Genetic diversity associated with natural rubber quality in elite genotypes of the rubber tree

Isabela de Castro Sant’Anna1*, Ligia Regina Lima Gouvêa2, Maria Alice Martins3, Erivaldo José Scaloppi Junior1, Rogério Soares de Freitas1 & Paulo de Souza Gonçalves2

The objective of this study was to evaluate the genetic variability of natural rubber latex traits among 44 elite genotypes of the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell. Arg.]. Multivariate analysis and machine learning techniques were used, targeting the selection of parents that demonstrate superior characters. We analyzed traits related to technological or physicochemical properties of natural rubber latex, such as Wallace plasticity (P0), the plasticity retention index [PRI (%)], Mooney viscosity (V0), ash percentage (Ash), acetone extract percentage (AE), and nitrogen percentage (N), to study genetic diversity. Multivariate [unweighted pair group method with arithmetic means (UPGMA) and Tocher] and machine learning techniques [K-means and Kohonen’s self-organizing maps (SOMs)] were employed. The genotypes showed high genetic variability for some of the evaluated traits. The traits PRI, Ash, and P0 contributed the most to genetic diversity. The genotypes were classified into six clusters by the UPGMA method, and the results were consistent with the Tocher, K-means and SOM results. PRI can be used to improve the industrial potential of clones. The clones IAC 418 and PB 326 were the most divergent, followed by IAC 404 and IAC 56. These genotypes and others from the IAC 500 and 400 series could be used to start a breeding program. These combinations offer greater heterotic potential than the others, which can be used to improve components of rubber latex quality. Thus, it is important to consider the quality of rubber latex in the early stage of breeding programs.

The rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell. Arg.] is native to the Amazon region. However, since the introduction of rubber tree materials by Henry Wickham in 1876, Southeast Asia has become the major producer of natural rubber1. Thus, rubber production worldwide is derived from a small number of collected seeds with a narrow genetic base2.

Worldwide production has increased in the last 30 years as a result of an increase in the rubber agricultural planted area and a large increase in productivity, to which genetic improvement remains a key contributor3. The success of crop improvement depends on the extent of genetic diversity available in germplasms as well as information on important traits. Recently, many studies have been conducted in germplasm banks in countries such as Vietnam3, Malaysia4,5, Nigeria6, Sri Lanka7, Brazil8–10 and India11. Genetic variability studies are crucial for the selection of parents for hybridization12. However, breeding program efforts have focused mainly on advanced varieties with improved production, vigor, disease resistance and the shortening of the crop breeding cycle to release new clones13, and information on selection for the quality of the rubber generated is lacking. Such information is crucial and may determine the applications of this natural polymer14.

Natural rubber is a biopolymer consisting of (C5H8)n isoprene units and other cellular components, such as proteins, minerals, carbohydrates and lipids. These components confer rubber compounds elasticity, resilience and toughness. Natural rubber is an essential raw material for more than 50,000 products, such as medical devices, surgical gloves, aircraft and car tires, clothes, and toys, and cannot be replaced by synthetic rubber in many cases15. Differences in the composition of rubber components affect the predominance of certain properties and lead to different selling prices.

In Brazil, most studies on this topic are aimed at determining whether the rubber produced nationally meets the standards required by Brazilian legislation16–20. In Colombia, some authors have studied the components of...
rubber to evaluate the quality of rubber genotypes and found variability among clones in these components. It is important to consider such information in the early stages of a breeding program. Therefore, the present work was aimed at evaluating the diversity among elite genotypes in traits related to technological or physicochemical properties of the rubber tree latex. The findings may inform genetic breeding programs regarding the crossing of different rubber genotypes. In particular, it might be possible to improve specific traits of genotypes related to the industrial sectors most suitable for their application.

