Utilization of Diaphragma juglandis extract as a natural antioxidant for improving the oxidative stability of soybean oil during deep frying

Jia Chen, Lingyan Zhang, Qi Li, Yuan Gao, Xiuzhu Yu

Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China

1. Introduction

Frying is a popular method of cooking food around the globe; it is a fast, energy-efficient method to produce palatable food with excellent sensorial characteristics. These characteristics are associated with golden brownish appearance, crispy texture, and pleasant flavor typical for frying food (Wu et al., 2021a). However, the limitation of this technique is the rapid degradation of the quality and stability of oil during frying. Frying oils used continuously at elevated temperatures (approximately 180 °C or over) in the presence of oxygen and moisture from the food being fried are subject to oxidation, polymerization, and hydrolysis; the oil also accumulates lipid degradation products. These phenomena may be responsible for the formation of potentially toxic components, such as oxidized triglyceride (TAG) monomers (OxTGs), oxidized TAG polymers (TGPx), and toxic aldehyde compounds (Chen et al., 2021; Khor et al., 2020). Given the extensive mass exchange between the oil and food, fried food ultimately acquires the degradation products of the frying oil, thereby influencing the quality of the food.

The stability of frying oil can be improved using two common methods (Kmiecik, Gramza-Michalowska, & Korczak, 2018). The first method involves the optimization of frying conditions and using an oil of low degree of unsaturation. The second method involves the use of antioxidants. It is possible to divide antioxidants used for protecting oil during frying into natural and synthetic types (Wu et al., 2019). Several antioxidants, often of synthetic origin [butylated hydroxytoluene, butylated hydroxyanisole, tert-butylhydroquinone (TBHQ), propyl gallate], have been added to commercial frying oils to retard oxidation and enhance the performance of frying (Chen et al., 2021). However, synthetic antioxidants are less effective than natural antioxidants under frying conditions because they are erratic and can easily evaporate at elevated temperatures as a result of their structures (Guo et al., 2016). Aside from poor protection, synthetic antioxidants may also contribute to increasing health risks such as cancer and carcinogenesis (Olahjide, Liu, Liu, & Weng, 2020). Hence, it remains a continuing endeavor to find effective exogenous antioxidants from natural sources to stabilize frying oils. The study of phenolic extracts from various parts of plants is on the rise in recent years, especially common spices and herbs (Kmiecik, Gramza-Michalowska, & Korczak, 2018; Wu et al., 2019). Polyphenols...
are naturally occurring antioxidant compounds ubiquitous in plants and have biological activities (Wu et al., 2021b). During the frying process, the phenolic extracts of rosemary, sage, thyme, oregano, garlic, and nutmeg could effectively protect against oxidative deterioration without decreasing the sensory properties of fried products (Guo et al., 2016; Mirot-Giok, Catalikeya, Capanoglu, & Karbancioglu-Guler, 2021).

Diaphragm juglandis (D. juglandis) is obtained from the wooden diaphragm in the core of walnut (Juglans regia L.) and is thus known as walnut diaphragm. Since ancient times, it has been widely used as a traditional Chinese medicine for the treatment of kidney deficiency, reproductive diseases, diarrhea, and insomnia (Hu, Gao, & Mou, 2021; Zhang et al., 2022). Recent studies have confirmed that **D. juglandis** contains large amounts of bioactive components, including phenolic acids, flavonoids, saponins, quinones, alkaloids, polysaccharides, etc. (Liu, Zhao, Dai, & Che, 2019; Meng, Li, Xiao, Zhang, & Xu, 2017). However, it is usually discarded as waste during walnut processing in food factories because their major components are indigestible, such as fiber and lignin (Hu et al., 2020). Research efforts to make the most of agro-food wastes with potential nutritional value have gained worldwide popularity and importance. **D. juglandis** deserves a special attention as a potential source of natural antioxidants and other bioactive substances.

This study aimed to investigate the influence of **D. juglandis** extract (DJE) on the prevention of thermal decomposition in soybean oil under deep frying conditions. Changes in TAGS, chemical parameters, and polar compounds during heating were evaluated. In addition, the generation and evolution of other oxidation products, including aldehydes and alcohols, were determined by 1H nuclear magnetic resonance (NMR).

2. Materials and methods

2.1. Materials

The first-class soybean oil without antioxidant was provided by Yi Hai Kerry Co., Ltd. (Shanghai, China). Frozen fries were purchased from Indomie Food Co., Ltd. (Yinchuan, China). **D. juglandis** was supplied by Jiaozhou Mingjie Biotech Co. Ltd. (Anhui, China). To facilitate subsequent extraction of polyphenols, **D. juglandis** was pulverized using a grinding machine (model FW100, Taisite, Tianjin, China) and sifted through a 40-mesh sieve.

