Onco-epidemiology of domestic animals and targeted therapeutic attempts: perspectives on human oncology

Alessandro Di Cerbo · Beniamino Palmieri · Gionata De Vico · Tommaso Iannitti

Introduction

The growing market of animal health products may account for the potential revenue source of companion animal care. The animal health care has resulted in more than one billion sales in 2007 for Novartis, Pfizer and Heska (Kling 2007). The opportunity to carry out preclinical trials based on spontaneous tumors has been considered suitable to develop new effective drugs that could be quickly translated into clinical practice (De Vico et al. 2005; Porrello et al. 2006; Vail and MacEwen 2000). For instance, naturally occurring tumors in dogs share similarities with human cancer both in terms of histopathological features and biological behavior (Hahn et al. 1994). In the second half of the 1800s, a substantial parallel between the animal and human oncopathology had already been observed (Porrello et al. 2006). In 1937, evidence showed that spontaneous animal tumors were similar to their human counterpart and information retrieved from them might have clinical implications (Dobberstein 1937). In the early 1970s, the first World Health Organization (WHO) International Histological Classification of Tumors of Domestic Animals was published (Beveridge and Sobin 1974, 1976). It was followed by the TNM Classification of Tumors in Domestic Animals based on the guidelines of the TNM Classification of Malignant Tumors in Man (Owen 1980) showing that spontaneous canine and feline tumors are relevant models to study human cancers. We summarized such models in Table 1 according to the review from De Vico et al. (2005). Conversely, in vivo and in vitro models, based on rodents and cell lines, have displayed intrinsic limits, such as complexity of management (Schiffer 1997) and the experimental methods used to induce the pathology (Vail and Thamm 2004), which make them different from the human spontaneous diseases (De Vico et al. 2005; Moore and Siopes 2004).

Abstract The spontaneous tumor biology has been investigated with the support of animalists using animals as a preclinical model allowing translation of results in clinical practice. This review provides an insight into the field of comparative oncology. Evidence shows that companion animal health care is impressively growing in terms of development of new therapies and diagnostic tools, nutrition and disease prevention. However, even if most animal tumors might be a reliable model to study human carcinomas, many open questions, related to the opportunities to select and recruit new models in oncology, along with their legal and ethical implications, remain unanswered.

Keywords Animal models · Comparative oncology · Spontaneous tumors · Translational oncology
Searching criteria

We searched PubMed/MEDLINE using the keywords “spontaneous”, “animal”, “tumor”, “oncology” and “comparative” alone or in combination and cross-referencing among published papers. Selected papers from 1910 to 2013 were chosen on the basis of their content (evidence-based quality and reliability).

Epidemiology of cancer in dogs

Spontaneous canine tumors, such as prostate carcinoma, chondrosarcoma, which accounts for approximately 10 % of all primary bone tumors in dogs (Beveridge and Sobin 1976), axial osteosarcoma, which accounts for 80 % of all primary bone tumors in dogs (Thompson and Pool 2002) and synovial cell sarcoma, have been extensively described.

Table 1: Summary of tumor features shared between animals and humans (Allen et al. 2002)

