Mix of destinations and sedentary behavior among Brazilian adults: a cross-sectional study

Florindo, A. A., Turrell, G., Garcia, L. M. T., Souza, J. P. D. A. S., Cruz, M. S., Failla, M., Souza de Aguiar, B., Barrozo, L. V., & Goldbaum, M. (2021). Mix of destinations and sedentary behavior among Brazilian adults: a cross-sectional study. BMC Public Health, 21, [347]. https://doi.org/10.1186/s12889-020-10123-7

Published in:
BMC Public Health

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors.
This is an open access Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Mix of destinations and sedentary behavior among Brazilian adults: a cross-sectional study

Alex Antonio Florindo¹,²,³*, Gavin Turrell¹, Leandro Martin Totaro Garcia³,⁵, João Paulo dos Anjos Souza Barbosa³, Michele Santos Cruz²,³, Marcelo Antunes Failla⁶, Breno Souza de Aguiar⁶, Ligia Vizeu Barrozo⁷ and Moises Goldbaum⁸

Abstract

Background: Sedentary behavior is influenced by contextual, social, and individual factors, including the built environment. However, associations between the built environment and sitting time have not been extensively investigated in countries with economies in transition such as Brazil. The objective of this study is to examine the relationship between sitting-time and access to a mix of destinations for adults from Sao Paulo city, Brazil.

Methods: This study uses data from the Health Survey of Sao Paulo. Sedentary behavior was assessed by a questionnaire using two questions: total sitting time in minutes on a usual weekday; and on a usual weekend day. The mix of destinations was measured by summing the number of facilities (comprising bus stops, train/subway stations, parks, squares, public recreation centres, bike paths, primary health care units, supermarkets, food stores, bakeries, and coffee-shops) within 500 m of each participant’s residence. Minutes of sitting time in a typical weekday and weekend day were the outcomes and the mix of destinations score in 500 m buffers was the exposure variable. Associations between the mix of destinations and sitting time were examined using multilevel linear regression: these models accounted for clustering within census tracts and households and adjusted for environmental, sociodemographic, and health-related factors.

Results: After adjustment for covariates, the mix of destinations was inversely associated with minutes of sitting time on a weekday (β = −8.8, p = 0.001) and weekend day (β = −6.1, p = 0.022). People who lived in areas with a greater mix of destinations had shorter average sitting times.

Conclusion: Greater mix of destinations within 500 m of peoples’ residences was inversely associated with sitting time on a typical weekday and weekend day. In Latin American cities like Sao Paulo built environments more favorable for walking may contribute to reducing sedentary behavior and prevent associated chronic disease.

Keywords: Built environment, Mix of destinations, Sedentary behavior, Sitting time, Adults, Brazil

Background

Sedentary behavior - i.e. extended periods of sitting timing - is a significant public health problem: it accounts for 3.8% of all-cause mortality [1], and increases the risk of cardiovascular disease and diabetes, and premature mortality [2–4]. In addition, sedentary behavior is associated with loss of functional capacity and daily life

* Correspondence: aflorind@usp.br
¹School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, Sao Paulo, SP 1000, Brazil
²Graduate Program in Nutrition in Public Health, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
activities and poorer quality of life in elderly people [5], with weight gain from childhood to adulthood [6], and with an unhealthy diet and food consumption [7].

Sedentary behavior is associated with different correlates measured at intrapersonal, social, physical environmental, and policy levels [8]. Early studies examining relationships between the built environment and sedentary behavior show that low walkability was associated with more television viewing in Australian females [9], and in North American adults [10]. A study conducted in 11 cities with 5,712 adults which measured sedentary behavior using accelerometers found that greater street connectivity and a more diverse land use mix were associated with fewer minutes per day of sedentary time; and higher residential density and higher pedestrian infrastructure were associated with more minutes per day of sedentary time [11]. A systematic review showed that access and proximity to general services and facilities and recreation facilities were inversely associated with total sitting time [12]. Another cross-sectional study showed that the walkability index calculated on the basis of land use mix, street connectivity, and residential density, was positively associated with sedentary behavior in Belgian adults [13]. However, other systematic reviews have found limited evidence for an association between sitting time and access to destinations, land use mix, and street connectivity [8]. Therefore, studies examining the association between the built environment and sedentary behavior have produced inconsistent and inconclusive evidence, and relationships might differ depending on the domain of sedentary behavior being investigated [14].

