Distribution of cycles for one-dimensional random dynamical systems

Hiroki Takahasi
(Keio Institute of Pure and Applied Sciences (KiPAS))
Joint work with Shintaro Suzuki (KiPAS)

the One World Numeration Seminar
December 13, 2022
preprint available at https://arxiv.org/abs/2108.05522
Periodic points of dynamical systems

X: space
T: $X \rightarrow X$ map

$$T^n(x) := \underbrace{T \circ T \circ \cdots \circ T}_{n \text{ times composition}}(x) \quad (n = 0, 1, 2, \ldots)$$

PROBLEM: Describe the structure of the orbit $\{T^n(x)\}_{n=0}^{\infty}$ for a majority of initial conditions x.

$\text{Fix}(T^n) := \{x \in X : T^n(x) = x\} \quad (n = 1, 2, \ldots)$. For $x \in \text{Fix}(T^n)$, the set $\{x, T(x), \ldots, T^{n-1}(x)\}$ is called a periodic orbit. The point x is called a **periodic point of period n**.

$\text{Fix}(T^n) \ni x \rightarrow T(x) \rightarrow T^2(x) \rightarrow \cdots \rightarrow T^n(x) = x$.

- approximations of dynamical objects by periodic orbits (invariant set, invariant measure, pressure, ...)
- dynamical zeta function, Livschitz’s theorem, ...
Distribution of periodic points

\(X: \text{ space} \)
\(T: X \rightarrow X: \text{ map} \)
\(\varphi: X \rightarrow \mathbb{R} \text{ potential (weight function)} \)

\(S_n \varphi := \sum_{k=0}^{n-1} \varphi \circ T^k. \)

\(\nu_{n,\varphi} := \frac{1}{Z_n(\varphi)} \sum_{x \in \text{Fix}(T^n)} \exp(S_n \varphi(x)) \delta_x \)

where

\(Z_n(\varphi) := \sum_{x \in \text{Fix}(T^n)} \exp(S_n \varphi(x)) . \)

Theorem 1 (Bowen 1975)

Let \(X \) be a topologically mixing subshift of finite type and \(T: X \rightarrow X \) the left shift. For any Hölder continuous function \(\varphi: X \rightarrow \mathbb{R} \), the sequence \(\{\nu_{n,\varphi}\}_{n=1}^{\infty} \) converges to the equilibrium state for the potential \(\varphi \).

How Theorem 1 can be extended to random dynamical systems?
 Independently Identically Distributed random dynamical systems

$2 \leq N < \infty$ integer, $T_i : X \to X$ $(1 \leq i \leq N)$ maps $p = (p_1, \ldots, p_N)$: probability vector with $\prod_{i=1}^{N} p_i \neq 0$. We consider an i.i.d. random dynamical system in which T_i is chosen with probability p_i at each step.

$\mathbb{N} = \{1, 2, \ldots\}$, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
$\Omega := \{1, 2, \ldots, N\}^\mathbb{N}$ sample space

For a sample path $\omega = (\omega_n)_{n\in\mathbb{N}} \in \Omega$ and $n \in \mathbb{N}$, consider a random composition

$$T^n_\omega := T_{\omega_n} \circ T_{\omega_{n-1}} \circ \cdots \circ T_{\omega_1}.$$

For convenience, define T^0_ω to be the identity map on X.

$\{T^n_\omega(x)\}_{n\in\mathbb{N}_0}$ is called a random orbit with initial condition x.
A random cycle is an element of the set

$$\bigcup_{n \in \mathbb{N}} \bigcup_{\omega \in \Omega} \text{Fix}(T_\omega^n),$$

where

$$\text{Fix}(T_\omega^n) := \{x \in X: T_\omega^n(x) = x\}.$$

$x \in \text{Fix}(T^n)$ implies that the orbit $\{T^n(x)\}_{n \in \mathbb{N}_0}$ is finite as a set, whereas $x \in \text{Fix}(T_\omega^n)$ does not imply the finiteness of the random orbit $\{T^n_\omega(x)\}_{n \in \mathbb{N}_0}$ as a set. Indeed, we have

