Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

Diego Marín-Armijos¹, Noelia Quezada-Ríos¹, Carolina Soto-Armijos¹, Ximo Mengual²

¹ Museo de Colecciones Biológicas, Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, C.P. 11 01 608, Loja, Ecuador ² Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, D-53113 Bonn, Germany

Corresponding author: Ximo Mengual (x.mengual@leibniz-zfmk.de)

Academic editor: M. Hauser | Received 20 April 2017 | Accepted 2 June 2017 | Published 17 August 2017

http://zoobank.org/84A38A1F-CD07-45E5-AF47-6EFED63ACCD2

Citation: Marín-Armijos D, Quezada-Ríos N, Soto-Armijos C, Mengual X (2017) Checklist of the flower flies of Ecuador (Diptera, Syrphidae). ZooKeys 691: 163–199. https://doi.org/10.3897/zookeys.691.13328

Abstract
Syrphidae is one of the most speciose families of true flies, with more than 6,100 described species and worldwide distribution. They are important for humans acting as crucial pollinators, biological control agents, decomposers, and bioindicators. One third of its diversity is found in the Neotropical Region, but the taxonomic knowledge for this region is incomplete. Thus, taxonomic revisions and species checklists of Syrphidae in the Neotropics are the highest priority for biodiversity studies. Therefore, we present the first checklist of Syrphidae for Ecuador based on literature records, and provide as well the original reference for the first time species citations for the country. A total of 201 species were recorded for Ecuador, with more than 600 records from 24 provinces and 237 localities. Tungurahua, Pastaza, and Galápagos were the best sampled provinces. Although the reported Ecuadorian syrphid fauna only comprises 11.2 % of the described Neotropical species, Ecuador has the third highest flower fly diversity density after Costa Rica and Suriname. These data indicate the high species diversity for this country in such small geographic area.

Keywords
faunistics, hoverflies, Neotropical Region, species list, Syrphid fauna

Copyright Diego Marín-Armijos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Seventeen countries in the world are considered megadiverse, occupying less than 10% of the Earth's surface and comprising nearly 70% of the global biodiversity (Mittermeier et al. 2005). In this group, Ecuador is listed among the first places in the world ranking based on number of species per area unit for vascular plants, mammals, birds, reptiles and amphibians (Mittermeier and Mittermeier 1997, Brehm et al. 2008), but it is the megadiverse country with the smallest land area (Mittermeier et al. 2005). This makes Ecuador rank at the top, or near so, of the megadiversity list if diversity per unit area is taken into consideration. The geographic position of Ecuador and a series of biotic and abiotic elements have resulted in an extraordinary biological diversity in this nation. For instance, there are ca. 20,000 estimated plants in Ecuador, of which up to 5,000 are most likely endemics. In terms of vertebrate diversity, 1.3% of the global diversity of non-fish vertebrates is endemic to Ecuador (Mittermeier et al. 2005).

Insects are the most successful group of living organisms in our planet in number of species and different natural histories. From all known and described species on Earth, ca. 1.5–1.7 millions, between 65 and 75% are insects, and among the insect orders only four orders represent more than 80% of the species: Coleoptera, Lepidoptera, Diptera, and Hymenoptera (Adler and Foottit 2009). Despite being abundant and ubiquitous, insects are understudied in Ecuador and many new species and genera are waiting to be formally described (Dangles et al. 2009, Barragán et al. 2009). Furthermore, there is no estimate on the number of invertebrates for Ecuador, neither a checklist for most of the invertebrate groups present in this country (Salazar and Donoso 2014).

Diptera, which includes mosquitoes and true flies, comprises more than 153,000 described species (about 10–12% of the planet’s biodiversity) and has a rate of near 1,000 new species described per year (Pape and Thompson 2013). Diptera is not only rich in number of species, but also in morphology and structure, habitats use and human interactions (Courtney et al. 2009). Most recent studies in this country have focused mostly on Lepidoptera (Piñas and Manzano 1997, Bollino and Onore 2001, Piñas and Manzano 2003a, 2003b, Hilt and Fiedler 2005, Brehm 2005, Fiedler et al. 2007, Bodner et al. 2010), and Coleoptera (Celi et al. 2004, Moret 2005, Carpio et al. 2009, Carvajal et al. 2011, Domínguez et al. 2015, Thormann et al. 2016). Salazar and Donoso (2014) present some numbers for the invertebrate fauna of Ecuador and report 722 dipteran species from the literature, but this number is probably an underestimation, which was biased by the research focus of the previous works in Ecuador. Thus, the actual species number of species of Diptera for the country is far from being known.

Commonly called flower or hoverflies, the family Syrphidae is one of the most diverse in Diptera with more than 6,000 described species (Brown 2009), and the third taxon with most species in the Neotropical Region (Amorim 2009). Their coloration, from orange-brown in a few species to striking yellow and black patterns, causes them to be confused with bees or wasps (Hymenoptera). Adults of the family Syrphidae have the ability to hover and are associated with flowers, which are used as mating sites and food sources (pollen and nectar). Therefore, the imagoes are considered important pollinators of herbs,
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

shrubs, and arboreal plants in natural ecosystems as well as in agricultural areas (Speight and Lucas 1992, Marinoni and Thompson 2003, Pérez-Bañón et al. 2003, Ssymank and Kearns 2009, Inouye et al. 2015). Syrphid species have been used as bioindicators as well to assess biodiversity loss and the efficiency of restoration and conservation policies (Sommaggio 1999, Tscharntke et al. 2005, Ricarte et al. 2011, Sommaggio and Burgio 2014).

Larvae are very variable in structure, habits, and feeding modes, including fungal fruiting bodies, brood in nests of social Hymenoptera, dung, decaying wood and water bodies of several types (Rotheray 1993, Rotheray and Gilbert 1999, 2011). Larvae of some species can mine leaves and stems of numerous plant families, or even feed on pollen, and others are predators of arthropods (aphids, caterpillars, larvae of flies or beetles, adult flies, etc.) or are kleptoparasitic or parasitoids (Rojo et al. 2003, Weng and Rotheray 2008, Reemer and Rotheray 2009, Rotheray et al. 2000, Ureña and Hanson 2010, Zúñiga and Nishida 2011, Pérez-Lachaud et al 2014, Jordaens et al. 2015, Fleischmann et al. 2016, Dumbardon-Martial 2016). Due to their feeding mode, some syrphid species play an important role as biological control agents of pests (Greco 1998, Schmidt et al. 2004, Bergh and Short 2008, Bugg et al. 2008, Pineda and Marcos-García 2008, Nelson et al. 2012, Amorós-Jiménez et al. 2014, Eckberg et al. 2015) and as decomposers of organic matter (Lardé 1989, Rotheray et al. 2009, Martínez-Falcón et al. 2012).

Flower flies are distributed worldwide, with the exception of Antarctica and a few remote oceanic islands, and their greatest species diversity is found in the tropics (Vockeroth 1992, Reemer 2013, Reemer and Ståhls 2013). The classification of Neotropical Syrphidae has been largely reviewed by Vockeroth (1969), Thompson (1972, 1999) and Reemer (2014), but the taxonomy of Syrphidae is far from being complete in the Neotropical Region yet, and many new species remain to be described (Mengual and Thompson 2008, Mengual et al. 2009, Thompson et al. 2010, Mengual 2011, Mengual and Thompson 2011, Reemer 2010, 2014, 2016). Moreover, the almost absence of identification keys for Neotropical species makes difficult the elaboration of regional checklists or the discovery of new species to science (Thompson et al. 2010, Montoya et al. 2012). Previously, species lists based on single surveys (Campos 1960, Linsley and Usinger 1966, Linsey 1977), for specific taxa (genus *Toxomerus* Macquart, 1855 by Gerdes, 1974a), or for limited areas, such as Galapagos Islands (Sinclair 2015, Sinclair et al. 2016), have been published for Ecuador.

Amorim (2009) considers Syrphidae among the still underexplored dipteran families in the Neotropical Region, and Ecuador among the most poorly collected areas in South America. Nevertheless, there have been some efforts during the last years to teach Syrphidae taxonomy to young students via workshops and courses with the great help of F.C. Thompson (USNM, National Museum of Natural History, Smithsonian Institution) as a coordinator (Colombia 2006, Peru 2008, Ecuador 2012), with the purpose to educate new taxonomists that may help to elucidate the thrilling evolutionary history of this group. As a fruit from these workshops, a strong collaboration among the authors was established years ago to study the flower flies of Ecuador. Currently, there is no species list for Ecuadorian flower flies that can help as a starting point, and the existing records are few and scattered thorough the literature. Conse-
sequently, a species checklist of the family Syrphidae in Ecuador for further biodiversity studies was the highest priority. In this survey, we present the first species checklist of Syrphidae for Ecuador based on literature records and provide as well the original reference for the first time species citations for the country of Ecuador.

Materials and methods

Thompson et al. (1976) was used as the primary source to check for species cited previously for Ecuador. Based on that keystone publication and Thompson et al. (2010), we reviewed all the published literature up to date in order to find references to Ecuadorian syrphids. Moreover, bibliographic searches were performed in public and scientific journal databases such as Google Scholar, Scopus, ISI Web of Knowledge, BioOne, Redalyc, Scielo, BioOne, ScienceDirect, and ResearchGate. Our keywords in English and Spanish for the searches were invertebrates, Ecuador, Diptera, Syrphidae, Neotropics, distribution, flower flies and hoverflies. In addition, we studied representative collections of Ecuador, i.e. Museo de Zoología de la Pontificia Universidad Católica del Ecuador (QCAZ) and Museo de la Escuela Politécnica Nacional.

To illustrate the flower fly records in a geographic map we used the coordinates available in the literature. For the localities without geographic coordinates we used Google Earth * to obtain them. Figure 1 was created using QGIS software (QGIS Development Team, 2009).

![Figure 1. Distribution map of flower fly records in Ecuador.](image-url)
Results

A total of 201 species plus four unidentified species and two misidentified taxa, belonging to 51 syrphid genera and subgenera, have been recorded up to date for Ecuador. More than 600 records from 24 provinces and 237 different localities of Ecuador are given in Table 1. Although there are records from all the Ecuadorean provinces, they do not show an even collecting effort for the whole country. Tungurahua (with 80 collecting events), Pastaza (72), and Galápagos (60) are the best sampled provinces, while the flower fly records for Orellana (3), Los Ríos (2), Santa Elena (2), Santo Domingo de Los Tsáchilas (2), and Esmeraldas (1) provinces are almost anecdotal. In terms of geographic Ecuadorean regions, the Sierra of Ecuador and the Galapagos Islands have been more extensively sampled and studied (Table 1 and Figure 1). On the other hand, the Costa Region, North and South Amazonia, and Austral Region of Ecuador have been little explored (Figure 1).

Table 1. Checklist of Syrphidae species recorded from Ecuador, with the Ecuadorean province, locality, altitude (when cited in the original reference), and the original reference for Ecuador.

