Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus

Prawej Ansari 1,2,*, Samia Akther 1, J. M. A. Hannan 1, Veronique Seidel 3, Nusrat Jahan Nujat 1 and Yasser H. A. Abdel-Wahab 2

Abstract: Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.

Keywords: medicinal plants; traditional medicine; phytoconstituents; diabetes; pharmacology

1. Introduction

Diabetes mellitus is one of the most common endocrine metabolic disorders characterized by chronic hyperglycemia caused by varying degrees of insulin resistance, deficiency in insulin secretion, or both [1]. Nearly 10.5% of the worldwide population is affected by diabetes, with its prevalence increasing at an alarming rate. According to data collected from the International Diabetes Federation (IDF), about 783.2 million people are estimated to be diagnosed with diabetes by 2045 [2]. Diabetes mellitus can be classified into two major categories: Type 1 and Type 2 diabetes, where Type 2 diabetes accounts for about 90% of all cases. Type 1 diabetes, previously known as insulin-dependent diabetes, is an autoimmune disorder that occurs due to the destruction of the pancreatic beta cells leading to significantly reduced secretion of insulin [3]. It is a non-hereditary genetic condition that mainly affects the juvenile under thirty years of age. Type 2 diabetes, also known as non-insulin-dependent diabetes, is the most common form of diabetes, with its prevalence rapidly rising worldwide [4]. It is a hereditary condition caused as a result of insulin resistance, insufficient insulin secretion, or a combination of both, largely affecting an older population than Type 1 diabetes [5]. Both forms of diabetes alter carbohydrate, protein, and fat metabolism. The effect of insulin resistance leads to high blood sugar levels...
by hindering the uptake and efficient use of glucose by most cells of the body [6]. The progression of the disease is accompanied by tissue or vascular damage resulting in severe complications, including retinopathy, diabetic neuropathy, nephropathy, cardiovascular, pulmonary, cerebral, and peripheral vascular diseases, ulcers, and thyroid gland disorders, leading to serious morbidity and mortality [1,7–9]. Available therapies currently in use for the treatment and management of diabetes include insulin and several oral hypoglycemic agents such as metformin, sulfonylureas, α-glucosidase inhibitors, meglitinide analogues, thiazolidinediones, DPP-IV inhibitors, SGLT-2 inhibitors, and GLP-1 mimetics. However, these drugs, intended to boost insulin sensitivity and increase insulin secretion together with the reduction in circulatory plasma glucose levels by increasing glucose excretion or uptake in adipose tissue, are usually associated with many side effects. These include, among others, weight gain, hypoglycemia, gastrointestinal tract disturbances, liver injury, renal failure, hypersensitivity reactions, flatulence, diarrhea, and abdominal bloating [1,10,11]. In addition, these drugs have been known to have other major disadvantages, including drug resistance, and there is also a lack of therapies to prevent the long-term complications of the disease.

The complications associated with insulin and oral antidiabetic agents, together with limited drug tolerability, adverse effects, and cost, have accelerated the search for alternative medicines with better efficacy, potency, and fewer side effects [12]. Interestingly, there has been an increase in popularity surrounding drug discovery research into natural antidiabetic agents, especially those derived from medicinal plants, which could enhance β-cell function and treat diabetes-associated complications with fewer adverse side effects [13].

Herbal medicines contain a diversity of phytochemicals and have been traditionally used for treating a wide variety of diseases. They are considered to be naturally safe and efficacious with fewer side effects [12]. The control and management of diabetes using herbal drugs have proven to be more advantageous over synthetic medicines due to their accessibility, reduced cost, lesser complications, and lower side effects. Herbal medicines act via different mechanisms aiming at reducing insulin resistance, increasing insulin secretion, protecting pancreatic beta cells, and thereby lowering circulating blood glucose levels [14].

Throughout the years, thousands of plant species have been used for their medicinal uses as integrative medicines for various diseases, of which more than 800 plants have been reported to exhibit antidiabetic effects [15]. Such plants have been examined for their use in the treatment of the different types of diabetes and could be potential sources for new natural antidiabetic drug discovery research [16]. A number of medicinal plants used traditionally for their antidiabetic activity are currently under investigation to be formulated commercially as modern drugs. This is particularly the case in developing countries where the cost of allopathic medicine is high, and the traditional use of plants to treat diabetes is common practice [15]. Traditional natural medicines are extensively prescribed in Asian countries (e.g., China, India, Bangladesh, Pakistan, Sri Lanka, Thailand, Nepal, Bhutan, Japan, and others) [17]. Among the medicinal plants possessing hypoglycemic effects, the most common ones used as remedies for diabetes include Acacia arabica, Aegle marmelos, Allium cepa, Allium sativum, Aloe vera, Ammona squamosa, Azadirachta indica, Berberis vulgaris, Camellia sinensis, Capsicum frutescens, Cassia alata, Cinnamomum zeylanicum, Eucalyptus globulus, Eugenia jambolana, Helicteres isora, Momordica charantia, Panax ginseng, Punica granatum, Swertia chirayita, Trigonella foenum-graecum, and others [15,16,18,19]. The antidiabetic activity of these plants is thought to be mediated via various mechanisms, including the stimulation of insulin secretion from pancreatic β-cells, increasing insulin binding to receptors, reduction in insulin resistance, and improving glucose tolerance. Other modes of action include enhancing glucose metabolism, improving β-cell mass and function, and increasing plasma insulin, thus decreasing circulating blood glucose levels [20–23]. In addition to being used to treat diabetes, these plants have also been traditionally employed to treat other conditions such as ulcers, wounds, inflammation, infections, diarrhea, dysentery, malaria, rheumatism, hypertension, obesity, pneumonia,
and kidney diseases [12,19,24–26]. The main objective of this review is to explore the
traditional plant-based therapies and/or their phytoconstituents available for the treatment
of diabetes. These could provide the basis for the discovery of new antidiabetic drugs with
fewer side effects and stronger efficacy than currently available medicines.

2. Methods

A literature search was carried out via Google Scholar, ScienceDirect, Scopus, and
PubMed databases to accumulate data for this review article using the keywords “Diabetes
mellitus,” “Medicinal Plants,” “Traditional medicine,” “Antidiabetic phytochemicals,” and
“Plant-based antidiabetic therapy.” The data search was not restricted to a specific time
period; however, around 98% of the gathered data were published between 2000 and
2022, and only 2% were published before 2000. Our data collection began in early January
until late May 2022. More than 700 papers were found relevant to our study, and after
performing a primary screening, around 400 papers were selected to be critically examined.
An overview of the key findings has been presented in this current review.

3. Ethnomedicines and Their Scope in the Modern World

Ethnomedicine is a traditional health care practice followed by indigenous people con-
cerned with human health. It is the origin of all other traditional medical systems, including
Ayurveda, Siddha, Unani, Nature Cure, as well as modern medicine [27]. Knowledge of
plants presenting therapeutic properties has been passed on by experimenting through
trials and errors from one generation to the next for more than hundreds of years. Eth-
nomedicines are highly prevalent in the rural and native communities of several developing
countries [28]. According to information collected from the World Health Organization,
about 80% of the global population relies upon traditional remedies [29]. Medicinal plants
have always been recognized as a major source of raw materials for both conventional and
traditional medicines [30]. In India, the poor and rural residents are dependent upon na-
atural herbal remedies since they are easily obtainable to them. Indeed, plant-based medicines
are the sole source of medical management for people living in remote areas. In countries
such as Russia, Africa, and a few European countries, ethnomedicines are being studied
by various botanists, anthropologists, folklorists, and medical scientists [27]. The inability
for people to access adequate healthcare, alongside financial restrictions, has resulted in
the under-provision of modern health care for a majority of the people in underdeveloped
countries. [31]. Numerous folk remedies are recorded as being effective in treating various
diseases (such as digestive tract disorders, skin diseases, renal and liver diseases, malaria,
ulcers, heart diseases, pneumonia, diabetes, and many others), and thus, even developed
countries have also considered utilizing these medicines [32].

4. Plant-Based Medicine versus Synthetic Medicine

Many drugs that are currently available have been derived directly or indirectly from
natural sources such as medicinal plants and animals [33,34]. Plant-derived natural prod-
ucts have played and continue to play a prominent role in drug discovery and development
programs. The increase in the number of herbal drug manufacturing companies, linked to
the current increase in interest and demand for herbal medicines, can be largely expanded
because of the toxicity and numerous adverse effects of allopathic medicines [35]. The
convenience of accessibility, availability, inexpensiveness, and relatively low risks of side
effects, have caused plant-based medicines to be an important alternative source of exist-
ing therapies, especially in rural and/or developing regions [33]. Plant-based medicines
also provide a rich source of biologically active compounds that possess pharmacological
activity with minimal undesirable effects [33].

Over the centuries, plant-based medicines have been widely used to treat the ailments
of local communities of many developing countries that have easy access to these sources.
Densely populated countries, such as China and India, have especially contributed to the
advancement of sophisticated traditional medical systems such as acupuncture, ayurvedic
medicine, and herbal medicine [36]. Many factors should be considered when selecting the appropriate medications for the management and treatment of diabetes. This includes efficacy, adverse effects, cost, and potential to contribute to weight gain, risks associated with hypoglycemia, comorbidities, and patient compliance. Even though oral antihyperglycemic agents can lower plasma glucose levels by improving insulin secretion or reducing insulin resistance, they are associated with many other adverse effects. Metformin, the mainstay of treatment in type 2 diabetes, has a high safety profile, yet it is still associated with mild side effects such as low risks of hypoglycemia and gastrointestinal tract disturbances (nausea, diarrhea, dyspepsia). Previous studies have shown that continuous use of metformin may result in vitamin B12 and folic acid deficiency in humans [37]. DPP-IV inhibitors such as sitagliptin, saxagliptin, and linagliptin, have been found to cause headaches, nasopharyngitis, and upper respiratory tract infections [38]. The most common adverse effect of sulfonylureas such as glimepiride and gliclazide is hypoglycemia. These drugs are also associated with minor side effects such as weight gain, nausea, headaches, drowsiness, and hypersensitivity reactions. The most serious complication of insulin injections is hypoglycemia. Insulin may also cause weight gain or loss, dizziness, confusion, and sweating [38]. In contrast to synthetic drugs, plant-based medicines do not interrupt the body’s natural healing process; instead, they accelerate the recovery process by strengthening the healing process, ultimately leading to a steady recovery. Alongside their ability to help the body recover to a healthy status, herbal medicines are also known for boosting the immune system. The use of highly effective herbal medicines showing fewer side effects and a strong immune system together with a healthy lifestyle promotes better body metabolism with increased nutritional absorption from the diet [35]. Whether they have insulinotropic, insulin-mimetic, or any other antihyperglycemic effects, medicinal plants are considered safer and more effective alternatives to synthetic antidiabetic drugs [39].

5. Pharmacological Activity of Plant-Based Medicines

Although knowledge of many plant-based therapies has been transmitted through generations, only a few of these have started to come to the fore recently. However, there is still some uncertainty regarding their pharmacological activity as well as their acute/chronic side effects due to such medicines being broadly underreported [40]. Few plants have proven to be efficacious for which they were intended, whilst some were not strongly therapeutically effective and/or sufficient scientific data were lacking to support their expected effects [41]. The increase in the widespread use of plant-based therapies has led to an urgent need for a detailed scientific examination of the chemicals responsible for pharmacological activity. Indeed, such a study of the pharmacological properties and phytoconstituents of plant-based medicines may lead to the discovery of new pharmacological characteristics previously unknown or used in traditional medicine [42]. Herbal medicines have been suggested to exert their mechanism of action by concurrently targeting multiple physiological processes via interactions between different biochemicals and cellular proteins [43].

Herbal medications may be able to alter the biological systems from disease to a healthy state by causing the interactions between multi-component and multi-target. Because of the therapeutic properties of the phytomolecules, a lower dosage may be used, resulting in less toxicity and adverse effects. [43]. The antidiabetic activity of medicinal plants is dependent upon the phytochemicals that act through multiple pathways, such as cAMP: which stimulates insulin secretion without affecting the K\textsubscript{ATP} channel [44]; PI3K: which facilitates glucose uptake by the translocation of the glucose transporter in skeletal muscles, adipose tissue, or liver [45]; AMPK: The activation of 5′-adenosine monophosphate-activated protein kinase pathway improves insulin sensitivity by limiting lipolysis and lipogenesis, and AMPK also enhances glucose uptake in skeletal muscles by translocating GLUT4-containing intracellular vesicles across the plasma membrane [46,47]. For example, phlorizin obtained from the bark of apple and pear trees increases glucose excretion in urine by decreasing glucose reabsorption in the kidneys via the inhibition of SGLT and thus, lowers plasma
glucose concentration \[48\]. Some of the phytomolecules have the potential to regenerate and protect pancreatic beta cells from destruction by reducing the glucose load \[49\], inhibiting \(\alpha\)-amylase and \(\alpha\)-glucosidase activity, inducing glucose uptake in 3T3L1 cells \[50,51\], inhibiting aldose reductase enzyme activity, glycogen metabolizing enzymes, exerting hepato-pancreatic protective activity, inhibiting glucose-6-phosphate and DPP-IV, reducing lactic dehydrogenase, \(\gamma\)-glutamyl transpeptidase, glycosylated hemoglobin levels, and inhibiting glycogenolysis and gluconeogenesis in the liver \[20,52\]. As an example, a summary of the different pathways involved in the antidiabetic activity of flavonoids is illustrated in Figure 1. A summary of antidiabetic medicinal plants and their pharmacological actions has been shown in Table 1.

Figure 1. Flavonoids exerting antidiabetic activity via different mechanistic pathways: Flavonoids increase insulin secretion and improve \(\beta\)-cell function via the PI3K/AKT signaling pathway; increase GLUT-4 translocation through AMPK activation to increase glucose uptake in adipose tissues and skeletal muscles; activate PPAR-\(\gamma\) expression to decrease insulin resistance; activate cAMP/PKA pathway to reduce blood glucose levels and improve glucose tolerance; increase glutathione peroxidase activity to reduce HbA1c levels; decrease G-6-Pase, PEPCK, glycogen phosphorylase, fructose 1,6-biphosphatase and DPP-IV activity in liver to decrease gluconeogenesis, glycogenolysis, and glycosylation; inhibit SGLT pathway in kidney to decrease renal glucose reabsorption; inhibit GLUT-2, \(\alpha\)-amylase and \(\alpha\)-glucosidase activity to decrease glucose absorption in the small intestine.
Table 1. Traditional uses and pharmacological effects of antidiabetic medicinal plants.

Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
1. Abrus precatorius	Leaves, seeds	Diabetes, wounds, fever, cough, cold, tetanus	Improves β-cell function, inhibits α-amylase and α-glucosidase activity	[53,54]
2. Acacia arabica	Bark, roots	Diabetes, astringent, diarrhea, parasitic worms, diuretic, liver tonic	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and glucose tolerance	[24,55]
3. Acacia catechu	Bark	Diabetes, asthma, bronchitis, diarrhea, obesity, dysentery, skin diseases	Lowers blood glucose levels, increases insulin secretion	[56–58]
4. Aegle marmelos	Leaves	Diabetes, dysentery, inflammation, ulcer, diarrhea, asthma	Lowers blood glucose levels, increases insulin secretion, glucose uptake and metabolism, inhibits aldose reductase and DPP-IV enzyme activity	[56,59,60]
5. Aframomum melegueta	Fruit, leaves	Diabetes, cough, diarrhea, stomach ache, leprosy, hypertension, measles	Lowers plasma glucose levels, inhibits α-amylase and α-glucosidase activity	[61,62]
6. Ageratum conyzoides	Leaves	Diabetes, fever, rheumatism, cardiovascular diseases, malaria, wounds, spasms	Lowers blood glucose levels, improves β-cell function, increases insulin secretion	[63,64]
7. Albizia lebbeck	Bark, pods	Diabetes, asthma, diarrhea, infections, dysentery, inflammation	Lowers blood glucose levels, increases insulin secretion, enhances glucose uptake	[56,65,66]
8. Albizia adianthifolia	Bark, leaves	Diabetes, eye problems, hemorrhoids, skin diseases, wounds, malaria diarrhea, indigestion	Lowers blood glucose levels, improves glucose tolerance	[16,67]
9. Allium cepa	Bulb	Diabetes, bronchitis, hypertension, skin infections, swelling, lower cholesterol level	Increases insulin secretion and insulin sensitivity, improves glucose uptake	[68,69]
10. Allium sativum	Bulb	Diabetes, fever, hypertension, rheumatism, dysentery, bronchitis, intestinal worms	Increases insulin secretion and insulin sensitivity to cells	[70,71]
11. Aloe vera	Leaves	Diabetes, constipation, infections, ulcer, dysentery, piles, rheumatoid arthritis	Lowers blood glucose levels, increases insulin secretion, reduces insulin resistance, improves glucose tolerance	[72,73]
12. Anacradium occidentale	Leaves, stem bark	Diabetes, fever, hypertension, rheumatism, toothache, piles, dysentery	Lowers blood glucose levels, reduces oxidative stress, decreases total cholesterol and triglyceride levels	[74–76]
Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
------------------------------	-------------	---	---	------------
13. *Anemarrhena asphodeloides*	Rhizome	Diabetes, fever, cough, inflammation, infections, night sweats, dementia	Lowers blood glucose levels, increases insulin sensitivity, improves glucose uptake	[77,78]
14. *Annona salzmannii*	Leaves, bark	Diabetes, inflammation, tumors	Lowsers blood glucose levels, improves β-cell function, increases insulin secretion	[79,80]
15. *Annona squamosa*	Leaves	Diabetes, wounds, inflammation, hypertension, malaria, insect bites	Lowsers blood glucose levels, increases insulin secretion, improves glucose tolerance and β-cell function	[10,81]
16. *Anogeissus latifolia*	Bark	Diabetes, diarrhea, hemorrhoids, dysentery, snake bites, stomach disorders, skin diseases, leprosy	Decreases blood glucose levels, improves β-cell function, increases insulin secretion, inhibits DPP-IV enzyme activity	[56,82,83]
17. *Arachis hypogaea*	Seeds	Diabetes, inflammation, heart diseases, coagulation, rheumatism, hypertension, Alzheimer’s disease	Increases insulin secretion and insulin sensitivity, improves glucose tolerance	[84–86]
18. *Artemisia absinthium*	Rhizome	Diabetes, wounds, indigestion, gastritis, anemia, hepatitis, cardiovascular diseases, gall bladder disorders	Increases insulin sensitivity, improves glucose uptake, enhances GLUT-4 translocation	[87–89]
19. *Artocarpus heterophyllus*	Leaves, rhizome	Diabetes, diarrhea, malaria, wounds, anemia, inflammation	Lowsers blood glucose levels, decreases glycosylated hemoglobin levels	[78,90]
20. *Asparagus racemosus*	Roots	Diabetes, constipation, ulcers, stomach disorders, cough, inflammation	Increases insulin secretion and action, improves β-cell function, inhibits carbohydrate digestion and absorption	[91–94]
21. *Atractylodes japonica*	Rhizome	Diabetes, rheumatism, gastrointestinal diseases, influenza, night blindness, diuretic, stomachic	Lowsers blood glucose levels, reduces insulin resistance, improves glucose uptake	[95,96]
22. *Azadirachta indica*	Leaves	Diabetes, malaria skin diseases, infections, cardiovascular diseases, intestinal worms	Lowsers blood glucose levels, increases insulin secretion, improves pancreatic β-cell function, inhibits α-amylase and α-glucosidase activity, enhances glucose uptake	[56,97,98]
23. *Balanites aegyptiaca*	Fruit	Diabetes, wounds, asthma, malaria, diarrhea, hemorrhoids, fever, infections	Increases insulin secretion, improves glucose uptake, inhibits α-glucosidase activity	[99,100]
24. *Berberis vulgaris*	Root, bark	Diabetes, eye infections, piles, wounds, snake bites, hemorrhoids, dysentery	Reduces blood glucose levels, increases insulin secretion	[101,102]
Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
---------------------------	------------------------	---		
25. *Bidens pilosa*	Root	Diabetes, wounds, hepatitis, diarrhea, urinary tract infections, cold, glandular sclerosis	Increases plasma insulin, improves glucose tolerance, protects or prevents islet degeneration	[103,104]
26. *Bougainvillea spectabilis*	Flowers, leaves	Diabetes, inflammation, ulcers, sore throat, infections, contraceptive	Regenerates β-cell function, increases plasma insulin levels, reduces intestinal glucosidase activity	[105,106]
27. *Brassica juncea*	Leaves, seeds	Diabetes, arthritis, rheumatism, back pain, coughs, paralysis	Increases insulin secretion and glucose utilization	[16,107]
28. *Bridelia ferruginea*	Leaves, stem bark	Diabetes, headache, arthritis, fever, inflammation	Lowers blood glucose levels, inhibits α-amylase and α-glucosidase activity	[108,109]
29. *Bunium persicum*	Seeds	Diabetes, diarrhea, gastrointestinal disorders, inflammation, obesity, asthma	Lowers blood glucose levels, improves glucose uptake and utilization	[56,110,111]
30. *Caesalpinia decapetala*	Leaves	Diabetes, indigestion, flatulence, stomach aches, constipation, fever	Lowers blood glucose levels, protects pancreatic beta cells, decreases oxidative stress	[112,113]
31. *Calendula officinalis*	Leaves, bark	Diabetes, fever, infections, wounds, menstrual irregularity, poor eyesight, inflammation, ulcers	Lowers blood glucose levels, increases plasma insulin levels	[114,115]
32. *Camellia sinensis*	Leaves	Diabetes, heart diseases, diuretic, astringent, stimulant, flatulence	Increases insulin secretion and action, inhibit insulin glycation, DPP-IV enzyme, and α-amylase activity, improves glucose tolerance	[116,117]
33. *Capsicum frutescens*	Whole plant	Diabetes, gastrointestinal disorders, toothache, pain, muscle spasms, fever, infections	Increases insulin secretion and insulin sensitivity, improves glucose uptake	[118,119]
34. *Carica papaya*	Fruit, leaves	Diabetes, gastrointestinal disorders, dengue, malaria, nerve pains, insomnia, constipation	Lowers blood glucose levels, increases insulin secretion, suppresses glucagon secretion	[120,121]
35. *Cassia alata*	Leaves, seeds	Diabetes, skin diseases, rheumatism, constipation, ringworm, infections, inflammation	Lowers blood glucose levels, inhibits α-glucosidase activity	[122,123]
36. *Cassia fistula*	Stalk	Diabetes, wounds, constipation, piles, skin diseases, asthma, liver diseases, rheumatism, leprosy	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization	[56,124–127]
Table 1. Cont.

Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
37. *Catharanthus roseus*	Leaves, roots	Diabetes, hypertension, menstrual irregularity, cancer, wounds, muscle pain	Lowers blood glucose levels, increases insulin sensitivity, improves glucose uptake and utilization	[128–130]
38. *Cecropia obtusifolia*	Root bark	Diabetes, asthma, bronchitis, heart diseases, inflammation, wounds, hypertension	Lowers blood glucose levels, decreases glycosylated hemoglobin levels	[78,131]
39. *Cichorium intybus*	Bark, leaves	Diabetes, constipation, wounds, liver diseases	Increases insulin secretion and insulin sensitivity, improves glucose uptake	[78,132]
40. *Cinnamomum zeylanicum*	Bark	Diabetes, common cold, flu, gastrointestinal disorders, bacterial infections, headache, stomach pain	Increases plasma insulin levels, increases insulin sensitivity, inhibits α-amylase activity	[133,134]
41. *Citrus limon*	Fruit	Diabetes, hypertension, infections, scurvy, sore throat, rheumatism	Lowers plasma glucose levels, inhibits α-amylase activity	[135,136]
42. *Citrus x aurantium*	Fruit	Diabetes, insomnia, indigestion, constipation, heartburn, nausea, cardiovascular diseases	Lowers blood glucose levels, increases insulin secretion	[137,138]
43. *Cola nitida*	Seeds	Diabetes, dysentery, fatigue, CNS stimulant, morning sickness, migraine, indigestion, wounds	Lowsers blood glucose levels, increases serum insulin levels	[139,140]
44. *Coptis chinensis*	Rhizome	Diabetes, sore throat, whooping cough, dysentery, neurodegenerative diseases	Lowers blood glucose levels, increases insulin sensitivity, improves glucose uptake	[141,142]
45. *Cornus officinalis*	Fruit, seeds	Diabetes, pain, inflammation, cardiovascular diseases, liver, and kidney diseases	Lowsers blood glucose levels, increases insulin secretion, inhibits α-glucosidase activity, increases GLUT-4 expression	[143,144]
46. *Curcuma longa*	Rhizome	Diabetes, gastric, inflammation, infections, cough, pain, liver diseases	Lowsers blood glucose levels, inhibits α-amylase and α-glucosidase activity, increases insulin secretion, improves peripheral glucose uptake, reduces insulin resistance	[78,145,146]
47. *Cudrania cochinchinensis*	Bark, roots	Diabetes, hepatitis, scabies, bruises, gonorrhea, jaundice, rheumatism	Lowsers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization, inhibits DPP-IV enzyme and α-glucosidase activity	[56,147,148]
Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
------------------	-----------------	--	--	--------------------
48.	*Cyamopsis tetragonoloba*	Fruit Diabetes, night blindness, arthritis, sprains, constipation, asthma, liver diseases, obesity	Increases insulin secretion, protects pancreatic beta cells, decreases glycosylated hemoglobin levels	[149,150]
49.	*Dalbergia sissoo*	Bark Diabetes, stomach disorders, dysentery, skin diseases, syphilis, nausea, gonorrhea	Lowers blood glucose levels, reduces serum triglyceride and cholesterol levels	[56,151,152]
50.	*Eriobotrya japonica*	Leaves, seeds Diabetes, bronchitis, inflammation, cough	Lowers blood glucose levels, reduces insulin resistance, improves glucose tolerance	[153,154]
51.	*Eucalyptus citriodora*	Leaves Diabetes, fever, pain, sinusitis, bronchitis, asthma, chronic rhinitis,	Increases insulin secretion, improves glucose uptake, inhibits insulin glycation and DPP-IV enzyme activity, decreases starch digestion	[155,156]
52.	*Eucalyptus globulus*	Leaves Diabetes, cough, cold, wounds, fungal infections, fever, sore throat, pain	Increases insulin secretion, improves glucose uptake	[157,158]
53.	*Euclea undulata*	Root, bark Diabetes, cough, chest pain, diarrhea, headache, toothache	Lowers blood glucose levels, inhibits α-glucosidase activity	[78,159]
54.	*Eugenia jambolana*	Seeds Diabetes, skin ulcers, gastritis, constipation, sore throat, liver, and kidney diseases	Lowers blood glucose levels, improves pancreatic β-cell function, increases insulin secretion, inhibits sucrase and maltase activity, improves glucose uptake and metabolism	[56,160,161]
55.	*Euphorbia hirta*	Leaves Diabetes, respiratory diseases, diarrhea, jaundice, tumors, gonorrhea	Increases insulin release from beta cells, inhibits α-glucosidase activity	[162,163]
56.	*Ficus benghalensis*	Bark, leaves Diabetes, hypertension, dysentery, diarrhea, pain, ulcers, asthma	Decrease carbohydrate digestion and absorption, lowers blood glucose levels	[164,165]
57.	*Garcinia kola*	Seeds Diabetes, diarrhea, food poisoning, bacterial infections, cough, liver diseases	Inhibits α-amylase activity, decreases glycosylated hemoglobin levels	[166,167]
58.	*Glycine max*	Seeds Diabetes, cardiovascular diseases, obesity, cancer	Reduces insulin resistance, improves glucose tolerance	[168,169]
Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
------------------	-------	------------------	-------------------------	------------
Glycyrrhiza glabra	Roots	Diabetes, epilepsy, respiratory diseases, paralysis, jaundice, rheumatism	Lowers blood glucose levels, increases insulin secretion	[56,170]
Gymnema sylvestre	Leaves	Diabetes, asthma, bronchitis, constipation, jaundice, dyspepsia, hemorrhoids, obesity	Lowers blood glucose levels, regenerates beta cells, increases insulin secretion, improves glucose tolerance	[171,172]
Harungana madagascariensis	Leaves	Diabetes, cancer, hernia, hypertension, jaundice, malaria, yellow fever	Lowers blood glucose levels, inhibits α-amylase activity	[16,173]
Helicteres isora	Roots	Diabetes, diarrhea, snake bites, gastrointestinal disorders, spasms	Lowers blood glucose levels, improves glucose uptake	[174,175]
Heritiera fomes	Bark	Diabetes, diarrhea, constipation, dysentery, dermatitis, scabies, goiter	Decreases carbohydrate digestion and glucose absorption, lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits DPP-IV enzyme activity	[26,51,176]
Hibiscus esculentus	Roots, seeds	Diabetes, gastric irritations, inflammatory diseases, wounds, and boils	Lowers blood glucose levels, improves β-cell function, increases insulin secretion	[177,178]
Hibiscus rosa-sinensis	Leaves	Diabetes, cough, diarrhea, dysentery, pain, contraceptive	Reduces glucose absorption, lowers blood glucose levels, increases insulin secretion and hepatic glucose utilization, improves glucose tolerance, inhibits DPP-IV activity	[179,180]
Jatropha curcas	Leaves	Diabetes, fever, bacterial and fungal infections, jaundice, muscle pain	Lowers fasting blood glucose levels, improves glucose uptake and utilization	[181,182]
Lantana camara	Leaves	Diabetes, asthma, malaria, chicken pox, hypertension, measles	Lowers elevated blood glucose levels, improves glucose tolerance	[183,184]
Linum usitatissimum	Seeds	Diabetes, diarrhea, gastrointestinal infections, asthma, bronchitis, atherosclerosis	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and metabolism	[56,185]
Mangifera indica	Leaves, seeds	Diabetes, constipation, piles, dysentery, asthma, anemia, hypertension, hemorrhage,	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake, inhibits α-glucosidase and DPP-IV activity	[56,186,187]
Table 1. Cont.

Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
70. Momordica charantia	Leaves, seeds	Diabetes, malaria, hypertension, scabies, liver diseases, obesity, ulcers, measles	Lowers blood glucose levels, increases insulin secretion and glucose uptake, improves glucose tolerance, decreases gluconeogenesis, inhibits α-glucosidase activity	[56,134,188]
71. Moringa oleifera	Leaves	Diabetes, asthma, enlarged liver, bacterial infections, eye problems, piles, influenza, diuretic	Reduces glucose absorption, lowers blood glucose levels, improves glucose uptake, inhibits α-amylase activity	[189,190]
72. Murraya koenigii	Leaves	Diabetes, piles, dysentery, itching, bruises, inflammation	Lowers blood glucose levels, inhibits α-amylase and α-glucosidase activity	[78,191]
73. Musa sapientum	Flowers	Diabetes, dysentery, ulcers, hypertension, pain, inflammation, snake bites	Lowers blood glucose levels, increases insulin secretion, decreases glucosylated hemoglobin levels	[192,193]
74. Nigella sativa	Seeds	Diabetes, hypertension, gastrointestinal disorders, back pain, paralysis, heart diseases, bacterial infections, malaria	Decreases carbohydrate digestion and absorption, lowers blood glucose levels, increases insulin secretion and sensitivity, improves glucose uptake and utilization	[194,195]
75. Ocimum basillicum	Leaves	Diabetes, headaches, constipation, coughs, kidney diseases, warts	Inhibits α-amylase and α-glucosidase activity, reduces oxidative stress, inhibits glycogenolysis	[196–198]
76. Ocimum sanctum	Leaves	Diabetes, ringworm, skin diseases, dysentery, dyspepsia, bronchitis, asthma	Increases insulin secretion, improves glucose uptake and utilization	[149,199]
77. Olea europaea	Leaves	Diabetes, constipation, urinary tract infections, asthma, hypertension, intestinal diseases	Lowers blood glucose levels, increases antioxidant activity	[200,201]
78. Panax ginseng	Roots	Diabetes, insomnia, anorexia, confusion, hemorrhage	Improves peripheral insulin action, increases insulin sensitivity, decreases carbohydrate absorption	[202,203]
79. Panda oleosa	Stem bark	Diabetes, HIV/AIDS, wounds, rheumatism, intestinal parasites	Lowers blood glucose levels, improves glucose tolerance	[16,204]
80. Phaseolus vulgaris	Seeds	Diabetes, hypertension, obesity, blood cancer	Reduces insulin resistance, inhibits α-amylase and DPP-IV enzyme activity	[149,205]
81. Phyllanthus amarus	Leaves	Diabetes, spleen, liver and kidney diseases, gonorrhea, stomach problems	Lowers blood glucose levels, increases insulin secretion, improves insulin sensitivity	[206,207]
Table 1. Cont.

Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
82. *Plantago ovata*	Husk	Diabetes, constipation, diarrhea, hypercholesterolemia, hypertension, hemorrhoids	Improves glucose tolerance, decreases carbohydrate digestion and glucose absorption	[208,209]
83. *Pterocarpus marsupium*	Bark	Diabetes, dysentery, cough, diarrhea, skin diseases, wounds, ulcer	Improves pancreatic β-cell function, increases insulin secretion, improves glucose uptake	[149,210,211]
84. *Punica granatum*	Flowers	Diabetes, urinary tract infections, arthritis, sore throat, skin diseases, anemia	Improves β-cell function, increases insulin secretion	[210,212,213]
85. *Rehmannia glutinosa*	Roots	Diabetes, anemia, obesity, kidney diseases, osteoporosis	Improves pancreatic β-cell function, increases insulin secretion, improves glucose uptake, decreases oxidative stress	[214,215]
86. *Santalum album*	Bark	Diabetes, jaundice, diarrhea, dysentery, liver tonic, inflammation, hypertension	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization	[56,216]
87. *Selaginella bryopteris*	Leaves	Diabetes, fever, epilepsy, constipation, colitis, cancer, urinary tract infections	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization	[56,217]
88. *Sesamum indicum*	Seeds	Diabetes, constipation, hypertension, high cholesterol, athlete’s foot	Inhibits α-amylase and α-glucosidase activity, exerts antioxidant activity	[56,218,219]
89. *Solanum nigrum*	Leaves	Diabetes, pneumonia, toothache, stomach ache, fever, tumor, tonsillitis	Lowers blood glucose levels, increases insulin secretion, decreases gluconeogenesis, increases glycogenesis	[220,221]
90. *Spirulina platensis*	Whole plant	Diabetes, hypercholesterolemia, atherosclerosis, obesity	Lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits DPP-IV activity	[222,223]
91. *Swertia chirayita*	Bark, leaves	Diabetes, malaria, hypertension, epilepsy, liver diseases, weight loss	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and metabolism, inhibits α-amylase and α-glucosidase	[56,224]
92. *Tamarindus indica*	Seeds	Diabetes, diarrhea, dysentery, constipation, abdominal pain, wounds, malaria	Lowers blood glucose levels, increases insulin secretion	[56,225]
93. *Terminalia arjuna*	Bark	Diabetes, cardiotoxic, anemia, viral infections, venereal diseases, ulcers	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization	[56,226]
Table 1. Cont.

