On the Scalar Manifold of Exceptional Supergravity

Sergio L. Cacciatori1,4, Bianca L. Cerchiai2,4, and Alessio Marrani3

1Dipartimento di Scienze ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
sergio.cacciatori@uninsubria.it

2Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
bianca.cerchiai@unimi.it

3Physics Department, Theory Unit, CERN, CH 1211, Geneva 23, Switzerland
alessio.marrani@cern.ch

4INFN, Sezione di Milano
Via Celoria, 16, 20133 Milano, Italy

Abstract

We construct two parametrizations of the non compact exceptional Lie group $G = E_7(-25)$, based on a fibration which has the maximal compact subgroup $K = E_6 \times U(1)/Z_3$ as a fiber. It is well known that G plays an important role in the $\mathcal{N} = 2$ $d = 4$ magic exceptional supergravity, where it describes the U-duality of the theory and where the symmetric space $\mathcal{M} = G/K$ gives the vector multiplets’ scalar manifold.

First, by making use of the exponential map, we compute a realization of G/K, that is based on the E_6 invariant d-tensor, and hence exhibits the maximal possible manifest $[(E_6 \times U(1))/Z_3]$-covariance. This provides a basis for the corresponding supergravity theory, which is the analogue of the Calabi-Vesentini coordinates.

Then we study the Iwasawa decomposition. Its main feature is that it is $SO(8)$-covariant and therefore it highlights the role of triality. Along the way we analyze the relevant chain of maximal embeddings which leads to $SO(8)$.

It is worth noticing that being based on the properties of a “mixed” Freudenthal-Tits magic square, the whole procedure can be generalized to a broader class of groups of type E_7.

Talk given at the XVII European Workshop on String Theory, held at the University of Padua, September 5-9, 2011
1 The “mixed” magic square and the 56 of the Lie algebra \(\mathfrak{e}_7(-25) \)

Exceptional Lie groups act as symmetries in many physical systems. In particular, non compact forms of the group \(E_7 \) enter as U-duality of \(d = 3 \) and \(d = 4 \) supergravity theories. Here we focus on the \(\mathcal{N} = 2 \) \(d = 4 \) magic exceptional supergravity, where the relevant real form is \(G = E_7(-25) \).

As the first step we need to construct the Lie algebra \(\mathfrak{e}_7(-25) \). To this aim, we are going to follow the technique outlined in Sec. 7 of [1], which is based on the non-symmetric “mixed” magic square [2][3][4]:

Table 1: The “mixed” magic square
\(\mathbb{R} \)
\(SO(3) \)
\(SU(3) \)
\(Sp(6, \mathbb{R}) \)
\(F_{4(4)} \)

The rows and columns contain the division algebras of the real numbers \(\mathbb{R} \), the complex numbers \(\mathbb{C} \), the quaternions \(\mathbb{H} \), the octonions \(\mathbb{O} \) and their split forms \(\mathbb{H}_S \) and \(\mathbb{O}_S \).

Then the Tits formula gives the Lie algebra \(\mathcal{L} \) corresponding to row \(\mathbb{A} \) and column \(\mathbb{B} \) as [4]:

\[
\mathcal{L} (\mathbb{A}, \mathbb{B}) = \text{Der} (\mathbb{A}) \oplus \text{Der} (\mathfrak{J}_3 (\mathbb{B})) + (\mathbb{A} \times \mathfrak{J}_3' (\mathbb{B})).
\]

Here, the symbol \(\oplus \) denotes direct sum of algebras, whereas \(\times \) stands for direct sum of vector spaces. Furthermore, \(\text{Der} \) means the linear derivations, \(\mathfrak{J}_3 (\mathbb{B}) \) denotes the rank-3 Jordan algebra on \(\mathbb{B} \), and the priming amounts to considering only traceless elements. One of the main ingredients entering in the last term is the Lie product, which extends the multiplication to \(\mathbb{A} \times \mathfrak{J}_3' (\mathbb{B}) \). Its explicit expression for \(\mathbb{A} = \mathbb{H}_S \) and \(\mathbb{B} = \mathbb{O} \) can be found e.g. in [5].

