Abstract. Idiopathic pulmonary fibrosis (IPF) is a worldwide disease characterized by the chronic and irreversible decline of lung function. Currently, there is no drug to successfully treat the disease except for lung transplantation. Numerous studies have been devoted to the study of the fibrotic process of IPF and findings showed that transforming growth factor-β1 (TGF-β1) plays a central role in the development of IPF. TGF-β1 promotes the fibrotic process of IPF through various signaling pathways, including the Smad, MAPK, and ERK signaling pathways. There are intersections between these signaling pathways, which provide new targets for researchers to study new drugs. In addition, TGF-β1 can affect the fibrosis process of IPF by affecting oxidative stress, epigenetics and other aspects. Most of the processes involved in TGF-β1 promote IPF, but TGF-β1 can also inhibit it. This review discusses the role of TGF-β1 in IPF.

Contents

1. Introduction
2. TGF-β1-involved pathway in IPF
3. Discussion
4. Conclusion

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal and irreversible disease, which is characterized by fibroblast proliferation and excessive deposition of extracellular matrix in the lung (1,2). It was reported that the overall survival of the patients who were diagnosed with IPF was 3-5 years (3). The annual incidence of IPF is between 0.22 and 7.4 per 100,000 individuals in Europe and North America, but is lower in East Asia and South American (4). The incidence and prevalence of IPF increase with age and are higher in men (Tables I and II), which have been on the increase in recent years (1,5,6). Smoking, silica, and lampblack may be high risk factors for IPF (7). IPF can cause many symptoms such as dyspneal breathlessness, and chest discomfort, which does great harm to human and induces tremendous economic burden (8).

At present, many studies have focused on the pathogenesis mechanisms, which mainly include the Smad, MAPK, and ERK signaling pathways (9). Of these mechanisms TGF-β1 is of critical significance (10). Researchers have conducted pharmacological studies on TGF-β1 in IPF, and some new drugs targeting TGF-β1-relevant signaling pathways have been developed. Such drugs include Nimbolide (11), Tanshinone IIA (Tan IIA) (12), methylsulfonylmethane (13) and Isoliquiritigenin (ISL) (14). However, since none of these medicines can successfully treat IPF, lung transplantation remains the primary method of treatment (15).

Both basic research and clinical research have proven that TGF-β1 plays an important role in the pathogenesis of IPF (Table III). However, no review systematically summarizing and discussing the role of TGF-β1 and relevant pathways in IPF has currently been published. The aim of the present review was to summarize the studies concerning the role of TGF-β1 in the development of IPF in recent decades (16) (Fig. 1). The findings may help researchers to grasp the latest progress in the pathogenesis of IPF related to TGF-β1 and to provide novel targets and a theoretical basis for the development of IPF clinical drugs.

2. TGF-β1-involved pathway in IPF

Canonical TGF-β1/Smad signaling pathway. The Smads family comprises three subfamilies, including five receptor-activated Smads (R-Smads), one common mediator Smad (Co-Smad) and two inhibitory Smads (I-Smads). Smad6 and Smad7 are the third type of Smads known as ‘inhibitory Smads’ or ‘anti-Smads’. They are structurally different from other members of the family, and have been proven to be inhibitors of the Smad signaling pathway by disturbing the activation of R-Smads (17). Usually, TGF-β1 activates Smads through the transmembrane receptor serine/threonine kinase, successively regulating the transcription of target genes (18).
When TGF-β type I receptor kinase was activated by TGF-β1 signal, R-Smads (Smad2 and Smad3) were phosphorylated; of note is that Smad3 is more sensitive to TGF-β1 than Smad2 (19). Activated Smad2 and Smad3 form a complex, which combines with the Co-Smad (Smad4) and transfers into the nucleus to regulate the expression of target genes (20). The contribution of TGF-β1/Smad signaling pathway to IPF is mainly dependent on the following three processes: Myofibroblast differentiation, EMT/EndMT, and fibrogenesis.

TGF-β1-involved myofibroblast differentiation. TGF-β1 regulates the terminal differentiation of human lung fibroblasts (HLF) and promotes the synthesis of fibroblast extracellular matrix (21). Additionally, TGF-β1/Smad3 is the chief signaling pathway that regulates fibroblast differentiation (22,23). Transcription of α-smooth muscle actin (α-SMA), a target of myofibroblasts, was stimulated by TGF-β1 via a Smad3-, but not Smad2, dependent manner, resulting in the increased expression of α-SMA protein in human fetal lung fibroblasts (HFLF) (22). However, Deng et al (24) demonstrated that although Smad3 can be activated by TGF-β1 in HLF, the former did not affect the expression of collagen I or α-SMA. Treating fibroblasts with TGF-β1 could increase the expression of galectin-1 (Gal-1), which phosphorylated Smad2 and enhanced the nuclear retention of Smad2, promoting myofibroblast differentiation and accelerating fibrosis (25). TGF-β1 induced upregulation of miR-424 through the Smad3-dependent signaling pathway, which inhibited the expression of Slit2, an inhibitory protein on TGF-β1 profibrogenic signaling. As a result, miR-424 acts as a positive feedback regulator of the TGF-β1 signaling pathway, promoting the myofibroblast differentiation of HLF (26). Interestingly, with the treatment of miR-424 inhibitor, Smad3 phosphorylation by TGF-β1 was reduced in HLFs, indicating miR-424 as a positive feedback regulator of TGF-β1/Smad3 synergistically (26). Previous findings demonstrated TGF-β1/Smad3-induced NADPH oxidase 4 (NOX4) mediated the production of H₂O₂, which was necessary for myofibroblast differentiation of lung mesenchymal cells, providing novel insight into the therapeutic targeting in IPF (27,28). In addition, TGF-β1 was reported to accelerate lung fibrosis by stimulating the production of ROS depending on NOX-4, and the produced ROS promoted the nuclear export of histone deacetylase 4 (HDAC4) and formation of α-SMA fiber in normal human lung fibroblasts (NHLFs) (29).

