On solving fuzzy transportation problem based on distance based defuzzification method of various fuzzy quantities using centroid

A. Hari Ganesh, M. Suresh and G. Sivakumar

Abstract
In this paper, we introduce a method for solving simple and multi objective transportation problems with imprecise information based on various fuzzy quantities such as trapezoidal, pentagonal and hexagonal fuzzy numbers by the conversion into crisp information. First, we convert the imprecise information of the Transportation Problem in the form of trapezoidal, pentagonal and hexagonal fuzzy numbers based on proposed fuzzification techniques, and then the fuzzy transportation problems with various fuzzy quantities are converted into crisp transportation problems using appropriate proposed ranking functions introduced in this paper to find its basic and optimum solutions with the help of traditional method. Finally some numerical examples are given to make an effective analysis about the various fuzzy quantities through finding the solutions of transportation problem of imprecise information.

Keywords
Fuzzification, Defuzzification, Ranking function, Transportation Problem, Trapezoidal Fuzzy Number, Pentagonal Fuzzy Number, Hexagonal Fuzzy Number.

AMS Subject Classification
03E72.

1. Introduction
In real life situations most of the information is obtained in vague nature. In particular, mostly the data is observed in the form of intervals. The optimization problems involving such type of interval data have to be solved in an effective way to find best solution on today’s competitive world. Recently many authors are being involved in solving such type of optimization problems through the concept of fuzzy set theory. The fuzzy set theory was introduced by Zadeh [12] in 1965 to
deal this type of imprecise and vague information. In order to have an idea about solving optimization problems under uncertain environment, here we have made a recent survey about solving special type of fuzzy optimization problem such as fuzzy transportation problem based on various fuzzy numbers and its ranking.

There are several papers in the literature in which the fuzzy transportation problems have been solved using various ranking methods of fuzzy numbers. In 2011, Amarpreet Kaur, Amit Kumar [2] extend a classical method to propose a new method for solving fuzzy transportation problems with the help of ranking function. In 2014, Ali Ebrahimnejad [1] proposed a new ranking function for solving fuzzy transportation problem by converting it into crisp one. The main contribution in his work is the reduction of the computational complexity of the existing ranking method proposed by Karu and Kumar [3] in the year 2012. In 2015, Iden Hasan Hussein and Anfal Hasan Dheyab [7] have introduced a new algorithm using ranking function for normal and abnormal triangular fuzzy numbers to find solution of fuzzy transportation problem using Vogel’s modified distribution algorithm. In 2017, Darunee Hunwisai and Poom Kumam [5] introduced the method for solving fuzzy transportation problem using Robust’s ranking technique for the representative value of the fuzzy number. In addition they used allocation table method to find an initial basic feasible solution for the Fuzzy Transportation Problem. In 2018, Mahananda Babasaheb Bhopale [8] proposed a new ranking method for converting fuzzy transportation problem into crisp valued transportation problem to find its optimum solution using MODI method. In the same year, Vidhya and Ganesan [11] presented a methodology for the solution of multi-objective fuzzy transportation problem using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method. In 2019, Nagar et al. [9] proposed a new fuzzification and defuzzification method to convert Interval data based transportation problem into fuzzy transportation problem to find its optimum solution. Furthermore, they have made a comparative study with the available methods to show the effectiveness of the proposed algorithm in their work. In 2020, Ashok Sahebrao Mhaske and Kirankumar Laxmanrao Bondar [4] have introduced a method to convert the crisp transportation problem into the fuzzy transportation problem by using various types of fuzzy numbers such as triangular, pentagonal, and heptagonal fuzzy numbers. Moreover, they compare the minimum fuzzy transportation cost obtained from the different methods in their work. Dinesh C.S. Bisht and Pankaj Kumar Srivastava [6] proposed a method for solving Interval data based transportation problems through converting it into fuzzy transportation problem and then further conversion into crisp transportation problem using trisectional approach of fuzzification and newly proposed ranking technique based on in-centre concept based on traditional methods in the same year.

In this paper, we propose a methodology to solve the single and multi-objective transportation problem using proposed fuzzification and defuzzification methods of various fuzzy quantities such as trapezoidal, pentagonal and hexagonal fuzzy quantities. Moreover, we have planned to analysis the effectiveness of these fuzzy quantities based on the results obtained using the proposed methods for solving single and bi-objective transportation problems.

2. Preliminaries

Definition 2.1 (Fuzzy Set). A fuzzy set \tilde{A} in the universal set X is defined as $\tilde{A} = \{(a, \tilde{\mu}_{\tilde{A}}(a)) : a \in X\}$. Here $\tilde{\mu}_{\tilde{A}} : A \rightarrow [0, 1]$ is the grade of the membership function and $\tilde{\mu}_{\tilde{A}}(x)$ is the grade value of $x \in X$ in the fuzzy set \tilde{A}.

Definition 2.2 (Fuzzy Number). A fuzzy number \tilde{A} is a subset of real line R, with the membership function satisfying the following properties:

(i) $\tilde{\mu}_{\tilde{A}}(x)$ is piecewise continuous in its domain.
(ii) \tilde{A} is normal, i.e., there is a $x_0 \in X$ such that $\tilde{\mu}_{\tilde{A}}(x_0) = 1$.
(iii) \tilde{A} is convex, i.e.,

$$\tilde{\mu}_{\tilde{A}}(\lambda x_1 + (1 - \lambda) x_2) \geq \min (\tilde{\mu}_{\tilde{A}}(x_1), \tilde{\mu}_{\tilde{A}}(x_2)), \quad \forall x_1, x_2 \in X.$$

Definition 2.3 (Triangular Fuzzy Number). The fuzzy set $\tilde{A} = (a_1, a_2, a_3; w)$, where $a_1 < a_2 < a_3$ and defined on R, is called the generalized triangular fuzzy number, if the membership function of \tilde{A} is given by

$$\tilde{\mu}_{\tilde{A}}(x) = \begin{cases} 0, & x < a_1 \\
\frac{x - a_1}{a_2 - a_1}, & a_1 \leq x \leq a_2 \\
\frac{x - a_2}{a_3 - a_2}, & a_2 \leq x \leq a_3 \\
0, & x > a_3 \end{cases}$$

Definition 2.4 (Trapezoidal Fuzzy Number). The fuzzy set $\tilde{A} = (a_1, a_2, a_3, a_4; w)$, where $a_1 < a_2 < a_3 < a_4$ and defined on R, is called the generalized trapezoidal fuzzy number, if the membership function of \tilde{A} is given by

$$\tilde{\mu}_{\tilde{A}}(x) = \begin{cases} 0, & x < a_1 \\
w \frac{x - a_1}{a_2 - a_1}, & a_1 \leq x \leq a_2 \\
w, & a_2 \leq x \leq a_3 \\
w \frac{x - a_3}{a_4 - a_3}, & a_3 \leq x \leq a_4 \\
0, & \text{otherwise} \end{cases}$$

