The three-species consortium of genetically improved strains *Cupriavidus necator* RW112, *Burkholderia xenovorans* RW118, and *Pseudomonas pseudoalcaligenes* RW120 grows with technical polychlorobiphenyl, Aroclor 1242

Verónica Hernández-Sánchez1, Elke Lang2 and Regina-Michaela Wittich1,*

1 Department of Environmental Protection, Experimental Station of the Zaidín, Spanish High Council for Scientific Research, Granada, Spain
2 Leibniz Institute – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

Burrkholderia xenovorans LB400, *Cupriavidus necator* H850, and *Pseudomonas pseudoalcaligenes* KF707 are bacterial strains able to mineralize biphenyl and to co-oxidize many of its halogenated derivatives (PCBs). Only strain LB400 also mineralizes a few mono- and dichlorobiphenyls, due to the presence of a functioning chlorocatechol pathway. Here, we used a Tn5-based minitransposon shuttle system to chromosomically introduce genes *tcb*RCDEF, encoding the chlorocatechol pathway into KF707, and genes *cbd*ABC encoding a 2-chlorobenzoate 1,2-dioxogenase into KF707 and LB400, as well as transposon Tn4653 from the TOL plasmid, providing genes xy/XYZL, encoding a broad-range toluate (methylbenzoate) dioxygenase and its dihydrodiol dehydrogenase, to extend the range for the mineralization of halogenated benzoates in LB400 and in KF707 through co-oxidation of halobenzoates into chlorocatechols. The engineered derivatives of LB400 and KF707 thus gained the ability for the mineralization of all isomeric monochloro- and bromobenzoates of the so-called lower pathway which, consequently, also allowed the mineralization of all monochlorobiphenyls and a number of di- and trichlorobiphenyls, thus preventing the accumulation of halobenzoates and of catabolites thereof. LB400 and KF707 also grow with the two commercial PCB formulations, Aroclor 2212 and Aroclor 1232, as the sole carbon and energy sources, but not with higher halogenated PCB mixtures, similar to the already published strain RW112. Repeated exposition of the modified LB400 to short pulses of UV light, over a prolonged period of time, allowed the isolation of a derivative of LB400, termed RW118, capable of growth with Aroclor 1016 still containing only traces of biphenyl, and in co-culture with modified KF707 termed RW120, and modified H850 (RW112) with Aroclor 1242, the commercial mixture already void of biphenyl and monochlorobiphenyls.

Keywords: *Cupriavidus necator* RW112, *Burkholderia xenovorans* RW118, *Pseudomonas pseudoalcaligenes* RW120, genetic engineering, polychlorinated biphenyls, Aroclor 1242

INTRODUCTION

PCBs represent poorly water-soluble, highly persistent, and toxic halo-organic compounds in the biosphere (Harris et al., 1993; Carpenter, 1998). The technical mixtures of mid and highly halogenated PCBs are rather recalcitrant toward bacterial degradation and consequently have accumulated in the ecosphere. Their congeners are subject of anaerobic bacterial dehalogenation (Tiedje et al., 1993) which proceeds slowly under strictly anoxic environmental conditions due to the overall low energy yield of these reactions although they are thermodynamically favorable, whilst aerobic bacteria can use the entire carbon skeleton of (halo-) biphenyl for efficient growth. Highly halogenated PCBs thus yield less chlorinated congeners in anoxic environments which, upon migration in soil or sediments to more oxic zones then can be attacked by enzyme systems of aerobic bacteria. The aerobic mineralization of oligo- or polyhalogenated aromatics in general is a typically more rapid bioprocess, due to the much higher yield of energy (Abramowicz, 1990; Sander et al., 1991; Higson, 1992; Potrawiêk et al., 1998b) from carbon. The literature published on the biodegradation of PCBs, including general, biochemical, genetic, and applied aspects, has been reviewed only a few years ago (Field and Sierra-Alvarez, 2008; Furukawa and Fujihara, 2008; Pieper and Seeger, 2008). Publications from the past 20 years reported that only a very few chlorinated congeners mineralizing bacteria could be isolated and partially characterized, or obtained upon natural, horizontal genetic exchange between biphenyl and chlorobenzoates mineralizing species (Mokross et al., 1990; Havel and Reineke, 1991; Adams et al., 1992; Hickey et al., 1992; Kim and Picardal, 2001; Adebuseoye et al., 2008), or by introduction of plasmid-based catalytic genes.
(Havel and Reineke, 1993; Reineke, 1998; Hrywyna et al., 1999; Rodrigues et al., 2001). Nevertheless, none of these strains could grow on technical mixtures of PCBs, except only a few on Aroclor 1221 which contains about 10% of biphenyl, 63% of mono, and 27% of dichlorinated biphenyls, apart from traces of trichlorinated congeners.