For the Lie algebra of \(E_7(-25) \) the Tits formula [1] yields:

\[
\mathfrak{e}_{7(-25)} = \mathcal{L} (\mathbb{H}_S, \mathbb{O}) = \text{Der} (\mathbb{H}_S \oplus \text{Der} (\mathfrak{J}_3 (\mathbb{O}))) \oplus (\mathbb{H}_S \times \mathfrak{J}_3' (\mathbb{O})) = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{f}_4 + (\mathbb{H}_S \times \mathfrak{J}_3' (\mathbb{O})).
\]

The second step is to identify the subalgebra \(\mathfrak{R} \) generating the maximal compact subgroup \(K := (E_{6(-78)} \times U(1))/\mathbb{Z}_3 \) of \(E_{7(-25)} \). This can be achieved by using the Tits formula [1] once more to compute the manifestly \(\mathfrak{f}_4 \)-covariant expression for \(\mathfrak{e}_{6(-78)} \):

\[
\mathfrak{e}_{6(-78)} = \mathcal{L} (\mathbb{C}, \mathbb{O}) = \mathcal{L} (\mathbb{R}, \mathbb{O}) + (\mathbb{I} \times \mathfrak{J}_3' (\mathbb{O})) = \text{Der} (\mathfrak{J}_3 (\mathbb{O})) + (\mathbb{I} \times \mathfrak{J}_3' (\mathbb{O})) = \mathfrak{f}_4 + (\mathbb{I} \times \mathfrak{J}_3' (\mathbb{O})),
\]

where we are picking the only imaginary unit \(i \in \mathbb{H}_S \) which satisfies \(i^2 = -1 \). Thus, we obtain:

\[
\mathfrak{R} = \mathfrak{ad}_i + \text{Der} (\mathfrak{J}_3 (\mathbb{O})) + (\mathbb{I} \times \mathfrak{J}_3' (\mathbb{O})),
\]

with \(\mathfrak{ad}_i \in \mathbb{H}_S \) the adjoint action of \(i \), generating the maximal compact subgroup \(U(1) \) of the group \(SL(2, \mathbb{R}) \) appearing in [2].

An explicit construction of the matrices \(\phi_I, I = 1, \ldots, 78 \), realizing the \(\mathfrak{e}_{6(-78)} \) subalgebra in its irreducible representation \(\text{Fund} = 27 \) has been performed e.g. in Sec. 2.1 of [5] by making use of [3] and of the explicit expression of the \(f_4(-52) \) in its irrep. \(\text{Fund} = 26 \) previously computed in [7].

Finally, by putting together all these algebraic objects, we find that an explicit symplectic realization of the Lie algebra \(\mathfrak{e}_{7(-25)} \) in its irreducible representation \(\text{Fund} = 56 \) is as follows [8].

The generators of the maximal compact subgroup \(K \) (antihermitian matrices):

\[
\mathfrak{e}_{6(-78)} : \quad Y_I = \begin{pmatrix}
\phi_I & 0 & 0 & 0 \\
\overrightarrow{\mathcal{T}} & 0 & 0 & 0 \\
0 & \overrightarrow{\mathcal{T}} & -\phi_I & 0 \\
0 & 0 & \mathcal{T} & 0 \\
\end{pmatrix}, \quad I = 1, \ldots, 78
\]
The generators of the coset $M = G/K$ (hermitian matrices):

$$u(1): \quad Y_{79} = \begin{pmatrix}
0_{27} & 0_{27} & 2iA_{\alpha} & i\sqrt{2} \bar{\varphi}_{\alpha} \\
-i\sqrt{2} & 0_{27} & 0 & 0 \\
i\sqrt{2} & 0_{27} & -i\sqrt{2} & 0 \\
0_{27} & 0_{27} & i\sqrt{2} & 0 \\
0_{27} & 0_{27} & 0 & i\sqrt{2} \\
0_{27} & 0_{27} & 0 & 0 \end{pmatrix};$$

