Probing galaxy formation with He II cooling lines

Item Type	article;article
Authors	Yang, YJ;Zabludoff, AI;Dave, R;Eisenstein, DJ;Pinto, PA;Katz, N;Weinberg, DH;Barton, EJ
DOI	https://doi.org/10.1086/497898
Download date	2024-09-27 02:23:34
Link to Item	https://hdl.handle.net/20.500.14394/2993
PROBING GALAXY FORMATION WITH He II COOLING LINES

YUJIN YANG, ANN I. ZABLUDOFF, ROMEELE DAVÉ, DANIEL J. EISENSTEIN, PHILIP A. PINTO
Steward Observatory, University of Arizona, Tucson, AZ 85721

NEAL KATZ
Astronomy Department, University of Massachusetts, Amherst, MA 01003

DAVID H. WEINBERG
Department of Astronomy, The Ohio State University, Columbus, OH 43210

ELIZABETH J. BARTON
Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697

ABSTRACT
Using high resolution cosmological simulations, we study hydrogen and helium gravitational cooling radiation. We focus on the He II cooling lines, which arise from gas with a different temperature history ($T_{\text{max}} \sim 10^5$ K) than H I line emitting gas. We examine whether three major atomic cooling lines, H I λ1216, He II λ1640 and He II λ304, are observable, finding that Ly α and He II λ1640 cooling emission at $z = 2 - 3$ are potentially detectable with deep narrow band ($R > 100$) imaging and/or spectroscopy from the ground. While the expected strength of H I λ1216 cooling emission depends strongly on the treatment of the self-shielded phase of the IGM in the simulations, our predictions for the He II λ1640 line are more robust because the He II emissivity is negligible below $T \sim 10^{4.5}$ K and less sensitive to the UV background. Although He II λ1640 cooling emission is fainter than Ly α by at least a factor of 10 and, unlike Ly α, might not be resolved spatially with current observational facilities, it is more suitable to study gas accretion in the galaxy formation process because it is optically thin and less contaminated by the recombination lines from star-forming galaxies. The He II λ1640 line can be used to distinguish among mechanisms for powering the so-called “Lyα blobs” — including gravitational cooling radiation, photoionization by stellar populations, and starburst-driven superwinds — because (1) He II λ1640 emission is limited to very low metallicity ($\log(Z/Z_\odot) \lesssim -5.3$) and Population III stars, and (2) the blob’s kinematics are probed unambiguously through the He II λ304 line width, which, for cooling radiation, is narrower ($\sigma < 400 \text{ km s}^{-1}$) than typical wind speeds.

Subject headings: cosmology: theory — galaxies: formation — intergalactic medium

1. INTRODUCTION
Galaxies grow partly by accretion of gas from the surrounding intergalactic medium and partly by mergers with other galaxies. Observational studies of galaxy assembly have focused primarily on merger rates, which can be measured indirectly by counting close pairs and merger remnants. However, all the mass that enters the galaxy population ultimately does so by accretion — mergers can only redistribute this mass from smaller systems to larger systems. Furthermore, numerical simulations predict that even large galaxies grow primarily by smooth gas accretion rather than by cannibalism of smaller objects (Murali et al. 2002; Keres et al. 2005). Gas shock-heated to the virial temperature of a typical dark matter halo would radiate most of its acquired gravitational energy in the soft X-ray continuum, making individual sources very difficult to detect, especially at high redshift. However, Fardal et al. (2001, hereafter F01) show that much of the gas that enters galaxies in hydrodynamic cosmological simulations never heats to high temperatures at all, and that it therefore channels a substantial fraction of its cooling radiation into atomic emission lines, especially H I Ly α. F01 and Haiman, Spaans, & Quataert (2000) suggested that extended “Lyα blobs” (e.g., Koo et al. 1999; Steidel et al. 2000; Francis et al. 2001; Matsuda et al. 2004; Dey et al. 2005), with typical sizes of 10 – 20′′ and line luminosities $L_{\text{Ly} \alpha} \sim 10^{44}$ ergs s$^{-1}$, might be signatures of cooling radiation from forming galaxies. Furlanetto et al. (2005) have also investigated predictions for Lyα cooling radiation from forming galaxies in hydrodynamic simulations.

In this paper, we investigate other aspects of cooling radiation from forming galaxies, in particular the potentially detectable radiation in the He II λ304 (“Lyα”) and He II λ1640 (“Hβ”) lines of singly ionized helium. While challenging, the successful detection He II line emission would complement H I Lyα measurements in at least three ways. First, because H I and He II line cooling rates peak at different temperatures ($T \sim 10^{4.3}$ K vs. $T \sim 10^5$ K), measurements of both lines could constrain the physical conditions of the emitting gas. Recent theoretical studies imply that “cold mode” accretion, in which the maximum gas temperature is well below the halo virial temperature, is a ubiquitous and fundamental feature of galaxy formation (F01; Katz et al. 2003; Birnboim & Dekel 2003; Keres et al. 2005).
Simultaneous measurements of He II and H I emission from different types of galaxies could eventually test detailed predictions for the temperature distribution of cooling gas.

The second advantage of the He II simulations is that it should be optically thin, allowing a straightforward interpretation of the observed emission in terms of the spatial distribution and kinematics of the cooling gas. In contrast, the radiative transfer effects on the H I Lyα emission from accreting gas are more complicated, an issue that we will investigate in future work (J. Kollmeier et al., in preparation; see also Cantalupo et al. 2003).

Third, the different temperature dependence and absence of radiative transfer effects in He II lines could help distinguish cooling radiation from alternative explanations of “Lyα blobs,” such as emission from collisionally ionized gas in galactic superwinds (Tangichi & Shioya 2000) or from gas photoionized by young stellar populations. For example, only the lowest metallicity stars (log Z/Z⊙ ≤ −5.3) have hard enough spectra to ionize He II to He III, so stellar photoionization will generally not produce He II line emission.

It is possible that He II cooling emission from forming galaxies at high redshift has already been detected. One such example is the broad He II λ1640 line in the composite spectrum of Lyman break galaxies (LBGs) from Shapley et al. 2003. The composite He II line shows a rather broad line width (FWHM ~ 1500 km s⁻¹), which is a possible signature of Wolf-Rayet stars. However, it is difficult to reproduce the strength of the He II line via stellar population models with reasonable parameters (Shapley et al. 2003). We show in this paper that the He II cooling emission around individual galaxies is detectable, which suggests it might be fruitful to search for He II λ1640 cooling emission in the outer parts of individual LBG’s.

The next section describes our simulations and the radiative cooling mechanisms that lead to H I λ1216, He II λ1640, and He II λ304 line emission. We present H I λ1216 and He II λ304 cooling maps (§3.1) and discuss the properties of the cooling radiation sources in §3.2. In §3.3, we examine the detectability of the three major cooling lines in the far ultraviolet and optical and discuss the best observational strategies. In §4, we discuss mechanisms other than gravitational cooling radiation that can generate extended Lyα emission and describe how the He II cooling line might help us discriminate among those mechanisms. We summarize our conclusions in §5.

2. SIMULATIONS AND COOLING RADIATION

We use parallel TreeSPH simulations (Davé, Dubinski, & Hernquist 1997), including the effects of radiative cooling, star formation, thermal feedback, and a spatially uniform metagalactic photoionizing background. We analyze two simulations: one with a cubic volume of 11.111 h⁻¹ Mpc (comoving) on a side and a spatial resolution of 1.75 h⁻¹ kpc (comoving; equivalent Plummer softening), the other with a cubic volume of 22.222 h⁻¹ Mpc on a side and 3.5 h⁻¹ kpc resolution. Hereafter, we refer to these two simulations as the 11 Mpc and 22 Mpc simulations, respectively. The simulations consist of 128³ dark matter particles and 128³ gas particles, giving a mass resolution of m_{SPH} = 1.3 × 10⁷ M⊙ and m_{dark} = 10⁸ M⊙ for the 11 Mpc simulation, and m_{SPH} = 1.1 × 10⁸ M⊙ and m_{dark} = 7.9 × 10⁸ M⊙ for the 22 Mpc simulation. We adopt a ΛCDM cosmology with the parameters Ω_M = 0.4, Ω_Λ = 0.6, Ω_b h² = 0.02, and H₀ = 65 km s⁻¹ Mpc⁻¹. In our calculation of cooling emission lines, we basically follow the radiative cooling processes described in Katz, Weinberg, & Hernquist (1996, hereafter KWH). Here, we briefly summarize the cooling processes that can contribute to line emission.