Definition 2.5 (Pentagonal Fuzzy Number). The fuzzy set $\tilde{A} = (a_1, a_2, a_3, a_4, a_5; w)$, where $a_1 < a_2 < a_3 < a_4 < a_5$ and defined on R, is called the generalized pentagonal fuzzy num-
ber, if the membership function of \tilde{A} is given by

$$
\mu_{\tilde{A}}(x) = \begin{cases} 0, & x < a_1 \\
\frac{1}{2} \left(\frac{x-a_1}{a_2-a_1} \right), & a_1 \leq x \leq a_2 \\
\frac{1}{2} + \frac{1}{2} \left(\frac{x-a_2}{a_3-a_2} \right), & a_2 \leq x \leq a_3 \\
1, & a_3 \leq x \leq a_4 \\
1 - \frac{1}{2} \left(\frac{x-a_4}{a_5-a_4} \right), & a_4 \leq x \leq a_5 \\
\frac{1}{2} \left(\frac{x-a_5}{a_6-a_5} \right), & a_5 \leq x \leq a_6 \\
0, & x > a_6
\end{cases}
$$

Definition 2.6 (Hexagonal Fuzzy Number). The fuzzy set $\tilde{A} = (a_1, a_2, a_3, a_4, a_5, a_6, w)$, where $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$ and defined on R, is called the generalized hexagonal fuzzy number, if the membership function of \tilde{A} is given by

$$
\mu_{\tilde{A}}(x) = \begin{cases} 0, & x < a_1 \\
\frac{1}{2} \left(\frac{x-a_1}{a_2-a_1} \right), & a_1 \leq x \leq a_2 \\
\frac{1}{2} + \frac{1}{2} \left(\frac{x-a_2}{a_3-a_2} \right), & a_2 \leq x \leq a_3 \\
1, & a_3 \leq x \leq a_4 \\
1 - \frac{1}{2} \left(\frac{x-a_4}{a_5-a_4} \right), & a_4 \leq x \leq a_5 \\
\frac{1}{2} \left(\frac{x-a_5}{a_6-a_5} \right), & a_5 \leq x \leq a_6 \\
0, & x > a_6
\end{cases}
$$

Definition 2.7 (Fuzzification). Let the interval data be $[m, M]$. Then the tetra-section of this interval is considered as

$$
d = \frac{(M - m)}{4}
$$

Thus the trapezoidal fuzzy number will be taken as

$$
(m, m + d, m + 3d, M)
$$

(2.1)

where $M = m + 4d$.

Let the interval data be $[m, M]$. Then the hexa-section of this interval is considered as

$$
d = \frac{(M - m)}{6}
$$

Thus the pentagonal fuzzy number will be taken as

$$
(m, m + d, m + 3d, m + 5d, M)
$$

(2.2)

where $M = m + 6d$.

Let the interval data be $[m, M]$. Then the octa-section of this interval is considered as

$$
d = \frac{(M - m)}{8}
$$

Thus the hexagonal fuzzy number will be taken as

$$
(m, m + d, m + 3d, m + 5d, m + 7d, M)
$$

(2.3)

where $M = m + 8d$.

3. Proposed Methods of Defuzzification for Various Fuzzy Quantities

3.1 Ranking Function of Generalized Trapezoidal Fuzzy Number for Defuzzification

This section proposes a new distance based ranking method for ordering generalized trapezoidal fuzzy number by converting fuzzy number into a crisp number. In order to introduce a new distance based ranking for ordering fuzzy numbers, the new balancing point of trapezoid is introduced using centroid of centroids. First, the trapezoid corresponding to the generalized trapezoidal fuzzy number $\tilde{A} = (a_1, a_2, a_3, a_4; w)$, is divided into two triangles ABC, AED and ECD. The reason for selecting this proposed centroid as a point of reference is that each centroid points ($G_1 = \left(\frac{a_1 + a_2 + a_3}{3}, \frac{2w}{9} \right)$ of ABC, $G_2 = \left(\frac{3a_1 + a_2 + 2a_4}{6}, \frac{w}{6} \right)$ of AED and $G_3 = \left(\frac{a_1 + 3a_3 + 2a_4}{6}, \frac{w}{2} \right)$ of ECD) are balancing points of three triangles. Therefore, the centroid of these centroids would be a better balancing point of trapezoid.

3.2 Ranking Function of Generalized Pentagonal Fuzzy Number for Defuzzification

This section proposes a new distance based ranking method for ordering generalized pentagonal fuzzy number by converting fuzzy number into a crisp number. In order to introduce a new distance based ranking for ordering pentagonal fuzzy numbers, the new balancing point of pentagonal is introduced using centroid of centroids. First, the pentagon corresponding to the generalized pentagonal fuzzy number $\tilde{A} = (a_1, a_2, a_3, a_4, a_5; w)$, is divided into triangle BCD and trapezoid ABDE. Furthermore, the trapezoid is divided into...
three triangles ABD, AFE and DEF for finding the balancing point \(G' \) of the trapezoid ABDE as per the procedure introduced in Section 3.1. Finally, the average point of the balancing point \(G' \) of the trapezoid ABDE and the centroid \(G'' \) of the triangle is made as a reference point of pentagonal. The reason for selecting this proposed point as a point of reference is that each centroid points balancing points of the trapezoid and triangle. Therefore, the average of centroids would be a better balancing point of pentagon.

Consider the generalized pentagonal fuzzy number \(\tilde{A} = (a_1, a_2, a_3, a_4, a_5; \tilde{w}) \). The average of centroids of trapezoid and triangle is

\[
G = (x_0, y_0) = \left(\frac{3a_1 + 4a_2 + 3a_3 + 6a_4 + 2a_5}{18}, \frac{4w}{9} \right) \tag{3.3}
\]

Figure 3.2. Centroid of Generalized Pentagonal Fuzzy Number

3.3 Ranking Function of Generalized Hexagonal Fuzzy Number for Defuzzification

This section proposes a new distance based ranking method for ordering generalized hexagonal fuzzy number by converting fuzzy number into a crisp number. In order to introduce a new distance based ranking for ordering hexagonal fuzzy numbers, the new balancing point of hexagon is introduced using centroid. First, the hexagon corresponding to the generalized hexagonal fuzzy number \(\tilde{A} = (a_1, a_2, a_3, a_4, a_5, a_6; \tilde{w}) \), is divided into two trapezoids ABEF and BCDE. Furthermore, the trapezoids are divided into three triangles (ABE, AHF, EFH for the first trapezoid ABEF and BCD, BIF, DEI for the second trapezoid BCDE) for finding the balancing point \(G' \) of the first trapezoid ABEF and \(G'' \) for the second trapezoid BCDE as per the procedure introduced in Section 3.1. Finally, the average point of the balancing point (centroid of centroids) \(G' \) and \(G'' \) of the trapezoids ABEF and BCDE is made as a reference point of hexagonal. The reason for selecting this proposed point as a point of reference is that each centroid points \(G' \) and \(G'' \) is balancing point of the trapezoids. Therefore, the average of these centroids would be a better balancing point of pentagon.

