Higher Derivative Corrections to Charged Fluids in $2n$ Dimensions

Nabamita Banerjee, a Suvankar Dutta, b Akash Jain c

a Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, India
b Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal, India
c Centre for Particle Theory & Department of Mathematical Sciences, Durham University, UK
E-mail: nabamita@iiserpune.ac.in, suvankar@iiserb.ac.in,
akash.jain@durham.ac.uk

Abstract: We study anomalous charged fluid in $2n$-dimensions ($n \geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.
Contents

1. Introduction and Summary .. 2
2. Scheme and the Perturbative Expansion 3
3. Equilibrium Partition Function .. 7
 3.1 Anomalous Entropy Current .. 10
4. Counting of Independent Terms ... 13
 4.1 Parity-even Counting .. 13
 4.1.1 First Derivative Order ... 15
 4.1.2 Second Derivative Order ... 15
 4.2 Parity-odd Counting .. 16
 4.2.1 Derivative Counting ... 19
 4.3 Examples of Parity-odd Counting ... 22
 4.3.1 Leading Order (D=n-1) (s=1) ... 22
 4.3.2 Subleading Order (D=n, s=2) – Surviving at Equilibrium 22
 4.4 The Basis of Independent Data ... 23
5. Fluid Constitutive Relations .. 25
 5.1 Ideal Fluid ... 25
 5.2 Leading Order Fluid ... 26
 5.2.1 Parity-odd ... 26
 5.2.2 Parity-even ... 27
 5.3 Subleading Order Fluid ... 28
 5.3.1 Parity-odd ... 28
 5.3.2 Parity-even ... 31
6. Conclusions .. 33
A. Kaluza-Klein Decomposition .. 34
 A.1 Derivatives of Metric .. 35
 A.2 Derivatives of Gauge Field .. 37
B. Subsubleading Order Fluid .. 38
 B.1 Counting at Equilibrium .. 38
 B.2 Attempt for Fluid Constraints ... 43
1 Introduction and Summary

In past few years there has been much interest and progress in further understanding of relativistic, charged, dissipative fluid in presence of some global anomalies. Presence of quantum anomalies play a crucial role in transport properties of fluid. The first evidence of quantum anomaly in fluid transport was holographically observed in [1, 2]. The authors found a new parity-odd term (and hence a new transport coefficient) in the charge flavour current. The origin of this new term can be traced back to gauge Chern-Simons term in the dual supergravity theory. Soon after these results were published, it was shown that the new parity-odd term in the charge current is essential because of the triangle flavour anomalies and the second law of thermodynamics [3]. In general the second law of thermodynamics (or equivalently the positivity of divergence of entropy current) imposes constraints on different transport coefficients. The same constraint can also be obtained from the equilibrium partition function of fluid [4, 5]. Equilibrium partition function provides an alternate and a microscopically more transparent way to derive the constraints on these transport coefficients. A generalization of this approach for charged $U(1)$ anomalous fluid in arbitrary even dimensions up to leading order has been considered in [6].

In [7] Bhattacharyya et.al. studied parity odd transport for a four dimensional non-conformal charged fluid at second order in derivative expansion. In four spacetime dimensions the effect of anomaly appears at one derivative order and the parity-odd transport coefficients at this order are determined in terms of anomaly coefficient. In this paper the authors studied the transport properties at second order and found that out of 27 transport coefficients 7 are fixed in terms of anomaly and lower order transport coefficients. The goal of our current paper is to generalize this work to arbitrary even dimensions. In $2n$ spacetime dimensions the leading effect of anomaly appears at $(n-1)$ derivative order. Hence the subleading corrections appear at nth derivative order. The aim of this paper is to study the constraints on transport coefficients appearing at subleading order. We innovate a systematic mechanism to compute different fluid data at arbitrary derivative order (parity odd or even). We list all possible scalars, vectors and tensors at any arbitrary derivative order in this paper. It seems to be rather difficult to find the independent sets. However, we argue that it is possible to get the correct constraint relations between transport coefficients even without knowing the independent sets of fluid data.

Our analysis is not valid in two spacetime dimensions. In two dimensions the parity odd terms appear at zero derivative order itself, and hence parity-odd and parity even sectors are
not independent at any arbitrary order. Independence of these two sectors is important in our computation.

In the parity-even sector, the leading correction appears at first order in derivative expansion, e.g. shear viscosity and bulk viscosity terms in energy momentum tensor etc. In this paper we have extended our calculation to include the sub-leading order correction (i.e. second order corrections) to parity-even sector in constitutive relations in arbitrary even dimensions in presence of $U(1)$ gauge anomaly. This completes the description of fluid dynamics up to sub-leading order in derivative expansion (both in parity-odd and even sectors) in arbitrary even dimensions with abelian gauge anomaly.

The organization of our paper is as following. In § 2 we explain our notation and perturbation scheme which we use in this paper. In § 3 we construct the partition function for both gauge invariant and non-invariant sectors and compute the constitutive relations from the partition function. We also describe the construction of the anomalous entropy current. § 4 is the most important section of this paper. Here we first describe how to construct fluid data at arbitrary derivative order. Next, we list all the leading and sub-leading order scalars, vectors and tensors which may appear in constitutive relations up to sub-leading order in derivative expansion both in parity-even and odd sectors. Although, we have not been able to find the ‘independent’ parity-odd vectors and tensors at sub-leading order, this does not inhibit us from finding the constraints on the transport coefficients. We elaborate this issue in § 4.4. Finally, in § 5 we list the constraint on the transport coefficients up to sub-leading order. In appendices we explain the Kaluza-Klien decomposition (appendix (A)) and sub-sub-leading order counting (appendix (B)).

2 Scheme and the Perturbative Expansion

We consider a $2n$-dimensional spacetime manifold $\mathcal{M}_{(2n)}$ with metric $ds^2 = G_{\mu\nu} dx^\mu dx^\nu$ and gauge field 1-form $A = A_\mu dx^\mu$. We want to study fluid dynamics in this background. A fluid is a statistical system in local thermodynamic equilibrium, which is generally characterized in terms of (covariant) energy-momentum tensor $\bar{T}^{\mu\nu}$, (covariant) charge current \bar{J}^μ and their constitutive equations

$$\hat{\nabla}^{\mu} \bar{T}^{\mu\nu} = F^{\nu\rho} \bar{J}_\rho + \bar{\xi}^{\nu}, \quad \hat{\nabla}^{\mu} \bar{J}^{\mu} = \bar{\mathcal{J}}.$$ \hspace{1cm} (2.1)

$F = dA$ is field strength for A. Here we have introduced a $U(1)$ anomaly $\bar{\mathcal{J}}$ and a gravitational anomaly $\bar{\xi}^{\nu}$. The form of these anomalies is well known in literature [8]. Most of our work here will be concentrated on fluid upto subleading derivative order, where only $U(1)$ anomalies contribute:

$$\bar{\mathcal{J}} = (n + 1) C^{(2n)} \times F^{\wedge n} = (n + 1) C^{(2n)} \frac{1}{2^n} \epsilon^{\mu_1 \nu_1 \cdots \mu_n \nu_n} F_{\mu_1 \nu_1} \cdots F_{\mu_n \nu_n}. \hspace{1cm} (2.2)$$
\tilde{e}^ν only starts getting values at subsubleading derivative order. Let us explain our notation here.

- All the fluid quantities (like currents, transport coefficients, independent terms etc.) appearing in parity-odd sector, are denoted by ‘tilde’ (e.g. \tilde{A}). On the other hand we use no special notation for parity-even sector (e.g. A). Wherever applicable, $\tilde{A} = A + \tilde{A}$ denotes the total quantity (parity-odd and parity-even).

- ∇ and ∇ denote the covariant derivative and on $\mathcal{M}_{(2n)}$ and the equilibrium manifold $\mathcal{M}_{(d-1)}$ respectively. We use \wedge and \star as wedge product and Hodge Dual on all manifolds, as no confusion is possible.

Due to dissipative nature of fluid, it is not possible to write an exact generating functional W (or action) for fluids from which one can derive the energy-momentum tensor $\tilde{T}^{\mu\nu}$ and charge current \tilde{J}^μ. Therefore we write their most generic forms, allowed by symmetries, in terms of fundamental fluid variables and their derivatives in a particular thermodynamic ensemble.

In our analysis we consider the fluid variables to be temperature ϑ, chemical potential ν and fluid four-velocity u^μ with $u^\mu u_\mu = -1$.

We prefer to work in Landau Frame, where all the dissipation terms are transverse to the direction of the fluid flow. Hence, we can decompose $\tilde{T}^{\mu\nu}$ and \tilde{J}^μ as

$$\tilde{T}^{\mu\nu} = E(\vartheta, \nu) u^\mu u^\nu + \tilde{\Pi}^{\mu\nu}, \quad \tilde{J}^\mu = Q(\vartheta, \nu) u^\mu + \tilde{\Upsilon}^\mu,$$

(2.3)

where $\tilde{\Pi}^{\mu\nu}$ and $\tilde{\Upsilon}^\mu$ are the most generic symmetric tensor and vector made out of fluid variables. In the Landau frame

$$u_\mu \tilde{\Pi}^{\mu\nu} = 0, \quad u_\mu \tilde{\Upsilon}^\mu = 0.$$

(2.4)

The easiest way to implement this is to project all vectors or tensors appearing in $\tilde{\Upsilon}^\mu$ or $\tilde{\Pi}^{\mu\nu}$, transverse to u^μ using the projection operator

$$P^{\mu\nu} = G^{\mu\nu} + u^\mu u^\nu.$$

Since fluid is a low energy fluctuation about the local thermodynamic equilibrium, $\tilde{\Pi}^{\mu\nu}$ and $\tilde{\Upsilon}^\mu$ can be expanded in derivatives of fundamental fluid variables (ϑ, ν, u^μ):

$$\tilde{\Pi}^{\mu\nu} = \tilde{\Pi}^{\mu\nu}_{(0)} + \tilde{\Pi}^{\mu\nu}_{(1)} + \tilde{\Pi}^{\mu\nu}_{(2)} + \cdots, \quad \tilde{\Upsilon}^\mu = \tilde{\Upsilon}^\mu_{(0)} + \tilde{\Upsilon}^\mu_{(1)} + \tilde{\Upsilon}^\mu_{(2)} + \cdots,$$

(2.5)

where $\tilde{\Pi}^{\mu\nu}_{(N)}$ and $\tilde{\Upsilon}^\mu_{(N)}$ involves N number of derivatives on fluid variables. The terms on RHS can have the most generic form as,

$$\tilde{\Pi}^{\mu\nu}_{(N)} = \sum_\lambda \tau_{(N)\lambda}^\mu(\vartheta, \nu) T^{\mu\nu}_{(N)\lambda} + P^{\mu\nu} \sum_\lambda \sigma_{(N)\lambda}^\mu(\vartheta, \nu) S_{(N)\lambda},$$

and

$$\tilde{\Upsilon}^\mu_{(N)} = -\frac{\partial}{\epsilon + P_0} \sum_\lambda \nu_{(N)\lambda}^\mu(\vartheta, \nu) V_{(N)\lambda},$$

(2.6)

1Actually $\nu = \mu/\vartheta$, where μ is the chemical potential.
where $S_{(N)t}$, $V_{(N)t}^\mu$ and $T_{(N)t}^{\mu\nu}$ are a collection of all possible gauge invariant scalars, vectors and symmetric traceless tensors (collectively known as data) respectively, made out of fluid variables and source fields at N derivative order. \sum_ℓ corresponds to sum over independent terms at any particular derivative order. The data which is required for our computation has been enlisted in § 4.

In eqn. (2.6), the expression for $\bar{\Pi}_{(N)}^{\mu\nu}$ and $\bar{\Upsilon}_{(N)}^{\mu}$ are fixed up to some undetermined coefficients appearing at each derivative order. Therefore, a fluid is characterized by an infinite set of such unknown functions $(\tau_{(N)t}, \sigma_{(N)t}, \nu_{(N)t})$, known as transport coefficients. Fluid up to a particular derivative order is characterized by a finite number of such transport coefficients. In general, these transport coefficients are not all independent. The second law of thermodynamics (or equivalently, positivity of local entropy current) imposes restrictions on different transport coefficients\(^2\) [9]. Such relations among various transport coefficients are known as constraints.

[4] uses a different mechanism to find ‘some’ of these constraints. The idea is to write an equilibrium partition function for the fluid and derive the energy-momentum tensor and charge current from that partition function. Because of dissipation it is not possible to write a generating functional (W) for the fluid. However, one can still write a generating functional in equilibrium configuration, which we denote by W^{eq}. Using W^{eq} one can find all the constraint relations involving transport coefficients which comes with data that survives at equilibrium.

More precisely, if the theory has a timelike Killing vector ω^μ, we can write an Euclidean generating functional using the background fields and Killing equation on the decomposed manifold $S^1 \times M_{(d-1)}$. Here S^1 is the euclidean time circle along ω^μ with time period $\tilde{\beta}$, and $M_{(d-1)}$ is the spacetime transverse to ω^μ. [4] has conveniently chosen $\omega^\mu = \partial_0$. Therefore, one can decompose the background in Kaluza-Klein form,

$$
\begin{align*}
\text{d}s^2 &= G_{\mu\nu}\text{d}x^\mu\text{d}x^\nu = -e^{2\sigma}(\text{d}t + a_i\text{d}x^i)^2 + g_{ij}\text{d}x^i\text{d}x^j, \\
\mathcal{A} &= A(\text{d}t + a_i\text{d}x^i) + A_i\text{d}x^i.
\end{align*}
\tag{2.7}
$$

For more details please refer appendix (A). Using this choice along with the Landau Gauge conditions and velocity normalization, the most-generic energy-momentum tensor and charge current in eqn. (2.3) on $M_{(d)}$ can be decomposed into scalars, vectors and tensors on $S^1 \times$

\(^2\)Similar restrictions are also applicable to non-relativistic fluids and has recently been addressed for charged non-relativistic fluids in [10].
\(\mathcal{M}_{(d-1)}: \)

\[
\tilde{T}^{ij} = E(\vartheta, \nu)v^iv^j + \tilde{\pi}^{ij},
\]

\[
\tilde{T}^i = -e^{\sigma} \left(E(\vartheta, \nu)v^i \sqrt{1 + v_iv^i} + \frac{v_j\tilde{\pi}^{ij}}{\sqrt{1 + v_iv^i}} \right),
\]

\[
\tilde{T} = e^{2\sigma} \left(E(\vartheta, \nu)(1 + v_iv^i) + \frac{v_iv_j\tilde{\pi}^{ij}}{(1 + v_iv^i)} \right),
\]

\[
\tilde{J}^i = Q(\vartheta, \nu)v^i + \tilde{\varsigma}^i,
\]

\[
\tilde{J} = -e^{\sigma} \left(Q(\vartheta, \nu)\sqrt{1 + v_iv^i} + \frac{v_i\tilde{\varsigma}^i}{\sqrt{1 + v_iv^i}} \right),
\]

where

\[
\tilde{T} = \tilde{T}_0, \quad \tilde{T}^i = \tilde{T}_0^i, \quad \tilde{T}^{ij} = \tilde{T}_0^{ij}; \quad \tilde{J} = \tilde{J}_0, \quad \tilde{J}^i = \tilde{J}_0^i,
\]

and

\[
\tilde{\pi} = \tilde{\Pi}_0, \quad \tilde{\pi}^i = \tilde{\Pi}_0^i, \quad \tilde{\pi}^{ij} = \tilde{\Pi}_0^{ij}, \quad \tilde{\varsigma} = \tilde{\Upsilon}_0, \quad \tilde{\varsigma}^i = \tilde{\Upsilon}_0^i, \quad v = u_0, v^i = u^i.
\]

Indices on \(\mathcal{M}_{(d-1)} \) are raised and lowered using \(g^{ij} \). Details of Kaluza-Klein decomposition of fluid variables and background fields have been given in appendix (A).

Since the fluid we are considering is in local thermodynamic equilibrium, we can write the fluid variables as a spatial derivative expansion about their equilibrium values

\[
\vartheta = \vartheta_0 + \tilde{\Delta}^{(1)}\vartheta + \tilde{\Delta}^{(2)}\vartheta + \ldots
\]

\[
\nu = \nu_0 + \tilde{\Delta}^{(1)}\nu + \tilde{\Delta}^{(2)}\nu + \ldots
\]

\[
v^i = v_0^i + \tilde{\Delta}^{(1)}v^i + \tilde{\Delta}^{(2)}v^i + \ldots. \tag{2.9}
\]

The terms with subscript ‘o’ are the equilibrium values, while \(\tilde{\Delta}^{(N)} \) designates the \(N^{th} \) derivative corrections\(^3\). The zeroth component of fluid velocity \(u_0 = v \) also gets derivative corrections which are determined by the corrections to \(v^i \) using the four-velocity normalization. Similarly all the transport coefficients can also be expanded using the Taylor Series expansion

\[
\alpha(\vartheta, \nu) = \alpha_o(\vartheta_0, \nu_0) + \tilde{\Delta}^{(1)}\alpha + \tilde{\Delta}^{(2)}\alpha + \ldots. \tag{2.10}
\]

Therefore the energy-momentum tensor and charge current receive two fold derivative corrections. First of all we write these expressions as a derivative expansion in terms of fluid variables in eqn. (2.5). Secondly, each term in that expansion can be further expanded around

\(^3\)In this paper, \(\tilde{\Delta}^{(n)}A \) denotes parity-odd \(n^{th} \) derivative corrections to a fluid quantity \(A \), while \(\Delta^{(n)}A \) represents the parity-even \(n^{th} \) derivative corrections. Entire derivative correction is denoted by \(\Delta^{(n)}A = \Delta^{(n)}A + \tilde{\Delta}^{(n)}A \).
the equilibrium values of fluid variables according to eqn. (2.9). Thus we finally get

\[\bar{\pi}^{ij} = \left[\bar{\pi}^{ij}_{o(0)} \right] + \left[\Delta^{(1)} \bar{\pi}^{ij}_{o(0)} + \Delta^{(1)} \bar{\pi}^{ij}_{o(1)} \right] + \left[\Delta^{(2)} \bar{\pi}^{ij}_{o(0)} + \Delta^{(1)} \bar{\pi}^{ij}_{o(1)} + \bar{\pi}^{ij}_{o(2)} \right] \ldots, \]

\[\bar{\varsigma}^{i} = \left[\bar{\varsigma}^{i}_{o(0)} \right] + \left[\Delta^{(1)} \bar{\varsigma}^{i}_{o(0)} + \bar{\varsigma}^{i}_{o(1)} \right] + \left[\Delta^{(2)} \bar{\varsigma}^{i}_{o(0)} + \Delta^{(1)} \bar{\varsigma}^{i}_{o(1)} + \bar{\varsigma}^{i}_{o(2)} \right] \ldots. \] (2.11)

Expansion of time components can be determined from these using Landau gauge condition eqn. (2.4).

