Adaptive multi-variable step size P&O MPPT for high tracking-speed and accuracy

M H Osman and A Refaat*
Department Institute of Energy and Transport Systems, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia

* E-mail: refaat@spbstu.ru

Abstract. Improvement of the output power under different weather conditions is one of the major concerns for photovoltaic (PV) system design. The perturbation and observation (P&O) maximum power point tracking (MPPT) algorithm is the most commonly used technique in practice due to its simplicity and ease of implementation in low-cost hardware. However, the conventional fixed-step P&O tracking method uses a fixed iteration step size based on the requirements of the steady-state accuracy and the speed of the algorithm. In addition, it is very hard to specify the variable step-size scaling factor (M) under fast ripped change of insolation. This paper presents an adaptive multi-variable step-size to solve the trade-off between the speed of the algorithm and efficiency at steady-state. Computer simulation is carried out on MATLAB/Simulink to validate the performance of the proposed algorithm. By using multi-variable step-size algorithm, MPPT response speed and accuracy can be significantly enhanced under rapid change of irradiance compared to one scaling variable step-size P&O method.

1. Introduction
Nowadays the worldwide installed photovoltaic (PV) power capacity shows a nearly exponential increase and are expected to continue this trend in the future [1]-[3]. The actual power yield from PV systems is highly dependent on the environmental conditions such as solar irradiance and temperature. Therefore, it is difficult to achieve the maximum power under different environmental condition for a practical photovoltaic (PV) system without utilizing maximum power point tracking (MPPT) techniques [4]-[5]. So far, many MPPT methods have been created and developed to increase the energy efficiency of the PV system.

MPPT techniques such as fractional short circuit current [6], fractional open circuit voltage [7], perturb and observe (P&O) [8]-[10], incremental conductance (IC) [11], temperature and irradiance based method (T&I) [12], fuzzy logic [13], ripple correlation control (RCC) [14], sliding mode [15] control techniques have been advanced to harvest the maximum power from the PV array.

Among all various types of MPPT techniques, perturbation and observation (P&O) method is widely used due to its simplicity, ease of use and low cost [9]. Unfortunately, the fixed step P&O tracking algorithm suffers from a tradeoff between tracking speed and accuracy. Thereby, several techniques and developed algorithms have been created to mitigate that problem. In reference [8], the authors presented IP&O method based on an adaptive algorithm which adjusted the perturbation step and the width of the hysteresis band to improve the performance of classic P&O method. Although the
method improved the performance of tracker under various solar irradiation conditions, its tracking speed was lower than the fixed-step algorithm.

A combined two-technique MPPT control scheme was suggested in [9]. The aim of the scheme was to improve the MPP tracking efficiency of the classical P&O method by using a combination of P&O and constant voltage (CV) methods. The time delay in switching between one method to the other was the main challenge of the proposed scheme, whereas it causes an additional power loss. Two step sizes in [10] were used in MPPT algorithm, one of them was used to quickly converge of MPP and the other used for eliminating the oscillations around MPP. However, additional high-resolution sensors were required to reduce power losses under very low solar irradiance which increase the cost of implementation.

This paper aims at creating a new adaptive multi-variable step P&O MPPT technique to increase the steady-state energy efficiency as well as enhance the performance of tracking speed and accuracy.

2. Conventional fixed-step P&O algorithm
The basic operation of P&O MPPT algorithm can be described as follows [8], [9]:

1) The algorithm scans the P-V curve of the PV module to look for the MPP by changing the operating point which is known as perturbation step.
2) The observation step [i.e. the change in power (ΔP)] is measured.
3) The direction of perturbation depends on the value of \(\frac{\Delta P}{\Delta V} \):
 a. If it is greater than zero, the perturbation of the voltage should be increased.
 b. If it is lower than zero, the perturbation of voltage should be decreased (i.e. reverse the direction of search).
4) The algorithm continues the search for the MPP so as to find an operating point such that \(\frac{\Delta P}{\Delta V} \) is very close to zero in any direction.
5) The P&O keeps perturbing the system to detect any change in the MPP (caused by a change in the climate), which triggers a new scan. This can be represented by the following equations:

\[
\begin{align*}
\frac{\Delta P}{\Delta V} &= 0 \text{ at MPP} \\
\frac{\Delta P}{\Delta V} &> 0 \text{ at left of MPP} \\
\frac{\Delta P}{\Delta V} &< 0 \text{ at Right of MPP}
\end{align*}
\]

\(V(K) = V(K-1) \pm M \) \hspace{1cm} (1)

Where, k and k-1 are the present and previous instants and M is constant search step.