(6)

The generators of the coset $M = G/K$ (hermitian matrices):

$$Y_{\alpha +79} = \frac{1}{2} \begin{pmatrix}
0_{27} & 0_{27} & 2iA_{\alpha} & i\sqrt{2} \bar{\varphi}_{\alpha} \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \end{pmatrix}, \quad \alpha = 1, \ldots, 27;$$

(7)

$$Y_{\alpha +106} = \frac{1}{2} \begin{pmatrix}
0_{27} & 0_{27} & -2A_{\alpha} & \sqrt{2} \bar{\varphi}_{\alpha} \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \\
0_{27} & 0_{27} & 0 & 0 \end{pmatrix}, \quad \alpha = 1, \ldots, 27.$$

(8)

Here I_n is the $n \times n$ identity matrix, 0_{27} is the 27×27 null matrix, $\mathbf{0}_n$ is the zero vector in \mathbb{R}^n, and $\bar{\varphi}_{\alpha}, \alpha = 1, \ldots, 27$, is the canonical basis of \mathbb{R}^{27}.

The matrices A_{α} are defined in terms of the d-tensor of the 27 of $E_6(-78)$. There is a cubic form, which is defined for any $j_1, j_2, j_3 \in \mathfrak{f} \mathfrak{d}(\mathbb{O})$ as $[9, 10, 11]$:

$$\text{Det}(j_1, j_2, j_3) := \frac{1}{3!} \text{Tr}(j_1 \circ j_2 \circ j_3) + \frac{1}{6!} \text{Tr}(j_1) \text{Tr}(j_2) \text{Tr}(j_3) - \frac{1}{6} \left(\text{Tr}(j_1) \text{Tr}(j_2 \circ j_3) + \text{cyclic perm.} \right);$$

(9)

where \circ is the product in $\mathfrak{f} \mathfrak{d}(\mathbb{O})$. By choosing a basis $\{j_{\alpha}\}_{\alpha=1,\ldots,26}$ of $\mathfrak{f} \mathfrak{d}(\mathbb{O})$ normalized as $\langle j_{\alpha}, j_{\beta} \rangle := \text{Tr}(j_{\alpha} \circ j_{\beta}) = 2\delta_{\alpha\beta}$, a completion to a basis for $\mathfrak{f} \mathfrak{d}(\mathbb{O})$ can be obtained by adding $j_{27} = \sqrt{\frac{2}{3}} I_3$. Then the matrices A_{α}'s are 27×27 symmetric matrices, whose components, explicitly computed in $[5]$, satisfy the following relation $[9]$

$$(A_{\alpha})^3 = \frac{3}{2} \text{Det}(j_{\alpha}, j_\gamma, j_\beta) =: \frac{1}{\sqrt{2}} d_{\alpha\gamma\beta},$$

(10)

where $d_{\alpha\gamma\beta} = d_{(\alpha\gamma\beta)}$ is the totally symmetric rank-3 invariant d-tensor of the 27 of of $E_6(-78)$, with a normalization suitable to match $\text{Det}(j_{\alpha}, j_\gamma, j_\beta)$ given by $[9]$. Whenever the choice of the basis $\{j_{\alpha}\}$ is exploited in order to distinguish the identity matrix from the traceless ones, the $d_{\alpha\beta\gamma}$ of E_6 has a maximal manifestly $F_4(-52)$-invariance only. However, it is crucial to point out that, being expressed only in terms of the invariant d-tensor, the result (10) does not depend on the particular choice of the basis $\{j_{\alpha}\}$. Thus, the expressions of $Y_{\alpha +79}$ (7) and of $Y_{\alpha +106}$ (8) exhibit the maximal manifest compact $[(E_6 \times U(1))/\mathbb{Z}_3]$-covariance.

