Measurement of prompt D\(^0\) meson azimuthal anisotropy in PbPb collisions at \(\sqrt{s_{\text{NN}}} = 5.02\) TeV

The CMS Collaboration

Abstract

The prompt D\(^0\) meson azimuthal anisotropy coefficients, \(v_2\) and \(v_3\), are measured at midrapidity (\(|y| < 1.0\)) in PbPb collisions at a center-of-mass energy \(\sqrt{s_{\text{NN}}} = 5.02\) TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (\(p_T\)) range of 1 to 40 GeV/c, for central and midcentral collisions. The \(v_2\) coefficient is found to be positive throughout the \(p_T\) range studied. The first measurement of the prompt D\(^0\) meson \(v_3\) coefficient is performed, and values up to 0.07 are observed for \(p_T\) around 4 GeV/c. Compared to measurements of charged particles, a similar \(p_T\) dependence, but smaller magnitude for \(p_T < 6\) GeV/c, is found for prompt D\(^0\) meson \(v_2\) and \(v_3\) coefficients. The results are consistent with the presence of collective motion of charm quarks at low \(p_T\) and a path length dependence of charm quark energy loss at high \(p_T\), thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.120.202301.
The formation of a strongly-coupled quark-gluon plasma (QGP), a state of matter comprising deconfined quarks and gluons and exhibiting near-perfect liquid behavior, was established first in experiments performed at the Relativistic Heavy Ion Collider (RHIC) [1–4] and then later confirmed at the CERN Large Hadron Collider (LHC) [5, 6]. The azimuthal anisotropy of produced light flavor particles, one of the key signatures for the QGP formation, can be characterized by the Fourier coefficients \( v_n \) in the azimuthal angle \( \phi \) distribution of the hadron yield, \( dN/d\phi \propto 1 + 2 \sum_n v_n \cos(n(\phi - \Psi_n)) \), where \( \Psi_n \) is the azimuthal angle of the direction of the maximum particle density of the \( n \)th harmonic in the transverse plane [7]. Heavy quarks (charm and bottom) are primarily produced via initial hard scatterings because of their large masses, and thus carry information about the early stages of the QGP [8, 9]. Detailed measurements of the azimuthal anisotropy of the final-state charm and bottom hadrons can supply crucial information for understanding the properties of the QGP medium and the interactions between heavy quarks and the medium [10]. At low transverse momentum \( (p_T) \), the charm hadron \( v_n \) coefficient can help quantify the extent to which charm quarks flow with the medium, which is a good measure of their interaction strength. The measurements can also help explore the coalescence production mechanism for charm hadrons where charm quarks recombine with light quarks from the medium, which could also lead to positive charm hadron \( v_n \) [11, 12]. At high \( p_T \), the charm hadron \( v_n \) coefficient can constrain the path length dependence of charm quark energy loss [13, 14], complementing the measurement of the nuclear modification factor [15–17].

The charm hadron \( v_2 \) coefficient has been studied indirectly by measuring the \( v_2 \) of leptons from heavy-flavor hadron decays [18–22]. The D meson \( v_2 \) coefficient, which can provide cleaner information on the interactions between charm quarks and the medium, has also been measured [23–25]. The \( D^0 \) meson \( v_2 \) results from STAR suggest that the charm quarks have achieved local thermal equilibrium with the QGP medium in the hydrodynamic picture [23]. The D meson \( v_2 \) values measured by ALICE are similar to those of light hadrons [24, 25]. These results indicate that low-\( p_T \) charm quarks take part in the collective motion of the system. The D meson \( v_3 \) coefficient, which is predicted to be more sensitive to the interaction strength between charm quarks and the medium [26], has not been measured previously. In general, a precise measurement of the D meson \( v_n \) coefficient over a wide momentum range is expected to provide valuable insight into the QGP properties and can further constrain theoretical models.

In this Letter, we report the measurements of the azimuthal anisotropy coefficients, \( v_2 \) and \( v_3 \), of prompt \( D^0 \) mesons in lead-lead (PbPb) collisions at a center-of-mass energy \( \sqrt{s_{_{NN}}} = 5.02 \text{ TeV} \) per nucleon pair with the CMS experiment at the LHC. The coefficients are determined at midrapidity \( (|y| < 1.0) \) over a wide range in \( p_T \) (1 to 40 GeV/c) using the scalar product (SP) method [27, 28]. Results are presented for the centrality (i.e. the degree of overlap of the two colliding nuclei) classes 0–10%, 10–30%, and 30–50%, where the centrality class of 0–10% corresponds to the 10% of collisions with the largest overlap of the two nuclei.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the pseudorapidity range \( 3.0 < |\eta| < 5.2 \) on either side of the interaction region. The granularity of the HF towers is \( \Delta \eta \times \Delta \phi = 0.175 \times 0.175 \) radians, allowing an accurate reconstruction of the heavy ion collision event planes. The silicon tracker measures charged particles within the pseudorapidity range \( |\eta| < 2.5 \). Reconstructed tracks with \( 1 < p_T < 10 \text{ GeV/c} \) typically have resolutions of 1.5–3.0% in \( p_T \) and
25–90 (45–150) μm in the transverse (longitudinal) impact parameter [29]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [30].

