Discovery of anti-influenza nucleoside triphosphates targeting the catalytic site of A/PR/8/34/H1N1 polymerase

Nataraj Sekhar Pagadala1,2 · Rakesh Bhat3 · Jagadeesh Kumar D4 · Abdolamir Landi1,2

Received: 8 December 2019 / Accepted: 12 May 2020 / Published online: 24 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In an effort to develop potent anti-influenza drugs that inhibit the activity of influenza virus RNA-dependent RNA polymerase (IAV RdRp), a database of nucleoside triphosphates with ~800 molecules were docked with the homology model of IAV RdRp from A/PR/8/34/H1N1 strain. Out of top 12 molecules that bind with higher affinities to the catalytic site of IAV RdRp above and below the PB1 priming loop, only seven molecules decreased the transcriptional activity of the viral RNA polymerase with an IC50 in the range of 0.09–3.58 µM. Molecular docking combining with experimental study indicated that the molecules with linear chain are more effective in inhibiting IAV RdRp replication than the molecules with V-shaped and are cyclic in nature. A correlation between ΔG and LogIC50 for these seven compounds resulted an R^2 value of 0.73. Overall, these newly developed seven nucleoside triphosphates lay a strong foundation for the future development of a new therapeutics that can satisfy the Lipinski’s rule of five exhibiting high specificity to the catalytic site of influenza-A viruses.

Keywords RNA-dependent RNA polymerase · Catalytic site · Docking · Nucleoside triphosphates

Introduction
Influenza is a highly contagious airborne life-threatening viral infection causing recurrent outbreaks of humans responsible for respiratory diseases and death. It was estimated during 2017–2018 that there were 959,000 hospitalizations and 79,400 deaths (CDC 2018) alone in the United States related to influenza illness. Moreover, WHO estimates that 3–5 million people suffer from the disease every year with death rate ranging between 290,000 and 650,000 due to influenza epidemics (Influenza (Seasonal) 2018) worldwide (Sherman et al. 2019). Of note, previous epidemiological studies on pandemic A/H1N1 during the year 2009 clearly showed that the severity of influenza was not so high in individuals effected with HIV compared with HIV-negative patients (Martinez et al. 2011; Perez et al. 2010). This clearly shows that influenza remains a major target for vaccine and antiviral treatment and prophylaxis. One of the causes of the severity of the disease is due to influenza replication and transcription played by viral RNA-dependent RNA polymerase (RdRp) which is composed of three subunits i.e., polymerase basic1 (PB1), polymerase basic 2 (PB2), and polymerase acidic (PA) (Fodor 2013; Resa-Infante et al. 2011). Both PB1 and the N-terminus of PB2 form a large central cavity for catalytic mechanism of influenza-A virus (IAV) viral replication (Hengrung et al. 2015; Pflug et al. 2014; Reich et al. 2014). The priming loop of (a β-hairpin structure) PB1 thumb domain protrudes into the central cavity and supports the sugar base of the first NTP during de nova initiation (Reich et al. 2014; Appleby et al. 2015; Butcher et al. 2001; Tao et al. 2002). Moreover, primer-independent replication on the viral RNA (vRNA) template was also initiated by the priming loop (Te Velthuis et al. 2016). However, no drug exits presently in the market that blocks the entry of putative NTP and inhibits the initiation of vRNA priming loop occupying to the catalytic site of IAV RdRp. Apart from the catalytic site, IAV RdRp contains multiple sites for potential antivirus
drug development due to its high conservation among different strains (Babar et al. 2014).

Recently, four different active sites of IAV RdRp were predicted computationally (Pagadala 2019). At present, three major classes of drugs are under development for influenza: RNA synthesis inhibitors, cap-snatching inhibitors, and inhibitors targeting protein–protein interactions between the three polymerase subunits (e.g., PA–PB1, PB1–PB2). Inhibition of IAV RNA synthesis during chain elongation is mainly inhibited by nucleoside mimicking’s such as favipiravir (T-705), 2′-deoxy-2′-fluoroguanosine (Furuta et al. 2009; Tisdale et al. 1995). On the other hand, the pyrazine carboxamide derivatives (T-1105 and T-1106) show different antiviral activity on the type of host cells used. Both ribavirin and its amidine produg viramidine are converted to ribavirin monophosphate and acts on cellular enzyme inosine 5′-monophosphate dehydrogenase leading to the inhibition of vRNA synthesis (Sidwell et al. 2005; Ghanem et al. 2007). In comparison with ribavirin, cytotoxicity of viramidine is lesser which lead to further evaluation as a possible anti-influenza viral therapy. Unlike ribavirin, the influence of T-705 on cellular DNA or RNA synthesis was negative, indicating its high specificity and lesser cytotoxicity. Recently, a set of compounds that were screened targeting IAV RNA synthesis revealed that 2′F-2′ dNTP nucleoside analogs inhibit cPol and vPol in a completely different way (Reich et al. 2017). A combination therapy of amantadine and oseltamivir as well as favipiravir and oseltamivir in H5N1 infected mice has shown increased in drug efficacy (Ilyushina et al. 2007). Although the combination of oseltamivir and ribavirin was shown effective, ribavirin has shown some undesirable toxic effects. Recently, combination therapy with three antiviral drugs (amantadine, ribavirin, and oseltamivir) has shown a strong effect on drug-resistant viruses including pH1N1 influenza in Korea (Kim et al. 2011). In continuation, the TCDA therapy also showed similar pharmacokinetics compared with mono-drug therapy with increased safety in immune compromised patients (Kim et al. 2011; Seo et al. 2013).

In continuation of the previous publication of known molecules of anti-influenza nucleoside analogs that were approved for the treatment of influenza viral infection and their mechanism of binding, in the present study, (Sherman et al. 2019) the compound database of ~800 nucleoside triphosphates that are commercially available was developed for molecular docking against the built homology model in three stages of replication mechanism I. In the presence of influenza-A vRNA; II. In the presence of Influenza-A vRNA with extended primer; and III. In the presence of influenza-B vRNA (Pagadala 2019). Based on the docking studies, the top ranking 11 nucleoside triphosphates that bind commonly to the catalytic site in all the three stages with higher affinities and are predicted to inhibit the IAV viral replication were chosen and their ligand protein interactions were studied further. In addition, the binding modes of 11 NTPs against IAV RdRp were predicted and their dihedral angles \(\Phi C(2')\cdot C(1')\cdot -N(1)\cdot -N(5)/C(6) \) and \(\Phi O(5')\cdot C(1')\cdot -N(1)\cdot -N(5)/C(6) \) that play an important role in ligand binding were analyzed. Furthermore, 25% (IC25), 50% (IC50), and 95% (EC95) effective concentrations of these 11 NTPs were calculated for IAV RdRp inhibition using trichloroacetic acid (TCA) precipitation assay (Pagadala 2019). Finally, \(\log IC_{50} \) of the molecules that showed inhibition was correlated with \(\Delta G \) and their regression analysis \(R^2 \) was calculated.

