Normal and Rectifying Curves in Pseudo-Galilean Space G^1_3 and Their Characterizations

Handan Öztekin & Alper Osman Öğrenmiş
hbalgetir@firat.edu.tr & ogrenmisalper@gmail.com
Fırat University, Science Faculty, Mathematics Department TURKEY
August 31, 2010

Abstract
We defined normal and rectifying curves in Pseudo-Galilean Space G^1_3. Also we obtained some characterizations of this curves in G^1_3.

AMS Mathematics Subject Classification (2000): 53C50,53C40
Key Words and phrases: Pseudo-Galilean Space, Rectifying Curve, Frenet Equations

1 Introduction
In the Euclidean space E^3, the notion of rectifying curves was introduced by B.Y. Chen in [4]. By definition, a regular unit speed space curve $\alpha(s)$ is called a rectifying curve, if its position vector always lies its rectifying plane $\{t, b\}$, spanned by the tangent and the binormal vector field. This subject have been studied by many researcher. The curves are studied from different way in [4,5,6,7].

A Galilean space may be considered as the limit case of a pseudo-Euclidean space in which the isotropic cone degenerates to a plane. This limit transition corresponds to the limit transition from the special theory of relativity to classical mechanics. [10]

The Pseudo-Galilean geometry is one of the real Cayley-Klein geometries (of projective signature $(0,0,+,-)$). The absolute of the Pseudo-Galilean geometry is an ordered triple $\{w, f, I\}$ where w is the ideal (absolute) plane, f is line in w and I is the fixed hyperbolic involution of points of f. [2]. Differential geometry of the Pseudo - Galilean space G^1_3 has been largely developed in [1,2,3,8,9].

In the Pseudo-Galilean Space G^1_3, to each regular unit speed curve $r: I \rightarrow G^1_3$, $I \subset \mathbb{R}$, it is possible to associate three mutually orthogonal unit vector fields. t, n and b, called respectively the tangent, the principal normal and the binormal vector field. The planes spanned by the vector fields $\{t, n\}$, $\{t, b\}$ and $\{n, b\}$ are defined as the osculating plane, the rectifying plane and the normal plane, respectively.
In this paper, we study the normal and rectifying curves in the Pseudo-Galilean Space G^3_1. By using similar method as in [4] we show that there is some characterizations of normal and rectifying curves.

2 Preliminaries

Let r be a spatial curve given first by

$$r(t) = (x(t), y(t), z(t)), \quad (2.1)$$

where $x(t), y(t), z(t) \in C^3$ (the set of three-times continuously differentiable functions) and t run through a real interval $[2]$.

Definition 1 A curve r given by (2.1) is admissible if

$$\dot{x}(t) \neq 0. \quad (2.2)$$

Then the curve r can be given by

$$r(x) = (x, y(x), z(x)) \quad (2.3)$$

and we assume in addition that, in $[2]$

$$y''^2(x) - z''^2(x) \neq 0. \quad (2.4)$$

Definition 2 For an admissible curve given by (2.1) the parameter of arc length is defined by

$$ds = |\dot{x}(t)dt| = |dx|. \quad (2.5)$$

For simplicity we assume $dx = ds$ and $x = s$ as the arc length of the curve r. From now on, we will denote the derivation by s by upper prime $' [2]$. The vector $t(s) = r'(s)$ is called the tangential unit vector of an admissible curve r in a point $P(s)$. Further, we define the so called osculating plane of r spanned by the vectors $r'(s)$ and $r''(s)$ in the same point. The absolute point of the osculating plane is

$$H(0 : 0 : y''(s) : z''(s)). \quad (2.6)$$

We have assumed in (2.4) that H is not lightlike. H is a point at infinity of a line which direction vector is $r''(s)$. Then the unit vector

$$u(s) = \frac{r''(s)}{\sqrt{|y''^2(s) - z''^2(s)|}} \quad (2.7)$$

is called the principal normal vector of the curve r in the point P.

