Review of the existing maximum residue levels for napropamide according to Article 12 of Regulation (EC) No 396/2005

European Food Safety Authority (EFSA),
Alba Brancato, Daniela Brocca, Luis Carrasco Cabrera, Chloe De Lentdecker, Zoltan Erdos, Lucien Ferreira, Luna Greco, Samira Jarrah, Dimitra Kardassi, Renata Leuschner, Alfonso Lostia, Christopher Lythgo, Paula Medina, Ileana Miron, Tunde Molnar, Ragnor Pedersen, Hermine Reich, Angela Sacchi, Miguel Santos, Alois Stanek, Juergen Sturma, Jose Tarazona, Anne Theobald, Benedicte Vagenende and Laura Villamar-Bouza

Abstract
According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance napropamide. To assess the occurrence of napropamide residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Directive 91/414/EEC as well as the European authorisations reported by Member States (including the supporting residues data). Based on the assessment of the available data, MRL proposals were derived and a consumer risk assessment was carried out. Although no apparent risk to consumers was identified, some information required by the regulatory framework was missing. Hence, the consumer risk assessment is considered indicative only and some MRL proposals derived by EFSA still require further consideration by risk managers.

© 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: napropamide, MRL review, Regulation (EC) No 396/2005, consumer risk assessment, amide, herbicide

Requestor: European Commission
Question number: EFSA-Q-2009-00029
Correspondence: pesticides.mrl@efsa.europa.eu
Acknowledgement: EFSA wishes to thank the rapporteur Member State Denmark for the preparatory work on this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018. Reasoned Opinion on the review of the existing maximum residue levels for napropamide according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2018;16(8):5394, 62 pp. https://doi.org/10.2903/j.efsa.2018.5394

ISSN: 1831-4732

© 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

Napropamide was included in Annex I to Directive 91/414/EEC on 1 January 2011 by Commission Directive 2010/83/EC, and has been deemed to be approved under Regulation (EC) No 1107/2009, in accordance with Commission Implementing Regulation (EU) No 540/2011, as amended by Commission Implementing Regulation (EU) No 541/2011. As the active substance was approved after the entry into force of Regulation (EC) No 396/2005 on 2 September 2008, the European Food Safety Authority (EFSA) is required to provide a reasoned opinion on the review of the existing maximum residue levels (MRLs) for that active substance in compliance with Article 12(1) of the aforementioned regulation.

As the basis for the MRL review, on 16 June 2017 EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit their national Good Agricultural Practices (GAPs) by 16 July 2017, in a standardised way, in the format of specific GAP forms allowing the rapporteur Member State (RMS), Denmark, to identify the critical GAPs, in the format of specific GAP overview file. The RMS did not report any uses authorised in third countries that might have a significant impact on international trade. Member States were invited to provide the requested information supporting the critical GAPs in the form of a detailed evaluation report, as specified in the GAP overview file. The collection of supporting data initiated on 10 October 2017 and finalised on 10 November 2017.

On the basis of all the data submitted by Member States, EFSA, according to the process, should ask Denmark as the designated RMS, to complete the Pesticide Residues Overview File (PROFile) and to prepare a supporting evaluation report. The PROFile and the supporting evaluation report were provided by the RMS to EFSA on 12 January 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Based on the conclusions derived by EFSA in the framework of Directive 91/414/EEC and the additional information provided by the RMS and Member States, EFSA prepared in April 2018 a draft reasoned opinion, which was circulated to Member States for consultation via a written procedure. Comments received by 9 May 2018 were considered during the finalisation of this reasoned opinion. The following conclusions are derived.

The metabolism of napropamide following soil treatment in fruits, leafy vegetables, root crops and pulses/oilseeds is similar. A residue definition for risk assessment common to all commodities is proposed as napropamide (sum of isomers); this residue definition is restricted to soil treatments. As no metabolism studies following foliar treatments were available, the same residue definition was applied on a tentative basis to this type of treatment. A residue definition for enforcement for all crops under review is proposed as napropamide (sum of isomers). A validated analytical method for the main four plant matrices with a limit of quantification (LOQ) of 0.01 mg/kg is available.

The data on metabolism and distribution of napropamide in rotational crops indicated that the metabolism in rotational crops is similar to the pathway observed in primary crops. According to the confined rotational crop study, significant residues are not expected in rotational crops planted with plant-back interval (PBI) of 180 days.

Storage stability data is available for high water and high oil content matrices, but no data is available for high acid and dry content matrices.

Studies investigating the stability of napropamide to hydrolysis under standard conditions of pasteurisation, baking/brewing/boiling and sterilisation were not available for this review. Nevertheless, these studies are not necessary since residue levels are expected to remain below 0.1 mg/kg in raw commodities and overall chronic exposure is very low. Studies investigating the magnitude of residues in processed commodities are not required.

The available data are considered sufficient to derive appropriate MRL proposals as well as risk assessment values for all crops under review, except for table/wine grapes, figs, granate apples/pomegranate, sweet peppers/bell peppers, watermelons, turnip tops, fresh herbs, herbal infusions and fresh spices where the available data were insufficient to derive tentative MRLs.

Studies investigating the metabolism in livestock were conducted on lactating goats and laying hens. Since the calculated dietary burdens for all groups of livestock were found to be below the trigger value of 0.1 mg/kg dry matter (DM), further investigation of residues as well as the setting of MRLs in commodities of animal origin is unnecessary.

Chronic consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 2 of the EFSA PRIMo. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for France, all population, representing 0.2% of the acceptable
daily intake (ADI). Although some uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumers. Acute exposure calculations were not carried out because an acute reference dose (ARfD) was not deemed necessary for this active substance. Considering the very low exposure derived from the authorised uses, it was concluded that a potential change of isomer ratios in the final residue will not be of concern. In case future uses of napropamide would lead to a higher consumer exposure, further information regarding the impact of plant and livestock metabolism on the isomer ratio might be required.
Table of contents

Abstract... 1
Summary... 3
Background ... 6
Terms of Reference .. 7
The active substance and its use pattern ... 7
Assessment.. 8
1. Residues in plants .. 8
1.1. Nature of residues and methods of analysis in plants .. 8
1.1.1. Nature of residues in primary crops ... 8
1.1.2. Nature of residues in rotational crops .. 9
1.1.3. Nature of residues in processed commodities ... 9
1.1.4. Methods of analysis in plants... 9
1.1.5. Stability of residues in plants... 9
1.1.6. Proposed residue definitions... 9
1.2. Magnitude of residues in plants... 10
1.2.1. Magnitude of residues in primary crops.. 10
1.2.2. Magnitude of residues in rotational crops... 11
1.2.3. Magnitude of residues in processed commodities .. 11
1.2.4. Proposed MRLs .. 12
2. Residues in livestock... 12
3. Consumer risk assessment.. 12
Conclusions.. 13
Recommendations.. 13
References... 16
Abbreviations ... 18
Appendix A – Summary of authorised uses considered for the review of MRLs .. 20
Appendix B – List of end points .. 42
Appendix C – Pesticide Residue Intake Model (PRIMo) .. 54
Appendix D – Input values for the exposure calculations .. 56
Appendix E – Decision tree for deriving MRL recommendations .. 60
Appendix F – Used compound codes .. 62
Review of the existing MRLs for napropamide

Background

Regulation (EC) No 396/2005\(^1\) (hereinafter referred to as ‘the Regulation’) establishes the rules governing the setting and the review of pesticide maximum residue levels (MRLs) at European level. Article 12(1) of that Regulation stipulates that the European Food Safety Authority (EFSA) shall provide within 12 months from the date of the inclusion or non-inclusion of an active substance in Annex I to Directive 91/414/EEC\(^2\) a reasoned opinion on the review of the existing MRLs for that active substance. As napropamide was included in Annex I to Council Directive 91/414/EEC on 1 January 2011 by means of Commission Directive 2010/83/EU\(^3\), and has been deemed to be approved under Regulation (EC) No 1107/2009\(^4\), in accordance with Commission Implementing Regulation (EU) No 540/2011\(^5\), as amended by Commission Implementing Regulation (EU) No 541/2011\(^6\), EFSA initiated the review of all existing MRLs for that active substance.

According to the legal provisions, EFSA shall base its reasoned opinion in particular on the relevant assessment report prepared under Directive 91/414/EEC. It should be noted, however, that, in the framework of Directive 91/414/EEC, only a few representative uses are evaluated, whereas MRLs set out in Regulation (EC) No 396/2005 should accommodate all uses authorised within the European Union (EU), and uses authorised in third countries that have a significant impact on international trade. The information included in the assessment report prepared under Directive 91/414/EEC is therefore insufficient for the assessment of all existing MRLs for a given active substance.

To gain an overview of the pesticide residues data that have been considered for the setting of the existing MRLs, EFSA developed the Pesticide Residues Overview File (PROFile). The PROFile is an inventory of all pesticide residues data relevant to the risk assessment and MRL setting for a given active substance. This includes data on:

- the nature and magnitude of residues in primary crops;
- the nature and magnitude of residues in processed commodities;
- the nature and magnitude of residues in rotational crops;
- the nature and magnitude of residues in livestock commodities;
- the analytical methods for enforcement of the proposed MRLs.

As the basis for the MRL review, on 16 June 2017 EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit their national Good Agricultural Practices (GAPs) that are authorised in different Member States by 16 July 2017, in a standardised way in the format of specific GAP forms allowing the rapporteur Member State Denmark to identify the critical GAPs, in the format of specific GAP overview file. The RMS did not report any uses authorised in third countries that might have a significant impact on international trade. Member States were invited to provide the requested information supporting the critical GAPs in the form of a detailed evaluation report, as specified in the GAP overview file. The collection of supporting data initiated on 10 October 2017 and finalised on 10 November 2017.

In this frame, evaluation reports were submitted by Austria, Belgium, Czech Republic, Finland, France, Germany, Greece, Italy, Lithuania, the Netherlands, the United Kingdom and the European Union Reference Laboratories for Pesticide Residues (Austria, 2017; Belgium, 2017; Czech Republic, 2017; Finland, 2017; France, 2017; Germany, 2017; Greece, 2017; Italy, 2017; Lithuania, 2017; Netherlands, 2017; United Kingdom, 2017, EURL, 2018).

On the basis of all the data submitted by Member States, EFSA, according to the process, should ask Denmark as the designated RMS, to complete the Pesticide Residues Overview File (PROFile) and

1 Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
2 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32. Repealed by Regulation (EC) No 1107/2009.
3 Commission Directive 2010/83/EU of 30 November 2010 amending Council Directive 91/414/EEC to include napropamide as active substance. OJ No L 315, 1.12.2010, p. 29–31.
4 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
5 Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 1–186.
6 Commission Implementing Regulation (EU) No 541/2011 of 1 June 2011 amending Implementing Regulation (EU) No 540/2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187–188.
to prepare a supporting evaluation report. The PROFile and the supporting evaluation were provided by the RMS to EFSA on 12 January 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Based on the conclusions derived by EFSA in the framework of Directive 91/414/EEC and the additional information provided by the Member States, EFSA prepared in April 2018 a draft reasoned opinion, which was submitted to Member States for commenting via a written procedure. All comments received by 9 May 2018 were considered by EFSA during the finalisation of the reasoned opinion.

The evaluation report submitted by the RMS (Denmark, 2018) and the evaluation reports submitted by Member States Austria, Belgium, the Czech Republic, Finland, France, Germany, Greece, Italy, Lithuania, the Netherlands, the United Kingdom and the EURL (Austria, 2017; Belgium, 2017; Czech Republic, 2017; Finland, 2017; France, 2017; Germany, 2017; Greece, 2017; Italy, 2017; Lithuania, 2017; Netherlands, 2017; United Kingdom, 2017, EURL, 2018) are considered as supporting documents to this reasoned opinion and, thus, are made publicly available.

In addition, key supporting documents to this reasoned opinion are the completeness check report (EFSA, 2018a) and the Member States consultation report (EFSA, 2018b). These reports are developed to address all issues raised in the course of the review, from the initial completeness check to the reasoned opinion. Also, the chronic exposure calculations for all crops reported in the framework of this review performed using the EFSA Pesticide Residues Intake Model (PRIMo) and the PROFile as well as the GAP overview file listing all authorised uses are key supporting documents and made publicly available as background documents to this reasoned opinion. Furthermore, a screenshot of the Report sheet of the PRIMo is presented in Appendix C.

Terms of Reference

According to Article 12 of Regulation (EC) No 396/2005, EFSA shall provide a reasoned opinion on:

- the inclusion of the active substance in Annex IV to the Regulation, when appropriate;
- the necessity of setting new MRLs for the active substance or deleting/modifying existing MRLs set out in Annex II or III of the Regulation;
- the inclusion of the recommended MRLs in Annex II or III to the Regulation;
- the setting of specific processing factors as referred to in Article 20(2) of the Regulation.

The active substance and its use pattern

Napropamide is the ISO common name for (RS)-N,N-diethyl-2-(1-naphthyloxy)propionamide (IUPAC). Napropamide is a racemic mixture.

Napropamide belongs to the group of amide compounds which are used as herbicides. It is a selective systemic herbicide, absorbed by the roots, with translocation acropetally. It inhibits root development and growth.

The chemical structure of the active substance is reported in Appendix F.

