Existence and Hyers–Ulam Stability of Solutions for a Mixed Fractional-Order Nonlinear Delay Difference Equation with Parameters

Danfeng Luo,1 Zhiguo Luo,2 and Hongjun Qiu3

1Department of Mathematics, Guizhou University, Guiyang 550025, China
2Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China
3School of Science, Jiujiang University, Jiujiang 332005, China

Correspondence should be addressed to Danfeng Luo; luodf0916@sohu.com

Received 5 August 2020; Accepted 15 October 2020; Published 31 October 2020

Academic Editor: Leonid Shaikhet

Copyright © 2020 Danfeng Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on a kind of mixed fractional-order nonlinear delay difference equations with parameters. Under some new criteria and by applying the Brouwer theorem and the contraction mapping principle, the new existence and uniqueness results of the solutions have been established. In addition, we deduce that the solution of the addressed equation is Hyers–Ulam stable. Some results in the literature can be generalized and improved. As an application, three typical examples are delineated to demonstrate the effectiveness of our theoretical results.

1. Introduction

Fractional differential equations arise naturally in promoting contemporary mathematics development, see [1–14]. Fractional differential theories have been widely applied, especially in dynamics mechanics, heat energy, automation, medicine, traffic signal, and communication engineering. Sometimes differential equations are discretized in order to approximate their solutions. In the past ten years, there has been a significant increase in the quantity of research in discrete fractional calculus. For an extensive collection of more knowledge in this field, we refer the readers to [15–27] and the references therein. In [16], Goodrich investigated a discrete fractional boundary value problem (FBVP) of the form

\[
\begin{cases}
-\Delta^\gamma y(t) = f(t + \nu - 1, y(t + \nu - 1)), \\
y(\nu - 2) = g(y), \\
y(\nu + b) = 0,
\end{cases}
\]

\hspace{1cm} (1)

where \(t \in [0, b]_{\mathbb{N}_0} = \{0, 1, \ldots, b\} \) and \(f: [\nu - 2, \nu + b - 1]_{\mathbb{N}_0} \times \mathbb{R} \rightarrow \mathbb{R} \) is a continuous function, and we let \(g \in C([\nu - 2, \nu + b]_{\mathbb{N}_0}, \mathbb{R}) \) is a given functional, and \(1 < \nu \leq 2 \). Using the contraction mapping theorem, the Brouwer theorem, and the Krasnosel’skii theorem, the author proved the existence and uniqueness of solution to this problem.

For a fractional difference system, we not only study the existence and uniqueness of its solution but also investigate the stability. The famous Hyers–Ulam problem goes back to the years 1940-1941 when Ulam [28] and Hyers [29] firstly proposed this issue. Many mathematicians had considered the wide scope of this same problem for fractional equations of different types. Such problem may be found in [25, 30–35] and other papers. In [25], the authors firstly considered the following antiperiodic boundary value problem:

\[
\begin{aligned}
\Delta^\alpha_x(t) &= f(t + \alpha - 1, x(t + \alpha - 1)), & t \in [0, b]_{\mathbb{N}_0}, & 1 < \alpha < 2, \\
x(\alpha - 1) + x(b + \alpha) &= 0, \\
\Delta x(\alpha - 1) &= 0, \\
\Delta x(b + \alpha - 1) &= 0,
\end{aligned}
\]

\hspace{1cm} (2)
where Δ^n_C is a Caputo fractional difference operator, $N_a = [a, a + 1, a + 2, \ldots]$, and $f: [a - 1, b + a]_{N_a} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function with respect to the second variable, when $f(\cdot, x(\cdot))$ satisfies Lipschitz condition, that is to say, there exists a constant $L > 0$ such that $|f(t, x) - f(t, y)| \leq L|x - y|$ for each $t \in [a - 1, b + a]_{N_a}$. Then, the boundary value problem (2) has a unique solution if

$$L \leq \frac{3\Gamma(b + a + 1)}{2\Gamma(a + 1)\Gamma(b + 1)} + \frac{b + a}{2a\Gamma(a)} \left(\Gamma(b + a) - \Gamma(a) \right)$$

(3)

holds. Secondly, the authors researched the Hyers–Ulam stability of solutions for the following boundary value problem:

$$\begin{align*}
\Delta^n_a x(t) &= f(t + a - 1, x(t + a - 1)), \quad t \in [0, b]_{N_a}, 1 < a < 2, \\
x(a - 1) &= y(a - 1), \\
x(b + a) &= y(b + a),
\end{align*}$$

(4)

where y is a solution of inequality $|\Delta^n_a y(t) - f(t + a - 1, y(t + a - 1))| \leq \varepsilon$, and let x be a solution of boundary value problem (4). Then, the solution is the Hyers–Ulam stable provided that

$$L \leq \frac{\Gamma(a + 1)\Gamma(b + 1)}{2\Gamma(b + a + 1)}$$

(5)

However, the nonlinear terms in (1), (2), and (4) are too simple to portray the development of things well. We adopt mixed fractional equation which makes the model more generalized, such as in [36–38]. Inspired by the abovementioned articles, in this paper, we are concerned with the existence, uniqueness, and Hyers–Ulam stability of solutions for the following discrete fractional equation:

$$\Delta^\mu y(t) + \lambda f(t + v - 1, \eta y(t + v - 1), \rho \Delta^\beta y(t)) = 0,$$

(6)

where λ, η, and ρ are positive real numbers, and $t \in [0, m + 1]_{N_a} = [0, 1, \ldots, m + 1]$, $m \in \mathbb{N}$ is given, $f: [\nu - 1, \nu + m]_{N_a} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, Δ^μ denotes the fractional difference operator of order μ, and Δ^β is the βth fractional sum operator, $\nu, \beta \in (1, 2]$ are given. Equation (6) is an important parameters system and also is a mixed fractional system, which is quite different from (1) and (2), and it can enrich the description of the mathematical model. Besides, the most interesting thing is that, in Theorem 2, we find the necessary conditions are only dependent on λ (independent on η and ρ).

