Hydrothermal synthesis and characterisation of zeolites from metakaolin and water glass

M Krejci Kotlanova1,2,3, Z Dolnic4, I Khongova1 and A Zezulova1

1 Research Institute for Building Materials, Hněvkovského 65, 617 00, Brno, Czech Republic
2 Department of Geological Sciences, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
3 BIC Brno spol. s r.o., Technology Innovation Transfer Chamber, Purkyňova 648/125 612 00, Brno, Czech Republic
4 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Prague 9, Czech Republic

Email: krejci@vustah.cz

Abstract. Zeolites were synthesised from two types of metakaolin mixed with water glass and in some samples with water. The mixtures were autoclaved for 24 hours at 130°C. Autoclaved samples were ground to analytical fineness and tested by X-ray diffraction and differential thermal analysis. Polished samples embedded in epoxy resin were studied using of electron microprobe including BSE imaging and WDX analysis of chemical composition of zeolites. Samples with the highest zeolite content were studied by SEM. The obtained results showed that the dominant synthesised zeolite in autoclaved samples is mineral chemically close to chabazite, less phillipsite. Zeolite Na-P1, gmelinite and boggsite were also identified by XRD analyses. The total content of zeolites is up to 29 wt. % in the sample prepared from a mixture containing metakaolin MK1/sodium water glass/water in weight ratio 1.5/2.5/1. The Si/Al of synthesised zeolites varies between 2.1 and 3.2.

1. Introduction

Natural zeolites are aluminosilicates with a porous structure, classified as tectosilicates. Tectosilicates have a spatial bond of SiO4 tetrahedra. Most tectosilicates have several other ions in their crystal structure, such as Ca, K and Na. These elements can only enter the structure of the mineral if less valent ion replaces part of the Si4+ ions. In most cases it is Al3+ [1].

Zeolites are characterised by a three-dimensional bond between SiO4 and AlO4 tetrahedra defined by sharing corner oxygens [2]. Unlike other tectosilicates, zeolites have larger cavities in their crystal structure connected to each other by channels. Also, the number of pores in the structure of zeolites is significant. The size of these pores varies depending on the Si:Al ratio in the zeolite structure [3, 4]. Zeolites can retain large amounts of water and other substances. Water from the zeolite structure (so-called zeolite water) can be removed by slow heating [5].

To date, about 67 natural zeolites have been discovered, according to the International Zeolite Association. These minerals are mainly bound to volcanic rocks, in which they form fillings of cavities or amygdales. It can also be found in pegmatites, sedimentary rocks and hydrothermal veins [6].
The most common zeolites are heulandite, clinoptilolite, chabazite, stilbite, phillipsite, natrolite and analcime [7, 8].

More than 250 zeolites were prepared by hydrothermal synthesis [9]. From a structural point of view, zeolite groups (zeotypes) can be distinguished, which are identified by a three-letter code derived from a typical zeolite belonging to that group [10].

Synthetic zeolites can be prepared from a lot of chemical compounds containing Al and Si, and a lot of scientists deal with this problematic [f.e. 11–15].

Many authors tried to use natural and waste raw materials in the production of synthetic zeolites. For example, blast furnace slag [16–17], waste glass [18], fly ash [19–20], waste kaolin [21–22], natural kaolin or bauxite [23–24], aluminium waste [25], diatomite [26–27], rice husk ash [28], ash from corn cobs [29], volcanic glass [30], aluminium cans [31] or ash from bamboo leaves [32] can be used for the synthesis of zeolites.

Thanks to retaining water and other substances, zeolites are used in a wide range of applications. They are used for example as sorbents [33–34], molecular sieves [35–36], membranes [37], ion exchangers [38], catalysts [39], additive to fertilizers [40], water softeners [41], in papermaking industry [42] and animal nutrition [43].

Several researchers in the cement industry tried to use natural and synthetic zeolites as a supplementary cementitious material [44–48].

