Morphological Plasticity in a Wild Freshwater Fish, Systomus Sarana (Cyprinidae) from India: A Glimpse Through Advanced Morphometric Toolkits

Deepmala Gupta
University of Lucknow Faculty of Science

Arvind Kumar Dwivedi
Barkatullah Vishwavidyalaya Faculty of Life Sciences

Madhu Tripathi (drmtripathi@gmail.com)
University of Lucknow Faculty of Science https://orcid.org/0000-0003-1618-4994

Research article

Keywords: Intraspecies diversity, Morphological variations, Systomus sarana, Landmark based analysis

DOI: https://doi.org/10.21203/rs.rs.35594/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Body morphology supposed to underpin a wide differences of animal performance that can be used to understand diversification of characters. Further, identifying fish population with unique shape due to variations in their morphometric characters enables better management of these subunits. Advanced statistical toolkits of morphometry called truss network system and geometric morphometrics have been increasingly used for detecting variations in morphological traits. Present study was carried out with the objective of determining whether there are morphological characteristics that separate freshwater fish *Systomus sarana* from different groups.

Methods

In the present study, 154 specimens of olive barb, *S. sarana* were collected from four distantly located rivers covering the northern (Ganga), southern (Godavari), central (Narmada) and eastern (Mahanadi) regions of India. Truss-network system and geometric morphometrics have been utilized. Fourteen landmarks were digitized uniformly on each specimen, In the present study, truss network system yielded size-corrected morphometric characters were subjected to univariate and multivariate statistical assessment.

Results

Analysis of variance (ANOVA) presented significant differences among 63 out of 90 variables ($p < 0.05$). Truss approach includes principal component analysis (PCA) and discriminant function analysis (DFA) while geometric approach includes PCA, DFA, canonical variate analysis (CVA), partial least square (PLS), the relative warp (RW) and wireframes. CVA extracted Mahalanobis and Procrustes distances among groups found to be highly significant ($p < 0.0001$). In linear DFA, the overall assignment of correctly classified individuals into their original groups was 86.2% for Ganga, 86.1% for the Godavari, 93.9% for the Narmada and 92.9% for Mahanadi population.

Conclusions

The results revealed significant variations in the morphometric characters which were reflected in the shape of different body features of the studied populations. Both methods revealed analogous results, and significant differences among groups in examined features. Our results suggest that *S. sarana* shows morphological plasticity across different rivers in India. This study supports the concept that geographical isolation among fish populations can lead to morphological variations.

Introduction

Morphologically similar populations thriving together in a region are not easily distinguishable. Therefore, it is essential to recognize characters that differentiate populations. Morphological characters are
capable of offering a foundation for population structure (Ihssen et al. 1981; Petrtyl et al. 2014). Further, the study of these characters with intends to differentiate fish population units has recently got much attention in ichthyology (Yusuf and Belduz 2009; Dwivedi 2019). Environmentally induced morphological variations provide clues related to fish population identities (Clayton 1981) which is essential from diverse perspectives including evolution, ecology, conservation, and also for managing water resources (AnvariFar et al. 2011). Morphological variations among populations can be assessed by traditional morphometric analysis (Turan 1999). Though this traditional approach is considered as a standard technique for species characterization, this method might not be useful for discriminate species when there is morphological plasticity (Takács et al. 2016). Advance statistical toolkits such as the truss network system and geometric morphometrics allow discrimination of species/population through the shape analysis of a whole or only fragment of structure to find the unidentified pattern of importance. These techniques have gained wide acceptance as tools in population studies and can potentially be used as low cost, accurate and precise tools, (Bookstein 1991; Rohlf 1990; Rohlf and Marcus 1993, Strauss and Bookstein 1982).

Interestingly, studies on intra-species morphological differentiation are essential in solving the problems related to species recognition, as it is agreed that insufficient information on intra-species geographic dissimilarities can lead to incorrect species identification (Ishihara 1987). Taxonomy is important to fishery scientists for the delineation of fish resources, and aids in developing balanced conservation strategies (Sangster et al. 2014). The taxonomic significance of the variation observed in the present study has to be assessed concerning the available taxonomic information on the species. Worldwide taxonomy of the *Puntius* including other Cyprinidae species has been dubious (Kortmulder 1972; Nagpure et al 2003; Kullander and Fang 2005; Balaraj and Basheer 2012; Sukham et al. 2015), and this has been the case for *S. sarana* in Asia. Hamilton in 1822 had described this species from the Ganga River and named *Cyprinus sarana*, and afterward, it was synonyms with *Puntius sarana*. Likewise, *Puntius sarana* have many synonyms assigned by various authors (*Puntius sarana sarana*, *Puntius sarana subnasutus*, *Puntius sarana spilurus*, *Puntius subnasutus*, *Systomus immaculatus*, *Barbodes sarana*, *Barbodes sarana subnasutus*, *Puntius saberi*, etc) these synonyms undoubtedly generate confusions in the identification of this species (Pethiyagoda 1991). So far five sub-species of *S. sarana* were identified worldwide; *P. sarana orphoides*, *P. sarana subnasutus* and *P. sarana sarana* from India and *P. sarana spilurus* from Sri Lanka (Irfan and Gunawardhara 2011). *S. sabnasutus* is referred to as *S. sarana*, although very recently it is categorized as a different sub-species (Biswal et al. 2018). These subspecies further adding taxonomic complexity of this species. Due to a lack of proper systematic studies and having phenotypic resemblance among subspecies, Pethiyagoda (1991) has recommended extensive population studies on these species by accompanying intra-species/population delineation studies (Talwar and Jhingran 1991, Irfan and Gunawickerma 2011).

