One-Bone Forearm Reconstruction and Distal Radioulnar Joint Fusion for Emergency One-stage Operation in Traumatic Major Bone Defect of Forearm

Yapeng Wang (✉ wypsmile866@163.com)
Wuxi No.9 People's Hospital affliated to Soochow University
Ming Zhou
Wuxi No.9 People's Hospital
Yongwei Wu
Wuxi No.9 People's Hospital
Yunhong Ma
Wuxi No.9 People's Hospital
Jun Liu
Wuxi No.9 People's Hospital
Yongjun Rui
Wuxi No.9 People's Hospital

Research article

Keywords: One-Bone forearm reconstruction, distal radioulnar joint, major bone defect

DOI: https://doi.org/10.21203/rs.3.rs-16727/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Major bone defects in forearm caused by severe trauma is a real challenge for orthopedic surgeons. This study aimed to evaluate the role of one-bone forearm (OBF) reconstruction combined with distal radioulnar joint fusion (DRUJF) as a rescue option under this difficult situation. Methods: In total, 18 patients with major bone defects in forearm caused by severe trauma were selected from 2003 to 2017 and followed up for 2 to 16 years. All patients were managed in the Emergency Department and received emergency one-stage OBF combined with DRUJF. In addition, patient demographics, surgical techniques, clinical outcomes and complications were collected from the medical records. Results: The mean age of patients was 41.5 years (ranging from 23 to 58 years), with 11 males and 7 females. The mean time to union was 5.8 months; 17 patients had complete union, and 1 patient had infection with nonunion requiring secondary procedures. According to the criteria of Chen, 3 patients had a grade-I functional outcome, 14 patients had a grade-II functional outcome, and 1 patient had a grade-III functional outcome. Based on the Peterson scoring system, the outcome was excellent for 3 patients, good for 13 patients, fair for 1 patient, and poor for 1 patient. Conclusion: OBF construction combined with DRUJF was an alternative surgical procedure as the emergency stage-one intervention for the treatment of traumatic major bone defects in forearm, which may be more functionally and cosmetically superior than forearm amputation.

Background

The bony structure of the forearm consists of the ulna, radius and associated articulations radius. The length of the ulna and radius is critical to the proper function of the forearm [1] [2]. Due to the unique rotation function of the forearm, the treatment of ulnar and radius fractures should be considered as an intra-articular fracture, which requires anatomic reduction to restore normal function. Despite advances in microsurgical technology, the treatment of major bone defects in forearm caused by severe trauma remains a real challenge. The key to treatment is the repair and reconstruction of soft tissues (including blood vessels, nerves, tendons, etc.) and bone tissues. To the best of our knowledge, there are no standard techniques described for reconstruction with major bone loss in the forearm [3]. Moreover, the loss of composite soft tissue and bone, scar adhesion, and repeated surgical procedures can lead to highly unpredictable functional outcome of this type of injury [4-6].

Under these challenging conditions, one-bone forearm (OBF) reconstruction is a feasible option that can save the limb and obtain stable and functional forearm [5-9]. The proximal ulna is generally fixed in the distal radius in OBF reconstruction [5-11]. According to the description by Vitale, “the ulna constitutes the elbow, and the radius constitutes the wrist”, indicating that the ulna, as the distal extension of the arm is extremely important for elbow function, and the radius, as the proximal extension of the hand, is of great importance for the function of carpal articulation [12]. There is no consensus on the indications for this operation. According to previous studies, this operation is used to treat forearm bone loss caused by congenital abnormalities, tumors and infections [5-9]. However, the OBF reconstruction in the radius-constituted wrist can generally lead to longitudinal instability in the wrist, distal radioulnar joint (DRUJ)
instability and chronic pain [10]. We have also showed case reports of inferior ulnar radial dislocation after OBF reconstruction (Figure 1). Afterwards, distal radioulnar joint fusion (DRUJF) was performed as a salvage procedure. The DRUJF, similar to Sauvé-Kapandji surgery, not only enhances the stability of the wrist joint, but also attenuates the chronic pain of the wrist joints, which simultaneously has certain advantages in restoring the rotation function of the forearm [13]. Therefore, we consider whether it is possible to combine OBF reconstruction with DRUJF. To the best of our knowledge, it is the first case report with the largest sample size of the emergency treatment using OBF reconstruction combined with DRUJF to treat major bone defects in the forearm caused by severe trauma.

