On Fitness Landscape Analysis of Permutation Problems: From Distance Metrics to Mutation Operator Selection

Vincent A. Cicirello

Accepted: 8 August 2022 / Published online: 8 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we explore the theory and expand upon the practice of fitness landscape analysis for optimization problems over the space of permutations. Many of the computational and analytical tools for fitness landscape analysis, such as fitness distance correlation, require identifying a distance metric for measuring the similarity of different solutions to the problem. We begin with a survey of the available distance metrics for permutations, and then use principal component analysis to classify these metrics. The result of this analysis aligns with existing classifications of permutation problem types produced through less formal means, including the A-permutation, R-permutation, and P-permutation types, which classifies problems by whether absolute position of permutation elements, relative positions of elements, or general precedence of pairs of elements, is the dominant influence over solution fitness. Additionally, the formal analysis identifies subtypes within these problem categories. We see that the classification can assist in identifying appropriate metrics based on optimization problem feature for use in fitness landscape analysis. Using optimization problems of each class, we also demonstrate how the classification scheme can subsequently inform the choice of mutation operator within an evolutionary algorithm. From this, we present a classification of a variety of mutation operators as a counterpart to that of the metrics. Our implementations of the permutation metrics, permutation mutation operators, and associated evolutionary algorithm, are available in a pair of open source Java libraries. All of the code necessary to recreate our analysis and experimental results are also available as open source.

Keywords Fitness landscape analysis · Permutation distance · Combinatorial optimization · Fitness distance correlation · Evolutionary algorithms · Permutation mutation operators

Mathematics subject classification (2010) 68W50 · 05A05 · 90C27 · 62H20

1 Introduction
Analyses of evolutionary algorithms (EA) and other forms of optimization often employ a fitness landscape [21], which is a spatial arrangement of the space of all possible solutions to the problem such that structurally “similar” solutions are located near to each other. To be most relevant to the algorithm under analysis, nearby solutions should correspond with solutions reachable in a small number of applications of the search operators. Thus, an effective fitness landscape analysis requires identifying an appropriate measure of distance for the combination of problem and operators. There exists much work on fitness landscape analysis, including for permutation landscapes [5, 11, 13, 22, 26, 28, 29]. This current article is an extended version of our prior conference paper on the topic [8].

The available fitness landscape analysis tools include fitness distance correlation (FDC) [15], Pearson correlation between solution fitness and distance to the nearest optimal solution, as well as search landscape calculus [6], which examines the local rate of change of fitness. FDC, search landscape calculus, and other related techniques require distance metrics. The features of a permutation, or other structure, that are important in determining similarity or distance is often problem dependent. For the Traveling Salesperson Problem (TSP), the permutation represents a set of edges between adjacent pairs of cities, and is thus rotationally invariant since rotation doesn’t change element adjacency. Permutations can also represent one-to-one mappings...
between sets, such as in the largest common subgraph problem, where one seeks the largest subgraph of graph G_1 that is isomorphic to a subgraph of G_2. You can represent a mapping by ordering the vertexes of G_1, and using a permutation of the vertexes of G_2, such that vertex i of G_2 in permutation index j corresponds to mapping vertex i of G_2 to vertex j of G_1. In this case, absolute element position is most important to fitness. Campos et al. [3] categorized permutation problems into two types: R-permutation, such as the TSP, where relative positions (i.e., adjacency implies edges) are important; and A-permutation, such as mapping problems, where absolute positions have greatest effect on fitness. Cicirello [6] previously added a third type, P-permutation, where general element precedences most directly impact fitness (e.g., element w occurs prior to elements x, y, and z, but not necessarily adjacent to any of them). Many scheduling problems are this type (e.g., a job may be delayed if jobs with long process times are anywhere prior to it in the schedule).

