Estimate and asymptotic of the solution for the p-Laplacian parabolic equation double non-linear type with damping

M M Aripov1 and O R Djabbarov2

1Department of Applied Mathematics and Computer Analysis, National University of Uzbekistan, 4 University street, Tashkent, Uzbekistan

2Department of Applied Mathematics, Karshi State University, 17 Kuchabog street, Karshi, Uzbekistan

Abstract. In this article, using the solution to the Hamilton-Jacobi equation, we allegedly investigate the estimate and asymptotic of solutions for a parabolic equation with double nonlinearity with damping with a variable coefficient. An estimate for the weak solution and the asymptotic of regular, unbounded and finite solutions of the stationary equation are obtained. The condition for spatial localization of the solution to the Cauchy problem is found.

1. Introduction

When studying nonlinear processes, it is interesting to analyze the influence of various factors on the speed of propagation of the temperature wave front.

In [1], it was shown how the presence of absorption or heat release in a medium affects the speed of propagation of the temperature wave front. In this case, the volumetric heat absorption reduces the front propagation speed and in some cases leads to the stopping of the temperature wave. It is obvious that the movement of the medium, leading to convective heat transfer, should also affect the spatial localization of the temperature wave propagation velocity. Therefore, it is interesting to consider the influence of other factors leading to the emergence of new phenomena. Of particular interest is the study of nonlinear processes with damping, which has been studied in a large number of works (see [1, 2] and the references therein).

In this work in the domain $Q = \{(t, x): t > 0, x \in R\}$ the following Cauchy problem is investigated

$$L(u) = -\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right)^{p-1} \frac{\partial u}{\partial x} - g(x) \left| \frac{\partial u}{\partial x} \right|^p = 0, \quad (1)$$

$$u|_{t=0} = u_0(x) \geq 0, \quad x \in R, \quad (2)$$

for a parabolic equation with damping [2].

Equation (1) describes the processes of nonlinear heat conduction, diffusion, filtration, biological population and various other processes [1-10]. A special case of the equation ($m = 1, \ p = 2$ without damping) was proposed by Lei Benson [16] to describe the processes of oil and gas. The case $p = 2, \ p_1 = 0, \ g(x) = 1$. Is known as equalized porous medium and the case. $q_1 = 0, \ g(x) = 1$. Hamilton-Jacobi equation with absorption [1-5]. A distinctive feature of the Cauchy problem under study is the degeneration of equation (1), which is why it is in a domain where $u = 0$ or $\frac{\partial u}{\partial x} = 0$ may not have a
solution in the classical sense. Therefore, it is of interest to study a weak solution from a physically meaningful class with the property

\[
\left| \frac{\partial^2 u^k}{\partial x} \right|^{p-2} \frac{\partial u^m}{\partial x} \in C(Q), \; u \geq 0,
\]

and satisfying problem (1), (2) in the sense of distribution [1-6].

Various qualitative properties of the solution to problem (1) and nonlinear phenomena for particular values of numerical parameters and for \(g(x) = 1 \) have been intensively studied by many authors [1-33]. In particular, in [2], it was considered the case \(k = m > 1, \; p > 2, \; p > p_1, \; q_1 + p_1m > m(p-1) > 1, \; g(x) = 1 \). Applying the standard iterative method, the author gave a sufficient condition for the existence of singular self-similar solutions to equation (1) and classification of these singular self-similar solutions.

Questions of the existence of a global solution, estimates, asymptotic of the solution for \(t \rightarrow \infty \) and nonlinear phenomena arising at different values of numerical parameters have been intensively studied by many authors (see [1-10] and the literature cited there). A number of works are devoted to the study of the qualitative properties of the solution of the problem under consideration for particular values of the numerical parameters in the case when the initial value \(u_0(x) \) is smooth. There are a number of papers devoted to the global solvability and in solvability of the Cauchy problem (1), (2) in various function spaces. As an example, we cite, in particular, the works of Huashui Zhan [2], Z. Wu, J. Zhao, J. Yun, Y.M. Qi [18] and works [1, 28,29], where absorption has a power-law gradient nonlinearity. In [2] the problem (1), (2) was considered in the case \(k = m, \; p > 2, \; m > 1 \) and \(p > p_1, \; q_1 + p_1m > m(p-1) > 1, \; g(x) = 1 \). In this article, using the standard iterative Picard method, a sufficient condition for the existence of singular self-similar solutions is given. In addition, a classification of these singular self-similar solutions is given. H. Zhan [8] applying the standard iterative method in the case \(k = m \) got a sufficient condition for the existence of singular self-similar solutions to equation (1). The author also gives a classification of singular self-similar solutions. The qualitative properties of the solution to problem (1) and nonlinear phenomena for various particular values of numerical parameters are intensively studied by many authors [10-18]. In [19], the critical curves of an equation with double nonlinearity in a no divergence form with a nonlinear boundary flow are investigated. Namely in it the critical curve of global existence and the critical curve of Fujita were obtained. The asymptotic of the solution is established for the critical value of the parameter \(q_1 = p - 1 + p/N \) for the problem (1), (2) in the case \(k = 1, \; m = 1 \) in [18]. In [13], the solution for the system of the reaction-diffusion equation with double nonlinearity in the presence of a source was investigated. The self-similar approach is used to process the qualitative properties of a nonlinear reaction-diffusion system. It is shown that there are some parameter values for which the effect of the finite velocity of the perturbation and spatial localization of the solution can take place. In [20], the asymptotic behavior of solutions of the Cauchy problem for nonlinearity, which describes heat diffusion with nonlinear heat absorption at a critical value of the parameter, was investigated.