The PbPb data used in this analysis are selected by a minimum bias trigger and a 30–100% centrality trigger. The collision centrality is determined from the transverse energy ($E_T$) deposited in both HF calorimeters. The minimum bias trigger requires energy deposits in both HF calorimeters above a predefined threshold of approximately 1 GeV. Furthermore, to increase the data sample in the 30–50% centrality range, a dedicated trigger is used to select events in the 30–100% centrality range. In the offline analysis, an additional selection of hadronic collisions is applied by requiring at least three towers in each of the HF detectors with energy deposits of greater than 3 GeV per tower. Events are required to have at least one reconstructed primary vertex, formed by two or more associated tracks and required to have a distance from the nominal interaction region of less than 15 cm along the beam axis. The numbers of events in the 0–10%, 10–30%, and 30–50% centrality ranges are $32 \times 10^6$, $64 \times 10^6$ and $151 \times 10^6$, respectively.

The $D^0$ mesons (including both the $D^0$ and $D^0$ states) are reconstructed through the hadronic decay channel $D^0 \to K^-\pi^+$, which has a branching fraction of $(3.93 \pm 0.04)\%$ [31]. The $D^0$ candidates are formed by combining pairs of oppositely-charged tracks and requiring an invariant mass within a $\pm 200$ MeV/c$^2$ window of the nominal $D^0$ mass of 1864.83 MeV/c$^2$ [31]. Tracks are required to pass kinematic selections of $p_T > 0.7$ GeV/c and $|\eta| < 1.5$, and must satisfy high-purity track quality criteria [29] to reduce the fraction of misreconstructed tracks. For each pair of selected tracks, two $D^0$ candidates are considered by assuming one of the tracks has the pion mass while the other track has the kaon mass, and vice versa. Kinematic vertex fits [32] are performed to reconstruct the secondary vertices of $D^0$ candidates. Several selections related to the topology of the decay are applied in order to reduce the combinatorial background. In particular, the selections are applied to the three-dimensional (3D) decay length significance ($L_{xyz}/\sigma(L_{xyz})$), defined as the 3D distance between the secondary and primary vertices divided by its uncertainty; the pointing angle ($\theta_p$), defined as the angle between the total momentum vector of the two tracks and the vector connecting the primary and secondary vertices; the $\chi^2$ probability of the secondary vertex fit; and the distance of the closest approach (DCA) of the total momentum vector to the primary vertex. The signal-to-background ratios are $p_T$ dependent, thus $p_T$-dependent selection criteria are applied to $L_{xyz}/\sigma(L_{xyz})$ and the vertex probability, ranging from 6.0 to 3.0 and 0.25 to 0.05 for low to high $p_T$, respectively. In the selection, $\theta_p < 0.12$ radians and DCA < 0.008 cm is required. The selection on DCA not only increases the signal significance, but also suppresses the fraction of nonprompt $D^0$ (or $D^0$ mesons from decays of b hadrons) significantly, which reduces the systematic uncertainties from the nonprompt $D^0$ meson contribution, as discussed later.

The event plane angles corresponding to the $n$th harmonic can be expressed in terms of Q-vectors, $Q_n = \sum_{k=1}^{M} \omega_k e^{i n \phi_k}$, where $M$ represents the subevent multiplicity, $\phi_k$ is the azimuthal angle of the $k$th particle, and $\omega_k$ is a weighting factor. In this analysis, event planes determined from the two HF calorimeters covering the range $3 < |\eta| < 5$, and from the tracker using tracks within $|\eta| < 0.75$ are used. For the HF (tracker) event planes, $M$ is the number of towers (tracks), and $\omega_k$ is the $E_T$ deposited in each HF tower ($p_T$ of each track). The Q-vector of each $D^0$ candidate is defined as $Q_{n,D^0} = e^{i n \phi}$, where $\phi$ is the azimuthal angle of the $D^0$ candidate. In
the SP method, $v_n$ coefficient can be expressed in terms of the Q-vectors as:

$$v_n\{\text{SP}\} = \frac{\langle Q_n D^0 Q_n^* \rangle}{\sqrt{\langle Q_n A Q_n^* \rangle \langle Q_n B Q_n^* \rangle}}$$

