Synergistic Activation of G Protein–gated Inwardly Rectifying Potassium Channels by the β_γ Subunits of G Proteins and Na$^+$ and Mg$^{2+}$ Ions

Jérôme Petit-Jacques, Jin Liang Sui, and Diomedes E. Logothetis

From the Department of Physiology and Biophysics, Mount Sinai School of Medicine of the New York University, New York, New York 10029.

Abstract Native and recombinant G protein–gated inwardly rectifying potassium (GIRK) channels are directly activated by the β_γ subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP$_2$) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP$_2$ or application of exogenous PIP$_2$ increases the mean open time of GIRK channels and sensitizes them to gating by internal Na$^+$ ions. In the present study, we show that the activity of ATP- or PIP$_2$-modified channels could also be stimulated by intracellular Mg$^{2+}$ ions. In addition, Mg$^{2+}$ ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na$^+$ and Mg$^{2+}$ ions exert their gating effects independently of each other or of the activation by the $G_{\beta\gamma}$ subunits. At high levels of PIP$_2$, synergistic interactions among Na$^+$, Mg$^{2+}$, and $G_{\beta\gamma}$ subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K$^+$ channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.

Keywords: G protein–gated inwardly rectifying potassium channels • phosphatidylinositol-bis-phosphate • $G_{\beta\gamma}$ gating • Mg$^{2+}$ gating • Na$^+$ gating

Introduction

In atrial tissue, acetylcholine released by the vagus nerve binds to muscarinic type 2 receptors, activates K_{ACh} channels via pertussis toxin–sensitive G proteins, and slows the heart rate. Upon activation, the heterotrimeric G protein dissociates, allowing the $G_{\beta\gamma}$ subunits to directly activate the K_{ACh} channel (Logothetis et al., 1987; Krapivinsky et al., 1995b). K_{ACh} has been shown to be composed of two types of G protein–gated inwardly rectifying potassium channels (GIRK1 and GIRK4), associated in a heterotetrameric complex (Krapivinsky et al., 1995a; Silverman et al., 1996; Corey et al., 1998). Recombinant (GIRK) channels expressed in oocytes are also directly activated by G protein β_γ subunits (Reuveny et al., 1994). In addition, GIRK channels appear to be activated independently of Na$^+$ ions. In the absence of agonist, ATP hydrolysis leads to an increase in the mean open time and sensitizes channels to gating by Na$^+$ ions (Sui et al., 1996). Recently, it was shown that the ATP modification of GIRK channels is mediated via phosphatidylinositol phosphates such as phosphatidylinositol-bis-phosphate (PIP$_2$) (Huang et al., 1998; Sui et al., 1998). PIP$_2$ has been implicated in the regulation of the sodium–calcium exchanger (Hilgemann and Ball, 1996), the K_{ATP} channel (Hilgemann and Ball, 1996; Fan and Makielski, 1997; Baukrowitz et al., 1998; Shyng and Nichols, 1998), the inwardly rectifying ROMK1 and IRK1 channels (Huang et al., 1998) and other Na$^+$-gated nonselective cation channels (Zhaianazarov and Ache, 1999). Moreover, PIP$_2$ appears to be essential for GIRK channel activation by the G protein β_γ subunits (Sui et al., 1998).

Here, using both native and recombinant GIRK channels, we show that Na$^+$ as well as Mg$^{2+}$ ions gate the ATP- or PIP$_2$-modified channels. While the two ions seem to exert their effects at distinct sites on the channel protein, they showed synergistic effects on gating. In the presence of exogenous PIP$_2$, $G_{\beta\gamma}$ and Na$^+$ and Mg$^{2+}$ ions showed great synergism in activating the channel. However, in the absence of exogenous PIP$_2$, preactivation by G protein β_γ subunits sensitized the channel to gating by Na$^+$ but not Mg$^{2+}$ ions. These data suggest that the synergism between Mg$^{2+}$ and $G_{\beta\gamma}$ subunits in gating GIRK channels shows a much greater dependence on PIP$_2$ levels than the synergism between Na$^+$ and $G_{\beta\gamma}$. The synergism among ions and $G_{\beta\gamma}$ proteins in the gating of GIRK channels implies that variations of the concentrations of these molecules in the local environment of these channels could play an important role in the “fine tuning” of their activity.
Expression of Recombinant Channels in Xenopus Oocytes

Recombinant channel subunits (GIRK1, GenBank accession No. U39196; GIRK4, GenBank accession No. U39195) were expressed in Xenopus oocytes as described previously (Chan et al., 1996). Channel subunit coexpression was accomplished by coinjection of equal amounts of each cRNA (~4 ng). The human muscarinic receptor type 2 was coexpressed with the channel subunits (~1.5 ng injected per oocyte). The β-adrenergic receptor kinase (pARK)–PH construct, altered to incorporate the 15 NH2-terminal residues of Src for membrane targeting, was generously provided by Dr. E. Reuveny (Weizmann Institute of Science, Rehovot, Israel). cRNA concentrations were estimated from two successive dilutions that were electrophoresed on formaldehyde gels in parallel and compared with known concentrations of a RNA marker (GIBCO BRL). Oocytes were isolated and microinjected as described previously (Logothetis et al., 1992). The oocytes were maintained at 18°C, and electrophysiological recordings were performed 2–6 d after injection at room temperature (20–22°C).

Preparation of Chicken Atrial Myocytes

The procedure used for isolating cardiac myocytes from chicken embryos has been described previously (Sui et al., 1996). In brief, atrial tissue was selected using chicken embryos from eggs incubated 14–18 d. Atrial tissue was incubated for 20–30 min at 37°C in 5 ml of Mg2+- and Ca2+-free PBS supplemented with 1% trypsin/EDTA solution (10×, GIBCO BRL). Isolated myocytes were collected by triturating the digested tissue in 5 ml of trypsin-free solution and stored in a high potassium (K+) solution (Iserberg and Klöckner, 1982) at 4°C for up to 36 h. The cells were allowed to settle on poly-lysine–coated coverslips in the recording chamber before experiments.

Reagents

General chemical reagents, including GTP and ATP, were purchased from Sigma Chemical Co. PIP2 (Boehringer Mannheim) was sonicated on ice for 30 min before application. Purified recombinant G protein subunits dimer β2γγ was kindly provided by Dr. J. Garrison (University of Virginia, Charlottesville, VA). The stock of β2γγ (0.86 μg/μl) was dissolved in 20 mM HEPES, 1 mM EDTA, 200 mM NaCl, 0.6% CHAPS, 50 mM MgCl2, 10 mM NaF, 30 μM AICl3, 3 mM dithiothreitol (DTT), 3 μM GDP, pH 8.0. The final concentration was 20 nM in a solution containing 0.012% CHAPS, and 20 μM DTT. QEHA peptide (Chen et al., 1995) was kindly provided by Dr. R. Iyengar (Mount Sinai School of Medicine) and was used at a final concentration of 50 μM.

Single-Channel Recording and Analysis

Single-channel activity was recorded in the cell-attached or inside-out patch configurations (Hamill et al., 1981) using an Axopatch 200B amplifier (Axon Instruments). All pipettes used in the experiments were pulled using the WPI-K borosilicate glass (World Precision Instruments) and gave resistances of 2–8 MΩ. All experiments were conducted at room temperature (20–22°C). Single-channel recordings were performed at a membrane potential of –60 mV with acetylcholine (ACh, 5 μM) in the pipette, unless otherwise indicated. Single-channel currents were filtered at 1–2 kHz, sampled at 5–10 MHz, and stored directly into the computer’s hard disk through the DIGIDATA 1200 interface (Axon Instruments). PCLAMP (v. 6.03; Axon Instruments) was used for data acquisition. To remove the vitelline membrane, Xenopus oocytes were placed in a hypotonic solution (Stühmer, 1992) for 5 min. Shrunken oocytes were transferred into a V-shaped recording chamber and the vitelline membrane was partially removed, exposing just enough plasma membrane for access with a patch pipette (Sui et al., 1996). This procedure increased the success rate of forming gigaseals.

