Toll-like Receptor 4 (TLR4) is Associated with Cerebral Vasospasm and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage

Chunxiao Ma,1 Wei Zhou,1 Zhaoyue Yan,1 Mingqi Qu,1 and Xingyao Bu1

1Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China

Abstract

In the present prospective study, the Toll-like receptor 4 (TLR4) levels on peripheral blood mononuclear cells (PBMCs) were investigated in 30 patients with aneurysmal subarachnoid hemorrhage (aSAH) and in 20 healthy controls (HCs). The relationship between TLR4 levels and the occurrence of cerebral vasospasm (CVS) was also analyzed. TLR4 expression level on cell surface of PBMCs on days 1, 3, and 7 after admission was determined by flow cytometry. Results showed that patients with aSAH presented a significantly higher TLR4 levels. For patients with Hunt-Hess grades IV–V, higher TLR4 levels were also observed; higher TLR4 levels have already been seen in patients developing CVS and/or delayed cerebral ischemia (DCI). Higher TLR4 levels were also associated with modified Fisher score, occurrence of dCVS, DCI, cerebral infarction (CT), and poor neurological functional recovery. Binary logistic regression analysis indicated that high TLR4 expression on blood monocytes was an independent predictive factor of the occurrence of dCVS, DCI, and poor neurological functional recovery. Taken together, TLR4 levels on PBMCs is significantly altered in the early stage of aSAH, especially in those patients experiencing CVS and DCI. Furthermore, higher TLR4 levels in the early stage of aSAH is also associated with the neurological function outcome. As far as we know, this is the first clinical study about TLR4’s significance for patients with aSAH.

Key words: aneurysmal subarachnoid hemorrhage, Toll-like receptor 4, cerebral vasospasm, delayed cerebral ischemia, peripheral blood mononuclear cells

Introduction

Cerebral vasospasm (CVS) is one of the devastating complications happening to patients with aneurysmal subarachnoid hemorrhage (aSAH), which frequently, if not necessarily, leads to delayed cerebral ischemia (DCI) and permanent neurological deficits or even death.1–3) Unfortunately, the molecular mechanisms underlying the development of CVS remain obscure despite extensive worldwide researches and studies. The etiology and pathophysiology of CVS seem to be complex and multi-factorial.4) Previous studies with animal model of aSAH have shown that, as an important player in innate immunology and regulator of inflammation process in brain, Toll-like receptor 4 (TLR4) took a crucial part in the pathogenesis of CVS and DCI.5–10) Furthermore, whole-genome expression profiling by Kurki et al. showed that in patients with aSAH TLR4 messenger RNA (mRNA) level increased in microglia and vessel walls in the brain.11) However, the relationship between TLR4 levels and the development of CVS and/or DCI has not been elucidated by clinical studies in aSAH patients. In the present work, TLR4 expression levels on peripheral blood mononuclear cells (PBMCs) were quantified by flow cytometry and presented as mean fluorescent intensity (MFI). What’s more, its relationship with CVS and DCI was also analyzed.

Materials and Methods

I. Study subjects

Thirty consecutive patients with aSAH admitted to the Department of Neurosurgery of Henan Provincial People’s Hospital between October 2013 and October 2014 were enrolled in this prospective study. Written informed consent to participate in this study was obtained from the participants or their relatives. The study protocol was approved by the Ethics Committee of Henan Provincial People’s Hospital before implementation, and was conducted in accordance with the Declaration of Helsinki and
“Good Clinical Practice” (http://www.goodclinical-practice.com).

Inclusion criteria: aSAH confirmed by cerebral computed tomography angiography (CTA), first signs and symptoms having occurred within 48 hours before screening. Exclusion criteria: Intracerebral blood without aneurysmal bleeding source, presence of chronic infection, presence of hydrocephalus, use of interventional treatment, treated with operation within 4 weeks before admission, existing previous head trauma, neurological disease including ischemic or hemorrhagic stroke, use of antiplatelets or anticoagulant medications, and presence of other prior systemic disease including uremia, liver cirrhosis, malignancy, chronic heart or lung disease, diabetes mellitus, and hypertension.

