RESEARCH ARTICLE

YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut [version 1; peer review: 1 approved with reservations]

Sandeep Chakraborty 1, Monica Britton2, Jill Wegryn3, Timothy Butterfield1, Basuthkar J. Rao4, Charles A. Leslie1, Mallikarjuna Aradhaya1, David Neale1, Keith Woeste5, Abhaya M. Dandekar1

1Plant Sciences Department, University of California, Davis, CA, 95616, USA
2UC Davis Genome Center Bioinformatics Core Facility, University of California, Davis, CA, 95616, USA
3Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
4Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai, 400, India
5USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, West Lafayette, IN, 47907, USA

Abstract

The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS -Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102). The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software.

Open Peer Review

Reviewer Status

Invited Reviewers

1 Varodom Charoensawan, Mahidol University, Bangkok, Thailand
2 Michael I. Love 1, Harvard TH Chan School of Public Health, Boston, USA
3 Binay Panda 1, Institute of Bioinformatics and Applied Biotechnology(IBAB), Bangalore, India

Any reports and responses or comments on the article can be found at the end of the article.
Keywords
RNA-seq, transcriptome, open reading frame, extensin, proline-rich proteins, dehydrins, senescence-associated proteins, Computational genomics, Juglans nigra, black walnut, heartwood/sapwood transition zone

This article is included in the Global Open Data for Agriculture and Nutrition gateway.

Corresponding author: Sandeep Chakraborty (sanchak@gmail.com)
Competing interests: No competing interests were disclosed.
Grant information: The authors wish to acknowledge support from the California Walnut Board and UC Discovery program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2015 Chakraborty S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Chakraborty S, Britton M, Wegrzyn J et al. YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut [version 1; peer review: 1 approved with reservations] F1000Research 2015, 4:155 https://doi.org/10.12688/f1000research.6617.1
First published: 17 Jun 2015, 4:155 https://doi.org/10.12688/f1000research.6617.1
Introduction

Analysis of the complete set of RNA molecules in a cell, the transcriptome, is critical to understanding the functional aspects of the genome of an organism. Most transcripts get translated into proteins by the ribosome. Non-translated transcripts (noncoding RNAs) may be alternatively spliced and/or broken into smaller RNAs, the importance of which have only recently been recognized. Transcriptional levels vary significantly based on environmental cues, and/or disease. Quantifying transcriptional levels constitutes an important methodology in current biological research. Traditional methods like RNA:DNA hybridization and short sequence-based approaches have been supplanted recently by a high-throughput DNA sequencing method - RNA-seq (Figure 1). Concomitant with the introduction of RNA-seq has been the development of a diverse set of computational methods for analyzing the resultant data.

In the current work, we present a methodology for analyzing RNA-seq data that has been assembled into transcripts (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). The process of associating genomic open reading frames (ORF) to a set of transcripts (transcriptome) is the key step in YeATS, enabling identification and correction of specific errors arising from sequencing and/or assembly, a novel feature missing in most known tools. These errors include transcripts that have not been merged, a transcript having broken ORFs and transcripts containing long repeats. Also, YeATS identifies noncoding RNAs by comparison to compiled databases, transcripts with multiple coding sequences and highly transcribed genes (based on simple normalization of raw counts followed by sorting).

Here, the YeATS workflow is demonstrated using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut (*Juglans nigra* L.). We have identified transcripts that have sequencing and/or assembly errors (~5%). A novel feature that emerged from our analysis was the presence of a highly transcribed gene that had no known homologous counterpart in the entire BLAST database. The amino acid composition of the longest open reading frame of this gene consists of a high percentage of leucine, histidine and valine, and classifies this as a putative extensin. Given the economic and ecological importance of black walnut timber, characterization of such genes will enhance our understanding of the mechanisms underlying the unique properties associated with the wood of these trees. The significance of proline-rich proteins, dehydrins, senescence-associated proteins and DNAJ proteins to the formation of heartwood was established through their transcriptional abundance. Finally, based on transcripts that have no known homologs, we have identified noncoding RNAs by comparison with the noncoding RNA database for *Arabidopsis*. Thus, in the current work, we present a workflow (YeATS) with several novel features absent in most currently available software.

Methods

In silico methods

The input to YeATS is a set of post assembly transcripts as a fasta file (ϕ_{trs}). The first step is to identify the set of genes (proteins) encoded by ϕ_{trs}. This is done by associating a proper open reading frame (ORF) to each transcript. This involves a comprehensive automated BLAST run.

For each transcript in ϕ_{trs}, we generate the three longest ORFs (using the ‘getorf’ utility in the EMBOSS suite) (Figure 1). These three ORFs are BLAST-ed to the full non-redundant protein sequences (‘nr’) database. For a given E-value cutoff (1E-12 in the current work), we create four sets:

1. Only one ORF is less than the cutoff - the transcript is uniquely annotated.
2. None of the ORFs is less than the cutoff - the transcript has no known homologs.
3. More than one ORF is less than the cutoff.
 a. The ORFs map to the same protein, often in distinct regions - this points to an error in the sequencing or the assembly.
 b. The ORFs map to different proteins - these are instances of a transcript having two valid ORFs. We duplicate the transcript, associating each one to a different protein sequence.

To produce the uniquely annotated set of genes, we ignored entries with the keywords chromosome, hypothetical, unnamed, unknown and uncharacterized, in order to have a functional characteristic in

![Figure 1. Flowchart for YeATS](image)
the annotation, provided the final annotated entry has low E-value. Also, apart from comparing E-values, we also compare the BLAST score, choosing an ORF as unique if its BLAST score was more than twice any other BLAST score, even if other scores satisfied the E-value criteria.

Algorithm 1 describes the process of merging transcripts (SI Figure 1). For a given length (which varies from 5 to 15 in this case), the 5' and 3' sequences and identifiers of each transcript are stored in new string databases: 3' = Begin; 5' = End. Repetitive strings (strings that have only two letters) are ignored, as it is difficult to ensure their uniqueness. For each string of n length in the Begin (3') string database, we find whether: a) unique matches of n length (one-to-one mapping) are present in the End (5') string database and b) that the prefixes (initial transcript identifiers) of the strings (strings that have only two letters) are ignored, as it is difficult to ensure their uniqueness. For each string of n length in the Begin (3') string database, we find whether: a) unique matches of n length (one-to-one mapping) are present in the End (5') string database and b) that the prefixes (initial transcript identifiers) of the transcripts are the same.

