Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies

Cornelia Larissa Granz, Ali Gorji

ORCID number: Cornelia Larissa Granz 0000-0002-6284-0764; Ali Gorji 0000-0002-4557-3270.

Author contributions: Granz CL and Gorji A contributed to the conception and design of the study; Granz CL contributed to writing and drafting of the manuscript; Gorji A contributed to critical revision of the final draft of the manuscript; all authors approved the final version of the manuscript.

Conflict-of-interest statement: There is no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: May 4, 2020

Abstract

Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.

Key Words: Cell transplantation; Regenerative medicine; Tissue engineering; Neural crest; Angiogenesis; Biomolecules
Granz CL et al. Dental stem cells and scaffolds

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Dental stem cells have been used for different types of cell transplantation therapies, including teeth, bone, and neural tissue regeneration. In planning for successful tissue engineering toward organ-specific regeneration, choosing an appropriate scaffold that mimics the extracellular matrix in native tissue and loaded with suitable biomolecules to boost dental stem cell functions is of utmost importance.

INTRODUCTION

Stem cells are undifferentiated cells with self-renewing and clonogenic capabilities, which can differentiate into various cell lineages. According to the basis of their origin, stem cells are categorized as embryonic, induced pluripotent stem cells (iPS), and adult (tissue-specific) stem cells[1-3]. Based on their differentiation potential, stem cells can be classified as totipotent (the ability to give rise to all types of cells), pluripotent (the potential of the cells to produce any type of cells in the organism), multipotent (the potential to give rise to cells of their tissue of origin), oligopotent (the potential to differentiate into only a few cell types), and unipotent (the ability to produce one cell type)[4]. Embryonic stem cells are pluripotent, whereas adult stem cells are limited to differentiating into various cell types of their original tissue (multipotent). iPS are pluripotent cells that originated from somatic differentiated cells after transduction. Adult stem cells exist in different tissues and organs, such as the bone marrow, blood vessels, peripheral blood, and skeletal muscles as well as the brain, heart, skin, intestine, liver, gonads, and teeth[5].

Human mesenchymal stem cells (MSCs), which are multipotent non-hematopoietic progenitor cells, have been isolated from both adult and fetal tissues, such as the bone marrow, adipose tissue, endometrium, bone, muscle, umbilical cord, blood, Wharton's jelly, and amniotic fluid as well as nervous and dental tissues[6]. Human MSCs have the potential to differentiate into both mesodermal (osteocytes, adipocytes, and chondrocytes) and non-mesodermal (endodermal and ectodermal) lineages (hepatocytes and neuronal cells)[7] with both anti- and pro-tumorigenic properties[8] as well as a limited risk of inflammatory reactions and uncontrolled growth[9]. The source of MSCs has a crucial role in the outcomes of stem cell-based tissue engineering[10]. Dental stem cells (DSCs) are neural crest-derived cells that can be obtained easily from dental tissues of both adults and children; therefore, they are a reliable, accessible source of autologous stem cells[11,12]. DSCs are undifferentiated cells that have non-limited self-renewal, multipotent differentiation potential, and colony-forming capacity[13]. DSCs can be isolated from the dental pulp of deciduous, natal, and permanent teeth, the periodontal ligament, the apical papilla, the dental follicle, and gingival tissue (Figure 1)[11,13]. One of the unique characteristics of DSCs is their ability to differentiate into mesodermal, ectodermal, and endodermal cell lineages[13]. DSCs from each source are capable of specifically differentiating into various distinct cells, including epithelial cells, odontoblasts, osteoblasts, chondroblasts, adipocytes, vascular cells, endothelialcytes, neuronal cells, glial cells, photoreceptor cells, and muscle cells[13,14]. Although all stem cells obtained from various sources are named DSCs in this study, their phenotype, differentiation potential (both in in vitro and in vivo conditions) and functional properties (such as biological response during differentiation and tissue repair) are different[13]. For instance, stem cells obtained from the apical papilla possess greater proliferation ability, express a higher variety of neural markers, and induce more uniform dentine-like tissues compared to dental pulp stem cells[13,14]. Furthermore, DSCs isolated from exfoliated deciduous teeth exert a higher capacity for osteogenic regeneration and a greater proliferation rate compared to dental pulp stem cells[13]. DSCs isolated from pulp tissues are the first and most frequent cells evaluated for their odontogenic, osteogenic, and neurogenic differentiation potentials[13]. This heterogeneity of DSCs is effectively modulated by the function of their microenvironment[13]. DSCs obtained from different sources exhibit...
Dental stem cells and scaffolds

Granz CL et al. Dental stem cells and scaffolds

WJSC | https://www.wjgnet.com
899 September 26, 2020 | Volume 12 | Issue 9

Figure 1 Schematic diagram of different sources where dental stem cells can be isolated. Various subpopulations of dental stem cells (DSCs) can be classified according to their tissue of origin. DSCs can be derived from the dental pulp stem cells, exfoliated deciduous teeth, periodontal ligament, dental follicle, apical papilla, and gingival tissue.

various patterns of cell surface markers (Table 1)[28-31].

DSCs secrete numerous immunomodulatory mediators, such as interleukin (IL)-6, IL-10, IL-1β, interferon-γ, and tumor necrosis factor-α as well as transforming growth factor-beta (TGF-β), hepatocyte growth factor, and vascular endothelial growth factor (VEGF)[32], and do not express the major histocompatibility complex class II antigen[33], which suggests their potential in the regulation of immune responses to promote tissue regeneration[34]. DSCs from different sources may exert their immunomodulatory properties through the suppression of T-cell proliferation and lymphocyte activity as well as the activation of T-cell apoptosis[34,35].

The fate of the stem cells (proliferation and differentiation) is regulated via a combination of intrinsic and extrinsic mechanisms. Intrinsic mechanisms consist of various transcription factors expressed by the cells. Extrinsic mechanisms are signals provided by the dynamic microenvironment (or “niche”), including the extracellular matrix (ECM), signaling molecules (such as growth factors and hormones), and neighboring cells[36,37]. The microenvironment, which is a three-dimensional (3D) structure surrounded by specific cells and ECM, protects stem cells from inappropriate differentiation, cell damage, and apoptosis and governs tissue maintenance, regeneration, and repair[38,39]. In addition to providing a physical microenvironment for cells, the ECM gives the tissue its mechanical properties (elasticity and rigidity), provides bioactive molecules and cues to residing cells, and establishes an environment to facilitate tissue remodeling in response to dynamic processes, such as wound healing[40]. Furthermore, the ECM is produced and arranged by tissue-resident cells and secreted into the surrounding environment to provide support to the stem cells with its bioactive compounds[41]. Stem cell behaviors are reciprocally regulated by the ECM and signals from the surrounding cells and molecules. Furthermore, inorganic ions, such as calcium and magnesium, as well as metabolic products, such as oxygen drive metabolites, and maintain stem cell fate[42].

The nature of the stem cell microenvironment differs in various tissues. In teeth, a particular microenvironment exists at specific anatomic sites that regulates the behavior of DSCs[43]. Two different stem cell microenvironments have been identified in teeth; (1) the pulp cell-rich zone; and (2) the perivascular and perineurium of the dental pulp. The pulp is composed of four distinct zones; an outermost layer containing the odontoblasts, a cell-free zone (zone of Weil) with no cells and rich in the ECM, the cell-rich zone contains stem/progenitor cells, and the pulp core. Dental pulp tissue is populated by odontoblasts, fibroblasts, dendritic cells, macrophages, and progenitor cells, whereas the pulp core contains dental pulp cells, vessels, nerves, and ECM[43]. The induction of odontoblasts, the biological cells of neural crest origin that survive throughout life, occurs during tooth development. However, under appropriate conditions, DSCs can differentiate into pre-odontoblasts and later secreterory odontoblasts, which actively participate in reactionary dentinogenesis[44].
Table 1 Dental stem cells obtained from different sources exhibit various patterns of cell surface markers

Markers	DPSCs	SCEDT	PLSCs	DFSCs	SCAP
Nestin	+		+	+	+
Vimentin	+		+		+
SOX2	+			+	+
SOX10	+			+	
Stro-1	+		+	+	
Oct-4	+		+	+	+
EphB	+				
Nanog		+	+		+
CD10			+	+	
CD13		+	+	+	+
CD14		+		+	
CD19			+		
CD24			+		
CD25				+	
CD29		+	+	+	+
CD34		+		+	+
CD44		+	+	+	+
CD45		+		+	+
CD49				+	
CD53				+	
CD59		+		+	
CD73		+		+	+
CD90		+		+	+
CD105		+		+	+
CD106			+	+	
CD117			+		
CD146			+	+	
CD150				+	
CD166			+		
CD271				+	
SSEA-3				+	
SSEA-4				+	
TWIST-1				+	
c-myc				+	
Notch				+	
3G5				+	
Ki67				+	
FIK1				+	

DPSCs: Dental pulp stem cells; SCEDT: Stem cells obtained from exfoliated deciduous teeth; PLSCs: Periodontal ligament stem cells; DFSCs: Dental follicle stem cells; SCAP: Stem cells obtained from apical papilla.
Odontoblasts produce the main part of the ECM components of dentin and are involved in dentin mineralization\[48\]. The dentin ECM consists of collagen (approximately 90%; Type I, III, and V), proteoglycans (such as chondroitin sulfate and heparan sulfate), growth factors [such as TGF-β and bone morphogenetic protein (BMP)], and enzymes (such as matrix metallopeptidase 1, 2, 3, 9, and 20)\[49\]. In the dental pulp, DSCs also reside in perivascular and perineurium regions\[50\], which can be identified by aldehyde dehydrogenase-1 expression\[51\]. The EphB/ephrin-B signaling pathway reciprocally modulates the attachment and migration of DSCs originated from the perivascular niche via the mitogen-activated protein kinase pathway and phosphorylation of Src family tyrosine kinases\[52\].

Pointing to the importance of ECM in maintaining homeostasis for proliferation and differentiation of DSCs, several studies have indicated that reconstruction of the appropriate microenvironment and boosting its interaction with stem cells are essential steps to successful cell therapy\[53\]. The application of DSCs in stem cell therapeutic approaches is attractive due to their simple isolation and efficient administration\[54\]. The multi-lineage capacity of DSCs differentiation to various tissues and organs suggests their greater ability than other adult stem cell populations for the treatment of different diseases\[55\]. There is an enormous amount of evidence to indicate that DSCs have great potential for therapeutic cell approaches in various diseases, including liver disease, diabetes, myocardial infarction, ophthalmologic diseases, muscular dystrophy, Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, and spinal cord injury\[56\]. Furthermore, several studies have explored the potential of DSCs in the treatment of caries, periodontal disease, oral and maxillofacial defects, and alveolar bone atrophy\[57\]. DSCs possess strong immunomodulatory abilities, which suggest that they are a favorable cell source for cell transplantation therapy in inflammatory disorders\[58\]. It has been shown that DSCs are more beneficial for axonal regeneration than bone marrow stem cells due to their greater release of neurotrophic factors\[59\]. Despite these extensive efforts, several essential parameters still need to be optimized for the clinical use of DSCs in cell transplantation therapy. One of the key challenges is the lack of an appropriate stem cell microenvironment, which leads to short-term survival of DSCs after implantation. To increase cell viability, transplanted cells require particular 3D structures with specific ECM components that protect DSCs from cell damage, maintain the stem cell homeostasis, and stimulate mutual biological information transfer between stem cells and the ECM\[60,61,62\]. A number of investigations have been carried out to reconstruct the stem cell microenvironment to strengthen the viability, proliferation, and appropriate differentiation of the transplanted cells for successful cell therapy\[63\]. In this context, ECM scaffolds can form a desirable microenvironment for DSCs, which serve as a more favorable template for tissue repair and reconstruction\[64,65\]. In this review, we provide a critical overview of the role of different biomaterials used to deliver DSCs to damaged tissue and their applications to improve, restore, and maintain tissue or organ reconstruction.

DIFFERENT TYPES OF SCAFFOLD FORMULATIONS

The general concept of tissue bioengineering involves three essential components; identification of suitable stem cells, development of appropriate scaffolds, and induction of potent signals to repair or regenerate human cells, tissues, or organs\[66\]. Biomaterials are essential components for the construction of scaffolds. Tissue bioengineering combines scaffolds with various types of stem cells to reconstruct damaged tissues (Figure 2). The application of appropriate scaffolds could improve DSCs proliferation, differentiation, adhesion, and migration, which may promote their ability to repair the injured tissues and regenerate functional organs\[67\]. Acellular tissues, as well as natural and synthetic biomaterials, can be used as the primary source for generating scaffolds\[68\]. Acellular tissue matrices, such as an acellular adipose matrix, are derived from animal or human tissues with all cells eliminated during manufacture\[69\]. In addition, the amniotic membrane has been suggested as a suitable biological scaffold for the proliferation and transplantation of DSCs\[70\]. Natural biomaterials consist of proteins (collagen, gelatin, fibrin, and silk) and polysaccharides (agarose, alginate, hyaluronan, polyactic acid, and chitosan) which tend to be biocompatible due to their cellular adhesion sites, such as Arg-Gly-Asp binding sequences, and the ability to degrade without releasing toxic substances. However, due to the variability of materials, limited mechanical properties, the risk of transmitting pathogens, and provoking immune reactions, their formulations need to be promoted for stem cell culture\[71,72\]. Synthetic biomaterials, including polymer-based
Figure 2 Schematic diagram of seeding dental stem cells on the hybrid scaffold, differentiation capability, and potential clinical applications for the regeneration of different tissues. DSCs: Dental stem cells.

