A geometric mechanism of vacuum energy cancellation

Alessio Belfiglio,1,2,* Roberto Giambo,1,2,† and Orlando Luongo1,3,4,‡

1Università di Camerino, Divisione di Fisica, Via Madonna delle carceri 9, 62032 Camerino, Italy.
2Istituto Nazionale di Fisica Nucleare, Sez. di Perugia, Via A. Pascoli 23c, 06123 Perugia, Italy.
3Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy.
4NNLOT, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty, Kazakhstan.

(Dated: June 29, 2022)

We explore a mechanism of geometric cancellation of vacuum energy zero-point fluctuations, resolving de facto the cosmological constant problem. To do so, we assume at primordial times that vacuum energy fuels an inflationary quadratic hilltop potential nonminimally coupled to gravity through a standard Yukawa-like interacting term, whose background lies on a perturbed Friedmann-Robertson-Walker metric. We demonstrate how vacuum energy release transforms into geometric particles, adopting a quasi-de Sitter phase where we compute the expected particle density and mass ranges. Hence, we propose the most suitable dark matter candidates, showing under which circumstances we can interpret dark matter as constituted by geometric quasiparticles. We confront our predictions with quantum particle production and constraints made using a Higgs portal. In addition, the role of the bare cosmological constant is reinterpreted to speed up the universe today. Thus, consequences on the standard ΛCDM paradigm are critically highlighted, showing how both coincidence and fine-tuning issues can be healed requiring the Israel-Darmois matching conditions between our involved inhomogeneous and homogeneous phases.

PACS numbers: 98.80.Cq, 98.80.-k, 98.80.Es

Contents

I. Overview 1
II. Lagrangian setup 2
A. Effective potential coupled to gravity 3
B. Phase A: Starting with the inflationary stage 4
1. Bunch-Davies state for vacuum 5
2. Scalar field perturbations 5
3. Gauge transformations 6
C. Geometric particle production 7
1. Interpreting dark matter as geometric particles 8
2. Cut-off scales and vacuum energy 9
D. Phase B: Revising reheating and radiation dominated era after inflation 10
III. Predicting the dark matter constituent 11
IV. Revising the coincidence and fine-tuning problems 12
A. Consequences on background cosmology 13
B. Dark matter with pressure? 14
V. Theoretical discussion 14
A. The role of quantum particle production 15
B. Comparing geometric particles with previous dark matter candidates 16
VI. Final outlooks and perspectives 17

I. Overview

The cosmological constant problem is the undeniable tension in reconciling the observed values of vacuum energy density and theoretical large value of zero-point quantum vacuum fluctuations1 [1]. This issue affects theoretical physics and its resolution would certainly convey a very important step towards understanding physics beyond current standard models of cosmology and particle physics [2].

The corresponding background cosmology, namely the ΛCDM model [3, 4], associated to the standard Big Bang scenario, is jeopardized by fine-tuning and coincidence issues as consequence of the aforementioned cosmological constant problem [5]. Thus, it is likely that solving the

1 According to the standard lore of quantum field theory, ground state energy supports non-zero excitations as both potential and kinetic energies cannot vanish at the same time, providing extremely large quantum fluctuations.
latter would justify the exact dark energy magnitude, exhibiting a self-consistent scheme for late-time cosmology.

On the other side, early-time cosmology is driven by a widely-established inflationary epoch where the universe speeds up under the action of an inflaton field [6]. Commonly, it is believed the current accelerated phase and inflation represent different scenarios, despite models unifying both the two epochs are currently subject of intensive studies, see e.g. [7, 8] and references therein.

In this work, we propose a geometric mechanism of quantum zero-point energy cancellation that aims at healing the cosmological constant problem. In particular, we demonstrate that, by coupling the inflaton field with curvature, we can obtain both inflationary dynamics and geometric particles that we interpret as dark matter. The corresponding magnitude of such particles cancels out the degrees of freedom of vacuum energy, counterbalancing its value and de facto solving the huge discrepancy between observations and predictions. As final result, we get a suitable value for the bare cosmological constant today and we assume it to drive the universe to speed up at current times. To do so, following the Sakharov hypothesis [9], stating that the stress-energy tensor of a field placed in the vacuum state must be proportional to the constant\(^2\) vacuum energy density \(\rho_{\text{vac}}\), we argue that the so-produced dark matter particles are weakly interacting geometric stable configurations, resembling the common particles thought to constitute dark matter. We discuss their properties and we assume that they could be under the form of quasiparticles in agreement with the proposal made in Ref. [11]. In so doing, our geometric mechanism of cancellation proposes a passage from an initial quasi-de Sitter phase in a perturbed Friedmann-Robertson-Walker (FRW) spacetime to a radiation dominated universe. Here, we demonstrate that passing through these two phases, i.e., from an inhomogeneous to homogeneous universe, implies two processes: 1) inflation first, driven by an effective curvature-coupled inflaton potential and 2) geometric dark matter production as due to the corresponding vacuum energy release. In this picture, perturbations are traced back to the fluctuations of the inflaton field, for which we propose a geometry-coupled hilltop potential and compute the corresponding scattering matrix, that in turn gives the probability amplitude of particle production. In addition, we suggest that fractions of vacuum energy release do not escape the reheating period to avoid that the fine-tuning issue is switched from the current value of the cosmological constant to the magnitude of vacuum energy that transforms into dark matter particles. In particular, we discuss under which circumstances quantum mechanisms of particle production could be subdominant than geometric particle production. Further, we show suitable intervals of mass ranges for our geometric candidates and we compare our expectations with suitable examples of Higgs portal. Moreover, we propose a heuristic view toward the solution of both fine-tuning and coincidence problems, adopting the Israel-Darmois conditions for our inhomogeneous and homogeneous universes. In this respect, we conjecture the origin of the bare cosmological constant as due to matter pressure only, in agreement with a mechanism of vacuum energy cancellation recently proposed in Refs. [7, 12], where the origin of dark matter was not investigated. Finally, we discuss the main consequences of our recipe on the \(\Lambda\)CDM paradigm, proposing that a fully-degenerating dark fluid model can mimic it without being plagued by the cosmological constant problem.

The paper is outlined as follows. In Section II we propose an effective potential driving inflation, carrying vacuum energy that couples to gravity and we discuss its implication in both inflation and particle production. The latter is well-described by using a perturbed FRW to get particle contributions from vacuum energy. Consequences after inflation, namely in the reheating, radiation and matter eras, are investigated. The predictions of our dark matter constituents are reported in Sec. III. The consequences at late-time, about the coincidence and fine-tuning caveats are highlighted in Sec. IV. The role of the bare cosmological constant is also debated. Theoretical consequences of our recipe have been moreover discussed in Section V, emphasizing the strengths and limitations of our model. The role of quantum particles has been reviewed. Excluded ranges of masses for our geometric dark matter particles have been also discussed. Conclusions and perspectives are drawn in Section VI. Appendices concerning the details of our computations have been also shown at the end of our manuscript.

II. LAGRANGIAN SETUP

In this section, we investigate particle production that occurs as the universe undergoes a perturbed phase, i.e., where it turns out to be not-perfectly homogeneous and isotropic. To justify this fact in view of the cosmological principle, we will assume as basic demand, widely-considered in the literature [6, 13], that metric perturbations originate from quantum fluctuations of the inflaton field throughout all the inflationary phase. Thus, inflation generates quantum fluctuations responsible for producing particles at primordial times [14].

We work out the latter ansatz to investigate whether particles inferred from geometry only can influence the overall dynamics at primordial times. In fact, we are excluding possible couplings of our fields with other fields.
from the standard model of particle physics. Moreover, we are also neglecting “quantum” particle production from vacuum\(^3\), that would imply particle pairs that in principle could annihilate. We will come back to this issue later on.

At primordial times, therefore, the universe is clearly dominated by vacuum energy \([15]\) that, by construction, tends to highly accelerate the universe \([16]\). The effect of particle production would reduce the net amount of vacuum energy, breaking the universe down. To model this process, we choose a potential that carries out vacuum energy with it throughout inflation, whose scalar field is naively associated to inflaton\(^4\).

To simplify our scheme, we compute geometric particle production as due to inhomogeneities over a perturbed FRW background\(^5\). To account the high acceleration due to inflationary epoch, we assume that particles are produced during an approximate de Sitter phase, \textit{i.e.}, having a fast-evolving scale factor. Undoubtedly, in a pure de Sitter phase we cannot escape from accelerating the universe. Consequently, postulating a suitable version of our scalar-field potential is crucial in order to get a graceful exit from inflation, as we will see.

A scalar field Lagrangian is therefore introduced, as composed by three main parts, namely \(\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3\) that read

\[
\begin{align*}
\mathcal{L}_1 &= \frac{1}{2} g^{\mu\nu} \phi,_{\mu} \phi,_{\nu} \quad \text{[Kinetic term]} \\
\mathcal{L}_2 &= -\frac{\xi}{2} R \phi^2 \quad \text{[Yukawa-like term]} \\
\mathcal{L}_3 &= -V(\phi) \quad \text{[Potential term]} \quad (1)
\end{align*}
\]

whose physical meanings are reported in the square brackets on the right, with the minus sign for \(\mathcal{L}_2\) and \(\mathcal{L}_3\) imposed adopting the signature convention \((+, -, - , -)\) for \(\mathcal{L}\). Finally, the coupling constant \(\xi\) implies non-minimal coupling with curvature that resembles a Yukawa-like interaction between the scalar field \(\phi\) and curvature itself, \textit{i.e.}, showing an illuminating toy model describing self-interacting fields with spacetime\(^6\).

In our scheme, \(V(\phi)\) is the inflationary potential that drives the universe to accelerate during inflation. Consequently, the field \(\phi\) corresponds to the inflation that conventionally is thought to evolve from small to large field excitations, with small curvature at the end of inflation.

Since the interacting Yukawa-like term carries with it the interaction, in particle physics one can imagine \textit{to dress the field} \(\phi\) with the interaction itself \([22]\). Consequently, since the interaction involves curvature the corresponding particles would be quasiparticles, interpreted as excitations between geometry and inflaton. This hypothesis discussed in Refs. \([11, 23]\) resembles free standard particles, but provides for them a different mass and, more in general, different physical properties. As we clarify later, we interpret those particles, produced within our landscape, as dark matter candidates. The mechanism of geometric particle production is clearly due to the kind of coupling between the inflaton and the Ricci scalar and agrees with previous approaches that seem to provide similar outcomes \([23]\). Rephrasing this concept, we here propose geometric particles of dark matter within the context of pure general relativity\(^7\) (GR).

Last but not least, we conventionally describe the universe evolution in terms of conformal time\(^8\), \(\tau\), having the conformally-flat FRW metric to be

\[
g_{\mu\nu} = a^2(\tau) \eta_{\mu\nu} , \quad (2)
\]

with \(\eta_{\mu\nu}\) the standard Minkowski metric. The ansatz for the scale factor in the various epochs considered, and the corresponding matching conditions, will be discussed later in the text.

