Synthesis, Characterization and Evaluation of the Anticancer and Antimicrobial Activities of Some Novel Benzazole and Benzazine Derivatives

Wesam. S. Shehab 1, 4*, Naglaa Z. Eleiwa 2 and Samar M. Mouneir 3, 4

1 Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
E-mail address: dr_wesam123@yahoo.com

2 Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
E-mail address: nag_zakaria@yahoo.com

3 Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
E-mail address: samar_mouneir@yahoo.com

4 Faculty of Clinical Pharmacy, Taif University, Taif, KSA

ABSTRACT

The present study was designed to synthesize and develop new useful lead compounds (some novel benzazole and benzazine derivatives) of simple structure, exhibiting optimal in vitro anticancer and antimicrobial potency. Phenylendiamine derivative 1 was condensed with dithiocarboxylic acid derivatives 2 and produced benzimidazole derivative 4. The benzotriazepines 8 and 10 were formed by the reaction of 1 with dicarbonyl derivatives followed by intermolecular coupling reaction. The synthesis of benzothiadiazine 12, benzotriazole 14, 17, benzimidazole 16 and benzothiadiazine 19 from compound 1 was also described. The synthesized compounds were characterized by Spectral Studies like IR, H¹ – NMR and Analysis Spectra. The title compounds were screened for their possible in vitro anticancer and antimicrobial activities. Among the synthesized compounds, some have shown promisingly remarkable activities against different cancer cell lines (MCF-7 human breast cancer cells, HepG2 human hepatocarcinoma cells and PC3 human prostate cancer cells) and moderate to high antibacterial and antifungal activities. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs.

Keywords

Diamine, benzotriazepine, benzotriazole, benzimidazole, benzothiadiazine, anticancer and antimicrobial activities.
1. INTRODUCTION

Cancer is a broad term used to encompass several malignant diseases. It defined as the uncontrolled and undifferentiated growth of abnormal cells that can affect every organ in the body and sometimes forming excess tissue known as tumor. It considered the second leading cause of death following cardiovascular diseases and it is one of the most dreadful disease despite the current improved methods of precautions, detections, surgery and therapy hence prevention of cancer is still the recognized goal of many activities in cancer research [1].

In addition, the incidence of fungal and bacterial infections has increased dramatically [2]. The widespread use of antifungal and antibacterial drugs and their resistance against fungal and bacterial infections has led to serious health hazards. The resistance of wide spectrum antifungal and antibacterial agents has initiated discovery and modification of the new antifungal and antibacterial agents [3].

On the other hand, Benzazole derivatives were reported as very useful intermediates or subunits of the developed compounds for their biological activity [4]. Their application were recorded in diverse therapeutic areas including anti-histaminic [5], anti-inflammatory [6], antilucre [7], antihypertensive, antiviral, antifungal [8], and anticaner [9] activities. On the same ground, benzazine derivatives have attracted considerable interest in their biological activity [10] because they are used as antifungal, antimicrobial [11], anti-inflammatory [12] and anticaner agents [13, 14].

In view of the above observations, the current work was conducted to synthesize new compounds (some novel benzazole and benzamine derivatives) of pharmacological interest and screen all the synthesized compounds for their possible in vitro anticaner and antimicrobial activities as an attempt to find out new biological active compounds in the line of anticaner and antimicrobial therapy.

2. EXPERIMENTAL

2.1. Chemistry: General

All melting points are uncorrected and were determined on Gallenkamp electric melting point apparatus. IR spectra (KBr discs) were recorded on a FT/IR-400 spectrophotometer (Perkin Elmer). 1H-NMR spectra were recorded on a Varian-300 (DMSO-d6) solution. Chemical shifts were reported as δ values relative to tetramethylsilane (TMS) as internal reference. The Analyses were carried out at Micro Analytical Center, Cairo University.

5-Nitro-N-phenyl-1H-benzo[d]imidazol-2-amine 4a

A mixture of compound 1 (0.01 mol), and phenylidithiocarboxic acid (0.01 mol) in acetic acid (30 ml) was heated under reflux for 8 hours. The reaction mixture was cooled, poured into crashed ice and the separated solid product was filtered off, dried and crystallized from toluene and gave compound 4a. Yield: 80%; yellow crystals; m.p. 230-232°C. IR: 3562 (NH), 1515 (C=N), 1593 (C=O) cm⁻¹ and 1H-NMR (DMSO-d6): 7.27-8.35(m, J=8.7 Hz, 8H, Ar-H), 13.39(s, 1H, NH), 13.21(s, 1H, NH). Anal.: C13H15N3O2 (254.25); Calcd.: C, 64.05; H, 3.94; N, 14.94; Found: C, 64.01; H, 3.90; N, 14.90.

