On spacetime noncommutative $U(1)$ model at high temperature

A Strelchenko
Dnepropetrovsk National University, 49050 Dnepropetrovsk, Ukraine
E-mail: alexstrelch@yahoo.com

Received 21 October 2007, in final form 15 December 2007
Published 9 April 2008
Online at stacks.iop.org/JPhysA/41/164073

Abstract
We extend the results of Strelchenko and Vassilevich (2007 Phys. Rev. D 76 065014) to noncommutative gauge theories at finite temperature. In particular, by making use of the background field method, we analyse renormalization issues and the high-temperature asymptotics of the one-loop Euclidean free energy of the noncommutative $U(1)$ gauge model within imaginary time formalism. As a by-product, the heat trace of the non-minimal photon kinetic operator on noncommutative $S^1 \times R^3$ manifold taken in an arbitrary background gauge is investigated. All possible types of noncommutativity on $S^1 \times R^3$ are considered. It is demonstrated that the non-planar sector of the model does not contribute to the free energy of the system at high temperature. The obtained results are discussed.

PACS numbers: 11.10.Nx, 11.10.Wx, 11.15.Kc

1. Introduction
Understanding fundamental properties of hot plasma in noncommutative gauge theories, especially in NC QED, remains one of the most challenging problems in high-energy physics. Indeed, because of the noncommutative nature of spacetime, even the simplest thermal $U(1)$ model exhibits such odd features as generation of the magnetic mass (associated with noncommutative transverse modes), appearance of a tachyon in the spectrum of quasi-particle excitations etc. [2–7, 9, 10]. These observations concern mainly space/space noncommutative theories where there are no notorious difficulties with causality and unitarity [11, 12]. At the same time, it was realized that a space/space NC QFT may have non-renormalizable divergences as a consequence of UV/IR mixing phenomenon [13] (see also [14] for recent discussion).

The purpose of the present work is to gain some better insight into basic aspects of the Euclidean-time formalism in thermal gauge theories on NC $S^1 \times R^3$, including renormalization
and the high-temperature asymptotic of the (Euclidean) free energy (FE). For the sake of completeness, three different types of noncommutative spacetime will be worked out: namely, space/time, full-rank and pure space/time noncommutativities. We begin our analysis with the investigation of one-loop divergences in the Euclidean NC $U(1)$ gauge model on $S^1 \times R^3$ to make sure that the theory does exist at least at the leading order of the loop expansion. Then we will turn to the evaluation of the high-temperature asymptotics of the one-loop FE. The main attention will be paid to the non-planar sector of the perturbative expansion. Thus, it was discovered in [4, 5] that there is a drastic reduction of the degrees of freedom in the non-planar part of FE. Here, we will arrive at the same qualitative picture for all types of noncommutativity.

2. The model

Consider $U(1)$ gauge model on NC $S^1 \times R^3$. Its action reads

$$S = -\frac{1}{4g^2} \int_M d^4x G_{\mu\nu} \ast G_{\mu\nu},$$ \hspace{1cm} (1)$$

where the integration is carried out over $M = S^1 \times R^3$ manifold and $G_{\mu\nu}$ denotes the curvature tensor of $U(1)$ gauge connection.

To investigate quantum corrections to (1) we employ the background field method. To this aim we split the field A_{μ} into a classical background field B_{μ} and quantum fluctuations Q_{μ}, i.e. $A_{\mu} = B_{\mu} + Q_{\mu}$. Then, substituting this decomposition into (1), we extract the part of the action (1) that is quadratic in quantum fluctuations. In a covariant background gauge it is written in the form (we use notations of [27])

$$S_2[B, Q, \bar{C}, C] = \int_M d^4x \left(-\frac{1}{2g^2} Q_{\mu}(x) D^\xi_{\mu\nu} Q_{\nu}(x) + \bar{C}(x) D C(x) \right),$$ \hspace{1cm} (2)$$

