Growth Factors Induce Nuclear Translocation of MAP Kinases (p42mapk and p44mapk) but not of Their Activator MAP Kinase Kinase (p45mapkk) in Fibroblasts

Philippe Lenormand, Claude Sardet, Gilles Pagès, Gilles L’Allemain, Anne Brunet, and Jacques Pouysségur
Centre de Biochimie-CNRS, Université de Nice, 06018 Nice, France

Abstract. Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are activated rapidly in cells stimulated with various extracellular signals. This activation is mediated via MAP kinase kinase (p45mapkk), a dual specificity kinase which phosphorylates two key regulatory threonine and tyrosine residues of MAP kinases. We reported previously that the persistent phase of MAP kinase activation is essential for mitogenically stimulated cells to pass the “restriction point” of the cell cycle. Here, using specific polyclonal antibodies and transfection of epitope-tagged recombinant MAP kinases we demonstrate that these signaling protein kinases undergo distinct spatio-temporal localization in growth factor-stimulated cells. In G0-arrested hamster fibroblasts the activator p45mapkk and MAP kinases (p42mapk, p44mapk) are mainly cytoplasmic. Subsequent to mitogenic stimulation by serum or α-thrombin both MAP kinase isoforms translocate into the nucleus. This translocation is rapid (seen in 15 min), persistent (at least during the entire G1 period up to 6 h), reversible (by removal of the mitogenic stimulus) and apparently ‘coupled’ to the mitogenic potential; it does not occur in response to nonmitogenic agents such as α-thrombin–receptor synthetic peptides and phorbol esters that fail to activate MAP kinases persistently. When p42mapk and p44mapk are expressed stably at high levels, they are found in the nucleus of resting cells; this nuclear localization is also apparent with kinase-deficient mutants (p44mapk T192A or Y194F). In marked contrast the p45mapkk activator remains cytoplasmic even during prolonged growth factor stimulation and even after high expression levels achieved by transfection. We propose that the rapid and persistent nuclear transfer of p42mapk and p44mapk during the entire G0-G1 period is crucial for the function of these kinases in mediating the growth response.

The sequence of events which link cell surface receptor-mediated signals to expression of a specific pattern of genes has received considerable attention in recent years. Although many gaps remain to be filled, the remarkable degree of homology that is emerging between yeast and mammalian signaling pathways should help in elucidating all sequential events. In particular, the linear cascade of yeast protein kinases: byr2 (stel1)→byr1 (stel7)→spkl (FUS3/KSS1), linking pheromone receptor to gene expression (Nielsen, 1993) is amazingly well conserved in mammalian cells. The corresponding mammalian “signaling module” is mitogen-activated protein (MAP)1 kinase kinase kinase (MAPKKK)→MAP kinase kinase (MAPKK)→MAP kinases (MAPK) (Lange-Carter et al., 1993; Neiman et al., 1993). MAP kinases, also described as extracellular-regulated kinases (ERK), belong to a family of serine/threonine protein kinases (Sturgill and Wu, 1991; Boulton et al., 1991; Pelech et al., 1992) that have been shown to participate in signaling pathways initiated by mitogens or differentiating agents. In mammalian cells there are at least two highly homologous MAP kinases: p42mapk or ERK2 and p44mapk or ERK1 (Boulton et al., 1991). They share the same substrates in vitro (Sturgill et al., 1988; Pulverer et al., 1991; Northwood et al., 1991; Alvarez et al., 1991; Gille et al., 1992) and the same time course of activation (Melcho et al., 1992a). They are expressed ubiquitously (Boulton et al., 1991) and closely related to the yeast protein kinases involved in pheromone-induced mating: SLT2 (Torres et al., 1991), KSS1 (Courcehesne et al., 1989), and FUS3 (Elion et al., 1990) in budding yeast and spkl (Toda et al., 1991) in fission yeast. This homology of sequence also reflects a similarity in function since spkl defect of S. pombe can be complemented by expressing either rat p42mapk (Neiman et al., 1993) or hamster p44mapk (Nielsen, O., and J. Pouysségur, unpublished results).

