Contest based on a directed polymer in a random medium

Clément Sire

Laboratoire de Physique Théorique – IRSAMC, CNRS
Université de Toulouse, 31062 Toulouse, France

We introduce a simple one-parameter game derived from a model describing the properties of a directed polymer in a random medium. At his turn, each of the two players picks a move among two alternatives in order to maximize his final score, and minimize opponent’s return. For a game of length \(n \), we find that the probability distribution of the final score \(S_n \) develops a traveling wave form,
\[
\text{Prob}(S_n = m) = f(m-vn),
\]
with the wave profile \(f(z) \) unusually decaying as a double exponential for large positive and negative \(z \). In addition, as the only parameter in the game is varied, we find a transition where one player is able to get his maximum theoretical score. By extending this model, we suggest that the front velocity \(v \) is selected by the nonlinear marginal stability mechanism arising in some traveling wave problems for which the profile decays exponentially, and for which standard traveling wave theory applies.

PACS numbers: 02.50.-r, 05.40.-a

Extreme value statistics of random variables has been long studied by mathematicians \(\cite{1,2} \) and physicists \(\cite{3,4} \). In physics, it naturally arises when studying thermodynamical properties of disordered systems \(\cite{4} \), and in particular, the distribution of the ground state energy \(\cite{4} \).

If the considered random variables \(E_1, E_2, ..., E_N \) are uncorrelated, the distribution of \(E_{\text{min}} = \min_i E_i \) or \(E_{\text{max}} = \max_i E_i \) becomes universal for large \(N \), once properly scaled \(\cite{3,4} \). It takes the form of the Gumbel, Fréchet or Weibull distribution depending on the asymptotic properties of the distribution of the \(E_i \)'s. However, in the case of strongly correlated random variables, there are no general results, and it is usually a formidable task to access to the distribution of \(E_{\text{min}} \) or \(E_{\text{max}} \).

In the present work, we define a game theoretical model, directly inspired by this directed polymer model. Although our model lacks any thermodynamical reference, it is certainly related to other optimization problems, where the notions of extreme value statistics and traveling front arise \(\cite{3} \).

In the special case of the binary distribution
\[
\rho(l) = p \delta_{l,1} + (1-p) \delta_{l,0}, \quad p \in [0,1],
\]
the authors of \(\cite{1} \) obtained an unbinding transition when \(p > p_c = 1 - Z^{-1} \), where the polymer goes from a finite length to an extensive length \(\langle E_{\text{min}} \rangle \sim v(p)n \). In addition, the distribution of \(E_{\text{min}} \) has a traveling front form
\[
P(E_{\text{min}}, n) = f(E_{\text{min}} - v(p)n),
\]
where \(f(z) \) decays exponentially fast for large negative argument. This last property and the general theory of traveling waves \(\cite{3,4,5,6,7} \) lead to a simple selection mechanism for the front velocity \(v(p) \) (linear marginal stability; see hereafter).

In the present work, we define a game theoretical model, directly inspired by this directed polymer model. Although our model lacks any thermodynamical reference, it is certainly related to other optimization problems, where the notions of extreme value statistics and traveling front arise \(\cite{3} \).

Two players \(A \) and \(B \) play an alternating game of duration \(n \), with player \(A \) starting the game. When it is his turn to play, a player has a choice of \(Z \) possible moves. Hence, the map of all possible game histories has the structure of a Cayley tree with \(Z \) branches originating from any node, and of length \(2n \). The \(i \)-th move by player \(A \) brings him the additional score \(a_i \), whereas the next play by player \(B \) add the value \(b_i \) to the score of player \(A \). The score of player \(B \) is defined as the opposite of that of player \(A \). The elementary scores \(a_i \) and \(b_i \) are quenched random variables independently drawn from the same distribution \(\rho \). Ultimately, the final score of player \(A \) is
\[
E_{\text{path}} = \sum_{i \in \text{path}} a_i + b_i.
\]
The goal of player A is to maximize its final score, whereas player B will do his best to select his plays in order to minimize the score of player A, and hence maximizing his own score. The two players have an a priori knowledge of the game tree structure so that the final score of player A is defined as

$$ S_n = \max_{\text{available choices of } A} \min_{\text{available choices of } B} E_{\text{path}}. \quad (5) $$

