Explicit expressions of spin wave functions

Jie-Jie Zhu
CCAST(World Lab), P. O. Box 8730, Beijing, 100080, P. R. China
and Center for Fundamental Physics, USTC, Hefei, Anhui, 230026, P. R. China
(Permanent adress.

January 20, 2022)

We derive the explicit expressions of the canonical and helicity wave functions for massive particles with arbitrary spins. Properties of these wave functions are discussed.

PACS number(s): 11.80.Cr, 03.70.+k

I. INTRODUCTION

To describe particles with high spins in amplitude analysis, one needs to construct the explicit expressions of wave functions. Detailed properties of the amplitudes are needed in tensor analysis \[1\, 2\] to give independent invariant amplitudes free of kinematics singularities and zeros \[3\, 4\]. We will give the explicit expressions of the canonical and helicity wave functions for massive particles with arbitrary spins in this paper. These wave functions satisfy Rarita-Schwinger conditions \[9\].

We will discuss quantum states in section II. Spin wave functions are given in section III and section IV.

II. QUANTUM STATES

Let \(L(p)\) be a Lorentz transformation that satisfies

\[
\hat{p}^\mu |p,\sigma\rangle = p^\mu |p,\sigma\rangle. \tag{1}
\]

For massive particles one can choose the standard momentum to be \((k^\mu) = (w; \mathbf{0})\). \(w\) is the mass of the particle. The space-time metric is taken as \((g^{\mu\nu}) = \text{diag}\{1, -1, -1, -1\}\). Now we can define one particle states as \[10\]

\[
|p,\sigma\rangle = U(L(p))|k,\sigma\rangle, \tag{2}
\]

with \(U(L(p))\) the unitary representation of \(L(p)\) in Hilbert space. The one particle states satisfy

\[
\hat{p}^\mu |p,\sigma\rangle = p^\mu |p,\sigma\rangle. \tag{3}
\]

We choose the othonormal condition to be

\[
\langle p',\sigma'|p,\sigma\rangle = (2\pi)^3 (2p^0) \delta(p' - \bar{p}) \delta_{\sigma'\sigma}. \tag{4}
\]

Under Lorentz transformations,

\[
U(\Lambda)|p,\sigma\rangle = \sum_{\sigma'} D_{\sigma'\sigma}(W(\Lambda,p))|\Lambda p,\sigma'\rangle; \tag{5}
\]

where

\[
D_{\sigma'\sigma}(W(\Lambda,p)) = L^{-1}(\Lambda p)\Lambda L(p) \tag{6}
\]
is the Wigner rotation \[11\] and \(\{D_{\sigma'\sigma}\}\) furnishes a representation of \(SO(3)\). We also use the notation \(|\bar{p},j,m\rangle \equiv |p,j,m\rangle\).

There are infinite ways to define the Lorentz transformation that satisfies equation (1). Canonical state and helicity state are the two types mostly used.

*Permanent adress.
If one define the Lorentz transformation in equation (2) to be pure Lorentz boost

\[L(p) = L(p\bar{p}) = R(\varphi, \theta, 0)L_z(|\vec{p}|)R^{-1}(\varphi, \theta, 0), \]

(7)

the canonical state is obtained. Here \(R(\varphi, \theta, 0) \) is the rotation that takes \(z \)-axis to the direction of \(\vec{p} \) with spherical angles \((\theta, \varphi) \), and the boost \(L_z(|\vec{p}|) \) takes the four-momentum \((k^\mu) = (w; 0, 0, |\vec{p}|) \) to \(\left(\sqrt{w^2 + p_z^2}; 0, 0, |\vec{p}| \right) \). For a particle of spin-\(j, \sigma \sim (j, m) \). It can be shown that for the canonical states, equation (7) become

\[U(\Lambda)|\vec{p}, j, m\rangle = \sum_{m'} D^{j}_{m', m}(L^{-1}(\Lambda p)AL(\vec{p}))|\Lambda p, j, m'\rangle. \]

(8)

\(D^{j}_{m', m} \) is the ordinary D-function. Especially, under rotation \(R \),

\[U(R)|\vec{p}, j, m\rangle = \sum_{m'} D^{j}_{m', m}(R)|\vec{R}p, j, m'\rangle. \]

(9)

Defining the Lorentz transformation in another way will leads to helicity states (12):

\[L(p) = L(p\bar{p})R^{-1}(\varphi, \theta, 0) = R(\varphi, \theta, 0)L_z(|\vec{p}|). \]

(10)

We have

\[U(\Lambda)|\vec{p}, j, \lambda\rangle = \sum_{\lambda'} D^{j}_{\lambda', \lambda}(L^{-1}(\Lambda p)AL(\vec{p}))|\Lambda p, j, \lambda'\rangle \]

(11)

and

\[U(R)|\vec{p}, j, \lambda\rangle = |\vec{R}p, j, \lambda\rangle. \]

(12)

The two types of definitions are related to each other by

\[|\vec{p}, j, \lambda\rangle_{\text{helicity}} = \sum_{m} D^{j}_{m, \lambda}(\varphi, \theta, 0)|\vec{p}, j, m\rangle_{\text{canonical}}. \]

(13)

We see that the definition of state depends on the choice of Lorentz transformation in equation (2). There is a definition called spinor state (13), which is different from that of equation (2) and does not depend on the specific choice of Lorentz transformation; but it makes things more complex and is seldom used.