A couple of remarks on the properties of the matrices Y_{α}’s are in order. The first is that they satisfy:

$$Y_\alpha \in \text{usp}(28, 28), \quad A = 1, \ldots, 133.$$

Moreover, in order to guarantee that the period of the maximal torus in the E_6 subgroup equals 4π, the standard choice for the period of the spin representations of the orthogonal subgroups $[7, 6]$, the matrices
Y’s are orthonormalized as \(\langle Y, Y' \rangle_{56} := \frac{1}{12} \text{Tr}(Y Y') \) with signature \((-79, +54)\). As a consequence, the components \((A_\alpha)_{\beta\gamma} \) are normalized as \(A_{\alpha\beta\gamma} A^{\alpha'\beta'\gamma'} = 5 \delta_{\alpha\alpha'} \).

This is consistent with the normalization of the \(d\)-tensor of \((E_6(-26))\) adopted e.g. in [12], which is dictated by the expression \(f(z) := \frac{1}{3!} \sum A^{\alpha\beta\gamma} z^\alpha z^\beta z^\gamma \) for the Kähler-invariant \((X^0)^2\)-rescaled holomorphic prepotential function characterizing special Kähler geometry (see e.g. [13][14][15], and Refs. therein).

2 Manifestly \([(E_6 \times U(1))/Z_3]\)-covariant Construction of the Coset \(\mathcal{M} \)

In this Section we construct a manifestly \([(E_6 \times U(1))/Z_3]\)-covariant parametrization of the symmetric space \(\mathcal{M} = \frac{E_7(-25)}{E_6(-78) \times U(1)} / Z_3 \).

As we have seen in the previous Sec. 1, it is generated by the matrices \(Y_{79+i}, (7) \) and \(I = 1, \ldots, 54 \). Through the exponential mapping, it can be defined as follows:

\[
\mathcal{M} := \exp \left(\sum_{\alpha=1}^{27} x_\alpha Y_{106+\alpha} + y_\alpha Y_{79+\alpha} \right), \quad \text{with } x_\alpha \in \mathbb{R}, \ y_\alpha \in \mathbb{R}, \text{ for } \alpha = 1, \ldots, 27. \tag{12}
\]

In order to make the complex structure of \(\mathcal{M} \) manifest, it is convenient to introduce the following complex linear combinations of the matrices:

\[
\zeta_\alpha := \frac{1}{\sqrt{2}} (Y_{79+\alpha} + i Y_{106+\alpha}), \quad \bar{\zeta}_\alpha := \frac{1}{\sqrt{2}} (Y_{79+\alpha} - i Y_{106+\alpha}) \tag{13}
\]

together with the corresponding complex linear combinations of the parameters:

\[
z_\alpha := \frac{1}{\sqrt{2}} (y_\alpha + i x_\alpha), \quad \bar{z}_\alpha := \frac{1}{\sqrt{2}} (y_\alpha - i x_\alpha), \tag{14}
\]

which allows to rewrite (12) as

\[
\mathcal{M} := \exp \left(\sum_{\alpha=1}^{27} \bar{z}_\alpha \zeta_\alpha + z_\alpha \bar{\zeta}_\alpha \right). \tag{15}
\]

By introducing the 27 dimensional complex vector \(z := \sum_{\alpha=1}^{27} z_\alpha \bar{e}_\alpha \), describing the scalar fields, and the 28 \times 28 matrix \(A := \begin{pmatrix} -\sqrt{2} \sum_{\alpha=1}^{27} \bar{z}_\alpha A_\alpha & z \\ z^T \end{pmatrix} \), the expression for \(\mathcal{M} \) (15) enjoys the simple form:

\[
\mathcal{M} := \exp \left(\begin{pmatrix} 0 & A \\ A^\dagger & 0 \end{pmatrix} \right) = \begin{pmatrix} \text{Ch} (\sqrt{AA^\dagger}) & A \text{Sh} (\sqrt{AA^\dagger}A) \\ A^\dagger \text{Sh} (\sqrt{AA^\dagger}) & \text{Ch} (\sqrt{AA^\dagger}) \end{pmatrix}. \tag{16}
\]