Joshaghani [45] deals with the use of zeolite as a cement replacement in concrete production. The author replaced Portland cement with zeolite in the amount of 15, 25 and 35 wt. %. Sixteen mixtures with different proportions of zeolite, with different sizes of aggregate particles and different w/c (water to cement ratio) were prepared. It was found that concrete permeability decreased when cement was replaced by up to 25 wt. % of zeolite. When the zeolite amount in the mixture is 35 wt. %, then tensile and compressive strengths of concrete decrease within 90 days. The used w/c of 0.37 seems to be the best in terms of reaching the highest strengths of the resulting concrete.

Sičáková et al [46] studied the long-term properties of composites with the addition of natural zeolite. Cement was doped with zeolite in an amount of 8, 13 and 25 wt. %. In one case, microsilica was added to the mixture. Concretes based on zeolite-doped cement show higher bulk density in 3 years of testing than concrete with ordinary Portland cement, on the contrary, 28-day strengths were lower. Higher zeolite content (25 wt. %) in the mixture reduced the compressive strength of the resulting concrete.

In this work, the initial results of the synthesis of zeolites from two different metakaolines in a mixture with sodium water glass are presented. The aim of the work is to verify the suitability of using two types of metakaolins, which differ in their composition and origin of the raw material. Metakaolin Mefisto L05 is made of claystone and Mefisto K05 is made of kaolin. Another goal of the work was to study in more detail the chemistry of synthesized zeolites using electron microprobe. Work on this topic should lead to the production of a material with a high zeolite content, which could be used as a supplementary cementitious material.

2. Materials and methods

The following raw materials were selected for the hydrothermal synthesis of zeolites: metakaolines Mefisto K05 (in the text as MK1) and Mefisto L05 (in the text as MK2), which are kaolinitic clays calcined at 750°C, sodium water glass and water.

The chemical composition of metakaolines was studied on the X-ray spectrometer PANanalytical Axios PW4400/30 with Rh lamp, 40 kV/40 mA. The SiO2 content of the water glass was determined by the gravimetric method, Na2O by the atomic mass spectroscopy and H2O gravimetrically by loss of drying and ignition according to ČSN 72 0102 [49]. The chemical composition of raw materials is given in tables 1 and 2.
Table 1. Chemical composition, loss of drying and silicate module of sodium water glass; values in wt. %.

Sodium water glass	
Na$_2$O	12.28
SiO$_2$	21.74
Loss of drying	41.95
Silicate module	1.65

Table 2. Chemical composition and loss of ignition of metakaolines; values in wt. %.

	MK1	MK2
SO$_3$	0.05	0.09
P$_2$O$_5$	0.07	0.17
TiO$_2$	1.56	1.23
SiO$_2$	53.32	53.21
Al$_2$O$_3$	37.09	42.94
Fe$_2$O$_3$	3.34	0.92
MgO	0.88	0.28
CaO	2.64	0.20
Na$_2$O	0.00	0.00
K$_2$O	1.23	0.78
Loss of ignition	2.10	1.59

Samples dried at 60°C and ground below 0.09 mm were analysed on the Bruker D8 Advance with Cu anode (λKα=1.5418 Å) with variable divergent aperture screens at Φ-Φ reflective Bragg-Brentano parafocusation geometry. Quantitative phase analysis was performed using the Rietveld method. In the case of amorphous phase determination, a standard (finely ground CaF$_2$) of 20 wt. % was mixed with the sample. The results of X-ray diffraction of metakaolines are given in table 3.

Table 3. XRD phase analysis of metakaolines (values in %).

Phase	MK1	MK2
Mullite	7.7	1.0
Quartz	4.7	6.3
Anatase	1.2	1.9
Kaolinite	4.2	3.6
Illite/muscovite	4.9	4.1
Microcline	6.8	-
Amorphous phase	70.5	83.1

Differential thermal analysis (DTA) was done on the dried and ground samples. The measurement was performed on device Perseus STA 449 (Netzsch) in the temperature range 35–1000°C with heating rate 10°C/min in dynamic atmosphere of synthetic air (N$_2$/O$_2$ 80/20).

