Elliptic mod ℓ Galois representations which are not minimally elliptic

Luis Dieulefait
Dept. d’Àlgebra i Geometria, Universitat de Barcelona;
Gran Via de les Corts Catalanes 585; 08007 - Barcelona; Spain.
e-mail: ldieulefait@ub.edu

Abstract
In a recent preprint (see [C]), F. Calegari has shown that for ℓ = 2, 3, 5 and 7 there exist 2-dimensional irreducible representations ρ of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) with values in \(\mathbb{F}_\ell \) coming from the ℓ-torsion points of an elliptic curve defined over \(\mathbb{Q} \), but not minimally, i.e., so that any elliptic curve giving rise to ρ has prime-to-ℓ conductor greater than the (prime-to-ℓ) conductor of ρ. In this brief note, we will show that the same is true for any prime ℓ > 7.

1 The result and its proof

In this article, we are going to prove the following result:

Theorem 1.1 For any prime ℓ > 7 the Galois representation ρ obtained from the ℓ torsion points of the elliptic curve

\[
E^\ell : \quad Y^2 = X(X - 3^\ell)(X - 3^\ell - 1)
\]

is irreducible and unramified at 3, but \(E^\ell \) and any other elliptic curve giving rise to the same mod ℓ Galois representation have bad reduction at 3. Thus, these representations arise from elliptic curves but not minimally. On the other hand, if we consider a modular abelian variety \(A_f \) with good reduction at 3 also giving rise to ρ (it follows from the modularity of elliptic curves and lowering the level that such a variety always exists) then as ℓ varies the dimension of \(A_f \) tends to infinity with ℓ.
It was shown in [C] that also for primes $\ell < 11$ there exist irreducible residual representations that arise from elliptic curves but not minimally, thus the property is true for every prime.

We will show that for every $\ell > 7$ the curve E^ℓ is semistable outside 2, has bad reduction at 3, the associated mod ℓ Galois representation ρ is irreducible, unramified at 3, and there is no elliptic curve with good reduction at 3 whose associated mod ℓ representation is isomorphic to ρ.

In page 9 of [C], the example for $\ell = 7$ is constructed from the elliptic curve E:

$$y^2 + yx + y = x^3 - 89x + 316$$

which has semistable reduction at 2 and its discriminant Δ has 2-adic valuation equal to 7. This implies that the mod 7 Galois representation ρ attached to E is unramified at 2 (the prime-to-7 part of its conductor is 55) and by Tate’s theory satisfies: $a_2 \equiv \pm 3 \pmod{7}$, where a_2 is the trace of $\rho(\mathrm{Frob} \ 2)$. The representation can not correspond to an elliptic curve with good reduction at 2 because for such an elliptic curve E' we have $c_2 = 0, \pm 1, \pm 2$, where c_2 denotes the trace of the image of Frob 2 for the compatible family of Galois representations attached to E, and therefore we would get $\pm 3 \equiv a_2 \equiv c_2 \pmod{7}$, a contradiction.

The same argument proves the result for higher primes: take $\ell > 7$ and consider the elliptic curve E^ℓ. From the definition of E^ℓ we see that it has bad reduction at 2 and 3 and good reduction at 5 and ℓ. The same argument used for the case of the Frey-Hellegouarch curves related to Fermat’s Last Theorem (cf. [H], pags. 368-369) shows that this curve is semistable outside 2 (i.e., it has semistable reduction at every odd prime of bad reduction) and that the corresponding mod ℓ representation ρ is unramified at 3 (because the 3-adic valuation of the minimal discriminant is multiple of ℓ). From this and the fact that E^ℓ has bad semistable reduction at 3 it follows that: $a_3 \equiv \pm 4 \pmod{\ell}$.

