Cohort Profile

Cohort Profile Update: The TRacking Adolescents’ Individual Lives Survey—The Next Generation (TRAILS NEXT)

Catharina A Hartman,1* Jennifer S Richards,1 Charlotte Vrijen,2 Albertine J Oldehinkel,1 Anoek M Oerlemans1,2 and Tina Kretschmer 2

1Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, Groningen, University Medical Center Groningen, Groningen, The Netherlands and 2Department of Pedagogical Sciences, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands

*Corresponding author. University Medical Center Groningen, Groningen, HPC CC72, PO Box 30.001, 9700 RB Groningen, The Netherlands. E-mail: c.a.hartman@umcg.nl

Received 12 July 2021; Editorial decision 11 December 2021; Accepted 29 March 2022

The original cohort

The TRacking Adolescents’ Individual Lives Survey (TRAILS) has followed pre-adolescents from ~11 years onwards to investigate determinants of mental health and social development during adolescence and young adulthood. TRAILS consists of a population and a high-risk sample: the TRAILS population sample (n = 2229) was set up in 2001 and recruitment took place via primary schools in the north of The Netherlands. The population sample was complemented by a sample selected based on contact with child and adolescent mental health services before age 11. This ‘high-risk sample’ was set up in 2004 (n = 543). In both samples, follow-up data collection occurs at intervals of 2–3 years but the high-risk sample lags behind the population sample by approximately one assessment wave. Seven waves have been completed for the population sample, six waves have been
completed for the high-risk sample. When the most recent co-
hort profile update was published in 2015, data collection fo-
cused on completion of education and entrance into the
labour market. Romantic partners were included as inform-
ants. TRAILS NEXT is an intergenerational spin-off ori-
ginating from TRAILS and runs parallel to but independent
from the original cohort. Participants are recruited as they or
their partner become pregnant, as determined by regular
mailings.

What is the reason for the new focus and
data collection?
TRAILS participants have reached the age at which family
formation is common, which sparked the set-up of the
intergenerational cohort. Prospective intergenerational
cohorts are rare, yet parental development and experiences
prior to parenthood are increasingly emphasized to con-
tribute to offspring development. To elucidate precon-
ception influence on offspring, we have developed
assessment protocols for different ages which incorporate
observations of both parents in interaction with the child,
interviews with both parents, questionnaires completed by
both parents and by the child’s teacher, experimental tasks
with the child and a puppet interview with the child. The
multiple perspectives and modes of assessment make
TRAILS NEXT unique in its wealth of information and ex-
tremely well suited for prospective research on intergenera-
tional transmission of health and disease.

What are the new areas of research?
A few existing intergenerational studies illustrate the novel
topics that can also be addressed with TRAILS NEXT, in-
cluding long-term links between adolescent mental health
and psychopathology in early parenthood as well as off-
spring development. As these studies demonstrate, pa-
rental developmental histories affect child outcomes, and
TRAILS NEXT allows for zooming in on potential mecha-
nisms that explain such links. Particular attention is paid
to capturing these mechanisms in detail, such as parenting,
which is assessed in interviews, questionnaires and through
observations of parent-child interactions. Information
about both parents’ mental health, their relationship,
household characteristics and social support network is
collected at multiple time points throughout early child-
hood, and complemented by experiments and a puppet in-
terview with children and reports from pre-school
teachers. Zooming in on such microlevels provides the in-
fomation that is needed to understand environmental
pathways of continuity of health and disease, and of psy-
chological and social problems, across generations.

Importantly, children are not only exposed to the environ-
ment their parents create but also inherit their genes.
Children-of-twins studies support the notion that intergenera-
tional transmission of traits and behaviours results from a
complex gene-environment interplay. Genotypic informa-
tion allows for examining these mechanisms in non-twin
samples, yet hardly any rigorous tests of genetic transmission
effects have been published, likely because studies with geno-
typic information from parents and children and compre-
ensive environmental assessments are still rare. TRAILS NEXT
fills this gap and uses recent progress in genome-wide associa-
tion studies that have identified robust genetic variants in-
volved in psychological, psychiatric and social outcomes
including educational attainment, depression and attention-
 deficit hyperactivity disorder (ADHD), using polygenic
scores to examine parental effects on child outcomes. The
combination of genetic data and environmental information that is both in-depth
and broad opens a treasure trove for developmental research.

