Regularized exponentially fitted methods for oscillatory problems

Dajana Conte1, Raffaele D’Ambrosio2, Giuseppe Giordano1, Beatrice Paternoster1

1 Department of Mathematics, University of Salerno
2 Department of Information Engineering and Computer Science and Mathematics, University of L’Aquila

E-mail: dajconte@unisa.it, raffaele.dambrosio@univaq.it, gigiordano@unisa.it, beapat@unisa.it

Abstract. The aim of this work is to regularize the expression of the coefficients, expressed in term of trigonometrical or hyperbolic functions, arising from the exponential fitting procedure, by reformulating them in terms of the so-called η_m functions. These coefficients are functions of the variable $\nu = \omega h$ where ω is the frequency and h is the step size. This reformulation eliminates the $0/0$ indeterminate form of the coefficients when ν tends to 0. This procedure makes the methods more accurate. A numerical evidence is also given.

1. Introduction

The theory of exponential fitting has been introduced in [69] (see also the monograph [74]) for the numerical treatment of problems exhibiting a pronounced oscillatory or hyperbolic behavior. As a matter of fact classical numerical methods may require a very small stepsize in order to accurately reproduce the qualitative behavior of the solution, therefore it is convenient to use special purpose formulae, i.e. numerical methods adapted to the problem, constructed in order to be exact on functions other than polynomials.

Exponentially fitted (ef) numerical methods have been developed in the literature for the numerical solution of a wide range of problems such as interpolation, numerical differentiation and quadrature [33, 34, 36, 38, 70, 72, 76, 75, 88], numerical solution of first order ordinary differential equations [4, 3, 30, 45, 46, 47, 56, 51, 58, 67, 70, 80, 81, 82, 83, 85, 86, 89], second order differential equations [43, 47, 48, 63, 71, 77], integral equations [16, 17, 18, 19, 20, 9], fractional differential equations [1], partial differential equations [15, 53, 54, 59, 59, 61], whereas different estimates for the parameter characterizing the fitting space have been proposed in [45, 44, 56].

A crucial point in the derivation of ef methods is the choice of the fitting space

$$
\mathcal{F} = \{1, t, t^2, \ldots, t^K, e^{\pm \mu t}, t e^{\pm \mu t}, t^2 e^{\pm \mu t}, \ldots, t^P e^{\pm \mu t}\},
$$

where $\mu = \omega$ or $\mu = i \omega$ depending on whether the exact solution belongs to the space spanned by hyperbolic functions or trigonometric functions, respectively.

In all these cases the coefficients of the methods are functions of the product $\nu = \omega h$ where ω is the frequency and h is the step size of the considered numerical method. An unpleasant feature
with the expressions of the coefficients in the ef-based formulae is that quite often these exhibit an undeterminacy of the form 0/0 when \(\nu \to 0 \). This feature can deteriorate the convergence of the method when \(h \to 0 \), and therefore additional expressions consisting in power expansions in \(\nu \) must be provided for use when \(\nu \) is smaller than some threshold value. In the paper [33] a method and a Mathematica program for the conversion of such coefficients to forms expressed in terms of functions \(\eta_m(Z) \) has been developed, where \(Z = (\mu h)^2 \), in order to eliminate this 0/0 behaviour. It is the purpose of this work to show the effects of this conversion on some relevant numerical methods, by showing as this conversion can restore the convergence of ef numerical methods.

The paper is organized as follows. In Section 2 we recall the procedure for the conversion of coefficients in terms of \(\eta_m(Z) \) functions [33]. In Section 3 we show the reformulation of the coefficients of method derived in [79] for the numerical solution of second order initial value problems having oscillatory solution. In Section 4 some numerical experiments confirming the benefits of this conversion are presented.

2. Procedure for the conversion of coefficients

The set of functions \(\eta_m(Z) \), \(m = -1, 0, 1, \ldots \) is defined as follows

\[
\eta_{-1}(Z) = \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z \leq 0 \\ \cosh(Z^{1/2}) & \text{if } Z > 0 \end{cases}, \quad \eta_0(Z) = \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0 \\ 1 & \text{if } Z = 0 \\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases}
\]

and, for \(Z \neq 0 \),

\[
\eta_m(Z) = [\eta_{m-2}(Z) - (2m - 1)\eta_{m-1}(Z)]/Z, \quad m = 1, 2, 3, ...
\]

while for \(Z = 0 \),

\[
\eta_m(0) = 1/(2m + 1)!!, \quad m = 1, 2, 3, ...
\]

The following theorem is crucial for the description of the procedure [33].

