MINIMAL MASS BLOW-UP SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS
WITH A SINGULAR POTENTIAL

NAOKI MATSUI

Abstract. We consider the following nonlinear Schrödinger equation with an inverse-log potential:
\[
\frac{\partial u}{\partial t} + \Delta u + |u|^2 u + \frac{1}{|x|^{2\sigma}} \log |x| u = 0
\]
in \(\mathbb{R}^N\). From the classical argument, the solution with subcritical mass \(\|u\|_2 < \|Q\|_2\) is global and bounded in \(H^1(\mathbb{R}^N)\). Here, \(Q\) is the ground state of the mass-critical problem. Therefore, we are interested in the existence and behaviour of blow-up solutions for the threshold \(\|u_0\|_2 = \|Q\|_2\).

1. Introduction

We consider the following nonlinear Schrödinger equation with an inverse-log potential:
\[
\frac{\partial u}{\partial t} + \Delta u + |u|^2 u + \frac{1}{|x|^{2\sigma}} \log |x| u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,
\]
where \(N \in \mathbb{N}\) and \(\sigma \in \mathbb{R}\). It is well known that if
\[
0 < \sigma < \min \left\{ \frac{N}{2}, 1 \right\},
\]
then \((1)\) is locally well-posed in \(H^1(\mathbb{R}^N)\) from \cite{2} Proposition 3.2.2, Proposition 3.2.5, Theorem 3.3.9, and Proposition 4.2.3. This means that for any initial value \(u_0 \in H^1(\mathbb{R}^N)\), there exists a unique maximal solution \(u \in C((T_*, T^*), H^1(\mathbb{R}^N)) \cap C^1((T_*, T^*), H^{-1}(\mathbb{R}^N))\) for \((1)\) with \(u(0) = u_0\). Moreover, the mass (i.e., \(L^2\)-norm) and energy \(E\) of the solution \(u\) are conserved by the flow, where
\[
E(u) := \frac{1}{2} \|\nabla u\|^2_2 - \frac{1}{2 + \frac{\sigma}{N}} \|u\|_{2+\frac{\sigma}{N}}^2 + \frac{1}{2} \int_{\mathbb{R}^N} \frac{1}{|x|^{2\sigma}} \log |x| \|u(x)\|^2 dx.
\]
Furthermore, the blow-up alternative holds:
\[T^* < \infty \quad \text{implies} \quad \lim_{t \nearrow T^*} \|\nabla u(t)\|_2 = \infty.\]

We define \(\Sigma^k\) by
\[
\Sigma^k := \left\{ u \in H^k(\mathbb{R}^N) \mid |x|^k u \in L^2(\mathbb{R}^N) \right\}, \quad \|u\|_{2+k}^2 := \|\nabla u\|_{2+k}^2 + \|u\|^2_{2+k}.
\]
Particularly, \(\Sigma^1\) is called the virial space. If \(u_0 \in \Sigma^1\), then the solution \(u\) for \((1)\) with \(u(0) = u_0\) belongs to \(C((T_*, T^*), \Sigma^1)\) from \cite{2} Lemma 6.5.2.

Moreover, we consider the case
\[
0 < \sigma < \min \left\{ \frac{N}{4}, 1 \right\}.
\]
If \(u_0 \in H^2(\mathbb{R}^N)\), then the solution \(u\) for \((1)\) with \(u(0) = u_0\) belongs to \(C((T_*, T^*), H^2(\mathbb{R}^N)) \cap C^1((T_*, T^*), L^2(\mathbb{R}^N))\) and \(|x|\nabla u \in C((T_*, T^*), L^2(\mathbb{R}^N))\) from \cite{2} Theorem 5.3.1. Furthermore, if \(u_0 \in \Sigma^2\), then the solution \(u\) for \((1)\)
with \(u(0) = u_0 \) belongs to \(C((T_*, T^*), \Sigma^2) \cap C^1((T_*, T^*), L^2(\mathbb{R}^N)) \) and \(|x| \nabla u \in C((T_*, T^*), L^2(\mathbb{R}^N))\) from the same proof as in [2, Lemma 6.5.2].

1.1. Critical problem. Firstly, we describe the results regarding the mass-critical problem:

(4) \[i \frac{\partial u}{\partial t} + \Delta u + |u|^\frac{4}{N} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N, \]

In particular, (4) with \(\sigma = 0 \) is reduced to (1).

It is well known ([11] [13] [18]) that there exists a unique classical solution \(Q \) for

\[-\Delta Q + Q - |Q|^\frac{4}{N} Q = 0, \quad Q \in H^1(\mathbb{R}^N), \quad Q > 0, \quad Q \text{ is radial}, \]

which is called the ground state. If \(|u|_2 = |Q|_2 \) \((|u|_2 < |Q|_2, \ |u|_2 > |Q|_2)\), we say that \(u \) has the critical mass (subcritical mass, supercritical mass, respectively).

We note that \(E_{\text{crit}}(Q) = 0 \), where \(E_{\text{crit}} \) is the energy with respect to (4). Moreover, the ground state \(Q \) attains the best constant in the Gagliardo-Nirenberg inequality

\[\|v\|_{2^*}^{2^*} \leq \left(1 + \frac{2}{N} \right) \left(\frac{|v|_2}{|Q|_2} \right)^\frac{4^*}{2} \|\nabla v\|_2^2 \quad \text{for} \ v \in H^1(\mathbb{R}^N). \]

Therefore, for all \(v \in H^1(\mathbb{R}^N) \),

\[E_{\text{crit}}(v) \geq \frac{1}{2} \|\nabla v\|_2^2 \left(1 - \left(\frac{|v|_2}{|Q|_2} \right)^\frac{4^*}{2} \right) \]

holds. This inequality and the mass and energy conservations imply that any subcritical mass solution for (4) is global and bounded in \(H^1(\mathbb{R}^N) \).

Regarding the critical mass case, we apply the pseudo-conformal transformation

\[u(t, x) \mapsto \frac{1}{|t|^{\frac{N}{2}}} u \left(-\frac{1}{t}, \pm \frac{x}{t} \right) e^{i|\nabla u|^2}, \]

to the solitary wave solution \(u(t, x) := Q(x) e^{it} \). Then we obtain

\[S(t, x) := \frac{1}{|t|^{\frac{N}{2}}} Q \left(\frac{x}{t} \right) e^{-\frac{4}{N} \cdot \frac{|\nabla u|^2}{|t|^2}}, \]

which is also a solution for (4) and satisfies

\[\|S(t)\|_2 = |Q|_2, \quad \|\nabla S(t)\|_2 \sim \frac{1}{|t|} \quad (t \nearrow 0). \]

Namely, \(S \) is a minimal mass blow-up solution for (4). Moreover, \(S \) is the only finite time blow-up solution for (4) with critical mass, up to the symmetries of the flow (see [13]).

Regarding the supercritical mass case, there exists a solution \(u \) for (4) such that

\[\|\nabla u(t)\|_2 \sim \sqrt{\frac{\log(\log|T^*-t|)}{T^*-t}} \quad (t \nearrow T^*) \]

(see [12] [23]).

1.2. Previous results. Le Coz, Martel, and Raphael [6] based on the methodology of [14] obtains the following results for

(5) \[i \frac{\partial u}{\partial t} + \Delta u + |u|^\frac{4}{N} u + |u|^{p-1} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N. \]

Theorem 1.1 ([6] [11]). Let \(1 < p < 1 + \frac{4}{N} \), and \(\pm = + \). Then for any energy level \(E_0 \in \mathbb{R} \), there exist \(t_0 < 0 \) and a radially symmetric initial value \(u_0 \in H^1(\mathbb{R}^N) \) with

\[\|u_0\|_2 = |Q|_2, \quad E(u_0) = E_0 \]
such that the corresponding solution u for (3) with $u(t_0) = u_0$ blows up at $t = 0$ with a blow-up rate of

$$\|\nabla u(t)\|_2 = \frac{C(p) + o_{t \to 0}(t)}{|t|^\sigma},$$

where $\sigma = \frac{4}{4 + N(p - 1)}$ and $C(p) > 0$.

Theorem 1.2 (8). Let $1 < p < 1 + \frac{2}{N}$, and $\pm = -$. If an initial value has critical mass, then the corresponding solution for (3) with $u(0) = u_0$ is global and bounded in $H^1(\mathbb{R}^N)$.

8 obtains the following results for (6)

$$i \frac{\partial u}{\partial t} + \Delta u + |u|^{4} u + \frac{1}{|x|^{2\sigma}} u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N.$$

Theorem 1.3 (8). Assume (3). Then for any energy level $E_0 \in \mathbb{R}$, there exist $t_0 < 0$ and a radially symmetric initial value $u_0 \in H^1(\mathbb{R}^N)$ with $\|u_0\|_2 = \|Q\|_2$, $E(u_0) = E_0$ such that the corresponding solution u for (3) with $\pm = +$ and $u(t_0) = u_0$ blows up at $t = 0$. Moreover,

$$\left| \left| u(t) - \frac{1}{\lambda(t)^{\sigma}} P \left(t, \frac{x}{\lambda(t)} \right) e^{-i \frac{\lambda(t)}{\lambda(t) \sigma} |x|^2 + \gamma(t)} \right| \right|_{\Sigma^1} \to 0 \quad (t \nearrow 0)$$

holds for some blow-up profile P and C^1 functions $\lambda : (t_0, 0) \to (0, \infty)$ and $b, \gamma : (t_0, 0) \to \mathbb{R}$ such that

$$P(t) \to Q \quad \text{in} \quad H^1(\mathbb{R}^N), \quad \lambda(t) = C_1(\sigma) |t|^{\frac{1}{1+\sigma}} (1 + o(1)), \quad b(t) = C_2(\sigma) |t|^{\frac{1}{1+\sigma}} (1 + o(1)), \quad \gamma(t)^{-1} = O \left(|t|^{\frac{1}{1+\sigma}} \right)$$

as $t \nearrow 0$.

On the other hand, the following result holds in (6) with $\pm = -$.

Theorem 1.4 (8). Assume $N \geq 2$ and (2). If $u_0 \in H^1_{\text{rad}}(\mathbb{R}^N)$ such that $\|u_0\|_2 = \|Q\|_2$, the corresponding solution u for (3) with $\pm = -$ and $u(0) = u_0$ is global and bounded in $H^1(\mathbb{R}^N)$.

1.3. **Main results.** It is immediately clear from the classical argument that all subcritical-mass solutions for (1) with (2) are global and bounded in $H^1(\mathbb{R}^N)$.

