Crystal Phosphatase-1:Calcineurin Hybrid Elucidate the Role of the β12–β13 Loop in Inhibitor Binding*

Received for publication, June 28, 2004, and in revised form, July 21, 2004 Published, JBC Papers in Press, July 26, 2004, DOI 10.1074/jbc.M407184200

From the Canadian Institutes of Health Research, Group in Protein Structure and Function, Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

Jason T. Maynes, Kathleen R. Perreault, Maia M. Cherney, Hue Anh Luu, Michael N. G. James, and Charles F. B. Holmes

Protein phosphatase-1 and protein phosphatase-2B (calcineurin) are eukaryotic serine/threonine phosphatases that share 40% sequence identity in their catalytic subunits. Despite the similarities in sequence, these phosphatases are widely divergent when it comes to inhibition by natural product toxins, such as microcystin-LR and okadaic acid. The most prominent region of non-conserved sequence between these phosphatases corresponds to the β12–β13 loop of protein phosphatase-1, and the L7 loop of toxin-resistant calcineurin. In the present study, mutagenesis of residues 273–277 of the β12–β13 loop of the protein phosphatase-1 catalytic subunit (PP-1c) to the corresponding residues in calcineurin (312–316), resulted in a chimeric mutant that showed a decrease in sensitivity to microcystin-LR, okadaic acid, and the endogenous PP-1c inhibitor protein inhibitor-2. A crystal structure of the chimeric mutant in complex with okadaic acid was determined to 2.0-Å resolution. The β12–β13 loop region of the mutant superimposes closely with that of wild-type PP-1c bound to okadaic acid. Systematic mutagenesis of each residue in the β12–β13 loop of PP-1c showed that a single amino acid change (C273L) was the most influential in mediating sensitivity of PP-1c to toxins. Taken together, these data indicate that it is an individual amino acid residue substitution and not a change in the overall β12–β13 loop conformation of protein phosphatase-1 that contributes to disrupting important interactions with inhibitors such as microcystin-LR and okadaic acid.

* This work was supported by Grant MGP-37770 from the Canadian Institutes of Health Research (to M. N. G. J.) and by equipment funds from the Alberta Heritage Foundation for Medical Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Both authors contributed equally to the work presented in this paper.
§ Pfizer MD/PhD student. Supported by a Doctoral Training Award from the Canadian Institutes of Health Research and supplemental funding from the Alberta Heritage Foundation for Medical Research.
¶ Recipient of a Canada Research Chair in Protein Structure and Function.
** Supported by Grant MGP-13607 from the Canadian Institutes of Health Research and by a Scientist award from the Alberta Heritage Foundation for Medical Research. To whom correspondence should be addressed. E-mail: Charles.Holmes@ualberta.ca.

Protein phosphatase-1 (PP-1)1 is a member of the phosphoprotein phosphatase gene family, whose members share 40% sequence identity in the catalytic subunit (PP-1c) and includes protein phosphatase-2A (PP-2A) and protein phosphatase-2B (PP-2B or calcineurin) (1). A striking structural similarity is seen upon superimposition of the crystal structures of PP-1c and the calcineurin catalytic subunit (calcineurin A), especially in the active site regions (the structure of PP-2A has not been determined). Despite the similarities in sequence and structure, PP-1c and calcineurin A have distinct inhibitor and substrate specificities. PP-1c is sensitive to the endogenous inhibitor proteins inhibitor-1 and inhibitor-2, as well as to the exogenous marine natural product inhibitors microcystin-LR (MCLR) and okadaic acid (OA). Calcineurin is markedly less sensitive to these inhibitors (250-fold for OA and over 1000-fold for the microcystins) (2–5).

One region of sequence dissimilarity between PP-1c, PP-2Ac, and calcineurin A is the β12–β13 loop region of PP-1c/PP-2Ac (residues 273 to 277 in PP-1c and 266 to 270 in PP-2Ac), which corresponds to the L7 loop of calcineurin A (residues 312–316). Residues of the β12–β13 loop region have previously been implicated in inhibitor selectivity (6–8). The importance of this region was first discovered when an okadaic acid-resistant isoform of PP-2A in Chinese hamster ovary cells was found to have a mutation in Cys196 (9). The corresponding residues in PP-1c and calcineurin A are Phe276 and Tyr315. Because PP-2Ac is much more sensitive to okadaic acid (IC50 = 0.2 nM) than PP-1c (IC50 = 20–50 nM) or calcineurin (IC50 = 5 μM), the presence of a cysteine at this position may be responsible for its higher sensitivity to okadaic acid. Further mutagenesis studies were carried out in PP-1c that confirmed the importance of the β12–β13 loop region in inhibitor sensitivity, as well as in enzyme activity (6, 10–12).

