A nonexistence result for CMC surfaces in hyperbolic 3-manifolds

William H. Meeks III Alvaro K. Ramos*

July 10, 2020

Abstract

We prove that a complete hyperbolic 3-manifold of finite volume does not admit a properly embedded noncompact surface of finite topology with constant mean curvature greater than or equal to 1.

Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42.

Key words and phrases: Constant mean curvature, hyperbolic 3-manifolds, Calabi-Yau problem.

1 Introduction.

We continue the study of properly immersed surfaces of constant mean curvature H in hyperbolic 3-manifolds of finite volume that began with the works of Collin, Hauswirth, Mazet and Rosenberg [2, 4] in the minimal case, and was extended to the $H \in (0, 1)$ case by the authors [6].

In this paper we prove:

Theorem 1.1. A complete hyperbolic 3-manifold of finite volume does not admit a properly embedded noncompact surface of finite topology with constant mean curvature $H \geq 1$.

*The authors were partially supported by CNPq - Brazil, grant no. 400966/2014-0.
Theorem 1.1 contrasts with [6, Proposition 4.8], where it is shown that, for any \(H \geq 1 \) and any noncompact hyperbolic 3-manifold \(N \) of finite volume, there exists a complete, properly immersed annulus with constant mean curvature \(H \). Therefore, the hypothesis of embeddedness in Theorem 1.1 is necessary. Moreover, in [1], together with Adams, we proved that for any \(H \in [0, 1) \) and any surface \(S \) of finite negative Euler characteristic, there exists a hyperbolic 3-manifold of finite volume with a proper embedding of \(S \) with constant mean curvature \(H \). Furthermore, there are examples of closed surfaces in hyperbolic 3-manifolds of finite volume for any \(H \geq 1 \); namely geodesic spheres and tori and Klein bottles in its cusp ends.

The work of the first author with Tinaglia [7] allows one to replace the hypothesis of properness in Theorem 1.1 by the weaker assumption of completeness, since [7] shows that any complete, embedded, finite topology surface of constant mean curvature \(H \geq 1 \) in a complete hyperbolic 3-manifold is proper. Finally, there remains the question of whether or not there exist properly embedded surfaces of infinite topology and constant mean curvature \(H \geq 1 \) in hyperbolic 3-manifolds of finite volume.

2 Proof of Theorem 1.1.

Theorem 1.1 follows directly from next lemma.

Lemma 2.1. A complete hyperbolic 3-manifold of finite volume \(N \) does not admit a proper embedding of \(A = \mathbb{S}^1 \times [0, \infty) \) with constant mean curvature \(H \geq 1 \).

Proof. After passing to the oriented two-sheeted cover of \(N \), we may assume without loss of generality that \(N \) is orientable.

Arguing by contradiction suppose that \(E \subset N \) is the image of a proper embedding of \(A \) as stated in the lemma. Since \(E \) is proper and \(N \) is an orientable hyperbolic 3-manifold of finite volume, there exists some cusp end \(C \) of \(N \) with the following properties:

1. \(\partial E \cap C = \emptyset \).
2. \(\partial C \) is a flat torus \(\mathcal{T}(0) \) which intersects \(E \) transversely in a finite collection of pairwise disjoint simple closed curves.
3. \(E \cap C \) contains a unique noncompact component \(\Delta \), which is a planar domain.
Since \(\Delta \) is connected and \(\partial \Delta \) separates \(\partial E \) from the end of \(E \), it follows that
\(\partial \Delta \subset \mathcal{T}(0) \) contains a unique simple closed curve \(\gamma \subset \partial \Delta \) which generates the first homology group \(H_1(E) \). Moreover, any other boundary component of \(\partial \Delta \) is homotopically trivial in \(E \), and hence, homotopically trivial in \(N \). In particular,
\(i_\ast(\pi_1(\Delta)) \) is either trivial or an infinite cyclic subgroup of \(\pi_1(C) \), where \(i: \Delta \to C \) is the inclusion map and \(i_\ast: \pi_1(\Delta) \to \pi_1(C) \) is the induced map on fundamental groups, after choosing a base point on \(\gamma \).

We let \(\Pi: \mathbb{H}^3 \to N \) be the universal cover of \(N \) and let \(B \subset \mathbb{H}^3 \) be a horoball such that \(\Pi|_B: B \to C \) is the universal cover of \(C \). Using the half-space model for \(\mathbb{H}^3 \), we assume, without loss of generality, that \(B \) is the region
\[B = \{(x, y, z) \in \mathbb{H}^3 \mid z \geq 1\}. \]

Case 2.2. \(i_\ast: \pi_1(\Delta) \to \pi_1(C) \) is trivial.

