Semisimple Modules Relative to A Semiradical Property

Entisar Ahmed Mohammad Al - Dhaheri *, Bahar Hamad Al - Bahrani
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 10/11/2021 Accepted: 28/1/2022 Published: 30/11/2022

Abstract
In this paper, we introduce the concept of s.p-semisimple module. Let S be a semiradical property, we say that a module M is s.p-semisimple if for every submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K has S. we prove that a module M is s.p-semisimple module if and only if for every submodule A of M, there exists a direct summand B of M such that A = B + C and C has S. Also, we prove that for a module M is s.p-semisimple if and only if for every submodule A of M, there exists an idempotent e ∈ End(M) such that e(M) ≤ A and (1 - e)(A) has S.

Keywords: Semiradical (radical) property, Semisimple modules, t-semisimple modules.

1. Introduction
Throughout this paper, all rings are associative with identity and all modules are unitary left R-modules. Let A be a submodule of a module M. A is called an essential submodule of M (denoted by A ≤ e M) if A ∩ B ≠ 0, ∀ 0 ≠ B ≤ M. A submodule B of M is called a closed submodule of M if B has no proper essential extension. A module M is called an extending module if every submodule of M is essential in a direct summand. Equivalently, every closed submodule of M is a direct summand, see [1], [2], [3].

*Email: eahmed.math@gmail.com
Let M be a module. Recall that the socle of M (denoted by $\text{Soc}(M)$) is the sum of all simple submodules of M, a module M is called a semisimple if $\text{Soc}(M) = M$. Equivalently a module M is semisimple if and only if every submodule is a direct summand of M, see [1], [4]. Recall that the Jacobson radical of M (denoted by $J(M)$) is the intersection of all maximal submodules of M. If M has no maximal submodule, we write $J(M) = M$, see [5].

Let $x \in M$. Recall that $\text{ann} \,(x) = \{ r \in R: rx = 0 \}$. For a module M, the singular submodule is defined as follows $Z(M) = \{ x \in M \mid \text{ann} \, x \leq e \, R \}$ or equivalently, $Ix = 0$ for some essential left ideal I of R. If $Z(M) = M$, then M is called a singular module. If $Z(M) = 0$, then M is called a nonsingular module. The second singular (or Goldie torsion) submodule of a module M (denoted by $Z_2(M)$) is defined by $Z(M / Z(M)) = Z_2(M) / Z(M)$, see [1], [6].

A submodule A of a module M is called t-essential submodule (denoted by $A \leq \text{tes} \, M$) if for any submodule B of M, $A \cap B \leq Z_2(M)$ implies $B \leq Z_2(M)$. A module M is called t-semisimple if for every submodule N of M there exists a direct summand K of M such that $K \leq \text{tes} \, N$, see [5], [7].

A property S is called a radical property if:
1- for every module M, there exists a submodule (denoted by $S(M)$) such that a- $S(M)$ has S.
b- $A \leq S(M)$, for every submodule A of M such that A has S.
2- If $f: M \rightarrow N$ is an epimorphism and M has S, then N has S.
3- $S(M / S(M)) = 0$ for every R-module M, see [8].

A property S is called a semiradical property if it satisfies conditions 1 and 2, see [8].

It's known that each of the following two properties is a radical property, see [8].

1- $S = Z_2$. For a module M, $S(M) = Z_2(M)$, the second singular of M.
2- $S = \text{Snr}$. For a module M, $\text{Snr}(M)$ is a submodule of M such that a_1- $J(\text{Snr}(M)) = \text{Snr}(M)$ (i.e. $\text{Snr}(M)$ has no maximal submodule).
b_2- $A \leq \text{Snr} \,(M)$, for every submodule A of M such that $J(A) = A$, see [8].

While each of the following two properties is a semiradical property (but it is not radical property), see [8].

1- $S = Z$. For a module M, $S(M) = Z \,(M)$, the singular submodule of M.
2- $S = \text{Soc}$. For a module M, $S(M) = \text{Soc}(M) = \sum_{A \text{ is simple}} A$.

Let S be a semiradical property. It is known that
1- M has S if and only if $S(M) = M$.
2- $S(S(M)) = S(M)$.
3- If $M = \bigoplus_{i \in I} M_i$, then $S(M) = \bigoplus_{i \in I} S(M_i)$, where I is any index set.
4- if $S(M) = 0$, then $S(A) = 0, \forall \, A \leq M$.
5- For any short exact sequence $0 \rightarrow M \rightarrow N \rightarrow K \rightarrow 0$, if $S(M) = 0$ and $S(K) = 0$, then $S(N) = 0$, see [8].

In this paper, S is a semiradical property, unless otherwise stated.
2- s.p - semisimple modules

In this section, we introduce the concept of s.p-semisimple modules and give the basic properties of this module. Also, we illustrate it with some examples.

