Higher blood pressure is associated with greater white matter lesions and brain atrophy: a systematic review with meta-analysis acronym defined

Khawlah Alateeq, Erin Walsh, Prof. Nicolas Cherbuin

Appendix A. Supplemental results

1. Magnetic resonance imaging

All studies included in the systematic review were adjusted to account for variation in head size, either in the statistical model or during image processing, by normalization against intracranial volume (ICV, 46 studies), average head size (two studies) [1,2], or skull size (two studies) [3,4].

2. BP assessment

Outcome measures included SBP (45%), DBP (39%), PP (8%) and MAP (6.9%). Apart from BP cut-off values, some studies used different values, namely i.e. ≥140/90,(n=) 150/90 (n = 1) [5] 160/95 (n = 1) [2] 160/100 (n = 2) [6,7] or 160-179/90-99 (n = 1) [8] as clinical measures and 135/85 for ABP [9]. Hypertensive participants were below 25% in (29.8% of studies), between 26% to 50% in (49% of studies), and above 50% in (21% of studies).

3. BP brain volumes and Age

3.1. BP associations in young adults

Five studies reported association between BP and brain volumes in young adults (18-40 years) [10–14]. Higher BP (SBP, n = 15; DBP, n = 12) was associated with greater WMLs (n = 2[13,14]) and smaller brain volumes (TBV, n = 3 [10,13,14]; GMV, n = 2 [10,12]; WMV, n = 1[10]; HCV, n = 4[10–13]; amygdala, n = 1[11]; Insula, n = 2[11]). None of the association was significant in young adults.

3.2. Brain volumes in middle age

Twelve studies reported association between BP and brain volumes in middle-aged adults (50-60 years) [13,15–25]. Higher BP was (SBP, n = 17%; DBP, n = 9%; MAP, n = 7%; PP, n = 6%) was associated with larger WMLS (n = 6) [13,15,17–19], and smaller brain volumes including (TBV, n = 6 [13,17,18,20,21,26]; GMV, n = 1[26]; WMV, n = 1[26]; HCVs, n = 2) [13,17].

3.3. BP associations in older age

Fifteen studies reported association between BP and brain volumes in older adults (≥70 years). [2,4,5,13,16,17,27–35]. Higher BP was associated with larger WMLSCV (n= 8) [5,17,27,28,32–35]. Lower BP (DBP, n = 3; SBP, n = 1) was associated with smaller TBV (n = 1) [30] HCV (n = 2) [2,29] Higher SBP was associated with larger HCV [16]. However, higher BP was associated with smaller TBV (n = 2 [13,30]; HCV, n = 6[13,30,31]).

Table S1. Adjusted Newcastle-Ottawa Quality Assessment Scale for Studies.
Table S2. Characteristics of the selected studies.

Exposure (BP)	Score
1. Location of BP Measurement is reported	7.0
2. Position when BP Measurement parameters are reported	0.0
3. Resting period before BP measurement is reported	0.0
4. Number of BP readings is reported	0.0
5. Time intervals between BP readings is reported	0.0
6. Hypertension was defined by two criteria	0.0

### Comparability (confounder)	Score
1. Confounders controlled in analyses	1.0

### Outcome	Score
1. Measurement of brain volume/segmentation	0.0
Study	Study Design
---	---
Alkan et al 2019[36]	Cross-sectional
Allan et al 2015[17]	Cross-sectional and Longitudinal
Bender et al 2012[25]	Cross-sectional
Brickman et al 2010[27]	Cross-sectional
Burns et al 2005[27]	Cross-sectional
Cherbuin et al 2015[37]	Cross-sectional
DeCarli et al 1995[38]	Cross-sectional
De Jong et al 2014[39]	Cross-sectional and Longitudinal
Den Heijer et al 2005[2]	Cross-sectional and Longitudinal
Den Heijer et al 2012[29]	Longitudinal
Dickie et al 2016[40]	Cross-sectional
Study	Study Design
--------------------------	--------------
Firbank et al 2007[5]	Cross-sectional
Gattringer et al 2012[3]	Cross-sectional
Gianaros et al 2006[41]	Longitudinal
Glodzik et al 2014[24]	Cross-sectional
Goldstein et al 2002[42]	Longitudinal
Goldstein et al 2005[18]	Longitudinal
Habes et al 2016[43]	Cross-sectional
Hajjar et al 2010[9]	Cross-sectional
Haring et al 2019[23]	Longitudinal
Hoogendam et al 2012[20]	Longitudinal
Ikram et al 2008[6]	Cross-sectional
Jeerakathil et al 2004[44]	Longitudinal
Kern et al 2017[45]	Cross-sectional
Study	Study Design
-----------------------	-------------------
Kobuch et al 2020[46]	Cross-sectional
Korf et al 2004[31]	Longitudinal
Cross-sectional and Longitudinal	
Lane et al 2019[13]	Cross-sectional and Longitudinal
Launer et al 2015	Cross-sectional
Mahinradet et al 2019[47]	Longitudinal ral
McNeil et al 2018[16]	Cross-sectional
Muller et al 2014[30]	Longitudinal
Muller et al 2016[48]	Longitudinal
Nation et al 2016[21]	Longitudinal
Paganin-Hill et al 2019[28]	Longitudinal
Pase et al 2016[22]	Cross-sectional
Study	Study Design
-------	--------------
Power et al 2016[49]	Cross-sectional and Longitudinal
Sabayan et al 2013[4]	Longitudinal
Schaare et al 2019[50]	Cross-sectional
Scott et al 2015[32]	Cross-sectional
Spartano et al 2016[51]	Longitudinal
Suzuki et al 2017[26]	Cross-sectional
Taki et al 2004[52]	Cross-sectional
Taki et al 2013[53]	Longitudinal
Trotman et al 2019[11]	Cross-sectional
vanVelsen et al 2013[7]	Cross-sectional
Verhaaren et al 2013[54]	Cross-sectional
Study	Study Design
-------------------------------	-----------------------
Wardlaw et al 2014[35]	Cross-sectional
White et al 2011[34]	Longitudinal
Wiseman et al 2004[8]	Cross-sectional
Wolfson et al 2013[33]	Cross-sectional and Longitudinal
Yano et al 2017[10]	Longitudinal

