Short Communication

No link between viral findings in the prostate and subsequent cancer development

J Bergh1, I Marklund2, C Gustavsson1, F Wiklund3,4, H Grönberg3,4, A Allard2, O Alexeyev1 and F Elgh*,1,2

1Department of Medical Biosciences/Pathology, Umeå University, Umeå S-90185, Sweden; 2Department of Clinical Microbiology/Virology, Umeå University, Umeå S-90185, Sweden; 3Department of Radiation Sciences/Oncology, Umeå University, Umeå S-90185, Sweden; 4Department of Medical Epidemiology and Biostatistics, Karolinska Institute, PO Box 281, Stockholm SE-171 77, Sweden

In an investigation of 201 prostate tissue samples from patients with benign prostate hyperplasia that later progressed to prostate cancer and 201 matched controls that did not, there were no differences in the prevalence of adenovirus, herpesvirus, papilloma virus, polyoma virus and Candida albicans DNA.

British Journal of Cancer (2007) 96, 137 – 139. doi:10.1038/sj.bjc.6603480 www.bjcancer.com

© 2007 Cancer Research UK

Keywords: DNA virus; C. albicans; prostate, benign prostate hyperplasia

Mutations in genes associated with the immune defence have been identified in hereditary prostate cancer, indicating that infection and/or inflammation of the prostate may be important mediators for the development of prostate cancer (Palapattu et al, 2005; Sun et al, 2005). Moreover, population studies have revealed an increased relative risk for development of prostate cancer in men with a prior history of sexually transmitted infections (Dennis and Dawson, 2002). These findings support the hypothesis that an infectious agent can be a potential cofactor in prostate cancer development. Human papilloma virus (HPV), Epstein–Barr virus (EBV) and the polyoma viruses JCV and BKV represent viruses with proven linkage to different human cancers and have been traced in prostate cancer tissues (Grinstein et al, 2002; Zambrano et al, 2002). To further evaluate if a viral infection could contribute to prostate cancer development, we conducted a case–control study of 402 patients with benign prostate hyperplasia (BPH), of which 201 later progressed to prostate cancer. We examined whether the presence of genetic traces of EBV, herpes simplex virus (HSV) 1 and 2, cytomegalovirus (CMV), adenovirus, HPV, polyoma viruses BKV and JCV and Candida albicans in the prostate correlate with histological inflammation and subsequent prostate cancer diagnosis.

MATERIALS AND METHODS

A case–control study of 402 archival prostate tissue samples obtained during transurethral resection of the prostate (TURP) collected at the Department of Pathology at the University Hospital of Northern Sweden, Umeå was conducted as described previously (Alexeyev et al, 2006; Bergh et al, 2006). Briefly, tissues were obtained from men with BPH (median age 64, range 51 – 71), fixed in formalin, paraffin-embedded and stored at room temperature until tested. A total of 201 men developed prostate cancer at least 6 months after the TURP. For each case, a control was randomly selected from a cohort of patients that did not develop prostate cancer. The case–control pairs were matched for year of birth, residence and year of TURP. Histological inflammation was graded as mild or severe as described (Alexeyev et al, 2006). DNA from prostate tissue was purified and checked for integrity as described (Alexeyev et al, 2006). Nested PCR assays were used for all the assays except HPV and C. albicans PCRs. Primers and PCR protocols for adenovirus (Allard et al, 2001), CMV (Brytting et al, 1991), EBV (Meyohas et al, 1996), HSV1 and 2 (Aurelius et al, 1991) and HPV (de Roda Husman et al, 1995) were used with minor modifications. Primers for the polyoma viruses JCV and BKV and C. albicans were designed according to published sequence information (Table 1). To verify the positive PCR findings, PCR products were purified with QIAquick Purification Kit protocol (Qiagen®, Hilden, Germany) and directly sequenced in the ABI PRISM 3700 DNA ANALYSER (AME Bioscience, Toroed, Norway) using the Big Dye™ Terminator Cycle Sequencing kit 1.1 (Applied Biosystems, Forster City, CA, USA). Histological inflammation in prostate tissue was graded as described earlier (Alexeyev et al, 2006). Fisher exact test was used for statistical analysis.

RESULTS

Out of 402 samples tested, 352 (87.6%) were positive for the human β-globin gene. These samples were considered to have sufficient DNA quality and were therefore used for subsequent analysis in viral and fungal PCRs. Of the 352 samples tested, 31 (8.8%) were positive for EBV and 10 (2.8%) for JCV. No other viral DNAs were detected. Of 240 samples that were available for C. albicans-specific PCR, two were (0.8%) positive. We then assessed whether the
Epidemiology

samples positive for the inflammation and prostate cancer development. Only archival infection could precede and, possibly, contribute to prostate the present study, it had a potential to evaluate if viral/fungal microbial DNAs, thus ensuring good quality DNA and absence of PCR inhibitors. Of eight DNA viruses tested, only EBV and JCV were found in the prostate tissue. This observation is in accord with previous studies (Grinstein et al, 2002; Zambrano et al, 2002).

5.8S gene

Microorganism	Position	Sequence	Amplimer size (nt)
JC virus	2656–2677	5′ TGC AGT TTT CCT GTG TGT C T3′	259
	2914–2893	5′ TTT AGG CCA GTT GCT GAC TTG G3′	
	2722–2743	5′ CAG TGC TTG ATC CAT GTG CAG A3′	167
	2888–2867	5′ TGC CAT TCA TGA GAG GAT TGT G3′	
BK virus	1452–1472	5′ GAA AAA ACT ATT GCC CCA GGA G3′	192
	1643–1625	5′ AGT TTT GCC ACT TGC AGC G3′	
	1487–1508	5′ AAC TGC TCC TCA ATG GAT GTT G3′	114
	1600–1579	5′ CCC CTG GAC ACT CTC CTT TTC T3′	
C. albicans	5.85 gene	5′ GCC TGT TTG AGC GTC GTT TC3′	82

*Sequence positions refer to the JC virus isolate SK-6. *Sequence positions refer to the BK virus Dunlop strain sequence.