Twenty, age- and gender matched healthy volunteers were recruited from hospital workers and relatives of the study investigators.

II. Patient management

On arrival at the emergency department, a detailed history of vascular risk factors, concomitant medication, Glasgow coma scale (GCS) score, body temperature, heart rate, respiratory rate, and blood pressure were taken. At admission, clinical severity was assessed using Hunt-Hess grade. The amount of blood was assessed by Hijdra score by computed tomography (CT) as previously described, and the modified Fisher score was also calculated. All patients were treated by clipping within 48 hours after admission and the CT scan was performed as soon as possible after surgery. Before surgery, patients received intravenous nimodipine at a dose of 2 mg/hour from admission; and after surgery patients were treated with 60 mg nimodipine (p.o.) every 4 hours for at least 10 days. The sedative of phenobarbital was also used after operation.

Transcranial Doppler (TCD) sonography was performed daily within the first week and every other day thereafter. Recording of the mean blood flow velocities (mBFVs) were performed using the trans-temporal ultrasound window with a 2-MHz handheld transducer probe when pCO2 levels were within normal ranges. Doppler sonographic cerebral vasospasm (dCVS) was defined as mBFV of 120 cm/s or more in the middle cerebral artery. Daily clinical assessments were performed after ictus to monitor the occurrence of DCI. DCI was defined as one or more of a new focal neurological deficit, a 2-point drop in the GCS, or a new infarct on brain imaging not visible on the admission. CT scan was performed whenever clinical deterioration occurred to exclude secondary complications such as hydrocephalus, further hemorrhage, or edema. CT scans were also performed at discharge and assessed by an independent radiologist.

Demographic, clinical, and laboratory values were recorded prospectively throughout the study. Participants were followed up until completion of 3 months after SAH through structure telephone interviews performed by one doctor, blinded to clinical information. Neurological function outcome was evaluated by modified Rankin scale (mRs).

III. Laboratory measurements

In the healthy control (HC), venous blood was drawn at study entry. In the aSAH patients, blood samples were prospectively collected on days 1, 3, and 7 after admission. The blood samples were immediately placed into an ethylenediaminetetraacetic acid (EDTA) test tube. The PBMCs were isolated by density-gradient centrifugation using Ficoll-Paque Premium (GE Healthcare, Milwaukee, Wisconsin, USA) according to manufacturer’s manual. Flow cytometry was employed to identify TLR4/CD14 double positive PBMCs by TLR4 and CD14 specific antibody (TLR4 antibody: Cat. No. 551964; CD14 antibody: Cat. No. 555397; BD Biosciences, San Jose, California, USA); and expression level of TLR4 on TLR4/CD14 double positive PBMCs was presented as MFI.

IV. Statistical analysis

Statistical analysis was performed using SPSS 19.0 (SPSS Inc., Chicago, Illinois, USA). All the data were presented as mean ± standard deviation or count (percentage) unless otherwise stated. TLR4 levels were compared by Wilcoxon rank sum test. Categorical data were compared by Chi-square test or Fisher’s exact test. In order to analyze the predictive value of admission TLR4 levels, the patients were divided into high TLR4 levels group and low TLR4 levels group using the mean value of MFI (9.8) as TLR4 expression cutoff. The predictive value of TLR4 levels for dCVS, DCI, and clinical outcome was evaluated through binary logistic regression analysis, adjusting for age, sex, fever, white blood cells (WBCs) count, and C-reactive protein (CRP). A P value less than 0.05 was considered statistically significant.

Results

I. Patients’ characteristics

The patients were 54.7 ± 10.1 years old. There were 19 males and 11 females. Eighteen patients were assessed with Hunt-Hess grades I–III and 12 patients with Hunt-Hess grades IV–V on admission. Fourteen patients developed DCI. Ten patients...
showed poor neurological function outcome with mRs 4–5. Baseline characteristics of all patients are listed in Table 1.