Results

Analysis of genetic diversity. The Tocher optimization method grouped the 44 rubber tree genotypes into six clusters (Table 1). Twenty-five genotypes were grouped in cluster I, which was composed of Asiatic genotypes (PB 311, PB 312, PB 314, PB 324, RRIM 600, RRIM 713, and RRIM 901) and Brazilian genotypes (members of the IAC 300 series, IAC 40, IAC 56, and all members of the IAC 400 series except IAC 418). Cluster II was composed of six Asiatic genotypes (PM 10, RRIM 938, PB 291, PC 119, PB 350, and RRIM 937) and IAC 507. Cluster III comprised eight genotypes from the IAC 500 series. Cluster IV comprised PB 355, cluster V comprised GT1 and PB 326, and cluster VI comprised IAC 418.

![Cluster Dendrogram](https://example.com/cluster_dendrogram.png)

Figure 1. UPGMA cluster analysis of Euclidean distances based on data on the technological properties of natural rubber latex, used in the evaluation of the 44 rubber tree genotypes. The red line highlights the groups identified by K = 1.25; the cophenetic correlation was 0.77. From left to right: group I: PB 326; group II: IAC 500 series; group III: IAC 418; group IV: IAC 400 series, IAC 300, IAC 301, IAC 40, IAC 56 and RRIM 600; group V: PB 355; group VI: Asiatic genotypes, IAC 400 and IAC 302. The percentage distance between cultivars is presented on the Y axis, and the 44 genotypes are presented on the X axis.

rubber to evaluate the quality of rubber genotypes and found variability among clones in these components. It is important to consider such information in the early stages of a breeding program.

Therefore, the present work was aimed at evaluating the diversity among elite genotypes in traits related to technological or physicochemical properties of the rubber tree latex. The findings may inform genetic breeding programs regarding the crossing of different rubber genotypes. In particular, it might be possible to improve specific traits of genotypes related to the industrial sectors most suitable for their application.

Results

Analysis of genetic diversity. The Tocher optimization method grouped the 44 rubber tree genotypes into six clusters (Table 1). Twenty-five genotypes were grouped in cluster I, which was composed of Asiatic genotypes (PB 311, PB 312, PB 314, PB 324, RRIM 600, RRIM 713, and RRIM 901) and Brazilian genotypes (members of the IAC 300 series, IAC 40, IAC 56, and all members of the IAC 400 series except IAC 418). Cluster II was composed of six Asiatic genotypes (PM 10, RRIM 938, PB 291, PC 119, PB 350, and RRIM 937) and IAC 507. Cluster III comprised eight genotypes from the IAC 500 series. Cluster IV comprised PB 355, cluster V comprised GT1 and PB 326, and cluster VI comprised IAC 418.

The results of the unweighted pair group method with arithmetic means (UPGMA) agreed with the results of the Tocher method, with small differences (Fig. 1). The cophenetic correlation was $r = 0.77$, indicating that
the dendrogram clustering accurately depicted the estimated genetic distances among the genotypes. This value was significant at the 1% probability level by the Mantel test, based on resampling 1000 times. A total of six groups were identified at K = 1.25, as suggested by Milligan and Cooper23. The IAC 418 and PB 326 genotypes were highly distinct from each other based on Euclidean distance (D = 0.717). The lowest genetic dissimilarity among genotypes was found among IAC 406, IAC 410 and IAC 411.

The number of clusters was confirmed iteratively by the elbow method24 (Fig. 2) to be six in accordance with the number of groups provided by the Tocher method and UPGMA. The 44 genotypes were divided into six distinct groups by K-means cluster analysis (Fig. 3); the group membership of each genotype was identified by one of six colors. Cluster I (blue) was composed of all Agronomic Institute (IAC) genotypes except members of the IAC 500 series. Cluster VI is shown in aqua and it is formed by the other genotypes from Asia (PB 311, PB 312, PB 324, PB 350, RRIM 901, GT1), cluster IV is shown in black and includes only PB 326, and cluster II is composed of the IAC 500 series.
291, PB 314, PB 355, PC 119, PM 10, RRIM 713, RRIM 937, and RRIM 938). Cluster IV (black) comprised PB 326, and cluster V (green) comprised IAC 402 and IAC 407. The last cluster, cluster VI (aqua), was formed by the remaining genotypes from Asia. With this partitioning, the variation among groups corresponded to 65.39% of the total variation, whereas the variation within groups represented only 34.61%.

