Perfect divisibility and 2-divisibility

Maria Chudnovsky¹ | Vaidy Sivaraman²

¹Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
²Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902, USA

Correspondence
Vaidy Sivaraman, Binghamton University, Binghamton, NY 13902, USA.
Email: vaidy@math.binghamton.edu

Funding information
Division of Mathematical Sciences, Grant/Award Number: DMS-1550991; Army Research Office, Grant/Award Number: W911NF-16-1-0404
Contract grant sponsor: NSF; contract grant number: DMS-1550991. Contract grant sponsor: U. S. Army Research Office; contract grant number: W911NF-16-1-0404.

Abstract
A graph G is said to be 2-divisible if for all (nonempty) induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $o(A) < o(H)$ and $o(B) < o(H)$. (Here $o(G)$ denotes the clique number of G, the number of vertices in a largest clique of G). A graph G is said to be perfectly divisible if for all induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $H[A]$ is perfect and $o(B) < o(H)$. We prove that if a graph is (P_3, C_5)-free, then it is 2-divisible. We also prove that if a graph is bull-free and either odd-hole-free or P_5-free, then it is perfectly divisible.

KEYWORDS
2-divisibility, graph coloring, perfect divisibility

1 | INTRODUCTION

All graphs considered in this article are finite and simple. Let G be a graph. The complement G^c of G is the graph with vertex set $V(G)$ and such that two vertices are adjacent in G^c if and only if they are nonadjacent in G. For two graphs H and G, H is an induced subgraph of G if $V(H) \subseteq V(G)$, and a pair of vertices $u, v \in V(H)$ is adjacent if and only if it is adjacent in G. We say that G contains H if G has an induced subgraph isomorphic to H. If G does not contain H, we say that G is H-free. For a set $X \subseteq V(G)$ we denote by $G[X]$ the induced subgraph of G with vertex set X. For an integer $k > 0$, we denote by P_k the path on k vertices, and by C_k the cycle on k vertices. A path in a graph is a sequence $p_1 \cdots p_k$ (with $k \geq 1$) of distinct vertices such that p_i is adjacent to p_j if and only if $|i - j| = 1$. Sometimes we say that $p_1 \cdots p_k$ is a P_k. A hole in a graph is an induced subgraph that is isomorphic to the cycle C_k with $k \geq 4$, and k is the length of the hole. A hole is odd if k is odd, and even otherwise. The vertices of a hole can be numbered c_1, \ldots, c_k so that c_i is adjacent to c_j if and only if $|i - j| \in \{1, k - 1\}$; sometimes we write $C = c_1 \cdots c_k$. An antihole in a graph is an induced subgraph that is isomorphic to C^c_k with $k \geq 4$, and again k is the length of the antihole. Similarly, an antihole is odd if k is odd, and even otherwise. The bull is the graph consisting of a triangle with two disjoint pendant edges. A graph is bull-free if no induced subgraph of it is isomorphic to the bull. The
chromatic number of a graph G is denoted by $\chi(G)$ and the clique number by $\omega(G)$. A graph G is called \textit{perfect} if for every induced subgraph H of G, $\chi(H) = \omega(H)$. For a set X of vertices, we will usually write $\chi(X)$ instead of $\chi(G[X])$, and $\omega(X)$ instead of $\omega(G[X])$. If X is a set of vertices and x is a vertex, we will write $X + x$ for $X \cup \{x\}$.

A graph G is said to be \textit{2-divisible} if for all (nonempty) induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $\omega(A) < \omega(H)$ and $\omega(B) < \omega(H)$. Hoàng and McDiarmid \cite{8} defined the notion of 2-divisibility. They actually conjecture that a graph is 2-divisible if and only if it is odd-hole-free. A graph is said to be \textit{perfectly divisible} if for all induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $H[A]$ is perfect and $\omega(B) < \omega(H)$. Hoàng \cite{7} introduced the notion of perfect divisibility and proved (\cite{7}) that (banner, odd hole)-free graphs are perfectly divisible. A nice feature of proving that a graph is perfectly divisible is that we get a quadratic upper bound for the chromatic number in terms of the clique number. More precisely:

\textbf{Lemma 1.1.} Let G be a perfectly divisible graph. Then $\chi(G) \leq \binom{\omega(G) + 1}{2}$.