Methodology

Molecular docking

The database of ~800 nucleoside triphosphates developed from different chemical companies were used for molecular docking using the same methodology that was published earlier with the homology model of A/PR/8/34/H1N1 polymerase in three different stages of replication mechanism; I: In the presence of influenza-A vRNA, II. In the presence of Influenza-A vRNA with extended primer, and III. In the presence of influenza-B vRNA using MOE (Chemical computing group, Montreal, Canada) (Pagadala 2019). Initially, the ligand was optimized by energy minimization with TAFF forcefield until the energy gradient is below 0.001 Kcal/Mol (Clark et al. 1989). Totally 1000 docking poses for each ligand were generated using implicit generalized born solvation model and ligand placement method “Alpha PMI” with London dG scoring function. The initial and final scoring of the top docking poses were refined using the same London dG scoring function calculated with TAFF forcefield (Mackerell et al. 2004). At the end, global minimum of the ligand was predicted using the simulated annealing based on the Monte Carlo method (Metropolis et al. 1953). Finally, the affinity of the docking poses as the sum of the electrostatic, and Van der Waals energies were ranked with \(\Delta G \) \((U \) total in kcal/mol). The reaction model cutoff between 8 and 10 Å as a dielectric function with the pocket radius of 6 Å was included in our docking studies. In total, the 30 docking conformations were retained as a cutoff.

TCA precipitation assay

We then investigated the effect of top ranking 11 compounds with higher MW and TPSA and bind to the catalytic site of RdRp inhibiting the incorporation of GTP into TCA-precipitable material with the A/PR/8/34 (PR8) strain (Table 1 and Fig. 1). The purified influenza virus A/PR/8/
34/H1N1 obtained from Charles River (MD) was disrupted with 2.5% Triton N-101 and diluted 1:2 with 0.25% Triton N-101. Disruption provided the source of influenza ribonucleoprotein (RNP) containing the IAV RdRp and template vRNA. Samples were stored on ice until use in the assay. Six serial half-log dilutions of the test drugs (twelve drugs) at concentrations of 0.001, 0.01, 0.1, 1, 10, and 100 μM and positive control 2’Deoxy-2’fluoroguanosine 5’ (high tests of 100 μM) were tested in triplicate.

Each polymerase reaction contained the following: disrupted RNP, Tris-HCl, KCl, MgCl₂, Dithiothreitol, 0.25% Triton N-101, [α-32P] GTP, ATP, CTP, UTP, GTP, and Adenyl (3’–5’) Guanosine. For testing the inhibitor, the reactions contained the inhibitor and the same was done for reactions containing the positive control. The reaction was incubated at 30 °C for 1 h, transferred onto glass-fiber filter plates and subsequent precipitation of nucleic acids with 3M sodium acetate, 10% trichloroacetic acid, 50% isopropanol, and centrifugation at 10,000 g for 15 min. After washing and drying, the filter plates were placed into a counting vial for liquid scintillation counting.

Table. 1 Molecular descriptors for the 11 NTPs predicted using MOE software suite

Compounds	IUPAC name	Compound code	b_rotN	logP(o/w)	SlogP	TPSA	Weight	H-Don	H-Acc
1	Cyanine 3-Aminoallylcytidine-5’-Triphosphate	3-AA-CTP	23	0.969	−1.0962	412.29	1154.028	17	20
2	Cyanine 7-Aminoallyluridine-5’-Triphosphate	7-AA-CTP	22	−1.917	−2.2308	403.01	1143.001	17	20
3	Cyanine 5-5-Propargylamino-2’-deoxyctydine-5’-Triphosphate	5-cis-dCTP	23	2.086	−0.61979	392.06	1136.013	16	19
4	Desthiobiotin-6-Aminoallyl-2’-deoxyctydine-5’-Triphosphate	Desthiobion-6-dCTP	19	−1.842	−0.73604	306.99	754.54	7	11
5	N4-Biotin-OBEA-2’-deoxyctydine-5’-Triphosphate	N4-Biotin-dCTP	28	−3.465	−3.7586	336.14	891.743	14	11
6	P1, P5-Di(adenosine-5’) penta phosphate	Penta Phosphate	16	−8.45588	−10.6494	464.7	911.33	6	14
7	5’-Dimethoxytrityl-2’-tosyl-N2-isobutyl-guanosine	5’-DMT-2’-Ts-N2-Biotin-Ibu-G	15	6.202	4.41782	186.35	811.913	4	11
8	2’, 3’-O- (Bis- [5- chlororanthanloyl]) adenosine-5’-O- TPT	Bis-Cl-ANT-ATP	14	0.08406	0.04897	334.08	826.373	10	14
9	P1- (5’- Adenosyl)- P4- (5’- guanosyl)- tetra phosphate	Tetra Phosphate	14	−7.22494	−7.1812	449.65	852.39	15	22
10	5’-[3-Indoly]l propionamide-N-allyl]-2’-deoxyuridine-5’-Triphosphate	5’-Indoyl-AA-dUTP	15	−2.465	−2.1823	283.58	694.42	11	13
11	Biotin-16-5-aminoallyl-dUTP	Biotin-16-dUTP	29	−5.088	−4.0273	387.35	963.786	15	17
12	2’-deoxy-2’-fluoroguanosine 5’	2’-deoxy-2’-fluoroguanosine	9	−4.62	−6.0491	281.26	543.187	11	13

Normal range of Lipinski’s rule of five
Weight- ≤500, TPSA- 40, 140, H-Don- <5, H-Acc- <10, logP- <5, SLogP - <5, b-rotN - <6
10% TCA. The filters were then washed with 5% TCA followed by 95% ethanol and air dried. Once the filter has dried, incorporation of \([\alpha-^{32}P]\) GTP was measured using a scintillation counter (Micro beta). Radioactivity was measured in a Micro beta liquid scintillation counter. Negative control reactions were prepared by omitting RNP complexes, whereas, positive control reactions for polymerase inhibitors contained the specific inhibitor 2′-deoxy-2′-Fluoroguanosine 5′-triphosphate. Inhibition of viral polymerase activity was measured by IC_{25}, IC_{50}, and IC_{95} in triplicate (Pagadala 2019).