A. Effective potential coupled to gravity

Adopting Eq. \((1)\), we do not know \textit{a priori} the most suitable choice for the potential. Following Planck satellite results \([25]\), there is no consensus about the most suitable scalar field potential that drives inflation. The corresponding experimental results provided several approaches that are still valid, ruling out other versions of \(V(\phi)\). Among all the most promising possibilities, the hilltop potentials have not been excluded yet \([26, 27]\) and may well-adapt to our scopes of solving the longstanding cosmological constant problem, producing \textit{de facto} particles from quantum vacuum energy. Indeed, a typically-large early cosmological constant may drive cosmological

\(^3\) With this expression we refer to gravitational particle production due to the sole expansion of spacetime, see \textit{e.g.}, the seminal work \([17]\) or \([18, 19]\) for more recent reviews. Such particle production has a quantum nature, since it relies on the fact that the initial (quantum) vacuum state is no longer seen as a vacuum as the universe expands, thus leading to particle creation. More details are given in Sec. \(V\).

\(^4\) In principle, other approaches are possible. In the case of Higgs field, for instance, one gets the Higgs inflation \([20]\). Alternative views are also related to \([21]\).

\(^5\) As a matter of fact, one can imagine to change the spacetime instead of perturbing FRW background. However, this would imply to know \textit{a priori} the underlying metric that is clearly unknown.

\(^6\) Usually Yukawa interaction involves three complex fields with a coupling constant associated to one of the four fundamental forces. Since this is not exactly our case, we here use Yukawa-like.

\(^7\) Actually, the concept of geometric particles, or better geometric modes, of dark matter is also associated to extended theories of gravity. There, geometric particles are associated to higher orders of corrections within the Hilbert-Einstein’s action \([24]\).

\(^8\) See Appendix A for a brief introduction to the notion of conformal time in cosmology and its relation to cosmic time.
inflation, by \(V(\phi) = \Lambda^4(1 - \phi^n/\mu_n^2 + \ldots) \), where \(n = 2; 4 \). Hence, in order to guarantee our above prescriptions to hold, our strategy consists in the following two steps:

- we split the universe into different epochs. The first is dominated by the inflaton field. The subsequent describes reheating and afterwards radiation dominated epoch until our era, i.e., late-time. During inflation, we write FRW perturbations within the de Sitter spacetime as generated by quantum fluctuations of the inflaton field;

- we evaluate geometric particle production \([28, 29]\) during inflation, adopting the simplest choice for the coupling constant \(\xi \), namely the conformal coupling \(\xi = 1/6 \). To do so, we focus on geometry to fuel particle production, neglecting the quantum particle production related to the Bogoliubov coefficients \([30, 31]\), as above remarked.

To work out our treatments, from Eq. (1), the free equation of motion for \(\phi \) reads

\[
\Box \chi + V'(\phi \rightarrow \chi/\alpha) \alpha^3 = 0, \tag{3}
\]

with \(\Box = \partial_\eta \partial^\mu \) in conformal time and \(V'(\phi) \equiv \partial V/\partial \phi \), having rescaled the field itself by \([32]\)

\[
\phi(x) = \chi(x)/\alpha. \tag{4}
\]

Accordingly, we write the hilltop quadratic potential by

\[
V(\phi) = \Lambda^4(1 - \phi^2/\mu_2^2 + \ldots), \tag{5}
\]

where \(\Lambda^4 \) corresponds to the vacuum energy density during inflation \([33, 34]\).

On the other side, the scale \(\mu_2 \) is intimately related to the field width, i.e., to the field variation during inflation. Inflation occurs as \(\phi \approx 0 \) and, by virtue of Eq. (1), we define the corresponding effective potential driving our inflationary phase as

\[
V_{\text{eff}}(\phi, R) \equiv \Lambda^4(1 - \phi^2/\mu_2^2) + \xi R\phi^2, \tag{6}
\]

having constructed the sum of both hilltop potential and geometric coupling without any more complicated interactions. During inflation we can approximate it for small fields, having \textit{de facto} that it can reduce to a slightly evolving vacuum energy contribution \(\sim \Lambda^4 \). Clearly the dynamics of Eq. (6) is modified with respect to the quadratic hilltop potential due to the geometric coupling. We thus need to further investigate Eq. (6) in order to discuss when inflation ends. We will discuss how to exit inflation later in the manuscript.

At this stage, plugging Eq. (5) into (3), we get

\[
\Box \chi - 2a^2\Lambda^4/\mu_2^2 \chi = 0. \tag{7}
\]

Here, Eq. (7) can be analytically solved to adapt throughout inflation occurs. We focus on two phases below, namely before and after inflation. We thus analyze how to produce particles and how to interpret them as dark matter and then we discuss the consequences of our recipe immediately after inflation, up to our times.

B. Phase A: Starting with the inflationary stage

Theoretically speaking, inflation lasts inside \(-\infty < \tau < 0\). Around \(\tau \approx 0 \), i.e., as inflation ends, a de Sitter phase would naturally diverge and consequently unphysical divergences could occur. To avoid such singularities, the scale factor can be rewritten as prompted in Ref. \([35]\):

\[
a(\tau) = \frac{1}{1 - H_I \tau}, \quad \tau \leq 0, \tag{8}
\]

where we conventionally baptize the Hubble constant with \(H_I \), during inflation. It is evident that Eq. (8) does not provide any pathology within the range \(-\infty < \tau \leq 0 \), letting our model to work better before and immediately after inflation.

For the sake of clearness, it is well-established that during inflationary stage the Hubble rate is not \textit{exactly} a constant. It may slightly change with time, leading to a \textit{quasi-de Sitter expansion}. Assuming a de Sitter phase is therefore an approximation that, however, works well in describing the overall evolution of the scalar field during inflation. We will come back to analyze this issue later throughout the text. Now, bearing the ansatz (8) in mind, Eq. (7) turns out to be

\[
\Box \chi - \frac{2}{(1 - H_I \tau)^2} \Lambda^4/\mu_2^2 \chi = 0, \tag{9}
\]

whose general solution can be recast by

\[
\chi(x, \tau) = \frac{f_k(\tau)e^{ikx}}{(2\pi)^{3/2}}. \tag{10}
\]

Here, the field modes \(f_k \) satisfy the differential equation

\[
\ddot{f}_k + \left[k^2 - \frac{1}{H_I^2} \left(\frac{2\Lambda^4}{\mu_2^2 H_I^2} \right) \right] f_k = 0. \tag{11}
\]

Hence, Eq. (11) can be more compactly written as

\[
\ddot{f}_k + \left[k^2 - \frac{1}{\bar{\tau}^2} \left(\mu^2 - \frac{1}{4} \right) \right] f_k = 0, \tag{12}
\]

having introduced the new variable \(\bar{\tau} = \tau - 1/H_I \). This equation has the form

\[
\ddot{f}_k + \left[k^2 - \frac{1}{\bar{\tau}^2} \left(\nu^2 - \frac{1}{4} \right) \right] f_k = 0, \tag{13}
\]
admitting general solutions given in terms of Hankel’s functions [13]

\[f_k(\tau) = \sqrt{-\tau} \left[c_1(k)H^{(1)}_{\nu}(-k\tau) + c_2(k)H^{(2)}_{\nu}(-k\tau) \right]. \]

(14)

1. **Bunch-Davies state for vacuum**

The constants \(c_1(k) \) and \(c_2(k) \) are determined by selecting the vacuum state in the de Sitter space. As it is well known from quantum field theory, a general curved spacetime does not admit a canonical, or even preferred, vacuum state [36]. So, a convenient choice in the de Sitter spacetime is the so-called Bunch-Davies state, which appears precisely thermal to a free-falling observer in such a space [37]. In particular, imposing in our scheme the Bunch-Davies vacuum turns out to be equivalent to let our solution match the plane wave solution \(e^{i\epsilon/\sqrt{2k}} \) in the ultraviolet regime \(k \gg aH_I \). Thus, we have

\[f_k(\tau) = \sqrt{-\frac{\pi}{2}} e^{i(\nu + \frac{1}{2})\frac{\tau}{2}} \sqrt{-\tau} H^{(1)}_{\nu}(-k\tau), \]

(15)

where \(H^{(1)}_{\nu} \) are first kind Hankel’s functions and from Eqs. (12)-(13) we get

\[\nu^2 = \frac{1}{4} + \frac{2\Lambda^4}{\mu^2H_I^2}. \]

(16)

2. **Scalar field perturbations**

We assume now that scalar perturbations of the metric are generated by the quantum fluctuations of the inflaton field, as in the standard model of inflation [6, 13]. The most general line element for a perturbed spatially flat FRW universe in case of scalar perturbations reads

\[ds^2 = a^2(\tau) \left[(1 + 2\Phi)dt^2 - 2 \partial_i B \, dr \, dx^i - ((1 - 2\Psi)\delta_{ij} + D_{ij}E) \, dx^i \, dx^j \right]. \]

(17)

In the longitudinal (or conformal Newtonian) gauge, we set \(E = B = 0 \). For a scalar field, one also obtains \(\Psi = \Phi \). Accordingly, the perturbation potential \(\Psi \) satisfies the differential equation \([13, 38]\)

\[\ddot{\Psi} + 2H \dot{\Psi} = 4\pi G \dot{\phi}_0 \delta \phi = \epsilon H^2 \frac{\delta \phi}{\phi_0}, \]

(18)

where we split the field as

\[\phi = \phi_0(\tau) + \delta \phi(x, \tau), \]

(19)

with \(\phi_0 \) representing the “classical” background field and \(\delta \phi(x, \tau) \) the quantum fluctuations around \(\phi_0 \). In Eq. (18), \(G \) is the gravitational constant, \(H = \dot{a}/a \) and \(\epsilon \) the usual slow roll parameter. From Eq. (8), we have

\[\mathcal{H} = \frac{\dot{a}}{a} = \frac{H_I}{1 - H_I \tau}, \]

(20)

with (always) vanishing slow-roll parameter \(\epsilon \), given as a consequence of adopting a quasi-de Sitter phase. Indubitably, a pure de Sitter spacetime implies \(\epsilon = 0 \) at any time. To overcome this issue, we could easily modify the scale factor by including a slight correction, following the general idea of Ref. [13]. A plausible modified \(a(\tau) \) then reads

\[a(\tau) = \frac{1}{(1 - H_I \tau)^{1 + m}}, \]

(21)

where \(m \) is a constant that weakly deviates from \(m = 0 \). For the sake of completeness, in principle we can assume \(m = m(\tau) \) instead of a pure constant \(m \), in order to properly solve Eq. (18). Both the possibilities, namely constant \(m \) and \(m = m(\tau) \), as anticipated above, are related to the fact that inflation has to be described by a quasi de Sitter phase, first to avoid \(\epsilon = 0 \) and second to guarantee that \(a(\tau) \) is an approximate, but suitable, ansatz for our hilltop potential that, only asymptotically, evolves like a de Sitter phase.

