Erdős-Hajnal-type results for ordered paths

János Pach †‡
István Tomon ‡§

Abstract

An ordered graph is a graph with a linear ordering on its vertex set. We prove that for every positive integer k, there exists a constant $c_k > 0$ such that any ordered graph G on n vertices with the property that neither G nor its complement contains an induced monotone path of size k, has either a clique or an independent set of size at least n^{c_k}. This strengthens a result of Bousquet, Lagoutte, and Thomassé, who proved the analogous result for unordered graphs.

A key idea of the above paper was to show that any unordered graph on n vertices that does not contain an induced path of size k, and whose maximum degree is at most $c(k)n$ for some small $c(k) > 0$, contains two disjoint linear size subsets with no edge between them. This approach fails for ordered graphs, because the analogous statement is false for $k \geq 3$, by a construction of Fox. We provide further examples how this statement fails for ordered graphs avoiding other ordered trees as well.

1 Introduction

Erdős and Hajnal [10] proved that graphs avoiding some fixed induced subgraph or subgraphs have very favorable Ramsey-theoretic properties. In particular, they contain surprisingly large homogeneous (that is, complete or empty) subgraphs and bipartite subgraphs. According to the celebrated Erdős-Hajnal conjecture, every graph G on n vertices which does not contain some fixed graph H as an induced subgraph, has a clique or an independent set of size at least n^{c}, where $c = c(H) > 0$ is a constant that depends only on H. There is a rapidly growing body of literature studying this conjecture (see, e.g., [1, 2, 5, 6, 8, 11, 13, 15, 23]).

For any graph G and any disjoint subsets $A,B \subset V(G)$, we say that A is complete to B if $ab \in E(G)$ for every $a \in A, b \in B$. If $|A| = |B| = k$ and A is complete to B, then A and B are said to form a bi-clique of size k. Denote the maximum degree of the vertices in G by $\Delta(G)$. Following [13], a family of graphs \mathcal{G} is said to have the Erdős-Hajnal property if there exists a constant $c = c(\mathcal{G}) > 0$ such that every $G \in \mathcal{G}$ has either a clique or an independent set of size at least $|V(G)|^c$. The family \mathcal{G} has the strong Erdős-Hajnal property if there exists a constant $b = b(\mathcal{G}) > 0$ such that for every $G \in \mathcal{G}$, either G or its complement \overline{G} has a bi-clique of size $b|V(G)|$. It was proved in [1]
that if a hereditary family (that is, a family closed under taking induced subgraphs) has the strong Erdős-Hajnal property, then it also has the Erdős-Hajnal property.

The aim of this paper is to discuss Erdős-Hajnal type problems for ordered graphs. An ordered graph is a graph with a total ordering on its vertex set. With a slight abuse of notation, in every ordered graph, we denote this ordering by \prec. If the vertex set of G is a subset of the integers, then \prec stands for the natural ordering. An ordered graph H is an ordered subgraph (or simply subgraph) of G if there exists an order preserving embedding from $V(H)$ to $V(G)$ that maps edges to edges. If, in addition, non-edges are mapped into non-edges, then H is called an induced ordered subgraph of G. If G does not have H as induced ordered subgraph, then we say that G avoids H. The ordered path with vertices $1, \ldots, k$ and edges $\{i, i+1\}$, for $i = 1, \ldots, k - 1$, is called a monotone path of size k.

Our main result is the following.

Theorem 1. For any positive integer k, there exists $c = c(k) > 0$ with the following property. If G is an ordered graph on n vertices such that neither G nor its complement contains an induced monotone path of size k, then G has either a clique or an independent set of size at least n^c.

Our theorem obviously implies the analogous statement for unordered graphs, which was first established by Bousquet, Lagoutte, and Thomassé [5]. The idea of their proof was the following. We call a family of graphs, \mathcal{H}, lopsided if there exists a constant $c = c(\mathcal{H}) > 0$ with the following property: any graph G on n vertices which does not contain any element of \mathcal{H} as an induced subgraph, and for which $\Delta(G) < cn$, the complement of G has a bi-clique of size at least cn. If \mathcal{H} consists of a single graph H, then H is called lopsided. They proved that the (unordered) path of size k is lopsided. It follows from the arguments of Bousquet et al. that if \mathcal{H} is lopsided, then the family of all graphs which avoid every element of \mathcal{H} as an induced subgraph, and whose complements also avoid them, has the strong Erdős-Hajnal and, thus, the Erdős-Hajnal property.

Since then, this idea has been exploited to prove the Erdős-Hajnal conjecture for various other families of graphs: the family of graphs avoiding a tree T and its complement [8], the family of graphs avoiding all subdivisions of a graph H and the complements of these subdivisions [9], the family of graphs avoiding a graph H as a vertex minor [7], families of graphs avoiding a fixed cycle as a pivot minor [16], etc.

However, for ordered graphs, this method does not work even in the simplest case: for monotone paths. A construction of Fox [12] shows that, for every n and $\delta > 0$, there exists an ordered graph G with $|V(G)| = n$ and $\Delta(G) < n^\delta$ which avoids the monotone path of size 3, and whose complement does not contain a bi-clique of size larger than $\frac{cn}{\log n}$, for a suitable constant $c = c(\delta) > 0$. Hence, using the above terminology, the monotone path of size at least 3 is not lopsided.

Although monotone paths are not lopsided, they satisfy a somewhat weaker property, as is shown by the following theorem of the authors.

Theorem 2. ([19]) For any positive integer k, there exists a constant $c = c(k) > 0$ with the following property. If G is an ordered graph on n vertices that does not contain an induced monotone path of size k, and $\Delta(G) < cn$, then the complement of G contains a bi-clique of size at least $\frac{cn}{\log n}$.
Unfortunately, Theorem 1 cannot be deduced from this weaker property. Our approach is based on a technique in [24], where it was shown that the family of string graphs has the Erdős-Hajnal property.

Recently, Seymour, Scott, and Spirkl [23] extended our Theorem 2 from monotone paths to all ordered forests T, albeit with a weaker bound $n^{1-o(1)}$ in place of $cn \log n$. They proved that for any $0 < c < 1$, there exists $\epsilon = \epsilon(T,c) > 0$ with the following property. If G is an ordered graph on n vertices that does not contain T as an induced ordered subgraph and $\Delta(G) < \epsilon n^{1-c}$, then the complement of G contains a bi-clique of size at least ϵn^{1-c}. Therefore, if we want to guarantee a bi-clique of size $n^{1-o(1)}$ in G, we need to assume that the maximum degree of G is $o(n)$. This is definitely a stronger condition than the one we had for monotone paths.