For self-organizing maps (SOMs; Fig. 5), it was iteratively shown that the best network architecture involved three columns and four rows, hextop as the topology, Euclidean distance, 3000 epochs and a spread of six neurons. The SOM results were in accordance with the k-means results. Six clusters were formed: Cluster I comprised the IAC 500 series, cluster II comprised PB 326, cluster III comprised IAC 507 and Asiatic clones (PB 291, PB 314, PB 355, PC 119, PM 10, RRIM 713, RRIM 937, and RRIM 938), and cluster IV comprised some Asiatic genotypes (PB 311, PB 312, PB 324, PB 350, RRIM 901, GT1), IAC 302 and IAC 400; cluster V comprised the IAC 400 series (IAC 401, IAC403, IAC 404, IAC 405, IAC 406, IAC 409, IAC 410, IAC 411, IAC 412, IAC 417, and IAC 418); and cluster VI comprised the genotypes IAC 402, IAC 407 and RRIM 600.

Table 2. Principal components and the explained variance in the genetic diversity of traits related to technological properties of natural rubber latex, used in the evaluation of the 44 rubber tree genotypes. The first three principal components explained 80% of the variation among genotypes.

Component	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7
Eigenvalue	3.05	1.51	0.97	0.64	0.41	0.263	0.15
Cumulative variance	43.61	65.23	79.09	88.23	94.09	97.84	100

Variable measurement importance. The principal component analysis (PCA) of natural rubber components (Table 2) showed that the first three principal components accounted for 77.39% of the total variation. Among the variables, the plasticity retention index (PRI) contributed the most to the estimated genetic divergence among the 44 genotypes. The acetone extract percentage (AE) was the next largest contributor among the last three main components; the remainder contributed little to the genotypic diversity, being redundant or invariant.

In the decision tree (Fig. 5) for the natural rubber compounds, the most important variable was located at the root of the tree and was divided into two nodes according to PRI < 69.8% (left branch) or PRI ≥ 69.8% (right branch). The right branch was divided by ash percentage (Ash) [Node 3: Ash < 0.51% (cluster 1); Node 4: Ash > 0.51% (cluster 2)]. The left branch was divided by Wallace plasticity (Po) subgroup (Node 5: Po < 0.36 and Node 6: Po ≥ 0.36). In this analysis, it was not possible to obtain six groups because clusters with fewer than two genotypes were not accepted. Thus, the classification used only three clusters, with the first comprising all Brazilian clones except the 500 series, the second comprising the IAC 500 series and the third comprising Asiatic clones.
Discussion

Genetic diversity. The genetic improvement of important traits in plant breeding depends upon the genetic diversity available within the species of interest. Here, the genetic diversity of 44 clones was studied using traits related to the technological properties of natural rubber latex, resulting in the identification of distinct groups for the IAC series and for the Asiatic clones. The genotypes with high levels of genetic variation found in this study are beneficial resources for breeding programs aimed at improving the quality of natural rubber. The number of defined groups showed agreement between the traditional techniques applied for assessing genetic diversity (UPGMA and Tocher) and both the unsupervised learning technique of k-means analysis and the evaluation of SOMs. It was important to demonstrate the reliability of the results obtained here.

