ON A CLASS OF UNIVALENT FUNCTIONS DEFINED BY SÁLÁGEAN INTEGRO-DIFFERENTIAL OPERATOR

Á. O. PÁLL-SZABÓ

Received 22 November, 2017

Abstract. In this paper we consider the \(L^n : \mathcal{A} \to \mathcal{A} \), \(L^n f(z) = (1 - \lambda) P^n f(z) + \lambda I^n f(z) \) linear operator, where \(P^n \) is the Sálágean differential operator and \(I^n \) is the Sálágean integral operator. We study several differential subordinations generated by \(L^n \). We introduce a class of holomorphic functions \(L^m_n(\beta) \), and obtain some subordination results.

2010 Mathematics Subject Classification: 30C45; 30A20; 34A40

Keywords: analytic functions, convex function, Sálágean integro-differential operator, differential operator, differential subordination, dominant, best dominant

1. PRELIMINARIES

Let \(U \) be the unit disk in the complex plane:
\[
U = \{ z \in \mathbb{C} : |z| < 1 \}.
\]

Let \(\mathcal{H}(U) \) be the space of holomorphic functions in \(U \) and let
\[
\mathcal{A}_m = \{ f \in \mathcal{H}(U) : f(z) = z + a_{m+1}z^{m+1} + \cdots, z \in U \}
\]
with \(\mathcal{A}_1 = \mathcal{A} \). For \(a \in \mathbb{C} \) and \(m \in \mathbb{N} \), \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \), \(\mathbb{N} = \{1,2,\ldots\} \) let
\[
\mathcal{H}[a,m] = \{ f \in \mathcal{H}(U) : f(z) = a + a_mz^m + a_{m+1}z^{m+1} + \cdots, z \in U \}.
\]

Denote by
\[
K = \left\{ f \in \mathcal{A} : \Re \frac{zf''(z)}{f'(z)} + 1 > 0, z \in U \right\}
\]
the class of normalized convex functions in \(U \).

Definition 1 ([5], def. 3.5.1). Let \(f \) and \(g \) be analytic functions in \(U \). We say that the function \(f \) is subordinate to the function \(g \), if there exists a function \(w \), which is analytic in \(U \) and \(w(0) = 0; |w(z)| < 1; z \in U \), such that \(f(z) = g(w(z)) \); \(\forall z \in U \). We denote by \(\prec \) the subordination relation. If \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subseteq g(U) \).
Let \(\psi : \mathbb{C}^3 \times U \rightarrow \mathbb{C} \) be a function and let \(h \) be univalent in \(U \). If \(p \) is analytic in \(U \) and satisfies the (second-order) differential subordination
\[
(i) \quad \psi \left(p(z), z p'(z), z^2 p''(z); z \right) < h(z), \quad (z \in U)
\]
then \(p \) is called a solution of the differential subordination. The univalent function \(q \) is called a dominant of the solution of the differential subordination, or more simply a dominant, if \(p < q \) for all \(p \) satisfying \((i)\). A dominant \(\tilde{q} \), which satisfies \(\tilde{q} < q \) for all dominants \(q \) of \((i)\) is said to be the best dominant of \((i)\). The best dominant is unique up to a rotation of \(U \). In order to prove the original results we use the following lemmas.

Lemma 1 (Hallenbeck and Ruscheweyh, [2]). Let \(h \) be a convex function with \(h(0) = a \), and let \(\gamma \in \mathbb{C}^* \) be a complex number with \(\Re \gamma \geq 0 \). If \(p \in \mathcal{H}[a, n] \) and
\[
p(z) + \frac{1}{\gamma} z p'(z) < h(z), \quad z \in U
\]
then
\[
p(z) < q(z) < h(z), \quad z \in U
\]
where
\[
q(z) = \frac{\gamma}{n \gamma^{\gamma/n}} \int_0^z h(t) t^{\gamma/n-1} dt, \quad z \in U.
\]

Lemma 2 (Miller and Mocanu, [3]). Let \(q \) be a convex function in \(U \) and let \(h(z) = q(z) + n \alpha z q'(z), \quad z \in U \)
where \(\alpha > 0 \) and \(n \) is a positive integer. If
\[
p(z) = q(0) + p_n z^n + p_{n+1} z^{n+1} + \ldots, \quad z \in U
\]
is holomorphic in \(U \) and
\[
p(z) + n \alpha z p'(z) < h(z), \quad z \in U
\]
then
\[
p(z) < q(z)
\]
and this result is sharp.

