Molecular characterization and antimicrobial susceptibility of Acinetobacter baumannii isolates obtained from two hospital outbreaks in Los Angeles County, California, USA
Warner, Wayne A.; Kuang, Shan N.; Hernandez, Rina; Chong, Melissa C.; Ewing, Peter J.; Fleischer, Jen; Meng, Jia; Chu, Sheena; Terashita, Dawn; English, L’Tanya; Chen, Wangxue; Xu, H. Howard

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below. / Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Publisher’s version / Version de l’éditeur:
https://doi.org/10.1186/s12879-016-1526-y
BMC Infectious Diseases, 16, 1, pp. 1-13, 2016-05-04

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/voir/objet/?id=02061952-fe8d-484f-b6ef-321a98a238c1

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Molecular characterization and antimicrobial susceptibility of *Acinetobacter baumannii* isolates obtained from two hospital outbreaks in Los Angeles County, California, USA

Wayne A. Warner¹, Shan N. Kuang¹, Rina Hernandez¹, Melissa C. Chong¹, Peter J. Ewing¹, Jen Fleischer¹, Jia Meng¹, Sheena Chu², Dawn Terashita³, L’Tanya English³, Wangxue Chen⁴ and H. Howard Xu¹*

Abstract

Background: Antibiotic resistant strains of *Acinetobacter baumannii* have been responsible for an increasing number of nosocomial infections including bacteremia and ventilator-associated pneumonia. In this study, we analyzed 38 isolates of *A. baumannii* obtained from two hospital outbreaks in Los Angeles County for the molecular epidemiology, antimicrobial susceptibility and resistance determinants.

Methods: Pulsed field gel electrophoresis, tri-locus multiplex PCR and multi-locus sequence typing (Pasteur scheme) were used to examine clonal relationships of the outbreak isolates. Broth microdilution method was used to determine antimicrobial susceptibility of these isolates. PCR and subsequent DNA sequencing were employed to characterize antibiotic resistance genetic determinants.

Results: Tri-locus multiplex PCR showed these isolates belong to Global Clones I and II, which were confirmed to ST1 and ST2, respectively, by multi-locus sequence typing. Pulsed field gel electrophoresis analysis identified two clonal clusters, one with 20 isolates (Global Clone I) and the other with nine (Global Clone II), which dominated the two outbreaks. Antimicrobial susceptibility testing using 14 antibiotics indicated that all isolates were resistant to antibiotics belonging to four or more categories of antimicrobial agents. In particular, over three fourth of 38 isolates were found to be resistant to both imipenem and meropenem. Additionally, all isolates were found to be resistant to piperacillin, four cephalosporin antibiotics, ciprofloxacin and levofloxacin. Resistance phenotypes of these strains to fluoroquinolones were correlated with point mutations in *gyrA* and *parC* genes that render reduced affinity to target proteins. *IS*Aba1 was detected immediately upstream of the *bla*OXA–23 gene present in those isolates that were found to be resistant to both carbapenems. Class 1 integron-associated resistance gene cassettes appear to contribute to resistance to aminoglycoside antibiotics.

(Continued on next page)
Background

Acinetobacter baumannii, an emerging opportunistic pathogen, is responsible for a significant proportion of nosocomial infections including urinary tract infections, endocarditis, surgical site infections, meningitis, septicemia, and ventilator-associated pneumonia among intensive care unit patients in hospitals [1–5]. Additionally, A. baumannii is recognized as an increasingly important cause of community-acquired pneumonia and other infections [6–11]. Currently, many nosocomial clinical isolates of A. baumannii exhibit antimicrobial resistance towards most or all major classes of antibiotics including β-lactams, aminoglycosides, fluoroquinolones (FQs), chloramphenicol, tetracyclines, and rifampin [12–16]. Four decades ago, these antibiotics were effective in treating infections caused by this bacterium. In particular, multidrug resistant clinical isolates of this bacterium have been reported as infectious agents in many soldiers wounded in Afghanistan and Iraq [17–22].

A few years ago, we examined the phenotypic and molecular characteristics of 20 representative outbreak isolates of A. baumannii obtained from Los Angeles County (LAC) hospitals [14]. Subsequently, in vivo virulence screens identified among these isolates a hypervirulent strain (LAC-4) which was used to develop a mouse model of A. baumannii-associated pneumonia [23]. Recently, we reported the complete genome of LAC-4 [24]. In this study, we determined antimicrobial susceptibility and performed detailed molecular analyses of 38 additional isolates of A. baumannii derived from two hospital outbreaks in Los Angeles County. Our report provides critical insight into the development of antimicrobial drug resistance, clonal dissemination and evolution of clinical isolates of A. baumannii in L.A County hospitals.

Methods

Epidemiology and definitions of case and control patients/isolates

A. baumannii isolates were collected as part of two separate healthcare-associated outbreak investigations that occurred in two Los Angeles County hospitals in 2007 and 2009 respectively. Hospital A (Outbreak X) is a large tertiary care teaching facility that provides general and specialized medical services. The outbreak occurred in the burn unit, a six-bed unit with two rooms located across the hall from each other. Hospital B (Outbreak Y) is a medium sized tertiary care facility that provides general and specialized medical services. The outbreak occurred in the medical intensive care unit. In both outbreaks isolates from case patients (thus the isolates are called case isolates) were cultured after the onset of new symptoms, e.g. fever, increased sputum. Control patients had A. baumannii cultures during the outbreak period from the same facility and, based on epidemiologic data, these cultures were determined to be unrelated to the outbreak (thus these isolates are called control isolates). Control isolates were used as a baseline for comparison of current strains circulating within the facility. Environmental cultures were collected from multiple unit surfaces of Hospital B, including patient room sinks, faucets and door handles as well as ventilator supplies and equipment. Environmental Cultures were not collected from Hospital A. A. baumannii isolates are shown in Table 1.

Additional bacterial strains

Quality control strains used in antimicrobial susceptibility testing [Escherichia coli (ATCC #25922) and Pseudomonas aeruginosa (ATCC #27853)] were purchased from American Type Culture Collection (ATCC, Manassas, VA). Additionally, A. baumannii strains AYE [12] and CCF-9 [25] were used as positive controls for Global Clones I and II (formerly known as International Clones I and II), respectively. All strains were stored in 20 % glycerol at –80 °C.