where

$$D^\xi_{\mu\nu} = -\left[\delta_{\mu\nu} \nabla^2 + \left(\frac{1}{\xi} - 1 \right) \nabla_{\mu} \nabla_{\nu} + 2(L_{\Theta}(F_{\mu\nu}) - R_{\Theta}(F_{\mu\nu})) \right]$$ \hspace{1cm} (3)$$

is the photon kinetic operator and $D = -\nabla_{\mu} \nabla_{\nu}$ is the inverse propagator of ghost particles. Here, ∇_{μ} and $F_{\mu\nu}$ stand for the covariant derivative and the curvature tensor of the background field B_{μ}, respectively. Functional integration of the partition function w.r.t. quantum fields gives the following formal expression for the 1-loop effective action (EA),

$$\Gamma^{(1)}[B] = \Gamma_{\text{gauge}}[B] + \Gamma_{\text{ghost}}[B] = \frac{1}{2} \ln \det(D^\xi) - \ln \det(D).$$ \hspace{1cm} (4)$$

As well known this quantity is divergent and must be regularized. This will be done by zeta-function regularization in what follows.

For the study of thermal QFT one needs to introduce another important object—the free energy of the system. Recall, that there are two definitions of this quantity. One of them presents the canonical FE,

$$F^C(\beta) = \beta^{-1} \sum_\omega \ln(1 - e^{-\beta \omega}),$$ \hspace{1cm} (5)$$

which has clear physical meaning of ‘summation over modes’. The other one expresses FE in terms of the Euclidean EA,

$$F^E(\beta) = \beta^{-1} \Gamma^E(\beta),$$ \hspace{1cm} (6)$$

1 As usual, we will work in the rest frame of the heat bath with $u = (0, 0, 0, 1)$, where u is the heat bath four velocity. All fields obey periodic boundary conditions.
and is much more convenient from practical point of view. These two definitions are related by
\[FE(\beta) = FC(\beta) + E_0, \]
where \(E_0 \) is the energy of vacuum fluctuations. It should be noted, however, that a rigorous proof of this relation even in conventional field theories may be a highly non-trivial task (e.g. for thermal systems in curved spaces, see for instance [15, 16]). The equivalence of the canonical and Euclidean FE in QFT with spacetime noncommutativity (although with some heuristic assumptions) was discussed in [1].

3. Zeta-function regularization

In the zeta regularization scheme, the regularized EA (4) is represented by [17–19]
\[\Gamma_s^{(1)}[B] = -\frac{1}{2} \mu^{2s} \Gamma(s)((\xi, D^2) - 2\zeta(s, D)), \]
where \(\xi(s, D^2) \) and \(\zeta(s, D) \) are zeta-functions of each operator in (4), \(s \) is a renormalization parameter and \(\mu \) is introduced to render the mass dimension correct. The regularization is removed in the limit \(s \to 0 \) giving
\[\Gamma_s^{(1)}[B] \to -\frac{1}{2} \left(\frac{1}{s} - \gamma_E + \ln \mu^2 \right) \zeta_{tot}(0) - \frac{1}{2} \zeta_{tot}'(s), \]
where \(\gamma_E \) is the Euler constant and \(\zeta_{tot}(s) = \xi(s, D^2) - 2\zeta(s, D) \).

