The wheat wild relative *Aegilops tauschii* was previously used to transfer the *Lr42* leaf rust resistance gene into bread wheat. *Lr42* confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. *Lr42* has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for *Lr42*. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The *Lr42* resistance allele is rare in *Ae. tauschii* and likely arose from ectopic recombination. Cloning of *Lr42* provides diagnostic markers and over 1000 CIMMYT wheat lines carrying *Lr42* have been developed documenting its widespread use and impact in crop improvement.
Leaf rust, caused by *Puccinia triticina* Erikss., is a prevalent disease limiting wheat production worldwide. Yield reductions in susceptible wheat cultivars typically range from trace to 30% and may exceed 50%. The yield loss can be mitigated by the introduction of genetic resistance. More than 70 leaf rust resistance genes have been characterized and named in wheat (https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp). Six cloned race-specific site leaf rust resistance genes include *Lr10*, *Lr21*, *Lr13*, *Lr22a*, and *Lr13* encoding the nucleotide-binding leucine-rich repeat (NLR) gene family, and *Lr14a* encoding a membrane-localized protein containing ankyrin repeats. Two race-nonspecific genes have been cloned, including *Lr34* encoding an ABC transporter and *Lr67* encoding a hexose transporter. Cloned resistance genes may be useful in assembling transgenic multigene cassettes for developing strong and durable resistant varieties to combat fast-evolving fungal pathogens.

The leaf rust resistance gene *Lr42* was identified from accession TA2450 in a collection of the wheat wild relative *Aegilops tauschii* Coss. (DD, 2n = 14), the diploid D-genome donor for hexaploid bread wheat (*Triticum aestivum* L., AABBDD, 2n = 42). *Lr42* confers all-stage resistance to leaf rust. To date, the *Lr42* gene is effective against all reported races (isolates from 2020 and previous years) of the leaf rust fungus in the US.

In this work, we undertook the cloning of the *Lr42* gene because of its extensive use in international breeding, broad effectiveness, possible association with yield-enhancing factors, the need for diagnostic markers, and the potential utility of the cloned gene in transgenic cassettes. The *Lr42* gene was previously mapped to the short arm of chromosome 1D (1DS) using hexaploid wheat mapping programs. Several *KS91WGRC11*-derived cultivars released by CIMMYT have outstanding yield potential. Field studies in Oklahoma showed that near-isogenic lines with *Lr42* introgressions had a 26% increase in yield and 9% increase in kernel weight, which was attributed to leaf rust resistance.

In this work, we undertook the cloning of the *Lr42* gene because of its extensive use in international breeding, broad effectiveness, possible association with yield-enhancing factors, the need for diagnostic markers, and the potential utility of the cloned gene in transgenic cassettes. The *Lr42* gene was previously mapped to the short arm of chromosome 1D (1DS) using hexaploid wheat mapping programs. We employ BSR-Seq, a bulked segregant RNA sequencing method, to map *Lr42*. To eliminate interference from A-genome or B-genome homologous sequences from hexaploid parents, we construct two diploid mapping populations by crossing the resistant accession with susceptible accessions of *Ae. tauschii*. Another advantage of using diploid parents is that the phenotype of *Lr42* is stronger and easier to distinguish compared to the phenotype in hexaploid wheat. Fine-scale mapping identifies the candidate gene that is then confirmed to be *Lr42* by ectopic expression in a susceptible wheat line as well as by gene knockout mutagenesis. The results confirm that the candidate gene is required and sufficient for the *Lr42*-mediated resistance.

Results

Genetic mapping identified candidate genes of *Lr42* on 1DS. We developed the diploid *Ae. tauschii* populations for efficient genetic mapping by crossing the *Lr42* donor *Ae. tauschii* accession TA2450 with two leaf rust susceptible *Ae. tauschii* accessions, TA2433 (Fig. 1a) and TA10132 (Supplementary Fig. 1). F₂₃ individuals from both populations were phenotyped for leaf rust resistance at the seedling stage. We scored 100 F₂₃ families of the TA2450 x TA2433 population and identified 27 homoyzogous resistant (HR) and 21 homozygous susceptible (HS) F₂₃ families (Fig. 1b). Leaf tissues of these HR and HS F₂₃ family seedlings were separately pooled for BSR-Seq. The BSR-Seq experiment mapped *Lr42* at a locus close to the end of the short arm of chromosome 1D (1DS) (Fig. 1c), consistent with the mapping results from the other mapping population TA2450 x TA10132 (Supplementary Fig. 1), and from the previous *Lr42* mapping studies in hexaploid wheat. The results indicated that the gene we mapped in the diploid populations is the same as the *Lr42* gene transferred to hexaploid wheat. Based on the BSR-Seq results, we identified single-nucleotide polymorphisms (SNPs) that were likely located near the *Lr42* gene and converted them to Kompetitive Allele Specific PCR (KASP) markers for genotyping F₁ and F₂ individuals from both mapping populations (Supplementary Data 1). The *Lr42* mapping interval was narrowed down to ~116 kb flanked by the two markers, pC43 at 8,655,291 bp and pC50 at 8,771,61 bp on 1DS, based on the *Ae. tauschii* reference genome Aet v4.0.25 (Fig. 1d). Note that pC43 is an effective co-dominant marker to select *Lr42*-carrying lines in both *Ae. tauschii* and bread wheat lines (Supplementary Data 2). The two markers are located within two genes, which flank three other genes including an intact NLR gene (*AET1Gv20040300*), an NLR fragment (*AET1Gv20040500*), and a protein kinase (*AET1Gv20040200*). Therefore, the three genes in the interval on the reference genome were prioritized as the candidate genes of *Lr42* (Fig. 1d).

Overexpression supported the intact NLR as *Lr42*. BSR-Seq provided not only genetic mapping information but also genome-wide gene expression data. Our BSR-Seq result showed that all three candidate genes in the *Lr42* mapping interval were expressed in uninfected seedling leaves in both resistant and susceptible *Ae. tauschii* lines. Sequence comparison of the candidate genes between the resistant and susceptible lines using RNA-Seq data revealed that only the candidate *AET1Gv20040300* contained polymorphisms in transcribed regions (Supplementary Figs. 2 and 3). We then amplified the full-length coding region of *AET1Gv20040300* from both the resistant donor, TA2450, and the susceptible accession TA10132, which confirmed polymorphisms between the two alleles and different lengths of encoded proteins (Fig. 2 and Supplementary Figs. 4 and 5). Both alleles with the maize ubiquitin promoter were separately transferred to a bread wheat cultivar "Bobwhite". In total, we obtained four independent positive transgenic T₀ lines carrying the *Lr42* resistance allele (*lr42*) from TA2450 and two carrying the *lr42* susceptibility allele (*lr42*) from TA10132. T₁ and T₂ transgenic lines were evaluated for leaf rust resistance.

Bobwhite carries the leaf rust resistance gene *Lr26* that confers resistance to many leaf rust *P. triticina* races. We screened three *P. triticina* races and found that Bobwhite was susceptible to race TBJQ (Supplementary Table 1), which is virulent on *Lr26*. Infection with race TBJQ revealed that all *Lr26* transgenic lines gained high resistance and two *lr26* transgenic lines were highly susceptible like Bobwhite (Fig. 2a). Gene expression analysis showed that the *Lr42* allele was expressed in all *Lr26* transgenic lines and *lr42* was expressed in both *lr26* transgenic lines (Fig. 2b). Note that expression of both *Lr42* and *lr42* was not detectable in Bobwhite. In summary, the transgenic experiment with the *Lr42* expression under the control of the ubiquitin promoter showed that expression of the single gene *AET1Gv20040300* can induce the resistance response to the pathogen.