$$T^{n+1}_\omega(x) = T_{\omega_{n+1}} \circ T_{\omega_n} \circ \cdots \circ T_{\omega_2} \circ T_{\omega_1}(x)$$

$$= T_{\omega_{n+1}}(x),$$

which may not be contained in the set

$$\{x, T_{\omega_1}(x), T_{\omega_2} \circ T_{\omega_1}(x), \ldots, T_{\omega_{n-1}} \circ \cdots \circ T_{\omega_1}(x)\}.$$
\[\bigcup_{n \in \mathbb{N}} \bigcup_{\omega \in \Omega} \text{Fix}(T^n_\omega), \]

- **Samplewise (Quenched):** Fix \(\omega \in \Omega \), and ask behaviors of
 \[\text{Fix}(T^n_\omega) \]
 as \(n \to \infty \).

- **Sample-averaged (Annealed):** Ask behaviors of
 \[\bigcup_{\omega \in \Omega} \text{Fix}(T^n_\omega) \]
 as \(n \to \infty \).
Some results/facts on random cycles

- Dynamical zeta functions defined by random cycles were considered by Ruelle (1990), Buzzi (2002).
- A dynamical zeta function defined by random cycles of certain random matrices cannot be extended holomorphically beyond its disk of holomorphy, almost surely. (Buzzi (2002))
- Distribution of $\bigcup_{\omega \in \Omega} \text{Fix}(T^n_\omega)$ as $n \to \infty$ for Ruelle expanding maps. (Carvalho/Rodrigues/Varandas (2017))
- Growth of $\# \text{Fix}(T^n_\omega)$ as $n \to \infty$ (Asaoka/Shinohara/Turaev (2017)) for random interval maps systems with expansion/contraction
X: compact interval

A **fully branched map** on X is a map $T: \bigcup_{a \in \mathcal{A}} J_a \to X$ where $\mathcal{A} \subset \mathbb{N}$ with $2 \leq \# \mathcal{A} < \infty$, and $(J_a)_{a \in \mathcal{A}}$ is a collection of pairwise disjoint subintervals of X such that:

- $X = \bigcup_{a \in \mathcal{A}} J_a$;
- for each $a \in \mathcal{A}$, the restriction of T to J_a extends to a C^2 diffeomorphism on $\text{cl}(J_a)$;
- for each $a \in \mathcal{A}$, $\text{cl}(T(J_a)) = X$.

A fully branched map T on X is **uniformly expanding** if there exists a constant $\gamma > 1$ such that $\inf_{x \in J_a} |(T|_{J_a})'x| \geq \gamma$ for any $a \in \mathcal{A}$.
I.i.d. random dynamical system

\(T_1, \ldots, T_N, 1 \leq N < \infty \) fully branched uniformly expanding maps on \(X \) (do not assume a common Markov partition).

\(\Omega := \{1, 2, \ldots, N\}^\mathbb{N}, \ p = (p_1, \ldots, p_N) \) probability vector with \(\prod_{i=1}^N p_i > 0 \), \(m_p \) : Bernoulli measure on \(\Omega \) determined by \(p \).

For a sample \(\omega = (\omega_n)_{n \in \mathbb{N}} \in \Omega \) and \(n \geq 1 \),

\[T^n_\omega(x) := T_{\omega_n} \circ T_{\omega_{n-1}} \circ \cdots \circ T_{\omega_1}(x), \quad T^0_\omega(x) = x. \]

By Pelikan’s theorem (1984), \(\exists! \) a Borel probability measure \(\lambda_p \) on \(X \) s.t. \(\lambda_p \ll \text{Leb} \) and \(\lambda_p = \sum_{i=1}^N p_i \lambda_p \circ T_i^{-1} \). From the random ergodic theorem, For \(m_p \)-a.e. \(\omega \in \Omega \) and any \(\phi : X \to \mathbb{R} \) continuous,

\[\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi(T^k_\omega(x)) = \int \phi d\lambda_p \quad \text{for } \lambda_p\text{-a.e. } x \in X, \]

namely, for \(\lambda_p\text{-a.e. } x \in X, \)

\[\delta^\omega_n := \frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^k_\omega(x)} \to \lambda_p \quad \text{in the weak* topology as } n \to \infty. \]
Random cycle measures

