Original Research Article

Etiology of short stature in children attending pediatric endocrinology clinic of a tertiary care hospital in Bangladesh

Muhammad Rezaul Karim*, Kohinoor Jahan Shamaly, Baraka Badrudduja Tithi, Romana Akter, Ismat Jahan, Suraiya Begum

Department of Pediatrics, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh

Received: 02 November 2019
Revised: 19 November 2019
Accepted: 06 December 2019

Correspondence:
Dr. Muhammad Rezaul Karim,
E-mail: rezaul.rakib@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Short stature is a common problem to practicing pediatricians. It results from various etiologies, which are categorized as normal variants and pathological causes. Normal variant short stature consists of Familial Short Stature (FSS) and Constitutional Growth Delay (CGD), while pathological causes are subdivided into endocrine diseases, clinically defined syndromes, chronic diseases, metabolic diseases and others. There are not so much data available in Bangladesh in this respect. So, present study was conducted to know the common causes of short stature.

Methods: This cross-sectional study was done in pediatric endocrinology clinic of Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh from January 2017 to August 2018. One hundred children with short stature meeting inclusion criteria were recruited after taking an informed consent. The detailed history, physical examination including anthropometric measurements and relevant investigations were done. Data were recorded on a predesigned questionnaire for final analysis.

Results: The common causes of short stature identified were familial short stature (FSS) 51% cases, Constitutional Growth Delay (CGD) 14% cases and hypothyroidism 12% cases. Other less common causes of short stature were Growth Hormone Deficiency (GHD) 8% cases, malnutrition 6% cases and genetic syndrome 5% cases.

Conclusions: FSS and CGD were the leading cause of short stature in children. Endocrinological causes were the most common cause of short stature after normal variant while nonendocrine causes were the least.

Keywords: Etiology, Growth, Short stature

INTRODUCTION

Growth is an important objective parameter of general health of a child. Short stature is a common problem encountered by practicing pediatricians. It results from an intricate process which involves integration of genetic potential, functioning endocrine system, nutritional status, effects of chronic diseases and physical activity level. A disturbance at any point of these levels may affect growth adversely resulting in short stature which is defined by height or length below the 3rd centile or less than 2 standard deviation for that specific age and sex.1,2

Short stature is a result of various etiologies, which are categorized as normal variants and pathological causes. Normal variant short stature consists of Familial Short Stature (FSS) and Constitutional Growth Delay (CGD), while pathological causes are subdivided into endocrine diseases, clinically defined syndromes, chronic diseases, metabolic diseases and others.3

The final adult height in humans is controlled by multiple genes. In familial short stature, the final expected adult height is short but within the target range of height for the family.4
Constitutional Growth Delay (CGD) having subtle defects in Growth Hormone-Insulin like Growth Factor (GH-IGF) axis and higher energy expenditure, this increased metabolism may result in impaired tempo of growth. Puberty is delayed but the final adult height is usually not affected and remains in the lower parental target height zone. Chronic childhood diseases, if sufficiently severe can lead to growth failure and short stature. Important examples include renal, pulmonary, cardiac disease, malignancy, cystic fibrosis and celiac disease. Celiac disease is a prime example of a remediable cause of short stature especially in younger children.

Common endocrine disorders leading to short stature include hypothyroidism, cushing’s syndrome and growth hormone deficiency.

Short stature may also be seen with severe Intrauterine Growth Retardation (IUGR) and in large number of dysmorphic syndromes. Emotional deprivation is an important cause of retardation of growth. Idiopathic Short Stature (ISS) is considered when no causative disorder can be identified.

METHODS

This cross-sectional study was conducted at the pediatric endocrinology clinic of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, from January 2017 to August 2018. Children from both genders, 2-18 years of age having height below two Standard Deviation (-2SD) from the mean or less than 3rd percentile for age and sex who came in the clinic during the study period were included. Patients with contractures and kyphoscoliosis in whom height could not be measured and patient already on treatment were excluded. All the patient who came during the study period and matched with inclusion and exclusion criteria were enrolled in the study. Protocol was approved and ethical clearance was taken from the Institutional Review Board (IRB) of BSMMU. The patients and/or the parents were informed of the study design and the purpose of the study. All sorts of confidentiality were ensured. Informed written consent was taken.