Compared with some new achievements in the articles, such as [16–18, 25], the major contributions of our research contain at least the following three:

1. The Hyers–Ulam stability is introduced into the mixed fractional order nonlinear difference equation.
2. The model we are concerned with is more generalized, and some ones in the articles are the special cases of it. Moreover, we provide more ecumenical boundary value conditions in researching Hyers–Ulam stability of solutions for the fractional difference equation. Thus, the comprehensive model is originally discussed in the present paper.
3. A ground-breaking approach based on contraction mapping and the Brouwer theorem is utilized to discuss the existence and uniqueness of the solutions for the mixed fractional-order difference equation. The results established are essentially new.

The following article is organized as follows. In Section 2, we will recall some known results for our consideration. Some lemmas and definitions are useful to our works. Section 3 is devoted to researching the existence and uniqueness of solutions for equation (6). In Section 4, we will investigate the Hyers–Ulam stability of this fractional order difference equation, and then we will come up with the main theorem. To explain the results clearly, we finally provide three examples in Section 5.

2. Preliminaries

In this section, we plan to introduce some basic definitions and lemmas which are useful throughout this paper.

Definition 1 (see [16, 18]). We define

$$t^\gamma := \frac{\Gamma(t + 1)}{\Gamma(t + 1 - \nu)}$$

(7)

as for any t and ν for which the right-hand side is defined. Here and in what follows, Γ denotes the Gamma function. We also appeal to the common convention that if $t + 1 - \nu$ is a pole of the gamma function and $t + 1$ is not a pole, then $t^\nu = 0$.

Definition 2 (see [18]). The vth fractional sum of a function $f \in N_a \rightarrow \mathbb{R}$, for $v > 0$, is defined to be

$$\Delta_a^{-v} f(t) = \Delta_a^{-v} f(t; a) = \frac{1}{\Gamma(v)} \sum_{s=a}^{t-v} (t-s-1)^{v-1} f(s),$$

(8)

where $t \in [a + \nu, a + \nu + 1, \ldots] =: N_{a+\nu}$. We also define the vth fractional difference, where $\nu > 0$ and $0 \leq N - 1 < \nu \leq N$ with $N \in \mathbb{N}$, to be $\Delta_a^{-v} f(t) = \Delta_a^{\nu} \Delta_a^{-\nu} f(t)$, where $t \in N_{a+N^{-\nu}}$.

Lemma 1 (see [16]). Let $0 \leq N - 1 < \nu \leq N$. Then, $\Delta_a^{\nu} \Delta_a^{-\nu} y(t) = y(t) + C_1 t^{\nu - 1} + C_2 t^{\nu - 2} + \cdots + C_N t^{\nu - N}$, for some $C_i \in \mathbb{R}$, with $1 \leq i \leq N$.

Lemma 2 (see [18]). Let $\nu \in \mathbb{R}$ and $t, s \in \mathbb{R}$ such that $(t - s)^2$ is well defined, then $\Delta_a(t - s)^2 = -(t - s - 1)^{\nu - 1}$.

Lemma 3 (see Theorem 2.40 in [15]). Assume that $\mu > 0$ and $N - 1 < \nu < N$, $N \in \mathbb{N}$, then

$$\Delta_a^{\nu} (t - a)^2 = \frac{\Gamma(\mu + 1)}{(\mu - \nu + 1)} (t - a)^{\mu - \nu},$$

(9)
for $t \in [n_{\nu+\varepsilon}, \infty)$.

Lemma 4 (see [24]). A function y is a solution of the boundary value problem:

$$\Delta_0^\nu y(t) + h(t + \nu - 1) = 0, \quad t \in [0, m + 1]_{\mathbb{N}},$$

$$y(\nu - 2) = u(y),$$

$$y(\nu + m + 1) = g(y),$$

(10)

Proof. For each $0 \leq t < \nu + 1 \leq m + 1$,

$$\Delta_0^\nu G(t, s) = \frac{1}{\Gamma(\nu)} \left[\frac{t^{\nu-2} - s^{\nu-2}}{(\nu + m + 1)^{\nu-1}} \right].$$

(12)

$$\Delta_0^\nu G(t, s) = \frac{t^{\nu-1} (\nu + m - s)^{\nu-1} - (t - s - 1)^{\nu-1}}{(\nu + m)^{\nu-1}}, \quad 0 \leq s < t + 1 \leq m + 1,$$

(14)

For each $0 \leq t < \nu + 1 \leq m + 1$, we have $\Delta_0 G(t, s) > 0$. Then, $G(t, s)$ is increasing in t. We have

$$G(\nu + 1, s) \leq G(t, s) \leq G(s + 1, s).$$

(18)

Therefore, for all $t \in [\nu - 1, \nu + m]_{\mathbb{N}}$, inequality (15) holds.

Lemma 5. Green function G satisfies the inequalities

$$\max\{G(\nu + m, s), G(\nu - 1, s)\} \leq G(t, s) \leq G(s + 1, s),$$

(15)

for any $(t, s) \in [\nu - 1, \nu + m]_{\mathbb{N}} \times [0, m + 1]_{\mathbb{N}}$.

Proof. Let $h \in C([\nu - 1, \nu + m]_{\mathbb{N}}, \mathbb{R})$, $u, g: C([\nu - 1, \nu + m + 1]_{\mathbb{N}}, \mathbb{R}) \rightarrow \mathbb{R}$ are given functionals.

Lemma 6. The function $\bar{a}(t)$ is strictly decreasing in t, for all $t \in [\nu - 1, \nu + m + 1]_{\mathbb{N}}$, and $\bar{a}(t) \in [0, 1]$. In addition, the function $\bar{b}(t)$ is strictly increasing in t, and $\bar{b}(t) \in [0, 1]$.