Our organism of interest, *Systomus sarana* belong to the subfamily Barbinae, is a taxonomically diverse and complicated group of freshwater fish for studying morphological differences due to their wide distribution (Talwar and Jhingran 1991) and flipping systematic status i.e. many species formerly placed in *Puntius* have been moved to other genera (Kottelat 2013; Pethiyagoda et al. 2012; Raghavan et al.
It is characterized by a deep and moderately compressed body with a dorsal profile elevated. The maximum length of fish is 42.0 cm TL (FishBase). *Systomus sarana* (then allocated to *Puntius*) is an ecologically important, profitable, and cultivable candidate fish species (Gopakumar et al. 1999; Chakrabory et al. 2003). In India, this species is distributed widely excluding peninsular India-south of Krishna River and is also found in Afghanistan, Bangladesh, Bhutan, Nepal, and Pakistan (Talwar and Jhingran 1991). Previous studies have indicated that it is abundantly available however recent reports and observations indicate a decline in their wild population owing to their overexploitation (Hossain et al. 2009; Dahanukar 2010; Hussain and Mazid 2004). Consequently, considered as vulnerable species (Mijkerjee *et al.* 2002; Dahanukar 2010), some researchers also categorized them as critically endangered (Ameen et al. 2000; Hussain and Mazid 2004). Although unintentional selective fishing causing depletion of fish biodiversity hitherto, there is no published report on the fish population structure of *S. sarana* from Indian rivers based on morphometric characters. Moreover, only a little work has been done to delineate *S. sarana* population outside India (Irfan and Gunawickrama 2011; Siddik *et al.* 2016; Kabir *et al.* 2015).

Considering the above context, this study aims to find the morphological divergence of *S. sarana* populations from Ganga (North), Godavari (South), Mahanadi (East), and Narmada (Central) based on morphometric measurements by utilizing the following toolkits, truss network system and geometric morphometrics. This allows quantitative analysis of morphological divergences and may provide insight into microevolution.

Materials & Methods

Study area

For the present study, four rivers have been selected *viz.* Ganga (2600 km), Narmada (1312 km), Godavari (1465 km), and Mahanadi (900 km). The Ganga River originates in the Garhwal Himalayas from the Gaumukh glacier in Uttrakhand, India, and drains into the Sunderbans delta in the Bay of Bengal. The Narmada River originates from the Amarkantak, located in the Shahdol district of Madhya Pradesh, India and drains into the Arabian Sea. The Godavari River is also known as Dakshina Ganga, originating from the Nasik district of Maharashtra, India, and drained into the Bay of Bengal. The Mahanadi River, a major river in east-central India, originated Dandakaranya in Raipur district of Chhattisgarh, India empties itself into the Bay of Bengal. All the rivers taken into account are east flowing except the Narmada River, which is west-flowing.

Sample Collection

A total of 154 specimens of *S. sarana* were collected from Kanpur site of the river Ganga, Adilabad site of river Godavari, Haushangabad site of river Narmada, and Nadigaon site of Mahanadi river in two years duration (2016 to 2018). The specimens were caught before the breeding season and after the spawning
period to avoid a bias toward size difference. The fish samples were collected with the help of hired local fishermen. The identification of the fish was based on standard taxonomic keys of Talwar and Jhingaran (1991) and Jayaram (2010). Samples collection details and geographical coordinates of sites have been mentioned in Table 1 and Fig. 1.

Table 1

Rivers	Sampling sites	Site code	GPS location	Sample size
Ganga	Kanpur barrage, U.P.	GA	26.50°N 80.31°E	29
Godavari	Adilabad Telangana	GO	18.79°N 79° 90°E	36
Narmada	Haushangabad M.P.	NA	22.35°N 77.13°E	33
Mahanadi	Nadigaon Chhattisgarh	MA	21.70°N 83° 83.38°E	56

Digitization Of Samples And Morphometric Measurements

The freshly caught sampled specimens (only undamaged) were placed with the left side up on a water-resistant paper and the body posture and fins were teased into a natural position to make the landmark points visible. Each individual was labeled with a specific code for identification and archiving purposes. Images of the specimens were taken by a camera (Canon IXUS145), set on a tripod stand directly above the specimen and the camera lens was adjusted and each image included a scale to normalize the individual sizes and additional scaling was applied in tpsDig making use of the millimeter gridiron in the graph paper.

Landmark-based Truss Analysis

Fourteen homologous anatomical landmarks (Winans and Nishioka 1987) were selected for the analysis (Fig. 2). A box-truss network was developed to give 91 morphometric variables through interconnection among these landmarks. Software including tpsUtil, tpsDig (Rohlf 2006), and software PAST (Hammer et al. 2001) was employed for generating truss data from the digital images. Since the standard length (SL) of fish specimens were different, it was necessary to remove dissimilarities due to size variations (Reist 1985). The truss measurements were standardized to account for size variation through the method described by Elliott et al. (1995) to eliminate the size component from the shape measurements: \(\text{Madj} = M \cdot (\text{Ls}/\text{Lo})^b \), Where M denotes original measurement, Madj is the size-adjusted measurement, Lo is the SL of the fish, and Ls is the overall mean SL for all fish from all samples in each analysis. Parameter b was calculated for each character from the observed data as the slope of the regression of log M on log Lo. SL (character code 1–6) was excluded from the final analysis because SL was used as a basis for
transformation (Mamuris et al. 1998) and thus 90 morphometric variables were retained for further analysis. The transformed data were validated for efficiency by testing the significance of the correlation between standard length and the transformed variables. The SL was excluded from the final analysis. Univariate ANOVA was performed for each morphometric character to assess the significant variation among the four populations (Gomez–Rodriguez 2010). The transformed data representing characters that showed significant variation between populations were analyzed using PCA. This analysis was applied to determine the linear combinations of variables that responsible for a large amount of the variation in the data and to identify influential variables (Johnson and Wichern 1998). PCA plot was formed by using components that confirmed high variance. In PCA, Jolliffe's rule with eigenvalues of at least 0.7 was applied to retain principal components (Dunteman 1989) and factor loading greater than 0.30 is considered significant, 0.40 more important, and 0.50 or greater very significant (Nimalathasan 2009). In the present study, only those factors were considered as significant that having loadings above 0.50. The Wilks’ k was used to compare the differences. Further, a stepwise procedure was employed to lessen the number of variables to meet the requirement of a reduced set of characters for the DFA. Standardized canonical discriminant function coefficients and coefficients in the structure matrix were used as the criteria to identify the discriminating variables between two populations. DFA was used to assign individuals to their original group and to compute the percentage of correctly classified (PCC). Cross-validation (leave-one-out method) employing PCC was done to approximate the expected actual error rates of the classification functions. Statistical analyses were performed with the computer software programs MS-Excel (vers.2007), SPSS 16.0, and PAST 1.47.