Long-read local assembly shows only one intact NLR in the *Lr42* locus. To understand the haplotype of the *Lr42* locus, publicly available whole genome sequencing (WGS) Illumina data were used to first examine polymorphisms between TA2450 (*Lr42* resistant line) and TA10132 (susceptible reference line). The result from Comparative Genomics Read Depth (CGRD) analysis using WGS data, which provides similarities and copy number variation of...
low-repetitive regions between the two genomes, revealed two relatively conserved segments (8.24–8.67 Mb and 8.70–8.82 Mb on 1D) and other divergent regions (Fig. 3a). We produced ~10x Nanopore long reads for the local assembly of the Lr42 locus, resulting in a contig of 201,155 bp including the 116 kb Lr42 mapping interval. Note this newly assembled sequence contains ~1% sequence errors. Sequence comparison showed that the Lr42 locus contains all three candidate genes collinear with the genes in the reference genome (Fig. 3b). Consistently with RNA-Seq data, syntenic sequences of the protein kinase gene AET1Gv20040200 were almost perfectly aligned with 99.85% identity. The comparison showed that the promoter region of AET1Gv20040300 is highly polymorphic. Besides AET1Gv20040500, we identified another NLR fragment homologous to AET1Gv20040300 (Fig. 3b). The expression of the fragment was not detected based on RNA-Seq data. Collectively, the sequence of the Lr42 locus shows that the locus only contains a single intact NLR gene.

Ectopic expression and knockout mutagenesis validate the NLR as Lr42. To test the disease resistance of ectopic AET1Gv20040300 expression driven by the native promoter,
primers were designed to amplify the \(Lr42 \) region, including the promoter, the \(Lr42 \) gene, and the terminator. The promoter activity was validated with the GUS assay (Supplementary Fig. 6). Transformation of the gene with the native promoter in Bobwhite resulted in two events carrying the transgenic gene. The transgenic \(T_1 \) plants showed resistance to race TFBiQ (Fig. 4a). \(T_1 \) plants from one transgenic event (\(Lr42_{\text{p}}::\text{Lr42-1} \)) exhibited a similar resistance level to the transgenic lines with constitutive expression driven by the maize ubiquitin promoter. \(T_1 \) plants from the other event (\(Lr42_{\text{p}}::\text{Lr42-2} \)) exhibited a lower resistance phenotype. Expression quantification of \(Lr42 \) via qRT-PCR indicated that a high level of rust resistance might require a certain threshold level of \(Lr42 \) expression. At low levels of expression, resistance increased with the elevation of \(Lr42 \) expression (Fig. 4b and Supplementary Fig. 7). Quantification of the genomic copy number of the \(Lr42 \) transgene found that the lower \(Lr42 \) expression transgenic line \(Lr42_{\text{p}}::\text{Lr42-2} \) contained a higher copy number of \(Lr42 \) than \(Lr42_{\text{p}}::\text{Lr42-1} \) (Supplementary Figs. 7 and 8), possibly due to position effect and/or gene silencing associated with higher copy number of transgenes.

We then employed Virus Induced Gene Silencing (VIGS) to specifically knockdown expression of the AET1Gv20040300 gene in TA2450. Rust pustules were consistently observed on the leaves with reduced AET1Gv20040300 expression through VIGS using the construct containing a 201 bp fragment in the leucine-rich repeat (LRR) region (Supplementary Fig. 9). In contrast, the resistant phenotype was maintained on leaves through VIGS with no sequences targeting AET1Gv20040300 (Supplementary Fig. 9a).

The VIGS result confirmed that a high-level of rust resistance required a certain level of AET1Gv20040300 expression.

In addition, we screened 1320 M3 families of an Ethyl Methane Sulfonate (EMS) induced mutant population of the resistant accession TA2450 for their leaf rust responses. We identified one family showing the segregation for leaf rust resistance with 4 resistant and 9 susceptible individuals (Fig. 4c and Supplementary Fig. 10). The low positive mutation rate may be due to the loss of mutant alleles in the selected M3 families, a low number of seeds in many families, and weak phenotypes of missed mutants. Sequencing of the mutant found a G to A mutation in the LRR region, causing the C700Y amino acid substitution. The genotype (GG, GA, or AA) at the mutation site of each plant individual was listed above the leaf. Seedling plants were inoculated with race PNMRJ. Source data are provided as a Source Data file.

The \(Lr42 \) resistance allele infrequently occurs in the \textit{Ae. tauschii} collection. The Wheat Genetics Resource Center (WGRC)
collected 549 Ae. tauschii accessions and has identified a minicore set of 40 accessions that capture >80% of genetic diversity of the whole set\(^2\). We examined the Lr42 homologs from 35 minicore accessions, which include 24 accessions from Lineage 1 (L1, Ae. tauschii ssp. tauschii) and 11 from Lineage 2 (L2, Ae. tauschii ssp. straunulata)\(^3\). Lr42 donor TA2450 belongs to L2. Expected bands were amplified from 8 out of 11 L2 accessions and 3 out of 24 L1 accessions (Supplementary Data 3). Of the bands amplified from 11 accessions, Lr42 homologs from 10 accessions were successfully sequenced. We also extracted intact Lr42 homologs from TA10132, the Ae. tauschii accession for the reference genome. TA10132, also known as AL8787, is a leaf rust susceptible accession. Of all TA10132 Lr42 homologs, the homolog with the highest similarity to Lr42 and located in the Lr42 mapping interval is deemed to be the allelic homolog of Lr42 (lr42-TA10132 or lr42). The lr42-TA10132 allele was used in the transgenic experiment. Among all Ae. tauschii Lr42 homologs, 10 homologs amplified from 10 Ae. tauschii minicore accessions are most similar to Lr42, supporting that these 10 homologs are also allelic to Lr42 (Fig. 5a). The phylogenetic analysis indicated that the Lr42 alleles are not completely separated in the two Ae. tauschii lineages (Fig. 5a). Sequences of the 11 Lr42 allelic homologs, including lr42-TA10132, belonged to three major haplotypes I, II, and III, represented by lr42-TA2376, lr42-TA1605, and lr42-TA2536, respectively (Fig. 5b). Most sequences of the Lr42 allele can be found from these three haplotypes except for a segment of ~140 bp in the LRR region, referred to as Lr42-unique-segment hereafter (Supplementary Fig. 4). Interestingly, Lr42-unique-segment can be identified with 98% identity in a non-allelic Lr42 homolog from 1D subgenome of the Chinese Spring (CS) wheat reference genome (1D:7381846–738462, showing only 83.8% identity to Lr42) (Fig. 5b and Supplementary Figs. 11 and 12), implying that this unique sequence originated through either intragenic recombination or ectopic recombination. Beside the uniqueness of Lr42, we also observed conserved sequences at the end of the NB-ARC domain and at the beginning of LRR (Fig. 5c). A separate phylogenetic analysis using these domains (e.g., RX-CC, NB-ARC, and LRR) of the gene resulted in different phylogenetic relationships among these Ae. tauschii accessions, further supporting intragenic recombination occurred between Lr42 haplotypes or ectopic recombination at some domains (Supplementary Fig. 4).

