Diameters of Homogeneous Spaces

Michael H. Freedman*, Alexei Kitaev† and Jacob Lurie‡

March 31, 2022

Abstract

Let G be a compact connected Lie group with trivial center. Using the action of G on its Lie algebra, we define an operator norm $||_G$ which induces a bi-invariant metric $d_G(x, y) = |\text{Ad}(yx^{-1})|_G$ on G. We prove the existence of a constant $\beta \approx 0.12$ (independent of G) such that for any closed subgroup $H \subseteq G$, the diameter of the quotient G/H (in the induced metric) is $\geq \beta$.

1 Introduction

Finding a lower bound to the (operator norm) diameter of homogeneous spaces G/H, G compact is a natural geometric problem. It can also be motivated by considering quantum computation. In standard models [NC] the state space of a (theoretical) quantum computer is a Hilbert space with a tensor decomposition, $(\mathbb{C}^2)^\otimes n$. A “gate” is a local unitary operation acting on a small number, perhaps two, tensor factors (and as the identity on the remaining factors). One often wonders if a certain set of local gates is “universal” meaning that the closed subgroup H they generate satisfies $U(1)H = U(2^n)$. We produce a constant $\beta \approx 0.12$ so that $\text{diam } U(2^n)/U(1)H < \beta$ implies universality, where diameter is to be computed in the operator norm. This norm is well-suited here because it is stable under $\otimes \text{id}$.

Because the operator norm is bi-invariant it suffices to check that every element b in the ball of radius $2/\beta$ about the identity of $SU(2^n)$.

*Microsoft Research, One Microsoft Way, Redmond, WA 98052
†Caltech, 1200 East California Boulevard, Pasadena, CA 91125
‡MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
has $\text{Ball}_\beta(b) \cap H \neq \emptyset$. In principle this leads to an algorithm to test if a gate set is universal. Such an algorithm will be exponentially slow in n. But often it is assumed that identical gates can be applied on any pair of \mathbb{C}^2 factors; in this case universality for $n = 2$ is sufficient to imply universality for all n.

Let G be a compact Lie group with trivial center. The semisimplicity of G implies that the (negative of the) Killing form is a natural positive-definite, bi-invariant inner product on the Lie algebra \mathfrak{g} of G. We let $||x||_g$ denote the induced (Euclidean) norm on \mathfrak{g}. We use this to define the \textit{operator norm} on G as follows:

$$||g||_G = \sup_{||y||_g = 1} |\langle y, \text{Ad}_g y \rangle|$$

where $\langle y, \text{Ad}_g y \rangle$ denotes the usual Euclidean angle between the vectors y and $\text{Ad}_g y$, normalized so that it lies in the interval $[-\pi, \pi]$. Since angles between vectors in a Euclidean space obey a triangle inequality, we deduce the inequality $|gh|_G \leq |g|_G + |h|_G$. It is also clear that $|g|_G = 0$ if and only if Ad_g is the identity, which implies that g is the identity since the adjoint action of G is faithful up to the center of G, and we have assumed that the center of G is trivial.

We define a distance on G by the formula $d_G(g, g') = |g^{-1}g'|_G$. It is easy to check that this defines a bi-invariant metric on G, where all distances are bounded above by π. Note that d_G is continuous on G, hence there is a continuous bijection from G with its usual topology to G with the topology induced by d_G. Since the source is compact and the target Hausdorff (this fails if G has nontrivial center, since the operator norm of a central element is equal to zero), we deduce that the metric d_G determines the usual topology on G.

For any closed subgroup H of G, the homogeneous space G/H inherits a quotient metric given by the formula

$$d_{G/H}(p, q) = \inf_{\tilde{p}, \tilde{q}} |\tilde{g}|_G$$

where the first infimum is taken over all pairs $\tilde{p}, \tilde{q} \in G$ lifting the pair $p, q \in G/H$. Note that if H is contained in H', then the diameter of G/H is at least as large as that of G/H'.

We are now in a position to state the main result:
Theorem 1. Let G be a compact connected Lie group with trivial center and $H \varsubsetneq G$ a proper compact subgroup of G. Then the diameter of G/H with respect to the metric $d_{G/H}$ is no smaller than β, where β is the smallest real solution to the transcendental equation $\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta) \sin(\beta) = \cos(4\beta)$ and $\cos(\alpha) = \frac{7}{8}$.

One can estimate that the constant β is approximately 0.124332.

