesic, spasmyloytic, antihypertensive, antibacterial, antifungal and antitumor, among others [97]. Chevalier et al. [98] evaluated the effect of the extracts from two *S. virgaurea* subspecies, *S. virgaurea* subsp. *alpestris* and *S. virgaurea* subsp. *virgaurea*, on *C. albicans* oral biofilm growth. The results obtained showed that, at an extract concentration of 250 µg·mL⁻¹, *S. virgaurea* subsp. *alpestris* inhibition of oral biofilms from *C. albicans* IM003 was higher than 99.5%, and that *S. virgaurea* subsp. *virgaurea* inhibited the oral biofilm formation by *C. albicans* IM001 by more than 99.2%. Regarding the chemical composition of this plant, the compounds usually found in *S. virgaurea* are saponins, which have been attributed to the ability to inhibit the transition from yeast to hyphal growth [98]. This attribution seems reasonable considering the inherent surfactant properties of saponins, as well as their iron chelator qualities, iron being necessary for the growth and development of *Candida* spp. [99].
Table 1. Medicinal plants with antimicrobial/antibiofilm activity against oral *Candida* spp. and the respective bioactive compounds present in their extracts.

Plant Name	Plant Extract	Compound	Microorganism	Results	References	
Allium sativum L.	Essential oil (bulbs)	Allicin, alliiin, ajoene [75]	*C. albicans* ATCC 14053	MIC 8.0 µg·mL⁻¹, IZD 19.0 mm (50.0 µg·mL⁻¹), >99.9% reduction 8.00 µg·mL⁻¹	[74]	
Aloysia gratissima (Aff & Hook) Tronc.	Essential oil (leaves)	(E)-pinocamphone, β-pinene, guaiol Piperitone, camphor, ethyl cinnamate, chrysanthenone	*C. albicans* CBS 562	MIC 0.015 mg·mL⁻¹, MFC 0.062 mg·mL⁻¹, 12.3% inhibition 1.00 mg·mL⁻¹	[64]	
Artemisia judaica L.	Essential oil (aerial plant parts)	Piperitone, camphor, ethyl cinnamate, chrysanthenone	*C. albicans* ATCC 10231	MIC 1.25 µg·mL⁻¹, 50.0% reduction 2.5 µg·mL⁻¹	[100]	
Bracea javanica (L.) Merr.	Aqueous extract (seeds)	Quassinoids, alkaloids,	*C. albicans* ATCC 14053	-		
			C. dubliniensis ATCC MYA-2975	94.5% CSH reduction 79.7% adherence reduction 90.4% CSH reduction	[101]	
			C. glabrata ATCC 90030	27.9% adherence reduction 84.8% CSH reduction 76.8% adherence reduction 97.0% CSH reduction		
			C. krusei ATCC 14243	67.6% adherence reduction 91.1% CSH reduction 89.0% adherence reduction 98.8% CSH reduction		
			C. lusitaniae ATCC 64125	49.0% adherence reduction 88.4% CSH reduction 89.9% adherence reduction		
			C. parapsilosis ATCC 22019	50.0% reduction 2.5 µg·mL⁻¹		
			C. tropicalis ATCC 13803	99% inhibition 6.25 mg·mL⁻¹		
Cassia spectabilis DC.	Methanol extract (leaves)	(+)-spectaline; (−)-iso-6-cassine [102]	*C. albicans* 1 (CI)	MIC 6.25 mg·mL⁻¹, IZD 20 mm (100 mg·mL⁻¹), 97% inhibition 6.25 mg·mL⁻¹	[103]	
			C. albicans 2 (CI)	IZD 6.25 mg·mL⁻¹		
			C. albicans 3 (CI)	IZD 6.25 mg·mL⁻¹		
Chenopodium ambrosioides L.	Aqueous extract (leaves)	Kaempferol, quercetin Cinnamaldehyde, benzyl benzoate, α-pinene	*C. albicans* ATCC 90028	MIC 0.250 mg·mL⁻¹, MFC 0.250 mg·mL⁻¹, >99.0% reduction 1.25 mg·mL⁻¹	[104]	
Cinnamomum cassia L. J.Presl	Essential oil (leaves, bark, stalk)	Cinnamaldehyde, benzyl benzoate, α-pinene	*C. albicans* ATCC 90028	MFC 65.5 µg·mL⁻¹		
			C. albicans ATCC MYA-2876	>99.9% reduction 1.00 mg·mL⁻¹		
Cinnamomum verum J.Presl	Essential oil (leaves)	Eugenol, benzyl benzoate, trans-caryophyllene, acetyl eugenol, linalool	*C. tropicalis* ATCC 750	MIC 1.0 mg·mL⁻¹		
			C. dubliniensis ATCC MYA-646	50% reduction 0.15 mg·mL⁻¹, 50% inhibition 1.0 mg·mL⁻¹, 50% reduction 0.35 mg·mL⁻¹	[105]	
Plant Name	Plant Extract	Compound	Microorganism	Results	References	
------------------------------------	------------------------	---	---------------------	------------------------	------------	