Theorem 1. The functions \(\eta_m(Z) \) satisfy the following relations:

\[
\eta_m(Z) = \eta_m(0) + ZD_m(Z), \quad m = -1, 0, 1, 2, \ldots
\]

where

\[
D_m(Z) = \eta_m(0) \left[\frac{1}{2} \eta_0^2 \left(\frac{Z}{4} \right) - \sum_{i=1}^{m+1} (2i - 3)!! \eta_i(Z) \right]
\]

Let \(\Phi(\nu) \) be a generic linear combination of trigonometrical or hyperbolic functions, with \(\Phi(0) = 0 \)

\[
\Phi(\nu) = \sum_{n=1}^{N} \alpha_n(\nu) \left[\prod_{i=1}^{l-1,n} \Psi_{-1}(\beta_i^{-1,n} \nu) \right] \left[\prod_{i=1}^{l_0,n} \Psi_0(\beta_i^{0,n} \nu) \right]
\]

where \(\Psi_{-1}(\nu) = \cos(\nu), \Psi_0(\nu) = \sin(\nu) \) in the trigonometrical case or \(\Psi_{-1}(\nu) = \cosh(\nu), \Psi_0(\nu) = \sinh(\nu) \) in the hyperbolic case, \(\alpha_n(\nu) \) are polynomial coefficients and \(\beta_i^{-1,n}, \beta_i^{0,n} \) are non negative constants.

The aim is to rewrite this coefficient in the form:

\[
\Phi(\nu) = v^r Z^k F(Z)
\]
where $F(Z) \neq 0$, and

$$F(Z) = \sum_{n=1}^{M} a_n(Z) \prod_{j=0}^{k} \left[\prod_{i=1}^{l_j,n} \eta_j(b_i^{j,n}Z) \right]$$

(9)

where, $M \geq N, b_i^{j,n}$ and $a_n(Z)$ is a polynomial in the variable Z.

The first step consist in converting the function $\Phi(\nu)$ in terms of $\eta_{-1}(Z)$ and $\eta_0(Z)$ functions, such that $\Phi(\nu) = v^r f(Z)$, where

$$f(Z) = \sum_{n=1}^{N} a_n(Z) \left[\prod_{i=1}^{l_{-1,n}} \eta_{-1}(b_i^{0,n}Z) \right] \left[\prod_{i=1}^{l_{0,n}} \eta_0(b_i^{0,n}Z) \right]$$

(10)

Now, two situations are possible. If $f(0) \neq 0$ the procedure is stopped. If $f(0) = 0$, the procedure continues until

$$f(Z) = Z^k F(Z)$$

(11)

where, $F(Z) \neq 0$.

The procedure starts by placing $f^{(0)}(Z) = f(Z)$ and determining the function $f^{(s+1)}$ such that

$$f^{(s)}(Z) = Z f^{(s+1)}$$

(12)

for $s = 0, \ldots, k - 1$.

If $k = 1$, the expression given by Theorem 1 for $\eta_{-1}(Z), \eta_0(Z)$ is substituted in $f^{(0)}(Z)$, and in this way $f^{(1)}(Z)$ is obtained and $f^{(1)}(0) \neq 0$. If $k > 1$ for each step $s = 0, \ldots, k - 2$, if $f^{(s)}(0) = 0$ then

$$f^{(s+1)}(Z) = \frac{f^{(s)}(Z)}{Z}.$$

(13)

If $f^{(s)}(0) \neq 0$, then it is possible to write

$$f^{(s)}(Z) = f_0^{(s)}(Z) + Z f_1^{(s)}(Z) + \ldots + Z^M f_M^{(s)}(Z)$$

(14)

where $f_0^{(s)}(Z)$ is a linear combination of products of functions $\eta_j(Z)$ with $j = -1, 0$ for $s = 0$ and $j = 0, \ldots, s$ for $s > 0$ and $f_0^{(s)}(0) \neq 0$.

By substituting in $f_0^{(s)}(Z)$ the expression given by theorem 1, and the expression of $f^{(s+1)}$ is obtained.