Our next construction shows that this stronger condition is indeed necessary. We also provide new examples of ordered trees T (that do not contain a monotone path of size 3), for which one cannot expect to find linear size bi-cliques.

Theorem 3. For any $\epsilon > 0$ there exist $\delta = \delta(\epsilon) > 0$ and $n_0 = n_0(\epsilon)$ with the following property.

For any positive integer $n \geq n_0$, there is an ordered graph G with n vertices and $\Delta(G) \leq \epsilon n$ such that the size of the largest bi-clique in \overline{G} is at most $n^{1-\delta}$, and G does not contain either of the following ordered trees as an induced ordered subgraph:

$S:\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}$

$P:\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}$

The investigation of bipartite variants of the problems considered in this paper were initiated in [17]; see also [3, 22].

Our paper is organized as follows. In Section 2, we introduce the key concept needed for the proof of Theorem 1 and reduce Theorem 1 to another statement (Theorem 6). Sections 3 and 4 are devoted to the proof of this latter statement. The construction proving Theorem 3 will be presented in Sections 5.

Throughout this paper, we use the following notation, which is mostly conventional. For any graph G and any subset $U \subset V(G)$, we denote by $G[U]$ the subgraph of G induced by U. The neighborhood of U is defined as $N_G(U) = N(U) = \{v \in V(G) \setminus U : \exists u \in U, uv \in E(G)\}$. If $U = \{u\}$, instead of $N(U)$, we simply write $N(u)$. For a vertex $v \in V(G)$, let $G - v$ stand for the graph obtained from G by deleting the vertex v. Also, if G is an ordered graph, the forward neighbourhood of a vertex $v \in V(G)$, denoted by $N^+_G(v) = N^+(v)$ is the set of neighbours y such that $x \prec y$.

For easier readability, we omit the use of floors and ceilings, whenever they are not crucial.

2 The quasi-Erdős-Hajnal property

After introducing some notation and terminology, we outline our proof strategy for Theorem 1.

For any $k \geq 3$, let \mathcal{P}_k denote the family of all ordered graphs G such that neither G nor its complement contains a monotone path of size k as an induced subgraph. Instead of proving that \mathcal{P}_k has the Erdős-Hajnal property, we prove that it has the quasi-Erdős-Hajnal property. This concept
was introduced by the second named author in [24], in order to show that the family of string graphs has the Erdős-Hajnal property.

Definition 4. A family of graphs, \mathcal{G}, has the quasi-Erdős-Hajnal property if there is a constant $c = c(\mathcal{G}) > 0$ with the following property. For every $G \in \mathcal{G}$ with at least 2 vertices, there exist $t \geq 2$ and t disjoint subsets $X_1, \ldots, X_t \subset V(G)$ such that $t \geq (|V(G)|/|X_i|)^c$ for $i = 1, \ldots, t$, and

(i) either there is no edge between X_i and X_j for $1 \leq i < j \leq t$,

(ii) or X_i is complete to X_j for $1 \leq i < j \leq t$.

It was proved in [24] that in hereditary families, the quasi-Erdős-Hajnal property is equivalent to the Erdős-Hajnal property. We somewhat relax the definition of the quasi-Erdős-Hajnal property, and with a slight abuse of notation, we overwrite the previous definition as follows.

Definition 5. A family of graphs, \mathcal{G}, has the quasi-Erdős-Hajnal property if there are two constants, $\alpha, \beta > 0$, with the following property. For every $G \in \mathcal{G}$ with at least 2 vertices, there exist $t \geq 2$ and t disjoint subsets $X_1, \ldots, X_t \subset V(G)$ such that $t \geq \alpha(|V(G)|/|X_i|)^\beta$ for $i = 1, \ldots, t$, and

(i) either there is no edge between X_i and X_j for $1 \leq i < j \leq t$,

(ii) or X_i is complete to X_j for $1 \leq i < j \leq t$.

It is easy to verify that the two definitions are in fact equivalent. If \mathcal{G} satisfies Definition 4, then, obviously, it also satisfies Definition 5. In the reverse direction, setting $c = \frac{\beta}{1 - \log_2 \alpha}$ if $\alpha \leq 1$, and $c = \beta$ if $\alpha > 1$, if the inequality $t \geq \alpha(|V(G)|/|X_i|)^\beta$ holds for some $t \geq 2$, then we also have $t \geq (|V(G)|/|X_i|)^c$.

Therefore, it is enough to show that \mathcal{P}_k has the quasi-Erdős-Hajnal property. The advantage of the quasi-Erdős-Hajnal property compared to the Erdős-Hajnal property is that it allows us to establish the following lopsided statement, which will imply Theorem 1.

Theorem 6. For every positive integer k, there exist two constants $\epsilon, \alpha > 0$ with the following property.

Let G be an ordered graph on n vertices with maximum degree at most en such that G does not contain a monotone path of size k as an induced subgraph. Then there exist $t \geq 2$ and t disjoint subsets $X_1, \ldots, X_t \subset V(G)$ such that $t \geq \alpha(n/|X_i|)^{1/2}$ and there is no edge between X_i and X_j for $1 \leq i < j \leq t$.

In the inequality $t \geq \alpha(n/|X_i|)^{1/2}$, the exponent $1/2$ has no significance: the statement remains true with any $0 < \beta < 1$ instead of $1/2$ (with the cost of changing ϵ and α). However, it is not true with $\beta = 1$, as it would contradict the aforementioned construction of Fox [12].

In the rest of this section, we show how Theorem 6 implies Theorem 1. Very similar ideas were used in [5, 8, 9]. The next two sections are devoted to the proof of Theorem 6.

By a classical result of Rödl [20], any graph G avoiding some fixed graph H contains a linear size subset that is either very dense or very sparse. A quantitatively stronger version of this result was proved by Fox and Sudakov [14].
Lemma 7. [20] For every graph H and $\epsilon_0 > 0$, there exists $\delta_0 > 0$ with the following property.

For any graph G with n vertices that does not contain H as an induced subgraph, there is a subset $U \subset V(G)$ such that $|U| \geq \delta_0 n$, and either $|E(G[U])| \leq \epsilon_0 \binom{|U|}{2}$ or $|E(G[U])| \geq (1 - \epsilon_0) \binom{|U|}{2}$.