Cinnamomum zeylanicum Blume	Essential oil (leaves)	Cinnamaldehyde, cinnamyl acetate, cinnamyl benzoate [79]	*C. albicans* ATCC 10231	MIC 0.1 μg·mL⁻¹	[106]	
				MFC 0.4 μg·mL⁻¹		
				IZD 42.5 mm (50 μg·mL⁻¹)		
		Decanal, trans-2-decenal, 2-decen-1-ol, cyclodecane, cis-2-dodecenal	*C. albicans* CBS 562	MIC 15.6 μg·mL⁻¹	[107]	
				MFC 31.2 μg·mL⁻¹		
				IZD 15.0 mm (50 μg·mL⁻¹)		
			C. tropicalis CBS 94	MIC 15.6 μg·mL⁻¹	[107]	
				MFC 31.2 μg·mL⁻¹		
				IZD 15.0 mm (50 μg·mL⁻¹)		
			C. krusei CBS 573	MIC 31.2 μg·mL⁻¹	[107]	
				MFC 62.5 μg·mL⁻¹		
			C. dubliniensis CBS 7987	MIC 31.2 μg·mL⁻¹		
				MFC 62.5 μg·mL⁻¹		
			C. rugosa CBS 12	MIC 15.6 μg·mL⁻¹	[107]	
				MFC 31.2 μg·mL⁻¹		
			C. albicans ATCC 10231	MIC >99.9% inhibition		
				IZD 9.6 mm (50 μg·mL⁻¹)		
			C. albicans CBS 18804	MIC >99.9% inhibition	[112]	
				IZD 9.6 mm (50 μg·mL⁻¹)		
			C. albicans CBS 76645	MIC >99.0% inhibition	[113]	
				IZD 9.6 mm (50 μg·mL⁻¹)		
			C. albicans ATCC 90028	MIC >99.0% inhibition	[80]	
				IZD 9.6 mm (50 μg·mL⁻¹)		
			C. albicans CBS 562	MIC 0.125 mg·mL⁻¹	[112]	
				IZD 0.125 mg·mL⁻¹		
			C. albicans ATCC 14053	MIC 0.219 mg·mL⁻¹	[115]	
				IZD 0.219 mg·mL⁻¹		
			C. tropicalis ATCC 66029	MIC 0.219 mg·mL⁻¹		
				IZD 0.219 mg·mL⁻¹		
			C. glabrata ATCC 66032	MIC 0.219 mg·mL⁻¹	[115]	
				IZD 0.219 mg·mL⁻¹		
			C. albicans CAD1	MIC >2.17 mg·mL⁻¹	[116]	
				IZD >96 mg·mL⁻¹		
			Lippia sidoides Cham.	MIC 0.250 mg·mL⁻¹	[117]	
				IZD 0.250 mg·mL⁻¹		
			C. albicans CBS 562	MIC 0.500 mg·mL⁻¹		
				IZD 0.500 mg·mL⁻¹		
			Melaleuca alternifolia (Maiden & Bettle) Cheel	MIC 1.95 mg·mL⁻¹	[118]	
				IZD 1.95 mg·mL⁻¹		
Plant Name	Plant Extract	Compound	Microorganism	Antimicrobial Activity	Antibiofilm Activity	References
-----------------------	--------------------------------	---	---------------------	------------------------	----------------------	------------
Antimicrobial Activity						
		C. albicans ATCC 10231	MIC 3.40 mg·mL⁻¹	131% adherence reduction	76.0% adherence reduction	[119]
		C. albicans SC5314	MIC 0.84 mg·mL⁻¹			
Mikania glomerata Spreng	Essential oil (leaves)	Germacrene D, α-caryophyllene, bicyclogermacrene	C. albicans CBS 562	MIC 0.250 mg·mL⁻¹	22.7% inhibition	[117]
			C. albicans ATCC 14053	MFC 0.250 mg·mL⁻¹		
			C. dublinensis ATCC MYA-2975	-		
			C. glabrata ATCC 90030	-		
			C. krusei ATCC 14243	-		
			C. lusitaniae ATCC 64125	-		
			C. parapsilosis ATCC 22019	-		
			C. tropicalis ATCC 13803	-		
Piper betle L.	Aqueous extract (leaves)	Hydroxycavicol, cinnamoyl derivatives, luteolin, apigenin [120]	C. albicans F81 (CI)	MIC 0.78 mg·mL⁻¹	99.9% reduction	[101]
			C. albicans F81 (CI)	MMC 3.13 mg·mL⁻¹		
			C. albicans F94 (CI)	300 μg·mL⁻¹	91.0% reduction	
			C. albicans F94 (CI)	400 μg·mL⁻¹	91.0% reduction	
			C. albicans F87 (CI)	200 μg·mL⁻¹	90.0% reduction	
			C. albicans F87 (CI)	300 μg·mL⁻¹	80.0% reduction	
			C. albicans F87 (CI)	400 μg·mL⁻¹	86.0% reduction	
			C. albicans F49 (CI)	300 μg·mL⁻¹	76.0% reduction	
			C. albicans F49 (CI)	400 μg·mL⁻¹	92.0% reduction	
			C. albicans F82 (CI)	400 μg·mL⁻¹	92.0% reduction	
			C. albicans F82 (CI)	600 μg·mL⁻¹	89.0% reduction	
			C. albicans F82 (CI)	600 μg·mL⁻¹	89.0% reduction	
			C. albicans F95 (CI)	400 μg·mL⁻¹	81.0% reduction	
			C. albicans F95 (CI)	600 μg·mL⁻¹	81.0% reduction	
			C. albicans F92 (CI)	300 μg·mL⁻¹	90.0% reduction	
			C. albicans F92 (CI)	400 μg·mL⁻¹	90.0% reduction	
			C. albicans F60 (CI)	400 μg·mL⁻¹	80.0% reduction	
			C. albicans F60 (CI)	600 μg·mL⁻¹	80.0% reduction	
			C. albicans F86 (CI)	200 μg·mL⁻¹	87.0% reduction	
			C. albicans F86 (CI)	300 μg·mL⁻¹	87.0% reduction	

References

[119] [117] [101] [122] [123]
Table 1. Cont.