Biomaterials (such as polycaprolactone, poly-lactic acid, poly-lactic-co-glycolic acid, polyglycolide, poly-e-caprolactone, and poly-ethylene glycol) and ceramic-based biomaterials (such as hydroxyapatite, bioactive glass, and calcium phosphate) display a better mechanical property, reproducibility, and electrical conductivity as well as a lower degradation rate[68-70]. Furthermore, synthetic biomaterials possess the possibility of optimizing the chemical and physical properties of a scaffold for a particular application[71]. Hydrogels, which are networks of hydrophilic polymers, can be manufactured from natural biomaterials (such as collagen, fibrin, proteoglycans, and hyaluronic acid) or synthetic polymers (such as self-assembly peptide molecules or poly-ethylene glycol)[37,72-73]. Hydrogels provide tissue-like microenvironments with particular cellular signals, desirable biocompatibility, semi-permeable membranes, and cell delivery vehicles[74]. Furthermore, a wide range of nanocomposite biomaterials has been assembled by merging nanomaterials within the polymeric matrix to promote the efficiency of bioactive scaffolds[75].

The desirable properties of a scaffold for stem cell transplantation are biocompatibility, biodegradability, mimic the 3D biological microenvironment, incorporation of different ECM, pore size, stability, electrical conductivity, porosity, non-immunogenicity, interconnectivity, safety (low or non-toxic) and alignment[76,77-78]. Various fabrication techniques have been developed to produce different scaffolds, such as emulsion freeze-drying, electrospinning, thermally-induced phase separation, solvent casting/particular leaching, computer-aided design/computer-aided manufacturing, melt molding, rapid prototyping (3D printing, selective laser sintering, stereolithography, and fused deposition modeling), nanofiber self-assembly, and photolithography[79-80]. The basic tissue engineering procedures consist of appropriate scaffold manufacture, hydrogel matrix support, and patterning design. The combination of these approaches promotes the development of the desired complex, both in tissue structure and function[81].

Scaffold-based cultures are conventionally applied in two-dimensional (2D) systems. Although 2D systems are a valuable medium for the investigation of basic cell biology and preclinical drug testing, data generated in these systems are insufficient to translate into in vivo experimental studies[82]. Furthermore, inappropriate cell-to-cell and cell-to-ECM contacts, reduction of polarization, and alteration of key signaling pathways modulate stem cell differentiation ability[83-84]. Thus, several 3D scaffold-based cultures have been developed. Although existing 3D cultures are not without limitations, they enhance cell viability, growth, differentiation, and migration.
and improve cellular communications85. Combining DSCs with suitable scaffolds offers a promising strategy for cell delivery and transplantation. Two main approaches for this combination are cell-based and cell-free tissue engineering. In the cell-based approach, stem cells are seeded and cultured onto the scaffold in vitro to produce the desired tissue before transplantation86. In the cell-free approach, a bioactive scaffold with growth and differentiation factors is embedded in the respective tissues, induces the homing of resident stem cells, and promotes their proliferation and differentiation87. Furthermore, the environmental cues, such as various growth factors/morphogens, markedly affect the behavior of DSCs seeded in scaffolds and are vital to the success of regenerative therapies88,89. Several proteins, such as BMP, sialoprotein, fibronectin, and osteopontin, are able to coat various types of biomaterials and promote the behaviors of DSCs90. Pre-treatment of biomaterials with the abovementioned proteins could enhance adhesion, differentiation, proliferation, migration, and function of DSCs and improve the formation of new tissues91,92.

DSCs in Combination with Scaffolds for Tissue Restoration

DSCs represent an auspicious cell source for tissue engineering, particularly for tooth, bone, and neural tissue reconstruction. A vast number of these investigations point to the importance of various scaffolds to design effective tissue engineering approaches (Table 2).

Tooth Reconstruction

The therapeutic role of DSCs in combination with various scaffolds has been extensively investigated in restoring tooth damage or loss due to caries, periodontal disease, trauma, or genetic disorders93. The procedure of dentin formation consists of odontoblastic deposition, vascularization, and neuron formation94. Among multiple approaches to promote dentin formation and teeth tissue regeneration, the application of DSCs with a synthetic pre-designed and optimized scaffold is the most accepted technique for tooth regeneration95. The appropriate scaffold can be implemented with DSCs and growth factors to induce the generation of dental tissues, which can integrate with the adjacent tissues96. Scaffolds developed from either synthetic or natural biomaterials have been used for tooth reconstruction. Natural materials, such as collagen97, chitosan/gelatin98, silk protein99, alginate100, hyaluronic acid101 as well as synthetic polymers, such as polyglycolate/poly-l-lactate102, polycaprolactone-polyglycolic acid103, polyactic acid-co-polyglycolic acid104, polycaprolactone/gelatin/nano-hydroxyapatite105, nano-hydroxyapatite/collagen/poly-l-lactide106 and polyethyl methacrylate-co-hydroxyethyl acrylate107 were used as scaffold materials for dental restoration and regeneration. Several investigations have indicated the regeneration of vascularized pulp-like tissue after subcutaneous implantation of tooth slices containing DSCs accompanied by an appropriate scaffold, particularly in the presence of growth factors such as dentin matrix protein108,109. In several experiments, a combination of the abovementioned scaffolds was used to promote cell differentiation, vascularization, and safety as well as to reduce immunological and ectopic complications. The development of a vascularized dentin/pulp tissue in a subcutaneously transplanted human root canal containing a poly-lactic-co-glycolic acid scaffold seeded with DSCs has been reported110. A scaffold consists of a pulp-specific ECM (an acellular ECM within the hydrogel) and an endothelial ECM (collagen-chitosan hydrogels) to promote odontogenic differentiation of DSCs and induce extensive vascularization in an in vivo model of a tooth root slice111. Comparing collagen and gelatin with chitosan, it has been stated that chitosan exerts weaker support for human DSCs growth and differentiation112. In addition, 3D nano-fibrous gelatin/silica bioactive glass hybrid scaffolds provide a suitable microenvironment that mimics the architecture and composition of a natural dental micromilieu and enhances the growth and differentiation of human DSCs113. Furthermore, the administration of human DSCs associated with acellular dental pulp resulted in pulp-like tissue structures and the maintenance of ECM114. DSCs seeded in 3D scaffold-free stem-cell sheet-derived pellets promote odontogenic differentiation115. The application of combined DSCs with the ECM scaffold can be used for root canal therapy. It has been shown that DSCs are able to differentiate into functional odontoblasts with angiogenic potential116. Implantation of a 3D scaffold by shaping
A vast number of these investigations indicate the importance of various scaffolds to design effective tissue engineering approaches.

Scaffold	Growth factors/bioactive molecules	Experimental model	Target tissue	Ref.
Silicon	-	*In vitro*	Teeth	[188]
Collagen sponge	SCF	*In vitro* and *in vivo* (mice)	Teeth	[128]
Collagen type I and type III	SDF-1	*In vitro* (dogs)	Teeth	[91]
Collagen type-I and N-acetic acid	SDF-1, bFGF, BMP-7	*In vitro* and *in vivo* (rats)	Teeth	[120]
Collagen/chitosan	-	*In vitro*	-	[129]
Collagen-polyvinylpyrrolidone sponge	-	Case report	Teeth	[144]
Silk fibroin	-	*In vitro* and *in vivo* (mice)	Teeth	[122]
Acellular dental pulp ECM	SDF-1	*In vivo* (mice)	Teeth	[108]
Intrafibrillar-silicified collagen	-	*In vitro* and *in vivo* (mice)	Teeth	[109]
Matrigel	bFGF-2, TGF-β1	*In vitro*	-	[121]
Peptide hydrogel	VEGF, TGF-β1, FGF-1	*In vitro* (mice)	Teeth	[113]
Gelatin methacrylate hydrogel	-	*In vivo* (rats)	Teeth	[115]
PuraMatrix™	VEGF	*In vitro* (mice)	Teeth	[114]
Poly-e-caprolactone and hydroxyapatite	SDF-1, BMP-7	*In vitro* and *in vivo* (rats)	Teeth	[124]
Polycaprolactone-poly-glycolic acid	BMP-7	*In vitro* and *in vivo* (mice)	Teeth	[97]
Thermoresponsive hydrogel	-	*In vitro* and *in vivo* (mice)	Teeth	[111]
DL-lactide/co-polymer of L-lactide, and hydroxyapatite tricalcium phosphate	BMP-2	*In vitro* and *in vivo* (mice)	Teeth	[112]
3D hydroxyapatite scaffolds containing peptide hydrogels	-	*In vitro* (mice)	Teeth	[111]
Poly-lactic-co-glycolic acid	-	*In vitro* and *in vivo* (mice)	Teeth	[104]
Beta-tricalcium phosphate scaffold	BMP-2	*In vitro* and *in vivo* (mice)	Teeth	[111]
Collagen sponge	-	Clinical trial	Bone	[103]
Collagen sponge	-	Clinical trial	Bone	[103]
Collagen sponge	-	Clinical trial	Bone	[102]
Chitosan/gelatin	BMP-2	*In vitro* and *in vivo* (mice)	Bone	[96]
Arginine-glycine-aspartic acid	-	*In vitro* and *in vivo* (mice)	Bone	[101]
Granular 3D chitosan	-	*In vitro*	Neural tissue	[102]
Matrigel	BMP-9	*In vitro* and *in vivo* (mice)	Bone	[98]
3D nano-fibrous gelatin/silica bioactive glass hybrid	-	*In vitro*	Teeth	[107]
3D gel collagen matrix	BMP-2	*In vitro* and *in vivo* (rats)	Bone	[107]
Poly-e-caprolactone bisphasic calcium phosphate	-	*In vitro* and *in vivo* (rabbit)	Bone	[106]
Glass nanoparticles/chitosan-gelatin	-	*In vitro* and *in vivo* (rats)	Bone	[99]
3D poly-lactide	Extracellular vesicles	*In vitro* and *in vivo* (rats)	Bone	[109]
2D monolayer culture/3D poly lactic-co-glycolic	-	*In vitro*	Bone	[114]
Dense collagen gel or acellular	-	*In vitro* (rats)	Bone	[106]
Calcium phosphate cement functionalized with iron oxide nanoparticles	-	*In vitro*	Bone	[106]
Poly-lactic-co-glycolic acid	-	*In vitro* and *in vivo* (rats)	Bone	[94]
Hydroxyapatite-collagen sponge	-	Clinical trial	Bone	[106]

Granz CL et al. Dental stem cells and scaffolds
3D porous chitosan | bFGF | In vitro | Neural tissue
Fibrin and collagen | - | In vivo (rats) | Sciatic nerves
Collagen | Tetracycline | In vivo (mice) | Sciatic nerves
Collagen | - | In vivo and in vivo (rats) | Sciatic nerves
3D alginate/hyaluronic acid | NGF | In vivo and in vivo (mice) | Peripheral nerves
Collagen sponge (DSCs condition medium) | - | In vivo and in vivo (rats) | Facial nerves
3D bio-printing of scaffold-free nervous tissue | - | In vivo and in vivo (rats) | Facial nerves
Chitosan | - | In vivo and in vivo (rats) | Spinal cord
Aligned electrospun poly-e-caprolactone/ poly-lactide-co-glycolic acid | - | In vivo and in vivo (rats) | Spinal cord

bFGF: Basic fibroblast growth factor; BMP: Bone morphogenetic protein; NGF: Nerve growth factor; SDF: Stromal cell-derived factor; SCF: Stem cell factor; TGF-β: Transforming growth factor beta; VEGF: Vascular endothelial growth factor; DSCs: Dental stem cells; BMP: Bone morphogenetic protein; ECM: Extracellular matrix.