Structural studies have shed light on the nature and importance of the β12–β13 loop in PP-1c in the context of inhibitor binding. The hydroxyl of Tyr277 in the β12–β13 loop was analyzed in four different crystals of the same PP-1c-tungstate complex and found to have a metal to hydroxyl contact distance ranging from 3.0 to 4.3 Å, suggesting flexibility in the loop region (13). Flexibility is also noted in differences between the structures of PP-1c bound to MCLR, okadaic acid, tungstate, and calyculin A (13–16). The loop in the MCLR-bound structure folds back on itself, shifting the β12–β13 loop relative to the tungstate-, OA-, and calyculin-bound PP-1c structures (15). These differences may be indicative of the covalent bond.

1 The abbreviations used are: PP-1, protein phosphatase-1; MCLR, microcystin-LR; OA, okadaic acid.
Data collection and refinement statistics

Data collection	1.5418
Resolution (Å)	40–2.0 (2.07–2.00)
Total number of reflections	321,224
Number of unique reflections	21,304
Completeness (%)	99.7 (99.6)
Redundancy	5.83 (5.65)
⟨I/σ(I)⟩	21.1 (5.02)
Rsym (%):b	7.6 (36.9)

Refinement

Resolutions (Å)	Atoms-protein	Waters	r.m.s. deviations	Bond length (Å)	Bond angles (°)	Average B-factors
40–2.0	2,372	57	0.006	1.36	21.8	25.5

* Data in parentheses correspond to highest resolution shell.

* Rsym = 1 − ∑ |Ii − ⟨I⟩|/∑ |Ii|, where Ii is the observed intensity, and ⟨I⟩ is the average intensity obtained from multiple observations of symmetry related reflections.

* Rsym = ∑ ∑ |Fobs| − |Fcalc|/∑ |Fobs|, where |Fobs| and |Fcalc| are the observed and calculated structure factor amplitudes, respectively.

* Rfree was calculated as for Rsym with 5% of the data omitted from structural refinement.

formed between MCLR and Cys273 (PP-1c), which is not needed for inhibition (17–19).

Before the structure of OA-bound to PP-1c had been determined, it had been hypothesized that the different conformations of the L7 loop in calcineurin and the corresponding β12–β13 loop in PP-1c were the reason for the resistance of calcineurin to toxins (17, 20). However, upon superimposition of the PP-1c-OA and calcineurin A structures, it was noted that the backbone atoms of the two loops superimpose. This led to our hypothesis that the resistance of calcineurin to toxins was mainly because of primary sequence differences in the C-terminal end of the L7 loop of calcineurin and the β12–β13 loop of PP-1c/PP-2Ac (19). This solidifies the idea that the differences seen in the MCLR-bound PP1-c structure are not typical and are caused by the covalent reaction (14). To test our hypothesis concerning the importance of the primary sequence on inhibitor potential, we created a chimeric mutant of PP-1c in which the β12–β13 loop residues of PP-1c (12CGEFDC277) were substituted with the L7 loop residues of calcineurin A (132LDYV133). We analyzed this PP1-c structure, which is not needed for inhibition (17–19).

