MAXIMUM PRINCIPLES FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION

JUNXIONG JIA AND KEXUE LI

ABSTRACT. In this paper, we focus on maximum principles of a time-space fractional diffusion equation. Maximum principles for classical solution and weak solution are all obtained by using properties of the time fractional derivative operator and the fractional Laplace operator. We deduce maximum principles for a full fractional diffusion equation, other than time-fractional and spatial-integer order diffusion equations.

1. Introduction

In this paper, we focus on the following time-space fractional diffusion equation

\begin{equation}
\begin{aligned}
\partial_t^\alpha (u(x,t) - u_0(x)) + (-\Delta)^\beta u(x,t) &= f(x,t) \quad \text{in } \Omega \times [0, \infty), \\
u(x,t) &= 0 \quad \text{in } \mathbb{R}^N \setminus \Omega, \ t \geq 0, \\
u(x,0) &= u_0(x) \quad \text{in } \Omega,
\end{aligned}
\end{equation}

(1.1)

where $\Omega \subset \mathbb{R}^N (N \geq 1)$ is a bounded domain in N-dimensional space, $\alpha, \beta \in (0, 1)$ and ∂_t^α represents the Riemann-Liouville time-fractional derivative defined as follow

\begin{equation}
\frac{d}{dt}(g_{\alpha-\alpha} * v(\cdot))(t),
\end{equation}

(1.2)

with $g_\gamma(t) = \frac{t^{\gamma-1}}{\Gamma(\gamma)}$ and "*" represents usual convolution operator. The fractional Laplace operator could be defined as follow

\begin{equation}
(-\Delta)^\beta v(x) = c_{N,\beta} \int_{\mathbb{R}^N} \frac{v(x) - v(y)}{|x-y|^{N+2\beta}} dy,
\end{equation}

(1.3)

with $c_{N,\beta} = \frac{\beta^{2\gamma} \Gamma(\frac{N+2\beta}{2})}{\pi^{\frac{N}{2}} \Gamma(1-\beta)}$ and $\Gamma(\cdot)$ represents the usual Gamma function. For more properties about fractional Laplace operator, we refer to \cite{1}.

There are much research about maximum principles for equation (1.1) when $\beta = 1$ \cite{2, 3}, which is a time fractional diffusion equation. In the fractional elliptic partial differential equation field, there are also lots of research about maximum principles e.g. \cite{4}. Recently, some maximum principles for the time fractional diffusion equations have been applied to inverse source problems in \cite{5}.

Although maximum principles are important tools, to the best of our knowledge, there are few results about maximum principles for equation (1.1) when α, β are both non-integers. In this paper, we prove weak maximum principles for classical
and weak solutions of full fractional diffusion equation \((1.1)\) which may provide important tools for other research.

Notations: In the sequel, \(W^{k,p}\) denotes the usual Sobolev spaces with derivative \(k\) and Lebesgue exponent \(p\); \(C^k\) denotes \(k\) times differentiable function spaces.

2. **Fundamental Identity of the Time Fractional Derivative**

In the following proof, we need an important formula which could be found in [2] that is for a sufficiently smooth function \(u\) on \((0,T)\) one has for a.e. \(t \in (0,T)\),

\[
H'(u(t)) \frac{d}{dt}(k \ast u)(t) = \frac{d}{dt}(k \ast H(u))(t) + (-H(u(t)) + H'(u(t))u(t))k(t) \\
+ \int_{0}^{t} (H(u(t-s)) - H(u(t)) - H'(u(t))[u(t-s) - u(t)]) \left(-\frac{dk(s)}{ds}\right) ds,
\]

(2.1)

where \(H \in C^1(\mathbb{R})\) and \(k \in W^{1,1}([0,T])\). Denote \(y^+ = \max\{y,0\}\) and \(y^- = \max\{-y,0\}\). Now, taking \(H(y) = \frac{1}{2}(y^+)^2\), for any function \(u \in L^2([0,T])\), there will be a direct corollary of the above formula

\[
u(t)^+ \frac{d}{dt}(k \ast v)(t) \geq \frac{1}{2} \frac{d}{dt}(k \ast (v^+)^2), \quad \text{a.e. } t \in (0,T).
\]

(2.2)

Denote \(v = -u\) and for \(v\), we could also obtain

\[
v(t)^+ \frac{d}{dt}(k \ast v)(t) \geq \frac{1}{2} \frac{d}{dt}(k \ast (v^-)^2), \quad \text{a.e. } t \in (0,T).
\]

(2.3)

Now replacing \(u\) back into \((2.3)\), we find that

\[
u(t)^- \frac{d}{dt}(k \ast u)(t) \leq -\frac{1}{2} \frac{d}{dt}(k \ast (u^-)^2), \quad \text{a.e. } t \in (0,T).
\]

(2.4)

3. **Maximum Principle for Classical Solution**

In this section, firstly, let us introduce a lemma which could easily be obtained by using Theorem 1 in [2] and formula (1.20) in [2].

