ETHNOMEDICINAL, PHYTOCHEMICAL, AND PHARMACOLOGICAL ASPECTS OF GENUS ACANTHUS

REKHA BORA1, PARTHA PRADIP ADHIKARI2*, AJIT KUMAR DAS1, NANJIAN RAAMAN3, GAURI DUTT SHARMA4

1Laboratory of Ethnobotany and Medicinal Plants Conservation, Department of Ecology and Environmental Science, Assam University, Silchar 788011, India, 2Laboratory of Natural Product and Synthetic Organic Chemistry, Department of Chemistry, Assam University, Silchar 788011, India and Genoine Research Laboratory Pvt. Ltd., Subhash Nagar, Karimganj 788710, Assam, India, 3Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India, 4Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India and Bilaspur Vishwavidyalaya, Bilaspur 495001, Chhattisgarh, India

Received: 03 Sep 2017 Revised and Accepted: 02 Nov 2017

Email: dr.parthaadhikari@gmail.com

ABSTRACT

Acanthus (family Acanthaceae) is a genus of the major group angiosperms (flowering plants) comprising more than 29 species widely distributed in the tropical and subtropical region. The aim of this review is to offer thorough scientific information on ethnomedicinal uses, phytochemical, and pharmacological activities of the plant species belonging to the genus Acanthus. Numerous traditional uses of the genus have been supported in this article from the results, and executed by the extracts and/or pure compounds obtained from pharmacological studies will provide a single platform to help future researches on the genus Acanthus. Furthermore, ethnomedicinal evaluation using fractions or isolation of medicinal principles was extensively explored by databases like Google, Google Scholar, and Science Direct at the same time.

Keywords: Acanthus, Acanthaceae, Ethnomedicinal uses, Phytochemistry, Pharmacology, Medicinal principles

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.22159/ijpps.2017v9i12.22386

INTRODUCTION

The word ‘Acanthus’ is originated from the Greek word ‘Acantha’ meaning thorn or thistle signifies sensitive leaves [1]. Most of the species are shrubs or perennial herbs with terminal or axillary, uninterrupted spikes; flower with lower lip only; calyx 4-lobed with larger posterior and anterior lobes; corolla tube short, horny; elongate 3-lobed lip and with 4 exerted stamens, inserted at top of corolla tube [2]. The genus exhibits some mangrove species which are known to survive in the most antagonistic environment which makes this genus as inimitable taxa among all true mangrove genera that represent both terrestrial species and true mangrove. Thus, researchers grow attractive reason to assemble attention for the study of the genus Acanthus. Furthermore, ethnomedicinal evaluation using fractions or isolation of medicinal principles was extensively explored by databases like Google, Google Scholar, and Science Direct at the same time.

Description of the genus

The genus Acanthus L. is consist of about 29 representative species geographically distributed mostly in the tropical and subtropical region of the world [3]. Total 20 genera from 20 families represent c. 70 true mangroves species among these the genus Acanthus represents five mangrove species e. g. A. ebracteatus, A. illicifolius, A. volubilis, A. latifolius and A. montanus [4-5]. However, Tomlinson and Yang et al. reported only three mangrove species and c. a. 27 terrestrial species [6-7]. In India, only 6 species of the genus are
available; A. ebracteatus Vahl, A. ilicifolius L., A. leucostachyus Wall. ex Nees, A. carduaceus Griff., A. mollis L., A. volubilis Wall. Out of these 6 species A. ilicifolius and A. leucostachyus are extremely medicinal and A. leucostachyus Wall. ex Nees, A. carduaceus Griff., A. mollis L. are terrestrial species [8]. Asia and Australia represent the paramount variety and distribution of mangrove species [1]. Therefore, the genus is unique among all true mangrove genera were both true mangrove and terrestrial members are obtainable. The two sub species A. ebracteatus subsp. ebracteatus and A. ebracteatus subsp. ebracteatus of A. ebracteatus which are endemic to Australia [1]. Moreover, both subspecies are detached by few key morphological features i.e. leaf shape, stem spines, flower color and hairiness etc [1]. In our previous study, the genus was reported with one known species; A. leucostachyus from North East India which was originally established by Wallich in his Numerical List of Dried Specimens (Cat. No. 2512) on the basis of the collection made by F. De Silva from Sylhet District of Bangladesh [8]. But in the worksheet [9], higher plant diversity in Pakke Wildlife Sanctuary and Tiger Reserve in East Kameng District of Arunachal Pradesh revealed another member of the genus. A. ilicifolius L., a shrub was available in those areas, medicinal use still unknown and least concern at the which has the same geographical distribution and same habitat and ecology. Grow shady places association with other plants like Thottea tomentosa (Blume) Ding Hou and Borerria hispida (L.) K.Schm. etc. [8].