For $\omega \in \Omega$, define a samplewise random cycle measure ξ_n^ω on X by

$$\xi_n^\omega = \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T_n^\omega)} |(T_n^\omega)' x|^{-1} \delta_x^n \quad (n = 1, 2, \ldots),$$

where $(T_n^\omega)' x := \prod_{i=1}^n (T_\omega i)' (T_i^{-1}(x))$ and $Z_{\omega,n} := \sum_{x \in \text{Fix}(T_n^\omega)} |(T_n^\omega)' x|^{-1}$ is the normalizing constant.

(Distribution of random cycles). Does the sequence $\{\xi_n^\omega\}_{n=1}^\infty$ converge? If so, what is the limit measure?

$\mathcal{M}(X)$: the space of Borel probability measures on X.
For $\omega \in \Omega$, define a samplewise random cycle measure $\tilde{\xi}_n^\omega$ on $\mathcal{M}(X)$ by

$$\tilde{\xi}_n^\omega = \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T_n^\omega)} |(T_n^\omega)' x|^{-1} \delta_{\delta_x^n} \quad (n = 1, 2, \ldots),$$

where $\delta_{\delta_x^n}$ is the unit point mass at δ_x^n.
Theorem A

Let $2 \leq N < \infty$, and let T_1, \ldots, T_N be fully branched uniformly expanding maps on X. Let $p = (p_1, \ldots, p_N)$ be a probability vector with $\prod_{i=1}^N p_i > 0$. For m_p-almost every $\omega \in \Omega$, the sequence $\{\tilde{\xi}_{\omega}^n\}_{n=1}^\infty$ of samplewise random cycle measures on $\mathcal{M}(X)$ converges to the unit point mass at λ_p in the weak* topology.

i.e., for any continuous function $\bar{\varphi}: \mathcal{M}(X) \to \mathbb{R}$, $\int \bar{\varphi} d\tilde{\xi}_n^\omega \to \bar{\varphi}(\lambda_p)$.

Corollary 1

For m_p-almost every $\omega \in \Omega$, the sequence $(\xi_{\omega}^n)_{n=1}^\infty$ converges in the weak* topology to λ_p as $n \to \infty$.

i.e., for any continuous function $\varphi: X \to \mathbb{R}$, $\int \varphi d\xi_n^\omega \to \int \varphi d\lambda_p$.

Proof of Corollary 1.

Given $\varphi: X \to \mathbb{R}$, apply Theorem A to the continuous function $\nu \in \mathcal{M}(X) \mapsto \int \varphi d\nu \in \mathbb{R}$.
Corollary 2 (Inspired by Olsen (2003))

Let T_1, \ldots, T_N and $p = (p_1, \ldots, p_N)$ be as in Theorem A.

(a) If $\varphi, \psi : X \to \mathbb{R}$ are continuous, then for m_p-almost every $\omega \in \Omega$,

$$
\lim_{n \to \infty} \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T^n_\omega)} |(T^n_\omega)'(x)|^{-1} \frac{1}{n^2} \sum_{k=0}^{n-1} \varphi(T^k_\omega(x)) \sum_{k=0}^{n-1} \psi(T^k_\omega(x)) = \int \varphi d\lambda_p \int \psi d\lambda_p.
$$

(b) If $\varphi : X \to \mathbb{R}, \psi : X \to \mathbb{R}$ are continuous with $\inf \psi > 0$, then for m_p-almost every $\omega \in \Omega$,

$$
\lim_{n \to \infty} \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T^n_\omega)} |(T^n_\omega)'(x)|^{-1} \frac{1}{n^2} \sum_{k=0}^{n-1} \varphi(T^k_\omega(x)) \sum_{k=0}^{n-1} \psi(T^k_\omega(x)) = \frac{\int \varphi d\lambda_p}{\int \psi d\lambda_p}.
$$
Corollary 2 (Continued)