Napropamide was evaluated in the framework of Directive 91/414/EEC with Denmark designated as RMS. The representative uses supported for the peer review process were as a preplanting herbicide to head cabbages, Brussels sprouts, cauliflowers, broccoli, calabrese, tomatoes and oilseed rape. Following the peer review, which was carried out by EFSA, a decision on inclusion of the active substance in Annex I to Directive 91/414/EEC was published by means of Commission Directive 2010/83/EU, which entered into force on 1 January 2011. According to Regulation (EU) No 540/2011, as amended by Commission Implementing Regulation (EU) No 541/2011, napropamide is deemed to have been approved under Regulation (EC) No 1107/2009. This approval is restricted to uses as herbicide only.

The EU MRLs for napropamide are established in Annexes IIIA of Regulation (EC) No 396/2005 and codex maximum residue limits (CXLs) for active substance are not available. There are no MRL changes occurred since the entry into force of the Regulation mentioned above.

For the purpose of this MRL review, the critical uses of napropamide currently authorised within the EU have been collected by the Member States and the RMS and reported in the GAP Overview file. The critical GAPs identified in the Overview file were then summarised in the PROFile and considered in the assessment. The details of the authorised critical uses (GAPs) for napropamide are given in Appendix A. The RMS did not report any use authorised in third countries that might have a significant impact on international trade.
Assessment

EFSA has based its assessment on the PROFile submitted by the RMS, the evaluation report accompanying the PROFile (Denmark, 2018), the draft assessment report (DAR) and its addenda prepared under Council Directive 91/414/EEC (Denmark, 2005), the conclusion on the peer review of the pesticide risk assessment of the active substance napropamide (EFSA, 2010) as well as the evaluation reports submitted during the completeness check (Austria, 2017; Belgium, 2017; Czech Republic, 2017; Finland, 2017; France, 2017; Germany, 2017; Greece, 2017; Italy, 2017; Lithuania, 2017; Netherlands, 2017; United Kingdom, 2017; EURL, 2018). The assessment is performed in accordance with the legal provisions of the uniform principles for evaluation and authorisation of plant protection products as set out in Commission Regulation (EU) No 546/2011 and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (European Commission, 1997a–g, 2000, 2010a,b, 2017; OECD, 2011, 2013).

More detailed information on the available data and on the conclusions derived by EFSA can be retrieved from the list of end points reported in Appendix B.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

The metabolism of napropamide was investigated in fruit crops (apples, tomatoes), leafy crops (cabbages), root crops (potatoes) and pulses/oilseeds (oilseed rape) following soil treatment (Denmark, 2005), and assessed in the framework of the peer review (EFSA, 2010). At harvest, due to the limited amount of radioactive material present, metabolites were only identified in cabbages, tomatoes and potatoes.

Two soil applications of 4.61 kg a.s./ha and 4.53 kg a.s./ha (151 days after the first treatment) were made around the base of the apple tree. The first harvest of apples was at maturity 186 days after the first treatment and 35 days after the second treatment. The mean total radioactive residue (TRR) in mature apples was 0.0032 mg eq/kg. The mean residue in the second harvest 1 year later was 0.0105 mg eq/kg. Metabolites were all detected at very low levels (< 0.01 mg/kg). After the incorporation of napropamide in the soil with a dose corresponding to 2.5 kg a.s./ha, tomato plants at the 4–6 leaf stage were planted and harvested at fruit production. Napropamide accounted for 0.4% TRR (0.0002 mg eq/kg) in tomatoes. Metabolites were all detected at very low levels (< 0.01 mg/kg).

It can be concluded from the studies on apples and tomatoes that the uptake of napropamide in fruits from soil applications is very limited.

After the incorporation of napropamide in the soil with a dose corresponding to 2.5 kg a.s./ha, cabbages were planted at the 6–8 leaf stage and harvested at maturity 55–60 days after treatment (DAT). Napropamide was detected at trace levels amounting to 0.8% of TRR (0.001 mg eq/kg) and 0.9% of TRR (0.004 mg eq/kg) in cabbage heart and whole cabbage, respectively. Metabolites were all detected at very low levels (< 0.01 mg/kg). It can be concluded that the uptake of napropamide in leafy crops from soil applications is very limited.

After the incorporation of napropamide in the soil with a dose corresponding to 2.0 kg a.s./ha, potatoes were planted. Potato plants were harvested 61 DAT and were separated into potato foliage, peel and pulp for analysis. The residues in foliage comprised traces of napropamide (1.11% of TRR; < 0.01 mg/kg) and all metabolites were present in concentrations below 0.01 mg/kg. A similar pattern was seen in potato peel. Napropamide was not detected in potato pulp and only traces of the metabolites were identified, all present in concentrations below 0.01 mg/kg.

After the incorporation of napropamide in the soil with a dose corresponding to 2.0 kg a.s./ha, oilseed rape seeds were sown. Forage samples were taken 124 DAT and 195 DAT. Samples of pods were taken 256 DAT and 292 DAT (harvest). It could be concluded from the results of this study that napropamide is extensively metabolised in oilseed rape plants and is present in levels below 0.01 mg/kg.

7 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127–175.
Conclusively, napropamide is metabolised by the same metabolic pathway when applied as a soil treatment in fruits, leafy crops, root crops and pulses/oilseeds. No study investigating the nature of residues in fruit crops after foliar applications is available and therefore a data gap is identified.

In addition, EFSA emphasises that the above studies do not investigate the possible impact of plant metabolism on the isomer ratio of napropamide and further investigation on this matter would in principle be required. Since guidance on the consideration of isomer ratios in the consumer risk assessment is not yet available, EFSA recommends that this issue is reconsidered when such guidance is available.

1.1.2. Nature of residues in rotational crops

Napropamide is authorised on crops that may be grown in rotation. For napropamide, the longest single order field DT_{50} is 127 days, associated with a DT_{90} of 422 days (EFSA, 2010).

One confined rotational crop study was assessed in the framework of the peer review (EFSA, 2010). Napropamide was incorporated in the soil corresponding to an application rate of 4.8 kg a.s./ha. Spring wheat, carrot and lettuce were planted 60, 180 and 364 DAT. Napropamide was detected at very low levels (0.001 mg/kg; 1.3% of TRR) in lettuce 60 DAT. Napropamide was not detected in wheat straw. In carrot root, napropamide amounted to 0.05 mg/kg (36% of TRR) 60 DAT, 0.02 mg/kg (33.3% of TRR) 180 DAT and 0.009 mg/kg (15.0% of TRR) 364 DAT, respectively. Unchanged napropamide was found in mature commodities at levels generally below 0.01 mg eq/kg, except in carrot roots, where the levels were 0.05 and 0.02 mg eq/kg for the 60 and 180 days intervals, respectively. At 365 DAT, residues levels were below 0.01 mg/kg in all plant tissues. The metabolites identified in rotational crops suggested that the metabolism is similar to that in primary crops (EFSA, 2010).

1.1.3. Nature of residues in processed commodities

There were no studies investigating the nature of residues of napropamide in processed commodities available for this review. For all commodities, residues were below 0.1 mg/kg. Furthermore, the overall chronic exposure is very low (< 1% acceptable daily intake (ADI)). Therefore, the investigation of the nature of residues in processed commodities is not required.

1.1.4. Methods of analysis in plants

During the peer review, a multiresidue analytical method using gas chromatography with mass selective detector (GC-MSD) was validated for the determination of napropamide in high water and high oil content matrices with a limit of quantification (LOQ) of 0.01 mg/kg (EFSA, 2010). Furthermore, the EURL reported a multiresidue analytical method using gas chromatography with tandem mass spectrometry (GC-MS/MS) for high water, high acid, high oil content and dry matrices with a LOQ of 0.01 mg/kg (EURL, 2018). Hence, it is concluded that napropamide can be enforced with a LOQ of 0.01 mg/kg in high water content, high acid content, high oil content and dry commodities. Since analytical methods are missing for matrices which are difficult to analyse such as herbal infusions from flowers, leaves and herbs, roots as well as fruit spices, a data gap is set for these crops.

1.1.5. Stability of residues in plants

In the framework of the peer review, storage stability of napropamide was demonstrated for high water content and high oil content matrices at approximately –18°C for up to 11 and 12 months, respectively (EFSA, 2010). There is no data available for high acid content and therefore a data gap is identified for high acid content crops. There is no data available for dry content commodities, however since the GAP on chestnuts (only crop belonging to the dry commodity in this review) is supported by trials performed on high water content crops, the storage stability study on dry commodities is considered a minor deficiency.

1.1.6. Proposed residue definitions

The metabolism of napropamide when applied as soil treatment is similar in fruits, leafy crops, root crops and pulses/oilseeds. Therefore, a residue definition for risk assessment common to all commodities can be proposed as napropamide (sum of isomers); this residue definition is restricted to soil treatments. Regarding foliar treatments, a study investigating the nature of residue in fruit crops...
after foliar applications is missing and required. In the meanwhile, the same residue definition as for soil treatment was considered on a tentative basis to assess GAPs with this type of treatment.

For enforcement, the residue definition is proposed as napropamide (sum of isomers). An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in the four main plant matrices is available (European Union Reference Laboratories for Pesticide Residues, 2018).

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

To assess the magnitude of napropamide residues resulting from the reported GAPs, EFSA considered all residue trials reported by the RMS in its evaluation report (Denmark, 2018) including residue trials evaluated in the framework of the peer review (EFSA, 2010). Residue trial samples from crops with high water and high oil content matrices considered in this framework were stored in compliance with the demonstrated storage conditions.

The number of residue trials and extrapolations were evaluated in accordance with the European guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs (European Commission, 2017).

Residue trials are not available to support the authorisations on figs, granate apples (pomegranates), table/wine grapes, sweet peppers/bell peppers, turnip tops, watermelons, fresh herbs (chervil, chives, celery leaves, parsley, sage, rosemary, basil, laurel and tarragon), herbal infusions from flowers, herbal infusions from leaves and herbs, herbal infusions from roots and fresh spices. Therefore, MRL or risk assessment values for these crops could not be derived by EFSA and the following data gaps were identified:

- Table/wine grapes: Eight trials on table/wine grapes compliant with the southern outdoor GAP and eight trials on table/wine grapes compliant with the northern outdoor GAPs are required.
- Figs: Four trials on figs compliant with the southern outdoor GAP are required.
- Granate apples/pomegranates: Four trials on granate apples/pomegranates compliant with the southern outdoor GAP are required.
- Turnip tops: Eight trials compliant with the northern outdoor GAP on turnip tops are needed.
- Sweet peppers/bell peppers: Eight trials on sweet peppers/bell peppers compliant with the northern outdoor GAP and eight trials on sweet peppers/bell peppers compliant with the southern outdoor GAP are required.
- Watermelons: Eight trials on watermelons compliant with the southern outdoor GAP are required.
- Chinese cabbages/pe-tsai, kales: Four trials compliant with the northern outdoor GAP and four trials compliant with the southern outdoor GAP are required.
- Kohlrabies: Four trials compliant with the northern outdoor GAP and four trials compliant with the southern outdoor GAP are required.
- Fresh herbs: Four trials compliant with the northern outdoor GAP on sage, thyme, basil and tarragon are required and four trials compliant with the southern outdoor GAP on chervil, chives, celery leaves, parsley, sage, rosemary, thyme, basil, laurel and tarragon are required.
- Herbal infusions: Four trials on herbal infusions from flowers, four trials on herbal infusions from leaves and herbs and four trials on herbal infusions from roots compliant with the northern/southern outdoor GAPs are required.
- Fresh spices: Four trials on fresh spices compliant with the northern/southern outdoor GAPs are required.

For all other crops, available residue trials are sufficient to derive MRL and risk assessment values, taking note of the following considerations:

- Grapefruits, oranges, lemons, mandarins, apples, pears, apricots, peaches, plums: The number of residue trials supporting the southern outdoor GAPs is not compliant with the data requirements for these crops. However, the reduced number of residue trials is considered acceptable in these cases because all results were below the LOQ and a no-residue situation is expected. Further residue trials are therefore not required.
- Strawberries: The number of residue trials supporting the northern and southern GAPs for strawberries is not compliant with the data requirements for this crop. However, the reduced number of residue trials is considered acceptable in this case because all results were below...
the LOQ and a no-residue situation is expected when the application is done at an early crop stage (BBCH < 09). Further residue trials are therefore not required.

- **Potatoes**: The number of residue trials supporting the southern outdoor GAPs is not compliant with the data requirements for this crop. However, the reduced number of residue trials is considered acceptable in these cases because all results were below the LOQ and a no-residue situation is expected. Further residue trials are therefore not required.

- **Tomatoes**: Based on the southern European Union (SEU) data set, a no-residue situation is expected after soil treatment early in the growing season. Although no northern residue trials are available, a similar conclusion is expected for the northern GAP (equivalent to southern GAP). Further residue trials are therefore not required.

- **Swedes/rutabagas; turnips**: The northern GAP is not supported by GAP-compliant trials. However, a no-residue situation is foreseen for root crops, since a clearly more critical GAP on potatoes, which is supported by trials done with three times the application rate reported for the GAP on swedes/rutabagas, showed a no-residue situation. In addition, the metabolism study performed on potatoes with twice the application rate reported for the GAP on swedes/rutabagas indicated that no residues are expected. Therefore, further residue trials on swedes/rutabagas are not required.

- **Roman rocket/rucola**: Although appropriate MRL and risk assessment values can be derived from the indoor data, four trials compliant with the southern GAP are still required.