Species-level confirmation of A. baumannii isolates

All isolates were previously determined to be A. baumannii by hospital clinical laboratories. Species of these isolates were further confirmed based on sequence analysis of 16S–23S rRNA gene intergenic spacer (ITS) regions using modified methods [25] based on Chang and coworkers [26].
Pulsed field gel electrophoresis (PFGE)
Bacterial genomic DNA plugs were made from *A. baumannii* isolates according to PulseNet USA standardized laboratory protocol (http://www.cdc.gov/pulsenet/pathogens/index.html) for PFGE of *E. coli* O157:H7, *Shigella*, and *Salmonella* with following modifications. Genomic DNAs (in agarose plugs) released from lysed cells of all isolates were digested with *Apa* I (40 U/μl) for 5 h at 30 °C. Samples were run on 1 % SeaKem Gold pulsed field agarose gels in 0.5 × TBE using a Bio-Rad CHEF-Mapper XA Electrophoresis System in 0.5 × TBE for 18 h with an initial pulse at 5 s and final pulse at 13 s.

Table 1
A. baumannii isolates, nature of samples (case vs control), their collection dates, sites, source of outbreaks and PFGE type

Isolate No.	Case/Control	Collection Date	Specimen Source	Outbreak Code	No. of Band Differences	PFGE Type
LAC-201	Case 1	12/19/2007	BAL	X	0	X–A
LAC–202	Case 1	12/14/2007	Blood	X	0	X–A
LAC–203	Case 2	12/29/2007	Tip	X	0	X–A
LAC–204	Case 2	12/30/2007	ETT	X	0	X–A
LAC–205	Case 3	12/8/2007	Tip	X	0	X–A
LAC–206	Case 3	11/29/2007	Tip	X	0	X–A
LAC–207	Case 3	12/8/2007	BAL	X	0	X–A
LAC–208	Case 4	11/20/2007	BAL	X	0	X–A
LAC–209	Case 4	12/1/2007	Blood	X	1	X–A1
LAC–210	Control 1	12/23/2007	Wound	X	3	X–A2
LAC–211	Control 1	12/29/2007	Blood	X	3	X–A2
LAC–212	Case 5	12/22/2007	BAL	X	3	X–A3
LAC–213	Case 5	12/30/2007	BAL	X	3	X–A3
LAC–214	Case 5	12/21/2007	ETT	X	3	X–A3
LAC–215	Case 6	12/8/2007	Urine	X	3	X–A3
LAC–216	Case 6	12/20/2007	Blood	X	3	X–A3
LAC–217	Control 2	12/4/2007	Blood	X	4	X–A4
LAC–218	Control 2	11/29/2007	Resp	X	4	X–A4
LAC–219	Control 3	1/4/2008	Resp	X	3	X–A5
LAC–220	Control 3	1/3/2008	Blood	X	4	X–A6
LAC–221	Control 4	10/19/2007	BAL	X	>7	X–B
LAC–222	Control 4	11/10/2007	Blood	X	>7	X–B
LAC–223	Control 5	10/29/2007	BAL	X	>7	X–B1
LAC–224	Control 6	11/16/2007	Tip	X	>7	X–C
LAC–225	Control 6	11/22/2007	Resp	X	>7	X–C
LAC–226	Control 5	10/24/2007	Wound	X	>7	X–C
LAC–227	Case 1	8/4/2009	Sputum	Y	0	Y–A
LAC–228	Case 2	8/24/2009	Sputum, Expectorated	Y	0	Y–A
LAC–229	Case 3	8/31/2009	Sputum	Y	0	Y–A
LAC–230	Case 4	9/3/2009	Sputum	Y	0	Y–A
LAC–231	Environmental	9/15/2009	Environmental	Y	0	Y–A
LAC–232	Environmental	9/15/2009	Environmental	Y	0	Y–A
LAC–233	Environmental	9/15/2009	Environmental	Y	0	Y–A
LAC–234	Case 5	8/6/2009	Sputum	Y	1	Y–A1
LAC–235	Control 1	9/6/2009	Wound	Y	1	Y–A2
LAC–236	Case 6	8/4/2009	Bronchoscopy	Y	>7	Y–B
LAC–237	Case 7	8/6/2009	Sputum	Y	>7	Y–B
LAC–238	Case 8	8/3/2009	Wound	Y	>7	Y–C

Abbreviations: BAL bronchoalveolar lavage, ETT endotracheal tube, Resp respiratory, Tip catheter tip.
To compare the results of each isolate on different gels, Salmonella braenderup H9812 strain genomic DNA digested with Xba I was used as DNA size standard. The PFGE results were interpreted by categorizing gel lanes visually, according to guidelines described by Tenover and colleagues as used in our previous studies [14, 25, 27]. The genomic DNA banding patterns of the various isolates generated by PFGE were analyzed for clonal relationships using BioNumerics software, version 5.1 (Applied Maths, Austin, TX), using the UPGMA (unweighted pair group method with arithmetic mean) clustering method and the Dice similarity coefficient with 1.5% band matching tolerance and 0.5% optimization.

Tri-locus multiplex PCR

Tri-locus multiplex PCR was performed using genomic DNA from these isolates to determine clonal relationships (Global Clones I, II or III). Briefly, six pairs of PCR primers designed by Turton and colleagues [28] were used to perform two sets of multiplex PCR amplifications of omnpA, cseU and blaOXA–51-like gene fragments for each of the isolates using 5 Prime Taq polymerase MasterMix (Gaithersburg, MD). PCR parameters consisted of an initial denaturation at 94 °C for 3 min, 30 cycles of denaturation at 94 °C for 45 s, annealing at 57 °C for 45 s, extension at 72 °C for 1 min, and a final extension at 72 °C for 5 min. The isolates were designated as A. baumannii Global Clones I, or II based on criteria established for Group 2 and Group 1 strains, respectively [28].