With the ansatz (21), Eq. (20) is slightly modified by

\[\mathcal{H} = \frac{(1 + m)H_I}{(1 - H_I \tau)}, \]

(22)

from which

\[\epsilon = 1 - \frac{\mathcal{H}}{H^2} = 1 - \frac{1}{1 + m} \approx m, \]

(23)

where the last equality on the r.h.s. is true for small \(m \) only. As stated above, by imposing a time-varying \(m \) term, the corresponding, more complicated, version of \(\epsilon \) would weakly evolve during inflation to guarantee a graceful exit from it. We hereafter leave it fixed throughout the overall inflationary phase only to simplify our calculations and we will require \(\epsilon \to 1 \) in order to end inflation. From now on, we focus on super-Hubble scales, where the condition \(k \ll a(\tau)H_I \) holds. This will provide a physically motivated cut-off for the momenta of particles produced, as we will see. On these scales, it can be shown [13] that \(\phi_0 \) and \(\delta \phi \) solve the same equation.

\(^9\) This can be shown starting from the non-diagonal part \((i \neq j) \) of the \((ij)\)-perturbed Einstein equations. See e.g. [13] for the details.

\(^{10}\) Spatial \(\phi_0 \) expansions are in the form of complex exponentials. Taking infinite wavelengths leads to vanishing momenta, or alternatively to non-oscillations of the field, justifying de facto the name “classical” above used, see e.g. [13].

\(^{11}\) In our notation, the overdot always refers to derivatives with respect to conformal time, e.g. \(\dot{a} = \partial a/\partial \tau \). See Appendix A for the interconnections between conformal, \(\tau \), and cosmic time, \(t \).
The solutions are then related to each other by a function $c(x)$ which depends upon space only:

$$\delta \phi = c(x) \phi_0.$$
(24)

Setting $c(x) = e^{i q \mathbf{x}}$, we can solve Eq. (18) for the scale factor (8) and obtain the general form of the potential

$$\Psi = \frac{eH_I - 2c(1 - H_I \tau)^2}{2(1 - H_I \tau)} e^{i q \mathbf{x}}.$$
(25)

Assuming now that $\Psi(\tau \to -\infty) = 0$, we explicitly get

$$\Psi = \frac{eH_I}{2(1 - H_I \tau)} e^{i q \mathbf{x}}.$$
(26)

Having a functional form for Ψ, we can now compute the perturbation tensor from which our geometric particles arise.

An interesting point, from Eq. (26) is the following. As ϵ tends to one, namely as inflation ends, the perturbed potential does not vanish. This is a general feature of inflationary models, not only limited to our choice of $V(\phi)$. Consequently, a suppressing position-dependent exponent in the phase $e^{i q \mathbf{x}}$ is requested as cut-off scale in Ψ, physically motivated by the fact that once inflation ends the universe is less inhomogeneous than during inflation and, gradually increasing the cosmic scale by cosmic expansion, one recovers the cosmological principle.

In other words, a generic form of Ψ for a unspecified potential that violates Eq. (24) may read

$$\Psi = \mathcal{F}(\epsilon, \tau, H_I) e^{i q(\tau) \mathbf{x}},$$
(27)

with $q(\tau) = q + i K \tau$, and K a unconstrained positive-definite momentum.

Since perturbations are responsible for geometric particle creation, as we will clarify shortly, we expect those particles to arise in a part of the whole inflationary period, instead than within the whole inflation time. To introduce our dark matter candidate, later in the text, we will return on this point.

We can now go through the next step, i.e., working out gauge transformations to simplify our framework as below reported.

3. Gauge transformations

We now need to write the gravitational potential Ψ in the synchronous gauge. In this gauge, the most general scalar perturbation takes the form $h_{ij} = h_{ij}/3 + h_{ij}^0$. The general procedure to transform from the longitudinal to the synchronous gauge is the following [39]. Let us consider a general coordinate transformation from a system x^μ to another \tilde{x}^μ

$$x^\mu \rightarrow \tilde{x}^\mu = x^\mu + d^\mu(x^\nu).$$
(28)

We write the time and the spatial parts separately as

$$\tilde{x}^0 = x^0 + \alpha(x, \tau),$$
(29a)
$$\tilde{x} = x + \nabla \beta(x, \tau) + \epsilon(x, \tau),$$
(29b)

where the vector d has been divided into a longitudinal component $\nabla \beta$ and a transverse component ϵ.

Let \tilde{x}^μ denote the synchronous coordinates and x^μ the conformal Newtonian coordinates, with $\tilde{x}^\mu = x^\mu + d^\mu$. We have

$$\alpha(x, \tau) = \dot{\beta}(x, \tau),$$
(30a)
$$\epsilon_i(x, \tau) = \epsilon_i(x),$$
(30b)
$$h_{ij}^0(x, \tau) = -2 \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) \beta(x, \tau),$$
(30c)
$$\partial_i \epsilon_j + \partial_j \epsilon_i = 0.$$
(30d)

and

$$\psi(x, \tau) = -\beta(x, \tau) - \frac{\dot{a}}{a} \dot{\beta}(x, \tau),$$
(31a)
$$\phi(x, \tau) = \frac{1}{6} h(x, \tau) + \frac{1}{3} \nabla^2 \beta(x, \tau) + \frac{\dot{a}}{a} \dot{\beta}(x, \tau).$$
(31b)

Now, setting $\Phi = \Psi$, as above stated, and recalling Eq. (26), we obtain

$$\ddot{\beta}(x, \tau) + \frac{\dot{\beta}(x, \tau)}{1 - H_I \tau} H_I + \frac{\epsilon H_I}{2(1 - H_I \tau)} e^{i q \mathbf{x}} = 0,$$
(32)

whose general solution is

$$\beta(x, \tau) = \left(-\frac{\epsilon \tau}{2} + \frac{c_1 \tau^2}{2} + c_2 \right) e^{i q \mathbf{x}}.$$
(33)

Let us now focus on the values of the integration constants c_1 and c_2. Concerning c_2 it is easy to see, from Eq. (31a), that Ψ vanishes at $\tau \to 0$ independently from the value of c_2 that, consequently, is fully-unconstrained. It is straightforward to set $c_2 = 0$ only to reduce our problem complexity. The situation mostly changes concerning c_1. There is no a priori reasons to fix it to a given value and apparently $\beta(x, \tau)$ turns out to be quadratic in the conformal time. However, a conceptual caveat suggests how to get it. Indeed, subtracting then Eq. (31b) from (31a), we get

$$\ddot{\beta}(x, \tau) - \frac{2H_I}{1 - H_I \tau} \dot{\beta}(x, \tau) + \frac{h(x, \tau)}{6} \dot{\beta}(x, \tau) = 0$$
(34)

leading to

$$h(x, \tau) = -6 \ddot{\beta} + \frac{12H_I}{1 - H_I \tau} \dot{\beta}. $$
(35)

Here, $h(x, \tau)$ would imply non-vanishing perturbations at $-\infty$ that actually diverge, as due to the first-order β time-derivative12. This fact appears clearly unphysical.

12 Second-order time-derivative implies instead a constant term, almost non-influential for our prescription.
as we require perturbations to occur during and after inflation, rather than before. Plausibly we are thus forced to set $c_1 = 0$ to avoid any possible issue. Hence, we get from Eq. (36)

$$h(x, \tau) = -\frac{6cH_I}{1-H_I\tau} e^{i\mathbf{k}\cdot\mathbf{x}} = -12\Psi.$$ (36)

On super-Hubble scales, the term $h||_{ij}$ can be neglected. The perturbation tensor in synchronous gauge then reads

$$h_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 4\Psi & 0 & 0 \\ 0 & 0 & 4\Psi & 0 \\ 0 & 0 & 0 & 4\Psi \end{pmatrix},$$ (37)

from which the line element

$$ds^2 = a^2(\tau) \left[d\tau^2 - \delta_{ij}(1 - 4\Psi)dx^i dx^j \right].$$ (38)

We are now ready to compute the corresponding geometric particle production.

C. Geometric particle production

The interaction Lagrangian, describing the interaction of the inflaton with the external gravitational field, can be written as [28]

$$\mathcal{L}_I = -\frac{1}{2} \sqrt{-g(0)} H^{\mu\nu} T^{(0)}_{\mu\nu},$$ (39)

where $g_{\mu\nu}^{(0)} = a^2(\tau) \eta_{\mu\nu}$, $H_{\mu\nu} = a^2(\tau) h_{\mu\nu}$, and $T^{(0)}_{\mu\nu}$ is the zero-order energy-momentum tensor, namely

$$T^{(0)}_{\mu\nu} = \partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2} g^{(0)}_{\mu\nu} \left[g^{(0)}_{\rho\sigma} \partial_{\rho}\phi \partial_{\sigma}\phi - 2\Lambda^2 (1 - \phi^2/\mu_2^2) \right]$$

$$- \frac{1}{6} \left[\nabla_{\mu} \partial_{\nu} - g^{(0)}_{\mu\nu} \nabla^a \nabla^a + R^{(0)}_{\mu\nu} - \frac{1}{2} R^{(0)} g^{(0)}_{\mu\nu} \right] \phi^2.$$ (40)

The first-order \hat{S}-matrix can be obtained by Dyson’s expansion formula (see e.g. [40])

$$\hat{S} = \hat{T} \exp^{-i \int_{-\infty}^{+\infty} d\tau \mathcal{H}_I},$$ (41)

where \mathcal{H}_I is the Hamiltonian in interacting picture and \hat{T} the time-ordering operator. As $\mathcal{H}_I = -\mathcal{L}_I$ in our model [41, 42], at first order in Dyson’s expansion we get

$$\hat{S} \simeq 1 + i\hat{T} \int d^4x \mathcal{L}_I.$$ (42)

Accordingly, the second order particle number density at time τ^* is

$$N^{(2)}(\tau^*) = \frac{a^{-3}(\tau^*)}{(2\pi)^3} \int d^3k \int d^3p \left| \langle 0 | \hat{S} | k, p \rangle \right|^2.$$ (43)

We remark that second order terms are not required in the \hat{S}-matrix expansion (42), since the interaction Lagrangian is still quadratic in the field at second geometric order, thus contributing at higher orders to the particle number density. Moreover, in Eq. (43) we have assumed that no “quantum” particle production is involved, namely the Bogoliubov coefficients β_k and β_p obtained in [28] have been neglected. In Appendix B we discuss the generalization of Eq. (43) to the case of non-zero Bogoliubov coefficients. Quantum particle production is also responsible for the generation of particle-antiparticle pairs at zero and first geometric order [17, 28, 29], as we will discuss in Sec. V.