Phenology: March-September

Species examined: Specimens of A. leucostachyus Wallich examined in the Bhutan and North East India by various workers in different times [8, 12, 13].

Status: The plant was reported wrongly as endemic to Eastern Himalaya [13-14].

A. ilicifolius L.

Common names: Holv leaved acanthus, holy mango, dense leaved acanthus and sea holy (Eng.), Harkulanta (Hind.), Harkucha kanta (Beng.), Holechudi (Kan.), Payinachulli (Mal.), Kahudaimulli (Tam.), Alasyakampa, Alchi (Tel.).

The plant is a shrub, height up to 3 m green, light green or purple, stem thick, branched, roots rarely above ground leaves simple, opposite, lanceolate to broadly lanceolate, leaf margin spiny/dentate, leaf tip acute, petiole low length 0.5-2 cm long, inflorescences terminal [15].

Distribution: A. ilicifolius true mangrove species distributed in tropical Asia and Africa, through Malay to Polynesia grown in the many of the foreshore areas [1, 16]. The plant is also reported to grow in Bangladesh [17, 18]. In India, it is reported from the east (the large area of mangrove forest, the Sunderbans) and west seashore and Andamans and a northeastern state, Meghalaya [1, 17].

Habitat and Ecology: Generally it is found on river banks or low mainland areas of mangrove forests and its surroundings above the high tide mark [1].

Phenology: February-May.
Specimen examined: India, Andaman and Nicobar Islands, South Andaman, Shoal Bay Creek (P. Ragavan, PBL 30965 and 30966) [15].

A. ebracteatus Vahl-Vahl

It is a shrub up to 2 m tall, branched, axial spines downward facing, stem thick, grey tint, roots rarely above ground, broadly elliptic to lanceolate, ~10-20 x 3-5 cm; leaves simple, opposite, leaf tip acute to obtuse with or without spiny; petiole length low ca ~0.5-1.5 cm; inflorescence terminal; ovary bilocular; style surrounded by stamens [15].

Distribution: India, to tropical Australia, Southeast Asia, and the western Pacific islands. In Southeast Asia plant has found in Cambodia, Myanmar, the Philippines, Vietnam, Malaysia, Singapore, Indonesia and Papua New Guinea; in India, it has recorded in Kerala, Puducherry, and ANI [15].

Habitat and Ecology: Grow in landward ends of mangroves over the high tide mark and in inner mangroves.

Phenology: Throughout the year.

Specimen examined. India, Andaman and Nicobar Islands, South Andaman, Sippighat (P. Ragavan, PBL 30969 and 30970) [15].

Acanthus volubilis wall

Plant is a twisted shrub up to ~2-4 m tall; stem slim, soft, green, branched, axial spines lacking; roots rarely above ground/prop roots on lower parts of reeling stem; leaves simple, opposite, spines absent, juicy, elliptic/oblong-lanceolate; leaf tip acute to obtuse with spin; leaf margin spines lacking, petiole low length ca 0.5-2 cm long; green; inflorescence terminal; style surrounded by stamens; ovary bilocular [15].

