Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes

Alexander S. Romanov and Manfred Bochmann*

School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.

ABSTRACT: The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me₂CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAr, CF₃CO₂, N(Tf₂)₂, C₆H₅NH, C₂F₆, C₆H₄F₂, C₆H₄F₃, CH₂C(O)(C₆H₄OMe, CH(Ph)C(O)Ph, CH₂SO₂Ph), while the cationic complexes [(AdCAAC)AuL]⁺ (L = CO, CN) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKₐ values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me₂CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl₂ in the dark gives near-quantitative yields of (AdCAAC)AuCl₃, while [Au(Me₂CAAC)₂]Cl leads to trans-[AuCl₃(Me₂CAAC)₂]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr₃ cleaves the Au–C bond to give mixtures of [(AdCAAC-Br)⁺[AuBr₃]]⁺ and [(AdCAAC-Br)⁺[AuBr₄]]⁻, the oxidation of (AdCAAC)AuI with I₂ leads to the adduct (AdCAAC)AuI-I₂. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands.

INTRODUCTION

Lappert’s pioneering work in the early 1970s established N-donor-stabilized carbenes as remarkably versatile ligands across the Periodic Table, particularly for noble metals, and demonstrated the similarity of the coordination chemistry of N-heterocyclic carbenes (NHCs) and phosphines. This work also included the first examples of gold NHC complexes, the dimethylimidazolidinylidene derivatives [Au(C-(NMe)₂C₂H₄)₂]X (X = Cl, BF₄). Since then, N-heterocyclic carbenes have become one of the most successful and adaptable stabilizing complexes of zerovalent gold, while gold(I) CAAC complexes act as catalysts for a range of interesting transformations. These ligands show electron affinities more negative than those of the more widely used unsaturated imidazolin-2-ylidene type carbene and higher ligand-to-metal charge transfer ΔN values; i.e., CAAC ligands behave as stronger σ donors. On the other hand, it is becoming apparent that, even with NHC ligands, the π-acceptor capacity has an important influence on reactivity. As Ciancaleoni et al. showed recently, in contrast to the general description of NHCs as strong σ-donors, in the case of gold they donate less strongly than phosphines, and for this metal in particular there is a significant difference between NHCs with saturated and unsaturated rings; i.e. the π-acceptor capability is likely to play an important role. With this in mind, we became interested in exploring the reactivity patterns of CAAC-type carbene, and their possible differences in comparison to more conventional types of NHCs. We report here an exploration of the reactivity of CAAC gold complexes, including oxidation reactions to Au(III) compounds. Two types of CAAC ligands were employed: the sterically less demanding dimethyl derivative Me₂CAAC and the 2-adamantyl ligand AdCAAC (Chart I).

RESULTS AND DISCUSSION

Although gold(I) chloride complexes LAuCl are most commonly employed as entries into ligand exchange reactions and catalytic transformations, often in combination with silver
salts, it can be synthetically advantageous to substitute the chloride ligand for a more labile oxygen-containing ligand, so that subsequent reactions benefit from the relative weakness of the Au–O bond.15 We therefore decided to prepare the corresponding CAAC gold(I) alkoxides, hydroxides, and carboxylates.

Anion Exchange Reactions. The reaction of \((\text{AdCAAC})\text{AuCl}\) with sodium tert-butoxide in toluene generates the white alkoxide complex \((\text{AdCAAC})\text{AuO}^t\text{Bu}\) \((2)\) in essentially quantitative yield (Scheme 1).16 The alkoxide is very sensitive to hydrolysis, and the reaction must be conducted in anhydrous solvents under inert gas. Treatment of 2 with water readily produces the air-stable hydroxide \((\text{AdCAAC})\text{AuOH}\) \((3)\). Complex 3 is characterized in its \(^1\text{H}\) NMR spectrum by a broadened singlet of the OH ligand at \(\delta \sim 0.29\) ppm (in C\(_6\)D\(_6\)). The same product is also accessible directly from the reaction between the chloride 1 and KOH; however, this reaction proved to be very slow, requiring over 48 h to achieve a 75% conversion. On the other hand, we found that the addition of BuOH to the mixture significantly accelerates the rate of chloride substitution and generates the hydroxide 3 cleanly within 24–36 h, evidently due to equilibrium concentrations of strongly nucleophilic ‘BuO’, which catalyzes chloride substitution.17 The use of CsOH, which is often found preferable in gold chloride substitution reactions, is therefore unnecessary. Both complexes 2 and 3 are soluble in polar and aromatic organic solvents (THF, toluene, 1,2-difluorobenzene) and insoluble in hexanes. Chlorinated solvents (CHCl\(_3\), CH\(_2\)Cl\(_2\), and 1,2-dichloroethane) should be avoided, because their presence tends to lead to the regeneration of the gold chloride. While the hydroxide 3 can be stored at room temperature in air for months, the tert-butoxide 2 is very sensitive to hydrolysis and has to be kept under an inert atmosphere. The carbene-C resonance in the \(^{13}\text{C}\) NMR spectra of 2 and 3 is observed at \(\delta\) 238, slightly upfield from the chloride precursor complex \((\text{AdCAAC})\text{AuCl}\) (\(\delta\) 239.9).

During reactions of 3 with \(p\)-methoxycetophenone (vide infra), a small crop of crystals of a condensation product of 3 was also obtained, the O-bridged cluster \([\{\text{AdCAAC}\}^2\text{Au}_2(\mu_2-O)]\text{OH}^-\). This compound was identified crystallographically (see the Supporting Information, Figure S9). It is analogous to the well-known Nesmeyanov cation,18 and its formation indicates that, in spite of the steric bulk of \text{AdCAAC}, condensation of the hydroxide can still take place.19

Both \((\text{AdCAAC})\text{AuO}^t\text{Bu}\) \((2)\) and \((\text{AdCAAC})\text{AuOH}\) \((3)\) react cleanly with arylboronic acids in toluene under neutral conditions, i.e. without the addition of external bases, to give the corresponding gold aryls, exemplified here by the quantitative formation of \((\text{AdCAAC})\text{Au}(p\text{-C}_6\text{H}_4\text{F})\) \((4)\); see Scheme 1). Neutral conditions have been shown to be preferable for reactions of boronic acids with both Au(I)20 and Au(III)21 hydroxides and to lead cleanly to the corresponding gold organyl complexes in excellent yields.

The reaction of 3 with trifluoroacetic acid (tfaH) affords \((\text{AdCAAC})\text{Au(tfa)}\) \((5)\). This product is also accessible directly from \((\text{AdCAAC})\text{AuCl}\) and Ag(tfa). Both methods give essentially quantitative yields; however, the latter approach contaminates the desired complex with traces of silver salts. The carbene carbon resonance is observed at \(\delta(13\text{C})\) 232.4. This upfield shift of the carbene \(^{13}\text{C}\) signal in comparison to that of the chloro complex is observed for all the complexes with Au–O bonds described here but is particularly pronounced for the trifluoroacetate. Complex 5 proved to be temperature sensitive and should be stored at \(-30\) °C to avoid darkening of the sample.

The hydroxide 3 is a convenient starting material for the preparation of gold aryloxides and reacts with 3,5-di-tert-butylphenol to give the corresponding gold phenolate complex 6 in high yield. This synthetic method offers advantages over salt metathesis approaches, since reactions can be carried out in air and isolation of analytically pure products is straightforward. Complex 6 was isolated as a white stable solid which can be handled in air and is stable in toluene solution for months without noticeable decomposition. Like the hydroxide and alkoxide compounds, 6 is sensitive to chlorinated solvents; therefore, such solvents have to be avoided. The \(^{13}\text{C}\) carbene-C resonance is observed at \(\delta\) 236.1 (in C\(_6\)D\(_6\)).
The reaction of the gold hydroxide \(\text{AuOH} \) with \(\text{HNTf}_2 \) in toluene is a high yield route to the Gagosz-type \(^{22} \) complex \(\text{AuNTf}_2 \) \((\text{AdCAAC})\) \((7)\), which is of interest for silver-free protocols in gold catalysis. \(^{23}\) Complex \(7\) is an air-stable white solid which is soluble in all polar organic solvents. The carbene resonance was observed at \(\delta 233.8 \). The molecular structure of \(7\) is shown in Figure 1. The complex is linear; the \(\text{Au}^-\text{N} \) and \(\text{Au}^-\text{C} \) bond lengths fall in the ranges of \(2.077(3) \sim 2.094(3)\) and \(1.969(2) \sim 1.985(2)\) Å, respectively, similar to those for previously reported \((\text{NHC})\text{AuNTf}_2\) complexes. \(^{22}\)

\[\text{C}^-\text{H Activation Reactions.} \] The basicity of \((\text{AdCAAC})\)\text{AuOH} may be exploited to activate \(\text{C}^-\text{H} \) bonds. Phenylacetylene and diethyl malonate give the corresponding metalation products \((\text{AdCAAC})\text{AuC}≡\text{CPh} \) \((8)\) and \((\text{AdCAAC})\text{AuCH(CO}_2\text{Et)}_2 \) \((9)\), respectively (see Scheme 2). Compounds \(8\) and \(9\) are white solids, stable in air at room temperature.

Bertrand has previously reported the synthesis of complex \(8\) in the reaction of \((\text{AdCAAC})\text{AuCl} \) with the lithium salt of phenylacetylene. \(^{23a}\) The hydroxide route allows the synthesis of \(8\) by a simpler procedure in air.