In contrast, regarding critical mass in (1) with $\pm = -$, we obtain the following result:

Theorem 1.5 (Existence of a minimal-mass blow-up solution). Assume (3). Then for any energy level $E_0 \in \mathbb{R}$, there exist $t_0 < 0$ and a radially symmetric initial value $u_0 \in H^1(\mathbb{R}^N)$ with $\|u_0\|_2 = \|Q\|_2$, $E(u_0) = E_0$ such that the corresponding solution u for (1) with $\pm = -$ and $u(t_0) = u_0$ blows up at $t = 0$. Moreover,

$$\left| \left| u(t) - \frac{1}{\lambda(t)^{\sigma}} P \left(t, \frac{x}{\lambda(t)} \right) e^{-i \frac{\lambda(t)}{\lambda(t) \sigma} |x|^2 + \gamma(t)} \right| \right|_{\Sigma^1} \to 0 \quad (t \nearrow 0)$$

holds for some blow-up profile P and C^1 functions $\lambda : (t_0, 0) \to (0, \infty)$ and $b, \gamma : (t_0, 0) \to \mathbb{R}$ such that

$$P(t) \to Q \quad \text{in} \quad H^1(\mathbb{R}^N), \quad \lambda(t) \approx |t|^{\frac{1}{1+\sigma}} \log |t| |t|^{\frac{1}{1+\sigma}}, \quad b(t) \approx |t|^{\frac{1}{1+\sigma}} \log |t| |t|^{\frac{1}{1+\sigma}}, \quad \gamma(t)^{-1} = O \left(|t|^{\frac{1}{1+\sigma}} \right)$$

as $t \nearrow 0$.

On the other hand, the following result holds in (1) with $\pm = +$.

Theorem 1.6 (Non-existence of a radial minimal-mass blow-up solution). Assume $N \geq 2$ and (2). If $u_0 \in H^1_{\text{rad}}(\mathbb{R}^N)$ such that $\|u_0\|_2 = \|Q\|_2$, the corresponding solution u for (1) with $\pm = +$ and $u(0) = u_0$ is global and bounded in $H^1(\mathbb{R}^N)$.

This result is proved in the same way as for Theorem 1.2 and Theorem 1.4.
We can expect that there exists a critical-mass blow-up solution such that the blow-up rate is
\[\frac{1}{|x|^{2\sigma}} \leq -\frac{1}{|x|^{2\sigma}} \log |x| \leq \frac{1}{|x|^{2(\sigma+\epsilon)}} \]
holds for any \(\epsilon > 0 \). The corresponding blow-up rates from Theorem 1.3 and Theorem 1.5 satisfy
\[|t|^{-\frac{4}{1+\sigma}} \gtrsim |t|^{-\frac{2}{1+\sigma}} \log |t|^{-\frac{2}{1+\sigma}} \gtrsim |t|^{-\frac{4}{1+\sigma}}. \]
This suggests that a large or small relationship between the strength of the potential’s singularities gives a large or small relationship for the blow-up rates.

This result suggests that it is possible to construct a critical-mass blow-up solution if an equation such as
\[0 = i\frac{\partial v}{\partial s} + \Delta v - v + f(v) + g_1(\lambda)g_2(y,v) + \text{error terms} \]
can be obtained by separating \(\lambda \) from \(v \), as in [S]. In order to construct an blow-up solution, it is necessary to be able to obtain at least \(\lambda_{\text{app}}, b_{\text{app}} \) in Lemma 5.1 and define \(F \) in Lemma 5.4. Furthermore, in the case of \(g(\lambda) = O(\lambda^2) \), we can expect that there exists a critical-mass blow-up solution such that the blow-up rate is \(t^{-1} \).

2. Notations

In this section, we introduce the notation used in this paper.

Let
\[\mathbb{N} := \mathbb{Z}_{\geq 1}, \quad \mathbb{N}_0 := \mathbb{Z}_{\geq 0}. \]

We define
\[(u,v)_2 := \text{Re} \int_{\mathbb{R}^N} u(x)\overline{v}(x)dx, \quad \|u\|_p := \left(\int_{\mathbb{R}^N} |u(x)|^pdx \right)^{\frac{1}{p}}, \]
\[f(z) := |z|^\frac{4}{N}z, \quad F(z) := \frac{1}{2 + \frac{4}{N}}|z|^{2 + \frac{4}{N}} \quad \text{for } z \in \mathbb{C}. \]

By identifying \(\mathbb{C} \) with \(\mathbb{R}^2 \), we denote the differentials of \(f \) and \(F \) by \(df \) and \(dF \), respectively. We define
\[\Lambda := \frac{N}{2} + x \cdot \nabla, \quad L_+ := -\Delta + 1 - \left(1 + \frac{4}{N} \right) Q^\frac{4}{N}, \quad L_- := -\Delta + 1 - Q^\frac{4}{N}. \]

Namely, \(\Lambda \) is the generator of \(L^2 \)-scaling, and \(L_+ \) and \(L_- \) come from the linearised Schrödinger operator to close \(Q \). Then
\[L_- Q = 0, \quad L_+ \Lambda Q = -2Q, \quad L_- |x|^2 Q = -4\Lambda Q, \quad L_+ \rho = |x|^2 Q, \quad L_- x Q = -\nabla Q \]
hold, where \(\rho \in \mathcal{S}(\mathbb{R}^N) \) is the unique radial solution for \(\rho = |x|^2 Q \). Note that there exist \(C_\alpha, \kappa_\alpha > 0 \) such that
\[\left| \left(\frac{\partial}{\partial x} \right)^\alpha Q(x) \right| \leq C_\alpha Q(x), \quad \left| \left(\frac{\partial}{\partial x} \right)^\alpha \rho(x) \right| \leq C_\alpha (1 + |x|)^{\kappa_\alpha} Q(x). \]

for any multi-index \(\alpha \). Furthermore, there exists \(\mu > 0 \) such that for all \(u \in H_1^{\text{rad}}(\mathbb{R}^N) \),
\[(L_+ \text{ Re } u, \text{ Re } u) + (L_- \text{ Im } u, \text{ Im } u) \geq \mu \|u\|^2_{H^1} - \frac{1}{\mu} \left((\text{Re } u, Q)_2^2 + (\text{Re } u, |x|^2 Q)_2^2 + (\text{Im } u, \rho)_2^2 \right) \]
(e.g., see [11] [12] [13] [17]). We denote by \(\mathcal{Y} \) the set of functions \(g \in C^\infty(\mathbb{R}^N \setminus \{0\}) \cap C(\mathbb{R}^N) \cap H_1^{\text{rad}}(\mathbb{R}^N) \) such that
\[\exists C_\alpha, \kappa_\alpha > 0, \quad |x| \geq 1 \Rightarrow \left| \left(\frac{\partial}{\partial x} \right)^\alpha g(x) \right| \leq C_\alpha (1 + |x|)^{\kappa_\alpha} Q(x) \]
for any multi-index \(\alpha \). Moreover, we defined by \(\mathcal{Y'} \) the set of functions \(g \in \mathcal{Y} \) such that
\[\Lambda g \in H^1(\mathbb{R}^N) \cap C(\mathbb{R}^N). \]
Finally, we use the notation \(\lesssim\) and \(\gtrsim\) when the inequalities hold up to a positive constant. We also use the notation \(\approx\) when \(\lesssim\) and \(\gtrsim\) hold. Moreover, positive constants \(C\) and \(\varepsilon\) are sufficiently large and small, respectively.

3. CONSTRUCTION OF A BLOW-UP PROFILE

In this section, we construct a blow-up profile \(P\) and introduce a decomposition of functions based on the methodology in [6, 14].

Heuristically, we state the strategy. We look for a blow-up solution in the form of (8):

\[
u(t, x) = \frac{1}{\lambda(s)^{\alpha}} v(s, y) e^{-\frac{|\lambda(s)|y^2}{4} + \gamma(s)}, \quad y = \frac{x}{\lambda(s)}, \quad \frac{ds}{dt} = \frac{1}{\lambda(s)^2}, \]

where \(v\) satisfies

\[
0 = i \frac{\partial v}{\partial s} + \Delta v - v + f(v) - \lambda^\alpha \log \lambda \frac{1}{|y|^{2\sigma}} v - \lambda^\alpha \frac{1}{|y|^{2\sigma}} \log |y| v
- i \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) \lambda v + \left(1 - \frac{\partial \gamma}{\partial s} \right) v + \left(\frac{\partial b}{\partial s} + b^2 \right) \frac{|y|^2}{4} v - \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) b \frac{|y|^2}{2} v,
\]

(8)

where \(\alpha = 2 - 2\sigma\). Since we look for a blow-up solution, it may hold that \(\lambda(s) \to 0\) as \(s \to \infty\). Therefore, it seems that \(\lambda^\alpha |y|^{-2\sigma} v\) is ignored. By ignoring \(\lambda^\alpha |y|^{-2\sigma} v\),

\[v(s, y) = Q(y), \quad \frac{1}{\lambda(s)} \frac{\partial \lambda}{\partial s} + b = 1 - \frac{\partial \gamma}{\partial s} \quad \text{and} \quad \frac{\partial b}{\partial s} + b^2 = 0\]

is a solution of (8). Accordingly, \(v\) is expected to be close to \(Q\). We now consider the case where \(\sigma = 0\), i.e., the critical problem. Then \(\lambda^2 v\) corresponds to the linear term with the constant coefficient and can be removed by an appropriate transformation. In other words, \(\lambda^2 v\) is a negligible term for the construction of minimal-mass blow-up solutions. This suggests that \(\alpha = 2\) may be the threshold for ignoring the term in the context of minimal-mass blow-up. Therefore, \(\lambda^\alpha |y|^{-2\sigma} v\) may become a non-negligible term if \(\alpha < 2\), i.e., \(\sigma > 0\). Also, (8) is difficult to solve explicitly. Consequently, we construct an approximate solution \(P\) that is close to \(Q\) and fully incorporates the effects of \(\lambda^\alpha |y|^{-2\sigma} v\), e.g., the singularity of the origin.

For \(K \in \mathbb{N}\), we define

\[\Sigma_K := \{ (j, k_1, k_2) \in \mathbb{N}_0^3 \mid j + k_1 + k_2 \leq K \} .\]

Proposition 3.1. Let \(K, K' \in \mathbb{N}\) be sufficiently large. Let \(\lambda(s) > 0\) and \(b(s) \in \mathbb{R}\) be \(C^1\) functions of \(s\) such that \(\lambda(s) + |b(s)| \ll 1\).

