1. A Markov chain on the symmetric group

Let S_n, $n \geq 3$ denote the symmetric group on n letters and let (i, j) denote the transposition which swaps i and j. We use conventions so that left multiplication acts on values and right multiplication acts on positions.

Define a matrix $P = (p_{w,v})_{w,v \in S_n}$

$$p_{w,v} = \begin{cases} x_{w^{-1}(i+1)} & \text{if } v = (i, i+1)w < w. \\ x_{w^{-1}(1)} & \text{if } v = (1, n)w > w. \\ * & \text{if } w = v. \\ 0 & \text{otherwise.} \end{cases}$$

where $*$ is chosen so that $\sum_{v \in S_n} p_{w,v} = 1$ for each $w \in S_n$. If the x_i’s are non-negative real numbers summing to at most 1, then we can think of P as defining a Markov chain on S_n. When we set $x_i = 1/n$, we obtain the Markov chain defined in [Lam] Section 3.

Proposition 1. The matrix $P^T - I$ has a one-dimensional nullspace for generic values of x. In particular, when the x_i’s are nonnegative real numbers summing to at most 1, the Markov chain defined by P has a unique stationary distribution.

Proof. When all x_i are positive and sum to at most 1, then it follows from [Lam] Proposition 1 that we have an irreducible and aperiodic Markov chain on S_n, and thus we have a unique invariant distribution. If we treat $x_1, \ldots, x_{n-2}, x_{n-1}$ as variables, then a basis of the nullspace of $P^T - I$ can be written as a rational function in the x_i. This nullspace must be one-dimensional. \hfill \Box

Let $\{\zeta(w) \in \mathbb{Q}(x_1, x_2, \ldots, x_{n-1}) \mid w \in W\}$ denote a vector spanning the nullspace of Proposition 1 which we normalize by setting

$$\zeta(w_0) = x_1^{1+2+\cdots+n-2}x_2^{1+2+\cdots+n-3} \cdots x_{n-2}.$$
Suppose \(w = w_1 w_2 \cdots w_n \in S_n \). Let \(\chi(w) = (w_1 + 1)(w_2 + 1) \cdots (w_n + 1) \in S_n \) be the cyclic shift of \(w \), where the letters of \(\chi(w) \) are interpreted modulo \(n \). The following follows immediately from the definitions.

Proposition 2. For each \(w \in W \), we have \(\zeta(\chi(w)) = \zeta(w) \).

2. Schubert polynomials

We fix notations concerning Schubert polynomials. Let \(\partial_i \) denote the divided difference operator on polynomials in \(x_1, x_2, \ldots \), defined by

\[
\partial_i f(x_1, x_2, \ldots) = \frac{f(x_1, \ldots, x_i, x_{i+1}, \ldots) - f(x_1, \ldots, x_{i+1}, x_i, \ldots)}{x_i - x_{i+1}}.
\]

For the longest permutation \(w_0 \in S_n \), we first define

\[
\mathcal{S}_{w_0}(x_1, x_2, \ldots) := x_1^{n-1} x_2^{n-2} \cdots x_{n-1}.
\]

Next for \(w \in S_n \), we let \(w^{-1} w_0 = s_{i_1} s_{i_2} \cdots s_{i_k} \) be a reduced expression. Then

\[
\mathcal{S}_w := \partial_{i_1} \partial_{i_2} \cdots \partial_{i_k} \mathcal{S}_{w_0}.
\]

The polynomial \(\mathcal{S}_w \) does not depend on the choice of reduced expression. Furthermore, \(\mathcal{S}_w \) does not depend on which symmetric group \(w \) is considered an element of.

3. Conjectures

Our main conjecture is

Conjecture 1. In increasing strength:

1. Each \(\zeta(w) \) is a polynomial.
2. Each \(\zeta(w) \) is a polynomial with nonnegative integer coefficients.
3. Each \(\zeta(w) \) is a nonnegative integral sum of Schubert polynomials \(\mathcal{S}_u(x_1, x_2, \ldots) \).

Let \(\eta(w) \) denote the largest monomial that can be factored out of \(\zeta(w) \). By Proposition \(\mathcal{S}_w \), \(\eta(w) = \eta(\chi(w)) \). Write \([m] \) to denote \(\{0, 1, 2, \ldots, m\} \).

Conjecture 2 (Monomial factor). Assume Conjecture \(\mathcal{S}_w \). The map \(w \mapsto \eta(w) \) is an \(n \)-to-1 map from \(S_n \) to

\[
\left\{ x_1^{a_1} x_2^{a_2 + \cdots + a_{n-2}} \cdots x_n^{a_{n-2}} \mid (a_1, a_2, \ldots, a_{n-2}) \in [n-2] \times [n-3] \times \cdots \times [1] \right\}.
\]

Moreover, \(\eta(w) = x_1^{a_1} x_2^{a_2 + \cdots + a_{n-2}} \cdots x_n^{a_{n-2}} \) is given by

\[
a_i = \# \{ k \in [i+2, n] \mid w_k \in [w_i, w_{i+1}] \},
\]

where \([w_i, w_{i+1}]\) denotes a cyclic subinterval of \([n]\).