Sheet-like aggregates of DSCs with a thermos-responsive hydrogel into the human tooth root canal generates pulp-like tissues with rich neovascularization without adding growth factors[111]. Furthermore, transplantation of human DSCs with 3D hydroxyapatite scaffolds containing peptide hydrogels resulted in vascular ingrowth, osteodentin deposition, and pulp tissue formation in immunocompromised mice[112]. Using bioengineered methods, it has been shown that it is possible to achieve functional teeth with entire roots[113]. The nanofiber hydrogel PuraMatrix is a synthetic matrix that is used to create a biocompatible, biodegradable, and non-toxic 3D environment for a variety of cells[114]. DSCs injected with PuraMatrix into full-length human root canals differentiate into functional odontoblasts; pointing to a novel strategy to facilitate root formation in damaged teeth[115]. Several in vitro and in vivo studies revealed that the addition of various signaling molecules and growth factors [such as granulocyte colony-stimulating factor (G-CSF), stromal cell-derived factor (SDF)], basic fibroblast growth factor (bFGF), and VEGF] to different scaffolds (both natural and synthetic) enhances the regeneration of intra-canal pulp-like tissues via the promotion of dentine formation, mineralization, neovascularization, and innervation[116]. DSCs transplanted with SDF-1 or G-CSF on a collagen scaffold promote pulp reconstruction in an animal pulpitis model[117]. Autologous DSCs transplanted into a root canal with collagen types I and III associated with SDF-1 after pulpectomy in dogs significantly increased the expression of angiogenic and neurotrophic factors, indicating the potent trophic effects of the combined scaffold and chemokine on neo-vascularization during pulp regeneration[118]. In addition, DSCs seeded into peptide hydrogel loaded with FGF-1, TGF-β1, and VEGF differentiated into odontoblasts-like cells and formed a vascularized dental pulp-like tissue inside the dentin cylinder[119]. Moreover, TGF-β2 increased the odontogenic differentiation of DSCs isolated from the apical papilla[120]. DSCs isolated from adult human tooth pulp and seeded on the surfaces of 3D collagen gel cylinders exhibited significantly increased cellular recruitment when applied with SDF-1α, bFGF, or BMP-7[121]. Encapsulating TGF-β1 and FGF-2 in a biodegradable polymer of lactide and glycolide microspheres provides the controlled release of growth factors to human pulp cells[122]. Furthermore, scaffold composition plays a key role in determining whether the application of signaling molecules or growth factors is needed. Various growth factors, such as SDF, FGF, TGF-β1, VEGF, and BMP were loaded on different scaffolds, such as peptide hydrogel, collagen, gelatin hydrogel, and alginate hydrogel, to enhance endodontic regeneration of DSCs[123]. In addition, a silk fibroin scaffold loaded with bFGF has been described as a promising scaffold for the proliferation and differentiation of DSCs in vitro[124]. Implantation of DSCs with poly-e-caprolactone and hydroxyapatite in association with SDF-1 and BMP-7 generated tooth-like structures (putative periodontal ligament and new bone formation) in the mandibular incisor extraction socket[125]. In addition to SDF-1, stem cell factor (SCF), a potent chemokine, enhances the mobilization and trafficking of stem cells[126]. SCF promoted neovascularization and new collagen fiber formation after subcutaneous implantation of DSCs with a collagen sponge scaffold in mice. Furthermore, SCF improved DSCs migration, proliferation, and chemotaxis in vitro, possibly via the upregulation of ERK and AKT phosphorylation[127].
Dental stem cells and scaffolds

Sialoprotein is a dominant non-collagenous protein in dentin, which plays a role in the induction of dental pulp cell differentiation into odontoblast-like cells and is essential for dental pulp stem cell identity and fate[127,128]. Subcutaneous implantation of DSCs seeded on a 3D scaffold containing an acellular ECM embedded in a collagen/chitosan scaffold led to the production of dental pulp-like tissue and the expression of dentin sialoprotein in nude mice[129]. The application of DCS combined with treated dentin matrix, a biological scaffold, has been suggested as a suitable therapeutic approach for the reconstruction of the tooth root[131]. Immortalized DSCs exhibited potent odontogenic differentiation ability and secreted dentin sialophosphoprotein when seeded in a beta-tricalcium phosphate scaffold and BMP-2 in nude mice[130]. Among three different scaffolds (DL-lactide, co-polymer of L-lactide and DL-lactide, and hydroxyapatite tricalcium phosphate), a copolymer of L-lactide and DL-lactide and BMP-2 showed the highest odontogenic regenerative capacity after the addition of DSCs and BMP-2[132].

A few studies have indicated that using a co-culture of DSCs with other stem cells improves neovascularization. The co-culture of DSCs and human umbilical vein endothelial cells with gelatin methacrylate xenogeneic hydrogel resulted in the neovascularization of mouse dental pulp[133]. Transplantation of DSCs and human umbilical vein endothelial cells with VEGF seeded into PuraMatrix significantly enhanced vascularization and mineralization of mouse vascularized pulp-like tissue and osteodentin[134]. In addition, using silk fibroin scaffolds promoted the ability of human DSCs in attracting vessels, which leads to the improvement of healing and regeneration of damaged tissues[135]. Transplantation of DSCs with a tooth fragment/silk fibroin scaffold loaded with SDF-1 resulted in the generation of pulp-like tissues with vascularity, organized fibrous matrix formation, and dentin formation in nude mice[136].

BONE RECONSTRUCTION

An enormous number of studies have been carried out to investigate the role of various scaffolds on the bone regeneration capacity of DSCs[137]. The osteogenic differentiation ability of DSCs, mostly isolated from dental pulp or periodontal ligament, has been well demonstrated in both in vivo and in vitro studies[138]. DSCs originating from dental pulp, dental follicle, gingival tissue, and periodontal ligament exert different osteogenic capacity[139], which can be modulated by various types of biomaterial scaffolds[140]. For instance, an in vivo investigation has shown that DSCs from the periodontal ligament encapsulated in an arginine-glycine-aspartic acid tripeptide scaffold exhibit a greater ability to repair bone defects by promoting the formation of mineralized tissue compared to gingival MSCs[141]. In addition, DSCs derived from the dental pulp exhibit great neovascularization potential while differentiating into osteoblasts, which subsequently promote bone restoration[142].

The most common scaffolds used to seed DSCs (particularly isolated from human dental pulp or exfoliated deciduous teeth) for bone tissue engineering in both experimental studies and clinical trials are collagen sponge membrane and hydroxyapatite/tri-calcium phosphate granules ceramic[143]. DSCs seeded in collagen sponge scaffolds exhibit strong restoration ability in human mandible bone defects[144]. The application of DSCs seeded onto a collagen-polyvinylpyrrolidone sponge scaffold in the left lower premolar region of a patient with periodontal disease increased bone density and decreased tooth mobility, periodontal pocket depth, and the bone defect area[145]. Using DSCs with a hydroxyapatite-collagen sponge scaffold to fill the alveolar defect in 6 patients with cleft lip and palate resulted in satisfactory bone regeneration[146]. A three-year clinical study revealed that the bone tissue regenerated following the application of human DSCs seeded on collagen scaffolds was uniformly vascularized and compact[147]. However, this study revealed that the new bone developed at the implantation sites was compact and different from the normal spongy alveolar bone in the mandibles[148]. In contrast, no ectopic bone formation was observed when DSCs were seeded on hydroxyapatite-tri-calcium phosphate scaffolds[149]. Furthermore, it should be noted that for any successful cell transplantation approach, the optimal number of DSCs is essential. It has been demonstrated that dense culture conditions improve the mineralized nodule formation of DSCs and promote osteogenic-lineage commitment, possibly via the integrin signaling pathway[150]. DSCs seeded in dense collagen gel scaffolds exert a higher beneficial effect on the craniofacial bone healing process compared to acellular scaffolds[151].
DSCs isolated from the dental follicle and the periapical papilla have been considered for the regeneration of alveolar bone and were successfully assessed in a few preclinical pilot studies. The application of dissociative dental pulp with a collagen sponge scaffold in patients with deep intrabony defects due to chronic periodontitis led to the effective restoration of defects with significant stability of the gingival margin\(^1\). In addition, the application of DSCs seeded onto collagen sponge in the deep intrabony defects of 29 patients suffering from chronic periodontitis significantly improved clinical outcomes of the periodontal regeneration process\(^2\). Another clinical trial has shown that using DSCs in combination with the collagen sponge scaffold in 6 patients resulted in a well-differentiated bone with Haversian system formation in the tooth extraction site\(^3\).

Scaffold composition and surface properties play a key role in the osteogenic differentiation of DSCs and the process of bone tissue regeneration\(^4\). Significantly greater mineralization occurred when DSCs were seeded into a collagen type I matrix\(^5\). Furthermore, DSCs seeded on hyaluronic acid, fibrin, and polysteramide type-C exhibit higher mineralization compared to standard tissue culture polystyrene\(^6\).

Ceramic scaffolds, such as tri-calcium phosphate, hydroxyapatite, bioactive glass biphasic calcium phosphate, and calcium silicate, have chemical and structural similarities to the native bone and are commonly used as scaffolds to enhance bone regeneration and restoration of DSCs\(^7\). The addition of tricalcium phosphate to the composition of the other scaffolds enhances the differentiation of DSCs into osteoblast-like cells\(^8\). Chitosan/gelatin scaffolds significantly increased DSCs viability and differentiation as well as the formation of hydroxyapatite-rich nanocrystalline calcium phosphate in immunocompromised mice, particularly when cells were pre-treated with recombinant human BMP-2\(^9\). Potent bone formation was observed in the defect area of rat femoral bone after application of DSCs seeded in bioactive glass nanoparticles/chitosan-gelatin bionanocomposite compared to mesoporous bioactive glass nanospheres\(^10\). A combination of poly-ε-caprolactone biphasic calcium phosphate with DSCs increased the newly formed bone regeneration of calvarial defects in rabbit models\(^11\). Furthermore, a combination of poly-lactic-co-glycolic acid with ceramics is usually used to enhance biomimetic potential and promote bone regeneration\(^12\). An in vitro study has revealed that human dental pulp SCS adhesion and proliferation, as well as their differentiation toward the osteogenic lineage, are significantly improved when seeded in hydroxyapatite (a member of the calcium phosphate-based bioceramics) and poly-lactide-co-glycolide\(^13\). Implantation of human DSCs seeded in beta-tri-calcium phosphate scaffolds exerted an anti-inflammatory effect and restored periodontal hard tissue defects\(^14\). Greater bone regeneration was also reported when human DSCs were seeded on poly-lactic-co-glycolic acid\(^15\) and α-calcium sulfate hemihydrate/amorphous calcium phosphate\(^16\) scaffolds. Calcium phosphate cement functionalized with iron oxide nanoparticles also exhibits a potent effect on the spreading, osteogenic differentiation, and bone mineral synthesis of DSCs, possibly via activation of the extracellular signal-related kinases WNT/β-catenin pathway\(^17\).

Different forms of silicon, particularly the orthosilicic acid form, promote osteoblast proliferation and differentiation, the mineralization process, and collagen production through enhancement of the precipitation of apatite from calcium and phosphate-containing solutions\(^18\). Semicarbazide-treated porous silicon exerted an appropriate scaffold for DSCs adhesion and in vivo cell therapy, whereas silanization withaminopropyltriethoxysilane-treated porous silicon has been suggested as a favorable scaffold for a long-term in vitro culture system for DSCs proliferation and differentiation\(^19\). Intrafibrillar-silicified collagen scaffolds markedly improved the proliferation, osteogenic differentiation, and mineralization capacity of human DSCs compared to non-silicified collagen scaffolds\(^20\). A novel bioresorbable glass nanocomposite of poly-glycerol sebacate and nanosilicates enhanced the physical integrity and mechanical strength of the cellular microenvironment for in vitro osteogenic differentiation and bone regeneration without persistent scaffold-related inflammation in vivo\(^21\).

Hybrid composites are also used as promising biomaterials for bone regeneration. It has been suggested that four different scaffold materials, including porous hydroxyapatite alone or combined with three polymers poly-lactic-co-glycolic acid, alginate, and ethylene vinylacetate/ethylene vinylversate, are suitable for DSCs osteogenic differentiation\(^22\). Electropun nano-ECM nanofibers with fluorapatite scaffolds enhance the growth, differentiation, and mineralization of DSCs\(^23\), possibly mediated via modulation of the FGF and VEGF signaling pathways\(^24\). Comparing the

\(\text{WJSC} \quad \text{https://www.wjgnet.com} \quad 907 \quad \text{September 26, 2020} \quad \text{Volume 12} \quad \text{Issue 9} \quad \text{Granz CL et al. Dental stem cells and scaffolds} \)
behavior of DSCs seeded on a 2D monolayer culture or 3D poly lactic-co-glycolic scaffold, it has been shown that DSCs exerted proper adherence and enhanced osteogenic differentiation on the 3D scaffold cultures\(^{184}\). Furthermore, it has been suggested that DSCs seeded in hydrogel scaffolds have greater potential for odontogenic differentiation than cells embedded in collagen-I hydrogel scaffolds\(^{185}\). Various layer-by-layer-modified gelatin sponge scaffolds increased the adhesion and proliferation of DSCs and enhanced their potential for bone tissue regeneration\(^{186}\).

Several differentiation factors, such as BMP, were used to potentiate DSCs bone formation capacity. A 3D gel-based heparin-conjugated collagen matrix combined with recombinant human BMP-2 improved DSCs differentiation and seeding efficiency \(\textit{in vitro}\) and promoted the osteogenic differentiation of these stem cells to form ectopic bone formation in a rat model\(^{187}\). Exfoliated human DSCs significantly increased the expression of BMP-2 and 7, bone and cartilage formation markers, when seeded in carbonate apatite scaffold in an \(\textit{in vivo}\) alveolar bone remodeling model in rats\(^{188}\). DSCs isolated from human gingival tissues seeded onto 3D poly-lactide scaffolds enriched with extracellular vesicles, small membrane vesicles containing various bioactive molecules, exhibited potent osteogenic inductivity \(\textit{in vitro}\) and showed a marked improvement in bone healing of rat calvaria bone tissue \(\textit{in vivo}\)\(^{189}\).

On the other hand, some biomaterial scaffolds may facilitate biomolecule-induced tissue formation. For instance, 3D matrigel scaffold enriched with DSCs led to enhanced BMP-9-induced osteogenesis and mineralization in ectopic bones in nude mice\(^{190}\).

Although the majority of studies rely on the application of DSCs alone, several studies have employed co-culture systems (DSCs in combination with other cells) intending to promote bone regeneration, particularly in 3D scaffolds\(^{191}\). Human DSCs and amniotic fluid stem cells seeded onto fibroin scaffolds resulted in pronounced bone repair associated with neovascularization in critical-size rat cranial bone defects\(^{192}\). The co-cultured constructs of DSCs and endothelial cells seeded in 3D polycaprolactone blended with poly-L/D-lactide revealed a significantly higher up-regulation of genes related to osteogenesis and angiogenesis\(^{193}\).