In addition, we have few studies in low and middle-income countries that describe the relationship between the built environment and sedentary behavior. For example, the study of Owen et al. [11] involved adults from Curitiba, Brazil, and Bogota, Colombia. The low and middle-income countries are economies in transition and their built environments are different from those found in high-income countries. Therefore, the objective of this study is to examine the relationship between the mix of destinations and total sitting time in adults from Sao Paulo city, a densely populated Latin American megalopolis in a middle-income country (Brazil).

Methods
Health survey of Sao Paulo
This study used data from the Health Survey of Sao Paulo or Inquérito de Saúde de São Paulo – ISA in Portuguese. Data collection was completed in 2015, with 4043 participants who lived in five health administrative areas in Sao Paulo city. The sampling process has been described in more detail elsewhere [15]. Briefly, the survey used a multi-stage sampling design: from the five health administration areas in Sao Paulo, 150 census tracts were randomly selected, and then households were sampled randomly from each tract. The data were collected using face-to-face interviews in households. The interviews were conducted between September 2014 and December 2015, and 73.4% of eligible residents who were contacted agreed to participate [15].

Georeferencing resulted in 3145 participants aged 18 years or more having their residential address geocoded [16]. More details can be obtained from other publications [16–18]. The ISA forms the baseline dataset for a recently funded longitudinal study of the “ISA-Physical Activity and Environment Study”, which is being conducted among adults in Sao Paulo city, Brazil. A key focus of this prospective research will be to verify the robustness of the cross-sectional studies that have been conducted using the Sao Paulo Health Survey baseline.

Sedentary behavior
Sedentary behavior data were collected using the International Physical Activity Questionnaire (IPAQ) [19] and measured on the basis of two questions: 1) Total sitting time on a usual weekday; 2) Total sitting time on a usual weekend day. For analysis, two outcomes were used: 1) Continuous measures of minutes of sitting time on a typical weekday; and 2) Continuous measures of minutes of sitting time on a typical weekend day.

Mix of destinations
Walkable destinations within each participant’s residential catchment were captured using georeferencing procedures [16–18] applied to publicly available datasets, and included eleven destinations: 1. Bus stops; 2. Train/subway stations; 3. Parks; 4. Squares; 5. Public recreation centres; 6. Bike paths; 7. Primary health care units; 8. Supermarkets; 9. Food stores; 10. Bakeries; and 11. Coffee shops. The dataset for items 1 to 8 pertain to places in 2016 and was obtained mainly from the open site GEOSAMPA <http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx>, and items 9 to 11 were sourced from the Health Surveillance Registration database from Sao Paulo city associated with the National Economic Activity Classification in November 2016.

We calculated a measure of destination diversity in three phases: 1) by firstly summing the number of each destination within a 500 m radial buffer of each participant’s home address; 2) by secondly, we categorized the participants into two groups based on the sum for each destination. The participants that were at or below the sample median had scored 0, and participants were above the median had scored 1; 3) and thirdly, by the sum of all destination obtained in the second phase we created the mix destination score that ranged from 0 to 8 (mean=3.07, SD=1.70, median=3 interquartile range: 4 ;2). This process has been described in more detail elsewhere in a study also used the Sao Paulo Health Survey which showed that
the mix of destination score within a 500 m buffer was significantly associated with walking for transport [18].

Covariates
We used age (18–29 years, 30–39 years, 40–49 years, 50–59 years, 60 years or more), education (incomplete elementary school, incomplete high school, complete high school, incomplete undergraduate or above), marital status (singles, married/with partners, separated/widowers), obesity (in two categories: BMI < 30 kg/m² or above), physical activity (< 150 min per week or above evaluated by IPAQ long form) [19], self-report of diseases diagnosed by physicians (none or at least one of the following: hypertension; diabetes; myocardial infarction; cardiac arrhythmia; other heart disease; cancer; arthritis, rheumatism or arthrosis; osteoporosis; asthma or asthmatic bronchitis; emphysema, chronic bronchitis or chronic obstructive pulmonary diseases; rhinitis; chronic sinusitis; other lung disease; tendonitis, repetitive strain injury or work-related musculoskeletal disorders; cerebral vascular accident or stroke; spine disease or spine problem), smoking status (yes or no), car or motorcycle ownership (yes or no); time living in the same residence (< 1 year, ≥1 year or < 5 years, > 5 years), and region where people lived in Sao Paulo city (North, South, Midwest, Southeast, and East). These covariates were selected based on the findings of systematic reviews about sedentary behavior correlates in adults [8, 12, 14] and in another original study that examined the relationship between walking for transportation and built environment variables [18].