In this study, to our knowledge, we introduced the emergency stage-one OBF construction combined with DRUJF with the largest sample size. We aimed to assess the role of OBF reconstruction combined with DRUJF as a rescue option under this difficult situation.

Methods

A total of 18 patients were included in our retrospective analysis from 2003 to 2017. The inclusion criteria for this study were as follows: (1) major bone defect of forearm caused by acute trauma, with intact proximal ulna and distal radius, and one-bone reconstruction can constitute stable structures (2) willingness to undergo the emergency stage-one OBF reconstruction combined with DRUJF; (3) with or without distal radioulnar joint dislocation; (4) ischemic time less than 12 hours. The exclusion criteria were as follows: (1) amputation under unstable vital signs (2) major bone defect of forearm caused by tumor, deformity, infection; (3) simple ulna or radial bone defects (4) patients with lost follow-up. The mean age of patients was 41.5 years (ranging from 23 to 58 years), with 11 males and 7 females. There were 10 cases of lesion in the right and dominant sides, and 8 cases of lesion in the left and non-dominant sides. The follow-up duration ranged from 2 to 16 years. Seven out of the 18 patients presented amputation, who required replantation; and another 11 patients had severe injuries in their limbs, who required revascularization. Seven patients were injured by work-related machine (the most common type of injury) and 4 patients had road traffic accidents. This proposal was approved by our ethic committee. The demographics of patients were shown in Table 1.

Surgical technique

All surgeries were performed by the same senior surgeon. The patient was in supine position, anesthetized with brachial plexus block, sterilized and whisked with sterile drapes in the operation area, placed with tourniquet on the upper arm, followed by debridement. Afterwards, the patient was whisked with sterile drapes in the operation area again, followed by transverse osteotomy on the ulna and radius. The length of the osteotomy is conducive to the repair of blood vessels, nerves and tendons. The hand was placed in the neutral position or pronation position not exceeding 60°. The fracture ends were firmly fixed with steel plates. Direct bone contact was used in all the 18 patients undergoing OBF reconstruction, which did not require iliac bone graft or free fibula transplantation. The tendon, blood vessels, and nerves were repaired accordingly. For patients who required replantation, incision decompression was
additionally performed on opisthenar to prevent ischemia-reperfusion injury (Figure 2). Afterwards, the distal radioulnar joint was exposed, the articular cartilage cleaned was cleaned, part of cancellous bone was extracted and stuffed, 1-2 hollow nails were used to horizontally fix the distal radioulnar joint, followed by postoperative plaster fixation. Skin grafting or flap transplantation was further performed according to the situation of wound defect.. Clindamycin (0.6g, ivgtt, qd) was preoperatively and postoperatively used to prevent infection. Postoperative rehabilitation functional training in Rehabilitation Department included: eliminating swelling and pain, preventing joint stiffness and tendon adhesion, strengthening muscle strength, preventing muscle atrophy, etc.

Graph review and result recording

Patient demographics and surgical techniques were collected from medical records. After the study protocol was approved, we conducted a prospective face-to-face follow-up investigation. The following data were collected, including: limb-length discrepancy (LLD) compared with the contralateral side, Chen Criteria of functional outcome [15], Scoring system of Peterson [6], Disabilities of the Arm, Shoulder and Hand (DASH) Score, grip strength: affected limb, grip strength: unaffected limb, cosmesis of forearm, time to union and complications.

Results

Seventeen of the 18 patients had complete union, and 1 patient had infection with nonunion requiring secondary procedures to achieve bone healing. The mean time to union was 5.8 months. To facilitate the primary repair of blood vessels and nerves, the ends of the bones on both sides should be shortened.

The mean forearm length of 18 patients was shortened by 7.5 cm (4.2-15 cm) compared with the contralateral side. The upper limb functional rehabilitation training could improve the strength and function in all patients.

Functional outcome was measured by DASH scores. The mean DASH score was 12.2 points, ranging from 4.0 to 33.3 points (Table 2). According to the Chen Criteria, the functional outcomes was divided into grade I (3 cases), grade II (14 cases), and grade III (1 case). No patient had a grade IV or required secondary amputation. The mean active wrist flexion was 43.9 °, the mean dorsal wrist extension was 40 °, the mean forearm pronation was 43.3 °, and the active pronation was 42.5 ° (Table 4).