To deal with the zeta-functions we need to introduce the heat traces for the operators \(D^2 \) and \(D \), respectively. Recall that for a star-differential operator \(D \) it is defined as
\[K(t, D) = Tr_{L^2}(\exp(-tD) - \text{volume term}), \]
where \(t \) is the spectral (or ‘proper time’) parameter. Symbol \(Tr_{L^2} \) denotes \(L^2 \)-trace taken on the space of square integrable functions (on \(S^1 \times R^3 \) with periodic boundary conditions in our case) and may also involve the trace over vector, spinor etc. indices. The main technical result here is that on a (flat) NC manifold the heat trace (9) can be expanded in power series in small \(t \) as
\[K(t, D) = \sum_{n=1}^{\infty} t^{(n-4)/2} a_n(D). \]
For further details, we refer the interested reader to [1, 20–25]. Now, the zeta-function \(\zeta_{tot}(s) \) has the following integral representation:
\[\zeta_{tot}(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{dt}{t^{1-s}} (K^\xi(t, D^2) - 2K(t, D)), \]
and to analyse the structure of (8) one should actually evaluate the heat trace coefficients for each operator entering (4). For instance, taking into account the relation \(a_k(D) = \text{Res}_{s=(4-k)/2} \Gamma(s)\zeta(s, D) \), the pole part of (8) can be re-expressed through the heat trace coefficients as
\[\Gamma_s^{(1)}[B] = -\frac{1}{2} \left(\frac{1}{s} - \gamma_E + \ln \mu^2 \right) \left(a_4(D^2) - 2a_4(D) \right). \]
That is, on a four-dimensional manifold it is determined by the fourth heat trace coefficients.

4. Evaluation of the heat trace coefficients

To obtain the heat trace asymptotics of the non-minimal operator (9) it is convenient to use the calculating method by Endo [26] generalized on a NC case [27]. Namely, if the background
field satisfies the equation of motion, the following relation holds:

$$K^\xi(t, D^{(\xi)}) = K^{\xi-1}(t, D^{(\xi-1)}) - \int_t^\tau dt \int_M d^4x (\nabla_\mu \nabla'_\mu K(x, x'; \tau |\beta) - \text{volume term})|_{x=x'},$$

(13)

where $K(x, x'; \tau |\beta)$ is the thermal heat operator of the inverse ghost propagator. Note that RHS of this relation consists of the heat traces of minimal star-differential operators. Calculating procedure for such objects is standard and described, for instance, in [23]. In particular, it was found that the heat trace expansion for a generalized star-Laplacian contains coefficients of two types: the so-called planar and mixed heat trace coefficients. In our example, the first planar heat trace coefficient is given by

$$a^\text{pl}_{4 \text{tot}} := a_4(D^{(\xi)}) - 2a_4(D) = \frac{1}{16\pi^2} \left(-\frac{11}{3} \right) \int_M d^4x F_{\mu\nu} \star F_{\mu\nu}.$$

(14)

Evaluation of the mixed heat trace coefficients, however, is more involved. Here we inspect three different cases.

(i) Full-rank noncommutativity. To simplify computations we assume that the deformation matrix Θ has the canonical form:

$$\Theta = \begin{pmatrix} \theta S & 0 \\ 0 & \theta S \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

(15)

However, the reader should be warned that, in general, a reference frame where the matrix Θ has the block off-diagonal form (15) does not necessarily coincide with the reference frame of the heat bath. The first non-trivial mixed coefficient can now be easily evaluated and has the form (see also [1] for some technical details)

$$a^\text{mix}_{4 \text{tot}} = \frac{\xi^{-1/2}}{2\theta^2 \pi^{3/2}} \sum_{n \in \mathbb{Z}} \int_{R^2 \times S^1} dx_\perp dx_4 \int_{R^2 \times S^1} dy_\perp dy_4 \int_R dx^3 \times \sum_{\mu, \mu' \neq 3} B_\mu \left(x_1, x_2, x_3 + \frac{\pi |\partial |n}{\beta}; x^4 \right) B_\mu \left(y_1, y_2, x_3 - \frac{\pi |\partial |n}{\beta}; y^4 \right).$$

(16)

This coefficient is divergent as $\theta \to 0$ and/for $\theta \to 0$ that is a manifestation of the well-known UV/IR phenomenon [28–30].

