A Unique Method to Determine SNe Initial Explosion Energy

Jian-Wen Xu\(^1\) and Hui-Rong Zhang\(^2\)

Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China

xjw@itp.ac.cn

ABSTRACT

There are several different methods to determine the individual supernovae (SNe) initial explosion energy, here we derive the average or typical explosion energy of shell-type supernova remnants (SNRs) in a particular way. By solving a group of equations pertaining to shell-type SNRs at the same stage we obtained some physical parameters, e.g., the distance \((d)\), evolved age \((t)\), etc.. Assuming series of different SN initial explosion energies ranging from \(10^{48}\) ergs to \(10^{53}\) ergs, we derived series of distance and age parameters with which compared already known ones. Thus the most likely value of the SNe initial explosion energy is obtained when the deviation is least, which equals to about \(10^{51}\) ergs, in good agreement with the undertook value.

Subject headings: supernovae: general — energy — value

1. Introduction

We have already known the initial kinetic energy \((E_0)\) of lots of Galactic SNRs through various estimate methods (table I). These SNRs embody shell-type and composite-type ones. Fig. II denotes the number distribution of 44 such remnants. It seems that they concentrate to about \(10^{50} \sim 10^{51}\) ergs. Therefore we can significantly take the average initial energy \((E_0)\) as a typical SNR physical parameter which is also able to be determined by our unique means.

Our mathematical method to derive SNe initial energy is rather different from others. One first method of others, for example, by \(E = \frac{1}{2} M_{su} v^2\), \(M_{su}\) is the swept-up mass of remnant shell expanding into interstellar media (ISM), \(v\) is the velocity of shock wave of remnant, the initial explosion energy of SNR G180.0−1.7 is thus obtained (Braun et al. 1989). Sun et al. (1999) calculating their detected ASCA data plus ROSAT data has derived the initial energy of G327.1−1.1 as the fitting result. After knowing the SNR G299.2−2.9 radius \((R)\) value, the particle density \((n_0)\) and the age \((t)\), Slane et al. (1996) get \(E_0\) value by \(E_0 \approx 340 R^2 n_0 t^{-2} \times 10^{51}\) ergs. Bamba et al. (2001) have got the \(E_0\) value by assuming a thin thermal NEI plasma model plus standard Sedov model. And so on. All of them obtain the initial energy of a individual SNR through physical means. Here in the paper we get SNe average initial explosion energy by statistical method.

Galactic supernova remnants are classified into three types: shell-type, Plerion-type and composite-type. Our work here merely include the shell-type remnants. Moreover, shell type SNRs usually have four evolution stages: the free expansion phase, the Sedov or adiabatic phase, the radiative or snowplough phase and the dissipation phase. Nearly all the observed SNRs are in the adiabatic phase, or in the 3rd. And almost none is detected in the 1st and 4th phases.

In the paper, numerical analysis for the most likely value of the SN initial energy is described in section 2 of which they are made separately at adiabatic-phase and radiative-phase for shell-type SNRs, and both made comparison by distances and ages. In the last section we discuss and
Table 1

List of the initial explosion energy E_0 of 44 Galactic shell-type or composite-type SNRs of which their value was somewhat well determined by various methods.