A structured questionnaire gathered the data regarding particulars and anthropometric measurements of selected children. Birth history, family history of any short stature or pubertal delay, dietary history, history of any chronic disease was taken. After history taking anthropometric indices were measured. The weight was measured by using Bathroom scale and height was recorded by using locally made height board where two horizontal flat wooden boards, one for head-end and another for foot-end, was attached with a long vertical scale to nearest 0.5 cm. Values of height and weight were evaluated to categorize individuals nutritional status. Lower segment was measured from the pubic symphysis to the heel and upper segment was calculated by subtracting the lower segment from the height. Upper segment to lower segment ratio of the body was calculated to differentiate between proportionate and disproportionate short stature. Mid Parental height was taken in all patients for initial categorization. OFC was measured by measuring tape slipped over the head and passed around the occipital protuberance and supra orbital ridge and expressed in centimeter. Height for age, weight for age, weight for height, OFC for age, BMI for age was plotted on Center for Disease Control and Prevention (CDC) growth chart, Standard Deviation (SD) score was calculated and compared with CDC normal growth data for children. After doing clinical evaluation (history and examination), patients were advised to do some investigations.

All the patients were advised to do first line investigations which includes: complete blood count with ESR, urine R/M/E, serum creatinine, SGPT, thyroid function test and Xray for bone age. If the clinical features and first line investigations were suggestive patients were advised to do second line investigations which includes serum calcium, serum phosphate, serum alkaline phosphatase, serum parathormone, X ray wrist, knee and ankle, growth hormone stimulation test, chromosomal analysis.

The data were collected and compiled manually. The entered data were checked, verified and analyzed by Statistical Program for Social Science (SPSS software, version 22). The data were presented in tabular form. Unpaired t-test and chi-square test was applied for data analysis. A p-value less than 0.05 was considered as significant.

RESULTS

A total number of 100 short stature patients were enrolled in this study among them 47% were males and 53% were females. The male to female ratio was 0.92:1. Most common age group was 6-11 years.

Table 1: Demographic profile of the study population (n=100).

Demographic profile	Number of patient (%)
Age (years)	
2-5	16 (16)
6-11	59 (59)
12-18	25 (25)
Sex	
Male	47 (47)
Female	53 (53)
Residence	
Rural	62 (62)
Urban	38 (38)
Socioeconomic condition	
(<10000 Tk)	10 (10)
(10000-<30000 Tk)	54 (54)
(30000-<50000 Tk)	30 (30)
(>50000 Tk)	6 (6)

Data were expressed as number and percentage.
Most of the patients (62%) were from rural area and 38% patients were from urban area, 54% patients belonged to a low socioeconomic background (with monthly family income of 10,000-<30,000 tk) (Table 1). Causes of short stature in this study was FSS (51% cases), CGD (14% cases), hypothyroidism (12% cases), GHD (8% cases), malnutrition (6% cases), genetic syndrome (5% cases) (among them 3 cases were turner syndrome and 2 cases were down syndrome); and rickets, skeletal dysplasia and IUGR comprised 1% cases each.

Table 2: Etiology of short stature (n=100).

Etiology	Total, n (%)	Male n(%)	Female n (%)	p value
Normal variants of growth				
Familial short stature (FSS)	51(51)	21(41.17)	30(58.83)	0.074ns
Constitutional growth delay (CGD)	14(14)	8(57.14)	6(42.86)	0.449ns
Endocrine				
Hypothyroidia (FSS)	12(12)	4(33.33)	8(66.67)	0.102ns
Growth hormone deficiency (CGD)	8(8)	6(75)	2(25)	0.045**
Pathological short stature				
Malnutrition (FSS)	6(6)	4(66.66)	2(33.44)	0.248ns
Genetic Syndrome				
Turner Syndrome	3(3)	-	3(100.0)	-
Down Syndrome	2(2)	1(50)	1(50)	1.000ns
Rickets	1(1)	1(100)	-	-
Skeletal dysplasia	1(1)	1(100)	-	-
IUGR	1(1)	1(100)	-	-

IUGR=Intrauterine growth retardation
Statistical analysis was done by Chi-square test, ns=not significant, **= significant at p<0.05

Table 3: Distribution of the study patients by height in relation to age and sex (n=100).

Age (Years)	Height (cm) (Mean)	Male	Female	p value		
	Number	Mean height±SD (cm)	Number	Mean height±SD (cm)		
2-5	85.4	4	86.12±16.64	12	77.75±8.37	0.196 ns
6-11	110.8	31	109.90±11.01	28	114.41±9.26	0.094 ns
12-18	134.6	12	136.46±7.01	13	127.75±13.49	0.048**

Statistical analysis was done by Unpaired t-test, ns=not significant, **= significant at p<0.05

Table 4: Etiology of short stature in relation to severity.