From now, we specialize to the case $Z = 2$, although our results can be easily extended to any Z. Moreover, we restrain ourselves to the elementary score distribution given by Eq. (2). It should be emphasized that the players do not pick their next play in order just to maximize their local outcome (i.e. A picking its next move among available branches with $a_i = 1$ or B picking the minimum available b_i). If the players were adopting such a simple depth-0 strategy, which would be their natural approach if they did not have the prior knowledge of the a_i’s and b_i’s distribution over the tree, the final score of player A would be simply the sum of n independent variables of mean $p^2 + 2p(1 - p)$ (A picks a branch with $a_i = 1$, if there is one available), and n variables of mean p^2 (B picks a branch with $b_i = 0$, if there is one available). Then the distribution of S_n would be a Gaussian (of width $\sigma \sim \sqrt{n}$), and mean $\langle S_n \rangle = v_0(p)n$, with

$$ v_0(p) = p^2 + 2p(1 - p) + p^2 = 2p. \quad (6) $$

Note that this result is identical to the score velocity obtained if the players had picked their move at random: the depth-0 strategies of both players exactly annihilate. Instead, having a global view of the game tree, the players will try to direct the game into favorable branches for them, in order to maximize their final score, even if they may have sometimes to pick an unfavorable local move ($a_i = 0$ for player A, $b_i = 1$ for player B) in order to achieve their goal. For $p > 1/2$, there are more bonds with $a_i = 1$ or $b_i = 1$, so that we expect that the objective of player A should be easier to achieve than that of player B. Hence, we anticipate that $\langle S_n \rangle = v(p)n$, with

$$ v(p) \geq v_0(p) = 2p, \quad p \geq \frac{1}{2}. \quad (7) $$

In the opposite case $p < 1/2$, the above inequality is obviously reversed. In fact, by exchanging the roles of A and B (and neglecting the fact that A starts the game, for large n), it is clear that one has the symmetry relation

$$ v(p) + v(1 - p) = 2. \quad (8) $$

In addition, one has the trivial constraints,

$$ v(0) = 0, \quad v(1/2) = 1, \quad v(1) = 2, \quad (9) $$

which are consistent with Eq. (3).

An intermediate strategy to the ones presented above corresponds to players having only a partial view of the game tree up to a finite depth. For instance, if the players have the knowledge of there next available move, and of their opponent’s ensuing options, they should adopt the following depth-1 strategy:

- **Player A**: if the options of player A are equal (both $a_i = 0$ or 1), A picks the branch for which the number of b_i equal to 1 (when it will be the turn of B to play) is maximal. If only one branch corresponds to $a_i = 1$, A chooses this move.

- **Player B**: if the options of player B are equal (both $b_i = 0$ or 1), B picks the branch for which the number of a_{i+1} equal to 1 is minimal. If only one branch corresponds to $b_i = 0$, B picks this move.

After a elementary but cumbersome calculation, we find that the score velocity $v_1(p)$ corresponding to this depth-1 strategy is given by,

$$ v_1(p) = \frac{2p^7 - 6p + 4p^2 - 14p^3 + 14p^4 - 4p^5}{1 + 2p + 6p^2 - 16p^4 + 8p^5}. \quad (10) $$

One has $v_1(p) \geq v_0(p)$ for $p \geq 1/2$, and $v_1(p)$ satisfies the symmetry relation of Eq. (3) and the conditions of Eq. (4). For higher but finite strategy depth, an analytical treatment becomes extremely complicated.

Let us now move back to our model, where both players have a global knowledge of the game tree (infinite depth). Obtaining the (not necessarily unique) optimal path realizing both players antagonist goals can be achieved by using the recursive minimax algorithm, which gives a more precise meaning to Eq. (2). Let us assume that we have generated four instances of optimized scores $S^{(k)}_n$ ($k = 1, 2, 3, 4$) on four independent games of length n (with the initial condition $S^{(k)}_0 = 0$, for $n = 0$). In order to construct an optimized score for a game of length $n + 1$, we first generate two intermediate scores including

![FIG. 1: (Color online) S_{n+1} can be obtained recursively from four optimized scores $S^{(k)}_n$ ($k = 1, 2, 3, 4$), and finding the next optimized move from player B and then from player A.](image-url)
the previous move of player B (see Fig. 1):

$$
R_n^{(1)} = \min \left(S_n^{(1)} + b_1, S_n^{(2)} + b_2 \right), \\
R_n^{(2)} = \min \left(S_n^{(3)} + b_3, S_n^{(4)} + b_4 \right),
$$

(11)