Samarskiy A A and Sobol I M [15], proposed numerical schemes and a method for numerical solution based on the sweep method of self-similar analysis for porous medium equation \((k = 1, \; p = 2, \; m > 1) \). In [9], this method extended to for numerical solution of wave type structures in nonlinear diffusion medium with damping.

In this paper, we study the spatial localization of the solution, the asymptotic representation of regular and unbounded and finite solutions of the stationary equation (1), depending on the value of the numerical parameters \(k, p, m, p_1, q_1 \) of the medium. A method for estimating the solution based on the solution of the corresponding Hamilton-Jacobi equation is the first order asymptotic properties of solutions are obtained depending on the values of numerical parameters characterizing a nonlinear medium by solving a first-order equation, which solves the problem of choosing initial approximations for the numerical solution of the problem. It is shown that some of these properties of solutions to equation (1) can be established by solving the following Hamilton-Jacobi equation.
The solution of which is relatively simpler than the solution of the original second-order equation. It is easy to verify that equation (3) has a particular solution

$$\tilde{u}_z = c \pm \frac{k^{(2-p)m/2}(p-2m)}{k+1} k(p-2)+m-(mp_1+q_1) \int_0^y \frac{1}{\gamma_1(p-2)+m-(mp_1+q_1)} dy^{\gamma_1},$$

(4)

here \(c\) is a constant of integration

$$\gamma_1 = \frac{p-p_1}{k(p-2)+m-(mp_1+q_1)}.$$

If \(k(p-2)+m=(mp_1+q_1)\), then

$$\tilde{u}(x) = \exp \left(-\frac{jm^{\gamma_1}}{(k+2)k^{p-2}(k(p-2)+m)} \frac{1}{p-p_1} \int_x^y \frac{1}{\gamma_1(p-2)+m-(mp_1+q_1)} dy \right).$$

(5)

In this paper, using the solution of the Hamilton-Jacobi equation, an estimate of the weak solution is allegedly obtained, the spatial localization property of the Cauchy problem for problem (1), (2), the asymptotic of regular, unbounded and finite solutions of the stationary equation (1) are investigated. It is shown that in the critical case when \(k(p-2)+m-(mp_1+q_1)=0\) the nature of the solution changes and has the form of an exponential function. It is shown that functions \(u_+(x), \tilde{u}(x)\) are upper solutions of the Cauchy problem (1), (2). Functions \(u_+(x), \tilde{u}(x)\) were used as an initial approximation when solving the problem by the iterative method.

2. Evaluation of the solution and spatial localization of the solution

We restrict ourselves to the following theorem, which is proved by the method of comparison of solutions. It is shown that the qualitative property of the solution to problem (1), (2) depends on the convergence or divergence of the integral \(\int_0^1 (\theta(y))^{-\rho} dy\).

Theorem 1. Let function \(\theta(x)\) satisfy the conditions \(\theta(x) \leq g(x), \theta'(x) \geq 0, x \in (0, \infty)\) and

$$\int_0^\infty (\theta(y))^{-\rho} dy = \infty.$$

Let

$$u_+(x) = \left[a - b \int_0^1 (\theta(y))^{-\rho} dy \right]^{\gamma_1}, a > 0,$$

where the notation \((c)_+ = \max(0, c)\) is used and

$$\gamma_1 = \frac{p-p_1}{k(p-2)+m-(mp_1+q_1)},$$

(6)

Then the solution to problem (1), (2) satisfies the estimate \(u(x) \leq u_+(x)\) in \(Q = \{(t, x) : t > 0, x \in R\}\), where function \(u_+(x)\) is defined above and the solution has the property of spatial localization [1].