Here, we report the construction of two recombinant bacterial strain, based on Burkholderia xenovorans LB400, then termed RW118, and on Pseudomonas pseudoalcaligenes KF707, then termed RW120, upon genetic manipulations and exposure to UV as a potential mutagenic agent, and finally capable of good growth together with the earlier constructed strain RW112 based on Cupriavidus necator H850, on Aroclor 1242, containing 44% of chloride per molecule, as the sole source of carbon and energy.

MATERIALS AND METHODS

BACTERIAL STRAINS AND GROWTH CONDITIONS

Strains Burkholderia xenovorans LB400 (DSM 17367) and Pseudomonas pseudoalcaligenes KF707 (DSM 10086) were obtained from the Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany. Strain Cupriavidus necator RW112 (DSM 13439) had been constructed earlier in a similar manner (Wittich and Wolff, 2007). Escherichia coli strains were grown in Luria Bertani (LB) medium and appropriate antibiotics. All other strains were grown in mineral salts solution under standard conditions (Bopp, 1986; Sander et al., 1991) with benzoate or biphenyl at pH 7.2 and 28°C. The initial pH was raised to 7.5 when growing on chlorobenzenoates or chlorobiphenyls (5 mM), and to initially pH 8.0 when growing it on Aroclor 1232, 1016, or 1242, respectively, to compensate for acidification of the culture medium due to the release of protons, and to avoid phosphate buffer concentrations above 27 mM.

Table 1

PCB Mixture	Percentage of Biphenyl	Percentage of Chlorobiphenyls	Percentage of Chlorobenzoates
Aroclor 1221	0%	10%	80%
Aroclor 1242	10%	27%	63%
Aroclor 1248	27%	63%	10%

For mating experiments a standard protocol was used (de Lorenzo and Timmis, 1994). Recipient strains were mixed on a filter disk with the donor strain, E. coli CC118 λ pir, carrying the respective catabolic insert on a suicide plasmid, and the E. coli HB101 helper strain in a 1:1 ratio and incubated on solid LB medium in the absence of antibiotics overnight. The filter disk was then placed in a test tube and cells separated from the disk upon addition of 1 ml of 1% saline and whirl mixing. One hundred micro liters of this solution were plated directly onto solid mineral salts medium containing the target carbon source, 2-chlorobenzoate in the case of transfer of cdhABC, and 3-chlorobenzoate in the case of transfer of catabolic genes tcbRCDDE. Colonies appearing after about 3–4 weeks were subcultured on the same medium, then purified by passage on solid LB medium and retransfer to solid selective medium. For the transfer of the transposon from the TOL plasmid with the catabolic genes xylXYZL the recipient strain was incubated overnight with Pseudomonas putida mt-2 on LB plates and processed as before, selecting for additional growth on 4-chlorobenzoate. The obtained derivative of KF707 was termed RW120. Exposure to UV pulses of 1 s was realized inside of a clean bench using the internal UV system at a distance of 60 cm. The strain resulting from already modified LB400 was termed RW118.

DETERMINATION OF OXYGEN UPTAKE

Specific rates of oxygen uptake by washed cell suspensions (resting cells) were determined polarographically with the oxygen electrode DW-1 system from Hansatech Instruments, King’s Lynn, Norfolk, UK.
Table 1 | Strains used in this work, and new substrates mineralized (chlorobenzoates and chlorobiphenyls).