Then the final score is obtained by optimizing the first move of player A over his two possible plays, a_1 and a_2 (see Fig. 3):

$$
S_{n+1} = \max \left(R_n^{(1)} + a_1, R_n^{(2)} + a_2 \right).
$$

(12)

Using Eqs. (11), we can derive the corresponding recursion relations for the cumulative distribution of S_n and R_n,

$$
P_n(m) = \text{Prob}(S_n \leq m), \\
Q_n(m) = \text{Prob}(R_n \leq m),
$$

(13)

and starting from the initial condition $P_n(m) = 1$ for $m \geq 0$, and $P_n(m) = 0$ for $m < 0$. Defining $q = 1 - p$, we find

$$
Q_n(m) = 1 - (1 - qP_n(m) - pP_n(m - 1))^2 \quad \text{(14)}
$$

$$
P_{n+1}(m) = (qQ_n(m) + pQ_n(m - 1))^2. \quad \text{(15)}
$$

The intermediate distribution $Q_n(m)$ can be eliminated by inserting Eq. (14) into Eq. (13), leading to a single recursion relation between P_{n+1} and P_n. The probability density of S_n is defined as

$$
p_n(m) = P_n(m) - P_n(m - 1). \quad \text{(16)}
$$

We look for a traveling wave form for $P_n(m)$

$$
P_n(m) = F(m - \langle S_n \rangle, \quad \langle S_n \rangle = v(p)n, \quad \text{(17)}
$$

with the boundary conditions $F(z) \to 1$, for $z \to +\infty$, and $F(z) \to 0$, for $z \to -\infty$. The probability density of S_n has a similar traveling wave form, associated to the hull function $f(z)$:

$$
p_n(m) = f(m - \langle S_n \rangle, \quad f(z) = F(z) - F(z - 1). \quad \text{(18)}
$$

Inserting this ansatz into Eqs. (14,15), we find that F satisfies the following functional equation

$$
\sqrt{F(z - v)} = 1 - q \left[1 - qF(z) - pF(z - 1) \right]^2 \\
- p \left[1 - qF(z - 1) - pF(z - 2) \right]^2, \quad \text{(19)}
$$

where we have used the shorthand notation v for $v(p)$. By retaining the leading contributions in Eq. (19) for $z \to -\infty$, and for $v > 0$, we find

$$
F(z - v) \sim 4q^4F^2(z), \quad \text{(20)}
$$

which leads to the double exponential asymptotics

$$
F(z) \sim f(z) \sim \frac{1}{4q^4} \exp \left(-\alpha_{+} \frac{z}{4} \right), \quad \text{(21)}
$$

where $\alpha_{+} > 0$ is an unknown p-dependent constant. Similarly, in the opposite limit $z \to +\infty$, and assuming $v < 2$, the functional equation Eq. (19) reduces to

$$
1 - F(z - v) \sim 2p^3(1 - F(z - 2))^2, \quad \text{(22)}
$$

which again leads to a double exponential decay

$$
1 - F(z - v) \sim f(z) \sim \frac{1}{2p^3} \exp \left(-\alpha_{+} \frac{z}{2p^3} \right), \quad \text{(23)}
$$

where $\alpha_{+} > 0$ is some p-dependent constant. Hence, and contrary to the standard traveling wave theory \[.,\], where the traveling front exponential decay for $z \to -\infty$ or $z \to +\infty$ permits the determination of the front velocity, $v(p)$ remains so far undetermined. Here, the double exponential decay obtained on both sides results from the minimax constraint, instead of the usual \min (or \max) constraint imposed when considering the ground state energy or the minimum (or maximum) path length distribution \[.,\]. This fast decay of $f(z)$ for $z \to \pm\infty$ and the traveling wave form of Eq. (18) ensure that $\langle (S_n - v(p)n)^2 \rangle$ remains bounded when $n \to +\infty$.

$v(p)$ can still be determined numerically, from its definition $\langle S_n \rangle = v(p)n$. The results are shown on Fig. 4, along with $v_0(p)$ and $v_1(p)$ which correspond to depth-0 and depth-1 strategies respectively. The main feature of $v(p)$ is the existence of a critical value of p (denoted p_c), above which the score front velocity is $v(p) = 2$ (note that one also has $v_1'(1) = 0$). Moreover, and as mentioned above, $v_0(p)$ is a lower bound of $v(p)$. Finally, for p close to $1/2$, $v(p)$ grows linearly with p, with

$$
v_0(1/2) = 2, \\
v_1'(1/2) = \frac{37}{16} = 2.3125. \quad \text{(24)}
$$

In the symmetric case $p = 1/2$, we find that $\langle S_n \rangle = n + s_0$, where $s_0 = 0.143291096\ldots$ is a strictly positive constant, illustrating the slight advantage that A gains from starting the game.