Example 2. Consider the case where $G = H \times H$ is a product, and H is embedded diagonally. Choose an element $h \in H$ with $|h|_H = \pi$ (such an element exists in any nontrivial one parameter subgroup). Then in $H \times H$, the distance $d_{H \times H}(h \times 0, h' \times h')$ is equal to the larger of $d_H(h, h')$ and $d_H(h', e)$. By the triangle inequality, this distance is at least $\frac{\pi}{2}$. It follows that the diameter of G/H is at least $\frac{\pi}{2}$.

Remarks:

(1) For any orthogonal representation $\tau : G \to O(V)$ of a group G, we can define an operator norm on G with respect to V:

$$|g|_{G,\tau} = \sup_{||v||=1} |\angle(v, gv)|$$

This construction has the following properties:

- If V is the complex plane \mathbb{C}, and $g \in G$ acts by multiplication by $e^{i\alpha}$ where $-\pi \leq \alpha \leq \pi$, then $|g|_{G,\tau} = |\alpha|$.
- Given any subgroup $H \subseteq G$, the restriction of $| |_{G,\tau}$ to H is equal to $| |_{H,\tau}|_H$.
- The operator norm associated to a direct sum of representations τ_i of G is the supremum of the operator norms associated to the representations τ_i.
- In particular, the operator norm on G associated to a representation V is identical with the operator norm on G associated to the complexification $V \otimes_{\mathbb{R}} \mathbb{C}$ (with its induced Hermitian structure).
- To evaluate $|g|_{G,\tau}$, we can replace G by the subgroup generated by g and V by its complexification, which decomposes into one-dimensional complex eigenspaces under the action of g. We deduce that $|g|_{G,\tau}$ is the supremum of $|\log \lambda_j|$,
where \(\{\lambda_j\} \) is the set of eigenvalues for the action of \(g \) on \(V \) (and the logarithms are chosen to be of absolute value \(\leq \pi \)).

(2) The reader may be curious about the diameter of \(G/H \) relative to the Riemannian quotient of the Killing metric \(d_K \). If we let \(N \) denote the dimension of \(\mathfrak{g} \), then we have

\[
d \leq d_K \leq \frac{3N^{\frac{1}{2}}d}{2}
\]

(3) We ask if the quotient \(SO(3)/I \) is the homogenous space of smallest diameter, where \(I \simeq A_5 \) denotes the symmetry group of the icosahedron.

(4) We wonder if there is a similar universal lower bound to the diameter of double coset spaces \(K \backslash G / H \), as above, \(K, H \subset G \) closed subgroups. Our method does not apply directly.

(5) Although suggested by a modern subject the theorem could easily have been proved a hundred years ago and in fact may have been (or may be) known.

2 Small Subgroups

Throughout this section, \(G \) shall denote a compact, connected Lie group with trivial center. We give a quantitative version of the principle that discrete subgroups of \(G \) generated by “sufficiently small” elements are automatically abelian. We will use this in the proof of Theorem in the case where \(H \) is discrete.

We will need to understand the operator norm on \(G \) a bit better. To this end, we introduce the operator norm

\[
|x|_g = \sup_{||y||_g = 1} ||[x, y]|_g
\]

on the Lie algebra \(\mathfrak{g} \) of \(G \). This is a \(G \)-invariant function on \(\mathfrak{g} \), so we can unambiguously define the operator norm of any tangent vector to the manifold \(G \) by transporting that tangent vector to the origin (via left or right translation) and then applying \(x \mapsto |x|_g \).

The operator norm on \(\mathfrak{g} \) is related to the operator norm on \(G \) by the following:
Lemma 3. The exponential map $x \mapsto \exp(x)$ induces a bijection between $g_0 = \{x \in g : |x|_g < \frac{2\pi}{3}\}$ and $G_0 = \{g \in G : |g|_G < \frac{2\pi}{3}\}$. This bijection preserves the operator norms.

Proof. First, we claim that the map $x \mapsto \exp(x)$ does not increase the operator norm. This follows from the fact that the eigenvalues of $\exp(x)$ have the form $\exp(\kappa)$, where κ is an eigenvalue of x. It follows that the exponential map sends g_0 into G_0.