Strains and their plasmids	Characteristics, and/or mineralization of	Source
Escherichia coli CC118 (p pir):pBJ44	Chlorocatechol pathway cassette	Klemba et al. (2000)
Escherichia coli CC118 (p pir):pAL1	2-Halo benzoate 1,2-dioxygenase cassette	Lehning (1998)
Escherichia coli HB101::pRK600	RK2-based Tra- and Mob-functions (helper strain)	Kessler et al. (1992)
Burkholderia xenovorans LB400	Benzoate, 3-chlorobenzoate, biphenyl, 3-chlorobiphenyl, 2,3′-dichlorobiphenyl	Bopp (1988)
Pseudomonas pseudoalcaligenes KF707	Benzoate, biphenyl	Furukawa and Miyazaki (1996)
Pseudomonas putida mt-2 pTOL (Tn4653)	Methylbenzoates (broad-spectrum alkybenzoate 1,2-dioxygenase)	Williams and Murray (1974)
Cupriavidus necator RW112	Benzoate, all monochlorobenzoates, 3,5-dichlorobenzoate, biphenyl, all monochlorobiphenyls, 3,5-dichloro-, 2,2′-dichloro-, 2,3′-dichloro, and 2,4′-dichlorobiphenyl	Wittich and Wolff (2007)
Burkholderia xenovorans RW118	Benzoate, all monochlorobenzoates, 3,5-dichlorobenzoate, biphenyl, all monochlorobiphenyls, 3,5-dichloro-, 2,2′-dichloro-, 2,3′-dichloro, and 2,4′-dichlorobiphenyl	This study
Pseudomonas pseudoalcaligenes RW120	Benzoate, all monochlorobenzoates, 3,5-dichlorobenzoate, biphenyl, all monochlorobiphenyls, 3,5-dichloro-, 2,2′-dichloro-, 2,3′-dichloro, and 2,4′-dichlorobiphenyl	This study

DNA PROCEDURES

For the preparation of genomic DNA, the Wizard Genomic DNA Purification Kit from Promega (Madison, WI, USA) was used. For the amplification of DNA fragments, Takara ExTaq, or PrimeStar DNA polymerase (TAKARA BIO INC., Shiga, Japan) were used under the standard protocols supplied by the manufacturer. The following oligonucleotides were used: RW7 (5′-TAACCTAGGGCTGCCAG-3′) and RW8 (5′-ATTGCGTGGAAAACAATT-3′) for amplification of the tcbR-CDEF operon for the mineralization of halocatechols, VH1 (5′-TGCAAGTGCGGTGTTGATA-3′) and VH4 (5′-GAAAT GAGGCTCAAGGTC-3′) for the gene encoding the toluate dioxygenase and the correlated dihydrodiol dehydrogenase, RW11 (5′-TCTCCGACAGTCTATAAGGCT-3′) and RW12 (5′-ACCGCTCGCTGCTATTGCG-3′) for the gene coding for the 2-halobenzoate dioxygenase system.

ANALYTICAL TECHNIQUES

PCB mixtures (residual amounts) were extracted from the culture media with hexane and analyzed by HPLC and/or gas chromatography (GC). HPLC with UV-DAD detection was performed on an Agilent 1050 liquid chromatograph system to determine the residual concentration of PCB mixtures. Separation of the entire PCB fraction from polar compounds was done on a 3.9 mm × 150 mm Nova-Pak C18 – 4 µm cartridge column as the solid phase and detection at 210 nm; the liquid phase was 80% acetonitrile in water (vol:vol) at pH 1.5 (phosphoric acid, 0.1%). GC was performed with simultaneous mass and ECD detection, in order to include non-halogenated biphenyl, and was applied to determine the concentrations of individual congeners. Extracted compound fractions were analyzed on an Agilent 6890 gas chromatograph coupled to an ECD and 5972 mass detector via a splitter. Separation was on a 50 mm × 0.2 mm Hewlett Packard Ultra 2 capillary column and hydrogen as the carrier. The injector temperature was 250°C. The temperature program started with 80°C for 3 min, followed by a ramp to 290°C at 6°C/min, and the final temperature was kept constant for additional 20 min. Peaks generated by either the ECD or the mass detector were identified by comparison with commercial PCB standards dissolved in cyclohexane (Dr. Ehrenstorfer GmbH, Augsburg, Germany), and literature data (Frame et al., 1996) which also served for the correction of incompletely dissolved signals. Chloride ion concentrations were determined by use of a chloride-selective electrode, model CI-6732 from PASCO scientific, Roseville, CA, USA.