There was a clear relationship between the cluster allocation and genotype origin, as defined according to the types of crosses realized in the breeding programs that gave rise to the materials (Table 3 and Fig. 1). According to the UPGMA results, clusters II, III and IV were formed from Brazilian genotypes included in the rubber tree breeding program at the Agronomic Institute that had been selected in different breeding cycles. Cluster II corresponded to the IAC 500 series, cluster III corresponded to genotype IAC 418, and cluster IV corresponded to the IAC 300 series and IAC 400 series. Clusters I and V comprised PB 326 and PB 355, respectively. Cluster VI was composed of Asiatic genotypes. As shown in Fig. 1, in clusters I and V, there was a unique genotype from the Prang Besar (PB) plantations. In cluster II, the genotypes from the IAC 500 series were all illegitimate; that is, they were the result of open pollination in female parents selected by different institutions. Cluster VI was composed of genotypes selected in Malaysian breeding programs at the Rubber Research Institute of Malaysia (RRIM) and from the PB plantations; these genotypes are descendants of Wickham clones. In cluster III, the IAC 300 series members were the result of crosses performed via controlled pollination between Malaysian and Indonesian clones, wherein the Malaysian parents were selected from RRIM, and the Indonesian parents were selected from the experimental station of Algemene Vereniging Rubber Planters Oostkust Sumatra (AVROS). The genotypes from the IAC 400 series were obtained through controlled pollination and open pollination. The clones used as parents for the IAC 400 series of genotypes and the Asian clones came from the genitors RRIM 600, GT 711, PB 86, Tjir 1, and PB 235, among others. In complex scenarios such as this in which the genetic similarity between genotypes can differ (siblings, half siblings, parents and grandparents), the SOM method allows the visualization of patterns of similarity and data classification based on the distances between genotypes. This method is efficient, as noted by other authors who have not found a relationship between the formation of clusters and genotypic origin. For example, other authors have not found a relationship between the formation of clusters and genotypic origin. For example, Vog et al. detected no difference between groups formed among 17 sunflower cultivars from different breeding programs according to Argentine versus Brazilian origin. Carmo et al. studied fava beans and noticed that the cultivar groups that were formed corresponded to different countries.

The identification of the genetic relationships and divergence among genetic resources is useful for the selection of parental genotypes in breeding programs. The current study was carried out to establish the genetic diversity and relationships among rubber tree genotypes to identify appropriate parents for hybridization. The
use of parental genotypes with the greatest possible divergence is important to maximize heterosis in hybrids and increase the genetic base. The most divergent pair of genotypes was IAC 418 and PB 326 (D = 0.717), followed by...

Genotype	Genealogy	Origin
GT 1	Primary clone	Indonesia
IAC 40	RRIM 608 (Tjir 33 × Tjir 1) × AVROS 1279 (AVROS 156 × AVROS 374)	Brazil
IAC 56	RRIM 608 (Tjir 33 × Tjir 1) × Fx 3810	Brazil
IAC 300	RRIM 605 (Tjir 1 × PB 49) × AVROS 353 (AVROS 164 × AVROS 160)	Brazil
IAC 301	RRIM 501 (Pil A 44 × Lun N) × AVROS 1518 (AVROS 214 × AVROS 317)	Brazil
IAC 302	RRIM 501 (Pil A 44 × Lun N) × AVROS 353 (AVROS 164 × AVROS 160)	Brazil
IAC 400	GT 711 × RRIM 600 (Tjir 1 × PB 86)	Brazil
IAC 401	RRIM 600 (Tjir 1 × PB 86) ill.	Brazil
IAC 402	GT 711 ill.	Brazil
IAC 403	GT 711 ill.	Brazil
IAC 404	PB 5/63 (PB 56 × PB 24) × AVROS 363	Brazil
IAC 405	Tjir 1 × RRIM 623 (PB 49 × Pil B 84)	Brazil
IAC 406	IAN 873 (PB 86 × FA 1717) × RRIM 600 (Tjir 1 × PB 86)	Brazil
IAC 407	RRIM 600 (Tjir 1 × PB 86) ill.	Brazil
IAC 409	Fx 2784 (F 4542 Ill. × AVROS 363) Ill.	Brazil
IAC 410	PB 86 × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Brazil
IAC 411	GT 711 ill.	Brazil
IAC 412	IAN 873 (PB 86 × FA 1717) × GT 711	Brazil
IAC 417	RRIM 600 (Tjir 1 × PB 86) Ill.	Brazil
IAC 418	RRIM 600 (Tjir 1 × PB 86) Ill.	Brazil
IAC 500	RRIM 600 (Tjir 1 × PB 86) Ill.	Brazil
IAC 501	RRIM 526 (Pil B 58 × Pil D 65) Ill.	Brazil
IAC 502	IAC 41 [RRIM608 (Tjir 33 × Tjir 1) × AVROS 1279 (AVROS 156 × AVROS 374)] Ill.	Brazil
IAC 503	Fx 3899 (F 4542 Ill. × AVROS 363) Ill.	Brazil
IAC 505	IAN 873 (PB 86 × FA 1717) Ill.	Brazil
IAC 506	AVROS 1513 Ill.	Brazil
IAC 507	IAC 90 [RRIM 507 (Pil B 84 × Pil A 44) × Fx 25 (F 351 × AVROS 49)] Ill.	Brazil
IAC 511	IAC 15 [RRIM 504 (Pil A 44 × Lun N) × RRIM 600 (Tjir 1 × PB 86)] Ill.	Brazil
IAC 512	Fx 25 (F 351 × AVROS 49) Ill.	Brazil
PB 291	Unknown*	Malaysia
PB 311	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 312	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 314	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 324	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 326	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 350	RRIM 600 (Tjir 1 × PB 86) × PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)]	Malaysia
PB 355	PB 235 [PB 5/51 (PB 56 × PB 24) × PB S/78 (PB 49 × PB 25)] × PR 107	Malaysia
PC 119	GT 1 × RRIM 703 [RRIM 600 (Tjir 1 × PB 86) × RRIM 500 (Pil B 84 × Pil A 44)]	Malaysia
PM 10	Unknown	Malaysia