II. TLR4 expression on PBMCs after aSAH

TLR4 expressions on PBMCs were detected by flow cytometry and its levels were presented as MFI. Time course of TLR4 expression level on PBMCs are indicated in Fig. 1. TLR4 levels were significantly increased after aSAH, with the highest levels on day 1 after ictus compared with day 3 and day 7 (P < 0.05) (Fig. 1). Although TLR4 levels on day 3 still differed significantly from that in HC (P < 0.05), on day 7 after ictus, TLR4 levels showed no significant difference with that of HC (P > 0.05) (Fig. 1). TLR4 levels on PBMCs was also correlated with the severity of aSAH on admission. As illustrated in Fig. 2A, patients with Hunt-Hess grades IV–V showed significantly higher TLR4 levels than those with Hunt-Hess grades I–III (P < 0.05). As indicated in Table 2, high TLR4 levels also significantly correlated with modified Fisher score (P = 0.013), DCI (P = 0.011), and cerebral infarction on CT (P < 0.001).

III. dCVS, DCI, and neurological function recovery

Doppler sonography was used to identify CVS through monitoring the mean blood flow velocities (mBFVs) of the middle cerebral artery. Among 30 patients, 18 were diagnosed with CVS, namely dCVS. When diagnosing dCVS, the mBFV of the middle cerebral artery was 144 ± 17.8 cm/s in the 18 patients.

In order to analyze the association of TLR4 levels with the development of dCVS, TLR4 levels were compared between patients with and without dCVS occurrence by Wilcoxon rank sum test. As illustrated in Fig. 2B, significantly higher TLR4 levels were observed in patients with dCVS than in those without dCVS. Binary logistic regression analysis with covariates of age, sex, fever, WBCs count, and CRP demonstrated that TLR4 level on admission independently predicted the occurrence of dCVS.

Table 1 Baseline characteristics of patients with aneurysmal subarachnoid hemorrhage

Parameter	dCVS Present (n = 18)	dCVS Absent (n = 12)	P value
Age (years)	51.1 ± 10.3	58.3 ± 9.8	> 0.05
Gender			0.761
Female	7	4	
Male	11	8	
Location			0.818
ICA	8	6	
ACA	7	4	
MCA	3	2	
Hijdra score	14.10 ± 3.15	13.84 ± 3.32	> 0.05
Hunt-Hess grade			0.550
I–III	10	8	
IV–V	8	4	
Modified Fisher score			0.029*
1	1	3	
2	3	2	
3	5	6	
4	9	1	
Delayed cerebral ischemia (DCI)			0.769
Absent	10	6	
Present	8	6	
Length of hospital stay in days, mean (range)	19.5 (12–48)	23.5 (11–44)	> 0.05
Modified Rankin scale (mRs)			0.437
mRs 0–3	11	9	
mRs 4–5	7	3	

Numerical variables are presented as mean ± standard deviation or mean (range). Categorical variables are expressed as counts. Numerical variables were analyzed by Mann-Whitney U test or unpaired Student’s t-test. Categorical variables were analyzed by Chi-square test or Fisher’s exact test. *P < 0.05. ACA: anterior communication artery, dCVS: Doppler sonographic cerebral vasospasm, ICA: internal carotid artery, MCA: middle cerebral artery.
Clinical Study of TLR4 in Patients with aSAH

881

Neurol Med Chir (Tokyo) 55, December, 2015

[odds ratio (OR): 4.729; 95% confidence interval (CI): 2.882–12.831; P = 0.001] (Table 3).

TLR4 levels were also associated with DCI. Significantly higher TLR4 levels were observed in patients developing DCI compared with those without DCI (P < 0.05) (Fig. 2C). Binary logistic regression analysis with covariates of age, sex, fever, WBC count, and CRP indicated that TLR4 level on admission independently predicted the occurrence of DCI (OR: 1.303, 95% CI: 0.934–2.424; P = 0.028) (Table 3).