At the second last step

$$f^{(k-1)}(Z) = f_0^{(k-1)}(Z) + Z f_1^{(k-1)}(Z) + \ldots + Z^{M_k} f_{M_k}^{(k-1)}(Z)$$

(15)

where $f_0^{(k-1)}(Z)$ is a linear combination of functions η_j for $j = 1, \ldots, k-1$ and η_0^{2j} for $j = 1, \ldots, k$.

If $f_0^{(k-1)}(0) = 0$, then

$$f^{(k)}(Z) = \frac{f^{(k-1)}(Z)}{Z}.$$

(16)

Instead, if $f_0^{(k-1)}(0) \neq 0$, then for $s = k-1$, in $f_0^{(k-1)}(Z)$ the expression given by 1 is substituted. In this way, $f^{(k)}(Z)$ with $f^{(k)}(0) \neq 0$ is determined. Finally the reformulated coefficient is $F(Z) = f^{(k)}(Z)$.
3. Reformulation of the coefficients

As an example we consider the method developed in Simos et al. [79] to solve the second order IVP

\[
\begin{align*}
 y'' &= f(x, y(x)) \\
 y(x_0) &= y_0 \\
 y'(x_0) &= y'_0
\end{align*}
\]

(17)

The numerical scheme is of the form

\[
y_{n+1} + d_0y_n + d_1y_{n-1} + d_2y_{n-2} + d_1y_{n-3} + d_0y_{n-4} + y_{n-5} = h^2 \left(\tilde{d}_0y''_{n+1} + \tilde{d}_1y''_{n-1} + d_2y''_{n-2} + \tilde{d}_1y''_{n-3} + \tilde{d}_0y''_{n-4} \right)
\]

(18)

with,

\[
y_{n+1} + c_0y_n + c_1y_{n-1} + c_2y_{n-2} + c_1y_{n-3} + c_0y_{n-4} + y_{n-5} = h^2 \left(\tilde{c}_0y''_{n+1} + \tilde{c}_1y''_{n-1} + \tilde{c}_2y''_{n-2} + \tilde{c}_1y''_{n-3} + \tilde{c}_0y''_{n-4} \right).
\]

(19)

The classical coefficients, derived in [64], assume the form

\[
\tilde{c}_0 = \frac{51484823}{17645880}, \quad \tilde{c}_1 = \frac{23362512}{735245}, \quad \tilde{c}_2 = \frac{723342859}{8822940}
\]

(20)

\[
c_0 = \frac{12519323}{504168}, \quad c_1 = \frac{2712635}{63021}, \quad c_2 = \frac{551}{4},
\]

\[
d_0 = -\frac{23362512}{735245}, \quad d_1 = \frac{84437}{105035}, \quad d_2 = -\frac{9}{5},
\]

\[
\tilde{d}_0 = \frac{1}{15}, \quad \tilde{d}_1 = \frac{209837}{210070}, \quad \tilde{d}_2 = \frac{320221}{315105}, \quad \tilde{d}_3 = \frac{638003}{315105}
\]

(21)

By applying the exponential fitting technique the following coefficients are derived in [79]

\[
\tilde{c}_0 = -\frac{1}{2016762672\nu^6\sin^3(\nu)} \left(3(4965191\nu^4 - 82890689\nu^2 + 22589400)\sin(\nu) \right.
\]

\[
- 48(639329-2 - 308970)\sin(2\nu) - (4965191\nu^4 - 8059857\nu^2 - 68357160)\sin(3\nu)
\]

\[
+ 575250(3\nu^2 - 10)\sin(4\nu) - (59935259\nu^2 - 95582232)\nu\cos(\nu)
\]

\[
- 32(437993\nu^2 + 2928636)\nu\cos(2\nu) - 3(4965191\nu^2 + 13671432)\nu\cos(3\nu)
\]

\[
+ 7562500\nu\cos(4\nu) + 48(875986\nu^2 - 759933)\nu \right)
\]