Algorithm 2 describes the iterative method for identifying homologous genes in the genome based on the transcriptome. First, the transcriptome is converted to a set of protein sequences by choosing the appropriate ORF (described above) as the representative protein sequence, and a BLAST database (TRSDB) is created. An input protein sequence (possibly from another organism) of a gene of interest is used to query TRSDB using BLAST. This results in a set of significant transcript matches which is pruned based on a cutoff identity (40% in this case) and the criterion that the sequence length should not differ more than another parameterizable value (50 in this case). Both these transcripts are now potential genes, and the above mentioned process is repeated for each of them, until no new transcripts are added.

The raw counts for each transcript is normalized according to Equation 1, assuming a read length of 100.

\[
Score_{\text{normal}} = 100 \times \left(\frac{\text{Score}_{\text{raw}}}{\text{Length(transcript)}} \right); \quad (1)
\]

The sequence alignment was done using ClustalW. The alignment images were generated using SeaView.
In vitro methods

Total RNA was isolated from the xylem region immediately external to the heartwood of a 16 year-old black walnut. The tree was felled in November, cross sections about 1 inch thick were taken from the base and dropped immediately into liquid nitrogen. After the sections were frozen, they were transported to the lab on dry ice. The transition zone was then chiseled and the xylem was ground using a freezer mill. The RNA was extracted from 100g of ground wood using lithium chloride extraction buffer, and subsequently treated with DNase (to remove genomic DNA) using an RNA/DNA Mini Kit (Qiagen, Valencia, CA) per the manufacturer’s protocol. Presence of RNA was confirmed by running an aliquot on an Experion Automated Electrophoresis System (Bio-Rad Laboratories, Hercules, CA). The cDNA libraries were constructed following the Illumina mRNA-sequencing sample preparation protocol (Illumina Inc., San Diego, CA). Final elution was performed with 16 μL RNase-free water. Each library was run as an independent lane on a Genome Analyzer II (Illumina, San Diego, CA) to generate paired end sequences of 85 bp in length from each cDNA library. The reads were trimmed to remove adapter contamination and low quality sequences using Scythe and Sickle (https://github.com/ucdavis-bioinformatics). Trimmed reads were aligned to the J. regia ‘Chandler’ transcriptome fasta assembled using Trinity (manuscript in preparation) with BW A’s short read aligner v.0.6.2 (‘bwa aln’) (http://bio-bwa.sourceforge.net)39.

Results

The input dataset to the YeATS tool was a set of transcripts, transcript identifiers and their corresponding raw counts (see Supporting information), obtained from the tissue at the heartwood/sapwood transition zone (TZ) in black walnut (Juglans nigra L.) (Figure 2). These raw counts were normalized (see Methods), and transcripts with zero counts were ignored (see rawcounts.normalized.TZ in Dataset 1). There were ~24K such transcripts (φTZ_transcript).

In order to associate a transcript to a specific open reading frame (ORF), the ORFs of φTZ_transcript is obtained using ‘getorf’ from the Emboss suite40 (see ORFS.tgz in Supporting information) (Figure 1). The three longest ORFs for each transcript is BLAST’ed to the full non-redundant protein sequences (‘nr’) database, and the results were used to characterize the genes.

There were ~1200 transcripts that had possible sequencing or assembly errors, ~22K transcripts that had significant matches (E-value<E-12) in the ‘nr’ database, 113 transcripts that had lower matches (E-12<E-value<E-08) in the ‘nr’ database, ~700 transcripts that had no matches in the ‘nr’ database and about 200 transcripts could be merged based on overlapping amino acid sequences. We describe these in detail below.

Possible sequencing error or mis-assembly of transcripts

We observed transcripts that had multiple ORFs that matched to the same gene with high significance (E-value<E-10). The possibility that such an occurrence is not an experimental artifact is low. Transcript C15259_G1_I1 is one such example, having two ORFs - ORF_36 (length = 144) and ORF_9 (length = 122), both of which match to the mitochondrial ATP-dependent Clp protease proteolytic subunit 22 (GenBank: CAN64666.1) from Vitis vinifera with E-values of 6E-92 and 7E-45, respectively. Figure 3 shows the alignment of these two ORFs to the Vitis vinifera protein indicated the possible site of the sequencing error or transcript misassembly. This aspect of the YeATS methodology can be used to estimate the sequencing and transcript assembly error rate. For example, in the

Dataset 1. YeATS Dataset

http://dx.doi.org/10.5256/f1000research.6617.d49730

README
FASTADIR.tgz : 24k transcripts
ORFS.tgz : open reading frames from 24k transcripts computed from the ‘getorf’ tool from the Emboss suite
list.merged.txt : transcripts that have been merged based on overlapping ends
High.TZ.genome.annotated.csv : transcripts having only one ORF with a high significance match
Lower.TZ.genome.annotated.csv : transcripts having only one ORF with a lower significance match
TZ.genome.annotated.none.csv : transcripts with no match
TZ.genome.errors : transcripts which have two ORFs matching with high significance to the same gene
TZ.genome.annotated.morenthannone.csv : transcripts having more than one ORFs which match to different genes with high significance
rawcounts.TZ: Raw counts
rawcounts.normalized.TZ: Normalized counts

Figure 2. Heartwood/sapwood transition zone in black walnut. A cross section of a mature black walnut (Juglans nigra) stem showing the light-colored sapwood (Secondary xylem), darkly colored heartwood which contains no living cells. The transition zone (TZ) is immediately external to the heartwood highlighted by the yellow line in the red box. Cell death is actively occurring in this TZ tissue.

Figure 3. Alignment of two transcripts from Vitis vinifera from the orthogonal ORFs subunit 2 protein, showing sequence identity highlighted by blue boxes.
current transcriptome of the walnut TZ, we found a 5% (1200 out of 24,000) error rate.