Consider the generalized hexagonal fuzzy number \(\tilde{A} = (a_1, a_2, a_3, a_4, a_5, a_6; \tilde{w}) \). The average of centroids of trapezoids is

\[
G = (x_0, y_0) = \left(\frac{3a_1 + 4a_2 + 3a_3 + 6a_4 + 5a_5 + 2a_6}{18}, \frac{17w}{36} \right)
\]

\[\text{Definition 3.1 (Ranking Function). For mapping the set of all generalized triangular, trapezoidal, pentagonal and hexagonal fuzzy numbers to a set of all real number, the ranking function is defined based on the distance between the original point and the proposed centroids of these fuzzy numbers (3.1), (3.2), (3.3) and (3.4) as follows:}\]

\[
R(\tilde{A}) = \sqrt{(x_0(\tilde{A}))^2 + (y_0(\tilde{A}))^2} \tag{3.5}
\]

4. Formulation of Fuzzy Single & Multi Objective Transportation Model

In this section, we present single and multi-objective transportation model with fuzzy cost or/and fuzzy time.

Transportation problem is one of the subclass of Linear Programming Problem in which the objective is to transport various quantities of a single homogeneous commodity, that are initially stored at various origins, to different destinations in such a way that the total transportation cost or/and time is minimum. To achieve this objective we must know the amount and location of available supplies and the quantities demanded. We must know the cost or/and time that result from transporting one unit of commodity from various origins to various destinations.

Mathematically, the single and multi-objective transportation problems can be written as follows:

4.1 Mathematical Formulation of Fuzzy Single Objective Transportation Problem

Mathematically, the single objective transportation problem may be stated as a linear programming problem as follows:

Minimize \[\tilde{Z} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij} \tag{4.1} \]

Subject to \[\sum_{j=1}^{n} x_{ij} \equiv a_i, \quad i = 1, 2, \ldots, m \]

\[\sum_{i=1}^{m} x_{ij} \equiv b_j, \quad j = 1, 2, \ldots, n \]
where \(\tilde{c}_{ij}, \tilde{a}_i, \tilde{a}_j \) and \(\tilde{b}_j \) are fuzzy cost, fuzzy time, fuzzy supply and fuzzy demand from \(i \)th source to \(j \)th destination respectively.

All denotes \(\tilde{c}_{ij}, \tilde{a}_i, \tilde{a}_j \) and \(\tilde{b}_j \) are non-negative fuzzy numbers.

The same problem may be represented in the form of \(m \times n \) fuzzy matrix (Table 4.1) where each cell having a fuzzy cost or fuzzy time.

4.2 Mathematical Formulation of Multi-Objective Transportation Problem

Mathematically, the fuzzy multi-objective transportation problem can be stated as:

Minimize \(z_k = \sum_{i=1}^{m} \sum_{j=1}^{n} (\tilde{p}_{ij}) x_{ij} \) \((4.2) \)

Subject to \(\sum_{j=1}^{n} x_{ij} \equiv \tilde{a}_i, \ i = 1, 2, \ldots, m \)

\(\sum_{i=1}^{m} x_{ij} \equiv \tilde{b}_j, \ j = 1, 2, \ldots, n \)

where \(\tilde{z}_k = \{ \tilde{z}_1, \tilde{z}_2, \ldots, \tilde{z}_k \} \).

If the objective function \(\tilde{z}_1 \) denotes the fuzzy cost function, then it can be started as

\[\tilde{z}_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{c}_{ij} x_{ij} \]

If the objective function \(\tilde{z}_2 \) denotes the fuzzy time function, then it can be started as

\[\tilde{z}_2 = \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{t}_{ij} x_{ij} \]

Then it is a bi-objective fuzzy transportation problem, which is represented by using weights of objectives to consider the priorities of the objective as follows:

\[\tilde{z} = w_1 \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{c}_{ij} x_{ij} + w_2 \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{t}_{ij} x_{ij} \] \((4.3) \)

Table 4.1. Fuzzy Single Objective Transportation Model with Fuzzy Cost or Fuzzy Time

Source/Destination	1	2	...	j	...	n	Supply
1	\(\tilde{c}_{11} \)	\(\tilde{c}_{12} \)	...	\(\tilde{c}_{1j} \)	...	\(\tilde{c}_{1n} \)	\(\tilde{a}_1 \)
2	\(\tilde{c}_{21} \)	\(\tilde{c}_{22} \)	...	\(\tilde{c}_{2j} \)	...	\(\tilde{c}_{2n} \)	\(\tilde{a}_2 \)
...
i	\(\tilde{c}_{i1} \)	\(\tilde{c}_{i2} \)	...	\(\tilde{c}_{ij} \)	...	\(\tilde{c}_{in} \)	\(\tilde{a}_i \)
...
m	\(\tilde{c}_{m1} \)	\(\tilde{c}_{m2} \)	...	\(\tilde{c}_{mj} \)	...	\(\tilde{c}_{mn} \)	\(\tilde{a}_m \)

Demand \(\tilde{b}_1 \) \(\tilde{b}_2 \) \(\tilde{b}_j \) \(\tilde{b}_n \)

Table 4.2. Fuzzy Bi-Objective Transportation Model with Fuzzy Cost and Fuzzy Time

Source/Destination	1	2	...	j	...	n	Supply
1	\(\tilde{c}_{11}; \tilde{t}_{11} \)	\(\tilde{c}_{12}; \tilde{t}_{12} \)	...	\(\tilde{c}_{1j}; \tilde{t}_{1j} \)	...	\(\tilde{c}_{1n}; \tilde{t}_{1n} \)	\(\tilde{a}_1 \)
2	\(\tilde{c}_{21}; \tilde{t}_{21} \)	\(\tilde{c}_{22}; \tilde{t}_{22} \)	...	\(\tilde{c}_{2j}; \tilde{t}_{2j} \)	...	\(\tilde{c}_{2n}; \tilde{t}_{2n} \)	\(\tilde{a}_2 \)
...
i	\(\tilde{c}_{i1}; \tilde{t}_{i1} \)	\(\tilde{c}_{i2}; \tilde{t}_{i2} \)	...	\(\tilde{c}_{ij}; \tilde{t}_{ij} \)	...	\(\tilde{c}_{in}; \tilde{t}_{in} \)	\(\tilde{a}_i \)
...
m	\(\tilde{c}_{m1}; \tilde{t}_{m1} \)	\(\tilde{c}_{m2}; \tilde{t}_{m2} \)	...	\(\tilde{c}_{mj}; \tilde{t}_{mj} \)	...	\(\tilde{c}_{mn}; \tilde{t}_{mn} \)	\(\tilde{a}_m \)

Demand \(\tilde{b}_1 \) \(\tilde{b}_2 \) \(\tilde{b}_j \) \(\tilde{b}_n \)

Subject to \(\sum_{j=1}^{n} x_{ij} \equiv \tilde{a}_i, \ i = 1, 2, \ldots, m \)

\(\sum_{i=1}^{m} x_{ij} \equiv \tilde{b}_j, \ j = 1, 2, \ldots, n \)

where \(\tilde{c}_{ij}, \tilde{a}_i, \tilde{a}_j \) and \(\tilde{b}_j \) are fuzzy cost, fuzzy time, fuzzy supply and fuzzy demand from \(i \)th source to \(j \)th designation respectively.