Samples of autoclaved mixtures ground below 0.09 mm were embedded in epoxy resin, ground on SiC papers with several grits and polished with diamond paste on polishing machine Struers Labo-Pol 30. Polished samples were coated with a thin layer (30 nm) of carbon in vacuo. Analyses of zeolites were carried out on electron microprobe Cameca SX-100. The following phases were used as standards: sanidine (Si, Al, K), albite (Na), apatite (P), Rb-Ge glass (Rb), wollastonite (Ca), celestite (S, Sr), halite (Cl), barite (Ba), hematite (Fe), LiF (F), BN (N), rhodonite (Mn), ZnO (Zn), chalcopyrite (Cu), vanadinite (Pb). In point analyses, an acceleration voltage of 15 kV, beam current of 4 nA and beam diameter of ~1µm were used. Peak counting times (CT) were usually 20 s (for N 120 s), CT for each background were half of that of peak. Raw counts were converted to wt. % using standard PAP.
procedure. Contents of the elements mentioned above, which are not included in the tables, were consistently below the detection limits usually ranging between 300 and 1000 ppm, in case of Pb, Sr, N and F between 2000 and 3000 ppm. Photographs of the samples were taken in BSE.

Scanning electron microscopy (SEM) analysis was performed on a TESCAN MIRA3 device operating at 10 kV. Powder sample was placed under a sample holder where scans were acquired at different points within the sample with different magnifications.

2.1. Mixtures preparation

The required amount of metakaolin was weighed. Subsequently, sodium water glass was added in and the mixture was stirred in a mixer at medium speed for 5 minutes. Then, water (for MS1, SK1) was added to the mixture, followed by stirring for another 10 minutes. Mixtures MS2 and SK2 were stirred for 15 minutes. The resulting mixtures were casted into a 20 × 20 × 100 mm silicone mould and subsequently cured at room temperature for 48 hours (for mixtures marked with the letter "a"). After that, the samples were demoulded and autoclaved for 24 hours at 130°C. The mixtures marked "b" were autoclaved in the form of a gel/liquid mixture immediately after stirring. The mixture proportions are given in table 4.

Table 4. Mixture proportions, values in grams.
Sample
MS1a
MS2a
MS1b
MS2b
SK1b
SK2b

3. Results

3.1. XRD analysis

Autoclaved samples consist mainly of the amorphous component, which is most represented in the sample MS1a, the least in the samples SK (table 5). Except for the amorphous component, the following phases were identified by XRD analyses: quartz [SiO₂], muscovite [KAl₃(AlSi₃O₁₀)(OH)₂], anatase [TiO₂], trona [Na₂H(CO₃)₂·2H₂O], mullite [3Al₂O₃·2SiO₂], kaolinite [Al₂O₃·2SiO₂·2H₂O], thermonatrite Na₂CO₃·H₂O and microcline [KAlSi₃O₈]. The results of Rietveld analysis are summarised in table 5. Zeolites in the samples are represented by chabazite [(Ca,K₂,Na₂)[Al₂Si₆O₁₈]·12H₂O], phillipsite [Na₃[Al₂Si₆O₁₈]·2H₂O], boggosite [Ca₈Na₃(Si,Al)₆O₉·70H₂O] and gmelinite [Na₉(Si₈Al₄)O₂₄·11H₂O]. Also, Na-P1 zeolite [Na₆Al₆Si₁₀O₃₂·12H₂O] was identified, but it wasn’t possible to determine its percentage in the sample, whereas this phase is missing in the program evaluating the quantity of individual components in the sample. Highest zeolite contents (up to 29%) were found in SK samples (table 5).

3.2. DTA analysis

Autoclaved mixtures ground below 0.09 mm were analysed by differential thermal analysis and the measurement was performed in temperature range 35–1000°C with heating rate 10°C/min. The results of DTA analysis are shown in figure 1 and table 6. The dehydration temperature of zeolites is characterised by an endotherm in the range of 139 to 285°C (table 6, figure 1) and most closely corresponds to the published curves for chabazite [50]. Other zeolites mainly occur in small amounts in the samples and probably therefore no visible changes were recorded for these zeolites in the DTA, TG and DTG curves.
Table 5. XRD phase analysis of autoclaved samples.