(1)

where the subscripts $A$ and $B$ refer to the HF event planes, the subscript $C$ refers to the tracker event plane, and the $\langle \rangle$ in denominator (numerator) indicates an average over all events (all $D^0$ candidates). The denominator of Eq. (1) corrects for the finite resolution of the event plane $A$. To avoid few-particle correlations, such as those induced by high-$p_T$ dijets and particle decays, the $\eta$ gap between $D^0$ candidates and the correlated event plane $A$ is required to be at least three units. Thus, if the $D^0$ candidate comes from the positive-$\eta$ side, $Q_n A (Q_n B)$ is calculated using the negative-$\eta$ (positive-$\eta$) side of HF, and vice versa. The real part is taken for all averages of $Q$-vector products. To account for asymmetries that arise from acceptance and other detector-related effects, the Q-vectors of event planes are recentered [7, 33]. These corrections and their effects on the results are found to be negligible.

Figure 1: Example of simultaneous fit to the invariant mass spectrum and $v_2^{S+B}(m_{\text{inv}})$ in the $p_T$ interval 4–5 GeV/c for the centrality class 10–30%.

To extract $v_n$ ($n = 2, 3$) values of the $D^0$ signal ($v_n^S$), a simultaneous fit to the invariant mass spectrum of $D^0$ candidates and their $v_n$ distribution as a function of the invariant mass ($v_n^{S+B}(m_{\text{inv}})$) is performed in each $p_T$ interval. The mass spectrum fit function is composed of three components: two Gaussian functions with the same mean but different widths for the $D^0$ signal ($S(m_{\text{inv}})$), an additional Gaussian function to describe the invariant mass shape of $D^0$ candidates with an incorrect mass assignment from the exchange of the pion and kaon designations ($SW(m_{\text{inv}})$), and a third-order polynomial to model the combinatorial background ($B(m_{\text{inv}})$). The width of $SW(m_{\text{inv}})$ is fixed according to PYTHIA+HYDJET simulations, in which the $D^0$ signal events from PYTHIA 8.209 [34, 35] are embedded into the minimum bias PbPb events from HYDJET 1.9 [36]. Furthermore, the ratio of the yields of $SW(m_{\text{inv}})$ and $S(m_{\text{inv}})$ is fixed to the
value extracted from simulations. The $v_n^{S+B}(m_{\text{inv}})$ distribution is fit with:

$$v_n^{S+B}(m_{\text{inv}}) = \alpha(m_{\text{inv}})v_n^S + [1 - \alpha(m_{\text{inv}})]v_n^B(m_{\text{inv}}),$$

where

$$\alpha(m_{\text{inv}}) = [S(m_{\text{inv}}) + SW(m_{\text{inv}})]/[S(m_{\text{inv}}) + SW(m_{\text{inv}}) + B(m_{\text{inv}})].$$

Here $v_n^B(m_{\text{inv}})$ is the $v_n$ value of background $D^0$ candidates and is modeled as a linear function of the invariant mass, and $\alpha(m_{\text{inv}})$ is the $D^0$ signal fraction as a function of the invariant mass. The K-π swapped component is included in the signal fraction because these candidates are from genuine $D^0$ mesons and should have the same $v_n$ value as that of the true $D^0$ signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and $v_n^{S+B}(m_{\text{inv}})$ in the $p_T$ interval 4–5 GeV/$c$ for the centrality class 10–30%.

The $D^0$ signal in data is a mixture of prompt and nonprompt $D^0$ components, thus the $v_n^S$ is a combination of the $v_n$ coefficients of prompt $D^0$ ($v_n^{\text{prompt}}$) and nonprompt $D^0$ ($v_n^{\text{nonprompt}}$) components,

$$v_n^S = f_{\text{prompt}}v_n^{\text{prompt}} + (1 - f_{\text{prompt}})v_n^{\text{nonprompt}},$$

where $f_{\text{prompt}}$ is the fraction of prompt $D^0$ mesons. Besides the measurement of $v_n$ of $D^0$ mesons with all analysis selections applied ($v_n^S$), the $v_n$ of $D^0$ mesons obtained by removing the DCA < 0.008 cm requirement ($v_n^{S,*}$) and the corresponding prompt $D^0$ fraction ($f_{\text{prompt,*}}$) are also measured. The prompt $D^0$ fractions are evaluated from data by fitting the DCA distribution using the probability distribution functions for prompt and nonprompt $D^0$ derived from the PYTHIA+HYDJET simulations. The DCA distributions of the $D^0$ signal in data are obtained with fits to mass spectra in bins of DCA. The discrimination between prompt and nonprompt $D^0$ mesons lies mainly in the large DCA region, thus the fit is performed on the entire range. The $f_{\text{prompt}}$ and $f_{\text{prompt,*}}$ are then evaluated from the fit. It is found that the DCA < 0.008 cm requirement can suppress the fraction of nonprompt $D^0$ mesons by approximately 50%. The $f_{\text{prompt}}$ ranges between 75 and 95%, depending on $p_T$ and centrality. The $v_n^{\text{prompt}}$ can then be expressed as:

$$v_n^{\text{prompt}} = v_n^S + \frac{1 - f_{\text{prompt}}}{f_{\text{prompt}} - f_{\text{prompt,*}}} (v_n^S - v_n^{S,*}). \tag{2}$$