Multi-locus sequence typing (MLST)

The MLST scheme described by Diancourt and coworkers [29] was performed and the scheme defined as Pasteur’s MLST scheme is now hosted at http://pubmlst.org/abaumannii/ site of PubMLST database. Briefly, the sequences of internal fragments of seven house-keeping genes cpm60 (encoding 60-kDa chaperonin), fusA (protein elongation factor EF-G), gltA (the citrate synthase), pyrG (CTP synthase), recA (homologous recombination factor), rplB (50S ribosomal proteins L2) and rpoB (RNA polymerase subunit B) were determined. PCR amplification was performed in separate reactions of a final volume of 50 μl containing 20 μl Taq polymerase MasterMix, 1 μl forward and reverse primers (10 μM) and 2 μl template DNA (10 ng/μl). PCR amplification was carried out in the GeneAmp 9700 system without a mineral oil overlay. Thermocycler parameters included an initial melt at 94 °C for 2 min, followed by 35 cycles of 94 °C for 30 s, 50 °C for 30 s, 72 °C for 30 s, ending with a final extension step of 72 °C for 5 min. After confirmation of presence of robust amplicons at appropriate length, PCR products were purified according to the manufacturer’s instructions using a QIAquick PCR purification kit (Qiagen, Valencia, CA) and then sequenced on an ABI 3730 automated fluorescent sequencer. Determination of the sequence type was carried out using the Pasteur MLST Database on the http://pubmlst.org/abaumannii/ website.

Antimicrobial susceptibility testing

Antimicrobial susceptibility of the A. baumannii isolates were determined using the broth microdilution protocols of Clinical Laboratory Standards Institute [30] against a total of 14 known antibiotics according to methods described previously [14]. Cefotaxime, cefazidine, ceftriaxone, gentamicin, levofloxacin, ciprofloxacin, pipercillin and polymyxin B were purchased from Sigma-Aldrich (St. Louis, MO). Meropenem was from US Pharmacopeia (Rockville, MD). Amikacin, cefepime, gatifloxacin, imipenem and tobramycin were purchased from Fisher Scientific (Tustin, CA).

Sequencing of QRDRs of gyrA and parC genes

The quinolone resistance determinant regions (QRDRs) of A. baumannii genes gyrA and parC were sequenced based on the methods described previously [14], with the exception of a new forward PCR/sequencing primer (5’-GTGCGTTATGGCCATGCAC-3’) for the gyrA QRDR. Sequence comparisons with the amino acid sequences of wild type A. baumannii gyrA (accession No. X82165) and ParC (accession No. X95819) QRDR regions [31, 32] were made to identify mutated amino acids.

Detection of class 1 integrons

The presence or absence of Class 1 integrons in all 38 hospital isolates was determined by PCR using previously reported primers specific for the intI1 genes: intI1L primer, 5’-ACATGTAATGGCCAGCGAC-3’; intI1R primer, 5’-ATTCTGTCAGGTGGCAG-3’ [33]. Amplification was performed using genomic DNA as template as described previously for the QRDR of the gyrA and parC genes [14], with the following parameters: an initial template denaturation at 94 °C for 2 min; 36 cycles of 1 min denaturation at 95 °C, 30 s of annealing at 53 °C, and 2 min of extension at 72 °C; final extension at 72 °C for 10 min. Similarly, primers specific to the 5’ and 3’ conserved segments (CS) of class 1 integrons (5’ CS primer, 5’-GGCATCCAAGCGACAG-3’; 3’ CS primer, 5’-AAGCAGACTTGACCTGA-3’) were also chosen to amplify the variable regions, as previously described by Levesque and coworkers [34]. After the PCR products were confirmed by agarose gel electrophoresis analysis, successful amplicons were sequenced as previously described for the QRDR of gyrA and parC genes. DNA sequences were analyzed using NCBI
BLAST program to identify the entities of the genes within the variable regions.

Carbapenemase gene detection
The presence of four prevalent OXA carbapenemase genes (\(blaoXAX-23\)-like, \(blaoXAX-24\)-like, \(blaoXAX-51\)-like and \(blaoXAX-58\)-like) for all isolates was determined using established procedures described by Woodford and colleagues [35]. Briefly, the multiplex PCR reactions using 4 pairs of published primers [35] were performed in the GeneAmp 9700 system. The resulting agarose gel electrophoresis revealed the presence or absence of a given \(blaoXAX\) allele based on the predicted amplicon sizes [35].

Detection of IS\(aba1\)
These hospital isolates were subsequently tested for the presence of IS\(aba1\) element, using procedures described by Segal and coworkers [36]. Additionally, for those isolates that were confirmed to harbor \(blaoXAX-23\)-PCR mapping experiments were performed to determine whether there was an IS\(aba1\) element upstream of the \(blaoXAX-23\) gene using the IS\(aba1\) forward primer and the \(blaoXAX-23\)-like gene reverse primer, 20 ng template DNA, with the following PCR parameters: an initial denaturing step at 94 °C for 5 min, followed by 30 amplification cycles of 94 °C for 25 s, 52 °C for 40 s and 72 °C for 50 s, with a final extension step at 72 °C for 6 min.

Results and discussion

Epidemiology
All isolates were confirmed as belonging to \(A. baumannii\) species based on sequence analysis of the 16S-23S rRNA intergenic spacer (ITS) region (data not shown). Outbreak X (\(n = 6\) cases) and Outbreak Y (\(n = 8\) cases) were defined as hospital-acquired \(A. baumannii\) infections clustered in time and location. Thirty-five \(A. baumannii\) clinical isolates, obtained from two large general acute care hospitals (>300 beds) as part of two respective outbreak investigations, were collected and analyzed from twenty-one unique patients. Specimen sites included respiratory (resp, sputum, endotracheal tube, and bronchoalveolar lavage) (\(n = 19\)), blood (\(n = 7\)), catheter tip (\(n = 4\)), wound (\(n = 4\)), and urine (\(n = 1\)) (Table 1). Three additional isolates were collected from the hospital environment in Outbreak Y (sink faucet, towel dispenser and ventilator tubing in the same room). Outbreak X occurred in the burn intensive care unit. All six cases (i.e., case patients) were admitted for severe thermal injuries. Outbreak Y occurred in the critical care unit of another hospital and involved cases who were admitted for a variety of medical diagnoses including respiratory failure, altered consciousness, dehydration, abdominal distress, end stage renal disease, and stroke. The remaining six patients in Outbreak X and the remaining patient in Outbreak Y were considered controls (i.e., control patients). The control patients in Outbreak X were admitted to intensive care units (\(n = 4\)) or closed monitored units (\(n = 2\)), a step-down unit from intensive care, for conditions that include wounds, cancer, trauma, sepsis, and necrosis. The control patient in Outbreak Y was admitted to the telemetry unit for fever and hypotension. For the twenty-one total patients, the average age was 56 years (ranging from 19 to 85 years); 76 % (\(n = 16\)) were male and 24 % (\(n = 5\)) were female; 48 % of patients died (\(n = 10\)) with cause of death determined to be related to \(A. baumannii\) in three cases. The average length of stay prior to date of first positive \(A. baumannii\) culture was 25 days (range 1–109 days).