The four underlying assumptions of radiative cooling are: primordial composition, ionization equilibrium, an optically thin gas, and a spatially uniform radiation field. In the simulations, we adopt X = 0.76 and Y = 0.24, where X and Y are the hydrogen and helium abundance by mass. The abundances of each ionic species (H⁰, H⁺, He⁰, He⁺, He+++) are solely determined by assuming that the primordial plasma is optically thin and in ionization equilibrium (but not in thermal equilibrium). The functional forms of the temperature-dependent recombination rates, collisional ionization rates, collisional excitation rates, and the rate equations are given in §3 of KWH and the tables therein. The uniform photoionizing UV background is taken from Haardt & Madau (1996).

In the next section, we describe the Lyα and He II cooling curves under the optically thin gas assumption, the assumption used in our simulations. However, in the high density regime, a gas cloud becomes dense enough to shield the central part of itself from the UV background, i.e., becomes self-shielded. Therefore, the actual emissivity of this self-shielded (or condensed phase) gas is highly uncertain. We discuss below how to treat this phase of the IGM to derive better estimates of the cooling radiation. Once we generate the Lyα and He II cooling emissivities, the cooling radiation is determined by how many gas particles populate a certain range of temperature and density, where we appeal to the high-resolution cosmological simulations mentioned above.

2.1. Cooling Curves

Among the various radiative cooling processes, only two can produce H I Lyα (1216Å), He II Lyα (3400Å), and He II Balmer α (1640Å) photons: the recombination cascades of a free electron and the collisional excitation of a bound electron to an excited state followed by radiative decay. The dominant cooling mechanism is the collisional excitation of neutral hydrogen and singly ionized helium, which have their peaks at temperatures of T ~ 10⁴ K and ~ 10⁵ K, respectively. Figure 1 shows the H I λ1216 and He II λ304 emissivities for gas of different densities in ionization equilibrium in the presence of a metagalactic photoionizing UV background. The dashed lines represent the collisional excitation cooling lines of neutral hydrogen and singly ionized helium, while the dotted lines represent the recombinations of free electrons and the collisional excitation of bound electrons to an excited state followed by radiative decay. The additional cooling mechanism is the collisional excitation of neutral hydrogen and singly ionized helium, which have their peaks at temperatures of T ~ 10⁴ K and ~ 10⁵ K, respectively. The solid lines represent the total Lyα cooling rates of hydrogen and helium. Below T ~ 10⁴ K, collisions with free electrons are not energetic enough to raise bound electrons to upper levels or to ionize the neutral hydrogen, so the collisional cooling rate of hydrogen drops quickly below this temperature. For singly ionized helium, the collisional cooling rate drops to virtually zero below T ~ 10⁴ K. Therefore, below T ~ 10⁴ K, pho-
to ionization by the background UV spectrum (heating) and the following recombination (cooling) is the dominant source for cooling line emission of the primordial plasma.

In the presence of photoionization, the cooling curve depends on the density as shown in Figure 1 because the equilibrium abundances of each species depend on the density. While the collisional ionization rate per unit volume scales as n_H^2, the photoionization rate per volume is proportional to only n_H. In low density gas ($\rho/\rho_b \lesssim 10^2$), a significant fraction of H I and He II is photoionized and their abundances are mainly determined by the photoionization process, so the collisional excitation feature is relatively weak. As the gas density increases ($\rho/\rho_b \sim 10^3 - 10^4$), however, collisional excitation becomes more important and the cooling curves approach pure collisional equilibrium, the so-called coronal equilibrium. The notable difference between the cooling curves of hydrogen and singly ionized helium is that the cooling rates of He II owing to the UV ionizing background are almost fully ionized over the entire temperature range ($T \sim 10^5\text{ K}$) by falling into the forming galaxy’s halo, the gas is mostly ionized, so it is reasonable to assume that the gas is optically thin.

We estimate the He II $\lambda 1640$ flux from the He II $\lambda 304$ flux by considering the ratio of He II $\lambda 1640$ to He II $\lambda 304$ in the recombination cascades and in the collisional excitations, respectively. The thick solid lines below the He II cooling curves in Figure 1 represent our estimate of the He II $\lambda 1640$ line emissivity. Below $T \sim 10^5\text{ K}$, the optical depthт of He II $\lambda 304$ is so large that case-B recombination is a good approximation. Even though the Lyα optical depth is extremely large, the population of the $2p$ and $2s$ states is always much smaller than that of the $1s$ state, because the de-excitation time for level transitions is very short ($A_{2p1s} \approx 10^{10}\text{ s}^{-1}$). One might be concerned whether the population of the $2s$ state is large because of the forbidden transition ($2s \rightarrow 1s$), but the two photon decay process is fast enough to de-populate $2s$ electrons ($A_{2s1s} \approx 8.22\times10^6\text{ s}^{-1}$). Therefore, Balmer lines are always optically thin. We adopt $F_{1640} / F_{304} \approx 10\%$ by extrapolating the case-B values of Storey & Hummer (1995) to the low density limit. For collisional excitation, we estimate the He II $\lambda 1640$ flux using

$$\frac{F_{1640}^{\text{coll}}}{F_{304}^{\text{coll}}} \approx C_{1s3s} + C_{1s3p} + C_{1s3d} \frac{h\nu_{1640}}{h\nu_{304}}$$

where C_{ij} is the collisional excitation rate from the i to the j state. We adopt the C_{ij}'s from Aggarwal et al. (1993), $F_{1640}^{\text{coll}} / F_{304}^{\text{coll}}$ is roughly 2 – 4% in the temperature range of $10^4 < T < 10^5\text{ K}$ where He II $\lambda 304$ collisional excitation cooling is dominant. In summary, the He II $\lambda 1640$ flux is calculated by

$$\epsilon_{\text{He II}}^{\lambda 1640} = f_{\text{rec}} n_e n_{\text{He}^+} + \alpha_{\text{He}^+, \text{Ly}\alpha} + f_{\text{coll}} n_e n_{\text{He}^+} + C_{12} h\nu_{\text{Ly}\alpha},$$

where $\alpha_{\text{He}^+, \text{Ly}\alpha} = \alpha_{\text{He}^+, \text{Ly}\alpha}$ is the recombination rate into $n \geq 2$ states of He II, and by assuming $f_{\text{rec}} \approx 10\%$ and $f_{\text{coll}} \approx 2 – 4\%$.

2.2. Self-shielding Correction

A major difference between our work and that of Furlanetto et al. (2005) is that our simulations include a uniform UV background radiation field (see also Furlanetto et al. 2003). However, because even state-of-the-art cosmological simulations like ours do not include radiative transfer, the self-shielded phase of the gas at high column densities is not treated properly. When the gas is heated to high temperature ($T \sim 10^5 – 10^6\text{ K}$) by falling into the forming galaxy’s halo, the gas is mostly ionized, so it is reasonable to assume that the gas is optically thin.

![Figure 1](image-url)
to the uniform UV background. Subsequently, when the gas cloud starts losing its thermal energy via cooling radiation, its neutral column density becomes sufficiently high that the metagalactic UV radiation cannot penetrate the surrounding gas, and the cloud becomes self-shielded.

Once the supply of ionizing photons is shut off, what happens to the self-shielded high column density clouds? First, the ionization states will achieve collisional ionization equilibrium, where the emissivity is determined solely by collisional ionization and collisional excitation. Second, because the cooling emissivity is boosted by these processes, the self-shielded cloud will cool more rapidly to $T \sim 10^4$ K than in the presence of heating by ionizing photons. Below this temperature, the subsequent cooling is dominated by metal lines (if there are metals). Stars ultimately form from this cold gas.

Because our simulations do not include the time evolution of the self-shielded gas or metal-line cooling, it is not clear how long the gas particles stay in the self-shielded phase and emit in collisional ionization equilibrium. The Lyα emissivities shown in Figure 1 become unreliable in this self-shielded regime. Thus we apply a pseudo self-shielding correction to the high density gas particles to correct their emissivities. This correction is not rigorous; to properly calculate the emissivity of the self-shielded phase of the IGM, one should incorporate a radiative transfer calculation that includes non-uniform and anisotropic UV radiation fields. A different prescription for the self-shielded phase is definitely possible. For example, Eurlanetto et al. (2003) consider two extreme cases: 1) adopting zero emissivity and 2) using the collisional ionization equilibrium emissivity for the self-shielded phase. Our self-shielding correction scenario described below lies between these two extremes.

To apply the self-shielding correction, we first define the "local" optical depth for each gas particle, $\tau_{\text{local}}(\nu) = \sum_i n_i \sigma_i(\nu) (\alpha l)$, where n_i and σ_i are the number densities and the photoionization cross sections of each species (H^0, He^0, He^+), respectively. The "local" size of the gas cloud l — the length that corresponds to the volume that the gas particle would occupy in space — is defined as $(m_{\text{gas}}/\rho)^{1/3}$.