Results

Binding modes of 11 NTPs against the homology model of human A/PR/8/34/H1N1 RdRp

Stage-I: In the presence of influenza-A vRNA

In the docked complex, compound 1 binds to the catalytic site with both ribose sugar and cytidine nitrogen interacting with Ser^{494} and Ala^{648} of the priming loop through 2′ and backbone oxygens. The central 1H-indole ring and sulfonyl oxygen atoms contacts with Asn^{42} and Leu^{45} of PB2-N involved in interactions with the 3′activator strand of vRNA once it enters the polymerase active site. However, the terminal 1H-indole ring contacts with Pro^{641} of PB1 priming loop through ethyl carbon. Also, the \(\alpha\) and \(\gamma\) phosphates contact with side chains of Asn^{536} and Arg^{142} at the end of the second tunnel (Fig. 2a). Due to its bigger size, compound 2, occupies more space towards the catalytic site showing interactions between cyanine and Met^{646} of the priming loop. In addition, 7-Allyl also shows contact with Met^{546} and 507 while the ribose sugar towards the exit channel makes contacts with Asn^{504}, Glu^{508}, and Asn^{537} of PB1 in the central region of a typical right-handed RdRp fold. The central sulfonil at the C-terminal region contacts with Asn^{45}, Pro^{43}, and Ala^{44} of PB2-N through backbone atoms (Fig. 2b). In comparison, the terminal 1H-indole ring of compound 3 shows H-Pi stack with Glu^{232} and Arg^{233} near the NTP tunnel placing the sulfonil oxygens close to Mg^{++}. In addition, the central 1H-indole ring and the attached sulfonil oxygen also interacts with Met^{646} and Ser^{511} of PB1 central domain through H-Pi and hydrogen bond. This orientation is further stabilized by additional contacts with Met^{646} and Ala^{648} of the priming loop through the central 5,5-propargylylamino carbon and oxygen atoms. Other than these interactions, the ribose sugar, \(\alpha\) and \(\gamma\) phosphates also interacts with Thr^{493}, Asn^{537}, and Asn^{276} of PB1 central domain (Fig. 2c).

Furthermore, it was demonstrated that compound 4 occupies the binding pocket at the end of tunnel 2 with...
γ-phosphate and oxymethyl of ribose sugar makes contacts with PB2 linker Asn138 and Arg142 that leads to an N-terminal subdomain. The cytidine which is placed far away from the PB2 linker shows contacts with Val502 of PB1 central domain. This allows 6-aminoallyl aliphatic chain to enter deeply into the pocket forming a U-shape, exposing desthiobiotin at the other end of the molecule to interact with Lys670 of PB2 627 linker (Fig. 2d). When desthiobiotin-6-Aminoallyl was replaced with N'-biotin-OBEA, compound 5 penetrates much deeper than compound 4 in the same binding site. The sulfur atom of biotin contacts with Val139, Leu568, and Lys670 of PB2-N sub-domain and PB2 627 linkers, while the oxo group interact with Phe501 of PB1 central domain. In addition, the OBEA aliphatic chain also shows contacts with Val502, Ala503, and Asn536 through backbone carbon, and oxygen atoms. Moreover, the cytidine and ribose sugar along with α, β, and γ phosphates shows contacts with Ser494, Met507, Ala648, Gly275, Asn276, and Asn536 of PB1 central and priming loop forming more or less a circular fold. This shows that compound 5 binds with a greater number of contacts than compound 4 in the same binding site influencing both PB1 priming loop and PB2 linker domain involved in RNA catalysis (Fig. 2e).

Along with the above, compound 6 also binds to the same binding site that was identified previously with compounds 4 and 5 with one end of adenosine moiety shows Pi stack with Gly275 and the adenosine at the other end orients towards the PB2 627 linker domain without showing any contacts with IAV RdRp. The terminal oxygens of both the α and γ phosphates show interactions with Lys279 and Ala503 of PB1 central domain and Thr238 of PB2-N-terminal domain keeping both the domains intact. On the other hand, the ribose sugars of both the sides also show contacts with Asn276, Asn536, and Phe501 of PB1 central domain through carbon, and oxygen atoms (Fig. 2f). However, the benzylic ring of compound 7 shows H-Pi stacking with Met507 with sulfonyl oxygen interacting with Phe495 of the PB1 central domain. Also, the ribose sugar interacts with Lys279 and Val502 of PB1 central domain through 2' oxygen and carbon. In addition, the 5'-dimethoxytrityl group also contacts with Val502 through phenyl carbon. In comparison, the adenosine ring forms H-Pi interactions with Asn137 of PB2 near the entry channel. In addition, the adenosine and ribose rings also to show contacts with Asp271 and Gly669 of PB2 linker domain through backbone and methyl carbons. Moreover, the attached α and γ triphosphates also orient towards the linker domain showing contacts with Gly500 of PB1 central domain and Lys670 of PB2 627 linker through terminal oxygens (Fig. 2g). However, both the anthraniloyl rings of compound 8 in 2' and 3' shows contacts with Val502 Arg142 both PB1 and PB2 domains through terminal chlorine. Other than these contacts, oxo group of 2' ribose sugars also interact with Thr238 of PB2 through a backbone carbon (Fig. 2h).

When compound 6 is replaced with guanosyl moiety limiting the number of phosphates to four allowing the compound 9 to occupy both the tunnels with a priming loop in between. The 5' adenosyl group is placed in tunnel 1 orienting towards the C-terminal domain of PB2 interacting with Asn42, Ala44, and Leu45 while 5' guanosyl placed in tunnel 2 shows contacts with Ser494 near to the exit channel. In addition, the α and β phosphates also contact with Ala648 of the priming loop through terminal oxygens (Fig. 2i). The propionamide-N-allyl of compound 10 shows interactions with Arg233, Met507, and Met646 of the PB1 priming loop through oxo, nitro, and carbon atoms, leaving the indole ring to move freely in the catalytic site of IAV RdRp. Both the ribose sugar and α, β, and γ phosphates in tunnel 2 interacts with Gly275 and Phe495, Lys279, Ala503, Asn537, and Phe501 of PB1 through 3' and terminal oxygens (Fig. 2j). Furthermore, when 5-[(3-Indolyl) propionamide-N-allyl] group is replaced with Biotin-16-5-aminomallyl allows compound 11 to bind both the tunnels showing contacts with the priming loop of the catalytic site. The biotin sulfur interacts with Lys279 and Phe501 and the aminomallyl contacts with Phe495 Met646 and Ala648 of PB1 central domain, including the priming loop, through backbone nitrogen and carbon. Furthermore, 3' ribose sugar along with β and γ phosphates contacts with Asn42 of PB2-N, Ser515 and Arg583 of both PB1 central domain and PA-C-terminal domain through oxygen atoms (Fig. 2k).

