Green Space Ecological Planning Based on Carbon-oxygen Balance in Shenyang, China

Yu Tang¹, Tiemao Shi¹ and Fusheng Ma²

¹. School of Architecture and Urban Planning, Shenyang Jianzhu University, P.R. China.
². Construction Technology Research Institute, Shenyang Jianzhu University, P.R. China.
tangyu1@126.com

Abstract. Carbon-oxygen balance in urban areas refers to the income and expenditure of carbon and oxygen in urban ecosystem. Shenyang city is choosing as the study object to get the carbon gap index. Carbon emission and the carbon sequestration of Shenyang city are studied with the indicators of the GDP, unit GDP energy emissions and green areas of Shenyang during 2006 – 2015. The result shows that the carbon gap in Shenyang is huge with the data analysis. Ecological planning for green space is urgent to apply to enhance the carbon absorption capacity. Ecological land is needed to increase.

Keywords: carbon-oxygen balance, green space, ecological planning, Shenyang city.

1. Introduction

Carbon-oxygen balance in urban areas refers to the income and expenditure, spatial distribution and adjustment of carbon and oxygen in urban ecosystem within a certain region. Urban became carbon sources because they consume a lot of fossil energy. Carbon dioxide is being accumulated too much which has seriously affected the urban environment and people's lives. Green space in urban is not enough to sequestrate the Carbon dioxide. Study on urban Carbon-oxygen Balance is becoming more and more important.

In the present studies, Wang et al. (2002) [1] studied the relationship between carbon dioxide emissions and oxygen supply, and ensured the virtuous recycle of urban oxygen emissions and oxygen production by urban green space system planning, which help for decision-making for urban green space system quantification. Zhang Ying (2007) [2], Niu Yanqiong (2011) [3], Lin Gang (2010) [4], Ma Jinying (2011) [5], Chen Yanfei (2010) [6], Li Mengxue (2013) [7], respectively, based on the theory of carbon and oxygen balance, analyzed the carbon-oxygen income and expenditure of Zhengzhou, Shijiazhuang, Guiyang, Xiamen, Kunshan and Dezhou, and then the demand of ecological land for urban carbon-oxygen balance which is the reference for quantitative analysis of low-carbon city development.

Shenyang is located in the northeastern of China, which is the capital of Liaoning Province, with a population of about 6.5 million. It is at 41.8N°,123.4°E. Shenyang is the economic, cultural, transportation, financial and commercial center of northeast China. It is also the important industrial base and historical and cultural city of China. Shenyang’s climate belongs to the north temperate monsoon-influenced semi-humid continental climate. It is selected as the study object. The carbon emissions are bigger than many Chinese cities because it is a national old industrial base.
2. Methods and Materials

2.1. Data of Case Study

The data of this paper are mainly derived from the statistical yearbook of Shenyang City from 2006 to 2015, including the indicators of the GDP (GDP), energy emissions, and the green area. The research area includes the 9 Districts including Heping, Shenhe, Dadong, Huanggu, Tiexi, Suijutun, Dongling, Shenbei, Yuhong of Shenyang. The carbon emissions, carbon absorptions, carbon gaps and other indicators of Shenyang city during 2005-2014 are chosen to analyze the carbon-oxygen balance of Shenyang city.

2.2. Methodology

The carbon gap index, the difference between carbon emission and carbon absorption, is used to measure the carbon balance. The smaller the carbon gap is, the more the urban carbon cycle tends to balance. The ratio of carbon gap is calculated with formula (1) in this paper [8]:

$$ R_{CO2} = \frac{(C_e - C_a)}{C_e \cdot 100\%} $$

(1)

Where $ R_{CO2} $ is the ratio of carbon gap; $ C_e $ is the carbon emissions; $ C_a $ is the carbon absorptions.

