Abstract: Dopamine is considered an important molecule that plays several essential roles in the human body, and herein lies the key to this paper on the electronic and optical properties of dopamine and its derivatives, such as quinone and L-dihydroxyphenylalanine (L-DOPA), using DFT and TD-DFT methods, respectively. Our findings show that dopamine has a dielectric behavior, whereas quinone and L-DOPA have semiconductor behaviors in the ground and excited states. By computing the optical properties, we disclose that the electronic transition spectrum of dopamine, quinone and L-DOPA are observed in the ultraviolet region, visible spectrum, and (ultraviolet and visible regions), respectively. Other properties, such as ionization potential, electronic affinity, hardness and softness are also calculated due to their importance in sensor applications and sensing.

Keywords: DFT; TD-DFT; dopamine; quinone; L-DOPA; energy gap

1 Introduction

Organic electronic and optical properties are enabling significant advances in the fields of materials science, handling the creation of potential materials of inexpensive produce and straightforward for much of devices, such as solar photovoltaic or light-emitting diodes (LEDs) [1–3].

Dopamine (3,4-Dihydroxyphenethylamine) might be considered one of the hormone and generality essential neurotransmitters that work as a messenger with regard to synaptic transmission in the brain and body. Additionally, it represents a major trait in learning, motor control, motivation, attention, etc. [4–7]. Naturally, dopamine can cause serious mental disorders because of its several functions within the human body. Particular examples are the addictions to drug, computer game, social media, and gambling. In general, the addictions are associated to the immediate amounts release of dopamine. These addictions can be attributed to the repetition of such behaviors that lead to dopamine release [8–10]. In recent decades, some researchers have indicated that Dihydroxyphenethylamine (C\textsubscript{8}H\textsubscript{11}NO\textsubscript{2}) is associated with attention deficit/ hyperactivity disorder [11, 12]. Furthermore, Parkinson's disease can be traced to dopamine deficiency. Unfortunately, dopamine cannot be administered therapeutically since it cannot penetrate the blood brain barrier. However, L-DOPA is considered a precursor to dopamine in that it can be employed to extend the concentration of the material of C\textsubscript{8}H\textsubscript{11}NO\textsubscript{2} in the medicament of Parkinson's illness due to its capability to pass through the barrier [13]. Of course, the ability to monitor both dopamine (C\textsubscript{8}H\textsubscript{11}NO\textsubscript{2}) and L-DOPA (C\textsubscript{9}H\textsubscript{11}NO\textsubscript{4}) concentrations are of considerable biological importance [14]. That notwithstanding, it is significant within the brain and body, but it is difficult to discover the presence of C\textsubscript{8}H\textsubscript{11}NO\textsubscript{2}. Hence, the cyclic voltammetry (CV) is usually utilized to deflect whether dopamine exists [15]. This method is utilized experimentally whereas dopamine (C\textsubscript{8}H\textsubscript{11}NO\textsubscript{2}) is oxidized to become dopamine o-quinone (C\textsubscript{8}H\textsubscript{9}NO\textsubscript{2}) [16].

The major purpose of this study is to enhance some electronic and optical properties of the dopamine and its aforementioned derivatives. Then, we can utilize these systems in the optoelectronic applications such as photovoltaic and solar cells, LED, and sensors.
2 Computational details

In this study, we begin by optimizing dopamine, quinone, and L-DOPA using DFT method, which is implemented in the Gaussian (09W) package with the 6-31G basis set \([17]\) in its ground state. Depending on the first principle of DFT computations, the energy gaps \(E_g\), frontier orbital distributions (HOMO and LUMO), and IR spectra are computed to all these systems. The energy gap can be computed from this formula \([18–22]\):

\[
E_g = E_{\text{LUMO}} - E_{\text{HOMO}}
\]

Based on the DFT method and Koopmans’ theorem, we study the reactivity of these structures. The description of the reactivity would include the ionization potential \((I.P)\), electron affinity \((E.A)\), electronegativity \((\chi)\), chemical hardness \((\eta)\) and chemical softness \((\sigma)\) which are calculated by using the following parameters \([23–25]\):

1. \[
I.P = -E_{\text{HOMO}}
\]
2. \[
E.A = -E_{\text{LUMO}}
\]
3. \[
\chi = \frac{I.P + E.A}{2}
\]
4. \[
\eta = \frac{1}{2} \left(\frac{\partial^2 E}{\partial^2 N} \right)_{V(r)}
\]
5. \[
\eta = \frac{I.P - E.A}{2}
\]
6. \[
\sigma = \frac{1}{2\eta}
\]

DFT using Becke exchange \([26]\) functional and Lee-Yang-Parr correlation functional \([27]\), with the 6-31G mention basis set \([28]\) were applied in the quantum-chemical evaluation \([29–31]\). Later, the optical properties of these structures are calculated via the TD-DFT method that also carried out in the 09W package. Both electronic excitation energies and oscillator strengths are evaluated as perpendicular excitations of the lower ground state of systems via TD-DFT approach in space. Eventually, the TD-DFT absorption spectra evaluations are realized employing B3LYP with 6-31G(d) basis set \([21, 22]\).