Definition 3. We say that equation (6) has the Hyers–Ulam stability if there exists a constant $K > 0$ with the following property. Let $\varepsilon > 0$ be a given arbitrary constant. If a function $x: [0, m + 1]_{\mathbb{N}} \rightarrow \mathbb{R}$ satisfies

$$|\Delta_0^\nu x(t) + \lambda f(t + \nu - 1, \eta x(t + \nu - 1), \rho \Delta_0^\beta x(t))| \leq \varepsilon,$$

(20)

for all $t \in [0, m + 1]_{\mathbb{N}}$, then there exists a solution $y: [0, m + 1]_{\mathbb{N}} \rightarrow \mathbb{R}$ of equation (6) such that $|x(t) - y(t)| \leq K\varepsilon$ for all $t \in [0, m + 1]_{\mathbb{N}}$.

Remark 1. x is a solution of inequality (20) if and only if there exists a function $g: [\nu - 1, m + 1]_{\mathbb{N}} \rightarrow \mathbb{R}$ such that

$$T_1 |g(t + \nu - 1)| \leq \varepsilon, t \in [0, m + 1]_{\mathbb{N}},$$

$$T_2 |\Delta_0^\nu x(t) + \lambda f(t + \nu - 1, \eta x(t + \nu - 1), \rho \Delta_0^\beta x(t)) = g(t + \nu - 1)|, t \in [0, m + 1]_{\mathbb{N}}.$$
Lemma 7. Let \(t \in [0, m + 1]_{\mathbb{N}} \) and \(h: [v-1, v+m]_{\mathbb{N}} \rightarrow \mathbb{R} \) be a continuous function; then, \(y \) is a solution of the fractional difference equation:

\[
\Delta_0^\nu y(t) + h(t + v - 1) = 0,
\]

subject to the fractional boundary value problem

\[
y(t) = \frac{t^{\nu-1}}{p_1} \sum_{s=0}^{m+1} \frac{a_2 (y + m - s)^{\nu-1} + b_2 (y + m - s - \mu)^{\nu-1}}{\Gamma(v-\mu)} + \frac{b_1 (y + m - s - \mu)^{\nu-1}}{\Gamma(v-\mu)} \left[h(s + v - 1) \right] \]

\[
\times h(s + v - 1) + \frac{t^{\nu-1} \phi_2(x)}{p_1} \left[h(s + v - 1) \right] \]

\[
\left[\Delta_0^\nu \phi_1(x) \right] + \frac{t^{\nu-1} \phi_1(x)}{(a_1 + b_1)p_1 \Gamma(v-1)} + \frac{t^{\nu-2} \phi_1(x)}{(a_1 + b_1)p_1 \Gamma(v-1)}
\]

\[
- \frac{1}{\Gamma(v)} \sum_{s=0}^{t-v} (t - s - 1)^{\nu-1} h(s + v - 1),
\]

where \(p_1 = a_2 (v + m + 1)^{\nu-1} + b_2 (v + m + 1 - \mu)^{\nu-1} \frac{\Gamma(v)}{\Gamma(v-\mu)} \neq 0, \)

\[
p_2 = a_2 (v + m + 1)^{\nu-2} + b_2 (v + m + 1 - \mu)^{\nu-2} \frac{\Gamma(v-1)}{\Gamma(v-\mu-1)}
\]

(25)

where \(a_i, b_i \in \mathbb{R}, i = 1, 2, \) and \(0 < \mu \leq 1, a_1+b_1 \neq 0, \phi_1 \) and \(\phi_2 \) are continuous functionals, and \(x \) is defined as in Definition 3.

Proof. From equation (21), we can get \(\Delta_0^\nu y(t) = -h(t + v - 1), \) and let us multiply both sides of this equation by \(\Delta_0^\nu \); by Definition 2 and Lemma 1, we can get the general solution of equation (21) as follows:

\[
y(t) = \frac{1}{\Gamma(v)} \sum_{s=0}^{t-v} (t - s - 1)^{\nu-1} h(s + v - 1) + C_1 t^{\nu-1} + C_2 t^{\nu-2},
\]

where \(C_1, C_2 \) are constants, and we have

\[
\Delta_0^\nu y(t) = C_1 \Delta_0^\nu t^{\nu-1} + C_2 \Delta_0^\nu t^{\nu-2} - \Delta_0^\nu h(t + v - 1)
\]

\[
= C_1 \frac{\Gamma(v)}{\Gamma(v-\mu)} t^{\nu-1-\mu} + C_2 \frac{\Gamma(v-1)}{\Gamma(v-\mu)} t^{\nu-2-\mu}
\]

\[
+ \frac{1}{\Gamma(v-\mu)} \sum_{s=0}^{t-v} (t - s - 1)^{\nu-1} h(s + v - 1).
\]

Therefore,

\[
y(v - 2) = C_2 (v - 2)^{\nu-2} = C_2 \Gamma(v - 1),
\]

\[
y(v + m + 1) = -\frac{1}{\Gamma(v)} \sum_{s=0}^{m+1} (v + m - s)^{\nu-1} h(s + v - 1) + C_1 (v + m + 1)^{\nu-1}
\]

\[
+ C_2 (v + m + 1)^{\nu-2},
\]

\[
\Delta_0^\nu y(v - 2 - \mu) = C_2 \frac{\Gamma(v-1)}{\Gamma(v-1-\mu)} (v - 2 - \mu)^{\nu-2-\mu}
\]

\[
= C_2 \frac{\Gamma(v-1)}{\Gamma(v-1-\mu)} \Gamma(v-1-\mu),
\]

\[
\Delta_0^\nu y(v + m + 1 - \mu) = C_1 \frac{\Gamma(v)}{\Gamma(v-\mu)} (v + m + 1 - \mu)^{\nu-1-\mu}
\]

\[
+ C_2 \frac{\Gamma(v-1)}{\Gamma(v-1-\mu)} (v + m + 1 - \mu)^{\nu-2-\mu}
\]

\[
- \frac{1}{\Gamma(v-\mu)} \sum_{s=0}^{m+1} (v + m - s - \mu)^{\nu-1} h(s + v - 1).
\]
By the boundary conditions (22) and (23), we can solve C_1, C_2 as follows:

$$C_1 = \frac{1}{p_1} \sum_{s=0}^{m+1} \left[\frac{a_s}{\Gamma(v)} (v + m - s)^{v-1} + \frac{b_s}{\Gamma(v - \mu)} (v + m - s - \mu)^{v-\mu-1} \right]$$

$$\times h(s + v - 1) - \frac{p_t q_s(x)}{(a_1 + b_1) p_t \Gamma(v - 1)} \phi_s(x) + \frac{q_1(x)}{(a_1 + b_1) \Gamma(v - 1)}$$

$$C_2 = \frac{q_1(x)}{(a_1 + b_1) \Gamma(v - 1)}.$$

(29)