Among the accessions with the allelic Lr42 homologs, two accessions TA2458 and TA2468 were seedling leaf rust resistant to race PNMR (Supplementary Fig. 13). Both Lr42 haplotypes (lr42-TA2458 and lr42-TA2468) were found in susceptible accessions (Fig. 5a), suggesting that the Lr42 allelic homologs are not responsible for the leaf rust resistance in these two accessions. Indeed, TA2468 was known to carry Lr21 that confers resistance to race PNMR (Supplementary Table 1)\(^4,\)\(^3\).

In the Ae. tauschii reference genome, the susceptibility lrl42 allele, four intact homologs, and four partial gene fragments were clustered within an 871 kb region (Fig. 5d). Interestingly, homologous sequences with plus and minus orientations were physically separated into two regions, and homologs with the same orientation are more similar. The organization of the gene cluster indicated that Lr42 homologs likely expanded independently in the two separate regions. The Lr42 homologous clusters were also identified in 1A, 1B, 1D subgenomes of the hexaploid wheat variety, CS, 1A and 1B chromosomes of tetraploid emmer wheat, 1A and 1B chromosomes of durum wheat, as well as 1H of diploid barley (Supplementary Data 4). Only two homologs were identified in Brachypodium, a more distantly related species (Fig. 5d). The results indicated that Lr42 was derived from an ancient locus that has been maintained or expanded to result in a high copy number in barley and wheat species.

Lr42 is a widely used source of effective resistance in wheat breeding programs. Source germplasm lines KS91WGRC11 and KS93U50 carry the Lr42 resistance alleles (Supplementary Fig. 14). These Lr42 source lines carrying Lr42 have been extensively used in the CIMMYT wheat breeding program. To identify which CIMMYT wheat lines containing the Lr42 gene, both pedigree information and genotyping data via Genotyping-By-Sequencing (GBS) of 52,943 CIMMYT lines\(^3,\)\(^4\) were used. We identified 14 Lr42-specific GBS tags (Supplementary Table 2). Of 5121 genotyped CIMMYT lines with the Lr42 introgression in the pedigree, 33.7% (1724/5121) were classified as Lr42+ lines (Fig. 6a and Supplementary Data 5). In total, 2924 out of 5121 with an Lr42 donor in the pedigree were categorized as without the Lr42 segment (Lr42−) (Fig. 6a and Supplementary Data 5).

Some Lr42+ and Lr42− wheat lines were phenotypically examined for leaf rust resistance and grain yield at CIMMYT\(^3,\)\(^4\). Comparison between Lr42+ and Lr42− wheat lines from the breeding population supported that the Lr42 segment is highly associated with seedling resistance to the leaf rust race MBJ/SP35 and moderately associated with resistance at the adult stage to leaf rust (Fig. 6b). Without leaf rust infection, grain yield traits of Lr42+ and Lr42− lines were not significantly different, indicative of no significant yield boost or penalty directly imposed by the Lr42 resistance segment from Ae. tauschii (Supplementary Table 3).

Diagnostic markers for Lr42 genotyping. We developed an effective co-dominant KASP marker pC43 that is located 46 kb from the Lr42 gene for selection of Lr42-carrying lines in both Ae. tauschii and bread wheat lines. We have also designed and validated two markers, Lr42-pD1 and Lr42-pD2, on the Lr42 gene to distinguish the presence or absence of the Lr42 resistance allele in wheat (Supplementary Data 2, 6, and 7). These markers would be useful for precise marker-assisted selection of Lr42 in wheat breeding programs.

Discussion

We employed an efficient mapping strategy using diploid Ae. tauschii populations to clone the broadly effective leaf rust resistance gene Lr42. Cloning took advantage of the newly constructed Ae. tauschii reference genome\(^25\), high-throughput sequencing technology, and the optimized genetic analysis strategy, BSR-Seq\(^24\). Using susceptible and resistant bulks, BSR-Seq enabled simultaneous discovery and genotyping of high-density SNPs to map the genomic region that contains Lr42. Further fine-mapping delimited the gene interval to ~116 kb interval and revealed an expressed candidate NLR gene, AET1Gv2004030, for Lr42. The causal gene was confirmed by gain-of-resistance via gene transfer to a susceptible hexaploid wheat cultivar as well as loss-of-resistance in an EMS mutant of the Lr42 Ae. tauschii diploid line. The cloning of Lr42 added a member to at least 12 known wheat rust resistance NLR genes (Supplementary Fig. 15)\(^3,\)\(^6–\)\(^14,\)\(^36–\)\(^42\). NLR functions as an intracellular sensor of pathogen signals and/or as an executor to induce localized cell death, the hypersensitive immune response. NLRs exerting both functions were recently referred to as singleton NLRs, such as Mla\(^43\) and Sr50\(^44\). Some other NLR functions in a pair: sensor NLR recognizing the pathogen and helper (or executor) NLR initiating immune signaling. The paradigm of NLR networks consisting of a number of sensor NLRs and helper NLRs to modulate immune responses
was also proposed. An NLR gene in monocots generally consists of an N-terminal coiled-coil (CC) domain, the central NB-ARC domain, and a C-terminal leucine-rich LRR domain. Recent protein structure studies of an Arabidopsis NLR gene product, ZAR1, revealed that a pentameric wheel-like NLR resistosome is assembled upon activation by the pathogen. The funnel-shaped structure formed from the N-terminal α helices at the CC domain is hypothesized to directly compromise plasma membrane integrity and induce cell death. Interestingly, a MADA motif (MADAxVSFxXKLxxLxxEx, where x represents non-conserved amino acids) was conserved among helper NLRs and singleton NLRs but not sensor NLRs. Lr42 has a typical NLR structure and contains a homologous domain “MAEAVVGQLVVTLGEALAKEA”, which is most similar to the MADA motif among all known wheat rust resistance NLRs (Supplementary Table 4). This implies that Lr42