Medicinal Plants	Parts	Traditional Uses	Pharmacological Effects	References
94. *Terminalia chebula*	Fruit	Diabetes, fever, astringent, constipation, dementia	Improves β-cell function, increases insulin secretion, reduces glycosylated hemoglobin levels	[227,228]
95. *Tinospora cordifolia*	Leaves, roots, stem	Diabetes, dysentery, diarrhea, snake bites, asthma, fever, jaundice	Increases insulin secretion, inhibits gluconeogenesis, increases insulin sensitivity	[149,229]
96. *Trigonella foenum-graecum*	Seeds	Diabetes, bronchitis, pneumonia, indigestion, dysentery, high cholesterol	Lowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization	[56,134,230,231]
97. *Urtica dioica*	Leaves	Diabetes, cardiovascular diseases, anemia, rhinitis, arthritis, gout, wounds	Increases insulin sensitivity, improves glucose tolerance	[232,233]
98. *Vernonia amygdalina*	Leaves	Diabetes, gastrointestinal disorders, amoebic dysentery, malaria, helminth infections	Lowers elevated blood glucose levels, inhibits gluconeogenesis and glycogenolysis	[234,235]
99. *Withania coagulans*	Fruit	Diabetes, insomnia, impotence, nervous exhaustion, asthma, liver diseases	Lowers blood glucose levels, improves glucose tolerance	[56,236]
100. *Zingiber officinale*	Rhizome	Diabetes, nausea, high cholesterol, heartburn, indigestion, diarrhea, asthma	Lowers fasting blood glucose levels, increases insulin secretion	[119,237]
6. Phytochemicals and Their Impact on Diabetes

Plants are the primary source of biologically active compounds that may ultimately lead to the discovery and development of potential new drugs [238]. Plants produce both primary and secondary metabolites. Carbohydrates, proteins, and lipids are considered primary metabolites, necessary for the growth and development of plants and involved in essential metabolic pathways, such as photosynthesis and glycolysis. Secondary metabolites are not required for the growth and development of plants; rather, they are responsible for interactions between plant species and the environment and have highly specific functions in plants [239].

Over 13,000 secondary metabolites have been purified and isolated from medicinal plants. These phytochemicals can be categorized into various chemical classes such as alkaloids, flavonoids, terpenoids, phenolics, tannins, saponins, xanthones, and glycosides [78]. Many of these phytochemicals are known to exhibit medicinal properties, including antidiabetic activity [78]. Several phytochemicals isolated from various plant species have been scientifically validated for their contribution to treating and managing diabetes by exerting antihyperglycemic activity and reducing the complications associated with diabetes [171]. For example, the flavonoid rutin, present in the leaves of numerous plants, including Annona squamosa and Azadirachta indica (neem), has been reported to possess many beneficial effects such as anti-inflammatory, anti-cancer, anti-allergic, antiviral, and antioxidative properties [240]. Rutin-containing plants have also been shown to protect against heart disease, hepatotoxicity, and diabetes mellitus [240]. Rutin exerts its antidiabetic effect by lowering plasma glucose, improving the function of pancreatic β-cells, and enhancing glucose tolerance [10]. Two other flavonoids found in the leaves of Annona squamosa, namely quercetin and isoquercetin, have also been reported to possess antihyperglycemic activity by inhibiting α-glucosidase and lowering blood glucose levels [241]. Alongside rutin and quercetin, the tetranortriterpenoid meliacinolin, isolated from the leaves of A. indica, has been found to inhibit α-glucosidase and α-amylase in Type 2 diabetic mice [98]. Nimbidin, extracted from neem seeds, is another phytochemical exhibiting hypoglycemic properties [98]. Quercetin, allicin, allyl-propyl disulfide, cysteine sulfoxide, and S-allyl cysteine sulfoxide from Allium sativum (garlic) have been reported to stimulate insulin secretion from pancreatic β-cells, increase insulin sensitivity to target cells, and prevent insulin activation triggered by the liver [71]. Alliin, from garlic, has been reported to mimic the function of glibenclamide and insulin [71]. Epigallocatechin-3-gallate, epigallocatechin, epicatechin-3-gallate, and epicatechin present in Camellia sinensis (tea) leaves can also lower plasma glucose levels by improving β-cell function, increasing insulin secretion, and enhancing glucose metabolism [117]. These phytomolecules may exert their antidiabetic activity in multiple manners, most commonly by being insulinitropic, insulin-mimetic, and by improving β-cell function, increasing insulin sensitivity, improving glucose tolerance and metabolism, as well as inhibiting various enzyme activities. A summary of antidiabetic medicinal plants and their phytochemicals with potential antidiabetic effects is provided in Table 2. The chemical structures of the antidiabetic phytoconstituents of medicinal plants are given in Table 3.
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
1. *Abrus precatorius*	Leaves, seeds	Luteolin, lupenone, 24-methylene cycloartenol	Maintains blood glucose levels, promotes insulin secretion, prevents oxidative stress, inhibits inflammation in pancreatic tissues	[16,242,243]
2. *Acacia arabica*	Bark, roots	Quercetin, kaempferol, catechin	Lowers blood glucose levels, increases insulin secretion, reduces insulin resistance, improves glucose tolerance, reduces oxidative stress	[24,244]
3. *Acacia catechu*	Bark	Catechin, epicatechin, catechu tannic acid, gallocatechin, kaempferol	Lowers blood glucose levels, increases plasma insulin levels, reduces insulin resistance, and improves glucose uptake, inhibits α-amylase and α-glucosidase activity	[24,244–247]
4. *Aegle marmelos*	Leaves	Rutin, β-sitosterol, aegelinosides A and B, aegeline, marmelosin	Lowers plasma glucose levels, reduces insulin resistance, decreases glycosylated hemoglobin levels, inhibits α-glucosidase activity, improves β-cell function	[248–252]
5. *Aframomum melegueta*	Fruit, leaves	6-paradol, 6-shogaol, 6-gingerol, oleanolic acid	Decreases blood glucose and cholesterol levels, improve glucose tolerance and utilization, inhibits lipid synthesis by adipocytes	[16,253–255]
6. *Ageratum conyzoides*	Leaves	Kaempferol, precocene II	Lowers blood glucose levels, increases plasma insulin levels, improves glucose uptake	[16,256]
7. *Albizia lebbeck*	Bark, pods	Lupeol, oleanolic acid, docosanoic acid, β-sitosterol, catechin, friedelin	Decreases blood glucose and glycosylated hemoglobin levels, reduces nitric oxide, increases insulin levels, activates GLUT2 and GLUT4	[244,250,255,257–259]
8. *Albizia adianthifolia*	Bark, leaves	β-caryophyllene, viridiflorol	Lowers blood glucose levels, increases insulin secretion and sensitivity, reduces glucose absorption, triglyceride, and cholesterol levels	[67,260]
9. *Allium cepa*	Bulb	Alliin, quercetin, S-methyl cysteine sulfoxide	Reduces fasting glucose levels, increases insulin secretion and sensitivity, decreases triglyceride levels	[16,261,262]
10. *Allium sativum*	Bulb	Allicin, alliin, diallyl disulfide, quercetin, allyl propyl disulfide	Lowers blood glucose levels, increases insulin secretion and sensitivity, decreases cholesterol and triglyceride levels	[71,261–263]
11. *Aloe vera*	Leaves	Lophenol, aloin, aloeic acid, emodin, glucomannan	Lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, prevents oxidative stress	[16,264–266]
Table 2. Cont.

Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
12. *Anacradium occidentale*	Leaves, stem bark	Anacardic acid, lectin	Delays glucose absorption, reduces oxidative stress, inhibits α-glucosidase activity	[16,267]
13. *Anemarrhena asphodeloides*	Rhizome	Mangiferin, neomangiferin, sarsasapogenin	Reduces fasting blood glucose levels, improves glucose tolerance, reduces cholesterol and triglyceride levels, improves diabetic complications	[78,268–270]
14. *Annona salzmannii*	Leaves, bark	α-copaene, β-caryophyllene, δ-cadinene	Lowsers blood glucose levels, increases insulin secretion, improves glucose uptake, reduces glucose absorption, cholesterol, and triglyceride levels	[80,260]
15. *Annona squamosa*	Leaves	Rutin, quercetin, isoquercetin	Lowsers blood glucose levels, increases insulin secretion, improves glucose tolerance, reduces glycosylated hemoglobin levels	[10,249,262,271]
16. *Anogeissus latifolia*	Bark	Ellagic acid, β-sitosterol, 3,4,3-tri-O-methylellagic acid	Lowsers plasma glucose and glycosylated hemoglobin levels, increases insulin levels, improves β-cell function	[250,272,273]
17. *Arachis hypogaea*	Seeds	Resveratrol, catechin, rutin, quercetin	Lowsers blood glucose levels, increases insulin secretion and glucose uptake, reduces oxidative stress, inhibits α-amyrase and α-glucosidase activity	[244,249,262,274]
18. *Artemisia absinthium*	Rhizome	α and β thujones, thujyl alcohol, azulene, cadinene	Lowsers blood glucose levels, activates adenosine monophosphate-activated protein kinase, increases insulin sensitivity	[16,275,276]
19. *Artocarpus heterophyllus*	Leaves, rhizome	Chrysin, silymarin, isoquercetin	Lowsers blood glucose levels, improves β-cell function and glucose tolerance, increases insulin sensitivity, inhibits Pro-inflammatory cytokines	[78,271,277,278]
20. *Asparagus racemosus*	Roots	Asparagamine, asparagine, kaempferol, quercetin	Lowsers blood glucose levels, increases insulin secretion, improves glucose uptake and tolerance	[93,256,262]
21. *Atractylodes japonica*	Rhizome	Atractans A, B, C, atractylenolide III	Lowsers blood glucose levels, decreases insulin resistance	[95,96,279]
22. *Azadirachta indica*	Leaves	Azadirachtin, nimbin, rutin, quercetin, campestrol	Lowsers blood glucose levels, improves β-cell function, increases insulin secretion, reduces cholesterol and triglyceride levels	[97,98,249,280]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
-----------------------------	----------------------	---	--	----------------
23. *Balanites aegyptiaca*	Fruit, seeds	Balantin 1, 2, diosgenin, 3,4,6-tri-O-methyl-D-glucose, triethylphosphine	Increases serum insulin and c-peptide levels, increases glucose metabolism, decreases gluconeogenesis	[16,281]
24. *Berberis vulgaris*	Root bark	Berberine, berbamine	Increases insulin secretion, improves insulin sensitivity, inhibits α-glucosidase and aldose reductase activity	[102,282,283]
25. *Bidens pilosa*	Roots	Cytopiloyne, apigenin, luteolin, kaempferol, quercetin	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion and glucose uptake, improves glucose tolerance	[16,242,284–286]
26. *Bougainvillea spectabilis*	Flowers, leaves	Pinitol, quercetin, β-sitosterol	Lowers fasting blood glucose and glycosylated hemoglobin levels, increases insulin secretion, improves glucose tolerance	[16,250,262,287]
27. *Brassica juncea*	Leaves, seeds	Cinnamic acid, kaempferol, aniline	Lowers blood glucose levels, increases insulin secretion and glucose uptake	[16,256,288]
28. *Bridelia ferruginea*	Leaves, stem bark	Epigallocatechin, epigallocatechin gallate	Lowers blood glucose levels, improves glucose tolerance, enhances insulin secretion, decreases gluconeogenesis	[16,289,290]
29. *Bunium persicum*	Seeds	Linoleic acid, palmitic acid, kaempferol, camphene, linalool	Lowers blood glucose levels, increases insulin levels in blood, improves insulin sensitivity, enhances glucose uptake and tolerance	[256,291–294]
30. *Caesalpinia decapetala*	Leaves	Quercitrin, kaempferol, astragalín, apigenin-7-rhamnoside	Decreases fasting blood glucose levels, increases insulin levels in blood, enhances antioxidant activity, improves glucose uptake, decreases nitric oxide	[16,256,295,296]
31. *Calendula officinalis*	Leaves, bark	Caffeic acid, quercetin, esculetin	Lowers blood glucose levels and glycosylated hemoglobin levels, increases insulin secretion, reduces diabetic oxidative stress, increases GLUT4 expression in adipocytes, improves glucose utilization	[16,262,297,298]
32. *Camellia sinensis*	Leaves	Rutin, quercitrin	Lowers blood glucose levels, improves β-cell function, increases insulin secretion, improves glucose tolerance	[117,249,295]
Table 2. Cont.

Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
33. Capsicum frutescens	Whole plant	Capsaicin, β-carotene	Lowers blood glucose levels, increases insulin levels, improves glucose tolerance, inhibits pro-inflammatory cytokines	[119,299,300]
34. Carica papaya	Fruit, leaves	Chlorogenic acid, coumarin compounds	Lowers blood glucose levels, stimulates insulin secretion, increases insulin sensitivity, inhibits α-amylase, α-glucosidase, glucose-6-phosphatase, and aldose reductase activity	[16,301,302]
35. Cassia alata	Leaves, seeds	Emodin, kaempferol, β-sitosterol	Lowers blood glucose levels, increases insulin secretion, enhances insulin sensitivity, inhibits phosphoenolpyruvate, carboxykinase, glucose-6-phosphatase activity	[16,250,256,266]
36. Cassia fistula	Stalk	Lupeol, kaempferol, catechin, epicatechin	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin levels, reduces nitric oxide, improves glucose tolerance	[244,246,257,303]
37. Catharanthus roseus	Leaves, roots	Gallic acid, chlorogenic acid, vindoline I	Lowers blood glucose levels, stimulates insulin secretion, improves glucose tolerance, decreases pro-inflammatory cytokines	[16,301,304,305]
38. Cecropia obtusifolia	Root, bark	Isoorientin, stigmast-4-en-3-one, chlorogenic acid, β-sitosterol	Reduces blood glucose levels, improves insulin sensitivity, enhances glucose uptake, decreases cholesterol and triglyceride levels, inhibits glucose-6-phosphatase and hepatic glucose, improves glucose tolerance	[78,306,307]
39. Cichorium intybus	Bark, leaves	Chlorogenic acid, chicoric acid, gallic acid, kaempferol, quercetin, β-sitosterol	Lowers blood glucose levels, stimulates insulin release, improves insulin sensitivity, inhibits α-amylase, α-glucosidase, glucose-6-phosphatase activity, prevents oxidative stress	[22,78,132,301,308]
40. Cinnamomum zeylanicum	Bark	Cinnamaldehyde, eugenol	Decreases blood glucose levels, reduces insulin resistance, inhibits α-glucosidase activity and formation of advanced glycated end products, inhibits sugar binding to albumin	[134,309,310]
41. Citrus limon	Fruit	Diosmin, hesperetin	Lowers blood glucose levels, increases insulin secretion, enhances glucose utilization, stimulates β-endorphin secretion from adrenal glands, inhibits gluconeogenesis	[16,311,312]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
--------------------------	----------------	--	---	---------------------------------
42. Citrus x aurantium	Fruit	Naringin, naringenin, epigallocatechin-3-gallate	Decreases blood glucose levels, increases insulin secretion, improves glucose tolerance, increases GLUT4 translocation in skeletal muscles, decreases gluconeogenesis	[16,289,290,313]
43. Cola nitida	Seeds	D-catechin, L-epicatechin, naringenin, apigenin	Lowers blood glucose levels, increases insulin sensitivity, decreases oxidative stress, inhibits α-amylase and α-glucosidase activity	[16,244,246]
44. Coptis chinensis	Rhizome	Berberine, jatrhorrhizine	Lowers blood glucose levels, enhances aerobic glycolysis, inhibits gluconeogenesis, increases insulin secretion and insulin sensitivity	[33,282,314]
45. Cornus officinalis	Fruit, seeds	Gymnemagenin, gymnemic acid, ursolic acid	Lowers fasting blood glucose levels, increases insulin secretion, improves glucose uptake and tolerance, inhibits protein glycation	[143,279,315,316]
46. Curcuma longa	Rhizome	Curcumin, turmerin	Decreases fasting blood glucose, glycosylated hemoglobin, triglyceride, and cholesterol levels, inhibits α-amylase, α-glucosidase activity, and diabetic inflammatory processes	[78,317,318]
47. Cudrania cochinchinensis	Bark, roots	Kaempferol, vanillin, β-sitosterol	Lowers blood glucose levels, increases insulin levels, decreases serum advanced glycation end products, improves glucose uptake, reduces insulin resistance	[250,256,319,320]
48. Cyamopsis tetragonoloba	Fruit	Quercetin, kaempferol, gallic acid	Lowers plasma glucose levels, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels	[16,256,262,304]
49. Dalbergia sissoo	Bark	Biochanin A, tectorigenin, rhamnoglucoside, dalbergin, dalbergichromene	Lowers blood glucose levels, improves insulin sensitivity and glucose tolerance, reduces insulin resistance	[321–323]
50. Eriobotrya japonica	Leaves, seeds	Cinchonain-Ib, timosaponin, chlorogenic acid, epicatechin	Lowers blood glucose, total cholesterol, and triglyceride levels, enhances insulin secretion and sensitivity, improves glucose tolerance	[246,279,301,324,325]
51. Eucalyptus citriodora	Leaves	Betulinic acid, gallic acid, quercitin, isoquercitrin, rhodomyrtosone E	Lowers blood glucose levels, increases insulin secretion and sensitivity, improves glucose tolerance and antioxidant activity, decreases triglyceride levels	[155,295,304,326]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
------------------------	-------------------	--	--	--------------------------
52. *Eucalyptus globulus*	Leaves	Eucalyptol, rutin, sesquiterpene	Lowers blood glucose levels, improves β-cell function, increases insulin secretion, reduces oxidative stress	[157,249,327]
53. *Euclea undulata*	Rootbark	Botulin, lupeol, epicatechin	Decreases serum glucose, increases insulin levels, improves insulin sensitivity, decreases glycosylated hemoglobin levels	[78,246,257]
54. *Eugenia jambolana*	Seeds	Ellagic acid, gallic acid, chlorogenic acid	Lowers blood glucose levels, increases insulin sensitivity, improves β-cell function, improves glucose tolerance, inhibits α-amylase, α-glucosidase, and glucose-6-phosphatase activity	[11,272,301,304]
55. *Euphorbia hirta*	Leaves	Quercetin, kaempferol, gallic acid	Lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels, enhances glucose uptake	[162,256,262,304]
56. *Ficus benghalensis*	Bark, leaves	Rutin, gallic acid, leucopelargonidin-3-O-α-rhamnopyranoside, lupeol, α-amyrin acetate	Decreases blood glucose levels, improve glucose tolerance and β-cell function, increases insulin secretion,	[249,328–330]
57. *Garcinia kola*	Seeds	Kolaviron, ascorbic acid	Decreases blood glucose level, stimulates insulin secretion, improves glucose utilization, inhibits glucose-6-phosphatase, exhibits free radical scavenging activity	[16,331,332]
58. *Glycine max*	Seeds	Kaempferol, soyasaponin, genistein, β-sitosterol	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin levels in blood, decreases insulin resistance, improves glucose uptake, inhibits glucose absorption	[16,250,256]
59. *Glycyrrhiza glabra*	Roots	Glycyrrhizin, glycyrrhetic acid, isoliquiritin	Lowers postprandial rise in blood glucose levels, decreases glycosylated hemoglobin levels	[333–335]
60. *Gymnema sylvestre*	Leaves	Gymnemoside A,B,C,D,E,F, quercitol, lupeol, gymnemic acid	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, inhibits glucose absorption in the small intestine	[149,257,315,336]
61. *Harungana madagascariensis*	Leaves	Harunganin, lupeol, betulinic acid, quercetin, β-sitosterol	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, decreases insulin resistance, prevents diabetic nephropathy	[16,250,257,262,337,338]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
------------------	-------	---	--	-----------------------------
62. *Helicteres isora*	Roots	Gallic acid, vanillin, *p*-coumaric acid	Lowers blood glucose levels, increases insulin levels in blood, decreases triglyceride levels, reduces serum advanced glycation end products concentration, improves glucose tolerance	[175,304,319,339]
63. *Heritiera fomes*	Bark	Stigmasterol, *β*-sitosterol, epicatechin, procyanidins, proanthocyanidins, quercitrin	Decreases blood glucose and glycosylated hemoglobin levels, increases insulin levels, reduces insulin resistance, improves glucose uptake	[26,176,250,340]
64. *Hibiscus esculentus*	Roots, seeds	Isoquercitrin, quercetin-3-O-gentiobioside	Decreases serum glucose levels, increases insulin secretion, improves glucose tolerance	[16,341]
65. *Hibiscus rosa-sinensis*	Leaves	Quercetin, cyanidin, thiamine, ascorbic acid, niacin	Decreases blood glucose concentration, increases insulin synthesis and secretion, reduces oxidative stress, improves endothelial functions, and reduces complications of type 2 diabetes mellitus	[179,262,342,343]
66. *Jatropha curcas*	Leaves	Rhoifolin, isoorientin, isoquercitrin	Decreases plasma glucose, cholesterol, and triglyceride levels, stimulates glucose uptake, inhibits DPP-IV activity	[241,306]
67. *Lantana camara*	Leaves	Lantanoside, ferulic acid, oleanolic acid, caffeic acid	Lowers blood glucose levels, increases insulin secretion, improves glucose utilization, reduces oxidative stress	[255,297,344]
68. *Linum usitatissimum*	Seeds	Caffeic acid, *p*-coumaric acid, ferulic acid	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, reduces diabetic oxidative stress, enhances antioxidant activity	[297,339,344,345]
69. *Mangifera indica*	Leaves, seeds	Mangiferin, gallic acid, kaempferol, curcumin	Lowers fasting blood glucose levels, improves glucose tolerance, increases insulin secretion, reduces triglyceride and cholesterol levels, inhibits oxidative stress and diabetic inflammatory processes	[16,256,269,304,317]
70. *Momordica charantia*	Leaves, seeds	Charantin, vicine, momordicine II, oleanolic acid	Lowers blood glucose levels, stimulates insulin release, inhibits glucose-6-phosphatase and glucose transport in intestines	[22,134,255,336]
71. *Moringa oleifera*	Leaves	Quercetin, kaempferol, vanillin, chlorogenic acid	Lowers plasma glucose levels, increases insulin secretion, improves glucose tolerance, decreases the concentration of serum advanced glycation end products	[16,22,189,256,319]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
------------------	-------------	---	--	--------------------
72. **Murraya koenigii**	Leaves	Mahanimbine, isomahanine, ascorbic acid, kaempferol, quercetin	lowers blood glucose levels, reduces triglyceride levels, inhibits α-amylase and α-glucosidase activity, increases insulin secretion, improves glucose tolerance	[78,191,346]
73. **Musa sapientum**	Flowers	Rutin, delphinidin, syringin	lowers blood glucose levels, increases insulin secretion, reduces reactive oxygen species generation, prevents high glucose-induced cell proliferation	[16,249,347]
74. **Nigella sativa**	Seeds	Thymoquinone, thymol, α-pinene, oleic acid, linoleic acid	lowers blood glucose, glycosylated hemoglobin, total cholesterol, and triglyceride levels, promotes insulin secretion, reduces insulin resistance, decreases oxidative stress	[291,348–350]
75. **Ocimum basilicum**	Leaves	Linalool, linolen, eugenol, geraniol	lowers blood glucose levels, improves glucose uptake, inhibits advanced glycation end products generation and α-glucosidase activity	[196,197,310,351]
76. **Ocimum sanctum**	Leaves	Eugenol, carvacrol, β-sitosterol, linalool	lowers blood glucose levels, increases insulin secretion, decreases carbohydrate digestion and absorption, inhibits α-glucosidase activity, reduces insulin resistance	[149,248,250,310]
77. **Olea europaea**	Leaves	Oleuropein, oleanolic acid, luteolin	maintains blood glucose levels, promotes insulin secretion, improves insulin sensitivity, reduces oxidative stress, inhibits gluconeogenesis	[16,242,255,352]
78. **Panax ginseng**	Roots	Ginsenoside Rb2, Rg2	regenerates pancreatic beta cells, increases glucose uptake, reduces insulin resistance, and improves insulin sensitivity	[248,279,353]
79. **Panda oleosa**	Stem bark	Ginsenoside Rb2, protapananadiol/triol	increases glucose uptake, reduces insulin resistance, and improves insulin sensitivity	[204,353]
80. **Phaseolus vulgaris**	Seeds	Hydroxycinnamic acid, rutin, quercetin, orientin, petunidin, catechin	lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, improves glucose tolerance, reduces oxidative stress	[16,149,244,249,262]
81. **Phyllanthus amarus**	Leaves	Oleanolic acid, ursolic acid	lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits oxidative stress-induced hepatic insulin resistance, inhibits gluconeogenesis	[16,255,316]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
------------------	---------------	--	--	---------------------
82. *Plantago ovata*	Husk	Kaempferol, catechin, myricetin, pinocembrin	Lowers blood glucose levels, increases insulin secretion, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity	[208,244,256,354]
83. *Pterocarpus marsupium*	Bark	Epicatechin, marsupin, carsupin, marsupol	Lowers blood glucose levels, improves insulin sensitivity, enhaces insulin release, improves glucose uptake	[149,246]
84. *Punica granatum*	Flowers	Gallic acid, rutin, nictoflorin	Lowers blood glucose levels, improves β-cell function, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels	[16,249,304]
85. *Rehmannia glutinosa*	Roots	Catalpol, rehmannioside	Lowers blood glucose levels, prevents diabetic complications, promotes glucose utilization and glycogen synthesis, reduces oxidative stress	[214,279]
86. *Santalum album*	Bark	Spirosantolol, α-santalene, α-santalol, β-santalol, α-bergamotol	Lowers blood glucose and glycosylated hemoglobin levels, decreases total cholesterol and triglyceride levels	[355]
87. *Selaginella bryopteris*	Leaves	Gallic acid, rutin	Decreases plasma glucose and glycosylated hemoglobin levels, improves glucose tolerance, decreases triglyceride levels, inhibits inflammatory cytokines	[249,304,356]
88. *Sesamum indicum*	Seeds	Pinoresinol, sesamin, sesaminol	Lowers fasting blood glucose and glycosylated hemoglobin levels, inhibits α-glucosidase activity	[16,357,358]
89. *Solanum nigrum*	Leaves	Gallic acid, catechin, epicatechin, rutin, naringenin	Lowers blood glucose levels, improves β-cell function and glucose tolerance, increases insulin secretion, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity	[220,244,246,249,304,313]
90. *Spirulina platensis*	Whole plant	p-coumaric acid, catechin, β-carotene	Lowers blood glucose levels, increases insulin levels, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity, reduces oxidative stress and pro-inflammatory biomarkers	[222,244,300,339]
91. *Swertia chirayita*	Bark, leaves	Swerchirin, mangiferin, swertiamarin, amarogentin	Lowers blood glucose levels, promotes insulin release, inhibits glucosidase and glucuronidase activity	[30,268,269,336]
Medicinal Plants	Parts	Phytoconstituents	Pharmacological Effects	References
-------------------	------------------	--	--	-----------------------------
92. *Tamarindus indica*	Seeds	Apigenin, naringenin, catechin, epicatechin, taxifolin	Lowers blood glucose levels, increases insulin secretion, inhibits α-amylase and α-glucosidase activity, improves glucose tolerance, increases insulin sensitivity	[244,246,313,359]
93. *Terminalia arjuna*	Bark	Arjungenin, arjunolone, ellagic acid, derivatives of arjunic acid	Lowers blood glucose levels, increases insulin sensitivity, decreases free radical damage	[29,360]
94. *Terminalia chebula*	Fruit	Chebulagic acid, gallic acid, ellagic acid, tannic acid	Lowers blood glucose levels, improve glucose tolerance and lipid metabolism, stimulates glucose transport, decreases triglyceride levels	[245,304,360–362]
95. *Tinospora cordifolia*	Leaves, roots, stem	Tinosporaside, berberine, syringin	Lowers plasma glucose levels, stimulates insulin synthesis and secretion, decreases triglyceride levels, improves insulin sensitivity, inhibits gluconeogenesis	[149,282,363]
96. *Trigonella foenum-graecum*	Seeds	Galactomannan, diosgenin, coumarin	Decreases blood glucose levels, stimulates insulin release, inhibits α-glucosidase and aldose reductase activity, increases insulin sensitivity	[16,302,364,365]
97. *Urtica dioica*	Leaves	Quercetin, quercitrin, rutin	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, reduces insulin resistance, improves antioxidant activity	[16,249,262,295]
98. *Vernonia amygdalina*	Leaves	Sobrerol, vernoamyside E, luteolin, vitamin E	Lowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, enhances insulin sensitivity, reduces oxidative stress	[16,235,242,366,367]
99. *Withania coagulans*	Fruit	Withanolides, withacoagulin, withanosides, withaferin A	Lowers blood glucose levels, exhibits free radical scavenging activity, inhibits DPP-IV activity	[368,369]
100. *Zingiber officinale*	Rhizome	Gingerol, 6-paradol, 6-shogaol, camphene	Lowers blood glucose levels, increases insulin levels, improves glucose tolerance and utilization, decreases cholesterol levels	[16,253,254,293]
Table 3. Antidiabetic phytoconstituents of medicinal plants and their chemical structures.

Medicinal Plants	Phytoconstituents	Chemical Structure
1. *Abrus precatorius*	Lupenone	![Lupenone](image)
2. *Acacia arabica*	Quercetin	![Quercetin](image)
3. *Acacia catechu*	Gallocatechin	![Gallocatechin](image)
4. *Aegle marmelos*	Marmelosin	![Marmelosin](image)
5. *Aframomum melegueta*	6-paradol	![6-paradol](image)
6. *Ageratum conyzoides*	Kaempferol	![Kaempferol](image)
7. *Albizia lebbeck*	Friedelin	![Friedelin](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
8. *Albizia adianthifolia*	Viridiflorol	![Viridiflorol](image)
9. *Allium cepa*	Alliin	![Alliin](image)
10. *Allium sativum*	Allicin	![Allicin](image)
11. *Aloe vera*	Aloin	![Aloin](image)
12. *Anacradium occidentale*	Anacardic acid	![Anacardic acid](image)
13. *Anemarrhena asphodeloides*	Sarsasapogenin	![Sarsasapogenin](image)
14. *Annona salzmannii*	β-caryophyllene	![β-caryophyllene](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
15. *Annona squamosa*	Rutin	![Rutin](image)
16. *Anogeissus latifolia*	β-sitosterol	![β-sitosterol](image)
17. *Arachis hypogaea*	Resveratrol	![Resveratrol](image)
18. *Artemisia absinthium*	Azulene	![Azulene](image)
19. *Artocarpus heterophyllus*	Chrysin	![Chrysin](image)
20. *Asparagus racemosus*	Asparagine	![Asparagine](image)
21. *Atractylodes japonica*	Atractylenolide III	![Atractylenolide III](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
22. Azadirachta indica	Nimbin	![Nimbin](image)
23. Balanites aegyptiaca	Diosgenin	![Diosgenin](image)
24. Berberis vulgaris	Berberine	![Berberine](image)
25. Bidens pilosa	Luteolin	![Luteolin](image)
26. Bougainvillea spectabilis	Pinitol	![Pinitol](image)
27. Brassica juncea	Cinnamic acid	![Cinnamic acid](image)
Medicinal Plants	Phytoconstituents	Chemical Structure
--------------------------	----------------------------	--------------------
28. Bridelia ferruginea	Epigallocatechin gallate	![Epigallocatechin Gallate](image1.png)
29. Bunium persicum	Palmitic acid	![Palmitic Acid](image2.png)
30. Caesalpinia decapetala	Astragalin	![Astragalin](image3.png)
31. Calendula officinalis	Esculetin	![Esculetin](image4.png)
32. Camellia sinensis	Quercitrin	![Quercitrin](image5.png)
33. Capsicum frutescens	Capsaicin	![Capsaicin](image6.png)
Medicinal Plants	Phytoconstituents	Chemical Structure
----------------------	-------------------	--------------------
34. Carica papaya	Coumarin	![Coumarin](image)
35. Cassia alata	Emodin	![Emodin](image)
36. Cassia fistula	Lupeol	![Lupeol](image)
37. Catharanthus roseus	Vindoline	![Vindoline](image)
38. Cecropia obtusifolia	Isoorientin	![Isoorientin](image)
39. Cichorium intybus	Chlorogenic acid	![Chlorogenic acid](image)
40. Cinnamomum zeylanicum	Cinnamaldehyde	![Cinnamaldehyde](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
41. *Citrus limon*	Hesperetin	![Hesperetin](image)
42. *Citrus x aurantium*	Naringin	![Naringin](image)
43. *Cola nitida*	Apigenin	![Apigenin](image)
44. *Coptis chinensis*	Jatrorrhizine	![Jatrorrhizine](image)
45. *Cornus officinalis*	Gymnemic acid	![Gymnemic acid](image)
46. *Curcuma longa*	Curcumin	![Curcumin](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
47. Cudrania cochinchinensis	Vanillin	![Vanillin chemical structure](image)
48. Cyamopsis tetragonoloba	Quercetin	![Quercetin chemical structure](image)
49. Dalbergia sissoo	Biochanin A	![Biochanin A chemical structure](image)
50. Eriobotrya japonica	Cinchonain ib	![Cinchonain ib chemical structure](image)
51. Eucalyptus citriodora	Rhodomyrtosone E	![Rhodomyrtosone E chemical structure](image)
52. Eucalyptus globulus	Eucalyptol	![Eucalyptol chemical structure](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
53. *Euclea undulata*	Epicatechin	![Chemical Structure](image1)
54. *Eugenia jambolana*	Ellagic acid	![Chemical Structure](image2)
55. *Euphorbia hirta*	Gallic acid	![Chemical Structure](image3)
56. *Ficus benghalensis*	α-amyrin acetate	![Chemical Structure](image4)
57. *Garcinia kola*	Kolaviron	![Chemical Structure](image5)
58. *Glycine max*	Genistein	![Chemical Structure](image6)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
59. Glycyrrhiza glabra	Glycyrrhizin	![Glycyrrhizin](image)
60. Gymnema sylvestre	Gymnemic acid	![Gymnemic acid](image)
61. Harungana madagascariensis	Harunganin	![Harunganin](image)
62. Helicteres isora	p-coumaric acid	![p-coumaric acid](image)
63. Heritiera fomes	Stigmasterol	![Stigmasterol](image)
Medicinal Plants	Phytoconstituents	Chemical Structure
-------------------------	----------------------------	--------------------
64. *Hibiscus esculentus*	Quercetin-3-O-gentiobioside	![Quercetin-3-O-gentiobioside](image)
65. *Hibiscus rosa-sinensis*	Ascorbic acid	![Ascorbic acid](image)
66. *Jatropha curcas*	Isoorientin	![Isoorientin](image)
67. *Lantana camara*	Caffeic acid	![Caffeic acid](image)
68. *Linum usitatissimum*	Ferulic acid	![Ferulic acid](image)
69. *Mangifera indica*	Mangiferin	![Mangiferin](image)
Medicinal Plants	Phytoconstituents	Chemical Structure
---------------------------	-------------------	--------------------
70. *Momordica charantia*	Vicine	![Vicine](image1)
71. *Moringa oleifera*	Kaempferol	![Kaempferol](image2)
72. *Murraya koenigii*	Mahanimbine	![Mahanimbine](image3)
73. *Musa sapientum*	Delphinidin	![Delphinidin](image4)
74. *Nigella sativa*	Thymoquinone	![Thymoquinone](image5)
75. *Ocimum basicillicum*	Linalool	![Linalool](image6)
76. *Ocimum sanctum*	Eugenol	![Eugenol](image7)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
77. *Olea europaea*	Oleanolic acid	![Oleanolic acid](image1.png)
78. *Panax ginseng*	Ginsenoside Rg2	![Ginsenoside Rg2](image2.png)
79. *Panda oleosa*	Ginsenoside Rb2	![Ginsenoside Rb2](image3.png)
80. *Phaseolus vulgaris*	Orientin	![Orientin](image4.png)
Medicinal Plants	Phytoconstituents	Chemical Structure
--------------------------	-------------------	--------------------
81. *Phyllanthus amarus*	Ursolic acid	![Ursolic acid](image)
83. *Pterocarpus marsupium*	Marsupin	![Marsupin](image)
84. *Punica granatum*	Nictoflorin	![Nictoflorin](image)
85. *Rehmannia glutinosa*	Catalpol	![Catalpol](image)
86. *Santalum album*	β-santalol	![β-santalol](image)
Medicinal Plants	Phytoconstituents	Chemical Structure
------------------------	-------------------	--------------------
87. *Selaginella bryopteris*	Gallic acid	![Gallic acid](image)
88. *Sesamum indicum*	Pinoresinol	![Pinoresinol](image)
89. *Solanum nigrum*	Naringenin	![Naringenin](image)
90. *Spirulina platensis*	β-carotene	![β-carotene](image)
91. *Swertia chirayita*	Swerchirin	![Swerchirin](image)
92. *Tamarindus indica*	Taxifolin	![Taxifolin](image)
Medicinal Plants	Phytoconstituents	Chemical Structure
---------------------------	-------------------	--------------------
93. Terminalia arjuna	Arjungenin	![Arjungenin](image)
94. Terminalia chebula	Tannic acid	![Tannic acid](image)
95. Tinospora cordifolia	Syringin	![Syringin](image)
96. Trigonella foenum-graecum	Galactomannan	![Galactomannan](image)
Table 3. Cont.