Plant Name	Plant Extract	Compound	Microorganism	Results	References	
Schinus terebinthifolia Raddi.	Methanol extract (leaves)	Phenolic compounds, anthraquinones, terpenoids, alkaloids	C. albicans ATCC 10231	47.0% inhibition	0.007 mg·mL⁻¹	[109]
Solidago virgaurea subsp. alpestris Waldst. & Kit. ex Willd.	Aqueous extract (aerial plant parts)	Saponins	C. albicans ATCC 10231	47.0% inhibition	0.250 mg·mL⁻¹	
			C. albicans IM001 (CI)	95.9% inhibition	0.750 mg·mL⁻¹	[98]
			C. albicans IM003 (CI)	96.0% inhibition	0.750 mg·mL⁻¹	
			C. albicans IM007 (CI)	99.5% inhibition	0.250 mg·mL⁻¹	
			C. albicans ATCC 10231	92.4% reduction	0.250 mg·mL⁻¹	
			C. albicans IM001 (CI)	96.0% reduction	0.750 mg·mL⁻¹	
			C. albicans IM003 (CI)	76.3% reduction	0.250 mg·mL⁻¹	
			C. albicans IM007 (CI)	75.1% reduction	0.750 mg·mL⁻¹	
			C. albicans ATCC 10231	98.4% reduction	0.250 mg·mL⁻¹	
			C. albicans IM001 (CI)	77.9% reduction	0.750 mg·mL⁻¹	
			C. albicans IM003 (CI)	92.9% reduction	0.750 mg·mL⁻¹	
			C. albicans IM007 (CI)	91.9% reduction	0.750 mg·mL⁻¹	
			C. albicans ATCC 10231	99.2% reduction	0.750 mg·mL⁻¹	
			C. albicans IM001 (CI)	99.3% reduction	0.250 mg·mL⁻¹	
			C. albicans IM003 (CI)	91.9% reduction	0.750 mg·mL⁻¹	
			C. albicans IM007 (CI)	97.3% reduction	0.250 mg·mL⁻¹	
			C. albicans ATCC 10231	96.5% reduction	0.250 mg·mL⁻¹	
			C. albicans IM001 (CI)	96.5% reduction	0.750 mg·mL⁻¹	
			C. albicans IM003 (CI)	90.9% reduction	0.750 mg·mL⁻¹	
			C. albicans IM007 (CI)	90.9% reduction	0.750 mg·mL⁻¹	
Terminalia catappa L.	Ethanol extract (leaves)	Caffeic acid, quercitrin, kaempferol, gallic acid, chlorogenic acid, isoquercitrin [124]	C. albicans ATCC 90028	MIC 6.25 mg·mL⁻¹	>98.0% reduction	
	n-butanol fraction from ethanol extract (leaves)		C. albicans ATCC 90028	MFC 12.5 mg·mL⁻¹	62.5 mg·mL⁻¹	[125]
			C. albicans ATCC 90028	>99.5% reduction	2.50 mg·mL⁻¹	[126]
			C. glabrata ATCC 2001	>99.0% reduction	2.50 mg·mL⁻¹	
Table 1. Cont.

Plant Name	Plant Extract	Compound	Microorganism	Results	References
Trachyspermum ammi	Aromatic water (aerial plant parts)	Thymol, carvacrol, carvotanacetone	C. albicans CBS1905	95.2% inhibition 0.5% (v/v)	[127]
(L.) Sprague	Aqueous extract (whole plant)				
Zataria multiflora	Ethanolic extract (whole plant)	Thymol, hydroxyl benzoic acid, and cymene	C. albicans PTCC-5027	87% reduction 25 mg·mL⁻¹	[129]
Boiss.					

1 IZD: Inhibition zone diameter; MIC: Minimum inhibitory concentration; MFC: minimum fungicidal concentration; MMC: minimum microbiocidal concentration; MBIC: Minimum biofilm inhibitory concentration; MBEC: Minimum biofilm eradication concentration; NA: No activity; -: Not tested; CI: clinical isolate; CSH: Cell surface hydrophobicity.
5. Conclusions

Medicinal plants are still an untapped source of powerful natural products with great antimicrobial and/or antibiofilm potential, especially in a backdrop of increasing antibiotic resistance. This review aimed to identify medicinal plant products, such as essential oils and plant extracts for the treatment of common oral Candida infections, mainly caused by the formation of fungal biofilms. Although extracts from many medicinal plants have shown exciting results in controlling these biofilms, the most promising plant extracts were from A. sativum L., which reduced C. albicans ATCC 14053 oral biofilm formation by more than 99.9% at a concentration of 8.0 µg mL⁻¹; the essential oil extracted from C. zeylanicum Blume, which showed, at a concentration of 1.6 µg mL⁻¹, a reduction in oral biofilm formation by C. albicans ATCC 10231 higher than 99.75%; and the essential oil obtained from C. citratus (DC) Stapf, which exhibited a reduction in the oral biofilm formation by C. albicans ATCC 10231 greater than 99.79% at 6.4 µg mL⁻¹. Interestingly, in all of these medicinal plant species, organic compounds with proven bioactive properties such as antimicrobial and antibiofilm effects were identified.