The reactivity of \(3\) toward a series of fluorobenzenes with decreasing degrees of \(F \) substitution enables the \(pK_a \) value of the gold hydroxide to be estimated. The \(pK_a \) values of a range of fluorobenzenes have been calculated, \(^{24}\) with values of \(29.0\) and \(23.1\) for \(\text{C}_6\text{HF}_5 \) and \(1,2,4,5\)-\(\text{C}_6\text{H}_2\text{F}_4\), respectively. As expected, \(3\) reacts with pentafluorobenzene at \(60\) °C and with \(1,2,4,5\)-tetrafluorobenzene at \(80\) °C to give the corresponding aryl complexes \((\text{AdCAAC})\text{AuC}_6\text{H}_5\text{F}_n \) \((10, n = 5)\) \((\text{AdCAAC})\text{AuC}_6\text{H}_5\text{F}_n \) \((11, n = 4)\) in

Scheme 2. Syntheses of Gold(I) \((\text{AdCAAC})\) Complexes

- \((\text{AdCAAC})\text{AuC}≡\text{CPh} \) \((8)\)
- \((\text{AdCAAC})\text{AuCH(CO}_2\text{Et)}_2 \) \((9)\)
- \((\text{AdCAAC})\text{AuC}_6\text{H}_5\text{F}_5 \) \((10)\)
- \((\text{AdCAAC})\text{AuC}_6\text{H}_5\text{F}_4 \) \((11)\)

Reaction conditions:
- (i) \(\text{Htfa}\), toluene, \(23\) °C, \(4\) h
- (ii) toluene, \(23\) °C, \(18\) h
- (iii) toluene, \(60\) °C, \(18\) h
- (iv) toluene, \(80\) °C, \(18\) h
- (v) 1,4-dioxane, \(75\) °C, \(18\) h
- (vi) toluene, \(70\) °C, \(12\) h
- (vii) toluene, \(70\) °C, \(18\) h
essentially quantitative yields (see Scheme 2). The structure of \(^{14}\text{CAAC})\text{AuClF}_2 \) is shown in Figure 1. The Au–C(carbene) and Au–C(aryl) bond lengths are similar to those reported in the analogous complex \((\text{NHC})\text{AuC}_6\text{H}_4\text{F}_3 \) (2.026(3) and 2.044(3) Å).\(^{25}\)

Prolonged heating with the less C–H acidic 1,3,5-trifluorobenzene (pK\(_a\) ≈ 31.5) also leads to the formation of the corresponding gold aryl complex \(^{14}\text{CAAC})\text{Au}(2,4,6-\text{C}_6\text{H}_3\text{F}_3) \) (12); however, the reaction is slow and the product was contaminated with unreacted hydroxide 3. A higher temperature of 90 °C accelerated the gold arylation, but according to the \(^{19}\text{F} N\text{MR} \) spectrum this was accompanied by some decomposition. The new set of resonances for fluorine atoms in the \(^{19}\text{F} N\text{MR} \) spectrum was detected as multiplets centered at δ −84.60 (2F) and −116.86 (1F). To prove that these multiplets corresponded to the desired complex 12, we performed the auration of 1,3,5-tri-Fluorobenzene.\(^{25}\)

The auration of 1,3,5-tri-fluorobenzene with the more basic \(^{13}\text{CAAC})\text{Au(O'Bu)} \), generated in situ from \(^{13}\text{CAAC})\text{AuCl} \) and NaO'Bu (eq 1). These mixtures proved more reactive than pure isolated 3 and gave the desired complex 12 in 49% yield. The formation of 12 is accelerated by higher temperatures (75 °C), but since the tert-butoxide 2 is somewhat temperature sensitive, its slow decomposition may explain the reduced yield.

The auration of 1,3,5-trifluorobenzene by 3 and \(^{13}\text{CAAC})\text{AuCl/NaO'Bu} \) mixtures is in contrast with the lack of reactivity of \((\text{IPr})\text{AuOH} \)\(^{23}\) and is an indication for the enhanced basicity provided by the CAAC ligand. On the other hand, no reaction was observed with 1,2-difluorobenzene and with monofluorobenzene. The reactivity decreases therefore in the sequence shown in Scheme 3\(^{24}\) evidently \(^{13}\text{CAAC})\text{AuOH} \) is sufficiently basic to undergo reactions with C–H bonds with pK\(_a\) values of 31.5 or less. This reactivity places the \(\text{(CAAC)AuOH} \) complexes closer to that of Larossa’s systems \((\text{Bu}_3\text{P})\text{AuCl/AgSbF}_6 \) and \((\text{R}_3\text{P})\text{AuCl/NaO'Bu}\) which also aurate 1,3,5-trifluorobenzene.

The hydride 3 is a convenient starting material for the metalation of a series of functionalized C–H compounds. For example, the reaction of \((^{14}\text{CAAC})\text{AuOH} \) with p-methoxy-acetophenone, deoxybenzoin, and methyl phenyl sulphone gave the corresponding gold alkyls \(^{14}\text{CAAC})\text{AuR} \) (R = CH\(_3\)C(O)-

\(\text{C}_6\text{H}_4\text{OMe} \) (13), CH(Ph)C(O)Ph (14) and CH\(_3\)SO\(_2\)Ph (15); see Scheme 2). Related \(\alpha \)-keto alkyls have previously been postulated as catalytic intermediates, e.g. Pd–CH(Ph)C(O)Ph species, in the \(\alpha,\alpha \)-diarylation of acetophenone en route to tamoxifen precursors.\(^{26}\) The reaction of 3 with acetophenone has a precedence in the formation of \((\text{Ph}_3\text{P})\text{AuCH}_2\text{C(O)Ph} \) from acetophenone and Nesmeyanov’s \([\text{Au}(\mu_3-\text{O})(\text{Ph}_3\text{P})]^{+} \) cation;\(^{27}\) while more recent alternative syntheses of gold \(\alpha \)-keto alkyls have involved the use of silyl enolates with \((\text{Ph}_3\text{P})\text{AuCl/ CsF} \) reagents.\(^{28,29}\)

![Figure 2. Crystal structure of \((^{14}\text{CAAC})\text{Au(Deoxybenzoinyl)} \) (14).](image)

Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Au–Cl(1) 2.039(4), Au–C(28) 2.142(4), C(1)–C(2) 1.522(6), C(1)–N(1) 1.308(6), O(1)–C(29) 1.240(6), C(29)–C(28) 1.465(7), C(29)–C(30) 1.527(6), C(28)–C(36) 1.514(6), C(1)–Au–C(2) 176.89(14).

C(14)–C(15)–C(16) occupies a position almost above the phenyl ring of deoxybenzoin (C36–C41), with atom C(15) oriented toward the phenyl ring plane (3.747(8) Å). This

\(^{14}\text{CAAC})\text{Au(Deoxybenzoinyl)} \) (14).
spatial orientation of C(15) explains the high-field 1H NMR chemical shift of this methyl group, at $\delta_{0.89}$, due to magnetic shielding by the aryl.

Functionalized alkyl complexes such as $^{13-15}$ should, in principle, provide access to α-keto carbenes, which have been suggested as elusive transient intermediates in a number of organic transformations.30 Preliminary tests have shown, however, that these complexes do not undergo α-hydride abstraction with standard electrophiles such as CPh$_3^+$ salts. Methods for generating functionalized gold carbene complexes are currently being investigated.

CO, CN, and Alkene Complexes. The reaction of 1 with silver salts in the presence of CO or 14BuNC gives the corresponding cationic complexes [(14CAAC)Au(L)]$^+$ (L = CO (16), 14BuNC (17)) and [(14CAAC)AuCN (18)]. Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): 16, Au–C(1) 2.035(4), Au–C(28) 1.964(5), C(28)–O(1) 1.108(6), C(1)–C(2) 1.519(6), C(1)–N(1) 1.290(5), C(1)–Au–C(28) 173.97(17), Au–C(28)–O(1) 172.9(4); 17, Au–C(1) 2.022(2), Au–C(28) 1.986(3), C(28)–N(2) 1.143(3), N(2)–C(29) 1.467(3), C(1)–C(2) 1.525(3), C(1)–N(1) 1.304(3), C(1)–Au–C(28) 175.05(9), Au–C(28)–N(2) 174.2(2), C(28)–N(2)–C(29) 177.5(2); 18, Au–C(1) 2.031(5), Au–C(28) 2.017(5), C(28)–N(2) 1.127(6), C(1)–C(2) 1.516(7), C(1)–N(1) 1.316(5), C(1)–Au–C(28) 177.33(16), Au–C(28)–N(2) 176.4(5).

The IR spectrum of 16 shows the CO stretching vibration at 2183 cm$^{-1}$. As is characteristic for CO complexes of gold ions, the CO stretching frequency is higher than that of free CO (2143 cm$^{-1}$). The CO stretch of 16 falls within the range observed for CO complexes of Au(I) with phosphine and carbene ligands;14,31 for instance, the ν(CO) value of 16 is marginally lower than those of [(Mes$_3$P)Au(CO)][SbF$_6$] (Mes = 2,4,6-C$_6$H$_2$Me$_3$) and [(SIdipp)Au(CO)][SbF$_6$], (by 2 and 14 cm$^{-1}$, respectively).31 Similarly, the IR spectrum of the isonitrile complex 17 displays a strong vibration at 2241 cm$^{-1}$ which is blue-shifted in comparison to the signal for free tert-butyl isocyanide (2135 cm$^{-1}$) and almost identical with that of [(SIdipp)Au(CN14Bu)][SbF$_6$], (by 2244 cm$^{-1}$).31

The cyan complex [(14CAAC)AuCN (18)] was prepared for comparison with the CO compound, by reaction of the hydroxide [(14CAAC)AuOH] with Me$_3$SiCN or of that with (14CAAC)AuCl and KCN. Both approaches lead to almost quantitative yields of complex 18. The complex shows a ν(CN)
frequency of 2140 cm⁻¹. The C–N frequency of cyanide anions is relatively insensitive to the nature of the ligand in a trans position, and the value is close to that observed for a range of gold(I) CN complexes with phosphine and carbene ligands. There was no ligand rearrangement to give [Au(CN)]²⁻ salts, as seen for [Au(PMes₃)]₂[Au(CN)]₂ prepared by the (Mes₃P)-AuCl/KCN route.³¹ Complex 18 is stable in air and soluble in all polar organic solvents.

