SCHUR–WEYL DUALITY, VERMA MODULES, AND ROW QUOTIENTS OF ARIKI–KOIKE ALGEBRAS

ABEL LACABANNE AND PEDRO VAZ

Abstract. We prove a Schur–Weyl duality between the quantum enveloping algebra of \(\mathfrak{gl}_m \) and certain quotient algebras of Ariki-Koike algebras, which we give explicitly. The duality involves several algebraically independent parameters and is realized through the tensor product of a parabolic universal Verma module and a tensor power of the natural representation of \(\mathfrak{gl}_m \). We also give a new presentation by generators and relations of the generalized blob algebras of Martin and Woodcock as well as an interpretation in terms of Schur–Weyl duality by showing they occur as a particular case of our algebras.

1. Introduction

Schur–Weyl duality is a celebrated theorem connecting the finite-dimensional representations of the general linear and the symmetric groups. It states that, over a field \(\mathbb{k} \) of characteristic 0, the actions of \(GL_m(\mathbb{k}) \) and \(\mathfrak{S}_n \) on \(V = (\mathbb{k}^m)^{\otimes n} \) commute and form double centralizers. Its way into the quantum world was made by Jimbo [13] who established that \(\mathcal{U}_q(\mathfrak{gl}_m) \) and the Hecke algebra form a Schur–Weyl pair. Several variants of Schur–Weyl duality were later found, resulting in other Schur–Weyl type pairs (see for example [3, 5, 8, 20, 4]). One particular generalization consists of looking at representations of \(\mathfrak{gl}_m \) but allowing \(V \) to be infinite-dimensional. For example, in [12] it is established a Schur–Weyl duality between \(\mathcal{U}_q(\mathfrak{sl}_2) \) and the blob algebra\(^1\) of Martin and Saleur [16] by letting them act on the tensor product of a projective Verma module with several copies of the natural representation of \(\mathcal{U}_q(\mathfrak{sl}_2) \).

1.1. In this paper. We consider the tensor product of a parabolic universal Verma module with the \(m \)-folded tensor product of the natural representation for \(\mathcal{U}_q(\mathfrak{gl}_m) \) to establish a Schur–Weyl duality with a quotient of Ariki–Koike algebras. Ariki–Koike algebras were first considered by Cherednik in [9] as a cyclotomic quotient of the affine Hecke algebra of type \(\mathfrak{A} \). These algebras were later rediscovered and studied by Ariki and Koike [2] from a representation theoretic point of view. Independently, Brou and Malle attached in [6] a Hecke algebra to any complex reflection group. By definition (see [6 Definition 4.1]) Ariki–Koike algebras turned out to be the Hecke algebras associated to the complex reflection groups \(G(d, 1, n) \): these algebras are deformations of the group algebra of \(G(d, 1, n) \).

\(^1\)In [12] the blob algebra was called the Temperley–Lieb algebra of type \(B \) (see [15] for further explanations).
Recall that the Ariki-Koike algebra $\mathcal{H}(d, n)$ with parameters q and $u = (u_1, \ldots, u_d)$ is the k-algebra with generators $T_0, T_1, \ldots, T_{n-1}$, where T_1, \ldots, T_{n-1} generate a finite-dimensional Hecke algebra of type A and T_0 satisfies $T_0 T_1 T_0 T_1 = T_1 T_0 T_1 T_0$, $T_0 T_i = T_i T_0$ for $i > 1$, and $\prod_{i=1}^d (T_0 - u_i) = 0$. We consider the semisimple case, where the irreducible modules V_μ of $\mathcal{H}(d, n)$ are indexed by d-partitions of n.

In this paper we introduce the row-quotient algebra $\mathcal{H}_m(d, n)$, that depends on a d-tuple $m = (m_1, \ldots, m_d)$ of positive integers, as the quotient of $\mathcal{H}(d, n)$ by the kernel of the surjection

$$\mathcal{H}(d, n) \to \text{End}_{\mathcal{H}(d, n)} \left(\bigoplus_\mu V_\mu \right),$$

the sum being over all d-partitions $\mu = (\mu^{(1)}, \ldots, \mu^{(d)})$ such that $l(\mu^{(i)}) \leq m_i$ for all $1 \leq i \leq d$.

Let $M^p(\Lambda)$ be a parabolic Verma module and V the natural representation for $\mathcal{U}_q(\mathfrak{gl}_m)$. In our conventions, p is standard and has Levi factor $\mathfrak{l} = \mathfrak{gl}_{m_1} \times \cdots \times \mathfrak{gl}_{m_d}$, with $m_i \geq 1$ and $m_1 + m_2 + \cdots + m_d = m$ and Λ depends on d algebraically independent parameters $\lambda_1, \ldots, \lambda_d$ (see Section 3.2 for more details). Our main result connects $\mathcal{H}_m(d, n)$ to Schur–Weyl duality,

Theorem A (Theorem 4.1 and Lemma 4.2). Let p be a standard parabolic subalgebra of \mathfrak{gl}_m with Levi subalgebra $\mathfrak{l} = \mathfrak{gl}_{m_1} \times \cdots \times \mathfrak{gl}_{m_d}$. The $\mathcal{H}(d, n) \otimes \mathcal{U}_q(\mathfrak{gl}_m)$-module $M^p(\Lambda) \otimes V^{\otimes n}$ is decomposed as

$$M^p(\Lambda) \otimes V^{\otimes n} \simeq \bigoplus_{\mu \in \mathcal{P}_n^d} V_\mu \otimes M^p(\Lambda, \mu),$$

the parameters of the Ariki-Koike algebra being $u_i = (\lambda_i q^{-(m_1 + \cdots + m_{i-1})})^2$ and where \mathcal{P}_n^d denotes the set of d-partitions of n with the i-th component of length at most m_i. Moreover,

$$\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n}) = \mathcal{H}_m(d, n).$$

This has several particular specializations (Corollaries 4.3–4.7), some of them yielding well-known algebras:

- If $p = \mathfrak{gl}_m$ and $m \geq n$, then $\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n})$ is isomorphic to the Hecke algebra of type A.
- If $p = \mathfrak{gl}_m$ and $m = 2$, then $\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n})$ is isomorphic to the Temperley–Lieb algebra of type A.
- For p such that $m \geq nd$ and $m_i \geq n$ for all $1 \leq i \leq d$, then $\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n})$ is isomorphic to the Ariki-Koike algebra $\mathcal{H}(d, n)$.
- If p is such that $d = 2$ and $m_1, m_2 \geq n$, then $\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n})$ is isomorphic to the Hecke algebra of type B with unequal and algebraically independent parameters (see [11, Example 5.2.2, (c)])
- If the parabolic subalgebra p coincides with the standard Borel subalgebra of $\mathcal{U}_q(\mathfrak{gl}_m)$ then $\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^{\otimes n})$ is isomorphic to Martin–Woodcock’s [17] generalized blob algebra $\mathcal{B}(d, n)$. This generalizes the case of $\mathcal{U}_q(\mathfrak{sl}_2)$ covered in [12].
In the last case, this gives a new interpretation of the generalized blob algebras $B_{p,d,n;\mathbf{q}}$ in terms of Schur–Weyl duality. We also give a new presentation of $B_{p,d,n;\mathbf{q}}$ as a quotient of Ariki–Koike algebras:

Theorem B (Theorem 2.14). Suppose that $\mathcal{H}(d,n)$ is semisimple and that for every i,j,k we have $(1+q^{-2})u_k \neq u_i + u_j$. The generalized blob algebra $B_{p,d,n}^{q;\mathbf{u}}$ is isomorphic to the quotient of $\mathcal{H}(d,n)$ by the two-sided ideal generated by the element

$$\tau = \prod_{1 \leq i < j \leq d} \left((T_1 - q) \left(T_0 - q \frac{u_i + u_j}{q + q^{-1}} \right) (T_1 - q) \right).$$

We hope that the explicit presentations of the algebras in this paper will turn out useful for their study.

