The genus *Microniphargus* (Crustacea, Amphipoda): evidence for three lineages distributed across northwestern Europe and transfer from Niphargidae to Pseudoniphargidae

Dieter Weber¹,*, Fabio Stoch¹, Lee R.F.D. Knight², Claire Chauveau¹ & Jean-François Flot¹,³,*

¹Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium.
²No.1, The Linhay, North Kenwood Farm, Oxton, Nr Kenton, Devon, EX6 8EX, United Kingdom.
³Interuniversity Institute of Bioinformatics in Brussels – (IB)², Brussels, Belgium.

* Corresponding authors: dieter.weber@ulb.be, jean-francois.flot@ulb.be

Abstract. *Microniphargus leruthi* Schellenberg, 1934 (Amphipoda: Niphargidae) was first described based on samples collected in Belgium and placed in a monotypic genus within the family Niphargidae. However, some details of its morphology as well as recent phylogenetic studies suggest that *Microniphargus* may be more closely related to *Pseudoniphargus* (Amphipoda: Pseudoniphargidae) than to *Niphargus*. Moreover, *M. leruthi* ranges over 1,469 km from Ireland to Germany, which is striking since only a few niphargids have confirmed ranges in excess of 200 km. To find out the phylogenetic position of *M. leruthi* and check whether it may be a complex of cryptic species, we collected material from Ireland, England and Belgium then sequenced fragments of the mitochondrial cytochrome *c* oxidase subunit 1 gene as well as of the nuclear 28S ribosomal gene. Phylogenetic analyses of both markers confirm that *Microniphargus* is closer to *Pseudoniphargus* than to *Niphargus*, leading us to reallocate *Microniphargus* to Pseudoniphargidae. We also identify three congruent mito-nuclear lineages present respectively in Ireland, in both Belgium and England, and in England only (with the latter found in sympathy at one location), suggesting that *M. leruthi* is a complex of at least three species with a putative centre of origin in England.

Keywords. Species delimitation, haploweb, K/θ, DNA barcoding, cryptic species, *Microniphargus leruthi*.

Introduction

Microniphargus leruthi Schellenberg, 1934 (family Niphargidae) was first described from Engihoul Cave in Wallonia (Belgium) and placed into a new, monotypic genus considered as closely related
to the genus *Niphargus* Schrödte, 1849 described 85 years before (SCHÖDTE 1849; SCHELLENBERG 1934). *Microniphargus leruthi* is characterised by its small body size (1.2–1.5 mm in length), the scant setulation of its mandibular palps, an evident protrusion on the carpus of its gnathopods (particularly pronounced on the first pair of gnathopods: KNIGHT & GLEDHILL 2010) and its telson widely incised with an angle of around 80° in its indentation, all of which were used to justify the erection of a new genus (SCHELLENBERG 1934). However, several other genera similarly erected on the basis of distinctive morphological features of unknown variability have been synonymized with *Niphargus* in light of molecular data (see BORKO et al. 2019).

Although *M. leruthi* is presently placed in the family Niphargidae, the shape of its telson is quite similar to that of the genus *Pseudoniphargus* Chevreux, 1901, which is placed in a different family (Pseudoniphargidae) together with the monotypic *Parapseudoniphargus* Notenboom, 1988. The taxonomic position of the family Pseudoniphargidae, defined on vague morphological characters, has long been controversial, having been included in the superfamilies Hadzioidea, Niphargoidea, Crangonyctoidea, Gammaroidea or included in the families Gammaridae and Melitidae (see NOTENBOOM 1988 for a detailed analysis). NOTENBOOM (1988) in his cladistic analysis placed the family within the families Eriopisidae and Melitidae, whereas Allocrangonyctidae (comprising two stygobitic species from North America) were later considered as the most closely related family. In fact, in their recent revisions of amphipod taxonomy, LOWRY & MYERS (2013, 2017) included the family Pseudoniphargidae within the superfamily Allocrangonyctoidea, while Niphargidae were allocated to Crangonyctoidea. Recent molecular studies have rejected this hypothesis, suggesting that Pseudoniphargidae are the sister group of Niphargidae (JURADO-RIVERA et al. 2017; MOŠKRIĆ & VEROVNIK 2019; COPILAS-CIOCIANU et al. 2020). Although numerous mitochondrial sequences of *Pseudoniphargus* are available, there are only three partial 28S sequences for this genus and no genetic data at all for the family Allocrangonyctidae and for the genus *Parapseudoniphargus*, hindering a definitive taxonomic assessment of this clade.

Existing molecular data regarding *M. leruthi* are also scarce, with only 10 sequences available in GenBank so far (Fišer et al. 2017; Moškrić & Verovnik 2019), all of which from nuclear markers. No mitochondrial sequence for specimens of *Microniphargus* has been published so far. Moškrić & Verovnik (2019) recovered a (*Microniphargus + Pseudoniphargus*) clade as a sister group to *Niphargus* using one protein-coding nuclear gene; however, another protein-coding nuclear marker in the same study yielded a discordant position of *Microniphargus* within *Niphargus*. More recently COPILAS-CIOCIANU et al. (2020), in a large-scale phylogeny of amphipods based on fragments of the mitochondrial cytochrome c oxidase subunit I and of the nuclear histone 3 (H3), 18S and 28S genes, one *Microniphargus*, two *Pseudoniphargus* and two *Niphargus* species, also recovered *Microniphargus* as more closely related to *Pseudoniphargus* than to *Niphargus*.

Pseudoniphargus comprises 71 stygobitic species (STOKKAN et al. 2018), all strict endemics present in North Africa and Benin, the Mediterranean region, the Iberian Peninsula, the archipelagos of Canaries, Madeira and Azores, and two species in Bermuda, whereas *Parapseudoniphargus* comprises a single, stygobitic species from southern Spain. By contrast, *Microniphargus leruthi* is found in north-western Europe: Belgium (LERUTH 1939; SPANGENBERG 1973; KARAMAN & RUFOX 1986; DELHEZ et al. 1999), Germany (SPANGENBERG 1973; KARAMAN & RUFOX 1986; FUCHS 2007; MATZKE et al. 2009; STEIN et al. 2012), Luxembourg (HOFFMANN 1963) as well as Ireland (ARNSCHEIDT et al. 2008; KNIGHT & PENK 2010; KNIGHT & GLEDHILL 2010) and Great Britain (KNIGHT & GLEDHILL 2010). The very large range of *M. leruthi* (over 1,469 km) is unusual as only a few niphargids have ranges exceeding 200 km (TRONTELL et al. 2009); some species previously considered to be wide-ranging, such as Niphargus aquilex Schrödte, 1855 and *Niphargus virei* Chevreux, 1896, have been found to be complexes of cryptic species (LEFEBURE et al. 2006; McINERNEY et al. 2014). The only species with confirmed ranges more extended than *M. leruthi* are *Niphargus hrabei* S. Karaman, 1932 (>1,300 km) and *Niphargus*
valachicus Dobreanu & Manolache, 1933 (> 3,200 km), two epigean species with enhanced dispersal via surface water (Copilaș-Ciocianu et al. 2017). The wide range of M. leruthi could therefore be due to the presence of undetected species boundaries.