Now we write quantum states in terms of creation and annihilation operators:

\[|\vec{p}, \sigma\rangle = \sqrt{(2\pi)^3 2p^0 a^1(\vec{p}, \sigma)}|0\rangle, \]

(14)

with \(|0\rangle \) the vacuum state. Quantum fields are given by (14)

\[\psi^{(+)}_l = \int \frac{d^3p}{(2\pi)^3 2p^0} \sum_{\sigma} U_l(\vec{p}, \sigma) a(\vec{p}, \sigma) e^{-ip \cdot x}, \]

(15)

\[\psi^{(-)}_l = \int \frac{d^3p}{(2\pi)^3 2p^0} \sum_{\sigma} V_l(\vec{p}, \sigma) a^1(\vec{p}, \sigma) e^{ip \cdot x}, \]

(16)

\[U(\Lambda, a)\psi^{(\pm)}_l U^{-1}(\Lambda, a) = \sum_{\Lambda'} G_{\Lambda' l}(\Lambda^{-1})\psi^{(\pm)}_{\Lambda'}(\Lambda x + a). \]

(17)

The coefficient functions, \(U_l \) and \(V_l \), are wave functions in momentum space. \(a^\mu \) are parameters for translation. \(\{ G_{\Lambda' l} \} \) furnishes a representation of the Lorentz group. One finds that wave functions satisfy (18)

\[\sum_{\Lambda'} G_{\Lambda' l}(\Lambda)U_{l'}(\vec{p}, \sigma) = \sum_{\sigma'} D_{l', \sigma'}(W(\Lambda, p))U_l(\vec{\Lambda} p, \sigma'), \]

(18)

\[\sum_{\Lambda'} G_{\Lambda' l}(\Lambda)V_{l'}(\vec{p}, \sigma) = \sum_{\sigma'} D^{*}_{l', \sigma'}(W(\Lambda, p))V_l(\vec{\Lambda} p, \sigma'); \]

(19)
so we can define wave functions as

\[U_l(\vec{p}, \sigma) = \sum_{l'} G_{l''} (L(\vec{p})) U_{l'} (\vec{k}, \sigma), \]

\[V_l(\vec{p}, \sigma) = \sum_{l'} G_{l''} (L(\vec{p})) V_{l'} (\vec{k}, \sigma). \]

For massive particles, \(\vec{k} = \hat{0} \).

III. WAVE FUNCTIONS FOR INTEGRAL SPIN PARTICLES

If the index \(l \) in previous section is chosen as Lorentz indexes, one arrived at vector fields:

\[
G(\Lambda)_{\mu}^{\nu} = \Lambda_{\nu}^{\mu},
U_{\mu}(\vec{p}, \sigma) = L(p)_{\mu}^{\nu} U_{\nu}(\vec{0}, \sigma),
V_{\mu}(\vec{p}, \sigma) = L(p)_{\mu}^{\nu} V_{\nu}(\vec{0}, \sigma).
\]

We use the following infinitesimal generators of the Lorentz group:

\[
(J_1^{\mu}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix},
(J_2^{\mu}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
(J_3^{\mu}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
(K_1^{\mu}) = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
(K_2^{\mu}) = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
(K_3^{\mu}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix};
\]

and get the explicit expressions of canonical wave functions (\(E \) is the energy of the particle)

\[
(e_\pm^\mu(\vec{p}, 0)) = \begin{pmatrix} \frac{\sqrt{2}}{w} \cos \theta \\ \frac{1}{w} \left(\frac{E}{w} - 1 \right) \sin 2\theta \cos \varphi \\ \frac{1}{w} \left(\frac{E}{w} - 1 \right) \sin 2\theta \sin \varphi \\ \frac{i}{w} \left(\frac{E}{w} - 1 \right) (1 + \cos 2\theta) + 1 \end{pmatrix},
\]

\[
(\pm e_\pm^\mu(\vec{p}, \pm 1)) = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sqrt{2}}{w} \cos \theta \cos \varphi e^{\pm i\varphi} + 1 \\ \frac{1}{w} \left(\frac{E}{w} - 1 \right) \sin^2 \theta \cos \varphi e^{\pm i\varphi} + 1 \\ \frac{1}{w} \left(\frac{E}{w} - 1 \right) \sin^2 \theta \sin \varphi e^{\pm i\varphi} + 1 \\ \left(\frac{E}{w} - 1 \right) \cos \theta \sin \varphi e^{\pm i\varphi} \end{pmatrix};
\]