The pipette solution contained 96 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES, pH 7.35. The bath solution contained 96 mM KCl, 5 mM EGTA, and 10 mM HEPES, pH 7.35. When high concentrations of Mg2+ ions (>5 mM) were used in the bath solution, the KCl concentration was reduced accordingly to maintain osmolarity. Gadolinium chloride at 100 μM was routinely added to the pipette solution to suppress native stretch channel activity in the oocyte membrane. For chick atrial cells, the experimental solutions were the same as those used with oocyte recordings, except that the KCl concentration was 140 mM without gadolinium chloride.

Free Mg2+ and ATP concentrations were estimated as described previously (Vivaudou et al., 1991). Single-channel records were analyzed using PCLAMP software, complemented with our own analysis routine, as described previously (Sui et al., 1996). Parameters used for single-channel analysis include activity of all channels in the patch (or the total open probability, PF), the total frequency of opening (NFo), and the mean open time (MTo), and averages over 5-s bins are displayed.

In experiments shown in Fig. 7, where exogenous PIP2 was applied throughout the experiment (i.e., Fig. 7. A and C), occasional applications of the same ion as a function of time in the experiment were used as control to ascertain that the synergistic effects described were not due to a time-dependent accumulation of PIP2 in the membrane patch. Similar precautions were taken in the experiments shown in Fig. 4. Experiments used to generate the data shown in these two figures were never longer than 14 min (usually 10–13 min). Na+ and/or Mg2+ ions were applied for 30 s.

RESULTS

MgATP/Na Activation of the KACCH Channel Can Proceed Independently of the Involvement of G Proteins

It has been shown previously that Na+ ions can stimulate KACCH activity in an ATP-dependent manner in the absence of agonist and internal GTP (Sui et al., 1996). The ATP-dependent modification of the channel is thought to work via the production of membrane phosphoinositide phosphates (e.g., PIP2), which interact directly with members of the inwardly rectifying K+ channel family (Huang et al., 1998; Sui et al., 1998). PIP2 also appears to be essential for G protein regulation of the KACCH channel (Sui et al., 1998).

To further test for a dependence of the MgATP/Na+ activation on G protein gating of KACCH, we designed experiments where G protein–dependent activation of the channel was impaired. As shown in Fig. 1 A, the KACCH channel in an inside-out atrial myocyte patch was activated persistently by 10 μM GTPγS, a nonhydrolyzable analogue of GTP. Activation of the channel by GTPγS was blocked upon perfusion of the QEHA peptide. QEHA is a 27 amino acid long peptide derived from the COOH terminus of the Gβγ-sensitive adenylate cyclase 2 isoform. It has been shown to block Gβγ activation of several different effectors, including the KACCH channel.
QEHA (50 μM) application abolished the GTP \(g_S \) activation of KACh in 2 min (\(n = 3 \)). After washout, the channel activity remained very low, suggesting the persistence of the QEHA-blocking effect. However, under these conditions, the KACh channel could be activated by MgATP/Na\(^+\) (5/20 mM). QEHA coapplication with MgATP/Na\(^+\) failed to block channel activation, whereas QEHA did block GTP \(g_S \)-induced activation in the same oocyte patches (\(n = 3 \)) (data not shown).

Another way we impaired the G protein regulation of the GIRK channels was by coexpressing them in oocytes with a \(\beta \gamma \)-binding protein. We used the PH domain of \(\beta \)ARK (\(\beta \)ARK-PH), which specifically binds the \(\beta \gamma \) subunits of G proteins, and thus acts as a "\(\beta \gamma \) sink" (Koch et al., 1993; He et al., 1999). In oocytes coexpressing the recombinant channels GIRK1/GIRK4 and the construct \(\beta \)ARK-PH, 10 μM GTP\(g_S \) did not induce channel activity. This suggests that the \(\beta \)ARK-PH protein bound the oocyte endogenous G proteins, such that no \(\beta \gamma \) subunits were available for channel activation (Fig. 1 B). However, in the same patches, MgATP/Na\(^+\) (5/20 mM) caused a >30-fold increase in channel activity. Summary data revealed that channel activities (NP\(_o\)) before, during, and after GTP\(g_S \) application were similar, 0.0070 ± 0.0030, 0.0077 ± 0.0037, and 0.0097 ± 0.0045, respectively (mean ± SEM, \(n = 4 \)). During application of MgATP/Na\(^+\), NP\(_o\) was 0.313 ± 0.221 (\(n = 4 \)).

In control experiments using inside-out patches from oocytes of the same batch that coexpressed the recombinant channels GIRK1/GIRK4 alone, GTP\(g_S \) caused great channel activation (\(n = 3 \), data not shown). Similar results were obtained in experiments in which we applied Na\(^+\) ions with PIP\(_2\) rather than MgATP (\(n = 4 \), data not shown).

Figure 1. Impairment of G protein signaling does not affect the activation of K\(_{ACh}\) by MgATP and Na\(^+\). (A) Single channel activity (top; NP\(_o\), bin = 5 s) plotted as a function of time. The data were obtained from an inside-out patch excised from an atrial cell. The K\(_{ACh}\) channel was stimulated by maintaining the membrane at −80 mV and by the presence of 5 μM acetylcholine in the pipette. 10 μM GTP\(g_S \), 50 μM QEHA, and 5/20 mM MgATP/Na\(^+\) were applied for the duration indicated by the bars. Sample single-channel currents in each condition at the time marked by the arrows are shown under the plot (bottom). (B) NP\(_o\) plot of KACh channel activity (top, bin = 5 s) in an inside-out patch from an oocyte expressing the human GIRK1/GIRK4 and the construct \(\beta \)ARK-PH. The membrane was clamped at −80 mV and 5 μM acetylcholine was present in the pipette. Application of 10 μM GTP\(g_S \) and 5/20 mM MgATP/Na\(^+\) are illustrated by the bars. Labeled arrows correspond to the sample single-channel currents shown under the plot (bottom).
These results suggest that even when G protein regulation is impaired, Na\(^+\) ions are still able to activate the channel. Thus, Na\(^+\) gating of the channel can indeed proceed independently of G\(_{\beta\gamma}\) gating.

G\(_{\beta\gamma}\) Subunits Sensitize GIRK Channels to Gating by Na\(^+\) Ions

Na\(^+\) ions can gate GIRK channels when membrane PIP\(_2\) levels are maintained (i.e., via hydrolysis of ATP). We next tested under conditions that did not maintain PIP\(_2\) at a constant high level whether Na\(^+\) ions could gate these channels after G\(_{\beta\gamma}\) activation.

Fig. 2, A and B, show representative and summary data from experiments where Na\(^+\) ions gated GIRK1/GIRK4 channels after activation by G proteins. Inside-out patches from oocytes expressing these channels showed no channel activity upon application of 20 mM Na\(^+\). This result suggested a low presence of PIP\(_2\) in the membrane. However, this PIP\(_2\) concentration was sufficient to allow persistent channel activation by a brief exposure to 10 \(\mu\)M GTP\(_\gamma\)S. Reapplication of Na\(^+\) ions produced a more than fourfold increase in the channel activity above the level obtained with GTP\(_\gamma\)S. It should be noted that the effect of Na\(^+\) ions on the basal channel activity was variable from patch to patch, presumably reflecting different levels of endogenous PIP\(_2\) at the time of Na\(^+\) application.