- **Beans (with pods)**: The number of residue trials supporting the northern GAP for beans (with pods) is not compliant. However, the reduced number of residue trials is considered acceptable in this case because all results were below the LOQ and a no-residue situation is expected. Further residue trials are therefore not required and MRL and risk assessment can be proposed at the enforcement LOQ (0.01 mg/kg).

- **Sesame seeds, rapeseeds/canola seeds, borage seeds, gold of pleasure seeds and hemp seeds**: Although appropriate MRL and risk assessment values can be derived from the northern data, five additional trials on rapeseeds/canola seeds compliant with the southern GAP are required.

1.2.2. Magnitude of residues in rotational crops

A field study was reported by the RMS (Denmark, 2005) and assessed in the framework of the peer-review (EFSA, 2010). Unlabelled napropamide was incorporated in the soil to a 5-cm depth before drilling winter oilseed rape. Each treated plot received a different formulation of napropamide, corresponding to about 0.95 kg a.s./ha. When wheat was grown as a rotational crop to oilseed rape, residues of napropamide in wheat straw and grains were below the LOQ of 0.01 mg/kg (EFSA, 2010).

The metabolism study on rotational crops showed a potential transfer of soil residues of napropamide above 0.01 mg/kg in root crops for plant-back intervals (PBIs) up to 180 days (EFSA, 2010). The plateau accumulated predicted environmental concentration (PEC) soil with a mixing depth of 20 cm (soil bulk density 1.5 g/cm³) assuming no crop interception (which is appropriate for all annual crops at BBCH 09) resulting from a single annual application of 4.5 kg a.s./ha, using the DT₅₀ of 127 days is 0.24 mg/kg just before an application and 1.74 mg/kg immediately after an application. For a plant-back period of 180 days the PEC soil would be 0.61 mg/kg. The soil concentration in the confined rotational crops study immediately after application is 4.29 mg/kg (Denmark, 2010), ca. 2.5 times that of the estimated concentration immediately after the application. Therefore, it can be concluded that the rotational crop metabolism study covers the soil plateau concentration. Detectable amounts of napropamide are expected to be below 0.01 mg/kg at periods longer that 180 DAT, and therefore, it can be concluded that sowing/planting of succeeding crop 180 days after last application would not lead to a significant uptake of napropamide. This information should be considered by risk managers for the adoption of possible mitigation measures.

1.2.3. Magnitude of residues in processed commodities

Residues were below 0.1 mg/kg for all commodities and the total theoretical maximum daily intake was below 10% of the ADI. Therefore, the investigation of the nature of residues in processed commodities was not required. However, a processing study in tomatoes was assessed by the RMS (Denmark, 2005). Residues of napropamide were below the LOQ of 0.05 mg/kg in all samples and therefore no processing factors could be calculated.
Further processing studies are not required as they are not expected to affect the outcome of the risk assessment. However, if processing factors are to be requested by risk managers, in particular for enforcement purposes, additional processing studies would be needed.

1.2.4. Proposed MRLs

Overall, the available data are considered sufficient to derive MRL proposals as well as risk assessment values for all commodities under evaluation, except for table/wine grapes, figs, granate apples/pomegranate, sweet peppers/bell peppers, watermelons, Chinese cabbages/pe-tsai, kales, kohlrabies, fresh herbs, herbal infusions and fresh spices where the available data were insufficient to derive tentative MRLs.

2. Residues in livestock

Napropamide is authorised for use on crops (e.g. potatoes, kales) that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance (OECD, 2013), which has now also been agreed upon at European level. The input values for all relevant commodities are summarised in Appendix D. Since the calculated dietary burdens for all groups of livestock were found to be below the trigger value of 0.1 mg/kg dry matter (DM), further investigation of residues as well as the setting of MRLs in commodities of animal origin is unnecessary. It is noted that residue trials on turnip tops are missing, however this is unlikely to impact the dietary assessment determined.

Although not required, studies investigating the metabolism of napropamide in livestock were conducted on lactating goats and laying hens (Denmark, 2005). Lactating goats were dosed twice a day with an oral administration of [14C-1-naphthyl]-napropamide in gelatine capsules over a period of four consecutive days. The dose rate corresponds to 9.9 mg/kg feed (equivalent to 0.28 mg/kg body weight (bw) per day). The TRR in liver and kidney was 0.153 mg/kg eq. and 0.0365 mg/kg eq., respectively. In other tissues and milk TRR were very low (< 0.01 mg/kg). No metabolite fractions were detected at relevant levels in any tissues.

Laying hens were dosed with napropamide once daily with an oral dose of 1.145 mg [14C-1-naphthyl]-napropamide in gelatine capsules over a period of 10 consecutive days, corresponding to a mean rate of 8.3 mg/kg feed (equivalent to 0.52 mg/kg bw per day). Napropamide was rapidly metabolised and excreted by hens with 92.1% of the dose being excreted during the dosing period. The only relevant residue was detected in egg yolk where napropamide was present at 5.2% TRR (0.0018 mg/kg). No other single components or fractions occurred at levels above 0.01 mg/kg in any tissues.

In the framework of the peer review, a residue definition for risk assessment or enforcement was not deemed necessary (EFSA, 2010). For this MRL, no residue definition for livestock is necessary.

If a residue definition for livestock is set in the future based on additional uses, then a residue definition for enforcement and risk assessment could be proposed as napropamide (sum of isomers) based on the results of the metabolism studies assessed above.

No feeding studies were available or required for this MRL review. In addition, no validated analytical methods for animal matrices were reported.

3. Consumer risk assessment

Chronic exposure calculations for all crops reported in the framework of this review were performed using revision 2 of the EFSA PRIMo (EFSA, 2007). Input values for the exposure calculations were derived in compliance with the decision tree reported in Appendix E. Hence, for those commodities where a (tentative) MRL could be derived by EFSA in the framework of this review, input values were derived according to the internationally agreed methodologies (FAO, 2009). For those commodities where data were insufficient to derive an MRL in Section 1, EFSA considered the existing EU MRL for an indicative calculation.

Regarding rotational crops, there are indications that levels of napropamide would remain below 0.01 mg/kg when using a PBI longer that 180 DAT. Therefore, the calculations were done assuming that mitigation measures (e.g. restriction with a PBI of minimum 180 DAT) would be implemented by risk managers and be sufficient to avoid any significant residues in rotational crops.
All input values included in the exposure calculations are summarised in Appendix D. Acute exposure calculations were not carried out because an acute reference dose (ARfD) was not deemed necessary for this active substance.

The exposures calculated were compared with the reference value for napropamide, derived by EFSA (2010) under Directive 91/414/EEC. The highest chronic exposure was calculated for France, all population, representing 0.2% of the ADI. Although some uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumers.

Since the exposure to napropamide is marginal, representing 0.2% of the ADI, EFSA concludes that a potential change of isomer ratios in the final residue will not be of concern for the authorised uses reported in the framework of this review. In case future uses of napropamide would lead to a higher consumer exposure, further information regarding the impact of plant and livestock metabolism on the isomer ratio might be required.

Conclusions

The metabolism of napropamide following soil treatment in fruits, leafy vegetables, root crops and pulses/oilseeds is similar. A residue definition for risk assessment common to all commodities is proposed as napropamide (sum of isomers); this residue definition is restricted to soil treatments. As no metabolism studies following foliar treatments were available, the same residue definition was applied on a tentative basis to this type of treatment. A residue definition for enforcement for all crops under review is proposed as napropamide (sum of isomers). A validated analytical method for the main four plant matrices with a limit of quantification (LOQ) of 0.01 mg/kg is available.

The data on metabolism and distribution of napropamide in rotational crops indicated that the metabolism in rotational crops is similar to the pathway observed in primary crops. According to the confined rotational crop study, significant residues are not expected in rotational crops planted with PBI of 180 days.

Storage stability data is available for high water and high oil content matrices, but no data is available for high acid and dry content matrices.

Studies investigating the stability of napropamide to hydrolysis under standard conditions of pasteurisation, baking/brewing/boiling and sterilisation were not available for this review. Nevertheless, these studies are not necessary since residue levels are expected to remain below 0.1 mg/kg in raw commodities and overall chronic exposure is very low. Studies investigating the magnitude of residues in processed commodities are not required.

The available data are considered sufficient to derive appropriate MRL proposals as well as risk assessment values for all crops under review, except for table/wine grapes, figs, granate apples/pomegranate, sweet peppers/bell peppers, watermelons, turnip tops, fresh herbs, herbal infusions and fresh spices where the available data were insufficient to derive tentative MRLs.

Studies investigating the metabolism in livestock were conducted on lactating goats and laying hens. Since the calculated dietary burdens for all groups of livestock were found to be below the trigger value of 0.1 mg/kg DM, further investigation of residues as well as the setting of MRLs in commodities of animal origin is unnecessary.

Chronic consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 2 of the EFSA PRIMo. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for France, all population representing 0.2% of the ADI. Although some uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumers. Acute exposure calculations were not carried out because an ARfD was not deemed necessary for this active substance. Considering the very low exposure derived from the authorised uses, it was concluded that a potential change of isomer ratios in the final residue will not be of concern. In case future uses of napropamide would lead to a higher consumer exposure, further information regarding the impact of plant and livestock metabolism on the isomer ratio might be required.

Recommendations

MRL recommendations were derived in compliance with the decision tree reported in Appendix E of the reasoned opinion (see Table 2). All MRL values listed as ‘Recommended’ in the table are sufficiently
supported by data and are therefore proposed for inclusion in Annex II to the Regulation. The remaining MRL values listed in the table are not recommended for inclusion in Annex II because they require further consideration by risk managers (see Table 2 footnotes for details). In particular, some tentative MRLs and/or existing EU MRLs need to be confirmed by the following data:

- A representative study investigating primary crop metabolism in fruit crops following foliar treatment (data gap relevant for blueberries, cranberries, currants, gooseberries, rose hips and elderberries);
- Residue trials are needed on table/wine grapes, figs, granate apples/pomegranate, sweet peppers/bell peppers, watermelons, Chinese cabbages, kales, kohlrabies, fresh herbs, herbal infusions from flowers, herbal infusion from leaves and herbs, herbal infusion from roots and fresh spices.
- A storage stability study on high acid content (data gap relevant for citrus fruit and for berries and small fruits);
- An analytical method for matrices difficult to analyse (data gap relevant for herbal infusions from flowers, leaves and herbs, roots and fruit spices).

It is highlighted, however, that some of the MRLs derived result from a GAP in one climatic zone only whereas other GAPs reported by the RMS were not fully supported by data. EFSA therefore identified the following data gaps which are not expected to impact on the validity of the MRLs derived but which might have an impact on national authorisations:

- Additional trials on rocket/rucola, sesame seeds, rapeseeds, borage seeds, gold of pleasure seeds and hemp seeds are required.

If the above-reported data gaps are not addressed in the future, Member States are recommended to withdraw or modify the relevant authorisations at national level.

A minor deficiency was also identified in the assessment but this deficiency is not expected to impact either on the validity of the MRL derived or on the national authorisation. The following data is therefore considered desirable but not essential:

- A storage stability study on dry content commodities (relevant for chestnuts).
- Trials with analysis performed on turnip tops.

Regarding residues in rotational crops, there are indications that levels of napropamide would remain below 0.01 mg/kg when using a PBI longer that 180 DAT. Therefore, MRLs were derived considering that significant residues uptakes in rotational crops can be avoided. This information should be considered by risk managers for the adoption of possible mitigation measures.

It should be noted that the R-isomer of napropamide (napropamide-M) is currently under assessment under the peer-review process for approval as a new active substance. If new information provided during the peer review of napropamide-M has an impact on the current assessment of napropamide, this new information should deserve further consideration by risk managers (Table 1).