(22)

\[
\tilde{c}_1 = \frac{1}{10083366016\nu^5\sin^2(\nu)} \left(-24(875986\nu^4 + 231349\nu^2 - 617940)\sin(\nu) \right.
\]

\[
- 18(14126869\nu^2 - 7562520)\sin(2\nu) + 4(1751972\nu^4 + 9751899\nu^2 - 15198660)\sin(3\nu)
\]

\[
+ 3(4965191\nu^2 + 22785720)\sin(4\nu) + 3781260(3\nu^2 - 20)\sin(5\nu)
\]

\[
+ 64(875986\nu^2 - 2650563)\nu\cos(\nu) - 12(14126869\nu^2 - 4537512)\nu\cos(2\nu)
\]

\[
- 2(4965191\nu^2 + 13671432)\nu\cos(4\nu) + 60500160\nu\cos(5\nu)
\]

\[
+ 6(4965191\nu^2 + 13671432)\nu \right)
\]

(23)
\[
\hat{c}_2 = \frac{1}{2016672\nu^6 \sin^3(\nu)} \left(6(42380607\nu^4 + 125300744\nu^2 - 45276960)\sin(\nu)
ight.
- 24(2281313\nu^2 - 679290)\sin(2\nu) - 3(28253738\nu^4 - 74403153\nu^2 + 113732280)\sin(3\nu)
- 48(1821301\nu^2 - 599314)\sin(4\nu) - 3(4965191\nu^2 + 22785720)\sin(5\nu)
- 7562520(\nu^2 - 10)\sin(6\nu) + 160(906559\nu^2 - 2390292)\nu\cos(\nu)
- 16(1751972\nu^2 - 21371481)\nu\cos(2\nu) + 9(33218929\nu^2 + 459640)\nu\cos(3\nu)
- 32(437993\nu^2 + 6709896)\nu\cos(4\nu) - (4965191\nu^2 + 13671432)\nu\cos(5\nu)
- 45375120\nu\cos(6\nu) - 288(437993\nu^2 - 852624)\nu\cos(7\nu) - 6776017920(2 + Z\eta_0(Z/4) - 2*Z\eta_1(Z))^3 \right)
\]

The other coefficients coincide with the ones derived in the classical way (21). We also observe that, for \(\nu \to 0\), the \(\hat{c}\) coefficients tend to classical ones

\[
\begin{align*}
\lim_{\nu \to 0} \hat{c}_0 &= \frac{51484823}{17645880}, \\
\lim_{\nu \to 0} \hat{c}_1 &= \frac{23362512}{735245}, \\
\lim_{\nu \to 0} \hat{c}_2 &= \frac{723342859}{8822940}.
\end{align*}
\]

By applying the procedure described in the previous section, the modified coefficients are:

\[
\begin{align*}
\hat{c}_0 &= \frac{-1071987210\eta_0^4(Z/64) - 535993605\eta_0^2(Z/256)(1 + \eta_0(Z/64)) + \ldots}{13552035840(2 + Z\eta_0^2(Z/4) - 2*Z\eta_1(Z))^3} \\
\hat{c}_1 &= \frac{-2031821820\eta_0^4(Z/64) - 1015910910\eta_0^2(Z/256)(1 + \eta_0(Z/64)) + \ldots}{13552035840(2 + Z\eta_0^2(Z/4) - 2*Z\eta_1(Z))^3} \\
\hat{c}_2 &= \frac{-2146293450\eta_0^4(Z/64) + 1073146725\eta_0^2(Z/256)(1 + \eta_0(Z/64)) + \ldots}{6776017920(2 + Z\eta_0^2(Z/4) - 2*Z\eta_1(Z))^3}
\end{align*}
\]

The full expression of the coefficients can be obtained using the Mathematica modules in [33]. Figures 1, 2, 3 show the behaviour of the three coefficients.

Figure 1. Coefficient \(c_0\) in correspondence of \(\omega = 10\)

In particular, we observe that the coefficients \(\hat{c}_0, \hat{c}_1\) and \(\hat{c}_2\), expressed in terms of \(\eta_m(Z)\) functions are converging on the classical value while the coefficient \(\hat{c}_0, \hat{c}_1\) and \(\hat{c}_2\) explode indefinitely.
4. Numerical experiments
In order to show how the coefficients conversion in terms of $\eta_m(Z)$ affects the convergence of the method, we consider the following problem:

$$
\begin{align*}
 y''(t) &= -100y(t) + 99\sin(t) \\
 y(0) &= 1 \\
 y'(0) &= 11
\end{align*}
$$

(29)

with $t \in [0, 20\pi]$, whose analytic solution is $y(t) = \cos(10t) + \sin(10t) + \sin(t)$.