The use of essential oils and plant extracts from medicinal plants can be a great alternative to conventional antimicrobials in the treatment of fungal infections in the oral cavity since they have low levels of cytotoxicity and, to date and to our knowledge, do not induce resistance in microorganisms. However, research on the use of medicinal plants in the treatment of oral ailments remains an extremely interesting and unexplored topic, mainly due to the wide variety of plants whose phytochemical profiles are still unknown, and which will likely show good antimicrobial and antibiofilm properties.

Author Contributions: Conceptualization R.G., C.M.; Å.L.; methodology R.G., C.M., Å.L., J.S.; data collection R.G., C.M., Å.L., J.S., C.F., A.B.; writing—original draft preparations R.G., C.M., J.S.; writing—review and editing I.C.F.R.F., L.B.; supervision M.J.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors wish to acknowledge financial support from the project “AquaValor—Centro de Valorização e Transferência de Tecnologia da Água” (NORTE-01-0246-FEDER-000053), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors are also grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020); and L. Barros is grateful for her contract through the institutional scientific employment program-contract.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységou, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [CrossRef]
2. Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [CrossRef]
3. Slobodniková, L.; Fialová, S.; Rendeková, K.; Kovác, J.; Mučají, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [CrossRef] [PubMed]
4. Gyawali, R.; Salam, A.I. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [CrossRef]
5. Cushman, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [CrossRef]
6. Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [CrossRef]
7. Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [CrossRef]
8. Hall-Stoodley, L.; Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 2009, 11, 1034–1043. [CrossRef] [PubMed]
9. Anderson, G.G.; O’Toole, G.A. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. In Bacterial Biofilms; Romeo, T., Ed.: Springer: Berlin/Heidelberg, Germany, 2008; Volume 322, pp. 85–105.
10. Brown, J.; Johnston, W.; Delaney, C.; Short, B.; Butcher, M.; Young, T.; Butcher, J.; Riggio, M.; Culshaw, S.; Ramage, G. Polymicrobial oral biofilm models: Simplifying the complex. J. Med. Microbiol. 2019, 68, 1573–1584. [CrossRef] [PubMed]
11. Abusrewil, S.; Alshanta, O.A.; Albashaireh, K.; Alqahtani, S.; Nile, C.J.; Scott, J.A.; McLean, W. Detection, treatment and prevention of endodontic biofilm infections: What’s new in 2020? Crit. Rev. Microbiol. 2020, 46, 194–212. [CrossRef] [PubMed]
Antibiotics 2021, 10, 1142

38. Bachiega, T.F.; de Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. Clove and eugenol in nontoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. J. Pharm. Pharmacol. 2012, 64, 610–616. [CrossRef] [PubMed]

39. Sher, A. Antimicrobial Activity of Natural Products from Medicinal Plants. Gomal J. Med. Sci. 2004, 7, 72–78.

40. Mulaudzi, R.B.; Ndhlala, A.R.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J. Ethnopharmacol. 2011, 135, 330–337. [CrossRef]

41. Mangunwardoyo, W.; Deasywati; Usia, T. Antimicrobial and identification of active compound Curcuma xanthorrhiza Roxb. Int. J. Basic Appl. Sci. 2012, 12, 69–78.

42. Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [CrossRef]

43. Balange, A.K.; Benjakul, S. Effect of oxidised phenolic compounds on the gel property of mackerel (Rastrelliger kanagurta) surimi. LWT 2009, 42, 1059–1064. [CrossRef]

44. Okumura, H. Application of phenolic compounds in plants for green chemical materials. Curr. Opin. Green Sustain. Chem. 2021, 27, 100418. [CrossRef]

45. Alves, C.T.; Ferreira, I.C.F.R.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. [CrossRef] [PubMed]

46. Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. In Vivo Anti-Candida Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BioMed Res Int. 2015, 2015, 247382. [CrossRef] [PubMed]

47. Khan, M.S.A.; Ahmad, I.B. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 2011, 67, 618–621. [CrossRef] [PubMed]

48. Lu, M.; Li, T.; Wan, J.; Li, X.; Yuan, L.; Sun, S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int. J. Antimicrob. Agents 2017, 49, 125–136. [CrossRef]

49. Uppuluri, P.; Pierce, C.G.; Lopez-Ribot, J.L. Candida albicans biofilm formation and its clinical consequences. Future Microbiol. 2009, 4, 1235–1237. [CrossRef]

50. Cavalcanti, Y.W.; de Almeida, L.F.D.; Padilha, W.W.N. Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: An SEM analysis. Rev. Odonto Ciênc. 2011, 26, 139–144. [CrossRef]

51. Ornyevu, C.; Blankenship, J.R.; Del Poeta, M.; Heitman, J. Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 2003, 47, 956–964. [CrossRef]