Proof. The proof of the theorem is based on the principle of comparison of solutions. As a comparison, consider the function
\[u_*(x) = (a - b \phi)_1^p, \quad \phi = \int_0^1 \frac{1}{\theta^{p_{-1}}} (y) dy. \]

To use the principle of comparison, it is necessary to show that for the function \(u_*(x) \) being compared, condition \(L(u_*(t, x)) \leq 0 \) is satisfied in \(D = \{ (t, x) : t > 0, \int_0^t \theta^{p_{-1}} (y) dy < a/b \} \). Let us calculate \(L(u_*(t, x)) \). We have after simple calculations:

\[
\frac{d}{dx} \left(\frac{d_{u^*}^m}{dx} \right) = -b \gamma_1 m(\gamma_1 k)^{p-2} (a - b \phi)^{\gamma_1 - p} \phi'^{p-1},
\]

\[
\frac{d}{dx} \left(\frac{d_{u^*}^m}{dx} \right) = -b \gamma_1 m(b \gamma_1 k)^{p-2} (a - b \phi)^{\gamma_1 - p} \times \left[-b(\gamma_1 z - (p - 1)\phi' + (a - b \phi) d dx (\phi'^{p-1}) \right],
\]

\[
\frac{d_{u^*}^m}{dx} = (bm \gamma_1)^p (a - b \phi)^{\gamma_1 (mp_1 + q_1) - p_1} \phi'^{p_1}.
\]

\(z = k(p - 2) + m \). Substituting the obtained expressions into equation (3) for \(L(u_*(t, x)) \) we have

\[L(u_*(t, x)) = -b \gamma_1 m(b \gamma_1 k)^{p-2} (a - b \phi)^{\gamma_1 - p} \left[-b(\gamma_1 z - (p - 1)\phi' + (a - b \phi) d dx (\phi'^{p-1}) \right] -
\]

\[
- g(x)(bm \gamma_1)^p (a - b \phi)^{\gamma_1 (mp_1 + q_1) - p_1} \phi'^{p_1}.
\]

Let

\[\gamma_1 z - p = \gamma_1 (mp_1 + q_1) - p_1, \text{i.e.} \gamma_1 = \frac{p - p_1}{k(p - 2) + m - (mp_1 + q_1)}. \]

Then

\[L(u_*(t, x)) = -b \gamma_1 m(b \gamma_1 k)^{p-2} (a - b \phi)^{\gamma_1 - p} \left[-b(\gamma_1 z - (p - 1)\phi' - (a - b \phi) d dx (\phi'^{p-1})) \right] \leq 0,
\]

because

\[\phi' = \theta^{p_{-1}}(x), \quad \phi(x) = \int_0^x \frac{1}{\theta(y)} dy. \]

By the condition of Theorem 1, if \(b^{p_{-1}} = (m \gamma_1)^p / \gamma_1^{p_{-1}} k^{p_{-2}} m(\gamma_1 z - (p - 1)) \) in \(D \) then from (11) we have:

\[L(u_*(t, x)) = -b \gamma_1 m(b \gamma_1 k)^{p-2} (a - b \phi)(p_1 - p) \frac{d}{dx} (\phi'^{p-1}) +
\]

\[+ [b \gamma_1^{p_{-1}} k^{p_{-2}} m(\gamma_1 z - (p - 1) \theta(x) - g(x))] (a - b \phi)^{\gamma_1 - p} \leq 0,
\]

here \(D = \{ (t, x) : t > 0, \int_0^t \theta^{p_{-1}} (y) dy < a/b \} \). By the condition of Theorem 1 \(\phi(x) \leq g(x) : \theta(x) \geq 0, \frac{d}{dx} (\phi'^{p-1}) \geq 0 \). Then, according to the principle of comparison of solutions, we have
Simple calculations show that
\[\gamma_1 = \frac{p - p_1}{k(p-2) + m - (mp_1 + q_1)} \quad \text{in} \quad Q = \{(t,x) : t > 0, x \in \mathbb{R} \}.
\]

From the last inequality we have \(u(t,x) \equiv 0 \) when \(\int_0^1 \Theta^{p-p_1}(y)dy \geq a/b \). This means that for the solution of problem (1), (2) the solution is spatially localized. Theorem proved.

For example, consider the case \(g(x) = x^\sigma \). Note that to as in equation (1) in the case \(p_1 = 0, m = 1, p = 2 \) is called Emden-Fowler [31], which arose from astrophysics, and in the case \(p_1 = 0, m = 1, p = 2, \sigma = 1/2 \) the Thomas-Fermi equation from atomic physics (see, for example, [31]).