In fibroblasts, MAP kinases undergo a rapid and biphasic activation in response to all mitogens (Melcho et al.,

1 Abbreviations used in this paper: aa, amino acid; MAP, mitogen-activated protein.
Materials and Methods

Materials

Highly purified human α-thrombin and basic FGF were generous gifts of Drs. J. W. Fenton II (New York State Department of Health, Albany, NY) and D. Gospodarowicz (University of California Medical Center, San Francisco, CA), respectively. BSA (Fraction V) was obtained from Sigma (St. Louis, MO). Synthetic peptides CIP4p44 (CIP-QETARFOQPAFEP) corresponding to the rat p45mapk 16 carboxy-terminal amino acid (aa) and the synthetic peptide CIP5p42 (CIFEF-ARFOQPGYRS) corresponding to the rat p42mapk 14 carboxy-terminal aa were both synthesized with a Cysteine at the amino terminus by Dr. G. Drapeau (Université Lavall, Quebec, Canada). The rabbit polyclonal antibody MKK16 was either directly (1:2,000) or immunopurified as follows: 100 μl of pre-immune and MKK16 antisera were incubated overnight at 4°C with 25 μg of peptide N16p45 coupled to KLH, bound to Hybond C-super membranes (Amersham, UK). After 10 min rehydration at 25°C in PBS containing 3% BSA (PBS/BSA), fixed cells were then incubated with the primary antibody for 60 min at 20°C. Cells were then washed five times with PBS and incubated in PBS/BSA for 60 min at 25°C with fluorescein-conjugated secondary antibody (anti-mouse or anti-rabbit, 1:50). Finally, cells were washed five times with PBS and examined under epifluorescent illumination with excitation-emission filters for fluorescein. To control for specificity: (a) the same results were obtained when cells were fixed with 1% paraformaldehyde in methanol at -20°C for 15 min or with 4% paraformaldehyde in PBS at 20°C for 15 min followed by permeabilization with 0.2% Triton X-100 in PBS for 5 min at 20°C (data not shown); (b) incubation with secondary antibody alone did not reveal any significant fluorescent signal (data not shown).

Results

Specificity of the p44mapk Antiserum 837

Rabbit antiserum 837 (Boulton et al., 1991) was raised...
against a 17-aa synthetic peptide corresponding to the predicted carboxy terminus of p44mapk. Its specificity was tested by immunoblotting (Fig. 1 A) total cell lysates of both CCL39 fibroblasts and of TR4-44" cells, a CCL39 transfectant (TR4-44) overexpressing an epitope-tagged p44mapk (p44tag) (25 \mu g/ml in 25 \mu g/ml of detergent-extracted proteins from Chinese hamster lung fibroblasts CCL39 (lanes 1) and from a CCL39 transfectant (TR4-44") overexpressing an epitope-tagged p44mapk (p44") (lanes 2). The antiserum 837 was used either directly (1:1,500) (A), or after blocking with p42-antigenic peptide C15p42 (150 \mu g/ml with 180 min preincubation) (B), or after blocking with C15p42 (150 \mu g/ml) and the p44 antigenic peptide 17p44 (450 \mu g/ml) (C).

Immunolocalization of MAP Kinases in Resting and Serum-stimulated CCL39 Fibroblasts

Immunofluorescence microscopy was performed with 837p antiserum on GO-arrested and serum-stimulated CCL39 cells. To ensure that the staining observed was specific, several different fixation-permeabilization procedures were used for sample preparation (methanol/aceton, 4 \% paraformaldehyde, methanol/paraformaldehyde), and in each case it was ensured that the signal obtained could be extinguished by pre-incubation of diluted antisera with the corresponding antigenic p44 peptide or both the p44 and p42 antigenic peptides as shown in Fig. 2 F. As illustrated in Fig. 2, the observed staining for p44mapk shows first that in GO-arrested CCL39 cells, p44mapk-immunolabeling was cytoplasmic and a diffuse staining suggested no association with any organized cellular structure (Fig. 2 A). Second, as judged by immunofluorescence microscopy, p44mapk underwent a complete redistribution in serum-stimulated cells, starting to move to the nucleus as early as 15 min (Fig. 2 B) and becoming predominantly nuclear 1-3 h after serum-stimulation (Fig. 2, C and D). However, this nuclear translocation was transient, p44mapk starting to return to the cytoplasm 6 h after serum stimulation (data not shown), to be again totally cytoplasmic between 6 and 9 h after serum stimulation (data not shown). This timing suggests that p44mapk nuclear translocation is a G0 to S-phase transition-specific event. The nuclear efflux of p44mapk can also be triggered by removal of serum 1 h after stimulation. Exit of p44mapk from the nucleus is partial 30 min after serum removal (compare Fig. 2, C and E) and complete at 1 h (data not shown). This demonstrates that continuous serum stimulation of cells is necessary to maintain p44mapk in the nucleus, at least during the initial period of stimulation.