RESULTS AND DISCUSSION

CONSTRUCTION OF DERIVATIVES OF LB400 AND KF707

Burkholderia xenovorans LB400, already carrying a catalytic sequence for the mineralization of chlorocatechols, and *Pseudomonas pseudoalcaligenes* KF707 were subjected to triparental mating procedures upon having been pregrown on biphenyl. From a mating with *E. coli* CC118 λ pir carrying genes *cdhABC* within the suicide plasmid pAL1, coding for a 2-chlorobenzoate dioxygenase, and *E. coli* HB101 carrying the helper plasmid pRK600, the selection of positive clones was performed on this substrate. Colonies appeared on mineral salts agar with this novel target substrate after around 3 weeks, and were purified from contaminating *E. coli* cells on the same solid medium. This derivative of LB400 was termed RW116 and further subjected to a mating with *Pseudomonas putida* mt-2 for transfer of transposon Tn4653 from the TOL plasmid, hosting genes *xylXYZL* of the TOL lower pathway for the mineralization of methyl benzoates by the broad substrate range toluate 1,2-dioxygenase and for the corresponding dihydrodiol dehydrogenase for aromatization to the
corresponding halocatechols under decarboxylation. This toluate dioxygenase is capable of co-oxidation of isomeric halobenzoates into the corresponding halocatechols. Positive clones were found upon incubation of the washed mating mix on solid mineral salts agar with 4-chlorobenzoate as the substrate after at least 2 weeks of incubation, and termed RW117. This strain grew with all isomers of monochlorobenzoates and 4-bromobenzoate, but not with dichlorobenzoates, probably due to the narrow substrate range of the transport system for benzoates carrying bulky substituents. Chlorocatechols mineralized were 3-chloro-, 4-chloro-, 4-bromo, and 3,5-dichlorocatechol; 4,5-dichloro- and tetrachlorocatechol did not serve for growth. The same procedure was applied for the modification of KF707, with an identical outcome, finally yielding strain RW120.

Chlorobiphenyls being mineralized were 3-chloro- and 2,3′-dichlorobiphenyl, as before by LB400, but now also 2-chloro- and 4-chlorobiphenyl, as well as 2,2′-dichloro-, 2,4′-dichloro-, and 3,5-dichlorobiphenyl (with regard to the latter, 3,5-dichlorobenzoate was not detectable by HPLC in the spent culture medium). 4,4′-Dichlorobiphenyl, astonishingly, did serve as a carbon- and energy source for RW117, but for a number of generations of growth only. It had been shown that LB400 could attack this structure (Bopp, 1986), and that the gene product of bphK of LB400, a glutathione S-transferase, can reductively dehalogenate correspondingly halogenated HOPDAs (chlorinated 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates), obtained upon 2,3-dioxygenation of (chlorinated) biphenyl and subsequent meta-cleavage (Seah et al., 2000; Fortin et al., 2006; Tocheva et al., 2006). We have to assume some negative interaction with regard to the constitutive induction of the catabolic pathway(s). Although LB400 already showed some growth on Aroclor 1221, its derivative, RW117, could also grow well on Aroclor 1232 (data not shown), similar to the genetically improved derivative of Cupriavidus necator H850, strain RW112 (Wittich and Wolff, 2007). On higher halogenated PCB mixtures such as Aroclor 1016 and 1242, RW117 survived for a couple of days but did not show any significant growth. With RW120 almost identical results were obtained.

In order to demonstrate the chromosomal insertion of the above-mentioned sequences, as well as the presence of the chlorocatechol pathway of LB400, we amplified the corresponding fragments from the two chromosomes or megaplasmids of this strain, and in a similar manner, from the former constructed RW112 and the of strain RW120 constructed in this study. A preparation of genomic DNA of RW112, RW117, and RW120, upon growth on 4-chlorobenzoate, served as the template for the PCR reactions. Results (Figure 1) demonstrate fragments of the exact expected length amplified from the respective genes, irrespectively of already harbored in LB400, or of newly introduced ones. The fragment in lane 1 corresponds to the gene sequence of the chlorocatechol pathway, the amplification yielded a corresponding fragment of 6.2 kb (exact length, 6,206 bp). This primer pair had originally been designed for the amplification of genes tcbRCDEF of plasmid p51 (van der Meer et al., 1991) which may explain the strong background in LB400. Amplification of genes cbhABC encoding the 2-halobenzoate 1,2-dioxygenase, and of genes yxlXYZ encoding the meta-toluate 1,2-dioxygenase system and the corresponding dihydrodiol dehydrogenase) gave clear bands of about 3.1 kb (lane 2, exact length, 3,163 bp), and 3.9 kb (lane 3, exact length, 3,900 bp), so far as expected; amplifications from RW112 and RW120 genomic DNA yielded exactly the same pattern (not shown). A catabolic scheme (Figure 2) shows the reaction sequences for the breakdown of PCBs and the gene products, although the chlorocatechol pathway of LB400 has not been investigated in detail, but based on the expected length of the fragment obtained, one can assume an almost identical sequence and organization of this catabolic pathway (Potrawfke et al., 1998a), as well as horizontal gene transfer between a number of bacterial species since we identified a similar one also in the 1,2,3,4-tetrachlorobenzene mineralizing Pseudomonas chlororaphis RW71 (Potrawfke et al., 1998b, data not shown).