Who is in the cohort?
Since 2015 and ongoing, TRAILS NEXT runs parallel to
TRAILS and is open to any TRAILS participant who
becomes a parent. To identify potential TRAILS NEXT
participants, e-mails are sent out to TRAILS participants
four times per year enquiring after a possible (partner’s)
pregnancy. Affirming TRAILS participants are invited to
participate in TRAILS NEXT and indicate their interest by
clicking a link that is provided in the e-mail. Research
assistants contact the potential participants, distribute in-
formation and eventually carry out home visits (see
Figure 1). TRAILS NEXT families enter the study during
pregnancy (measurement time 1, T1) and are visited by re-
search assistants at 3 months (measurement time 2, T2),
2.5 years (measurement time 3, T3) and 4.5 years (mea-
surement time 4, T4) of offspring age.

Of those who affirmed an ongoing pregnancy following
the e-mail enquiry, approximately 10% actively declined par-
ticipation, had a miscarriage or could not be reached despite
their initial affirmation of being pregnant. As such, TRAILS
NEXT participants are recruited from the TRAILS sample
and enter TRAILS NEXT in a staggered manner when a
pregnancy becomes known. Sometimes TRAILS participants
miss our e-mails initially and enter TRAILS NEXT after preg-
nancy, which means that not for all participants are data
available for all TRAILS NEXT measurement waves. Alongside the ‘target parent’ (i.e. the parent who also participates in TRAILS), the other biological parent is invited into TRAILS NEXT, and—where relevant—non-biological parents who play a significant role in the child’s upbringing. In cases where the relationship between biological parents breaks down before the baby is born, we do not follow up with the biological parent. If the relationship breaks down after the birth, the later assessment waves are conducted with the biological parent that is not the TRAILS participant but only if there is no risk that inclusion jeopardizes continued participation of the TRAILS parent. ‘Social parents’, i.e. new partners who live together with the TRAILS participant, are also invited to join TRAILS NEXT.

At the time of writing (June 2021), $n = 368$ TRAILS respondents (74% female) have entered TRAILS NEXT, with a total of 436 children of whom $n = 263$ are firstborn, $n = 147$ second-born, $n = 23$ third-born and three fourth-born. In other words, many TRAILS respondents enter with more than one child, some TRAILS respondents enter during their second or third pregnancy and $n = 98$ pregnancies are ongoing. Even though all TRAILS participants are roughly of the same age (population cohort: born around 1990/1991; high-risk cohort: born around 1993/1994), they have children at different ages. That said, TRAILS participants were on average 28 years old when entering TRAILS NEXT with their first child, though note that due to only starting TRAILS NEXT when TRAILS participants were already in their early-to-mid-20s, this does not reflect age at first birth.

We compared TRAILS participants who entered TRAILS NEXT with those who reported having had a child between TRAILS assessment Waves 4 (age \sim19) and 7 (age \sim29) but who did not enter TRAILS NEXT ($n = 174$), on a range of measures that might be associated with the age at which someone becomes a parent: (i) gender; (ii) ethnicity of TRAILS participants’ parents, which was conceptualized as at least one parent born in Surinam, Dutch Antilles, Indonesia, Morocco, Turkey or another, non-Western country; (iii) family-of-origin socioeconomic status (SES) which was calculated as factor score based on TRAILS participants’ parents’ education, occupation and family income, with a mean of 0 and higher scores representing higher SES; and (iv) TRAILS participants’ intelligence quotient (IQ) at age 11. IQ was assessed using the Revised Wechsler Intelligence Scales (WISC-R). Full-scale IQ was estimated from the two subscales that showed the highest correlation ($r = 0.90$), specifically the vocabulary subscale which reflects verbal abilities and the block design subscale which reflects spatial abilities15,16 (Table 1).

