The Dissecting Power of Regular Languages

Tomoyuki Yamakami* and Yuichi Kato

Abstract: A study on structural properties of regular and context-free languages has promoted our basic understandings of the complex behaviors of those languages. We continue the study to examine how regular languages behave when they are “almost halving” numerous infinite languages. In particular, we are focused on a situation in which a regular language “dissects” a target infinite language into two infinite subsets. Every context-free language and its complement can be dissected by carefully chosen regular languages. By expanding the scope of our study, we show that constantly-growing languages and semi-linear languages are also dissectable; however, their complements as well as intersections are not. Under certain natural conditions, the complements and finite intersections of semi-linear languages become dissectable. Similarly, restricted to bounded languages, the intersections of finitely many bounded context-free languages and, more surprisingly, their entire Boolean hierarchy over bounded context-free languages are dissectable. As an immediate application, we show a structural property in which an appropriate bounded context-free language can separate, with infinite margins, two given infinite bounded context-free languages, one of which contains the other with an infinite margin. This property is closely related to a notion and result of Demaratzki, Shallit, and Yu (2001).

Keywords: dissecting, separating, regular language, context-free language, bounded language, semi-linear language, constant growth

1 Background Knowledge and Results’ Overview

Since the notion of context-free language was conceived and formulated as a mathematical model of natural languages by Chomsky [2, 3] in the 1950s, it has remained an intriguing research subject for almost six decades both in theory and in practice. In formal language theory, context-free languages have been of great importance in, for instance, parsing programming languages since their introduction. In an early stage of the study of context-free languages, a useful “structural” property, known as semi-linearity, was discovered in [10], and another useful property, dubbed later as a pumping lemma, was proven in [1]. The former property dictates a behavioral pattern of the times each symbol occurring inside each string of a given language, whereas the latter indicates the existence of numerous sequences of constantly-growing strings inside the language. The underlying structures of regular languages, in contrast, have been widely understood by a number of different frameworks, including the Myhill-Nerode theorem, monadic second-order logic, and finitely generated monoids.

Recently, new realms of structural properties that highlight the context-freeness of languages have been developed in an obvious connection to structural complexity issues of polynomial time-bounded complexity classes. For instance, the notions of immunity as well as pseudorandomness were introduced into context-free languages in [14]. The notion of minimal cover was also applied to regular languages in [4]. These properties have left unsolved numerous problems, concerning the structural properties of regular and context-free languages, which, we suspect, might have rooted in certain unknown natures of the languages. To promote our understanding of regular and context-free languages, it must be desirable to unearth those hidden natures.

In this line of study, this paper aims at exploring another natural structural property, which we fondly name “dissectability.” This property, however, is most interesting for weak computation. One reason is that, for instance, polynomial-time computable languages are too powerful to dissect easily any “computable” language of infinite size.

Normally, regular languages are considered to be weak in recognition power; however, for certain simple tasks, they can exhibit surprisingly high power. One of such tasks is to “dissect” infinite languages in certain obvious ways. As we will give an example shortly, even computationally-hard infinite languages can be dissected into “almost halves” of infinite sizes using only the power of regular languages. More precisely, an infinite set C is said to dissect a target infinite set L, as illustrated in Fig.1, if two disjoint sets $C \cap L$ and $\overline{C} \cap L$ are both infinite, where \overline{C} is the complement of C. Seemingly, such dissection is one of the simplest actions to exercise when we try to analyze a basic structure of a target set. When every infinite set in a

*Affiliation: Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
Moreover, for two countable sets a, b, k three arbitrary numbers set of all natural numbers $\subseteq A$ in infinite margins. In our term of “separation with infinite margins” (or chosen from Σ, we write $|x|$ illustrated in Fig. 2, that a pair (B, A) where “smallest” means that there is no set between A and B, we write $A \subseteq B$ with margins of infinite sizes. Motivated by our notion and results, we examine a structural property of separating two infinite nested languages with infinite margins. In our term of “separation with infinite margins” (or i-separation, in short), we mean, as illustrated in Fig[2] that a pair (B, A) of infinite sets, where A “covers with an infinite margin” (or i-covers, in short) B, can be separated by a single set C that lies in between the two sets with infinite margins. As an immediate application of the aforementioned REG-dissectability results for bounded context-free languages, we will show in Section 7 that two bounded context-free languages can be i-separated by bounded context-free languages, essentially by an application of the aforementioned pumping lemma. More surprisingly, when limited to bounded languages of Ginsburg and Spanier [6], we can show that the intersections of finitely many context-free languages are dissected by appropriate regular languages. This REG-dissectability result signifies the power of regular languages, because the intersections of k bounded context-free languages for $k \geq 1$ form an infinite hierarchy within the class of context-sensitive languages [9]. Our result can be obtainable, together with a result from [7], by an argument that is analogous to the argument mentioned earlier for semi-linear languages. By elaborating our argument further, we will prove that the entire Boolean hierarchy over the class of bounded context-free languages is also REG-dissectable. These results will be presented in Section 6. One challenging open question is to prove that the Boolean hierarchy over context-free languages is truly REG-dissectable.

The REG-dissectability notion has several connections to other notions. Earlier, Demaratzki, Shallit, and Yu [3] studied a notion of minimal cover, which means the “smallest” superset A of a given set B, where “smallest” means that there is no set between A and B with margins of infinite sizes. Motivated by their notion and results, we examine a structural property of separating two infinite nested languages with infinite margins. In our term of “separation with infinite margins” (or i-separation, in short), we mean, as illustrated in Fig[2] that a pair (B, A) of infinite sets, where A “covers with an infinite margin” (or i-covers, in short) B, can be separated by a single set C that lies in between the two sets with infinite margins. As an immediate application of the aforementioned REG-dissectability results for bounded context-free languages, we will show in Section 7 that two bounded context-free languages can be i-separated by bounded context-free languages in the above sense. This i-separation result can be further extended into any level of the Boolean hierarchy over bounded context-free languages.

2 Notions and Notations

We briefly explain a set of basic notions and notations used in the subsequent sections. We denote by \mathbb{N} the set of all natural numbers (i.e., nonnegative integers). For brevity, we set \mathbb{N}^+ to be $\mathbb{N} - \{0\}$. Associated with three arbitrary numbers $a, b, k \in \mathbb{N}$, we define $A_{a,b,k}$ as the set $\{an + b \mid n \in \mathbb{N}, n \geq k\}$. For any countable set A, the succinct notation $|A| = \infty$ (resp., $|A| < \infty$) indicates that A is an infinite (resp., a finite) set. Moreover, for two countable sets A and B, we write $A \subseteq B$ to mean $|A - B| < \infty$, and we use the notation $A =_{ae} B$ whenever $A \subseteq_{ae} B$ and $B \subseteq_{ae} A$ hold.

We usually denote by Σ an alphabet (i.e., a non-empty finite set) and, for a string x whose symbols are chosen from Σ, we write $|x|$ to denote the length of x (i.e., the number of occurrences of all symbols in x).

![Figure 1: C dissects L.](image1)

![Figure 2: C i-separates (B, A).](image2)
The empty string is always denoted \(\lambda \) and the length \(|\lambda| \) is zero. The notation \(\Sigma^* \) denotes the set of all strings over \(\Sigma \); in contrast, \(\Sigma^+ \) expresses the set \(\Sigma^* - \{\lambda\} \). A language over \(\Sigma \) is a subset of \(\Sigma^* \). For a string \(w \), \(w^R \) denotes the string \(w \) in reverse; in addition, for a language \(L \), \(L^R \) denotes the set \(\{w^R : w \in L\} \). The concatenation of two strings \(x \) and \(y \) is denoted \(xy \). For any string \(x \) and any symbol \(\sigma \), the notation \(\#_\sigma(x) \) stands for the number of the occurrences of \(\sigma \) in \(x \). For any language \(S \), the length set of \(S \), denoted \(LT(S) \), is the collection of all lengths \(|x|\) for any string \(x \) in \(S \).

For two arbitrary languages \(A \) and \(B \) over the same alphabet \(\Sigma \), the difference between \(A \) and \(B \), denoted \(A - B \), is the set \(\{x \in \Sigma^* \mid x \in A, x \notin B\} \). The complement of \(B \) is the set \(\Sigma^* - A \) and it is denoted \(\overline{B} \). As far as its underlying alphabet \(\Sigma \) is clear from the context, a language is notationally, for a set \(C \) and \(D \) denote the sets of all regular languages and of all context-free languages, respectively. The language family \(\text{CFL}(k) \) is defined inductively as follows: \(\text{CFL}(1) = \text{CFL} \) and \(\text{CFL}(k) = \text{CFL}(k - 1) \land \text{CFL} \) for \(k \geq 2 \). Liu and Weiner [9] showed that \(\{\text{CFL}(k) \mid k \in \mathbb{N}^+\} \) forms an infinite hierarchy. The Boolean hierarchy over \(\text{CFL} \) is defined as follows: \(\text{CFL}_1 = \text{CFL} \), \(\text{CFL}_k = \text{CFL}_{k-1} \land \text{co-CFL} \), and \(\text{CFL}_{k+1} = \text{CFL}_k \lor \text{CFL} \) for every \(k \in \mathbb{N}^+ \). Define \(\text{CFL}_{1,h} = \bigcup_{k \geq 1} \text{CFL}_k \). Note that \(\text{CFL}_k \subseteq \text{CFL}_{k+1} \) for any index \(k \in \mathbb{N}^+ \). Obviously, it holds that \(\text{CFL}_k \subseteq \text{CFL}_{k-1} \land \text{CFL} \). Since \(\text{CFL}_1 \) coincides with \(\text{CFL} \land \text{co-CFL} \), it holds that \(\text{CFL} \lor \text{co-CFL} \subseteq \text{CFL}_2 \).