M = mean; SD = standard deviation; SBP = Systolic Blood Pressure; DBP = Diastolic Blood Pressure; ASBP= ambulatory systolic blood pressure; ABP = ambulatory blood pressure; WMLS = White matter lesions; TBV = total brain volume; GMV= grey matter volume; WMV = white matter volume; HCV = Hippocampal volume; ICV = Intracranial volume; IPFC= lateral prefrontal cortex, pFWM = prefrontal white matter. CVD= Cardiovascular disease; Hypertension = HT; ATH = Antihypertensive; BMI = body mass index; DM = DM mellitus; WC = waist circumference, FBG = fasting blood glucose; APOE e4= Apolipoprotein E ; HDL-C= High-density lipoprotein cholesterol; LDL-C= low density lipoprotein-cholesterol, MetS= Metabolic syndrome; SES= socioeconomic status; T = tesla.

Table S3. Methodological quality of studies.
Hajjar et al 2010[9] 8.0 /10.5 (81%) High
Haring et al 2019[23] 9.0 /10.5 (85.7%) High
Hoogendam et al 2012[20] 7.0 /10.5 (66.7%) Moderate
Ikram et al 2008[6] 5.5 /10.5 (52.4%) Moderate
Jeerakathil et al 2004[44] 3.0 /10.5 (28.6%) Low
Kern et al 2017[45] 9.0 /10.5 (85.7%) High
Kobuch et al 2020[46] 5.5 /10.5 (52.4%) Moderate
Korf et al 2004[31] 3.0 /10.5 (28.6%) Low
Lane et al 2019[13] 9.0 /10.5 (85.7%) High
Launer et al 2015[14] 6.5 /10.5 (61.9%) Moderate
Mahinrad et al 2019[47] 10.0 /10.5 (95.2%) High
McNeil et al 2018[16] 6.5 /10.5 (61.9%) Moderate
Muller et al 2014[30] 6.0 /10.5 (57.1%) Moderate
Muller et al 2016[48] 5.0 /10.5 (47.6%) Moderate
Nation et al 2016[21] 8.0 /10.5 (76.2%) High
Paganini-Hill et al 2019[28] 4.0 /10.5 (38.1%) Low
Pase et al 2016[22] 8.0 /10.5 (76.2%) High
Power et al 2016[49] 5.0 /10.5 (47.6%) Moderate
Sabayan et al 2013[4] 5.0 /10.5 (47.6%) Moderate
Schaare et al 2019[50] 10.0 /10.5 (95.2%) High
Scott et al 2015[32] 2.0/10.5 (19%) Low
Spartano et al 2016[51] 4.0 /10.5 (38.1%) Low
Suzuki et al 2017[26] 9.0 /10.5 (85.7%) High
Taki et al 2004[52] 4.5 /10.5 (42.9%) Moderate
Taki et al 2013[53] 5.5 /10.5 (52.4%) Moderate
Trotman et al 2019[11] 2.5 /10.5 (23.8%) Low
Tsao et al 2016[19] 6.0 /10.5 (57.1%) Moderate
vanVelsen et al 2013[7] 5.0 /10.5 (47.6%) Moderate
Verhaaren et al 2013[54] 8.5 /10.5 (81.0%) High
Wardlaw et al 2014[35] 5.0 /10.5 (47.6%) Moderate
White et al 2011[34] 6.5 /10.5 (61.9%) Moderate
Wiseman et al 2004[8] 4.5 /10.5 (42.9%) Moderate
Wolfson et al 2013[33] 9.0 /10.5 (85.7%) High
Yano et al 2017[10] 9.5 /10.5 (90.5%) High

Meta-analysis results

White matter lesions volume (WMLS)

![Figure S1](image-url).

Figure S1. Association between SBP and White matter lesions from cross-sectional studies A. Forest plots; B. Sensitivity Analysis; trim and fill.