Definition 2 ([8]). For \(f \in \mathcal{A}, n \in \mathbb{N}_0 \), the Sălăgean differential operator \(\mathcal{D}^n \) is defined by \(\mathcal{D}^n : \mathcal{A} \rightarrow \mathcal{A}, \)
\[
\mathcal{D}^0 f(z) = f(z),
\]
\[
\mathcal{D}^n f(z) = z \left(\mathcal{D}^{n-1} f(z) \right)', z \in U
\]
Remark 1. If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \), then
\[
\mathcal{D}^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k, z \in U.
\]

Definition 3 ([8]). For \(f \in \mathcal{A}, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, \ldots\}\), the operator \(I^n \) is defined by
\[
I^n f(z) = f(z),
\]
\[
I^n f(z) = I(I^{n-1} f(z)), z \in U
\]

Remark 2. If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \), then
\[
I^n f(z) = z + \sum_{k=2}^{\infty} \frac{a_k}{k^n} z^k.
\]
\(z \in U, (n \in \mathbb{N}_0) \) and \(z (I^n f(z))' = I^{n-1} f(z) \).

Definition 4. Let \(\lambda \geq 0, n \in \mathbb{N} \). Denote by \(\mathcal{L}^n : \mathcal{A} \rightarrow \mathcal{A} \),
\[
\mathcal{L}^n f(z) = (1-\lambda) \mathcal{D} f(z) + \lambda I^n f(z), z \in U.
\]

Remark 3. If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \), then
\[
\mathcal{L}^n f(z) = z + \sum_{k=2}^{\infty} \left[k^n (1-\lambda) + \lambda \frac{1}{k^n}\right] a_k z^k, z \in U.
\]

2. MAIN RESULTS

Theorem 1. Let \(q \) be a convex function, \(q(0) = 1 \) and let \(h \) be the function
\[
h(z) = q(z) + z q'(z), z \in U.
\]
If \(f \in \mathcal{A}, \lambda \geq 0, n \in \mathbb{N} \) and satisfies the differential subordination
\[
[\mathcal{L}^n f(z)]' < h(z), z \in U
\]
then
\[
\frac{\mathcal{L}^n f(z)}{z} < q(z), z \in U
\]
and this result is sharp.
Proof. Let

\[p(z) = \frac{\mathcal{L}^n f(z)}{z} = \frac{z + \sum_{k=2}^{\infty} \left(k^n - \frac{1}{k^n} \right) a_k z^k }{z} = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots \]

(2.2)

\(z \in U \). From (2.2) we have \(p \in \mathcal{H} [1, 1] \). Let

\[\mathcal{L}^n f(z) = z p(z), z \in U. \]

(2.3)

Differentiating (2.3), we obtain

\[[\mathcal{L}^n f(z)]' = p(z) + z p'(z), z \in U. \]

(2.4)

Then (2.1) becomes

\[p(z) + z p'(z) < h(z), z \in U. \]

(2.5)

By using Lemma 2, we have

\[p(z) < q(z), z \in U, \]

i.e.

\[\frac{\mathcal{L}^n f(z)}{z} < q(z), z \in U. \]

\(\square \)

Remark 4. If \(\lambda = 0 \) we get Theorem 4 from Oros [6] and for \(\lambda = 1 \) we get Theorem 4 from Bălaet ı [1].

