One-and Two-Sample Predictions Based on Progressively Type-II Censored Carbon Fibres Data Utilizing a Probability Model

Mahmoud El-Morshedy,1,2 Rashad M. El-Sagheer,3 Samah H. El-Essawy,4 Khaled M. Alqahtani,1 Mohamed El-Dawoody,1 and Mohamed S. Eliwa5,6

1Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3Mathematics Department, Faculty of Science, Al-Azhar University, Naser 11884, Cairo, Egypt
4Astronomy Department, National Research Institute of Astronomy and Geophysics, Naser 11884, Cairo, Egypt
5Department of Statistics and Operation Research, College of Science, Qassim University, P.O. Box 6644, Buraydah 51482, Saudi Arabia
6Department of Mathematics and Statistics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to Mahmoud El-Morshedy; mah_elmorshedy@mans.edu.eg

Received 29 January 2022; Revised 5 March 2022; Accepted 9 March 2022; Published 12 May 2022

Copyright © 2022 Mahmoud El-Morshedy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

New Weibull-Pareto distribution is a significant and practical continuous lifetime distribution, which plays an important role in reliability engineering and analysis of some physical properties of chemical compounds such as polymers and carbon fibres. In this paper, we construct the predictive interval of unobserved units in the same sample (one sample prediction) and the future sample based on the current sample (two-sample prediction). The used samples are generated from new Weibull-Pareto distribution due to a progressive type-II censoring scheme. Bayesian and maximum likelihood approaches are implemented to the prediction problems. In the Bayesian approach, it is not easy to simplify the predictive posterior density function in a closed form, so we use the generated Markov chain Monte Carlo samples from the Metropolis-Hastings technique with Gibbs sampling. Moreover, the predictive interval of future upper-order statistics is reported. Finally, to demonstrate the proposed methodology, both simulated data and real-life data of carbon fibres examples are considered to show the applicabilities of the proposed methods.

1. Introduction

Predictive analytics is used to reduce time, effort, and costs in forecasting business outcomes. A better decision will be supported when more data have been available. Moreover, organizations can solve their own problems and identify opportunities, by giving accurate and reliable insights. Using predictive analytics, we can analyse collective data to get new opportunities for customer attraction.

In the last few years, there has been growing interest in prediction which plays a vital role in many fields. For example, in industry, the experimenter wants to predict the lifetime of a future unobserved unit that relies on the information available from the current sample. So, the experimenter or the manufacturer introduces its products in the market and wants to make it on the place of desire and the focus of consumers by making their warranty limits more acceptable to them. For more information about applications of prediction, the reader can see the following researches: Ghafoori et al. [1], Pushpalatha et al. [2], Lee et al. [3], Burnaev [4], Sharma and Vijayakumar [5], and Asher et al. [6].

The future prediction problem can be separated into two types as follows: the first type is known as an OSP problem, and the other one is a TSP problem. In the OSP problem, the variable to be predicted comes from the same sequence of
variables observed and is dependent on the current sample (see Figure 1). In the second type, the variable to be predicted comes from another independent future sample.

Suleman and Albert [7] suggested a new generalization form of Weibull-Pareto distribution denoted by NWPD, which is useful in modeling real-life situations and different scientific disciplines fields such as biological and marketing science in addition to reliability analysis and life testing. The probability density function (pdf) and cumulative distribution function (cdf) of a random variable X having an NWPD which is denoted by NWPD (δ, β, θ) are given, respectively, by

$$f(x; \delta, \beta, \theta) = \frac{\beta \delta}{\theta} (\frac{x}{\theta})^{\beta-1} e^{-\delta (x/\theta)^eta}, \quad x > 0; \quad \delta, \beta, \theta > 0,$$

(iii) If $\beta < 1$, the hazard is a decreasing function of t, which makes the NWPD suitable for modeling components that wear slower with time. For a quick illustration, see Figure 2.

The designed body of the paper is built to obtain the Bayesian and frequentist prediction under a ProgT-II C sample whose lifetime failures have NWPD. We study two popular techniques of the prediction problems known as OSP and TSP. As a vivid example of the applicability of the methodology used in our paper, the new Weibull-Pareto distribution was applied to model the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, Canada. In our paper, in the case of a one-sample prediction, it is possible to predict the values of the exceedances of the flood peaks that were not recorded for any reason while, in the case two-sample prediction, it is possible to predict the excesses of future flood peaks based on the available data. Accordingly, the necessary precautions can be taken to limit the destruction that may be caused by the flood. There are several kinds of literature discussing the prediction problem under the ProgT-II CS for different distributions, for instance, Ghafouri et al. [8], Abdel-Hamid [9], AL-Hussaini et al. [10], Raqab et al. [11], Golparvar and Parsian [12] and Soliman et al. [13].

Also, many authors have focused on the problem of predicting either TSP or OSP and TSP together based on various types of censored data from different lifetime models, see, for example, Mahmoud et al. [14], EL-Sagheer [15], Ahmed [16], and Abushal and Al-Zaydi [17, 18].

The remainder of the paper is organized as follows: the ML and Bayesian point estimates of the unknown parameters are discussed in Section 2. In Section 3, the MLPI and BPI are explained in the case of OSP. The MLPI and BPI of the FOS sample are outlined in Section 4. In the same section, the MLPI and BPI for the FUS sample are also obtained. Section 5 is devoted to analyse two real-life examples. Conclusion remarks and the results of this work are reported in Section 6.

2. Maximum Likelihood and Bayesian Approaches

Suppose that $X_{1:m:n}, X_{2:m:n}, \ldots, X_{m:n}$ be a ProgT-II C sample from the NWPD with a progressive censored scheme $R = (R_1, R_2, \ldots, R_m)$. According to Balakrishnan and Aggarwala [19], the joint probability density function is given by

$$f_{1,2,\ldots,m}(X_{1:m:n}, X_{2:m:n}, \ldots, X_{m:m:n}) \propto \prod_{i=1}^{m} f(X_{i:m:n}) \left[1 - F(X_{i:m:n})\right]^{R_i}.$$

$$f_{1,2,\ldots,m}(X_{1:m:n}, X_{2:m:n}, \ldots, X_{m:m:n}) \propto \prod_{i=1}^{m} f(X_{i:m:n}) \left[1 - F(X_{i:m:n})\right]^{R_i}. \tag{5}$$
Inserting (1) and (2) into (5), then the likelihood function can be written as

\[
L(x; \delta, \beta, \theta) \propto \beta^m \delta^m \theta^{-m} \left\{ \prod_{i=1}^{m} \left(\frac{x_i}{\theta} \right)^{\beta-1} \right\} \left\{ -\delta \sum_{i=1}^{m} (R_i + 1) (x_i/\theta)^{\beta} \right\}.
\]

Therefore, the log-likelihood function \(\ell(x; \delta, \beta, \theta) \) can be expressed as

\[
\ell(x; \delta, \beta, \theta) = m \log[\beta] + m \log[\delta] - m \log[\theta] + (\beta - 1) \sum_{i=1}^{m} \log \left(\frac{x_i}{\theta} \right) - \delta \sum_{i=1}^{m} (R_i + 1) \left(\frac{x_i}{\theta} \right)^{\beta}.
\]
Upon differentiating (7) with respect to $\delta, \beta, \text{ and } \theta$, respectively, and equating each result to zero, we obtain

$$m \frac{\partial}{\partial \delta} - \sum_{i=1}^{m} (R_i + 1) \left(\frac{x_i}{\theta} \right)^\beta = 0, \quad (8)$$

$$m \frac{\partial}{\partial \beta} + \sum_{i=1}^{m} \log \left[\frac{x_i}{\theta} \right] - \delta \sum_{i=1}^{m} (R_i + 1) \left(\frac{x_i}{\theta} \right)^\beta \log \left[\frac{x_i}{\theta} \right] = 0, \quad (9)$$

$$m \frac{\partial}{\partial \theta} \left[\frac{\beta \delta}{\theta} \sum_{i=1}^{m} (R_i + 1) \left(\frac{x_i}{\theta} \right)^\beta \right] = 0. \quad (10)$$