Experimental Procedures

Expression and Purification of Recombinant PP-1c—Mutants of PP-1c were expressed and purified to homogeneity as in Refs. 20 and 21. The catalytic subunit of the human wild type and mutant PP-1c was expressed in Escherichia coli DH5α strain using the plasmid pCW and subsequently purified to homogeneity using heparin-Sepharose CL-4B column (Amersham Bioresearch). The catalytic subunit of the human wild type and mutant PP-1c was expressed in E. coli DH5α cells transformed with plasmid pCW-HPP-1y was used to inoculate 100 ml of Luria-Bertani media containing 1 mM MnCl₂ and ampicillin (54 μM). After overnight growth at 37 °C, the culture was used to inoculate 1 liter of Luria-Bertani media containing 1 mM MnCl₂ and ampicillin (54 μM) and grown to optical density 0.5 at 600 nm. Expression was then induced with 1 mM isopropyl-1-thio-D-galactopyranoside for up to 18 h. Cells were harvested by centrifugation for 45 min at 4,000 × g and either frozen at −70 °C or used immediately. Bacterial cells from two 1-liter cultures were resuspended in 80 ml of buffer A (50 mM imidazole, pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 2.0 mM MnCl₂, 0.5 mM phenylmethylsulfonyl fluoride, 2.0 mM benzamidine, 3.0 mM dithi-othreitol, and 10% glycerol (v/v)) containing 100 mM NaCl, sonicated, and centrifuged for 60 min at 13,000 × g. The supernatant was loaded onto a heparin-Sepharose CL-4B column (Amersham Bioresearch). PP-1c was eluted in buffer A by a linear 400-ml gradient of 0.1–0.6 M NaCl. Activity of fractions was determined by the colorimetric para-nitrophenol phosphate assay (Sigma). Active fractions were pooled and diluted to 3X volume in buffer B (50 mM imidazole, pH 7.2, 0.5 mM EDTA, 0.5 mM EGTA, 3.0 mM MnCl₂, 2.0 mM phenylmethylsulfonyl fluoride, 2.0 mM benzamidine, 3.0 mM dithi-othreitol, and 10% glycerol (v/v)). The fractions were then loaded onto a Mono Q HR 10/10 column (Amersham Bioresearch), and eluted in buffer B by a 160-ml linear gradient of 50–400 mM NaCl. Active fractions were pooled and concentrated to a 2-ml volume in a Centriprep-10 concentrator (Amicon) before loading onto a HiLoad Superdex 75 HR 26/60 column (Amersham Bioresearch) equilibrated in buffer C (50 mM imidazole, pH 7.2, 0.1 mM EDTA, 0.1 mM EGTA, 2.0 mM MnCl₂, 2.0 mM benzamidine, 3.0 mM dithi-othreitol, 10% glycerol (v/v)) plus 0.3 M NaCl). The PP-1c was eluted by an isocratic 180-ml gradient of buffer C plus 0.3 M NaCl. Active fractions, adjudged homogeneously pure by SDS-PAGE, were pooled and concentrated to ~0.2–1.0 mg/ml in a Centriprep-10 concentrator. An equal volume of glycerol was added and the solution stored at −20 °C. The specific activities of the wild type and mutant enzymes were measured using the phosphorylase a assay (described below), and found to range between 2 and 11 units/mg.

Phosphatase Assays—[32P]-Labeled phosphorylase a was used as a phosphatase substrate to determine dose-response curves with micro- curb-L, okadaic acid, and inhibitor-2. Purified PP1-c stocks were diluted in phosphatase assay buffer (50 mM Tris-HCl, pH 7.0, 0.1 mM EDTA, 1 mg/ml bovine serum albumin, 0.8 mM MnCl₂, and 0.2% β-mercaptoethanol). Phosphatase was diluted until a 10-μl aliquot of diluted enzyme solution caused 15% release in a 30-μl assay (20, 21). Duplicate assays were performed for each toxin and inhibitor protein. Typically, less than 5% variation was seen between duplicates. Micro- curb-L was obtained from Health Canada, okadaic acid from Moana Bioproducts, and recombinant inhibitor-2 was purified from E. coli. The loop mutant protein phosphatase-1 exhibited normal activity toward phosphorylase a as a substrate.

Crystallography of PP1-loopOA Complex—Crystals were obtained by the hanging drop vapor diffusion method at room temperature. The enzyme and okadaic acid were mixed in a 1:2 molar ratio with the concentration of protein being ~0.4 mM. The PP1-c-OA complex was then mixed with an equivalent volume of mother liquor, which consisted of 2 M lithium sulfate, 100 mM Tris (pH 8.0), 2% polyethylene glycol 400, and 10 mM β-mercaptoethanol. The complex crystallized in the spacegroup P4₁2₁2 with unit cell dimensions a = b = 98.8 Å, c = 62.2 Å, with one complex per asymmetric unit.

