Real-Time LSM-Trees for HTAP Workloads

Hemant Saxena
SAP Labs, Waterloo
h.saxena@sap.com

Lukasz Golab
University of Waterloo
lgolab@uwaterloo.ca

Stratos Idreos
Harvard University
stratos@seas.harvard.edu

Ihab F. Ilyas
University of Waterloo
ilyas@uwaterloo.ca

Abstract—Real-time analytics systems employ hybrid data layouts in which data are stored in different formats throughout their lifecycle. Recent data are stored in a row-oriented format to serve OLTP workloads and support high insert rates, while older data are transformed to a column-oriented format for OLAP access patterns. We observe that a Log-Structured Merge (LSM) Tree is a natural fit for a lifecycle-aware storage engine due to its high write throughput and level-oriented structure, in which records propagate from one level to the next over time. To build a lifecycle-aware storage engine using an LSM-Tree, we make a crucial modification to allow different data layouts in different levels, ranging from purely row-oriented to purely column-oriented, leading to a Real-Time LSM-Tree. We give a cost model and an algorithm to design a Real-Time LSM-Tree that is suitable for a given workload, followed by an experimental evaluation of LASER - a prototype implementation of our idea built on top of the RocksDB key-value store.

I. INTRODUCTION

Real-time analytics, or Hybrid Transactional-Analytical Processing (HTAP), must support queries that run over all the data, including recently arrived data. This is motivated by applications such as content recommendation, real-time pricing, high-frequency trading, blockchains, and IoT [26]. These applications differ from traditional On-Line Transactional Processing (OLTP) and On-Line Analytical Processing (OLAP) applications in two aspects: 1) high data rates [26]; 2) access patterns change over the lifecycle of the data [7], [15]. Recent data are accessed via OLTP style operations (point queries and updates). Additionally, recent and historical data may be accessed via OLAP style processes [26].

Traditionally, row-oriented layout was used for OLTP-heavy workloads and column-oriented layout for OLAP-heavy workloads. Recent systems, such as SAP HANA [19], SingleStore [6], and IBM Wildfire [14] support real-time analytics using hybrid layouts, in which recent data are stored in a row-oriented format to serve point queries (OLTP), and older data are transformed to a column-oriented format suitable for OLAP. Such systems can be described as having a lifecycle-aware data layout.

We observe that a Log-Structured Merge (LSM) Tree is a natural fit for a lifecycle-aware storage engine. LSM-Trees are used in key-value stores (Google’s BigTable and LevelDB, Cassandra, Facebook’s RocksDB), RDBMSs (Facebook’s MyRocks, SQLite4), blockchains (e.g., Hyperledger), and data stream and time series databases (e.g., InfluxDB). While Cassandra and RocksDB can simulate columnar storage via column families, we are not aware of any lifecycle-aware key-value storage engines. We fill this gap in our work, by designing a storage engine that can replace traditional LSM trees in the above applications to support real-time analytics.

An LSM-Tree is a multi-level data structure with a main-memory buffer and a number of secondary-storage levels with increasing size (details in Section II). Periodically, or when full, the buffer is flushed to Level-0. When Level-0, which stores multiple flushed buffers, is nearly full, its data are merged into the sorted runs residing in level one (via a compaction process), and so on. We observe that LSM-Trees provide a natural framework for a lifecycle-aware storage engine for real-time analytics due to the following reasons.

1) **LSM-Trees are write optimized**: Writes and data transfers between levels are batched, allowing high write throughput.

2) **LSM-Trees naturally propagate data through the levels over time**: At any point in time, the buffer stores the most recent data (perhaps data inserted within the last hour), Level-0 may contain data between one hour and 24 hours old, and levels one and beyond store even older data.

3) **Different levels can store data in different layouts**: Data may be stored in row format in the buffer and in some levels, and in column format in other levels. This suggests a flexible storage engine that can be adapted to the workload.

4) **Compaction can be used to change data layout**: Transforming the data from a row to a column format can be done during compaction, when a level is merged into the next level.

We make the following contributions in this paper.

- We propose the Real-Time LSM-Tree, which extends the traditional LSM-Tree with the ability to store data in a row-oriented or a column-oriented format in each level.
- We characterize the design space of possible Real-Time LSM-Trees. To navigate this design space, we provide a cost model to select good designs for a given workload.
- We implement and evaluate LASER, a Lifecycle-Aware Storage Engine for Real-time analytics based on Real-Time LSM-Trees.

II. OVERVIEW OF LSM-TREES

A. Design

Compared to read-optimized data structures such as B-trees, LSM-Trees focus on high write throughput while allowing indexed access to data [24]. LSM-Trees have two components: an in-memory piece that buffers inserts and a secondary storage piece. The in-memory piece consists of trees or skip lists, whereas the secondary storage piece consists of sorted runs.

Figure 1 shows the architecture of an LSM-Tree, with the memory piece at the top, followed by multiple levels of sorted
runs on secondary storage (four levels, numbered zero to three, are shown). The memory piece contains two or more skiplists (two are shown). New records are inserted into the most recent (mutable) skiplist and into a write-ahead-log for durability. Once inserted, a record cannot be modified or deleted directly. Instead, a new version of it must be inserted and marked with a tombstone flag in case of deletions.

Once a skiplist is full, it becomes immutable and can be flushed to secondary storage via a sequential write. Flushing is executed by a background thread (or can be called explicitly) and does not block new data from being inserted. During flushing, each skiplist is sorted and serialized to a sorted run. Sorted runs are typically range-partitioned into smaller chunks called Sorted Sequence Tables (SSTs), which consist of fixed-size blocks. In Figure 1, we show sorted runs being range-partitioned by key into multiple SSTs. For example, the sorted run in Level-1 has four SSTs; the first SST contains values for the keys in the range 0-20, the second in the range 21-50, and so on. Each SST contains a list of data blocks and an index block. A data block stores key-value pairs ordered by key, and an index block stores the key ranges of the data blocks.

As sorted runs accumulate, query performance degrades since multiple sorted runs may have to be accessed to find a record with a given key. To address this, sorted runs are merged by a background process called compaction. The merging process organizes the disk piece into L logical levels of increasing size with a size ratio of T. For example, a size ratio of two means that every level is twice the size of the previous one. In Figure 1, we show four levels with increasing sizes. The parameters L and T are user-configurable and their value depends on the expected number of entries in the database.

Two common merging strategies are leveling and tiering [17], [24]. Their trade-offs are well understood: leveling has higher write amplification but is more read-optimized than tiering. Our Real-Time LSM-Tree is independent of the merging strategy, but we use the leveling strategy in LASER since this is also used by RocksDB.

In leveling, each level consists of one sorted run, so the run at level i is T times larger than the run at level $i-1$. As a result, the run at level i will be merged up to T times with runs from level $i-1$ until it fills up. If multiple versions of the same key exist, then only the most recent version is kept, and any key with a tombstone flag is deleted. In practice, merging is done at SST granularity, i.e., some SSTs from level $i-1$ are merged with overlapping SSTs in level i. Sorted runs in Level-0 are not partitioned into SSTs (or have exactly one SST) because they are directly flushed from memory. Some implementations, such as RocksDB, make an exception for Level-0 and allow multiple sorted runs to absorb write bursts.

The merging process moves data from one level to the next over time. This puts recent data in the upper levels and older data in the lower levels, providing a natural framework for a lifecycle-aware storage engine proposed in this paper. In Figure 2, we present the results of an experiment using RocksDB with an LSM-Tree having five levels (zero through four), with Level-0 starting at 64MB and $T = 2$. We inserted data at a steady rate until all the levels were full, with background compaction enabled. We show the distribution of keys in terms of their time-since-insertion for two compaction policies commonly used in RocksDB: $kByCompensatedSize$ (Figure 2(a)) prioritizes the largest SST, and $kOldestSmallestSeqFirst$ (Figure 2(b)) prioritizes SSTs whose key range has not been compacted for the longest time. For both compaction priorities, each level has a high density of keys within a given time range. We will use time-based compaction priority because it is better at distributing keys based on time since insertion.