The ¹H NMR spectra show that the chemical shifts for the CAAC-CH₃ protons in the five-membered rings of 16–18 are about 0.3–0.8 ppm upfield of that of (⁶⁶CAAC)AuCl. The carbene-C resonances for 16–18 are observed at δ 241.1, 246.2, and 253.1, respectively. The CO ¹³C signal of 16 (δ 182.4) is almost identical with that of [(SIDipp)Au(CO)]. [SbF₆] (δ 182.7). The tert-butyl isonitrile CNC(CH₃)₃ ¹³C shifts of 17 are observed at δ 142.4 and 58.6, broadened by bonding to quadrupolar ¹⁴N. 18 shows a ¹³CN resonance at δ 149.5, slightly shifted upfield of that of (SIDipp)AuCN (δ 152.4).³¹ Overall, therefore, these data suggest that the electronic characteristics of CAAC ligands are generally comparable to those of saturated imidazolidinylidene-type NHCs.

The crystal structures of the CO, ¹BuCN, and CN complexes are shown in Figure 3. The carbonyl complex 16 shows the greatest deviation from linear geometry: C(1)–Au–C(28) 172.9(4)°. The Au–C(28) bond trans to the CAAC ligand elongates from 1.964(5) Å for the CO complex 16 to 2.017(5) Å for the cyanide 18, whereas the carbene–Au distances remain approximately constant throughout this series, deviating only slightly from the value of 2.031(5) Å observed for the cyanide 18. The isonitrile complex 17 crystallized with a molecule of 1,2-difluorobenzene, which exhibits a T-shaped C–F···π intermolecular interaction between carbon C(28) and one of the fluoride atoms of 1,2-difluorobenzene (C(28)···F(8) 3.090(3) Å), which falls into the range of intermolecular interactions of 2.99–3.53 Å observed for various fluoro-organic compounds.³²

In view of our earlier observation that ethylene inserts into Au(III)–trifluoroacetate bonds to give the functionalized alkyls Au–C₂H₅OAc,³³ (⁶⁶CAAC)AuOAc was exposed to an atmosphere of ethylene for extended periods of time, either in CH₂Cl₂ with the addition of AgOAc as catalyst or in CH₂Cl₂/CMOAc mixtures. However, no insertion of ethylene was observed. The intermediate in this insertion reaction is a cationic alkene complex, and such a complex is indeed easily accessible from the trifluoroacetate precursor if B(C₆F₅)₃ is added as the anion acceptor, as exemplified by the norbornene complex 19 (Scheme 5). The compound is a white, air-stable solid which is soluble in polar organic solvents. The carbene-C signal is observed at δ 246.8.

Oxidation Reactions. Given the electron-donating nature of CAAC ligands, it might be expected that CAAC complexes should be easier to oxidize than compounds of less electron rich NHCs. It is surprising, therefore, that the oxidation chemistry of CAAC complexes does not seem to have been explored.

The oxidation of imidazolylidene-type N-heterocyclic carbene gold(I) complexes with halogens to Au(III) products is of course well precedented and proceeds smoothly in high yields with oxidants such as Br₂ and PhICl₂, in most cases to give products of the type (NHC)AuX₃ (X = Cl, Br, I).³⁴–⁴¹ It was therefore surprising when initial attempts at oxidizing (⁶⁶CAAC)AuX with either PhICl₂ or CsBr₃ in dichloromethane at room temperature proceeded with Au–C cleavage to give mixtures of products, even when the gold(I) precursor was used in excess (eq 1). The reaction of (⁶⁶CAAC)AuCl with PhICl₂ in CH₂Cl₂ gave a yellow solution from which two types of crystals could be obtained: a small amount of colorless needles which were identified by X-ray crystallography as the dichloroaurate(1) salt [⁶⁶CAAC-AuCl][AuCl₄] (20a), formed by chlorination of the carbene ligand, and a larger component of yellow prisms which turned out to be the product of cocristallization of two independent molecules of [⁶⁶CAAC-AuCl][AuCl₄] (20b) with one molecule of (⁶⁶CAAC)AuCl in the unit cell. The ¹H NMR spectrum supported an approximate 2:1 ratio of these products. Lowering the temperature to −78 °C led to recovery of the starting material. The ¹³C NMR resonance for the iminium carbon atom C–X is shifted upfield...
in comparison to the signals for the starting carbene complexes and observed at \(\delta 188.5 \) and 186.0 for \(X = Cl, Br \), respectively.

The mechanism of Au−C bond cleavage was not studied in detail; however, one plausible explanation may be that the primary oxidation product, \([{ }^{18}C{ }AC]AuCl_3 \), partially undergoes photoinduced reductive elimination into \(Cl_2 \) and the Au(I) complex \([{ }^{18}C{ }AC]AuCl \). The eliminated chlorine could then react with either \([{ }^{18}C{ }AC]AuCl \) or \([{ }^{18}C{ }AC]AuCl_3 \) to give the corresponding salts [\([{ }^{18}C{ }AC-Cl][AuCl_2] \) and \([{ }^{18}C{ }AC-Cl][AuCl_4] \), respectively. The photochemical reductive elimination of halogens from \((NHC)AuBr_3 \) \(^{39a} \) and from gold(III) phosphine complexes in the presence of olefins as halogen scavengers is known to be facile.\(^{42} \) In the present case the carbene C−Au bond acts as such a halogen scavenger. Similar cleavage products \(21a, b \) are obtained using \(CSBr_2 \) under ambient light conditions (eq 2). The crystal structures of the salts \(20a, b \) are shown in Figure 4.

However, a different course of this reaction was observed when the oxidation reactions were conducted in the absence of ambient light. This aspect was first explored using the sterically less hindered and synthetically more easily accessible \(Me_2CAAC \) ligand and subsequently extended to \(AdCAAC \) gold compounds.

Stirring a mixture of \([Au(\text{Me}_2\text{CAAC})_2]Cl \) (22) and \(PhICl_2 \) in dichloromethane in the dark at 0°C to room temperature for 6 h gave a colorless complex, \([AuCl_2(\text{Me}_2\text{CAAC})_2]Cl \) (23) (Scheme 5). The molecular structure was identified by X-ray diffraction (Figure 5). The gold atom occupies a special position, with the \(\text{Me}_2\text{CAAC} \) and Cl ligands being related by an inversion center. The Au atom possesses the expected square-planar geometry with a trans arrangement of the ligands. The bond length Au−C(1) (2.064(2) Å) is slightly elongated in comparison to those of the analogous imidazolylidene complexes \([AuCl_2(NHC)_2]^+ \), while the Au−Cl(1) distance is closely similar.\(^{38b,42} \)

The crystal structure and elemental analysis show the expected composition of the desired Au(III) product, \([AuCl_4(\text{Me}_2\text{CAAC})_2]Cl \). At the same time, it is a well-known fact that the \(^{13}C \) NMR resonance of the carbene carbon is usually shifted upfield on oxidation of Au(I) carbene complexes to Au(III).\(^{38b} \) However, the \(^1H \) and \(^{13}C \) NMR spectra in CDCl\(_3\) of \([AuCl_4(\text{Me}_2\text{CAAC})_2]Cl \) and its precursor \([Au(\text{Me}_2\text{CAAC})_2]Cl \) are essentially identical: \(\delta(^{13}C) 250.6 \). Therefore, we cannot exclude the possibility that in solution an equilibrium exists between \([AuCl_2(\text{Me}_2\text{CAAC})_2]Cl \) and its Au(I) isomer, \([Au(\text{Me}_2\text{CAAC})_2]Cl \), which in dichloromethane is predominantly shifted toward the Au(I) complex. It did not prove possible, however, to isolate the trichloride salt, and

Figure 4. Molecular structures of (left) \([{ }^{18}C{ }AC-Cl][AuCl_3] \) (20a) and (right) \([{ }^{18}C{ }AC-Cl][AuCl_4] \) (20b). Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): 20a, Au−Cl(1) 2.2605(8), Au−Cl(3) 2.2671(8), C(1)−C(1) 1.696(3), C(1)−C(2) 1.506(4), C(1)−N(1) 1.288(3), Cl(2)−Au−Cl(3) 175.91(3); 20b, Au−Cl(2) 2.2828(16), Au−Cl(3) 2.2819(17), Au−Cl(4) 2.2673(13), Au−Cl(5) 2.2813(16), C(1)−Cl(1) 1.718(5), C(1)−C(2) 1.510(6), C(1)−N(1) 1.299(6), Cl(2)−Au−Cl(3) 89.84(7), Cl(2)−Au−Cl(4) 178.86(6).

Figure 5. Solid-state structure of the cation in \([AuCl_4(\text{Me}_2\text{CAAC})_2]Cl \) (23). Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Au−Cl(1) 2.2681(7), Au−C(1) 2.064(2), C(1)−C(2) 1.527(3), C(1)−N(1) 1.295(5), C(1)−Au−Cl(3) 87.37(7), C(1)−Au−C(1A) 92.63(7).
n numerous attempts to pick out different crystals led only to unit cell measurements corresponding to the Au(III) complex [AuCl2(Me2CAAC)2]Cl.

The quality of the product strongly depends on the absence of the light during the reaction and on storage. For instance, the colorless solution of [AuCl2(Me2CAAC)2]Cl slowly turned yellow (within ca. 24 h) if left exposed to ambient light, while the 1H and 13C NMR spectra of the sample remained unchanged. The products of this reaction could not be unequivocally determined but seemed likely to contain [AuCl2]+ salts.

The oxidation of 22 with CsBr3 as selective brominating agent took a somewhat different course. Under ambient conditions [Au(Me2CAAC)2]Cl reacts with CsBr3 to give a mixture of orange prisms of [Au(Me2CAAC)2]Br3 (24a) and of red crystals of [Au(Me2CAAC)2]AuBr4 (24b) (Scheme 5). In contrast, the attempted oxidation of [Au(Me2CAAC)2]Cl with iodine gave the Au(I) diiodochloride salt [Au(Me2CAAC)2]ClI2 (24c). Since 1H and 13C NMR spectra are not informative, the nature of these products was confirmed by X-ray crystallography (see the Supporting Information).