All denotes \(\tilde{c}_{ij}, \tilde{a}_i, \tilde{a}_j \) and \(\tilde{b}_j \) a non-negative fuzzy numbers.

The same problem may be represented in the form of \(m \times n \) fuzzy matrix (Table 4.2) where each cell having a fuzzy cost and fuzzy time.

5. Algorithm for solving Interval Valued Transportation Problem (IVTP)

Step 1: Convert the given IVTP into tabular form.

Step 2: Fuzzify the cost, supply and demand in the form of Interval as Trapezoidal, Pentagonal and Hexagonal Fuzzy Numbers using quadra, hexa and octa-sectional approach defined in Section 2 respectively.

Step 3: Apply ranking technique proposed in Section 3 to convert the Fuzzy Transportation Problem as a crisp one.

Step 4: If it is multi-objective Transportation Problem then convert it into single objective Transportation Problem using equation (4.3), then go to the next step. If it is a single objective Transportation Problem then go directly to the next step.

Step 5: Apply any of the classical method such as North West Corner Rule, Least Cost Method and Vogal’s Approximation...
Method to find initial basic feasible solution and then apply modified distribution (MODI) technique to get the optimal solution.

6. Numerical Illustrations

Illustration 1
A company has factories at F_1, F_2 and F_3 which supply warehouses at W_1, W_2 and W_3. Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouses requirements are 180, 120 and 150 units respectively. Unit shipping costs in rupees are as follows:

\[
\begin{align*}
\text{Factory} & \quad \text{Warehouse} & \quad \text{Supply} \\
F_1 & \quad [11,21] & \quad [5,40] & \quad [6,18] & \quad [100,300] \\
F_2 & \quad [7,23] & \quad [2,14] & \quad [9,28] & \quad [80,280] \\
F_3 & \quad [21,32] & \quad [12,36] & \quad [8,32] & \quad [45,135] \\
\text{Demand}^* & \quad [90,310] & \quad [50,190] & \quad [110,200] \\
\end{align*}
\]

Determine the optimum distribution for this company to minimize shipping costs.

Solution

The basic and optimum solution of the given Interval based transportation problem is obtained using Trapezoidal, Pentagonal and Hexagonal Fuzzy Numbers based on fuzzification and defuzzification techniques as follows:

Case I: In this case, first the interval numbers in the given transportation problem (Table 6.1) are converted in to trapezoidal fuzzy numbers using proposed fuzzification formula (2.1) as shown in Table 6.7.

The fuzzy transportation problem (Table 6.7) with trapezoidal fuzzy numbers is converted into crisp transportation problem using the ranking function (3.5) of proposed centroid (3.1) as follows:

\[
\begin{align*}
\text{Table 6.2} \\
\text{Factory} & \quad \text{Warehouse} & \quad \text{Supply} \\
& \quad W_1 & \quad W_2 & \quad W_3 \\
F_1 & \quad 16.01 & \quad 22.50 & \quad 12.01 & \quad 200 \\
F_2 & \quad 15.01 & \quad 8.01 & \quad 18.51 & \quad 180 \\
F_3 & \quad 26.50 & \quad 24.00 & \quad 20.00 & \quad 90 \\
\text{Demand}^* & \quad 200 & \quad 120 & \quad 155 \\
\end{align*}
\]

Finally the IBFS and optimum solution are obtained using Step 5 as follows:

Initial Basic Feasible Solution = $(16.01 \times 45) + (12.01 \times 155)$
\[+ (15.01 \times 60) + (8.01 \times 120) + (26.5 \times 90) + (0 \times 5)\]

Optimum Solution = 6828.8

Case II:

In this case, first the interval numbers in the given transportation problem (Table 6.1) are converted in to pentagonal fuzzy numbers using proposed fuzzification formula (2.2) as shown in Table 6.8.

Then the fuzzy transportation problem (Table 6.8) with pentagonal fuzzy numbers is converted into crisp transportation problem using the ranking function (3.5) of proposed centroid (3.2) as follows:

\[
\begin{align*}
\text{Table 6.3} \\
\text{Factory} & \quad \text{Warehouse} & \quad \text{Supply} \\
& \quad W_1 & \quad W_2 & \quad W_3 \\
F_1 & \quad 16.10 & \quad 22.83 & \quad 12.12 & \quad 201.85 \\
F_2 & \quad 15.15 & \quad 8.12 & \quad 18.68 & \quad 181.85 \\
F_3 & \quad 26.61 & \quad 24.23 & \quad 20.23 & \quad 90.83 \\
\text{Demand}^* & \quad 202.04 & \quad 121.30 & \quad 155.83 \\
\end{align*}
\]

Finally the IBFS and optimum solution are obtained using Step 5 as follows.

Initial Basic Feasible Solution = $(16.1 \times 46.02) + (12.12 \times 155.83)$
\[+ (15.15 \times 60.55) + (8.12 \times 121.3) + (26.61 \times 90.83) + (0 \times 4.64)\]

Optimum Solution = 6948.86

Case III:

In this case, first the interval numbers in the given transportation problem (Table 6.1) are converted in to hexagonal fuzzy numbers using proposed fuzzification formula (2.3) as shown in Table 6.9.

The fuzzy transportation problem (Table 6.9) with hexagonal fuzzy numbers is converted into crisp transportation problem using the ranking function (3.5) of proposed centroid (3.4) as follows:

Finally the basic and optimum solutions are obtained using Step 5 as follows:

Initial Basic Feasible Solution = $(16.08 \times 45.76) + (12.09 \times 155.63)$
\[+ (15.12 \times 60.42) + (8.1 \times 120.97)\]
In order to analyse the effectiveness of various fuzzy numbers through the obtained basic and optimization solutions, the solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.