Pulsed field gel electrophoresis analysis
Pulsed field gel electrophoresis demonstrated relative relatedness of case isolates as compared to control isolates in each outbreak respectively. In Outbreak X, eight isolates from four cases (Cases 1–4) had indistinguishable isolate patterns and were designated Type X-A ("X" was added as a prefix to distinguish the PFGE types from those of Outbreak Y), while one isolate from Case 4 was designated Type X-A1 due to 1 band difference (Table 1 and Fig. 1 PFGE). The five isolates from the remaining two cases (Case 5 and Case 6) were designated Type X-A3, and indistinguishable from each other and had three band differences from the major pattern of the other cases (Table 1 and Fig. 1). Among the control isolates, two isolates of Control 1 and one isolate of Control 3 showed three band differences from the major pattern of the cases and were designated Type X-A2 and Type X-A5, respectively. Two isolates of Control 2 and the other isolate of Control 3 had four band differences from the major pattern and were designated Type X-A4 and Type X-A6, respectively (Table 1 and Fig. 1 PFGE). The isolates of the remaining three controls had greater than seven band differences from the major pattern of the cases, thus are considered not clonally related to those described above and were designated Types X-B, X-B1, X-C and X-D (Table 1 and Fig. 1). In Outbreak Y, four cases (Cases 1–4) were indistinguishable and designated Type Y-A (Table 1 and Fig. 1). One case (Case 5) and one control (Control 1) each had one band difference from the major pattern of the cases and were designated Types Y-A1 and Y-A2. All 3 patterns (Y-A, Y-A1, and Y-A2) are between 1–3 band apart so they are considered closely related but are not the same, according to Tenover et al [27]. Two cases (Case 6 and Case 7) were indistinguishable from each other but had greater than seven band differences from the other cases and were designated Type Y-B, and the remaining case (Case 8) was greater than seven band different from the major patterns of the cases and was designated Type Y-C.
The isolates with Types Y-B and Y-C are deemed not clonally related to Types Y-A to Y-A2. The three environmental isolates were also designated Type Y-A, and had 0 band difference from the major pattern of the cases (Table 1 and Fig. 1). Of note, in Outbreak X, one case (Case 4) and two controls (Control 3 and Control 5) had isolates collected from different sites on different days that, though they were from the same patient, differed from each other (Table 1). Among 38 isolates obtained from two hospital outbreaks, there were two clonally related clusters: one cluster consisting of isolates with Types X-A1 to X-A6 (n = 20) and the other cluster of isolates with Types Y-A to Y-A2 (n = 9) (Fig. 1). The remaining six isolates collected from Outbreak X were all from controls, while the remaining three isolates from Outbreak Y were from three cases.

Typing of the isolates based on trilocus multiplex PCR and MLST

To determine which Global Clone (previously known as European Clone or International Clone) each of the *A. baumannii* isolates belongs to, trilocus multiplex (TLM) PCR was performed. Our results showed that, consistent with PFGE profiles (Fig. 1), 20 isolates associated with Outbreak X (14 case isolates, 6 control isolates) were found to belong to Global Clone I and they are all clonally related based on PFGE patterns (Fig. 1). In contrast, all 12 isolates from Outbreak Y (including case, control and environmental isolates) were found to belong to Global Clone II and all but three (LAC-236, LAC-237 and LAC-238) were clonally related (Fig. 1). Interestingly, six control isolates from three control patients in Outbreak X were also typed to Global Clone II (Fig. 1).
To confirm TLM typing results, 13 representative A. baumannii isolates from the outbreaks were examined for their MLST sequence types (ST) based on the Pasteur Institute Scheme [29]. The MLST results with select isolates showed those isolates typed to Global Clone I were confirmed to be ST1 while those isolates typed to Global Clone II were confirmed to be ST2 (Fig. 1). These results confirmed that for these isolates, TLM PCR assays accurately typed them to respective Global Clones, consistent with their sequence typing. In summary, the first outbreak (X) involved the spread of 20 isolates assigned to PFGE types X-A to X-A6 which belong to ST-1, the second outbreak (Y) resulted in the spread of 9 isolates assigned to PFGE types Y-A to Y-A2 which belong to ST-2. Isolates with Y-B, Y-C patterns are not related to Y-A, Y-A1 and Y-A2 isolates even though they were also typed ST-2.

MLST, TLM and PFGE genotyping methods are frequently used for epidemiological studies and the surveillance of A. baumannii outbreaks [37, 38]. PFGE has been considered the gold standard for outbreak investigations due to its higher discriminatory power. For years, PFGE had been the leading standard for typing of A. baumannii isolates [38]. However issues related to interlab exchange of data and reproducibility has raised concerns about reliability and portability of the results. While the TLM approach is simple to perform and has higher throughput, it has failed to resolve strains belonging to unusual lineages [24]. On the other hand, MLST is highly discriminating and uses the DNA sequences of several conserved housekeeping gene fragments [39]. It has emerged as the preferred method to type A. baumannii [40–42]. Our experience indicates that a bipartite interrogation using both PFGE and MLST approaches is ideal in examination of molecular epidemiology of A. baumannii isolates.

Antimicrobial susceptibility

To determine the antimicrobial susceptibility of these A. baumannii isolates, minimal inhibitory concentrations (MICs) were determined for a panel of 14 antibiotics against the 38 isolates obtained from the two outbreaks in Los Angeles County hospitals. Based on the MICs obtained for each antibiotic for the two groups of isolates (Outbreaks X and Y), MIC range, MIC\(_{50}\) and MIC\(_{90}\) values are summarized in Table 2. With the exception of polymyxin B which is active against all isolates, MIC\(_{50}\) values of all antibiotics tested fell within resistant ranges as defined by CLSI [43]. Specifically, all 38 isolates were resistant to cefepime, cefotaxime, ceftazidime, ceftriaxone, ciprofloxacin, levofloxacin and piperacillin (based on MIC ranges, Table 2), some may even be called XDR (extremely drug-resistant) (data not shown) as defined by Magiorakos and colleagues [44]. Additionally, while the X group of isolates (outbreak X) appeared to be more heterogeneous than those of Y group (outbreak Y) because of higher number of antibiotics with wide range of MIC values, the MIC\(_{50}\) and MIC\(_{90}\) profiles were quite similar between the two groups (Table 2).