For each gas particle, the UV background spectrum $J(\nu)$ is attenuated using this local optical depth, i.e. $J(\nu) e^{-\tau(\nu)}$ and new photoionization/heating rates and equilibrium number densities are calculated. We then determine a new $\tau_{\text{local}}(\nu)$ from these values and iterate this procedure until the photoionization rates and the optical depths converge. We use these final ionization/heating rates to calculate the Lyα and He II emissivity of each gas particle. This modified emissivity for each gas particle is what we will refer to as the self-shielding correction case.

In Figure 2 we show the local optical depths of each gas particle in the final equilibrium state as a function of over-density. For the 22 Mpc simulation at $z = 2$, we show $\tau(\text{H I})$ and $\tau(\text{He II})$, the optical depth at the H I (13.6 eV) and He II (54.4 eV) ionization edges, respectively. As indicated by the dotted lines, the H I optical depth increases abruptly at $\rho/\rho_b = 10^3$, while the gas becomes self-shielded quickly above this over-density. Because the transition from the optically thin case to the self-shielded phase occurs abruptly, we also consider the emissivity of a condensed phase cut case as the most conservative for the cooling radiation. There we set the emissivity of the self-shielded gas particles to zero.

Hence, in the following analyses, we consider three possibilities. First is the optically thin case that assumes a spatially uniform UV background for every gas particle. Second is the self-shielding corrected case described above that uses an attenuated UV background for each gas particle appropriate for the local optical depth. Third is the condensed phase cut case where we set the emissivity of gas with log $T < 4.5$ and $\rho/\rho_b > 10^3$ to zero. We emphasize again that while none of these possibilities are rigorously correct, they range from the most optimistic (1) to the most conservative case (3). Note again that case (1) is appropriate for He II, but the full range of cases should be considered for H I.

3. RESULTS

3.1. Cooling Maps

We generate H I $\lambda 1216$ and He II $\lambda 1640$ cooling maps at $z = 2$ and 3 by applying our line emissivities to each pixel element and integrating them along the line of sight. The temperature and density of each volume element is
He II Cooling Lines

Fig. 3.— H I λ1216 (top) and He II λ1640 (bottom) cooling maps for the 11 Mpc simulation at z = 3. The line of sight depth is ∆z ≃ 0.019. The left panels show a part (1/4 × 1/4) of our simulation, the middle panels show the brightest region at a finer pixel scale (∼1.5 h⁻¹ kpc per pixel), and the right panels show the cooling maps convolved with a 0.5 FWHM Gaussian filter to mimic a typical ground-based observation (re-binned to 0.2 per pixel). Note that we include Lyα and He II emission from the IGM assuming that the emissivity of the condensed phase is zero, the most conservative case. The Lyα cooling radiation from the gas around the forming galaxies will be observed as a diffuse and extended blob above ∼10⁻¹⁸ ergs s⁻¹ cm⁻² arcsec⁻², the current flux limit of ground-based detections (R = 100), whereas He II will be almost point source-like at current detection limits.

computed using the usual SPH smoothing kernels, and the abundances of ionic species are calculated from these smoothed quantities. The thickness of the 11 Mpc simulation along the line of sight is ∆z ≃ 0.013 and 0.019 for z = 2 and 3, respectively. We convert these cooling maps into surface brightness maps using our adopted cosmology. Figure 3 shows the H I λ1216 and He II λ1640 cooling maps for the 11 Mpc simulation at z = 3. We show the cooling maps for the condensed phase cut case to represent the most conservative prediction. The left panels show a part (1/4 × 1/4) of our simulation where the filamentary structure of the IGM — the so-called “cosmic web” — is evident. In the middle panels, we show the brightest region (also the most over-dense region for z = 3) at a finer pixel scale (∼1.5 h⁻¹ kpc per pixel; half of the spatial resolution of our simulation). The right panels show the cooling maps convolved with a 0.5 FWHM Gaussian filter to mimic a typical ground-based observation.

As shown in Figure 3, the Lyα cooling emission from the IGM is somewhat extended above the surface brightness threshold of 10⁻¹⁸ ergs s⁻¹ cm⁻² arcsec⁻² (the current limit of ground-based detections), whereas the He II emission will be seen almost as a point source. We will refer to these extended Lyα cooling sources in our simulations as Lyα blobs hereafter. In the cooling maps, we include only Lyα emission from the IGM, not from star formation (i.e. from photoionization caused by massive stars followed by recombination). However, we find a compact group of stars and/or star-forming particles, i.e., galaxies, at the center of each Lyα blob. Therefore, what we would actually observe are galaxies (or Lyα emitters if dust absorption is negligible) embedded within the Lyα blobs.

The most uncertain factor in generating the cooling maps is how much the self-shielded gas contributes to the emission. To quantify this factor globally in the simulations, we consider the H I λ1216 and He II λ1640 luminosity-weighted temperature and density plots for the optically thin (optimistic) case in Figure 4. To make these phase diagrams, we extract temperature and density profiles for 100×100 evenly-spaced lines of sight, apply our emissivities to each radial bin, and integrate the temperatures and densities with the H I λ1216 and
He II λ1640 luminosities as weighting factors. Thus each diagram represents the phases that we could actually probe by observing each line. In each phase diagram, the condensed phase of the IGM is delineated by dot-dashed lines. The sharp edge of the condensed phase at $T \sim 10^4$ K arises from the lack of metal-line cooling in our simulations. The diamonds in Figure 4 indicate the lines of sight that have He II λ1640 or H I λ1216 surface brightmesses larger than 10^{-19} ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$. Most He II λ1640 emission comes from a specific range of temperature ($10^5 < T < 10^6$) and density ($10^2 < \rho/\rho_b < 10^3$) that is remote from the condensed phase, whereas the brightest H I λ1216 blobs have significant amounts of condensed phase gas. Because self-shielding becomes important in the condensed phase, we exclude this phase in calculating the cooling maps (in Fig. 3) to produce our most conservative predictions. As we expect, this cutoff does not affect the He II cooling maps seriously, but does affect the H I λ1216 cooling map dramatically, as gas particles with $T < 10^4$ K cannot contribute to He II collisional excitation cooling but only to H I collisional excitation cooling. Therefore, our predictions for the He II λ1640 cooling radiation are far more robust than for H I λ1216.

The next factor that could modify the Lyα cooling maps is the radiative transfer of Lyα photons, which could alter the shapes and surface brightness profiles of the blobs substantially. Both the H I λ1216 and He II λ304 photons produced in the optically thick medium will be transported to the outer region by resonant scattering until the optical depth becomes smaller than $\tau \sim 2/3$. Lyα photons escape eventually by scattering into the optically thin damping wing in the frequency domain, unless they are extinguished by dust. We expect that the IGM at $z \sim 3$ contains little dust and that the cooling emission from the IGM is sufficiently far from the star-forming regions since we exclude the high density gas particles in our condensed phase cut case. Therefore, the net effect of the resonant scattering in the spatial and frequency domains is to smooth the surface brightness out to the last scattering surfaces. For example, Fardal et al. (2001) resorted to resonant scattering to explain the observed size of the Steidel blobs. However, owing to the complicated structure of the density and to turbulent velocity fields, it is difficult to predict how much radiative transfer blurs the surface brightness of the cooling blob. The large bulk motions will especially affect the transfer of Lyα photons. Depending on the optical depth and velocity field, photons can often undergo very little spatial diffusion and just random walk in velocity space until they reach a frequency where the optical depth is ~ 1 (Zheng & Miralda-Escudé 2002). A Monte Carlo Lyα radiative transfer calculation would be an ideal tool to make more realistic spatial and frequency maps of Ly cooling radiation (Zheng & Miralda-Escudé 2002; Kollmeier et al. 2003). In Figure 5 we show the profiles of density, temperature, velocity, and H I and He II emissivity for a line of sight toward a typical Lyα blob to illustrate the complicated structure of these quantities. Because we do not take into account these radiative transfer effects in our cooling maps, the H I λ1216 cooling map (the upper middle panel in Figure 3) should be smoothed to better represent reality. In contrast, because most He II resides in the ground state, making the IGM optically thin to the He II λ1640 line, our He II cooling maps should be accurate.

Besides gravitational cooling and photoionization caused by the UV background, supernova feedback is an-
other energy source included in our simulations. When stars form in the simulations, supernova feedback energy is deposited into the surrounding gas in the form of heat. Thermal energy deposited into dense, rapidly cooling gas is quickly radiated away, so feedback contributes somewhat to the cooling emission. However, we find that our density-temperature cutoff for the condensed phase effectively removes all the star-forming gas particles at each time step. Because the supernova thermal input is directly proportional to the star formation rate, our cooling maps without the condensed phase should not be seriously contaminated by supernova feedback energy. Thus the cooling maps in Figure 3 with the condensed phase removed are still robust lower limits of the flux from the gravitational cooling. Fardal et al. (2001) also show that while the re-radiated supernova energy dominates at lower luminosity, gravitational cooling becomes the dominant source as the mass and luminosity increase.