Distribution: South to Southeast Asia i.e. Sri Lanka and the Andaman Islands, to Myanmar, Indonesia, Cambodia, Malaysia, Singapore, Thailand and Papua New Guinea; in India, the plant has found in Odisha, ANI, and Sundarbans [15].

Habitat and Ecology: Grown in landward ends of mangroves up to the high tide mark.

Phenology: March-June.

Specimen examined: India, Andaman and Nicobar Islands, South Andaman, Shoal Bay Creek (P. Ragavan, PBL 30969 and 30970) [15].

Acanthus mollis L.

Synonyms: A. Hispiancus Lou., A. latifolius E. Goez., A. longifolius Poir., A. hustinianus Auct., A. niger Mill., A. platyphyllus Murb., A. spinossimum Host.

Traditional uses

A. ilicifolius also named as “Holy Mangrove” is used as an ethnomedicinal plant in many countries. In Malaysia the plant leaf used to heal rheumatism, neuralgia and poison arrow wounds; in India, the fresh bark is applied as an antiseptic [19]. The pharmacological study has been extensively performed on this genus. Besides these diverse classes of phytochemicals such as triterpenoids, alkaloids, saponins, glycosides, flavonoids, steroids etc. Ralf and Gerd [39] study also specify the presence of terpenoids, alkaloids, flavonoids, phenols, coumarins. Flower extracts disclose the occurrence of alkaloids, terpenoids, saponins, phenolics, flavonoids, tannins but the absence of steroids [40].

Phytochemistry

Phytochemical study of *A. ilicifolius* done by Raut and Khan [38] emphasized the presence of some important chemical constituents like triterpenoids, alkaloids, saponins glycosides, flavonoids, steroids etc. Ralf and Gerd [39] study also specify the presence of terpenoids, alkaloids, flavonoids, phenols, coumarins. Flower extracts disclose the occurrence of alkaloids, terpenoids, saponins, phenolics, flavonoids, tannins but the absence of steroids [40]. The pharmacological study has been extensively performed on this genus. Besides these diverse classes of phytochemicals such as alkaloids, fatty acids, glycosides, lignans, triterpenoid, coumaric acid etc. various derivatives have been isolated and characterized from different extracts like Hexane, chloroform, ethanol, methanol of *A. ilicifolius*. Illustrated in table 2 with their structures, pubchem ID’s and relevant citations.

Compound isolation

Pharmacology

The pharmacological study has been extensively performed on *A. ilicifolius* among the species of this genus. This study revealed that *A. ilicifolius* has significant bioactivities like, antioxidant and cytotoxic activity [26, 55], antinociceptive activity [56], anti-inflammatory activity [23, 26], anti-osteoporotic activity [57], hepatoprotective activity [26, 59], chemo preventive activity [21]; leishmanicidal tumour reducing and anticanicar activities [26, 58, 59, 60]; antileishmanial, antiulcer, antimicrobial, and osteoblastic activities [26]. Moreover, Firdaus et al. found in their study that flower extract of the plant also has good cytotoxic effects [40]; Smitha et al. showed the anticancer activity of ethyl acetate extract of on two cell lines PA-1 and MCF-7 [61].
Class of Phytochemicals	Name of the Phytoconstituents	Compound structure	PubChem ID	References		
Alkaloids	Acanthicifoline	![Structure](image1)	442503	[46]		
	Trigonellin	![Structure](image2)	5570	[44]		
	2-benzoxazolinone	![Structure](image3)	6043	[47, 48]		
	Benzoxazin-3-one	![Structure](image4)	72757	[49]		
	5,5'-bis-benzoxazoline-2,2'-dione	![Structure](image5)	NF	[50]		
	Benzoxazinoid glucosides	![Structure](image6)	NF	[51]		
	4-O-β-D-glucopyranosyl-benzoxazolin-2(3H)-one	![Structure](image7)	NF	[52]		
	2-hydroxy-4H-1,4-benzoxazin-3-one	![Structure](image8)	322636	[48]		
Flavonoids	Quercetin	![Structure](image9)	5280343	[44]		
	Quercetin-3-O-β-D-glucopyranoside	![Structure](image10)	15959354	[44]		
Steroids	Compound	Chemical Structure	CAS Numbers	Reference		
----------	---------------	--------------------	---------------	-----------		
	acacetin 7-O-α-L-rhamnopyranosyl-(1”\n		6”)-O-β-D-glucopyranoside (Linarin) and vitexin	![Linarin](image)	5317025 & 5280441	[53]
	Linarin	![Linarin](image)				
	Vitexin	![Vitexin](image)				
Steroids	Cholesterol	![Cholesterol](image)	5997		[49]	
	campesterol	![Campesterol](image)	173183			
	stigmasterol	![Stigmasterol](image)	5280794			
	β-sitosterol	![β-Sitosterol](image)	222284		[44]	
Antioxidant activity