Etiology	Height SD<-2 to -3	Height SD<-3	P value
	Mean height±SD (cm)	Mean height±SD (cm)	
Familial short stature	118.31±10.88	114.02±17.86	0.235 ns
CGD	114.9±9.34	114.75±7.93	0.981 ns
Hypothyroidism	113.14±21.30	97.2±12.75	0.169 ns
Genetic Syndrome	122.16±19.63	101.5±4.94	0.258 ns

Statistical analysis was done by Unpaired t-test, ns=not significant.
**All the patients of GHD and malnutrition were severely stunted.
**Panhypopituitarism, rickets, skeletal dysplasia and IUGR consisted only 1 patient each and also severely stunted.

Comparison of height of male and female patients of different age group showed that in the age group of 12-18 years, female patients were significantly shorter than male patients (p value 0.04) (Table 3). Comparison of
height between moderate and severe short stature patients of different etiologies showed that there was no significant difference (Table 4). Pathological short stature patients were severely underweight and NVSSS patients were moderately underweight (p value 0.001) (table 5).

Table 5: Association of demographic characteristics of children with normal variant and pathological short stature (n=100).

Variable	Normal variant SS (n=65)	Pathological SS (n=35)	p-value		
	n (%)	n (%)			
Age (year)					
2-5	9	13.9	7	20	0.686ns
6-11	40	61.5	19	54.3	
12-18	16	24.6	9	25.7	
Sex (M/F)					
Male	29	44.6	19	54.3	0.355ns
Female	36	55.4	16	45.7	
Residence					
Rural	42	64.6	20	57.1	0.462ns
Urban	23	35.4	15	42.9	
Socioeconomic class					
(<10000 Tk)	5	7.8	5	14.3	0.250ns
(10000-<30000 Tk)	37	57.8	17	48.6	
(30000-50000 Tk)	21	31.3	9	25.7	
(>50000 Tk)	2	3.1	4	11.4	
Height					
Moderate stunting	38	58.5	14	40	0.078ns
Severe stunting	27	41.5	21	60	
Weight					
Normal	26	40.0	8	22.9	
Moderate underweight	37	56.9	12	34.2	0.001**
Severe underweight	2	3.1	15	42.9	

Data were expressed as number and percentage. SS=Short stature, cm=centimeter Statistical analysis was done by Chi-square test, ns=not significant, **= significant at p<0.05

DISCUSSION

This cross-sectional study was conducted to know the etiology of short stature in children, who attended the pediatric endocrinology clinic with a height for age below the 3rd centile. In the present study 100 patients of short stature were enrolled, among them most common age group was 6-11 years, which is similar with other studies.16,17

Present study had 47 males and 53 females. The male to female ratio was 0.92:1. It is not similar with most of the studies done in different countries where males outnumbered the females.17,19 Increased incidence of short stature in females in this study may be due to the fact that, there is increasing awareness among people about health seeking and most of the families have only 1-2 child. So, parents are giving similar emphasis on female and male child.

Causes of short stature in this study were FSS (51%), CGD (14%), hypothyroidism (12%), GHD (8%), malnutrition (6%), genetic syndrome (5%). Among the genetic syndrome 3 cases were Turner syndrome, 2 cases were down syndrome. Rickets, skeletal dysplasia and IUGR comprises 1% cases each. These findings are similar with other studies. A study done in Egypt found FSS, CGD, GHD, hypothyroidism and IUGR 42%, 15.8%, 11.8%, 9.1% and 2% respectively.16 Another study done in Pakistan found FSS, hypothyroidism, GHD and CGD 21.3%, 17.2%, 10.7% and 6.6% respectively.17 FSS was the most common (51%) cause of short stature in this study which is similar with other studies.16,17 In some other studies CGD was the most common cause of short stature (33% and 17.3%).20,21 In the current study CGD comprised 14% cases, which was the second most common cause of short stature.