NEUROLOGICAL DISORDERS

DSCs derived from dental pulp and oral mucosa display high expression of various neural crest-related and developmental genes\(^{194}\). DSCs can be differentiated into the neuron-, Schwann-, glia-, and oligodendrocyte-like cells\(^{195}\). Due to the high proliferative capacity and propensity to differentiate into neural stem cells, DSCs are attractive candidates for developing a human neuronal lineage for the treatment of various disorders\(^{196}\). The role of DSCs in cell transplantation therapy of traumatic and hypoxic-ischemic injuries of the central or peripheral nervous system as well as neurodegenerative diseases has been extensively investigated\(^{197}\). DSCs are promising sources for cellular transplantation-based therapeutic strategies for neurological disorders\(^{198}\). The seeding of DCSs into different scaffolds promotes cell viability and differentiation towards neuronal-like cells\(^{199,200}\). Scaffolds can be designed to provide biological growth factors for neuronal tissues and to accurately adjust the diffusion rate of these essential biomolecules and enzymes\(^{201}\).

The application of combined DSCs with various scaffolds promotes the function of injured neural tissues and reduces the inflammatory responses. The most common scaffolds applied for neural tissue regeneration and repair include chitosan, heparin-poloxamer, silicone tubes, poly-e-caprolactone/poly-lactide-co-glycolic acid, and electrospun neuro-supportive scaffolds\(^{202}\). Different scaffolds were used to enhance neural differentiation and promote their neuronal characteristics. DSCs can be seeded in the biodegradable electrospun neuro-supportive scaffold, which is amended by different 3D coatings, for enhanced \(\textit{in vitro}\) and \(\textit{in vivo}\) recovery of neuronal damage\(^{203}\). The granular 3D chitosan scaffolds provide an appropriate microenvironment for attachment, proliferation, and neural differentiation of DSCs\(^{204}\). Furthermore, a 3D floating sphere culture system has been shown to provide a suitable micromilieu for human DSCs to retain their neuronal characteristics compared to myogenic and osteogenic properties\(^{205}\). Using an acellular ECM scaffold has been shown to promote DSCs to obtain a neuronal-like organization, including a central body associated with long cytoplasmic extensions that follow the underlying fibers, with high cell-matrix adhesion properties\(^{206}\). Some scaffolds can support the neurotrophic release of DSCs for the subsequent survival and differentiation of neural stem cells as well as neural cells. For instance, DSCs promoted the survival and
differentiation of adult murine neural stem cells on ethyl acrylate and hydroxyethyl acrylate copolymer scaffold through the enhancement of neurotrophic factor secretion[196].

Transplantation of DSCs with a chitosan scaffold markedly enhanced the recovery of motor function and suppressed inflammatory responses, possibly via the secretion of neurotrophic factors, such as glial cell-derived neurotrophic factor and brain-derived neurotrophic factor, in experimental models of spinal cord injury. Furthermore, the combination of DSCs with scaffolds inhibited cell injury and death through the reduction of caspase activity[200]. A significant functional recovery of hindlimb locomotor activities has also been observed following the transplantation of DSCs seeded in chitosan scaffolds in a spinal cord injury animal model[9,200]. Solubilized forms of acellular ECM from dentine, bone, and spinal cord have discrete structural, mechanical, and functional properties. Human DSCs exhibited a strong positive response to spinal cord ECM hydrogels by the greater expression of neural lineage markers. This ECM scaffold markedly enhanced the differentiation of DSCs to a neural lineage; indicating the importance of site-specific tissues in the promotion of stem cell behavior for constructive spinal cord regeneration[199]. A combination of DSCs with heparin-poloxamer, a desirable thermosensitive hydrogel for in vivo applications, loaded with various growth factors, such as bFGF and nerve growth factor (NGF), markedly promoted functional recovery, cellular regeneration, and tissue repair in a rat model of spinal cord injury[195], possibly via modulation of the MAPK/ERK, PI3K/Akt and JAK/STAT3 signaling pathways[199]. Indeed, both bFGF and NGF play an essential role in the neural differentiation of DSCs[200]. Chitosan scaffolds in combination with bFGF exerted a synergistic facilitating effect on DSCs differentiation to neural cells, possibly via activation of the ERK signaling pathway[200]. It has been shown that DSCs can proliferate efficiently on an aligned electrospun poly ε-caprolactone/poly lactide-co-glycolic acid scaffold and restore defects in rat spinal cord. Furthermore, these cells contribute to remyelination by the expression of oligodendrogenic lineage markers[202].

Multiple studies have assessed the effects of DSCs with various scaffolds on various experimental models of peripheral nerve injury. DSCs seeded on a polylactic-glycolic acid scaffold significantly improved the regeneration of injured facial nerve and promoted functional recovery compared to autografts[203]. Schwann-like cells derived from DSCs and grown in collagen scaffolds facilitated axonal outgrowth and myelination in both 2D and 3D in vitro models of peripheral nerve injury[204,205]. Furthermore, oligodendrocyte progenitor cells induced by differentiation of human DSCs via gene transfection in combination with collagen or collagen and fibrin scaffolds improved axonal outgrowth and myelination in an animal sciatic nerve injury model[204]. Human DSCs isolated from the periodontal ligament and gingival tissues and encapsulated in 3D alginate/hyaluronic acid scaffolds in the presence of NGF improved the proliferation and differentiation of DSCs toward the formation of neural tissues[207]. DSCs seeded on poly-lactic-co-glycolic acid collagen enhanced the interconnections of injured axons in a model of facial nerve injury[208]. When cultured under either 2D- or 3D-collagen scaffolds, human DSCs originating from gingival tissue have shown a greater capability of differentiating into neurons and Schwann-like cells in a 3D collagen scaffold compared to the 2D culture system. Furthermore, these cells with a 3D scaffold improved regeneration and functional recovery of neural tissues in rat facial nerve defects[209]. It has been shown that collagen scaffolds in the presence of different growth factors, such as bFGF, exhibited favorable mechanical properties and improved facial nerve regeneration[209]. Human DSCs expressing STRO-1, c-Kit, and CD34 markers and seeded in a collagen scaffold engrafted into rat sciatic nerve defects improved axonal regeneration from proximal to distal stumps[210]. Interestingly, the administration of serum-free conditioned medium from DSCs plunged in a collagen sponge into the gap caused by rat facial nerve transaction, induced axonal regrowth and restored the neurological deficits[211].

THE IMPACT OF DIFFERENT SCAFFOLDS USED IN DSCS CELL THERAPY

Using an appropriate scaffold can promote the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize and preserve the cellular morphology to build tissue constructs for a specific purpose[96]. Although the application of DSCs alone could yield promising outcomes in cell replacement therapy in particular conditions[23], an appropriate scaffold provides a viable
microenvironment to boost the development of DSCs towards new tissue formation, especially in tissues or organs with extensive defects\(^\text{213}\). The optimal number of DSCs is essential to develop tissue and organ substitutes and to restore organ function\(^\text{49}\). In addition to establishing definitive protocols for DSCs preparation, appropriate carrier scaffolds play a crucial role to increase the number of cells for implantation (Figure 3)\(^\text{214}\).

A crucial and challenging demand for an appropriate scaffold design is recapitulating the dynamic nature of the native tissue\(^\text{214}\). Although each polymer scaffold has its pros and cons and favorable tissue engineering applications, collagen and fibrin, alone or by forming hybrid scaffolds, provide an adequate pulp connective tissue formation associated with marked vascularization, particularly when loaded with active biomolecules\(^\text{110,111,112}\). Collagen is the main component of the ECM and is expressed widely in bone, teeth, and the brain. A collagen scaffold provides excellent biocompatibility and controllable biodegradability, particularly for bone tissue engineering\(^\text{212,213}\). However, collagen has poor mechanical, chemical, and thermal stability and degrades fast at an uncontrolled rate. Fibrin is a non-toxic biomaterial scaffold that can attach various biological surfaces to regenerate tissues, such as bone and nervous tissues, with a low inflammatory response\(^\text{214}\). However, low mechanical stiffness of fibrin scaffolds limits tissue diffusion and direct implantation of cells to the damaged tissues\(^\text{210,214}\). Different bioceramic scaffolds exhibit excellent biocompatibility and osteoconductivity due to their chemical and structural similarity to native bone, which is characterized by high mechanical stiffness and low elasticity\(^\text{165,212}\). Furthermore, bioceramic scaffolds improve stem cell differentiation and osteogenesis\(^\text{215}\). The main disadvantages of bioceramic scaffolds are brittleness and slow biodegradation in the crystalline phase\(^\text{216}\). Soft polymers with highly aqueous hydrogels, such as collagen, share a resemblance to neural tissues, play an important role as a possible internal filler for neural conduits and increase the quality of peripheral nerve regeneration\(^\text{217}\).

Furthermore, the scaffold should be porous and spongy to be able to deliver sufficient DSCs to injured tissues and to allow the stream of ECM and the formation of neovascularization\(^\text{215,217,218}\). However, some of the currently available biomaterials do not fully imitate the essential functions of natural ECM and fail to provide an appropriate scaffold\(^\text{219}\). Among the different biomaterials, the self-assembly of monodisperse cells into 2D or 3D complex structures that produce more extracellular matrix and promote intercellular communication possess the characteristics of the ideal approach\(^\text{219}\). Although both 2D and 3D cell culture systems provide appropriate methods for stem cell replacement transplantation, 3D systems seem to be more effective at mimicking the ECM in native tissues\(^\text{219,220}\). In general, 3D culture systems have been shown to be more beneficial in providing a template for the reconstruction of defects and cell-to-cell interactions as well as for improving cell adhesion, proliferation, ECM generation, maintenance of cell polarity, and restoration of various tissues\(^\text{219,220}\). In addition, 3D scaffolds enhance the sensitivity of stem cells towards drugs and biomolecules\(^\text{218}\). The optimization of 3D scaffold pore sizes may lead to better tissue regeneration through the enhancement of mechanical strength\(^\text{219}\). The dimension of the defect is a key factor in selecting a scaffold for tissue or organ regeneration\(^\text{212}\). For instance, in the reconstruction of cleft lip and palate, the amount of bone formation may not be enough to fill the bone defect\(^\text{219}\), a problem that may be solved by the application of 3D cell culture systems\(^\text{219}\). In this regard, higher osteogenic differentiation of DSCs and MSCs has been observed in 3D than in 2D cell culture\(^\text{174,230}\).

In addition to an appropriate scaffold, using bioactive molecules, such as growth and angiogenic factors, has been suggested as a promising strategy for the improvement of DSCs transplantation. Bioactive molecules, such as VEGF, have a short half-life and need to be encapsulated in degradable materials to regulate their release and promote their effects\(^\text{219}\). Scaffolds provide a purposeful approach for better incorporation between stem cells and biomolecules to improve tissue regeneration\(^\text{219}\). The introduction of active biomolecules with the scaffold is essential for their transport into the injured tissues and for their efficacy to promote the colonization of DSCs and their matrix deposition\(^\text{219}\). DSCs and various scaffolds transplanted together with bioactive molecules, such as G-CSF, BMP, and bFGF, can fill the entire pulp or bone defect as well as develop new dentin or bone formation\(^\text{200,203,204}\). Biomolecules, such as SDF-1, SCF, and G-CSF, help to summon DSCs and enhance the number of cells in the implantation site, and other factors, such as VEGF, can enhance the formation of new blood vessels in regenerative tissues\(^\text{226,227}\).

On the contrary, a few investigations have suggested that transplantation of DSCs without scaffold may have more beneficial effects on tissue regeneration. To prevent the inflammatory response, immune reaction, or infections, a few studies have
indicated that transplantation of stem cells without scaffolds (such as 3D stem cell spheroids) may be an alternative option for DSCs transplantation$^{[238]}$. Transplantation of DSCs without a scaffold for injured tooth tissues in 26 patients led to the regeneration of 3D pulp tissue which contained blood vessels and sensory nerves 12 months after therapy$^{[239]}$. Despite these studies, it seems that the simple injection of competent DSCs inside organ defects is poorly regenerative$^{[123]}$.

A few decades of intense basic studies and clinical trials on DSCs are essential to translate knowledge gained on these cells into the implementation of defined and reproducible therapeutic approaches to cure or alleviate diseases. In addition to the application of an ideal scaffold, the success of cell transplantation therapy using DSCs also relied greatly on designing methodologies for isolation and purification, a sufficient number of stem cells, and effective and safe differentiation into different lineages$^{[240,241]}$. The development of an accurate immunomodulatory strategy for injectable and implantable biomaterials is of particular importance to facilitate the grafting of DSCs at inflamed sites$^{[242,243]}$.

CONCLUSION

This study describes the main scaffolds, both natural and synthetic, used in DSCs transplantation and evaluated the advantages and disadvantages of various types of scaffolds. Most of the existing studies concerning the development of novel therapeutic approaches for restoration of damaged tissues have been limited to *in vitro* and *in vivo* DSCs testing, with a small number of clinical trials. Although the co-application of biomolecules with an appropriate scaffold seems to be crucial for effective cell transplantation therapy with DSCs, there is still much to learn about the dynamics of these molecules as well as their interactions with the ECM and DSCs to allow planning of appropriate therapeutic approaches. Further advances in tissue engineering need to focus on innovative combinations of biopolymers and biomolecules to promote the capability of DSCs for novel and effective therapeutic approaches (Figure 3).