Definition 2.1. Let S be a semiradical property. We say that a module M is s.p - semisimple module if for each submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K has S.

Remarks and Examples 2.2.
1. Every semisimple module is s.p - semisimple. The converse is not true in general.
 Proof. Let N be a submodule of a semisimple module M, then N is a direct summand of M, by [4]. Let K = N, hence S(N / K) = S(N / N) = S(0) = 0 ≅ N / K. Thus M is s.p - semisimple. For example \mathbb{Z}_6 as \mathbb{Z}_6-module is s.p - semisimple module.

 For the converse, Let S = Second singularity. Consider module \mathbb{Z}_4 as \mathbb{Z}-module. Since \mathbb{Z}_4 is singular, then every submodules of \mathbb{Z}_4 is singular, by [1]. Therefore, $\mathbb{Z}_2(N) = \mathbb{Z}(N) = N$, ∀ N ≤ \mathbb{Z}_4. Let K = 0, hence $\mathbb{Z}_2(N / 0) \cong \mathbb{Z}_2(N) = \mathbb{Z}(N) = N \cong N / 0$. So N / 0 has S, ∀ N ≤ \mathbb{Z}_4. Thus \mathbb{Z}_4 is s.p - semisimple. Clearly that \mathbb{Z}_4 is not semisimple.

2. Let S be a hereditary property and M be a module. If M has S, then M is s.p - semisimple.
 Proof. Let N be a submodule of M and A ≤ N. Since M is s.p - semisimple, then there exists a direct summand K of M such that K ≤ A and A / K has S. By modular law, K is a direct summand of N. Thus N is s.p - semisimple.

3. Let S = singularity. Consider module Q as Z-module. Clearly, that Q is nonsingular. Hence, $\mathbb{Z}(Q) = 0$. Let N = 3Z. Since Q is indecomposable, then 0 is the only direct summand contained in 3Z. So S(3Z / 0) ≅ S(3Z) = $\mathbb{Z}(3Z) = 0$. Thus Q is not s.p - semisimple module.

Proposition 2.3. Every submodule of s.p - semisimple module M is s.p – semisimple, For every property S.
 Proof. Let N be a submodule of M and A ≤ N. Since M is s.p - semisimple, then there exists a direct summand K of M such that K ≤ A and A / K has S. By modular law, K is a direct summand of N. Thus N is s.p - semisimple.

Proposition 2.4. Let M be an indecomposable module and S be an assumed. Then M is s.p - semisimple if and only if every proper submodule of M has S.
 Proof. ⇒) Let N be a proper submodule of M. Since M is s.p - semisimple, then there exists a direct summand K of M such that K ≤ N and N / K has S. But M is an indecomposable. Therefore, K = 0. Hence S(N) ≅ S(N / 0) = S(N / K) = N / K = N / 0 ≅ N. Thus N has S.
 ⇐) Clear.

 Let S be a semiradical property. Recall that S is called a cohereditary property, if S(M) = 0 is closed under homomorphic images of M for every module M, see [8].

Proposition 2.5. Let S be a cohereditary property and let M be a module. If S(M) = 0. Then M is semisimple if and only if M is s.p - semisimple.
Proof. ⇒) Clear.

⇐) Let \(N \) be a submodule of \(M \). Since \(M \) is s.p-semisimple, then there exists a direct summand \(K \) of \(M \) such that \(K \leq N \) and \(N / K \) has \(S \). But \(S(M) = 0 \), therefore \(S(N) = 0 \), by [8]. Since \(S \) is cohereditary property, then \(S(N / K) = 0 \). Hence \(N = K \) is a direct summand of \(M \). Thus \(M \) is semisimple.

Remark 2.6. Let \(S \) be a hereditary property and \(M \) be a module. If \(S(M) = M \), then \(M / N \) is s.p-semisimple module, for each submodule \(N \) of \(M \).

Proof. Let \(N \) be a submodule of \(M \) and \(S(M) = M \), then \(M / N \) has \(S \), by [8]. Thus by 2.2-2, \(M / N \) is s.p-semisimple module.

Proposition 2.7. Let \(M \) be s.p-semisimple module. Then every submodule \(N \) of \(M \) such that \(S(N) = 0 \) is a direct summand of \(M \). The converse is true if \(S(M) = 0 \).

Proof. Assume that \(N \) is a submodule of \(M \) such that \(S(N) = 0 \). Then there exists a direct summand \(K \) of \(M \) such that \(K \leq N \) and \(N / K \) has \(S \). Let \(M = K \oplus K_1 \), for some submodule \(K_1 \) of \(M \). By modular law, \(N = K \oplus (N \cap K_1) \). Since \(N \cap K_1 \leq N \) and \(S(N) = 0 \), then \(S(N \cap K_1) = 0 \), by [8]. Since \(N / K = (K \oplus (N \cap K_1)) / K \cong (N \cap K_1) / 0 \cong N \cap K_1 \), by the second isomorphism theorem, then \(S(N / K) = 0 \). But \(S(N / K) = N / K \), therefore \(N / K = 0 \). Thus \(N = K \) is a direct summand of \(M \).

