Unitals in PG(2, q^2) with a large 2-point stabiliser

L.Giuzzi and G.Korchmáros
8th July 2011

Abstract

Let U be a unital embedded in the Desarguesian projective plane PG(2, q^2). Write M for the subgroup of $\text{PGL}(3, q^2)$ which preserves U. We show that U is classical if and only if U has two distinct points P, Q for which the stabiliser $G = M_{P,Q}$ has order $q^2 - 1$.

1 Introduction

In the Desarguesian projective plane PG(2, q^2), a unital is defined to be a set of $q^3 + 1$ points containing either 1 or $q + 1$ points from each line of PG(2, q^2). Observe that each unital has a unique 1-secant at each of its points. The idea of a unital arises from the combinatorial properties of the non-degenerate unitary polarity π of PG(2, q^2). The set of absolute points of π is indeed a unital, called the classical or Hermitian unital. Therefore, the projective group preserving the classical unital is isomorphic to $\text{PGU}(3, q)$ and acts on its points as $\text{PGU}(3, q)$ in its natural 2-transitive permutation representation. Using the classification of subgroups of $\text{PGL}(3, q^2)$, Hoffer [14] proved that a unital is classical if and only if it is preserved by a collineation group isomorphic to $\text{PSU}(3, q^2)$. Hoffer’s characterisation has been the starting point for several investigations of unitals in terms of the structure of their automorphism group, see [3, 6, 8, 10, 11, 12, 15, 16]; see also the survey [2, Appendix B]. In PG(2, q^2) with q odd, L.M. Abatangelo [1] proved that a Buekenhout–Metz unital with a cyclic 2–point stabiliser of order $q^2 - 1$ is necessarily classical. In their talk at Combinatorics 2010, G. Donati e N. Durante have conjectured that Abatangelo’s characterisation holds true for any unital in PG(2, q^2). In this note, we provide a proof of this conjecture.

Our notation and terminology are standard, see [2], and [13]. We shall assume $q > 2$, since all unitals in PG(2, 4) are classical.

2 Some technical lemmas

Let M be the subgroup of $\text{PGL}(3, q^2)$ which preserves a unital U in PG(2, q^2). A 2-point stabiliser of U is a subgroup of M which fixes two distinct points of U.

Lemma 2.1. Let U be a unital in PG(2, q^2) with a 2–point stabiliser G of order $q^2 - 1$. Then, G is cyclic, and there exists a projective frame in PG(2, q^2) such that G is generated by a projectivity.
thus, we have

\[G \times X \text{ term } = (0,0) \]

Let

\[\lambda \text{ a primitive element of } GF(q^2) \text{ and } \mu \text{ is a primitive element of } GF(q). \]

Proof. Let \(O, Y_\infty \) be two distinct points of \(U \) such that the stabiliser \(G = M_{O,Y_\infty} \) has order \(q^2 - 1 \). Choose a projective frame in \(PG(2,q^2) \) so that \(O = (0,0,1) \), \(Y_\infty = (0,1,0) \) and the 1-secants of \(U \) at those points are respectively \(\ell_X : X_2 = 0 \) and \(\ell_\infty : X_3 = 0 \). Write \(X_\infty = (1,0,0) \) for the common point of \(\ell_X \) and \(\ell_\infty \). Observe that \(G \) fixes the vertices of the triangle \(OX_\infty Y_\infty \). Therefore, \(G \) consists of projectivities with diagonal matrix representation. Let now \(h \in G \) be a projectivity that fixes a further point \(P \in \ell_X \) apart from \(O, X_\infty \). Then, \(h \) fixes \(\ell_X \) point-wise; that is, \(h \) is a perspectivity with axis \(\ell_X \). Since \(h \) also fixes \(Y_\infty \), the centre of \(h \) must be \(Y_\infty \). Take any point \(R \in \ell_X \) with \(R \neq O, X_\infty \). Obviously, \(h \) preserves the line \(r = Y_\infty R \); hence, it also preserves \(r \cap U \). Since \(r \cap U \) comprises \(q \) points other than \(R \), the subgroup \(H \) generated by \(h \) has a permutation representation of degree \(q \) in which no non-trivial permutation fixes a point. As \(q = p^r \) for a prime \(p \), this implies that \(p \) divides \(|H| \). On the other hand, \(h \) is taken from a group of order \(q^2 - 1 \). Thus, \(h \) must be the trivial element in \(G \). Therefore, \(G \) has a faithful action on \(\ell_X \) as a 2-point stabiliser of \(PG(1,q^2) \). This proves that \(G \) is cyclic. Furthermore, a generator \(g \) of \(G \) has a matrix representation

\[
\begin{pmatrix}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

with \(\lambda \) a primitive element of \(GF(q^2) \).