In none of these reactions did we observe the formation of gold(III) bromo or iodo complexes. The reactivity of CAAC complexes therefore differs significantly from that of unsaturated NHC complexes, where oxidation with Br2 has been shown to generate complexes of the type (NHC)AuBr3, [AuBr2(NHC)2]+,35a,38b,39b and where oxidation with iodine has given rise to compounds of the types (NHC)AuBr3, [AuI2(NHC)2]+, and (NHC)AuI3.38,39a A similar reactivity pattern was observed in the oxidation reactions of the more bulky monocarbenec complexes (NHC)AuX (X = Cl, Br, I). As was observed for the bis-carbenec cation [Au(Me2CAAC)2]+, carbenec complexes of Au(III) are only obtained if ambient light is excluded. Thus, the reaction of (NHC)AuCl with PhICl2 over the temperature range from 0 °C to room temperature for 6 h in the dark led to the isolation of (NHC)AuCl2 (25) as a light yellow solid in almost quantitative yield (eq 3). There was no reaction at −78 °C.

The 13C NMR spectrum of 25 shows the carbene carbon signal at δ 218.8, substantially downfield of the 13C carbene signals of imidazolidine-type (NHC)AuCl3 complexes, which are typically observed in the range of δ 130−170.33−40 In comparison to Au(I) CAAC complexes, which show 13C carbene chemical shifts of ca. δ 235−240,6c the Au(III) complexes are shifted upfield by about 20 ppm. Such changes have previously been explained on the basis of increased Lewis acidity of the Au(III) center and shielding effects of the cis-halide ligands.6b,39a There was no evidence for ligand rearrangement, e.g. to [AuCl3(Me2CAAC)2][AuCl4], and the solid-state structure is retained in solution. The structure of the complex is shown in Figure 6. The Au(III) atom possesses square-planar geometry. The bond lengths Au−C(1) 2.0184(4) Å and Au−Cl(2) 2.3170(13) Å in position trans to the

Figure 6. Crystal structure of (AdCAAC)AuCl3 (25). Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Au−Cl(1) 2.2972(13), Au−Cl(2) 2.3170(13), Au−Cl(3) 2.2632(13), Au−C(1) 2.018(4), C(1)−C(2) 1.537(6), C(1)−N(1) 1.295(6), C(1)−Au−Cl(2) 174.25(13), C(1)−Au−Cl(1) 85.64(13), C(1)−Au−Cl(2) 95.83(13), Cl(1)−Au−Cl(2) 88.79(6).

carbene carbon) are almost identical with those observed in numerous (NHC)AuCl3 complexes.35−40 In contrast, the reaction of (AdCAAC)AuI with iodine in dichloromethane under various reaction conditions (i.e., either protected from light or unprotected, low or ambient temperature) gave a dark red solution from which crystals of the dark red iodine adduct (AdCAAC)AuI I2 (26) were isolated (eq 4).

This is in contrast to the oxidative addition of iodine observed with other types of NHC complexes, which form gold(III) iodides.3b,45 The formation of triiodides and iodine adducts has previously been observed for phosphine and isonitrile Au(I) complexes.35,44 Indications for the redox equilibrium LAu3(I3) ⇌ LAu(I)I3 were not detected.

The structure of 26 is shown in Figure 7. According to the Cambridge Structural Database the only closely analogous

Figure 7. Crystal structure of (AdCAAC)AuI2 (26). Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Au−I(1) 2.5684(4), Au−C(1) 2.024(4), I(1)−I(2) 3.1655(5), I(2)−I(3) 2.7626(5), C(1)−C(2) 1.517(6), C(1)−N(1) 1.299(6), C(1)−Au−I(1) 177.36(12), Au−I(1)−I(2) 93.56(1), I(1)−I(2)−I(3) 177.28(2).
compound with a triiodide moiety is \((\text{[BuNC}]_{2n})\text{AuI}\) reported by Schmidbaur.\(^{43}\) The Au–I(1) and I(2)–I(3) bond lengths for the \((\text{AdCAAC})\text{AuI}\) are almost identical with those for \((\text{[BuNC}]_{2n})\text{AuI}\) (2.553(1) and 2.738(1) Å, respectively), but the I(1)–I(2) distance is significantly shorter: 3.165(5) vs 3.311(1) Å. At the same time the I–I distance is in accordance with typical values for polyiodide complexes.\(^{46}\)

Analysis of intermolecular contacts shows neither aurophilic interactions (the shortest distance between gold atoms is 7.521 Å) nor polyiodide chain formation.

CONCLUSION

The \(\text{AdCAAC}\) ligand produces a gold(I) hydroxide with slightly increased basicity in comparison to the imidazolylidene-type complex (HNC)AuOH. It is a convenient starting material for the synthesis of a wide range of acid/base and C–H activation reactions and gives gold aryls even with 1,3,5-trifluorobenzene, sodium tert-butoxide, diethyl malonate, trimethylsilyl cyanide, tetrafluorobenzene, 1,2,4,5-tetrachlorobenzene, 1,3,5-trifluorobenzene, tert-butyl alcohol, triethylamine, tert-butyl alcohol, \(\text{N}_{2}\), and \(\text{N}_{2}O\). The oxidation reactions of the corresponding arylboronic acids under neutral conditions in toluene give gold aryls even with 1,3,5-triarylboronic acid and only stronger oxidants, such as PhICl\(_2\),\(^{a}\) did not conform to the expectations for electron-rich complexes.\(^{46}\)

EXPERIMENTAL SECTION

General Considerations. Unless stated otherwise, all reactions were carried out in air. Solvents were distilled and dried as required. Pentafluorobenzene, di-tert-butoxyethane, tert-butyldimethylsilyl cyanide, trimethylsilyl cyanide, N,N-dimethylacetamide, triethylamine, and trimethylamine were dried under vacuum before use. tert-Butanol was dried over molecular sieves (4 Å) before use. All other solvents were purchased from Sigma-Aldrich and used as received.

\((\text{HNC})\text{AuO}\) and \(\text{MeCAAC}\) were obtained according to a literature procedure.\(^{2}H, \text{C}^{1}H, \text{and} \text{F}^{19}NMR spectra were recorded using a Bruker Avance DPX-300 MHz NMR spectrometer. \(\text{H}^{1}NMR (300.13 MHz) and \text{C}^{13}H (75.47 MHz) were referenced to CDCl\(_3\) at \delta 7.26 (\text{H}) and \delta 76.4 (\text{C}). \text{C}^{13}\) (60 MHz) was referenced to DMSO-d\(_6\) at \(\delta 176.0 (\text{C})\). \text{F}^{19}NMR spectra (282.4 MHz) were referenced externally to CFCl\(_3\) and \(\text{C}^{13}C\) (75 MHz) to internal signals of \(\text{C}^{13}C\) (75 MHz). IR spectra were recorded using a PerkinElmer Spectrum One FT-IR spectrometer equipped with a diamond ATR attachment. Elemental analyses were performed by the London Metropolitan University.

Synthesis of (HNC)Au(OH). Method A. Under an argon atmosphere, an oven-dried 25 mL Schlenk flask was charged with \((\text{HNC})\text{AuCl}(303 mg, 0.5 mmol), freshly ground KOH (285 mg, 5 mmol), and 10 mL of THF. To the stirred suspension was added tert-butyl alcohol (0.02 mL, 0.2 mmol), and stirring was continued for 36 h at room temperature. The dark suspension was filtered through a Celite pad (3 cm) and washed with additional THF (2 x 5 mL). Water (4 mL) was added to the THF solution, after which it was concentrated to ca. 7 mL. Water (10 mL) was added to the cloudy suspension. All volatiles were removed under vacuum (30 °C, 20 mbar). If any coloration of the solid remained, it could be redissolved in THF/H\(_2\)O (4:1) and passed through Celite. The white residue was washed with hexanes (2 x 5 mL) and dried under vacuum for 1 day. Yield: 282 mg (0.48 mmol, 96%).

Method B. An excess of distilled water (5 mL) was added to the stirred solution of \((\text{HNC})\text{Au(OBu}^{\prime}\)) (194 mg, 0.30 mmol) in 1 mL of THF. The milky suspension was stirred for 15 min, and the volatiles were removed under vacuum. The white residue was washed with hexanes (5 mL) and dried under vacuum for 1 day. Yield: 171 mg (0.29 mmol, 97%).

Synthesis of (MeCAAC)Au(OH) (3)(HNC)Au(OBu) (2). Under an argon atmosphere, an oven-dried 25 mL Schlenk flask was charged with a stirring bar, \((\text{MeCAAC})\text{AuCl}(97 mg, 0.15 mmol), and p-fluorophenylboronic acid (22 mg, 0.15 mmol). Anhydrous toluene (5 mL) was added, and the resulting suspension was stirred overnight. The mixture was filtered through a Celite pad (2 cm), which was washed with another 8 mL of toluene. The volatiles were removed under vacuum to give an off-white product, which was washed with hexanes (2 x 4 mL) and dried under vacuum. Yield: 92 mg (0.14 mmol, 92%).

Method B. A scintillation vial was charged in air with a stirring bar, \((\text{MeCAAC})\text{AuCl}(60 mg, 0.10 mmol) and p-fluorophenylboronic acid (15 mg, 0.10 mmol). Toluene (4 mL) was added and the resulting suspension was stirred overnight. The mixture was filtered through a Celite pad (2 cm) which was washed with another 8 mL of toluene. All volatiles were removed under vacuum to give an off-white product which was washed with hexanes (2 x 4 mL) and dried under vacuum. Yield: 65.5 mg (0.097 mmol, 97%).

Synthesis of (MeCAAC)Au(OBu) (2). Under an argon atmosphere, an oven-dried 25 mL Schlenk flask was charged with a stirring bar, \((\text{MeCAAC})\text{AuCl}(303 mg, 0.5 mmol) and sodium tert-butoxide (48 mg, 0.5 mmol) under an argon atmosphere. Anhydrous toluene (15 mL) was added, and the resulting white suspension was stirred in the dark for 5 h and filtered through a Celite pad (2 cm), which was washed with an additional 10 mL of toluene. The volatiles were evaporated under vacuum, affording a white solid: yield 307 mg (0.475 mmol, 95.5%).