Long repeat within the same transcript

A small number of transcripts had long repeats (on the reverse strand), as identified by transcripts that had multiple identical ORFs. For example, transcript C50369_G5_I2 has two ORFs (length = 143) that matched to an uncharacterized protein (Uniprot id: XP_009362671, E-value= 4e-13). These ORFs were located on the reverse strand, and were exactly the same (Figure 4). There were only 8 such cases.

Merging transcripts

About ~200 transcripts have been merged using conservative metrics by YeATS (see Methods, list.merge in Supporting information). For example, transcripts C50369_G5_I2 and C55368_G1_I3 were merged based on a stretch of 12 amino acids (NFDENRGALNSH) (Figure 5). The indicated single nucleotide difference might be the reason for the failure of the assembly program to merge these two transcripts. Transcript C55368_G1_I3 had two exact repeats of this stretch, which is a likely assembly error.

Single transcripts with two ORFs

Some transcripts were associated with multiple ORFs with distinct significant matches in the ‘nr’ database. We demonstrate this for the transcript C8909_G1_I1, which had two ORFs - ORF_9 and 36 - both of which match to the mitochondrial ATP-dependent Clp protease proteolytic subunit 2, mitochondrial (GenBank: CAN64666.1) from *Vitis vinifera* with E-values of 6E-92 and 7E-45, respectively. It is likely that the error occurred near the amino acid sequence ‘SAG’ marked in the figure. The current transcriptome of the walnut TZ had a 5% (1200 out of 24,000) error rate for this class of error.

![Error detection in sequencing or transcript assembly by YeATS.](image-url)
Figure 4. **Erroneous transcripts with an exact long repeat (on the reverse strand).** Transcript C50369_G5_I2 had an ORF (length = 143, Uniprot id: XP_009362671, uncharacterized protein), with an exact match on the reverse strand. There were only eight such cases, and they could be manually corrected.

Figure 5. **Transcripts that could be merged.** (a) Transcripts C55368_G1_I3 and C55368_G2_I1 could be merged based on a stretch of 12 amino acids (NFDENRGALNSH) obtained from their ORFs. (b) The partial nucleotide sequences of these transcripts shows the repeat with only a single nucleotide difference. The indicated single nucleotide difference may explain the failure of the assembly program to merge these two transcripts. Interestingly, the transcript C55368_G1_I3 had two exact repeats of this stretch at the end which may have contributed to the failure of the assembly program to merge these transcripts.
Highly transcribed genes

Table 1 shows the transcripts with the highest counts. Interestingly, the most abundant transcript had no homologous counterpart in the full BLAST ‘nr’ or ‘nt’ database (GenBank accession: KT023102). A proline-rich protein (PRP), a part of the protein superfamily of cell wall proteins consisting of extensins and nodulins, was found to have the second most abundant transcript\(^{23,44}\). Proline comprises 19% of the amino acids in the ORF of this transcript. PRPs are found as structural proteins in wood, and it was hypothesized that these proteins occur in the xylem cell walls during lignification, and influence the properties of wood\(^{45}\). PRPs were associated with carrot storage root formation\(^{46}\), were wound and auxin inducible\(^{47}\), and implicated in cell elongation\(^{48}\). PRPs are also an integral component of saliva responsible for the precipitation of antinutritive and toxic polyphenols by forming complexes\(^{48}\). Two DNAJ/HSP40 chaperone proteins, which are involved in proper protein folding, transport and stress response, showed high transcriptional levels\(^{49}\). Two DNAJ/HSP40 chaperone homologs (GenBank accession id: B1677935 and B1642398) were shown to be differentially expressed during summer at the sapwood/heartwood TZ of black locust\(^{49}\). The transcription levels of dehydrin-related proteins were shown to be seasonally regulated in the wood of deciduous trees\(^{50,51}\). However, this dehydrin protein is homologous to a 24kDa dehydrin (Uniprot id: AGC51777) from Jatropha manihot, a drought resistant plant\(^1\), unlike the ~100kDa proteins investigated in\(^{49}\). Senescence-associated proteins, and the related tetraspanins, were also highly transcribed\(^{47}\). One highly expressed transcript was homologous to a protein that is yet to be characterized.

Finding genes

We demonstrated the (iterative) gene finding methodology in YeATS on a transcription factor that has an AP2 DNA binding motif (RAP2.6L in *Arabidopsis*, At5g13330)\(^{52}\). This protein showed differential tissue specific expression, and is likely to be involved in plant developmental processes and stress response\(^{53}\). Recently, the sequence of a homolog of RAP2.6L was deduced (Uniprot id: C1KH72, JnRap2) from an EST sequence isolated from tissue at the heartwood/sapwood TZ in black walnut (*Juglans nigra* L.), and its role in the integration of ethylene and jasmonate signals in the xylem and other tissues was established\(^{54,55}\). Using the sequence of JnRap2, we probed for other RAP2 genes in the TZ of walnut. We found three possible genes (C38523_G2_I1, C53728_G7_I1 and C53728_G7_I2) (Figure 7). It was observed that C53728_G7_I2 was closest to the JnRap2 gene (97.4% identity, 98.2% similar), and is probably the same gene. C53728_G2_I1 was also significantly homologous to the JnRap2 gene (84.4% identity, 92.4% similar), and it appears to be an allelic or splice variant, a conflict that can be resolved after the publication of the complete walnut genome. Raw counts (see Supporting information) demonstrated that the transcript C38523_G2_I1 had negligible expression levels in TZ, corroborating the previous detection of only one RAP2 protein in\(^54\).

Transcripts with no significant matches in the ‘nr’ database - possible long non-coding RNA genes?

