The number of eigenvalues of a tensor

Dustin Cartwright1

Yale University/MPIM Bonn

May 31, 2012

1joint with Bernd Sturmfels
Eigenvalues of a tensor

\[A = (a_{i_1,...,i_m}) : \text{order-} m \text{ tensor of size } n \times \cdots \times n \text{ with entries in } \mathbb{C} \]
Eigenvalues of a tensor

\[A = (a_{i_1, \ldots, i_m}) : \text{order-} m \text{ tensor of size } n \times \cdots \times n \text{ with entries in } \mathbb{C} \]

From this we have the operator on \(x \in \mathbb{C}^n \) written \(Ax^{m-1} \) and defined by

\[
(Ax^{m-1})_j = \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{j i_2 \ldots i_m} x_{i_2} \cdots x_{i_m}
\]
Eigenvalues of a tensor

\[A = (a_{i_1,\ldots,i_m}) \text{: order-}m \text{ tensor of size } n \times \cdots \times n \text{ with entries in } \mathbb{C} \]

From this we have the operator on \(x \in \mathbb{C}^n \) written \(Ax^{m-1} \) and defined by

\[
(Ax^{m-1})_j = \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{j i_2 \ldots i_m} x_{i_2} \cdots x_{i_m}
\]

Definition (Qi, Lim)

The \((E-)\)eigenvectors of \(A \) are the fixed points (up to scaling) of this operator:

\[
Ax^{m-1} = \lambda x \quad \text{ for } x \neq 0
\]
Eigenvalues of a tensor

\[A = (a_{i_1, \ldots, i_m}) : \text{order-}m \text{ tensor of size } n \times \cdots \times n \text{ with entries in } \mathbb{C} \]

From this we have the operator on \(x \in \mathbb{C}^n \) written \(Ax^{m-1} \) and defined by

\[
(Ax^{m-1})_j = \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{ji_2 \ldots i_m} x_{i_2} \cdots x_{i_m}
\]

Definition (Qi, Lim)

The \((E-)\)eigenvectors of \(A \) are the fixed points (up to scaling) of this operator:

\[Ax^{m-1} = \lambda x \quad \text{for } x \neq 0 \]

We will call \((\lambda, x)\) an eigenpair and consider them up to the equivalence:

\[(\lambda, x) \sim (t^{m-2}\lambda, tx) \quad \text{for any } t \neq 0 \]
The number of eigenpairs

Theorem (Ni-Qi-Wang-Wang, C-Sturmfels)

The number of equivalence classes of eigenpairs of A is either infinity or

$$\frac{(m-1)^n - 1}{m-2} = \sum_{i=0}^{n-1} (m-1)^i$$

when counted with multiplicity. For a generic tensor, there are exactly this many equivalence classes of eigenpairs.
The number of eigenpairs

Theorem (Ni-Qi-Wang-Wang, C-Sturmfels)

The number of equivalence classes of eigenpairs of A is either infinity or

$$\frac{(m - 1)^n - 1}{m - 2} = \sum_{i=0}^{n-1} (m - 1)^i$$

when counted with multiplicity. For a generic tensor, there are exactly this many equivalence classes of eigenpairs.

Given the first sentence, the second can be seen by considering the diagonal tensor

$$A_{i_1, \ldots, i_m} = \begin{cases} 1 & \text{if } i_1 = \cdots = i_m \\ 0 & \text{otherwise.} \end{cases}$$

It has exactly as many eigenvalues up to equivalence as the quantity in (1).
A proof for generic tensors

\[Ax^{m-1} = \lambda x \]

Substitute \(\lambda = \mu^{m-2} \):

\[Ax^{m-1} = \mu^{m-2}x \] (2)

\(n \) equations, homogeneous of degree \(m - 1 \) in \(\mu, x_1, \ldots, x_n \).
A proof for generic tensors

\[Ax^{m-1} = \lambda x \]

Substitute \(\lambda = \mu^{m-2} \):

\[Ax^{m-1} = \mu^{m-2} x \] \hspace{1cm} (2)

\(n \) equations, homogeneous of degree \(m - 1 \) in \(\mu, x_1, \ldots, x_n \).

By Bézout’s theorem, these have \((m - 1)^n \) solutions up to scaling.
A proof for generic tensors

\[Ax^{m-1} = \lambda x \]

Substitute \(\lambda = \mu^{m-2} \):

\[Ax^{m-1} = \mu^{m-2} x \] \hspace{1cm} (2)

\(n \) equations, homogeneous of degree \(m - 1 \) in \(\mu, x_1, \ldots, x_n \).