The bind modes of compounds 1–3 show that cyanine moiety is placed below the priming loop perpendicular to the tunnel 1 with the rest of the chain appears in parallel to the tunnel 2 almost showing a V-shape. This reveals that compounds 1 and 3 with cytidine moiety are more effective in binding to IAV RdRp than compound with uridine moiety. These compounds follow the order in binding to IAV RdRp, compound 1 > compound 3 > compound 2. In comparison, the binding orientation of compounds 4–6, 9, and compounds 10–11 shows linearity in the catalytic site interacting with PB1 priming loop. In case of compounds 4 and 5, both occupy tunnel 2 with biotin orienting towards the exit channel. However, compound 4 is close to the PB2 linker domain while the same moiety stays nearer to PB1 priming loop. Surprisingly, compound 6 with Penta phosphate completely occupies tunnel 2 with respect to compound 9 having tetra phosphate which occupies tunnel 2 partially. This may be due to the presence of guanosyl at one end in compound 10 instead of adenosyl at both the ends in compound 6. Furthermore, comparison of compounds 10 and 11 clearly indicates that 2'-deoxyuridine-5'-triphosphate of both these compounds in tunnel 2 are placed quite opposite to each other with 5-[(3-Indolyl) propionamide-N-allyl] of compound 10 is placed close to PB1.
priming loop while biotin of compound 11 is placed close to PB2 linker domain. Although, both compounds 7 and 8 occupy tunnel 2, compound 7 is placed closed to PB2 linker domain while compound 8 resides close to the PB1 priming loop.

The docking results of these compounds show that the residues Asn513 from PA; Arg142, Met277, Arg233, Thr238, Gly275, Asn276, Lys279, Arg287, Asn413, Met414, Ser494, Phe495, Phe496, Gly500, Phe501, Val502, Ala503, Met507, Gly513, Ser515, Asn536, Met546, Ala548, from PB1 and Asn62, Ala44, Leu145, Lys140, Arg141, Lys670, and Leu668 from PB2 act as common pharmacophores for these compounds preventing the activity of A/PR/8/34/H1N1 influenza-A polymerase.

Stage-II: In the presence of Influenza-A vRNA with extended primer

In the presence of extended primer from $\Phi 6$ polymerase, the 5'-triphosphate of compound 1 interacts with Asn513, Arg38, and C11 of PA-C, PB2, and vRNA activator strand at the 3' end. Furthermore, the ribose sugar also interacts with the Gln513 and Met277 of PB1 and Lys41 of PB2-N-ter through oxygen atoms O$_{66}$, O$_{91}$, and O$_{95}$. The C$_{30}$ indole ring forms H-Pi stack with Arg239 of motif-F3 and the terminal sulfonyl orient towards Phe412 and Asn413 of PB1 motif-III. The 3-allyl group also shows contact with Met409 of Motif-B Methionine rich loop through backbone carbon C$_{38}$ (Fig. 3a). Due to its bigger size, compound 2 occupies more space in the tunnel 2 just above the priming loop of PB1. The oxygen atoms of uridine and ribose sugar shows contact with Phe501 and Asn536 of PB1 and Lys140 of PB2 at the end of the tunnel 2. In addition, the 7-Allyl group also shows contact with Asn536 and Asn276 of PB1 catalytic site above the priming loop. However, triphosphate orients towards the exit channel and makes contact with the positive charged lys140 of PB2-N and Lys670 of PB2 627 domains. Both the sulfonyl groups attached to 1H-indole ring contacts with Ser494 of PB1 central, Ala548 and His668 of PB1 priming loop and Arg216 of PB2-N laying almost in parallel to the priming loop (Fig. 3b). The cyanine group of compound 3 also lies in almost parallel to the priming loop of PB1 with a sulfonyl group attached at the two ends of the indole interacts with Met507 and Asn536 of PB1 central and Ala648 of the PB1 priming loop. The 5′-propargylamino and 2′-deoxycytidine interacts with Asn536 and Phe596 while the terminal phosphates interaction with Lys279, Val502, and Val503 of PB1 central domain at the end of the tunnel 2 (Fig. 3c). The γ-phosphate of compound 4 penetrates deeper at the end of the tunnel 2 showing contacts with Asn16 and Ser504 of both PB1 central and PA-C through terminal oxygens. Both cytidine and desthiobiotin rings including the aminoallyl contacts with Gly500 of PB1 central, Gln138 and Arg142 of PB2-N through oxo and nitro groups (Fig. 3d). Replacing desthiobiotin-6-Aminoallyl with N4-Biotin-OBEA allows compound 5 to also bind at the end of the tunnel 2 forming a circular structure. The terminal biotin contacts with Lys279 and Lys140 of both PB1 Central and PB2-N, while the cytidine interacts with Asn51 of PB1-N through oxo and nitrogen atoms. In addition, the β and γ triphosphate interacts with Ile355, Asp538 of PB1 central, and Thr338 of PB2-N through terminal oxygens (Fig. 3e).

In comparison with compounds 4 and 5, compound 6 with two ends of adenosine interaction with Met507 of PB1 central and Met645 of PB2 627 domains. The attached furanosyls also shows contacts with Asn537 and Gly500 of PB1 domains through 2′ and 3′ oxygens. In addition, the α, β, and ε triphosphates in-between shows contact with Asn276, Asn536, and Pro219 of PB1 central and PB2-N with terminal oxygens (Fig. 3f). However, the sulfonyl group of compound 7 is placed just below to the tip of the priming loop interacting with Gly500 of PB1 priming loop. The 5′-dimethoxytrityl group also makes contact with Arg126 through H-Pi stacking along with Met646 of PB1 and Lys41 of PB2-N near to the entry channel of tunnel 1. The N2-isobutyryl-guanosine protrudes towards NTP tunnel showing no contacts with the viral enzyme (Fig. 3g). In comparison, the compound 8 with 5-chloroanthraniloyl groups attached to 2′ and 3′ positions of ribose sugar make H-Pi interactions with Lys140 and Arg142 of PB2-N at the end of the second tunnel. In addition, the adenosine and triphosphate groups attached to 1′ and 4′ positions also show contacts with Gln38 and Thr338 of PB2-N far away from the linker domain through H-Pi and weak hydrogen bonds (Fig. 3h). However, the two ends of adenosine and guanosyl moieties of compound 9 show H-Pi stack with Met507 of PB1 central, Thr238 of PB2-N, and Lys570 of PB2 627 domains, while the attached furanosyls shows contact with Val502, Asn536, Met507 of PB1, and Gly669 of PB2 627 domains, respectively. In addition, adenine also interacts with Ala648 of the priming loop through the amino group (Fig. 3i). The indole and uridine groups of compound 10 forms H-Pi stacking with Ala239 and Arg126 of PB1 central. The propionamide-N-allyl shows contacts with the backbone atoms of Gln25 and Gln49 of both PB1 central and PB2-N through backbone nitrogen. In addition, both the sugar, and the base which occupies in tunnel 1 contacts with Lys279, Asp236, and Ala231 of PB1 central and Lys41 of PB2-N with both stronger and weaker hydrogen bonds. The attached 5′-triphosphate also shows contacts with Ala231 of PB1 central and with Lys41 and Asn52 of PB2-N domain (Fig. 2j). Furthermore, compound 11 also binds similar to compound 10 in perpendicular to the catalytic site. Biotin-16-5-
aminoallyl interacts with Leu122, Thr128 and Ala139 and Met646 of PB1 central while 2′-deoxyuridine shows H-Pi stacking with Met645 of the priming loop. This binding clearly shows that Biotin-16-5-aminoallyl orient away from the catalytic site with triphosphate projecting into the entry channel (Fig. 3k).