Model	Kind of tumor	Features
Canine/Feline	Non-Hodgkin’s lymphoma	Equates to intermediate and high-grade non-Hodgkin’s lymphoma in humans
		Immune system alterations seem to be associated with a higher incidence
		of non-Hodgkin’s lymphoma
		Is very sensitive to chemotherapy
		Currently used as a model for testing new chemotherapeutics and new forms
		of immunotherapy, as well as for the study of multiple drug resistance;
		it has been used as a relevant model for (1) developing hypoxic cell
		markers, (2) studying the effect of whole-body hyperthermia on the
		pharmacokinetics of systemic chemotherapy and (3) studying autologous
		bone transplantation
Canine	Soft tissue sarcomas	Similar to pathological appearance, clinical presentation and behavior of
		human soft tissue sarcomas
		Respond to radiation therapy and chemotherapy in a manner similar to human
		pathology
		Hemangiosarcomas are extremely similar to human hemangiosarcomas with
		respect to histological pattern and metastatic behavior
Canine	Osteosarcomas	Similar to human osteosarcomas with respect to the histology, metastatic
		behavior and clinical evolution of the disease
Canine	Oral malignant melanomas	They are chemoresistant and share many immunological targets with human oral
		malignant melanomas
		Considered a relevant model for developing new immunotherapeutic approaches
		for both dogs and humans
		Both in dogs and humans, human tyrosinase DNA vaccination is safe and
		potentially effective
Canine	Transitional cell carcinomas	Share histological appearance, biological behavior and response to therapy
		with invasive human transitional cell carcinomas
		Considered a useful model for testing new photodynamic therapy technologies
		and chemotherapeutic combinations
Canine	Mast cell tumors	Mutation of exon 11 of c-kit occurs in 30–50% of advanced mast cell tumors
		and is similar to that usually occurring in 50–90% of human gastrointestinal
		stromal tumors
Canine/Feline	Mammary carcinomas	Very similar to human breast cancers because of their hormonal dependence,
		spontaneous development in middle-aged to older animals, metastatic
		behavior toward regional lymph nodes and lungs, as well as adhesion
		molecules and neoangiogenesis patterns
		Abnormalities in the nuclear DNA content have been documented in both
		malignant and benign canine mammary tumors, but are more frequent in human
		mammary carcinomas
		Mammary neoplasia in dogs may be a good molecular model for developing new
		antineoplastic strategies involving cyclin D1 and cyclin-dependent
		kinases
		Feline mammary carcinoma shows age incidence, histopathology and pattern
		of metastasis similar to human breast cancer
		Feline mammary carcinoma shares common features with human inflammatory
		mammary carcinoma and human mammary carcinoma with osteoclast-like giant
		cells
		Epidermal growth factor receptor-2 (HER-2) and recepteur d’origine nantais
		(RON) overexpressions qualify feline mammary carcinoma as homologous to
		human breast carcinomas which have poor prognosis
Canine	Seminomas	Metastases occur only in a small percentage of cases, whereas human
		seminomas have a marked tendency to metastasize
		Have a histogenetic behavior similar to that of human seminomas
Canine	Transmissible venereal tumor	Is considered a promising model to study human Kaposi’s sarcoma
		Percutaneous inoculation and intraarterial transplantation of tumor
		fragments in the canine lung result in predictable patterns of tumor growth
		resembling the solitary pulmonary nodules and metastatic disease found in
		humans
representing valuable models to study carcinogenesis (Vail et al. 1994). Most canine prostate carcinomas affect both elderly sexually intact dogs and dogs which had undergone surgical castration after reaching sexual maturity. In 2005–2009, a pilot study evaluated the incidence of spontaneous tumors in dogs living in the neighborhood of Venice and Vicenza (Vascellari et al. 2009). Two thousand five hundred and nine out of 296,318 canine cases of neoplasia were diagnosed during the first three years. The estimated annual tumor incidence rate per 100,000 dogs was 282, with an equal distribution of malignant and benign tumors between male and female dogs. Moreover, in pure breeds, a twofold higher incidence of malignant tumors, with respect to mixed breeds, was observed. The incidence increased with age in both genders. Due to the dissimilar methodologies and variable reference populations of both European and North American veterinary cancer registries, the occurrence of spontaneous tumors in pet animals has been underestimated (Bonnett et al. 1997; Dobson et al. 2002; Dorn et al. 1968; Parkin and Muir 1992; Priester and McKay 1980). The Animal Tumor Registry of Genoa (Italy) retrospectively showed that, from 1985 to 2002, 70 % of all cancer cases in female dogs were located in the breast (Merlo et al. 2008). The overall incidence of cancer was 99.3 per 100,000 dogs per year in male dogs and 272.1 in female dogs. Among domestic animal tumors, spontaneous squamous cell carcinomas provided additional information about the pathology of oral cancer (Gardner 1996). As far as oral tumors affecting dogs are concerned, malignant melanoma accounts for the 4 % of all canine tumors (MacEwen et al. 1999). Canine malignant melanomas and human melanomas are treated similarly using surgery and/or fractionated radiation therapy and immunological therapies (Vail and Thamm 2004; Bergman et al. 2003). Therefore, canine malignant melanomas are suitable models for new immunotherapeutic protocols in humans (Vail and Thamm 2004). Dogs and cats also frequently develop squamous cell carcinomas (Dorn and Priester 1976; Strafuss et al. 1976). Skin and subcutaneous tissue neoplasms are the most frequently recognized neoplastic disorders in domestic animals and can be caused by prolonged and continuous exposure to sunlight (Madewell 1981). Alimentary tract cancer in dogs has lower incidence, with ductal and acinar carcinomas occurring most frequently in females than in males while intranasal tumors account for 1–2 % of all canine neoplasms (Priester 1974). Primary bone cancer is the second most often detected in dogs, and its main risk factors are ionizing radiations, chemical carcinogens and viruses (Madewell 1981). Moreover, preexisting bone defects and skeletal abnormalities increase the risk factors from 60 up to 185 times for large and giant breeds with respect to small dogs (Tjalma 1966). As to primary brain tumors, they account for approximately 2 % of all cancer in human adults (McKinney 2004) and for 0.01 % in dogs (LeCouteur 1999). Specifically, gliomas are more common among brachycephalic breeds of dogs, especially boxers, English bulldogs and Boston terriers (Hayes 1976). High incidence rates were also detected for non-Hodgkin’s lymphoma in bitches and for non-Hodgkin’s lymphoma and skin cancer in male dogs (Merlo et al. 2008). Additionally, the incidence rate of cancer increased with age ranging between 23.7 and 763.2 in bitches and 16.5 and 237.6 in male dogs aged ≤3 and >9–11 years. Hemangiosarcoma, which can affect both cats and dogs, involves the musculoskeletal system, and mean survival time in dogs affected by this condition ranges from 267 (Ogilvie et al. 1996) to 780 days (Ward et al. 1994), depending on the disease stage. The ovarian and epithelial tumors, although quite rare in domestic animals, have been reported mainly in cats, dogs and horses (MacLachlan 1987). A single unique gonadoblastoma tumor affecting human males or females has been observed in the testicle of a dog (Turk et al. 1981). Spontaneous testicular tumors, which are quite common in aged dogs, are mainly seminomas (solitary, unilateral, more frequent in the right testicle and with a reduced possibility to develop metastases, if compared with humans) (Kennedy et al. 1992), Sertoli cell tumors and Leydig cell tumors, which can coexist together along with seminomas (Nielsen et al. 1995) and occur with the same frequency (MaioLino et al. 2004). MaioLino et al. suggested a possible correspondence between human spermatocytic seminomas and most canine seminomas in order to justify their low metastatic behavior, showing a potential predictive model for the development of a treatment protocol (MaioLino et al. 2004). Further, rare dog tumors are fibrosarcoma, rib, vertebral body and pelvis tumors (both in dogs and in cats) (Dernell et al. 1998; Pirkey-Ehrhart et al. 1995; Straw et al. 1992) and multiple myeloma (rare in cats and uncommon in dogs), which accounts for 8 % of all canine hematopoietic tumors and affects older dogs with no breed or sex predilection (Matus et al. 1986) and intracranial central neurocytomas (Russell and Burch 1959). Canine mast cell tumors, which account for 16–21 % in this species (Thamm and Vail 2001), display a molecular alteration in the proto-oncogene c-kit, which is involved in mast cell differentiation, proliferation, survival and activation (London et al. 1999). Specifically, the mutation of exon 11 of c-kit occurs in 30–50 % of advanced mast cell tumors and is similar to that usually occurring in 50–90 % of human gastrointestinal stromal tumors (Heinrich et al. 2002; London et al. 2003). This evidence emphasizes a parallel between human and canine mast cell tumors underlying the possibility of using the canine model to develop new beneficial therapeutics for both species (Pryer et al. 2003). Non-Hodgkin lymphoma, which accounts for 5 % of all malignant tumors and 83 % of all hematopoietic malignancies in dogs (Vail
Epidemiology of cancer in cats