Species	Province	Locality (Altitude masl)	References for Ecuador												
Alipumilio femoratus	Pastaza	Puyo	Rotheray et al. 2000: 137												
Allograpta annulipes	Pastaza	Santa Inés, Río Pastaza (1200)	Fluke 1942: 16 (as *A. geminata*)												
Allograpta browni	Imbabura	Cuicocha (3200)	Fluke 1942: 18												
Allograpta exotica	Tungurahua	Baños	Fluke 1942: 19												
	Tungurahua	Juive	Fluke 1942: 19												
	Ecuador		Fluke 1950a: 146 (as *Syrphus exotica*)												
Allograpta falcata	Tungurahua	Baños (1800)	Fluke 1942: 16												
	Tungurahua	Baños (2200)	Fluke 1942: 16												
	Galápagos	Española	Sinclair and Peck 2002; Sinclair et al. 2016: 87												
Allograpta neoplendens	Galápagos	Floreana	Sinclair et al. 2016: 87												
	Galápagos	Genovesa	Sinclair et al. 2016: 87												
	Galápagos	Isabela	Sinclair and Peck 2002; Sinclair 2015; Sinclair et al. 2016: 87												
	Galápagos	Marchena	Sinclair 2015												
	Galápagos	Pinta	Sinclair and Peck 2002; Sinclair et al. 2016: 87												
	Galápagos	San Cristóbal	Curran 1934: 153; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair and Peck 2002; Sinclair et al. 2016: 87												
	Galápagos	Santa Cruz	Boada 2005: 84; Sinclair 2015; Sinclair et al. 2016: 87												
	Galápagos	Santa Fé	Sinclair 2015												
	Galápagos	Santiago	Curran 1934: 153; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair and Peck 2002; Sinclair et al. 2016: 87												
	Galápagos	Thomson 1869: 501 (as *Syrphus splendens*)													
Species	Province	Locality	References for Ecuador												
--------------------------------------	--------------	-------------------	-------------------------												
Allograpta neotropica Curran, 1936	Tungurahua	Baños	Fluke 1942: 20												
	Pastaza	Santa Inés	Fluke 1942: 20												
Allograpta obliqua (Say, 1823)	Tungurahua	Baños	Fluke 1942: 19												
	Carchi	Tulcán	Campos 1960: 25												
	Chimborazo	Riobamba	Campos 1960: 25												
Allograpta tectiforma Fluke, 1942	Imbabura	Cuicocha (3200)	Fluke 1942: 19												
	Imbabura	Cuicocha (3500)	Fluke 1942: 19												
	Ecuador		Fluke 1950a: 146												
Allograpta teligera Fluke, 1942	Tungurahua	Baños (1800)	Fluke 1942: 18												
Argentinomyia agonis (Walker, 1849)	Galápagos		Walker 1849: 588;												
			Linsley 1977: 39												
	Galápagos	Floreana	Sinclair and Peck 2002;												
			Sinclair 2015												
	Galápagos	Isabela	Sinclair and Peck 2002;												
			Sinclair et al. 2016: 85												
	Galápagos	Pinta	Sinclair and Peck 2002;												
			Sinclair et al. 2016: 85												
	Galápagos	San Cristóbal	Sinclair 2015												
	Galápagos	Santa Cruz	Boada 2005: 86;												
			Sinclair 2015												
			Sinclair et al. 2016: 85												
Argentinomyia altissima (Fluke, 1945)	Imbabura	Cuicocha (3200)	Fluke 1945: 20												
	Ecuador		Fluke 1958: 266												
Argentinomyia bolivariensis (Fluke, 1945)	Bolívar	Hda. Talahua (3100)	Fluke 1945: 19												
	Ecuador		Fluke 1958: 266												
Argentinomyia browni (Fluke, 1945)	Bolívar	Hda. Talahua (3100)	Fluke 1945: 19												
	Ecuador		Fluke 1958: 266												
Argentinomyia festiva (Fluke, 1945)	Tungurahua	Baños (1800)	Fluke 1945: 10												
Argentinomyia longicornis (Walker, 1836)	Pastaza	Puyo (3000)	Fluke 1945: 4												
Argentinomyia luculenta (Fluke, 1945)	Tungurahua	Baños (2300)	Fluke 1945: 18												
	Tungurahua	Pondoa (2800)	Fluke 1945: 18												
Argentinomyia opaca (Fluke, 1945)	Chimborazo	Urbina (3650)	Fluke 1945: 11												
	Ecuador		Fluke 1958: 266												
Argentinomyia rex (Fluke, 1945)	Bolívar	Hda. Talahua (3100)	Fluke 1945: 22												
	Ecuador		Fluke 1958: 266												
Argentinomyia tropica (Curran, 1937)	Tungurahua	Baños (2300)	Fluke 1945: 17												
Clariphunula latifacies Shannon, 1927	Bolívar	Hda. Talahua (3100)	Fluke 1942: 4												
	Ecuador		Fluke 1950a: 146												
Copestyllum (Copestyllum) otonaeensis Rotheray & Hancock, 2007	Cotopaxi	Otona	Rotheray et al. 2007: 290												
Copestyllum (Copestyllum) tapia Rotheray & Hancock, 2007	Cotopaxi	Otona	Rotheray et al. 2007: 307												
Copestyllum (Phalacrocyra) araceorum Ricarte & Rotheray, 2015	Cotopaxi	Otona	Ricarte et al. 2015: 13												
Copestyllum (Phalacrocyra) beatricea (Hull, 1950)	Azuay	Cuenca (2650)	Fluke 1951b: 15 (as Volucella ecuadorea)												
	Tungurahua	Baños	Fluke 1951b: 15 (as Volucella ecuadorea)												
	Imbabura	Cuicocha (3300)	Fluke 1951b: 15 (as Volucella ecuadorea)												
	Ecuador		Hull 1950: 236												
Species	Province	Locality (Altitude masl)	References for Ecuador												
---------	----------	--------------------------	------------------------												
Copestylum *(Phalacromya)* *brunneum* (Thunberg, 1789)	Chimborazo	Huigra	Campos 1960: 27 (as *Volucella esuriens*)												
Copestylum *(Phalacromya)* *bulboum* (Fluke, 1951)	Cañar	Azogues	Campos 1960: 27 (as *Volucella esuriens*)												
Copestylum *(Phalacromya)* *campsi* (Curran, 1939)	Tungurahua	Minza Chica (3750)	Fluke 1951b: 25												
Copestylum *(Phalacromya)* *chaetophorum* (Williston, 1887)	Guayas	Isla Puná, Puerto Grande	Curran 1939: 8												
Copestylum *(Phalacromya)* *curranii* (Fluke, 1951)	Pichincha	Guayllabamba	Rotheray et al. 2009: 714												
Copestylum *(Phalacromya)* *fulvicorne* (Bigot, 1883)	Guayas	San Eduardo	Campos 1960: 27												
Copestylum *(Phalacromya)* *hambletoni* (Fluke, 1951)	Ecuador	Thompson et al. 1976: 77													
Copestylum *(Phalacromya)* *multipunctatum* Rotheray & Hancock, 2009	Pichincha	Guayllabamba	Rotheray et al. 2009: 704												
Copestylum *(Phalacromya)* *nigripes* (Bigot, 1857)	El Oro	Chillacocha	Campos 1960: 29 (as *Phalacromyia concolor*)												
Copestylum *(Phalacromya)* *placivum* (Hull, 1943)	Pastaza	Santa Inés	Hull 1943b: 31												
Copestylum *(Phalacromya)* *rufoscutellare* (Philippi, 1865)	Chimborazo	Mirador	Campos 1960: 29												
Copestylum *(Phalacromya)* *scintillans* (Hull, 1949)	Galápagos	San Cristóbal (730)	Sinclair et al. 2016: 83												
Copestylum *(Phalacromya)* *sica* (Curran, 1953)	Pichincha	Guayllabamba	Rotheray et al. 2009: 720												
Copestylum *(Phalacromya)* *splendens* (Townsend, 1897)	Pichincha	Cotocollao	Campos 1960: 27 (as *Volucella opalina*)												
Copestylum *(Phalacromya)* *viridigaster* (Hull, 1943)	Ecuador	Thompson et al. 1976: 41													
Dasysyrphus aff. *(lotus)* (Williston, 1889)	Pichincha	Pichincha (3300)	Fluke 1942: 3												
Dolichogyna chilensis (Walker, 1836)	Azuay	Narihuía	Campos 1960: 29												
Dolichogyna mulleri Fluke, 1951	Azuay	Girón	Fluke 1951a: 472												
Eosalpingogaster *nigriventris* (Bigot, 1883)	Guayas	Isla Puná, Puerto Grande (253)	Fluke 1937: 11 (as *Salpingogaster lipoeta*)												
Eristalis *(Eoseristalis)* *bogotensis* Macquart, 1842	Ecuador	Thompson et al. 1976: 101													
Napo	Pichincha	Antisamilla to Pinatura (3350)	Thompson 1997: 223												
Pichincha	Santa Catalina Expt. Station (2780)	Thompson 1997: 223													
Pichincha	Quito (2850)	Thompson 1997: 223													
Species	Province	Locality (Altitude masl)	References for Ecuador												
---------	----------	--------------------------	-------------------------												
Eristalis (Eoseristalis) bogotensis Macquart, 1842 	Chimborazo	8 mi NE of Tixan Chimborazo	Thompson 1997: 223 Chimborazo	Lago Zurucuchu Tungurahua	Ambato (2700) Carchi	Troya Carchi	Tulcan (2800) Carchi	El Ángel (2700) Cañar	El Tambo (2800) Pichincha	Pomasqui (2200) Pichincha	Valle de Machachi (2900) Loja	Loja (2500) Azuay	Tarqui (2800) Azuay	28 km S of Cuenca (2500–2800) Azuay	Cuenca (2200)
Eupeodes (Metasyrphus) rojasi Marneff, 1999 	Azuay	Gualaduisa Road (2150) Tungurahua	Baños Bolívar	Chota River, Carchi (2000) Imbabura	NW Ibarra, Taguando River (1650–1900) Carchi	El Ángel (2700) Carchi	10 km SW Túlcan (2900) Imbabura	3km N Ibarra, Yaguacocha (1950) Pichincha	Pichincha, 2km W Cayambe (2300)						
Fazia alta (Curran, 1936) 	Tungurahua	Baños Tungurahua	Juive Ecuador												
Fazia altissima (Fluke, 1942) 	Tungurahua	Volcán Tungurahua, Minza Chica (3200) Tungurahua	Poodoa (2800) Pichincha	Páramo del Cerro, Paschoa (3300) Pichincha	Hda. San Rafael, Río San Pedro (2700) Pichincha	Uyumbicho (2650) Pichincha	Hda. San Rafael (3000) Imbabura	Cuicocha (3200) Ecuador		Pastaza	Puyo (1000) Pichincha	Uyumbicho (2700) Imbabura	Cuicocha (3200)	Fluke 1942: 14	
Species	Province	Locality	References for Ecuador												
---	---	---	---	---											
Fazia argentipila (Fluke, 1942)	Tungurahua	Baños, Runtun trail (2100)	Fluke 1942: 14												
	Pichincha	Hda. San Rafael (3000)	Fluke 1942: 14												
	Azuay	Cuenca (2500)	Fluke 1942: 14												
	Tungurahua	Baños, San Pablo (2200)	Fluke 1942: 14												
	Bolívar	Hda. Talahua (3100)	Fluke 1942: 14												
	Ecuador		Fluke 1950a: 145												
Fazia colombia (Curran, 1925)	Tungurahua	Baños (2100)	Fluke 1942: 13												
	Azuay	Cuenca (2500)	Fluke 1942: 13												
	Pichincha	Pichincha (2700)	Fluke 1942: 13												
	Morona Santiago	Sucía (900)	Fluke 1942: 13												
	Ecuador		Fluke 1950a: 146												
Fazia decemmaculata (Shannon, 1927)	Ecuador		Thompson et al. 1976: 34 (as *F. bullaephora*); Mengual et al. 2009: 17 (as *F. bullaephora*)												
Fazia fasciata (Curran, 1932)	Tungurahua	Juive (1900)	Fluke 1942: 13												
	Tungurahua	Baños (1900)	Fluke 1942: 13												
	Imbabura	Cuicocha (3200)	Fluke 1942: 13												
	Ecuador		Fluke 1950a: 146												
Fazia fascifrons (Macquart, 1846)	Bolívar	Hda. Talahua (3100)	Fluke 1942: 12 (as *Epistrophe armillata*)												
	Ecuador		Fluke 1950a: 145 (as *Epistrophe armillatus*)												
Fazia imitator (Curran, 1925)	Tungurahua	Río Mapoto (1400)	Fluke 1942: 11												
	Tungurahua	Volcán, Tungurahua, Minza Chica (3200)	Fluke 1942: 8												
	Bolívar	Hda. Talahua (3100)	Fluke 1942: 8												
	Ecuador		Fluke 1950a: 146												
Fazia micrura (Osten Sacken, 1877)	Morona Santiago	Sucía	Fluke 1942: 14												
	Morona Santiago	Macas	Fluke 1942: 14												
	Carchi	Tulcán	Campos 1960: 26 (as *Sphaerophoria picticauda*)												
Fazia remigis (Fluke, 1942)	Tungurahua	Volcán, Tungurahua, Minza Chica (3200)	Fluke 1942: 9												
	Bolívar	Hda. Talahua (3100)	Fluke 1942: 9												
	Ecuador		Fluke 1950a: 145												
Fazia roburoris (Fluke, 1942)	Bolívar	Hda. Talahua (3100)	Fluke 1942: 11												
	Ecuador		Fluke 1950a: 146												
Hypselosyrphus marshalli Reemer, 2013	Napo	Tiputini Diodiversity Station	Reemer 2013: 28												
Leucopodella broadica (Hull, 1943)	El Oro	Piñas (1506)	Hull 1943i: 73												
Leucopodella delicatula (Hull, 1943)	Tungurahua	Baños	Hull 1943i: 78												
Species	Province	Locality	References for Ecuador												
--	----------	--------------------	---												
Leucopodella gracilis (Williston, 1891)	Ecuador		Thompson et al. 1976: 46 (as *L. asthenia*)												
Leucopodella zenilla (Hull, 1943)	Bolívar	Hda. Talahua (3100)	Hull 1943g: 77												
Lycasirrhyncha nitens Bigot, 1859	Ecuador		Montoya et al. 2012: supplementary material page 3; Montoya et al. 2016: 492												
Mallota aberrans Shannon, 1927	Napo	7 km S of Bacza (2000)	Thompson and Zumbado 2002: 93												
Mallota nigra Shannon, 1927	Pastaza	Santa Inés	Shannon 1927: 17												
Mallota rubicunda Curran, 1940	Pastaza		Curran 1940: 13												
Meromacrus laconicus (Walker, 1852)	Guayas	Isla Puná (253)	Blatch et al. 2003: 26												
Meromacrus panamensis Curran, 1930	Guayas	San Eduardo	Campos 1960: 29												
Meromacrus pratorum (Fabricius, 1775)	Ecuador		Thompson et al. 1976: 113												
Meropidia rufa Thompson, 1983	Morona	Limón Indanza (900)	Hippa and Thompson, 1983: 110												
Microdon (**Chymophila**) fulgens Wiedmann, 1830	Guayas	Guayaquil, San Eduardo	Campos 1960: 24												
Microdon (**Microdon**) violaceus (Macquart, 1842)	Guayas	Durán	Campos 1960: 24												
Microdon sp.	Guayas	env. of Guayaquil	Campos 1960: 24												
Mixogaster thecla (Hull, 1954)	Ecuador		Thompson et al. 1976: 59												
Ocyptamus (**Calistigma**) elhona (Shannon, 1927)	Ecuador		Thompson et al. 1976: 17												
Ocyptamus (**Hermesomyia**) wulpianus (Lynch Arribalzaga, 1891)	Pastaza	Puyo (1250)	Hull 1943a: 50 (as Baccha phobifer)												
Ocyptamus (**Hermesomyia**) cultratus (Austen, 1893)	Pastaza	Puyo (1000)	Hull 1943d: 91												
Ocyptamus (**Hermesomyia**) saffrona (Hull, 1943)	Pastaza		Hull 1943g: 78 (as *Baccha satyra*)												
Ocyptamus (**Hermesomyia**) zilla (Hull, 1943)	Pastaza		Hull 1943j: 215												
Species	Province	Locality (Altitude masl)	References for Ecuador												
---------	----------	--------------------------	------------------------												
Ocyptamus (Orphnabaccha) cerberus (Hull, 1943)	Imbabura	Cuicocha	Hull 1943g: 67												
Ocyptamus (Orphnabaccha) opacus (Fluke, 1950)	Tungurahua	Volcán Tungurahua (2800)	Fluke 1950b: 444												
	Tungurahua	Baños (1900)	Fluke 1950b: 444												
	Napo-Orellana	Sumaco [as Río Zumac] (1400)	Fluke 1950b: 444												
Ocyptamus (Orphnabaccha) pteronis (Fluke, 1942)	Tungurahua	Volcán Tungurahua, Minza Chica (3200)	Fluke 1942: 5												
	Bolívar	Hda. Talahua	Fluke 1942: 5												
	Ecuador		Fluke 1950a: 145												
Ocyptamus (Orphnabaccha) trabis (Fluke, 1942)	Tungurahua	Volcán Tungurahua, Runtun (2900)	Fluke 1942: 6												
	Imbabura	Cuicocha (3200)	Fluke 1942: 6												
	Pichincha	Páramo de Pasacho	Fluke 1942: 6												
	Ecuador		Fluke 1950a: 145												
Ocyptamus (Orphnabaccha) virga (Fluke, 1942)	Imbabura	Cuicocha (3200)	Fluke 1942: 7												
Ocyptamus (Orphnabaccha) volcanus (Fluke, 1942)	Pastaza	Santa Inés, Río Pastaza (1200)	Fluke 1942: 7												
Ocyptamus (Pipunculosyrphus) scintillans (Hull, 1943)	Guayas	Morro (1500)	Hull 1943e: 136												
Ocyptamus (Styxia) ebis (Hull, 1943)	Bolívar	Hda. Talahua	Hull 1943g: 66												
Ocyptamus sp.	Guayas	Guayaquil, San Eduardo	Campos 1960: 24												
Ornidia major Curran, 1930	Ecuador		Thompson et al. 1976: 69; Thompson 1991: 255												
	Galápagos		Peck 1996												
	Galápagos	Isabel	Peck et al. 1998: 228; Causton et al. 2006: 135; Sinclair 2015; Sinclair et al. 2016: 84												
	Galápagos	San Cristóbal	Peck et al. 1998: 228; Causton et al. 2006: 135; Sinclair 2015; Sinclair et al. 2016: 84												
	Galápagos	Santa Cruz	Sinclair 2015												
	Ecuador		Thompson et al. 1976: 69; Thompson 1991: 257												
Ornidia obea (Fabricius, 1775)	Guayas	Guayaquil	Campos 1960: 26												
	Guayas*	El Salado	Campos 1960: 26												
	Guayas	San Eduardo	Campos 1960: 26												
	Guayas	Durán	Campos 1960: 26												
	Guayas	Naranjito	Campos 1960: 26												
	Guayas	San Rafael	Campos 1960: 26												
	Guayas	Barraganetal	Campos 1960: 26												
	Guayas	Bucay	Campos 1960: 26												
	Guayas	Posorja	Campos 1960: 26												
	Guayas	Playas del Morro	Campos 1960: 26												
	Guayas	Naranjal	Campos 1960: 26												
	Zamora	Chinchipe	Valle del Zamora	Campos 1960: 26											
Species	Province	Locality (Altitude masl)	References for Ecuador												
--------------------------	----------	--------------------------	------------------------												
Ornidia obesa (Fabricius, 1775)	Loja	Loja	Campos 1960: 26												
	Esmeraldas	Telembí, Río Cayapas	Campos 1960: 27												
Palpada aemula (Williston, 1891)	Ecuador	Montoya et al. 2012: supporting information, page 5; Montoya et al. 2016: 498													
Palpada albifrons (Wiedemann, 1830)	Galápagos	Santa Cruz	Sinclair 2015												
	Galápagos	Floreana	Sinclair et al. 2016: 81												
	Galápagos	Isabel	Sinclair et al. 2016: 81												
	Galápagos	Marchena	Sinclair et al. 2016: 82												
	Guayas	San Eduardo	Campos 1960: 28												
			(as *Eristalis albiceps*)												
Palpada atrimana (Loew, 1866)	Ecuador	Montoya et al. 2016: 496													
Palpada conica (Fabricius, 1805)	Napo	Tená	Morales and Marinoni 2009: 320												
	Zamora	Chinchipe	Morales and Marinoni 2009: 320												
Palpada cosmia (Schiner, 1868)	Ecuador	Thompson et al. 1976: 104													
Palpada erratica (Curran, 1930)	Azuay	Morales and Marinoni 2009: 332													
	Sucumbios	Morales and Marinoni 2009: 332													
Palpada fasciata (Wiedemann, 1819)	Ecuador	Thompson et al. 1976: 105													
	Guayas	Guayaquil	Campos 1960: 28												
	Guayas	San Eduardo	Campos 1960: 28												
Palpada funerea (Rondani, 1851)	Ecuador	Río Napo	Rondani 1851: 357												
Palpada furcata (Wiedemann, 1819)	Pichincha	Quito	Macquart 1855: 110 (as *Eristalis quitensis*)												
	Ecuador	Thompson et al. 1976: 106													
Palpada geniculata (Fabricius, 1805)	Guayas	Guayaquil	Campos 1960: 28												
		(as *Eristalis obsoletus*)													
Palpada macula (Sack, 1941)	Ecuador	Thompson et al. 1976: 106													
Palpada mexicana (Macquart, 1847)	Ecuador	Thompson et al. 1976: 110													
		(as *Palpada testacea*hornis*)													
Palpada monticola (Röder, 1892)	Carchi	10 km SW Tulcan (2900)	Thompson 1997: 232 (as *Palpada eristaloides*)												
	Carchi	Troya (2950)	Thompson 1997: 232 (as *Palpada eristaloides*)												
	Azuay	Cerro Tinajillas (3100)	Thompson 1997: 232 (as *Palpada eristaloides*)												
	Napo	0°22'S 78°8'W (3500)	Thompson 1997: 232 (as *Palpada eristaloides*)												
Palpada pusilla (Macquart, 1842)	Ecuador	Thompson et al. 1976: 108													
	Guayas	Durán	Campos 1960: 28												
		(as *Eristalis tricolor*)													
Palpada pusio (Wiedemann, 1830)	Ecuador	Thompson et al. 1976: 108													
Palpada ruficeps (Macquart, 1842)	Ecuador	Thompson et al. 1976: 108													
Palpada rufiventris (Macquart, 1846)	Ecuador	Thompson et al. 1976: 108													
	Napo	Morales and Marinoni 2009: 344													
	Pastaza	Morales and Marinoni 2009: 344													
	Guayas	Guayaquil	Campos 1960: 28												
	Guayas	El Salado	Campos 1960: 28												
	Guayas	San Eduardo	Campos 1960: 28												
	Guayas	Durán	Campos 1960: 28												
	Guayas	Yaguachi	Campos 1960: 28												
	Guayas	Naranjito	Campos 1960: 28												
	Guayas	San Rafael	Campos 1960: 28												
Palpada scutellaris (Fabricius, 1805)	Napo	Morales and Marinoni 2009: 344													
	Pastaza	Morales and Marinoni 2009: 344													
	Guayas	Guayaquil	Campos 1960: 28												
	Guayas	El Salado	Campos 1960: 28												
	Guayas	San Eduardo	Campos 1960: 28												
	Guayas	Durán	Campos 1960: 28												
	Guayas	Yaguachi	Campos 1960: 28												
	Guayas	Naranjito	Campos 1960: 28												
	Guayas	San Rafael	Campos 1960: 28												
Species	Province	Locality (Altitude masl)	References for Ecuador												
---------------------------------	----------	--------------------------	------------------------												
Palpada scutellaris	Guayas	Bucay	Campos 1960: 28												
(Fabricius, 1805)	Guayas	Posorja	Campos 1960: 28												
	Guayas	Isla Puná, Puerto Grande	Campos 1960: 28												
Palpada supranufts	Imbabra	S Oravalo (3100–3300)	Thompson 1999: 345												
Thompson, 1999	Napo	Papallacta (2900)	Thompson 1999: 345												
	Pichincha	28 miles S Quito	Thompson 1999: 345												
	Cañar	Pimo (3200)	Thompson 1999: 345												
Palpada urotentia (Curran, 1930)	Ecuador		Thompson et al. 1976: 110												
Palpada vinetorum (Fabricius, 1799)	Galápagos	Españaola	Sinclair et al. 2016: 82												
	Galápagos	San Cristóbal	Sinclair et al. 2016: 82												
	Galápagos	Santa Cruz	Linsley 1977: 39; Sinclair 2015; Sinclair et al. 2016: 82												
	Ecuador		Thompson et al. 1976: 110												
	Guayas	Guayaquil	Campos 1960: 28												
	Guayas	San Eduardo	Campos 1960: 28												
Pelecinobaccha adpersa	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 18												
(Fabricius, 1805)	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 22												
Miranda, 2014	Pastaza	Pompeya, Napo R.	Miranda et al. 2014: 24												
Pelecinobaccha andrettiae	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 26												
Miranda, 2014	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 30												
Pelecinobaccha avispas	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 30												
Miranda, 2014	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 30												
Pelecinobaccha brevipennis	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 30												
(Schiner, 1868)	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 30												
Pelecinobaccha clarapex	Pichincha	Río Palenque Station (250)	Miranda et al. 2014: 33												
(Wiedemann, 1830)	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 62												
Pelecinobaccha dracula	El Oro	Piñas (1200)	Hull 1943j: 215 (as Baccha nerissa); Hull 1949; 162 (as Baccha nerissa)												
(Hull, 1943)	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 49												
Pelecinobaccha ida (Curran, 1941)	Napo	7 km S Baeza	Miranda et al. 2014: 62												
Pelecinobaccha ovipositoria	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 62												
(Hull, 1943)	Napo	Jatun Sacha Biol. Res. 6 km E Misahualli (450)	Miranda et al. 2014: 62												
Pelecinobaccha pilipes	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 67												
(Schiner, 1868)	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 67												
Pelecinobaccha transatlantica	Napo	Lago Agrio, 41 km W	Miranda et al. 2014: 78												
(Schiner, 1868)	Napo	Lago Agrio, 41 km W	Miranda et al. 2014: 78												
	Orellana	Yasuni Research Stn. (250)	Miranda et al. 2014: 78												
	Pastaza	Santa Clara	Miranda et al. 2014: 78												
Pelecinobaccha transatlantica	Napo	Puerto Misahualli (350)	Miranda et al. 2014: 78												
(Schiner, 1868)	Pastaza	Pompeya, Napo R.	Miranda et al. 2014: 78												
Penadon aureus (Hull, 1944)	Napo	Jatun Yacu, Río Naxo, Watershed (700)	Hull 1944a: 36												
Species	Province	Locality (Altitude masl)	References for Ecuador												
--	--------------	--------------------------	------------------------												
Platycheirus (Carposcalis)															
chalconotus (Philippi, 1865)	Chimborazo	Riobamba (2700)	Fluke 1945: 16												
	Azuay	Cuenca (2500)	Fluke 1945: 16												
	Imbabura	Cuicocha (3200)	Fluke 1945: 16												
	Azuay	Cuenca (2500)	Fluke 1945: 16												
	Bolívar	Hda. Talahua (3100)	Fluke 1945: 16												
Platycheirus (Carposcalis)															
ecuadoriensis (Fluke, 1945)	Chimborazo	Riobamba (2700)	Fluke 1945: 16												
	Chimborazo	Riobamba (2800)	Fluke 1945: 16												
	Pichincha	Uyumbichico (2650)	Fluke 1945: 16												
	Pichincha	Chillo Valley, Hda. Teno (2500)	Fluke 1945: 16												
	Ecuador		Fluke 1958: 265												
Platycheirus (Carposcalis)															
inflatifrons (Fluke, 1945)	Bolivar	Hda. Talahua (3100)	Fluke 1945: 21												
	Ecuador		Fluke 1958: 265												
Platycheirus (Carposcalis)															
punctulatus (Wulp, 1888)	Ecuador	(2100–3300)	Fluke 1945: 15												
Platycheirus (Carposcalis)															
saltanu (Enderlein, 1938)	Ecuador	(4200)	Fluke 1945: 15												
Platycheirus (Carposcalis)															
scutigera (Fluke, 1945)	Pichincha	Uyumbichico (2700)	Fluke 1945: 20												
Platycheirus (Carposcalis)															
stegnus (Say, 1829)	Santa Elena	La Rinconada	Campos 1960: 24												
	Chimborazo	Alausí	Campos 1960: 24												
	Carchi	El Ángel	Campos 1960: 24												
	Pichincha	Castatagua	Campos 1960: 24												
	Carchi	Tulcán	Campos 1960: 24												
Pseudodoros (Dioprosopa)															
clavatus (Fabricius, 1794)	Galápagos	Baltra	Sinclair et al. 2016: 89												
	Galápagos	Española	Kassebeer 2000: 83; Sinclair et al. 2016: 89												
	Galápagos	Genovesa	Kassebeer 2000: 83; Sinclair et al. 2016: 89												
	Galápagos	Floreana	Smith 1877: 84 (as Syrphus albomaculatus); Coquillett 1901: 374; Linsley and Usinger 1966: 168; Linsley 1977: 39; Kassebeer 2000: 83; Sinclair 2015; Sinclair et al. 2016: 89												
	Galápagos	Isabel	Curran 1934: 154; Linsley and Usinger 1966: 168; Linsley 1977: 39; Kassebeer 2000: 83; Sinclair 2015; Sinclair et al. 2016: 89												
	Galápagos	Pinta	Sinclair et al. 2016: 89												
	Galápagos	Marchena	Linsley 1977: 39; Sinclair 2015; Sinclair et al. 2016: 89												
	Galápagos	San Cristóbal	Curran 1934: 154; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair 2015; Sinclair et al. 2016: 89												
	Galápagos	Rábida	Sinclair et al. 2016: 89												
	Galápagos	Santiago	Coquillett 1901: 374; Linsley and Usinger 1966: 168; Linsley 1977: 39; Kassebeer 2000: 83												
	Galápagos	Santa Fé	Sinclair et al. 2016: 89												
	Galápagos	Bartolomé	Kassebeer 2000: 83												
	Galápagos	Seymour Norte	Johnson 1924: 88												
	Galápagos	Santa Cruz	Linsley 1977: 39; Kassebeer 2000: 83; Sinclair 2015; Sinclair et al. 2016: 89												
	Galápagos		Thomson 1869: 548 (as Baccha facialis)												
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