To resolve these uncertainties, we conducted a molecular study on M. leruthi collected in Ireland, England and Belgium using both 28S (nuclear) and COI (mitochondrial) markers. Our aims were (i) to confirm the phylogenetic position of Microniphargus relative to the genera Niphargus and Pseudoniphargus and (ii) to test for the possible existence of cryptic lineages within M. leruthi.

Material and methods

Sampling and sequencing

Although we carried out intensive and targeted sampling for M. leruthi, especially in caves around the type locality, we were only able to collect it at a single location on the European continent: the Grotte de Comblain (Wallonia, Belgium), which is 20 km away from the type locality. We also collected M. leruthi from one site in Ireland (Polldubh, Clare) and two sites in England (Sweetwater Pot, South Devon and Swildon’s Hole, Somerset; Fig. 1). All the material (Table 1) was determined morphologically by one of us (L.K.). Specimens were collected by sweeping a long-handle net fitted with a 250 µm mesh collecting bag along the bottom and sides of cave pools, making sure to disturb the substrate to suspend both
Isolate code	Species	Sampling site	Country	Latitude	Longitude	Collectors	Date	COI	28S
DW170428-002	*Crangonyx subterraneus*	Interstitial Mümling	Germany	49.843	9.094	Weber D.	28/04/2017	MT993546	MT994446
FS_11.023	*Synurella ambulans*	Lake of Sablici	Italy	45.806	13.576	Stoch F., Fior G.	27/02/2011	MT993547	MT994448
FC_14.1	*Gammarus pulex*	Spring Moulin de Grisendal	France	50.763	1.661	Caroule F.	26/10/2014	-	MT994447
FS_14.036	*Pseudoniphargus italicus*	Spring near Marineo	Italy	37.946	13.406	Marrone F.	19/04/2013	-	MT994449
FS_18.073	*Pseudoniphargus spiniferus*	Grotte d'Istaury	France	43.111	-1.038	Brustel H.	10/05/2018	-	MT994450
DW191250-001	*Microniphargus leruthi*	Sweetwater Pot	England	50.399	-3.491	Knight L.	24/11/2019	MT993556	-
DW191250-002	*Microniphargus leruthi*	Sweetwater Pot	England	50.399	-3.491	Knight L.	24/11/2019	MT993557	MT994443
DW191250-004	*Microniphargus leruthi*	Swildon’s Hole	England	51.259	-2.673	Knight L.	2/11/2019	MT993558	MT994444
DW191250-011	*Microniphargus leruthi*	Swildon’s Hole	England	51.259	-2.673	Knight L.	2/11/2019	MT993560	MT994445
DW171021-001	*Microniphargus leruthi*	Polldubh Cave	Ireland	53.078	-9.287	Knight L., Boulton J., Weber D.	21/10/2017	MT993548	MT994436
DW171021-002	*Microniphargus leruthi*	Polldubh Cave	Ireland	53.078	-9.287	Knight L., Boulton J., Weber D.	21/10/2017	-	MT994437
DW171021-003	*Microniphargus leruthi*	Polldubh Cave	Ireland	53.078	-9.287	Knight L., Boulton J., Weber D.	21/10/2017	MT993549	MT994438
DW190413-007	*Microniphargus leruthi*	Grotte de Comblain	Belgium	50.476	5.566	Knight L., Boulton J., Weber D.	13/04/2019	MT993550	MT994439
DW190413-008	*Microniphargus leruthi*	Grotte de Comblain	Belgium	50.476	5.566	Knight L., Boulton J., Weber D.	13/04/2019	MT993552	MT994441
DW190413-009	*Microniphargus leruthi*	Grotte de Comblain	Belgium	50.476	5.566	Knight L., Boulton J., Weber D.	13/04/2019	MT993554	MT994442
sediment and specimens into the water column. The collected specimens were immediately preserved in 96% ethanol and kept at -20°C until DNA was isolated.

Due to the small size of M. leruthi, we used one entire specimen for each DNA isolation. DNA was extracted following the standard protocol of the NucleoSpin® Tissue Kit (Macherey-Nagel) except that we performed two elution steps, the first one with 60 µL and the second with 40 µL (instead of a single elution step with 100 µL) to achieve a higher concentration of DNA. The resulting DNA isolates are stored at -20°C in the collections of the Evolutionary Biology & Ecology research unit at the Université libre de Bruxelles (ULB).

The Folmer fragment of the cytochrome \(c \) oxidase subunit 1 (COI) gene was amplified via polymerase chain reaction (PCR) (Folmer et al. 1994) using the primers HCO2198-JJ and LCO1490-JJ (Astrin & Stübner 2008; see Table 2). The PCR mix contained 1µL DNA template (variable concentration), 0.8 µL of each primer (10 pmol/µL), 5µL of DreamTaq DNA Polymerase (Thermo Scientific) and 2.4µL ultrapure water. PCR cycling conditions were an initial 3-min denaturation step at 94°C followed by 36 cycles of 20 s denaturation at 94°C, 45 s annealing at 50°C, and 60 s extension at 65°C; then a final 2min elongation step at 65°C.

We also sequenced Verovnik’s fragment of the nuclear 28S ribosomal gene. The primers Niph15 and Niph16 (see Table 2) were used for amplification (Verovnik et al. 2005). The PCR mix for 28S contained 2µL of DNA template (variable concentration), 1µL of each primer (10 pmol/µL), 0.2µL of REDTaq DNA Polymerase (Sigma-Aldrich), 5µL REDTaq reaction buffer and 15.8µL ultrapure water. PCR cycling conditions for 28S were an initial 3min denaturation step at 94°C followed by 56 cycles of 30s denaturation at 94°C, 45 s annealing at 50°C, and 60 s extension at 65°C; then a final 2min elongation step at 65°C.

The amplification success of each PCR reaction was verified using agarose gel electrophoresis, then PCR products were sequenced at Genoscreen (Lille, France). For COI the primer used for sequencing were the same as for PCR amplification, whereas for 28S we used the primers Niph20 and Niph21 (Flot et al. 2010b) as well as one or both of two new internal primers located slightly inward of the primers used for initial amplification (Niph15i and Niph16i; see Table 2).