3 Results and discussions

Dopamine has an amine group and a catechol ring at the termination of a linear hydrocarbon. Hence, dopamine has a number of isomers that depends on the location of two Hydroxyl groups. In this work, we shall investigate different properties of three molecular systems.

The expression energy optimization involves an attempt to satisfy the configuration at the lowest-energy of molecules. Such a technique is used to find the wave function and estimate the energy at starting geometry. Later, we come to identify a new geometry with lower energy by means of running duplicate processes until we obtain the lowest-energy geometry. Finally, the energy optimization of these structures along with the force resultant between all atoms should be equal to zero. Obviously, the optimization process will stop when it reaches a stationary point, as shown in Figure 1.

The first step in this search is started by optimizing the dopamine derivatives in order to generate specimens of dopamine, dopamine o-quinone and L-DOPA, without symmetry constraint. We find out that these structures are located at the minimum energy state. These results are obtained without imaginary frequency, which means the results are correct and accurate. The geometrical optimization of these structures are shown in Figure 2.

![Figure 1: The different steps are utilized to treat and select a best geometry optimization of structures: (a) dopamine, (b) L-DOPA, (c) quinone.](image-url)
Figure 2: Geometrical optimization of the dopamine (a), L-DOPA (b), and quinone (c). The white, gray, red, and blue colours indicate Hydrogen, Carbon, Oxygen, and Nitrogen, respectively. The length of the bonds are also clarified.

Figure 3: Infrared spectra each of the dopamine (a), L-DOPA (b), and quinone (c).

Figure 4: The values of LUMO (in the top), HOMO (in the bottom) and energy gap for dopamine derivatives at two states (ground and excite state).

Figure 3 represents the infrared spectrum diagram of the dopamine derivatives. This result is in agreement with the previous studies [32, 33]. This Figure also shows the number of peaks, which represent the bonding bonds between two carbon atoms in the range of (800–1300) cm$^{-1}$ region. It is referred to the single bonds (C-C) compounds. Besides, the values at 1550 cm$^{-1}$ region approximately represent the double bonds (C=C) vibration aromatic compounds. The characteristic absorbance peak at 3100 cm$^{-1}$ corresponds to the (C-H) vibration aliphatic hydrogens. Therefore, these values of peaks are tremendously in agreement with the previous reference [34]. Besides fundamentals, there are some other bands in absorption spectrum, called overtones or combinations, which may also provide evidence for a relatively weak intensity.

Figure 4 shows the schematic of the HOMO and LUMO surfaces. The resulting orbitals may be interpreted as per molecular orbital theory, which considers molecular orbitals a linear combination of the atomic orbitals. The band gap is defined as the difference between the upper region of the valence band and the lower region of the conduction band. From this Figure, we can observe that the dopamine has a highest apex at the ground state (0.358 eV). The en-
energy gaps of all system are expanded from semiconductor to insulator. Yet, while the energy gap of the quinone in the ground and excited states occurs within the energy gap for semiconductor materials (3.309 and 2.882 eV), the values of the energy gap to relative the dopamine and L-DOPA occur within insulator region. These parameters are considered very significant because the value of the energy gap is represented as a gauge to determine whether can be used it in applications of electronic. In other words, the semiconductor devices of electronic can be used depending on the value of energy gap.

In Table 1, all values are calculated by using the expression in Eqs. (1–6). In fact, the ionization potential and electron affinity are very important because they can be utilized to predict the strength of chemical bonds. Additionally, they can be used as measures of whether an atom or molecule will become an electron donor or an electron acceptor. We detect that the quinone structure has a higher energy to become cation due to its higher value of the $I.P$, which is (6.6572 eV) compared with other structures. However, the dopamine structure requires a smaller energy to become cation due to its lower value of the $I.P$ (5.3738 eV) compared with other structures.

The negative $E.A$ is required to obtain efficient cathodes that can supply electrons to the vacuum with little energy loss. Furthermore, both $I.P$ and $E.A$ are represented as primary bases to predict and obtain other properties, and so they can be used as sensors devices.