(ii) Pure space/time noncommutativity ($\Theta^{0j} = 0$ and Θ^{i4} is directed along x_\parallel axis). In this case the first mixed heat trace coefficient is presented by

$$a^\text{mix}_{4 \text{tot}} = \frac{1}{2\beta^{3/2}} \sum_{n \in \mathbb{Z}} \int_{S^3 \times S^1} dx^4 dy^4 \int_{R^2} dx_\perp dx_4 \times B_4 \left(x_\perp, x_\parallel + \frac{\pi |\partial |n}{\beta}; x^4 \right) B_4 \left(x_\perp, x_\parallel - \frac{\pi |\partial |n}{\beta}; y^4 \right).$$

(17)

(iii) Space/space noncommutativity ($\Theta^{ij} \neq 0, \Theta^{i4} = 0$). One finds

$$a^\text{mix}_{4 \text{tot}} = \frac{(\ln \xi - 2)}{8\theta^2 \pi^3} \int_{S^3 \times R} dx^3 dx_4 \int_{R^2 \times R^2} dx_\perp dy_\perp \times \sum_{i=1,2} B_4(x_\perp, x_\parallel; x^4) B_4(y_\perp, x_\parallel; x^4).$$

(18)

From (12) we see that this coefficient does contribute to the pole term of the one-loop EA and, hence, affects renormalization of the model that will be explained in a moment.

2 Note that one has to eliminate volume divergences by adding appropriate terms, cf expression (9).

3 That is, which includes both left and right Moyal multiplications.
5. Renormalization and high-temperature asymptotics

Let us now look a little more closely at the divergent part of EA (12). Clearly, in the case of noncommutative compact dimension it is defined solely by the planar heat trace coefficient (14). That is, the pole part of the one-loop EA has the form

$$\Gamma^{\text{pole}}[B] = -\frac{1}{2\pi^2} \int d^4x \left(-\frac{(4\pi)^2}{6} F_{\mu\nu} \ast F_{\mu\nu} \right),$$

leading thus to the standard renormalization group. We see that the source of the UV divergence in (8) is associated with the original four-dimensional field theory and this divergence is removed by ordinary renormalization at zero temperature. However, the situation changes drastically when the compact coordinate is commutative: in this particular case the expression (19) contains an additional term due to the mixed heat trace coefficient (18). Although this new term is also temperature independent, it brings into EA a non-local and, moreover, gauge-fixing dependent divergence which cannot be eliminated by any renormalization prescription.

To obtain high-temperature asymptotics of the one-loop EA we rewrite (7) as

$$\Gamma^{(1)}_s[B] = \mu^{2n} \sum_{k=2}^{\infty} \frac{d}{dt} \left(\left(-\frac{1}{2} a_k(D^5) + a_k(D) \right) e^{-\frac{\beta}{2} \sum_{n=1}^{N} \left(-\frac{1}{2} a_k^{\text{planar}}(D^5) + a_k^{\text{planar}}(D) \right) \right),$$

where we retained all exponentially small terms in the planar sector as well. (They must be taken into account when the parameter β is small.) The evaluation of the planar part proceeds exactly as in the conventional thermal SU(2) gluodynamics giving

$$S_{\text{rel}}[B] + \Gamma^{(1)}_{\text{planar}}[B] \simeq \left(-\frac{1}{4g_R^2(T)} \int d^4x F_{\mu\nu} \ast F_{\mu\nu} \right) + \sum_{k=6}^\infty \left(\frac{\beta}{2} \right)^{2k-4} \left(a_k^{\text{planar}}(D^5) - 2 a_k^{\text{planar}}(D) \right) \zeta(2k-4) \Gamma(k-2),$$

from which one deduces high-temperature behaviour of NC U(1) effective coupling

$$g_R^2(T) = g_R^2 \left(1 + \frac{g_R^2}{4\pi^2} \frac{11}{3} \ln \left(T / T_0 \right) \right)^{-1}.$$ \hspace{1cm} (22)

It should be emphasized, however, that the formula (22) makes sense unless a compact dimension is commutative: as we have already seen, within space/space NC U(1) model one cannot renormalize the charge because of the non-planar contribution (18).