REFERENCES

1. Caplan AI. Are All Adult Stem Cells The Same? Regen Eng Transl Med 2015; 1: 4-10 [DOI: 10.1007/s40883-015-0001-4]
2. Khorraminejad-Shirazi M, Dorvash M, Estedal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. Aging: A cell source limiting factor in tissue engineering. World J Stem Cells 2019; 11: 787-802 [PMID: 31692986 DOI: 10.4252/wjsc.v11.i10.787]
3. Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16: 3-32 [PMID: 31760627 DOI:]
Granz CL et al. Dental stem cells and scaffolds

Xu M, He J, Zhang C, Xu J, Wang Y. Strategies for derivation of endothelial lineages from human stem cells. Stem Cell Res Ther 2019; 10: 200 [PMID: 31280997 DOI: 10.1186/s13287-019-1274-1]

Mahala RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016; 2016: 6940283 [PMID: 27516776 DOI: 10.1155/2016/6940283]

Morsczek C, Reichter TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther 2018; 18: 187-196 [PMID: 29110535 DOI: 10.1080/17417258.2018.140204]

Ghaseini S, Aligholi H, Koulivand PH, Jafarian M, Hosseini Ravandi H, Khalghi Ghdari M, Gorji A. Generation of motor neurons from human amnion-derived neural stem-like cells. Iran J Basic Med Sci 2018; 21: 1155-1160 [PMID: 30483389 DOI: 10.22038/ijbms.2018.29577.714]

Orhun H, Tobaia M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int 2012; 2012: 461718 [PMID: 22666271 DOI: 10.1155/2012/461718]

Ullah S, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35: [PMID: 25797907 DOI: 10.1042/BSR20150025]

Lee MW, Ryu S, Kim DS, Lee JW, Sung KW, Koo HY, Yoo KH. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33: 597-611 [PMID: 30705410 DOI: 10.1038/s41375-018-0373-9]

Musial-Wysocka A, Kot M, Majka M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant 2019; 28: 801-812 [PMID: 31018669 DOI: 10.1177/0963689719837897]

Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013; 19: 3429-3445 [PMID: 23432679 DOI: 10.2174/13816128113199990350]

Kerkis I, Kerkis A, Douroumis D, Sastuk-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 2006; 184: 105-116 [PMID: 17409736 DOI: 10.1159/000099617]

Sharpe PT. Dental mesenchymal stem cells. Development 2016; 143: 2273-2280 [PMID: 27381225 DOI: 10.1242/dev.134189]

Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2: 313-319 [PMID: 18397751 DOI: 10.1016/j.stem.2008.03.002]

Volponi AA, Sharpe PT. The tooth — a treasure chest of stem cells. Br Dent J 2013; 215: 353-358 [PMID: 24113395 DOI: 10.1038/sj.bdj.2013.995]

Grawish ME. Gingival-derived mesenchymal stem cells: An endless resource for regenerative dentistry. World J Stem Cells 2018; 10: 116-118 [PMID: 30310530 DOI: 10.4252/wjsc.v10.i9.116]

Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009; 35: 1536-1542 [PMID: 19840643 DOI: 10.1016/j.joen.2009.07.024]

Huang GT, Gontho S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88: 792-806 [PMID: 19767575 DOI: 10.1177/0022034509406867]

Yang X, Li L, Xiao L, Zhang D. Recycle the dental fairy's package: overview of dental pulp stem cells. Stem Cell Res Ther 2018; 9: 347 [PMID: 30545418 DOI: 10.1186/s13287-018-1094-8]

Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I. Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 2015; 17: 1969-1983 [PMID: 23846214 DOI: 10.1007/s00784-013-1030-3]

Sosonyama W, Liu Y, Yamazaki T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008; 34: 166-171 [PMID: 18215674 DOI: 10.1016/j.joen.2007.11.021]

Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L, Ma PX. Dentin regeneration by stem cells of apical papilla on injectable nanostructured microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016; 36: 63-72 [PMID: 26971664 DOI: 10.1016/j.actbio.2016.03.015]

Viswanath A, Vanacker J, Germain L, Leprince JG, Dioganes A, Shakeshef MM, White LJ, des Rieux A. Extracellular matrix–derived hydrogels for dental stem cell delivery. J Biomed Mater Res A 2017; 105: 319-328 [PMID: 27636889 DOI: 10.1002/jbm.a.35901]

Wang X, Shu XJ, Li GH, Fang D, Yamaza T, Seo BM, Zhang C, Wang S, Shi S, Huang GT. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012; 57: 1231-1240 [PMID: 22455989 DOI: 10.1016/j.archoralbio.2012.02.014]

Bakhit HR, Mazidi S A, Mohammadi Asl S, Ellini MR, Moshiri A, Nekoofar MH, Dummer PMH. The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018; 7: 249-268 [PMID: 30267369 DOI: 10.4024/pbi2018-018-0106-7]

da Silva Meireles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26: 2287-2299 [PMID: 18566331 DOI: 10.1634/stemcells.2007-1122]

Rodriguez-Lozo FJ, Bueno C, Insauti CL, Mesegaar L, Ramirez MC, Blanquer M, Marín N, Martínez S, Moraleda JM. Mesenchymal stem cells derived from dental tissues. Int Endod J 2011; 44: 800-806 [PMID: 21477154 DOI: 10.1111/j.1365-2991.2011.01877.x]

Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D, Carnevale G. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen Res 2020; 15: 373-381 [PMID: 31571644 DOI: 10.4103/1673-3374.266043]

Sosonyama W, Liu Y, Fang D, Yamazaki T, Seo BM, Zhang C, Liu H, Gontho S, Wang CY, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. Plast Reconstr Surg 2006; 1: e79 [PMID: 17183711 DOI: 10.1097/01.mrs.000007097]

Jean BG, Kang EJ, Kumar BM, Maeng GH, Ock SA, Kwack DO, Park BW, Rho GJ. Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplant
2011; 20: 1693-1705 [PMID: 21396170 DOI: 10.3727/096368911X565001]

32 Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karazov E. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotechnology 2011; 13: 1205-1220 [PMID: 21905958 DOI: 10.3109/146553249.2011.605351]

33 Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, Gou YC, Xiao L, Wu WJ, Wang J. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis 2014; 20: 25-34 [PMID: 23463961 DOI: 10.1111/odi.12086]

34 Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019; 11: 604-617 [PMID: 31616538 DOI: 10.4252/wjsc.v11.i9.604]

35 Shin C, Kim M, Han JA, Choi B, Hwang D, Do Y, Yun JH. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells. J Periodontal Res 2017; 52: 135-146 [PMID: 27021598 DOI: 10.1111/jre.12378]

36 Wiltse K, Huff KT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 2013; 14: 467-473 [PMID: 23839578 DOI: 10.1038/nrm3620]

37 Sahab-Negah S, Haji-Yi V, Moradi HR, Ghorjani A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40: 283-299 [PMID: 31502112 DOI: 10.1007/s10571-019-00733-0]

38 Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311: 1880-1885 [PMID: 16574858 DOI: 10.1126/science.1110542]

39 Mitsiadis TA, Feki A, Papaccio G, Catón J. Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv Dent Res 2011; 23: 275-279 [PMID: 21677078 DOI: 10.1177/0273110110398243]

40 Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008; 17 Suppl 4: 467-479 [PMID: 19005702 DOI: 10.1007/s00586-008-0745-3]

41 Yi S, Ding F, Gong L, Gu X. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Curr Stem Cell Res Ther 2017; 12: 233-246 [PMID: 27593448 DOI: 10.2174/1574888X11666160905092513]

42 Uccelli A, Moretta L, Pistovia V. Mesenchymal stem cells in health and disease. Rev Immunol 2008; 8: 726-736 [PMID: 19172693 DOI: 10.1038/sor3293]

43 Marrelli M, Codispoti B, Shelton RM, Scheven BA, Cooper PR, Tatullo M, Paduano F. Dental Pulp Stem Cell Mechanoresponsiveness: Effects of Mechanical Stimulation on Dental Pulp Stem Cell Behavior. Front Physiol 2018; 9: 1685 [PMID: 30534066 DOI: 10.3389/fphys.2018.01685]

44 Larmas M. Pre-odontoblasts, odontoblasts, or "odontocytes". J Dent Res 2008; 87: 198; author reply 199 [PMID: 18296601 DOI: 10.1177/0022034508700310]

45 Goldberg M, Six N, Chaussain C, DenBesten P, Veis A, Poliard A. Dentin extracellular matrix molecules implanted into exposed pulps generate reparative dentin: a novel strategy in regenerative dentistry. J Dent Res 2009; 88: 396-399 [PMID: 19493881 DOI: 10.1177/0022034509337101]

46 Kawashima N, Okiji T. Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto) 2016; 56: 144-153 [PMID: 27131345 DOI: 10.1111/cga.12169]

47 Shi S, Grontos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003; 18: 696-704 [PMID: 12674330 DOI: 10.1359/jbmr.2003.18.4.696]

48 Machado CV, Passos ST, Campos TM, Bernardi L, Vilas-Bôas DS, Nôr JE, Telles PD, Nascimento IL. The dental pulp stem cell niche based on aldehyde dehydrogenase 1 expression. Int Endod J 2016; 49: 755-763 [PMID: 26198907 DOI: 10.1111/iej.12511]

49 Stokowski A, Shi S, Tian T, Bartold PM, Koblar SA, Grontos S. EphB/ephrin-B interaction mediates adult stem cell attachment, spreading, and migration: implications for dental tissue repair. Stem Cells 2007; 25: 156-164 [PMID: 17204506 DOI: 10.1634/stemcells.2006-0373]

50 Wan PX, Wang BW, Wang ZC. Importance of the stem cell microenvironment for ophthalmological cellular-based therapy. World J Stem Cells 2015; 7: 448-460 [PMID: 25815128 DOI: 10.4255/wjsc.v7.i2.448]

51 Bonaventura G, Incontro S, Iemmolo R, La Cognata V, Barbagallo L, Costanzo E, Barcellona ML, Pellitteri G, Cavallerio S. Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res 2020; 379: 421-428 [PMID: 31776822 DOI: 10.1007/s00441-019-03109-4]

52 Ferro F, Spleat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol 2014; 1210: 91-115 [PMID: 25737163 DOI: 10.1007/978-1-4939-1435-7_8]

53 Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. Int J Mol Sci 2019; 20: [PMID: 30845639 DOI: 10.3390/ijms20051132]

54 Onizuka S, Iwata T. Application of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets for Periodontal Regeneration. Int J Mol Sci 2019; 20: [PMID: 31186660 DOI: 10.3390/ijms20122796]

55 Spagnuolo G, Codispoti B, Marrelli M, Rengo C, Rengo S, Tatullo M. Commitment of Oral-Derived Stem Cells in Dental and Maxillofacial Applications. Dent J (Basel) 2018; 6 [PMID: 30551556 DOI: 10.3390/dj6040072]

56 Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 2013; 54: 7544-7556 [PMID: 23911973 DOI: 10.1177/0019266113507595]

57 Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 2010; 120: 60-70 [PMID: 20051637 DOI: 10.1172/JCI41158]

58 Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature 2010; 465: 713-720 [PMID: 20535200 DOI: 10.1038/nature09228]

59 Wilems T, Vardhan S, Wu S, Sakiyama-Elbert S. The influence of miRNA and extracellular...
matrix molecules in driving neural stem cell fate within biomaterials. *Brain Res Bull* 2019; 148: 25-33 [PMID: 30898579 DOI: 10.1016/j.brainresbull.2019.03.004]

60 Conde MC, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SB. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. *Int Endod J* 2016; 49: 543-550 [PMID: 26101143 DOI: 10.1111/iej.12489]

61 Kanjavec T, Gustafson C, Ivanovska A, Ravannett C, Facchiodi B, Bosnakovski D. Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. *Carr Stem Cell Res Ther* 2019; 14: 320-326 [PMID: 3068044 DOI: 10.2174/1574888X14666190103170109]

62 La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L. Dermal pulp stem cells: state of the art and suggestions for a true translation of research into therapy. *J Dent* 2014; 42: 761-768 [PMID: 24589947 DOI: 10.1016/j.jdent.2014.02.018]

63 Tsutsui TW. Dental Pulp Stem Cells: Advances to Applications. *Cell Stem Cloning* 2020; 13: 33-42 [PMID: 32104005 DOI: 10.2147/SCC.AA.816759]

64 He Y, Lu F. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells. *Stem Cells Int* 2016; [PMID: 26977158 DOI: 10.1155/2016/2576257]

65 Sano H, Orbay H, Terashi H, Hyakusoku H, Ogawa R. Acellular adipose matrix as a natural scaffold for tissue engineering. *J Plast Reconstr Aesthet Surg* 2014; 67: 99-106 [PMID: 24035155 DOI: 10.1016/j.bjps.2013.08.006]

66 Monteiro BG, Loureiro RR, Cristovam PC, Covre JL, Gomes JAP, Kerkes I. Anniotic membrane as a biological scaffold for dental pulp stem cell transplantation in ocular surface reconstruction. *Arq Bras Oftalmol* 2019; 82: 32-37 [PMID: 30652765 DOI: 10.9535/0000-2749.20190009]