The basic and optimum solutions obtained from the above solutions are plotted in the XY plane as shown in Figure 6.1.
On solving fuzzy transportation problem based on distance based defuzzification method of various fuzzy quantities using centroid — 417/426

Case II:	
In this case, first the interval numbers in the given optimization problem (Table 6.10) are converted into pentagonal fuzzy numbers using proposed fuzzification formula (2.2) as shown in Table 6.14.	
The fuzzy optimization problem (Table 6.14) with pentagonal fuzzy numbers is converted into crisp optimization problem using the ranking function (3.5) of the proposed centroid (3.3) as shown in Table 6.15.	
In order to find the basic and optimum solutions, the bi-objective optimization problem (Table 6.15) is converted into single objective optimization problem using the equation (4.3) with \(w_1 = 0.5 \) and \(w_2 = 0.5 \) as shown in Table 6.16.	
Finally, the basic and optimum solutions are obtained using the proposed algorithm as follows:	

Initial Basic Feasible Solution

Total treatment = \(3111.11 \times 12990.38 + 2611.11 \times 17287.04 \)

\[
\begin{align*}
&= 0 \times 24268.88 + 2009.26 \times 11644.81 \\
&+ 4607.41 \times 13998.15 + 6316.67 \times 7414.54 \\
&+ 24291.67 \times 1979.54 + 0 \times 13287.96 \\
&+ 0 \times 8640.74 + 19240.74 \times 3314.81 \\
&+ 0 \times 1646.94 \\
&= 332142828
\end{align*}
\]

Total dosage = \(5.55 \times 12990.38 + 10.07 \times 17287.04 \)

\[
\begin{align*}
&= 0 \times 24268.88 + 260.60 \times 11644.81 \\
&+ 1531.02 \times 13998.15 + 1615.74 \times 7414.54 \\
&+ 951.85 \times 1979.54 + 0 \times 13287.96 \\
&+ 0 \times 8640.74 + 61.24 \times 3314.81 \\
&+ 0 \times 1646.94 \\
&= 38779455.2
\end{align*}
\]

Optimum Solution

Total treatment = \(2611.11 \times 17287.04 + 0 \times 37259.26 \)

\[
\begin{align*}
&= 0 \times 24268.88 + (2009.26 \times 11644.81) \\
&+ (4607.41 \times 13998.15) + (6316.67 \times 7414.54) \\
&+ (24291.67 \times 1979.54) + 0 \times 13287.96 \\
&+ 0 \times 8640.74 + 19240.74 \times 3314.81 \\
&+ 0 \times 1646.94 \\
&= 300912457
\end{align*}
\]

Case III:

In this case, first the interval numbers in the given optimization problem are converted into hexagonal fuzzy numbers using proposed fuzzification (2.3) as shown in Table 6.17.

The above fuzzy optimization problem with hexagonal fuzzy numbers is converted into crisp optimization problem using the ranking function (3.5) of proposed centroid (3.4) as shown in Table 6.18.

In order to find the basic and optimum solutions, the bi-objective optimization problem (Table 6.18) is converted into single objective optimization problem using the equation (4.3) with \(w_1 = 0.5 \) and \(w_2 = 0.5 \) as follows.

Finally, the basic and optimum solutions are obtained using the proposed algorithm as follows:

Initial Basic Feasible Solution

Total treatment = \(3108.33 \times 12963.51 + 2608.33 \times 17277.78 \)

\[
\begin{align*}
&= 0 \times 24293.43 + (2006.94 \times 11662.88) \\
&+ (4605.56 \times 13986.11) + (6312.50 \times 7409.65) \\
&+ (24291.67 \times 1978.4) + 0 \times 13278.47 \\
&+ (0 \times 8630.56) + (19230.56 \times 3311.11) \\
&+ 0 \times 1646.46 \\
&= 331688143.2
\end{align*}
\]

Optimum Solution

Total treatment = \(2611.11 \times 17287.04 + 0 \times 37259.26 \)

\[
\begin{align*}
&= 0 \times 24268.88 + (2009.26 \times 11644.81) \\
&+ (4607.41 \times 13998.15) + (6316.67 \times 7414.54) \\
&+ (24291.67 \times 1979.54) + 0 \times 13287.96 \\
&+ 0 \times 8640.74 + 19240.74 \times 3314.81 \\
&+ 0 \times 1646.94 \\
&= 417/426
\end{align*}
\]
This paper made an attempt to solve the interval based transportation problem through the concept of fuzzy set theory using fuzzification and defuzzification of various fuzzy numbers. In this work, initially interval based transportation problem was converted into three different fuzzy transportation problems with various fuzzy numbers such as trapezoidal, pentagonal and hexagonal fuzzy numbers using proposed fuzzification techniques. Then the fuzzy transportation problems were converted to crisp transportation problems with the help of proposed defuzzification techniques of these fuzzy numbers using new distance between original point and centroid of centroids. Finally the three different basic and optimum solutions of interval based transportation problem are observed to analyse the effectiveness of various fuzzy numbers to obtain the minimum basic and optimum solution. The same analysis may be done for finding the effectiveness of various generalized fuzzy numbers through the same transportation problem. Moreover, this analysis may be extended to other fuzzy numbers through some other optimizations problems like assignment problem, game theoretical problem etc.

7. Conclusion

This paper made an attempt to solve the interval based transportation problem as a fuzzy optimization problem with trapezoidal fuzzy number is minimum. So we suggest from this analysis that the trapezoidal fuzzy numbers might give the effective solution than the other fuzzy numbers such as pentagonal and hexagonal fuzzy numbers as per the proposed fuzzification and defuzzification techniques.

Table 6.6. Comparative Analysis between various fuzzy quantities

Fuzzy Number	Initial Basic Treatment Cost	Total Dosage	Optimum Solution	Total Treatment Cost	Total Dosage
Trapezoidal	330,274,250	38,508,840.9	258,919,725	22,154,422.5	71,354,525
Pentagonal	332,142,828	38,779,455.2	300,912,457	22,348,736.2	31,230,371
Hexagonal	331,688,143.2	38,713,996.53	347,232,465.4	26,679,466.27	15,544,322

Total treatment = (2608.33 × 17277.78) + (0 × 37256.94)

+ (2006.94 × 24626.39) + (4605.56 × 707.64)
+ (6312.50 × 7409.65) + (24291.67 × 1978.4)
+ (0 × 314.96) + (3909.72 × 13278.47)
+ (0 × 8630.56) + (31027.78 × 3311.11)
+ (0 × 1646.46)
= 347232465.4

Total dosage = (10.05 × 17277.78) + (0 × 37256.94)

+ (259.83 × 24626.39) + (1529.51 × 707.64)
+ (1614.31 × 7409.65) + (951.39 × 1978.4)
+ (0 × 314.96) + (45.13 × 13278.47)
+ (0 × 8630.56) + (1383.78 × 3311.11)
+ (0 × 1646.46)
= 26679466.27

The basic and optimum solutions obtained from the above cases are summarized in Table 6.6.

In order to analyse the effectiveness of various fuzzy numbers through the obtained basic and optimization solutions, the solutions are plotted in the XY plane as shown in Figures 6.2 and 6.3.

The basic and optimum solutions obtained by converting the interval based optimization problem as a fuzzy optimization problem with trapezoidal fuzzy number is minimum. So the analysis suggests that the trapezoidal fuzzy numbers might give the effective solution than the other fuzzy numbers such as pentagonal and hexagonal fuzzy numbers as per the proposed fuzzification and defuzzification techniques.