Choose $g \in G_0$, and fix a maximal torus T containing g. Let t be the Lie algebra of T. Decompose $g \otimes \mathbb{C}$ into eigenspaces for the action of T: $g \otimes \mathbb{C} = t \otimes \mathbb{C} \oplus \bigoplus_{\alpha} g_{\alpha}$. The element g acts by an eigenvalue $\Lambda(\alpha)$ on each nonzero eigenspace g_{α}. Since g is an orthogonal transformation, we may write $\Lambda(\alpha) = e^{i\lambda(\alpha)}$. Since $g \in G_0$, it is possible to choose the function λ so that $-\frac{2\pi}{3} < \lambda(\alpha) < \frac{2\pi}{3}$ for each root α. This determines the function λ uniquely.

Choose a system Δ of simple roots, and let x be the unique element of t such that $\alpha(x) = \lambda(\alpha)$ for each $\alpha \in \Delta$. It follows immediately that $\exp(x) = g$ (since G has trivial center). To show that $x \in g_0$, we need to show that $|\alpha(x)| < \frac{2\pi}{3}$ for all roots α. For this, it will suffice to prove that $\alpha(x) = \lambda(\alpha)$ for all roots α.

The uniqueness of λ implies immediately that $\lambda(-\alpha) = -\lambda(\alpha)$. Thus, it will suffice to prove that the equation $\alpha(x) = \lambda(\alpha)$ holds when α is positive (with respect to the root basis Δ). Since the equation is known to hold whenever $\alpha \in \Delta$, it will suffice to prove that $\alpha(x) = \lambda(\alpha)$, $\beta(x) = \lambda(\beta)$ implies

$$(\alpha + \beta)(x) = \lambda(\alpha + \beta).$$

In other words, we need to show that the quantity

$$\epsilon = \lambda(\alpha + \beta) - \lambda(\alpha) - \lambda(\beta)$$

is equal to zero. By construction, $|\epsilon| < 2\pi$. On the other hand, since $\Lambda(\alpha)\Lambda(\beta) = \Lambda(\alpha + \beta)$, we deduce that $e^{i\epsilon} = 1$, so that ϵ is an integral multiple of 2π. It follows that $\epsilon = 0$, as desired.

It is clear from the construction that $|x|_g = |g|_G$. To complete the proof, we need to show that g has no other logarithms lying in g_0. This follows from the fact that any unitary transformation (in particular, the adjoint action of g on g) which does not have -1 as an eigenvalue has a unique logarithm whose eigenvalues are of absolute value $< \pi$. \hfill \Box
Lemma 4. Let \(p : [0,1] \to G \) be a smooth function with \(p(0) \) equal to the identity of \(G \). Then \(|p(1)|_G \leq \int_0^1 |p'(t)|_g dt \).

Proof. For \(N \) sufficiently large, we can write \(p\left(\frac{i+1}{N}\right) = p\left(\frac{i}{N}\right) \exp\left(\frac{x_i}{N}\right) \), where \(x_i \) is approximately equal to the derivative of \(p \) at \(\frac{i}{N} \). Thus, as \(N \) goes to \(\infty \), the average \(\frac{1}{N} \sum_{i=0}^{N-1} |x_i|_g \) converges to the integral on the right hand side of the desired inequality. By the triangle inequality, it will suffice to prove that \(|p\left(\frac{i}{N}\right) - h|_G \) is small. If \(N \) is sufficiently large, then this follows immediately from Lemma 3.

Remark 5. The metric \(d_G \) on \(G \) is not necessarily a path metric: given \(g,h \in G \), there does not necessarily exist a path in \(G \) having length equal to \(d_G(g,h) \). However, it follows from Lemma 3 that \(d_G \) is a path metric locally on \(G \). The length of a (smooth) path can be obtained by integrating the operator norm of the derivative of a path. Replacing \(d_G \) by the associated path metric only increases distances, so that Theorem 1 remains valid for the path metric associated to \(d_G \). This modified version of Theorem 1 makes sense (and remains true) for compact Lie groups \(G \) with finite center.

We can now proceed to the main result of this section. Let \(\alpha \) denote the smallest positive real number satisfying \(\cos(\alpha) = \frac{7}{8} \).

Theorem 6. Let \(H \subset G \) be a discrete subgroup. Let \(h,k \in H \) and suppose \(|h|_G < \frac{\pi}{2}, |k|_G < \alpha \). Then \([h,k] = 1\).