52. Leroy, O.; Bailly, S.; Gangneux, J.P.; Mira, J.P.; Devos, P.; Dupont, H.; Montravers, P.; Perrigault, P.F.; Constantin, J.M.; Guillelmet, D.; et al. Systemic antifungal therapy for proven or suspected invasive candidiasis: The AmarCAND 2 study. Ann. Intensive Care 2016, 6, 2. [CrossRef]

53. Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [CrossRef]

54. Brighenti, F.L.; Salvador, M.J.; Gontijo, A.V.L.; Delbem, A.C.B.; Soares, C.P.; de Oliveira, M.A.C.; Girondi, C.M.; Yumi, K.-I.C. Plant extracts: Initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol. 2017, 12, 15–27. [CrossRef]

55. Cavalcanti, Y.W.; de Almeida, L.F.D.; Padilha, W.W.N. Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: An SEM analysis. Rev. Odonto Ciênc. 2011, 26, 139–144. [CrossRef]

56. Tsai, P.-W.; Chen, Y.-T.; Hsu, P.-C.; Lan, C.-Y. Study of Candida albicans and its interactions with the host: A mini review. BioMedicine 2013, 3, 51–64. [CrossRef]

57. Osostrozyk-Zeichner, L. Invasive Candidiasis. Semin. Respir. Crit. Care Med. 2020, 41, 3–12. [CrossRef] [PubMed]

58. Sullivan, D.J.; Moran, G.P.; Pinjon, E.; Al-Mosaid, A.; Stokes, C.; Vaughan, C.; Coleman, D.C. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004, 4, 369–376. [CrossRef]

59. Westwater, C.; Schofield, D.A.; Nicholas, P.J.; Pauling, E.E.; Balish, E. Candida glabrata and Candida albicans; dissimilar tissue tropism and infectivity in a gnotobiotic model of mucosal candidiasis. FEMS Immunol. Med. Microbiol. 2007, 51, 134–139. [CrossRef]

60. McCullough, M.J.; Ross, B.C.; Reade, P.C. Candida albicans: A review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg. 1996, 25, 136–144. [CrossRef]

61. Kumar, K.; Askari, F.; Sahu, M.S.; Kaur, R. Candida glabrata: A Lot More Than Meets the Eye. Microorganisms 2019, 7, 39. [CrossRef] [PubMed]

62. Warnakulasuriya, S. Burket’s oral medicine: Diagnosis and treatment. Br. Dent. J. 2003, 194. [CrossRef]

63. Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [CrossRef] [PubMed]

64. Lavaee, F.; Mosheravirnia, M.; Malek-Hosseini, S.; Jamshidzade, A.; Zarei, M.; Jafarian, H.; Haddadi, P.; Badiee, P. Antifungal effect of sesame medicinal herb on Candida Species: Original study and mini-review. Braz. J. Pharm. Sci. 2019, 55. [CrossRef]
65. Torres, S.R.; Peixoto, C.B.; Caldas, D.M.; Silva, E.B.; Akiti, T.; Nucci, M.; de Uzedo, M. Relationship between salivary flow rates and Candida counts in subjects with xerostomia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 149–154. [CrossRef] [PubMed]

66. Sufiati, I.; Pratiwi, U.; Wijaya, I.; Rusdiana, T.; Subarna, A. The relationship between Candida albicans colonization and oral hygiene in cancer patients undergoing chemotherapy. Mater. Today Proc. 2019, 16, 2122–2127. [CrossRef]

67. Braga, P.C.; Cuculi, M.; Alfiere, M.; Dal Sasso, M. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 2008, 31, 472–477. [CrossRef]

68. Costa, R.C.; Cavalcanti, Y.W.; Valença, A.M.G.; de Almeida, L.F.D. Sutures modified by incorporation of chlorhexidine and cinnamaldehyde: Anti-Candida effect, bioavailability and mechanical properties. Rev. Odontol. UNESP 2019, 48. [CrossRef]

69. Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [CrossRef]

70. Raut, J.S.; Karuppayil, S.M. Phytochemicals as Inhibitors of Candida albicans. Curr. Pharm. Des. 2016, 22, 4111–4134. [CrossRef] [PubMed]

71. Battha, G.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [CrossRef]

72. Li, Z.; Le, W.; Cui, Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Dis. 2018, 4, 108. [CrossRef]

73. Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006, 13, 624–629. [CrossRef]

74. Fahim, A.; Himratul-Aznita, W.H.; Abdul-Rahman, P.S. Allium-sativum and bakuchiol combination: A natural alternative to Chlorhexidine for oral infections? Pak. J. Med. Sci. 2020, 36, 271–279. [CrossRef]

75. Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [CrossRef] [PubMed]

76. Silva, M.L.; Bernardo, A.; de Mesquita, M.F.; Singh, J. Beneficial Uses of Cinnamon in Health and Diseases: An Interdisciplinary Approach. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press-Elsevier: Amsterdam, The Netherlands, 2019; pp. 565–576.