Table 1: Summary table

Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	Comment
		Existing EU MRL	**MRL**	
		(mg/kg)	**(mg/kg)**	
		Existing EU MRL	**MRL**	
		(mg/kg)	**(mg/kg)**	
Enforcement residue definition (existing):	napropamide			
110010	Grapefruits	0.05*	0.01*	Further consideration needed^(a)
110020	Oranges	0.05*	0.01*	Further consideration needed^(a)
110030	Lemons	0.05*	0.01*	Further consideration needed^(a)
110040	Limes	0.05*	0.01*	Further consideration needed^(a)
110050	Mandarins	0.05*	0.01*	Further consideration needed^(a)
120010	Almonds	0.05*	0.01*	Recommended^(b)
120040	Chestnuts	0.05*	0.01*	Recommended^(b)
120060	Hazelnuts/cobnuts	0.05*	0.01*	Recommended^(b)
120080	Pecans	0.05*	0.01*	Recommended^(b)
Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	
------------	--	------------------------	-----------------------	
		MRL (mg/kg)	Comment	
120090	Pine nut kernels	0.05*	0.01*	Recommended (b)
120100	Pistachios	0.05*	0.01*	Recommended (b)
120110	Walnuts	0.05*	0.01*	Recommended (b)
130010	Apples	0.1	0.01*	Recommended (b)
130020	Pears	0.1	0.01*	Recommended (b)
130030	Quinces	0.1	0.01*	Recommended (b)
130040	Medlars	0.1	0.01*	Recommended (b)
130050	Loquats/Japanese medlars	0.1	0.01*	Recommended (b)
140010	Apricots	0.1	0.01*	Recommended (b)
140020	Cherries (sweet)	0.1	0.01*	Recommended (b)
140030	Peaches	0.1	0.01*	Recommended (b)
140040	Plums	0.1	0.01*	Recommended (b)
151010	Table grapes	0.1	0.1	Further consideration needed (c)
151020	Wine grapes	0.1	0.1	Further consideration needed (c)
152000	Strawberries	0.2	0.01*	Further consideration needed (a)
153010	Blackberries	0.1	0.01*	Further consideration needed (a)
153020	Dewberries	0.1	0.01*	Further consideration needed (a)
153030	Raspberries (red and yellow)	0.1	0.01*	Further consideration needed (a)
154010	Blueberries	0.1	0.02	Further consideration needed (a)
154020	Cranberries	0.1	0.02	Further consideration needed (a)
154030	Currants (black, red and white)	0.1	0.02	Further consideration needed (a)
154040	Gooseberries (green, red and yellow)	0.1	0.02	Further consideration needed (a)
154050	Rose hips	0.1	0.02	Further consideration needed (a)
154080	Elderberries	0.1	0.02	Further consideration needed (a)
161020	Figs	0.05*	0.05	Further consideration needed (a)
163050	Granate apples/pomegranates	0.05*	0.05	Further consideration needed (a)
211000	Potatoes	0.1	0.01*	Recommended (b)
213030	Celeriacs/turnip rooted celeries	0.05*	0.01*	Recommended (b)
213040	Horseradishes	0.05*	0.01*	Recommended (b)
213080	Radishes	0.05*	0.01*	Recommended (b)
213100	Sweeds/rutabagas	0.05*	0.01*	Recommended (b)
213110	Turnips	0.05*	0.01*	Recommended (b)
231010	Tomatoes	0.1	0.01*	Recommended (b)
231020	Sweet peppers/bell peppers	0.1	0.1	Further consideration needed (c)
231030	Aubergines/eggplants	0.1	0.01*	Recommended (b)
233030	Watermelons	0.05*	0.05	Further consideration needed (c)
241010	Broccoli	0.05*	0.01*	Recommended (b)
241020	Cauliflowers	0.1	0.01*	Recommended (b)
242010	Brussels sprouts	0.1	0.01*	Recommended (b)
242020	Head cabbages	0.1	0.01*	Recommended (b)
243010	Chinese cabbages/pe-tsai	0.05*	0.05	Further consideration needed (c)
243020	Kales	0.05*	0.05	Further consideration needed (c)
244000	Kohlrabies	0.05*	0.05	Further consideration needed (c)
251010	Lamb's lettuce/corn salads	0.2	0.05	Recommended (b)
251060	Roman rocket/rucola	0.2	0.05	Recommended (b)
251070	Red mustards	0.05*	0.05	Recommended (b)
Austria, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, October 2017. Available online: www.efsa.europa.eu

Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	
251080	Baby leaf crops (including brassica species)	0.05*	0.05	Recommended (b)
256010	Chervil	0.05*	0.05	Further consideration needed (c)
256020	Chives	0.05*	0.05	Further consideration needed (c)
256030	Celery leaves	0.05*	0.05	Further consideration needed (c)
256040	Parsley	0.05*	0.05	Further consideration needed (c)
256050	Sage	0.05*	0.05	Further consideration needed (c)
256060	Rosemary	0.05*	0.05	Further consideration needed (c)
256070	Thyme	0.05*	0.05	Further consideration needed (c)
256080	Basil and edible flowers	0.05*	0.05	Further consideration needed (c)
256090	Laurel/bay leave	0.05*	0.05	Further consideration needed (c)
256100	Tarragon	0.05*	0.05	Further consideration needed (c)
260010	Beans (with pods)	0.05*	0.01*	Recommended (b)
401010	Linseeds	0.05*	0.02	Recommended (b)
401030	Poppy seeds	0.05*	0.02	Recommended (b)
401040	Sesame seeds	0.05*	0.02	Recommended (b)
401050	Sunflower seeds	0.05*	0.02	Recommended (b)
401060	Rapeseeds/canola seeds	0.1	0.02	Recommended (b)
401070	Soya beans	0.05*	0.02	Recommended (b)
401080	Mustard seeds	0.05*	0.02	Recommended (b)
401090	Cotton seeds	0.05*	0.02	Recommended (b)
401100	Pumpkin seeds	0.05*	0.02	Recommended (b)
401110	Safflower seeds	0.05*	0.02	Recommended (b)
401120	Borage seeds	0.05*	0.02	Recommended (b)
401130	Gold of pleasure seeds	0.05*	0.02	Recommended (b)
401140	Hemp seeds	0.05*	0.02	Recommended (b)
401150	Castor beans	0.05*	0.02	Recommended (b)
631000	Herbal infusions from flowers	0.05*	0.05	Further consideration needed (c)
632000	Herbal infusions from leaves and herbs	0.05*	0.05	Further consideration needed (c)
633000	Herbal infusions from roots	0.05*	0.05	Further consideration needed (c)
820000	Fruit spices	0.05*	0.05	Further consideration needed (c)
–	Other commodities of plant/animal origin	See Reg. 149/2008	–	Further consideration needed (b)

MRL: maximum residue level; CXL: codex maximum residue limit.
*: Indicates that the MRL is set at the limit of quantification.
(a): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); no CXL is available (combination E-I in Appendix E).
(b): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination G-I in Appendix E).
(c): GAP evaluated at EU level is not supported by data but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); no CXL is available (combination C-I in Appendix E).
(d): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).

References

Austria, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, October 2017. Available online: www.efsa.europa.eu
Review of the existing MRLs for napropamide

Greece, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, November 2017. Available online: www.efsa.europa.eu

Italy, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, November 2017. Available online: www.efsa.europa.eu

Lithuania, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, October 2017. Available online: www.efsa.europa.eu

Netherlands, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, October 2017. Available online: www.efsa.europa.eu

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org

OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 04 September 2013.

United Kingdom, 2017. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Authorised uses to be considered for the review of the existing EU MRLs for napropamide, November 2017. Available online: www.efsa.europa.eu

Abbreviations

- a.i. active ingredient
- a.s. active substance
- ADI acceptable daily intake
- AR applied radioactivity
- ARfD acute reference dose
- BBCH growth stages of mono- and dicotyledonous plants
- bw body weight
- CXL codex maximum residue limit
- DAR draft assessment report
- DAT days after treatment
- DB dietary burden
- DM dry matter
- DT$_{90}$ period required for 90% dissipation (define method of estimation)
- EC emulsifiable concentrate
- eq residue expressed as a.s. equivalent
- EURLs European Union Reference Laboratories for Pesticide Residues (former CRLs)
- FAO Food and Agriculture Organization of the United Nations
- GAP Good Agricultural Practice
- GC-MSD gas chromatography with mass selective detector
- GC-MS/MS gas chromatography with tandem mass spectrometry
- HR highest residue
- IEDI international estimated daily intake
- IESTI international estimated short-term intake
- ILV independent laboratory validation
- ISO International Organisation for Standardization
- IUPAC International Union of Pure and Applied Chemistry
- LOQ limit of quantification
- Mo monitoring
- MRL maximum residue level
- NEU northern European Union
- OECD Organisation for Economic Co-operation and Development
- PBI plant-back interval
- PEC predicted environmental concentration
- PF processing factor
- PHI preharvest interval
- PRIMO (EFSA) Pesticide Residues Intake Model
- PROFile (EFSA) Pesticide Residues Overview File
| Acronym | Definition |
|---------|---|
| RA | risk assessment |
| RD | residue definition |
| RMS | rapporteur Member State |
| SANCO | Directorate-General for Health and Consumers |
| SC | suspension concentrate |
| SEU | southern European Union |
| SMILES | simplified molecular-input line-entry system |
| STMR | supervised trials median residue |
| TRR | total radioactive residue |
| WG | water-dispersible granule |
| WHO | World Health Organization |
| WP | wettable powder |
Appendix A – Summary of authorised uses considered for the review of MRLs

A.1. Authorised uses in northern outdoor EU

Crop and/or situation	Country	F (or I)	Pests or group of pests controlled	Preparation	Method kind	Range of growth stages and season	Application	Application rate per treatment	PHI (days)	Remarks
Almonds	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0–1	–	2.25	n.a.	
Chestnuts	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0–1	–	2.25	n.a.	
Hazelnuts	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0–1	–	2.25	n.a.	
Pine nut kernels	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0–1	–	2.25	n.a.	
Walnuts	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0–1	–	2.25	n.a.	
Apples	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – general	59–1	–	4.05	n.a.	
Pears	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – general	59–1	–	4.05	n.a.	
Quinces	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – general	59–1	–	4.05	n.a.	
Crop and/or situation	Country	FG or I^(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(d)	Remarks		
-----------------------	---------	------------------------	-----------------------------------	-------------	-------------	-------------------------------	------------------------	---------		
Medlars	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – general	59 1	4.05 n.a.			
Loquats	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – general	59 1	4.05 n.a.			
Apricots	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0 1	2.25 n.a.			
Cherries	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0 1	2.25 n.a.			
Peaches	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0 1	2.25 n.a.			
Plums	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0 1	2.25 n.a.			
Wine grapes	FR	F	Annual grasses and broad	SC 450 g/L	Soil treatment – spraying	59 1	4.05 n.a.			
Strawberries	AT	F	Annual grasses	SC 423 g/L	Soil treatment – spraying	0 1	1.06 n.a.			
Blackberries	AT	F	Monocotyledonous and dicotyledonous weeds	SC 450 g/L	Soil treatment – spraying	0 1	2.25 n.a.			

^(a) FG or I: Crop protection strategy

^(b) Type: SC (Soluble concentrate)

^(c) Method kind:
- Soil treatment – general
- Soil treatment – spraying

^(d) PHI (days): PHI = Pre-Application Interval

Remarks:
- Nursery production, pre-emergence after planting in late autumn or late winter
| Crop and/or situation | Country | F G or I | Pests or group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days) | Remarks | |
|---|---|---|---|---|---|---|---|---|---|
| Dewberries | AT | F | Monocotyledonous and dicotyledonous weeds | SC 450 g/L | Soil treatment – spraying | 0 – 1 | 2.25 | n.a. | Nursery production, pre-emergence after planting in late autumn or late winter |
| Raspberries | AT | F | Monocotyledonous and dicotyledonous weeds | SC 450 g/L | Soil treatment – spraying | 0 – 1 | 2.25 | n.a. | Nursery production, pre-emergence after planting in late autumn or late winter |
| Blueberries | DE | F | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L | Foliar treatment – broadcast spraying | 54 – 1 | 1.13 | n.a. | Before sprouting, at beginning of vegetation |
| Cranberries | DE | F | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L | Foliar treatment – broadcast spraying | 54 – 1 | 1.13 | n.a. | Before sprouting, at beginning of vegetation |
| Currants | DE | F | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L | Foliar treatment – broadcast spraying | 54 – 1 | 1.13 | n.a. | Before sprouting, at beginning of vegetation |
| Crop and/or situation | Country | F | G or I(a) | Pests or group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days)(d) | Remarks |
|-----------------------|---------|---|-----------|-----------------------------------|-------------|------------|--------------------------------|--------------|---------|
| Gooseberries | DE | F | G or I | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L Foliar treatment – broadcast spraying | 54 1 | – – 1.13 n.a. | Before sprouting, at beginning of vegetation |
| Rose hips | DE | F | G or I | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L Foliar treatment – broadcast spraying | 54 1 | – – 1.13 n.a. | Before sprouting, at beginning of vegetation |
| Elderberries | DE | F | G or I | Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw) | SC 450 g/L Foliar treatment – broadcast spraying | 54 1 | – – 1.13 n.a. | Before sprouting, at beginning of vegetation |
| Celeriacs | UK | F | G or I | Soil treatment – general (see also comment field) | 0 1 | – – 0.56 n.a. | Pre-emergence of crop |
| Horseradishes | UK | F | G or I | Soil treatment – general (see also comment field) | 0 1 | – – 0.56 n.a. | Pre-emergence of crop |