We choose the equilibrium convention for \(\vartheta \) and \(\nu \) by identifying their equilibrium values to be the red-shifted temperature and Wilson loop in the lower dimensional theory

\[\frac{1}{\vartheta_{o}} = \beta_{o} = \tilde{\beta} \sqrt{-G_{00}} = \tilde{\beta} e^{\sigma}, \quad \nu_{o} = \tilde{\beta} A_{0}. \] (2.12)

In the next section we construct the equilibrium partition function and obtain energy-momentum tensor and charge current in terms of background data following [4]. After that, we compare these stress tensor and current with the fluid stress tensor and current order by order in derivative expansion to find the constraints among the transport coefficients at any particular derivative order. A typical constraint will connect transport coefficients at equilibrium \(\{\alpha_{o}(\vartheta_{o}, \nu_{o})\} \) and their derivatives with respect to \(\vartheta_{o} \) and \(\nu_{o} \) (up to a particular derivative order)

\[\mathcal{C}\left(\{\alpha_{o}(\vartheta_{o}, \nu_{o})\}, \{\partial \alpha_{o}(\vartheta_{o}, \nu_{o})\} \right) = 0. \] (2.13)

We can extrapolate this constraint to non-equilibrium configurations:

\[\mathcal{C}\left(\{\alpha(\vartheta, \nu)\}, \{\partial \alpha(\vartheta, \nu)\} \right) = 0, \] (2.14)

while doing this, we are making an error of at least one derivative order higher, which will be compensated at next derivative order computation. This is how we find the generic constraints among fluid transport coefficients. Please note that while the equality constraints determined by this procedure are generic, the inequality constraints are not determined by this method.

3 Equilibrium Partition Function

The equilibrium partition function\(^{4} \) \(W^{eqb} \) of the theory can generally be disintegrated into two parts:

\[W^{eqb} = W^{eqb}_{(C)} + W^{eqb}_{(A)}. \] (3.1)

\(^{4} \)The partition function may be thought of as the Euclidean action for the fluid living on the background with coordinate time \(t \) compactified on a circle of length \(\tilde{\beta} \)
The first one is the ‘conserved’ partition function which is gauge and diffeomorphism invariant, and generates conserved part of currents denoted by \(\mathcal{T}_{(A)}^{\mu
u} \), \(\mathcal{J}_{(A)}^{\mu} \). The other piece is not gauge-invariant and is referred to be ‘anomalous’ partition function. It generates anomalous piece of ‘consistent currents’ which will not be gauge-invariant in general. By defining a consistent subtraction scheme (Bardeen-Zumino currents), we can make these anomalous currents gauge invariant (see [11] for details) which we denote by \(\bar{T}_{(A)}^{\mu
u} \), \(\bar{J}_{(A)}^{\mu} \). Their value at equilibrium is fixed by anomaly, and up to subleading order is given by:

\[
\mathcal{T}_{(A)}^{\mu
u} = -2C^{(2n)} \sum_{m=1}^{n+1} \partial_{o}^{2} \nu_{o}^{m+1} \star \left(u_{o} \wedge \lambda_{o1}^{\wedge(m-1)} \wedge \lambda_{o2}^{\wedge(n-m)} \right) (u_{o}^{\nu}) \\
\equiv -2C^{(2n)} \sum_{m=1}^{n+1} \partial_{o}^{2} \nu_{o}^{m+1} l_{o(m)}^{(\mu)} u_{o}^{\nu}, \tag{3.2}
\]

\[
\bar{J}_{(A)}^{\mu} = -C^{(2n)} \sum_{m=1}^{n+1} (n+1) C_{m} \partial_{o} \nu_{o}^{m} \star \left(u_{o} \wedge \lambda_{o1}^{\wedge(m-1)} \wedge \lambda_{o2}^{\wedge(n-m)} \right) \mu \\
\equiv -C^{(2n)} \sum_{m=1}^{n+1} (n+1) C_{m} \partial_{o} \nu_{o}^{m} \mu_{o(m)}. \tag{3.3}
\]

Here \(\{ \lambda_{1}, \lambda_{2} \} \) are \(\{ \vartheta d\mu, dA + \vartheta \nu du \} \) projected transverse to \(u^{\mu} \), and their equilibrium values upon KK reduction reduce to: \(\{ f_{1}, f_{2} \} = \{ \vartheta da, dA \} \). Hence we have:

\[
\mathcal{T}_{(A)}^{i} = C^{(2n)} \sum_{m=1}^{n+1} C_{m+1} e^{\sigma} \partial_{o}^{2} \nu_{o}^{m+1} \mu_{o(m)}, \quad \mathcal{T}_{(A)}^{ij} = \mathcal{T}_{(A)} = 0, \tag{3.4}
\]

\[
\bar{J}_{(A)}^{i} = -C^{(2n)} \sum_{m=1}^{n+1} (n+1) C_{m} \partial_{o} \nu_{o}^{m} \mu_{o(m)}, \quad \bar{J}_{(A)} = 0. \tag{3.5}
\]

Let us now concentrate on \(W_{\text{eff}}^{(C)} \). It’s variation on background (2.7) will determine the conserved currents:

\[
\delta W_{\text{eff}}^{(C)} = \int d^{2n}x \sqrt{G} \left[-\frac{1}{2} \mathcal{T}_{(C)}^{\mu\nu} \delta G_{\mu\nu} + \mathcal{J}_{(C)}^{\mu} \delta A_{\mu} \right]. \tag{3.6}
\]

And hence,

\[
\mathcal{T}_{(C)}^{\mu\nu} = \frac{2}{2} \frac{\delta W_{\text{eff}}^{(C)}}{\delta G_{\mu\nu}}, \quad \mathcal{J}_{(C)}^{\mu} = \frac{\delta W_{\text{eff}}^{(C)}}{\delta A_{\mu}}. \tag{3.7}
\]

Kaluza-Klein decomposition of eqn. (3.7) gives,

\[
\mathcal{T}_{(C)}^{ij} = 2 \partial_{o} \frac{\delta W_{\text{eff}}^{(C)}}{\delta g_{ij}}, \quad \mathcal{T}_{(C)}^{i} = e^{\sigma} \partial_{o} \nu_{o} \mathcal{J}_{(C)}^{i} = \partial_{o} \frac{\delta W_{\text{eff}}^{(C)}}{\delta a_{i}}, \quad \bar{T}_{(C)} = e^{2\sigma} \bar{\theta} \frac{\delta W_{\text{eff}}^{(C)}}{\delta \bar{\theta}}.
\]

\(^{5}\text{To get these and some further results we have to used the ideal order results } v_{a} = -e^{\sigma}, \nu_{a}^{i} = 0, \text{ which we will derive in § 5. We use it here to simplify the notation.}\)
\[J^i_{(C)} = \vartheta_0 \frac{\delta W^{eqb}_{(C)}}{\delta A_i}, \quad \bar{J}_i_{(C)} = -e^\sigma \frac{\delta W^{eqb}_{(C)}}{\delta \nu_0}. \] (3.8)

Here we have switched the basis to \(\vartheta_0 = e^{-\sigma/\tilde{\beta}} \) and \(\nu_0 = \tilde{\beta} A \) for later convenience. \(a^i \) is the Kaluza-Klein gauge field. Note that while \(W^{eqb}_{(C)} \) is gauge invariant, its integrand does not need to be. We can include a typical Chern-Simons term to it, which is defined such that its integral is gauge invariant:

\[
\int_{\mathcal{M}_{(2n-1)}} I^{2n-1} = - \int d^{2n-1}x \sqrt{g} \left\{ \sum_{m=1}^{n} a^{C_{m-1}} A_{m-1} i_{o(m)} + \tilde{\vartheta} C_a i_{o(n)} \right\}. \tag{3.9}
\]

Here \(C_m \)'s are constants. This is indeed a valid Chern-Simons form as at equilibrium \(l_{o(m)}^{(m)} \) is just made of Chern classes of \(f_1 \) and \(f_2 \):

\[
l_{o(m)}^{(m)} = \star \left(f_1^{(m-1)} \wedge f_2^{(n-m)} \right). \tag{3.10}
\]

For the gauge-invariant integrand, we assume that curvature scales of the background \(\mathcal{M}_{(d-1)} \) is much much larger than the mean free path of the fluid, therefore the whole manifold can be thought of as union of various flat patches. The system can be thought of in thermal equilibrium in each local patch. On each patch we can define the euclidean partition function locally, hence giving us

\[
W^{eqb}_{(C)} = \int d^{2n-1}x \sqrt{g} \beta(\vec{x}) P(\vec{x}) + \int d^{2n-1}x \sqrt{g} \star I^{2n-1}, \tag{3.11}
\]

where \(P(\vec{x}) \) is local thermodynamic pressure and \(\beta(\vec{x}) \) is local thermodynamic temperature. Given pressure, we can use the thermodynamic relations in local patch

\[
dP = \frac{\epsilon + P}{\vartheta} d\vartheta + \vartheta d\nu, \quad \epsilon + P = \vartheta s + \nu q, \tag{3.12}
\]

to define energy density \(\epsilon \), entropy density \(s \) and charge density \(q \) of the fluid. All are functions of \(\vartheta \) and \(\nu \). We can expand \(W^{eqb}_{(C)} \) around its equilibrium value as

\[
W^{eqb}_{(C)} = \int d^{2n-1}x \sqrt{g} \beta_0 P_0 + \Delta W^{eqb}_{(C)}. \tag{3.13}
\]

Derivative correction to the ideal fluid partition function is denoted by \(\Delta W^{eqb}_{(C)} \), which will contain all the possible gauge invariant scalars made out of background metric and gauge field components at a particular derivative order. We have computed these scalars (till the derivative level of our interest) in § 4.

Collating together the conserved currents in eqn. (3.8) and the anomalous pieces in eqns. (3.4) and (3.5), and varying the Chern-Simons terms in \(W^{eqb}_{(C)} \) i.e. eqn. (3.9), we can finally write:

\[
\bar{T}^i_{ij} = 2\vartheta_0 \frac{\delta W^{eqb}_{(C)}}{\delta g_{ij}},
\]

\(^6\)We have left the terms in \(I^{2n-1} \) which can be related to others up to a total derivative.
\[T^i + e^o \nabla_o \nu_o \tilde{J}^i = \partial_o \frac{\delta W^{eqb}_{(C)}}{\delta a_i} - \partial_o \sum_{m=1}^n n^{-1} C_{m-1} \left\{ \frac{n(n+1)}{(m+1)} C^{(2n)} e^o \nabla_o \nu_o \nu_o^m \nu_o \bar{o}_o \bar{m}_o + n C_m \tilde{\nu}_o \bar{i}_o \right\}, \]

\[\bar{T} = e^{2\sigma} \nu_0^2 \delta W^{eqb}_{(C)}, \]

\[\bar{J}^i = \partial_o \frac{\delta W^{eqb}_{(C)}}{\delta A_i} - \partial_o \sum_{m=1}^n n^{-1} C_{m-1} \left\{ \frac{n(n+1)}{m} C^{(2n)} \nu_o^m \nu_o \bar{o}_o \bar{m}_o + n C_{m-1} \nu_o \bar{i}_o \right\}, \]

\[\bar{J} = -e^o \frac{\delta W^{eqb}_{(C)}}{\delta \nu_o}. \]

Comparing these to the most generic fluid expressions in eqn. (2.8) we can compute the constraints. Thus, we see that it is only the gauge invariant part \(W^{eqb}_{(C)} \) of the partition function that we need to evaluate at any desired order.

3.1 Anomalous Entropy Current

In last section we reviewed a procedure to get equality type constraints among fluid transport coefficients. It is generally known that these very constraints can also be get by demanding existence of an entropy current whose divergence is positive semi-definite. The most generic Entropy Current can be written as:

\[\bar{J}_S^\mu = \bar{J}_{S(C)}^\mu + \bar{J}_{S(A)}^\mu, \]

where \(\bar{J}_{S(A)}^\mu \) is the part which captures the explicit dependence on anomaly coefficients. However, the other piece \(\bar{J}_{S(C)}^\mu \) can get implicit dependence on the anomaly coefficients through the fluid equations of motion. We need to demand this current to be positive semi-definite,

\[\hat{\nabla}_\mu \bar{J}_S^\mu = \hat{\nabla}_\mu \bar{J}_{S(C)}^\mu + \hat{\nabla}_\mu \bar{J}_{S(A)}^\mu \geq 0, \]

whenever EOM are satisfied. For equilibrium fluid configuration, both the pieces can be demanded to be positive semi-definite separately. Such decoupling is not always possible, as the fluid equations of motion depend on anomaly coefficients, which can induce some implicit anomaly dependence in \(\bar{J}_{S(C)}^\mu \). However, for equilibrium fluid configurations, the equations of motion are trivially satisfied and thus entire information of anomaly can be incorporated in \(\bar{J}_{S(C)}^\mu \). Hence, if any part of \(\hat{\nabla}_\mu \bar{J}_{S(C)}^\mu \) couple to \(\hat{\nabla}_\mu \bar{J}_{S(A)}^\mu \), the respective transport coefficients will be determined in terms of anomaly coefficients, and hence will be present in \(\bar{J}_{S(A)}^\mu \) at the first place. Therefore all the information about constraints among fluid transport coefficients is encoded in the existence of \(\bar{J}_{S(C)}^\mu \). In [12, 13] the author gives an explicit construction of entropy current from Eqb. Partition Function.

Now concentrating on the second term: at equilibrium, \(\hat{\nabla}_\mu \bar{J}_{S(A)}^\mu \geq 0 \), since it does not have any independent coefficients, just constants, one cannot apply any constraints for it to be
satisfied. Therefore $\mathcal{J}^\mu_{S(A)}$ must be exact. But any current is always ambiguous up to some exact terms, and hence we can choose $\mathcal{J}^\mu_{S(A)} = 0$ equally well. We can hence write in a generic hydrodynamic frame:\footnote{We have used the thermodynamic functions ϵ, q, s here, which will be explicitly proved in § 5.}

\[
\begin{align*}
\mathcal{T}^\mu_{(A)} &= 2\epsilon_\mu(A) + 2q_\mu(A) + 2q_\nu(A) + \bar{\Pi}^\mu_{(A)}, \\
\mathcal{J}^\mu_{(A)} &= qu^\mu(A) + \bar{\Upsilon}^\mu_{(A)}, \\
0 &= su^\mu(A) + \bar{\Upsilon}^\mu_{S(A)}.
\end{align*}
\]

(3.17) (3.18) (3.19)

Note that in the expression for $\mathcal{T}^\mu_{(A)}$ we have used the fact that anomalies are parity-odd. Now depending on the choice of hydrodynamic frame, these conditions can be used to determine anomalous dissipative parts of the various currents. For example, if we define u^μ such that it does not contribute to anomaly, i.e. $u^\mu_{(A)} = 0$, we will get:

\[
\mathcal{\bar{\Upsilon}}^\mu_{(A)} = \mathcal{\bar{J}}^\mu_{(A)}, \quad q^\mu_{(A)} = -\mathcal{T}^\mu_{(A)}u^\nu(C), \quad \Pi^\mu_{(A)} = 2\mathcal{T}^\mu_{(A)} \left(\delta^\nu_{\nu} + u^\nu(C)u^\alpha(C) \right), \quad \bar{\Upsilon}^\mu_{S(A)} = 0.
\]

(3.20)

This is the neatest frame for anomalies. Similar results for $U(1)$ anomaly were derived in [14], however these expressions are also applicable to gravitational anomalies\footnote{restricted to equilibrium configurations}. Here we present explicit expressions for the anomalous parts of currents, in presence of both $U(1)$ and gravitational anomaly. Following the generic expressions given in [8], these can be computed directly from the anomaly polynomial. The anomaly polynomial in $2n$ dimensions up to $(n+1)$ derivative order is given as [15],

\[
\mathcal{P} = C^{(2n)} \mathcal{F}^{x(n+1)} + c_m \mathcal{F}^{x(n-1)} \wedge \text{Tr}[\mathcal{R} \wedge \mathcal{R}],
\]

(3.21)

where, $C^{(2n)}$ is gauge anomaly coefficient which we have already introduced in the last section and c_m is gravitational anomaly coefficient. The two form \mathcal{R} is defined in terms of the Riemann tensor as,

\[
\mathcal{R}^{\alpha}_{\beta \gamma \delta} = \mathcal{R}^{\alpha}_{\beta \gamma \delta} dx^\gamma \wedge dx^\delta.
\]

(3.22)

Taking appropriate derivative of the above, one can find explicit expressions for anomalous parts of the currents. The leading part of the currents proportional to the gauge anomaly coefficient $C^{(2n)}$ have already been given in eqns. (3.2) and (3.3). Here we present the subleading order contributions to currents coming due to the gravitational anomaly,

\[
\begin{align*}
\mathcal{\bar{J}}^\mu_{(A)} &= c_m(n-1) \left[\epsilon_u(A) \wedge \mathcal{F}^{(n-2)} \wedge \Lambda_{\alpha,\beta} \left(\Lambda^{\alpha,\beta} U - 2\mathcal{R}^{\alpha,\beta} \right) \right] \wedge \\
&+ \sum_{m=1}^{n-2} c_m (\partial_{\alpha,\beta})^m \left[u_\alpha \wedge \mathcal{U}^{(n-2)} \wedge \mathcal{F}^{(n-2-m)} \wedge \left(\Lambda^{\alpha,\beta} U - \mathcal{R}^{\alpha,\beta} \right) \wedge \left(\Lambda_{\alpha,\beta} - \Lambda_{\alpha,\beta} U \right) \right] \wedge,
\end{align*}
\]