Fig. 5 Homologs of Lr42 in Ae. tauschi and closely related species. a Phylogenetic tree of intact Lr42 homologs from Ae. tauschi. The Lr42 resistance allele is shown in red. The Lr42 reference allele is a susceptibility allele from the reference accession TA10132. The other ten alleles (signified by lr42 accession) were from the Ae. tauschi minicore set. Solid colored circles represent Lr42 haplotypes. Squares indicate lineages of accessions. Bootstraps are labeled on the tree. b Haplotype analysis. Eleven Lr42 alleles that do not include Lr42 are clustered and grouped into three major haplotypes, represented by three alleles from TA2376, TA2536, and TA1605. Each sequence block (A to E) of Lr42 indicates the best hit with at least 95% identity to the block with the same letter on three haplotypes and a sequence fragment from 1D subgenome of CS. c The nucleotide diversity of the 12 Lr42 alleles in 50-bp windows scanned on the gene with a step size of 10 bp. Each dot represents a nucleotide diversity of a 50-bp window versus the middle position of the window. Conserved regions with very low diversity are highlighted by red ovals. d Circos view of Lr42 homologs. Lr42 clusters include Lr42 homologs (at least 1 kb match and 79% identity) on Ae. tauschi 1D (7.84–8.71 Mb), bread wheat CS 1A (8.61–9.55 Mb), 1B (9.55–10.06 Mb), 1D (7.06–7.87 Mb), durum wheat 1A (8.46–9.21 Mb), 1B (8.11–9.21 Mb), Wild emmer 1A (10.41–11.48 Mb), 1B (11.95–12.87 Mb), Barley 1H (3.49–5.22 Mb), and Brachypodium chromosome 2 (38.09–39.65 Mb). The beginning of each cluster was adjusted to 0. The 1’s on the cluster track represent 1 Mb positions. The identity between each homolog and Lr42 is color-coded. The red line points at the position of the Lr42 susceptible allele on the Ae. tauschi reference genome. Source data are provided as a Source Data file.
Fig. 6 Introggression of the Lr42 segment in CIMMYT wheat lines. a Each point represents a wheat line with the log10 of total count of GBS tags per line on the x-axis and the number of Lr42-specific GBS tags on the y-axis. Green and blue colors signify Lr42+ and Lr42− Lr42-introgressed lines, respectively. Other lines that are either not Lr42-introgressed lines or not confidently categorized into Lr42+ or Lr42− are grey colored. Numbers of Lr42-specific GBS tags were jittered with the factor 0.25 for better visualization of data density. b, c Using disease phenotypic data collected at CIMMYT, statistical comparisons of disease infection types between Lr42+ and Lr42− lines were performed for seedling stage leaf rust with two-side t-test and for adult stage resistance with ANOVA. Two field locations in Mexico for adult stage leaf rust phenotyping are labeled. The Stakman 0–4 scale was linearized to a 0–9 scale for seedlings (Methods). The percent disease severity on adult plant flag leaves was rated on the Cobb scale. Bars represent standard deviation of means of infection types or disease severity. Gray open dots represent single data points.

NATURE COMMUNICATIONS | (2022) 13:3044 | https://doi.org/10.1038/s41467-022-30784-9 | www.nature.com/naturecommunications

is more likely to be a singleton NLR or a helper NLR, not a sensor NLR.

Lr42 is apparently a recently generated allele at an ancient locus. Homologs of Lr42 were detected in the distant wheat relative Brachypodium (Fig. 5d), which diverged from the Triticeae (wheat, rye, barley) lineage 32–39 MYA. Nevertheless, 34/35 samples in the Ae. tauschii minicore have been excluded to carry an Lr42 resistance allele, suggesting that Lr42 is not frequently present in the Ae. tauschii population and, likely, of recent origin. The variation in LRR repeat numbers among Lr42 alleles indicated that unequal crossovers may have occurred within the LRR domain. Intragenic recombination as was documented for Lr21, or even ectopic recombination, may also have played a role in the origin of Lr42 allele. Indeed, the unique LRR sequence of the Lr42 allele can be identified in a non-allelic region in the subgenome 1D of CS, supporting the potential role of ectopic recombination in the origin of the Lr42 resistance allele.

The phenotypic expression of resistance in Lr42 lines depends on several factors. Although no leaf rust isolates have shown full virulence to Lr42, some isolates showed lower infection types than others on KS93U50, an Lr42 resistant selection from KS91WGRC11. The resistance reaction of the diploid Ae. tauschii TA2450 donor accession is consistently very strong, ranging from a hypersensitive fleck (Infection Type (IT) = :) to flecks with tiny pustules surrounded by necrosis (IT =:1) (Fig. 1a). However, the reaction of nontransgenic hexaploid Lr42-containing lines ranged from flecks and small pustules surrounded by necrosis (IT =:1) to medium-sized pustules surrounded by chlorosis (IT = 2+) 3,32. The reduced expression of introgressed resistance in hexaploid bread wheat compared to diploid donors is a frequently observed phenomenon. Nevertheless, the reaction of ubiquitin-driven transgenic hexaploid derivatives was very strong, ranging from a hypersensitive fleck (IT = :) to flecks with tiny pustules (IT =:1) (Fig. 2a). The improved performance of the transgenic versus nontransgenic hexaploid lines may be due to the strong maize ubiquitin promoter that was used in the transgensics. The very strong resistance of the transgenic hexaploid Lr42 lines bodes well for its utility in ubiquitin-driven transgenic cassettes. From the transgenic experiment with Lr42 driven by the native promoter, we found one transgenic line with weak leaf rust resistance and low Lr42 expression, which supported that the gene expression level is an important factor for Lr42 resistance. In addition, plant age and/or environment may also influence Lr42 resistance. Adult plants in the field showed much stronger Lr42 resistance than greenhouse-grown seedlings.

The undefeated status of Lr42 raised the possibility that it might be a more durable type of resistance gene. However, elucidation of the NLR structure of Lr42 indicates that the mechanism of resistance is typical effector-triggered immunity (ETI). ETI is usually not durable because the rust pathogen can become virulent by loss of the corresponding avirulence factor (effector) that triggers the hypersensitive resistance response. It is possible that the effector gene conferring Lr42 resistance is important for the fungus, which could explain why no virulent rust isolates have been identified. Lr42 is currently deployed mainly in wheat lines from CIMMYT that contain combinations of durable adult plant resistance (APR) genes to leaf rust (Supplementary Table 5). This may have reduced the selection pressure on the pathogen population to overcome Lr42. The CIMMYT wheat breeding pipeline has many more Lr42-containing breeding lines in a background with high levels of APR to leaf rust (Supplementary Data 6). Effective gene stewardship will require breeders to release Lr42 only in varieties with strong combinations of other leaf rust resistance genes.

Previous field trials showed that the Lr42 introgression contributed to large increases in yield and kernel weight in Oklahoma. We used GBS markers to classify 5121 CIMMYT breeding lines that had Lr42 in the pedigree. Some of the advanced lines positive for Lr42 were compared to their counterparts without Lr42. We were able to detect a very large effect of Lr42 on leaf rust ratings at the seedling stage, but only a moderate effect on severity at the adult stage in the field probably because most CIMMYT lines also had a high level of APR that kept disease severities low (Fig. 6c). In a QTL analysis of highly resistant CIMMYT line Quaiu 3, Basnet et al. were able to separate the effect of Lr42 from other resistance genes. Lr42 explained 32% of the phenotypic variation and limited disease severity in the field to a maximum of 40%. Lr42 combined very well with Lr46 and QLr3.tam-3D to achieve near immunity to leaf rust in Quaiu 319. We did not detect a direct or indirect impact of Lr42 on yield and other grain quality traits, which is also probably due to a high level of APR in most CIMMYT lines.

KS91WGRC11 may be common in CIMMYT pedigrees because it contributes resistance to stem rust and stripe rust in addition to leaf rust. KS91WGRC11 carries the Sttmp stem rust resistance gene on chromosome 6DS from the Century parent.
We also documented a hidden introgression in the WGRC germplasm. Recently, a stripe rust resistant NLR gene YrAS2388 originating from chromosome 4D of an *Ae. tauschii* accession was cloned and TA2450 was found to carry the resistance allele. We amplified the YrAS2388 gene from TA2450 and confirmed that the sequence is identical to the reference resistance allele reported. We found that K919WGRC11 carries the YrAS2388 resistance allele from TA2450, which implies that the YrAS2388 resistance allele has been introduced to germplasm in CIMMYT and many other breeding programs. Given the limited backcrosses to Century, K919WGRC11 is expected to harbor additional genomic segments from *Ae. tauschii* that might contribute valuable genetic diversity to future cultivars. Our results point to the need for in situ conservation of robust populations of native wild species for enhancing crop biodiversity so that alleles such as Lr42 reported here can evolve and be conserved for future crop improvement.