Lemma 7 applies to unordered graphs, but it can be easily extended to ordered graphs, using the following statement.

Lemma 8. [21] For every ordered graph H, there exists an unordered graph H_0 with the property that introducing any total ordering on $V(H_0)$, the resulting ordered graph H_0' always contains H as an induced ordered subgraph.

By the combination of these two lemmas, we obtain the following.

Lemma 9. For every ordered graph H and $\epsilon > 0$, there exists $\delta > 0$ with the following property.

For any ordered graph G with n vertices that does not contain H as an induced ordered subgraph, there exists a subset $U \subset V(G)$ such that $|U| \geq \delta n$, and either $\Delta(G[U]) \leq \epsilon |U|$ or $\Delta(G[U]) \leq \epsilon |U|$.

Proof. By Lemma 8, there exists a graph H_0 such that introducing any total ordering on $V(H_0)$, the resulting ordered graph H_0' contains H as an induced ordered subgraph. Let $\epsilon_0 = \frac{\epsilon}{2}$, and let δ_0 be the constant given by Lemma 7 with respect to H_0 and ϵ_0.

Let G be an ordered graph with n vertices that does not contain H as an induced ordered subgraph. Then the underlying unordered graph of G does not contain H_0 as an induced subgraph. Hence, there exists $U' \subset V(G)$ such that $|U'| \geq \delta_0 n$, and either $|E(G[U'])| \leq \epsilon_0 \binom{|U'|}{2}$ or $|E(G[U'])| \geq (1 - \epsilon_0) \binom{|U'|}{2}$. Suppose that $|E(G[U'])| \leq \epsilon_0 \binom{|U'|}{2}$, the other case can be handled similarly. Let W be the set of vertices in U' whose degree in $G[U]$ is larger than $2\epsilon_0 |U|$. Then

$$\frac{1}{2} (2\epsilon_0 |W||U'|) \leq |E(G[U'])| \leq \epsilon_0 \binom{|U'|}{2},$$

so that $|W| \leq \frac{|U'|}{2}$. Setting $U = U' \setminus W$, we have $\Delta(G[U]) \leq 2\epsilon_0 |U'| \leq \epsilon |U|$ and

$$|U| \geq \frac{|U'|}{2} \geq \frac{\delta_0}{2} n.$$

Hence, $\delta = \frac{\delta_0}{2}$ will suffice.

After this preparation, it is easy to deduce from Theorem 6 that \mathcal{P}_k has the quasi-Erdős-Hajnal property and, therefore, the Erdős-Hajnal property.

Proof of Theorem 1. Let $\epsilon, \alpha > 0$ be the constants given by Theorem 6, and let $\delta > 0$ be the constant given by Lemma 9, where H is the monotone path of size k.

Let G be an ordered graph on n vertices such that neither G nor its complement contains a monotone path of length k as an induced subgraph. Then there exists $U \subset V(G)$ such that $|U| \geq \delta n$, and either $\Delta(G[U]) < \epsilon |U|$ or $\Delta(G[U]) > \epsilon |U|$. Suppose that $\Delta(G[U]) < \epsilon |U|$, the other case can be handled similarly. Applying Theorem 6 to $G[U]$, we obtain that there exist $t \geq 2$ and t disjoint sets $X_1, \ldots, X_t \subset U$ such that

$$t \geq \alpha \left(\frac{|U|}{|X_1|} \right)^{1/2} \geq \alpha \delta^{1/2} \left(\frac{n}{|X_i|} \right)^{1/2}$$

5
for \(i = 1, \ldots, t \), and there is no edge between \(X_i \) and \(X_j \) for \(1 \leq i < j \leq t \).

Thus, the family \(\mathcal{P}_k \) has the quasi-Erdős-Hajnal property with parameters \(\alpha := \alpha \delta^{1/2} \) and \(\beta := 1/2 \). Therefore, \(\mathcal{P}_k \) also has the Erdős-Hajnal property.

In the next two sections, we present the proof of Theorem 6.

3 The embedding lemma

The backbone of the proof of Theorem 6 is the following technical lemma, whose proof is already contained in [24], within the proof Lemma 7. For convenience and to make this paper self-contained, it is also included here.

Lemma 10. There exist two constants \(\epsilon_1, \alpha_1 > 0 \) with the following property. Let \(G \) be a bipartite graph with vertex classes \(A \) and \(B \), \(|A| = |B| = n \). Then at least one of the following three conditions is satisfied.

(i) There exist \(t \geq 2 \) and \(2t \) disjoint sets \(W_1, \ldots, W_t \subset A \) and \(X_1, \ldots, X_t \subset B \) such that \(t \geq \alpha_1 \frac{n}{\lfloor |X_i| \rfloor}^{1/2} \), and \(X_i \subset N(W_i) \) for \(i = 1, \ldots, t \), but \(X_i \cap N(W_j) = \emptyset \) for \(i \neq j \).

(ii) There exist \(X_1 \subset A \) and \(X_2 \subset B \) such that \(2 > \alpha_1 \frac{n}{\lfloor |X_i| \rfloor}^{1/2} \) and there is no edge between \(X_1 \) and \(X_2 \).

(iii) There exists \(v \in A \) such that \(|N(v)| \geq \epsilon_1 n \).

Proof. We show that \(\epsilon_1 = \frac{1}{2000} \) and \(\alpha_1 = \frac{1}{100} \) meet the above requirements.

Suppose that (iii) does not hold. Then the number of edges of \(H \) is at most \(\epsilon_1 n^2 \), so the number of vertices \(w \in B \) such that \(|N(w)| > \epsilon_1 n \) is at most \(n/2 \). Deleting all such vertices, and some more, we obtain a bipartite graph \(H' \) with vertex classes \(A' \) and \(B' \) of size \(n' = n/2 \) such that the maximum degree of \(H' \) is at most \(2 \epsilon_1 n = 4 \epsilon_1 n' \).

Let \(\epsilon = 4 \epsilon_1 = \frac{1}{500} \) and \(\alpha = \frac{1}{100} \). From now on, we shall only work with \(H' \), so with a slight abuse of notation, write \(H := H' \), \(A_0 := A' \), \(B_0 := B' \), and \(n := n' \). Therefore, we have \(\Delta(H) \leq \epsilon n \).