Lemma 3.1. Let a function \(f \in W^{1,1}((0,T)) \cap C([0,T])\) attain its maximum (minimum) over the interval \([0,T]\) at the point \(\tau = t_0, t_0 \in (0,T]\). Then the Riemann-Liouville fractional derivative of the function \(f(\cdot) - f(0)\) is non-negative (non-positive) at the point \(t_0\) for any \(\alpha\), \(0 < \alpha < 1\),

\[
\frac{d^\alpha}{dt^\alpha}(f(t_0) - f(0)) \geq 0, \quad \left(\frac{d^\alpha}{dt^\alpha}(f(t_0) - f(0)) \leq 0\right), \quad 0 < \alpha < 1.
\]

Definition 3.2. Define the following concepts regarding the domain of the solution:

\begin{enumerate}
\item \(Q_T := \Omega \times (0,T) \subset \mathbb{R}^{N+1}\).
\item Lateral boundary of \(Q_T\): \(\partial_t Q_T := \partial \Omega \times [0,T]\).
\item Parabolic boundary of \(Q_T\): \(\partial_p Q_T := (\Omega \times \{0\}) \cup \partial_t Q_T\).
\end{enumerate}

Theorem 3.3. Let \(\Omega \subset \mathbb{R}^N\) to be a bounded domain, and let \(u(x,t)\) be a function that is \(C^2\) in \(x\) and \(C^1\) in \(t\) for \((x,t) \in \Omega \times (0,T)\), and continuous in both \(x\) and \(t\) for \((x,t) \in \Omega \times [0,T]\); and \(u\) is a solution of equation \((1.1)\) with \(f \geq 0\) in \(Q_T\), and \(u_0 \geq 0\) in \(\Omega\). Then \(u \geq 0\) in \(\bar{Q}_T\).

Proof. Consider \(0 < T' < T\), and \(\bar{Q}_{T'}\), and let us argue by contradiction. Assume \(u < 0\) somewhere in \(\bar{Q}_{T'}\). Because \(u \in C(\bar{Q}_{T'})\), and \(\bar{Q}_{T'}\) compact, there exist \((x_0,t_0) \in \bar{Q}_{T'}\) such that \(u(x_0,t_0) = \min_{\bar{Q}_{T'}} u < 0\). Since \(u \geq 0\) in \(\partial_p \bar{Q}_{T'} \subset \partial_p Q_T\), we have \((x_0,t_0) \notin \partial_p \bar{Q}_{T'}\).
No matter \((x_0, t_0) \in Q_T\) is a minimum or \((x_0, t_0) \in \Omega \times \{T\}\) is a minimum, we know that \(\partial_t^\alpha (u(x_0, t_0) - u(x_0, 0)) \leq 0\) from Lemma 3.1. Because \(u(\cdot, t_0) \in C^2(\Omega) \cap C(\Omega)\) and is zero outside the domain and \(u\) attains minimum at \((x_0, t_0)\), we have

\[
(-\Delta)^2 u(x_0, t_0) = c_n \beta \int_{\mathbb{R}^n} \frac{u(x_0, t_0) - u(x, t_0)}{|x_0 - x|^{N+2\beta}} \, dx \leq 0.
\]

If \((-\Delta)^2 u(x_0, t_0) = 0\), then \(u(\cdot, t_0) = 0\), which is a contradiction with \(u(x_0, t_0) < 0\), therefore \((-\Delta)^2 u(x_0, t_0) < 0\). But, we have \(0 \leq f(x, t) = \partial_t^\alpha (u(x_0, t_0) - u(x_0, 0)) + (-\Delta)^2 u(x_0, t_0) < 0\). It is a contradiction. Therefore, \(u \geq 0\) in \(Q_T\). Now we obtain \(u \geq 0\) in \(Q_T\) for all \(T' < T\). By continuity, \(u \geq 0\) in \(Q_T\).

\[\square\]