We also compared TRAILS NEXT participants with TRAILS participants who between TRAILS Waves 4 and 7 indicated not having had a child ($n = 615$). Note that the last group contains only those TRAILS participants who at each wave answered negatively to the question whether they or their partner had a child; we ignored cases for whom missing data did not allow for certain classification. TRAILS NEXT participants come from families with higher socioeconomic status, scored higher on IQ in early
Table 1 Demographic information on TRAILS NEXT participants in comparison with TRAILS parents not in TRAILS NEXT and TRAILS participants who do not have children

	TRAILS NEXT sample^a (n = 368)	TRAILS parents not in TRAILS NEXT (n = 174)	TRAILS parents without children (n = 615)	Comparison	TRAILS participants without children (n = 615)	Comparison
Female	272 (74%)	120 (69%)	364 (59%)	$ \chi^2 = 1.44, P = 0.229$	$ \chi^2 = 21.86, P < 0.001$	
Both parents of Western ethnicity	354 (94%)	160 (92%)	578 (94%)	$ \chi^2 = 0.56, P = 0.439$	$ \chi^2 = 0.02, P = 0.882$	
Family-of-origin SES	0.03 (0.77)	-0.35 (0.73)	0.25 (0.74)	$ t = 5.41, P < 0.001$	$ t = -4.39, P < .001$	
Educational attainment at TRAILS T6/T7	4.53 (1.43)	3.75 (1.38)	4.74 (1.34)	$ t = 4.91, P < 0.001$	$ t = -2.26, P = 0.024$	

Notes: TRAILS-NEXT = the TRacking Adolescents’ Individual Lives Survey: the next generation. TRAILS = The TRacking Adolescents’ Individual Lives Survey (TRAILS). Two-tailed t tests were conducted for continuous data, $ \chi^2 $ tests were conducted for categorical data. Non-Western ethnicity of family of origin indicates that at least one parent was born in Surinam, Dutch Antilles, Indonesia, Morocco, Turkey or another less frequently named country. Family-of-origin socio-economic status (SES) was calculated as factor score based on both parents’ educational attainment, occupations and family income. Educational attainment was coded on a scale from 1 (none beyond primary school) to 7 (university education), reflecting the levels of Dutch secondary and tertiary education. T6/T7: wave 6 (high-risk cohort) and wave 7 (population cohort) of TRAILS. Cognitive abilities of TRAILS respondents were assessed using the Revised Wechsler Intelligence Scales (WISC). The Full-scale deviation quotient was estimated from vocabulary and block design tasks which tap into verbal and spatial abilities, respectively. The subscales are scored on a range from 1 to 19 (verbal) and 1 to 18 (spatial) and subsequently combined to calculate the deviation quotient as suggested in the original source of the test.15-17 T1: Wave 1 of TRAILS. Data were not complete for all demographic indicators, n’s in column heads refer to baseline groups.

^aThe n refers to the number of TRAILS participants who were recruited into the TRAILS NEXT study. They participate in TRAILS with one or more children.

Adolescence and had higher educational attainment than TRAILS participants with children who did not enter TRAILS NEXT. Compared with TRAILS participants without children, TRAILS NEXT participants scored lower on family-of-origin SES, educational attainment, and cognitive abilities as assessed in their own childhood, and were more often female. Overall, the differences likely reflect later age at first birth among men and young adults from families of higher socio-economic status and educational attainment as well as selection bias disfavouring those who score lower on these indicators.

Data collection continues at least until 500 offspring have been included and as long as funding permits thereafter, including measurement beyond age 4.5 years.

What has been measured?

To capture the full range of environmental influence on child development, questionnaires, interviews, observations, evaluations of home conditions, and physical activity monitoring are used, next to use of heel blood in the first week after birth and collection of buccal cells at 2.5 years for genotyping. Table 2 lists all instruments used in TRAILS NEXT as well as the ages at which they are collected.