Spontaneous osteosarcomas account for more than 70% of malignant bone tumors in cats (Thompson and Pool 2002; Brodey and Riser 1969). These tumors are relevant to human cancer biology, due to their relative resistance to chemotherapy (He et al. 2014) and widespread metastatic potential. Injection-site sarcomas in felines, usually fibrosarcomas, are caused by an intense inflammatory reaction or vaccination adjuvants (Carwardine et al. 2013) and have extensively been reviewed (Hauck 2003). They are highly locally invasive and metastasize in up to 23% of the affected cases (Seguin 2002). Although aggressive surgical resection remains the gold standard therapy, chemotherapy and radiation can prolong the survival times (Hershey et al. 2000; Kobayashi et al. 2002). Uterine tumors, rare in cats, account for 0.29% of feline neoplasms (Miller et al. 2003), and they include endometrial adenocarcinoma, mixed Mullerian tumor, leiomyoma which occurs most frequently (MacLachlan and Kennedy 2002) and myxoid leiomyosarcoma (Cooper et al. 2006). Even if the etiology of nervous system tumors is not well understood, cats are commonly affected by meningiomas (Troxel et al. 2003). However, the biological behavior of such tumor, except for the anaplastic type, is generally considered benign in both humans (Louis et al. 2007) and common pets like dogs and cats (Motta et al. 2004). A pilot study evaluated the incidence of spontaneous tumors in cats living in the neighborhood of Venice and Vicenza (Vascellari et al. 2009). Four hundred and ninety-four out of 214,683 feline cases of neoplasia were diagnosed during the first three years. For all tumors, the estimated annual incidence rate in cats per 100,000 was 77. Furthermore, a 4.6-fold higher incidence of malignant tumors was observed in cats, if compared to benign pathology. Moreover, in pure breed cats, a twofold higher incidence of malignant tumors was observed and it increased with age in both malignant and benign pathologies, if compared with mixed breeds.