The second term,

$$\frac{1 - f_{\text{prompt}}}{f_{\text{prompt}} - f_{\text{prompt,*}}} (v_n^S - v_n^{S,*}),$$

is a correction factor to account for the remaining nonprompt $D^0$ mesons after all analysis selections. Taking the uncertainties in $f_{\text{prompt}}$ and $f_{\text{prompt,*}}$ into account, the second term on the right of Eq. (2) is found to lie approximately between $-0.02$ and $+0.02$. In this analysis, the $v_n^S$ values are kept as the central values of the measured prompt $D^0$ meson $v_n$, while the second term of Eq. (2) is taken as a source of systematic uncertainty.

Apart from the systematic uncertainties from the remaining nonprompt $D^0$ mesons discussed above, other sources of systematic uncertainty in this analysis include the background mass probability distribution function (PDF), the $D^0$ meson yield correction (acceptance and efficiency), the track selections, and the background $v_n$ PDF. In this Letter, the quoted uncertainties in $v_n$ are absolute values. The systematic uncertainties from the background mass PDF (0.001 for both $v_2$ and $v_3$) are evaluated by the variations of $v_n$ while changing the background mass PDF to a second-order polynomial or an exponential function. Both the $D^0$ meson yield correction, and the values of $v_n$ are functions of the $D^0$ meson $p_T$, so there will be systematic uncertainties arising from the correction. To evaluate these uncertainties (0.002 to 0.003 for
Figure 2: Prompt D⁰ meson \( v_2 \) (upper) and \( v_3 \) (lower) coefficients at midrapidity \( (|y| < 1.0) \) for the centrality classes 0–10% (left), 10–30% (middle), and 30–50% (right). The vertical bars represent statistical uncertainties, grey bands represent systematic uncertainties from nonprompt D⁰ mesons and open boxes represent other systematic uncertainties. The measured \( v_n \) coefficient of charged particles at midpseudorapidity \( (|\eta| < 1.0) \) [37] and theoretical calculations for prompt D meson \( v_n \) coefficient [26, 38–41] are also plotted for comparison.

\( v_2 \) and 0.004 to 0.005 for \( v_3 \)), the yield correction is applied, and then \( v_n \) values are extracted from the corrected distributions and compared with the default \( v_n \) values. The track selections are varied and systematic uncertainties from track selections (0.005 to 0.02 for \( v_2 \) and 0.01 to 0.02 for \( v_3 \)) are assigned based on the variations of \( v_n \). The systematic uncertainties from the background \( v_n \) PDF (mostly 0.001 to 0.01 for \( v_2 \) and 0.005 to 0.015 for \( v_3 \)) are evaluated by changing \( v_B^n (m_{\text{inv}}) \) to a second-order polynomial function of the invariant mass. The effects from few-particle correlations are also studied by varying the \( \eta \) gap and are found to be negligible.

Figure 2 shows the prompt D⁰ meson \( v_2 \) (upper) and \( v_3 \) (lower) coefficients at midrapidity \( (|y| < 1.0) \) for the centrality classes 0–10% (left), 10–30% (middle), and 30–50% (right), and compares them to those of charged particles (dominated by light flavor hadrons) at midpseudorapidity \( (|\eta| < 1.0) \) [37]. The D⁰ meson \( v_2 \) and \( v_3 \) coefficients increase with \( p_T \) to significant positive values in the low-\( p_T \) region, and then decrease for higher \( p_T \). Compared to those of charged particles, the D⁰ meson \( v_2 \) and \( v_3 \) coefficients exhibit a similar \( p_T \) dependence. As has been observed for charged particles, the D⁰ meson \( v_2 \) coefficient increases with decreasing centrality in the 0–50% centrality range, while the \( v_3 \) coefficient shows little centrality dependence. This is consistent with an increasing elliptical eccentricity with decreasing centrality [42], and an approximately constant triangularity stemming from geometry fluctuations [43].