We survey permutation distances in Section 2, and then formally identify groups of related permutation metrics using principal component analysis (PCA) in Sections 3 and 4. The first three principal components correspond to the three problem classes defined above; and the next few identify new subtypes. A classification of metrics aligned with the existing classification of problems is a desirable property. For example, if one requires a metric relevant for analyzing the fitness landscape of a problem within a known problem class, then the distance classification can directly lead to the most relevant metrics. In Section 5, we provide a set of fitness landscapes corresponding to the identified classes of permutation metric. For each landscape and metric, we compute FDC as an example application of the classification scheme. We implement the PCA, as well as our FDC examples, using JavaPermutationTools, an open source library of permutation distance metrics [7]. In Section 6, we apply the classification to choosing a mutation operator for use in an EA, and derive a classification of a wide variety of permutation mutation operators. The experiments use the EA implementation of the open source Chips-n-Salsa library [9]. The code to replicate the experiments and analysis is also available: https://github.com/cicirello/MONE2022-experiments. We wrap up with a discussion in Section 7.

2 Permutation distance

Table 1 summarizes the permutation distances used in the analysis, including runtime, and metric status. The n in runtimes and equations is permutation length, $p(i)$ refers to the element at index i in permutation p, $p^{-1}(e)$ refers to the index of element e in p. We use 1-based indexing in equations (index of first position is 1). Subscripts refer to different permutations. Thus, $p_1(i)$ refers to the element in position i of permutation p_1.

Distance	Runtime	Metric?
Edit	$O(n^2)$	yes
Exact match	$O(n)$	yes
Interchange	$O(n)$	yes
Acyclic edge	$O(n)$	pseudo
Cyclic edge	$O(n)$	pseudo
R-type	$O(n)$	yes
Cyclic r-type	$O(n)$	pseudo
Kendall tau	$O(n \log n)$	yes
Reinsertion	$O(n \log n)$	yes
Deviation (dev)	$O(n)$	yes
Normalized dev.	$O(n)$	yes
Squared dev.	$O(n)$	yes
Lee	$O(n)$	yes
Reversal edit	init: $O(n^3)$	
	calc: $O(n^2)$	

Edit distance

The edit distance is the minimum cost of the “edit operations” to transform one structure into another. Levenshtein distance is a string edit distance [18], on binary strings (i.e., of ones and zeros), with edit operations character insertion, removal, and changes. Wagner and Fischer [30] extended this to non-binary strings, introduced configurable costs to the three edit operations, and provided a dynamic programming algorithm to compute it. Sörensen [28] suggested treating a permutation as a string, and applying string edit distance. All edit distances are metrics. Our implementation is of Wagner and Fischer’s dynamic programming algorithm, including parameters for the costs of the edit operations. Runtime is $O(n^2)$.

Exact match distance

Ronald [25] extends Hamming distance to non-binary strings, producing exact match distance, an edit distance with element changes as the edit operation. It is widely used [5, 11, 27, 28], satisfies the metric properties [25], and computed in $O(n)$ time by counting the number of positions with different elements:

$$\delta(p_1, p_2) = |\{i \in \{1 \ldots n\} | p_1(i) \neq p_2(i)\}|.$$

Interchange distance

Interchange distance is an edit distance with one edit operation, element interchanges. It is the minimum number of swaps needed to transform p_1 into p_2; and is computed efficiently ($O(n)$ time) by counting the number of cycles between the permutations [11]. A permutation cycle of length k is transformed into k fixed points with $k - 1$ swaps (a fixed point is a cycle of length 1). Let
CycleCount\((p_1, p_2)\) be the number of permutation cycles, and define interchange distance as:
\[
\delta(p_1, p_2) = n - \text{CycleCount}(p_1, p_2).
\]

Cyclic edge distance and acyclic edge distance Ronald [23, 24] defines the cyclic edge and acyclic edge distances for permutations that represent sets of edges. Element adjacency corresponds to undirected edges. Cyclic edge distance considers the permutation to be a cycle, with adjacent endpoints; whereas acyclic edge distance does not. Cyclic edge distance interprets the permutation, \([0, 1, 2, 3]\), as the endpoints; whereas acyclic edge distance does not. Cyclic edge distance considers the permutation to be a cycle, with adjacent endpoints. Though r-type is a metric, R-type and cyclic r-type distances define the cyclic edge and acyclic edge distances for \([1, 2, 3, 0]\), while acyclic edge distance excludes \((3, 0)\) from this set. Both are invariant under a reversal (e.g., \([0, 1, 2, 3]\) is equivalent to \([3, 2, 1, 0]\)). The cyclic form is also invariant under rotations. Distance is computed in \(O(n)\) time. Both are pseudo-metrics [24] due to reversal invariance, and rotational invariance for the cyclic form. Define acyclic and cyclic edge distances, respectively, as:
\[
\begin{align*}
\delta(p_1, p_2) &= \left\{ i \mid i \in \{1 \ldots n - 1\} \land \left| p_2^{-1}(p_1(i + 1)) - p_2^{-1}(p_1(i)) \right| \neq 1 \right\}, \\
\delta(p_1, p_2) &= \left\{ i \mid i \in \{1 \ldots n\} \land x = p_2^{-1}(p_1((i \mod n) + 1)) - p_2^{-1}(p_1(i)) \land x \neq 1 \land x \neq 1 - n \right\}.
\end{align*}
\]