MAP Kinase Remains Active during the Period of Nuclear Localization

As illustrated in Fig. 3, MAP kinase activity immunoprecipitated by 837p antiserum, was measured by phosphorylation of MBP in serum-starved and serum-stimulated CCL39 fibroblasts (by 10\% FCS). As previously described for CCL39 cells (Meloche et al., 1992a; Kahan et al., 1992) the activation of endogenous p44mapk is biphasic in response to potent mitogens such as 10\% serum or \(\alpha\)-thrombin; a rapid activation occurring between 5 and 10 min after agonist addition is followed by a second broad wave of activation lasting at least 3 h. We show here that this second peak of activity decreased thereafter continuously from 3 to 9 h after serum stimulation. However, it never returned to the basal level observed in GO-arrested cells (four out of five trials) indicating that MAP kinase activity is still elevated over basal levels at times when nuclear localization of this kinase is still observed (Figs. 2 and 3). Thus, after translocation to the nucleus, part of the active MAP kinase pool could phosphorylate several of its in vitro substrates such as the nuclear proteins c-jun (Pulverer et al., 1991; Baker et al., 1992), c-myc (Alvarez et al., 1991) and p62c-F (Gille et al., 1992). Note that removal of serum growth factor induced a rapid deactivation of MAP kinase concomitantly with its disappearance from the nucleus.

The Potency of Growth Promoting Agents to Induce MAP Kinase Nuclear Translocation Correlates with Their Relative Potency to Promote S-phase Entry

We have shown in this laboratory that the sustained second phase of p44mapk kinase activation correlates with mitogenicity since it is observed in cells stimulated with mitogenic agents such as \(\alpha\)-thrombin or FGF but not after stimulation by non-mitogenic agents such as carbachol (Pouyssegur and Seyewi, 1992; Kahan et al., 1992), phorbol esters or \(\alpha\)-thrombin receptor peptide (Vouret et al., 1993). Fig. 4 shows that a similar correlation was observed for the p44mapk nuclear translocation; potent mitogens induced nuclear translocation whereas weak or co-mitogens did not. For example, treatment of GO-arrested cells CCL39 cells for 3 h with non-mitogenic stimuli, such as phorbol esters (data not shown) or \(\alpha\)-thrombin receptor peptide (Vouret et al., 1993). In contrast, factors such as \(\alpha\)-thrombin (Fig. 4 A) or FGF (data not shown) were able to promote GO/G1 p44mapk nuclear translocation. Although these mitogens were less potent than 10\% serum in their ability to trigger p44mapk nuclear translocation when added individually, they became equivalent to serum when added together (\(\alpha\)-thrombin/FGF, Fig. 4 C). Interestingly, the intensity and percentage of nuclei harboring p44mapk immunolabeling seemed to correlate well with the relative potency of these mitogens to re-initiate DNA synthesis (Fig. 4) (Vouret-Craviari et al., 1992).

Immunolocalization of p42mapk Isoform in CCL39 Fibroblasts

Our attempts to obtain antisera that exclusively recognised p42mapk in immunoblotting were unsuccessful; all antisera tested presented some reactivity against p44mapk.

Thus, we resorted to transfecting epitope-tagged isoforms to study their specific subcellular localization. We added 18
Figure 2. Indirect immunofluorescence microscopy showing p44mapk-VSVG nuclear translocation after serum stimulation of G0-arrested cells. CCL39 fibroblasts were incubated in serum-free medium for 2 d (G0-arrested) (A) and then were stimulated by the addition of 10% FCS for 15 (B), 60 (C) or 180 (D and G) min. Similarly, G0-arrested TR4-44vsvG cells were stimulated for 180 min with 10% serum (H). In E, cells were stimulated with 10% FCS for 60 min, washed thoroughly and incubated in serum-free medium for 30 min before fixation. Cell fixation and immunofluorescence labeling procedures were performed as described in Materials and Methods. The first antibody was the 837 antiserum (1:400) blocked with C15p42 (150 \mu g/ml) (A-E) or blocked simultaneously with peptides C15p42 (150 \mu g/ml) and C17p44 (450 \mu g/ml) (F). The difference in p44 specific fluorescence labeling between CCL39 cells and TR4-44vsvG cells was demonstrated using a higher dilution (1:1,000) of the 837 antiserum (compare panels G and H). Cells were obtained with a Nikon Diaphot microscope, objective fluor 40, 1.3 oil. Bar, 10 \mu m.
Figure 3. Time course of MBP kinase activation in response to 10% FCS. MBP kinase activity was measured and normalized as described in Materials and Methods. Confluent CCL39 cells (12-well plates) were serum deprived for 24 h, stimulated with 10% FCS and then harvested either 1, 3, 6, or 9 h after stimulation (+FCS). Alternatively, cells were stimulated for 1 h, and then washed three times with serum-free medium and harvested 30 min or 3 h later (Wo FCS). The data presented are representative of five experiments which gave similar results.