2-(5-Nitro-1H-benzo[d]imidazol-2-yl)-1-phenylethanol 4b

A mixture of 4-nitro-1,2-phenylenediamine 1 (0.01 mol), and 3-oxo-3-phenylthiopropionic acid (0.01 mol) in acetic acid (30 ml) was heated under reflux for 10 hours. The reaction mixture was cooled, poured into crashed ice and the separated solid product was filtered off, dried and crystallized from toluene and gave compound 4b. Yield: 70%; yellow crystals; m.p. 236-238°C. IR: 3562 (NH), 2922(aliphatic CH), 1664 (C=O), 1593 (C=N) cm⁻¹ and 1H-NMR (DMSO-d6): 2.49(s, 2H, CH2), 7.6-8.38(m, J=8.7 Hz, 10H, Ar-H), 13(s, 1H, NH). Anal.: C18H19N3O2 (281.27); Calcd.: C, 64.05; H, 3.94; N, 14.94; Found: C, 64.01; H, 3.90; N, 14.90.

4-(2-Amino-5-nitrophenyl)amino]pent-3-en-2-one 5

A mixture of compound 1 (0.01 mol) and acetylace tone (0.01 mol) in toluene (60 ml) was heated under reflux for 4 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from benzene and gave compound 5. Yield: 85%; red crystals; m.p. 170-172°C. IR: 3436 and 3332 (NH2), 1643 (C=O), 1591 (C=N) cm⁻¹ and 1H-NMR (DMSO-d6): 2.49(s, 3H, CH3), 2.5(s, 3H, CH3), 5(s, 2H, NH2), 6(s, 2H, CH2), 7.37-7.42(m, J=8.7 Hz, 3H, Ar-H). Anal.: C11H8N2O3 (235.24); Calcd.: C, 56.16; H, 5.57; N, 17.86; Found: C, 56.06; H, 5.52; N, 17.83.

1-(4-Methyl-7-nitro-5H-benzo[e][1,2,5]triazepin-3-yl)ethane 7

A stirred cold solution of compound 5 (0.01 mol) in hydrochloric acid (20 ml) was treated drop wise with a cold solution of NaNO2 (0.01 mol) in water (5 ml). The reaction mixture was further stirred for 1 hour, and the separated solid product was filtered off, washed with water, dried and crystallized from toluene and gave compound 7. Yield: 89%; white crystals; m.p. 224-225°C. IR: 1698 (C=O), 1477 (N-N) cm⁻¹ and 1H-NMR (DMSO-d6): 2.48(s, 3H, CH3), 2.5(s, 3H, CH3), 8-8.32(m, 3H, Ar-H), 8.96(s, 1H, NH). Anal.: C11H7N3O2 (246.23); Calcd.: C, 53.66; H, 4.09; N, 22.75; Found: C, 53.69; H, 4.06; N, 22.78.

N-(2-Amino-5-nitrophenyl)-3-oxobutanamide 8
A mixture of compound 1 (0.01 mol) and ethylacetoacetate (0.01 mol) in toluene (60 ml) was heated under reflux for 4 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from benzene and gave compound 8. Yield: 90%; orange crystals; m.p. 160-162°C. IR: 3348-3436 (NH3), 3197 (NH), 1685 (ketonic C=O), 1643 (amide C=O) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 2.49(s, 3H, CH\(_3\)), 5(s, 2H, NH\(_2\)), 6(s, 2H, CH\(_2\)), 7.3-8(m, J=3.9 Hz, 3H, Ar- H), 10.7(s, 1H, NH). Anal.: C\(_{10}\)H\(_7\)N\(_2\)O\(_2\) (237.22); Calcld.: C, 50.63; H, 4.67; N, 17.71; Found: C, 50.60; H, 4.61; N, 17.74.

7-Nitro-3H-benzo[c][1,2,5]triazepin-4(5H)-one \(^{10}\)

A stirred cold solution of compound 8 (0.01 mol) in hydrochloric acid (20 ml) was treated drop wise with a cold solution of NaNO\(_2\) (0.01 mol) in water (5 ml). The reaction mixture was further stirred for 1 hour, and the separated solid product was filtered off, washed with water, dried and crystallized from benzene and gave compound 10. Yield: 90%; white crystals; m.p. 260-261°C. IR: 1790 (C=O), 3474 (NH), 1481 (N=N) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 2.5(s, 2H, CH\(_2\)), 8-8.32(m, J=10.1 Hz , 3H, Ar- H), 8.96(s, 1H, NH).Anal.: C\(_{10}\)H\(_8\)N\(_3\)O\(_2\) (206.16); Calcld.: C, 46.61; H, 2.93; N, 27.18; Found: C, 46.56 H, 2.88; N, 27.23.

N\(^1\)-Benzyldiene-5-nitrobenzene-1,2-diamine \(^ {11}\)

A mixture of compound 1 (0.01 mol) and benzaldehyde (0.01 mol) in absolute ethanol (30 ml) was heated under reflux for 4 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from methanol and gave compound 11. Yield: 90%; pale yellow crystals; m.p. 120-122°C. IR: 3236 and 3368 (NH) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 5 (s, 2H, NH\(_2\)), 6 (s, 1H, CH=N), 7.37-8.2(m, J=8.7 Hz ,3H, Ar- H). Anal.: C\(_{13}\)H\(_8\)N\(_2\)O\(_2\) (241.25); Calcld.: C, 64.72; H, 4.60; N, 17.42; Found: C, 64.87 H, 4.55; N, 17.47.