Proof. We define a sequence of elements of \(G \) by recursion as follows: \(h_0 = h, h_{n+1} = [h_n, k] \). Let \(C \) satisfy the equation \(\frac{C^2}{4} = 2 - 2 \cos|k|_G \). Then the assumption on \(k \) ensures that \(C < 1 \). Our first goal is to prove that the operator norm of the sequence \(\{h_n\} \) obeys the estimate \(|h_n|_G < C^n \frac{\pi}{2} \). For \(n = 0 \), this is part of our hypothesis. Assuming that the estimate \(|h_n|_G < C^n \frac{\pi}{2} \) is valid, we can use Lemma 3 to write \(h_n = \exp(x), |x|_g < C^n \frac{\pi}{2} \). Now define \(p(t) = [\exp(tx), k] \), so that \(p(0) = 1 \) and \(p(t) = h_{n+1} \).

Using Lemma 4, we deduce that \(|h_{n+1}|_G \leq \int_0^1 |p'(t)|_g dt \leq \sup_t |p'(t)|_g \). On the other hand, the vector \(p'(t) \) can be written as a difference

\[
R_{p(t)x} - L_{\exp(tx)k \exp(-tx)}R_{k^{-1}x}
\]
where R_g and L_g denote left and right translation by g. We obtain

\[
|p'(t)|_\mathfrak{g} = |x - \text{Ad}_{\exp(tx)}k \exp(-tx)x|_\mathfrak{g} \\
= |\text{Ad}_{\exp(-tx)}x - \text{Ad}_k \exp(-tx)x|_\mathfrak{g} \\
= |x - \text{Ad}_k x|_\mathfrak{g} \\
= \sup_{||y||_\mathfrak{g}=1} ||x - \text{Ad}_k x, y||_\mathfrak{g} \\
\leq \sup_{||y||_\mathfrak{g}=1} (||x, y||_\mathfrak{g} - \text{Ad}_k[x, y]||_\mathfrak{g} + ||\text{Ad}_k[x, y] - [\text{Ad}_k x, y]||_\mathfrak{g}) \\
\leq \sup_{||y||_\mathfrak{g}=1} \sqrt{2 - 2\cos |k|_G} \sup_{||y||_\mathfrak{g}=1} ||x, y||_\mathfrak{g} + |x|_\mathfrak{g} \sup_{||y||_\mathfrak{g}=1} ||y - \text{Ad}_k^{-1} y||_\mathfrak{g} \\
\leq 2\sqrt{2 - \cos |k|_G} ||x||_\mathfrak{g} \\
= C||x||_\mathfrak{g} \\
< C^{n+1} \frac{\pi}{2},
\]

as desired.

It follows that the operator norms of the sequence \{h_n\} converge to zero. Therefore the sequence \{h_n\} converges to the identity of G. Since H is a discrete subgroup, it follows that h_n is equal to the identity if n is sufficiently large. We will next show that $h_n = 1$ for all $n > 0$, using an argument of Frobenius which proceeds by a descending induction on n. Once we know that $h_1 = 1$, the proof will be complete.

Assume that $h_{n+1} = 1$. Then k commutes with h_n, and therefore also with $h_nk = h_{n-1}kh_{n-1}^{-1}$. It follows that $\mathfrak{g} \otimes \mathbb{R} C$ admits a basis whose elements are eigenvectors for both k and $h_{n-1}kh_{n-1}^{-1}$. If the eigenvalues are the same in both cases, then we deduce that $k = h_{n-1}kh_{n-1}^{-1}$, so that h_n is the identity and we are done. Otherwise, there exists $v \in \mathfrak{g} \otimes \mathbb{R} C$ which is an eigenvector for both k and $h_{n-1}kh_{n-1}^{-1}$, with different eigenvalues. Equivalently, both v and $h_{n-1}v$ are eigenvectors for k, with different eigenvalues. Thus v and $h_{n-1}v$ are orthogonal, which implies $|h_{n-1}|_G \geq \frac{\pi}{2}$, a contradiction.

\[\Box\]

3 The Proof when H is Discrete

In this section, we will give the proof of Theorem 1 in the case where H is a discrete subgroup. The idea is to show that if G/H is too small, then H contains noncommuting elements which are close to the identity, contradicting Theorem 6.

In the statements that follow, we let α denote the smallest positive real solution to $\cos(\alpha) = \frac{7}{8}$ and β the smallest positive real solution
to the transcendental equation \(\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta) \cos(\frac{\pi}{2} - \beta) = \cos(4\beta) \).