Random-Effects Model (k = 7; tau^2 estimator: REML)

logLik	deviance	AIC	BIC	AICc
3.6850	-7.3700	-3.3700	-3.7865	0.6300
tau^2 (estimated amount of total heterogeneity): 0.0102 (SE = 0.0073)
tau (square root of estimated tau^2 value): 0.1010
I^2 (total heterogeneity / total variability): 99.06%
H^2 (total variability / sampling variability): 106.59

Test for Heterogeneity:
Q(df = 6) = 506.2446, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.1081	0.0435	2.4882	0.0128	0.0230	0.1933

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sensitivity Analysis

Estimated number of missing studies on the left side: 0 (SE = 1.8715)
Random-Effects Model (k = 7; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.0102 (SE = 0.0073)
tau (square root of estimated tau^2 value): 0.1010
I^2 (total heterogeneity / total variability): 99.06%
H^2 (total variability / sampling variability): 106.59

Test for Heterogeneity:
Q(df = 6) = 506.2446, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.1081	0.0435	2.4882	0.0128	0.0230	0.1933

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure S2. Association between SBP and White matter lesions from longitudinal studies. A. Forest plots; B. Sensitivity Analysis.
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 2) = 0.1372, p-val = 0.9337

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0138	0.0138	0.9984	0.3181	-0.0133	0.0408

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sensitivity Analysis
Estimated number of missing studies on the left side: 0 (SE = 1.4967)
Random-Effects Model (k = 3; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0006)
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 2) = 0.1372, p-val = 0.9337

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0138	0.0138	0.9984	0.3181	-0.0133	0.0408

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure S3. Association between DBP and White matter lesions from longitudinal studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.

Random-Effects Model (k = 3; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
1.9996 -3.9992 0.0008 -2.6129 12.0008
tau^2 (estimated amount of total heterogeneity): 0.0047 (SE = 0.0067)
tau (square root of estimated tau^2 value): 0.0683
I^2 (total heterogeneity / total variability): 95.69%
H^2 (total variability / sampling variability): 23.21

Test for Heterogeneity:

Q(df = 2) = 52.3723, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0725	0.0475	1.5283	0.1264	-0.0205	0.1656

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

Sensitivity Analysis

Estimated number of missing studies on the left side: 0 (SE = 1.8715)
Random-Effects Model (k = 7; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.0102 (SE = 0.0073)
tau (square root of estimated tau^2 value): 0.1010
I^2 (total heterogeneity / total variability): 99.06%
H^2 (total variability / sampling variability): 106.59

Test for Heterogeneity:

Q(df = 6) = 506.2446, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.1081	0.0435	2.4882	0.0128	0.0230	0.1933

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

Total brain volume (TBV)

Figure S4. Association between SBP and total brain volume from cross-sectional studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.

Random-Effects Model (k = 4; tau^2 estimator: REML)

logLik deviance AIC BIC AICc
2.6975 -5.3950 -1.3950 -3.1977 10.6050

tau^2 (estimated amount of total heterogeneity): 0.0007 (SE = 0.0010)
tau (square root of estimated tau^2 value): 0.0269
I^2 (total heterogeneity / total variability): 94.33%
H^2 (total variability / sampling variability): 17.63

Test for Heterogeneity:
Q(df = 3) = 55.4156, p-val < .0001

Model Results:
estimate	se	zval	pval	ci.lb	ci.ub
-0.0223	0.0190	-1.1762	0.2395	-0.0596	0.0149

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sensitivity Analysis
Estimated number of missing studies on the right side: 1 (SE = 1.5779)
Random-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.0007 (SE = 0.0010)
tau (square root of estimated tau^2 value): 0.0268
I^2 (total heterogeneity / total variability): 92.53%
H^2 (total variability / sampling variability): 13.38

Test for Heterogeneity:
Q(df = 4) = 57.6540, p-val < .0001

Model Results:
estimate	se	zval	pval	ci.lb	ci.ub
-0.0205	0.0189	-1.0834	0.2786	-0.0575	0.0166

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Random-Effects Model (k = 4; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
1.9396 -3.8792 0.1208 -1.6820 12.1208
tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0004)
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 3) = 5.3948, p-val = 0.1451

Figure S5. Association between DBP and total brain volume from cross-sectional studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.
Model Results:

\[
\begin{array}{cccccc}
\text{estimate} & \text{se} & \text{z val} & \text{p val} & \text{ci. lb} & \text{ci. ub} \\
-0.0010 & 0.0010 & -1.0361 & 0.3002 & -0.0030 & 0.0009 \\
\end{array}
\]

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sensitivity Analysis

Estimated number of missing studies on the right side: 1 (SE = 1.6103)
Random-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0004)
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:

\[Q(df = 4) = 10.4280, p-val = 0.0338\]

Model Results:

\[
\begin{array}{cccccc}
\text{estimate} & \text{se} & \text{z val} & \text{p val} & \text{ci. lb} & \text{ci. ub} \\
-0.0010 & 0.0010 & -1.0174 & 0.3090 & -0.0030 & 0.0009 \\
\end{array}
\]

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Random-Effects Model (k = 3; tau^2 estimator: REML)

\[
\begin{array}{cccccc}
\text{logLik} & \text{deviance} & \text{AIC} & \text{BIC} & \text{AICc} \\
-2.7216 & 5.4432 & 9.4432 & 6.8295 & 21.4432 \\
\end{array}
\]

tau^2 (estimated amount of total heterogeneity): 0.2601 (SE = 0.6657)
tau (square root of estimated tau^2 value): 0.5100
I^2 (total heterogeneity / total variability): 39.31%
H^2 (total variability / sampling variability): 1.65

Test for Heterogeneity:

\[Q(df = 2) = 2.7519, p-val = 0.2526\]