The method of carbon emissions calculated is improved from the carbon emissions calculating model of Chinese Academy of Sciences Sustainable Development Strategy Research Group [9]. The model is

$$ CO_2 = KE $$

(2)

Where $ CO_2 $ is the of $ CO_2 $ emission; the coefficient $ K $ is the carbon emission intensity. It is depending on technical level, countries, regions and energy composition. The “energy and fuel conversion standard coal $ CO_2 $ emissions coefficient” which is used in China is 2.42-2.72. During the study, in order to simplify the calculation $ K $ is assumed to be a constant of 2.62. It means 2.62 ton of $ CO_2 $ would be emitted by burning 1 ton of standard coal; $ E $ is the consumption of different types of energy. It is converted into standard coal. According to the degree of regional economic development, the value of $ E $ is calculated from the regional GDP and energy consumption per unit of GDP. The formula is as follows:

$$ CO_2 = GDP \cdot (E/GDP) \cdot K $$

(3)

Where $ CO_2 $ is the carbon emissions; GDP is the regional GDP of Shenyang city; $ E/GDP $ is the energy consumption per unit of Shenyang city GDP; $ K $ is the carbon emission intensity.

The calculation of carbon absorption is based on an average of 1.767 t ha$^{-1}$ of green space per day [10], and an annual $ CO_2 $ absorption of 644.96 t ha$^{-1}$ in North China. The annual $ CO_2 $ absorption in Shenyang would be the product of the green area and the annual $ CO_2 $ absorption of 644.96 t ha$^{-1}$.

3. Results and Discussion

3.1. Carbon Emissions of Shenyang City

According to the formula (3), the carbon emissions of the Shenyang during 2005 to 2014 are calculated respectively to get the carbon emission status of Shenyang city (Table 1).
IOP Conf. Series: Earth and Environmental Science 283 (2019) 012062
doi:10.1088/1755-1315/283/1/012062

The carbon gap and the carbon gap ratio in Shenyang since 2006 are calculated by the difference between carbon emission and carbon absorption in Shenyang and formula (1) (Table 3). As can be seen from Table 3, the carbon gap in Shenyang in 2006 is the smallest, 28,430.2×10³ t. In 2009 reached a peak, 39,687.4×10³ t. After that the carbon gap showed a wavy downward trend (Figure 1, 2). The carbon gap in 2012 reached a minimum of 31,370.6×10³ t, and in 2013 and 2014 went up to 33,224.3×10³ t and 33,564.0×10³ t.

3.3. Indicators of Carbon Gap in Shenyang City

The carbon gap and the carbon gap ratio in Shenyang since 2006 are calculated by the difference between carbon emission and carbon absorption in Shenyang and formula (1) (Table 3).

As can be seen from Table 3, the carbon gap in Shenyang in 2006 is the smallest, 28,430.2×10³ t. In 2009 reached a peak, 39,687.4×10³ t. After that the carbon gap showed a wavy downward trend (Figure 1, 2). The carbon gap in 2012 reached a minimum of 31,370.6×10³ t, and in 2013 and 2014 went up to 33,224.3×10³ t and 33,564.0×10³ t.
Table 3. The Carbon Gap of Shenyang City

Year	Carbon Emissions (10^3 t)	Carbon absorptions (10^3 t)	Carbon Gap (10^3 t)	Ratio of Carbon Gap (%)
2005	32,074.5	3,644.3	28,430.2	88.64%
2006	36,031.7	3,954.5	32,077.2	89.02%
2007	38,402.6	4,107.2	34,295.4	89.30%
2008	38,743.3	4,201.5	34,541.8	89.16%
2009	43,888.9	4,201.5	39,687.4	90.43%
2010	37,620.8	4,807.0	32,813.8	87.22%
2011	36,864.0	4,807.0	32,057.0	86.96%
2012	36,505.4	5,134.8	31,370.6	85.93%
2013	38,363.9	5,139.6	33,224.3	86.60%
2014	38,749.8	5,185.8	33,564.0	86.62%

Figure 1. Carbon Emission, Carbon Absorption and Carbon Gap of Shenyang 2005-2014

Figure 2. Carbon gap ratio of Shenyang 2005-2014

4. Conclusion
The carbon-oxygen balance of Shenyang is analyzed with the status of economic development. It is necessary to adjust the energy structure, to improve energy efficiency, and to adjust the urban industrial structure to reduce carbon emissions. Simultaneously, ecological planning for urban green space is urgent to improve the carbon absorption capacity.
4.1. Increasing Ecological Land and Optimizing Ecological Pattern
Through the analysis, it is found that the carbon gap index is relatively large. It would depend on the green space of forest and farmland around the city to absorb CO₂. At the same time, it is necessary to optimize the ecological pattern of the city to enhance the green space capability for carbon sequestration. It includes forming a green ecological network system and coordinating the green patches, corridors, and matrix. Strengthening the ecological nature reserve of Qipanshan Forest Park, enhancing the ecological function of urban green parks such as Youth park and Zhongshan park in the city; increasing urban green space such as the green belt of the Hun river and the Canal in Shenyang.