Substituting C_1 and C_2 into (26), then we can obtain (24).

\[\square \]

3. Existence and Uniqueness of Solutions

In this section, we consider the following boundary value problem (BVP):

$$\begin{align*}
\Delta^\gamma_t y(t) + \lambda f(t + v - 1, y(t + v - 1), \rho \Delta^\beta_s y(t)) &= 0, \quad t \in [0, m + 1]_{\mathbb{N}^*}, \\
y(v - 2) &= u(y), \\
y(v + m + 1) &= g(y),
\end{align*}$$

(30)

Theorem 1. Assume that

(T3) $f: [v - 1, v + m]_{\mathbb{N}^*} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and also $u, g: \mathcal{C}([v - 2, v + m + 1]_{\mathbb{N}^*}, \mathbb{R}) \rightarrow \mathbb{R}$ are given functionals.

Denote that $E = \{ y: y \in C([v - 1, v + m]_{\mathbb{N}^*}; \mathbb{R}) \}$ and endowed with the norm $\| y \| = \max_{t \in [v - 1, v + m + 1]_{\mathbb{N}^*}} | y(t) |$. Then, $(E, \| \cdot \|)$ is a Banach space. Define the operator:

$$(Ty)(t) = \bar{a}(t) u(y) + \bar{b}(t) g(y) + \lambda \sum_{s=0}^{m+1} G(t, s) f(s + v - 1, y(s + v - 1), \rho \Delta^\beta_s y(s)),$$

(31)

where $\bar{a}(t)$ and $\bar{b}(t)$ are defined as (12) and (13) and $G(t, s)$ is given as (14). Obviously, y is a solution of (30) if it is a fixed point of the operator T.

With all the preparatory works done, we will give the main conclusions. First, we provide the uniqueness result by contraction mapping as follows.

\[L_1 + L_2 + \frac{\lambda (K_1 \eta \Gamma(\beta + 1) + K_2 \rho (m + 1) \beta)}{\Gamma(\beta + 1) (v + m + 1)^{v-1}} \sum_{s=0}^{m+1} (s + v - 1)^{v-1} (v + m - s)^{v-1} < 1. \]

(34)
Proof. Let $x, y \in E$; then, for each $t \in [v - 1, v + m]_{N_0}$, and by Definition 2 and Lemma 5, we have

\[
\|(T x)(t) - (T y)(t)\| \leq \alpha(t)|u(x) - u(y)| + \beta(t)|g(x) - g(y)|
\]

\[
+ \lambda \cdot \sum_{s=0}^{m+1} G(t, s) \left(K_1 \eta \|x(s) - y(s)\| + K_2 \rho \Delta_0^{-\beta} x(s) - \Delta_0^{-\beta} y(s)\right)
\]

\[
\leq \alpha(t)L_1 \|x - y\| + \beta(t)L_2 \|x - y\| + \lambda \cdot \sum_{s=0}^{m+1} G(s + v - 1, s)
\]

\[
\times \left(K_1 \eta \|x - y\| + K_2 \rho \frac{1}{\Gamma(\beta)} \cdot \sum_{k=0}^{s-\beta} (s - k - 1) \cdot \|x - y\| \right)
\]

\[
\leq \left[L_1 + L_2 + \lambda \cdot \sum_{s=0}^{m+1} \frac{(s + v - 1)^{v-1} (v + m - s)^{v-1}}{\Gamma(v)(v + m + 1)^{v-1}} \left(K_1 \eta + \frac{K_2 \rho (m + 1)^{-v}}{\Gamma(\beta + 1)} \right) \right] \cdot \|x - y\|
\]

and by condition (34), we get that T is a contraction mapping. Therefore, the Banach fixed-point theorem (see Lemma 7 in [25]) implies that the operator T has a unique fixed point which is a unique solution of (30).

Now, we plan to adopt Brouwer theorem to give the existence result of solutions. \(\square\)

Theorem 2. Suppose that there exists a constant $M > 0$ such that when $\|y\| \leq M$, we have

\[
|u(y)| \leq \frac{M}{2 + \lambda \sum_{s=0}^{m+1} (s + v - 1)^{v-1} (v + m - s)^{v-1}} \cdot \left(\Gamma(v)(v + m + 1)^{v-1} \right) \cdot \Gamma(\beta + 1)
\]

\[
|g(y)| \leq \frac{M}{2 + \lambda \sum_{s=0}^{m+1} (s + v - 1)^{v-1} (v + m - s)^{v-1}} \cdot \left(\Gamma(v)(v + m + 1)^{v-1} \right) \cdot \Gamma(\beta + 1)
\]

\[
|f(t + v - 1, \eta y(t + v - 1), \rho \Delta_0^{-\beta} y(t))| \leq \frac{M}{2 + \lambda \sum_{s=0}^{m+1} (s + v - 1)^{v-1} (v + m - s)^{v-1}} \cdot \left(\Gamma(v)(v + m + 1)^{v-1} \right) \cdot \Gamma(\beta + 1)
\]

for each $t \in [0, m + 1]_{N_0}$. Then, (30) has at least one solution y_0, satisfying $\|y_0\| \leq M$.