Figure S6. Association between SBP variability and total brain volume from longitudinal studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.
Model Results:

```
estimate  se     zval  pval    cl.lb    cl.ub
-0.3862  0.4342  -0.8895  0.3738  -1.2371  0.4648
```

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sensitivity Analysis

Estimated number of missing studies on the right side: 2 (SE = 1.4881)
Random-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.1990 (SE = 0.4248)
tau (square root of estimated tau^2 value): 0.4461
I^2 (total heterogeneity / total variability): 32.73%
H^2 (total variability / sampling variability): 1.49

Test for Heterogeneity:

Q(df = 4) = 5.7247, p-val = 0.2207

Model Results:

```
estimate  se     zval  pval    cl.lb    cl.ub
-0.0490  0.3470  -0.1412  0.8877  -0.7290  0.6310
```

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Random-Effects Model (k = 3; tau^2 estimator: REML)

```
logLik  deviance  AIC  BIC  AICc
-3.6756  7.3513  11.3513  8.7376  23.3513
```
tau^2 (estimated amount of total heterogeneity): 0.1079 (SE = 1.2247)
tau (square root of estimated tau^2 value): 0.3285
I^2 (total heterogeneity / total variability): 6.96%
H^2 (total variability / sampling variability): 1.07

Test for Heterogeneity:

Figure S7. Association between DBP variability and total brain volume from longitudinal studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.
Q(df = 2) = 1.2944, p-val = 0.5235

Model Results:

estimate	se	z val	p val	ci lb	ci ub
-0.1526	0.3365	-0.4536	0.6501	-0.8121	0.5069

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Sensitivity Analysis

Estimated number of missing studies on the left side: 0 (SE = 1.4967)
Random-Effects Model (k = 3; tau^2 estimator: REML)

\[\tau^2 = 0.1079 \] (SE = 1.2247)

\[\tau = 0.3285 \]

\[I^2 = 6.96\% \]

\[H^2 = 1.07 \]

Test for Heterogeneity:

Q(df = 2) = 1.2944, p-val = 0.5235

Model Results

estimate	se	z val	p val	ci lb	ci ub
-0.1526	0.3365	-0.4536	0.6501	-0.8121	0.5069

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Hippocampal volume (HCV)

\[\log L = 0.6525 \]

\[\text{deviance} = -1.3049 \]

\[\text{AIC} = 2.6951 \]

\[\text{BIC} = 0.0813 \]

\[\text{AICc} = 14.6951 \]

\[\tau^2 = 0.0211 \] (SE = 0.0310)

\[\tau = 0.1453 \]

\[I^2 = 83.80\% \]

\[H^2 = 6.17 \]

Test for Heterogeneity:

Q(df = 2) = 14.1697, p-val = 0.0008

Figure S8. Association between DBP and hippocampal volume from cross-sectional studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.
Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
-0.1193	0.1012	-1.1787	0.2385	-0.3177	0.0791

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ' 1

Sensitivity Analysis

Estimated number of missing studies on the left side: 2 (SE = 1.4881)
Random-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0.0432 (SE = 0.0413)
tau (square root of estimated tau^2 value): 0.2078
I^2 (total heterogeneity / total variability): 90.88%
H^2 (total variability / sampling variability): 10.97

Test for Heterogeneity:
Q(df = 4) = 34.1568, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
-0.2500	0.1094	-2.2854	0.0223	-0.4644	-0.0356 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ' 1

Random-Effects Model (k = 3; tau^2 estimator: REML)

logLik	deviance	AIC	BIC	AICc
1.2400	-2.4800	1.5200	-1.0937	13.5200

tau^2 (estimated amount of total heterogeneity): 0.0161 (SE = 0.0177)
tau (square root of estimated tau^2 value): 0.1270

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0810	0.0767	1.0554	0.2912	-0.0694	0.2313

Figure S9. Association between DBP and hippocampal volume from cross-sectional studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . ‘.’ 0.1 ‘ ’ 1

Figure S10. Association between SBP variability and hippocampal volume from longitudinal studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.

Random-Effects Model (k = 3; tau^2 estimator: REML)

	logLik	deviance	AIC	BIC	AICc
	7.3265	-14.6529	-10.6529	-13.2666	1.3471

tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0000)
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 2) = 0.9932, p-val = 0.6086

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
-0.0063	0.0027	-2.3603	0.0183	-0.0116	-0.0011

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . ‘.’ 0.1 ‘ ’ 1

Sensitivity Analysis

Estimated number of missing studies on the right side: 2 (SE = 1.4881)
Random-Effects Model (k = 5; tau^2 estimator: REML)
tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0000)
tau (square root of estimated tau^2 value): 0
I^2 (total heterogeneity / total variability): 0.00%
H^2 (total variability / sampling variability): 1.00

Test for Heterogeneity:
Q(df = 4) = 2.4687, p-val = 0.6502

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
-0.0050	0.0024	-2.0518	0.0402	-0.0098	-0.0002

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 . ‘.’ 0.1 ‘ ’ 1
Figure S11. Association between DBP variability and hippocampal volume from longitudinal studies. A. Forest plots; B. Sensitivity Analysis; trim and fill.