6-Nitro-3-phenylbenzo[e][1,2,4]triazine \(^ {12}\)

A stirred cold solution of compound 11 (0.01 mol) in hydrochloric acid (20 ml) was treated drop wise with a cold solution of NaNO\(_2\) (0.01 mol) in water (5 ml). The reaction mixture was further stirred for 2 hours, and the separated solid product was filterd off, washed with water, dried and crystallized from water and gave compound 12. Yield: 90%; white crystals; m.p. 210-212°C. IR: 1527 (C=N), 1488 (N=N) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 8-8.9(m, 8H, Ar- H). Anal.: C\(_{13}\)H\(_8\)N\(_2\)O\(_2\) (252.23); Calcld.: C, 61.90; H, 3.20; N, 22.21; Found: C, 61.85 H, 3.25; N, 22.26.

5-Nitro-1-(1-phenylethylidene)benzene-1,2-diamine \(^ {13}\)

A mixture of compound 1 (0.01 mol) and Acetophenone (0.01 mol) in absolute ethanol (30 ml) was heated under reflux for 4 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from methanol and gave compound 13. Yield: 90%; red crystals; m.p. 240-242°C. IR: 3379 and 3435 (NH\(_2\)), 1594 (C=N) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 2.49(s, 3H, CH\(_3\)), 5(s, 2H, NH\(_2\)),6-7.4(m, 8H, Ar- H). Anal.: C\(_{16}\)H\(_{12}\)N\(_2\)O\(_2\) (255.28); Calcld.: C, 65.87; H, 5.13; N, 16.46; Found: C, 65.82 H, 5.16; N, 16.43.

6-Nitro-1-(1-phenylvinyl)-1H-benzo[d][1,2,3]triazole \(^ {14}\)

A stirred cold solution of compound 13 (0.01 mol) in hydrochloric acid (20 ml) was treated drop wise with a cold solution of NaNO\(_2\) (0.01 mol) in water (5 ml). The reaction mixture was further stirred for 2 hours, and the separated solid product was filtered off, washed with water, dried and crystallized from water and gave compound 14. Yield: 90%; white crystals; m.p. 210°C. IR: 1593 (olefinic C=O), 1490 (N=N) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 2.5(s, 2H, CH\(_2\)), 8-8.9(m, 8H, Ar- H).Anal.: C\(_{15}\)H\(_{12}\)N\(_2\)O\(_2\) (266.26); Calcld.: C, 63.15; H, 3.79; N, 21.04; Found: C, 63.18; H, 3.72; N, 21.09.

N-[(2-Amino-5-nitrophenyl)carbamothioyl]benzamide \(^ {15}\)

A mixture of compound 1 (0.01 mol) and benzoyl isothiocyanate (0.01 mole) in dry acetone (20 ml) was heated under reflux for 2 hours. The solid product obtained during heating was filtered off, dried and crystallized from methanol and gave compound 15. Yield: 95%; greenish crystals; m.p. 222-224°C. IR: 3407 and 3318 (NH\(_2\)), 3217 (NH), 1668 (C=O), 1256 (C=S) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 6.5(s, 2H, NH\(_2\)), 7.4 – 8 (m, J=7.8 Hz ,8H, Ar- H), 8.38(s, 1H, NH), 13(s, 1H, NH).Anal.: C\(_{18}\)H\(_{13}\)N\(_2\)O\(_2\)S (318.34); Calcld.: C, 53.16; H, 3.82; N, 17.71; Found: C, 53.11; H, 3.87; N, 17.76.

N-(2-(Cyanomethyl)-6-nitro-1H-benzo[d]imidazol-1-carbonothioyl)benzamide \(^ {16}\)

A mixture of compound 15 (0.01 mol) and ethyl cyanoacetate (0.01 mol) in dimethylformamide (10 ml) was heated under reflux for 8 hours. The reaction mixture was cooled, poured into crushed ice. The separated solid product was filtered off, washed and crystallized from benzene and gave compound 16. Yield: 80%; dark brown crystals; m.p. 260-262°C. IR: 3106 (OH), 2215 (CN), 1560 (C=O), 1397 (C=S) cm\(^{-1}\) and 1\(^H\)-NMR (DMSO-d\(_6\)): 2.5(s, 2H, CH\(_2\)), 7.2 – 8.3(m, 8H, Ar- H), 12.99(OH). Anal.: C\(_{17}\)H\(_{11}\)N\(_2\)O\(_2\)S (365.37); Calcld.: C, 55.89; H, 3.03; N, 19.17; Found: C, 55.84; H, 3.08 N, 19.22.

N-(1-(2-(Methylenamino)-5-nitrophenyl)hydrazinecarbonothioyl)- benzamide \(^ {17}\)
A stirred cold solution of compound 15 (0.01 mol) in hydrochloric acid (20 ml) was treated drop wise with a cold solution of NaNO₂ (0.01 mol) in water (5 ml). The reaction mixture was further stirred for 2 hours, and the reaction mixture was diluted with water and the product separated was filtered off, washed with water, dried and crystallized from ethanol and gave compound 17. Yield: 90%; brown crystals; m.p. 173-175°C. IR: 3367 (OH), 1666 (C=O), 1575 (C=N), 1269 (C=S) cm⁻¹ and ¹H-NMR (DMSO-d₆): 7.4 - 7.8 (m, 8H, Ar-H), 8.3 (s, 1H, NH), 8.9 (s, 1H, OH). Anal.: C₃₁H₁₄N₄O₈S (343.37); Calcd.: C, 52.47; H, 3.82; N, 20.43; Found: C, 52.44; H, 3.85; N, 20.43.