Let us give a physical explanation for the occurrence of this transition. As $p > 1/2$ increases, the number of paths along which all the a_i’s and b_i’s are equal to 1 grows exponentially. Indeed, the probability of having such a path is p^{2n}, so that their total number in the tree is of order $2^{2n} \times p^{2n}$. The existence of this transition shows that for $p > p_c$, player A is able to chose his moves in order to force the outcome of the game to follow one of these path, with probability unity, as $n \to \infty$. Symmetrically, for $p < 1 - p_c$, player B will find enough branches along which most a_i’s and b_i’s are equal to 0, in order to enforce that the front velocity remains zero in this regime, consistently with the symmetry relation of Eq. (8).

This transition can be understood analytically, by studying the stability of a traveling front of velocity
Finally, a stability analysis shows that x_p is the only stable fixed point for $p_c < p < 1$. Hence, we conclude that $P_n(2n - 1)$ converges (exponentially fast) to x_- for $p_c < p < 1$, and that the distribution of S_n is peaked near $m = 2n$ and decays as a double exponential for $m < 2n$ (as given by Eq. (24)), leading to $v(p) = 2$. The obtained value of p_c is in perfect agreement with the numerical results for $v(p)$ plotted on Fig. 2. Close to $p = 1$, $x_+ \sim 9(1 - p)^2 \rightarrow 0$, and up to second order in $(1 - p)$, the distribution of S_n is thus given by

$$p_n(2n) = 1 - 9(1 - p)^2, \quad p_n(2n - 1) = 9(1 - p)^2. \quad (28)$$

Note that if both players adopt a finite depth strategy, this transition does not occur, as illustrated in Fig. 2 in the case of depth-0 and depth-1 strategies considered above. By adopting a short-sighted strategy, player A (respectively B) cannot direct, with probability 1, the sequence of plays to a branch of the tree with a density unity of playing options $a_i = b_i = 1$ (respectively $a_i = b_i = 0$).

Finally, for p below but close to p_c, we obtain a very convincing fit of $v(p)$ to the functional form

$$v(p) = 2 - c (p_c - p)^{1/2} + ..., \quad (29)$$

with $c \approx 0.50(1)$, leading to an infinite slope for $v(p)$ at $p = p_c$, as found numerically on Fig. 3. In fact, for $p \geq 1/2$, we find that the simple heuristic functional form

$$v(p) = 2 - 2 \left(\frac{(p_c - p)(1 - p)}{2p_c - 1}\right)^{1/2}, \quad (30)$$

fits the data with a relative accuracy better that 0.1 %, comparable although slightly higher than the estimated numerical error bars of the data. This functional form ensures that $v(1/2) = 1$ and that the behavior of Eq. (24) is reproduced, and leads to the heuristic values,

$$v'(0) = 2.12099..., \quad c = 0.49748..., \quad (31)$$

in good agreement with the numerical estimates presented above.

Let us now address the properties of the hull function $f(z)$, and its cumulative sum $F(z)$. First of all, if for a given p, the corresponding $v(p)$ happens to be a rational number $v(p) = \alpha/\beta$ (α and β being mutually prime), Eq. (19) implies that the hull function is only defined on the discrete set of fractions of the form k/β. This is in particular the case for $p = 1/2$ ($v(1/2) = 1$, $p > p_c$ ($v(p) = 2$), and $p < 1 - p_c$ ($v(p) = 0$). On the other hand, when $v(p)$ is irrational, the set of points of the form $z = m - v(p)n$ is dense on the real axis, and $f(z)$ is a continuous function defined on the real axis. As $v(p)$ approaches $v(p_c) = 2$ from below, the hull function $f(z)$ develops steps which blend into discontinuities as $p \rightarrow p_c$. This property is illustrated on Fig. 3 along with the asymptotics obtained in Eqs. (21,23).