Now the vector
\[b(s) = \frac{(0, \varepsilon z''(s), \varepsilon y''(s))}{\sqrt{|y''^2(s) - z''^2(s)|}} \] (2.8)

is orthogonal in pseudo-Galilean sense to the osculating plane and we call it the binormal vector of the given curve in the point \(P \). Here \(\varepsilon = +1 \) or \(-1\) is chosen by the criterion \(\det(t, n, b) = 1 \). That means

\[|y''^2(s) - z''^2(s)| = \varepsilon (y''^2(s) - z''^2(s)). \] (2.9)

By the above construction the following can be summarized [2].

Definition 3 In each point of an admissible curve in \(G^1_3 \) the associated orthonormal (in pseudo-Galilean sense) trihedron \(\{t(s), n(s), b(s)\} \) can be defined. This trihedron is called pseudo-Galilean Frenet trihedron [2].

If a curve is parametrized by the arc length i.e. given by (2.3), then the tangent vector is non-isotropic and has the form of

\[t(s) = r'(s) = (1, y'(s), z'(s)). \] (2.10)

Now we have

\[t'(s) = r''(s) = (0, y''(s), z''(s)). \] (2.11)

According to the classical analogy we write (2.7) in the form

\[r''(s) = \kappa(s)n(s), \] (2.12)

and so the curvature of an admissible curve \(r \) can be defined as follows

\[\kappa(s) = \sqrt{|y''^2(s) - z''^2(s)|}. \] (2.13)

Remark 4 In [2] for the pseudo-Galilean Frenet trihedron of an admissible curve \(r \) given by (2.3) the following derivative Frenet formulas are true.

\[
\begin{align*}
t'(s) & = \kappa(s)n(s) \\
n'(s) & = \tau(s)b(s) \\
b'(s) & = \tau(s)n(s)
\end{align*}
\] (2.14)

where \(t(s) \) is a spacelike, \(n(s) \) is a spacelike and \(b(s) \) is a timelike vektor, \(\kappa(s) \) is the pseudo-Galilean curvature given by (2.13) and \(\tau(s) \) is the pseudo-Galilean torsion of \(r \) defined by

\[\tau(s) = \frac{y''(s)z'''(s) - y'''(s)z''(s)}{\kappa^2(s)}. \] (2.15)
The formula (2.15) can be written as
\[\tau(s) = \frac{\det(r'(s), r''(s), r'''(s))}{\kappa^2(s)}. \] (2.16)

3 Normal and Rectifying Curves in Pseudo-Galilean Space \(G^1_3 \).

Definition 5 Let \(r \) be an admissible curve in 3-dimensional Pseudo-Galilean Space \(G^1_3 \). If the position vector of \(r \) always lies in its normal plane, then it is called normal curve in \(G^1_3 \).

By this definition, for a curve in \(G^1_3 \), the position vector of \(r \) satisfies
\[r(s) = \xi(s)n(s) + \eta(s)b(s), \] (3.1)
where \(\xi(s) \) and \(\eta(s) \) are differentiable functions.

Theorem 6 Let \(r \) be an admissible curve in \(G^1_3 \), with \(\kappa, \tau \in \mathbb{R} \). Then \(r \) is a normal curve if and only if the principal normal and binormal components of the position vector are respectively given by
\[< r, n > = (c_1 + c_2 s)e^{-\tau s} + (c_3 + c_4 s)e^{\tau s} + \frac{\kappa}{\tau^2} \] (3.2)
and
\[< r, b > = (c_1 + c_2 s)e^{-\tau s} - (c_3 + c_4 s)e^{\tau s} \] (3.3)
where \(c_1, c_2, c_3, c_4 \in \mathbb{R} \).

Proof. Let us assume that \(r \) is a normal curve in \(G^1_3 \), then from Definition 1 we have
\[r(s) = \xi(s)n(s) + \eta(s)b(s). \] (3.4)
Differentiating this with respect to \(s \), we have
\[r'(s) = \xi'(s)n(s) + \eta'(s)b(s) + \xi(s)n'(s) + \eta(s)b'(s). \] (3.5)
By using the Frenet equation (2.14), we write
\[t = \xi' n + \eta' b + \xi \tau b + \eta \tau n. \] (3.6)
Again differentiating this with respect to \(s \) and by using the Frenet equation (2.14), we get
\[\kappa n = (\xi' + \eta \tau)' + \tau(\xi \tau + \eta') n + \tau(\xi' + \eta \tau) + (\xi \tau + \eta') b \] (3.7)
From equation (3.7), we obtain the differential equation system.
\[\begin{align*}
\xi'' + 2\tau \eta' + \tau^2 \xi &= \kappa \\
\eta'' + 2\tau \xi' + \tau^2 \eta &= 0.
\end{align*}\]
(3.8)