Furthermore, following exposure to ROS, the expression of miR-9-5p, which inhibits the transformation from mesothelial cells to myofibroblast and reduces fibrogenesis via targeting TGF-β receptor type II (TGFBR2) and NOX4, was also upregulated, demonstrating that there may be a self-limiting homeostatic mechanism (28). Moreover, TGF-β1 can upregulate the level of Sirtuin 6 (SIRT6) protein in HFLF. The overexpression of SIRT6 inhibits TGF-β1-induced myofibroblast differentiation by suppressing TGF-β1/Smad2 and NF-κB signaling pathways (30). Inhibition of TGF-β1/Smad signal downregulated the expression of Rock1, RhoC and RhoA, demonstrating Rho kinase was a key mediator in myofibroblast differentiation induced by TGF-β1/Smad3 (31).

TGF-β1-involved EMT/EndMT. It was also reported that TGF-β1 stimulated primary human bronchial epithelial cells (HBEC) to the status of EMT in vitro mainly through Smad2/3-dependent mechanism (32). TGF-β1 induces alveolar epithelial cells (AEC) to EMT in a time- and concentration-dependent manner through Smad2 activation, and this event induced by TGF-β1 was not relevant to the ERK1/2 signaling pathway (33). In addition, TGF-β1/Smad2/3 signaling mediated the EMT induced by the high mobility group box 1 (HMGB1) released from injured lung in A549 cells (34). There was a negative feedback mechanism in the TGF-β1/Smad-involved pulmonary fibrosis. TGF-β1 upregulates the expression of CXCR7, a seven transmembrane G protein-coupled receptor in endothelial cells, in a Smad2/3-dependent pattern. Overexpression of CXCR7 impeded endothelial-to-mesenchymal transition (EndMT) and lung fibrosis induced by TGF-β1 through inhibition of the Jag1-Notch pathway (35). TGF-β1 stimulation significantly upregulated the expression of Resistin-like molecule-β (RELM-β) through the Smad2/3/4 pathway, which was reported to enhance TGF-β1-induced cell proliferation and EndMT (36). Rho kinase signal transduction activated by TGF-β1 in EMT was a positive regulator of phosphodies- terase 4 (PDE4), which promoted EMT of AEC (37).

TGF-β1-involved pulmonary fibrogenesis. The expression of peroxisome proliferator-activated receptor γ (PPARγ), a negative regulator of TGF-β1-induced fibrosis, is mainly controlled by TGF-β1. Cells lacking Smad3 showed that the down-regulation effect of TGF-β1 on PPARγ was weakened, suggesting that TGF-β1 regulates the PPARγ in a Smad3-dependent manner (38). TGF-β1 exerted a pro-fibrosis effect by regulating the expression of connective tissue growth factor (CTGF), which was attributed to activation of the TGF-β1/Smad3 signaling pathway (39). Follistatin-like protein 1 (Fst1) was a glycoprotein that plays a crucial role in promoting fibrogenesis. At the transcriptional and translational level, the expression of Fst1 was upregulated by TGF-β1 via the Smad3-c-Jun signaling pathway in mouse pulmonary fibroblasts, suggesting that TGF-β1 may contribute to the IPF through a Smad3-c-Jun/Fst1 axis (40). Huang et al (41) reported that TGF-β1/Smad3 signal inhibited the expression of long noncoding RNA fetal-lethal noncoding developmental regulatory RNA (FENDRR) which can reduce fibrogenesis and inhibit the process of pulmonary fibrosis. The TGF-β1/Smad3 signal upregulates the phosphorylation level of ERK5 and further leads to the contraction and migration of collagen gel induced by TGF-β1 (42). miR-29, a downstream target gene of TGF-β/Smad, was capable of inhibiting numerous fibrosis-related genes upregulated by TGF-β1 including CTGF, Smad3 and TGF-β1 (43). However, in fibroblasts, the expression of miR-29 was negatively regulated by TGF-β1/Smad3 signal (43-45). Similarly, Smad7, a negative regulator of TGF-β1, is suppressed by miR-182-5p which is induced by TGF-β1, resulting in the development of IPF (46). TGF-β1 activates Semaphorin (SEMA) 7A and its receptors through a Smad3-independent and Smad 2/3-independent mechanism, respectively, promoting pulmonary fibrosis (47). Activating transcription factor 4 (ATF4) was a pivotal transcriptional regulator for the metabolism of amino acid (48). TGF-β1/Smad3 signaling could increase the expression of the ATF4 through initiating the mechanistic target of rapamycin complex 1 (mTORC1) and its downstream translation initiation factor 4E binding protein 1 (4E-BP1), promoting collagen
Table I. The association between IPF incidence with age.

Studies	<50 years (%)	50-59 years (%)	60-69 years (%)	>70 years (%)	(Refs.)
Miyake	2.9%	14.7	54.9	27.5	(117)
Kim	NA	17.1	25.7	57.2	(118)

Table II. The association between IPF incidence with sex.

Studies	Male (%)	Female (%)	(Refs.)
Baumgartner	60	40	(119)
Miyake	90.2	9.8	(117)
García-Sancho Figueroa	73.2	26.8	(120)
Awadalla	47.3	42.7	(121)
Kim	75.7	24.3	(118)
Koo	70.5	29.5	(122)
Paoloacci	72.5	27.5	(123)
Table III. Targeting molecules and signaling pathways initiated by TGF-β1 in IPF.