67 Edgar L, McNamara K, Wong T, Tamburrini R, Katarí R, Orlando G. Heterogeneity of Scaffolds Biomaterials in Tissue Engineering. *Materials (Basel)* 2016; 9 [PMID: 28773457 DOI: 10.3390/ma9050332]

68 Willerth SM, Sakijaya-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. *Stem Cells* 2008 [PMID: 20614610 DOI: 10.3824/s4013-2008-0052]

69 Alaribe FN, Manoto SL, Motaung SCKM. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. *Biologia* 2016; 71: 353-366 [DOI: 10.1515/biologi-2016-0056]

70 Zarrintaj P, Bakhshandeh B, Saeb MR, Sefat F, Rezaeian I, Ganjali MR, Ramakrishna S, Mozafari M. Oligoaniline-based conductive biomaterials for tissue engineering. *Acta Biomater* 2018; 16: 34-54 [PMID: 29622524 DOI: 10.1016/j.actbio.2018.03.042]

71 FitzGerald JF, Kumar AS. Biologic versus Synthetic Mesh Reinforcement: What are the Pros and Cons? *Clin Colon Rectal Surg* 2014; 27: 140-148 [PMID: 26106284 DOI: 10.1055/s-0034-1349455]

72 Wang C, Feng N, Chang P, Wang J, Yuan B, Cheng Y, Liu H, Yu J, Zou J, Ding J, Chen X. Injectable Cholesterol-Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. *Adv Healthc Mater* 2019; 8: e1900312 [PMID: 31094096 DOI: 10.1002/adhm.201900312]

73 Van Vlierberghe S, Dubrue P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. *Biomacromolecules* 2011; 12: 1387-1408 [PMID: 21388145 DOI: 10.1021/bm20083x]

74 Gao J, Park J, Park H, Lee JY. Hydrogel Biomaterials for Stem Cell Microencapsulation. *Polymers (Basel)* 2018; 10 [PMID: 30690922 DOI: 10.3390/polym10090997]

75 Gahwarar AK, Peppas NA, Khademhosseini A. Nano-composite hydrogels for biomedical applications. *Biotechnol Bioeng* 2014; 111: 441-453 [PMID: 24267428 DOI: 10.1002/bit.25160]

76 Sahab Negah S, Oliazadeh P, Jahanzahari Jahan-Abad A, Esghabadi A, Samini F, Ghiasemi S, Asghari A, Gorji A. Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. *Acta Biomater* 2019; 92: 132-144 [PMID: 31075516 DOI: 10.1016/j.actbio.2019.09.010]

77 Sahab Negah S, Khouei A, Samini F, Gorji A. Laminin-derived Ilk-Lys-Val-Ala-Val: a promising bioactive peptide in neural tissue engineering in traumatic brain injury. *Cell Tissue Res* 2018; 371: 223-236 [PMID: 29082446 DOI: 10.1007/s00441-017-2717-6]

78 Janik H, Marzec M. A review: fabrication of porous polyurethane scaffolds. *Mater Sci Eng C Mater Biol Appl* 2015; 48: 586-591 [PMID: 25579961 DOI: 10.1016/j.msec.2014.12.037]

79 Raeddoosteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. *J Biomater Polym Ed* 2017; 28: 1797-1825 [PMID: 28707508 DOI: 10.1080/09205833.2017.1354674]

80 Mantha S, Pillai S, Khayambashi P, Upadhayay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. *Materials (Basel)* 2019; 12 [PMID: 31614735 DOI: 10.3390/ma12033233]

81 Kapalcyzinska M, Kolenda T, Przybyla W, Zajeczowska M, Teresiaik I, Filas V, Ibsb M, Bilziak M, Lucewicz L, Lamperska K. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. *Arch Med Sci* 2018; 14: 910-919 [PMID: 30002710 DOI: 10.5114/ams.2016.63743]

82 Meng X, Leslie P, Zhang Y, Dong J. Stem cells in a three-dimensional scaffold environment. *Springerplus* 2014; 3: 80 [PMID: 24570851 DOI: 10.1186/2193-1801-3-80]

83 Huang BJ, Hu JC, Athanasious KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. *Biomaterials* 2016; 98: 1-22 [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018]

84 Galler KM, Eitd A, Schmalz G. Cell-free approaches for dental pulp tissue engineering. *J Endod* 2014; 40: S41-S45 [PMID: 24698692 DOI: 10.1016/j.joen.2014.01.014]

85 Alsborg E, von Recum HA, Mahoney MJ. Environmental cues to guide stem cell fate decision for tissue engineering applications. *Expert Opin Biol Ther* 2006; 6: 847-866 [PMID: 16918253 DOI: 10.1517/14712359.6.9.847]

86 Demarco FF, Casagrande L, Zhang Z, Dong Z, Tarquinio SB, Zeftin BD, Shi S, Smith AJ, Nör JE. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. *J Endod* 2010; 36: 1805-1811 [PMID: 20951292 DOI: 10.1016/j.joen.2010.08.031]
Dental Pulp Stem Cell Constructs.

Itoh Y, PMID: 901

endothelin-1 promote the odontogenic differentiation of dental pulp stem cells.

Liu M, PMID: 261-270

Odontogenic Differentiation of Human Dental Pulp Stem Cells.

Qu T, PMID: e94-100

Kim NR, PMID: 10.1016/j.biomaterials.2010.01.059

tissue engineering.

Huang W, PMID: 10.1177/0022034512466263

SHED requires MEK1/ERK signaling.

Prescott RS, PMID: 10.1089/ten.tea.2010.0615

Dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix regeneration.

Hori Y, PMID: 19117820

Acta Biomater 2009; 5: 969-982 [PMID: 19117820]

Ahmadian E, Eftekhar A, Dizaj SM, Sharifi S, Mokhtarpour M, Nasibova AN, Khalilov R, Samiei M. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int J Biol Macromol 2019; 140: 245-254 [PMID: 31419560]

Wang X, Li G, Liu Y, Yu W, Sun Q. Biocompatibility of biological material polyacetic acid with stem cells from human exfoliated deciduous teeth. Biomed Rep 2017; 6: 519-524 [PMID: 28515910]

Xu WP, Zhang W, Asrican R, Kim HJ, Kaplan DL, Yelick PC. Accurately shaped tooth bud derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A 2008; 14: 549-557 [PMID: 18532857]

Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater 2009; 5: 969-982 [PMID: 19117820]

Ahmadian E, Eftekhar A, Dizaj SM, Sharifi S, Mokhtarpour M, Nasibova AN, Khalilov R, Samiei M. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int J Biol Macromol 2019; 140: 245-254 [PMID: 31419560]

Wang X, Li G, Liu Y, Yu W, Sun Q. Biocompatibility of biological material polyacetic acid with stem cells from human exfoliated deciduous teeth. Biomed Rep 2017; 6: 519-524 [PMID: 28515910]

Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, Giannobile WV. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 2010; 31: 5945-5952 [PMID: 20471083]

Maspero FA, Ruffieux K, Müller B, Winternmantel E. Resorbable defect analog PLGA scaffolds using CO2 as solvent: structural characterization. J Biomed Mater Res B Appl Biomater 2010; 93: 247-257 [PMID: 19537787]

Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res A 2010; 93: 247-257 [PMID: 19537787]

Liu HC, E LL, Wang DS, Su F, Wu X, Shi ZP, Lv Y, Wang JZ. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A 2011; 17: 2417-2433 [PMID: 21563858]

Lu L, Fernandez AC, Ferrer GG, Pradas MM. Bioactive scaffolds mimicking natural dentin structure. Tissue Eng Part A 2010; 16: 4157-4166 [PMID: 20979163]

Huang W, Shi X, Ren L, Du C, Wang Y. PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 2010; 31: 4278-4285 [PMID: 20998006]

Huang CC, Narayanayam N, Kawashwky S, Dukakis MM. PEGylated biomimetic scaffolds for dental pulp regeneration. Biomaterials 2010; 31: 4278-4285 [PMID: 20998006]

Kim NR, Lee DH, Chung PH, Yang HC. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e94-100 [PMID: 19836716]

Qu T, Liu X. Nanoscale Geometric Control of Biodegradable Scaffolds for the Enhancement of Odontogenic Differentiation of Human Dental Pulp Stem Cells. J Mater Chem B 2013; 1: 4764-4772 [PMID: 24098854]

Hu L, Gao Z, Xu J, Zhu Z, Fan Z, Zhang C, Wang J, Wang S. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. Biomed Res Int 2017; 2017: 9342714 [PMID: 29387727]

Na S, Zhang H, Huang F, Wang W, Ding Y, Li D, Jin Y. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 2016; 10: 261-270 [PMID: 23365018]

Liu M, Zhao L, Hu J, Wang L, Li N, Wu D, Shi X, Yuan M, Hu W, Wang X. Endothelial cells and endothelin-1 promote the odontogenic differentiation of dental pulp stem cells. Mol Med Rep 2018; 18: 893-901 [PMID: 29845193]

Itoh Y, Sasaki JI, Hashimoto M, Kataza C, Hayashi M, Imazato S. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. J Dent Res 2018; 97: 1137-1143 [PMID: 29702010]
Granz CL et al. Dental stem cells and scaffolds

10.1177/0020324517722600

112 Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratagjczak J, Vangansweinkel T, Wolfs E, Bronckaers A, Hilkins P. Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. J Endod 2017, 43: S12-S16 [PMID: 28781991 DOI: 10.1016/j.joen.2017.06.001]

113 Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 2014, 102: 123-136 [PMID: 25052182 DOI: 10.1016/j.odonto.2014.01.016-e]

114 Jahanbazi Jahan-Abad A, Sahib Negah S, Hosseini Ravandi H, Ghaseemi S, Borhani-Haghighi M, Stummer W, Goeji A, Khaleghi Ghadiri M. Human Neural Stem/Progenitor Cells Derived From Epileptic Human Brain in a Self-Assembling Peptide Nanoscaffold Improve Traumatic Brain Injury in Rats. Mol Neurobiol 2018, 55: 9122-9138 [PMID: 29651746 DOI: 10.1007/s12051-018-1050-6]

115 Iosso V, Zhang Z, Grande RH, Niu JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013, 92: 970-975 [PMID: 24056227 DOI: 10.1177/002203451350772]

116 Erano S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J 2018; 51: 405-419 [PMID: 29047120 DOI: 10.1111/iji.12868]

117 Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Unumonyi S, Nakamura H, Matsushita K, Nakashima M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Trans Med 2013; 2: 521-533 [PMID: 23781108 DOI: 10.5966/secm.2012-0132]

118 Galler KM, D’Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, Schmalz G. Dental condensation coordinating cells fate in regenerative endodontics. J Endod 2011; 37: 1536-1541 [PMID: 22090458 DOI: 10.1016/j.joen.2011.08.027]

119 Yu S, Li J, Zhao Y, Li X, Ge L. Comparative Secretome Analysis of Mesenchymal Stem Cells From Dental Apical Papilla and Bone Marrow During Early Odonto/Osteogenic Differentiation: Potential Role of Transforming Growth Factor-β2. Front Physiol 2020; 11: 41 [PMID: 32210829 DOI: 10.3389/fphys.2020.00041]

120 Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, Chotkovski G, Eisig SB, Wong A, Mao JJ. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 2011; 90: 1013-1018 [PMID: 21586666 DOI: 10.1177/00220345114084826]

121 Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 2013; 39: 228-235 [PMID: 23321236 DOI: 10.1016/j.joen.2012.11.007]

122 Zein N, Harmouch E, Lutz JC, Fernandez De Grado G, Kuchler-Bopp S, Clauss F, Offner D, Hua G, Benkirane-Jessel N, Fioretti F. Polymer-Based Instructive Scaffolds for Endodonic Regeneration. Materials (Basel) 2019; 12 [PMID: 31344822 DOI: 10.3390/ma12041076]

123 Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl 2015; 30: 221-229 [PMID: 25791684 DOI: 10.1177/0885328215577296]

124 Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89: 842-847 [PMID: 20448245 DOI: 10.1177/0022034510370803]

125 Swenson ES, Kawahara R, Krause DS, Theise ND. Physiological variations of stem cell factor and stromal-derived factor-1 in murine models of liver injury and regeneration. Liver Int 2008; 28: 308-318 [PMID: 18290773 DOI: 10.1111/j.1478-3231.2007.00159.x]

126 Pan S, Dangaria S, Gopinathan G, Yan X, Lu X, Kolokythas A, Niu Y, Luan X. SDF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling - potential applications as a homing factor in dental pulp regeneration. Stem Cell Rev Rep 2013; 9: 655-667 [PMID: 23703692 DOI: 10.1007/s12015-013-9442-7]

127 Guo S, Lim D, Dong Z, Saunders TL, Ma PX, Marcelo CL, Ritchie HH. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev 2014; 23: 2883-2894 [PMID: 25027175 DOI: 10.1089/scd.2014.0066]

128 Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci 2018; 10: 31 [PMID: 30393833 DOI: 10.1034/jso.2018.0305-9]

129 Ravindran S, Zhang Y, Huang CC, George A. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Eng Part A 2014; 20: 92-102 [PMID: 23598633 DOI: 10.1089/ten.tea.2013.0192]

130 Yang B, Chen G, Li J, Zou Q, Xie D, Chen Y, Wang H, Zheng X, Long J, Tang W, Guo W, Tian W. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials 2012; 33: 2449-2461 [PMID: 22192537 DOI: 10.1016/j.biomaterials.2011.11.074]