The top three ORFs of ~600 transcripts had no match in the BLAST ‘nr’ database. Although these may be unique genes, another possibility that must be considered is that these are non-coding RNA genes\(^1\). The nucleotide sequences of these 600 transcripts were BLAST'ed to the database of noncoding RNAs in *Arabidopsis*\(^2\). Three matches were identified: C52424_G5_I11, C52424_G5_I14 and C53565_G3_I1. Both C52424_G5_I11 and C52424_G5_I14 are homologous to CR20, a cytokinin-repressed gene in excised cotyledons of cucumber, hypothesized to be non-coding RNA\(^{46}\). Analogous to the current work, the CR20 gene had alternate splicing\(^{48}\). C53565_G3_I1 had a 100% match to the *Arabidopsis* locus ATMG01380, a mitochondrial 5S ribosomal RNA, which is a component of the 5S large subunit of mitochondrial ribosome\(^{37}\).

Discussion

High-throughput mRNA sequencing (RNA-Seq) has revolutionized the field of transcript discovery, providing several advantages over traditional methods\(^{78}\). Following isolation and fragmentation of
Table 1. A sample of highly transcribed genes with high normalized counts (NC). There are several highly transcribed genes in the representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone (TZ) in black walnut that did not have any significant homologs (NSL) in the complete ‘nr’ or ‘nt’ database. For the ‘nr’ database, we use the three longest ORFs as query. The significance of dehydrins, senescence-associated and DNAJ proteins can be observed through their transcription abundance.

ID	NC	Description	E-value		
C52369_G2_I1	43040	NSL (putative extensin based on amino acid composition)	-		
C51134_G2_I2	15200	ref	XP_008224364.1	PREDICTED: extensin-like [Prunus mume]	1e-08
C40830_G1_I1	14169	ref	XP_006365673.1	DNAJ protein homolog isoform X2 [Solanum tuberosum]	0
C46581_G1_I1	10651	PREDICTED: Probable zinc transporter protein [Phoenix dactylifera]	8e-09		
C51134_G2_I3	10631	emb	CAN59948.1	hypothetical protein VITISV_043422 [Vitis vinifera]	6e-09
C44353_G2_I1	7769	gb	AGC51777.1	dehydrin protein [Manihot esculenta]	6e-09
C44353_G1_I1	6652	gb	AAF01465.2	AF190474_1 bdn1 [Paraboea crassifolia]	2e-19
C43130_G3_I1	6601	gb	KEH16988.1	senescence-associated protein, putative [Medicago truncatula]	2e-129
C44922_G1_I1	5584	ref	XP_008363477.1	tetraspanin-3-like [Malus domestica]	2e-169
C40830_G1_I2	5113	ref	XP_007010484.1	DNAJ [Theobroma cacao]	0

Figure 7. Finding genes from a template sequence. Multiple sequence alignment of possible genes for a transcription factor that had an AP2 DNA binding motif compared to JnRap2, which was deduced from an EST sequence obtained from tissue at the heartwood/sapwood transition zone in black walnut.

RNA and subsequent generation of cDNA libraries, a high-throughput sequencing platform is selected to generate short reads. Reconstruction of transcripts from these short reads (assembly) may be performed using a reference genome or de novo algorithms. Sequencing biases, variable coverage, sequencing errors, alternate splicing and repeat sequences are some of the challenges faced by these assemblers.

Several post assembly computational tools provide further curation of transcripts resulting from the assemblers. The curation step involves identifying redundancies, finding coding regions, annotating the transcripts (https://transdecoder.github.io/) and detecting inaccuracies by aligning the transcripts to the genome.

In the current work, we present an integrated workflow for RNA-seq analysis (YeATS). YeATS includes most features of the tools mentioned above. Additionally, YeATS delivers several capabilities absent in these tools. A comprehensive BLAST analysis of the top three open reading frames of each transcript enables the identification of erroneous transcripts arising out of sequencing or assembly errors. These erroneous transcripts can be classified as: a) transcripts that have not been merged, b) transcripts that result in broken ORFs and c) transcripts that have long improbable repeats. Finally, YeATS provides annotation of the genes, enumerates homologous genes based on a template sequence and specified similarity threshold and...
identifies transcripts with multiple ORFs. The ribosome is known to bypass small nucleotide stretches separating two ORFs41. These are rare events, however, and thus unlikely to apply to the \~1200 transcripts that have broken ORFs pointing to the same gene43. Transcripts having multiple ORFs on the same strand are good candidates for chimeric41 or fusion42 genes dependent on ribosome bypassing.

The current work reveals and corroborates several aspects of the biology of hardwood trees. Probably, the most interesting is the detection of a highly transcribed gene (C52369_G2_I1) with no known homologs in the complete protein and nucleotide BLAST database, or significant matches in a database of long non-coding RNA genes22. If indeed the longest ORF of this transcript encodes a protein, it is 143 amino acids long, and is leucine (18%), histidine (13%) and valine (10%) rich (Figure 8). Although it is likely that this is a protein with leucine rich repeats, these proteins are typically larger proteins64. The regulatory stimuli of extensins are different for monocots (which also have different amino acid composition) and dicots23. A significant presence of extensin-like proteins in the cell wall of both developing and mature xylem (wood) have been reported for pine45,46. The publication of the walnut genome will aid the characterization of these genes by elucidating its promoter sequences.

Well characterized proteins like proline-rich proteins25,45, dehydrins26, senescence-associated proteins27 and DNAJ/HSP40 chaperone49 proteins were also abundant in the transcriptome. While Arabidopsis supports secondary growth, it fails to accumulate wood; it is therefore interesting to identify highly transcribed genes that are missing in the Arabidopsis proteome (Table 2). The

![Figure 8. Percentage amino acid composition of the two most highly transcribed genes.](image)

Table 2. Identifying highly transcribed genes that are not present in the Arabidopsis proteome.

The wood quality of walnut and Arabidopsis are quite different. It is informative to identify genes (proteins) that are absent in Arabidopsis, since they are likely to be responsible for the differences. The DNAJ/HSP40 chaperone, dehydrins and tetraspanin proteins are found in the Arabidopsis proteome, while the putative extensin, the proline-rich protein, a probable zinc transporter protein, an uncharacterized protein and senescence-associated protein appear to be unique to the walnut proteome.