**H NMR (300 MHz, CDCl\(_3\)): \delta 7.43 (t, \(J = 7.6 Hz\), 1H, \text{CH}-aromatic), 7.27 (d, \(J = 7.6 Hz\), 2H, \text{CH}-aromatic), 4.12 (br d, \(J = 13.2 Hz\), 2H, \text{CH\(_{2}\)}), 2.77 (sept, \(J = 6.6 Hz\), 2H, \text{CH\(_{2}\)}), 2.32–1.75 (CH\(_{3}\)).

**14H, adamantyl CH and CH\(_{2}\)), 1.44 (d, \(J = 6.6 Hz\), 6H, CH\(_{2}\)), 1.31 (s, 6H, 2CH\(_{3}\)), 1.28 (br d, \(J = 6.6 Hz\), 6H, CH\(_{2}\)), 0.91 (s, 9H, OC(CH\(_{3}\))ppm. \text{C}^{13}H NMR (75 MHz, CDCl\(_3\)): \(\delta 238.1\) (C carbene), 164.9 (c-o-C), 135.1 (Ar, P-C), 142.6 (Ar, H-C), 145.8 (3.1655(5) vs 3.311(1) Å. At the same time the I–I distance is in accordance with typical values for polyiodide complexes.\(^{46}\)
Synthesis of \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{Au(OAc)} \) (5). Method A. A Schlenk flask was charged with \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{Au(OAc)} \) (59 mg, 0.10 mmol) and a trifluoroacetic acid solution (9 \(\mu l \), 0.11 mmol) in toluene (1 mL). The resulting solution was stirred for 4 h. All volatiles were removed under vacuum. The residue was washed with hexanes (2 x 2 mL) and dried under vacuum to give a white solid. Yield: 66.5 mg (0.096 mmol, 96%).

Method B. A Schlenk flask was charged with \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{AuCl} \) (59 mg, 0.1 mmol), silver trifluoroacetate (23 mg, 0.10 mmol), and \(\text{CH}_{2}Cl_{2} \) (2 mL). The resulting suspension was stirred for 30 min in the dark. The mixture was filtered through a Cellite pad (2 cm), which was washed with another 8 mL of \(\text{CH}_{2}Cl_{2} \). All volatiles were removed under vacuum to leave an off-white product, which was dried under vacuum. Yield: 63.5 mg (0.092 mmol, 92%).

1H NMR (300 MHz, CDCl₃): \(\delta \) 7.49 (t, \(J = 7.7 \) Hz, 1H, CH- aromatic), 7.30 (d, \(J = 7.7 \) Hz, 2H, CH- aromatic), 6.98 (br d, \(J = 1.7 \) Hz, 2H, CH₃ phenol), 6.93 (br t, \(J = 1.7 \) Hz, 1H, CH phenol), 4.40 (br d, \(J = 12.2 \) Hz, 2H, CH₂), 2.67 (sept, \(J = 6.7 \) Hz, 2H, CH₃(CH₃), 1.51 (d, \(J = 6.7 \) Hz, 6H, CH(CH₃)₃), 1.40 (s, 18H, two CH₃ groups), 1.09 (d, \(J = 6.7 \) Hz, 6H, CH(CH₃)₂), 0.79 (s, 6H, 2CH₃), ppm. 13C{1H} NMR (75 MHz, CDCl₃): \(\delta \) 236.1 (C carbene), 168.6 (C=O phenol), 150.4 (Caryl phenolate), 144.8 (C=O, aromatic), 135.3 (Caryl aromatic), 129.9 (CH aromatic), 113.9 (CH₃ phenol), 108.7 (CH₂ phenol), 75.5 (C₁, 63.5 (C₂, 48.0 (CH₃), 38.9 (CH₂), 36.9, 35.1, 34.7 (CH₂), 34.4 (CH₂), 31.9 (C(CH₃)₂), 29.1 (CH₃), 28.3, 27.6, 27.3, 26.7, 22.6 (CH₃) ppm. IR (ATR, cm⁻¹): 2962, 2897, 1506, 1463, 1422, 1320, 1098, 705, 643, 582, 474. Anal. Calc. for \(\text{C}_{36} \text{H}_{44} \text{O}_{8} \): C, 63.4; H, 7.75; N, 1.80. Found: C, 63.23; H, 7.81; N, 1.85.

Synthesis of \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{Au(NO)} \) (7). A Schlenk flask was charged with a stirring bar, \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{Au(OAc)} \) (59 mg, 0.10 mmol), and HNTf₂ (30 mg, 0.105 mmol) under argon. Toluene (1 mL) was added, and the resulting suspension was stirred overnight. The product was precipitated with hexanes (10 mL) and dried under vacuum. The residue was washed with hexanes (2 x 2 mL) and dried under vacuum. The microcrystalline product contains half a molecule of toluene, while precipitation from dichloromethane with hexanes gives the CH₂Cl₂ solvate: yield 86 mg (0.091 mmol, 95%).

1H NMR (300 MHz, CDCl₃): \(\delta \) 7.45 (t, \(J = 7.8 \) Hz, 1H, CH-aromatic), 7.28 (d, \(J = 7.8 \) Hz, 2H, CH-aromatic), 3.82 (br d, \(J = 13.2 \) Hz, 2H, CH₂), 2.71 (sept, \(J = 6.7 \) Hz, 2H, CH(CH₃)₂), 2.40–1.81 (m, 14H, adamantyl CH and CH₂), 1.39 (s, 6H, 2CH₃), ppm. 13C{1H} NMR (75 MHz, CDCl₃): \(\delta \) 236.1 (C carbene), 168.6 (C=O phenol), 150.4 (Caryl phenolate), 144.8 (C=O, aromatic), 135.3 (Caryl aromatic), 129.9 (CH aromatic), 113.9 (CH₃ phenol), 108.7 (CH₂ phenol), 75.5 (C₁, 63.5 (C₂, 48.0 (CH₃), 38.9 (CH₂), 36.9, 35.1, 34.7 (CH₂), 34.4 (CH₂), 31.9 (C(CH₃)₂), 29.1 (CH₃), 28.3, 27.6, 27.3, 26.7, 22.6 (CH₃) ppm. IR (ATR, cm⁻¹): 2962, 2897, 1506, 1463, 1422, 1320, 1098, 705, 643, 582, 474. Anal. Calc. for \(\text{C}_{36} \text{H}_{44} \text{O}_{8} \): C, 63.4; H, 7.75; N, 1.80. Found: C, 63.23; H, 7.81; N, 1.85.

Synthesis of \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{AuCl} \) (8). A Schlenk flask was charged with a stirring bar, \(\text{[4,4′-C}(\text{CH}_{3})_{2}] \text{AuCl} \) (118 mg, 0.2 mmol) and a pentfluorobenzene solution (42 \(\mu l \), 0.4 mmol) in toluene (2 mL). The resulting mixture was heated to 60 °C for 18 h. The slightly pink solution was filtered through a Cellite pad (1 cm) which was washed with an additional 6 mL of toluene. The solution was concentrated to ca. 0.3 mL under vacuum and the white residue precipitated with hexanes (10 mL). The resulting suspension was centrifuged. The solid was washed with hexanes (2 x 2 mL) and dried under vacuum to give an off-white solid. Yield: 140 mg (0.19 mmol, 95%).

1H NMR (300 MHz, CDCl₃): \(\delta \) 7.44 (t, \(J = 7.8 \) Hz, 1H, CH-aromatic), 7.25 (d, \(J = 7.8 \) Hz, 2H, CH-aromatic), 4.09 (br d, \(J = 13.2 \) Hz, 2H, CH₂), 2.79 (sept, \(J = 6.7 \) Hz, 2H, CH(CH₃)₂), 2.33–1.81 (m, 14H, adamantyl CH and CH₂), 1.38 (s, 6H, 2CH₃), 1.36 (d, \(J = 6.7 \) Hz, 6H, CH(CH₃)₂), 1.29 (d, \(J = 6.7 \) Hz, 6H, CH(CH₃)₂), ppm. 19F NMR (282 MHz, CDCl₃): \(\delta \) −115.3 to −115.5 (m, 2F), −160.5 (t, \(J = \) 2448 DOI: 10.1021/acs.orglett.5b01211p
Organometallics 2015, 34, 2439–2454
20.7 Hz, 1H), 6.34 to 6.30 (m, 2F) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ (Au–C from C36H49AuNO2 was not observed) 285.8 (C carbene), 150.5–147.3 (d m, J_C–F = 226 Hz, CF), 144.9 (C aromatic), 139.6–136.5 (d m, J_C–F = 239 Hz, CF), 138.2–134.9 (d m, J_C–F = 252 Hz, CF), 135.2 (Cipso), 129.4 (p–C), 124.8 (m–C), 77.2 (Cq), 64.9 (Cq), 48.9 (CH2), 39.0 (CH2), 37.2, 35.2, 34.5 (CH2), 29.3 (CH), 29.0, 27.8, 27.2, 26.3, 23.2 (CH3) ppm. Anal. Calcld for C33H39AuF5N (741.62): C, 53.44; H, 5.30; N, 1.89. Found: C, 53.59; H, 5.39; N, 1.93.

Synthesis of [AdCAAC]Au(p-C3F4) (11). The compound was made in a fashion similar to that for 10 from [AdCAAC]AuOH (59 mg, 0.10 mmol), and 1,2,4,5-tetrafluorobenzene (22 µl, 0.20 mmol) solution in toluene (2 mL). The resulting solution was heated at 100 °C for 12 h. All volatiles were removed from the grey suspension. The product was extracted with CH2Cl2 and passed through a Celite pad (1 cm) which was washed with an additional 6 mL of toluene. The solution was concentrated to ca. 0.3 mL under vacuum and the white residue precipitated with hexanes (10 mL). The resulting suspension was centrifuged. The solid was washed with hexanes (2 x 4 mL) and dried under vacuum to give an off-white solid. Yield: 60 mg (0.083 mmol, 83%).