Table 3: Genealogies and origin of 44 rubber tree genotypes used in the study of genetic divergence related to natural rubber quality. Some of the genotypes are pedigree genotypes from Asia; most are from the IAC breeding program in Brazil. Both types were evaluated in Votuporanga, SP, *Hevea benthamiana* genotype. (1)ill., illegitimate (genotype obtained from an open pollination matrix plant). (2)Amazonian genotypes (F Ford, FA Ford Acre, Fx Ford crossing, IAN Instituto Agronômico do Norte; RO Rondônia); São Paulo genotypes (IAC Instituto Agronômico), Indonesian genotypes (AVROS Algemene Vereniging Rubberplanters Oostkust Sumatra, GT Godang Tapen, PR Proefstation voor rubber, Tjir Tjirandji); Malaysian genotypes (Lun Lunderston, PB Prang Besar, Pil Pilmoor, RRIM Rubber Research Institute of Malaysia).
the traits contributed most to the observed genetic divergence were PRI, Ash, and P_O, as suggested by the decision tree analysis. The PRI is used to evaluate resistance to thermoxidative degradation in natural rubber. According to the Brazilian standard, for the raw material to be considered of good quality, it must have a PRI value equal to or higher than 50%. The studied genotypes in the present study showed an average PRI value of 68.50 ± 7.61%. Those in cluster III exhibited PRI values equal to or greater than 69.8%, whereas those in cluster IV showed values below 69.8%.

The trait PRI provides an estimate of the length of the polymeric chain and the state of degradation of the raw material. The studied genotypes exhibited an average PRI value of 57.69 ± 9.9%. The genotype with the highest mean value was IAC 402 (PRI = 90 ± 9%) and that with the lowest was PB 326 (PRI = 38.9 ± 9%). All of the genotypes studied exhibited an average PRI value higher than the minimum established by the standard (PRI = 30), indicating that they produce rubber with long polymer chains. Mooney viscosity (V_M) indicates the resistance of natural rubber to a rotor operating at a constant speed at ML (1 + 4) 100°C. The average value of this trait was approximately $V_\text{M} = 99.46$, with the highest value found for RRIM 713 ($V_\text{M} = 118$) and the lowest for PB 326 ($V_\text{M} = 65$). The IAC 500 series presented an average of $V_\text{M} = 84$. Considering the diversity identified in this study, much can be done to explore this genetic variability depending on the interests of the industry, starting with the direction of specific crosses.