To introduce a notion of deterministic advice that is led to finite automata beside input strings, we adopt the “track” notation of [11]. For two symbols \(\sigma \in \Sigma \) and \(\tau \in \Gamma \), the notation \([\sigma \tau] \) expresses a new symbol made up of \(\sigma \) and \(\tau \). On the input tape, this new symbol is written in a single tape cell, which is split into two tracks, whose upper track contains \(\sigma \) and the lower one contains \(\tau \). Notice that an automaton’s tape head scans two track symbols \(\sigma \) and \(\tau \) in \([\sigma \tau] \) at once. For two strings \(x \) and \(y \) of the same length \(n \), \([x \ y] \) denotes a concatenated string \([x_1 \ y_1] [x_2 \ y_2] \ldots [x_n \ y_n] \), provided that \(x = x_1 x_2 \ldots x_n \) and \(y = y_1 y_2 \ldots y_n \). An advice function is a function mapping \(\mathbb{N} \) to \(\Gamma^* \), where \(\Gamma \) is an alphabet, called an advice alphabet. The advice family language \(\text{REG}/n \) of Tadaki et al. [11] is the collection of all languages \(L \) over certain alphabets \(\Sigma \) such that there exist a 1 DFA \(M \), an advice alphabet \(\Gamma \), and an advice function \(h : \mathbb{N} \to \Gamma^* \) for which (i) for every length \(n \in \mathbb{N} \), \(|h(n)| = n \) and (ii) for every string \(x \in \Sigma^* \), \(x \in L \) if \(M \) accepts \([\sigma_1 \ x \ \sigma_2] \). Similarly, \(\text{CFL}/n \) was defined in [13].

Finally, we introduce a notion of “immunity.” Let \(\mathcal{F} \) be any family of languages. A language \(S \) is said to be \(\mathcal{F} \)-immune if \(S \) is infinite and \(S \) has no infinite subset belonging to \(\mathcal{F} \) (see, e.g., [14]).

3 How to Dissect Languages

Let us recall from Section 1 the notion of REG-dissectability. More generally, for any non-empty language family \(C \), we say that an infinite language \(S \) is \(C \)-dissectable if there exists a language \(C \in C \) that dissects \(S \) (i.e., \(|C \cap S| = |C \cap S| = \infty\)). A non-empty language family \(\mathcal{F} \) is said to be \(\mathcal{C} \)-dissectable if every infinite language in \(\mathcal{F} \) is \(\mathcal{C} \)-dissectable. Notice that this definition disregards all finite languages inside \(\mathcal{F} \), and thus we implicitly assume that \(\mathcal{F} \) always contains infinite languages.

The choice of \(C \) in the definition of \(\mathcal{C} \)-dissectability is of great importance. In particular, low-complexity languages are most interesting for dissectability. One reason is that high-complexity languages are too powerful to dissect most infinite languages. To see this fact, we will present two simple examples. In the first example, we consider the class \(\mathcal{P} \) of all languages recognized by multi-tape Turing machines running in polynomial time. With the power of languages in \(\mathcal{P} \), we can dissect recursive languages of infinite size. Notationally, for a set \(S \), we write \(S(x) = 0 \) (resp., \(S(x) = 1 \)) to mean that \(x \in S \) (resp., \(x \notin S \)).

Example 3.1 We claim that every infinite recursive language is \(\mathcal{P} \)-dissectable. Let \(L \) be any infinite language, over an alphabet \(\Sigma \), recognized by a single-tape Turing machine \(M \) that eventually halts on all inputs. For simplicity, let \(\Sigma = \{0, 1\} \) and assume that \(L \neq \omega \Sigma^* \) because, otherwise, the set \(C = \{0x \mid x \in \Sigma^*\} \) easily dissects \(L \). Now, we define \(C \) as follows. Let \(z_0, z_1, z_2, \ldots \) be a standard lexicographic order of all strings. For each string \(x \), we go through the following procedure from round 0 to round \(|x| \). Initially, we set \(A = R = \emptyset \). At round \(i \), we first recover the value \(C(z_i) \) by following the defining process of \(C(z_i) \). We then simulate \(M \) on the input \(z_i \) within \(|x| \) steps. Assume that \(M(z_i) = 1 \). Update \(A \) to be \(A \cup \{i\} \) if \(C(z_i) = 0 \); let \(R \) be \(R \cup \{i\} \) if \(C(z_i) = 1 \). Whenever \(M(z_i) = 0 \) or \(M(z_i) \) is not obtained within \(|x| \) steps, we do nothing. After round \(|x| \), if \(|A| > |R| \), then define \(C(x) = 0 \); otherwise, define \(C(x) = 1 \). Clearly, \(C \) is in \(\mathcal{P} \).
By a diagonalization argument, we can show that \(|C \cap L| = |\overline{C} \cap L| = \infty\). Therefore, every infinite recursive language can be dissected by a certain language in \(P\).

In the second example, we will show that a simple use of advice makes it possible to dissect an arbitrary language even by regular languages.

Example 3.2 We claim that every language is REG/n-dissectable. To show this claim, take any infinite language \(S\) over an alphabet \(\Sigma\). Since \(S\) is infinite, the length set \(LT(S)\) is also infinite. Hence, we partition \(LT(S)\) into two infinite subsets, say, \(S_1\) and \(S_2\); that is, \(S_1 \cap S_2 = \emptyset\), \(LT(S) = S_1 \cup S_2\), and \(|S_1| = |S_2| = \infty\). We also assume that \(0 \notin S_1\). Now, we define an advice function \(h : \mathbb{N} \rightarrow \{0, 1\}^*\) as follows: let \(h(n) = 10^{n-1}\) if \(n \in S_1\) and \(h(n) = 0^n\) otherwise. We also define a dfa \(M\) as follows: on input \([x, y]\), if \(y = 10^{n-1}\), then \(M\) accepts the input; otherwise, it rejects the input. Define \(C = \{x \mid M\) accepts \([h(|x|)]\}\), which belongs to REG/n. Obviously, for any \(x \in S\) with \(|x| \in S_1\), since \(h(|x|) = 10^{|x|-1}\), \(M\) accepts \([h(|x|)]\). Thus, \(|C \cap S| = \infty\). In other words, every infinite recursive language even by regular languages.

In conclusion, \(C\) dissects \(S\).

In the rest of this paper, we will focus our attention to the case of REG-dissectability. A pattern of the lengths of strings in a target language plays a key role in the REG-dissectability. We turn our attention to particular languages whose strings satisfy a certain length condition, known as a “constant growth property.” Formally, a language \(L\) is said to be **constant growing** if there exists a constant \(p > 0\) and a finite subset \(K \subseteq \mathbb{N}^+\) that satisfy the following condition: for every string \(x \in L\) with \(|x| \geq p\), there exist a string \(y \in L\) and a constant \(c \in K\) for which \(|x| = |y| + c\) holds. Such a language can be easily dissected by regular languages as shown below.

Lemma 3.3 Every constant-growth language is REG-dissectable.

Proof. Let \(L\) be any language over an alphabet \(\Sigma\). Now, we assume that \(L\) is constantly growing with a constant \(p\) and a finite set \(K\). Let \(c\) be the maximal element in \(K\). For each index \(i \in [c]\), we define a language \(L_i = \{x \in L \mid |x| \equiv i (\text{mod } c + 1)\}\). We want to claim that there are at least two distinct indices \(i_1, i_2 \in [c]\) such that \(|L_{i_1}| = |L_{i_2}| = \infty\). Assume otherwise. Since \(L = \bigcup_{i \in [c]} L_i\), at least one of \(L_i\)'s is infinite. Our assumption implies that exactly one index \(i \in [c]\) makes \(L_i\) infinite. We fix such an index. For each constant \(j \in [c]\), define \(S_{i,j} = \{y \in L \mid \exists x \in L_i \mid |x| = |y| + j\}\). Since \(L\) is constantly growing, the set \(S_{i,j}\) is infinite for a certain index \(j\). This implies that \(L_{i+j \text{ mod } c+1}\) is infinite because \(S_{i,j} \subseteq L_{i+j \text{ mod } c+1}\). This contradicts the uniqueness of \(i\). Therefore, there are at least two distinct indices \(i_1, i_2 \in [c]\) such that \(|L_{i_1}| = |L_{i_2}| = \infty\).

We define \(C = \{x \in \Sigma^* \mid |x| \equiv i_1 (\text{mod } c + 1)\}\). Clearly, \(C\) is regular. Moreover, \(L_{i_1} \subseteq C\) and \(L_{i_2} \subseteq \overline{C}\). This implies that \(|C \cap L| = |\overline{C} \cap L| = \infty\). In other words, \(C\) dissects \(L\), as required.

The property of constant growth is not sufficient for the REG-dissectability. For example, the language exemplified in Section 3 may not be constantly growing; however, it is REG-dissectable. For a wider application, it is therefore desirable to strengthen Lemma 3.3 slightly. In what follows, we succinctly write CGL for the family of all constantly-growing languages and use the notion of CGL-immunity.