TRS	Arabidopsis Id	Description	E-value	Significant?		
C52369_G2_I1	AT5G04990.1	SUN1, ATSUN1	SAD1/UNC-84 domain protein	0.75	Y	
C51134_G2_I2	AT3G18440.1	AtALMT9, ALMT9	aluminum-activated malat	0.046	Y	
C40830_G1_I1	AT5G22060.1	ATJ2, J2	DNAJ homologue 2	chr5:730379	0	Y
C46581_G1_I1	AT5G51930.1	Glucose-methanol-choline (GMC) oxidore	8.1	Y		
C51134_G2_I3	AT1G79090.2	FUNCTIONS IN: molecular function unkno	1.3	Y		
C44353_G2_I1	AT1G76180.2	ERD14 Dehydrin family protein	chr1:28	1e-05	Y	
C44353_G1_I1	AT1G20450.2	LT29, LT45, ERD10	Dehydrin family pro	1e-07	Y	
C43130_G3_I1	AT1G72110.1	O-acetyltransferase (WSD1-like) family p	1.7	Y		
C44922_G1_I1	AT3G45600.1	TET3	tetraspanin3	chr3:16733973–16735	8e-156	Y
C40830_G1_I2	AT3G44110.1	ATJ3, ATJ	DNAJ homologue 3	chr3:15869	1e-179	Y
DNAJ/HSP40 chaperone, dehydrins and tetraspanin proteins are found in the Arabidopsis proteome (TAIR10_pep_20101214), while the putative extensin, the proline-rich protein, a probable zinc transporter protein, an uncharacterized protein and senescence-associated protein appear to be unique to the walnut proteome.

Also, we corroborated the presence of a transcription factor that has an AP2 DNA binding motif52,54, and identify additional splice/allelic variants with similar transcriptional levels. Once again, the knowledge of the walnut genome would enable a more profound understanding of such genes.

Conclusions
In summary, the current work elucidates an integrated workflow for RNA-seq analysis with several innovative features for identifying and correcting erroneously assembled transcripts. We demonstrated this workflow by characterizing the transcriptome of the tissue at the heartwood/sapwood TZ in black walnut.

Data availability
F1000Research: Dataset 1. YeATS Dataset. 10.5256/f1000research.6617.d4973

Software availability
Latest source code
https://github.com/sanchak/YEATSCODE

Supplementary figure

Figure S1. Pictoral depiction of ‘Begin’ and ‘End’ database. The contents of the ‘Begin’ and ‘End’ databases are represented along with the shared amino acid residues at the 3’ and 5’ ends, respectively. The ‘merge5’ command identified the String1 pair in the ‘Begin’ and ‘End’ databases due to the shared sequence ‘abcde’. The ‘merge5’ command failed to identify the String2 pair since six residues are shared. The ‘merge6’ command, however, will recognize String2 in the ‘Begin’ and ‘End’ databases, but would fail to recognize pairs that shared seven or more residues at the 3’ and 5’ ‘End’.

Archived source code as at the time of publication
http://dx.doi.org/10.5281/zenodo.18382

Software license
GNU General Public License version 3.0 (GPLv3)

Author contributions
The YeATS tool suite was designed by Chakraborty, Britton and Wegrzyn did the analysis of the transcriptome, Woeste isolated the RNA, Butterfield was involved in the validation. The rest of the authors were involved in various aspects of the study design. Chakraborty wrote the first draft and the rest of the authors were involved in the editing.

Competing interests
No competing interests were disclosed.

Grant information
The authors wish to acknowledge support from the California Walnut Board and UC Discovery program.

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We are grateful to Mary Lou Mendum for her inputs in preparing the manuscript.
References

1. Crick F: Central dogma of molecular biology. Nature. 1970; 227(5258):561–563. PubMed Abstract | Publisher Full Text

2. Mattick JS, Makarin IV: Non-coding RNA. Hum Mol Genet. 2006; 15(Spec No 1): R17–R29. PubMed Abstract | Publisher Full Text

3. Kakumaru A, Ambavaram MM, Klumas C, et al.: Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-seq. Plant Physiol. 2012; 160(2): 846–867. PubMed Abstract | Publisher Full Text | Free Full Text

4. Costa V, Aprile M, Esposito R, et al.: RNA-seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet. 2013; 21(2): 134–142. PubMed Abstract | Publisher Full Text | Free Full Text

5. Clark TA, Sugnet CW, Ares Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science. 2002; 296(5569): 907–910. PubMed Abstract | Publisher Full Text | Free Full Text

6. Kozdzu K, Kojima M, Nishiyori H, et al.: CAGE: cap analysis of gene expression. Nat Methods. 2007; 4(9): 745–750. PubMed Abstract | Publisher Full Text | Free Full Text

7. Wang Z, Gerstein M, Snyder M: RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1): 57–63. PubMed Abstract | Publisher Full Text | Free Full Text

8. Flynnt L: Transcriptomics: digging deep with RNA-seq. Nature Reviews Genetics. 2008; 9(8): 568. Publisher Full Text

9. Trapnell C, Pachter L, Salzberg SL: RNA-Seq: an accurate protocol for de novo assembly and splicing detection. Genome Biol. 2009; 10(10): R51. PubMed Abstract | Publisher Full Text | Free Full Text

10. Trapnell C, Roberts A, Goff L, et al.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3): 562–578. PubMed Abstract | Publisher Full Text | Free Full Text

11. Wang L, Feng Z, Wang X, et al.: DEGSeq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010; 26(1): 136–138. PubMed Abstract | Publisher Full Text | Free Full Text

12. Loehse M, Bolger AM, Nagel A, et al.: RobiRNA: a user-friendly, integrated software solution for RNA-seq-based transcriptomics. Nucleic Acids Res. 2012; 40(Web Server issue): W627–W634. Publisher Full Text

13. Chang Z, Li G, Liu J, et al.: Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol. 2015; 16(1): 30. PubMed Abstract | Publisher Full Text | Free Full Text

14. Grabherr MG, Haas BJ, Yassour M, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(11): 644–652. PubMed Abstract | Publisher Full Text | Free Full Text

15. Chiu HT, Hsiao WW, Chen JC, et al.: EBARRDenovo: highly accurate de novo assembly of RNA-seq with efficient chimera-detection. Bioinformatics. 2013; 29(9): 1004–1012. PubMed Abstract | Publisher Full Text | Free Full Text