Coming back to Eq. (43), the probability amplitude for particle pair creation can be derived from Eq. (39)-(42), namely

$$\langle 0 | \hat{S} | k, p \rangle = -\frac{i}{2} \int d^4x \frac{2a^4H^{ij}}{2a(\tau)} \left[\partial_i \phi_k^* \partial_j \phi_p - \frac{1}{2} \eta_{ij} \eta^{ab} \partial_a \phi_k^* \partial_b \phi_p + g_{ij}^{(0)} \Lambda^4 \left(-\frac{\phi_k^* \phi_p^*}{\mu_2^2} \right) \right]$$

$$- \frac{1}{6} \left[\nabla_i \partial_j - g^{(0)}_{ij} \nabla^a \nabla_a + R^{(0)}_{ij} - \frac{1}{2} R^{(0)} g^{(0)}_{ij} \right] \phi_k^* \phi_p^*,$$ (44)

with $i, j = 1, 2, 3$ as consequence of working in the synchronous gauge. We have also defined the field modes

$$\phi_k(x, \tau) = \frac{f_k(\tau)}{(2\pi)^{3/2}a(\tau)} e^{i\mathbf{k}\cdot\mathbf{x}},$$ (45)

which can be derived from Eqs. (10) together with the solutions Eqs. (15).

On super-Hubble scales, these modes can be written as [13]
$\phi_k = \frac{1}{(2\pi)^{3/2}} e^{i(\nu - \frac{1}{2})} \frac{\Gamma(\nu)}{\Gamma(3/2)} \frac{H_I}{\sqrt{2k^3}} \left(\frac{k}{aH_I} \right)^{3-\nu} e^{ikx}$. \ (46)

Exploiting now the fact that the perturbation tensor is diagonal and writing explicitly all the curvatures, Eq. (44) can be recast in the compact form

$$\langle 0| \hat{S}(k, p) = -\frac{i}{2} \int d^3x \ 2a^4 (A_1(x, \tau) + A_2(x, \tau) + A_3(x, \tau)),$$

$$A_i(x, \tau) = H^{ii} \left[\phi_i \phi_i^* \phi_k \phi_k^* + \frac{1}{2} \eta^{ab} \partial_a \phi_i \partial_b \phi_k + a^2 \Lambda^4 \left(\frac{\phi_i^* \phi_i^*}{\mu_2^2} \right) - \frac{1}{6} \left(\partial_i \partial_i + \frac{\dot{a}}{a} \partial_0 + \eta^{ab} \partial_a \partial_b - \left(\frac{\dot{a}}{a} + \left(\frac{\dot{a}}{a} \right)^2 + 3 \frac{\ddot{a}}{a} \right) \phi_i^* \phi_i^* \right) \right].$$ \ (48)

1. Interpreting dark matter as geometric particles

With all the above ingredients, we can now compute the final number density of geometric particles produced, namely $N^{(2)}(\tau)$ at $\tau = 0$. As anticipated, these are interpreted in terms of dark matter quasiparticles. Dark matter seems the most plausible candidate in our model, since it only interacts gravitationally with ordinary matter and, in fact, the way of obtaining it derives from the Yukawa-like potential only. We expect that any particle pair creation, got from purely quantum processes, becomes subdominant over quasiparticles obtained directly from vacuum fluctuations [43], as above discussed.

Hence, to determine dark matter microphysics and properties, we first need to specify initial inflationary settings, i.e., to properly define super-Hubble scales, introducing a cut-off scale to have enough e-foldings, say N, that are needful to speed up the universe during inflation [6], having

$$N = \int dt H(t) = \int d\tau \frac{H_I}{1 - H_I \tau} \simeq 60, \ \ \ (49)$$

where conventionally we took 60 as minimal number of e-foldings. We thus obtain $\log(1 - H_I \tau)|_{\tau_i}^{\tau_i} = 60$, where $\tau_i < 0$ is assumed to be the initial time for inflation, and it can be inferred once the fixed values are imposed on our free parameters.

Lying on super-Hubble scales, namely

$$\frac{k}{a(\tau) H_I} \ll 1 \implies k \ll a(\tau) H_I, \ \ \ (50)$$

quantum fluctuations of the inflaton field become classi-
where \(M_{\text{pl}} = 1.22 \times 10^{19} \text{ GeV} \) is the Planck mass. This ansatz agrees with current understanding about the value of the cosmological constant as predicted by quantum field theory fluctuations [1].

- The corresponding slightly evolving Hubble rate during inflation therefore is

\[
H^2(t) \equiv H_I^2 \simeq \frac{8\pi G}{3} \Lambda^4, \tag{52}
\]

and Planck satellite data [25] impose the following constraint (at a 95 % confidence level):

\[
\frac{H_I}{M_{\text{pl}}} < 2.5 \times 10^{-5}, \tag{53}
\]

which accordingly would give \(\Lambda^4 \lesssim 10^{65} \text{ GeV}^4 \). In particular, this energy scale for vacuum energy is the typical regime of spontaneous symmetry breaking in grand unified theories [44, 45].

- The minimally coupled hilltop quadratic potential requires [25]

\[
0.3 < \log_{10}(\mu_2/M_{\text{pl}}) < 4.85, \tag{54}
\]

namely \(2 M_{\text{pl}} \lesssim \mu_2 \lesssim 10^5 M_{\text{pl}} \). Our effective potential, instead, includes additional field-curvature coupling contribution, that provide relevant consequences on inflation. Nevertheless, in case of conformal coupling, large \(\Lambda^4 \) values would result in vacuum energy domination. Hence, it appears licit to consider the prescription of Eq. (54) in our computation as prior for Eq. (6).

Concerning the choice of the slow-roll parameter, we have previously discussed that small deviations from a pure de Sitter evolution are required in order to have a non-zero \(\epsilon \). Since we are dealing with inhomogeneities at a perturbative level, we also have to satisfy [28, 29]

\[
|h_{ii}(x)| \ll 1. \tag{55}
\]

Hence, by virtue of Eq. (26) we see that in order to preserve the perturbative treatment, we further need \(\epsilon H_I \ll 1 \). In this respect, we draw in Fig. 1 the number density of geometric particles, namely \(N^{(2)}(0) \), for given values of the hilltop parameter \(\mu_2 \). In Fig. 2 we show the dependence of the number density on the vacuum energy term driving inflation, \(\Lambda^4 \).

2. Cut-off scales and vacuum energy

A further inspection of Eqs. (16) and (46) reveals that the modes of the field become exactly “frozen” on super-Hubble scales if \(\nu \simeq 3/2 \), namely

\[
\mu_2 \simeq 0.42 \times 10^{19} \text{ GeV} = 0.34 M_{\text{pl}}. \tag{56}
\]

This value is well outside the range provided in Eq. (54) that, however, we know to be valid only in case of minimally-coupled inflaton. Smaller \(\mu_2 \) values generally lead to a larger number density. Accordingly, if we require Eq. (56) to hold in general, then two possibilities arise:

- the cut-off scale on particle momenta is forced to be much smaller, in order to preserve realistic values for the number density \(N^{(2)}(0) \);

- alternatively, vacuum energy should be several orders of magnitude below Planck energy scale, i.e., closer to the scales of the particle physics standard model.

The latter possibility is still an open and promising scenario. Constraining \(N^{(2)}(0) \) requires to know the cut-
off scale that \textit{a priori} cannot be known. Disclosing how to constrain the vacuum energy cut-off scales deserves further investigation and will be object of future works.

D. Phase B: Revising reheating and radiation dominated era after inflation

We featured the inflationary epoch by using the de Sitter solution of Eq. (8). This represented a suitable approximation that, however, fails to be predictive during the reheating transition, \textit{i.e.}, as inflation ends. In particular, at the end of inflation Eq. (52) no longer holds and the behavior of the scale factor is not determined by the sole vacuum energy, Λ^4. Instead, it depends on the full effective potential V^eff that, consequently, should be evaluated \textit{in toto}.

In particular, the potential V^eff of Eq. (6) also includes the coupling to the Ricci scalar curvature, which is crucial to interpret geometric particles as dark matter quasiparticles. However, this interacting term grows as ϕ increases. By construction, it grows when the hilltop potential evolves towards its minimum. Accordingly, the presence of such coupling would not allow a graceful exit from inflation, since the full potential never reaches its minimum. In principle, this may suggest that a more complicated version the single-field inflationary potential would be required in order to properly address the transition from inflation to reheating. For instance, in [7] a Morse potential reducing to the Starobinski one is investigated, unifying \textit{de facto} inflation with dark energy.

Here, as naive estimation we can assume that during reheating the background geometry behaves \textit{in average} as a matter dominated universe [35, 46] and so, accordingly to this hypothesis, we select a scale factor that fulfills an Einstein-de Sitter (EdS) universe dominated by matter through

$$a(\tau) = \left(1 + \frac{H_I \tau}{2}\right)^2, \quad 0 < \tau < \tau_r$$

(57)

where we denote with τ_r the time at which reheating is expected to end.

We now need continuity of each epoch, without passing through any transition. To do so, we notice that Eq. (57) ensures the validity of the matching conditions [47] at time $\tau = 0$, essentially implying the continuity of the scale factor and Hubble parameter on the junction hypersurface. For $\tau > 0$, the zero-order scalar curvature takes the form:

$$R^{(0)} = \frac{3H_i^2}{\left(1 + \frac{H_I \tau}{2}\right)^6}, \quad 0 < \tau < \tau_r$$

(58)

and introducing the usual slow-roll parameter

$$\epsilon = \frac{1}{16\pi G} \left(\frac{V'}{V}\right)^2,$$

(59)

we can exploit Eq. (6) and set $\epsilon = 1$ to obtain a realistic value ϕ_{end} for the field at the end of inflation. For $R^{(0)}(\tau > 10^{-12})$ the hilltop contribution dominates over the field-curvature coupling in V^eff, and we expect a result close to the one obtained for minimally coupled hilltop models [48], namely

$$2q^2 \left(1 - \frac{\phi_{\text{end}}}{\mu_2}\right)^2 = 1,$$

(60)

having defined $q \equiv M_{\text{pl}}/\mu_2$. So, we obtain the following expansion for small q,

$$\phi_{\text{end}} = \mu_2 \left(1 - \frac{1}{\sqrt{2}} q + \frac{1}{4} q^2 + \mathcal{O}(q^3)\right),$$

(61)

so that we have a nonzero remaining contribution to the hilltop component of the potential. We expect this remaining contribution to the potential to be responsible for baryonic particle creation, as usually discussed in preheating and reheating models (see e.g. [46]).