A point query starts from the most recent data and stops as soon as the (latest version of the) search key is found (First, the in-memory skiplists are probed. If the search key has not been found, then the sorted runs on disk are searched starting from Level-0. Within a sorted run, binary search is used to find the SST whose key range includes the key requested by the query. Then, the index block of this SST is binary-searched to identify the data block that may contain the key. Many LSM-Tree implementations include a bloom filter with each SST, and an SST is searched only if the bloom filter reports that the key may exist. We assume that the ranges of SSTs, the index blocks of SSTs, and bloom filters fit in main memory and are cached, as illustrated in Figure 1. For range queries, all the skiplists and the sorted runs are scanned to find keys within the desired range. In many implementations (including RocksDB), range queries are implemented using multiple iterators, which are opened in parallel over each sorted run and the skiplists. Then, similar to a k-way merge, keys are emitted in sorted order while discarding old versions.
B. Cost Analysis

We now explain the cost of LSM-Tree writes, point queries, range queries, and space amplification [17], [16], [24]. We assume that leveling is used for compaction, that sorted runs are not partitioned into SSTs, and that the tree is in a steady state, with all levels full and the volume of inserts equal to the volume of deletes.

Table I summarizes the symbols. Let \(N \) be the number of records, \(T \) be the size ratio between consecutive levels, and \(L \) be the number of levels. Let \(B \) denote the number of records in each data page, and let \(pg \) denote the number of pages in Level-0. For example, with a 4kB page and 100 bytes per record, \(B = 40 \); with Level-0 of size 64MB, \(pg = 16,000 \). Level-0 contains at most \(B.pg \) entries, and level \(i (i \geq 0) \) contains at most \(T_1^i B.pg \) entries. The largest level contains approximately \(N \frac{L-1}{T-1} \) entries. The total number of levels is given by Equation 1.

\[
L = \left\lfloor \log_T \left(\frac{N}{B.pg} \cdot \frac{T-1}{T} \right) \right\rfloor
\]

Write amplification: Inserted or updated keys are merged multiple times across levels over time, therefore the insert or update I/O cost is measured in terms of write amplification. The worst-case write amplification corresponds to the I/O required to merge an entry all the way to the last level. An entry in level \(i \) is copied and merged every time level \(i - 1 \) fills up and is merged with level \(i \). This can happen up to \(T \) times. Adding this up over \(L \) levels, each entry is merged \(L.T \) times. Since each page contains \(B \) entries, the write cost for each entry across all the levels is \(O(\frac{T}{B}) \).

Point queries: The worst-case lookup cost for an existing key is \(O(L) \) without bloom filters because the entry may exist in the last level, requiring access to one block (whose range overlaps with the search key) in each level along the way. With bloom filters, the average cost of fetching a block from the first \(L - 1 \) levels is \((L - 1) f_{pr} \), plus one I/O to fetch the entry from last level, where \(f_{pr} \) is the false positive rate of the bloom filter. In practice, \(f_{pr} \) is roughly \(1% \), giving an I/O cost of \(O(1) \).

Range queries: Let \(s \) be the selectivity, which is the number of unique entries across all the sorted runs that fall within the target key range. If keys are uniformly spread across the levels, then in each level \(i, s/T^{L-i} \) entries will be scanned. With \(B \) entries per block, the total number of I/Os is \(O(\frac{L}{B} \sum_{i=0}^{L-1} \frac{1}{T^{L-i}}) \). Since the largest level contributes most of the I/O, the cost simplifies to \(O(\frac{1}{T}) \).

Space amplification: This is defined as \(amp = \frac{1}{s_{unq}} - 1 \), where \(s_{unq} \) is the number of unique entries (keys). The worst-case space amplification occurs when all the entries in the first \(L - 1 \) levels correspond to updates to the entries in the largest level. The first \(L - 1 \) levels contain \(\frac{1}{T} \) of the data. Therefore, \(\frac{1}{T^2} \) of the data in the last level are obsolete, giving a space amplification of \(O(\frac{1}{T}) \).

III. REAL-TIME LSM-TREE DESIGN

A. Definitions

Lifecycle-driven hybrid workloads: We target HTAP workloads with high ingest rates, data volume that requires secondary storage, and access patterns that change with the lifecycle of the data. Recent data are accessed by OLTP-style queries (point queries, inserts, updates), and both recent and older data are accessed by OLAP-style queries (range queries) [7]. From a storage engine’s viewpoint, we represent these workloads as combinations of inserts, updates, deletes, point reads, and scans. With \(key \) as the row identifier, \(row \) as the tuple with all the column values, and \(II \) as the set of projected columns \(\{A, C\} \) means that the query only touches columns \(A \) and \(C \), we consider the following operations:

- **insert(key, row):** inserts a new entry.
- **read(key, II):** for the given \(key \), reads the values of columns in \(II \).
- **scan(key_{low}, key_{high}, II):** reads the values of the columns in \(II \) where the key is in the range \(key_{low}, key_{high} \). Range queries over non-key columns also use this operator by scanning all the entries and filtering out the entries that are not within the range.
- **update(key, value_II):** updates the values of the columns in \(II \) for the given \(key \). \(value_II \) contains the column identifiers and their new values. For example, \(value_II = \{A, r_{nv_a}, (B, r_{nv_b})\} \) indicates new values for columns \(A \) and \(B \).
- **delete(key):** deletes the entry identified by \(key \).

We assume that \(read \) and \(update \) access recently inserted keys with a wide \(II \) (almost all the columns), while \(scan \) accesses a range of keys spanning historical and recent data with a narrow \(II \) (one column or a few columns depending on the age of the data).

Column groups (CGs): A hybrid storage layout is defined by column groups (CGs) stored together as rows [13]. Suppose we have a table with four columns: \(A, B, C, \) and \(D \). In a row-oriented layout, there is a single CG corresponding to all the columns. In a column-oriented layout, each column corresponds to a separate CG. Other hybrid layouts are possible, e.g., two CGs of \(\{A,B,C\} \) and \(\{D\} \), where the projection over columns \(A, B, \) and \(C \) is stored in row format, and the projection over \(D \) is stored separately.

TABLE I: Summary of terms used in this paper

Symbol	Description
\(N \)	number of entries
\(L \)	total number of levels
\(T \)	size ratio between adjacent levels
\(B \)	\# of row style entries in a block
\(pg \)	\# entries in blocks at CG \(j \) at level \(i \)
\(c \)	\# columns
\(s \)	range query selectivity (i.e., \# entries selected)
\(\Pi \)	set of projected columns
\(g_i \)	\#column groups at level \(i \) \(1 \leq g_i \leq c \)
\(\text{cg} _\text{size} _\text{i} \)	size of \(j^{th} \) CG at level \(i \)
\(\text{CG} _\text{i} \)	CGs at level \(i \)
\(E_{\text{cg}} \)	estimated number of CGs required by a projection
\(E_{\text{cg}}^* \)	estimated sum of sizes of CGs required by a projection
B. Design Overview

The insight that makes the Real-Time LSM-Tree a natural fit for a lifecycle-aware storage engine is that different levels may store data in different layouts. This creates a design space characterized by the column groups used in each level. In Figure 3, we show three examples: a row-oriented format used by existing LSM-Tree storage engines on the left, a pure columnar layout on the right, and a hybrid design in the middle, in which Level-0 is row-oriented, levels 1 and 2 use different combinations of CGs, and Level-3 switches to a pure columnar layout. This design may be suitable for HTAP workloads, with the column group configuration depending on access patterns during the data lifecycle.

In the Real-Time LSM-Tree, we keep the in-memory component and Level-0 the same as in the original LSM-Tree to maintain high write throughput. However, the secondary-storage levels beyond Level-0 are split into CGs, where each CG stores its own sorted runs. As we will see in Section IV, each such sorted run is associated with tail indices and bloom filters to answer queries that access columns within the CG.