\textit{Proof.} Induction on $\omega(G)$. Let $\omega(G) = t$. Let $X \subseteq V(G)$ such that $G[X]$ is perfect and $\chi(G \setminus X) < t$. Since $G \setminus X$ is perfectly divisible, $\chi(G \setminus X) \leq \binom{\omega(G) - 1}{2} = \binom{t}{2}$. Since $G[X]$ is perfect, $\chi(X) \leq t$. Consequently, $\chi(G) \leq \chi(G \setminus X) + \chi(X) \leq t + \binom{t}{2} = \binom{t + 1}{2}$. ■

Analogously, 2-divisibility gives an exponential χ-bounding function.

\textbf{Lemma 1.2.} Let G be a 2-divisible graph. Then $\chi(G) \leq 2^{\omega(G) - 1}$.

\textit{Proof.} Induction on $\omega(G)$. Let $\omega(G) = t$. Let (A, B) be a partition of $V(G)$ such that $\omega(A) < t$ and $\omega(B) < t$. Now $\chi(A) \leq 2^{t-2}$ and $\chi(B) \leq 2^{t-2}$. Consequently, $\chi(G) \leq \chi(A) + \chi(B) \leq 2^{t-2} + 2^{t-2} = 2^{t-1}$. ■

We end the introduction by setting up the notation that we will be using. For a vertex v of a graph G, $N(v)$ will denote the set of neighbors of v (we write $N_G(v)$ if there is a risk of confusion). The closed neighborhood of v, denoted $N[v]$, is defined to be $N(v) + v$. We define $M(v)$ (or $M_G(v)$) to be $V(G) \setminus N[v]$. Let X and Y be disjoint subsets of $V(G)$. We say X is complete to Y if every vertex in X is adjacent to every vertex in Y. We say X is anticomplete to Y if every vertex in X is nonadjacent to every vertex in Y. A set $X \subseteq V(G)$ is a \textit{homogeneous set} if $1 < |X| < |V(G)|$ and every vertex of $V(G) \setminus X$ is either complete or anticomplete to X.

This article is organized as follows. In Section 2, we prove that if a graph contains neither a P_5 nor a C_5, then it is 2-divisible. In Section 3, we prove that if a graph is bull-free and either odd-hole-free or P_5-free, then it is perfectly divisible.

\section{\textbf{(P_5, C_5)-Free Graphs are 2-Divisible}}

We start with some definitions. Let G be a graph. $X \subseteq V(G)$ is said to be \textit{connected} if $G[X]$ is connected, and \textit{anticonnected} if $G'[X]$ is connected. For $X \subseteq V(G)$, a \textit{component} of X is a maximal connected subset of X, and an \textit{anticomponent} of X is a maximal anticonnected subset of X.

The following lemma is used several times in the sequel.

\textbf{Lemma 2.1.} Let G be a graph. Let $C \subseteq V(G)$ be connected, and let $v \in V(G) \setminus C$ such that v is neither complete nor anticomplete to C. Then there exist $a, b \in C$ such that $v - a - b$ is a path.
Proof. Since v is neither complete nor anticomplete to C, it follows that both the sets $N(v) \cap C$ and $M(v) \cap C$ are nonempty. Since C is connected, there exist $a \in N(v) \cap C$ and $b \in M(v) \cap C$ such that $ab \in E(G)$. But now $v - a - b$ is the desired path. This completes the proof.

We are ready to prove the main result of this section.

Theorem 2.1. Every (P_5, C_5)-free graph is 2-divisible.

Proof. Let G be a (P_5, C_5)-free graph. We may assume that G is connected. Let $v \in V(G)$, let $N = N(v)$, $M = M(v)$. Let Z_1, \ldots, Z_t be the components of M.

(1) We may assume that there is i such that no vertex of N is complete to Z_i.

For, otherwise, $X_1 = M + v$, $X_2 = N$ is the desired partition. This proves (1). Let i be as in (1), we may assume that $i = 1$.

(2) There do not exist n_1, n_2 in N and m_1, m_2 in M such that n_1 is adjacent to m_1 and not to m_2, and n_2 is adjacent to m_2 and not to m_1, and n_1 is nonadjacent to n_2.

For, otherwise, $G[[n_1, n_2, m_1, m_2, v]]$ is a P_5 or a C_5. This proves (2).

(3) For every $i > 1$ there exists $n \in N$ complete to Z_i.