Random-Effects Model (k = 3; tau^2 estimator: REML)

	logLik	deviance	AIC	BIC	AICc
	6.1862	-12.3723	-8.3723	-10.9860	3.6277

- \(\tau^2 \) (estimated amount of total heterogeneity): 0 (SE = 0.0001)
- \(\tau \) (square root of estimated \(\tau^2 \) value): 0
- \(I^2 \) (total heterogeneity / total variability): 0.00%
- \(H^2 \) (total variability / sampling variability): 1.00

Test for Heterogeneity:
\(Q(df = 2) = 0.7764, p-val = 0.6783 \)

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0017	0.0029	0.5731	0.5666	-0.0040	0.0073

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimated number of missing studies on the left side: 2 (SE = 1.4881)

Random-Effects Model (k = 5; tau^2 estimator: REML)

	logLik	deviance	AIC	BIC	AICc
	6.1862	-12.3723	-8.3723	-10.9860	3.6277

- \(\tau^2 \) (estimated amount of total heterogeneity): 0 (SE = 0.0001)
- \(\tau \) (square root of estimated \(\tau^2 \) value): 0
- \(I^2 \) (total heterogeneity / total variability): 0.00%
- \(H^2 \) (total variability / sampling variability): 1.00

Test for Heterogeneity:
\(Q(df = 2) = 1.6569, p-val = 0.7985 \)

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
0.0010	0.0028	0.3562	0.7217	-0.0045	0.0065

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
Figure S12. The Forest plots show the association between SBP and white matter lesions in elderly below or above ~75 years. Given the small number of studies these results should be interpreted with caution. However, the pattern of results appears to indicate that effects are consistent below in younger individuals (mean weighted age ~72 years). In contrast, while still significant in older individuals (mean weighted age 80.6 years) the effect appears much reduced in this age group.

References

1. Burns, J.M.; Church, J.A.; Johnson, D.K.; Xiong, C.; Marcus, D.; Fotenos, A.F.; Snyder, A.Z.; Morris, J.C.; Buckner, R.L. White matter lesions are prevalent but differentially related with cognition in aging and early Alzheimer
disease. Arch. Neurol. 2005, 62, 1870–1876, doi:10.1001/archneur.62.12.1870.

2. den Heijer, T.; Launer, L.J.; Prins, N.D.; van Dijk, E.J.; Vermeer, S.E.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M. Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe. Neurology 2005, 64, 263–267, doi:10.1212/01.WNL.0000149641.55751.2e.

3. Gattringer, T.; Enzinger, C.; Ropele, S.; Gorani, F.; Petrovic, K.E.; Schmidt, R.; Fazekas, F. Vascular risk factors, white matter hyperintensities and hippocampal volume in normal elderly individuals. Dement. Geriatr. Cogn. Disord. 2012, 33, 29–34, doi:10.1159/000336052.

4. Sabayan, B.; Wijsman, L.W.; Foster-Dingley, J.C.; Stott, D.J.; Ford, I.; Buckley, B.M.; Sattar, N.; Jukema, J.W.; van Osch, M.J.; van der Grond, J. et al. Association of visit-to-visit variability in blood pressure with cognitive function in old age: prospective cohort study. BMJ (Clinical Res. Ed.) 2013, 347, f4600.

5. Firbank, M.J.; Wiseman, R.M.; Burton, E.J.; Saxby, B.K.; O’Brien, J.T.; Ford, G.A. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure. J. Neurol. 2007, doi:10.1007/s00415-006-0238-4.

6. Ikram, M.A.; Vrooman, H.A.; Vernooij, M.W.; van der Lijn, F.; Hofman, A.; van der Lugt, A.; Niessen, W.J.; Breteler, M.M.B. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study. Neurobiol. Aging 2008, 29, 882–890, doi:10.1016/j.neurobiolaging.2006.12.012.

7. van Velsen, E.F.S.; Vernooij, M.W.; Vrooman, H.A.; van der Lugt, A.; Breteler, M.M.B.; Hofman, A.; Niessen, W.J.; Ikram, M.A. Brain cortical thickness in the general elderly population: The Rotterdam Scan Study. Neurosci. Lett. 2013, doi:10.1016/j.neulet.2013.06.063.

8. Wiseman, R.M.; Saxby, B.K.; Burton, E.J.; Barber, R.; Ford, G.A.; Brien, J.T.O. Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. 2004.

9. Hajjar, I.; Zhao, P.; Alsop, D.; Abduljalil, A.; Selim, M.; Novak, P.; Novak, V. Association of blood pressure elevation and nocturnal dipping with brain atrophy Perfusion and Functional Measures in Stroke and Nonstroke Individuals. Am. J. Hypertens. 2010, 23, 17–23, doi:10.1038/ajh.2009.187.

10. Yano, Y.; Reis, J.P.; Levine, D.A.; Bryan, R.N.; Viera, A.J.; Shimbo, D.; Tedla, Y.G.; Allen, N.B.; Schreiner, P.J.; Bancks, M.P.; et al. Visit-to-Visit Blood Pressure Variability in Young Adulthood and Hippocampal Volume and Integrity at Middle Age. Hypertens. (Dallas, Tex. 1979) 2017, 70, 1091–1098, doi:10.1161/hypertensionaha.117.10144.