In this study FSS was more common in females than males (30% vs 21%) whereas in case of CGD males outnumbered females (8% vs 6%). This finding is similar with other studies.7,21,22 Current study showed that NVSSS was more common than pathological short stature (65% vs 35%) which is similar with other studies.16,23

If authors categorize the causes into three main etiological groups, the most frequent was NVSSS (FSS and CGD) followed by endocrinological and non-endocrinological group. In this study NVSSS comprised 65% cases, endocrinological causes were 21% and non-endocrinological causes were 14%, which is very much consistent with other studies done in different countries.7,16,23-25 But some other studies found non-endocrinological causes as the most common cause of short stature.17,21 From this point it is very much evident that the most common cause of short stature is normal
variant. So, early diagnosis and proper counseling helps the patients to save money from unnecessary investigations and also removes anxiety.

Endocrine diseases are usually less common cause of short stature in children, varied markedly in different studies, ranging from 5% to 35%. In this study endocrine diseases constituted 21% of cases. The most common endocrine cause in this study was hypothyroidism (12%) followed by GHD (8%) and panhypopituitarism (1%). The higher number of endocrine causes in this study may be due to the fact that this study was conducted in a pediatric endocrine clinic.

One study done in Pakistan found hypothyroidism as the leading endocrine cause for short stature which was 17.2% and the next common cause was GHD (10.7%). Another study done in India found hypothyroidism and GHD 44.2% and 7.4% respectively. This findings were similar to this study which constitutes 12% and 8% respectively.

The most common non-endocrinological cause of short stature in this study was malnutrition (6%) which is similar with other studies ranging from 4.7-9.8%. One study found celiac disease (6.6%) as the most common non-endocrinological cause of short stature. But in this study there was no celiac disease case.

In the current study, genetic syndrome was found in 5% cases, among them 3 cases were Turner syndrome and 2 cases were Down syndrome. One study found genetic syndrome in 5.6% cases. In the present study, comparison of number of male and female patients of different etiologies were done which showed that GHD was significantly more in male patients (p value 0.04) (Table 2). These was similar with other studies.

Comparison of height between male and female patients of different age groups showed that in the age group of 12-18 years female patients were significantly shorter than male patients (p value 0.04) (Table 3). This is because of the fact that during this age linear growth is due to the pubertal growth spurt and male’s pubertal growth spurt is more than the females, so males are significantly taller than females.

In the current study, comparison of height between moderate and severe short stature patients of different etiologies were done which showed that there was no significant difference of height between moderate and severe short stature patients of different etiologies (Table 4).

Comparison of demographic characteristics of patients such as age, sex, residence, socioeconomic class, height and weight between normal variant and pathological short stature patients were done, among them only weight was significant (p value 0.001) (Table 5). Pathological short stature patients were severely underweight and NVSS patients were moderately underweight.

The limitations of this study include, this study was performed in a single centre, small sample size and failure to calculate and plot growth velocity which requires a regular follow-up at six months to twelve months interval, which was not possible in this cross-sectional study. Secondly, it was a hospital-based study where patients of specific diseases were referred. In Bangladesh there is not so much data regarding the etiology of short stature. This study will provide a baseline data which will help the future studies. A large scale, community-based study is needed to better delineate the cause of short stature in general population.

CONCLUSION

FSS and CGD were the leading cause of short stature in children. Endocrinological causes were the most common cause of short stature after normal variant. Among the endocrine cause hypothyroidism was most common followed by growth hormone deficiency. Adolescent females were significantly shorter than males and rural peoples were more likely to be short than urban people.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the institutional review board of BSMMU