(i) Existence of blow-up profile. For any \((j, k_1, k_2) \in \Sigma_{K+K'}\), there exist \(P^+_{1,j,k_1,k_2}, P^+_{2,j,k_1,k_2}, P^-_{1,j,k_1,k_2}, P^-_{2,j,k_1,k_2} \in \mathcal{V}', \beta_{1,j,k_1,k_2}, \beta_{2,j,k_1,k_2} \in \mathbb{R}\), and \(\Psi \in H^1(\mathbb{R}^N)\) such that \(P\) satisfies

\[
\frac{\partial P}{\partial s} + \Delta P - P + f(P) - \lambda^\alpha \log \lambda \frac{1}{|y|^{2\sigma}} P - \lambda^\alpha \frac{1}{|y|^{2\sigma}} \log |y| P + \theta \frac{|y|^2}{4} P = \Psi,
\]

where \(\alpha = 2 - 2\sigma\), and \(P\) and \(\theta\) are defined by

\[P(s, y) := Q(y) + \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b(s)^{2j} (\lambda(s)^\alpha \log \lambda(s))^{k_1} \lambda(s)^{k_2} \alpha \left(\lambda(s)^\alpha \log \lambda(s) P^+_{1,j,k_1,k_2}(y) + \lambda(s)^\alpha P^+_{2,j,k_1,k_2}(y) \right)
+ \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b(s)^{2j+1} (\lambda(s)^\alpha \log \lambda(s))^{k_1} \lambda(s)^{k_2} \alpha \left(\lambda(s)^\alpha \log \lambda(s) P^-_{1,j,k_1,k_2}(y) + \lambda(s)^\alpha P^-_{2,j,k_1,k_2}(y) \right),\]

\[\theta(s) := \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b(s)^{2j} (\lambda(s)^\alpha \log \lambda(s))^{k_1} \lambda(s)^{k_2} \alpha (-\lambda(s)^\alpha \log \lambda(s) \beta_{1,j,k_1,k_2} + \lambda(s)^\alpha \beta_{2,j,k_1,k_2}) .\]

Moreover, for some sufficiently small \(\varepsilon' > 0\),

\[
\left\| e^{\varepsilon'|y|} \Psi \right\|_{H^1} \lesssim \lambda^\alpha |\log \lambda| \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) + \frac{\partial b}{\partial s} + b^2 + \theta + (b^2 + \lambda^\alpha |\log \lambda|)^{K+2}\]

holds.
(ii) **Mass and energy properties of blow-up profile.** Let define

\[P_{\lambda,b,\gamma}(s,x) := \frac{1}{\lambda(s)^2} P \left(s, \frac{x}{\lambda(s)} \right) e^{-\frac{1}{\lambda(s)^2} \frac{|x|^2}{2} + \gamma(s)}. \]

Then

\[
\left| \frac{d}{ds} \| P_{\lambda,b,\gamma} \|_2^2 \right| \leq \lambda^\alpha |\log \lambda| \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) + \frac{\partial b}{\partial s} + b^2 - \theta \right) + (b^2 + \lambda^\alpha |\log \lambda|)^{K+2},
\]

\[
\left| \frac{d}{ds} E(P_{\lambda,b,\gamma}) \right| \leq \frac{1}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) + \frac{\partial b}{\partial s} + b^2 - \theta \right) + (b^2 + \lambda^\alpha |\log \lambda|)^{K+2}
\]

hold. Moreover,

\[
\left| 8E(P_{\lambda,b,\gamma}) - \| y \| Q \|_2^2 \left(\frac{b^2}{\lambda^2} + \frac{2\beta_1}{2-\alpha} \lambda^{\alpha-2} \log \lambda - \beta_1' \lambda^{\alpha-2} \right) \right| \leq \frac{\lambda^\alpha |\log \lambda| (b^2 + \lambda^\alpha |\log \lambda|)}{\lambda^2}
\]

holds, where

\[
\beta_1 := \beta_{1,0,0,0} = \frac{4\sigma \| \cdot \|_{-\sigma} Q \|_2^2}{\| \cdot \| Q \|_2^2} > 0 \quad \beta_1' := \frac{4}{\| \| Q \|_2^2} \int_{\mathbb{R}^n} \frac{1}{|y|^{2\sigma}} \log |y| Q^2 \, dy.
\]

proof. See [6, 8] for details of proofs.

We prove (i). We set

\[
Z_1 := \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b^{2j} (\lambda^\alpha \log \lambda)^{k_1} \lambda^{k_2\alpha} P_{1,j,k_1,k_2}^+ + i \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b^{2j+1} (\lambda^\alpha \log \lambda)^{k_1} \lambda^{k_2\alpha} P_{1,j,k_1,k_2}^-,
\]

\[
Z_2 := \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b^{2j} (\lambda^\alpha \log \lambda)^{k_1} \lambda^{k_2\alpha} P_{2,j,k_1,k_2}^+ + i \sum_{(j,k_1,k_2) \in \Sigma_{K+K'}} b^{2j+1} (\lambda^\alpha \log \lambda)^{k_1} \lambda^{k_2\alpha} P_{2,j,k_1,k_2}^-,
\]

Then \(P = Q + \lambda^\alpha \log \lambda Z_1 + \lambda^\alpha Z_2 \) holds. Moreover, let set

\[
\Theta(s) := \sum_{(j,k) \in \Sigma_{K+K'}} b(s)^{2j} (\lambda(s)^\alpha \log \lambda(s))^{k_1} \lambda(s)^{k_2\alpha} \left(\lambda(s)^\alpha \log \lambda(s)c_{1,j,k_1,k_2}^+ + \lambda(s)^\alpha c_{2,j,k_1,k_2}^+ \right),
\]

\[
\Phi := i \frac{\partial P}{\partial s} + \Delta P - P + f(P) - \lambda^\alpha \log \lambda \frac{1}{|y|^{2\sigma}} P - \lambda^\alpha \frac{1}{|y|^{2\sigma}} \log |y| P + \theta \frac{|y|^2}{4} P + \Theta Q,
\]

where \(P_{\bullet,j,k_1,k_2}^\pm \in \mathcal{Y} \) and \(\beta_{\bullet,j,k_1,k_2}, c_{\bullet,j,k_1,k_2}^+ \in \mathbb{R} \) are to be determined.
As in [8], there exist F_{\pm,j_k,k_2}^σ, F_{\ast,j_k,k_2}^\log, F_{\pm,j_k,k_2}^\pm, and Φ such that

$$i \frac{\partial P}{\partial s} + \Delta P - P + f(P) - \lambda^\sigma \log \lambda \frac{1}{|y|^{2\sigma}} P - \lambda^\sigma \frac{1}{|y|^{2\sigma}} \log |y| P + \theta \frac{|y|^2}{4} P + \Theta Q$$

$$= \sum_{(j,k_1,k_2) \in \Sigma_{\kappa + \kappa'}} b^{2j} (\lambda^\sigma \log \lambda)^{k_1+1} \lambda^{k_2}$$

$$\times \left(- L_+ P_{1,j_k,k_2}^+ - \beta_{1,j_k,k_2} \frac{|y|^2}{4} Q - \frac{1}{|y|^{2\sigma}} F_{1,j_k,k_2}^\sigma - \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j_k,k_2}^\log + F_{1,j_k,k_2}^+ + c_{1,j_k,k_2}^+ \right)$$

$$+ \sum_{(j,k_1,k_2) \in \Sigma_{\kappa + \kappa'}} b^{2j} (\lambda^\sigma \log \lambda)^{k_1+1} \lambda^{k_2}$$

$$\times \left(- L_+ P_{2,j_k,k_2}^+ - \beta_{2,j_k,k_2} \frac{|y|^2}{4} Q - \frac{1}{|y|^{2\sigma}} F_{2,j_k,k_2}^\sigma - \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j_k,k_2}^\log + F_{2,j_k,k_2}^+ + c_{2,j_k,k_2}^+ \right)$$

$$+ \sum_{(j,k_1,k_2) \in \Sigma_{\kappa + \kappa'}} b^{2j} (\lambda^\sigma \log \lambda)^{k_1+1} \lambda^{k_2}$$

$$\times \left(- L_+ P_{1,j_k,k_2}^- - (2j + (k_1 + k_2 + 1)\alpha) P_{1,j_k,k_2}^+ - \frac{1}{|y|^{2\sigma}} F_{1,j_k,k_2}^\sigma - \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j_k,k_2}^\log - F_{1,j_k,k_2}^- \right)$$

$$+ \sum_{(j,k_1,k_2) \in \Sigma_{\kappa + \kappa'}} b^{2j} (\lambda^\sigma \log \lambda)^{k_1+1} \lambda^{k_2}$$

$$\times \left(- L_+ P_{2,j_k,k_2}^- - (2j + (k_1 + k_2 + 1)\alpha) P_{2,j_k,k_2}^+ - \frac{1}{|y|^{2\sigma}} F_{2,j_k,k_2}^\sigma - \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j_k,k_2}^\log - F_{2,j_k,k_2}^- \right)$$

$$+ \Phi.$$
Moreover,
\[\| e^{\gamma |y|} \Theta Q \|_{H^1} \lesssim (b^2 + \lambda^\alpha \log \lambda)^{K+2} \]
holds. Therefore, we have
\[\| e^{\gamma |y|} \Psi \|_{H^1} \lesssim \lambda^\alpha \| \psi \|_{H^1} \left(\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b \right) \left(\frac{\partial b}{\partial s} + b^2 - \theta \right) + (b^2 + \lambda^\alpha)^{K+2}, \]
where \(\Psi := \Phi - \Theta Q. \)

The rest is the same as in [6, 8]. \(\Box \)

In the rest of this section, we construct solutions \((P^+_{j,k}, P^-_{j,k}, \beta_{j,k}, c^+_{j,k}) \in \mathcal{Y}^2 \times \mathbb{R}^2 \) for systems \((S_{j,k}) \) in the proof of Proposition 3.1.

Proposition 3.2. The system \((S_{j,k}) \) has a solution \((P^+_{j,k}, P^-_{j,k}, \beta_{j,k}, c^+_{j,k}) \in \mathcal{Y}^2 \times \mathbb{R}^2 \).

proof. We solve
\[
\begin{align*}
(S_{j,k}) \quad & \left\{ \begin{array}{l}
L_+ P^+_{1,j,k_1,k_2} + \beta_{1,j,k_1,k_2} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} F_{1,j,k_1,k_2}^{\gamma,+,} + \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j,k_1,k_2}^{\log,+,} - F^+_{1,j,k_1,k_2} - c^+_{1,j,k_1,k_2} Q = 0, \\
L_+ P^+_{2,j,k_1,k_2} - \beta_{2,j,k_1,k_2} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} F_{2,j,k_1,k_2}^{\gamma,+,} + \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j,k_1,k_2}^{\log,+,} - F^+_{2,j,k_1,k_2} - c^+_{2,j,k_1,k_2} Q = 0, \\
L_- P^-_{1,j,k_1,k_2} + (2j + (k_1 + k_2 + 1) \alpha) P^+_{1,j,k_1,k_2} + \frac{1}{|y|^{2\sigma}} F_{1,j,k_1,k_2}^{\gamma,-} + \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j,k_1,k_2}^{\log,-} - F^+_{1,j,k_1,k_2} = 0, \\
L_- P^-_{2,j,k_1,k_2} + (2j + (k_1 + k_2 + 1) \alpha) P^+_{2,j,k_1,k_2} + \frac{1}{|y|^{2\sigma}} F_{2,j,k_1,k_2}^{\gamma,-} + \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j,k_1,k_2}^{\log,-} - F^+_{2,j,k_1,k_2} = 0.
\end{array} \right.
\]
\[
(\tilde{S}_{j,k}) \quad & \left\{ \begin{array}{l}
L_+ \tilde{P}^+_{1,j,k_1,k_2} + \beta_{1,j,k_1,k_2} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} F_{1,j,k_1,k_2}^{\gamma,+,} + \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j,k_1,k_2}^{\log,+,} - F^+_{1,j,k_1,k_2} = 0, \\
L_+ \tilde{P}^+_{2,j,k_1,k_2} - \beta_{2,j,k_1,k_2} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} F_{2,j,k_1,k_2}^{\gamma,+,} + \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j,k_1,k_2}^{\log,+,} - F^+_{2,j,k_1,k_2} = 0, \\
L_- \tilde{P}^-_{1,j,k_1,k_2} + (2j + (k_1 + k_2 + 1) \alpha) \tilde{P}^+_{1,j,k_1,k_2} + \frac{1}{|y|^{2\sigma}} F_{1,j,k_1,k_2}^{\gamma,-} + \frac{1}{|y|^{2\sigma}} \log |y| F_{1,j,k_1,k_2}^{\log,-} - F^+_{1,j,k_1,k_2} = 0, \\
L_- \tilde{P}^-_{2,j,k_1,k_2} + (2j + (k_1 + k_2 + 1) \alpha) \tilde{P}^+_{2,j,k_1,k_2} + \frac{1}{|y|^{2\sigma}} F_{2,j,k_1,k_2}^{\gamma,-} + \frac{1}{|y|^{2\sigma}} \log |y| F_{2,j,k_1,k_2}^{\log,-} - F^+_{2,j,k_1,k_2} = 0.
\end{array} \right.
\]
For \((S_{j,k})\), we consider the following two systems:

\[
(\tilde{S}^\prime_{j,k}) \quad \left\{ \begin{array}{l}
P^+_{j,k_1,k_2} = -\frac{c^+_{j,k_1,k_2}}{2} \Lambda Q, \\
P^-_{j,k_1,k_2} = -\frac{c^-_{j,k_1,k_2}}{2} \frac{(2j + (k_1 + k_2 + 1) \alpha) c^+_{j,k_1,k_2}}{8} |y|^2 Q.
\end{array} \right.
\]

Then by applying \((\tilde{S}^\prime_{j,k})\) to a solution for \((\tilde{S}_{j,k})\), we obtain a solution for \((S_{j,k})\).