Data Collection, Structure Determination, and Refinement—A data set to 2.0 Å was collected at 100 K on a Rigaku RU-300 rotating anode generator equipped with a Rigaku R-AXIS IV++ image plate detector. The data were processed with the HKL suite of programs (24). This initial structure was solved by molecular replacement with the program AmoRe (25), using the PP1-c OA structure (with OA removed) as a search model (Protein Data Bank number 1J7K). Electron density for both the protein and the inhibitor were clear from the initial map generated from the molecular replacement solution. OA was fitted to

PP1 type	Specific activity	IC₅₀ (nM)
Wild-type	11	0.1 ± 0.01
Loop mutant	4	> 0.6
Microcystin-LR	274	313
Okadaic acid	277	316
Inhibitor-2	254	97

Fig. 1. Sequence alignment of PP-1c, PP-2Ac, and PP-2B (calcineurin A) showing the non-conserved region within the β12–β13 loop.
the difference density using the structure of OA bound to wild type PP-1c as a starting model. The protein-inhibitor model was subjected to rigid body refinement in CNS prior to manually fitting the model using the program XcalView (26, 27). The model was then subjected to iterative rounds of macromolecular refinement using CNS with a maximum likelihood target. The crystallographic data are listed in Table I. The final model consisted of density for residues 6–298 and was checked for validity using WHATCHECK and PROCHECK (28, 29). PROCHECK showed that 97% of residues were in allowed Ramachandran plot ranges with an overall G factor of 0.2.

Coordinates—The atomic coordinates and structure factors have been deposited in the Protein Data Bank with code 1U32.

RESULTS

Inhibition and Substrate Specificity of Wild-type and Loop Mutant PP-1c—To understand the role of the β12–β13 loop region of PP-1c in inhibitor selectivity further, we examined the inhibitory effects of both natural product inhibitors and an endogenous inhibitor protein (inhibitor-2) on a mutant of PP-1c in the β12–β13 loop region (Table II). This mutant (herein referred to as the “loop mutant”) has residues 273–277 of PP-1c substituted with the corresponding residues of calcineurin A (residues 312–316) (Fig. 1). This loop mutant has allowed us to investigate the role of this non-conserved portion of the type 1, 2A, and 2B (calcineurin) phosphatases in inhibitor selectivity.

Wild-type PP-1c was inhibited by okadaic acid with an IC₅₀ of 30 nM and microcystin-LR with an IC₅₀ of 0.1 nM. The loop mutant was 4-fold less sensitive to okadaic acid (IC₅₀ = 120 nM) and at least 6-fold less sensitive to microcystin-LR (IC₅₀ = >0.6 nM). Inhibitor-2 inhibited PP-1c with an IC₅₀ of 1–3 nM. The loop mutant was less sensitive to inhibitor-2 inhibition (IC₅₀ = 5–6 nM). The resistance of the loop mutant of PP-1c to all inhibitors studied is consistent with the hypothesis that the residues of the β12–β13 loop region of PP-1c play a role in inhibitor selectivity.

Crystal Structure of PP-1c-loop OA Complex—The structure observed of the loop mutant PP-1c bound to okadaic acid is very similar to other PP-1c structures (0.22 Å r.m.s. deviation to wild-type PP-1c:OA, 0.55/0.54 Å r.m.s. deviation to PP-1c: MCLR (two in the asymmetric unit), 0.51/0.53 Å r.m.s. deviation to PP-1c:tungstate (two in the asymmetric unit), all measurements taken over 284 Ca atoms). The orientation of OA in the active site is indistinguishable from that seen with the wild-type enzyme, with the OA adopting a cyclic conformation via an intramolecular hydrogen bond between the C₁-acid and the C₂-hydroxyl (Fig. 2). Similarly, all contacts between the enzyme and the inhibitor are seen in both the wild-type and loop mutant complexes. Namely, this involves the hydrophobic double ring spiroketal moiety of OA binding into the hydrophobic cleft of PP-1c created by residues Ile130, Ile133, Trp206, and Val223 and hydrogen bonding interactions between Tyr272 and the C₁-acid and C₂-hydroxyl, Arg221 and the C₂4-hydroxyl and Arg296 (N') and the C₂5-hydroxyl. The conclusion that hydrophobic energy drives complex formation is supported by this structure because there are very few pro-
tein-inhibitor interactions (given the size of the inhibitor) and the strength of these interactions is on a par with the interactions seen in the wild-type PP-1c/okadaic acid complex (15).