FURTHER DEVELOPMENT OF STRAINS

In a number of previous publications, the constitutive expression of the entire catabolic pathway for the mineralization of biphenyl had been reported, and a positive regulator, BphR1 (former ORF0, Erickson and Mondello, 1992; Beltrametti et al., 2001) identified (Denef et al., 2004), and it was shown, that this gene product represents a mediator for the promoter of bphA1. Because such regulatory elements could be of some importance for the further development of LB400 and its derivatives, especially toward potential growth on PCB mixtures which do not contain biphenyl...
or monochlorobiphenyls any more, the induction state, as well as the capacity for co-oxidation of PCBs requires to be validated. One reason is a relative recent publication (Parnell et al., 2010) which reported that the carbon source and growth phase could have some effects on the expression of the catabolic bph operon, especially could influence the catabolic gene expression and related enzyme activity for the productive breakdown of the PCBs. These authors argued, from their results obtained from quantitative reverse transcription PCR which showed expression of the catabolic genes in the presence of succinate and PCB mixtures, but the absence of catabolic turnover for PCBs during a so-called transition phase leading into the stationary phase. Our results from the determination of relative oxygen uptake rates of cells grown with succinate, succinate with biphenyl, and with succinate in the presence of minute amounts of Aroclor 1242, showed very clearly, that no more turnover of PCBs occurred when cells
got void of succinate as the source of energy. However, the oxidation of biphenyl started again, after 5 h of being void of succinate, about 1 h after having supplied succinate again to starved cells. The simple explanation for the findings of these authors is that their LB400 cells had no more or not sufficient reduction equivalents left for the (co-) oxidation of PCBs. However, when PCB mixtures could be partially mineralized and serve for growth under production of energy and generate carbon for the anabolism, no heavy detrimental effects should be expected. Since RW117 could already grow well with Aroclor 1232, similar to RW112 (Wittich and Wolff, 2007), we argued that further mutagenization and the presence of selective pressure could improve its capacity for growth on higher halogenated mixtures. Cells growing in mineral salts medium with 4-bromobiphenyl and traces of Aroclors 1016 and 1242 were subjected to short pulses of UV light which killed about 90–95% of the population. Aliquots were then added to another flask with salts medium but with Aroclor 1016, as well as Aroclor 1242, as the target carbon and energy source. Although this simple approach by using UV as a mutagen may appear a bit old-fashioned in an era of much more rational molecular techniques as side specific mutagenesis, gene shuffling, etc., after about 5 months we got some growth of this culture, RW118 was isolated and used for further experiments.

GROWTH OF THE CONSORTIUM OF RW112, RW118, AND RW120 WITH AROCLOR 1242

As mentioned above, our three GMOs can only grow with Aroclor 1232 as a carbon source. However, in a preliminary experiment with a mixed consortium of all strains, we observed growth, first with RW118, and RW120 were inoculated from solid medium with 4-bromobiphenyl as a cheap carbon source and maintenance medium but with Aroclor 1016, as well as Aroclor 1242, as the tar-

get carbon and energy source. Although this simple approach by using UV as a mutagen may appear a bit old-fashioned in an era of much more rational molecular techniques as side specific mutagenesis, gene shuffling, etc., after about 5 months we got some growth with Aroclor 1016, and some time later, with Aroclor 1242. From this culture, RW118 was isolated and used for further experiments.