Statistical analysis
For this study, we excluded from the analyses people who reported zero minutes of sitting time, those who did not answer the sitting time question in the survey, and those with missing data on the covariates. These exclusions resulted in a final analytic sample of n=3052 participants for sitting time on a typical weekday, and n=2993 participants for sitting time on a typical weekend day. The analyses are conducted in two stages. First, we present mean sitting times for each of the sociodemographic, health, and environmental covariates, and for participants who were grouped into the two destination-mix categories based on the median split. Second, we examine the multivariable association between the destination mix index and sitting time using multilevel linear regression without and with adjustment for the covariates. The multilevel analysis accounted for clustering within census-tracts and households. All analyses were conducted using Stata version SE 12.1. (StataCorp LP, College Station, USA). We used the xtmixed command for linear models and the results are presented as beta coefficients (β) with 95% confidence intervals.

Ethics approval
The Ethics Committee of the School of Arts, Sciences, and Humanities at the University of Sao Paulo approved the study (process number 55846116.6.0000.5390).

Results
Mean sitting time during weekdays was higher than weekends (Table 1). Mean sitting time was higher for men, persons aged 18–29, the highly educated, those who engaged in insufficient physical activity, classified as obese, who reported having at least one disease, single, who owned a private motor vehicle, living in the Midwest region of the city, and who had lived at their current residence for less than one year.

Buffers with the highest concentration of destinations were found in the central areas of the city (Fig. 1) and sitting time was higher in places with the lowest mix of destinations (Table 2).

There was a statistically significant association between the mix of destinations score and minutes of sitting on a typical weekday and weekend day after adjustment for the covariates (Table 3). For each point increase in destination score mix, we had a mean decrease in 8.8 min of sitting time on a typical weekday and a mean decrease in 6.1 min of sitting time on a typical weekend day.

Discussion
The main result of this study showed that after adjustment for sociodemographic, environmental, and health-related factors, people with a greater mix of destinations within 500 m of their residence reported engaging in fewer minutes of sitting time on a typical weekday and weekend day.

The results of this study are consistent with the findings of previous research examining the relationship between the mix of destinations and sedentary behavior. A systematic review showed that access to destinations was inversely associated with sitting time, particularly access to leisure and transportation destinations [14]. A cross-sectional study conducted with Japanese adults living in Tokyo found indicative (p-value = 0.051) results that access to 30 or more different types of destinations might be inversely associated with sitting time when using transportation to access leisure activities [20]. However, a longitudinal study with adults from Nerima and Kanuma cities in Japan did not find an association between screen time and access to different types of destinations [21]. In addition, studies conducted with adults from high-income countries which have used accelerometers to measure sedentary behaviour have either found
no association with built environment variables [22, 23] or that people living in areas with higher walkability engage in more minutes of sitting time [13], a result that was contrary to expectations.

The mix of destinations measure used in this study included access to green space, physical activity, and transport nodes, primary health care units, supermarkets, and other shops, within 500 m of each participant’s residence. In a previous study, also using the Health Survey of São Paulo sample, it was found that a greater mix of destinations close to home was associated with an increased likelihood of walking [18]; and a systematic review reported that physical activity was inversely associated with sitting time in adults [24].

Table 1: Descriptive statistics for sitting time on a typical weekday and weekend day by social, demographic, health, and environmental variables, São Paulo city, Brazil, 2015