Na\(^+\) ions also gated GIRK channels after stimulation of activity by purified G\(_{\beta\gamma}\) subunits. In Fig. 2, C and D, Na\(^+\) ions (20 mM) applied on an inside-out patch did not affect significantly the basal activity of the channel. After washout of the Na\(^+\) ions, recombinant G\(_{\beta\gamma}\) was applied on the patch at a concentration of 20 nM, causing a slow channel activation. After washout of G\(_{\beta\gamma}\), and as activity stabilized, a second application of Na\(^+\) ions produced a more than threefold increase in channel activity, above the level obtained with \(\beta_1\gamma\gamma\). Combined together, these data suggested that the G protein \(\beta\gamma\) subunits sensitized GIRK channels to gating by Na\(^+\) ions. It has been shown that the mean open time (MT\(_o\)) increased in the presence of PIP\(_2\) that is generated by hydrolysis of ATP or exogenous application (Sui et al., 1996, 1998). In the present experiments, no change in the channel MT\(_o\) was observed in the different solutions perfusing the patches (data not shown). This suggests that the levels of PIP\(_2\) in the membrane were not altered, and thus could not account for the G\(_{\beta\gamma}\)-dependent gating effects of Na\(^+\) ions.

Figure 2. Na\(^+\) ions gate GIRK channels after activation by G protein \(\beta\gamma\) subunits. (A) Single-channel activity (NP\(_g\), bin = 5 s) plotted as a function of time. The data were obtained from an inside-out patch excised from an oocyte expressing the recombinant channel GIRK1/GIRK4. 20 mM Na\(^+\) and 10 \(\mu\)M GTP\(_\gamma\)S were applied as indicated by the bars. The membrane was clamped at -80 mV and 5 \(\mu\)M acetylcholine was in the pipette solution. (B) The mean NP\(_g\) for seven patches is plotted for different conditions. Steady state channel activity after activation by GTP\(_\gamma\)S was taken as reference (GTP\(_\gamma\)S) and NP\(_g\) were normalized to it. Na\(^+\) concentration was 20 mM and GTP\(_\gamma\)S was 10 \(\mu\)M. GTP\(_\gamma\)S+Na\(^+\) corresponds to the application of 20 mM Na\(^+\) after the washout of the GTP analogue. SEM are indicated by the vertical bars. The normalized mean NP\(_g\) was 0.057 ± 0.018 (mean ± SEM) in control solution, 0.277 ± 0.095 in the presence of 20 mM Na\(^+\) ions, 1 after the application of 10 \(\mu\)M GTP\(_\gamma\)S, and 4.21 ± 0.59 in the presence of 20 mM Na\(^+\) ions after channel activation by GTP\(_\gamma\)S. (C) NP\(_g\) vs. time plot for the channel activity recorded in an inside-out patch from an oocyte expressing GIRK1/GIRK4. 20 mM Na\(^+\) and 20 \(\mu\)M \(\beta_1\gamma\gamma\) purified subunits were applied via the bath as indicated by the bars. V\(_m\) = -80 mV. 5 \(\mu\)M acetylcholine was present in the pipette. (D) The mean NP\(_g\) for nine patches are plotted for different conditions. Steady state channel activity after \(\beta_1\gamma\gamma\) activation (after \(\beta_1\gamma\gamma\), washout) was taken as reference and NP\(_g\) was normalized to it. Na\(^+\) concentration was 20 mM and \(\beta_1\gamma\gamma\) was 20 nM. \(\beta_1\gamma\gamma+\text{Na}^+\) refers to the application of 20 mM Na\(^+\) after the washout of \(\beta_1\gamma\gamma\). The vertical bars represent SEM. The normalized mean NP\(_g\) was 0.084 ± 0.039 (mean ± SEM) in control solution, 0.206 ± 0.12 in the presence of 20 mM Na\(^+\) ions, 1 after the application of 20 nM \(\beta_1\gamma\gamma\), and 3.1 ± 0.84 in the presence of 20 mM Na\(^+\) ions after activation of the channel by the G protein subunits.
It has been shown that Li$^+$ ions stimulate GIRK channels modified by ATP to ~10% the activity level achieved by comparable Na$^+$ ion concentrations (Sui et al., 1996). However, Li$^+$ ions were unable to increase the activity of the channel after activation by GTPγS. In three patches, the mean NP$_o$ of the GIRK channel was 0.028 ± 0.013 in control conditions, 0.127 ± 0.035 after application of 10 μM of GTPγS, 0.578 ± 0.15 in the presence of 20 mM Na$^+$ ions, and 0.099 ± 0.045 in the presence of 20 mM Li$^+$ ions (data not shown). When applied together, Li$^+$ ions were also unable to affect the gating of the GIRK channel by Na$^+$ ions. This suggests that the gating effect of Na$^+$ ions on the GIRK channel activated by G protein βγ subunits is specific to Na$^+$ ions.

Mg$^{2+}$ Ions Gate GIRK Channels After Channel Modification by ATP or PIP$_2$

In certain experiments, 5 mM MgATP increased the activity of the GIRK channels in the absence of Na$^+$ ions (e.g., Sui et al., 1996). 5 mM MgATP in the solution corresponds to a free Mg$^{2+}$ ion concentration of ~2.1 mM (Vivaudou et al., 1991). This observation prompted us to test whether Mg$^{2+}$ ions alone were able to gate the channel that had been modified by ATP. In Fig. 3, in an inside-out patch from an oocyte coexpressing the channel subunits GIRK1/GIRK4, Mg$^{2+}$ ions (10 mM) had no significant effects on channel activity in the absence of ATP. After washout of Mg$^{2+}$, the channel was activated by the combination of MgATP (2.5 mM; corresponding to ~1.1 mM free Mg$^{2+}$) and Na$^+$ ions (20 mM). MgATP application was maintained and, upon withdrawal of Na$^+$ ions, channel activity became comparable to basal levels. Application of Mg$^{2+}$ ions (10 mM), in the continuous presence of MgATP (2.5 mM), increased channel activity to levels similar to those obtained with Na$^+$ ions (as confirmed by sequential application of 10 mM of each of the ions at the end of the experiment). Withdrawal of Mg$^{2+}$ ions caused channel activity to return to basal levels (n = 3). The MT$_o$ of the channel activity was increased from ~1 to ~2 ms by the application of MgATP, but was not further modified during the gating by Mg$^{2+}$ or Na$^+$ ions.

Using PIP$_2$, we could test the ability of different Mg$^{2+}$ concentrations to activate the GIRK channels. Fig. 4 represents normalized activity of GIRK channels for different concentrations of Mg$^{2+}$ ions. The NP$_o$ for each concentration was calculated in reference to the NP$_o$ measured at 1 mM Mg$^{2+}$. Mg$^{2+}$ ions could activate the GIRK channels at concentrations as low as 100–300 μM. Maximal activity could be obtained at a concentration of ~7 mM Mg$^{2+}$. At higher concentrations (e.g., 20 mM), Mg$^{2+}$ ions resulted in a decrease of channel activity relative to lower concentrations (e.g., 7 mM). It has been shown that, at high concentrations, divalent cations can trigger aggregation of PIP$_2$ molecules (Flanagan et al., 1997), a result that could account for the effects of high Mg$^{2+}$ concentrations on channel activity.