Proof. Consider the Banach space $\mathcal{B} := \{ y \in \mathbb{R} : \|y\| \leq M \}$. Let T be the operator defined in (31). It is clear that T is a
continuous operator. Therefore, the main objective in establishing this result is to show that \(T: \mathcal{B} \rightarrow \mathcal{B}, \) that is, whenever \(\|y\| \leq M, \) it follows that \(\|Ty\| \leq M. \) Note that

\[
Ty \leq \max_{t \in [\nu-1, \nu+\nu]} \alpha(t)\|u(y)\| + \max_{t \in [\nu-1, \nu+\nu]} \beta(t)\|g(y)\| + \lambda \max_{t \in [\nu-1, \nu+\nu]} \sum_{t=0}^{m-1} G(t, s) \cdot \left| f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right) \right|
\]

\[
\leq \|u(y)\| + \|g(y)\| + \lambda \sum_{t=0}^{m-1} G(s + \nu - 1, s) \cdot \left| f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right) \right|
\]

\[
\leq \frac{\|u(y)\| + \|g(y)\| + \lambda \sum_{t=0}^{m-1} G(s + \nu - 1, s) \cdot \left| f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right) \right|}{2 + \lambda \sum_{t=0}^{m-1} \left(\Gamma(v) \left(\nu + m - s \right) \right)^{\nu - 1} \left(\Gamma(v) \left(\nu + m + 1 \right) \right)^{-\nu - 1}} + \lambda M
\]

\[
\leq \frac{\|u(y)\| + \|g(y)\| + \lambda \sum_{t=0}^{m-1} G(s + \nu - 1, s) \cdot \left| f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right) \right|}{2 + \lambda \sum_{t=0}^{m-1} \left(\Gamma(v) \left(\nu + m - s \right) \right)^{\nu - 1} \left(\Gamma(v) \left(\nu + m + 1 \right) \right)^{-\nu - 1}} + \lambda M
\]

Thus, we deduce that \(T: \mathcal{B} \rightarrow \mathcal{B}. \) Consequently, it follows from the Brouwer theorem that there exists a fixed point \(y_0 \) of the map \(T. \) This function \(y_0 \) is a solution of (30). Moreover, \(y_0 \) satisfies \(\|y_0(t)\| \leq M, \) for each \(t \in [\nu - 1, \nu + m]_{\mathbb{N}_0}. \) This completes the proof of the theorem.

4. Hyers–Ulam Stability

In this section, we study the Hyers–Ulam stability of the fractional-order difference system:

\[
\begin{cases}
\Delta_0^\nu y(t) + \lambda f\left(t + \nu - 1, \eta y(t + \nu - 1), \rho \Delta_0^\beta y(t) \right) = 0, & t \in [0, m + 1]_{\mathbb{N}_0}, \\
a_1 y(t - 2) + b_1 \left[\Delta_0^\nu y(t - 2 - \mu) \right] = \phi_1(x), \\
b_2 y(t + m + 1) + b_2 \left[\Delta_0^\nu y(t + m + 1 - \mu) \right] = \phi_2(x),
\end{cases}
\]

where \(x \in E \) satisfies (20). According to Lemma 7, we have

\[
y(t) = \frac{\lambda^{\nu - 1}}{p_1} \sum_{s=0}^{m-1} \left[\frac{a_2}{\Gamma(v)} (v + m - s)^{\nu - 1} + \frac{b_2}{\Gamma(v - \mu)} (v + m - s - \mu)^{\nu - \mu - 1} \right] x
\]

\[
f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right) + \frac{t^{\nu - 1}}{p_1} \phi_1(x) = \frac{t^{\nu - 1} \phi_1(x)}{(a_1 + b_1) \Gamma(v - 1)} + \frac{t^{\nu - 2} \phi_1(x)}{(a_1 + b_1) \Gamma(v - 1) - \lambda \sum_{s=0}^{m-1} (t - s - 1)^{\nu - 1} f\left(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta_0^\beta y(s) \right)}
\]

Theorem 3. Assume that \((T_3) - (T_4) \) hold, and

\[
\frac{\lambda (m + 1)^2}{\Gamma(v + 1)} + \frac{\lambda (m + 1)^{\nu - 1}}{p_1} \left(\frac{a_2}{\Gamma(v + 1)} + \frac{b_2}{\Gamma(v - \mu + 1)} \right)^{\nu - \mu} \leq \frac{1}{K_1 \eta + K_2 \beta (\Gamma(m + 1) \rho)}
\]

(42)
If \(x \in E \) satisfies (20) and \(y \in E \) is a solution of (40), then the fractional difference equation (6) is Hyers–Ulam stable.

Proof. If \(x \in E \) satisfies (20) and due to the Remark 1, we can obtain

\[
\Delta^\gamma_0 x(t) + \lambda f(t + \nu - 1, \eta x(t + \nu - 1), \rho \Delta^\gamma_0 x(t)) = \xi(t + \nu - 1), \quad t \in [0, m + 1]_{\mathbb{N}_0},
\]

\[
|\xi(t + \nu - 1)| \leq \epsilon, \quad t \in [0, m + 1]_{\mathbb{N}_0}, \tag{43}
\]

We can solve equation (43) with the corresponding boundary value conditions (22) and (23) as follows:

\[
x(t) = \frac{\lambda t^{\nu-1}}{p_1} \sum_{s=0}^{m+1} \left[\frac{a_2}{\Gamma(\nu)} (v + m - s)^{\nu-1} + \frac{b_2}{\Gamma(\nu - \mu)} (v + m - s - \mu)^{\nu-1} \right] \times
\]

\[
f(s + \nu - 1, \eta x(s + \nu - 1), \rho \Delta^\gamma_0 x(s)) + \frac{t^{\nu-1} \varphi_2(x)}{p_1} - \frac{t^{\nu-1} \varphi_2(y(x))}{(a_1 + b_1)p_1 \Gamma(\nu - 1)}
\]

\[
+ \frac{t^{\nu-2} \varphi_1(x)}{a_1 + b_1 \Gamma(\nu - 1)} + \frac{1}{\Gamma(\nu)} \sum_{s=0}^{t-1} (t - s - 1)^{\nu-1} \xi(s + \nu - 1)
\]

\[
- \frac{\lambda}{\Gamma(\nu)} \sum_{s=0}^{t-1} (t - s - 1)^{\nu-1} f(s + \nu - 1, \eta x(s + \nu - 1), \rho \Delta^\gamma_0 x(s)). \tag{44}
\]