Author, year	Cell/tissue type	Target gene	Potential signaling pathways	Biological effect	(Refs.)
Canonical TGF-β1/Smad signaling pathway					
Gu et al, 2007	Human fetal lung fibroblasts	Smad3	TGF-β1/Smad3/α-SMA	Promoting myofibroblast differentiation	(22)
Ramirez et al, 2012	Murine lung fibroblasts	Smad3	TGF-β1/Smad3/PPARγ	Promoting pulmonary fibrogenesis	(38)
Li et al, 2016	Human embryonic lung fibroblasts	Smad3	TGF-β1/Smad3/CTGF	Promoting pulmonary fibrogenesis	(39)
Huang et al, 2020	Human lung fibroblasts	Smad3	TGF-β1/Smad3/miR-424/Slit2	Promoting myofibroblast differentiation	(26)
Zheng et al, 2017	Mouse pulmonary fibroblasts	Smad3	TGF-β1/Smad3/e-C-Jun/ Fosl	Promoting fibrogenesis	(40)
Hecker et al, 2009	Human fetal lung mesenchymal cells	Smad3	TGF-β1/Smad3/NOX4/H2O2	Promoting myofibroblast differentiation	(27)
Guo et al, 2017	Normal human lung fibroblasts	Smad3	TGF-β1/Smad3/NOX4/ROS	Promoting myofibroblast differentiation	(29)
Fierro-Fernández et al, 2015	Human fetal lung fibroblasts	Smad3	TGF-β1/Smad3/NOX4/ROS/miR-9-5p/NOX4/	Attenuating myofibroblast differentiation	(28)
Huang et al, 2020	Mouse lung fibroblasts	Smad3	TGF-β1/Smad3/FENDRR	Promoting pulmonary fibrogenesis	(41)
Kadoya et al, 2019	Human lung fibroblasts	Smad3	TGF-β1/Smad3/ERK5	Promoting pulmonary fibrogenesis	(42)
Cushing et al, 2011; Xia et al, 2012	Human fetal lung fibroblasts	Smad3	TGF-β1/Smad3/miR-29	Promoting pulmonary fibrogenesis	(43)
Kang et al, 2007	Murine lung	Smad3	TGF-β1/Smad3/SEMA 7A	Promoting pulmonary fibrogenesis	(47)
Selvarajah et al, 2019	Primary human lung fibroblasts	Smad3	TGF-β1/Smad3/mTORC1/4E-BPI/ATF4	Promoting collagen biosynthesis	(49)
Jiang et al, 2018	Human endothelial cells	Smad2/3/4	TGF-β1/Smad2/3/4/RELM-β	Attenuating EndMT	(36)
Câmara and Jarai, 2010	Human bronchial epithelial cells	Smad2/3	TGF-β1/Smad2/3	Promoting EMT	(32)
Li et al, 2015	Human alveolar epithelial cell (A549)	Smad2/3	TGF-β1/Smad2/3	Promoting EMT	(34)
Guan and Zhou, 2017	Mice lung endothelial cells	Smad2/3	TGF-β1/Smad2/3/CXCR7/TGF-β1/Jag1-Notch	Attenuating EndMT	(35)
Chen et al, 2020	Human embryonic lung fibroblasts	Smad2/3	TGF-β1/Smad2/3/miR-182-5p/Smad7	Promoting pulmonary fibrogenesis	(46)
Kasai et al, 2005	Human alveolar epithelial cell (A549)	Smad2	TGF-β1/Smad2/3/Smad7	Promoting EMT	(33)
Ji et al, 2014	Human embryonic lung fibroblasts	Smad2	TGF-β1/Smad2/3/RhoA	Promoting myofibroblast differentiation	(31)
PI3K relevant signaling pathway		PI3K	TGF-β1/PI3K/CTGF	Promoting EMT and fibrogenesis	(56)
Shi et al, 2016	Human alveolar epithelial cells	PI3K	TGF-β1/PI3K/JNK/ACT/TF	Promoting pulmonary fibrogenesis	(57)
Wygrecka et al, 2012	Human lung fibroblasts	PI3K	TGF-β1/PI3K/JNK/ACT/TF	Promoting pulmonary fibrogenesis	
MAPK relevant signaling pathway		JNK-p38	TGF-β1/JNK-p38	Promoting EMT	(63)
Chen et al, 2013	Human alveolar epithelial cell (A549)	JNK-p38	TGF-β1/JNK-p38	Promoting EMT	(64)
Khalil et al, 2005	Human alveolar epithelial cell (A549)	JNK-p38	TGF-β1/JNK-p38	Promoting EMT	(65)
Jablonska et al, 2010	Human lung fibroblasts	JNK	TGF-β1/JNK/Smad3/FXII	Promoting pulmonary fibrogenesis	(62)
Table III. Continued.