Source	$E_0 \times 10^{51}$ ergs	Ref.	Source	$E_0 \times 10^{51}$ ergs	Ref.
G0.0+0.0	$\geq 40^a$	KF96	G180.0−1.7	0.24	BGL89
G4.5+6.8	0.4/0.5b	BKV05	G184.6−5.8	0.015	GAT04a
G18.8+0.3	0.01	D99	G261.9+5.5	0.29	CD80
G18.9−1.1	0.08−0.18	H04	G263.9−3.3	1−2	GAT04a
G24.7+0.6	0.066	L89	G290.1−0.8	0.8	S02
G28.6−0.1	0.9	BUK01	G291.0−0.1	0.25?	HHS98
G29.7−0.3	2	HCG03	G292.0+1.8	0.18	GAT04b
G31.9+0.0	0.3−1.4c	C05	G292.2−0.5	1.0	GAT04b
G39.7−2.0	1	MS96	G296.1−0.5	0.23	HM94
G41.1−0.3	1.2	SDP05	G296.5+10.0	0.2−0.6	GAT04b
G74.0−8.5	0.24	BGL89	G299.2−2.9	0.12	SVH96
G82.2+5.3	0.17	M04	G312.4−0.4	0.6	CB99
G93.3+6.9	0.39	LRR99	G315.4−2.3	0.66	GAT04b
G94.0+1.0	≥ 0.27	F05	G320.4−1.2	1−2	GAT04b
G106.3+2.7	>0.07	KUP01	G326.3−1.8	1.0	GAT04b
G109.1−1.0	1−10	GAT04a	G327.1−1.1	0.23	SWC99
G111.7−2.1	2−3	V06	G327.6+14.6	1.0	GAT04b
G116.9+0.2	0.1	CHP97	G347.3−0.5	1.0	MTT05
G119.5+10.2	0.03	GAT04a	G349.7+0.2	0.5	L05
G120.1+1.4	1.16	WHB05	G352.7−0.1	0.2	K98a
G126.2+1.6	>7	B05	G357.7+0.3	0.11	L89
G132.7+1.3	0.31	GAT04a	G359.0−0.9	0.21	L89

aNotes: In this case we just make use of the minimum value for our purpose.

bNotes: In the case we take the average value.

cNotes: The same as above.
summarize our results.

2. Numerical Analysis

2.1. At adiabatic phase

Let us list the group of equations for shell-type supernova remnants at the second stage as follow (Wang & Seward 1984, Koyama & Meguro-Ku 1987, Bignami & Caraveo 1988, Xu et al. 2005),

\[D_{pc} = 4.3 \times 10^{-11} \left(\frac{E_0}{n_{cm-3}} \right)^{1/5} t_{yr}^{2/5} \] \hspace{1cm} (1)

\[\Sigma(D) = 1.505 \times 10^{-19} \frac{S_{1GHz}}{\theta_{arcmin}^2} \]
\[= 2.88 \times 10^{-14} D_{pc}^{-3.8} n_{cm-3}^2 \] \hspace{1cm} (2)

\[\left(\frac{E_0}{10^{48} \text{ erg}} \right) = 5.3 \times 10^{-7} n_{cm-3}^{1.12} v_{km s^{-1}}^{1.4} \]
\[\times \left(\frac{D_{pc}}{2} \right)^{3.12} \] \hspace{1cm} (3)

Here, \(D_{pc} \) is the SNR diameter in unit of pc, \(t_{yr} \) is the remnant age in year, \(n \) is the ISM electron density in \(cm^{-3} \), \(S_{1GHz} \) is the detected fluxes of an SNR in Jy at 1 GHz, \(\theta_{arcmin} \) is the observational angle in arcmin, \(v \) is the velocity of shock waves in \(Km s^{-1} \). And we know \(\tan \left(\frac{\theta_{arcmin}}{2} \right) = \frac{D_{pc}}{2n} \), where, \(D_{pc} \) is the distance to a remnant in pc.

From these parameters above, the fluxes \(S_{1GHz} \) and observational angle \(\theta_{arcmin} \) is the detected value for each SNR (table 2) of which we regard these remnants evolving at the Sedov-phase since their diameter less than 36 pc. And the SNRs explosion energy \(E_0 = \xi \times E_{48} \) (\(\xi = 1, 2, 3, ..., 10^5 \)) is an assumed value. But the diameter \(D_{pc} \) (and distance \(d_{pc} \)), age \(t_{yr} \), velocity \(v_{kms^{-1}} \) and electron density \(n_{cm-3} \) is unknown and to be derived. Parameters of the distance \(d_{pc} = d_{our}(\xi, i) \), and the age \(t_{yr} = t_{our}(\xi, i) \) (\(\xi = 1, 2, 3, ..., 10^5 \), \(i = 1, 2, 3, ..., 37 \)) will be adopted in our paper. But we do nothing with \(v \) and \(n \).