For suppose that there does not exist $n \in N$ that is complete to Z_2. For $i = 1, 2$ let $n_i \in N$ have a neighbor in Z_i. Since Z_1, Z_2 are connected, by Lemma 2.1, there exist $a_i, b_i \in Z_i$ such that $a_i - n_i - b_i$ is a path. Since $b_i - a_i - n_i - a_2 - b_2$ is not a P_5, we deduce that $n_1 \neq n_2$, and therefore n_1 is complete or anticomplete to Z_2, and n_2 is complete or anticomplete to Z_1. By the choice of Z_1 and the assumption, n_1 is anticomplete to Z_2, and n_2 to Z_1. By (2) n_1 is adjacent to n_2. But now $b_2 - a_2 - n_2 - n_1 - a_1$ is a P_3, a contradiction. This proves (3).

From the set of vertices in N that have a neighbor in Z_1, choose one that has the maximum number of neighbors in M; call it n. (Such a vertex exists because G is connected.) Let $X_1 = N(n)$, and let $X_2 = V(G) \setminus X_1$. Clearly X_1 does not contain a clique of size $\omega(G)$. We claim that $\omega(X_2) < \omega(G)$, thus proving that (X_1, X_2) is a partition certifying 2-divisibility.

Suppose that there is a clique K of size $\omega(G)$ in X_2. Then $n \notin K$.

(4) $K \notin Z_j$ for $j = 1, \ldots, t$.

By (3), $K \setminus (Z_2 \cup \cdots \cup Z_t) \neq \emptyset$. Suppose that $K \subseteq Z_1$. Then $K \subseteq C_1 \setminus N(n)$. Let D be the component of $C_1 \setminus N(n)$ containing K. Then some vertex $p \in N(n) \cap Z_1$ has a neighbor in D. Since D contains a clique of size $\omega(G)$, p is not complete to D. Since D is connected, by Lemma 2.1, there exist $d_1, d_2 \in D$ such that $p - d_1 - d_2$ is a path. But now $d_2 - d_1 - p - n - v$ is a P_5, a contradiction. This shows that $K \not\subseteq Z_1$. By (3), $K \setminus (Z_2 \cup \cdots \cup Z_t) \neq \emptyset$. This proves (4).

It follows from (4) that K has a vertex $k_1 \in N \setminus X_1$, and a vertex $k_2 \in M \setminus X_1$. Then k_1 is nonadjacent to n, and k_2 is nonadjacent to n. But now by (2) $N(k_1) \cap M$ strictly contains $N(n) \cap M$, and in particular k_1 has a neighbor in Z_1, contrary to the choice of n. This completes the proof.

An easy consequence of this is

Corollary 2.1. Let G be a (P_5, C_5)-free graph. Then $\chi(G) \leq 2^{\omega(G)-1}$.

Proof. Follows from Theorem 2.1 and Lemma 1.2.

It is worth recalling Gyárfás’ result [6] that a P_5-free graph G satisfies $\chi(G) \leq 4^{\omega(G)-1}$.

3 | PERFECT DIVISIBILITY IN BULL-FREE GRAPHS

For an induced subgraph H of a graph G, a vertex $c \in V(G) \setminus V(H)$ that is complete to $V(H)$ is called a center for H. Similarly, a vertex $a \in V(G) \setminus V(H)$ that is anticomplete to $V(H)$ is called an anticenter for H. For a hole $C = c_1 - c_2 - c_3 - c_4 - c_5 - c_1$, an i-clone is a vertex adjacent to c_{i+1} and c_{i-1}, and not to c_{i+2}, c_{i-2} (in particular c_i is an i-clone). An i-star is a vertex complete to $V(C) \setminus c_i$, and nonadjacent to c_i. A clone is a vertex that is an i-clone for some i, and a star is a vertex that is an i-star for some i. We will need the following results from [3,4], and [5].

Theorem 3.1 (from [4,5]). If G is bull-free, and G has a P_4 with a center and an anticenter, then G contains a homogeneous set, or G contains C_5.

Theorem 3.2 (from [3]). If G is bull-free and contains an odd hole or an odd antihole with a center and an anticenter, then G contains a homogeneous set.

Theorem 3.3 (from [3]). If G is bull-free, then either G contains a homogeneous set, or for every $v \in V(G)$, either $G[N(v)]$ or $G[M(v)]$ is perfect.

The next two theorems refine Theorem 3.3 in the special cases we are dealing with in this article.