Since different levels may have different CG configurations, a Real-Time LSM-Tree must be able to change the data layout as data move from one level to another. As we will explain in Section IV-D, this can naturally be done during compaction.

CG containment assumption: The space of Real-Time LSM-Trees consists of all possible combinations of CGs in each level. However, we make a simplifying assumption since access patterns throughout the data lifecycle tend to change from row-friendly OLTP to column-friendly OLAP. We assume that any CG in level i is a subset of (i.e., contained in) a single CG in level $i-1$, for $i \geq 1$. In Figure 3, the design in the middle has two column groups in Level-1: $\langle A,B \rangle$ and $\langle C,D \rangle$. This means that, for example, a CG of $\langle A,B,C \rangle$ or a CG of $\langle B,C \rangle$ is not a valid choice in Level-2. This assumption is not critical to LASER, but it simplifies layout changes during compaction, as we will see in Section IV-D.

No replication assumption: For some workloads, data in a given level may be touched by both OLTP and OLAP style queries, meaning that no single CG layout is suitable for that level. This may be true especially in the last level, which stores the oldest and the majority of the data. For these workloads, a level can be replicated in two layouts, at the cost of storage and write amplification. However, we expect such situations to be rare in practice because OLTP patterns tend to be limited to recent data in real-time analytics workloads [26], [7], which are expected to fit in the first few levels.

IV. LASER STORAGE ENGINE

We now describe the design of LASER – our HTAP storage engine based on Real-Time LSM-Trees. LASER borrows several concepts from column-store systems [8]: a data model for storing column groups (Section IV-A), column updates (Section IV-B), and “stitching” individual column values to reconstruct tuples (Section IV-C). LASER also requires a mechanism to change the data layout from one level to the next in the Real-Time LSM-Tree (Section IV-D).

A. Column Group Representation

Since entries in an LSM-Tree are stored across multiple sorted runs and levels, column scans do not access the data contiguously. To fetch data in sorted order from different levels, we need to locate entries by their keys. Therefore, we store the keys along with column group values, as shown in Figure 4. This is known as simulated columnar storage [8], and incurs read and storage overhead compared to storing only the column values in a contiguous data block. In LSM-Trees, this overhead is reduced due to the leveling merge strategy, and can be further reduced by compressing the data blocks and delta-encoding the keys within each data block. For example, we observed that naïvely storing keys with column group values took 86GB, using Snappy compression took 51GB, and delta-encoding the keys further reduced the space usage to 48GB.

B. Write Operations

Inserts are performed in the same way as in original LSM-Trees, where an entry is inserted in the in-memory skiplist, and is eventually moved to lower levels via flush and compaction jobs. Inserting an existing key acts as an update, whereas inserting an existing key with a tombstone flag acts as a deletion.
Updates of individual columns may be implemented in two ways. A simple way is to fetch the entire tuple, modify the column being updated, and re-insert the entire tuple. This is the standard approach in a row-oriented storage engine. Column-oriented storage engines \[11\] and some HTAP storage engines \[11\] allow updates of individual columns. Similarly, in LASER, we allow insertion of partial rows that contain only the updated column values. Partial rows are eventually merged with complete rows, or other partial rows, at the time of compaction, and any older column values are discarded. For example, suppose we have four columns, \(A, B, C, D\), and suppose we update columns \(B\) and \(C\) of the tuple with key 100. Here, we insert the following key-value pair: 100 : \(-, b', c'\) — where \(b', c'\) are the updated values, and \(-\) denotes an unchanged value. If, during compaction, we find another entry for the same key, 100 : \(a, b, c, d\), then the two entries are merged to give 100 : \(a, b', c', d\).

C. Read Operations

Point queries (with projections) are handled by searching for the given key in the skiplist, and then down the levels until the latest value is found. In each level, we only probe the CGs that overlap with the projected columns, and the query result is returned as soon as the values for all of the projected columns are found. Since we allow updates of individual columns, the latest version of a given tuple may exist partially in one level and partially in another. For example, in Figure 5, the latest values of \(A\) and \(B\) for tuple 108 exist in Level-0, but the values of \(C\) and \(D\) exist in Level-2.

Range queries (with projections) are also handled by opening iterators for each level and returning values in sorted order, while discarding older versions. We only open iterators for the overlapping column-groups in each level. As was the case for point queries, subsets of column values may be found across different levels. We use LevelMergingIterators to merge values across levels, and to stitch column values within a level we use ColumnMergingIterators (details in Section IV-D).

D. Real-Time LSM-Tree Compaction

In Section II, we described the compaction process used by LSM-Trees to improve query performance. In LASER, compaction additionally changes the data layout. A compaction job selects a level that overflows the most, and merges its entries with the next level. Using this approach in LASER would require merging entries from all the CGs of an overflowing level with the next level. However, since we allow individual column updates (Section IV-B), different CGs can fill up at different rates. For example, some CGs (bank balance, inventory) may be updated more frequently than others (contact information, item description). Therefore, treating all CGs in the same way when scheduling compaction jobs might push some CG values to deeper levels even when top levels are not full, and therefore disrupt the distribution across levels based on time. We modify the compaction strategy to select the most overflowing CG in the most overflowing level. To determine if a CG is overflowing, we define the capacity of a CG within a level by proportionally dividing the level capacity across all the CGs, and any CG that exceeds its capacity is an overflowing CG.

We call this a CG local compaction strategy, in which the span of a compaction job is limited to only one CG from level \(i\) and the overlapping CGs at level \(i + 1\). We show two example compaction jobs in Figure 6. Compaction job 1 merges entries from CG \((A, B)\) in level-1 to overlapping CGs (i.e., \((A); (B)\)) in level-2. Similarly, compaction job 2 is limited to only CG \((C)\) in level-2 and level-3. To perform CG local compaction, we require two types of merging iterators: LevelMergingIterators that merge entries from different levels, and ColumnMergingIterators that combine column values from different CGs within the same level.

LevelMergingIterators support range queries and compaction jobs by fetching and merging qualifying tuples from each level, and discarding old attribute values when multiple versions are found for the same key. Figure 5 shows LevelMergingIterators collecting tuples from three levels to answer a range query for keys between 50 and 108. Only the latest versions of keys 107 and 108 are returned.

ColumnMergingIterators combine values from different column groups within the same level. For each LevelMergingIterator, multiple ColumnMergingIterators are opened. Since there can be only one version for each key and column value within a level, these iterators do not discard old versions. Instead, they fetch all the required column values for each key, some of which may be empty due to column updates. In Figure 5, we show ColumnMergingIterators for each level. In level-0, the iterators return partial values for 108 because the corresponding entry corresponds to an update of columns \(A\) and \(B\). Similarly, in level-1, key 107 has a partial value.

The above iterators are used by CG local compaction in the following way: we first identify the most overflowing level, and the most overflowing CG in that level. Then, we identify the overlapping CGs in the next level, open LevelMergingIterators for both levels, and open the required ColumnMergingIterators for the overlapping CGs at level-1 to overlapping CGs at level-2. As was the case for point queries, subsets of column values may be found across different levels. We use LevelMergingIterators to merge values across levels, and to stitch column values within a level we use ColumnMergingIterators (details in Section IV-D).
Fig. 6: Sorted runs of a Real-Time LSM-Tree with two highlighted compaction jobs.

gIterators for the respective LevelMergingIterators. Once the iterators are opened, entries are emitted in sorted order and are written to the new sorted run belonging to the next level.

V. Cost Analysis

We now analyze the cost of each operation in LASER, and compare it with the cost of a purely row-oriented LSM-Tree (Section II) and a purely column-oriented LSM-Tree (a special case of a Real-Time LSM-Tree with as many CGs as columns). Table II summarizes the operations and their costs.