We now extend our original model in order to gain some insight about the velocity selection mechanism. This is achieved by modifying the model so that the standard theory of front propagation will apply. In this (A, ε)-model, player A always follows its best strategy, while player B follows the depth-0 strategy (picking a branch with $b_i = 0$ if available) with probability ε and
of the two players, the associated front velocity
whereas Eq. (14) still holds. When exchanging the role
the \((A, \varepsilon)\)-model main interest lies in the \(\varepsilon > 0\), \(\tilde{P}_n(m) = 1 - P_n(m)\) decays exponentially for \(m \gg \nu n\), so that the standard mechanisms of front velocity selection do apply (see below). When \(P_n(m) \ll 1\), the recursions of Eqs. \((15,32)\) indeed lead to
\[
\tilde{P}_{n+1}(m) = 2\varepsilon \left((1 + p)(1 - p)^2 \tilde{P}_n(m) \right.
\]

or equivalently, the front profile \(\tilde{F}(z) = 1 - F(z)\) satisfies
\[
\tilde{F}(z - v) = 2\varepsilon \left[(1 + p)(1 - p)^2 \tilde{F}(z) \right.
\]

where the decay rate \(\lambda\) is so far undetermined.

Let us now summarize the main known mechanisms of velocity front selection \([6,9,10,11]\), for exponentially fast decaying profiles. In many physical cases, including those studied in \([6,9]\), a linear marginal stability (LMS) argument shows that the selected front velocity corresponds to the minimum velocity \(v_{\text{min}}\) allowed by the dispersion relation \(v(\lambda)\), associated to the decay rate \(\lambda_{\text{min}}\). However, in some other cases \([6,9,11]\), a bigger velocity is selected by a nonlinear marginal stability (NLMS) mechanism. Without entering into too much details, let us briefly explicit this point. Consider the large \(z\) asymptotics of a solution of the full nonlinear problem associated to the velocity \(v\),
\[
\tilde{F}(z) \sim A_1(v) e^{-\lambda_1(v) z} + A_2(v) e^{-\lambda_2(v) z} + \ldots
\]

with \(\lambda_1(v) < \lambda_{\text{min}}\) given by the dispersion relation derived from linear analysis. Note that the above linear analysis does not grant access to \(A_1(v)\), not to mention the correction term proportional to \(A_2(v)\). Now, if there exists a velocity \(v_*>v_{\text{min}}\) for which \(A_1(v_*) = 0\), \(\tilde{F}(z)\) will decay more sharply with rate \(\lambda_2(v_*)\), which is necessarily another root of the dispersion relation, with \(\lambda_2(v_*) > \lambda_{\text{min}}\). It can be shown that all traveling fronts with velocity less than \(v_*\) are then unstable against invasion by a profile of velocity \(v_*,\) which leads to the selection of the velocity front \(v_*\), instead of \(v_{\text{min}}\) \([6,9,11]\). In practice, there are very few examples for which the transition between a linear and a nonlinear marginal stability scenario can be analytically identified, since it requires in
general a full solution of the profile associated to a velocity \(v \), in order to obtain \(A_1(v) \). To the knowledge of the author, all such tractable examples concern traveling front in the spatial and temporal continuum \([1][2][3]\), like for instance,

\[
\frac{\partial P}{\partial t} = \frac{\partial^2 P}{\partial x^2} + P(1-P)(1+\kappa P),
\]

for \(\kappa \geq 1 \). In this case \([1][2]\), \(v(\lambda) = \lambda + \lambda^{-1} \), so that \(v_{\min} = 2 \) and \(\lambda_{\min} = 1 \). \(v_{\min} \) is selected for \(1 \leq \kappa \leq 2 \), whereas \(v = v_\ast = (\kappa/2)^{1/2} + (\kappa/2)^{-1/2} \) (with \(\lambda_1 = (\kappa/2)^{-1/2} \) and \(\lambda_2 = (\kappa/2)^{1/2} \), for \(\kappa > 2 \).