From (8), we get MLE of δ as

$$\hat{\delta} = m \left[\sum_{i=1}^{m} (R_i + 1) \left(\frac{x_i}{\theta} \right)^\beta \right]^{-1}. \quad (11)$$

Since (9) and (10) do not have closed-form solutions, the Newton-Raphson iteration method can be used to get the MLEs of β and θ. The reader can see the detailed steps of the Newton-Raphson algorithm in El-Sagheer [20]. Now, we discuss how to obtain the Bayesian estimates for $\delta, \beta, \text{ and } \theta$. Let the parameters $\delta, \beta, \text{ and } \theta$ be independent and follow the gamma prior distributions as

$$\pi_1(\delta) = \frac{\eta_1^{\gamma_1}}{\Gamma(\gamma_1)} \delta^{\gamma_1-1} e^{-\eta_1 \delta}, \quad \delta > 0, \gamma_1 > 0, \eta_1 > 0,$$

$$\pi_2(\beta) = \frac{\eta_2^{\gamma_2}}{\Gamma(\gamma_2)} \beta^{\gamma_2-1} e^{-\eta_2 \beta}, \quad \beta > 0, \gamma_2 > 0, \eta_2 > 0,$$

$$\pi_3(\theta) = \frac{\eta_3^{\gamma_3}}{\Gamma(\gamma_3)} \theta^{\gamma_3-1} e^{-\eta_3 \theta}, \quad \theta > 0, \gamma_3 > 0, \eta_3 > 0,$$

where the hyperparameters γ_i and η_i (where $i = 1, 2, 3$) are reflected prior knowledge about $\delta, \beta, \text{ and } \theta$. Note if $\gamma_i = \eta_i = 0$, then the noninformative priors of $\delta, \beta, \text{ and } \theta$ are obtained.

Hence, the joint prior function of the parameters $\delta, \beta, \text{ and } \theta$ is defined by

$$\pi(\delta, \beta, \theta) = \frac{\eta_1^{\gamma_1} \eta_2^{\gamma_2} \eta_3^{\gamma_3}}{\Gamma(\gamma_1) \Gamma(\gamma_2) \Gamma(\gamma_3)} \delta^{\gamma_1-1} \beta^{\gamma_2-1} \theta^{\gamma_3-1} e^{-\eta_1 \delta - \eta_2 \beta - \eta_3 \theta}. \quad (13)$$

From (6) and (13), the joint posterior density function can be given as follows:

$$\pi^*(\delta, \beta, \theta|x) = \frac{L(x; \delta, \beta, \theta) \pi(\delta, \beta, \theta)}{\int_{\delta=0}^{\infty} \int_{\beta=0}^{\infty} \int_{\theta=0}^{\infty} L(x; \delta, \beta, \theta) \pi(\delta, \beta, \theta) d\delta d\beta d\theta} \times e^{\delta \pi(x; \delta, \beta, \theta)}. \quad (14)$$

It is clear that (14) cannot be obtained in a closed form. So, we apply the M-H technique with Gibbs sampling to generate MCMC samples and obtain the Bayes estimates of $\delta, \beta, \text{ and } \theta$. The reader can see the detailed steps of the M-H technique with Gibbs sampling in the study of Mahmoud et al. [21].

3. One-Sample Prediction

OSP is a useful method to predict the failure lifetimes of the unobserved units (the removed surviving units) in the same sample generated by the ProgT-II C sample $X_1^{(R_1, \ldots, R_m)}$, $X_2^{(R_1, \ldots, R_m)}$, \ldots, $X_m^{(R_1, \ldots, R_m)}$ with a progressive censoring scheme (R_1, R_2, \ldots, R_m). Suppose that $X_{i: R_i}$, $i = 1, 2, \ldots, R_i$ and $l = 1, 2, \ldots, m$ denote failure lifetimes of l^{th} unobserved units, then the conditional pdf of $X_{i: R_i} \equiv X_{i: R_i}$ for a given value of $\delta, \beta, \text{ and } \theta$ defined as

$$g_1(x_{i: R_i} | \delta, \beta, \theta, x) = \left(\frac{R_i}{i} \right) \left[F(x_{i: R_i}; \delta, \beta, \theta) - F(x; \delta, \beta, \theta) \right]^{i-1} \left[1 - F(x_{i: R_i}; \delta, \beta, \theta) \right]^{R_i-1} \times f(x_{i: R_i}; \delta, \beta, \theta) [1 - F(x; \delta, \beta, \theta)]^{-R_i}, \quad x_{i: R_i} > x. \quad (15)$$

Inserting (1) and (2) in (13), we get

$$g_1(x_{i: R_i} | \delta, \beta, \theta, x) = \left(\frac{R_i}{i} \right) \left[\frac{\beta \delta}{\theta} \left(\frac{x_{i: R_i}}{\theta} \right)^{\beta-1} e^{R_i \delta (x_{i: R_i} \theta)^\beta} e^{-(R_i-1)\delta (x_{i: R_i} \theta)^\beta} \left[e^{-\delta (x_{i: R_i} \theta)^\beta} - e^{-\delta (x_{i: R_i} \theta)^\beta} \right]^{i-1} \right]^{R_i-1} \times e^{-(R_i-1)^2 \delta (x_{i: R_i} \theta)^\beta}. \quad (16)$$
The distribution function of \(x_{i: R_i} \) can be defined by

\[
G_1(x_{i: R_i}| \delta, \beta, \theta, x) = \int_x^{x_{n_i}} g_1(x_{i: R_i}| \delta, \beta, \theta, x) dx_{i: R_i} = i \left(\frac{R_i}{i} \right) \sum_{k=0}^{i-1} \binom{i-1}{k} (-1)^k e^{-\left(-R_i + i - k - 1 \right) \delta (x/\theta)^\delta} \times \frac{e^{-R_i (x_{i; R_i}-1)} - e^{-(R_i - i + k + 1) \delta (x_{i; R_i}/\theta)^\delta}}{(R_i - i + k + 1)}. \tag{17}
\]

3.1. Maximum Likelihood Prediction

Due to ML prediction, the \((1 - \gamma)100\%\) MLPI (LB\(_1\), UB\(_1\)) of \(x_{i: R_i} \) can be written in the form

\[
\begin{align*}
\Pr[x_{i: R_i} > LB_1 | x] &= 1 - \frac{\gamma}{2} = 1 - \tilde{G}_1(LB_1 | x) \Rightarrow \tilde{G}_1(LB_1 | x) = \frac{\gamma}{2} \tag{18} \\
\Pr[x_{i: R_i} > UB_1 | x] &= \frac{\gamma}{2} = 1 - \tilde{G}_1(UB_1 | x) \Rightarrow \tilde{G}_1(UB_1 | x) = 1 - \frac{\gamma}{2} \tag{19}
\end{align*}
\]

where \(\tilde{G}_1(x_{i: R_i} | x) \) can be obtained after replacing the values of \(\delta, \beta, \) and \(\theta \) by their point estimates \(\hat{\delta}, \hat{\beta}, \) and \(\hat{\theta} \) as in (17).

Newton-Raphson iteration method is employed to get the approximated solutions of (18) and (19).