(c) If $\pi_1, \pi_2: X \to \mathbb{R}$ are continuous and $g: \mathbb{R} \to \mathbb{R}$ is bounded continuous, then for m_p-almost every $\omega \in \Omega$ we have

$$
\lim_{n \to \infty} \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T^n_\omega)} |(T^n_\omega)'(x)|^{-1} \frac{1}{n^2} \times
$$

$$
\sum_{k_1, k_2 = 0}^{n-1} g(\pi_1(T^{k_1}_\omega(x)) + \pi_2(T^{k_2}_\omega(x)))
$$

$$
= \int g d(\lambda_p \circ \pi_1^{-1} \otimes \lambda_p \circ \pi_2^{-1}),
$$

where \otimes denotes the convolution.

Proof of Corollary 2.

Apply Theorem A to the continuous functions

$v \in \mathcal{M}(X) \mapsto \int \varphi d\nu \int \psi d\nu$, $v \in \mathcal{M}(X) \mapsto \int \varphi d\nu / \int \psi d\nu$, $v \in \mathcal{M}(X) \mapsto \int gd(v \circ \pi_1^{-1} \otimes v \circ \pi_2^{-1})$ respectively.
By Riesz’s representation theorem, for each $p = (p_1, \ldots, p_N)$ and $n \in \mathbb{N}$, there exists a Borel probability measure $\tilde{\eta}_{p,n}$ on $\mathcal{M}(X)$ s.t.

$$
\int \tilde{\varphi} d\tilde{\eta}_{p,n} = \int dm_p(\omega) \int \tilde{\varphi} d\tilde{\xi}_n^\omega \quad \text{for any continuous } \tilde{\varphi} : \mathcal{M}(X) \rightarrow \mathbb{R}.
$$

Also, there exists a Borel probability measure $\eta_{p,n}$ on X s.t.

$$
\int \varphi d\eta_{p,n} = \int dm_p(\omega) \int \varphi d\xi_n^\omega \quad \text{for any continuous } \varphi : X \rightarrow \mathbb{R}.
$$

Corollary 3

Let T_1, \ldots, T_N and $p = (p_1, \ldots, p_N)$ be as in Theorem A. Then $(\tilde{\eta}_{p,n})_{n=1}^\infty$ converges to δ_{λ_p} in the weak* topology as $n \rightarrow \infty$ and $(\eta_{p,n})_{n=1}^\infty$ converges to λ_p in the weak* topology as $n \rightarrow \infty$.
Distribution of random cycles: sample-averaged result

For $\omega \in \Omega$ and $n \in \mathbb{N}$, write $T_{\omega_1 \cdots \omega_n} = T^n_\omega$ and $\delta_{x}^{\omega_1 \cdots \omega_n} = \delta_{x}^n$.

For $p = (p_1, \ldots, p_N)$, $n \in \mathbb{N}$ and $\omega_1 \cdots \omega_n \in \{1, \ldots, N\}^n$, put

$$Q_p(\omega_1 \cdots \omega_n) := \prod_{i=1}^{N} p_i^{\#\{1 \leq k \leq n: \omega_k = i\}}.$$

Define an averaged random cycle measure on X by

$$\kappa_{p,n} :=\left(\frac{\sum_{\omega_1 \cdots \omega_n \in \{1, \ldots, N\}^n} Q_p(\omega_1 \cdots \omega_n) \sum_{x \in \text{Fix}(T_{\omega_1 \cdots \omega_n})} |(T_{\omega_1 \cdots \omega_n})'x|^{-1} \delta_{x}^{\omega_1 \cdots \omega_n}}{\text{normalize}} \right),$$

and define an averaged random cycle measure on $\mathcal{M}(X)$ by

$$\tilde{\kappa}_{p,n} :=\left(\frac{\sum_{\omega_1 \cdots \omega_n \in \{1, \ldots, N\}^n} Q_p(\omega_1 \cdots \omega_n) \sum_{x \in \text{Fix}(T_{\omega_1 \cdots \omega_n})} |(T_{\omega_1 \cdots \omega_n})'x|^{-1} \delta_{x}^{\omega_1 \cdots \omega_n}}{\text{normalize}} \right).$$
Theorem B