Translation of experimental studies into the clinical setting

In 2009, Wells introduced the potential role of pets in offering a therapeutic value to humans (Wells 2009b, 2012). Previous reports emphasized the role of dogs and cats as preventers of ill-health showing that pet owners are healthier than non-owners (Parslow et al. 2005; Wells 2009a; Wilson 1991; Serpell 1991; Allen et al. 2002; Anderson et al. 1992; Baun et al. 1984; Dembicki and Anderson 1996; Friedmann et al. 1980; Katcher 1981; Katcher et al. 1983; Larson et al. 2010; Sebkova 1977; Siegel 1993; Vormbrock and Grossberg 1988). Furthermore, the ability of pets to facilitate human recovery has been explored (Larson et al. 2010). For instance, Friedmann et al. reported that pet owners were significantly more likely to be alive 1 year after a heart attack than non-owners (Friedmann et al. 1980) and dogs were stronger facilitators to recovery from ill-health than cats (Friedmann and Thomas 1995). Therefore, dogs may contribute indirectly to long-standing human physical health, which is of great importance, especially in immunocompromised patients (Hemsworth and Pizer 2006), possibly due to the increased physical activity which typically characterizes the ownership of a dog (Larson et al. 2010). Dogs have also been used as warning systems for cancer (Williams and Pembroke 1989), epilepsy (Brown and Strong 2001; Dalziel et al. 2003; Strong et al. 1999, 2002) and diabetes (Chen et al. 2000; Lim et al. 1992;McAulay et al. 2001). They have also been used as therapists in nursing homes (Crowley-Robinson et al. 1996; Fick 1993; Kaiser et al. 2002), visitors in pediatric hospital wards (Moody et al. 2002), assistants for the disabled (Davis et al. 2004; Fishman 2003;Sanders 2000), enhancers of psychological welfare (Raina et al. 1999) and rehabilitators for prisoners (Merriam-Arduini 2000; Strimple 2003).