This is a Hermitian matrix, of the same form as the finite coset representative worked out [16] for the split (i.e. maximally non-compact) counterpart \(\mathcal{M}_{N=8} = \frac{E_7(-2)}{SU(8)/Z_2} \), which is the scalar manifold of maximal \(\mathcal{N} = 8, D = 4 \) supergravity, associated to \(j_3 (\mathbb{O}_S) \). However, while \(\mathcal{M}_{N=8} \) is real, because of (11) \(\mathcal{M} \) is an element of \(USp(28, 28) \).
By using the machinery of special Kähler geometry (see e.g. [13][14][15], and Refs. therein), the symplectic sections defining the symplectic frame associated to the coset parametrization introduced above can be directly read from (16):

\[
\mathcal{M} = \begin{pmatrix} u^\Lambda (z, \overline{z}) & v_A (z, \overline{z}) \\ v^\Lambda (z, \overline{z}) & u_A (z, \overline{z}) \end{pmatrix},
\]

where the symplectic index $\Lambda = 0, 1, \ldots, 27$ (with 0 pertaining to the $\mathcal{N} = 2, D = 4$ graviphoton), and $i = \pi, 28$. Thus, the symplectic sections read (see e.g. [17][15] and Refs. therein; subscript “28” omitted):

\[
f_i^\Lambda : = \frac{1}{\sqrt{2}} (u + v)_i^\Lambda = \left(\mathcal{T}_{\pi i}^\Lambda, f^\Lambda \right) = \exp \left(\frac{1}{2} K \right) \left(\mathcal{T}_{\pi i}^\Lambda X^\Lambda, X^\Lambda \right); \tag{18}
\]

\[
h_{i\Lambda} : = -i \frac{1}{\sqrt{2}} (u - v)_{i\Lambda} = \left(\mathcal{T}_{\pi i}^\Lambda h^\Lambda, h_{\Lambda} \right) = \exp \left(\frac{1}{2} K \right) \left(\mathcal{T}_{\pi i}^\Lambda M^\Lambda, M^\Lambda \right), \tag{19}
\]

where \mathcal{D} is the Kähler-covariant differential operator,

\[
\mathcal{V} := \left(L^\Lambda, M^\Lambda \right)^T = \exp \left(\frac{1}{2} K \right) \left(X^\Lambda, F^\Lambda \right)^T \tag{20}
\]

is the symplectic vector of Kähler-covariantly holomorphic sections, and

\[
K := -\ln \left[i \left(X^\Lambda F^\Lambda - X^\Lambda F^\Lambda \right) \right] \tag{21}
\]

is the Kähler potential determining the corresponding geometry. A more explicit expression for (16) would be needed in order to check that the prepotential F does not exist (i.e., $2F = X^\Lambda F^\Lambda = 0$) in the symplectic frame we have just introduced, which can be considered the analogue of the Calabi-Vesentini basis [12][13], whose manifest covariance is the maximal one.

3 The Iwasawa Decomposition and the role of triality

Now we are going to find another parametrization for the coset \mathcal{M}, provided by the Iwasawa decomposition. In this case the maximal manifest covariance is broken down to a subgroup $SO(8)$, thus providing a manifestly triality-symmetric description.

The manifold \mathcal{M} has rank 3, which means that the maximal dimension of the intersection between a Cartan subalgebra of $E_{7(-25)}$ and the generators of \mathcal{M} is 3. In particular, we can pick 3 such generators to be the diagonal generators of the Jordan algebra $\mathfrak{J}_3 (\mathbb{O})$ itself, namely $h_1 = Y_{123}, h_2 = Y_{132}$ and $h_3 = Y_{133}$.