Figure 4. Immunofluorescence labeling of p44\textast showing a correlation between mitogenicity and nuclear translocation. G0-arrested CCL39 fibroblasts were stimulated for 180 min with 10 U/ml \(\alpha\)-thrombin (A), 100 \(\mu\)g/ml of 7-mer synthetic \(\alpha\)-thrombin receptor peptide (B), or simultaneously with 10 U/ml \(\alpha\)-thrombin and 25 ng/ml FGF (C). Immunofluorescence labeling procedures were performed as described in Materials and Methods with antiserum 837\(\alpha\) (1:400). Solid black bars represent the reinitiation of DNA synthesis expressed as the percent of the maximal \[^{3}H\]thymidine incorporation obtained with 10% FCS measured after 24 h as described previously (Vouret-Craviari et al., 1992). Bar, 10 \(\mu\)m.
Figure 5. Indirect immunofluorescence microscopy of CCL39 cells expressing epitope-tagged MAP kinases. Immunofluorescence labeling procedures of epitope-tagged MAP kinases were performed as described in Materials and Methods with the P5D4 mAb as primary antibody (1:500) and anti-mouse IgG coupled to fluorescein as secondary antibody (1:50). Serum-stimulated CCL39 cells expressing the following epitope-tagged MAP kinases constructs are presented: (A) p44mapk-VSVG, (B) p42mapk-VSVG, (C) p44mapk-VSVG T192A, (D) p44mapk-VSVG T192E-Y194E, and (E) p44mapk-VSVG-a239. Cells were observed with a Nikon Diaphot microscope, objective fluor 100, 1.3 oil. Bar, 10 μm.

We conclude that both p42mapk-VSVG and p44mapk-VSVG translocate to the nucleus after growth factor stimulation, however when highly expressed their location is both cytoplasmic and nuclear in serum-starved cells.

Figure 6. Western blot demonstrating specificity of MKK16 antiserum for p45mapk. MKK16 antiserum was used to detect p45mapk (p45) in detergent-extracted proteins from CCL39 fibroblasts (lanes 1, 2, and 3) and of the CCL39 transfecant (CCL39-p45) overexpressing an epitope-tagged p45mapk (p45*) (lanes 4 and 5). Each lane contained 25 μg of detergent-extracted proteins. The Western blots were probed with pre-immune serum (lane 1), antiserum MKK16 at 1:2,000 dilution (lanes 2 and 4), and MKK16 (1:2,000) blocked with 10 μg/ml MKK16-antigenic peptide N16p45 preincubated for 30 min at 37°C (lanes 3 and 5).

MAP Kinase Nuclear Localization Occurs with Kinase-dead Mutants

MAP kinase activation results from phosphorylation of T192 and Y194 residues by the activator p45mapk. We and others have shown that mutations of either of these phosphorylation sites totally inactivate MAP kinases (Posada and Cooper, 1992; L'Allemain et al., 1992b; Pages et al., 1993). We decided to test whether the activation of MAP kinases by phosphorylation was necessary for nuclear translocation. Thus, by site-directed mutagenesis of p44mapk-VSVG we removed the key phosphorylation sites (T192A, Y194F) and substituted them by negatively charged residues (T192E, Y194E). Different combinations of these mutations were tested in stable transfected clones. As shown in Fig. 5 the T192A (Fig. 5 C) and T192E-Y194E (Fig. 5 D) mutations that abolish MAP kinase activity did not alter the nuclear translocation. Subcellular localization of these mutants, including Y194F, T194E, and Y194E (data not shown) was indistinguishable from that of transfected wild type p44mapk-VSVG (Fig. 5 A). In addition, serum-induced nuclear translocation of these mutants can be detected in cells with low expression levels.
Figure 7. Indirect immunofluorescence microscopy of the MAP kinase activator, p45mapk. Immunofluorescence labeling procedures of p45mapk were performed as described in Materials and Methods with CCL39 cells (A-D) and p45mapk transfected-CCL39 cells (E). G0-arrested CCL39 fibroblasts (A) were stimulated with 10% FCS (B-E). The primary antibodies were immunopurified MKK16 antibody (1:50) (A and B); immunopurified MKK16 (1:50) blocked for 30 min at 37°C with the antigenic peptide N16p45 (10 μg/ml) (C); immunopurified pre-immune MKK antibody (1:50) (D); and antibody MKK16 (1:2,000) (E). Bar, 10 μm.