R-type and cyclic r-type distances The r-type distance ("r" for relative) [3] is a directed edge version of acyclic edge distance. Cyclic r-type [6] is its cyclic counterpart, including an edge between endpoints. Though r-type is a metric, cyclic r-type is a pseudo-metric due to rotational invariance. Runtime for both is \(O(n)\), and defined respectively:
\[
\begin{align*}
\delta(p_1, p_2) &= \left\{ i \mid i \in \{1 \ldots n - 1\} \land p_2^{-1}(p_1(i + 1)) - p_2^{-1}(p_1(i)) \neq 1 \right\}, \\
\delta(p_1, p_2) &= \left\{ i \mid i \in \{1 \ldots n\} \land x = p_2^{-1}(p_1((i \mod n) + 1)) - p_2^{-1}(p_1(i)) \land x \neq 1 \land x \neq 1 - n \right\}.
\end{align*}
\]

Kendall tau distance The metric Kendall tau distance is a variation of Kendall’s rank correlation coefficient [16]:
\[
\begin{align*}
\delta(p_1, p_2) &= \left\{ x, y \in p_1 \mid p_1^{-1}(x) > p_1^{-1}(y) \land p_2^{-1}(x) < p_2^{-1}(y) \right\}.
\end{align*}
\]

Some divide by \(n(n - 1)/2\), but most use it as defined above [12, 20], where it is the minimum number of adjacent swaps to transform \(p_1\) into \(p_2\), an adjacent swap edit distance. Compute in \(O(n \log n)\) time using a mergesort modified to count inversions.

Reinsertion distance An edit distance with a single atomic edit operation, removal/reinsertion, which removes an element and reinserts it elsewhere in the permutation, is called reinsertion distance. It is the minimum number of removal/reinsertions to transform \(p_1\) into \(p_2\). Observing that the elements that must be removed and reinserted are exactly the elements that do not lie on the longest common subsequence [6], it is computed efficiently in \(O(n \log n)\) time using [14]’s algorithm for longest common subsequence. We implement it as:
\[
\delta(p_1, p_2) = n - |\text{MaxCommonSubsequence}(p_1, p_2)|.
\]

Deviation distance and normalized deviation distance Deviation distance, a metric, sums the positional deviations of the permutation elements. The positional deviation of an element is the absolute difference of its index in \(p_1\) from its index in \(p_2\). Ronald [25] originally divided this sum by \(n - 1\) to normalize an element’s contribution to total distance in the interval \([0, 1]\). Many use this form [5, 11, 28], while others [3, 6, 27] do not divide by \((n - 1)\). Runtime of our implementation is \(O(n)\). The two forms are:
\[
\begin{align*}
\delta(p_1, p_2) &= \frac{1}{n - 1} \sum_{e \in p_1} \left| p_1^{-1}(e) - p_2^{-1}(e) \right|, \\
\delta(p_1, p_2) &= \sum_{e \in p_1} \left| p_1^{-1}(e) - p_2^{-1}(e) \right|.
\end{align*}
\]

Squared deviation distance Sevaux and Sörensen [27] suggest squared deviation distance, based on Spearman’s rank correlation coefficient, summing of the squares of the positional deviations of the elements. Prior authors state that squared deviation distance as well as deviation distance require quadratic time [27]. However, we implement these in \(O(n)\) time with two linear passes, one computing the inverse of one permutation, which is then used in the second pass to look up element indexes.
\[
\delta(p_1, p_2) = \sum_{e \in p_1} (p_1^{-1}(e) - p_2^{-1}(e))^2.
\]

Lee distance Lee distance originated in coding theory for strings [17]. Here we adapt it for permutation distance. Lee distance, a metric, treats the permutation as a cycle, summing the minimum of the left and right positional deviations. It is computed in \(O(n)\) time. Define as:
δ(p₁,p₂) = \sum_{e \in p₁} \min \left(|p₁⁻¹(e) - p₂⁻¹(e)| \right)\nonumber
\frac{n}{n - |p₁⁻¹(e) - p₂⁻¹(e)|}.