3.2. Bayesian Prediction

Using (14) and (16), the predictive posterior density function of \(x_{i: R_i} \) is given in the following form:

\[
g_1^*(x_{i: R_i} | x) = \int_0^\infty \int_0^\infty \int_0^\infty g_1(x_{i: R_i}| \delta, \beta, \theta, x) \pi^* (\delta, \beta, \theta | x) d\delta d\beta d\theta. \tag{20}
\]

It is so hard to simplify (20) in a closed formula. So, MCMC samples generated by applying the M-H technique within Gibbs sampling can be used to approximate the \(g_1^*(x_{i: R_i} | x) \) as

\[
\tilde{g}_1^*(x_{i: R_i} | x) = \frac{1}{N - M} \sum_{j=M+1}^{N} g_1(x_{i: R_i}| \delta_j, \beta_j, \theta_j, x). \tag{21}
\]

As in (17), we can approximate the distribution function of \(x_{i: R_i} \) based on the generated MCMC samples as follows:

\[
\tilde{G}_1^*(x_{i: R_i} | x) = \frac{1}{N - M} \sum_{j=M+1}^{N} G_1(x_{j: R_j}| \delta_j, \beta_j, \theta_j, x). \tag{22}
\]

Then, the \((1 - \gamma)100\%\) BPI (LB\(_1\), UB\(_1\)) of \(x_{i: R_i} \) takes the form as

\[
\begin{align*}
\Pr[x_{i: R_i} > LB_1 | x] &= 1 - \frac{\gamma}{2} = 1 - \tilde{G}_1^*(LB_1 | x) \Rightarrow \tilde{G}_1^*(LB_1 | x) = \frac{\gamma}{2} \tag{23} \\
\Pr[x_{i: R_i} > UB_1 | x] &= \frac{\gamma}{2} = 1 - \tilde{G}_1^*(UB_1 | x) \Rightarrow \tilde{G}_1^*(UB_1 | x) = 1 - \frac{\gamma}{2}. \tag{24}
\end{align*}
\]
To solve (23) and (24), we employ the Newton-Raphson iteration method.

4. Two-Sample Prediction

TSP is a useful method to predict the failure lifetimes in the future sample based on the available current sample which was drawn from the same population. In this section, we discuss two cases of TSP. The first one is the TSP for FOS, and the other is the TSP for FURS. Also, the construction of PI based on ML and Bayesian predictions in the two cases of TSP is discussed.

4.1. Prediction of Future-Order Statistics. Suppose that the available current sample \(X_{1:m,n}^{(1)} \), \(X_{2:m,n}^{(2)} \), \ldots, \(X_{m:m,n}^{(m)} \) be a ProgT-II C sample and let \(Y_1, Y_2, \ldots, Y_n \) be the FOS sample drawn from the same NWPD \(\{\delta, \beta, \theta\} \). Our concern is to make predictions about the \(s^{th} \) \(1 \leq s \leq n_1 \) FOS values. The conditional pdf of FOS \(Y_s \) for a given values of \(\delta, \beta, \) and \(\theta \) is expressed in the formula, see David and Nagaraja [22].

Inserting (1) and (2) in (23), we get

\[
g_2(y_i | \delta, \beta, \theta, \chi) = s \left(\frac{n_1}{s} \right) [1 - F(y_i; \delta, \beta, \theta)]^{n_1-s} \frac{F(y_i; \delta, \beta, \theta)}{f(y_i; \delta, \beta, \theta)}. \tag{25}
\]

The distribution function of \(Y_s \) takes the form

\[
G_2(y_i | \delta, \beta, \theta, \chi) = \int_0^{y_i} g_2(y_i | \delta, \beta, \theta, \chi) \, dy_i
\]

\[
= s \left(\frac{n_1}{s} \right) \sum_{k=0}^{s-1} \frac{-1}{k} \left(1 - e^{-\frac{(n_1-s+k+1)\delta(y_i, \theta)\phi}{\beta}} \right).
\tag{27}
\]

4.1.1. Maximum Likelihood Prediction. Due to ML prediction, PI of FOS \(y_s \) can be computed by replacing the values of \(\delta, \beta, \) and \(\theta \) by their point estimates \(\delta, \beta, \) and \(\theta. \) The \((1 - \gamma)100\% \) MLPI \((LB_2, UB_2) \) of FOS \(y_s \) takes the form as

\[
\Pr[y_s > LB_2 | \chi] = 1 - \frac{Y}{2} = 1 - \tilde{G}_2(LB_2 | \chi) \Rightarrow \tilde{G}_2(LB_2 | \chi) = \frac{Y}{2}, \tag{28}
\]

\[
\Pr[y_s > UB_2 | \chi] = \frac{Y}{2} = 1 - \tilde{G}_2(UB_2 | \chi) \Rightarrow \tilde{G}_2(UB_2 | \chi) = 1 - \frac{Y}{2}. \tag{29}
\]

It is evident that (28) and (29) do not have an analytical solution; therefore, the Newton-Raphson iteration method is applied to get the approximated solutions.

4.1.2. Bayesian Prediction. The predictive posterior density function of FOS \(y_s \) can be written using (14) and (29) as follows:

\[
g_2^*(y_s | \chi) = \int_0^\infty \int_0^\infty g_2(y_s | \delta, \beta, \theta, \chi) \, d\delta d\beta d\theta. \tag{30}
\]

The approximated solution of \(g_2^*(y_s | \chi) \) and its distribution function can be obtained by applying the generated MCMC samples as follows:
\[\tilde{\theta}^*_2(y_s | \mathcal{X}) = \frac{1}{N - M} \sum_{j=M+1}^{N} g_j(y_s | \delta_j, \beta_j, \theta_j, \mathcal{X}), \] (31)

\[\tilde{G}^*_2(y_s | \mathcal{X}) = \frac{1}{N - M} \sum_{j=M+1}^{N} G_j(y_s | \delta_j, \beta_j, \theta_j, \mathcal{X}), \] (32)

Therefore, the \((1 - \gamma)100\%\) BPI (LB_2, UB_2) of FOS \(y_s\) is constructed.

\[\Pr[y_s > LB_2 | \mathcal{X}] = 1 - \frac{Y}{2} = 1 - \tilde{G}^*_2(LB_2 | \mathcal{X}) \Rightarrow \tilde{G}^*_2(LB_2 | \mathcal{X}) = \frac{Y}{2}, \] (33)

\[\Pr[y_s > UB_2 | \mathcal{X}] = \frac{Y}{2} = 1 - \tilde{G}^*_2(UB_2 | \mathcal{X}) \Rightarrow \tilde{G}^*_2(UB_2 | \mathcal{X}) = 1 - \frac{Y}{2}, \] (34)

We need to apply some suitable numerical techniques such Newton-Raphson iteration method for solving (33) and (34).

\[g_3(z_s | \delta, \beta, \theta, \mathcal{X}) = \frac{1}{(s-1)!} \beta^\delta \theta^{-\delta} \frac{\delta}{\theta} \beta_{s-1} \{ -\log \left[1 - \left(1 - e^{-\delta(z_s/\theta)} \right) \right] \}^{s-1} e^{-\delta(z_s/\theta)}. \] (36)

The distribution function of \(Z_s\) defined as follows:

\[G_3(z_s | \delta, \beta, \theta, \mathcal{X}) = \int_0^{z_s} g_3(z_s | \delta, \beta, \theta, \mathcal{X}) \, dz_s \]

\[= \int_0^{z_s} \frac{\beta^\delta \theta^{-\delta} \frac{\delta}{\theta} \beta_{s-1} \{ -\log \left[1 - \left(1 - e^{-\delta(z_s/\theta)} \right) \right] \}^{s-1} e^{-\delta(z_s/\theta)} \, dz_s \]