3. Concept of multi-variable step P&O algorithm
In the fixed-step algorithm, the operating point at steady-state oscillates around the MPP resulting in the waste of some amount of the available energy. By reducing the step size, these oscillations can be minimized, but it takes a relatively long time to reach the MPP which also leads to energy loss. Modification has been proposed to reduce this problem by introducing variable search steps [9]. The modified variable step can be described as in (3).

\[
V(k+1) = V(k) \pm M (P(k) - P(k-1))
\]

\(V(K) = V(K-1) \pm M \) \hspace{1cm} (3)

Here parameter \(M \), is a constant scaling factor used to tune the perturbation step sizes in the design, which is proportional to (ΔP) term. However, choosing the value of scaling factor is difficult
and remains unsolved. Figure 1 illustrates the PV module characteristics under different irradiation levels with various loci of the MPPs.

![Figure 1. The PV characteristics under different irradiation levels.](image)

When radiation changes from G_1 to G_2 (W/m2), the instantaneous power decreased by ΔP and the system operate far from the MPP. Therefore, the instantaneous voltage should be shifted by ΔV to obtain the new maximum power point. To adopt an accurate value of scaling factor, several values of ΔP and the corresponding values of ΔV are recorded and then plotted in Figure 2. As can been seen, the relationship between the voltage difference and power difference is nonlinear. Therefore, it is hard to choose one scaling factor that appropriates for all changes in radiation levels. Consequently, multiple scaling factors should be used to increase the speed response of the MPPT under sudden change of insolation.

![Figure 2. Relationship between difference voltage and power.](image)

In this work, three scaling factors (i.e. M_1, M_2, and M_3) are specified to guarantee high speed and accuracy of the algorithm. The scaling factors can be determined by the slope of three tangents as in (4).

$$M_i = \frac{\Delta V_i}{\Delta P_i} \quad &i = 1, 2, 3. \quad (4)$$

The three scaling factors produce two threshold power, known as P_{thr1} and P_{thr2}. For a small change in radiation (i.e. ΔG is small), a small change in power (ΔP) occurs, which requires a small step (ΔV). Thus, the scaling factor (M_3) is suitable in this case until the threshold power P_{thr2}. Higher change in radiation produces a higher change in power. When the change of power greater than P_{thr2} and smaller
than P_{thr1}, the factor M_2 is appropriate for this condition. If the change of power is very large greater than P_{thr1}, then the scaling factor M_1 is utilized in this situation, where a large step ΔV is required for a high-speed response. The flow-chart of multi-variable P&O (MV-PO) MPPT algorithm is as shown in Figure 3.

Figure 3. Flow-chart of multi-variable P&O MPPT algorithm.

4. Simulation results

Computer simulation is carried out on Matlab/Simulink software in order to verify the feasibility and effectiveness of the proposed algorithm. For the propose of simulation, a commercial PV module (i.e. SunPower SPR-305) is chosen to meet the electrical demand of the load. The PV module is represented by one diode model as described in [16]. A DC-DC boost converter is utilized as a power conditioning unit between the PV module and the load. The schematic diagram of the PV system with MPP tracker is depicted in Figure 4. For all simulations, the temperature is assumed constant at 25 °C.

Figure 4. Schematic diagram of PV system with MPP tracker.
A dynamic simulation with solar irradiance profile varies in steps between levels 1000 W/m², 800 W/m², 200 W/m² and 1000 W/m² as displayed in Figure 5 is done. It should be noted that the three steps in the profile represent a small, moderate, and large changes in solar radiation, respectively. The corresponding output power results for the proposed algorithm is as shown in Figure 6. As can be seen, the MV-PO algorithm succeeds to capture the maximum output power under different irradiance levels. On the other hand, the tracker fails to track the maximum output power, when only one scaling factor is considered as shown in Figures 7, 8 and 9. As expected from Figure 3, when the algorithm uses one scaling factor M1, M2, or M3, the tracker has a successful operation only for large, moderate, or small changes in solar radiation, respectively.