Firstly, we solve
\[
(\tilde{S}_{0,0}) \quad \left\{ \begin{array}{l}
L_+ \tilde{P}^+_{1,0,0,0} + \beta_{1,0,0,0} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} Q = 0, \\
L_+ \tilde{P}^+_{2,0,0,0} - \beta_{2,0,0,0} \frac{|y|^2}{4} Q + \frac{1}{|y|^{2\sigma}} \log |y| Q = 0, \\
L_- \tilde{P}^-_{0,0,0,0} + \alpha \tilde{P}^+_{0,0,0,0} = 0.
\end{array} \right.
\]
For any \(\beta_{1,0,0,0} \in \mathbb{R}\), there exists a solution \(\tilde{P}^+_{1,0,0,0} \in \mathcal{Y}\). Let
\[
\beta_{1,0,0,0} := \frac{4\alpha \| \cdot \|_{-\sigma} Q \|_2^2}{\| \cdot \|_2^2}.
\]
Then since
\[\left(\bar{P}^+_{1,0,0,0} \right)_2 = -\frac{1}{2} \left< L + \bar{P}^+_{1,0,0,0} \right| Q \right>_2 = -\frac{1}{2} \left(\frac{\beta_0}{4} \right) = 0, \]
there exists a solution \(\bar{P}^-_{1,0,0,0} \in \mathcal{Y} \). By taking \(\epsilon_{1,0,0,0} = 0 \), we obtain a solution \((P^+_{1,0,0,0}, P^-_{1,0,0,0}, \beta_{1,0,0,0}, c^+_{1,0,0,0}) \in \mathcal{Y}^2 \times \mathbb{R}^2 \). Similarly, we obtain a solution \((P^+_{2,0,0,0}, P^-_{2,0,0,0}, \beta_{2,0,0,0}, c^+_{2,0,0,0}) \in \mathcal{Y}^2 \times \mathbb{R}^2 \). Here, let \(H(j_0, k_1, k_2) \) denote by that
\[\forall (j, k_1, k_2) \in \Sigma_{K+K'}, \quad k_2 < k_2 \text{ or } (k_2 = k_2 \text{ and } k_1 < k_1) \text{ or } (k_2 = k_2 \text{ and } k_1 = k_1 \text{ and } j < j_0) \]
\[\Rightarrow (S_{j_1,k_1,k_2}) \text{ has a solution } (P^+_{j_1,k_1,k_2}, P^-_{j_1,k_1,k_2}, \beta_{j_1,k_1,k_2}, c^+_{j_1,k_1,k_2}) \in \mathcal{Y}^2 \times \mathbb{R}^2. \]
From the above discuss, \(H(1,0,0) \) is true. If \(H(j_0, k_1, k_2) \) is true, then \(P^\pm_{j_0,k_1,k_2} \) is defined and belongs to \(\mathcal{Y} \). Moreover, for any \(\beta_{j_0,k_1,k_2} \), there exists a solution \(\bar{P}^\pm_{j_0,k_1,k_2} \). Let be \(\beta_{j_0,k_1,k_2} \) such that
\[\left((2j + (k_1 + k_2 + 1)\alpha) \bar{P}^\pm_{j_1,k_1,k_2} + \frac{1}{|y|^{2\sigma}} F^\sigma_{j_1,k_1,k_2} + \frac{1}{|y|^{2\sigma}} \log |y| F^\log_{j_1,k_1,k_2} - F^-_{j_1,k_1,k_2} \right) = 0. \]
Then we obtain a solution \(\bar{P}^-_{j_0,k_1,k_2} \). Here, we define
\[
c^\pm_{j_0,k_1,k_2} := \begin{cases}
\bar{P}^\pm_{j_0,k_1,k_2}(0) & (j_0 + k_1, 0 + k_2, 0) \neq K + 1), \\
0 & (j_0 + k_1, 0 + k_2, 0) = K + 1, \text{ and } \bar{P}^-_{j_0,k_1,k_2}(0) \neq 0), \\
1 & (j_0 + k_1, 0 + k_2, 0) = K + 1, \text{ and } \bar{P}^-_{j_0,k_1,k_2}(0) = 0), \\
0 & (j_0 + k_2, 0) \leq K), \\
0 & (j_0 + k_1, 0 + k_2, 0) = K + 1, \text{ and } \bar{P}^+_{j_0,k_1,k_2}(0) \neq 0), \\
1 & (j_0 + k_1, 0 + k_2, 0) = K + 1, \text{ and } \bar{P}^+_{j_0,k_1,k_2}(0) = 0), \\
2\bar{P}^+_{j_0,k_1,k_2}(0) & (j_0 + k_1, 0 + k_2, 0) \geq K + 2).
\end{cases}
\]
Then we obtain a solution for \((S_{j_0,k_1,k_2}) \). This means that \(H(j_0+1, k_1, k_2) \) is true if \(j_0 + k_1 + k_2, 0 \leq K + K' - 1, \\
H(0, k_1, 0 + 1, k_2) \) is true if \(j_0 + k_1, 0 + k_2, 0 = K + K' \) and \(k_1, 0 + k_2, 0 \leq K + K' - 1, \) and \(H(0, 0, k_2, 0) \) is true if \(j_0 + k_1, 0 + k_2, 0 = K + K' \). In particular, \(H(0, 0, K + K' + 1) \) means that for any \((j, k_1, k_2) \in \Sigma_{K+K'} \), there exists a solution \((P^+_{j_1,k_1,k_2}, P^-_{j_1,k_1,k_2}, \beta_{j_1,k_1,k_2}, c^\pm_{j_1,k_1,k_2}) \in \mathcal{Y} \times \mathbb{R}^2 \).

Furthermore, \(P^\pm_{j_1,k_1,k_2}(0) \neq 0 \) for \(j + k_2, 0 = K + 1 \) and \(P^\pm_{j_1,k_1,k_2}(0) = 0 \) for \(j + k_2, 0 \geq K + 2 \) hold. \hfill \Box

Proposition 3.3. For \(P^\pm_{j_1,k_1,k_2} \),
\[\Delta P^\pm_{j_1,k_1,k_2} \in H^1(\mathbb{R}^N) \cap C(\mathbb{R}^N). \]

Namely, \(P^\pm_{j_1,k_1,k_2} \in \mathcal{Y}' \).

proof. For the proof, see \([5] \). \hfill \Box

Proposition 3.4. For \(P^\pm_{0,k_1,k_2} \) with \(k_1 + k_2 = K + K' \),
\[\frac{1}{r^2} P^\pm_{0,k_1,k_2} - \frac{1}{r} \frac{\partial P^\pm_{0,k_1,k_2}}{\partial r} \in L^{\infty}(\mathbb{R}^N), \]
where \(r = |y|, \)

proof. We prove only for \(P^+_{0,k_1,k_2} \). See \([5] \) for details of proofs.

Let \(f_{k_1,k_2} := P^+_{1,0,k_1,k_2} \) for \(k_1, k_2 \in \mathbb{N}_0 \). Then \(f_{k_1,k_2}(0) \neq 0 \) if \(k_1 + k_2 = K + 1 \) and \(f_{k_1,k_2}(0) = 0 \) for \(k_1 + k_2 \geq K + 2 \) hold. Moreover, Let
\[F_{k_1,k_2} := f_{k_1,k_2} - \left(\frac{4}{N} + 1 \right) \bar{Q} \frac{\beta_{1,0,k_1,k_2}}{4} \frac{|y|^2}{Q} - F^+_{1,0,k_1,k_2} - c^+_{1,0,k_1,k_2} Q. \]
Then
\[
\frac{1}{r^{N-1}} \frac{\partial}{\partial r} \left(r^{N-1} \frac{\partial f_{k_1,k_2}}{\partial r} \right) = \frac{1}{r^{2\sigma}} f_{k_1-1,k_2} + \frac{\log r}{r^{2\sigma}} f_{k_1,k_2-1} + F_{k_1,k_2}
\]
holds. If \(k_2 = 0 \), then we obtain conclusion for \(P_{1,0,K+K',0}^+ \) as in [5].

If \(r^{-q}(\log r)^q f_{k_1-1,k_2} \) and \(r^{-q}(\log r)^q f_{k_1,k_2-1} \) converge to non-zero as \(r \to +0 \) for some \(q \in [0, 2\sigma] \) and \(q' \geq 0 \) or \(r^{-q}(\log r)^q f_{k_1-1,k_2} \) and \(q' \geq 0 \) or \(r^{-q}(\log r)^q f_{k_1,k_2-1} \) converge as \(r \to +0 \) for some \(q > 2\sigma \) and \(q' \geq 0 \), then \(r^{N-1} \frac{\partial f_{k+1}}{\partial r} \) converges to 0 as \(r \to +0 \).