For \( p_T < 6 \text{ GeV/c} \), the magnitudes of D⁰ meson \( v_2 \) and \( v_3 \) coefficients are smaller than those for charged particles in the centrality classes 10–30% and 30–50%. Further study may determine whether it is a pure mass ordering or whether other effects, such as the degree of charm quark thermalization, coalescence, and the path length dependence of energy loss, are at play. The
comparison between the $D^0$ meson results and theoretical calculations in this low-$p_T$ region (see discussion below) suggests a collective motion of charm quarks. For $p_T > 6\text{ GeV}/c$, the $D^0$ meson $v_2$ values remain positive, suggesting a path length dependence of the charm quark energy loss; the $D^0$ meson $v_3$ precision is limited by the available data. The $D^0$ meson $v_2$ values are consistent with those of charged particles, suggesting that the path length dependence of charm quark energy loss is similar to that of light quarks.

Figure 2 also compares calculations from theoretical models \cite{26, 38–41} to the prompt $D^0$ meson $v_2$ and $v_3$ experimental results. The calculations from LBT \cite{38}, CUJET 3.0 \cite{41}, and SUBATECH \cite{26} include collisional and radiative energy losses, while those from TAMU \cite{40} and PHSD \cite{39} include only collisional energy loss. Initial-state fluctuations \cite{44} are included in the calculations from LBT, SUBATECH, and PHSD; thus calculations for the $v_3$ coefficient are only available from these three models. For $p_T < 6\text{ GeV}/c$, LBT, SUBATECH, TAMU, and PHSD can qualitatively describe the shapes of the measured $v_2$, while the TAMU model underestimates the $v_2$ values. This may suggest that the heavy quark potential in the TAMU model needs to be tuned \cite{45} or that the addition of radiative energy loss is needed. The calculations from LBT and SUBATECH are in reasonable agreement with the $v_3$ results, while the PHSD calculations are systematically below the measured $v_3$ for centrality class 10–30%. In the calculations from LBT, SUBATECH, TAMU, and PHSD, the charm quarks have acquired significant elliptic and triangular flow through the interactions with the medium constituents, and the coalescence mechanism is incorporated. Without including the interactions between charm quarks and the medium, these models will significantly underestimate the data \cite{26, 38–40}. Thus, the fact that the calculated $v_2$ values are close to or even lower than the measured results suggests that the charm quarks take part in the collective motion of the system. Whether and how well the $D^0$ anisotropy can be described by hydrodynamics and thermalization requires further investigation. For $p_T > 6\text{ GeV}/c$, PHSD and CUJET can generally describe the $v_2$ results. LBT and SUBATECH predict lower and higher $v_2$ values than in data, respectively, indicating that improvements of the energy loss mechanisms in the two models are necessary.

In summary, measurements of prompt $D^0$ meson azimuthal anisotropy coefficients, $v_2$ and $v_3$, using the scalar product method in PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02\text{ TeV}$ have been presented. The $v_2$ values are found to be positive in the $p_T$ range of 1 to 40$\text{ GeV}/c$. The $v_3$ coefficient is measured for the first time, and values up to 0.07 are observed for $p_T$ around 4$\text{ GeV}/c$. The $v_2$ coefficient is observed to be centrality dependent, while the $v_3$ coefficient shows little centrality dependence. Compared with those of charged particles, the measured $D^0$ meson $v_2$ and $v_3$ coefficients are found to be smaller for $p_T < 6\text{ GeV}/c$ but to have similar $p_T$ dependence. Through the comparison with theoretical calculations, the $v_2$ and $v_3$ results at low $p_T$ suggest that the charm quarks take part in the collective motion of the system. The $v_2$ values for $p_T > 6\text{ GeV}/c$, which are consistent with those of charged particles, suggest that the path length dependence of charm quark energy loss is similar to that of light quarks. The results provide new constraints on models of the interactions between charm quarks and the quark-gluon plasma, and the charm quark energy loss mechanisms.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We thank E. Bratkovskaya, S. Cao, M. He, J. Liao, M. Nahrgang, R. Rapp, T. Song, and J. Xu for the inputs in comparing our measurements with their calculations. In addition, we gratefully acknowledge the comput-
ing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] STAR Collaboration, “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions”, *Nucl. Phys. A* 757 (2005) 102, doi:10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.

[2] PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, *Nucl. Phys. A* 757 (2005) 184, doi:10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.

[3] BRAHMS Collaboration, “Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”, *Nucl. Phys. A* 757 (2005) 1, doi:10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.

[4] PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, *Nucl. Phys. A* 757 (2005) 28, doi:10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.

[5] B. Muller, J. Schukraft, and B. Wyslouch, “First results from Pb+Pb collisions at the LHC”, *Ann. Rev. Nucl. Part. Sci.* 62 (2012) 361, doi:10.1146/annurev-nucl-102711-094910, arXiv:1202.3233.

[6] N. Armesto and E. Scomparin, “Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1”, *Eur. Phys. J. Plus* 131 (2016) 52, doi:10.1140/epjp/i2016-16052-4, arXiv:1511.02151.