From the last inequality we have \(u(t,x) \equiv 0 \) by
\[
x \geq \left[\frac{(\sigma + p - p_1)}{p - p_1} \right] \left(\frac{a}{b} \right)^{\frac{p-p_1}{p-p_1}}, \quad p - p_1 > 0, \quad \sigma + p - p_1 > 0.
\]

This means that for the solution of the problem (1), (2) there is a spatial localization of the solution. The last inequality makes it possible to analyze the localization area of the solution depending on the value of the numerical parameters of the nonlinear medium and the effect of damping.

3. Asymptotic of the solution to a stationary equation
The stationary equation (1) mentioned above is called the generalized Emden-Fowler equation.

Theorem 2. Let \(\frac{\theta(x)}{g(x)} \rightarrow 1 \), at \(x \rightarrow \infty, \quad \gamma_1 > 0 \). Then the finite solution of the stationary equation (3) for \(\phi(x) \rightarrow \frac{a}{b} \) has the following asymptotic representation
\[
u(x) = c(a - b\phi(x))^{\gamma_1}(1 + o(1)),
\]
where \(c = \left[\frac{k(p^-p \gamma_1 + m\gamma_1)}{k(p-2) + m - (mp_1 + q_1)} \right] \left(\frac{1}{k(p-2) + m - (mp_1 + q_1)} \right) \), number \(\gamma_1 \) is defined above.

Proof. The proof of the theorem is carried out by comparing solutions. The function to compare is taken as
\[
u(x) = (a - b\phi(x))^{\gamma_1},
\]
which is the solution of the Hamilton-Jacobi equation (3). The solution of the stationary equation (1) is found in the form \(u(t,x) = \nu(x)w(x), \quad \nu(x) = (a - b\phi(x))^{\gamma_1}, \quad \tau = -\ln(a - b\phi(x)), \quad \phi^{p-p_1} = \theta(x) \). The meaning of this transformation is that \(\tau \rightarrow \infty \) by \(\phi \rightarrow \frac{a}{b} \) and the problem is reduced to the asymptotic stability of the solution of equation (1) for \(\tau \rightarrow \infty \). Further simple calculations give the following
\[
\left| \frac{du}{dx} \right|^{p-2} \left(\frac{du}{dx} \right) = b^{p-1}(\phi')^{p-1}(a - b\phi)^{\gamma_1(k(p-2) + m - (p-1)Lw},
\]
where \(Lw = \left| w^k - k\gamma_1 w^k \right|^{p-2} \left(w^m - m\gamma_1 w^m \right) \). Simple calculations show that
\[
\frac{d}{dx} \left(\frac{du^k}{dx} \right)^{\gamma_1} \frac{du^m}{dx} = b^{p-1} \frac{d}{dx} (\phi^r)^{p-1} (a-b\phi)^{\left[k(p-2) + m \right]} (p-1) L_w + \\
+ b^r \phi^r (a-b\phi)^{\left[k(p-2) + m \right] (p)} \left(\frac{d}{d\tau} L_w - [(k(p-2) + m)\gamma_1 - (p-1)] L_w \right), \tag{15}
\]

\[
\left(\frac{du^m}{dx} \right)^{\gamma_m} = b^{\gamma_m} (a-b\phi)^{\gamma_m} (p+\gamma_m) \left| w^m \gamma_w^m \right|^p \cdot \tag{16}
\]

Substituting the obtained expressions in (3), we have

\[
b^{p-1} \frac{d}{dx} (\phi^r)^{p-1} (a-b\phi)^{\left[k(p-2) + m \right] (p-1)} L_w + \\
b^r (a-b\phi)^{\left[k(p-2) + m \right] (p)} \left(\frac{d}{d\tau} L_w - [(k(p-2) + m)\gamma_1 - (p-1)] L_w \right) = \\
g(x) b^{\gamma_m} (a-b\phi)^{\gamma_m} \left| w^m \gamma_w^m \right|^p \cdot \tag{17}
\]

Given that, \(\phi^r = \theta(x) \) and \((k(p-2) + m)\gamma_1 - p = (\gamma_m p - 1) p_1 + \gamma_1 q_i \), the last equation is rewritten as

\[
b^{p-1} (\phi^r)^{p-1} (a-b\phi) L_w + \\
b^r \left(\frac{d}{d\tau} L_w - [(k(p-2) + m)\gamma_1 - (p-1)] L_w \right) = b^{\gamma_m} (a-b\phi)^{\gamma_m} \left| w^m \gamma_w^m \right|^p \cdot \tag{18}
\]

\[
a-b\phi \to 0, \quad \frac{d}{dx} (\phi^r)^p (a-b\phi) \to 0. \text{ From (17) we get}
\]

\[
\frac{d}{d\tau} L_w - [(k(p-2) + m)\gamma_1 - (p-1)] L_w = b^{\gamma_m} (a-b\phi)^{\gamma_m} \left| w^m \gamma_w^m \right|^p \cdot \tag{19}
\]