Discussion

Comparative oncology research has extensively relied on domestic animals (Antinoff and Hahn 2004; Hansen and Khanna 2004; Hershey et al. 2005; Nasir and Reid 1999; Seltenhammer et al. 2004; Withrow and Vail 2007). The Comparative Oncology Trials Consortium Program Infrastructure, founded in 2009 to design and execute clinical trials involving dogs affected by cancer and in collaboration with the drug manufacturing industry and nongovernmental groups interested in cancer drug development, aimed to answer biological questions which could inform the development path of novel agents for future use in human cancer patients in a timely and integrated manner (Gordon et al. 2009). The recent identification of the canine genome has provided evidence of strong similarities with humans (Lindblad-Toh et al. 2005; O’Brien and Murphy 2012).
such as several cancer-associated gene families (Hoffman and Birney 2007), as well as the presence of the similar genetic cancer-associated molecular alterations (Haga et al. 2001; Setoguchi et al. 2001; Thomas et al. 2003). Tumor initiation and progression are also influenced by age, nutrition, sex, reproductive status and environmental exposures in both human and canine cancers (Bukowski et al. 1998; Hayes and Fraumeni 1977; Misdorp 1996; Mukaratirwa 2005; Olson 2007; Patronek et al. 1997). The lack of gold standards for the management of cancer in dogs and cats, as well as the high motivation of pet owners to seek out new options for its management, underlines the increasing need to evaluate novel therapeutic options in these populations. In this ways, it is possible to assess the effectiveness of new agents when given alone or in combination with other therapies prior to the clinical testing of the drug.

Conclusions

The enrollment of pet dogs in preclinical and clinical trials is now focusing on new anti-neoplastic drug research and development. Although regulation of animal research possesses guidelines such as the three Rs (Replacement, Reduction and Refinement) (Russell and Burch 1959), legal implications regarding the use of animal models for research purposes are still debated (Griffin 1998; Porrello et al. 2004). Although the existence of spontaneous pet tumors could be a reliable model for human cancers, many open questions, related to the opportunities to select and recruit new types of animal models in oncology and to their legal and ethical implications, remain unanswered. Unfortunately, the use of spontaneous animal models implicates several professional and ethical warnings with conflicting debates. In the recent years, researchers have also focused their exploration on a possible role of some dog species as early warning systems for cancer (Williams and Pembroke 1989), epilepsy (Brown and Strong 2001; Dalziel et al. 2003; Strong et al. 1999, 2002) and diabetes (Chen et al. 2000; Lim et al. 2007; Patronek et al. 1997). The lack of gold standards for the management of cancer in dogs and cats, as well as the high motivation of pet owners to seek out new options for its management, underlines the increasing need to evaluate novel therapeutic options in these populations. In this ways, it is possible to assess the effectiveness of new agents when given alone or in combination with other therapies prior to the clinical testing of the drug.

In fact, the shorter life span of animals, compared with that of humans, can give a rapid overview of many clinical features which also characterize human cancer. Furthermore, the pooling of anecdotal veterinary reports on drugs or multimodal animal cancer treatments, protocols and outcomes, including surgical pathology, oncoimmunology and molecular biology investigations, will give outstanding contribution to the interspecies translational information with undoubted mutual interspecies benefit. The pet psychological and physical support to the fitness and wellness of cancer patients should be more deeply investigated and largely extended in the palliation practice.

Acknowledgments The authors contributed equally to this work. This review was not supported by grants. We thank Dr. Sergio Canello and Dr. Gianandrea Guidetti for their professional advice.