3.2. Properties of Cooling Sources

To study the properties of individual H I λ1216 and He II λ1640 sources like the ones shown in the cooling maps, we identify discrete groups of gas particles associated with individual dark matter halos and then calculate the total Ly α and He II λ1640 luminosities for these sources. To find the dark matter halos, we apply a friends-of-friends algorithm with a linking length that is 0.25 times the mean inter-particle separation. We count a gas particle as a member of the source, i.e. blob, associated with the dark matter halo if the distance from the potential center is less than the virial radius of the halo. We then add the Ly α and He II λ1640 luminosities of the particles to obtain the total cooling luminosities of the blob. We restrict our analysis to blobs with more than 64 gas particles and 64 dark matter particles to mitigate numerical resolution effects. Thus the smallest halo in the 22 Mpc simulation has a gas mass of $M_{\text{gas}} = 6.3 \times 10^4 M_\odot$ and dark matter mass of $M_{\text{dark}} = 5.0 \times 10^{10} M_\odot$. These masses decrease to $M_{\text{gas}} = 8.5 \times 10^8 M_\odot$ and $M_{\text{dark}} = 6.8 \times 10^9 M_\odot$ in the 11 Mpc simulation.

H I λ1216 and He II λ1640 cooling luminosities show tight correlations with halo mass and star formation rate (Fig. 6). The open squares, crosses and circles represent the luminosities for the three different emissivities discussed in §2.2 in the optically thin case, the self-shielding correction case, and the condensed phase cut cases, respectively. The correlations are as one would expect: the more massive a galaxy is, the more gas accretes onto the galaxy, resulting in more cooling radiation and a higher star formation rate. The distribution of cooling luminosity is continuous, and we do not find any evidence that extended Ly α or He II emission originates only from high-mass systems or high density regions.

The solid line in the upper panel in Figure 6 indicates the Ly α emission due to recombination from stellar ionizing photons. We assume a conversion factor of $f_{\text{Ly} \alpha} = 2.44 \times 10^{42}$ ergs s$^{-1}$ for a 1 M_\odot yr$^{-1}$ star formation rate with no dust absorption, no escaping ionizing photons, a Salpeter IMF, and solar metallicity. Under these assumptions the Ly α emission from star formation in galaxies always dominates the Ly α emission from the surrounding IGM, even in the (most optimistic) optically thin case. This result is consistent with the predictions of Fardal et al. (2001) and Furlanetto et al. (2005). The strong correlation between the Ly α cooling rate in the optically thin case (squares) and the star formation rate results from the fact that the gas in the condensed phase tends to satisfy the star formation criteria of the simulation and is likely to form stars in the next time step. In contrast, the He II emission caused by star formation is quite uncertain because only extremely low metallicity ($Z < 10^{-5}$) stars can emit the hard ionizing photons necessary to ionize He II. However, star formation at $z = 2 - 3$ is unlikely to be dominated by Population III or extremely low metallicity stars. Unlike for Ly α, the contribution of star formation to He II must be negligible. We discuss this point in more detail in §3.3.

Figure 7 shows the Ly α and He II luminosity functions (LFs) for the three emissivities at $z = 2$ and 3. The LFs include emission only from the IGM. The solid, dashed, and dot-dashed lines represent the optically thin, the self-shielding correction, and the condensed phase cut cases, respectively. The horizontal dotted lines indicate the number density of one halo in the simulation volume. Note that the distributions extend to brighter blobs as we increase the simulation volume because the larger simulations contain higher mass systems. Note also that the Ly α luminosity function is very sensitive to the assumed emissivities, whereas the He II λ1640 cool-
Fig. 6.— Lyα and He II luminosity as a function of the halo virial mass and the star formation rate in the 22 Mpc simulation at $z = 2$. The open squares, crosses and circles represent the three different emissivity predictions: the optically thin case, the self-shielding correction case, and the condensed phase cut case, respectively. In the right panels, we plot only blobs with a baryonic (star + gas) mass larger than $200 \, m_{SPH}$. Below this mass limit, the derived star formation rates are not reliable owing to our limited resolution. As discussed in the text, Lyα luminosity changes dramatically depending on the prescription used for the self-shielded phase. The correlations between the cooling luminosity, halo mass, and SFR are as one generally expects: the more massive a galaxy is, the more gas accretes onto the galaxy, resulting in more cooling radiation and a higher star formation rate. The solid line in the upper right panel represents the Lyα emission expected from star formation, assuming a conversion factor, $f_{Lyα} = 2.44 \times 10^{42}$ ergs s$^{-1}$, for a $1 \, M_\odot$ yr$^{-1}$ star formation rate with no dust absorption, no escaping ionizing photons, a Salpeter IMF, and solar metallicity. Note that under these assumptions the Lyα emission from star formation always dominates the cooling emission from the surrounding IGM.

3.3. Detectability and Observational Strategy

To estimate the detectability of cooling emission from the extended sources, we convert the rest-frame cooling maps at $z = 2$ and 3 into observed surface brightness maps and rebin them with a pixel scale of $0.5' \times 0.5'$ to mimic the independent resolution elements of ground-based observations (Fig. 3). Figure 4 shows the surface brightness distributions of the rebinned cooling maps at $z = 2$ and 3, assuming the conservative condensed phase cut case. Note that the distributions depend strongly on the size of the bins in the surface brightness maps, because the bright, small-scale structures are smoothed out by binning. We express each surface brightness distribution in terms of the number of binned pixels per comoving volume and also the number of pixels per square arcmin if one were to observe through a $R = 100$ narrow band filter. The projected angular extents of the 11 Mpc simulation at $z = 2$ and 3 are $11.4'$ and $9.4'$, respectively. The depth of the 11 Mpc simulation is $\Delta z \simeq 0.013$ and 0.019 for $z = 2$ and 3, respectively.

Deep, wide-field ($\sim 30' \times 30'$), narrow-band ($R > 100$) imaging is an effective way to detect cooling radiation, because sky noise dominates in this low surface brightness range. For example, the average sky background at 6500Å on the ground is $\sim 10^{-17}$ ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ Å$^{-1}$, comparable to our estimates for the brightest blobs. In Figure 3 we show the 5σ detection limits for typical $R = 100$ narrow band imaging with an 8m-class telescope and for $R = 1000$ imaging with a hypothetical 30m telescope. We assume a peak system throughput of $\sim 35\%$, a Mauna Kea sky background (for the 50% dark condition), and a 30-hour exposure time. We estimate the signal-to-noise ratios for one binned pixel ($0.5' \times 0.5'$), which corresponds to $\gtrsim 2 \times 2$ instrumental pixels in ground-based CCD detectors.
3.3.1. H I λ1216

We predict that H I λ1216 cooling emission from the brightest blobs at $z = 2$ and 3 is detectable by 6-8m class telescopes with moderate resolving power ($R = 100$). The limiting sensitivity of current surveys for high-z Lyα emitters is $\sim 10^{-18}$ erg s$^{-1}$ cm$^{-2}$ (e.g., Malhotra & Rhoads 2003, and references therein). It is encouraging that even our most conservative predictions suggest that the Lyα blobs arising from gravitational cooling radiation are detectable with a reasonable amount of telescope time.

The Lyα surface brightness of the largest system in our $z = 3$ simulation ($M_{\text{halo}} \sim 6.5 \times 10^{12} h^{-1} M_\odot$), corresponding to the brightest blob in Figure 3 is consistent with the mean surface brightnesses of the Lyα blobs of the Matsuda et al. (2004) sample (represented with small vertical bars in the Figure 3). Note that our predicted Lyα blob luminosities depend on the different emissivities for the self-shielded phase and/or the exact location of our density-temperature cut of the condensed phase.

Though the surface brightnesses of the predicted and observed blobs are consistent, the luminosity of our brightest Lyα blob is fainter than that of observed blobs (see Fig 4), possibly because of our conservative assumptions for the self-shielded phase.

3.3.2. He II λ1640

A pixel-by-pixel comparison of the H I λ1216 and He II λ1640 cooling maps reveals that, without the condensed phase, the He II λ1640 flux is always $\geq 10 \times$ fainter than that of H I λ1216. The He II λ1640 emission could be 1000× fainter than Lyα in the optically thin case, i.e., the most optimistic Lyα prediction. Nonetheless, detection of the He II λ1640 cooling line from $z = 2$ sources is clearly feasible with 6-8 meter class telescopes, and even possible at $z = 3$. Though the number statistics of bright blobs are limited by the relatively small volume of our simulations, we expect one source in the 11 Mpc simulation and six sources in the 22 Mpc simulation at $z = 2$ with areas of $0'5 \times 0'5$ above the surface brightness detection threshold of $\sim 5 \times 10^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ ($R = 100$ arrow in Figure 8). Thus the space density of the sources from which we could detect not only Lyα but also He II λ1640 emission with narrow band imaging corresponds to a comoving number density of $\sim 5 - 7 \times 10^{-4} h^3$ Mpc$^{-3}$ or ~ 0.02 arcmin$^{-2}$ per $R = 100$ filter ($\Delta z = 0.03; \Delta \lambda \approx 49\AA$ for He II λ1640).