2.2. Preparation of phenolic extract

Polyphenols were extracted following the methods of Wu et al. (2021a) and L. Chen, Fan, Lin, Qian, Zengin, Paoli, Teng, and Xiao (2020b) with slight modifications. **D. juglandis** powder (100 g) was extracted ultrasonically with 1000 mL of 80% (v/v) ethanol for 1 h at 25 °C (ultrasound power of 200 W). The extracted solution was obtained by centrifugation (H1750R, Xiangyi Centrifuge Instrument Co., Ltd., Changsha, China) at 3000 \(\times g \) for 15 min at 4 °C. The remaining residue was re-extracted twice by 80% ethanol. Crude phenolic extract was acquired by evaporation of the organic solvent under reduced pressure at 40 °C.

AB-8 macroporous resin (Macklin Inc., Shanghai, China) was applied for further purification of polyphenol. Approximately 10 g of the crude extract of **D. juglandis** was dissolved in 300 mL of distilled water. The extract solution was subjected on a glass column (22 mm × 450 mm) wet-packed with 25 g of AB-8 macroporous resin. When the adsorption equilibrium was reached, the extract was first eluted with 100 mL of distilled water followed by 140 mL of 70% ethanol solution. After desorption, the extracts were combined and the solvents were removed using a rotary evaporator (R-SENCH, Shanghai, China). Finally, the aqueous layer was freeze dried using a lyophilizer to obtain the purified extract (Fig. S1).

2.3. Determination of total phenolic content

Total phenolic content in the extract was determined according to the modified Folin-Ciocalteau assay as described by Aladude and Matthias (2014). Accordingly, 20 μL of the diluted samples were mixed with 100 μL of Folin-Ciocalteau reagent and 300 μL of Na₂CO₃ (10%). The mixture was incubated at room temperature for 1 h in the dark. Absorbance was recorded at 765 nm by UV-Vis spectrophotometer (UV1200, Shimadzu, Tokyo, Japan). The result was expressed as milligrams gallic acid equivalents (GAE) per gram extract.

2.4. Quantification of bioactive compounds in phenolic extract

In accordance with the methods of Zhuang et al. (2020) and Liu et al. (2019), the bioactive compounds in DJE were determined using a Q Exactive Orbitrap mass spectrometer coupled to a Vanquish ultra-performance liquid chromatography system (Thermo Fisher Scientific, Waltham, MA, USA). The chromatographic separation used an Acquity HSS T3 column (1.8 μm, 100 mm × 2.1 mm), with 0.1% formic acid in water (A) and 100% acetonitrile (B) as mobile phases. The system used the following gradient program: initial, 90% A; 2.0 min, 90% A; 6.0 min, 40% A; 9.0 min, 40% A; 9.1 min, 90% A; 12.0 min, 90% A. The flow rate, column oven temperature, and injection volume were set at 0.3 mL/min, 40 °C, and 2 μL, respectively.

The Q Exactive Orbitrap mass spectrometer was equipped with a heated electrospray ionization source operating in negative mode. During the analysis, the typical ion source conditions were as follows: spray voltage, 3.0 kV; capillary temperature, 320 °C; probe heater temperature, 350 °C; sheath gas, 40 arb; aux gas, 10 arb. Trans-ferulic acid, 4-hydroxybenzoic acid, vanillic acid, vanillin, gallic acid, p-hydroxybenzaldehyde, benzoic acid, syringaldehyde, 3,4-dihydroxybenzoic acid, caffeic acid, syringic acid, and coumaric acid were chosen as standards.

2.5. Frying procedure

Frying was carried out in a 6 L domestic electric fryer (EF-6, Vesta Corporation, Guangzhou, China). Tea polyphenol (TP) and TBHQ were separately added to soybean oil at a concentration of 200 mg/kg, while the same oil without any antioxidants was used as the control. Soybean oil was fortified with DJE at the final concentration of 200 mg GAE/kg. Each oil (5 L) was placed in the fryer, and the temperature was set as 180 °C. After heating the oil to the selected temperature (15 min), frozen fries (100 g) were fried for 3 min at 17 min intervals with a total of 8 h per day for four consecutive days. For each day, the fryer was turned off until the termination of the experiment, and the crumbs were removed with a mesh skimmer. The oil was covered, stored at ambient temperature (20 °C) and left overnight. At intervals of 0, 4, 8, 12, 16, 20, 24, 28, and 32 h, approximately 100 mL of sample was obtained and kept in the refrigerator of −20 °C for subsequent determination. During the frying process, no fresh oil was replenished.

2.6. Determination of the absolute content of TAGs

The relative content of TAGs of frying oils was analyzed by high-performance liquid chromatography (HPLC) as described by the American Oil Chemists’ Society (AOCs) official method Ce 5c-93. The oil samples were determined by an Agilent 1200 Series HPLC system equipped with a refractive index detector (RID-10A; Shimadzu Corporation, Japan). Two LiChroCART 18e columns (5 μm, 4.6 mm × 250 mm, Merck Germany) were used for chromatographic separations. The mobile phase was composed of acetoniitrite and acetone (25:75, v/v) at a
flow rate of 1 mL/min. The column temperature was set at 45 °C and the injection volume was 20 μL. POP (p, palmitic acid; O, oleic acid) of 99% purity was obtained from Larodan Fine Chemicals AB (Malmö, Sweden). Identification was achieved by comparing the retention time with the standard, and data were reported in terms of proportion. The relative contents of TAGs in oil samples during frying are listed in Table S1.