In what follows, we describe an algorithm, which will be referred to as the main algorithm. It will output

(i)’ either an integer \(t \geq 2 \) and \(2t \) disjoint sets \(W_1, \ldots, W_t \subset A \) and \(X_1, \ldots, X_t \subset B \) such that \(t \geq \alpha \frac{n}{\lfloor |X_i| \rfloor}^{1/2} \), and \(X_i \subset N(W_i) \) for \(i = 1, \ldots, t \), but \(X_i \cap N(W_j) = \emptyset \) for \(i \neq j \);

(ii)’ or two subsets \(X_1 \subset A \) and \(X_2 \subset B \) such that \(2 > \alpha \frac{n}{\lfloor |X_i| \rfloor}^{1/2} \) and there is no edge between \(X_1 \) and \(X_2 \).

We declare the following constants for the main algorithm. Let \(J_0 = \lfloor \log_2 \epsilon n \rfloor + 1 \), and for \(j = 1, \ldots, J_0 \), let \(t_j = n^{1/2} 2^{j/2} \). Then

\[
\sum_{i=1}^{J_0} t_i = \sum_{i=1}^{J_0} n^{1/2} 2^{j/2} \leq 2n \epsilon^{1/2} \frac{1}{1 - 2^{-1/2}} \leq \frac{n}{4}.
\]
Also, declare the following variables. Let \(J := J_0, A := A_0, B := B_0, A^* := \emptyset \) and \(B^* := \emptyset \).

In each step of the main algorithm, we make the following changes: we move certain elements of \(A \) into \(A^* \), move certain elements of \(B \) into \(B^* \), and decrease \(J \). We think of the elements of \(A^* \) and \(B^* \) as “leftovers”. We make sure that at the end of each step of the algorithm, the following properties are satisfied:

1. \(|A| + |A^*| = |B| + |B^*| = n\),

2. \(|A^*|, |B^*| \leq 2 \sum_{i=J+1}^{J_0} t_i\),

3. for every \(v \in B \), \(|N(v) \cap A| < 2^J\).

Note that by (1) and conditions 1 and 2, we have \(|A|, |B| \geq \frac{n}{2} \). These conditions are certainly satisfied at the beginning of the algorithm. Next, we describe a general step of our main algorithm.

Main algorithm. If \(J = 0 \), then stop the main algorithm, and output \(X_1 = A, X_2 = B \). In this case, there is no edge between \(A \) and \(B \), by condition 3 and \(|A|, |B| \geq \frac{n}{2}\). By the choice of \(\alpha \), this output satisfies condition (ii)'.

Suppose next that \(J \geq 1 \). For \(i = 1, \ldots, J \), let \(V_i \) be the set of vertices \(v \in B \) such that \(2^{i-1} \leq |N(v) \cap A| < 2^i \), and let \(V_0 \) be the set of vertices \(v \in B \) such that \(N(v) \cap A = \emptyset \). Then, by condition 3, we have \(B = \bigcup_{i=0}^{J} V_i \).

Let \(k, 1 \leq k \leq J \) be the largest integer for which \(t_k < |V_k| \). First, consider the case where there is no such \(k \). Then

\[
 n - \sum_{i=J+1}^{J_0} t_i - |V_0| \leq n - |B^*| - |V_0| = |B| - |V_0| = \sum_{i=1}^{J} |V_i| \leq \sum_{i=1}^{J} t_i,
\]

where the first inequality follows from condition 2, and the first equality is the consequence of condition 1. Comparing the left-hand and right-hand sides, and using (1), we get \(|V_0| \geq n/2\). In this case, stop the algorithm and output \(X_1 = V_0 \) and \(X_2 = A \). Note that \(\alpha(n/|X_i|)^{1/2} < 2 \) is satisfied for \(i = 1, 2 \), so this output satisfies condition (ii)'.

Suppose that there exists \(k \) with the desired property. Remove the elements of \(V_i \) for \(i > k \) from \(B \), and add them to \(B^* \). Then we added at most \(\sum_{i=k+1}^{J} t_i \) elements to \(B^* \). Setting \(J := k \), properties 1-3 are still satisfied.

Now we shall run a sub-algorithm. Let \(Z_0 = V_k \). With help of the sub-algorithm, we construct a sequence \(Z_0 \supset \cdots \supset Z_r \) satisfying the following properties. During each step of the sub-algorithm, we either find an output satisfying (i)', or we will move certain elements of \(A \) to \(A^* \). At the end of the \(l \)-th step of this algorithm, \(Z_l \) will be the set of vertices in \(B \) that still have at least \(2^{k-1} \) neighbours in \(A \). We stop the algorithm if \(Z_l \) is too small.

Sub-algorithm. Suppose that \(Z_l \) has already been defined. If \(|Z_l| < 2t_k\), then let \(r = l \), stop the sub-algorithm, remove the elements of \(Z_l \) from \(B \), and add them to \(B^* \). Make the update \(J := k - 1 \), and move to the next step of the main algorithm. Note that \(B^* \) satisfies condition 2. Later, we will see that all the other properties are satisfied.
On the other hand, if \(|Z_l| \geq 2t_k\), we define \(Z_{l+1}\) as follows. Let \(x_l = \frac{|Z_l|}{t_k}\). Say that a vertex \(v \in A\) is heavy if
\[
|N(v) \cap Z_l| \geq \frac{x_l 2^k}{t_k} |Z_l| = \left(\frac{|Z_l|}{t_k} \right)^2 2^k = \frac{|Z_l|^2}{n} =: \Delta_l,
\]
and let \(H_l\) be the set of heavy vertices. Counting the number of edges \(f\) between \(H_l\) and \(Z_l\) in two ways, we can write
\[
|H_l| \Delta_l \leq f < |Z_l| 2^k,
\]
which gives \(|H_l| < \frac{|Z_l|}{2}\). Remove the elements of \(H_l\) from \(A\) and add them to \(A^*\). Examine how the degrees of the vertices in \(Z_l\) changed, and consider the following two cases:

Case 1. At least \(\frac{|Z_l|}{2}\) vertices in \(Z_l\) have at least \(2^{k-1}\) neighbors in \(A\).