Since \(i_\ast \) is trivial, \(i: \Delta \to C \) admits a lift \(\tilde{i}: \Delta \to B \), whose image \(\tilde{\Delta} \) is a properly embedded planar domain in \(B \) with \(\partial \tilde{\Delta} \subset \partial B \). By [3, Theorem 10] (for \(H = 1 \)) and [5, Theorem 6.9] (for \(H > 1 \)), it follows that \(\tilde{\Delta} \) is asymptotic to a constant mean curvature \(H \) annulus \(A \subset B \), in the sense that a subend of \(\tilde{\Delta} \) is a graph in exponential normal coordinates over a subend of \(A \) with graphing function converging in the \(C^2 \)-norm to zero for any divergent sequence of points. Moreover, \(A \) admits a vertical axis of rotational symmetry, and there are three possibilities:

1. \(H = 1 \) and \(A \) is the end of a horosphere;
2. \(H = 1 \) and \(A \) is the end of an embedded catenoid cousin;
3. \(H > 1 \) and \(A \) is the end of a Delaunay surface.

Note that the Catenoid cousin in item 2 is embedded because any end representative of a nonembedded Catenoid cousin is never contained in a horoball.

In each case, \(A \) has bounded norm on its second fundamental form and infinite area; hence, since \(\tilde{\Delta} \) is asymptotic to \(A \) in the \(C^2 \)-norm, it follows that \(\tilde{\Delta} \) also has bounded norm of its second fundamental form \(\|A_{\tilde{\Delta}}\| \) and infinite area. Next, we use these properties to get a contradiction.

Since \(\tilde{\Delta} \) is a complete, properly embedded surface with \(\partial \tilde{\Delta} \subset \partial B \), then \(\tilde{\Delta} \) defines a mean convex region \(M \subset B \) with \(\partial M \setminus \partial B = \tilde{\Delta} \). Moreover, since \(\mathbb{H}^3 \) is a homogeneously regular manifold and \(\tilde{\Delta} \) has compact boundary and separates \(B \), the bound on \(\|A_{\tilde{\Delta}}\| \) gives the existence of a one-sided regular neighborhood in \(M \) of radius \(\delta > 0 \), see [8, Lemma 3.1]. Since \(\tilde{\Delta} \) has infinite area and \(\delta > 0 \), then \(M \) has infinite volume.
Figure 1: \(\tilde{\Delta} \) has constant mean curvature \(H \geq 1 \) and each hypersphere \(S_t^+ \) has constant mean curvature \(H_0 = \cos(\alpha) \). The plane \(L \) separates \(p \) and \(\partial \tilde{\Delta} \), \(p \) lies in the mean convex region of \(\mathbb{H}^3 \) determined by \(L \) and \(S_t^+ \) converge, when \(t \to \infty \), to \(L \).

Let \(\sigma: B \to B \) be a parabolic translation of \(\mathbb{H}^3 \) that is a covering transformation of \(\Pi \). Since \(\Delta \) is embedded, then \(\sigma(\tilde{\Delta}) \cap \tilde{\Delta} = \emptyset \); thus, either \(\sigma(M) \cap M = \emptyset \) or \(\sigma(M) \subset M \). Since \(\sigma \) is a translation, the latter is not possible and we obtain that \(\sigma(M) \cap M = \emptyset \). Hence, \(\Pi|_M: M \to \mathcal{C} \) is injective, which is a contradiction because \(\mathcal{C} \) has finite volume, and this proves Lemma 2.1 when \(i^* \) is trivial.

Case 2.3. \(i_*: \pi_1(\Delta) \to \pi_1(\mathcal{C}) \) is nontrivial.

In this case, \(i_*(\pi_1(\Delta)) \) is a \(\mathbb{Z} \)-subgroup of \(\mathbb{Z} \times \mathbb{Z} = \pi_1(\mathcal{C}) \), generated by \(i_*(\gamma) \). Let \(\tilde{\Delta} \subset B \) be a connected component of \(\Pi^{-1}(\Delta) \). Then \(\tilde{\Delta} \) is a complete, non-compact, properly embedded planar domain in \(B \) with \(\partial \tilde{\Delta} \subset \partial B \); in particular, it defines a mean convex region \(M \subset B \) with \(\partial M \setminus \partial B = \tilde{\Delta} \).

Also, note that \(\tilde{\Delta} \) is invariant under the parabolic covering transformation \(\theta: B \to B \) corresponding to \(i_*([\gamma]) \in \pi_1(\mathcal{C}) \). Since \(\partial \tilde{\Delta} \) is compact, \(\partial \tilde{\Delta} \) stays a finite distance \(c > 0 \) from a line \(l \subset \partial B \), invariant under \(\theta \). In order to clarify the next argument, we apply a rotation around the \(z \)-axis of \(\mathbb{H}^3 \) to assume that \(l = \{(0, y, 1) \mid y \in \mathbb{R}\} \); hence, \(\partial \tilde{\Delta} \subset \{(x, y, 1) \mid x \in (-c, c), y \in \mathbb{R}\} \). Also, after possibly reflecting through the \(xz \)-plane, we may assume that \(\{(x, y, 1) \mid x \geq \).
Let \(p = (x_1, y_1, z_1) \in \tilde{\Delta} \) be such that \(z_1 > 1 \) and \(x_1 \in (-c, c) \). Let \(q = (x_1, y_1, \frac{z_1+1}{2}) \) and let \(L \) be the tilted plane through \(q \) containing the line \(\{(c, y, 1) \mid y \in \mathbb{R}\} \). Then, \(L \) is an equidistant surface to a totally geodesic vertical plane and, when oriented with respect to the upper normal vector field, has constant mean curvature \(H_0 = \cos(\alpha) \in (0, 1) \), where \(\alpha \) is the acute, Euclidean angle between \(L \) and \(\{z = 0\} \). Note that \(L \) separates \(\partial \tilde{\Delta} \) and \(p \), and that \(p \) lies in the mean convex region \(U \) defined by \(L \) in \(\mathbb{H}^3 \).