Landmark-based Geometric Morphometric Analysis

Shape coordinates were superimposed to successfully eliminate the size effect, which was apparent from Procrustes analysis (Procrustes sums of squares: 0.363 and Tangent sums of squares: 0.361). Also, partial least square (PLS) revealed a non-significant covariance between superimposed shape and log centroid size \((R = 0.54; P > 0.001)\), resulting in overlap among populations (Fig. 4). The deformed wireframe of average shape also showed variations between individuals and between populations (Fig. 5). Relative warp (RW) analysis illustrated deformation in shape (Fig. 6) from the reference that corresponds to selected positions in the ordination. The deformed wireframe was drawn on the shape among four populations to interpret shape changes that support the RW analysis.

The PCA extracted 24 components with a 100.00% variance. The first two principal components (PCs) account for 40.22% of the total variance (22.48% for PC1, 17.74% for PC2). Overlap among the specimens obtained from four rivers is evident in the PCA plot of PC1 and PC2 (Fig. 7). A low level of variance and a high level of overlapping in the PCA demands further verification through CVA and DFA to determine shape variations. The CVA based upon 14 landmarks showed four groups with slight overlap among populations (Fig. 8). The larger part (82.98%) of the total variance (100.00%) was explained along the first two canonical variates (CVs): CV1 and CV2 explained 55.47% and 27.50% of the total variance, respectively, while CV3 explained only 17.016% of the total variance. CVA extracted Mahalanobis and
Procrustes distances among four groups found to be highly significant \((p < 0.0001) \) (Tables 6, 7). Classification results of CVA indicated that all the specimens of each group were allotted to their respective groups with a slight misclassification rate. The classification of individuals into their cross-validated groups showed a low level of mixing between the populations (Table 8; Fig. 9). These results go well together with those depicted by the deformed wireframe of average shape.

Table 6
Mahalanobis distances based on geometric morphometrics. Pair wise matrix of Mahalanobis distances among groups (upper diagonal) and \(p \) value (lower diagonal) of canonical variate analysis.

Groups	Ganga	Godavari	Narmada	Mahanadi
Ganga	5.8149	4.0786	3.9214	
Godavari	< .0001	4.1109	4.5639	
Narmada	< .0001	< .0001	3.3623	
Mahanadi	< .0001	< .0001	< .0001	

Table 7
Procrustes distances based on geometric morphometrics. Pair wise matrix of Procrustes distances among groups (upper diagonal) and \(p \) value (lower diagonal) of canonical variate analysis.

Groups	Ganga	Godavari	Narmada	Mahanadi
Ganga	0.0357	0.0272	0.0269	
Godavari	< .0001	0.0241	0.0265	
Narmada	< .0001	< .0001	0.0189	
Mahanadi	< .0001	< .0001	< .0001	
Table 8
Discriminant function analysis based on geometric morphometric. Misclassification of specimens between groups extracted from discriminant function analysis.

Classification	Groups	Ganga	Godavari	Mahanadi	Narmada
Validated	Ganga	0	2	0	
	Godavari	0	1	0	
	Mahanadi	1	1	0	
	Narmada	0	0	0	
Validated	Ganga	1	6	4	
	Godavari	4	4	2	
	Mahanadi	3	4	4	
	Narmada	3	1	3	

Results

Landmark-based truss analysis

After the allometric transformation, there was no significant correlation ($p > 0.05$) found between standardized truss measurements with the standard length (SL), indicating that the size effect had been effectively removed from the data. Hence, all the measurements were utilized for further calculations. Further, the morphometric characters did not differ significantly ($p > 0.05$) between both sexes, therefore the data for both sexes were pooled for all subsequent analyses. By applying ANOVA (one way) on 90 morphometric characters, only 63 showed a significant difference in their mean values ($p < 0.05$). Significant variables were subjected to principal component analysis (PCA) and DFA. PCA plot does not allow one to draw a conclusion about homogenous grouping based on visuals. By applying PCA, a total of 13 principal components were extracted explaining 93.311% of the total variance among populations. Principal component 1 (PC1) and PC2 contribute 24.412% and 19.028% of total variance respectively (Table 2). The high component loadings were from the characters (1–11, 1–12, 11–14, 6–12, 2–11, 6–11, 2–11, 12–14, 12–13, 11–13, 2–12, 1–13, 13–14, 6–13) to the first principal component, (4–13, 2–4, 3–4, 1–4, 4–14, 4–12, 4–6 and 4–11) to the second, 1–5, 5–14, 5–13, 2–5, 3–5, 5–12, 5–11, 5–8 and 5–9 for third component. The factor analysis extracted 6 factors having eigenvalues summed to ≥1. The results of factor analysis indicated that the first three factors together explained 89.6% of the total morphometric variation, with eigenvalues of 58.1, 28.8, and 13.1, respectively. Mahalanobis distances between the centroids of the clusters and the p-value of discriminant truss morphometric characters among four populations have been presented in Table 3.
Table 2

Eigenvalue, Percentage of variance, Cumulative percentage. Eigenvalues, percentages of variances, and cumulative percentages for the 13 principal components from a PCA in case of 63 morphometrics measurements from four populations of *Systomus sarana*.

Components	Initial Eigenvalues		
	Eigenvalue	Percentage of variance	Cumulative percentage
1	15.4	24.4	24.4
2	12.0	19.0	43.4
3	5.4	8.6	52.0
4	5.0	7.9	60.0
5	4.3	6.8	66.8
6	3.6	5.7	72.5
7	3.0	4.8	77.3
8	2.2	3.5	80.7
9	2.1	3.3	84.0
10	1.8	2.8	86.9
11	1.6	2.5	89.3
12	1.5	2.4	91.7
13	1.0	1.6	93.3

Table 3

Mahalanobis distances based on truss morphometrics. Pairwise matrix of Mahalanobis distances between the centroids of the population clusters (above diagonal) and corresponding p-values (below diagonal) from DFA of discriminant 63 truss-based morphometric characters distances among four populations of *Systomus sarana*.