CVS and ischemia frequently lead to poor clinical outcome. In the present study, the relationship between TLR4 levels and neurological function recovery after 3 months was also analyzed. As showed in Fig. 2D, patients with poor neurological function recovery (mRs 4–5) presented significantly higher TLR4 levels compared to those with mRs 0–3 (P < 0.05). Binary logistic regression analysis with covariates of age, sex, fever, WBC count, and CRP showed that TLR4 level on admission independently predicted the poor 3-month outcome (OR: 2.364, 95% CI: 1.722–6.008; P = 0.023) (Table 3).

Table 2 Correlation of Toll-like receptor 4 expression on monocytes with other clinicopathological parameters

Parameters	Admission TLR4 expression	P value	
	High (n = 16)	Low (n = 14)	
Modified Fisher score			
1 + 2	2	7	0.028*
3 + 4	14	7	
Delayed cerebral ischemia (DCI)			
Absent	5	11	0.011*
Present	11	3	
dCVS			
Absent	3	9	0.013*
Present	13	5	
Cerebral infarction (CT)		< 0.001*	
Absent	2	11	
Present	14	3	

CT: computed tomography, dCVS: Doppler sonographic cerebral vasospasm, TLR4: Toll-like receptor 4. *P < 0.05.

Fig. 2 Toll-like receptor 4 (TLR4) expression levels in different patient groups. A: TLR4 levels in patients with Hunt-Hess grades I–III compared to Hunt-Hess grades IV–V. B: TLR4 levels compared between patients with and without the occurrence of Doppler sonographic cerebral vasospasm (CVS). C: TLR4 levels compared between patients with and without the occurrence of delayed cerebral ischemia (DCI). D: TLR4 levels in patients with modified Rankin score (mRs) 0–3 compared to mRs 4–5. **P < 0.05, aSAH: aneurysmal subarachnoid hemorrhage.
TLR4 signaling pathway, NF-κB is a transcriptional factor required for the gene expression of many inflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, intercellular adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1), all of which have been illustrated to show significant association with complications of aSAH, such as vasospasm, ischemia, and neuronal apoptosis.18–24) Furthermore, studies in rabbit model of aSAH show that TLR4 expression upregulation correlates with the occurrence of CVS,9) and administration with peroxisome proliferator-activated receptor (PPAR) γ agonist, rosiglitazone, inhibits both TLR4 upregulation and vasospasm.25) Recent work with gene knockout mice has confirmed the vital role of TLR4 in SAH-induced vasospasm and neuronal cell death.6) Still, TLR4 is not extensively investigated in aSAH patients so far, and the relationship between TLR4 and CVS is unknown at present.

In this study, TLR4 levels on PBMCs in aSAH patients were determined and expressed as MFI. Our data showed that significantly higher TLR4 levels were observed in aSAH patients compared with HC. Admission TLR4 level was highest and thereafter TLR4 level decreased continuously, and on day 7 after ictus TLR4 levels showed no significant difference between aSAH patients and HCs. TLR4 levels on PBMCs also correlated with the severity. The more severe the disease was on admission, the higher TLR4 level as assessed by Hunt-Hess grade. Significant higher TLR4 levels were also identified in those patients developing CVS or DCI, or with poor clinical outcome. Results of binary logistic regression analysis further demonstrated that TLR4 levels on admission independently predicted the occurrence of CVS or DCI or poor clinical outcome.

Our work firstly demonstrated the close association of TLR4 levels on PBMCs with the occurrence of dreaded complications and poor clinical outcome in aSAH patients, and primarily proved its predictive value, which further illustrated the importance of TLR4 mediated inflammation in the pathophysiology of aSAH, as proved in animal experiments.6,19–21,24,26–30) However, it should be noted that in current study the diagnosis of CVS was based on TCD evaluations and not on digital subtraction angiography. Although the observed incidence of dCVS was within the known ranges,31) we might have missed some patients with CVS since the sensitivity of TCD in detecting angiographic CVS in not 100%.32,33) Furthermore, among patients enrolled in this study, 18 patients were evaluated as Hunt-Hess grades I–III on admission, and 12 patients with Hunt-Hess grades IV–V, and DCI occurred in 14 patients; the
relatively high incidence of DCI in this study might be caused by the fact that the ratio of patients with Hunt-Hess grades IV–V was too high. And also, there were 6 patients among 12 who had suffered from DCI without spasm; we thought that the high incidence of DCI without spasm might be caused by hemodynamic change after clipping surgery which might unstabilize the vascular plaque and make it come off. Finally, this is a single-center study with limited number of subjects. Large-sampling and multi-centered study should be performed in the future in order to confirm our results and conclusions.

