THE LONGITUDINAL STRUCTURE FUNCTION F_L AT SMALL X

A.V. KOTIKOV
Laboratoire de Physique Theorique ENSLAPP
LAPP, B.P. 100, F-74941, Annecy-le-Vieux Cedex, France
and
Particle Physics Laboratory, JINR, Dubna, Russia

G. PARENTE
Departamento de Física de Partículas
Universidade de Santiago de Compostela
15706 Santiago de Compostela, Spain

We present a set of formulae to extract the longitudinal deep inelastic structure function F_L from the transverse structure function F_2 and its derivative $dF_2/d\ln Q^2$ at small x. Using F_2 HERA data we obtain F_L in the range $10^{-4} \leq x \leq 10^{-2}$ at $Q^2 = 20$ GeV2.

We present here the values of $F_L(x, Q^2)$ at small x, extracted from experimental HERA data\footnote{In the time of preparing this article, the H1 collaboration presented7 the first (preliminary) measurement of F_L at small x}, using the method of replacement of the Mellin convolution by ordinary products\footnote{We use PDF multiplied by x and neglect the nonsinglet quark distribution at small x.}. By analogy with the case of the gluon distribution function (see\footnote{p.7} and its references) it is possible to obtain the relation between $F_L(x, Q^2)$, $F_2(x, Q^2)$ and $dF(x, Q^2)/d\ln Q^2$ at small x. Thus, the small x behaviour of the SF $F_L(x, Q^2)$ can be extracted directly from the measured values of $F_2(x, Q^2)$ and its derivative without a cumbersome procedure\footnote{p.6}. These extracted values of F_L may be well considered as \textit{new small x "experimental data"}. When experimental data for F_L at small x become available with a good accuracy\footnote{p.6} a violation of the relation will be an indication of the importance of other effects as higher twist contribution and/or of non-perturbative QCD dynamics at small x.

We follow the notation of our previous work in ref.\footnote{p.6}. The singlet quark $s(x, Q^2_0)$ and gluon $g(x, Q^2_0)$ parton distribution functions (PDF)\footnote{p.6} at some Q^2_0 are parameterized by (see, for example\footnote{p.6})

$$p(x, Q^2_0) = A_p x^{-\delta}(1 - x)^{\nu_p}(1 + \epsilon_p \sqrt{x} + \gamma_p x) \quad \text{(hereafter } p = s, g) \quad (1)$$

Further, we restrict the analysis to the case of large δ values (i.e. $x^{-\delta} \gg 1$) which correspond to BFKL pomeron which is supported by HERA data.
more complete analysis may be found in [8], where we took into account also the case \(\delta \sim 0 \) corresponding to the standard pomeron.

Assuming the Regge-like behaviour for the gluon distribution and \(F_2(x, Q^2) \):

\[
g(x, Q^2) = x^{-\delta} \tilde{g}(x, Q^2), \quad F_2(x, Q^2) = x^{-\delta} \tilde{s}(x, Q^2),
\]

we obtain the following equation for the \(Q^2 \) derivative of the SF \(F_2 \):

\[
\frac{dF_2(x, Q^2)}{d\ln Q^2} = -\frac{1}{2} x^{-\delta} \sum_{p=s, g} \left(r_{1+\delta}^{g}(\alpha) \tilde{p}(0, Q^2) + r_{1+\delta}^{s}(\alpha) x \tilde{p}'(0, Q^2) + O(x^2) \right)
\]

\[
F_L(x, Q^2) = x^{-\delta} \sum_{p=s, g} \left(r_{1+\delta}^{L}(\alpha) \tilde{p}(0, Q^2) + r_{1+\delta}^{L}(\alpha) x \tilde{p}'(0, Q^2) + O(x^2) \right) (2)
\]