Groups	Ganga	Godavari	Narmada	Mahanadi
Ganga				
Godavari	<.0001			
Narmada	<.0001	<.0001		
Mahanadi	<.0001	<.0001	<.0001	

The Wilks’ k test revealed significant differences in morphometric characters among four populations ($p > 0.001$). Forward stepwise discriminant analysis of all the significant variables produced thirteen
discriminating variables (Table 4). These variables or morphometric truss measurements were found to be the most important characters in distinguishing the selected populations. The linear discriminant analysis produced an average percentage correct classification (PCC) of 90.3% for morphometric characters indicating a high rate of correct classification of individuals into their original populations (Table 5). The percentage of correct classification ranged from 86.1% (Godavari) to 93.9% (Narmada). It was highest for the population of river Narmada followed by river Mahanadi (92.9%), river Ganga (86.2%), and lowest for river Godavari (86.1%). The results attained from the PCC cross-validation test were analogous to the results. Additionally, the plot of the discriminant variables showed a pattern that reflects successful discrimination among populations of four rivers (Fig. 3).
Table 4
Summary of morphological features differentiating populations. Thirteen linear measurements were of major importance in the delineation of these populations.

S.No.	Character Code	Morphological Feature	Body part
1	1–2	distance between anterior tip of snout at upper jaw to most posterior aspect of neurocranium	Head length 1
2	1–7	distance between anterior tip of snout at upper jaw to anterior attachment of ventral membrane from caudal fin	Body length
3	2–4	distance between most posterior aspect of neurocranium to end of dorsal fin	Mid body length 1
4	2–5	distance between most posterior aspect of neurocranium to anterior attachment of dorsal membrane from caudal fin	Mid Body length 2
5	2–10	distance between most posterior aspect of neurocranium to insertion of pelvic fin	Max. Body depth
6	2–11	distance between most posterior aspect of neurocranium to insertion of pectoral fin	Head depth
7	5–12	distance between anterior attachment of dorsal membrane from caudal fin to end of operculum	Mid diagonal length 1
8	5–14	distance between anterior attachment of dorsal membrane from caudal fin to anterior end of eye	Mid diagonal length 2
9	6–7	distance between posterior end of vertebrae column to anterior attachment of ventral membrane from caudal	Half base of caudal fin
10	6–8	distance between posterior end of vertebral column to end of anal fin	Caudal peduncle length
11	7–14	distance between anterior attachment of ventral membrane from caudal fin to anterior end of eye	Mid body length 3
12	11–12	distance between insertion of pectoral fin to end of operculum	Portion of head depth
13	11–13	distance between insertion of pectoral fin to posterior end of eye	Post orbital length
Table 5

Discriminant function analysis based on truss morphometric. Discriminant function analysis of on 13 truss-based morphometric distances characters among in four populations (90.3% of original grouped cases correctly classified and 83.8% of cross-validated grouped cases were correctly classified).

Predicted Group Membership	Species	Ganga	Godavari	Narmada	Mahanadi	Total
Original percentage (%)						
Ganga	86.2	3.4	3.4	6.9	100.0	
Godavari	2.8	86.1	5.6	5.6	100.0	
Narmada	3.0	3.0	93.9	.0	100.0	
Mahanadi	3.6	1.8	1.8	92.9	100.0	
Cross validated percentage (%)						
Ganga	72.4	6.9	3.4	17.2	100.0	
Godavari	2.8	80.6	8.3	8.3	100.0	
Narmada	3.0	6.1	90.9	.0	100.0	
Mahanadi	7.1	3.6	1.8	87.5	100.0	

Discussion

Several statistical methods have been employed to study morphological divergences among wild populations of *S. sarana* collected from different geographic regimes. This is the first study on the population delineation of *S. sarana* using truss network analysis with geometric morphometrics. The results revealed that heterogeneity exists among examined populations of *S. sarana* procured from the specific sites of rivers (Ganga, Godavari, Narmada, and Mahanadi). Significant variations were detected for most of the analyses. The PCA loadings (truss analysis) of principal components revealed distinctness between populations. Though, there was a slight overlap found in the characters which were examined among the four groups. This separation was corroborated by DFA (truss analysis), showed significant morphological heterogeneity among populations, the level of differentiation between most of them as evidenced by a slight overlap of statistical data on derived plots.

Using geometric morphometrics, CVA plot obtained, have shown a slight level of overlaps among groups with a high percentage of correct classification suggesting differentiation among the examined populations. The PCA (geometric analysis) and DFA (geometric analysis) further confirmed the morphological heterogeneity among populations of *S. sarana*. The higher misclassification (DFA) observed for the Ganga with Mahanadi River and least with the Narmada. The biological variations of morphometric characters based on DFA are majorly associated with head morphology, covering lateral body lengths and caudal peduncle regions. Shape differences have been visualized with the deformation grids using geometric morphometrics. Geometric morphometry-based deformations grids (wireframes and relative warps) of average shapes between populations correspond to the high values of statistical
distance between them and confirm the distinctness of populations in their immediate anatomical context.

Overall, the variations among the four groups in this study were largely owing to the dissimilarities of morphometric characters broadly associated to head, and body characteristics. However, the shape differences observed in this study presents little practical use in terms of discriminating fish populations in the field. The visualization of the body shape differences, associated with other groups of correlated morphological traits, allowed to obtain a clear diagnosis of fish morphology for each population (Viscosi and Cardini 2011; Orlofske and Baird 2014). Visualization tools might help to further study of the putative underlying mechanisms involved (Manacorda and Asurmendi 2018). The result of the present study is in line with other studies based on truss analysis (Dwivedi 2019; Khan et al. 2012; Mohaddasi et al. 2013a, Hanif et al. 2019) and geometric morphometrics (Mohaddasi et al. 2013b; Geladakis et al. 2018; Pérez-Quinonez et al. 2018) which have shown the fish species to have a distinctive morphology.

The highest percentage of correct classification for the Narmada River population indicates greater distinction from the other populations which may be possibly due to west word flow of Narmada River compared to east word flow of other rivers. Overall, the selected populations were geographically isolated from each-others which could have hindered the movement of fish from intermingling with populations in other rivers. Therefore, the variability of morphological characters among populations possibly accredited due to separate geographical locations, the distance between the rivers, as well as the environmental variability of the river experienced by each population which leads to the local adaptations (Paugy and Lévêque 1999, Pardo 2002). The morphological variation could probably be coupled with the variation of feeding regimes and habitat circumstances (Langerhans et al. 2007; Sajina et al. 2011; Drinan et al. 2012; Khan et al. 2012; Lostrom et al. 2015; Jearranaiprepame 2017). Additionally, different reports indicate variations of the whole fish body are mainly due to fish inhibiting in different flow regimes (Jearranaiprepame 2017; Shukla and Bhat 2017).