The binding orientations of these compounds reveal that compound 1 occupy tunnel 1 while compounds 2 and 3
occupied tunnel 2 above the priming loop with cyanine moiety placing in perpendicular to the tunnels 1 and 2 forming a V-shape. This proves that compound with cytidine base is more effective against polymerase inhibition than compound with uridine base. The order of compounds inhibiting RdRp is as follows, compound 3 > compound 2 > compound 1. Surprisingly, compound 4 also forms a V-shape while compound 5 shows circular form binding close to the PB2 linker domain with triphosphates is on the opposite sides. In comparison, the binding orientation of compounds 6 and 9 shows linearity above the catalytic site in the tunnel 2 interacting with a priming loop of PB1. The other linear shape compounds 10 and 11 binds away from tunnel 1 with 2′-deoxyuridine-5′-triphosphate placing in tunnel 1 close to NTP tunnel. However, compound 8 mostly occupies tunnel 2 near to the PB2 linker domain. Compared with dicyclic group of compound 8, a tricyclic group of compound 7 binds in tunnel 1 below the PB1 priming loop with dicyclic group of compound 8, a tricyclic group of compound 5 binds in tunnel 1 with 2′-deoxyuridine-5′-triphosphate towards the exit channel allowing to interact with Gly725, Asn726, and Asn536 of PB1 and Arg142 of PB2 central (Fig. 4c). The α and β phosphates of compound 4 contacts with Gly725 and Asn537 and the attached ribofuranosyl interacts with Val502 and Asn536 of PB1 central. Moreover, both the oxo and nitro group of cytidine base also shows contacts with Phe501 and Asn536 of PB1 central and Pro219 of PB2-N2 at the end of the tunnel 2 through H-Pi interaction. In addition, the des-thiobiotin also shows interaction with Lys740 of the PB2-N through oxo group (Fig. 4d). The compound 5 also binds at the end of the tunnel 2 with the terminal ends of biotin and cytidine contacts with Lys279 of PB2-N and Ala643 of the priming loop through oxo groups. In addition, cytidine and furan contacts with Phe505, Glu505, and Ala648 through nitrogen and 2′ carbon while the α and γ triphosphate interacts with Gly725 and Asn537 through terminal oxygens (Fig. 4e).

In comparison with compounds 4 and 5, compound 6 occupies both tunnel 1 and tunnel 2 almost in parallel to the catalytic site of RdRp. One end of adenosine moiety contacts along with the attached ribose sugar shows interactions with Val644, Met645, and Met646 of PB1 priming loop while the other end of adenosine orients towards the exit channel contacting with Ala503 of the PB1 central. The phosphate groups in between also interacting with Glu508 of the PB1 along with Pro647 and Ala648 of the priming loop (Fig. 4f). However, compound 7 is placed below the exit channel with 2′-tosyl showing contacts with Ala503 and Asn504 and the ribose sugar interacting with Lys729 and Phe493 with another two hydrogen bonds. The S′-dimethoxytrityl group also makes contact with Ile535 and Asn536 below the exit channel (Fig. 4g). Similarly, the 5-chloroanthraniloyl makes contact with Asn536 of PB1 below the exit channel of RdRp. In addition, the adenosine and triphosphate groups also show contacts with Ser601 of PA-C, Gly500 of PB1, and Gly669 of PB2 627 linker (Fig. 4h). In comparison with compound 6, the compound 9 with adenosyl at one end orients towards the priming loop of PB1 while the other end with guanosyl orients very close to Leu668 of PB2 linker domain. The 2′ribose sugar of guanosyl shows contacts with Arg142 of PB2-N2 subdomain, while the 2′ribose sugar of adenosyl contacts with Gly725 of PB1 at the exit channel. In addition, the phosphate groups also show contacts with Lys729, Val502, and Ala503 of PB1 central fold through terminal oxygens (Fig. 4i).

Stage-III: In the presence of influenza-B vRNA

When influenza-A vRNA was replaced with influenza-B vRNA, both the nitrogenous base and the ribose sugar of compound 1 interacts with Asn504 and Asn537 through C60 and O91 atoms. The 5′ triphosphate contacts with Lys726 and Lys279 at the exit channel of the RdRp through terminal oxygens. The 1H-indole interacts with positively charged Lys576 and Arg583 of PB1 central domain through sulfonyl oxygens 124,125&133. In addition, the cytidine ring also forms contacts with Arg233 and Ala652 from PB1; Asn41, Asn137, Lys140, and Arg142 from PB2 act as common pharmacophores of these compounds preventing the activity of A/PR/8/34/H1N1 influenza-A polymerase in the presence of capped primer.

When influenza-A vRNA was replaced with influenza-B vRNA, both the nitrogenous base and the ribose sugar of compound 1 interacts with Asn504 and Asn537 through C60 and O91 atoms. The 5′ triphosphate contacts with Lys726 and Lys279 at the exit channel of the RdRp through terminal oxygens. The 1H-indole interacts with positively charged Lys576 and Arg583 of PB1 central domain through sulfonyl oxygens 124,125&133. In addition, the cytidine ring also forms contacts with Arg233 and Ala652 from PB1; Asn41, Asn137, Lys140, and Arg142 from PB2 act as common pharmacophores of these compounds preventing the activity of A/PR/8/34/H1N1 influenza-A polymerase in the presence of capped primer.

These docking studies also show that the residues Arg126, Lys279, Gly410, Phe495, Phe501, Val502, Asn532, Asn536, Met646, and Ala652 from PB1; Asn41, Asn137, Lys140, and Arg142 from PB2 act as common pharmacophores of these compounds preventing the activity of A/PR/8/34/H1N1 influenza-A polymerase in the presence of capped primer.
addition, the 2′-deoxyuridine which occupies in tunnel 1 shows contacts with Pro\(^{510}\) of PB1 central and the attached 5′-triphosphate shows contacts with Ser\(^{515}\) of PB1, Pro\(^{43}\), Ala\(^{44}\), and Asn\(^{42}\) of PB2_C domain (Fig. 4j). However, compound 11 interacts with Lys\(^{279}\), Phe\(^{501}\), Glu\(^{508}\), and Gly\(^{125}\) of PB1 and Met\(^{646}\) of the priming loop while
2'-deoxyuridine-5'-triphosphate shows contacts with Arg233, Gly513, and Ser515 of PB1 and Asn42 of PB2 at the C-terminal end of RdRp (Fig. 4k).