Example 1. For \(\lambda = 0, n = 1, f \in \mathcal{A} \) we deduce that

\[f'(z) + z f''(z) < \frac{1}{(1-z)^2}, z \in U \]

implies

\[f'(z) < \frac{1}{1-z}, z \in U. \]

Example 2. For \(\lambda = 1, n = 1, f \in \mathcal{A} \) we deduce that

\[\frac{f(z)}{z} < \frac{1}{(1-z)^2}, z \in U \]

implies

\[\frac{\int_0^z f(t) t^{-1} dt}{z} < \frac{1}{1-z}, z \in U. \]
Theorem 2. Let q be a convex function, $q(0) = 1$ and let h be the function

$$h(z) = q(z) + zq'(z), z \in U.$$

If $f \in A$, $\lambda \geq 0$, $n \in \mathbb{N}$ and satisfies the differential subordination

$$\left(\frac{z \mathcal{L}^{n+1} f(z)}{\mathcal{L}^n f(z)} \right)' < h(z), \; z \in U$$

(2.6)

then

$$\frac{\mathcal{L}^{n+1} f(z)}{\mathcal{L}^n f(z)} < q(z), \; z \in U$$

and this result is sharp.

Proof. Let

$$p(z) = \frac{\mathcal{L}^{n+1} f(z)}{\mathcal{L}^n f(z)} = \frac{z + \sum_{k=2}^{\infty} \left[k^{n+1} (1-\lambda) + \lambda \frac{1}{k^{n+1}} \right] a_k z^k}{a_1 + \sum_{k=2}^{\infty} \left[k^n (1-\lambda) + \lambda \frac{1}{k^n} \right] a_k z^k}.$$

We have

$$p'(z) = \frac{(\mathcal{L}^{n+1} f(z))'}{\mathcal{L}^n f(z)} - p(z) \frac{(\mathcal{L}^n f(z))'}{\mathcal{L}^n f(z)}$$

and

$$p(z) + z p'(z) = \left(\frac{z \mathcal{L}^{n+1} f(z)}{\mathcal{L}^n f(z)} \right)'.$$

Relation (2.6) becomes

$$p(z) + z p'(z) < h(z) = q(z) + zq'(z), \; z \in U.$$

By using Lemma 2 we have

$$p(z) < q(z) \; \text{i.e.} \; \frac{\mathcal{L}^{n+1} f(z)}{\mathcal{L}^n f(z)} < q(z), \; z \in U.$$

Theorem 3. Let q be a convex function, $q(0) = 1$ and let h be the function

$$h(z) = q(z) + zq'(z), z \in U.$$

If $f \in A$, $\lambda \geq 0$, $n \in \mathbb{N}$ and satisfies the differential subordination

$$\left(\mathcal{L}^{n+1} f(z) \right)' + \lambda \left[(I^{n-1} f(z))' - (I^{n+1} f(z))' \right] < h(z), \; z \in U$$

(2.7)

then

$$\mathcal{L}^n f(z)' < q(z), \; z \in U$$

and this result is sharp.
Proof. By using the properties of operator \(\mathcal{L}^n \), we obtain
\[
\mathcal{L}^{n+1} f(z) = (1 - \lambda) \mathcal{D}^{n+1} f(z) + \lambda I^{n+1} f(z), \quad z \in U.
\] (2.8)
Then (2.7) becomes
\[
[(1 - \lambda) \mathcal{D}^{n+1} f(z) + \lambda I^{n+1} f(z)]' + \lambda \left[(I^{n-1} f(z))' - (I^{n+1} f(z))' \right] < h(z), \quad z \in U.
\] (2.9)
After computation we get
\[
(1 - \lambda) \left[(\mathcal{D}^n f(z))' + \lambda (I^n f(z))' \right] < h(z)
\]
or equivalently
\[
(1 - \lambda) \left[z (\mathcal{D}^n f(z))' + \lambda z (I^n f(z))' \right] < h(z).
\]
The above relation is equivalent to
\[
(1 - \lambda) \left[(\mathcal{D}^n f(z))' + z (\mathcal{D}^n f(z))'' \right] + \lambda \left[(I^n f(z))' + z (I^n f(z))'' \right] < h(z)
\]
or
\[
[\mathcal{L}^n f(z)]' + z [\mathcal{L}^n f(z)]'' < h(z), \quad z \in U.
\] (2.10)
Let
\[
p(z) = (1 - \lambda) \left[\mathcal{D}^n f(z) \right]' + \lambda [I^n f(z)]' = [\mathcal{L}^n f(z)]', \quad z \in U
\] (2.11)
\[
= (1 - \lambda) \left[z + \sum_{k=2}^{\infty} k^n a_k z^k \right]' + \lambda \left[z + \sum_{k=2}^{\infty} \frac{1}{k^n} a_k z^k \right]'
\]
\[
= (1 - \lambda) \left[1 + \sum_{k=2}^{\infty} k^{n+1} a_k z^{k-1} \right] + \lambda \left[1 + \sum_{k=2}^{\infty} \frac{1}{k^n} a_k z^{k-1} \right] = 1 + \sum_{k=2}^{\infty} \left[k^{n+1} (1 - \lambda) + \lambda \frac{1}{k^n} \right] a_k z^{k-1} = 1 + p_1 z + p_2 z^2 + \cdots
\]
In view of (2.11), we deduce that \(p \in \mathcal{H} [1, 1] \). Using the notation in (2.11), the (2.10) differential subordination becomes
\[
p(z) + z p'(z) < h(z) = q(z) + z q'(z), \quad z \in U.
\]
By using Lemma 2 we have
\[
p(z) < q(z) \quad \text{i.e.} \quad [\mathcal{L}^n f(z)]' < q(z), \quad z \in U.
\]