In conclusion, this is the first report of the temporal dynamics of TLR4 levels on PBMCs and its relationship with CVS, DCI, and poor clinical outcome. TLR4 levels on PBMCs showed an initial acute increase after ictus and continuous decline to the baseline values in patients with aSAH. Admission TLR4 level on PBMCs is associated with CVS, DCI, and poor clinical outcome, and can be used as an independent predictor for their occurrence. However, at present, no data were obtained to determine whether elevation of TLR4 expression on blood monocytes reflected the TLR4 expression status in the brain. Whether elevation of TLR4 expression on monocytes was the cause of dCVS and DCI or just the result of initial brain damage was also unknown. To answer these questions further investigations should be performed in the future.

Acknowledgments

This work was supported by Key Science and Technology Program of Health and Family Planning Commission of Henan Province (No. 201303158).

Conflicts of Interest Disclosure

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices in the article.

References

1) Cossu G, Messerer M, Oddo M, Daniel RT: To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. Biomed Res Int 2014; 628597, 2014
2) Dankbaar JW, Rijsdijk M, van der Schaaf IC, Velthuis BK, Wermers MJ, Rinkel GJ: Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology 51: 813–819, 2009
3) Macdonald RL: Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10: 44–58, 2014
4) Kolias AG, Sen J, Belli A: Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87: 1–11, 2009
5) Zhang T, Su J, Guo B, Zhu T, Wang K, Li X: Ursolic acid ameliorates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway. Int Immunopharmacol 23: 585–591, 2014
6) Hanafy KA: The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 10: 83, 2013
7) Ma CX, Yin WN, Cai BW, Wu J, Wang JY, He M, Sun H, Ding JL, You C: Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J 122: 1575–1581, 2009
8) Buchanan MM, Hutchinson M, Watkins LR, Yin H: Toll-like receptor 4 in CNS pathologies. J Neurochem 114: 13–27, 2010
9) Zhou ML, Wu W, Ding YS, Zhang FF, Hang CH, Wang HD, Cheng HL, Yin HX, Shi JX: Expression of Toll-like receptor 4 in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 1173: 110–116, 2007
10) Zhou ML, Shi JX, Hang CH, Zhang FF, Gao J, Yin HX: Expression of Toll-like receptor 4 in the brain in a rabbit experimental subarachnoid haemorrhage model. Inflamm Res 56: 93–97, 2007
11) Kurki MI, Häkkinen SK, Frösen J, Tulamo R, von und zu Fraunberg M, Wong G, Tromp G, Niemelä M, Hernesniemi J, Jääskeläinen JE, Ylä-Herttuala S: Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging role of Toll-like receptor signaling and nuclear factor-kB, hypoxia-inducible factor-1A, and ETS transcription factors. J Neurochem 107: 1667–1675; discussion 1675–1676, 2001
12) Hunt WE, Hess RM: Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28: 14–20, 1968
13) Hijiard A, Brouwers PJ, Vermeulen M, van Gijn J: Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke 21: 1156–1161, 1990
14) Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, Wechsler LR, Newell DW, Gomez CR, Babikian VL, Lefkowitz D, Goldman RS, Armon C, Hsu CY, Goodin DS; Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology: Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 62: 1468–1481, 2004
15) Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, Wu YC, Klebanoff LM, Raps EC, Solomon RA: Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage:
a randomized controlled trial. *Stroke* 31: 383–391, 2000