The determination of the relative content of TAGs could only give a comprehensive understanding of the relative oxidation rate of TAGs in frying oil. The absolute content of TAGs was determined using the method described by Chen, Chen, Wan, and Deng (2021) to effectively analyze and compare the obtained data. The following example of control group was to illustrate this method. The initial total content of TAGs was assumed to be 100 g, and the initial relative content of LLLn (L, linoleic acid; Ln, linolenic acid) was 7.94%. Thus, the absolute content of LLLn was 7.94 g. After 32 h of frying, a fraction of TAGs was degraded, and the relative content of LLLn was 3.07%. Polar compounds comprise most of the degradation products formed during deep frying (Chen et al., 2021). Moreover, nonpolar compounds, such as unchanged TAGs and nonpolar dimers, are also present in the frying oil (Zhang, Qin, Li, Shen, & Saleh, 2015). The high-performance size exclusion chromatography (HPSEC) was used for the determination of unchanged TAGs in nonpolar compounds (Fig. S2). By subtracting polar compounds (29.34%, w/w) from the oil, the content of nonpolar compounds was 70.66 g, and the absolute content of total unchanged TAGs was 62.46 g (70.66 g × relative content of unchanged TAGs (88.39%)). Therefore, the final absolute content of LLLn was 1.92 g [62.46 g × relative content of LLLn (3.07%)] during the frying process.

2.7. Determination of chemical parameters

 Peroxide value (PV), acid value (AV), p-anisidine value (p-AnV), and total polar compounds (TPC) were analyzed following AOCS official methods Cd 8b-90, Cd 3d-63, Cd 18-90, and Cd 20-91, respectively. The levels of conjugated dienes (K232) and conjugated trienes (K268) were measured in frying media according to the GB/T 22500-2008. An oil sample (0.05-0.25 g) was dissolved in isooctane, and the absorbance was recorded at 232 nm and 268 nm. K232 and K268 can be obtained by Eq. (1):

\[
E_{1 cm}^{1%} = \frac{A_{(232)} - A_{(268)}}{a}
\]

where \(A_{(232)} \) is the absorbance of sample at 232 and 268 nm, and \(a \) is the concentration of the sample (g/100 mL).

2.8. Determination of oxidized and polymeric TAGs

The oxidized and polymeric TAGs in frying media were determined by HPSEC based on a previously described method (J. Chen et al., 2020a). Three oxidized polar compounds including TAG oligomers (TGOs), TAG dimers (TGDs), and OxTGs were determined. The limit of detection for individual fraction of TPC in oils was 0.01%, and it was previously validated (Cao et al., 2013).

2.9. Quantification of oxidation products by \(^1\)H NMR

Aldehydes and alcohols in frying oils were determined by \(^1\)H NMR according to Martin-Rubio, Sopelana, and Guillen (2018). Each sample (about 50 μL) was dissolved in 400 μL of deuterated chloroform (CDCl3, 99.8 atom% D). The mixture was shaken well for 1 min at room temperature. NMR spectra were recorded using a Bruker Avance 400 spectrometer (Bruker, Switzerland) operating at 400 MHz. MestReNova 14 software (Mestrelab Research) was used to process and analyze the \(^1\)H NMR spectra. Chemical shifts were calibrated against the known chloroform peak (7.26 ppm).

The representative \(^1\)H NMR spectra of the oil samples are displayed in Fig. S3. Table S2 lists the assignment of the main signals of the oxidation products in samples. The concentrations of the oxidation products were computed using Eq. (2):

\[
[OP(\text{mmol/mol TAG})] = \frac{1000 \times (A_{OP}/n)}{(A_i/4)}
\]

where \(A_{OP} \) is the selected signal of an oxidation product, \(n \) is the number of protons generating the signal, and \(A_i \) is the area of the protons at \(n-1 \) and \(n-3 \) positions in the glycerol backbone of TAGs.

2.10. Statistical analysis

All measurements were repeated three times, and all experiments were carried out independently twice. Statistical analysis was carried out using one-way analysis of variance followed by Duncan’s test with SPSS version 11.5 (SPSS, USA). Differences were considered significant when \(p < 0.05 \).