Let $2 \leq N < \infty$, and let T_1, \ldots, T_N be fully branched uniformly expanding maps on a compact interval X. Let $p = (p_1, \ldots, p_N)$ be a probability vector with $\prod_{i=1}^{N} p_i > 0$. The sequence $\{\tilde{\kappa}_{p,n}\}_{n=1}^{\infty}$ of sample-averaged random cycle measures converges to the unit point mass at λ_p in the weak* topology.

i.e., for any continuous function $\tilde{\varphi}: \mathcal{M}(X) \rightarrow \mathbb{R}$,
$$\int \tilde{\varphi} d\tilde{\kappa}_{p,n} \rightarrow \tilde{\varphi}(\lambda_p).$$

Corollary 4

Let T_1, \ldots, T_N and $p = (p_1, \ldots, p_N)$ be as in Theorem B. The sequence $\{\kappa_{p,n}\}_{n=1}^{\infty}$ of sample-averaged random cycle measures converges to λ_p in the weak* topology.

i.e., for any continuous function $\varphi: X \rightarrow \mathbb{R}$,
$$\int \varphi d\kappa_{p,n} \rightarrow \int \varphi d\lambda_p.$$
Consider a skew product map

\[R: (\omega, x) \in \Omega \times X \mapsto (\theta \omega, T_{\omega_1} x) \in \Omega \times X, \]

where \(\theta: \Omega \to \Omega \) denotes the left shift \((\theta \omega)_k = \omega_{k+1} \).

Key observation: \(x \in \text{Fix}(R^n) \implies (\omega', x) \in \text{Fix}(R^n) \), where \(\omega' \) is the repetition of \(\omega_1 \omega_2 \cdots \omega_n \) and

\[\text{Fix}(R^n) = \{(\omega, x) \in \Omega \times X: R^n(\omega, x) = (\omega, x)\}. \]

1. (Level-2) large deviation principle on periodic points of \(R \) (Kifer (1994))

2. Conversion to samplewise large deviations (adapt Aimino/Nicol/Vaienti (2015))

3. Project to the original space \(X \).
\(\mathcal{M}(\Omega \times X) \): the space of Borel probability measures on \(\Omega \times X \). For \((\omega, x) \in \Omega \times X\) and \(n \geq 1\), let \(\delta_n^{(\omega, x)} = (1/n) \sum_{k=0}^{n-1} \delta_{R^k(\omega, x)} \). Define a Borel probability measure \(\tilde{\mu}_n \) on \(\mathcal{M}(\Omega \times X) \) by

\[
\tilde{\mu}_n := \frac{1}{\text{normalize}} \sum_{(\omega, x) \in \text{Fix}(R^n)} Q_p(\omega_1 \cdots \omega_n) |(T^n_\omega)'x|^{-1} \delta_n^{(\omega, x)},
\]

where \(\delta_n^{(\omega, x)} \) is the unit point mass at \(\delta_n^{(\omega, x)} \).

Proposition 1 (Kifer (1994) Large Deviation Principle)

There exists a lower semicontinuous function \(I: \mathcal{M}(\Omega \times X) \rightarrow [0, \infty] \) such that: (a) \(I(\mu) = 0 \) iff \(\mu = m_p \times \lambda_p \); (b) for any Borel set \(B \subset \mathcal{M}(\Omega \times X) \),

\[
- \inf_{\text{int}B} I \leq \lim_{n \to \infty} \inf \frac{1}{n} \log \tilde{\mu}_n(\text{int}B) \leq \lim_{n \to \infty} \sup \frac{1}{n} \log \tilde{\mu}_n(\text{cl}B) \leq - \inf_{\text{cl}B} I.
\]
For each \(\omega \in \Omega \) and \(n \geq 1 \), define a Borel probability measure \(\tilde{\mu}_n^\omega \) on \(\mathcal{M}(\Omega \times X) \) by

\[
\tilde{\mu}_n^\omega := \frac{1}{Z_{\omega,n}} \sum_{x \in \text{Fix}(T^n_\omega)} |(T^n_\omega)' x|^{-1} \delta_{\delta_n(\omega,x)}.
\]