(3.23)
where,
\[\Lambda_{\mu\nu} = \frac{1}{2} \left(U_{\mu\nu} - 4 \frac{1}{\partial_{o}} u_{o[\mu} P_{\nu]\alpha} \hat{\nabla}^\alpha \partial_{o} \right), \quad U_{\mu\nu} = 2 P_{[\mu\alpha} P_{\nu]\beta} \hat{\nabla}^\alpha u^\beta. \] (3.24)

The heat current has the form,
\[
q^\mu_{(A)} = -c m \frac{1}{\partial_{o}} \left[(u_{o} \wedge \mathcal{F}^{\wedge (n-1)})^\mu \Lambda^\alpha_\beta \Lambda_{\alpha\beta} + \sum_{m=2}^{n-1} \frac{1}{n-1-2} \mathcal{C}_{m}(m-1) (\partial_{o} \nu_{o}) \right] \left[(u_{o} \wedge U^{\wedge (m-2)} \wedge \mathcal{F}^{\wedge (n-m-1)}) \wedge (\mathcal{R}^\alpha_\beta - \Lambda^\alpha_\beta U) \wedge (\mathcal{R}_{\alpha\beta} - \Lambda_{\alpha\beta} U) \right]^\mu
+ 2 \sum_{m=1}^{n-1} \mathcal{C}_{m}(m-1) (\partial_{o} \nu_{o}) \left[(u_{o} \wedge U^{\wedge (m-1)} \wedge \mathcal{F}^{\wedge (n-1-m)}) \wedge \Lambda_{\alpha\beta} (\mathcal{R}_{\alpha\beta} - \Lambda_{\alpha\beta} U) \right]^\mu \right]. (3.25)

Finally, the stress tensor looks like,
\[T_{(A)}^{\mu\nu} = 4c m \hat{\nabla}_\rho \left[\sum_{m=1}^{n-1} \mathcal{C}_{m}(m-1) (\partial_{o} \nu_{o}) \left[(u_{o} \wedge U^{\wedge (m-1)} \wedge \mathcal{F}^{\wedge (n-m-1)}) \wedge (\mathcal{R}^\rho_\mu - \Lambda^\rho_\mu U) \right] \right] - 2 \partial^\rho u^\mu q^\rho_{(A)}. (3.26) \]

Instead if we are working in Landau Frame, where \(\bar{q}^\mu_{(A)} = \bar{q}^\mu_{(C)} = 0 \), we will get condition:
\[- \bar{T}_{(A)}^{\mu\nu} u_{\nu}(C) = \left(\epsilon G^{\mu\nu} + \bar{T}_{(C)}^{\mu\nu} \right) u_{\nu}(A) = \left(\epsilon G^{\mu\nu} + \bar{\Pi}_{(C)}^{\mu\nu} \right) u_{\nu}(A). \] (3.27)

We need to invert \(\epsilon G^{\mu\nu} + \bar{\Pi}_{(C)}^{\mu\nu} \), which can be done perturbatively in derivatives. To leading order:
\[u_{(A)}^{\mu} = - \frac{1}{\epsilon + P} \bar{T}_{(A)}^{\mu\nu} u_{\nu}(C) + \ldots, \] (3.28)

and hence
\[\bar{\hat{\gamma}}_{(A)}^{\mu} = \bar{\hat{\gamma}}_{(A)}^{\mu} + \frac{q}{\epsilon + P} \bar{T}_{(A)}^{\mu\nu} u_{\nu}(C) + \ldots, \quad \bar{\hat{\Pi}}_{(A)}^{\mu\nu} = 2 \bar{T}_{(A)}^{(\mu\alpha)} \left(\delta_{\alpha}^{\mu} + \frac{\epsilon}{\epsilon + P} u_{\alpha}(C) \right) u_{\nu}(A) + \ldots. \] (3.29)

As showed by [14], in presence of just \(U(1) \) anomaly, it gives the exact result of Son-Sorowka [3]. To write a similar expression for gravitational anomaly in Landau Frame, one will need to find anomalous velocity to subsubleading order, which might be non-trivial.
4 Counting of Independent Terms

This section is dedicated to develop a systematic procedure to compute independent fluid data (vectors, tensors transverse to velocity and scalars). First we will review the counting in parity-even sector in generic dimensions. Then we will extend this idea to parity-odd sector in generic dimensions at arbitrary derivative order through a procedure we call ‘derivative counting’.

After describing the generic procedure, we explicitly construct leading and sub-leading order parity-odd and even terms which are important for our current work. Many of these terms vanish in equilibrium. In tables tables (1), (2) and (5) we list all the leading and sub-leading terms both parity-odd and even and check if they survive at equilibrium. Further in appendix (B) we extend this counting procedure to parity-odd subsleading derivative order fluid. For this reason we will keep our illustrations in the construction explicit to subsleading order.

4.1 Parity-even Counting

In this subsection we present the parity-even counting in generic dimensions. One can always count independent data in the local rest frame (LRF) of the fluid, which turns out to be easier. We can later covariantize the terms to a generic reference frame by following simple (and generic) rules\(^9\). In LRF, the fundamental quantities are

- Temperature – \(\vartheta \), Chemical Potential – \(\nu \).
- Derivatives of fluid velocity\(^10\) – \(\partial_0 u^i \), \(\partial^i u^j \).
- Field Tensor – \(F^{ij} \), \(E^i = F^i\nu u_\nu \).
- Curvature – \(R^{ijkl} \), \(R^{ijk0} \), \(R^{i0k0} \).

All other quantities are merely derivatives of these fundamental quantities. Since LRF is locally flat, we are using the coordinate derivatives \(\partial_0 \) and \(\partial_i \). We introduce a notation for parity-even terms which will be useful later in parity-odd counting. Terms with \(d \) derivatives and \(i \) indices will be denoted collectively as \((i, d) \). When working at equilibrium, it is also

\(^9\) The rules can be summarized as: replace 1) ‘0’ index with contraction with \(u^\mu \), 2) ‘\(i \)’ indices with a projection along \(P^{\mu\nu} \), 3) \(\partial \) with \(\hat{\nabla} \), 4) \(\epsilon^{k1...kn} \) with \(\epsilon^{\mu_1\nu_1...\mu_n \nu_n} u_{\mu_1} \), and finally 5) put all extra factors of projectors and velocities on left-most, so no derivatives act on them.

\(^10\) \(u^\mu u_\mu = -1 \) would imply \(u^\mu \partial u_\mu = 0 \) and hence in local rest frame \(\partial u_0 = 0 \).
convenient to define:11
\begin{align}
S^{\mu\nu} &= 2\nabla[\mu u^{\nu}], \quad U^{\mu\nu} = 2\nabla[\mu u^{\nu}], \quad (4.1) \\
X^{\mu\nu}_\Lambda &= \left\{ -\partial U^{\mu\nu}, P^{\mu\alpha}P^{\nu\beta}F_{\alpha\beta} + \partial uU^{\mu\nu} \right\}, \quad \Lambda = 1, 2. \quad (4.2)
\end{align}

The purpose of above notation is revealed in Kaluza Klein formalism: at equilibrium only spatial components of $X^{\mu\nu}_\Lambda$ survive which land exactly to f^{ij}_Λ defined by:
\begin{align}
a_\Lambda &= \left\{ \tilde{\vartheta}a^i, A^i \right\}, \quad f^{ij}_\Lambda = \nabla^i a^j_{\Lambda} - \nabla^j a^i_{\Lambda}. \quad (4.3)
\end{align}

In the same spirit we define
\begin{align}
K^{\mu\nu\rho\sigma} &= P^{\mu\alpha}P^{\nu\beta}P^{\rho\gamma}P^{\sigma\delta}R_{\alpha\beta\gamma\delta} - \left(U^{\mu\rho}U^{\nu\sigma} + \frac{1}{2}U^{\mu\rho}U^{\nu\sigma} - \frac{1}{2}U^{\nu\rho}U^{\mu\sigma} \right). \quad (4.4)
\end{align}

Only spatial components of $K^{\mu\nu\rho\sigma}$ survive at equilibrium, and they exactly match R^{ijkl}. The usage of index ‘Λ’ is purely to facilitate counting and computations. Similarly we define $\vartheta_\Lambda = \{ \vartheta, \nu \}$.

\textbf{Bianchi identity:}

In counting, we will extensively use the Bianchi identity to get rid of many terms, so it would be worth to spend some time on it. The Bianchi Identities for Field Tensor, Vorticity and Riemann Tensor take the form:
\begin{align}
\hat{\nabla}_{[\mu}F_{\nu\rho]} &= \hat{\nabla}_{[\mu}\nabla_{\nu}\rho] = \hat{\nabla}_{[\mu}R_{\nu\rho]\sigma\delta} = R_{[\mu\nu\rho]\sigma} = 0. \quad (4.5)
\end{align}

However our redefined variables X_Λ and K do not satisfy Bianchi Identities. But nevertheless we can always use these identities to relate
\begin{align}
\hat{\nabla}_{[\mu}X_{\nu\rho]\Lambda], \quad \hat{\nabla}_{[\mu}K_{\nu\rho]\sigma\delta], \quad K_{[\mu\nu\rho]\sigma}.
\end{align}

to other terms, and hence we can safely get rid of these in the following computation. In rest frame especially (or at equilibrium in any generic frame), one can check that X_Λ and K also satisfy Bianchi Identities.

\textbf{Killing equation:}

11 Our conventions are:
\begin{align*}
A^{[\mu_1}] &= \frac{1}{2}P^{\mu_1}_{\alpha_1}P^{\nu}_{\beta_1} \left(A^{\alpha_1\beta_1} - A^{\beta_1\alpha_1} \right), \quad A^{(\mu_1)} = \frac{1}{2}P^{\mu_1}_{\alpha_1}P^{\nu}_{\beta_1} \left(A^{\alpha_1\beta_1} + A^{\beta_1\alpha_1} \right), \quad A_{(\mu_1)} = A_{(\mu_1)} - \frac{P^{\mu_1}_{\alpha_1}P_{\alpha_1\beta_1}A^{\beta_1\alpha_1}}{d-1}, \\
A^{(i_1)} &= \frac{1}{2} \left(A^{i_1} - A^{i_1} \right), \quad A^{(i_1)} = \frac{1}{2} \left(A^{i_1} + A^{i_1} \right), \quad A_{(i_1)} = A_{(i_1)} - \frac{g^{i_1}_{j_1}g_{j_1}A^{i_1}}{d-1}.
\end{align*}
If the theory has a unit Killing direction ω^μ we have the following Killing equation for a general tensor

$$\mathcal{L}_\omega T^{\alpha_1\alpha_2\ldots} = 0 \implies \omega^\mu \hat{\nabla}_\mu T^{\alpha_1\alpha_2\ldots} = \sum_k T^{\alpha_1\ldots\alpha_{k-1}\sigma\alpha_k\ldots} \hat{\nabla}_\sigma \omega^{\alpha_k}, \quad (4.7)$$

which in local rest frame becomes

$$\partial_0 T^{\alpha_\beta\gamma\ldots} = 0. \quad (4.8)$$

Therefore if we are considering a theory at equilibrium, we do not have to consider the ∂_0 derivatives. Secondly, the Killing equation for metric $G^{\mu\nu}$ is given by

$$\hat{\nabla}_\beta \omega^{\alpha} + \hat{\nabla}_\alpha \omega^{\beta} = 0. \quad (4.9)$$

Taking $\frac{\omega^\mu}{\sqrt{-\omega^2}} = u^\mu$ and using Killing Equation for scalars this translates to:

$$\hat{\nabla}_\beta u^{\alpha} + \hat{\nabla}_\alpha u^{\beta} = 0. \quad (4.10)$$

Hence in local rest frame $S^{ij} = \partial^i u^j + \partial^j u^i = 0$.

4.1.1 First Derivative Order

Below, we compute all possible terms at first derivative order in LRF.

1. (2,2,1): S^{ij}, X^{ij}_Λ
2. (1,1,1): $\partial^i \vartheta_\Lambda$, $\boxed{\partial_0 u^i}$, \mathcal{E}^i
3. (0,0,1): S^k_k, $\boxed{\partial_0 \vartheta_\Lambda}$

However all these first derivative terms are not independent on-shell. Using first order equations of motion one can eliminate some of them. The equations of motion are given by eqn. (2.1) (at equilibrium)

1. (1,1,1): $\partial_\mu \tilde{T}^{\mu i} = F^{i\alpha} \tilde{J}_\alpha + \tilde{\mathcal{E}}^\nu$
2. (0,0,1): $\partial_\mu \tilde{T}^{\mu 0} = -\mathcal{E}^{\alpha} \tilde{J}_\alpha + \tilde{\mathcal{E}}^\nu u_\nu$, $\partial_\mu \tilde{J}^\mu = \tilde{\mathcal{J}}$.

Using these equations we have killed the boxed terms in the counting.

4.1.2 Second Derivative Order

Below we list all possible pure second derivative terms. By pure we mean they are not product of two first derivative terms. Product of two lower derivative terms are called composite terms.

1. (2,4,2): K^{ijkl}
Table 1: Independent Leading Order Parity-even Data

Name	LRF	Covariant	Equilibrium
Θ	$\frac{1}{2} S^i_i$	$\frac{1}{2} S^\mu_\mu$	0
V^{μ}_Λ	$\partial^i \partial_\Lambda$	$P^{\mu\alpha} \nabla_\alpha \partial_\Lambda$	$\nabla^i \partial_\Lambda$
V^{μ}_3	$\mathcal{E}^i - \partial_1 V^2_1$	$\mathcal{E}^\mu - \partial_1 V^\mu_2$	0
$\sigma^{\mu\nu}$	$\frac{1}{2} S^{ij}$	$\frac{1}{2} S^{(\mu\nu)}$	0

2. ($\frac{3}{2}, 3, 2$): $\partial^i S^{jk}$, $\partial^i \mathcal{X}^{jk}_\Lambda$, \mathcal{R}^{ijk}_0

3. ($1, 2, 2$): $\partial^i \partial^j \partial_\Lambda$, $\partial^i \mathcal{E}^j$, $\partial_0 S^{ij}$, $\partial_0 \mathcal{X}^{ij}_2$, $\mathcal{R}^{i}_{0\ 0}$, \mathcal{K}^{iaj}

4. ($\frac{1}{2}, 1, 2$): $\partial^i \partial_0 \partial^k \mathcal{J}^i$, $\partial_0 \partial_0 \partial^i$, $\partial_0 \mathcal{E}^i$, $\partial_i S^{ij}$, $\partial_i \mathcal{X}^{ij}_\Lambda$, $\mathcal{R}^{ia}_{0\ 0}$

5. ($0, 0, 2$): $\partial_0 S^{ik}_k$, $\partial_0 \partial_0 \partial^i$, $\partial_i \mathcal{E}^i$, \mathcal{K}^{ab}_{ab}, $\mathcal{R}^a_{0\ 0}$

Here also all the terms are not independent because of equations of motion. The second order equations of motion are given by,

1. ($1, 2, 2$): $\partial^k \partial_\mu T^{\mu i} = \partial^k (F_i^\alpha J^\alpha + \mathcal{F}^i)$, $\partial^k \partial_\mu T^{\mu i} = \partial^k (F_i^\alpha J^\alpha + \mathcal{F}^i)$

2. ($\frac{1}{2}, 1, 2$): $\partial_0 \partial_\mu T^{\mu i} = \partial_0 (F_i^\alpha J^\alpha + \mathcal{F}^i)$, $\partial_0 \partial_\mu T^{\mu i} = -\partial_0 (F_i^\alpha J^\alpha + \mathcal{F}^i)$

3. ($0, 0, 2$): $\partial_i \partial_\mu T^{\mu i} = \partial_i (F_i^\alpha J^\alpha + \mathcal{F}^i)$, $\partial_i \partial_\mu T^{\mu i} = -\partial_0 (F_i^\alpha J^\alpha - \mathcal{F}^\alpha u_\alpha)$

Again we have killed [boxed] terms in the counting using equations of motion. We have provided a list of all terms till second order (also composites) in covariant form and their equilibrium values in tables (1) and (2). We can iterate this procedure to further derivative orders as required by the cause. Note that, for a pure term at Nth derivative order, the maximum number of indices possible are $N + 2$; we will need it later.

4.2 Parity-odd Counting

In this section we shall compute the parity-odd leading and sub-leading derivative fluid data. Calculation in parity-odd sector is a lot more cumbersome, even in LRF. We introduce here a scheme called ‘derivative counting’ to compute these terms step by step. Any parity-odd term in (2n)-dimension must have a (2n – 1)-dim Levi-Civita involved in LRF

$$\epsilon^{i_1 i_2 \ldots i_n j_n}.$$

We are interested in constructing all possible scalars, vectors and symmetric tensors using it. A bit of thinking will reveal that one needs at least (2n – 2)-rank parity-even tensors to
be combined with $\epsilon^{ikj2\ldots^n}$ for this purpose. One can subsequently form a list of parity-odd
Data types:

1. \mathbf{V}_ϵ: Vectors with free index on ϵ ($2n - 2$ rank parity-even tensor contracted with ϵ).
2. \mathbf{S}: Scalars with all indices contracted with ϵ ($2n - 1$ rank parity-even tensor contracted with ϵ).
3. \mathbf{T}_ϵ: Tensors with one free index on ϵ ($2n - 1$ rank parity-even tensor contracted with ϵ).
4. \mathbf{V}_f: Vectors with free index not on ϵ ($2n$ rank parity-even tensor contracted with ϵ).
5. \mathbf{V}^C_ϵ: Vectors formed of contraction of two non-ϵ indices with free index on ϵ ($2n$ rank parity-even tensor contracted with ϵ).
6. \mathbf{T}_f: Tensors with no free index on ϵ ($2n + 1$ rank parity-even tensor contracted with ϵ).
7. \mathbf{S}^C: Scalars formed of contraction of \mathbf{T}_f ($2n + 1$ rank parity-even tensor contracted with ϵ).
8. \mathbf{T}^C_ϵ: Tensors formed of contraction of two non-ϵ indices with one free index on ϵ ($2n + 1$ rank parity-even tensor contracted with ϵ).
9. \mathbf{V}^C_f: Vectors formed of contraction of two non-ϵ indices with one free index not on ϵ ($2n + 2$ rank parity-even tensor contracted with ϵ).
10. \mathbf{V}^{CC}_ϵ: Vectors formed of contraction of four non-ϵ indices with free index on ϵ ($2n + 2$ rank parity-even tensor contracted with ϵ)

and so on.