3. Results and discussion

3.1. Phenolic composition of DJE

The phenolic components and contents in DJE are shown in Table 1. A total of 31 components of DJE were successfully detected. The most abundant compounds in DJE were catechin, quercitrin, taxifolin, quercetin 3-β-D-glucoside, epicatechin, gallic acid, and 3,4-dihydroxybenzoic acid, and their contents are 9989.16, 6816.18, 569.39, 399.00, 362.10, 272.52, and 259.06 μg/g dry weight, respectively. Fig. 1 illustrates the chemical structure of the components of DJE. The contents of other fractions were low, ranging from 0.27 to 85.46 μg/g dry weight. As common bioactive polyphenols, these compounds are widely found in fruits and vegetables (Liu et al., 2019; Zhong, Farag, Chen, He, & Xiao, 2022). Previous studies demonstrated that polyphenols could offer good protection of oils against oxidative degradation during frying and

Compounds	Content (μg/g of dry sample)
Catechin	9989.16 ± 0.73
Quercitrin	6816.18 ± 1.61
Taxifolin	569.39 ± 0.88
Quercetin 3-β-D-glucoside	399.00 ± 1.07
Epicatechin	362.10 ± 0.50
Gallic acid	272.52 ± 0.52
3,4-Dihydroxybenzoic acid	259.06 ± 0.09
Protocatechualdehyde	85.46 ± 0.63
Vanillic acid	66.06 ± 1.30
Quercetin	54.10 ± 0.06
Syringic acid	37.94 ± 0.03
Naringenin chalcone	33.45 ± 1.30
Rutin	17.32 ± 0.44
Benzoic acid	16.55 ± 0.03
4-Hydroxybenzoic acid	17.14 ± 0.12
Vanillin	15.53 ± 0.45

Results are presented as means ± SD.
the degradation of OLL and LLP were in the following order: DJE = TP > TBHQ. The degradation rate of OLL and LLP did not exceed 32% for DJE and TP groups. Compared with TBHQ, natural polyphenols are not susceptible to evaporate at high temperatures and some degradation products could display antioxidant activity. For instance, protocatechuic acid can be generated by the thermal degradation of quercetin (Wu et al., 2021a). These results indicated that DJE exhibited superior properties for improving the oxidative stability of frying oil.

3.3. Effect of DJE on the chemical parameters of frying oils

AV represents the level of free fatty acids (FFAs) liberated from the hydrolysis of TAGs. FFAs could be rapidly oxidized, thereby promoting further oxidation of polyunsaturated fats by solubilizing and activating the metal catalysts, which have an influence impact on the performance of the frying oils (Urbanic, Kolar, Dimitrjievic, Densar, & Vidrigh, 2014). Fig. 2a shows the AV and their variations during deep frying. The AV of all of the frying oils increased as the frying duration was extended, while the increase rate was slowed down when antioxidants were added. The antioxidant effect followed the order of TP > DJE > TBHQ. Similarly, Li et al. (2021) also found that TBHQ and rosemary extracts can inhibit the increase in FFA in refined soybean oils.

PV is one of the oldest parameters for measuring the degree of primary oxidation in oils and fats. The changes in PV of oil samples during deep frying are shown in Fig. 2b. The PV of oils fluctuated with the extension of frying time, with the same trend reported in other study (Wu et al., 2021b). The reason for this result was that primary oxidation products (hydroperoxides) were unstable and easily breakable into small molecules (Su et al., 2022).

p-AnV was used to determine the content of aldehydes degraded by oils and fats. It was found to be relatively stable at high temperatures (Zhao, Zhang, Wang, & Devahastin, 2021). Compared with PV, p-AnV is more suitable for monitoring the oxidative state of frying oil. As shown in Fig. 2c, frying oil had higher p-AnV than fresh oil (2.80 units). With increasing usage time, the p-AnV of all the samples presented an overall trend of increasing first and then decreasing, which agreed well with a previous research (Xu et al., 2020). The reduced p-AnV in frying oil could be due to the evaporation or further oxidative degradation of unstable aldehydes. All antioxidants significantly increased the increase in p-AnV during deep frying. The final p-AnVs in the oil samples after frying were 114.96, 61.87, 82.71, and 36.95 units for control, TBHQ, TP, and DJE, respectively. The addition of DJE to the oil significantly reduced the p-AnV by up to 68%. The possible explanation for this difference was that the formed carbonyl compounds can be effectively trapped by natural polyphenols with high nucleophilicity (Zamora, Aguilar, Granvogl, & Hidalgo, 2016).

TPC is one of the most reliable and widely used indices to evaluate the deterioration of frying oil. The effects of different antioxidants on the TPC of frying oils are presented in Fig. 2d. TPC was initially present in the fresh oil (3.95%) in small amounts, and the increases in TPC were seen for all the samples at prolonged frying time. According to previous reports, the limited value of TPC was set at 25% in many European countries, including Belgium, France, Portugal, Italy, and Spain (Chen et al., 2021). After the experiment, the TPC content in the oil treated with DJE was the lowest, only 22.38%, which was significantly lower (\(p < 0.05 \)) than that of the control sample (29.34%). This finding is consistent with the result on p-AnV, indicating that DJE could effectively prolong the life of frying oils.