There have been few reports on molecular epidemiology and antimicrobial resistance of isolates of A. baumannii obtained from hospitals in Los Angeles metropolitan area. In one of such reports, we characterized genetic and antimicrobial resistance profiles of 20 representative outbreak isolates of A. baumannii derived from hospitals in Los Angeles County, CA [14]. Using PFGE technique, these 20 multidrug resistant A. baumannii isolates were classified into eight epidemiologically distinct groups, which were consistent with isolates’ antimicrobial susceptibility profiles [14].

Table 2 MIC ranges, MIC\(_{50}\) and MIC\(_{90}\) values based on outbreak

Outbreak	Antimicrobial agents	MIC, μg/ml	MIC\(_{50}\)	MIC\(_{90}\)
Outbreak X (n = 26)	Amikacin	1–256	256	256
	Gentamicin	4–256	256	256
	Tobramycin	0.5–256	256	256
	Imipenem	2–32	16	32
	Meropenem	8–64	32	64
	Piperacillin	256	256	256
	Cefepime	64–256	128	256
	Cefotaxime	256	256	256
	Ceftazidime	256	256	256
	Ceftriaxone	256	256	256
	Ciprofloxacin	64–256	256	256
	Gatifloxacin	4–64	32	64
	Levofloxacin	16–32	32	32
	Polymyxin B	0.25–0.5	0.25	0.5
Outbreak Y (n = 12)	Amikacin	256	256	256
	Gentamicin	256	256	256
	Tobramycin	256	256	256
	Imipenem	1–32	32	32
	Meropenem	2–32	32	32
	Piperacillin	256	256	256
	Cefepime	32	32	32
	Cefotaxime	256	256	256
	Ceftazidime	128–256	256	256
	Ceftriaxone	256	256	256
	Ciprofloxacin	64–128	128	256
	Gatifloxacin	8–64	16	32
	Levofloxacin	16–64	32	64
	Polymyxin B	0.25	0.25	0.25
with more sophisticated molecular typing methodologies, such as MLST, we recently typed nine of these LAC isolates to ST10 (including LAC-4), five of them to ST417, two of them to ST241, while four of them confirmed as ST2 [24]. Although all isolates from the present study belong to ST1 and ST2 thus may not be genetically related to those 20 isolates examined previously, the increase in resistance phenotypes of the 38 isolates is quite remarkable (Table 2), considering the two batches of isolates were collected ten years apart. For example, all of the case isolates in the present study were resistant to all three aminoglycoside antibiotics tested (data not shown), while 25 % of isolates (5/20) from the previous batch were susceptible to amikacin and tobramycin [14]. Secondly, with the exception of three isolates (LAC-236, –237, and –238), all case isolates from the present study were resistant to both carbapenems (data not shown); in contrast, 50 % and 45 % of isolates from previous batch were susceptible to imipenem and meropenem, respectively [14].

Recently, Miyasaki and coworkers examined in vitro activity of antibiotic combinations against a panel of multidrug resistant strains of A. baumannii collected from Cedars-Sinai Medical Center in Los Angeles, CA [45]. In their report, among 102 hospital-acquired MDR A. baumannii isolates, 76 belonged to a major clone A while eight to a minor clone B, as characterized by repetitive PCR amplification using the DiversiLab Acinetobacter Fingerprinting Kit [45]. Unfortunately, because MLST tests were not performed by Miyasaki and colleagues, the genetic relationships of their isolates to those described in our studies (Fig. 1) [14] are unknown. In a study that reports immuno-protection against XDR A. baumannii infection in mice, Luo and coworkers described five isolates collected from in-patients at Harbor-UCLA Medical Center, Los Angeles, CA, in 2009 [46]. These five isolates were found to exhibit resistance phenotypes to at least one antimicrobial agents of all but 2 categories of antimicrobial agents [46].

Mechanisms of resistance

Our antimicrobial susceptibility testing indicated that all isolates were resistant to the three fluoroquinolone (FQ) antibiotics, with the exception of one control isolate which was intermediate to gatifloxacin (data not shown). Point mutations in the QDRD of genes encoding the GyrA and ParC subunits of DNA gyrase and DNA topoisomerase IV, respectively, are the primary mechanism of high-level bacterial resistance to fluoroquinolones (FQs) [31, 32]. These mutations and the resultant amino acid changes led to an altered target protein structure and reduced fluoroquinolones binding affinity [47]. To confirm if this is the case for these A. baumannii isolates, the QRDRs of the gyrA and parC genes of the 38 A. baumannii isolates were amplified via PCR and sequenced. Sequencing results indicated that with exceptions of control isolates LAC-222 and LAC-225, all the remaining 36 isolates possess point mutations that led to amino acid substitutions in both GyrA and ParC polypeptides (Table 3). In LAC-222, only one mutation that occurred in gyrA gene was found, which explains the intermediate phenotype of LAC-222 to gatifloxacin (data not shown).

These results are consistent with the previous findings that mutations in both GyrA and ParC are required for high-level FQ resistance phenotypes [31]. Indeed, we have previously reported that presence of mutations in both gyrA and parC genes in A. baumannii isolates is associated with high-level resistance to fluoroquinolones [14, 25]. Similarly, other investigators have found that possessing mutations in both gyrA and parC genes is strongly correlated with high level resistance to ciprofloxacin in A. baumannii isolates [18] or A. pittii isolates [48].

To assess the role of Class 1 integrons and the associated antibiotic resistance gene cassettes in antibiotic resistance phenotypes in the isolates, we performed PCR screens against the 38 isolates for the presence of Class 1 integrons by amplifying the integrase gene. Our results revealed that 31 of the 38 isolates harbored the integrase gene (Table 3) and that the seven isolates without integrase gene were all derived from control patients (Table 1 and Table 3). Subsequent conserved segment amplification via PCR, followed by DNA sequencing, indicated that all amplified conserved segments contain three antibiotic resistance genes sharing the same gene identity and organization: aacA4, catB8 and adaA1 (Table 3). Since aacA4 [aka aac (6’)-Ib] encodes aminoglycoside 6’-N-acetyltransferase, which confers resistance to amikacin and tobramycin, among others [49, 50], the presence of this gene (Table 3) correlates well with the susceptibility patterns of these 38 A. baumannii isolates because four of the seven control isolates being negative for class 1 integron were found to be susceptible to at least two of the three aminoglycoside antibiotics (data not shown). The presence of the integrase gene in 31 of the 38 isolates provides a critical surveillance parameter that is indicative of acquisition of antibiotic resistance genes.