Notes:
(a) F, G or I: Footnotes for the table.
(b) Type: Formulation.
(c) Method: Kind of application.
(d) PHI: Pre-harvest interval.
Crop and/or situation	Country	FG or I	Pests or group of pests controlled	Preparation	Application	PHII (days)	Remarks				
Radishes	DE	F	Annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw)	SC 450 g/L	Soil treatment – general (see also comment field)	0 1	0.38 n.a. Before sowing or before planting; with incorporation in a depth of 5 cm				
Swedes	FI	F	g/L	0 1	– –	0.95 n.a.	All crops: sprayed before sowing/planting				
Turnips	FI	F	g/L	0 1	– –	0.95 n.a.	All crops: sprayed before sowing/planting				
Tomatoes	SI	F	Annual grasses and BLW	SC 450 g/L	Soil treatment – spraying	0 1	1.8 72 Spraying on soil/ Spraying on soil followed by incorporation. Before transplanting				
Sweet peppers	SI	F	Annual grasses and BLW	SC 450 g/L	Soil treatment – spraying	0 1	1.8 72 Spraying on soil/ Spraying on soil followed by incorporation. Before transplanting				
Broccoli	NL	F	Poa annua, annual broadleaved weeds	SC 450 g/L	Soil treatment – spraying	0 1	1.26 n.a. Soil treatment before transplanting				
Cauliflowers	NL	F	Poa annua, annual broadleaved weeds	SC 450 g/L	Soil treatment – spraying	0 1	1.26 n.a. Soil treatment before transplanting				
Crop and/or situation	Country	F or G or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	---------	-------------	-----------------------------------	-------------	-------------	-------------------------------	------------	---------			
Brussels sprouts	NL	F	Poa annua, annual broadleaved weeds	SC	450 g/L	Soil treatment – spraying	0	1	1.26	n.a.	Soil treatment before transplanting
Head cabbages	NL	F	Poa annua, annual broadleaved weeds	SC	450 g/L	Soil treatment – spraying	0	1	1.26	n.a.	Soil treatment before transplanting
Chinese cabbages	UK	F				Soil treatment – general	0	1	1.26	n.a.	Before transplanting or drilling
Kales	UK	F				Soil treatment – general	0	1	1.26	n.a.	Before transplanting or drilling
Kohlrabies	DE	F	Blackgrass, annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw)	SC	450 g/L	Soil treatment – general	0	1	1.13	n.a.	Before sowing or before planting; with incorporation in a depth of 5 cm
Lamb’s lettuces	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – general	1	–	0.81	26	Application to soil surface under crop followed by incorporation
Crop and/or situation	Country	FG or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks			
-----------------------	---------	------------	------------------------------------	-------------	-------------	-------------------------------	---------------	---------			
Roman rocket	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – general (see also comment field)	0–1	0.81 26	Application to soil surface under crop followed by incorporation		
Red mustards	UK	F		SC	450 g/L	Soil treatment – general (see also comment field)	0–1	0.38 n.a.	Before transplanting or drilling		
Baby leaf crops	UK	F		SC	450 g/L	Soil treatment – general (see also comment field)	0–1	0.38 n.a.	Before transplanting or drilling		
Sage	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – spraying	9–1	1.13 n.a.	Spraying on soil followed by incorporation		
Thyme	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – spraying	9–1	1.13 n.a.	Spraying on soil followed by incorporation		
Basil	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – spraying	9–1	1.13 n.a.	Spraying on soil followed by incorporation		
Tarragon	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – spraying	9–1	1.13 n.a.	Spraying on soil followed by incorporation		
Crop and/or situation	Country	F G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks			
-----------------------	---------	------------	------------------------------------	-------------	-------------	------------------------	--------------	---------			
Beans (with pods)	DE	F	Annual bluegrass, annual dicotyledonous weeds (except: catchweed bedstraw)	SC 450 g/L	Soil treatment – general (see also comment field)	0 – 1	0.72	n.a.	Growth stage: before sowing		
Linseeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9 – 1	1.26	n.a.	Application to soil surface under crop followed by incorporation		
Poppy seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 – 1	1.2	n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		
Sesame seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 – 1	1.2	n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		
Sunflower seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 – 1	1.2	n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		

(a) F = France, G = Germany, I = Italy

(b) Type: SC = Suspension concentrate, WG = Wettable granule

(c) Range of growth stages and season:

(d) PHI (Days) = Preharvest interval

(e) Number between application (min)
Crop and/or situation	Country	FG or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
Rapeseeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9 1	– –	1.26 n.a.	Application to soil surface under crop followed by incorporation		
Soya beans	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 1	– –	1.2 n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		
Mustard seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9 1	– –	1.26 n.a.	Application to soil surface under crop followed by incorporation		
Cotton seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 1	– –	1.2 n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		
Pumpkin seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7 1	– –	1.2 n.a.	2nd active substance in the formulation: clomazone (105 g/ha)		
Crop and/or situation	Country	F or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks			
-----------------------	---------	-----------	-----------------------------------	-------------	-------------	-------------------------------	--------------	---------			
Safflower seeds	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7	1	–	1.2	n.a.	2nd active substance in the formulation: clomazone (105 g/ha)
Borage seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9	1	–	1.26	n.a.	Application to soil surface under crop followed by incorporation
Gold of pleasure seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9	1	–	1.26	n.a.	Application to soil surface under crop followed by incorporation
Hemp seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9	1	–	1.26	n.a.	Application to soil surface under crop followed by incorporation
Castor beans	BE	F	Annual monocotyledonous and dicotyledonous weeds	WG 40% (w/w)	Soil treatment – general (see also comment field)	7	1	–	1.2	n.a.	2nd active substance in the formulation: clomazone (105 g/ha)
Crop and/or situation	Country	F	G	I (a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days) (d)	Remarks	
---	---------	----	----	-------	-----------------------------------	-------------	-------------	---------------------------------	----------------	---------	
Herbal infusions from flowers	FR	F			Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	–	1.13 n.a.	Application method: spraying on soil/spraying on soil followed by incorporation	
Herbal infusions from leaves and herbs	FR	F			Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	–	1.13 n.a.	Application method: spraying on soil/spraying on soil followed by incorporation	
Herbal infusions from roots	FR	F			Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	–	1.13 n.a.	Application method: Spraying on soil/Spraying on soil followed by incorporation	
Fruit spices	FR	F			Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	–	1.13 n.a.	Application method: Spraying on soil/Spraying on soil followed by incorporation	

NEU: northern European Union; SEU: southern European Union; MS: Member State; GAP: Good Agricultural Practice; BBCH: growth stages of mono- and dicotyledonous plants; a.s.: active substance; SC: suspension concentrate; WG: water-dispersible granule.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.

(d): PHI: minimum preharvest interval.
A.2. Authorised uses in southern outdoor EU

Crop and/or situation	Country	FG or I(a)	Pests or group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages and season(c)	Number min–max	Interval between application (min)	Application rate per treatment	PHI (days)(d)	Remarks		
Grapefruits EL	F	Annual & perennial weeds and grasses	SC 450 g/L Soil treatment – spraying	9	1	–	–	4.5	n.a.	During winter before weeds emerge				
Oranges EL	F	Annual & perennial weeds and grasses	SC 450 g/L Soil treatment – spraying	9	1	–	–	4.5	n.a.	During winter before weeds emerge				
Lemons EL	F	Annual & perennial weeds and grasses	SC 450 g/L Soil treatment – spraying	9	1	–	–	4.5	n.a.	During winter before weeds emerge				
Limes ES	F	Annual weeds (Pre-emergence)	SC 450 g/L Soil treatment – spraying	9	1	–	–	2.48	n.a.	Spraying on soil followed by incorporation by labour or irrigation within the following 48 h				
Mandarins EL	F	Annual & perennial weeds and grasses	SC 450 g/L Soil treatment – spraying	9	1	–	–	4.5	n.a.	During winter before weeds emerge				
Chestnuts ES	F	Annual weeds (Pre-emergence)	SC 450 g/L Soil treatment – spraying	0	1	–	–	2.48	n.a.	Spraying on soil followed by incorporation by labour or irrigation within the following 48 h				
Crop and/or situation	Country	FG or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------	---------	----------------------------------	-------------	------------	-------------------------------	-----------	---------						
Hazelnuts	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0 – 1	2.48 n.a. Spraying on soil followed by incorporation by labour or irrigation within the following 48 h						
Pecans	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0 – 1	2.48 n.a. Spraying on soil followed by incorporation by labour or irrigation within the following 48 h						
Pistachios	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0 – 1	2.48 n.a. Spraying on soil followed by incorporation by labour or irrigation within the following 48 h						
Walnuts	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0 – 1	2.48 n.a. Spraying on soil followed by incorporation by labour or irrigation within the following 48 h						
Apples	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59 – 1	4.05 n.a. Application to soil surface under crop followed by incorporation						
Crop and/or situation	Country	F or G or I(a)	Pests or group of pests controlled	Preparation	Method kind	Range of growth stages and season(b)	Number min-max	Interval between application (min)	Application rate per treatment	PHI (days)(d)	Remarks			
-----------------------	---------	----------------	----------------------------------	------------	------------	------------------------------------	----------------	-----------------------------	--------------------------------	-------------	---------			
Pears FR F		Annual grasses and broad	SC 450 g/L	Soil treatment – general (see also comment field)	59 1	– – 4.05	n.a.	Application to soil surface under crop followed by incorporation						
Quinces FR F		Annual grasses and broad	SC 450 g/L	Soil treatment – general (see also comment field)	59 1	– – 4.05	n.a.	Application to soil surface under crop followed by incorporation						
Medlars FR F		Annual grasses and broad	SC 450 g/L	Soil treatment – general (see also comment field)	59 1	– – 4.05	n.a.	Application to soil surface under crop followed by incorporation						
Loquats FR F		Annual grasses and broad	SC 450 g/L	Soil treatment – general (see also comment field)	59 1	– – 4.05	n.a.	Application to soil surface under crop followed by incorporation						
Apricots FR F		Annual grasses and broad	SC 450 g/L	Soil treatment – general (see also comment field)	59 1	– – 4.05	n.a.	Application to soil surface under crop followed by incorporation						
Crop and/or situation	Country	F or G or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	Remarks							
-----------------------	---------	----------------	-----------------------------------	-------------	-------------	------------------------------	---------							
				Type(b)	Conc. a.s.	Method kind	g a.s./ha	Water L/ha	kg a.s./ha	PHI (days)(d)				
				Range of growth stages and season(e)	Number min–max	Interval between application (min)	min–max	min–max	min–max					
Cherries	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59	1	–	–	4.05	n.a.	Application to soil surface under crop followed by incorporation	
Peaches	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59	1	–	–	4.05	n.a.	Application to soil surface under crop followed by incorporation	
Plums	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59	1	–	–	4.05	n.a.	Application to soil surface under crop followed by incorporation	
Table grapes	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59	1	–	–	4.05	n.a.	Application to soil surface under crop followed by incorporation	
Wine grapes	FR	F	Annual grasses and broad	SC	450 g/L	Soil treatment – general (see also comment field)	59	1	–	–	4.05	n.a.	Application to soil surface under crop followed by incorporation	
Crop and/or situation	Country	FG or I(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	Remarks							
-----------------------	---------	------------	-----------------------------------	-------------	------------	-----------------------------	---------							
						g a.s./hL	Water L/ha	kg a.s./ha	PHI (days)(d)					
						min-max	min-max	min-max						
Strawberries	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1	–	–	4.5	n.a.	Preplant, during spring	
Figs	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0	1	–	–	2.48	n.a.	Spraying on soil followed by incorporation by labour or irrigation within the following 48 h	
Granate apples	ES	F	Annual weeds (Pre-emergence)	SC	450 g/L	Soil treatment – spraying	0	1	–	–	2.48	n.a.	Spraying on soil followed by incorporation by labour or irrigation within the following 48 h	
Potatoes	IT	F	Annual and perennial weeds	WP	500 g/kg	Soil treatment – injection	0	1	–	–	1.8	n.a.	Presowing or pretransplanting on soil (mechanical incorporation, irrigation or drop casted followed by rain falls). Currently in zonal evaluation for Step 2 reregistration	
Tomatoes	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1	–	–	2.25	n.a.	Pre-emergence	
Crop and/or situation	Country	F	G or I (a)	Pests or group of pests controlled	Preparation	Method kind	Range of growth stages and season (c)	Number min–max	Interval between application (min)	Application rate per treatment g a.s./ha min–max	Water L/ha min–max	kg a.s./ha min–max	PHI (days) (d)	Remarks
-----------------------	---------	---	------------	----------------------------------	-------------	------------	------------------------------------	--------------	-----------------------------------	---------------------------------	-------------	----------------	-------------	---------
Sweet peppers	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9 1	– –	2.25	n.a.	–	2.25	n.a.	
Aubergines	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9 1	– –	2.25	n.a.	–	2.25	n.a.	
Watermelons	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9 1	– –	1.8	n.a.	–	1.25	n.a.	
Broccoli	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9 1	– –	1.25	n.a.	–	1.25	n.a.	
Cauliflowers	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – injection	9 1	– –	1.25	n.a.	–	1.25	n.a.	
Brussels sprouts	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9 1	– –	1.25	n.a.	–	1.25	n.a.	
Head cabbages	EL	F	F	Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – injection	9 1	– –	1.25	n.a.	–	1.25	n.a.	
Crop and/or situation	Country	F or G or I^(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	Remarks							
-----------------------	---------	-----------------	--------------------------------------	-------------	----------------	--------------------------------	---------							
				Type^(b)	Conc. a.s.	Method kind	Range of growth stages and season^(c)	Number min–max	Interval between application (min)	g a.s./hL min–max	Water L/ha min–max	kg a.s./ha min–max	PHI (days)^(d)	
Chinese cabbages	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – general (see also comment field)	9	1		–	–	1.25	n.a.	Pretransplant (submitted for zonal Step 2, zRMS France)
Kales	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1		–	–	1.25	n.a.	Pretransplant (submitted for zonal Step 2, zRMS France)
Kohlrabies	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1		–	–	1.25	n.a.	Pretransplant (submitted for zonal Step 2, zRMS France)
Roman rocket	FR	F	Annual grasses and broadleaved weeds	SC	450 g/L	Soil treatment – general (see also comment field)	1			–	–	0.81	26	Application to soil surface under crop followed by incorporation
Chervil	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1		–	–	1.13	n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)
Chives	EL	F	Annual & perennial weeds and grasses	SC	450 g/L	Soil treatment – spraying	9	1		–	–	1.13	n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)
Crop and/or situation	Country	F	G or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks					
-----------------------	---------	---	--------	-----------------------------------	-------------	-------------	--------------------------------	-----------	---------					
Celery leaves	EL	F		Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)				
Parsley	EL	F		Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)				
Sage	EL	F		Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)				
Rosemary	EL	F		Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Pre-emergence (submitted for zonal Step 2, zRMS France)				
Thyme	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Application method: Spraying on soil/Spraying on soil followed by incorporation				
Basil	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Application method: Spraying on soil/Spraying on soil followed by incorporation				
Laurel	EL	F		Annual & perennial weeds and grasses	SC 450 g/L	Soil treatment – spraying	9	1	1.13 n.a.	Presowing (submitted for zonal Step 2, zRMS France)				
Crop and/or situation	Country	F or G	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------	--------	----------------------------------	-------------	------------	--------------------------------	-----------	---------						
				Type(b) Conc. a.s. Method kind Range of growth stages and season(c) Number min-max Interval between application (min) g a.s./hL min-max Water L/ha min-max kg a.s./ha min-max										
Tarragon	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L Soil treatment – spraying 9 1	– – 1.13	n.a. Application method: spraying on soil/spraying on soil followed by incorporation								
Sesame seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L Soil treatment – general (see also comment field) 9 1	– – 1.26	n.a. Application to soil surface under crop followed by incorporation								
Rapeseeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L Soil treatment – general (see also comment field) 9 1	– – 1.26	n.a. Application to soil surface under crop followed by incorporation								
Borage seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L Soil treatment – general (see also comment field) 9 1	– – 1.26	n.a. Application to soil surface under crop followed by incorporation								
Gold of pleasure seeds	FR	F	Annual grasses and broadleaved weeds	SC 450 g/L Soil treatment – general (see also comment field) 9 1	– – 1.26	n.a. Application to soil surface under crop followed by incorporation								
Crop and/or situation	Country	F	G or I	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	Remarks						
-----------------------	---------	---	--------	-------------------------------	-------------	-------------	-------------------------------	---------						
							g a.s./hL min-max	Water L/ha min-max	kg a.s./ha min-max	PH (days) (d)				
Hemp seeds	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – general (see also comment field)	9 1	–	–	1.26	n.a.			
Herbal infusions from flowers	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9 1	–	–	1.13	n.a.			
Herbal infusions from leaves and herbs	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9 1	–	–	1.13	n.a.			
Herbal infusions from roots	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9 1	–	–	1.13	n.a.			
Fruit spices	FR	F		Annual grasses and broadleaved weeds	SC 450 g/L	Soil treatment – spraying	9 1	–	–	1.13	n.a.			