Conversely, let \(S(M) = 0 \) and \(N \) be a submodule of \(M \). Then \(S(N) = 0 \), by [8]. By our assumption \(N \), is a direct summand of \(M \). Therefore \(M \) is semisimple. Thus by 2.2-1, \(M \) is s.p-semisimple module.

Proposition 2.8. Let \(M = A + S(M) \) be s.p-semisimple module. Then there exists a direct summand \(B \) of \(M \) such that \(B \leq A \), \(M = B + S(M) \) and \(A / B \) has \(S \).

Proof. Assume that \(M \) is s.p-semisimple module. Then there exists a direct summand \(B \) of \(M \) such that \(B \leq A \) and \(A / B \) has \(S \). Let \(M = B \oplus C \), for some submodule \(C \) of \(M \). Then \(A = B \oplus (C \cap A) \), by modular law. But \(A / B \cong (C \cap A) \), by the second isomorphism theorem, therefore \((C \cap A) \) has \(S \). Since \((C \cap A) \) has \(S \), then \((C \cap A) \leq S(M) \). Thus \(M = A + S(M) = B + (C \cap A) + S(M) \) and hence \(M = B + S(M) \).

Proposition 2.9. Let \(S \) be a hereditary property and \(M = M_1 \oplus M_2 \) be a module such that \(M_1 \) has \(S \) and \(M_2 \) is semisimple. Then \(M \) is s.p-semisimple module.

Proof. Let \(N \) be a submodule of \(M \). Since \(M_2 \) is semisimple, then \(N \cap M_2 \) is a direct summand of \(M_2 \). But, \(M_2 \) is a direct summand of \(M \), therefore \(N \cap M_2 \) is a direct summand of \(M \). By the second isomorphism theorem, \(M / M_2 = (M_1 \oplus M_2) / M_2 \cong M_1 \). Since \(M_1 \) has \(S \), then \(M / M_2 \) has \(S \). But \(N / (N \cap M_2) \cong (N + M_2) / M_2 \leq M / M_2 \) and \(S \) hereditary property. So \(N / (N \cap M_2) \) has \(S \). Thus \(M \) is s.p-semisimple module.

Corollary 2.10. Let \(S \) be a hereditary property and \(M \) be a module. If \(M = S(M) \oplus M_1 \), where \(M_1 \) is a semisimple module, then \(M \) is s.p-semisimple module.
Proof. Clear.

Proposition 2.11. Let \(M = M_1 \oplus M_2 \) be a module such that \(R = \text{Ann}(M_1) + \text{Ann}(M_2) \). If \(M_1 \) and \(M_2 \) are s.p - semisimple modules, then \(M \) is s.p - semisimple module.

Proof. Let \(N \) be a submodule of \(M = M_1 \oplus M_2 \). Since \(R = \text{Ann}(M_1) + \text{Ann}(M_2) \), then by the same argument of the proof [9, prop.4.2, CH.1], \(N = N_1 \oplus N_2 \), where \(N_1 \leq M_1 \) and \(N_2 \leq M_2 \). Since \(M_i \) is s.p - semisimple for \(i = 1, 2 \), then there exist direct summands \(K_i \) of \(M_i \) such that \(K_i \) is a submodule of \(N_i \) and \(N_i / K_i \) has S (\(i = 1, 2 \)). Let \(M_i = K_i \oplus L_i \), for some submodule \(L_i \) of \(M_i \). Therefore \(M = M_1 \oplus M_2 = (K_1 \oplus L_1) \oplus (K_2 \oplus L_2) = (K_1 \oplus K_2) \oplus (L_1 \oplus L_2) \). Hence \((K_1 \oplus K_2) \oplus (L_1 \oplus L_2) \) is a direct summand of \(M \) and \((K_1 \oplus K_2) \leq N_1 \oplus N_2 = N \). Now since \(N_i / K_i \) has S \((i = 1, 2) \), then by [8], \((N_1 / K_1) \oplus (N_2 / K_2) \) has S. But \((N_1 / K_1) \oplus (N_2 / K_2) \) is \((N_1 \oplus N_2) / (K_1 \oplus K_2) \), by [10, p. 33], hence \((N_1 \oplus N_2) / (K_1 \oplus K_2) \) has S. Thus \(M \) is s.p - semisimple module.

Let \(M \) be an R- module. Recall that \(M \) is called a duo-module if every submodule of \(M \) is fully invariant, see [11].

Proposition 2.12. Let \(M = \bigoplus_{i \in I} M_i \) be a duo module. Then \(M \) is s.p - semisimple modules if and only if for \(M_i \) is s.p - semisimple module \(\forall \ i \in I \).