Let \(\sigma_0 = \sigma''_0 := 0 \) and \(C_{k_1,k_2} := f_{k_1,k_2}(0) \) for \(k_1 + k_2 = K + 1 \). Moreover, let
\[
k := k_1 + k_2 - K - 1,
\]
\[
\sigma_{k+1} := \begin{cases} 1 - \sigma + \sigma_k & (\sigma_k < \sigma) \\ 1 & (\sigma_k \geq \sigma) \end{cases},
\]
\[
\sigma'_k := \begin{cases} \sigma'_k-1 + 1 & (\sigma_k-1 < \sigma) \\ 0 & (\sigma_k-1 \geq \sigma) \end{cases},
\]
\[
C_{k_1,k_2} := \begin{cases} C_{k_1,k_2-1} \frac{2^{\sigma_k}(N-2(\sigma-\sigma_k-1))}{\sigma_1} & (\sigma_k-1 < \sigma) \\ \sigma_1 C_{k_1,k_2-1}+F_{k_1,k_2}(0) & (\sigma_k-1 = \sigma) \\ \frac{F_{k_1,k_2}(0)}{2} & (\sigma_k-1 > \sigma) \end{cases}.
\]

In particular, if \(\sigma_k-1 < \sigma \), then \(C_{k_1,k_2} \neq 0 \). Then
\[
\lim_{r \to +0} \frac{1}{r^{2\sigma_k}(\log r)^{\sigma_k}} f_{k_1,k_2}(r) = C_{k_1,k_2}
\]
holds. For \(k = 0 \), it clearly holds. Moreover, for \(k \geq 1 \),
\[
\lim_{r \to +0} \frac{1}{r^{2\sigma_k-1}(\log r)^{\sigma_k}} \frac{\partial f_{k_1,k_2}}{\partial r}(r) = 2\sigma_k C_{k_1,k_2}
\]
holds. Consequently, we obtain Proposition [3.4] if \(K' \) is sufficiently large.

\[\square\]

4. Decomposition of Functions

The parameters \(\tilde{\lambda}, \tilde{b}, \tilde{\gamma} \) to be used for modulation are obtained by the following lemma:

Lemma 4.1 (Decomposition). For any sufficiently small constants \(\tilde{t}, \tilde{\tau} > 0 \), there exist a sufficiently small \(\delta > 0 \) such that the following statement holds. Let \(I \) be an interval. We assume that \(u \in C(I, H^1(\mathbb{R}^N)) \cap C^1(I, H^{-1}(\mathbb{R}^N)) \) satisfies
\[
\forall \ t \in I, \ \left\| \lambda(t) \frac{\partial}{\partial t} u(t, \lambda(t) y) e^{i\gamma(t)} - Q \right\|_{H^1} < \delta
\]
for some functions \(\lambda : I \to (0, \tilde{t}) \) and \(\gamma : I \to \mathbb{R} \). Then there exist unique functions \(\tilde{\lambda} : I \to (0, \infty), \tilde{b} : I \to \mathbb{R}, \) and \(\tilde{\gamma} : I \to \mathbb{R}/2\pi \mathbb{Z} \) such that
\[
u(t, x) = \frac{1}{\lambda(t)^{\frac{N}{2}}} (P + \tilde{\xi}) \left(t, \frac{x}{\lambda(t)} \right) e^{-i \left(\frac{\tilde{\xi}}{\lambda(t)} - \tilde{b}(t) + \tilde{\gamma}(t) \right) x},
\]
\[
\left| \frac{\tilde{\lambda}(t)}{\lambda(t)} - 1 \right| + |\tilde{b}(t)| + |\tilde{\gamma}(t) - \gamma(t)|_{\mathbb{R}/2\pi \mathbb{Z}} < \tilde{\tau}
\]
hold, where \(| \cdot |_{\mathbb{R}/2\pi \mathbb{Z}} \) is defined by
\[
|c|_{\mathbb{R}/2\pi \mathbb{Z}} := \inf_{m \in \mathbb{Z}} |c + 2\pi m|,
\]
and that \(\tilde{\xi} \) satisfies the orthogonal conditions
\[
(\tilde{\xi}, \hat{\nu})_2 = (\tilde{\xi}, |y|^2 P)_2 = (\tilde{\xi}, \hat{\rho})_2 = 0
\]
on \(I \). In particular, \(\tilde{\lambda}, \tilde{b}, \) and \(\tilde{\gamma} \) are \(C^1 \) functions and independent of \(\lambda \) and \(\gamma \).
5. Approximate blow-up law

In this section, we describe the initial values and the approximation functions of the parameters λ and b in the decomposition.

We expect the parameters λ and b in the decomposition to approximately satisfy

$$\frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b = \frac{\partial b}{\partial s} + b^2 - \theta = 0.$$

Therefore, the approximation functions λ_{app} and b_{app} of the parameters λ and b will be determined by the following lemma:

Let $\lambda_0 > 0$ be sufficiently small and define J by

$$J(\lambda) := \int_{\lambda}^{\lambda_0} \frac{1}{\mu^{\frac{2}{2} + 1}} \sqrt{-\frac{2\beta_1}{(2-\alpha)^2} + \frac{2\beta_2}{2-\alpha} - \frac{2\beta_1}{2-\alpha} \log \mu} \, d\mu$$

for any $\lambda \in (0, \lambda_0)$, where $\beta_2 := \beta_{2,0,0,0}$. In particular, since

$$\sigma = \frac{2 - \alpha}{2}, \quad \beta_1 = \frac{4\alpha}{\gamma} \cdot \frac{\|\cdot\|_2^2}{\|\cdot\|_2^2}, \quad \beta_2 = \frac{4}{\|\cdot\|_2^2} \left(\sigma \int_{\mathbb{R}^N} \frac{1}{\|y\|^{2\sigma}} \log |y|Q^2 \, dy - \frac{1}{2}\|\cdot\|_2^2 \right),$$

$$\beta_1' = \frac{4}{\|\cdot\|_2^2} \int_{\mathbb{R}^N} \frac{1}{\|y\|^{2\sigma}} \log |y|Q^2 \, dy.$$

we obtain

$$\beta_1' = -\frac{2\beta_1}{(2-\alpha)^2} + \frac{2\beta_2}{2-\alpha}.$$

Lemma 5.1. Let

$$\lambda_{\text{app}}(s) := J^{-1}(s), \quad b_{\text{app}}(s) := \lambda_{\text{app}}(s) \frac{2\beta_1}{2-\alpha} \log \lambda_{\text{app}}(s).$$

Then $(\lambda_{\text{app}}, b_{\text{app}})$ is a solution for

$$\frac{\partial b}{\partial s} + b^2 + \beta_1 \lambda^\alpha \log \lambda - \beta_2 \lambda^\alpha = 0, \quad \frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b = 0$$

in $s > 0$.

proof. This result is proven via direct calculation. For the construction of $(\lambda_{\text{app}}, b_{\text{app}})$, see [6]. \hfill \Box

For the sake of the discussion that follows, we will introduce some properties of the Lambert function W_{-1}. For definition of W_{-1}, see [1].

Corollary 5.2 ([2]). For any $u > 0$,

$$(1 - \epsilon)u - \frac{2}{\epsilon} < -W_{-1}(-e^{-u-1}) - 1 - \sqrt{2u} < u$$

holds. In particular, for any $z \in (0, \frac{1}{\epsilon})$,

$$-(1 - \epsilon) \log z + \sqrt{2(-\log z - 1)} + \frac{2}{\epsilon} < -W_{-1}(-z) < -\log z + \sqrt{2(-\log z - 1)}$$

holds.

Lemma 5.3. Let λ be sufficiently small. Then

$$J(\lambda)^{-1} = \frac{2}{\alpha} \sqrt{\frac{2\beta_1}{2-\alpha}} \lambda^\alpha \sqrt{\log \lambda} \left(1 + O\left(\frac{1}{\log \lambda} \right) \right)$$

holds. In addition,

$$\left| \frac{\alpha^2}{4} \left(-\frac{2\beta_1}{2-\alpha} \lambda^\alpha \log \lambda + \beta_1' \lambda^\alpha \right) - J(\lambda)^{-2} \right| \lesssim \lambda^\alpha$$

holds.
Moreover, let \(s \) be sufficiently large. Then
\[
 s^{-2} = J(\lambda_{\text{app}}(s))^{-2} = \frac{4}{\alpha^2} \lambda_{\text{app}}(s)^{\alpha} \log \lambda_{\text{app}}(s)(1 + o(1)),
\]
(16)
\[
\lambda_{\text{app}}(s)^\alpha \log \lambda_{\text{app}}(s) \approx b_{\text{app}}(s)^2 \approx s^{-2}, \quad \lambda_{\text{app}}(s) \approx s^{-\frac{\alpha}{2}} \log s^{-\frac{\alpha}{2}}
\]
hold.

proof. Since \(\lambda_0 \) is sufficiently small,
\[
\mu^{\frac{\alpha}{2} + 1} \sqrt{\frac{\beta_1}{2 - \alpha} \log \mu} \leq \mu^{\frac{\alpha}{2} + 1} \sqrt{-\frac{2\beta_1}{(2 - \alpha)^2} + \frac{2\beta_2}{2 - \alpha} - \frac{2\beta_1}{2 - \alpha} \log \mu} \leq \mu^{\frac{\alpha}{2} + 1} \sqrt{\frac{4\beta_1}{2 - \alpha} \log \mu}
\]
holds for any \(\mu \in (0, \lambda_0) \). Therefore, we obtain
\[
\frac{\alpha}{2} \sqrt{\frac{4\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda} \leq J(\lambda) \leq \frac{\alpha}{4} \sqrt{\frac{\beta_1}{2 - \alpha} \lambda^\alpha \log \lambda}
\]
for any sufficiently small \(\lambda \).

Next, since
\[
\frac{1}{2} \sqrt{\frac{4\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda} = \int_\lambda^{\lambda_0} \left(\frac{1}{\sqrt{\frac{2\beta_1}{2 - \alpha} \mu^{\frac{\alpha}{2} + 1} \log \mu} - \frac{1}{\sqrt{\frac{2\beta_1}{2 - \alpha} \mu^{\frac{\alpha}{2} + 1} \log \mu}} \right) d\mu + \frac{1}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda_0}
\]
we obtain
\[
J(\lambda) = \frac{1}{\frac{\lambda}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda}} = \int_\lambda^{\lambda_0} \frac{1}{\mu^{\frac{\alpha}{2} + 1} \log \mu} + \int_\lambda^{\lambda_0} \frac{\beta_1}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \log \mu} \left(\sqrt{\frac{2\beta_1}{2 - \alpha} \log \mu} + \beta_1 \sqrt{\frac{2\beta_1}{2 - \alpha} \log \mu} \right) d\mu + \frac{1}{\frac{\lambda}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda}}
\]
Therefore,
\[
J(\lambda) \leq \frac{1}{\frac{\lambda}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda}} \leq \int_\lambda^{\lambda_0} \frac{1}{\mu^{\frac{\alpha}{2} + 1} \log \mu} d\mu + \frac{1}{\frac{\lambda}{2} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda_0}}
\]
Accordingly,
\[
\left| J(\lambda)^{1} - \frac{2}{\alpha} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda^{\frac{\alpha}{2}}} \sqrt{\log \lambda} \right| \leq \lambda^\alpha |\log \lambda| \frac{1}{\lambda^{\frac{\alpha}{2}} |\log \lambda|} = \lambda^\frac{\alpha}{2} \sqrt{\log \lambda} \frac{1}{\log \lambda}
\]
Since \(\lambda_{\text{app}}(s) \to 0 \) as \(s \to \infty \),
\[
 s^{-1} = J(\lambda_{\text{app}}(s))^{-1} = \frac{2}{\alpha} \sqrt{\frac{2\beta_1}{2 - \alpha} \lambda_{\text{app}}(s)^{\frac{\alpha}{2}}} \sqrt{\log \lambda_{\text{app}}(s)}(1 + o(1))
\]
for any sufficiently large \(s \). Therefore,
\[
\frac{1}{2} s^{-2} \leq \frac{4}{\alpha^2} \lambda_{\text{app}}(s)^{\alpha} |\log \lambda_{\text{app}}(s)| \leq 2s^{-2}
\]
and
\[\frac{\beta_1}{2 - \alpha} \log \lambda_{\text{app}}(s) \leq b_{\text{app}}(s)^2 \leq \frac{4\beta_1}{2 - \alpha} \log \lambda_{\text{app}}(s) \]
hold.