As the reheating stops, the subsequent phase of radiation domination can be modeled by a scale factor of a EdS universe of the form

$$a(\tau) = b \tau + c, \quad \tau > \tau_r$$

(62)

where the constants b and c are determined by again imposing the matching conditions on the matching hypersurface from reheating to radiation phase, at time $\tau = \tau_r$. During radiation domination, the corresponding EdS Hubble parameter and temperature satisfy [44]

$$H \sim \sqrt{G} T^2,$$

(63)

where T is the corresponding temperature of the universe. The expected dark matter energy density at τ_r is then15

$$\rho^\text{DM}(\tau_r) \simeq (1 + z_r)^3 \rho^\text{DM}_0,$$

(64)

where ρ^DM_0 is the current value got at redshift $z = 0$, namely $\rho^\text{DM}_0 \simeq 0.25 \rho_{\text{cr}}$, with $\rho_{\text{cr}} \equiv 3H_0^2/8\pi G$ and H_0 is the Hubble constant. Further, we introduced the redshift z_r that certifies the beginning of the radiation phase. Since we are dealing with the radiation-dominated epoch, z_r can be obtained within a EdS universe dominated by radiation only, \textit{i.e.},

$$H(z) \simeq H_0^2 \Omega_{\text{DM}}(1 + z)^4.$$

(65)

15For the sake of completeness, the subsequent dark matter contribution is \textit{not} pressureless as in the standard cosmological model, but has a non-negligible term that arises with the one found in Ref. [12]. This term, however, is absolutely negligible at the reheating time and does not affect the universe dynamics. We will show later in the text that its magnitude can be associated to current observations of the cosmological constant, solving the coincidence problem.
Here, Ω_0 is the today radiation density, say $\Omega_0 = \rho_0 / \rho_G \simeq 9.29 \times 10^{-5}$ [49]. Using now the ansatz made in Eq. (63), we get

$$z_r \equiv z(T_r) \simeq 4 \sqrt{G T_r^5 \over H_0^2 \Omega_0},$$

(66)

where T_r is the temperature corresponding to z_r.

III. PREDICTING THE DARK MATTER CONSTITUENT

Assuming the whole dark matter is produced during inflation, via the geometric mechanism described in Sec. II A, we could in principle estimate its mass. By construction we have $\rho_{DM} = m^* N^{(2)}$, where m^* is the mass of the dark matter candidate. Thus, by virtue of Eqs. (64) and (66), we easily get

$$m^*(T_r) = \rho_{DM}^{(2)} N^{(2)} \simeq \left(\frac{G T_r^{5/2}}{H_0^2 \Omega_0^2} \right) \rho_{DM}^{(2)} \Omega_0,$$

(67)

and both densities might be computed at $\tau = \tau_r$. However, since this time is a priori unknown, we cannot use Eq. (57) to compute the normalization factor for $N^{(2)}(\tau_r)$. This issue may be healed assuming, for instance, that τ_r is small enough to show $a(\tau = \tau_r) \simeq a(\tau = 0) = 1$. We therefore simply follow the latter approach, just noticing that any larger τ_r would only slightly modify the normalization factor for $N^{(2)}$, as confirmed in Eq. (43).

Hence, fixing the temperature T_r and employing the parameters $\Lambda^4 \simeq 10^{64}$ GeV4, $\epsilon = 10^{-14}$, $\tau_i = -\exp(40)/H_I$ and $T_i = 1$ GeV.

![FIG. 3: Mass of the dark matter candidate as function of the hilltop parameter μ_2. The other parameters are: $\Lambda^4 = 10^{64}$ GeV4, $\epsilon = 10^{-14}$, $\tau_i = -\exp(40)/H_I$ and $T_i = 1$ GeV.](image)

![FIG. 4: Mass of the dark matter candidate reported in GeV plotted in function of the temperature T_r at the beginning of radiation phase. The other employed parameters are: $\Lambda^4 = 10^{64}$ GeV4, $\epsilon = 10^{-14}$, $\tau_i = -\exp(40)/H_I$ and $\mu_2 = 2 M_{pl}$.](image)

is due to the fact that larger $|\tau_i|$ would result in smaller values for the momentum cut-off and thus less particles produced. In Fig. 4 we show the dependence of the mass m^* on the temperature T_r, for $\mu_2 = 2 M_{pl}$.

τ_i (GeV$^{-1}$)	$\mu_2(M_{pl})$	$m^*(\text{GeV})$
$-\exp(40)/H_I$	1.5	9.45×10^{-10}
	2.0	5.29×10^{-5}
	2.5	4.94×10^{-3}
	3.0	7.80×10^{-2}
	3.5	0.503
$-\exp(45)/H_I$	1.5	0.661
	2.0	8.31×10^{4}
	2.5	1.15×10^{6}
	3.0	2.26×10^{7}
	3.5	1.66×10^{8}

TABLE I: Table of masses m^* of the geometric dark matter candidate for given values of τ_i and the hilltop parameter μ_2, assuming conventionally $T_r = 1$ GeV. The numbers 40 and 45 are arbitrarily chosen to reduce the interval in which dark matter is produced as explained in detail in the text.

We notice then that the total amount of dark matter present in the universe could in principle be traced back to a geometric particle production mechanism. We remark again that our results critically depend on the momentum cut-off scales, introduced in Sec. II C1, which is intimately related to the initial ansatz for the scale factor during inflation. A larger cut-off would result in a larger number of particles produced and, therefore, smaller values for the mass m^*. We also underline that the initial temperature of the radiation phase is in principle a model dependent quantity.

In Fig. 5 we show that the points of Tab. I fit well with an exponential function, provided μ_2 remains close to the lower bound imposed by Planck (cfr. Eq. (54)).
The above-developed strategy is proposing a mechanism of vacuum energy cancellation, showing that the vacuum energy lost can transform into geometric particles. Since dark matter is due to the coupling between inflaton and curvature (at a perturbative level) we discuss about geometric particles. Moreover, since we expect collective behavior of such particles, that turn out to be stable throughout the universe evolution, we propose quasi-particle constituents [11].

In view of this, we here focus on the universe dynamics and we show how to obtain a heuristic argument to solve the coincidence and fine-tuning problems plaguing the standard cosmological background model. To do so, since we have assumed continuity between the inhomogeneous and homogeneous epochs, i.e., the cosmic dynamics is smooth and no discontinuities are expected, we can proceed as schematically listed below.

- We ask that, in addition to continuity between epochs, the Israel–Darmois junction conditions hold [47]. These conditions require that, on the spacelike hypersurface representing the junction time, the two metric tensors induced by each universe coincide, as well as the two extrinsic curvatures (see also [50, §21.13]).

- For each metric, namely for the homogeneous and inhomogeneous spacetime, we evaluate the corresponding energy and pressure. We call them $\rho_{1:2}$ and $P_{1:2}$, where conventionally we refer to subscripts $1;2$ as inhomogeneous and homogeneous metrics, respectively.

- Since the overall energy is conserved by construction, we calculate the pressure jump, i.e., the difference $P^{(1)} - P^{(2)}$. If the latter would be proportional to the critical density of the universe today, or smaller, then the energy transformed into geometric particles leaves the pressure magnitude today of the same order of current observations.

The last item, essential for our purposes, occurs because at the end of inflation the energy of the initial inhomogeneous universe is much smaller than vacuum energy. The energy lost, and transformed into geometric particles, is responsible for $\rho^{(1)}$ magnitude. This fact naturally fixes the fine-tuning issue today. Indeed, if $\rho^{(2)}$ is equal to the density at the end of inflation, i.e., without the degrees of freedom of quantum vacuum energy, the fine-tuning issue is not a well-posed problem, but rather it turns out to be solved naturally. Accordingly, since $\rho^{(2)} = \rho^{(1)}$ if we get $P^{(2)} - P^{(1)} \leq \rho_{cr}$ then the two magnitudes of pressure would be comparable and so $P^{(2)}$ i.e., the pressure today, will be proportional to the matter density at late-times alleviating the coincidence problem [51].

Following the nomenclature of Sec. I, we can schematically sketch the corresponding net values reached by Λ as:

$$\Lambda \simeq \begin{cases} \rho_{vac}, & \text{Before inflation,} \\ \Lambda_B, & \text{After inflation.} \end{cases}$$

In this picture, Λ_B is the magnitude inferred once we evaluate $P^{(1)} - P^{(2)}$. Thus, the bare cosmological constant arises since not all the vacuum energy is cancelled. In fact, the pressure jump, namely $P^{(1)} - P^{(2)}$ is due to the fact that vacuum energy is not completely fine-tuned to give geometric particles, but rather a (large) fraction of it provides particles. Hence, if we indicate with $\Lambda_{geom} \leq \rho_{vac}$ the amount used for getting particles, we conclude

$$\Lambda_B = \rho_{vac} - \Lambda_{geom}.$$ \hfill (69)

In the above equation, we neglected the fact that, at the end of inflation, there is also a remaining contribution due to the inflaton potential, since ϕ_{end}/μ_2 may have small deviations from unity, as reported in Eq. (61). However, as already explained, we expect this contribution to be responsible for ordinary baryonic matter production during reheating and, for this reason, it is not involved in our argument here.

Eq. (69) is then true if inflation ends before cancelling completely the overall vacuum energy pressure, leaving a residual constant pressure to contribute the spatial part of the energy momentum tensor after inflation, being proportional to Λ_B. In such a picture, Λ_B is therefore reinterpreted as the difference of pressures before and after the transition that is associated to the particle production. This mechanism fully-agrees with the one presented in Ref. [12], but the here-adopted hilltop potential differs from the one prompted in [7].
Thus, we here make the assumption that reheating lasts in a negligible time, i.e., approximating the inflating end with the beginning of the radiation epoch, we write for the two spacetimes the corresponding line elements to hold16

\begin{align}
 g_1 &= a_1^2(\tau_1) \left[dr_1^2 - \delta_{ij} \Gamma^2 \, dx^i dx^j \right], \\
 g_2 &= a_2^2(\tau_2) \left[dr_2^2 - \delta_{ij} \, dX^i dX^j \right],
\end{align}

with $\Gamma \equiv \sqrt{1 - 4W}$ and \textit{a priori} $\tau_1 \neq \tau_2, x_i \neq X_i$. Here the perturbed metric g_1 is associated to Eq. (38) whereas g_2 is the current spatially-flat homogeneous and isotropic FRW spacetime, still valid up to our time by simply fulfilling the cosmological principle. We evaluate the Israel–Darmois junction conditions and we assume the following recipe:

\begin{itemize}
 \item we measure time regardless the cosmological epoch, leading to $\tau_1 = \tau_2$;
 \item the angular part of both the spacetimes remains unaltered before and after the matching.
\end{itemize}

The equivalence of the metric tensors (70a)–(70b) induced on $\tau = 0$ (chosen as the junction time between the two phases) gives that both spatial line elements must coincide, $x_i = X_j$, up to radial rescaling. This in turn implies a condition that the metric coefficient Γ containing the potential Ψ must satisfy on the matching hypersurface $\tau = 0$:

$$\Gamma = \frac{a_2(0)}{a_1(0)}.$$ \hfill (71)

Moreover, equivalence of the two extrinsic curvatures gives the further condition

$$\Gamma_\tau = H_2(0) - H_1(0),$$ \hfill (72)

where $\Gamma_\tau \equiv \partial \Gamma \big/ \partial \tau$, evaluated at $\tau = 0$ again.