We conclude that the transfer and the retention of MAP kinases in the nucleus is independent of the state of MAP kinase activity.

Characterization of p45mapk Antibody

As shown on Fig. 6, lane 3, rabbit-antiserum MKK16 raised against the NH\textsubscript{2}-terminal peptide of Xenopus MAP kinase kinase (peptide N16p45, see Material and Methods), specifically recognized a single band with an apparent mass of ~45 kD onimmunoblots prepared from cytosolic extracts of CCL39 cells. Pre-immune antiserum and MKK16-antiserum blocked with the antigenic peptide N16p45 failed to display any specific labeling (Fig. 6, lanes 1 and 2, respectively). In addition, MKK16 antiserum recognized recombinant p45mapk stably transfected in CCL39 cells (Fig. 6, lane 4). The specific recognition of p45mapk was also blocked by pre-incubation of MKK16-antiserum with the antigenic peptide N16p45 (Fig. 6, lane 5). p45mapk displayed a retarded migration in SDS-PAGE due to the addition of the HAI epitope at the amino terminus of the Chinese hamster p45mapk-cDNA (Pagès, G., A. Brunet, G. L’Allemain, P. Lenormand, and J. Pouyssegur, manuscript in preparation). Another rabbit antiserum (MKK16-b) raised independently against the same peptide N16p45, displayed similar specificity and immunoreactivity (data not shown).

Furthermore, these antisera immunoprecipitated a protein kinase from CCL39 cytosolic extracts able to tyrosine-phosphorylate and re-activate recombinant inactive p42mapk. These data confirm the immunoreactivity of these antisera with the mammalian MAP kinase activator p45mapk (Pagès, G., A. Brunet, G. L’Allemain, P. Lenormand, and J. Pouyssegur, manuscript in preparation).

Cellular Immunolocalization of the MAP Kinase Activator p45mapk

Using indirect-immunofluorescence microscopy with immunopurified MKK16 antiserum, we localized p45mapk in the cytoplasm of serum-starved CCL39 cells with no apparent association with organized cellular structure (Fig. 7 A). After 3 h of serum stimulation, p45mapk was still cytoplasmic (Fig. 7 B). In fact p45mapk remained in the cytoplasm of exponentially growing CCL39 cells (data not shown) and even when it was overexpressed (Fig. 7 E). This cytoplasmic localization was also observed in other fibroblastic and epithelial cell lines (Swiss 3T3, COS 7, MDCK, data not shown). To ensure that the observed staining was specific, two fixation-permeabilization procedures were used for sample preparation: methanol/acetone (30:70%) and 4% paraformaldehyde/0.2% Triton X-100, and in each case we demonstrated that the signal could be extinguished by pre-
Figure 8. Confocal laser scanning microscopy of p45mapkk and p44mapk. Immunofluorescence labeling procedures were performed as described in Materials and Methods with CCL39 cells, serum-starved for 24 h (-FCS) or the same cells after stimulation with 20% FCS for 3 h (+FCS). The antisera 837p (1:500) and MKK16 (1:1,000) were used for immunodetection of p44mapk and p45mapkk, respectively. Optical sections in the center of nuclei were performed at 2.1 μm from the bottom of the cells using a Leica confocal microscope. Bar, 5 μm.

The incubation of diluted antisera with the antigenic peptide (Fig. 7 C) and strongly increased after transfection of p45mapkk cDNA (Fig. 7 E). Immunopurified pre-immune sera from the same rabbit did not display any specific immunoreactivity (Fig. 7 D).