Remark 5. If \(\lambda = 0 \) we get Theorem 2 from Oros [6] and for \(\lambda = 1 \) we get Theorem 2 from Bălăeţi [1].
Example 3. For $\lambda = 0, n = 1, f \in A$ we deduce that
\[f'(z) + 3zf''(z) + z^2 f'''(z) < 1 + 2z, \ z \in U \]
implies
\[f'(z) + zf''(z) < 1 + z, \ z \in U. \]

Theorem 4. Let $h \in H(U)$ such that $h(0) = 1$ and
\[\Re \left[1 + \frac{zh''(z)}{h'(z)} \right] > -\frac{1}{2}, \ z \in U. \]
If $f \in A$ satisfies the differential subordination
\[(\mathcal{L}^{n+1} f(z))' + \lambda \left[(I^{n-1} f(z))' - (I^{n+1} f(z))' \right] < h(z), \ z \in U \tag{2.12} \]
then
\[\left[\mathcal{L}^n f(z) \right]' < q(z), \ z \in U \]
where q is given by $q(z) = \frac{1}{z} \int_0^z h(t)dt$. The function q is convex and is the best dominant.

Proof. If we use the differential subordination technique we can see that the function g is convex.[3], p. 66 By using (2.11) we obtain
\[(\mathcal{L}^{n+1} f(z))' + \lambda \left[(I^{n-1} f(z))' - (I^{n+1} f(z))' \right] = p(z) + z p'(z), \ z \in U \]
Then (2.12) becomes
\[p(z) + z p'(z) < h(z), \ z \in U. \]
Since $p \in H[1,1]$, we deduce that $p(z) < q(z)$, i.e.
\[\left[\mathcal{L}^n f(z) \right]' < q(z) = \frac{1}{z} \int_0^z h(t)dt, \ z \in U \]
and q is the best dominant. \hfill \Box

Remark 6. If $\lambda = 0$ we get Theorem 3 from Oros [6].

Example 4. For $\lambda = 0, n = 0, h(z) = \frac{1+z}{1-z}$ we deduce that
\[f'(z) + z f''(z) < \frac{1+z}{1-z}, \ z \in U, \]
implies
\[f'(z) < 1 - \frac{2}{z} \ln (1-z), \ z \in U. \]
Theorem 5. Let \(h \in \mathcal{H}(U) \) such that \(h(0) = 1 \) and
\[
\Re \left[1 + \frac{zh''(z)}{h'(z)} \right] > -\frac{1}{2}, \quad z \in U.
\]
If \(f \in \mathcal{A} \) satisfies the differential subordination
\[
\left[\mathcal{L}^n f(z) \right]' < h(z), \quad z \in U \tag{2.13}
\]
then
\[
\mathcal{L}^n f(z) < q(z), \quad z \in U
\]
where \(q \) is given by \(q(z) = \frac{1}{z} \int_0^z h(t)dt \). The function \(q \) is convex and is the best dominant.