Sample	MS1a	MS1b	MS2a	MS2b	SK1b	SK2b
Phase						
Quartz						
Muscovite/illite	5.3	3.1	4.4	4.2	0.7	0.9
Phillipsite	2.0	3.8	6.6	1.9	6.9	8.7
Gmelinite	1.2	1.9	-	1.7	-	-
Mullite	0.9	0.7	0.7	1.1	-	-
Trona	3.9	5.3	3.1	1.9	-	-
Thermonatrite	0.5	-	-	-	-	-
Chabazite	2.7	7.0	2.8	6.9	16.5	17.3
Kaolinite	0.2	1.8	-	1.3	-	-
Zeolite Na-P1	?	?	?	?	0.4	0.7
Anatase	1.8	1.3	1.8	1.8	2.8	3.0
Boggsite	-	-	-	-	11.9	10.2
Microcline						
Amorphous phase	76.1	69.5	74.9	71.2	46.9	44.9
Sum of zeolites	5.9	12.7	9.4	10.5	26.2	29.0

Not very significant endotherm in the range of 400–600°C visible on DTG curves for all samples and in the case of SK samples also on the DTA curve probably indicates the loss of crystal water from the zeolite structure. The exotherm in the range between 859 and 874°C, which is most evident in the SK2 mixture is apparently related to the destruction of the framework of the minerals and probably the transformation of zeolite into basic members of the plagioclase group. However, we have not verified this by XRD or WDX analysis. The total loss of mass of the samples heated to a temperature of 1000°C is in the range from 11.4 to 15.8%, whereas the highest loss of mass was analysed in samples SK1 and SK2, which contain the highest content of zeolites.

Table 6. Thermoanalytical data of autoclaved samples.

Sample	Temperature of dehydration (°C)	Total loss of mass up to 1000°C (%)	Temperature of transformation, destruction of framework of zeolite (°C)
MS1a	139-201	14.15	
MS1b	144-195	13.75	
MS2a	150-194	13.02	
MS2b	140-182	11.43	
SK1b	145-200	15.08	
SK2b	152-285; 499	15.84	874

3.3. WDX analysis and SEM

Autoclaved samples were analysed by electron microprobe to identify the chemical composition of synthetised zeolites. It has been found that the synthesized zeolites by their chemistry do not correspond to the published data for individual minerals, but chemically they are in some cases close to them. The main monovalent cations that enter the structure of the zeolite is Na, significantly less K, Ca and NH₄. These constituents are isomorphically substituted in the crystal structure of the mineral. In addition, the zeolites also contain trace amounts of Fe, Mg and F (tables 7–8). Contents of other elements (S, P, Zn, Cu, Sr, Ba, Pb, Rb) are mostly negligible (below 0.02 apfu) (tables 7 and 8). It was found that the most abundant zeolite composition in the samples is close to chabazite-(Na), less phillipsite, which also corresponds to the results of XRD analyses (see table 5). The representative WDX analysis of chabazite-(Na) are shown in the table 7 and phillipsite in table 8. In the MS samples,
a number of particles of unreacted components are visible in the backscattered electron images (figure 2 a–d), while in the SK samples the spherical aggregates of zeolites already significantly dominate (figure 2 e, f). Samples with the highest content of zeolite (SK1 and SK2) were studied using a scanning electron microscope. Zeolite aggregates have been found to be up to 30 micrometers in size. Two types of zeolites with different structures were found in the SK1 sample (figure 3 a, b).

Figure 1. TG, DTG and DTA curves of autoclaved samples.
Figure 2. BSE images of autoclaved samples: a) MS1a, b) MS1b, c) MS2a, d) MS2b, e) SK1b, f) SK2b; spherical aggregates represent zeolites; ant – anatase, Kfs – potassium feldspar, php – phillipsite.
4. Discussion
Crystallisation of zeolites takes place quickly in samples with MK1, zeolite content in these samples is up to 29%. This can be due to the fact that metakaolin MK1 contains a larger amount of K-feldspars and mullite, from which a large amount of zeolites can be formed by hydrothermal synthesis [51, 52]. Formation of thermonatrite and trona in MS samples probably relates to the reaction of unreacted Na with airborne CO$_2$ and water (in the case of trona). Higher amounts of zeolites were formed in samples autoclaved in the form of gel/liquid immediately after stirring the mixture. In the case of samples which were firstly cured at room temperature for 48 hours and subsequently autoclaved, the contents of formed zeolites are slightly lower (see table 5).

