On the polynomial Hardy–Littlewood inequality

G. Araújo, P. Jiménez-Rodriguez, G. A. Muñoz-Fernández, D. Núñez-Alarcón, D. Pellegrino, J. B. Seoane-Sepúlveda and D. M. Serrano-Rodríguez

Abstract. We investigate the behavior of the constants of the polynomial Hardy–Littlewood inequality.

Mathematics Subject Classification. 47H60, 47A63, 46G25.

Keywords. Hardy–Littlewood inequality, Bohnenblust–Hille inequality, Absolutely summing operators.

1. Introduction. Let \mathbb{K} be \mathbb{R} or \mathbb{C} and given $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, define $|\alpha| := \alpha_1 + \cdots + \alpha_n$. Also, x^α stands for the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$. The polynomial Bohnenblust–Hille inequality asserts that, given $m, n \geq 1$, if P is a homogeneous polynomial of degree m on ℓ_∞^n given by

$$P(x_1, \ldots, x_n) = \sum_{|\alpha|=m} a_\alpha x^\alpha,$$

then

$$\left(\sum_{|\alpha|=m} |a_\alpha|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq B_{\mathbb{K},m}^{\text{pol}} \|P\|$$

for some positive constant $B_{\mathbb{K},m}^{\text{pol}}$ which does not depend on n (the exponent $\frac{2m}{m+1}$ is optimal), where $\|P\| := \sup_{z \in \ell_\infty^n} |P(z)|$. Precise estimates of the growth of the constants $B_{\mathbb{K},m}^{\text{pol}}$ are crucial for different applications. The following diagram shows the evolution of the estimates of $B_{\mathbb{K},m}^{\text{pol}}$ for complex scalars.

G. Araújo, D. Pellegrino and J. B. Seoane-Sepúlveda was supported by CNPq Grant 401735/2013-3 (PVE-Linha 2). G.A. Muñoz-Fernández was supported by MTM2012-34341. D. Nunez and D. Serrano were supported by CNPq Grant 461797/2014-3.
In the table above, \(C(\varepsilon) (1 + \varepsilon)^m\) means that given \(\varepsilon > 0\), there is a constant \(C(\varepsilon) > 0\) such that \(B_{C,m}^{\text{pol}} \leq C(\varepsilon)(1 + \varepsilon)^m\) for all \(m\).

For real scalars it is shown in [7, Theorem 2.2] that
\[
(1.1)^m \leq B_{R,m}^{\text{pol}} \leq C(\varepsilon)(2 + \varepsilon)^m,
\]
and this means that for real scalars the hypercontractivity of \(B_{R,m}^{\text{pol}}\) is optimal.

From now on, for any map \(f : \mathbb{R} \to \mathbb{R}\) we define
\[
f(\infty) := \lim_{p \to \infty} f(p).
\]

When replacing \(\ell^n_\infty\) by \(\ell^n_p\), the extension of the polynomial Bohnenblust–Hille inequality is called polynomial Hardy–Littlewood inequality and the optimal exponents are \(\frac{2mp}{mp+p-2m}\) for \(2m \leq p \leq \infty\). More precisely, given \(m, n \geq 1\), if \(P\) is a homogeneous polynomial of degree \(m\) on \(\ell^n_p\) with \(2m \leq p \leq \infty\) given by
\[
P(x_1, \ldots, x_n) = \sum_{|\alpha|=m} a_\alpha x^\alpha,
\]
then there is a constant \(C_{K,m,p}^{\text{pol}} \geq 1\) such that
\[
\left(\sum_{|\alpha|=m} |a_\alpha|^\frac{2mp}{mp+p-2m} \right)^{\frac{mp+p-2m}{2mp}} \leq C_{K,m,p}^{\text{pol}} \|P\|,
\]
and \(C_{K,m,p}^{\text{pol}}\) does not depend on \(n\), where \(\|P\| := \sup_{z \in B_{\ell^n_p}} |P(z)|\).

This is a consequence of the multilinear Hardy–Littlewood inequality (see [2,10]). More precisely, given an integer \(m \geq 1\), the multilinear Hardy–Littlewood inequality (see [1,12,14]) asserts that for \(2m \leq p \leq \infty\) there exists a constant \(C_{K,m,p}^{\text{mult}} \geq 1\) such that, for all continuous \(m\)-linear forms \(T : \ell^n_p \times \cdots \times \ell^n_p \to K\) and all positive integers \(n\),
\[
\left(\sum_{j_1, \ldots, j_m=1}^n |T(e_{j_1}, \ldots, e_{j_m})|^\frac{2mp}{mp+p-2m} \right)^{\frac{mp+p-2m}{2mp}} \leq C_{K,m,p}^{\text{mult}} \|T\|
\]
and the exponents \(\frac{2mp}{mp+p-2m}\) are optimal, when \(\|T\| := \sup_{z^{(1)}, \ldots, z^{(m)} \in B_{\ell^n_p}} |T(z^{(1)}, \ldots, z^{(m)})|\). When \(p = \infty\) we recover the classical multilinear Bohnenblust–Hille inequality (see [6]). More precisely, it asserts that there exists a constant \(B_{K,m}^{\text{mult}}\) such that for all continuous \(m\)-linear forms \(T : \ell^n_\infty \times \cdots \times \ell^n_\infty \to K\) and all positive integers \(n\),

Authors	Year	Estimate
Bohnenblust and Hille	1931, [6]	\(B_{C,m}^{\text{pol}} \leq m^{\frac{m+1}{2m}} (\sqrt{2})^{m-1}\)
Defant, Frerick, Ortega-Cerdá,	2011, [9]	\(B_{C,m}^{\text{pol}} \leq \left(1 + \frac{1}{m-1}\right)^{m-1}\)
Ounaïes, and Seip		\(\sqrt{m} (\sqrt{2})^{m-1}\)
Bayart, Pellegrino, and Seoane-Sepúlveda	2014, [5]	\(B_{C,m}^{\text{pol}} \leq C(\varepsilon)(1 + \varepsilon)^m\)