Methods

Plant materials.

Ae. tauschii accessions for genetic mapping and haplotype analysis were grown in the Greenhouse in Supplementary Data 3. *Ae. tauschii* sp. *transversa* from TA2450 from Caspian Iran is the donor of the Lr42 gene. Two highly susceptible accessions TA10132 (also known as AL8/78) and TA2433 were crossed with TA2450 and advanced to F2:3, F3:4, and F4:5 populations by single seed descent.

Leaf rust disease phenotyping.

The leaf rust disease inoculation procedure followed the protocol developed by ref. 42 except plants were incubated in a growth chamber at 20 °C and a 16 h photoperiod. Briefly, for *Ae. tauschii*, leaf rust disease inoculation, two-leaf stage seedlings were inoculated with the leaf rust race PNMRJ. The virulence/avirulence phenotype of rust races is given in Supplementary Table 1. The infection type of plants was scored on the 0 to 4 Stakman scale at 10 days post inoculation (dpi) and confirmed at 14 dpi. The race nomenclature, differential sets, and Stakman infection types were described by refs. 41,42. For transgenic wheat seedling leaf rust genetic mapping, the leaf rust race TBFIQ was used to inoculate seedlings at the two-leaf stage. TBFIQ was used because it defeated 9 F4 families from each of F2:3, F3:4, and F4:5 populations by single seed descent.

BSR-Seq.

Two F2:3 populations (population 1: TA2450 × TA2433 and population 2: TA2450 × TA10132) were used for BSR-Seq analysis [https://schnablelab.plantgenomics.iastate.edu/software/BSR-Seq]. Fifteen seeds from each of F2:3 families were inoculated and phenotyped. Of 100 TA2450 × TA2433 F2:3 families, 27 were HR families of which all individuals were resistant to leaf rust, and 21 were HS families of which all individuals were susceptible. Equal amounts of leaf tissue were collected from each of 21 HR and 21 HS families, and HR and HS families were pooled separately. Of 101 TA2450 × TA10132 F2:3 families, 36 were HR families and 65 were HS families. We selected 26 HR and all 9 HS families to collect HR and HS tissue pools.

RNA samples were extracted using the RNeasy Plant Mini Kit (Qiagen, Germany, Cat.# 74094) and with the 2 x 101 bp paired-end platform on an Illumina HiSeq 2000 and a 16bp paired-end platform using the Genome Sequencing Facility at the Kansas University Medical Center. In total, ~180 million pairs of reads were generated. Raw reads were trimmed using Trimmomatic (version 0.32) [https://github.com/usadellab/Trimmomatic]. Trimmed reads were aligned to the *Ae. tauschii* reference genome (Aet v4.0, GCA_002575655.1)41 by GSNAP (version 2018-03-25) [http://research-publish.gene.com/gmap]53 with the parameters of "-B 2 -N 1 -m 6 -i 2 -n 3 -Q". SNPs were discovered with GATK (version 3.3) [https://github.com/broadinstitute/gatk]34 with the UnifiedGenotyper module using the following parameters: "--hetozgyosity 0.005 -stand_call_conf 30.0 -stand_emit_conf 20.0 -gлим BOTH -U ALLOW_N_CIGAR_READS -ploidy 2". SNPs were filtered by the GATK module of SelectVariants with the following parameters: "--restrictAllelesTo AF > 0.2 && DP > 30.0 && QUAL > 20 && QUAL > 200 && DP < 100000". In total, 170,069 SNPs were identified for population 1 and 74,206 SNPs for population 2. For each population, a Bayesian-based approach was used to determine the probability of the complete linkage between each SNP and the causal gene24.

Fine mapping with KASP markers.

SNPs having a high probability of the complete linkage with the causal gene were selected to convert to KASP assays. All KASP markers used for fine mapping were listed in Supplementary Data 1. The KASP experiment was run on the Applied Biosystems Real-Time PCR Instruments 7900 (Applied Biosystems, USA) using the KASP-TF Master Mix (LG2, Biosearch Technologies, UK, Cat.# KBS-1050-132) according to the manufacturer’s instructions. To confirm the mapping interval, 68 F2:3 families from the population 1 used for BSR-Seq were selected for genotyping. The 68 DNAs of pooled tissue samples from 12 F2:3 individuals per family were genotyped with KASP markers p12A10, p1A05, and p1A02. As a result, 11 F2:3 recombinant families were identified. Analysis of genotypic data together with phenotypic data confirmed that the Lr42 gene was located between the markers p12A10 and p1A05. To validate this interval, 6 of the 11 recombinant families were selected to genotype individual plants in each family with more KASP markers within the mapping interval.

To narrow down the mapping interval, we used F2:3 plants from population 1. We first identified 9 F2:3 families that were derived from the resistant F3:4 individuals (susceptible for the Lr42 in the F2:3 population) and p1A05, which identified 85 recombinants. Genotyping recombinants with additional markers identified nine F2:3 individuals harboring the recombination between p12A10 and pC24. Further analysis of the F4 progeny of these three F4 individuals confirmed by the mapping interval between 8,655,291 bp and 8,830,775 bp on 1DS flanked by the markers pC43 and pC49.

We also analyzed 78 F2:3 families of the population 2 and found four F2:3 families with the recombination between p12A10 and p1A05. Luckily, one recombinant between the marker pC43 and the marker pC50 enabled us to locate the gene at a 16 kb interval between 8,655,291 bp and 8,771,761 bp.

Cloning of full-length coding region of Lr42 candidate gene.

Total RNA was extracted from leaf tissues of resistant (TA2450) and susceptible (TA10132) accessions using TRIzol reagent (Invitrogen, USA, Cat.# 15956026) according to the manufacturer’s instructions. After removing residual DNA with DNase I (Invitrogen, USA, Cat.# 18047019) treatment, 1 μg of total RNA was reverse-transcribed into cDNA using SuperScript® IV First-Strand Synthesis System (Invitrogen, USA, Cat.# 18091050) with an oligo(dT)15 primer following the manufacturer’s instructions. The full-length coding region of the Lr42 candidate gene was amplified by PCR with the gene-specific primers AET300.2_CDS-F and AET300.2_CDS-R (Supplementary Data 8). The PCR product was cloned into the pCN500-C10 TOPO vector (Invitrogen, USA). The inserted fragment in the construct was verified by sequencing using an ABI 3730 DNA analyzer (Applied Biosystems, USA).

Construction of the plasmid of Lr42 with the ubiquitin promoter.

The full-length of Lr42 coding regions flanked by a BamHI restriction site was amplified via PCR using primer sets AET300.2_CDS-BamHIF and AET300.2_CDS-BamHR (Supplementary Data 8). DNA fragments were ligated into a pAC17 vector50 at the BamHI site. The expression constructs containing the full-length Lr42 coding region under a maize ubiquitin promoter (Ubi-1) and a nopaline synthase terminator (NOS) were used for generating transgenic plants.