By solving this system, we obtain

\[\xi(s) = (c_1 + c_2 s)e^{-\tau s} + (c_3 + c_4 s)e^{\tau s} + \frac{\kappa}{\tau^2}, \quad c_1, c_2, c_3, c_4 \in \mathbb{R}\]
(3.9)

and

\[\eta(s) = (c_1 + c_2 s)e^{-\tau s} - (c_3 + c_4 s)e^{\tau s}, \quad c_1, c_2, c_3, c_4 \in \mathbb{R}\]
(3.10)

which completes the proof.

Definition 7 Let \(r \) be an admissible curve in 3-dimensional Pseudo-Galilean Space \(G^1_3 \). If the position vector of \(r \) always lies in its rectifying plane, then it is called rectifying curve in \(G^1_3 \).

By this definition, for a curve in \(G^1_3 \), the position vector of \(r \) satisfies

\[r(s) = \lambda(s)t(s) + \mu(s)b(s),\]
(3.11)

where \(\lambda(s) \) and \(\mu(s) \) are some differentiable functions.

Theorem 8 Let \(r \) be a rectifying curve in \(G^1_3 \), with curvature \(\kappa > 0 \), \(< t, t > = 1 \), \(< n, n > = 1 \), \(< b, b > = \varepsilon \), \(\varepsilon = \pm 1 \). Then the following statements hold:

(i) The distance function \(\rho = ||r|| \) satisfies

\[\rho^2 = |< r, r >| = |s^2 + 2m_1 s + m_1^2 + \varepsilon n_1^2|\]

for some \(m_1 \in \mathbb{R}, n_1 \in \mathbb{R} - \{0\} \).

(ii) The tangential component of the position vector of \(r \) is given by \(< r, t > = s + m_1 \), where \(m_1 \in \mathbb{R} \).

(iii) The normal component \(r^N \) of the position vector of the curve has a constant length and the distance function \(\rho \) is non-constant.

(iv) The torsion \(\tau(s) \neq 0 \) and binormal component of the position vector of the curve is constant, i.e. \(< r, b > \) is constant.

Proof. Let us assume that \(r \) is a rectifying curve in \(G^1_3 \). Then from Definition 3, we can write the position vector of \(r \) by

\[r(s) = \lambda(s)t(s) + \mu(s)b(s),\]
(3.12)

where \(\lambda(s) \) and \(\mu(s) \) are some differentiable functions of the invariant parameters.

(i) Differentiating the equation (3.12) with respect to \(s \) and considering the Frenet equations (2.14), we get

\[\begin{align*}
\lambda'(s) &= 1 \\
\lambda(s)\kappa(s) + \mu(s)\tau(s) &= 0 \\
\mu'(s) &= 0.
\end{align*}\]
(3.13)
Thus, we obtain

\[
\lambda(s) = s + m_1, \quad m_1 \in \mathbb{R}
\]
\[
\mu(s) = n_1, \quad n_1 \in \mathbb{R}
\]
\[
\mu(s) \tau(s) = -\lambda(s) \kappa(s) \neq 0,
\]

and hence \(\mu(s) = n \neq 0, \quad \tau(s) \neq 0 \). From the equation (3.12), we easily find that

\[
\rho^2 = |< r, r >| = |s^2 + 2m_1s + m_1^2 + \varepsilon n_1^2|, \quad \varepsilon = \mp 1
\]

(ii) If we consider equation (3.12), we get

\[
< r, t > = \lambda(s)
\]

which means that the tangential component of the position vector of \(r \) is given by

\[
< r, t > = s + m_1, \quad m_1 \in \mathbb{R}.
\]

(iii) From the equation (3.12), it follows that the normal component \(r^N \) of the position vector \(r \) is given by

\[
r^N = \mu b.
\]

Therefore,

\[
|| r^N || = |\mu| = |n_1| \neq 0.
\]

Thus we proved statement (iii).