Theorem 3.4. If G is bull-free and odd-hole-free, then either G contains a homogeneous set, or for every $v \in V(G)$ the graph $G[M(v)]$ is perfect.

Proof. We may assume that G does not contain a homogeneous set. Let $v \in V(G)$ such that $G[M(v)]$ is not perfect. Since G is odd-hole-free, by the strong perfect graph theorem [2], $G[M(v)]$ contains an odd antihole of length at least seven, and therefore a three-edge-path P with a center. Now v is an anticenter for P, and so by Theorem 3.1, G contains a homogeneous set, a contradiction. This proves the theorem.

One of the referees and T. Karthick (private communication) pointed out that 3.4 was already proved by Brandstadt and Mosca [1]. Actually the result also follows from Reed and Sbihi’s Wheel Lemma [10] stating that if a bull-free graph contains a wheel, then it has a homogeneous set. (Here a wheel consists of a hole of length at least seven with an additional vertex complete to the hole.)

Theorem 3.5. If G is bull-free and P_5-free, then either G contains a homogeneous set, or for some $v \in V(G)$, $G[M(v)]$ is perfect.

Proof. By Theorem 3.4 we may assume that G contains a C_5, say $C = c_1 - c_2 - c_3 - c_4 - c_5 - c_1$. We may assume that G does not contains a homogeneous set.

(1) Let D be a hole of length 5, and let $v \notin V(D)$. Then v is a clone, a star, a center or an anticenter for D.

Since G has no P_5, v cannot have exactly one neighbor in D. Suppose that v has exactly two neighbors in D. Since G is bull-free, the neighbors are nonadjacent, so v is a clone. Suppose that v has exactly two nonneighbors in D. Since G is bull-free, the nonneighbors are adjacent, and v is a clone. The cases when v has 0, 4, 5 neighbors in D result in v being an anticenter, star, and a center for D, respectively. This proves (1).

(2) Let D be a hole of length 5 in G. Then there is no anticenter for D.

Suppose that v is an anticenter for D, we may assume that $D = C$. By Theorem 3.3 there is no center for D. Since G is connected, we may assume that v has a neighbor u such that u has a neighbor in $V(D)$. Let P be a path starting at u and with $V(P) \setminus u \subseteq V(D)$ with $|V(P)|$ maximum.
Since \(v - u - P \) is not a \(P_5 \), and \(u \) is not a center for \(P \setminus u \), it follows that for some \(i, u \) is adjacent to \(c_i \) and to \(c_{i+1} \), but not to \(c_{i+2} \). But now \(G[\{c_i, c_{i+1}, c_{i+2}, u, v\}] \) is a bull, a contradiction. This proves (2).

(3) Let \(d_i \) and \(d'_i \) be \(i \)-clones nonadjacent to each other. Let \(v \) be adjacent to \(d_i \) and not to \(d'_i \). Then \(v \) is a center for \(C \), or \(v \) is an \(i \)-star for \(C \), or \(v \) is an \(i \)-clone for \(C \). Moreover, let \(D \) be the hole obtained from \(C \) by replacing \(c_i \) with \(d_i \), and let \(D' \) be the hole obtained from \(C \) by replacing \(c_i \) with \(d'_i \). It follows that either:

- \(v \) is an \(i \)-clone for both \(D \) and \(D' \), or
- \(v \) is a center for \(D \), and an \(i \)-star for \(D' \).

To prove (3), we may assume that \(i = 1 \). If \(v \) is anticomplete to \(\{c_2, c_4\} \), then we get a contradiction to (1) or (2) applied to \(v \) and \(D' \). Thus we may assume that \(v \) is adjacent to \(c_2 \). Suppose that \(v \) is nonadjacent to \(c_5 \). By (1) applied to \(D, v \) is adjacent to \(c_5 \). But now \(d'_1 - c_5 - d_1 - v - c_4 \) is a \(P_5 \), a contradiction. Thus \(v \) is adjacent to \(c_5 \). By (1) applied to \(D' \), \(v \) is either complete or anticomplete to \(\{c_3, c_4\} \). Now if \(v \) is anticomplete to \(\{c_3, c_4\} \), then \(v \) is an \(i \)-clone; if \(v \) is complete to \(\{c_3, c_4\} \) then \(v \) is a center or an \(i \)-star for \(C \). This proves (3).