Species	Province	Locality (Altitude masl)	References for Ecuador
Pseudodoros (Dioprosopa) clavatus (Fabricius, 1794)	Azuay	32 km W Santa Isabel (900)	Kassebeer 2000: 85
	Manabí	Manta-Jipijapa rd. (150)	Kassebeer 2000: 85
	Zamora Chinchipe	Zamora (1500)	Kassebeer 2000: 85
	Zamora Chinchipe	Loja, San Pedro (1550)	Kassebeer 2000: 85
Pseudodoros (Dioprosopa) vockerothi (Kassebeer, 2000)	Bolívar	Chota River, Carchi (1800)	Kassebeer 2000: 76
	Imbabura	Ibarra, Yaguaracocha (2300)	Kassebeer 2000: 76
	Loja	S. Pedro-Zaruma rd Loja (850–1100)	Kassebeer 2000: 76
	Imbabura	Taguando R., NW Ibarra (1650–1900)	Kassebeer 2000: 76
Quichuana aff. quixotea Hull, 1946	Napo	Limoncocha	Ricarte et al. 2012: 129
	Cotopaxi	Latacunga (330)	Miranda et al. 2014: 91
Relictanum crassum (Walker, 1852)	Los Ríos	Rio Palenque (150)	Miranda et al. 2014: 91
	Napo	Puerto Misahuallí (350)	Miranda et al. 2014: 91
	Sucumbíos	Limoncocha (250)	Miranda et al. 2014: 91
Relictanum johnsoni (Curran, 1934)	Napo	Coca, Napo R. (250)	Miranda et al. 2014: 93
Rhingia (Rhingia) longirostris Fluke, 1943	Bolívar	Hda. Talahua (3100)	Fluke 1943: 431
Rhingia (Rhingia) nigra Macquart, 1846	Ecuador		Montoya et al. 2016: 506
Rhinoprosopa lucifer (Hull, 1943)	El Oro	Piñas (1600)	Hull 1943j: 216
Rhinoprosopa naiata (Bigot, 1884)	Carchi	R. Chota (2000)	Menguial 2015: 16
Rhopalosyrphus ecuadoriensis Reemer, 2013	Orellana	Yasuni Research Station	Reemer and Ståhls 2013a: 119
Salpingogaster brunni Curran, 1941	Tungurahua	Volcán Tungurahua, Minza Chica (3200)	Curran 1941: 286
Scaeva melanostoma (Macquart, 1842)	Azuay	2 km W Cayambe (2300)	Thompson et al. 1976: 9
	Pichincha	2 km W Cayambe (2300)	Kassebeer 1999: 99
	Carchi	El Ángel (2700)	Kassebeer 1999: 99
	Pichincha	Valle de Machachi (2900)	Kassebeer 1999: 99
	Chimborazo	Riobamba	Campos 1960: 29; Kassebeer 1999: 99
	Chimborazo env. of Riobamba		Kassebeer 1999: 99
Scaeva occidentalis Shannon, 1927	Pichincha	Valle de Machachi (2900)	Kassebeer 1999: 101
Sterphus (Crepidomyia) chloroppyga (Schiner, 1868)	Ecuador		Schiner 1868: 366 (type-locality as “Colombien”, referring to Colombia, Ecuador, or Venezuela); Montoya et al., 2016: 504
Species	Province	Locality (Altitude masl)	References for Ecuador
---------------------------------	----------	--------------------------	------------------------
Sterphus (Crepidomyia) plagiatus (Wiedemann, 1830)	Napo	Napo River, Coca (250)	Thompson 1973: 220
	Napo	Napo River	Thompson 1973: 220
	Pastaza	Napo River, Pompeya	Thompson 1973: 220
Sterphus (Telus) telus Thompson, 1973	Azuay	Taquii (2800)	Thompson 1973: 198
Stipomorpha guianica (Curran, 1925)	Morona Santiago	Limón Indanza (900)	Reemer 2013: 54
	Ecuador		Thompson et al. 1976: 62
Stipomorpha tenuicauda (Curran, 1925)	Napo	Jatun Sacha Res., 6 km E Misahualli (450)	Reemer 2013: 70
Stipomorpha zophera Reemer, 2013	Napo	Limoncocha	Reemer 2013: 75
Syrphus aff. lacyorum Thompson, 2000	Morona Santiago	Rio Blanco	Thompson et al. 2000: 39
Syrphus reedi Shannon, 1927	Zamora Chinchipe	Valle de Zamora	Campos 1960: 25
Syrphus shorae Fluke, 1950	Tungurahua	Baños (1500–2100)	Fluke 1942: 3 (as S. willistoni)
	Tungurahua	Juive (1950)	Fluke 1942: 3 (as S. willistoni)
	Pichincha	Hda. San Rafael, Río San Pedro (2700)	Fluke 1942: 3 (as S. willistoni)
	Ecuador		Fluke 1950a: 143 (as S. willistoni)
Talahua fervida (Fluke, 1945)	Bolivar	Hda. Talahua (3100)	Fluke 1945: 23
	Ecuador		Fluke 1958: 266
	Pastaza	Abitagua Oriente	Gerdes 1974a: 14-15
	Tungurahua	Baños	Gerdes 1974a: 14-15
	Pastaza	Cerro Obitahua	Gerdes 1974a: 14-15
	Ecuador**	Conquista	Gerdes 1974a: 14-15
	Tungurahua	Naguazo	Gerdes 1974a: 14-15
	Napo	Napo Oriente	Gerdes 1974a: 14-15
	Pastaza	Obitahua Oriente	Gerdes 1974a: 14-15
	Morona Santiago	Río Blanco	Gerdes 1974a: 14-15
	Morona Santiago	Río Negro	Gerdes 1974a: 14-15
	Tungurahua	Runtun	Gerdes 1974a: 14-15
	Chimbarrazo	Sangay Oriente	Gerdes 1974a: 14-15
	Pastaza	Puerto Santana	Gerdes 1974a: 14-15
	Pastaza	Sarayacu	Gerdes 1974a: 14-15
	Pastaza	Sarayacu Oriente	Gerdes 1974a: 14-15
	Pastaza	El Topo	Gerdes 1974a: 14-15
	Pichincha	Chaupi	Gerdes 1974a: 14-15
	Tungurahua	Ulvilla	Gerdes 1974a: 14-15
	Chimbarrazo	Chilicay	Mengual 2011: appendix 1
	Chimbarrazo	Huigra	Mengual 2011: appendix 1
	El Oro	Portovelo	Mengual 2011: appendix 1
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