N-[(2-Benzylideneamino)-5-nitrophenyl] carbamothioyl]benzamide 18

A mixture of compound 15 (0.01 mol), benzaldehyde and (0.01 mol) in presence of catalytic amount of dimethylamine in absolute ethanol (30 ml) was heated under reflux for 3 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from the methanol and gave compound 18. Yield: 50%; yellow crystals; m.p. 250-253°C. IR: 3345 (OH), 1505 (C=N), 1317 (C=S) cm⁻¹ and ¹H-NMR (DMSO-d₆): 6.4 (s, 1H, CH=N), 7.1 - 7.8 (m, 13H, Ar-H), 8 (s, 1H, NH), 8.5 (s, 1H, OH). Anal.: C₂₁H₁₄N₄O₈S (365.37); Calcd.: C, 62.36; H, 3.99; N, 13.85; Found: C, 62.31; H, 3.94; N, 13.80.

N-(6-Nitro-1H-benzo[c][1,2,5] thiadiazin-3-yl) benzamide 19

A mixture of compound 15 (0.01 mol), iodine (0.01 mol) in acetic acid (20 ml) was heated under reflux for 4 hours. The solid product obtained upon cooling was filtered off, dried and crystallized from ethanol and gave compound 19. Yield: 80%; pink crystals; m.p. 270-273°C. IR: 3442 (NH), 1663 (C=O), 1560 (C=N) cm⁻¹. ¹H-NMR (DMSO-d₆): 7.2-8.5 (m, 8H, Ar-H), 13 (s, 1H, NH), 13.17 (s, 1H, NH). Anal.: C₁₃H₁₀N₄O₆S (314.32); Calcd.: C, 53.50; H, 3.21; N, 17.82; Found: C, 53.53; H, 3.24; N, 17.79.

2.2. Anticancer activity evaluation (Cytotoxicity Assessment):

2.2.1. Cell culture:

MCF-7 human breast cancer cells & HepG2 human hepatocarcinoma cells and PC3 human prostate cancer cells were purchased from the Egyptian Holding Company for Biological Products & Vaccines (VACSEERA), Giza, Egypt, and then maintained in the tissue culture unit (Faculty of Pharmacy, Ain Shams University, Cairo, Egypt). The cells were grown in RPMI-1640 supplemented medium, supplemented with 10% heat inactivated FBS, 50 units/mL of penicillin and 50 mg/mL of streptomycin and maintained at 37°C in a humidified atmosphere containing 5% CO₂. The cells were maintained as monolayer culture by serial subculturing. Cell culture reagents were obtained from Lonza (Basel, Switzerland).

2.2.2. SRB cytotoxicity assay:

Cytotoxicity was determined using SRB method as previously described by Skehan et al. [15]. Exponentially growing cells were collected using 0.25% Trypsin-EDTA and seeded in 96-well plates at 1000-2000 cells/well in RPMI-1640 supplemented medium. After 24 h, cells were incubated for 72 h with various concentrations of the tested compounds. Following 72 h treatment, the cells will be fixed with 10% trichloroacetic acid for 1 h at 4°C. Wells were stained for 10 min at room temperature with 0.4% SRB (Sulphorhodamine B) dissolved in 1% acetic acid. The plates were air dried for 24 h and the dye was solubilized with Tris-HCl for 5 min on a shaker at 1600 rpm. The optical density (OD) of each well was measured spectrophotometrically at 540 nm with an ELISA microplate reader (ChroMate 4300, FL, USA). The IC₅₀ values were calculated according to the equation for Boltzman sigmoidal concentration–response curve using the nonlinear regression fitting models (Graph Pad, Prism Version 5).

2.3. Antimicrobial activity evaluation:

Antimicrobial activity of the tested compounds was determined using a modified Kirby-Bauer disc diffusion method [16]. Briefly, 100 µl of the test bacteria/fungi were grown in 10 ml of fresh media until they reached a count of approximately 10⁸ cells/ml for bacteria or 10⁵ cells/ml for fungi [17]. 100 µl of microbial suspension was spread onto agar plates corresponding to the broth in which they were maintained isolated colonies of each organism that might be playing a pathogenic role should be selected from primary agar plates and tested for susceptibility by disc diffusion method [18,19].

Of the many media available, NCCLS recommends Mueller-Hinton agar due to: it results in good batch-to-batch reproducibility. Disc diffusion method for filamentous fungi tested by using approved standard method (M38-A) developed by the [20] for evaluating the susceptibilities of filamentous fungi to antifungal agents. Disc diffusion method for yeasts developed by using approved standard method (M44-P) by the [21].