Proof. If we use the differential subordination technique we can see that the function \(g \) is convex. [3], p. 66. Differentiating both sides in (2.2) we obtain
\[
\left[\mathcal{L}^n f(z) \right]' = p(z) + zp'(z), \quad z \in U
\]
Then (2.13) becomes
\[p(z) + zp'(z) < h(z), \quad z \in U. \]
Since \(p \in \mathcal{H}[1,1] \), we deduce that \(p(z) < q(z) \), i.e.
\[
\frac{\mathcal{L}^n f(z)}{z} < q(z) = \frac{1}{z} \int_0^z h(t)dt, \quad z \in U
\]
and \(q \) is the best dominant. \(\square \)

Remark 7. If \(\lambda = 0 \) we get Theorem 5 from Oros [6] and for \(\lambda = 1 \) we get Theorem 5 from Bǎlaeƫi [1].

Example 5. For \(\lambda = 0, n = 1, h(z) = \frac{1}{1+z} \) we deduce that
\[
f'(z) < \frac{1}{(1+z)^2}, \quad z \in U,
\]
implies
\[
\frac{f(z)}{z} < \frac{1}{1+z}, \quad z \in U.
\]
We get the same result as [4].

Definition 5 ([7], [9], [1], [6]). If \(0 \leq \beta < 1 \) and \(n \in \mathbb{N} \), we let \(L^m_n(\beta) \) stand for the class of functions \(f \in \mathcal{A}_m \), which satisfy the inequality
\[
\Re \left[\mathcal{L}^n f(z) \right]' > \beta, \quad (z \in U).
\]

Remark 8. For \(n = 0 \) we obtain \(\Re f'(z) > \beta \).
Theorem 6. The set $L_n^m(\beta)$ is convex.

Proof. Let the function

$$f_i(z) = z + \sum_{k=2}^{\infty} a_{k_i} z^k, \quad i = 1, 2, \quad z \in U$$

be in the class $L_n^m(\beta)$. It is sufficient to show that the function

$$h(z) = \mu_1 f_1(z) + \mu_2 f_2(z)$$

with $\mu_1, \mu_2 \geq 0$ and $\mu_1 + \mu_2 = 1$ is in $L_n(\beta)$. Since

$$h(z) = z + \sum_{k=2}^{\infty} (\mu_1 a_{k_1} + \mu_2 a_{k_2}) z^k, \quad z \in U$$

then

$$\mathcal{L}_n h(z) = z + \sum_{k=2}^{\infty} \left[k^n (1 - \lambda) + \lambda \frac{1}{k^{n-1}} \right] (\mu_1 a_{k_1} + \mu_2 a_{k_2}) z^{k-1}, \quad z \in U. \quad (2.14)$$

Differentiating (2.14), we get

$$\left[\mathcal{L}_n h(z) \right]' = 1 + \sum_{k=2}^{\infty} \left[k^{n+1} (1 - \lambda) + \lambda \frac{1}{k^{n-1}} \right] (\mu_1 a_{k_1} + \mu_2 a_{k_2}) z^{k-1}. \quad (2.15)$$

Hence

$$\Re \left[\mathcal{L}_n h(z) \right]' = 1 \Re \left\{ \mu_1 \sum_{k=2}^{\infty} \left[k^{n+1} (1 - \lambda) + \lambda \frac{1}{k^{n-1}} \right] a_{k_1} z^{k-1} \right\} +$$

$$+ \Re \left\{ \mu_2 \sum_{k=2}^{\infty} \left[k^{n+1} (1 - \lambda) + \lambda \frac{1}{k^{n-1}} \right] a_{k_2} z^{k-1} \right\}. \quad (2.15)$$

Since $f_1, f_2 \in L_n^m(\beta)$, we obtain

$$\Re \left\{ \mu_i \sum_{k=2}^{\infty} \left[k^{n+1} (1 - \lambda) + \lambda \frac{1}{k^{n-1}} \right] a_{k_i} z^{k-1} \right\} > \mu_i (\beta - 1), \quad i = 1, 2. \quad (2.16)$$