Returning to our \((A,\varepsilon)\)-model, we find that a non trivial \(v_{\min} \) exists for any \(\varepsilon > 1/2 \). It is obtained by first finding \(\lambda_{\min} \), the unique real positive solution of

\[
v'(\lambda_{\min}) = 0,
\]

and setting \(v_{\min} = v(\lambda_{\min}) \) in Eq. \((38)\). In particular, we find that \(v_{\min} = 2 \), for \(p > p_c \), with

\[
p_c = (2\varepsilon)^{-1/3}.
\]

In the case \(\varepsilon = 1 \), when player \(B \) always adopts the depth-0 strategy, we find \(p_c = 2^{-1/3} = 0.7937005 \ldots \). Hence, we obtain the same kind of transition as in the original model, where player \(A \) is able to get its maximum theoretical score. However, since \(B \) has a short-sighted strategy, we do not observe a transition to \(v = 0 \) for small but non zero \(p \), as obtained in the original model for \(p = 1 - p_c \). We actually find \(v_{\min} \sim \frac{\ln(2\varepsilon)}{\ln(p)} \), when \(p \to 0 \). Note that if \(B \) plays randomly instead of adopting the depth-0 strategy, we obtain the dispersion relation

\[
v(\lambda) = \frac{1}{\lambda} \ln \left[2\varepsilon \left(1 - p + p\varepsilon^\lambda \right) \right]^2,
\]

and \(p_c = (2\varepsilon)^{-1/2} \).

However, for a given \(p \), we find numerically that the velocity given by the LMS mechanism \(v_{\min} \) is only selected for \(\varepsilon \geq \varepsilon_c(p) \), so that the results of Eqs. \((38)[12]\) are only valid for \(\varepsilon \) close enough to 1. For \(1/2 < \varepsilon < \varepsilon_c(p) < 1 \), and although a non trivial \(v_{\min} \) does exist, we find \(v > v_{\min} \). This strongly suggests the relevance of the NLMS mechanism in this case. Unfortunately, for \(1/2 < \varepsilon < \varepsilon_c(p) \) and a given \(v \), there is very little hope to obtain an analytical solution of the corresponding full nonlinear equation for \(F(\varepsilon) \), in order to apply the NLMS criterion explained above. Likewise, for \(\varepsilon < 1/2 \), the minimal positive velocity is \(v_{\min} = 0 \) (\(v(\lambda = 0) = -\infty \)), and the prospect of an analytical solution appears even bleaker. Note however that \(v \) and the associated decay rate \(\lambda \) are still related by the dispersion relation of Eq. \((38)\).

On the bright side, the full line \(p_c(\varepsilon) \) can be determined exactly, by studying the dynamics of \(u_n(1 - P_n(2n-1)) \), in the same spirit as in the case \(\varepsilon = 0 \). We find that \(u_n \) satisfies the exact recursion relation

\[
\begin{align*}
\varepsilon_{n+1} &\equiv g_{p_c}(u_n) = z_n(2 - z_n), \\
z_n &= p^3u_n(\varepsilon + (1-\varepsilon)u_n),
\end{align*}
\]

with \(u_0 = 1 \). We then determine the value of \(p_c(\varepsilon) \) above which there exists a stable non trivial fixed point \(u_\ast(\varepsilon) \neq 0 \). For \(\varepsilon \geq 4/5 \), we find that \(p_c(\varepsilon) \) is indeed given by the LMS argument, leading to the result of Eq. \((42)\). On the other hand, for \(0 < \varepsilon < 4/5 \), a regime were the NLMS mechanism should be relevant, \(p_c(\varepsilon) \) and \(u_\ast(\varepsilon) \) are determined in the same spirit as in the case \(\varepsilon = 0 \), by imposing that \(g_{p_c}(u_\ast)/u_\ast - 1 = g_{p_c}(u_\ast) - 1 = 0 \). We find

\[
p_c(\varepsilon) = \left[\left(1 - \varepsilon \right)^{1/2} \left(4 - \varepsilon \right)^{3/2} - 8 + 7\varepsilon + \varepsilon^2 \right]^{1/3} \frac{2\varepsilon^2}{2\varepsilon^2},
\]

which goes smoothly to the result of Eq. \((27)\), when \(\varepsilon \to 0 \).

Interestingly, this analysis provides the exact value of \(\varepsilon_c \) for the corresponding value of \(p = p_c(\varepsilon_c) = (2\varepsilon_c)^{-1/3} \), at the transition between the LMS and NLMS regimes. We thus find

\[
\varepsilon_c \left(\frac{p}{p_c} = \frac{5^{1/3}}{2} = 0.854988 \ldots \right) = \frac{4}{5}.
\]