The mean grip strength was 3.9 kg (1.8 to 7.5 kg) on the affected side and 34.2 kg (25 to 42 kg) on the healthy side. Seventeen patients were very satisfactory with the appearance of the forearm after reconstruction, while 1 patient was somewhat satisfactory (Table 2).

Seventeen patients can resume their physical work before injury, while 1 patient failed and could only performed daily activities. One of the 18 patients had poor efficacy. Except for partial recovery of motor and sensory functions, it was mainly due to infection at the fixed site of OBF and nonunion (Table 2).
Based on the Peterson scoring system, the outcome was excellent for 3 patients, good for 13 patients, fair for 1 patient, and poor for 1 patient (Table 3).

**Discussion**

Major bone defects in the forearm caused by severe trauma is often with combined with composite soft tissue defects, and even blood supply disorders. Ischemic time is the main criterion to decide whether to preserve or amputate limbs. For severe open forearm injuries, limb preservation is superior than amputation. Daoutis et al. [16] have reported the functional outcomes of 47 patients with replantation and evaluated the outcomes using Chen criteria [15], concluding satisfactory functional outcomes in 37 of the 42 patients. In 2007, Sabapathy et al. [17] have shown the functional outcomes of 22 patients with replantation and concluded that replantation is a valuable procedure, and radical debridement, appropriate bone shortening and reduction of ischemic time are of great significance for the successful replantation. In 2017, Mattiassich et al. [18] have reported long-term results of upper limb replantation and concluded that long-term effects are possible. In this study, according to the criteria of Chen, 3 patients had a grade-I functional outcome, 14 patients had a grade-II functional outcome, and 1 patient had a grade-III functional outcome. Apart from the time of injury, segmental comminuted fractures during debridement can lead to bone loss in the radius and ulna. In consideration of the two factors, rescue is a major challenge [17] [19], and requires highly personalized therapeutic approaches.

OBF reconstruction procedure has been used as a rescue option for complex forearm instability due to various causes. There is no consensus on the indications for this operation. According to previous studies, this operation is used to treat forearm bone loss caused by congenital abnormalities, tumors and infections [5-9]. To our knowledge, the study by Peterson et al. [6] had the largest sample size among previous studies. In total, 19 patients received OBF reconstruction between 1973 and 1991 (only 1 case was caused by acute trauma, the rest cases were due to tumor resection / congenital abnormalities, etc.). According to the Peterson scoring system designed by Peterson et al. (the Peterson scoring system is also used in our study), 37% cases were excellent, 32% cases were good, 26% cases were fair and 5% cases were poor. Allende et al. [8] reported a mean clinical score of 7.7 (the Peterson scoring system [6]), without cases of infection, nonunion or re-fracture. In our case series, except for 1 patient was somewhat satisfactory, the remaining 17 patients were subjectively satisfied with limb reconstruction, and no one was willing to accept amputation, even if the limb was short and disfigured. Based on the Peterson scoring system, the outcome was excellent for 3 patients, good for 13 patients, fair for 1 patient, and poor for 1 patient. Except for 1 patient who failed to resume their original physical work and could only performed daily activities, the rest 17 patients can resume their original physical work. Kim SY et al. [9] retrospective analysis of the clinical data of patients who underwent OBF surgery from 1994 to 2014. All patients had union with a mean follow-up of 83.6 months (range, 16-218 months). The mean pain score was 3 (range, 0-8), of which 3 were painless (score 0). The mean Quick DASH score was 39 (range, 7-75), and 4 patients had good or excellent results according to the 10-point score system used by Peterson et al. All patients were satisfied with the result. Five of 8 had complications related to soft tissues that were residual from their prior injuries and surgeries. One patient had post healing fracture requiring revision
fixation and 1 had a postoperative infection requiring parenteral antibiotics. Therefore, OBF reconstruction combined with DRUJF is an alternative method to preserve severe acute forearm injuries and provides therapeutic ideas.