Species	Province	Locality (Altitude masl)	References for Ecuador
Toxomerus antiopa (Hull, 1951)	Bolívar	Hda. Talahua (3100)	Hull 1951: 5
	Chimbó	Urbina (3650)	Hull 1951: 5
Toxomerus aquilinus Sack, 1941	Ecuador		Metz and Thompson 2001: 233
Toxomerus arcifer (Loew, 1866)	Ecuador		Thompson et al. 1976: 48
Toxomerus brevifacies (Hull, 1943)	Tungurahua Baños, Runtun trail	Hull 1943g: 20	
	Imbabura Cuicocha	Hull 1943g: 20	
	Pastaza San Francisco	Hull 1943g: 20	
	Tungurahua Juive	Hull 1943g: 20	
	Tungurahua Baños	Hull 1943g: 20; Gerdes 1974a: 19	
	Azuay Cuenca	Hull 1943g: 20	
	Tungurahua Baños	Gerdes 1974a: 19; Gerdes 1975: 20	
	Pichincha Chaupi	Gerdes 1974a: 20; Gerdes 1975: 20	
	Ecuador** Conquista	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Obitagua	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Santiago Río Blanco	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Santiago Río Negro	Gerdes 1974a: 20; Gerdes 1975: 20	
	Tungurahua Runtun	Gerdes 1974a: 20; Gerdes 1975: 20	
	Chimbó Sangay Oriente	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Sarayacu	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Sarayacu Oriente	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Topo	Gerdes 1974a: 20; Gerdes 1975: 20	
	Tungurahua Ulvilla	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Abitagua Oriente	Gerdes 1974a: 20; Gerdes 1975: 20	
	Tungurahua Naguazo	Gerdes 1974a: 20; Gerdes 1975: 20	
	Pastaza Puerto Santa	Gerdes 1974a: 20; Gerdes 1975: 20	
Toxomerus claracuneus (Hull, 1942)	Pastaza Rio Margaritas, Rio Pastaza (1250)	Hull 1942: 107	
	Ecuador** Conquista	Gerdes 1974a: 22	
	Pastaza Puerto Santa	Gerdes 1974a: 22	
Toxomerus crockeri (Curran, 1934)	Galápagos Floreana	Curran 1934: 155; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair and Peck 2002; Sinclair 2015; Sinclair et al. 2016: 91	
	Galápagos Isabela	Curran 1934: 155; Linsley and Usinger 1966: 168; Linsley 1977: 39; Peck 1994; Sinclair and Peck 2002; Boada 2005: 80; Sinclair 2015; Sinclair et al. 2016: 91	
	Galápagos Pinta	Sinclair and Peck 2002	
Toxomerus cucurbitus (Coquillett, 1901)	Galápagos San Cristóbal	Curran 1934: 155; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair and Peck 2002; Sinclair et al. 2016: 91	
	Galápagos Santiago	Coquillett 1901: 374 (as Mesogramma duplicata); Curran 1934: 155; Linsley and Usinger 1966: 168; Linsley 1977: 39; Sinclair and Peck 2002	
	Galápagos Española	Sinclair et al. 2016: 91	
	Galápagos Pinta	Sinclair et al. 2016: 91	
	Galápagos Santa Cruz	Curran 1934: 155; Boada 2005: 85; Sinclair 2015; Sinclair et al. 2016: 91	
Species	Province	Locality (Altitude masl)	References for Ecuador
-------------------------	-------------------	--------------------------	--
Toxomerus dispar (Fabricius, 1794)	Tungurahua	Baños	Hull 1943f: 26 (as *Mesogramma basilaris* var. bifida); Gerdes 1974a: 17
	Napo	Napo Oriente	Gerdes 1974a: 17 (as *Toxomerus basilaris*)
	Morona Santiago	Río Blanco	Gerdes 1974a: 17 (as *Toxomerus basilaris*)
	Ecuador		Menguál 2011: 13
Toxomerus duplicatus (Wiedemann, 1830)	Pichincha	Pichincha	Hull 1943f: 18 (as *Mesogramma arcturus*)
	Pichincha	Tío Loma	Campos 1960: 25
	Napo	Napo Oriente	Gerdes 1974a: 23
	Azuay	Cuenca (2500)	Hull 1943g: 20
	Tungurahua	Baños (2200)	Hull 1943g: 20
	Pichincha	Pichincha (2500)	Hull 1943g: 20
	Pichincha	Hda. San Rafael, Río San Pedro	Hull 1943g: 20; Gerdes 1974a: 26
	Pichincha	Uyumbichico	Hull 1943g: 20; Gerdes 1974a: 26
	Tungurahua	Baños, Río Pablo (2200)	Hull 1943g: 20
	Tungurahua	Baños, Runtun	Hull 1943g: 20
	Chimbórazo	Ríobamba (2700)	Hull 1943g: 20
	Pichincha	Aloag	Gerdes 1974a: 26; Gerdes 1975: 22
	Tungurahua	Baños	Gerdes 1975: 22
	Pastaza	Obitagua	Gerdes 1974a: 26; Gerdes 1975: 22
	Morona Santiago	Río Blanco	Gerdes 1974a: 26; Gerdes 1975: 22
	Pichincha	Chaupi	Gerdes 1974a: 26
	Tungurahua	Ulvilla	Gerdes 1974a: 26
	Morona Santiago	Río Negro	Gerdes 1974a: 26; Gerdes 1975: 22
	Tungurahua	Runtun	Gerdes 1974a: 26; Gerdes 1975: 22
Toxomerus ecuadoreus (Hull, 1943)	Pastaza	Cerro Obitahua	Gerdes 1974a: 31
	Napo	Napo Oriente	Gerdes 1974a: 31
	Pastaza	Puyo Oriente	Gerdes 1974a: 31
	Chimbórazo	Sangay Oriente	Gerdes 1974a: 31
	Pastaza	1.5 km S Puyo, Río Pido Grande	Menguál 2011: appendix 1
	Tungurahua	32 km E Baños (1560)	Menguál 2011: appendix 1
	Napo	Tena	Menguál 2011: appendix 1
	Napo	Santa Cecilia	Menguál 2011: appendix 1
	Napo	60 km W LagoAguas	Menguál 2011: appendix 1
	Zamora Chinchipe	Zumbí	Menguál 2011: appendix 1
	Zamora Chinchipe	Cumbaratza	Menguál 2011: appendix 1
	Zamora Chinchipe	Yantzaza	Menguál 2011: appendix 1
Toxomerus flaviplurus (Hall, 1927)	Zamora Chinchipe	Zumbí	Menguál 2011: appendix 1
	Pastaza	Cerro Obitahua	Gerdes 1974a: 31
	Napo	Napo Oriente	Gerdes 1974a: 31
Toxomerus floralis (Fabricius, 1789)	Ecuador		Thompson and Thompson 2007: 324
	Napo	Napo Oriente	Gerdes 1974a: 35
Species	Province	Locality (Altitude masl)	References for Ecuador
---------------------------------------	------------------	--------------------------	--
Toxomerus hieroglyphicus (Schiner, 1868)	Tungurahua	Baños	Gerdes 1974a: 37; Menguial 2011: appendix 1
	Ecuador		Thompson et al. 1976: 51; Menguial 2011: 16
	Pastaza	Cerro Obitahua	Gerdes 1974a: 37
	Pastaza	Obitahua Oriente	Gerdes 1974a: 37
	Morona Santiago	Río Blanco	Gerdes 1974a: 37
	Tungurahua	Runtun	Gerdes 1974a: 38
	Chimborazo	Sangay Oriente	Gerdes 1974a: 38
	Pastaza	Abitagua Oriente	Gerdes 1974a: 38
	Ecuador**	Conquista	Gerdes 1974a: 38
Toxomerus idalius (Hull, 1951)	Pastaza	Puyo (1000)	Hull 1951: 12; Hull 1951: 13 (as *Mesogramma idalia leda*)
	Pastaza	Río Pastaza, San Francisco (1200)	Hull 1951: 13 (as *Mesogramma idalia leda*); Hull 1951: 18 (as *Mesogramma eurydice*)
Toxomerus insignis (Schiner, 1868)	Ecuador		Thompson et al. 1976: 50 (as *T. elongatus*); Metz and Thompson 2001: 235
	Tungurahua	Baños	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
	Napo	Napo Oriente	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
	Tungurahua	Ulvilla	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
	Pastaza	Abitagua	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
	Pastaza	Sarayacu	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
	Pastaza	Abitagua	Gerdes 1974a: 29 (as *Toxomerus elongatus*)
Toxomerus lacrymosus (Bigot, 1884)	Napo	Napo Oriente	Gerdes 1974a: 40
	Pastaza	Obitahua Oriente	Gerdes 1974a: 40
	Nariño (Colombia)**	Piedrancha	Gerdes 1974a: 40
	Chimborazo	Sangay Oriente	Gerdes 1974a: 40
	Pastaza	Sarayacu	Gerdes 1974a: 40
Toxomerus laenas (Walker, 1852)	Ecuador		Thompson et al. 1976: 53 (as *T. nitidiventris*)
Toxomerus marginatus (Say, 1823)	Cañar-Chimborazo	Quinua-Loma	Campos 1960: 25
	Pichincha	Casitagua	Campos 1960: 26
	Carchi	El Vínculo	Campos 1960: 26
	Azuay	Borma	Campos 1960: 26
	Santa Elena	La Rinconada	Campos 1960: 26
Toxomerus minutus (Wiedemann, 1830)	Cañar-Chimborazo	Quinua-Loma	Campos 1960: 26
	Santo Domingo de los Tsáchilas	Santo Domingo de los Colorados	Campos 1960: 26
	Carchi	Tulcán	Campos 1960: 26
	Loja	Loja	Campos 1960: 26
Toxomerus nasutus Sack, 1941	Pichincha	Úyumbichico (2700)	Hull 1951: 8 (as *Mesogramma ultima*)
	Tungurahua	Baños (2500)	Hull 1943c: 36 (as *Mesogramma sylpha*)
	Tungurahua	Baños (1800)	Hull 1943c: 36 (as *Mesogramma sylpha*)
	Tungurahua	Baños	Gerdes 1975: 14
	Pichincha	Chaupi	Gerdes 1974a: 42; Gerdes 1975: 14
	Ecuador**	Conquista	Gerdes 1974a: 42; Gerdes 1975: 14
	Tungurahua	Naguazo	Gerdes 1974a: 42; Gerdes 1975: 14
	Napo	Napo Oriente	Gerdes 1974a: 42; Gerdes 1975: 14
Species	Province	Locality (Altitude masl)	References for Ecuador
----------------------	---------------------------	--	--
Toxomerus nasutus	Pastaza	Obitagua	Gerdes 1974a: 42; Gerdes 1975: 14
	Pastaza	Obitahua	Gerdes 1974a: 42; Gerdes 1975: 14
	Pastaza	Abitagua Oriente	Gerdes 1974a: 42
	Pastaza	Cerro Obitahua	Gerdes 1974a: 42
	Manabi*	San José	Gerdes 1974a: 42
	Tungurahua	El Topo	Gerdes 1974a: 43
	Morona Santiago	Río Blanco	Gerdes 1974a: 42; Gerdes 1975: 14
	Morona Santiago	Río Negro	Gerdes 1974a: 42; Gerdes 1975: 14
	Tungurahua*	Runtun	Gerdes 1974a: 42; Gerdes 1975: 14
	Chimborazo	Sangay	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Puerto Santana	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Sarayacu	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Sarayacu Oriente	Gerdes 1974a: 43; Gerdes 1975: 14
	Pichincha*	Yunguilla	Gerdes 1974a: 44; Gerdes 1975: 14
Toxomerus norma	Ecuador		Thompson et al. 1976: 52 (as T. mulio); Metz and Thompson 2001: 239 (as T. mulio)
	Pastaza	Río Margaritas (1250)	Hull 1942: 106
	Morona Santiago	Sucúa, Río Blanco (950)	Hull 1942: 106
	Pastaza	Puyo	Hull 1942: 106
	Pastaza	Río Mapeto	Hull 1942: 106
	Pastaza	Obitahua	Gerdes 1974a: 46
	Chimborazo	Obitahua Oriente	Gerdes 1974a: 46
	Chimborazo	Sangay Oriente	Gerdes 1974a: 46
	Pastaza	Sasayacu Oriente	Gerdes 1974a: 46
	Pichincha*	Yunguilla	Gerdes 1974a: 46
Toxomerus parvulus	Ecuador		Thompson et al. 1976: 55 (as T. slossonae)
	Pichincha	Aloag (2600)	Gerdes 1974b: 280
Toxomerus pictus	Chimborazo	Cerro Obitahua	Gerdes 1974a: 48
	Chimborazo	Sangay Oriente	Gerdes 1974a: 48
	Napo	Napo Oriente	Gerdes 1974a: 49
Toxomerus picudus	Orellana	Estación Tiputini (227)	Mengual 2011: 21
	Galápagos	Floreana	Sinclair 2015
	Galápagos	Isabela	Sinclair 2015
	Galápagos	Santa Cruz	Sinclair et al. 2016: 93
	Galápagos	San Cristóbal	Sinclair 2015
	Galápagos	Santiago	Sinclair et al. 2016: 93
	Tungurahua	Baños	Gerdes 1974a: 51
	Napo	Napo Oriente	Gerdes 1974a: 51
	Narino [Colombia]**	Piedrancha	Gerdes 1974a: 51
	Pastaza	Sarayacu	Gerdes 1974a: 51
Toxomerus politus	Ecuador		Thompson et al. 1976: 53; Metz and Thompson 2001: 241
	Species		
	Province	Locality (Altitude masl)	References for Ecuador
	Pastaza	Obitahua	Gerdes 1974a: 42; Gerdes 1975: 14
	Pastaza	Abitagua Oriente	Gerdes 1974a: 42
	Pastaza	Cerro Obitahua	Gerdes 1974a: 42
	Manabi*	San José	Gerdes 1974a: 42
	Tungurahua	El Topo	Gerdes 1974a: 43
	Morona Santiago	Río Blanco	Gerdes 1974a: 42; Gerdes 1975: 14
	Morona Santiago	Río Negro	Gerdes 1974a: 42; Gerdes 1975: 14
	Tungurahua*	Runtun	Gerdes 1974a: 42; Gerdes 1975: 14
	Chimborazo	Sangay	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Puerto Santana	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Sarayacu	Gerdes 1974a: 43; Gerdes 1975: 14
	Pastaza	Sarayacu Oriente	Gerdes 1974a: 43; Gerdes 1975: 14
	Pichincha*	Yunguilla	Gerdes 1974a: 44; Gerdes 1975: 14
Toxomerus norma	Ecuador		Thompson et al. 1976: 52 (as T. mulio); Metz and Thompson 2001: 239 (as T. mulio)
	Pastaza	Río Margaritas (1250)	Hull 1942: 106
	Morona Santiago	Sucúa, Río Blanco (950)	Hull 1942: 106
	Pastaza	Puyo	Hull 1942: 106
	Pastaza	Río Mapeto	Hull 1942: 106
	Pastaza	Obitahua	Gerdes 1974a: 46
	Chimborazo	Obitahua Oriente	Gerdes 1974a: 46
	Chimborazo	Sangay Oriente	Gerdes 1974a: 46
	Pastaza	Sasayacu Oriente	Gerdes 1974a: 46
	Pichincha*	Yunguilla	Gerdes 1974a: 46
Toxomerus parvulus	Ecuador		Thompson et al. 1976: 55 (as T. slossonae)
	Pichincha	Aloag (2600)	Gerdes 1974b: 280
Toxomerus pictus	Chimborazo	Cerro Obitahua	Gerdes 1974a: 48
	Chimborazo	Sangay Oriente	Gerdes 1974a: 48
	Napo	Napo Oriente	Gerdes 1974a: 49
Toxomerus picudus	Orellana	Estación Tiputini (227)	Mengual 2011: 21
	Galápagos	Floreana	Sinclair 2015
	Galápagos	Isabela	Sinclair 2015
	Galápagos	Santa Cruz	Sinclair et al. 2016: 93
	Galápagos	San Cristóbal	Sinclair 2015
	Galápagos	Santiago	Sinclair et al. 2016: 93
	Tungurahua	Baños	Gerdes 1974a: 51
	Napo	Napo Oriente	Gerdes 1974a: 51
	Narino [Colombia]**	Piedrancha	Gerdes 1974a: 51
	Pastaza	Sarayacu	Gerdes 1974a: 51
Toxomerus politus	Ecuador		Thompson et al. 1976: 53; Metz and Thompson 2001: 241
	Species		
Species	Province	Locality	References for Ecuador
-----------------------	---------------	---------------------------	--
Toxomerus productus (Curran, 1930)	Morona Santiago	Macas, Río Upano (1000)	Hull 1951: 10 (as *Mesogramma cyrilla*)
	Ecuador		Curran 1930: 5
	Napo	Napo Oriente	Gerdes 1974a: 53; Gerdes 1975: 16
	Pastaza	Obitahua	Gerdes 1974a: 53; Gerdes 1975: 16
	Chimborazo	Sangay	Gerdes 1974a: 53; Gerdes 1975: 16
	Pastaza	Sarayacu	Gerdes 1974a: 53; Gerdes 1975: 16
	Pastaza	Sarayacu	Gerdes 1974a: 54; Gerdes 1975: 16
	Pastaza	Sarayacu Oriente	Gerdes 1974a: 54; Gerdes 1975: 16
	Pastaza	Río Negro	Gerdes 1974a: 54; Gerdes 1975: 16
	Pastaza	Baños	Gerdes 1974a: 54; Gerdes 1975: 16
	Morona Santiago	Río Blanco	Gerdes 1974a: 54; Gerdes 1975: 16
	Pastaza	Runtun	Gerdes 1974a: 54; Gerdes 1975: 16
	Pastaza	Sarayacu Oriente	Gerdes 1974a: 54; Gerdes 1975: 16
Toxomerus rombicus (Giglio-Tos, 1892)	Azuay	Cuenca	Campos 1960: 25
	Ecuador		Thompson et al. 1976: 50 (as *T. flavus*), 54;
			Metz and Thompson 2001: 246
	Tungurahua	Baños	Gerdes 1974a: 33 (as *Toxomerus flavus*)
	Ecuador**	Conquista	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Pastaza	Río Blanco	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Manabí*	San José	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Narino	Piedranca	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	[Colombia]**		Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Pastaza	Runtun	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Pastaza	Sarayacu	Gerdes 1974a: 34 (as *Toxomerus flavus*)
	Pastaza	Soledad	Gerdes 1974a: 34 (as *Toxomerus flavus*)
Toxomerus saphiridiceps (Bigot, 1884)	Galápagos	Santa Cruz	Boada 2005: 86
	Guayas	San Eduardo	Campos 1960: 26
	Guayas	Guayaquil	Campos 1960: 26
	Guayas	Durán	Campos 1960: 26
Toxomerus steatogaster (Hull, 1941)	Morona Santiago	Sucía, Río Blanco and Río Upano (950)	Hull 1943f: 21 (as *Mesogramma steatornis*)
	Pastaza	Puyo (1000)	Hull 1943f: 21 (as *Mesogramma steatornis*)
	Napo	Napo Oriente	Gerdes 1974a: 55
	Ecuador		Thompson et al. 1976: 55
	Pastaza	Baños	Hull 1943c: 35; Gerdes 1974a: 57
	Pastaza	Cerro Obitahua	Gerdes 1974a: 57
	Pastaza	Obitahua Oriente	Gerdes 1974a: 57
	Morona	Río Blanco	Gerdes 1974a: 57
	Chimborazo	Sanqay Oriente	Gerdes 1974a: 57
	Pichincha	Chaupi	Gerdes 1974a: 57
Toxomerus sylvaticus (Hull, 1943)	Guayas	Guayaquil, San Eduardo	Campos 1960: 25
Toxomerus tibicen (Wiedemann, 1830)	Tungurahua	Baños (2000)	Hull 1942: 104
Toxomerus tubularius (Hull, 1942)	Guayas		
Some original locality names were difficult to place in the current administrative divisions of Ecuador. The Río Pastaza (= Pastaza river) runs through two Ecuadorian provinces, i.e. Pastaza and Morona Santiago, and we used Pastaza province for this locality. On the other hand, Quinua Loma is a locality situated between two provinces, Cañar and Chimborazo, and we listed both provinces in Table 1.