Plates inoculated with filamentous fungi as Aspergillus flavus at 25°C for 48 hours; Gram (+) bacteria as Staphylococcus aureus, Bacillus subtilis; Gram (-) bacteria as Escherichia coli, Pseudomonas aeruginosa they were incubated at 35-37°C for 24-48 hours and yeast as Candida albicans incubated at 30°C for 24-48 hours and, then the diameters of the inhibition zones were measured in millimeters [16].

Standard discs of Tetracycline (Antibacterial agent), Amphotericin B (Antifungal agent) served as positive controls for antimicrobial activity but filter discs impregnated with 10 µl of solvent (distilled water, chloroform, DMSO) were used as a negative control.

The agar used is Mueller-Hinton agar that is rigorously tested for composition and pH. Further the depth of the agar in the plate is a factor to be considered in the disc diffusion method. This method is well documented and standard
zones of inhibition have been determined for susceptible and resistant values. Blank paper disks (Schleicher & Schuell, Spain) with a diameter of 8.0 mm were impregnated 10µ of tested concentration of the stock solutions.

When a filter paper disc impregnated with a tested chemical is placed on agar the chemical will diffuse from the disc into the agar. This diffusion will place the chemical in the agar only around the disc. The solubility of the chemical and its molecular size will determine the size of the area of chemical infiltration around the disc. If an organism is placed on the agar it will not grow in the area around the disc if it is susceptible to the chemical. This area of no growth around the disc is known as a “Zone of inhibition” or “Clear zone”. For the disc diffusion, the zone diameters were measured with slipping calipers of the National Committee for Clinical Laboratory Standards [18].

Agar-based methods such as Etest and disk diffusion can be good alternatives because they are simpler and faster than broth-based methods [22,23].

3. RESULTS and Discussion

3.1. Chemistry

O-phenylenediamine seemed of suitable located functionally for further heterocyclization giving benzazoles and benzazines, thus the fusion of imidazole to benzene ring was achieved by one pot procedure via refluxing o-phenylenediamine derivative and dithiocarboxylic acid derivatives.

The reaction may be proceeded via the condensation reaction between the more basic amino group gave the nonisolable acyclic thioamide derivative followed by the intramolecular cyclocondensation via losing H2S and gave the final product 4. The IR spectrum of compound 4a showed absorption bands at 3562 (NH), 1515 (C=N) cm⁻¹ and The ¹HNMR spectrum of compound 4a showed signals at δ 12.39 ppm and δ 13.2 ppm characteristic for 2NH. The IR spectrum of compound 4b showed absorption bands at 3562 (NH), 1664 (C=O) cm⁻¹ and The ¹HNMR spectrum of compound 4b showed signals at δ 2.49 ppm characteristic for CH₂ and at δ 13 ppm characteristic for NH.

The synthetic strategy toward the desired benzotriazepines depended on the condensation of o-phenylenediamine derivative 1 with dicarbonyl compound followed by diazotization and subsequent intramolecular coupling afforded the final benzazepine compounds. Thus condensation of compound 1 and acetylacetone gave the enamionic product 5 that undergo intramolecular heterocyclization via diazotization through the coupling of electrophilic nitrogen to the nucleophilic carbon.
and gave benzotriazepine 7 and none of the expected triazole 6 was obtained. (Scheme 1)

The formation of 7 is potentiated by the absence of enaminic proton in 1H-NMR spectrum. The IR spectrum of compound 5 showed absorption bands at 3436 and 3336 (NH₂), 1643 (C=O) cm⁻¹ and The 1H-NMR spectrum of compound 5 showed signals at δ 2.49 and 2.5 ppm characteristic for 2CH₃ groups and at δ 6 ppm characteristic for CH₂. The IR spectrum of compound 7 showed absorption bands 1698 (C=O) cm⁻¹ and The 1H-NMR spectrum of compound 7 showed signals at δ 2.48 and 2.5 ppm characteristic for 2CH₃ groups and at δ 8.96 ppm characteristic for NH. Refluxing of phenylenediamine derivative 1 and ethyl acetoacetate resulted in the thermodynamic condensation product afforded acetoacetanilide derivative 8. Diazotization of compound 8 yielded benzotriazepine 10 presumably via the nonisolable benzotriazepine 9 that undergo spontaneous ketonic hydrolysis afforded compound 10. (Scheme 2)

The IR spectrum of compound 8 showed absorption bands at 1685 (ketonic C=O), 1643 (amide C=O) cm⁻¹ and The 1H-NMR Spectrum of compound 8 showed signals at δ 2.49 ppm characteristic for CH₃ group and δ 6 ppm characteristic for CH₂. The IR spectrum of compound 10 showed absorption bands at 1790 (C=O), 3474 (NH) cm⁻¹ and The 1H-NMR spectrum of compound 10 showed signals at δ 2.5 ppm characteristic for characteristic for CH₂.