Reversal edit distance Reversal edit distance is the minimum number of reversals to transform p₁ into p₂. Computing reversal edit distance is NP-Hard [4]; and [26] argue that the best available approximations are insufficient for search landscape analysis. We implement it with a breadth-first enumeration to initialize a lookup table mapping each of the permutations to its reversal edit distance from a reference permutation. Computing the distance between a given pair of permutations is then a table lookup. This is only feasible for short permutation length. Initialization cost is O(n!n²) (i.e., breadth-first enumeration of O(n!) permutations, each with O(n²) neighbors (possible sub-permutation reversals), and a reversal costs O(n)). Applications with the need to compute O(n!) distances all from the same reference permutation can do so with an amortized initialization cost of O(n²) per distance calculation. The table lookup costs O(n²) (cost to compute mixed radix representation of the permutation).

3 Classifying distance metrics

We perform PCA to identify groups of related permutation metrics, using the distance measures from Section 2 except the edit, normalized deviation, and reversal edit distances. Normalized deviation distance is deviation distance scaled, and thus observations made about one apply to both. Edit distance’s parameters define a continuum of metrics. Reversal edit distance is too costly, but we later discuss how it fits in our classification.

For all permutations of length n = 10, compute distance to a single reference permutation. Using Jacobi iteration, compute the eigenvalues and eigenvectors of the correlation matrix of Table 2. Table 3 lists the eigenvalues of the principal components (PC), the first three of which are greater than 1.0; and the first five PCs combine for more than 90% of the sum. Table 4 shows the eigenvectors for the first five PCs. Correlation between the original distance metrics greater than 1.0; and the first five PCs combine for more than 90% of the sum. Table 4 shows the eigenvectors for the first five PCs.
Table 5 Correlation between distances and first five PCs

Distance	PC1	PC2	PC3	PC4	PC5
Exact match	.6234	.1691	.6579	−.1439	.1052
Interchange	.5196	.1227	.7355	−.0536	.2910
Acyclic edge	.1784	−.8385	.1644	.4218	−.0470
Cyclic edge	.1682	−.8415	.1450	.4276	−.0337
R-type	.2654	−.8600	−.0699	−.3479	.0382
Cyclic r-type	.2410	−.8602	−.0808	−.3469	.0377
Kendall tau	.8808	.1638	−.3775	.1281	.1695
Reinsertion	.7774	−.1497	−.3070	−.3472	−.0377
Deviation	.9435	.2332	−.1322	.1491	−.0481
Sq. deviation	.8649	.2099	−.3434	.2236	.1640
Lee	.7063	.1812	.2619	−.0436	−.6207

PC1 (P-permutation) PC1 correlates extremely strongly (0.94) to deviation distance, very strongly to the Kendall tau and squared deviation distances, and reasonably strongly to the reinsertion and Lee distances (Table 5). The Kendall tau and reinsertion distances, by their definitions, measure similarity in terms of pairwise element precedences. The variations of deviation distance capture that same essence in that an element that is displaced a greater number of positions is likely involved in a greater number of precedence inversions (i.e., where a is prior to b in one permutation, and somewhere after in the other). These five permutation metrics are P-permutation distances, measuring permutation distance in terms of precedence related features.

PC2 (R-permutation) PC2 correlates very strongly with both forms of edge distance, and both forms of R-type distance ($|r| > 0.83$ in all four cases). These distances all focus on adjacency (i.e., edges) of permutation elements.

PC3 (A-permutation) PC3 strongly correlates to the exact match ($r = 0.6579$) and interchange distances ($r = 0.7355$). Both focus on absolute positions of permutation elements.

The fourth and fifth PCs identify subtypes. Their eigenvalues are less than 1, and account for small portions of the eigenvalue sum (7.6% and 5%), but interpreting is interesting none-the-less.