The residue changes within the 12–13 loop involve substitution of the sequence 273CGEFD277 with LDVYN from calcineurin A. Because the orientation of the backbone atoms in both the wild-type and the loop mutant remains the same, this leaves side chain alterations as possible reasons for inhibitor specificity. Although these substitutions may be expected to affect overall negative charge in the 12–13 loop of the chi-

FIG. 3. A, stereo representation of the electron density of okadaic acid bound to the chimeric PP1. The protein is shown as a semi-transparent surface. B, stereo representation of the electron density of the 12–13 loop seen in the wild-type PP-1c/OA complex. C, stereo representation of the electron density of the 12–13 loop seen in the PP-1c-loop/OA complex. All density shown is a σ-weighted 2Fo − Fc map contoured at 1σ.
meric mutant, the two most prominent residues that have potential inhibitor interactions are Leu^{273} and Tyr^{276}. The leucine (Leu^{273}) lies near a hydrophobic area of OA (C_{10}-methyl, Fig. 2), potentially securing a hydrophobic section of the molecule. With respect to the position of Tyr^{276}, the equivalent residue in wild-type PP-1c (Phe^{276}) lies near the same hydrophobic section of OA, again potentially securing this area. The electron density for Phe^{276} is very well defined in wild-type PP-1c; it has an average side chain thermal factor of 24 Å^{2} above the average thermal factor for the molecule (Fig. 3). In the loop mutant the electron density of Tyr^{276} is very poorly defined with an average side chain thermal factor of 31 Å^{2} above the average thermal factor for the rest of the molecule (in comparison all four structures of calcineurin have values for the equivalent residue (Tyr^{315}) that are maximally 19 Å^{2} above the average thermal factor for the rest of the enzyme). The tyrosine side chain in this position would not have the potential for hydrophobic interactions that the phenylalanine in wild-type PP-1c possesses. The conclusion that hydrophobic energy drives inhibitor binding in the phosphoprotein phosphatase M family may involve binding of the hydrophobic tail (that many of the inhibitors contain) and also a hydrophobic binding closer to the active site involving residue 276.

Inhibitor Binding Is Partially Determined by Residues of the β12–β13 Loop—Our kinetic data show that the L7 loop of calcineurin A and β12–β13 loop of PP-1c partially determine inhibitor specificity. Within this loop, there are few candidate residues that could confer this specificity. Tyr^{272} has the greatest potential for impact because it forms the most intimate contacts with the inhibitors, hydrogen bonding with the C_{1} acid moiety of OA, the phosphate group of calyculin A, and the acidic moiety in MCLR. Tyr^{272} is also important in binding of calyculin A and tautomycin because the mutation Y272F causes a 200- and 400-fold decrease in sensitivity to these toxins (11). This residue is, however, conserved as a tyrosine in both PP-1c and calcineurin A. To determine the individual contributions of the remaining residues within the β12–β13 loop toward inhibitor resistance, we undertook to mutate systematically and express the single point mutations of residues 273–277 from PP-1c to their corresponding residues in calcineurin A.

With respect to okadaic acid inhibition (Figs. 4, A and B),
PP-1c G274D, E275V, F276T, and D277N were inhibited by this toxin as potently as the wild-type enzyme (IC\textsubscript{50} = 30–50 nM). In contrast, a single point mutant, PP-1c C273L (IC\textsubscript{50} = 120 nM), showed ~4-fold resistance to inhibition over wild type. This resistance was close to that exhibited by the full PP-1c loop mutant (IC\textsubscript{50} = 110 nM).

With respect to microcystin-LR inhibition (Fig. 5, A and B), PP-1c G274D, E275V, F276Y, and D277N mutant enzymes were again inhibited by this toxin as potently as the wild-type enzyme (IC\textsubscript{50} = 0.1–0.2 nM). In contrast, the single point mutant PP-1c C273L (IC\textsubscript{50} = > 0.6 nM) was as strongly resistant to toxin inhibition as the full PP-1c loop mutant (IC\textsubscript{50} = > 0.6 nM).

Unlike toxin inhibition of PP-1c mutants, the PP-1c C273L mutant was not resistant to inhibition by inhibitor-2 (Fig. 6) and this mutant, as well as PP-1c G274D, E275V, and D277N mutant enzymes, was inhibited as strongly as the wild-type enzyme (IC\textsubscript{50} = 1–3 nM). Only the PP-1c loop mutant showed resistance to inhibition by inhibitor-2 (IC\textsubscript{50} = 5–6 nM).