In another set of experiments, we showed that Mg$^{2+}$, like Na$^+$ gating, can occur independently of G proteins. Patches excised from oocytes coexpressing the βARK-PH domain and GIRK channels were exposed to PIP$_2$ (2.5 μM) and subsequently to Mg$^{2+}$ ions. In these patches, GTPγS (10 μM) was unable to activate the GIRK channels, giving a NP$_o$ of 0.08 ± 0.03, identical to the NP$_o$ measured in PIP$_2$ (0.078 ± 0.02). Mg$^{2+}$ ions (1 mM) could increase the channel activity approximately sixfold (n = 4, data not shown) above the activity measured in PIP$_2$, showing that Mg$^{2+}$ gating could proceed independently of G$\beta$$\gamma$ gating.

These results suggest that when modified by ATP or PIP$_2$, GIRK channels become sensitive to either Na$^+$ or Mg$^{2+}$ ions.

Mg$^{2+}$ Ion Gating Occurs at a Site Distinct from that of Na$^+$ Action

Recent work has identified an aspartate amino acid residue as the site of action of Na$^+$ ions on GIRK channels,
Synergism Among the G Protein \(\beta \gamma \) Subunits, \(\text{Na}^+ \) and \(\text{Mg}^{2+} \), in \(K^+ \) Channel Gating

GIRK2 (D228) and GIRK4 (D223) (Ho and Murrell-Lagado, 1999; Zhang et al., 1999). Moreover, it was shown that \(\text{Na}^+ \) sensitivity lies entirely with the heteromeric partners of GIRK1, as this channel possesses an asparagine instead of an aspartate residue at the equivalent position. We used the point mutant GIRK4(S143T) (referred to as GIRK4*) that allows for high levels of activity of homotetrameric GIRK4 channels (Vivaudou et al., 1991) to test for \(\text{Na}^+ \) and \(\text{Mg}^{2+} \) sensitivity. GIRK4* channel activity shows high sensitivity to both \(\text{Na}^+ \) and \(\text{Mg}^{2+} \). Fig. 5 shows that indeed GIRK4*(D223N) loses its sensitivity to \(\text{Na}^+ \) ions (20 mM). However \(\text{Mg}^{2+} \) ion (1 mM) sensitivity was intact (Fig. 5 A). Summary data are shown in Fig. 5 B. These data indicate that \(\text{Na}^+ \) and \(\text{Mg}^{2+} \) ions act at distinct sites to activate GIRK channels.

Mg\(^{2+}\) Ions Reduce the Conductance of the GIRK Channels

We observed, particularly at high concentrations (>5 mM), that internal \(\text{Mg}^{2+} \) ions reduced the amplitude of single GIRK channel currents. In Fig. 6 A, the activity of the coexpressed channel subunits GIRK1/ GIRK4 from an inside-out patch was recorded at –120 mV. After activation by 10 \(\mu \)M GTP\(\gamma\)S, channel activity was recorded in a solution containing 1 mM \(\text{Mg}^{2+} \) ions, showing an approximate amplitude of –3.2 pA. When the solution applied to the patch was switched to one containing 20 mM \(\text{Mg}^{2+} \) ions, the amplitude of the single openings was rapidly reduced to a lower value, approximately –2.5 pA (n = 5). In Fig. 6 B, the activity of native \(K_{\text{ACH}} \) channels in an inside-out patch from an atrial cell was recorded at –90 mV. After exposure to 5 \(\mu \)M PIP\(_2\), the patch was perfused with a solution containing 20 mM \(\text{Mg}^{2+} \) ions, giving an amplitude of approximately –2.2 pA. When the solution applied to the patch was switched to one containing 20 mM \(\text{Na}^+ \) and 1 mM \(\text{Mg}^{2+} \) ions, the channel amplitude immediately increased to a value of approximately –3.5 pA. This amplitude was also obtained in control conditions, where 1 mM \(\text{Mg}^{2+} \) ions were present (n = 5). The reduction in the single-channel amplitude was observed at various voltages. Since it was present at negative potentials (i.e., –80, –90, and –120 mV) where no rectification occurs, it is likely to proceed by a mechanism distinct from that of the rectification phenomenon. \(\text{Mg}^{2+} \) ions at high concentrations also decreased the amplitude of GIRK single channels when applied together with \(\text{Na}^+ \) ions (data not shown). Thus, regardless of their ability to gate GIRK channels (see Figs. 3 and 7), \(\text{Mg}^{2+} \) ions at high concentrations also decreased the amplitude of GIRK channels when applied together with \(\text{Na}^+ \) ions (data not shown). Thus, regardless of their ability to gate GIRK channels (see Figs. 3 and 7), \(\text{Mg}^{2+} \) ions at high concentrations (>5 mM) show a clear inhibition on single-channel current amplitudes. These data suggest that the inhibitory effect of \(\text{Mg}^{2+} \) ions on the single-channel amplitude was not dependent on their ability to gate the channel.

Synergistic Interactions among Ions and G Protein Subunits in Gating GIRK Channels

ATP modification of GIRK channels (native or recombinant) is likely to proceed through changes in the level of membrane PIP\(_2\) in the local environment of the channel (Huang et al., 1998; Sui et al., 1998). In Fig. 7...
levels. After GTPγS washout, the channel activity was stable and, when applied to the patches, Mg²⁺ ions were unable to increase channel activity further. In contrast, Na⁺ ions (10 mM) increased activity by another twofold above the GTPγS effect. When Mg²⁺ ions were applied together with Na⁺ ions, no further increase in channel activity above the levels obtained with Na⁺ ions was seen. Thus, G protein activation sensitized the GIRK channels to gating by Na⁺ ions, but not Mg²⁺ ions.

In Fig. 7C, we show the effects of Mg²⁺ and Na⁺ ions after stimulation of the channel by GTPγS under conditions that kept PIP₂ at a constant high level. As shown earlier, in the absence of Mg²⁺ and Na⁺ ions, PIP₂ was not able to increase the basal activity of the GIRK channels. When Mg²⁺ ions (10 mM) were applied to the patches in the presence of PIP₂, a greater than eightfold increase over control or PIP₂ activity levels occurred. Mg²⁺ and Na⁺ ions (each 10 mM) in combination could raise channel activity by 50-fold over control levels. We then applied GTPγS and studied the effects of ions on G protein–stimulated channel activity in the continuous presence of PIP₂. GTPγS was able to activate the channel >14-fold above control basal levels. After washout of GTPγS, channel activity was stable. When Mg²⁺ ions (10 mM) were applied to the patches after the GTPγS treatment in the continuous presence of PIP₂, they could enhance channel activity to levels >100-fold higher than those obtained under control conditions. Thus, in the continuous presence of PIP₂, this high level of activity was greater than that obtained with Mg²⁺ or GTPγS alone or their sum, suggesting synergistic interactions among the three molecules. Finally, when Mg²⁺ and Na⁺ ions were applied together, the channel total activity was increased 400-fold compared with control.