It is easy to check that ρ is irreducible: in fact, this follows from the fact that it is semistable outside 2 and has good reduction at 5 (and comes from an elliptic curve). We indicate a short proof for the reader convenience: assume that ρ is reducible, then (after semisimplifying, if necessary) we get:
\(\rho \cong \epsilon \oplus \epsilon^{-1} \chi \quad (*) \), where \(\chi \) denotes the mod \(\ell \) cyclotomic character and \(\epsilon \) is a character unramified outside 2 (here we use semistability outside 2). Evaluating at Frob 5 and taking traces we get: \(a_5 \equiv r + 5r^{-1} \pmod{\ell} \quad (**) \), where \(r = \epsilon(5) \). Since the 2-part of the conductor of any elliptic curve is known to be at most 256 it follows from (*) that the conductor of \(\epsilon \) is at most 16. Thus, since the image of \(\epsilon \) is cyclic (it is contained in the multiplicative group of a finite field) we conclude that the order of \(\epsilon \) is at most 4, and in particular that \(r^4 \equiv 1 \pmod{\ell} \).

On the other hand, we know that \(a_5' = 0, \pm 1, \pm 2, \pm 3, \pm 4 \), where \(a_5' \) denotes the trace of the image of Frob 5 for the \(\ell \)-adic representation attached to \(E_\ell \), and thus \((a_5' \mod{\ell}) = a_5 \). With these restrictions on \(r \) and \(a_5 \), we can solve (**) : squaring both sides and using \(r^2 = \pm 1 \) and the above list of values for \(a_5' \), we check that the only possibility for (**) to hold is, if we restrict to \(\ell \geq 11 \), \(\ell = 17 \) with \(a_5' = \pm 1 \) (@).

This proves irreducibility for every \(\ell \geq 11 \), except for \(\ell = 17 \). To rescue this last prime, observe that if we take the curve \(E_{17} \) we can count its number of points modulo 5: it has 8 points. This gives \(a_5' = -2 \) for \(\ell = 17 \). Hence, since \(-2 \neq \pm 1\), the case (@) never happens, and we also get irreducibility for \(\ell = 17 \).

Since \(a_3 \equiv \pm 4 \pmod{\ell} \) and \(\ell \geq 11 \), it is clear that this representation can not correspond to an elliptic curve unramified at 3, because for such an elliptic curve the corresponding trace \(c_3 \) at Frob 3 (in characteristic 0) satisfies \(c_3 = 0, \pm 1, \pm 2, \pm 3 \), thus \(a_3 \equiv c_3 \pmod{\ell} \) gives a contradiction.

Since all elliptic curves over \(\mathbb{Q} \) are modular, by level-lowering we know that there exists a weight 2 newform \(f \) of level prime to 3 (and equal to the prime-to-\(\ell \) part of the conductor of \(\rho \)) such that \(\ell \) splits totally in the field \(\mathbb{Q}_f \) generated by the eigenvalues of \(f \) and for a prime \(\lambda | \ell \) in \(\mathbb{Q}_f \) the mod \(\lambda \) representation \(\tilde{\rho}_{f,\lambda} \) attached to \(f \) is isomorphic to \(\rho \). Of course, due to the result proved above, it must hold \(\mathbb{Q}_f \neq \mathbb{Q} \), so that the abelian variety \(A_f \) associated to \(f \) is not an elliptic curve.

Moreover, it is not hard to see that given any dimension \(d \), for almost every prime \(\ell \) any abelian variety \(A_f \) realizing \(\rho \) with minimal ramification as above (i.e., with the level of \(f \) equal to the prime-to-\(\ell \) part of the conductor of \(\rho \) and the residual representation attached to \(f \) isomorphic to \(\rho \)) must be of dimension grater than \(d \). This follows from the fact that if the dimension is bounded by \(d \), the degree of the field generated by \(c_3 \), the trace at Frob 3
of the Galois representations attached to f, is also bounded by d, and from this it follows (using the bound for the complex absolute values of c_3 and its Galois conjugates) that there are only finitely many possible values for c_3. Since (again) $c_3 \neq \pm 4$, the congruence $a_3 \equiv c_3$ gives

$$c_3 \equiv \pm 4 \pmod{\ell}$$

which can only be satisfied by finitely many primes ℓ (for a fixed d), and this is what we wanted to prove.

2 Bibliography

[C] Calegari, F., *Mod p representations on Elliptic Curves*, preprint, available at http://front.math.ucdavis.edu/math.NT/0406244

[H] Hellegouarch, Y., *Invitation to the Mathematics of Fermat-Wiles*, Academic Press, 2002