131 Li X, Wang L, Su Q, Ye L, Zhou X, Song D, Huang D. Highly Proliferative Immortalized Human Dental Pulp Cells Retain the Odontogenic Phenotype when Combined with a Beta-Tricalcium Phosphate Scaffolding and BMP2. Stem Cells Int 2020; 2020: 4534128 [PMID: 32148517 DOI: 10.1155/2020/4534128]

132 Atalayin C, Tezel H, Dagie T, Karabay Yavasoglu NU, Oktem G, Kose T. In vivo performance of different scaffolds for dental pulp stem cells induced for odontogenic differentiation. Braz Oral Res 2016; 30: e120 [PMID: 27901202 DOI: 10.1590/1807-3170-bore.2016.vol30.0120]

133 Khayat A, Monteiro N, Smith EE, Pagini S, Zhang W, Khademhosseini A, Yelick PC. GelMA-Encapsulated iPSCs and HUVECs for Dental Pulp Regeneration. J Dent Res 2017; 96: 192-199 [PMID: 28106508 DOI: 10.1177/0022034516620005]

134 Dissanayaka WL, Hargreaves KM, Jin L, Samarayake YP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 2015; 21: 550-563 [PMID: 25207774 DOI: 10.1089/ten.tea.2014.0154]

135 Woloszyk A, Buschmann J, Waschkeis C, Stadlinger B, Mitsiadi TA. Human Dental Pulp Stem Cells and Gingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels. Front Physiol 2016; 7: 140 [PMID: 27148078 DOI: 10.3389/fphys.2016.00140]

136 Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, Zhang L, Song GT, Chen Z. Autohapy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials 2015; 44: 11-23 [PMID: 25617122 DOI: 10.1016/j.biomaterials.2014.12.006]
Granz CL et al. Dental stem cells and scaffolds

137 Ercal P, Pekozzer GG. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Adv Exp Med Biol 2020 [PMID: 32185696 DOI: 10.1007/978-3-030-45646-1_5]

138 Monterubbianesi R, Bencum M, Pagella F, Woloszyk A, Orsini G, Mitsiadis TA. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 2019; 9: 1761 [PMID: 30741963 DOI: 10.1038/s41598-018-37981-x]

139 Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, Xu X. An In Vitro Comparative Study of Multisource Derived Human Mesenchymal Stem Cells for Bone Tissue Engineering. Stem Cells Dev 2018; 27: 1634-1645 [PMID: 30234437 DOI: 10.1089/scd.2018.0119]

140 Moshaverinia A, Chen C, Akiyama K, Xu X, Chee WW, Schricker SR, Shi S. Encapsulated dermal-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res A 2013; 101: 3285-3294 [PMID: 23983201 DOI: 10.1002/jbm.a.35456]

141 Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8 [PMID: 31412678 DOI: 10.3390/cells8080886]

142 Moshaverinia A, Chen C, Xu X, Akiyama K, Ansari S, Zadeh HH, Shi S. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng Part A 2014; 20: 611-621 [PMID: 24070211 DOI: 10.1089/ten.tea.2013.0229]

143 Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretto Fernandes T, Franco Bueno D. The use of human dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J Tissue Eng 2018; 9: 2041731417752766 [PMID: 29275566 DOI: 10.1177/2041731417752766]

144 d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18: 75-83 [PMID: 19908196 DOI: 10.22203/ecn.v018a07]

145 Hernández-Monjaraz B, Santiago-Osorio E, Ledesma-Martínez E, Alcántar-Zavala A, Mendoza-Núñez VM. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report. J Int Med Res 2018; 46: 2983-2993 [PMID: 29911458 DOI: 10.1177/0300060518773244]

146 Tanikawa DYS, Pinheiro CCG, Almeida MCA, Oliveira CRGC, Coudry RA, Rocha DL, Bueno DF. Deciduous Dental Pulp Stem Cells for Maxillary Alveolar Reconstruction in Clef Lip and Palate Patients. Stem Cells Int 2020, 2020: 6234167 [PMID: 32256610 DOI: 10.1155/2020/6234167]

147 Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, PAino L, De Rosa A, Laino L, d’Aquino R, Tirino V, Papaccio G. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongous bone: biological and clinical implications. Stem Cells Transl Med 2013; 2: 316-324 [PMID: 23502599 DOI: 10.5966/scm.2012-0136]

148 Zhang W, Walboomers XJ, van Osch GI, van den Dolder J, Jansen JA. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 2008; 14: 285-294 [PMID: 18333781 DOI: 10.1089/tea.2007.0146]

149 Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okui T. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep 2019; 9: 5430 [PMID: 30931957 DOI: 10.1038/s41598-019-47141-w]

150 Chamieh F, Collignon AM, Coyac BR, Lesieur J, Ribes S, Sadoine J, Llorens A, Nicoletti A, Letourneur D, Colombier ML, Nachat SN, Bouchard P, Chaussain C, Rochefort YG. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Stem Cells 2016; 34: 38814 [PMID: 27934940 DOI: 10.1002/stem.38814]

151 Aimetti M, Ferrarotti F, Gamba MN, Giraud M, Romano F. Regenerative Treatment of Periodontal Intrabony Defects Using Autologous Dental Pulp Stem Cells: A 1-Year Follow-Up Case Series. Int J Periodontics Restorative Dent 2018; 38: 51-58 [PMID: 29240205 DOI: 10.11607/prd.3425]

152 Ferrarotti F, Romano F, Gamba MN, Quirico A, Giraud M, Audagna M, Aimetti M. Human intrabony defect regeneration with microgroats containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol 2018; 45: 841-850 [PMID: 29779220 DOI: 10.1111/jcpe.12931]

153 Monti M, Graziano A, Rizzo S, Perotti C, Del Fante C, d’Aquino R, Redi CA, Rodriguez Y Baeza R. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp. J Cell Physiol 2017; 232: 548-555 [PMID: 27277190 DOI: 10.1002/jcp.25452]

154 Graziano A, d’Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008; 4: 21-26 [PMID: 18300003 DOI: 10.1007/s12015-008-9013-5]

155 Fang TJ, Wang DH, Wang CY, Poongodi R, Liou NH, Liu JC, Hsu ML, Hong PD, Yang SF, Liu ML. Osteogenic prospective of deriving human dental stem cells in collagen matrix boost. J Mater Sci Mater Med 2017; 28: 192 [PMID: 29143185 DOI: 10.1007/s10856-017-6001-9]

156 Apel C, Böttger P, Salber I, Dhanasingh A, Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. Biomed Tech (Berl) 2018; 63: 261-269 [PMID: 28157689 DOI: 10.1515/bmt-2016-0141]

157 Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 2017; 78: 1246-1262 [PMID: 28575964 DOI: 10.1016/j.msec.2017.05.017]

158 Xiao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(β-L-lactide). Tissue Eng 2004; 10: 73-80 [PMID: 15069932 DOI: 10.1089/10763240422791718]

159 Covarrubias C, Cádiz M, Maureira M, Celhay I, Cuadra F, von Marttens A. Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: In vitro properties and in vivo bone regeneration. J Biomater Appl 2018; 32: 1155-1165 [PMID: 29451421 DOI: 10.1177/0885358218798042]

160 Wongsupa N, Nuntanaranont T, Kamlommatajakul S, Thaakruban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med 2017; 28: 77 [PMID: 28386853 DOI: 10.1007/s10856-017-5883-x]
Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2: 366-377 [PMID: 23741612 DOI: 10.1098/rsf.2011.0123]

Jiménez NT, Carlos Munévar J, González JM, Infante C, Lara SJF. In vitro response of dental pulp stem cells in 3D scaffolds: A regenerative bone material. Heliyon 2018; 4: e00775 [PMID: 30263971 DOI: 10.1016/heliyon.2018.e00775]

Li Y, Zhao S, Nan X, Wei H, Shi J, Li A, Gou J. Repair of human periodontal bone defects by autologous grafting stem cells derived from inflammatory dental pulp tissues. Stem Cell Res Ther 2016; 7: 141 [PMID: 27655627 DOI: 10.1186/s13287-016-0404-2]

Xavier Acsigina GA, Bernardi L, Braghiorilli DI, Filho MS, Pranke P, Medeiros Fossati AC. Nanofiber scaffolds support bone regeneration associated with pulp stem cells. Curr Stem Cell Res Ther 2014; 9: 330-337 [PMID: 24588068 DOI: 10.2174/1574888X09666140228123911]

Kuo TF, Lee SY, Wu HD, Poma M, Wu YW, Yang JC. An in vivo swine study for xenografts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs). Mater Sci Eng C Mater Biol Appl 2015; 50: 19-23 [PMID: 25746240 DOI: 10.1016/j.msec.2015.01.092]

Xia Y, Guo Y, Yang Z, Chen H, Ren K, Weir MD, Chow LC, Reynolds MA, Zhang F, Gu N, Xu HHK. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. Mater Sci Eng C Mater Biol Appl 2019; 104: 100955 [PMID: 31500064 DOI: 10.1016/j.msec.2019.109955]

Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003; 32: 127-135 [PMID: 12633784 DOI: 10.1016/s8756-3282(02)00950-x]

Collart-Dutilleul PY, Secret E, Panayotov I, Deville de Périère D, Martin-Palma RJ, Torres-Costa V, Martin M, Gergely C, Durand JO, Cunin F, Cuisinier FJ. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS Appl Interfaces 2014; 6: 1719-1728 [PMID: 24428049 DOI: 10.1021/ami404631e]

Niu LN, Sun JQ, Li QH, Jiao K, Shen LJ, Wu D, Yang F, Chen JH. Intrabifibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells. J Dent 2014; 42: 839-849 [PMID: 24705068 DOI: 10.1016/j.jdent.2014.03.016]

Kerativatyanan P, Tatullo M, Khariton M, Joshi P, Perinco B, Gharawar AK. Nanoengineered osteoinductive and elastomeric scaffolds for bone tissue engineering. ACS Biomater Sci Eng 2017; 3: 590-600 [DOI: 10.1021/acsbiomaterials.7b00029]

Karadzie I, Vuic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, Gliebic M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2015; 103: 350-357 [PMID: 24665062 DOI: 10.1002/jbmr.35189]

Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, Nør J, Clarkson BH, Liu J. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res 2014; 93: 1290-1295 [PMID: 25139367 DOI: 10.1177/0022034514547914]

Clark D, Wang X, Chang S, Czajka-Jakubowska A, Clarkson BH, Liu J. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. J Biomed Mater Res A 2015; 103: 639-645 [PMID: 24797761 DOI: 10.1002/jbmr.35215]

Jafar H, Abuarqoub D, Ababneh N, Hasan M, Al-Sotari S, Alsmal N, Ammoush M, Shraideh Z, Awidi A. hPL promotes osteogenic differentiation of stem cells in 3D scaffolds. PLoS One 2019; 14: e0215667 [PMID: 31063489 DOI: 10.1371/journal.pone.0215667]

Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS One 2016; 11: e0148225 [PMID: 26882351 DOI: 10.1371/journal.pone.0148225]

Fu Q, Ren H, Zheng C, Zhuang C, Wu T, Qn J, Wang Z, Chen Y, Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. J Biomater Appl 2018; 33: 477-487 [PMID: 30217334 DOI: 10.1177/0885328218799162]

Fahimiipour F, Dastimoghdameh E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaeed A, Lobner DC, Jafarzadeh Kashif T, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35: 990-1006 [PMID: 31027908 DOI: 10.1016/j.dental.2019.04.004]

Prahansati C, Nugraha AP, Saktianti T, Suardita K, Riawan W, Ernawati DS. Exfoliated Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS One 2016; 11: e0148225 [PMID: 26882351 DOI: 10.1371/journal.pone.0148225]

Fu Q, Ren H, Zheng C, Zhuang C, Wu T, Qn J, Wang Z, Chen Y, Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold. J Biomater Appl 2018; 33: 477-487 [PMID: 30217334 DOI: 10.1177/0885328218799162]

Fahimiipour F, Dastimoghdameh E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaeed A, Lobner DC, Jafarzadeh Kashif T, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35: 990-1006 [PMID: 31027908 DOI: 10.1016/j.dental.2019.04.004]

Fahimiipour F, Dastimoghdameh E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaeed A, Lobner DC, Jafarzadeh Kashif T, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35: 990-1006 [PMID: 31027908 DOI: 10.1016/j.dental.2019.04.004]

Prahansati C, Nugraha AP, Saktianti T, Suardita K, Riawan W, Ernawati DS. Exfoliated Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS One 2016; 11: e0148225 [PMID: 26882351 DOI: 10.1371/journal.pone.0148225]
Human Oral Mucosa Are Enriched in Neural Crest Cells.

Stem Cells Transl Med 2016; 5: 117-128 [PMID: 26582902 DOI: 10.5966/scmt.2015-011]

185 [Anitua E, Troya M, Zalduegui M. Progress in the use of dental pulp stem cells in regenerative medicine.

Cytotherapy 2018; 20: 479-498 [PMID: 29498086 DOI: 10.1080/14653249.2017.121011]

186 [Tatullo M, Codispoti B, Pacificio A, Palmieri F, Marrelli M, Pacifico L, Paduano F. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications.

Front Cell Dev Biol 2017; 5: 103 [PMID: 29259970 DOI: 10.3389/fcel.2017.00103]

187 [Luo L, He Y, Wang X, Key B, Lee BH, Li H, Ye Q. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair.