Similar data were obtained when the G protein β₁γ subunits rather than GTPγS were used. In three cells, the total channel activity measured as the mean Nₚ₀ was 0.027 ± 0.023 in control conditions, 0.022 ± 0.02 in the presence of 2.5 μM PIP₂, 0.12 ± 0.09 in the presence of PIP₂ and 10 mM Mg²⁺ ions, and 1 ± 0.55 in the presence of PIP₂ and Mg²⁺ and Na⁺ ions. When 20 nM β₁γ was applied in the presence of PIP₂, it gave a steady state activity of the channel corresponding to a mean Nₚ₀ of 0.25 ± 0.12. In the continuous presence of PIP₂ and after stimulation of the channel by β₁γ subunits, the mean Nₚ₀ was 1.23 ± 0.23 in the presence of Mg²⁺ ions and 2.61 ± 0.24 in the presence of Mg²⁺ and Na⁺ ions. It should be noted that the differences in channel activity (mean Nₚ₀) for the same condition applied to the patches (for example PIP₂ + Mg²⁺ in Fig. 7A and C) may be related to differences in the level of channel expression between different batches of oocytes. Taken together, these data make four points. (a) Mg²⁺ ions can gate the channel after modification by

Figure 5. Mg²⁺ ions act at a site distinct of that used by Na⁺ ions. (A) Single channel activity (N_p, bin = 5 s) plotted as a function of time. An inside-out patch from an oocyte expressing GIRK4*(D223N) (see text) and human muscarinic receptor type 2 receptor was exposed to 2.5 μM PIP₂ and 20 mM Na⁺ or 1 mM Mg²⁺ ions, and channel activity was recorded. The membrane potential was kept at -80 mV. The pipette solution contained 5 μM Ach. (B) Summary data plotting mean N_p, of four experiments such as that shown in A. The mean N_p values were 0.14 ± 0.1 (mean ± SEM) in control conditions, 0.21 ± 0.06 in the presence of PIP₂, 0.21 ± 0.08 in the presence of PIP₂ and Na⁺ ions, and 2.97 ± 0.31 in the presence of PIP₂ and Mg²⁺ ions.

A, the activity of recombinant GIRK1/ GIRK4 channels was not increased by the application of 2.5 μM PIP₂ alone. Mg²⁺ ions (10 mM), applied with PIP₂, stimulated activity >40-fold. As shown previously (Sui et al., 1998), Na⁺ ions (10 mM) were able to gate the channel in the presence of PIP₂, resulting in activity equivalent to that obtained with Mg²⁺ ions. When applied together, in the presence of PIP₂, Mg²⁺ and Na⁺ ions (10 mM each) showed a synergistic effect stimulating channel activity >200-fold.

We next tested whether Mg²⁺ ions, like Na⁺ ions (Fig. 2), can further gate GIRK channels after channel activation by GTPγS, under conditions that do not maintain PIP₂ at constant high levels. Fig. 7B shows that the basal activity of GIRK1/ GIRK4 recombinant channels was not affected by Mg²⁺ ions. 10 μM GTPγS increased the activity of the channel approximately fivefold above basal activity. After GTPγS washout, the channel activity was stable and, when applied to the patches, Mg²⁺ ions were unable to increase channel activity further. In contrast, Na⁺ ions (10 mM) increased activity by another twofold above the GTPγS effect. When Mg²⁺ ions were applied together with Na⁺ ions, no further increase in channel activity above the levels obtained with Na⁺ ions was seen. Thus, G protein activation sensitized the GIRK channels to gating by Na⁺ ions, but not Mg²⁺ ions.

In Fig. 7C, we show the effects of Mg²⁺ and Na⁺ ions after stimulation of the channel by GTPγS under conditions that kept PIP₂ at a constant high level. As shown earlier, in the absence of Mg²⁺ and Na⁺ ions, PIP₂ was not able to increase the basal activity of the GIRK channels. When Mg²⁺ ions (10 mM) were applied to the patches in the presence of PIP₂, a greater than eightfold increase over control or PIP₂ activity levels occurred. Mg²⁺ and Na⁺ ions (each 10 mM) in combination could raise channel activity by 50-fold over control levels. We then applied GTPγS and studied the effects of ions on G protein–stimulated channel activity in the continuous presence of PIP₂. GTPγS was able to activate the channel >14-fold above control basal levels. After washout of GTPγS, channel activity was stable. When Mg²⁺ ions (10 mM) were applied to the patches after the GTPγS treatment in the continuous presence of PIP₂, they could enhance channel activity to levels >100-fold higher than those obtained under control conditions. Thus, in the continuous presence of PIP₂, this high level of activity was greater than that obtained with Mg²⁺ or GTPγS alone or their sum, suggesting synergistic interactions among the three molecules. Finally, when Mg²⁺ and Na⁺ ions were applied together, the channel total activity was increased 400-fold compared with control.

Similar data were obtained when the G protein β₁γ subunits rather than GTPγS were used. In three cells, the total channel activity measured as the mean N_p₀ was 0.027 ± 0.023 in control conditions, 0.022 ± 0.02 in the presence of 2.5 μM PIP₂, 0.12 ± 0.09 in the presence of PIP₂ and 10 mM Mg²⁺ ions, and 1 ± 0.55 in the presence of PIP₂ and Mg²⁺ and Na⁺ ions. When 20 nM β₁γ was applied in the presence of PIP₂, it gave a steady state activity of the channel corresponding to a mean N_p₀ of 0.25 ± 0.12. In the continuous presence of PIP₂ and after stimulation of the channel by β₁γ subunits, the mean N_p₀ was 1.23 ± 0.23 in the presence of Mg²⁺ ions and 2.61 ± 0.24 in the presence of Mg²⁺ and Na⁺ ions. It should be noted that the differences in channel activity (mean N_p₀) for the same condition applied to the patches (for example PIP₂ + Mg²⁺ in Fig. 7A and C) may be related to differences in the level of channel expression between different batches of oocytes. Taken together, these data make four points. (a) Mg²⁺ ions can gate the channel after modification by...
At a concentration of 10 mM, their gating potency is comparable with that of 10 mM Na\(^+\) ions. (b) When applied together, Mg\(^{2+}\) and Na\(^+\) ions show synergistic effects, resulting in levels of activity higher than those induced by each of the ions separately or their summed responses. (c) After activation by GTP\(\gamma\)S (in the absence of exogenous PIP\(_2\) or MgATP), the GIRK channels are not further gated by Mg\(^{2+}\) ions, suggesting an important difference between Mg\(^{2+}\) and Na\(^+\) ions in gating these channels. (d) After channel modification by the combination of PIP\(_2\) and GTP\(\gamma\)S, Mg\(^{2+}\) ions do stimulate the GIRK channel activity to higher levels than those obtained with PIP\(_2\) alone, suggesting that PIP\(_2\) renders the \(\beta\gamma\)-activated channels sensitive to gating by Mg\(^{2+}\) ions.

DISCUSSION

In the present study, we have shown that Mg\(^{2+}\) ions at physiological concentrations are additional activators of G protein–gated potassium channels. These K\(^+\) channels can be activated independently either by the \(\beta\gamma\) subunits of GTP-binding proteins (Logothetis et al., 1987) or by intracellular ions, such as Na\(^+\) (Sui et al., 1996) or Mg\(^{2+}\) ions. Activation by either G protein subunits or ions shows an absolute dependence on the presence of PIP\(_2\) (Sui et al., 1998). Specific combinations of these molecules show synergism and suggest differential dependence on the level of PIP\(_2\) for channel activation. This complex dependence of K\(^+\) channel activity on G proteins, Mg\(^{2+}\), Na\(^+\) ions, and PIP\(_2\) could serve to “fine tune” channel activity during physiological and pathophysiological conditions, where changes in the relative concentrations of these molecules might occur.