1.2. **Connection to other works.** The idea of writing this note originated when we started thinking of possible extensions of our work in [15] to more general Kac–Moody algebras and were not able to find the appropriate generalizations of [12] in the literature. When we were finishing writing this note Peng Shan informed us about [19]. We expect our results to be connected to [19, 8] using a braided equivalence of categories between a category of modules for the quantum group $\mathcal{U}_q(\mathfrak{gl}_m)$ and a category of modules over the affine Lie algebra $\widehat{\mathfrak{gl}}_m$, which is due to Kazhdan and Lusztig [14]. However, the description of the kernel of the map $\psi_{R,d}^s$ of [19, Proposition 8.36] does not seem to appear anywhere in [19], except in the particular case of our Corollary 4.5.

Another motivation for the results presented here resides in the potential applications to low-dimensional topology, as indicated in [18]. We find that it would be also interesting to investigate the use of several Verma modules in a tensor product as suggested in [10].

Acknowledgments. We would like to thank Steen Ryom-Hansen for comments on an earlier version of this paper. The authors were supported by the Fonds de la Recherche Scientifique - FNRS under Grant no. MIS-F.4536.19.

2. **Ariki-Koike algebras, row quotients and generalized blob algebras**

We recall the notion of Ariki-Koike algebras and define some quotients which will appear as endomorphism algebras of modules over a quantum group. As a particular case, we recover the generalized blob algebras of Martin and Woodcock [17] and give them a presentation in terms of generators and relations which, up to our knowledge is new.

2.1. **Reminders on Ariki-Koike algebras.** Fix once and for all a field \mathbb{k} and two positive integers d and n and choose q,u_1,\ldots,u_d invertible elements in \mathbb{k}. We recall the definition of the Ariki-Koike algebra introduced in [2], which we view as a quotient of the group algebra of the Artin-Tits braid group of type B.

Definition 2.1. The *Ariki-Koike algebra* $\mathcal{H}(d,n)$ with parameters q and $\mathbf{u} = (u_1,\ldots,u_d)$ is the \mathbb{k}-algebra with generators T_0,T_1,\ldots,T_{n-1}, the quadratic relation

$$(T_i - q)(T_i + q^{-1}) = 0,$$
the cyclotomic relation
\[\prod_{i=1}^{d} (T_0 - u_i) = 0, \]
and the braid relations
\[T_i T_j = T_i T_j \text{ if } |i - j| > 1, \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \text{ for } 1 \leq i \leq n - 2, \]
\[T_0 T_1 T_0 = T_1 T_0 T_1. \]

Remark 2.2. We use different conventions than in [2]. In order to recover their definition, one should replace \(q \) by \(q^2 \), \(T_0 \) by \(a_1 \), and \(qT_{i-1} \) by \(a_i \).

Since the generators \(T_i \) for \(i \geq 1 \) satisfy the braid relations, we define \(T_w = T_{s_1} \cdots T_{s_r} \) for any reduced expression of an element \(w = s_{i_1} \cdots s_{i_r} \) of the symmetric group \(S_n \). Thanks to Matsumoto lemma, this is independent of the chosen reduced expression.

It is shown in [2] that the algebra \(\mathcal{H}(d, n) \) is of dimension \(d^nn! \) and a basis is given in terms of Jucys-Murphy elements. One can define inductively these elements by \(X_1 = T_0 \) and \(X_{i+1} = T_i X_i T_i \).

Theorem 2.3 ([2, Theorem 3.10, Theorem 3.20]). A basis of \(\mathcal{H}(d, n) \) is given by the set
\[\{ X_1^{r_1} \cdots X_d^{r_d} T_w \mid 0 \leq r_i < d, w \in S_n \}. \]
Moreover, the center of \(\mathcal{H}(d, n) \) is generated by the symmetric polynomials in \(X_1, \ldots, X_d \).

We end this section with a semisimplicity criterion due to Ariki [1].

Theorem 2.4. The algebra \(\mathcal{H}(d, n) \) is semisimple if and only if
\[\left(\prod_{-n \leq l \leq n \atop 1 \leq i < j \leq d} (q^{2l} u_i - u_j) \right) \left(\prod_{1 \leq i \leq n} (1 + q^2 + q^4 \cdots + q^{2(i-1)}) \right) \neq 0. \]

Remark 2.5. The appearance of \(q^2 \) instead of \(q \) in [1] is due to our conventions.

2.2. **Representations of Ariki-Koike algebras.** In this section, we suppose that the algebra \(\mathcal{H}(d, n) \) is semisimple. In [2], Ariki and Koike gave a construction of the irreducible representations of \(\mathcal{H}(d, n) \), using the combinatorics of multipartitions.

2.2.1. **d-partitions and Young’s lattice.** A partition \(\mu \) of \(n \) of length \(l(\mu) = k \) is a non-increasing sequence \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_k > 0 \) of integers summing to \(|\mu| = n \). A \(d \)-partition of \(n \) is a \(d \)-tuple of partitions \(\mu = (\mu^{(1)}, \ldots, \mu^{(d)}) \) such that \(\sum_{i=1}^{d} |\mu^{(i)}| = n \). Given a \(d \)-partition \(\mu \) its Young diagram is the set
\[[\mu] = \{(a, b, c) \in \mathbb{N} \times \mathbb{N} \times \{1, \ldots, d\} \mid 1 \leq a \leq l(\mu), 1 \leq b \leq \mu_a^{(c)} \}, \]
whose elements are called boxes. We usually represents a Young diagram as a \(d \)-tuple of sequences of left-aligned boxes, with \(\mu_a^{(c)} \) boxes in the \(a \)-th row of the \(c \)-th component.
Example 2.6. The Young diagram of the 3-partition \((2,1,\emptyset,3)\) of 6 is

\[
\begin{pmatrix}
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\end{pmatrix}, \emptyset, \begin{pmatrix}
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\end{pmatrix}.
\]

A box \(\gamma\) of \([\mu]\) is said to be removable if \([\mu] \setminus \{\gamma\}\) is the Young diagram of a \(d\)-partition \(\nu\), and in this case the box \(\gamma\) is said to be addable to \(\nu\).

Example 2.7. The removable boxes of the 3-partition \((2,1,\emptyset,3)\) below are depicted with a cross

\[
\begin{pmatrix}
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\times & \times & \times & \times \\
\end{array}
\end{pmatrix}, \emptyset, \begin{pmatrix}
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\times & \times & \times & \times \\
\end{array}
\end{pmatrix}.
\]

We consider the Young lattice for \(d\)-partitions and some sublattices. It is a graph with vertices consisting of \(d\)-partitions of any integers, and there is an edge between two \(d\)-partitions if and only if one can be obtained from the other by adding a box.