Firdaus et al. [40] have scrutinized the antioxidant properties of *A. ilicifolius* by the DPPH scavenging assay. The assay was conducted on total five extracts (acetone, methanol, acetone 70%, methanol 80% and water) of flowers and found that methanol extract showed highest antiradical efficiency (141.30%), while water extract of showed lowest (0.0037%) among the extracts. Dey et al. [27] confirmed the antioxidant effects of the methanol extract of the plant. DPPH assay has been adopted for evaluation of the free radical scavenging activity of the extract by preparing ten different concentrations starting from 500 μg/ml to 0.98 μg/ml using serial dilution technique where IC_{50} was recorded to be 5.1 μg/ml. Moreover, the antioxidant activity of the fractions and isolated compounds of the plant has also been reported [58-60].

Polysaccharides isolated from the plant also showed significant radical scavenging activity [62]; flavonoids and phenolic compounds of *A. ilicifolius* displayed their good antioxidant activity on the animal model [63].

Cytotoxic activity

Firdaus et al. [40] analyzed the cytotoxic of the flower extracts of *A. ilicifolius* on the brine shrimp lethality. The results exhibited methanol extract has lowest LC_{50} value (22 μg/ml) while water extract showed the highest value at 10 μg/ml among the extracts. Dey et al. [27] have tested the cytotoxic activity of a methanolic crude extract of the plant where it has found that the extract exhibited a significant cytotoxic activity with the LC_{50} value at 60 μg/ml and LC_{90} value at 120 μg/ml.

Antimicrobial activity

Antimicrobial activity of alcohol, butanol and chloroform extract (10 mg/ml) of both leaves and roots of the plant exhibited significant activity against all microbes, *B. subtilis, P. vulgaris, P. aeruginosa, S. aureus, C. albicans, A. niger*, and *A. fumigatus*. The experiment was followed by agar cup plate method that unveils the leaves were more active than that of roots where ampicillin used as a standard for bacteria and clotrimazole for fungi. Chloroform extract of leaf showed the highest zone of inhibition that was measured ~ 26 mm against the fungus *C. albicans*. But butanol extract of leaf extract displayed lowest ~08 mm against the bacterium *S. aureus* [64].

Govindasamy and Arulpriya [41] studied antimicrobial activity of against seven skin infection causing microbes, methicillin resistance *S. aureus* (MRSA), *L. plantarum, S. pyogenes, S. epidermis, C. albicans, P. aeruginosa*, and *T. rubrum*. In this test four extract of the leaf has been examined where chloroform extract showed the highest activity against all microbes (except *S. epidermis* and *L. plantarum*).
Three extracts, ethanol, methanol and aqueous of leaf, stem, and root of the plant has used for the activity. The cube plate method used to detect the efficiency of the plant against the eleven bacterial strains Escherichia coli, Bacillus, megaterium, Lactobacillus plantarum, Salmonella paratyphi B, Shigella dyentroze, Streptococcus mutans, Klebsiella pneumoniae, Aspergillus flavus, Staphylococcus albus, and Lactobacillus acidophilus and one fungus C. albicans. Ethanol and methanol extract showed more or less same activity and methanol extract indicated significantly more effective than the aqueous extract. Maximum zone of inhibition noticed on aqueous extract of root and methanol extract of the leaf as 17 mm against the same bacterium, S. albus [26].