Then, we have

\[
x(t) - y(t) \leq \left| \frac{1}{\Gamma(\nu)} \sum_{s=0}^{t-1} (t - s - 1)^{\nu-1} \xi(s + \nu - 1) \right| + \frac{\lambda}{\Gamma(\nu)} \sum_{s=0}^{t-1} (t - s - 1)^{\nu-1} \times
\]

\[
f(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta^\gamma_0 y(s)) - f(s + \nu - 1, \eta x(s + \nu - 1), \rho \Delta^\gamma_0 x(s))
\]

\[
+ \frac{\lambda t^{\nu-1}}{p_1} \sum_{s=0}^{m+1} \left[\frac{a_2}{\Gamma(\nu)} (v + m - s)^{\nu-1} + \frac{b_2}{\Gamma(\nu - \mu)} (v + m - s - \mu)^{\nu-1} \right] \times
\]

\[
f(s + \nu - 1, \eta y(s + \nu - 1), \rho \Delta^\gamma_0 y(s)) - f(s + \nu - 1, \eta x(s + \nu - 1), \rho \Delta^\gamma_0 x(s)). \tag{45}
\]
According to Lemma 2, we know
\[
\frac{1}{\Gamma(v)} \sum_{s=0}^{t-v} (t - s - 1)^{v-1} \xi(s + v - 1) \leq \frac{1}{\Gamma(v)} \frac{t^v}{v} \epsilon \leq \frac{(m + 1)^{\beta}}{\Gamma(v + 1)},
\]
and with the help of condition \((T_4)\), we can obtain
\[
\frac{\lambda}{\Gamma(v)} \sum_{s=0}^{t-v} (t - s - 1)^{v-1} \cdot \left| f(s + v - 1, \eta y(s + v - 1), \rho \Delta^\beta y(s)) - f(s + v - 1, \eta x(s + v - 1), \rho \Delta^\beta x(s)) \right|
\]
\[
\frac{\lambda}{\Gamma(v)} \sum_{s=0}^{t-v} (t - s - 1)^{v-1} \cdot \left| K_1 \eta |x(t) - y(t)| + K_2 \rho \Delta_0^\beta y(t) - \Delta_0^\beta x(t) \right|
\]
\[
\frac{\lambda (m + 1)^{\beta}}{\Gamma(v + 1)} \left(K_1 \eta + K_2 \rho \frac{(m + 1)^{\beta}}{\Gamma(\beta + 1)} \right) \cdot \|x - y\|,
\]
and we obtain
\[
\frac{\lambda t^{v-1}}{\rho_1} \sum_{s=0}^{m+1} \left[\frac{a_2(y + m - s)^{v-1}}{\Gamma(v)} + \frac{b_2(y + m - s - \mu)^{v-1}}{\Gamma(v - \mu)} \right] \times \left| K_1 \eta + K_2 \rho \frac{(m + 1)^{\beta}}{\Gamma(\beta + 1)} \right) \cdot \|x - y\|
\]
\[
\leq \frac{\lambda t^{v-1}}{\rho_1} \sum_{s=0}^{m+1} \left[\frac{a_2(y + m - s)^{v-1}}{\Gamma(v)} + \frac{b_2(y + m - s - \mu)^{v-1}}{\Gamma(v - \mu)} \right] \left(K_1 \eta + K_2 \rho \frac{(m + 1)^{\beta}}{\Gamma(\beta + 1)} \right) \cdot \|x - y\|
\]
\[
\leq \frac{\lambda (m + 1)^{\beta}}{\rho_1} \left[\frac{a_2(y + m + 1)^{v}}{\Gamma(v + 1)} + \frac{b_2(y + m + 1 - \mu)^{v}}{\Gamma(v - \mu + 1)} \right] \left(K_1 \eta + K_2 \rho \frac{(m + 1)^{\beta}}{\Gamma(\beta + 1)} \right) \cdot \|x - y\|.
\]

By (45)–(48), we can conclude that
\[
\|x - y\| \leq \frac{(m + 1)^{\beta}}{\Gamma(v + 1)} \cdot \epsilon
\]
\[
1 - \left(\frac{(m + 1)^{\beta}}{\Gamma(v + 1)} \right)^{p_1 \left(\frac{(a_2(y + m + 1)^{v}}{\Gamma(v + 1)} + \left(\frac{b_2(y + m + 1 - \mu)^{v}}{\Gamma(v - \mu + 1)} \right) \left(K_1 \eta + K_2 \rho \frac{(m + 1)^{\beta}}{\Gamma(\beta + 1)} \right) \cdot \|x - y\| \right)}
\]
\[
(49)
\]
By condition (42) in Theorem 3, we have

\[
\left(\frac{m+1}{m!}\Gamma(m+1)\right)\left(1 - \frac{(\lambda(m+1)^{\nu}/\Gamma(v+1))}{1} + \left(\frac{1}{m+1}\right)^{\nu} \right) > 0.
\]

and we note that the quantity on the left-hand side of the inequality is the constant "\(K\)" in Definition 3. We can deduce that system (40) is Hyers–Ulam stable. \(\square\)

5. Examples

In this section, we will present the following three examples to illustrate our main results.

Example 1. Suppose that \(\lambda = 1/10, \eta = 1/20, \rho = 1, m = 5, v = 5/4, \) and \(\beta = 4/3.\) In addition, let \(u(y) = (1/20)\sin y, g(y) = (1/20)\cos y,\) and \(f(t,x,y) = e^t + (1/10)x + (1/20)y.\) Then, the following boundary value problem (BVP)

\[
L_1 + L_2 + \frac{\lambda(K_1\eta\Gamma(\beta + 1) + K_2\rho(m + 1)\Gamma)}{\Gamma(\nu\Gamma(\beta + 1)(v + m + 1)} \sum_{k=0}^{m+1} (s + v - 1) (y + m - s) ^{\nu-1}
\]

has a unique solution.