Lemma 7. Let \(G \) be a compact, connected Lie group with trivial center. Then there exist elements \(h, k \in G \) having the property that for any \(h', k' \in G \) with \(d_G(h, h'), d_G(k, k') < \beta \), we have \(|h'|_G < \frac{\pi}{2}, |k'|_G < \alpha \), and \([h', k'] \neq 1 \).

Proof. Choose a (local) embedding \(p : SU(2) \to G \) corresponding to a root of some simple component of \(G \). We will assume that if the relevant component has roots of two different lengths, then the embedding \(p \) corresponds to a long root. This ensures that the weights of \(SU(2) \) acting on \(\mathfrak{g} \) are no larger than the weights of the adjoint representation.

In the Lie algebra \(\mathfrak{so}(3) \) of \(SU(2) \), we let \(x \) and \(y \) denote infinitesimal rotations of angles \(\frac{\pi}{2} - \beta \) and \(\alpha - \beta \) about orthogonal axes. Then, by the above condition on weights, we deduce that \(h = p(\exp(x)) \) and \(k = p(\exp(y)) \) satisfy the conditions \(|h|_G = \frac{\pi}{2} - \beta, |k|_G = \alpha - \beta \).

We claim that the pair \(h, k \in G \) satisfies the conclusion of the lemma. To see this, choose any pair \(h', k' \in G \) with \(d(h, h'), d(k, k') < \beta \). Then we deduce \(|h'|_G < \frac{\pi}{2}, |k'|_G < \alpha \) from the triangle inequality. To complete the proof, we must show that \(h' \) and \(k' \) do not commute. To see this, we let \(v \) denote the image in \(\mathfrak{g} \) of a vector in \(\mathfrak{so}(3) \) about which \(x \) is an infinitesimal rotation. Then \(hv = v \), while \(\angle(v, kv) = \alpha - \beta \). Elementary trigonometry now yields

\[
\angle(hhv, khv) = \angle(hkv, kv) = \cos^{-1}(\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta) \cos(\frac{\pi}{2} - \beta)) = \cos^{-1}(\cos(4\beta)) = 4\beta.
\]

By the triangle inequality, we get

\[
4\beta = \angle(hhv, khv) \leq \angle(hhv, h'kv) + \angle(h'kv, h'k'v) + \angle(h'k'v, k'h'v) + \angle(k'h'v, khv) < 4\beta + \angle(h'k'v, k'h'v),
\]

which implies \(\angle(h'k'v, k'h'v) > 0 \) so that \([h', k'] \neq 1 \). \(\square \)

We can now complete the proof of Theorem 1 in the case where \(H \) is discrete:
Proof. Choose $h, k \in G$ satisfying the conclusion of Lemma 7. Since G/H has diameter less than β, the cosets hH and kH are within β of the identity coset in G/H, which implies that there exist $h', k' \in H$ with $d(h, h'), d(k, k') < \beta$. Lemma 7 ensures that h' and k' do not commute, which contradicts Theorem 6. \qed

4 The Proof when G is Simple

In this section, we give the proof of the main theorem in the case where H is nondiscrete and G is simple. The idea in this case is to show that because the Lie algebra \mathfrak{h} of H cannot be a G-invariant subspace of \mathfrak{g}, the action of G automatically moves it quite a bit: this is made precise by Theorem 10. Since \mathfrak{h} is invariant under the action of H, this will force G/H to have large diameter in the operator norm.

We begin with some general remarks about angles between subspaces of a Hilbert space. Let V be a real Hilbert space, and let $U, W \subseteq V$ be linear subspaces. The angle $\angle(U, W)$ between U and W is defined to be

$$\max \left(\sup_{u \in U - \{0\}} \inf_{w \in W - \{0\}} |\angle(u, w)|, \sup_{w \in W - \{0\}} \inf_{u \in U - \{0\}} |\angle(u, w)| \right).$$

Note that for a fixed unit vector $u \in U$, the cosine of the minimal angle $\angle(u, w)$ with $w \in W$ is equal to the length of the orthogonal projection of u onto W^\perp. Thus, the sine of the minimal (positive) angle is equal to the length of the orthogonal projection of u onto W^\perp. Consequently we have

$$\sin(\sup_{u \in U - \{0\}} \inf_{w \in W - \{0\}} |\angle(u, w)|) = \sup_{||u||=1, ||w^\perp||=1} \langle u, w^\perp \rangle$$

which is symmetric in U and W^\perp. From this symmetry we can deduce:

Lemma 8. For any pair of subspaces $U, W \subseteq V$, the angle $\angle(U, W)$ is equal to the angle $\angle(U^\perp, W^\perp)$.