Proof. Since \(M \) is s.p - semisimple, then by prop.2.3, \(M_i \) is s.p - semisimple, \(\forall \ i \in I \). Conversely, let \(M = \bigoplus_{i \in I} M_i \) be a module such that \(M_i \) is s.p - semisimple, \(\forall \ i \in I \). Let \(N \leq M \), then \(N = N \cap M = N \cap (\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} (N \cap M_i) \), by [12,lem.2.1]. Let \(N_i = N \cap M_i \), \(\forall \ i \in I \), then \(N_i \leq M_i \), \(\forall \ i \in I \). Since \(M_i \) is s.p - semisimple, then there exists \(K_i \) a direct summand of \(M_i \) such that \(K_i \) is a submodule of \(N_i \) and \(N_i / K_i \) has S \(\forall \ i \in I \). Hence \((\bigoplus_{i \in I} N_i) / (\bigoplus_{i \in I} K_i) \) is \(\bigoplus_{i \in I} (N_i / K_i) \) has S, by [10]. Thus \(M = \bigoplus_{i \in I} M_i \) is s.p - semisimple.

Let \(M_1 \) and \(M_2 \) be R- modules. \(M_1 \) is called \(M_2 \)-projective if for every submodule \(N \) of \(M_2 \) and any homomorphism \(f : M_1 \to M_2 / N \), there is a homomorphism \(g : M_1 \to M_2 \) such that \(\pi \circ g = f \). where \(\pi : M_2 \to M_2 / N \) is the natural epimorphism, see [13].

\[
\begin{array}{c}
M_1 \\
\downarrow g \\
M_2 \\
\downarrow \pi \\
M_2 / N \\
\end{array}
\]

\[
\begin{array}{c}
\Rightarrow f \\
\Rightarrow 0 \\
\end{array}
\]

\(M_1 \) and \(M_2 \) are called relatively projective if \(M_1 \) is \(M_2 \)-projective and \(M_2 \) is \(M_1 \)-projective.

We know that for a module \(M = A \oplus B \). \(A \) is B-projective if and only if for every submodule \(C \) of \(M \) such that \(M = B + C \), there exists a submodule \(D \) of \(C \) such that \(M = B \oplus D \), see [14].

Proposition 2.13. Let \(S \) be a hereditary property. Let \(M_1 \) and \(M_2 \) be s.p - semisimple modules such that \(M_1 \) and \(M_2 \) are relative projective. Then \(M = M_1 \oplus M_2 \) is s.p - semisimple.
Let \(N \) be a submodule of \(M \). Since \((N + M_2) \cap M_1 \leq M_1\) and \(M_1 \) is s.p - semisimple, then there exists a direct summand \(A_1 \) of \(M \) such that \(A_1 \leq (N + M_2) \cap M_1 \) and \(((N + M_2) \cap M_1) / A_1\) has \(S \). Let \(M_1 = A_1 \oplus B_1 \), for some submodule \(B_1 \) of \(M_1 \). Hence \((N + M_2) \cap M_1 = A_1 \oplus (N + M_2) \cap M_1 \cap B_1\), by modular law. Since by the second isomorphism theorem, \((N + M_2) \cap M_1) / A_1 \cong (N + M_2) \cap M_1 / B_1\), then \((N + M_2) \cap B_1\) has \(S \), by [8]. Therefore \(M = M_1 \oplus M_2 = A_1 \oplus B_1 \oplus M_2 = (N + M_2) \cap M_1 \cap B_1 + M_2 = N + M_2 + B_1 + M_2 = N + (M_2 \oplus B_1)\). Since \((N + B_1) \cap M_2 \leq M_2\) and \(M_2\) is s.p - semisimple, then there exists a direct summand \(A_2 \) of \(M_2 \) such that \(A_2 \leq (N + B_1) \cap M_2\) and \(((N + B_1) \cap M_2) / A_2\) has \(S \). Let \(M_2 = A_2 \oplus B_2\), for some submodule \(B_2 \) of \(M_2\) then \((N + B_1) \cap M_2 = A_2 \oplus ((N + B_1) \cap M_2) \cap B_2\), by modular law. By the second isomorphism theorem, \(((N + B_1) \cap M_2) / A_2 \cong ((N + B_1) \cap M_2) \cap B_2\), then \((N + B_1) \cap M_2 \cap B_2 = (N + B_1) \cap B_2\) has \(S \), by [8]. Thus \(M = N + (M_2 \oplus B_1) = N + A_2 + B_2 + B_1 = N + (B_1 \oplus B_2)\). Since \(M = (A_1 \oplus A_2) \oplus (B_1 \oplus B_2)\) and \(M_1\) and \(M_2\) are relative projective, then \(A_1\) is \(B_j\) - projective and \(A_2\) is \(B_j\) - projective for \(j = 1, 2\), by [9, prop. 2.1.6]. So by [15, prop.2.1.7], \(A_1\) is \(B_1 \oplus B_2\)-projective and \(A_2\) is \(B_1 \oplus B_2\) - projective. Hence \(A_1 \oplus A_2\) is \(B_1 \oplus B_2\)-projective, by [15,prop.2.1.6]. Hence, there exists \(X \leq N\) such that \(M = X \oplus B_1 \oplus B_2\), by [14, lem. 5].

