Introduction

Molecular self-assembly is a key function in biology and has been developed as an elegant technique for fabrication of various complex structures and functional materials. Key importance for structural formation in terms of self-assembly is molecular recognition pertaining to intermolecular weak interactions such as hydrophobic interactions, hydrogen bonds, π-π stacking, electrostatic forces and dipole-dipole interactions etc. A combination of several kinds of such weak interactions can govern molecular organization and thus ordered supramolecular architectures. Among molecular building blocks are the bioinspired and bioderived molecules including peptides and proteins. Peptides consisting of several amino acids are most popular over decades for development of molecular biomaterials owing to ease of availability, programmable molecular motif, biocompatibility and biodegradation, flexible functionality and low cost-effectiveness. The nanostructures and materials assembled using peptides as building blocks have presented an important potential for green-life new technology and biomedical applications. In this opinion, self-assembly and application of several kinds of peptides including aromatic dipeptides, polypeptides, amphiphilic peptides, lipopeptides, and inorganic-hybridized peptide will be stated briefly.

Aromatic dipeptides

Diphenylalanine (FF), which is extracted from Alzheimer’s β-amyloid polypeptide, is one of the simplest and most common used recognition motifs for molecular self-assembly [1]. It is known that FF as well as its derivatives can assemble into various nanostructures including nanotubes [1,2], nanofibrils [3,4], ribbons, nanowires [5], spherical vesicles [6], and so on (Figure 1). These morphology of FF nanostructures can be controlled, interconverted [6] and affected by parameters, e.g. solvent conditions [3] and temperature [7]. Especially, because of their unique physical and chemical properties, the development and potential application of FF nanotubes have been rapid growth [8-11]. For example, nanotubes and nanospheres in solutions can be used as ink and patterned on ITO plastic surfaces [12]. Recently, various functional FF nanotubes with photoluminescent [13], fluorescent [14], and piezoelectric activity [15] are reported. The studies of FF fibrils and ribbons are essential since the formation of FF fibrils is ubiquitous and relevant to diseases such as Alzheimer’s disease. In addition, FF organogels formed by FF fibrils are novel soft materials, having potential applications in drug delivery, cell culturing [16-18] and energy materials [19-21]. The mechanical properties of organogels are the key technique problems that needed to improve for applications.

Amphiphilic peptides

Amphiphilic peptide (AP), which behaves in some respects like amphiphilic surfactants, is a class of molecule that consists of a hydrophilic peptide segment and a hydrophobic domain. In water, these molecules generally self-assemble into rods with a hydrophobic core. The peptide segments outside the hydrophobic core always prefer a β-sheet conformation. As introduced in the latest reviews [23,24], the self-assembly of AP are mainly controlled by the balance between hydrophilic and hydrophobic segments, and influenced by parameters such as temperature, pH, lights, and so on. Therefore, many pH-responsive [25], temperature-responsive [26], UV light-responsive and enzymes-responsive [27] materials have been developed and applied, and some of these are already in commercial use, e.g. in skincare products [28].
Lipo-peptides

Lipo-peptides can be treated as a special type of AP, and the hydrophobic tail of lipo-peptide has a similar structure as the lipid. Therefore, when lipo-peptide molecules are exposed to water, vesicle-like structures can be spontaneously formed by self-assembly. These vesicles have potential application in drugs and genes delivery. For example, the vesicles formed by a multivalent cationic lipo-peptide has a binding affinity with DNA and expected to be a new type of gene transfection reagents [30].

Poly-peptides

Synthetic polypeptide (PP) is a kind of polymer that polymerized by amino acids molecules, and the self-assemble properties of PP are determined by its amino acid segments. PP molecule is a perfect combination of flexible polymer and amino acid. The polymerization techniques significantly develop the stimuli-responsive of amino acids (Figure 2) [33]. Moreover, comparing to the low weight FF-based organogels, the mechanical strength of PP-based organogels can be dramatically increased. On the other hand, by layer-by-layer assembly technique, a polypeptide multilayer film can be fabricated on solid substrate and applied in bionanotechnology such as cell and tissue culture [17,34], immunogenicity control [35], antimicrobial films [36], and so on. The vesicles and particles assembled by PP can load drug molecules and be used for drug delivery [37-40].

Peptide-inorganic hybrids

The interventions of inorganic functional materials, including polyoxometalates (POMs), nanocrystals, and nanoparticles, will provide unique electronic, catalytic, photonic properties to peptides. For example, the hybrids combined of a cationic dipeptide and a Keggin-type POM exhibit spherical nanostructures through strong electrostatic interactions and further multiple noncovalent interactions [41]. These hybrids, which showing unique pH and temperature responsive, can be applied in controlled release of drugs. By using FF-based organogels as candidate, quantum dots (QDs) can be entrapped [42]. Thus hybrid gels with various electronic, optical, and magnetic properties can be achieved.

Peptides assembled on the surfaces

The materials fabricated by ordered peptides assembled on various surfaces or substrates such as Si [43,44], Cu [45], gold [46-48], and polymer [49] are also attractive because of their potential applications in bionanotechnology and biosensing devices. The assembly of peptides on surfaces benefit the studies on single-molecule level [50], and development of two-dimensional materials.