NEU: northern European Union; SEU: southern European Union; MS: Member State; GAP: Good Agricultural Practice; BBCH: growth stages of mono- and dicotyledonous plants; a.s.: active substance; SC: suspension concentrate; WG: water-dispersible granule.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI: minimum preharvest interval.
A.3. Authorised indoor uses in the EU

Crop and/or situation	Country	F G or I (a)	Pests or group of pests controlled	Preparation	Method kind	Range of growth stages and season (c)	Number min–max	Interval between application (min)	Application rate per treatment	PHI (days) (d)	Remarks
Lamb’s lettuces	BE	I	Annual dicots and meadow grass	SC	450 g/L	Soil treatment – general	0 1	–	g a.s./ha; L/ha; kg a.s./ha	0.72	n.a.
						(see also comment field)					Treatment before sowing. Superficial incorporation
Roman rocket	UK	I				Soil treatment – general	0 1	–	g a.s./ha; L/ha; kg a.s./ha	0.38	n.a.
						(see also comment field)					Before transplanting or drilling
Red mustards	UK	I				Soil treatment – general	0 1	–	g a.s./ha; L/ha; kg a.s./ha	0.38	n.a.
						(see also comment field)					Before transplanting or drilling
Baby leaf crops	UK	I				Soil treatment – general	0 1	–	g a.s./ha; L/ha; kg a.s./ha	0.38	n.a.
						(see also comment field)					Before transplanting or drilling

NEU: northern European Union; SEU: southern European Union; MS: Member State; GAP: Good Agricultural Practice; BBCH: growth stages of mono- and dicotyledonous plants; a.s.: active substance; SC: suspension concentrate; WG: water-dispersible granule.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI: minimum preharvest interval.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)
Fruit crops	Apples	Soil, first application with 4.61 kg a.s./ha and second application of 4.53 kg a.s./ha (151 days after first treatment)	186 days after first treatment and 35 days after the second treatment	
	Tomatoes	Soil, 1 × 2.5 kg a.s./ha	Tomatoes planted at 4–6 leaf stage; harvested at fruit production	
	Root crops	Potatoes	Soil, 1 × 2.0 kg a.s./ha	61
	Leafy crops	Cabbages	Soil, 1 × 2.5 kg a.s./ha	55–60
Pulses/oilseeds	Oilseed rape	Soil, 1 × 2.0 kg a.s./ha	Forage: 124 and 195 DAT Pods: 256 and 292 DAT	

Source: Denmark (2005)

Rotational crops (available studies)	Crop groups	Crop(s)	Application(s)	PBI (DAT)
Root/tuber crops	Carrot	Bare soil, 4.8 kg a.s./ha	60, 180 and 364	
Leafy crops	Lettuce	Bare soil, 4.8 kg a.s./ha	60, 180 and 364	
Cereal (small grain)	Spring wheat	Bare soil, 4.8 kg a.s./ha	60, 180 and 364	

Source: Denmark (2005)

Processed commodities (hydrolysis study)	Conditions	Investigated?
	Pasteurisation (20 min, 90°C, pH 4)	No
	Baking, brewing and boiling (60 min, 100°C, pH 5)	No
	Sterilisation (20 min, 120°C, pH 6)	No
	Not available and not required	

Can a general residue definition be proposed for primary crops? No (restricted to soil treatments)

Rotational crop and primary crop metabolism similar? Yes (for soil treatments)

Residue pattern in processed commodities similar to residue pattern in raw commodities? Not applicable

Plant residue definition for monitoring (RD-Mo) Napropamide (sum of isomers) [for soil treatments only] Napropamide (sum of isomers) [tentative for fruits following foliar treatment]

Plant residue definition for risk assessment (RD-RA) Napropamide (sum of isomers) [for soil treatments only] Napropamide (sum of isomers) [tentative for fruits following foliar treatment]

Conversion factor (monitoring to risk assessment) Not applicable
Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)

Method	LOQs
GC–MS/MS (European Union Reference Laboratories for Pesticide Residues, 2018):	LOQ 0.01 mg/kg
	Fully validated in high water, high acid, high oil and dry commodities

a.s.: active substance; DAT: days after treatment; PBI: plant-back interval; GC–MS/MS: gas chromatography with tandem mass spectrometry; LOQ: limit of quantification; ILV: independent laboratory validation.

B.1.1.2. Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability (months/years)
	High water content	Cabbages	−18	11 months
	High oil content	Oilseed rape	−18	12 months

Source: EFSA (2010)
Studies are missing and are required for high acid content (data gap) and dry content commodities (minor deficiency in the present review)
B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials

Crop	Region/indoor^(a)	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)^(b)	STMR (mg/kg)^(c)
Grapefruits Oranges Lemons Mandarins	SEU	4 × < 0.01	Combined data set of trials on apples (1), pears (1), oranges (1) and mandarins (1) compliant with GAP (Denmark, 2018). A no-residue situation is expected. Extrapolation to all pome fruits, grapefruits, oranges, lemons and mandarins is applicable	0.01*^(tentative)	< 0.01	< 0.01
Limes	SEU	4 × < 0.01	Combined data set of overdosed trials on apples (1), pears (1), oranges (1) and mandarins (1) is considered acceptable (Denmark, 2018). A no-residue situation is expected	0.01*^(tentative)	< 0.01	< 0.01
Almonds Chestnuts Hazelnuts Pecans Pine nut kernels Pistachios Walnuts	NEU	12 × < 0.01	Combined data set of overdosed trials on apples (4), pears (4) and plums (4) (Denmark, 2018). A no-residue situation is expected. Extrapolation to the whole group tree nuts is applicable. GAP authorised for almonds, chestnuts, hazelnuts/cobnuts, pine nut kernels and walnuts only	0.01*	< 0.01	< 0.01
SEU	4 × < 0.01	Combined data set of overdosed (1.8N) trials on apples (1), pears (1), oranges (1) and mandarins (1) (Denmark, 2018). A no-residue situation is expected. Extrapolation to tree nuts is applicable. GAP authorised for chestnuts, hazelnuts/cobnuts, pecans, pistachios and walnuts only	0.01*	< 0.01	< 0.01	
Pome fruits	NEU	8 × < 0.01	Combined data set of trials on apples (4) and pears (4) compliant with GAP (Denmark, 2018). A no-residue situation is expected. Extrapolation to whole pome fruits group is applicable	0.01*	< 0.01	< 0.01
SEU	4 × < 0.01	Combined data set of trials on apples (1), pears (1), oranges (1) and mandarins (1) (Denmark, 2018). Extrapolation to all pome fruits, grapefruits, oranges, lemons and mandarins is applicable	0.01*	< 0.01	< 0.01	

^(a) Region/indoor: SEU = South Europe

^(b) HR: Hazard Quotient

^(c) STMR: Short Term Maximum Residue Level
Crop	Region/indoor(a)	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)(b)	STMR (mg/kg)(c)
Stone fruits	NEU	12 × 0.01	Extrapolation from a combined data set of overdosed trials on apples (4), pears (4) and plums (4) compliant with GAP (Denmark, 2018). A no-residue situation is expected	0.01*	< 0.01	< 0.01
	SEU	4 × 0.01	Extrapolation from a combined data set of trials on apples (1), pears (1), oranges (1) and mandarins (1) (Denmark, 2018). A no-residue situation is expected	0.01*	< 0.01	< 0.01
Table grapes	NEU	–	No data available. GAP authorised for wine grapes only	–	–	–
	SEU	–	No data available	–	–	–
Table grapes	NEU	–	No data available. GAP authorised for wine grapes only	–	–	–
	SEU	–	No data available	–	–	–
Strawberries	NEU	2 × 0.01	Two overdosed trials are considered acceptable (Denmark, 2018). A no-residue situation is expected	0.01* (tentative)(d)	< 0.01	< 0.01
	SEU	2 × 0.01	Residue trials compliant with GAP (Denmark, 2018). A no-residue situation is expected	0.01* (tentative)(d)	< 0.01	< 0.01
Raspberries (red and yellow)	NEU	4 × 0.01	Overdosed trials on raspberries are considered acceptable (Denmark, 2018). Extrapolation to blackberries and dewberries is applicable	0.01* (tentative)(d)	< 0.01	< 0.01
Blackberries	NEU	< 0.01; 3 × 0.02	Trials on currants compliant with GAP (Denmark, 2018). Extrapolation to blueberries, cranberries, gooseberries, rose hips and elderberries is applicable \(\text{MRL}_{\text{OECD}} = 0.02\)	0.02 (tentative)(d,e)	< 0.02	< 0.02
Dewberries	NEU	–	No data available	–	–	–
Blueberries	SEU	–	No data available	–	–	–
Cranberries	SEU	–	No data available	–	–	–
Currants (black, red and white)	SEU	–	No data available	–	–	–
Gooseberries (green, red and yellow)	SEU	–	No data available	–	–	–
Rose hips	SEU	–	No data available	–	–	–
Elderberries	SEU	–	No data available	–	–	–
Figs	SEU	–	No data available	–	–	–
Granate apples/pomegranates	SEU	–	No data available	–	–	–
Potatoes	SEU	4 × 0.01	Overdosed trials on potatoes are considered acceptable. A no-residue situation is expected (Denmark, 2018)	0.01*	< 0.01	< 0.01
Crop	Region/indoor	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)(b)	STMR (mg/kg)(c)
-----------------------------	---------------	--	--	-----------------------	---------------	-----------------
Celeriacs/turnip rooted celeries, horseradishes, radishes	NEU	4 × < 0.01	Trials on swedes compliant with GAP (Denmark, 2018). Extrapolation to celeriacs, horseradishes and radishes is applicable. A no-residue situation is expected	0.01*	< 0.01	< 0.01
Swedes/rutabagas, turnips	NEU	4 × < 0.01	Only under dosed trials (0.563 kg a.s./ha instead of 0.95 kg a.s./ha, outside the 25% deviation rule) on swedes roots (Denmark, 2018) are available. However, a no-residue situation is foreseen for root crops, since a clearly more critical GAP on potatoes, which is supported by trials done with three times the application rate reported for the GAP on swedes/rutabagas, showed a no-residue situation. In addition, the metabolism study performed on potatoes with twice the application rate reported for the GAP on swedes/rutabagas indicated that no residues are expected	0.01*	< 0.01	< 0.01
Turnip tops	NEU	–	No data available	–	–	–
Tomatoes	NEU	–	No data available. GAP authorised for tomatoes only. SEU data set is sufficient to confirm that a no-residue situation is expected	–	–	–
Aubergines/eggplants	SEU	8 × < 0.01	Trials on tomatoes compliant with GAP (Denmark, 2018). Extrapolation to aubergines is applicable	0.01*	< 0.01	< 0.01
Sweet peppers/bell peppers	NEU	–	No data is available	–	–	–
	SEU	–	No data is available	–	–	–
Watermelons	SEU	–	No data available	–	–	–