Here we note that given D derivatives, one cannot construct a parity-even term, pure or composite, with more than $2D$ indices, because (2, 2, 1) and (2, 4, 2) have the highest index to derivative ratio, which is 2. Therefore, if we are interested in a fluid at $(n - 2 + s)$ derivative order ($s = 1$ corresponds to parity-odd leading order and so on), we can get at most $2(n - 2 + s)$ indices. The list of parity-odd data types we gave above is complete till subsubleading derivative order ($s = 3$).

Independent Data Types

We should emphasise that not all parity-odd data-types listed above are independent. The dependence comes from the fact that when we are working in $2n-1$ dimensions, any antisymmetrization over $2n$ or more indices will vanish. Given that we are dealing with parity-even tensors of arbitrary rank which are to be contracted with ϵ, there are a whole lot of these
antisymmetrizations possible. Hence, to find the independent data-types becomes highly non-trivial.

Let’s look at a special case of this dependence. We construct a $2n$-antisymmetrization,

$$
\epsilon^{i_1...i_{2n-1}} A^{k_1 k_2...k_t}_{i_1...i_{2n-1}} = 0,
$$

therefore,

$$
\epsilon^{i_1...i_{2n-1}} A^{k_1 k_2...k_t}_{i_1...i_{2n-1}} = \sum_{a=1}^{2n-1} (-1)^{a+1} \epsilon^{k_1 i_1...i_{2n-2}} A^{x k_2...k_t}_{i_1...i_{a-1} x i_a...i_{2n-2}}. \tag{4.13}
$$

The consequence of this is that the data types $[\]_f$ (i.e. ones with a free index not on ϵ) can be expressed in terms of $[\]_C$ (i.e. the ones with a free index on ϵ and an extra contraction). Hence data-types $[\]_f$ for example V_f, T_f, V_C are not independent.

Note that this result is only based on a specific form of $2n$-antisymmetrization (eqn. (4.12)). One can in principle go on with any random antisymmetrizations over $2n$ or more indices and find relations among the data, which as it turns out, is not a trivial task to do. We will come back to this issue in § 4.4. For now we continue with the counting.

4.2.1 Derivative Counting

We have classified parity-odd terms in data-types based on the number of parity-even indices required. We want to construct all allowed parity odd terms with D derivatives. We observe that it is not required to include all parity-even data type of the form (r, i, d) in this construction. We will show this below.

For a parity-odd fluid at $D = (n - 2 + s)$ derivative order, we need to construct all the D derivative parity-even terms with number of indices ranging from $2D$ (the maximum possible) to $2(D + 1 - s)$ ($= 2n - 2$, the minimum required), i.e.

$$
2(D + 1 - s) \leq \text{No of indices of a parity-even D derivative term} \leq 2D.
$$

These D-derivative parity-even terms can be constructed out of pure derivative terms. We need not consider pure terms with self contractions in parity-even data types as they have been included in our counting procedure.

We now want to argue that not all parity-even data-types are required for this construction. For a data-type $\left(\frac{i}{N}, i, N\right)$ to be included at least once, the following combination with $(2D - 2N + i)$ indices must be included:

$$(D - N) \times (2, 2, 1) \otimes \left(\frac{i}{N}, i, N\right)$$
Table 3: Parity-even Data-types – Surviving at Equilibrium

Data Type	Decomposition	Local Rest Frame	Equilibrium
(2, 2, 1)	X_{ij}^{Λ}	f_{ij}^{Λ}	$\nabla^i \partial_{\Lambda} \partial_{\Lambda}$
(1, 1, 1)	$\partial^i \partial_{\Lambda}$	$\nabla^i \partial_{\Lambda \alpha}$	
(2, 4, 2)	K^{ijkl}	R^{ijkl}	
($\frac{3}{2}$, 3, 2)	$\partial^i(2, 2, 1)$	$\partial^i X_{j}^{\Lambda}$	$\nabla^i f_{j}^{\Lambda}$
(1, 2, 2)	$\partial^i(1, 1, 1)$	$\partial^i \partial^j \partial_{\Lambda}$	$\nabla^i \nabla^j \partial_{\Lambda \alpha}$
($\frac{3}{2}$, 5, 3)	$\partial^i(2, 4, 2)$	$\partial^i K_{jklm}$	$\nabla^i R_{jklm}$
($\frac{4}{3}$, 4, 3)	$\partial^i \partial^j(2, 2, 1)$	$\partial^i \partial^j X_{k}^{\Lambda}$	$\nabla^i \nabla^j f_{kl}^{\Lambda}$
(1, 3, 3)	$\partial^i \partial^j(1, 1, 1)$	$\partial^i \partial^j \partial^k \partial_{\Lambda}$	$\nabla^i \nabla^j \nabla^k \partial_{\Lambda \alpha}$
($\frac{7}{4}$, 6, 4)	$\partial^i \partial^j(2, 4, 2)$	$\partial^i \partial^j K_{jklmn}$	$\nabla^i \nabla^j R_{jklmn}$
($\frac{7}{4}$, 5, 4)	$\partial^i \partial^j \partial^k(2, 2, 1)$	$\partial^i \partial^j \partial^k X_{l}^{\Lambda}$	$\nabla^i \nabla^j \nabla^k f_{lm}^{\Lambda}$
(1, 4, 4)	$\partial^i \partial^j \partial^k(1, 1, 1)$	$\partial^i \partial^j \partial^k \partial^l \partial_{\Lambda}$	$\nabla^i \nabla^j \nabla^k \nabla^l \partial_{\Lambda \alpha}$
($\frac{7}{4}$, 7, 5)	$\partial^i \partial^j \partial^k(2, 4, 2)$	$\partial^i \partial^j \partial^k K_{lmnno}$	$\nabla^i \nabla^j \nabla^k R_{lmnno}$
($\frac{9}{5}$, 6, 5)	$\partial^i \partial^j \partial^k \partial^l(2, 2, 1)$	$\partial^i \partial^j \partial^k \partial^l X_{m}^{\Lambda}$	$\nabla^i \nabla^j \nabla^k \nabla^l f_{mn}^{\Lambda}$
($\frac{5}{3}$, 8, 6)	$\partial^i \partial^j \partial^k \partial^l(2, 4, 2)$	$\partial^i \partial^j \partial^k \partial^l K_{mnno}$	$\nabla^i \nabla^j \nabla^k \nabla^l R_{mnno}$

Since the minimum rank of this term must be $2n - 2 = 2(D + 1 - s)$ and maximum possible rank is $N + 2$, therefore we get,

$$N + 2 \geq i \geq 2(N - s + 1). \quad (4.14)$$

For this equation to have a solution $N \leq 2s$. So we need at max $2s$ derivative order parity-even terms, to construct parity-odd terms till $(n - 2 + s)$ derivative order. For example at leading order, $s = 1$, only pure terms with at max 2 derivatives are required. The parity even terms required till $s = 3$ are enlisted in tables (3) and (4). Further, if we were only interested in finding terms that survive at equilibrium, we can use the Killing condition and drop all terms with ∂_0 derivatives.

Some of the combinations constructed by this procedure using table (3) are:

1. $(2D \text{ indices})$: $D(2, 2, 1)$
2. (a) $(2D - 1 \text{ indices})$: $(D - 1)(2, 2, 1) \oplus (1, 1, 1)$
3. (a) $(2D - 1 \text{ indices})$: $(D - 2)(2, 2, 1) \oplus (\frac{3}{2}, 3, 2)$
 (b) $(2D - 2 \text{ indices})$: $(D - 2)(2, 2, 1) \oplus 2(1, 1, 1)$
 (c) $(2D - 2 \text{ indices})$: $(D - 2)(2, 2, 1) \oplus (1, 2, 2)$

and so on... The counting can be extended arbitrarily to the derivative order we need. In next section we will construct terms till subleading order, and later in appendix (B) we
Table 4: Parity-even Data-types – Vanishing at Equilibrium

Data Type	Decomposition	Local Rest Frame
(2, 2, 1)	$\sigma^{ij} := \frac{1}{2} S^{(ij)}$	$V^i_3 := E^i - \partial_1 V^i_2$
(1, 1, 1)		
$(\frac{3}{2}, 3, 2)$	$\Xi^{jk} := \mathcal{R}^{ij}_{00} - \frac{1}{2\sigma^o} \nabla^k X^{ij} + \frac{1}{\sqrt{\sigma}} \left(f^{ij}_{1} \nabla^k \partial_o + \frac{1}{2} X^{ikl} \nabla^j \partial_o - \frac{1}{2} X^{ijk} \nabla^j \partial_o \right)$	$\partial^o (2, 2, 1) \quad \partial^o \sigma^{jk}$
(1, 2, 2)		$\partial_0 (2, 2, 1) \quad \partial_0 \mathcal{X}_A^{ij}, \partial_0 \sigma^{ij}$
$(\frac{1}{2}, 1, 2)$	$\partial_0 (1, 1, 1) \quad \partial_0 \partial_0 \mathcal{X}_A, \partial_0 V^i_3$	
$(\frac{4}{3}, 4, 3)$	$\partial^o (\frac{4}{3}, 3, 2) \quad \partial^o \Xi^{kl}$	$\partial_0 (2, 4, 2) \quad \partial_0 \mathcal{K}^{klm}$
		$\partial^o \partial^o (2, 2, 1) \quad \partial^o \partial^o \sigma^{kl}$
(1, 3, 3)		$\partial_0 \partial^o (2, 2, 2) \quad \partial_0 \partial^o \Xi^{kl}$
		$\partial_0 \partial^o (1, 1, 1) \quad \partial^o \partial^o V^i_3$
$(\frac{2}{3}, 2, 3)$	$\partial_0 (1, 2, 2) \quad \partial_0 \partial^o \Xi^{ij}$	$\partial_0 \partial_0 (2, 2, 1) \quad \partial_0 \partial_0 \mathcal{X}_A^{ij}, \partial_0 \partial_0 \sigma^{ij}$
		$\partial_0 \partial_0 (1, 1, 1) \quad \partial_0 \partial^o \partial^o \mathcal{X}_A, \partial_0 \partial^o V^i_3$
$(\frac{5}{4}, 5, 4)$	$\partial^o \partial^o (\frac{5}{4}, 3, 2) \quad \partial^o \partial^o \Xi^{klm}$	$\partial_0 \partial^o (2, 4, 2) \quad \partial_0 \partial^o \mathcal{K}^{klmm}$
		$\partial^o \partial^o \partial^o (2, 2, 1) \quad \partial^o \partial^o \partial^o \sigma^{lm}$
(1, 4, 4)	$\partial_0 \partial^o (\frac{5}{4}, 3, 2) \quad \partial_0 \partial^o \Xi^{kl}$	$\partial_0 \partial_0 (2, 4, 2) \quad \partial_0 \partial_0 \mathcal{K}^{klmm}$
		$\partial_0 \partial_0 (1, 2, 2) \quad \partial_0 \partial^o \Xi^{kl}$
		$\partial_0 \partial_0 (1, 1, 1) \quad \partial^o \partial^o V^i_3$
$(\frac{6}{5}, 6, 5)$	$\partial^o \partial^o \partial^o (\frac{6}{5}, 3, 2) \quad \partial^o \partial^o \partial^o \Xi^{lmn}$	$\partial_0 \partial^o \partial^o \partial^o (2, 4, 2) \quad \partial_0 \partial^o \partial^o \mathcal{K}^{lmno}$
		$\partial^o \partial^o \partial^o \partial^o (2, 2, 1) \quad \partial^o \partial^o \partial^o \partial^o \sigma^{mn}$

will extend it to subsubleading order. We will suppress the usage of data-type (2, 4, 2) for brevity; combinations involving it can always be reached by exchanging (2, 4, 2) with two (2, 2, 1)'s.
4.3 Examples of Parity-odd Counting

4.3.1 Leading Order \((D=n-1)\) \((s=1)\)

For \(s = 1\), the required indices are merely \(2D = 2n - 2\) \((V_\epsilon)\), which amounts to the only combination:

\[D(2, 2, 1), \quad (4.15) \]

along with the terms involving \((2, 4, 2)\). However in \(V_\epsilon\) all the free indices are contracted with Levi-Civita, which will kill any term involving \((2, 4, 2)\) due to Bianchi Identity. The only remaining combination is – \((n)\) vectors

\[\left\langle \frac{m-1}{n-m} \right\rangle_{m=1}^n, \]

where we define,

\[\left\langle m \atop n-a-m \right\rangle_{\mu_1 v_1 ... \mu_a v_a} = \frac{1}{2^{n-a}} \epsilon_{\mu_1 v_1 ... \mu_a v_a} \prod_{x=a+1}^{m+a} \chi_{1}^{\mu_1 \nu_x} \prod_{y=m+a+1}^{n} \chi_{2}^{\mu_y \nu_y}, \]

\[\left\langle m \atop n-a-m \right\rangle_{ii j_2 ... i a j_a} = \frac{1}{2^{n-a}} \epsilon_{ii j_2 ... i a j_a} \prod_{x=a+1}^{m+a} f_{1}^{i x j_x} \prod_{y=m+a+1}^{n} f_{2}^{i y j_y}. \quad (4.16) \]

4.3.2 Subleading Order \((D=n, s=2)\) – Surviving at Equilibrium

At subleading order, index families required are: \(2D = 2n\) \((V^C_\epsilon)\), \(2D - 1 = 2n - 1\) \((T_\epsilon)\) and \(2D - 2 = 2n - 2\) \((V_\epsilon)\). We only compute terms surviving at equilibrium because that is what we need for the current work.

2D Family: 2D family was already discussed in § 4.3.1, but this time since two indices are free from \(\epsilon\), one \((2, 4, 2)\) can appear with two antisymmetric indices of \(R^{ijkl}\) contracted. However we are supposed to take a contraction on remaining indices, which again due to antisymmetry vanish. Only remaining data are – \((n - 1)\) vectors:

\[\left\langle \frac{m-1}{n-1-m} \right\rangle_{ijk} \chi_{1}^{2a} \chi_{2}^{k} \bigg|_{m=1}^{n-1}. \]

2D-1 Family: Combinations in \((2D - 1)\) family which survive at equilibrium are:

1. \((D - 1)(2, 2, 1) \oplus (1, 1, 1)\)
2. \((D - 2)(2, 2, 1) \oplus \left(\frac{3}{2}, 3, 2 \right)\)
3. \((D - 3)(2, 2, 1) \oplus \left(\frac{5}{2}, 5, 3 \right)\)

along with the combinations with \((2, 4, 2)\). In \(T_\epsilon\) only one index stays free from \(\epsilon\), hence again \((2, 4, 2)\) and \(\left(\frac{5}{2}, 5, 3 \right)\) cannot appear. The remaining two combinations will yield:
1. \((n - 1)(2, 2, 1) \oplus (1, 1, 1)\): 2 possibilities – \((6n - 4)\) traceless symmetric tensors and \((2n)\) scalars
 \[
 \langle\frac{m-1}{n-m}\rangle^{(i)}_{\partial^j} \partial_\Lambda |_{m=1}^n, \langle\frac{m-1}{n-m-1}\rangle^{(ijk)}_{\partial_j \partial_k \Lambda} X_{lk} |_{m=1}^{n-1}.
 \]

 Scalars:
 \[
 \langle\frac{m-1}{n-m}\rangle_{\partial \Lambda} |_{m=1}^n.
 \]

2. \((n - 2)(2, 2, 1) \oplus (\frac{3}{2}, 3, 2)\): 1 possibility – \((2n - 2)\) traceless symmetric tensors
 \[
 \langle\frac{m-1}{n-m-1}\rangle^{(ijk)}_{\partial_j \partial_k \Lambda} X_{lk} |_{m=1}^{n-1}.
 \]

2D-2 Family: Combinations in \((2D - 2)\) family which survive at equilibrium are:

1. \((D - 2)(2, 2, 1) \oplus 2(1, 1, 1)\)
2. \((D - 2)(2, 2, 1) \oplus (1, 2, 2)\)
3. \((D - 3)(2, 2, 1) \oplus (\frac{3}{2}, 2, 3) \oplus (1, 1, 1)\)
4. \((D - 3)(2, 2, 1) \oplus (\frac{4}{3}, 4, 3)\)
5. \((D - 4)(2, 2, 1) \oplus 2(\frac{3}{2}, 3, 2)\)
6. \((D - 4)(2, 2, 1) \oplus (\frac{5}{3}, 5, 3) \oplus (1, 1, 1)\)
7. \((D - 4)(2, 2, 1) \oplus (\frac{4}{7}, 6, 4)\)
8. \((D - 5)(2, 2, 1) \oplus (\frac{3}{2}, 3, 2) \oplus (\frac{5}{3}, 5, 3)\)
9. \((D - 6)(2, 2, 1) \oplus 2(\frac{3}{5}, 5, 3)\)

Along with these, we have the combinations with \((2, 4, 2)\). However, \(V_\epsilon\) has no index free from \(\epsilon\), and hence Bianchi Identity will not allow \((2, 4, 2), (\frac{5}{3}, 5, 3)\) and \((\frac{3}{2}, 6, 4)\). Further, \((1, 2, 2), (\frac{3}{2}, 3, 2)\) and \((\frac{4}{3}, 4, 3)\) will vanish as they cannot be made completely antisymmetric. Finally only one combination will remain, yielding:

1. \((n - 2)(2, 2, 1) \oplus 2(1, 1, 1)\): 1 possibility – \((n - 1)\) vectors
 \[
 \langle\frac{m-1}{n-m-1}\rangle^{(ijk)}_{\partial_j \partial_k \partial \Lambda} |_{m=1}^{n-1}.
 \]

At equilibrium we have \((2n)\) scalars, \((2n - 2)\) vectors and \((8n - 6)\) traceless symmetric tensors. We have tabulated these data and their equilibrium values in table (5).