Now consider the non-planar part of EA. For the sake of definiteness let us focus on the pure space/time noncommutativity. First of all, we note that the expression (17) is valid whenever $\theta / \beta \neq 0$ holds. Hence, it is interesting to explore high-temperature regime when $\theta / \beta > C_0$, $C_0 \in R_+$. We assumed that the background field $B_{\theta} \in C^\infty(S^1 \times R^3)$ and, therefore, it should vanish exponentially fast at large distances. For $n \neq 0$ one estimates

$$B_{\theta} \left(x_1, x_2, z - \frac{\pi |\theta|}{\beta}; x_4 \right) B_{\theta} \left(y_1, y_2, z - \frac{\pi |\theta|}{\beta}; y_4 \right) \sim C_2 \exp \left(-C_1 \frac{|\theta|}{\beta} \right), \frac{|\theta|}{\beta} \gg C_0,$$

where C_1 is a positive constant which characterizes the fall-off of the gauge potential at large distances. Up to an inessential overall constant the contribution of the first mixed coefficient to the effective potential can be estimated as

$$a_3^{\text{tot}} = \frac{1 + \sqrt{\xi}}{2\beta^3} \int_{S^1 \times S^1} dx^4 \int_{R^3} dx B_{\theta}(x_1, x_2, x_3) B_{\theta}(x_4).$$ \hspace{1cm} (23)
Note that this expression is insensitive to the value of the deformation parameter. Moreover, since in the limit \(\beta \to 0 \) the main contribution to (23) comes from the zero bosonic modes, the mixed heat trace coefficients behave as \(\sim \beta C \), where \(C \) is some temperature-independent quantity. From the definition (6) it follows that, at least on the one-loop level, the non-planar part of EA provides the temperature-independent contribution to the Euclidean FE and therefore can be neglected in the high-temperature limit.

6. Conclusion

In this paper, we have investigated the one-loop quantum corrections to EA (resp. Euclidean FE) in NC thermal \(U(1) \) theory within the imaginary time formalism. Let us summarize the obtained results.

First, in the space/spacetime noncommutative QED, the renormalizability of the theory is ruined by the non-planar sector of the perturbative expansion. This phenomenon was already observed, for instance, in [13] (see also [24, 27]). At the same time, in the case of a noncommutative compact dimension the theory can be renormalized, at least on one-loop level, by the standard renormalization prescription.

Second, we calculated the heat trace asymptotics for the non-minimal photon kinetic operator on NC \(S^1 \times R^3 \). We saw, in particular, that the noncommutativity of the compact coordinate results in arising of additional odd-numbered coefficients in the heat trace expansion. Furthermore, in the case of pure space/time noncommutativity the first non-trivial mixed contribution to the heat trace appears in \(a_1^{\text{mixed}} \). Although this coefficient does not affect counterterms in the zeta-function regularization, it can lead to certain troubles in different regularization schemes, see [1] for further discussion.

Third, we obtain the high-temperature asymptotics of the one-loop Euclidean FE (6). It is rather remarkable that the non-planar sector does not contribute at high temperature for any type of noncommutativity. This seems to be in accordance with observations made in earlier works where a drastic reduction of the degrees of freedom in the non-planar part of FE was discovered [4, 5]. There is a subtlety, however, that one should keep in mind. Namely, if noncommutativity does not involve time, there are no difficulties in developing the Hamiltonian formalism for a NC theory and equivalence of the canonical and Euclidean free energies is proved by standard arguments [31]. Contrary to this, in the space/time NC theories there is no good definition of the canonical Hamiltonian and, consequently, of the canonical FE (5) although some progress in this direction has been made recently in [1].

Finally, an extension of our results to more general case of \(U(N) \) gauge symmetry can be done straightforwardly. Indeed, one can show that the mixed heat trace coefficients are completely determined by \(U(1) \) part of the model [27]. In the diagrammatic approach this implies the known fact that non-planar one-loop \(U(N) \) diagrams contribute only to the \(U(1) \) part of the theory [28, 32].