![Figure 6.2. Optimum Solution](image)

![Figure 6.3. Initial Basic Feasible Solution (IBFS)](image)
Table 6.7

Factory	Warehouse	Supply		
F_1	(11,13.5, 18.5,21)	(5,13.75, 31.25,40) (6.9, 15,18)	(100,150, 250,300)	
F_2	(7,11, 19.23)	(2.5, 11,14)	(9,13.75, 23.25,28)	(80,130, 230,280)
F_3	(21,23.75, 29.25,32)	(12.18, 30,36)	(8.14, 26,32)	(45,67.5, 112.5,135)
Demand	(90,145, 255,310)	(50,85, 155,190)	(110,132.5, 177.5,200)	

Table 6.8

Factory	Warehouse	Supply		
F_1	(11,12.67,19,33,21)	(5,10.83,22.5, 34.17,40) (6.8,12,16,18)	(100,133.33,200, 266,67,300)	
F_2	(7,9.67,15, 20,33,23)	(2,4.8,12,14)	(9,12.17,18.5, 24.83,28)	(80,113.33,180, 246,67,280)
F_3	(21,22.83,26.5, 30,17,32)	(12,16,24,32,36)	(8,12,20,28,32)	(45,60,90,120,135)
D	(90,126.67,200,277.33,310)	(50,73.33,120, 166,67,190)	(110,125,155,185,200)	

Table 6.9

Factory	Warehouse	Supply		
F_1	(11,12.25,14.75, 17.25,19.75,21)	(5,9.38,18.13, 26.88,35.63,40) (6.7,5,10.5,13.5, 16.5,18)	(100,125,175, 225,275,300)	
F_2	(7,9.13, 17,21,23)	(2,3.5,6.5, 9.5,12.5,14)	(9.11,16,13, 20.88,25.63,28)	(80,105,155, 205,255,280)
F_3	(21,22.38,25.13, 27,88,30,63,32)	(12,15,21, 27,33,36)	(8,11,17, 23,29,32)	(45,56.25, 78.75,101.25,123.75,135)
Demand	(90,117.5,172.5, 227.5,282.5,310)	(50,67.5,102.5, 137.5,172.5,210)	(110,121.25,143.75, 166,25,188,75,200)	

Table 6.10

Treatment/ Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	[2500,3700] [4,7]	[2000,3200] [7,13]	[8000,9000] [425,560]	[10000,4000] [250,300]	[28000,32000] [550,750]	[52000, 57000]
Ayurvedic (T_2)	[1500,2500] [90,425]	[2400,3500] [450,580]	[4200,5000] [1200,1850]	[5400,7200] [1300,1920]	[22000,26500] [850,1050]	[33000, 37000]
Homeopathy (T_3)	[3500,4600] [0.6, 1.2]	[4000,5000] [1.2, 2.3]	[3200,4600] [36,54]	[18000,24000] [55,80]	[32000,45000] [90,175]	[11200, 15300]
Unani (T_4)	[3200,4300] [190,390]	[3500,4500] [420,520]	[5000,5800] [1200,1520]	[12000,2100] [725,950]	[29000,33000] [1290,1475]	[6400, 10800]
Yoga (T_5)	[950,1500] [10,42]	[1000,1400] [14,24]	[2100,2700] [1300,2050]	[3200,5200] [545,850]	[17000,21400] [48,74]	[2500, 4100]
Naturopathy (T_6)	[4200,5200] [8,14]	[4000,6500] [19,23]	[6200,8200] [950,1450]	[12000,2100] [325,540]	[29000,33000] [37,53]	[1540, 1750]
Demand*	[22700,26500]	[15250,19250]	[11350,16550]	[6340,8450]	[4230,6320]	

* (no. of patients affected by the disease D_i to be taken the treatment)
Table 6.11

Treatment/Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	(2500, 2800, 3400, 3700)	(2000, 2300, 2900, 3200)	(8000, 8250, 8750, 9000)	(10000, 11000, 13000, 14000)	(28000, 29000, 31000, 32000)	(52000, 53250, 55750, 57000)
Ayurvedic (T_2)	(1500, 1750, 2250, 2500)	(450, 482.5, 547.5, 580)	(2000, 2300, 2900, 3200)	(7000, 7350, 8000, 8250)	(250, 262.5, 287.5, 300)	(550, 600, 700, 750)
Homeopathy (T_3)	(3500, 3775, 4325, 4600)	(4750, 5000, 5750, 6000)	(3200, 3550, 4250, 4600)	(18000, 19500, 22500, 24000)	(32000, 32500, 34000, 35000)	(11200, 12225, 12750, 13200)
Unani (T_4)	(3200, 3475, 4025, 4300)	(4200, 4450, 5450, 5700)	(5000, 5200, 5600, 5800)	(12000, 14250, 17000, 18500)	(29000, 30000, 32000, 33000)	(6400, 7500, 9700, 10800)
Yoga (T_5)	(950, 1087.5, 1362.5, 1500)	(4000, 4625, 5875, 6500)	(2100, 2250, 2500, 2700)	(3200, 3700, 4700, 5200)	(17000, 18100, 20300, 21400)	(6400, 7500, 9700, 10800)
Naturopathy (T_6)	(4200, 4450, 4950, 5200)	(1900, 2150, 2450, 2700)	(6200, 6700, 7700, 8200)	(12000, 14250, 17000, 18500)	(29000, 30000, 32000, 33000)	(1540, 1592.5, 1697.5, 1750)
Demand	(22700, 23650, 2550, 26500)	(15250, 16250, 1825, 19250)	(11350, 12650, 15250, 16550)	(6340, 6867.5, 7922.5, 8450)	(4230, 4752.5, 5797.5, 6320)	

* (no. of patients affected by the disease D_i to be taken the treatment)
On solving fuzzy transportation problem based on distance based defuzzification method of various fuzzy quantities using centroid — 421/426

Table 6.12

Treatment/ Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	3100, 5.52	2600, 10.01	8500, 492.50	12000, 275	30000, 650	54500
Ayurvedic (T_2)	2000, 257.50	2950, 465	4600, 1525	6300, 1610	24250, 950	35000
Homeopathy (T_3)	4050, 1	4500, 1.81	3900, 45	21000, 67.50	38500, 132.50	13250
Unani (T_4)	3750, 290	4000, 470	5400, 1360	16500, 837.50	31000, 1382.50	8600
Yoga (T_5)	1225, 26	1200, 19.01	2400, 1675	4200, 697.50	19200, 61	3300
Naturopathy (T_6)	4700, 11.01	5250, 21	7200, 1200	16500, 432.50	31000, 45	1645
Demand*	24600	17250	13950	7395	5275	

*(no. of patients affected by the disease D_i to be taken the treatment)