Conflict of interest ADC, BP, GDV and TI have no known conflict of interest to declare regarding the material discussed in this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Allen K, Blascovich J, Mendes WB (2002) Cardiovascular reactivity and the presence of pets, friends, and spouses: the truth about cats and dogs. Psychosom Med 64:727–739
Anderson WP, Reid CM, Jennings GL (1992) Pet ownership and risk factors for cardiovascular disease. Med J Aust 157:298–301
Antinoff N, Hahn K (2004) Ferret oncology: diseases, diagnostics, and therapeutics. Vet Clin North Am Exot Anim Pract 7:579–625, vii. doi:10.1016/j.cexv.2004.05.001
Baum MM, Bergstrom N, Langston NF, Thoma L (1984) Physiological effects of human/companion animal bonding. Nurs Res 33:126–129
Bergman PJ et al (2003) Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 9:1284–1290
Beveridge WI, Sobin LH (1974) International histological classification of tumours of domestic animals. Introduction. Bull World Health Org 50:1–6
Beveridge WI, Sobin LH (1976) International histological classification of tumours of domestic animals: introduction. Bull World Health Org 53:137–141
Bonnett BN, Egenvall A, Olson P, Hedhammar A (1997) Mortality in insured Swedish dogs: rates and causes of death in various breeds. Vet Rec 141:40–44
Brodey RS, Riser WH (1969) Canine osteosarcoma. A clinicopathologic study of 194 cases. Clin Orthop Relat Res 62:54–64
Brown SW, Strong V (2001) The use of seizure-alert dogs. Seizure 10:39–41. doi:10.1053/seiz.2000.0481
Bukowski JA, Wartenberg D, Goldschmidt M (1998) Environmental causes for simoncasal cancers in pet dogs, and their usefulness as sentinels of indoor cancer risk. J Toxicol Environ Health A 54:579–591
Carwardine D, Friend E, Toscano M, Bowlt K (2013) UK owner preferences for treatment of feline injection site sarcomas. J Small Anim Pract. doi:10.1111/jsap.12162
Louis DN et al (2007) The WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

MacEwen EG (1995) The dog as a model for clinical trials and pharmacology in comparative oncology. In: Spontaneous animal tumours: a survey. In: Rossi R, Richardshon R, Harshbarger J (eds) First world conference on spontaneous animal tumours. Genoa, Italy, pp 299–304

MacEwen EG, Young KM (1996) Canine lymphoma and lymphoid leukemias. In: Withrow SJME (ed) Small animal clinical oncology, 2nd edn. WB Saunders Company, Philadelphia

MacEwen EG et al (1999) Adjuvant therapy for melanoma in dogs: results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin Cancer Res 5:4249–4258

MacLachlan NJ (1987) Ovarian disorders in domestic animals. Environ Health Perspect 73:27–33

MacLachlan NJ, Kennedy PC (2002) Tumors of the genital system, 4th edn. Iowa State Press, Ames

Madewell BR (1981) Neoplasms in domestic animals: a review of experimental and spontaneous carcinogenesis. Yale J Biol Med 54:111–125

Maiolino P, Restucci B, Papparella S, Paciello O, De Vico G (2004) Correlation of nuclear morphometric features with animal and human World Health Organization International Histological Classifications of canine spontaneous seminomas. Vet Pathol 41:608–611. doi:10.1354/vp.41-6-608

Matus RE, Liefer CE, MacEwen EG, Hurvitz Al (1986) Prognostic factors for multiple myeloma in the dog. J Am Vet Med Assoc 188:1288–1292

Maulay V, Deary IJ, Frier BM (2001) Symptoms of hypoglycaemia in people with diabetes. Diabet Med 18:690–705

Mckinney PA (2004) Brain tumours: incidence, survival, and aetiology. J Neurol Neurosurg Psychiatry 75(Suppl 2):ii12–ii17

Merriam-Arduini S (2000) Evaluation of an experimental program designed to have a positive effect on adjudicated violent, incarcerated male juveniles age 12–25 in the state of Oregon. Pepperdine University

Miller MA et al (2003) Uterine neoplasia in 13 cats. J Vet Diagn Invest 15:515–522

Misdorp W (1996) Veterinary cancer epidemiology. Vet Q 18:32–36. doi:10.1080/01652176.1996.9604610

Moody WJ, King R, O’Rourke S (2002) Attitudes of paediatric medical ward staff to a dog visitation programme. J Clin Nurs 11:537–544

Moore CB, Siopes TD (2004) Spontaneous ovarian adenocarcinoma in the domestic turkey breeder hen (Meleagris gallopavo): effects of photoperiod and melatonin. Neuro Endocrinol Lett 25:94–101

Motta L, Mandara MT, Serritelli GC (2012) Canine and feline intracranial meningiomas: an updated review. Vet J 192:153–165. doi:10.1016/j.tvjl.2011.10.008