As \(G \) preserves the set \(\Delta = U \cap OY_\infty \), it also induces a permutation group \(\bar{G} \) on \(\Delta \). Since any projectivity fixing three points of \(OY_\infty \) must fix \(OY_\infty \) point-wise, \(\bar{G} \) is semiregular on \(\Delta \). Therefore, \(|\bar{G}| \) divides \(q - 1 \). Let now \(F \) be the subgroup of \(G \) fixing \(\Delta \) point-wise. Then, \(F \) is a perspectivity group with centre \(X_\infty \) and axis \(\ell_Y : X_1 = 0 \). Take any point \(R \in \ell_Y \) such that the line \(r = RX_\infty \) is a \((q+1)\)-secant of \(U \). Then, \(r \cap U \) is disjoint from \(\ell_Y \). Hence, \(F \) has a permutation representation on \(r \cap U \) in which no non-trivial permutation fixes a point. Thus, \(|F| \) divides \(q + 1 \). Since \(|G| = q^2 - 1 \), we have \(|\bar{G}| \leq q - 1 \) and \(|G| = |\bar{G}| |F| \). This implies \(|\bar{G}| = q - 1 \) and \(|F| = q + 1 \). From the former condition, \(\mu \) must be a primitive element of \(GF(q) \). □

Lemma 2.2. In \(PG(2,q^2) \), let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be two non-degenerate Hermitian curves which have the same tangent at a common point \(P \). Denote by \(I(P, \mathcal{H}_1 \cap \mathcal{H}_2) \) the intersection multiplicity of \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) at \(P \). Then,

\[
I(P, \mathcal{H}_1 \cap \mathcal{H}_2) = q + 1.
\]

Proof. Since, up to projectivities, there is a unique class of Hermitian curves in \(PG(2,q^2) \), we may assume \(\mathcal{H}_1 \) to have equation \(-X_1^{q+1} + X_2^q X_3 + X_2 X_3^q = 0 \). Furthermore, as the projectivity group \(PGU(3,q) \) preserving \(\mathcal{H}_1 \) acts transitively on the points of \(\mathcal{H}_1 \) in \(PG(2,q^2) \), we may also suppose \(P = (0,0,1) \). Within this setting, the tangent \(r \) of \(\mathcal{H}_1 \) at \(P \) coincides with the line \(X_2 = 0 \). As no term \(X_1^j \) with \(0 < j \leq q \) occurs in the equation of \(\mathcal{H}_1 \), the intersection multiplicity \(I(P, \mathcal{H}_1 \cap r) \) is equal to \(q + 1 \).

The equation of the other Hermitian curve \(\mathcal{H}_2 \) might be written as

\[
F(X_1, X_2, X_3) = a_0 X_3^q X_2 + a_1 X_3^{q-1} G_1(X_1, X_2) + \ldots + a_q G_q(X_1, X_2) = 0,
\]
where \(a_0 \neq 0 \) and \(\deg G_i(X_1, X_2) = i + 1 \). Since the tangent of \(\mathcal{H}_2 \) at \(P \) has no other common point with \(\mathcal{H}_2 \), even over the algebraic closure of \(\text{GF}(q^2) \), no terms \(X_1^j \) with \(0 < j \leq q \) can occur in the polynomials \(G_i(X_1, X_2) \). In other words, \(I(P, \mathcal{H}_2 \cap r) = q + 1 \).