Author, year	Cell/tissue type	Target gene	Potential signaling pathways	Biological effect (Refs.)
MAPK relevant signaling pathway				
Hashimoto et al, 2001	Human lung fibroblasts	JNK	TGF-β1/JNK	Promoting myofibroblast differentiation (65)
Cui et al, 2014	Human lung fibroblasts	JNK	TGF-β1/JNK/VEGF-D	Promoting pulmonary fibrogenesis (66)
p38 signaling pathway				
Kulasekaran et al, 2009	Human lung fibroblasts	p38	TGF-β1/p38/PI3K/AKT	Attenuates apoptosis (68)
Deng et al, 2015	Human lung fibroblasts	p38	TGF-β1/p38/α-SMA	Promoting pulmonary fibrogenesis (24)
García-Alvarez et al, 2006	Human lung fibroblasts	p38	TGF-β1/p38/TIMP3/VEGF	Promoting pulmonary fibrogenesis (69)
Gu et al, 2014	Human small airway epithelial cells	p38	TGF-β1/p38/C1P5s/complement	Promoting epithelial injury in IPF (70)
ERK signaling pathway				
Caraci et al, 2008	Human lung fibroblasts	ERK1/2	TGF-β1/ERK1/2/GSK-3β/β-catenin	Promoting myofibroblast differentiation (72)
Ghatak et al, 2017	Human lung fibroblasts	ERK	TGFβ1/ERK/EGR1-AP-1/CD44v6	Promoting myofibroblast differentiation (73)
Wnt/β-catenin relevant signaling pathway				
Lu et al, 2019	Lung resident mesenchymal stem cells	β-catenin	TGF-β1/β-catenin	Promoting myofibroblast differentiation (79)
Zhou et al, 2012	Human alveolar epithelial cell	β-catenin	TGF-β1/β-catenin/CBP	Promoting EMT (83)
Wang et al, 2015	Human embryonic lung fibroblasts	Wnt3a/β-catenin	TGF-β1/Wnt3a/β-catenin/miR-29	Promoting cell proliferation (84)
Other signaling pathway				
Arsalane et al, 1997	Human alveolar epithelial cell (A549)	γ-GCS	TGF-β/γ-GCS/ROS	Promoting pulmonary fibrogenesis (101)
Jardine et al, 2002				
Boustan et al, 1997				
Yu et al, 2020	Mouse alveolar epithelial cells	TRB3	TGF-β/TRB3/Wnt/β-catenin	Promoting EMT (97)
Yamasaki et al, 2008	Murine lung epithelial cells	TNF-α	TGF-β/TNF-α/p21	Attenuating fibrosis, and alveolar remodeling (88)
Zhang et al, 2019	Human fetal lung fibroblasts	SIRT6	TGF-β1/SIRT6/TGF-β1/Smad2	Attenuating myofibroblast differentiation (30)
Kang et al, 2007	Murine lung	SEMA 7A	TGF-β1/SEMA 7A/PI3K/PKB/AKT	Promoting pulmonary fibrogenesis (47)
Kolosionek et al, 2009	Human alveolar epithelial cells	Rho	TGF-β1/Rho/PDE4	Promoting EMT (37)
Wei et al, 2019	Human lung fibroblasts	miR-133a	TGF-β1/miR-133a/CTGF-Col1a1	Attenuating myofibroblast differentiation and pulmonary fibrosis (87)
Lu et al, 2002	Alveolar interstitial cells	Integrin α8β1	TGF-β1-LAP/Integrin α8β1/ERK	Promoting cell adhesion (75)
Lim et al, 2014	Fibroblast cell lines	Gal-1	TGF-β1/Gal-1/Smad2	Promoting myofibroblast differentiation (25)
COL1 and α-SMA in fibroblasts, and it is a potential activation target of TGF-β1 in lung fibroblasts (73). The induction of CD44v6 by TGF-β1 not only depends on ERK-induced early growth response-1 (EGR1) signaling, but also requires abundant AP-1 involvement, suggesting that there is a TGFβ1-ERK-EGR1/AP-1-CD44v6 axis (73). TGF-β1 can induce the expression of FGF-2 and its release from type II AEC. In addition, the FGF-2 signaling is responsible for the fibroblast proliferation and fibrotic activation through the ERK pathway (74). TGF-β1 binds non-covalently to the latency-related peptide (LAP) to form a complex. Consequently, the interaction of integrin α8β1 and LAP-TGF-β1 complex induces FAK and ERK phosphorylation and promotes cell proliferation (75) (Fig. 4).

Wnt/β-catenin relevant signaling pathway. The Wnt/β-catenin pathway is the canonical Wnt signaling pathway, also known as the ‘β-catenin-dependent’ Wnt pathway. Wnt/β-catenin has been proven to play an important role in body development and growth, tumor, cardiovascular disease, musculoskeletal diseases, and also respiratory disease (76-78). In normal conditions, the glycogen synthase kinase-3β (GSK-3β) combines with the β-catenin, axis inhibition protein (Axin) and adenomatous polyposis coli (APC) to form a complex. When the Wnt/β-catenin was activated, the complex degraded, while β-catenin was not degraded and translocated into the nucleus (77).

Increasing evidence suggested that Wnt/β-catenin was involved in the TGF-β1-relevant IPF. TGF-β1 initiated the Wnt/β-catenin cascade via upregulating β-catenin and GSK-3β, promoting the fibrotic differentiation of lung resident mesenchymal stem cells (LR-MSCs) (79). In addition, it was found that, Wnt/β-catenin was required for the initiation of Smad2/3 induced by TGF-β1, suggesting that there may be a crosstalk between the two mechanisms in the myofibroblast differentiation (80). GSK-3 signaling decreases the phosphorylation of cAMP-response element binding protein (CREB) and attenuates its antagonism function on TGF-β/Smad signaling, promoting the myofibroblast differentiation in HLF (81). However, Liu et al. suggested that in the transition of human normal skin fibroblast to myofibroblast induced by TGF-β1, Wnt/β-catenin played the role of negative regulator (82). TGF-β1 was capable of inducing the accumulation of β-catenin in the nuclear, facilitating EMT in a CREB-binding protein (CBP)-depending pattern in AEC (83). This revealed a potential cascade of TGF-β1/β-catenin/CBP. miR-29 negatively regulated the proliferation of IMR-90 cells induced by TGF-β1, but TGF-β1 inhibited the expression of all three members of the miR-29 family via Wnt3a/β-catenin pathway (84) (Fig. 5).

Feedback regulation mechanism. Feedback regulation is a crucial aspect in molecule cascades. Both positive and negative feedback are revealed in TGF-β1-involved pathway in IPF.

TGF-β1 strongly downregulated Cub domain-containing protein 1 (CDCP1), which promoted myofibroblast differentiation through inhibition of the potential negative feedback effect of CDCP1 expression on TGF-β1 stimulation (85). Similarly, TGF-β1 activated the autocrine mechanism of angiotensin (ANG) and angiotensinogen (AGT) peptide, which upregulated the expression of TGF-β1 to form an ‘autocrine loop’, promoting the development of IPF (86). miR-133a was...
reported to attenuate the differentiation of myofibroblasts by targeting many components of the TGF-β1 pro-fibrosis pathway, including α-SMA, CTGF and collagen. There seems to be a negative-feedback loop in the TGF-β1 pro-fibrogenesis pathway, because TGF-β1 upregulates the expression of miR-133a (87). Additionally, p21, a key regulator of apoptosis induced by TGF-β1 through tumor necrosis factor-α (TNF-α) signaling pathway, negatively regulates TNF-α expression induced by TGF-β1, participating in the fibrosis and alveolar remodeling induced by TGF-β1 (88). TNF-α could enhance the process of EMT induced by TGF-β1 in A549 cells through combination with TGF-β1 (89). However, TGF-β1 was also reported to inhibit the release of TNF-α from mast cells (90). TGF-β1 stimulates the EGFR ligand, amphiregulin, which regulates the classical and non-classical TGF-β1 signaling pathway through the activation of EGFR (91) (Fig. 6).