4.4 The Basis of Independent Data

As we discussed in §4.2, the data we have enlisted in the preceding sections is a ‘complete set’ but not independent. There might exist numerous relations among them through anti-
Now let’s add to our set \(K \) symmetrizations of 2\(n \) or more indices. If we look back at § 2, the need of all independent data arose to write down the most generic form of the constitutive relations. We write the energy-momentum tensor and charged current as a combination of all independent tensors and vectors respectively up to some undetermined coefficients which are called transport coefficients. We then determine the same quantities from equilibrium partition function and compare with the fluid results. It turns out that the transport coefficients which destroy the positivity of entropy current divergence are set to zero by this procedure. We call these transport coefficients unphysical. Put differently, the partition function generates only the physical transport coefficients in the constitutive relations (eqn. (3.14)) at equilibrium.

Now if we relax the condition ‘independence’ while writing fluid constitutive relations, i.e., add more terms to these relations which could have been determined in terms of others; they can be regarded as redundant transport coefficients in our system. Since the charge current and the energy-momentum tensor we derive from the partition function remain unchanged, we get relations between the transport coefficients (including the redundant coefficients) and the coefficients appearing in partition function. However, we still have our answers – the independent transport coefficients and distinct constitutive relations.

Let us explain with an example. Suppose at some particular derivative order, we have total \(I \) number of vectors \(V_\mu^i \). We can write charge current at this order as, \(J^\mu = \sum_{i=1}^{I} a_i V_\mu^i \), where \(a_i \)'s are transport coefficients. On the other hand, suppose our partition function has \(X \) number of independent coefficients \(C_j \)'s, and it generates a charge current \(J^\mu = \sum_{j=1}^{X} c_j(C_j) V_\mu^j \). \(c_j(C_j) \) are some functions of \(C_j \)'s. By comparison we will get \(a_i = c_i(C_j) \). These are \(I \) relations with \(X \) free parameters, and thus imposes \(I - X \) constraints on \(a_i \).

Now let’s add to our set \(K \) more vectors \(V_\alpha^i, \alpha = I + 1, \ldots, I + K \) which could in principle be determined as: \(V_\alpha^i = \sum_{i=1}^{I} C_\alpha V_\mu^i \). Then we would have guessed our ansatz to be \(J^\mu = \sum_{i=1}^{I} b_i V_\mu^i \), and by varying partition function we will get \(J^\mu = \sum_{i=1}^{I} d_i(C_j) V_\mu^i \). \(d_i(C_j) \) are some functions of \(C_j \)'s determined by relation \(c_i = \left(d_i - \sum_{\alpha=I+1}^{I+K} d_\alpha C_\alpha \right) \), as our partition

| Table 5: Independent Leading and Subleading Order Parity-odd Data at Equilibrium |
|-----------------|-----------------|-----------------|
| \(\mu \) \(\nu \) \(m \) \(n \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) |
| \(\tilde{S}_{\lambda^m n} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) |
| \(\tilde{V}_{1m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) |
| \(\tilde{T}_{2m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) | \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) \(\frac{1}{m-n} \) \(\frac{1}{n-m} \) |
function is still the same. By comparison we will get $b_i = d_i(C_j)$. These are $K + I$ relations with X free parameters, and thus imposes $K + I - X$ constraints on b_i. We hence get exactly K extra constraints, to kill the K extra degrees of freedom we added in the system. But once we have imposed these constraints, we will only be left with X independent transport coefficients.

However, note that we still need independent set of scalars that enters the equilibrium partition function, for our arguments to make sense. We check it here before we proceed. At leading order there are no scalars. At subleading order the scalars do not have enough indices for $2n$ or more antisymmetrizations, as a result all the scalars we get are independent. At higher order however, it may not be so easy to find out all the independent set of scalars.

Let's look at an example of such residual $2n$-antisymmetrization conditions. In eqn. (4.13) if we chose B to be of the form Sg^{ij}, we will get:

$$\sum_{a=1}^{n-1} (-1)^{a+1} \epsilon^{[p_{i_1}...i_{n-2}} A_{i_{a+1}}^{q_{i_{a+1}}...i_{n-2}]} = 0,$$

where $\langle \rangle$ denotes the traceless symmetric part of a matrix. Hence one of these matrices of type T_ϵ (after making traceless) is not independent for a given A. A similar argument is valid on other tensors like T_ϵ^C using $S^C g^{ij}$. But as we are treating all symmetric traceless tensors (of type $[\epsilon$) to be independent, this should reflect in our final constraints, and as we will see, it will. It turns out that till subleading order, eqn. (4.17) is the only remaining residual constraint, and thus we can construct an independent basis; but this issue might turn more subtle at higher derivative orders. To illustrate the procedure we will not start with the independent basis even for subleading order, and show that we get consistent results at the end.

5 Fluid Constitutive Relations

Having all the data we require, we are ready to find the constitutive relations for fluid. We start with the results which are already known in literature, i.e. fluid up to leading derivative order. We revisit the results in our notation. Later we consider charged fluid at subleading order in § 5.3. We also set up the notation and architecture for subsleading order parity-odd fluid in this formalism in appendix (B). However we do not compute the constitutive relations explicitly, as we will discuss, the calculation becomes a lot non-trivial.

5.1 Ideal Fluid

At zero derivative order only energy-momentum gets a transverse contribution:

$$\Pi^{\mu\nu}_{(0)} = A P^{\mu\nu},$$

(5.1)
where A is some arbitrary function of ϑ and ν. Now comparing eqn. (2.8) with eqn. (3.14) we can write at ideal order,

\[E_o v^i_o v^j_o + A_o g^{ij} = g^{ij} P_o, \]

\[-E_o v^i_o \sqrt{1 + v^o_i v^o_i} - \frac{v^o_i}{\sqrt{1 + v^o_i v^o_i}} + \vartheta_o \nu_o Q_o v^i_o = 0, \]

\[E_o (1 + v^o_i v^o_i) + \frac{v^o_i v^i_o}{(1 + v^o_i v^o_i)} = \epsilon_o, \]

\[Q_o v^i_o = 0, \]

\[Q \sqrt{1 + v^o_i v^o_i} = q_o. \]

(5.2)

The identifications will then give

\[v_o = -e^\sigma, \quad v^i_o = 0, \quad A = P, \quad Q = q, \quad E = \epsilon. \]

(5.3)

Note that we have identified A, Q, E exactly, and not just at equilibrium, as we explained in § 2. Therefore, the energy-momentum tensor and charge current for ideal fluid can be written as,

\[T_{\mu\nu}^{(0)} = \epsilon u^\mu u^\nu + PP^{\mu\nu}, \quad J_\mu^{(0)} = q u^\mu. \]

(5.4)

5.2 Leading Order Fluid

One can divide the constitutive relations in hydrodynamics in two different sectors – parity even and parity odd. Ideal fluid belongs to the first sector (in $d > 2$). The first non trivial derivative corrections in parity-even sector appears at the first derivative order e.g. shear viscosity term in energy-momentum tensor. Whereas in the parity-odd sector, the leading terms appear at $(n - 1)$ derivative order for a fluid in $2n$ dimensions. All these terms and the corresponding transport coefficients (at leading order) have already been found in [6]. We shall discuss their result in our notation.

5.2.1 Parity-odd

Since there is no parity odd scalar and transverse symmetric traceless tensor at $(n - 1)$ derivative order (see table (5)), only charge current gets parity-odd corrections:

\[\tilde{Y}^\mu_{(n-1)} = \sum_{m=1}^{n-1} c_{m-1} \omega_m^{\mu}. \]

(5.5)

The combinatorial factor is introduced for convenience. It also ensures we do not surpass the limits of m. The fluid variables receives following corrections,

\[\vartheta_A = \vartheta_A^o + \tilde{\vartheta}^{(n-1)} \vartheta_A, \quad v^i = v^i_o + \tilde{\vartheta}^{(n-1)} v^i. \]

(5.6)
Further, there is no parity-odd gauge invariant scalar at equilibrium on \mathcal{M}_{2n-1}, implying that $\Delta^{(n-1)} W_{(C)}^{\mu \nu} = 0$. Now comparing eqn. (2.8) with eqn. (3.14) we will find the constraints at parity-odd leading derivative order:

$$\omega_m = -\frac{\vartheta^2 n}{\epsilon + P} \left[sC_{m-1} + qC_m + (n+1) \left(\frac{s}{m} + \frac{q\nu}{m+1} \right) C^{(2n)} \nu^m \right]. \tag{5.7}$$

And the corrections to fluid variables,

$$\Delta^{(n-1)} \vartheta = \Delta^{(n-1)} \nu = 0, \quad \Delta^{(n-1)} v^i = \sum_{m=1}^{n-1} C_{m-1} \alpha_m (m) \rho_{(m)}, \tag{5.8}$$

where,

$$\alpha_m = -\frac{\vartheta^2 n}{\epsilon + P} \left[C_{m-1} \nu - C_m + \frac{(n+1)}{m(m+1)} C^{(2n)} \nu^{m+1} \right]. \tag{5.9}$$

Here we present these relations for completion as well as to set up our notations and conventions. We would also like to make some interesting observations about these functions. One can verify that

$$s\alpha_m + q\alpha_{m+1} = \nu \omega_m - \omega_{m+1} \quad \forall \ m \in \{1, n-1\}, \tag{5.10}$$

and

$$P^{(1,0)} \omega_m = s \left(P^{(1,0)} \alpha_m \right)^{(0,1)} + q \left(P^{(1,0)} \alpha_{m+1} \right)^{(0,1)} \quad \forall \ m \in \{1, n-1\}. \tag{5.11}$$

Here pressure $P(\vartheta, \nu)$ is function of temperature ϑ and redefined chemical potential ν. For any function $Q(\vartheta, \nu)$ we define $Q^{(m,n)} = \frac{\partial^m Q}{\partial \vartheta^m \partial \nu^n}$. These will come handy in subleading order calculation.

5.2.2 Parity-even

The most generic current corrections at parity-even leading derivative order are (see table (1)):

$$\Upsilon^\mu_{(1)} = \sum_{\Lambda=1}^{3} \lambda_A V^\mu_A, \quad \Pi^{\mu \nu}_{(1)} = -2\eta \sigma^{\mu \nu} - \zeta P^{\mu \nu} \Theta, \tag{5.12}$$

while at equilibrium the only surviving contributions are:

$$\Upsilon^\mu_{o(1)} = \sum_{\Lambda=1}^{2} \lambda_o A V^\mu_{o \Lambda}, \quad \Pi^{\mu \nu}_{o(1)} = 0. \tag{5.13}$$

There are no gauge-invariant parity-even scalars at equilibrium that appear at this order. Therefore, $\Delta^{(n-1)} W_{(C)}^{\mu \nu} = 0$. Now comparing eqn. (2.8) with eqn. (3.14) we will find at parity-even leading derivative order that all corrections vanish

$$\pi^{ij}_{o(1)} = \xi_{o(1)} = \Delta^{(1)} \vartheta = \Delta^{(1)} \nu = \Delta^{(1)} v^i = 0. \tag{5.14}$$
We hence get the constraints:

\[\lambda_1 = \lambda_2 = 0. \]

(5.15)

So finally the form of currents is

\[
\Upsilon_\mu^{(1)} = \lambda_3 V_3^\mu, \quad \Pi_{\mu\nu}^{(1)} = -2\eta\sigma^{\mu\nu} - \zeta D^{\mu\nu}\Theta.
\]

(5.16)

We also get to know that no fluid quantities \((\vartheta, \nu, v^i)\) get order one parity-even correction.

5.3 Subleading Order Fluid

In this section, we shall describe the constraints on charged fluid in arbitrary even dimensions at subleading derivative order \((i.e. \ n \ order)\), in presence of \(U(1)\) anomaly. Where as, the subleading correction to parity-even sector comes at second order in derivative expansion. Some aspects of four dimensional fluids at sub-leading order have already been performed in \([7, 16]\).

5.3.1 Parity-odd

Sub-leading order parity-odd fluid dynamics in four spacetime dimensions has already been discussed in \([7]\). Here, we generalize the results in arbitrary even dimensions and find the constraints on the transport coefficients. We see that, much like in \([7]\), the higher dimensional transport coefficients depend on first order transport coefficients \(\eta, \zeta\).

From counting we can see that the \(n\) order parity-odd corrections (at eqb.) are given by (see table (5))

\[
\tilde{\Upsilon}_\mu^{(n, \Lambda, \Gamma)} = \sum_{m=1}^{n-1} \sum_{m=1}^{n-2} C_{m-1} \left(\tilde{\nu}_{01,m} \tilde{V}_\mu^{01,m} + \tilde{\nu}_{02,m} \tilde{V}_\mu^{02,m} \right),
\]

(5.17)

\[
\tilde{\Pi}_{\mu\nu}^{(n, \Lambda, \Gamma)} = \sum_{m=1}^{n-1} \sum_{m=1}^{n-2} C_{m-1} \left(\tilde{\tau}_{01,\Lambda m} \tilde{T}_\mu^{01,\Lambda m} + \tilde{\tau}_{02,\Lambda m} \tilde{T}_\mu^{02,\Lambda m} \right) + \sum_{m=1}^{n-1} C_{m-1} \tilde{\sigma}_{03,\Lambda m} \tilde{S}_\mu^{03,\Lambda m} + \sum_{m=1}^{n-1} C_{m-1} \tilde{\sigma}_{0\Lambda m} \tilde{S}_\mu^{0\Lambda m}.
\]

(5.18)

Sum over the relevant \(\Lambda, \Gamma\) indices is understood. We explicitly write the \(m\) index contraction to emphasize that the sum runs over different values for different terms. We do not state non-equilibrium contributions as they won’t be required in this computation.

From eqn. (2.8) and eqn. (3.14) we get,

\[
\Delta^{(n)} T = e^{2\sigma} \tilde{\Delta}^{(n)} (\epsilon) = e^{2\sigma} \frac{\delta W^{eqb}}{\delta \vartheta_o} (C),
\]

(5.19)
\[\Delta^{(n)} \tilde{J} = -e^\sigma \Delta^{(n)} q = -e^\sigma \frac{\delta W_{eqb}^{(C)}}{\delta \nu_o}. \]

(5.20)

Now,
\[\Delta^{(n)} \epsilon = \left(\frac{\partial \epsilon}{\partial \vartheta} \right)_o \Delta^{(n)} \vartheta + \left(\frac{\partial \epsilon}{\partial \nu} \right)_o \Delta^{(n)} \nu, \quad \Delta^{(n)} q = \left(\frac{\partial q}{\partial \vartheta} \right)_o \Delta^{(n)} \vartheta + \left(\frac{\partial q}{\partial \nu} \right)_o \Delta^{(n)} \nu. \]

(5.21)

Therefore from eqn. (5.19) and eqn. (5.20) we can write,
\[\Delta^{(n)} \vartheta \Lambda = \vartheta \cdot \epsilon_o E \cdot \frac{\delta \Delta^{(n)} W_{eqb}^{(C)}}{\delta \vartheta}, \]

(5.22)

where,
\[\epsilon_o + P_o \Delta^{(n)} v^i = \vartheta \cdot \nu_o \frac{\delta W_{eqb}^{(C)}}{\partial A_i} - e^{-\sigma} \frac{\delta W_{eqb}^{(C)}}{\partial a_i}, \]

(5.24)

which can be written as,
\[\Delta^{(n)} v^i = (-)^{\Lambda} \frac{\mu_o}{P_o^{(1,0)}} \frac{\delta \Delta^{(n)} W_{eqb}^{(C)}}{\delta a_i}, \]

(5.25)

where,
\[A = \partial P \cdot E_{\Gamma \Lambda} = \left(\vartheta \frac{\partial P}{\partial \epsilon \mid q}, \frac{\partial P}{\partial \epsilon \mid q} \right), \quad \mu = \{ \vartheta, \nu, \vartheta \}, \quad a_i = \{ \vartheta a_i, A_i \}. \]

(5.26)

One can check that \(E_{\Gamma \Lambda} \) is symmetric matrix and \(\partial \Lambda = \frac{\partial \epsilon}{\partial \vartheta} \). We would like to emphasize that these are purely notations, to make the calculations tractable and easy to digest. There is a summation on repeated \(\Lambda, \Gamma \) indices. Now comparing \(\tilde{T}^{ij} \) and \(\tilde{J}^i \) in eqn. (2.8) with eqn. (3.14) at parity-odd subleading derivative order, we have corrections to constitutive relations
\[\frac{1}{\vartheta} \tilde{\epsilon}_{o(n)}^{ij} = 2 \frac{\delta \Delta^{(n)} W_{eqb}^{(C)}}{\delta g_{ij}} - g^{ij} A_o \frac{\delta \Delta^{(n)} W_{eqb}^{(C)}}{\delta \vartheta} - \frac{1}{\vartheta} \Delta^{(n-1)} \tilde{\epsilon}_{o(1)}^{ij}, \]

(5.27)

where,
\[\tilde{P}^{(1,0)}_{o(n)} = \vartheta \cdot S_{o \Lambda} \frac{\delta \Delta^{(n)} W_{eqb}^{(C)}}{\delta a_i} - \tilde{P}^{(1,0)}_{o(n-1)} \tilde{\epsilon}_{o(1)}^{i}, \]

(5.27)

where,
\[S_{\Lambda} = \frac{\partial P}{\partial \mu_{\Lambda}} = \{ q, s \}. \]

(5.28)
\[\Delta \] swaps the value of \(\Lambda : 1 \leftrightarrow 2 \). The generating functional \(\tilde{\Delta}^{(n)} W^{eqb}_{(C)} \) contain all scalars \(\tilde{S}_{o\Lambda m} \). But one can check that \(\tilde{S}_{o1m} \) can be connected to \(\tilde{S}_{o2m} \) by a total derivative. So we take the partition function

\[
\tilde{\Delta}^{(n)} W^{eqb}_{(C)} = \int d^{2n-1}x \sqrt{g} \sum_{m=1}^{n} n^{-1} C_{m-1} \delta \tilde{C}_m \tilde{S}_{o2m}. \tag{5.29}
\]