GIRK Channel Activation by Na\(^+\) Ions Can Be Independent of G Protein Subunit Involvement

Previous results from our laboratory showed that intracellular solution containing MgATP/Na\(^+\) was able to stimulate K\(^+\) channel activity in the absence of acetylcholine in the pipette, suggesting a G protein–independent mechanism of activation (Sui et al., 1996). Subse-
GTP analogue and addition of substance(s) x. In absence of 10 mM Mg$^{2+}$ ions, all solutions contained 50 μM acetylcholine was in the pipette. Mg$^{2+}$ ions gave a mean NP_o of 0.40 ± 0.12. When applied together, in the presence of PIP$_2$, Mg$^{2+}$ and Na$^+$ ions (10 mM each) yielded a mean NP_o of 2.08 ± 0.52. (B) Mean NP_o plots for six inside-out patches from oocytes expressing GIRK1/ GIRQ4. V_m was −80 mV. 5 μM acetylcholine was in the pipette. Mg$^{2+}$ ions was 10 mM, Na$^+$ ions was 10 mM, and GTPγS was 10 μM. The columns GTPγS and GTPγS+x depict the channel activity measured after the GTP analogue was washed out and substance(s) x were added. SEM are indicated by vertical bars. The mean NP_o of the channel was 0.023 ± 0.012 in control conditions and 0.035 ± 0.02 in the presence of 10 mM Mg$^{2+}$ ions. 10 μM GTPγS gave a mean NP_o of 0.12 ± 0.045. After GTPγS washout, Mg$^{2+}$ ions gave a mean NP_o of 0.12 ± 0.03. 10 mM Na$^+$ ions gave a mean NP_o of 0.23 ± 0.06. Coapplication of Mg$^{2+}$ and Na$^+$ ions resulted in a mean NP_o of 0.26 ± 0.08. (C) Mean NP_o plots for six patches. The inside-out patches were excised from oocytes expressing GIRK1/GIRK4. V_m was −80 mV. 5 μM ACh present in the pipette. PIP$_2$ was 2.5 μM, Mg$^{2+}$ was 10 mM, Na$^+$ was 10 mM, and GTPγS was 10 μM. PIP$_2$+GTPγS refers to the channel activity (at steady state) during the application of the GTP analogue. PIP$_2$+GTPγS+x columns depict the channel activity measured after the washout of the GTP analogue and addition of substance(s) x. In absence of 10 mM Mg$^{2+}$, all solutions contained 50 μM Mg$^{2+}$. This low concentration of Mg$^{2+}$ was necessary to render GTPγS effective. Vertical bars represent SEM. The mean NP_o for the channel activity was 0.004 ± 0.002 in control conditions and 0.0007 ± 0.0002 in the presence of 2.5 μM PIP$_2$. When 10 mM Mg$^{2+}$ ions were applied to the patches in the presence of PIP$_2$, a mean NP_o of 0.034 ± 0.013 was obtained. Although this activity appeared small, it was significantly higher than that in PIP$_2$ alone (P < 0.005, paired t test, log scale). 10 mM each of Mg$^{2+}$ and Na$^+$ ions in combination yielded a mean NP_o of 0.2 ± 0.09. GTPγS gave a mean NP_o of 0.058 ± 0.03. Again, although this activity appeared relatively small, it was significantly higher than that in PIP$_2$ alone (P < 0.005, paired t test, log scale). When 10 mM Mg$^{2+}$ ions were applied to the patches after the GTPγS treatment a mean NP_o of 0.42 ± 0.19 was obtained. Mg$^{2+}$ and Na$^+$ ions applied together resulted in NP_o of 1.6 ± 0.49.

Figure 1. Synergistic effects of G$_{a16}$, Na$^+$, and Mg$^{2+}$ ions in activating GIRK channels. (A) The mean NP_o for seven patches are plotted for different conditions. The data were obtained from inside-out patches excised from oocytes expressing the recombinant channel GIRK1/ GIRQ4. The membrane was held at −80 mV and 5 μM acetylcholine was present in the pipette. PIP$_2$ was 2.5 μM, Mg$^{2+}$ was 10 mM, and Na$^+$ was 10 mM. SEM are indicated by the vertical bars. The mean NP_o for the channel activity was 0.011 ± 0.003 in control conditions, and 0.01 ± 0.005 during the application of 2.5 μM PIP$_2$. When 10 mM Mg$^{2+}$ ions were applied with PIP$_2$, the mean NP_o was 0.43 ± 0.14. 10 mM Na$^+$ ions gave a mean NP_o of 0.40 ± 0.12. When applied together, in the presence of PIP$_2$, Mg$^{2+}$ and Na$^+$ ions (10 mM each) yielded a mean NP_o of 2.08 ± 0.52. (B) Mean NP_o plots for six inside-out patches from oocytes expressing GIRK1/ GIRQ4. V_m was −80 mV. 5 μM acetylcholine was in the pipette. Mg$^{2+}$ ions was 10 mM, Na$^+$ ions was 10 mM, and GTPγS was 10 μM. The columns GTPγS and GTPγS+x depict the channel activity measured after the GTP analogue was washed out and substance(s) x were added. SEM are indicated by vertical bars. The mean NP_o of the channel was 0.023 ± 0.012 in control conditions and 0.035 ± 0.02 in the presence of 10 mM Mg$^{2+}$ ions. 10 μM GTPγS gave a mean NP_o of 0.12 ± 0.045. After GTPγS washout, Mg$^{2+}$ ions gave a mean NP_o of 0.12 ± 0.03. 10 mM Na$^+$ ions gave a mean NP_o of 0.23 ± 0.06. Coapplication of Mg$^{2+}$ and Na$^+$ ions resulted in a mean NP_o of 0.26 ± 0.08. (C) Mean NP_o plots for six patches. The inside-out patches were excised from oocytes expressing GIRK1/GIRK4. V_m was −80 mV. 5 μM ACh present in the pipette. PIP$_2$ was 2.5 μM, Mg$^{2+}$ was 10 mM, Na$^+$ was 10 mM, and GTPγS was 10 μM. PIP$_2$+GTPγS refers to the channel activity (at steady state) during the application of the GTP analogue. PIP$_2$+GTPγS+x columns depict the channel activity measured after the washout of the GTP analogue and addition of substance(s) x. In absence of 10 mM Mg$^{2+}$, all solutions contained 50 μM Mg$^{2+}$. This low concentration of Mg$^{2+}$ was necessary to render GTPγS effective. Vertical bars represent SEM. The mean NP_o for the channel activity was 0.004 ± 0.002 in control conditions and 0.0007 ± 0.0002 in the presence of 2.5 μM PIP$_2$. When 10 mM Mg$^{2+}$ ions were applied to the patches in the presence of PIP$_2$, a mean NP_o of 0.034 ± 0.013 was obtained. Although this activity appeared small, it was significantly higher than that in PIP$_2$ alone (P < 0.005, paired t test, log scale). 10 mM each of Mg$^{2+}$ and Na$^+$ ions in combination yielded a mean NP_o of 0.2 ± 0.09. GTPγS gave a mean NP_o of 0.058 ± 0.03. Again, although this activity appeared relatively small, it was significantly higher than that in PIP$_2$ alone (P < 0.005, paired t test, log scale). When 10 mM Mg$^{2+}$ ions were applied to the patches after the GTPγS treatment a mean NP_o of 0.42 ± 0.19 was obtained. Mg$^{2+}$ and Na$^+$ ions applied together resulted in NP_o of 1.6 ± 0.49.

Gating of the G Protein-gated K$^+$ Channel

Mg$^{2+}$ ions have been shown to play an essential role in the rectification properties of inwardly rectifying K$^+$ channels. Unitary current–voltage relations for Ga

protein-sensitive K$^+$ channels become ohmic if the internal face of the patch is exposed to Mg$^{2+}$-free solutions. Inward rectification is restored when Mg$^{2+}$ is reintroduced in the bathing solutions (Matsuda, 1991; Kurauchi et al., 1992; Nichols and Lopatin, 1997).

Mg$^{2+}$ ions are involved in many other reactions as essential cofactors. Kurauchi et al. (1986) showed that G protein activation of the native G protein-sensitive K$^+$ channel was absolutely dependent on Mg$^{2+}$, possibly due to the requirement of Mg$^{2+}$ for the binding of GTP to the Gα subunit (also see Logothetis et al., 1987). More recently, it has been appreciated that Mg$^{2+}$-dependent processes of ATP hydrolysis (likely to be involved in phosphorylation–dephosphorylation of phosphoinositides) regulate channel activity (Sui et al., 1996, 1998; Huang et al., 1998).