Let \(T\) be the set of vertices in \(Z_l\) that have at least \(2^{k-1}\) neighbors in \(A\), so \(|T| \geq \frac{|Z_l|}{2}\). Pick each element of \(A\) with probability \(p = 2^{-k}\), and let \(S\) be the set of selected vertices. We say that \(v \in T\) is good if \(|N(v) \cap S| = 1\), and let \(Y\) be the set of good vertices. We have
\[
\mathbb{P}(v \text{ is good}) = |N(v) \cap A| p(1 - p)^{|N(v) \cap A| - 1} \geq \frac{1}{2} (1 - 2^{-k})^{2^k} \geq \frac{1}{6},
\]
so that \(\mathbb{E}(|Y|) \geq \frac{|T|}{6} \geq \frac{|Z_l|}{12}\). Therefore, there exists a choice for \(S\) such that \(|Y| \geq \frac{|Z_l|}{12}\). Let us fix such an \(S\). For each \(v \in S\), let \(Y_v\) be the set of elements \(w \in Y\) such that \(N(w) \cap S = \{v\}\). Also, note that
\[
|Y_v| \leq |N(v) \cap Z_l| \leq \min\{\epsilon n, \Delta_l\} =: \Delta'_l.
\]
In other words, the sets \(Y_v\) for \(v \in S\) partition \(Y\) into sets of size at most \(\Delta'_l\). Here, we have
\[
\frac{|Y|}{\Delta'_l} \geq \frac{|Z_l|}{12 \Delta'_l} \geq \max\left\{ \frac{n}{12 |Z_l|}, \frac{|Z_l|}{\epsilon n} \right\}.
\]
By the choice of \(\epsilon\), the right-hand side is always at least 6. But then we can partition \(S\) into \(t \geq \frac{|Y|}{3 \Delta'_l} \geq 2\) parts \(W_1, \ldots, W_t\) such that the sets \(X_i = \bigcup_{v \in W_i} Y_v\) have size at least \(\Delta'_l\) for \(i = 1, \ldots, t\). The resulting sets \(X_1, \ldots, X_t\) satisfy that
\[
t \geq \frac{|Y|}{3 \Delta'_l} \geq \frac{n}{36 |Z_l|} \geq \frac{1}{36} \left(\frac{n}{\Delta_l} \right)^{1/2} \geq \frac{1}{36} \left(\frac{n}{|X_i|} \right)^{1/2}.
\]
Stop the main algorithm, and output \(t\) and the \(2t\) disjoint sets \(W_1, \ldots, W_t\) and \(X_1, \ldots, X_t\). By the choice of \(\alpha\), this output satisfies (i)'.

Case 2. At most \(\frac{|Z_l|}{2}\) vertices in \(Z_l\) have at least \(2^{k-1}\) neighbors in \(A\).

In this case, define \(Z_{l+1}\) as the set of elements of \(Z_l\) with at least \(2^{k-1}\) neighbors in \(A\) (then \(Z_{l+1}\) is the set of all elements in \(B\) with at least \(2^{k-1}\) neighbors in \(A\) as well). Also, move to the next step of the sub-algorithm.

We need to check that, if the main algorithm is not terminated, then after the sub-algorithm ends, conditions 1-3 are still satisfied. Conditions 1 and 3 are clearly true, and 2 holds for \(B^*\).
It remains to show that 2 holds for A^* as well. Note that, as $|Z_{l+1}| \leq \frac{|Z_l|}{2}$ for $l = 0, \ldots, r - 1$, and $|Z_{r-1}| \geq 2t_k$, we have $|Z_l| \geq 2^{r-l}t_k$ and $x_l \geq 2^{r-l}$. Compared to the first step of the sub-algorithm, $|A^*|$ increased by

$$\sum_{l=0}^{r-1} |H_l| \leq \sum_{l=0}^{r-1} t_k \leq \sum_{l=0}^{r-1} \frac{t_k}{2^{r-l}} < t_k.$$

Therefore, condition 2 is also satisfied.

In every step of the main algorithm, J decreases by at least one, so the main algorithm will stop in a finite number of steps. When the algorithm stops, its output will satisfy either (i)' or (ii)').

4 The proof of Theorem 6

Now we are in a position to prove Theorem 6. Let G be an ordered graph. The transitive closure of G is the ordered graph G' on the vertex set $V(G)$ in which x and y are connected by an edge if and only if there exists a monotone path in G with endpoints x and y.

Proof of Theorem 6. Let ϵ_1, α_1 be the constants given by Lemma 10. Furthermore, define the following constants: $c_1 = \frac{\epsilon_1}{2}$, $c_{i+1} = \epsilon_1 c_i$ (for $i = 1, 2, \ldots$), $\epsilon = \frac{c_k}{2}$, and $\alpha = \frac{\alpha_1 c_1^{1/2}}{2}$.

Let G be an ordered graph on n vertices such that

1. the maximum degree of G is at most ϵn,
2. there exist no t and t disjoint subsets $X_1, \ldots, X_t \subset V(G)$ such that $t \geq \alpha \left(\frac{n}{|X_i|} \right)^{1/2}$ and there is no edge between X_i and X_j for $1 \leq i < j \leq t$.

Then, we show that G contains a monotone path of size k as an induced subgraph. In particular, we find k vertices $x_1 \prec \cdots \prec x_k$ with the following properties. For $s = 1, \ldots, k$,

(a) x_1, \ldots, x_s is an induced monotone path.

(b) Let

$$U_s = V(G) \setminus \left(\bigcup_{i=1}^{s-1} N(x_i) \right),$$

let $G_s = G[U_s \cup \{x_s\}]$, and let G'_s be the transitive closure of G_s. Then the forward degree of x_s in G'_s is at least $c_k n$.

First, we find a vertex x_1 with the desired properties, that is, if G' is the transitive closure of G, then the forward degree of x_1 must be at least $c_1 n$. Let A be the set of the first $n/2$ elements of $V(G)$, and set $B = V(G) \setminus A$. Also, let H denote the bipartite subgraph of G' with parts A and B. By Lemma 10, at least one of the following three conditions is satisfied.
(i) There exist \(t \geq 2 \) and \(2t \) disjoint sets \(W_1, \ldots, W_t \subset A \) and \(X_1, \ldots, X_t \subset B \) such that

\[
t \geq \alpha_1 \left(\frac{|A|}{|X_i|} \right)^{1/2} = 2^{-1/2} \alpha_1 \left(\frac{n}{|X_i|} \right)^{1/2} \geq \alpha \left(\frac{n}{|X_i|} \right)^{1/2},
\]

and \(X_i \subset N_H(W_i) \) for \(i = 1, \ldots, t \), but \(X_i \cap N_H(W_j) = \emptyset \) for \(i \neq j \).