We compare the results obtained by applying

- EF: the ef method (18)-(19) with coefficients (22), (21);
- EF converted: the ef method (18)-(19) with converted coefficients (26)–(28),(21).

Figure 4 shows the error behaviour applied to previous problem. We observe that this reformulation of the coefficients restores the convergence of the method.
5. Conclusions

This paper has provided a regularized formulation of exponentially fitted methods, eliminating the effects in indeterminacy arising in the coefficients when the employed stepsize is small. These methods are here intended for second order differential equations (whose relevant role in a wide range of physical problems is well known, see [68] and references therein) and the numerical experiments confirm the effectiveness of the approach. Future works will be oriented in the regularization of exponentially fitted methods for other kind of problems, such as PDEs [15, 53, 54, 59, 59, 61], as well as to the consequences of the approach in terms of stability properties of the corresponding methods.

Acknowledgments

The authors are members of the INdAM Research group GNCS. This work has been supported by GNCS-INDAM.

References

[1] K. Burrage, A. Cardone, R. D’Ambrosio, B. Paternoster, Numerical solution of time fractional diffusion systems, Appl. Numer. Math. 116, 82-94 (2017).
[2] J. Butcher, R. D’Ambrosio, Partitioned general linear methods for separable Hamiltonian problems, Appl. Numer. Math. 117, 69–86 (2017).
[3] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Explicit Runge-Kutta methods for initial value problems with oscillating solutions, J. Comput. Appl. Math. 76 (1-2), 195-212 (1996).
[4] M. Calvo, J.I. Montijano, L. Rández, M. Van Daele, Exponentially fitted fifth-order two step peer explicit methods, AIP Conf. Proc. 1648, 150015-1 – 150015-4 (2015).
[5] G. Capobianco, D. Conte, An efficient and fast parallel method for Volterra integral equations of Abel type, J. Comput. Appl. Math., Vol 189/1-2 481–493 (2006).
[6] G. Capobianco, D. Conte, I. Del Prete, High performance numerical methods for Volterra equations with weakly singular kernels, J. Comput. Appl. Math., 228 (2009).
[7] G. Capobianco, D. Conte, B. Paternoster, Construction and implementation of two-step continuous methods for Volterra Integral Equations, Appl. Numer. Math. 119, 239-247 (2017).
[8] A. Cardone, D. Conte, Multistep collocation methods for Volterra Integro-Differential Equations, Appl. Math. Comput., 221, 770-785 (2013).
[9] A. Cardone, D. Conte, R. D’Ambrosio, B. Paternoster, On the numerical treatment of selected oscillatory evolutionary problems, AIP Conf. Proc., 1863, 160004 (2017).
[10] A. Cardone, D. Conte, R. D’Ambrosio, B. Paternoster, Stability Issues for Selected Stochastic Evolutionary Problems: A Review, Axioms, doi: 10.3390/axioms7040091 (2018).
[11] A. Cardone, D. Conte, R. D’Ambrosio, B. Paternoster, Collocation Methods for Volterra Integral and Integro-Differential Equations: A Review, Axioms 7(3), 45 (2018).
[12] A. Cardone, D. Conte, B. Paternoster, A family of Multistep Collocation Methods for Volterra Integro-Differential Equations, AIP Conf. Proc. 1168 (1), 2009.
[13] A. Cardone, D. Conte, B. Paternoster, Two-step collocation methods for fractional differential equations, Discr. Cont. Dyn. Sys. – B 23(7), 2709-2725 (2018).
[14] A. Cardone, R. D’Ambrosio, B. Paternoster, A spectral method for stochastic fractional differential equations, Appl. Numer. Math. 139, 115–119 (2019).
[15] A. Cardone, R. D’Ambrosio, B. Paternoster, Exponentially fitted IMEX methods for advection-diffusion problems, J. Comput. Math. 316, 100–108 (2017).