Our present data show that Mg$^{2+}$ ions, in addition to their involvement in the processes mentioned above, are able to activate the ATP- or PIP$_2$-modified G protein-sensitive channel (Figs. 3 and 7). In the presence of PIP$_2$, similar concentrations of Mg$^{2+}$ and Na$^+$ ions
yielded comparable levels of channel activity, suggesting equivalent gating abilities for both ions. Since PIP$_2$ mimics the MgATP effects on the channel, we have been able to study directly Mg$^{2+}$ gating effects.

Mutation of the amino acid responsible for Na$^+$-ion activation of GIRK channels did not interfere with Mg$^{2+}$-ion activation. This result strongly suggests that Mg$^{2+}$ and Na$^+$ ions act on distinct sites to gate the channel.

Our data also show that Mg$^{2+}$ ions reduced the conductance of the G protein-gated channels in a manner independent of their stimulatory effect on gating. Since this inhibitory effect of Mg$^{2+}$ ions on conductance was present at negative potentials (-120, -90, and -80 mV), where no rectification is occurring (Kurachi et al., 1992), it is unlikely that the two processes proceed through a single mechanism. This effect of partial block on channel conductance suggests that Mg$^{2+}$ ions act at a site located very near the pore. Chuang et al. (1997) described a chronic inhibition of the IRK3 inward rectifier channel by internal Mg$^{2+}$ ions, which is independent of the rectification process and is voltage independent. However, the on- and off-rates of this inhibition were slow (in the minute range) and no reduction of the single-channel conductance was reported. Under our conditions, the blocking effect of Mg$^{2+}$ ions occurred much more rapidly, in the range of seconds (Fig. 6).

Synergism Among G Proteins and Ions in the Gating of GIRK Channels

At higher PIP$_2$ concentrations, the combination of Na$^+$ and Mg$^{2+}$ ions resulted in a stimulation of channel activity that was greater than the sum of their individual effects, suggesting synergistic interactions of these ions on channel gating (Fig. 7 A).

Na$^+$ ions gate the K$^+$ channel in the presence of hydrolyzable ATP or PIP$_2$ (Sui et al., 1996, 1998; Figs. 3 and 7 A). In the present study, we show that (shortly after patch excision in solutions that do not replenish or supply PIP$_2$) application of G$_{\beta\gamma}$ subunits, but not of Na$^+$ or Mg$^{2+}$ ions, results in stimulation of channel activity (Figs. 2 and 7 B). Our previous study (Sui et al., 1998) showed that in the absence of PIP$_2$ in the membrane (e.g., by its complete hydrolysis by exogenous PLCβ_2) no gating molecule (e.g., G$_{\beta\gamma}$ or Na$^+$) could activate the channel. In the present experiment under conditions that we do not expect to have depleted PIP$_2$, G$_{\beta\gamma}$ subunits caused a much greater stimulation of activity than Na$^+$ or Mg$^{2+}$ ions. This result suggests that the dependence on PIP$_2$ for channel gating is greater for Mg$^{2+}$ and Na$^+$ than for G$_{\beta\gamma}$. Under these conditions, we find that Na$^+$ ions do stimulate channel activity after preactivation by GTP$_\gamma$S or by purified G$_{\beta\gamma}$ subunits (Figs. 2 and 7 B). This result suggests that G$_{\beta\gamma}$ activation sensitizes the K$^+$ channel gating to Na$^+$ ions. Moreover, in such experiments, G$_{\beta\gamma}$ subunits and Na$^+$ ions act synergistically in gating the channel. Interestingly, Mg$^{2+}$ ions were unable to gate the channel after channel preactivation by GTP$_\gamma$S. These data underscore an interesting difference in the gating of this channel by ions, namely at low PIP$_2$ levels G$_{\beta\gamma}$ subunits synergize with Na$^+$ but not Mg$^{2+}$ ions to gate the channel.

This difference of the two ions on channel gating is lost at higher PIP$_2$ concentrations (Fig. 7 C). In such experiments, not only were the synergistic effects of the ions shown in Fig. 7 A reproduced, but also Mg$^{2+}$ as well as Na$^+$ ions cooperated with G$_{\beta\gamma}$. When applied in combination, all three gating particles showed synergistic effects (Fig. 7 C).

We have previously shown that block of the Na$^+/K^+$ pump activates K$_{\text{ATP}}$ in atrial myocytes with kinetics similar to those seen for Na$^+$ accumulation resulting from the block of the pump (Sui et al., 1996). Thus, it is likely that the effects of cardiac glycosides on cardiac rhythm involve the Na$^+$-sensitive K$_{\text{ATP}}$ channels. Under physiological conditions, local variations of [Na$^+$], (e.g., during an action potential) and possibly [Mg$^{2+}$], could provide a sensitive and fast control of the GIRK channel gating and activity. The synergism among ions and G$_{\beta\gamma}$ subunits implies that variations in the local levels of these molecules could have a profound impact on the dynamic range of GIRK channel activity under normal or pathophysiological states.

A Gating Model for GIRK Channels

Channel binding sites for PIP$_2$, G$_{\beta\gamma}$, and Na$^+$ ions have been identified (Huang et al., 1995; Kunkel and Peralta, 1995; He et al., 1999). We postulate that additional distinct sites exist to completely account for the effects of gating molecules on channel activity. Fig. 8 shows the closed channel state C$_0$ in the absence of PIP$_2$. GIRK channels interact weakly with PIP$_2$, and as a result PIP$_2$ does not directly activate these channels (closed state C$_1$). In the absence of PIP$_2$, gating molecules such as G$_{\beta\gamma}$, Na$^+$, or Mg$^{2+}$ are unable to activate the channel (closed state C$_2$). However, in the presence of PIP$_2$, any of the gating molecules can cause channel activation.

We envision two possible mechanisms for the synergistic action of gating molecules to activate the channel. Ions and G$_{\beta\gamma}$ subunits maybe exerting their combined effects by synergistic interactions of channel sites with PIP$_2$. Published reports have already suggested a stronger interaction of channel with PIP$_2$ in the presence of either G$_{\beta\gamma}$ subunits or Na$^+$ ions (Huang et al., 1998; Zhang et al., 1999). Alternatively, the gating molecules could be inducing conformational changes, affecting gating directly, independently of PIP$_2$ interactions. Although PIP$_2$ is absolutely required for gating
molecules to be effective, we have seen that at low PIP₂ concentrations G_bg, unlike Na⁺ or Mg²⁺ ions, can still gate the channels. This result suggests a stronger influence of G_bg than of Na⁺ or Mg²⁺ ions on channel gating, possibly proceeding in a PIP₂-independent manner. Further work will be required to distinguish between these possibilities.

Figure 8. A model depicting gating of GIRK channels by the combination of PIP₂ with gating molecules G_bg and/or Na⁺ and Mg²⁺ ions. (C₀) Channel closed state, in the absence of PIP₂ in the plasma membrane and gating molecules. (C₁) Channel closed state, in the presence of PIP₂ in the membrane GIRK channels experience weak interactions that in the absence of gating molecules are not of sufficient strength to gate the channel. (C₂) Channel closed state, gating molecules can interact with the channel at distinct sites but in the absence of PIP₂ they fail to gate the channel. (O) Channel open state, gating molecules in the presence of membrane PIP₂ can activate the channel and show synergism.