We compute the variation of generating functional with respect to different fields and find that

\[
\frac{\delta \tilde{\Delta}^{(n)} W^{eqb}_{(C)}}{\delta g_{ij}} = 0, \\
\frac{\delta \tilde{\Delta}^{(n)} W^{eqb}_{(C)}}{\delta \vartheta_o} = -(-)^A \sum_{m=1}^{n} n^{-1} C_{m-1} \delta \tilde{S}_m^{(1,0)} \tilde{S}_{o\Lambda m}, \\
\frac{\delta \tilde{\Delta}^{(n)} W^{eqb}_{(C)}}{\delta a_{\Lambda i}} = (n-1) \sum_{m=1}^{n-1} n^{-2} C_{m-1} \delta \tilde{S}_m^{(1,0)} \tilde{V}_o^{i}, \tag{5.30}
\]

Using the form of lower order currents corrections from eqn. (5.16) we can write,

\[
\tilde{\Delta}^{(n-1)} \pi^{ij}_{(1)} = -2 \eta_o \tilde{\Delta}^{(n-1)} \sigma^{ij} - \zeta_o \vartheta_o \tilde{\Delta}^{(n-1)} \Theta \\
= -2 \eta_o \vartheta_o \sum_{m=1}^{n} n^{-1} C_{m-1} \partial_\Lambda \left(\frac{\alpha_{m+1}}{\vartheta_o} \right) \tilde{T}_{o1,\Lambda m} - \eta_o n^{-2} C_{m-1} (n-1) \alpha_{o(m+2-\Lambda)} \tilde{T}_{o2,\Lambda m} \\
- g^{ij} \vartheta_o \sum_{m=1}^{n} n^{-1} C_{m-1} \partial_\Lambda \left(\frac{\alpha_{m+1}}{\vartheta_o} \right) \tilde{S}_{o\Lambda m} \tag{5.31}
\]

\[
\tilde{\Delta}^{(n-1)} \varsigma^{i}_{(1)} = \lambda_{o3} \tilde{\Delta}^{(n-1)} \xi^{i} \\
= \lambda_{o3} n^{-2} C_{m-1} (n-1) \left[\alpha_{o(m+1)} + \nu_o \alpha_{o(m)} \right] \tilde{V}_{o1m}. \tag{5.32}
\]

One can now use the results, obtained in eqn. (5.30) and eqn. (5.32) in eqn. (5.27) and comparing these expressions with eqn. (5.18) to get the constraints,

\[
\tilde{\tau}_{1,\Lambda m} = 2 \eta \vartheta \partial_\Lambda \left(\frac{\alpha_{m+1}}{\vartheta} \right), \quad \tilde{\tau}_{2,\Lambda m} = \eta (n-1) \alpha_{o(m+2-\Lambda)}, \quad \tilde{\tau}_{3,\Lambda m} = 0, \tag{5.33}
\]

\[
\left(\frac{\tau_{1m}}{A_2} \right) - \frac{\varsigma_{1m}}{2 \eta} - \frac{\varsigma_{1,1m}}{2 \eta} = \left(\frac{\tau_{2m}}{A_1} \right) - \frac{\varsigma_{2m}}{2 \eta} - \frac{\varsigma_{2,2m}}{2 \eta} = P^{(1,0)} \tilde{\chi}_m, \tag{5.34}
\]

\[
\tilde{\nu}_{1m} = -\lambda_3 (n-1) (\alpha_{m+1} + \nu \alpha_{m}), \quad \tilde{\nu}_{2m} = -(n-1) (q \tilde{\chi}_{m+1} + s \tilde{\chi}_m). \tag{5.35}
\]

Hence everything is determined in terms of a known function \(\alpha_{m} \) and a new coefficient \(\tilde{\chi}_m \). Note that if we had used the 2n-assymetrisation condition eqn. (4.17) to get rid of one traceless symmetric tensor to start with; a consistent choice would have been to remove \(\tilde{T}^{\mu
u}_{3,\Lambda 1m} \) entirely and \(T^{\mu\nu}_{3,\Lambda 2m} \) for \(m = 1 \) (see table (5)). The coefficients of these terms are set to zero already by our constraints, which means the other leftover constraints are independent.
Finally we get the corrections to fluid variables using eqn. (5.25) as

\[\tilde{\Delta}^{(n)} \vartheta_\Lambda = n^{-1} C_{m-1} (-)^r \mathcal{E}_{o \Lambda r} \chi_{o(m)} \tilde{S}_{o, m}, \]

where \(\tilde{\Delta}^{(n)} \vartheta_\Lambda = \sum_{m=1}^{n-1} n^{-2} C_{m-1} \left(\chi_{o(m+1)} - \nu_o \chi_{o(m)} \right) \tilde{V}^{i}_{o2, m}. \) (5.36)

5.3.2 Parity-even

Next, we present the results for sub-leading order (two-derivative) parity even sector for the fluid. From counting we can verify that at the second order, parity-even corrections (at eqb.) are given by (see table (2)):

\[\Upsilon^\mu_{o(2)} = \sum_{\#} \nu_{o\#} \mathbf{V}^\mu_{o\#}, \quad \frac{1}{\vartheta_o} \Pi^\mu_{o(2)} = \sum_{\#} \tau_{o\#} T^\mu_{o\#} + P^\mu_{o\#} \sum_{\#} \sigma_{o\#} S_{o\#}. \] (5.37)

\# refers to sum over all relevant indices. Now comparing eqn. (2.8) with eqn. (3.14) at parity-even subleading derivative order, and performing a similar manipulation as last section, we have corrections to constitutive relations:

\[\frac{1}{\vartheta_o} \pi_{o(2)} = 2 \vartheta_o \nabla_{o1} \left(\frac{1}{\vartheta_o} A_{o1} P^{(1,0)}_{o} + \frac{1}{2} \vartheta_o \nabla_{o2} P^{(0,1)}_{o} - \frac{1}{3} P^{(0,0)}_{o} \right) \tilde{\Lambda}^{(1)} v^k. \] (5.38)

while the fluid variables get the corrections:

\[\tilde{\Delta}^{(2)} \vartheta_\Lambda = \vartheta_o \mathcal{E}_{o \Lambda r} \frac{\delta \tilde{\Delta}^{(2)} W_{eqb}^{(C)}}{\delta \vartheta_\Lambda} - \left(A_{o1} - \frac{1}{2} P^{(0,1)}_{o} \mathcal{E}_{o \Lambda 2} \right) \tilde{\Lambda}^{(1)} v^k \tilde{\Delta}^{(1)} v^j - \vartheta_o \mathcal{E}_{o \Lambda 2} \tilde{\Lambda}^{(1)} v^k \tilde{\Delta}^{(1)} v^j. \] (5.39)

Notice that the boxed terms only contribute for four dimensional fluids \((n = 2)\). Out of the scalars enlisted in table (2), \(S_{o1A} \) can be related to others by a total derivative. Hence \(\Delta^{(2)} W_{eqb}^{(C)} \) is given by:

\[\Delta^{(2)} W_{eqb}^{(C)} = -\frac{1}{2} \int \{ dx^i \} \sqrt{g} \left\{ S_{\hat{r} S_{o4}} + S_{f A r} S_{o3(Ar)} + S_{\delta A r} S_{o2(Ar)} \right\}. \quad (5.40) \]
Now we can find the variations of $\Delta^{(2)} W^{eqb}_{(C)}$,

$$\frac{\delta \Delta^{(2)} W^{eqb}_{(C)}}{\delta g_{ij}} = -\partial_{\Lambda} S_R T^{ij}_{o1, \Lambda} - (\partial_{\Lambda} \partial_{\Gamma} S_R - S_{\phi \Lambda \Gamma}) T^{ij}_{o2, \Lambda \Gamma} + 2 S_{f \Lambda \Gamma} T^{ij}_{o3, \Lambda \Gamma} + S_R T^{ij}_{o4}$$

$$+ g^{ij} \left[\left(1 - \frac{1}{d-1} \right) \partial_{\Lambda} S_R S_{o1, \Lambda} + \left(\partial_{\Lambda} \partial_{\Gamma} S_R - \frac{1}{d-1} \partial_{\Lambda} \partial_{\Gamma} S_R - \frac{1}{2} S_{\phi \Lambda \Gamma} + \frac{1}{d-1} S_{\phi \Lambda \Gamma} \right) S_{o2, \Lambda \Gamma} \right]$$

$$- \frac{1}{2} \left(1 - \frac{4}{d-1} \right) S_{f \Lambda \Gamma} S_{o3, \Lambda \Gamma} - \frac{1}{2} \left(1 - \frac{2}{d-1} \right) S_R S_{o4} \right], \quad (5.41)$$

$$\frac{\delta \Delta^{(2)} W^{eqb}_{(C)}}{\delta o_{\Sigma}} = S_{o1, \Lambda} + \left(\partial_{\Gamma} S_{\partial \Sigma} - \frac{1}{2} \partial_{\Sigma} S_{\partial \Lambda \Gamma} \right) S_{o2, \Lambda \Gamma} - \frac{1}{2} \partial_{\Sigma} S_{f \Lambda \Gamma} S_{o3, \Lambda \Gamma} - \frac{1}{2} \partial_{\Sigma} S_R S_{o4}, \quad (5.42)$$

$$\frac{\delta \Delta^{(2)} W^{eqb}_{(C)}}{\delta a_{\Lambda \Sigma}} = 2 S_{f \Lambda \Gamma} V^{ij}_{o1, \Lambda} - 2 \partial_{\Sigma} S_{f \Lambda \Gamma} V^{ij}_{o2, \Lambda \Gamma}. \quad (5.43)$$

Using the form of lower order corrections from eqn. (5.5) for $n = 2$ we can write,

$$\tilde{\Delta}^{(1)} = \omega o_{\Sigma 1} o_{\Sigma}$$

$$= (-)^{\Sigma} \omega o_{\Sigma} \left\{ \mu o_{\Sigma \Lambda} \Gamma V^{ij}_{o1, \Lambda} - \partial_{\Gamma} (\mu o_{\Sigma \Lambda} \Gamma) V^{ij}_{o2, \Lambda \Gamma} \right\}. \quad (5.44)$$

We can now put the variations of generating functional along with lower order corrections worked out above in eqn. (5.38). Using eqns. (5.10) and (5.11) and eliminating partition function coefficients S’s we will find following 7 constraints,

$$\tau_{1, \Lambda} + \partial_{\Lambda} \tau_{4} = 0, \quad (5.45)$$

$$\sigma_{o1, \Lambda} = \frac{d-2}{d-1} \partial_{\Lambda} \tau_{4} - \Lambda \Sigma \partial_{\Sigma} \partial_{\Lambda} \tau_{4} - \Lambda \Sigma \tau_{2, \Sigma \Lambda}, \quad (5.46)$$

$$2 \sigma_{2, \Lambda \Gamma} = \partial_{\Lambda} \partial_{\Gamma} \tau_{4} - \Lambda \Sigma \partial_{\Sigma} \partial_{\Lambda} \partial_{\Gamma} \tau_{4} - \frac{d-3}{d-1} \tau_{2, \Lambda \Gamma} - 2 \Lambda \Sigma \partial_{\Sigma} (\Lambda \tau_{2, \Gamma}) \Sigma + \Lambda \Sigma \partial_{\Sigma} \tau_{2, \Lambda \Gamma}, \quad (5.47)$$

$$4 \sigma_{3, \Lambda \Gamma} = -\frac{d-5}{d-1} \tau_{3, \Lambda \Gamma} + \Lambda \Sigma \partial_{\Sigma} \tau_{3, \Lambda \Gamma}, \quad (5.48)$$

$$2 \sigma_{4} = -\frac{d-3}{d-1} \tau_{4} + \Lambda \Sigma \partial_{\Sigma} \tau_{4}, \quad (5.49)$$

$$\nu_{1, \Lambda} = \frac{\partial}{\partial (1)} S_{R \tau_{3, \Lambda \Gamma}}, \quad (5.50)$$

$$\nu_{2, \Gamma \Lambda} = -\frac{\partial}{\partial (1)} S_{R \partial_{\Lambda} \tau_{3, \Gamma \Sigma}}. \quad (5.51)$$
Coincidently none of the constraints depend on \(n = 2 \) special contributions. On the other hand fluid variables corrections are given by eqn. (5.39):

\[
\Delta^{(2)} v_i = \left(-\frac{\mu_o}{P_o^{(1,0)}} \right) \left(\tau_{o3,\Lambda \Gamma} - \frac{P_o^{(1,0)}}{\alpha_{o\Lambda} \alpha_{o\Gamma}} \right) V_{o1,\Gamma} \right) - \partial_{\Sigma} \left(\tau_{o3,\Lambda \Gamma} - \frac{P_o^{(1,0)}}{\alpha_{o\Lambda} \alpha_{o\Gamma}} \right) \right) V_{o2,\Sigma} \]

(5.53)

This completes our calculation of subsubleading derivative order fluid.

6 Conclusions

In this paper we computed the energy momentum tensor and charge current for a fluid system in \(2n \) dimensions with \(U(1) \) anomaly up to subleading order in derivative expansion (for both parity odd and parity even sectors) from the equilibrium partition function of the fluid. We described a novel counting prescription to construct the fluid data. However, an important issue we encountered here is that it is non-trivial to find independent vectors and tensors at arbitrary derivative order. But we were still able to find the independent transport coefficients and distinct constitutive relations. We showed that the knowledge of independent scalars at the required derivative order is sufficient for this purpose. This is a powerful observation and it enables us to carry on the computation at \((n+1)\) derivative order, where, we could find the independent scalars. We observe that the parity odd transport coefficients which appear at \(n \) derivative order in constitutive relations are constrained and some of them depend on the first order transport coefficients like \(\eta, \zeta \) etc. It would be interesting to find the similar dependence in a holographic set up [17]. We plan to explore the holographic computation in future.

It is also interesting to find the fluid constitutive relations in presence of both \(U(1) \) and gravitational anomaly in arbitrary \(2n \) dimensions. But, since the gravitational anomaly appears at two higher derivative level compared to the \(U(1) \) anomaly, it requires to carry on our analysis to one higher derivative (sub-sub-leading) order, i.e. to \((n+1)\) derivative order. Fortunately, as mentioned earlier, even at this order, we could determine the independent scalars and hence, in principle, the computation is possible. We have carried a large part of it in appendix (B).
Acknowledgements

We are thankful for valuable discussions and suggestions from many of our colleagues and friends, from which this project has been benefited – Felix Haehl, Sukruti Bansal, Aranya Lahiri, Pratik Roy to name a few. A special thanks to Mukund Rangamani and R. Loganayagam for useful discussion regarding this project. We also thank S. Bhattacharyya for initial collaboration. AJ would also like to thank IISER Bhopal, IISER Pune and Durham University for their support, which made this project possible. NB would like to acknowledge DST for Ramanujan fellowship. Finally, we are indebted to the people of India for their support.

A Kaluza-Klein Decomposition

If a \((d+1)\)-dim spacetime \(M_{(d+1)}\) has a preferred time-like direction \(\omega^\mu\), it can be decomposed into \(S^1 \times M_{(d)}\), where \(S^1\) is the euclidean time circle. A \(k\)-rank tensor decompose in \(2^k\) parts in this scheme:

1. \(S\) does not decompose.
2. \(V^\mu\) decompose in \(\omega^\mu V_\mu\) and \(P^{\mu\nu}V_\nu\).
3. \(T^{\mu\nu}\) decompose in \(\omega^\mu \omega^\nu T_{\mu\nu}\), \(\omega^\mu P^{\alpha\nu} T_{\mu\nu}\), \(P^{\alpha\mu} \omega^\nu T_{\mu\nu}\) and \(P^{\alpha\mu} P^{\beta\nu} T_{\mu\nu}\),

and so on. Where \(P^{\alpha\nu} = G^{\mu\nu} - \frac{\omega^\mu \omega^\nu}{G_{\alpha\beta} \omega^\alpha \omega^\beta}\) is the projection operator. If we are studying theory at equilibrium, we already have a preferred direction along the Killing vector of the theory \(\omega^\mu = \partial_0\). In this case we know that a \((d+1)\)-vector \(V^\mu\) will yield a scalar:

\[
\omega^\mu V_\mu \Rightarrow V_0 := V, \quad (A.1)
\]

and a \((d)\)-vector:

\[
P^{\alpha\nu} V_\nu \Rightarrow V^i := V_i. \quad (A.2)
\]

Hence we see that a \(U(1)\) gauge field \(A^\mu\) will be decomposed in \(\{A_0(\vec{x}), A^i(\vec{x})\}\). Similarly a tensor \(T^{\mu\nu}\) decomposes in \(T_{00}, T^i_0, T^i_0, T^{ij}\). It is the similar way the metric \(G^{\mu\nu}\) on \(M_{(d+1)}\) decomposes, hence we define:

\[
G_{00} = -e^{2\sigma}, \quad G^i_0 = 0, \quad G^{ij} = g^{ij}, \quad (A.3)
\]

where we define \(g^{ij}\) as metric on \(M_{(d)}\). Now using the diffeomorphic invariance one can work out the full form of \(G^{\mu\nu}\)

\[
ds^2 = G_{\mu\nu} dx^\mu dx^\nu = -e^{2\sigma(\vec{x})} \left(dt + a_i(\vec{x}) dx^i \right)^2 + g_{ij}(\vec{x}) dx^i dx^j, \quad (A.4)
\]

\[
G_{\mu\nu} = \begin{bmatrix}
-e^{2\sigma} & -e^{2\sigma} a_j \\
-e^{2\sigma} a_i & (g_{ij} - a_i a_j e^{2\sigma})
\end{bmatrix}, \quad G^{\mu\nu} = \begin{bmatrix}
(-e^{-2\sigma} + a^2) -a^j \\
-a^i & g^{ij}
\end{bmatrix}, \quad (A.5)
\]
where time redefinition invariance requires that \(a^i \) is an independent gauge field, named as Kaluza-Klein gauge field. Using the euclidean time period \(\tilde{\beta} \) we can define the local equilibrium temperature of the theory as: \(\vartheta_o = 1/\beta_o = e^{-\sigma}/\tilde{\beta} \). Our higher dimensional metric is hence disintegrated in a scalar (Temperature), a gauge field and a lower dimensional metric.