Proposition 3.4 Every language that is not CGL-immune is REG-dissectable.

This proposition follows from Lemma 3.3 and the next trivial lemma. The latter lemma is also useful in proving certain closure properties in Section 3.

Lemma 3.5 For any two infinite languages \(A\) and \(B\), if \(A\) is REG-dissectable and \(A \subseteq B\), then \(B\) is also REG-dissectable.

Proof. This is trivial because any language that dissects \(A\) can dissect \(B\) whenever \(B\) is a superset of \(A\).

By contrast, we will show an obvious limitation of the REG-dissectability. Following a convention, the notation \(L\) stands for the family of all languages that can be recognized by two-way deterministic Turing machines using a read-only input tape together with a fixed number of logarithmic space-bounded read/write work tapes. In the next proposition, we show that \(L\) contains a language that cannot be REG-dissectable. This result shows a clear limitation of the dissecting power of regular languages.
Proposition 3.6 The language family L is not REG-dissectable.

The proof of Proposition 3.6 requires the following technical property of unary regular languages. Recall the notation $A_{a,b,k}$ and, in addition, set $\mathcal{G} = \{(a, b, k) \mid a, b, k \in \mathbb{N}, b < a\}$ for the description of the property.

Lemma 3.7 For any unary language S, S is regular iff there exists a finite set $G \subseteq \mathcal{G}$ for which $LT(S) = \bigcup_{(a,b,k) \in G} A_{a,b,k}$.

Proof. Let S be any language over $\Sigma = \{0\}$.

(If-part) Let G be any finite subset of \mathcal{G} and assume that $LT(S) = \bigcup_{(a,b,k) \in G} A_{a,b,k}$. For brevity, we write $S_{a,b,k}$ for the set $\{0^n \mid n \in A_{a,b,k}\}$. It thus holds that $S_{a,b,k} = \{0^n \mid n = ai + b, i \geq k\} = \{0^{a+b}i \mid i \in \mathbb{N}\}$. Clearly, $S_{a,b,k}$ is regular because a, b, k are all constants. Since G is finite and $S = \bigcup_{(a,b,k) \in G} S_{a,b,k}$, S is also regular.

(Only If-part) Since $S \in \text{REG}$, by [4, Lemma 2], there exist two integers $d \geq 0$ and $a \geq 1$ and two sets $A \subseteq \{0^i \mid 0 \leq i < d\}$ and $B \subseteq \{0^i \mid d \leq i < a + d\}$ such that $S = A + B(0^a)^*$. Note that $LT(S)$ equals the union $LT(A) \cup \{an + j \mid j \in LT(B), n \geq 0\}$. Since $A_{0,i,0} = \{i\}$ and $A_{a,j,0} = \{an + j \mid n \geq 0\}$, it suffices to define $G = \{(0,i,0) \mid i \in LT(A)\} \cup \{(a,j,0) \mid j \in LT(B)\}$ for the desired equality that $LT(S) = \bigcup_{(a,b,k) \in G} A_{a,b,k}$.

Now, we give the proof of Proposition 3.6.

Proof of Proposition 3.6. Consider the unary language $S = \{0^n \mid n \in \mathbb{N}\}$ over the alphabet $\Sigma = \{0\}$. First, we want to show the following claim.

Claim 1 S is in L

Proof. It suffices to design a log-space Turing machine that recognizes L. On input of the form 0^m, the desired machine writes m in binary on its 1st work tape and 1 on its 2nd work tape using $O(\log m)$ cells. At each round, it reads out a number, say, n in binary on the 2nd tape and check if m is a multiple of n using the 3rd work tape as a counter up to n. If not, then the machine immediately rejects the input. Otherwise, it increases n by one (in binary) before entering the next round. If the machine does not rejects until n reaches m, it accepts the input.

Next, we want to show that no regular language can dissect S. Assume otherwise; that is, there exists an infinite language $C \in \text{REG}$ over Σ dissectes S. Lemma 3.7 guarantees the existence of a finite set G for which $LT(C) = \bigcup_{(a,b,k) \in G} A_{a,b,k}$. Without loss of generality, we can assume that $b < a$ for any $(a, b, k) \in G$.

Since $|C \cap S| = \infty$, there exists a triplet $(a, b, k) \in G$ such that $|\{m \mid \exists n \geq k [m! = an + b]\}| = \infty$. Here, we claim that $k = 0$. If $an + b = m!$ for a certain large integer $m > a$, then $m! \equiv 0 \pmod{a}$. Since $an + b \equiv b \pmod{a}$, it follows that $b \equiv 0 \pmod{a}$. Since $b < a$, b must be zero, as required. Moreover, we claim that $a > 1$. If $a = 1$, then $A_{1,b,k}$ equals $\{n + b \mid n \geq k\}$, which coincides with $\{n \mid n \geq k + b\}$. Thus, $|A_{1,b,k}| < \infty$, and therefore $\{LT(S) \cap LT(C)\} < \infty$, a contradiction against $|C \cap S| = \infty$.

Since $a > 1$ and $b = 0$, for a certain large constant k', it holds that $\{m! \mid m \geq k'\} \subseteq A_{a,0,k'}$. This implies that $|LT(S) \cap LT(C)| < \infty$, a contradiction.

4 Basic Closure Properties of REG-Dissectability

Before proceeding on a further exploration of the REG-dissectability of other languages, we quickly examine basic closure properties of the set of infinite REG-dissectable languages. For readability, we use the notation REG-DISSECT for the collection of all infinite languages that are REG-dissectable. Although this family REG-DISSECT is related to REG, it embodies clear traits that are quite different from those of REG.

We begin with a simple observation.

Lemma 4.1 The set REG-DISSECT is closed under concatenation, reversal, Kleene star, and union.

Proof. Let L, L_1, L_2 be any three languages in REG-DISSECT. [Union] Note that $L_1 \subseteq L_1 \cup L_2$. Since L_1 is REG-dissectable, Lemma 3.5 implies that $L_1 \cup L_2$ is also REG-dissectable. [Reversal] For L, take an infinite regular language C that dissects L. Consider the reversal C^R. Obviously, this C^R dissects L^R.

5
Notice that the concatenation of \(L_1 \) and \(L_2 \) is \(L_1 L_2 = \{ xy \mid x \in L_1, y \in L_2 \} \). Since \(L_1 \subseteq L_1 L_2 \), by Lemma 5.3, the REG-dissectability of \(L_1 \) leads to the REG-dissectability of \(L_1 L_2 \). [Kleene star] Note that the Kleene star \(L^* = \bigcup_{i \geq 0} L^i \) contains \(L \) as a subset. Apply Lemma 5.3 to obtain the REG-dissectability of \(L^* \).

Despite REG-DISSECT satisfies the closure properties listed in Lemma 4.1, it cannot be closed under intersection. More strongly, REG-DISSECT is not closed under intersection even with regular languages. This claim will be shown below.

Lemma 4.2 REG-DISSECT is not closed under intersection with regular languages.

Proof. Let \(\Sigma = \{0, 1\} \) be our alphabet. Consider the set \(D = \{ 0^n \mid n \geq 1 \} \). As we have shown earlier, \(D \) is not REG-dissectable. Now, we define two sets \(A = \{0\}^* \) and \(B = D \cup \{1\}^* \). It is easy to dissect \(A \) and \(B \) by regular sets \(C_A = \{ 0^{2m} \mid m \geq 0 \} \) and \(C_B = \{ 12m \mid m \geq 0 \} \). Hence, \(A \) and \(B \) are REG-dissectable. However, since \(A \cap B = D \), \(A \cap B \) is not REG-dissectable. Hence, REG-DISSECT is not closed under intersection with regular languages.

We will show two more non-closure properties of REG-DISSECT. For any alphabet \(\Sigma \), a homomorphism \(f \) is a map from \(\Sigma \) to \(\Sigma^* \). The domain of \(f \) can be further expanded from \(\Sigma \) to the whole set \(\Sigma^* \) by defining \(f(\lambda) = \lambda \) and \(f(xr) = f(x)f(\sigma) \) for any \(x \in \Sigma^* \) and \(\sigma \in \Sigma \). Finally, set \(f(L) = \bigcup_{x \in L} f(x) \). A homomorphism \(f \) is called \(\lambda \)-free if \(f(\sigma) \neq \lambda \) for every \(\sigma \in \Sigma \). We say that a language family \(\mathcal{F} \) is closed under \(\lambda \)-free homomorphism if, for every language \(L \in \mathcal{F} \) and every \(\lambda \)-free homomorphism \(f \), \(f(L) \) also belongs to \(\mathcal{F} \). Moreover, for two languages \(L \) and \(L' \) over the same alphabet, the quotient \(L/L' \) is the set \(\{ x \mid \exists y \in L' \{ xy \in L \} \} \). We say that \(\mathcal{F} \) is closed under quotient with regular languages if, for every set \(L \in \mathcal{F} \) and every regular language \(L' \), the quotient \(L/L' \) is also in \(\mathcal{F} \).

Lemma 4.3 REG-DISSECT is not closed under \(\lambda \)-free homomorphism as well as quotient with regular languages.

Proof. (1) For the non-closure property under \(\lambda \)-free homomorphism, we define \(L = \{ 1^n \mid n \in \mathbb{N} \} \cup \{ 0^n \mid n \in \mathbb{N} \} \), which belongs to REG-DISSECT. Moreover, we define \(h(0) = h(1) = 0 \). Clearly, \(h \) is a \(\lambda \)-free homomorphism. The image set \(h(L) \) equals \(\{ 0^n \mid n \in \mathbb{N} \} \), which can be proven to be non-REG-dissectable by an argument similar to the proof of Proposition 3.6.