Variables	Weekdays (n=3052)	Weekend days (n=2993)
	mean (SD)	mean (SD)
Overall	279.8 (199.2)	260.3 (183.5)
Gender		
Men	295.3 (203.7)	274.7 (191.5)
Women	268.3 (195.1)	249.8 (176.5)
Age		
18–29	347.0 (217.7)	281.7 (200.5)
30–39	277.1 (203.9)	255.8 (179.6)
40–49	255.7 (187.7)	242.9 (172.9)
50–59	244.0 (177.8)	241.2 (163.6)
60 or more	260.5 (186.6)	265.1 (184.7)
Education		
Incomplete elementary school	240.1 (195.8)	256.2 (197.9)
Incomplete high school	249.9 (187.1)	248.5 (180.1)
Complete high school	282.8 (194.1)	255.1 (169.3)
Undergraduate incomplete or more	353.1 (202.6)	285.2 (185.4)
Physical activity		
≥ 150 min per week	261.8 (187.0)	243.7 (170.0)
< 150 min per week	354.8 (229.2)	325.7 (214.9)
Body Mass Index (kg/m²)		
≥30 kg/m²	294.4 (195.2)	279.9 (183.9)
< 30 kg/m²	275.9 (199.4)	255.6 (181.8)
Presence of diseases		
Yes	282.5 (198.3)	268.1 (188.5)
No	272.8 (199.4)	244.4 (173.3)
Smoking status		
Yes	284.5 (203.3)	270.9 (196.1)
No	279.0 (198.5)	258.5 (181.0)
Marital Status		
Married, or with partners	262.2 (190.1)	251.4 (176.3)
Singles	322.6 (214.6)	275.3 (193.9)
Separated, or widowers	270.0 (189.9)	264.5 (183.1)
Car or motorcycle ownership		
Yes	288.9 (197.5)	260.7 (175.8)
No	268.6 (200.7)	260.3 (192.5)
Region of residence		
North	284.0 (212.4)	262.2 (197.2)
South	272.0 (180.8)	247.2 (168.7)
Midwest	311.9 (198.0)	285.3 (184.5)
Southeast	258.0 (204.5)	247.5 (183.4)
East	268.3 (191.4)	254.9 (177.6)
Length of residence		
< 1 year	300.3 (212.7)	288.9 (206.3)
> 1 year and < 5 years	285.8 (203.8)	247.7 (172.4)
> 5 years	275.6 (195.6)	259.5 (182.4)

SD (standard deviations)
Table 2 Descriptive statistics and bivariate analysis for sitting time according to mix of destination scores, Sao Paulo city, Brazil

Destination mix scores	Typical weekdays Mean (SD)	Typical weekend days Mean (SD)
At or below the median*	290.1 (206.0)	271.6 (191.0)
Above the median*	273.0 (194.3)	253.1 (178.0)
p-value**	0.039	0.014

* Median score for mix of destination within each 500 m buffer; **p values based on a Kruskal-Wallis test; SD (standard deviations)
Table 3: Multilevel linear regression results examining the association between mix of destinations* and minutes sitting on a typical weekday and weekend day among adults from Sao Paulo City, Brazil

Destination mix score*	Unadjusted	Adjusted**	
	β	95%CI	p value
	β	95%CI	p value
Minutes on a typical weekday			
Destination mix score*	−4.63	−9.94, 0.66	0.086
	−8.83	−14.27, −3.38	0.001
Minutes on a typical weekend day			
Destination mix score*	−4.89	−9.91, 0.13	0.056
	−6.10	−11.32, −0.89	0.022

*Destination mix was measured using an index, which ranged from 0 to 8 (mean 3.07, SD, median 3.0)
**Adjusted for gender, age, education, marital status, obesity, physical activity, smoking, disease presence, car or motorcycle ownership, region of residence in Sao Paulo, and length of residence at the surveyed address.

The results of this study are important as very few studies of the built environment and sedentary behavior have been conducted in densely populated Latin American cities. In Sao Paulo city, the local government has introduced policies such as a New Master Plan to address environmental inequities, increase physical activity, and reduce sedentary behavior [25].

This study had several limitations that should be considered when interpreting the results. Firstly, sedentary behavior was measured by self-report. Sitting time is a complex behavior for people to recall accurately because it is necessary to consider all domains of life (work, household, leisure, and transportation). In this case, underestimation due to measurement error is likely to be present in our findings [8, 26]. Secondly, it is important to repeat our study using longitudinal data with residentially stable participants as a way of adjusting for bias that results from neighborhood self-selection (e.g. less sedentary people moving to neighborhoods with more walkable destinations). For example, a recent systematic review showed that obesity was inversely associated with walkability in cross-sectional studies but not in longitudinal studies [27].

Thirdly, the findings of this study may have differed had we examined the determinants of sitting time in specific domains of sedentary behavior such as leisure, work, transport, and within the household [8, 12, 26].

Conclusion
A more diverse mix of walkable destinations within 500 m of adults’ homes in Sao Paulo City was associated with fewer minutes of sitting time on a typical weekday and weekend day. These results suggest that city planners and urban designers have an important public health role to play in helping to reduce sedentary behaviour, promote physical activity, and prevent associated chronic disease in Latin American countries with economies in transition such as Brazil.