A primitive representation of the unique branch of \(\mathcal{H}_1 \) centred at \(P \) has components

\[
x(t) = t, \quad y(t) = ct + \ldots, \quad x_3(t) = 1
\]

where \(i \) is a positive integer and \(y(t) \in \text{GF}(q^2)[[t]] \), that is, \(y(t) \) stands for a formal power series with coefficients in \(\text{GF}(q^2) \).

From \(I(P, \mathcal{H}_1 \cap r) = q + 1 \),

\[
y(t)^q + y(t) - t^{q+1} = 0,
\]

whence \(y(t) = t^{q+1} + H(t) \), where \(H(t) \) is a formal power series of order at least \(q + 2 \). That is, the exponent \(j \) in the leading term \(ct^j \) of \(H(t) \) is larger than \(q + 1 \).

It is now possible to compute the intersection multiplicity \(I(P, \mathcal{H}_1 \cap \mathcal{H}_2) \) using [13, Theorem 4.36]:

\[
I(P, \mathcal{H}_1 \cap \mathcal{H}_2) = \text{ord}_t F(t, y(t), 1) = \text{ord}_t (a_0 t^{q+1} + G(t)),
\]

with \(G(t) \in \text{GF}(q^2)[[t]] \) of order at least \(q + 2 \). From this, the assertion follows. \(\square \)

Lemma 2.3. In \(\text{PG}(2, q^2) \), let \(\mathcal{H} \) be a non-degenerate Hermitian curve and let \(\mathcal{C} \) be a Hermitian cone whose centre does not lie on \(\mathcal{H} \). Assume that there exist two points \(P_i \in \mathcal{H} \cap \mathcal{C} \), with \(i = 1, 2 \), such that the tangent line of \(\mathcal{H} \) at \(P_i \) is a linear component of \(\mathcal{C} \). Then

\[
I(P_i, \mathcal{H} \cap \mathcal{C}) = q + 1.
\] (2)

Proof. We use the same setting as in the proof of Lemma 2.2 with \(P = P_1 \). Since the action of \(\text{PGU}(3, q) \) is \(2 \)-transitive on the points of \(\mathcal{H} \), we may also suppose that \(P_2 = (0, 1, 0) \). Then the centre of \(\mathcal{C} \) is the point \(X_\infty = (1, 0, 0) \), and \(\mathcal{C} \) has equation \(c^2 X_2^3 X_3 + c X_2 X_3^q = 0 \) with \(c \neq 0 \). Therefore,

\[
I(P, \mathcal{H} \cap \mathcal{C}) = \text{ord}_t (c^2 y(t)^q + c y(t)) = \text{ord}_t (c^2 t^{q+1} + K(t))
\]

with \(K(t) \in \text{GF}(q^2)[[t]] \) of order at least \(q + 2 \), whence the assertion follows. \(\square \)

3 Main result

Theorem 3.1. In \(\text{PG}(2, q^2) \), let \(\mathcal{U} \) be a unital and write \(M \) for the group of projectivities which preserves \(\mathcal{U} \). If \(\mathcal{U} \) has two distinct points \(P, Q \) such that the stabiliser \(G = M_{P,Q} \) has order \(q^2 - 1 \), then \(\mathcal{U} \) is classical.

The main idea of the proof is to build up a projective plane of order \(q \) using, for the definition of points, non-trivial \(G \)-orbits in the affine plane \(\text{AG}(2, q^2) \) which arise from \(\text{PG}(2, q^2) \) by removing the line \(\ell_\infty : X_3 = 0 \) with all its points. To this purpose, take \(\mathcal{U} \) and \(G \) as in Lemma 2.1 with \(\mu = \lambda^{q+1} \), and define an incidence structure \(\Pi = (\mathcal{P}, \mathcal{L}) \) as follows:

1. Points are all non-trivial \(G \)-orbits in \(\text{AG}(2, q^2) \).

2. Lines are \(\ell_Y\), and the non-degenerate Hermitian curves of equation

\[\mathcal{H}_b : -X_1^{q+1} + bX_2X_3^q + b^qX_3X_2 = 0, \]

with \(b\) ranging over \(\text{GF}(q^2)^*\), together with the Hermitian cones of equation

\[\mathcal{C}_c : c^qX_2^3X_3 + cX_2X_3^q = 0, \]

with \(c\) ranging over a representative system of cosets of \((\text{GF}(q), *)\) in \((\text{GF}(q^2), *)\).