REFERENCES

1. Brande JL, Rappaport R. Normal and abnormal growth. In: Bertrand J, Rappaport R, Sizonenko PC, eds. Pediatric endocrinology, physiology, pathophysiology and clinical aspect. 2nd ed. Philadelphia, Williams and Wilkins; 1993:185-207.
2. Rogol AD. Causes of short stature. In: Rose BD, eds. Up-to-date. Waltham MA: up to date; 2007. Available at: https://www.upToDate.com/contents/causes-of-short-stature. Accessed 29 June 2018.
3. Ranke MB. The Kabi Pharmacia International Growth Study: aetiology classification list with comments. Acta Pediatr. 1991;80:87-92.
4. Ranke MB, Grauer ML, Kistner K, Blum WF, Wollmann HA. Spontaneous adult height in idiopathic short stature. Hormone Res Paediadr. 1995;44(4):152-7.
5. Han JC, Balagopal P, Sweeten S, Darmaun D, Mauras N. Evidence for hypermetabolism in boys with constitutional delay of growth and maturation. J Clin Endocrinol Metabol. 2006;91(6):2081-6.
6. Du Caju MV, De Beeck LO, Sys SU, Hagendores MM, Rooman RP. Progressive deceleration in growth as an early sign of delayed puberty in boys. Hormone Res Paediatr. 2000;54(3):126-30.
7. Bhadada SK, Bhansali A, Ravi Kumar P, Kochhar R, Nain CK, Dutta P, Lal S. Changing scenario in aetiological profile of short stature in India-growing importance of celiac disease: a study from tertiary care centre. Ind J Pediatr. 2011;78(1):41-4.
8. Van Rijn JC, Grote FK, Oostdijk W, Wit JM. Short stature and the probability of coeliac disease, in the absence of gastrointestinal symptoms. Archiv Disease Childhood. 2004;89(9):882-3.
9. Waheed KA, Irfan K, Ahmed TM, Khan HI. Spectrum of clinical presentation of chronic renal failure in children. Pak Paediatr J. 2002;26:167-71.
10. Queiroz MS, Nery M, Cancado EL, Gianella-Neto D, Liberman B. Prevalence of celiac disease in Brazilian children of short stature. Brazilian J Med Biol Res. 2004;37(1):55-60.
11. Famuyiwa OO. Short stature at the University College Hospital, Ibadan, Nigeria. West African J Med. 1992;11(1):62-71.
12. Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, et al. IGFB-1 receptor mutations resulting in intrauterine and postnatal growth retardation. New Engl J Med. 2003;349(23):2211-22.
13. Lam WF, Hau WL, Lam TS. Evaluation of referrals for genetic investigation of short stature in Hong Kong. Chinese Med J. 2002;115(4):607-11.
14. Parks JS, Selner EL. Hypopituitarism. In: Kliegman RM, Stanton BF, St. Germe JW, Schor NF, Behrman RE, eds. Nelson Textbook of Pediatr. 20th ed. Philadelphia: Saunders; 2016:2643.
15. Miller BS, Zimmerman D. Idiopathic short stature in children. Pediatr Ann. 2004;33:177-81.
16. Hussen A, Farghaly H, Askar E, Metwally K, Saad K, Zahran A, et al. Etiological factors of short stature in children and adolescents: experience at a tertiary care hospital in Egypt. Ther Adv Endocrinol Metab. 2017;8(5):75-80.
17. Rabbani MW, Khan WI, Afzal AB, Rabbani W. Causes of short stature identified in children presenting at a tertiary care hospital in Multan Pakistan. Pak J Med Sci. 2013;29(1):53.
18. Ullah F, Ghaffar T, Afridi AK, Ali A, ul hasan Aamir A. Short stature: what is the cause in our population. J Ayub Med Coll Abbottabad. 2016;28(1):135-40.
19. Lashari SK, Korejo HB, Memon YM. To determine frequency of etiological factors in short statured patients presenting at an endocrine clinic of a tertiary care hospital. Pak J Med Sci. 2014;30(4):858.
20. Moayeri H, Aghighi Y. A prospective study of etiology of short stature in 426 short children and adolescents. Age. 2004;14(1.7):13-3.
21. Sultan M, Afzal M, Qureshi SM, Aziz S, Lutfullah M, Khan SA, et al. Etiology of short stature in children. J Coll Physicians Surg Pak. 2008;18(8):493-7.
22. Shiva S, Nikzad A. Etiology of short stature in east Azerbaijan, Iran. Iran J Pediatr. 2009;19(1):35-9.
23. Mohamed SH, Al Otaibi HM, Al Issa ST, Omer HG. Short stature in children: Pattern and frequency in a pediatric clinic, Riyadh, Saudi Arabia. Sudanese J Paediatr. 2012;12(1):79.
24. Shu SG, Chen YD, Chi CS. Clinical evaluation of short children referred by school screening: an analysis of 655 children. Acta Paediatr. 2002;43(6):340-4.
25. Gjikopulli A, Grimci L, Kollcaku L, Cullufi P, Tako A. Pattern and Frequency of Short Stature in Albanian Children. Curr Health Sci J. 2016;42(4):390.
26. Lindsay R, Feldkamp M, Harris D, Robertson J, Rallison M. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency. J Pediatr. 1994;125(1):29-35.

Cite this article as: Karim MR, Shamaly KJ, Tithi BB, Akter R, Jahan I, Begum S. Etiology of short stature in children attending pediatric endocrinology clinic of a tertiary care hospital in Bangladesh. Int J Contemp Pediatr 2020;7:363-8.