Acknowledgments
Acknowledgments to Health Survey of Sao Paulo Study (Marlisa Bert de Azevedo Barros, Ph.D., University of Campinas, Brazil; Maria Cecilia Goi Porto Alves, Ph.D., Health of Institute, Sao Paulo, Brazil; Regina Mara Fisberg, Ph.D., University of Sao Paulo, Sao Paulo, Brazil; and Chester Luiz Galvão Cesar, Ph.D., University of Sao Paulo, Brazil). Acknowledgments to The University of Melbourne for the reception of the international visit of Alex Antonio Florindo to develop this project in the Melbourne School of Population and Global Health, Australia. Acknowledgments to Professor Billie Giles-Corti for his support of the work in Melbourne School of Population and Global Health, Australia.

Authors’ contributions
AAF had the idea of this study. AAF, GT, LMTG, JPASB, and MSC contributed to data statistical analysis. AAF, GT, JPASB, MSC, LGV, and MG contributed to results interpretation. LGV, MAF, ISA contributed to the georeferencing of built environment variables. All authors contributed to drafting, and critically revising the manuscript and approved the final version.

Funding
Alex Antonio Florindo received an international scholarship from Sao Paulo Research Foundation (grant 2014/12681–1) to develop this study and is receiving a research fellowship from the Brazilian National Council for Scientific and Technological Development (CNPq) (grant 306635/2016–0). Ligia Vizeu Barroso is supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grant 301550/2017–4). ISA study was supported by Sao Paulo Research Foundation (grant 2012/22113–9) and The Sao Paulo Municipal Health Department (no grant number). ISA-Physical Activity and Environment Study is supported by Sao Paulo Research Foundation (grant 2017/17049–3).

Availability of data and materials
The datasets used during the current study are available from Sao Paulo Health Survey. For permissions to access the data to request for professor Regina Mara Fisberg by email or phone call, School of Public Health at University of Sao Paulo, Brazil, email: r.fisberg@usp.br, phone: +55 11 3061–7701.

Ethics approval and consent to participate
The Ethics Committee of the School of Arts, Sciences, and Humanities at the University of Sao Paulo approved the study (process number 53846116.6.0000.5390).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, Sao Paulo, SP 1000, Brazil. 2Graduate Program in Nutrition in Public Health, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil. 3Physical Activity Epidemiology Group, University of Sao Paulo, Sao Paulo, Brazil. 4Centre for Research and Action in Public Health, Health

Abbreviations
IPAQ: International Physical Activity Questionnaire; ISA: Health Survey of Sao Paulo; CI: Confidence interval; OR: Odds Ratio
References

1. Rezende LFM, Sa TH, Mielke GI, Viscondi JYK, Rey-Lopez JP, Garcia LMT. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51(2):253–63.

2. Rezende LFM, Rodrigues Lopes M, Rey-Lopez JP, Matsudo VK, Luiz Odo C. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):e105620.

3. Wilmut EG, Edwardsborn CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.

4. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Pedersen O, et al. Individual differences in sitting time and associations with health and well-being. Am J Prev Med. 2016;51(2):178–89.

5. Thorp AA, Owen N, Neuhaus M. Sedentary behaviour and other health outcomes. Eur J Clin Nutr. 2016;70(5):675–81.

6. Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviours and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996-2011. Am J Prev Med. 2011;41(2):207–15.

7. Pearson N, Biddle SJ. Sedentary behaviour and dietary intake in children, adolescents, and adults. A systematic review. Am J Prev Med. 2011;41(2): 178–89.

8. Prince SA, Reed JL, McFetridge C, Tremblay MS, Reid RD. Correlates of sedentary behaviour in adults: a systematic review. Obes Rev. 2017;18(8): 915–35.

9. Sugiyama T, Salmon J, Dunstan DW, Bauman AE, Owen N. Neighborhood walkability and TV viewing time among Australian adults. Am J Prev Med. 2007;33(6):444–9.

10. Kozo K, Sallis JF, Conway TL, Kerr J, Cain K, Saelens BE, Frank LD, Owen N. Environmental correlates of adults' objectively-assessed sedentary time: a multi-country study. Prev Med. 2018;115:126–33.

11. Mansouli M, Pearson N, Biddle SJ, Clemen S. The relationship between sedentary behaviour and physical activity in adults: a critical review of observational studies. PLoS One. 2014;9(8):e105620.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.