3. Incidence is the natural inclusion.

Lemma 3.2. The incidence structure \(\Pi = (\mathcal{P}, \mathcal{L})\) is a projective plane of order \(q\).

Proof. In \(\text{AG}(2, q^2)\), the group \(G\) has \(q^2 + q + 1\) non-trivial orbits, namely its \(q^2\) orbits disjoint from \(\ell_Y\), each of length \(q^2 - 1\), and its \(q + 1\) orbits on \(\ell_Y\), these of length \(q - 1\). Therefore, the total number of points in \(\mathcal{P}\) is equal to \(q^2 + q + 1\). By construction of \(\Pi\), the number of lines in \(\mathcal{L}\) is also \(q^2 + q + 1\). Incidence is well defined as \(G\) preserves \(\ell_Y\) and each Hermitian curve and cone representing lines of \(\mathcal{L}\).

We now count the points incident with a line in \(\Pi\). Each \(G\)-orbit on \(\ell_Y\) distinct from \(O\) and \(Y_\infty\) has length \(q - 1\). Hence there are exactly \(q + 1\) such \(G\)-orbits; in terms of \(\Pi\), the line represented by \(\ell_Y\) is incident with \(q + 1\) points. A Hermitian curve \(\mathcal{H}_b\) of Equation (3) has \(q^3\) points in \(\text{AG}(2, q^2)\) and meets \(\ell_Y\) in a \(G\)-orbit, while it contains no point from the line \(\ell_X\). As \(q^3 - q = q(q^2 - 1)\), the line represented by \(\mathcal{H}_b\) is incident with \(q + 1\) points in \(\mathcal{P}\). Finally, a Hermitian cone \(\mathcal{C}_c\) of Equation (4) has \(q^3\) points in \(\text{AG}(2, q^2)\) and contains \(q\) points from \(\ell_Y\). One of these \(q\) points is \(O\), the other \(q - 1\) forming a non-trivial \(G\)-orbit. The remaining \(q^3 - q\) points of \(\mathcal{C}_c\) are partitioned into \(q\) distinct \(G\)-orbits. Hence, the line represented by \(\mathcal{C}_c\) is also incident with \(q + 1\) points. This shows that each line in \(\Pi\) is incident with exactly \(q + 1\) points.

Therefore, it is enough to show that two any two distinct lines of \(\mathcal{L}\) have exactly one common point. Obviously, this is true when one of these lines is represented by \(\ell_Y\). Furthermore, the point of \(\mathcal{P}\) represented by \(\ell_X\) is incident with each line of \(\mathcal{L}\) represented by a Hermitian cone of equation (1). We are led to investigate the case where one of the lines of \(\mathcal{L}\) is represented by a Hermitian curve \(\mathcal{H}_b\) of equation (1), and the other line of \(\mathcal{L}\) is represented by a Hermitian curve \(\mathcal{H}\) which is either another Hermitian curve \(\mathcal{H}_d\) of the same type of Equation (3), or a Hermitian cone \(\mathcal{C}_c\) of Equation (4).

Clearly, both \(O\) and \(Y_\infty\) are common points of \(\mathcal{H}_b\) and \(\mathcal{H}\). From Kestenband’s classification [17], see also [2] Theorem 6.7, \(\mathcal{H}_b \cap \mathcal{H}\) cannot consist of exactly two points. Therefore, there exists another point, say \(P \in \mathcal{H}_b \cap \mathcal{H}\). Since \(\ell_X\) and \(\ell_0\) are 1-secants of \(\mathcal{H}_b\) at the points \(O\) and \(Y_\infty\), respectively, either \(P\) is on \(\ell_Y\) or \(P\) lies outside the fundamental triangle. In the latter case, the \(G\)-orbit \(\Delta_1\) of \(P\) has size \(q^2 - 1\) and represents a point in \(\mathcal{P}\). Assume that \(\mathcal{H}_b \cap \mathcal{H}\) contains a further point, not lying in \(\Delta_1\). If the \(G\)-orbit of \(Q\) is \(\Delta_2\), then

\[|\mathcal{H}_b \cap \mathcal{H}| \geq |\Delta_1| + |\Delta_2| = 2(q^2 - 1) + 2 = 2q^2. \]