When we discussed about reheating time, we required matching continuity of our functions. So, in analogy, assuming the universe not to pass through any transition and/or discontinuity, we take its size and radius to be continuous. Consequently, from (71)–(72), it is licit to write down

\begin{align}
 a_2(0) &= a_1(0), \\
 H_2(0) &= H_1(0). \hfill (73a) \hfill (73b)
\end{align}

From Eqs. (71)–(72), by virtue of the above relations, we get the intriguing fact that Ψ must be constant on the junction hypersurface, in order to permit the matching between the two spacetimes to occur.

By construction from Einstein’s equations, one expects the pressure term to be proportional to the second derivative of Γ with respect to τ, namely $\Gamma_{\tau\tau}$. If the pressure difference between the first and second stage of our spacetimes is proportional to ρ_{cr}, then the coincidence problem would be alleviated.

Bearing in mind Eqs. (71) and (72) with the recipe of Eqs. (73a)–(73b), we therefore obtain the G^i_0 component of Einstein’s tensor, $G^i_0 \equiv R^i_0 - \frac{1}{2} g^{ij} R$, namely the pressure, as follows

$$P = -\frac{1}{8 \pi G} \left[(a'(\tau))^2 \frac{\rho}{a(\tau)^3} - 2 \rho^\prime a'' a(\tau) - 2 \Gamma a(\tau) \right]. \hfill (74)$$

Immediately, assuming a matter dominated EdS universe after inflation, we find

\begin{align}
 \Delta \rho &= 0, \\
 \Delta P &= -3 H_I^2 - 2 \Gamma, \tau, \hfill (75a) \hfill (75b)
\end{align}

where $\rho^{(1;2)}(0) \equiv G^{0,1(2)}_0$ and $P^{(1;2)} \equiv \frac{1}{8 \pi G} G^{1,1(2)}_1$, i.e., density and pressure respectively whereas the density and pressure shifts are, by definition, $\Delta \rho \equiv \rho^{(1)} - \rho^{(2)}$ and $\Delta P \equiv P^{(1)} - P^{(2)}$.

As a consequence, requiring $\Delta P \sim \rho_{cr}$ provides

$$\Gamma, \tau \propto \rho_{cr} - \frac{3 H_I^2}{2}. \hfill (76)$$

Forcing Γ, τ to vanish suggests that $H_I^2 \simeq \rho_{cr}$. Since this value is the today critical density previously introduced, it is quite likely that H_I^2 should be close to this value immediately after inflation. This heuristic proof is supported by the fact that, although we denoted with H_I the inflationary Hubble rate, it is not the inflationary Hubble rate, it is not a priori the today critical density previously introduced, ρ_{cr}.

A. Consequences on background cosmology

As a consequence of our recipe, one argues that the standard cosmological model, i.e., the ΛCDM paradigm,
is modified because, at the end of our process, we can model the corresponding total fluid as a single fluid of matter whose pressure is not exactly zero, but is constrained to current value, called before Λ_B. Thus, the fine-tuning issue is no longer a real problem because quantum fluctuations associated to Λ are removed by virtue of our cancellation mechanism.

The value of ΔP, however, is fixed at $\tau = 0$. It is natural to wonder whether it remains constant throughout the evolution of the universe at late times, namely $\tau \to -\infty$ or not. For the sake of simplicity, we may assume it to be constant without any time evolution for pressure, albeit we cannot exclude the pressure to vary at late-times. In the case of non-varying pressure, then the model reduces to the one presented in [12] with the great advantage to physically-explain how density, cancelled out by the mechanism, transforms to new species of particles.

To evaluate $\Delta \rho$ and ΔP we made the ansatz of having a matter dominated EdS universe, characterized therefore by $P^{(2)} = 0$. However, shifting to a radiation dominated EdS universe we again would get $\Gamma_{\tau \tau} \simeq H_1^2$, implying that, at $\tau = 0$, our model is not particularly influenced by choosing either matter or radiation. Then, by virtue of the continuity equation one computes a constant density that resembles the ΛCDM model, exhibiting a very different physical interpretation over the constant that fuels the universe to speed up today.

This theoretical scheme works if Γ is constant on the hypersurface $\tau = 0$. Since inflation ends, requiring a perfect homogeneous and isotropic universe, one argues negligible Ψ at the end of inflation, say $\Psi \to 0$ as $\tau \to 0$. From Eq. (27), assuming $\rho_{cr} - 3H_1^2 = \varepsilon \rho_{cr}$, we thus have

$$\bar{\mathcal{F}}(\varepsilon, 0, H_1) = \varepsilon \rho_{cr} e^{-q_{\phi} x},$$

where ε is an unknown constant that quantifies the deviation between H_1 and ρ_{cr}. Afterwards, involving Eq. (26) and assuming the slow roll parameter to vanish after inflation in order to fulfill $\mathcal{F} = \bar{\mathcal{F}} = 0$, we get $\bar{\mathcal{F}} = 0$, implying $H_1^2 = \rho_{cr}/3$, again addressing the coincidence problem17. Clearly, a more suitable choice of \mathcal{F} is required to guarantee that $\mathcal{F} = 0$ and $\bar{\mathcal{F}} \neq 0$ in general and this implies to select a more suitable version of the effective potential, instead of our hilltop quadratic one corrected by a Yukawa-like term involving a coupling with curvature.

In general, however, addressing this issue is a central problem related to any inflationary scenarios [6], whereas the here-employed potential only represents a first proposal to work out our model of dark matter production. The search for a more suitable version of the effective potential, however, requires to exit from inflation. This may be jeopardized by the coupling with curvature that, albeit it becomes negligibly small, is assumed to be small enough to guarantee $\epsilon \to 1$ immediately before the jump to $\epsilon \to 0$. Hence, a more suitable choice of the underlying potential would give new insights toward a graceful exit from inflation and at the same time the geometric production of dark matter particles. On the other side, if no coupling with curvature occurs, then the interpretation of particle production cannot be geometrical and only baryons can form during reheating as byproduct of the scalar field alone. We stressed such considerations throughout the text previously and we here underline that the more particles are produced from geometry the more coupling with R is clearly needful, i.e., to fix the current dark matter abundance one has to invoke a further coupling.

\section*{B. Dark matter with pressure?}

In view of the aforementioned prescriptions, our corresponding dark energy model can be modeled using a dark fluid [53, 54], effectively compatible with the one presented in Refs. [7, 12, 55, 56]. This fluid can be interpreted as a single fluid of matter with pressure, where the pressure is furnished by the additional bare cosmological constant. Indeed, if zero-point fluctuations are cancelled, leaving a $\Lambda_B \neq 0$, the remaining universe density would be associated to matter (and radiation, clearly), but the corresponding pressure would be given by the sum of Λ_B and the pressure of dust and radiation. As the universe expands, radiation dominates over matter and Λ_B. But, since Λ_B magnitude is comparable with matter, once the matter epoch finishes then Λ_B tends to dominate over dark matter and baryons, reproducing de facto the behavior of current cosmological model.

Hence, the here-depicted overall paradigm fully-degenerates with the ΛCDM model, being however physically-highly-different from it.

\section*{V. THEORETICAL DISCUSSION}

Our recipe is to create geometric dark matter particles as a strategy to remove the energy density associated to quantum fluctuations of vacuum energy. Our treatment assumes that geometric particles can mainly constitute dark matter throughout universe evolution.

Such prescription is however jeopardized by a model-dependence upon the choice of the free quantities that enter the dark matter production. In this respect, we

17 Inflation ends as $\epsilon \to 1$. Thus, we justify the jump to $\epsilon \simeq 0$ noticing that the inflaton potential and vacuum energy disappear after inflation. So, both radiation and matter fields would dominate over any inflaton field. This permits one to presume that $\epsilon \simeq 0$.

below summarize some points that are crucial toward the understanding of how our mechanism works.

- We introduced a given momentum cut-off scale, which in our case is a consequence of lying on super-Hubble scales. Super-Hubble scales are required in order to properly deal with the notion of particle. In other words, only after horizon crossing the inflaton fluctuations can be described classically, so that the number of particles could be in principle measured. The exact value of the cut-off is in principle arbitrary: in order to have a time-independent value, we selected \(k, p < a_{\text{min}}H_1/1000 \), where \(a_{\text{min}} \equiv a(\tau_i) \). This ensure that Eq. (46) is valid for all the modes considered in the interval \(\tau_i < \tau < 0 \), thus allowing to evaluate numerically the integral (47). However, as already noted, in this way we neglect the contribution due to modes which cross the horizon after \(\tau_i \). A larger cut-off would result in a larger number of particles produced and, therefore, smaller values for the mass \(m^* \). This does not appear as possible drawback of our paradigm, but rather a consequence of the scale factor and the inflationary potential invoked into calculations.

- Vacuum energy amount is not known a priori. Again, this limitation is not related to our paradigm but rather on the scales used to quantify quantum fluctuations. We here selected Planck scales, since we expect the inflationary universe to emerge from a quantum gravitational state, with an energy density comparable to Planck density [1, 57]. However, standard model of particle physics scales [5, 58, 59], namely electroweak and/or quantum chromodynamics scales, could also be investigated, in principle. In such cases, however, the Hubble rate would decrease a lot, and so it appears crucial the kind of energy scale we impose for \(\Lambda \) in order to get both the number of dark matter particles produced through our mechanism and the field mode evolution throughout the investigated universe dynamics, as one sees from Eqs. (15) and (16).

A. The role of quantum particle production

Another feature of our model is to assume geometric particles to dominate over any quantum mechanisms of particle creations, as discussed in Sec. II. This contribution is usually computed assuming the universe to expand from an asymptotically flat region (in) to another one (out), and computing the corresponding Bogoliubov coefficients for ladder operators. Details of such calculations are described in Appendix B.

There, asymptotic flatness is required in order to properly define the notion of particle (and vacuum), which is not unique in curved spacetime. Including quantum particle production in our framework would imply that:

- the production of particle-antiparticle pairs at zero and first geometric order [17, 28]. So, as already noted in Sec. II B, these particles can annihilate, without having enough time to significantly contribute to the net dark matter budget of the universe;

- an additional contribution to the second-order number density, Eq. (43), depending on the Bogoliubov coefficients \(\beta_k \) and \(\beta_p \), would enter dark matter production. This contribution is always positive (cfr. Eq. (B8)) and for this reason it would affect dark matter production increasing the total number density \(N^{(2)}(0) \).

Concerning the last item above, we underline that when dealing with de Sitter spacetimes, the main conceptual problem of Eq. (8) is that it can describe an asymptotically flat universe only in remote past, \(\tau \rightarrow -\infty \) but not around \(\tau = 0 \).

In other words, we do not have an asymptotically flat out region. This issue is discussed in detail in [36], where the authors show that if de Sitter spacetime is extended also to \(0 < \tau < \infty \), asymptotic flatness is recovered at \(\tau \rightarrow +\infty \) and no quantum particle production occurs\(^{18}\).