(2) Next, we consider the non-closure property under quotient. We define \(L = \{ 0^n1^n \mid n \in \mathbb{N} \} \cup \{ 1^n0^n \mid n \in \mathbb{N} \} \) and \(L' = \{ 1 \}^+ \). Obviously, \(L' \) is regular. Note that the quotient \(L/L' = \{ 0^n \mid n \in \mathbb{N} \} \). As in (1), \(L/L' \) cannot be REG-dissectable.

5 Semi-Linear Languages and REG-Dissectability

Semi-linear languages are described by the behaviors of the number of occurrences of symbols in strings. This characteristic naturally makes those languages REG-dissectable. Under certain conditions, the complements as well as intersections of semi-linear languages are also dissected by regular languages. By stark contrast, without those conditions, they are no longer REG-dissectable in general.

5.1 Semi-Linear Languages

Parikh [10] discovered that the times of symbols occurring in each string in a context-free language \(L \) must satisfy some of certain linear Diophantine equations. This result inspires us to consider languages defined by those linear equations. Here, we introduce a notion of “semi-linear” languages by the following matrix formalism.

Firstly, we say that a subset \(A \) of \(\mathbb{N}^k \) is linear if there exist a number \(m \in \mathbb{N} \) and an \((m + 1) \times k \) non-negative integer matrix (called a critical matrix) \(T \) satisfying: for every point \(v \in \mathbb{N}^k \), \(v \in A \) iff an equation \((1, z_1, z_2, \ldots, z_m)^T = v \) holds for a certain tuple (called a solution) \((z_1, z_2, \ldots, z_m) \in \mathbb{N}^m \). Equivalently, a linear set is a coset of a finitely generated sub-semigroup of \(\mathbb{N}^k \) for a certain \(k \in \mathbb{N} \). A semi-linear set is a union of finitely many linear sets. Note that the set of semi-linear subsets of \(\mathbb{N}^k \) is closed under Boolean operations [3]. Secondly, we expand the notion of semi-linearity into languages. Let \(\Sigma = \{ \sigma_1, \sigma_2, \ldots, \sigma_k \} \) be an alphabet for \(L \). For any string \(x \), a point \((\#_{\sigma_1}(x), \#_{\sigma_2}(x), \ldots, \#_{\sigma_k}(x)) \) in the space \(\mathbb{N}^k \) is denoted \(\Psi(x) \)
and called Parikh’s image of x. The commutative image (or Parikh’s image) $\Psi(L)$ of L is the collection of all Parikh’s images of strings in L. We say that the language L is semi-linear if $\Psi(L)$ is semi-linear. Notice that, since we are interested only in infinite languages, we always restrict our attention on the case of $T_j \neq O$ and implicitly assume that $T_j \neq O$ in the rest of this section. The notation SEMILIN denotes the set of all semi-linear languages.

We note that every semi-linear language L is constantly growing. This fact can be shown as follows. Actually, we need to discuss only the case where $\Psi(L)$ is infinite. Let n_0 denote $e_1 + 1$ and consider all strings w in L with $|w| \geq n_0$. We define K to be the set of all numbers between 1 and $\max\{e_1, e_2, \ldots, e_m\}$. Let $\Psi(w) = (v_1, \ldots, v_k)$ and let (z_1, z_2, \ldots, z_m) be any solution for the equation $v = (1, z_1, z_2, \ldots, z_m)T$. Since $|w| = e_1 + \sum_{i=1}^m e_i + z_i > e_1$, not all z_i’s are zeros. Choose an index i_0 for which $z_{i_0} \neq 0$, and define $z'_{i_0} = z_{i_0} - 1$ and $z'_j = z_j$ for any other i’s. Finally, we take a string $x \in L$ satisfying that $|x| = c_0 + \sum_{i=1}^m e_i + z'_i$. Clearly, there exists a constant $c \in K$ for which $|w| = |x| + c$.

Since semi-linear languages have the constant growth property, Lemma 3.3 therefore leads to the following consequence.

Lemma 5.1 The language family SEMILIN is REG-dissectable.

5.2 Finite Intersections of Semi-Linear Languages

Since REG-DISSECT is closed under union, Lemma 5.1 implies that, for any two languages $L_1, L_2 \in \text{SEMILIN}$, if $L_1 \cup L_2$ is infinite, then $L_1 \cup L_2$ is REG-dissectable. Next, let us consider a question of whether the intersection of finitely many semi-linear languages is REG-dissectable. Under a certain condition, it is possible to prove that this is indeed the case. For readability, we first focus on the intersection of two semi-linear languages.

Lemma 5.2 For any two semi-linear languages L_1 and L_2, if $L_1 \cap L_2$ is infinite and $\Psi(L_1) \cap \Psi(L_2) \subseteq \Psi(L_1 \cap L_2)$, then $L_1 \cap L_2$ is REG-dissectable.

Proof. Let L_1 and L_2 be any two semi-linear languages over a k-letter alphabet Σ, say, $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$. Assume that the intersection $L_1 \cap L_2$ is infinite and that $\Psi(L_1) \cap \Psi(L_2) \subseteq \Psi(L_1 \cap L_2)$. Hereafter, we aim at proving that $L_1 \cap L_2$ can be dissected by a certain regular language.

Consider any partition of L_1 (resp., L_2) as $L_1 = \bigcup_{i=1}^{r_1} A_i$ (resp., $L_2 = \bigcup_{i=2}^{r_2} B_i$) using languages $A_1, A_2, \ldots, A_{r_1}$ (resp., $B_1, B_2, \ldots, B_{r_2}$) whose commutative images are linear sets. It also holds that $\Psi(L_1) \cap \Psi(L_2) = \bigcup_{1 \leq i \leq s_1} \bigcup_{1 \leq \ell \leq s_2} (\Psi(A_i) \cap \Psi(B_\ell))$. Since $\Psi(L_1) \cap \Psi(L_2)$ is infinite, there exists a pair $(j_1, j_2) \in \{s_1 \times s_2\}$ that makes $\Psi(A_{j_1}) \cap \Psi(B_{j_2})$ infinite. Fix such a pair in the following argument.

By Theorem 6, the intersection of finitely many linear sets can be expressed simply by an appropriate semi-linear set. Hence, there is a series of languages D_1, D_2, \ldots, D_s such that $\Psi(A_{j_1}) \cap \Psi(B_{j_2}) = \bigcup_{j=1}^{s} \Psi(D_j)$ and all $\Psi(D_j)$’s are linear sets. Now, we choose an index $j \in [s]$ for which $|\Psi(D_j)| = \infty$, and take an $(m+1) \times k$ critical matrix $T = (d_{i,j})_{i,j}$ for D_j.

For any point $v = (v_1, \ldots, v_k) \in \Psi(D_j)$, each element v_ℓ can be expressed as $v_\ell = d_{1,\ell} + \sum_{i=1}^{m} d_{i+1,\ell}z_i$ for a certain tuple $(z_1, \ldots, z_m) \in \mathbb{N}^m$.

For convenience, set $e = \sum_{i=1}^{m} d_{i+1,\ell}$ and write d'_{ℓ} for $d_{\ell,\ell}$. Now, we define $C_0 = \{x \in \Sigma^* \mid \#\sigma_i(x) - \sum_{i=1}^{m} d'_{i} \equiv 0 \pmod{2e}\}$ and $C_1 = \{x \in \Sigma^* \mid \#\sigma_i(x) - \sum_{i=1}^{m} d'_{i} \equiv e \pmod{2e}\}$. For each string $x \in C_r$, there exists a number $u \in \mathbb{N}$ such that $\#\sigma_i(x) - \sum_{i=1}^{m} d'_{i} = 2eu + cr$, where $r \in \{0, 1\}$. This is equivalent to $\#\sigma_i(x) = d'_{i} + \sum_{i=1}^{m} d'_{i+1}(2u + r)$. Since $(2u, 2u, \ldots, 2u + 1)$ and $(2u + 1, \ldots, 2u + 1)$ are legitimate choices of (z_1, \ldots, z_m) for $\Psi(D_j)$, they generate two different points, say, \tilde{v}_0 and \tilde{v}_1 in $\Psi(D_j)$. Since $\Psi(D_j) \subseteq \Psi(L_1) \cap \Psi(L_2) \subseteq \Psi(L_1 \cap L_2)$ by our assumption, two corresponding strings, say, x_0 and x_1 whose Parikh’s images are respectively \tilde{v}_0 and \tilde{v}_1 belong to $L_1 \cap L_2$. Note that, for each $r \in \{0, 1\}$, x_r also belongs to C_r, and thus it is in $C_r \cap (L_1 \cap L_2)$. Since u is arbitrary, it follows that $|C_r \cap (L_1 \cap L_2)| = \infty$. Since $C_0 \cap C_1 = \emptyset$, C_0 dissectes $L_1 \cap L_2$.

The argument used in the above proof can be easily extended from the intersection of two sets $\Psi(A_1)$ and $\Psi(B_j)$ to the intersection of an arbitrary number of sets. Therefore, we finally obtain the desired result stated below.
Proposition 5.3 Let \(k \) be any number \(\geq 2 \). Let \(L_1, L_2, \ldots, L_k \) be \(k \) semi-linear languages. If \(\bigcap_{i=1}^{k} L_i \) is infinite and \(\bigcap_{i=1}^{k} \Psi(L_i) \subseteq \Psi(\bigcap_{i=1}^{k} L_i) \), then \(\bigcap_{i=1}^{k} L_i \) is REG-dissectable.