When growth of the culture slowed significantly down and cells became fully immotile upon microscopic investigation, they were transferred to fresh medium with the same carbon source. During growth, the medium became turbid as expected, but did not change in its color, indicating that no yellow chloro-HOPDAs or other, brownish or black oxidized or polymerized toxic catabolites accumulated, which could exert detrimental effects toward the cells of the consortium. Such toxic effect by Aroclor 1242 on
A riboprint analysis (Bruce, 1996) clearly confirmed the pattern of *Pseudomonas pseudoalcaligenes* (RW120) when re-isolated from the culture growing with Aroclor 1242. Residual Aroclor 1242 congeners were extracted with hexane from the culture medium when growth of the consortium came to a still stand, the organic phase separated, dried with anhydrous sodium sulfate, and analyzed by GC-MS-ECD. For comparison with the initial concentrations of each congener, the last significant peak of the chromatogram, a mixture of 2,3,4,3',4'-pentachloro-, and 2,3,4,2,3,6'-hexachlorobiphenyl, representing peak 40, was used as the internal standard. The data obtained demonstrate a high rate of depletion of the majority of the congeners (Table 2) which may correlate with the significant growth yield as determined by OD; however, we did not analyze the spent culture medium for accumulated metabolites (due to the actually high costs for Aroclor standards and a relatively high amount needed for HPLC-MS analyses). Especially chlorobenzoles were identified in various previous publications, although at least the monohalogenated isomers/congeners, and probably some dihalogenated ones, can be mineralized by RW112, RW118, and RW120. The substrate specificity of the necessary transporters may limit the transfer of chlorobenzoles into the cell (Yuroff et al., 2003), although such structures may be mineralized when delivered intracellularly from PCB congeners. The main reason for the efficient degradation of Aroclor 1242 in co-culture by the three strains, however, may be found in their different substrate specificities (Gibson et al., 1993; Williams et al., 1997).

CONCLUSION

We highlighted in this study the feasibility of a defined three-species consortium of genetically modified *Cupriavidus necator* H850, *Burkholderia xenovorans* LB400, and of *Pseudomonas pseudoalcaligenes* KF707 to be genetically manipulated, and gain an initially unexpected potential for co-culture growth on the technical Aroclor 1242 mixture in the absence of other carbon sources. Strain RW118 has also been sent out for high-throughput sequencing (Japan) of its genome, in order to compare its sequence with that of the original LB400, and screen it for modifications which may have occurred over time during the process of modification and adaptation. An in depth genetic analysis may also follow on the rough data already obtained by this procedure from modified H850 and KF707.

ACKNOWLEDGMENTS

This work was partially supported by research contracts with the Junta de Andalucía, P07-CV1-01916, and the Ministerio de Medio Ambiente, B036/2007/3-01.1, both co-financed by the European Commission, DG XII, to Regina-Michaela Wittich. The help of P. Schumann in riboprint analyses is gratefully appreciated.

REFERENCES

Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: a review. *Crit. Rev. Biotechnol.* 10, 241–251.

Adams, R. H., Huang, C.-M., Higson, F. K., Brenner, V., and Focht, D. D. (1992). Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. *Appl. Environ. Microbiol.* 58, 647–654.

Adhusinguy, S. A., Ilori, M. O., Picardal, F. W., and Amund, O. O. (2008). Metabolism of chlorinated biphenyls: use of 3,3'- and 3,5-dichlorobiphenyl as sole sources of carbon by natural species of *Rubtsonia* and *Pseudomonas*. *Chemosphere* 76, 656–663.

Beltrametti, F., Reniero, D., Backhaus, S., and Hofer, B. (2001). Analysis of transcription of the bhp locus of *Burkholderia sp.* strain LB400 and evidence that ORF9 gene product acts as a regulator of the bhpA1 promoter. *Microbiology* 147, 2169–2182.

Bopp, L. H. (1986). Degradation of highly chlorinated PCBs by *Pseudomonas* strain LB400. *J. Ind. Microbiol.* 1, 23–29.

Bruce, J. (1996). Automated system rapidly identifies and characterizes microorganisms in food. *Food Technol.* 50, 77–81.

Carpenter, D. O. (1998). Polychlorinated biphenyls and human health. *Int. J. Occup. Med. Environ. Health* 11, 291–303.

de Lorenzo, V., and Timmis, K. N. (1994). Analysis and construction of stable phenotypes in gram-negative bacteria with *Tn5* and *Tn10*-derived minitransposons. *Methods Enzymol.* 235, 368–405.

Denef, V. J., Park, J., Tsoi, T. V., Rouillard, H., Zhang, H., Wibbenmeyer, J. A., et al. (2004). Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in *Burkholderia xenovorans* LB400. *Appl. Environ. Microbiol.* 70, 4961–4970.

Erickson, B. D., and Mondello, F. J. (1992). Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in *Pseudomonas* strain LB400. *J. Bacteriol.* 174, 2903–2912.

Field, J. A., and Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. *Environ. Pollut.* 155, 1–12.