while helicity wave functions are

\[
(e_h^\mu(\vec{p}, 0)) = \begin{pmatrix} \frac{\sqrt{2}}{w} \sin \theta \cos \varphi \\ \frac{\sqrt{2}}{w} \sin \theta \sin \varphi \\ \frac{w}{E} \cos \theta \\ 0 \end{pmatrix},
(\pm e_h^\mu(\vec{p}, \pm 1)) = \frac{1}{\sqrt{2}} \begin{pmatrix} \mp \cos \theta \cos \varphi + i \sin \varphi \\ \mp \cos \theta \sin \varphi - i \cos \varphi \\ \pm \sin \theta \cos \varphi \pm i \sin \varphi \end{pmatrix};
\]

We have

\[
U(\vec{p}, \sigma) = V^*(\vec{p}, \sigma) = e(\vec{p}, \sigma).
\]

Wave functions for higher integral spins can be defined recurrently by
\[e_{\mu_1 \mu_2 \cdots \mu_j}(\vec{p}, j, \sigma) = \sum_{\sigma'_{j-1}, \sigma_j} (j - 1, \sigma'_{j-1}; 1, \sigma_j) e_{\mu_1 \mu_2 \cdots \mu_{j-1}}(\vec{p}, j - 1, \sigma'_{j-1}) e_{\mu_j}(\vec{p}, \sigma_j). \]

Using the C-G coefficient relation

\[
\sum_{\sigma'_{j-1} \cdots \sigma_n} (j_1, \sigma_1; j_2, \sigma_2; j_1 + j_2, \sigma_3)(j_1 + j_2, \sigma_3; j_3, \sigma_3; j_1 + j_2 + j_3, \sigma_4) \cdots
\times (j_1 + j_2 + \cdots + j_{n-1}, \sigma_{j_n}; j_n, \sigma_n;j_1 + j_2 + \cdots + j_n, \sigma_{n-1} + \sigma_n)
\]

\[
= \left[\prod_{i=1}^{n} \frac{(2j_i)!}{(j_i + \sigma_i)!} \right]^{1/2} \left\{ \frac{\sqrt{\sum_{i=1}^{n} (j_i + \sigma_i)! \left[\sum_{i=1}^{n} (j_i - \sigma_i)! \right]^2}}{2^n \sum_{i=1}^{n} j_i!} \right\}^{1/2},
\]

we find

\[
e_{\mu_1 \mu_2 \cdots \mu_j}(\vec{p}, j, \sigma)
= \sum_{\sigma_1, \sigma_2, \cdots, \sigma_j} \left\{ \frac{2^j (j + \sigma)! (j - \sigma)!}{(2j)! \prod_{i=1}^{j} [(1 + \sigma_i)! (1 - \sigma_i)!]} \right\}^{1/2} \delta_{\sigma_1 + \sigma_2 + \cdots + \sigma_j, \sigma} e_{\mu_1}(\vec{p}, \sigma_1) e_{\mu_2}(\vec{p}, \sigma_2) \cdots e_{\mu_j}(\vec{p}, \sigma_j).
\]

It is easy to show

\[
\Lambda^{\mu_1 \nu_1} \Lambda^{\mu_2 \nu_2} \cdots \Lambda^{\mu_j \nu_j} e^{\nu_1 \nu_2 \cdots \nu_j}(\vec{p}, j, \sigma) = \sum_{\sigma} D^{j}_{\sigma, \sigma} (W(\Lambda, \vec{p})) e^{\mu_1 \mu_2 \cdots \mu_j}(\vec{p}, j, \sigma').
\]

\[e_{\mu_1 \mu_2 \cdots \mu_j}(\vec{p}, j, \sigma) \] satisfies all of the Rarita-Schwinger conditions: space-like, symmetric and traceless.

IV. WAVE FUNCTIONS FOR HALF-INTEGRAL SPIN PARTICLES

The convention of \(\gamma \)-matrices used here follows that of Bjorken and Drell [4], so the generators of the Lorentz group are

\[
\vec{J} = \frac{1}{2} \begin{pmatrix} \vec{\tau} & 0 \\ 0 & \vec{\tau} \end{pmatrix}, \quad \vec{K} = \frac{1}{2} \begin{pmatrix} 0 & \vec{\tau} \\ \vec{\tau} & 0 \end{pmatrix};
\]

with \(\vec{\tau} \) Pauli matrices.