For a certain supernova remnant \((i) \) \((i = 1, 2, 3, ..., 37) \) (table 2) and assumed series of SNe initial explosion energies \(E_0 = \xi \times E_{48}(\xi = 1, 2, 3, ..., 10^5) \) in the unit of \(10^{48} \) ergs, we can obtain the remnant distance \(d_{our}(\xi, i) (= d_{pc}) \) and the age \(t_{our}(\xi, i)(= t_{yr}) \) values by solving the group of equations above. Then we compare them with the already known parameters \(d_{true}(i) \) and \(t_{true}(i) (i = 1, 2, 3, ..., 37) \) listed in table 2 in order to derive the most likely original energy of remnants. Thus the explosion energy was derived when the deviation in comparison is least.

The group of equations are not strictly correct as not to be figured out mathematically, but they are correct enough for us to confirm the SNe initial energy \((E_0) \).

Figure 2 shows that when \(S_{1GHz,2}/S_{1GHz,1} = \theta_2^2/\theta_1^2 = 1 \) for both SNR1 and SNR2, here \(\theta(i) = 1, 2 \) is the visual area of the remnant, their radio surface brightness (\(\Sigma \)) can be the same to each other. Thus the remnant diameter (\(D \)) and distance (\(d \)) value will be uncertain according to equation (2). But fortunately the true reality will never take on this case because one can see \(\Sigma(D) \sim D_{pc}^{-3.8} \) from formula (2) and not \(\sim D_{pc}^{-2} \). Therefore we are able to uniquely determine the SNe initial kinetic energy \((E_0) \).

Many of the radio SNRs have more than one published value for distance and age in table 2 and 3. For these, we either chose the most recent estimates, or the most commonly adopted value. We can compare these resolved distances \((d_{our}(\xi, i)) \) above with the already known ones \((d_{true}(i)) \) listed in table 2 by

\[\Phi(\xi, d) = \sum_{i=1}^{37} (d_{our}(\xi, i) - d_{true}(i))^2 \]
\[\div \sum_{i=1}^{n} d_{true}^2(i) \]

(\(\xi = 1, 2, 3, ..., 10^5 \)) \hspace{1cm} (4)

For example, one gets \(\Phi(10, d) = 0.126 \), when \(\xi = 10 \), and \(\Phi(100, d) = 0.184 \), when \(\xi = 100 \).

Figure 3 shows that the most likely value of supernova initial explosion energy \((E_0) \) derived by this method for the shell-type remnants at Sedov-phase equals nearly to \(0.23 \times 10^{50} \) ergs.

There are some different methods to derive
Table 2

List of the distance (d), Age (t) and some other physical parameters of 37 shell-type Galactic SNRs of which their diameter is less than 36 pc.

Source	$t_{true}(i)$	$d_{true}(i)$	Dia.a	S_{1GHz}	Ref.
	yr	pc	pc	arcmin	Jy
G4.5+6.8	380	2900	3	3	19
G7.7−3.7	−	4500	29	22	11
G27.4+0.0	2700	6800	8	4	6
G31.9+0.0	4500	7200	13	7x5	24
G32.8−0.1	−	7100	35	17	11
G33.6+0.1	9000	7800	23	10	22
G39.2−0.3	1000	11000	22	8x6	18
G41.1−0.3	1400	8000	8	4.5x2.5	22
G43.3−0.2	3000	10000	10	4x3	38
G53.6−2.2	15000	2800	24	33x28	8
G73.9+0.9	10000	1300	8	22?	9
G74.0−8.5	14000	400	23	230x160	210
G78.2+2.1	50000	1500	26	60	340
G84.2−0.8	11000	4500	23	20x16	11
G89.0+4.7	19000	800	24	120x90	220
G93.3+6.9	5000	2200	15	27x20	9
G93.7−0.2	−	1500	35	80	65
G109.1−1.0	17000	3000	24	28	20
G111.7−2.1	320	3400	5	5	2720
G114.3+0.3	41000	700	15	90x55	6
G116.5+1.1	280000	1600	32	80x60	11
G116.9+0.2	44000	1600	16	34	9
G120.1+1.4	410	2300	5	8	56
G260.4−3.4	3400	2200	35	60x50	130
G272.2−3.2	6000	1800	8	15?	0.4
G284.3−1.8	10000	2900	20	24?	11
G299.2−2.9	5000	500	2	18x11	0.5
G309.2−0.6	2500	4000	16	15x12	7
G315.4−2.3	2000	2300	28	42	49
G327.4+0.4	−	4800	29	21	30
G327.6+14.6	980	2200	19	30	19
G332.4−0.4	2000	3100	9	10	28
G337.2−0.7	3250	15000	26	6	2
G337.8−0.1	−	12300	27	9x6	18
G346.6−0.2	−	8200	19	8	8
G349.7+0.2	14000	14800	9	2.5x2	20
G352.7−0.1	2200	8500	17	8x6	4