PC4 (R-permutation, undirected) PC4’s strongest correlations are to the two variations of edge distance, which consider permutations to represent sets of undirected edges.

PC5 (P-permutation, cyclic) PC5 correlates strongly ($|r| = 0.6207$) to Lee distance, and only weakly to the others. Lee distance also strongly correlates with PC1 (P-permutation), but is different than the other deviation-based metrics in that it computes positional deviation as if the end points are linked. In some sense, this is a cyclic subtype of P-permutation.

Table 6 Permutation distance metric classification

Type	Subtype	distances
P-permutation	acyclic	Kendall tau, reinsertion, deviation, squared deviation
P-permutation	cyclic	Lee
R-permutation	undirected	acyclic edge, cyclic edge, reversal edit
R-permutation	directed	r-type, cyclic r-type
A-permutation		exact match, interchange

Table 6 summarizes this classification. There are three primary types: P-permutation, R-permutation, and A-permutation; and two are decomposed into subtypes. Although we excluded reversal edit distance in the analysis, we include it among the undirected R-permutation metrics as a reversal clearly replaces two undirected edges.

4 On effects of length

To derive the classification in Section 3, the PCA computed the correlation matrix via brute-force enumeration of permutations of length $n = 10$. To explore whether length affects the classes identified, we repeat the PCA using length $n = 50$, which is too long for exhaustive enumeration. We instead randomly sample the space of permutations, sampling 3628800 random permutations of length 50, chosen so number of data points is the same as Section 3. Table 7 shows the correlation matrix. Table 8 provides the eigenvalues, and Table 9 shows the eigenvectors of the first five PCs. Table 10 shows the correlations between the original metrics and the first five PCs.

In Table 10, PC1 again corresponds to the P-permutation metrics, correlating extremely strongly to the deviation, Kendall tau, and squared deviation distances ($|r| > 0.9$), and also correlating strongly to the reinsertion and Lee distances. Likewise, PC2 (as before) corresponds to the R-permutation metrics, with very strong correlation ($|r| > 0.89$) to both forms of edge distance and both forms of R-type distance. Also consistent with the shorter length results, PC3 corresponds to the A-permutation metrics, with very strong correlation to the exact match ($|r| = 0.8265$) and interchange distances ($|r| = 0.8525$). PC5 again correlates moderately to Lee distance ($|r| = 0.5258$) and only weakly to the others.

PC4 is the only inconsistency between the longer permutation results and the shorter permutation results. With shorter permutations, PC4 identified the two forms of edge distance (R-permutation undirected subtype). With longer
randomly sampled permutations, PC4 identified reinsertion distance, and to a lesser extent Lee distance. This suggests that as length increases there may be a relationship between the reinsertion and Lee distances; or that reinsertion distance captures a different form of variability than does the other P-permutation metrics.

We stick with the earlier classification (Table 6), since four PCs directly correspond to that analysis, and since the distinct nature of reinsertion distance is not entirely clear.

5 Example fitness landscapes

We present five search landscapes as examples.

R-permutation (undirected) landscape \((L_1) \)

The first search landscape is a simple instance of the TSP with a known optimal solution. It has 20 cities arranged equidistantly on a circle of radius 1.0. The edge cost is Euclidean distance. The optimal solution is to either follow the cities clockwise or counterclockwise around the circle. There are 40 optimal permutations: 20 cities at which to begin, and two possible travel directions (clockwise and counterclockwise).

We compute FDC using 100000 randomly sampled permutations (Table 11). In this case, it is the correlation between tour cost, and distance to the nearest of the 40 optimal permutations. The highest FDC is for the two forms of edge distance, followed by the two forms of R-type (recall that R-type distance uses directed edges, while edge distance
In Table 11, we see that the two metrics, earlier identified as A-permutation by our PCA, both have high FDC to landscape L_3; and FDC is low for all other permutation metrics.

P-permutation (acyclic) landscape (L_4) We modify the noisy Permutation in a Haystack from L_3 to obtain a P-permutation landscape, L_4, with a known optimal solution by using the Kendall tau distance instead of exact match.