Now, we want to show that \(N \cap (B_1 \oplus B_2)\) has \(S\). Since \((N+M_2) \cap B_1 = ((N + (A_2 \oplus B_2)) \cap B_1\) has \(S\) and \((N + B_2) \cap B_1 \leq ((N + (A_2 \oplus B_2)) \cap B_1\), then \((N + B_2) \cap B_1\) has \(S\). Since \((N + B_1) \cap B_2\) has \(S\), then \((N \oplus B_2) \cap B_1 \oplus (N \oplus B_1) \cap B_2\) has \(S\), by [8]. But by [15,lem.3.2], \(N \cap (B_1 \oplus B_2) \leq (N \oplus B_2) \cap B_1 \oplus (N \oplus B_1) \cap B_2\). Therefore, \(N \cap (B_1 \oplus B_2)\) has \(S\). Thus \(M\) is s.p - semisimple module.

Let \(M\) be an \(R\)-module. \(M\) is said to have the summand intersection property (briefly SIP) if the intersection of any two direct summands of \(M\) is a direct summand of \(M\), see [16].

Proposition 2.14. Let \(M\) be s.p - semisimple module. If for any two direct summand \(A\) and \(B\) of \(M\), \(S(A \cap B) = 0\), then \(M\) has SIP.

Proof. Let \(A\) and \(B\) be direct summands of \(M\). Since \(M\) is s.p - semisimple, then there exists a direct summand \(N\) of \(M\) such that \(N \leq A \cap B\) and \((A \cap B) / N\) has \(S\). Let \(M = N \oplus N_1\), for some submodule \(N_1\) of \(M\), then \(A \cap B = N \oplus (N_1 \cap (A \cap B))\). Hence by the second isomorphism theorem, \((A \cap B) / N = [N \oplus (N_1 \cap (A \cap B))] / N \cong N_1 \cap (A \cap B) / A \cap B\). Since \(S(A \cap B) = 0\), then \(S(N_1 \cap (A \cap B)) = 0\), by [8]. So \(S(A \cap B) / N = 0\). But \((A \cap B) / N\) has \(S\), therefore \(A \cap B = N\). Hence \(A \cap B\) is a direct summand of \(M\). Thus \(M\) has SIP.

Let \(R\) be an integral domain. Recall that an \(R\)- module \(M\) is called a torsion free module if \(\text{ann}(x) = 0\), for all \(x \neq 0 \in M\), see [1].

Theorem 2.15. Let \(R\) be an integral domain and \(M\) be a torsion free module and s.p - semisimple module. Then for every \(m \in M\), either \(Rm\) is a direct summand of \(M\) or \(Rm\) has \(S\).

Proof. Let \(0 \neq m \in M\). Then there exists a direct summand \(K\) of \(M\) such that \(K \leq Rm\) and \(Rm / K\) has \(S\). Let \(M = K \oplus H\), for some submodule \(H\) of \(M\). Then \(Rm = K \oplus (Rm \cap H)\), by modular law. But \(Rm / K \cong Rm \cap H\), by the second isomorphism theorem. Therefore \(Rm \cap H\) has \(S\).

Let \(: R \to Rm\) be a map defined by \(f(r) = rm\), for each \(r \in R\). It is easy to see that \(f\) is an epimorphism and \(\text{Ker}(f) = \text{ann}(m)\). By the first isomorphism theorem, \(R / \text{ann}(m) \cong Rm\). Since \(M\) is torsion free module, then \(\text{ann}(m) = 0\). Thus \(R \cong Rm\). But \(R\) is indecomposable.
Therefore, Rm is indecomposable. Implies that either $Rm = K$ or $Rm = Rm \cap H$. Thus either Rm is a direct summand of M or Rm has S.

Proposition 2.16. Let R be an indecomposable ring and M be a projective module. If M is s.p-semisimple module, then for every $m \in M$, either Rm is a direct summand of M or Rm has S.

Proof. Assume that M is a projective and s.p-semisimple module and let $m \in M$. Then there exists a direct summand K of M such that $K \leq Rm$ and Rm / K has S. Let $M = K \oplus H$ for some submodule H of M, then $Rm = K \oplus (H \cap Rm)$, by modular law. But $Rm / K \cong H \cap Rm$, by the second isomorphism theorem. Therefore, $H \cap Rm$ has S.