Confocal laser scanning microscopy was performed to confirm the absence of p45mapkk in the nucleus. Optical sections passing through the center of nuclei were obtained with CCL39 cells labeled either with antisera MKK16 antisera to detect p45mapkk, or antisera 837p to detect p44mapk. These data, presented in Fig. 8 demonstrate the total absence of p45mapkk in the nucleus of both serum-stimulated and non-stimulated CCL39 cells. This situation sharply contrasts with the redistribution of p44mapk in the same cells upon stimulation with serum.

We conclude that although both MAP kinase isoforms translocate to the nucleus after growth factor stimulation, their upstream activator p45mapkk remains strictly cytoplasmic during the cell cycle.

Discussion

In this study, we were able to examine specifically the subcellular localization of endogenous p44mapk. Clearly, endogenous p44mapk translocated to the nucleus after growth factor stimulation of G0-arrested CCL39 cells. The time course of p44mapk translocation to the nucleus indicated that p44mapk was present in the nucleus soon after stimulation (at least 15 min), and remained nuclear up to 6 h after growth factor stimulation. This process parallels the long lasting phase of MAP kinase activation. Interestingly, growth factor removal rapidly reverses the process of p44mapk nuclearization and abolishes its activation. It is thus very likely that p44mapk is indeed active when it appears in the nucleus after growth factor stimulation. Using an epitope-tagging strategy, we were able to demonstrate that transfected p42mapk also is nuclear upon growth factor stimulation. The same conclusion was reached when p44mapk and p42mapk were analyzed in rat mesangial cells stimulated with either serum or endothelin (Wang, Y., J. Pouysségur, and M. Dunn, unpublished results). Hence, we must conclude that both p42mapk and p44mapk which share high homology, a common activator and identical in vitro substrate, both translocate to the nucleus. This implies that some of the known in vitro substrates of MAP kinases, such as the nuclear transcription factors c-jun (Pulverer et al., 1991; Baker et al., 1992), c-myc (Alvarez et al., 1991), and p62Tcf (Gille et al., 1992) can also be phosphorylated in vivo by MAP kinases. Our findings confirm and extend the previous report of Chen et al. (1992) on nuclear translocation of both MAP kinase isoforms in the nucleus of HeLa cells. These authors did not possess a specific antibody, thus they were unable to distinguish between the two ubiquitously expressed isoforms p42mapk and p44mapk. Our present study also confirms and extends the observations of Sanghera et al. (1992) and Seth et al. (1992) showing respectively that avian homolog of MAP kinase is nuclearly located and that transfected p42mapk into cos-7 cells not only is nuclear but also able to phosphorylate Ser62 of the transactivation domain of c-myc.

MAP kinases are activated rapidly by a wide variety of agents which include mitogens, neurotransmitters, differentiating agents, phorbol esters, heat shock, etc. (Pelech et al., 1992). Here we have demonstrated that among the agonists that are capable of inducing a mitogenic response in CCL39 cells, only the strong mitogens such as α-thrombin, FGF, or serum that are known to elicit a persistent MAP kinase acti-
efficiently p44Erk nuclear translocation. Synergistic mito-
vation (Meloche et al., 1992b; Kahan et al., 1992), stimulate
activation like α-thrombin/FGF for DNA replication also syner-
gize for the number of nuclei scored positive for p44Erk im-
munostaining. Chen et al. (1992) have shown that phorbol esters induce nuclear translocation of MAP kinases in the HeLa tumor cell line. In CCL39 cells, however, phorbol esters that activate only the first and transient peak of MAP ki-
nase, are not mitogenic and do not induce p44Erk nuclear translocation. Thus it is likely that this discrepancy between our results and theirs is due to a marked difference in the re-
sponse of CCL39 and HeLa cells to phorbol esters. This ob-
ervation strengthens our previous findings that MAP kinase activation appears to be essential to deliver the mitogenic re-
ponse (Pagès et al., 1993) and we propose that nuclear transfer is critical for MAP kinase activation. However this no-
tion is not general since in dog thyrocytes the CAMP pathway
leads to mitogenicity does so without activating MAP kinases (Lamy et al., 1993). Nevertheless, we predict that the
EGF-induced mitogenicity should require MAP kinase activation in these cells.