We can now use the metric \(G^{\mu\nu} \) to raise/lower the components of vectors:

\[
V_i = g_{ij}V^j + a_iV^0, \quad V^0 = -e^{-2\sigma}V_0 - a_iV^i. \tag{A.6}
\]

which are not Kaluza-Klein gauge invariant. From here we read out the \((d)\)-covectors:

\[
V_i = (V_i - a_iV^0). \tag{A.7}
\]

Determinant of metric in two spaces can be related as:

\[
G = -\det G_{\mu\nu} = e^{2\sigma}\det g_{ij} = e^{2\sigma}g. \tag{A.8}
\]

We have the Levi-Civita symbol in lower spatial dimensions:

\[
\epsilon^{ij...} = e^\sigma \epsilon^0ij... = -e^{-\sigma} \epsilon^i0j..., \tag{A.9}
\]

where \(\epsilon^{0123...} = 1/\sqrt{G} \) and \(\epsilon^{123...} = 1/\sqrt{g} \).

It is useful to see how higher dimensional contractions behave in lower dimensions:

\[
A^\mu B_\mu = -e^{-2\sigma}AB + A^iB_i \tag{A.10}
\]

\[
e^{ij...} = e^{ij...} A_{ij...} = e^{-2\sigma} \epsilon^{ij...} \sum_a (-1)^a A_{j_1...j_{a-1}0j_{a}...j_{n-2}}. \tag{A.11}
\]

A.1 Derivatives of Metric

Once the metric is known we can reduce the derivatives of metric, i.e. the Christoffel Symbol and the Riemann Tensor. The Christoffel Symbol is defined by:

\[
\hat{\Gamma}^\lambda_{\mu\nu} = \frac{1}{2}G^{\lambda\alpha}(\partial_\mu G_{\alpha\nu} + \partial_\nu G_{\alpha\mu} - \partial_\alpha G_{\mu\nu}). \tag{A.12}
\]

Pretending it to be a tensor at the moment, if we define its indices to be raised and lowered with the metric \(G^{\mu\nu} \). We can reduce it for Kaluza-Klein form of the metric:

\[
\hat{\Gamma}^i_{000} = 0, \quad \hat{\Gamma}^i_{00} = -e^{2\sigma}\frac{\partial^i}{\partial\vartheta_o}, \quad \hat{\Gamma}^0_{00} = \hat{\Gamma}^0_{0i} = e^{2\sigma}\frac{\partial^0}{\partial\vartheta_o},
\]

\[
\hat{\Gamma}^{ij}_0 = \hat{\Gamma}^{ji}_0 = \frac{1}{2}e^{2\sigma}f^{ij}, \quad \hat{\Gamma}^0_{ij} = -\frac{1}{2}e^{2\sigma}g^{ia}g^{jb}(\partial_a a_b + \partial_b a_a), \quad \hat{\Gamma}^{kij} = g^{il}g^{jm}\Gamma_{lm}, \tag{A.13}
\]
where Γ^k_{ij} is Christoffel Symbol on $\mathcal{M}_{(d)}$, which is raised and lowered by g_{ij}. Also we define KK field tensor:

$$f^{ij} = \nabla^i a^j - \nabla^j a^i.$$ \hspace{1cm} (A.14)

$\hat{\Gamma}^0_{ij}$ is not KK gauge invariant, even though it has time index down and spatial index up, which is the manifestation of $\hat{\Gamma}$ not being a tensor.

Let's define the higher dimensional covariant derivative as $\hat{\nabla}$ and lower dimensional as ∇, whereas the usual derivative is given by ∂. We can check that:

$$\hat{\nabla}^i V^j = \nabla^i V^j + \frac{1}{2} f^{ijj} V,$$

$$\hat{\nabla}^i \Psi_0 = \nabla^i V^j + 2 e^{-2\sigma} f^{ijj} V_0^k,$$

$$\hat{\nabla}^i \Psi_0 = \nabla^i V^j + \frac{1}{2} e^{2\sigma} f^{ijj} V_0^k,$$

$$\hat{\nabla}^i \Psi_0 = e^{2\sigma} \nabla^i \Psi_0^j + \frac{1}{2} e^{2\sigma} f^{ijj} V_0^k,$$

$$\hat{\nabla}^i \Psi_0 = e^{-2\sigma} \nabla^i \Psi_0^j,$$ \hspace{1cm} (A.15)

similarly,

$$\hat{\nabla}^i \Psi^{jk} = \nabla^i \Psi^{jk} + \frac{1}{2} f^{ijj} \Psi_0^k + \frac{1}{2} f^{ijk} \Psi_0^j,$$

$$\hat{\nabla}^i \Psi_0^j = \nabla^i \Psi_0 + \frac{1}{2} f^{ijj} \Psi_0^k + \frac{1}{2} e^{2\sigma} f^{ijk} \Psi_0^j,$$

$$\hat{\nabla}^i \Psi_0^j = \nabla^i \Psi_0 + \frac{1}{2} e^{2\sigma} f^{ijk} \Psi_0^j + \frac{1}{2} e^{2\sigma} f^{ijk} \Psi_0^j,$$

$$\hat{\nabla}^i \Psi_0^j = e^{2\sigma} \nabla^i \Psi_0^j + \frac{1}{2} e^{2\sigma} f^{ijk} \Psi_0^j + e^{2\sigma} \Psi_0^j \nabla^i \Psi_0^j,$$

$$\hat{\nabla}^i \Psi_0^j = e^{-2\sigma} \Psi_0^j \nabla^i \Psi_0^j.$$ \hspace{1cm} (A.16)

Finally the Riemann Curvature Tensor is defined using an arbitrary vector X^μ as:

$$R_{\mu\nu\rho\sigma} X^\sigma = \frac{1}{2} (\hat{\nabla}_\mu \hat{\nabla}_\nu - \hat{\nabla}_\nu \hat{\nabla}_\mu) X_\rho,$$ \hspace{1cm} (A.17)

using which we can define:

$$R_{\mu\nu} = R_{\mu\nu} \alpha,$$

$$R = R \alpha.$$ \hspace{1cm} (A.18)
Now a straight away computation will yield:

$$R = R - 4 \frac{1}{\partial_o^2} \nabla_i \nabla^i \nabla_o^i \nabla_o^j + 2 \frac{1}{\partial_o} \nabla^i \nabla_i \nabla_o^j + \frac{1}{4} e^{2\sigma} f^{ij} f_{ij},$$

$$u^\mu u^\nu R_{\mu\nu} = e^{-2\sigma} R_{00} = 2 \frac{1}{\partial_o^2} \nabla_i \nabla^i \nabla_o^j - \frac{1}{\partial_o} \nabla_i \nabla^i \nabla_o^j + \frac{1}{4} e^{2\sigma} f^{ij} f_{ij},$$

$$u^\mu R^{ij}_\mu = e^{-\sigma} \tilde{R}^j_0 = e^{\sigma} \frac{1}{2} \left(\nabla_k f^{ki} + \frac{3}{\partial_o} f^{kj} \nabla_k \nabla_o \phi \right),$$

$$\tilde{R}^{ij} = R^{ij} - 2 \frac{1}{\partial_o^2} \nabla_i \nabla^i \nabla_o^j \nabla_o - \frac{1}{\partial_o} \nabla_i \nabla^i \nabla_o^j \nabla_o + \frac{1}{2} e^{2\sigma} f_{ij} f^{ja},$$

$$u^\alpha u^\beta R^{ij}_\alpha \beta = e^{-2\sigma} R^{ij}_0 = 2 \frac{1}{\partial_o^2} \nabla_i \nabla^j \nabla_o \nabla_o^j - \frac{1}{\partial_o} \nabla_i \nabla^j \nabla_o \nabla_o + \frac{1}{2} e^{2\sigma} f_{ij} f^{ja},$$

$$\tilde{R}^{ijk\alpha} u_{\alpha} = e^{-\sigma} \tilde{R}^{ijk}_0 = \frac{1}{2\partial_o} \nabla^k \tilde{f}^{ij}_1 - \frac{1}{\partial_o^2} \left(\tilde{f}^{ij}_1 \nabla_k \nabla_o \phi + \frac{1}{2} \tilde{f}^{ik}_1 \nabla_j \nabla_o \phi - \frac{1}{2} \tilde{f}^{ik}_1 \nabla^i \nabla_o \phi \right).$$ (A.19)

Here R^{ijkl} is defined to be lower dimensional Riemann tensor, and $R^{ij} = R^{ijk}_k$, $R = R^{i}$.

A.2 Derivatives of Gauge Field

Now let us have a look at derivatives of gauge field A^μ. Being a vector it decomposes as:

$$A = A_0 = -e^{2\sigma} (A^0 + a_j A^j), \quad A^i = A^i, \quad A_i = (A^j - a_j A)^i.$$ (A.20)

The gauge transformation $A_\mu \rightarrow A^\mu + \partial_\mu \Lambda$ translates to:

$$A \rightarrow A, \quad A_i \rightarrow A_i + \partial_i \Lambda.$$ (A.21)

Hence A^i is a gauge field on $\mathcal{M}_{(d)}$, while A is a scalar. Using $\tilde{\beta}$ (euclidean temperature) we define the local equilibrium potential $\nu_o = \tilde{\beta} A$. Higher dimensional field tensor however decomposes as:

$$F^{\mu\nu} = \nabla^\mu A^\nu - \nabla^\nu A^\mu \Rightarrow F^{ij} = F^{ij} + e^{\sigma} \partial_o \nu_o f^{ij}, \quad F^{i0}_0 = e^{\sigma} \partial_o \nabla^i \nu_o;$$ (A.22)

where,

$$F^{ij} = \nabla^i A^j - \nabla^j A^i.$$ (A.23)

Now we define the four vector electric field:

$$E^{\mu} = F^{\mu\nu} u_\nu \Rightarrow \mathcal{E}_0 = -e^\sigma \partial_o \nabla^i \nu_o, \quad \mathcal{E}^i = -e^{-2\sigma} e^{\sigma} \partial_o \nabla^i \nu_o + \nu_j (F^{ij} + e^{\sigma} \partial_o \nu_o f^{ij}).$$ (A.24)
B Subsubleading Order Fluid

In this appendix we extend the counting discussed in § 4 to subsubleading order fluid. We form a complete set of data at this order and classify the respective scalars, vectors and symmetric tensors. Later using the independent scalars at this order we construct an equilibrium partition function and compute its variation. We were however unable to process the constraints explicitly, as the calculations are analytically intractable.

B.1 Counting at Equilibrium

At subleading order \((D = n + 1, s = 3) \), index families required are: \(2D = 2n + 2 \) \((V_C^C) \), \(2D - 1 = 2n + 1 \) \((T_C) \), \(2D - 2 = 2n \) \((V_C') \), \(2D - 3 = 2n - 1 \) \((T_C) \) and \(2D - 4 = 2n - 2 \) \((V_C) \). We only compute terms surviving at equilibrium, as non-equilibrium pieces are not required till subsubleading order parity-even or subsubsubleading order parity-odd calculation.

2D Family: 2D family was already discussed in § 4.3.1, but this time since four indices are free from \(\epsilon \), two \((2, 4, 2)\) can appear with two antisymmetric indices of \(R^{ijkl} \) contracted. We will find 3 combinations \(- (19n - 20) \) vectors of type \(V_C^C \):

1. \((2, 4, 2) \oplus (n - 3)(2, 2, 1) \): 1 possibility \(- (n - 2) \) vectors

\[\langle m-1 \rangle_{ijkm} \langle m-2 \rangle \langle n-m-2 \rangle \langle n-m-1 \rangle \langle n-m \rangle \langle n-1 \rangle_{jkm}^{\langle m-1 \rangle_{ab}} \langle n-m \rangle_{m=1}^{n-2} \]

2. \((2, 4, 2) \oplus (n - 1)(2, 2, 1) \): 4 possibilities \(- (8n - 10) \) vectors

\[\langle n-m \rangle_{i} \langle n-m-1 \rangle_{jk} \langle n-1 \rangle_{m=1}^{n-2} \]

3. \((n + 1)(2, 2, 1) \): 3 possibilities \(- (10n - 8) \) vectors

2D-1 Family: 2D - 1 family was already discussed in § 4.3.2, but the time three indices are free from \(\epsilon \). So only one among \((2, 4, 2)\) and \((\frac{5}{3}, 5, 3)\) can appear, and not more that once. We will find 5 combinations of type \(T_C' \):

1. \((2, 4, 2) \oplus (n - 2)(2, 2, 1) \oplus (1, 1, 1) \): 3 possibilities \(- (8n - 12) \) symmetric traceless tensors

\[\langle n-m \rangle_{i} \langle n-1 \rangle_{jk} \langle n-2 \rangle_{m=1}^{n-2} \]
2. \((n)(2, 2, 1) \oplus (1, 1, 1): 5\) possibilities

(a) Contraction between \((2, 2, 1)\) and \((1, 1, 1) - (12n - 8)\) symmetric traceless tensors and \((4n)\) scalars

\[
\langle m \rangle^{i} (\mathcal{X}^{j})_{\Delta}^{k} \partial_{k} \partial_{\Gamma} \bigg|_{m = 1}^{n-1}, \langle m \rangle^{ij} \mathcal{X}_{\Delta}^{j} \mathcal{X}_{\Gamma k a} \partial^{a} \partial_{\Sigma} \bigg|_{m = 1}^{n-1}.
\]

Scalars: We can take trace and get \(4n\) scalars:

\[
\langle m \rangle^{i} \mathcal{X}^{ij}_{\Delta} \partial_{k} \partial_{\Gamma} \bigg|_{m = 1}^{n-1}.
\]

(b) Contraction between \((2, 2, 1)\) and \((2, 2, 1) - (14n - 18)\) traceless symmetric tensors and \((2n - 2)\) scalars

\[
\langle m \rangle^{ij} (\mathcal{X}^{j})_{2 a b k} \partial^{a} \partial_{\Delta} \bigg|_{m = 1}^{n-1}, \langle m \rangle^{ij} \mathcal{X}_{\Delta}^{j} \mathcal{X}_{\Gamma m a} \partial_{k} \partial_{\Sigma} \bigg|_{m = 1}^{n-1}, \langle m \rangle^{ijklm} \mathcal{X}_{\Delta}^{j} \mathcal{X}_{\Gamma k a} \partial_{m} \partial_{\Gamma} \bigg|_{m = 1}^{n-2}.
\]

Scalars: Taking trace we get \(2n - 2\) scalars:

\[
\langle m \rangle^{ij} \mathcal{X}^{j}_{\Delta} \mathcal{X}_{2 a k b} \partial_{i} \partial_{\Delta} \bigg|_{m = 1}^{n-1}.
\]

3. \((2, 4, 2) \oplus (n - 3)(2, 2, 1) \oplus (\begin{array}{c}2 \\ 2 \end{array}, 3, 2): 1\) possibility - \((2n - 4)\) traceless symmetric tensors

\[
\langle m \rangle^{ijklm} \mathcal{X}_{\Delta}^{j} \mathcal{X}_{\Gamma k a} \partial_{m} \partial_{\Gamma} \bigg|_{m = 1}^{n-2}.
\]

4. \((n - 1)(2, 2, 1) \oplus (\begin{array}{c}2 \\ 2 \end{array}, 3, 2): 7\) possibilities

(a) Contraction within \((\begin{array}{c}2 \\ 2 \\ 2 \end{array}, 3, 2) - (6n - 4)\) traceless symmetric tensors and \((2n)\) scalars

\[
\langle m \rangle^{ij} (\partial_{k} \mathcal{X}^{k})_{\Delta}^{j} \bigg|_{m = 1}^{n-1}, \langle m \rangle^{ijklm} \mathcal{X}_{\Delta}^{j} \partial^{a} \mathcal{X}_{\Gamma b k} \bigg|_{m = 1}^{n-1}.
\]

Scalars: Taking trace we get \(2n\) scalars:

\[
\langle m \rangle^{ij} \partial^{k} \mathcal{X}_{\Delta k i} \bigg|_{m = 1}^{n}.
\]

(b) Contraction between \((2, 2, 1)\) and \((\begin{array}{c}2 \\ 2 \\ 2 \end{array}, 3, 2) - (20n - 28)\) traceless symmetric tensors and \((4n - 4)\) scalars.

\[
\langle m \rangle^{ij} \mathcal{X}_{\Delta j k b} \partial^{b} \mathcal{X}^{a}_{\Gamma k} \bigg|_{m = 1}^{n-1}, \langle m \rangle^{ijklm} \mathcal{X}_{\Delta j k b} \partial_{m} \partial_{\Gamma} \mathcal{X}_{\Sigma b k} \bigg|_{m = 1}^{n-2}.
\]

Scalars: Taking trace we get \(4n - 4\) scalars:

\[
\langle m \rangle^{ij} \mathcal{X}_{\Delta j k b} \partial^{b} \mathcal{X}^{a}_{\Gamma j k} \bigg|_{m = 1}^{n-1}.
\]

(c) Contraction between \((2, 2, 1)\) and \((2, 2, 1) - (2n - 4)\) traceless symmetric tensors
5. \((n-2)(2,2,1)\oplus\left(\frac{5}{3}, 5, 3\right)\): 3 possibilities – (4n - 6) traceless symmetric tensors

\[\left\langle \frac{m-1}{n-m-2} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{
abla m} \right\rangle \bigg|_{m=1}^{n-2}. \]

2D-2 Family: 2D – 2 family was already discussed in § 4.3.2. Here again, one among (2,4,2) and \(\left(\frac{5}{3}, 5, 3\right)\) can appear, and not more that once. We will find 7 combinations – (39n – 46) vectors of type \(\mathbf{V}_e^C\):