aNotes: Diameters were calculated by using the distances together with the angular sizes in Green (2006) catalogue.
Fig. 1.— the number distribution of Galactic supernova remnants corresponding to their progenitor initial kinetic energy (E_0).

Fig. 2.— The plot shows for both SNRs their radio surface brightness (Σ) can be equal to each other when $S_{1\,GHz,2}/S_{1\,GHz,1} = \theta_2^2/\theta_1^2 = 1$. Here $\theta_i^2 (i = 1, 2)$ is the visual area of the remnant. Thus we are not able to uniquely derive the SNR diameter (D) and distance (d) value. But fortunately this case will never occur since $\Sigma(D) \sim D_{pc}^{-3.8}$ and not D_{pc}^{-2}. Therefore we can obtain the just remnant distance (d) by solving the group of equations offered in text.

2.1.2. Comparison by ages

Similarly we can compare these resolved ages ($t_{our}(\xi, i)$) above with the already known ones ($t_{true}(i)$) in table 2 by

$$\Phi(\xi, t) = \sum_{i=1}^{37} (t_{our}(\xi, i) - t_{true}(i))^2 \div \sum_{i=1}^{n} t_{true}^2(i)$$

$$\left(\xi = 1, 2, 3, ..., 10^5\right) \quad (5)$$

For example, one gets $\Phi(10, t) = 0.532$, when $\xi = 10$, and $\Phi(100, t) = 0.507$, when $\xi = 100$.

Figure 4 shows that the most likely value of supernova initial explosion energy (E_0) derived by this method for the shell-type remnants at Sedov-phase equals nearly to 7.0×10^{50} ergs.

There are many measures to obtain the age values (t) of remnants (Xu et al. 2005), and a majority of these ages are not made use of the E_0 value derived before. For example, if a remnant is associated with a pulsar, we can estimate its age by using the neutron star characteristic age obtained from the rotation period of the pulsar (P) and the rate of change of period (\dot{P}) by $t = P/2\dot{P}$ (Gotthelf et al. 2000). For SNRs with a known radius (R) and thermal temperature (T) taken from X-ray data, one can obtain the age by $t = 3.8 \times 10^2 R_{pc} (kT)^{-1/2}$ yr (Seward et al. 1995). We can also calculate the SNR age by $t \approx 40000 B^{-1.5} \nu_0^{-0.3}$ yr, when a remnant has its spectrum showing the usual break at frequency ν_b due to synchrotron losses in a magnetic field B (Bock et al. 2001). Therefore through compar-
Table 3

List of the distance \((d)\), Age \((t)\) and some other physical parameters of 20 shell-type Galactic SNRs of which their diameter is larger than 36 pc.