Theorem 3.4. Let \(\Omega \subset \mathbb{R}^n\) be a bounded domain, \(T > 0\) and let \(u\) be a function with the same regularity as in Theorem 3.3 and Dirichlet (zero) exterior conditions. Then we have the following two assertions

1. If \(\partial_t^\alpha (u - u_0) + (-\Delta)^2 u = 0\) in \(\Omega\), \(t \in [0, T]\), then \(\max_{\overline{Q}_T} u = \max_{\partial_b Q_T} u\).
2. If \(\partial_t^\alpha (u - u_0) + (-\Delta)^2 u = 0\) in \(\Omega\), \(t \in [0, T]\), then \(\min_{\overline{Q}_T} u = \min_{\partial_b Q_T} u\).

Proof. We only prove the second result, the first one could be proved similarly. If \(u(x_0, 0) \geq 0\), then we use Theorem 3.3 to see \(u \geq 0\) in \(\overline{Q}_T\), and since \(\partial_t^\alpha Q_T \subset Q_T\) and \(u|_{\partial_t^\alpha Q_T} = 0\), \(\min_{\overline{Q}_T} u = \min_{\partial_b Q_T} u = 0\). Otherwise, we assume that \(u \geq 0\) not hold everywhere in \(Q_T\), so there exists \((x_0, t_0) \in \overline{Q}_T\) such that \(\min_{\overline{Q}_T} u = u(x_0, t_0) < 0\). By the proof of Theorem 3.3, it is not possible that there exists a negative minimum in \(Q_T \cup (\Omega \times \{T\})\), therefore, the minimum in \(\overline{Q}_T\) must be in \(\partial_b Q_T\).

4. Maximum Principle for Weak Supersolution

For convenience, denote \(H^s_{\epsilon}(\Omega)\) \((s \in \mathbb{R})\) as follow

\[
H^s_{\epsilon}(\Omega) := \{u \in W^{s, 2}(\mathbb{R}^N) : u = 0\text{ in } \mathbb{R}^N \setminus \Omega\},
\]

and \(L^p_{\epsilon}(\Omega)\) \((1 \leq p \leq \infty)\) as

\[
L^p_{\epsilon}(\Omega) := \{u \in L^p(\mathbb{R}^N) : u = 0\text{ in } \mathbb{R}^N \setminus \Omega\}.
\]

Denote

\[
a(u, v) := \frac{c_{N, \beta}}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x, t) - u(y, t))(\eta(x, t) - \eta(y, t))}{|x - y|^{N+2\beta}} \, dx \, dy.
\]

We say that a function \(u\) is a weak supersolution of \((1.1)\) in \(Q_T\) with \(f \in L^\infty(Q_T)\) and \(u_0 \in L^2_{\epsilon}(\Omega)\), if \(u\) belongs to the space

\[
V_p := \left\{u \in L^{2p}([0, T]; L^2_{\epsilon}(\Omega)) \cap L^2([0, T]; H^2_{\epsilon}(\Omega)) : \right\}
\]

such that \(g_{1-\alpha} \ast (u - u_0) \in C([0, T]; L^2_{\epsilon}(\Omega))\), and \((g_{1-\alpha} \ast (u - u_0))_{t=0} = 0\), and for any nonnegative test function

\[
\eta \in H^1_{\epsilon}(Q_T) := W^{1, 2}([0, T]; L^2_{\epsilon}(\Omega)) \cap L^2([0, T]; H^2_{\epsilon}(\Omega))
\]

with \(\eta_{t=0} = 0\) there holds

\[
\int_0^T \int_{\Omega} -\eta \left[g_{1-\alpha} \ast (u - u_0) \right] \, dx \, dt + \int_0^T a(u, \eta) \, dt \geq \int_0^T \int_{\Omega} f \eta \, dx \, dt.
\]

We could provide an equivalent weak formulation of \((1.1)\) where kernel \(g_{1-\alpha}\) is replaced by a more regular kernel \(g_{1-\alpha, m}(m \in \mathbb{N})\). For the detailed definition of
$g_{1-\alpha,m}$, we refer to Section 2 in \[6\]. We could also introduce a function h_m which satisfy $g_{1-\alpha,m} = g_{1-\alpha} \ast h_m$ with “\ast” represents the convolution operator. For concisely, we only provide some important properties of functions $g_{1-\alpha,m}$ and h_m as follows

\begin{align}
ge_{\alpha,m} \in W^{1,1}([0, T]), \quad g_{1-\alpha,m} \rightarrow g_{1-\alpha} \text{ in } L^1([0, T]) \text{ as } m \rightarrow \infty, \label{eq:4.6}
\end{align}

where X represents a Banach space. Now we could show another definition of weak solution which is equivalent to equation (4.5).