The Ash determination test reduces rubber to only those inorganic components that do not decompose at a temperature of approximately 600°C, with all substances of an organic nature being destroyed at this temperature. In addition to reducing the dynamic properties of the vulcanized material, an excess Ash content can negatively influence its aging properties. All genotypes showed a percentage of Ash within the value stipulated by the standard, with average variation of 0.50 ± 0.18%. In general, the studied traits are very important for the industrial application of the evaluated genotypes. For example, the acetone extract (AE) content test consists of the extraction of substances that are soluble in acetone, among which lipids are the main components. Studies show that the AE content can vary from 2 to 5% in dry rubber; the Brazilian standard establishes a maximum value of 3.5%. The evaluated genotypes showed an average value of 3.31 ± 0.8%. Among the genotypes, those in clusters I and II presented values below 3.23%.

The trait nitrogen content (N) is indicative of the contents of proteins, amino acids and nitrogenous bases that are present in latex and remain in natural rubber after coagulation. According to Brazilian legislation, to be considered of good quality, natural rubber must present an N value between 0.2 and 0.6%, and the standard establishes 0.6% as the maximum value. The results showed that the studied genotypes presented an average value of 0.496 ± 0.05%, which is in accordance with the current standard.

Although the traits AE, N, and V_M had little importance in differentiating the studied genotypes, the determination of these parameters is extremely important for industries, as they are indicators of natural rubber behavior during processing and the quality of the feedstock. In addition, other important relationships might be found with other data sets from different locations.

Material and methods

Natural rubber latex from 44 genotypes was used in this study; the genealogies of these genotypes are described in Table 3. The performance of these genotypes has been evaluated at the Center of Rubber Tree and Agroforestry Systems, IAC, Votuporanga (São Paulo state, Brazil), at 20°20'S, 49°58'W and an altitude of 510 m. The soil is characterized as Arenic Hapludult. The Asiatic clones were introduced into Brazil by Embrapa (Brazilian Agricultural Research Corporation) at the end of the last century. Most are pedigree genotypes originating from Asiatic breeding programs. Together with the Brazilian genotypes from the IAC breeding program, the Asiatic genotypes were evaluated for growth and yield. Panel tapping was initiated when the trees were 7 years old and was followed by the half-spiral-cut tapping system, with tapping conducted every 4 days and latex production

Variable measurement. The present study investigated six traits associated with the technological properties of natural rubber latex to reveal the genetic diversity among 44 elite genotypes that are among the most commonly used in Brazil. The traits that contributed most to the observed genetic divergence were PRI, Ash, and P_O, as suggested by the decision tree analysis. The PRI is used to evaluate resistance to thermoxidative degradation in natural rubber. According to the Brazilian standard, for the raw material to be considered of good quality, it must have a PRI value equal to or higher than 50%. The studied genotypes in the present study showed an average PRI value of 68.50 ± 7.61%. Those in cluster III exhibited PRI values equal to or greater than 69.8%, whereas those in cluster IV showed values below 69.8%.

The trait PRI provides an estimate of the length of the polymeric chain and the state of degradation of the raw material. The studied genotypes exhibited an average PRI value of 57.69 ± 9.9%. The genotype with the highest mean value was IAC 402 (PRI = 90 ± 9%) and that with the lowest was PB 326 (PRI = 38.9 ± 9%). All of the genotypes studied exhibited an average PRI value higher than the minimum established by the standard (PRI = 30), indicating that they produce rubber with long polymer chains. Mooney viscosity (V_M) indicates the resistance of natural rubber to a rotor operating at a constant speed at ML (1 + 4) 100°C. The average value of this trait across the genotypes was approximately $V_\text{M} = 99.46$, with the highest value found for RRIM 713 ($V_\text{M} = 118$) and the lowest for PB 326 ($V_\text{M} = 65$). The IAC 500 series presented an average of $V_\text{M} = 84$. Considering the diversity identified in this study, much can be done to explore this genetic variability depending on the interests of the industry, starting with the direction of specific crosses.