If we consider the larger survey volume typically accessible by modern narrow band imagers, we could expect better survey efficiency than that described above. Because cosmological simulations do not contain power on
scales larger than their finite sizes, the largest objects in the simulation are typically underrepresented in number and size. For example, the luminosity functions and surface brightness distributions in Figs. [4] and [S] extend their bright limits as the volume of the simulation increases. Therefore, one might expect that the detection of even brighter blobs by surveying more volume. For example, many current wide-field imagers and spectrographs have half degree field of views, so it is possible to survey a volume ~ 17 times larger than encompassed by our 11 Mpc simulation at $z = 2$ (or a volume \sim twice that of the 22 Mpc simulation). Therefore, if we naively extrapolate the number of detectable He II sources in our 11 Mpc and 22 Mpc simulations, then 17 (± 17) and 13 (± 5) He II sources would be detected, respectively. The numbers within parentheses indicate Poisson errors.

Our results predict that bright He II sources are always bright Lyα cooling blobs. Observationally, the difficulties in searching for He II cooling sources could be eased (1) by pursuing narrow-band Lyα imaging first, detecting Lyα blobs, and looking for He II $\lambda 1640$ emission in those blobs with follow-up observations, or (2) by adopting a combined multi-slit spectroscopy + narrow-band filter approach [Martin & Sawicki 2004; Tran et al. 2004] to identify Lyα blobs (which can then be targeted for He II).

The latter technique is potentially quite effective despite the faint surface brightness of the Lyα and He II blobs. This technique employs multiple parallel long slits with a narrow band filter that limits the observed spectral range to a few hundred angstroms and, by dispersing the sky background, achieves better sensitivity than narrow-band imaging alone. In the sense that this technique trades off survey volume (or sky coverage) to go deeper in flux, it is about as efficient as simple narrow band imaging for surveys of Lyα emitters, which are not as extended as Lyα blobs. However, the multi-slit window technique is superior to narrow band imaging for low surface brightness objects like the Lyα and He II blobs discussed here. It has the further advantages that 1) it provides the spectral and kinematic data necessary to distinguish the origins of blob emission (4 and 2) it enables us to exclude contaminating emission lines, such as Hα, Hβ, [O III], and [O II], from nearby star-forming galaxies by measuring the line shapes (e.g., line asymmetries and line doublets) and blueward continuum. If this technique is employed with large field-of-view imagers, the survey volume covered by the multiple slits is still reasonably large ($\sim 10\%$ of the whole field of view).

It is possible to search for He II cooling radiation at lower redshifts than $z \sim 2 - 3$. For example, $z \approx 1.5$ is the lowest redshift at which He II $\lambda 1640$ still lies at an optical wavelength ($\lambda_{\text{obs}} \approx 4100$ Å). Because metal abundances in the IGM do not change very much over $z \sim 2 - 4$ [Schaye et al. 2003], it is unlikely that our basic assumption of a primordial composition [2] is violated seriously at $z \approx 1.5$. Any blind search for He II $\lambda 1640$ blobs at $z = 1.5 - 2$ will be contaminated by H I Lyα emission from $z \approx 3$ sources if only one emission line is identified in the spectrum. In this case, the blob’s redshift could be further constrained by obtaining a redshift for the galaxy it surrounds.

He II $\lambda 1640$ cooling radiation at very low redshifts ($z \lesssim 0.5$) is potentially detectable in the ultraviolet using UV satellites or HST. For example, Erb et al. [2003] show that detection of the bright cores of H I $\lambda 1216$ emission from $z \lesssim 0.5$ sources is feasible with deep wide-field UV imaging, e.g. with The Galaxy Evolution Explorer (GALEX) or the proposed Space Ultraviolet-Visible Observatory (SUVO; Shull et al. 1999). Because H I $\lambda 1216$ and He II $\lambda 1640$ trace different phases of the gas, as shown in Figure [1] combined observations of these two lines, e.g., of their morphologies and line ratios, would probe different phases of the IGM.

3.3.3. He II $\lambda 304$

In contrast to H I $\lambda 1216$ and He II $\lambda 1640$, He II $\lambda 304$ photons redshifted to wavelengths shorter than the photoionization edge of H I and He I (912Å and 504Å, respectively) can be absorbed by neutral hydrogen and neutral helium. Even if they escape the blobs, He II $\lambda 304$ photons are removed from the line of sight owing to cumulative absorption by the intervening neutral IGM, including the Lyα forest and damped Lyo systems. We estimate the transmission of He II $\lambda 304$ through the intervening IGM using Monte Carlo simulations as described in [Møller & Jakobsen 1999] with the updated statistics of Lyman forest and Lyman limit systems (i.e., number density evolution and column density distribution) from [Jakobsen 1998]. For the emitters at $z = 3$, we find that the transmission factor averaged over all lines of sight is $\sim 12\%$ and that 67% (76%) of the sightlines will have transmission lower than 1% (10%). Therefore, though the He II $\lambda 304$ emissivity is roughly 10× higher than that of He II $\lambda 1640$ (Fig. [1] in [2]), we expect the He II $\lambda 304$ cooling map to be fainter than that of He II $\lambda 1640$ in most cases and to vary strongly from sightline to sightline.

He II $\lambda 304$ photons can also be destroyed by the H I and He I inside the blobs, because He II $\lambda 304$ photons experience a large number of scatterings before escaping. The destruction probability by H I and He I atoms per scattering is given by

$$\epsilon = \frac{n_{\text{HI}}\sigma_{\text{HI}} + n_{\text{HeI}}\sigma_{\text{HeI}}}{n_{\text{HI}}\sigma_{\text{HI}} + n_{\text{HeI}}\sigma_{\text{HeI}} + n_{\text{HeII}}\sigma_{\text{LyO}}},$$

where σ_{HI} and σ_{HeI} are the photoionization cross sections of H I and He I at 304 Å, respectively, and σ_{LyO} is the integrated scattering cross section of He II $\lambda 304$. The abundances of H I and He I atoms are smaller than for He II, and their photoionization cross sections are also much smaller than the resonant cross section of He II $\lambda 304$ by a factor of $\lesssim 2 \times 10^{-5}$. We estimate that the destruction probability is $\epsilon \gtrsim 5 \times 10^{-6}$ at a temperature of $T \sim 10^{4.8}$ without applying the self-shielding correction. In the self-shielded regions where more neutral hydrogen can reside, this probability rises. Thus the escape probability of a He II $\lambda 304$ photon from a blob is $f_{\text{GM}} \approx (1 - \epsilon)^{N_r}$, where $N_r \approx n^2$ is the number of scatterings required to escape the blob, if it is approximated by an optically thick slab. For example, we obtain $f_{\text{GM}} \approx 0.7\%$ for $n_{\text{HeII}} = 10^4$. Therefore, we cannot ignore the absorption by H I and He I atoms in the high

\[3\] If one sightline does not have any Lyman limit or damped Lyα systems, it will have $\sim 87\%$ transmission on average due to Lyman forest systems.
density gas. However, the number of scatterings N_r is very difficult to estimate correctly because of the complex density and velocity structure of the blob, unless one carries out full 3-D hydro-radiative transfer calculations (which are beyond the scope of this paper). For certain geometries and velocity fields, bulk motions of the gas (which are beyond the scope of this paper). For certain geometries and velocity fields, bulk motions of the gas will help the He II λ304 photons escape the blob with fewer scatterings (e.g., Zheng & Miralda-Escudé 2002).

Owing to intervening absorption and the destruction inside the blobs, He II λ304 is the most uncertain cooling line we consider. Although He II λ304 is diminished significantly by the intervening IGM, if the escape fraction from the IGM is significant ($f_{\text{IGM}} \approx 1$), the detection of He II λ304 may not be out of question with a large aperture UV/optical optimized space telescope (e.g., SUVO; Shull et al. 1994). An advantage of observing He II λ304 in the far ultraviolet in space is that the sky background is very low ($\sim 10^{-21}$ ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ Å$^{-1}$ at 1250 Å) compared to the optical ($\sim 10^{-18}$ ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ Å$^{-1}$ at 6500 Å), except for the geocoronal emission lines (e.g., Lyα 1216 Å and O I 1304 Å). Thus, if these geocoronal emission lines could be eliminated with blocking filters or by adopting an L2 orbit, the direct detection of He II λ304 is feasible. In this case, the detector noise — especially the dark current — will dominate. Recent developments in UV detector technology are very promising, so the possibility of studying these blobs at those wavelengths remains open.