By Bézout’s theorem, these have \((m - 1)^n\) solutions up to scaling.

One solution is trivial:

\[(\mu : x_1 : \ldots : x_n) = (1 : 0 : \ldots : 0)\]

An equivalence class of eigenpairs with \(\lambda \neq 0 \) corresponds to \(m - 2 \) solutions of (2) by taking \(\mu \) to be the \(m - 2 \) roots of \(\lambda \). Thus, we get

\[\frac{(m - 1)^n - 1}{m - 2} \] eigenpairs
A proof for generic tensors

\[Ax^{m-1} = \lambda x \]

Substitute \(\lambda = \mu^{m-2} \):

\[Ax^{m-1} = \mu^{m-2}x \] \hspace{1cm} (2)

\(n \) equations, homogeneous of degree \(m - 1 \) in \(\mu, x_1, \ldots, x_n \).
By Bézout’s theorem, these have \((m - 1)^n \) solutions up to scaling.

One solution is trivial:

\[(\mu : x_1 : \ldots : x_n) = (1 : 0 : \ldots : 0) \]

An equivalence class of eigenpairs with \(\lambda \neq 0 \) corresponds to \(m - 2 \) solutions of (2) by taking \(\mu \) to be the \(m - 2 \) roots of \(\lambda \). Thus, we get

\[\frac{(m - 1)^n - 1}{m - 2} \] eigenpairs

Unfortunately, this approach cannot directly treat the case when \(\lambda = 0 \).
A geometric reinterpretation

\[\mathbb{P}^n = \left\{ (\mu : x_1 : \ldots : x_n) \neq 0 \right\} / (\mu : x_1 : \ldots : x_n) \sim (t\mu : tx_1 : \ldots : tx_n) \]

\[\downarrow \]

\[\tilde{\mathbb{P}}^n = \left\{ (\lambda : x_1 : \ldots : x_n) \neq 0 \right\} / (\lambda : x_1 : \ldots : x_n) \sim (t^{m-2}\lambda : tx_1 : \ldots : tx_n) \]
A geometric reinterpretation

Quotient of projective space by group which multiplies μ by $e^{2\pi i/(m-2)}$.

$$\mathbb{P}^n = \{(\mu : x_1 : \ldots : x_n) \neq 0 \}/(\mu : x_1 : \ldots : x_n) \sim (t\mu : tx_1 : \ldots : tx_n)$$

$$\downarrow$$

$$\tilde{\mathbb{P}}^n = \{(\lambda : x_1 : \ldots : x_n) \neq 0 \}/(\lambda : x_1 : \ldots : x_n) \sim (t^{m-2}\lambda : tx_1 : \ldots : tx_n)$$
A geometric reinterpretation

Quotient of projective space by group which multiplies μ by $e^{2\pi i/(m-2)}$.

$\mathbb{P}^n = \{ (\mu : x_1 : \ldots : x_n) \neq 0 \} / (\mu : x_1 : \ldots : x_n) \sim (t\mu : tx_1 : \ldots : tx_n)$

\downarrow

$\tilde{\mathbb{P}}^n = \{ (\lambda : x_1 : \ldots : x_n) \neq 0 \} / (\lambda : x_1 : \ldots : x_n) \sim (t^{m-2}\lambda : tx_1 : \ldots : tx_n)$

Summary of previous slide: lift the eigenvalue problem from $\tilde{\mathbb{P}}^n$ to \mathbb{P}^n, used Bézout’s theorem, and the fact that the quotient is $(m-2)$-to-1 except:

- when $x_1 = \cdots = x_n = 0$ (subtract this out anyways)
- when $\lambda = \mu = 0$ (as noted, exceptional from this perspective)
A geometric reinterpretation

Quotient of projective space by group which multiplies μ by $e^{2\pi i/(m-2)}$.

$$\mathbb{P}^n = \{(\mu : x_1 : \ldots : x_n) \neq 0\} / (\mu : x_1 : \ldots : x_n) \sim (t\mu : tx_1 : \ldots : tx_n)$$

$$\downarrow$$

$$\tilde{\mathbb{P}}^n = \{(\lambda : x_1 : \ldots : x_n) \neq 0\} / (\lambda : x_1 : \ldots : x_n) \sim (t^{m-2}\lambda : tx_1 : \ldots : tx_n)$$

Summary of previous slide: lift the eigenvalue problem from $\tilde{\mathbb{P}}^n$ to \mathbb{P}^n, used Bézout's theorem, and the fact that the quotient is $(m - 2)$-to-1 except:

- when $x_1 = \cdots = x_n = 0$ (subtract this out anyways)
- when $\lambda = \mu = 0$ (as noted, exceptional from this perspective)

Any quotient of a smooth variety is smooth where the group action is free. In this case, it so happens that the quotient is also smooth where $\mu = 0$.
Intersections in \mathbb{P}^n

$$\mathbb{P}^n = \{ (\lambda : x_1 : \ldots : x_n) \neq 0 \} / (\lambda : x_1 : \ldots : x_n) \sim (t^{m-2} \lambda : tx_1 : \ldots : tx_n)$$

The intersection of the eigenvalue equations in the rational Chow ring is

$$\frac{(m-1)^n}{m-2}.$$ \hfill (3)

(not an integer if $m > 3$.)
\[\tilde{\mathbb{P}}^n = \{(\lambda : x_1 : \ldots : x_n) \neq 0\}/(\lambda : x_1 : \ldots : x_n) \sim (t^{m-2} \lambda : tx_1 : \ldots : tx_n) \]

The intersection of the eigenvalue equations in the \textit{rational} Chow ring is

\[\frac{(m-1)^n}{m-2}. \] (3)

\text{(not an integer if } m > 3.\text{)} This quantity can be computed as the normalized volume of a polytope, but also as the quotient Bézout number by the order of the group of \((m-2)\text{th roots of unity.} \)
Intersections in $\tilde{\mathbb{P}}^n$

$\tilde{\mathbb{P}}^n = \{ (\lambda : x_1 : \ldots : x_n) \neq 0 \} / (\lambda : x_1 : \ldots : x_n) \sim (t^{m-2} \lambda : tx_1 : \ldots : tx_n)$

The intersection of the eigenvalue equations in the rational Chow ring is

$$\frac{(m-1)^n}{m-2}.$$ \hfill (3)

(not an integer if $m > 3$.)

This quantity can be computed as the normalized volume of a polytope, but also as the quotient Bézout number by the order of the group of $(m-2)$th roots of unity.

The unique singular point $x = 0$ counts for

$$\frac{1}{m-2}$$

so the number of equivalence classes of eigenvalues is

$$\frac{(m-1)^n}{m-2} - \frac{1}{m-2}$$
Corollaries

Theorem (Ni-Qi-Wang-Wang, C-Sturmfels)

The number of equivalence classes of eigenpairs of A is either infinity or

$$\frac{(m - 1)^n - 1}{m - 2} = \sum_{i=0}^{n-1} (m - 1)^i$$ \hspace{1cm} (1)

when counted with multiplicity. For a generic tensor, there are exactly this many equivalence classes of eigenpairs.

Corollary

For $m \geq 3$, the number of equivalence classes of eigenvalues grows exponentially in n.
Theorem (Ni-Qi-Wang-Wang, C-Sturmfels)

The number of equivalence classes of eigenpairs of A is either infinity or

$$\frac{(m - 1)^n - 1}{m - 2} = \sum_{i=0}^{n-1} (m - 1)^i$$

when counted with multiplicity. For a generic tensor, there are exactly this many equivalence classes of eigenpairs.

Corollary

If the entries of A are real and either m or n is odd, then A has at least one real eigenpair.

If m or n is odd, then the sum in (1) is odd.
Corollaries

Theorem (Ni-Qi-Wang-Wang, C-Sturmfels)

The number of equivalence classes of eigenpairs of A is either infinity or

$$\frac{(m - 1)^n - 1}{m - 2} = \sum_{i=0}^{n-1} (m - 1)^i$$

when counted with multiplicity. For a generic tensor, there are exactly this many equivalence classes of eigenpairs.

Corollary

The characteristic polynomial $\phi_A(\lambda)$ has degree

$$\frac{(m - 1)^n - 1}{m - 2} = \sum_{i=0}^{n-1} (m - 1)^i$$
The characteristic polynomial

The coefficients of the characteristic polynomial $\phi_A(\lambda)$ are polynomials in the entries of the tensor. It vanishes on eigenvalues whose eigenvector has been normalized to have $x \cdot x = 1$.
The characteristic polynomial

The coefficients of the characteristic polynomial $\phi_A(\lambda)$ are polynomials in the entries of the tensor. It vanishes on eigenvalues whose eigenvector has been normalized to have $x \cdot x = 1$.