Integrons have been shown to be an important type of mobile elements contributing significantly to the dissemination of antibiotic resistance genes in Gram-negative bacterial pathogens [51, 52]. It was interesting to note that the majority of A. baumannii clinical isolates tested in this study harbor Class 1 integron in their genomes and the seven isolates without it were control isolates, indicating that the control isolates had not yet acquired the Class 1 integron. The fact that outbreak isolates from two hospitals shared that same antibiotic resistance
Table 3 Gyra and ParC amino acid substitutions and detection of Class 1 integrons in A. baumannii isolates

Isolate No.	Gly-81	Ser-83 TCA	Ala-84	ParC amino acid changes	Class 1 integron	bla gene or IS/bla1 PCR
LAC-201	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-202	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-203	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-204	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-205	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-206	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-207	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-208	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-209	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-210	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-211	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-212	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-213	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-214	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-215	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-216	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-217	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-218	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-219	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-220	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-221	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-222	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-223	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-224	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-225	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-226	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-227	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-228	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-229	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-230	–	–	–	Leu TTA	+	aacA4–catB8–aadA1
LAC-231	–	–	–	Leu TTA	+	aacA4–catB8–aadA1

Note: OXA-23: 1 +, 2 –
OXA-24: 1 +, 2 –
OXA-51: 1 +, 2 –
OXA-58: 1 +, 2 –
IS/bla1: 1 +, 2 –
IS/OXA-23: 1 +, 2 –
Table 3 Gyrf and ParC amino acid substitutions and detection of Class 1 integrons in A. baumannii isolates (Continued)

Isolate	gyrA Substitution	ParC Substitution	aacA4-catB8-aadA1	Integration				
LAC-232	–	Leu TTA	–	+	–	+	+	
LAC-233	–	Leu TTA	–	+	–	+	–	+
LAC-234	–	Leu TTA	–	+	–	+	–	+
LAC-235	–	Leu TTA	–	+	–	+	–	+
LAC-236	–	Leu TTA	–	+	–	+	–	+
LAC-237	–	Leu TTA	–	+	–	+	–	+
LAC-238	–	Leu TTA	–	+	–	+	–	+

Absence of mutations in gyrA or parC genes is denoted as “–”
Presence or absence of class 1 integrase gene is denoted as “+” or “–”
Empty spaces, no tests were performed
gene array suggests the prevalence of this particular type of Class 1 integron in Los Angeles area. Such a gene array, aacA4-catB8-adaA1, was also found in many MDR A. baumannii clinical isolates collected from prison inmates [25]. This same array of gene cassettes has been identified in clinical isolates of A. baumannii worldwide: in 25 of the 30 A. baumannii isolates in Korea [53], in 47 of the 65 A. baumannii isolates in Taiwan [54], in all 30 clonal isolates of carbapenem-resistant A. baumannii involved in a hospital outbreak in Latvia [55], and in 26 clinical isolates of A. baumannii obtained in central Ohio, U.S.A. [56].

Carbapenem resistance in A. baumannii has been suggested to contribute to increased risk of mortality in patients infected with this bacterium [57]. In this study, the majority of A. baumannii isolates tested were resistant to both imipenem and meropenem, with a few isolates exhibiting intermediate or susceptible phenotypes, suggesting widespread resistant strain dissemination in the LAC hospital setting. Multiplex PCR reactions using primer pairs specific to four OXA carbapenemase genes (blaOXA–23-like, blaOXA–24-like, blaOXA–51-like, and blaOXA–58-like) were performed against these 38 isolates. As anticipated, blaOXA–51-like gene was detected in every A. baumannii isolates (Table 3). Additionally, 29 out of 38 isolates (76 %) also harbor the blaOXA–23-like gene (Table 3). Furthermore, none of the isolates harbors blaOXA–24-like or blaOXA–58-like gene. Results from the ISAba1 element PCR screens indicated that ISAba1 was present in all of the 38 isolates (Table 3). Subsequent PCR screens against the 29 blaOXA–23 positive strains using ISAba1 forward and blaOXA–23 reverse primers confirmed that all of these 29 isolates possess ISAba1 element upstream of the blaOXA–23 gene (Table 3), which is consistent with the carbapenem resistant phenotypes of these isolates. The remaining nine isolates without the blaOXA–23 gene were either susceptible or intermediate to at least one carbapenem tested (data not shown). Remarkably, 20 isolates of the clonal cluster (LAC-201 to –220) from Outbreak X and nine isolates of the clonal cluster (LAC-227 to –235) from Outbreak Y all possess ISAba1-linked blaOXA–23 gene (Fig. 1, Table 3) and they all are resistant to both carbapenems (data not shown).

Carbapenems are considered the last resort to treat infections caused by A. baumannii. In this study, we showed that the majority of case isolates and some control isolates were resistant to both carbapenems, which is of great concern. The carbapenem susceptibility phenotypes in these 38 A. baumannii isolates are clearly correlated with the presence or absence, in the genomes of the isolates, of ISAba1-linked blaOXA–23-like genes. Presumably, the ISAba1 element likely provides exogenous promoter functions to over-express the linked genes, as demonstrated previously [41, 58, 59]. In contrast, among the 20 nosocomial outbreak isolates of A. baumannii reported previously by us, 50 % and 45 % were susceptible to imipenem and meropenem, respectively [14], suggesting rapid dissemination of carbapenem resistant genetic determinants over a ten-year span. In fact, the LAC-4 strain, whose genome was completely sequenced, and 19 other LAC isolates from the 2008 study all lack blaOXA–23-like, blaOXA–24-like, and blaOXA–58-like genes, even though ISAba1 was detected in all of these isolates (data not shown). On the other hand, MDR A. baumannii strains isolated recently were often found to be resistant to carbapenems. For example, Hammerum and coworkers described eight carbapenem-resistant A. baumannii isolates in a Denmark hospital. These strains were typed using Pasteur MLST Scheme to five ST2 isolates, two ST1 isolates and one ST158, all of which harboring either blaOXA–23 or blaOXA–72 (which is blaOXA–24-LIKE) genes, consistent with carbapenem resistance phenotype [40]. Additionally, 26 carbapenem-resistant A. baumannii clinical isolates from two Italian hospitals were characterized and typed to ST2 using MLST and all possess blaOXA–82 genes that are located downstream of ISAba1 elements [60]. Finally, Teo and coworkers identified 49 MDR A. baumannii clinical isolates that were resistant to carbapenems and all isolates were found to harbor both blaOXA–51 and blaOXA–23 genes, in accordance with carbapenem resistant phenotypes [61].