1H NMR (300 MHz, CDCl3): δ 8.21 (d, 2H, AA′BB′, JAB = ca. 8.2 Hz, p-C2H4), 7.13 (t, J = 7.6 Hz, 1H, CH-aromatic), 6.75 (d, J = 7.6 Hz, 2H, CH-aromatic), 4.73 (br d, J = 12.9 Hz, 2H, CH2), 3.31 (s, 3H, OCH3), 3.25 (s, 2H, CH2Au), 2.63 (s, J, CH2), 1.29 (ca. 8.2 Hz, p-C2H4) ppm. IR (ATR, cm−1): 2968, 2900, 2874, 1625 (C–H carbene), 1943, 1507, 1463, 1164, 1023, 840, 805, 589. Anal. Calcld for C13H12F4AuNO (274.74): C, 75.66; H, 5.81; N, 1.93. Found: C, 75.67; H, 5.78; N, 1.95.

Synthesis of [AdCAAC]Au(deoxybenzoin) (14). A scintillation vial was charged with [AdCAAC]AuOH (76 mg, 0.128 mmol) and deoxybenzoin (28 mg, 0.142 mmol) in toluene (2 mL). The resulting mixture was heated to 70 °C for 12 h. All volatiles were removed from the gray suspension. The product was extracted with CH2Cl2 and passed through a Celite pad (1 cm) which was washed with an additional 6 mL of CH2Cl2. The solution was concentrated to ca. 0.3 mL under vacuum and the white residue precipitated with hexanes (10 mL). The resulting suspension was centrifuged. The residue was washed with hexanes (2 x 4 mL) and dried under vacuum to give a white solid. Yield: 87 mg (0.116 mmol, 92%).

1H NMR (300 MHz, CDCl3): δ 7.73–7.70 (m, 2H, CH2), 7.41 (t, J = 7.6 Hz, 1H, CH-aromatic), 7.31 (tt, J = 7.6 and 1.8 Hz, 1H, CH2), 7.24 (d, J = 7.6 Hz, 2H, CH-aromatic) overlapping with 7.22–7.20 (m, 1H, CH3), 7.12–7.10 (m, 5H, CH2), 6.84 (t, J = 7.6 and 1.8 Hz, 1H, CH2), 4.80 (s, 1H, Au–CH3), diastereotopic signals for carbon ligand 3.75 (br d, J = 12.9 Hz, 1H, CH2), 3.43 (br d, J = 12.9 Hz, 1H, CH2), 2.57 (t, J = 7.6 Hz, 1H, CH2), 2.22–1.55 (m, 14H, adamantyl CH and CH2), 1.29 (d, J = 6.7 Hz, 3H, CH(CH3)2), 1.26 (s, 3H, C–CH3), 1.25 (d, J = 6.7 Hz, 3H, CH(CH3)2) overlapping with 1.25 (s, 3H, C–CH3), 1.16 (d, J = 6.7 Hz, 3H, CH(CH3)2), 0.89 (d, J = 6.7 Hz, 3H, CH(CH3)2) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ (C-F from C36H49AuNO2 was not observed) 259.7 (C carbene), 170.6–169.9 (m, Au–C, trifluorophenyl), 146.1 (o–C), 135.4 (p–C), 129.1 (p–C), 129.4 (o–C), 129.3, 128.2, 127.5, 126.9, 126.9, 124.9 (m–C), 124.8 (m–C), 77.2 (Cq), 65.0 (Cq), 48.7 (CH3), 39.1 (CH2), 35.1, 34.3 (CH3), 29.05 (CH), 29.0, 28.1, 27.4, 26.0, 22.6 (CH2) ppm. Anal. Calcld for C36H49AuNO (724.74): C, 62.61; H, 6.76; N, 1.88. Found: C, 62.62; H, 6.67; N, 1.93.

Synthesis of [AdCAAC]Au(CH2Cl)O(p-methoxyphenyl) (15). A scintillation vial was charged with [AdCAAC]AuOH (98 mg, 0.10 mmol) and p-methoxybenzyl chloride (92 mg, 0.22 mmol) in toluene (2 mL). The resulting mixture was heated to 70 °C overnight. The slightly yellow solution was filtered through a Celite pad (1 cm) which was washed with an additional 6 mL of toluene. The solution was concentrated to ca. 0.3 mL under vacuum and the white residue precipitated with hexanes (10 mL). The resulting suspension was centrifuged. The solid was washed with hexanes (2 x 4 mL) and dried under vacuum to give an off-white solid. Yield: 60 mg (0.083 mmol, 83%).

1H NMR (300 MHz, CDCl3): δ 8.21 (d, 2H, AA′BB′, JAB = ca. 8.2 Hz, p-C2H4), 7.13 (t, J = 7.6 Hz, 1H, CH-aromatic), 6.75 (d, J = 7.6 Hz, 2H, CH-aromatic), 6.76 (d, 2H, AA′BB′, JAB = ca. 8.2 Hz, p-C2H4), 4.17 (br d, J = 12.9 Hz, 2H, CH2), 3.31 (s, 3H, OCH3), 3.25 (s, 2H, CH2Au), 2.63 (s, J, CH2), 1.29 (ca. 8.2 Hz, p-C2H4) ppm. IR (ATR, cm−1): 2968, 2904, 1625 (C–H carbene), 1943, 1507, 1464, 1369, 1306, 1245, 1163, 1097, 1023, 840, 805, 589. Anal. Calcld for C26H25ClF2AuNO (724.74): C, 59.66; H, 6.81; N, 1.93.
The resulting suspension was centrifuged. The solid was washed with hexanes (2 × 4 mL) and dried under vacuum to give an off-white solid. Yield: 98 mg (0.134 mmol, 85%).

1H NMR (300 MHz, CD2Cl2): δ 7.77–7.74 (m, 2H, sulfone CH), 7.43 (t, J = 7.8 Hz, 1H, CH-aromatic), 7.32 (d, J = 7.8 Hz, 2H, CH-aromatic), 3.42 (br d, J = 6.7 Hz, 6H, CH(CH3)2), 1.31 (d, J = 6.7 Hz, 6H, CH(CH3)2), 1.29 (d, J = 6.7 Hz, 6H, CH(CH3)2) ppm. 11C (H) NMR (75 MHz, CD2Cl2): δ 258.2 (C carbene), 147.5 (Cp, sulfone Ph), 145.1 (–C), 135.3 (Cp), 130.7 (p-C, sulfone), 129.2 (p-C), 128.3 (m-C, sulfone), 125.9 (C carbene), 124.6 (m-C), 77.3 (C), 65.1 (C), 49.7 (CH2Au, sulfone), 48.6 (CH2), 39.0 (CH2), 37.1, 52.2, 34.4 (CH2), 35.8 (C), 28.9, 27.9, 27.4, 26.3, 22.7 (CH2) ppm. Anal. Calc’d for C32H48AuF6N2Sb (893.45): C, 40.01; H, 4.59; N, 1.63.

The mixture was stirred for 1 h in the dark. The mixture was filtered through a Celite pad (1 cm), which was washed with another 8 mL of CH2Cl2. The colorless oily residue precipitated with an excess of hexanes (15 mL). The solvents were decanted, and the solvent was dissolved in 0.5 mL of CH2Cl2. The colorless solution was concentrated to ca. 0.3 mL. The resulting suspension was stirred for 1 h and then centrifuged. The solid was washed with hexanes (3 × 5 mL) and dried under vacuum to give a white solid. Yield: 57.5 mg, 0.095 mmol, 95%.

Method B. (56CAAC)AuCl (45 mg, 0.075 mmol), KCN (5 mg, 0.076 mmol) and 10 mL of ethanol were charged in a scintillation vial and stirred overnight. All volatiles were evaporated, and the white residue was extracted with CH2Cl2 (3 × 5 mL). The combined extracts were filtered through a glass frit and concentrated to ca. 0.5 mL. The product was precipitated with hexanes (10 mL) and dried under vacuum. Yield: 42 mg (0.07 mmol, 92%).

1H NMR (300 MHz, CD2Cl2): δ 7.49 (t, J = 7.8 Hz, 1H, CH-aromatic), 7.30 (d, J = 7.8 Hz, 2H, CH-aromatic), 3.71 (br d, J = 13.1 Hz, 2H, CH2), 2.72 (sept, J = 6.7 Hz, 2H, CH(CH3)2) ppm. 13C (H) NMR (75 MHz, CD2Cl2): δ 253.1 (C carbene), 149.5 (C), 144.9 (–C), 134.8 (Cp), 129.8 (p-C), 129.4 (m-C), 78.0 (C), 64.9 (C), 48.3 (CH2), 38.8 (CH2), 37.0, 35.6, 34.2 (CH2), 29.0 (CH2), 28.9, 27.8, 27.1, 26.4, 22.7 (CH2) ppm. IR (ATR, cm−1): 2969, 2900, 2140 (C≡N), 1530, 1447, 1370, 1097, 934, 808, 727. Anal. Calc’d for C39H36AuF6N2Sb (963.51): C, 40.12; H, 4.69; N, 1.67. Found: C, 40.01; H, 4.59; N, 1.63.

The resulting suspension was stirred for 1 h and then centrifuged. The solid was washed with hexanes (5 mL). The resulting suspension was stirred for 1 h in the dark. The mixture was filtered through a Celite pad (2 cm), which was washed with another 8 mL of CH2Cl2. The colorless solution was concentrated to ca. 2 mL and an excess of 2BuNC (22 μL, 0.2 mmol) was added, followed by stirring at room temperature for 2 h. The product was precipitated with an excess of hexanes (15 mL), centrifuged, and washed with hexanes (5 mL). All volatiles were removed under vacuum to give the complex as a white solid. Yield: 80.0 mg, 0.095 mmol, 95%. The compound was stored under an atmosphere of CO.