Now, let $f: R \to Rm$ be a map defined by $f(r) = rm$, for all $r \in R$. It is clear that f is an epimorphism map. Let $P: Rm \to K$ be the projection map. Clearly, $Pof: R \to K$ is an epimorphism. Since M is projective, then K is projective by [4]. Therefore, $\text{Ker}(Pof) = 0$ or $\text{Ker}(Pof) = R$. $\text{Ker}(Pof) = f^{-1}(Rm \cap H) = f^{-1}(Rm \cap H)$. So either $Rm \cap H = 0$ or $Rm \cap H = R$. Thus $Rm = K$ or $Rm \cap H = Rm$ has S.

3- **Characterization of s.p-semisimple Modules**

In this section, we give various characterizations of s.p-semisimple modules.

We start with the following theorem.

Theorem 3.1. Let M be a module. Then the following statements are equivalent

1- M is s.p-semisimple module.

2- For every submodule A of M, there exists a decomposition $M = B \oplus C$ such that $B \leq A$ and $A \cap C$ has S.

3- For every submodule A of M, $A = A_1 \oplus A_2$, where A_1 is a direct summand of M and A_2 has S.

Proof.

1\Rightarrow2) Let A be a submodule of M. Since M is s.p-semisimple, then there exists a direct summand B of M such that $B \leq A$ and A / B has S. Let $M = B \oplus C$, where C is a submodule of M. Then $A = B \oplus (C \cap A)$, by modular law. By the second isomorphism theorem, $A / B \cong (C \cap A)$. Thus $A / B \cong C \cap A$.

2\Rightarrow3) Let A be a submodule of M. By (2), there exists a decomposition $M = B \oplus C$ such that $B \leq A$ and $A \cap C$ has S. By modular law, $A = B \oplus (C \cap A)$. Let $A_2 = A \cap C$ has S.

3\Rightarrow1) Let A be a submodule of M. By (3), $A = A_1 \oplus A_2$, where A_1 is direct summand of M and A_2 has S. By the second isomorphism theorem, $A / A_1 \cong A_2$. So A / A_1 has S. Thus M is s.p-semisimple.

Proposition 3.2. A module M is s.p-semisimple if and only if for every submodule A of M there exists a direct summand B of M such that $A = B + C$, where C is a submodule of M has S.

Proof.

\Rightarrow It is clear by Theorem 3.1.

\Leftarrow Let A be a submodule of M. By our assumption, there exists a direct summand B of M such that $A = B + C$ and C has S. Let $M = B \oplus D$, for some submodule D of M, then $A = B \oplus (A \cap D)$, by modular law. Hence, $(A / B) = (B + C) / B \cong C / (B \cap C)$, by the second isomorphism theorem. But C has S, then $C / (B \cap C)$ has S. This implies that A / B has S. Thus M is s.p-semisimple.
Proposition 3.3. A module M is s.p - semisimple if and only if for each submodule A of M, there exists an idempotent $e \in \text{End}(M)$ such that $e(M) \leq A$ and $(1-e)(A)$ has S.

Proof. \(\Rightarrow\) Let A be a submodule of M. Since M is s.p - semisimple, then there exists a decomposition $M = B \oplus C$ such that $B \leq A$ and $A \cap C$ has S, by th.3.1, 1-2. Let $e : M \rightarrow B$ be the projection map. Clearly that $e^2 = e$ and $C = (1 - e)(M)$. Claim that $(1-e)(A) = (1-e)M \cap A$. To show that, let $m \in (1-e)(A)$, then there is a $a \in A$ such that $m = (1 - e)(a) = a - e(a)$. Therefore $m \in A$ and hence $m \in (1-e)(M) \cap A$. Thus $(1-e)(A) \leq (1-e)(M) \cap A$. Now, let $n \in (1-e)(M) \cap A$, then $n = e(M) \cap A$ and $n \in A$. Hence, there is $k \in M$ such that $n = (1 - e)(k) = k - e(k)$. So $n = e(k) = k \in A$. then $n \in (1-e)(A)$. Thus $A \cap C = A \cap (1-e)(M) = (1-e)(A)$. Thus $(1-e)A$ has S.

\(\Leftarrow\) Let A be a submodule of M and $e \in \text{End}(M)$ be an idempotent such that $e(M) \leq A$ and $(1-e)A$ has S. Claim that $M = e(M) \oplus (1-e)(M)$. To show that, let $x \in M$, then $x = x + e(x) - e(x) = e(x) + x - e(x) = e(x) + (1-e)(x)$. Thus $M = e(M) + (1-e)(M)$.

Now, let $y \in e(M) \cap (1-e)(M)$, then $y = e(m_1)$ and $y = (1-e)(m_2)$, for some $m_1, m_2 \in M$. So $y = e(m) = e(m_1) = e(1-e)(m_2) = e(m_2) - e(m_2) = 0$, then $y = e(m_1) = 0$. Thus $M = e(M) \oplus (1-e)(M)$. Let $B = e(M) \leq A$ and $C = (1-e)(M)$. Therefore $M = B \oplus C$ and $A \cap C = A \cap (1-e)M = (1-e)A$ has S. Thus M is s.p - semisimple, by Theorem 3.1.