Acknowledgments

I am very grateful to Michael Bordag for inviting me and sponsoring my participation in workshop QFEXT07, Leipzig 2007. I wish to thank Dmitri Vassilevich for many elucidative comments and discussions on the ideas reported here.

4 Of course, this does not mean that the expression (4) possesses a smooth commutative limit: in obtaining high-temperature asymptotics for (23) we assumed \(|\theta| \neq 0 \).
References

[1] Strelchenko A V and Vassilevich D V 2007 Phys. Rev. D 76 065014
[2] Arcioni G and Vazquez-Mozo M A 2000 J. High Energy Phys. JHEP01(2000)028
[3] Arcioni G, Barbon J L F, Gomis J and Vazquez-Mozo M A 2000 J. High Energy Phys. JHEP06(2000)038
[4] Fischler W, Gorbatenov E, Kashani-Poor A, Paban S, Pouliot P and Gomis J 2000 J. High Energy Phys. JHEP05(2000)024
[5] Fischler W, Gorbatenov E, Kashani-Poor A, McNees R, Paban S and Pouliot P 2000 J. High Energy Phys. JHEP06(2000)032
[6] Landsteiner K, Lopez E and Tytgat M H G 2000 J. High Energy Phys. JHEP09(2000)027
[7] Landsteiner K, Lopez E and Tytgat M H G 2001 J. High Energy Phys. JHEP06(2001)055
[8] Brandt F T, Das A, Frenkel J and Taylor J C 2003 Phys. Rev. D 67 105010
[9] Brandt F T, Frenkel J and Muramoto C 2006 Nucl. Phys. B 754 146
[10] Brandt F T, Frenkel J and Muramoto C 2007 Phys. Lett. B 649 483
[11] Seiberg N, Susskind L and Tournolas N 2000 J. High Energy Phys. JHEP06(2000)044
[12] Gomis J and Mehen T 2000 Nucl. Phys. B 591 265
[13] Gayral V, Gracia-Bondia J M and Ruiz F R 2005 Phys. Lett. B 610 141
[14] Rivasseau V and Vignes-Tourneret F 2007 Renormalization of non-commutative field theories Preprint hep-th/0702066
[15] Fursaev D V 2001 Nucl. Phys. B 596 365
Fursaev D V 2003 Nucl. Phys. B 664 403 (erratum)
[16] Fursaev D and Zelnikov A 2001 Class. Quantum Grav. 18 3825
[17] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific)
[18] Kirsten K 2001 Spectral Functions in Mathematics and Physics (Boca Raton, FL: Chapman and Hall/CRC)
[19] Vassilevich D V 2003 Phys. Rep. 388 279
[20] Vassilevich D V 2004 Lett. Math. Phys. 67 185
[21] Gayral V and Ichoum B 2005 J. Math. Phys. 46 043503
[22] Gayral V 2005 Ann. Henri Poincaré 6 991
[23] Vassilevich D V 2005 J. High Energy Phys. JHEP08(2005)085
[24] Gayral V, Ichoum B and Vassilevich D V 2007 Commun. Math. Phys. 273 415
[25] Vassilevich D V 2007 Heat trace asymptotics on noncommutative spaces Preprint 0708.4209
[26] Endo R 1984 Prog. Theor. Phys. 71 1366
[27] Strelchenko A 2007 Int. J. Mod. Phys. A 22 181
[28] Minwalla S, Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys. JHEP02(2000)020
[29] Chepelev I and Roiban R 2001 J. High Energy Phys. JHEP03(2001)001
[30] Aref’eva I Y, Belov D M and Koshelev A S 2000 A note on UV/IR for noncommutative complex scalar field Preprint hep-th/0001215
[31] Dowker J S and Kennedy G 1978 J. Phys. A: Math. Gen. 11 895
[32] Armoni A 2001 Nucl. Phys. B 593 229