1H NMR (300 MHz, CD2Cl2): δ 7.57 (t, J = 7.7 Hz, 1H, CH-aromatic), 7.38 (d, J = 7.7 Hz, 2H, CH-aromatic), 3.23 (br d, J = 12.7 Hz, 2H, CH2), 2.70 (sept, J = 6.7 Hz, 2H, CH(CH3)2) ppm. 13C (H) NMR (75 MHz, CD2Cl2): δ 256.5 (C carbene), 182.4 (s, CO), 144.7 (–C), 134.2 (Cp), 121.2 (p-C), 125.7 (m-C), 80.8 (C), 65.4 (C), 67.9 (CH2), 38.4 (CH2), 36.9, 36.8, 33.8 (CH2), 29.1 (CH), 29.0, 27.7, 27.1, 26.6, 22.7 (CH2) ppm. IR (ATR, cm−1): 2968, 2903, 2183 (C≡N), 1541, 1450, 1387, 1262, 1195, 1097, 805, 651, 610, 583. Anal. Calc’d for C34H46AuNSO2 (766.82): C, 54.60; H, 5.41; N, 1.07. Found: C, 54.42; H, 5.24; N, 1.02.

Synthesis of ((56CAAC)AuCl(NBu′)sBF4 (17). A Schlenk flask was charged with ((56CAAC)AuCl (60 mg, 0.088 mmol), B(C6F5)3 (90 mg, 0.176 mmol), norbornene (16.5 mg, 0.176 mmol), and dry CH2Cl2 (2 mL) under an argon atmosphere. The resulting suspension was stirred for 1 h at 78 °C and left to warm to room temperature while stirring overnight. The mixture was filtered through a Celite pad (1 cm), which was washed with another 8 mL of CH2Cl2. The colorless solution was concentrated to ca. 1 mL and the oily residue precipitated with an excess of hexanes (15 mL). The solvents were decanted, and the residue was dissolved in 0.5 mL of CH2Cl2 and precipitated with hexane (15 mL). The oily colorless residue after decantation was dried under vacuum to afford a white powder which was additionally dried under vacuum overnight. Yield: 96 mg (0.074 mmol, 85%).
Organometallics

Article

mL. Adding Et2O (10 mL) gave a yellow precipitate, which was washed with Et2O (2 × 5 mL) and dried under vacuum: yield 63 mg. Crystallization by layering a CH2Cl2 solution with hexanes led to the formation of two types of crystals, the structures of which were confirmed by X-ray diffraction. A small amount of colorless needles was identified as the dichloroaurate(1) salt [[(CH3CAAC-Cl)][AuCl3]] (20a), while the major component of yellow prisms turned out to be the cococrystallization product [2[(CH3CAAC-Cl)][AuCl3]][(CH3CAAC-AuCl3)]. NMR spectroscopy showed two sets of ligand signals in an approximate 2:1 ratio, which were assigned on the basis of the known signals for the pure salt [(CH3CAAC-Cl)][AuCl4] (20b). A solution of [(CH3CAAC)AuCl] (61 mg, 0.1 mmol) in 5 mL of CH2Cl2 was stirred for 20 min at 78 °C and warmed to room temperature. The white residue was extracted with CH2Cl2 (2 mL). Adding Et2O (10 mL) gave a yellow precipitate, which was filtered through Celite (1 cm). All volatiles were removed under vacuum to give a white solid. Yield: 510 mg (0.635 mmol, 96%).

Synthesis of [(CH3CAAC-Cl)][AuCl4] (20b). A solution of (CH3CAAC)AuCl (61 mg, 0.1 mmol) and PhCl (58 mg, 0.21 mmol) in 5 mL of CH2Cl2 was stirred for 20 min at 78 °C and warmed to room temperature with stirring for 1 h. The suspension was filtered through a glass frit and the filtrate concentrated to ca. 0.3 mL. Adding Et2O (10 mL) gave a yellow precipitate, which was filtered through Celite (1 cm). All volatiles were removed under vacuum to give a white solid. Yield: 63 mg (0.098 mmol, 98%).

Synthesis of [(Me2CAAC)AuCl][AuCl4]. A mixture of [Au(Me2CAAC)2]Cl with CsBr3 at 20 °C. A solution of [Au(Me2CAAC)2]Cl (80 mg, 0.10 mmol) and CsBr3 (28 mg, 0.10 mmol) in 5 mL of CH2Cl2 was stirred for 20 min at −78 °C and warmed to room temperature. The colorless solution was concentrated to ca. 0.3 mL. Addition of Et2O (10 mL) gave an off-white precipitate, which was washed with Et2O (2 × 5 mL) and dried under vacuum. Yield: 91 mg (0.94 mmol, 94%). Crystallization by layering a CH2Cl2 solution with hexanes in the dark led to the formation of large colorless prisms and negligible amounts of yellow prisms, which were identified by X-ray diffraction: the colorless prisms as [(Me2CAAC)2Au][AuCl4] (23-CH2Cl4) and yellow prisms as [(Me2CAAC)2Au]Cl.

Reaction of [Au(Me2CAAC)2]Cl with CsBr3 at −78 °C. A mixture of [Au(Me2CAAC)2]Cl (89 mg, 0.10 mmol) and CsBr3 (38 mg, 0.10 mmol) in 5 mL of CH2Cl2 was stirred for 20 min at −78 °C and warmed to room temperature with stirring for 1 h. The orange-red solution was concentrated to ca. 0.3 mL. An orange solid was precipitated with hexanes (10 mL) and dried under vacuum. Yield: 95 mg. Crystallization by layering a CH2Cl2 solution with hexanes gave two types of crystals, which were identified by X-ray diffraction as orange prisms of [Au(Me2CAAC)2]Br (24a) and red prisms of [Au(Me2CAAC)2]AuBr (24b). Both give identical 1H NMR spectra.

Synthesis of [Au(Me2CAAC)2Cl][AuCl4] (24c). A solution of [Au(Me2CAAC)2]Cl (80 mg, 0.10 mmol) and I2 (26 mg, 0.10 mmol) in 3 mL of CH2Cl2 was stirred for 1 h at 0 °C and warmed to room temperature with stirring for 1 h. Addition of hexanes (15 mL) led to the precipitation of a brown product, which was washed with 5 mL of Et2O, and dried under vacuum. Yield: 102.5 mg (0.097 mmol, 97%).

Reaction of (CH3CAAC)AuCl with CsBr. A suspension of (CH3CAAC)AuBr·CsBr (74 mg, 0.10 mmol) and CsBr (38 mg, 0.10 mmol) in 5 mL of CH2Cl2 was stirred for 20 min at −78 °C and warmed to room temperature with stirring for 1 h. The suspension was filtered through a glass frit and the filtrate concentrated to ca. 0.3 mL. An orange solid was precipitated with hexanes (10 mL) and dried under vacuum. Yield: 80 mg. Recrystallization by layering a CH2Cl2 solution with hexanes led to the formation of two types of crystals, which were identified by X-ray diffraction: a larger amount of colorless prisms of [(CH3CAAC-Br)][AuBr4] (21a) and a small amount of red prisms of [(CH3CAAC-AuBr)][AuBr4] (21b). Both give identical 1H and 13C NMR spectra.

Synthesis of [Au(Me2CAAC)2Cl][AuBr4] (24b). A yellow solution resulted, which was concentrated to ca. 0.3 mL. Addition of Et2O (10 mL) gave an off-white precipitate, which was washed with Et2O (2 × 5 mL) and dried under vacuum. Yield: 91 mg (0.94 mmol, 94%). Crystallization by layering a CH2Cl2 solution with hexanes in the dark led to the formation of large colorless prisms and negligible amounts of yellow prisms, which were identified by X-ray diffraction: the colorless prisms as [(Me2CAAC)2Au][AuBr4] (23-CH2Cl4) and yellow prisms as [(Me2CAAC)2Au]Br.

Synthesis of [(AdCAAC-Br)2Au][AuBr4] (25). A solution of [(AdCAAC-Br)2Au]Cl (10 mg, 0.02 mmol) and CsBr (14 mg, 0.096 mmol) in 5 mL of CH2Cl2 was stirred for 2 h at room temperature with stirring for 1 h. The solution was filtered through Celite (1 cm). All volatiles were removed under vacuum to give a yellow precipitate with one solvate molecule of CH2Cl2. Yield: 72.5 mg (0.098 mmol, 98%).

Synthesis of [(Me2CAAC)2Au][AuCl4] (22). A Schlenk flask was charged with (Me2CAAC) (0.39 g, 1.36 mmol). (Me3)2AuCl (0.195 g, 0.66 mmol), and 20 mL of THF under an argon atmosphere. The mixture was stirred at room temperature for 18 h. All volatiles were removed under vacuum and the residue was washed with hexanes (3 × 10 mL). The product was dissolved in CH2Cl2 (3 mL) and precipitated with hexanes (40 mL). All volatiles were evaporated. The residue was dried under vacuum to give a white solid. Yield: 10 mg (0.635 mmol, 96%).
Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (25). All operations have to be performed with minimum exposure to light. A scintillation vial was charged with \((\text{AdCAAC})\text{AuCl}\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and wrapped in aluminum foil. Chilled CHCl3 (5 mL) was added and resulting solution stirred for 6 h at 0 °C in the dark. A slightly yellow solution resulted, which was concentrated to ca. 0.3 mL. The white residue was extracted with CH2Cl2 (2 × 5 mL) and dried under vacuum. Yield: 92 mg (0.097 mmol, 97%).

Analytical data for complex 25: Table S1.

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (25). All operations have to be performed with minimum exposure to light. A scintillation vial was charged with \((\text{AdCAAC})\text{AuCl}\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and wrapped in aluminum foil. Chilled CHCl3 (5 mL) was added and resulting solution stirred for 6 h at 0 °C in the dark. A slightly yellow solution resulted, which was concentrated to ca. 0.3 mL. The white residue was extracted with CH2Cl2 (2 × 5 mL) and dried under vacuum. Yield: 92 mg (0.097 mmol, 97%).

Analytical data for complex 25: Table S1.

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Analytical data for complex 25: Table S1.

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (25). All operations have to be performed with minimum exposure to light. A scintillation vial was charged with \((\text{AdCAAC})\text{AuCl}\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and wrapped in aluminum foil. Chilled CHCl3 (5 mL) was added and resulting solution stirred for 6 h at 0 °C in the dark. A slightly yellow solution resulted, which was concentrated to ca. 0.3 mL. The white residue was extracted with CH2Cl2 (2 × 5 mL) and dried under vacuum. Yield: 92 mg (0.097 mmol, 97%).