Therefore, we deduce from Theorem 1 that problem (51) has a unique solution.

Example 2. Assume that \(\lambda = 1, \eta > 0, \rho > 0, m = 4, v = 3/2, \beta \in (1,2], \) and \(M = 10.\) Suppose that \(u(y) = \sin y, g(y) = e^{-y},\) and \(f(t,x,y) = \cos(tx + y).\) We can deduce that (36)–(38) hold, and the following boundary value problem (BVP)

\[
\left\{
\begin{array}{ll}
\Delta^{(\nu/2)} y(t) + f(t + \frac{1}{2}, \eta)(t + \frac{1}{2})\rho \Delta^\beta y(t) = 0, & t \in [0,5], \\
y\left(\frac{1}{2}\right) = \sin y, \\
y\left(\frac{13}{2}\right) = e^{-y},
\end{array}
\right.
\]

is problem (30). According to Theorem 2, we can obtain that (30) has at least one solution \(y_{t_0},\) and \(\|y_0(t)\| \leq 10.\)

Remark 2. Since there are few papers research solutions of the mixed fractional-order nonlinear difference equation, one can see that all the results in [16–18, 23–25, 36–38] cannot directly be applicable to (51) and (53) to obtain the existence and uniqueness of the solution. These imply that the results in this paper are essentially new.

Example 3. Assume that \(\lambda = 1/5, \eta = 1/10, \rho = 1/5, m = 5, v = 4/3, \beta = 5/3, \mu = 1/3, a_1 = 1, a_2 = 2, b_1 = 2, b_2 = 4,\) and \(f(t,x,y) = t + (1/10)\sin x + (1/20)\cos y.\) We let \(K_1 = 1/10\) and \(K_2 = 1/20.\) System (40) turns into

\[
\left\{
\begin{array}{ll}
\Delta^{(\nu/2)} y(t) + f(t + \frac{1}{3}, \frac{1}{10})(t + \frac{1}{3}) \frac{1}{3} \Delta^\beta y(t) = 0, & t \in [0,6], \\
y\left(\frac{1}{3}\right) = \varphi_1(x), \\
2\gamma\left(\frac{22}{3}\right) + 4\Delta^{(1/3)} y(7) = \varphi_2(x),
\end{array}
\right.
\]

where \(\varphi_1 \) and \(\varphi_2 \) are continuous functionals and \(x \in E\) satisfies

\[
\left|\Delta^{(\nu/2)} x(t) + f(t + \frac{1}{3}, \frac{1}{10})(t + \frac{1}{3}) \frac{1}{3} \Delta^\beta x(t)\right| \leq \varepsilon.
\]

By Mathematica, we note that
Therefore, (42) holds. If \(y \in E \) is a solution of (54), then fractional difference system (54) is Hyers–Ulam stable.

6. Conclusion

In this paper, we are concerned with the nonlinear mixed fractional order difference equations, which are quite different from the related references discussed in the literature. The fractional order difference equation studied in the present paper is more generalized and more practical. By applying the Brouwer theorem and contraction mapping principle and the definition of Hyers–Ulam stability, the easily verifiable sufficient conditions have been provided to determine the existence, uniqueness, and Hyers–Ulam stability of the solutions for the considered equation. Finally, the necessary three typical numerical examples have been presented at the end of this paper to illustrate the effectiveness and feasibility of the proposed criterion. Consequently, this paper shows theoretically and numerically that the proposed method by the authors could be applied to other fractional difference equation of other similar type, such as [39–44].

An interesting extension of our study would be to discuss Ulam–Hyers–Mittag–Leffler stability and finite-time stability for the mixed fractional nonlinear difference equation with time-varying delay terms or fractional stochastic system based on [45, 46]. This topic will be the subject of a forthcoming paper.

Data Availability

The data in this study were mainly collected via discussion during our class and obtained from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 11471109).

References

[1] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, Hoboken, NJ, USA, 1993.

[2] I. Podlubny and K. V. Thimann, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Cambridge, UK, 1999.

[3] Y. Jalilian, "Fractional integral inequalities and their applications to fractional differential equations," Acta Mathematica Scientia, vol. 36, no. 5, pp. 1317–1330, 2016.

[4] S. R. Grace, "On the oscillatory behavior of solutions of nonlinear fractional differential equations," Applied Mathematics and Computation, vol. 266, pp. 259–266, 2015.

[5] Y. He, "Existence results and the monotone iterative technique for nonlinear fractional differential systems involving fractional integral boundary conditions," Advances in Difference Equations, vol. 2017, no. 1, Article ID 264, 2017.

[6] A. Zada, S. Ali, and Y. Li, "Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition," Advances in Difference Equations, vol. 2017, no. 1, Article ID 317, 2017.

[7] W. Xie, J. Xiao, and Z. Luo, "Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions," Applied Mathematics Letters, vol. 41, pp. 46–51, 2015.

[8] W. Xie, J. Xiao, and Z. Luo, "Existence of solutions for fractional boundary value problem with nonlinear derivative dependence," Abstract and Applied Analysis, vol. 2014, Article ID 812910, 8 pages, 2014.

[9] N. I. Chaudhry, R. Latif, M. A. Zahoor Raja, and J. A. Tenreiro Machado, "An innovative fractional order LMS algorithm for power signal parameter estimation," Applied Mathematical Modelling, vol. 83, pp. 703–718, 2020.

[10] A. Khan, H. Khan, J. F. Gómez-Aguilar, and T. Abdeljawad, "Existence and Ulam–Hyers–Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel," Chaos, Solitons & Fractals, vol. 127, pp. 422–427, 2019.

[11] A. Khan, J. F. Gómez-Aguilar, T. Saeed Khan, and H. Khan, "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, vol. 122, pp. 119–128, 2019.

[12] H. Khan, J. F. Gómez-Aguilar, A. Khan, and T. S. Khan, "Stability analysis for fractional order advection-reaction diffusion system," Physica A: Statistical Mechanics and Its Applications, vol. 521, pp. 737–751, 2019.