Example 2.8. The beginning of the Young lattice for 2-partitions is the following

\[
\begin{array}{cccc}
(\emptyset, \emptyset) & (\emptyset, \{\}) & (\{\}, \emptyset) & (\{\}, \{\}) \\
(\emptyset, \{\}) & (\{\}, \emptyset) & (\{\}, \{\}) & (\{\}, \{\}) \\
(\{\}, \{\}) & (\{\}, \{\}) & (\{\}, \{\}) & (\{\}, \{\})
\end{array}
\]

If we fix integers \(m_1, \ldots, m_d\), we will encounter the set of \(d\)-partitions \(\mu\) such that \(l(\mu^{(i)}) \leq m_i\), together with the corresponding sublattice of the Young lattice.

Example 2.9. With \(m_1 = 1\) and \(m_2 = 2\), the beginning of the Young lattice for 2-partitions \(\mu\) with \(l(\mu^{(1)}) \leq 1\) and \(l(\mu^{(2)}) \leq 2\) is the following

\[
\begin{array}{cccc}
(\emptyset, \emptyset) & (\emptyset, \{\}) & (\{\}, \emptyset) & (\{\}, \{\}) \\
(\emptyset, \{\}) & (\{\}, \emptyset) & (\{\}, \{\}) & (\{\}, \{\}) \\
(\{\}, \{\}) & (\{\}, \{\}) & (\{\}, \{\}) & (\{\}, \{\})
\end{array}
\]
We end this subsection with the notion of a standard tableau of shape \(\mu \) where \(\mu \) is a \(d \)-partition of \(n \). It is a bijection \(t: [\mu] \to \{1,\ldots,n\} \) such that for all boxes \(\gamma = (a,b,c) \) and \(\gamma' = (a',b',c) \) we have \(t(\gamma) < t(\gamma') \) if \(a = a' \) and \(b < b' \) or \(a < a' \) and \(b = b' \). Giving a standard tableau of shape \(\mu \) is equivalent to giving a path in the Young lattice from the empty \(d \)-partition to the \(d \)-partition \(\mu \).

Example 2.10. The standard tableau

\[
\begin{array}{|c|}
\hline
1 & 2 & 3 \\
\hline
4 & & \\
\hline
\end{array}
\]

of shape \(((1,1),\emptyset,(2))\) correspond to the path

\[
(\emptyset,\emptyset,\emptyset) \longrightarrow (\square \emptyset,\emptyset) \longrightarrow (\square \emptyset,\square) \longrightarrow (\square \emptyset,\square) \longrightarrow (\square \emptyset,\square) .
\]

2.2.2. **Constructing the irreducible representations.** For \(\mu = (\mu^{(1)},\ldots,\mu^{(d)}) \) a \(d \)-multipartition of \(n \), we set

\[
V_{\mu} = \bigoplus_{t} k v_t ,
\]

where the sum is over all the standard tableaux of shape \(\mu \). Ariki and Koike gave an explicit action of the generators on the basis of \(V_{\mu} \) given by the standard tableaux. The action of \(T_0 \) is diagonal with respect to this basis:

\[
T_0 v_t = u_c v_t ,
\]

where \(c \) is such that \(t(1,1,c) = 1 \). The action of \(T_i \) is more involved and depends on the relative positions of the numbers \(i \) and \(i+1 \) in the tableau \(t \):

1. if \(i \) and \(i+1 \) are in the same row of the standard tableau \(t \), then \(T_i v_t = q v_t \),
2. if \(i \) and \(i+1 \) are in the same column of the standard tableau \(t \), then \(T_i v_t = -q^{-1} v_t \),
3. if \(i \) and \(i+1 \) neither appear in the same row nor the same column of the standard tableau \(t \), then \(T_i \) will act on the two dimensional subspace generated by \(v_t \) and \(v_s \), where \(s \) is the standard tableau obtained from \(t \) by permuting the entries \(i \) and \(i+1 \). The explicit matrix is given in [2] and we will not need it.

Proposition 2.11 ([2 Theorem 3.7]). If \(\mu \) is any \(d \)-multipartition of \(n \), the space \(V_{\mu} \) is a well-defined representation of \(\mathcal{H}(d,n) \) and it is absolutely simple. A set of isomorphism classes of simple representations of \(\mathcal{H}(d,n) \) is moreover given by \(\{V_{\mu}\}_{\mu} \), for \(\mu \) running over the set of \(d \)-partitions of \(n \).

The action of the Jucys-Murphy elements is also diagonal in the basis of standard tableaux:

1. \(X_i v_t = u_c q^{2(b-a)} v_t \),

where \(t(a,b,c) = i \). A useful consequence of Proposition 2.11 is the following: if \(V \) is an irreducible \(\mathcal{H}(d,n) \)-module and \(v \in V \) is a common eigenvector for \(X_1,\ldots,X_d \) with eigenvalues as in (1) for some standard tableau \(t \) of shape \(\mu \), then \(V \) is isomorphic to \(V_{\mu} \).
From the explicit description of the representations V_μ, using the standard inclusion $H_p(n, d) \hookrightarrow H_p(n + 1, d)$, we see that for any d-partition of $n + 1$ we have

$$\text{Res}_{H_p(n, d)}^{H_p(n + 1, d)}(V_\mu) = \bigoplus_{\nu} V_\nu,$$

where the sum is over all d-partition ν of n whose Young diagram is obtained by deleting one removable box from the Young diagram of μ. The branching rule of the inclusions $H_p(1, d) \subset H_p(2, d) \subset \cdots \subset H_p(n, d)$ is therefore governed by the Young lattice of d-partitions.

2.3. Row quotients of $H_p(d, n)$ and generalized blob algebras.

We now define the row quotients of $H_p(d, n)$ which will appear later as endomorphism algebras of a tensor product of modules for $U_q(\mathfrak{gl}_m)$.

Definition 2.12. Let m_1, \ldots, m_d be positive integers. The m-row quotient of $H_p(d, n)$, denoted $H_m(d, n)$, is the quotient of $H_p(d, n)$ by the kernel of the surjection

$$H_p(d, n) \twoheadrightarrow \text{End}_{H_p(d, n)} \left(\bigoplus_\mu V_\mu \right),$$

where the sum is over all d-partitions μ such that $l(\mu(i)) \leq m_i$ for all $1 \leq i \leq d$.

Remark 2.13. If $m_i \geq n$ for all $1 \leq i \leq d$ then $H_m(d, n) = H_p(d, n)$.

Similar to the case of $H_p(d, n)$, we have inclusions $H_m(1, d) \subset H_m(2, d) \subset \cdots \subset H_m(n, d)$ and the branching rule for representations is governed by the corresponding truncation of the Young lattice of d-partitions.

2.3.1. Generalized blob algebras.

In the particular case where $m_i = 1$ for all $1 \leq i \leq d$, we recover the generalized blob algebras defined in [17], which we denote $B(d, n)$.

Theorem 2.14. Suppose that $H(d, n)$ is semisimple and that for every i, j, k we have $(1 + q^{-2})u_k \neq u_i + u_j$. The generalized blob algebra $B(d, n)$ is isomorphic to the quotient of $H(d, n)$ by the two-sided ideal generated by the element

$$\tau = \prod_{1 \leq i < j \leq d} \left((T_1 - q) \left(T_0 - q \frac{u_i + u_j}{q + q^{-1}} \right) (T_1 - q) \right).$$

This relation may look cumbersome, but can be better understood thanks to the following lemma:

Lemma 2.15. The two-sided ideal of $H(d, n)$ generated by τ is equal to the two-sided ideal generated by

$$(T_1 - q) \prod_{1 \leq i < j \leq d} \left(X_1 + X_2 - (u_i + u_j) \right).$$

Proof. A simple computation in $H(d, n)$ shows that

$$\tau = q (X_1 + X_2 - (u_i + u_j)) (T_1 - q).$$
We therefore conclude using the fact that \((T_1 - q)^2 = - (q + q^{-1})(T_1 - q)\) and that \(T_1\) commutes with \(X_1 + X_2\).