We use the variables listed in Table I. Let \(1 \leq g_i \leq c \) be the number of CGs at level \(0 \leq i \leq L \), where \(c \) is the number of columns. The size of the \(j^{th} \) \((1 \leq j \leq g_i)\) CG at level \(i \) is defined as the number of columns in the CG and is represented by \(cg_{\text{size}}_{ji} \), \(cg_{\text{size}}_{ji} \) is \(c \) for all column-groups at all levels for a row-style LSM-Tree and \(1 \) for all column-groups at all levels for a column-style LSM-Tree. For each level \(i \), we have the following relation between \(c, g_i \), and \(cg_{\text{size}}_{ji} \):

\[
c = \sum_{j=1}^{g_i} cg_{\text{size}}_{ji} \tag{2}
\]

Let \(B_{ji} \) be the number of entries in a data block of a \(j^{th} \) CG at level \(i \). From Section II, we know that a row-style LSM-Tree contains \(B \) entries in a block. The block size, in bytes, is fixed; for example the RocksDB default size is 4kB. If \(D \) is the block size in bytes, then \(D = B.(\text{key-size} + \text{value-size}) = B.(1.dt_{\text{size}} + c.dt_{\text{size}}) \), where \(dt_{\text{size}} \) is the average datatype size of the columns, which includes the column value and the key. This can be generalized for a Real-Time LSM-Tree, in which a block contains \(B_{ji} \) entries: \(D = B_{ji}.(1 + cg_{\text{size}}_{ji}).dt_{\text{size}} \). For example, in Figure 4, the relationship between the number of entries in a block of CG \(\langle A,B \rangle \), and CG \(\langle C \rangle \) is \(D = B_{<A,B>}.(1 + 2).dt_{\text{size}} = B_{<C>}.(1 + 1).dt_{\text{size}} \), or \(B_{<A,B>} = 2.B_{<C>}/3 \). The relationship between \(B \) and \(B_{ji} \) is as follows:

\[
B_{ji} = B.\frac{(1 + c)}{(1 + cg_{\text{size}}_{ji})} \tag{3}
\]

This gives \(B_{ji} = B.(1 + c)/2 \) for all column-groups at all levels for a column-style LSM-Tree. As \(cg_{\text{size}}_{ji} \) reduces, \(B_{ji} \) increases because we can pack more entries of smaller CG size in a block.

Write amplification: We start with the cost of write amplification for \(\text{insert}(key, row) \) operations. For a row-style LSM-Tree, the write amplification was described in Section II, i.e., \(O(T.B/L) \). For a column-style LSM-Tree, each level has \(c \) column-groups (each with one column). Therefore, the write amplification is \(O(c.T.B/L) \), where \(B_{ji} = B.(1 + c)/2 \) for all CGs. For a Real-Time LSM-Tree, the write amplification is summed across all the CGs and all the levels. For example, in level-2 in Figure 6, entries will be merged for CGs \(\langle A,B \rangle; \langle C \rangle; \langle D \rangle \) where \(B_{02} = B.(1 + 4)/(1 + 2) = 5B/3 \) (i.e., for CG \(\langle A,B \rangle \) and \(B_{12} = B_{22} = 5B/2 \). For each CG, the merge cost is given by \(T/B_{ji} \) (because entries are merged \(T \) times, as explained in Section II). The total write amplification cost is:

\[
O\left(\sum_{i=0}^{L} \sum_{j=0}^{g_i} T/B_{ji}\right). \tag{4}
\]

Point lookups: The cost for a row-style LSM-Tree is the same as in Section II, i.e., \(O(1) \) (assuming the false positive rate of bloom filters is much smaller than 1). For a column-style LSM-Tree, the cost is equal to the number of column groups containing the columns projected by the query. For a Real-Time LSM-Tree, this cost is similarly equal to the number of column-groups containing the projected columns, summed over all the levels. We use \(E_i^q \) \((1 \leq E_i^q \leq g_i)\) to define the number of column-groups required at level \(i \). For example, if there are two CGs, \(\langle A, B \rangle; \langle C, D \rangle \), in level \(i \), then \(E_i^q = 2 \) when the projection is \(\Pi = \{A, C\} \) and \(E_i^q = 1 \) when \(\Pi = \{A, B\} \). The total I/O cost is therefore:

\[
P := O\left(\sum_{i=0}^{L} E_i^q\right) \tag{5}
\]

Range queries: The I/O cost for a row-style LSM-Tree is the same as in Section II, i.e., \(O(T.B/L) \). For a column-style LSM-Tree, this depends on the number of CGs containing the projected columns. Therefore, the I/O cost is \(O(|\Pi|, \frac{T.B}{L}) \) (here, \(B_{ji} = B.(1 + c)/2 \). For a Real-Time LSM-Tree, different levels contribute different costs depending on the CG configuration. Anytime a CG contains one or more columns projected by the query, the entire block of that CG must be fetched. Therefore, for each level, we have \(O\left(\sum_{j \in G_i} s_i/B_{ji}\right) \), where \(s_i \) is the selectivity at level \(i \), and \(G_i \) is the set of CGs containing the projected columns. In Section II, we defined \(s \) to be the selectivity of a range query for all the levels; selectivity \(s_i \) for an individual level \(i \) can be estimated by dividing \(s \) by the capacity of that level. Using Equation 3, we obtain the following cost for each level:

\[
O\left(\frac{B}{L} \sum_{j \in G_i}(1 + cg_{\text{size}}_{ji})\right). \tag{6}
\]

We define \(E_i^q := \sum_{j \in G_i}(1 + cg_{\text{size}}_{ji}) \), i.e., the sum of the sizes of all the required CGs and corresponding entries. For example, if there are CGs \(\langle A, B \rangle; \langle C, D \rangle \) in level \(i \), then \(E_i^q = 6 \) when...
TABLE II: Summary of operations and their costs.

Operation	Row-style LSM-Tree	Real-Time LSM-Tree	Column-style LSM-Tree
Insert amplification (W)	\(O(\frac{T.L}{c.B})\)	\(O(\frac{L}{c.B} + \frac{T.L}{c.B})\)	\(O(\frac{T.L}{c.B})\)
Existing key lookup (P)	\(O(1)\)	\(O(\sum_{i=0}^{L} E_C^i)\)	\(O([III])\)
Range query (Q)	\(O(\frac{\Sigma}{c.B})\)	\(O(\sum_{i=0}^{L} T.E_C^i / c.B)\)	\(O(\frac{L}{c.B})\)
Update amplification (U)	\(O(\frac{T.L}{c.B})\)	\(O(\sum_{i=0}^{L} T.E_C^i / c.B)\)	\(O(\frac{T.L}{c.B})\)

the projected columns are \(\Pi = \{A, C\}\) and \(E_C^G = 3\) when \(\Pi = \{A, B\}\). The overall cost of a range query is:

\[
Q := O(\sum_{i=0}^{L} s_i.E_C^G / c.B) \tag{6}
\]

Update amplification: The update amplification for a row-style LSM-Tree is the same as the insert amplification: \(O(\frac{T.L}{c.B})\). For a column-style LSM-Tree, the cost depends on the number of column values that are updated due to our CG local compaction strategy (Section IV-D). The amplification is given by \(O(\frac{L.T}{B.c})\), where \(\Pi\) is the set of updated columns. For a Real-Time LSM-Tree, update amplification depends on the sum of the sizes of the required CGs. This is estimated by \(E_C^G\) (see range query cost above). Therefore, the amplification of an update operation is

\[
U := O(\sum_{i=0}^{L} T.E_C^G / c.B) \tag{7}
\]

Space amplification: As explained in Section II for a row-oriented LSM-Tree, the worst-case space amplification in a Real-Time LSM-Tree happens when the first \(L - 1\) levels contain updates of entries in the last level. The fraction of entries in the first \(L - 1\) levels is still \(\frac{1}{L}\). Therefore, the space amplification is still \(O(\frac{1}{L})\).

VI. DESIGN SELECTION

We now describe how to select a Real-Time LSM-Tree design for a given workload using the cost analysis from Section V. Our goal is to find an optimal CG configuration for each level to minimize the total I/O cost for a given workload.