Most of the uncertainties on geographical localities come from Gerdes (1974a). For instance, Gerdes (1974a) named three localities as different ones, i.e. Obitagua, Obitahuia, and Abitagua, although we believe that they might refer to the same area. There is a single locality named Abitagua in Ecuador, but instead of assuming all being the same locality, we left the three names in Table 1. We are not sure if the locality San José (Gerdes 1974a) is the one currently situated in Manabí, and there are two localities named El Salado in Guayas (between 0 and 200 masl) and in Tungurahua (circa 2,000 masl). We listed El Salado in Guayas for the records of Campos (1960), as most of the records in that work were from Guayas, but we used Tungurahua for El Salado of Gerdes (1974a, 1975) for the record of *Toxomerus nasutus* Sack, 1941 because other records for this species are close to or over 2,000 masl. We had a similar problem with Yunguilla, a locality also found in two different provinces (Azuay and Pichincha), and we used Pichincha in

Table 1

Species	Province	Locality (Altitude masl)	References for Ecuador
Toxomerus virgulatus (Macquart, 1850)	Ecuador		Thompson et al. 1976: 49 (as *T. confusus*)
Toxomerus watsoni (Curran, 1930)	Ecuador		Thompson et al. 1976: 56
Tuberculanostoma antennatum (Fluke, 1943)	Bolívar, Talahua (3100)	Fluke 1943: 426	
	Ecuador		Fluke 1958: 266
Tuberculanostoma brownii (Fluke, 1943)	Bolívar, Urbina (3650)	Fluke 1943: 429	
	Bolívar	Hda. Talahuia (3100)	Fluke 1943: 430
	Bolívar	Cumbre de Tililac (4200)	Fluke 1943: 430
Tuberculanostoma cilium (Fluke, 1943)	Tungurahua, Volcán Tungurahua, Minza Chica (3200)	Fluke 1943: 428	
	Bolívar	Hda. Talahuia (3100)	Fluke 1943: 428
Tuberculanostoma pectinis (Fluke, 1943)	Bolívar, Hda. Talahuia (3100)	Fluke 1943: 430	
Ubristes ictericus (Reemer, 2013)	Sucumbíos	Sach Lodge (270)	Reemer 2013: 80
Xanthandrus (Xanthandrus) palliatus (Fluke, 1945)	Bolívar, Hda. Talahuia (3100)	Fluke 1945: 22	
	Tungurahua	Volcán Tungurahua, Minza Chica (3200)	Fluke 1945: 22

Diego Marín-Armijos et al. / ZooKeys 691: 163–199 (2017)
this case because Gerdes had studied material from Pichincha but not from Azuay. All these records are marked with an asterisk (*) in the Province column of Table 1.

The locality Piedrancha belongs to Colombia (Nariño department), but it was left in Table 1 because Gerdes (1974a) listed it as Ecuador. Finally, we were not able to locate Conquista in Ecuador. These records are marked with two asterisks (**) in the Province column of Table 1.

For the elaboration of Tables 1 and 2, the most recent Syrphidae classification has been used (Mengual et al. 2008, 2009, Thompson 2012, 2013, Reemer and Ståhls 2013a, Miranda et al. 2014, 2016, Mengual 2015). Flower fly species recorded in Ecuador are listed in Table 1 in alphabetical order. Genera with the highest number of species were *Toxomerus* (38), *Ocyptamus* (22) and *Palpada* (21) (Table 2).

Four unidentified species are listed as such (*Microdon* sp., *Ocyptamus* sp. and two *Toxomerus* sp.), and three species are *affinis* to known species, *Dasysyrphus* aff. *lotus*, *Syrphus* aff. *lacyorum* and *Quichuana* aff. *quixotea*. Ricarte et al. (2012) reviewed the taxonomy of the genus *Quichuana* Knab, 1913 and mentioned one *Quichuana* species recorded for Ecuador (Ricarte et al. 2012: 129, Figure 84). The identity of this species was not stated by Ricarte et al. (2012), but personal communication with A. Ricarte revealed that it is *Quichuana aff. quixotea* (Hull 1946). Four specimens from Ecuador labelled as *Q. quixotea* are known to be deposited in the USNM collection. However, they show some morphological differences with the holotype that prevented Ricarte et al. (2012) to ascertain their identity (Antonio Ricarte, pers. comm.).