Source	\(t_{\text{true}}(i)\)	\(d_{\text{true}}(i)\)	Dia.\(^a\)	size\((\theta)\)	\(S_{\text{1GHz}}\)	Ref.
G8.7−0.1	15800	3900	51	45	80	G96
G18.8+0.3	16000	14000	57	17x11	33	D99,G04a
G49.2−0.7	30000	6000	52	30	160	KKS95, G04a
G55.0+0.3	1100000	14000	71	20x15?	0.5	MWT98
G65.3+5.7	14000	1000	78	310x240	52	LRH80, R81
G119.5+10.2	24500	1400	37	90?	36	M00
G127.1+0.5	85000	5250	69	45	13	FRS84
G132.7+1.3	21000	2200	51	80	45	GTG80, G04a
G156.2+5.7	26000	2000	64	110	5	RFA92
G160.9+2.6	7700	1000	38	140x120	110	LA95
G166.0+4.3	81000	4500	57	55x35	7	L89, KH91, G04a
G166.2+2.5	150000	8000	186	90x70	11	RLV86
G182.4+4.3	3800	3000	44	50	1.2	KFR98
G205.5+0.5	500000	1600	102	220	160	CB99
G206.9+2.3	600000	7000	102	60x40	6	L86
G226.2−1.2	680	1500	52	120	50	K02, AIS99
G296.5+10.0	20000	2000	44	90x65	48	MLT88
G296.8−0.3	1600000	9600	47	20x14	9	GJ95, G04a
G321.9−0.3	200000	9000	70	28	13	SFS89, S89
G330.0+15.0	−	1200	63	180?	350	K96

\(^a\)Notes: Diameters were calculated by using the distances together with the angular sizes in Green (2006) catalogue.
Fig. 3.— The most likely value of supernova initial explosion energy (E_0) derived by comparison with already known distance (d) of the shell-type remnants at Sedov-phase equals nearly to 0.23×10^{50} ergs.

Fig. 4.— The most likely value of supernova initial explosion energy (E_0) derived by comparison with already known age (t) of the shell-type remnants at Sedov-phase equals nearly to 7.0×10^{50} ergs.

Fig. 5.— The most likely value of supernova initial explosion energy (E_0) derived by comparison with already known distance (d) of the shell-type remnants at Snowplow-phase equals nearly to 15.0×10^{50} ergs.

Fig. 6.— The most likely value of supernova initial explosion energy (E_0) derived by comparison with already known age (t) of the shell-type remnants at Snowplow-phase equals nearly to 400×10^{50} ergs.
ison by ages to determine SNe initial kinetic energy \((E_0)\) is somewhat meaningful and basically no paradox.

But this measure to determine SNe energy \(E_0\) through comparison by ages is to some extent less reliable than that through comparison by distances. Because the initial energy \(E_0\) of some individual SNRs derived from its age. One can see that the obtained remnants distance is more independent to \(E_0\) than the age be, and therefore it causes less self-contradiction in our work.

2.2. At radiative phase

Similarly we list the group of equations for shell-type remnants at the third stage (Koyama & Meguro-Ku 1987, Kitayama & Yoshida 2005, Xu et al. 2005)

\[
D_{pc} = 1.42 \left(\frac{E_0/10^{51} \text{ergs}}{n_{cm^{-3}}} \right)^{5/21} t_{yr}^{2/7} \tag{6}
\]

\[
\Sigma(D) = 1.505 \times 10^{-19} \frac{S_{1 \text{GHz}}}{\theta_{arcmin}^2} \]
\[
= 2.88 \times 10^{-14} D_{pc}^{-3.8} n_{cm^{-3}}^2 \tag{7}
\]

\[
t_{yr} = 10^5 n_{cm^{-3}}^{-3/4} \left(\frac{E_0}{10^{51} \text{ergs}} \right)^{1/8} \tag{8}
\]

Here, \(D_{pc}, t_{yr}, n_{cm^{-3}}, S_{1 \text{GHz}}\) and \(\theta_{arcmin}\) defined as in section 2.1 as well as their units, and \(\tan \left(\frac{\theta_{arcmin}}{D_{pc}} \right) = \frac{D_{pc}}{2n_{cm^{-3}}} \). The fluxes \(S_{1 \text{GHz}}\) and observational angle \(\theta_{arcmin}\) are already known to us for each remnant (table B) of which we regard these remnants evolving at the snow-plough phase since their diameter larger than 36 pc. When the initial energy \(E_0 = \xi \times E_{48}\) assumed, then the remnant diameter \(D_{pc}\) (and distance \(d_{pc}\)), age \(t_{yr}\) and electron density \(n_{cm^{-3}}\) can be obtained.

One can see the equations (6) and (8) are rather different from equations (1) and (3). But formulae (7) and (2) are completely the same.