4.2. Prediction of Future Upper Record Statistics. Suppose that the available current sample \(X^{(R_1, m_n)}_1, X^{(R_2, m_n)}_2, \ldots, X^{(R_{n_2}, m_n)}_{n_2}\) be ProgT-II C sample and let \(Z^{(U(1)), U(2)}, \ldots, Z^{(U(n_2))}_{U(n_2)}\) be the FURS sample drawn from the same NWPD \((\delta, \beta, \theta)\). We want to make predictions about the \(s^{th}\),

\[1 \leq s \leq n_2 \] FURS values. The conditional pdf of FURS \(Z_s\) for a given value of \(\delta, \beta, \) and \(\theta\) is given in the form; see Chandler [23].

\[g_3(z_s | \delta, \beta, \theta, \mathcal{X}) = \frac{1}{(s-1)!} \{ -\log [1 - F(z_s; \delta, \beta, \theta)] \}^{s-1} f(z_s; \delta, \beta, \theta). \] (35)

Inserting (1) and (2) in (33), we get

\[G_3(z_s | \delta, \beta, \theta, \mathcal{X}) = \frac{1}{(s-1)!} \{ -\log [1 - F(z_s; \delta, \beta, \theta)] \}^{s-1} f(z_s; \delta, \beta, \theta). \] (37)

4.2.1. Maximum Likelihood Prediction. Due to ML prediction, Pl of \(z_s\) can be computed by replacing the values of \(\delta, \beta, \) and \(\theta\) by their point estimates \(\tilde{\delta}, \tilde{\beta}, \) and \(\tilde{\theta} .\) The \((1 - \gamma)100\%\) MLPI (LB_3, UB_3) of FURS \(z_s\) takes the form as

\[\Pr[z_s > LB_3 | \mathcal{X}] = 1 - \frac{Y}{2} = 1 - \tilde{G}_3(LB_3 | \mathcal{X}) \Rightarrow \tilde{G}_3(LB_3 | \mathcal{X}) = \frac{Y}{2}, \] (38)

\[\Pr[z_s > UB_3 | \mathcal{X}] = \frac{Y}{2} = 1 - \tilde{G}_3(UB_3 | \mathcal{X}) \Rightarrow \tilde{G}_3(UB_3 | \mathcal{X}) = 1 - \frac{Y}{2}, \] (39)
For solving (38) and (39), we use the Newton-Raphson iteration method.

4.2.2. Bayesian Prediction. The predictive posterior density function of FURS z_s can be written using (14) and (36) as follows:

$$g^*_{j} (z_j | \chi) = \frac{1}{N - M} \Sigma_{j=M+1}^{N} g_{j} (z_j | \delta, \beta, \theta, \chi)\pi^* (\delta, \beta, \theta | \chi) d\delta d\beta d\theta. \quad (40)$$

The approximated solution of $g^*_{j} (z_j | \chi)$ and its distribution function can be obtained by applying the generated MCMC samples as follows:

$$\hat{g}^*_{j} (z_j | \chi) = \frac{1}{N - M} \Sigma_{j=M+1}^{N} g_{j} (z_j | \delta_{j}, \beta_{j}, \theta_{j}, \chi). \quad (41)$$

$$\hat{G}^*_{j} (z_j | \chi) = \frac{1}{N - M} \Sigma_{j=M+1}^{N} G_{j} (z_j | \delta_{j}, \beta_{j}, \theta_{j}, \chi). \quad (42)$$

Therefore, the $(1 - \gamma)100\%$ BPI (LB_{s}, UB_{s}) of FURS z_s can be obtained in the following form:

$$\hat{P}\left\{z_s > LB_{s} | \chi \right\} = \frac{Y_{2}}{2} = 1 - \hat{G}^*_{j} (LB_{s} | \chi) \Rightarrow \hat{G}^*_{j} (LB_{s} | \chi) = \frac{Y_{2}}{2}, \quad (43)$$

$$\hat{P}\left\{z_s > UB_{s} | \chi \right\} = \frac{Y_{2}}{2} = 1 - \hat{G}^*_{j} (UB_{s} | \chi) \Rightarrow \hat{G}^*_{j} (UB_{s} | \chi) = 1 - \frac{Y_{2}}{2}. \quad (44)$$

We need to apply some suitable numerical techniques such Newton-Raphson iteration method for solving (43) and (44).

5. Numerical Computations

To illustrate the proposed methods discussed in the previous sections, we consider two examples, the first one is a simulated data set, and the other is a real data set.

Example 1. (Simulated data). Based on the algorithm which is introduced by Balakrishnan and Sandhu [24], we generate a ProgT-II C sample from NWPD with parameters $(\delta, \beta, \theta) = (2.4, 1.8, 2.9)$ of size $m = 30$, which is generated randomly of sample size $n = 50$ with censoring scheme $R = (2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0)$. The ProgT-II C sample is given as: $x = (0.205494, 0.274422, 0.360082, 0.416501, 0.527163, 0.58346, 0.614485, 0.665395, 0.666271, 0.693925, 0.697056, 0.893878, 0.920077, 0.929093, 0.956805, 0.978055, 1.11192, 1.27356, 1.3368, 1.35507, 1.38305, 1.59598, 1.63893, 1.86817, 1.90648, 2.01795, 2.02848, 2.2878, 2.37404, 2.51562)$. Based on the M-H technique within Gibbs sampling, we generate 32000 MCMC samples $\{(\delta_{j}, \beta_{j}, \theta_{j}), j = 1, 2, \ldots, 3200\}$ and discard the first 2000 values as "burn-in" periods under the consideration of the noninformative prior gamma functions of δ, β, and θ with hyperparameters γ_{j} and $\eta_{j} = 0$, where $i = 1, 2, 3$. The mean values of δ_{j}, β_{j}, and θ_{j} are given in Table 1. The results of 90% MLPI and BPI of x_{i}, R_{i} are shown in Table 2. Also, the 95% MLPI and BPI of x_{i}, R_{i} are summarized in Table 3. Table 4 shows the 90% MLPI and BPI of FO y_{j}. The 95% MLPI and BPI of FO y_{j} are listed in Table 5. The results of 90% MLPI and BPI of FURS z_{s} are given in Table 6. Also, the 95% MLPI and BPI of FURS z_{s} are obtained in Table 7.

Example 2. (Real-life data): The data are represented by the strength data measured in GPA, for single carbon fibres, and impregnated 1000 carbon fibre tows. For analyzed purposes, we consider single fibres of 20 mm with sample sizes $n = 67$. These data are reported by Badar and Priest [25] and used by Kundu and Raqab [26]. The distance between the empirical and the fitted distribution functions as computed by using Kolmogorov-Smirnov (K-S) is 0.046121, and the corresponding p value is 0.9988. Since the p value is quite high, we cannot reject the null hypothesis that the data are coming from the NWPD. Empirical, $Q - Q$, and $P - P$ plots are shown in Figure 3, which clear that the NWPD fits the data very well. The data are as follows:

$$0.312, 0.314, 0.479, 0.552, 0.70, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.055, 1.063, 1.098, 1.14, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.284, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.$$
Table 1: Mean value of δ, β, and θ.

Parameter	ML	Bayes
δ	2.3588	2.3291
β	1.8157	1.8059
θ	2.8754	2.8586

Table 2: 90% MLPI and BPI of $x_{i,Ri}$ for simulated data.