K232 is associated with the production of primary lipid oxidation products, while K268 is used to characterize changes in carbonyl compounds (such as aldehydes and ketones; Zhao et al., 2021). The values of K232 and K268 in fresh oil were 3.22 and 1.43, respectively. The changes in K232 and K268 are displayed in Fig. 2e-f; both parameters increased with prolonged frying duration, as previously described by other investigators (Li et al., 2021; Zhao et al., 2021). After 32 h of frying, the K232 and K268 levels of oils added with DJE were the lowest.
Table 2
Evolution of the absolute content (%) of TAGs in soybean oils with addition of different antioxidants during deep frying.

Group	Time/h	TAG composition	LnL0	L2L0	L0L0	LnL0P1	OLL0	OLL0P1	OLP0	OLP0P1	OOL0	OOL0P1	OOP0	POP0	P0O0
Control	0		1.01	7.94	13.60	3.66	6.51	12.56	11.08	7.80	8.39	6.63	3.78	0.99	4.07
	4		0.87	6.30	9.62	2.87	4.23	11.72	10.22	25.00	7.80	7.32	3.16	1.18	3.18
	8		0.80	6.14	7.98	2.61	6.37	11.03	9.75	2.25	7.66	6.82	3.02	2.27	1.86
	12		0.52	5.47	7.73	2.23	5.10	10.38	9.31	2.21	7.03	5.72	2.74	2.24	0.68
	16		0.39	3.67	5.80	1.75	7.01	9.72	9.09	2.15	6.66	5.98	3.30	1.98	2.68
	20		0.36	3.51	7.64	1.50	4.45	6.78	8.23	2.25	6.82	5.49	3.56	2.00	2.71
	24		0.09	0.12	0.90	0.08	0.17	0.30	0.50	0.06	0.06	0.02	0.00	0.00	0.00
TBHQ	0		1.01	7.94	13.60	3.66	6.51	12.56	11.08	7.80	8.39	6.63	3.78	0.99	4.07
	4		0.69	0.95	1.06	0.49	0.26	0.55	0.36	0.09	0.11	0.30	0.23	0.16	0.08
	8		1.13	0.34	0.79	0.20	0.14	0.49	0.42	0.10	0.60	0.11	0.21	0.12	0.08
	12		0.50	1.17	1.23	0.32	0.66	1.17	1.10	0.20	0.61	0.03	0.08	0.04	0.02
	16		0.29	0.12	0.23	0.06	0.09	0.59	0.64	0.34	0.73	0.02	0.05	0.01	0.00
	20		0.03	0.12	0.09	0.09	0.07	0.44	0.57	0.26	0.40	0.02	0.00	0.00	0.00
	24		0.02	0.12	0.30	0.11	0.33	0.60	0.69	0.29	0.26	0.14	0.07	0.10	0.06
TP	0		1.01	7.94	13.60	3.66	6.51	12.56	11.08	7.80	8.39	6.63	3.78	0.99	4.07
	4		0.96	0.95	1.06	0.49	0.26	0.55	0.36	0.09	0.11	0.30	0.23	0.16	0.08
	8		1.25	0.57	0.88	0.29	0.19	0.46	0.59	0.12	0.64	0.01	0.22	0.16	0.07
	12		0.10	1.17	1.33	0.27	0.73	1.18	1.25	0.22	0.65	0.04	0.23	0.17	0.08
	16		0.05	0.10	0.45	0.23	0.34	0.61	0.53	0.06	0.16	0.01	0.05	0.03	0.02
	20		0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	24		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DJE	0		1.01	7.94	13.60	3.66	6.51	12.56	11.08	7.80	8.39	6.63	3.78	0.99	4.07
	4		0.06	1.05	0.16	0.09	0.05	0.49	0.64	0.26	0.35	0.09	0.23	0.16	0.03
	8		1.28	0.72	1.40	0.20	0.13	0.64	0.40	0.09	0.72	0.20	0.57	0.17	0.06
	12		0.33	0.73	0.63	0.09	0.03	0.28	0.33	0.09	0.35	0.05	0.20	0.05	0.02
	16		0.00	0.14	0.23	0.07	0.02	0.07	0.07	0.01	0.05	0.01	0.05	0.01	0.01
	20		0.00	0.14	0.23	0.07	0.02	0.07	0.07	0.01	0.05	0.01	0.05	0.01	0.01
	24		0.00	0.14	0.23	0.07	0.02	0.07	0.07	0.01	0.05	0.01	0.05	0.01	0.01

(continued on next page)
These results further elucidate that DJE could achieve better antioxidant effect than TBHQ and TP.

3.4. Effect of DJE on the oxidized and polymeric TAGs of frying oils

During frying, unsaturated lipids undergo oxidation to produce a wide variety of compounds. The new compounds differ from the major compounds originally present in oil or fats with respect to molecular weight and polarity. Oxidized and polymeric TAGs derived from oil deterioration comprise the majority of the non-volatile degradation products in TPC, which has been widely investigated in terms of its involvement in quality evaluation and health implications of frying oils (Dobarganes & Marquez-Ruiz, 2015). Table 3 displays the evolution of OxTGs, TGDs, and TGOs in soybean oils added with different antioxidants during deep frying.