Until now, we have only considered the cooling radiation from gas that is losing its gravitational energy, falling into a galaxy-sized dark halo, and ultimately forming stars. Photoionization by these stars is another possible heating source for the blobs. Starburst-driven superwinds or AGNs, which are not included in our simulations, are other potential blob energy sources (e.g., see the discussions in Steidel et al. 2003; Matsuda et al. 2004). Although the radiation from gas heated by these feedback processes is not generally termed “cooling radiation”, the energy injected into the surrounding gas can also be released through line emission. Thus our estimates for cooling emission might be lower limits for the actual fluxes in the cooling lines. In this section, we assess whether other H I λ1216 and He II λ1640 sources overwhelm our gravitational cooling signals and then discuss how to discriminate among these other possible mechanisms in order to use H I λ1216 and He II λ1640 cooling lines to study gas infall into galaxies.

4. DISCUSSION

4.1. Photoionization by Stellar Populations

UV photons from massive stars in a galaxy or blob ionize the surrounding interstellar medium, and the recombination lines from these nebulae could contribute to the Lyα and He II line fluxes. Generally, the recombination line luminosity is proportional to the star formation rate (SFR) and is given by

$$L_{\text{line}} = e^{-\tau_{\text{dust}}} (1 - f_{\text{esc}}) f_{\text{IGM}} f_{\text{line}} \left(\frac{\text{SFR}}{M_{\odot} \text{yr}^{-1}} \right),$$

where τ_{dust} is the dust optical depth for the ionizing continuum in the interstellar medium (ISM), f_{esc} is the
fraction of ionizing photons that escape the star-forming galaxy, \(f_{\text{igm}} \) is the fraction of photons that escape the surrounding IGM, and \(f_{\text{line}} \) is the conversion factor from the SFR to the line luminosity in ergs s\(^{-1}\). This SFR conversion factor depends on the metallicity, initial mass function (IMF), and evolutionary history of the stars in the blobs (e.g., a lower metallicity and a top heavy IMF produce more ionizing photons and thus more recombination line photons). \(^4\)

The conversion factor for \(\text{H} \ I \ \lambda 1216, f_{\lambda 1216} \), is large enough to make it difficult to distinguish the cooling lines (of IGM origin) from the recombination-induced lines (of ISM origin). For example, \(f_{\lambda 1216} = 2.44 \times 10^{42} \) ergs s\(^{-1}\) for a constant star formation history, solar metallicity, and a Salpeter IMF with a mass range of \(1 - 100 M_\odot \). Thus for a SFR = 10 \(M_\odot \) yr\(^{-1}\), \(f_{\text{esc}} \approx 0.1, e^{-\tau_{\text{dust}}} \approx 0.1, \) and \(f_{\text{igm}} \approx 1, \) we obtain the observed flux, \(F_{\lambda 1216} \approx 2.9 \times 10^{-17} \) ergs cm\(^{-2}\) s\(^{-1}\), due to the stars in a Ly\(\alpha \) blob at \(z = 3 \), which is comparable to the surface brightness of the brightest blobs in our simulations (see §4.3 for the blob luminosity functions).

Therefore, the contamination of the \(\text{H} \ I \ \lambda 1216 \) line by stars is not negligible, unless the Ly\(\alpha \) photons from star-forming regions are heavily absorbed by a dusty ISM (e.g., in highly obscured sub-millimeter galaxies or Lyman break galaxies with the damped Ly\(\alpha \) absorption). Because Ly\(\alpha \) cooling radiation is produced sufficiently far from the star-forming region and thus should be less susceptible to dust attenuation than the Ly\(\alpha \) emission from the stellar populations, it might be possible to isolate extended Ly\(\alpha \) cooling radiation in these galaxies. However, in the case that Ly\(\alpha \) photons emitted by stars escape the galaxy (e.g., Ly\(\alpha \) emitters), it will be challenging to distinguish the Ly\(\alpha \) cooling radiation from the Ly\(\alpha \) produced by the stellar populations unless the various parameters such as \(f_{\text{esc}}, f_{\text{igm}}, \) and SFR are fully constrained.

In contrast, He II \(\lambda 1640 \) emission appears to be limited to very small metallicities (log \(Z/Z_\odot \) \(\lesssim -5.3 \)) and Population III objects, because stars of solar or subsolar metallicities emit few if any He II ionizing photons (Bromm, Kudritzki,
& Loeb 2001; Schaerer 2003; Tumlinson, Shull, & Venkatesan 2003). Using He II \(\lambda 1640 \) to detect the first hard-ionizing sources such as metal-free stellar populations, the first miniquasars, or even stellar populations before the reionization epoch has been proposed (e.g., Tumlinson, Giroux,
& Shull 2001; Oh, Haiman,
& Rees 2001; Barton et al. 2004). In this paper, we take advantage of this fact to discount the contributions of stellar populations to the He II \(\lambda 1640 \) cooling line. Even for \(Z = 10^{-5}, f_{\lambda 1640} = 1.82 \times 10^{49} \) ergs s\(^{-1}\) (\(\approx 6 \times 10^{-4} f_{\lambda 1216} \)) for an extremely top heavy IMF containing only stars in the range 50 – 500 \(M_\odot \). For the same assumptions used in the Ly\(\alpha \) calculation above, we obtain an observed flux of \(F_{\lambda 1640} \approx 2.2 \times 10^{-19} \) ergs cm\(^{-2}\) s\(^{-1}\) from the blob stars at \(z = 3 \), an order of magnitude below the brightest He II \(\lambda 1640 \) blobs in our simulations. Therefore, it is very unlikely that the He II \(\lambda 1640 \) photons originating from stars contaminate the gravitational cooling emission, unless significant numbers of metal-free stellar populations are forming. Thus He II \(\lambda 1640 \) cooling radiation is much less contaminated than \(\text{H} \ I \ \lambda 1216 \) by recombination lines originating from star-forming galaxies.

The only caveat is the possibility of He II \(\lambda 1640 \) emission arising not from stars directly, but from the hot, dense stellar winds of Wolf-Rayet (W-R) stars, the descendents of O stars with masses of \(M > 20 - 30 M_\odot \). W-R populations formed in an instantaneous starburst at high redshifts would not seriously contaminate the He II \(\lambda 1640 \) cooling radiation, because W-R stars are very short-lived (\(\lesssim 3 \) Myr) and their number relative to O stars (W-R/O) drops as the metallicity decreases below solar. In the case of continuous star formation, a stellar population synthesis model (Starburts99, Leitherer et al. 1999) predicts that the maximum number of W-R stars is reached \(\sim 10 \) Myr after the initial burst. Using the He II \(\lambda 1640 \) luminosity of a W-R star (Schaerer
& Vacca 1998) and the number evolution of W-R stars from Starburst99 under the assumptions of a Salpeter IMF (1 – 100 \(M_\odot \)), subsolar metallicity (\(Z \lesssim 0.4 Z_\odot \)), and a massive SFR of 10 \(M_\odot \) yr\(^{-1}\) over at least 10 Myr, we estimate the He II \(\lambda 1640 \) line luminosity due to W-R stellar winds to be \(\lesssim 10^{42} \) ergs s\(^{-1}\). Although this He II \(\lambda 1640 \) luminosity is comparable to the predicted He II cooling radiation, it is possible to discriminate between the two He II \(\lambda 1640 \) sources in individual objects because the emission from W-R winds should be much broader (e.g., \(\sim 1000 \) km s\(^{-1}\); see Fig. 3 in §4.3 which is relevant here even though it is presented in the context of the galactic superwind scenario).

One way to test our predictions in this section is to look more closely at the He II \(\lambda 1640 \) emission associated with high redshift star-forming galaxies, i.e., the Lyman break galaxies (LBGs) with vigorous star formation rates. Shapley et al. (2003) show that composite spectra of LBGs have very broad (FWHM \(\sim 1500 \) km s\(^{-1}\)) He II \(\lambda 1640 \) profiles regardless of their Ly\(\alpha \) emission strength. While they attribute the He II features to W-R stellar winds, those authors have difficulty reproducing the strength of the He II lines using stellar population synthesis models with reasonable parameters. Because of this inconsistency, we speculate that some fraction of the He II features may come from the cooling of gas falling into these galaxies along line of sight. It would be worthwhile to obtain high signal-to-noise spectra of individual LBG’s and their surroundings to see if the He II line is present, especially outside the galaxy, and relatively narrow.

4.2. Photoionization by AGNs

AGNs inside the star-forming regions of blobs could photoionize the surrounding gas and generate He II \(\lambda 1640 \) as well as H I \(\lambda 1216 \) emission. The predicted size (a few arcseconds) and surface brightness (\(\sim 10^{-18} - 10^{-16} \) ergs s\(^{-1}\) cm\(^{-2}\) arcsec\(^{-2}\)) of an extended Ly\(\alpha \) blob enshrouding a quasar are consistent with the observed quantities (Haiman
& Rees 2001).