Without the condition \(\Psi(L_1) \cap \Psi(L_2) \subseteq \Psi(L_1 \cap L_2) \) in Lemma 5.2, we cannot prove that the intersection of two semi-linear languages is REG-dissectable. More precisely, let \(\text{SEMILIN(2)} \) be the family of two semi-linear languages is REG-dissectable. More precisely, let \(\text{SEMILIN(2)} \) be the family of two semi-linear languages is REG-dissectable.

5.3 Complements and Differences of Semi-Linear Languages

Next, let us consider the complements of semi-linear languages. Unfortunately, the family \(\text{co-SEMILIN} \) is not REG-dissectable. This is easily seen as follows. Let \(L = \{0^n1^m \mid n \in \mathbb{N}\} \) be a language over \(\Sigma = \{0, 1\} \). Since \(\Psi(T) = \mathbb{N}^2 \), \(T \) is in \(\text{SEMILIN} \); thus, \(L \) belongs to \(\text{co-SEMILIN} \). As noted in the previous subsection, \(L \) is not REG-dissectable.

However, under an appropriate condition, the complements of semi-linear languages are proven to be REG-dissectable.

Lemma 5.4 Let \(L \) be any co-infinite semi-linear language over an alphabet \(\Sigma = \{\sigma_1, \ldots, \sigma_k\} \). If \(\Psi(L) \neq_{ac} \mathbb{N}^k \), then the complement of \(L \) is REG-dissectable.

Proof. Let \(L \in \text{SEMILIN} \) be any co-infinite language over an alphabet \(\Sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_k\} \). We first partition \(L \) into \(A_1, A_2, \ldots, A_s \) whose commutative images are linear sets. Clearly, it holds that \(\mathbb{N}^k - \Psi(L) = \bigcap_{i=1}^{s} (\mathbb{N}^k - \Psi(A_i)) \). For each index \(j \in [s] \), take an \((m+1) \times k\) critical matrix \(T_j \) for \(A_j \) and let \(T_j = (a_{ij}^{(j)})) \). Since \(\Psi(L) \neq_{ac} \mathbb{N}^k \), \(\Psi(A_i) \neq_{ac} \mathbb{N}^k \) follows for each index \(i \in [s] \). Note that \(v \in \mathbb{N}^k - \Psi(A_j) \) iff \(v \neq (1, z_1, \ldots, z_m)T_j \) holds for all tuples \((z_1, \ldots, z_m) \in \mathbb{N}^m\).

Here, we introduce new notations \(T_{j}^{(\ell-1)} \) and \(V_{\ell} \). For indices \(\ell \in [m] \) and \(j \in [s] \), the notation \(T_{j}^{(\ell-1)} \) denotes the matrix obtained from \(T_j \) by deleting the \(\ell \)th column. Moreover, for convenience, let \(V_{\ell}^{\perp} \) stand for the set \(\mathbb{N}^{k-1} - V_{\ell} \).

(1) Assume that \(V_\ell \) is infinite for a certain index \(\ell \in [k] \). Fix such an index \(\ell \) and choose an arbitrary point \(v = (v_1, \ldots, v_{\ell-1}, v_{\ell+1}, \ldots, v_k) \) in \(V_\ell \). By the definition of \(V_\ell \), it follows that, for any number \(d \in \mathbb{N} \), a point \(v^{(d)} = (v_1, \ldots, v_{\ell-1}, d, v_{\ell+1}, \ldots, v_k) \) induced from \(v \) always belongs to \(\mathbb{N}^k - \Psi(A_j) \) for all indices \(j \in [s] \).

Take a string \(w_d \) whose Parikh’s image is exactly \(v^{(d)} \). In particular, we have \(\#_{\sigma_i}(w_d) = 1 \). It holds that \(w_d \in T_j \), because \(w_d \in L \) implies \(v^{(d)} = \Psi(w_d) \in \Psi(L) \), a contradiction. Since \(d \) is arbitrary, it suffices to define a regular set \(C = \{ x \mid \#_{\sigma_i}(x) \equiv 0 \mod 2 \} \). We wish to show that \(C \cap T = \overline{C} \cap T = \infty \).

When \(d \) is even, \(\#_{\sigma_i}(w_d) = d \) implies \(\#_{\sigma_i}(w_d) \equiv 0 \mod 2 \); thus, \(w_d \in C \). This yields the membership \(w_d \in C \cap T \). Similarly, when \(d \) is odd, we obtain \(\#_{\sigma_i}(w_d) \equiv 1 \mod 2 \), implying \(w_d \notin C \). Hence, \(w_d \) should be in \(\overline{C} \cap T \). Since \(d \) is arbitrary, it follows that \(C \cap T = \overline{C} \cap T = \infty \).

(2) Assume that all \(V_\ell \)’s are finite. In particular, \(V_1^{\perp} \) should be infinite. Now, we fix an arbitrary point \(v = (v_1, v_2, \ldots, v_k) \) in \(V_1^{\perp} \) and consider the set \(B \) of all possible choices \((j, z_1, \ldots, z_m) \in [s] \times \mathbb{N}^m\) that satisfy the equation \(v = (1, z_1, \ldots, z_m)T_1^{(1-)} \). Since there are only a constant number of such choices, \(B \) should be finite. Next, we define a set \(D \) of integers as \(D = \{ e \in \mathbb{N} \mid e = (1, z_1, \ldots, z_m)T_1[1], (j, z_1, \ldots, z_m) \in [s] \times \mathbb{N}^m \} \), where \(T_1[1] \) denotes the first column vector of \(T_j \). Obviously, this set \(D \) is finite. We wish to claim that, for every number \(e' \in \mathbb{N} - D \), a point \(v' = (e', v_2, \ldots, v_k) \) falls into the set \(\mathbb{N}^k - \Psi(L) \). To show this claim, we assume otherwise. There exists a particular choice \((j', z'_1, \ldots, z'_m) \) satisfying \(v' = (1, z'_1, \ldots, z'_m)T_{j'} \), which implies \(v = (1, z'_1, \ldots, z'_m)T_{j'}^{(1-)} \). In other words, \((j', z'_1, \ldots, z'_m) \) belongs to \(B \); thus, we conclude that \(e' \in D \), a contradiction. Similar to (1), we define \(C = \{ x \mid \#_{\sigma_i}(x) \equiv 0 \mod 2 \} \). It is not difficult to show that \(C \cap T = \overline{C} \cap T = \infty \).

Inspired by the arguments used in the proofs of Lemmas 5.2 and 5.3, we further prove that, under a certain condition described in the following proposition, the difference between two semi-linear languages is REG-dissectable as long as the difference forms an infinite set.

8
Proposition 5.5 Let L_1 and L_2 be any two infinite semi-linear languages satisfying $\Psi(L_1) \subseteq \Psi(L_1 - L_2)$ holds, then the difference $L_1 - L_2$ is REG-dissectable.

Proof. Let L_1 and L_2 be infinite languages in SEMILIN over Σ, where $\Sigma = \{\sigma_1, \ldots, \sigma_k\}$. Consider a partition A_1, A_2, \ldots, A_s of L_1 so that $\Psi(L_1) = \bigcup_{i=1}^s \Psi(A_i)$ and all $\Psi(A_i)$’s are linear sets. Note that $\Psi(L_1) - \Psi(L_2) = \bigcup_{i=1}^s \Psi(A_i) - \Psi(L_2)$. Since REG-DISSECT is closed under union by Lemma 4.1, it suffices to focus on the difference $\Psi(A_i) - \Psi(L_2)$. For notational simplicity, we henceforth assume that $L_1 = A_i$.

Take a critical matrix T for L_1 and s critical matrices S_1, S_2, \ldots, S_s for L_2, where $s \geq 1$. Let $T = (d_{i,j})_{i\leq j}$ and $S_j = (e_{i,j})_{i\leq j}$ for each index $j \in [s]$. Using $m_1 + m_2$ variables z_1, \ldots, z_m, w_1, \ldots, w_m over \mathbb{N}, for each fixed index $j \in [s]$, we consider a matrix equation $(1, z_1, \ldots, z_m)T = (1, w_1, \ldots, w_m)S_j$, which is equivalent to a set of k linear Diophantine equations: $d_{1,q} + \sum_{i=1}^{m_1} d_{i+1,q} z_i = e_{1,q} + \sum_{i=1}^{m_2} e_{i+1,q} w_i$, where q ranges over the index set $[k]$. If T satisfies that, for a certain index i, $d_{i+1,q} = 0$ for all $q \in [k]$, then a point $(1, z_1, \ldots, z_m)T$ does not depend on the choice of z_i. To keep our proof simple, we assume that T does not satisfy this property.

Hereafter, we discuss the case where $m_2 \leq m_1$. For ease of notational complication, we assume that, in the above set of equations, w_1, w_2, \ldots, w_m as well as z_1, z_2, \ldots, z_m (1 $\leq r \leq m_1$) are free variables and the remainders, z_1, z_2, \ldots, z_m, are bound variables. In the case of $m_1 < m_2$, similarly, we set $r = m_2$.