Earlier efforts have been made to differentiate S. sarana populations using traditional morphometry (Siddik, et al. 2016). In the case of genetic studies, S. sarana, have only been carried out in Bangladesh from three geographically distant locations, analyses on RAPD revealed some degrees of genetic diversity among populations (Kabir et al. 2015). Furthermore, the overall accuracy of population differentiation in the present study is comparable to that found in other studies for closely-related Indian fishes. Findings reported by Mir et al. (2013) and Shukla and Bhat (2017) indicating that the results of the present study are in agreement with previous studies. Contrary, Das et al. (2013) reported low morphometric divergences (truss-based study) despite Cirrhinus mrigala populations were collected from isolated geographic locations.

Morphological differentiation can enable individuals to survive with existing environmental variability (Senay et al. 2015). Fishes are excellent model systems for studies on inter as well as intra-specific divergences to understand ecological correlates of morphological diversifications. Some factors were assumed to be controlling the differences observed such as plasticity owing to habitat dissimilarities or
could be due to environment and genotype interactions. Earlier, it was assumed that the variation of morphometric characters was exclusively genetic, but recent studies have established its relation with environmental factors (Georga and Koumoundouros 2010; Nahar et al. 2015; Sharker et al. 2015) and role of epigenetics cannot be ruled out as suggested by many scientists, population differentiation associated with ecological factors have the main element as epigenetic (Felsenfeld 2014).

As mentioned above, intraspecific variability can have huge ecological effects (Fridley and Grime, 2010; Becks et al. 2010; Bolnick et al. 2011). Charles Darwin indicated that variations among individuals of species offer the raw materials for natural selection. All hereditary characters in the genotype are not expressed in the phenotype. Further, variation not attributable to genetic factors not necessarily is environmental. Interestingly, the environment is often made responsible for non-genetic variations in phenotypes but it could be because of meta-stable epigenetic regulation (Wong et al. 2005). Considering that morphological variations are raw materials, truss and geometric analysis techniques are the best approaches to delineate populations on the bases of morphological characters. Results from the present study show that geometric morphometrics can provide additional information for shape delineation between populations that might otherwise be unnoticed. Further, the use of both truss and geometric morphometrics can provide deeper insight into the pattern of shape variations. This study could not answer whether are the results of morphological plasticity, genetic difference, or interaction of either mechanisms or epigenetic related hence, to resolve this, additional studies such as common garden experiments and epigenetic and/or genetics studies can be performed. More precise results might be obtained if larger sample sizes with a greater geographical extent were available. Geometric morphometrics analyses that include other aspects of fish morphology could enhance the precision of results.

Conclusion

To summarize, we quantified the morphological variation of populations of S. sarana from four major rivers of India. The basic characteristics of discrimination are overall body shape majorly associated with head morphology, covering lateral body lengths and caudal peduncle regions. Body morphology shows variation and could separate most populations, observed morphological variations provide good evidence for intraspecies heterogeneity between S. sarana populations. The study suggests that the S. sarana distributed across selected Indian rivers shows morphological plasticity. The high degree of classification accuracy of these two approaches advocates their extension to other problematic species and highlights their importance as exploratory tools in morphological based population studies.

Declarations

Ethics approval and consent to participate Fish specimens were obtained from the wild, directly from the commercial catches. The collection sites of fish specimens collected were fell outside Protected Areas (PAs). Fish were captured by gill nets. Fish if alive were euthanized with MS222 (Sigma) anesthesia and transported to the laboratory on ice to avoid damage to its morphological characters. The Research
Ethics Committee of the University of Lucknow, Uttar Pradesh, India has permitted the design and implementation. *Systomus sarana* is not considered a protected or endangered species in India and no special permits were required for handling and studying this fish species. All persons occupied in the capture, handling, holding, and processing of fish were aptly trained for their specific tasks during the procedure. All applicable international, national, and departmental guidelines for the care and use of animals were followed.

Consent for publication not applicable

Availability of data and materials The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests The authors declare that they have no competing interests

Funding This study was supported by University Grant Commission- BSR Fellowship to first author (25-1/2014-15(BSR)/7-109/2007/(BSR) Dated 25 August, 2015)

Authors’ contributions D.G. initiated the research, and together with M.T. and A.K.D. outlined the study. D.G. collected the samples and performed all preliminary analysis, investigation, methodology. M.T. provided guidance, done project administration and supervised the study. D.G. and A.K.D. assisted with data curation, software, validation, visualization. D.G. wrote the original draft of the manuscript, revised and rewrote it. D.G., A.K.D. and M.T. reviewed and edited the manuscript.

Acknowledgements Authors are grateful to Head, Department of Zoology, Lucknow University, Lucknow, India for providing necessary laboratory facilities. The authors are also thankful to local fishermen for assistance with sample collection.

References

1. Ameen M, Islam MA, Nishat A. 2000. Red Book of Threatened Fishes of Bangladesh. IUCN The World Conservation Union, pp. 116.

2. AnvariFar H, Khyabani A, Farahmand H, Vatandoust S, AnvariFar H, Jahageerdar S. (2011) Detection of morphometric differentiation between isolated up- and downstream populations of Siah Mahi (*Capoeta capoeta gracilis*) (Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia 673: 41–52. https://doi.org/10.1007/s10750-011-0748-7.

3. Balaraj S, Basheer M. Genetic diversity among *Puntius sophore* complex using restriction fragment length polymorphism. Journal of Medical Allied Sciences. 2012;2:49–53.

4. Becks L, Ellner SP, Jones LE, Jr Hairston NG. Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol Lett. 2010;13:989–97. https://doi.org/10.1111/j.1461-0248.2010.01490.x.
5. Biswal JR, Singh RK, Lal KK, Mohindra V, Kumar R, Kumar RG, Basheer VS, Jena JK. Molecular and morphological evidences resolve taxonomic ambiguity between *Systomus sarana sarana* (Hamilton, 1822) and *S. sarana subnasutus* (Valenciennes) and suggest elevating them into distinct species. Mitochondrial DNA Part B. 2018;3:838–44. doi:10.1080/23802359.2018.1481775.