Sauvé-Kapandji procedure refers to the DRUJF and distal ulnar segment osteotomy pseudoarthrosis to treat forearm rotation dysfunction caused by changes in the distal radioulnar joint (DRUJ). Sauvé-Kapandji procedure can relieve inferior ulnar radial arthritis or mismatch by fusing the DRUJ, resolve ulnar variability through segmental resection of the distal ulna, and restores the forearm rotation function through the formed pseudo joint [20]. Simple OBF reconstruction can generally cause wrist longitudinal instability, DRUJ instability and chronic pain [10]. Ota et al. [21] also consider that the wrist width loss after Sauvé-Kapandji procedure is associated with the aggravated carpal ulnar deviation, therefore, attention should be paid to maintaining the original wrist width to prevent progressive ulnar deviation of the wrist. OBF reconstruction was generally used alone. And we also found cases of distal radioulnar dislocation after simple OBF reconstruction (Figure 1). We later performed DURJF as a salvage procedure. In this study, the OBF reconstruction combined with DURJF was simultaneously performed, which can theoretically maintain the line of force in the wrist for a long time, prevent the ulnar deviation and palmar subluxation of the wrist, and decrease the number of operations.

High-energy trauma can often result in comminuted long bone fractures of forearm, major bone defects, combined with skin and soft tissue defects. The upper limb defects can cause limb length differences, deformities and dysfunction, leading to therapeutic difficulties in clinical practice [22]. How to effectively repair major bone defects of forearm has always been an orthopedic problem. The traditional simple bone grafting is prone to various degrees of bone resorption and infection due to a lack of blood supply and the long bone healing time [23]. Anastomotic fibula segment transplantation to repair major bone defect of forearm can easily damage the posterior tibial blood vessels and the common peroneal nerve under improper operation. Meanwhile, microsurgical techniques are required, with relatively high technical requirements. In addition, a large number of muscles are attached to the fibula, thus, excision of the fibula segment can cause relatively great damage to the donor site; and fibula transplantation could also cause knee and ankle joint instability [23]. Induced membrane technique (IMT) for major bone defects of forearm requires repeated surgeries, and second-stage bone grafting requires bone removal from the autologous sacrum, with risks of pain and infection in the bone removal area [24]. Bone extension technology for major bone defects of forearm requires the long-term wearing of external fixators, with potential risks of nail channel infection and second-stage stump non-union. Yildiz et al. [25] have reported that mental problems (including anxiety, depression and paranoia) might occur in patients received external fixators for over 8 months. OBF reconstruction for major bone defect of forearm can repair the composite tissue damage of forearm within one single operation, which could significantly shorten the therapeutic course compared with previous surgical approaches, and renders early rehabilitation training. OBF reconstruction combined with DRUJF could simultaneously improve the rotation function of the forearm, avoiding wrist joint instability. However, it has shortcomings, such as weak bearing strength. In this group of patients, the average grip strength of affected limb was 39 kg (ranging from 1.8 to 7.5 kg), and no re-fracture or internal fixation fracture occurred throughout the follow-up. The most critical part of
the operation is the osteotomy of ulna and radius. The length of the osteotomy should be conducive to
the repair of soft tissues, especially the repair of blood vessels, nerves and tendons. Moreover, incision
decompression of the forearm fascia is additionally required for cases with completely separated
forearm.

There are certain limitations in this study. Although all data were prospectively collected, this study was a
retrospective one. A prospective study involving a large population and long-term follow-up is required to
confirm our results. In addition, a lack of a control group and statistical analysis in this study is correlated
with the retrospective nature of this rare surgical procedure. The strengths of this study include a
relatively homogeneous group of patients who suffered traumatic major bone loss in the forearm, and
OBF reconstructions consist of the proximal ulna and the distal radius. Compared with other studies
using telephone follow-up, face-to-face survey follow-up is used in our study, which avoids inconsistency
between clinical results and patient evaluation as much as possible. Moreover, all the surgical procedures
are performed by the same senior surgeon. Another advantage is the long-term follow-up, especially
regarding the results of patient evaluations, which ranges from 2 to 16 years. To the best of our
knowledge, it is the first case report with the largest sample size of the emergency treatment using OBF
reconstruction combined with DRUJF to treat major bone defects in the forearm caused by severe
trauma.

Conclusion

One-bone forearm reconstruction combined with DRJF is an alternative surgical procedure as the
emergency stage-one intervention for the treatment of traumatic major bone defects in forearm, which
may be more functionally and cosmetically superior than forearm amputation.