Other signaling pathways. Besides the signaling pathways discussed above, other molecules cascades were also revealed to be involved in the TGF-β1 relevant mechanisms of IPF. The proliferation of fibroblasts is mainly mediated by platelet-derived growth factor (PDGF) isoforms, whose activity...
was potentially regulated by TGF-β1 (92). It was reported that TGF-β1 downregulated the expression of PDGF-α receptor (PDGF-Rα) transcript. However, TGF-β1 facilitated the transcription of PDGF-Rα in HLF, suggesting that TGF-β1 may contribute to IPF through a PDGF-Rα-involved complex network (92). It was reported that the IL-11 secreted by fibroblasts in the lungs of patients with IPF was significantly upregulated (93), and results demonstrated that TGF-β1 significantly increases IL-11 receptor expression in mouse fibroblasts (94), suggesting that IL-11 may be an important mediator of TGF-β1 involved IPF. Fas pathway-mediated apoptosis of lung epithelial cells is involved in the pathogenesis of pulmonary fibrosis (95). In lung tissues of patients with IPF, Fas and FasL-induced apoptosis occurs in AEC and infiltrated inflammatory cells. TGF-β1 enhances the Fas-mediated pulmonary epithelial cell apoptosis through...
caspase-3, resulting in lung injury and pulmonary fibrosis (96). TGF-β1 induces the expression of exogenous tribbles homolog 3 (TRB3), which stimulates EMT and promotes the onset of IPF. In addition, TRB3 may participate in the regulation of EMT in MLE-12 cells induced by TGF-β1 through the Wnt/β-catenin signaling pathway (97). Insulin-like growth factor-1 (IGF-1) can co-operate with TGF-β1 to enhance the proliferation of lung fibroblast (98).

Currently, findings have shown that TGF-β1 may contribute to the development of IPF through epigenetic regulation. In fibroblasts from patients with IPF, TGF-β1 induces the upregulation of DNA methyltransferase (DNMT3a) and tetmethylcytosine dioxygenase 3 (TET3) (99). TGF-β1 inhibits Caveolin (Cav)-1 gene via histone modifications, contributing to fibroblast proliferation and apoptosis resistance (100).

TGF-β1 may promote IPF by reducing the production of antioxidant substance and inducing oxidative stress. TGF-β1 disturbs the homeostasis of the messenger RNA (mRNA) of the γ-glutamylcysteine synthase (γ-GCS) gene and downregulates the transcription of the gene, inducing the production of ROS in epithelial cells (101,102). It was also reported that TGF-β1 reduced the production of glutathione by downregulating precursor amino acid transport and synthesis rate (103). These results are consistent with previous reports of Guo et al (29) and Hecker et al (27) (Fig. 7).

3. Discussion

IPF is an irreversible lung disease, and there is no exact cause (1). In recent years, the incidence of IPF has gradually increased. There are numerous reasons for the increasing incidence of IPF. Firstly, IPF susceptibility is closely related to aging, which may lead to telomeres shortening and mitochondrial dysfunction. At present, the aging population is on the rise, resulting in an increasing incidence of IPF (104). Secondly, the development of medical technology has led to easy, convenient, and precise diagnosis of IPF, resulting in increasing incidence of IPF (105). Additionally, accumulating exposures to numerous risk factors such as smoking, occupational dust, drug stimulation, bacterial and virus infection, also play a role (106). The
increased incidence of IPF has had a significant impact on the economic development of human society and the physical and mental health of people (4). The drugs currently studied can only delay the progression of the disease and maintain lung function but cannot cure the disease (107). In the pathogenesis of IPF, there are many mechanisms, of which TGF-β1 plays an important role (16). The IPF incidence of male was higher than that of female; this may be because of exposure to smoking, which is an acknowledged risk factor (106). Regarding the association between the IPF incidence and age, as mentioned previously, IPF is an age‑associated disorder (1). Accumulated environmental exposures and cellular functional alteration with aging, for example, telomeres shortening, would facilitate the injury of lung (104). Although lung transplantation is the single most effective way to treat IPF, age is an influencing factor as older patients are less tolerant to surgery. According to the current study, age has become a limiting condition for lung transplantation in IPF patients, and the survival rate after lung transplantation in elderly patients older than 65 years is relatively low (108). Therefore, it is of great significance to develop effective early diagnostic methods and innovative therapeutic strategies, such as applications of mesenchymal stem cells (109).

TGF-β1 activates Smads through the transmembrane receptor serine/threonine kinase, thereby continuously regulating the transcription of target genes (10). The TGF-β1/Smad signaling pathway functions in IPF mainly through the following three processes: Myofibroblast differentiation, EMT/EndMT and fibrogenesis (111). TGF-β1 activates PI3K and protein kinase B (PKB)/AKT through a SEMA 7A-dependent mechanism, thereby inducing the formation of EMT and ECM in lung epithelial cells (47). TGF-β1 mediates the production of FXII through the JNK/Smad3 signaling pathway (62). It also attenuates the apoptosis of fibroblasts by inducing the production of p38-dependent growth factor, which continuously activates PI3K/AKT. At the same time, it also initiates the Wnt/β-catenin cascade by upregulating β-catenin and GSK-3β (79). TGF-β1, not only regulates various mechanism pathways, but also affects IPF by regulating epigenetics, oxidative stress, and miRNA (112-115). Some research suggested that Smad3 activation has no effect on collagen I or α-SMA (24). However, Liu et al suggested that in the transition of human normal skin fibroblast to myofibroblast induced by TGF-β1, Wnt/β-catenin played a role of negative regulator, but had different functions in the lung, thereby promoting the hypothesis that Wnt/β-catenin is tissue-specific (82).