6. 10.1016/j.tree.2011.01.009
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VH, Schreiber SJ, Urban MC, Vasseur DA. (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26, 183–192 https://doi.org/10.1016/j.tree.2011.01.009 (2011).

7. Bookstein FL. (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univeristy Press, 435 pp.

8. Chakraborty BK, Miah MI, Mirza MJA, Habib MAB. Rearing and nursing of local Sarpunti, *Puntius sarana*, (Hamilton) at different stocking densities. Pak J Biol Sci. 2003;6:797–800. http://dx.doi.org/10.3923/pjbs.2003.797.800.

9. Clayton JW. The stock concept and the uncoupling of organismal and molecular evolution. Can J Fish Aquat Sci. 1981;38:1515–22.

10. Dahanukar N. *Systomus sarana*. The IUCN Red List of Threatened Species 2010: doi.org/10.2305/IUCN.UK.20104.RLTS.T166567A6237905.en. Accessed 27 June 2018.

11. https://

12. doi:10.1111/j.1600-0633.2012.00561.x
Drinan TJ, McGinnity P, Coughlan JP, Cross TF, Harrison SCS. (2012). Morphological variability of Atlantic salmon *Salmo salar* and brown trout *Salmo trutta* in different river environments *Ecology of Freshwater Fish* 21, 420–432. doi.org/10.1111/j.1600-0633.2012.00561.x.

13. Dunteman GH. Principal component analysis. Newbury Park: Sage Publications; 1989.

14. Dwivedi AK. Morphometric variations between seasonal migrants of anadromous shad *Tenualosa ilisha* (Hamilton, 1822) from Hooghly Estuary, India. Mar Freshwater Res. 2019;70:1427–35. https://doi.org/10.1071/MF19004.

15. Elliott NG, Haskard K, Koslow JA. Morphometric analysis of orange roughy (*Hoplostethus atlanticus*) off the continental slope of southern Australia *J Fish Biol*. 1995;46:202–20. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x.

16. Felsenfeld GA. Brief History of Epigenetics. Cold Spring Harb Perspect Biol. 2014;6:a018200. https://doi:10.1101/cshperspect.a018200.

17. Fridley JD, Grime JP. Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology. 2010;91:2272–83. https://doi.org/10.1890/09-1240.1.
18. Geladakis G, Nikolioudakis N, Koumoundouros G, Somarakis S. Morphometric discrimination of pelagic fish stocks challenged by variation in body condition. ICES J Mar Sci. 2018;75:711–8. https://doi.org/10.1093/icesjms/fsx186.

19. Georga I, Koumoundouros G. Thermally induced plasticity of body shape in adult zebrafish *Danio rerio* (Hamilton, 1822). J Morphol. 2010;271:1319–27. https://doi.org/10.1002/jmor.10874.

20. Gomez–Rodriguez M, Leskovec J, Krause A. (2010) Inferring Networks of Diffusion and Influence. In KDD ‘10: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining 1019–1028 pp.

21. Gopakumar K, Ayyappan S, Jena JK, Sahoo SK, Sarkar SK, Satapathy BB, Nayak PK. National Freshwater Aquaculture Development Plan. India: Central Institute of Freshwater Aquaculture, Bhubaneswar; 1999. 75 pp.

22. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron. 2001;4:9 pp.

23. Hanif MA, Chaklader MR, Siddik MAB, Nahar A, Foyal MJ, Kleindienst R. Morphological variation of gizzard shad, *Anodontostoma chacunda* (Hamilton, 1822) based on truss network model. Regional Stud Mar Sci. 2019;25:100442. https://doi.org/10.1016/j.rsma.2018.100442.

24. Hossain MY, Ohtomi J, Ahmed ZF. Morphometric, meristic characteristics and conservation of the threatened fish, *Puntius sarana* (Hamilton, 1822) (Cyprinidae) in the Ganges River, northwestern Bangladesh. Turk J Fish Aquat Sc. 2009;9:223–5. http://doi. 10.4194/trjfas.2009.0215.

25. Hussain MG, Mazid MA. Carp genetic resources of Bangladesh. In: Penman D, Gupta MV, Dey M, editors. Carp Genetic Resources for Aquaculture in Asia. Penang: World Fish Center; 2004.

26. Ihssen PE, Booke HE, Casselman JM, McGlade JM, Payn NR, Utter EM. Stock identification: materials and methods. Can J Fish Aquat Sci. 1981;38:1838–55.

27. Irfan FI, Gunawickrama KBS. Osteological variation of the olive barb *Puntius sarana* (Cyprinidae) in Sri Lanka. J Natl Sci Found Sri. 2011;39:121–8.

28. Ishihara T. The Euler characteristics and Weyl's curvature invariants of submanifolds in spheres. Journal of Mathematical Society of Japan. 1987;39:247–56. doi:10.2969/jmsj/03920247.

29. Jayaram KC. The freshwater fishes of the Indian region. 2nd ed. Delhi: Narendra Publishing House; 2010.

30. Jearranaipreame P. Morphological differentiation among isolated populations of dwarf snakehead fish, *Channa gachua* (Hamilton, 1822) using truss network analysis. Acta Biologica Szegediensis. 2017;61:119–28.

31. Johnson RA, Wichern DW. (1998) Applied Multivariate Statistical Analysis, Fourth Edition, Prentice-Hall, New Jersey. 816 pp.

32. Kabir A, Habib MA, Hossain A, Mandal SC. Genetic diversity of olive barb (*Systomus sarana*, Hamilton, 1822) from different locations of Bangladesh. Croat J Fish. 2015;73:6–12. http://dx.doi.org/10.14798/73.1.776.
33. Khan MA, Miyan K, Khan S. Morphometric variation of snakehead fish, *Channa punctatus*, populations from three rivers. J Appl Ichthyol. 2012;28:154–5. https://doi.org/10.1111/j.1439-0426.2012.02058.x.

34. Khan MA, Miyan K, Khan S. Morphometric variation of snakehead fish, *Channa punctatus*, populations from three Indian rivers. J Appl Ichthyol. 2013;29:637–42.

35. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11:353–7. http://dx.doi.org/10.1111/j.1755-0998.2010.02924.x.