Assembly of the Lr42 locus using Nanopore data.

The public WGS Illumina data of TA10132 (the reference susceptible line, SRS7974112) and TA2450 (the Lr42 parental resistant line, SRS7979498) were downloaded27. The data were used for genome comparison through CGRD [https://github.com/lu3zhenlab/CGRD]28, identifying conserved and variable regions on the *Ae. tauschii* reference genome between the two genomes.

To assemble the sequence of the Lr42 locus, a low-depth (~10x) WGS Nanopore long reads of TA2450 were generated. Briefly, genomic DNAs were isolated from young leaf tissue samples from 12-day-old TA2450 plants that were grown in the greenhouse using the DNeasy Plant Mini Kit (Qiagen, Germany, Cat.# 69104). Total reads were aligned with the gene-specific primers (tNOS) were used for generating transgenic plants.
r42P_7872R_F1 (Supplementary Data 8) contained the EcoRI restriction enzyme site and the homologous sequence of the target vector pCR-Blunt (Invitrogen, USA). The EcoRI linearized pCR-Blunt vector and the two Lr42 fragments were fused using the enzyme prefix in IgFusion cloning kit (Intact Genomic USA, Cat.# 4111). The expression construct was validated by Sanger Sequencing (Genewiz, USA) and used for generating transgenic plants.

Activity assay of the Lr42 native promoter. The 234 bp promoter fragment (containing the TATA box) was amplified by PCR using a primer set Lr42p_BsaI_F containing a BsaI site and Lr42p BamHI_R containing a BamHI site (Supplementary Data 8). The amplified fragment was digested with BsaI and BamHI, followed by ligation into BsaI/BamHI-digested vector pBI21 (Clontech, USA). This resulted in the Lr42::GUS vector. The construct was verified by sequencing.

Agrobacterium tumefaciens strain LBA4404 transformed with Lr42::GUS plasmid was used for Agrobacterium-mediated transformation26.

Activity assay of the strain LBA4404 transformed with Agrobacterium tumefaciens NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30784-9 | www.nature.com/naturecommunications

EcoRI and following tissue culture protocols were performed for transformation61,62. Agrobacterium picin (Sigma-Aldrich, USA, Cat.# R7382-5G) and 50 µg/ml Kanamycin (Fisher) were added to the EMS-treated seeds and the plants grown in the field were used for VIGS of EMS mutagenesis and screening transgenic plants. The transgenic plants were grown for leaf rust bioassays.

Transgenic plants. Immature embryos were isolated from a spring wheat (Triticum aestivum L.) cv. Bobwhite grown in a controlled environment with a 16-h photoperiod, and the day/night temperatures at 20/18 °C. The expression constructs and the pAHC20 vector containing the bar gene were co-bombarded with I:1 ratio into selected embryonic calli. A biolistic approach using a particle inflow gun and following tissue culture protocols were performed for transformation26. Recovered plants in soil were screened for herbicide resistance by brushing with a 0.2% v/v Liberty (glufosinate) solution (Bayer CropScience, USA) on leaves. The putative herbicide-resistant plants with an absence of necrosis after 5 days of Liberty analysis were applied by PCR for the presence of the gene of interest using primers Ubi F and SecOrF (Supplementary Data 8) for Ubi:Lr42 transgenic plants and Lr42_dilBW_2F and Lr42_qRT_R6 (Supplementary Data 8) for Lr42:Lr42 transgenic plants. The transgenic plants were grown for leaf rust bioassays.

EMS mutagenesis and screening. The method of TA2450 EMS mutagenesis treatment was described by ref. 31. In brief, 5300 seeds of TA2450 accession were soaked in 0.6% Ethyl methanesulfonate (EMS, Sigma-Aldrich, USA, Cat. # M8080-25G) for 8 h at room temperature. The EMS treated seeds and the untreated EMS-treated seeds were in M0 generation, and M0 plants were self-pollinated to derive M1 seeds. The M1 seeds from a single M0 plant were collected as an M1 family. A single seed from each M1 family was randomly selected to generate M2 seeds, and the same procedure to generate M3 families. M3 seeds (n=1320) were grown and inoculated with leaf rust race PMN16. The 1320 M3 families, 901 families had more than 16 seeds per family.

Viruss induced gene silencing of Lr42. A Barley Stripe Mosaic Virus (BSMV)-based system developed by Yuan et al. was used for VIGS of Lr4229. BSMV vectors were shared by Lucy Stewart, USDA-ARS, Fort Detrick, MD. The primers (Lr42 BSVGS_F3_F1/R1, Supplementary Data 8), fused with Ligation Independent Cloning (LIC) vector was designed to specifically amplify a 201 bp sequence of the Lr42 allele. The PCR amplion was cloned into a BSMV-LIC vector to generate BSMV-Lr42 construct29. BSMV-Lr42 was transformed into Agrobacterium GV3101 via electroporation and grown on LB plates containing 25 µg/ml rifampicin (Sigma-Aldrich, USA, Cat. # R7362-5G) and 50 µg/ml Kanamycin (Fisher Scientific, USA, Cat. # BP960-5). BSMV-Lr42, BSMV-Lr42, BSMV and BSMVβ Agrobacterium cultures were grown separately overnight at 28 °C. Cultures were resuspended to OD600 of ~0.7 in the infiltration buffer (10 mM MgCl2, (Sigma-Aldrich, USA, Cat. # M2393-100G), 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES) (pH 5.2) (Sigma-Aldrich, USA, Cat. # M2933-100G), and 0.1 mM acetylsyringone (Sigma-Aldrich, USA, Cat. # D13440-6G) and incubated at room temperature for 4 h. Equal volumes of BSMVβ, BSMVβ, and BSMV-Lr42 (or BSMV-LIC) cultures were mixed and infiltrated into three to four leaves of Nicotiana benthamiana plants using 1 ml needles syringe. Infiltrated plants were maintained in the growth chamber. After 7 days post infiltration, 1 g of infiltrated leaf tissue was ground in 3 mL of ice cold 1x PBS containing 1% celite (Sigma-Aldrich, USA, Cat. # 20199-U) using a mortar and pestle. The sap containing viral particles were rub inoculated onto two-leaf stage seedlings of Ae. tauschii TA2450. After 2 weeks of viral inoculations, plants were infected with race PMN16 as described above. At 14 days post rust inoculations, disease scores were recorded, and leaf samples were collected for gene expression analysis of Lr42.

Gene expression analysis of Lr42 in VIGS samples. Total RNA was extracted using a Direct-Zet kit as per manufacturer’s recommendation (Zymo Research, USA, Cat.# Z2051). After DNase treatment with DNase I (New England Biolabs, USA, Cat. # M0305S), cDNA synthesis was performed using AzuraQuant cDNA synthesis kit (Azura genomics, USA, Cat.# AZ-19951). Lr42 expression was monitored by qPCR using the gene-specific primers 5′-TGACAGCAGAAATTGGTTGCTG-3′ (Lr42_F1) and 5′-GGTTGAGGACAGTTGAGACTG-3′ (Lr42_R1). ClustalW in the Geneious (version 8.1.7) was used for multiple alignment and phylogenetic construction. Multiple alignments were performed using the step of 10 bp. Trees were exported as Newick formatted trees. From the CIMMYT pedigrees, 5121 CIMMYT lines that were GBS genotyped were identified but with at least 0.2 million total GBS tags were categorized as Lr42+, the lines without the Lr42 segment. All other lines were not classified.