[16] A. Cardone, R. D’Ambrosio, B. Paternoster, High order exponentially fitted methods for Volterra integral equations with periodic solution, Appl. Numer. Math. 114C, 18–29 (2017).
[17] A. Cardone, M. Ferro, L. Gr. Ixaru, B. Paternoster, A Family of Exponential Fitting Direct Quadrature Methods for Volterra Integral Equations, AIP Conf. Proc. 1281, 2204–2207 (2010).
[18] A. Cardone, L. Gr. Ixaru, B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms 55, 467–480 (2010).
[19] A. Cardone, L. Gr. Ixaru, B. Paternoster, G. Santomauro, Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution, Math. Comput. Simulat. 110 (C), 125–143 (2015).
[20] A. Cardone, B. Paternoster, G. Santomauro, Exponential fitting quadrature rule for functional equations, AIP Conf. Proc. 1479, 1169–1172, Springer (2012).
[21] V. Citro, R. D’Ambrosio, Nearly conservative multivalue methods with extended bounded parasitism, Appl. Numer Math., doi: 10.1016/j.apnum.2019.12.007 (2019).
[22] V. Citro, R. D’Ambrosio, S. Di Giovacchino, A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations, Appl. Math. Lett. 102, 106098 (2020).
[23] V. Citro, R. D’Ambrosio, Long-term analysis of stochastic theta-methods for damped stochastic oscillators, Appl. Numer Math. 150, 18-26 (2020).
[24] R. D’Ambrosio, B. Paternoster, P-stable general Nystrom methods for \(y'' = f(x,y) \), J. Comput. Appl. Math. 262, 271-280 (2014).
[25] D. Conte, G. Califano, Domain Decomposition Methods for a Class of Integro-Partial Differential Equations, AIP Conf. Proc. 1776, 090050 (2016).
[26] D. Conte, G. Califano, Optimal Schwarz Waveform Relaxation for fractional diffusion-wave equations, Appl. Numer. Math. 127, 125-141 (2018).
[27] D. Conte, R. D’Ambrosio, G. Izzo, Z. Jackiewicz, Natural Volterra Runge-Kutta methods, Numer. Algor. 65 (3), 421–445 (2014).
[28] D. Conte, R. D’Ambrosio, Z. Jackiewicz, B. Paternoster, A practical approach for the derivation of algebraically stable two-step Runge-Kutta methods, Math. Model. Anal, 17 (1), 65-77 (2012).
[29] D. Conte, R. D’Ambrosio, Z. Jackiewicz, B. Paternoster, Numerical search for algebraically stable two-step almost collocation methods, J. Comput. Appl. Math. 239, 304-321 (2013).
[30] D. Conte, R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted explicit two-step peer methods, J. Numer. Math. 27(2), 69–83 (2019).
[31] D. Conte, R. D’Ambrosio, B. Paternoster,GPU acceleration of waveform relaxation methods for large differential systems, Numer. Algor., 71(2), 293–310 (2016).
[32] D. Conte, R. D’Ambrosio, B. Paternoster, On the stability of \(\vartheta \)-methods for stochastic Volterra integral equations, Discr. Cont. Dyn. Sys. – Series B 23(7), 2695–2708 (2018).
[33] D. Conte, E. Esposito, L. Gr. Ixaru, B. Paternoster, Some new uses of the \(\eta_{\vartheta}(Z) \) functions, Comput. Phys. Commun. 181, 128–137 (2010).
[34] D. Conte, L. Gr. Ixaru, B. Paternoster, G. Santomauro, Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval, J. Comput. Appl. Math. 255, 725–736 (2014).
[35] D. Conte, B. Paternoster, A Family of Multistep Collocation Methods for Volterra Integral Equations, AIP Conf. Proc. 936, 128-131 Springer (2007).
[36] D. Conte, B. Paternoster, Modified Gauss-Laguerre Exponential Fitting Based Formulae, J. Sc. Comp. 69 (1), 227—243 (2016).
[37] D. Conte, B. Paternoster, Parallel methods for weakly singular Volterra Integral Equations on GPUs, Appl. Numer. Math. 114,30-37 (2017).
[38] D. Conte, B. Paternoster, G. Santomauro, An exponentially fitted quadrature rule over unbounded intervals, AIP Conf. Proc. 1479, 1173–1176 Springer (2012).
[39] D. Conte, S. Shahmorad, Y. Talaei, New fractional Lanczos vector polynomials and their application to
system of Abel–Volterra integral equations and fractional differential equations, J. Comput. Appl. Math. 366,112409 (2020).