5. Conclusions
In this paper, a multi-variable step-based P&O method is proposed to specify an accurate value of the scaling factor (M). Determination of the scaling factor is discussed in details, and a quite simple realization rule is presented. The MV-PO method can improve not only the steady-state performance of the PV system but also the dynamic response. Furthermore, the proposed algorithm has a wider operating range than the previous variable step-size MPPT algorithms. Subsequently, MV-PO algorithm is more suitable for practical operating conditions.
References

[1] Refaat A, Elgamal M and Korovkin N V 2019 A novel photovoltaic current collector optimizer to extract maximum power during partial shading or mismatch conditions IEEE Conf. of Russ. Young Res. in Electrical and Electronic Eng. (EIConRus) 403–8.

[2] Belyaev N A, Korovkin N V, Frolov O V and Chudnyi V S 2013 Methods for optimization of power system operation modes Russ. Electr. Eng. 84(2) 74–80.

[3] Refaat A and Korovkin N 2018 A new photovoltaic current collector optimizer to enhance the performance of centralized inverter topologies Int. Scie. Conf. Energy Man. of Municipal Trans. Facilities and Transport (EMMFT’2018) Springer (preprinted).

[4] Belyaev N A, Korovkin N V, Frolov O V and Chudnyi V S 2013 Enhancing efficiency and performance of electric power systems by using smart grid technology Int. Symp. on Electromagnetic Compatibility (1) 846–49.

[5] Elgamal M, Korovkin N V, Refaat A 2018 A new photovoltaic current collector optimizer to enhance the performance of centralized inverter topologies Int. Scie. Conf. Energy Man. of Municipal Trans. Facilities and Transport (EMMFT’2018) Springer (preprinted).

[6] Hsu T W, Wu H H, Tsai D L and Wei C L 2019 Photovoltaic energy harvester with fractional open-circuit voltage based maximum power point tracking circuit IEEE Trans. on Circuits and Systems II 66(2) 257-61.

[7] Sher H A, Murtaza A F, Noman A, Addoweesh K E and Chiaberge M 2015 An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications J. of renewable and sustainable energy 7(1) 013114.

[8] Jung Y, So J, Yu G and Choi J 2005 Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems. In Conf. Record of the Thirty-first IEEE Photov. Specialists Conf. 1788-91.

[9] Dorofte C, Borup U and Blaabjerg F 2005 A combined two-method MPPT control scheme for grid-connected photovoltaic systems. In 2005 European Conf. on Power Electronics and Applications .

[10] Yang Y and Blaabjerg F 2012 A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control. In 6th IET Int. Conf. on Power Electronics, Machines and Drives.

[11] Refaat A, Kalas A, Daoud A and Bendary F 2013 A control methodology of three phase grid connected PV system Power Sys. Conf. (Clemson University USA).

[12] Mohamed M A and Osman M H 2015 An Accurate Algorithm for MPP Estimation of PV Generator J. of Multidisciplinary Eng. Science and Technology 2 1179-84.

[13] Yilmaz U, Kircay A and Borekci S 2018 PV system fuzzy logic MPPT method and PI control as a charge controller Renewable and Sustainable Energy Reviews 81 994-1001.

[14] Kamal T, Karabacak M, Hassan S Z, Li H and Fernández-Ramírez L M 2019 A robust online adaptive B-spline MPPT control of three-phase grid-coupled photovoltaic systems under real partial shading condition. IEEE Transactions on Energy Conversion 34(1) 202-10.

[15] Valenciaga F and Inthamoussou F A 2018 A novel PV-MPPT method based on a second order sliding mode gradient observer Energy Conversion and Manage. 422-30.

[16] El-sayed M I, Mohamed M A and Osman M H 2016 A Novel Parameter Estimation of a PV Model IEEE 43rd Photov. Special. Conf. (PVSC) 3027–32.