(4) There do not exist \(d_1, d'_1, d_3, d'_3, v_1, v_3 \) such that:

- \(\{d_1, d'_1\} \) is not complete to \(\{d_3, d'_3\} \), and
- for \(i = 1, 3 \)
 - \(d_i \) and \(d'_i \) are \(i \)-clones nonadjacent to each other, and
 - \(v_i \) is adjacent to \(d_i \) and nonadjacent to \(d'_i \), and
 - \(v_i \) is not an \(i \)-clone.

Observe that by (3), no vertex of \(\{d_1, d'_1\} \) is neither complete nor anticomplete on \(\{d_3, d'_3\} \) and the same with the roles of 1, 3 exchanged. It follows that \(\{d_1, d'_1\} \) is anticomplete to \(\{d_3, d'_3\} \), and in particular \(v_1, v_3 \notin \{d_1, d'_1, d_3, d'_3\} \). By (3) applied to the hole \(d'_1 - c_2 - c_3 - c_4 - c_5 - d'_1 \) and \(d_3, d'_3 \), it follows that \(v_3 \) is complete to \(\{d_1, d'_1\} \). Similarly \(v_1 \) is complete to \(\{d_3, d'_3\} \). In particular \(v_1 \neq v_3 \). But now \(G[\{d'_1, v_3, d_1, v_1, d'_3\}] \) is either a bull or a \(P_5 \), in both cases a contradiction. This proves (4).

(5) There is not both a 1-clone nonadjacent to \(c_1 \), and a 3-clone non-adjacent to \(c_3 \).

For suppose that such clones exist. For \(i = 1, 3 \) let \(X_i \) be a maximal anticonnected set of \(i \)-clones with \(c_i \) in \(X_i \). Then \(|X_i| > 1 \) for \(i = 1, 3 \). Since \(X_i \) is anticonnected, it follows from (3) that \(X_i \) is anticonnected to \(X_3 \). Since \(|X_1|, |X_3| > 1 \), and \(G \) does not admit a homogeneous set decomposition, it follows that neither \(X_1 \) nor \(X_3 \) is a homogeneous set in \(G \). Therefore for \(i = 1, 3 \) there exists \(v_i \notin X_i \) with a neighbor and a nonneighbor in \(X_i \). Then \(v_i \notin X_1 \cup X_3 \). Note that \(X_i + v_i \) is anticonnected, and hence by the maximality of \(X_i \), it follows that \(v_i \) is not an \(i \)-clone. By applying Lemma 2.1 in \(G^c \) with \(v_i \) and \(X_i \) for \(i = 1, 3 \), it follows that there exist \(d_i, d'_i \in X_i \) such that \(d_i \) is non-adjacent to \(d'_i \), \(v_i \) is adjacent to \(d_i \), and \(v_i \) is nonadjacent to \(d'_i \). But now we get a contradiction to (4). This proves (5).

(6) For some \(i \), \(V(G) = N[c_i] \cup N[c_{i+2}] \) (here addition is modulo 5).

Suppose that (6) is false. Since (6) does not hold with \(i = 1, 3 \) and (2) and symmetry imply that we may assume that there is a 1-clone \(c'_i \) nonadjacent to \(c_1 \). Since (6) does not hold with \(i = 5 \), again by (1), (2) and symmetry we may assume that there is a 2-clone \(c'_i \) non-adjacent to \(c_2 \). Finally, since (6) does not hold with \(i = 3 \), by (1), (2) and symmetry we get a 3-clone \(c'_i \) nonadjacent to \(c_3 \). But this is a contradiction to (5). This proves (6).
Let i be as in (6); we may assume that $i = 1$. Suppose that $G[M(c_1)]$ is not perfect. Then, by the strong perfect graph theorem [2], $G[M(c_1)]$ contains an odd hole or an odd antihole H. But now c_1 is a center for H, and c_1 is an anticenter for H, contrary to Theorem 3.2. This proves the theorem. $lacksquare$

A graph G is perfectly weight divisible if for every nonnegative integer weight function w on $V(G)$, there is a partition of $V(G)$ into two sets P, W such that $G[P]$ is perfect and the maximum weight of a clique in $G[W]$ is smaller than the maximum weight of a clique in G.

Theorem 3.6. A minimal nonperfectly weight divisible graph does not admit a homogeneous set decomposition.