Conclusions

This report presents the phenotypic and molecular analyses of 38 isolates of A. baumannii collected from two hospital outbreaks in Los Angeles County. Based on genetic patterns and molecular tests, one outbreak (Outbreak X) was dominated by a cluster of 20 clonally related isolates derived from Global Clone I or ST1 (MLST Pasteur Scheme) while the other (Outbreak Y) was dominated by a different cluster of nine clonally related strains belonging to Global Clone II or ST2. While every single isolate (including environmental isolates from the hospital) is multidrug resistant, all isolates were found uniformly resistant to seven antibiotics belonging to cephalosporin, penicillin and fluoroquinolone classes. There was good correlation between antimicrobial susceptibility phenotypes and the presence of resistance genetic determinants. In particular, it is alarming that nearly all of these cluster isolates (except three that were obtained from control patients) were resistant to both imipenem and meropenem, which can be attributed to presence of blaOXA–23 genes downstream of the ISAba1 in the genomes of these isolates. The results presented here provide clinically relevant insights into antimicrobial susceptibility, clonal dissemination and mechanisms of resistance in Los Angeles area hospitals.
Ethics approval and consent to participate
Because the clinical isolates were not isolated by co-authors who had no direct interactions with patients from whom these isolates were isolated and the isolates do not contain patient identifiable information, ethics review and approval by institutional review board (IRB) was waived. Consent to participate is not applicable.

Consent for publication
Not applicable.

Availability of data and materials
All data is contained within the manuscript. Clinical isolates of A. baumannii will be made available upon requests from Dr. H. Howard Xu.

Abbreviations
ATCC: American type culture collection; BAL: bronchoalveolar lavage; BLAST: basic local alignment search tool; ETT: endotracheal tube; FC: fluoroquinolone; ITS: intergenic spacer; LAC: Los Angeles County; MDR: multidrug resistance; MIC: minimal inhibitory concentration; MLST: multilocus sequence typing; NCBI: national center for biotechnology information; PCR: polymerase chain reaction; PFGE: pulsed field gel electrophoresis; QRDR: quinolone resistance determinant region; ST: sequencing type; TBE: tris borate EDTA buffer; TLM-PCR: trifloucyclo multiplex PCR; LPGMA: unweighted pair group method with arithmetic mean; XDR: extreme drug resistance.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SC, WC and HX conceived the study and participated in design of experiments. WW, SK, RH, MC, PE, JF, JM and SC performed experiments. WW, SK, SC, DT, LE, WC and HX performed data analyses and drafting of manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by grants to H. Howard Xu from the Army Research Office (W911NF–12–1–0059), Department of Homeland Security Acinetobacter baumannii (2009–S5–062–000018), California State University Program for Education and Research in Biotechnology (the 2011 Entrepreneurial Joint-Venture grant) and a mini-grant from California State University, Los Angeles. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. W.A.W. and R.H. were supported by scholarships from DHS (Grant 2009–S5–062–000018), SNJK and P.J.E. were supported by scholarships by a grant from Army Research Office (W911NF–12–1–0059). W.A.W. was also supported by NIH Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE) Program (SR25GM061331).

Author details
1. Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California 90032, USA.
2. Los Angeles County Department of Public Health, Public Health Laboratory, Los Angeles, CA 90024, USA.
3. Los Angeles County Department of Public Health, Los Angeles, CA 90012, USA.
4. Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.