Transfected p44Erk and p42Erk showed marked accumu-
lation in the nucleus of nonstimulated cells and in particular when overexpressed. Thus, one possibility is that overex-
pression overwhelms the capacity of a putative cytoplasmic anchor to retain MAP kinases in the cytoplasm. Finally, the
expression of MAP kinase-dead mutants yielded an unexpected result. We found that the nuclear transfer as well as the
retention in the nucleus were independent of the state of MAP kinase activity. This observation implicates that the nuclear transport is achieved irrespective of kinase phos-
phorylation/activation. This is confirmed by the nuclear loc-
ization of overexpressed wild type MAP kinases that are
neither active nor phosphorylated in the GO state. The mecha-
nism of MAP kinase nuclear transfer is obscure since MAP
kinases do not seem to possess any canonical nuclearization signal in their sequence. However it was possible to abolish the
growth factor-stimulatable as well as constitutive transfer into the nucleus by removing the last 129 residues of p44Erk. This approach will be refined to map the domains
for critical for nuclear transfer.

A second aspect of the present study demonstrated for the first time that the MAP kinase activator, p44Erk, remained
cytoplasmic during the cell cycle regardless of its state of ac-
tivation and even when overexpressed. Thus, unlike MAP ki-
nases, p44Erk appears to be totally excluded from the nu-
cleus. This finding is rather intriguing if we accept that the
upstream activator of p44Erk, raf-1 also translocates to the
nucleus in response to growth factors (Rapp et al., 1988).
Why is the entire protein kinase module not nuclear? An al-
ternative interpretation is that raf-1, like MAP kinases exerts a
specific function in the nucleus modulating transcription factors. In that context a cytoplasmic MAP kinase activa-
tor, distinct of raf-1, should exist. This is precisely the
case since a 78-kD protein kinase capable to phosphorylate
and activate p44Erk has just been characterized (Lange-
carter et al., 1993). This protein kinase referred to as MAP
kinase kinase kinase is the homolog of byr2 of S. pombe. We
predict that like p44Erk, this activator should have a cyto-
plasmic localization. If this model is correct, how can the
MAP kinases present in the nucleus remain active if their activ-
tor, p44Erk, is excluded from the nucleus? One has to
postulate that MAP kinases shuttle between the nucleus and the
cytosol to stay continuously activated, or that phos-
phatase activity is differentially regulated in the cytoplasm and the nucleus. Alternatively, a partial cotransfer to the nu-
cleus of p44Erk complexed with its substrate, MAP kinases
could have easily escaped our technique of immunostaining.

In summary, we previously demonstrated that MAP kinase activation is required for growth factor-stimulated cells to
progress and enter S-phase. Here we have shown that MAP kinases specifically translocate to the nucleus and remain
nuclear during the entire GI period, a process, we believe, essential to induce gene expression. Future experiments will
be designed to inhibit specifically MAP kinase nuclear trans-
location, a mean that should lead to cell growth arrest.

We thank Dr. M. Cobb for kindly providing 837 antisera, D. Grall and M. Valetti for skilled technical and secretarial assistance and Y. Fossat for
art work. We also thank Prof. M. Dunn and Drs. F. McKenzie, R. Poole, and Y. Wang for helpful discussion and reading the manuscript. We also
thank Dr. C. Rouvière (CNRS-URA 6711) for performing confocal laser
scanning microscopy.

This work was supported by the Centre National de la Recherche Scientifique (UMR 134), the Institut National de la Santé et de la Recherche Médicale, the Association pour la Recherche contre le Cancer and the Ligue
nationale contre le cancer.

Received for publication 30 April 1993 and in revised form 29 May 1993.