Table 1 Oligonucleotide primer sequence for polyoma viruses JC virus and BK virus and C. albicans

To the best of our knowledge, this is the first study investigating the presence of eight different DNA viruses and C. albicans in a large series of men with BPH. Owing to the case–control design of the present study, it had a potential to evaluate if viral/fungal infection could precede and, possibly, contribute to prostate inflammation and prostate cancer development. Only archival samples positive for the β-globin gene were subsequently tested for microbial DNAs, thus ensuring good quality DNA and absence of PCR inhibitors. Of eight DNA viruses tested, only EBV and JCV were found in the prostate tissue. This observation is in accord with previous studies (Grinstein et al, 2002; Zambrano et al, 2002).

These viruses are unlikely to contribute to prostate cancer development in the patients studied owing to the similar occurrence in the case and control groups. Data on the presence of HPV in benign and malignant prostate tissues are contradictory. Some groups have reported high rates of detection (Noda et al, 1998; Serth et al, 1999; Zambrano et al, 2002), whereas others have not found HPV (Effert et al, 1992; Strickler et al, 1998). All samples tested in this study were negative for HPV, thus making it an unlikely contributing factor for subsequent cancer development in the 352 patients studied. Our study did not find any association between the presence of EBV and JCV and histological inflammation in the prostate. These viruses are therefore unlikely as triggering factors of chronic prostate inflammation. In conclusion, our study has shown that the prostate can harbour mixed microbial communities. Epstein–Barr virus, JCV and C. albicans do not appear to contribute to chronic prostate inflammation and subsequent prostate cancer development.

ACKNOWLEDGEMENTS

The Kempe Foundation (JCK-2531), the Cancer Research Foundation of Northern Sweden (AMP 03-358 & LP 04-1611), the Percy Falk Foundation for prostate cancer research, the Maud and Birger Gustavsson Foundation and the Medical Faculty at Umeå University, Sweden, provided financial support for this study.

REFERENCES

Alexeyev O, Bergh J, Marklund I, Thellenberg-Karlsson C, Wiktund F, Grönberg H, Bergh A, Elgh F (2006) Association between the presence of bacterial 16S RNA in prostate specimens taken during transurethral resection of prostate and subsequent risk of prostate cancer (Sweden). Cancer Causes Control 17: 1127–1133

Allard E, Albinsson B, Wadell G (2001) Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J Clin Microbiol 39: 498–505

Aurelius E, Johansson B, Sköldenberg B, Stuland A, Forsgren M (1991) Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet 337: 189–192

Bergh J, Marklund I, Thellenberg-Karlsson C, Grönbéck H, Elgh F, Alexeyev O (2006) Detection of Herpes simplex DNA in cerebrospinal fluid. Lancet 367: 189–192

Brytting M, Sundqvist VA, Ståhlsås P, Linde A, Wahlén B (1991) Cytomegalovirus DNA detection of an immediate early protein gene with nested primer oligonucleotides. J Virol Methods 32: 127–138

de Rota Husman AM, Wallboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76: 1057–1062

Dennis LK, Dawson DV (2002) Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13: 72–79

Effert PJ, Frye RA, Neubauer A, Liu ET, Walther PJ (1992) Human papillomavirus types 16 and 18 are not involved in human prostate carcinogenesis: analysis of archival human prostate cancer specimens by differential polymerase chain reaction. J Urol 147: 192–196

Grinstein S, Princi Dev, Gattuso P, Chabay PA, Warren WH, De Matteo E, Gould VE (2002) Demonstration of Epstein–Barr virus in carcinomas of various sites. Cancer Res 62: 4876–4878

Meyohas MC, Marechal V, Desire N, Bouillie J, Frottier J, Nicolas JC (1996) Study of mother-to-child Epstein–Barr virus transmission by means of nested PCRs. J Virol 70: 6816–6819

Noda T, Sasagawa T, Dong Y, Fuse H, Namiki M, Inoue M (1998) Detection of human papillomavirus type 16 DNA in a subset of prostate cancers. J Virol 72: 147: 1170–1181

Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Marzo AM, Isaacs WB, Nelson WG (2005) Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26: 1170–1181

Serth J, Panitz F, Paeslack U, Kuczyn MA, Jonas U (1999) Increased levels of human papillomavirus type 16 DNA in a subset of prostate cancers. Cancer Res 59: 823–825

British Journal of Cancer (2007) 96(1), 137 – 139
Strickler HD, Burk R, Shah K, Viacidi R, Jackson A, Pizza G, Bertoni F, Schiller JT, Manns A, Metcalf R, Qu W, Goedert J (1998) A multifaceted study of human papillomavirus and prostate carcinoma. Cancer 82: 1118–1125

Sun J, Wiklund F, Zheng SL, Chang B, Balter K, Li L, Johansson JE, Li G, Adami HO, Liu W, Tolin A, Turner AR, Meyers DA, Isaacs WB, Xu J, Gronberg H (2005) Sequence variants in Toll-like receptor gene cluster (TLR6–TLR1–TLR10) and prostate cancer risk. J Natl Cancer Inst 97: 525–532

Zambrano A, Kalantari M, Simoneau A, Jensen JL, Villarreal LP (2002) Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 53: 263–276