Of course, this approach cannot be employed in realistic models of universe evolution, since it would neglect the EdS phases subsequent to inflation.

Alternatively, one could imagine that after the usual transition from inflation to radiation/matter domination, the universe finally reaches an adiabatic regime at late times, where the notion of particle becomes meaningful again [60, 61]. In [61] the authors show that in this framework “quantum” particle production from vacuum is non-negligible. This is true in particular for super-Hubble modes \(k \ll a_{\text{end}}H_1 \), where \(a_{\text{end}} \) is the scale factor at the end of inflation. They also notice that the particle abundance is larger if the inflationary energy scale is of the order of \(10^{16} \) GeV, which fully agrees with the here-considered scales.

As discussed above, we thus expect that non-zero Bogoliubov coefficients will increase the total number density of particles produced at second geometric order. The possible inclusion of such “quantum” particle production in our framework will be subject of future works, albeit they are expected, in view of our above considerations, as a fraction of dark matter, rather than the main constituents.

\(^{18}\) Such conclusion remains true even if spacetime passes through a coordinate singularity at \(\tau = 0 \).
B. Comparing geometric particles with previous dark matter candidates

A key assumption in our model is that dark matter arises as a geometric quasi-particle as a consequence of the coupling between inflaton field and spacetime curvature, without any further quantum couplings. So, our scenario does not involve the concept of weakly interacting massive particles (WIMPs) as derived from effective extensions of the particle physics standard model. However, the physical meaning of our geometric particles shows very stable configurations directly induced by gravity and, by construction, interacting with other objects only under the action of gravity/geometry. Better saying, we can figuring out sorts of weakly interacting geometric particles (WIGEP) that, differently from WIMPs [62], may have a collective behavior in making structures to form sharply in the very early universe, without extending the standard model of quantum field theory. These particles cannot form at more recent epochs, by virtue of the cosmological principle, i.e., when no perturbations are involved the WIGEP mechanism is suppressed. So, summing up, our WIGEP would

- be stable immediately after the Big Bang, as a priori they do not exhibit charges and thus they do not interact electromagnetically;
- have been created in a very large amount as consequence of deleting out vacuum energy that transforms into geometric particles, as consequence of inhomogeneities;
- behave as collective particles in order to create enough overdensities capable of having galaxies as today we observe\(^{19}\) by virtue of the perturbed spacetime involved into computation.

So, since our particles behave in a very similar way than previous expectations, despite non being WIMPs, it is possible to confront the kinds of interactions developed in previous literature, namely cosmologically-stable dark matter particle and SM particles. These models mainly consider spin-0, spin-1/2 and spin-1 dark matter candidates interacting with SM fields (mostly fermions) through spin-0 or spin-1 mediator fields, usually dubbed portals\(^{20}\).

Among the plethora of plausible portals, the simplest scenario is represented by the so-called standard model portals, in which dark matter interacts with the standard model of particle physics through the Higgs or the Z-boson. These portals have only two free parameters, i.e., the dark matter and portal mediator masses. For their simplicity, they are highly-predictive, albeit disfavored in some experimental limits [63]. The scheme which more closely resembles our approach includes the scalar Higgs boson. So, without assuming any CP-violation and taking into account a scalar field \(\chi\) that describes dark matter, the corresponding interacting Lagrangian becomes

\[
\mathcal{L}_I = \xi_0 \lambda_\chi^H \chi^* \chi H^\dagger H, \tag{78}
\]

where \(H = \left(0 \ \frac{v_h + \mu_h}{\sqrt{2}} \right)\) is the Higgs boson doublet, not to be confused with the Hubble rate, in unitary gauge [40], \(h\) the excited field, \(v_h\) the ground state and \(\xi_0 = 1/2 \ (1)\) in case dark matter is (not) its own antiparticle.

Confronting the two expectation limits for WIMPs and WIGEPs would therefore be extremely instructive to exclude mass ranges dropped out by observations. Hence, to do so we draw an excluding plot, see Fig. 6, where we show the mass value \(m^*\) of our geometric dark matter candidate as function of the hilltop parameter \(\mu_2\). There, a blue region that delimits the mass values that have been excluded by recent LUX limits [62, 64] is prompted, as predicted by the above Higgs portal mechanism. Conventionally, for the sake of simplicity we have set \(\xi_0 = 1\) and \(\lambda_\chi^H = 1/6\) in analogy with our scheme of field-curvature coupling\(^{21}\).

In case of large dark matter masses, we notice excluding regions lying inside

\[
1 \text{GeV} \lesssim m^{*, \text{excluded}} \lesssim 400 \text{GeV}, \tag{79}
\]

where the superscript indicates the blue zone in Fig. 6. Consequently, by looking at our model, Eq. (79) would exclude hilltop \(\mu_2\) values approximately inside the range

\[
\mu_2^{\text{excluded}} \in [4, 8]. \tag{80}
\]

We may therefore easily conclude that the WIGEPs may lie either in very large intervals of masses that are, somehow, similar to those predicted by the so-called WIMPzillas [65] or in smaller intervals, namely \(\lesssim 1\ \text{GeV}\), being compatible with recent axion search [66].

It is remarkable to stress an important point as follows. Slow mass WIGEPs that we predict, or better to say that we cannot exclude, may be less likely since axions and/or in general ultralight fields may arise for other different processes, being dominant over geometric quasiparticles. In particular, since vacuum energy magnitude is huge, it is more likely that massive particles are

\(^{19}\) Heuristically speaking, this is the main reason to deal with quasi-particle behavior of those particles got from Yukawa interaction between inflaton and curvature.

\(^{20}\) The interested reader can consult the review [62] and references therein.

\(^{21}\) The effective potential of Eq. (6) is clearly a Yukawa-like, whereas this is not. So, the choice of setting such constants in this way is only for a first naive confront between the two approaches. Changing the constant values, however, would not dramatically modify our conclusions. For instance, reducing \(\lambda_\chi^H\) would get only narrower symmetric excluded regions.
produced, instead of light fields that, otherwise would give an enormous number of particles, far from expectations. Moreover, the more massive fields are predicted the more weakly interacting particles are expected, guaranteeing structures to form. In this respect, we also stress that since dark matter is produced from the degrees of freedom coming from vacuum energy, but nothing has argued about the dynamics of the universe before and after, vacuum energy is associated to a symmetry breaking mechanism [2], it has been shown in Ref. [12, 23] that the solution of the cosmological constant problem would imply highly massive particles.

In other words, from the one side we do not exclude ultralight fields to contribute to dark matter [67]. On the other hand, however, we propose that the dominant contribution is geometrical, but with higher and more probable masses associated to it.

VI. FINAL OUTLOOKS AND PERSPECTIVES

In this work, we proposed a mechanism of geometric cancellation in which the quantum fluctuations of vacuum energy are removed. To do so, we presumed that the corresponding large energy scales of Λ transformed into geometric particles. In particular, in the primordial universe we assumed quantum fluctuations to be carried out by an effective hilltop potential, nonminimally coupled to scalar curvature R. As a benchmark we assumed a inhomogeneous quasi-de Sitter background universe, computing the corresponding particle production by means of perturbation theory. Thus, once quantified the corresponding particle candidate, we interpreted it as dark matter, showing how the corresponding mass varies than the free parameters of our model. We also showed that these mass limits are predicted to guarantee the cosmological constant contribution from vacuum energy is approximately canceled out. The remaining effective constant, namely the bare cosmological one, is therefore reviewed as responsible for the current acceleration, removing de facto the fine-tuning issue. Our overall mechanism is prompted by requiring continuity of the universe and the validity of Israel matching conditions between the two inhomogeneous and homogeneous universes. This naturally shows how to generate geometric quasiparticles, that we conventionally called WIGEP in contrast to WIMPs. We provided a direct comparison among such particles and current bounds of dark matter masses, emphasizing excluded ranges and unsuited coupling constants that agree with present experimental windows. The model has been also confronted with previous literature and it has been argued that it guarantees a robust validity with respect to the paradigm developed in [12], being compatible with predictions showed in [7].

In this respect, a possible conjecture in which a dark fluid composed by a single dark matter fluid with pressure drives the universe today is also debated.

Future works will refine the intervals of validity of our dark matter candidate, limiting the amount of mass associated to it. Moreover, we will investigate alternative versions of the effective inflationary potential that can quit inflation regardless the value of R, i.e., behaving as small fields after inflation and consequently check whether our predictions are particularly sensitive to the potential chosen for driving up cosmic inflation.

Acknowledgments

O.L. thanks Simone Biondini, Salvatore Capozziello, Rocco D’Agostino, Stefano Mancini, Marco Muccino, Hernando Quevedo, Alessandro Saltarelli and Sunny Vagnozzi for their suggestions and he is also grateful to Peter K. S. Dunsby for enlightening discussions on the topic of unified dark energy models made at the University of Cape Town. O.L. acknowledges the Ministry of Education and Science of the Republic of Kazakhstan, Grant: IRN AP08052311.