Finally, since
\[-C_1 s^{-2} \leq \lambda_{\text{app}}(s) \leq \log \lambda_{\text{app}}(s) = e^{\log \lambda_{\text{app}}(s)} = W^{-1}(\log \lambda_{\text{app}}(s)) \leq -C_2 s^{-2}, \]
we obtain
\[W_{-1}(C_2 s^{-2}) \leq \log \lambda_{\text{app}}(s) \leq W_{-1}(C_1 s^{-2}). \]
Since \(e^{W(z)} = \frac{z}{W(z)} \), we obtain
\[-C_2 s^{-2} \leq \lambda_{\text{app}}(s) \leq -C_2 s^{-2} \]
\[W_{-1}(C_2 s^{-2}) \leq \lambda_{\text{app}}(s) \leq W_{-1}(C_2 s^{-2}). \]
Since
\[\lambda_{\text{app}}(s) \approx s^{-\frac{2}{\alpha}} (\log s)^{-\frac{d}{\alpha}}. \]

Furthermore, the following lemma determines \(\lambda(s_1) \) and \(b(s_1) \) for a given energy level \(E_0 \) and a sufficiently large \(s_1 \).

Lemma 5.4. Let define \(C_0 := \frac{8E_0}{\|\phi\|_2^2} \) and \(0 < \lambda_0 \ll 1 \) such that \(-\frac{2\beta_1}{2 - \alpha} \log \lambda_0 + \beta_1' + C_0 \lambda_0^{2-\alpha} > 0 \). For \(\lambda \in (0, \lambda_0) \), we set
\[\mathcal{F}(\lambda) := \int_{\lambda}^{\lambda_0} \frac{1}{\mu^{\frac{d}{\alpha}+1}} \sqrt{\frac{2\beta_1}{2 - \alpha} \log \mu + \beta_1' + C_0 \mu^{2-\alpha}} d\mu. \]
Then for any \(s_1 \gg 1 \), there exist \(b_1, \lambda_1 > 0 \) such that
\[\left| \frac{s_1^{-1}}{J(\lambda_1)^{-1}} - 1 \right| + \left| \frac{b_1}{b_{\text{app}}(s_1)} - 1 \right| \leq s_1^{-\frac{d}{\alpha}} |\log s_1| + s_1^{-\frac{2d}{\alpha}} |\log s_1|, \quad \mathcal{F}(\lambda_1) = s_1, \quad E(P_{\lambda_1, b_1}) = E_0. \]
Moreover,
\[|\mathcal{F}(\lambda) - J(\lambda)| \lesssim \lambda^{-\frac{d}{\alpha}} + \lambda^{2-\frac{2d}{\alpha}} \]
holds.

Proof. The method of choosing \(\lambda_1 \) and \(b_1 \) and the estimate of \(\mathcal{F} \) and \(b_1 \) are the same as in [6] [8].

Since
\[s_1 = J(\lambda_{\text{app}}(s_1)), \quad J(\lambda)^{-1} \approx \lambda^{\frac{d}{\alpha}} \sqrt{|\log \lambda|}, \]
we obtain
\[\left| \frac{J(\lambda_{\text{app}}(s_1))}{J(\lambda_1)} - 1 \right| \lesssim \lambda_1^{\frac{d}{\alpha}} |\log \lambda_1| + \lambda_1^{2-\alpha} \sqrt{|\log \lambda_1|}. \]
Moreover, since
\[s_1 = \mathcal{F}(\lambda_1) \lesssim \int_{\lambda}^{\lambda_0} \frac{1}{\mu^{\frac{d}{\alpha}+1}|\log \mu|} d\mu \leq \int_{\lambda}^{\lambda_0} \frac{1}{\mu^{\frac{d}{\alpha}+1}} d\mu \leq \lambda_1^{-\frac{d}{\alpha}} \]
we obtain
\[\lambda_1 \lesssim s_1^{-\frac{d}{\alpha}}. \]
Consequently, we obtain the conclusion. \(\square \)
6. Uniformity estimates for decomposition

In this section, we estimate modulation terms.

We define
\[t_{\text{app}}(s) := - \int_s^{\infty} \lambda_{\text{app}}(\mu)^2 d\mu. \]

For \(t_1 < 0 \) such that is sufficiently close to 0, we define
\[s_1 := t_{\text{app}}^{-1}(t_1). \]

Additionally, let \(\lambda_1 \) and \(b_1 \) be given in Lemma 5.4 for \(s_1 \) and \(\gamma_1 = 0 \). Let \(u \) be the solution for (11) with \(\pm = + \) with an initial value
\[u(t_1, x) := P_{\lambda_1, b_1, 0}(x). \]

Then since \(u \) satisfies the assumption ofLemma 4.1 in a neighbourhood of \(t_1 \), there exists a decomposition
\((\bar{\lambda}_t, \bar{b}_t, \gamma_t, \bar{\xi}_t)\) such that (13) holds in a neighbourhood \(I \) of \(t_1 \). The rescaled time \(s_{t_1} \) is defined by
\[s_{t_1}(t) := s_1 - \int_t^{t_1} \frac{1}{\lambda_{t_1}(\tau)} d\tau. \]

Then we define an inverse function \(s_{t_1}^{-1} : s_{t_1}(I) \to I \). Moreover, we define
\[t_{t_1} := s_{t_1}^{-1}, \quad \lambda_{t_1}(s) := \bar{\lambda}(t_{t_1}(s)), \quad b_{t_1}(s) := \bar{b}(t_{t_1}(s)), \quad \gamma_{t_1}(s) := \gamma(t_{t_1}(s)), \quad \xi_{t_1}(s, y) := \bar{\xi}(t_{t_1}(s), y). \]

For the sake of clarity in notation, we often omit the subscript \(t_1 \). In particular, it should be noted that \(u \in C((T_*, T^*), \Sigma^2(\mathbb{R}^N)) \) and \(|x| \nabla u \in C((T_*, T^*), L^2(\mathbb{R}^N)) \). Furthermore, let \(I_{t_1} \) be the maximal interval such that a decomposition as (13) is obtained and we define
\[J_{s_1} := s(I_{t_1}). \]

Additionally, let \(s_0 \) (\(\leq s_1 \)) be sufficiently large and let
\[s' := \max\{s_0, \inf J_{s_1}\}. \]

Let \(s_* \) be defined by
\[s_* := \inf\{\sigma \in (s', s_1] \mid (17) \text{ holds on } [\sigma, s_1]\}, \]

where
\[\|\xi(s)\|_{H^1}^2 + b(s)^2 \|y/\xi(s)\|_2^2 < s^{-2K}, \quad \left| \frac{s^{-1}}{J(\lambda(s))^{-1}} - 1 \right| + \left| \frac{b(s)}{b_{\text{app}}(s)} - 1 \right| < (\log s)^{-\frac{1}{2}}. \]

Finally, we define
\[\text{Mod}(s) := \left(1 + \frac{1}{\lambda} \frac{\partial \lambda}{\partial s} + b, \frac{\partial b}{\partial s} + b^2 - \theta, 1 - \frac{\partial \gamma}{\partial s} \right). \]

The goal of this section is to estimate of \(\text{Mod}(s) \).

Lemma 6.1. On \((s_*, s_1)\),
\[\lambda(s)^{\alpha} |\log \lambda(s)| \approx s^{-2}, \quad b(s) \approx s^{-1} \]

holds.

proof. For \(b \), it is clear from (10) and (17).

From Lemma 4.1 we may assume \(|\lambda(s)| \leq \frac{1}{2} \). Since
\[\left| \frac{J(\lambda(s))^{-1}}{s^{-1}} - 1 \right| \lesssim (\log s)^{-\frac{1}{2}}, \]

we obtain
\[|J(\lambda(s))^{-1}| \lesssim s^{-1} \left(1 + (\log s)^{-\frac{1}{2}} \right). \]

Moreover, since
\[\lambda(s)^{\alpha} \lesssim \lambda(s)^{\alpha} |\log \lambda(s)| \lesssim s^{-2} \left(1 + (\log s)^{-\frac{1}{2}} \right)^2 \]
Lemma 7.1 \[\text{in Section 8.} \]

holds. Moreover, let \(\lambda \) hold. Therefore, we obtain from (15), we have \(\lambda = o(1) \) and

\[\frac{4}{\alpha^2} \frac{2\beta_1}{2 - \alpha} \lambda(s)^\alpha |\log \lambda(s)| = J(\lambda(s))^{-2}(1 + o(1)). \]

Next, since

\[\frac{J(\lambda(s))^{-2}}{s^{-2}} - 1 \lesssim (\log s)^{-\frac{1}{2}}, \quad \text{i.e., } |J(\lambda(s))^{-2} - s^{-2}| \lesssim s^{-2}(\log s)^{-\frac{1}{4}}, \]

we obtain

\[\frac{4}{\alpha^2} \frac{2\beta_1}{2 - \alpha} \lambda(s)^\alpha |\log \lambda(s)| - s^{-2} \lesssim J(\lambda(s))^{-2}o(1) + s^{-2}(\log s)^{-\frac{1}{4}} = o(s^{-2}). \]

Therefore, we obtain

\[\frac{4}{\alpha^2} \frac{2\beta_1}{2 - \alpha} \lambda(s)^\alpha |\log \lambda(s)| = s^{-2} (1 + o(1)). \]

\[\square \]

7. Modified energy function

We proceed with a modified version of the technique presented in Le Coz, Martel, and Raphaël [6] and Raphaël and Szeftel [14]. Let \(m > 0 \) be sufficiently large and define

\[H(s, \varepsilon) := \frac{1}{2} \|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 - \int_{\mathbb{R}^N} (F(P + \varepsilon) - F(P) - dF(P)(\varepsilon)) \, dy \]

\[+ \frac{1}{2} \lambda^o \log \lambda \int_{\mathbb{R}^N} \frac{1}{|y|^{2\sigma}} |\varepsilon|^2 \, dy + \frac{1}{2} \lambda^o \int_{\mathbb{R}^N} \frac{1}{|y|^{2\sigma}} \log |y| |\varepsilon|^2 \, dy, \]

\[S(s, \varepsilon) := \frac{1}{\lambda^m} H(s, \varepsilon). \]

In this section, we obtain upper and lower estimates of \(S \) and a lower estimate of the time derivative of \(S \) for use in Section 8.

Lemma 7.1 (Estimates of \(S \)). For \(s \in (s_*, s_1] \),

\[\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 + O(s^{-2(K+2)}) \lesssim H(s, \varepsilon) \lesssim \|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 \]

hold. Moreover,

\[\frac{1}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 + O(s^{-2(K+2)}) \right) \lesssim S(s, \varepsilon) \lesssim \frac{1}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 \right) \]

hold.

Lemma 7.2 (Derivative of \(S \) in time). For \(s \in (s_*, s_1] \),

\[\frac{d}{ds} H(s, \varepsilon(s)) \gtrsim -b \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 \right) + O(s^{-2(K+2)}) \]

holds. Moreover,

\[\frac{d}{ds} S(s, \varepsilon(s)) \gtrsim \frac{b}{\lambda^m} \left(\|\varepsilon\|^2_{H^1} + b^2 \|y|\varepsilon\|^2_2 + O(s^{-2(K+3)}) \right) \]

holds for \(s \in (s_*, s_1] \).