We will also need the following elementary fact:

Lemma 9. Let V be a finite-dimensional Hilbert space, and let A be an endomorphism of V having rank k. Then $|\text{Tr}(A)| \leq k|A|$.

9
Proof. Choose an orthonormal basis \(\{v_i\}_{1 \leq i \leq n} \) for \(V \) having the property that \(Av_i = 0 \) for \(i > k \). Then
\[
|\text{Tr}(A)| = |\sum_i \langle v_i, Av_i \rangle| \leq \sum_{1 \leq i \leq k} |\langle v_i, Av_i \rangle| \leq \sum_{1 \leq i \leq k} |A| = k|A|.
\]

We now proceed to the main point.

Theorem 10. Let \(G \) be a compact Lie group acting irreducibly on a (necessarily finite dimensional) complex Hilbert space \(V \). Let \(W \neq 0, V \) be a nontrivial subspace. Then there exists \(g \in G \) such that \(\angle(W, gW) \geq \frac{\pi}{4} \).

Proof. Suppose, to the contrary, that \(\angle(W, gW) < \frac{\pi}{4} \) for all \(g \in G \). Let \(V \) have dimension \(n \). Replacing \(W \) by \(W^\perp \) if necessary, we may assume that the dimension \(k \) of \(W \) satisfies \(k \leq \frac{n}{2} \). For any subspace \(U \subseteq V \), we let \(\Pi_U \) denote the orthogonal projection onto \(U \).

For each \(g \in G \), projection from \(gW \) onto \(W^\perp \) or from \(W^\perp \) to \(gW \) shrinks lengths by a factor of \(\sin \angle(W, gW) \leq \sin \frac{\pi}{4} \) at least. It follows that
\[
|\Pi_{W^\perp} \Pi_{gW} \Pi_{W^\perp}| \leq |\Pi_{W^\perp} \Pi_{gW} \Pi_{W^\perp}| < \frac{1}{2^n}.
\]

Using the identity \(\text{Tr}(AB) = \text{Tr}(BA) \), we deduce
\[
\text{Tr}(\Pi_{W^\perp} \Pi_{gW} \Pi_{W^\perp}) = \text{Tr}(\Pi_{gW} \Pi_{W^\perp} \Pi_{W^\perp}) \leq k|\Pi_{W^\perp} \Pi_{gW} \Pi_{W^\perp}| < \frac{k}{2^n}.
\]

Integrating this result over \(G \) (with respect to a Haar measure which is normalized so that \(\int_G 1 = 1 \)), we deduce
\[
\text{Tr}(\int_G \Pi_{gW}) \Pi_{W^\perp}) = \int_G \text{Tr}(\Pi_{gW} \Pi_{W^\perp}) < \frac{n}{2^n}.
\]

On the other hand, \(\int_G \Pi_{gW} \) is a \(G \)-invariant element of \(\text{End}(V) \). Since \(V \) is irreducible, Schur’s lemma implies that \(\int_G \Pi_{gW} = \lambda 1_V \) for some scalar \(\lambda \in \mathbb{C} \). We can compute \(\lambda \) by taking traces:
\[
\begin{align*}
n\lambda &= \text{Tr}(\lambda 1_V) \\
&= \text{Tr}(\int_G \Pi_{gW}) \\
&= \int_G \text{Tr}(\Pi_{gW}) = k,
\end{align*}
\]
so that $\lambda = \frac{k}{n}$. Thus $\frac{k(n-k)}{n} = \text{Tr}(\frac{k}{n}W) < \frac{k}{2}$, so that $2(n-k) < n$, a contradiction. \qed

From Theorem 10, one can easily deduce the analogous result in the case when V is a real Hilbert space, provided that $V \otimes \mathbb{C}$ remains an irreducible representation of G. Using this, we can easily complete the proof of Theorem 8 in the case where G is simple and H is nondiscrete (with an even better constant).