DISCUSSION

Protein phosphatase-1 and protein phosphatase-2B (calcineurin) share 40% sequence identity in their catalytic subunits. Despite the similarities in sequence, these phosphatases are widely divergent when it comes to inhibition by both endogenous proteins, such as protein phosphatase inhibitor-2, and natural product toxins, such as microcystin-LR and okadaic acid. One of the more prominent regions of non-conserved sequence between these phosphatases corresponds to the β12–β13 loop of protein phosphatase-1, and the L7 loop of calcineurin. In the present study, mutagenesis of residues 273–277 of the PP-1c β12–β13 loop to the corresponding residues in calcineurin (312–316), resulted in a chimeric mutant that showed a decrease in sensitivity to microcystin-LR, okadaic acid, and inhibitor-2.

A crystal structure of the chimeric mutant in complex with okadaic acid was determined to 2.0-Å resolution. The purpose of determining this structure was to observe directly the differences in the β12–β13 loop structure between wild-type PP-1c and the loop mutant PP-1c, both bound to OA. This was examined in the context of the large structural changes seen in the PP-1c-MCLR complex that may have implicated structural changes in the loop as being indicative of inhibitor specificity. However, the backbone conformation of the loop (and the entire active site) is virtually unchanged in both the wild-type com-
plex and the loop mutant (Fig. 7). When compared in a larger context, the loop has an extremely similar orientation in the tungstate-, OA-, and calyculin-bound forms. More strikingly, the L7 loop of calcineurin also has a virtually identical conformation to all these structures. The only anomaly is the PP-1c: MCLR structure where the covalent linkage to Cys273 may affect the loop position. This supports the proposition that the primary sequence, rather than the overall loop structure, determines the inhibitor specificity.

A change in IC$_{50}$ with chimeras of the β12–β13 loop region was reported before by Connor et al. (7), when they substituted the C terminus of PP-1c (residues 274 onwards) with the corresponding C terminus of PP-2Ac (7). The chimeric protein produced was not inhibited by either NIPP-1 or thiophosphorylated inhibitor-1 (neither of which inhibit PP-2A). Interestingly, the chimeric protein produced had the dose-response characteristics of PP-1 with respect to fostriecin and tautomycin, suggesting that the β12–β13 loop region is less important for inhibition by these natural products.

We undertook to systematically mutate all residues in the β12–β13 loop region of PP-1c to their corresponding residues in calcineurin A. The point mutants created were PP-1c C273L, G274D, G275V, F276W, and D277N. We did not mutate Tyr272 as this residue is a Tyr in calcineurin A and our structural data showed that it adopted an identical conformation in the loop mutant PP-1c-OA complex (Fig. 7). The necessity to create single mutations in the β12–β13 loop region of PP-1c was suggested following the finding of a poorly defined electron density for Tyr276 in the loop mutant crystal structure. The corresponding residue in PP-2Ac, Cys269, has already been found to be important for okadaic acid sensitivity. Mutation of Phe276 to Cys in PP-1c increases the sensitivity of PP-1c to okadaic acid 40-fold, indicating that an even smaller hydrophobic residue at this position may facilitate tighter binding of okadaic acid (10).

Systematic mutation of each residue in the β12–β13 loop of PP-1c to their corresponding calcineurin A residue showed that a single amino acid change (C273L) was the most influential in mediating sensitivity of PP-1c to the toxin inhibitors microcystin-LR and okadaic acid. Taken together, these data indicate that an individual amino acid residue substitution (C273L, as occurs in calcineurin) and not a change in the overall β12–β13 loop conformation of PP-1c contributes to disrupting important interactions with inhibitors such as microcystin-LR and okadaic acid. MacKintosh et al. (18) first showed that Cys273 binds covalently to microcystin-LR and determined that abolition of

Fig. 6. Inhibition of wild-type, loop mutant, and point mutants of PP-1c by inhibitor-2. The activity of recombinant wild-type, loop mutant, and point mutant PP-1c was assayed using [32P]phosphorylase a as a substrate, in the presence of increasing amounts of inhibitor-2. The results shown are representative of at least four duplicate assays.
covalent binding (via mutation to Ala, Ser, or Leu) increased the IC$_{50}$ for toxin inhibition of PP-1c by 5–20-fold. This is entirely consistent with our mutational analyses of the $\beta 12$–$\beta 13$ loop presented here. However, we have also shown that covalent modification of Cys$_{273}$ by microcystin-LR occurs very slowly over several hours and only after the phosphatase is fully inhibited by the toxin (17, 19). Taken together, the findings of these studies suggest that covalent modification of Cys$_{273}$ is adventitious with respect to inhibition of the phosphatase and that this residue clearly plays a role in the initial inhibition of PP-1c by the microcystin toxins (19).