Review of the existing MRLs for napropamide
Crop	Region/indoor^(a)	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)^(b)	STMR (mg/kg)^(c)
Broccoli	NEU	23 × < 0.01	Combined data set of trials on head cabbages (8), Brussels sprouts (8) and cauliflower (7) compliant with GAP (EFSA, 2010). A no-residue situation is expected. Extrapolation to flowering and head brassicas is applicable	0.01*	< 0.01	< 0.01
Cauliflowers	SEU	4 × < 0.01	Combined data set of GAP-compliant trials on cauliflower (2) and head cabbages (2) (Denmark, 2018). A no-residue situation is expected. Extrapolation to flowering and head brassicas is applicable	0.01*	< 0.01	< 0.01
Brussels sprouts						
Head cabbages						
Cauliflowers	NEU					
Chinese cabbages/pe-tsai	NEU	–	No data available	–	–	–
Kale	SEU	–	No data available	–	–	–
Kohlrabies						
Lamb’s lettuces/corn salads	NEU	3 × < 0.01; 0.01	Trials on lamb’s lettuce compliant with GAP (Denmark, 2018). Extrapolation to red mustard, roman rocket/rucola and baby leaf crops is applicable \[MRL_{OECD} = 0.02\]	0.02	< 0.01	0.01
Red mustards	SEU	–	No data available. GAP authorised for roman rocket/rucola only	–	–	–
Baby leaf crops (including brassica species)						
EU	4 × < 0.05		Overdosed trials on lamb’s lettuce are considered acceptable (Denmark, 2018). Extrapolation to red mustard, roman rocket/rucola and baby leaf crops is applicable \[MRL_{OECD} = 0.05\]	0.05	< 0.05	< 0.05
Crop	Region/indoor	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
-----------------------------	---------------	---	---	----------------------	------------	-------------
Chervil	NEU	—	No data available. GAP authorised for sage, thyme, basil and tarragon only	—	—	—
Chives	SEU	—	No data available	—	—	—
Celery leaves						
Parsley						
Sage						
Rosemary						
Thyme						
Basil						
Laurel						
Tarragon						
Herbal infusions from flowers	NEU	—	No data available	—	—	—
Herbal infusion from leaves and herbs	SEU	—	No data available	—	—	—
Herbal infusion from roots						
Fresh spices	NEU	—	No data available	—	—	—
SEU						
Beans (with pods)	NEU	$6 \times < 0.02$	Trials compliant with GAP (Denmark, 2018). A no-residue situation is expected	0.01^*	< 0.01	< 0.01
Crop	Region/in indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials relevant to the supported GAPs (mg/kg)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)\(^{(b)}\)	STMR (mg/kg)\(^{(c)}\)
-----------------------------	-----------------------------	---	--	------------------------	----------------------	------------------------
Linseeds Poppy seeds	NEU	7 × < 0.01; 0.01	Trials on rapeseeds compliant with GAP (Denmark, 2005). An extrapolation to the whole group oilseeds is proposed MRL\(_{OECD} = 0.02\)	0.02	0.01	< 0.01
Sesame seeds Sunflower seeds Sunflower seeds Rapeseeds/canola seeds Soya beans Mustard seeds Cotton seeds Pumpkin seeds Safflower seeds Borage seeds Gold of pleasure seeds Hemp seeds Castor beans	SEU	3 × < 0.01	Trials on rapeseeds compliant with GAP (Denmark, 2018). GAP authorised for sesame seeds, rapeseeds/canola seeds, borage seeds, hemp seeds and gold of pleasure seeds only	0.01* (tentative)	< 0.01	< 0.01

GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development; MRL: maximum residue level.

*: Indicates that the MRL is proposed at the limit of quantification.

(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe; Indoor: indoor EU trials or Country code: if non-EU trials.

(b): Highest residue.

(c): Supervised trials median residue.

(d): MRL is tentative because a storage stability study on high acid content commodities is needed.

(e): MRL is tentative because a metabolism study following foliar treatments on fruit crops is needed.

(f): MRL is tentative because residue trials are missing.
B.1.2.2. Residues in succeeding crops

| Confined rotational crop study (quantitative aspect) | Sowing/planting of succeeding crops 180 days after last application would not lead to a potential uptake of napropamide (residues are below the LOQ of 0.01 mg/kg) |
| Field rotational crop study | When wheat was grown as a rotational crop to oilseed rape treated with 0.95 kg a.s./ha, residues of napropamide in wheat straw and grains were below the LOQ of 0.01 mg/kg |

B.1.2.3. Processing factors

Processed commodity	Number of studies	Processing factor (PF)	
		Individual values	Median PF
No studies available and not required			

B.2. Residues in livestock

Relevant groups	Dietary burden expressed in	Most critical diet\(^{(a)}\)	Most critical commodity\(^{(a)}\)	Trigger exceeded (Y/N)				
	mg/kg bw per day	mg/kg DM	Med.	Max.	Med.	Max.		
Cattle (all diets)	0.0023	0.0023	0.09	0.09	Cattle (dairy)	Swede, roots	No	
Cattle (dairy only)	0.0023	0.0023	0.06	0.06	Cattle (dairy)	Swede, roots	No	
Sheep (all diets)	0.0024	0.0024	0.07	0.07	Sheep (ram/ewe)	Swede, roots	No	
Sheep (ewe only)	0.0024	0.0024	0.07	0.07	Sheep (ram/ewe)	Swede, roots	No	
Swine (all diets)	0.0015	0.0015	0.06	0.06	Swine (breeding)	Swede, roots	No	
Poultry (all diets)	0.0012	0.0012	0.02	0.02	Poultry (layer)	Swede, roots	No	
Poultry (layer only)	0.0012	0.0012	0.02	0.02	Poultry (layer)	Swede, roots	No	

bw: body weight; DM: dry matter.

B.2.1. Nature of residues and methods of analysis in livestock

B.2.1.1. Metabolism studies, methods of analysis and residue definitions in livestock

Livestock (available studies)	Animal	Dose (mg/kg bw per day)	Duration (days)	N rate/comment
Laying hen	0.52	10	433N (compared to poultry)	
Lactating goat	0.28	4	117N (compared to sheep all diets)	

bw: body weight.

Time needed to reach a plateau concentration in milk and eggs (days)

- Eggs: Not reported
- Milk: 2 days

Metabolism in rat and ruminant similar (Yes/No)

- Yes

Animal residue definition for monitoring (RD-Mo)

- Not required

Animal residue definition for risk assessment (RD-RA)

- Not required

Conversion factor (monitoring to risk assessment)

- Not applicable

Fat soluble residues (Yes/No)

- Not applicable

Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)

- Not available and not required
B.2.1.2. Stability of residues in livestock

Animal products (available studies)	Animal	Commodity	T (°C)	Stability (Months/years)
	–	Muscle	–	–
	–	Liver	–	–
	–	Kidney	–	–
	–	Milk	–	–
	–	Egg	–	–

No studies available and not required

B.2. Magnitude of residues in livestock

B.2.2.1. Summary of the residue data from livestock feeding studies

MRLs are not necessary as the dietary burdens were found to be below the trigger value.

B.3. Consumer risk assessment

Consumer risk assessment	0.3 mg/kg bw per day (EFSA, 2010)
Highest IEDI, according to EFSA PRIMo	0.2% ADI (FR, all population)
Assumptions made for the calculations	

The calculation is based on the median residue levels in the raw agricultural commodities
For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation
The contributions of commodities where no GAP was reported in the framework of this review were not included in the calculation
The calculations were done assuming that sufficient restriction measures (e.g. PBI of minimum 180 DAT) would be implemented to avoid significant residue levels in rotational crops

B.4. Proposed MRLs

Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	Comment
	Enf. residue def. (existing): napropamide	napropamide (sum of isomers)		
110010	Grapefruits	0.05*	0.01*	Further consideration needed^(a)
110020	Oranges	0.05*	0.01*	Further consideration needed^(a)
110030	Lemons	0.05*	0.01*	Further consideration needed^(a)
110040	Limes	0.05*	0.01*	Further consideration needed^(a)
110050	Mandarins	0.05*	0.01*	Further consideration needed^(a)
120010	Almonds	0.05*	0.01*	Recommended^(b)
120040	Chestnuts	0.05*	0.01*	Recommended^(b)

ARfD Not necessary (EFSA, 2010)
Highest IESTI, according to EFSA PRIMo
Assumptions made for the calculations

ADI: acceptable daily intake; bw: body weight; IEDI: international estimated daily intake; PRIMo: (EFSA) Pesticide Residues Intake Model; MRL: maximum residue level; WHO: World Health Organization; ARfD: acute reference dose; IESTI: international estimated short-term intake.
Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	Comment	
120060	Hazelnuts/cobnuts	0.05*	0.01*	Recommended^(b)	
120080	Pecans	0.05*	0.01*	Recommended^(b)	
120090	Pine nut kernels	0.05*	0.01*	Recommended^(b)	
120100	Pistachios	0.05*	0.01*	Recommended^(b)	
120110	Walnuts	0.05*	0.01*	Recommended^(b)	
130010	Apples	0.1	0.01*	Recommended^(b)	
130020	Pears	0.1	0.01*	Recommended^(b)	
130030	Quinces	0.1	0.01*	Recommended^(b)	
130040	Medlars	0.1	0.01*	Recommended^(b)	
130050	Loquats/Japanese medlars	0.1	0.01*	Recommended^(b)	
140010	Apricots	0.1	0.01*	Recommended^(b)	
140020	Cherries (sweet)	0.1	0.01*	Recommended^(b)	
140030	Peaches	0.1	0.01*	Recommended^(b)	
140040	Plums	0.1	0.01*	Recommended^(b)	
151010	Table grapes	0.1	0.1	Further consideration needed^(c)	
151020	Wine grapes	0.1	0.1	Further consideration needed^(c)	
152000	Strawberries	0.2	0.01*	Further consideration needed^(a)	
153010	Blackberries	0.1	0.01*	Further consideration needed^(a)	
153020	Dewberries	0.1	0.01*	Further consideration needed^(a)	
153030	Raspberries (red and yellow)	0.1	0.01*	Further consideration needed^(a)	
154010	Blueberries	0.1	0.02	Further consideration needed^(a)	
154020	Cranberries	0.1	0.02	Further consideration needed^(a)	
154030	Currants (black, red and white)	0.1	0.02	Further consideration needed^(a)	
154040	Gooseberries (green, red and yellow)	0.1	0.02	Further consideration needed^(a)	
154050	Rose hips	0.1	0.02	Further consideration needed^(a)	
154080	Elderberries	0.1	0.02	Further consideration needed^(a)	
161020	Figs	0.05*	0.05	Further consideration needed^(c)	
163050	Granate apples/pomegranates	0.05*	0.05	Further consideration needed^(c)	
211000	Potatoes	0.1	0.01*	Recommended^(b)	
213030	Celeriacs/turnip rooted celeres	0.05*	0.01*	Recommended^(b)	
213040	Horseradishes	0.05*	0.01*	Recommended^(b)	
213080	Radishes	0.05*	0.01*	Recommended^(b)	
213100	Swedes/rutabagas	0.05*	0.01*	Recommended^(b)	
213110	Turnips	0.05*	0.01*	Recommended^(b)	
231010	Tomatoes	0.1	0.01*	Recommended^(b)	
231020	Sweet peppers/bell peppers	0.1	0.1	Further consideration needed^(c)	
231030	Aubergines/eggplants	0.1	0.01*	Recommended^(b)	
233030	Watermelons	0.05*	0.05	Further consideration needed^(c)	
241010	Broccoli	0.05*	0.01*	Recommended^(b)	
241020	Cauliflowers	0.1	0.01*	Recommended^(b)	
242010	Brussels sprouts	0.1	0.01*	Recommended^(b)	
242020	Head cabbages	0.1	0.01*	Recommended^(b)	
243010	Chinese cabbages/pe-tsai	0.05*	0.05	Further consideration needed^(c)	
243020	Kales	0.05*	0.05	Further consideration needed^(c)	
Code number	Commodity	Existing EU MRL (mg/kg)	Outcome of the review	Comment	
-------------	-----------	------------------------	-----------------------	---------	
244000	Kohlrabies	0.05*	MRL (mg/kg)	0.05	
251010	Lamb’s lettuces/corn salads	0.2	Recommended	(b)	
251060	Roman rocket/rucola	0.2	Recommended	(b)	
251070	Red mustards	0.05*	Recommended	(b)	
251080	Baby leaf crops (including brassica species)	0.05*	Recommended	(b)	
256010	Chervil	0.05*	Further consideration needed	(c)	
256020	Chives	0.05*	Further consideration needed	(c)	
256030	Celery leaves	0.05*	Further consideration needed	(c)	
256040	Parsley	0.05*	Further consideration needed	(c)	
256050	Sage	0.05*	Further consideration needed	(c)	
256060	Rosemary	0.05*	Further consideration needed	(c)	
256070	Thyme	0.05*	Further consideration needed	(c)	
256080	Basil and edible flowers	0.05*	Further consideration needed	(c)	
256090	Laurel/bay leaf	0.05*	Further consideration needed	(c)	
256100	Tarragon	0.05*	Further consideration needed	(c)	
260010	Beans (with pods)	0.05*	0.01* Recommended	(b)	
401010	Linseeds	0.05*	Recommended	(b)	
401030	Poppy seeds	0.05*	Recommended	(b)	
401040	Sesame seeds	0.05*	Recommended	(b)	
401050	Sunflower seeds	0.05*	Recommended	(b)	
401060	Rapeseeds/canola seeds	0.1	0.02 Recommended	(b)	
401070	Soya beans	0.05*	Recommended	(b)	
401080	Mustard seeds	0.05*	0.02 Recommended	(b)	
401090	Cotton seeds	0.05*	Recommended	(b)	
401100	Pumpkin seeds	0.05*	Recommended	(b)	
401110	Safflower seeds	0.05*	Recommended	(b)	
401120	Borage seeds	0.05*	Recommended	(b)	
401130	Gold of pleasure seeds	0.05*	0.02 Recommended	(b)	
401140	Hemp seeds	0.05*	Recommended	(b)	
401150	Castor beans	0.05*	0.02 Recommended	(b)	
631000	Herbal infusions from flowers	0.05*	0.05 Further consideration needed	(c)	
632000	Herbal infusions from leaves and herbs	0.05*	0.05 Further consideration needed	(c)	
633000	Herbal infusions from roots	0.05*	0.05 Further consideration needed	(c)	
820000	Fruit spices	0.05*	0.05 Further consideration needed	(c)	
	Other commodities of plant/animal origin	See Reg. 149/2008	–	Further consideration needed	(d)