11. Trotman, G.P.; Williams, S.E.; Ginty, A.T.; Gianaras, P.J. Increased stressor-evoked cardiovascular reactivity is associated with reduced amygdala and hippocampus volume. 2019, doi:10.1111/psyp.13277.

12. Schaare, H.L.; Kharabian Masouleh, S.; Beyer, F.; Kumral, D.; Uhlig, M.; Reinelt, J.D.; Reiter, A.M.F.; Lampe, L.; Babayan, A.; Al, E. Association of peripheral blood pressure with gray matter volume in 19- to 40-year-old adults. Neurology 2019, doi:10.1212/WNL.0000000000006947.

13. Lane, C.A.; Barnes, J.; Nicholas, J.M.; Sudre, C.H.; Cash, D.M.; Parker, T.D.; Malone, I.B.; Lu, K.; James, S.-N.;
Keshavan, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study. *Lancet. Neurol.* **2019**, *18*, 942–952, doi:10.1016/S1474-4422(19)30228-5.

14. Launer, L.J.; Lewis, C.E.; Schreiner, P.J.; Sidney, S.; Battapady, H.; Jacobs, D.R.; Lim, K.O.; D’Esposito, M.; Zhang, Q.; Reis, J.; et al. Vascular factors and multiple measures of early brain health: CARDIA Brain MRI Study. *PLoS One* **2015**, *10*, e0122138, doi:10.1371/journal.pone.0122138.

15. Swan, G.E.; DeCarli, C.; Miller, B.L.; Reed, T.; Wolf, P.A.; Jack, L.M.; Carmelli, D. Association of midlife blood pressure to late-life cognitive decline and brain morphology. *Neurology* **1998**, doi:10.1212/WNL.51.4.986.

16. McNeil, C.J.; Myint, P.K.; Sandu, A.L.; Potter, J.F.; Staff, R.; Whalley, L.J.; Murray, A.D. Increased diastolic blood pressure is associated with MRI biomarkers of dementia-related brain pathology in normative ageing. *Age Aging* **2018**, *47*, 95–100, doi:10.1093/ageing/afx102.

17. Allan, C.L.; Zsoldos, E.; Filippini, N.; Sexton, C.E.; Topiwala, A.; Valkanova, V.; Singh-Manoux, A.; Tabák, A.G.; Shipley, M.J.; Mackay, C.; et al. Lifetime hypertension as a predictor of brain structure in older adults: Cohort study with a 28-year follow-up. *Br. J. Psychiatry* **2015**, *206*, 308–315, doi:10.1192/bjp.bp.114.153536.

18. Goldstein, I.B.; Bartzokis, G.; Guthrie, D.; Shapiro, D. Ambulatory blood pressure and the brain: A 5-year follow-up. *Neurology* **2005**, *64*, 1846–1852, doi:10.1212/01.WNL.0000164712.24389.BB.

19. Tsao, C.W.; Himali, J.J.; Beiser, A.S.; Larson, M.G.; DeCarli, C.; Mitchell, G.F. Association of arterial stiffness with progression of subclinical brain and cognitive disease. *2016*, 619–626.

20. Nation, D.A.; Preis, S.R.; Beiser, A.; Bangen, K.J.; Delano-Wood, L.; Lamar, M.; Libon, D.J.; Seshadri, S.; Wolf, P.A.; Au, R. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-epsilon4. *Alzheimer Dis. Assoc. Disord.* **2016**, *30*, 210–215, doi:10.1097/wad.0000000000000127.

21. Nation, D.A.; Preis, S.R.; Beiser, A.; Bangen, K.J.; Delano-Wood, L.; Lamar, M.; Libon, D.J.; Seshadri, S.; Wolf, P.A.; Au, R. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-epsilon4. *Alzheimer Dis. Assoc. Disord.* **2016**, *30*, 210–215, doi:10.1097/wad.0000000000000127.

22. Pase, M.P.; Beiser, A.; Aparicio, H.; DeCarli, C.; Vasan, R.S.; Murabito, J.; Seshadri, S. Interarm differences in systolic blood pressure and the risk of dementia and subclinical brain injury. *Alzheimers. Dement.* **2016**, *12*, 438–445, doi:10.1016/j.jalz.2015.09.006.

23. Haring, B.; Liu, J.; Salmoirago-Blotcher, E.; Hayden, K.M.; Sarto, G.; Roussouw, J.; Kuller, L.H.; Rapp, S.R.; Wassertheil-Smoller, S. Blood pressure variability and brain morphology in elderly women without cardiovascular disease. *Neurology* **2019**, *92*, E1284–E1297, doi:10.1212/WNL.0000000000007135.

24. Glodzik, L.; Rusinek, H.; Pirraglia, E.; McHugh, P.; Tsui, W.; Williams, S.; Cummings, M.; Li, Y.; Rich, K.; Randall, C.; et al. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. *Neurobiol. Aging* **2014**, *35*, 64–71, doi:10.1016/j.neurobiolaging.2013.06.011.

25. Bender, A.R.; Raz, N. Age-related differences in memory and executive functions in healthy APOE varepsilon4
carriers: the contribution of individual differences in prefrontal volumes and systolic blood pressure. *Neuropsychologia* 2012, *50*, 704–714, doi:10.1016/j.neuropsychologia.2011.12.025.