For the electronegativity, we find out that the quinone structure has a higher value (5.0022 eV), which means this structure has a greater force to attract the shared electrons while the dopamine structure has a smaller value. So, it is equal 2.5101 eV.

Drawing on previous equations and Table 1, we can see that the energy gap is a function of the chemical hardness and softness. When the structure has a higher value of the hardness, it means it has a large value of the energy gap. For instance, the L-DOPA structure has value of the hardness and energy gap (at ground state), which are equal to (2.894 and 5.788 eV), respectively. Softness is equal to the inverse of the hardness, which leads to the largest value of hardness corresponding to the smallest value of softness and vice versa. The hardness and softness are parameters that are so important that they can be used to test both the performance and sensitivity of explosive molecules [35].

In this section, the absorption wavelength (λ_{max}), vertical excited singlet states or excitation energy (ΩA), and oscillator strength (f) along with the main excitation configuration of the dopamine derivatives are studied by applying TD-DFT method. From Table 2 and Figure 5, all structures reveal a strong absorption band in UV-VIS regions, which is around 243.69 nm for dopamine while the L-DOPA and quinone shift toward the VIS region. It is, therefore, evident that the absorbed wavelengths of these structures increase as shown (dopamine < quinone < L-DOPA). This property is very interesting because the results of maximum wavelength of structure as aforementioned in Table 2 and Figure 5 is in complete agreement with the results obtained by using the mathematical equation ($E = 1240/\lambda_{\text{max}}$) [36–38]. In so doing, the energy (E) in eV points out that the perpendicular excited singlet states is relative to the samples studied. Moreover, the calculated wavelength values of absorption are inversely proportional to the excitation energy. That means the highest values of vertical excited energy (ΔE) corresponds to the shortest wavelength of maximum emission (λ_{max}), as shown in Table 2. These values of wavelengths are very useful in LEDs applications, optical fibers and solar cell. The values of oscillator strengths occur between (0.0525 and 0.0055). Thus, these results are in

System	$I.P$ (eV)	$E.A$ (eV)	χ (eV)	η (eV)	σ (eV)$^{-1}$
Dopamine	5.3783	-0.3581	2.5101	2.868	0.1743
L-DOPA	5.4665	-0.3216	2.5724	2.894	0.1727
Quinone	6.6572	3.3474	5.0022	1.655	0.3021

System	λ_{max} (nm)	ΩA (eV)	Os. S.(f)	Electronic transition
Dopamine	243.69	5.0877	0.0525	H-2->L+1 (22%)
L-DOPA	544.85	2.2756	0.0055	HOMO->LUMO (93%)
Quinone	520.02	2.3842	0.0131	HOMO->LUMO (94%)
good agreement with references to the oscillator strengths ranging at (0 and 1) [39].

4 Conclusion

In this paper, the electronic and optical properties of dopamine and its derivatives have been studied using DFT / B3LYP technique / 6-311G (d,p) level of theory. According to the energy gap, we have detected that the dopamine and quinone have insulator and semiconductor behaviors while L-DOPA exhibited a dielectric behavior in the ground state and a semiconductor behavior in the excited state. Finally, the electronic transition spectrum of the dopamine have appeared in the ultraviolet region, while the resulting spectrum of the L-DOPA have occurred in the ultra violet and visible regions, respectively, and the quinone have been within the visible spectrum.

Acknowledgement: The author would like to express his appreciation to the PC and Knowledge Networking Center at Thi-Qar University/ College of Science for providing him with all required assistance in high performance computing facilities.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Picozzi S, Pecchia A, Gheorghe M, Di Carlo A, Lugli P, Delley B, et al. Organic/metal interfaces: an ab initio study of their structural and electronic properties. Surf Sci. 2004;566:628–32.
[2] Khudhair AM, Ajeel FN, Mohammed MH. Theoretical Study of the Electronic and Optical Properties to Design Dye-Sensitivity for Using in Solar Cell Device. Russ J Phys Chem B Focus Phys. 2018;12(4):645–50.
[3] Reddy JN, Unnikrishnan VU, Unnikrishnan GU. Recent advances in the analysis of nanotube-reinforced polymeric biomaterials. J Mech Behav Mater. 2013;22(5-6):137–48.
[4] Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004 Jun;5(6):483–94.
[5] Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009 Feb;9(1):65–73.
[6] Chong TT. Updating the role of dopamine in human motivation and apathy. Curr Opin Behav Sci. 2018;22:35–41.
[7] Fernández AC, Castellani NJ. Dipole moment effects in dopamine/N-doped-graphene systems. Surf Sci. 2020;693:121546.
[8] Volkow ND, Fowler JS, Wang GI, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry. 2004 Jun;9(6):557–69.
[9] Franken IH, Booij J, van den Brink W. The role of dopamine in human addiction: from reward to motivated attention. Eur J Pharmacol. 2005 Dec;526(1-3):199–206.
[10] van Holst RJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, et al. Increased striatal dopamine synthesis capacity in gambling addiction. Biol Psychiatry. 2018 Jun;83(12):1036-1043.
[11] Biederman J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry. 2005 Jun;57(11):1215–20.
[12] Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011 Jun;69(12):e165–57.
[13] Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014 Aug;8:211.
Tsolakis AC, Petsos G, Kapetanou O, Nikolaidis IN, Alfantis EC. Model analogies between pattern formation in deforming engineering materials & morphogenesis in ageing human brains. J Mech Behav Mater. 2019;28(1):95–106.

