Association of Serum Leptin Levels With Progression of Diabetic Kidney Disease in Patients With Type 2 Diabetes

KO HANAI, MD, PHD1
TETSUYA BABAIZONO, MD, PHD1
MICINO MUGISHIMA, MD1
NAOSHI YOSHIDA, MD1
IZUMI NYUMURA, MD, PHD1

RESEARCH DESIGN AND METHODS—This was an observational cohort study of 668 patients with T2D. Patients were classified into three groups by sex-specific tertile of leptin levels. Outcome measurements were the rate of change in estimated glomerular filtration rate (eGFR) and progression to a more advanced stage of albuminuria.

RESULTS—Patients with low or high leptin levels had a steeper eGFR decline (−2.07 and −2.14 mL/min/1.73 m²/year) than those with midrange leptin levels (−0.82 mL/min/1.73 m²/year, P < 0.01), whereas patients with low leptin levels had an elevated risk of progression of albuminuria as compared with those with high leptin levels (hazard ratio 3.125 [95% CI 1.302–7.499]).

CONCLUSIONS—Both low and high serum leptin levels were risk factors for kidney function decline. Meanwhile, lower serum leptin levels were associated with progression of albuminuria.

From the 1Division of Nephrology and Hypertension, Diabetes Center, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan, and the 2Department of Medicine, Diabetes Center, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan.

Corresponding author: Tetsuya Babaizono, babazono@dmw.tmu.ac.jp.
Received 2 June 2011 and accepted 12 September 2011.
DOI: 10.2337/dc11-1039
This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc11-1039/-/DC1.
© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
and 0.012) and the multivariate models \((P = 0.005\) and 0.006\) (Fig. 1A).

In the ACR cohort, during the mean follow-up period of 3.2 ± 1.6 years, 28 of 266 patients with normoalbuminuria and 6 of 90 patients with microalbuminuria progressed to a more advanced stage of albuminuria, respectively. Patients with the low leptin levels had a significantly elevated risk of progression of albuminuria as compared with those with high leptin levels in the multivariate model (Fig. 1B).

CONCLUSIONS—This study suggests both low and high leptin levels are risk factors for kidney function decline in patients with T2D. Meanwhile, patients with low leptin levels had a significantly elevated risk of progression of albuminuria as compared with those with high leptin levels. To our knowledge, this is the first longitudinal study focusing on the association between leptin and DKD.

In the UKPDS (UK Prospective Diabetes Study), smaller waist circumference was paradoxically reported to be associated with an incidence of kidney insufficiency (13). In light of our findings, lower leptin levels resulting from decreased adipose tissue may partly explain the “reverse epidemiology.” Meanwhile, patients with high leptin levels also had a significant, steep decline rate in eGFR. In these patients, unfavorable leptin actions, such as activation of the sympathetic nervous system, rather than beneficial effects, may affect kidney function decline. Moreover, it is necessary that leptin resistance be considered in patients with high leptin levels. Decreases in the beneficial effects of leptin on the kidney, as a result of leptin resistance, may have affected the steep eGFR decline in patients with high leptin levels.

Lower leptin levels were associated with progression of albuminuria as well as kidney function decline. These findings seem to suggest low leptin levels to be a risk factor for progression of DKD. In contrast, unlike the case of kidney function decline, high leptin levels were not a risk factor for progression of albuminuria. This may be partly explained by the higher proportion of renin-angiotensin system blocker users among patients with high leptin levels as compared with those with low leptin levels (Supplementary Tables 1 and 2). Alternatively, this may indicate the differences in the risk factors for two renal outcomes (13).

Our study has several limitations. First, GFR was estimated using only serum creatinine. Second, we did not evaluate time-dependent changes in leptin, HbA1c, lipid profiles, blood pressure, or BMI during the follow-up period. Third, serum leptin levels may need to be determined using blood samples at a certain time because a circadian rhythm of leptin levels in healthy men has been documented (14). Fourth, this study was based on a relatively small cohort, and the occurrences of events in the second outcome measurement were comparatively low. Finally, the study was carried out in a single urban university hospital.

In conclusion, this study provides evidence of both low and high serum leptin levels as risk factors for kidney function decline, and lower serum leptin levels were associated with progression of albuminuria in patients with T2D. These findings need to be confirmed in studies with a larger sample size and in a multicenter design.

Acknowledgments—No potential conflicts of interest relevant to this article were reported.

K.H. researched data, wrote the manuscript, and contributed to discussion. T.B. reviewed and edited the manuscript and contributed to discussion. M.M., N.Y., I.N., K.T., R.B., and N.T. researched data. Y.U. reviewed and edited the manuscript and contributed to discussion.

References

1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432

2. Bouloumie A, Marumo T, Lalontant M, Busse R. Leptin induces oxidative stress in
human endothelial cells. FASEB J 1999;13:1231–1238

3. Lembo G, Vecchione C, Fratta L, et al. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes 2000;49:293–297

4. Bodary PF, Westrick RJ, Wickenheiser KJ, Shen Y, Eitzman DT. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA 2002;287:1706–1709

5. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation 2002;106:2533–2536

6. Wiecek A, Kokot F, Chudek J, Adamczak M. The adipose tissue—a novel endocrine organ of interest to the nephrologist. Nephrol Dial Transplant 2002;17:191–195

7. Wolf G, Chen S, Han DC, Ziyadeh FN. Leptin and renal disease. Am J Kidney Dis 2002;39:1–11

8. Matsuda M, Kawasaki F, Yamada K, et al. Impact of adiposity and plasma adipocytokines on diabetic angiopathies in Japanese Type 2 diabetic subjects. Diabet Med 2004;21:881–888

9. Hanai K, Babazono T, Yoshida N, et al. Leptin mediates the relationship between abdominal obesity and microalbuminuria in type 2 diabetic patients. Diabetol Int 2010;1:42–48

10. Ebihara K, Kusakabe T, Hirata M, et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab 2007;92:532–541

11. Matsuo S, Imai E, Horio M, et al.; Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–992

12. Levey AS, Gassman JJ, Hall PM, Walker WG; Modification of Diet in Renal Disease (MDRD) Study Group. Assessing the progression of renal disease in clinical studies: effects of duration of follow-up and regression to the mean. J Am Soc Nephrol 1991;1:1087–1094

13. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006;55:1832–1839

14. Scheer FAJL, Chan JL, Fargnoli J, et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 2010;53:2401–2405