Rao et al. [65] examined the antimicrobial activity of methanol, ethanol, and ethyl acetate extracts of flower, seed, leaf, and root of the plant by the well-diffusion method. Microbes like Vibrio harveyi, Aeromonas hydrophila, and E. coli were taken for the test, results direct the highest activity observed on ethyl acetate seed extract against V. harveyi. Dey et al. [27] observed the antibacterial activity of a methanolic crude extract of the plant by ten gram-negative and sixgram positive bacteria, unfortunately, no activity was witnessed for the crude methanol extract.

Anticancer activity

Smitha et al. [61] studied the anticancer activity of ethyl acetate extract of leaf and root extract of the plant on two cell lines, MCF-7 and PA-1. The plant is more effective on PA-1 and the result has recommended that at 50 µg/ml ratio is adequate to inhibit the cancer cells. Moreover, the result has also unveiled that the extract is slightly cytotoxic to both of the cell lines. The antimicrobial and antioxidant activity of A. ilicifolius is depicted in table 3.

Table 3: Antimicrobial and antioxidant activity of Acanthus ilicifolius

Plant parts	Solvent used for extraction/isolated compound	Activity against	Reference
Leaf and root	Hexane, chloroform, and methanol	Antibacterial, antifungal	[66]
Leaf and root	Benzoino and phenethylidone derivatives	Antimicrobial	[67]
Leaf and root	2-Benzoxazolinone 4 and benzoxazinium derivatives	Antimicrobial, antifungal and insectidal	[22, 43, 68]
Leaf and root	Methanol	Antibacterial	[27]
Flower	Acetone and methanol	DPPH	[55]

CONCLUSION

The plants from the genus Acanthus are broadly scattered in the tropical and subtropical regions of the world. The systematic pharmacological studies on the genus have given remarkable recognition to their ethnomedicinal uses in health care management. The phytochemical studies of the genus Acanthus revealed, isolation of a total of 21 bioactive compounds from A. ilicifolius and were identified with their structures and their respective PubChem ID’s were mentioned in this review. Hence, the existence of these bioactive compounds may be explored from other sister species and their different pharmacological properties may also be compared. Numerous pharmacological studies using different types of extracts or pure phytochemicals of Acanthus species well justified their practice as an ethnomedicine; for example, antioxidant, antimicrobial, cytotoxic and anticancer activities besides its well-known antinociceptive, hepatoprotective, leishmanicidal and osteoblastic properties. Furthermore, scanty and limited toxicity reports on the animal model are presently available, which suggests that detailed toxicological evaluation is needed for different extracts from the various species. Consequently, the biological effectiveness should be carried out for the isolated secondary phytochemicals as well, which would definitely authenticate the medicinal claims of the Acanthus genus.

ACKNOWLEDGMENT

RB is thankful to Assam University, Silchar for institutional fellowship support.

CONFLICTS OF INTERESTS

All authors have no conflicts of interest to declare.