Analysis of the solution of equation (18) shows that all solutions of equation (18), tending to a constant must satisfy the algebraic equation

\[
[(k(p-2) + m)\gamma_1 - (p-1)] k\gamma_w c^m b^{p-2} = (a-b\phi)^{\gamma_m} c^m \cdot \tag{20}
\]

i.e. \(w = c \)

Because \(\frac{d}{d\tau} L_w = 0 \) by \(w = c \). Therefore, for sufficiently large ones, the following asymptotic representation of the finite solutions of equation (1) takes place

\[
u(x) = \left[\frac{b^{p-2} \gamma_1 b^{p-1} k^{2-p} m^{p-1}}{(k(p-2) + m)\gamma_1 - (p-1)} \right]^{1 \left[k(p-2) + m \right] \gamma_m} (a-b\phi)^{\gamma_1} \cdot \tag{21}
\]

Theorem 2 proved.

Let \(\int_{\gamma_1}^{\infty} \frac{1}{\theta^p} (y) dy < \infty \), then \(\int_{\gamma_1}^{\infty} \frac{1}{\theta^{p-1}} (y) dy \to 0 \), by \(x \to \infty \), \(\gamma_1 > 0 \).

Consider the function

\[
\tilde{u}(x) = \left[\int_{\gamma_1}^{\infty} \frac{1}{\theta^{p-1}} (y) dy \right] \gamma_1, \quad \gamma_1 = \frac{p-p_1}{k(p-2) + m - (p_1 + q_i)}. \tag{22}
\]
In this case, it is fair.

3.1. Asymptotic of regular solutions

Case 1. \(\int_{-\infty}^{\infty} \theta^{p-\eta} (y) dy = \infty, \ x_0 \geq 0. \)

Theorem 3. Let \(\gamma_1 < 0, \ (m+k(p-2))-(p-1) < 0, \ \theta^{p-\eta_1} \theta' \left(\int_{0}^{\infty} \theta^{p-\eta} (y) dy \right) \rightarrow 0 \) with \(x \rightarrow \infty, \)

\(\int_{0}^{\infty} \theta^{p-\eta} (x) dx = \infty. \) Then, as \(x \rightarrow \infty, \) the regular solutions of the stationary equation (1) have the following asymptotic representation:

\[
\lim_{x \to \infty} u(t, x) = \frac{\gamma_1^{p-\eta_1+1} k^{2-p} m^{\eta_1-1}}{\gamma_1^{p-\eta_1} (m+k(p-2))-(p-1)} \left[\int_{0}^{\infty} \theta^{p-\eta} (y) dy \right]^{\gamma_1} \left(1 + o(1) \right). \tag{22}
\]

3.2. Asymptotic of unbounded solutions

Theorem 4. Let \(\gamma_1 < 0, \ (m+k(p-2))-(p-1) < 0, \ \int_{0}^{\infty} \theta^{p-\eta} (y) dy < \infty, \)

\(\theta^{p-\eta_1} \theta' \left(\int_{0}^{\infty} \theta^{p-\eta} (y) dy \right) \rightarrow 0 \) with \(x \rightarrow \infty. \) Then, as \(x \rightarrow \infty \) the unbounded solutions of the stationary solution to equation (1) have the following asymptotic representation:

\[
\lim_{x \to \infty} u(t, x) = \frac{\gamma_1^{p-\eta_1+1} k^{2-p} m^{\eta_1-1}}{\gamma_1^{p-\eta_1} (m+k(p-2))-(p-1)} \left[\int_{0}^{\infty} \theta^{p-\eta} (y) dy \right]^{\gamma_1} \left(1 + o(1) \right). \tag{23}
\]

Proof. The solution of equation (1) will be found in the form

\[
u(x) = \frac{1}{\theta^{p-\eta}} \int_{0}^{\infty} \theta^{p-\eta} (y) dy, \quad \tau = -\ln \left[\int_{0}^{\infty} \theta^{p-\eta} (y) dy \right]. \tag{24}
\]