Point	MLPI	BPI		
	[LB$_1$, UB$_1$]	Length	[LB$_1$, UB$_1$]	Length
$x_{i,1}$	[0.3258, 2.2552]	1.9294	[0.321, 2.3457]	2.0247
$x_{i,2}$	[0.8763, 3.6822]	2.8059	[0.8678, 3.9746]	3.1068
$x_{i,3}$	[0.5625, 3.3224]	2.7599	[0.5621, 3.5239]	2.9618
$x_{i,4}$	[0.6729, 2.3546]	1.6818	[0.6733, 2.4587]	1.7854
$x_{i,5}$	[1.0765, 3.7495]	2.673	[1.0779, 4.07]	2.9922
$x_{i,6}$	[0.7472, 2.3824]	1.6353	[0.7478, 2.4891]	1.7413
$x_{i,7}$	[1.1284, 3.7686]	2.6402	[1.1303, 4.0948]	2.9645
$x_{i,8}$	[0.9798, 3.4471]	2.4672	[0.9813, 3.6738]	2.6925
$x_{i,9}$	[0.9983, 2.4911]	1.4927	[0.9991, 2.6061]	1.607
$x_{i,10}$	[0.5527, 3.8441]	3.2914	[0.5589, 4.189]	3.6301
$x_{i,11}$	[1.3866, 2.6969]	1.3103	[1.3871, 2.8236]	1.4365
$x_{i,12}$	[1.0821, 3.9911]	2.9091	[1.0841, 4.3632]	3.2791
$x_{i,13}$	[1.666, 2.8681]	1.2021	[1.6664, 3.0023]	1.336
$x_{i,14}$	[1.4116, 4.1171]	2.7054	[1.4156, 4.5071]	3.0915
$x_{i,15}$	[1.9304, 3.0443]	1.1139	[1.9307, 3.1851]	1.2544
$x_{i,16}$	[1.7086, 4.2499]	2.5413	[1.7146, 4.6557]	2.9412
$x_{i,17}$	[2.0513, 3.1288]	1.0776	[2.0514, 3.2723]	1.2208
$x_{i,18}$	[1.8413, 4.3145]	2.4733	[1.8481, 4.7272]	2.8791
$x_{i,19}$	[2.5348, 3.4873]	0.9526	[2.5347, 3.6403]	1.1055
$x_{i,20}$	[2.3606, 4.5957]	2.2351	[2.3704, 5.0329]	2.6626

Table 3: 95% MLPI and BPI of $x_{i,Ri}$ for simulated data.

Point	MLPI	BPI		
	[LB$_1$, UB$_1$]	Length	[LB$_1$, UB$_1$]	Length
$x_{i,1}$	[0.2704, 2.5258]	2.2554	[0.267, 2.6629]	2.3959
$x_{i,2}$	[0.7217, 4.0511]	3.3294	[0.7095, 4.4978]	3.7883
$x_{i,3}$	[0.493, 3.7171]	3.2241	[0.4924, 4.0377]	3.5453
$x_{i,4}$	[0.6438, 2.6167]	1.9728	[0.644, 2.774]	2.1299
$x_{i,5}$	[0.9492, 4.1134]	3.1643	[0.949, 4.5974]	3.6484
$x_{i,6}$	[0.7206, 2.6422]	1.9216	[0.7209, 2.8035]	2.0826
$x_{i,7}$	[1.0064, 4.1311]	3.1247	[1.0069, 4.6228]	3.6159
$x_{i,8}$	[0.9371, 3.8311]	2.894	[0.9378, 4.1877]	3.2498
$x_{i,9}$	[0.9775, 2.7424]	1.7649	[0.9778, 2.9167]	1.9388
$x_{i,10}$	[0.6822, 4.2013]	3.519	[0.6846, 4.7183]	4.0337
$x_{i,11}$	[1.3707, 2.9337]	1.563	[1.371, 3.1267]	1.7557
$x_{i,12}$	[1.1617, 4.3384]	3.1767	[1.1629, 4.8926]	3.7297
$x_{i,13}$	[1.6523, 3.094]	1.4417	[1.6525, 3.2993]	1.6468
$x_{i,14}$	[1.4764, 4.4562]	2.9798	[1.4791, 5.0355]	3.5565
$x_{i,15}$	[1.9183, 3.2602]	1.3419	[1.9184, 3.4761]	1.5577
$x_{i,16}$	[1.7643, 4.5809]	2.8166	[1.7684, 5.1824]	3.414
$x_{i,17}$	[2.0397, 3.3402]	1.3005	[2.0398, 3.5606]	1.5208
$x_{i,18}$	[1.8938, 4.6418]	2.748	[1.8984, 5.2529]	3.3544
$x_{i,19}$	[2.5251, 3.6817]	1.1566	[2.525, 3.9179]	1.3926
$x_{i,20}$	[2.4037, 4.9075]	2.5039	[2.4104, 5.5536]	3.1433
Table 4: 90% MLPI and BPI of FOS y_i for simulated data.

Point	MLPI	Length	BPI	Length
y_1	[0.0862, 0.9228]	0.8246	[0.0835, 0.9609]	0.8774
y_2	[0.2937, 1.2252]	0.9315	[0.2632, 1.2762]	1.013
y_3	[0.4797, 1.4809]	1.0012	[0.4426, 1.5462]	1.1036
y_4	[0.659, 1.7253]	1.0662	[0.6202, 1.8094]	1.1892
y_5	[0.8383, 1.9747]	1.1365	[0.8002, 2.0847]	1.2845
y_6	[1.0238, 2.2435]	1.2196	[0.9876, 2.3894]	1.4018
y_7	[1.2234, 2.5502]	1.3268	[1.1889, 2.747]	1.5581
y_8	[1.4488, 2.9288]	1.48	[1.4144, 3.2]	1.7855
y_9	[1.7232, 3.4613]	1.7381	[1.6857, 3.8514]	2.1657
y_{10}	[2.1158, 4.4795]	2.3636	[2.0678, 5.1097]	3.0419

Table 5: 95% MLPI and BPI of FOS y_i for simulated data.

Point	MLPI	Length	BPI	Length
y_1	[0.0666, 1.0349]	0.9683	[0.0536, 1.0833]	1.0297
y_2	[0.2378, 1.3389]	1.1012	[0.2054, 1.4039]	1.1986
y_3	[0.4113, 1.5984]	1.187	[0.3688, 1.6833]	1.3145
y_4	[0.5817, 1.8479]	1.2662	[0.5352, 1.9597]	1.4245
y_5	[0.7531, 2.1042]	1.3511	[0.7062, 2.253]	1.5468
y_6	[0.9309, 2.3823]	1.4514	[0.8854, 2.5821]	1.6967
y_7	[1.1218, 2.7024]	1.5806	[1.0783, 2.9738]	1.8955
y_8	[1.3364, 3.102]	1.7655	[1.2941, 3.4778]	2.1837
y_9	[1.5956, 3.6738]	2.0782	[1.5516, 4.2163]	2.6647
y_{10}	[1.9599, 4.7998]	2.8399	[1.9072, 5.6859]	3.7788

Table 6: 90% MLPI and BPI of FURS z_i for simulated data.

Point	MLPI	Length	BPI	Length
z_1	[0.3491, 3.28]	2.9309	[0.332, 3.4623]	3.1030
z_2	[1.0138, 4.225]	3.2112	[1.0004, 4.6282]	3.6278
z_3	[1.6044, 4.9377]	3.3333	[1.5923, 5.5943]	4.0019
z_4	[2.1286, 5.5379]	3.4093	[2.103, 6.4689]	4.3659
z_5	[2.604, 6.068]	3.464	[2.5488, 7.2876]	4.7388
z_6	[3.0422, 6.5489]	3.5607	[2.9434, 8.0667]	5.1233
z_7	[3.4511, 6.9927]	3.5417	[3.2973, 8.8153]	5.518
z_8	[3.836, 7.4074]	3.5713	[3.6185, 9.3592]	5.9207
z_9	[4.2011, 7.7982]	3.5971	[3.9128, 10.2422]	6.3293
z_{10}	[4.5492, 8.1691]	3.6198	[4.185, 10.927]	6.742

Table 7: 95% MLPI and BPI of FURS z_i for simulated data.