77. Singh, A.; Deepika; Chaudhari, A.K.; Das, S.; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Efficacy of Cinnamomum cassia essential oil against food-borne molds, aflatoxin B1 contamination. Plant Biostress. 2020, 155, 899–907. [CrossRef]

78. Kiran, S.; Kuju, A.; Prakash, B. Assessment of preservative potential of Cinnamomum zeylanicum Blume essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action. Innov. Food. Sci. Emerg. Technol. 2016, 19, 184–191. [CrossRef]

79. Boniface, Y.; Philippe, S.; Lima, H.; Pierre, N.; Alitonou, G.; Fatiou, T.; Sohounhloue, D. Chemical composition and Antimicrobial activities of Cinnamomum zeylanicum Blume dry Leaves essential oil against Food-borne Pathogens and Adulterated Microorganisms. Int. Res. J. Biol. Sci. 2012, 1, 18–25.

80. Almeida, L.F.D.; Paula, J.F.; Almeida, R.V.; Williams, D.W.; Hebling, J.; Cavalcanti, Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016, 74, 393–398. [CrossRef]

81. da Nóbrega Alves, D.; Monteiro, A.F.M.; Andrade, P.N.; Lazzarini, J.G.; Abilio, G.M.F.; Guerra, F.Q.S.; Scotti, M.T.; Scotti, L.; Rosalen, P.L.; Castro, R.D.; et al. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020, 25, 5969. [CrossRef] [PubMed]

82. Balakrishnan, B.; Paramasivam, S.; Arulkumar, A. Evaluation of the lemongrass plant (Cymbopogon citratus) extracted in different solvents for antioxidant and antibacterial activity against human pathogens. Asian Pac. J. Trop. Dis. 2014, 4, S134–S139. [CrossRef]

83. Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dental fibroblasts. Biochem. Open 2017, 4, 107–111. [CrossRef] [PubMed]

84. Liakos, I.L.; D’autilia, F; Garzoni, A.; Bonferroni, C.; Scarpellini, A.; Brunetti, V.; Carzino, R.; Bianchi, P.; Poma, P.P.; Athanasissi, A. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules. Int. J. Pharm. 2016, 510, 508–515. [CrossRef]

85. Taweechausuppong, S.; Ngaonee, P.; Patsuk, P.; Pitiphat, W.; Khunkitti, W. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. S. Afr. J. Bot. 2012, 78, 37–43. [CrossRef]

86. Leite, M.C.A.; Bezerra, A.P.B.; de Sousa, J.P.; Guerra, F.Q.S.; Lima, E.O. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. Evid. Based Complement. Alternat. Med. 2014, 2014, 378280. [CrossRef] [PubMed]

87. Miron, D.; Battisti, F.; Silva, F.K.; Lana, A.D.; Pippi, B.; Casanova, B.; Gnoatto, S.; Fuentes, A.; Mayorga, P.; Schapoval, E.E.S. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev. Bras. Farmacogn. 2014, 24, 660–667. [CrossRef]

88. Chen, Q.; Xu, S.; Wu, T.; Guo, J.; Sha, S.; Zheng, X.; Yu, T. Effect of citronella essential oil on the inhibition of postharvest Alternaria alternata in cherry tomato. J. Sci. Food Agric. 2014, 94, 2441–2447. [CrossRef]

89. Aini, M.N.M.; Said, M.I.; Nazlina, I.; Hanina, M.N.; Ahmad, I.B. Screening for Antiviral Activity of Sweet Lemon Grass (Cymbopogon nardus (L.) Rendle) Fractions. J. Biol. Sci. 2006, 6, 507–510. [CrossRef]

90. Innsan, M.F.M.F.; Shahril, M.H.; Samihah, M.S.; Asma, O.S.; Radzi, S.M.; Jalil, A.K.A.; Hanina, M.N. Pharmacodynamic properties of essential oils from Cymbopogon species. Afr. J. Pharm. Pharmacol. 2011, 5, 2676–2679. [CrossRef]
91. Nakahara, K.; Alzoreky, N.; Yoshihashi, T.; Nguyen, T.; Trakootivakorn, G. Chemical Composition and Antifungal Activity of Essential Oil from Cymbopogon nardus (Citronella Grass). Jpn. Agric. Res. Q. 2013, 37, 249–252. [CrossRef]

92. Leite, B.L.S.; Bonfim, R.R.; Antonioli, A.R.; Thomazzi, S.M.; Araújo, A.A.S.; Blank, A.F.; Estevam, C.S.; Cambuí, E.V.F.; Bonjardim, L.R.; Albuquerque Jr, R.L.C.; et al. Assessment of antiinflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharm. Biol. 2010, 48, 1164–1169. [CrossRef] [PubMed]

93. Quintans-Júnior, L.; Souza, T.; Leite, B.; Lessa, N.; Bonjardim, L.; Santos, M.; Alves, P.; Blank, A.; Antonioli, A.R. Phytochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 2008, 15, 619–624. [CrossRef]

94. Manh, H.D.; Hue, D.T.; Hieu, N.T.T.; Tuyen, D.T.T.; Tuyet, O.T. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 128. [CrossRef]

95. Oliveira, W.; Pereira, F.; Luna, G.; Oliveira Lima, I.; Wanderley, P.; Lima, R.; Lima, E. Antifungal activity of Cymbopogon winterianus Jowitt ex bor against Candida albicans. Braz. J. Microbiol. 2011, 42, 433–441. [CrossRef] [PubMed]

96. Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [CrossRef]

97. Cornelia, F.; Tatiana, C.; Livia, U.; Dinu, M.; Ancuceanu, R. In vitro study on the anti-adherence effect of Croton urucurana Baill. on Candida albicans. Molecules 2020, 25, 69. [CrossRef]