The Ash determination test reduces rubber to only those inorganic components that do not decompose at a temperature of approximately 600°C, with all substances of an organic nature being destroyed at this temperature. In addition to reducing the dynamic properties of the vulcanized material, an excess Ash content can negatively influence its aging properties. All genotypes showed a percentage of Ash within the value stipulated by the standard, with average variation of 0.50 ± 0.18%. In general, the studied traits are very important for the industrial application of the evaluated genotypes. For example, the acetone extract (AE) content test consists of the extraction of substances that are soluble in acetone, among which lipids are the main components. Studies show that the AE content can vary from 2 to 5% in dry rubber; the Brazilian standard establishes a maximum value of 3.5%. The evaluated genotypes showed an average value of 3.31 ± 0.8%. Among the genotypes, those in clusters I and II presented values below 3.23%.

The trait nitrogen content (N) is indicative of the contents of proteins, amino acids and nitrogenous bases that are present in latex and remain in natural rubber after coagulation. According to Brazilian legislation, to be considered of good quality, natural rubber must present an N value between 0.2 and 0.6%, and the standard establishes 0.6% as the maximum value. The results showed that the studied genotypes presented an average value of 0.496 ± 0.05%, which is in accordance with the current standard.

Although the traits AE, N, and V_M had little importance in differentiating the studied genotypes, the determination of these parameters is extremely important for industries, as they are indicators of natural rubber behavior during processing and the quality of the feedstock. In addition, other important relationships might be found with other data sets from different locations.
stimulated with 2.5% ethephon eight times per year. After 3 years of tapping, latex samples from 30 trees per genotype were collected and sent to Nanotechnology National Laboratory for Agriculture (LNNA) at Embrapa Instrumentação for natural rubber analysis.

Methods

Compound assessment. The technological properties of the natural rubber were evaluated by Embrapa Agricultural Instrumentation, São Carlos, São Paulo state, following standard procedures described by the Brazilian Association of Technical Standards (ABNT). Assays for the following parameters were performed: Wallace plasticity (Po)\(^{39}\), the plasticity retention index (PRI)\(^ {38}\), Mooney viscosity (\(V_{0}\))\(^ {36}\), ash percentage (Ash)\(^ {45}\), acetone extract percentage (AE)\(^ {44}\), and nitrogen percentage (N)\(^ {44}\). The tests were performed in duplicate except for Po and PRI, which were analyzed in quintuplicate. Brazilian standards are identical in technical content, design and writing to the ISO standards for natural rubber that were developed by the Technical Committee Rubber and Rubber Products (ISO/TC 45) according to ISO/IEC Guide 21-1:2005\(^ {45}\). The RRIM 600 clone was analyzed for validation purposes as it is the most planted clone under the cultivation conditions of rubber plantations.

Multivariate analysis. Cluster analysis was performed on standardized morphological data based on the average Euclidian distance coefficient and UPGMA. The cophenetic correlation was estimated, and its significance was tested by the Mantel test based on resampling 1000 times. In addition, the Tocher optimization method was applied.

The K-means algorithm is a simple unsupervised machine-learning algorithm that groups data into a specified number (k) of clusters. Because the user must specify in advance what k to choose, the algorithm is somewhat naive—it assigns all members to k clusters even if the k value is not the appropriate k for the dataset. Therefore, the number of clusters was confirmed iteratively by the elbow method\(^ {24}\). The K-means algorithm cluster analysis was performed using R\(^ {40}\) and the Genes program\(^ {50}\).

Kohonen's self-organizing maps (SOMs) were used to evaluate the organization of diversity in the software MATLAB Version 7.10.0\(^ {39}\) and GENES\(^ {50}\). Different network architectures were tested by varying the number of rows (1 to 5) and columns (1 to 5). The defined topology was hextop (i.e., with a hexagonal neighborhood), and the distance used to configure the artificial neural networks was the Euclidean distance.

Variable importance measures. PCA\(^ {52}\) and decision trees\(^ {53}\) were used to determine the contribution of traits to the diversity of genotypes.