Medicinal Plants	Phytoconstituents	Chemical Structure
97. *Urtica dioica*	Quercitrin	![Quercitrin](image)
98. *Vernonia amygdalina*	Sobrerol	![Sobrerol](image)
99. *Withania coagulans*	Withaferin A	![Withaferin A](image)
100. *Zingiber officinale*	Gingerol	![Gingerol](image)

7. Plant-Based Drug Formulations Available on the Market and Their Role in Diabetes

For the past few decades, there has been an increasingly growing trend in many European countries to develop and sell plant-based medicines [370]. The latter are known as herbal formulations or phytomedicines. These preparations have been standardized and confirmed for their safety profile and effectiveness in the treatment of various diseases. Similar to any other allopathic medicine, herbal formulations can also be prepared as diverse formulations such as tablets, capsules, elixirs, suspensions, solutions, emulsions, and powders [371]. Phytomedicines can either be single herb- or polyherbal formulations [35]. Several phytomedicines have been marketed worldwide for the control and management of diabetes. These include Antibetic, Diabetics, Diabetica, Diabet, Diasol, Diabecon, Diashis, GlucoCare, GlycoNase,
Glyoherb, Karmin Plus, SugarMax, and Sugar Loss [35,372]. These products comprise a combination of individual constituents from several antidiabetic plants. Many of these preparations are sold with directions about diet, rest, and physical activities to enhance their effectiveness [35,372].

8. The Future of Plant-Based Antidiabetic Medicines

Nearly 75% of the globally used herbal medicines have been developed based on traditional medicine practitioners [24]. Medicinal plants will continue to be used for their natural safety and potency in many remedies, as well as cosmetics, perfumes, and in the food and beverages industry [373]. Biologically active components derived from traditional medicinal plants have yielded several clinically used drugs and still play a key role in the discovery of new medicines. Thus, it is reasonable to assume that plants used in folk medicine can be used as a potential source for the discovery of new drugs to treat diabetes. The most frequently recommended synthetic drug, metformin, has blood glucose-lowering properties in Type 2 diabetes and the search for many such drugs persists [370]. Moreover, any plant-derived antidiabetic drug with a novel mode of action compared to existing antidiabetic agents has a high potential to be used in clinics [374]. Although the use of plant-based medicines is widespread in developing countries, recently, developed countries have also shown interest in using herbal drugs and therapies. With the rise in the incidence of diabetes mellitus, the demand for plant-based antidiabetic medicines is increasing worldwide. It is expected that countries such as China, India, and Japan, which have an abundance of medicinal plant species and are the greatest exporters of medicinal plants worldwide, will be the most sought [375]. More studies are required regarding the pharmacokinetics/pharmacodynamics of different phytoconstituents in laboratory animals and in clinical use to establish the benefits and mode(s) of action of these compounds in the treatment and management of diabetes. Extensive investigations into the pharmacology, toxicology, metabolism, and tissue distribution of medicinal plants and their phytomolecules are necessary for the development of new potent antidiabetic drugs [376].

9. Conclusions

Diabetes mellitus has risen as a major public health crisis, particularly in underdeveloped countries. Thus, recent research efforts have been centered on the discovery of new natural sources of antidiabetic therapies for the treatment and management of diabetes. As traditional medicinal plants with antidiabetic activity may be considered potential candidates for diabetes management in the long run, they are being extensively researched for novel targets, mechanisms of action, and routes of administration. Plant-based antidiabetic medicines are inexpensive, readily available, and hold low risks of side effects. This makes them promising new antidiabetic agents. With the progression of medicinal plant-based research, scientists and physicians have started to develop newer classes of antidiabetic drugs based on the pharmacology of the phytochemicals isolated from these plants. However, more studies are required for in-depth investigation of these newly discovered antidiabetic drugs at the molecular, therapeutic, and physiological levels in order to control and manage diabetes mellitus worldwide.

Author Contributions: Conceptualisation, P.A. and Y.H.A.A.-W.; formal Analysis, P.A. and S.A.; funding acquisition, Y.H.A.A.-W. and J.M.A.H.; investigation, resources, writing, and editing, P.A., S.A., V.S. and N.J.N.; Visualization, P.A. and J.M.A.H.; supervision and reviewing, P.A. and Y.H.A.A.-W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
Acknowledgments: We would like to extend our appreciation to Peter R Flatt, School of Biomedical Sciences, Ulster University, UK and Independent University, Bangladesh for his aid, guidance, and support in creating the innovative ideas.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

- AMPK: 5′ adenosine monophosphate-activated protein kinase
- cAMP: cyclic Adenosine monophosphate
- DPP-IV: Dipeptidyl peptidase-4
- G6Pase: Glucose-6-phosphatase
- GLP-1: Glucagon-like peptide-1
- GLUT-2: Glucose transporter-2
- GLUT-4: Glucose transporter-4
- HbA1c: Hemoglobin A1c
- IDF: International Diabetes Federation
- KATP: Adenosine triphosphate-sensitive potassium channel
- PEPCK: Phosphoenolpyruvate carboxykinase
- PI3K/AKT: Phosphoinositide 3-kinase/protein kinase B
- PKA: Protein kinase A
- PPAR-γ: Peroxisome proliferator-activated receptor-γ
- SGLT: Sodium–glucose linked transporter

References

1. Bastaki, S. Diabetes mellitus and its treatment. *Int. J. Diabetes Metab.* 2005, 13, 111–134. [CrossRef]
2. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkerton, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res. Clin. Pract.* 2022, 183, 109119. [CrossRef] [PubMed]
3. Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.; Schatz, D.A.; Lernmark, A. Type 1 diabetes mellitus. *Nat. Rev. Dis. Primers* 2017, 3, 17016. [CrossRef] [PubMed]
4. Ohlson, L.-O.; Larsson, B.; Björntorp, P.; Eriksson, H.; Svärdsudd, K.; Welin, L.; Tibblin, G.; Wilhelmsen, L. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. *Diabetologia* 1988, 31, 798–805. [CrossRef] [PubMed]
5. DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I. Type 2 diabetes mellitus. *Nat. Rev. Dis. Primers* 2015, 1, 15019. [CrossRef] [PubMed]
6. Hall, J.E.; Guyton, A.C. Insulin, Glucagon, and Diabetes Mellitus. In *Guyton and Hall Textbook of Medical Physiology*, 13th ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 983–999.
7. Nowakowska, M.; Zghebi, S.S.; Ashcroft, D.M.; Buchan, I.; Chew-Graham, C.; Holt, T.; Mallen, C.; Van Marwijk, H.; Peek, N.; Perera-Salazar, R. The comorbidity burden of type 2 diabetes mellitus: Patterns, clusters and predictions from a large English primary care cohort. *BMC Med.* 2019, 17, 145. [CrossRef] [PubMed]
8. Nathan, D.M. Long-term complications of diabetes mellitus. *N. Engl. J. Med.* 1993, 328, 1676–1685. [CrossRef]
9. Ansari, P.; Hannan, J.M.A.; Azam, S.; Jakaria, M. Challenges in Diabetic Micro-Complication Management: Focus on Diabetic Neuropathy. *Int. J. Transl. Med.* 2021, 1, 175–186. [CrossRef]
10. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Evaluation of the anti-diabetic and Insulin Releasing Effects of *A. squamosa*, Including Isolation and Characterization of Active Phytochemicals. *Plants* 2020, 9, 1348. [CrossRef]
11. Patel, D.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. *Asian Pac. J. Trop. Biomed.* 2012, 2, 320–330. [CrossRef]
12. Gaonkar, V.P.; Hullatti, K. Indian Traditional medicinal plants as a source of potent Anti-diabetic agents: A Review. *J. Diabetes Metab. Disord.* 2020, 19, 1895–1908. [CrossRef] [PubMed]
13. Oh, Y.S. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. *Evid.-Based Complementary Altern. Med.* 2015, 2015, 629863. [CrossRef] [PubMed]
14. Jeeva, S.; Anlin Sheebha, Y. A review of antidiabetic potential of ethnomedicinal plants. *Med. Aromat. Plants* 2014, 3, 1–8.
15. Arumugam, G.; Manjula, P.; Paari, N. A review: Anti diabetic medicinal plants used for diabetes mellitus. *J. Acute Dis.* 2013, 2, 196–200. [CrossRef] [PubMed]
16. Kasali, F.M.; Kadima, J.N.; Peter, E.L.; Mtewa, A.G.; Ajayi, C.O.; Tusiiimire, J.; Tolo, C.U.; Ogwang, P.; Weisheit, A.; Agaba, A.G. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. *Front. Pharmacol.* 2021, 12, 757090. [CrossRef]
17. Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. *J. Phytopharm.* 2017, 6, 349–351. [CrossRef]
18. Moradi, B.; Abbasszadeh, S.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. The most useful medicinal herbs to treat diabetes. *Biomed. Res. Ther.* **2018**, *5*, 2538–2551. [CrossRef]

19. Rizvi, S.I.; Mishra, N. Traditional Indian medicines used for the management of diabetes mellitus. *J. Diabetes Res.* **2013**, *2013*, 712092. [CrossRef]

20. Oyagbemi, A.; Salihu, M.; Oguntilbeju, O.; Esterhuysse, A.; Farombi, E. Some selected medicinal plants with antidiabetic potentials. Antioxidant, Antidiabetic agents and Human Health. In *Antioxidant-Antidiabetic Agents and Human Health*; Intech: London, UK, 2014; Volume 4, pp. 95–113.

21. Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashgary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. *Electron. Physician* **2016**, *8*, 1832–1842. [CrossRef]

22. Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. *Front. Endocrinol.* **2022**, *13*, 800714. [CrossRef]

23. Gu, J.; Chen, L.; Yuan, G.; Xu, X. A drug-target network-based approach to evaluate the efficacy of medicinal plants for type II diabetes mellitus. Evid.-Based Complementary Altern. Med. **2013**, *2013*, 203614. [CrossRef]

24. Vlachogianni, T.; Loridas, S.; Fiotakis, K.; Valavanidis, A. From the Traditional Medicine to the Modern Era of Synthetic Forces. *Electron. Physician* **2020**, *10*, 431–443. [CrossRef]

25. Ansari, P.; Flatt, P.R.; Harriott, P.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of *Acacia arabica* Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. *Plants* **2021**, *10*, 1190. [CrossRef] [PubMed]

26. Vedavathy, S. Scope and importance of traditional medicine. *Indian J. Tradit. Knowl.* **2003**, *2*, 236–239.

27. Ghosh, A. Herbal folk remedies of Bankura and Medinipur districts, West Bengal. *Indian J. Tradit. Knowl.* **2003**, *2*, 393–396.

28. Morshed, M.A.; Haque, A.; Rokeya, B.; Ali, L. Anti-hyperglycemic and lipid lowering effect of *Terminalia arjuna* Bark extract on Streptozotocin induced Type-2 Diabetic Model Rats. *Int. J. Pharm. Sci.* **2011**, *3*, 450–454.

29. Ansari, P.; Azam, S.; Seidel, V.; Abdel-Wahab, Y.H.A. In vitro and in vivo antihyperglycemic activity of the ethanol extract of *Herrhiera fomes* bark and characterization of pharmacologically active phytomolecules. *J. Pharm. Pharmacol.* **2022**, *74*, 415–425. [CrossRef]

30. Vaidya, A.; Vaidya, R.A. Ancient Insights and ModernDiscoveries in the Process of Aging—An Overview. *Aging Clin. Exp. Res.* **2009**, *21*, 349–363.

31. Soren, A.D.; Soren, P.; Jamir, W. Traditional Herbal Medicines—How safe are they? In *PARISAR The Scope*; Sonowal, A., Ed.; Purbayon Publication: Assam, India, 2020; pp. 132–138.

32. Salehi, B.; Ata, A.; V Anil Kumar, N.; Sharopov, F.; Ramirez-Alarcon, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobardf, F.; Amruddin Zakaria, Z. Antidiabetic potential of medicinal plants and their active components. *Biomolecules* **2019**, *9*, 551. [CrossRef]

33. Coulter-Parkhill, A.; McClean, S.; Gault, V.A.; Irwin, N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. *Clin. Med. Insights: Endocrinol. Diabetes* **2021**, *14*, 117955142110060. [CrossRef]

34. Kaur, M.; Valecha, V. Diabetes and antidiabetic herbal formulations: An alternative to Allopathy. *Eur. J. Med.* **2014**, *6*, 226–240. [CrossRef]

35. Vlachogianni, T.; Loridas, S.; Fiotakis, K.; Valavanidis, A. From the Traditional Medicine to the Modern Era of Synthetic Pharmaceuticals. *Pharmaceuticals* **2014**, *26*, 16–30.

36. Fogelman, Y.; Kitai, E.; Blumberg, G.; Golan-Cohen, A.; Rapoport, M.; Carmeli, E. Vitamin B12 screening in metformin-treated diabetics in primary care: Were elderly patients less likely to be tested? *Aging Clin. Exp. Res.* **2017**, *29*, 135–139. [CrossRef] [PubMed]

37. Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. *Front. Endocrinol.* **2017**, *8*, 6. [CrossRef]

38. Bakhsh, A.; Veeresham, C. Insulinotropic agents from medicinal plants. *J. Pharm. Sci. Emerg. Drugs* **2013**, *1*, 2. [CrossRef]

39. Valij, R.; Boon, H.; Barnes, J.; Austin, Z.; Baker, G.R.; Welsh, S. Adverse event reporting for herbal medicines: A result of market forces. *Healthc. Policy* **2009**, *4*, 77. [CrossRef]

40. Bachtel, N.; Israni-Winger, K. Focus: Plant-based Medicine and Pharmacology: Introduction. *Yale J. Biol. Med.* **2020**, *93*, 227.

41. Subramoniam, A. Present scenario, challenges and future perspectives in plant based medicine development. *Ann. Phytomed.* **2014**, *3*, 31–36.

42. Gu, J.; Chen, L.; Yuan, G.; Xu, X. A drug-target network-based approach to evaluate the efficacy of medicinal plants for type II diabetes mellitus. Evid.-Based Complementary Altern. Med. **2013**, *2013*, 203614. [CrossRef]

43. Seino, S. Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea. *Diabetologia* **2012**, *55*, 2106–2108. [CrossRef] [PubMed]
71. El-Saber Batihia, G.; Magdy Beshbishy, A.; Wasef, L.G.; Eleva, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Mohamed, E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. *Nutrients* 2020, 12, 872. [CrossRef]

72. Adams, K.; Eliot, T; Gerald, A. Extent of Use of *Aloe vera* Locally Extracted Products for Management of Ailments in Communities of Kitagata Sub-county in Sheema District, Western Uganda. *Int. J. Sci. Basic Appl. Res.* 2014, 15, 1–15.

73. Kim, K.; Kim, H.; Kwon, J.; Lee, S.-A.; Lee, Y.-H.; Lee, Y.-R.; Oh, S.-T.; Jo, T.H. Hypoglycemic and hypolipidemic effects of processed *Aloe vera* gel in a mouse model of non-insulin-dependent diabetes mellitus. *Phytomedicine* 2009, 16, 856–863. [CrossRef][PubMed]

74. Chan, E.; Baba, S.; Chan, H.T.; Kainuma, M.; Inoue, T.; Wong, S.K. Ulam herbs: A review on the medicinal properties of *Anacardium occidentale* and *Barringtonia racemosa*. *J. Appl. Pharm. Sci.* 2017, 7, 241–247. [CrossRef]

75. Iyare, G.; Omorodion, N.; Erameh, T.; Achukwu, P.; Ogochukwu, A. The effects of *Anacardium occidentale* leaves extract on histology of selected organs of Wistar rats. *MOJ Biol. Med.* 2017, 2, 216–221.