Table 6.13

Treatment/ Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	1552.76	1305	4496.25	6137.50	15325	54500
Ayurvedic (T_2)	1128.75	1707.50	3062.50	3955	12600	35000
Homeopathy (T_3)	2025.50	2250.90	1972.50	10533.75	19316.25	13250
Unani (T_4)	2020	2235	3380	8668.75	16191.25	8600
Yoga (T_5)	625.50	609.50	2037.50	2448.75	9630.50	3300
Naturopathy (T_6)	2355.50	2635.50	4200	8466.25	15522.50	1645
Demand*	24600	17250	13950	7395	5275	

*(no. of patients affected by the disease D_i to be taken the treatment)
Table 6.14

Treatment/Diseases	Swine Flu \((D_1)\)	Ebola \((D_2)\)	Dengue \((D_3)\)	Malaria \((D_4)\)	Tuberculosis \((D_5)\)	Supply \((T_j)\)
Allopathy \((T_1)\)	(2500,2700,3100,3500,3700)	(2000,2200,2600,3000,3200)	(8000,8166.67,8500,8833.33,9000)	(10000,10666.67,12000,13333.33,14000)	(28000,28666.67,30000,31333.33,32000)	(52000,52833.33,54000,54500,56166.67)
Ayurvedic \((T_2)\)	(1500,1666.67,2000,2333.33,2500)	(2400,2583.33,2950,3316.67,3500)	(4200,4333.33,4600,4866.67,5000)	(54000,55000,56166.67,57000)		
Homeopathy \((T_3)\)	(3500,3683.33,4050,4416.67,4600)	(4000,4166.67,4500,4833.33,5000)	(3200,3383.33,3750,4166.67,4500)	(1200,13500,16500,19500,21000)	(6400,7133.33,8600,10066.67,10800)	
Unani \((T_4)\)	(190,2233.33,290,3566.67,390)	(420,4366.67,470,5033.33,520)	(3200,3383.33,3750,4166.67,4500)	(1200,13500,16500,19500,21000)	14350,15900,17500,19500,21000	
Yoga \((T_5)\)	(950,1041.67,1225,1408.33,1500)	(1000,1066.67,1200,333.33,1400)	(2100,2200,2400,2600,2700)	(17000,17733.33,19200,20666.67,21400)	11883.33,13333.33,14616.67,15300	
Naturopathy \((T_6)\)	(4200,4366.67,4700,5033.33,5200)	(4000,4166.67,4500,6083.33,6500)	(6200,6353.33,6500,7200,8200)	(12000,13500,16500,19500,21000)	(29000,29666.67,30000,32333.33,34000)	
Demand*	(27700,28333.33,24600,25866.67,26500)	(22700,23333.33,24000,25666.67,26500)	(15250,15916.67,17250,18583.33,19250)	(11350,12216.67,13950,15683.33,16550)	(6340,6691.67,7395,8098.33,8450)	

*\(D_i\) to be taken the treatment)
Table 6.15

Treatments/Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	3111.11, 5.55	2611.11, 10.07	8509.26, 493.75	12037.04, 275.46	30037.04, 651.85	54546.30
Ayurvedic (T_2)	2009.26, 260.60	2960.19, 465.28	4607.41, 1531.02	6316.67, 1615.74	24291.67, 951.85	35037.04
Homeopathy (T_3)	4060.19, 1.01	4509.26, 1.82	3912.96, 45.17	21055.56, 67.73	38620.37, 133.29	13287.96
Unani (T_4)	3760.19, 291.85	4009.26, 470.93	5407.41, 1362.96	16583.33, 839.58	31037.04, 1384.21	8640.74
Yoga (T_5)	1230.09, 26.30	1203.70, 19.10	2405.56, 1681.94	4218.52, 700.32	19240.74, 61.24	3314.81
Naturopathy (T_6)	4709.26, 11.06	5273.15, 21.04	7218.52, 1204.63	16583.33, 434.49	31037.04, 45.15	1646.94
Demand*	24635.19	17287.04	13998.15	7414.54	5294.35	

* (no. of patients affected by the disease D_i to be taken the treatment)

Table 6.16

Treatments/Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	1558.33	1310.59	4501.51	6156.25	15344.45	54546.30
Ayurvedic (T_2)	1134.93	1712.73	3069.21	3966.21	12621.76	35037.04
Homeopathy (T_3)	2030.60	2255.54	1979.06	10561.65	19376.83	13287.96
Unani (T_4)	2026.02	2240.09	3385.19	8711.46	16210.63	8640.74
Yoga (T_5)	628.20	611.40	2043.75	2459.42	9650.99	3314.81
Naturopathy (T_6)	2360.16	2647.09	4211.58	8508.91	15541.10	1646.94
Demand*	24635.19	17287.04	13998.15	7414.54	5294.35	

* (no. of patients affected by the disease D_i to be taken the treatment)
Table 6.17