[7] A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions”, *Phys. Rev. C* 58 (1998) 1671, doi:10.1103/PhysRevC.58.1671, arXiv:nucl-ex/9805001.

[8] P. Braun-Munzinger, “Quarkonium production in ultra-relativistic nuclear collisions: Suppression versus enhancement”, *J. Phys. G* 34 (2007) S471, doi:10.1088/0954-3899/34/8/S36, arXiv:nucl-th/0701093.
[9] F.-M. Liu and S.-X. Liu, “Quark-gluon plasma formation time and direct photons from heavy ion collisions”, Phys. Rev. C 89 (2014) 034906, doi:10.1103/PhysRevC.89.034906, arXiv:1212.6587.

[10] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions”, Eur. Phys. J. C 76 (2016) 107, doi:10.1140/epjc/s10052-015-3819-5, arXiv:1506.03981.

[11] D. Molnar and S. A. Voloshin, “Elliptic Flow at Large Transverse Momenta from Quark Coalescence”, Phys. Rev. Lett. 91 (2003) 092301, doi:10.1103/PhysRevLett.91.092301, arXiv:nucl-th/0302014.

[12] V. Greco, C. M. Ko, and P. Lévai, “Parton Coalescence and Antiproton/Pion Anomaly at RHIC”, Phys. Rev. Lett. 90 (2003) 202302, doi:10.1103/PhysRevLett.90.202302, arXiv:nucl-th/0301093.

[13] M. Gyulassy, I. Vitev, and X. N. Wang, “High $p_T$ Azimuthal Asymmetry in Noncentral $A + A$ at RHIC”, Phys. Rev. Lett. 86 (2001) 2537, doi:10.1103/PhysRevLett.86.2537, arXiv:nucl-th/0012092.

[14] E. V. Shuryak, “Azimuthal asymmetry at large $p_t$ seem to be too large for a “jet quenching””, Phys. Rev. C 66 (2002) 027902, doi:10.1103/PhysRevC.66.027902, arXiv:nucl-th/0112042.

[15] STAR Collaboration, “Observation of $D^0$ Meson Nuclear Modifications in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. Lett. 113 (2014) 142301, doi:10.1103/PhysRevLett.113.142301, arXiv:1404.6185.

[16] ALICE Collaboration, “Transverse momentum dependence of D-meson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, JHEP 03 (2016) 081, doi:10.1007/JHEP03(2016)081, arXiv:1509.06888.

[17] CMS Collaboration, “Nuclear modification factor of $D^0$ mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, (2017). arXiv:1708.04962. Submitted to Phys. Lett. B.

[18] PHENIX Collaboration, “Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. Lett. 98 (2007) 172301, doi:10.1103/PhysRevLett.98.172301, arXiv:nucl-ex/0611018.

[19] PHENIX Collaboration, “Heavy quark production in $p + p$ and energy loss and flow of heavy quarks in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. C 84 (2011) 044905, doi:10.1103/PhysRevC.84.044905, arXiv:1005.1627.

[20] STAR Collaboration, “Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at $\sqrt{s_{NN}} = 200, 62.4,$ and $39$ GeV”, Phys. Rev. C 95 (2017) 034907, doi:10.1103/PhysRevC.95.034907, arXiv:1405.6348.

[21] ALICE Collaboration, “Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, JHEP 09 (2016) 028, doi:10.1007/JHEP09(2016)028, arXiv:1606.00321.

[22] ALICE Collaboration, “Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Lett. B 753 (2016) 41, doi:10.1016/j.physletb.2015.11.059, arXiv:1507.03134.
[23] STAR Collaboration, “Measurement of D⁰ Azimuthal Anisotropy at Midrapidity in Au + Au Collisions at \( \sqrt{s_{NN}} = 200 \text{ GeV} \)”, *Phys. Rev. Lett.* **118** (2017) 212301, doi:10.1103/PhysRevLett.118.212301, arXiv:1701.06060.

[24] ALICE Collaboration, “Azimuthal anisotropy of D meson production in Pb-Pb collisions at \( \sqrt{s_{NN}} = 2.76 \text{ TeV} \)”, *Phys. Rev. C* **90** (2014) 034904, doi:10.1103/PhysRevC.90.034904, arXiv:1405.2001.

[25] ALICE Collaboration, “D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at \( \sqrt{s_{NN}} = 5.02 \text{ TeV} \)”, *Phys. Rev. Lett.* **120** (2018), no. 10, 102301, doi:10.1103/PhysRevLett.120.102301, arXiv:1707.01005.

[26] M. Nahrgang et al., “Elliptic and triangular flow of heavy flavor in heavy-ion collisions”, *Phys. Rev. C* **91** (2015) 014904, doi:10.1103/PhysRevC.91.014904, arXiv:1410.5396.