16. Schulz MH, Zerbino DR, Vingron M, et al.: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012; 28(19): 2578–2585. PubMed Abstract | Publisher Full Text | Free Full Text

17. Fu L, Niu B, Zhu Z, et al.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28(23): 3150–3152. PubMed Abstract | Publisher Full Text | Free Full Text

18. Simpson JT, Wong K, Jackman DM, et al.: ABYSS: a parallel assembler for short read sequence data. Genome Res. 2009; 19(9): 1171–1123. PubMed Abstract | Publisher Full Text | Free Full Text

19. Flicek P, Batut P, Stoeckert CJ, et al.: ENSEMBL: dynamic integration of data and analysis tools. Nucleic Acids Res. 2013; 41(D1): D813–D821. PubMed Abstract | Publisher Full Text | Free Full Text

20. Miandari SK, Hesse U, van Heusden P, et al.: Inferring bona fide transscripts in RNA-seq derived-transcriptomes assemblies of non-model organisms. BMC Bioinformatics. 2015; 16(1): 58. PubMed Abstract | Publisher Full Text | Free Full Text

21. Zvirbova SR, Finney SE, Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res. 2008; 18(5): 821–829. PubMed Abstract | Publisher Full Text | Free Full Text

22. Xie C, Yuan J, Li H, et al.: NOCCODE4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014; 42(Database issue): D98-D103. PubMed Abstract | Publisher Full Text | Free Full Text

23. Showalter AM: Structure and function of plant cell wall proteins. Plant Cell. 1993; 5(1): 9–23. PubMed Abstract | Publisher Full Text | Free Full Text

24. Ploimie C, Leprovost G, Stokes A: Wood formation in trees. Plant Physiol. 2001; 127(4): 1513–1523. PubMed Abstract | Publisher Full Text | Free Full Text

25. Williansson MP: The structure and function of proline-rich regions in proteins. Biochim J 1994; 297(Pt 2): 249–60. PubMed Abstract | Publisher Full Text | Free Full Text

26. Sansi JL, Westphal S, Wissmieser M: Immunological identification of dehydrin-related proteins in the wood of five species of Populus and in Saix caprea L. J Plant Physiol. 1999; 154(5-6): 781–788. Publisher Full Text

27. Olmos E, Reiss B, Dekker K: The ekele mutant demonstrates a role for tetraspanin-like protein in plant development. Biochem Biophys Res Commun. 2003; 301(4): 1054–1061. PubMed Abstract | Publisher Full Text | Free Full Text

28. Bekh-Ochir D, Shimada S, Yamagami A, et al.: A novel mitochondrial DnaJ/Hsp40 family protein BJL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. Plants. 2013; 237(6): 1509–1525. PubMed Abstract | Publisher Full Text | Free Full Text

29. Camacho C, Madden T, Ma N, et al.: BLAST Command Line Applications User Manual. 2013. Reference Source

30. Rice P, Longden I, Bleasby A: EMBASSy: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16(6): 276–277. PubMed Abstract | Publisher Full Text | Free Full Text

31. Larkin MA, Blackshields G, Brown NP, et al.: Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947–2948. PubMed Abstract | Publisher Full Text | Publisher Full Text

32. Gouy M, Guindon S, Gascuel O: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27(2): 221–224. PubMed Abstract | Publisher Full Text | Free Full Text

33. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14): 1754–1760. PubMed Abstract | Publisher Full Text | Free Full Text

34. Halperin T, Zheng B, Itzhaki H, et al.: Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Plant Mol Biol. 2001; 45(4): 461–468. PubMed Abstract | Publisher Full Text

35. Konopka CA, Backues SK, Bedmarek SY: Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell. 2008; 20(5): 1363–1380. PubMed Abstract | Publisher Full Text | Free Full Text

36. Alzal AJ, Wood AJ, Lightfoot DA: Plant receptor-like serine threonine kinases: roles in signalling and plant defense. Mol Plant Microbe Interact. 2008; 21(5): 507–517. PubMed Abstract | Publisher Full Text | Free Full Text

37. Geiduschek EP: An introduction to transcription and gene regulation. J Biol Chem. 2010; 285(34): 25885–25892. PubMed Abstract | Publisher Full Text | Publisher Full Text | Free Full Text

38. Borstnik D, Basche M, Buijkew WJ, et al.: Expression, nucleotide sequence and mutational analysis of two open reading frames in the nif gene region of Anaerobia sp. strain FCC7120. Mol Gen Genet. 1990; 221(2): 227–234. PubMed Abstract | Publisher Full Text | Free Full Text

39. Deshaies RJ, Joazeiro CA: RING domain E3 ubiquitin ligases. Nature. 2000; 403(6770): 334–340. PubMed Abstract | Publisher Full Text | Free Full Text

40. Meister C, Mentens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007; 7(4): 233–245. PubMed Abstract | Publisher Full Text | Free Full Text

41. Gallant J, Bonthuis P, Lindsey D: Evidence that the bypassing ribosome travels through the coding gap. Proc Natl Acad Sci U S A. 2003; 100(23): 13430–13435. PubMed Abstract | Publisher Full Text | Free Full Text

42. Iwatsuzuki-Mujji, Lamport DT: Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 1994; 5(2): 157–172. PubMed Abstract | Publisher Full Text | Free Full Text

43. Bao W, O'Malley DM, Sederoff RR: Wood contains a cell-wall structural protein. Proc Natl Acad Sci U S A. 1992; 89(14): 6604–6608. PubMed Abstract | Publisher Full Text | Free Full Text

44. Ebener W, Fowler TJ, Suzuki H, et al.: Expression of DCRPPI is linked to carrot
storage root formation and is induced by wounding and auxin treatment. Plant Physiol. 1993; 101(1): 259–265. PubMed Abstract | Publisher Full Text | Free Full Text

47. Dvorakova L, Srb A, Opatrný Z, et al.: Hybrid proline-rich proteins: novel players in plant cell elongation? Ann Bot. 2012; 109(2): 453–462. PubMed Abstract | Publisher Full Text | Free Full Text