There was some ambiguity with *Peradon oligonax* (Hull, 1944) to either include it or not in the checklist. *Peradon oligonax* was described from Pto. America, Río Putumayo (Hull 1944c). Thompson et al. (1976: 66) indicated the type-locality as part of Ecuador, but Hull (1944c: 36) listed it as Brazil. Putumayo River forms part of Colombia’s border with Ecuador, as well as most of the frontier with Peru, and it ends as a tributary of the Amazon River in Brazil, but there it is known as Içá. Rasmussen (2016) gave details of the Cornell University expedition to South America (collectors of the type material) and he provided evidences that the expedition never went to Ecuador and the expedition was near Javary island (Santo Antônio do Içá) in the dates when the type material was collected. Thus, the type-locality is in Brazil and not in Ecuador, as indicated by Thompson et al. (1976).

Another uncertain taxon was *Priomerus gagathinus* Bigot, 1887, originally described from Loja. Thompson et al (1976) declared the type of this taxon as lost and did not recognize the species. Thompson (2015) indicated that the name *Priomerus* was preoccupied and its species currently belong to four different genera. He did not recognize either the species *gagathinus* Bigot. Thus, we did not list this species in Table 1.

In the literature, we found two doubtful species records, probably due to a misidentification. *Sphaerophoria (Sphaerophoria) sulphuripes* (Thomson, 1869) is a Nearctic species found along the west coast of the United States and Canada (Knutson 1973). Thompson et al. (1976: 38) listed one specimen identified as *S. sulphuripes* (with no details about the responsible of this identification) in The Natural History Museum
Table 2. Number of genera and species registered in Ecuador.

Genus	Number of species in Ecuador
Alipumilio Shannon, 1927	1
Allograpta Osten Sacken, 1875	9
Argentinomyia Lynch Arribalzaga, 1891	10
Claraplumula Shannon, 1927	1
Copestyhum Macquart, 1846	19
Dasyosyrphus Enderlein, 1938	1
Dolichogyna Macquart, 1842	2
Eosalpingogaster Hull, 1949	1
Eristalis Latreille, 1804	1
Eupeodes Osten Sacken, 1877	1
Fazia Shannon, 1927	12
Hypselosyrphus Hull, 1937	1
Leucopodella Hull, 1949	4
Lycastrirhyncha Bigot, 1859	1
Mallota Meigen, 1822	3
Meromacrus Rondani, 1848	3
Meropidia Hippa & Thompson, 1983	1
Microdon Meigen, 1803	3
Mixogaster Macquart, 1842	1
Ocyptamus Macquart, 1834	22
Ornidia Lepeletier & Serville, 1828	2
Palpada Macquart, 1834	21
Pelecinobaccha Shannon, 1927	10
Peradon Reemer, 2013	1
Platycheirus Lepeletier & Serville, 1828	7
Pseudodoros Becker, 1903	2
Quichuana Knab, 1913	1
Retictanum Miranda, 2014	2
Rhingia Scopoli, 1763	2
Rhinoprosopa Hull, 1942	2
Rhopalousyrphus Giglio-Tos, 1891	1
Salpingogaster Schiner, 1868	1
Staeve Fabricius, 1805	2
Sterphus Philippi, 1865	3
Stipomorpha Hull, 1945	3
Syrphus Fabricius, 1775	3
Talahua Fluke, 1945	1
Toxomerus Macquart, 1855	38
Tuberculostoma Fluke, 1943	4
Ubristes Walker, 1852	1
Xanthandrus Verrall, 1901	1
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

187

BMNH, London, U.K.) from Ecuador with a question mark. This specimen might be mislabeled or it could be an Allograpta specimen, most likely a female, somehow similar to S. sulphuripes. We believe that S. sulphuripes does not occur in Ecuador and it was not included in Table 1. The other taxon that was misidentified is Eristalis (Eoseristalis) pertinax (Scopoli, 1763), identified by Campos (1960). This species ranges from Fennoscandia south to Iberia and the Mediterranean, and from Ireland through much of Europe into European parts of Russia and Turkey; apparently it is not known beyond the Urals (Speight 2016). We do believe that the record might be an Eristalis species, but not E. pertinax as it does not occur in the Neotropics. Thus, this record is not listed in Table 1.

Three species are not listed due to the uncertainty of their taxonomic identity. Syrphus excavatus (Rondani 1851: 359) and Syrphus fasciventris (Rondani 1851: 360), both described from Río Napo, are not included because the type material was not studied and the generic name is probably incorrect. The third species not included is Xanthandrus sp. (Curran 1934: 155; from Pinta Island, Galapagos). Sinclair et al. (2016) could not find the material studied by Curran to confirm if the specimen from Galapagos is truly Xanthandrus or Argentinomyia agonis (Walker 1849).

Discussion

Montoya et al. (2012) recorded 128 species of 40 different genera for Ecuador, indicating that Ecuador shares a high number of species with Brazil (29 species), Colombia (50) and Peru (29). The present work raises those numbers considerably, up to 201 identified species of 51 genera and subgenera. Based on previous studies, the Ecuadorian diversity of flower flies is comparable to the one from Peru (195 spp., 75 genera; Montoya et al. 2012), Costa Rica (228 species, 41 genera; Montoya et al. 2012) or Suriname (183 species, 36 genera; Reemer 2016). It is important to emphasize that Ecuador is one of the smallest countries in the Neotropics and South America, but it has one of the highest diversity densities for the Neotropics with ca. 7.2 species per 10,000 km2. This diversity density makes Ecuador the third top country after Costa Rica and Suriname, the two most explored and well-studied faunae in the Neotropics. It must also be pointed out that the present work is based only on records from the literature, and authors are sure that the flower fly diversity in Ecuador is higher.

This study confirms the argument of Montoya et al. (2012) when stating that “The understanding of the distribution and composition of Syrphidae in the Neotropical Region remains far from complete”. Since Thompson et al. (1976) there have been mostly taxonomic contributions on the Neotropical flower flies, but little faunistic studies have been published. Thompson (1999) provided a key to the Neotropical genera of Syrphidae, including a glossary of taxonomic terms and the description of a few new species, and Thompson (2006) compiled all the taxonomic knowledge of Neotropical flower flies up to that date, but those cannot be considered faunistic studies. In the Systema Dipterorum, Thompson (2013) had some distributional range notes for each species, but the fauna of the Neotropical countries has not been studied more thoroughly yet. The
syrphid fauna of three Neotropical countries have been recently revised: a catalogue for Colombia (Montoya 2016, see also Gutierrez et al. 2005), another online catalogue for Brazil (Morales and Marinoni 2017), and an extensive taxonomic study of the flower flies of Suriname (Reemer 2010, 2014, 2016). In addition, Thompson et al. (2010) gave a very comprehensive synopsis of the Central American Syrphidae.

Thompson et al. (2010) stated that ca. 1,800 flower fly species are described from the Neotropical Region, but other authors argue that this may be only half of the actual number of species (Reemer 2016). Thus, Ecuadorian syrphid fauna comprises roughly 11.2% of the described Neotropical species. Emulating the arguments of Reemer (2016), the syrphid fauna of Ecuador might be two to four times larger, up to 900 species, if we compare the known species of other taxa in this country with the total number of species in the Neotropical Region. Cárdenas et al. (2009) estimated that Ecuador has 16.3% of the Neotropical species of the family Tabanidae (Diptera). Mittermeier et al. (2005) calculated that the bird species present in Ecuador are ca. 47% of the total number of species in the Neotropics. With an estimate of 4,000 species of butterflies (Salazar and Donoso 2014, M. Espeland pers. comm.), Ecuador probably hosts half of the Neotropical diversity of this order. In other words, considering these numbers and the fact that Syrphidae is underexplored in Ecuador (Amorim 2009), we are far from having a good estimate of the total number of flower fly species for Ecuador.

We think that the inventory and study of the Syrphidae fauna are essential not only to describe new species from Ecuador, but also to help in the selection of areas to protect, based on species richness, and to improve the management of conservation areas in this country. Salazar and Donoso (2014) mentioned that the taxonomic complexity, the lack of experts for some groups, the high species richness, and the endemicity of many invertebrates in Ecuador make the study of its invertebrate fauna a major challenge in science. Moreover, Ecuador has two biodiversity hotspot regions: Tropical Andes and Tumbes-Chocó-Magdalena (Myers et al. 2000, Mittermeier et al. 2004). These regions are heavily threatened and need urgent conservation efforts. In such cases, faunistic studies should have priority to understand the biological diversity of those hotspots. Furthermore, the poor knowledge of the relationships between flower flies and their prey, as well as the unknown associations with host plants, make the study of this group essential 1) to improve our understanding about their roles in the ecosystem performance and organic matter decomposition, 2) to evaluate the biological richness of Ecuador in order to establish new management and control protocols over its natural resources, and 3) to revise the quarantine and international trade policies for preventing potential pest species dispersal and creating new banned species list.

Acknowledgments

We thank the Alexander Koenig Gesellschaft (AKG) for funding support for field equipment to start the preliminary studies on Syrphidae in Ecuador. We are grateful
to the Departamento de Ciencias Biomáticas (UTPL), Carlos Iván Espinosa, Augusta Cueva, and Carlos Naranjo for funding support for the organization of a Syrphidae Workshop. We also thank Ximena Cueva and Ángel Romero for their help with literature and laboratory work. XM thanks the library staff, especially the Digitization department, of the Western Illinois University for providing a copy of the PhD thesis of Charles Frederick Gerdes. We thank Gil F. Miranda and Mírian N. Morales for their comments and suggestions, which greatly improved our manuscript.

References

Adler PH, Foottit RG (2009) Introduction. In: Foottit RG, Adler PH (Eds) Insect Bi-odiversity: Science and Society. Blackwell Publishing, Oxford, 1–6. http://doi.org/10.1002/9781444308211.ch1

Amorim DS (2009) Neotropical Diptera diversity: richness, patterns, and perspectives. In: Pape T, Bickel D, Meier R (Eds) Diptera Diversity: Status, Challenges and Tools. Brill, Leiden, 71–97. https://doi.org/10.1163/cj.9789004148970.1-459.17

Amorós-Jiménez R, Pineda A, Fereres A, Marcos-García MA (2014) Feeding preferences of the aphidophagous hoverfly Sphaerophoria rueppellii affect the performance of its offspring. BioControl 59: 427–435. https://doi.org/10.1007/s10526-014-9577-8

Barragán A, Dangles O, Cárdenas R, Onore G (2009) The History of Entomology in Ecuador. Annals of the Entomological Society of America 45(4): 410–423. http://doi.org/10.1080/00379271.2009.10697626

Bergh JC, Short BD (2008) Ecological and life-history notes on syrphid predators of woolly apple aphid in Virginia, with emphasis on Heringia calcanata. BioControl 53: 773–786. https://doi.org/10.1007/s10526-007-9114-0

Bigot JM (1887) Note sur divers Diptères de Yeso (Japon) et de Loja (Equateur); note suivie de la description de nouvelles espèces. Annales de la Société Entomologique de France Serie 6/7(Bul.): 80–86.

Blatch S, Thompson FC, Zumbado MA (2003) The Mesoamerican Meromacrus flower flies (Diptera: Syrphidae). Studia Dipterologica 10: 13–36.

Boada R (2005) Insects associated with endangered plants in the Galápagos Islands, Ecuador. Entomotropica 20(2): 77–88. http://hdl.handle.net/1807/37799

Bodner F, Brehm G, Homeier J, Strutzenberger P, Fiedler K (2010) Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador. Journal of Insect Science 10(1): 67. https://doi.org/10.1673/031.010.6701

Bollino M, Onore G (2001) Mariposas del Ecuador. Vol. 10 A. Papilionidae. Pontificia Universidad Católica del Ecuador, Quito, 171 pp.

Brehm G (2005) A revision of the Acrotomodes clota Druce, 1900 species-group (Lepidoptera: Geometridae, Ennominae). Entomologische Zeitschrift 115: 75–80. http://www.gunnarbrehm.de/de_files/DATA/pdf-Dateien/Brehm_2005_EZ_Acrotomodes2.pdf

Brehm G, Homeier J, Fiedler K, Kottek I, Illig J, Nöske NM, Werner FA, Breckle SW (2008) Mountain rain forests in southern Ecuador as a hotspot of biodiversity – limited knowl-
edge and diverging patterns. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl Rm (Eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer, 15–24. https://doi.org/10.1007/978-3-540-73526-7_2
Brown BV (2009) Introduction. In: Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (Eds) Manual of Central American Diptera, Vol. 1. NRC CNRC Research Press, Ottawa, 1–7.
Bugg RL, Colfer RG, Chaney WE, Smith HA, Cannon J (2008) Flower flies (Syrphidae) and other biological control agents for aphids in vegetable crops. UC ANR Publication 8285. http://anrcatalog.ucanr.edu/pdf/8285.pdf
Campos F (1960) Las Moscas (Brachycera) del Ecuador. Revista Ecuatoriana de Higiene y Medicina Tropical 17: 1–66.
Cárdenas RE, Buestán J, Dangles O (2009) Diversity and distribution models of horse flies (Diptera: Tabanidae) from Ecuador. Annales de la Société Entomologique de France 45(4): 511–528. https://doi.org/10.1080/00379271.2009.10697633
Carpio C, Donoso DA, Ramón G, Dangles O (2009) Short term response of dung beetle communities to disturbance by road construction in the Ecuadorian Amazon. Annales de la Société Entomologique de France 45(4): 455–469. https://doi.org/10.1080/00379271.2009.10697629
Carvajal V, Villamarín S, Ortega AM (2011) Escarabajos del Ecuador. Principales Géneros. Instituto de Ciencias Biológicas. Escuela Politécnica Nacional. Serie Entomología Nro 1.
Causton CE, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ, Landry B (2006) Alien insects: threats and implications for conservation of Galápagos Islands. Annals of the Entomological Society of America 99(1): 121–143. http://doi.org/10.1603/0013-8746(2006)099[0121:AITAIF]2.0.CO;2
Celi J, Terneus E, Torres J, Ortega M (2004) Dung beetles (Coleoptera: Scarabaeinae) diversity in an altitudinal gradient in the Cutucú range, Morona Santiago, Ecuadorean Amazon. Lyonia 7(2): 37–52. http://www.lyonia.org/downloadPDF.php?pdfID=2.247.1
Coquillett DW (1901) Papers from, the Hopkins Galapagos Expedition, 1898-1899. II. Entomological Results (2): Dipteria [sic]. Proceedings of the Washington Academy of Sciences 3: 371–379. http://doi.org/10.5962/bhl.part.26342
Courtney GW, Pape T, Skevington JH, Sinclair BJ (2009) Biodiversity of Diptera. In: Foottit RG, Adler PH (Eds) Insect Biodiversity: Science and Society. Blackwell Publishing, Oxford, 185–222. https://doi.org/10.1002/9781444308211.ch9
Curran CH (1930) New Diptera belonging to the genus Mesogramma Loew (Syrphidae). American Museum Novitates 405: 1–14. http://hdl.handle.net/2246/4363
Curran CH (1934) The Templeton Crocker Expedition of the California Academy of Sciences, 1932. No. 13. Diptera. Proceedings of the California Academy of Sciences 21: 147–172.
Curran CH (1939) Synopsis of the American species of Volucella (Syrphidae; Diptera). Part II. Descriptions of New Species. American Museum Novitates 1028: 1–17. http://hdl.handle.net/2246/2219
Curran CH (1940) Some new Neotropical Syrphidae (Diptera). American Museum Novitates 1086: 1–14. http://hdl.handle.net/2246/2238
Curran CH (1941) New American Syrphidae. Bulletin of the American Museum of Natural History 78: 243–304.