The resulting chromatograms were assembled and cleaned using Sequencher version 4.1.4 (Gene Codes, USA). Whenever double peaks were observed in both the forward and reverse chromatograms of an

Primer	Bases	Marker	PCR	Sequencing	Reference
LCO1490-JJ	5’-CHA CW AAY CAT AAA GAT ATY GG-3’	COI	x	x	Folmer et al. 1994
HCO2198-JJ	5’-AWA CTT CVG GRT GVC CAA ARA ATC A-3’	COI	x	x	Folmer et al. 1994
Niph15	5’-CAA GTA CGG TGA GGG AAA GTT-3’	28S	x		Verovnik et al. 2005
Niph15i	5’-AGA GTC AAA AGA CGG TGA AAC C-3’	28S	x		present publication
Niph16	5’-AGG GAA ACT TCG GAG GGA ACC-3’	28S	x		Verovnik et al. 2005
Niph16i	5’-GAT TGG TCT TTC GCC CCT AT-3’	28S	x		present publication
Niph20	5’-AAA CAC GGG CCA AGG AGT AT-3’	28S	x		Flot et al. 2010b
Niph21	5’-TAT ACT CCT TGG CCC GTG TT-3’	28S	x		Flot et al. 2010b
individual, we considered this individual as polymorphic and called its two haplotypes (determined using the approach summarized in Fontaneto et al. 2015) “a” and “b” in downstream analyses.

Phylogenetic and species delimitation analyses

We compiled comprehensive sets of COI and 28S including all sequences available in GenBank to date, then curated them manually to remove duplicates. The resulting set of 1384 COI sequences was aligned manually, whereas for the 255 sequences of 28S (including two gammarids Gammarus fossarum and Gammarus pulex and two crangonyctids Crangonyx subterraneus and Synurella ambulans as outgroups) we used MAFFT 7’s E-INS-i mode (Katoh et al. 2019).

The comprehensive 28S alignment was used to reconstruct a global phylogeny of niphargid and pseudoniphargid amphipods. The best-fit substitution model, selected using ModelFinder (Kalyaanamoorthy et al. 2017) according to the Bayesian Information Criterion (Schwarz 1978), was GTR+F+I+G4 (codes follow the IQTREE manual). Phylogenetic relationships were reconstructed using maximum likelihood with 1,000 ultrafast bootstrap replicates (Hoang et al. 2018) in IQ-TREE 2 (Minh et al. 2020); 253 out of 255 sequences (including all Microniphargus sequences) passed the gap/ambiguity test in IQTree 2 and were used in the analysis.

The comprehensive COI alignment was analysed using ABGD (Automatic Barcode Gap Discovery, available online at https://bioinfo.mnhn.fr/abi/public/abgd/), a distance-based species delimitation tool (Puillandre et al. 2012) that first attempts to infer the most likely position of a barcode gap (‘initial partitioning’) before conducting a second round of splitting by recursively applying the same procedure on the groups defined during the first step (‘recursive partitioning’). ABGD was run on the public webserver with default parameters.

A subset of the COI sequences (comprising all new Microniphargus sequences, all high-quality, complete Pseudoniphargus COI sequences inferred from complete mitochondrial genome sequences from Bauzà-Ribot et al. (2012) and Stokkan et al. (2016, 2018) plus two sequences of Niphargus and sequences of the Crangonyctidae Crangonyx subterraneus and Synurella ambulans (as outgroups) was used to build a ML tree using IQ-TREE 2 with the same modalities illustrated for 28S; the best-fit substitution model, selected using ModelFinder (according to the Bayesian Information Criterion was TIM+F+I+G4 (codes follow the IQTREE manual).

Phylogenetic networks were built for the COI and 28S sequences obtained from Microniphargus using HaplowebMaker (Spöri & Flot 2020, available online from https://eeg-ebe.github.io/HaplowebMaker/). Average genetic distances between Microniphargus sequences identified as belonging to different lineages were computed in MEGA X (Kumar et al. 2018) using uncorrected p-distances. A K/θ species delimitation analysis (Birky et al. 2010; SchöN et al. 2012; Birky 2013) was performed on the COI sequences of Microniphargus using the online program KoT with a K/θ threshold value of 6 (corresponding to a p-value < 0.01; Spöri et al. 2021, available online from https://eeg-ebe.github.io/KoT).

Results

For both COI and 28S, we successfully sequenced nine Microniphargus leruthi specimens. For COI, four individuals (one from Belgium and two from England) displayed one double peak each and were therefore represented by two sequences ‘a’ and ‘b’ (with a single base difference between them) in all downstream analyses. One M. leruthi individual (from Belgium) displayed a double peak in its 28S chromatograms and was therefore represented by two sequences (with a single base difference between them) in all downstream analyses, whereas all other individuals were homozygous for the 28S marker (Fig. 2).
connections between haplotypes found co-occurring in the same individual. Niphargus

Figure 2 – Screenshots of the Sequencher program showing the double peaks identified in the COI (left and middle panel) and 28S (right panel) chromatograms.

Figure 3 – COI maximum-likelihood phylogeny of Microniphargus and Pseudoniphargus (with two Niphargus and two crangonyctids as outgroups). The tree was turned into a haploweb by adding connections between haplotypes found co-occurring in the same individual.
The COI phylogeny supported a \((\text{Microniphargus} + \text{Pseudoniphargus})\) clade with 96% of ultrafast bootstrap replicates (Fig. 3 and Fig. S1) and revealed \text{Microniphargus} to be composed of three main clades A (found only in Ireland), B (found both in Belgium and in England) and C (found only in England), with > 99% ultrafast bootstrap support for each of them. Clade B contained two subclades comprising respectively Belgian and English sequences, also with > 99% ultrafast bootstrap support. Clade B and C co-occurred at one sampling site (Fig. 1). The sister-clade relationship between \text{Pseudoniphargus} and \text{Microniphargus} was supported with 100% of ultrafast bootstrap replicates in the comprehensive 28S phylogeny, which supported also the monophyly of lineages A and C (with 100% and 96% bootstrap replicates, respectively) but not of B, which was paraphyletic using this marker (Fig. 4 and Fig. S2).

The COI lineages A, B and C were separated by average p-distances of 0.073–0.081 between A and B, 0.072 between A and C, and 0.066 between B and C; whereas the p-distance between the two sub-lineages of B was 0.029. ABGD’s initial partitioning of our comprehensive COI dataset supported a three-species hypothesis for \text{Microniphargus leruthi}, whereas the recursive partitioning favoured a four-species hypothesis separating the Belgian and English sub-lineage of lineage C. The KoT analysis of
Figure 5 – Output of the program KoT applying the K/θ method for species delimitation to the *Microniphargus* COI dataset. At each node are shown the average (Jukes-Cantor corrected) distance K between the corresponding sister clades, Watterson’s estimator of genetic diversity θ of each of the two clades, and the ratio of K divided by the largest of the two θ values (for details of the method see Spöri *et al.* 2021). Species were delimited using a threshold K/θ value of 6, i.e. sister clades exhibiting K/θ ratios greater than 6 were considered as putative distinct species.