Table 3

Group	Time/h	TAG composition	LL lnLn	LLL	LnLP	OLLn	OLL	LLP	PLP	LOP	OOL	OOP	POP	OOO
32	0.64 ±	4.34 ±	8.93 ±	1.89 ±	1.95 ±	9.05 ±	7.99 ±	1.95 ±	5.96 ±	5.29 ±	2.93 ±	1.75 ±	3.15 ±	
	0.01c	0.40d	0.25e	0.08 cd	0.04de	0.48e	0.37f	0.10g	0.25p	0.33p	0.15jg	0.12°	0.14b	

Results are means ± SD of triplicate determinations. Column values in the same treatment with the different superscript lowercased letters are significantly different (p < 0.05). Abbreviations: TAGs, triglycerides; Ln, linolenic acid; L, linoleic acid; O, oleic acid; P, palmitic acid; TBHQ, tert-butylhydroquinone; TP, tea polyphenol; DJE, Diaphragma juglandis extract.

![Fig. 2](image-url). Evolution of (a) AV, (b) PV, (c) p-AnV, (d) TPC, (e) K232, and (f) K268 in soybean oils with added different antioxidants during deep frying.
negative health effects on some organisms (Khor et al., 2020; Li et al., 2021).

The molecular weights are similar to non-altered TAGs. OxTGs have attracted considerable attention due to their high absorbability in vivo and their potential health effects. They are TAGs with at least one of their fatty acyl groups oxidized, such as hydroxyl, keto, and epoxy TAGs (Xu et al., 2019). Their molecular weights are greater than those of the original TAGs. For nutritional effect, David, Gonzalez-Munoz, Benedi, Bastida, and Sánchez-Maniz (2010) reported that the presence of TGPs in oxidized oils could lead to intestinal oxidative stress in animals. As shown in Table 3, the initial TGO (0.16%) and TG (0.25%) contents in fresh oil were low, and they did not exceed 0.3% (Xu et al., 2020). The TGO and TGD contents in the oils of the four sample groups increased as frying time lengthened. The increase was greater in the control group than in the other groups, indicating that adding antioxidants could effectively delay the formation of TGS. After the experiment, the TGP contents in control, TBHQ, TP, and DEJE oils were 18.62%, 12.43%, 11.85%, and 9.50%, respectively. The upper limit of TGS between 10% and 16% has been suggested by the European regulatory authorities (Chen et al., 2021). Given that 10% was set as the frying oil rejection for TGPs, the oil added with DEJE was the only candidate that did not exceed the upper limit, which clearly showed that DEJE oil remained stable even after 32 h of frying.

Overall, DEJE could effectively reduce the oxidized and polymerized TAG formation during deep frying. This finding could be due to the powerful antioxidant capacities and synergistic interactions of the polyphenols (Wu et al., 2021b). DEJE was also less volatile and more stable than synthetic antioxidants (Kniecig, Grampa–Michalowska, & Korczak, 2018). In addition, natural polyphenols could act as polymerization inhibitor that underwent acid-catalyzed decomposition reactions with activation energy lower than that of the formation of polymer TGs under the frying conditions (Gertz, 2004).

Table 3

Polar compound composition (%)	Time/ h	Antioxidant	Control	TBHQ	TP	DEJE
OxTGs	0	1.42 ± 0.01	1.42 ± 0.01	1.42 ± 0.01		
	4	2.56 ± 0.03	2.65 ± 0.03	2.98 ± 0.02		
	8	3.36 ± 0.04	3.54 ± 0.04	3.49 ± 0.03		
	12	4.25 ± 0.06	3.88 ± 0.06	3.80 ± 0.05		
	16	4.90 ± 0.08	3.91 ± 0.08	3.65 ± 0.07		
	20	5.42 ± 0.10	3.85 ± 0.10	3.88 ± 0.12		
	24	5.10 ± 0.12	4.03 ± 0.12	3.69 ± 0.13		
	28	5.33 ± 0.13	4.47 ± 0.13	3.62 ± 0.06		
	32	5.48 ± 0.14	4.30 ± 0.14	3.12 ± 0.12		
	0	0.25 ± 0.00	0.25 ± 0.00	0.25 ± 0.00		
	4	2.08 ± 0.02	3.12 ± 0.02	1.66 ± 0.07		
	8	3.22 ± 0.04	2.26 ± 0.04	2.46 ± 0.08		
	12	4.49 ± 0.06	2.62 ± 0.06	3.08 ± 0.08		
	16	5.81 ± 0.08	3.34 ± 0.08	3.45 ± 0.10		
	20	7.02 ± 0.10	3.98 ± 0.10	4.90 ± 0.15		
	24	7.36 ± 0.11	4.82 ± 0.11	5.17 ± 0.10		
	28	8.47 ± 0.13	6.11 ± 0.13	5.42 ± 0.22		
	32	9.42 ± 0.14	7.01 ± 0.14	6.24 ± 0.39		
	0	0.16 ± 0.00	0.16 ± 0.00	0.16 ± 0.00		
	4	0.69 ± 0.01	0.43 ± 0.01	0.42 ± 0.02		
	8	1.23 ± 0.02	0.81 ± 0.02	0.77 ± 0.03		
	12	1.99 ± 0.03	1.11 ± 0.03	1.07 ± 0.05		
	16	3.52 ± 0.04	1.49 ± 0.04	1.32 ± 0.06		
	20	5.09 ± 0.05	2.09 ± 0.05	1.89 ± 0.06		
	24	5.77 ± 0.06	2.81 ± 0.06	2.20 ± 0.07		
	28	7.24 ± 0.07	4.02 ± 0.07	2.55 ± 0.09		
	32	9.20 ± 0.08	4.84 ± 0.08	3.26 ± 0.09		