Three of the four metrics classified as acyclic P-permutation have very high FDC for landscape L_4 (Table 11), including the Kendall tau, deviation, and squared deviation distances. The fourth, reinsertion distance, also has reasonably high FDC for L_4; while FDC is low for all other metrics.

P-permutation (cyclic) landscape (L_5) The last example fitness landscape uses Lee distance in the noisy Permutation in a Haystack adapted from L_3 and L_4. Lee distance provides the highest FDC for this landscape (Table 11).

6 Mutation classification

The metrics with highest FDC for each fitness landscape (Section 5) correspond to the metrics for the landscape’s class in Table 6. We now explore how a corresponding mapping of mutation operators for an EA can assist in selecting relevant operators for the optimization problem at hand.

We explore the behavior of a variety of mutation operators for problems of each type. All test problems are over the space of permutations of length 100. The EA is a mutation-only generational model such that children replace the parents in the population. We use elitism, keeping the best population member unaltered, and otherwise use Stochastic Universal Sampling (SUS) [2] for selection. All problems involve minimizing the cost $c(p)$ of permutation p. The EA defines fitness of p as: $f(p) = 1/(1 + c(p))$. The mutations selected by SUS in each generation undergo one

| Table 11 FDC for the metrics and example landscapes |
|--|---------|---------|---------|---------|---------|
| Distance | L_1 | L_2 | L_3 | L_4 | L_5 |
| Exact match | .1548 | .1881 | .6917 | .2974 | .4806 |
| Interchange | .1192 | .0886 | .5296 | .2204 | .3665 |
| Acyclic edge | .6052 | .3474 | .0118 | .0020 | .0186 |
| Cyclic edge | .6204 | .3822 | .0002 | .0006 | .0026 |
| R-type | .5442 | .6333 | .0148 | .0790 | .6072 |
| Cyclic r-type | .5562 | .6595 | .0016 | .0684 | .0005 |
| Kendall tau | .3423 | .2408 | .2245 | .9022 | .3862 |
| Reinsertion | .3382 | .5349 | .2080 | .6364 | .3887 |
| Deviation | .3898 | .1875 | .3544 | .8410 | .6072 |
| Sq. deviation | .3150 | .1555 | .2282 | .8876 | .3935 |
| Lee | .4640 | .2316 | .3836 | .4063 | .8619 |

Table 12 Summary of mutation operators

Mutation Operator	Runtime
AdjSwap	$O(1)$
Swap	$O(1)$
Insertion	$O(n)$
Reversal	$O(n)$
3opt	$O(n)$
BlockMove	$O(n)$
BlockSwap	$O(n)$
Cycle	$O(\min(n,k^2))$
Scramble	$O(n)$
Uniform	$O(n)$
We compare several mutation operators, summarized with runtimes in Table 12. Adjacent Swap (AdjSwap) swaps a random pair of adjacent elements. Swap exchanges the positions of two random elements. Insertion removes a random element and reinserts it at a random index. Reversal reverses a random segment. 3opt assumes the permutation represents a set of edges and replaces three random edges [19]. BlockMove removes a random segment and reinserts it at a random location. BlockSwap swaps the locations of two random segments. Cycle(k_{max}) mutation, one of two forms of cycle mutation [10], induces a random k-cycle for random $k \in [2, k_{\text{max}}]$, where we use $k_{\text{max}} = 10$ in the experiments. Scramble randomizes the order of a random contiguous segment.

Uniform Scramble, believed to be new with this paper, randomizes the positions of a random set of elements, each element chosen with probability U. In the experiments, $U = 1/3$ to affect the same number of elements on average as Scramble.

R-permutation (undirected) problem In Fig. 1, we see results for TSP instances generated from random symmetric distance matrices. The x-axis is number of generations at log scale. Reversal, equivalent to randomly replacing two undirected edges, performs best. Next best are BlockMove and 3opt (both replace three edges), followed closely by Insertion (changes three edges), BlockSwap and Swap (both replace four edges). The others lag behind, although Cycle is tunable via the maximum cycle length.