The following step is to determine a basis \mathcal{W}_+ of $54 - 3 = 51$ positive roots λ^+_i, $i = 1, \ldots, 51$ with respect to \mathfrak{h}_3. Then the Iwasawa decomposition of the coset \mathcal{M} is defined as:

\[
\mathcal{M} := \exp (x_1 h_1 + x_2 h_2 + x_3 h_3) \exp \left(\sum_{i=1}^{51} y_i \lambda^+_i \right). \tag{22}
\]

As anticipated, one of its main features is that since the elements $h_1, h_2, h_3 \in \mathfrak{h}_3$ commute with a 28-dimensional subalgebra $\mathfrak{so}(8)$, the Iwasawa parametrization of \mathcal{M} exhibits a manifest maximal covariance given by $SO(8)$. Therefore, the 51-dimensional linear space Λ_+ generated by the positive roots \mathcal{W}_+ is invariant under the (adjoint) action of $SO(8)$, and it decomposes into irreps. of $SO(8)$ as:

\[
\Lambda_+ = 1^3 + 8^2 c + 8^2 c + 8^2 s,
\]

which is a manifestly triality-symmetric decomposition. In particular, at the level of algebras $\mathfrak{so}(8) = \text{tri}(\mathbb{O})$ with the automorphism group $\text{Aut}(\mathfrak{t} (\mathbb{O})) = Spin(8)$ of the normed triality over the octonions \mathbb{O} [20].
It is worth remarking that the appearance of the square for the three 8 irreps. in (23) is a consequence of the complex (special Kähler) structure of the coset \mathcal{M}. Moreover, it should be observed that the $SO(8)$ entering in (23) can be identified as:

$$SO(8) \subset [(SO(10) \times U(1)) \cap E_{4(-52)}].$$

(24)

This can be understood by noticing that it can be obtained from both the following chains of maximal symmetric embeddings [21]:

$$E_7(-25) \supset E_6(-78) \times U(1) \supset SO(10) \times U(1)' \supset SO(8) \times U(1)'' \supset U(1)''(25)$$

and

$$E_7(-25) \supset E_6(-78) \times U(1) \supset F_4(-52) \times U(1) \supset SO(9) \times U(1) \supset SO(8) \times U(1).$$

(26)

In the last line of (25) the first two $U(1)$ factors have the physical meaning of “extra” T-dualities generated by the Kaluza-Klein reductions, respectively $D = 5 \rightarrow D = 4$, and $D = 6 \rightarrow D = 5$.

Denoting with subscripts $U(1)$-charges, the adjoint irrep. 133 of $E_7(-25)$ branches according to (25) as (see e.g. [21]):

$$133 = 78_0 + 1_0 + 27_{-2} + 27_{+2}$$

(27)

$$= 1_{0,0} + 16_{0,-3} + 16'_{0,+3} + 45_{0,0} + 1_{0,0}$$

$$+ 1_{-2,+4} + 10_{-2,-2} + 16_{-2,+1}$$

$$+ 1_{+2,-4} + 10_{+2,+2} + 16'_{+2,-1}$$

$$= 1_{0,0,0} + 8_{c,0,-3,1} + 8_{s,0,-3,-1} + 8_{c,0,+3,-1} + 8_{s,0,+3,1}$$

$$+ 1_{0,0,0} + 8_{c,0,0,+2} + 8_{c,0,0,-2} + 28_{0,0,0} + 1_{0,0,0}$$

$$+ 1_{-2,+4,0} + 1_{-2,-2,+2} + 1_{-2,-2,-2} + 8_{c,-2,-2,0} + 8_{c,-2,1,+1} + 8_{c,-2,+1,-1}$$

$$+ 1_{+2,-4,0} + 1_{+2,-2,+2} + 1_{+2,-2,-2} + 8_{c,+2,2,0} + 8_{c,+2,-1,-1} + 8_{s,+2,-1,1}.$$

4 Final Remarks

It is very interesting to remark that being based only on the algebraic properties of the “mixed” Freudenthal-Tits magic square in Table 1 the construction of the basis with the maximal possible covariance [16] and the computation of the Iwasawa decomposition [22] described here can be both generalized [8] at least to a broader class of minimally non-compact, simple groups of type E_7 [23]. Moreover, it also turns out that, like for \mathcal{M}, in all these cases the maximal covariance (at least at the Lie algebra level) of the Iwasawa decomposition is given by the automorphism algebra of the corresponding normed triality [20].