[27] STAR Collaboration, “Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{NN}} = 130 \text{ GeV} \)”, *Phys. Rev. C* **66** (2002) 034904, doi:10.1103/PhysRevC.66.034904, arXiv:nucl-ex/0206001.

[28] M. Luzum and J.-Y. Ollitrault, “Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions”, *Phys. Rev. C* **87** (2013) 044907, doi:10.1103/PhysRevC.87.044907, arXiv:1209.2323.

[29] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[30] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[31] Particle Data Group, C. Patrignani et al., “Review of Particle Physics”, *Chin. Phys. C* **40** (2016) 100001, doi:10.1088/1674-1137/40/10/100001.

[32] G. E. Forden and D. H. Saxon, “Improving vertex position determination by using a kinematic fit”, *Nucl. Instrum. Meth. A* **248** (1986) 439, doi:10.1016/0168-9002(86)91031-4.

[33] NA49 Collaboration, “Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40-A-GeV and 158-A-GeV”, *Phys. Rev. C* **68** (2003) 034903, doi:10.1103/PhysRevC.68.034903, arXiv:nucl-ex/0303001.

[34] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1”, *Comput. Phys. Commun.* **178** (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[35] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[36] I. P. Lokhtin and A. M. Snigirev, “A model of jet quenching in ultrarelativistic heavy ion collisions and high-\( p_T \) hadron spectra at RHIC”, *Eur. Phys. J. C* **45** (2006) 211, doi:10.1140/epjc/s2005-02426-3, arXiv:hep-ph/0506189.
[37] CMS Collaboration, “Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, Phys. Lett. B 776 (2018) 195, doi:10.1016/j.physletb.2017.11.041, arXiv:1702.00630.

[38] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, “Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution”, Phys. Rev. C 94 (2016) 014909, doi:10.1103/PhysRevC.94.014909, arXiv:1605.06447.

[39] T. Song et al., “Charm production in Pb+Pb collisions at energies available at the CERN Large Hadron Collider”, Phys. Rev. C 93 (2016) 034906, doi:10.1103/PhysRevC.93.034906, arXiv:1512.00891.

[40] M. He, R. J. Fries, and R. Rapp, “Heavy flavor at the large hadron collider in a strong coupling approach”, Phys. Lett. B 735 (2014) 445, doi:10.1016/j.physletb.2014.05.050, arXiv:1401.3817.

[41] J. Xu, J. Liao, and M. Gyulassy, “Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0”, JHEP 02 (2016) 169, doi:10.1007/JHEP02(2016)169, arXiv:1508.00552.

[42] CMS Collaboration, “Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. C 87 (2013) 014902, doi:10.1103/PhysRevC.87.014902, arXiv:1204.1409.

[43] CMS Collaboration, “Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. C 89 (2014) 044906, doi:10.1103/PhysRevC.89.044906, arXiv:1310.8651.

[44] B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions”, Phys. Rev. C 81 (2010) 054905, doi:10.1103/PhysRevC.82.039903, arXiv:1003.0194. [Erratum: doi:10.1103/PhysRevC.81.054905].

[45] S. Y. F. Liu and R. Rapp, “An in-medium heavy-quark potential from the $Q\bar{Q}$ free energy”, Nucl. Phys. A 941 (2015) 179, doi:10.1016/j.nuclphysa.2015.07.001, arXiv:1501.07892.
The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossovsky, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskiyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang

Ghent University, Ghent, Belgium
A. Cimmino, T. Cornielis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja, F.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas
Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb, S. Elgammal, A. Ellithi Kamel

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillard, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
I. Bagaturia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Gütth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teypsi, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn,
E. Eren, E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mitig, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavadina, R. Klaerner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann, S.M. Heindl, U. Husemann, F. Kassel, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, J.H. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wühlmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, Á. Hunyadi, F. Sikler, V. Vespremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellari, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Bhowmik, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, N. Sahoo, S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhangra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, T. Sarkar, N. Wickramage

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Sirolì, N. Tosi

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglia, K. Chatterjee, V. Ciulli, C. Cивинин, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo, G. Sguazzoni, D. Strom, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
L. Brianza, M. Paganoni, a S. Buontempo, F. Astie, W. Khan, a A. T. Meneguzzo, a P. Azzi, T. Lomtadze, a A. Braghieri, a P. Lariccia, a

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida, F. Fabozzi, F. Fiengo, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola, P. Paolucci, C. Sciacca, F. Thyssen

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azzio, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacapra, M. Margoni, A.T. Meneguzzo, N. Pozzobon, R. Ronchese, R. Rossin, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, F. Fallavollita, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvinii, I. Vai, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestiz, M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Marian, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androssov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venture, P.G. Verdini