The predicted V-shape orientations for compounds 1, 2, and 3 shows that cyanine moiety is placed almost in parallel to the PB1 priming loop while the orientation of the rest of the molecule projects towards the exit channel in parallel to the catalytic site of RdRp polymerase. This reveals that compounds 1 and 3 with cytidine moiety binds with higher affinity compared with compound with uridine moiety. These compounds inhibiting RdRp are as follows, compound 1 > compound 3 > compound 2. The orientation of binding shows that desthiobiotin-6-aminoallyl appears in parallel to the catalytic site of RdRp in tunnel 2 with triphosphate orientation towards the priming loop which is not seen with compound 9. The other linear shape compounds 10 and 11 binds below the priming loop occupying both tunnels 1 and 2 with triphosphates towards the entry channel. However, compounds 7 and 8 mostly occupy tunnel 2 nearer to the PB2 linker domain. The predicted orientation shows that bulky groups of 5'-dimethoxytrityl and 5-chloroanthraniloyl orients towards the catalytic site while compound 7 (isobutyryl-guanosine) and compound 8 (adenosine-5'-triphosphate) orients towards the exit channel and the linker domain. These two binding conformations clearly indicate that compound 8 is far away from the catalytic site and PB2 linker domain compared with compound 7 which is close to the catalytic site interacting with PB1 priming loop.

The docking results of these compounds show that the residues Arg125, Glu126, Ala651, and Ser652 from PA; Thr39, Ala231, Ala503, Pro510, and Met646 from PB1 and Arg17, Glu18, Gln39, and Lys41 from PB2 act as common pharmacophores of these compounds preventing the activity of A/PR/8/34/H1N1 influenza-A polymerase after the translocation of 3' end of the vRNA into the catalytic site.

The activity of the compounds against IAV replication using TCA precipitation assay

Further experimental studies using TCA precipitation assay showed that compound 1 inhibited polymerase activity with an IC25 of 0.03 and 1.69 μM with higher rates of inhibition between 0.1 and 1 μM compared with other concentrations used in the study (Fig. 5a). Compounds 2 (Figs. 5b) and 3 (Fig. 5c) weakly inhibited polymerase activities, having an IC25 and IC50 of 0.8 and 3.58 and 0.6 and 2.13 μM, whereas compounds 4 (Fig. 5d) and 8 (Fig. 5h) had a significant effect on Flu A polymerase activity with an IC25 and IC50 of 0.06 and 0.21 and 0.27 and 0.68 μM, respectively. However, compounds 5 (Fig. 5e) and 6 (Fig. 5f) had a very large effect on polymerase inhibition with an IC25 and IC50 of 0.02 and 0.09 and 0.03 and 0.09 μM. Thus, compounds 5 and 6 displays broad-spectrum antiviral activity against Flu A virus with IC50 at the same concentration of 0.09 μM. 2'-deoxy-2'-fluoroguanosine 5'-triphosphate, a known inhibitor of Flu A polymerase exhibited a 50% (IC50) effective concentration at 1.2 μM. For compounds 2 and 3, the higher rate of polymerase inhibition was seen between 0.1 and 1 μM while for the compounds 4, 5, and 7 the higher rate of polymerase inhibition was seen at the lesser concentration between 0.1 and 1 μM. However, for compound 6, the higher rate of polymerase inhibition was seen completely at a very low concentration between 0.01 and 0.1 μM compared with all other compounds used in the study. Moreover, all these eight NTPs show 95% (EC95) of viral polymerase inhibition greater than 100 μM. However, no significant effect of compounds 8–11 (Fig. 5i–k) was observed against the activity of the influenza polymerase even at higher concentration of 100 μM.

A regression analysis of logIC50 with the docked scores, ΔG for the compounds 1–7 including the positive control 2'-deoxy-2'-fluoroguanosine 5'-triphosphate in the presence of influenza-A vRNA (Stage-I) (Table 2), influenza-A vRNA with extended primer (Stage-II) (Table 3) and influenza-B vRNA (Stage-III) (Table 4), were carried out and their scatter plots was drawn. It was found that these compounds showed a positive correlation with an R2 value of 0.21, and 0.20 in Stage-I and Stage-III and a negative correlation of 0.001 in Stage-II. However, the best correlation was obtained with an R2 value of 0.73 and 0.57 (Fig. 6) when ΔG for the positive control 2'-deoxy-2'-fluoroguanosine 5'-triphosphate were removed from Stage-I and Stage-III. However, no change in R2 value was seen in Stage-II even after removing the ΔG for the positive control.

Discussion

Here we report the identification of 11 NTPs that binds to the homology model of A/PR/8/34/H1N1 influenza virus polymerase with higher affinities. The docking studies in the Stage-I and III confirm that all these linear and V-shaped compounds 1–3 except compound 11 with influenza-A vRNA commonly binds to the catalytic site around the priming loop of PB1 domain. However, compounds 10 and 11 occupies the catalytic site while the rest of the molecules bind to tunnel 2 in the presence of capped primer from ϕ6 polymerase. Both the cyclic compounds 7...
and 8 along bind near to the exit channel below the linker domain in Stage-III, although compound 7 binds to catalytic site in Stage-I. Previous studies also shown that the known compound AZT-TP bind near to the exit channel below the linker domain (Pagadala 2019). Further, the results obtained using regression analysis with $R^2 = 0.73$ shows that binding
modes of the compounds 1–7 in Stage-I are the most probable conformations that bind to IAV RdRp. Thus, the docked conformations of compounds 1–7 from Stage-I were only discussed further.

Ligand protein interactions show that the compounds 1–3 in Stage-I primarily interact with PB2-N, residue nearby motif-II and motif-IV, and the PB1 priming loop that plays an important role in stabilizing the ligand-target interaction. In particular, Met646, Pro647, and Ala648 of the priming loop of PB1 are the key residues stabilizing the compounds 1 and 3 scaffolds within the catalytic site of the IAV RdRp. This binding orientation in turn shields Asp445 and Asp446 essential for polymerase activity of in

Table 2 Calculated binding energies (ΔG) and their torsional angles (ΦT and ΦP) for the top seven compounds in the presence of Flu A vRNA that are active against influenza-A virus replication using TCA precipitation assay

Compounds	IUPAC name	ΦT	ΦP	ΔG	IC25 (µM)	IC50 (µM)	
1	Cyanine 3-Aminoallylcytidine-5'-Triphosphate	−165.2	68.3	−27.2	5.2	0.03	1.69
2	Cyanine 7-Aminoallyluridine-5'-Triphosphate	−141.9	−43.9	−25.6	3.6	0.88	3.58
3	Cyanine 5-5-Propargylamino-2'-deoxyctydine-5'-Triphosphate	−162.0	127.6	−27.3	5.3	0.68	2.13
4	Desthiobiotin-6-Aminoallyl-2'-deoxyctydine-5'-Triphosphate	−176.7	156.6	−19.9	−2.1	0.06	0.21
5	N4-Biotin-OBEA-2'-deoxyctydine-5'-Triphosphate	−144.0	−172.3	−22.2	0.2	0.02	0.09
6	P1, P5-Di(adenosine-5') Penta phosphate	−177.1	−135.2	−21.5	−0.5	0.03	0.09
7	5'-Dimethoxytrityl-2'-tosyl-N2-isobutyl-guanosine	−122.7	8.7	−24	2	0.25	0.68