Abbreviations

OBF: One-Bone Forearm; DRUJF: Distal Radioulnar Joint Fusion; LLD: limb-length discrepancy;
DASH: Disabilities of the Arm, Shoulder and Hand; ADL: activities of daily living; IMT: induced membrane
technique; F: female, M: male; R: right; L: left; D: dominant; ND: nondominant;

Declarations

Ethics approval and consent to participate

The study was approved by the ethics committee of Wuxi No.9 People's Hospital Affiliated to Soochow
University. All the individuals were participating in this study with written informed consent.

Consent to publish

All the individuals were participating in this study agreed to publish the data for scientific research.
Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work has received financial support from the Wuxi Health Management Committee (Grant No.Q201827) and the Jiangsu Natural Science Foundation (Grant No.SBK2018022454)

Authors’ contributions

YW1 designed the study, prepared the manuscript. MZ and YW2 contributed to the data acquisition. YM contributed to the quality control of data and algorithms. JL, YR contributed to the data analysis and interpretation and reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Richard M J, Ruch D S, Aldridge J M. Malunions and Nonunions of the Forearm[J]. Hand Clinics, 2007, 23(2):235-243.

2. Sarmiento A, Ebramzadeh E, Brys D, et al. Angular deformities and forearm function[J]. Journal of Orthopaedic Research, 1992, 10(1):121-133.

3. Bumbasirevic M, Stevanovic M, Lesic A, et al. Current management of the mangled upper extremity[J]. International Orthopaedics, 2012, 36(11):2189-2195.

4. Prasarn M L, Ouellette E A, Miller D R. Infected nonunions of diaphyseal fractures of the forearm[J]. Archives of Orthopaedic and Trauma Surgery, 2010, 130(7):867-873.

5. M E Castle. One-bone forearm[J]. Journal of Bone & Joint Surgery American Volume, 1974, 56(6):1223-1227.

6. Peterson C A, Maki S, Wood M B. Clinical results of the one-bone forearm [J]. The Journal Of Hand Surgery, 1995, 20(4):609-618.

7. Lee S J, Jazrawi L M, Ong B C, et al. Long-term follow-up of the one-bone forearm procedure[J]. American journal of orthopedics (Belle Mead, N.J.), 2001, 29(12):969-972.

8. Allende C, Allende B T. Posttraumatic one-bone forearm reconstruction. A report of seven cases.[J]. 2004, 86-A(2):364.
9. Kim S Y, Chim H, Bishop A T, et al. Complications and Outcomes of One-Bone Forearm Reconstruction [J]. Hand, 2016, 12(2):1558944716643305.

10. Jacoby S M, Bachoura A, Diprinzio E V, et al. Complications Following One-Bone Forearm Surgery for Posttraumatic Forearm and Distal Radioulnar Joint Instability [J]. The Journal of Hand Surgery, 2013, 38(5):976-982.e1.

11. Bachoura A, Jacoby S M, Osterman A L. One-bone forearm procedure for Hajdu–Cheney syndrome: a case report [J]. HAND, 2013, 8(4):479-482.

12. Vitale C C. Reconstructive surgery for defects in the shaft of the ulna in children [J]. Journal of Bone & Joint Surgery-american Volume, 1952, 34 a(34 A):804-810.

13. Sanders R A, Frederick H A, Hontas R B. The Sauvé-Kapandji procedure: a salvage operation for the distal radioulnar joint [J]. 1991, 16(6):1125-1129.

14. Chung-Wei C, Yun-Qing Q, Zhong-Jia Y. Extremity replantation. World J Surg. 1978 Jul;2(4):513-24.

15. Chen F, Culp R W, Schneider L H, et al. Revision of the ununited one-bone forearm [J]. The Journal Of Hand Surgery, 1998, 23(6):1091-1096.

16. Daoutis N K, Gerostathopoulos N, Efstathopoulos D, et al. Major amputation of the upper extremity Functional results after replantation/revascularization in 47 cases [J]. Acta Orthopaedica, 1995, 66(s264):7-8.

17. Sabapathy S R, Venkatramani H, Bharathi R R, et al. Technical considerations and functional outcome of 22 major replantations: (The BSSH Douglas Lamb Lecture, 2005) [J]. Journal of Hand Surgery European Volume, 2007, 32(5):488-501.