Figure 6 – Median-joining networks of the *Microniphargus* COI and 28S sequences obtained in the present study. The networks were turned into haplowebs by adding connections between haplotypes found co-occurring in the same individual.
the Microniphargus COI sequences supported a four-species scenario as well, with a K/θ ratio of 19.3 between the two subclades within lineage B, itself separated by a gap with a K/θ of 14.0 from lineage C, and finally separated by a gap with a K/θ ratio of 16.8 from lineage A (Fig. 5). By contrast, the 28S haplotype revealed three fields for recombination (FFRs sensu DOYLE 1995, i.e., putative species following the criterion of mutual allelic exclusivity; FLOT et al. 2010a), corresponding to clades A, B and C (Fig. 6).

Discussion

Key novel, high-quality sequences were acquired

Our newly collected sequences include the first COI sequences of Microniphargus leruthi (and of Crangonyx subterraneus) made available to date, as well as new 28S sequences that significantly improve the currently available sequences for these two species: the single Verovnik 28S fragment sequence available till now for C. subterraneus (EU693288; FIŠER et al. 2008) is 100% identical to ours (except for one obvious error at position 25), but its last 140 bp are lacking; the single 28S sequence of M. leruthi previously published (KX379004.1; FIŠER et al. 2017) is 100% identical to our complete sequences from Ireland, but with the first 59 bp and last 156 bp lacking; whereas the three Pseudoniphargus sequences available till now were also highly incomplete. The high-quality 28S and COI sequences we obtained from representative individuals of C. subterraneus from Germany, Pseudoniphargus italicus from Sicily and P. spiniferus from Basses Pyrénées in France, as well as from each of the three lineages of M. leruthi identified in our study, will make it easier to include these species as outgroups in future studies of Niphargus, Pseudoniphargus and other related genera.

Both COI and 28S sequences of Microniphargus were found to contain double peaks

Out of the nine M. leruthi individuals whose COI marker was sequenced, four (three from Belgium and one from England) presented a double peak in their COI chromatograms, resulting in an intradividual polymorphism level of 0.15% in these individuals. For the three Belgian specimens the double peak was an R = A or G transition in position 101, whereas for the English specimen it was an S = C or G transversion in position 189 (Fig. 4). These mutations were not synonymous but corresponded to N (asparagine) ↔ D (aspartate) and A (alanine) ↔ G (glycine) mutations in the translation amino acid sequences. Such mitochondrial double peaks are rare in niphargids: for instance, no double peak was observed in the COI chromatograms of the 67 Romanian specimens sequenced in FLOT et al. (2014) nor reported for any of the hundreds of niphargids sequenced in EME et al. (2018). The presence of two distinct COI sequences in M. leruthi individuals may be the result of heteroplasmy, i.e., the presence of two distinct mitochondrial lineages in the cells of an organism, or of a recent numt, i.e., a nuclear pseudogene of a mitochondrial sequence following the transfer and integration of a copy of this sequence in a nuclear chromosome (DIERCKXSSENS et al. 2020). Determining which one of these two hypotheses is correct in the present case will require whole-genome sequencing, which is beyond the scope of the present study, but in any case, the very limited divergence between the COI sequences found co-occurring in some individuals (with a single double peak per individual) did not hinder downstream phylogenetic analyses.

The genus Microniphargus is more closely related to Pseudoniphargus than to Niphargus

Our COI and 28S phylogenetic trees confirm that all collected specimens assigned to the morphospecies Microniphargus leruthi form a monophyletic group that is clearly distinct from Niphargus and Pseudoniphargus, thereby confirming its status as a separate genus previously established on the sole basis of morphological characters (SCHELLENBERG 1934). The results of our analysis confirm the
conclusions reached by Moškrič & Verovnik (2019) and Copilaş-Ciocianu et al. (2020) on the close affinity between Microniphargus and Pseudoniphargus, suggesting the inclusion of the genus Microniphargus within the family Pseudoniphargidae to avoid paraphyly of Niphargidae. Consequently, superfamilies Allocrangonyctoidea and Crangonyctoidea as proposed by Lowry & Myers (2013, 2017) turn out to be paraphyletic.

As mentioned in the introduction, a similarity between the two genera can be found in the shape of the telson (which is widely incised and carries one spine on each lobe), and also partly the shape of gnathopod 1. This shape of telson as well as the protrusion on the carpus of gnathopod 1 are found also in Bogidiellidae (another family placed in recent phylogenetic trees not far away from the clade Niphargidae+Pseudoniphargidae: Copilaş-Ciocianu et al. 2020) and may be simply symplesiomorphic, in which case the deeply incised, bilobated telson of Niphargus would represent an apomorphic character of this genus. However, the small size of Microniphargus, the reduced setation of mandibular palp and gnathopods, the lack of elongation of the third uropod in males, and the 1-articulated accessory flagellum of antennulae suggest a major role of paedomorphosis, making it difficult or impossible to correctly allocate this genus within current amphipod taxonomy and phylogeny based on morphological characters alone.

The inclusion of Microniphargus within Pseudoniphargidae requires an adjustment in the diagnosis of the family, recently revised by Lowry & Myers (2013), with minor changes as follows:

Body depigmented, eyes absent. Antenna 1 longer than antenna 2; accessory flagellum short, or minute, 1–2 articulated. Gnathopod 1 smaller (or weaker) than gnathopod 2; propodus with multiple groups of simple or bifid setae along palmar margin. Urosomites 1 to 3 free, without robust dorsal setae. Urosomite 1 without distoventral robust seta. Uropod 3 biramous; inner ramus minute; outer ramus article 2 absent. Telson notched, distal margin emarginate or nearly straight, with 1–3 robust spines on each lobe.

Microniphargus leruthi comprises at least three cryptic lineages

Our COI phylogeny, ABGD’s initial partitioning of our comprehensive COI dataset and our haploweb analysis of 28S sequences of Microniphargus support the hypothesis that Microniphargus leruthi is composed of three distinct, putatively species-level lineages: clade A found in Ireland, clade B found both in England and in Belgium (with two COI sub-clades consistent with the geographic distance between these two locations), and clade C found so far only in England. By contrast, ABGD’s recursive partitioning supports a four-species hypothesis, and so does the KoT analysis. However, the p-distances between the three main lineages A, B and C are all well above the 3% species-level threshold traditionally considered in barcoding studies (Hebert et al. 2003), whereas the average p-distance between the two COI sub-clades of B falls below this symbolic threshold. These arguments, together with the fact that all individuals of lineage B (and only these individuals) display double peaks in their COI chromatograms, lead us to consider tentatively the two sub-clades of lineage B as conspecific and therefore to distinguish at present only three putative species-level lineages within M. leruthi.

Although lineage A (found only in Ireland to date) appears geographically separated from the other two, lineages B and C occur in sympatry in at least one location (Swildon’s Hole in Somerset), bringing further support to the hypothesis that these two lineages are distinct species. The phylogenetic analysis based on COI could point to an origin of the genus Microniphargus in England with subsequent dispersals to Ireland and to Belgium; however, more samples and analyses will be required to test this hypothesis. The fact that lineage B still occurs on both sides of the English Channel is not overly surprising since the land connection between England and continental Europe was only severed about 8,000 years ago (Waller & Long 2003).
The hypothesis that the three *Microniphargus leruthi* lineages identified here represent distinct cryptic (or pseudo-cryptic) species will need to be tested further. Doing so will require further collecting and sequencing, as well as detailed morphological analyses using microscopy techniques appropriate for such small specimens.