1. \((2,4,2)\oplus(D-4)(2,2,1)\oplus2(1,1,1)\): No combinations possible

2. \((n-1)(2,2,1)\oplus2(1,1,1)\): 3 possibilities – (12n – 10) vectors

\[\left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{k} \right\rangle \bigg|_{m=1}^{n-1}, \left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a} \right\rangle \bigg|_{m=1}^{n-1}. \]

3. \((n-1)(2,2,1)\oplus(1,2,2)\): 2 possibilities – (6n – 4) vectors

\[\left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{k} \right\rangle \bigg|_{m=1}^{n-1}, \left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a} \right\rangle \bigg|_{m=1}^{n-1}. \]

4. \((n-2)(2,2,1)\oplus\left(\frac{3}{2}, 3, 2\right)\oplus(1,1,1)\): 3 possibilities – (16n – 24) vectors

\[\left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a k} \right\rangle \bigg|_{m=1}^{n-1}, \left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a k} \right\rangle \bigg|_{m=1}^{n-1}, \left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a k} \right\rangle \bigg|_{m=1}^{n-1}. \]

5. \((n-2)(2,2,1)\oplus\left(\frac{4}{3}, 4, 3\right)\): 1 possibility – (2n – 2) vectors

\[\left\langle \frac{m-1}{n-m-1} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{jk} \right\rangle \bigg|_{m=1}^{n-1}. \]

6. \((n-3)(2,2,1)\oplus\left(\frac{5}{3}, 5, 3\right)\oplus(1,1,1)\): No possibilities

7. \((n-3)(2,2,1)\oplus2\left(\frac{5}{3}, 3, 2\right)\): 1 possibility – (3n – 6) vectors

\[\left\langle \frac{m-1}{n-m-2} \langle ijk \partial_a \mathcal{K}^{ab} \rangle \mathcal{X}_{ab} \mathcal{X}_{a k} \right\rangle \bigg|_{m=1}^{n-2}. \]

2D-3 Family: We are interested in combinations in (2D – 3) family which survive at equilibrium. We generated them through a Mathematica code and found 22 of them. We won’t list all of them here, because it won’t be required. Due to properties of \(\mathbf{T}_{e}\), most of them will not contribute. We will be only left with 3 combinations – (7n – 9) symmetric traceless tensors:

1. \((n-2)(2,2,1)\oplus3(1,1,1)\): 1 possibility – (2n – 2) symmetric traceless tensors
| Term | Equilibrium |
|------|-------------|
| $l^\mu S_{1A}$ | $\langle m-1\rangle \nabla_k \nabla_k \theta_{\Lambda \alpha}$ |
| $\mu^m \nabla_{2\Lambda \Gamma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $l^\mu \nabla_{3\Lambda \Gamma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $l^\mu S_4$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{5\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{6\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{7\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{8\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{9\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{10\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{11\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{12\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{13\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{14\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{15\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{16\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{17\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |
| $V_{18\Lambda \Gamma \Sigma}$ | $\langle m-1\rangle \nabla_k \theta_{\Lambda \alpha} \nabla_k \theta_{\Gamma \alpha}$ |

2. $(n-2)(2,2,1) \oplus (1,1,1) \oplus (1,2,2)$: 1 possibility – $(4n-4)$ symmetric traceless tensors

3. $(n-3)(2,2,1) \oplus (3,2,2) \oplus (2,1,1)$: 1 possibility – $(4n-4)$ symmetric traceless tensors

2D-4 Family: There are 51 combinations in $(2D - 4)$ family which survive at equilibrium. However none of them will contribute due to properties of V_ϵ. All the subsleading parity-odd data surviving at equilibrium has been summarized in tables (6) to (8).
Table 7: Subleading Order Parity-odd Symmetric Traceless Tensors at Equilibrium

Name	Term	Equilibrium	
$\alpha_{1\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1A}$	$(m-1)^{i(\mu \nu) k} V^{k}_{\lambda A}$
$\alpha_{2\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{j(\mu \nu) k} \nabla_{\lambda} V^{k}_{\mu}$
$\alpha_{3\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{4\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{5\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{6\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{7\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{8\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{9\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{10\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{11\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{12\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{13\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{14\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{15\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{16\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{17\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{18\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{19\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{20\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{21\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{1\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$
$\alpha_{22\lambda m}^{\mu \nu}	n_{m=1}$	$i_{m}^{(\mu \nu)} V^{\mu}_{2\lambda}$	$(m-1)^{i(jk f_{1A} f_{2ab} V^{k}) \partial \lambda}$

Table 8: Subleading Order Parity-odd Scalars at Equilibrium

Name	Term	Equilibrium	
$\alpha_{1A m}^{\mu}	n_{m=1}$	V_{1A}^{μ}	$f_{1A} f_{j} V^{\mu}_{i A \lambda}$
$\alpha_{2A m}^{\mu}	n_{m=1}$	V_{2A}^{μ}	$f_{1A} f_{j} V^{\mu}_{i A \lambda}$
$\alpha_{3A m}^{\mu}	n_{m=1}$	V_{1A}^{μ}	$f_{1A} f_{j} V^{\mu}_{i A \lambda}$
$\alpha_{4A m}^{\mu}	n_{m=1}$	V_{2A}^{μ}	$f_{1A} f_{j} V^{\mu}_{i A \lambda}$

Independent Scalars

As we discussed in § 4.4, we only need to construct independent scalars which enter in equilibrium partition function. At subleading order one can find antisymmetrizations which
will determine S_{3Am} and $S_{4A\Gamma m}$ in terms of S_{1Am} and $S_{2A\Gamma m}$ respectively:

$$
\chi_1^{ij_1 \ldots i_{m-1}j_{m-1}} \chi_2^{i_mj_m} \ldots \chi_2^{i_{n-1}j_{n-1}} \chi_a^{i_nj_n} \mathcal{V}_b^{ij} \partial_{\Gamma}^{i_n} \bigg|_{m=1}^{n} = 0, \quad \text{eqb.)}
$$

$$
\chi_1^{ij_1 \ldots i_{m-1}j_{m-1}} \chi_2^{i_mj_m} \ldots \chi_2^{i_{n-1}j_{n-1}} \hat{\mathcal{V}}_b^{ij} \chi_a^{ba} \bigg|_{m=1}^{n} = 0. \quad \text{(B.2)}
$$

Each of S_{1Am} and $S_{2A\Gamma m}$, on the other hand is a unique scalar per choice of the parity-even tensor used to construct it by contracting with ϵ. Since antisymmetrization conditions cannot alter the tensor structure, these scalars are independent.

B.2 Attempt for Fluid Constraints

In the equilibrium partition function $\Delta^{(n+1)} W^{\text{eqb}}_{(C)}$ we can include the scalars: \tilde{S}_{01Am}, $\tilde{S}_{02A\Gamma m}$. But it can be checked that antisymmetric part of $\tilde{S}_{22[A\Gamma]m}$ can be related through a total derivative to \tilde{S}_{01Am}. So we have:

$$
\Delta^{(n+1)} W^{\text{eqb}}_{(C)} = \int \{ x^i \} \sqrt{g} n^{-2} C_{m-1} \left\{ Q_{1,Am} \tilde{S}_{01Am} + Q_{2,\Lambda \Gamma m} \tilde{S}_{02, (A\Gamma)m} \right\}. \quad \text{(B.3)}
$$

Sum over relevant indices is understood. Varying the partition function we will get:

$$
\frac{\delta \Delta^{(n+1)} W^{\text{eqb}}_{(C)}}{\delta g_{ij}} = n^{-2} C_{m-1} \left[Q_{1,Am} \left(\tilde{T}_{09,12\Lambda m} + \tilde{T}_{08,21\Lambda m} \right) + 2 Q_{2,\Lambda \Gamma m} \tilde{T}_{07,\Lambda \Gamma m} \right] - n^{-3} C_{m-1} (n-2) \left[Q_{1,Am} \tilde{T}_{08,21\Lambda m} - Q_{2,\Lambda \Gamma (m+2-\Sigma)} \tilde{T}_{09,12\Lambda \Gamma m} \right], \quad \text{(B.4)}
$$

$$
\frac{\delta \Delta^{(n+1)} W^{\text{eqb}}_{(C)}}{\delta \partial_{\alpha}^{\Omega \Lambda i}} = n^{-2} C_{m-1} \left[(-)^{\Omega} \partial_{\Gamma} Q_{1,Am} \tilde{\gamma}_{06,1\Gamma \Lambda m} - (-)^{\Omega} Q_{1,Am} \left(\tilde{\gamma}_{07,\Omega \Lambda m} + \frac{1}{2} \tilde{\gamma}_{010,\Lambda \Omega m} \right) \right] - 2 \Omega \partial_{\Gamma} Q_{2,\Omega \Lambda m} \tilde{\gamma}_{06,\Sigma \Lambda \Gamma m} + \partial_{\Gamma} Q_{2,\Omega \Lambda m} \left(4 \tilde{\gamma}_{05,\Gamma \Lambda m} + 2 \tilde{\gamma}_{07,\Lambda \Gamma m} + \tilde{\gamma}_{010,\Gamma \Omega m} \right)
+ 2 Q_{2,\Omega \Lambda m} \left(2 \tilde{\gamma}_{08,\Lambda m} + 2 \tilde{\gamma}_{011,\Lambda m} + 2 \tilde{\gamma}_{012,\Lambda m} \right) + (n-2) n^{-3} C_{m-1} \left[-2 \left(\partial_{\Gamma} Q_{2,\Omega \Lambda (m+2-\Sigma)} - \frac{1}{2} \partial_{\Gamma} Q_{2,\Lambda \Sigma (m+2-\Omega)} \right) \tilde{\gamma}_{15, (\Sigma \Lambda) \Gamma m} \right]
+ \left(Q_{2,\Omega \Lambda (m+2-\Sigma)} - \frac{1}{2} Q_{2,\Lambda \Sigma (m+2-\Omega)} \right) \left(\tilde{\gamma}_{16, (\Sigma \Lambda) m} - 2 \tilde{\gamma}_{17, (\Sigma \Lambda) m} \right). \quad \text{(B.5)}
$$

On the other hand from counting we can see that the third order parity-odd corrections (at eqhb.) are given by (see tables (6) to (8)):

$$
\tilde{\gamma}_{\alpha (n+1)}^{\mu} = \sum_{\#} \Phi_{\alpha\#} \tilde{\gamma}_{\alpha\#}^{\mu}, \quad \tilde{\Pi}_{\alpha (n+1)}^{\mu} = \sum_{\#} \Phi_{\alpha\#} \tilde{\Pi}_{\alpha\#}^{\mu} + \Phi_{\alpha\#}^{\mu} \sum_{\#} \gamma_{\alpha\#}, \quad \text{(B.7)}
$$
corresponds to all the relevant indices. Similar to subleading order, here also we will have special contributions for $n = 2$, as 3 leading order $(n - 1)$ parity odd corrections can combine to give a $3n - 3$ order parity-odd corrections, which will be equal to $n + 1$ only at $n = 2$ (Remember we are not considering $n = 1$ case). Now comparing eqn. (2.8) with eqn. (3.14) at parity-odd subleading derivative order, we have corrections to constitutive relations:

$$\frac{1}{\vartheta_o} \tilde{v}_i^{(n+1)} = \frac{\delta \tilde{\Delta}^{(n+1)} W^{eqb}}{\delta g_{ij}}^{(C)} - g^{ij} A_{o\Lambda} \frac{\delta \tilde{\Delta}^{(n+1)} W^{eqb}}{\delta \varrho_{\alpha\Lambda}}^{(C)} + g^{ij} A_{o\alpha} \partial_{\alpha} P_{o} \tilde{\Delta}^{(n-1)} v^{k} \Delta^{(2)} v_{k}$$

$$+ g^{ij} A_{o2} \tilde{\Delta}^{(n-1)} v_{i} \left(\bar{\varsigma}^{(1)}_{\alpha(2)} + \frac{\Delta^{(1)}}{\delta g_{i}} \right) - g^{ij} A_{o2} \Delta^{(2)} v_{k} \left(q_{o} \tilde{\Delta}^{(n-1)} v^{k} \varsigma - \varsigma^{(n-1)} \right)$$

$$- 2 P_{o}^{(1,0)} \Delta^{(n-1)} v^{(i} \Delta^{(2)} v^{j)} - \frac{1}{\vartheta_o} \left(\tilde{\Delta}^{(n-1)} \pi^{(2)} + \tilde{\Delta}^{(n)} \pi^{(1)} \right),$$

$$P_{o}^{(1,0)} \tilde{v}^{(n+1)} = \varrho_{o} S_{o\Lambda} \frac{\delta \tilde{\Delta}^{(n+1)} W^{eqb}}{\delta a_{i}}^{(C)} - \left[P_{o}^{(1,0)} \Delta^{(2)} q - \frac{1}{\vartheta_{o}^{2}} P_{o}^{(0,1)} \Delta^{(2)} (\epsilon + P) \right] \tilde{\Delta}^{(n-1)} v^{i}$$

$$+ q_{o} \tilde{\Delta}^{(n-1)} v_{j} \left(\frac{3}{2} P_{o}^{(1,0)} \Delta^{(1)} v^{i} \Delta^{(1)} \pi^{(2)} + \frac{1}{\vartheta_o} \pi^{(2)} \right)$$

$$- P_{o}^{(1,0)} \left(\Delta^{(2)} \tilde{v}_{i}^{(n-1)} + \tilde{\Delta}^{(n-1)} \varsigma^{(1)}_{(2)} + \tilde{\Delta}^{(n)} \varsigma^{(2)} \right),$$

while the fluid variables get corrections:

$$\tilde{\Delta}^{(n+1)} v^{i} = (-)^{n} \frac{\mu_{o\alpha}}{P_{o}^{(1,0)}} \frac{\delta \tilde{\Delta}^{(n+1)} W^{eqb}}{\delta a_{i}}^{(C)} - \frac{1}{P_{o}^{(1,0)}} \tilde{\Delta}^{(n-1)} v_{j} \left(\frac{1}{\vartheta_o} \Delta^{(2)} (\epsilon + P) g^{ij} + \frac{1}{\vartheta_{o}^{2}} \pi^{ij} \right)$$

$$- \frac{3}{2} \Delta^{(1)} v^{i} \Delta^{(1)} \pi^{(2)} v_{j},$$

$$\tilde{\Delta}^{(n+1)} \varrho_{\alpha} = \varrho_{o} E_{o\alpha\Gamma} \frac{\delta \tilde{\Delta}^{(n+1)} W^{eqb}}{\delta \vartheta_{o}}^{(C)} - 2 A_{o\alpha} \tilde{\Delta}^{(n-1)} v^{k} \Delta^{(2)} v_{k}$$

$$- E_{o\alpha2} \varrho_{o} \tilde{\Delta}^{(n-1)} v_{i} \left(\bar{\varsigma}^{(1)}_{\alpha(2)} + \frac{\Delta^{(1)}}{\delta g_{i}} \right) + E_{o\alpha2} \varrho_{o} \Delta^{(2)} v_{i} \left(q_{o} \tilde{\Delta}^{(n-1)} v^{i} \varsigma - \varsigma^{(n-1)} \right).$$

From here onwards in principle the way would be to solve eqn. (B.8) and find constraints for transport coefficients appearing in eqn. (B.7). To solve we would need to plug in the fluid variable corrections to all lower orders, along with corrections to lower order constitutive relations due to fluid variable corrections. The terms which were zero at equilibrium at lower orders will also start to contribute by gaining the fluid variable corrections. Leaving aside terms specifically for $n = 2$, still we would have to deal with a large mess in eqn. (B.8) which is analytically not quite tractable. So we leave these expressions at this point for reference.

Readers are advised that expressions eqns. (B.8) and (B.9) does not contain contributions from gravitational and mixed anomaly, and conserved Chern Simons form. Recall that while
we set up relations eqn. (3.14), we only used the form of anomalous currents eqn. (2.2) and conserved Chern-Simons form eqn. (3.9) to subleading derivative order. At subsubleading order, they will receive further gravitational corrections.

Bibliography

[1] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, JHEP 1101, 094 (2011) [arXiv:0809.2596 [hep-th]].
[2] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, JHEP 0901, 055 (2009) [arXiv:0809.2488 [hep-th]].
[3] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009) [arXiv:0906.5044 [hep-th]].
[4] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, JHEP 1209, 046 (2012) [arXiv:1203.3544 [hep-th]].
[5] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Phys. Rev. Lett. 109, 101601 (2012) [arXiv:1203.3556 [hep-th]].
[6] N. Banerjee, S. Dutta, S. Jain, R. Loganayagam and T. Sharma, JHEP 1303, 048 (2013) [arXiv:1206.6499 [hep-th]].
[7] S. Bhattacharyya, J. R. David and S. Thakur, JHEP 1401 (2014) 010 [arXiv:1305.0340 [hep-th]].
[8] K. Jensen, R. Loganayagam and A. Yarom, JHEP 1405, 134 (2014) [arXiv:1310.7024 [hep-th]].
[9] L. D. Landau & E. M. Lifshitz. 1997. Pergamon. Fluid mechanics Press.
[10] N. Banerjee, S. Dutta, A. Jain and D. Roychowdhury, JHEP 1408, 037 (2014) [arXiv:1405.5687 [hep-th]].
[11] K. Jensen, R. Loganayagam and A. Yarom, JHEP 1302, 088 (2013) [arXiv:1207.5824 [hep-th]].
[12] S. Bhattacharyya, JHEP 1408, 165 (2014) [arXiv:1312.0220 [hep-th]].
[13] S. Bhattacharyya, JHEP 1407, 139 (2014) [arXiv:1403.7639 [hep-th]].
[14] R. Loganayagam, arXiv:1106.0277 [hep-th].
[15] R. Loganayagam and P. Surowka, JHEP 1204, 097 (2012) [arXiv:1201.2812 [hep-th]].
[16] E. Megias and M. Valle, JHEP 1411, 005 (2014) [arXiv:1408.0165 [hep-th]].
[17] N. Banerjee and S. Dutta, JHEP 1008, 041 (2010) [arXiv:1005.2367 [hep-th]].