36. Kortmulder K. (1972). A comparative study in colour patterns and behaviour in seven Asiatic Barbus species (Cyprinidae, Ostariophysi, Osteichthyes). A progress report. Behaviour, Leiden, EJ Brill. pp. III, V-XI, 1–331.

37. Kottelat M. The Fishes of the Inland Waters of Southeast Asia: A Catalogue and Core Bibliography of the Fishes Known to Occur in Freshwaters, Mangroves and Estuaries. *Raffles Bull Zool* Supplement No. 2013;27:1–663.

38. Kullander SO, Fang F. Two new species of *Puntius* from northern Myanmar (Teleostei: Cyprinidae). Copeia. 2005;2:290–302.

39. Langerhans RB, Gifford ME, Joseph EO. Ecological speciation in *Gambusia* fishes. Evolution. 2007;61:2056–74.

40. Lostrom S, Evans JP, Grierson PF, Collin SP, Davies PM, Kelley JL. Linking stream ecology with morphological variability in a native freshwater fish from semi–arid Australia. Ecology Evolution. 2015;5:3272–87. doi:10.1002/ece3.1590.

41. Mamuris Z, Apostolidis AP, Panagiotaki P, Theodorou AJ, Triantaphyllidis C. Morphological variation between red mullet populations in Greece. J Fish Biol. 1998;52:107–17. https://doi.org/10.1111/j.1095-8649.1998.tb01556.x.

42. Manacorda CA, Asurmendi S. Arabidopsis phenotyping through geometric morphometrics. GigaScience. 2018;7:1–20.

43. Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. London: Academic Press; 1979. https://doi.org/10.1002/bimj.4710240520.

44. Mir JI, Sarkar UK, Dwivedi AK, Gusain OP, Jena JK. Stock structure analysis of *Labeo rohita* (Hamilton, 1822) across the Ganga basin (India) using a truss network system. J Appl Ichthyol. 2013;29:1097–103. https://doi. 10.1111/jai.12141.

45. Mohaddasi M, Shabanipour N, Abdolmaleki S. Morphometric variation among four populations of Shemaya (*Alburnus chalcoides*) in the south of Caspian Sea using truss network. J Basic Appl Zool. 2013a;66:87–92. https://doi.org/10.1016/j.jobaz.2013.09.001.

46. Mohaddasi M, Shabanipour N, Eagderi S, Yazdi A. Habitat-associated morphological divergence in four Shemaya, *Alburnus chalcoides* (Actinopterygii: Cyprinidae) populations in the southern Caspian Sea using geometrics analysis. Int J Aquat Biol. 2013b;1:82–92.

47. Nagpure NS, Kushwaha B, Srivastava SK, Kumar R, Gopalakrishnan A, Basheer VS, Verma MS. Characterization of endemic fish species from Western Ghats, *Labeo dussumieri, Horabagrus*
brachysoma, and Puntius filamentosus using Cytogenetic markers. Nucleus. 2003;46:110–4.
48. Nahar A, Siddik MAB, Alam MA, Chaklader MR. Population genetic structure of paradise threadfin Polynemus paradiseus (Linnaeus, 1758) revealed by allozyme marker. Int J Zool Res. 2015;11:48–56. http://dx.doi.org/10.3923/ijzr.2015.48.56.
49. Nimalathasan B. (2009). Profitability of listed pharmaceutical companies in Bangladesh: An inter and intra comparison of AMBEE and IBN SINA Companies Ltd, Economic and Administrative series. 3: 139–148.
50. Orlofske JM, Baird DJ. A geometric morphometric approach to establish body-shape trait criteria for aquatic insects. Freshwater Science. 2014;33:978–94.
51. Pardo R. Diferenciación morfológica de poblaciones de Trichomycterus areolatus Valenciennes, 1846 (Pisces: Siluriformes: Trichomycteridae) de Chile. Gayana. 2002;66:203–5. https://doi.org/10.4067/S0717-65382002000200015.
52. Paugy D, Lévèque C. Taxinomie et systématique. In: Lévèque C, Paugy D, editors. Les poissons des eaux continentales africaines. Diversité, écologie et utilisation par l’homme. Paris: IRD; 1999. pp. 97–119.
53. Pérez-Quiñonez CI, Quiñonez-Velázquez C, GarcíaRodríguez FJ. Detecting Opisthonema libertate (Günther, 1867) morphological stocks in northwestern coast of Mexico using geometric morphometrics based on body and otolith shape. Lat Am J Aqua Res. 2018;46:779–90. http://dx.doi.org/10.3856/vol46-issue4-fulltext-15.
54. Pethiyagoda R, Meegaskumbura M, Maduwage K. A synopsis of the South Asian fishes referred to Puntius (Pisces: Cyprinidae). Ichthyol Explor Freshw. 2012;23:69–95.
55. Pethiyagoda R. (1991). Freshwater fishes of Sri Lanka. Wildlife Heritage Trust of Sri Lanka, Colombo 8, 362 pp.
56. Petrytl M, Kalous L, Memiš D. Comparison of manual measurements and computer-assisted image analysis in fish morphometry. Turk J Vet Anim Sci. 2014;38:88–94. https://doi:10.3906/vet-1209-9.
57. Raghavan R, Dahanukar N, Tlusty MF, Rhyne AL, Kumar KK, Molur S, Rosser AM. Uncovering an obscure trade: threatened freshwater fishes and the aquarium pet markets. Biol Conserv. 2013;164:158–69. https://doi.org/10.1016/j.biocon.2013.04.019.
58. Reist JD. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool. 1985;63:1429–39.
59. Rohlf FJ. TPS Dig, version 2.04. Stony Brook: State University of New York, Department of Ecology and Evolution; 2005.
60. Rohlf FJ, Slice D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst Biol. 1990;39:40–59. https://doi:10.2307/2992207.
61. Rohlf FJ. (1990). Morphometrics. Annual Review of Ecology and Systematics. 21: 299–316.
62. Rohlf FJ. TPS Dig, Digitize Landmarks and Outlines, Version 2.05. Stony Brook. NY: Department of Ecology and Evolution, State University of New York; 2006.
63. Rohlf FJ. Relative warps. In: Ecology and Evolution. New York: State University of New York at Stony Brook, Stony Brook; 2010.