For LSM-trees, this problem is different due to the flexibility of assigning a different layout for each level. That is, we are not searching for a single CG layout across the whole data and tree, but rather we need an optimal layout for each level of the tree in a way that optimizes the overall performance. A critical invariant is the CG containment constraint described in Section III-B, (a CG at level \(i\) must be a subset of some CG at level \(i - 1\)). LASER makes a decision per level regardless of whether the LSM-tree is based on leveling (one run per level), tiering, or lazy leveling (where there may be several runs per level). This is because in the latter case, runs overlap in terms of the range of values stored, and so all runs will see the same access patterns given a workload at this level.

In the remainder of this section, we define the optimization problem in the context of Real-Time LSM-trees, and we describe our search algorithm, which is inspired by Hyrise [20] and brings novel design elements to allow different layouts in every level of the tree and to ensure CG containment.

A. Input

Parameters: To find an optimal CG layout for a given workload, LASER requires: 1) parameters defining the Real-Time LSM-Tree structure, and 2) parameters defining the workload. As explained in Section V, the costs of the operations depend on the Real-Time LSM-Tree structure, which is defined by the parameters \(T, L,\) and \(B\) (Section II), and on the CG configuration \(CG\). We represent the workload by \(wL\), which is a set of operations. Let \(w\) be the number of \(insert\) operations, \(p\) be the number of \(read\) operations for existing keys, \(q\) be the number of \(scan\) operations, and \(u\) be the number of \(update\) operations in \(wL\). Since we are searching for an optimal CG layout for each level independently, we additionally define level \(i\)'s workload by \(wL_i\) and similarly, \(p_i, q_i, u_i,\) and \(s_i\) represent the number of \(read\), \(scan\), and \(update\) operations, respectively, served at level \(i\).

Obtaining parameter values: We assume that \(T, L, B\) are fixed based on the data size (\(N\)) and the operating system configuration (e.g., page size). Past research showed how to tune \(T\) and \(L\) [18], [16], [17]. Furthermore, \(B\) is usually fixed based on a 4kB block size (as in RocksDB). Overall, these parameter choices are orthogonal to LASER: they govern the high-level LSM-tree architecture while LASER optimizes the architecture within each run. As for the workload, we assume that, at the logical level, it consists of SQL statements. For the LASER storage engine, we convert the workload to the operations defined in Section III-A. Profiling the workload \(wL_1\) at each level allows us to determine the values for \(w, p, q, u,\) and \(s\). Finally, the values for \(E_C^G\) and \(E_C^G\) are determined by the workload trace and the CG configuration under consideration, as discussed in Section V.

B. Optimization Problem

Cost function: Let \(W_k\) be the cost of the \(k^{th}\) write operation in the workload, obtained using Equation 4; we define \(P_k, Q_k\) and \(U_k\) similarly based on Equations 5 through 7. Following previous work on LSM-Tree design [17], we compute the cost of a workload for a given CG configuration \(CG\) by adding up the costs of each operation, as shown in Equation 8.

\[
\text{cost}(CG) := \sum_{k=1}^{w} W_k + \sum_{k=1}^{p} P_k + \sum_{k=1}^{q} Q_k + \sum_{k=1}^{u} U_k \tag{8}
\]

Since we need to find an optimal CG configuration at each level using per-level workload statistics, the cost function in Equation 8 can be split into per-level cost:

\[
\text{cost}(CG_i) := \frac{w.T.g_i}{B.c} + \sum_{k=1}^{p} E_C^G + \sum_{k=1}^{q} s_i.E_C^G / c.B + \sum_{k=1}^{u} T.E_C^G / c.B \tag{9}
\]
Here, \(CG_1 = \{cg_1, cg_2, ..., cg_g\} \) is the partitioning of columns into \(g \) groups at level \(i \) that satisfies the CG containment constraint.

Optimization problem: For each level \(i \), we want to find an optimal \(CG_i \) such that \(\text{cost}(CG_i) \) is minimized for the workload \(\omega_i \) and the CG containment constraint is satisfied. This leads to the following optimization problem:

\[
\forall i : 1 \leq i \leq L \\
CG_i = \arg\min_{CG_i} \text{cost}(CG_i) \\
\text{s.t.} \forall cg_{1j} \in CG_1 \exists cg_{(i-1)k} \in CG_{(i-1)} \mid cg_{1j} \subseteq cg_{(i-1)k}
\]

Recall that we keep level-0 row-oriented, so the CG containment constraint is trivially satisfied for level-1.

C. Our Solution

Previous work [20] takes the following three-step approach: 1) pruning the space of candidate CGs, 2) merging candidate CGs to avoid overfitting, and 3) selecting an optimal CG layout from the candidate CGs. The CG containment constraint can be added to the first step, further pruning the space of candidate CGs.

Let \(\{a_1, a_2, ..., a_c\} \) be the attributes in relation \(R \), and let \(\Pi_j \) be the projection of the \(j \)-th operation (point lookup, range query, or update operation) at level \(i \). In the first step, we generate a CG partitioning with the smallest subsets, where every subset contains columns that are co-accessed by at least one operation. This is done by recursively splitting the attributes of \(R \) using the projections \(\Pi_j \). For example, suppose \(R = \{a_1, a_2, a_3, a_4\} \), and let \(\Pi_1 = \{a_2, a_3, a_4\} \), \(\Pi_2 = \{a_1, a_2\} \), and \(\Pi_3 = \{a_1, a_2, a_3, a_4\} \). Then, splitting using \(\Pi_1 \) gives subsets: \(\{a_1\}, \{a_2, a_3, a_4\} \), and further splitting using \(\Pi_2 \) gives subsets: \(\{a_1\}, \{a_2\}, \{a_3, a_4\} \) (\(\Pi_3 \) does not split any subsets).

The next step is to merge the subsets from the previous step. This is beneficial for point queries, which typically have wider projections, while smaller subsets are beneficial for range scan operations, which typically have narrow projections. This tension between the access patterns of point queries and scan operations is used to decide which subsets should be merged. We merge smaller subsets only if the cost of running the workload with the larger subsets is lower. To systematically evaluate all merging possibilities, we start with the smallest subsets from the previous step, and consider all possible permutations of them for merging.

Finally, in the third step, we generate all possible CG partitions (covering all attributes of \(R \)) from the subsets generated in the previous step, and output the least-cost solution (Equation 9).

To satisfy the CG containment constraint, when considering level \(i \), we change the initial set of attributes \(R \) to be the set of attributes from one CG at level \(i-1 \), and separately execute our solution for each CG at level \(i-1 \). For example, if level-2 has CGs: \(<a_1, ..., a_4> \), \(<a_5, ..., a_8> \), then we solve two CG selection problems for level-3, one with \(R = \{a_1, ..., a_4\} \) and one with \(R = \{a_5, ..., a_8\} \). The design selection algorithm starts with level-1, where the complete schema \(R \) is split into CGs using the three steps described above. Then, this process is repeated for level-2 onwards, where each CG at level \(i-1 \) is split into optimal CGs for level \(i \). The worst case time complexity of finding an optimal CG configuration at a single level is given by [20], which is exponential in the number of partitions generated in the first step. The overall worst case time complexity for all levels equals the number of levels times the worst case complexity of each level. Since the number of partitions is small in practice [20] and the CGs get smaller from one level to the next, the time taken by the design selection algorithm is expected to be small. For example, in our evaluation (Section VII), design selection took only 3 seconds for 100 columns and 8 LSM-Tree levels.

VII. EVALUATION

In this section, we show that: 1) the empirical behaviour of LASER matches the cost model from Section V, and that 2) LASER outperforms pure row-store, pure column-store, and hybrid designs as well as two existing HTAP systems.

Setup: We deployed LASER on a Linux machine running 64-bit Ubuntu 14.04.3 LTS. The machine has 12 CPUs across two NUMA nodes (Intel Xeon E5-2603 v3 @ 1.60GHz), with 15MB of L3 cache, 16GB of RAM, and a 4TB hard drive (Seagate ST4000NM0033, Serial, SATA Rev 3.0).