Conclusions

The genetic diversity of rubber tree genotypes was analyzed, with genotypes clustered into distinct groups. Among the evaluated traits, those that contributed the most to genetic divergence were PRI, Ash, and Po. The greatest divergence was observed between IAC 418 and PB326, followed by IAC 404 and IAC 56. These genotypes and others from the IAC 500 and 400 series could be used to start a breeding program. The findings indicate a greater heterotic potential of these combinations than of others that can be used to improve components of natural rubber quality. It is important to include the assessment of the quality of rubber latex in the early stage of breeding programs.

Received: 16 July 2020; Accepted: 18 November 2020
Published online: 13 January 2021

References

1. Sohha, S., Rekha, K. & Uthup, T. K. Biotechnological Advances in Rubber Tree (Hevea brasiliensis Muell. Arg.) Breeding. in Advances in Plant Breeding Strategies: Industrial and Food Crops 179–236 (Springer, 2019).

2. Priyadarshan, P. M. Genetics of Traits. in Biology of Hevea Rubber 127–129 (Springer International Publishing, Berlin, 2017).

3. Vu, V. T. et al. Population genotypic structure of a thousand rubber tree accessions from wild Rondônia populations conserved in Vietnam. Genet. Resour. Crop Evol. 67, 475–487 (2020).

4. Adifaiz, A. F. et al. Genetic diversity of the 1995 RRIM Hevea germplasm collection for utilisation in the rubber breeding programme. J. Rubber Res. 21, 153–164 (2018).

5. Adifaiz, A. F., Maiden, N. A., Shamin, N. A., Zarawi, A. G. & Rafii, M. Y. Potential genotypes of the 1995 RRIM Hevea germplasm collection for future rubber breeding and selection programme. J. Rubber Res. 20, 242–260 (2017).

6. Omokhafe, K. O., Aghaghui, O. & Inorn, E. A. Germplasm of Hevea brasiliensis in Nigeria. GSC Biol. Pharm. Sci. 1, 20–025 (2017).

7. Anushka, A. & Liyanage, K. Y. Analysis of Phenotypic Diversity of Selected Hevea Accessions From IRRDB 1981 Germplasm Collection Conserved in Sri Lanka. in Proceedings of International Rubber Conference 203–212 (2017).

8. Le Guen, V., Doaré, F., Weber, C. & Seguin, M. Genetic structure of Amazonian populations of Hevea brasiliensis is shaped by hydrographical network and isolation by distance. Tree Genet. Genomes 5, 673–683 (2009).

9. Gouveia, L. R. L., Rubiano, L. B., Chioratto, A. F., Zucchi, M. I. & Gonçalves, P. D. Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers. Genet. Mol. Biol. 33, 308–318 (2010).

10. Souza, L. M. et al. Genetic diversity strategy for the management and use of rubber genetic resources: more than 1,000 wild and cultivated accessions in a 100-genotype core collection. PLoS ONE 10, e0134607 (2015).

11. Mydin, K., Reju, M. J., Chaendaekattu, N. & Abraham, T. Incorporation of the 1981 Irrdb Wild Amazonian Germplasm in Hevea Breeding in India. The IRRDB—IRRI International seminar on rubber plant breeding 15p (2012).

12. Cruz, C. D., Salgado, C. C. & Bhering, L. L. Bimetrics Applied to Molecular Analysis in Genetic Diversity. Biotechnology and Plant Breeding (Elsevier Inc., 2014).

13. Priyadarshan, P. M. Refinements to Hevea rubber breeding. Tree Genet. Genomes 13, 20 (2017).

14. Oliveira, L. C. S. de et al. Evaluation of thermal behavior of latex membranes from genetically improved rubber tree (Hevea brasiliensis). Thermochim. Acta 445, 27–31 (2006).

15. Priyadarshan, P. M. Plant breeding: Classical to modern. Tree Biotechnology (Springer, Singapore, 2014).
Author contributions
I.C.S. and L.R.L.G. planned and designed the research and contributed to manuscript preparation. M.A.M. performed the laboratory experiment. E.J.S.J. and R.S.F. contributed to the experiments. P.S.G. provided critical feedback and guided the research. All authors contributed to the research and have approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.
Additional information
Correspondence and requests for materials should be addressed to I.C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021