Parents

During pregnancy and up to 3 months postpartum, we collect weekly measures of parental positive and negative affect and life-events from both parents (T1); detailed pregnancy information is additionally collected during a home visit interview with the mother when the child is 3 months old (T2). Parenting and parental stress, self-efficacy, personality, life-events and parental psychopathology are assessed at T2 to T4. Buccal cells for genotyping are collected from both parents at T3.

Children

At T2, T3 and T4, we collect information on offspring temperament, sleep, crying, medical history, (early precursors of) executive functioning, social competence development, mental health and disease and functioning/impairment, using interviews with parents and questionnaires. At T2, we additionally record early motor development. At T3, self-control and social communication tasks are administered. At T4, puppet interviews are conducted to collect child-perspective data on relationships with parents and peers and internalizing and externalizing problems; and the child’s teacher is asked to provide information on psychopathology, social competence and the
Construct	Instrument	Weekly during pregnancy	Weekly during first 12 weeks postnatal	T2 (3 months)	T3 (2.5 years)	T4 (4.5 years)
About the child						
Temperament/behavioural control	Infant Behaviour Questionnaire¹⁸	P				
	Early Childhood Behaviour Questionnaire¹⁹	P				
	Child Behaviour Questionnaire²⁰	P				
Social competence	Infant–Toddler Social and Emotional Assessment²¹	P				
	Strengths and Difficulties Questionnaire^{22,23}	P		P + T		
	Ages and Stages Questionnaire²⁴	P				
	Social Behavior Questionnaire²⁵	P		P + T		
Psychopathology	Child Behaviour Checklist^{26,27}	P		P	P	
Impairment	Caregiver-Teacher Report Form²⁸	T				
Sleep/cry problems	Sleep and Settle Questionnaire²⁹	I	I	I	I	I
Medical history	Medical history interview	I	I	I	I	I
Executive functioning	Childhood Executive Functioning Inventory³¹	P + T				
Motor activity	10-min baby movements³²	O				
	1 day with accelerometers	O				
Self-control	Present task³³	O				
	Raisin task³⁴	O				
Social-communicative behaviour	Early social communication scales³⁵	O				
Relationships with others and adjustment	Berkeley Puppet Interview^{36,37}	C				
About the parents						
Mood	In the last week, how happy were you?	P	P	P	P	
	In the last week, how anxious were you?	P	P	P	P	
	In the last week, how calm were you?	P	P	P	P	
	In the last week, how sad were you?	P	P	P	P	
Life events	How many good experiences did you have?	P	P	P	P	
	How many bad experiences did you have?	P	P	P	P	
Life events questionnaire		P	P	P	P	P
Life experience questionnaire		I	I	I	I	I
Pregnancy history	Pregnancy history, including substance use	I	I	I	I	I
Family resources	Socioeconomic status	P	P	P	P	P
	Confusion, Hubbub, and Order Scale³⁹	P	P	P	P	P
	Home Observation for Measurement of Environment Inventory⁴⁰	O	O	O	O	O
Social support	Multidimensional scale of perceived social support⁴¹	P	P	P	P	P
Personality	Revised NEO Personality Inventory⁴²	P	P	P	P	P
Psychopathology	Adult Self Report²⁸	P	P	P	P	P
	Depression Impairment Scale for Parents⁴³	P	P	P	P	P
Parents’ relationship	Negative marital interactions⁴⁴	P	P	P	P	P
child’s peer relationships. Buccal cells for genotyping are collected from children at T3. In Spring 2021, we received permission from the Dutch National Institute for Public Health and the Environment (Ministry of Health, Welfare and Sport) to use dried blood spots from newborn blood screenings, which allows us to assess genetic information for all children born since 2015 and who will be born in the future, pending parental consent.

Parent-child relationship

At T2, T3 and T4 we zoom in on the parent-child relationship quality using repeated video observations of parent-child interactions that are micro- and macro-coded. We ask both ‘social’ parents, i.e. with whom the child lives, to take part in these tasks (separately).