Let us denote by \(b(d, n)\) the quotient of \(\mathcal{H}(d, n)\) by the two sided ideal generated by \(\tau\). We now investigate which representations \(V_\mu\) of \(\mathcal{H}(d, n)\) factor through the quotient \(b(d, n)\). Theorem \(2.14\) will follow immediately from the following proposition.

Proposition 2.16. The representation \(V_\mu\) factors through \(b(d, n)\) if and only if \(l(\mu^{(k)}) \leq 1\) for every \(k\) such that \((1 + q^{-2})u_k \neq u_i + u_j\) for all \(i, j\).

Proof. Suppose that \(\mu\) and \(k\) are such that \(l(\mu^{(k)}) \geq 2\) with \((1 + q^{-2})u_k \neq u_i + u_j\) for all \(i, j\). Then there exist a tableau \(t\) of shape \(\mu\) such that 1 and 2 are in the first two columns of the \(k\)-th component of the Young diagram of \(\mu\). By definition of \(V_\mu\), the generator \(T_1\) acts on \(v_1\) by multiplication by \(-q^{-1}\). The Jucys-Murphy element \(X_1\) acts on \(v_1\) by multiplication by \(u_k\) whereas the Jucys-Murphy element \(X_2\) acts on \(v_1\) by multiplication by \(q^{-2}u_k\). Therefore, thanks to Lemma \(2.15\) the representation \(V_\mu\) does not factor through the quotient \(b(d, n)\).

It remains to check that the defining relation of \(b(d, n)\) acts by zero on \(V_\mu\) with \(l(\mu^{(k)}) \leq 1\) whenever \((1 + q^{-2})u_k \neq u_i + u_j\) for all \(i, j\). Let \(t\) be a standard tableau of shape \(\mu\). If 1 and 2 are in the same component of the tableau \(t\), then either 1 and 2 are in the same row and \(T_1\) acts on \(v_1\) by multiplication by \(q\), either 1 and 2 are in the same column and \(X_1 + X_2\) acts on \(t\) by multiplication by \((1 + q^{-2})u_k\). The second case is possible only if there exists \(i, j\) such that \((1 + q^{-2})u_k = u_i + u_j\) and the extra relation of \(b(d, n)\) is indeed satisfies. If 1 and 2 are in two different Young diagrams and \(X_1 + X_2\) acts on \(t\) by \(u_k + u_l\), where \(k\) (resp. \(l\)) is such that \(\tau(1, 1, k) = 1\) (resp \(\tau(1, 1, l) = 2\)). In both cases, the relation in Lemma \(2.15\) is satisfied.

3. Quantum \(\mathfrak{g}_m\), parabolic Verma modules and tensor products

We review the definition of the quantum enveloping algebra of \(\mathfrak{g}_m\), together with the study of parabolic Verma modules and tensor products of modules.

3.1. The quantum enveloping algebra of \(\mathfrak{g}_m\). Let \(q\) be an indeterminate. We recall the definition of the quantum enveloping algebra over \(\mathbb{Q}(q)\), but will define some representations over a bigger field.

Definition 3.1. The quantum enveloping algebra \(\mathcal{U}_q(\mathfrak{g}_m)\) is the \(\mathbb{Q}(q)\)-algebra with generators \(L_i^\pm, E_j\) and \(F_j\), for \(1 \leq i \leq m\) and \(1 \leq j \leq m - 1\) with the following relations:

\[
L_i^\pm L_j^\pm = 1, \quad L_i L_j = L_j L_i, \\
L_i E_j = q^{\delta_{i,j} - \delta_{i,j+1}} E_j L_i, \quad L_i F_j = q^{-\delta_{i,j} + \delta_{i,j+1}} F_j L_i, \\
[E_i, F_j] = \delta_{i,j} \frac{L_i L_{i+1}^\pm - L_i^\pm L_{i+1}}{q - q^{-1}},
\]

and the quantum Serre relations

\[
E_i E_j = E_j E_i \text{ if } |i - j| > 1, \quad E_i^2 E_{i+1} - (q + q^{-1}) E_i E_{i+1} E_i + E_{i+1} E_i^2 = 0, \\
F_i F_j = F_j F_i \text{ if } |i - j| > 1, \quad F_i^2 F_{i+1} - (q + q^{-1}) F_i F_{i+1} F_i + F_{i+1} F_i^2 = 0.
\]
It is a Hopf algebra, with comultiplication Δ, counit ε and antipode S given on generators by the following:

\[
\begin{align*}
\Delta(L_i) &= L_i \otimes L_i, & \varepsilon(L_i) &= 1, & S(L_i) &= L_i^{-1}, \\
\Delta(E_i) &= E_i \otimes 1 + L_i L_{i+1}^{-1} \otimes E_i, & \varepsilon(E_i) &= 0, & S(E_i) &= -L_i^{-1} L_{i+1} E_i, \\
\Delta(F_i) &= F_i \otimes L_i^{-1} L_{i+1} + 1 \otimes F_i, & \varepsilon(F_i) &= 0, & S(F_i) &= -F_i L_i L_{i+1}^{-1}.
\end{align*}
\]

We denote by $\mathcal{U}_q(\mathfrak{gl}_m)$ the subalgebra generated by $(L_i)_{1 \leq i \leq m}$, by $\mathcal{U}_q(\mathfrak{gl}_m)^{\geq 0}$ the subalgebra generated by $(L_i, E_j)_{1 \leq i \leq m, \ 1 \leq j \leq m-1}$.

In order to set some notations, we denote by $P = \bigoplus_{i=1}^m \mathbb{Z} \varepsilon_i$ the weight lattice of \mathfrak{gl}_m with \mathbb{Z}-basis given by the fundamental weights $(\varpi_i)_{1 \leq i \leq m}$ with $\varpi_i = \varepsilon_1 + \cdots + \varepsilon_i$. We denote by Q the root lattice with \mathbb{Z}-basis given by the simple roots $(\alpha_i)_{1 \leq i \leq d-1}$ with $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$. Denote by Φ^+ the set of positive roots, by P^+ the set of dominant weights for \mathfrak{gl}_m, that is $\mu = \sum_{i=1}^m \mu_i \varepsilon_i$ with $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_m$. We also endow P with the standard non-degenerate bilinear form: $\langle \varepsilon_i, \varepsilon_j \rangle = \delta_{i,j}$. The symmetric group S_m acts on P by permuting the coordinates and leaves the bilinear form $\langle \cdot, \cdot \rangle$ invariant. Finally, let ρ be the half-sum of positive roots.

We will often work with extensions $\mathbb{Z}[\beta_1, \ldots, \beta_k] \otimes P$, where the β_i's are indeterminates and we also extend the bilinear form $\langle \cdot, \cdot \rangle$ to $\mathbb{Z}[\beta_1, \ldots, \beta_k] \otimes P$.