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Pretiato, S. Rahatlou, C. Rovelli, F. Santanastasio

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biin, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno.
M.M. Obertino\textsuperscript{a,b}, L. Pacher\textsuperscript{a,b}, N. Pastrone\textsuperscript{a}, M. Pelliccioni\textsuperscript{a}, G.L. Pinna Angioni\textsuperscript{a,b}, F. Ravera\textsuperscript{a,b}, A. Romero\textsuperscript{a,b}, M. Ruspa\textsuperscript{a,c}, R. Sacchi\textsuperscript{a,b}, K. Shchelina\textsuperscript{a,b}, V. Sola\textsuperscript{a}, A. Solano\textsuperscript{a,b}, A. Staiano\textsuperscript{a}, P. Traczyk\textsuperscript{a,b}.

\textbf{INFN Sezione di Trieste} \textsuperscript{a}, \textbf{Università di Trieste} \textsuperscript{b}, \textbf{Trieste, Italy}

S. Belforte\textsuperscript{a}, M. Casarsa\textsuperscript{a}, F. Cossutti\textsuperscript{a}, G. Della Ricca\textsuperscript{a,b}, A. Zanetti\textsuperscript{a}.

\textbf{Kyungpook National University, Daegu, Korea}

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang.

\textbf{Chonbuk National University, Jeonju, Korea}

A. Lee.

\textbf{Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea}

H. Kim, D.H. Moon, G. Oh.

\textbf{Hanyang University, Seoul, Korea}

J.A. Brochero Cifuentes, J. Goh, T.J. Kim.

\textbf{Korea University, Seoul, Korea}

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh.

\textbf{Seoul National University, Seoul, Korea}

J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu.

\textbf{University of Seoul, Seoul, Korea}

M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu.

\textbf{Sungkyunkwan University, Suwon, Korea}

Y. Choi, C. Hwang, J. Lee, I. Yu.

\textbf{Vilnius University, Vilnius, Lithuania}

V. Dudenas, A. Juodagalvis, J. Vaitkus.

\textbf{National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia}

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\textsuperscript{31}, F. Mohamad Idris\textsuperscript{32}, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli.

\textbf{Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico}

Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castillo-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\textsuperscript{33}, Rabadam-Trejo, R. L., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez.

\textbf{Universidad Iberoamericana, Mexico City, Mexico}

S. Carrillo Moreno, C. Orobeza Barrera, F. Vazquez Valencia.

\textbf{Benemerita Universidad Autonoma de Puebla, Puebla, Mexico}

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada.

\textbf{Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico}

A. Morelos Pineda.
University of Auckland, Auckland, New Zealand  
D. Krofcheck

University of Canterbury, Christchurch, New Zealand  
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan  
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland  
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki,  
K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland  
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura,  
M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal  
P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro,  
J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadrucio,  
J. Varela

Joint Institute for Nuclear Research, Dubna, Russia  
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin,  
A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,  
N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia  
Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov,  
V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia  
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov,  
A. Pashenkov, D. Trisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia  
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,  
A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia  
T. Aushev, A. Bylinkin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI),  
Moscow, Russia  
M. Chadeeva, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia  
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,  
Russia  
A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy, O. Kodolova,  
V. Korotkich, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev,  
I. Vardanyan
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen, D. Shtol

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzikian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalon Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernández

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virtu, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco, M. Dobson, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Geige, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer, M.J. Kortelainen, M. Krämer, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijsers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Spighas, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns, G.I. Veres, M. Verweij, N. Wardle, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà,
C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Adiguzel, F. Boran, S. Cerici, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girkis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, D. Sunar Cerici, B. Tali, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grinyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Pettyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria,
A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. McColl, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA
A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perrié, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichanhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia
Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7: Also at Joint Institute for Nuclear Research, Dubna, Russia
8: Now at Ain Shams University, Cairo, Egypt
9: Now at British University in Egypt, Cairo, Egypt
10: Now at Cairo University, Cairo, Egypt
11: Also at Université de Haute Alsace, Mulhouse, France
12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
13: Also at Ilia State University, Tbilisi, Georgia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Czech Technical University, Praha, Czech Republic
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at INFN Sezione di Padova; Università di Padova; Università di Trento (Trento), Padova, Italy
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at INFN Sezione di Roma; Sapienza Università di Roma, Rome, Italy
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Cag University, Mersin, Turkey
56: Also at Piri Reis University, Istanbul, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Necmettin Erbakan University, Konya, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, USA
66: Also at Beykent University, Istanbul, Turkey
67: Also at Bingol University, Bingol, Turkey
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Sinop University, Sinop, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea