Utility of Neutrophil to Lymphocyte Ratio as a Predictor of Complications in Patients with Liver Cirrhosis

Vineeth V. K.1, Adithi Kellarai2, Prakash P. S.3

1Department of General Medicine, Christian Medical College, Vellore, Tamilnadu, India. 2Department of General Medicine, K.S. Hegde Medical Academy, Mangalore, Karnataka, India. 3Department of General Medicine, K.S. Hegde Medical Academy, Mangalore, Karnataka, India.

ABSTRACT

BACKGROUND
Neutrophil to Lymphocyte Ratio (NLR) has been considered an inexpensive biomarker to reflect inflammation in patients with cirrhosis. Raised NLR has been associated with poor clinical outcome and mortality in these patients. We conducted this study to correlate the association of Neutrophil to Lymphocyte Ratio with complications of cirrhosis and assess the short-term outcome during hospital admission.

METHODS
We conducted a prospective observational study in 120 patients with cirrhosis from January 2017 to June 2018. All patients were diagnosed based on clinical history, examination and ultrasound. Complications were diagnosed by clinical and laboratory evaluation. Total white blood cell count, lymphocyte count, and neutrophil count were recorded, and neutrophil to lymphocyte ratio was calculated. Statistical analysis by means of test of association and binary logistic regression analysis was carried out.

RESULTS
Out of the 120 patients enrolled in our study, majority were male (90%), and in the age group 51 - 60 years (38.3%). Majority (39.2%) of the patients had portal hypertension with oesophageal variceal bleeding as complication. Mean NLR for the patients was 5.824. A total of 91% patients with NLR>12 were admitted with decompensated liver disease and 66.7% of those patients presented with more than 2 complications that is hepatic encephalopathy and spontaneous bacterial peritonitis. 41.7% patients with NLR >12 had mortality as the outcome. Chi square test of association of NLR with complications (p=0.003) and mortality (p=0.03) were significant. However, NLR could not predict complications in our study population.

CONCLUSIONS
Raised Neutrophil to Lymphocyte Ratio is associated with complication and mortality in patients with cirrhosis. However, it could not effectively predict the complications in patients with cirrhosis.

KEY WORDS
Biomarker, Cirrhosis, Complications, Decompensation, Neutrophil to Lymphocyte Ratio, Mortality
Liver cirrhosis is the final common pathway for all chronic liver diseases. Cirrhosis currently causes 1.16 million deaths making it the 11th most common cause of death. Major cause for mortality in these patients is the complications of liver cirrhosis. Systemic inflammation has now been proposed to play a crucial role in the natural history of progressive liver damage. Cirrhosis associated immune dysfunction syndrome (CAID) is an entity characterised by combination of systemic inflammation and immune deficiency state. It has been described as a multifactorial process which may be secondary to an infectious or non-infectious stimulus. The systemic inflammation has been attributed with worsening of liver failure and poor outcome. Dysfunction of innate and adaptive immune system leading to increase in pro inflammatory cytokines is responsible for local as well as systemic injury in patients with cirrhosis.

With overwhelming evidence of role of inflammatory markers in pathogenesis of liver disease, a number of surrogate serum markers have been studied as a prognostic guide for predicting outcome and improving management of decompensated liver disease. Neutrophil lymphocyte ratio is one such inexpensive and easily available marker of systemic inflammation. Neutrophil count helps in identifying ongoing inflammation and lymphocyte count represents immune regulatory pathway. Studies have shown NLR to be useful in predicting outcome and mortality in patients with viral hepatitis, hepatocellular carcinoma, liver transplantation and non-alcoholic fatty liver disease.

Identification of infectious episodes and complications in cirrhosis are challenging due to lack of typical signs and symptoms. Further, delay in treating complications leads to significant morbidity as well as mortality in these patients. In developing countries where resources are deficient, NLR is an ideal test for early detection of infection and inflammation. Increased NLR helps in early identification of infections and timely administration of antibiotics thus improving outcome of patient. Recently, NLR has also emerged as a predictor of mortality independent of MELD scores in patients with cirrhosis and with hepatocellular carcinoma, as well as in candidates on the liver transplantation list. However, studies have not been conducted to assess role of NLR in predicting complications, decompensation and short term mortality in cirrhosis. Hence, we conducted this study to correlate the association of neutrophil to lymphocyte ratio with complications of cirrhosis and assess the utility of NLR as a predictor of complication.

STATISTICAL ANALYSIS

Analysis was carried out by statistical software SPSS 20. Mean and standard deviation of Neutrophil to Lymphocyte ratio along with confidence interval was calculated. Occurrence of different complications in the patients was expressed by percentage. Logistic regression analysis was carried out to predict the complications with Neutrophil to lymphocyte ratio. To test for the association between categorical variables Chi square test was used value <0.05 was considered as statistically significant.