[13] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khan, and P. Agarwal, "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach," Physica A: Statistical Mechanics and Its Applications, vol. 523, pp. 48–65, 2019.

[14] D. F. Luo and Z. G. Luo, "Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses," Advances in Difference Equations, vol. 2019, Article ID 155, 2019.

[15] C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, New York City, NY, USA, 2015.

[16] C. S. Goodrich, "Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions,"
Mathematical Problems in Engineering

Computers & Mathematics with Applications, vol. 61, no. 2, pp. 191–202, 2011.

C. S. Goodrich, "A convexity result for fractional differences," Applied Mathematics Letters, vol. 35, pp. 58–62, 2014.

C. S. Goodrich, "Continuity of solutions to discrete fractional initial value problems," Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3489–3499, 2010.

T. Abdeljawad and D. F. M. Torres, "Symmetric duality for left and right Riemann-Liouville and Caputo fractional differences," Arab Journal of Mathematical Sciences, vol. 23, no. 2, pp. 157–172, 2017.

T. Abdeljawad and Q. M. Al-Mdallal, "Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality," Journal of Computational and Applied Mathematics, vol. 339, pp. 218–230, 2018.

T. Abdeljawad, J. Alzabut, and D. Baleanu, "A generalized q-fractional Gronwall inequality and its applications to non-linear delay q-fractional difference systems," Journal of Inequalities and Applications, vol. 2016, no. 1, Article ID 240, 2016.

I. K. Dassios and D. I. Baleanu, "Duality of singular linear systems of fractional nabla difference equations," Applied Mathematical Modelling, vol. 39, no. 14, pp. 4180–4195, 2015.

F. Atici and P. Eloe, "Two-point boundary value problems for finite fractional difference equations," Journal of Difference Equations and Applications, vol. 17, no. 4, pp. 445–456, 2011.

C. Goodrich, "On positive solutions to nonlocal fractional and integer-order difference equations," Applicable Analysis and Discrete Mathematics, vol. 5, no. 1, pp. 122–132, 2011.

F. Chen and Y. Zhou, "Existence and Ulam stability of solutions for discrete fractional boundary value problem," Discrete Dynamics in Nature and Society, vol. 2013, Article ID 459161, 7 pages, 2013.

B. Kaewwisetkul and T. Sithiwiratham, "On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay," Advances in Difference Equations, vol. 2017, Article ID 219, 2017.

R. Ouncharoen, S. Chasreechai, and T. Sithiwiratham, "On nonlinear fractional difference equation with delay and impulses," Symmetry, vol. 12, no. 6, Article ID 980, 2020.

S. Ulam, A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1960.

D. H. Hyers, "On the stability of the linear functional equation," Proceedings of the National Academy of Sciences, vol. 27, no. 4, pp. 222–224, 1941.

J. Wang and X. Li, "Ulam-Hyers stability of fractional Langevin equations," Applied Mathematics and Computation, vol. 258, pp. 72–83, 2015.

J. Sousa and E. Oliveira, "Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation," Applied Mathematics Letters, vol. 81, pp. 50–56, 2018.

Y. Guo, X. B. Shu, Y. Li, and F. Xu, "The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < α < 2," Boundary Value Problems, vol. 2019, Article ID 59, 2019.

P. Niu, X. B. Shu, and Y. Li, "The existence and Hyers-Ulam stability for second order random impulsive differential equations," Dynamic Systems & Applications, vol. 28, no. 3, pp. 673–690, 2019.

S. Li, L. Shu, X.-B. Shu, and F. Xu, "Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays," Stochastics, vol. 91, no. 6, pp. 857–872, 2019.

R. Ouncharoen, S. Chasreechai, and T. Sithiwiratham, "Existence and stability analysis for fractional impulsive Caputo difference-sum equations with periodic boundary condition," Mathematics, vol. 8, no. 5, Article ID 843, 2020.

X. Liu, M. Jia, and W. Ge, "The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator," Applied Mathematics Letters, vol. 65, pp. 56–62, 2017.

Z. Bai and W. Sun, "Existence and multiplicity of positive solutions for singular fractional boundary value problems," Computers & Mathematics with Applications, vol. 63, no. 9, pp. 1369–1381, 2012.

L. Yang, C. Shen, and D. Xie, "Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann-Liouville derivative," Advances in Difference Equations, vol. 2014, Article ID 284, 2014.

I. K. Dassios, "A practical formula of solutions for a family of linear non-autonomous fractional nabla difference equations," Journal of Computational and Applied Mathematics, vol. 339, pp. 317–328, 2018.

I. K. Dassios, "Stability and robustness of singular systems of fractional nabla difference equations," Circuits, Systems, and Signal Processing, vol. 36, no. 1, pp. 49–64, 2017.

I. Dassios and D. Baleanu, "On a singular system of fractional nabla difference equations with boundary conditions," Boundary Value Problems, vol. 2013, Article ID 148, 2013.

C. Lizama, "The Poisson distribution, abstract fractional difference equations, and stability," Proceedings of the American Mathematical Society, vol. 145, no. 9, pp. 3809–3827, 2017.

C. Lizama, M. Murillo-Arcila, and C. Leal, "Lévy regularity for differential difference equations with fractional damping," Mathematical Methods in the Applied Sciences, vol. 41, no. 7, pp. 2535–2545, 2018.

W. Lv, "Existence and uniqueness of solutions for a discrete fractional mixed type sum-difference equation boundary value problem," Discrete Dynamics in Nature and Society, vol. 2015, Article ID 376261, 10 pages, 2015.

W. Ma, X. Luo, and Q. Zhu, "Practical exponential stability of stochastic age-dependent capital system with Lévy noise," Systems & Control Letters, vol. 144, Article ID 104759, 2020.

L. Gao, Z. Cao, M. Zhang, and Q. Zhu, "Input-to-state stability for hybrid delayed systems with admissible edge-dependent switching signals," Journal of the Franklin Institute, vol. 357, no. 13, pp. 8823–8850, 2020.