For a certain supernova remnant \((i)\) \((i = 1, 2, 3, ..., 20)\) (table B) and assumed \(E_0 = \xi \times E_{48}\) \((\xi = 1, 2, 3, ..., 10^5)\) in units of \(10^{48}\) ergs, we can get the remnant distance \(d_{our}(\xi, i) = d_{pc}\) and the age \(t_{our}(\xi, i) = t_{yr}\) by solving the equations group above. Then we compare them with the already known parameters \(d_{true}(i)\) and \(t_{true}(i)\) \((i = 1, 2, 3, ..., 37)\) listed in table B in order to derive the most likely original energy of SNRs.

2.2.1. Comparison by distances

We can compare these resolved distances \((d_{our}(\xi, i))\) above with the already known ones \((d_{true}(i))\) listed in table B by

\[
\Phi(\xi, d) = \sum_{i=1}^{20} (d_{our}(\xi, i) - d_{true}(i))^2 \]
\[
\div \sum_{i=1}^{n} d_{true}^2(i) \tag{9}
\]

\((\xi = 1, 2, 3, ..., 10^5)\)

Figure 5 shows that the most likely value of supernova initial kinetic explosion energy \((E_0)\) derived by this method for the S-type remnants at Snowplow-phase equals nearly to \(15.0 \times 10^{50}\) ergs.

2.2.2. Comparison by ages

Similarly we can compare these resolved ages \((t_{our}(\xi, i))\) above with the already known ones \((t_{true}(i))\) in table B by

\[
\Phi(\xi, t) = \sum_{i=1}^{20} (t_{our}(\xi, i) - t_{true}(i))^2 \]
\[
\div \sum_{i=1}^{n} t_{true}^2(i) \tag{10}
\]

\((\xi = 1, 2, 3, ..., 10^5)\)

Figure 5 shows that the most likely value of supernova initial explosion energy \((E_0)\) derived by this way for the shell-type remnants at Snowplow-phase equals nearly to \(400 \times 10^{50}\) ergs.

2.3. Final results

From Fig. 5 to Fig. 8 we get the least value of \(log_{10}E_0\) instead of \(E_0\), therefore one has

\[
log_{10}E_0 = log_{10}E_{02d} + log_{10}E_{02i}
+ log_{10}E_{03d} + log_{10}E_{03i} \tag{11}
\]

Here, \(E_{02d}, E_{02i}, E_{03d}\) and \(E_{03i}\) corresponding to the 4 \(E_0\) values in from Fig. 5 to Fig. 8. \(E_0\) is the typical explosion energy of shell type remnants.

Thus we have \(E_0 = 0.99 \times 10^{51}\) ergs.

The publicly accepted value of the SNe initial kinetic energy is \(1 \times 10^{51}\) ergs.
3. Discussion and Summary

To combine theoretical results together with observational ones, we have derived the supernova average initial explosion energy. Such value is obviously not the same as that to a individual remnant. For individual SNR the initial energy is various for different SN explosion events, but it might be near an approximation. In Fig. 1 the distribution of the initial energies of 44 SNRs range from 10^{49} ergs to 10^{52} ergs, mainly concentrate to about $10^{50} \sim 10^{51}$ ergs. Our 4 theoretical outcomes range from 0.23×10^{50} ergs at minimum to 400×10^{50} ergs at maximum. It seems that they are to some extent in good consistency regarding their divergence. The relative divergence of explosion energies about 10^3 is a rather small number and acceptable.

