Peach Fruit Weight, Yield, and Crop Value Are Affected by Number of Fruiting Shoots per Tree

Richard P. Marini
Department of Horticulture, Virginia Polytechnic and State University, Blacksburg, VA 24061

Additional index words. pruning, Prunus persica

Abstract. Mature ‘Norman’ peach [Prunus persica (L.) Batsch] trees were dormant pruned to retain a range of flowering shoots per tree (71 to 250) during 3 years from 1997 to 1999. About 40 days after bloom each year, fruits on all trees were thinned to similar crop loads, so only the number of fruits per shoot varied. Fruit set and number of fruits removed by hand thinning were positively related to number of flowering shoots retained per tree. Number of fruits harvested per tree was not related to number of shoots per tree, whereas average fruit weight at thinning and at harvest, and crop value per tree were negatively related to the number of shoots retained per tree. These results indicate that commercial peach producers should consider modifying pruning and thinning strategies. Rather than retaining a large number of flowering shoots per tree and hand thinning to distribute fruits every 15 to 20 cm along each flowering shoot, producers should first determine the number of fruits that trees of a given cultivar can adequately size and then perform the thinning operation to obtain the desired crop load. The number of flowering shoots retained per tree during pruning should be one-fifth to one-seventh of the number of fruits desired per tree, so that five to seven fruits per flowering shoot are retained after hand thinning. Peach buyers prefer large fruits. In the mid-Atlantic region of the United States, peaches <57 mm in diameter are not long marketable, and prices usually increase as fruit size increases from 57 to 75 mm. Crop load adjustment, by hand thinning, to remove excess fruit before pit-hardening often costs $750 to $860/ha (Marini, 2002b; Southwick and Fritts, 1995) and is one of the most expensive orchard operations associated with peach production. Although hand thinning of fruits is expensive and requires a large labor force, the practice improves fruit size at harvest and is cost-effective.

Fruit size at harvest is negatively related to the number of fruits harvested per tree (Johnson and Handley, 1989) as well as to the number of days after bloom that fruit thinning is performed (Havis, 1982). To obtain benefits of early thinning, many peach growers in Virginia perform partial bloom thinning by removing blossoms with fingers or stiff brushes, and then hand thin excess fruits 30 to 50 d after full bloom. My orchard observations indicate that this method of crop load adjustment spreads out the labor requirement, reduces the potential risks associated with over-thinning during bloom before fruit set can be assessed, and the improvement in fruit size is greater than when fruits are thinned only during the post-bloom period. However bloom thinning, before the danger of frost is over, can be risky.

There are several options for reducing fruit size at harvest through the use of a growth regulator. Application of growth regulators may be used to enhance the overall form of the tree, to improve spray penetration and control of post-crop residue, and to control fruit color and size. These treatments usually reduce fruit size, but may also increase fruit color and fruit firmness (Reed and Biscoe, 2003). Application of growth retardants is recommended to reduce shoot growth, reduce fruit set, and limit the number of shoots or fruit clusters per shoot (Byers and Lyons, 1985).

For peach, the best results for the reduction of shoot growth were obtained by treating the tree with a mitotic inhibitor (Byers et al., 1990). However, the impact on fruit size and color is minimal and the treatment may be economically unattractive. Inhibitors of growth regulators are ineffective for reducing shoot growth or fruit size, but they are effective in reducing fruit size if applied in combination with other treatments (Byers et al., 1990). Application of a growth inhibitor to the tree in combination with a growth regulator is more effective in reducing fruit size than either treatment alone (Byers et al., 1990). Application of growth regulators is a cost-effective method of reducing fruit size and improving fruit quality. However, the use of growth regulators is limited by the cost of the growth regulator and the labor required to apply the treatment.

Peach tree growth regulators are usually applied to the leaves or the trunk of the tree. The leaf application is more effective in reducing fruit size than trunk application (Byers et al., 1990). However, trunk application is more convenient and less expensive than leaf application. Application of growth regulators to the trunk of the tree results in increased fruit size and improved fruit quality (Byers et al., 1990). Therefore, trunk application of growth regulators is recommended for peach production in Virginia.

Peach tree growth regulators are usually applied in combination with other treatments, such as a growth inhibitor, to reduce fruit size and improve fruit quality. However, the combination of growth regulators and growth inhibitors is more effective in reducing fruit size and improving fruit quality than either treatment alone (Byers et al., 1990). Therefore, a growth regulator and a growth inhibitor are recommended for the reduction of fruit size and improvement of fruit quality in peach production.

