Microbiological indicators for assessing the ecological status of freshwater lakes in Buryatia

S V Zaitseva, O P Dagurova and L P Kozyreva

Institute of General and Experimental Biology, SB RAS, Ulan-Ude, 670047 Russia

E-mail: svet_zait@mail.ru

Abstract. Possible complex approaches for assessing the condition of freshwater lakes using data on microbial diversity, obtained by high-throughput sequencing, were considered. The structural features of microbial communities, associated with increased anthropogenic impact, have been revealed. We identified some microbial taxa, which can be considered as indicators of the environmental status of freshwater bodies.

1. Introduction
An assessment of the status of freshwater ecosystems is an important part of environmental management programmes, in predicting possible risks to human health and in developing recommendations for effective management of freshwater resources. Traditional studies to assess the condition of freshwater ecosystems have focused on monitoring physicochemical parameters (due to the ease and accessibility of detection methods), control of sanitary-epidemiological groups of microorganisms, or on determining the impact of various pollutants on biological objects [1, 2]. The ecological approach to assessing the state of ecosystems is reflected in numerous biodiversity and biotic indices [3].

Microorganisms are a key component of freshwater ecosystems, participating in the production and decomposition of organic matter. The microbial community is closely related to environmental conditions and hydrochemical parameters, and is also able to quickly respond to negative changes in the ecological state of water bodies [4]. Therefore, studies related to the use of microorganisms as indicators of changes in the ecosystem, including anthropogenic ones, are relevant. The widespread use of modern high-throughput sequencing methods for assessing the microbial diversity in aquatic ecosystems makes it possible to conduct a more informative analysis of water and sediments microbial communities. The anthropogenic effect on structural changes in the microbial community has been well studied in recreational and urban freshwater ecosystems, where changes in the bacterial composition were observed along the concentration gradients of organic matter, nitrogen, phosphorus, etc. [5-7]. The aim of this study was to comprehensively assess the ecological state of large freshwater lakes in Buryatia: Gusinoe, Shchuchye, Kotokel, Isinga, Gunda, Sosnovoye and Bolshoye Yeravnoye, using data on the diversity of microorganisms, based on high-throughput sequencing.

2. Materials and Methods
Water temperature, total dissolved solids (TDS), pH, concentrations of nutrients and dissolved oxygen were measured by portable instruments; cation and anion content, total organic matter concentrations were determined in the laboratory in accordance with standard protocols.
Microbial diversity was studied by high-throughput sequencing using Illumina MiSeq platform in three technical replicates as described earlier [7]. The research was done using equipment of the Core Centrum ‘Genomic Technologies, Proteomics and Cell Biology’ in ARRIAM. Bioinformatics analysis was performed using QIIME ver. 1.9.1 and SILVA software [9].

The aquatic microorganism-based bacterial eutrophic index (BEI) was determined as the function of temperature and abundances of *Cyanobacteria* and *Actinobacteria* [3].

3. Results and Discussion

Environmental parameters of the water samples are presented in Table 1. In general, dissolved oxygen had normal variations without significant differences among the seven lakes. However, high content of organic matter, increased value of nitrates and phosphates were found in lakes: Gunda, Bolshoye Yeravnoye and Isinga, as well as and in the ‘Kotokel 1’ sample after accelerated growth of *Cyanobacteria*. The total dissolved solids of Lake Sosnovoye tended to be higher than those of the other lakes ($P < 0.1$).

Lake	TDS, mg/l	NO$_3$, mg/l	P$_2$O$_5$, mg/l	C$_{org}$, mg/l	O$_2$, mg/l
Gusinoe	373.2±8.7	0.36±0.1	0.09±0.04	5.75±0.30	12.9±1.3
Shchuchye	278.7±3.4	0.6±0.16	0.09±0.01	6.6±0.4	14.1±1.1
Kotokel	128.8±14.3	2.93±3.6	0.10±0.03	10.5±4.2	12.7±0.1
Gunda	365.7±4.7	0.73±0.19	0.09±0.04	17.1±1.7	10.0±0.5
Bolshoye Yeravnoye	301.8±40	1.0±0.2	0.14±0.50	19.1±0.1	8.96±0.30
Isinga	279.3±4	1.81±0.1	0.37±0.50	21.7±0.8	11.3±1.5
Sosnovoye	583.8±7.5	1.36±02	0.09±0.04	5.75±0.30	12.8±1.3

Biological diversity was associated with water quality parameters and environmental conditions. At phylum level, the seven freshwater lakes analysed had a similar microbial community structure with the dominance of the few typical freshwater bacterial groups even though conspicuous variations in their relative abundance were also observed. Distribution of 17 common freshwater lineages/genera cosmopolite of freshwater lakes revealed some trends in habitats with a high anthropogenic impact (beaches, places of urban drainage, etc.) and ecotopes without significant changes.