From table 1 one can directly calculate the mean initial kinetic energy $E_0 = 1.7 \times 10^{51}$ ergs. Or $E_0 = 0.85 \times 10^{51}$ ergs after excluding SNR G0.0+0.0, namely Sgr A East which owns an extremely large initial energy value. These is also another method to obtain the initial energy by the group of equations combining the physical parameters listed in table 2 and table 3 when we regard the age and distance values as the already known ones. We gain $E_0(i) (i = 1, 2, 3, \ldots, 37)$ or $(i = 1, 2, 3, \ldots, 20)$, and the average E_0 is then derived. Here, in the paper our special method is different from this, and has provided one more measure to derive the SNe typical energy by taking somewhat more numbers of the SNRs with intensified credit. Furthermore, many of the supernova remnants in table 2 or table 3 are not the same as those in table 1. Namely the explosion energy E_0 of rather some remnants in table 2 and table 3 are unknown to us. Because for most of the individual supernova remnant in Galaxy their explosion energy is rather difficult to derive, here our statistical E_0 value obtained can be used to compute other physical parameters, i.e. the distance, age, ISM electron density, magnetic field, etc. of which the errors resulted in will be to some extent rather small.

Here we did not distinguish different type supernova of our adopted sample in the numerical analysis. For Type-I and Type-II SN the initial explosion energy might be not similar, but one can expect that this deviation will be somewhat small.

The average value of the most likely initial explosion energy of supernova remnants thus equals to about 0.99×10^{51} ergs in nice consistence with the accepted value.

JWX thanks J.S. Deng and Y.Z. Ma for their assistance and help during the paper work.