Treatments/Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_e)
Allopathy (T_1)	(2500, 2650, 2950, 3550, 4, 4.375, 5.125, 5.875, 6.625, 7)	(2000, 2150, 2450, 2750, 3050, 3200, 7, 7.75, 9.25, 10.75, 12.25, 13)	(8000, 8125, 8625, 8875, 9000, 425, 441.88, 475.63, 509.38, 543.13, 560)	(10000, 10500, 11500, 12500, 13500, 14000)	(250, 256.25, 268.75, 281.25, 293.75, 300)	(28000, 28500, 29500, 30500, 31500, 32000)
Ayurvedic (T_2)	(1500, 1625, 1875, 2125, 2375, 2500, 90, 131.88, 215.63, 299.38, 383.13, 425)	(2400, 2537.50, 2812.50, 3087.50, 3620.50, 3500, 450, 466.25, 498.75, 531.25, 563.75, 580)	(4200, 4300, 4500, 4700, 4900, 5000, 1200, 1281.25, 1443.75, 1606.25, 1768.75, 1842.50, 1920)	(5400, 5625, 6075, 6525, 6975, 7200, 1300, 1377.50, 1532.50, 1687.50, 1975, 1025, 1050)	(22000, 22562.50, 23687.50, 24812.50, 25937.50, 26500)	(32000, 33500, 34500)
Homeopathy (T_3)	(3500, 3637.50, 3912.50, 4462.50, 0.6, 0.68, 0.83, 0.98, 1.13, 1.2)	(4000, 4125, 4375, 4625, 4875, 5000, 1.2, 1.34, 1.61, 1.89, 2.16, 2.3)	(3200, 3375, 3725, 4075, 4425, 4600, 36, 38.25, 42.75, 47.25, 51.75, 54)	(18000, 18750, 20250, 21750, 23250, 24000, 55, 58.13, 64.38, 70.63, 76.88, 80)	(32000, 33625, 36875, 40125, 43375, 45000)	(11200, 11712.5, 12373.75)
Unani (T_4)	(32000, 3337.50, 3612.50, 3887.50, 4162.50, 4300, 0.6, 0.68, 0.83, 0.98, 1.13, 1.2)	(3500, 3625, 3875, 4125, 4375, 4500, 420, 432.50, 457.50, 482.50, 507.50, 520)	(5000, 5100, 5300, 5500, 5700, 5800, 1200, 1240, 1320, 1400, 1480, 1520)	(12000, 13125, 15375, 17625, 19875, 21000, 725, 753.13, 809.38, 865.63, 921.88, 950)	(29000, 29500, 31500, 32500, 33000)	(6400, 6950, 8050)
Yoga (T_5)	(950, 1018.75, 1156.25, 1293.75, 1431.25, 1500, 10, 14, 22, 30, 38, 42)	(1000, 1050, 1150, 1250, 1350, 1400, 14, 15.25, 17.75, 20.25, 22.75, 24)	(2100, 2175, 2325, 2475, 2625, 2700, 1581.25, 1768.75, 1956.25, 2050)	(3200, 3450, 3950, 4450, 4950, 5200, 659.38, 735.63, 811.88, 850)	(38975, 4312.50, 4937.50, 5497.50, 5957.50, 6417.50, 1330, 14600, 15900, 1723.75, 1750)	(12000, 13125, 15375, 17625, 19875, 21000, 12000, 13125, 15375, 17625, 19875, 21000, 12000, 13125, 15375, 17625, 19875, 21000)
Naturopathy (T_6)	(4200, 4325, 4575, 4825, 5075, 5200, 8, 8.75, 10.25, 11.75, 13.25, 14)	(4000, 4312.50, 4937.50, 5562.50, 6187.50, 6500, 19, 19.50, 20.50, 21.50, 22.50, 23)	(6200, 6450, 6950, 7450, 7950, 8200, 950, 1012.50, 1137.50, 1262.50, 1387.50, 1450)	(12000, 13125, 15375, 17625, 19875, 21000)	(325, 351.88, 405.63, 459.38, 513.13, 540)	(36500)
Demand*	(22700, 23175, 24125, 25075, 26025, 26500)	(15250, 15750, 16750, 17750, 18750, 19250)	(11350, 12000, 13300, 14600, 15900, 16550)	(6340, 6603.75, 7031.25, 7658.75, 8168.25, 8450)	(4230, 4491.25, 4912.5, 5013.75, 5536.25, 6058.75)	

*(no. of patients affected by the disease D_i to be taken the treatment)
Table 6.18

Treatments/ Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	3108.33, 5.54	2608.33, 10.05	8506.94, 493.44	12027.78, 275.35	30027.78, 651.39	54534.72
Ayurvedic (T_2)	2006.94, 259.83	2957.64, 465.21	4605.56, 1529.51	6312.50, 1614.31	24291.67, 951.39	35037.04
Homeopathy (T_3)	4057.64, 1.02	4506.94, 1.82	3909.72, 45.13	21041.67, 67.68	38590.28, 133.09	13278.47
Unani (T_4)	3757.64, 291.39	4006.94, 470.69	5405.56, 1362.22	16562.50, 839.06	31027.78, 138.37	8630.56
Yoga (T_5)	1228.82, 26.23	1202.78, 19.08	2404.17, 1680.21	4213.89, 699.62	19230.56, 61.18	3311.11
Naturopathy (T_6)	4706.94, 11.05	5267.36, 21.03	7213.89, 1203.47	16562.50, 433.99	31027.78, 45.11	1646.46
Demand*	24626.39	17277.78	13986.11	7409.65	5289.51	

(no. of patients affected by the disease D_i to be taken the treatment)

Table 6.19

Treatments/ Diseases	Swine Flu (D_1)	Ebola (D_2)	Dengue (D_3)	Malaria (D_4)	Tuberculosis (D_5)	Supply (T_j)
Allopathy (T_1)	1556.94	1309.19	4500.19	6151.56	15339.58	54534.72
Ayurvedic (T_2)	1133.38	1711.42	3067.54	3963.40	12621.53	35037.04
Homeopathy (T_3)	2029.33	2254.38	1977.42	10554.67	19361.69	13278.47
Unani (T_4)	2024.51	2238.82	3383.89	8700.78	16205.78	8630.56
Yoga (T_5)	627.52	610.93	2042.19	2456.75	9645.87	3311.11
Naturopathy (T_6)	2359	2644.20	4208.68	8498.25	15536.45	1646.46
Demand*	24626.39	17277.78	13986.11	7409.65	5289.51	

(no. of patients affected by the disease D_i to be taken the treatment)
References

[1] Ali Ebrahimnejad, A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers, *Applied Soft Computing*, 19(2014), 171–176.

[2] Amarpreet Kaur, Amit Kumar, A new method for solving fuzzy transportation problems using ranking function, *Applied Mathematical Modelling*, 35(2011), 5652–5661.

[3] Amarpreet Kaur and Amit Kumar, A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers, *Applied Soft Computing*, 12(3)(2012), 1201–1213.

[4] Ashok Sahebrao Mhaske and Kirankumar Laxmanrao Bondar, Fuzzy Transportation Problem by Using Triangular, Pentagonal and Heptagonal Fuzzy Numbers With Lagrange’s Polynomial to Approximate Fuzzy Cost for Nonagon and Hendecagon, *International Journal of Fuzzy System Applications*, 9(1)(2020), 18–28.

[5] Darunee Hunwisai and Poom Kumam, A method for solving a fuzzy transportation problem via Robust ranking technique and ATM, *Applied & Interdisciplinary Mathematics*, 4(2017), 1–11.

[6] Dinesh C.S. Bisht, Pankaj Kumar Srivastava, Trisectonal fuzzy trapezoidal approach to optimize interval data based transportation problem, *Journal of King Saud University–Science*, 32(2020), 195–199.

[7] Iden Hasan Hussein and Anfal Hasan Dheyab, A New Algorithm using Ranking Function to Find Solution for Fuzzy Transportation Problem, *International Journal of Mathematics and Statistics Studies*, 3(3)(2015), 21–26.

[8] Mahananda Babasaheb Bhopale, Solution to the fuzzy transportation problem using A new method of ranking of trapezoidal fuzzy Numbers, *IJEDR*, 6(4)(2018), 483–486.

[9] Nagar et al., Optimization of species transportation via an exclusive fuzzy trapezoidal centroid approach, *Mathematics in Engineering, Science & Aerospace*, 10(2)(2019), 271–280.

[10] G. Sivakumar, A. Hari Ganesh and M.Suresh, On fuzzy mathematical modeling in the analysis of distribution of medicines for controlling communicable diseases based on optimization techniques, *Malaya Journal of Matematik*, 7(4)(2019), 669–675.

[11] V. Vidhya, and K. Ganesan, Efficient solution of a multi objective fuzzy transportation Problem, *Journal of Physics: Conference Series*, 1000(2018), 1–6.

[12] L.A. Zadeh Fuzzy Sets, *Information and Control*, 8(3)(1965), 338–353.