Figurski, D., and Helinski, D. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proc. Natl. Acad. Sci. USA* 76, 1648–1652.

Fortin, P. D., Horsman, G. P., Yang, H. M., and Elise, L. D. (2006). A glutathione S-transferase catalyzes the dehalogenation of inhibitory metabolites of polychlorinated biphenyls. *J. Bacteriol.* 188, 4424–4430.

Frame, G. M., Wagner, R. E., Carnahan, J. C., Brown, J. F., May, R. J., Smulien, L. A., et al. (1996). Comprehensive, quantitative, congener-specific analyses of eight Aroclors and complete PCB congener assignments on DB-1 capillary GC columns. *Chemosphere* 33, 603–623.

Furukawa, K., and Fujihara, H. (2008). Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. *J. Biosci. Bioeng.* 105, 433–449.

Furukawa, K., and Miyazaki, T. (1986). Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in *Pseudomonas pseudoalcaligenes*. *J. Bacteriol.* 166, 392–398.

Gibson, D. T., Crueden, D. L., Haddock, J. D., Zylstra, G. J., and Brand, J. M. (1993). Oxidation of polychlorinated biphenyls by *Pseudomonas* sp. strain LB400 and *Pseudomonas pseudoalcaligenes* KF707. *J. Bacteriol.* 175, 4561–4564.

Greated, A., Lambertsen, L., Williams, P. A., and Thomas, C. M. (2002). Complete sequence of the IncP-9 TOL plasmid pW0 from *Pseudomonas putida*. *Environ. Microbiol.* 4, 856–871.

Haak, B., Fetzer, S., and Lingens, F. (1995). Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-haloarboxylate dioxygenase from *Pseudomonas cepacia* 2CBS. *J. Bacteriol.* 177, 667–675.

Harris, M., Zacharewski, T., and Safe, S. (1993). Comparative potencies of Aroclors 1232, 1242, 1248, 1254, and 1260 in male Wistar rats – assessment of the toxic equivalency factor (TEF) approach for polychlorinated biphenyls (PCBs). *Fundam. Appl. Toxicol.* 20, 456–463.
Klemba, M., Jakobs, B., Wittich, R.-M. (1998). Konstruktion von Hinkel, W. J., Brenner, V., and Focht, Havel, J., and Reineke, W. (1993). Degra-
dation of Aroclor 1221 in soil by a hybrid pseudomonads. FEMS Microbiol.
Braunschweig, Braunschweig. Ph.D. thesis, Technis University of
Downloaded from frontiersin.org on 12 April 2013 (https://doi.org/10.3389/fmicb.2013.00008). This article was submitted to Frontiers in Microbiotechnology, Ecotoxico-
Hernández-Sánchez et al.

Havel, J., and Reineke, W. (1991). Total degradation of various chloro-
biphenyls by coelomates and in vivo
constructed hybrid pseudomonad-
s. FEMS Microbiol. Lett. 78, 163–170.

Havel, J., and Reineke, W. (1993). Degra-
dation of Aroclor 1221 in soil by a hybrid pseudomonads. FEMS Microbiol.
Frontiers in Microbiology | Microbiotechnology, Ecotoxicology and Bioremediation

Hrywna, Y., Tsoi, T. V., Maltseva, O. V.,
Quensen, J. F. III, and Tiedje, J. M. (1999). Construction and character-
ization of two recombinant bacte-
ria that grow on ortho- and para-
substituted chlorobiphenyls. Appl.
Environ. Microbiol. 65, 2163–2169.

Jakobs, B. (1998). Konstruktion von
Genkassetten zum verbesserten
Abbau von Haloaromaten durch
geauschüttete Bakterienstämme. Ph.D. thesis, Technis University of
Braunschweig, Braunschweig.

Kessler, B., de Lorenzo, V., and Tim-
mis, K. N. (1992). A general sys-
tem to integrate lacZ fusions into
die chromosomen of gram-negative
ecubacteria. Mol. Gen. Genet. 235,
293–301.

Kim, S., and Picardal, F. (2001). Microbial growth on dichloro-
biphenyls chlorinated on both rings
as a sole carbon and energy source. Appl. Environ. Microbiol. 67,
1953–1955.

Klembs, M., Jakobs, B., Wittich, R.-M.,
and Pieper, D. H. (2000). Chro-
mosomal integration of tcb chloro-
catechol pathway genes as a means of
expanding the growth substrate
range of bacteria to include haloaro-
matics. Appl. Environ. Microbiol. 66,
3255–3261.