There are crosstalks and self-regulating loop in different pathways involved in TGF-β1-induced IPF. The Rho/Rock and Smad signaling pathways may cross talk in lung fibroblast differentiation (31). The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. There may be a complex network between the Rho/Rock pathway and Smad signaling in the process of lung fibroblasts to myofibroblasts induced by TGF-β1. TGF-β1 mainly promotes IPF, but there are also some self-regulating mechanisms that can induce miR-133a expression which acts as an antifibrosis regulator of TGF-β1, which induces IPF (87). Activation of the MAPK family is mediated by TGF-β1, which affects Smad signaling. ERK1/2 activation directly phosphorylates and activates p90RSK, which is a set of serine/threonine kinases that play a key role in the MAPK signaling pathway (116).

However, some mechanisms and pathways involved in TGF-β1 have not been clarified; thus, greater efforts to identify these should be made with regard to TGF-β1. Although some pathways have been proven, fewer drugs are actually converted into clinical applications. As for further studies on TGF-β1 in IPF, the focus should be on the intersection of various pathways, to facilitate the development of more effective drugs. At the same time, in addition to study on the various signal pathways involved in TGF-β1, an in-depth study of its role in epigenetics, and oxidative stress should also be conducted. After all, the purpose of research is to serve the clinic and solve the problem of clinical IPF treatment.
4. Conclusion
TGF-β1 plays a crucial role in the development of IPF as it regulates the pathomechanism of IPF through a number of signaling pathways, including Smad, MAPK, Wnt, and ERK pathways. The effect of TGF-β1 on IPF is one of stimulation. Nevertheless, there are some self-limiting mechanisms. Furthermore, some TGF-β1-relevant mechanisms in IPF remain to be elucidated.

Acknowledgements
Not applicable.

Funding
This review was funded by the National Natural Science Foundation of China (grant no. 81673120).

Availability of data and materials
Not applicable.

Authors’ contributions
ZY substantially contributed to the conception and design of the work and wrote the manuscript. YH revised the manuscript critically for important intellectual content. Both authors approved the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H and Wells AU: Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3: 1707-17, 2017.
2. George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Hutchinson J, Fogarty A, Hubbard R and McKeever T: Global epidemiology and incidence of interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med 8: 925-934, 2020.
3. Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP et al: TGF-β1 driven epithelial-to-mesenchymal transition via the transforming growth factor-beta1/SMAD2/3 pathway in rats exposed to both γ-radiation and Bisphenol-A. Toxicon 1-10, 2020.
4. Hon PB, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, Nakamura T, Yamaguchi H and Kawasaki S: Smad4 inhibitor inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 52: 810-820, 2020.
5. Sgalla G, Lowene B, Calvello M, Ori M, Varone F and Richeldi L: Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir Med 32: 2018.
6. Flanders KC: TGF-β1 as a mediator of the fibrotic response. Int J Exp Pathol 85: 47-64, 2004.
7. Zheng R, Xiong Q, Zuo B, Jiang S, Li F, Lei M, Deng C and Xiong Y: Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biol Toxicol 26: 548-556, 2010.
8. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME: Transforming growth factor-beta1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275: 36563-36568, 2000.
9. Flanders KC: Smad3 as a mediator of the fibrotic response. In: M symptoms and fibrosis. Cold Spring Harb Perspect Biol 10: a022293, 2018.
10. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME: Transforming growth factor-beta1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275: 36563-36568, 2000.
11. Prashanth G, Murali B, Vennila M, Shameen C, Srinivasan R, Srinivasan R, Srinivasan R, Srinivasan R, Srinivasan R: TGF-β1 generates the fibrotic response in the lung. Int J Exp Pathol 85: 47-64, 2004.
12. Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP et al: TGF-β1 driven epithelial-to-mesenchymal transition via the transforming growth factor-beta1/SMAD2/3 pathway in rats exposed to both γ-radiation and Bisphenol-A. Toxicon 1-10, 2020.
13. Hon PB, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, Nakamura T, Yamaguchi H and Kawasaki S: Smad4 inhibitor inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 52: 810-820, 2020.
14. Sgalla G, Lowene B, Calvello M, Ori M, Varone F and Richeldi L: Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir Med 32: 2018.
15. Kim KK, Sheppard D and Chapman HA: TGF-β1 signaling and tissue fibrosis. Cold Spr Harb Perspect Biol 10: a022293, 2018.
16. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME: Transforming growth factor-beta1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275: 36563-36568, 2000.
17. Flanders KC: TGF-β1 as a mediator of the fibrotic response. Int J Exp Pathol 85: 47-64, 2004.
18. Zheng R, Xiong Q, Zuo B, Jiang S, Li F, Lei M, Deng C and Xiong Y: Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biol Toxicol 26: 548-556, 2010.
19. Roberts AB, Pick E, Bottinger EP, Ashcroft G, Mitchell JB and Flanders KC: Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest 120 (1 Suppl): 43S-47S, 2001.
20. Evans RA, Tian YC, Steadman R and Phillips AO: TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res 282: 392-400, 2003.
21. Gu L, Zhu YJ, Yang X, Guo ZJ, Xie W and Tian XL: Effect of TGF-beta1 signalng pathway on lung myofibroblast differentiation. Acta Pharmacol Sin 28: 382-391, 2007.
22. Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, et al: Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun 339: 290-295, 2006.
23. Deng X, Jin J, Li Y, Gu W, Liu M and Zhou L: Platelet-derived growth factor and transforming growth factor beta1 Regulate fibroblasts. Biochem Biophys Res Commun 339: 290-295, 2006.
24. Peng X, Jin K, Li Y, Gu W, Liu M and Zhou L: Platelet-derived growth factor and transforming growth factor beta1 Regulate fibroblasts. Biochem Biophys Res Commun 339: 290-295, 2006.
25. Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee SL, Kim DS, King SS, Kang MA, Han Y and Song JY: Induction of galectin-1 by TGF-beta1 accelerates fibrosis through enhancing nuclear retenion of Smad2. Exp Cell Res 326: 125-135, 2014.
26. Huang Y, Xie Y, Abel PW, Wei P, Plowman J, Toews ML, Strah H, Siddique A, Bailey KL and Tu Y: TGF-β1-induced miR-424 regulates mouse lung fibroblast differentiation. Cell Physiol Biochem 36: 937-946, 2015.
27. Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee SL, Kim DS, King SS, Kang MA, Han Y and Song JY: Induction of galectin-1 by TGF-beta1 accelerates fibrosis through enhancing nuclear retenion of Smad2. Exp Cell Res 326: 125-135, 2014.
28. Nakanishi Y, Dadmun M, Salerno G, lano J, Liu M and Zhou L: Platelet-derived growth factor and transforming growth factor beta1 Regulate fibroblasts. Biochem Biophys Res Commun 339: 290-295, 2006.
29. Becker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ and Thannickal VJ: NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15: 1077-1081, 2009.
30. Fierro-Fernández M, Busnadelío O, Sandoval D, Espinoza-Diez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML and Lamas S: miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 16: 1358-1377, 2015.
29. Guo W, Saito S, Sanchez CG, Zhuang Y, Gongora Rosero RE, Shan B, Luo F and Lasky JA: TGF-β1 stimulates HDAC4 nucleus-to-cyttoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 312: L1396-L144, 2017.