The used metakaolines contain only a small amount of Ca and K and water glass has a high Na content, it was probable that predominantly Na will enter the zeolite structure and thus Na-rich members of chabazite, phillipsite and gehlenite were formed. In the ternary diagram of Na$_2$O-K$_2$O-CaO we can see that sodium is the dominant element in the structure of most zeolites (figure 4). Only, in 6 point analysis, K-rich members of zeolites were identified (figure 4).

In some analysis, minute inclusion of a foreign phases, such as quartz or feldspar, were detected to be enclosed in zeolites. Thus, it is probable that some of the analyses correspond to a mixture of zeolite and unreacted components originated from raw materials and the contents of Si, Al and alkalis are significantly affected in these cases.

Compared to other research, in our work metakaolin with calcination temperature 750°C was mixed with water glass, in contrast, in Novembre et al [53] metakaolin calcined at 650°C was mixed with a solution of NaOH and SiO$_2$ in various proportions. The mixture has been cured at a temperature of 68°C and ambient pressure. Na-A zeolite began to form after about 8 hours, hydroxysodalite after 190 h and Na-P zeolite after 382 hours.

In work of Pereira et al [54], zeolite-A was synthesised from two types of calcined kaoline, white and red. The calcination temperature of kaoline was 600°C and the endurance was 12 hours. The used metakaolins had slightly higher contents of K$_2$O and TiO$_2$ compared to the metakaolines used in our research. The metakaolin was then mixed with NaOH in a NaOH/metakaolin ratio of 8:1. The mixture was heated at 80°C for 24 hours. The synthesised zeolites had the following chemical composition 43.52-44.35 wt. % SiO$_2$, 33.82-34.39 wt. % Al$_2$O$_3$, 19.82-20.59 wt. % Na$_2$O and traces of Ti, Fe, Mg, Ca, Mn and K. In the case of our research, zeolites with a more variable chemical composition are formed (see tables 7 and 8). As verified in our study, it’s not necessary to add NaOH as a reagent.

Figure 3. SEM images of zeolites: a) sample SK1b, b) sample SK2b.
to the mixture. Water glass can also perform this function, but the growth rate of the zeolite isn’t probably so fast.

Table 7. WDX analyses of zeolites with a chemical composition close to chabazite-(Na),
apfu values are recalculated on the 24 atoms of O per formula unit; n.a. – not analysed,
b.d.l. – below detection limit.

	MS1a	MS2a	SK1b	MS1b
SO₃	0.03	0.13	0.02	0.03
P₂O₅	0.05	0.04	0.03	0.02
SiO₂	42.01	45.63	56.05	52.84
Al₂O₃	17.61	20.67	22.56	22.19
MgO	0.07	0.10	0.26	0.19
CaO	0.20	0.20	0.91	1.52
SrO	0.10	0.13	0.04	0.03
BaO	b.d.l.	b.d.l.	b.d.l.	b.d.l.
FeO	0.35	0.41	0.31	0.35
MnO	0.01	0.04	0.04	0.05
Na₂O	7.27	7.30	6.84	7.96
K₂O	0.69	0.54	3.58	3.35
(NH₄)₂O	0.83	1.94	b.d.l.	b.d.l.
Cl	0.17	0.12	0.04	0.05
F	0.23	0.18	0.21	b.d.l.
SiO₅/Al₂O₃	2.39	2.21	2.48	2.38
S⁶⁺	0.004	0.016	0.001	0.007
P⁵⁺	0.008	0.006	0.004	0.004
Si⁴⁺	8.032	8.738	8.079	8.022
Al³⁺	3.968	4.184	3.892	3.970
Mg²⁺	0.020	0.026	0.056	0.027
Ca²⁺	0.040	0.036	0.143	0.226
Sr²⁺	0.012	0.012	0.013	0.033
Ba²⁺	b.d.l.	b.d.l.	0.002	b.d.l.
Fe²⁺	0.056	0.058	0.037	0.038
Mn²⁺	0.002	0.006	0.004	0.008
Na⁺	2.694	2.430	1.958	2.314
K⁺	0.168	0.118	0.666	0.641
NH₄⁺	0.183	0.425	b.d.l.	b.d.l.
Cl⁻	0.056	0.034	0.010	0.010
F⁻	0.140	0.098	0.100	b.d.l.
Si/Al	2.02	1.87	2.07	2.02
Si+Al	12.00	11.99	11.97	11.99