MRL: maximum residue level; CXL: codex maximum residue limit.
*: Indicates that the MRL is set at the limit of quantification.
(a): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); no CXL is available (combination E-I in Appendix E).
(b): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination G-I in Appendix E).
(c): GAP evaluated at EU level is not supported by data but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); no CXL is available (combination C-I in Appendix E).
(d): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).
Appendix C – Pesticide Residue Intake Model (PRIMo)

• PRIMo(EU)

Napropamide

Toxicological end points	ADI (range (mg/kg bw))	ARfD (mg/kg bw)	Source of ADI	Source of ARfD	Year of evaluation	Year of evaluation
	0.3	n.n.	EFSA	EFSA	2010	2010

Source of ADI	Source of ARfD	Year of evaluation
EFSA	EFSA	2010

No. of diets exceeding ADI

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Estimated TMDI values in % of ADI
minimum - maximum

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Conclusion:
The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs, were below the ADI. A long-term intake of residues of napropamide is unlikely to present a public health concern.

Table grapes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Peppers

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Apples

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Potatoes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Oranges

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Watermelons

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Table grapes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Wine grapes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Tomatoes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Wine grapes

Commodity/group of commodities
Potatoes
Peppers
Watermelons
Table grapes
Apples
Oranges

Conclusion:
The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs, were below the ADI. A long-term intake of residues of napropamide is unlikely to present a public health concern.
Acute risk assessment/children – refined calculations

No of commodities for which ARfD/ADI is exceeded (IESTI 1):	No of commodities for which ARfD/ADI is exceeded (IESTI 2):	No of commodities for which ARfD/ADI is exceeded (IESTI 1):	No of commodities for which ARfD/ADI is exceeded (IESTI 2):
---	---	---	---

Acute risk assessment/adults/general population – refined calculations

No of commodities for which ARfD/ADI is exceeded (IESTI 1):	No of commodities for which ARfD/ADI is exceeded (IESTI 2):	No of commodities for which ARfD/ADI is exceeded (IESTI 1):	No of commodities for which ARfD/ADI is exceeded (IESTI 2):
---	---	---	---

The results of the IESTI calculations are reported for at least 5 commodities. If the ARfD is exceeded for more than 5 commodities, all IESTI values > 90% of ARfD are reported.

**pTMRL: provisional temporary MRL.

***) pTMRL: provisional temporary MRL for unprocessed commodity.

Conclusion:

As no ARfD was considered necessary, it is concluded that the short-term intake of napropamide residues is unlikely to present a public health concern.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100% of the ARfD.

No of commodities for which ARfD/ADI is exceeded (IESTI 1):

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100% of the ARfD.

No of critical MRLs (IESTI 1):

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.

No of commodities for which ARfD/ADI is exceeded:

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100% of the ARfD.

No of critical MRLs (IESTI 2):

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.
Appendix D – Input values for the exposure calculations

D.1. Livestock dietary burden calculations

Feed commodity	Median dietary burden	Maximum dietary burden		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition – napropamide (sum of isomers)				
Grapefruits, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Oranges, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Lemons, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Limes, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Mandarins, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Apple, pomace, wet	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Potato, culls	0.01*	STMR	0.01	HR
Potato, process waste	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Potato, dried pulp	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Swede, roots	0.01*	STMR	0.01	HR
Turnip, roots	0.01*	STMR	0.01	HR
Cabbage, heads, leaves	0.01*	STMR	0.01	HR
Flaxseed/Linseed, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Sunflower, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Canola (Rape seed), meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Rape, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Soybean, seed	0.01*	STMR	0.01	STMR
Soybean, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Soybean, hulls	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Cotton, undelinted seed	0.01*	STMR	0.01	STMR
Cotton, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)
Safflower, meal	0.01*	STMR (default PF not applied)	0.01	STMR (default PF not applied)

STMR: supervised trials median residue; HR: highest residue; PF: processing factor.
*#: Indicates that the input value is proposed at the limit of quantification.
(a): For fruit pomace, potatoes waste/pulp and oilseed meals no default processing factor was applied because napropamide is applied early in the growing season and residues are expected to be below or equal to the LOQ. Concentration of residues in these commodities is therefore not expected.
D.2. Consumer risk assessment

Commodity	Chronic risk assessment	Input value (mg/kg)	Comment
Risk assessment residue definition – napropamide (sum of isomers)			
Grapefruits		0.01*	STMR (tentative)
Oranges		0.01*	STMR (tentative)
Lemons		0.01*	STMR (tentative)
Limes		0.01*	STMR (tentative)
Mandarins		0.01*	STMR (tentative)
Almonds		0.01*	STMR
Chestnuts		0.01*	STMR
Hazelnuts/cobnuts		0.01*	STMR
Pecans		0.01*	STMR
Pine nut kernels		0.01*	STMR
Pistachios		0.01*	STMR
Walnuts		0.01*	STMR
Apples		0.01*	STMR
Pears		0.01*	STMR
Quinces		0.01*	STMR
Medlars		0.01*	STMR
Loquats/Japanese medlars		0.01*	STMR
Apricots		0.01*	STMR
Cherries (sweet)		0.01*	STMR
Peaches		0.01*	STMR
Plums		0.01*	STMR
Table grapes		0.1	EU MRL
Wine grapes		0.1	EU MRL
Strawberries		0.01*	STMR (tentative)
Blackberries		0.01*	STMR (tentative)
Dewberries		0.01*	STMR (tentative)
Raspberries (red and yellow)		0.01*	STMR (tentative)
Blueberries		0.02	STMR (tentative)
Commodity	Input value (mg/kg)	Comment	
---	--------------------	---------------	
Cranberries	0.02	STMR (tentative)	
Currants (black, red and white)	0.02	STMR (tentative)	
Gooseberries (green, red and yellow)	0.02	STMR (tentative)	
Rose hips	0.02	STMR (tentative)	
Elderberries	0.02	STMR (tentative)	
Figs	0.05	EU MRL	
Granate apples/pomegranates	0.05	EU MRL	
Potatoes	0.01*	STMR	
Celeriacs/turnip rooted celeries	0.01*	STMR	
Horseradishes	0.01*	STMR	
Radishes	0.01*	STMR	
Swedes/rutabagas	0.01*	STMR	
Turnips	0.01*	STMR	
Tomatoes	0.01*	STMR	
Sweet peppers/bell peppers	0.1	EU MRL	
Aubergines/eggplants	0.01*	STMR	
Watermelons	0.05	EU MRL	
Broccoli	0.01*	STMR	
Cauliflowers	0.01*	STMR	
Brussels sprouts	0.01*	STMR	
Head cabbages	0.01*	STMR	
Chinese cabbages/pe-tsai	0.05	EU MRL	
Kales	0.05	EU MRL	
Kohlrabies	0.05	EU MRL	
Lamb’s lettuces/corn salads	0.05	STMR	
Roman rocket/rucola	0.05	STMR	
Red mustards	0.05	STMR	
Baby leaf crops (including brassica species)	0.05	STMR	
Chervil	0.05	EU MRL	
Chives	0.05	EU MRL	
Celery leaves	0.05	EU MRL	
Commodity
Chronic risk assessment

Commodity	Input value (mg/kg)	Comment
Parsley	0.05	EU MRL
Sage	0.05	EU MRL
Rosemary	0.05	EU MRL
Thyme	0.05	EU MRL
Basil and edible flowers	0.05	EU MRL
Laurel/bay leave	0.05	EU MRL
Tarragon	0.05	EU MRL
Beans (with pods)	0.01*	STMR
Linseeds	0.01*	STMR
Poppy seeds	0.01*	STMR
Sesame seeds	0.01*	STMR
Sunflower seeds	0.01*	STMR
Rapeseeds/canola seeds	0.01*	STMR
Soya beans	0.01*	STMR
Mustard seeds	0.01*	STMR
Cotton seeds	0.01*	STMR
Pumpkin seeds	0.01*	STMR
Safflower seeds	0.01*	STMR
Borage seeds	0.01*	STMR
Gold of pleasure seeds	0.01*	STMR
Hemp seeds	0.01*	STMR
Castor beans	0.01*	STMR
Herbal infusions from flowers	0.05	EU MRL
Herbal infusions from leaves and herbs	0.05	EU MRL
Herbal infusions from roots	0.05	EU MRL
Fruit spices	0.05	EU MRL

STMR: supervised trials median residue; MRL: maximum residue level.

*: Indicates that the input value is proposed at the limit of quantification.
Appendix E – Decision tree for deriving MRL recommendations

Evaluation of the GAPs and available residues data at EU level

- GAP or DM >0.1 mg/kg QM in EU?
 - No
 - Yes
 - MRL derived in section 3?
 - No
 - Yes
 - MRL fully supported by data?
 - No
 - Yes

Consumer risk assessment for GAPs evaluated at EU level - EU scenarios

- Not considered for the RA
 - Yes
 - No
- Current EU MRL is included in the RA?
 - Yes
 - No
- Tentative median/highest values are included in the RA?
 - Yes
 - No
- Median/highest values are included in the RA?
 - Yes
 - No
- Risk identified?
 - Yes
 - No
- Fall-back MRL available?
 - Yes
 - No

Recommendations resulting from EU authorisations and import tolerances

(A) Specific LOQ or default MRL?
(B) Specific LOQ or default MRL?
(C) Maintain current EU MRL?
(D) Establish tentative EU MRL?
(E) Specific LOQ or default MRL?
(F) MRL is recommended?

Comparison with CXLs
Review of the existing MRLs for napropamide

Comparison of the EU recommendation with the existing CXL

- CXL available?
 - Yes
 - RD comparable?
 - Yes
 - CXL higher?
 - Yes
 - Maintain EU recommendation; higher CXL is not safe for consumer.
 - No
 - CXL supported by data?
 - Yes
 - CXL is included in the RA.
 - No
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - (VII) CXL is recommended; EU recommendation is covered as well.
 - No
 - CXL is included in the RA.
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - Input values for the RA remain unchanged.
 - No
 - CXL supported by data?
 - Yes
 - CXL is included in the RA.
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - Input values for the RA remain unchanged.
 - No
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - Input values for the RA remain unchanged.

Consumer risk assessment with consideration of the existing CXL

- CXL supported by data?
 - Yes
 - CXL is included in the RA.
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - Input values for the RA remain unchanged.
 - No
 - Risk identified?
 - Yes
 - CXL is recommended; EU recommendation is covered as well.
 - No
 - Input values for the RA remain unchanged.

Recommendations with consideration of the existing CXL

1. Maintain EU recommendation indicating that no CXL is available.
2. Maintain EU recommendation indicating CXL is not compatible.
3. Maintain EU recommendation indicating CXL is not safe for consumer.
4. Maintain current CXL or EU recommendation?
5. Maintain EU recommendation; higher CXL is not safe for consumer.
6. Maintain EU recommendation; higher CXL is not safe for consumer.
7. CXL is recommended; EU recommendation is covered as well.
Appendix F – Used compound codes

| Code/trivial name^(a) | IUPAC name/SMILES notation/InChiKey^(b) | Structural formula^(c) |
|-------------------------------|---|---------------------------------|
| napropamide | (RS)-N,N-diethyl-2-(1-naphthyloxy)propionamide CCN(CC)C(=O)C (C)Oc1cccc2cccccc21 WXZVAROIGSCFJ-UHFFFAOYSA-N | ![napropamide Structural Formula](image) |
| Napropamide-M | (R)-N,N-diethyl-2-(1-naphthyloxy)propionamide CCN(CC)C(=O)[C@@H](C)Oc1cccc2cccccc21 WXZVAROIGSCFJ-CY8MUJFWSA-N | ![Napropamide-M Structural Formula](image) |

IUPAC: International Union of Pure and Applied Chemistry; SMILES: simplified molecular-input line-entry system.

(a): The metabolite name in bold is the name used in the conclusion.

(b): ACD/Name 2015 ACD/Labs 2015 Release (File version N20E41, Build 75170, 19 December 2014).

(c): ACD/ChemSketch 2015 ACD/Labs 2015 Release (File version C10H41, Build 75059, 17 December 2014).