Proposition 2 (Samplewise large deviations upper bound)

For \(m_p \)-almost every \(\omega \in \Omega \) and any closed subset \(C \) of \(\mathcal{M}(\Omega \times X) \), we have

\[
\limsup_{n \to \infty} \frac{1}{n} \log \tilde{\mu}_n^\omega(C) \leq -\inf_C l.
\]

For our purpose, there is no need for a lower bound.

Idea of proof of Proposition 2: Adapt the trick of conversion (sample-averaged \(\to \) samplewise) by Aimino/Nicol/Vaienti (2015) to periodic points (random cycles).
Since $\mathcal{M}(\Omega \times X)$ is metrizable, it is separable. So, enough to show that for each closed set C, \exists a Borel set $\Omega_C \subset \Omega$ s.t. for m_p-a.e. $\omega \in \Omega_C$,

$$\limsup_{n \to \infty} \frac{1}{n} \log \tilde{\mu}_n^\omega(C) \leq - \inf_C l.$$

We may assume $0 < \inf_C l < \infty$. There is a uniform constant $K > 0$ such that

$$\tilde{\mu}_n(C) = \frac{1}{\text{normalize}} \sum_{\substack{(\omega,x) \in \text{Fix}(R^n) \\ \delta_n^{(\omega,x)} \in C}} Q_p(\omega_1, \ldots, \omega_n) |(T^n_\omega)'x|^{-1}$$

$$= \int \tilde{\mu}_n^\omega(C) \left(Z_{\omega,n} \bigg/ \int Z_{\omega',n} \, dm_p(\omega') \right) \, dm_p(\omega)$$

$$\geq K \int \tilde{\mu}_n^\omega(C) \, dm_p(\omega).$$

Key: $Z_{\omega,n}$ is bounded away from 0 and $+\infty$ uniformly on ω and n.

Conversion to samplewise level-2 large deviations
For $\epsilon \in (0, 1)$ and $n \geq 1$, set

$$
\Omega_{\epsilon,n} = \left\{ \omega \in \Omega : \tilde{\mu}_n^\omega(C) \geq \exp \left(-n(1 - \epsilon) \inf_C I \right) \right\}.
$$

By Markov's inequality,

$$
m_p(\Omega_{\epsilon,n}) \leq \exp \left(n(1 - \epsilon) \inf_C I \right) \int \tilde{\mu}_n^\omega(C) dm_p(\omega)
$$

$$
\leq K^{-1} \exp \left(n(1 - \epsilon) \inf_C I \right) \tilde{\mu}_n(C).
$$

By Proposition, $\tilde{\mu}_n(C)$ decays exponentially as $n \to \infty$, so $m_p(\Omega_{\epsilon,n})$ decays exponentially as $n \to \infty$. By Borel-Cantelli's lemma,

$$
\# \{ n \in \mathbb{N} : \tilde{\mu}_n^\omega(C) \geq \exp(-n(1 - \epsilon) \inf_C I) \} < \infty
$$

for m_p-almost every $\omega \in \Omega$. Since ϵ is arbitrary, we obtain the desired upper bound for m_p-almost every $\omega \in \Omega$.

\qed
Some possible extensions of the main results

- maps with non-full branches (Dajani/de Vries (2005))
- maps with neutral fixed points (Liverani/Saussol/Vaienti (1999) etc.)
Some possible extensions of the main results

- maps with infinitely many branches (Kalle/Kempton/Verbitskiy (2017) etc.)

Figure: graphs of the Gauss and Rényi transformations

Thank you for your attention.