Acknowledgements

The work of B.L.C. has been supported in part by the European Commission under the FP7-PEOPLE-IRG-2008 Grant No. PIRG04-GA-2008-239412 String Theory and Noncommutative Geometry STRING.

References

[1] I. Yokota, Exceptional Lie Groups, arXiv:0902.0431 [math.DG].
[2] C. H. Barton and A. Sudbery, *Magic squares and matrix models of Lie algebras*, Adv. in Math. **180**, 596 (2003), math/0203010 [math.RA].

[3] M. Güngaydin, G. Sierra, P. K. Townsend, *Exceptional Supergravity Theories and the Magic Square*, Phys. Lett. **B133B**, 72 (1983).

[4] J. Tits, *Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction*, (French), Nederl. Akad. Wetensch. Proc Ser. A **69**, 223 (1966).

[5] S. L. Cacciatori, F. D. Piazza and A. Scotti, *E7 groups from octonionic magic square*, arXiv:1007.4758 [math-ph].

[6] F. Bernardoni, S. L. Cacciatori, B. L. Cerchiai and A. Scotti, *Mapping the geometry of the E6 group*, J. Math. Phys. **49**, 012107 (2008), arXiv:0710.0356 [math-ph].

[7] F. Bernardoni, S. L. Cacciatori, B. L. Cerchiai and A. Scotti, *Mapping the geometry of the F4 group*, Adv. Theor. Math. Phys. Vol. 12, Number 4, 889 (2008), arXiv:0705.3978 [math-ph].

[8] S. L. Cacciatori, B. L. Cerchiai, A. Marrani, *Magic Coset Decompositions*, preprint CERN-PH-TH/2012-020, arXiv:1201.6314 [hep-th].

[9] H. Freudenthal, *Oktaven, Ausnahmegruppen und Oktavengeometrie*, Geom. Dedicata **19**, 7 (1985).

[10] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, *Small Orbits*, arXiv:1108.0424 [hep-th].

[11] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, *Explicit Orbit Classification of Reducible Jordan Algebras and Freudenthal Triple Systems*, arXiv:1108.0908 [math.RA].

[12] L. Andrianopoli, R. D’Auria, S. Ferrara and M. A. Lledó, *Gauging of Flat Groups in Four Dimensional Supergravity*, JHEP **0207**, 010 (2002), hep-th/0203206.

[13] A. Strominger, *Special Geometry*, Commun. Math. Phys. **133**, 163 (1990).

[14] B. de Wit, F. Vanderseypen and A. Van Proeyen, *Symmetry Structure of Special Geometries*, Nucl. Phys. **B400**, 463 (1993), hep-th/9210068.

[15] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré and T. Magri, *N= 2 Supergravity and N= 2 superYang-Mills Theory on General Scalar Manifolds : Symplectic Covariance, Gaugings and the Momentum Map*, J. Geom. Phys. **23**, 111 (1997), hep-th/9605032.

[16] B. de Wit and H. Nicolai, *N= 8 Supergravity*, Nucl. Phys. **B208**, 323 (1982).

[17] A. Ceresole, R. D’Auria and S. Ferrara, *The Symplectic Structure of N= 2 Supergravity and its Central Extension*, Nucl. Proc. Suppl. **46**, 67 (1996), hep-th/9509160.

[18] A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, *Duality Transformations in Supersymmetric Yang-Mills Theories coupled to Supergravity*, Nucl. Phys. **B444**, 92 (1995), hep-th/9502072.

[19] E. Calabi and E. Vesentini, *On Compact, Locally Symmetric Kähler Manifolds*, Ann. Math. **71**, 472 (1960).

[20] J. C. Baez, *The Octonions*, Bull. Am. Math. Soc. **39**, 145 (2002), math/0105155 [math-ra].

[21] R. Gilmore : “*Lie Groups, Lie Algebras, and Some of Their Applications*”, Dover, New York, 2006.

[22] R. Slansky, *Group Theory for Unified Model Building*, Phys. Rept. **79**, 1 (1981).

[23] R. B. Brown, *Groups of Type E7*, J. Reine Angew. Math. **236**, 79 (1969).