3.2. Weights and parabolic Verma modules.

Suppose that our field \mathbb{k} contains the field $\mathbb{Q}(q)$ and let M be an $\mathcal{U}_q(\mathfrak{gl}_m)$-module over the ground field \mathbb{k}. An element $v \in M$ is said to be a weight vector if $L_i v = \varphi(\varepsilon_i)v$, where $\varphi : P \to \mathbb{k}$ is the corresponding weight. The module M is said to be a weight module if the action of the elements L_1, \ldots, L_m is simultaneously diagonalizable. A highest weight module is a weight module M such that $M = \mathcal{U}_q(\mathfrak{gl}_m)v$, where v is a weight vector such that $E_i v = 0$ for $1 \leq i \leq m-1$.

It is well known that finite dimensional weight representations of $\mathcal{U}_q(\mathfrak{gl}_m)$ are parametrized by the set P^+ of dominant weights.

In this paper, we will be interested in modules over the field $\mathbb{Q}(q, \lambda_1, \ldots, \lambda_k)$, where $\lambda_i = q^{\beta_i}$ is an indeterminate. Moreover we consider only type 1 modules, where the weights are of the form

\[
\varphi(\nu) = q^{\langle \mu, \nu \rangle},
\]

for some $\mu \in \mathbb{Z}[\beta_1, \ldots, \beta_k] \otimes P$ and for all $\nu \in P$.

We now turn to parabolic Verma modules. Let \mathfrak{p} be a standard parabolic subalgebra of \mathfrak{gl}_m with Levi factor $\mathfrak{l} = \mathfrak{gl}_{m_1} \times \cdots \times \mathfrak{gl}_{m_d}$ with $m_i \geq 1$ and $\sum_{i=1}^d m_i = m$. Denote by I the set $\{ m_i \mid 1 \leq i \leq d-1 \}$, where $\tilde{m}_i = m_1 + \cdots + m_i$, so that $\mathcal{U}_q(\mathfrak{l})$ is generated by L_i, E_j and F_j for $1 \leq i \leq m$ and $j \notin I$ and $\mathcal{U}_q(\mathfrak{p})$ is generated by L_i, E_j and F_k for $1 \leq i \leq m$, $1 \leq j \leq m-1$ and $k \notin I$. We identify the set $P_1^+ \times \cdots \times P_d^+$, where P_i^+ is the set of
dominant weights for \mathfrak{gl}_{m_1}, with the dominant weights P_1^+ of I by the following map

$$(\mu^{(1)}, \ldots, \mu^{(d)}) \to \sum_{i=1}^d \left(\sum_{j=1}^{m_i} \mu_j^{(i)} \varepsilon_{m_i-1+j} \right).$$

We work over the field $\mathbb{Q}(q, \lambda_1, \ldots, \lambda_d)$ with $\lambda_i = q^{\beta_i}$. For a dominant weight $\mu \in P_1^+$, we have an irreducible integrable finite dimensional representation $V^I(\Lambda, \mu)$ of $\mathcal{U}_q(\mathfrak{gl}_n)$ of highest weight

$$\Lambda_\mu = \sum_{i=1}^d \left(\sum_{j=1}^{m_i} (\beta_i + \mu_j^{(i)}) \varepsilon_{m_i-1+j} \right).$$

Indeed, we check that $\langle \Lambda_\mu, \alpha_i \rangle \in \mathbb{N}$ for any $i \notin I$. We turn this representation into a representation of $\mathcal{U}_q(\mathfrak{gl}_m)$ by setting $E_i V^I(\Lambda, \mu) = 0$ for all $i \in I$. Then the parabolic Verma module $M^p(\Lambda, \mu)$ is

$$M^p(\Lambda, \mu) = \mathcal{U}_q(\mathfrak{gl}_m) \otimes_{\mathcal{U}_q(\mathfrak{gl}_n)} V^I(\Lambda, \mu).$$

It is clearly a highest weight module with highest weight Λ_μ. If $\mu = 0$ we will simply denote this module by $M^p(\Lambda)$ and its highest weight by Λ.

Lemma 3.2. For any $\mu \in P_1^+$, the parabolic Verma module $M^p(\Lambda, \mu)$ is simple.

Proof. Since for any $i \in I$ the scalar product $\langle \Lambda_\mu, \alpha_i \rangle$ is not an integer, it follows from usual arguments that $M^p(\Lambda, \mu)$ is simple. \hfill \square

Remark 3.3. If the parabolic subalgebra \mathfrak{p} is the Borel subalgebra \mathfrak{b} of upper triangular matrices, we have $\mathcal{U}_q(\mathfrak{p}) = \mathcal{U}_q(\mathfrak{gl}_m)_{\geq 0}$ and the parabolic Verma module $M^p(\Lambda)$ is the universal Verma module.

In the rest of this article, all dominant weights $\mu \in P_1^+$ will moreover satisfy $\mu_m^{(i)} \geq 0$ for all $1 \leq i \leq d$. Therefore it will be convenient to identify such a weight μ with the corresponding d-partition satisfying $l(\mu^{(i)}) \leq m_i$. We then denote by \mathcal{P}_n^d the set of d-partitions μ of n such that $l(\mu^{(i)}) \leq m_i$. We will use the same notation μ to denote the d-partition or the corresponding dominant weight.

We also denote by V the standard representation of \mathfrak{gl}_m of dimension m. It is a highest weight module with highest weight ε_1, it has as a basis v_1, \ldots, v_m and the action of $\mathcal{U}_q(\mathfrak{gl}_m)$ is given by

$$L_i \cdot v_j = q^{\delta_{i,j}} v_j, \quad E_i \cdot v_j = \delta_{i+1,j} v_{j-1} \quad \text{and} \quad F_i \cdot v_j = \delta_{i,j} v_{j+1}.$$

3.3. Tensor products and branching rule

As $\mathcal{U}_q(\mathfrak{gl}_m)$ is a Hopf algebra, its category of representations is endowed with a tensor product. Given M and N two modules over a ground ring R, the action of the generators on $M \otimes_R N$ is given using the comultiplication: for all $v \in M$ and $w \in N$, one have

$$L_i \cdot (v \otimes w) = L_i \cdot v \otimes L_i \cdot w, \quad E_i \cdot (v \otimes w) = E_i \cdot v \otimes w + L_i L_{i+1}^{-1} \cdot v \otimes E_i \cdot w$$

and

$$F_i \cdot (v \otimes w) = F_i \cdot v \otimes L_i^{-1} L_{i+1}^{-1} \cdot w + v \otimes F_i \cdot w.$$
We will write \otimes instead of \otimes_R to simplify the notations. Since we will be interested in the endomorphism algebra of $M^p(\Lambda) \otimes V^\otimes n$, we first start by understanding the decomposition of this module.

Proposition 3.4. For any $\mu \in \mathcal{P}_1^n$, there is an isomorphism of $\mathcal{U}_q(\mathfrak{gl}_m)$-modules

$$M^p(\Lambda, \mu) \otimes V \simeq \bigoplus_{\nu \in \mathcal{P}_1^{n+1}} M^p(\Lambda, \nu),$$

where the sum is over all $\nu \in \mathcal{P}_1^{n+1}$ whose Young diagram is obtained from the Young diagram of μ by adding one addable box.