18. Mattiassich G, Rittenschober F, Dorninger L, et al. Long-term outcome following upper extremity replantation after major traumatic amputation [J]. BMC Musculoskeletal Disorders, 2017, 18(1):77.

19. Chuang C C, Lai J B, Cheng S L, et al. Traction Avulsion Amputation of the Major Upper Limb: A Proposed New Classification, Guidelines for Acute Management, and Strategies for Secondary Reconstruction [J]. Plastic and Reconstructive Surgery, 2001, 108(6):1624-1638.

20. Fujita S, Masada K, Takeuchi E, et al. Modified Sauvé-Kapandji Procedure for Disorders of the Distal Radioulnar Joint in Patients with Rheumatoid Arthritis [J]. Journal of Bone & Joint Surgery, American Volume, 2006, 87(1):24-28.

21. Ota N, Nakamura T, Iwamoto T, et al. Radiographic parameter analysis on modified Sauvé-Kapandji procedure. J Wrist Surg, 2013, 2(1): 19-26.

22. Bandhauer K. Free Vascularized Fibular Graft is Reliable in Upper Extremity Long-Bone Reconstruction with Good Long-Term Outcomes [J]. Journal of Reconstructive Microsurgery, 2016, 32(07):513-519.

23. Panayotis N. Soucacos M.D. F.A.C.S, Korompilias A V, Vekris M D, et al. The free vascularized fibular graft for bridging large skeletal defects of the upper extremity [J]. microsurgery, 2011, 31(3):190-197.

24. Xin M A, Da-Peng Z, Bing L, et al. Clinical curative effect analysis of Masquelet technique for treatment of infected single-bone defect of forearm [J]. journal of regional anatomy and operative
surgery, 2017.

25. Yildiz C, Uzun O, Sinici E, et al. Psychiatric symptoms in patients treated with an Ilizarov external fixator[J]. Acta Orthopaedica Et Traumatologica Turcica, 2005, 39(1):59-63.

Tables

Table 1   Demographic data of the 18 patients*

| Case | Age (yr), Sex | Injury   | Side | Bones Forming OBF                   |
|-------|---------------|----------|------|------------------------------------|
| 1     | 43,M          | Crush    | R(N) | proximal ulna-distal radius        |
| 2     | 23,M          | Accident | R(N) | proximal ulna-distal radius        |
| 3     | 28,F          | Crush    | L(ND)| proximal ulna-distal radius        |
| 4     | 45,M          | Amputation| R(N)| proximal ulna-distal radius        |
| 5     | 37,M          | Amputation| R(N)| proximal ulna-distal radius        |
| 6     | 56,F          | Amputation| L(ND)| proximal ulna-distal radius       |
| 7     | 41,F          | Crush    | R(N) | proximal ulna-distal radius        |
| 8     | 33,M          | Accident | L(ND)| proximal ulna-distal radius        |
| 9     | 57,F          | Amputation| L(ND)| proximal ulna-distal radius        |
| 10    | 40,F          | Amputation| R(D)| proximal ulna-distal radius        |
| 11    | 36,M          | Crush    | R(N) | proximal ulna-distal radius        |
| 12    | 49,M          | Accident | R(N) | proximal ulna-distal radius        |
| 13    | 38,M          | Accident | L(ND)| proximal ulna-distal radius        |
| 14    | 47,F          | Amputation| R(N)| proximal ulna-distal radius        |
| 15    | 44,M          | Crush    | L(ND)| proximal ulna-distal radius        |
| 16    | 47,M          | Crush    | L(ND)| proximal ulna-distal radius        |
| 17    | 26,M          | Amputation| R(N)| proximal ulna-distal radius        |
| 18    | 58,F          | Crush    | L(ND)| proximal ulna-distal radius        |
| Mean  | 41.5          | —        | —    | —                                   |