Lemma 4.1. Let $u \in V_p$ is a weak supersolution of equation (1.1) if and only if for any nonnegative function $\psi \in H^2_0(\Omega)$ one has

\begin{align}
\int_{\Omega} \psi_t [g_{1-\alpha,m} \ast (u - u_0)] \, dx + a(h_m \ast u, \psi) \geq \int_{\Omega} (h_m \ast f) \psi \, dx \ a.e. \ t \in (0, T), \ m \in \mathbb{N}. \label{eq:4.7}
\end{align}

Proof. The ‘if’ part is readily seen as follows. Given an arbitrary nonnegative $\eta \in H^{1,\beta}_c(Q_T)$ satisfying $\eta|_{t=T} = 0$, we take in (4.7) $\psi(x) = \eta(t, x)$ for any fixed $t \in (0, T)$, integrate from $t = 0$ to $t = T$, and integrate by parts with respect to the time variable. Then by using the approximating properties of the kernels h_m, we obtain (4.5). To show the ‘only-if’ part, we choose the test function

\begin{align}
\eta(x, t) = \int_t^T h_m(\sigma - t) \varphi(\sigma, x) \, d\sigma = \int_0^{T-t} h_m(\sigma) \varphi(\sigma + t, x) \, d\sigma, \label{eq:4.8}
\end{align}

with arbitrary $m \in \mathbb{N}$ and nonnegative $\varphi \in H^{1,\beta}_c(Q_T)$ satisfying $\varphi|_{t=T} = 0$; η is a nonnegative since φ and h_m are both nonnegative functions. For the first term in (4.8), it can be transformed to

\begin{align}
\int_0^T \int_{\Omega} -\varphi_t [g_{1-\alpha,m} \ast (u - u_0)] \, dx \, dt, \label{eq:4.9}
\end{align}

where we used $g_{1-\alpha,m} = g_{1-\alpha} \ast h_m$ and the Fubini’s theorem. For the term $\int_0^T a(u, \eta) \, dt$, we have

\begin{align*}
\int_0^T a(u, \eta) \, dt = & \frac{c_{\alpha,\beta}}{2} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} h_m(\sigma - t) (u(x, t) - u(y, t)) (\varphi(x, \sigma) - \varphi(y, \sigma)) \frac{d\sigma \, dx \, dy \, dt}{|x - y|^{N+2\beta}} \\
= & \frac{c_{\alpha,\beta}}{2} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (h_m \ast u)(x, t) (\varphi(x, t) - \varphi(y, t)) \frac{d\sigma \, dx \, dy \, dt}{|x - y|^{N+2\beta}} \\
= & \int_0^T a(h_m \ast u, \varphi) \, dt.
\end{align*}

Observe that $g_{1-\alpha,m} \ast (u - u_0) \in W^{1,2}([0, T]; L^2_\ast(\Omega))$ where 0 means vanishing at $t = 0$. Therefore, combining (4.9) and the above equation, then integrating by
parts and using $\varphi|_{t=T} = 0$ yields

\[(4.10) \int_0^T \int_\Omega \varphi \partial_t [g_{1-\alpha,m} * (u - u_0)] \, dx + a(h_m * u, \varphi) \, dt \geq \int_0^T \int_\Omega (h_m * f) \varphi \, dx \, dt,\]

for all $m \in \mathbb{N}$ and $\varphi \in H^{1,\beta}_c(Q_T)$ with $\varphi|_{t=T} = 0$. By means of a simple approximation argument, we obtain that (4.10) holds true for any φ of the form $\varphi(x,t) = \chi_{(t_1,t_2)}(x)$ where $\chi_{(t_1,t_2)}$ denotes the characteristic function of the time-interval (t_1,t_2), $0 < t_1 < t_2 < T$ and $\psi \in H^\beta_0(\Omega)$ is nonnegative. Appealing to the Lebesgue’s differentiation theorem [8], the proof is complete. □

Now, we prove the maximum principle for the weak supersolution of (4.11).

Theorem 4.2. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $T > 0$, and u a weak supersolution of problem (4.11) with $u_0 \geq 0$ a.e. in Ω and $f \geq 0$ a.e. in $\Omega \times [0,T]$. Then $u \geq 0$ a.e. in $\mathbb{R}^N \times [0,T]$.