Consistent with its important role in toxin interactions, Cys$_{273}$ is conserved in virtually all known members of the PP-1c family. A notable exception being PP-1c from Dictyostelium discoideum (social amoeba) (30), where it is changed to Phe. The sensitivity to microcystin inhibition of this form of PP-1c was reported as 2-fold less than a "mutant" containing Cys$_{269}$ (the equivalent residue in this organism). It is possible that Phe$_{273}$ is more favorable for toxin inhibition in this position than Leu$_{273}$ (present study and MacKintosh et al. (18)), however, these experiments were conducted on unpurified recombinant protein from crude E. coli extracts. PP-1c from several plants, including Brassica napus, Arabidopsis thaliana TOPP 8, and Phaseolus vulgaris, have Cys$_{273}$ changed to Gly (31–33). Crude extract preparations of B. napus PP-1c were reported to be as sensitive to inhibitors as mammalian PP-1c (34, 35), however, it will be interesting to see whether homogeneous preparations of highly purified PP-1c from these organisms have any resistance to microcystin inhibition.

In contrast to the role of Cys$_{273}$ in mediating toxin inhibition of PP-1c, replacement of Cys$_{273}$ with Leu did not affect inhibition of PP-1c by inhibitor-2. The only substitution that affected inhibitor-2 inhibition was F$_{276}$Y, clearly indicating that the mode of inhibition of PP-1c by this endogenous inhibitor protein is distinct from that of the natural product/toxin inhibitors. The effect of substitutions in the $\beta 12$–$\beta 13$ loop of PP-1c on inhibition by inhibitor-2 are difficult to interpret because the three-dimensional structure of this protein bound to PP-1c is unknown. The differences in sensitivity to the inhibitor protein 2 between wild-type PP-1c and calcineurin A are much more dramatic than the differences between wild-type PP-1c and loop mutant PP-1c, clearly indicating that the $\beta 12$–$\beta 13$ loop of PP-1c is not the only region playing a role in binding of this inhibitor. Taken together, these data are consistent with the most recent models of inhibitor-2 binding (8).

The importance of the $\beta 12$–$\beta 13$ loop was emphasized in a recent structure of the complex between PP-1c and a 34-kDa fragment from myosin phosphatase targeting subunit (MYPT-1) (36). This structure showed some active site remodeling with targeting subunit binding to the catalytic subunit but left the $\beta 12$–$\beta 13$ loop in a prominent position to influence enzymatic activity and inhibition. Elucidation of the sequence-specific role of the $\beta 12$–$\beta 13$ loop of PP-1c in mediating inhibition of this enzyme by toxins will now facilitate rational protein
Acknowledgment—We thank Dr. David Barford for providing the coordinates of the PP-1-tungstate complex.