Point	MLPI	Length	BPI	Length
z_1	[0.2367, 3.6784]	3.4418	[0.2183, 3.9734]	3.755
z_2	[0.8209, 4.6163]	3.7955	[0.8006, 5.2348]	4.4342
z_3	[1.3759, 5.3265]	3.9506	[1.3594, 6.3007]	4.9413
z_4	[1.8794, 5.9256]	4.0462	[1.8544, 7.7277]	5.4226
z_5	[2.3407, 6.4552]	4.1145	[2.2909, 8.1982]	5.9073
z_6	[2.7685, 6.9359]	4.1675	[2.6784, 9.0806]	6.4023
z_7	[3.1691, 7.3798]	4.2107	[3.0254, 9.9332]	6.9078
z_8	[3.5474, 7.7946]	4.2472	[3.3392, 10.7615]	7.4224
z_9	[3.9069, 8.1857]	4.2787	[3.6254, 11.5695]	7.9441
z_{10}	[4.2502, 8.5568]	4.3066	[3.8888, 12.3599]	8.4711
Figure 3: Empirical, Q-Q, and P-P plots of NWPD for real-life data.

Table 8: Mean value of δ, β, and θ for real-life data.

Parameter	ML	Bayes
δ	2.3535	2.4621
β	1.9859	1.9742
θ	3.1472	3.2208

Table 9: 90% MLPI and BPI of $x_{i,R}$ for real-life data.

Point	MLPI	BPI	Length
$x_{1,1}$	[0.3735, 1.6116]	[0.3715, 1.6611]	1.2382
$x_{1,2}$	[0.6524, 2.1411]	[0.6433, 2.2324]	1.4885
$x_{1,3}$	[0.9836, 2.6626]	[0.9727, 2.8196]	1.679
$x_{1,4}$	[1.3579, 3.3059]	[1.3468, 3.5738]	1.948
$x_{1,5}$	[1.8516, 4.4145]	[1.8357, 4.9122]	2.5628
$x_{2,1}$	[0.5981, 1.8543]	[0.5981, 1.9147]	1.2561
$x_{3,1}$	[0.855, 2.4798]	[0.8531, 2.6043]	1.6248
$x_{3,2}$	[1.2227, 3.1789]	[1.2194, 3.4125]	1.9562
$x_{3,4}$	[1.7267, 4.3311]	[1.7187, 4.7944]	2.6042
$x_{7,1}$	[0.9014, 2.2211]	[0.902, 2.3033]	1.3197
$x_{7,2}$	[0.5061, 3.0276]	[0.5167, 3.2189]	2.5215
$x_{7,3}$	[1.6322, 4.2414]	[1.6304, 4.6643]	2.6092
$x_{10,1}$	[0.9855, 2.0148]	[0.986, 2.0805]	1.0293
$x_{10,2}$	[1.1604, 2.6024]	[1.1615, 2.7413]	1.4421
$x_{10,3}$	[1.4536, 3.2759]	[1.4526, 3.5317]	1.8222
$x_{10,4}$	[1.8979, 4.4029]	[1.8881, 4.8949]	2.505
$x_{11,1}$	[1.0321, 2.2779]	[1.0327, 2.3628]	1.2458
$x_{11,2}$	[0.7123, 3.0697]	[0.7157, 3.2671]	2.3575
$x_{11,3}$	[1.7084, 4.2717]	[1.706, 4.7036]	2.5633
$x_{15,1}$	[1.0883, 2.3042]	[1.0889, 2.3902]	1.2159
$x_{15,2}$	[0.7911, 3.0894]	[0.7934, 3.2893]	2.2983
$x_{15,3}$	[1.7432, 4.2859]	[1.7403, 4.7216]	2.5427
$x_{18,1}$	[1.1709, 2.3448]	[1.1715, 2.4323]	1.1738
$x_{18,2}$	[0.9009, 3.1198]	[0.9023, 3.3236]	2.2189
$x_{18,3}$	[1.7962, 4.308]	[1.7926, 4.7493]	2.5118
$x_{20,1}$	[1.2671, 2.7944]	[1.2679, 2.923]	1.5273
Table 9: Continued.

Point	[LB1, UB1]	Length	[LB1, UB1]	Length
x_{20,2}	[0.8101, 4.1296]	3.3195	[0.813, 4.4941]	3.681
x_{23,1}	[1.3116, 2.8151]	1.5035	[1.3123, 2.9449]	1.6325
x_{23,2}	[0.8777, 4.1438]	3.266	[0.8801, 4.5108]	3.6307
x_{26,1}	[2.1533, 3.2961]	1.1428	[2.1535, 3.4449]	1.2914
x_{26,2}	[1.9179, 4.486]	2.5681	[1.925, 4.8971]	2.9721
x_{28,1}	[2.4552, 3.5019]	1.0467	[2.4552, 3.6557]	1.2005
x_{28,2}	[2.2512, 4.6399]	2.3888	[2.2601, 5.0641]	2.804
x_{30,1}	[2.5955, 3.1388]	0.5434	[2.5955, 3.2208]	0.6254
x_{30,2}	[2.5164, 3.5468]	1.0303	[2.5204, 3.7597]	1.2094
x_{30,3}	[2.8091, 4.0685]	1.2594	[2.7972, 4.3976]	1.6004
x_{30,4}	[2.2466, 5.0227]	2.7761	[2.2995, 5.6178]	3.3183

Table 10: 95% MLPI and BPI of x_{i,h} for real-life data.