(ii) There exist \(X_1 \subset A \) and \(X_2 \subset B \) such that

\[
2 > \alpha_1 \left(\frac{|A|}{|X_i|} \right)^{1/2} = 2^{-1/2} \alpha_1 \left(\frac{n}{|X_i|} \right)^{1/2} \geq \alpha \left(\frac{n}{|X_i|} \right)^{1/2},
\]

and there is no edge between \(X_1 \) and \(X_2 \).

(iii) There exists \(v \in A \) such that \(|N_H(v)| \geq \epsilon_1 |A| = c_1 n \).

As non-edges of \(G' \) are also non-edges of \(G \), (ii) cannot hold, by property 2 of \(G \) (at the beginning of the proof). Suppose that (i) holds. Note that there is no edge between \(X_i \) and \(X_j \) in \(G \), for \(1 \leq i < j \leq t \). Suppose for contradiction that \(x \in X_i \) and \(y \in X_j \) are joined by an edge in \(G \), for some \(x < y \). Then there exists \(w \in W_i \) such that \(wx \in E(G') \), but \(wy \notin E(G') \). This is a contradiction, as this means that there is a monotone path from \(w \) to \(x \) in \(G \), so there is a monotone path from \(w \) to \(y \) as well. Hence, there is no edge between \(X_i \) and \(X_j \) for \(1 \leq i < j \leq t \), which contradicts 2. Therefore, (iii) must hold: there exists a vertex \(x_1 \in V(G) \) whose forward degree in \(G' = G'_1 \) is at least \(c_1 n \).

Suppose that we have already found \(x_1, \ldots, x_s \) with the desired properties, for some \(1 \leq s \leq k-1 \). Then we define \(x_{s+1} \) as follows. Let \(X \) be the forward neighbourhood of \(x_s \) in \(G_s \), let \(Y \) be the forward neighbourhood of \(x_s \) in \(G'_s \), and let \(Z = Y \setminus X \). As \(|X| \leq \epsilon n \) and \(|Y| \geq c_s n \), we have \(|Z| \geq \frac{c}{2} n \). Let \(A \) be the set of the first \(\frac{|Z|}{2} \) elements of \(Z \) with respect to \(\prec \), and let \(B = Z \setminus A \). A monotone path in \(G_s \) is said to be \emph{good} if none of its vertices, with the possible exception of the first one, belongs to \(X \). For every \(v \in A \), there exists at least one element \(x \in X \) such that \(v \in N_{G'_s}(x) \); assign the largest (with respect to \(\prec \)) such element \(x \) to \(v \). Then there is a good monotone path from \(x \) to \(v \).

Define a bipartite graph \(H \) between \(A \) and \(B \) as follows. If \(v \in A \) and \(y \in B \), and \(x \in X \) is the vertex assigned to \(v \), then join \(v \) and \(y \) by an edge if there is a good monotone path from \(x \) to \(y \). Applying Lemma 10 to \(H \), we conclude that at least one of the following three statements is true.

(i) There exist \(t \geq 2 \) and \(2t \) disjoint sets \(W_1, \ldots, W_t \subset A \) and \(X_1, \ldots, X_t \subset B \) such that

\[
t \geq \alpha_1 \left(\frac{|A|}{|X_i|} \right)^{1/2} > \frac{\alpha_1 c_s}{2} \left(\frac{n}{|X_i|} \right)^{1/2} \geq \alpha \left(\frac{n}{|X_i|} \right)^{1/2},
\]

and \(X_i \subset N_H(W_i) \) for \(i = 1, \ldots, t \), but \(X_i \cap N_H(W_j) = \emptyset \) for \(i \neq j \).

(ii) There exist \(X_1 \subset A \) and \(X_2 \subset B \) such that

\[
2 > \alpha_1 \left(\frac{|A|}{|X_i|} \right)^{1/2} > \frac{\alpha_1 c_s}{2} \left(\frac{n}{|X_i|} \right)^{1/2} \geq \alpha \left(\frac{n}{|X_i|} \right)^{1/2},
\]

and there is no edge between \(X_1 \) and \(X_2 \).
(iii) There exists \(v \in A \) such that \(|N_H(v)| \geq \epsilon_1|A| = \frac{\epsilon_1}{2}\cdot n = c_{s+1}n\).

Suppose first that (i) holds. Then, as before, we show that there is no edge between \(X_i \) and \(X_j \) in \(G \) for \(1 \leq i < j \leq t \). Suppose that \(u \in X_i \) and \(w \in X_j \) are joined by an edge in \(G \), for some \(u < w \). Then there exists \(v \in W_i \) such that \(vu \in E(H) \), but \(vw \notin E(H) \). Let \(x \in X \) be the vertex assigned to \(v \). Then we can find a good monotone path from \(x \) to \(u \). Since \(uu \) is an edge of \(G \), there is a good monotone path from \(x \) to \(w \), contradicting the assumption \(vw \notin E(H) \). Therefore, there cannot be any edge between \(X_i \) and \(X_j \) in \(G \), which means that (i) contradicts 2.

Suppose next that (ii) holds. Again, we can show that there is no edge between \(X_1 \) and \(X_2 \) in \(G \), contradicting 2. Suppose that \(v \in X_1 \) and \(y \in X_2 \) are joined by an edge in \(G \), and let \(x \in X \) be the vertex assigned to \(v \). There is a good monotone path from \(x \) to \(v \) in \(G_{s+1} \), so there is a good monotone path from \(x \) to \(y \), contradicting the assumption that \(vy \) is not an edge of \(H \).

Therefore, we can assume that (iii) holds. Let \(v \in A \) be a vertex of degree at least \(c_{s+1}n \) in \(H \), and let \(x_{s+1} \in X \) be the vertex assigned to \(v \). We show that \(x_{s+1} \) satisfies the desired properties. We have \(U_{s+1} = U_s \setminus X \), and the forward degree of \(x_{s+1} \) in \(G_{s+1} \) is exactly the number of vertices \(y \) such that there is a good monotone path from \(x_{s+1} \) to \(y \). That is, the forward degree of \(x_{s+1} \) is at least \(|N_H(v)| \geq c_{s+1}n\), as required. This completes the proof. \(\square \)

5 The construction—Proof of Theorem 3

In this section, we present our construction for Theorem 3. The construction involves expander graphs, which are defined as follows.