Acknowledgements

Thanks to John Boulton and Camille Ek for helping with fieldwork and collecting. Molecular analyses were supported by the Belgian Fonds de la Recherche Scientifique (FNRS) via research credit J.0272.17 and by the Fédération Wallonie-Bruxelles via an ‘Action de Recherche Concertée’ (ARC) grant, both to Jean-François Flot.

References

ARNSCHEIDT J., HAHN H.J. & FUCHS A. (2008). Aquatic subterranean Crustacea in Ireland: results and new records from a pilot study. *Cave and Karst Science* 35 (1): 53–58.

ASTRIN J.J. & STÜBEN P.E. (2008). Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaeartic Cryptorhynchinae (Coleoptera: Curculionidae). *Invertebrate Systematics* 22 (5): 503–522. https://doi.org/10.1071/IS07057

BAUZĂ -RIBOT M.M., JUAN C., NARDI F., OROMI P., PONS J. & JAUME D. (2012). Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. *Current Biology* 22: 2069–2074. https://doi.org/10.1016/j.cub.2012.09.012

BIRKY C.W. (2013). Species detection and identification in sexual organisms using population genetic theory and DNA sequences. *PLoS ONE* 8: e52544. https://doi.org/10.1371/journal.pone.0052544

BIRKY C.W., ADAMS J., GEMMEL M. & PERRY J. (2010). Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. *PLoS ONE* 5: e10609. https://doi.org/10.1371/journal.pone.0010609

BORKO Š., COLLETTE M., BRAD T., ZAKŠEK V., FLOT J.-F., VAXEVANOPoulos M., SARBU S.M. & FiŞER C. (2019). Amphipods in a Greek cave with sulphidic and non-sulphidic water: phylogenetically clustered and ecologically divergent. *Systematics and Biodiversity* 17 (6): 558–572. https://doi.org/10.1080/14772000.2019.1670273

COPILAŞ-CIOCIANU D., FiŞER C., BORZA P., BALÁZS G., ANGYAL D. & PETRUSEK A. (2017). Low intraspecific genetic divergence and weak niche differentiation despite wide ranges and extensive sympatry in two epigean *Niphargus* species (Crustacea: Amphipoda). *Zoological Journal of the Linnean Society* 181 (3): 485–499. https://doi.org/10.1093/zoolinnean/zlw031

COPILAŞ-CIOCIANU D., BORKO Š. & FiŞER C. (2020). The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. *Molecular Phylogenetics and Evolution* 143: 106664. https://doi.org/10.1016/j.ympev.2019.106664

DELHEZ F., DEThIER M. & HUBART J.-M. (1999). Contribution à la connaissance de la faune des grottes de la Wallonie. *Bulletin des Chercheurs de la Wallonie* 39: 27–54.

DIERCKXSENS N., MARDULYN P. & SMITS G. (2020). Unraveling heteroplasmmy patterns with NOVOPPlasty. *NAR Genomics and Bioinformatics* 2 (1): lqz011. https://doi.org/10.1093/nargab/lqz011

DOBREANU E. & MANOLACHE C. 1933. Zur Kenntnis der Amphipodenfauna Rumâniens. *Notationes Biologicae* 1 (3): 102–108.
DOYLE J.J. (1995). The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Systematic Botany 20 (4): 574–588. https://doi.org/10.2307/2419811

EME D., ZAGMAJSTER M., DELIĆ T., FIŠER C., FLOT J.-F., KONECNY-DUPRÉ L., PÅLSSON S., STOCH F., ZAKŠEK V., DOUADY C.J. & MALARD F. (2018). Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41 (2): 424–436. https://doi.org/10.1111/ecog.02683

FIŠER C., KONEC M., ALThER R., ŠVARA V. & ALTERRMAT F. (2017). Taxonomic, phylogenetic and ecological diversity of Niphargus (Amphipoda: Crustacea) in the Höllolch cave system (Switzerland). Systematics and Biodiversity 15 (3): 218–237. https://doi.org/10.1080/14772000.2016.1249112

FIŠER C., SKET B. & TRONTELI P. (2008). A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta 37 (6): 665–680. https://doi.org/10.1111/j.1463-6409.2008.00347.x

FLOT J.-F., COULoux A. & TILLier S. (2010a). Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s ‘field for recombination’ approach and its application to the coral genus Pocillopora in Clipperton. BMC Evolutionary Biology 10: 372. https://doi.org/10.1186/1471-2148-10-372

FLOT J.-F., WÖRHEIDE G. & DATTAGUPTA S. (2010b). Unsuspected diversity of Niphargus amphipods in the chemosynthetic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology 10: 171. https://doi.org/10.1186/1471-2148-10-171

FLOT J.-F., BAUERMEISTER J., BRAD T., HILLEBRAND-VOICULESCU A., SARBU S.M., DATTAGUPTA S. (2014). Niphargus–Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Molecular Ecology 23 (6): 1405–1417. https://doi.org/10.1111/mec.12461

FOLMER O., BLACK M., HOEH W., LUTZ R. & VRIJENHOEK R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294–299.

FONTANETO D., FLOT J.-F. & TANG C.Q. (2015). Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45: 433–451. https://doi.org/10.1007/s12526-015-0319-7

FUCHS A. (2007). Erhebung und Beschreibung der Grundwasserfauna in Baden-Württemberg. Thesis, Koblenz-Landau.

HEBERT P.D.N., CYWINSKA A., BALL S.L. & DE WAARD J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society. Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218

HOANG D.T., CHERNOMOR O., VON HAESELER A., MINH B.Q. & VINH L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

HOFFMANN J. (1963). Faune des Amphipodes du Grand-Duché de Luxembourg. Archives de la Section des Sciences de l’Institut Grand-Ducal Nouvelle Série 29: 77–128.

JURADO-RIVERA J.A., ÁLVAREZ G., CARO J.A., JUAN C., PONS J. & JAUME D. (2017). Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contributions to Zoology 86 (3): 239–260. https://doi.org/10.1163/18759866-08603004

KALYAANAMOORTHY S., MINH B., WONG T., VON HAESELER A. & JERMIN L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
Karaman G.S. & Ruffo S. (1986). Amphipoda: Niphargus-group (Niphargidae sensu Bousfield, 1982). In: Botoseanu L. (ed.) Stygofauna mundi. A Faunistic, Distributional, and Ecological Synthesis of the World Fauna inhabiting Subterranean Waters (including the Marine Interstitial): 514–534. Brill, Leiden.