ΔG = G (+ve control, −16 Kcal/Mol)−G (drug)

Table 3 Calculated binding energies (ΔG) and their torsional angles (ΦT and ΦP) for the top seven compounds in the presence of Flu A vRNA with extended primer that are active against influenza-A virus replication using TCA precipitation assay

Compounds	IUPAC name	ΦT	ΦP	ΔG	IC25 (µM)	IC50 (µM)	
1	Cyanine 3-Aminoallylcytidine-5'-Triphosphate	−144.2	133.8	−23.4	7.6	0.03	1.69
2	Cyanine 7-Aminoallyluridine-5'-Triphosphate	−172.9	56.4	−26.1	10.3	0.88	3.58
3	Cyanine 5-5-Propargylamino-2'-deoxyctydine-5'-Triphosphate	−149.9	128.7	−25.6	9.8	0.68	2.13
4	Desthiobiotin-6-Aminoallyl-2'-deoxyctydine-5'-Triphosphate	174.8	153.8	−17.4	1.6	0.06	0.21
5	N4-Biotin-OBEA-2'-deoxyctydine-5'-Triphosphate	131.7	174.5	−21.6	5.8	0.02	0.09
6	P1, P5-Di(adenosine-5') Penta phosphate	152.1	60.9	−26.0	10.2	0.03	0.09
7	5'-Dimethoxytrityl-2'-tosyl-N2-isobutyl-guanosine	−94.6	−46.5	−14.3	−1.5	0.25	0.68

ΔG = G (+ve control, −15.8 Kcal/Mol)−G (drug)

Table 4 Calculated binding energies (ΔG) and their torsional angles (ΦT and ΦP) for the top seven compounds in the presence of Flu B vRNA with extended primer that are active against influenza-A virus replication using TCA precipitation assay

Compounds	IUPAC name	ΦT	ΦP	ΔG	IC25 (µM)	IC50 (µM)	
1	Cyanine 3-Aminoallylcytidine-5'-Triphosphate	169.2	71.5	−30	8	0.03	1.69
2	Cyanine 7-Aminoallyluridine-5'-Triphosphate	168.6	61.6	−29.5	7.5	0.88	3.58
3	Cyanine 5-5-Propargylamino-2'-deoxyctydine-5'-Triphosphate	−159.2	98.2	−27.8	5.8	0.68	2.13
4	Desthiobiotin-6-Aminoallyl-2'-deoxyctydine-5'-Triphosphate	177.5	29.8	−21.0	−1.0	0.06	0.21
5	N4-Biotin-OBEA-2'-deoxyctydine-5'-Triphosphate	148.5	−173.4	−22.9	0.9	0.02	0.09
6	P1, P5-Di(adenosine-5') Penta phosphate	172.8	−13.5	−24.0	2	0.03	0.09
7	5'-Dimethoxytrityl-2'-tosyl-N2-isobutyl-guanosine	−91.1	−22.9	−21.5	−0.5	0.25	0.68

ΔG = G (+ve control, −13.9 Kcal/Mol)−G (drug)
mutated, Asp445His and Asp446Tyr, Asn, or Glu, the catalytic activity of PB1 is completely abolished (Biswas and Nayak 1994). The Asp446 may deprotonate the 3'-hydroxy group of the priming NTP by acting as a general base and helps the α-phosphate of the NTP to be incorporated into the activator strand. The suitable geometry for the reaction to happen is provided by His649 of the priming loop. Mutational analysis of His649A and Phe651A individually, impair terminal de novo initiation on a vRNA promoter with P651A having the strongest effect (Te Velthuis et al. 2016). To coordinate with the catalytic magnesium ion, the conformational change of Asp446 side chain with 3.5 Å is required to allow the polymerase to initiate polymerization. Apart from these interactions, compounds 1 and 3 have the ability to disturb the structural stability of the PB2 linker domain by tight binding with Phe501 and Val502 of PB1 central. More likely PB1 Phe501 plays a main role in IAV RdRp inhibition of these compounds 4, 5, and 6 in tunnel 2 above the PB1 priming loop.

Furthermore, binding mode analysis revealed that compounds 4, 5, and 6 may disturb the structural stability of motif-IV by interacting the nearby residues mainly with Phe501 and Val502 of PB1 central. More likely PB1 Phe501 plays a main role in IAV RdRp inhibition of these compounds 4, 5, and 6 in tunnel 2 above the PB1 priming loop. However, this residue acts as an electron donor for compound 5 inhibition, while the same residue acts as an electron acceptor for IAV RdRp inhibition by compounds 4 and 6. Plausibly, the side chains of Arg142, Lys279, and Lys670 create a favorable environment with a positive electrostatic potential for the binding of these compounds with high potency in TCA precipitation assay. In addition, compounds 4 and 5 might be associated with less conformational changes of PB2 linker domain by tight binding with Lys670 of PB2 627 domain. This contact may show the impact on the viral genome transcription and replication by influenza polymerase. These results also reveal that compounds with 2'deoxyctydidine-5'triphosphate and diadenosine Penta phosphate are more potent than other molecules used in the study with 0.09 and 0.21 µM. This may be due to inhibition of influenza virus RNA polymerase by incorporating in place of CTP and ATP. Previously, McGeoch and Kitron showed that IAV RdRp was stimulated by GpG and GpC (McGeoch and Kitron 1975). Later, plotch and krug had reported that initiation of IAV RdRp cRNA can be stimulated by ApG and GpG dinucleotides which are incorporated at the 5’end of the cRNA (Plotch and Krug 1977). This enhancement of IAV RdRp by GpC and ApG is abolished by compounds 4, 5, and 6 more likely by compounds 5 and 6 than compound 4 in the series. Even though, the binding site of compounds 7 and 8 is the same at the end of the tunnel 2, compound 7 may have a different mechanism of action by donating electrons to Gly275 of linker that leads to the PB2-N2 subdomain and induce conformational changes of PA endonuclease.