References

Ahn, N. G., R. Seger, R. L. Bratlien, C. D. Diltz, N. K. Tonks, and E. G.
Krebs. 1991. Multiple components in an epidermal growth factor-stimu-
lated protein kinase cascade. J. Biol. Chem. 266:4220–4227.
Alvarez, E., I. C. Northwood, F. A. Gonzalez, D. A. Latour, A. Seth, C.
Abate, T. Curran, and R. J. Davis. 1991. Pro-Leu-Ser-Thr-Pro is a con-
sensus primary sequence for substrate protein phosphorylation. Characteri-
ization of the phosphorylation of c-Myc and c-Jun proteins by an epidermal
growth factor threonine 669 protein kinase. J. Biol. Chem. 266:15277–
15285.
Anderson, N. G., J. L. Maller, N. K. Tonks, and T. W. Sturgill. 1990. Re-
quirement for integration of signals from two distinct phosphorylation path-
ways for activation of MAP kinase. Nature (Lond.) 343:651–653.
Baker, S. J., T. Kerpelpa, D. Luk, M. T. Vandenberg, D. R. Marshak, D.
Curran, and C. Abate. 1992. Jun is phosphorylated by several protein ki-
nases at the same sites that are modified in serum-stimulated fibroblasts. Mol.
Cell Biol. 12:4694–4705.
Boutton, T. G., S. H. Nye, D. J. Robbins, N. Y. Ip, E. Radziejewska, S. D.
Morgenbesser, R. A. DePinho, N. Panayotatos, M. H. Cobb, and G. D.
Yancopoulos. 1991. ERKs; a family of protein-serine/threonine kinases
that are activated and tyrosine phosphorylated in response to insulin and NGF.
Cell 65:663–675.
Chen, R.-H., C. Sarnecki, and J. Blenis. 1992. Nuclear localization and regu-
lation of erk and erk-encoded protein kinases. Mol. Cell Biol. 12:915–927.
Crouchens, W. E., R. Kunisawa, and J. Thörner. 1989. A putative protein
kinase overcomes phenormone-induced arrest of cell cycling in S. cerevisiae.
Cell 58:1107–1119.
Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts and
T. W. Sturgill. 1992. Activation of mitogen activated protein kinase kinase
by v-Raf in NIH 3T3 cells and in vitro. Science (Wash. DC). 257:1404–1407.
Elion, E. A., P. L. Grissaf, and G. R. Fink. 1990. Fus3 encodes a cdc2/cdc28-
related kinase required for the transition from mitosis into conjugation. Cell.
60:649–664.
Gille, H., A. D. Sharrocks, and P. E. Shaw. 1992. Phosphorylation of trans-
scription factor p62CTCF by MAP kinase stimulates ternary complex forma-
tion at c-Fos promoter. Nature (Lon). 358:414–421.
Her, J., J. Wu, T. B. Rail, T. W. Sturgill, and M. J. Weber. 1991. Sequence
of pp42/MAP kinase, a serine/threonine kinase regulated by tyrosine phos-
phorylation. Nucleic Acids Res. 19:3743.
Kahan, C., K. Seuwen, S. Meloche, and J. Pouyssegur. 1992. Coordinate,
mitogenic activation of p44 mitogen activated protein kinase and S6 kinase by
growth factors in hamster fibroblasts. J. Biol. Chem. 267:13369–13375.
Kosako, H., Y. Gotoh, S. Matsuda, M. Ishikawa, and E. Nishida. 1992. Xen-
opus activator is a serine/threonine kinase activated by threonine phos-
phorylation. EMBO (Eur. Mol. Biol. Organ.) J. 11:2903–2908.

Lenormand et al. Immunolocalization of MAP Kinase and Its Activator
Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase reveals kinase cascade pathways in yeasts to vertebrates. *EMBO (Eur. Mol. Biol. Organ.) J.* 12:787-794.

Kreis, T. E. 1988. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:931-941.

Kyriakis, J. M., H. App, X. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. *Nature (Lond.)* 358:417-421.

L’Allemain, G., J. Her, R. L. Del Vecchio, and M. J. Weber. 1992a. Functional expression in mammalian cells of a full length cDNA coding for the pp42/MAP kinase (p42*ERK) protein. *FEBS (Fed. Eur. Biochem. Soc.) Lett.* 292:191-195.

L’Allemain, G., J. Her, J. Wu, T. W. Sturgill, and M. J. Weber. 1992b. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylations of pp42/microtubule-associated protein kinase. *Mol. Cell. Biol.* 12:2222-2229.

Lamy, F., F. Wilkin, M. Baptist, J. Posada, P. Roger, and J. E. Dumont. 1993. Phosphorylation of mitogen-activated protein kinases is involved in the epidermal growth factor and phorbol ester, but not in the thyrotropin/cAMP, thyroid mitogenic pathway. *J. Biol. Chem.* 268:8398-8401.

Lange-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.

Lamy-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.

Lamy-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.

Lamy-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.

Lamy-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.

Lamy-Carter, C. A., C. M. Pleiman, A. M. Gardner, K. J. Blumer, and T. W. Sturgill. 1991. Isolation and characterization of two growth factor-stimulated MAP kinase cascades for phosphorylation of ribosomal protein S6. *Proc. Natl. Acad. Sci. USA.* 88:7268-7272.