Home environment and social support network

At T2, T3 and T4, we collect data on: household chaos, i.e. the level of disorganization, instability and environmental confusion; home environment from the observer perspective, i.e. living and play environment, hygiene in the household, interactions between family members; and family social resources, specifically each parent’s perceived social support.

What has been found? Ongoing research in TRAILS NEXT

A range of projects are carried out in TRAILS NEXT which benefit from multigenerational data, including on intergenerational transmission of peer experiences and early social development. Here, the starting point is that social experiences in adolescence—specifically those with peers—do not just affect psychological development but might influence next-generation social development. For instance, a parent who has been bullied frequently in adolescence might be more likely to raise offspring to stand up against bullying or might, in contrast, be overprotective and controlling of offspring peer experiences. In TRAILS NEXT we study intergenerational processes and parenting mechanisms, as well as genetic confounding and genetic nurture as drivers of intergenerational continuity. TRAILS NEXT allows studying continuities between adolescent psychopathology, exposures during pregnancy and next-generation onset of psychopathology. For example, it is often assumed that exposures such
as stress and smoking during pregnancy are a direct cause in the development of neurodevelopmental problems such as ADHD. The prospectively collected multigenerational data in TRAILS NEXT allow us to test if exposures during pregnancy as such are causal or if the broader continuity between preconception psychopathology, including its risks (e.g. genetic risk, childhood adversity) and consequences (e.g. prenatal exposures, parenting), explains associations. Finally, TRAILS NEXT allows for sophisticated research into parents’ developmental histories as determinants of parenting and parents’ adjustment and health.3 To this end, we conduct research into how individual variation in prenatal and postpartum sadness is explained by preconception mental health, and we study genetic and environmental interplay in early social and behavioural development.

What are the main strengths and weaknesses?

In addition to advantages inherent in the prospective, intergenerational design, TRAILS NEXT offers distinct strengths. First, fathers are included by design and should ultimately constitute half of the sample on which detailed developmental data are available. Second, we systematically and regularly enquire about pregnancies and are successful in including the majority of TRAILS participants who indicate being pregnant or fathering a pregnancy into the TRAILS NEXT sample. Third, we combine multiple assessment methods (one-on-one interviews, questionnaires, observations, experimental tasks, DNA) and collect information from mothers, fathers, children and teachers. Fourth, most constructs are assessed using multiple instruments and from multiple reporters to capture the many facets that constitute, for example, positive parent-child relationships or peer difficulties. The latter two strengths clearly distinguish TRAILS NEXT from larger birth cohorts, which seldom have resources to conduct such ‘deep phenotyping’.

Longitudinal intergenerational data collection is challenging, as children are born over a long period of time. Results published on a part of the sample will carry some bias (e.g. young parents), and assessment methods and instruments that now constitute the state of the art may be replaced by technological and substantive advances in a few years. Also, we have rich and detailed information about the developmental past of one parent (the TRAILS index participant) but lack comparable prospective information on the child’s other parent or other caregivers. Finally, given its relatively small base sample, TRAILS NEXT is challenged to ensure maximum inclusion to ensure power for complex analyses that tackle novel mechanisms.

Can I get hold of the data? Where can I find out more?

TRAILS NEXT is open to multicohort collaborations. With some delay, TRAILS NEXT data are also made available to researchers outside the TRAILS consortium, with availability communicated through DANS EASY [https/easy.dans.knaw.nl]. Apart from an administrative fee, data can be obtained without costs by submitting a publication proposal. Provided that the proposed publication does not overlap with other TRAILS publications and ongoing research, permission to use the requested data is given. More information and a publication proposal form can be obtained via the website [https://www.trails.nl/en] and the corresponding author.

Ethics approval

TRAILS NEXT was approved by the Dutch Central Committee on Research Involving Human Subjects (approval number NL47782.042.14).

Author contributions

C.A.H. is in charge of setting up the cohort study. C.A.H. and T.K. drafted the manuscript. T.K. and J.S.R. performed the data analysis of the manuscript. J.S.R., C.V., A.J.O. and A.M.O. contributed to the planning and the finalization of the manuscript.