For the proofs, see [6, 8].
8. Bootstrap

In this section, we use the estimates obtained in Section 7 and the bootstrap to establish the estimates of the parameters. Namely, we confirm \(s \in (s_0, s_1) \).

Lemma 8.1 (Re-estimation). For \(s \in (s_0, s_1) \),

\[
\|\varepsilon(s)\|^2_{H^1} + b(s)^2 \|y|\varepsilon(s)\|^2_2 \lesssim s^{-2(K+2)},
\]

\[
\left| \frac{1}{J(\lambda(s)) - 1} - \frac{b(s)}{b_{app}(s)} - 1 \right| \lesssim (\log s)^{-1}
\]

holds.

Proof. We can prove (18) as in [6].

Next, since

\[
F \lambda \log \lambda - \beta' \lambda^\alpha - C_0 \lambda^2
\]

we have

\[
\left| b^2 + \frac{2\beta_1}{2 - \alpha} \lambda^\alpha \log \lambda - \beta' \lambda^\alpha - C_0 \lambda^2 \right|
\]

\[
\lesssim \lambda^2 \left(\left| \frac{b^2}{\lambda^2} + \frac{2\beta_1}{2 - \alpha} \lambda^{-2} \log \lambda - \beta' \lambda^{-2} \right| + \frac{8}{\|y\|_Q^2} |E(P_{\lambda,\beta,\gamma})| + \frac{8}{\|y\|_Q^2} |E(P_{\lambda,\beta,\gamma}) - E_0| \right)
\]

\[
\lesssim s^{-4}.
\]

From the definition of \(\mathcal{F} \), we have

\[
|E(P_{\lambda,\beta,\gamma}(s)) - E_0| \leq \int_{s_1}^s \frac{d}{ds} E(P_{\lambda,\beta,\gamma}(s)) d\tau \leq \int_{s_1}^{s_1} \tau^{-(K+2)+\frac{2}{\alpha}} (\log s)^{\frac{2}{\alpha}} d\tau \lesssim s^{-(K+1)+\frac{2}{\alpha}},
\]

where \(\mathcal{F}(s) := \mathcal{F}(\lambda(s)) \). Indeed, since

\[
|\mathcal{F}'(s) - 1| \lesssim s^{-2},
\]

where \(\mathcal{F}(s) := \mathcal{F}(\lambda(s)) \). Thus, since

\[
|s - \mathcal{F}(\lambda(s))| \lesssim s^{-1}
\]

holds since \(\mathcal{F}(\lambda(s_1)) = s_1 \). Accordingly, since

\[
|s - J(\lambda(s))| \leq |s - \mathcal{F}(\lambda(s))| + |J(\lambda(s)) - \mathcal{F}(\lambda(s))| \lesssim s^{\frac{1}{2}} (\log s)^{\frac{1}{2}} + s^{2 - \frac{1}{\alpha}} (\log s)^{\frac{2}{\alpha} - \frac{3}{\alpha}},
\]

we obtain

\[
\left| \frac{1}{J(\lambda(s)) - 1} - \frac{b(s)}{b_{app}(s)} - 1 \right| \lesssim s^{-\frac{1}{2}} (\log s)^{\frac{1}{2}} + s^{2 - \frac{1}{\alpha}} (\log s)^{\frac{2}{\alpha} - \frac{3}{\alpha}}.
\]

Finally, from (20), we have

\[
\left| b(s)^2 - b_{app}(s)^2 \right| \lesssim s^{-4} + \lambda(s)^2 + \frac{4}{\alpha^2} \left(-\frac{2\beta_1}{2 - \alpha} \lambda(s)^\alpha \log \lambda(s) + \beta' \lambda(s)^\alpha \right) - J(\lambda(s))^{-2}
\]

\[
+ \left| J(\lambda(s))^{-2} - J(\lambda_{app}(s))^{-2} \right| + \frac{4}{\alpha^2} \left(-\frac{2\beta_1}{2 - \alpha} \lambda_{app}(s)^\alpha \log \lambda_{app}(s) + \beta' \lambda_{app}(s)^\alpha \right) - J(\lambda_{app}(s))^{-2}
\]

\[
\lesssim s^{-4} + s^{\frac{1}{\alpha}} (\log s)^{-\frac{1}{\alpha}} + s^{-2} (\log s)^{-1} + s^{-2} \left(s^{\frac{1}{\alpha}} (\log s)^{\frac{1}{2}} + s^{2 - \frac{1}{\alpha}} (\log s)^{\frac{2}{\alpha} - \frac{3}{\alpha}} \right)
\]
and
\[\left| \frac{b(s)}{\tilde{b}_{app}(s)} - 1 \right| \lesssim (\log s)^{-1} + s^{-\frac{1}{2}}(\log s)^{\frac{1}{2}} + s^{2-\frac{\alpha}{2}}(\log s)^{\frac{1}{2}-\frac{\alpha}{2}}. \]

Consequently, we obtain \([19]\).

Lemma 8.2. If \(s_0 \) is sufficiently large, then \(s_* = s' = s_0 \).

proof. This result is proven from Lemma 8.1 and the definitions of \(s_* \) and \(s' \). See [7] for details of the proof. \(\square \)

9. Conversion of estimates

In this section, we rewrite the uniform estimates obtained for the time variable \(s \) in Lemma 8.1 into uniform estimates for the time variable \(t \).

Lemma 9.1 (Interval). If \(s_0 \) is sufficiently large, then there is \(t_0 < 0 \) that is sufficiently close to 0 such that for \(t_1 \in (t_0, 0) \),
\[[t_0, t_1] \subset s_1^{-1}([s_0, s_1]), \quad |t_{app} - s_1^{-1}(t)| \lesssim s_1(t) - s_1^{-1}(t) \sim (\log s_1(t))^{-\frac{1}{2}}. \]

holds.

proof. Since \(t_1(s_1) = t_1 = t_{app}(s_1) \), we have
\[t_{app}(s) - t_1(s) = t_1(s_1) - t_1(s) = (t_{app}(s) - t_{app}(s_1)) + t_1(s_1) - t_{app}(s_1) \]
\[= \int_{s_1}^{s} \lambda_{app}(\tau) (\lambda_{t_1}(\tau) - \lambda_{app}(\tau)) \left(\frac{\lambda_{t_1}(\tau)}{\lambda_{app}(\tau)} + 1 \right) d\tau. \]

Since \(J^{-1} \) is \(C^1 \) function on \(J((0, \lambda_0)) \),
\[|\lambda_{t_1}(\tau) - \lambda_{app}(\tau)| \leq \frac{\tau}{|J^{-1}(J(\lambda_{t_1}(\tau)) + \xi (J(\lambda_{app}(\tau)) - J(\lambda_{t_1}(\tau)))))| \bigg| J(\lambda_{t_1}(\tau))^{-1} - 1 \bigg| \]
for some \(\xi \in [0, 1] \). Since
\[\left| \frac{1}{J'(\lambda)} \right| = \lambda^{\frac{1}{2}+1} \sqrt{-\frac{2\beta_1}{(2-\alpha)^2} + \frac{2\beta_2}{2-\alpha} - \frac{2\beta_1}{2-\alpha} \log \lambda} \lesssim \lambda^{\frac{1}{2}+1} \sqrt{\log \lambda} \]
and
\[C_1 \tau \leq J(\lambda_{t_1}(\tau)) + \xi (J(\lambda_{app}(\tau)) - J(\lambda_{t_1}(\tau))) \leq C_2 \tau, \]
we obtain
\[J^{-1}(C_1 \tau) \leq J^{-1}(J(\lambda_{t_1}(\tau)) + \xi (J(\lambda_{app}(\tau)) - J(\lambda_{t_1}(\tau)))) \leq J^{-1}(C_1 \tau). \]
Moreover, since
\[J^{-1}(C\tau) = \lambda_{app}(C\tau) \approx (C\tau)^{-\frac{\alpha}{2}} (\log(C\tau))^{-\frac{\alpha}{2}} \approx \tau^{-\frac{\alpha}{2}} (\log \tau)^{-\frac{\alpha}{2}} \approx \lambda_{app}(\tau) \]
from Lemma 8.3, we obtain
\[\left| J'(J^{-1}(J(\lambda_{t_1}(\tau)) + \xi (J(\lambda_{app}(\tau)) - J(\lambda_{t_1}(\tau)))))) \bigg| \lesssim \tau \lambda_{app}(\tau)^{\frac{1}{2}+1} \sqrt{\log \lambda_{app}(\tau)} \lesssim \lambda_{app}(\tau). \]
Therefore, we obtain
\[|t_{app}(s) - t_1(s)| \lesssim s^{-\frac{1-\alpha}{2} \alpha} (\log s)^{-\frac{1}{2}}. \]

Similarly, we obtain
\[|t_{app}(s)| \approx s^{-\frac{1-\alpha}{2} \alpha} (\log s)^{-\frac{1}{2}}. \]

Moreover, there exists \(t_0 \) from Lemma 8.2. \(\square \)

Corollary 9.2.
\[s_1(t) \approx |t|^{-\frac{1-\alpha}{2} \alpha} |\log |t||^{-\frac{1}{2}}. \]
\textbf{proof.} From Lemma 9.1

\[|t_{\text{app}}(s_1(t))| - C_1 s_1(t) - \frac{4 - \alpha}{\alpha} (\log s_1(t)) - \frac{\alpha}{\alpha} \leq |t| \leq |t_{\text{app}}(s_1(t))| + C_2 s_1(t) - \frac{4 - \alpha}{\alpha} (\log s_1(t)) - \frac{\alpha}{\alpha} \]

and

\[|t_{\text{app}}(s_1(t))| \approx s_1(t) - \frac{4 - \alpha}{\alpha} (\log s_1(t)) - \frac{\alpha}{\alpha} \]

hold. Since

\[|t| \approx s_1(t) - \frac{4 - \alpha}{\alpha} (\log s_1(t)) - \frac{\alpha}{\alpha} \]

we obtain

\[C_1 |t|^{- \frac{\alpha}{\alpha}} \leq s_1(t) - \frac{4 - \alpha}{\alpha} (\log s_1(t)) - \frac{\alpha}{\alpha} = W_0^{-1} (\log s_1(t)) - \frac{\alpha}{\alpha} \leq C_2 |t|^{- \frac{\alpha}{\alpha}}. \]

Therefore,

\[W_0(C_1 |t|^{- \frac{\alpha}{\alpha}}) \leq \log s_1(t) - \frac{4 - \alpha}{\alpha} \leq W_0(C_2 |t|^{- \frac{\alpha}{\alpha}}). \]

Moreover, since \(e^{W(z)} = \frac{\tilde{z}}{W(z)} \),

\[\frac{C_1 |t|^{- \frac{\alpha}{\alpha}}}{W_0(C_1 |t|^{- \frac{\alpha}{\alpha}})} \leq s_1(t) - \frac{4 - \alpha}{\alpha} \leq \frac{C_2 |t|^{- \frac{\alpha}{\alpha}}}{W_0(C_2 |t|^{- \frac{\alpha}{\alpha}})}. \]

Since \(W_0(z) \approx \log z \) for sufficiently large \(z \), we obtain

\[\frac{C_1 |t|^{- \frac{\alpha}{\alpha}}}{C_1 |\log |t||} \leq s_1(t) - \frac{4 - \alpha}{\alpha} \leq \frac{C_2 |t|^{- \frac{\alpha}{\alpha}}}{C_1 |\log |t||}. \]

Consequently, we obtain conclusion. \(\square \)

\textbf{Lemma 9.3 (Conversion of estimates).} For \(t \in [t_0, t_1] \),

\[\tilde{\lambda}_1(t) \approx |t|^{- \frac{\alpha}{\alpha}} |\log |t|| - \frac{\alpha}{\alpha}, \quad \tilde{b}_1(t) \approx |t|^{- \frac{\alpha}{\alpha}} |\log |t|| - \frac{\alpha}{\alpha}, \]

\[\| \tilde{\varepsilon}_1(t) \|_{H^1} \lesssim |t|^{\frac{2 \alpha}{\alpha}} |\log |t|| - \frac{\alpha}{\alpha}, \quad \| |y| \tilde{\varepsilon}_1(t) \|_2 \lesssim |t|^{\frac{2 (K - 1)}{\alpha} - \frac{\alpha}{\alpha}} |\log |t|| - \frac{2 (K - 1)}{\alpha} \]

\textbf{proof.} From Lemma 8.1 Lemma 6.1 and Corollary 9.2 it is proven. \(\square \)

10. Proof of Theorem 1.5

In this section, we complete the proof of Theorem 1.5. See [8] for details of proof.