It is known from several studies that the Si/Al content in zeolite, which is used as a supplementary material, significantly affects the properties of the resulting cement. Further research shows that the zeolites with a higher Si/Al ratio have higher pozzolanic activity [55]. In our study, zeolites have a SiO₂/Al₂O₃ varying between 2.1 and 3.2 (see tables 7 and 8). These materials could have relatively high pozzolanic activity. Verification of these properties will be the subject of further research.
Table 8. WDX analyses of zeolites with a chemical composition close to phillipsite, apfu values are recalculated on the 32 atoms of O per formula unit; b.d.l. – below detection limit.

	MS2b	MS1b	SK1b	SK2b
SiO₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.
P₂O₅	b.d.l.	b.d.l.	b.d.l.	b.d.l.
SiO₂	50.60	51.42	49.71	55.74
Al₂O₃	20.24	20.82	21.54	22.25
Si/Al	2.12	2.12	1.96	2.12
Si + Al	15.84	15.75	15.51	16.67

IOP Conf. Series: Materials Science and Engineering 1205 (2021) 012021

doi:10.1088/1757-899X/1205/1/012021
5. Conclusion
The results presented in this publication represent initial data for the synthesis of zeolites from Czech metakaolins and water glass. Metakaolin Mefisto K05 proved to be a more suitable raw material in a mixture with water glass in the synthesis of zeolites. This is probably because the original raw material contains a higher amount of feldspar, from which zeolites are formed. A mixture with a zeolite content of up to 30% was prepared by hydrothermal synthesis and studied by XRD, DTA and WDX analysis. The synthesised zeolites correspond to their chemical composition close to Na-rich members of chabazite and phillipsite and the Si/Al varies between 2.1 and 3.2. Work on this topic continue and lead to developing of a high-grade zeolite material that could be used as a substitute for Portland cement in the concrete industry.

Acknowledgments
This work was created with the financial support of the Ministry of Industry and Trade within the institutional financing of long-term conceptual development of a research organisation Research Institute of Building Materials 2018–2022, EXPRO 2019 project of the Czech Science Foundation (No. 19-29124X). Electron-microprobe analytical work was supported by the Ministry of Culture of the Czech Republic (long-term project DKRVO 2019-2023/1.II.c to National Museum, 00023272).

References
[1] Duffin Ch 2006 Silicate minerals: An Overview (BMS Occasional Paper) p 29
[2] Coombs D S, Alberti A, Armbruster T et al 1997 Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the international mineralogical association, commision on new minerals and mineral names The Canadian Mineralogist 35 pp 1571–1606
[3] Munthali M V, Elsheikh M A, Johan E and Matsue N 2014 Proton Adsorption selectivity of Zeolites in Aqueous Media: Effect od Si/Al Ratio of Zeolites Molecules 19 pp 20468–20481
[4] da Silva L S, Araki C A, Marcucci S M P, da Silva dos S T and Arroyo P A 2019 Desilication of ZSM-5 and ZSM-12 Zeolites with different Crystal Size: Effect on Acidity and Mesoporous Initiation Materials Research 22 2
[5] Xu R, Pang W, Yu J, Huo Q and Chen J 2007 Chemistry of zeolites and related porous materials: Synthesis and structure
[6] Pauliší P 2014 Nejzajímavější mineralogická naleziště Čech – zeolity a doprovodná mineralizace (KUTTNA) p 280
[7] Marantos I, Christidis G E and Ulmanu M 2011 Zeolite formation and deposits Natural Zeolites Handbook pp 19–36
[8] Bish D L and Boak J 2001 Clinoptilolite-Heulandite Nomenclature *Reviews in Mineralogy and Geochemistry* **45** 1 pp 207–216

[9] Mbememere H E, Ekpe I C and Lawal G I 2017 Zeolite synthesis, characterization and application areas: A review *Int. Res. J. Environmental Sci.* **6** 10 pp 45–59

[10] Baerlocher Ch, Meier W M and Olson D H 2001 Atlas of zeolite framework types (5th revised edition)