Phenotypic comparison between Lr42+ and Lr42− CIMMYT lines. Seedling plant responses of CIMMYT lines to leaf rust race MB1/5035 were obtained using the original disease rating scale of 0–4 and converted to a 0–9 scale for the purpose of quantitative comparison using the conversion formula described in ref. 40. The adult plant scoring was conducted using severity (0–100%, modified Cobb Scale). Seedling leaf rust responses were phenotyped in CIMMYT’s greenhouses in El Batán and adult plant leaf rust responses were phenotyped in field trials at two locations, Ciudad Obregón and El Batán, in Mexico. Analysis of variance was performed to test the differential adult plant responses to leaf rust in two locations. T-tests were performed on seedling rust infection types and grain yield related traits, such as test weight and thousand kernel weight, evaluated as described by ref. 34.

Haplotype analysis. Genomic DNAs of leaf tissues from 35 Ae. tauschii accessions in the minicore collection from WGRG were extracted using 2% cetyltrimethylammonium bromide (Sigma-Aldrich, USA, Cat. # H6269-250G)72. DNAs were used to survey sequences of Lr42 haplotypes. Lr42 alleles/homologs were amplified with the primers Lr42_H1F and Lr42_H1R (Supplementary Data 8) using Q5 High-Fidelity DNA Polymerase (New England Biolabs, USA, Cat.# M0491L) with High GC Enhancer. The PCR thermocycling conditions were initial denaturation at 98 °C for 5 min, 33 cycles of 98 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min, followed by a final extension at 72 °C for 5 min. PCR products were purified using an Agencourt Quick Gel Extraction Kit (Beckman Coulter, USA, Cat.# A20800). The purified products were sequenced by GeneWiz Sanger sequencing service. Sequencing reads were de novo assembled using Geneious software (version 8.1.7) [https://www.geneious.com]. The command cd-hit from the software CD-HIT (4.8.1) [https://github.com/weizhongli/cdhit] was used to cluster Lr42 allele homologs with default parameters30. The allele selected by cd-hit-est to represent each cluster was considered to be the haplotype sequence.

Phylogenetic analysis. ClustalW in the Geneious (version 8.1.7) was used for multiple alignment and phylogenetic construction. Multiple alignments were performed using the default setting. Phylogenetic trees were built with the Juke-Cantor model and the Neighbor-joining method. Trees were exported as Newick formatted flat files that were then uploaded to iTOL for plotting30.

Nucleotide diversity. Nucleotide diversity of the 12 Lr42 alleles was calculated by an R package, PopGenome [https://cran.r-project.org/web/packages/PopGenome]70. Nucleotide diversity was calculated for windows with 50 bp and slided by the step of 10 bp.

Identification of clusters of Lr42 homologs. Clusters of Lr42 homologs were identified with BLAST (version 2.2.30+) [https://blast.ncbi.nlm.nih.gov/]. First, the Lr42 resistance allele was aligned to the genomes of Brachypodium distachyon (Brachypodium distachyon, constructive primitive v2.0) [https://www.ncbi.nlm.nih.gov/ucsc/], Triticum monococcum [https://rgp.doe.gov/], Triticum tauschii (3R05401.0_Morex_v1.0)72, Triticum dicoccoides wild emmer (GCA_002162155.2 WEW v2.0)73, Triticum turgidum subsp. durum (GCA_900231445.1 Svevo_v1.74).
RNA extraction and RT-PCR of transgenic plants. Leaf tissue from *Ae. tauschii* and transgenic wheat were collected, and RNA was extracted using the RNAeasy Plant Mini Kit (Qiagen, Germany, Cat.# 74904). cDNA was synthesized with Verso cDNA Synthesis Kit (Thermo Scientific, USA, Cat.# AB1453A). The cDNA input for each sample was normalized by the housekeeping gene actin amplified with primers actin_F1 and actin_R1 (Supplementary Data 8) for 25 cycles. The Lr42 resistant and susceptible alleles were amplified with primers Lr42-qRT_F5/R5 and Lr42_1F/R (Supplementary Data 8) for 28 cycles. The OneTag 2x Master Mix (New England Biolabs, USA, Cat.# M0482S) was used in the RT-PCR. The thermocycling conditions were initial denaturation at 95 °C for 2 min, 25 or 28 cycles of 94 °C for 30 s, 53 °C for 30 s, and 68 °C for 30 s, followed by a final extension at 68 °C for 5 min. The 10 ul of PCR products were loaded to the 1% agarose (Fisher Scientific, USA) gel, and the GeneRuler 1 kb DNA Ladder (Thermo Scientific, USA, Cat.# SM0314) was used as a molecular marker.

Quantification of gene expression in transgenic plants by qRT-PCR. Leaf tissue was sampled at 12 days after inoculation for RNA extraction using the RNAeasy Plant Mini Kit (Qiagen, Germany) and quantified using Qubit 1X dsDNA High Sensitivity Assay kit (Invitrogen, USA, Cat.# Q33230). Total 10 ng genomic DNA was input for qPCR using IQ SYBR Green Supersmix (Bio-rad, USA, Cat.# 1708882) on the CFX96 Touch Real-Time PCR Detection System (Bio-rad, USA, Primers Lr42-qRT_F6 and Lr42-qRT_R6 (Supplementary Data 8) were used for Lr42, and primers actin_F1 and actin_R1 (Supplementary Data 8) were used for the actin gene as the control. The thermocycling conditions were initial denaturation at 95 °C for 3 min, 40 cycles of 95 °C for 10 s, 60 °C for 30 s. The ΔΔCT method was used to determine the relative expression of Lr42.

Quantification of genomic copy number of the Lr42 gene. Genomic DNAs of single plants were extracted from leaf tissue using DNAeasy Plant Mini Kit (Qiagen, Germany) and quantified using Qubit 1X dsDNA High Sensitivity Assay kit (Invitrogen, USA, Cat.# Q33230). Total 10 ng genomic DNA was input for qPCR using IQ SYBR Green Supersmix (Bio-rad, USA, Cat.# 1708882) on the CFX96 Touch Real-Time PCR Detection System (Bio-rad, USA, following the manufacturer’s instructions. Primers Lr42_3F and Lr42_3R were used for Lr42, and primers actin_F1 and actin_R1 were used for the actin gene (Supplementary Data 8). Similar to the analysis of qRT-PCR, the actin gene was used as the control to determine the DNA level of the Lr42 transgene in transgenic lines and other control lines, including the Thatcher line that carries Lr42 (Thatcher-Lr42) [27]. The Lr42 DNA level of each line was then normalized to the Lr42 copy number relative to Thatcher-Lr42, which was considered to carry one copy of Lr42 in the 3x wheat genome because the Lr42 was introduced by crossing with an Lr42 line and maintained as the Lr42 homozygous line.

Conserved domain and repeats annotation. Protein and DNA sequences were submitted to NCBI for conserved domain search [25]. LRR was searched by a web-based LRR search tool with additional manual examination [26].