98. Chevalier, M.; Medioni, E.; Précheur, I. Inhibition of Candida albicans yeast–hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 2012, 61, 1016–1022. [CrossRef]

99. Ashraf, M.F.; Abd Aziz, M.; Stanslas, J.; Ismail, I.; Kadir, M. Assessment of Antioxidant and Cytotoxicity Activities of Saponin and Crude Extracts of Chloroperoxidase. World J. Biol. Chem. 2013, 4, 216894. [CrossRef] [PubMed]

100. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.; Cavaleiro, C.; Cruz, M.; Zuñiga, A.; Khan, I.; Erfth, T.; Salgueiro, L. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J. Ethnopharmacol. 2016, 191, 161–168. [CrossRef] [PubMed]

101. Nordin, M.A.; Wan Harun, W.H.; Abdul Razak, F. In vitro study on the anti-adherence effect of Brueca javanica and Piper betle extracts towards oral Candida. Arch. Oral Biol. 2013, 58, 1335–1342. [CrossRef] [PubMed]

102. Christofidis, I.; Welter, A.; Jadot, J. Spectaline and iso-6 cassine, two new piperidin 3-ol alkaloids from the leaves of cassia spectabilis. Tetrahedron 1977, 33, 977–979. [CrossRef]

103. Torey, A.; Sasidharan, S. Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: An ultrastructural study. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 875–882.

104. Zago, P.M.W.; Dos Santos Castelo Branco, S.J.; de Albuquerque Jr, R.L.C.; Carvalho, L.T.; Rocha, L.C.; Madeira, P.L.B.; de Sousa, E.M.; de Siqueira, F.S.F.; Paschoal, M.A.B.; Diniz, R.S.; et al. Anti-biofilm Activity of Cinnamomum brasiliense Extract, Cytotoxic Potential and Effects on Acrylic Denture Surface. Eur. Rev. Med. Pharmacol. Sci. 2011, 875–882.

105. Wijesinghe, G.K.; Maia, F.C.; de Oliveira, M.A.B.; de Souza, E.M.; de Siqueira, F.S.F.; Paschoal, M.A.B.; Diniz, R.S.; et al. Anti-biofilm Activity of Cinnamomum brasiliense Extract, Cytotoxic Potential and Effects on Acrylic Denture Surface. Eur. Rev. Med. Pharmacol. Sci. 2011, 875–882.

106. Choonharuangdej, S.; Srithavaj, T.; Thummawanit, S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: An ultrastructural study. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 875–882.

107. Freires, I.A.; Murata, R.M.; Furlleti, V.F.; Sartoratto, A.; Alencar, S.; de Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.; Rosalen, P.L. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, e099086. [CrossRef] [PubMed]

108. Alves, J.J.; Inês, M.; Barreira, J.; Barros, L.; Resende, O.; Aguia, A.; Ferreira, I.C.R. Phenolic Profile of Croton urucurana Bark. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules 2020, 25, 2032. [CrossRef]

109. Barbieri, D.S.; Tonial, F.; Lopez, P.V.; Sales Maia, B.H.; Santos, G.D.; Ribas, M.O.; Glinke, C.; Vicente, V.A. Antiadherent activity of Schinus terebinthifolius. J. Med. Microbiol. 2011, 61, 189–193. [CrossRef] [PubMed]

110. Ali, M.; Yusuf, M.; Nasraldeen Abdulaziz, M. GC-MS Analysis and Antimicrobial Screening of Essential Oil from Lemongrass (Cymbopogon citratus). Int. J. Pharm. Chem. 2017, 3, 72–76. [CrossRef]

111. Majewska, E.; Kozłowska, M.; Gruczynska–Sekowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation—A Review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [CrossRef]

112. Madeira, P.L.B.; Carvalho, L.T.; Paschoal, M.; de Sousa, E.M.; Moffa, E.; da Silva, M.A.S.; Tavarez, R.R.; Gonçalves, L. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface. Front. Cell. Infect. Microbiol. 2016, 6, 71. [CrossRef]
113. Trindade, L.A.; de Araújo Oliveira, J.; de Castro, R.D.; de Oliveira Lima, E. Inhibition of adherence of C. albicans to dental implants and cover screws by Cymbopogon nardus essential oil and citronellal. *Clin. Oral Investig.* 2015, 19, 2223–2231. [CrossRef] [PubMed]

114. Dezsi, S.; Bádáráíu, A.S.; Bischin, C.; Vodnar, D.C.; Silaghi-Dumitrescu, R.; Gheldiu, A.M.; Mocan, A.; Vlase, L. Antimicrobial and antioxidant activities and phenolic profile of *Eucalyptus globulus* Labill. and *Corymbia ficifolia* (F. Muell.) K.D. Hill & L.A.S. Johnson leaves. *Molecules* 2015, 20, 4720–4734. [CrossRef]

115. Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klei, B.; Gundel, A.; Vaucher, R.A.; Ourique, A.; Santos, R.C. Antimicrobial and antiﬁungal activities of nanoeumplings containing *Eucalyptus globulus* oil against *Pseudomonas aeruginosa* and *Candida* spp. *Microb. Pathog.* 2017, 112, 230–242. [CrossRef]