\textbf{Proof.} Let \mathfrak{h} denote the Lie algebra of H. Since $H \neq G$ and G is connected, $\mathfrak{h} \subseteq \mathfrak{g}$. Since H is nondiscrete, $\mathfrak{h} \neq 0$. Since $\mathfrak{g} \otimes \mathbb{C}$ is an irreducible representation of G, we deduce that there exists $g \in G$ such that $\angle(gh, \mathfrak{h}) \geq \frac{\pi}{4}$. Now one deduces that for any $h \in H$, $gh' \in gH$, the distance

$$d(gh', h) = |gh'h^{-1}|_G \geq \angle(gh'h^{-1}\mathfrak{h}, \mathfrak{h}) = \angle(gh, \mathfrak{h}) \geq \frac{\pi}{4}.$$

It follows that the distance between the cosets gH and H in G/H is at least $\frac{\pi}{4}$. \qed

\section{The General Case}

We now know that Theorem 8 is valid under the additional assumption that the group G is simple. We will complete the proof by showing how to reduce to this case. The main tool is the following observation:

\textbf{Proposition 11.} Let $\pi : G \rightarrow G'$ be a surjection of compact connected Lie groups with trivial center, let H be a closed subgroup of G and $H' = \pi(H)$ its image in G'. Then $\text{diam}(G'/H') \leq \text{diam}(G/H)$.

\textbf{Proof.} For any points $x', y' \in G'/H'$, we can lift them to a pair of points $x, y \in G/H$. It will suffice to show $d_{G/H}(x, y) \geq d_{G'/H'}(x', y')$. The left hand side is equal to

$$\inf_{g'x'=y'} |g'|_{G'}$$

and the right hand side to

$$\inf_{g'x'=y'} |g'|_{G'}.$$

11
To complete the proof, it suffices to show that $|g|_G \geq |\pi(g)|_{G'}$. This follows immediately since we may identify the Lie algebra g' of G' with a direct summand of g.

Now assume that G is a compact, connected Lie group with trivial center. Then it is a product of simple factors $\{G_\alpha\}_{\alpha \in \Lambda}$. Let $\pi_\alpha : G \to G_\alpha$ denote the projection. Let $H \subset G$ be a closed subgroup. If $\pi_\alpha H \neq G_\alpha$ for some $\alpha \in \Lambda$, then $\dim(G/H) \geq \dim(G_\alpha/\pi_\alpha H) \geq \beta$ and we are done. Otherwise, π_α induces a surjection of Lie algebras $\mathfrak{h} \to \mathfrak{g}_\alpha$ for each α. By the structure theory of reductive Lie algebras, we deduce that $\mathfrak{h}_\alpha = \mathfrak{h}_\alpha \oplus \mathfrak{t}_\alpha$, where π_α is zero on \mathfrak{t}_α and induces an isomorphism $\mathfrak{h}_\alpha \simeq \mathfrak{g}_\alpha$. Since \mathfrak{h}_α is therefore simple, \mathfrak{t}_α may be characterized as the centralizer of \mathfrak{h}_α in \mathfrak{h}.

Since $H \neq G$ and G is connected, H must have smaller dimension than G. It follows that the subalgebras $\mathfrak{h}_\alpha \subset \mathfrak{h}$ cannot all be distinct. Choose $\alpha, \alpha' \in \Lambda$ with $\mathfrak{h}_\alpha = \mathfrak{h}_{\alpha'}$. The the map $H \to G_\alpha \times G_{\alpha'}$ is not surjective on Lie algebras. Without loss of generality, we may replace G by $G_\alpha \times G_{\alpha'}$ and H by its image in $G_\alpha \times G_{\alpha'}$.

Since the Lie algebra of H now maps isomorphically onto the Lie algebras of the factors G_α and $G_{\alpha'}$, it follows that the connected component H_0 of the identity in H is isomorphic to G_α, which is included diagonally in $G_\alpha \times G_{\alpha'}$. Then $H = H_0(H \cap (G_\alpha \times 1))$. The intersection $K = H \cap (G_\alpha \times 1)$ is normalized by $H_0 = \{(g,g) : g \in G_\alpha\}$, hence it is normalized by $G_\alpha \times \{e\}$. Since $G_{\alpha'}$ is simple, we deduce that $K = \{e\}$. Thus $H = H_0$ is embedded diagonally in $G_\alpha \times G_{\alpha'}$. We have already considered this case in Example 2, where we saw that the diameter of G'/H' is at least $\pi^2/4$.

Remark 12. If we restrict our attention to the case where H is a connected subgroup of G, then our proof gives a better lower bound of $\pi^2/4$.

References

[NC] Nielsen, M.A., Chuang, I.L., *Quantum computation and quantum information*. Cambridge University Press, Cambridge, 2000. xxvi+676 pp.