RESULTS

Our study enrolled 120 patients (108 male and 12 females) based on our diagnostic criteria. Mean age for the cohort was 53.91±10.9 with maximum patients between the age group 51-60 (38.3%). Alcoholic liver disease (96) was the commonest aetiology for the cirrhosis. A total of 34 (28.3%) patients had cirrhosis with portal hypertension without evidence of oesophageal varices and were categorized a compensated cirrhosis. Among the decompensated Cirrhosis, 47 (39.2%) patients had oesophageal varices with evidence of bleeding and 39 (32.1%) patients had cirrhosis with hepatic encephalopathy and spontaneous bacterial peritonitis (SBP) as complications. Baseline demographic and laboratory characteristics of the population are shown in Table I. Mean NLR for the patients was 5.82±4.562 (95% CI 4.81-6.84). Patients were divided into 5 groups on basis of NLR. Distribution of NLR is demonstrated in Table II.

Twenty-one Patients (42%) with NLR of 1-3 had compensated cirrhosis. It was observed that as the NLR increased, percentage of patients with decompensated cirrhosis also increased and 11 patients (91.7%) with NLR >12 had decompensation. However, Chi-square test of association between NLR and decompensation was not statistically significant (p=0.070). It was also noticed that as the NLR increased, statistically significant difference in the incidence of complications was observed between NLR groups.
increased, the incidence of complications also increased with 66.7% of patients with NLR >12 having more than 2 complications that is hepatic encephalopathy and SBP (Table III). Chi-square test of association with likelihood ratio between NLR and complication was used, and p value was found to be significant (p=0.004). Five patients (41.7%) with NLR >12 had mortality as the outcome. Chi square test of association with likelihood ratio between NLR and mortality was statistically significant (p=0.03).

patients consisted of cirrhotic patients with only portal hypertension and second group included cirrhotic patients with complications such as oesophageal varices with variceal bleed, hepatic encephalopathy and spontaneous bacterial peritonitis. In our study p value for NLR, age, sex and aetiology of cirrhosis was not significant, and it could not predict the complication in our study group.

Table I. Baseline Characteristics of the Study Population

Characteristics	No. of Patients (%) (n=120)
Gender (male/female)	106/12
Age (years)	53.9±10.9

Aetiology of Cirrhosis

Disease	No. of Patients (%)
Alcoholic liver disease	66 (55%)
Cryptogenic	14 (12%)
Non-alcoholic fatty liver disease	9 (7%)
Wilson’s disease	4 (3%)
Hemochromatosis	3 (2%)
Hepatitis B	1 (1%)
State of Cirrhosis	
Compensated	34 (28.3%)
Decompensated	86 (71.7%)

Complications

Complication	No. of Patients (%)
Decompensated cirrhosis	34
Portal hypertension without varices	3
Portal hypertension with variceal bleed	2
Hepatic encephalopathy and SBP	1

Outcome

Outcome	No. of Patients (%)
Alive	89
Death	31

Table II. Distribution of NLR

NLR	No. of Patients (n)	Percentage (%)
1-3	50	41.8
3.1-6	35	29.2
6.1-9	20	16.7
>9.1-12	3	2.5
>12	12	10.0
Total	120	100.0

Table III. Association between NLR and Status, Complications and Outcome of Cirrhosis

NLR	State	Outcome	Complications					
		Alive	Death	Dmass	Portal Hypertension	Portal Hypertension + Varices	Hepatic Encephalopathy	SBP
1-3	21	29	45	5	0	21	18	11
3.1-6	9	26	33	2	0	8	20	7
6.1-9	3	17	19	1	0	3	5	12
>9.1-12	1	2	3	0	0	1	1	1
>12	1	16	6	5	1	1	1	0

Logistic Regression Analysis

Logistic regression analysis was done to assess ability of NLR to predict complications in patient with cirrhosis. For the purpose of logistic regression analysis patients were divided into 2 groups based on their complications. First group of

Table IV. Binary Logistic Regression Analysis NLR with Complications

Variable	Coefficient	Standard Error	P-Value	Odds Ratio	95% Confidence Interval
NLR	0.6606	0.3635	0.0691	1.9360	0.9495-3.9475
Age	-0.0539	0.0222	0.0154	0.9476	0.9072-0.9898
Sex	-1.2260	1.0744	0.2538	0.2935	0.0357-2.4105
Aetiology	0.6591	0.4958	0.1837	1.9331	0.7316-5.1080

DISCUSSION

In our study, we tried to examine the association of neutrophil to Lymphocyte ratio with complications, decompensation and short-term outcome of cirrhosis. We were able to demonstrate that increase in NLR is associated with increased complications and mortality in patients with cirrhosis.