Condensation of diamine derivative 1 and benzaldehyde afforded shiff base 11, That undergo intramolecular cyclization via reaction with nitrous acid produced benzotriazine 12. (Scheme 3)
The IR spectrum of compound 11 showed absorption bands at 3326 and 3368 (NH$_2$), 1579 (C=\(\text{N}\)) cm$^{-1}$ and the 1H-NMR spectrum of compound 11 showed signals at δ 6 ppm characteristic for CH$_3$. The IR spectrum of compound 12 showed absorption bands at 1527 (C=\(\text{N}\)), 1488 (N=N) cm$^{-1}$ and the 1H-NMR spectrum of compound 12 showed signals at δ 8-8.9 ppm characteristic for Ar-H.

The amino compound 1 formed condensation product 13 with acetophenone. Compound 13 undergo intramolecular cyclization via reaction with nitrous acid gave benzotriazole as final product 14 according to scheme 4.

The IR spectrum of compound 13 showed absorption bands at 3379 and 3435 (NH$_2$), 1594 (C=\(\text{N}\)) cm$^{-1}$ and the 1H-NMR spectrum of compound 13 showed signal at δ 2.49 ppm characteristic for CH$_3$. The IR spectrum of compound 14 showed absorption bands at 1593 (olefinic C=C), 1490 (N=N) cm$^{-1}$ and the 1H-NMR spectrum of compound 14 showed signal at δ 2.5 ppm characteristic for CH$_2$.

The amino compound 1 was added to the electrophilic carbon of isothiocyanate group of benzoylisothiocyanate produced thiourea derivative 15. The IR spectrum of compound 15 showed absorption bands at 1668 (C=O), 1256 (C=S) cm$^{-1}$ and the 1H-NMR spectrum of compound 15 showed signals at δ 8.38 ppm and δ 13 ppm characteristic for 2NH groups. Compound 15 undergo further heterocyclization and functionalization, thus when thiourea derivative 15 refluxed with ethylcyanoacetate produced benzimidazole derivative 16. The IR spectrum of compound 16 showed absorption
bands at 3106 (OH), 2215 (CN), 1560 (C=N) cm$^{-1}$ and The 1H-NMR spectrum of compound 16 showed signals at δ 2.5 ppm characteristic for CH$_2$ and δ 12.99 ppm characteristic for OH group.

Diazotization of compound 15 afforded benzotriazole derivative 17. The IR spectrum of compound 17 showed absorption bands at 3367 (OH), 1666 (C=O) cm$^{-1}$ and The 1H-NMR spectrum of compound 17 showed signals at δ 8.3 ppm characteristic for NH and δ 8.9 ppm characteristic for OH.

Shiff base 18 was obtained via condensation of 15 with benzaldehyde. The IR spectrum of compound 18 showed absorption bands at 3345 (OH), 1505 (C=N) cm$^{-1}$ and The 1H-NMR spectrum of compound 18 showed signal at δ 6.4 ppm characteristic for CH=N and δ 8.5 ppm characteristic for OH group. (Scheme 5).

Oxidative cyclization of thiourea derivative 15 was achieved by refluxing compound 15 and iodine in acetic acid produced benzothiadiazine derivative 19 not the expected benzothiazole derivative 20. The IR spectrum of compound 19 showed absorption bands 3442 (NH), 1663 (C=O) cm$^{-1}$ and The 1H-NMR spectrum of compound 19 showed signals at δ 13 ppm and δ 13.17 ppm characteristic for 2NH. (Scheme 6)
3.2. Anticancer activity:

All the synthesized compounds were tested for in vitro anticancer activity using SRB cytotoxicity assay method. The anticancer screening of the tested compounds revealed that, all the synthesized compounds exhibited non significant cytotoxic activity against MCF-7 human breast cancer cells & Hep G2 human hepatocarcinoma cells and PC3 human prostate cancer cells lines except for compounds 19,16,14 which showed potent inhibitory effect on the examined cell lines (Table 1 & Figures 1,2,3).

From table (1) , we can notice that compound 16 exhibited the most potent anticancer activity on MCF-7 human breast cancer cells by IC50 (1.513 µM) while on Hep G2 human hepatocarcinoma cells and PC3 human prostate cancer cells compound 19 exhibited the maximum cytotoxic activity by IC50 (1.952 and 2.36 µM) respectively.

Compound	MCF-7 human breast cancer cells	Hep G2 human hepatocarcinoma cells	PC3 human prostate cancer cells
19	3.539	1.952	2.36
16	1.513	2.405	3.657
14	75.36	113.3	398.0

IC50 = 3.539 µM IC50 = 1.513 µM IC50 = 75.36 µM

Fig.1 : Anticancer activity of the target compounds against MCF-7 human breast cancer cells

IC50 = 1.952 µM IC50 = 2.405 µM IC50 = 113.3 µM

Fig.2 : Anticancer activity of the target compounds against Hep G2 human hepatocarcinoma cells
3.3. Antimicrobial activity:

Antimicrobial activity of the tested compounds was examined using a modified Kirby-Bauer disc diffusion method and the inhibition zones caused by the various compounds on the microorganisms were determined. The results of the Antimicrobial assay of all the titled compounds showed good activities against both Gram positive and Gram negative bacterial models. These activities were ranged from moderate to high and the most potent activities were belonged to compounds 14 and 5 compared with the activity of the standard antibacterial drug (tetracycline). The activity data generated are tabulated in Table 2.