REFERENCES

Aschenbach B., Iyudin A.F., Schönfelder V., 1999, A&A, 350, 997 (AIS99)
Bamba A., Ueno M., Koyama K., 2001, PASJ, 53, L21 (BUK01)
Berezhko E.G., Ksenofontov L.T., VoK H.J., Yelshin V.K., 2005, 29th International Cosmic Ray Conference Pune, 4, 227(BKV05)
Berthiaume G.D., Burrows D.N., Garmire G.P., Nousek J.A., 1994, ApJ, 425, 132 (B94)
Bignami G.F., Caraveo P.A., 1988, ApJ, 325, L5
Binette L., Dopita M.A., Dodorico S., Benvenuti P., 1982, A&A, 115, 315 (B82)
Bock D.C.-J., Wright M.C.H., Dickel J.R., 2001, ApJ, 561, L203
Boumis P., Mavromatakis F., Xilouris E.M., Alikakos J., Redman J., Goudis C.D., 2005, A&A, 443, 175 (B05)
Braun R., Goss W.M., Lyne A.G., 1989, ApJ, 340, 355 (BGL89)
Carter L.M., Dickel J.R., Bomans D.J., 1997, PASJ, 109, 990 (CDB97)
Case G., Bhattacharya D., 1999, ApJ, 521, 246 (CB99)
Caswell J.L., Haynes R.F., Milne D.K., Wellington K.J., 1982, MNRAS, 200, 1143 (C82)
Chen Y., Slane P.O., 2001, ApJ, 563, 202 (CS01)
Chen Y., Sun M., Wang Z.R., Yin Q.F., 1999, ApJ, 520, 737 (C99)
Chen Y., Su Y., Slane P.O., Wang Q.D., 2005, J. Korean Astron. Society, 38, 211 (C05)
Clark D.H., Caswell J.L., 1976, MNRAS, 174, 267
Colomb F.R., Dubner G.M., 1980, A&A, 82, 244 (CD80)
Craig W.W., Hailey C.J., Pisarski R.L., 1997, ApJ, 488, 307 (CHP97)
Dickel J.R., Strom R.G., Milne D.K., 2001, ApJ, 546, 447 (DSM01)
Dubner G., Giacani E., Reynoso E., Goss W.M., Roth M., Green A., 1999, ApJ, 118, 930 (D99)
Dubner G.M., Moffett D.A., Goss W.M., Winkler P.F., 1993, AJ, 105, 2251 (D93)
Duncan A.R., Stewart R.T., Campbell-Wilson D., Haynes R.F., Aschenbach B., Jones K.L., 1997, MNRAS, 289, 97 (D97)
Fesen R.A., Horford A.P., 1995, AJ, 110, 747 (FH95)
Foster T., 2005, A&A, 441, 1043 (F05)
Fürst E., Reich W., Steube R., 1984, A&A, 133, 11 (FRS84)
Gaensler B.M., Johnston S., 1995, MNRAS, 277, 1243 (GJ95)
Gahm G.F., Gebeychu M., Lindgren M., Magnusson P., Modigh P., Nordh H.L., 1990, A&A, 228, 477 (G90)
Galas C.M.F., Tuohy L.R., Garmire G.P., 1980, ApJ, 236, L13 (GTG80)
Gorham P.M., Ray P.S., Anderson S.B., Kulkarni S.R., Prince T.A., 1996, ApJ, 458, 257 (G96)
Gotthelf E.V., Vasishht G., Boylan-Kolchin M., Torii K., 2000, ApJ, 542, L37
Green D.A., 2004, arXiv:astro-ph/0411083v1, 3 (G04a)
Green D.A., VizieR On-line Data Catalog 7th/227. Mullard Radio Astronomy observatory, Cambridge, United Kingdom (2004), 2002yCat7227, OG (G04b)
Guseinov O.H., Ankay A., Tagieva S.O., 2004, Serb. Astron. J., 168, 65 (GAT04a)
Guseinov O.H., Ankay A., Tagieva S.O., 2004, Serb. Astron. J., 169, 65 (GAT04b)
Harrus I.M., Hughes J.P., Slane P.O., 1998, ApJ, 499, 273 (HHS98)
Hatsukade I., Tsunemi H., Yamashita K., Koyama K., Asaoka Y., Asaoka I., 1990, pasj, 42, 279 (H90)
Helfand D.J., Collins B.F., Gotthelf E.V., 2003, ApJ, 582, 783 (HCG03)
Hughes V.A., Harten R.H., van den Bergh S., 1981, ApJ, 246, L127 (HHv81)
Harrus I.M., Slane P.O., Hughes J.P., Plucinsky P.P., 2004, ApJ, 603, 152 (H04)
Hwang U., Markert T.H., 1994, ApJ, 431, 819 (HM94)
Kargaltsev O., Pavlov G.G., Sanwal D., Garmire G.P., 2002, ApJ, 580, 1060 (K02)
Kassim N.E., Frail D.A., 1996, MNRAS, 283, L51 (KF96)
Kinugasa K., Torii K., Tsunemi H., Yamauchi S., Koyama K., Dotani T., 1998, PASJ, 50, 249 (KT98)
Kitayama T., Yoshida N., 2005, ApJ, 630, 675
Knödlseder J., Oberlack U., Diehl R., Chen W., Gehrels N., 1996, A&AS, 120, 339 (K96)
Koo B.C., Heiles C., 1991, ApJ, 382, 204 (KH91)
Koo B.C., Kim K.T., Seward F.D., 1995, ApJ, 447, 211 (KKS95)
Koralesky B., Frail D.A., Goss W.M., Claussen M.J., Green A.J., 1998, ApJ, 116, 1323 (K98b)
Kothes R., Fürst E., Reich W., 1998, A&A, 331, 661 (KR98)
Kothes R., Uyaniker B., Pineault S., 2001, ApJ, 560, 236 (KUP01)
Koyama K., Meguro-Ku, 1987, IAUS, 125, 535
Lacey C.K., Joseph T., Lazio W., Kassim N.E., Duric N., Briggs D.S., Dyer K.K., 2001, ApJ, 559, 954 (L01)
Landecker T.L., Roger R.S., Higgs L.A., 1980, A&ASS, 39, 133 (LRH80)
Sun M. Wang Z.R., Chen Y., 1999, ApJ, 511, 274 (SWC99)

Thorstensen J.R., Fesen R.A., van den Bergh S., 2001, AJ, 122, 297 (TFv01)

Uyaniker B., Kothes R., Brunt C.M., 2002, ApJ, 565, 1022 (UKB02)

Vink J., 2006, ESASP, 604, 319 (V06)

Wang Z.R., Seward F.D., 1984, ApJ, 279, 705

Warren J.S., Hughes J.P., Badenes C., et al., 2005, ApJ, 634, 376 (WHB05)

Weiler K.W., Sramek R.A., 1988, ARA&A, 26, 295 (WS88)

Xu J.W., Zhang X.Z., Han J.L., 2005, Chinese J. Astron. Astrophys., 5, 165

This 2-column preprint was prepared with the AAS L\TeX macros v5.2.