Blood Leucocyte count has previously been used as a surrogate marker for sepsis. Many studies demonstrated leucocyte count as an independent predictor of short-term mortality in patients with acute on chronic liver failure. However, in patients with cirrhosis it is difficult to make a diagnosis of infection solely based on leucocyte count as it has its own drawbacks. Cirrhotic patients demonstrate abnormal haematological parameters which include anaemia, thrombocytopenia and leuopenia. The pathogenesis described for pancytopenia is multifactorial, with portal hypertension induced sequestration and bone marrow suppression accounting for majority of the cases. Once a patient develops infection the total count is bound to rise. However, there are evidence which say in 50% bacteraemia total count can be normal. Hence there is no consensus for a leucocyte cut-off point for diagnosing infection. In our study 36.7% (n=44) of patients had a total count between 4000-8000 cells/cumm. In a study by Jung Hyun Kwon, et al mean total count was 8971 cells/cumm while in our study we had a mean of 10787 cells/cumm. However, it was worth to observe that 28.3% of patients had a total count more than 12000 cells/cumm and 9.2% had total counts less than 4000 cells/cumm. There was no significant difference in mortality in the groups based on the total counts.

NLR has been considered an inexpensive biomarker to reflect inflammation in clinical conditions like ischaemic Heart disease, Pneumonia and Cancer. Sharma K et al demonstrated that there a strong correlation between NLR and coronary artery disease (CAD) and Optimum cut-off of NLR in his study for diagnosis of CAD was 2.13. H. Shimada et al in his study on Neutrophil lymphocyte ratio in gastric cancer concluded that in patients with a high NLR, the 5-year survival was significantly worse than that of patients with a low NLR. Most studies have shown a higher NLR is associated with poor outcome and prognosis. However, there is no consensus for a definitive cut off value for NLR. Lee et al conducted a study to evaluate the sex- and age-specific reference values of NLR in normal population in Korea. They concluded that mean NLR across all ages in men and women was 1.63 (0.76) and 1.66 (0.82), respectively and also commented that NLR is lower in Asian population compared to western cohorts. In our study majority of patients had a mean NLR of 5.8250. This value was much higher than the NLR demonstrated in other studies. This could be explained by the fact that our cohort included patients admitted in hospital for management of cirrhosis or

J. Evolution Med. Dent. Sci./eISSN- 2278-4802, pISSN- 2278-4748 / Vol. 9/ Issue 31/ Aug. 03, 2020 Page 2199
its complications and did not represent follow up patients in outpatient department. In a study conducted Murat Biyik et al they demonstrated a mean NLR of 2.72 and concluded that the mortality rate was significantly higher (odds ratio was 8.9) in patients with an NLR higher than 2.72 compared with lower NLR values.\(^{15}\)

Complication of cirrhosis and decompensation is the major cause of mortality in cirrhotic patients. Previous studies have not studied the association between the complications and NLR. We noticed that as the NLR increased, the incidence of complications also increased with 66.7% of patients with NLR >12 having more than 2 complications that is hepatic encephalopathy with SBP. Chi-square test of association with likelihood ratio between NLR and complication was used, and p value was found to be statistically significant (p=0.003). We also tested for the Association between NLR and decompensation in cirrhosis. It was indeed astonishing to note that 91.7% patients with NLR more than 12 were in decompensated state during admission. However, test of association with p value was 0.057 which was not significant. However, when we did a logistic regression analysis on our data, we were unable to demonstrate NLR, Age and Sex as a predictor of complication.

NLR has been demonstrated as an independent marker for predicting mortality in patient with cirrhosis. Studies have shown that NLR is a predictor of mortality, independent of Child-Turcotte-Pugh and MELD, for patients with stable liver cirrhosis. It has also been able to predict mortality in low MELD score groups.\(^{10,15}\) In a study conducted by Jung Hyun Kwon et al, it was demonstrated that NLR was a useful predictor of 1-month survival, particularly in Child-Pugh class C patients.\(^{16}\) In our study NLR had a positive correlation with hospital mortality. As the NLR increased the incidence of mortality also increased which was demonstrated by test of association with p value of 0.03. Long term mortality after discharge of patients with higher NLR cannot be commented as patients were not followed up in our study.

We did face certain limitation in our study. As the duration of our study was short, sample size was limited. In our study NLR was calculated only one time at admission. Serial monitoring of NLR would be necessary to diagnose complications during hospital stay. We did not compare MELD and CTP score with NLR as our study wanted to reflect on acute complication and hospital mortality. Despite of these limitation we had a few strengths. Ours is the only study which correlated the NLR with complications and decompensation in cirrhosis. We were able to demonstrate an association between the two, but we were not able to develop a cut-off value for NLR for our patients admitted with cirrhosis.