Mukaratirwa S (2005) Prognostic and predictive markers in canine tumours: rationale and relevance. A review. Vet Q 27:52–64. doi:10.1080/01652176.2005.9695186

Nasir L, Reid SW (1999) Bovine papillomavirus gene expression in equine sarcoid tumours. Virus Res 61:171–175

Nielsen SW, Kennedy PC (1990) Tumours of the genital system. In: Nasir L, Reid SW (1999) Bovine papillomaviral gene expression in domestic animals, 4th edn. Iowa State Press, Ames, pp 479–491

O’Brien SJ, Murphy WJ (2003) Genomics. A dog’s breakfast? Science (New York, NY) 301:1854–1855. doi:10.1126/science.1090531

Ogilvie GK, Powers BE, Mallinckrodt CH, Withrow SJ (1996) Surgery and doxorubicin in dogs with hemangiosarcoma. J Vet Intern Med 10:379–384

Olson PN (2007) Using the canine genome to cure cancer and other diseases. Theriogenology 68:378–381. doi:10.1016/j.theriogenology.2007.04.016

Ostrander EA, Giger U, Lindblad-Toh K (2006) The dog and its genome. Cold Spring Harbor Laboratory, New York

Owen LN (1980) Clinical stages (TNM) of canine mammary tumours. In: Owen LN (ed) TNM Classification of tumours in Domestic Animals. World Health Organization, Geneva, Switzerland, pp 16–18

Parkin DM, Muir CS (1992) Cancer incidence in five continents. Comparability and quality of data. IARC Sci Pub 120:45–173

Parlow RA, Jorm AE, Christensen H, Rodgers B, Jacob P (2005) Pet ownership and health in older adults: findings from a survey of 2,551 community-based Australians aged 60–64. Gerontology 51:40–47. doi:10.1159/000081433

Pathonek GJ, Waters DJ, Glickman LT (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52:B171–B178

Pirkey-Ehrhart N et al (1995) Primary rib tumours in 54 dogs. J Am Anim Hosp Assoc 31:65–69

Porrello A, Cardelli P, Spugnini EP (2004) Pet models in cancer research: general principles. J Exp Clin Cancer Res 23:181–193

Porrello A, Cardelli P, Spugnini EP (2006) Oncology of companion animals as a model for humans. an overview of tumor histotypes. J Exp Clin Cancer Res 25:97–105

Priester WA (1974) Data from eleven United States and Canadian colleges of veterinary medicine on pancreatic carcinoma in domestic animals. Cancer 34:1372–1375

Priester WA, McKay FW (1980) The occurrence of tumours in domestic animals. Natl Cancer Inst Monogr 54:1–210

Pryer NK, Lee LB, Zadovaskaya R, Yu X, Sukbuntherng J, Cherrington JM, London CA (2003) Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumours. Clin Cancer Res 9:5729–5734

Raina P, Wallner-Toews D, Bonnett B, Woodward C, Abernathy T (1999) Influence of companion animals on the physical and psychological health of older people: an analysis of a one-year longitudinal study. J Am Soc Geriatr Dent 47:323–329

Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

Sanders CR (2000) The impact of guide dogs on the identity of people with visual impairments. Anthrozoos 13:131–139

Seguin B (2002) Feline injection site sarcomas. Vet Clin N Am Small Anim Pract 28:983–995, viii

Seltenhammer MH, Heere-Ress E, Brandt S, Druml T, Jansen B, Pehamberger H, Niebauer GW (2004) Comparative histopathology of grey-horse-melanoma and human malignant melanoma. Pigment Cell Res 17:674–681. doi:10.1111/j.1600-0749.2004.00192.x

Sheffler TP (1997) Animal welfare and colony management in cancer research. Breast Cancer Res Treat 46:313–331

Sibikova J (1977) Anxiety levels as affected by the presence of a dog. University of Lancaster

Seguin B (2002) Feline injection site sarcomas. Vet Clin N Am Small Anim Pract 28:983–995, viii