Implementation: We implemented LASER on top of RocksDB 5.14. We added the components described in Section IV: simulated CG layout, CG updates, support for projections in queries, LevelMergingIterators and ColumnMergingIterators, and the CG local compaction strategy. We reused other necessary but orthogonal components provided by RocksDB, such as in-memory skiplists, index blocks for SSTs, bloom filters, snapshots, and concurrency. To collect workload traces for design selection, we modified the RocksDB profiling tools to collect per-level statistics about operations and their projections. We implemented the design selection algorithm as an offline process that takes in the workload trace and the LSM-Tree parameters as input. LASER source code is publicly available at https://github.com/hemant271990/laser-lsm-hiap.

Configuration: Unless specified otherwise, we use level compaction with \(k\text{OldestLargestSeqFirst} \) compaction priority, with up to 6 compaction threads. We use the RocksDB default values of other parameters such as Level-0 size, SST size, and compression.

Compaction: While we use leveling, the results are orthogonal to the compaction strategy: the number of entries in every level remains constant given a fixed size ratio (T). For example, tiering, the write optimized merging strategy, or lazy leveling and the “wacky continuum” [18], which balance read and write costs, only affect the number of runs within a level, not the number of entries in a level (since runs will simply be smaller with those strategies compared to leveling). In our experiments, we vary the size ratio (T), which affects how entries spread across the levels and the number of levels. This is critical as it affects the number of column-group layouts a Real-Time LSM-tree can hold simultaneously.
Workload: We generate workloads using the benchmark proposed by previous work on HTAP systems [11], [12]. The benchmark consists of transactional and analytical queries common in HTAP workloads:

- \(Q_1 \) inserts new tuples, \(Q_2 \) is a point query that selects a specific row, \(Q_3 \) is an update query that updates a subset of attributes of a specific row, \(Q_4 \) is an arithmetic query that sums a subset of attributes over the selected tuples, and \(Q_5 \) is an aggregate query that computes the maximum values of selected attributes over selected tuples. These queries are written in SQL as follows:

Transactional:

\[
Q_1: \text{INSERT INTO} \ R \ \text{VALUES} \ (a_0, a_1, ..., a_k) \\
Q_2: \text{SELECT} \ a_1, a_2, ..., a_k \ \text{FROM} \ R \ \text{WHERE} \ a_0 = v \\
Q_3: \text{UPDATE} \ R \ \text{SET} \ a_1 = v_1, ..., a_k = v_k \ \text{WHERE} \ a_0 = v
\]

Analytical:

\[
Q_4: \text{SELECT} \ a_1 + a_2 + ... + a_k \ \text{FROM} \ R \ \text{WHERE} \ a_0 \in \ [v_s, v_e] \\
Q_5: \text{SELECT} \ \max(a_1), ..., \max(a_k) \ \text{FROM} \ R \ \text{WHERE} \ a_0 \in \ [v_s, v_e]
\]

The parameters \(k, v, v_s, v_e \) control projectivity, selectivity, overlap between queries, and access patterns throughout the data lifecycle. The benchmark includes two types of tables: narrow (30 columns) and wide (100 columns). Each table contains tuples with a 8-byte integer primary key \(a_0 \) and a payload of \(c \) 4-byte integer columns \((a_1, a_2, ..., a_c) \). Unless otherwise noted, we use the table with 30 columns, with uniformly distributed integer values as keys. In all experiments, we run an initial data load phase, followed by a steady workload phase in which we record measurements.

Note that we do not use complex OLAP queries from benchmarks such as TPC-H and TPC-DS since our focus is on the performance of storage engine operations (inserts, updates, point lookups and scans) rather than query optimizations. Furthermore, we do not test queries with predicates on non-key columns since LASER converts these to a sequential scan, as described in Section III-A. Secondary indices can speed up these types of queries, but this is orthogonal to the data layout issues we study in LASER.

A. Validation of Cost Model

Goal: We begin by validating the costs of point reads, range scans, and write amplification presented in Section V.

Methodology: For a fixed schema and parameters (i.e., \(c \) and \(B \)), the cost of these operations depends on the query projection size and the CG configuration. We validate the cost model using the narrow table and \(T = 2 \), as well as the wide table with \(T = 10 \). For the narrow table, we consider six Real-Time LSM-Tree designs, in which the CG sizes vary from 1 to 30, covering the pure row and pure column layouts, and other designs in between. For each design, we use \(g = 30/cg_size \) equi-width column groups in each level, and we set \(cg_size \) to a value in \{1, 2, 3, 6, 15, 30\}. In each design, the LSM-Tree has 8 levels with Level-0 in row-format. For the wide table, we consider four Real-Time LSM-Tree designs, with \(cg_size \) values in \{1, 4, 10, 100\}, and five LSM-Tree levels.

To generate \textit{read} and \textit{scan} operations, we use \(Q_2 \) and \(Q_5 \), respectively, and we vary \(k \) from one to 30 to control the projection size. Queries are executed after the load phase (400 million entries loaded into the narrow table, and 200 million entries into the wide table) with the OS cache cleared, and we measure the average latency. The write amplification cost is reflected in the background compaction process. To measure compaction time, we load all the entries in Level-0, with compaction disabled, and then schedule compaction manually and measure its runtime. Compaction ends when no level exceeds its capacity. Compaction size is measured as the total bytes written.

Results: Figures 7(a) and 7(b) show the latency of \textit{read} operations w.r.t. the projection size and the number of CGs, respectively. The top figures correspond to the narrow table and the bottom figures correspond to the wide table. In Figure 7(a), when the CGs are small (similar to a column-oriented layout), latency increases linearly with the projection size because more CGs are fetched from disk. When the CGs are large (similar to a row-oriented layout), latency stays unchanged with the projection size because all the columns are fetched. This is also implied by the point query cost in Equation 5, which is plotted in black dotted lines for \(cg_size=1 \) (top line) and \(cg_size=30/100 \) (bottom line). The empirical data in Figure 7(a) thus agree with the cost equation.

In Figure 7(b), we vary the number of CGs while keeping the projection sizes fixed. For wide projections (i.e., fetching complete rows), the cost increases linearly with the number of CGs, because each CG is fetched in a separate disk I/O. However, for narrow projections (i.e., fetching a single column value), the I/O cost stays unchanged because a single disk I/O is enough to fetch the required column value. This is consistent with the point query cost given by Equation 5, which is plotted in black dotted lines for projection size 30/100 (top line) and 1 (bottom line) in Figure 7(b).

In Figures 7(c) and 7(d), we measure the latency of \textit{scan} operations w.r.t. the projection size and CG size, respectively. Again, the top figures correspond to the narrow table and the bottom figures correspond to the wide table. Similar to Figure 7(a), we vary projection size in Figure 7(c). For small CGs (similar to a column-oriented layout), latency increases linearly with the projection size because more disk I/O is required to fetch more CGs. However, for large CGs (similar to a row-oriented layout), latency stays almost constant with projection size, because many columns are fetched in a single disk I/O. This is consistent with the range query cost given by Equation 6, which is plotted in black dotted lines for CG size 1 (top line) and 30/100 (bottom line) in Figure 7(c).

In Figure 7(d), we vary the CG size while keeping the projection sizes fixed. For wider projections, latency should stay constant with CG size, because almost all the columns are fetched irrespective of the CG layout. However, latency decreases as CG size increases because of the simulated CG layout used in LASER. For large CGs, we fetch the key only once, whereas for smaller CGs, the key is fetched along with
We show that LASER can speed up mixed workloads such that the upper levels of each CG, which increases latency. The change in latency for wider projections is proportional to \(\frac{\text{const}_1}{\text{cg}_\text{size}} + \text{const}_2 \) (Equation 6), as shown by the top black dotted line in the Figure 7(d). For smaller projections, we expect latency to increase with CG size because of the overhead of fetching unnecessary columns. This is reflected in Figure 7(d) and matches the cost in Equation 6. Similar observations were made in prior work on HTAP systems that allow configurable column groups [9], [11].

In Figure 7(e), we show that the time and size of compaction jobs for different CG sizes matches our write amplification cost (Equation 4), shown using a black dotted line.