[11] Abrishamkar M, Azizi S N and Kazemian H 2010 Synthesis of borosilicate MFI type zeolite using different aging techniques *Chem. Met. Alloys* **3** pp 12–17

[12] Bu X, Feng P, Gier T E, Zhao D and Stucky G D 1998 Hydrothermal synthesis and structural characterization of zeolite-like based on galium and aluminium germanates *J. Am. Chem. Soc.* **120** pp 13389–13397

[13] Dubanská V 1992 Hydrothermal preparation of vanadium zeolites. Ceramics-Silikáty **36** pp 31–38

[14] Hemmann F, Hackebeil J, Lisner A and Mertens F 2018 Rapid, Non-Toxic Synthesis of Beta Zeolites *ChemRivix* **6** pp 1–4

[15] Özkan V, Aydin Z and Ozkan A 2018 Comparison of hydrothermal method and ultrasonic method in zeolite synthesis *NESciences* **3** 3 pp 282–291

[16] Guo H, Tang L, Yan B, Wan K and Li P 2017 NaA zeolite derived from blast furnace slag: its application for ammonium removal *Water Sci. Technol.* **76** 5–6 pp 1140–1149

[17] Wajima T 2014 Synthesis of Zeolite from blast furnace slag using alkali fusion with addition of EDTA *Advanced Materials Research* **1044–1045** pp 124–127

[18] Majdinasab A and Yuan Q 2019 Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent *Materials Chemistry and Physics* **223** pp 613–622

[19] Musyoka N M 2009 Hydrothermal synthesis and optimisation of zeolite Na-P1 from South African coal fly ash (Msc. Thesis, University of Nairobi) p 196

[20] Zou J, Guo Ch, Wei C, Li F and Jiang Y 2016 Synthesis of pure Na-X and Na-P zeolite from acid-Extracting residues of CFB fly ash by a single-step hydrothermal method *Materials transactions* **57** 5 pp 726–731

[21] Temuujin J, Okada K and Mackenzie J D 2002 Zeolite formation by hydrothermal treatment of waste solution from selectively leached kaolinite *Materials Letters* **52** pp 91–95

[22] da Silva Filho S H, Biesecki L, da Silva A R, Maia A B B, San Gil R A S and Pergher S B C 2015 Synthesis of Zeolite A employing Amazon kaolin waste *Cerâmica* **61** 360 pp 409–413

[23] Gougazeh M and Buhl J-Ch 2014 Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin. Journal of the Association of Arab Universities for Basic and Applied Sciences **15** 1 pp 36–42

[24] Kwakye-Awuah B, Von-Kitti E, Buamah R, Nikrumah I and Williams C 2014 Effect of Crystallization Time on the hydrothermal synthesis of zeolites from Kaolinite and bauxite *International Journal of Scientific and Engineering Research* **5** 2 pp 734–741

[25] Sánchez Hernández R 2018 Complete transformation of aluminium waste into zeolite and its use in the removal of pollutants from aqueous solution (PhD. Thesis, Consejo Superior de investigaciones Científicas, Centro Nacional de Investigaciones Metalúrgicas) p 254

[26] Garcia G, Cardenas E, Cabrera S, Hedlund J and Mouzon J 2016 Synthesis of zeolite Y from diatomite as silica source *Microporous and Mesoporous Materials* **219** pp 29–37

[27] Sanhueza V, Kelm U, Cid R and López-Escobar L 2004 Synthesis of ZSM-5 from diatomite: A case of zeolite synthesis from a natural material *Journal of Chemical Technology and Biotechnology* **79** 7 pp 686–690

[28] Santos E, Sousa A B, Leite R Ch N, Laborde H, Menezes R R and Rodrigues M 2014 Preparation of Zeolite MCM-22 Using the Rice Husk Ash as Silica Source *Materials Science Forum* **805** pp 646–650

[29] Pangan N, Gallardo S, Gaspillo P, Kurniawan W and Hinode H 2015 Hydrothermal synthesis and
characterization of zeolite NAA from corncob ash Proceedings of research World International Conference, Osaka, Japan pp 22–26

[30] Khodabandech S and Davis M E 1996 Synthesis of a heulandite-type zeolite by hydrothermal conversion of zeolite P1 Chem. Commun. pp 1205–1206