Recall that for any graph \(H \) and any \(U \subset V(H) \), we denote by \(N(U) = N_H(U) \) the neighborhood of \(U \) in \(H \). The closed neighborhood of \(U \) is defined as \(U \cup N_H(U) \), and is denoted by \(N[U] = N_H[U] \). The graph \(H \) is called an \((n, d, \lambda)\)-expander if \(H \) is a \(d \)-regular graph on \(n \) vertices, and for every \(U \subseteq V \) satisfying \(|U| \leq |V|/2\), we have \(|N[H][U]| \geq (1+\lambda)|U|\). By a well-known result of Bollobás [4], a random 3-regular graph on \(n \) vertices is a \((n, 3, \lambda_0)\)-expander with high probability for some absolute constant \(\lambda_0 > 0 \). In the rest of this section, we fix such a constant \(\lambda_0 \). For explicit constructions of expander graphs see, e.g., [18].

For any positive integer \(r \), let \(H^r \) denote the graph with vertex set \(V(H) \) in which two vertices are joined by an edge if there exists a path of length at most \(r \) between them in \(H \). Here we allow loops, so that in \(H^r \) every vertex is joined to itself. We need the following simple property of expander graphs.

Claim 11. Let \(H \) be an \((n, d, \lambda)\)-expander graph and let \(r \geq 1 \). For any subsets \(X, Y \subseteq V(H) \) such that there is no edge between \(X \) and \(Y \) in \(H^r \), we have \(|X||Y| \leq n^2(1+\lambda)^{-r}\).

Proof. Let \(X_i = N_{H^r}[X] \) and \(Y_i = N_{H^r}[Y] \) for \(i = 0, 1, \ldots, r \). It follows from the definition of expanders that, if \(|X_i| \leq \frac{n}{2} \), then

\[|X| \leq \frac{1}{2}n(1+\lambda)^{-i}. \]

Similarly, if \(|Y_i| \leq \frac{n}{2} \), then \(|Y| \leq \frac{1}{2}n(1+\lambda)^{-i} \). If \(X \) and \(Y \) are not connected by any edge in \(H^r \), then \(X_i \) and \(Y_{r-i} \) must be disjoint for every \(i \). Let \(\ell \) be the largest number in \{0, 1, \ldots, r\} such that \(|X_\ell| \leq n/2 \).
If \(\ell = r \), then \(|X| < n(1 + \lambda)^{-r} \), and hence \(|X||Y| \leq n^2(1 + \lambda)^{-r} \).

If \(\ell < r \), then \(|X_{\ell+1}| > n/2 \) and \(|Y_{r-\ell-1}| \leq n/2 \). Therefore, we have \(|Y| \leq n(1 + \lambda)^{-(r-\ell-1)} \). Using the inequality \(1 + \lambda \leq 2 \), we obtain

\[
|X||Y| \leq \frac{1}{4}n^2(1 + \lambda)^{-r+1} \leq n^2(1 + \lambda)^{-r}.
\]

\[\square\]

Claim 12. For any \(d \)-regular graph \(H \) and \(r \geq 1 \), we have \(\Delta(H^r) \leq (d + 1)^r \).

Proof. Trivial, by induction on \(r \). \[\square\]

Our construction is based on the following key lemma.

Lemma 13. Let \(k, m, f \) be positive integers. Let \(A_1, \ldots, A_k \) be disjoint sets of size \(m \), and suppose that there exists an \((m, 3, \lambda_0) \)-expander.

Then there is a graph \(G \) on the vertex set \(V = \bigcup_{i=1}^k A_i \) such that

1. \(\Delta(G) \leq 4^{f 2^k} \),
2. there are no three vertices \(x, y, z \in V \) such that \(x \in A_a, y \in A_b, z \in A_c \) for some \(a < b < c \), and \(xy, xz \in E(G) \), but \(yz \notin E(G) \),
3. for any \(a \neq b \) and any pair of subsets \(X \subset A_a \) and \(Y \subset A_b \) not connected by any edge of \(G \), we have \(|X||Y| \leq m^2(1 + \lambda_0)^{-f} \).

Proof. Let \(H \) be an \((m, 3, \lambda_0) \)-expander. Let \(\phi : V \to V(H) \) be an arbitrary function such that \(\phi \) is a bijection when restricted to the set \(A_i \), for \(i = 1, \ldots, k \). Define the graph \(G \), as follows. Suppose that \(x \in A_a \) and \(y \in A_b \) for some \(a < b \). Join \(x \) and \(y \) by an edge if there exists a path of length at most \(f 2^{a-1} \) between \(\phi(x) \) and \(\phi(y) \) in \(H \). By Claim 12, the maximum degree of \(G \) is at most \(\sum_{i=1}^{k-1} 4^{f 2^i} \leq 4^{f 2^k} \), so that \(G \) has property 1.

To see that \(G \) also has property 2, consider \(x \in A_a, y \in A_b, z \in A_c \) such that \(a < b < c \) and \(xy, xz \in E(G) \). We have to show that \(yz \notin E(G) \). By definition, there exists a path of length at most \(f 2^{a-1} \) between \(\phi(x) \) and \(\phi(y) \) in \(H \), and there exists a path of length at most \(f 2^{a-1} \) between \(\phi(x) \) and \(\phi(z) \). But then there exists a path of length at most \(f 2^{a} \leq f 2^{b-1} \) between \(\phi(y) \) and \(\phi(z) \), so \(yz \) is also an edge of \(G \).

It remains to verify that \(G \) has property 3. If \(1 \leq a < b \leq k \) and \(X \subset A_a \) and \(Y \subset A_b \) are not connected by any edge in \(G \), then there is no edge between \(\phi(X) \) and \(\phi(Y) \) in \(Hf 2^{a-1} \). By Claim 11, we have \(|X||Y| \leq m^2(1 + \lambda_0)^{-f 2^{a-1}} \leq m^2(1 + \lambda_0)^{-f} \). \[\square\]

Now we are in a position to prove Theorem 3.

Proof of Theorem 3. Let \(k = \frac{2}{\varepsilon} \), \(f = \frac{\log_2 n}{4^{2^k}} \), and \(m = \frac{n}{k} \). We show that the theorem holds with \(\delta = \frac{\log_2(1 + \lambda_0)}{2^k} \).