Received: 14 November 2015 Accepted: 27 April 2016
Published online: 04 May 2016

References
1. Decousser JW, Jansen C, Nordmann P, Emirian A, Bonnin RA, Anees L, et al. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Euro Surveill. 2013;18(31):20547.
2. Vilacoba E, Almuzara M, Gulone L, Rodriguez R, Pallone E, Bakai R, Centon D, Ramirez MS. Outbreak of extensively drug-resistant Acinetobacter baumannii indigo-pigmented strains. J Clin Microbiol. 2013;51(11):3726–30.
3. Zarilli R, Di Polipo A, Bagattini M, Giannoulis M, Martino D, Barchitta M, Quattrocci A, Iula VD, de Luca C, Scarcella A, et al. Clonal spread and patient risk factors for acquisition of extensively drug-resistant Acinetobacter baumannii in a neonatal intensive care unit in Italy. J Hosp Infect. 2012;82(4):260–5.
4. Zarilli R, Pouraras S, Giannoulis M, Tsiamis K. Global evolution of multidrug-resistant acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 2013;41(1):11–9.
5. Duarte-Mangoni E, Uff R, Zarilli R. Combination therapy in severe Acinetobacter baumannii infections: an update on the evidence to date. Future Microbiol. 2014;9(2):177–88.
6. Peng C, Zong Z, Fan H. Acinetobacter baumannii isolates associated with community-acquired pneumonia in West China. Clin Microbiol Infect. 2012;18(12):E491–493.
7. Solak Y, Atalay H, Turkmen K, Biyik Z, Genc N, Yekes M. Community-acquired carbapenem-resistant Acinetobacter baumannii urinary tract infection just after marriage in a renal transplant recipient. Transpl Infect Dis. 2011;13(6):638–40.
8. Chen MZ, Hsuah PR, Lee LN, Yu CJ, Yang PC, Luh KT. Severe community-acquired pneumonia due to Acinetobacter baumannii. Chest. 2001;120(4):1072–7.
9. Evellard M, Kempf M, Belmonte O, Pailhories H, Joly-Guillou ML. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int J Infect Dis. 2013;17(10):e802–805.
10. Falagas ME, Karveli EA, Kelesidis T, Kelesidis I. Community-acquired Acinetobacter infections. Eur J Clin Microbiol Infect Dis. 2007;26(12):857–68.
11. Ozaki T, Nishimura N, Arakawa Y, Suzuki M, Naita A, Yamamoto Y, Koyama N, Nakane K, Yasuda N, Funahashi K. Community-acquired Acinetobacter baumannii meningitis in a previously healthy 14-month-old boy. J Infect Chemother. 2009;15(S1):S32–4.
12. Fourier PE, Valleret D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1):e7.
13. Valencia R, Arroyo LA, Conde M, Aldama JM, Torres MJ, Fernandez-Cuence F, Garmacho-Montero J, Cisneros JM, Ortz C, Pachon J, et al. Nosocomial outbreak of infection with pan-drug-resistant Acinetobacter baumannii in a tertiary care University Hospital. Infect Control Hosp Epidemiol. 2008;29(3):257–63.
14. Valentini SC, Contreras D, Tan S, Real LJ, Chu S, Xu HH. Phenotypic and molecular characterization of Acinetobacter baumannii clinical isolates from nosocomial outbreaks in Los Angeles county. J Clin Microbiol. 2008;46(8):2499–507.
15. Bahador A, Taheri M, Pourakbari B, HashemiZadeh Z, Rostami H, Mansoori N, Rohoofri R. Emergence of rifampicin, tigecycline, and colistin-resistant Acinetobacter baumannii in Iran; spreading of MDR strains of novel international clone variants. Microb Drug Resist. 2013;19(5):397–406.
16. Llaca-Diaz JM, Mendoza-Olazaran S, Camacho-Ortiz A, Flores S, Garza-Gonzalez E. One-year surveillance of ESKEAPE pathogens in an intensive care unit of Monterrey, Mexico. Chemotherapy. 2012;58(6):475–81.
17. Akers KS, Mende K, Yun HC, Hospenthal DR, Beckius ML, Yu X, Murray CK. Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a U.S. military hospital. Antimicrob Agents Chemother. 2009;53(6):2693–5.
18. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massie C, Eshoo MW, Sampath R, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50(12):4114–23.
19. Kang G, Hartzell JD, Howard R, Wood-Morris RN, Johnson MD, Fraser S, et al. Mortality associated with Acinetobacter baumannii complex bacteremia among patients with war-related trauma. Infect Control Hosp Epidemiol. 2010;31(1):92–4.
20. Zapor MJ, Moran KA. Infectious diseases during wartime. Curr Opin Infect Dis. 2005;18(5):395–9.
21. Huang XZ, Chahine MA, Faye JG, Cash DM, Lesho EP, Craft DW, Lindler LE, Nikolich MP. Molecular analysis of imipenem-resistant Acinetobacter baumannii isolated from US service members wounded in Iraq, 2003-2008. Epidemiol Infect. 2012;140(12):2302–7.
22. Taitt CR, Leski TA, Stockelman MG, Craft DW, Zurawski DV, Kirkup BC, Vora GJ. Antimicrobial resistance determinants in Acinetobacter baumannii.
isolates taken from military treatment facilities. Antimicrob Agents Chemother. 2014;58(2):767–81.

23. Harris G, Kuo Lee R, Lam CK, Kanazaki G, Patel GB, Xu HH, Chen W. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother. 2013;57(8):3601–13.

24. Ou HY, Kuo M, He X, Molgora BM, Ewing PJ, Deng Z, Othy M, Chen W, Xu HH. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors. Sci Rep. 2015;5:8643.

25. Golenar BD, Lam CK, Chu YM, Cueva C, Tan SW, Silva J, Xu HH. Phenotypic and molecular characterization of Acinetobacter clinical isolates obtained from inmates of California correctional facilities. J Clin Microbiol. 2011;49(6):2121–31.

26. Chang HC, Wei YF, Dijkshoorn L, Vaneechoutte M, Tang CT, Chang TC. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumanii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol. 2005;43(4):1632–9.

27. Tenover FC, Arndt RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2213–9.

28. Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect. 2007;13(8):807–15.

29. Diancourt L, Passet V, Nemer A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 2010;5(9):e10034.

30. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard - Ninth Edition. Wayne, PA, USA: CLSI document M07-A9; 2012.

31. Vila J, Rujz J, Goni P, de Anta TJ. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother. 1997;39(6):575–62.

32. Vila J, Rujz J, Goni P, Marcos A, Jimenez de anta T. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 1995;39(5):1201–3.

33. Ploy MC, Denis F, Courvalin P, Lambert T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother. 2000;44(10):2684–8.

34. Levesque S, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995;39(1):185–91.

35. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Warner ML. Genetic relatedness and molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob Agents Chemother. 2005;49(6):2121–31.

36. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Funke G,比我el H, Lederer S, Moreillon P, Schwartz G. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.

37. Miyasaki Y, Morgan MA, Chan RC, Nichols WS, Hujer KM, Bonomo RA, Murphy AR. In vitro activity of antibiotic combinations against multidrug-resistant strains of Acinetobacter baumannii and the effects of their antibiotic resistance determinants. FEMS Microbiol Lett. 2012;328(1):26–31.

38. Segal H, Garny S, Elisha BG. Is IS(ABA-1) customized for Acinetobacter baumannii? J Microbiol Meth. 2009;76(1):113–20.

39. Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2004;58:455–74.

40. Roman A, Peleg AY, Leimanis A, Mangat G, Chahine MA, Mejia SB, Gobbo S, Jack NM, Wang Y, Onofrio S, Deplano A, Carattoli A, Patricio R, Akeson M, O’Toole GA. Comprehensive genomic analysis of Acinetobacter baumannii reveals a dominant role of integrons. Mol Microbiol. 2015;96(3):567–81.

41. Lee HY, Huang CW, Chen CL, Wang YH, Chang CJ, Chiou CH. Emergence in Taiwan of novel imipenem-resistant Acinetobacter baumannii ST455 causing bloodstream infection in critical patients. J Microbiol Immunol Infect. 2015;48(6):588–96.

42. Alvargonzalez JJ, Vindel Hernandez A, Martin MD, Casas CM, Iglesias JO, Marin MF, Alvarez ML, Sanchez VB, Mari JM. Sequential outbreaks in a Spanish hospital caused by multidrug-resistant OXA-58-producing Acinetobacter baumannii ST92. J Med Microbiol. 2014;63(Pt 8):1093–9.

43. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. Wayne, PA, USA: CLSI document M100-S22; 2012.