Received for publication 18 Apr. 2002. Accepted for publication 17 Oct. 2002.

Materials and Methods

Three experiments were conducted at the Virginia Tech College of Agriculture and Life Sciences Kentland Farm, near Blacksburg, Va. Self-rooted ‘Norman’ peach trees, planted in 1988 at a spacing of 5.5 × 5.0 m (370 trees/ha), and trained to the open-vase form were used for experiments in 1997, 1998, and 1999. The trees were 10 years-old in 1997. To supplement precipitation, trees were trickle-irrigated with emitters placed 45 cm from trunks and each tree received ~40 L of water per day during the 7 weeks before harvest.

In early Mar. 1997, ~3 weeks before bloom, four pruning treatments were assigned randomly to 36 trees selected for uniformity. There were nine single-tree-replicates in a completely randomized design (CRD). All trees were lightly pruned to remove overly vigorous shoots, 1-year-old shoots shorter than 30 cm and 1-year-old shoots hanging below the horizontal. Additional shoots were removed to retain 73, 110, 146, or 220 one-year-old flowering shoots per tree. In Mar. 1998, ~10 d before bloom, a different group of 44 trees was selected, and the same four pruning treatments were applied to 11 single-tree-replicates in a CRD. In Mar. 1999, ~6 d before bloom, a new group of 48 trees was selected, but treatments were modified to retain 71, 83, 100, 125, 167, and 250 one-year-old flowering shoots per tree. There were eight single-tree-replicates in a CRD.

Each year, crop load was adjusted by hand thinning excess fruits about 40 days after full bloom (DAFB). Based on previous work with these trees (Marini and Sowers, 2000), it was felt that a crop load of 440 fruits per tree would result in high yield of acceptable size (57 mm or larger) fruit. Therefore, 440 fruits per tree were retained in 1997 and 1998, by removing the smallest and insect-damaged fruits to retain only 4, 3, or 2 fruits per shoot for the 73, 110, 146, and 220 shoots per tree treatments, respectively. Fruit set was poor in 1997 following a frost during the bloom period. Although many trees had less than the desired number of fruits, they were hand thinned 40 DAFB to eliminate fruit clusters and to attain at least 5 cm between fruits on a shoot. In 1999, to determine if fruit size could be maintained at higher crop loads by retaining fewer fruiting shoots, the crop load was increased to 500 fruits per tree and the range of fruiting shoots per tree was increased from 4 to 6. The crop load of 500 fruits per tree was achieved by retaining 7, 6, 5, 4, 3, and 2 fruits per shoot on 71, 83, 100, 125, 167, and 250 one-year-old flowering shoots per tree, respectively. Thus, all trees had about the same number of fruits, but on differing number of shoots.

Fruits removed by thinning were counted and weighed, and average thinning fruit weight (TFW) was calculated for each tree. Depending on the year, fruits were harvested in 3 to 4 spot pickings when ground color was yellowish-green. During harvest, the number of fruits per tree was recorded and fruits were
separated into five categories with a weight sizer. The number and weight of fruits in each size category were recorded and average fruit weight was calculated for each tree. The proportion of the marketable crop (>57 mm diam.) was calculated. Although not measured, characteristics that make a fruit unmarketable, such as inadequate color and incidence of pest injury did not appear to be affected by treatments. Thus, fruit size was the only criteria used to determine the marketability of the crop. Crop value for each tree was calculated using wholesale prices typical for Appalachian peaches during Aug. 1997–99; where the value of $0.79/kg ($9.00 per 11.35-kg box), 65 to 70 mm diam. fruits = $0.97/kg ($11.00 per 11.35-kg box), and >70 mm diam. fruits = $1.06/kg ($12.00 per 11.35-kg box).

SAS’s GLM procedure (SAS Inst., 1990) was used to perform regression analyses, where the number of shoots per tree was the regressor variable. Two models were evaluated for each response variable. The first model contained a linear and a quadratic term. When the partial sums of squares (Type III sums of squares) were significant (P < 0.05) for the quadratic term, the relationship was considered to be quadratic. The relationship was considered to be linear if the sequential sums of squares (Type I sums of squares) were significant (P < 0.05) for the linear term and the partial sums of squares were nonsignificant for the quadratic term. In such cases a simple linear model, containing only the linear term, was selected.