Funding

This work was supported by the National Science Foundation (NWO) Gravitation (grant number 024.001.003) and a Starting Grant from the European Research Council under the European Union’s Horizon 2020 Research and Innovation programme (grant number 757364) awarded to T.K.

Acknowledgements

This research is part of the TRacking Adolescents’ Individual Lives Survey (TRAILS). Participating centres of TRAILS include the University Medical Center and University of Groningen, Utrecht University, the Radboud Medical Center Nijmegen and the Parnassia Group, all in The Netherlands. TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research (NWO), ZonMW, GB-MaGW, the Dutch Ministry of Justice, the European Science Foundation, the European Research Council, BBMRI-NL and the participating universities. We thank Aukelien Mulder, Marjan Houwing, Michelle Bos and Dennis Raven for data collection and management. We are grateful to the families participating in TRAILS NEXT.
Conflict of interest
None declared.

References

1. Oldehinkel AJ, Rosmalen JG, Buitemaar JK et al. Cohort Profile Update: The TRacking Adolescents’ Individual Lives Survey (TRAILS). Int J Epidemiol 2015;44:76.
2. Aagaard-Hansen J, Norris SA, Maindal HT, Hanson M, Fall C. What are the public health implications of the life course perspective? Glob Health Action 2019;12:1603491.
3. Kretschmer T. The value of multiple-generation cohorts for studying parenting and child development. Child Dev Perspect 2021;15:83–89.
4. Spry E, Giallo R, Moreno-Betancur M et al. Preconception prediction of expectant fathers’ mental health: 20-year cohort study from adolescence. BJPsych Open 2018;4:58–60.
5. Spry E, Moreno-Betancur M, Becker D et al. Maternal mental health and infant emotional reactivity: a 20-year two-cohort study of preconception and perinatal exposures. Psychol Med 2020;50:827–37.
6. Brew BK, Lundholm C, Viktorn A, Lichtenstein P, Larsson H, Almqvist C. Longitudinal depression or anxiety in mothers and offspring asthma: a Swedish population-based study. Int J Epidemiol 2018;47:166–74.
7. McAdams TA, Neiderhiser JM, Rijsdijk FV, Narusyte J, Lichtenstein P, Eley TC. Accounting for genetic and environmental confounds in associations between parent and child characteristics: a systematic review of children-of-twins studies. Psychol Bull 2014;140:1138–73.
8. Lee JJ, Wedow R, Okbay A et al.; Social Science Genetic Association Consortium. Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. Nat Genet 2018;50:1112–21.
9. Wray NR, Ripke S, Mattheisen M et al.; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 2018;50:668–81.
10. Demontis D, Walters RK, Martin J et al.; 23andMe Research Team. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 2019;51:63–75.
11. Gage SH, Munafò MR, Davey Smith G. Causal inference in developmental origins of health and disease (DOHaD) research. Annu Rev Psychol 2016;67:567–85.
12. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1–22.
13. Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting polygenic risk of psychiatric disorders. Biol Psychiatry 2019;86:97–109.
14. Kong A, Thorleifsson G, Frigge ML et al. The nature of nurture: effects of parental genotypes. Science 2018;359:424–28.
15. Wechsler D. Manual for the Wechsler Intelligence Scale for Children. San Antonio, TX: Psychological Corporation, 1974.
16. Sattler J. Assessment of Children. 3rd edn. San Diego, CA: Jerome M Sattler, 1992.
17. Silverstein AB. A formula for the standard error of estimate of deviation quotients on short forms of Wechsler’s scales. J Clin Psychol 1985;41:408–09.