The spin-\(\frac{1}{2} \) canonical wave functions are (here \(\alpha = \ln ((E + |\vec{p}|)/w) \)

\[
U_c(\vec{p}, \frac{1}{2}) = \begin{pmatrix} \cosh \frac{\alpha}{2} \\ \cos \theta \sinh \frac{\alpha}{2} \\ \sin \theta \cosh \frac{\alpha}{2} \end{pmatrix}, \quad U_c(\vec{p}, -\frac{1}{2}) = \begin{pmatrix} 0 \\ \cosh \frac{\alpha}{2} \\ \sin \theta e^{i\phi} \sinh \frac{\alpha}{2} \end{pmatrix};
\]

\[
V_c(\vec{p}, \frac{1}{2}) = \begin{pmatrix} -\cos \theta \sinh \frac{\alpha}{2} \\ 0 \\ \cosh \frac{\alpha}{2} \end{pmatrix}, \quad V_c(\vec{p}, -\frac{1}{2}) = \begin{pmatrix} 0 \\ \sin \theta e^{i\phi} \sinh \frac{\alpha}{2} \\ -\cos \theta \cosh \frac{\alpha}{2} \end{pmatrix};
\]

and the helicity wave functions are

\[
U_h(\vec{p}, \frac{1}{2}) = \begin{pmatrix} \cos \frac{\alpha}{2} e^{-i\phi} \\ \sin \frac{\alpha}{2} \\ \sin \frac{\alpha}{2} \cosh \frac{\alpha}{2} \end{pmatrix}, \quad U_h(\vec{p}, -\frac{1}{2}) = \begin{pmatrix} -\sin \frac{\alpha}{2} e^{-i\phi} \\ \cos \frac{\alpha}{2} \cosh \frac{\alpha}{2} \\ \sin \frac{\alpha}{2} \sinh \frac{\alpha}{2} \end{pmatrix};
\]

\[
V_h(\vec{p}, \frac{1}{2}) = \begin{pmatrix} \sin \frac{\alpha}{2} \\ \cos \frac{\alpha}{2} e^{-i\phi} \\ -\sin \frac{\alpha}{2} \cosh \frac{\alpha}{2} \end{pmatrix}, \quad V_h(\vec{p}, -\frac{1}{2}) = \begin{pmatrix} -\cos \frac{\alpha}{2} e^{-i\phi} \\ \sin \frac{\alpha}{2} \sinh \frac{\alpha}{2} \\ \cos \frac{\alpha}{2} \cosh \frac{\alpha}{2} \end{pmatrix};
\]
Spin-\(n + \frac{1}{2}\) wave functions read

\[
U_{\mu_1 \mu_2 \cdots \mu_n}(\vec{p}, n + \frac{1}{2}, \sigma) = \sum_{\sigma_1, \sigma_2, \cdots, \sigma_{n+1}} \left\{ \begin{array}{l} 2^n \frac{(n + \frac{1}{2} + \sigma)! (n + \frac{1}{2} - \sigma)!}{(n+1)!} \\ \prod_{i=1}^{n+1} \frac{((1 + \sigma_i)!(1 - \sigma_i)!)}{i!} \end{array} \right\} \frac{1}{2} \delta_{\sigma_1 + \sigma_2 + \cdots + \sigma_{n+1}} \delta_{\sigma} \\
\times e_{\mu_1}(\vec{p}, \sigma_1) e_{\mu_2}(\vec{p}, \sigma_2) \cdots e_{\mu_n}(\vec{p}, \sigma_n) U(\vec{p}, \sigma_{n+1});
\]

\[
V_{\mu_1 \mu_2 \cdots \mu_n}(\vec{p}, n + \frac{1}{2}, \sigma) = \sum_{\sigma_1, \sigma_2, \cdots, \sigma_{n+1}} \left\{ \begin{array}{l} 2^n \frac{(n + \frac{1}{2} + \sigma)! (n + \frac{1}{2} - \sigma)!}{(n+1)!} \\ \prod_{i=1}^{n+1} \frac{((1 + \sigma_i)!(1 - \sigma_i)!)}{i!} \end{array} \right\} \frac{1}{2} \delta_{\sigma_1 + \sigma_2 + \cdots + \sigma_{n+1}} \delta_{\sigma} \\
\times e^{*}_{\mu_1}(\vec{p}, \sigma_1) e^{*}_{\mu_2}(\vec{p}, \sigma_2) \cdots e^{*}_{\mu_n}(\vec{p}, \sigma_n) V(\vec{p}, \sigma_{n+1}).
\]

They satisfy Dirac equations and Rarita-Schwinger conditions [9]; especially

\[
\gamma^{\mu k} U_{\mu_1 \mu_2 \cdots \mu_k \cdots \mu_n}(\vec{p}, n + \frac{1}{2}, \sigma) = 0,
\]

\[
\gamma^{\mu k} V_{\mu_1 \mu_2 \cdots \mu_k \cdots \mu_n}(\vec{p}, n + \frac{1}{2}, \sigma) = 0.
\]