[1] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61, 1, (1989).
[2] J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem, Compt. Rend. Phys., 13, 566-665, (2012).
[3] T. Padmanabhan, Cosmological Constant - the Weight of the Vacuum, Phys. Rept., 380, 235, (2003).
[4] P. J. E. Peebles, B. Ratra, The Cosmological Constant
and Dark Energy, Rev. Mod. Phys., 75, 559, (2003).
[5] E. J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 1753-1936, (2006).
[6] S. Tsujikawa, Introductory review of cosmic inflation, arXiv[hep-th]:0304257, (2003).
[7] R. D’Agostino, O. Luongo, M. Muccino, Healing the cosmological constant problem during inflation through a unified quasi-quintessence matter field, arXiv[gr-qc]:2204.02190, (2022).
[8] R. D’Agostino, O. Luongo, Cosmological viability of a double field unified model from warm inflation, Phys. Lett. B. 829, 137070, (2022).
[9] A. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation Sov. Phys. Dokl., 12, 1040, (1968).
[10] C. Moreno-Pulido, J. Sola Peracaula, Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem, ArXiv[gr-qc]:2201.05827, (2022).
[11] A. Belfiglio, O. Luongo, S. Mancini, Geometric corrections to cosmological entanglement, Phys. Rev. D, 105, 12, 123523 (2022).
[12] O. Luongo, M. Muccino, Speeding up the universe using dust with pressure, Phys. Rev. D, 98, 103520, (2018).
[13] A. Riotto, Inflation and the theory of cosmological perturbations, arXiv[hep-ph]:0210162, (2017).
[14] D. H. Lyth, A. Riotto, Particle Physics Models of Inflation and the Cosmological Density Perturbation, Phys. Rept., 314, 1-146, (1999).
[15] C. P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics, Contribution to: 100e Ecole d’Eté de Physique: Post-Planck Cosmology, 149-197, ArXiv[hep-th]:1309.4133, (2013).
[16] S. E. Rugh, H. Zinkernagel, The Quantum vacuum and the cosmological constant problem, Stud. Hist. Phil. Sci. B. 33, 663-705, (2002).
[17] L. Parker, Particle creation in expanding universes, Phys. Rev. Lett., 21, 562, (1968).
[18] E. Martín-Martínez, N. C. Menicucci, Cosmological quantum entanglement, Class. Quant. Grav., 29, 224003, (2012).
[19] L. H. Ford, Cosmological particle production: a review, Rep. Prog. Phys. 84, 116901, (2021).
[20] C. Germani, A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett., 105, 011302, (2010); J. Rubio, Higgs inflation, Front. Astron. Space Sci., 5, 50, (2019).
[21] J. Fumagalli, S. Mooij, M. Postma, Unitarity and predictiveness in new Higgs inflation, JHEP, 03, 038, (2018); F. L. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflation, Phys. Lett. B. 659, 703–706, (2008).
[22] L. Venema, B. Verberck, I. Georgescu, et al., The quasiparticle zoo, Nature Phys., 12, 1085, (2016).
[23] O. Luongo, N. Marcantognini, M. Muccino, Unifying baryogenesis with dark matter production, arXiv[gr-qc]:2112.05730, (2021).
[24] S. Capozziello, R. D’Agostino, O. Luongo, Extended Gravity Cosmography, Int. J. Mod. Phys. D, 28, 10, 1930016, (2019).
[25] Y. Akrami, et al., Planck 2018 results, A&A, 641, A10, (2020).
[26] K. Kadota, E. D. Steward, Successful modular cosmology, JHEP, 0307, 013, (2003).
[27] L. Boubekr, D. H. Lyth, Hilltop inflation, JCAP 0507, 010, (2005).
[28] J. A. Frieman, Particle creation in inhomogeneous space-times, Phys. Rev. D, 39, 2, (1989).
[29] J. Céspedes, E. Verdaguer, Particle production in inhomogeneous cosmologies, Phys. Rev. D, 41, 4, (1990).
[30] L. Parker, Particle creation in expanding universes, Phys. Rev. Lett. 21, 562, (1968).
[31] L. H. Ford, Cosmological particle production: a review, Rep. Prog. Phys., 84, 116901, (2021).
[32] A. Duncan, Explicit dimensional renormalization of quantum field theory in curved space-time, Phys. Rev. D, 17, 964, (1978).
[33] S. Dodelson, W. H. Kinney, E. W. Kolb, Cosmic microwave background measurements can discriminate among inflation models, Phys. Rev. D, 56, 3207, (1997).
[34] M. Dine, A. Riotto, An inflaton candidate in gauge mediated supersymmetry breaking, Phys. Rev. Lett., 79, 2632, (1997).
[35] J. A. R. Cembranos, L. J. Garay, J. M. S. Velasquez, Gravitational production of scalar dark matter, JHEP, 06, 084, (2020).
[36] N. D. Birrell, P. C. W. Davies, Quantum fields in curved space, Cambridge Monogr. on Math. Phys., (1984).
[37] B. R. Greene, M. K. Parikh, J. P. van der Schaar. Universal correction to the inflationary vacuum, JHEP, 04, 057, (2006).
[38] L. Raul W. Abramo, Robert H. Brandenberger, V. F. Mukhanov, Energy-momentum tensor for cosmological perturbations, Phys. Rev. D, 56, 3248, (1997).
[39] C.-P. Ma, E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J., 455, 7, (1995).
[40] T. Lancaster, S. J. Blundell, Quantum Field Theory for the Gifted Amateur, Oxford Univ. Press, (2014).
[41] T. D. Lee, C. N. Yang, Theory of charged vector mesons interacting with the electromagnetic field, Phys. Rev., 128, 885, (1962).
[42] E. S. Abers, B. W. Lee, Gauge theories, Phys. Rep., 9C, 1, (1973).
[43] D. H. Lyth, A. R. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge Univ. Press, (2009).
[44] S. Weinberg, Cosmology, Oxford Univ. Press, (2008).
[45] P. Coles, F. Lucchin, Cosmology: The Origin and Evolution of Cosmic Structure, John Wiley & Sons, (2002).
[46] L. Kofman, A. Linde, A. A. Starobinsky, Phys. Rev. D, 56, 3258, (1997).
[47] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim., 44B, 1, (1966); Nuovo Cim., 49B, 463, (1966), (erratum).
[48] J. L. Cook, E. Dimastrogiovanni, D. A. Easson, and L. M. Krauss, Reheating predictions in single field inflation, JCAP, 04, 047, (2015).
[49] P. A. R. Ade et al, Planck 2013 results. XVI. Cosmological parameters, A&A, 571, A16, (2014).
[50] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Comp. Ltd, Reading, (1973).
[51] L. Perivolaropoulos, F. Skara, Challenges for ΛCDM: An update, arXiv[astro-ph.CO]:2105.05208, (2021).
[52] A. Aviles, J. L. Cervantes-Cota, The dark degeneracy and interacting cosmic components, Phys. Rev. D, 84, 083515, (2011).
Appendix A: Conformal and cosmic time

Conformal time \(\tau \) (or sometimes \(\eta \)) is related to cosmic time \(t \) by

\[
d\tau = \frac{dt}{a}.
\]

where \(a \) is the scale factor. A generic FRW line element in cosmic time, \(ds^2 = dt^2 - a^2(t)dx^2 \), becomes \(ds^2 = a(\tau)^2 \left[d\tau^2 - dx^2 \right] \), which is conformal to the Minkowski line element. Given a generic function of the cosmic time \(f(t) \), the corresponding function in conformal time will be \(f(\tau) \). For the latter, the following relations hold

\[
f'(t) = \frac{f(\tau)}{a(\tau)}, \quad f''(t) = \frac{f(\tau)}{a^2(\tau)} - \mathcal{H} \frac{f'(\tau)}{a^2(\tau)},
\]

where in our notation a prime denotes differentiation with respect to cosmic time and \(\mathcal{H} = \dot{a}/a \). We have, in particular

\[
H = \frac{a'}{a} = \frac{\dot{a}}{a^2} = \frac{\mathcal{H}}{a},
\]

\[
a'' = \frac{\ddot{a}}{a^2} - \frac{\mathcal{H}^2}{a^2},
\]

\[
H^2 = \frac{\mathcal{H}^2}{a^2}.
\]

Easily the scale factor evolution in conformal time, in a EdS universe, can be obtained from Eq. (A1) to give

\[
a(t) \sim t^{2/(3+3w)} \implies a(\tau) \sim \tau^{2/(1+3w)},
\]

where \(w \) is a constant barotropic factor that provides the kind of EdS universe, e.g. for matter \(w = 0 \), radiation \(w = 1/3 \), and so forth.

Appendix B: Second order particle production in inhomogeneous spacetime

As discussed in Sec. VA, we assumed particle production arising solely from the “geometric” contribution due to spacetime perturbations.

However, in a more general scenario, spacetime expansion can create particles independently from the presence of inhomogeneities, giving rise to particle-antiparticle production from vacuum [17, 19, 36].

Moreover, it also implies additional contributions to the second order number density, prompted in Eq. (43), which we here discuss.

So, assuming a spacetime with asymptotically flat in and out regions, we can introduce the Bogoliubov transformations. To do so, we relate these quantities to in and out ladder operators [2]

\[
\hat{a}_{\text{out}}(k) = \alpha_k^* \hat{a}_{\text{in}}(k) - \beta_k^* \hat{a}_{\text{in}}^*(-k),
\]

\[
\hat{a}_{\text{in}}(k) = \alpha_k \hat{a}_{\text{out}}(k) + \beta_k \hat{a}_{\text{out}}^*(-k),
\]
with α_k, β_k Bogoliubov coefficients.

At first order in the inhomogeneities, the asymptotic \textit{out} state takes the form \cite{29}

$$|\Psi\rangle_{\text{out}} \equiv \lim_{\tau \to +\infty} |\Psi\rangle = N \left(|0, \text{in}\rangle + \frac{1}{2} S^{(1)}_{kp} |kp, \text{in}\rangle \right),$$

(B3)

where $S^{(1)}_{kp}$ is a compact form for the probability amplitude given by Eq. (44), whereas $N = 1 + \mathcal{O}(\hbar^2)$ is a normalization factor, arising from $\langle \Psi | \Psi \rangle = 1$.

The number density in the \textit{out} region up to second order is then

$$N = (2\pi a)^{-3} \langle \Psi | \int d^3q \, \hat{a}_{\text{out}}(q)\hat{a}_{\text{out}}^{\dagger}(q) |\Psi\rangle.$$

(B4)

Besides normalization factors, the second order contribution reads

$$N^{(2)} = \frac{1}{4} (2\pi a)^{-3} \int d^3k \, d^3p \, |S^{(1)}_{kp}|^2 \langle kp | \hat{a}_{\text{out}}^{\dagger}(q)\hat{a}_{\text{out}}(q) |kp\rangle$$

$$= \frac{1}{4} (2\pi a)^{-3} \int d^3k \, d^3p \, |S^{(1)}_{kp}|^2 \langle kp | (\alpha_q\hat{a}_{\text{in}}^\dagger(q) - \beta_q\hat{a}_{\text{in}}(-q) - \beta_q^*\hat{a}_{\text{in}}^\dagger(-q)) |kp\rangle,$$

(B5)

where in the last step we have exploited the Bogoliubov transformation, Eq. (B1). The only non-zero contribution to Eq. (B5) are

$$N^{(2)} = \frac{1}{4} (2\pi a)^{-3} \int d^3k \, d^3p \, |S^{(1)}_{kp}|^2 \langle kp | (|\alpha_q|^2\hat{a}_{\text{in}}^\dagger(q)\hat{a}_{\text{in}}(q) + |\beta_q|^2\hat{a}_{\text{in}}(q)\hat{a}_{\text{in}}^\dagger(q)) |kp\rangle.$$

(B6)

In particular, Eq. (B6) gives

$$N^{(2)} = \frac{1}{4} (2\pi a)^{-3} \int d^3k \, d^3p \, |S^{(1)}_{kp}|^2 \left(|\alpha_k|^2 + |\beta_k|^2 + |\alpha_p|^2 + |\beta_p|^2 \right).$$

(B7)

Exploiting now the normalization condition for the Bogoliubov coefficients, namely $|\alpha_q|^2 - |\beta_q|^2 = 1$, with $q = k, p$, we finally infer

$$N^{(2)} = \frac{1}{2} (2\pi a)^{-3} \int d^3k \, d^3p \, |S^{(1)}_{kp}|^2 \left(|\beta_k|^2 + |\beta_p|^2 + 1 \right),$$

(B8)

which coincides with the result of Ref. [28], up to a normalization factor.

We notice then that second order number density contains a contribution which is independent from the relation between \textit{in} and \textit{out} vacua, i.e., the Bogoliubov coefficients, and becomes dominant in case of negligible β_k, β_p.