Summary and Outlook

Molecular self-assembly is an interdisciplinary research field involving chemistry, materials science, life science and physics so on. Self-assembly, as a “bottom-up” technique starting from molecular units, provides a powerful tool to obtain various biologically-based materials with potential applications. It has been demonstrated that different architectures including nanofibers, nanotubes, spherical vesicles and ribbons can be formed through peptide self-assembly. They show a significant potential for biomedical applications such as drug delivery, biosensors and tissue engineering. However, the studies in this field are still in its infancy. The development of peptide-based materials is yet challenging but exciting. The systematic understanding on governing mechanisms for self-assembly and the translation into practical industrial uses are needed and appreciated. Breakthrough in these research topics will surely promote the development of peptide-based materials, in turn which will motivate the activity for developing molecular self-assembly as a technique for preparation of new types of green, ecologically friendly and smart materials.

References

1. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300: 625-627.
2. Görbitz CH (2006) The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide. Chem Commun: 2332-2334.
3. Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-Induced Structural Transition of Self-Assembled Dipeptide: From Organogels to Microcrystals. Chem Eur J 16: 3176-3183.
4. Cherny I, Gazit E (2008) Amyloids: Not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47: 4062-4069.
5. Kim J, Han TH, Kim YI, Park JS, Choi J, et al. (2010) Role of Water in Directing Diphenylalanine Assembly into Nanotubes and Nanowires. Adv Mater 22: 583-587.
6. Xuehai Yan, Yue Cui, Qiang He, Kewei Wang, Junbai Li, et al. (2008) Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. Chem Eur J 14: 5974-5980.
7. Handelman A, Nathan A, Rosenman G (2014) Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation. J Pept Sci 20: 487-493.
8. Gao XY, Matsui H (2005) Peptide-based nanotubes and their applications in bionanotechnology. Adv Mater 17: 2037-2050.
9. Seabra AB, Duran N (2013) Biological applications of peptides nanotubes: An overview. Peptides 39: 47-54.
10. Valery C, Artzner F, Paternostre M (2011) Peptide nanotubes: molecular
organisations, self-assembly mechanisms and applications. Soft Matter 7: 9583-9594.
11. Scantlon S, Aggelii (2008) Self-assembling peptide nanotubes, Nano Today 3: 22-30.
12. Adler-Abramovich L, Gazit E (2008) Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J Pept Sci 14: 217-223.
13. Ryu J, Lim SY, Park CB (2009) Photoluminescent Peptide Nanotubes. Adv Mater 21: 1577-1581.
14. Na N, Mu X, Liu Q, Wen J, Wang F, et al. (2013) Self-assembly of diphenylalanine peptides into microwires with “turn on” fluorescence using an aggregation-induced emission molecule. Chem Commun 49: 10076-10078.
15. Khoklin A, Amdursky N, Bdkin I, Gazit E, Rosenman G (2010) Strong Piezoelectricity in Bioinspired Peptide Nanotubes. Acs Nano 4: 610-614.
16. Mahler A, Reches A, Rechter M, Cohen S, Gazit E (2008) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18: 1365-1370.
17. He B, Yuan X, Wu J, Bai Y, Jiang DM (2015) Self-Assembling Peptide Nanotubes. Science of Advanced Materials 7: 1221-1232.
18. Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, et al. (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18: 611-614.
19. Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater 10: 1671-1682.
20. Eleanor K, Johnson, Dave J, Adams, Petra J (2011) Cameron, Peptide based low molecular weight gelators. J Mater Chem 21: 2024-2027.
21. Ajayaghosh A, Praveen VK, Vijayakumar C (2008) Organogels as scaffolds for excitation energy transfer and light harvesting. Chem Soc Rev 37: 109-122.
22. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39: 1877-1890.
23. Deshorki A, Castelletto V, Hamley IW. (2014) Self-assembling amphotiphilic peptides. J Pept Sci 20: 453-467.
24. Tang C, Qiu F, Zhao X (2013) Molecular Design and Applications of Self-Assembling Surfactant-Like Peptides. J Nanomaterials.
25. Deshorki A, Castelletto V, Hamley IW, Adamcik J, Mezzenga R (2013) The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter 9: 6033-6036.
26. Hamley IW, Deshorki A, Castelletto V, Furzeland S, Atkins D, et al. (2013) Reversible helical unwinding of transition of a self-assembling peptide amphiphile. Soft Matter 9: 9290-9293.
27. Hughes M, Debnath S, Knapp CW, Ulijn RV (2013) Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomaterials Science 11: 1138-1142.
28. Lupo MP, Cole AL (2007) Cole, Cosmeceutical peptides. Dermatol Therapy 20: 343-349.
29. Weyland M, Grivski M (2015) Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv 22: 156-167.
30. Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolymer drive both vesicular assembly and intracellular delivery. Nature Materials 6: 54-57.
31. Kim B, Choi SJ, Han SH, Choi KY, Lim YB (2013) Stabilization of alphahelices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition. Chem Commun 49: 7617-7619.
32. Go DP, Hung A, Gras SL, O’Connor AJ (2012) Use of a Short Peptide as a Building Block in the Layer-By-Layer Assembly of Biomolecules on Polymeric Surfaces. J Phys Chem B 116: 1120-1133.
33. Ryu J, Park CB (2008) High-Temperature Self-Assembly of Peptides into Vertically Well-Aligned Nanowires by Aniline Vapor. Adv Mater 20: 3754-3760.