30. Zhang Q, Tu W, Tian K, Han L, Wang Q, Chen P and Zhou X: Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-xB signaling pathways in human fetal lung fibroblasts. J Cell Biochem 120: 93-104, 2019.

31. Ji H, Tang H, Lin H, Mao J, Gao L, Liu J and Wu T: Rheo/Rock cross-talks with transforming growth factor-β1/Smad pathway participates in lung fibroblast/myofibroblast differentiation. Biomed Rep 2: 787-792, 2014.

32. Câmara J and Jarai G: Epithelial-mesenchymal transition in primary bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TGF-α. Fibrogenesis Tissue Repair 3: 2, 2010.

33. Kasai H, Allen JT, Mason RM, Kamimura T and Zhang Z: TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6: 56, 2005.

34. Li LC, Li DL, Xu L, Mo XT, Cui WH, Zhao P, Zhou WC, Gao J and Li J: High mobility group box 1 mediates epithelial-to-mesenchymal transition in pulmonary fibrosis involving transforming growth factor-β1/Smad2/3 signaling. J Pharmacol Exp Ther 354: 302-309, 2015.

35. Guan S and Zhou J: CXCR7 attenuates the TGF-β-induced endothelial-to-mesenchymal transition and pulmonary fibrosis. Mol Biosyst 13: 2116-2124, 2017.

36. Jiang Y, Zhou X, Hu R and Dai A: TGF-β1-induced SMAD2/3 signaling pathways in human lung fibroblasts. Acta Biochim Biophys Sin (Shanghai) 45: 287-294, 2011.

37. Kang HR, Lee CG, Homer RJ and Elias JA: Semaphorin 7A TGFβ1 controls PPAR γ metabolite 5-methoxytryptophan inhibits pulmonary fibrosis by downregulating the TGF-β/Smad3 and PI3K/AKT signaling pathway. Life Sci 260: 118399, 2020.

38. Ramirez A, Ballard EN and Roman J: TGFβ1 controls PPAR γ expression, transcriptional potential, and activity, in part, through Smad3 signaling in murine lung fibroblasts. PPAR Res 2012: 375876, 2012.

39. Li HH, Cai Q, Wang YP, Liu HR and Huang M: The role of transforming growth factor-β/Smad3 in idiopathic pulmonary fibrosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 34: 484-488, 2016 (In Chinese).

40. Zheng X, Qi C, Zhang S, Fang Y and Ning W: TGF-β1 induces Ets transcription factor and JUN-cJun pathway in lung fibroblasts. Am J Physical Lung Cell Mol Physiol 313: L240-L251, 2017.

41. Huang C, Liang Y, Zeng X, Yang X, Xu D, Gou X, Sathiaseelan R, Cheng L, Li Y, Auyab EA, et al: Targeted inhibition of P3K kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med 12: eaay3724, 2020.

42. Xu H, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y and He Z: PI3K-Akt-mTOR/FKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest 100: 801-811, 2020.

43. Graves DT and Milovanova TN: Mucosal immunity and the FOXL1 transcription factors. Front Immunol 10: 2530, 2019.

44. Shi L, Dong N, Fang X and Wang X: Regulatory mechanisms of TGF-beta1-induced fibrogenesis of human alveolar epithelial cells. J Cell Mol Med 20: 2183-2193, 2016.

45. Wgreccrea M, Zakrzewicz D, Taborski B, Didiasova M, Kwapiszewksa G, Preissner KT and Markart P: TGF-β1 induces tissue factor expression in human lung fibroblasts in a P3K/JNK-Akt-dependent and AP-1-dependent manner. Am J Respir Cell Mol Biol 62: 614-627, 2020.

46. Hettiarachchi SU, Li YH, Mo YS, Zhang F, Puchulu-Campanella E, Davidson LD, Srinivasarao M, Tsyoi K, Liang X, Auyab EA, et al: TGF-β1 IN IDIOPATHIC PULMONARY FIBROSIS

47. Kang HR, Lee CG, Homer RJ and Elias JA: Semaphorin 7A TGFβ1 controls PPAR γ expression, transcriptional potential, and activity, in part, through Smad3 signaling in murine lung fibroblasts. PPAR Res 2012: 375876, 2012.