We are grateful to Lidiya Lontsman and Xixin Yan for technical support and preparation of the oocytes. We thank Drs. James Garrison, Eitan Reuveny, and Ravi Iyengar for their kind gifts of G_bg7 subunits, the βARK-PH construct and QEHA peptide, respectively. We also thank Drs. Vladimir Brezina, Sherman Kupfer, Tooraj Mirshahi, Tibor Rohacs, and Hailin Zhang for critical comments on the manuscript.

This work was supported by grants from the Aaron Diamond Foundation (J.L. Sui), the National Institutes of Health (HL54185), and the American Heart Association, National Center (96011620) (D.E. Logothetis).

Submitted: 16 July 1999 Revised: 25 August 1999 Accepted: 26 August 1999 Released online: 11 October 1999

REFERENCES

Baukrowitz, T., U. Schulte, D. Oliver, S. Herlitze, T. Krauter, S.J. Tucker, J.P. Ruppersberg, and B. Fakler. 1998. PIP₂ and PIP as determinants for ATP inhibition of K_ATP channels. Science. 282: 1141–1144.

Chan, K.W., M.N. Langan, J. Sui, J.A. Kozak, A. Pabon, J.A.A. Ladias, and D.E. Logothetis. 1996. A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J. Gen. Physiol. 107:381–397.

Chen, J., M. DeVivo, J. Dingus, A. Harry J. Li, J.L. Sui, D. Carty, J.L. Blank, J. Exton, R.H. Stoffel, et al. 1995. A region of adenyl cyclase 2 critical for regulation by G protein βγ subunits. Science. 268:1166–1169.

Chuang, H., Y.N. Jan, and L.Y. Jan. 1997. Regulation of IRK3 inward rectifier K⁺ channel by m1 acetylcholine receptor and intracellular magnesium. Cell. 89:1121–1132.

Corey, S., G. Krapivinsky, L. Krapivinsky, and D.E. Clapham. 1998. Number and stoichiometry of subunits in the native atrial G protein–gated K⁺ channel, I_KACR. J. Biol. Chem. 273:5271–5278.

Fan, Z., and J.C. Makielski. 1997. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem. 272:5388–5395.

Flanagan, L.A., C.C. Cunningham, J. Chen, G.D. Prestwich, K.S. Kosik, and P.A. Janmey. 1997. The structure of divalent cation–induced aggregates of PIP₂ and their alteration by gelsolin and tau. Biophys. J. 73:1440–1447.

Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85–100.

He, C., H. Zhang, T. Mirshahi, and D.E. Logothetis. 1999. Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling. J. Biol. Chem. 274:12517–12524.

Hilgemann, D.W., and R. Ball. 1996. Regulation of cardiac Na⁺, Ca²⁺ exchange and K_ATP potassium channels by PIP₂. Science. 273:956–959.
Krapivinsky, G., E.A. Gordon, K. Wickman, B. Velimirovic, L. Koch, W.J., J. Inglese, W.C. Stone, and R.J. Lefkowitz. 1993. The Huang, C., S. Feng, and D.W. Hilgemann. 1998. Direct activation of inward rectifier potassium channels by PIP$_2$ and its stabilization by G$_{bg}$. Nature. 391:803–806.

Huang, C.L., Y.N. Jan, and L.Y. Jan. 1995. The binding site for the G protein $\beta_3\gamma$ subunit to multiple regions of G protein–gated inward-rectifying K$^+$ channels. FEBS. Lett. 405:291–298.

Huang, C.L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Evidence that direct binding of G$_{bg}$ to the GIRK1 G protein–gated inwardly rectifying K$^+$ channel is important for channel activation. Neuron. 15:1113–1143.

Isenberg, G., and U. Klöckner. 1982. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium.” Pflügers Arch. 395:6–18.

Koch, W.J., J. Inglese, W.C. Stone, and R.J. Lefkowitz. 1993. The binding site for the $\beta_3\gamma$ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J. Biol. Chem. 268:8256–8260.

Krapivinsky, G., E.A. Gordon, K. Wickman, B. Velimirovic, L. Krapivinsky, and D.E. Clapham. 1995a. The G protein–gated atrial K$^+$ channel I$_{KACH}$ is a heteromultimer of two inwardly rectifying K$^+$ channel proteins. Nature. 374:135–141.

Krapivinsky, G., L. Krapivinsky, K. Wickman, and D.E. Clapham. 1995b. G$_{bg}$ binds directly to the G protein–gated K$^+$ channel, I$_{KACH}$. J. Biol. Chem. 270:29059–29062.

Kunkel, M.T., and E.G. Peralta. 1995. Identification of domains conferring G protein regulation on inward rectifier potassium channel channel proteins. Cell. 83:443–449.

Kurachi, Y., T. Nakajima, and T. Sugimoto. 1986. Role of intracellular Mg$^{2+}$ in the activation of muscarinic K$^+$ channel in cardiac atrial cell membrane. Pflügers Arch. 407:572–574.

Kurachi, Y., R.T. Tung, H. Ito, and T. Nakajima. 1992. G protein activation of cardiac muscarinic K$^+$ channels. Prog. Neurobiol. 39:229–246.

Logothetis, D.E., Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clapham. 1987. The $\beta_3\gamma$ subunits of GTP-binding proteins activate the muscarinic K channel in heart. Nature 325:321–326.

Logothetis, D.E., S. Movahedi, C. Satler, K. Lindpaintner, and B. Nadal-Ginard. 1992. Incremental reductions of positive charge within the S4 region of a voltage-gated K$^+$ channel result in corresponding decreases in gating charge. Nature. 351:531–540.

Matsuda, H. 1991. Magnesium gating of the inwardly rectifying K$^+$ channel. Annu. Rev. Physiol. 53:289–298.

Nichols, C.G., and A.N. Lopatin. 1997. Inward rectifier potassium channels. Annu. Rev. Physiol. 59:171–191.

Reuveny, E., P.A. Slesinger, J. Inglese, J.M. Morales, J.A. Iniguez-Lluhi, R.J. Lefkowitz, H.R. Bourne, Y.N. Jan, and L.Y. Jan. 1994. Activation of the cloned muscarinic potassium channel by G protein $\beta_3\gamma$ subunits. Nature. 370:143–146.

Shyng, S.L., and C.G. Nichols. 1998. Membrane phospholipid control of nucleotide sensitivity of K$_{ATP}$ channels. Science. 282:1138–1141.

Silverman, S.K., H.A. Lester, and D.A. Dougherty. 1996. Subunit stoichiometry of a heteromultimeric G protein–coupled inward-rectifier K$^+$ channel. J. Biol. Chem. 271:30524–30528.

Stühmer, W. 1992. Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 207:319–339.

Sui, J.L., K.W. Chan, and D.E. Logothetis. 1996. Na$^+$ activation of the muscarinic K$^+$ channel by a G protein–independent mechanism. J. Gen. Physiol. 108:381–391.

Sui, J.L., J. Petit-Jacques, and D.E. Logothetis. 1998. Activation of the atrial K$_{ACH}$ channel by the $\beta_3\gamma$ subunits of G proteins or intracellular Na$^+$ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. USA. 95:1307–1312.

Vivaudou, M.B., C. Arnoult, and M. Villaz. 1991. Skeletal muscle ATP-sensitive K$^+$ channels recorded from sarcolemmal blebs of split fibers: ATP inhibition is reduced by magnesium and ADP. J. Membr. Biol. 122:165–175.

Zhainazarov A.B., and B.W. Ache. 1999. Effects of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate on a Na$^+$-gated nonselective cation channel. J. Neurosci. 19:2929–2937.

Zhang, H., C. He, X. Yan, T. Mirshahi, and D.E. Logothetis. 1999. Specific PIP$_2$ interactions with inwardly rectifying K$^+$ channels determine distinct activation mechanisms. Nat. Cell Biol. 1:183–188.