However, from Bézout’s theorem, see [13] Theorem 3.14,

\[|\mathcal{H}_b \cap \mathcal{H}| \leq (q + 1)^2. \]

Therefore, \(Q \in \ell_Y\), and the \(G\)-orbit \(\Delta_3\) of \(Q\) has length \(q - 1\). Hence, \(\mathcal{H}_b\) and \(\mathcal{H}\) shear \(q + 1\) points on \(\ell_Y\). If \(\mathcal{H} = \mathcal{H}_d\) is a Hermitian curve of Equation (3), each of these \(q + 1\) points is the tangency point
of a common inflection tangent with multiplicity $q + 1$ of the Hermitian curves H_b and H. Write R_1, \ldots, R_{q+1} for these points. Then, by Lemma 2.8, the intersection multiplicity is $I(R_i, H_b \cap H) = (q + 1)^2$. This holds true also when H is a Hermitian cone C_ν of Equation (4); see Lemma 2.8. Therefore, in any case,

\[\sum_{i=1}^{q+1} I(R_i, H_b \cap H) = (q + 1)^2. \]

From Bézout’s theorem, $H_b \cap H = \{R_1, \ldots, R_{q+1}\}$. Therefore, $H_b \cap H = \Delta_2 \cup \{O, Y_\infty\}$. This shows that if $Q \notin \ell_Y$, the lines represented by H_b and H have exactly one point in common. The above argument can also be adapted to prove this assertion in the case where $Q \in \ell_Y$. Therefore, any two distinct lines of L have exactly one common point.

Proof of Theorem 3.1 Assume first $\mu = \lambda^{q+1}$. Construct a projective plane Π as in Lemma 3.2. Since $U \setminus \{O, Y_\infty\}$ is the union of G-orbits, U represents a set Γ of $q + 1$ points in Π. From [7], $N \equiv 1 \pmod{p}$ where N is the number of common points of U with any Hermitian curve H_b. In terms of Π, Γ contains some point from every line Λ in L_b represented by a Hermitian curve of Equation (4). Actually, this holds true when the line Λ in L_b is represented by a Hermitian curve of Equation (4). To prove it, observe that \mathcal{C} contains a line ℓ distinct from both lines ℓ_X and ℓ_0. Then $\ell \cap U$ is non-empty, and contains neither O nor Y_∞. If P is point in $\ell \cap U$, then the G-orbit of P contains a common point of Γ and Λ. Since the line in L represented by ℓ_Y meets Γ, it turns out that Γ contains some point from every line in L.

Therefore, Γ is itself a line in L. Note that U contains no line. In terms of $PG(2, q^2)$, this yields that U coincides with a Hermitian curve of Equation (3). In particular, U is a classical unital.

To investigate the case $\mu \neq \lambda^{q+1}$, we still work in the above plane Π. By a straightforward computation, the projectivity g given in Lemma 2.1 induces a non-trivial collineation on Π. Also, g preserves every Hermitian cone of Equation (4) and the common line ℓ_X of these Hermitian cones. In terms of Π, g is a perspectivity with centre at the point represented by ℓ_X. Since g also preserves the line ℓ_Y, the axis of g is ℓ_Y, regarded as a line in Π. Therefore, every point of Π lying on ℓ_Y is fixed by g. Consequently, g^{q+1} is the identity collineation. As g has order $q^2 - 1$, this yields that g^{q+1} preserves every Hermitian curve of Equation (3). Thus, $g^{q+1} = (\lambda^{q+1})^{q+1}$, whence $\mu = -\lambda^{q+1}$. In particular, $p \neq 2$.

Consider now the $q + 1$ non-trivial G-orbits in U with $G = \langle g \rangle$. For any point $P \in \Pi$, let n_P the number of the non-trivial G-orbits in U intersecting the set $\rho(P)$ representing P in $PG(2, q^2)$. Then $n_P = 1$ when $\rho(P)$ is the unique G-orbit in U which lies on ℓ_Y. Otherwise, $0 \leq n_P \leq 2$, with $n_P = 2$ if and only if $\rho(P)$ is a G-orbit but the union of two H-orbits with $H = \langle g^2 \rangle$.