From the data obtained in Table 2, it is also clear that all the tested compounds were found to be inactive against Aspergillus flavus while they exhibited moderate activity against Candida albicans compared with that of the standard antifungal drug (Amphotericin B) and the best results was belonged to compound 19.

Table 2. Antimicrobial activity of the tested compounds

Sample	Bacillus subtilis (G⁺)	Staphylococcus aureus (G⁺)	Escherichia coli (G⁻)	Pseudomonas aeruginosa (G⁻)	Aspergillus flavus (Fungus)	Candida albicans (Yeast)
Tetracycline Antibacterial agent	30	28	31	30	--	--
Amphotericin B Antifungal agent	--	--	--	--	17	19
Control: DMSO	0.0	0.0	0.0	0.0	0.0	0.0
4b	9	11	9	10	0.0	9
17	13	15	13	15	0.0	10
19	9	13	9	9	0.0	11
4a	10	14	11	11	0.0	9
16	10	9	11	11	0.0	9
14	25	27	25	27	0.0	9
5	21	24	25	25	0.0	10
7	13	10	15	15	0.0	0.0
10	18	22	20	13	0.0	0.0

Note: ‘-’ denotes no activity, 6-8 mm poor activity, 9-11 mm moderate activity, > 12 mm potent activity.

In the frame of our results, it is true and fitting to mention that earlier studies supported our findings. [24] reported that, some novel benzothiadiazine derivatives showed significant growth inhibitory activity against selected human tumor cell lines. Interestingly, one of the synthesized benzothiadiazine derivatives, exhibited GI50 values of 1.4 and 2.1 μM against RPMI-8226 (leukemia) and HOP-62 (lungs) cell lines, respectively. The sulfamido moiety in the main heterocycle is crucial for cytotoxicity [25]. In addition, it is documented previously that some modified benzothiadiazine derivatives exhibited remarkable potent inhibitory activity against many bacterial species in comparison to the standard drugs [26].
In keeping with this line, Benzimidazoles were reported to possess anticancer activity. They are potent anti-tumor, and anti-parasitic agents, whose mode of action is thought to result from their inhibition of microtubule; the elements of spindle; formation and functions that results in antimitotic effect [27].

Similarly, It was proved that, benzo triazole dervatives posses various biological activities including antimicrobial and anticancer activities [29] and it has in vitro cytotoxic activity against human cancer cell lines including lung carcinoma (A549), cervix epithelial carcinoma (HeLa), osteosarcoma (HOS), malignant melanoma (G361), breast adenocarcinoma (MCF7), ovarian carcinoma (A2780) and cisplatin-resistant ovarian carcinoma (A2780cis) [29].

4. CONCLUSION

From the obtained results we can conclude that, benzothiadiazine dervative (cpd 19) & benzimidazole dervative (cpd 16) and benzo triazole (cpd 14) elicited the most potent cytotoxic effect on the tested cancer cell lines while, cpds 14 and 5 were the most active cpds against both gram -ve and gram -ve bacterial infection however cpd 19 was the best against fungal infection. These compounds could therefore serve as a lead promising molecules for further modification to obtain clinically useful anticancer and antibacterial agents.

In general, The present study throws light on the identification of this new structural class as anticancer and antimicrobial agents which can be of interest for further detailed preclinical investigations.