Seltenhammer MH, Heere-Ress E, Brandt S, Druml T, Jansen B, Pehamberger H, Niebauer GW (2004) Comparative histopathology of grey-horse-melanoma and human malignant melanoma. Pigment Cell Res 17:674–681. doi:10.1111/j.1600-0749.2004.00192.x

Serpell J (1991) Beneficial effects of pet ownership on some aspects of human health and behaviour. J R Soc Med 84:717–720

Setoguchi A et al (2001) Aberrations of the p53 tumor suppressor gene in various tumors in dogs. Am J Vet Res 62:433–439

Siegel JM (1993) Companion animals-in sickness and in health. J Soc Issues 49:157–167

Sterruss AC, Cook JE, Smith JE (1976) Squamous cell carcinoma in dogs. J Am Anim Hosp Assoc 16:425–427

Straw RC, Withrow SJ, Powers BE (1992) Partial or total hemipelvectomy in the management of sarcomas in nine dogs and two cats. Vet Surg 21:183–188
Strimple EO (2003) A history of prison inmate-animal interaction programs. Am Behav Sci 47:70–78
Strong V, Brown SW, Walker R (1999) Seizure-alert dogs–fact or fiction? Seizure 8:62–65. doi:10.1053/seiz.1998.0250
Strong V, Brown S, Huyton M, Coyle H (2002) Effect of trained Seizure alert dogs on frequency of tonic-clonic seizures. Seizure 11:402–405
Thamm DH, Vail DM (2001) Mast cell tumors. In: Withrom SJME (ed) Small animal clinical oncology, 3rd edn. W.B Saunders Company, Philadelphia, pp 261–282
Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M (2003) Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537. doi:10.1038/sj.bjc.6601275
Thompson KG, Pool RR (2002) Tumors of bones. In: Meuten J (ed) Tumors in domestic animals, 4th ed. Blackwell (IA): Iowa State Press, Iowa, pp 245–317
Tjalma RA (1966) Canine bone sarcoma: Estimation of relative risk as a function of body size. J Natl Cancer Inst 36:1137–1150
Troxel MT et al (2003) Feline intracranial neoplasia: retrospective review of 160 cases (1985–2001). J Vet Intern Med 17:850–859
Turk JR, Turk MA, Gallina AM (1981) A canine testicular tumor resembling gonadoblastoma. Vet Pathol 18:201–207
Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18:781–792
Vail DM, Thamm DH (2004) Spontaneously occurring tumors in companion animals as models for drug development. In: Theicher BAAP (ed) Cancer drug discovery and development: anticancer drug development guide: preclinical screening, clinical trial, and approval, 2nd edn. Humana Press Inc., Totowa
Vail DM et al (1994) Evaluation of prognostic factors for dogs with synovial sarcoma: 36 cases (1986–1991). J Am Vet Med Assoc 205:1300–1307
Vascellari M, Baioni E, Ru G, Carminati A, Mutinelli F (2009) Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats. BMC Vet Res 5:39. doi:10.1186/1746-6148-5-39
Vormbrock JK, Grossberg JM (1988) Cardiovascular effects of human-pet dog interactions. J Behav Med 11:509–517
Ward H, Fox LE, Calderwood-Mays MB, Hammer AS, Couto CG (1994) Cutaneous hemangiosarcoma in 25 dogs: a retrospective study. J Vet Intern Med 8:345–348
Wells DL (2009a) Associations between pet ownership and self-reported health status in people suffering from chronic fatigue syndrome. J Altern Complement Med (New York, NY) 15:407–413. doi:10.1089/acm.2008.0496
Wells DL (2009b) The effects of animals on human health and well-being. J Soc Issues 65:523–543
Wells DL (2012) Dogs as a diagnostic tool for ill health in humans. Alter Ther Health Med 18:12–17
Williams H, Pembroke A (1989) Sniffer dogs in the melanoma clinic? Lancet 1:734
Willis CM et al (2004) Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ 329:712. doi:10.1136/bmj.329.7468.712
Wilson CC (1991) The pet as an anxiolytic intervention. J Nerv Ment Dis 179:482–489
Withrow SJ, Vail DM (2007) Withrow & MacEwen’s small animal clinical oncology. Saunders Elsevier, St. Louis