\textbf{proof of Theorem 1.5.} Let \((t_n)_{n \in \mathbb{N}} \subset (t_0, 0) \) be a monotonically increasing sequence such that \(\lim_{n \to \infty} t_n = 0 \). For each \(n \in \mathbb{N} \), \(u_n \) is the solution for (1) with \(\pm = - \) and with an initial value

\[u_n(t_n, x) := P_{\lambda_1, t_n, b_1, 0}(x) \]

at \(t_n \), where \(b_1, 0 \) and \(\lambda_1, 0 \) are given by Lemma 5.4 for \(t_n \).

According to Lemma 4.1 with an initial value \(\tilde{\tau}_n(t_n) = 0 \), there exists a decomposition

\[u_n(t, x) = \frac{1}{\tilde{\lambda}_n(t)} e^{-i \tilde{\varepsilon}_n(t) \left(t, \frac{x}{\lambda_n(t)} \right) + \tilde{\tau}_n(t)} \left(t, \frac{x}{\lambda_n(t)} \right) a_n(t, x). \]

Then \((u_n(t_0))_{n \in \mathbb{N}} \) is bounded in \(\Sigma^1 \). Therefore, up to a subsequence, there exists \(u_\infty(t_0) \in \Sigma^1 \) such that

\[u_n(t_0) \to u_\infty(t_0) \quad \text{in} \quad \Sigma^1, \quad u_n(t_0) \to u_\infty(t_0) \quad \text{in} \quad L^2(\mathbb{R}^N) \quad (n \to \infty), \]

see [8] for details.

Let \(u_\infty \) be the solution for (1) with \(\pm = + \) and an initial value \(u_\infty(t_0) \), and let \(T^* \) be the supremum of the maximal existence interval of \(u_\infty \). Moreover, we define \(T := \min(0, T^*) \). Then for any \(T' \in [t_0, T], [t_0, T'] \subset [t_0, t_n] \) if \(n \) is sufficiently large. Then there exist \(\tau_0(T', t_0) > 0 \) such that

\[\sup_{n \geq \tau_0} \| u_n \|_{L^\infty([t_0, T'], \Sigma^1)} \leq C(T', t_0) \]

holds. Therefore,

\[u_n \to u_\infty \quad \text{in} \quad C([t_0, T'], L^2(\mathbb{R}^N)) \quad (n \to \infty) \]
holds (see [7]). In particular, \(u_n(t) \to u_{\infty}(t) \) in \(\Sigma^1 \) for any \(t \in [t_0, T) \). Furthermore, from the mass conservation, we have

\[
\|u_{\infty}(t)\|_2 = \|u_{\infty}(t_0)\|_2 = \lim_{n \to \infty} \|u_n(t_0)\|_2 = \lim_{n \to \infty} \|u_n(t_n)\|_2 = \lim_{n \to \infty} \|P(t_n)\|_2 = \|Q\|_2.
\]

Based on weak convergence in \(H^1(\mathbb{R}^N) \) and Lemma 4.1 we decompose \(u_{\infty} \) to

\[
u_{\infty}(t,x) = \frac{1}{\lambda_{\infty}(t)^{\frac{2}{4}}}(P + \tilde{\varepsilon}_{\infty}) \left(t, \frac{x}{\lambda_{\infty}(t)} \right) e^{-\frac{i\lambda_{\infty}(t) - 2}{2} 4\tilde{\gamma}_{\infty}(t)},
\]

where an initial value of \(\tilde{\gamma}_{\infty} \) is \(\gamma_{\infty}(t_0) \in (t_0^{\frac{1}{2}} - \pi, t_0^{\frac{1}{2}} + \pi) \cap \tilde{\gamma}(u_{\infty}(t_0)) \). Furthermore, for any \(t \in [t_0, T) \), as \(n \to \infty \),

\[
\lambda_{n}(t) \to \tilde{\lambda}_{\infty}(t), \quad \tilde{b}_{n}(t) \to \tilde{b}_{\infty}(t), \quad e^{i\tilde{\gamma}_{n}(t)} \to e^{i\tilde{\gamma}_{\infty}(t)}, \quad \tilde{\varepsilon}_{n}(t) \to \tilde{\varepsilon}_{\infty}(t)
\]

hold. Consequently, from the uniform estimate in Lemma 9.3 as \(n \to \infty \), we have

\[
\tilde{\lambda}_{\infty}(t) \approx \|t\|^{\frac{2}{2\sigma}} \log \|t\|^{\frac{1}{2\sigma}}, \quad \tilde{b}_{\infty}(t) \approx \|t\|^{\frac{2}{2\sigma}} \log \|t\|^{\frac{1}{2\sigma}}, \quad \|\|g\|_{\tilde{\varepsilon}_{\infty}(t)}\|_2 \lesssim \|t\|^{\frac{(K-1)}{2-\alpha}} \log \|t\|^{\frac{2(K-1)}{2-\alpha}}
\]

Consequently, we obtain that \(u \) converges to the blow-up profile in \(\Sigma^1 \).

Finally, we check energy of \(u_{\infty} \). Since

\[
E(u_{n}) - E\left(P_{\lambda_{n}, \tilde{b}_{n}, \tilde{\gamma}_{n}} \right) = \int_{0}^{1} \left(E'(P_{\lambda_{n}, \tilde{b}_{n}, \tilde{\gamma}_{n}} + \tau \varepsilon_{\lambda_{n}, \tilde{b}_{n}, \tilde{\gamma}_{n}}) \right) d\tau
\]

and \(E'(w) = -\Delta w - |w|^2 - 2\alpha |x|^\alpha \log |x|w \), we have

\[
E(u_{n}) - E\left(P_{\lambda_{n}, \tilde{b}_{n}, \tilde{\gamma}_{n}} \right) = O\left(\frac{1}{\lambda_{n}^{\alpha}} \|\varepsilon_{\infty}\|_{H^1} \right) = O\left(\|t\|^{\frac{4K-4}{2-\alpha}} \log \|t\|^{\frac{2K-4}{2-\alpha}} \right).
\]

Similarly, we have

\[
E(u_{\infty}) - E\left(P_{\lambda_{\infty}, \tilde{b}_{\infty}, \tilde{\gamma}_{\infty}} \right) = O\left(\frac{1}{\lambda_{\infty}^{\alpha}} \|\varepsilon_{\infty}\|_{H^1} \right) = O\left(\|t\|^{\frac{4K-4}{2-\alpha}} \log \|t\|^{\frac{2K-4}{2-\alpha}} \right).
\]

From the continuity of \(E \), we have

\[
\lim_{n \to \infty} E\left(P_{\lambda_{n}, \tilde{b}_{n}, \tilde{\gamma}_{n}} \right) = E\left(P_{\lambda_{\infty}, \tilde{b}_{\infty}, \tilde{\gamma}_{\infty}} \right)
\]

and from the conservation of energy,

\[
E(u_{n}) = E(u_{n}(t_n)) = E\left(P_{\lambda_{1,n}, \tilde{b}_{1,n}, \tilde{\gamma}_{1,n,0}} \right) = E_0.
\]

Therefore, we have

\[
E(u_{\infty}) = E_0 + o_1(t_{\infty}) = E_0 + o(1)
\]

and since \(E(u_{\infty}) \) is constant for \(t \), \(E(u_{\infty}) = E_0 \).

REFERENCES

[1] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.
[2] T. Cazenave. Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[3] I. Chatzigeorgiou. Bounds on the Lambert Function and Their Application to the Outage Analysis of User Cooperation. IEEE Communications Letters. 17 (2013), no. 8, 1505-1508.
[4] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W function. Adv. Comput. Math. 5 (1996), no. 4, 329–359.
[5] M. K. Kwong. Uniqueness of positive solutions of \(\Delta u - u + u^p = 0 \) in \(\mathbb{R}^n \). Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266.
[6] S. Le Coz, Y. Martel and P. Raphaël. Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Rev. Mat. Iberoam. 32 (2016), no. 3, 795–833.
[7] N. Matsui. Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential. arXiv:2007.15968
[8] N. Matsui. Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential. Nonlinear Anal. 213 (2021), Paper No. 112497.
[9] N. Matsui. Remarks on minimal mass blow up solutions for a double power nonlinear Schrödinger equation. arXiv:2012.11562
[10] F. Merle. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. *Duke Math. J.* 69 (1993), no. 2, 427–454.

[11] F. Merle and P. Raphael. On universality of blow-up profile for L^2 critical nonlinear Schrödinger equation. *Invent. Math.* 156 (2004), no. 3, 565–672.

[12] F. Merle and P. Raphael. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. *Ann. of Math.* (2) 161 (2005), no. 1, 157–222.

[13] F. Merle and P. Raphael. On a sharp lower bound on the blow-up rate for the L^2 critical nonlinear Schrödinger equation. *J. Amer. Math. Soc.* 19 (2006), no. 1, 37–90.

[14] P. Raphaël and J. Szeftel. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. *J. Amer. Math. Soc.* 24 (2011), no. 2, 471–546.

[15] C. Rémi. Nonlinear Schrödinger equations with repulsive harmonic potential and applications. *SIAM J. Math. Anal.* 35 (2003), no. 4, 823–843.

[16] C. Rémi and N. Yoshihisa. Nonlinear Schrödinger equations with Stark potential. *Hokkaido Math. J.* 33 (2004), no. 3, 719–729.

[17] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations. *Comm. Pure Appl. Math.* 39 (1986), no. 1, 51–67.

[18] M. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates. *Comm. Math. Phys.* 87 (1982/83), no. 4, 567–576.

(N. Matsui) Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Email address, N. Matsui: 1120703@ed.tus.ac.jp