How many AGN-powered sources might we expect in
a Lyα/He II blob survey? Unfortunately, it appears that there is no easy way to predict Lyα/He II luminosity from the surrounding IGM, because we do not know how much neutral IGM is distributed around the AGN. Therefore we take a conservative approach to estimate the number of the AGN-powered sources. First, we establish a simplistic relationship between the induced Lyα (or He II) blob luminosity and the X-ray luminosity of the AGN, then we estimate the number of AGN-powered blobs based on the known hard X-ray luminosity function of AGN at $z = 2 - 3$. If there are not many relative to the number of blobs powered by gravitational cooling radiation, then we could conclude that they are unlikely to complicate the interpretation of extended Lyα/He II sources.

We assume that all the ionizing photons from an AGN with a simple power-law spectrum, $L_{\nu} = L_0 (\nu/\nu_0)^\alpha$, are absorbed by the surrounding medium and re-emitted as recombination lines. The line (Lyα or He II) luminosity of the surrounding blob is then given by:

$$L_{\text{line}} = c_{\text{line}} Q = c_{\text{line}} \int_{\nu_{LL}}^{\infty} L_0 \frac{\nu}{h \nu_0} (\frac{\nu}{\nu_0})^\alpha,$$

(5)

where Q is the number of ionizing photons emitted per unit time, ν_{LL} is the frequency of the Lyman limits for the hydrogen and He II ($h \nu_{LL} = 13.6$ eV and 54.4 eV respectively), and the line emission coefficient c_{line} in ergs is the energy of the line photon emitted for each H I or He II ionizing photon. For case-B recombination with an electron temperature of $T_e = 30,000$K and an electron number density of $n_e = 100$ cm$^{-3}$, we obtain $c_{\text{line}} = 1.04 \times 10^{-11}$ and $c_{\text{HeII}} = 5.67 \times 10^{-12}$ ergs (c.f. Schaerer 2003). We adopt a spectral index $\alpha = -1.8$ for the extreme UV (Teller et al. 2002) and assume that this α is valid even in the X-ray. The hard X-ray luminosity of AGN (L_X) is simply given by the integration of L_{ν} between 2 keV and 8 keV.

Once the Lyα (or He II) luminosity is monotonically linked with the AGN X-ray luminosity, we estimate the number density of AGN-powered sources from the hard X-ray luminosity function (e.g., Berger et al. 2003, Cowie et al. 2003). To power a blob with $L_{\text{Ly}\alpha} = 10^{43}$ ergs s$^{-1}$, an AGN must have $L_X \gtrsim 10^{42.5}$ ergs s$^{-1}$, which would generate a He II blob with $L_{\text{HeII}} \gtrsim 10^{41.7}$ ergs s$^{-1}$. Around the required X-ray luminosity, Cowie et al. (2003) derive the number density of X-ray selected AGNs regardless of their optical AGN signatures to be $1.3 \times 10^{-5} \lesssim \Phi(L_X > 10^{42}$ ergs s$^{-1}) \ll 1.4 \times 10^{-4}$ Mpc$^{-3}$ at $2 < z < 4$. The extreme upper limit was determined by assigning all the unidentified sources in the survey to $2 < z < 4$ and is thus very conservative. For the brightest cooling sources in our simulations (Fig. 7), we find $\Phi(L_{\text{Ly}\alpha} \gtrsim 10^{43}) \sim 3 \times 10^{-5}$ Mpc$^{-3}$ and $\sim 9 \times 10^{-4}$ Mpc$^{-3}$ for the condensed phase cut and the self-shielding correction cases, respectively.

Note again that our assumption that all the ionizing photons from all AGNs are absorbed to produce Lyα/He II photons is very conservative and that we are clearly over-predicting the number of AGN-powered blobs. However, even under this conservative assumption the number density of AGN-powered sources is only marginally comparable to the number density of cooling sources in our simulations. Therefore, at present, we conclude simply that a survey for extended Lyα and He II cooling radiation is not likely to be swamped by AGN-powered sources.

The above arguments are statistical, whereas distinguishing gravitational cooling radiation from the emission of AGN-photoionized gas for an individual source requires a multi-wavelength approach. It is therefore useful to target fields with a large amount of ancillary data (e.g., deep broad-band or X-ray imaging) to make an unambiguous detection of a true He II cooling blob. First, searching for the C IV (1549 Å) emission line in the optical spectrum of the source is a good way to identify an AGN (e.g., Keel et al. 1999). The composite spectra of optically selected quasars show bright C IV lines, but much fainter He II lines (Teller et al. 2002). The recently discovered Lyα blob associated with a luminous infrared source (Dev et al. 2005) shows unusually strong He II λ1640 lines and C IV lines in a localized region near the center of nebula, suggesting that this Lyα blob is powered, at least in part, by an obscured AGN. On the other hand, the absence of a C IV line in a spectrum with strong He II emission might indicate gravitational cooling gas like that in our simulations. As we discuss in the next section, the kinematics of the He II line can further constrain the origin of the He II emission. Second, if the AGN is heavily obscured, deep X-ray imaging of \sim Msec will provide the most direct probe, because X-rays from the AGN can penetrate the large column densities of gas and dust.

4.3. Superwinds

Alternatively, Taniguchi & Shioya (2000) suggest that galactic superwinds driven by starbursts could power the extended Lyα blobs. In this scenario, the collective kinetic energy of multiple supernovae is deposited into the surrounding gas, producing a super-bubble filled with hot and high-pressure gas. If the mechanical energy over-
comes the gravitational potential of the galaxies, this metal-enriched gas blows out into the surrounding primordial IGM and evolves into superwinds.

While the luminosity and sizes of the observed blobs are roughly consistent with the predictions of simple wind models, the mechanism to convert the mechanical energy into Lyα emission is not clear. Using a fast-shock model, [Francis et al. 2003] show that if the shocks are radiative, the emission from the excited gas in the shock itself and the photoionized precursor region in front of the shock can explain the observed Lyα surface brightness of the blobs. For example, if we adopt the fiducial model of the pre-run shock grids from [Allen et al. 2004] (MAPPINGS code by Dopita & Sutherland 1996) with a shock velocity of 700 km s$^{-1}$, a number density of 10^{-2} cm$^{-3}$, a magnetic parameter of $B/\sqrt{n} = 2\mu$G cm$^{3/2}$, and solar metallicity, then the Lyα and He II $\lambda 1640$ emissivity from the shock + precursor region will be ~ 0.04 and 0.002 ergs s$^{-1}$ cm$^{-2}$, respectively. If the shock is perpendicular to our line of sight, we would expect surface brightnesses of $F_{Ly\alpha} \sim 3 \times 10^{-18}$ and $F_{HeII} \sim 1.5 \times 10^{-19}$ ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at $z = 3$. This Lyα surface brightness is roughly consistent with the observed mean surface brightness of Lyα blobs [Matsuda et al. 2004], but is an underestimate if we consider that Lyα emission can be suppressed by various factors such as self-absorption and that the density of the IGM is possibly lower than the assumed density. If the IGM in the preshock region is composed of neutral primordial gas, the UV photons produced in the post-shock plasma will ionize the preshock region, and the lack of an effective cooling mechanism other than the atomic hydrogen and helium lines can boost the Lyα and He II $\lambda 1640$ line emissivities significantly. However, the low metallicity shock grid is not currently available, and the density of the IGM in the preshock region and the effect of mixing between the metal-enriched winds and the pristine IGM are quite uncertain. Thus it is difficult to predict how much mechanical energy is released through the Lyα or He II $\lambda 1640$ lines in the superwind model.

One important feature of the superwind shock model is that it also predicts many UV diagnostic lines (e.g., C IV $\lambda 1549$) that have been used to study the energetics of the narrow-line region in AGNs. The debate about the origin of the Lyα blobs arises mainly because Lyα is not a good diagnostic line to discriminate between AGN photoionization and superwind shock-excitation owing to its sensitivity to resonant scattering and obscuration by dust. Ideally, line ratios (e.g., He II/C IV, once detected) could be used to discriminate among the different mechanisms.

The kinematics of the blob is potentially another test of the superwind hypothesis, because of the expected bipolar outflow motion of the expanding shell. For example, [Ohmura et al. 2003] claim that Blob 1 of Steidel et al. (2000) shows both blueshifted and redshifted components ($\sim \pm 3000$ km s$^{-1}$) in the central region, and they attribute these profiles to the expanding bipolar motion of a shocked shell driven by a superwind. On the other hand, using integral field spectrograph data, [Bower et al. 2003] argue that Blob 1 has chaotic velocity structures that can be explained by the interaction of slowly rising buoyant material with cooling gas in the cluster potential, and that a powerful collimated outflow alone appears inconsistent with the lack of velocity shear across the blob.