26. Suzuki, H.; Gao, H.; Bai, W.; Evangelou, E.; Glocker, B.; O'Regan, D.P.; Elliott, P.; Matthews, P.M. Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension. *PLoS One* 2017, *12*.

27. Brickman, A.M.; Reitz, C.; Luchsinger, J.A.; Manly, J.J.; Schupf, N.; Muraskin, J.; DeCarli, C.; Brown, T.R.; Mayeux, R. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. *Arch. Neurol.* 2010, *67*, 564–569, doi:10.1001/archneurol.2010.70.

28. Paganini-Hill, A.; Bryant, N.; Corrada, M.M.; Greenia, D.E.; Fletcher, E.; Singh, B.; Florioli, D.; Kawas, C.H.; Fisher, M.J. Blood Pressure Circadian Variation, Cognition and Brain Imaging in 90+ Year-Olds. *Front. Aging Neurosci.* 2019, *11*, 54, doi:10.3389/fnagi.2019.00054.

29. Heijer, T. Den; Lijn, F. Van Der; Ikram, A.; Koudstaal, P.J.; Lugt, A. Van Der; Krestin, G.P.; Vrooman, H.A.; Hofman, A.; Niessen, W.J.; Breteler, M.M.B. Vascular risk factors, apolipoprotein E, and hippocampal decline on magnetic resonance imaging over a 10-year follow-up. *Alzheimer’s Dement.* 2012, *8*, 417–425, doi:10.1016/j.jalz.2011.07.005.

30. Muller, M.; Sigurdsson, S.; Kjartansson, O.; Aspelund, T.; Lopez, O.L.; Jonnson, P. V.; Harris, T.B.; Van Buchem, M.; Gudnason, V.; Launer, L.J. Joint effect of mid- and late-life blood pressure on the brain: The AGES-Reykjavik Study. *Neurology* 2014, *82*, 2187–2195, doi:10.1212/WNL.0000000000000517.

31. Korf, E.S.; White, L.R.; Scheltens, P.; Launer, L.J. Midlife blood pressure and the risk of hippocampal atrophy-The Honolulu Asia Aging Study. *Hypertens. (Dallas, Tex. 1979)* 2004, *44*, 29–34, doi:10.1161/01.HYP.0000132475.32317.bb.

32. Scott, J.A.; Braskie, M.N.; Tosun, D.; Thompson, P.M.; Weiner, M.; DeCarli, C.; Carmichael, O.T. Cerebral amyloid and hypertension are independently associated with white matter lesions in elderly. *Front. Aging Neurosci.* 2015, *7*, doi:10.3389/fnagi.2015.00221.

33. Wolfson, L.; Wakefield, D.B.; Moscufo, N.; Kaplan, R.F.; Hall, C.B.; Schmidt, J.A.; Guttmann, C.R.G.; White, W.B. Rapid buildup of brain white matter hyperintensities over 4 years linked to ambulatory blood pressure, mobility, cognition, and depression in old persons. *Journals Gerontol. - Ser. A Biol. Sci. Med. Sci.* 2013, *68*, 1387–1394, doi:10.1093/gerona/glt072.

34. White, W.B.; Wolfson, L.; Wakefield, D.B.; Hall, C.B.; Campbell, P.; Moscufo, N.; Schmidt, J.; Kaplan, R.F.; Pearson, G.; Guttmann, C.R. Average daily blood pressure, not office blood pressure, is associated with progression of cerebrovascular disease and cognitive decline in older people. *Circulation* 2011, *124*, 2312–2319, doi:10.1161/circulationaha.111.037036.

35. Wardlaw, J.M.; Allerhand, M.; Doubl, F.N.; Hernandez, M.V.; Morris, Z.; Gow, A.J.; Bastin, M.; Starr, J.M.; Dennis, M.S.; Dearly, I.J. Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. 2014,
36. Alkan, E.; Taporoski, T.P.; Sterr, A.; von Schantz, M.; Vallada, H.; Krieger, J.E.; Pereira, A.C.; Alvim, R.; Horimoto, A.R.V.R.; Pompéia, S.; et al. Metabolic syndrome alters relationships between cardiometabolic variables, cognition and white matter hyperintensity load. Sci. Rep. 2019, 9, 1–9, doi:10.1038/s41598-019-40630-6.

37. Cherbuin, N.; Mortby, M.E.; Janke, A.L.; Sachdev, P.S.; Abhayaratna, W.P.; Anstey, K.J. Blood Pressure, Brain Structure, and Cognition: Opposite Associations in Men and Women. Am. J. Hypertens. 2015, 28, 225–231, doi:10.1093/ajh/hpu120.

38. DeCarli, C.; Murphy, D.G.; Tranh, M.; Grady, C.L.; Haxby, J. V; Gillette, J.A.; Salerno, J.A.; Gonzales-Aviles, A.; Horwitz, B.; Rapoport, S.I.; et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 1995, 45, 2077–2084.

39. de Jong, L.W.; Forsberg, L.E.; Vidal, J.S.; Sigurdsson, S.; Zijdenbos, A.P.; Garcia, M.; Eiriksdottir, G.; Gudnason, V.; van Buchem, M.A.; Launer, L.J. Different susceptibility of medial temporal lobe and basal ganglia atrophy rates to vascular risk factors. Neurobiol. Aging 2014, 35, 72–78, doi:10.1016/j.neurobiolaging.2013.07.009.