More precisely: let $I \subset \mathbb{C}[a_{i_1,\ldots,i_m}, x_j, \lambda]$ be the ideal generated by:

$$\lambda x_1 - \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{1i_2\ldots i_m} x_{i_2} \cdots x_{i_n}$$

$$\vdots$$

$$\lambda x_n - \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{ni_2\ldots i_m} x_{i_2} \cdots x_{i_n}$$

$$x_1^2 + \cdots + x_n^2 - 1$$
The characteristic polynomial

The coefficients of the characteristic polynomial $\phi_A(\lambda)$ are polynomials in the entries of the tensor. It vanishes on eigenvalues whose eigenvector has been normalized to have $x \cdot x = 1$.

More precisely: let $I \subset \mathbb{C}[a_{i_1,...,i_m}, x_j, \lambda]$ be the ideal generated by:

$$
\lambda x_1 - \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{1i_2...i_m}x_{i_2} \cdots x_{i_n}
$$

$$
\vdots
$$

$$
\lambda x_n - \sum_{i_2=1}^{n} \cdots \sum_{i_m=1}^{n} a_{ni_2...i_m}x_{i_2} \cdots x_{i_n}
$$

$$
x_1^2 + \cdots + x_n^2 - 1
$$

The elimination ideal $I \cap \mathbb{C}[a_{i_1,...,i_m}, \lambda]$ is a principal ideal. If m is even, characteristic polynomial $\phi_A(\lambda)$ is the the generator of this ideal. If m is odd, the generator is $\phi_A(\lambda^2)$.

The roots of the characteristic polynomial

Normalized eigenvalues are roots of the characteristic polynomial but not necessarily conversely.

Example

Let A be the $2 \times 2 \times 2$ tensor with

$$a_{111} = a_{221} = 1 \quad \text{and} \quad a_{122} = a_{222} = \sqrt{-1}$$

and 0 entries elsewhere. The eigenvalue problem for A is:

$$x_1^2 + ix_1x_2 = \lambda x_1 \quad \text{and} \quad x_1x_2 + ix_2^2 = \lambda x_2.$$

This has a normalized eigenvalue of λ if and only $\lambda \neq 0$. Therefore, the characteristic polynomial is identically zero. Thus $\phi_A(0) = 0$, even though $\lambda = 0$ is not a (normalized) eigenvalue.
The roots of the characteristic polynomial

Example

Let A be the symmetric $2 \times 2 \times 2$ tensor with

\[
\begin{align*}
 a_{111} &= -2i \\
 a_{222} &= 1
\end{align*}
\]

\[
\begin{align*}
 a_{112} &= a_{121} = a_{211} = 1 \\
 a_{122} &= a_{212} = a_{221} = 0
\end{align*}
\]

Then the characteristic polynomial of A vanishes identically, but A has only a single normalized eigenvalue, namely 1.
Example

Let A be the symmetric $2 \times 2 \times 2$ tensor with

\[
\begin{align*}
 a_{111} &= -2i & a_{112} &= a_{121} = a_{211} = 1 \\
 a_{222} &= 1 & a_{122} &= a_{212} = a_{221} = 0
\end{align*}
\]

Then the characteristic polynomial of A vanishes identically, but A has only a single normalized eigenvalue, namely 1.

Why? Because A also has a non-normalized eigenpair with eigenvalue 1 and eigenvector $(1, i)$. For small perturbations of A, this can take on any value as a normalized eigenvalue.
Symmetric tensors

A tensor is symmetric if it is invariant under all permutations of the m factors.

Theorem

If A is symmetric, then A has at most

$$\frac{(m - 1)^n - 1}{m - 2}$$

distinct normalized eigenvalues.
Symmetric tensors

A tensor is symmetric if it is invariant under all permutations of the m factors.

Theorem

If A is symmetric, then A has at most

$$\frac{(m - 1)^n - 1}{m - 2}$$

distinct normalized eigenvalues.

Two caveats:

- As in the example on the previous slide, the characteristic polynomial of A may still vanish identically.
- There may also be infinitely many eigenvectors with the same normalized eigenvalue, and with a different method of normalization, these may yield infinitely many eigenvalues.
Symmetric tensors

A tensor is symmetric if it is invariant under all permutations of the m factors.

Theorem

If A is symmetric, then A has at most

$$\frac{(m - 1)^n - 1}{m - 2}$$

distinct normalized eigenvalues.

Two caveats:

- As in the example on the previous slide, the characteristic polynomial of A may still vanish identically.
- There may also be infinitely many eigenvectors with the same normalized eigenvalue, and with a different method of normalization, these may yield infinitely many eigenvalues.