Kato K., Rozewicki J. & Yamada K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108

Knight L.R.F.D. & Gledhill T. (2010). The discovery of Microniphargus leruthi Schellenberg, 1934 (Crustacea: Amphipoda: Niphargidae) in Britain and its distribution in the British Isles. Zootaxa 2655 (1): 52–56. https://doi.org/10.11646/zootaxa.2655.1.3

Knight L.R.F.D. & Penk M. (2010). Groundwater Crustacea of Ireland: a survey of the stygobitic Malacostraca in caves and springs. Biology & Environment Proceedings of the Royal Irish Academy 110 (3): 211–235. https://doi.org/10.3318/BIOE.2010.110.3.211

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35 (6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Lefebure T., Douady C.J., Gouy M., Trontelj P., Briolay J. & Gibert J. (2006). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15: 1797–1806. https://doi.org/10.1111/j.1365-294X.2006.02888.x

Leruth R. (1939). La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mémoire du Musée royal d’Histoire naturelle de Belgique 87: 1–506.

Lowry J.K. & Myers A.A. (2013). A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610 (1): 1–80. https://doi.org/10.11646/zootaxa.3610.1.1

Lowry J.K. & Myers A.A. (2017). A phylogeny and classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). Zootaxa 4265 (1): 1–89. https://doi.org/10.11646/zootaxa.4265.1.1

Matzke D., Fuchs A., Berkhoff S., Bork J. & Hahn H.-J. (2009). Erhebung und Bewertung der Grundwasserfauna Sachen-Anhalts. Institut für Grundwasserökologie GbR, Im Niederfeld 15, 76829 Landau, Landau.

McInerney C.E., Maurice L., Robertson A.L., Knight L.R.F.D., Arnscheidt J., Venditti C., Dooley J.S.G., Mathers T., Matthias S., Eriksson K., Proudlove G.S. & Hänfling B. (2014). The Ancient Britons: groundwater fauna survived extreme climate changes over tens of millions of years across NW Europe. Molecular Ecology 23: 1153–1166. https://doi.org/10.1111/mec.12664

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015

Moškrič A. & Verovnik R. (2019). Five nuclear protein-coding markers for establishing a robust phylogenetic framework of niphargid crustaceans (Niphargidae: Amphipoda) and new molecular sequence data. Data in Brief 25: 104134. https://doi.org/10.1016/j.dib.2019.104134

Notenboom J. (1988). Parapseudoniphargus baetis, new genus, new species, a stygobiont amphipod crustacean from the Guadalquivir river basin (southem Spain), with phylogenetic implications. Journal of Crustacean Biology 8: 110–121. https://doi.org/10.1163/193724088X00134
WEBER D. et al., Microniphargus in northwestern Europe

PUILLANDRE N., LAMBERT A., BROUILLET S. & ACHAZ G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

SCHÖDTE J.C. (1849). Specimen faunæ subterraneae: bidrag til den underjordiske Fauna. Bianco Luno, Kjøbenhavn.

SCHELLENBERG A. (1934). Eine neue Amphipoden-Gattung aus einer belgischen Höhle, nebst Bemerkungen über die Gattung Crangonyx. Zoologischer Anzeiger 106 (9): 215–218.

SCHÖN I., PINTO R.L., HALSE S., SMITH A.J., MARTENS K. & BIRKY C.W. (2012). Cryptic species in putative ancient asexual darwinulids (Crustacea, Ostracoda). PLoS ONE 7: e39844. https://doi.org/10.1371/journal.pone.0039844

SCHWARZ G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136

SPANGENBERG H.-J. (1973). Beitrag zur Faunistik von Höhlengewässern im Zechstein des Südharzes und Kyffhäusern. Hercynia Neue Folge, 10 (2): 143–160.

SPÖRIS Y. & FLOT J.-F. (2020). HaplowebMaker and CoMa: two web tools to delimit species using haplowebss and conspecificity matrices. Methods in Ecology and Evolution 11 (11): 1434–1438. https://doi.org/10.1111/2041-210X.13454

SPÖRIS Y., STOCH F., DELLICOUR S., BIRKY C.W. & FLOT J.-F. (2021). KoT: an automatic implementation of the K/θ method for species delimitation. bioRxiv. https://doi.org/10.1101/2021.08.17.454531

STEIN H., GRIEBLER C., BERKHOFF S., MATZKE D., FUCHS A. & HAHN H.J. (2012). Stygoregions – a promising approach to a bioregional classification of groundwater systems. Scientific Reports 2: 673. https://doi.org/10.1038/srep00673

STOKKAN M., JURADO-RIVERA J.A., JAUNE D. & PONS J. (2016). Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA Part A 27: 3579–3589. https://doi.org/10.3109/19401736.2015.1079821

STOKKAN M., JURADO-RIVERA J.A., OROMÍ P., JAUNE C., JAUME D. & PONS J. (2018). Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetics and Evolution 127: 988–999. https://doi.org/10.1016/j.ympev.2018.07.002

TRONTELJ P., DOUADY C.J., FIŠER C., GIBERT J., GORIČKI Š., LEFÉBURE T., SKET B. & ZAKŠEK V. (2009). A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshwater Biology 54 (4): 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x

VEROVNIK R., SKET B. & TRONTELJ P. (2005). The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology 14 (14): 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x

WALLER M.P. & LONG A.J. (2003). Holocene coastal evolution and sea-level change on the southern coast of England: a review. Journal of Quaternary Science 18 (3–4): 351–359. https://doi.org/10.1002/jqs.754

Manuscript received: 13 August 2020
Manuscript accepted: 18 October 2021
Published on: 8 December 2021
Branch editor: Tom Artois
Appendix

Supplementary figures and tables

Figure S1 – Detailed version of the COI maximum-likelihood phylogeny.
Figure S2 – Detailed version of the 28S maximum-likelihood phylogeny.
TABLE S1

List of all the sequences included in the COI phylogeny, including species names and GenBank accession numbers.