76. Olatunji, L.A.; Okwusidi, J.I.; Soladoye, A.O. Antidiabetic effect of *Anacardium occidentale*. Stem-bark in fructose-diabetic rats. *Pharm. Biol.* 2005, 43, 589–593. [CrossRef]

77. Piwowar, A.; Rembialkowska, N.; Rorbach-Dolata, A.; Garbiec, A.; ´Slusarczyk, S.; Dobosz, A.; Marchewka, Z.; Akter, F.; Jahan, N.; Sultana, N. Effect of *Peanut (Arachis hypogaea)* on Fasting Blood Glucose and HbA1c in Alloxan Induced Diabetic Male Rats. *J. Bangladesh Soc. Physiol.* 2003, 5, 48–53. [CrossRef]

78. Patil, U.; Gaikwad, D. Ethno-pharmacological review of a herbal drug: *Anogeissus latifolia*. *J. Ethnopharmacol.* 2010, 129, 142–147. [CrossRef]

79. Patil, J.K.; Sharma, M.K. Origin, Bioactivities and Therapeutic uses of *Arachis hypogaea* (Peanut/Fabaceae). *Plant Cell Biotechnol.* *Mol. Biol.* 2019, 20, 1172–1179.

80. Akter, F.; Jahan, N.; Sultana, N. Effect of Peanut (*Arachis hypogaea* L.) on Fasting Blood Glucose and HbA1c in Alloxan Induced Diabetic Male Rats. *J. Bangladesh Soc. Physiol.* 2014, 9, 46–53. [CrossRef]

81. Karra, G.; Nadenla, R.; Kiran, R.S.; Srilatha, K.; Mamatha, P.; Rao, V.U. An overview on *Annona squamosa*. *Comp. Clin. Pathol.* 2014, 3, 4508–4518.

82. Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Andrade, E.H.d.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Pharmacological Activities. *Int. J. Mol. Sci.* 2021, 22, 12140. [CrossRef][PubMed]

83. Murata, T.; Zaragoza-Bastida, A. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of *Wormwood (Artemisia absinthium)*. *Antibiotics* 2020, 9, 353. [CrossRef]

84. Daradka, H.M.; Abas, M.M.; Mohammad, M.A.; Jaffar, M.M. Antidiabetic effect of *Artemisia absinthium* extracts on alloxan-induced diabetic rats. *Comp. Clin. Pathol.* 2014, 23, 1733–1742. [CrossRef]

85. Ramachandran, S.; Naveen, K.R.; Rajinikanth, B.; Akbar, M.; Rajasekaran, A. Antidiabetic, antihyperlipidemic and in vivo antioxidant potential of aqueous extract of *Annona squamosa* bark in type 2 diabetic rats. *Asian Pac. J. Trop. Dis.* 2012, 2, 5596–5602. [CrossRef][PubMed]

86. Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Andrade, E.H.d.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Pharmacological Activities. *Int. J. Mol. Sci.* 2021, 22, 12140. [CrossRef][PubMed]

87. Patil, U.; Gaikwad, D. Ethno-pharmacological review of a herbal drug: *Anogeissus latifolia*. *Int. J. Pharma Sci. Res.* 2011, 2, 41–43.

88. Hausner, E.A.; Poppenga, R.H. Hazards Associated with the Use of Herbal and Other Natural Products. In *Small Animal Toxicology*, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 335–356. [CrossRef]

89. Jagtap, U.; Bapat, V. *Atractylodes*: A review of its traditional uses, phytochemistry and pharmacology. *J. Ethnopharmacol.* 2010, 129, 142–166. [CrossRef][PubMed]

90. Hannan, J.M.A.; Ali, L.; Khaileque, J.; Akther, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Antihyperglycaemic activity of *Asparagus racemosus* roots is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of cellular insulin action. *Br. J. Nutr.* 2012, 107, 1316–1323. [CrossRef][PubMed]

91. Goyal, R.; Singh, J.; Lal, H. *Artemisia annua*—An update. *Indian J. Med. Sci.* 2003, 57, 408–414.

92. Marikani, K. Antidiabetic and antihyperlipidemic activities of *Asparagus racemosus* in alloxan induced diabetic rats. *J. Pharm. Res.* 2012, 5, 2469–2472.

93. Hannan, J.M.A.; Marenah, L.; Ali, L.; Rokeya, B.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Insulin secretory actions of extracts of *Asparagus racemosus* root in perfused pancreas, isolated islets and clonal pancreatic β-cells. *J. Endocrinol.* 2007, 192, 159–168. [CrossRef][PubMed]

94. Lee, D.H.; Han, J.M.; Yang, W.M. The effects of *Atractylodes japonica* Koidz. on type 2 diabetic rats. *J. Korean Med.* 2015, 36, 75–85. [CrossRef]

95. Zhang, W.-J.; Zhao, Z.-Y.; Chang, L.-K.; Cao, Y.; Wang, S.; Kang, C.-Z.; Wang, H.-Y.; Zhou, L.; Huang, L.-Q.; Guo, L.-P. *Atractylodes* Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. *J. Ethnopharmacol.* 2021, 266, 113415. [CrossRef]
97. Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid.-Based Complementary Altern. Med. 2016, 2016, 7382506. [CrossRef]

98. Yarmohammadi, F.; Mehri, S.; Najafi, N.; Amoli, S.S.; Hosseinzadeh, H. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021, 24, 280–292. [CrossRef]

99. Chothani, D.L.; Vaghasiya, H. A review on Balanites aegyptiaca Del (desert date): Phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn. Rev. 2011, 5, 55. [CrossRef] [PubMed]

100. Ezzat, S.M.; Abdel Motaal, A.; El Awdan, S.A.W. In vitro and in vivo antidiabetic potential of extracts and a furostanol saponin from Balanites aegyptiaca. Pharm. Biol. 2017, 55, 1931–1936. [CrossRef] [PubMed]

101. Rahimi-Madiseh, M.; Lorigoini, Z.; Zamani-Gharagholi, H.; Rafieian-Kopaei, M. Berberis vulgaris: Specifications and traditional uses. Iran. J. Basic Med. Sci. 2017, 20, 569. [CrossRef]

102. Meliani, N.; Dib, M.E.A.; Allali, H.; Tabti, B. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2011, 1, 468–471. [CrossRef]

103. Xuan, T.D.; Khanh, T.D. Chemistry and pharmacology of Carica papaya L. Crit. Rev. Food Sci. Nutr. 2010, 50, 179. [CrossRef] [PubMed]

104. Yang, W.C. Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bunium persicum. Evid.-Based Complementary Altern. Med. 2014, 2014, 698617. [CrossRef]

105. Athaiban, M.A. Effect of paper flower. J. Trop. Biomed. 2012, 51, 7–15. [CrossRef]

106. Ghogar, A.; Jiraungkoorskul, W. Antifertility effect of Bougainvillea spectabilis: Update properties of traditional medicinal plant. J. Nat. Remedies 2016, 16, 82–87. [CrossRef]

107. Kumar, V.; Thakur, A.K.; Barothia, N.D.; Chatterjee, S.S. Therapeutic potentials of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rabbits. J. Basic Med. Sci. 2013, 2, 1–2.16. [CrossRef]

108. Mahomoodally, M.F.; Jugreet, S.; Sinan, K.I.; Zengin, G.; Ak, G.; Ceylan, R.; Jek˝ o, J.; Czi, G. A review on Antidiabetic components of Bougainvillea spectabilis. J. Nat. Remedies 2016, 698617. [CrossRef]

109. Parveen, A.; Akash, M.S.H.; Rehman, K.; Mahmood, Q.; Qadir, M.I. Analgesic, anti-inflammatory and anti-pyretic activities of Brassica juncea. J. Ethnopharmacol. 2012, 139, 174–179. [CrossRef]

110. Giancarlo, S.; Rosa, L.M.; Nadjafi, F.; Francesco, M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat. Prod. Res. 2006, 20, 882–886. [CrossRef] [PubMed]

111. Seri, A.; Khorsand, M.; Rezaei, Z.; Hamedi, A.; Taklishid, M.A. Inhibitory effect of Bunium persicum hydroalcoholic extract on glucose-induced albumin glycation, oxidation, and aggregation in vitro. Iran. J. Med. Sci. 2017, 42, 369. [PubMed]

112. Hussain, L.; Qadir, M.I.; ur Rehan, S. Antihyperglycemic and hypolipidemic potential of Caesalpinia decapetala in alloxan-induced diabetic rabbits. Bangladesh J. Pharmacol. 2014, 9, 529–532. [CrossRef]

113. Parveen, A.; Akash, M.S.H.; Rehman, K.; Mahmood, Q.; Qadir, M.I. Analgesic, anti-inflammatory and anti-pyretic activities of Caesalpinia decapetala. Biomolecules 2014, 4, 43. [CrossRef]

114. Aravind, G.; Bhowmik, D.; Duraivel, S.; Harish, G. Traditional and medicinal uses of Cassia alata. Pharm. Biol. 2020, 58, 604396. [CrossRef]

115. Manukumar, H.; Shiva Kumar, J.; Chandrasekhar, B.; Raghava, S.; Umesh, S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit. Rev. Food Sci. Nutr. 2017, 57, 2712–2729. [CrossRef] [PubMed]

116. Aravind, G.; Bhoomik, D.; DuraiVel, S.; Harish, G. Traditional and medicinal uses of Carica papaya. J. Med. Plants Stud. 2013, 1, 7–15.

117. Solikhah, T.I.; Setiawan, B.; Ismukada, D.R. Antidiabetic activity of papaya leaf extract (Carica Papaya L.) isolated with maceration method in alloxan-induces diabetic mice. Syst. Rev. Pharm. 2020, 11, 774–778. [CrossRef]

118. Varghese, G.K.; Bose, L.V.; Habtemariam, S. Antidiabetic components of Cassia alata leaves: Identification through α-glucosidase inhibition studies. Pharm. Biol. 2013, 51, 345–349. [CrossRef] [PubMed]

119. Fatmawati, S.; Purnomo, A.S.; Bakar, M.F.A. Chemical constituents, usage and pharmacological activity of Cassia alata. Helionyx 2020, 6, 04396. [CrossRef]

120. Mwangi, R.W.; Macharia, J.M.; Wagaara, I.N.; Bence, R.L. The medicinal properties of Cassia fistula L.: A review. Biomed. Pharmacother. 2021, 144, 112240. [CrossRef]
151. Shah, M.H.; Mukhtar, I.; Khan, S.N. Medicinal importance and association of pathological constraints with Dalbergia sissoo. Pak. J. Phytopathol. 2010, 22, 135–138.

152. Sehra, S.; Sharma, J. Pharmacological Effects and Medicinal Importance of Dalbergia sissoo—A Review. Int. J. Pharm. Chem. Biol. Sci. 2018, 8, 234–243.

153. Tanaka, K.; Nishizono, S.; Makino, N.; Tamaru, S.; Terai, O.; Ikeda, I. Hypoglycemic Activity of Heritiera fomes Seeds in Type 2 Diabetic Rats and Mice. Biosci. Biotechnol. Biochem. 2008, 72, 686–693. [CrossRef]

154. Balkinder, S.; Sehra, S.; Dharmendra, K.; Vikas, G.; Bansal, P. Pharmacological potential of Eucalyptus citriodora — An overview. Int. Res. J. Pharm. 2010, 1, 95–99.

155. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Insulintropic and antidiabetic properties of Eucalyptus citriodora leaves and isolation of bioactive phytomolecules. J. Pharm. Pharmacol. 2021, 23, 1049–1061. [CrossRef] [PubMed]

156. Shah, M.H.; Taha, M.M.; Shahy, E.M. Germination of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic male albino rat. Biomark. Genom. Med. 2015, 7, S22–S26. [CrossRef]

157. Khan, F.; Sarker, M.; Rahman, M.; Ming, L.C.; Mohamed, I.N.; Zhao, C.; Sheikh, B.Y.; Tsong, H.F.; Rashid, M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. PharmacoZ. 2019, 10, 1223. [CrossRef] [PubMed]

158. Hayat, U.; Jilani, M.I.; Rehman, R.; Nadeem, F. A Review on Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extrapancratic effects in mice. J. Nutr. 1998, 128, 2319–2323. [CrossRef]

159. Marooy, A. Euclia undulata Thunb.: Review of its botany, ethnomedical uses, phytochemistry and biological activities. Asian Pac. J. Trop. Med. 2017, 10, 1030–1036. [CrossRef]

160. Jana, K.; Bera, T.K.; Ghosh, D. Antidiabetic effects of Eugenia jambolana in the streptozotocin-induced diabetic male albino rat. Biomark. Genom. Med. 2015, 7, 116–124. [CrossRef]

161. Khalique, A.; Rauf, A. An overview of Jamun (Eugenia Jambolana Linn): A traditional multipotentil drug. Indian J. Unani Med. 2016, 9, 71–75.

162. Ghosh, P.; Ghosh, C.; Das, S.; Das, C.; Mandal, S.; Chatterjee, S. Botanical Description, Phytochemical Constituents and Pharmacological Properties of Euphorbia hirta Linn.: A review. Int. J. Health Sci. Res. 2019, 9, 273–286.

163. Kumar, S.; Malhotra, R.; Kumar, D. Euphorbia hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities. Pharmacogn. Rev. 2010, 4, 58. [CrossRef] [PubMed]

164. Rizvi, S.I.; Matteucci, E.; Atukeren, P. Traditional Medicine in Management of Type 2 Diabetes Mellitus. J. Diabetes Res. 2013, 2013, 880823. [CrossRef] [PubMed]

165. Patel, R.; Gautam, P. Medicinal Potency of Ficus Bengalensis: A Review. Int. J. Med. Chem. Anal. 2014, 4, 53–58.

166. Adaramoye, O. Antidiabetic effect of kolvaren, a biflavonoid complex isolated from Garcinia kola seeds, in Wistar rats. Afr. Health Sci. 2012, 12, 498–506. [CrossRef]

167. Emmanuel, O.; Uche, M.E.; Dike, E.D.; Etumnu, L.R.; Ugboagu, O.C.; Ugboagu, E.A. A review on Garcinia kola Heckel: Traditional uses, phytochemistry, pharmacological activities, and toxicology. Biomarkers 2021, 27, 101–117. [CrossRef]

168. Mahmoud, M.H.; Taha, M.M.; Shalhy, E.M. Germination of Glycine max seeds potentiates its antidiabetic effect in streptozotocin induced diabetic rats. Int. J. Pharm. Clin. Res. 2016, 8, 1429–1437.

169. Lee, K.J.; Baek, D.-Y.; Lee, G.-A.; Cho, G.-T.; So, Y.-S.; Lee, J.-R.; Ma, K.-H.; Chung, J.-W.; Hyun, D.Y. Phytochemical and Antioxidant Activity of Korean Black Soybean (Glycine max (L.) Landraces. Antioxidants 2020, 9, 213. [CrossRef]

170. Battha, G.E.S.; Beshbishy, A.M.; El-Mieeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [CrossRef]

171. Khan, F.; Sarker, M.; Rahman, M.; Ming, L.C.; Mohamed, I.N.; Zhao, C.; Sheikh, B.Y.; Tsong, H.F.; Rashid, M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. PharmacoZ. 2019, 10, 1223. [CrossRef] [PubMed]

172. Kanetkar, P.; Singhal, R.; Kamat, M. Gymnema sylvestre: A Memoir. J. Clin. Biochem. Nutr. 2007, 41, 77–81. [CrossRef] [PubMed]

173. Kadima, J.; Kasali, F.; Bavhure, B.; Mahano, A.; Bwironde, F. Comparative Antidiabetic Potential and Survival Function of Harungana madagascariensis, Physalis peruviana, Solanum americanum and Tithonia diversifolia Extracts on Alloxan-Induced Diabetes in Guinea-Pigs. Int. J. Pharm. Pharm. Res. 2016, 5, 196–206.

174. Suthar, M.; Rathore, G.; Pareek, A. Antioxidant and Antidiabetic Activity of Helicteres isora (L.) Fruits. Indian J. Pharm. Sci. 2009, 71, 695. [CrossRef] [PubMed]

175. Kumar, N.; Singh, A.K. Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): A review. Asian Pac. J. Trop. Biomed. 2014, 4, S22–S26. [CrossRef]

176. Mahmoud, I.; Islam, M.K.; Saha, S.; Barman, A.K.; Rahman, M.M.; Anisuzzaman, M.; Rahman, T.; Al-Nahain, A.; Jahan, R.; Rahmatullah, M. Pharmacological and Ethnomedicinal Overview of Heritiera fomes: Future Prospects. Int. Sch. Res. Not. 2014, 2014, 938543. [CrossRef]

177. Sabitha, V.; Ramachandran, S.; Naveen, K.; Panneerselvam, K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J. Pharm. BioalJied Sci. 2011, 3, 397. [CrossRef]

178. Chanchal, D.K.; Alok, S.; Kumar, M.; Bijauliya, R.K.; Rashi, S.; Gupta, S. A Brief Review on Abelmoschus esculentus Linn. Okra. Int. J. Pharm. Sci. Res. 2018, 9, 58–66. [CrossRef]

179. Ansari, P.; Azam, S.; Hannan, J.M.A.; Flatt, P.R.; Wahab, Y.H.A. Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. J. Ethnopharmacol. 2020, 253, 112647. [CrossRef]
180. Jadhav, V.; Thorat, R.; Kadam, V.; Sathe, N. Traditional medicinal uses of *Hibiscus rosa-sinensis*. *J. Pharm. Res.* 2009, 2, 1220–1222.

181. Kumar, J.; Singh, S.P.; Choudhary, G.K. Pharmacological evaluation of leaves of *Jatropha curcas* L. for anti-diabetic activity in alloxan induced diabetic rats. *Indian J. Anim. Sci.* 2016, 86, 387–391.

182. Palbón, L.C.; Hernández-Rodriguez, P. Chemical importance of *Jatropha curcas* and its biological, pharmacological and industrial applications. *Rev. Cuba. De Plantas Med.* 2012, 17, 194–209.