Development of Lr42 diagnostic markers on the Lr42 gene. Multiple alignment of Lr42 alleles from the *Ae. tauschii* minicore set identified a unique region (~140 bp) in the LRR (Lr42-unique-segment) from the Lr42 resistant allele. We attempted to design diagnostic markers on the Lr42 gene across this region. First, the Lr42 sequence of the unique region was aligned to all Lr42 homologs in the reference genomes of *Ae. tauschii*, wild emmer, durum wheat, *CS*, Barley, and *Ae. tauschii* (cv. CS (iwgsc_refseqv1.0)). Homologs were identified if an alignment had the E-value smaller than 1e−10 and the matched length of the query (Lr42) was longer than 1 kb. Second, a chromosomal interval smaller than 2 Mb with at least 2 homologs was identified as a Lr42 cluster. Alignments of the Lr42 resistant allele and homologs in each cluster were plotted using Circos [http://circos.ca] [28].

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The BSR-Seq sequencing data generated in this study have been deposited in the Sequence Read Archive (SRA) database under accession PRJNA604114, and Nanopore whole genome sequencing data of TA2450 under accession PRJNA769399. The sequence of the Lr42 resistance allele was deposited in GenBank under accession OK430880. Source data are provided with this paper.

Code availability. Related scripts are available at Github (https://github.com/PlantG3/Lr42) or Zenodo (https://zenodo.org/badge/latestdoi/414748290).

Received: 25 February 2020; Accepted: 18 May 2022; Published online: 01 June 2022

References

1. Kolmer, J. A. Genetics of resistance to wheat leaf rust. *Annu. Rev. Phytopathol.* 34, 435–455 (1996).

2. Huerta-Espino, J. et al. Global status of wheat leaf rust caused by Puccinia graminicola. *Environ. Epithytopathol.* 179, 143–160 (2011).

3. Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (*Triticum aestivum* L.) genome. *Proc. Natl Acad. Sci. USA* 100, 15253–15258 (2003).

4. Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. *Genetics* 164, 655–664 (2003).

5. Cloutier, S. et al. Leaf rust resistance gene Lr1, isolated from bread wheat (*Triticum aestivum* L.) is a member of the large psi567 gene family. *Plant Mol. Biol.* 65, 93–106 (2007).

6. Third, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. *Nat. Biotechnol.* 35, 793–796 (2017).

7. Hewitt, T. et al. Wheat leaf rust resistance gene Lr13 is a specific Ne2 allele for hybrid necrosis. *Mol. Plant* 14, 1025–1028 (2021).

8. Kolodziejczyk, M. C. et al. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. *Nat. Commun.* 12, 956 (2021).

9. Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. *Science* 323, 1360–1363 (2009).

10. Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. *Nat. Genet.* 47, 1494–1495 (2015).

11. Wulff, B. B. H. & Moscou, M. J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. *Front. Plant Sci.* 5, 692 (2014).

12. Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to all known rust pathogens in wheat. *Nat. Biotechnol.* 39, 561–566 (2021).

13. Cox, T. S., Raupp, W. J. & Gill, B. S. Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. *Crop Sci.* 34, 339–343 (1994).

14. Kolmer, J. A. Virulence of Puccinia triticina, the wheat leaf rust fungus, in the United States in 2017. *Plant Dis.* 103, 2113–2120 (2019).

15. Kolmer, J. A. & Fajolou, O. L. Wheat leaf rust in the United States in 2020. *Wheat News.* 67, 78–87 (2021).

16. Kolmer, J. A. & Fajolou, O. L. Wheat leaf rust in the United States in 2019. *Wheat News.* 66, 89–91 (2020).

17. Cox, T. S., Sears, R. G., Gill, B. S. & Jellin, E. N. Registration of KS91WGRC11, KS92WGRC15, KS92WGRC23 leaf rust-resistant hard red winter wheat germplasm. *Crop Sci.* 34, 546–547 (1994).

18. Basnet, B. R. et al. Genetic analysis of adult plant resistance to yellow rust and leaf rust in common spring wheat *Quasi* 3. *Plant Dis.* 97, 728–736 (2013).

19. Basnet, B. R. et al. Characterization of Yr34 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat *Quasi* 3. *Mol. Breed.* 33, 385–399 (2014).

20. Martin, J. N., Carver, B. F., Hunger, R. M. & Cox, T. S. Contributions of leaf rust resistance and awns to agronomic and grain quality performance in winter wheat. *Crop Sci.* 43, 1712–1717 (2003).

21. Liu, Z., Bowden, R. L. & Bai, G. Molecular markers for leaf rust resistance gene Lr42 in wheat. *Crop Sci.* 53, 1566–1570 (2013).

22. Sun, X., Bai, G., Carver, B. F. & Bowden, R. Molecular mapping of wheat leaf rust resistance gene Lr42. *Crop Sci.* 50, 59–66 (2010).

23. Gill, H. S. et al. Fine mapping of the wheat leaf rust resistance gene Lr42. *Int. J. Mol. Sci.* 20, 2445 (2019).
Lin, G. et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol. 22, 175 (2021).

Allen, G. C. et al. High-level transgene expression in plant cells: effects on the model grass Brachypodium distachyon. Proc. Natl Acad. Sci. USA 114, E4938–E4942 (2017).

Periyannan, S. et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788 (2013).

Saintenac, C. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl Acad. Sci. USA 116, 7880–7885 (2019).

30. Allen, G. C. et al. High-level transgene expression in plant cells: effects on the model grass Brachypodium distachyon. Proc. Natl Acad. Sci. USA 114, E4938–E4942 (2017).

54. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

55. Alotaibi, S. S., Sparks, C. A., Parry, M. A. J., Simkin, A. J. & Raines, C. A. Identification of leaf promoters for use in transgenic wheat. Mol. Plant 8, 999–913 (1996).

70. Tian, B., Navia-Urrutia, M., Chen, Y., Brungardt, J. & Trick, H. N. Biolistic transformation of wheat. Mol. Biol. Cell 21, 1061–1069 (2010).

71. Huang, L. et al. Evolution of new disease specificities at a cereal disease gene. NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30784-9 2022-07-13 | www.nature.com/naturecommunications

72. Guo, Z., Jin, H., Ye, Q. & Liu, J. e1539 (2019).

73. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).

74. Maccalferri, M. et al. Durum wheat genotypes highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).

75. International Wheat Genome Sequencing Consortium (IWGSC), et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

76. Krywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

77. Kolmer, J. A. & Hughes, M. E. Physiologic specialization of puccinia triticina on wheat in the United States in 2012. Plant Dis. 98, 1145–1150 (2014).

78. Marchler-Bauer, A. et al. CDI/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203 (2017).

79. Bej, A. et al. LRSearch: an asynchronous server-based application for the prediction of leucine-reppeat motif and an integrative database of NOD-like receptors. Comput. Biol. Med. 53, 164–170 (2014).
R.L.B., and S.L. analyzed data; P.J., R.P.S., and J.P. provided genotyping and phenotyping data of CIMMYT lines; G.L., R.L.B., G.B., B.G., and S.L. wrote the manuscript; all authors reviewed and revised the manuscript.

Competing interests
S.L. is the co-founder of Data2Bio, LLC. Other authors claim no competing interest.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-30784-9.

Correspondence and requests for materials should be addressed to Bikram Gill or Sanzhen Liu.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022