Results are presented as means ± SD. Values with different superscript letters in the same row are significantly different between groups (p < 0.05). Abbreviations: TGs, triglyceride oligomers; TGDs, triglyceride dimers; OxTGs, oxidized triglyceride monomers; TBHQ, tert-butylhydroquinone; TP, tea polyphenol; DEJE, Diaphagma juglandis extract.

Frying and are TAGs with at least one of their fatty acyl groups oxidized, such as hydroxy, keto, and epoxy TAGs (Xu et al., 2019). Their molecular weights are similar to non-altered TAGs. OxTGs have attracted considerable attention due to their high absorbability in vivo and negative health effects on some organisms (Khor et al., 2020; Li et al., 2022). As illustrated in Table 3, the OxTG levels in all oil samples increased at first and then decreased slightly during the frying process.

3.5. Effect of DEJE on the oxidation products of frying oils by 1H NMR

1H NMR is a powerful tool used to monitor the oxidative status of frying oil (Li, Li, & Liu, 2020; Martínez-Yusta, Goicochea, & Guillén, 2014). Hydroperoxides are unstable and can easily break into secondary oxidation compounds at frying temperature because of their diverse structures. Some of these compounds, including aldehydes and alcohols, could be observed by 1H NMR. These groups could be either small molecules or in truncated acyl groups of TAG structures (Guillén & Uriarte, 2012). The effects of different antioxidants on the oxidation products of frying oils are shown in Fig. 3. The production of these compounds is closely related to the original lipid composition.

Fig. 3a–d shows that the principal aldehydes of frying oil are n-alkanals, (E)-2-alkenals, and (E,E)-2,4-alkadienals, with 4-oxo-alkanals. After adding antioxidants, the formation of aldehydes was significantly delayed, and the performance of DEJE was better for (E)-2-alkenals, (E,E)-2,4-alkadienals, and 4-oxo-alkanals. Similar phenomena were obtained by Wu et al. (2021a); they stated that adding Camellia oleifera seed cake polyphenols extract could effectively delay the increase in these aldehydes in refined soybean oil during frying. Natural polyphenols are primarily known to be strong free radical scavengers and also regarded as good carbonyl scavengers that trap toxicologically relevant aldehydes produced during frying (Wu et al., 2019; Zamora et al., 2016). The latter is influenced by the
chemical structure of polyphenols, and the reaction mainly occurs in m-diphenols or in the parts with m-diphenol groups in complex polyphenols (Zamora & Hidalgo, 2018). Fig. 3e-f shows the changes of the concentration of alcohols in frying medium. The concentration of alcohols also increased with increasing heating time, and the levels of secondary alcohols (SA) were higher than those of primary alcohols (PA). After 32 h of frying, the levels of PA and SA in oils treated with DJE increased the least, which were lower than that of control sample. These findings further proved that DJE had excellent inhibitory effect against lipid oxidation during deep frying.

4. Conclusions

This study successfully applied DJE as antioxidant to delay the oxidation of refined soybean oil during deep frying. The thermal oxidation of unsaturated TAGs was effectively delayed after adding DJE, especially OLL and LLP. In terms of p-AnV, OxTGs, TGOs, TGDs, (E)-2-alkenals, (E,E)-2,4-alkadienals, 4-oxo-alkanals, primary alcohols, and secondary alcohols, the oils treated with DJE had lower values than the control oil and the oils added with the other antioxidants. Given that 10% is taken as the frying oil rejection for TGPs, the oil added with DJE was the only candidate that did not exceed the upper limit. Hence, DJE exhibited superior properties for enhancing the oxidative stability of frying oil. As many types of polyphenols were identified in DJE, future work will be required to elucidate the detailed and specific scientific information on the antioxidant mechanism of these polyphenols under actual frying conditions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by research grants from the National Natural Science Foundation of China (NO. 31872894).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fochx.2022.100359.