Let M be a module and N be a submodule of M. Recall that a submodule K of M is called an S-generalized supplement of N in M, if $M = N + K$ and $N \cap K \leq S(K)$, see [17].

Let M be a module. Recall that M is called an S-generalized supplemented module (or briefly S-GS module), if every submodule of M has S-generalized supplement in M, where S is semiradical property on modules, see [17].

Proposition 3.4. Every s.p - semisimple module M is S-GS supplemented module.

Proof. Let M is s.p - semisimple module and N be a submodule of M, then there exists a direct summand K of M such that $K \leq N$ and N / K has S. Hence, $M = K \oplus K_1$, for some submodule K_1 of M. But $K \leq N$, therefore $M = N + K_1$. So by modular law, $N = K \oplus (N \cap K_1)$, then by the second isomorphism theorem, $N / K \cong N / K_1$ has S. Thus $N \cap K_1 \leq S(K)$ by [8].

Proposition 3.5. Let M be s.p-semisimple module. If $M = N + K$, where N is a direct summand of M, then N contains an S-generalized supplement submodule of K in M.

Proof. Since M is an s.p - semisimple, then by Theorem 3.1.1-3, $N \cap K = A \oplus B$, where A is a direct summand of M and B has S. Let $M = A \oplus C$, for some submodule C of M. Hence, $N = A \oplus (N \cap C)$, by modular law. Let $A_1 = N \cap C$, then $M = N + K = (A + A_1) + K$. But $A \leq K$. Therefore, $M = K + A_1$. Now we want to show $K \cap A_1 \leq S(A_1)$. Since $N \cap K = (A \oplus A_1) \cap K = A \oplus (K \cap A_1)$, by modular law. Let $A_1 = N \oplus A_1 \rightarrow A_1$ be the projection map. So we have $K \cap A_1 = (A \oplus (K \cap A_1) = (N \cap K) = (A \oplus B) = (B)$. But B has S. Therefore, $K \cap A_1$ has S, by [8]. Hence, $K \cap A_1 \leq S(A_1)$. Thus A_1 is an S-generalized supplement submodule of K in M and A_1 is contained in N.

Proposition 3.6. Let S be a hereditary property and M be a module. Then the following statements are equivalent

1- M is s.p - semisimple module.
2- Every submodule N of M has S-generalized supplement K in M such that $N \cap K$ is a direct summand of N.
Proof. 1⇒2) Let N be a submodule of M. Then by the same argument of proof of Proposition 3.4. N has an S-generalized supplement.

2⇒1) Let N be a submodule of M. Then by our assumption N has an S-generalized supplement K in M such that N ∩ K is a direct summand of N. Hence M = N + K and N ∩ K ≤ S(K). Let N = (N ∩ K) ⊕ L, for some submodule L of N. Then M = (N ∩ K) + L + K = L + K. But, L ∩ K = N ∩ K ∩ L = 0. Therefore, M = L ⊕ K. By the second isomorphism theorem, N / L ≅ N ∩ K. Since N ∩ K ≤ S(K) and S is hereditary property, then N ∩ K has S by [8] and hence N / L has S. Thus M is s.p-semisimple.

Proposition 3.7. Let M be a module. If M is S-GS supplemented module, then M / S(M) is a semisimple module.

Proof. Let N / S(M) be a submodule of M / S(M). Since M is S-GS supplemented, then there exists a submodule K of M such that M = N + K and N ∩ K ≤ S(K). Then M / S(M) = (N + K) / S(M) = N / S(M) + (K + S(M)) / S(M). Since (N / S(M)) ∩ ((K + S(M)) / S(M)) = [(N ∩ K) + S(M)] / S(M), by modular law and N ∩ K ≤ S(K) ≤ S(M), by [17]. Then (N ∩ K) + S(M) = S(M). Therefore M / S(M) = (N / S(M)) ⊕ ((K + S(M) / S(M)). Thus M / S(M) is semisimple.

Corollary 3.8. Let M be a module. If M is S-GS supplemented module, then M / S(M) is s.p-semisimple module.

Proof. It is clear by Proposition. 3.7 and 2.2-1.

Proposition 3.9. Let M be s.p-semisimple module. Then every submodule N of M has an S-generalized supplement which is a direct summand of M.

Proof. Let N be a submodule of M, then there exists a decomposition M = A ⊕ B such that A ≤ N and N ∩ B has S, by Theorem 3.1, 1-2. Clearly M = N + B and N ∩ B ≤ S(B). Thus B is an S-generalized supplement of N which is a direct summand of M.

Let M be an R- module. Recall that M is called π-projective (or co-continuous) if for every two submodules U, V of M with U + V = M there exists f ∈ End(M) with Im (f) ≤ U and Im (1− f) ≤ V, see [18].