B. Performance of LASER

Goal: We show that LASER can speed up mixed workloads that change with the data lifecycle. We compare LASER with a pure row-oriented layout, a pure column-oriented layout, a simple HTAP layout, and two HTAP systems: Hyper [1] and TiDB [4].

Methodology: We generate an HTAP workload (HW) using queries \(Q_1 \) - \(Q_5 \). To emulate a data lifecycle, we continuously insert new data (\(Q_1 \)) at a steady rate of 10,000 insert operations per second. This ensures that entries continuously move from one level to the next. Along with the inserts, we issue 100 updates per second, i.e., one percent of the insert rate, via \(Q_3 \), where a randomly chosen column value is updated for a recently inserted key. This update pattern mimics updates and corrections frequently taking place in mixed analytical and transactional processing [12]. Furthermore, we control the access patterns throughout the data lifecycle by selecting \(k, v, v_s, \) and \(v_e \) for queries \(Q_2 \) - \(Q_5 \) such that the upper levels of the LSM-Tree are mostly accessed by point read operations and wider projections, whereas lower levels are accessed by scan operations and narrower projections. This allows us to generate a lifecycle-driven hybrid workload, as described in Section III-A.

We use two variants of \(Q_2 \) for point access of recent data: HW-\(Q_{2a} \) and HW-\(Q_{2b} \). The \(v \) value in each variant is determined by a normal distribution over the time-since-insertion values of the keys. In Figure 9(a), we show the two distributions from which \(v \) is selected. The mean of the first distribution is 0.98 (typically accessing data from in-memory skiplists, Level-0, or Level-1), and 0.85 for the second distribution (typically accessing data from Level-2 or Level-3); each distribution has a standard deviation of 0.02. \(Q_{2a} \) queries fetch all 30 attributes, whereas \(Q_{2b} \) fetches columns 16-30.

For analytical operations, we use \(Q_4 \), which accesses columns 21-30 for 5% of the keys, and \(Q_5 \), which accesses columns 28-30 for 50% of the keys. Since our keys are uniformly distributed integer values, these queries access data from all levels, i.e., both recent and historical data. However, the amount of data scanned at level \(i + 1 \) is a factor \(T = 2 \) more than that scanned at level \(i \). Table III summarizes the properties of these operations.

We first load 400 million entries, and then execute the workload until another 20 million entries are inserted. Queries HW-\(Q_{2a} \) and HW-\(Q_{2b} \) are spread uniformly, whereas \(Q_1 \) and \(Q_5 \) are executed towards the end. Queries \(Q_2, Q_3, \) and \(Q_5 \) are issued using four concurrent client threads, whereas a separate client thread is responsible for write operations (\(Q_1 \) and \(Q_3 \)).

The CG configuration used by LASER for this workload is labelled D-opt (Figure 9(b)), and was computed as described in Section VI-C. For comparison, we select three other designs. The design with \(\text{cg}_\text{size}=30 \) corresponds to a pure row-oriented layout (default RocksDB) and the design \(\text{rocksdb-col} \) corresponds to a simulated pure column-oriented layout inside LASER. Since column stores benefit from contiguous storage of column values, we simulate this in \(\text{rocksdb-col} \) by restricting the LSM-Tree to two levels and we set \(\text{cg}_\text{size}=1 \) (Level-0 absorbs flushed skiplists, and Level-1 stores all the sorted runs with \(\text{cg}_\text{size}=1 \)). We also consider a design we
Fig. 8: LASER performs the best on the HTAP workload (HW).

Table III: Summary of the HTAP workload HW

Query	Projection (k)	Key (v) distribution	Count
Q1	1-30	uniform	10,000/sec
Q2a	1-30	normal:0.98,0.02	500,000
Q2b	16-30	normal: 0.85,0.02	500,000
Q2c	any 1 of 30	uniform, 1% of data	100/sec
Q3	21-30	uniform, 5% of data	12
Q4	28-30	uniform, 50% of data	12

servers: TiDB, TiFlash, TiKV, and PD. To ensure that the TiDB cluster uses the same amount of resources as LASER and Hyper, we hosted the complete TiDB cluster on our single Linux machine.

Results: Figure 8 shows that LASER’s optimal design outperforms the other storage layouts when executing the mixed workload described in Table III. Figure 8(a) shows that LASER took the least total time to execute the complete workload, i.e., queries Q1 to Q5. Hyper and TiDB did not finish within our time-limit-exceeded (TLE) window of 24 hours. Therefore, we instead report the average latencies in Figure 8(c) and 8(d).

Figure 8(b) compares the insert throughput during the load phase. LSM-Trees are known to stall inserts as compaction involves slow disk IOs whereas inserts happen in memory [23]. Thus, the insert throughput of each design is dependent on the amount of compaction. From Equation 4, the amount of compaction (i.e., write amplification) depends on the number of CGs and the number of levels, L. Design rocksdb-col has the smallest compaction size since it has only two levels, and thus the highest throughput. However, rocksdb-col simulates a pure column-oriented layout, in which 25 percent of the most recent data are stored in a row-oriented layout, and the remaining 75 percent are stored in a pure column-oriented layout. To test various CG layouts within reasonable time, we opted to have deeper LSM-Trees, therefore, we set the level size ratio (T) to 2. For all the designs (except rocksdb-col), the LSM-Trees have 8 levels with Level-0 in row-format. To isolate the impact of the storage layout, we simulate these three designs within LASER. For the HTAP-simple design, we set cg_size=30 for the first 6 levels and cg_size=1 for the last two levels (which contain 75 percent of the data).

Additionally, we execute this workload in two HTAP DBMSs: Hyper [1] (via Hyper API v0.0.14946 [2]) and TiDB [4] (v6.3.0). The Hyper API does not allow multiple client threads to simultaneously connect to the same database, therefore we executed the workload via a single client thread. TiDB [4] maintains two replicas of the data, one for transactional queries and one for analytical queries, which are managed by TiKV and TiFlash servers, respectively. We configured the TiDB cluster with one instance for each of the following data storage layouts, we simulate these three designs within LASER. For the HTAP-simple design, we set cg_size=30 for the first 6 levels and cg_size=1 for the last two levels (which contain 75 percent of the data).

Fig. 9: Read patterns and optimal design used in Sec. VII-B
oriented layout with only two levels, whereas in practice LSM-Trees have 8 or more levels [5]. Amongst the other designs (with 8 levels), rocksdb has the highest throughput because it has the fewest column groups. LASER’s throughput is 25 percent slower than rocksdb’s since it has multiple column groups. LASER’s design selection (Section VI-C) trades off the insert throughput to achieve better query latency, as we will see in Figure 8(c) and 8(d), optimizing for the overall workload time. If High insert throughput is more critical than query performance then the cost of inserts in Equation 8 can be multiplied by some weight, which would force LASER to select a more write-optimized design. Hyper and TiDB performed significantly worse, to the extent that loading data via a stream of INSERT statements was impractical. To finish the data load within reasonable time, we loaded directly from the files, and we exclude these systems from the throughput comparison.

In Figure 8(c), LASER’s design has either the lowest latency or is close to the lowest latency across different designs. Rocksdb, which stores data in a row oriented layout, has Q_5 latency very close to LASER. Hyper, which supports HTAP workloads, like LASER, has the highest latency, orders of magnitude higher than LASER. This is because Hyper does not consider the data lifecycle while deciding the storage layout. Instead, Hyper stores all the data in columnar layout and only varies the compression scheme for hot and cold data [22]. LASER’s write-optimized design significantly benefits Q_1 and Q_3 as recently inserted data are appended to an in-memory skiplist first and then flushed eventually. In Figure 8(d), LASER’s latency is second best, after Hyper. Hyper performs the best for Q_4 partly due to the columnar layout and partly because of a single client workload. We suspect Hyper’s latency for Q_4 will increase with multiple parallel clients due to disk throttling. For Q_5, Hyper performs 5x better than LASER because it stores all the data in contiguous columns, which is suitable for aggregation queries. TiDB was not able to execute even a single instance of Q_5 (within the time limit of 10 hours) and we suspect that this is due to the asynchronous replication where some of the latest data required by the query might still be only present in the row-store replica (TiKV). TiDB was able to run Q_5 on a smaller dataset, which validates that our setup was appropriate.