Let \(S_0 \) be a totally geodesic surface of \(\mathbb{H}^3 \) such that \(S_0 \subset U \), with asymptotic boundary meeting the asymptotic boundary of \(L \) in a single point. Let \(S_0^+ \) denote the equidistant surface to \(S_0 \) with constant mean curvature \(H_0 \) with respect to the inner orientation. Note that we may choose \(S_0 \) so that \(S_0^+ \cap \partial B = \emptyset \), as shown in Figure 1.

Let \(M^+ \subset \mathbb{H}^3 \) denote the mean convex region defined by \(S_0^+ \). Then, there is a product foliation \(\{S_t^+\}_{t \geq 0} \) of \(U \setminus M^+ \) such that each surface \(S_t^+ \) is equidistant to a totally geodesic surface of \(\mathbb{H}^3 \) and has constant mean curvature \(H_0 \) with respect to the inward orientation; when \(t \to \infty \), the surfaces \(S_t^+ \) converge to \(L \).

Since \(p \in \tilde{\Delta} \subset B \), then \(p \not\in M^+ \). Then, the fact that \(p \in U \) implies that \((\bigcup_{t \geq 0} S_t^+) \cap \tilde{\Delta} \neq \emptyset \). But because \(S_t^+ \cap B \) is compact for all \(t \geq 0 \), there exists a smallest \(T > 0 \) such that \(S_T^+ \cap \tilde{\Delta} \neq \emptyset \). Since our construction gives that \(\partial \tilde{\Delta} \cap U = \emptyset \), any point \(w \) in \(S_T^+ \cap \tilde{\Delta} \) is interior to both \(\tilde{\Delta} \) and \(S_T^+ \), and then \(S_T^+ \) and \(\tilde{\Delta} \) intersect tangentially at \(w \). Finally, since \(S_T^+ \cap B \subset M \), the mean curvature comparison principle implies that \(H_0 \geq H \), which is a contradiction, and this proves Lemma 2.1.

\(\square \)

References

[1] C. Adams, W. H. Meeks III, and A. Ramos. Totally umbilical surfaces in hyperbolic 3-manifolds. Preprint at https://arxiv.org/pdf/2007.03166.pdf.

[2] P. Collin, L. Hauswirth, L. Mazet, and H. Rosenberg. Minimal surfaces in finite volume non compact hyperbolic 3-manifolds. Ann. of Math. (2), 145–1:1–31, 1997.

[3] P. Collin, L. Hauswirth, and H. Rosenberg. The geometry of finite topology Bryant surfaces. Ann. of Math., 153(3):623–659, 2001. MR1836284 (2002j:53012), Zbl 1066.53019.
[4] P. Collin, L. Hauswirth, and H. Rosenberg. Minimal surfaces in finite volume hyperbolic 3-manifolds and in $M \times S$, M a finite area hyperbolic surface. *Amer. J. Math.*, 140(4):1075–1112, 2018. DOI 10.1353/ajm.2018.0024.

[5] N. Korevaar, R. Kusner, W. H. Meeks III, and B. Solomon. Constant mean curvature surfaces in hyperbolic space. *American J. of Math.*, 114:1–43, 1992. MR1147718, Zbl 0757.53032.

[6] W. H. Meeks III and A. K. Ramos. Properly immersed surfaces in hyperbolic 3-manifolds. *J. Differential Geom.*, 112(2):233–261, 2019. DOI 10.4310/jdg/1559786424 https://doi.org/10.4310/jdg/1559786424, MR3960267.

[7] W. H. Meeks III and G. Tinaglia. Embedded Calabi-Yau problem in hyperbolic 3-manifolds. Work in progress.

[8] W. H. Meeks III and G. Tinaglia. Existence of regular neighborhoods for H-surfaces. *Illinois J. of Math.*, 55(3):835–844, 2011. MR3069286, Zbl 1269.53014.

William H. Meeks, III at profmeeks@gmail.com
Mathematics Department, University of Massachusetts, Amherst, MA 01003

Álvaro K. Ramos at alvaro.ramos@ufrgs.br
Departmento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul, Brazil