Analytical data for complex 25: Table S1.

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}_3\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Synthesis of \((\text{AdCAAC})\text{AuCl}\) (26). A mixture of \([\text{Au}(\text{AdCAAC})(\text{Cl})]\) (61 mg, 0.10 mmol) and PhICl2 (29 mg, 0.105 mmol) and I2 (26 mg, 0.10 mmol) in 5 mL of CH2Cl2 (74 mg, 0.10 mmol) and dried under vacuum. Yield: 64 mg (0.095 mmol, 95%).

Analytical data for complex 25: Table S1.
Organometallics

(5) See for example: (a) Herrmann, W. A.; Köcher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162. (b) Bourissou, D.; Guerret, O.; Gabai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. (c) Hahn, F. E.; Jahne, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122. (d) Chem. Rev. 2009, 109, 3209–3884 (carbene themed issue). (e) Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723. (f) N-Heterocyclic Carbene in Transition Metal Catalysis and Organocatalysis; Cazin, C. S., Ed.; Springer: Heidelberg, Germany, 2011; Catalysis by Metal Complexes Vol. 12.

(6) (a) Lalavo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705. (b) Lalavo, V.; Canac, Y.; DeHeope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 7236. (c) Frey, G. D.; Dewhurst, R. D.; Kouras, S.; Donnadieu, B.; Bertrand, G. J. Organomet. Chem. 2008, 693, 1674.

(7) Weinberger, D. S.; Melaimi, M.; Moore, C. E.; Rheingold, A. L.; Frenking, G.; Jerabek, P.; Bertrand, G. Angew. Chem., Int. Ed. 2013, 52, 8964.

(8) (a) Lalavo, V.; Frey, G. D.; Kouras, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci. 2007, 104, 15369. (b) Lalavo, V.; Frey, G. D.; Donnadieu, B.; Selivheitouq, M.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5224. (c) Zeng, X.; Frey, G. D.; Kouras, S.; Bertrand, G. Chem. Commun. 2008, 15, 305. (d) Zeng, X.; Frey, G. D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 8690. (e) Zeng, X.; Selivheitouq, M.; Bertrand, G. Org. Lett. 2009, 11, 3166. (f) Zeng, X.; Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 942. (g) Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2011, 50, 5560. (h) Ung, G.; Bertrand, G. Angew. Chem., Int. Ed. 2013, 52, 11388. (i) Hirner, J. J.; Roth, K. E.; Shi, Y.; Blum, S. A. Organometallics 2012, 31, 6843.

(9) Tukov, A. A.; Normand, A. T.; Nechaev, M. S. J. Am. Chem. Soc. 2000, 122, 6093. (10) Alcarazo, M.; Ciancaleoni, G.; Scafuri, N.; Bistoni, G.; Macchioni, A.; Marchione, D.; Belpassi, L.; Bistoni, G.; Macchioni, A.; Herzog, H. Angew. Chem., Int. Ed. 2012, 51, 2835.

(11) For investigations of the electronic characteristics of carbene ligands see for example: (a) Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Organometallics 2004, 23, 755 (DFT). (b) Khramov, D. M.; Lynch, V. M.; Bielawski, C. W. Organometallics 2007, 26, 6042 (IR, H NMR). (c) Jacobsena, H.; Correa, A.; Poater, A.; Costable, C.; Cavallo, L. Coord. Chem. Rev. 2009, 253, 687 (DFT). (d) Gusev, D. G. Organometallics 2009, 28, 6458 (IR). (e) Tonner, R.; Frenking, G. Organometallics 2009, 28, 3901 (DFT). (f) Liske, A.; Verlinden, K.; Buhi, H.; Schaper, K.; Ganter, C. Organometallics 2013, 32, 5269 (1H NMR). (g) Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. Angew. Chem., Int. Ed. 2013, 52, 2939 (13C NMR). (h) Nelson, D. J.; Collado, A.; Manzini, S.; Meiers, S.; Slawin, A. M. Z.; Cordes, D. B.; Nolan, S. P. Organometallics 2014, 33, 2048 (IR, NMR). (i) Marchione, D.; Belpassi, L.; Bistoni, G.; Macchioni, A.; Tarantelli, F.; Zuccaccia, D. Organometallics 2014, 33, 4200.

(12) Ciancaleoni, G.; Scafuri, N.; Bistoni, G.; Macchioni, A.; Tarantelli, F.; Zuccaccia, D.; Belpassi, L. Inorg. Chem. 2014, 53, 9907 and references cited therein.

(13) A related approach has used C-bonded acac complexes for transamination reactions; see for example: (a) Vicente, J.; Chicote, M. T.; Guerrero, R.; Jones, P. G. J. Am. Chem. Soc. 1996, 118, 699. (b) Vicente, J.; Chicote, M. T.; Saura-Llamas, I.; Lagunas, M. C. J. Chem. Soc., Chem. Commun. 1992, 915. (c) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Ramirez de Arellano, M. C.; Jones, P. G.; Hume-Brey, M. G.; Guitiérre, P.; Samoc, M.; Luther-Davies, B. Organometallics 2000, 19, 2968. (d) Vicente, J.; Chicote, M. T.; Gonzalez-Herrero, P.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1994, 3183. (e) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D. J. Chem. Soc., Dalton Trans. 1995, 497. (f) Vicente, J.; Chicote, M. T.; Guerrero, R.; Saura-Llamas, I. M.; Jones, P. G.; Ramirez de Arellano, M. C. Chem. Eur. J. 2001, 7, 638. (g) Vicente, J.; Chicote, M. T.; Saura-Llamas, I. M.; Nolan, S. P. J. Organomet. Chem. 2003, 6723. (h) N-Heterocyclic Carbene in Transition Metal Catalysis and Organocatalysis; Cazin, C. S., Ed.; Springer: Heidelberg, Germany, 2011; Catalysis by Metal Complexes Vol. 12.

(14) See for example: (a) Sutherland, B. R.; Folting, K.; Streib, W. E.; Ho, D. M.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1987, 109, 3489. (b) Komiyi, S.; Iwata, M.; Sone, T.; Fukuoka, A. J. Chem. Soc., Chem. Commun. 1992, 1109. (c) Usui, Y.; Noma, J.; Hirano, M.; Komiyi, S. Inorg. Chem. Acta 2000, 309, 151. (d) Laitar, D. S.; Müller, P.; Gray, T. G.; Sadighi, J. P. Organometallics 2005, 24, 4503.

(15) While this work was in progress, a similar effect was reported for imidazole-type NHC complexes: Nahr, F.; Patrick, S. R.; Collado, A.; Nolan, S. P. Polyhedron 2014, 84, 59.

(16) For other examples of gold(I) alkoxides see: (a) Sutherland, B. R.; Folting, K.; Streib, W. E.; Ho, D. M.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1987, 109, 3489. (b) Komiyi, S.; Iwata, M.; Sone, T.; Fukuoka, A. J. Chem. Soc., Chem. Commun. 1992, 1109. (c) Usui, Y.; Noma, J.; Hirano, M.; Komiyi, S. Inorg. Chem. Acta 2000, 309, 151. (d) Laitar, D. S.; Müller, P.; Gray, T. G.; Sadighi, J. P. Organometallics 2005, 24, 4503.
(38) (a) Jothibasu, R.; Huynh, H. V.; Koh, L. L. *J. Organomet. Chem.* 2008, 693, 374. (b) Huynh, H. V.; Guo, S.; Wu, W. *Organometallics* 2013, 32, 4591.

(39) (a) Hirtenlehner, C.; Krims, C.; Hölbling, J.; List, M.; Zabel, M.; Fleck, M.; Berger, R. J. F.; Schoelberger, W.; Monkowius, U. *Dalton Trans.* 2011, 40, 9899. (b) Kriechbaum, M.; List, M.; Berger, R. J. F.; Platzschke, M.; Monkowius, U. *Chem. Eur. J.* 2012, 18, 5506.

(40) Orbisaglia, S.; Jaques, B.; Braunstein, P.; Hueber, D.; Pale, P.; Blanc, A.; de Frémont, P. *Organometallics* 2013, 32, 4153.

(41) Canovese, L.; Visentin, F.; Levi, C.; Santo, C. *Inorg. Chim. Acta* 2012, 391, 141.

(42) Teets, T. S.; Nocera, D. G. *J. Am. Chem. Soc.* 2009, 131, 7411.

(43) Schneider, D.; Schuster, O.; Schmidbaur, H. *Organometallics* 2005, 24, 3547.

(44) Schneider, D.; Schier, A.; Schmidbaur, H. *Dalton Trans.* 2004, 1995.

(45) Baron, M.; Tubaro, C.; Basato, M.; Natile, M. M.; Graiff, C. *J. Organomet. Chem.* 2013, 723, 108.

(46) (a) Castro-Castro, L. M.; Guloy, A. M. *Inorg. Chem.* 2004, 43, 4537. (b) Svensson, P. H.; Rosdahl, J.; Kloos, L. *Chem. Eur. J.* 1999, 5, 305.

(47) Jazzar, R.; Dewhurst, R. D.; Bourg, J.-B.; Donnadieu, B.; Canac, Y.; Bertrand, G. *Angew. Chem., Int. Ed.* 2007, 46, 2899.

(48) *Programs CrysAlisPro*; Oxford Diffraction Ltd., Abingdon, U.K., 2010.

(49) Spek, A. L. *Acta Crystallogr., Sect. D* 2009, D65, 148.

(50) van der Sluis, P.; Spek, A. L. *Acta Crystallogr., Sect. A* 1990, A46, 194.

(51) Sheldrick, G. M. SHELX-97 and SHELX-2014-Programs for crystal structure determination (SHELXS) and refinement (SHELXL). *Acta Crystallogr., Sect. A* 2008, A64, 112.

(52) Coles, S. J.; Gale, P. *Chem. Sci.* 2012, 3, 683.