183. Sen, S.; Chakraborty, R. Pharmacognostic and anti-hyperglycemic evaluation of *Lantana camara* (L.) var. aculeate leaves in alloxan-induced hyperglycemic rats. *Int. J. Res. Pharm. Sci.* 2010, 1, 247–252.

184. Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O. The anti-mycobacterial activity of *Lantana camara* a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. *Afr. Health Sci.* 2009, 9, 40–45. [PubMed]

185. Palla, A.H.; Khan, N.A.; Barchir, S.; Iqbal, J.; Gilani, A.H. Pharmacological basis for the medicinal use of *Linum usitatissimum* (Flaxseed) in infectious and non-infectious diarrhea. *J. Ethnopharmacol.* 2015, 160, 61–68. [CrossRef]

186. Saleem, M.; Tanvir, M.; Akhtar, M.F.; Iqbal, M.; Saleem, A. Antidiabetic Potential of *Mangifera indica*. *Medicina* 2019, 55, 353. [CrossRef]

187. Shah, K.; Patel, M.; Patel, R.; Parmar, P. Antidiabetic effect of *Oleuropein* from *Olea europaea*. *Molecules* 2011, 16, 5935–5945. [CrossRef]

188. Bortolotti, M.; Mercatelli, D.; Polito, L.

189. Imam, M.Z.; Akter, S.

190. Mishra, G.; Singh, P.; Verma, R.; Kumar, S.; Srivastav, S.; Jha, K.; Khosa, R. Traditional uses, phytochemistry and pharmacological properties of *Moringa oleifera* plant: An overview. *Der Pharm. Lett.* 2011, 3, 141–164.

191. Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of *Ocimum basilicum* (sweet basil) from Western Ghats of North West Karnataka, India. *J. Intercult. Ethnopharmacol.* 2017, 6, 127–136. [CrossRef]

192. Attele, A.S.; Zhou, Y.-P.; Xie, J.-T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effect of Oleuropein from *Olea europaea* Leaf in the gut. *Am. J. Anal. Chem.* 2017, 8, 564–581. [CrossRef]

193. Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O. The anti-mycobacterial activity of *Lantana camara* a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. *Afr. Health Sci.* 2009, 9, 40–45. [PubMed]

194. Hannan, J.M.A.; Ansari, P.; Haque, A.; Su-Kim, I.; Choi, D.-K. Medicinal Profile, Phytochemistry, and Pharmacological properties of *Moringa oleifera* is partly mediated by carbohydrase inhibition and glucose-fibre binding. *Biosci. Rep.* 2017, 39, BSR20170059. [CrossRef]

195. Ezeani, C.; Okoye, T.; Okoli, C. *Ocimum basilicum* aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study. *Toxicol. Ind. Health* 2012, 28, 42–50. [CrossRef]

196. Qadir, N.M.; Ali, K.A.; Qader, S.W. Antidiabetic effect of *Oleuropein* from *Olea europaea*. *Molecules* 2011, 16, 5935–5945. [CrossRef]

197. Bortolotti, M.; Mercatelli, D.; Polito, L. *Momordica charantia* a plant traditionally used to treat diabetes. *Plants–Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies.* 2015, 39, 537–543. [CrossRef]

198. Attele, A.S.; Zhou, Y.-P.; Xie, J.-T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effect of Oleuropein from *Olea europaea* Leaf in the gut. *Am. J. Anal. Chem.* 2017, 8, 564–581. [CrossRef]

199. Khan, Y.; Panchal, S.; Vyas, N.; Butani, A.; Kumar, V. *Olea europaea*: A phyto-pharmacological review. *Pharmacogn. Rev.* 2007, 1, 114–118.

200. Ezeani, C.; Enyi, I.; Okoye, T.; Okoli, C. *Ocimum basilicum* extract exhibits anti-diabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes. *J. Intercult. Ethnopharmacol.* 2017, 6, 22–28. [CrossRef]

201. Khan, Y.; Panchal, S.; Vyas, N.; Butani, A.; Kumar, V. *Olea europaea*: A phyto-pharmacological review. *Pharmacogn. Rev.* 2007, 1, 114–118.

202. Attale, A.S.; Zhou, Y.-P.; Xie, J.-T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic Effects of *Panax ginseng* Berry Extract and the Identification of an Effective Component. *Diabetes* 2002, 51, 1851–1858. [CrossRef] [PubMed]

203. Xiang, Y.Z.; Wang, H.C.; Gao, X.M.; Zhang, B.L. A comparison of the ancient use of *ginseng* in traditional Chinese medicine with modern pharmacological experiments and clinical trials. *Phytother. Res.* 2008, 22, 851–858. [CrossRef] [PubMed]

204. Muhoya, F.K.; Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O.; Lipense, P.; Fransen, B.; Ivens, M. The anti-mycobacterial activity of *Lantana camara* a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. *Afr. Health Sci.* 2009, 9, 40–45. [PubMed]

205. Qadir, N.M.; Ali, K.A.; Qader, S.W. Antidiabetic effect of *Oleuropein* from *Olea europaea*. *Molecules* 2011, 16, 5935–5945. [CrossRef]

206. Muhoya, F.K.; Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O.; Lipense, P.; Fransen, B.; Ivens, M. The anti-mycobacterial activity of *Lantana camara* a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. *Afr. Health Sci.* 2009, 9, 40–45. [PubMed]
207. Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. *Phyllanthus amarus*: Ethnomedicinal uses, phytochemistry and pharmacology: A review. *J. Ethnopharmacol.* 2011, 138, 286–313. [CrossRef]

208. Hannan, J.M.A.; Ali, L.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Aqueous extracts of husks of *Plantago ovata* reduce hyperglycaemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption. *Br. J. Nutr.* 2006, 96, 131–137. [CrossRef]

209. Madgulkar, A.R.; Rao, M.R.; Warrier, D. Characterization of Psyllium (*Plantago ovata*) Polysaccharide and Its Uses. In *Polysaccharides*; Ramawat, K., Mériton, J.M., Eds.; Springer: New York, NY, USA, 2015; pp. 871–890. [CrossRef]

210. Reyad-ul-Ferdous, M.; Ahmmed, A.; Kamal, M.A.H.M.; Ansari, P.; Shahjahan, D.S.; Akter, F.; Sakib, M.H. Herbal remedies as Alternative to Anti-diabetic and Plants are Available in Bangladesh: A comprehensive. *World J. Pharm. Res.* 2015, 4, 2382–2389.

211. Rahman, M.S.; Mujahid, M.; Siddiqui, M.A.; Rahman, M.A.; Arif, M.; Eram, S.; Khan, A.; Azeemuddin, M. Ethnobotanical Uses, Phytochemistry and Pharmacological Activities of *Pterocarpus marsupium*: A Review. *Pharmacogn.* J. 2018, 10, s1–s8. [CrossRef]

212. Tang, D.; Liu, L.; Ajiaakber, D.; Ye, J.; Xin, X.; Aisa, H.A. Anti-diabetic Effect of *Punica granatum* Flower Polyphenols Extract in Type 2 Diabetic Rats: Activation of Akt/GSK-3β and Inhibition of IRE1α-XBP1 Pathways. *Front. Endocrinol.* 2018, 9, 586. [CrossRef] [PubMed]

213. Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Kumar, K. Medicinal Uses of *Punica granatum* and Its Health Benefits. *J. Pharmcogn. Phytochem.* 2013, 1, 28–35.

214. Zhu, H.; Wang, Y.; Liu, Z.; Wang, J.; Wan, D.; Feng, S.; Yang, X.; Wang, T. Antidiabetic and antioxidant effects of catalpol extracted from *Rehmannia glutinosa* (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. *Chin. Med.* 2016, 11, 25. [CrossRef] [PubMed]

215. Zhang, R.-X.; Li, M.-X.; Jia, Z.-P. Antidiabetic and antioxidant effects of catalpol extracted from *Rehmannia glutinosa* (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. *Chin. Med.* 2016, 11, 25. [CrossRef] [PubMed]

216. Kumar, R.; Anjum, N.; Tripathi, Y. Phytochemistry and Pharmacology of *Santalum album*: A Review. *World J. Pharm. Res.* 2015, 4, 1842–1876.

217. Paswan, S.K.; Gautam, A.; Verma, P.; Rao, C.V.; Sidhu, O.P.; Singh, A.P.; Srivastava, S. The Indian Magical Herb ‘Sanjeevni’ (*Selaginella bryopteris* L.)—A Promising Anti-inflammatory Phytomedicine for the Treatment of Patients with Inflammatory Skin Diseases. *J. Pharmacoepont.* 2017, 20, 93–99. [CrossRef]

218. Amutha, K.; Godavari, A. In-vitro-antidiabetic activity of N-butanol extract of *Sesamum indicum* seeds—an overview. *Agric. Conspec. Sci.* 2010, 75, 159–168.

219. Kuete, V. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In *Survey of African Medicinal Plants*; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 421–429. [CrossRef]

220. Nyaga, S.N.; Mathiu, P.M.; Onyango, C.M.; Areba, G.O. Antidiabetic Properties of *Solanum Nigrum* and *Solanum Villosum* and *Urtica dioica* leaf extract in male rats with fructose-induced insulin resistance. *Iran. J. Med. Sci.* 2012, 37, 181–186. [CrossRef]

221. Hall, J.; Bravo-Clouzet, R. Anti-Inflammatory Herbs for Arthritis. In *Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases*, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 619–631.
234. Asante, D.-B.; Effah-Yeboah, E.; Barnes, P.; Abban, H.A.; Ameyaw, E.O.; Boampong, J.N.; Ofori, E.G.; Dadzie, J.B. Antidiabetic effect of young and old ethanolic leaf extracts of Vernonia amygdalina: A comparative study. *J. Diabetes Res.* 2016, 2016, 8252741. [CrossRef]

235. Oyeyemi, I.T.; Akinlabi, A.A.; Adewumi, A.; Aleshinloye, A.O.; Oyeyemi, O.T. *Vernonia amygdalina*: A folkloric herb with anthelmintic properties. *Benti-Suef Univ. J. Basic Appl. Sci.* 2018, 7, 43–49. [CrossRef]

236. Gupta, P.C. *Withania somnifera* Dunal—an overview. *Int. J. Pharm. Sci. Res.* 2012, 12, 68–71.

237. Akram, M.; Shah, M.I.; Usmanghan, K.; Mohiuddin, E.; Sami, A.; Asif, M.; Shah, S.A.; Ahmed, K.; Shaheen, G. *Zingiber officinale* and *Withania coagulans*—A promising use of a traditional pharmacological agent. *Phytother. Res.* 2018, 32, 1469–1476. [CrossRef] [PubMed]

238. Firdous, S. Phytochemicals for treatment of diabetes. *EXCLI J.* 2014, 13, 451–453. [PubMed]

239. Prabhakar, P.; Banerjee, M. Antidiabetic phytochemicals: A comprehensive review on opportunities and challenges in targeted therapy for herbal drug development. *Int. J. Pharm. Res.* 2020, 12, 1673–1696.

240. Soni, H.; Malik, J.; Yadav, A.P.; Yadav, B. Characterization of rutin isolated by leaves *Annona squamosa* by modern analytical techniques. *Eur. J. Biomed. Pharm. Sci.* 2018, 5, 484–489.

241. Zhang, R.; Yao, Y.; Wang, Y.; Ren, G. Antidiabetic activity of isouqueretin in diabetic KK-Ay mice. *Nutr. Metab.* 2011, 8, 85. [CrossRef]

242. Sangeetha, R. Luteolin in the Management of Type 2 Diabetes Mellitus. *Curr. Res. Nutr. Food Sci. J.* 2020, 7, 357–366. [CrossRef]

243. Oyeyemi, I.T.; Akinlabi, A.A.; Adewumi, A.; Aleshinloye, A.O.; Oyeyemi, O.T.; Akinlabi, A.A. *Zingiber officinale* and *Withania coagulans*—A promising use of a traditional pharmacological agent. *Phytother. Res.* 2018, 32, 1469–1476. [CrossRef] [PubMed]

244. Pawar, M.R.V.; Karthikeyan, E. Role of Catechins in Diabetes Mellitus. *Int. J. Pharmacogn. Res.* 2019, 11, 173–178. [CrossRef]

245. Celine, S.; Tomy, S.; Ujwala, T.; Johnson, S.; Chander, U. A detailed overview of medicinal plants having hypoglycemic activity. *Int. J. Phytochemistry 2016*, 6, 139–175. [CrossRef]

246. Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and associated complications. *Nutrients* 2020, 12, 357–366. [CrossRef] [PubMed]

247. Lakshmi, T.; Ramasamy, R.; Thirumalaikumar, R. Preliminary phytochemical analysis and in vitro antioxidant, FTIR spectroscopy, anti-diabetic activity of *Acacia catechu* ethanolic seed extract. *Pharmacogn. J.* 2015, 7, 356–362. [CrossRef]

248. Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. *Ther. Adv. Endocrinol. Metab.* 2018, 9, 81–100. [CrossRef]

249. Niture, N.T.; Ansari, A.A.; Naik, S.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. *Indian J. Exp. Biol.* 2014, 52, 720–727.

250. Ramalingam, S.; Packirisamy, M.; Karuppiah, M.; Vasu, G.; Gopalakrishnan, R.; Gothandam, K.; Thiruppathi, M. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPR and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats. *Cytotherapy* 2020, 72, 357–366. [CrossRef]

251. Nigam, V.; Nambiar, V. Therapeutic potential of *Aegle marmelos* (L.) Correa leaves as an antioxidant and anti-diabetic agent: A review. *Int. J. Pharma Sci. Res.* 2015, 6, 611–621.

252. Baliga, M.S.; Thilakchand, K.R.; Rai, M.P.; Rao, S.; Venkatesh, P. *Aegle marmelos* (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. *Integr. Cancer Ther.* 2013, 12, 187–196. [CrossRef]

253. Wei, C.-K.; Tsai, Y.-H.; Korinek, M.; Hung, P.-H.; El-Shazly, M.; Cheng, Y.-B.; Wu, Y.-C.; Hsieh, T.-J.; Chang, F.-R. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Transporter 4 in high fat diet and streptozotocin-induced diabetic rats. *Cytotechnology* 2015, 67, 641–652. [CrossRef]

254. Wang, X.; Li, Y.L.; Wu, H.; Liu, J.Z.; Hu, J.X.; Liao, N.; Peng, J.; Cao, P.P.; Liang, X.; Hai, C.X. Antidiabetic effect of oleaeinic acid: A promising use of a traditional pharmacological agent. *Phytother. Res.* 2011, 25, 1031–1040. [CrossRef] [PubMed]

255. Chaudhron, G.; Al-Numair, K.S.; Alsaif, M.A.; Veeramani, C. Antidiabetic effect of kaempferol a flavonoid compound, on streptozotocin-induced diabetic rats with special reference to glycoprotein components. *Prog. Nutr.* 2015, 17, 50–57.

256. Gupta, R.; Sharma, A.K.; Sharma, M.; Dobhal, M.; Gupta, R. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. *Nat. Prod. Res.* 2012, 26, 1125–1129. [CrossRef]

257. Sunil, C.; Irudayaraj, S.S.; Duraiyandiyavan, V.; Alrashood, S.T.; Alharbi, S.A.; Ignacimuthu, S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. *J. Ethnopharmacol.* 2021, 268, 113659. [CrossRef] [PubMed]

258. Kumar, D.; Dash, G.; Tripathy, N. Hypoglycaemic activity of bark extracts of *Albizia lebbeck* Benth. in streptozotocin induced diabetic rats. *Int. J. Pharm. Sci. Res.* 2013, 18, 28–32.