Stem Cells Int 2018; 2018: 1731289 [PMID: 29853908 DOI: 10.1155/2018/1731289]

188 [Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tsuchi R, Wako N, Imagra A, Hibi K, Kadowaki K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the spinal cord by multiple neuro-regenerative mechanisms.

J Clin Invest 2012; 122: 80-90 [PMID: 22133879 DOI: 10.1172/JCI95251]

189 [Chang CC, Chang KC, Tsai SJ, Chang HH, Lin CP. Neurogenic differentiation of dental pulp-derived stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media.

J Formos Med Assoc 2014; 113: 956-965 [PMID: 25438878 DOI: 10.1016/j.jfma.2014.09.003]

190 [Mayo V, Sawatari Y, Huang CY, Garcia-Godoy F. Neural crest-derived dental stem cells--where we are and where we are going.

J Dent 2014; 42: 1043-1051 [PMID: 24769107 DOI: 10.1016/j.jdent.2014.04.007]

191 [Wang D, Wang Y, Tian W, Pan J. Advances of tooth-derived stem cells in neural diseases treatments and nerve tissue regeneration.

Cell Prolif 2019; 52: e12572 [PMID: 30714230 DOI: 10.1111/cpr.12572]

192 [Das S, Bellare JR. Dental Pulp Stem Cells in Customized 3D Nanofibrous Scaffolds for Regeneration of Peripheral Nervous System.

Methods Mol Biol 2020; 2125: 157-166 [PMID: 30294747 DOI: 10.1007/7651_2018_194]

193 [Feng X, Lu X, Huang D, Xing J, Feng G, Jin G, Yi X, Li L, Li Y, Nie D, Chen X, Zhang L, Gu Z, Zhang X. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.

Cell Mol Neurobiol 2014; 34: 859-870 [PMID: 24789753 DOI: 10.1007/s10571-014-0063-8]

194 [Pisciotta A, Bertoni L, Riccio M, Mapelli J, Bigiani A, La Noce M, Orciani M, de Pol A, Carnevale G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells.

Front Physiol 2018; 9: 547 [PMID: 28982229 DOI: 10.3389/fphys.2018.00547]

195 [Laudani S, La Cognata V, Iemmolo R, Barcellona ML, Cavallaro S, Sinatra F. Effect of a Bone Marrow-Derived Extracellular Matrix on Cell Adhesion and Neural Induction of Dental Pulp Stem Cells.

Front Cell Dev Biol 2020; 8: 100 [PMID: 32211401 DOI: 10.3389/fcel.2020.00110]

196 [Soria JM, Sancho-Tello M, Esparza MA, Mirabet V, Bagun J, Monleón M, Carda B. Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation.

J Biomed Mater Res A 2011; 97: 85-92 [PMID: 21319296 DOI: 10.1002/jbm.a.33032]

197 [Zhang F, Song J, Zhang H, Huang E, Song D, Tollefson M, Wang J, Wang J, Mohammed M, Wei Q, Fan J, Lin J, Zou Y, Liu F, Hu X, Qu X, Chen L, Xu Y, Lu HH, Lee MJ, He TC, Ji P. Wnt and BMP Signaling by dental pulp cells as substrate for neural stem cell differentiation.

Cell Mol Neurobiol 2017; 37: 163-167 [PMID: 28491932 DOI: 10.1007/s10571-016-0091-y]

198 [Jung J, Kim JW, Moon HJ, Hong JY, Hyun JK. Characterization of Neurogenic Potential of Dental Pulp Stem Cells Cultured in Xeno-serum-Free Condition: In Vitro and In Vivo Assessment.

Stem Cells Int 2016; 2016: 6921097 [PMID: 27608776 DOI: 10.1155/2016/6921097]

199 [Li R, Li Y, Wu Y, Zhao Y, Chen H, Yuan Y, Xu K, Zhang H, Lu Y, Wang J, Li X, Jia X, Xiao J. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats.

Biomaterials 2018; 168: 24-37 [PMID: 29609091 DOI: 10.1016/j.biomaterials.2018.03.044]

200 [Zhang J, Lian M, Cao P, Bao G, Xu G, Sun Y, Wang L, Chen J, Wang Y, Feng G, Cui Z. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation.

Nervous Renal Regen 2017; 42: 1015-1025 [PMID: 28052222 DOI: 10.1016/j.srr.2016.01.0213-3]

201 [Zhong K, Feng G, Zhang J, Xing J, Huang D, Lian M, Zhang W, Wu W, Hu Y, Lu X, Feng X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation.

Int J Neurosci 2020; 1-9 [PMID: 32186218 DOI: 10.1080/00207454.2020.1744592]

202 [Li X, Yang C, Li L, Xiong J, Xie L, Yang B, Yu M, Feng L, Jiang Z, Guo W, Tian W. A therapeutic strategy for spinal cord defect: human dental follicle cells combined with aligned PCL/PLGA electrospun material.

BioMed Res Int 2015; 2015: 197183 [PMID: 25695050 DOI: 10.1155/2015/197183]

203 [Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration.

Tissue Eng Regen Med 2011; 5: 823-830 [PMID: 22002926 DOI: 10.1002/term.387]

204 [Martens W, Sanen K, Georgiou M, Struyts T, Bronckaers A, Ameloot M, Phillips J, Lambrecht I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro.

FASEB J 2014; 28: 1634-1643 [PMID: 2435203 DOI: 10.1096/fj.2013-243980]

205 [Sanen K, Martens W, Georgiou M, Ameloot M, Lambrecht I, Phillips J. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair?

Tissue Eng Regen Med 2017; 11: 336-3372 [PMID: 28052540 DOI: 10.1016/j.term.2249]

206 [Askari N, Yaghoubi MM, Shamsara M, Esmaili-Mahani S. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation.

Neuroscience 2015; 305: 197-208 [PMID: 26254831 DOI: 10.1016/j.neuroscience.2015.07.088]

207 [Ansari S, Diniz IM, Chen C, Sarrion P, Tamayo A, Wu BM, Moshaverinia A. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold.

Adv Healthc Mater 2017; 6 [PMID: 29076281 DOI: 10.1002/adhm.201700670]
Granz CL et al. Dental stem cells and scaffolds

208 Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep 2018; 8: 6634 [PMID: 29790835 DOI: 10.1038/s41598-018-24888-w]

209 Cui Y, Lu C, Meng D, Xiao Z, Hou X, Ding W, Kou D, Yao Y, Chen B, Zhang Z, Li L, Pan J, Dai J. Collagen scaffolds modified with CNTF and bFGF promote facial nerve regeneration in minipigs. Biomaterials 2014; 35: 7819-7827 [PMID: 24930851 DOI: 10.1016/j.biomaterials.2014.05.065]

210 Carnevale G, Piscotta A, Riccio M, Bertoni L, De Biasi S, Gibellini L, Zordani A, Cavallini GM, La Sala GB, Bruzzesi G, Ferrari A, Cossarizza A, de Pol A. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 2012; 6: e774-e785 [PMID: 22943583 DOI: 10.1002/term.2378]

211 Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A. Secreted Ectodomain of Static Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein 1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity. Stem Cells 2017; 35: 641-653 [PMID: 27862629 DOI: 10.1002/stem.2534]

212 Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8: e1000412 [PMID: 20613859 DOI: 10.1371/journal.pbio.1000412]

213 Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés MÁ. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent 2019; 11: e373-e381 [PMID: 31106187 DOI: 10.4137/jced.55574]

214 Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--Part II: Clinical applications. J Prosthodont Res 2012; 56: 229-248 [PMID: 23137671 DOI: 10.1016/j.jpor.2012.10.001]

215 Ahadian S, Khademhosseini A. Smart scaffolds in tissue regeneration. Regen Biomater 2018; 5: 125-128 [PMID: 29977595 DOI: 10.1016/j.rbym.007]

216 Khan R, Khan MH. Use of collagen as a biomaterial: An update. J Indian Soc Periodontol 2013; 17: 539-542 [PMID: 24174471 DOI: 10.4103/0972-124X.138333]

217 Chavornwatikarn B, Chantaramich S, Sirirat Y, Phongphan K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014; 3: 61-102 [PMID: 26798575 DOI: 10.1007/s40204-014-0026-7]

218 Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008; 14: 199-215 [PMID: 18544016 DOI: 10.1089/teng.2007.0435]

219 Jochenhoesel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M. Fibrin gel -- advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2001; 19: 424-430 [PMID: 11306307 DOI: 10.1016/s1010-7940(01)00624-8]

220 Aper T, Tebben OE, Steinhoff G, Haverich A. Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg 2004; 28: 296-302 [PMID: 15288634 DOI: 10.1016/j.ejvs.2004.05.016]

221 Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials (Basel) 2019; 12 [PMID: 30769821 DOI: 10.3390/ma12040656]

222 Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001; 101: 1869-1879 [PMID: 11710233 DOI: 10.1021/cr000108k]

223 Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 2018; 25: 90 [PMID: 30572957 DOI: 10.1186/s12929-018-0491-8]

224 Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med 2019; 13: 152-159 [PMID: 29971640 DOI: 10.1007/s11684-018-0628-x]

225 Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 2010; 5: 469-484 [PMID: 20394538 DOI: 10.2217/nmn.10.12]

226 Huh D, Hamilton GA, Inger DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21: 745-754 [PMID: 22033488 DOI: 10.1016/j.tcb.2011.09.003]

227 Ito Y, Tanabe Y, Sugawara K, Koshino M, Takahashi T, Tanigaki K, Aoki H, Chen M. Three-dimensional porous graphene networks expand graphene-based electronic device applications. Phys Chem Chem Phys 2018; 20: 6064-6033 [PMID: 29304002 DOI: 10.1039/c7cp07667c]

228 Nikolova MP, Chavalis MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4: 271-292 [PMID: 31709311 DOI: 10.1016/j.bioactmat.2019.10.005]

229 Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci 2020; 7: 33 [PMID: 32211418 DOI: 10.3389/fmolb.2020.00033]

230 Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sánchez JJ, Ladurner R, Thasler W, Damm G, Nussler AK. 3D Cultivation Techniques for Primary Human Hepacocytes. Microarrays (Basel) 2015; 4: 64-83 [PMID: 26702818 DOI: 10.3390/microarrays4010064]

231 Liu H, Cheng Y, Chen J, Chang F, Wang J, Ding J, Chen X. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomater 2018; 73: 103-111 [PMID: 29984624 DOI: 10.1016/j.actbio.2018.04.035]

232 Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME. Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats' critical-sized mandibular defects. World J Stem Cells 2020; 12: 55-69 [PMID: 3210275 DOI: 10.4252/wjsc.v12.i1.53]

233 Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikui T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14: 428-434 [PMID: 18983268 DOI: 10.1111/j.1601-0825.2007.01396.x]

234 Rosales-Ibanez R, Mateo NC, Rodriguez-Lorenzo L, Amairany RN, Maria FS. Potential Benefits from 3D Printing and Dental pulp stem cells in cleft palate treatments: an in vivo model study. Biomed J Sci Tech Res 2019; 16: 11950-11953 [DOI: 10.26717/BJSTR.2019.16.00253]

235 Sankar S, Sharma CS, Rath SN. Enhanced osteodifferentiation of MSC spheroids on patterned electrospray fiber mats - An advanced 3D double strategy for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 2019; 94: 703-712 [PMID: 30423757 DOI: 10.1016/j.msec.2018.10.025]
236 Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". *J Control Release* 2012; 161: 164-174 [PMID: 22516097 DOI: 10.1016/j.jconrel.2012.04.009]

237 Ruangsawasdi N, Zehnder M, Patcas R, Ghayor C, Siegenthaler B, Gjoksi B, Weber FE. Effects of Stem Cell Factor on Cell Homing During Functional Pulp Regeneration in Human Immature Teeth. *Tissue Eng Part A* 2017; 23: 115-123 [PMID: 27762658 DOI: 10.1089/ten.tea.2016.0227]

238 Bu NU, Lee HS, Lee BN, Hwang YC, Kim SY, Chang SW, Choi KK, Kim DS, Jang JH. In Vitro Characterization of Dental Pulp Stem Cells Cultured in Two Microsphere-Forming Culture Plates. *J Clin Med* 2020; 9 [PMID: 31963371 DOI: 10.3390/jcm9010242]

239 Xuan K, Li B, Guo H, Sun W, Kou X, He X, Zhang Y, Sun J, Liu A, Liao L, Liu S, Liu W, Hu C, Shi S, Jin Y. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. *Sci Transl Med* 2018; 10 [PMID: 30135249 DOI: 10.1126/scitranslmed.aaf3227]

240 De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. *Nat Cell Biol* 2019; 21: 801-811 [PMID: 31209293 DOI: 10.1038/s41556-019-0344-z]

241 Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. *Stem Cell Res Ther* 2019; 10: 68 [PMID: 30808416 DOI: 10.1186/s13287-019-1165-5]

242 Yu Y, Wu RX, Yin Y, Chen FM. Directing immunomodulation using biomaterials for endogenous regeneration. *J Mater Chem B* 2016; 4: 569-584 [PMID: 32262939 DOI: 10.1039/c5mb02199c]

243 Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. *Acta Biomater* 2019; 88: 15-31 [PMID: 30771535 DOI: 10.1016/j.actbio.2019.02.016]