By determining the IC\textsubscript{50} profiles for each of these seven compounds tested experimentally, it was proved that compounds 1–7 and AZT-TP that was published previously were competitively inhibiting the incorporation of GTP into viral RNA of influenza polymerase (Pagadala 2019). This is in good correlation between our docking studies showing that these compounds bind to catalytic and linker domains.
and prevent the activity of influenza RdRp similar to positive control 2′-deoxy-2′-fluoroguanosine 5′-triphosphate. This also implies that compounds 1–3 may disturb the initiation of replication by inhibiting the incoming NTPs and compounds 4–7 may terminate viral elongation by adding the next correct nucleotide. The results also suggest that the compounds 1–7 after binding to the catalytic site and exit channel inhibit the nucleophilic attack of the 3′-OH on the α-phosphorous of the incoming NTP. For all the compounds 4, 5, 6, and 7 that demonstrated inhibitory activities, the IC50 values were less than onefold better compared with IC50 of 1.66 µM of the known compound 2′-deoxy-2′-fluoroguanosine 5′-triphosphate. Even though compounds 8–11 did not inhibit viral replication in TCA precipitation assay, they all bound to the influenza catalytic site. Similar to compounds 1–7, these molecules might not exhibit anti-influenza activity, perhaps due to premature degradation or they may bind away from the catalytic site as explained in Stage-II and III. Structural analysis of these compounds indicates that both indole ring and sulfonyl groups of V-shaped compounds 1–3 might play a major role in binding to the catalytic site of the viral polymerase. Previously, it was also shown that the effect of viral inhibition was high with compound A3 that contains an indole ring when compared with its derivate A3 that lack the indole ring. On the other hand, the high IC50 of linear chain compounds 4 and 5 shows that high flexibility of desthiobiotin and N4-biotin might play an important role in destabilizing PB2 linker of the viral polymerase. In addition, desthiobiotin may form desthiobiotin-GTP complex through conjugation while N4-biotin may form N4-biotin-e-Lys670 affecting the viral replication in TCA precipitation assay. However, the high IC50 of linear chain compound 6 may be due the presence of di-adenosine that leads to an increase in prolongation of transcription elongation competing with the natural substrates. Considering the binding orientation, it clearly appears that a π-stacking between Phe495 and 2′-tosyl-N2-isobutyryl-guanosine of compound 7 may play an additional role in the inhibition of viral polymerase activity with an IC50 of 0.68 µM. These docking combing through experimental studies clearly indicate that linear chain molecules inhibit polymerase activity with lower IC50 compared with V-shaped and cyclic compounds used in the study. Conceivably, the pharmacophores of these compounds could be useful to screen chemical libraries of nucleoside molecules to identify novel anti-influenza drugs that bind to the catalytic site and still satisfy Lipinski’s rule of five. Thus, these findings clearly reveal that these compounds have the strong potential as therapeutic leads for further drug development to treat patients infected with influenza virus.

Conclusion

In this study, we have successfully combined docking and experimental study to identify eight NTPs that bind to the catalytic site of IAV RdRp from A/PR/8/34/H1N1 strain. Docking studies indicated that linear shape compounds 4, 5, and 6 may induce conformational changes of PB1 motif-IV and PB2 linker domain with an IC50 of 0.21 and 0.09 µM. Whereas, V-shaped compounds 1, 2, and 3 destabilize the PB1 priming loop involved in initiation of viral replication showing an IC50 of 1.69, 3.58, and 2.13 µM. However, cyclic compound 8 even though binds nearer to motif-IV of PB1 central domain showed a moderate inhibition with an IC50 of 0.68 µM. This in turn indicates that the known compound 3′-azido-3′-deoxy-thymidine-5′-triphosphate binds to the viral promoter while the positive control 2′deoxy-2′fluoroguanosine triphosphate binds near to the exit channel inhibiting the transcriptional activity of viral polymerase with the same IC50 of 1.12 µM (Pagadala 2019). A good correlation between the ΔG and IC50 values with an R2 = 0.73 indicate that these molecules bind to the catalytic site inhibiting the incorporation of natural NTPs for replication initiation and elongation of IAV RdRp. The compounds 5 and 6 exhibit significant antiviral effect inhibiting the viral replication with lower IC50 of 0.09 µM compared with other compounds used in the study. Thus, this study clearly demonstrates the importance of catalytic site below and above the priming loop for the development of effective anti-influenza drugs. The evaluation of these compounds in further experimental studies will pay the way to develop small molecule therapeutic that can inhibit the IAV viral replication binding to the catalytic site and satisfy Lipinski’s rule of five.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Appleby TC, Perry JK, Murakami E, Barauskas O, Feng J, Cho A, Fox 3rd D, Wetmore DR, McGrath ME, Ray AS, Sofía MJ, Swaminathan S, Edwards TE (2015) Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347(6223):771–775. https://doi.org/10.1126/science.1259210

Babar MM, Zaidi NU, Tahir M (2014) Global geno-proteomic analysis reveals cross-continental sequence conservation and druggable sites among influenza virus polymerases. Antivir Res 112:120–131. https://doi.org/10.1016/j.antiviral.2014.10.013
Biswas SK, Nayak DP (1994) Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 68(3):1819–1826

Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DJ (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410(6825):235–240. https://doi.org/10.1038/35065653

CDC (2018) Estimated Influenza Illnesses, Medical Visits, Hospitalizations, and Deaths in the United States — 2017–2018 Influenza Season 1 CDC. https://www.cdc.gov/flu/about/burden/estimates.htm. Accessed 15 Nov 2018

Clark M, Cramer RD, Vanopdenbosch N (1989) Validation of the gas-phase quantum mechanics in reproducing protein conformation of backbone energetics in protein force field. J Comput Chem 10(8):982–1012. https://doi.org/10.1002/jcc.540100804

Fodor E (2013) The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol 57(2):113–122

Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smeke DF, Barnard DL, Gowen BB, Julander JG, Morrey JD (2009) T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antivir Res 82(3):95–102. https://doi.org/10.1016/j.antiviral.2009.02.198

Ghanem A, Mayer D, Chase G, Frank R, Kochs G, Garcia-Sastre A, Schwemmle M (2007) Peptide-mediated interference with influenza A virus polymerase. J Virol 81(14):7801–7804. https://doi.org/10.1128/JVI.00724-07

Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Perez CM, Dominguez MI, Ceballos ME, Moreno C, Labarca JA, Rabaglia R, Vaquez P, Lasso M, Serri M (2010) Pandemic influenza A (H1N1) in HIV-1-infected patients. AIDS 24(18):2867–2869. https://doi.org/10.1097/QAD.0b013e3283e92d5

Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516(7531):355–360. https://doi.org/10.1038/nature14008

Plocht SJ, Krug RM (1977) Influenza virion transcriptase: synthesis in vitro of large, polyadenyl acid-containing complementary RNA. J Virol 21(1):24–34

Reich S, Guilligay D, Cusack S (2017) An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase. Nucleic Acids Res 45(6):3353–3368. https://doi.org/10.1093/nar/gku043

Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M, Ruirogk RW, Cusack S (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516(7531):361–366. https://doi.org/10.1038/nature14009

Resa-Infante P, Jorba N, Coloma R, Ortiz J (2011) The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol 8(2):207–215

Reuther P, Manz B, Brunotte L, Schwemmle M, Wunderlich K (2011) Targeting of the influenza A virus polymerase PB1-PB2 interface indicates strain-specific assembly differences. J Virol 85(24):13298–13309. https://doi.org/10.1128/JVI.00868-11

Seo S, Englund JA, Nguyen JT, Pakrittayakamee S, Lindegardh N, Zamyatkin DF, Parra F, Alonso JM, Harki DA, Peterson BR, Grochulski PK, Nge K (2008) Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283(12):7705–7712. https://doi.org/10.1074/jbc.M709565200