ID	Species	GB accession number
1	Crangonyx subterraneus	MT993546
2	Synurella ambulans	MT993547
3	Niphargus stygius	KY706809
4	Niphargus schellenbergi	JF420847
5	Microniphargus leruthi A	MT993548
6	Microniphargus leruthi A	MT993549
7	Microniphargus leruthi B	MT993550
8	Microniphargus leruthi B	MT993551
9	Microniphargus leruthi B	MT993552
10	Microniphargus leruthi B	MT993553
11	Microniphargus leruthi B	MT993554
12	Microniphargus leruthi B	MT993555
13	Microniphargus leruthi C	MT993557
14	Microniphargus leruthi A	MT993558
15	Microniphargus leruthi A	MT993559
16	Microniphargus leruthi C	MT993560
17	Microniphargus leruthi C	MT993556
18	Pseudoniphargus brevipedunculatus	MH592123
19	Pseudoniphargus carpalis	MH592150
20	Pseudoniphargus capicola	MH592125
21	Pseudoniphargus davii	FR872383.2
22	Pseudoniphargus elongatus	MH592126
23	Pseudoniphargus gomerae	MH592127
24	Pseudoniphargus gorbeanus	LN871176
25	Pseudoniphargus grandis	MH592128
26	Pseudoniphargus longipes	MH592129
27	Pseudoniphargus mateusorum	MH592130
28	Pseudoniphargus mercadali	MH592131
29	Pseudoniphargus morenoi	MH592132
30	Pseudoniphargus multidens	MH592133
31	Pseudoniphargus pedrerae	MH592134
32	Pseudoniphargus pityusensis	MH592135
33	Pseudoniphargus portosancti	MH592136
34	Pseudoniphargus ruffoi	MH592137
35	Pseudoniphargus salinus	MH592149
36	Pseudoniphargus sorbasiensis	LN871175
37	Pseudoniphargus sp. 1-Azores	MH592148
38	Pseudoniphargus sp. 1-Balearics	MH592138
39	Pseudoniphargus sp. 1-Canaries	MH592139
40	Pseudoniphargus sp. 1-Murcia	MH592140
41	Pseudoniphargus sp. 1-Portugal	MH592151
42	Pseudoniphargus sp. 2-Andalusia	MH592141
43	Pseudoniphargus sp. 2-Canaries	MH592142
44	Pseudoniphargus sp. 2-Portugal	MH592143
45	Pseudoniphargus sp. 6-Morocco A	MH592144
46	Pseudoniphargus sp. 6-Morocco B	MH592145
47	Pseudoniphargus stocki	MH592152
48	Pseudoniphargus triasi	MH592146
49	Pseudoniphargus unisexualis	MH592147
TABLE S2 (continued on next four pages)
List of all the sequences included in the 28S phylogeny, including species names and GenBank accession numbers.

ID	Species	Accession number
1	Gammarus pulex	MT994447
2	Gammarus fossarum	JF965709
3	Synurella ambulans	MT994448
4	Crangonyx subtierraneus	MT994446
5	Pseudoniphargus italicus	MT994449
6	Pseudoniphargus gorbeanus	KY441101
7	Pseudoniphargus portosancti	KY441102
8	Pseudoniphargus spiniferus	MT994450
9	Pseudoniphargus sp.	KY441100
10	Microniphargus leruthi	MT994437
11	Microniphargus leruthi	MT994438
12	Microniphargus leruthi	MT994439
13	Microniphargus leruthi	MT994440
14	Microniphargus leruthi	MT994441
15	Microniphargus leruthi	MT994442
16	Microniphargus leruthi	MT994443
17	Microniphargus leruthi	MT994444
18	Microniphargus leruthi	MT994445
19	Microniphargus leruthi	MT994436
20	Microniphargus leruthi	KX379004
21	Chaetoniphargus lubuskensis	MN914030
22	Haploginglymus geos	KY441086
23	Haploginglymus morenoi	KY441079
24	Niphargellus glenniei	KC315617
25	Niphargobates orophobata	KR905879
26	Niphargopsis casparyi	EU693291
27	Niphargus aberrans	EF617260
28	Niphargus agge telekensis	MT975472
29	Niphargus aitolosi	EU693310
30	Niphargus alisadri	KF581049
31	Niphargus alpheus	KY617132
32	Niphargus altagahizi	KF581059
33	Niphargus ambulator	KJ566699
34	Niphargus anchialinus	KR905881
35	Niphargus andropus	KF218725
36	Niphargus antiquipes	KY617097
37	Niphargus aquilex A1	KC315604
38	Niphargus aquilex A2	JF420874
39	Niphargus aquilex B	KC315605
40	Niphargus aquilex C	KC315602
41	Niphargus aquilex D	KC315603
42	Niphargus aquilex E	KC315606
43	Niphargus aquilex F	KC315607
44	Niphargus arbiter	KY617099
45	Niphargus arethusa	EF617285
46	Niphargus auerbach	EU693292
47	Niphargus alicus	MN914026
48	Niphargus bajauvaricus	EF617259
49	Niphargus balcanicus	EF617280
50	Niphargus biorensis	KF218726
51	Niphargus bilecanus	JQ815550
52	Niphargus bisitunicus	KF581050
ID	Species	Accession number
-----	---------------------------	------------------
53	Niphargus borisi	KF581037
54	Niphargus boskovici	KR827043
55	Niphargus brachytelson	EU693293
56	Niphargus brevicuspis	MN914028
57	Niphargus brevirostris	MN914008
58	Niphargus brixianus	EF617299
59	Niphargus bureschi	MN114020
60	Niphargus buturovici	MN914022
61	Niphargus carniolicus	EF617252
62	Niphargus carpathicus	MN114019
63	Niphargus cf. gallicus	KF290033
64	Niphargus cf. stefanellii	MN914000
65	Niphargus cf. stenopus	MN914009
66	Niphargus cf. stygius 2	KX379016
67	Niphargus cf. thienemanni	MH172406
68	Niphargus chagankae	JQ815441
69	Niphargus cornicolanus	MN914003
70	Niphargus costozzae	EU693294
71	Niphargus croaticus	KT007482
72	Niphargus cvajcki	KY617371
73	Niphargus dabarensis	JQ815442
74	Niphargus dalmatinus	EF617296
75	Niphargus dancaui	KF290030
76	Niphargus dantali	KF581033
77	Niphargus darvishi	KF581041
78	Niphargus decui	KF290034
79	Niphargus delamarei	EU693295
80	Niphargus dimorphopus	EU693296
81	Niphargus dimorphus	MN914035
82	Niphargus dobati	EF617247
83	Niphargus dobrogicus	KF290076
84	Niphargus dolianensis	EF617269
85	Niphargus doli	KY617137
86	Niphargus dolichopus	EU693297
87	Niphargus elegans	EF617297
88	Niphargus factor	EU693298
89	Niphargus fiseri	MK911610
90	Niphargus fjakae	EF617290
91	Niphargus fongi	MN914037
92	Niphargus fontamus A1	KC315608
93	Niphargus fontamus A2	EF617304
94	Niphargus fontamus C	KC315609
95	Niphargus forelli A	KC315615
96	Niphargus forelli B	KC315616
97	Niphargus frasassianus	GU973411
98	Niphargus frontalis	GU973423
99	Niphargus gammariformis	MN114013
100	Niphargus gebhardtii	KP967556
101	Niphargus goricae	KY617447
102	Niphargus gottscheeanensis	KY617394
103	Niphargus grandii	EU693300
104	Niphargus hadzii	EU693301
105	Niphargus hebereri	MN913992
106	Niphargus hercegovinensis	JQ815549
ID	Species	Accession number
----	----------------------	------------------
107	Niphargus hosseiniei	KF581055
108	Niphargus hrabei	MN914029
109	Niphargus hvarensis	EF617272
110	Niphargus ictus	GU973415
111	Niphargus ilamensis	KF581039
112	Niphargus illidzensis	EU693304
113	Niphargus irlandicus	KC315618
114	Niphargus iskae	KY617382
115	Niphargus jovanovici	MN114014
116	Niphargus kapelanus	KY617387
117	Niphargus karamani	EU693305
118	Niphargus karkabounasi	KP133156
119	Niphargus kenki	KY617370
120	Niphargus khayami	JX535353
121	Niphargus khwarizmi	KF581056
122	Niphargus kochianus A	KC315610
123	Niphargus kochianus B	KC315611
124	Niphargus kochianus C	KC315612
125	Niphargus kolombatovici	JQ815553
126	Niphargus kordunensis	KY617386
127	Niphargus koukourasi	EF617277
128	Niphargus krameri A	EF617274
129	Niphargus krameri B	MN914013
130	Niphargus kusceri	JQ815443
131	Niphargus labacensis	EF617257
132	Niphargus ladmiraulti	GU973463
133	Niphargus laisi	EU693309
134	Niphargus laticaudatus	KF218717
135	Niphargus lessiniensis	EF617300
136	Niphargus liburnicus	KT007477
137	Niphargus likanus	KY617383
138	Niphargus lindbergi	MN114033
139	Niphargus longicaudatus	EF617239
140	Niphargus longidactylus	EF617266
141	Niphargus longiflagellum	MN914004
142	Niphargus lourensis	EU693312
143	Niphargus luchoffmani	KX379014
144	Niphargus lunaris	EU693313
145	Niphargus malagorae	KY617384
146	Niphargus maximus	EF617279
147	Niphargus microcerberus	MN114023
148	Niphargus miljeticus	KR905878
149	Niphargus minor	MN114028
150	Niphargus mirocensis	KR827047
151	Niphargus molnari	KP967555
152	Niphargus montanarius	GU973419
153	Niphargus montellianus	KT878856
154	Niphargus moogi	MT975478
155	Niphargus multipennatus	KJ566700
156	Niphargus muotae	KX379024
157	Niphargus murimali	KX379026
158	Niphargus novomestanus	KY617364
159	Niphargus ohridanus	MN114029
160	Niphargus orcinus	EU693315
ID	Species	Accession number
----	---------	-----------------
161	Niphargus pachypus	KC733825
162	Niphargus pachytelson	EU693316
163	Niphargus parenzani	MN913997
164	Niphargus pasquinii	EF617244
165	Niphargus patrizii	MN914011
166	Niphargus pectencoronatae	MN914010
167	Niphargus pectinicauda	EF617258
168	Niphargus persicus	KF581036
169	Niphargus pincinovae	KY617139
170	Niphargus plateaui	GU973468
171	Niphargus podgoricensis	KR905875
172	Niphargus podpecanus	KY617374
173	Niphargus poianaio	KX379006
174	Niphargus polymorphus	EF617282
175	Niphargus pontoruffoi	KF290027
176	Niphargus pretneri	EF617294
177	Niphargus pumetta	EU693318
178	Niphargus puteanus	EF617302
179	Niphargus racovitzai	KF290065
180	Niphargus rejici	EF617283
181	Niphargus rhenorhodanensis	ABC EF025814
182	Niphargus rhenorhodanensis	DE EF025801
183	Niphargus rhenorhodanensis	DE EF025831
184	Niphargus rhenorhodanensis	FG KX379033
185	Niphargus rhenorhodanensis	H KX379013
186	Niphargus rhenorhodanensis	I EF025841
187	Niphargus rhenorhodanensis	JK EF025810
188	Niphargus romuleus	MT975475
189	Niphargus salernianus	MN914014
190	Niphargus salontanus	KY617147
191	Niphargus salzburgensis	KJ566697
192	Niphargus sanitnaumi	EU693320
193	Niphargus schellenbergi	1 EF617267
194	Niphargus schellenbergi	2 KC315620
195	Niphargus scopicauda	EF617261
196	Niphargus sharifi	KF581048
197	Niphargus slovenicus	EU693322
198	Niphargus sohrevardensis	KF581034
199	Niphargus sp. Arkadi	MN114032
200	Niphargus sp. BIH1	EF617268
201	Niphargus sp. HudaLuknja	EF617246
202	Niphargus sp. Iran 9	KF581040
203	Niphargus sp. Iskavas	EF617291
204	Niphargus sp. Italy A	KJ566701
205	Niphargus sp. Jelovica	MN114022
206	Niphargus sp. MN914012	MN914012
207	Niphargus sp. MN914023	MN914023
208	Niphargus sp. Meskla	MN114031
209	Niphargus sp. Montenegro	EF617278
210	Niphargus sp. Neraidosplilios	MN114030
211	Niphargus sp. Podutik	EF617251
212	Niphargus sp. Prepadna	EF617249
213	Niphargus sp. Ro1	KF218728
214	Niphargus sp. Ro2	KF218724
TABLE S2 (continued)