With a help of those free variables, each bound variable $z_r (\ell \in [r])$ can be expressed in the form of linear polynomial, say, $p_\ell^{(j)}(w_1, \ldots, w_m, z_{r+1}, \ldots, z_m)$ with rational coefficients.

Now, we define a set D_ℓ for each index $\ell \in [r]$ as $D_\ell = \{ (z_1, \ldots, z_{\ell-1}, z_{\ell+1}, \ldots, z_m) \in \mathbb{N}^{m-1} \mid \forall j \in [s] \forall w_1, \ldots, w_m \in \mathbb{N} \forall z_{r+1}, \ldots, z_m \in \mathbb{N} \exists i \in [r] - \{ \ell \} \exists t \exists z_i \neq p_\ell^{(j)}(w_1, \ldots, w_m, z_{r+1}, \ldots, z_m) \}.$

In what follows, we will examine two cases separately.

(1) Assume that $D_\ell \neq \emptyset$ holds for a certain index $\ell \in [r]$. We fix such an index ℓ and choose an element $(z_1', \ldots, z_{\ell-1}', z_{\ell+1}', \ldots, z_m')$ from D_ℓ. For any number $d \in \mathbb{N}$, the notation $v^{(d)}$ expresses the vector $(1, z_1', \ldots, z_{\ell-1}', d, z_{\ell+1}', \ldots, z_m', 0, \ldots, 0)T$. By the definition of D_ℓ, it follows that $v^{(d)} \neq (1, w_1, \ldots, w_m)S_j$ for any $j \in [s]$ and for any tuple $(w_1, \ldots, w_m) \in \mathbb{N}^{m-1}$. Therefore, $v^{(d)}$ falls into $\Psi(L_1) - \Psi(L_2)$. By our assumption of $\Psi(L_1) - \Psi(L_2) \subseteq \Psi(L_1 - L_2)$, this implies $v^{(d)} \in \Psi(L_1 - L_2)$; thus, $L_1 - L_2$ contains a string x for which $\Psi(x) = v^{(d)}$. In particular, we choose $2u$ and $2u + 1$ as two candidates for d, where u represents a free variable, and we fix an index $q \in [k]$ satisfying $d_{i+1,q} \neq 0$. Note that such q exists by our choice of T.

Assume that $v^{(d)}$ is of the form (v_1, \ldots, v_k) and, moreover, set $\tilde{d} = \sum_{1 \leq i \leq r, i \neq \ell} d_{i+1,q} z_i'$. When $d = 2u$, we obtain $v_d = d_{1,q} + \tilde{d} + 2ud_{\ell+1,q}$, and thus $v_d - d_{1,q} - \tilde{d} \equiv 0 \pmod{2d_{\ell+1,q}}$ holds. On the contrary, if $d = 2u + 1$, then we obtain $v_d - d_{1,q} - \tilde{d} \equiv 0 \pmod{2d_{\ell+1,q}}$. Hence, $d = 2u$ and $d = 2u + 1$ produce two different equations modulo $2d_{\ell+1,q}$. Since u is arbitrary, the set $C = \{ x \in \Sigma^* \mid \#_{\sigma_\ell}(x) - d_{1,q} - \tilde{d} \equiv 0 \pmod{2d_{\ell+1,q}} \}$ dissolves $L_1 - L_2$.

(2) Assume that $D_\ell = \emptyset$ for all $\ell \in [r]$. Choose a pair $(\ell, q) \in [r] \times [k]$ such that $\sum_{1 \leq i \leq r, i \neq \ell} d_{i+1,q} \neq 0$. Our assumption implies the existence of a certain value z_ℓ' that satisfies the following condition: for every $(w_1, \ldots, w_m) \in \mathbb{N}^{m_2}$ and for every $(z_1, \ldots, z_{r-1}, z_{r+1}, \ldots, z_m) \in \mathbb{N}^{m-1}$, if $z_\ell = p_\ell^{(j)}(w_1, \ldots, w_m, z_{r+1}, \ldots, z_m)$ for all $i \neq \ell$ then $z_\ell' \neq p_\ell^{(j)}(w_1, \ldots, w_m, z_{r+1}, \ldots, z_m)$. Depending on a number $d \in \mathbb{N}$, we use the abbreviation $v^{(d)}$ for the point $(1, x_1, \ldots, x_m)T$, where we set and $z_\ell = z_\ell'$, $\tilde{d} = d$ for any $i \in [r] - \{ \ell \}$, and $z_i = 0$ for all i’s with $r + 1 \leq i \leq m_1$.

Now, we take $2u$ and $2u + 1$ as two different values of d, where u is a free variable. Assume that $v^{(d)}$ is of the form (v_1, \ldots, v_k). Similar to the argument in (1), $d = 2u$ implies $v_d = d_{1,q} + 2ud + d_{\ell+1,q} z_\ell'$, whereas $d = 2u + 1$ implies $v_d = d_{1,q} + 2ud + d_{\ell+1,q} z_\ell''$. To obtain the desired dissection, it suffices to define $C = \{ x \mid \#_{\sigma_\ell}(x) - d_{1,q} - d_{\ell+1,q} z_\ell'' \equiv 0 \pmod{2d} \}$. This set C dissolves $L_1 - L_2$. □

6 Context-Free Languages and Bounded Languages

Context-free languages are an important example of semi-linear languages [10]. A semi-linearity nature of context-free language will be fully exploited in certain cases of the REG-dissectability proofs later in this section. Meanwhile, we set our focal point at the REG-dissectability of $\text{CFL} \cup \text{co-CFL}$.
Proposition 6.1 The language family \(\text{CFL} \cup \text{co-CFL} \) is REG-dissectable.

Proof. (1) Since CFL \(\subseteq \text{SEMLIN} \), it immediately follows from Lemma 3.3 that CFL is REG-dissectable.

(2) Next, we wish to show that co-CFL is also REG-dissectable. Let \(L \) be any infinite language in co-CFL. Let \(\Sigma = \{ \sigma_1, \ldots, \sigma_k \} \) be an alphabet for \(L \). We want to show that (*) there exists an infinite subset \(S \) of \(L \) that is constantly growing. This implies that \(L \) is not CGL-immune. Proposition 3.4 thus implies the REG-dissectibility of \(L \), as required.

To show Statement (*), we need the following form of a pumping lemma for co-CFL, which is a direct consequence of a pumping lemma[1] for CFL, given in [1]. This lemma, however, holds only for infinite languages. For completeness, we include its proof.

Lemma 6.2 [Pumping Lemma for co-CFL] Let \(L \) be any infinite language in co-CFL. There exists a constant \(p \) that satisfies the following: for every string \(w \in L \) with \(|w| \geq p \), there exist strings \(u, v, x, y, z \) such that

(i) \(1 \leq |vy| \leq p \),
(ii) \(w = uxz \), and
(iii) \(w' = uvxyz \) is in \(L \).

Proof. If \(L \) is finite, then \(L =_{ae} \Sigma^* \) and the lemma is trivially true. Hence, we assume that \(L \) is infinite.

Since \(L \) is in context-free languages, we apply the pumping lemma for CFL. Take a pumping constant \(p \) and let \(w \) be any string in \(L \) with \(|w| \geq p \).

Consider a finite set \(A_w = \{ uvxyz \mid w = uxz, 1 \leq |vy| \leq p \} \) generated from \(w \).

It suffices to show that \(A_w \not\subseteq L \). Now, assume otherwise; that is, \(A_w \subseteq L \). We then apply the pumping lemma for CFL to every string \(r \) in \(A_w \). Since \(r \in A_w \), there are strings \(u, v, x, y, z \) such that \(r = uvxyz \) and \(r' = uxz \in L \). Since \(1 \leq |vy| \leq p \), for a certain string \(r' \), \(r' \) coincides with \(w \). Thus, we conclude that \(W \in L \), a contradiction. Therefore, \(A_w \not\subseteq L \) follows, as required.

We return to the proof of Proposition 6.1. Let us choose a pumping constant \(p \) given in Lemma 6.2. This lemma produces an infinite sequence \(\{ w_1, w_2, \ldots \} \) in \(L \) such that, for every index \(i \), \(|w_{i+1}| = |w_i| + c_i \) holds for a certain number \(c_i \in [p] \). Clearly, \(S \) is constantly growing. This completes the proof.

To utilize proof techniques developed for semi-linear languages in Section 5, we focus our attention on a restricted part of context-free languages. A language \(L \) over an alphabet \(\Gamma \) is said to be bounded if there are fixed “non-empty” strings \(w_1, w_2, \ldots, w_m \) in \(\Sigma^* \) such that \(L \) is a subset of the set \(L[w_1, w_2, \ldots, w_m] = \{ w_1^{i_1} w_2^{i_2} \cdots w_m^{i_m} \mid i_1, i_2, \ldots, i_m \in \mathbb{N} \} \). Bounded languages have been frequently used in proofs of class separations: for instance, the separation between CFL(\(k \)) and CFL(\(k + 1 \)) for every \(k \geq 1 \).