Results and Discussion

In this study, the number of fruits per tree rather than per unit of trunk cross-sectional area, was used to quantify crop load because average fruit weight correlated better with number of fruits in a previous study (Marini, 2002b). Target levels for crop load were usually not achieved in any of the three experiments. In 1997, the crop on trees with 73 or 110 fruiting shoots was reduced below the desired level by spring frost. For unknown reasons, crop load was the greatest for trees with the fewest shoots in 1998 and 1999, when the number of fruits per tree was usually within 20% of the target values. In a previous study (Marini, 2002b), all fruits on each tree were counted before thinning. Unwanted fruits were thinned to obtain specific crop load, which at harvest differed from the desired values by 20% to 50% (Marini, 2002b). This is because adjusting peach crop loads to specific levels with hand thinning is difficult since the small fruits are hard to distinguish from the leaves.

In all three years, the number of fruits set per tree, the number of thinned fruits per tree, and the percentage of thinned fruits per tree increased as the number of fruiting shoots per tree increased (Table 1). The TFW (g/fruit) was negatively related to the number of shoots per tree in 1998 and 1999, where fruit set was excessive. In 1997, when there was a partial crop due to spring frost injury, the TFW was not related to the number of shoots per tree, but was 25% greater than in 1998 and 1999. This is consistent with data from California, where fruits on trees with light crops had higher dry weights than fruits on trees with heavy crops at 35 d after bloom (Grossman and DeJong, 1995a). During the first 36 d after bloom, much of the increase in fruit size is due to cell division (Scorza et al., 1991). Our data indicated that the number of fruits on the tree can influence fruit growth before pit hardening, whether crop load is reduced by spring frost or shoot removal during dormant pruning. Fruits on low crop trees probably had more cells and could be expected to produce large fruits because fruit size at harvest is positively related to the number of cells per cell (Scorza et al., 1991). During the early season, when peach shoots and fruits are growing simultaneously, fruit growth may be limited by availability of resources (Grossman and DeJong, 1994, 1995b). In the present study, shoot-removal treatments reduced the number of both reproductive and vegetative sinks. The increased early-season fruit growth on severely pruned trees indicates that fruit growth was less limited by resources for severely pruned trees than for lightly pruned trees. However, this experiment was not designed to determine if the increased resources for fruit growth were due to reductions in sink strength of reproductive and/or vegetative organs.

The time required to prune and thin each tree was not recorded because the number of shoots had to be counted and recorded and the number of thinned fruits had to be counted and weighed for each tree. The additional time required for counting shoots at pruning time, and for counting, collecting, and weighing thinned fruits would have drastically increased the time required to perform these operations in a commercial setting. However, costs for shoot pruning and fruit thinning can be estimated from data obtained in a similar study where these types of data were collected (Marini, 2002a). The difference in pruning time between 73 and 220 fruiting shoots was ~4 min/tree. If pruners were paid $7.00/h, the most severe pruning treatment would cost ~$0.47/tree more than the least severe treatment. Data from the same study where number of fruits thinned per tree

Year	Fruiting shoots per tree	Fruit set (No./tree)	Thinned FW (g/fruit)	We removed (kg/tree)	Fruit thinned (% of set)	Fruits harvested/ tree	FW (kg)	Yield (kg/tree)	Marketable fruit (%)	Crop value ($/tree)
1997	73	296	27	30	0.8	9.1	269	156	42.1	100
	110	351	58	31	1.7	16.5	294	151	44.1	100
	146	432	81	30	2.2	18.8	351	146	50.9	100
	220	510	168	30	4.3	32.9	342	147	49.1	100
	Significance	L	L	L	L	L	L	L	L	L
	r²	0.15	0.15	0.01	0.01	0.01	0.07	0.04	0.11	0.22
	P-value	<0.01	<0.01	<0.01	<0.01	<0.01	0.06	0.04	0.11	0.22
1998	73	758	222	25	5.6	29.3	536	122	63.8	74.4
	110	932	439	24	10.5	47.1	492	142	56.6	72.5
	146	950	506	23	11.5	53.3	444	111	49.0	64.1
	220	1635	1116	21	24.8	68.3	474	107	51.5	59.4
	Significance	Q	L	L	L	L	L	L	L	L
	r²	0.65	0.78	0.28	0.75	0.77	0.03	0.13	0.08	0.10
	P-value	<0.01	<0.01	<0.01	<0.01	0.01	0.26	0.12	0.06	0.04

Table 1. The effect of retaining varying number of fruiting shoots per tree on the number and weight of fruits removed by hand thinning, fruit weight (FW) at harvest, number of fruits harvested, yield, marketable fruit, and crop value. Fruit set is the number of fruits removed plus the number of fruits harvested.