Proof. We start by showing that $M^p(\Lambda, \mu) \otimes V$ has a filtration given by the $M^p(\Lambda, \nu)$ as in the lemma. First, we have the following tensor identity:

$$\left(\mathcal{U}_q(\mathfrak{gl}_m) \otimes \mathcal{U}_q(\mathfrak{p}) \right) V^l(\Lambda, \mu) \otimes V \simeq \mathcal{U}_q(\mathfrak{gl}_m) \otimes \mathcal{U}_q(\mathfrak{p}) \left(V^l(\Lambda, \mu) \otimes V \right).$$

Noticing that $L \mapsto \mathcal{U}_q(\mathfrak{gl}_m) \otimes \mathcal{U}_q(\mathfrak{p}) L$ is an exact functor from the category of finite dimensional $\mathcal{U}_q(\mathfrak{p})$-modules to the category of $\mathcal{U}_q(\mathfrak{gl}_m)$-modules, it remains to show that

$$V^l(\Lambda, \mu) \otimes V \simeq \bigoplus_{\nu \in \mathcal{P}_1^{n+1}} V^l(\Lambda, \nu),$$

where the sum is over all $\nu \in \mathcal{P}_1^{n+1}$ whose Young diagram is obtained from the Young diagram of μ by adding one addable box. This follows from the usual branching rule for $\mathcal{U}_q(\mathfrak{gl}_m)$-modules.

To show that the sum is direct, we will look at these modules as $\mathcal{U}_q(\mathfrak{sl}_m)$-modules and show that each $M^p(\Lambda, \nu)$ lie in a different block. We know that $M^p(\Lambda, \nu)$ and $M^p(\Lambda, \nu')$ are in the same block if and only if their highest weights are in the same orbit for the action of the symmetric group shifted by ρ. The highest weight for \mathfrak{sl}_m of $M^p(\Lambda, \nu)$ is given by

$$\Lambda + \nu - \frac{|\Lambda| + |\nu|}{m}(\varepsilon_1 + \ldots + \varepsilon_m).$$

Since the dot action satisfies $w \cdot (\eta + \gamma) = w \cdot \eta + w(\gamma)$, we obtain that $M^p(\Lambda, \nu)$ and $M^p(\Lambda, \nu')$ are in the same block if and only if there exists $w \in \mathfrak{S}_m$ such that

$$w \cdot \left(\nu - \frac{|\nu|}{m}(\varepsilon_1 + \ldots + \varepsilon_m) \right) = \nu' - \frac{|\nu'|}{m}(\varepsilon_1 + \ldots + \varepsilon_m).$$

Since both $\nu - \frac{|\nu|}{m}(\varepsilon_1 + \ldots + \varepsilon_m)$ and $\nu' - \frac{|\nu'|}{m}(\varepsilon_1 + \ldots + \varepsilon_m)$ are dominants, we conclude that $w = 1$ and then $\nu = \nu'$ since $|\nu| = |\nu'|$. \hfill \square

Using the previous lemma and induction, one show the following proposition.

Corollary 3.5. There is an isomorphism

$$M^p(\Lambda) \otimes V^\otimes n \simeq \bigoplus_{\mu \in \mathcal{P}_1^n} M(\Lambda, \mu)^{n_{\mu}},$$

where n_{μ} is the number of paths from the empty d-partition to μ in the Young lattice of d- multipartitions.
3.4. Braiding and an action of the Artin-Tits group of type B. The quantized enveloping algebra (or rather a completion of the tensor product with itself) contains an element, called the quasi-R-matrix, which is a crucial tool in defining a braiding on a subcategory of the representations of $\mathcal{U}_q(\mathfrak{gl}_m)$. Since there are several possible braidings, we make our choice explicit and refer to [7][10.1.D] for more details.

In a completion of $\mathcal{U}_q(\mathfrak{gl}_m) \otimes \mathcal{U}_q(\mathfrak{gl}_m)$, we define an element Θ by

$$\Theta = \prod_{\alpha \in \Phi^+} \left(\sum_{n=0}^{+\infty} q^{\frac{n(n-1)}{2}} (q - q^{-1})^n \frac{\alpha^n \otimes F(\alpha^n)}{[n]!} \right),$$

where $[n] = \prod_{i=1}^{n} \frac{q^i - q^{-i}}{q^i - 1}$ and E_α, F_α being the root vectors associated to a positive root α. If M and N are two $\mathcal{U}_q(\mathfrak{gl}_m)$ type 1 weight modules over the ground ring $\mathbb{Q}(q, \lambda_1, \ldots, \lambda_{d-1})$ where $\mathcal{U}_q(\mathfrak{gl}_m)^{\geq 0}$ act locally nilpotently, Θ induces an isomorphism of vector spaces $\Theta_{M,N}: M \otimes N \rightarrow M \otimes N$. We then define a morphism of $\mathcal{U}_q(\mathfrak{gl}_m)$-modules

$$c_{M,N}: M \otimes N \rightarrow N \otimes M,$$

by $c_{M,N} = \tau \circ f \circ \Theta_{M,N}$, where τ is the flip $v \otimes w \mapsto w \otimes v$ and f is the map $v \otimes w \mapsto q^{\langle \mu, \nu \rangle} v \otimes w$ if v and w are of respective weights μ and ν. This endows the category of type 1 weight modules on which $\mathcal{U}_q(\mathfrak{gl}_m)^{> 0}$ act locally nilpotently with a braiding, which satisfy the so-called hexagon axioms:

$$c_{L \otimes M, N} = (c_{L,N} \otimes \text{Id}_M) \circ (\text{Id}_L \otimes c_{M,N}) \quad \text{and} \quad c_{L,M \otimes N} = (\text{Id}_M \otimes c_{L,N}) \circ (c_{L,M} \otimes \text{Id}_N).$$

Let \mathcal{B}_n be the Artin-Tits braid group of type B_n. It has the following presentation in terms of generators and relations:

$$\mathcal{B}_n = \left\langle \tau_0, \tau_1, \ldots, \tau_{n-1} \middle| \begin{array}{l}
\tau_0 \tau_1 \tau_0 \tau_1 = \tau_1 \tau_0 \tau_1 \tau_0, \\
\tau_i \tau_j = \tau_j \tau_i, \quad \text{if } |i - j| > 1, \\
\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, \quad \text{for } 1 \leq i \leq n - 2
\end{array} \right\rangle.$$

Using the braiding, we define the following endomorphisms of $M \otimes N^{\otimes n}$:

$$R_0 = (c_{N,M} \circ c_{M,N}) \otimes \text{Id}_{N^{\otimes n-1}},$$

$$R_i = \text{Id}_{M^{\otimes n-1} \otimes \otimes c_{N,N} \otimes \text{Id}_{N^{\otimes n-1}}} \otimes \text{Id}_{N^{\otimes n-i-1}}, \text{ for } 1 \leq i \leq n - 1.$$

Proposition 3.6. The assignment $\tau_i \mapsto R_i$ defines an action of \mathcal{B}_n on the module $M \otimes N^{\otimes n}$ which commutes with the $\mathcal{U}_q(\mathfrak{gl}_m)$ action.

Proof. The fact that R_i is a $\mathcal{U}_q(\mathfrak{gl}_m)$-morphism follows by definition of R_i. We only have to check that the defining relations of \mathcal{B}_n are satisfied. Clearly, if $|i - j| > 1$ then R_i and R_j commute. For $1 \leq i \leq n - 2$, the relation $R_i R_{i+1} R_i = R_{i+1} R_{i+1} R_{i+1}$ follows from the Yang-Baxter equation. Finally, it remains to show that $R_0 R_1 R_0 R_1 = R_1 R_0 R_1 R_0$ and we
may, and will, suppose that \(n = 2 \). Using graphical calculus, we simply have to show that
\[
N \rightarrow N \rightarrow M \rightarrow N = N \rightarrow M \rightarrow N
\]
which follows from applying several Reidemeister III moves (we leave the details to the reader). \(\square \)

Finally, we end this section with a lemma due to Drinfeld computing the action of the double braiding on highest weight modules, which is related with the action of the ribbon element.