16) Rivest S: Regulation of innate immune responses in the brain. *Nat Rev Immunol* 9: 429–439, 2009

17) Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. *Circulation* 115: 1599–1608, 2007

18) Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G: Progesterone administration modulates cortical TLR4/NF-κB signaling pathway after subarachnoid hemorrhage in male rats. *Mediators Inflamm* 2011: 848309, 2011

19) Kim GH, Kellner CP, Hahn DK, Desantis BM, Musabir M, Starke RM, Rynkowski M, Komotar RJ, Otten ML, Sciaccia R, Schmidt JM, Mayer SA, Connolly ES: Monocyte chemotactrant protein-1 predicts outcome and vasospasm following aneurysmal subarachnoid hemorrhage. *J Neurosurg* 109: 38–43, 2008

20) Gaetani P, Tartara F, Pignatti P, Tancioni F, Rodriguez y Baena R, De Benedetti F: Cisternal CSF levels of cytokines after subarachnoid hemorrhage. *Neurology* 20: 337–342, 1998

21) Hanafy KA, Stuart RM, Khandji AG, Connolly ES, Badjatia N, Mayer SA, Schindler C: Relationship between brain interstitial fluid tumor necrosis factor-α and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. *J Clin Neurosci* 17: 853–856, 2010

22) Ruigrok YM, Slooter AJ, Bardoel A, Frijns CJ, Rinkel GJ, Wijmenga C: Genes and outcome after aneurysmal subarachnoid haemorrhage. *J Neurosurg* 252: 417–422, 2005

23) Nam DH, Kim JS, Hong SC, Lee WH, Lee JI, Shin HJ, Park K, Eoh W, Han DH, Kim JH: Expression of interleukin-1 beta in lipopolysaccharide stimulated monocytes derived from patients with aneurysmal subarachnoid hemorrhage is correlated with cerebral vasospasm. *Neurosci Lett* 312: 41–44, 2001

24) Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schütt S, Fritzinger M, Horn P, Vajkoczy P, Kreisel S, Brummer J, Schmiedek P, Hennerici M: Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. *J Neurol Neuurosurg Psychiatr* 70: 534–537, 2001

25) Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX, Shi JX: Therapeutic potential of peroxisome proliferator-activated receptor γ agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. *J Neurol Sci* 305: 85–91, 2011

26) Badjatia N, Carpenter A, Fernandez L, Schmidt JM, Mayer SA, Claassen J, Lee K, Connolly ES, Seres D, Elkind MS: Relationship between C-reactive protein, systemic oxygen consumption, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. *Stroke* 42: 2436–2442, 2011

27) Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, Lee KS: Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. *J Neurosurg* 89: 559–567, 1998

28) Ni W, Gu YX, Song DL, Leng B, Li PL, Mao Y: The relationship between IL-6 in CSF and occurrence of vasospasm after subarachnoid hemorrhage. *Acta Neurochir Suppl* 110(Pt 1): 203–208, 2011

29) Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P: Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. *Neurocrit Care* 13: 339–346, 2010

30) Schoch B, Regel JP, Wichert M, Gasser T, Volbracht L, Stolke D: Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. *Neurosurgery* 60: 828–836; discussion 828–836, 2007

31) Dorsch NW: Cerebral arterial spasm—a clinical review. *Br J Neurosurg* 9: 403–412, 1995

32) Gonzalez NR, Boscardin WJ, Glenn T, Vinuela F, Martin NA: Vasospasm probability index: a combination of transcranial doppler velocities, cerebral blood flow, and clinical risk factors to predict cerebral vasospasm after aneurysmal subarachnoid hemorrhage. *J Neurosurg* 107: 1101–1112, 2007

33) Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, Lee K, Badjatia N, Connolly ES Jr, Mayer SA: Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. *Neurosurgery* 65: 316–323; discussion 323–324, 2009

Address reprint requests to: Chunxiao Ma, PhD, MD, Department of Neurosurgery, Henan Provincial People’s Hospital, #7 Weiwu Road, Zhengzhou 450003, China.
e-mail: machunxiao148@163.com