Point	[LB1, UB1]	Length	[LB1, UB1]	Length
x_{1,1}	[0.3437, 1.7832]	1.4395	[0.3425, 1.851]	1.5085
x_{1,2}	[0.5664, 2.3197]	1.7533	[0.5565, 2.4483]	1.8918
x_{1,3}	[0.8684, 2.8581]	1.9897	[0.8541, 3.0816]	2.2275
x_{1,4}	[1.2182, 3.536]	2.3178	[1.203, 3.918]	2.715
x_{1,5}	[1.6771, 4.7418]	3.0647	[1.6584, 5.4544]	3.796
x_{4,1}	[0.5752, 2.0415]	1.4663	[0.5752, 2.1272]	1.5521
x_{4,2}	[0.7713, 2.6823]	1.911	[0.7687, 2.8611]	2.0924
x_{4,3}	[1.0966, 3.4153]	2.3187	[1.0912, 3.7513]	2.6601
x_{4,4}	[1.5561, 4.6638]	3.1077	[1.5462, 5.3321]	3.7859
x_{7,1}	[0.8812, 2.4307]	1.5495	[0.8814, 2.5314]	1.67
x_{7,2}	[0.6332, 3.2708]	2.6476	[0.6267, 3.5499]	2.9223
x_{7,3}	[1.4789, 4.5802]	3.1012	[1.4672, 5.1958]	3.7196
x_{10,1}	[0.9717, 2.1886]	1.2169	[0.9719, 2.2837]	1.3118
x_{10,2}	[1.0999, 2.7962]	1.6964	[1.1004, 2.9956]	1.8952
x_{10,3}	[1.349, 3.5058]	2.1569	[1.3471, 3.8717]	2.5246
x_{10,4}	[1.7439, 4.7307]	2.9869	[1.7336, 5.4356]	3.702
x_{12,1}	[1.0145, 2.4828]	1.4683	[1.0148, 2.6079]	1.5931
x_{12,2}	[0.8001, 3.3099]	2.5098	[0.8016, 3.5975]	2.7959
x_{12,3}	[1.5626, 4.6083]	3.0457	[1.5595, 5.2357]	3.6762
x_{13,1}	[1.0716, 2.507]	1.4354	[1.0719, 2.6339]	1.562
x_{13,2}	[0.8711, 3.3281]	2.457	[0.8721, 3.6194]	2.7473
x_{13,3}	[1.6004, 4.6214]	3.021	[1.5971, 5.2539]	3.6568
x_{15,1}	[1.1554, 2.5443]	1.389	[1.1556, 2.6739]	1.5183
x_{15,2}	[0.9721, 3.3564]	2.3844	[0.9727, 3.653]	2.6803
x_{15,3}	[1.658, 4.642]	2.984	[1.6541, 5.2818]	3.6277
x_{20,1}	[1.2454, 3.0547]	1.8002	[1.2458, 3.2397]	1.9939
x_{20,2}	[0.9409, 4.4757]	3.5348	[0.942, 5.0156]	4.0736
x_{23,1}	[1.2907, 3.0647]	1.774	[1.2911, 3.2607]	1.9696
x_{23,2}	[0.9998, 4.4888]	3.4889	[1.0008, 5.0322]	4.0314
x_{26,1}	[2.1405, 3.5121]	1.3716	[2.1406, 3.7391]	1.5985
x_{26,2}	[1.9774, 4.8068]	2.8295	[1.9821, 5.4112]	3.4291
x_{28,1}	[2.444, 3.706]	1.2621	[2.444, 3.9417]	1.4977
x_{28,2}	[2.3021, 4.9509]	2.6488	[2.3082, 5.5739]	3.2657
x_{30,1}	[2.5902, 3.2537]	0.6636	[2.5902, 3.3793]	0.7891
x_{30,2}	[2.5354, 3.6919]	1.1565	[2.5381, 3.9578]	1.4497
x_{30,3}	[2.7559, 4.2564]	1.5005	[2.7454, 4.7241]	1.9787
x_{30,4}	[2.2953, 5.3129]	3.0176	[2.3393, 6.1543]	3.815
Table 11: 90% MLPI and BPI of FOS y_i for real-life data.

Point	MLPI	BPI		
	[LB$_2$, UB$_2$]	Length	[LB$_2$, UB$_2$]	Length
y_1	[0.1438, 1.1146]	0.9709	[0.1273, 1.1518]	1.0245
y_2	[0.3913, 1.4443]	1.053	[0.3618, 1.4965]	1.1347
y_3	[0.6128, 1.7176]	1.1048	[0.5796, 1.7875]	1.2079
y_4	[0.8193, 1.975]	1.1557	[0.7862, 2.0681]	1.2818
y_5	[1.0209, 2.2346]	1.2137	[0.9895, 2.3586]	1.3691
y_6	[1.2257, 2.5111]	1.2854	[1.1959, 2.6765]	1.4807
y_7	[1.4424, 2.8233]	1.3809	[1.413, 3.0451]	1.6321
y_8	[1.6835, 3.2041]	1.5205	[1.652, 3.5052]	1.8532
y_9	[1.9729, 3.7328]	1.7599	[1.9349, 4.1549]	2.22
y_{10}	[2.3801, 4.7253]	2.3451	[2.3275, 5.3778]	3.0503

Table 12: 95% MLPI and BPI of FOS y_i for real-life data.

Point	MLPI	BPI		
	[LB$_2$, UB$_2$]	Length	[LB$_2$, UB$_2$]	Length
y_1	[0.1007, 1.2378]	1.1371	[0.0855, 1.2853]	1.1998
y_2	[0.3226, 1.5664]	1.2439	[0.2901, 1.634]	1.3439
y_3	[0.5324, 1.8418]	1.3093	[0.4931, 1.9342]	1.44
y_4	[0.731, 2.103]	1.372	[0.6902, 2.2283]	1.5381
y_5	[0.9256, 2.3682]	1.4425	[0.886, 2.5373]	1.6513
y_6	[1.1235, 2.6528]	1.5292	[1.0856, 2.8081]	1.7944
y_7	[1.3325, 2.9769]	1.6444	[1.2956, 3.2827]	1.9871
y_8	[1.5638, 3.3769]	1.8131	[1.5258, 3.7926]	2.2668
y_9	[1.8389, 3.9418]	2.1029	[1.7957, 4.5254]	2.7297
y_{10}	[2.2192, 5.0332]	2.814	[2.1626, 5.9429]	3.7802

Table 13: 90% MLPI and BPI of FURS z_i for real-life data.

Point	MLPI	BPI		
	[LB$_1$, UB$_1$]	Length	[LB$_1$, UB$_1$]	Length
z_1	[0.4583, 3.5537]	3.0954	[0.4426, 3.7525]	3.3099
z_2	[1.2147, 4.4792]	3.2645	[1.2056, 4.9012]	3.6956
z_3	[1.8481, 5.1653]	3.3172	[1.8378, 5.833]	3.9952
z_4	[2.3933, 5.7365]	3.3432	[2.3651, 6.6633]	4.2982
z_5	[2.6776, 6.2365]	3.3589	[2.6162, 7.5094]	4.6143
z_6	[3.3173, 6.8696]	3.3696	[3.2310, 8.1524]	4.9423
z_7	[3.7227, 7.1001]	3.3774	[3.5601, 8.8395]	5.2795
z_8	[4.1007, 7.4841]	3.3834	[3.8753, 9.4982]	5.6229
z_9	[4.4561, 7.8443]	3.3883	[4.1625, 10.1329]	5.9704
z_{10}	[4.7925, 8.1847]	3.3922	[4.4269, 10.7469]	6.32

Table 14: 95% MLPI and BPI of FURS z_i for real-life data.

Point	MLPI	BPI		
	[LB$_1$, UB$_1$]	Length	[LB$_1$, UB$_1$]	Length
z_1	[0.3212, 3.9464]	3.6252	[0.3031, 4.2632]	3.9601
z_2	[1.0015, 4.8571]	3.8556	[0.986, 5.4956]	4.5096
z_3	[1.6059, 5.536]	3.93	[1.5927, 6.5158]	4.923
z_4	[2.1358, 6.1026]	3.9668	[2.1097, 7.4355]	5.3258
z_5	[2.6104, 6.5994]	3.989	[2.555, 8.2922]	5.7372
z_6	[3.0434, 7.9474]	4.004	[2.9446, 9.1036]	6.1592
z_7	[3.4437, 7.4586]	4.015	[3.2896, 8.9799]	6.5903
z_8	[3.8177, 7.841]	4.0234	[3.5995, 10.6276]	7.0281
z_9	[4.1699, 8.1999]	4.03	[3.8806, 11.3512]	7.4706
z_{10}	[4.5037, 8.5392]	4.0355	[4.1381, 12.0541]	7.916

Table 11: 90% MLPI and BPI of FOS y_i for real-life data.

Table 12: 95% MLPI and BPI of FOS y_i for real-life data.

Table 13: 90% MLPI and BPI of FURS z_i for real-life data.