18. Gartstein MA, Rothbart MK. Studying infant temperament via the revised Infant Behavior Questionnaire. Infant Behav Dev 2003;26:64–86.
19. Putnam SP, Gartstein MA, Rothbart MK. Measurement of fine-grained aspects of toddler temperament: the Early Childhood Behavior Questionnaire. Infant Behav Dev 2006;29:386–401.
20. Rothbart MK, Ahadi SA, Hershey KL, Fisher P. Investigations of temperament at three to seven years: the Children’s Behavior Questionnaire. Child Dev 2001;72:1394–408.
21. Carter AS, Briggs-Gowan MJ, Jones SM, Little TD. The Infant-Toddler Social and Emotional Assessment (ITSEA): Factor structure, reliability, and validity. J Abnorm Child Psych 2003;31:495–514.
22. Goodman R, Scott S. Comparing the Strengths and Difficulties Questionnaire and the Child Behavior Checklist: is small beautiful? J Abnorm Child Psych 1999;27:17–24.
23. Goodman R. Psychometric properties of the Strengths and Difficulties Questionnaire. J Am Acad Child Psy 2001;40:1337–45.
24. Squires J, Bricker D, Twombl y E. The ASQ: SE User’s Guide: for the Ages & Stages Questionnaires: Social-Emotional. Baltimore, MD: Paul H Brookes, 2002.
25. Hartman CA, Luteijn E, Serra M, Minderer R. Refinement of the Children’s Social Behavior Questionnaire (CSBQ): an instrument that describes the diverse problems seen in milder forms of PDD. J Autism Dev Disorder 2006;36:325–42.
26. Koot HM, Van Den Oord EJ, Verhulst FC, Boomsma DI. Behavioral and emotional problems in young preschoolers: Cross-cultural testing of the validity of the Child Behavior Checklist/2-3. J Abnorm Child Psych 1997;25:183–96.
27. Verhulst FC, KootEJ, Handleiding JM. Handleiding voor de CBCL/4-18 [Manual for the CBCL/4-18]. Afdeling Kinder-en Jeugdpsychiatrie, Sophia Kinderziekenhuis/Academisch Ziekenhuis Rotterdam/Erasmus Universiteit Rotterdam, 1996.
28. Achenbach TM, Rescorla LA. In: Manual for the ASEBA School-Age Forms & Profiles: Child Behavior Checklist for Ages 6–18. Teacher’s Report Form, Youth Self-Report: An Integrated System of Multi-Informant Assessment. Burlington, VT: University of Vermont, Research Center for Children Youth & Families, 2001.
29. Fabiano GA, Pelham WE Jr, Waschbusch DA et al. A practical measure of impairment: psychometric properties of the impairment rating scale in samples of children with attention deficit hyperactivity disorder and two school-based samples. J Clin Child Adolesc 2006;35:369–85.
30. Matthey S. The sleep and settle questionnaire. J Paediatr Child Health 2001;37:470–75.
31. Thorell LB, Nyberg L. The Childhood Executive Functioning Inventory (CHEXI): a new rating instrument for parents and teachers. Dev Neuropsychol 2008;33:536–52.
32. Berghuis SA, Soechitram SD, Sauer PJ, Bos AF. Prenatal exposure to polychlorinated biphenyls and their hydroxylated metabolites is associated with neurological functioning in 3-month-old infants. Toxicol Sci 2014;142:455–62.
33. Mischel W, Shoda Y, Rodriguez MI. Delay of gratification in children. *Science* 1989;244:933–38.
34. Kochanska G, Murray KT, Harlan ET. Effortful control in early childhood: continuity and change, antecedents, and implications for social development. *Dev Psychol* 2000;36:220–32.
35. Mundy P, Delgado C, Block J, Venezia M, Hogan A, Seibert J. *Early Social Communication Scales (ESCS)*. Coral Gables, FL: University of Miami, 2003.
36. Measelle JR, Ablow JC, Cowan PA, Cowan CP. Assessing young children’s views of their academic, social, and emotional lives: an evaluation of the self-perception scales of the Berkeley Puppet Interview. *Child Dev* 1998;69:1556–76.
37. Ringoot AP, Jansen PW, Steenweg-de Graaff J et al. Young children’s self-reported emotional, behavioral, and peer problems: the Berkeley Puppet Interview. *Psychol Assess* 2013;25:1273–85.