We show the He II $\lambda 1640$ luminosity-weighted velocity dispersions of the gas particles associated with individual blobs in Figure 9. The effect of Hubble expansion and peculiar motion is included in the velocity dispersion calculations but the thermal broadening for each gas particle is not. Most halos have velocity dispersions smaller than ~ 400 km s$^{-1}$, compared to the typical superwind speed of several hundreds to a 1000 km s$^{-1}$ (e.g., [Heckman et al. 2000; Pettini et al. 2001]). For the superwind case, because the observed Lyα emission comes mainly from the shock between the outflow from a galaxy and the surrounding pristine IGM, we expect the He II emission to be as extended as the observed Lyα emission. Therefore, if we observe a spatially resolved Lyα and He II emitting blob, and its velocity dispersion is larger than 400 km s$^{-1}$, it is possible to exclude cooling radiation as the source of that blob. Note that there would be no ambiguities in measuring the size and line broadening because He II $\lambda 1640$ is optically thin. Thus He II $\lambda 1640$ is a finer tool than H I $\lambda 1216$ to study the kinematic properties of Lyα blobs.

5. CONCLUSIONS

In this paper, we use high resolution cosmological simulations to study the gravitational cooling lines arising from gas accreted by forming galaxies. Because baryons must radiate thermal energy to join a galaxy and form stars, accreting gas produces extended H I $\lambda 1216$ emission (a “Lyα blob”) surrounding the galaxy. We also expect cooling lines from singly ionized helium such as He II $\lambda 1640$ to be present within Lyα blobs. We investigate whether three major atomic cooling lines, H I $\lambda 1216$, He II $\lambda 1640$, and He II $\lambda 304$ are observable in the FUV and optical. We discuss the best observational strategies to search for cooling sources and how to distinguish them from other possible mechanisms for producing Lyα blobs. Our principal findings are:

1. H I $\lambda 1216$ and He II $\lambda 1640$ (He II Balmer α) cooling emission at $z = 2 - 3$ are potentially detectable with deep narrow band imaging and/or spectroscopy from the ground. He II $\lambda 304$ will be unreachable until a large aperture UV space telescope (e.g. SUVO; Shull et al. 1999) is available.

2. While our predictions for the strength of the H I $\lambda 1216$ emission line depend strongly on how to handle the self-shielded gas, our predictions for the He II $\lambda 1640$ line are rather robust owing to the negligible emissivity of He II for the self-shielded IGM below $T \sim 10^{4.5}$ K.

3. Although He II $\lambda 1640$ cooling emission is fainter than Lyα by at least a factor of 10 and, unlike Lyα blobs, might not be resolved spatially with current observational facilities, it is more suitable to study gas accretion in the galaxy formation process because it is optically thin, less sensitive to the UV background, and less contaminated by recombinations lines from star-forming galaxies.

4. To use the H I $\lambda 1216$ and He II $\lambda 1640$ cooling lines to constrain galaxy formation models, we first need to exclude the other possible mechanisms for producing Lyα blobs. First, because He II $\lambda 1640$ emission from stars is limited to stars with very low metallici-
ties ($\log(Z/Z_\odot) \lesssim -5.3$) and Population III objects, its detection, unlike Lyα, cannot be caused by stellar populations. Second, the kinematics of the He II $\lambda 1640$ line can distinguish gravitational cooling radiation from a scenario in which starburst-driven superwinds power Lyα blobs, because the He II line width from cooling gas is narrower ($\sigma < 400$ kms$^{-1}$) than the typical wind speeds (which are factors of several higher). Third, if some fraction of the He II emitting blobs are powered by AGN, additional diagnostics such as the C IV line and/or X-ray emission can be used to discriminate gravitationally cooling blobs from those powered, at least in part, by AGN.

We thank an anonymous referee for his/her thorough reading of the manuscript and helpful comments. We thank Mark Fardal, Dusan Keres and Jane Rigby for valuable discussions. YY and AIZ acknowledge funding from HST grant GO-09781.03-A, NASA LTSA grant NASG-11108, and NSF grant AST 02-06084. NK and DHW were supported by NASA NAGS-13308 and NASA NNG04GK68G. In addition NK was supported by NSF AST-0205969.

REFERENCES

Aggarwal, K. M., Callaway, J., Kingston, A. E., & Unnikrishnan, K. 1992, ApJS, 80, 473
Allen et al., 2004, in preparation.
Barger, A. J., et al. 2003, AJ, 126, 632
Barton, E. J., Davé, R., Smith, J. T., Papovich, C., Hernquist, L., & Springel, V. 2004, ApJ, 604, L1
Binney, J. 1977, ApJ, 215, 483
Birnboim, Y. & Dekel, A. 2003, MRAS, 345, 349
Bower, R. G., et al. 2004, MRAS, 351, 63
Bromm, V., Kudritzki, R. P., & Loeb, A. 2003, ApJ, 552, 464
Cantalupo, S., Porciani, C., Lilly, S. J., & Miniati, F. 2005, ApJ, in press, astro-ph/0504015
Cowie, L. L., Barger, A. J., Bautz, M. W., Brandt, W. N., & Garnire, G. P. 2003, ApJ, 584, L57
Davé, R. et al. 2001, ApJ, 552, 473
Davé, R., Dubinski, J., & Hernquist, L. 1997, New Astronomy, 2, 277
Dekel, A., & Birnboim, Y. 2005, MRAS, submitted, astro-ph/0412300
Dey, A., et al. 2005, ArXiv Astrophysics e-prints, astro-ph/0503632
Dopita, M. A. & Sutherland, R. S. 1996, ApJS, 102, 161
Fardal, M. A., Katz, N., Gardner, J. P., Hernquist, L., Weinberg, D. H., & Davé, R. 2001, ApJ, 562, 605
Francis, P. J., et al. 2001, ApJ, 554, 1001
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2003, ApJ, 599, L1
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2005, ApJ, 622, 7
Haardt, F. & Madau, P. 1996, ApJ, 461, 20
Haiman, Z., Strauss, M., & Quataert, E. 2000, ApJ, 537, L5
Haiman, Z. & Rees, M. J. 2001, ApJ, 556, 87
Heckman, T. M., Lehnert, M. D., Strickland, D. K., & Armus, L. 2000, ApJS, 129, 493
Jakobson, P. 1998, A&A, 335, 876
Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19
Katz, N., Keres, D., Dave, R., & Weinberg, D. H. 2003, ASSL Vol. 281: The IGM/Galaxy Connection. The Distribution of Baryons at z=0. 185
Keres, D., Katz, N., Weinberg, D. H., & Dave, R. 2004, ArXiv Astrophysics e-prints, astro-ph/0407095
Keel, W. C., Cohen, S. H., Windhorst, R. A., & Waddington, I. 1999, AJ, 118, 2547
Kollmeier et al., 2005, in preparation.
Leitherer, C., et al. 1999, ApJS, 123, 3
Malhotra, S., & Rhoads, J. E. 2004, ApJ, 617, L5
Martin, C. L., & Savicki, M. 2004, ApJ, 603, 414
Matsuda, Y., et al. 2004, AJ, 128, 569
Møller, P. & Jakobsen, P. 1990, A&A, 228, 299
Murai, C., Katz, N., Hernquist, L., Weinberg, D. H., & Davé, R. 2002, ApJ, 571, 1
Oh, S. P., Haiman, Z., & Rees, M. J. 2001, ApJ, 553, 73
Ohyama, Y., et al. 2003, ApJ, 591, L9
Pettini, M., Shapley, A. E., Steidel, C. C., Cuby, J., Dickinson, M., Moorwood, A. F. M., Adelberger, K. L., & Giavalisco, M. 2001, ApJ, 554, 981
Schaerer, D. 2003, A&A, 397, 527
Schaerer, D., & Vacca, W. D. 1998, ApJ, 497, 618
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65
Shull et al., 1999, UVOWG White Paper: “The Emergence of the Modern Universe: Tracing the Cosmic Web”, astro-ph/9907101
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M. 2000, ApJ, 532, 170
Storey, P. J. & Hummer, D. G. 1995, MRAS, 272, 41
Taniguchi, Y. & Shioya, Y. 2000, ApJ, 532, L13
Telfer, R. C., Zheng, W., Kriss, G. A., & Davidsen, A. F. 2002, ApJ, 565, 773
Tran, K. H., Lilly, S. J., Crampton, D., & Brodwin, M. 2004, ApJ, 612, L89
Tripp, T. M., Savage, B. D., & Jenkins, E. B. 2000, ApJ, 534, L1
Tumlinson, J., Giroux, M. L., & Shull, J. M. 2001, ApJ, 550, L1
Tumlinson, J., Shull, J. M., & Venkatesan, A. 2003, ApJ, 584, 608
White, S. D. M. & Rees, M. J. 1978, MRAS, 183, 341
Zheng, Z., & Miralda-Escudé, J. 2002, ApJ, 578, 33