Lake	Temperature, °C	Cyanobacteria abundance, (%)	Actinobacteria abundance, (%)	BEI	Eutrophication level
Gusinoe	23.2±2.3	13.3±2.3	17.96±7.40	1.03±0.30	middle eutrophic/ hyper eutrophic
Shchuchye	23.40±1.36	9.57±0.36	20.65±1.75	0.59±0.05	light eutrophic
Kotokel	19.50±0.98	12.4±15.7	10.97±4.00	1.23±1.20	oligo-trophic/ middle eutrophic/ hyper eutrophic
Gunda	21.4±0.5	1.7±0.8	17.2±6.7	0.12±0.03	oligotrophic
Bolshoye Yeravnoye	23.1±2.5	3.83±2.00	16.7±7.7	0.35±0.29	oligotrophic/ middle eutrophic
Isinga	21.4±0.1	1.9±0.57	17.44±16.20	0.24±1.70	light eutrophic
Sosnovoye	21.6±0.6	5.6±1.4	9.5±2.3	0.74±0.20	light eutrophic/ middle eutrophic
In particular, representatives of the genera Flavobacterium and Rhodoferax demonstrated a high correlation between the abundance and high nutrient content in the areas of lakes associated with cyanobacterial blooms. The genera Rhodobacter, Polynucleobacter, and Luteolibacter preferred environments with a higher trophic level and were also indicators of possible anthropogenic impact. Our results confirmed potential relationships between microbial community composition and the environmental parameters measured in freshwater ecosystems [5, 6]. Such results, together with the ecological characteristics of common freshwater taxa, their wide and even cosmopolitan distribution range, high abundance, and sensitivity to environmental changes, allow us to consider them as indicators of the water quality in freshwater lake ecosystems.

One of the possible methods for classifying eutrophication of freshwater ecosystems is bacterial eutrophic index based on microbial diversity [3]. This method has been proposed to assess the water quality of global freshwater ecosystems and has allowed the trophic status of different lakes to be determined. As shown in Table 2, BEI was calculated for the studied lakes, and the classification of eutrophication in terms of aquatic microorganisms was determined. BEI values range from 0.1 in oligothrophic Lake Gunda to 2.5 in the sample ‘Kotokel 3’ with significant level of eutrophication due to cyanobacterial bloom. Another example of high BEI value was found in Lake Gusinoe, sampled in the warm water discharge and was influenced by increased temperature of water.

Table 3. Distribution of fam. *Enterobacteriaceae* in water samples of the studied lakes.

Sample, location	Average abundance, %	Dominant genera
Shch1, west part of Lake Shchuchye	0.59	-
Shch2, the centre of Lake Shchuchye	4.05	Klebsiella, Serratia, Enterobacter
Gus4, Lake Gusinoe beach	0.37	-
Kotokel 1, the beach	0.01	-
Kotokel 2, south-west part of the lake	1.69	Escherichia-Shigella
Isinga 1	15.4	Klebsiella
Isinga 3	1.22	Klebsiella
Gunda 1	28.0	Klebsiella
Gunda 2	12.3	Klebsiella

Qualitative and quantitative determination of fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), thermotolerant coliform bacteria, coliphages, salmonella, and alternative indicators (Enterococcus, Staphylococcus, Streptococcus, Bacteroides, Clostridium, Finegoldia, Burkholderia, Klebsiella, and bacteriophages) are routinely used in the assessment of sanitary quality of freshwater ecosystems [8]. Among analysed water samples, total coliform and thermotolerant coliform bacteria were detected most consistently in lakes Gunda (200 colony forming unit/100 ml), Isinga (60-120 CFU/100 ml), Sosnovoye (60 CFU/100 ml) and Bolshoye Yeravnoye (60 CFU/100 ml). In lakes Gusinoe, Shchuchye, Kotokel total coliform and thermotolerant coliform bacteria were detected least frequently.
However, the results of high-throughput sequencing revealed the presence of a significant number of sequences representing genus Klebsiella in lakes Shchuchye (4% of total bacteria), Isinga (1.22-15.4%), and Gunda (12.3-28% of total bacteria). The genera Staphylococcus and Streptococcus were found in high abundance in Lake Isinga (3.4 and 5% of total bacteria, accordingly). The genus Escherichia-Shigella had the greatest occurrence in Lake Kotokel (Table 3). It is likely that the microbial communities in these lakes, especially in lakes Gunda and Isinga, were affected by external bacterial loading via fecal contamination due to intensive grazing. So, complicated models combined with environmental parameters and complex of microbial indicators (e.g., BEI, analysis of common freshwater lineages/genera distribution) are recommended for more effective water quality evaluation of a freshwater ecosystem.

4. Conclusion
The methods based on aquatic microorganisms should be considered when assessing the water quality of freshwater lakes. The structural features of microbial communities associated with an increased anthropogenic load have been revealed. We have identified some microbial taxa that can serve as indicators of the quality in freshwater bodies.

Acknowledgments
The work was supported by the Russian Foundation for Basic Research, project № 18-44-030028 r_a, and partially within the framework of the State Assignment № 121030100229-1 for Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences.

References
[1] Mooij W M, van Wijk D, Beusen A H, Brederveld R J, Chang M, Cobben M M, DeAngelis D L, Downing A S, Green P and Gsell A S 2019 Curr. Opin. Environ. Sustain. 36 85–95
[2] Şener Ş, Şener E and Davraz A 2017 Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SWTurkey) Sci Total Environ. 584 131–44
[3] Ji B, Liang J and Chen R 2020 Bacterial eutrophic index for potential water quality evaluation of a freshwater ecosystem Env. Sci. and Pollution Res. 27 32449–55
[4] Niu A, Song L, Xiong Y, Lu C, Junaid M and Pei D 2019 Impact of water quality on the microbial diversity in the surface water along the Three Gorge Reservoir (TGR), China. Ecotoxicol. Environ. Saf. 181 412–18
[5] Newton R J and McLellan S L 2015 Front. Microbiol. 6 1028
[6] Lee C S, Kim M, Lee C, Yu Z and Lee J 2016 Front. Microbiol. 7 1826
[7] Zaitseva S V, Dagurova O P and Tsyrenova D D 2020 Limnology and Freshwater Biology 4 53–5
[8] Korajkic A, McMinn B R, Harwood V J 2018 Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. Int. J. Environ. Res. Public Health 15 2842
[9] Quast C, Pruesse E, Yilmaz P, et al. 2013 Nucleic Acids Res. 41 D590