4.2. Enhancing the Urban Green Space Carbon Sequestration Capacity
In the spatial distribution of urban green space, rational arrangement of “green space of oxygen source”, “green space near carbon source” and “green space of carbon source” and other low carbon green layout [11].

In the central area of the wind direction, the area around the center of the city is arranged with “oxygen source green space”. The tree species mainly choose high-density shrub with strong ability of releasing oxygen and carbon fixation. The carbon source green space is arranged in the downwind of the city. The tree species are mainly tall carbon fixation Arbors. In the near-source green area, the carbon-bearing ability of the plant can be increased effectively. “Oxygen source green space” is arranged around the center of Shenyang with high-density shrub with strong ability of releasing oxygen and carbon fixation. “Green space of carbon source” is arranged in the downwind of Shenyang with tall Arbors which have high carbon fixation capability. “Green space near carbon source” is arranged in Shenyang industrial districts (Yuhong District) with combination plants of Arbors, shrub and grass.

Acknowledgments
We thank the many colleagues and students that have engaged with us in discussions. It is supported by the National Natural Science Foundation of China (Urban Low - carbon Spatial Layout Optimization Based on Buildings Carbon Sink Capacity.51578344).

Reference
[1] Wang Yong-an, Gong Yingbi. Carbon and oxygen balance method for calculating urban greening area [J]. Ecological Economy, 2002, (3): 62-63.
[2] Zhang Ying, Wang Qun, Li Bijiang. An Empirical Study on Estimating Ecological Land Demand with Carbon-Oxygen Balance Method [J]. CHINA LANDS SCIENCE, 2007 (6): 23 - 28.
[3] NIU Yan-qiong, LI Shuang-jiang, LUO Xiao. Research on Ecological Land Requisition in Shijiazhuang Based on Carbon-oxygen Balance Method [J] Anhui Agricultural Sciences, 2012 (12): 7325-7327.
[4] LIN Gang, XIAO Jin-song, DU Peng-fei. Application of Carbon-oxygen Balance Theory in Eco- City Planning - A Case Study of Guiyang City [J]. Sinics (Eco-City and Green Building), 2010 (4): 63-66.
[5] MA Jin-ying, YIN Kai, SHI Tao. Carbon-oxygen Balance Analysis of Urban Complex Ecosystem - A Case Study of Xiamen Coast [J]. Chinese Journal of Environmental Science, 2011 (8): 1808-1816.
[6] CHEN Yan-fei, HU Hai-bo.Carbon-oxygen Balance Analysis in Urban Overall Plan [J]. Urban Planning, 2010 (S1): 136-140.
[7] LI Meng-xue, LIU Fu-gang. Study on Carbon and Oxygen Balance of Dezhou City Based on Low Carbon Background [J]. Ningxia Agroforestry Science and Technology, 2013, 54 (9): 113-115.
[8] Wang Zhiyuan, Zheng Bohong. low carbon urban standards and empirical research based on Carbon balance [A]. Chinese Urban Planning Society. Transformation and reconstruction: 2011 China Urban Planning Annual Proceedings [C]. Nanjing: Southeast University, 2011.2626-2632.
[9] Chinese Academy of Sciences Sustainable Development Research Group. 2009 China Sustainable Development Report: explore low-carbon road with Chinese characteristics [M]. Beijing: Science Press. 2009: 67.

[10] Chen Zixin, Su Xuehen, Liu Shaozong, Zhang Xinxian. Study on the Ecological Benefits of Urban Landscaping in Beijing (3) [J] Chinese Garden 1998 (3): 53-56.

[11] Fu Shilei, Gong Qi, Xu Tingting, et al. Construction Method of Urban "Three Source Green Land" in Shenyang City Based on Carbon Sink Theory [J] .LI FORESTRY SCIENCE AND TECHNOLOGY, 2016, (1): 5-8