References

Aladéenaye, F., & Matthaus, B. (2014). Phenolic extracts from Sorbus aucuparia (L.) and Malus baccata (L.) berries: Antioxidant activity and performance in rapeseed oil during frying and storage. Food Chemistry, 159, 273–281.

Cao, W. M., Zhang, K. Y., Xue, B., Chen, F. X., Jin, Q. Z., & Wang, X. G. (2013). Determination of oxidized triacylglycerol polymers by preparative flash chromatography and high-performance size-exclusion chromatography. Asian Journal of Chemistry, 25(16), 9189–9194.

Chen, H., Chen, Y., Wan, C., & Deng, Q. (2021). Free-Radical-Mediated Formation of Polar Compounds During Deep-Frying in Rapeseed Oil Studied by Electron Spin Resonance and High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 69(32), 9034–9042.

Chen, L., Pan, X., Lin, X., Qian, L., Zengin, G., Delmas, D., Paoli, P., Teng, H., & Xiao, J. (2020). Phenolic Extract from Sonchus oleraceus L. Protects diabetes-related Liver Injury in Rats through TLR4/NF-kB Signalling Pathway. eFood, 1(1), 77–84.

Chen, J., Zhang, L., Li, Q., Wang, M., Dong, Y., & Yu, X. (2020a). Comparative study on the evolution of polar compound composition of four common vegetable oils during different oxidation processes. LWT-Food Science and Technology, 129, Article 109538.

Chen, J., Zhang, L., Li, L., Zhang, N., Gao, Y., & Yu, X. (2021). The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chemistry, 364, Article 130451.

David, R. O., González-Muñoz, M. J., Benedi, J., Bastick, S., & Sánchez-Muniz, F. J. (2010). Thermally oxidized palm olein exposure increases triacylglyceride polymer levels in rat small intestine. European Journal of Lipid Science and Technology, 112(9), 970–976.

Dobarganes, C., & Marquez-Ruiz, G. (2015). Possible adverse effects of frying with vegetable oils. The British Journal of Nutrition, 113(S2), S49–S57.

Gertz, C. (2004). Optimising the baking and frying process using oil-improving agents. European Journal of Lipid Science and Technology, 106(11), 736–745.

Guillen, M. D., & Uriarte, P. S. (2012). Study by 1H NMR spectroscopy of the evolution of extra virgin olive oil composition submitted to frying temperature in an industrial food safety, 14(1), 614 .

Hlady, T. M., Liu, T., Liu, H., & Weng, X. (2020). Antioxidant properties of two novel lipoipidic derivatives of hydroxyrosyrtol. Food Chemistry, 315, Article 126197.

Su, Y., Gao, J., Chen, Y., Chitrakar, B., Li, J., & Zheng, T. (2022). Evaluation of the infrared frying on the physicochemical properties of fried apple slices and the deterioration of oil. Food Chemistry, 379, Article 132110.

Urbanci, S., Kolar, M. H., Dimitrijev, D., Demiesar, L., & Vidrich, R. (2014). Stabilisation of sunflower oil and reduction of acrylamide formation of potato with rosemary extract during deep-frying. LWT-Food Science and Technology, 57(2), 671–678.

Wu, G., Chang, C., Hong, C., Zhang, H., Huang, J., Qin, J., & Wang, X. (2019). Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends in Food Science and Technology, 92, 33–45.

Wu, G., Han, S., Li, X., Karrar, E., Xu, L., Qin, J., … Wang, X. (2021a). Effect of the phenolic extract of Camellia oleifera seed cake on the oxidation process of soybean oil by 1H nuclear magnetic resonance during frying. LWT-Food Science and Technology, 150, Article 111900.

Wu, G., Han, S., Zhang, Y., Liu, T., Karrar, E., Qin, J., … Wang, X. (2021b). Effect of phenolic extracts from Camellia oleifera seed cake on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-frying. Food Chemistry, 372, Article 131143.

Xu, L., Wu, G., Zhang, Y., Wang, Q., Zhao, C., Zhang, H., … Wang, X. (2020). Evaluation of glycerol core aldehydes formation in edible oils under restaurant deep frying. Food Research International, 137, Article 106966.

Xu, L., Yang, F., Li, X., Zhao, C., Qin, J., Huang, J., & Wang, X. (2019). Kinetics of forming polar compounds in frying oils under frying practice of fast food restaurants. LWT-Food Science and Technology, 115, Article 108907.

Zamora, R., Aguilar, I., Granvogl, M., & Hidalgo, F. J. (2016). Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics. Journal of Agricultural and Food Chemistry, 64(27), 5583–5589.

Zamora, R., & Hidalgo, F. J. (2018). Carboxyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products. Journal of Agricultural and Food Chemistry, 66(6), 1320–1324.

Zhuang, J., Dai, X., Zhu, M., Zhang, S., Dai, Q., Jiang, X., … Xie, T. (2020). Evaluation of astringent taste of green tea through mass spectrometry–based targeted metabolic profiling of polypehols. Food Chemistry, 305, Article 125507.