40. Dickie, D.A.; Ritchie, S.J.; Cox, S.R.; Sakka, E.; Royle, N.A.; Aribisala, B.S.; Valdés Hernández, M. del C.; Maniega, S.M.; Pattie, A.; Corley, J.; et al. Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiol. Aging 2016, 42, 116–123, doi:10.1016/j.neurobiolaging.2016.03.011.

41. Gianaros, P.J.; Greer, P.J.; Ryan, C.M.; Jennings, J.R. Higher blood pressure predicts lower regional grey matter volume: Consequences on short-term information processing. Neuroimage 2006, 31, 754–765, doi:10.1016/j.neuroimage.2006.01.003.

42. Goldstein, I.B.; Bartzokis, G.; Guthrie, D.; Shapiro, D. Ambulatory blood pressure and brain atrophy in the healthy elderly. Neurology 2002, 59, 713–719.

43. Habes, M.; Erus, G.; Toledo, J.B.; Zhang, T.; Bryan, N.; Launer, L.J.; Rosseel, Y.; Janowitz, D.; Doshi, J.; Auwera, S. Van Der; et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. 2016, 1164–1179, doi:10.1093/brain/aww008.

44. Jeerakathil, T.; Wolf, P.A.; Beiser, A.; Massaro, J.; Seshadri, S.; D’Agostino, R.B.; DeCarli, C. Stroke risk profile predicts white matter hyperintensity volume-The Framingham Study. Stroke 2004, 35, 1857–1861, doi:10.1161/01.STR.0000135226.53499.85.

45. Kern, K.C.; Wright, C.B.; Bergfield, K.L.; Fitzhugh, M.C.; Sacco, R.L.; Stern, Y.; Decarli, C.S.; Alexander, G.E. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions. 2017, 9, 1–10, doi:10.3389/fnagi.2017.00132.

46. Kobuch, S.; Fatouleh, R.H.; Macefield, J.M.; Henderson, L.A.; Macefield, V.G. Differences in regional grey matter volume of the brain are related to mean blood pressure and muscle sympathetic nerve activity in normotensive humans. J. Hypertens. 2020, 38, 303–313, doi:10.1097/HJH.0000000000002243.

47. Mahinrad, S.; Kurian, S.; Garner, C.R.; Sedaghat, S.; Nemeth, A.J.; Moscufo, N.; Higgins, J.P.; Jacobs, D.R.;
Hausdorff, J.M.; Lloyd-Jones, D.M.; et al. Cumulative Blood Pressure Exposure During Young Adulthood and Mobility and Cognitive Function in Midlife. *Circulation* 2019, doi:10.1161/circulationaha.119.042502.

48. Muller, M.; Sigurdsson, S.; Kjartansson, O.; Gunnarsdottir, I.; Thorsdottir, I.; Harris, T.B.; van Buchem, M.; Gudnason, V.; Launer, L.J. Late-life brain volume: A life-course approach. The AGES-Reykjavik study. *Neurobiol. Aging* 2016, 41, 86–92, doi:10.1016/j.neurobiolaging.2016.02.012.

49. Power, M.C.; Schneider, A.L.C.; Wruck, L.; Griswold, M.; Coker, L.H.; Alonso, A.; Jack, C.R.; Knopman, D.; Mosley, T.H.; Gottesman, R.F. Life-course blood pressure in relation to brain volumes. *Alzheimer’s Dement.* 2016, doi:10.1016/j.jalz.2016.03.012.

50. Schaare, H.L.; Kharabian Masouleh, S.; Beyer, F.; Kumral, D.; Uhlig, M.; Reinelt, J.D.; Reiter, A.M.F.; Lampe, L.; Babayan, A.; Erbey, M.; et al. Association of peripheral blood pressure with gray matter volume in 19- to 40-year-old adults. *Neurology* 2019, 92, E758–E773, doi:10.1212/WNL.0000000000006947.

51. Spartano, N.L.; Himali, J.J.; Beiser, A.S.; Lewis, G.D.; DeCarli, C.; Vasan, R.S.; Seshadri, S. Midlife exercise blood pressure, heart rate, and fitness relate to brain volume 2 decades later. *Neurology* 2016, 86, 1313–1319, doi:10.1212/wnl.0000000000002415.

52. Taki, Y.; Goto, R.; Evans, A.; Zijdenbos, A.; Neelin, P.; Lerch, J.; Sato, K.; Ono, S.; Kinomura, S.; Nakagawa, M.; et al. Voxel-based morphometry of human brain with age and cerebrovascular risk factors. *Neurobiol. Aging* 2004, 25, 455–463, doi:10.1016/j.neurobiolaging.2003.09.002.

53. Taki, Y.; Thyreau, B.; Kinomura, S.; Sato, K.; Goto, R.; Wu, K.; Kawashima, R.; Fukuda, H. A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. *Hum. Brain Mapp.* 2013, 34, 2292–2301, doi:10.1002/hbm.22067.

54. Verhaaren, B.F.J.; Vernooij, M.W.; De Boer, R.; Hofman, A.; Niessen, W.J.; Van Der Lugt, A.; Ikram, M.A. High blood pressure and cerebral white matter lesion progression in the general population. *Hypertension* 2013, doi:10.1161/HYPERTENSIONAHA.111.00430.