48. Baxter NJ, Lilley TH, Haslam E, et al.: Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexion and precipitation. Biochemistry. 1997; 36(18): 5566–5577. PubMed Abstract | Publisher Full Text

49. Yang J, Kamdem DP, Keathley DE., et al.: Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol. 2004; 24(4): 461–474. PubMed Abstract | Publisher Full Text

50. Basset CL, Wisniewski ME, Artig TS, et al.: Comparative expression and transcript initiation of three peach dehydrin genes. Planta. 2009; 220(1): 107–118. PubMed Abstract | Publisher Full Text

51. Maes WH, Achtema WMJ, Reubens B, et al.: Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of And Environments. 2009; 73(10): 877–884. Publisher Full Text

52. Okamura JK, Caster B, Villarroel R, et al.: The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A. 1997; 94(13): 7076–7081. PubMed Abstract | Publisher Full Text | Free Full Text

53. Krishnaswamy S, Verma S, Rahman MH, et al.: Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol. 2011; 75(1–2): 127–127. PubMed Abstract | Publisher Full Text

54. Huang Z, Zhao P, Medina J, et al.: Roles of JnRAP2.6-like from the transition zone of black walnut in hormone signaling. PLoS One. 2013; 8(11): e75857. PubMed Abstract | Publisher Full Text | Free Full Text

55. Huang Z, Tsel C, Harding SA, et al.: A cross-species transcriptional profile analysis of heartwood formation in black walnut. Plant Mol Biol Report. 2010; 28(2): 222–230. PubMed Abstract | Publisher Full Text

56. Taramoto H, Toyama T, Takeba G, et al.: Noncoding RNA for CR20, a cytokinin-repressed gene of cucumber. Plant Mol Biol. 1996; 32(5): 797–808. PubMed Abstract | Publisher Full Text

57. Barciakowska MZ, Szymanski M, Erdmann VA, et al.: Structure and functions of 5s rRNA. Acta Biochim Pol. 2001; 48(1): 191–198. PubMed Abstract

58. Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet. 2008; 24(3): 133–141. PubMed Abstract | Publisher Full Text

59. Haas BJ, Papanicolaou A, Yassour M, et al.: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013; 8(6): 1494–1512. PubMed Abstract | Publisher Full Text | Free Full Text

60. Roberts A, Trapnell C, Donaghey J, et al.: Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 2011; 12(3): R22. PubMed Abstract | Publisher Full Text | Free Full Text

61. Arrai RT, Sogawa RC, Brigo Mde M: Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus paracoccidioides brasiliensis. BMC Bioinformatics. 2009; 10: 239. PubMed Abstract | Publisher Full Text | Free Full Text

62. Zhao GY, Wang Y, Tong YM, et al.: Optimizing de novo transcriptome assembly from short-read RNA-seq data: a comparative study. BMC Bioinformatics. 2011; 12(Suppl 14): S2. PubMed Abstract | Publisher Full Text | Free Full Text

63. Herr AJ, Gesteland RF, Atkins JF: One protein from two open reading frames: mechanism of a 50 nt translational bypass. EMBO J. 2000; 19(11): 2671–2680. PubMed Abstract | Publisher Full Text | Free Full Text

64. Jones DA, Jones JDG: The role of leucine-rich repeat proteins in plant defences. Advances in botanical research. 1997; 24: 89–167. Publisher Full Text

65. Altona I, Quinn M, Shoop E, et al.: Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci U S A. 1998; 95(16): 9693–9698. PubMed Abstract | Publisher Full Text | Free Full Text

66. Lamesch P, Berardini TZ, Li D, et al.: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012; 40(Database issue): D1202–D1210. PubMed Abstract | Publisher Full Text | Free Full Text

67. Chaikaraboy J, Dandekar A, Rao BJ, et al.: Dataset 1 in YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut. F1000Research. 2015. Data Source
Varodom Charoensawan
Mahidol University, Bangkok, Thailand

Chakraborty and coworkers proposed a new platform for analysing transcriptomic data from RNA-seq (YeATS -Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). The key feature of the tool highlighted by the authors is error estimation and correction of assembled transcripts, which is performed by analysing ORFs predicted in each transcript and merging of transcripts. This error-filtering step is supposedly missing in most other existing tools to date. In addition, YeATS is able to perform other common RNA-seq analytic tasks, such as transcript abundance estimation.

From the point of view of a frequent user of NGS tools, rather than a developer, I can see that such a tool can be useful for improving transcript assembly and estimation, especially in organisms with no or poorly annotated genomes. However, there are a number of points that, to me, would improve the tool and the article, and it would be great if the authors could address/clarify. I would be happy to discuss this further if any of my comments are not clear.

- It would be nice to include a performance evaluation of this new platform against existing tools, or with vs without the transcript error correction step by YeATS. One way to do this might be to take an existing RNA-seq dataset from a well-annotated organism such as Arabidopsis as a gold standard, and perform transcript assembly-estimation with and without correction by YeATS, and compare this to the transcript estimation using genomic information (e.g. by mapping reads to annotated transcriptomes.genomes). Does YeATS indeed improve the coverage and specificity of transcript estimation, for instance?

- Along the same lines as the comment above, it would be useful if the authors could comment on the time and/or computing resources required to perform the correction step. Also, are the accuracy and computing resources dependent on the read lengths and/or sequencing platforms? (Or is it intended for Illumina reads as used in the example?).

- Both the source code of YeATS and the data set used to illustrate its usage have been deposited and described at the end of the article. However, to this reviewer’s understanding, there is a set of Perl scripts deposited to Github, but it is still not clear to me how the tool/workflow should be implemented. The README does not seem to describe this. Could the author point out if there is
already a guideline or documentation on how to use or integrate YeATS into an existing NGS workflow, if that already exists?

- To my understanding, the input of YeATS is a set of assembled transcripts performed by other tools (e.g. Trinity). However, this step was not clearly described in the “in vitro methods” section on Page 5. Instead, it seems the trimmed reads were directly aligned to J. regia transcriptome, which is somewhat confusing. Could you please clarify these?