R-permutation (directed) problem For ATSP instances generated from random asymmetric distance matrices (Fig. 2), the best performing mutation is BlockMove, followed by Insertion, BlockSwap, and Swap. At 10000 generations, 3opt

Fig. 1 Mutation operator comparison for the TSP

Fig. 2 Mutation operator comparison for the ATSP

Fig. 3 Mutation operator comparison for the Permutation in a Haystack with Exact Match distance
Mobile Networks and Applications (2023) 28:507–517

achieves equivalent performance, but under-performs earlier. The best performing mutations are similar to the undirected case, except Reversal performs poorly for directed edges, likely because reversing a segment flips the direction of $3n$ directed edges on average. This explains 3opt’s mixed performance (some 3opt moves flip direction of many edges, while others do not).

A-permutation problem The Permutation in a Haystack with Exact Match distance provides an A-permutation landscape (the original version, and not the noisy version of Section 5). Swap clearly dominates (Fig. 3). The only other mutation worth considering for A-permutation problems is Cycle mutation, whose cycle length parameter may need fine-tuning.

P-permutation (acyclic) problem We use the Permutation in a Haystack with Kendall tau distance to create an acyclic P-permutation problem (results in Fig. 4). Many of the mutation operators are able to consistently optimally solve this problem for 10000 generation runs. Thus, we focus on earlier performance. At 1000 generations and earlier, the best performing mutation is Insertion, followed closely by Swap, and then most surprisingly by Scramble. The others lag behind.

P-permutation (cyclic) problem The Permutation in a Haystack with Lee distance creates a cyclic P-permutation problem. Insertion and Swap are the only operators that consistently perform well throughout the run in this case (Fig. 5).

From the computational results, we derive a classification of the permutation mutation operators (Table 13) as a counterpart to the classification of permutation metrics. The two schemes can be used in combination to inform the design of search algorithms. When designing an EA, or other metaheuristic, an analysis of the fitness landscape for the problem can utilize the classes of distance functions (Table 6) to identify the permutation features with greatest impact on fitness. The mutation operator classification (Table 13) then provides a catalog of mutation operators that are well-suited to optimizing the problem at hand.
7 Discussion and conclusions

Our first contribution is the classification of permutation metrics according to the features that influence each measure of distance. We derived the classification formally using PCA, and included all of the common measures of permutation distance, as well as a few less common metrics.

The classification aligns with an existing set of less formally derived problem classes, which leads to our next contribution, formal confirmation of those problem classes, in that FDC is highest for the metrics that correspond to a problem’s class. Our PCA approach also lead to identifying new problem subtypes. With this alignment between metric classes and problem classes, the results aid in selecting problem-relevant metrics for use with fitness landscape analysis techniques, such as FDC. For example, if faced with a problem where permutations represent sets of edges (e.g., TSP), then the classification suggests using one of the forms of edge or r-type distance, depending upon whether edges are undirected or directed. If it is a P-permutation problem, where general pairwise element precedences have greatest impact on fitness (e.g., many scheduling problems), then you would choose a P-permutation metric such as Kendall tau, reinsertion, or one of the variations of deviation distance. Additionally, in this case, you may then factor in the runtimes of the metrics. For example, the Kendall tau and squared deviation distances correlate very strongly ($r = 0.984$, Table 2). However, Kendall tau is computed in $O(n \lg n)$ time, while squared deviation is computed in $O(n)$ time. Even if Kendall tau is the better match for your specific problem, squared deviation may be sufficient due to its strong correlation while saving computational cost.

Our third contribution is a comprehensive classification of permutation mutation operators, as a counterpart to the distance classification, that can inform the effective selection of a mutation operator during the design phase of an EA. The distance classes support fitness landscape analysis and problem class identification. The mutation operator classification then narrows in on the most relevant available mutation operators for the given problem class. We included all of the most common, as well as less common, mutation operators for permutations in this research.

This paper also contributes a new mutation operator, Uniform Scramble, which is a variation of Scramble. Although Uniform Scramble was not among the top-performing for any problem class, it has a tunable parameter that will be explored in future work, or it may be useful to give a stagnated search a kick (e.g., it is disruptive).

All of the distance metrics are implemented in the open-source JavaPermutationTools (JPT) library [7]. JPT’s source code is available at: https://github.com/cicirello/ JavaPermutationTools. The EA implementation and all of the mutation operators are in the open-source Chips-n-Salsa library [9], whose source code is available at: https:// github.com/cicirello/Chips-n-Salsa. Source code to replicate the analysis, experiments, and results of Sections 3–6 is available at: https://github.com/cicirello/MONE2022-experiments.