For readability, we denote by BCFL the family of all bounded context-free languages. Analogous to CFL(\(k \)) and CFL(\(\lambda \)), we can define BCFL(\(k \)) and BCFL(\(\lambda \)) as well. Liu and Weiner[9] actually proved that the class \(\{ \text{BCFL}(k) \mid k \in \mathbb{N}^+ \} \) forms an infinite hierarchy within the class of context-sensitive languages. Furthermore, we extend Parikh’s images as follows: let the extended Parikh’s image \(\tilde{\Psi}(w) \) be \(\{ (i_1, i_2, \ldots, i_m) \in \mathbb{N}^m \mid w = w_1^{i_1} w_2^{i_2} \cdots w_m^{i_m} \} \) for any \(w \in L[w_1, \ldots, w_m] \). Notice that \(\Psi(w) \) generally forms a “set” because \(w \) may have more than one expression of the form \(w_1^{i_1} w_2^{i_2} \cdots w_m^{i_m} \). Finally, we define \(\tilde{\Psi}(L) = \bigcup_{w \in L} \tilde{\Psi}(w) \) for every bounded language \(L \).

For bounded languages, \(\tilde{\Psi} \) works as \(\Psi \). By extending a result of[7], Ginsburg[5] presented a close relationship between bounded context-free languages and the semi-linearity of \(\Psi \). What we need here is a slightly weaker form of[5] Theorem 5.4.2, as stated below.

Lemma 6.3 For any subset \(L \) of \(L[w_1, \ldots, w_k] \), if \(L \in \text{CFL} \), then \(\tilde{\Psi}(L) \) is semi-linear.

Theorem 6.4 For any number \(k \geq 2 \), BCFL(\(k \)) is REG-dissectable.

Proof. Let \(L' = L[w_1, w_2, \ldots, w_m] \) and let \(L_1, L_2, \ldots, L_k \) be any \(k \) subsets of \(L' \) in BCFL. Assume that \(L = \bigcap_{i=1}^k L_i \) is an infinite set. First, we want to claim the following.

Claim 2 \(\bigcap_{i=1}^k \tilde{\Psi}(L_i) \subseteq \tilde{\Psi}(\bigcap_{i=1}^k L_i) \).

Proof. Let \(v \) be any point in \(\bigcap_{i=1}^k \tilde{\Psi}(L_i) \) and fix \(i \in [k] \) arbitrarily. By the definition of \(\tilde{\Psi} \), there is a unique string \(w \) in \(L' \) such that \(v \in \tilde{\Psi}(w) \). Since \(v \in \tilde{\Psi}(L_i) \), \(w \) should belong to \(L_i \). Since \(i \) is arbitrary, we

1[Pumping Lemma for CFL] For any language \(L \in \text{CFL} \), there exists a constant (called a pumping constant) \(p \) such that, for every \(w \in L \) with \(|w| \geq p \), \(w \) can be decomposed as \(w = uvxyz \) such that \(|xyz| \leq p \), \(|vy| \geq 1 \), and \(w^{(i)} = uv^ixyz \) is in \(L \) for every \(i \in \mathbb{N} \).
conclude that \(w \in \cap_{i=1}^{k} L_i \). It thus follows that \(v \in \Psi(w) \subseteq \Psi(\cap_{i=1}^{k} L_i) \).

By viewing \(w_1, \ldots, w_m \) as “different” symbols \(\sigma_1, \ldots, \sigma_m \) as done in [5], Lemma 6.3 makes it possible for us to exploit a similarity between \(\Psi(w) \) and \(\Psi(w) \). Therefore, the same type of argument developed for the proof of Lemma 6.2 can prove that \(L \) is indeed REG-dissectable.

Next, we discuss the REG-dissectability of the difference of two bounded context-free languages.

Proposition 6.5 The family BCFL\(_2\) is REG-dissectable.

Proof. Assume that \(L_1 - L_2 \) is infinite. If \(L_2 \) is finite, then the proposition is trivially true. Now, we assume that \(L_2 \) is infinite. We claim the following statement.

Claim 3 \(\Psi(L_1) - \Psi(L_2) \subseteq \Psi(L_1 - L_2) \).

Proof. Let \(v \in \Psi(L_1) - \Psi(L_2) \). Note that \(v \notin \Psi(L_2) \). Since \(v \in \Psi(L_1) \), there exists a string \(w \in L_1 \) such that \(v \in \Psi(w) \). If \(w \notin L_2 \), then we obtain \(v \in \Psi(w) \subseteq \Psi(L_2) \), a contradiction against \(v \notin \Psi(L_2) \). Hence, \(w \in L_2 \) follows. Since \(w \in L_1 - L_2 \), we obtain \(v \in \Psi(w) \subseteq \Psi(L_1 - L_2) \), as required.

Similarly to the proof of Theorem 6.4, the use of similarity between \(\Psi(w) \) and \(\Psi(w) \) helps apply an argument used for the proof of Proposition 6.5 to the REG-dissectability of \(L_1 - L_2 \).

Finally, we extend the above result regarding BCFL\(_2\) to the entire Boolean hierarchy over BCFL, denoted BCFL\(_{BH} \), where BCFL\(_{BH} \) is defined in a similar fashion to CFL\(_{BH} \).

Theorem 6.6 The Boolean hierarchy BCFL\(_{BH} \) is REG-dissectable.

Our starting point of the proof of the above theorem has already proven as in Proposition 6.5 because BCFL\(_2\) consists of the differences of two bounded context-free languages.

Proof of Theorem 6.6 Since BCFL\(_{2k-1} \subseteq BCFL_{2k} \) for every \(k \geq 2 \), it is sufficient to prove that BCFL\(_{2k} \) is REG-dissectable for every \(k \geq 1 \). We show this claim by induction on \(k \). Notice that the basis case has been shown as in Proposition 6.5. Now, let \(k \geq 2 \) and consider the family BCFL\(_{2k} \). First, we show a simple fact regarding even levels of the Boolean hierarchy BCFL\(_{BH} \).

Claim 4 For every index \(k \geq 2 \), BCFL\(_{2k} \) = BCFL\(_{2k-2} \lor BCFL_2 \).

Proof. Here, we want to claim that (*) for every index \(k \geq 2 \), BCFL\(_{2k-2} \land co-BCFL = BCFL_{2k-2} \). Let \(F = BCFL_{2k-2} \land co-BCFL \). Since BCFL\(_{2k-2} = BCFL_{2k-3} \land co-BCFL \) by the definition, \(F \) equals BCFL\(_{2k-3} \land co-BCFL \), which is actually BCFL\(_{2k-3} \land co-BCFL \lor BCFL \). Since BCFL is closed under union, we have BCFL \lor BCFL = BCFL. Hence, it follows that \(F = BCFL_{2k-3} \land co-BCFL \lor BCFL \). Using the equation (*), we obtain BCFL\(_{2k} = BCFL_{2k-2} \lor BCFL_2 \).

By the induction hypothesis, BCFL\(_{2k-2} \) is REG-dissectable. Since BCFL\(_2\) and BCFL\(_{2k-2} \) are both REG-dissectable, Lemma 6.5 draws a conclusion that the family BCFL\(_{2k-2} \lor BCFL_2 \) is also REG-dissectable. By Claim 4 this family is exactly BCFL\(_{2k} \). Therefore, BCFL\(_{2k} \) is REG-dissectable, as required for the induction. This completes the proof of Theorem 6.6.

7 Application: Separation with Infinite Margins

We seek an immediate application of our result regarding the REG-dissectability of languages. To describe this application, we introduce extra terminology. Given two infinite sets \(A \) and \(B \), we say that \(A \) covers \(B \) with an infinite margin (or \(A \) is an \(i \)-cover of \(B \), in short) if \(B \subseteq A \) and \(A \neq ae B \). When \(A \) i-covers \(B \), we briefly write \((B, A)\) and call it an \(i \)-covering pair. A language \(C \) is said to separate \((B, A)\) with infinite margins (or \(i \)-separate \((B, A)\), in short) if (i) \(B \subseteq C \subseteq A \), (ii) \(A \neq ae C \), and (iii) \(B \neq ae C \). For convenience, we use the notation \((D, C)\) for two language families \(C \) and \(D \) to denote the set of all \(i \)-covering pairs \((B, A)\).
with $A \in C$ and $B \in D$. We say that C' i-separates (D, C) if, for every pair $(B, A) \in (D, C)$, there exists a set $C'' \in C'$ that i-separates (B, A).

As the starting point, by a direct construction of appropriate languages, we intend to show that CFL/n i-separates (CFL, CFL).

Proposition 7.1 The language family CFL/n i-separates (CFL, CFL).

Proof. Let (B, A) be any i-covering pair in (CFL, CFL). Since $A - B$ is infinite, we can choose an infinite series $S = \{w_1, w_2, \ldots\} \subseteq A - B$ of different lengths. Moreover, we demand that $A - B \not\subseteq S$. Now, we define an advice function f as $f(n) = 1^n$ if $n = |w|$ for a certain string $w \in S$, $f(n) = 0^n$ otherwise. Next, we make a dfa M behave as follows: on input x of length n with advice string $f(n)$, first check if $n > 0$ and $f(n) = 1^n$; if this is the case, M accepts the input; otherwise, it rejects the input. Let C be the set of all input strings that are accepted by M when the advice function f is given. Finally, we define $C' = B \cup (A \cap C)$, which belongs to CFL/n. It is not difficult to show that C' i-separates (B, A). □

Now, we want to apply the REG-dissection results of the previous sections to obtain several i-separation results. The following is a key lemma that bridges between REG-dissectability and i-separation.

Lemma 7.2 Let C, D be any two language families. Assume that $C - D$ is REG-dissectable. It then holds that, for any $A \in C$ and $B \in D$, if A i-covers B, then there exists a language in C' that i-separates (B, A), where $C' = \{B \cup (A \cap C) \mid A \in C, B \in D, C \in REG\}$. Hence, C' i-separates (D, C).