ID	Species	Accession number
215	*Niphargus* sp. Ro4	KF218732
216	*Niphargus* sp. Ro5	KJ566693
217	*Niphargus* sp. Spain1	KY441088
218	*Niphargus* sp. Spain2	KY441083
219	*Niphargus* sp. Spain3	KY441081
220	*Niphargus* speziae	MT975471
221	*Niphargus* sphagnicolus	EF617270
222	*Niphargus* spinulifemur B	EU693323
223	*Niphargus* speeckeri	EU693324
224	*Niphargus* stefanellii	MN913999
225	*Niphargus* stenopus	EF617284
226	*Niphargus* steueri	KT007489
227	*Niphargus* stochi	JQ815551
228	*Niphargus* strouhali alpinus	EF617254
229	*Niphargus* stygius	MT975470
230	*Niphargus* styx	KX379023
231	*Niphargus* subtypicus	EU693326
232	*Niphargus* lurensis	MT975504
233	*Niphargus* tatensis reyesdorfenisis	MT975494
234	*Niphargus* salzburgensis	MT975492
235	*Niphargus* tatensis schneebergensis	MT975495
236	*Niphargus* tatensis tatrensis	MT975496
237	*Niphargus* tauri	EF617245
238	*Niphargus* tauricus	KF719274
239	*Niphargus* thiemenmanni	EF617301
240	*Niphargus* thuringius	KJ566695
241	*Niphargus* timavi	MN914034
242	*Niphargus* tonywhitteni	KX379045
243	*Niphargus* transsylvanicus	KF218716
244	*Niphargus* tridentinus	KX878857
245	*Niphargus* trullipes	EF617281
246	*Niphargus* urmiensis	MK911608
247	*Niphargus* vadiii	KF719275
248	*Niphargus* vinodiensis	EF617298
249	*Niphargus* virei A	DQ119309
250	*Niphargus* virei B	KX379035
251	*Niphargus* virei C	EF617237
252	*Niphargus* vjetrenicensis	EU693329
253	*Niphargus* wolffi A	EF617250
254	*Niphargus* zagorae	KR827044
255	*Niphargus* zagrebensis	EF617295