Conjecture 3 (Special value).

\[
\zeta(\text{id}) = \mathcal{S}_{123\cdots n} \mathcal{S}_{1n23\cdots(n-1)} \mathcal{S}_{1(n-1)n23\cdots(n-2)} \cdots \mathcal{S}_{134\cdots n2}.
\]

Conjecture 4 (Special Schubert factors). Consider the letters of \(w \in S_n \) in (cyclic) order. If there is an adjacent string of letters \(1, 2 \), then \(\zeta(w) \) is a multiple of the Schubert polynomial \(\mathcal{S}_{134\cdots n2} \). More generally, if there is an adjacent string of letters \(1, 2, 3, \ldots, k \), then \(\zeta(w) \) is a multiple of the Schubert polynomial \(\mathcal{S}_{1(k+1)(k+2)\cdots n23\cdots k} \).
4. Data

We provide experimental data supporting these conjectures.

4.1. \(n = 3 \). See Figure 1

4.2. \(n = 4 \). Using Proposition 2, we need only provide data for permutations \(w \) where \(w_1 = n \). In the following we use \(a = x_1 \), \(b = x_2 \), and \(c = x_3 \). We also write the answers as products of Schubert polynomials. Since a product of Schubert polynomials is also a nonnegative linear combination of Schubert polynomials this supports Conjecture 1(3).

\[
\begin{array}{c|c|c}
\text{\(w \)} & \zeta(w) & \text{\(\eta(w) \)} \\
4123 & (a^2 + ab + b^2)(ab + ac + bc) & S_{1423}S_{1342} \\
4132 & (a^2 + ab + b^2)ab & S_{1423}S_{231} \\
4213 & (a + b + c)a^2b & S_{1243}S_{321} \\
4231 & (a^2b + a^2c + ab^2 + abc + b^2c)a & S_{1432}S_{21} \\
4312 & (ab + ac + bc)a^2 & S_{1342}S_{312} \\
4321 & a^3b & S_{4213}
\end{array}
\]

Note that \(a^2b + a^2c + ab^2 + abc + b^2c \) is the only non-trivial factor which is not a symmetric polynomial.

4.3. \(n = 5 \). For \(n = 5 \) we write our answers as products and sums of Schubert polynomials, multiplied by the monomial factor \(\eta(w) \).
w	$\zeta(w)$
51234	$\mathcal{S}_{15234} \mathcal{S}_{14523} \mathcal{S}_{13452}$
51243	$\mathcal{S}_{15234} \mathcal{S}_{14523} abc$
51324	$\mathcal{S}_{15234} \mathcal{S}_{12453} a^2 b^2 c$
51342	$\mathcal{S}_{15234} \mathcal{S}_{14532} ab$
51423	$\mathcal{S}_{15234} \mathcal{S}_{13452} a^2 b^2$
51432	$\mathcal{S}_{15234} \mathcal{S}_{1234} a^2 b^2 c$
52134	$\mathcal{S}_{12534} \mathcal{S}_{13452} a^3 b^2$
52143	$\mathcal{S}_{12534} a^3 b^2 c$
52314	$(\mathcal{S}_{15432} + \mathcal{S}_{164235}) a^2 b c$
52413	$(\mathcal{S}_{1753246} + \mathcal{S}_{265314} + \mathcal{S}_{2743156} + \mathcal{S}_{356214} + \mathcal{S}_{364215} + \mathcal{S}_{365124}) a$
52431	$(\mathcal{S}_{164325} + \mathcal{S}_{25431}) a^2 b$
53124	$\mathcal{S}_{15243} a^3 b c$
53142	$\mathcal{S}_{12543} a^3 b c$
53214	$\mathcal{S}_{12354} a^3 b c$
53241	$\mathcal{S}_{13542} a^3 b c$
53412	$\mathcal{S}_{15423} \mathcal{S}_{13452} a^2$
53421	$\mathcal{S}_{15423} a^3 b c$
54123	$\mathcal{S}_{14523} \mathcal{S}_{13452} a^3$
54132	$\mathcal{S}_{14523} a^3 b c$
54213	$\mathcal{S}_{12453} a^3 b^2 c$
54231	$\mathcal{S}_{14532} a^3 b$
54312	$\mathcal{S}_{13452} a^3 b^2$
54321	$a^3 b^3 c$

REFERENCES

[Lam] T. Lam, The shape of a random affine Weyl group element and random core partitions, preprint, 2011.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA
E-mail address: tfylam@umich.edu

Department of Mathematics, University of California, Berkeley, CA 94705 USA
E-mail address: williams@math.berkeley.edu