Lehning, A. (1998). Untersuchungen
zum Metabolismus von Chlorotolu-
en. Ph.D. thesis, Technical University of
Braunschweig, Braunschweig.

Mokross, K., Schmidt, E., and
Reineke, W. (1990). Degradation
of 3-chlorobiphenyl by in vivo
constructed hybrid pseudomonad-
s. FEMS Microbiol. Lett. 71, 179–186.

Parnell, J. J., Denef, V. J., Park, J., Tsoi, T.,
and Tiedje, J. M. (2010). Envi-
ronmentally relevant parameters
affecting PCB degradation: carbon-
source- and growth phase-mitigated
effects of the expression of the
biphenyl pathway and associated
genes in Burkholderia xenovo-
rans LB400. Biodegradation 21,
147–156.

Pieper, D. H., and Seeger, M. (2008). Bacterial metabolism of polychlori-
nated biphenyls. J. Mol. Microbiol.
Biotchnol. 15, 121–138.

Potrawtke, T., Lohner, T.-H., Timmis, K. N.,
and Wittich, R.-M. (1998a). Mineralization of low-chlorinated
biphenyls by Burkholderia sp. strain
LB400 and by a two-membered con-
sortium upon directed interspecies
transfer of chlorocatechol pathway
genes. Appl. Microbiol. Biotechnol.
50, 440–446.

Potrawtke, T., Timmis, K. N.,
and Wittich, R.-M. (1998b). Degradation
of 1,2,3,4-tetrachlorobenzene by
Pseudomonas chlororaphis sp. strain
P51 tcb
icus. Appl. Environ. Microbiol.
64, 3798–3806.

Pieper, D. H., and Seeger, M. (2008). Microbial reductive
dechlorination of PCBs. Biodegrada-
tion 4, 231–240.

Tochepa, E. I., Fortin, P. D., Eltis, L. D.,
and Murphy, M. E. P. (2006). Structures of ternary complexes of
BphK, a bacterial glutathione S-
transferase that reductively dechlo-
rinates polychlorinated biphenyl
metabolites. J. Biol. Chem. 281,
30933–30940.

van der Meer, J. R., Eggen, R. I. L.,
Zehnder, A. J. B., and de Vos, W. M. (1991). Sequence analysis of
the Pseudomonas sp. P51 tcb gene cluster, which encodes metabol-
ism of chlorinated catechols: evi-
dence for specialization of cate-
chol 1,2-dioxygenase for chlori-
inated substrates. J. Bacteriol. 173,
2425–2434.

Williams, P. A., and Murray, K. (1974). Metabolism of ben-
zoate and methylenzoates by
Pseudomonas putida (arvilla) mt-2:
evidence for the existence of a
TOL plasmid. J. Bacteriol. 120,
416–423.

Williams, W. A., Lobos, J. H., and
Cheetham, W. E. (1997). A phyloge-
etic analysis of aerobic polychlori-
nated biphenyl-degrading bacteria.
Int. J. Syst. Bacteriol. 47, 207–210.

Wittich, R.-M., and Wolf, P. (2007). Growth of the genetically engineered strain
Capriarius novaeur RW112
with chlorobenzoates and techni-
cal biphenyls. Microbiology 153,
186–195.

Yuroff, A. S., Sabat, G., and Hickey, W. J. (2003). Transporter-mediated
uptake of 2-chloro- and 2-
hydroxybenzoate by Pseudomonas
putida strain D1. Appl. Environ.
Microbiol. 69, 7401–7408.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any com-
mmercial or financial relationships
that could be construed as a potential con-
flict of interest.

Received: 10 November 2012; accepted: 08
March 2013; published online: 29 April
2013.

Citation: Hernández-Sánchez V,
Lang E and Wittich R-M (2013) The
three-species consortium of geneti-
cally improved strains Capriarius
novaeur RW112, Burkholderia xen-
ovrans RW118, and Pseudomonas
pseudoalcaligenes RW120 grows
with technical polychlorobiphenyl,
Aro-
clor 1242. Front. Microbiol. 4:10. doi:
10.3389/fmicb.2013.00008.

This article was submitted to Frontiers in Microbiotechnology, Ecotoxico-
logy and Bioremediation, a specialty of Frontiers in
Microbiology.

Copyright © 2013 Hernández-Sánchez,
Lang and Wittich. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in other forums,
povided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.