Proposition 3.10. Let S be a hereditary property and a module M be a π-projective module. Then M is s.p - semisimple if and only if M is S-GS module.

Proof. ⇒) It is clear by Proposition 3.4.

⇐) Let N be a submodule of M. Since M is S-GS module, then there exists a submodule K of M such that M = N + K and N ∩ K ≤ S(K). Since M is π- projective, then there exists an idempotent e ∈ End (M) such that Im (e) ≤ N and Im (1− e) ≤ K. But by the same proof of Proposition 3.3 we have N(1- e) = N ∩ (1− e)M ≤ N ∩ K ≤ S(K) and S is hereditary property, therefore N(1- e) has S. Thus by Proposition 3.3 M is s.p - semisimple.

Conclusion

In this work, the concept of s.p-semisimple module is introduced and studied. We also conclude the following:
1. Every semisimple module is s.p – semisimple. However, the converse is not true. Let S = Second singularity. Consider module Z₄ as Z-module. Since Z₄ is singular, then every submodules of Z₄ is singular, by [1]. Therefore, \(Z_2(N) = Z(N) = N \), \(\forall N \leq Z_4 \), let \(K = 0 \), hence \(Z(Z(N \mod 0)) = Z_2(N) = Z(N) = N \mod 0 \). So \(N \mod 0 \) has S, \(\forall N \leq Z_4 \). Thus Z₄ is s.p - semisimple. Clearly, that Z₄ is not semisimple.

2. Let \(M = \bigoplus_{i \in I} M_i \) be a duo module. Then M is s.p - semisimple modules if and only if \(M_i \) is s.p - semisimple module \(\forall i \in I \).

3. Let S be a hereditary property. If \(M_1 \) and \(M_2 \) are s.p - semisimple modules such that \(M_1 \) and \(M_2 \) are relative projective. Then \(M = M_1 \bigoplus M_2 \) is s.p - semisimple.

4. Every s.p - semisimple module M is S-GS supplemented module.

5. Let S be a hereditary property and a module M be a π-projective module. Then M is s.p - semisimple if and only if M is S-GS module.

References
[1] R. Goodearl, Ring Theory, Nonsingular Rings and Modules, New York, Marcel Dekker, 1976.
[2] N. V. Dungh, D. V. Huynh, P.F. Smith and R. Wisbauer, Extending module, London, New York, Pitmen Research Notes in Mathematics Series 313, 1994.
[3] A. Tercan and C. C. Yucel, Module Theory, Extending Modules and Generalizations, Basel, Switzerland, Birkhauser, 2016.
[4] F. Kasch, Modules and Rings, London, Academic press, 1982.
[5] Sh. Asgari, A. Haghany and Y. Tolooei, "T-semisimple modules and T-semisimple Rings," comm. Algebra, vol. 41, no. 5, pp. 1882-1902, 2013.
[6] Y. Zhou, "Generalization of perfect, semiperfect, and semiregular Rings," Algebra colloquium, vol. 7, no. 3, pp. 305-318, 2000.
[7] Sh. Asgari, A. Haghany, "T-extending modules and t-Baer modules," Comm. Algebra, vol. 39, no. 5 pp. 1605-1623, 2011.
[8] N. Hamad and B. Al-Hashimi, "Some Results on the Jacobson Radicals and the M- Radicals," Basic Sciences and Engineering, vol. 11, no. 2A, pp. 573-579, 2002.
[9] M. S. Abbas, "On fully stable modules", Ph. D. dissertation, Univ. of Baghdad, Baghdad, Iraq, 1990.
[10] J. Than, S. Golan and T. head, Modules and Structure of Rings, Binghamton, New york, USA, Binghamton University, 1991.
[11] N. Orhan, D. K. Tutuncu and R. Tribak, "On Hollow Modules," Taiwanese J. Math, vol. 11, no. 2, pp. 545-568., 2007.
[12] A. C. Ozcan, A. Harmanci And P. F. Smith, "Duo Modules," Glasgow Math. J. vol. 48, no. 3 pp. 533-545, 2006.
[13] S. H. Mohamad and B. J. Muller, Continuous and Discrete Modules, Cambridge, London. Math. Soc. LNS. 174, 1990.
[14] D. Keskin, "Finite Direct Sums Of (D1) – Modules," Turkish J. Math, vol. 22, no. 1, pp.85-91, 1998.
[15] B. H. Abdelkader, "On Lifting Modules," M. S. thesis, Univ.of Baghdad, Baghdad, Iraq, 2001.
[16] G. V. Wilson, "Modules with the Direct Summand Intersection Property," Comm. Algebra, vol.14, no.1, pp.21-38, 1986.
[17] B. hamad and A. J. Al-Rikabiy, "S- generalized supplemented modules," Baghdad science journal, vol. 7, no. 1, pp. 180-190, 2010.
[18] R. Wisbauer, Foundations of Module and Ring Theory, Publishers, Gordon and Breach Science, 1991.