Funding Not applicable.

Data Availability Raw and processed data produced by the experiments is available: https://github.com/cicirello/MONE2022-experiments.

Code Availability Code available at: https://github.com/cicirello/ MONE2022-experiments.

Declarations

Ethical Approval Not applicable.

Conflict of Interest / Competing Interests The author declares that he has no conflict of interest.

References

1. Ackley DH (1985) A connectionist algorithm for genetic search. In: ICGA. pp 121–135
2. Baker J (1987) Reducing bias and inefficiency in the selection algorithm. In: ICGA, pp 14–21
3. Campos V, Laguna M, Marti R (2005) Context-independent scatter and tabu search for permutation problems. INFORMS J Comput 17(1):111–122
4. Caprara A (1997) Sorting by reversals is difficult. In: Proc Int Conf Comput Mol Biol, pp 75–83
5. Cicirello VA (2014) On the effects of window-limits on the distance profiles of permutation neighborhood operators. In: Proc int conf on bioinspired information and communications technologies, pp 26–35 https://doi.org/10.4108/icst. bict.2014.257872
6. Cicirello VA (2016) The permutation in a haystack problem and the calculus of search landscapes. IEEE Trans Evol Comput 20(3):434–446. https://doi.org/10.1109/TEVC.2015.2477284
7. Cicirello VA (2018) JavaPermutationTools: A java library of permutation distance metrics. J Open Source Softw 3(31):950. https://doi.org/10.21105/joss.00950
8. Cicirello VA (2019) Classification of permutation distance metrics for fitness landscape analysis. In: Proc 11th int conf on bio-inspired information and communication technologies. Springer Nature, New York, pp 81–97 https://doi.org/10.1007/978-3-030-24202-2_7
9. Cicirello VA (2020) Chips-n-Salsa: A java library of customizable, hybridizable, iterative, parallel, stochastic, and self-adaptive local search algorithms. J Open Source Softw 5(52):2448. https://doi.org/10.21105/joss.02448
10. Cicirello VA (2022) Cycle mutation: Evolving permutations via cycle induction. Appl Sci 12(11):5506. https://doi.org/10.3390/app12115506
11. Cicirello VA, Cernera R (2013) Profiling the distance characteristics of mutation operators for permutation-based genetic algorithms. In: FLAIRS-26. AAAI Press, pp 46–51
12. Fagin R, Kumar R, Sivakumar D (2003) Comparing top k lists. SIAM J Discrete Math 17(1):134–160
13. Hernando L, Mendiburu A, Lozano JA (2016) A tunable generator of instances of permutation-based combinatorial optimization problems. IEEE Trans Evol Comput 20(2):165–179
14. Hunt JW, Szymanski TG (1977) A fast algorithm for computing longest common subsequences. ACM 20(5):350–353
15. Jones T, Forrest S (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: ICGA, pp 184–192
16. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93
17. Lee C (1958) Some properties of nonbinary error-correcting codes. IRE Trans Inf Theory 4(2):77–82
18. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys Doklady 10(8):707–710
19. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech 44(10):2245–2269
20. Meilă M, Bao L (2010) An exponential model for infinite rankings. JMLR 11:3481–3518
21. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge
22. Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44(1):3–54
23. Ronald S (1995) Finding multiple solutions with an evolutionary algorithm. In: CEC, pp 641–646
24. Ronald S (1997) Distance functions for order-based encodings. In: CEC, pp 49–54
25. Ronald S (1998) More distance functions for order-based encodings. In: CEC, pp 558–563
26. Schiavinotto T, Stützle T (2007) A review of metrics on permutations for search landscape analysis. Comput Oper Res 34(10):3143–3153
27. Sevaux M, Sörensen K (2005) Permutation distance measures for memetic algorithms with population management. In: MIC, pp 832–838
28. Sörensen K (2007) Distance measures based on the edit distance for permutation-type representations. J Heuristics 13(1):35–47
29. Tayarani-N MH, Prugel-Bennett A (2014) On the landscape of combinatorial optimization problems. IEEE Trans Evol Comput 18(3):420–434
30. Wagner RA, Fischer MJ (1974) The string-to-string correction problem. JACM 21(1):168–173

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.