(iv) If we consider equation (3.12), we easily get

\[
< r, b > = \varepsilon \mu = \text{const.}, \quad \varepsilon = \mp 1
\]

and since \(\tau(s) \neq 0 \), the statement (iv) is proved.

Conversely, suppose that statement (i) or statement (ii) holds. Then we have

\[
< r, t > = s + m_1, \quad m_1 \in \mathbb{R}.
\]

Differentiating equation (3.21) with respect to \(s \), we obtain

\[
\kappa < r, n > = 0.
\]

Since \(\kappa > 0 \), it follows that

\[
< r, n > = 0
\]

which means that \(r \) is a rectifying curve.

Next, suppose that statement (iii) holds. Let us can write

\[
r(s) = l(s)t(s) + r^N, \quad l(s) \in \mathbb{R}.
\]

Then we easily obtain that

\[
< r^N, r^N >= C = \text{const.} = < r, r > - < r, t >^2.
\]
If we differentiate equation (3.25) with respect to s, we get

$$< r, t > = [1 + \kappa < r, n >]. \tag{3.26}$$

Since $\rho \neq \text{const.}$, we have

$$< r, t > \neq 0. \tag{3.27}$$

Moreover, since $\kappa > 0$ and from (3.26) we obtain

$$< r, n > = 0, \tag{3.28}$$

that is r is rectifying curve.

Finally, if the statement (iv) holds, then from the Frenet equations (2.14), we get

$$< r, n > = 0, \tag{3.29}$$

which means that r is rectifying curve.

Theorem 9 Let r be a curve in G^1_3. Then the curve r is a rectifying curve if and only if there holds

$$\frac{\tau(s)}{\kappa(s)} = as + b \tag{3.30}$$

where $a \in \mathbb{R} - \{0\}$, $b \in \mathbb{R}$.

Proof. Let us first suppose that the curve $r(s)$ is rectifying. From the equations (3.13) and (3.14) we easily find that

$$\frac{\tau(s)}{\kappa(s)} = as + b \tag{3.31}$$

where $a \in \mathbb{R} - \{0\}$, $b \in \mathbb{R}$.

Conversely, let us suppose that $\frac{\tau(s)}{\kappa(s)} = as + b$, $a \in \mathbb{R} - \{0\}$, $b \in \mathbb{R}$. Then we may choose

$$a = \frac{1}{n_1}, \quad b = \frac{m_1}{n_1}, \tag{3.32}$$

where $n_1 \in \mathbb{R} - \{0\}$, $m_1 \in \mathbb{R}$.

Thus we have

$$\frac{\tau(s)}{\kappa(s)} = \frac{s + m_1}{n_1}. \tag{3.33}$$

If we consider the Frenet equations (2.14), we easily find that

$$\frac{d}{ds}[r(s) - (s + m_1)t(s) - n_1b(s)] = 0 \tag{3.34}$$

which means that r is a rectifying curve.

REFERENCES
[1] Divjak, B., Geometrija pseudogalilejevih prostora, Ph.D. thesis, University of Zagreb, 1997.
[2] Divjak, B., Curves in Pseudo-Galilean Geometry, Annales Univ. Sci. Budapest, 41 (1998) 117-128.
[3] Divjak, B. and Sipus, Z.M., Special curves on ruled surfaces in Galilean and pseudo-Galilean spaces, Acta Math. Hungar., 98(3) (2003) 203-215.
[4] Chen, B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003) 147-152.
[5] Chen, B.Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33(2) (2005) 77-90.
[6] Ilarslan, K., Nešović, E., Petrović-Torgašev, M., Some characterizations of rectifying curves in Minkowski 3-space, Novi Sad J. Math. 33(2) (2003), 23-32.
[7] Ilarslan, K., Nešović, E., On Rectifying Curves as Centrodes and Extremal Curves in the Minkowski 3-Space, Novi Sad J. Math. 37(1) (2007), 53-64.
[8] Öğrenmiş, A.O., Ruled Surfaces in the Pseudo - Galilean Space, Ph.D. Thesis, University of Firat, 2007.
[9] Öğrenmiş, A.O. and Ergüt, M., On the Explicit Characterization of Admissible Curve in 3-Dimensional Pseudo - Galilean Space, J. Adv. Math. Studies, Vol.2, No.1 (2009) 63-72.
[10] Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York Inc. 1979