where \(r_{1+\delta}^{g}(\alpha) \) and \(r_{1+\delta}^{L}(\alpha) \) are the combinations (see [8]) of the anomalous dimensions of Wilson operators and Wilson coefficients of the \(\eta \) "moment" (i.e., the corresponding variables extended from integer values of argument to non-integer ones). With accuracy of \(O(x^{2-\delta}, \alpha x^{1-\delta}) \) (see [4], [8]), we have for Eq. (2)

\[
F_L(x, Q^2) = -\xi^\delta \left[2 r_{1+\delta}^{Lg} \frac{dF_2(x\xi, Q^2)}{d\ln Q^2} + \left(r_{1+\delta}^{Ls} - \frac{r_{1+\delta}^{Lg}}{r_{1+\delta}^{sg}} s \right) F_2(x\xi, Q^2) \right] + O(x^{2-\delta}, \alpha x^{1-\delta}) \quad (3)
\]

Using NLO approximation of \(r_{1+\delta}^{g} \) and \(r_{1+\delta}^{L} \) for concrete values of \(\delta = 0.5 \) and \(\delta = 0.3 \) we obtain (for \(f=4 \) and \(\overline{MS} \) scheme):

\[
F_L(x, Q^2) = \frac{0.87}{1 + 22.9\alpha} \left[\frac{dF_2(0.70x, Q^2)}{d\ln Q^2} + 4.17\alpha F_2(0.70x, Q^2) \right] + O(\alpha^2, x^{2-\delta}, \alpha x^{1-\delta}) \quad \text{if} \quad \delta = 0.5 \quad (4)
\]

\[
F_L(x, Q^2) = \frac{0.84}{1 + 59.3\alpha} \left[\frac{dF_2(0.48x, Q^2)}{d\ln Q^2} + 3.59\alpha F_2(0.48x, Q^2) \right] + O(\alpha^2, x^{2-\delta}, \alpha x^{1-\delta}) \quad \text{if} \quad \delta = 0.3 \quad (5)
\]

With the help of Eq. (3) we have extracted the longitudinal SF \(F_L(x, Q^2) \) from HERA data, using the slopes \(dF_2/d\ln Q^2 \) of H1 and ZEUS HERA data. Fig. 1 shows the extracted values of the longitudinal SF and the QCD prediction from set MRS(G). The agreement is excellent. There is also a
relative good agreement with a recent experimental H1 point for F_L, if one takes into account the systematic error.

In summary, we have presented Eqs. (3)-(5) for the extraction of the longitudinal SF F_L at small x from the F_2 and its Q^2 derivative. These equations provide the possibility of the non-direct determination of F_L. This is important since the direct extraction of F_L from experimental data is a cumbersome procedure. Moreover, the fulfillment of Eqs. (3)-(5) in DIS experimental data can be used as a cross-check of perturbative QCD at small values of x.

Figure 1: The extracted longitudinal SF F_L (see text for details)

Acknowledgments

This work was supported in part by CICYT and by Xunta de Galicia. We are grateful to A. Bodek and M. Klein for discussions.

References

1. T. Ahmed et al., *Nucl. Phys. B* 439, 471 (1995); T. Aid et al., *Phys. Lett. B* 354, 494 (1995).
2. M. Derrick et al., *Z. Phys. C* 65, 379 (1995); *Phys. Lett. B* 345, 576 (1995).
3. A.V. Kotikov, *Yad.Fiz.* 57, 142 (1994); *Phys. Rev. D* 49, 5746 (1994).
4. A.V. Kotikov and G. Parente, preprint ENSLAPP-A-573/95, US-FT-29-95 (hep-ph/9512410); *Phys.Lett. B*, (1996) in press.
5. A.M. Cooper-Sarkar et al., *Z. Phys. C* 39, 281 (1988).
6. A.D. Martin, W.S. Stirling and R.G. Roberts, *Phys. Lett. B* 306, 145 (1993); *Phys. Lett. B* 354, 155 (1995).
7. M. Klein, these Proceedings.
8. A.V. Kotikov and G. Parente, preprint US-FT-19-96 (hep-ph/9605207).