38. Sarason IG, Johnson JH, Siegel JM. Assessing the impact of life changes: development of the Life Experiences Survey. *J Consult Clin Psych* 1978;46:932–46.
39. Matheny AP Jr, Wachs TD, Ludwig JL, Phillips K. Bringing order out of chaos: Psychometric characteristics of the confusion, hubbub, and order scale. *J Appl Dev Psychol* 1995;16:429–44.
40. Rijlaarsdam J, Tiemeier H, Hofman A et al. Home environments of infants: Relations with child development through age 3. *J Epidemiol Community Health* 2013;67:14–20.
41. Zimet GD, Dahlem U: Ref. 42NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. *J Pers Assess* 1988;52:30–41.
42. Costa PT, McCrae RR. The revised neo personality inventory (neo-pi-r). In: Boyle GJ, Matthews G, Saklofske GH (eds). The *SAGE Handbook of Personality Theory and Assessment*. Thousand Oaks: Sage Publications Inc., 2008, pp. 179–98.
43. Lewis K, Elam K, Sellers R et al. The Depression Impairment Scale for Parents (DISP): a new scale for the measurement of impairment in depressed parents. *Psychiatr Res* 2013;210:1184–90.
44. Whisman MA, Dementyeva A, Baucom DH, Bulik CM. Marital functioning and binge eating disorder in married women. *Int J Eat Disord* 2012;45:385–89.
45. Adamson LB, Bakeman R, Deckner DF, Nelson PB. Rating parent–child interactions: Joint engagement, communication dynamics, and shared topics in autism, Down syndrome, and typical development. *J Autism Dev Disorder* 2012;42:2622–35.
46. Deater-Deckard K. Parenting and child behavioral adjustment in early childhood: a quantitative genetic approach to studying family processes. *Child Dev* 2000;71:468–84.
47. Wakschlag LS, Hill C, Carter AS et al. Observational assessment of preschool disruptive behavior, part I: reliability of the Disruptive Behavior Diagnostic Observation Schedule (DB-DOS). *J Am Acad Child Psy* 2008;47:622–31.
48. Wakschlag LS, Briggs-Gowan MJ, Hill C et al. Observational assessment of preschool disruptive behavior, part II: Validity of the Disruptive Behavior Diagnostic Observation Schedule (DB-DOS). *J Am Acad Child Psy* 2008;47:632–41.
49. Abidin R. *Manual for the Parenting Stress Index*. Odessa, FL: Psychological Assessment Resources, 1995.
50. De Brock A, Vermulst A, Gerris J, Abidin R. *Nijmeegse Ouderlijke Stress Index*. Lisse, The Netherlands: Swets en Zeitlinger, 1992.
51. Coleman PK, Karraker KH. Maternal self-efficacy beliefs, competence in parenting, and toddlers’ behavior and developmental status. *Infant Ment Health J* 2003;24:126–48.
52. Waylen A, Stewart-Brown S. Factors influencing parenting in early childhood: a prospective longitudinal study focusing on change. *Child Care Health Dev* 2010;36:198–207.
53. Brockington I, Fraser C, Wilson D. The postpartum bonding questionnaire: a validation. *Arch Womens Ment Health* 2006;9:233–42.
54. Brenner V, Fox RA. An empirically derived classification of parenting practices. *J Genet Psychol* 1999;160:343–56.
55. Boivin M, Pérusse D, Dionne G et al. The genetic-environmental etiology of parents’ perceptions and self-assessed behaviours towards their 5-month-old infants in a large twin and singleton sample. *J Child Psychol Psychiatry* 2005;46:612–30.
56. Thomasgard M, Metz WP, Edelbrock C, Shonkoff JP. Parent-child relationship disorders: I. Parental overprotection and the development of the Parent Protection Scale. *J Dev Behav Pediatr* 1995;16:244–50.
57. Titozyk L, Sadeh A, Glickman-Gavreli T. Infant sleep and paternal involvement in infant caregiving during the first 6 months of life. *J Pediatric Psychol* 2010;36:36–46.