Lemma 3.7. Let \(L, M \) and \(N \) be highest weight modules of respective highest weight \(\lambda, \mu \) and \(\nu \) such that \(L \subset M \otimes N \). Then the double braiding \(c_{N,M} \circ c_{M,N} \) restricted to \(N \) acts by multiplication by the scalar
\[
q^{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle - \langle \nu, \nu + 2\rho \rangle}.
\]

4. **The endomorphism algebra of \(M^p(\Lambda) \otimes V^\otimes n \)**

The aim of this section is to prove the following:

Theorem 4.1. Let \(p \) be a standard parabolic subalgebra of \(\mathfrak{gl}_m \) with Levi subalgebra \(\mathfrak{l} = \mathfrak{gl}_{m_1} \times \cdots \times \mathfrak{gl}_{m_d} \). The \(\mathcal{H}(d, n) \otimes \mathcal{U}_q(\mathfrak{gl}_m) \)-module \(M^p(\Lambda) \otimes V^\otimes n \) is decomposed as
\[
M^p(\Lambda) \otimes V^\otimes n \cong \bigoplus_{\mu \in \mathfrak{h}_l^+} V_\mu \otimes M^p(\Lambda, \mu),
\]
the parameters of the Ariki-Koike algebra being given by Lemma 4.2 below. Moreover,
\[
\text{End}_{\mathcal{U}_q(\mathfrak{gl}_m)}(M^p(\Lambda) \otimes V^\otimes n) = \mathcal{H}_l(d, n).
\]

We first explain why \(M^p(\Lambda) \otimes V^\otimes n \) inherits an action of the Ariki-Koike algebra from the action of the braid group of type \(B_n \). It is a classical result that the eigenvalues of \(R_i \) are \(q \) and \(-q^{-1}\): the action of the braiding on \(V \otimes V \) is
\[
v_i \otimes v_j \mapsto \begin{cases}
qv_j \otimes v_i & \text{if } i = j, \\
v_j \otimes v_i & \text{if } i > j, \\
v_j \otimes v_i + (q - q^{-1})v_i \otimes v_j & \text{if } i < j.
\end{cases}
\]
Moreover, using Lemma 3.4 we easily compute the eigenvalues of the endomorphism R_0 in order to show that the action of \mathcal{B}_n factors through the Ariki-Koike algebra.

Lemma 4.2. The eigenvalues u_1, \ldots, u_d of R_0 on $M^p(\Lambda) \otimes V$ are equal to

$$u_i = (\lambda_i q^{-\bar{m}_{i-1}})^2.$$

Proof. Let Λ be the highest weight of $M^p(\Lambda)$. The decomposition of $M^p(\Lambda) \otimes V$ is given in Proposition 3.4

$$M^p(\Lambda) \otimes V \simeq \bigoplus_{i=1}^{d} M^p(\Lambda, \mu_i),$$

where μ_i is the d-partition of 1 whose only non-zero component is the i-th one and is equal to (1). The highest weight of $M^p(\Lambda, \mu_i)$ being $\Lambda + \varepsilon_{\bar{m}_{i-1}+1}$, the action of R_0 on $M^p(\Lambda, \mu_i)$ is given by

$$q^{\langle \Lambda + \varepsilon_{\bar{m}_{i-1}+1}, \Lambda + \varepsilon_{\bar{m}_{i-1}+1} + 2\rho \rangle - \langle \Lambda + 2\rho \rangle - \langle \varepsilon_1 + 2\rho \rangle},$$

and we check that

$$\langle \Lambda + \varepsilon_{\bar{m}_{i-1}+1}, \Lambda + \varepsilon_{\bar{m}_{i-1}+1} + 2\rho \rangle - \langle \Lambda + 2\rho \rangle - \langle \varepsilon_1 + 2\rho \rangle = 2(\beta_i - \bar{m}_{i-1}).$$

Therefore, the assignment $T_i \rightarrow R_i$ defines a morphism of algebras

$$\mathcal{H}(d, n) \rightarrow \text{End}_{U_q(\mathfrak{gl}_n)}(M^p(\Lambda) \otimes V^\otimes n),$$

the parameters of the Ariki-Koike algebra being $u_i = (\lambda_i q^{-\bar{m}_{i-1}})^2$.

Proof of Theorem 4.1. Using Corollary 3.3 and the fact that $\mathcal{H}(d, n)$ acts on $M^p(\Lambda) \otimes V^\otimes n$ by $U_q(\mathfrak{gl}_n)$-linear endomorphisms, we see that

$$M^p(\Lambda) \otimes V^\otimes n \simeq \bigoplus_{\mu \in \mathcal{P}^p_i} \tilde{V}_\mu \otimes M^p(\Lambda, \mu),$$

for some representations \tilde{V}_μ of $\mathcal{H}(d, n)$. Since the multiplicity of $M^p(\Lambda, \mu)$ in $M^p(\Lambda) \otimes V^\otimes n$ is given by the number of paths in the Young’s lattice from the empty d-partition to the d-partition μ, we have $\dim(\tilde{V}_\mu) = \dim(V_\mu)$. It then remains to show that V_μ is a subrepresentation of \tilde{V}_μ.

Let t be a standard Young tableau of shape μ and denote by $(a_i, b_i, c_i) = t^{-1}(i)$. Denote by $\mu[i]$ the d-partition of i obtained by adding to the empty d-partition the boxes labeled by 1 to i in the chosen standard tableau t. We now choose a highest weight vector $v \in M^p(\Lambda) \otimes V^\otimes n$ of weight Λ_μ such that for all $1 \leq i \leq n$ we have

$$v \in M^p(\Lambda, \mu[i]) \otimes V^\otimes (n-i) \subset M^p(\Lambda) \otimes V^\otimes n.$$

Using the branching rule, one see that such a vector exists and is unique up to a scalar. Let us show that this vector v is a common eigenvector of the Jucys-Murphy elements X_i. It is easy to see that the action of the Jucys-Murphy element X_i on $M^p(\Lambda) \otimes V^\otimes n$ is given
by the double braiding \((c_{V,M^p(\Lambda)} \otimes V^{\otimes (n-i)}) \circ c_{M^p(\Lambda) \otimes V^{\otimes (i-1)}, V}) \otimes \text{Id}_{V^{\otimes (n-i)}}\). By Lemma 3.7, we obtain that \(X_i\) acts on \(v\) by multiplication by
\[
g^q(\Lambda_{\mu[i]} \Lambda_{\mu[i]+2\rho} - (\Lambda_{\mu[i]-1} \Lambda_{\mu[i-1]+2\rho} - \varepsilon_{\varepsilon_1} \varepsilon_{\varepsilon_1+2\rho})\).