Robinson DL, Vento BJ, Heien MLAV, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 2003;49(10):1763-1773.

Kim H, Kim G. Adsorption properties of dopamine derivatives using carbon nanotubes: A first-principles study. Appl Surf Sci. 2020;501:144249.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, revision D. 01. Wallingford (CT): Gaussian Inc.; 2009.

Jabbar ML, Kadhim KJ. Electronic Properties of Doped Graphene Nanoribbon and the Electron Distribution Contours: A DFT Study. Russ J Phys Chem B Focus Phys. 2021;15(1):46–52.

O’Boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J Comput Chem. 2008 Apr;29(5):839–45.

Muzel HM, Alwan AS, Jabbar ML. Electronic Properties for (CxHyZ2-NO) Nanoclusters. Curr Nanomater. 2017;2:33–8.

Yelgel C. Theoretical Studies of Structural, Electronic and Optical Properties of Graphene Based Systems [ref]. Exeter: University of Exeter; 2013.

Jabbar ML, Kadhim KJ. Linear & nonlinear optical properties of undoped & doped graphene nanoribbon via TD-DFT study. AIP Conf Proc. 2020;2292:030011.

Gupta VP. Principles and applications of quantum chemistry. Academic Press; 2015.

Vivas-Reyes R, Aria A. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data. Eclét Quim. 2008;33(3):69–76.

Alwan AS, Ajeel SK, Jabbar ML. Theoretical study for Coronene-Al, B, C, Ga, In and Coronene-O interactions by using Density Functional theory. University Thi-Qar J. 2019;14(4).

Becke AD. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys. 1992;97(12):9173–7.

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988 Jan;37(2):785–9.

Bialek B. Computational studies of the interactions between emeraldine and palladium atom. Surf Sci. 2006;600(8):1679–83.

Jabbar ML. Theoretical study for the interactions of Coronene-Y interactions by using Density functional theory with hybrid function. Univ Thi-Qar J. 2018;13:28–41.

Zandler ME, D’Souza F. The remarkable ability of B3LYP/3-21G (*) calculations to describe geometry, spectral and electrochemical properties of molecular and supramolecular porphyrin-fullerene conjugates. C R Chim. 2006;9(7-8):960–81.

Rad AS. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf Sci. 2016;645:6–12.

Ouellette RJ, Rawn JD. Organic chemistry: structure, mechanism, and synthesis. Elsevier; 2014.

Lai Y, Wan L, Wang B. PVDF/Graphene Composite Nanoporous Membranes for Vanadium Flow Batteries. Membranes (Basel). 2019 Jul;9(7):89.

Muthua S, Paulraj El. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR) studies and first-order molecular hyperpolarizabilities of 5-amino-2 hydroxybenzoic acid (5A2HBA) by ab initio HF and density functional method. J Chem Pharm Res. 2011;5:323–39.

Ejoh GW, Abe MT, Nya FT, Ndjaka JM. Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation. Karbala Int J Mod Sci. 2018;4(1):12–20.

Chen X, Huang Z, Ren X, Xu G, Zhou J, Tao Y, et al. Photodetectors based on SnS2/graphene heterostructure on rigid and flexible substrates. ChemNanoMat. 2018;4(4):373–8.

Degli-Eredi I, Sipe JE, Vermeulen N. Graphene-covered 1D photonic crystals enabling TE-polarized graphene modes. Photonic Crystal Materials and Devices XII. 2016 April 16; Brussels, Belgium. 2016.

Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, et al. Coal as an abundant source of graphene quantum dots. Nat Commun. 2013;4(1):2943.

Skrabal, P. M. Spectroscopy – An interdisciplinary integral description of spectroscopy from UV to NMR. vdf Hochschulverlag AG; 2012.