[40] R. D’Ambrosio, G. De Martino, B. Paternoster, Numerical integration of Hamiltonian problems by G-symplectic methods, Adv. Comput. Math. 40(2), 553-575 (2014).

[41] R. D’Ambrosio, G. De Martino, B. Paternoster, Order conditions of general Nyström methods, Numer. Algor., 65(3) 579-595 (2014).

[42] R. D’Ambrosio, G. De Martino, B. Paternoster. General Nyström methods in Nordsieck form: error analysis, J. Comput. Appl. Math. 292, 694-702 (2016).

[43] R. D’Ambrosio, E. Esposito, B. Paternoster, Exponentially fitted two-step hybrid for $y'' = f(x, y)$, J. Comp. Appl. Math. 235, 4888–4897, (2011).

[44] R. D’Ambrosio, E. Esposito, B. Paternoster, Exponentially fitted two-step Runge-Kutta methods: construction and parameter selection, Appl. Math. Comput 218, 7468–7480 (2012).

[45] R. D’Ambrosio, E. Esposito, B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order ordinary differential problems. J. Math. Chem. 50, 155–168 (2012).

[46] R. D’Ambrosio, E. Esposito, B. Paternoster, Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection, Appl. Math. Comp. 218 (14), 7468–7480 (2012).

[47] R. D’Ambrosio, M. Ferro, B. Paternoster, Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations, Math. Comput. Simulat., 81, 1068–1084 (2011).

[48] R. D’Ambrosio, M. Ferro, B. Paternoster, Two-step hybrid collocation methods for $y'' = f(x, y)$, Appl. Math. Lett. 22, 1076–1080 (2009).

[49] R. D’Ambrosio, E. Hairer, Long-term stability of multi-value methods for ordinary differential equations, J. Sci. Comput. 60(3), 627-640 (2014).

[50] R. D’Ambrosio, E. Hairer, C. Zbinden, G-symplecticity implies conjugate-symplecticity of the underlying one-step method, BIT Numer. Math. 53, 867-872 (2013).

[51] R. D’Ambrosio, L. Gr. Ixaru, B. Paternoster, Construction of the ef-based Runge-Kutta methods revisited, Comput. Phys. Commun. 182, 322-329 (2011).

[52] R. D’Ambrosio, G. Izzo, Z. Jackiewicz, Search for highly stable two-step Runge-Kutta methods for ODEs, Appl. Numer. Math. 62(10), 1361-1379 (2012).

[53] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts, Comput. Math. Appl. 74(5), 1029–1042 (2017).

[54] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems, Comp. Phys. Commun. 226, 55–66 (2018).

[55] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Numerical preservation of long-term dynamics by stochastic two-step methods, Discr. Cont. Dyn. Sys. - Series B 23(7), 2763–2773 (2018).

[56] R. D’Ambrosio, M. Moccaldi, B. Paternoster, F. Rossi, On the employ of time series in the numerical treatment of differential equations modelling oscillatory phenomena, Communications in Computer and Information Science 708, 179-187 (2017).

[57] R. D’Ambrosio, M. Moccaldi, B. Paternoster, F. Rossi, Adapted numerical modelling of the Belousov–Zhabotinsky reaction, J. Math. Chem., doi:10.1007/s10910-018-0922-5 (2018).

[58] R. D’Ambrosio, B. Paternoster, Exponentially fitted singly diagonally implicit Runge-Kutta methods, J. Comput. Appl. Math. , 263, 277–287 (2014).

[59] R. D’Ambrosio, B. Paternoster, Numerical solution of a diffusion problem by exponentially fitted finite difference methods. SpringerPlus 3:425 (2014).

[60] R. D’Ambrosio, B. Paternoster, A general framework for numerical methods solving second order differential problems. Math. Comput. Simul. 110(1), 113-124 (2015).

[61] R. D’Ambrosio, B. Paternoster, Numerical solution of reaction-diffusion systems of λ-ω type by trigonometrically fitted methods, J. Comput. Appl. Math. 294, 436-445 (2016).

[62] R. D’Ambrosio, B. Paternoster, Multivalue collocation methods free from order reduction, Journal of Computational and Applied Mathematics, 112515 (2019).

[63] R. D’Ambrosio, B. Paternoster, G. Santomauro, Revised exponentially fitted Runge-Kutta-Nyström methods, Appl. Math. Lett., 30, 56–60 (2014).