Proof. Let $A \in C$ and $B \in D$ be two infinite languages. Let $D = A - B$. Assume that D is infinite. Our assumption guarantees the existence of a language $C \in REG$ such that C dissected D. We define $C' = B \cup (A \cap C)$. Moreover, since C dissect D, it holds that $|(A \cap C) - B| = \infty$ and $|A - C'| = |C' - B| = \infty$. These imply that $B \subseteq C' \subseteq A$ and $|A - C'| = |C' - B| = \infty$. Thus, C' i-separates (B, A). Since $C \in REG$, C' belongs to the family C'. □

Concerning bounded context-free languages, we can show the following i-separation result.

Theorem 7.3 For any $k \geq 1$, $BCFL_k$ i-separates $(BCFL_k, BCFL_k)$.

Proof. We want to show that $BCFL_k - BCFL_k$ is REG-dissectable. Hence, by applying Lemma 7.2, we immediately obtain the theorem. For our purpose, we want to show that $BCFL_k - BCFL_k$ is included in $BCFL_{BH}$, because $BCFL_{BH}$ is REG-dissectable by Theorem 6.3. More strongly, we want to prove that (*) for any indices $k, m \geq 1$, $BCFL_k - BCFL_m \subseteq BCFL_{BH}$.

For simplicity, let $F_{k, m} = BCFL_k - BCFL_m = BCFL_k \cup \{co\text{-}BCFL_m\}$ and $G_{k, m} = BCFL_k \cup BCFL_m$. We will show the above claim (*) by induction on $(k, m) \in \mathbb{N}^+ \times \mathbb{N}^+$. For the case $(1, 1)$, since $F_{1, 1} = BCFL_2$ holds by the definition, clearly $F_{1, 1}$ is a subset of $BCFL_{BH}$. Moreover, for the case $(2, 1)$, it holds that $F_{2, 1} \subseteq BCFL_4$ as well as $G_{2, 1} \subseteq BCFL_4$ because $BCFL_4 = (BCFL_2 \cup co\text{-}BCFL_2) \cup (BCFL_2 \cup BCFL_2) = F_{2, 1} \cup G_{2, 1}$.

For a general case (k, m), it suffices to consider the case $(2n, 2m + 1)$. Similar to Claim 5, we can prove the next useful relation.

Claim 5 $co\text{-}BCFL_{2k+1} = BCFL_{2k-1} \cup BCFL_2$.

By Claims 4 and 5, $F_{2n-2, 2m-1}$ equals $(BCFL_{2n-2} \cup BCFL_2) \cup (co\text{-}BCFL_{2m-1} \cup BCFL_2)$, which can be transformed into $F_{2n-2, 2m-1} \cup F_{2n-2, 2m-1} \cup G_{2k-2, 2} \cup G_{2k-2, 2}$. By the induction hypothesis, there are two indices ℓ_1, ℓ_2 such that $F_{2n-2, 2m-1} \subseteq BCFL_{2\ell_1}$ and $F_{2n-2, 2m-1} \subseteq BCFL_{2\ell_2}$. By applying Claim 5 repeatedly, we then obtain $BCFL_{2\ell_1} \subseteq \bigcup_{i=1}^{\ell_1} BCFL_2$ and $BCFL_{2\ell_2} = \bigcup_{i=1}^{\ell_2} BCFL_2$. Similarly, we obtain $BCFL_{2k-2} = \bigcup_{i=1}^{k-2} BCFL_2$. Since $\bigcup_{i=1}^{k-2} BCFL_2 = \bigcup_{i=1}^{k-2} BCFL_2$, which is included in $\bigcup_{i=1}^{k-2} BCFL_4 = BCFL_{4(k-1)}$, we obtain $G_{2k-2} = \bigcup_{i=1}^{k-2} BCFL_4$. Thus, we obtain $G_{2k-2} \cup G_{2k-2} \cup BCFL_4$. It thus follows that $F_{2n-2, 2m-1} \subseteq BCFL_{2\ell_1} \cup BCFL_{2\ell_2} \cup BCFL_4 = \bigcup_{i=1}^{\ell_1+\ell_2+2k} BCFL_2$. As discussed before, this is equivalent to $BCFL_{2(\ell_1+\ell_2+2k)}$, which is obviously included in $BCFL_{BH}$. Therefore, we conclude that $F_{2n-2, 2m-1} \subseteq BCFL_{BH}$. □

Without a restriction on bounded languages, we prove only the following i-separation result concerning CFL.

Theorem 7.4 CFL i-separates (CFL, REG).

We will give the proof of this theorem. To use Lemma 7.2, it is sufficient for us to observe the following
simple fact.

Lemma 7.5 Assume that a language family C is closed under union with regular languages. The following three statements are logically equivalent. (1) $\text{REG} - C$ is REG-dissectable. (2) $\text{co-}C$ is REG-dissectable. (3) $\{\Sigma^*\} - C$ is REG-dissectable.

Proof. (2) \Leftrightarrow (3). Trivial. (1) \Rightarrow (3). Trivial. (3) \Rightarrow (1). Consider $A \in \text{REG}$ and $B \in C$. We define $B' = B \cup \overline{A}$. By the property of C, B' belongs to C. Assume that a certain $C' \in \text{REG}$ dissects $\Sigma^* - B'$. This implies that $|C \cap (\Sigma^* - B')| = |C \cap (\Sigma^* - B')| = \infty$. Hence, we have $|C \cap (A - B)| = |C \cap (A - B)| = \infty$. We thus conclude (1). \square

Finally, we present the proof of the desired i-separation result.

Proof of Theorem 7.4. By Proposition 6.1, we obtain the REG-dissectability of co-CFL. By Lemma 7.5, this means that $\text{REG} - \text{CFL}$ is REG-dissectable. By Lemma 7.2, we can conclude that CFL i-separates (CFL, CFL). \square

8 Discussions and Open Problems

We have initiated a fundamental study on the regular languages’ power of dissecting given infinite languages. Although we have developed several proof techniques and proven several basic results, unfortunately, we have left unsolved a number of intriguing questions. For instance, we have shown the REG-dissectability of BCFL_k and $\text{BCFL}(k)$ for each index $k \geq 2$; however, we have not answered the following key question.

Open Problem 8.1 Are CFL_k and $\text{CFL}(k)$ REG-dissectable for any $k \geq 2$?

When we move our attention from CFL to two other language families, $1-\text{C=LIN}$ and $1-\text{PLIN}$, which were introduced in [11] as natural analogues of C=P and PP, respectively, in computational complexity theory, we have no answer to the following question.

Open Problem 8.2 Are $1-\text{C=LIN}$ and $1-\text{PLIN}$ REG-dissectable?

Concerning the i-separation of (CFL, CFL), the following question has still awaited its answer.

Open Problem 8.3 Does CFL i-separate (CFL, CFL)?

Acknowledgments. The authors are grateful to Jeffrey Shallit for having drawn the authors’ attention to [4] whose core concept had helped formulate an initial notion of “dissectability.”

References

[1] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase-structure grammars. *Z. Phonetik Sprachwiss. Kommunikationsforsch*, 14, 143–172, 1961.
[2] N. Chomsky. Three models for the description of language. *IEEE Transactions on Information Theory*, 2(3), 113–124, 1956.
[3] N. Chomsky. On certain formal properties of grammars. *Information and Control*, 2, 137–167, 1959.
[4] M. Domaratzki, J. Shallit, and S. Yu. Minimal covers of formal languages. In *Proc. of the 15th International Conference on Development of Language Theory (DLT 2001)*, Lecture Notes in Computer Science, Springer, Vol.2295, pp.319–329, 2002.
[5] S. Ginsburg. *The Mathematical Theory of Context-Free Languages*. McGraw-Hill, New York, 1966.
[6] S. Ginsburg and E. H. Spanier. Bounded ALGOL-like languages. *Trans. Amer. Math. Soc.*, 113, 333–368, 1964.
[7] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. *Pacific J. Math.*, 16, 285–296, 1966.
[8] L. A. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean hierarchies and sparse Turing-complete sets. *SIAM J. Comput.*, 26 (1997) 634–653.
[9] L. Y. Liu and P. Weiner. An infinite hierarchy of intersections of context-free languages. *Math. Systems Theory*, 7, 185–192, 1973.

[10] R. J. Parikh. On context-free languages. *J. ACM*, 13, 570–581, 1961.

[11] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one tape linear time Turing machines. *Theor. Comput. Sci.*, 411, 22–43, 2010. An extended abstract appeared in the Proc. of the 30th SOFSEM Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2004), Lecture Notes in Computer Science, Springer, Vol.2932, pp.335–348, 2004.

[12] T. Yamakami. Swapping lemmas for regular and context-free languages. Available at [arXiv:0808.4122](http://arxiv.org/abs/0808.4122), 2008.

[13] T. Yamakami. The roles of advice to one-tape linear-time Turing machines and finite automata. *Int. J. Found. Comput. Sci.*, 21, 941–962, 2010. An early version appeared in the Proc. of the 20th International Symposium on Algorithms and Computation (ISAAC 2009), Lecture Notes in Computer Science, Springer, Vol.5878, pp.933–942, 2009.

[14] T. Yamakami. Immunity and pseudorandomness of context-free languages. *Theor. Comput. Sci.*, 412, 6432–6450, 2011.