259. Hashiesz, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. *Nutrients* 2020, 12, 2963. [CrossRef]

260. Zhai, B.; Zhang, C.; Sheng, Y.; Zhao, C.; He, X.; Xu, W.; Huang, K.; Luo, Y. Hypoglycemic and hypolipidemic effect of S-allylcysteine sulfoxide (allin) in DIO mice. *Sci. Rep.* 2018, 8, 3527. [CrossRef] [PubMed]

261. Chan, C.-H.; Ngo, G.-C.; Yusoff, R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. *Pharmacogn. Res.* 2012, 6, 22–28. [CrossRef]
291. Belury, M.A.; Cole, R.M.; Snoke, D.B.; Banh, T.; Angelotti, A. Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins Leukot. Essent. Fats Acids 2018, 132, 30–33. [CrossRef]

292. Pu, J.; Peng, G.; Li, L.; Na, H.; Liu, Y.; Liu, P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells [S]. J. Lipid Res. 2011, 52, 1319–1327. [CrossRef]

293. Mishra, C.; Code, Q. Comparative anti-diabetic study of three phytochemicals on high-fat diet and streptozotocin-induced diabetic dyslipidemic rats. Int. J. Biomed. Adv. Res. 2018, 9, 286–293. [CrossRef]

294. Majidi, Z.; Bina, F.; Kahkeshani, N.; Rahimi, R. Bunium persicum: A review of ethnopharmacology, phytochemistry, and biological activities. Tradit. Integr. Med. 2020, 5, 150–176. [CrossRef]

295. Babuianarhanam, R.; Kavitha, P.; Pandian, M.R. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam. Clin. Pharmacol. 2010, 24, 357–364. [CrossRef]

296. Han, X.-X.; Jiang, Y.-P.; Liu, N.; Wu, J.; Yang, J.-M.; Li, Y.-X.; Sun, M.; Sun, T.; Zheng, P.; Yu, J.-Q. Protective effects of astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed. Pharmacother. 2019, 110, 561–570. [CrossRef] [PubMed]

297. Yusuf, M.; Nasiruddin, M.; Sultana, N.; Akhtar, J.; Khan, M.I.; Ahmad, M. Regulatory Mechanism of Caffeic acid on glucose Metabolism in Diabetes. Res. J. Pharm. Technol. 2012, 5, 4735–4740. [CrossRef]

298. Kadakol, A.; Malek, V.; Goru, S.K.; Pandey, A.; Sharma, N.; Gaikwad, A.B. Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J. Funct. Foods 2017, 35, 256–266. [CrossRef]

299. Song, J.-X.; Ren, H.; Gao, Y.-F.; Lee, C.-Y.; Li, S.-F.; Zhang, F.; Li, L.; Chen, H. Dietary capsaicin improves glucose homeostasis and lipid metabolism in diabetes. Molecules 2018, 23, 5803. [CrossRef] [PubMed]

300. Meng, S.; Cao, J.; Feng, Q.; Feng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid.-Based Complementary Altern. Med. 2013, 2013, 801457. [CrossRef] [PubMed]

301. Randelović, S.; Bipat, R. A Review of Coumarins and Coumarin-Related Compounds for Their Potential Anti-diabetic Effect. Clin. Med. Insights: Endocrinol. Diabetes 2019, 14, 11795514211042023. [CrossRef]

302. Malik, A.; Jamil, U.; Butt, T.T.; Waquar, S.; Gan, S.H.; Shaﬁque, H.; Jafar, T.H. In silico and in vitro studies of lupeol and iso-orientin as potential anti-diabetic agents in a rat model. Drug Des. Dev. Ther. 2019, 13, 1501–1513. [CrossRef]

303. Marcelino, G.; Machate, D.J.; de Cássia Freitas, K.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; de Cássia Avellaneda Guimarães, R. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020, 25, 5803. [CrossRef] [PubMed]

304. Bak, E.-J.; Kim, J.; Jang, S.; Woo, G.-H.; Yoon, H.-G.; Yoo, Y.-J.; Cha, J.-H. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Front. Physiol. 2017, 8, 602. [CrossRef]

305. Galeoci, G.; Gome-Machado, J.D.; Cavadini, G.; Secchi, A.; Scandola, L.; Migliorini, A.; Albo, E.; Specchio, A.; Campanella, G. Role of fructose and glucose in the development of type 2 diabetes mellitus. Int. J. Biomed. Adv. Res. 2016, 5, 491–493. [CrossRef]

306. Abbas, Z.K.; Saggu, S.; Sakeran, M.I.; Zidan, N.; Rehman, H.; Ansari, A.A. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J. Biol. Sci. 2015, 22, 322–326. [CrossRef] [PubMed]

307. Guo, X.; Sun, W.; Huang, L.; Wu, L.; Hou, Y.; Qin, L.; Liu, T. Effect of cinnamaldehyde on glucose metabolism and vessel function. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 3844–3853. [CrossRef]

308. Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: Proteomic and mechanistic insights. Sci. Rep. 2016, 6, 18798. [CrossRef] [PubMed]

309. Hsu, C.-C.; Lin, M.H.; Cheng, J.-T.; Wu, M.C. Diosmin, a Citrus Nutrient, Activates Imidazoline Receptors to Alleviate Blood Glucose and Lipids in Type 1-like Diabetic Rats. Nutrients 2017, 9, 684. [CrossRef] [PubMed]

310. Revaldy, J.; Sheikh Abdullah, S. The role of hesperetin in the management of diabetes mellitus and its complications. J. Cancer Treat. Res. 2017, 5, 1–6. [CrossRef]

311. Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [CrossRef]

312. Yan, F.; Benrong, H.; Qiang, T.; Qin, F.; Jizhou, X. Hypoglycemic activity of jatrohrrhizine. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2005, 24, 491–493. [CrossRef] [PubMed]

313. Li, Y.; Sun, M.; Liu, Y.; Liang, J.; Wang, T.; Zhang, Z. Gymnemic acid alleviates type 2 diabetes mellitus and suppresses endoplasmic reticulum stress in vivo and in vitro. J. Agric. Food Chem. 2019, 67, 3662–3669. [CrossRef] [PubMed]
316. Castro, A.J.G.; Frederico, M.J.S.; Cazanelli, L.H.; Mendes, C.P.; Bretanha, L.C.; Schmidt, E.C.; Bouzon, Z.L.; da Medeiros Pinto, V.A.; da Fonte Ramos, C.; Pizzolatti, M.G. The mechanism of action of ursoic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. *Biochim. Et Biophys. Acta (BBA)-Gen. Subj.* 2015, 1850, 51–61. [CrossRef] [PubMed]

317. Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.; Sinzora, R.V.; Detregiachi, C.R.P.; Girio, R.J.; Buchaim, D.V.; Cincotto dos Santos Bueno, P. The effects of curcumin on diabetes mellitus: A systematic review. *Front. Endocrinol.* 2021, 12, 443. [CrossRef] [PubMed]

318. Lekshmi, P.; Arimboor, R.; Raghu, K.; Menon, A.N. Turmerin, the antioxidant protein from *Curcuma longa* exhibits antihyperglycaemic effects. *Nat. Prod. Res.* 2012, 26, 1654–1658. [CrossRef]

319. Zabad, I.E.M.; Amin, M.N.; El-Shishtawy, M.M. Protective effect of vanillin on diabetic nephropathy by decreasing advanced glycation end products. *Life Sci.* 2019, 239, 110788. [CrossRef] [PubMed]

320. Zhou, Q.; Chen, L.; Chen, Q.-W.; Chen, H.-W.; Dong, J.-X. Chemical constituents of *Cudrania cochinchnensis*. *J. Chin. Med. Mater.* 2013, 36, 1444–1447.

321. Oza, M.J.; Kulkarni, Y.A. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. *Biomed. Pharmacother.* 2018, 107, 1119–1127. [CrossRef]

322. Yao, X.; Li, K.; Zhou, Z.; Wang, J.; Wang, S.; Liu, L.; Yu, C.-L.; Song, Z.-B.; Bao, Y.-L. Tectorigenin enhances PDX1 expression and protects pancreatic β-cells by activating ERK and reducing ER stress. *J. Biol. Chem.* 2020, 295, 12975–12992. [CrossRef]

323. Sultana, S.; Asif, H.M.; Naveed Akhtar, N.; Akhtar, N. *Dalbergia sissoo* Int. *J.* Pharmacogn. 2015, 2, 440–443.

324. Yuan, Y.-L.; Guo, C.-R.; Cui, L.-L.; Ruan, S.-X.; Zhang, C.-F.; Ji, D.; Yang, Z.-L.; Li, F. Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-kB signaling pathways in alloxan-induced mice. *Drug Des. Dev. Ther.* 2015, 9, 6247–6258. [CrossRef]

325. Qa’dan, F.; Verspohl, E.J.; Nahrstedt, A.; Petereit, F.; Matalka, K.Z. *Cinchonain Ib* isolated from *Cinchona officinalis* protects against diabetes and its complications. *Antioxidants* 2020, 9, 1000. [CrossRef]

326. Song, T.-J.; Park, C.-H.; In, K.-R.; Kim, J.-B.; Kim, J.H.; Kim, M.; Chang, H.J. Antidiabetic effects of betulinic acid mediated by the activation of AMP-activated protein kinase pathway. *Plos ONE* 2021, 16, e0249109. [CrossRef]

327. Oza, M.J.; Kulkarni, Y.A. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. *Biomed. Pharmacother.* 2018, 107, 1119–1127. [CrossRef]

328. Qin, D.; Xue, Y.; Zhang, J.; Zhang, J.; Zhao, Q.; Han, L.; Li, Y.; Liu, X.; Jia, Y.; Zhang, D.; et al. Effects of *Cassia obtusifolia* leaf-extract on the antioxidant markers in alloxan-induced diabetic and carrageenan-induced inflammatory. *J. Nephropathol.* 2016, 5, 1444–1451. [CrossRef]

329. Qin, D.; Xue, Y.; Zhang, J.; Zhang, J.; Zhao, Q.; Han, L.; Li, Y.; Liu, X.; Jia, Y.; Zhang, D.; et al. Effects of *Cassia obtusifolia* leaf-extract on the antioxidant markers in alloxan-induced diabetic and carrageenan-induced inflammatory. *J. Nephropathol.* 2016, 5, 1444–1451. [CrossRef]

330. Song, T.-J.; Park, C.-H.; In, K.-R.; Kim, J.-B.; Kim, J.H.; Kim, M.; Chang, H.J. Antidiabetic effects of betulinic acid mediated by the activation of AMP-activated protein kinase pathway. *Plos ONE* 2021, 16, e0249109. [CrossRef]

331. Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. *Biomed. Pharmacother.* 2016, 84, 230–236. [CrossRef]

332. Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. *Food Nutr. Res.* 2017, 61, 1364117. [CrossRef]

333. Shibata, L.K.; Puri, V. Phytochemical, nutritional and pharmacological evidences for *Abelmoschus esculentus* (L.). *J. Phytopharm.* 2016, 5, 238–241. [CrossRef]
364. Anwar, A.; Azmi, M.A.; Siddiqui, J.A.; Panhwar, G.; Shaikh, F.; Ariff, M. Thiamine level in type I and type II diabetes mellitus patients: A comparative study focusing on hematological and biochemical evaluations. *Cureus* 2020, 12, e8027. [CrossRef]

365. Leng, J.; Li, X.; Tian, H.; Liu, C.; Guo, Y.; Zhang, S.; Chu, Y.; Li, J.; Wang, Y.; Zhang, L. Neuroprotective effect of diosgenin in type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. *Medicine* 2020, 99, e23125. [CrossRef]

366. Chowdhury, S.; Ghosh, S.; Das, A.K.; Sil, P.C. Furalic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. *Front. Pharmacol.* 2019, 10, 27. [CrossRef]

367. Wang, H.; Wang, J.; Qiu, C.; Ye, Y.; Guo, X.; Chen, G.; Li, T.; Wang, Y.; Fu, X.; Liu, R.H. Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (*Linum usitatissimum L.*). *Food Chem.* 2017, 214, 227–233. [CrossRef]

368. Mitra, A.; Mahadevappa, M. Antidiabetic and hypolipidemic effects of mahanmbine (carbazole alkaloid) from *Murraya koenigii* (rutaceae) leaves. *Int. J. Phytomedicine* 2010, 2, 22–30. [CrossRef]

369. Song, S.E.; Jo, H.J.; Kim, Y.-W.; Cho, Y.-J.; Kim, J.-R.; Park, S.-Y. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. *J. Pharmacol. Sci.* 2016, 130, 235–243. [CrossRef]

370. Desai, S.; Saheb, S.H.; Das, K.K.; Haseena, S. Phytochemical Analysis of *Nigella sativa* and its Antidiabetic Effect. *J. Pharm. Sci. Res.* 2015, 7, 327–332.

371. Abdelrazek, H.; Kilany, O.E.; Muhammad, M.A.; Tag, H.M.; Abdelazim, A.M. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male Wistar rats. *Oxidative Med. Cell. Longev.* 2018, 2018, 810416S. [CrossRef]

372. Saravanan, S.; Pari, L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. *Eur. J. Pharmacol.* 2015, 761, 279–287. [CrossRef]

373. More, T.A.; Kulkarni, B.R.; Nalawade, M.L.; Arvindekar, A.U. Antidiabetic activity of linalool and limonene in streptozotocin-induced diabetic rat: A combinatorial therapy approach. *Int. J. Pharm. Pharm. Sci.* 2014, 6, 159–163. [CrossRef]

374. Al-Azzawie, H.F.; Alhamdani, M.S.S. Hypoglycemic and antioxidant effect of oleanoepin in alloxan-diabetic rabbits. *Life Sci.* 2006, 78, 1371–1377. [CrossRef]

375. Dai, S.; Hong, Y.; Xu, J.; Lin, Y.; Si, Q.; Gu, X. Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. *Biomed. Pharmacother.* 2018, 100, 93–100. [CrossRef]

376. Li, Y.; Zheng, X.; Yi, X.; Liu, C.; Kong, D.; Zhang, J.; Gong, M. Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. *FASEB J.* 2017, 31, 2603–2611. [CrossRef]

377. Kulkarni, C.R.; Joglekar, M.M.; Patil, S.B.; Arvindekar, A.U. Antihyperglycemic and antihyperlipidemic effect of *Santalum album* in streptozotocin induced diabetic rats. *Pharm. Biol.* 2012, 50, 360–365. [CrossRef]

378. Paswan, S.K.; Verma, P.; Azmi, L.; Srivastava, S.; Venkateswara Rao, C. Phytochemical Investigation and HPTLC Fingerprinting Analysis of *Selaginella bryopteris* Ethanolic Plant Extract for Analgesic and Anti-inflammatory Activities in Animals. *J. Biol. Act. Prod. Nat.* 2021, 11, 395–405. [CrossRef]

379. Neeta, M.; Mukta, N.; Bilwa, K. Comparative qualitative phytochemical analysis of *Sesamum indicum* L. *Int. J. Curr. Microbiol. Appl. Sci.* 2015, 2, 172–181.

380. Mohammad Shahi, M.; Zakerzadeh, M.; Zakerkish, M.; Zarei, M.; Saki, A. Effect of sesamin supplementation on glycemic status, inflammatory markers, and adiponecin levels in patients with type 2 diabetes mellitus. *J. Diet. Suppl.* 2017, 14, 65–75. [CrossRef] [PubMed]

381. Bhadoriya, S.S.; Ganeshpurkar, A.; Bhadoriya, R.P.S.; Sahu, S.K.; Patel, J.R. Antidiabetic potential of polyphenolic-rich fraction of *Tamarindus indica* seed coat in alloxan-induced diabetic rats. *J. Basic Clin. Physiol. Pharmacol.* 2018, 29, 37–45. [CrossRef] [PubMed]

382. Harakeh, S.; Almuhayawi, M.; Al Joami, S.; Almasaudi, S.; Hassan, S.; Al Amri, T.; Azhar, N.; Abd-Allah, E.; Ali, S.; El-Shitany, N. Antidiabetic effects of novel ellagic acid nanoformulation: Insulin-secreting and anti-apoptosis effects. *Saudi J. Biol. Sci.* 2020, 27, 3474–3480. [CrossRef]

383. Chang, C.L.; Lin, C.S. Phytochemical composition, antioxidant activity, and neuroprotective effect of *Terminalia chebula* Retzios extracts. *Evid.-Based Complementary Altern. Med.* 2012, 2012, 125247. [CrossRef]

384. Liu, X.; Kim, J.-k.; Li, Y.; Li, J.; Liu, F.; Chen, X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. *J. Nutr.* 2005, 135, 165–171. [CrossRef]

385. Rajalakshmi, M.; Anita, R. β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of *Tinospora cordifolia* stem on streptozotocin-induced diabetic Wistar rats. *Chem.-Biol. Interact.* 2016, 243, 45–53. [CrossRef]

386. Kalaiingam, P.; Kannaiyan, B.; Tamilmani, E.; Kaliaperumal, R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. *Phytomedicine* 2014, 21, 1154–1161. [CrossRef]

387. Leng, J.; Li, X.; Tian, H.; Liu, C.; Guo, Y.; Zhang, S.; Chu, Y.; Li, J.; Wang, Y.; Zhang, L. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/ HO-1 pathway. *BMC Complementary Med. Ther.* 2020, 20, 126. [CrossRef]

388. Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Kabbashi, N.A. Extraction and characterization of bioactive compounds in *Vernonia amygdalina* leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. *J. Taibah Univ. Sci.* 2019, 13, 414–422. [CrossRef]

389. Balbi, M.E.; Tonin, F.S.; Mendes, A.M.; Borba, H.H.; Wiens, A.; Fernandez-Llimos, F.; Pontarolo, R. Antioxidant effects of vitamins in type 2 diabetes: A meta-analysis of randomized controlled trials. *Diabetol. Metab. Syndr.* 2018, 10, 18. [CrossRef] [PubMed]
368. Ram, H.; Kumar, P.; Purohit, A.; Kashyap, P.; Kumar, S.; Kumar, S.; Singh, G.; Alqarawi, A.A.; Hashem, A.; Abd-Allah, E.F. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. *Nutr. Metab.* **2021**, *18*, 43. [CrossRef] [PubMed]

369. Peerzade, N.; Sayed, N.; Das, N. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity. *Pharma Innov. J.* **2018**, *7*, 197–204.

370. Osadebe, P.O.; Odoh, E.U.; Uzor, P.F. Natural products as potential sources of antidiabetic drugs. *J. Pharm. Res. Int.* **2014**, *4*, 2075–2095. [CrossRef]

371. Dev, S. *Prime Ayurvedic Plant Drugs: A Modern Scientific Appraisal*, 1st ed.; Ane Books Pvt. Limited: New Delhi, India, 2012; p. 464.

372. Adedapo, A.; Ogunmiluyi, I. The use of natural products in the management of diabetes: The current trends. *J. Drug Deliv. Ther.* **2020**, *10*, 153–162. [CrossRef]

373. Kalita, P.; Deka, S.; Saharia, B.J.; Chakraborty, A.; Basak, M.; Deka, M. An overview and future scope on traditionally used herbal plants of Assam having Antidiabetic activity. *Int. J. Adv. Pharm. Biol. Chem.* **2014**, *3*, 299–304.

374. Rout, S.P.; Chowdary, K.; Kar, D.; Das, L. Plants as source of novel anti-diabetic drug: Present scenario and future perspectives. *Curr. Trends Biotechnol. Pharmacol.* **2008**, *3*, 614–632.

375. Verma, S.; Singh, S. Current and future status of herbal medicines. *Vet. World* **2008**, *1*, 347. [CrossRef]

376. Kifle, Z.D.; Abdelwuhab, M.; Melak, A.D.; Meseret, T.; Adugna, M. Pharmacological evaluation of medicinal plants with antidiabetic activities in Ethiopia: A review. *Metab. Open* **2022**, *13*, 100174. [CrossRef]