$0.47/tree more than the least severe treatment. Data from the same study where number of fruits thinned per tree

HortScience, Vol. 38(4), July 2003
and thinning time per tree were recorded indicated that workers can remove about 17.5 fruits per min. Using these values, the estimated time to thin trees was about 13 and 63 min./tree for trees with 73 and 220 fruiting shoots per tree, respectively; thinning costs would be $1.52 and $7.35 per tree, respectively. Therefore, trees with 220 fruiting shoots cost $5.83/tree more to thin than trees with 73 shoots. Compared to trees with 73 fruiting shoots, trees with 220 shoots cost $0.47 less to prune, but $5.83 more to thin. Thus the cost difference of pruning plus thinning ($-0.47 + $5.83) is $5.36/tree ($1,983/ha) per year more for trees with 220 fruiting shoots compared to trees with 73 fruiting shoots/tree.

Fruits removed by thinning represent wasted resources that could otherwise have been allocated to vegetative growth or to fruits that would have been ultimately harvested. Compared to the most severely pruned trees, the fresh weight of thinned fruit was 2.1 and 9.7 t·ha$^{-1}$, for the most and least severely pruned trees, respectively. Although yield was not related to the number of shoots per tree in 1997 ($r^2 = 0.22$), the relationship was negative in years when trees had a full crop (Table 1). Each year, fruit weight at harvest was negatively related to the number of fruiting shoots per tree. Coefficients of determination in this study were relatively low, probably because tree-to-tree variation for peach yield was high as previously reported by Marini (1985). Another possible reason for the poor r^2 values was that the experiments had 8 to 11 replicates per treatment and only 4 to 6 levels of shoot number, thus spread in the data was considerable for each treatment level. Coefficients of determination would have probably been improved had there been more treatment levels with fewer replicates per level.

In a previous 3-year study, heading all fruiting shoots on a tree by 50% reduced fruit set by 15% to 30% and the number of thinned fruits by 15% to 50%. Heading did not consistently affect yield or fruit weight, but it increased net profit only once in three years (Marini 2002b). Removing blossoms from the terminal half of shoots reduced fruit set similar to heading, but improved fruit weight and increased crop value by about $3.65 to $3.20/tree. For lowering fruit thinning costs and improving crop value, removing excessive shoots in this study was more effective than either heading back or bloom removal (Marini 2002b).

The disadvantages of severe pruning or bloom removal are that flower buds or blossoms are removed before fruit set can be assessed, and subsequent frost or poor weather conditions for fruit set may further reduce the net profit only once in three years. Bloom reduction in years with poor fruit set may result in reduced crop value, as occurred in 1997, in the present study. Bloom reducing strategies will have maximum benefits for cultivars with high blossom densities and for orchards on relatively frost-free sites. Results from this study indicate that severe pruning in years with a partial crop may reduce net profit by $1,700/ha, however this practice may increase net profit by more than $6,000/ha in years with heavy fruit set. Therefore, severe pruning appears to be cost effective if heavy fruit set occurs at least once in four years.

Table 2. The effect of retaining varying numbers of fruiting shoot per tree on fruit size distribution on ‘Norman’ peach trees. Crop load was adjusted to 440 fruits per tree in 1998 and 500 fruits per tree in 1999.

Year	Fruit size distribution (%)				
	<57 mm	57 to 64 mm	65 to 70 mm	71 to 76 mm	>76 mm
1998					
73	13	43	14	25	26
110	24	46	17	31	26
146	18	45	17	32	30
220	15	32	17	32	27
1999					
71	21	42	19	26	19
120	24	46	18	27	18
200	21	42	19	27	18
125	23	35	19	27	18
167	32	44	22	14	22
250	38	22	32	22	22

Table 2: The effect of retaining varying numbers of fruiting shoot per tree on fruit size distribution on ‘Norman’ peach trees. Crop load was adjusted to 440 fruits per tree in 1998 and 500 fruits per tree in 1999.

In 1997, crop value was not related to the number of fruiting shoots ($r^2 = 0.01, P = 0.51$). However, the higher fruit weight combined with higher yields for trees with the fewest shoots in 1998 and 1999, resulted in a negative relationship between crop value and the number of fruiting shoots ($P = 0.05$). During 1998 and 1999, cumulative crop value per tree was about $170, $152, $136, and $158 for trees with 73, 110, 147 to 167, and 220 to 250 fruiting shoots per tree, respectively.