- The authors described the genes as highly “transcribed” in walnut (according to RNA-seq from this study?) that are not present in Arabiodopsis “proteome”. I found these to be slightly disconnected.

Minor comments:
- Figure 1: Is the “no” label between the boxes “Choose longest ORF” to “Gene annotation” necessary?
- Page 3, 2nd column, line 12: modify the text to “often in distinct regions of the transcript…” for clarity?
- Page 5, 1st column: There were ~24K “of” such transcripts
- Figure 6’s legend: These ORF’s

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 13 Oct 2015

Sandeep Chakraborty, University of California, Davis, USA

We would like to thank you for taking the time to review this paper. Please find our responses below.

Chakraborty and coworkers proposed a new platform for analysing transcriptomic data from RNA-seq (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). The key feature of the tool highlighted by the authors is error estimation and correction of assembled transcripts, which is performed by analysing ORFs predicted in each transcript and merging of transcripts. This error-filtering step is supposedly missing in most other existing tools to date. In addition, YeATS is able to perform other common RNA-seq analytic tasks, such as transcript abundance estimation. From the point of view of a frequent user of NGS tools, rather than a developer, I can see that such a tool can be useful for improving transcript assembly and estimation, especially in organisms with no or poorly annotated genomes.

We appreciate your positive comments, and the possibility of value addition by the suggested methodology for existing NGS flows. We believe that this is the first attempt to associate the key information encoded by transcripts within ORFs to assess the accuracy of the assembly.

However, there are a number of points that, to me, would improve the tool and the article,
and it would be great if the authors could address/clarify. I would be happy to discuss this further if any of my comments are not clear. It would be nice to include a performance evaluation of this new platform against existing tools, or with vs without the transcript error correction step by YeATS. One way to do this might be to take an existing RNA-seq dataset from a well-annotated organism such as Arabidopsis as a gold standard, and perform transcript assembly-estimation with and without correction by YeATS, and compare this to the transcript estimation using genomic information (e.g. by mapping reads to annotated transcriptomes/genomes). Does YeATS indeed improve the coverage and specificity of transcript estimation, for instance?

YeATS evaluates the accuracy of a transcriptome, but it is dependent on downstream tools (like MAKER) to use this for proper annotation of the genes. Thus, there are no existing tools that we could compare it with directly. A highly curated database like the Arabidopsis would not be a fair comparison, since it might have been annotated looking at several data points. However, we have extensively used the YeATS pipeline in processing the newly sequenced walnut genome (manuscript in review), and established erroneous assembly for several genes of interest. The transcriptome from several other tissues were included in the genome study. Interestingly, the 5% error estimate remained the same.

Along the same lines as the comment above, it would be useful if the authors could comment on the time and/or computing resources required to perform the correction step. Also, are the accuracy and computing resources dependent on the read lengths and/or sequencing platforms? (Or is it intended for Illumina reads as used in the example?).

The run times for most of the processing required in YeATS is a few hours on a 16 GB, 16-core machine, barring the search for homologies in the BLAST 'nr' database, which can be time-intensive for a comprehensive search. This search can be significantly accelerated when the organism under investigation has well-annotated protein databases (as in the current case), much in lines of the newly introduced SMARTBLAST (http://blast.ncbi.nlm.nih.gov/smartblast/), to run times under a day. Run times are dependent on the number of transcripts only, since the input to YeATS is an assembled transcriptome from a tool like Trinity. We have included this information in the manuscript.

Both the source code of YeATS and the data set used to illustrate its usage have been deposited and described at the end of the article. However, to this reviewers understanding, there is a set of Perl scripts deposited to Github, but it is still not clear to me how the tool/workflow should be implemented. The README does not seem to describe this. Could the author point out if there is already a guideline or documentation on how to use or integrate YeATS into an existing NGS workflow, if that already exists?

We have provided a README that describes the step in the YeATS workflow. However, this is not a push-button methodology, and goes through several steps, each of which is dependent on the previous step. Also, we have used custom schedulers, and thus several steps need to be adjusted depending on available resources. For example, the number of parallel jobs and the time-step between each submission is controlled through a custom-script. Thus, we have provided the key algorithms in detail in the paper for any developer to easily replicate our results. Furthermore, we are enhancing several of the programs based on more sophisticated algorithms (like using kmers, compression of data, etc). A proper release of this software will require some more time, but this manuscript was not meant to be a software article.
To my understanding, the input of YeATS is a set of assembled transcripts performed by other tools (e.g. Trinity). However, this step was not clearly described in the in vitro methods section on Page 5. Instead, it seems the trimmed reads were directly aligned to J. regia transcriptome, which is somewhat confusing. Could you please clarify these?

The input of YeATS is indeed a set of assembled transcripts performed by other tools like Trinity. We have modified the methods section to clarify this.

The authors described the genes as highly transcribed in walnut (according to RNA-seq from this study?) that are not present in Arabidopsis proteome. I found these to be slightly disconnected.

We agree that these results are slightly disconnected to the general narrative of this paper, which focuses on post-assembly methodologies to assess the accuracy of assembled transcripts. However, these are interesting results that emerge during the analysis of the transcriptome of the transition zone of walnut, which has been obtained for the first time. And thus, though this may be of interest to researchers in the field, there is too little data to spin-off another paper to publish these findings.

Minor comments:
Figure 1: Is the no label between the boxes Choose longest ORF to Gene annotation necessary?

We have changed the label 'no' to 'unannotated'. Long ORFs that do not have significant matches are probably uncharacterized genes, and the genome could be annotated accordingly (although the annotation of novel genes is another problem not addressed in the current paper).

Page 3, 2nd column, line 12: modify the text to often in distinct regions of the transcript... for clarity?

We have clarified this: ‘The ORFs map to different fragments of the same protein. This points to an error in the sequencing or the assembly, which breaks down the contiguous ORF into two fragments.’

Page 5, 1st column: There were 24K of such transcripts Figure 6s legend: These ORFs

We have made these modifications. Once again, we are thankful for your insightful comments, and hope to have addressed your concerns.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com