5. REFERENCES

[1] Bhushan, M. Panchabudhe. 2012. Synthesis, characterization and in vitro anticancer screening of thiazolidin-4-ones. JPRD, vol.4: 295-300.
[2] Pears, S., Patterson, T.F. 2002. Antifungal resistance in pathogenic fungi. Clin. Infect. Dis., 35, 1073–1080.
[3] Biot, C., Francois, N., Maciejewski, L., Brocard, J., Poulin, D. 2000. Synthesis and antifungal activity of a ferrocene–fluconazole analogue. Bioorg. Med. Chem. Lett. 10, 839–841.
[4] Narasimhan, B.; Sharma, D. and Kumar, D. 2012. Benzimidazole: a medicinally important heterocyclic moiety. Med Chem Res 21:269–283.
[5] Goud, V.M.; Sreenivasulu, N.; Rao, A.S. and Chigiri, S. 2011. Synthesis, antimicrobial and pharmacological evaluation of substituted novel benzimidazoles. Der Pharma Chemica 3:446–452.
[6] Samadzad, M.; Thallada, L.; Thallada, P.K. and Veerati, P.C. 2011. Synthesis and anti-inflammatory activity of 2-[1H-benzimidazole-2ylmethyl)sulfonyl]-n-(phenyl methylidene) acetohydrazide derivatives. Intl J Res Pharm Chem 1:148–155.
[7] Patil, A.; Ganguly, S. and Surana, S. 2010. Synthesis and antiulcer activity of 2-[5-substituted-1H benzo(d)imidazol-2-ylsulfonylmethyl-3-substituted quinazoline-4-(3H)ones. J Chem Sci 122:443–450.
[8] El-masry, A.H.; Fahmy, H.H. and Ali Abdelwahed, SH. 2000. Synthesis and antimicrobial activity of some new benzimidazole derivatives. Molecules 5:1409–1418.
[9] Kumar, D.; Jacob, M.R.; Reynolds, MB. and Kerwin, SM. 2002. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem 10:3997–4004.
[10] Salimon, J.and Salih, N. 2010. Synthesis, characterization and biological activity of some new 1,2,4-triazine derivatives. Int. J. Pharm. Tech. Res., 2, 1041-1045.
[11] Marzena, M. Ucherek ; Joanna, wroblewska; Bozena, M. Banachiewicz and Eugenia, gospodarek. 2008. Biological activity of methyl 2-[5-oxo-3,4-di-(2-pirydyl)-1,4,5,6-tetrahydro-1,2,4-triazine-6-yldene] acetate. Acta polo. Pharma.Drug Res., Vol. 64 No. 6 pp. 789-791.
[12] Mullick, P.; Khan, S.A.; Begum, T.; Verma, S.; Kaushik, D. and Alam, O. 2009. Synthesis of 1,2,4-triazine derivatives as potential anti-anxiety and anti-inflammatory agents. Acta Pol. Pharm. Drug Res. 66, 379-385.
[13] El-Gendy, Z.; Morsy, J.M.; Allimony, H.A.; Abdel-Monem, W.R.and Abdel-Rahman, R.M. 2001. Synthesis of heterocyclic nitrogen systems bearing the 1,2,4-triazine moiety as anti-HIV and anticancer drugs. Part III. Pharmazie, 56, 376-383.
[14] Hosam, A. Saad; Mohamed, M. Youssef and Mossaelt, A. Mossaelt, 2011. Microwave assisted synthesis of some new fused 1,2,4-triazines bearing thiophene moieties with expected pharmacological activity. Molecules, 16, 4937-4957.
[15] Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.and Boyd, M.R. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 82:1107-1112
[16] Bauer, A.W., Kirby, W.M., Sherris, C., Turck, M.1966. Antibiotic susceptibility testing by a standardized single disk method, American Journal of Clinical Pathology, 45, 493-496.
[17] Pfaller, M. A., L. Burmeister, M. A. Bartlett, and M. G. Rinaldi. 1988. Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 26:1437–1441.
[18] National Committee for Clinical Laboratory Standards. 1993. Performance VOL. 41, 1997 antimicrobial susceptibility of Flavobacteria.

[19] National Committee for Clinical Laboratory Standards. 1997. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa.

[20] National Committee for Clinical Laboratory Standards. 2002. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-Forming Filamentous Fungi: Proposed Standard M38-A. NCCLS, Wayne, PA, USA.

[21] National Committee for Clinical Laboratory Standards. 2003. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeast: Proposed Guideline M44-P. NCCLS, Wayne, PA, USA.

[22] Liebowitz, L. D., H. R. Ashbee, E. G. V. Evans, Y. Chong, N. Mallatova, M. Zaidi, D. Gibbs, and Global Antifungal Surveillance Group. 2001. A two year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn. Microbiol. Infect. Dis. 4:27–33.

[23] Matar, M. J., L. Ostrosky-Zeichner, V. L. Paetznick, J. R. Rodriguez, E. Chen, and J. H. Rex. 2003. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob. Agents Chemother. 47:1647–1651.

[24] Kamal A, Khan MN, Srikanth YV, Rajesh SV. 2009. Synthesis and biological evaluation of mercapto triazolo-benzothiadiazine linked aminobenzothiazoles as potential anticancer agents. Chem Biol Drug Des. 2009 Jun;73(6):687-93.

[25] Martínez, A., Gil, C., Castro, A., Bruno, A.M., Pérez, C., Prieto, C., Otero, J. 2003. Benzothiadiazine dioxide human cytomegalovirus inhibitors: synthesis and antiviral evaluation of main heterocycle modified derivatives. Antivir Chem Chemother. Mar;14(2):107-14.

[26] Kamal, A., Khan, M.N., Reddy, K.S., Rohin,i K., Sastry, G.N., Sateesh, B. and Sridhar, B. 2007. Synthesis, structure analysis, and antibacterial activity of some novel 10-substituted 2-(4-piperidyl/phenyl)-5,5-dioxo[1,2,4]triazolo[1,5-b][1,2,4]benzothiadiazine derivatives. Bioorg Med Chem Lett. 17(19):5400-5.

[27] Nare, B., Prichard, R. K., and Georges, E. 1994. Benzimidazoles, potent anti-mitotic drugs: Substrates for the P-glycoprotein transporter in multidrug-resistant cells. Bio Chem Pharmacol., 48, 2215-2222.

[28] Suma,B.V.;Natesh,N.N.;Venkataramana,C.H.;Judy,J. and Madhavan,V. 2012. Synthesis and antibacterial effect of some new 1,2,3 benzotriazoles derivatives containing pyrazolidinedione moieties. International Journal of Pharmacy and Pharmaceutical Sciences 4(1) 169-173.

[29] Dvořák, Z.; Starha, P.; Sindelář, Z. and Trávníček, Z. 2012. Evaluation of in vitro cytotoxicity of one-dimensional chain [Fe(salen)(L)](n) complexes against human cancer cell lines. TOXICOLOGY IN VITRO Aprl., Vol. 26 Issue 3