Curran CH (1953) Notes and description of some Mydaidae and Syrphidae. American Museum Novitates 16145: 1–15. http://hdl.handle.net/2246/2413

Dangles O, Barragan A, Cardenas RE, Onore G, Keil C (2009) Entomology in Ecuador: Recent developments and future challenges. Annales de la Société Entomologique de France 45(4): 424–436. http://doi.org/10.1080/00379271.2009.10697627

Dominguez D, Marín-Armijos D, Ruiz C (2015) Structure of dung beetle communities in an altitudinal gradient of Neotropical dry forest. Neotropical entomology 44(1): 40–46. https://doi.org/10.1007/s13744-014-0261-6

Dumbardon-Martial E (2016) Pollen feeding in the larva of Toxomerus pulchellus (Diptera, Syrphidae). Bulletin de la Société Entomologique de France 121(4): 413–420. http://doi.org/10.1080/00222930802610576

Eckberg JO, Peterson JA, Borsh CP, Kaser JM, Johnson GA, Luhman JC, Wyse DL, Heimpel GE (2015) Field abundance and performance of hoverflies (Diptera: Syrphidae) on soybean aphid. Annals of the Entomological Society of America 108(1): 26–34. http://doi.org/10.1093/aesa/sau009

Fiedler K, Brehm G, Hilt N, Süssenbach D, Onore G, Bartsch D, Racheli L, Häuser CL (2007) Lepidoptera: Arctiidae, Geometridae, Hedyliidae, Pyraloidea, Sphingidae, Saturniidae, and Uraniidae (Moths) Checklists – Reserva Biológica San Francisco (Prov. Zamora-Chinchipe, S. Ecuador). In: Liede-Schumann S, Breckle SW (Eds) Provisional checklists of flora and fauna of the San Francisco Valley and its surroundings (Reserva Biológica San Francisco, Prov. Zamora-Chinchipe, Southern Ecuador). Ecotropical Monographs No.4, 256 pp.

Fleischmann A, Rivadavia F, Gonella PM, Pérez-Bañón C, Mengual X, Rojo S (2016) Where is my food? Brazilian flower fly steals prey from carnivorous sundews in a newly discovered plant-animal interaction. PLoS ONE 11(5): e0153900. http://doi.org/10.1371/journal.pone.0153900

Fluke CL (1937) New South American Syrphidae (Diptera). American Museum Novitates 941: 1–14. http://hdl.handle.net/2246/2182

Fluke CL (1942) Revision of the Neotropical Syrphini related to Syrphus. American Museum Novitates 1201: 1–24. http://hdl.handle.net/2246/2279

Fluke CL (1943) A new genus and new species of Syrphidae (Diptera) from Ecuador. Annals of the Entomological Society of America 36(3): 425–431. http://doi.org/10.1093/aesa/36.3.425

Fluke CL (1945) The Melanostomini of the Neotropical Region (Diptera, Syrphidae). American Museum Novitates 1272: 1–29. http://hdl.handle.net/2246/3720

Fluke CL (1950a) The male genitalia of Syrphus, Epistrophe and related genera (Diptera, Syrphidae). Transactions of the Wisconsin Academy of Sciences Arts and Letters 40: 115–148.

Fluke CL (1950b) Some new tropical syrphid flies with notes on others. Acta Zoológica Lil-loana 9: 439–454.

Fluke CL (1951a) The genus “Dolichogyna” (Diptera, Syrphidae). Acta Zoológica Lilloana 12: 465–478.
Fluke CL (1951b) Syrphid flies related to *Volucella scutellata* Macquart. American Museum Novitates 1503: 1–33. http://hdl.handle.net/2246/2367
Fluke CL (1958) A study of the male genitalia of the Melanostomini (Diptera-Syrphidae). Transactions of the Wisconsin Academy of Sciences Arts and Letters 46: 261–279.
Gerdes CF (1974a) *Toxomerus* (Diptera: Syrphidae) of Ecuador. PhD thesis, Western Illinois University, 135 pp.
Gerdes CF (1974b) A new species of Ecuadorian *Toxomerus* (Diptera: Syrphidae). Entomological News 85: 279–283.
Gerdes CF (1975) Notes on types of *Toxomerus* (Diptera: Syrphidae). Entomological News 86: 13–22.
Greco CF (1998) Aphidophagous syrphids (Diptera, Syrphidae): quick identification of preimaginal stages and list of natural enemies of the most commonly found species in cereals and pastures in the province of Buenos Aires (Argentina). Acta Entomológica Chilena 22: 7–11.
Gutierrez C, Carrejo NS, Ruiz C (2005) Listado de los géneros de Syrphidae (Diptera: Syrphoidea) de Colombia. Biota Colombiana 6(2): 173–180. http://icn.unal.edu.co/publicaciones/art/206/6-N2/syrphidae.pdf
Hilt N, Fiedler K (2005) Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Diversity and Distributions 11(5): 387–398. https://doi.org/10.1111/j.1366-9516.2005.00167.x
Hippa H, Thompson FC (1983) *Meropidia*, a new genus of flower flies (Diptera: Syrphidae) from South America. Papéis Avulsos de Zoológia 35(9): 109–115. https://repository.si.edu/handle/10088/18911
Hull FM (1942) New species of Syrphidae from the Neotropical region. Psyche 49: 84–107. https://doi.org/10.1155/1942/62725
Hull FM (1943a) Two new species of *Baccha* (Syrphidae). Proceedings of the Entomological Society of Washington 45: 50–51.
Hull FM (1943b) Some flies of the genus *Volucella* in the British Museum (Natural History) Annals And Magazine of Natural History 10: 18–40. https://doi.org/10.1080/03745481.1943.9727992
Hull FM (1943c) Some new American Syrphid flies (Diptera). Entomological News 54: 29–37.
Hull FM (1943d) New species of Syrphidae of the genus *Baccha* and *Mesogramma*. Entomological News 54: 89–91.
Hull FM (1943e) New species of *Baccha* and related flies. Entomological News 54: 135–140.
Hull FM (1943f) The genus *Mesogramma*. Entomologica Americana 23: 1–41.
Hull FM (1943g) The New World species of the genus *Baccha*. Entomologica Americana 23: 42–99.
Hull FM (1943h) New species of Syrphid flies in the National Museum. Journal of the Washington Academy of Sciences 33: 39–43.
Hull FM (1943i) Some undescribed species of the genus *Baccha* (Syrphidae). Journal of the Washington Academy of Sciences 33: 72–74.
Hull FM (1943j) New species of the genera *Baccha* and *Rhinoprosopa* (Syrphidae). Journal of the Washington Academy of Sciences 33: 214–216.
Hull FM (1944a) Studies on Syrphid flies in the Museum of Comparative Zoology. Psyche 51: 22–45. https://doi.org/10.1155/1944/61923
Hull FM (1944b) Additional species of the genus Baccha from the New World. Bulletin of the Brooklyn Entomological Society 39: 56–64.
Hull FM (1944c) A study of some Syrphid flies of South America. Revista de Entomologia, Rio de Janeiro 15: 34–54.
Hull FM (1949) The genus Baccha from the New World. Entomologica Americana 21(1947): 89–291.
Hull FM (1950) New South American Syrphid flies. Revista de Entomologia, Rio de Janeiro 21: 225–236.
Hull FM (1951) New species of Mesogramma (Diptera: Syrphidae). American Museum Novitates 1480: 1–22.
Inouye D, Larson BMH, Ssymank A, Kevan PG (2015) Flies and flowers III: Ecology of foraging and pollination. Journal of Pollination Ecology 16 (16): 115–133.
Johnson CW (1924) Diptera of the Williams Galapagos Expedition. Zoologica 5(8): 85–92.
Jordaens K, Goergen G, Kirk-Spriggs AH, Vokaer A, Backljau T, De Meyer M (2015) A second New World hoverfly, Toxomerus floralis (Fabricius) (Diptera: Syrphidae), recorded from the Old World, with description of larval pollen-feeding ecology. Zootaxa 4044(4): 567–576. http://doi.org/10.11646/zootaxa.4044.4.6
Kassebeer CF (1999) Die neotropischen Arten der Gattung Scaeva Fabricius, 1805 (Diptera, Syrphidae). Dipteron 2(5): 93–108.
Kassebeer CF (2000) Zur Gattung Pseudodoros Becker, 1903 (Diptera, Syrphidae). Dipteron 3(1): 73–92.
Knutson LV (1973) Taxonomic revision of the aphid-killing flies of the genus Sphaerophoria in the Western hemisphere (Syrphidae). Miscellaneous Publications of the Entomological Society of America 9(1): 1–50.
Lardé G (1989) Investigation on some factors affecting larval growth in a coffee-pulp bed. Biological Wastes 30: 11–19. https://doi.org/10.1016/0269-7483(89)90139-0
Linsley EG (1977) Insects of the Galápagos (Supplement). Occasional Papers of the California Academy of Sciences 125: 1–55.
Linsley EG, Usinger RL (1966) Insects of the Galápagos Islands. Proceedings of the California Academy of Sciences, Serie 4(33): 113–196.
Macquart J (1855) Dipteres exotiques nouveaux ou peu connus. 5e supplement. Mémoires de la Société des Sciences, de l’Agriculture et des Arts de Lille 1854: 25–156, 7.
Marinoni L, Thompson FC (2003) Flower flies of southern Brazil (Diptera: Syrphidae). Part I. Introduction and new species. Studia Dipterologica 10(2): 565–578.
Martínez-Falcón AP, Marcos-García MA, Moreno CE, Rotheray GE (2012) A critical role for Copestylum larvae (Diptera, Syrphidae) in the decomposition of cactus forests. Journal of Arid Environments 78: 41–48. http://doi.org/10.1016/j.jaridenv.2011.10.010
Mengual X (2011) Black-tie dress code: two new species of the genus Toxomerus (Diptera, Syrphidae). ZooKeys 140: 1–26. http://doi.org/10.3897/zookeys.140.1930
Mengual X (2015) Revision of the genus Rhinoprosopa (Diptera: Syrphidae). The Canadian Entomologist 147: 1–22. http://doi.org/10.4039/tce.2014.25
Mengual X, Ruiz C, Rojo S, Stähl G, Thompson FC (2009) A conspectus of the flower fly genus *Allograpta* (Diptera: Syrphidae) with description of a new subgenus and species. Zootaxa 2214: 1–28. https://doi.org/10.5281/zenodo.189912

Mengual X, Stähl G, Rojo S (2008) First phylogeny of predatory flower flies (Diptera, Syrphidae, Syrphinae) using mitochondrial COI and nuclear 28S rRNA genes: conflict and congruence with the current tribal classification. Cladistics 24: 543–562. https://doi.org/10.1111/j.1096-0031.2008.00200.x

Mengual X, Thompson FC (2008) *Palpada prietorum*, a new flower fly from Colombia (Diptera: Syrphidae). Zootaxa 1742: 31–36. https://doi.org/10.5281/zenodo.181531

Mengual X, Thompson FC (2011) Carmine cochineal killers: the flower fly genus *Eosalpingogaster* Hull (Diptera: Syrphidae) revised. Systematic Entomology 36(4): 713–731. https://doi.org/10.1111/j.1365-3113.2011.00588.x

Metz MA, Thompson FC (2001) A revision of the larger species of *Toxomerus* (Diptera: Syrphidae) with description of a new species. Studia Dipterologica 8: 225–256.

Miranda GF, Marshall SA, Skevington JH (2014) Revision of the genus *Pelecinobaccha* Shannon, description of *Relictanum* gen. nov., and redescription of *Atylobaccha flukiella* (Curtan, 1941) (Diptera: Syrphidae). Zootaxa 3819(1): 1–154. http://doi.org/10.11646/zootaxa.3819.1.1

Miranda GF, Skevington JH, Marshall SA, Kelso S (2016) The genus *Ocyptamus* Macquart (Diptera: Syrphidae): a molecular phylogenetic analysis. Arthropod Systematics and Phylogeny 74(2): 161–1976.

Mittermeier PR, Mittermeier CG (1997) Megadiversidad. Los países biológicamente más ricos del mundo. CEMEX y Agrupación Sierra Madre. México.

Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. CEMEX, Conservation International, 392 pp.

Mittermeier RA, Mittermeier CG, Gil PR, da Fonseca GAB, Brooks T, Pilgrim J, Konstant WR (2005) Megadiversity: Earth's biologically wealthiest nations. CEMEX, Mexico, 501 pp.

Montoya AL (2016) Family Syrphidae. Zootaxa 4122: 457–537. http://doi.org/10.11646/zootaxa.4122.1.39

Montoya AL, Pérez SP, Wolff M (2012) The diversity of flower flies (Diptera: Syrphidae) in Colombia and their Neotropical distribution. Neotropical entomology 41(1): 46–56. https://doi.org/10.1007/s13744-012-0018-z

Morales MN, Marinoni L (2009) Cladistic analysis and taxonomic revision of the scutellaris group of *Palpada* Macquart (Diptera: Syrphidae). Invertebrate Systematics 23: 301–347. https://doi.org/10.1071/IS09006

Morales MN, Marinoni L (2017) Syrphidae. Taxonomic Catalog of the Brazilian Fauna. http://fauna.jbrj.gov.br/

Moret P (2005) Los coleópteros Carabidae del páramo en los Andes del Ecuador. Sistemática, ecología y biogeografía. Museo de Zoología, Centro de Biodiversidad y Ambiente, Escuela de Biología. Pontificia Universidad Católica del Ecuador. Gruppo Editoriale Il Capitello, Italia, 307 pp.
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. http://doi.org/10.1038/35002501

Nelson EH, Hogg BN, Mills NJ, Daane KM (2012) Syrphid flies suppress lettuce aphids. BioControl 57: 819–826. https://doi.org/10.1007/s10526-012-9457-z

Pape T, Thompson FC (Eds) (2013) Systema Dipterorum, version 1.5. http://www.diptera.org/

Peck SB (1994) Aerial dispersal of insects between and to islands in the Galápagos Archipelago, Ecuador. Annals of the Entomological Society of America 87: 218–224. http://doi.org/10.1093/aesa/87.2.218

Peck SB (1996) Origin and development of an insect fauna on a remote archipelago: The Galápagos Islands, Ecuador. In: Keast A, Miller SE (Eds) The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia: Patterns and processes. SPB Academic Publishing, Amsterdam, 91–122.