Proof. Let G be such that all proper induced subgraphs of G are perfectly weight divisible. Let w be a weight function on $V(G)$. Let X be a homogeneous set in G, with common neighbors N and let $M = V(G) \setminus (X \cup N)$. Let G' be obtained from G by replacing X with a single vertex x of X with weight $w(x)$ equal to the maximum weight of a clique in $G[X]$. Let T be the maximum weight of a clique in G.

Let (P', W') be a partition of $V(G')$ corresponding to the weight w. Let (X_p, X_w) be a partition of X where $G[X_p]$ is perfect and the maximum weight of a clique in $G[X_w]$ is smaller than the maximum weight of a clique in G. We construct a partition of $V(G)$.

Suppose first that $x \in W'$. Then let $P = P'$ and $W = W' \cup X$. Clearly this is a good partition. Now suppose that $x \in P'$. Let $P = (P' \setminus x) \cup X_p$ and let $W = W' \cup X_w$. By a theorem of [9], $G[P]$ is perfect. Suppose that W contains a clique K with weight T. Then $K \cap X_w$ is nonempty. Let K' be a clique of maximum weight in X. Now $(K \setminus X_w) \cup K'$ is a clique in G with weight greater than T, a contradiction. This proves the theorem. $lacksquare$

We can now prove our main result:

Theorem 3.7. Let G be a bull-free graph that is either odd-hole-free or P_5-free. Then G is perfectly weight divisible, and hence perfectly divisible.

Proof. Let G be a minimal counterexample to the theorem. Then there is a nonnegative integer weight function w on $V(G)$ for which there is no partition of $V(G)$ as in the definition of being perfectly weight divisible. Let U be the set of vertices of G with $w(v) > 0$, and let $G' = G[U]$. By theorems 3.4, 3.5, 3.6, G' has a vertex v such that $G'[M_{G'}(v)]$ is perfect. But now, since $w(v) > 0$, setting $P = M_{G'}(v) + v$ and $W = N_{G'}(v) \cup (V(G) \setminus U)$ we get a partition of $V(G)$ as in the definition of being perfectly weight divisible, a contradiction. This proves the theorem. $lacksquare$

Corollary 3.1. Let G be a bull-free graph that is either odd-hole-free or P_5-free. Then $\chi(G) \leq \binom{\omega(G) + 1}{2}$.

Proof. Follows from Theorem 3.7 and Lemma 1.1. $lacksquare$

ACKNOWLEDGMENT

This research was performed during the 2017 Barbados Graph Theory Workshop at the McGill University Bellairs Research Institute in Barbados, and the authors are grateful to the institute for its facilities and hospitality. The authors also thank Chính T. Hoàng for telling them about these problems, and for many useful discussions. The authors are very grateful to both the referees. One of them mentioned existing results in the literature related to our results and provided the appropriate references. The other referee alerted us to a serious typographical error. We would like to thank T. Karthick for pointing out [1] to us.
REFERENCES

[1] A. Brandstadt and R. Mosca, Maximum weight independent sets in odd-hole-free graphs without dart or without bull, Graphs Combin. 31 (2015), 1249–1262.

[2] M. Chudnovsky et al., The strong perfect graph theorem, Ann. Math. 164 (2006), 51–229.

[3] M. Chudnovsky and S. Safra, The Erdős-Hajnal Conjecture for bull-free graphs, J. Combin. Theory Ser. B 98 (2008), 1301–1310.

[4] M. Chudnovsky and V. Sivaraman, Odd holes in bull-free graphs, SIAM J. Disc. Math. 2017. arXiv:1704.04262v1.

[5] C. M. H. de Figueiredo, F. Maffray, and O. Porto, On the structure of bull-free perfect graphs, Graphs Combin. 13 (1997), 31–55.

[6] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastosowania Matematyki Applicationes Mathematicae XIX 3–4 (1987), 413–441.

[7] C. T. Hoàng, On the structure of (banner, odd hole)-free graphs, submitted. (Available at https://arxiv.org/abs/1510.02324)

[8] C. T. Hoàng and C. McDiarmid, On the divisibility of graphs, Discrete Math. 242 (2002), no. 1–3, 145–156.

[9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), no. 3, 253–267.

[10] B. Reed and N. Sbihi, Recognizing bull-free perfect graphs, Graphs Combin. 11 (1995), 171–178.

How to cite this article: Chudnovsky M, Sivaraman V. Perfect divisibility and 2-divisibility. J Graph Theory. 2019;90:54–60. https://doi.org/10.1002/jgt.22367