VIII. RELATED WORK

Adoption of LSM-Trees: LSM-Trees are used in many RDBMSs, key-value stores and NoSQL systems [27]. Other applications include the log-structured history access method (LHAM) [25], which supports temporal workloads by attaching timestamp ranges to sorted runs and pruning irrelevant sorted runs at query time. Furthermore, LSM-trie [30] is a hash index for key-value pairs where the metadata, such as index pages, cannot be fully cached. Finally, the LSM-based tuple compaction framework in AsterixDB [10] leverages LSM lifecycle events (flushing and compaction) to extract and infer schemas for semi-structured data. Similarly, in LASER, we exploited LSM-Tree properties, such as data propagation through the levels over time and compaction.

Improvements of LSM-Trees: Recent works have optimized various components of LSM-Trees such as allocating space for Bloom filters [16], tuning the compaction strategy [17], and compaction scheduling to mitigate write stalls [23]. Many of these recent improvements are orthogonal to the design of LASER.

HTAP systems and storage engines: An early approach, fractured mirrors, maintained one copy of the data in row-major layout and another copy in column-major layout [28]. This has been adopted by Oracle and IBM to support columnar layout as an add-on, and adopted in recent HTAP systems such as PingCap (TiDB) [4]. Although these systems achieve better OLAP performance than a pure row store, they have the following disadvantages: 1) extra cost for the layout transformation, memory and disk, 2) possibly stale data for analytics, and 3) added complexity. Also, replication is orthogonal to our work as an additional data layout and does not interfere with the processing of our base layout. Our cost models can be used to enable informed decisions on where to direct queries and which parts of the data would benefit more from replication.

HYRISE [20] partitions tables into column groups based on how columns are co-accessed by queries. Systems such as SAP HANA [19], SingleStore [6], and IBM Wildfire [14] split the storage into OLTP friendly and OLAP friendly components. Data are ingested by the OLTP friendly component, which is write-optimized and uses a row-major layout, and are eventually moved to the OLAP friendly component, which is read-optimized and uses a column-major layout. Peloton (now NoisePage) [11], [3] generalizes this idea by partitioning the data into multiple components called tiles, with different column group layouts. In this work, we described these systems as having a lifecycle-aware data layout, and we showed that LSM-Trees are a natural fit for a lifecycle-aware key-value storage engine.

Furthermore, well established design trends in modern cloud native systems such as separation of storage and compute are orthogonal to data layout design. This is because such issues have more to do with how operations are scheduled on the cloud. Our work is applicable to all such setups as it is only affecting the storage engine internals.

IX. CONCLUSIONS

In this paper, we showed that Log-Structured Merge Trees (LSMs) can be used to design a lifecycle-aware storage engine for HTAP systems. To do so, we proposed the idea of a Real-Time LSM-Tree, in which different levels can store the data in different formats, ranging from purely row-oriented to consisting of column groups to purely column-oriented. We presented a design advisor to select an appropriate Real-Time LSM-Tree design given a representative workload, and we implemented a proof-of-concept prototype, called LASER, on top of the RocksDB key-value store. In future work, we plan to study self-configuring Real-Time LSM-Trees that can adapt to changing workloads.
REFERENCES

[1] HyPer. https://hyper-db.de/.
[2] HyPer API. https://help.tableau.com/current/api/hyper_api-en-us/docs/hyper_api_whatsnew.html.
[3] NoisePage. https://noise.page/.
[4] PingCAP TiDB. https://www.pingcap.com/tidb/.
[5] Rocksdb tuning. https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide.
[6] SingleStore. https://www.singlestore.com/.
[7] Hybrid transaction/analytical processing will foster opportunities for dramatic business innovation. https://www.gartner.com/en/documents/2657815.
[8] D. Abadi, P. Boncz, and S. Harizopoulos. The Design and Implementation of Modern Column-Oriented Database Systems. Now Publishers Inc., Hanover, MA, USA, 2013.
[9] I. Alagiannis, S. Iredes, and A. Ailamaki. H2o: A hands-free adaptive store. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD '14, page 1103–1114, New York, NY, USA, 2014. Association for Computing Machinery.
[10] W. Y. Alkowaileet, S. Alsubaiee, and M. J. Carey. An lsm-based tuple compaction framework for apache asterixdb. Proc. VLDB Endow., 13(9):1388–1400, 2020.
[11] J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago between row-stores and column-stores for hybrid workloads. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 583–598. ACM, 2016.
[12] M. Athanassoulis, K. S. Bogh, and S. Iredes. Optimal column layout for hybrid workloads. Proc. VLDB Endow., 12(13):2393–2407, Sept. 2019.
[13] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Iredes, M. Kim, O. Koeth, J. Lee, T. T. Li, G. M. Lohman, K. Morfonios, R. Müller, K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Business analytics in (a) blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.
[14] R. Barber, C. Garcia-Arellano, R. Grossman, R. Müller, V. Raman, R. Sidle, M. Spichen, A. J. Storm, Y. Tian, P. Töün, D. C. Zilio, M. Huras, G. M. Lohman, C. Mohan, F. Özcan, and H. Prabhash. Evolving databases for new-gen big data applications. In CIDR, 2017.
[15] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in haystack: Facebook’s photo storage. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI’10, page 47–60, USA, 2010. USENIX Association.
[16] N. Dayan, M. Athanassoulis, and S. Iredes. Monkey: Optimal navigable key-value store. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, page 79–94, New York, NY, USA, 2017. Association for Computing Machinery.
[17] N. Dayan and S. Iredes. Dostoevsky: Better space-time trade-offs for lsm-tree based key-value stores via adaptive removal of superfluous merging. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18, page 505–520, New York, NY, USA, 2018. Association for Computing Machinery.
[18] N. Dayan and S. Iredes. The log-structured merge-bush & the wacky continuum. In ACM SIGMOD International Conference on Management of Data, 2019.
[19] F. Färber, N. May, W. Lehner, P. Großø, I. Müller, H. Rauhe, and J. Dees. The sap hana database - an architecture overview. IEEE Data Eng. Bull., 35:28–33, 03 2012.
[20] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden. Hyrise: A main memory hybrid storage engine. Proc. VLDB Endow., 4(2):105–116, Nov. 2010.
[21] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. The vertica analytic database: C-store 7 years later. Proc. VLDB Endow., 5(12):1790–1801, Aug. 2012.
[22] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and A. Kemper. Data blocks: Hybrid oltp and olap on compressed storage using both vectorization and compilation. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, page 311–326, New York, NY, USA, 2016. Association for Computing Machinery.
[23] C. Luo and M. J. Carey. On performance stability in lsm-based storage systems. Proc. VLDB Endow., 13(4):449–462, 2019.
[24] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey. VLDB J., 29(1):393–418, 2020.
[25] P. Math, P. Neill, A. Pick, and G. Weikum. The lham log-structured history data access method. The VLDB Journal, v.8, 199-221 (2000), 8, 02 2000.
[26] F. Özcan, Y. Tian, and P. Töün. Hybrid transactional/analytical processing: A survey. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, page 1771–1775, New York, NY, USA, 2017. Association for Computing Machinery.
[27] P. O’Neill, E. Cheng, D. Gawlick, and E. O’Neill. The log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.
[28] R. Ramanurthy, D. J. DeWitt, and Q. Su. A case for fractured mirrors. In Proceedings of the 28th International Conference on Very Large Data Bases, VLDB ’02, page 430–441. VLDB Endowment, 2002.
[29] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neill, P. O’Neill, A. Rasin, N. Tran, and S. Zdonik. C-store: A column-oriented dbms. In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, page 553–564. VLDB Endowment, 2005.
[30] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: An lsm-tree-based ultra-large key-value store for small data. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15, page 71–82, USA, 2015. USENIX Association.