Let Γ be the multiset consisting of all points with $n_P > 0$ and define the weight ν_P of P to be either 1 or 2, according as $n_P = 2$ or $n_P = 1$. Then, $\sum_{P \in \Gamma} \nu_P = 2q + 2$. We show that Γ is a 2-fold blocking multiset of Π. For this purpose, let H be either a Hermitian curve of Equation (4) or a Hermitian cone of Equation (4). Write m for the number of common points of H_b and H, different from O and Y_∞; thus, the total number of common points is $N = m + 2$. As $N \equiv 1 \pmod{p}$, we have $m \geq 1$. Take $P \in H \cap U$. If $\nu_P = 2$, then the line representing H meets Γ in a point with weight 2. If $\nu_P = 1$, then the H-orbit of P has size $(q^2 - 1)/2$ and lies on both H and U. Since $(q^2 - 1)/2 \neq 1 \pmod{p}$, H and U must share a further point Q other than O and Y_∞. Therefore, the points P' and Q' of Π which represent the subsets containing P and Q are distinct. This shows that Γ meets the line represented by H in two distinct points. Therefore, Γ is a 2-fold blocking multiset.
Since Γ has at least one point with weight 2, this yields that Γ comprises of all points of a line, each with weight 2. Hence, U coincides with the Hermitian curve representing that line. This is to say that U is a classical unital.

References

[1] L.M. Abatangelo, Una caratterizzazione gruppale delle curve Hermitiane, *Le Matematiche* **39** (1984) 101–110.

[2] S.G. Barwick, G.L. Ebert, *Unitals in Projective Planes*, Springer Monographs in Mathematics (2008).

[3] L.M. Batten, Blocking sets with flag transitive collineation groups, *Arch. Math.* **56** (1991), 412–416.

[4] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of odd order *J. Algebra* **122** (1989), 130–149.

[5] M. Biliotti, G. Korchmáros, Collineation groups preserving a unital of a projective plane of even order *Geom. Dedicata* **31** (1989), 333–344.

[6] P. Biscarini, Hermitian arcs of $\text{PG}(2, q^2)$ with a transitive collineation group on the set of $(q + 1)$-secants, *Rend. Sem. Mat. Brescia* **7** (1982), 111–124.

[7] A. Blokhuis, A. Brouwer, H. Wilbrink, Hermitian unitals are codewords, *Discrete Math.* **97** (1991), 63–68.

[8] A. Cossidente, G.L. Ebert, G. Korchmáros, A group-theoretic characterization of classical unitals, *Arch. Math.* **74** (2000), 1–5.

[9] A. Cossidente, G.L. Ebert, G. Korchmáros, Unitals in finite Desarguesian planes, *J. Algebraic Combin.* **14** (2001), 119–125.

[10] G.L. Ebert, K. Wantz, A group-theoretic characterization of Buekenhout-Metz unitals, *J. Combin. Des.* **4** (1996), 143–152.

[11] J. Doyen, Designs and automorphism groups. Surveys in Combinatorics *London Math. Soc. Lecture Note Ser.* **141** (1989), 74–83.

[12] L. Giuzzi, A characterisation of classical unitals, *J. Geometry* **74** (2002), 86–89.

[13] J.W.P. Hirschfeld, G. Korchmáros and F. Torres *Algebraic Curves Over a Finite Field*, Princeton Univ. Press, Princeton and Oxford (2008).

[14] A.R. Hoffer, On Unitary collineation groups, *J. Algebra* **22** (1972), 211–218.

[15] W.M. Kantor, On unitary polarities of finite projective planes *Canad J. Math.* **23** (1971) 1060–1077.

[16] W.M. Kantor, Homogeneous designs and geometric lattices, *J. Combin. Theory Ser A* **38** (1985) 66–74.
[17] B.C. Kestenband, Unital intersections in finite projective planes, *Geom. Dedicata* **11** (1981) no. 1, 107–117.