Using (2.16) we get from (2.15)

$$\Re \left[\mathcal{L}_n h(z) \right]' > 1 + \mu_1 (\beta - 1) + \mu_2 (\beta - 1),$$

and since $\mu_1 + \mu_2 = 1$, we deduce

$$\Re \left[\mathcal{L}_n h(z) \right]' > \beta, \quad (z \in U)$$

i.e. $L_n^m(\beta)$ is convex. □
Theorem 7. If $0 \leq \beta < 1$ and $m, n \in \mathbb{N}$ then we have

$$L^m_n (\beta) \subset L^m_{n+1} (\delta),$$

where $\delta (\beta, m) = 2\beta - 1 + 2(1 - \beta) \frac{1}{m} \sigma \left(\frac{1}{m} \right)$ and $\sigma (x) = \int_0^x \frac{t^{x-1}}{1+t} \, dt$. The result is sharp.

Proof. Assume that $f \in L^m_n (\beta)$. Let $L^m_n f (z) = z p(z), z \in U$. Differentiating, we obtain

$$\left[L^m_n f (z) \right]' = p(z) + z p'(z), z \in U.$$

Since $f \in L^m_n (\beta)$, from Definition 5 we have

$$\Re \left(p(z) + z p'(z) \right) > \beta, z \in U$$

which is equivalent to

$$p(z) + z p'(z) < \frac{1 + (2\beta - 1)z}{1+z} = h(z), z \in U$$

By using Lemma 1, we have:

$$p(z) < q(z) < h(z), z \in U,$$

where

$$q(z) = \frac{1}{mz^\frac{1}{m}} \int_0^z \frac{1 + (2\beta - 1)t}{1+t} \frac{1}{t^\frac{1}{m} - 1} \, dt =$$

$$= \frac{1}{mz^\frac{1}{m}} \int_0^z \left[2\beta - 1 + 2(1 - \beta) \frac{1}{1+t} \right] \frac{1}{t^\frac{1}{m} - 1} \, dt =$$

$$= \frac{1}{mz^\frac{1}{m}} \int_0^z (2\beta - 1) \frac{t^\frac{1}{m} - 1}{t^\frac{1}{m}} \, dt + \frac{2(1 - \beta)}{mz^\frac{1}{m}} \int_0^z \frac{1}{1+t} \, dt =$$

$$= 2\beta - 1 + 2(1 - \beta) \frac{1}{m} \sigma \left(\frac{1}{m} \right) \frac{1}{z^\frac{1}{m}}, z \in U.$$

The function q is convex and is the best dominant. From $p(z) < q(z)$ follows that

$$\Re p(z) > \Re q (1) = \delta (\beta, m) = 2\beta - 1 + 2(1 - \beta) \frac{1}{m} \sigma \left(\frac{1}{m} \right),$$

from which we deduce that $L^m_n (\beta) \subset L^m_{n+1} (\delta)$. \qed

Remark 9. If $\lambda = 0$ we get Theorem 1 from Oros [6] and for $\lambda = 1$ we get Theorem 1 from Bălătei [1].
Theorem 8. Let \(q \) be a convex function in \(U \) with \(q(0) = 1 \) and let

\[
h(z) = q(z) + \frac{1}{c+2} z q'(z), \quad z \in U,
\]

where \(c \) is a complex number, with \(\Re c > -2 \).

If \(f \in L_n^m(\beta) \) and \(F = I_c(f) \), where

\[
F(z) = I_c(f)(z) = \frac{c+2}{c+1} \int_0^z t^c f(t) dt, \quad \Re c > -2,
\]

then

\[
\left[\mathcal{L}^n f(z) \right]' < h(z), \quad z \in U,
\]

implies

\[
\left[\mathcal{L}^n F(z) \right]' < q(z), \quad z \in U,
\]

and this result is sharp.