Table 14: 95% MLPI and BPI of FURS z_i for real-life data.
6. Conclusion

In this paper, we have dealt with OSP and TSP problems for future observations having an NWPD under the ProgT-II C sample. The predictions of FOS and FURS samples are also studied. The construction of PI for future unobserved failures in all cases is obtained based on the invariant property of MLEs and the generated MCMC samples. N-RI is considered a suitable numerical method used in our paper to get the bounds of PI. A simulated data set and a real-life data set are performed to demonstrate the discussed methods. Summing up the results, it can be concluded that

(i) It is clear from all tables that the length of the MLPI is smaller than the length of the BPI.
(ii) For increasing the value of the survivor units in the same position of \(x_{i,R} \) in the case of OSP and \(s \) in the case of FOS or FURS, the length of the PI increases.
(iii) It can be seen that the length of 90% PI is smaller than the length of 95% PI, which proved that when the significance level \(y \) increases, then the interval length decreases.
(iv) In the TSP problem, the lengths of FOS are smaller than ones of FURS.
(v) Regarding the discussed problem, we can predict the exceedances of the future flood peaks based on the currently available data. Also, we can predict the unobserved value of the exceedances due to the recorded ones.
(vi) Finally, we can conclude that the proposed inference methods give consistent results.
(vii) Sometimes, the available data could be affected by uncertainties and/or inaccuracies. Therefore, strictly speaking, a prediction system based on soft computing techniques and, in particular, on the latest generation fuzzy techniques would be needed, see Cacciola et al. [27] as future work.

Acronyms

- BPI: Bayesian predictive interval
- NWPD: New Weibull-Pareto distribution
- FOS: Future-order statistic
- PI: Predictive interval
- FURS: Future upper record statistic
- PPE: Predictive posterior expectation
- MCMC: Markov chain Monte Carlo
- ProgT-II C: Progressive type-II censoring
- M-H: Metropolis-Hastings
- OSP: One-sample prediction
- ML: Maximum likelihood
- TSP: Two-sample prediction
- MLPI: ML predictive interval
- [LB, UB]: [Lower bound, Upper bound].

Data Availability

All the relevant data are within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Ghafouri, A. Habibi Rad, and F. Yousefzadeh, “Two-sample prediction for progressively Type-II censored Weibull lifetimes,” Communications in Statistics-Simulation and Computation, vol. 46, no. 2, pp. 1381–1400, 2015.
[2] M. N. Pushpalatha, A. Parkavi, and S. A. Alex, “Predictive analytics for healthcare,” Deep Learning Applications for Cyber-Physical, pp. 222–244, 2022.
[3] S. C. Lee, S. Y. P. Cheang, and M. Moslehpour, “Predictive analytics in business analytics: decision tree,” Advances in Decision Sciences, vol. 26, no. 1, pp. 1–30, 2022.
[4] E. Burnaev, “Algorithmic foundations of predictive analytics in industrial engineering design,” Journal of Communications Technology and Electronics, vol. 64, no. 12, pp. 1485–1492, 2019.
[5] A. Sharma and V. Vijayakumar, “Predictive analytics in weather forecasting using machine learning algorithms,” EAI Endorsed Transactions on Cloud Systems, vol. 5, no. 14, pp. 1–12, 2018.
[6] L. A. Asher, J. Clinton, J. C. Devin, and M. Bydon, “Introduction. Predictive analytics in medicine,” Neurosurgical Focus, vol. 45, no. 5, pp. 1–12, 2018.
[7] N. Suleman and L. Albert, “The new Weibull-pareto distribution,” Pakistan Journal of Statistics and Operation Research, vol. 11, pp. 103–114, 2015.
[8] S. Ghafouri, A. Habibi Rad, and M. Doostparast, “Bayesian two-sample prediction with progressively Type-II censored data for some lifetime models,” Journal of the Iranian Statistical Society, vol. 10, no. 1, pp. 63–86, 2011.
[9] A. H. Abdel-Hamid, “Properties, estimations and predictions for a Poisson-Half-Logistic distribution based on progressively Type-II censored samples,” Applied Mathematical Modelling, vol. 40, no. 15-16, pp. 7164–7181, 2016.
[10] E. K. Al-Hussaini, A. H. Abdel-Hamid, and A. F. Hashem, “Bayesian prediction intervals of order statistics based on progressively type-II censored competing risks data from the half-logistic distribution,” Journal of the Egyptian Mathematical Society, vol. 23, no. 1, pp. 190–196, 2014.
[11] M. Z. Raqab, A. Asgharzadeh, and R. Valiollahi, “Prediction for Pareto distribution based on progressively Type-II censored samples,” Computational Statistics & Data Analysis, vol. 54, no. 1, pp. 1732–1743, 2010.
[12] L. Golparvar and A. Parsian, “On Bayes predictor of times to failure of Type-II progressively censored sample,” Journal of Statistical Computation and Simulation, vol. 85, no. 17, pp. 3420–3436, 2014.
[13] A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and R. M. El-Sagheer, “Bayesian and frequentist prediction using progressive type-II censored with binomial removals,” Intelligent Information Management, vol. 5, no. 5, pp. 162–170, 2013.
[14] M. A. Mahmoud, A. A. Soliman, A. H. Abd Ellah, and R. M. El-Sagheer, “Bayesian inference and prediction using progressive first-failure censored from generalized Pareto distribution,” Journal of Statistics Applications & Probability, vol. 2, no. 3, pp. 269–279, 2013.
[15] R. M. El-Sagheer, “Bayesian prediction based on general progressive censored data from generalized Pareto
distribution,” *Journal of Statistics Applications & Probability*, vol. 5, no. 1, pp. 43–51, 2016.

[16] E. A. Ahmed, “Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application,” *Journal of Applied Statistics*, vol. 44, no. 9, pp. 1576–1608, 2016.

[17] T. A. Abushal and A. M. Al-Zaydi, “Prediction based on generalized order statistics from a mixture of Rayleigh distributions using MCMC algorithm,” *Open Journal of Statistics*, vol. 2, no. 3, pp. 356–367, 2012.

[18] T. A. Abushal and A. M. Al-Zaydi, “Bayesian prediction based on generalized order statistics from a mixture of two exponentiated Weibull distribution via MCMC simulation,” *International Journal of Statistics and Probability*, vol. 1, no. 2, pp. 20–34, 2012.

[19] N. Balakrishnan and R. Aggarwala, *Progressive Censoring: Theory, Methods and Applications*, Birkhäuser, Boston, MA, USA, 2000.

[20] R. M. El-Sagheer, “Estimation of parameters of Weibull–Gamma distribution based on progressively censored data,” *Statistical Papers*, vol. 59, no. 2, pp. 725–757, 2018.

[21] M. A. W. Mahmoud, R. M. El-Sagheer, and S. H. M. Abdallah, “Inferences for new Weibull-Pareto distribution based on progressively Type-II censored data,” *Journal of Statistics Applications & Probability*, vol. 5, no. 3, pp. 501–514, 2016.

[22] H. A. David and H. N. Nagaraja, *Order Statistics*, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2003.

[23] K. N. Chandler, “The distribution and frequency of record values,” *Journal of the Royal Statistical Society: Series B*, vol. 14, no. 2, pp. 220–228, 1952.

[24] N. Balakrishnan and R. A. Sandhu, “A simple simulation algorithm for generating progressively type-II censored samples,” *The American Statistician*, vol. 49, pp. 229-230, 1995.

[25] M. G. Bader and A. M. Priest, *Statistical Aspects of Fiber and Bundle Strength in Hybrid Composites. Progress in Science and Engineering Composites*, T. Hayashi, K. Kawata, and S. Umekawa, Eds., ICCM-IV, Tokyo, Japan, 1982.

[26] D. Kundu and M. Raqab. “Estimation of $R = P(Y > X)$ for three-parameter Weibull distribution,” *Statistics & Probability Letters*, vol. 79, pp. 1839–1846, 2009.

[27] M. Cacciola, D. Pellican, G. Megali, A. Lay-Ekuakille, M. Versaci, and F. C. Morabito, “Aspects about air pollution prediction on urban environment,” in *Proceedings of the 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements 2013: Protection Environment*, pp. 15–20, Climate Changes and Pollution Control, Lecce, Italy, June 2013.