REFERENCES

1. Saranya A, Ramanathan T, Kesavanarayanan KS, Adam. Traditional medicinal uses, chemical constituents and biological activities of a mangrove plant, Acanthus ilicifolius Linn.: a brief review. Am Eur J Agric Environ Sci 2015;15:243-50.
2. Jiaqi H, Yunfei D, Wood JRI, Daniel TF. Acanthaceae. In: Al Shehbaz, eds. Flora of China. Science Press, Beijing, and Missouri Botanical Garden Press: St. Louis, U. S. A; 2002;19:369-477.
3. Mabberley DJ. Mabberley’s Plant-Book: A portable dictionary of plant distributional gradients in mangroves. Global Ecol Biogeogr Lett 2008;7:27-47.
4. Duke N, Ball M, Ellison J. Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 1998;7:27-47.
5. Duke NC. Australia’s mangroves: the authoritative guide to Australia’s Mangrove Plants. University of Queensland, 2006.
6. Tomlinson P. The botany of mangroves. Cambridge tropical biology series. Cambridge, New York, USA: Cambridge University Press; 1986.
7. Yang Y, Yang S, Li J, Deng Y, Zhang Z, Xu S, et al. Transcriptome analysis of the halo mangrove acanthus ilicifolius and its terrestrial relative, acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genomics 2015;16:1-12.
8. Bora R, Das AK, Sharma GD. Ecology and taxonomic study Acanthus leucostachyus Wall. ex Nees: a promising ethnomedicinal plant from Assam. J Non-Timber Forest Prod 2013;2:095-8.
9. Tag H, Jeri L, Mingki T, Tsering J, Das AK. Higher plant diversity in palaeo wildlife sanctuary and tiger reserve in east kensong district of arunachal pradesh: checklist-4. Pleione 2012;6:1-49.
10. IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 7 (August 2008). Prepared by the Standards and Petitions Working group of the IUCN-SSC Biodiversity Assessments Subcommittee, Huntington Road, Cambridge, UK, 2008. p. 1-70.
11. Hu J, Deng YF, Wood JRI, Daniel TF. Acanthaceae. Flora of China 2011;19:369-477.
12. Das AK, Dutta BK, Sharma GD, Hajra PK. Medicinal plants of southern Assam, deep publication, New Delhi-110063; 2010.
13. Banah S, Sarma J, Roy H, Borthakur SK. Notes on two interesting angiosperms from Assam, India. Phoenic 2013;7:401-5.
14. Barik SK, Haridasan K, Lakadong NJ. Medicinal plant resources of Meghalaya: Endemic threat status and consumption pattern. Envis Forestry Bull 2007;7:17-26.
15. Ragavan P, Saxena A, Mohan PM, Jayaraj RSC, Ravichandra K. Taxonomy and distribution of species of the genus Acanthus (Acanthaceae) in mangroves of the Andaman and Nicobar Islands, India. Biodiversitas 2015;16:225-36.
16. Wang Y, Zhu H, Tam NFY. Polyphenols, tannins and antioxidant activities of eight true mangrove plant species in South China. Plant Soil 2014;374:549-63.
17. Amurul I, Safazzaman M, Ahmed F, Mustafizur R, Nazneen AS, Naher K. Antinociceptive activity of methanolic extract of Acanthus ilicifolius Linn. leaves. Turk J Pharm Sci 2012;9:51-60.
18. Nur KA, Mizanur R, Biswas S, Nasir A. Appraisals of bangladeshi medicinal plants used by folk medicine practitioners in the prevention and management of malignant neoplastic diseases. Int Scholarly Res Notices 2016:12. DOI:10.1155/2016/7892120.
19. Supriya B, Vijayakumar K, Subramanian N, Kumar D. Medicinal values of Putranjiva roxburghii-a review. Int JCurr Pharm Res 2017;9:1-4.
Kirtikar KR, Basu BD. Indian medicinal plants. Vol. 8. 1st ed. Acanthus ilicifolius. In: The system of unani medicine. Asian Pac J Trop Dis 2011;5:358-61.

Sundaram R, Ganesan R, Murugesan G. In vitro antiproliferative activity of spiro benzofuran compound from mangrove plant of Southern India. Asian Pac J Trop Med 2011;5:358-61.

Govindasamy C, Kannan R. Pharmacognosy of mangrove plants in the system of unani medicine. Asian Pac J Trop Dis 2012;2(Suppl 1):S38-S41.

Ganesh S, Venilla JJ. Screening for antimicrobial activity in Acanthus ilicifolius. Arch Appl Sci Res 2012;2:311-31.

Dey A, Raihan SM, Sariful Islam HM, Monjur-Al-Hossain ASM. Phytochemical screening and the evaluation of the antioxidant, cytotoxic and antimicrobial properties of Acanthus ilicifolius (Family: Acanthaceae). Int Res J Pharm 2012;3:153-6.