Proof. We proceed by a contradiction argument. Taking φ in (4.10) to be u^-, the negative part of u. Suppose u^- is nonzero in a set of positive measure. We know that

\[(4.11) \int_0^T \int_\Omega u^- \partial_t [k_m * (u - u_0)] \, dx + a(h_m * u, u^-) \, dt \geq \int_0^T \int_\Omega (h_m * f) u^- \, dx \, dt.\]

Let us first analyze the second term on the left hand side of (4.11). Because $h_m * u \to u$ in $L^2([0,T];L^2_\Omega)$ as $m \to \infty$, we could deduce that $\int_0^T a(h_m * u, u^-) \, dt \to \int_0^T a(u, u^-) \, dt$ as $m \to \infty$. From

\[
\int_0^T a(u, u^-) \, dt = \int_0^T a(u^+, u^-) \, dt - \int_0^T a(u^-, u^-) \, dt,
\]

\[
\int_0^T a(u^-, u^-) \, dt = \frac{C_{N,\beta}}{2} \int_0^T \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u^-(x,t) - u^-(y,t))^2}{|x-y|^{N+2\beta}} \, dx \, dy \, dt > 0,
\]

we find that

\[
\int_0^T a(u, u^-) \, dt < \int_0^T a(u^+, u^-) \, dt.
\]

Noticing that $(u^+(x,t) - u^+(y,t))(u^-(x,t) - u^-(y,t)) \leq 0$, we obtain

\[(4.12) \int_0^T a(u, u^-) \, dt < \int_0^T a(u^+, u^-) \, dt \leq 0.\]

Hence, there exists a large positive number $M > 0$ such that if $m \geq M$, we have

\[(4.13) \int_0^T a(h_m * u, u^-) \, dt < 0.\]

For the first term on the left hand side of (4.11), we have

\[
\int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * (u - u_0)] \, dx \, dt
\]

\[
= \int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * u] \, dx \, dt - \int_0^T \int_\Omega u^- g_{1-\alpha,m} u_0 \, dx \, dt.
\]
Noticing that the second term on the righthand side is bigger than or equal to zero, we infer that
\[
\int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * (u - u_0)] \, dx \, dt \leq \int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * u] \, dx \, dt. \tag{4.14}
\]
Using formula (2.4), we obtain
\[
\int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * u] \, dx \, dt \leq -\frac{1}{2} \int_\Omega (g_{1-\alpha,m} * (u^-)^2)(x,T) \, dx \leq 0. \tag{4.15}
\]
From (4.14) and (4.15), we conclude that
\[
\int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * (u - u_0)] \, dx \, dt \leq 0 \text{ for } m \in \mathbb{N}. \tag{4.16}
\]
Considering (4.13) and (4.16), for sufficiently large \(m \), we deduce that
\[
\int_0^T \int_\Omega u^- \partial_t [g_{1-\alpha,m} * (u - u_0)] \, dx \, dt + a(h_m * u, u^-) \, dt < 0 \tag{4.17}
\]
Since \(f \geq 0 \) a.e. on \(Q_T \), \(u^- \geq 0 \) a.e. on \(Q_T \) and \(g_{1-\alpha,m} \geq 0 \) on \((0,T)\), we obtain
\[
\int_0^T \int_\Omega (h_m * f)u^- \, dx \, dt \geq 0,
\]
which contradicts to (4.11) and (4.17). Therefore, \(u \geq 0 \) a.e. in \(\mathbb{R}^N \times [0,T] \). \(\square \)

5. Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under grant no. 11501439 and the postdoctoral science foundation project of China under grant no. 2015M580826.

References

[1] L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, Communications on Pure and Applied Mathematics 60 (1) (2007) 67–112.
[2] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications 351 (1) (2009) 218–223.
[3] M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the riemann-liouville fractional derivative and its applications, Fractional Calculus and Applied Analysis 17 (2) (2014) 483–498.
[4] A. Greco, R. Servadei, Hopf’s lemma and constrained radial symmetry for the fractional laplacian, preprint.
[5] Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction diffusion equation, Inverse Problems 29 (6) (2013) 065019.
[6] R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, Journal of Mathematical Analysis and Applications 348 (1) (2008) 137–149.
[7] E. G. Bajlekova, Fractional evolution equations in banach spaces, Doctoral dissertation, Eindhoven University of Technology (2001).
[8] L. Grafakos, Classical Fourier Analysis, 3rd Edition, Vol. 249 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2014.