48. Bengal E, Aviram S and Hayek T: p38 MAPK in glucose metabolism of skeletal muscle: Beneficial or harmful? Int J Mol Sci 21: 6480, 2020.

49. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signaling pathway and tumorigenesis. Exp Ther Med 19: 1997-2007, 2020.

50. He X, Wang C, Wang H, Li L and Wang C: The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci 11: 952, 2020.

51. Magnelli L, Schiavone N, Staderini F, Biagioni A and Papucci L: MAP kinases pathways in gastric cancer. Int J Mol Sci 21: 2893, 2020.

52. Jablonska E, Markart P, Zakrzewicz D, Preissner KT and Wgreccrea M: Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. J Biol Chem 285: 11638-11651, 2010.

53. Chen H, Zhou XL, Shi YL and Yang J: Roles of p38 MAPK and JNK in TGF-β1-induced human alveolar epithelial to mesenchymal transition. Arch Med Res 44: 93-98, 2013.

54. Khalil N, Xu YD, O’Connor R and Duronio V: Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem 280: 43000-43009, 2005.

55. Hashimoto S, Son Y, Yakeshi T, Matsumoto K, Maruoka S and Horie T: Transforming growth factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a-c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med 163: 152-157, 2001.

56. Cui Y, Osorio JC, Risquez C, Wang H, Shi Y, Gochuico BR, Morse D, Rosas IO and El-Chemaly S: Transforming growth factor-β1 downregulates vascular endothelial growth factor expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Mol Med 20: 120-134, 2014.

57. van der Velden JL, Wagner DE, Lahue KG, Abdalla ST, Lam YW, Weiss DJ and Janssen-Heininger YMW: TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cell fibroblasts promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner. Am J Physiol Lung Cell Mol Physiol 314: L984-L997, 2018.
104. Cho SJ and Stout-Delgado HW: Aging and lung disease. Annu Rev Physiol 82: 433-459, 2020.

105. Wakwaya Y and Brown KK: Idiopathic pulmonary fibrosis: Epidemiology, diagnosis and outcomes. Am J Med Sci 357: 359-369, 2019.

106. Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, Hopkins P, Hoy RF, Klese S, Moodley Y, et al: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: Case-control study. Thorax 75: 864-869, 2020.

107. Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V and Kreuter M: The therapy of idiopathic pulmonary fibrosis: What is next? Eur Respir Rev 28: 190021, 2019.

108. Amor MS, Rosengarten D, Shitenberg D, Pertzov B, Shostak Y and Kramer MR: Lung transplantation in idiopathic pulmonary fibrosis: Risk factors and outcome. Isr Med Assoc J 22: 741-746, 2020.

109. Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol 9: 639657, 2021.

110. Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev 19: 2783-2810, 2005.

111. Chang X, Tian M, Zhang Q, Gao J, Li S and Sun Y: Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor β1/smads signaling pathway in A549 cells. Environ Toxicol 35: 1308-1317, 2020.

112. Rosell-García T, Palomo-Álvarez O and Rodríguez-Pascual F: A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor β1. J Biol Chem 294: 14308-14318, 2019.

113. Ko J, Mills T, Huang J, Chen NY, Mertens TCJ, Collum SD, Lee G, Xiang Y, Han L, Zhou Y, et al: Transforming growth factor β1 alters the 3'-UTR of mRNA to promote lung fibrosis. J Biol Chem 294: 15781-15794, 2019.

114. Senavirathna LK, Huang C, Pushparaj S, Xu D and Liu L: Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep 8: e14343, 2020.

115. Neveu WA, Mills ST, Staitieh BS and Sueblinvong V: TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol 309: C616-C626, 2015.

116. Kim S, Han JH, Kim S, Lee H, Kim JR, Lim JH and Woo CH: p90RSK inhibition ameliorates TGF-β1 signaling and pulmonary fibrosis by inhibiting Smad3 transcriptional activity. Cell Physiol Biochem 54: 195-210, 2020.

117. Miyake Y, Sasaki S, Yokoyama T, Chida K, Azuma A, Suda T, Kudoh S, Sakamoto N, Okamoto K, Kobashi G, et al: Occupational and environmental factors and idiopathic pulmonary fibrosis in Japan. Ann Occup Hyg 49: 259-265, 2005.

118. Kim SY, Kang DM, Lee HK, Kim KH and Choi J: Occupational and environmental risk factors for chronic fibrosing idiopathic interstitial pneumonia in South Korea. J Occup Environ Med 59: e221-e226, 2017.

119. Baumgartner KB, Samet JM, Coutsas DB, Stidley CA, Hunt WC, Colby TV and Waldron JA: Occupational and environmental risk factors for idiopathic pulmonary fibrosis: A multicenter case-control study. Collaborating centers. Am J Epidemiol 152: 307-315, 2000.

120. García-Sancho Figueroa MC, Carrillo G, Pérez-Padilla R, Fernández-Plata MR, Buendía-Roldán I, Vargas MH and Selman M: Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med 104: 305-309, 2010.

121. Awadalla NJ, Hegazy A, Elmetwally RA and Wahby I: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Egypt: A multicenter case-control study. Int J Occup Environ Med 3: 107-116, 2012.

122. Koo JW, Myong JP, Yoon HK, Rhee CK, Kim Y, Kim JS, Jo BS, Cho Y, Byun J, Choi M, et al: Occupational exposure and idiopathic pulmonary fibrosis: A multicenter case-control study in Korea. Int J Tuberc Lung Dis 21: 107-112, 2017.

123. Paolocci G, Folletti I, Torén K, Ekström M, Dell'Omo M, Muzi G and Murgia N: Occupational risk factors for idiopathic pulmonary fibrosis in Southern Europe: A case-control study. BMC Pulm Med 18: 75, 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.