It is clear that \(\tau(x) \to \infty \) by \(x \to \infty \) by virtue of the convergence of the integral \(\int_{0}^{\infty} \theta^{p-\eta} (y) dy. \) Put (24) in (3) and after the following simple calculations we have

\[
\frac{d u^{k-\eta-1}}{dx} = \frac{1}{\theta^{p-\eta}} L w, \quad \text{where} \quad L w = (w_k^m - m \gamma_1 w_k^m) \left[\gamma_1^{m+k(p-2)} - \gamma_1 k w_k^p \right]^{-p-2} \tag{25}
\]

\[
\frac{d}{dx} \left(\frac{d u^{k-\eta-1}}{dx} \right) = \frac{1}{\theta^{p-\eta}} \left[\gamma_1^{m+k(p-2)} \right]^{p-2} - \gamma_1 \left[\gamma_1^{m+k(p-2)} \right]^{p-1} \theta^{p-\eta} L w \tag{26}
\]
\[+ \frac{p-1}{p-p_1} \left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \int_0^{p_1-1} \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w, \]

\[+ \int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\frac{du^m}{dx} \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} w^m \]

\[\left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} w^m \]

\[\frac{d}{d\tau} L_1 w + \left(-\phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\frac{d}{d\tau} L_1 w = \left[g(x) \theta(x) \right] w^m - m \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[= \frac{d}{d\tau} L_1 w = \left[g(x) \theta(x) \right] w^m - m \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{Since when } x \to \infty, \int_0^\infty \frac{1}{\theta^{p-p_1}} (y) \, dy \to \infty \text{ therefore } \tau \to \infty. \text{ Therefore, according to the condition of the theorem, equation (31) takes } \tau \to \infty \text{ the form} \]

\[\frac{d}{d\tau} L_1 w - \left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\left(\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{where } L_1 w = w^m - m \phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{Obviously, the solution of equation (32) tends to a constant } w = c, \text{ since } \frac{d}{d\tau} L_1 c = 0, \text{ then } c \text{ is the solution of an algebraic equation} \]

\[\left[\phi(m+k(p-2)) \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{from here we find} \]

\[\frac{\gamma_1}{\gamma_1(p-1)(m+k(p-2))-(p-1)} \left[\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{Therefore, the stationary solution of equation (3) has an asymptotic representation} \]

\[u(x) = \left[\int_0^\infty \frac{1}{\theta^{p-p_1}} \, dy \right) \theta^{p-p_1} \frac{d}{d\tau} L_1 w \right) \]

\[\text{Theorem 4 proved.} \]

\[\text{Case 2. } g(x) = x^\sigma, \sigma \in R. \]

\[\text{Corollary 1. Let} \]
\[\sigma + p - p_1 > 0, \quad p - p_1 > 0, \quad \gamma_1 > 0, \quad b = \left[\frac{k^{2-p} \gamma_1^{p-1} m^{p-1}}{\gamma_1^2 (k (p-2) + m) - (p-1)} \right]^{1-p/p_1}. \]

Then, for the solution of problem (1), (2) with the property of spatial localization, estimate
\[u(t,x) \leq u_0(t,x) \text{ in } Q = \{ (t,x) : t > 0, x \in \mathbb{R} \} \]
where \(u_0(x) = (a - b \varphi(x))^\gamma \) holds, and for the front, estimate
\[x \geq \left[\frac{\sigma + p - p_1}{p - p_1} (a/b) \right]^{1-p/p_1}, \quad a > 0, \quad b = \left[\frac{k^{2-p} \gamma_1^{p-1} m^{p-1}}{\gamma_1^2 (k (p-2) + m) - (p-1)} \right]^{1-p/p_1}. \]

In particular, for a porous medium \((p = 2, k = 1) \) for the front, we have estimate
\[x \geq \left[\frac{\sigma + 2 - p_1}{2 - p_1} (a/b) \right]^{1-p/p_1}, \quad a > 0, \quad \gamma_1 = \frac{2 - p_1}{m - (mp_1 + q_1)}, \quad b = \left[\frac{\gamma_1^{p-1} m^{p-1}}{\gamma_1^2 (k (p-2) + m) - (p-1)} \right]^{1-p/p_1}. \]

Accordingly, we can write out the asymptotic of the solution for cases
\[\varphi(x) = \frac{p - p_1}{\sigma + p - p_1} x \to \infty, \]
which corresponds to case \(p - p_1 > 0, \quad \sigma + p - p_1 > 0, \quad \gamma_1 < 0. \)