Peck SB, Heraty J, Landry B, Sinclair BJ (1998) Introduced insect fauna of an oceanic archipelago: the Galápagos Islands, Ecuador. American Entomologist 44: 218–237. http://doi.org/10.1093/ae/44.4.218

Pérez-Bañón C, Juan A, Petanidou T, Marcos-García MA, Crespo MB (2003) The reproductive ecology of Medicago citrina (Font Quer) Greuter (Leguminosae): a bee-pollinated plant in Mediterranean islands where bees are absent. Plant Systematics and Evolution 241: 29–46. http://doi.org/10.1007/s00606-003-0004-3

Pérez-Lachaud G, Jervis MA, Reemer M, Lachaud J-P (2014) An unusual, but not unexpected, evolutionary step taken by syrphid flies: the first record of true primary parasitoidism of ants by Microdontinae. Biological Journal of the Linnean Society 111: 462–472. http://doi.org/10.1111/bij.12220

Pineda A, Marcos-García MA (2008) Introducing barley as aphid reservoir in sweet-pepper greenhouses: Effect on native and released hoverflies (Diptera, Syrphidae). European Journal of Entomology 105: 531–535. http://doi.org/10.14411/eje.2008.070

Piñas F, Manzano I (1997) Mariposas del Ecuador. Vol. I. Géneros. Quito, Pontificia Universidad Católica del Ecuador, 115 pp.

Piñas F, Manzano I (2003a) Mariposas del Ecuador. Vol. 16a. Saturniidae. Compañía de Jesús, Quito, 79 pp.

Piñas F, Manzano I (2003b) Mariposas del Ecuador. Vol. 21b. Arctiidae. Subfamilia: Ctenuchinae. Compañía de Jesús, Quito, 97 pp.

QGIS Development Team (2009) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

Rasmussen C (2016) J. C. Bradley’s narrative of the Cornell Entomological Expedition to South America (1919–1920): collecting localities and entomological travel details. Journal of History of Collections 28(1): 137–147. https://doi.org/10.1093/jhc/fhu074

Reemer M (2010) A second survey of Surinam Syrphidae (Diptera): Introduction and Syrphi- nae. Tijdschrift voor Entomologie 153: 163–196. https://doi.org/10.1163/22119434-900000295

Reemer M (2013) Taxonomic exploration of Neotropical Microdontinae (Diptera: Syrphidae) mimicking stingless bees. Zootaxa 3697: 1–88. http://doi.org/10.11646/zootaxa.3697.1.1
Reemer M (2014) A review of Microdontinae (Diptera: Syrphidae) of Surinam, with a key to the Neotropical genera. Tijdschrift voor Entomologie 157: 27–57. https://doi.org/10.1163/22119434-00002035

Reemer M (2016) Syrphidae (Diptera) of Surinam: Erishainae and synthesis. Tijdschrift voor Entomologie 159: 97–142. https://doi.org/10.1163/22119434-00002035

Reemer M, Rotheray GE (2009) Pollen feeding larvae in the presumed predatory syrphine genus Toxomerus Macquart (Diptera, Syrphidae). Journal of Natural History 43: 939–949. http://dx.doi.org/10.1080/00222930802610576

Reemer M, Ståhls G (2013a) Generic revision and species classification of the Microdontinae (Diptera, Syrphidae). ZooKeys 288: 1–213. https://doi.org/10.3897/zookeys.288.4095

Reemer M, Ståhls G (2013b) Phylogenetic relationships of Microdontinae (Diptera: Syrphidae) based on molecular and morphological characters. Systematic Entomology 38: 661–688. http://dx.doi.org/10.1111/syen.12020

Ricarte A, Marcos-García MA, Hancock EG, Rotheray EG (2012) Revision of the New World genus Quichuana Knab, 1913 (Diptera: Syrphidae), including descriptions of 24 new species. Zoological Journal of the Linnean Society 166: 72–131. https://doi.org/10.1111/j.1096-3642.2012.00842.x

Ricarte A, Marcos-García MA, Hancock EG, Rotheray GE (2015) Neotropical Copestylum Macquart (Diptera: Syrphidae) breeding in fruits and flowers, including 7 new species. PLoS ONE 10(11): e0142441. https://doi.org/10.1371/journal.pone.0142441

Ricarte A, Marcos-García MA, Moreno CE (2011) Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: implications for conservation. Journal Insect Conservation 15: 865–877. https://doi.org/10.1007/s10841-011-9384-9

Rojo S, Gilbert F, Marcos-García MA, Nieto JM, Mier MP (2003) A world review of predatory hoverflies (Diptera, Syrphidae: Syrphinae) and their prey. Centro Iberoamericano de la Biodiversidad (CIBIO), Alicante, 278 pp.

Rondani C (1851) Dipterorum species aliquae in America aequatoriali collectae a Cajetano Osculati, observatae et distinctae novis breviter descriptis. Nuovi Annali delle Scienze Naturali. Bologna (3) 2(1850): 357–372.

Rotheray GE (1993) Colour guide to hoverfly larvae (Diptera, Syrphidae) in Britain and Europe. Dipterists Digest No. 9, England.

Rotheray GE, Gilbert F (1999) Phylogeny of Palaearctic Syrphidae (Diptera): evidence from larval stages. Zoological Journal of the Linnean Society London 127: 1–112. https://doi.org/10.1111/j.1096-3642.1999.tb01305.x

Rotheray GE, Gilbert F (2011) The natural history of hoverflies. Forrest Text, Ceredigion, 333 pp.

Rotheray GE, Hancock EG, Marcos-García MA (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zoological Journal of the Linnean Society 150: 267–317. https://doi.org/10.1111/j.1096-3642.2007.00288.x

Rotheray GE, Marcos-García MA, Hancock EG, Gilbert FS (2000) The systematic position of Alipumilio and Nausigaster based on early stages (Diptera, Syrphidae). Studia dipterologica 7(1): 133–144.
Checklist of the flower flies of Ecuador (Diptera, Syrphidae)

Rotheray GE, Marcos-García MA, Hancock G, Pérez-Bañoč C, Maier CT (2009) Neotropical *Copetstylum* (Diptera, Syrphidae) breeding in Agavaceae and Cactaceae including seven new species. Zoological Journal of the Linnean Society 156(4): 697–749. https://doi.org/10.1111/j.1096-3642.2008.00503.x

Rotheray GE, Zumbado M, Hancock EG, Thompson FC (2000) Remarkable aquatic predators in the genus *Ocyptamus* (Diptera, Syrphidae). Studia Dipterologica 7: 385–398.

Salazar F, Donoso D (2014) El mundo de los invertebrados: en busca del número total de especies del Ecuador. Nuestra Ciencia 16: 37–40.

Schiner IR (1868) Diptera. In: Wüllerstorf-Urbair B von (Ed) Reise der österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859. Zoologischer Theil, Vol. 2, Abteilung 1, [Sect.]. BK Gerold’s Sohn, Wien, 388 pp. [4 pls]

Schmidt MH, Thewes U, Thies C, Tscharntke T (2004) Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata 113: 87–93. https://doi.org/10.1111/j.0013-8703.2004.00205.x

Shannon RC (1927) A review of the South American two-winged flies of the family Syrphidae. Proceedings of the United States National Museum 70(9): 1–33. http://doi.org/10.5479/si.00963801.70-2658.1

Sinclair BJ (2015) CDF Checklist of Galapagos flies. In: Bungartz F, Herrera H, Jaramill P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (Eds) Charles Darwin Foundation Galapagos Species checklist. Charles Darwin Foundation, Puerto Ayora, Galapagos, 1–52. http://checklists.datazone.darwinfoundation.org/terrestrial-invertebrates/diptera/

Sinclair BJ, Peck S (2002) An annotated checklist of the Diptera of Galápagos Archipelago (Ecuador), 54 pp.

Sinclair BJ, Thompson FC, Wyatt N (2016) The flower flies of the Galápagos Islands (Diptera: Syrphidae). Entomologist’s Monthly Magazine 152: 79–96.

Smith F (1877) Account of the Zoological Collections made during the visit of H. M. S. “Petrel” to the Galapagos Islands. VIII. Hymenoptera and Diptera. Proceedings of the Zoological Society of London 45: 82–84.

Sommaggio D (1999) Syrphidae: can they be used as environmental bioindicators. Agriculture, Ecosystems and Environment 74: 343–356. http://doi.org/10.1016/S0167-8809(99)00042-0

Sommaggio D, Burgio G (2014) The use of Syrphidae as functional bioindicator to compare vineyards with different managements. Bulletin of Insectology 67(1): 147–156. http://www.bulletinofinsectology.org/pdfarticles/vol67-2014-147-156sommaggio.pdf

Speight MCD (2016) Species accounts of European Syrphidae 2016. In: Speight MCD, Castella E, Sarthou JP, Vanappelghem C (Eds) Syrph the Net, the database of European Syrphidae (Diptera), Vol. 93. Syrph the Net publications, Dublin, 288 pp.

Speight M, Lucas J (1992) Liechtenstei Syrphidae (Diptera). Verhandlungen der Zoologisch- Botanischen Gesellschaft. Liechtenstein Sargans Werdenberg 19: 327–463.

Ssymank A, Kearns C (2009) Flies-pollinators on two wings. In: Ssymank A, Hamm A, Vischer-Leopold M (Eds) Caring for pollinators – safeguarding agro-biodiversity and wild plant diversity. Bundesamt für Naturschutz, Bonn, 39–52.
Thompson FC (1972) A contribution to a generic revision of the Neotropical Milesinae (Diptera: Syrphidae). Arquivos de Zoologia 23(2): 73–215. https://repository.si.edu/handle/10088/17138

Thompson FC (1973) Review of the genus Sterphus Philippi (Diptera: Syrphidae). Part I. Entomologica Americana 46: 185–240. https://repository.si.edu/handle/10088/17139

Thompson FC (1991) The flower fly genus Ornidia (Diptera: Syrphidae). Proceedings of the Entomological Society of Washington 93: 249–262. https://repository.si.edu/handle/10088/17487

Thompson FC (1997) Revision of the Eristalis flower flies (Diptera: Syrphidae) of the Americas south of the United States. Proceedings of the Entomological Society of Washington 99: 209–237. https://repository.si.edu/handle/10088/17085

Thompson FC (1999) A key to the genera of the flower flies of the Neotropical Region including the descriptions of genera and species and a glossary of taxonomic terms. Contributions on Entomology, International 3: 319–378. https://repository.si.edu/handle/10088/17492

Thompson FC (2006) Primer Taller de Identificación de Syrphidae del Neotrópico. Universidad del Valle, Cali, Colombia, 618 pp.

Thompson FC (2012) Costarica Mengual & Thompson, 2009 (Insecta: Diptera: Syrphidae) junior homonym of Costarica Kocak & Kemal, 2008 (Insecta: Orthoptera): proposed replacement by Tiquicia nom. nov. Zootaxa 3360: 68. http://doi.org/10.11646/zootaxa.3360.1.3

Thompson FC (2013) Syrphidae. Systema Dipterorum, version 1.5, 13354 records. http://www.diptera.org

Thompson FC (2015) What is Priomerus Macquart? A 180 year old mystery resolved (Diptera: Syrphidae). Entomologist’s Monthly Magazine 151: 168.

Thompson FC, Thompson BJ (2007) A new Toxomerus species from Chile (Diptera: Syrphidae). Studia Dipterologica 13: 317–331. https://repository.si.edu/handle/10088/4385

Thompson FC, Zumbado MA (2002) Mesoamerican Mallota flower flies (Diptera: Syrphidae) with the description of four new species. Studia Dipterologica 9: 89–107. https://repository.si.edu/bitstream/handle/10088/17099/ent_FCT_93.pdf

Thompson FC, Rotheray GE, Zumbado M (2010) Family Syrphidae. In: Brown B, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado MA (Eds) Manual of Central American Diptera, Vol. 2. NRC Press, Ottawa, 763–792.

Thompson FC, Thompson BJ, Fairman JE (2000) Only in Costa Rica: New Neotropical flower flies (Diptera: Syrphidae). Studia Dipterologica 7: 33–43. https://repository.si.edu/handle/10088/17493

Thompson FC, Vockeroth JR, Sedman YS (1976) Family Syrphidae. A catalogue of the Diptera of the American South of the United States 46: 1–195. https://doi.org/10.5962/bhl.title.49898

Thomson CG (1869) Diptera, Species nova descriptis. In: K. Svenska Vetenskaps-Akademien, Kongliga svenska fregatagen Eugenies resa omkring jorden. Pt. Zoologie, 1: Insekter, 443–614.

Thormann B, Ahrens D, Marín Armijos D, Peters MK, Wagner T, Wägele JW (2016) Exploring the leaf beetle fauna (Coleoptera: Chrysomelidae) of an Ecuadorian mountain forest using DNA barcoding. PLoS ONE 11:e0148268. https://doi.org/10.1371/journal.pone.0148268
Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters 8: 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

Ureña O, Hanson P (2010) A fly larva (Syrphidae: Ocyptamus) that preys on adult flies. Revista de Biología Tropical 58(4): 1157–1163. http://doi.org/10.15517/rbt.v58i4.5401

Vockeroth JR (1969) A revision of the genera of the Syrphini (Diptera, Syrphidae). Memoirs of the Entomological Society of Canada 62: 1–176. https://doi.org/10.4039/entm10162fv

Vockeroth JR (1992) The flower flies of the Subfamily Syrphinae of Canada, Alaska, and Greenland (Diptera: Syrphidae). The Insects and arachnids of Canada, part 18. Centre for Land and Biological Resources Research, Ottawa, 456 pp. http://www.esc-sec.ca/aafc-monographs/insects_and_arachnids_part_18.pdf

Walker F (1849) List of the specimens of dipterous insects in the collection of the British Museum. Part III. British Museum (Natural History), London, 485–687.

Weng JL, Rotheray GE (2008) Another non-predaceous syrphine flower fly (Diptera: Syrphidae): pollen feeding in the larva of Allograpta micrura. Studia Dipterologica 15(1): 245–258.

Zuijen MP, Nishida K (2011) Description of life history and immature stages of phytophagous flower fly, Allograpta zumbadoi Thompson (Diptera: Syrphidae: Syrphinae). Studia dipterologica 17: 37–51.