If \(B \) plays randomly instead of adopting the depth-0 strategy, one obtains

\[
\varepsilon_c \left(\frac{p}{P_n} = \frac{1 + \sqrt{5}}{4} = 0.809017 \ldots \right) = 3 - \sqrt{5} = 0.763932 \ldots
\]
In Fig 4, we plot our exact result for \(p_c(\varepsilon) \) and a numerical estimate of \(\varepsilon_c(p) \), the boundary between the LMS and NLMS domains of application. In Fig 5, we plot \(v_A(p, \varepsilon) \) and \(v_B(p, \varepsilon) \) for \(\varepsilon = 1 \), where \(B \) and \(A \) are respectively adopting the depth-0 strategy, for \(\varepsilon = 4/5 \), the smallest \(\varepsilon \) for which the NLMS mechanism applies for all \(p \), and for \(\varepsilon = 1/4 \), for which the NLMS mechanism holds for all \(p \). We observe numerically that \(v_A(p, \varepsilon) \) and \(v_B(p, \varepsilon) \) converge smoothly to \(v(p) \) as \(\varepsilon \to 0 \).

Let us finally address the subleading corrections to the average score \(\langle S_n \rangle \). The LMS mechanism implies \(^{10} \) that

\[
\langle S_n \rangle = v_{\text{min}} n - \frac{3}{2\lambda_{\text{min}}} \ln n + \ldots
\]

(49)

In the \((\varepsilon, p)\) regime where the LMS mechanism applies, we have confirmed numerically the occurrence of this logarithmic correction, as well as its magnitude. In the NLMS regime, we find instead that the next correction to \(\langle S_n \rangle = vn \) is constant. Quite generally, this result can be justified analytically whenever \(v > v_{\text{min}} \), in particular when the NLMS mechanism applies \(^{13} \). This property was exploited in order to obtain the numerical estimate of \(\varepsilon_c(p) \) shown in Fig 4, and this criterion is found to be fully consistent with defining \(\varepsilon_c(p) \) as the value of \(\varepsilon \) for which \(v \) becomes equal to the velocity \(v_{\text{min}} \) selected by the LMS mechanism (see Eqs. \((38)\) \(^{13} \)).

In the present work, we have defined a simple two-player game inspired by a model of directed polymer on the Cayley tree. The fact that the two players have antagonist goals is reminiscent of the notion of frustration quite common in disordered physical systems. In our model, this frustration originates from the minimax constraint, which is, however, quite uncommon in physics. As a consequence, the present model has no thermodynamical interpretation. We found that the score distribution develops a traveling wave form, with the hull function unusually decaying superexponentially for large negative and positive arguments. We have justified analytically the occurrence of a transition, across which a player can obtain his maximum theoretical score, whatever the strategy of the other player. Contrary to systems for which the standard traveling wave theory applies, we did not succeed in understanding analytically the process which leads to the selection of the velocity front. However, after studying an extension of the original model, we strongly suggest that the selection mechanism is related to nonlinear marginal stability, arising in some traveling wave problems for which the profile decays exponentially.

I am very grateful to Satya Majumdar for fruitful discussions. I also wish to thank one referee for suggesting studying a model where only one player is adopting the optimal strategy whereas the other plays randomly.

\[\text{Electronic address: clement.sire@irsamc.ups-tlse.fr}\]

[1] E. J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958).
[2] J. Galambos, The Asymptotic Theory of Extreme Order Statistics (R.E. Krieger Publishing Co., Malabar, 1987).
[3] P. L. Krapivsky and S. N. Majumdar, Phys. Rev. Lett. 85, 5492 (2000).
[4] S. N. Majumdar and P. L. Krapivsky, Phys. Rev. E 62, 7735 (2000).
[5] D. S. Dean and S. N. Majumdar, Phys. Rev. E 64, 046121 (2001).
[6] B. Derrida and H. Spohn, J. Stat. Phys. 51, 817 (1988); B. Derrida, Physica Scripta T38, 6 (1991).
[7] M. Bramson, Convergence of Solutions of the Kolmogorov Equation to Traveling Waves (American Mathematical Society, Providence, R.I., 1983).
[8] G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983).
[9] E. Ben-Jacob, H. R. Brand, G. Dee, L. Kramer, and J. S. Langer, Physica D 14, 348 (1985).
[10] D. G. Aronson and H. F. Weinberger, in Partial Diﬀerential Equations and Related Topics, edited by J. A. Goldstein (Springer, Heidelberg, 1975); Adv. Math. 30, 33 (1978).
[11] W. van Saarloos, Phys. Rev A 39, 6367 (1989).
[12] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall Series in Artificial Intelligence, 2nd edition, Upper Saddle River, N.J., 2002).
[13] C. Sire, unpublished (work in preparation).