Kirtikar KR, Basu BD. Indian medicinal plants. Vol. 8. 1st ed. Edhrad: International Book Distributors; 2001.

Jeeva S, Mishra BP, Venugopal N, Kharkabhi L, Laloo RC. Traditional knowledge and biodiversity conservation in the sacred groves of Meghalaya. Indian J Traditional Knowledge 2006;5:563-5.

Das AK, Dutta BK, Sharma GD. Medicinal plants used by different tribes of Cachar district, Assam. Indian J Traditional Knowledge 2007;4:446-54.

Singh OP, Tiwari BK, Lynser MB, Bharali S. Environmental accounting of natural resources of meghalaya: phase I-land and forest resources (Technical Report). The central statistical organization, the government of India, New Delhi. 2008.

Manikandaselvi S, Vadivel V, Brindha P. Screening of ethnobotanical studies of nutraceutical plant: Capparis spinosa L. (Caper). Asian J Pharm Clin Res 2016;9:21-4.

Pfoze NL, Kealie M, Kayang H, Mao AA. Estimation of ethnobotanical plants of the Naga of North East India. J Med Plants Stud 2014;2:92-104.

Abuja U, Abua SC. Alcoholic rice beverages. In: Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer Netherlands, Dordrecht; 2014. p. 1-7.

Fongod AGN, Modjenba NB, Veranso MC. Ethnobotany of Acanthus ilicifolius in the mount Cameroon region. J Med Plants Res 2013;7:2707-13.

Pradhan SD, Palei CN, Rath PB, Swain KK, Kar S. A new addition of mangrove species Acanthus ebracteatus M. (Acanthaceae)-review and additional data. Adv Plant Sci 2012;41:259-64.

Nguyen PD, Ho CL, Harikrishna JA, Wong MC, Rahim RA. Generation and analysis of expressed sequence tags from the mangrove plant, Acanthus ebracteatus. Vahl. Tree Genet Genomes 2006;2:196-201.

Raut S, Khan S. Phytochemical fingerprinting of Acanthus ilicifolius L. Adv Plant Sci 2011;2:75-79.

Ralf W, Gerard L. Chemical composition of the mangrove holly Acanthus ilicifolius (Acanthaceae)-review and additional data. Frankfurt Main 2008;38:313-7.

Firdaus M, Prihanto AA, Nurdiandi R, Widojo N. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pacific J Trop Biomed 2013;3:17-21.

Govindasamy C, Arulpriya M. Antimicrobial activity of Acanthus ilicifolius: skin infection pathogens. Asian J Trop Dis 2013;3:180-3.

Wu J, Zhang S, Huang J, Xiao Q, Li Q, Long L, et al. New aliphatic alcohol and (2)-4-coumaric acid glycosides from Acanthus ilicifolius. Chem Pharm Bull 2003;51:1201-3.

Wu J, Zhang S, Xiao Q, Li Q, Huang J, Long L, et al. Phenylethanoid and aliphatic alcohol glycosides from Acanthus ilicifolius. Phytochemistry 2003;63:491-5.

Minocha PK, Tiwari KP. Chemical constituents of Acanthus ilicifolius Linn. Pol J Chem 1980;54:2089-90.

Minocha PK, Tiwari KP. A triterpenoid saponin from roots of Acanthus ilicifolius. Phytochemistry 1981;20:857-8.

Tiwari KP, Minocha PK, Massoud M. Acanthifolin-a new alkaloid from Acanthus ilicifolius. Pol J Chem 1980;54:857-8.

Murty MSR, Solamabi Kantam SY. Isolation of 2-benzoxazolinone from Acanthus ilicifolius. Indian J Pharm Sci 1984;46:218-9.

Zhong LJ, Huang MY, Zhang JG, Li GW, Zhang YH. Study on the chemical constituents from Acanthus ilicifolius Linn. var. xiamenensis. Chin J Marine Drugs 2012;31:23-28.