Corollary 2. The asymptotic of regular solutions for \(x \to \infty \) has the form \(u(x) \to c [\varphi(x)]^\gamma, \)
\[c = \left[\frac{\gamma_1^{p-1} k^{2-p} m^{p-1}}{\gamma_1^2 (k (p-2)) - (p-1)} \right]^{1-p/p_1}, \quad \gamma_1 = \frac{2 - p_1}{m - (mp_1 + q_1)}, \quad b = \left[\frac{\gamma_1^{p-1} m^{p-1}}{\gamma_1^2 (k (p-2) + m) - (p-1)} \right]^{1-p/p_1}. \]

4. **Evaluation of solutions in the critical case**

Let's call \(k (p-2) + m - (mp_1 + q_1) = 0 \) this a critical case. In this case, the nature and evaluation of the decision changes. We show that what is the function
\[u_2(x) = \exp \left\{ - \left[\frac{\gamma m^{p-1}}{k^{p-2} (k (p-2) + m)} \right]^{1-p/p_1} \int_{x_0}^{x} [\theta(y)]^{1-p/p_1} dy \right\}, \]
is the upper solution of equation (1) at the critical value of the parameter.

Theorem 5. Let in equation (1) \(k (p-2) + m - (mp_1 - q_1) = 0, \quad \theta(x) > 0, \quad u_0(x) \leq Au_2(x), \quad A > 0, \quad x \in \mathbb{R}. \) Then for the solution of the problem (1), (2) the estimate \(u(t,x) \leq u_2(x) \) in \(Q \) is valid.

Proof. The proof of the theorem is based on the principle of comparing solutions. As a comparison, consider the function
\[u_2(x) = A \exp \left\{ - \left[\frac{\gamma m^{p-1}}{k^{p-2} (k (p-2) + m)} \right]^{1-p/p_1} \int_{x_0}^{x} [\theta(y)]^{1-p/p_1} dy \right\}. \]

To use the principle of comparing solutions, we show that in \(D = \{ t,x : t > 0, 0 < x < \infty \} \). The condition is met \(L(u_2(x)) \leq 0 \). In fact, direct calculations show that by virtue of the condition of theorem 5, that
\[L(u_2(x)) = -a \theta^\prime(x) \hat{\theta}(x)^{p-1} \exp \left(-a \int_{x_0}^{x} \hat{\theta}(y)^{p-1} \, dy \right) < 0, \quad a = \left[\frac{m \gamma^{p-1}}{k^{p-2} (k (p-2)+m)} \right]^{1/p-1} \]

in \(D = \{(t,x) : t > 0, 0 < x < \infty \} \). By virtue of the principle of comparing solutions, theorem 5 is proved.

5. Conclusion
The Cauchy problem for the \(p \)-Laplacian equation with a variable damping coefficient depending on the spatial variable arising in various applications studied. A method is proposed and substantiated for obtaining an estimate of the solution and the front based on the method of standard equations and the Hamilton-Jacobi equation corresponding to a nonlinear second-order equation. Based on the effects of spatial localization, the finite velocity of propagation of the disturbance, the asymptotes of regular, finite, unbounded solutions are obtained. These results allow us to solve the problem of the initial approximation in the numerical solution of the problem by the iterative method. The emergence of a critical case in which the behavior of the solution changes is shown.

References
[1] Samarsky A A, Galaktionov V A, Kurdyumov S P and Mikhailov A P 1987 Modes with exacerbation in problems for quasilinear parabolic equations (Moscow: Science) p 480
[2] Hashui Z 2012 The Self-Similar Solutions of a Diffusion Equation WSEAS Transaction on Mathematics, Issue 4, Vol. 12, pp 345–356
[3] Qi Y M and Wang M X 2001 The self-similar profiles of solutions of generalized KPZ equation Pacific J. Math., 201, pp 223–240
[4] Aripov M and Sadullaeva Sh 2013 To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters, J. Sib. Fed. Univ. Math. Phys., 6, no. 2, pp 157–167
[5] Aripov M 2018 The Fujita and Secondary Type Critical Exponents in Nonlinear Parabolic Equations and Systems Differential Equations and Dynamical Systems, pp 9–24
[6] Aripov M and Raimbekov J R 2019 The Critical Curves of a Doubly Nonlinear Parabolic Equation in Non-divergence form with a Source and a Nonlinear Boundary Flux. Journal of Siberian Federal University. Mathematics Physics, 12(1), pp 1–13
[7] Aripov M, Mukimov A and Sayfullayeva M 2019 To asymptotic of the solution of the heat conduction problem with double nonlinearity, variable density, absorption at a critical parameter. International journal of innovative technology and exploring engineering. Volume-9 Issue-1, pp 3407–3412
[8] Aripov M, Mukimov A and Mirzayev B 2019 To Asymptotic of the Solution of the Heat Conduction Problem with Double Nonlinearity with Absorption at a Critical Parameter Mathematics and Statistics 7(5), pp 205–217
[9] Aripov M, Sadullaeva Sh and Iskhakova N 2020 Numerical Modeling Wave Type Structures in Nonlinear Diffusion Medium with Dumping, 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) IEEE, 10.221-6
[10] Zhou W and Wu Z 2005 Some results on a class of degenerate parabolic equations not in divergence form, Nonlinear Analysis: Theory, Methods Application, 60, no. 5, pp 863–886
[11] Galaktionov V A and Vazquez J L 2002 The problem of blow-up in nonlinear parabolic equations, Discrete and continuous dynamical systems, 8, no. 2, pp 399–433
[12] Lions P L 1982 Generalized solutions of Hamilton Jacobi equations. Pitman Res Notes Math., Ser. 69, Longman, Harlow
[13] Ahmed N and Sunada D K 1969 Nonlinear flows in porous media, J. Hydraulics. Div. Proc. Soc. Civil Eng, 95, pp 1847–1857
[14] Kristlanovitch S A 1940 Motion of ground water which does not con form to Darcy’s Law, Prikl. Mat. Mech. (Russian), 4, pp 33–52
[15] Samarsky A A and Sobol I M 1963 Examples of numerical calculation of temperature waves. Zh.Vychisl. Math and mat. Fiz., 3(4), pp 702–719