CONCLUSIONS

Raised Neutrophil to Lymphocyte Ratio is strongly associated with complication and short term mortality in patients with cirrhosis. It can also be used as prognostic marker and can assist in early detection of decompensation in these patients. Further research is needed to develop reference values for NLR for diagnosing complication and mortality in patients with cirrhosis.

Abbreviations

CTP: Child-Turcotte-Pugh.
MELD score: Model for End-Stage Liver Disease score.
NLR: Neutrophil-to-Lymphocyte Ratio.

Financial or Other Competing Interests: None.

REFERENCES

1. Asrani SK, Kamath PS. Natural history of cirrhosis. Curr Gastroenterol Rep 2013;15(2):308.
2. Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol 2019;70(1):151-71.
3. Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014;61(6):1385-96.
4. Birkhoff M, Ruf AE. Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J Hepatol 2015;7(16):1974-81.
5. Sipek N, Antal-Szalmas P, Lakatos PL, et al. Immune dysfunction in cirrhosis. World J Gastroenterol 2014;20(10):2564-77.
6. Selmi C, Mackay IR, Gershwin ME. The immunological milieu of the liver. Semin Liver Dis 2007;27(2):129-39.
7. Aoyama T, Paik YH, Seki E. Toll-like receptor signaling and liver fibrosis. Gastroenterol Res Pract 2010;2010:1-8.
8. Trittó G, Bechis Z, Stadlbauer V, et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011;55(3):574-81.
9. Gong J, Liang YL, Zhou W, et al. Prognostic value of neutrophil-to-lymphocyte ratio associated with prognosis in HBV-infected patients. J Med Virol 2018;90(4):730-5.
10. Kalra A, Wedj JP, Bambha KM, et al. Neutrophil-to-lymphocyte ratio correlates with proinflammatory neutrophils and predicts death in low model for end-stage liver disease patients with cirrhosis. Liver Transpl 2017;23(2):155-65.
11. Yilmaz H, Yalcin KS, Namuslu M, et al. Neutrophil-lymphocyte ratio (NLR) could be better predictor than C-reactive protein (CRP) for liver fibrosis in non-alcoholic steatohepatitis (NASH). Ann Clin Lab Sci 2015;45(3):278-86.
12. Lin BY, Zhou L, Geng L, et al. High neutrophil-lymphocyte ratio indicates poor prognosis for acute-on-chronic liver failure after liver transplantation. World J Gastroenterol 2015;21(11):3317-24.
13. Arvaniti V, D’Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010;139(4):1246-56.
14. Liu X, Shen Y, Wang H, et al. Prognostic significance of neutrophil-to-lymphocyte ratio in patients with sepsis: a prospective observational study. Mediators Inflamm 2016;2016:1-8.
15. Biyik M, Ucar R, Solak Y, et al. Blood neutrophil-to-lymphocyte ratio independently predicts survival in patients with liver cirrhosis. Eur J Gastroenterol Hepatol 2013;25(4):435-41.
[16] Gao F, Li X, Geng M, et al. Pretreatment neutrophil-lymphocyte ratio: an independent predictor of survival in patients with hepatocellular carcinoma. Medicine (Baltimore) 2015;94(11):e639.

[17] Limaye AR, Clark V, Soldevila-Pico C, et al. Neutrophil-lymphocyte ratio predicts overall and recurrence-free survival after liver transplantation for hepatocellular carcinoma. Hepatol Res 2013;43(7):757-64.

[18] Bajaj JS, O'Leary JG, Reddy KR, et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014;60(1):250-6.

[19] Qamar AA, Grace ND. Abnormal hematological indices in cirrhosis. Can J Gastroenterol 2009;23(6):441-5.

[20] Lowsby R, Gomes C, Jarman I, et al. Neutrophil to lymphocyte count ratio as an early indicator of bloodstream infection in the emergency department. Emerg Med J 2015;32(7):531-4.

[21] Kwon JH, Jang JW, Kim YW, et al. The usefulness of C-reactive protein and Neutrophil to lymphocyte ratio for predicting the outcome in hospitalized patients with liver cirrhosis. BMC Gastroenterology 2015;15:146.

[22] Sharma K, Patel AK, Shah KH, et al. Is Neutrophil-to-lymphocyte ratio a predictor of coronary artery disease in western Indians? Int J Inflam 2017;2017:1-8.

[23] Shimada H, Takiguchi N, Kainuma O, et al. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 2010;13(3):170-6.

[24] Lee JS, Kim NY, Na SH, et al. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine (Baltimore) 2018;97(26):e11138.