REFERENCES
1. Cohen, P. (1994) Bioessays 16, 583–588
2. Sheppeck, J. E., 2nd, Gauss, C. M., and Chamberlin, A. R. (1997) Bioorg. Med. Chem. 5, 1739–1750
3. Dawson, J. F., and Holmes, C. F. (1999) Front. Biosci. 4, D646–D658
4. Bialojan, C., and Takai, A. (1988) Biochem. J. 256, 283–290
5. MacKintosh, C., and MacKintosh, R. W. (1994) Trends Biochem. Sci. 19, 444–448
6. Watanabe, T., Huang, H. B., Horiiuchi, A., da Cruz Silva, E. F., Hsieh-Wilson, L., Allen, P. B., Shenolikar, S., Greengard, P., and Nairn, A. C. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 5080–5085
7. Connor, J. H., Kleeman, T., Barik, S., Honkanen, R. E., and Shenolikar, S. (1999) J. Biol. Chem. 274, 22366–22372
8. Yang, J., Hurley, T. D., and DePaoli-Roach, A. A. (2000) J. Biol. Chem. 275, 22635–22644
9. Shima, H., Tohda, H., Asnuna, S., Nakayasu, M., DePaoli-Roach, A. A., Sugimura, T., and Nagao, M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 9367–9271
10. Zhang, Z., Zhao, S., Long, F., Zhang, L., Bai, G., Shima, H., Nagao, M., and Lee, E. Y. (1994) J. Biol. Chem. 269, 16997–17000
11. Zhang, Z., Zhang, Z., Long, F., and Lee, E. Y. (1996) Biochemistry 35, 1606–1611
12. Wei, Q., and Lee, E. Y. (1997) Biochemistry 36, 7418–7424
13. Eglolf, M. P., Cohen, P. T., Reinemer, P., and Barford, D. (1995) J. Mol. Biol. 254, 942–959
14. Goldberg, J., Huang, H. B., Kwon, Y. G., Greengard, P., Nairn, A. C., and Kuriyan, J. (1998) Nature 376, 745–753
15. Maynes, J. T., Bateman, K. S., Cherney, M. M., Das, A. K., Luu, H. A., Holmes, C. F., and James, M. N. (2001) J. Biol. Chem. 276, 44078–44082
16. Kita, A., Matsunaga, S., Takai, A., Kataiwa, H., Wakimoto, T., Fusetani, N., Isobe, M., and Miki, K. (2002) Structure (Land.) 10, 715–724
17. Craig, M., Luu, H. A., McCreedy, T. L., Williams, D., Andersen, R. J., and Holmes, C. F. (1996) Biochem. Cell Biol. 74, 569–578
18. MacKintosh, R. W., Dalby, K. N., Campbell, D. G., Cohen, P. T., Cohen, P., and MacKintosh, C. (1995) FEBS Lett. 371, 236–240
19. Holmes, C. F., Maynes, J. T., Perreault, K. R., Dawson, J. F., and James, M. N. (2002) Curr. Med. Chem. 9, 1981–1989
20. Dawson, J. F., Luu, H. A., Bagu, J. R., and Holmes, C. F. (2000) Biochem. Biophys. Res. Commun. 270, 543–549
21. McCreedy, T. L., Islam, B. F., Schmitz, F. J., Luu, H. A., Dawson, J. F., and Holmes, C. F. (2000) J. Biol. Chem. 275, 4192–4198
22. Alessi, D. R., Street, A. J., Cohen, P., and Cohen, P. T. W. (1993) Eur. J. Biochem. 213, 1055–1066
23. Zhang, Z. J., Bai, G., Deanszirattu, S., Browner, M. F., and Lee, E. Y. C. (1992) J. Biol. Chem. 267, 1484–1490
24. Otwinowski, M., and Minor, W. (1997) Methods Enzymol. 276, 307–326
25. Navaza, J., and Saludjian, P. (1997) Methods Enzymol. 276, 581–594
26. McRee, D. E. (1999) Struct. Biol. 125, 156–165
27. Brunger, A. T., Adams, P. D., Clore, G. M., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Koszewski, J., Nilges, M., Panzou, N. S., Read, R. J., Rice, L. M., Simonsen, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D 54, 905–921
28. Hooft, R. W., Vriend, G., Sander, C., and Abola, E. E. (1996) Nature 381, 272
29. Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) J. Mol. Biol. 231, 1049–1067
30. Andrioli, L. P., Zaini, P. A., Viviani, W., and Da Silva, A. M. (2003) Biochem. J. 373, 703–711
31. MacKintosh, R. W., Haycox, G., Hardie, D. G., and Cohen, P. T. (1990) FEBS Lett. 276, 156–160
32. Lin, Q., Li, J., Smith, R. D., and Walker, J. C. (1998) Plant Mol. Biol. 37, 471–481
33. Zimmerlin, A., Jupe, S. C., and Bolwell, G. P. (1995) Plant Mol. Biol. 28, 363–368
34. MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., and Codd, G. A. (1990) FEBS Lett. 264, 187–192
35. MacKintosh, C., and Cohen, P. (1998) Biochem. J. 329, 335–339
36. Terrak, M., Kerff, P., Langsetmo, R., Tao, T., and Dominguez, R. (2004) Nature 429, 780–784