[16] Leibenson L S 1945 General problem of the movement of a compressible fluid in a porous media, Izv. Akad. Nauk SSSR, Geography and Geophysics (Russian), 9, pp 7–10

[17] Esteban J R and Vazquez J L. On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Anal. TMA, 10, 1986, pp 1303–1325

[18] Wu Z, Zhao J, Yun J and Li F 2001 Nonlinear Diffusion Equations. New York, Singapore: World Scientific Publishing

[19] Kamin S and Veron L 1988 Existence uniqueness of the very singular solution of the porous media equation with absorption. J. Analysis Math., 51, pp 245–258

[20] Si P and Wang M 2004 The self-similar solution of a quasi-linear parabolic equation with a nonlinear gradient term, Sci. in China, 34, 2004, pp 392–406

[21] Yang J and Zhao J 1995 The asymptotic behavior of solutions of some doubly degenerate nonlinear parabolic equations, Northeast Math. J., 11, pp 241–152

[22] Escobedo M, Kamvian O and Matano H 1995 Large time behavior of solutions of a dissipative quasi-linear heat equation, Comm. in Partial Diff. Equ., 20, pp 1427–1452

[23] Kamin S and Peletier L A 1986 Large time behavior of the solutions of porous media equation with absorption. Israel J. Math., 55, pp 129–146

[24] Zhao J and Yuan H 1995 The Cauchy problem of a doubly degenerate parabolic equations (in Chinese), Chinese J. of Math., 16A, pp 181–196

[25] Aguirre J 2001 Self-similarity and the singular Cauchy problem foe the heat equation with cubic absorption. Appl. Math. Letters, 14, 712 p

[26] Chen X F, Qi Y W and Wang M X 2000 Self-similar singular parabolic equations with absorption. Electronic J. Diff. Equ., 67, pp 1–22

[27] Qi Y M and Wang M X 2001 The self-similar profiles of solutions of generalized KPZ equation. Pacific J. Math., 201, pp 223–240

[28] Zhang Q and Shi P 2010 Global solutions and self-similar solutions of semi linear parabolic equations with nonlinear gradient terms, Nonlinear Anal. T.M.A., 72, pp 2744–2752

[29] Lihua D and Xianguang Sh 2020 Doubly Degenerate Parabolic Equation with Time-Dependent Gradient Source and Initial Data Measures. Journal of Function Spaces, 11 p

[30] Ughi M A 1986 Degenerate parabolic equation modeling the spread of an epidemic, Ann. Math. Pura Appl., 143, pp 385–400

[31] Aripov M 1986 Method of standard equation for solution nonlinear value boundary equation (Tashkent: Science) pp 13

[32] Daniela G M and Michaela P 2009 Global existence for nonlinear parabolic equations with a damping term. Communications on Pure and Applied Analysis 8(3), pp 923–953

[33] Raimbekov J R 2015 The properties of the solutions for Cauchy problem of nonlinear parabolic equations in non-divergent form with density. J. Sib. Fed. Univ. Math. Phys., 8(2), pp 192–200

[34] Zhou W and Yao Z 2010 Cauchy problem for a degenerate parabolic equation with non-divergence from, Acta. Mathematica Scienta, 30(5), pp 1679–1686

[35] Gilding B G and Peletier L A 1976 The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal., 61, pp 127–140