116. Sekita, Y.; Murakami, K.; Yamoto, H.; Amoh, T.; Fujiwara, N.; Ogata, S.; Matsuo, T.; Miyake, Y.; Kashiwada, Y. Preventive Effects of *Hostutynia cordata* Extract for Oral Infectious Diseases. *BioMed Res. Int.* 2016, 2016, 2581876. [CrossRef]

117. Salete, M.F.B.; Galvo, L.C.C.; Goes, V.F.F.; Sartoratto, A.; Figueira, G.; Rehder, V.L.; Duarte, M.C.; Bos, P.L.; Duarte, M.C. Action of essential oils from Brazilian native and exotic medicinal species on oral bioﬁlms. *BMC Complement. Altern. Med.* 2014, 14, 451. [CrossRef]

118. Rasteiro, V.M.C.; da Costa, A.C.B.P.; Arajo, C.F.; de Barros, P.P.; Rossoni, R.D.; Anbinder, A.; Jorge, A.O.; Junqueira, J. Essential oil of *Melaleuca alternifolia* for the treatment of oral candidiasis induced in an immunosuppressed mouse model. *BMC Complement. Altern. Med.* 2014, 14, 489. [CrossRef]

119. Tobouti, P.L.; Mussi, M.C.; Rossi, D.C.; Pigatti, F.M.; Taborda, C.P.; de Assis Taveira, L.A.; de Sousa, S.C. Influence of melaleuca and copaiba oils on *Candida albicans* adhesion. *Gerodontology* 2016, 33, 380–385. [CrossRef]

120. Ferreres, F.; Oliveira, A.P.; Gil-Izquierdo, A.; Valentão, P.; Andrade, P.B. *Piper betle* leaves: Proﬁling phenolic compounds by HPLC/DAD-ESI/MS(n) and anti-cholinesterase activity. *Phytochem. Anal.* 2014, 25, 453–460. [CrossRef] [PubMed]

121. Mena, P.; Cirilini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Proﬁling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (*Rosmarinus ofﬁcinalis* L.) Extract. *Molecules* 2016, 21, 1576. [CrossRef]

122. de Oliveira, J.R.; de Jesus, D.; Figueira, L.W.; de Oliveira, F.E.; Pacheco Soares, C.; Camargo, S.E.; Jorge, A.O.; de Oliveira, L.D. Biological activities of *Rosmarinus ofﬁcinalis* L. (rosemary) extract as analyzed in microorganisms and cells. *Exp. Biol. Med.* 2017, 242, 625–634. [CrossRef]

123. Sharifzadeh, A.; Khosravi, A.; Ahmadian, S. Chemical composition and antifungal activity of *Satureja hortensis* L. essential oil against planktonic and bioﬁlm growth of *Candida albicans* isolates from buccal lesions of HIV(+) individuals. *Microb. Pathog.* 2016, 96, 1–9. [CrossRef]

124. Oyeleye, S.I.; Adebayo, A.A.; Ogunsuyi, O.B.; Dada, F.A.; Oboh, G. Phenolic proﬁle and Enzyme Inhibitory activities of Almond (*Terminalia catappa*) leaf and Stem bark. *Int. J. Food Prop.* 2018, 20, S2810–S2821. [CrossRef]

125. Machado-Gonçalves, L.; Tavares-Santos, A.; Santos-Costa, F.; Soares-Diniz, R.; Câmara-de-Carvalho-Galvão, L.; Martins-de-Sousa, E.; Beninni-Paschoal, M.A. Effects of *Terminalia catappa* Linn. Extract on *Candida albicans* bioﬁlms developed on denture acrylic resin discs. *J. Clin. Exp. Dent.* 2018, 10, e642–e647. [CrossRef] [PubMed]

126. Gonçalves, L.; Madeira, P.L.B.; Diniz, R.; Nonato, R.F.; de Siqueira, F.S.F.; de Sousa, E.M.; Farias, D.; Rocha, F.M.G.; Rocha, C.H.L.; Lago, A.D.N.; et al. Effect of *Terminalia catappa* Linn. on Bioﬁlms of *Candida albicans* and *Candida glabrata* and on Changes in Color and Roughness of Acrylic Resin. *J. Evid. Based Complement. Altern. Med.* 2019, 2019, 7481341. [CrossRef] [PubMed]

127. Abdi Monfared, A.; Ayatollahi Mousavi, S.A.; Zomorodian, K.; Mehrabani, D.; Iraji, A.; Moein, M.R. *Trachyspermum ammi* aromatic water: A traditional drink with considerable anti- *Candida* activity. *Curr. Med. Mycol.* 2020, 6, 1–8. [CrossRef] [PubMed]

128. Shaq Ali, M.; Saleem, M.; Ali, Z.; Ahmad, V.U. Chemistry of *Zataria multiflora* (Lamiaceae). *Phytochemistry* 2000, 55, 933–936. [CrossRef]

129. Rahimi, G.; Khodavandi, A.; Janesar, R.; Alizadeh, F.; Yaghobi, R.; Sadri, F. Evaluation of Antifungal Effects of Ethanolic and Aqueous Extracts of *Zataria Multiflora* Herb in the Pathogenic Yeast *Candida albicans* Bioﬁlm Inhibition. *J. Pure Appl. Microbiol.* 2014, 8, 4559–4564.