Indeed, \(v\) lies in the summand \(M^p(\Lambda, \mu[i]) \otimes V^{\otimes (n-i)} \subseteq M^p(\Lambda, \mu[i-1]) \otimes V \otimes V^{\otimes (n-i)}\) of \(M^p(\Lambda) \otimes V^{\otimes n}\). But \(\Lambda_{\mu[i]} = \Lambda_{\mu[i]+1} + \varepsilon_{k_i}\) where \(k_i = \tilde{m}_{\varepsilon_i-1} + a_i\) so that
\[
\langle \Lambda_{\mu[i]}, \Lambda_{\mu[i]} + 2\rho \rangle - \langle \Lambda_{\mu[i]-1}, \Lambda_{\mu[i]-1} + 2\rho \rangle - \langle \varepsilon_{\varepsilon_1}, \varepsilon_{\varepsilon_1+2\rho} \rangle = 2\langle \Lambda_{\mu[i]-1}, \varepsilon_{k_i} \rangle + 2(1 - k_i)
\]
\[
= 2(\beta_{\varepsilon_i} + b_i - k_i),
\]
since the component of \(\Lambda_{\mu[i]-1}\) on \(\varepsilon_{k_i}\) is \(\beta_{\varepsilon_i} + (b_i - 1)\). Therefore \(X_i\) acts on \(v\) by multiplication by
\[
(\lambda_{\varepsilon_i} g^{b_i - k_i})^2 = u_{\varepsilon_i} g^{2(b_i - a_i)}.
\]
Therefore the \(\mathcal{H}(d, n)\) submodule spanned by \(v\) is isomorphic to \(V_{\mu}\) and then \(V_{\mu}\) is a subrepresentation of \(V_{\mu}\).

4.1. Some particular cases. We finish by giving some special cases of Theorem 4.1 in order to recover various well-known algebras. The two first special cases involve the well-known situation without a parabolic Verma module: it suffices to note that if \(p = \mathfrak{gl}_m\) then \(M^p(\Lambda)\) is the trivial module.

Corollary 4.3. If the parabolic subalgebra \(p\) is \(\mathfrak{gl}_m\) and \(m \geq n\), then the endomorphism algebra of \(M^p(\Lambda) \otimes V^{\otimes n}\) is isomorphic to Hecke algebra of type A.

Corollary 4.4. If the parabolic subalgebra \(p\) is \(\mathfrak{gl}_m\) and \(m = 2\), then the endomorphism algebra of \(M^p(\Lambda) \otimes V^{\otimes n}\) is isomorphic to Temperley–Lieb algebra of type A.

We now turn to special cases where \(p\) is a strict subalgebra of \(\mathfrak{gl}_m\). The following corollary follows from the Remark 2.13.

Corollary 4.5. For \(p\) such that \(m \geq nd\) and \(m_i \geq n\) for all \(1 \leq i \leq d\), the endomorphism algebra of \(M^p(\Lambda) \otimes V^{\otimes n}\) is isomorphic to the Ariki-Koike algebra \(\mathcal{H}(d, n)\).

The Hecke algebra of type \(B\) with unequal parameters appears when we work with a standard parabolic subalgebra \(p\) with Levi factor \(\mathfrak{gl}_{m_1} \times \mathfrak{gl}_{m_2}\).

Corollary 4.6. If the parabolic subalgebra \(p\) is such that \(d = 2, m_1 \geq n\) and \(m_2 \geq n\), then the endomorphism algebra of \(M^p(\Lambda) \otimes V^{\otimes n}\) is isomorphic to the Hecke algebra of type \(B\) with unequal and algebraically independent parameters.

Finally, the last special case is a generalization of the \(\mathfrak{gl}_2\) case of [12], where we recover the generalized blob algebra.

Corollary 4.7. If the parabolic subalgebra \(p\) is the standard Borel subalgebra \(b\) of \(\mathfrak{gl}_m\), that is \(d = m\) and \(m_i = 1\) for \(1 \leq i \leq d\), then the endomorphism algebra of \(M(\Lambda) \otimes V^{\otimes n}\) is isomorphic to the generalized blob algebra \(B(d, n)\).
References

[1] S. Ariki. On the Semi-simplicity of the Hecke Algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$. *J. Algebra*, 169(1):216–225, 1994.

[2] S. Ariki and K. Koike. A Hecke Algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$ and Construction of its Irreducible Representations. *Adv. Math.*, 106(2):216–243, 1994.

[3] S. Ariki, T. Terasoma, and H. Yamada. Schur–Weyl reciprocity for the Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$. *J. Algebra*, 178(2):374–390, 1995.

[4] M. Balagović, Z. Daugherty, I. Entova-Aizenbud, I. Halacheva, J. Hennig, M. S. Im, G. Letzter, E. Norton, V. Serganova, and C. Stroppel. The affine VW supercategory. *Sel. Math. New Ser.*, 26, 2020.

[5] H. Bao, W. Wang, and H. Watanabe. Multiparameter quantum Schur duality of type B. *Proc. Amer. Math. Soc.*, 146(8):3203–3216, 2018.

[6] M. Broué and G. Malle. Zyklotomische Heckealgebren. Number 212, pages 119–189. 1993. Représentations unipotentes génériques et blocs des groupes réductifs fins.

[7] V. Chari and A. Pressley. *A guide to quantum groups*. Cambridge University Press, Cambridge, 1994.

[8] V. Chari and A. Pressley. Quantum affine algebras and affine Hecke algebras. *Pacific J. Math.*, 174(2):295–326, 1996.

[9] I. V. Cherednik. A new interpretation of Gelfand-Tzetlin bases. *Duke Math. J.*, 54(2):563–577, 1987.

[10] Z. Daugherty and A. Ram. Two boundary Hecke Algebras and combinatorics of type C. 2018, arXiv: 1804.10296v1.

[11] M. Geck and N. Jacon. *Representations of Hecke algebras at roots of unity*, volume 15 of *Algebra and Applications*. Springer-Verlag London, Ltd., London, 2011.

[12] K. Iohara, G. I. Lehrer, and R. B. Zhang. Schur-Weyl duality for certain infinite dimensional $U_q(\mathfrak{sl}_2)$-modules. 2018, arXiv: 1811.01325v2.

[13] M. Jimbo. A q-analogue of $U(\mathfrak{gl}(N + 1))$, Hecke algebra, and the Yang-Baxter equation. *Lett. Math. Phys.*, 11(3):247–252, 1986.

[14] D. Kazhdan and G. Lusztig. Tensor structures arising from affine Lie algebras i-iv. *J. Amer. Math. Soc.*, 6-7:905–947, 949–1011,335–383,383–453, 1993-1994.

[15] A. Lacabanne, G. Naisse, and P. Vaz. Tensor product categorifications, Verma modules, and the blob algebra. 2020, in preparation.

[16] P. Martin and H. Saleur. The blob algebra and the periodic Temperley-Lieb algebra. *Lett. Math. Phys.*, 30(3):189–206, 1994.

[17] P. Martin and D. Woodcock. Generalized blob algebras and alcove geometry. *LMS J. Comput. Math.*, 6:249–296, 2003.

[18] D. Rose and D. Tubbenhauer. HOMFLYPT homology for links in handlebodies via type A Soergel bimodules. 2019, arXiv: 1908.06878v1.

[19] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot. Categorifications and cyclotomic rational double affine Hecke algebras. *Invent. Math.*, 204(3):671–786, 2016.

[20] M. Sakamoto and T. Sakamoto. Schur-Weyl reciprocity for Ariki-Koike algebras. *J. Algebra*, 221(1):293–314, 1999.

Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

E-mail address: abel.lacabanne@uclouvain.be

Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

E-mail address: pedro.vaz@uclouvain.be