The disadvantages of severe pruning or bloom removal are that flower buds or blossoms are removed before fruit set can be assessed, and subsequent frost or poor weather conditions for fruit set may further reduce the net profit only once in three years. Bloom reduction in years with poor fruit set may result in reduced crop value, as occurred in 1997, in the present study. Bloom reducing strategies will have maximum benefits for cultivars with high blossom densities and for orchards on relatively frost-free sites. Results from this study indicate that severe pruning in years with a partial crop may reduce net profit by $1,700/ha, however this practice may increase net profit by more than $6,000/ha in years with heavy fruit set. Therefore, severe pruning appears to be cost effective if heavy fruit set occurs at least once in four years.

Literature Cited

Baugh, T.A., K.C. Elliott, S.H. Blizzard, S.I. Walter, T.A. Keiser. 1988. Mechanical bloom thinning of peach. HortScience 23:981–983.

Baugh, T.A., K. Elliott, K., D.W. Leach, B.D. Horton, and S.S. Miller. 1991. Improved methods of mechanically thinning peaches at full bloom. J. Amer. Soc. Hort. Sci. 116:766–769.

Byers, R.E., D.H. Carbaugh and C.N. Presley. 1990. The influence of bloom thinning and GA$_3$ sprays on flower bud numbers and distribution in peach trees. J. Hort. Sci. 65:143–150.

Byers, R.E. and C.G. Lyons, Jr. 1985. Peach flower thinning and possible sites of action of desiccating chemicals. J. Amer. Soc. Hort. Sci. 110: 662–667.

Coston, D.C. 1983. Peach tree physiology. In: M.E. Ferree and P.J. Bertrand (eds.). Peach growers handbook. Georgia Coop. Ext. Serv. Hdbk. No. 1, Athens.

Grossman, Y.L. and T.M. DeJong. 1994. Peach: A simulation model of reproductive and vegetative growth in peach trees. Tree Physiol. 14: 329–345.

Grossman, Y.L. and T.M. DeJong. 1995a. Maximum vegetative growth potential and seasonal patterns of resource dynamics during peach growth. Ann. Bot. 76:473–482.

Grossman, Y.L. and T.M. DeJong. 1995b. Maximum fruit growth potential and seasonal patterns of resource dynamics during peach growth. Ann. Bot. 76:553–560.

Havis, A.L. 1962. Effect of time of fruit thinning of ‘Redhaven’ peach. Proc. Amer. Soc. Hort. Sci. 80:172–176.

Johnson, R.S. and D.F. Handley. 1989. Thinning response of early-, mid-, and late-season peaches. J. Amer. Soc. Hort. Sci. 114:852–855.

Marini, R.P. 1985. Sample size estimates for peach tree growth and yield experiments. J. Amer. Soc. Hort. Sci. 110:604–608.

Marini, R.P. 2002a. Pruning peach trees. Virginia Coop. Ext. Pub. 422-020.

Marini, R.P. 2002b. Heading fruiting shoots before bloom is equally effective as bloom removal peach crop load management. HortScience 37: 642–646.

Marini, R.P. and D.L. Sowers. 2000. Peach tree growth, yield, and profitability as influenced by tree form and tree density. HortScience 35: 837-842.

SAS Institute, Inc. 1990. SAS/STAT user’s guide, version 6, 4th ed., SAS Inst., Cary, NC.

Scorza, R.L., G. May, B. Purnell, and B. Upchurch. 1991. Differences in number and area of mesocarp cells between small- and large-fruited peach cultivars. J. Amer. Soc. Hort. Sci. 116: 861–864.

Southwick, S.M. and R. Friffs, Jr. 1995. Commercial chemical thinning of stone fruit in California by gibberellins to reduce flowering. Acta Hort. 394: 135–147.

Southwick, S.M., K. Geis, and J.T. Yeager. 1996. Bloom thinning ‘Loadel’ cling peach with a surfactant. J. Amer. Soc. Hort. Sci. 121:334–338.

Southwick, S.M., K. Geis, J.T. Yeager, and H. Zhou. 1995. Control of cropping in ‘Loadel’ cling peach by gibberelins: effects on flower density, fruit distribution, fruit firmness, fruit thinning, and yield. J. Amer. Soc. Hort. Sci. 120:1087–1095.

Worthington, J.W., M.J. McFarland, and P. Rodrigue. 1984. Water requirements of peach as recorded by weighing lysimeters. HortScience 19:90–91.

HortScience, Vol. 38(4), July 2003