[64] Fang J., Liu C., Hsu C., Simos T. E., Tsitouras C., Explicit hybrid six-step, sixth orider, fully symmetric methods for solving $y'' = f(x, y)$, Mathematical Methods in the Applied Sciences, 42, 3305-3314 (2019).

[65] M.R. Garvie, J.F. Blowey, A reaction-diffusion system of λ-ω type. Part II: Numerical analysis, Euro. J. Appl. Math. 16, 621–646 (2005).

[66] J.M. Greenberg, Spiral waves for λ-ω systems, Adv. Appl. Math. 2, 450–455 (1981).

[67] Gautschi, W., Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3, 381–397 (1961).

[68] Hairer, E., Lubich, C., Wanner, G., Geometrical Numerical Integration. Structure-Preserving Algorithms for
Ordinary Differential Equations, II ed. Springer Berlin (2006).

[69] Ixaru, L. Gr., Operations on Oscillatory Functions, Comput. Phys. Commun. 105, 1–19 (1997).
[70] Ixaru, L. Gr., Runge-Kutta method with equation dependent coefficients, Comput. Phys. Commun. 183, 63–69 (2012).
[71] L. Gr. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(y'' = f(x, y) \)
J. Comput. Appl. Math. 106 (1), (1999) 87–98.
[72] Ixaru, L. Gr., Paternoster, B., A Gauss quadrature rule for oscillatory integrands, Comput. Phys. Commun. 133, 177–188 (2001).
[73] L. Gr. Ixaru, Numerical methods for differential equations and applications, Reidel, Dordrecht-Boston-Lancaster, 1984.
[74] Ixaru, L. Gr., Vanden Berghe, G., Exponential Fitting, Kluwer, Boston-Dordrecht-London (2004).
[75] Kim, J. K., Cools, R., Ixaru, L. Gr., Extended quadrature rules for oscillatory integrands, Appl. Numer. Math. 46, 59–73 (2003).
[76] Kim, J. K., Cools, R., Ixaru, L. Gr., Quadrature rules using first derivatives for oscillatory integrands, J. Comput. Appl. Math. 140, 479–497 (2002).
[77] Kirichuka, A., The Number of Solutions to the Boundary Value Problem for the Second Order Differential Equation with Cubic Nonlinearity, Trans. Math. 18, 230–236 (2019).
[78] N. Kopell, L.N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math. 52, 291–328 (1973).
[79] Liu C., Hsu C., Simos T.E., Tsitouras Ch., Phase-fitted, six step methods for solving \(x'' = f(t, x) \), Mathematical Methods in the Applied Sciences, 42, 3942–3949 (2019).
[80] Montijano, J. I., Rández, L., Van Daele, M., Calvo, M., Functionally Fitted Explicit Two Step Peer Methods, J. Sci. Comput. 64(3), 938–958 (2014).
[81] Ozawa, K., A functional fitting Runge-Kutta method with variable coefficients, Jpn. J. Ind. Appl. Math. 18, 107-130 (2001).
[82] Paternoster, B., Runge-Kutta(-Nystöm) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math. 28, 401 – 412 (1998)
[83] B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary, Comput. Phys. Commun. 183, 2499–2512 (2012).
[84] M.J. Smith, J.D.M. Rademacher, J.A. Sherratt, Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Systems 8, 1136–1159 (2009).
[85] Simos, T. E., A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation, IMA Journ. of Numerical Analysis, 21, 919–931 (2001).
[86] Simos, T. E., An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Comm. 115, 1-8 (1998).
[87] Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T., Exponentially fitted explicit Runge-Kutta methods, Comput. Phys. Commun. 123, 7–15 (1999).
[88] Van Daele, M., Vanden Berghe, G., Vande Vyver, H. Exponentially fitted quadrature rules of Gauss type for oscillatory integrands. Appl. Numer. Math. 53, 509–526 (2005).
[89] Van Daele, M., Van Hecke, T., Vanden Berghe, G., De Meyer, H., Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs, Numerical methods for differential equations, J. Comput. Appl. Math. 111 (1-2), 37-47 (1999).
[90] Weiner, R., Biemann, K., Schmitt, B. A., Podhaisky, H., Explicit two-step peer methods, Computers and Mathematics with Applications 55, 609-619 (2008).