* Data represents 18 patients with specified demographic and injury details.
| Duration from injury to admission(h) | Accompanied injuries | Ischemic time(h) |
|-------------------------------------|----------------------|------------------|
| 1                                   | 1.5                  | Nil              |
| 2                                   | Rib fracture         | Nil              |
| 3                                   | Nil                  | Nil              |
| 4                                   | Brain trauma         | 4                |
| 5                                   | Nil                  | Nil              |
| 6                                   | Nil                  | 6                |
| 7                                   | Rib fracture         | Nil              |
| 8                                   | 2.5                  | Nil              |
| 9                                   | 2.5                  | Nil              |
| 10                                  | 2.0                  | 6                |
| 11                                  | 3.5                  | 7                |
| 12                                  | 2.0                  | 6                |
| 13                                  | Rib fracture         | Nil              |
| 14                                  | 1.0                  | Nil              |
| 15                                  | 2.5                  | Nil              |
| 16                                  | Brain trauma         | Nil              |
| 17                                  | 2.5                  | Nil              |
| 18                                  | 2.0                  | Nil              |
| Mean                                | 2.0                  | —                |

* OBF = one-bone forearm, F=Female, M=Male, R=Right, L=Left, D = dominant, ND = nondominant
| Case | LLD (cm) | Chen | DASH | Grip Strength: Affected Limb (kg) | Unaffected Limb (kg) | Grip Strength: Forearm | Cosmesis of Outcome score |
|------|---------|------|------|-------------------------------|---------------------|------------------------|------------------------|
| 1    | 7.5     | Grade II | 12.3 | 4.2 | 30 | Very satisfied |
| 2    | 5.2     | Grade I  | 5.0  | 7.5 | 42 | Very satisfied |
| 3    | 8.2     | Grade II | 15.5 | 3.6 | 36 | Very satisfied |
| 4    | 6.5     | Grade II | 12.5 | 3.0 | 33 | Very satisfied |
| 5    | 5.8     | Grade II | 12.3 | 4.3 | 28 | Very satisfied |
| 6    | 7.0     | Grade II | 10.5 | 3.7 | 27 | Very satisfied |
| 7    | 9.5     | Grade II | 13.3 | 3.6 | 37 | Very satisfied |
| 8    | 8.7     | Grade II | 10.0 | 2.5 | 25 | Very satisfied |
| 9    | 9.6     | Grade II | 14.2 | 2.8 | 40 | Very satisfied |
| 10   | 4.2     | Grade I  | 2.4  | 7.5 | 32 | Very satisfied |
| 11   | 7.8     | Grade II | 14.8 | 3.5 | 27 | Very satisfied |
| 12   | 8.0     | Grade II | 13.6 | 2.5 | 26 | Very satisfied |
| 13   | 5.2     | Grade I  | 4.0  | 7.2 | 36 | Very satisfied |
| 14   | 7.0     | Grade II | 11.6 | 2.8 | 42 | Very satisfied |
| 15   | 6.5     | Grade II | 12.4 | 2.8 | 40 | Very satisfied |
| 16   | 6.8     | Grade II | 10.5 | 2.5 | 28 | Very satisfied |
| 17   | 15      | Grade III | 33.3 | 1.8 | 42 | Somewhat satisfied |
| 18   | 6.4     | Grade II | 10.6 | 3.5 | 45 | Very satisfied |
| Mean | 7.5     | —     | 12.2 | 3.9 | 34.2 | — |

Table 2: Follow-up results of the 18 patients*

*Note: LLD (cm) refers to the length of the limb, Chen refers to the patient's Chinese name, DASH is the Disabilities of the Arm, Shoulder, and Hand score, Grip Strength: Affected Limb (kg) refers to the grip strength of the affected limb in kilograms, Unaffected Limb (kg) refers to the grip strength of the unaffected limb in kilograms, Grip Strength: Forearm refers to the grip strength of the forearm, and Cosmesis of Outcome score indicates the patient's satisfaction level, ranging from 1 to 4, with 1 being the least satisfied and 4 being the most satisfied.
Table 2 (continued)

| Occupation | Complications | Time to Union (mo) |
|------------|---------------|-------------------|
| Yes (manual) | Nil | 5 |
| Yes (manual) | Nil | 6 |
| Yes (manual) | Nil | 4 |
| Yes (manual) | Nil | 4 |
| Yes (manual) | Nil | 5 |
| Yes (manual) | Nil | 7 |
| Yes (manual) | Nil | 5 |
| Yes (manual) | Nil | 6 |
| Yes (manual) | Nil | 7 |
| Yes (manual) | Nil | 6 |
| Yes (manual) | Nil | 5 |
| Yes (manual) | Nil | 5 |
| Yes (manual) | Nil | 4 |
| Yes (manual) | Nil | 5 |
| No, only ADL | Nonunion, infection | 15 |
| Yes (manual) | Nil | 4 |
| Mean | — | 5.8 |