64. Rohlf FJ, Corti M. Use of two–block partial least–squares to study covariation in shape. Syst Biol. 2000;49:740–53. https://doi.org/10.1080/106351500750049806.

65. Rohlf FJ, Marcus LF. A revolution in morphometrics. Trends Ecol Evol. 1993;8:129–32. https://doi.org/10.1371/journal.pone.0157890.

66. Sajina AM, Chakraborty SK, Jaiswar AK, Pazhayamadam DG, Deepa S. Stock structure analysis of *Megalaspis cordyla* (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fish Res. 2011;108:100–5.

67. Sangster G, Luksenburg JA. (2014). Declining rates of species described per taxonomist: slowdown of progress or a side effect of improved quality in taxonomy? Syst Biol 64, 144–51. doi.org/10.1093/sysbio/syu069.

68. Senay C, Boisclair D, Peres-Neto PR. Habitat-based polymorphism is common in stream fishes. J Anim Ecol. 2015;84:219–27. https://doi.org/10.1111/1365-2656.12269.

69. Sharker MR, Siddik MAB, Nahar AM, Shahjahan AA, Faroque. Genetic differentiation of wild and hatchery populations of Indian major carp *Cirrhinus cirrhosis* in Bangladesh. J Environ Biol. 2015;36:1223–7.

70. Shukla R, Bhat A. Morphological divergences and ecological correlates among wild populations of zebrafish (*Danio rerio*). Environ Biol Fishes. 2017;100:251–64. https://doi.org/10.1007/s10641-017-0576-3.

71. Siddik MAB, Chaklader MR, Hanif MA, Islam MA, Sharker MR, Rahman M. Stock identification of critically endangered olive barb, *Puntius sarana* (Hamilton, 1822) with emphasis on management implications. J Aquac Res Development. 2016;7:411. http://doi. 10.4172/2155-9546.1000411.

72. Strauss RE, Bookstein FL. The truss: body form reconstructions in morphometrics. Syst Biol. 1982;31:113–35.

73. Sukham S, Chingakham B, Thoidingjam L, Waikhom G, Kumar R, Kushwaha B. Cytogenetic characterization of *Pethia meingangbii* (Arunkumar and Tombi, 2003) (Cypriniformes: Cyprinidae): karyotypic evolutionary and taxonomic perspectives. International Journal of Research in Fisheries Aquaculture. 2015;5:156–62.

74. Takács P, Vitál Z, Ferincz Á, Staszny Á. Repeatability, Reproducibility, Separative Power and Subjectivity of Different Fish Morphometric Analysis Methods. PLOS ONE. 2016;11:e0157890. https://doi.org/10.1371/journal.pone.0157890.

75. Talwar PK, Jhingran AG. Inland Fishes of India and Adjacent Countries. New Delhi: Oxford-IBH Publishing Co. Pvt. Ltd.; 1991. 1158 p.

76. Turan C. A note on the examination of morphometric differentiation among fish populations: the truss system. Turk J Zool. 1999;23:259–63.

77. Viscosi V, Cardini A. Leaf Morphology, Taxonomy and Geometric Morphometrics: A simplified protocol for beginners. PLoS One. 2011;6:e25630. doi:org/doi:10.1371/journal.pone.0025630.
78. Winans GA, Nishioka RS. A multivariate description of change in body shape of coho salmon (*Oncorhynchus kisutch*) during smoltification. Aquaculture. 1987;66:235–45. https://doi.org/10.1016/0044-8486(87)90109-8.

79. Wong AHC, Irving IG, Arturas P. Morphological differences in genetically identical organisms: the epigenetic perspective. Hum Mol Gen. 2005;1:R11–8. https://doi.org/10.1093/hmg/ddi116.

80. Yusuf B, Belduz AO. Morphological Variation among Atlantic Horse Mackerel, *Trachurus trachurus* Populations from Turkish Coastal Waters. Turk J Vet Anim Sci. 2009;8:511–7.

81. Zelditch ML, Swiderski DL, Sheets HD, Fink WL. Geometric morphometrics for biologists: a primer. London: Elsevier Academic Press; 2004.

Figures

![Map depicting sampling sites for the S. sarana populations from four rivers of India. (Sampling sites; 1: Ganga; 2: Godavari; 3: Narmada; 4: Mahanadi). The map was designed by Deepmala Gupta](image)

Figure 1

Map depicting sampling sites for the S. sarana populations from four rivers of India. (Sampling sites; 1: Ganga; 2: Godavari; 3: Narmada; 4: Mahanadi). The map was designed by Deepmala Gupta
Figure 2

Fourteen landmarks employed for analysis of morphological variation in S. sarana. Landmarks refer to: (1) anterior tip of snout at upper jaw (2) most posterior aspect of neurocranium (beginning of scaled nape) (3) origin of dorsal fin (4) end of dorsal fin (5) anterior attachment of dorsal membrane from caudal fin (6) posterior end of vertebrae column (7) anterior attachment of ventral membrane from caudal fin (8) end of anal fin (9) origin of anal fin (10) insertion of pelvic fin (11) insertion of pectoral fin (12) end of operculum (13) posterior end of eye (14) anterior end of eye
Figure 3

Discriminant function plot based on DFA of 13 truss-based morphometric distances variables. (Group Centroids; 1: Ganga; 2: Godavari; 3: Narmada; 4: Mahanadi)
Figure 4

Scatter plot of the partial least square analysis in S. Sarana computed on shape (Block1 PLS1) and size (Block2 PLS1) variables
Figure 5

Deformation grid of wireframe graph showing the variation of the body shapes among populations of S. sarana (Light Blue: first river of each pair, Dark blue: second river of pair)
Figure 6

Deformation grid of relative warps graph showing the variation of the body shapes among populations of S. sarana

Figure 7

Plot of principal component analysis for S. sarana populations showing loadings of each sample on the first two principal components
Figure 8

Plot of canonical variate analysis for S. sarana populations showing frequency of specimen distribution in respective group on the first two axis
Figure 9

Discriminant function analysis from geometric morphometric variables showing original and cross-validation bar plots of S. sarana body shape between populations (Ganga- Godavari, Ganga-Narmada, Ganga-Mahanadi, Godavari-Narmada, Godavari-Mahanadi, Mahanadi-Narmada)