Proof. From (2.17), we have

\[
z^{c+1} F(z) = (c+2) \int_0^z t^c f(t) dt, \quad \Re c > -2, \quad z \in U.
\]

Differentiating, with respect to \(z \), we obtain

\[
(c + 1) F(z) + z F'(z) = (c + 2) f(z), \quad z \in U
\]

and

\[
(c + 1) \mathcal{L}^n F(z) + z \left[\mathcal{L}^n F(z) \right]' = (c + 2) \mathcal{L}^n f(z), \quad z \in U.
\]

Differentiating (2.20), we obtain

\[
\left[\mathcal{L}^n F(z) \right]' + \frac{z}{c+2} \left[\mathcal{L}^n F(z) \right]'' = \left[\mathcal{L}^n f(z) \right]', \quad z \in U.
\]

Using (2.21), the differential subordination (2.18) becomes

\[
\left[\mathcal{L}^n F(z) \right]' + \frac{1}{c+2} z \left[\mathcal{L}^n F(z) \right]' < h(z) = q(z) + \frac{1}{c+2} z q'(z), \quad z \in U.
\]

Let

\[
p(z) = \left[\mathcal{L}^n F(z) \right]' = \left\{ z + \sum_{k=2}^{\infty} \left[k^n (1-\lambda) + \frac{1}{k^n} \right] a_k z^k \right\}' = 1 + p_1 z + p_2 z^2 + \cdots, \quad z \in U, \quad p \in \mathcal{H}[1,1].
\]

Replacing (2.23) in (2.22) we obtain

\[
p(z) + \frac{1}{c+2} z p'(z) < h(z) = q(z) + \frac{1}{c+2} z q'(z), \quad z \in U
\]

Using Lemma 1, we obtain \(p(z) < q(z) \) i.e.

\[
\left[\mathcal{L}^n F(z) \right]' < q(z), \quad z \in U
\]

and \(q \) is the best dominant.
Remark 10. If $\lambda = 0$ we get Theorem 2.2 from Tăut et alii [9].

Example 6. If we take $c = 1 + 2i$ and $q(z) = \frac{1+z}{1-z}$ then

$$h(z) = \frac{(1-z^2)(3+2i)+2z}{(3+2i)(1-z)^2}.$$

From Theorem 8 we deduce

$$\left[\mathcal{L}^n f(z) \right] \left(1 \right) > \frac{(1-z^2)(3+2i)+2z}{(3+2i)(1-z)^2}, \quad z \in U,$$

implies

$$\left[\mathcal{L}^n F(z) \right] \left(1 \right) > \frac{1+z}{1-z}, \quad z \in U,$$

where F is given by (2.17).

REFERENCES

[1] C. M. Bălaeţi, “A general class of holomorphic functions defined by integral operator,” General Mathematics., vol. 18, no. 2, pp. 59–69, 2010.
[2] D. Hallenbeck and S. Ruscheweyh, “Subordination by convex functions,” Proc. Amer. Math. Soc., vol. 52, pp. 191–195, 1975.
[3] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications. Marcel Dekker Inc., New York, Basel, 2000.
[4] S. S. Miller, P. T. Mocanu, and M. O. Reade, “Subordination-preserving integral operators,” Trans. Amer. Math. Soc., vol. 283, pp. 605–615, 1984.
[5] P. T. Mocanu, T. Bulboacă, and G. S. Sălăgean, The geometric theory of univalent functions. Cluj-Napoca: Casa Cărţii de Ştiinţă, 1999.
[6] G. Oros, “On a class of holomorphic functions defined by Sălăgean differential operator,” Complex Variables., vol. 50, no. 4, pp. 257–264, 2005.
[7] G. Oros and G. I. Oros, “A Class of Holomorphic Function II,” Libertas Math., vol. 23, pp. 65–68, 2003.
[8] G. S. Sălăgean, “Subclasses of univalent functions,” Lecture Notes in Math. (Springer Verlag), vol. 1013, pp. 362–372, 1983.
[9] A. O. Tăut, G. I. Oros, and R. Şendruţiu, “On a class of univalent functions defined by Sălăgean differential operator,” Banach J. Math. Anal., vol. 3, no. 1, pp. 61–67, 2009.

Author’s address

Á. O. Pál-Szabó
Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: palszaboagnes@math.ubbcluj.ro