Kokol P, Chittawong V, Miles DH. Chemical constituents of the roots of Acanthus ilicifolius. Nat Prod 1986;49:354.

D’Souza L, Wahidulla S, Mishra PD. Bisoxazolinone from the mangrove Acanthus ilicifolius. Indian J Chem Sect B 1997;36B:1079-81.

Kanchanapoom T, Kamel MS, Kasai R, Picheansoonschon, Hiraya Y, Yamaskali K. Benzoxazinoid glucosides from Acanthus ilicifolius. Phytochemistry 2001;58:637-40.

Huo C, An D, Wang B, Xiao Y, Lin W. Structure elucidation and complete NMR spectral assignments of a new benzoxazolinone glucoside from Acanthus ilicifolius. Magn Reson Chem 2005;43:343-5.

Wu J, Zhang S, Xiao Q, Li Q, Huang J, Long L, et al. Megastrongman and flavone glycosides from Acanthus ilicifolius. Pharmazie 2003;58:363-4.

Clarke A, Gleeson P, Jermyn M, Knox R. Characterization and localization of lectins in lower and higher plants. Funct Plant Biol 1978;5:707-22.

Muhammad F, Prihanto AA, Nurdiandi R. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed 2013;3:17-21.

Islam MA, Saifuzzaman M, Ahmed F, Rahman MM, Sultana NA, Naher K. Antinociceptive activity of Methanolic extract of Acanthus ilicifolius L. leaves. Turk J Pharm Sci 2012;9:51-60.

Van Kem P, Quang TH, Huong TT, Cuong VX, Van MC, et al. Chemical constituents of Acanthus ilicifolius L. and effect on osteoblastic MG63 cells. Arch Pharm Res 2008a;3:1823-9.

Babu BH, Shylesh BS, Padikkala J. Antioxidant and hepatoprotective effect of Acanthus ilicifolius. Fitoterapia 2001;72:272-7.

De Carvalho, PB Ferreira EL. Leishmaniasis phytotherapy. Nature’s leadership against an ancient disease. Fitoterapia 2001;72:599-619.

Babu BH, Shylesh BS, Padikkala J. Tumour reducing an anticarcinogenic activity of Acanthus ilicifolius. J Ethnopharmacol 2002;79:27-33.

Smitha RB, Madhusoodanan PV, Prakash Kumar R. Anticancer activity of Acanthus ilicifolius Linn. from chettuva mangroves, Kerala, India. Int J Biol Sci 2014;3:252-65.

Zhang T, Tian Y, Jiang B,iao M, Mu W. Purification, preliminary structural characterization and in vitro antioxidant activity of polysaccharides from Acanthus ilicifolius. LWT-Food Sci Technol 2014;56:9-14.

Asha KK, Mathew S, Lakshmanan PT. Flavonoids and phenolic compounds in two mangrove species and their antioxidant property. Indian J Mar Sci 2012;41:259-64.

Bose S, Bose A. Antimicrobial activity of Acanthus ilicifolius (L.). Indian J Pharm Sci 2008;70:821-3.

Rao SM, Teja G, Sirisha IR, Rao PY. Screening of antimicrobial activity of mangrove plant Acanthus ilicifolius on shrimp and fish pathogens. Asian J Plant Sci Res 2015;5:1-3.

Pradeep V, Khajure R, Vaidya J. Antimicrobial activity of extracts of Acanthus ilicifolius extracted from the mangroves of Karwar coast karnataka. Recent Res Sci Technol 2010;2:98-9.

Ravikumar S, Raja M, Granadesign M. Antibacterial potential of benzene and phenyl alkoid derivatives isolated from Acanthus ilicifolius L. leaf extracts. Nat Prod Res 2012;26:2279-80.

Das A, Ahmed AB. Natural permeation enhancer for transdermal drug delivery system and permeation evaluation: a review. Asian J Pharm Clin Res 2017;10:7-11.