Let \(A_1, \ldots, A_k \) be disjoint sets of size \(m \). By Lemma 13, there exists a graph \(G_0 \) on \(V = \bigcup_{i=1}^m A_i \) satisfying conditions 1-3 with the above parameters.
Define the ordered graph G on the vertex set V as follows. Let $<$ be any ordering on V satisfying $A_1 < \cdots < A_k$. For any $x \in A_a$ and $y \in A_b$, join x and y by an edge of G if either $a \neq b$ and $xy \in E(G_0)$, or $a = b$. Then the maximum degree of G is at most $\frac{n}{k} + \Delta(G_0) \leq cn$. Notice that the complement of G does not contain a bi-clique of size $n^{1-\delta}$. Indeed, if (X,Y) is a bi-clique in G, then there exists $a \neq b$ such that $|X \cap A_a| \geq \frac{|X|^2}{k}$ and $|Y \cap A_b| \geq \frac{|Y|^2}{k}$. Thus, $\frac{|X|^2}{k} \leq \frac{n^2}{4cn^2}$, which implies that $|X| \leq n^{1-\delta}$.

It remains to show that G contains neither S, nor P as an induced ordered subgraph. Let us start with S. Suppose that there are four vertices, $v_0 < v_1 < v_2 < v_3$, in G such that $v_0v_1, v_0v_2, v_0v_3 \in E(G)$, but $v_1v_2, v_2v_3, v_1v_3 \not\in E(G)$. Let $v_0 \in A_a$, $v_1 \in A_b$, $v_2 \in A_c$, and $v_3 \in A_d$, then $a \leq b \leq c \leq d$. If $c = a$, then $b = a$, which implies $v_1v_2 \in E(G)$, contradiction. Therefore, $a < c \leq d$. As $v_2v_3 \not\in E(G)$, we must have $c < d$ as well. But then the three vertices v_0, v_2, v_3 contradict property 2, so that G does not contain S an induced ordered subgraph.

To show that G does not contain P, we can proceed in a similar manner. Suppose for contradiction that there are four vertices, $v_0 < v_1 < v_2 < v_3$, in G such that $v_0v_2, v_0v_3, v_1v_2 \in E(G)$, but $v_0v_1, v_1v_3, v_2v_3 \not\in E(G)$. Let $v_0 \in A_a$, $v_1 \in A_b$, $v_2 \in A_c$, and $v_3 \in A_d$, where $a \leq b \leq c \leq d$. We have $a < b$, otherwise $v_0v_1 \in E(G)$. In the same way, $c < d$, otherwise $v_2v_3 \in E(G)$. Therefore, $a < c < d$, and the vertices, v_0, v_2, v_3, contradict condition 2 of Lemma 13.

\[\square \]

References

[1] N. Alon, J. Pach, R. Pinchasi, R. Radoi\v{c}i\v{c}, M. Sharir, Crossing patterns of semi-algebraic sets, J. Comb. Theory Ser. A 111 (2) (2005): 310–326.

[2] N. Alon, J. Pach, J. Solymosi, Ramsey-type theorems with forbidden subgraphs, Combinatorica 21 (2) (2001): 155–170.

[3] M. Axenovich, C. Tompkins, L. Weber, Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs, arXiv:1903.09725, 2019.

[4] B. Bollobás, The isoperimetric number of random regular graphs, European J. Combin. 9 (1988): 241–244.

[5] N. Bousquet, A. Lagoutte, S. Thomassé, The Erdős-Hajnal conjecture for paths and antipaths, Journal of Combinatorial Theory, Ser. B 113 (2015): 261–264.

[6] M. Chudnovsky, The Erdős-Hajnal conjecture—a survey, J. Graph Theory 75 (2) (2014): 178–190.

[7] M. Chudnovsky, S. Oum, Vertex-minors and the Erdős-Hajnal conjecture, Discrete Math. 341 (2018): 3498–3499.

[8] M. Chudnovsky, A. Scott, P. Seymour, S. Spirkl, Trees and linear anticomplete pairs, arXiv:1809.00919 (2018).

[9] M. Chudnovsky, A. Scott, P. Seymour, S. Spirkl, Sparse graphs without linear anticomplete pairs, arXiv preprint, arXiv:1804.01060 (2018)
[10] P. Erdős, A. Hajnal, *Ramsey-type theorems*, Discrete Applied Mathematics 25 (1-2) (1989): 37–52.

[11] P. Erdős, A. Hajnal, J. Pach, *Ramsey-type theorem for bipartite graphs*, Geombinatorics 10 (2000): 64–68.

[12] J. Fox, *A bipartite analogue of Dilworth’s theorem*, Order 23 (2006): 197–209.

[13] J. Fox, J. Pach, *Erdős-Hajnal-type results on intersection patterns of geometric objects*, In: Horizons of combinatorics, 79–103, Bolyai Soc. Math. Stud., 17, Springer, Berlin, 2008.

[14] J. Fox, B. Sudakov, *Induced Ramsey-type theorems*, Advances in Mathematics 219 (2008): 1771–1800.

[15] J. Fox, B. Sudakov, *Density theorems for bipartite graphs and related Ramsey-type results*, Combinatorica 29 (2009): 153–196.

[16] J. Kim, S. Oum, *The Erdős-Hajnal property for graphs with no fixed cycle as a pivot-minor*, arXiv preprint, arXiv:2003.12960 (2020).

[17] D. Korándi, J. Pach, I. Tomon, *Large homogeneous submatrices*, arXiv:1903.06608 (2019).

[18] M. Morgenstern, *Existence and explicit constructions of $q + 1$ regular Ramanujan graphs for every prime power q*, J. Comb. Theory Ser. B 62 (1994): 44–62.

[19] J. Pach, I. Tomon, *Ordered graphs and large bi-cliques in intersection graphs of curves*, European Journal of Combinatorics 82 (2019): 102994.

[20] V. Rödl, *On universality of graphs with uniformly distributed edges*, Discrete Mathematics 59 (1986): 125–134.

[21] V. Rödl, P. Winkler, *A Ramsey-type theorem for orderings of a graph*, SIAM J. Discrete Math. 2 (1989): 402–406.

[22] A. Scott, P. Seymour, *Pure pairs. VI. Homogeneous submatrices in 0/1-matrices with a forbidden submatrix*, manuscript (2020).

[23] A. Scott, P. Seymour, S. Spirkl, *Pure pairs. VI. Excluding an ordered tree*, manuscript (2020).

[24] I. Tomon, *String graphs have the Erdős-Hajnal property*, arXiv:2002.10350 (2020).