*LLD = limb-length discrepancy compared with the contralateral side, DASH = Disabilities of the Arm, Shoulder and Hand, ADL = activities of daily living, and DRUJ = distal radioulnar joint

Table 3 Mean Functional Outcome Score*

| Grading | No. of Patients | Mean Score |
|---------|-----------------|------------|
| Excellent | 3 | 9 |
| Good | 13 | 6.5 |
| Fair | 1 | 5 |
| Poor | 1 | 2 |

*Based on the scoring system of Peterson et al. [6]
Table 4  Wrist and elbow joint mobility at the last follow-up

| Case | wrist flexion(°) | wrist extension(°) | forearm pronation(°) | forearm supination(°) | follow-up/yr |
|------|------------------|--------------------|----------------------|-----------------------|--------------|
| 1    | 30               | 30                 | 45                   | 30                    | 8            |
| 2    | 45               | 60                 | 45                   | 30                    | 9            |
| 3    | 45               | 30                 | 60                   | 60                    | 10           |
| 4    | 60               | 45                 | 30                   | 45                    | 16           |
| 5    | 45               | 30                 | 45                   | 45                    | 7            |
| 6    | 60               | 45                 | 30                   | 45                    | 12           |
| 7    | 60               | 30                 | 60                   | 45                    | 2            |
| 8    | 45               | 45                 | 30                   | 30                    | 11           |
| 9    | 45               | 30                 | 60                   | 45                    | 10           |
| 10   | 60               | 45                 | 60                   | 45                    | 5            |
| 11   | 45               | 45                 | 30                   | 45                    | 6            |
| 12   | 45               | 30                 | 60                   | 45                    | 5            |
| 13   | 30               | 30                 | 45                   | 30                    | 3            |
| 14   | 60               | 45                 | 30                   | 45                    | 7            |
| 15   | 30               | 45                 | 45                   | 60                    | 4            |
| 16   | 30               | 60                 | 45                   | 45                    | 4            |
| 17   | 10               | 15                 | 30                   | 30                    | 9            |
| 18   | 45               | 60                 | 30                   | 45                    | 8            |
| Mean | 43.9             | 40                 | 43.3                 | 42.5                  | 7.6          |

Table 5  Reports on One-Bone Forearm Reconstruction in the Literature

| Study                  | Year | No of Patient | Results                      |
|------------------------|------|---------------|------------------------------|
| Castle[5]              | 1974 | 6             | Good                        |
| Peterson et al.[6]     | 1995 | 19            | Poor results in 10 patients |
| Chen et al.[15]        | 1998 | 7             | Good                        |
| Allende and Allende[8] | 2004 | 7             | Good                        |
| Jacoby et al.[10]      | 2013 | 10            | Average results             |
| Kim et al [9]          | 2017 | 8             | Good                        |
| Current series         | 2020 | 18            | Good to excellent           |

Figures
A 45-year-old woman with open fracture of the left ulnar radius combined with composite soft tissue defect due to mechanical crush injury received emergency stage-one OBF reconstruction. A. Appearance of injured limb; B-C. Postoperative X-ray showed OBF reconstruction of the proximal ulna and distal ulna; D-E. Distal radioulnar joint dislocation 9 months after operation; F-G. DRUJF was further performed, which was similar to Sauvé-Kapandji procedure.
A 40-year-old woman suffered avulsion and detachment in the middle of her right forearm due to mechanical crush injury and subsequently received emergency stage-one OBF reconstruction combined with DRUJF. A. Appearance of injured limb; B. X line showed fracture of ulna and radius with segmental bone defect of ulna, and dislocation of radial head; C. Replantation of shortened forearm, end-to-end anastomosis of blood vessels and nerves, opisthenar incision decompression; D. Postoperative X-ray

Figure 2
showed OBF reconstruction of the proximal ulna and distal ulna and DRUJF, which was similar to the Sauvé-Kapandji procedure; F. According to criteria of Chen, the prognosis of the patient was grade I, without complications.