[31] Ahmedzeki N S, Joodée A M, Abbás M N and Jaed Y M 2018 Waste resource utilization for zeolite a synthesis Journal of Chemical Technology and Metallurgy 33 2 pp 11–16

[32] Setiadji S, Nurazzizah S I, Sundari C, Darmalakasana W, Nurbæti D F, Noviati I, Azizah T B N, Adburrahman D and Ivansyah A L 2018 Synthesis of zeolite ZSM-11 using bamboo leaf as silica source IOP Conference Series Materials Science and Engineering 434 1 p 6

[33] Klamrassamee T, Pavasant P and Laosiripojana N 2010 Synthesis of Zeolite from Coal Fly Ash: Its Application as Water Sorbent. Engineering Journal 14 1 pp 37–44

[34] Orjioko M N, Uchechukwu O, Igwe Ch N and Ajah N U 2016 Synthesis and characterization of zeolite and ots application in adsorption of nickel from Aqueous solution Journal of pharmaceutical, chemical and biological sciences 3 4 pp 592–600

[35] Flanigen E 1980 Molecular sieves zeolite technology: The first twenty-five years Pure and applied chemistry 52 9 pp 2191–2211

[36] Flanigen E 2001 Zeolites and molecular sieves: An historical perspective Studies in Surface Science and Catalysis 137 pp 11–35

[37] Feng C, Khulbe K C, Matsuura T, Farnood R and Ismail A F 2015 Recent progress in Zeolite/Zeotype membranes Journal of membrane Science and Research 1 pp 49–72

[38] Tsitsishvili V, Nhalu D, Urotadze S, Alelishvili M, Mirdzveli N and Nijjaradze M 2017 Ion Exchange properties of Georgian natural zeolites Chemistry Journal of Moldova 12

[39] Izic E and Citak A 2007 Dielectric behavior of the catalyst zeolite NaY Turkish Journal of Chemistry 31 5 pp 523–530

[40] Cairo P C, de Armas J M, Artiles P T, Martin B D, Carrazana R J and Lopez O R 2017 Effects of zeolite and organic fertilizer on soil quality and yield of sugarcane Australian Journal of Crop Science 11 6 pp 733–738

[41] Ghadamman E, Nabavi S R and Abbasi M 2019 Nano LTE Zeolite in water softening process: synthesis, characterization, kinetic studies and process optimization by response surface methodology (RSM) J. Water Environ. Nanotechnol. 4 2 pp 119–138

[42] Narayanan S, Batchelor W and Webley P A 2011 Advances of zeolites in papermaking to create value added products-A review

[43] Schneider A F, de Almeida D S, Yuri F M, Zimmermann O F, Gerber M W and Gewehr C E 2016 Natural zeolites in diet or litter of broilers Nutrition and Metabolism pp 257–263

[44] Emam E and Yehia S 2017 Performance of concrete containing zeolite as a supplementary cementitious material International research journal of engineering and technology 4 12 pp 1619–1625

[45] Joshaghani A 2016 The Effects of Zeolite as Supplementary Cement Material on Pervious Concrete 2016 International Concrete Sustainability Conference (Washington DC) p 11

[46] Sičáková A, Špak M, Kozlovska M and Kováč M 2017 Long-Term Properties of Cement-Based Composites Incorporating Natural Zeolite as a Feature of Progressive Building Material Advances in Materials Science and Engineering p 8

[47] de la Cruz J C, del Campo J M and Colorado D 2014 A much better concrete with zeolite additions-state of the art review 2nd International Conference on Emerging Trends in Engineering and Technology (London) pp 153–159

[48] Tanijaya J and Hardjito D 2008 Experimental Study on the Use of Natural zeolites as Partial Replacement for Cement in Concrete in Yeong-Bin Yang et al. (ed) The Eleventh East Asia Pacific Conference on Structural Engineering and Construction (EASEC-11)

[49] ČSN 72 0102 Základní postup rozboru silikátů - Stanovení ztráty sušením

[50] Foldvári M 2011 Handbook of thermogravimetric system of minerals and its use in geological practice Occasional Papers of the Geological Institute of Hungary 213 106
[51] Su S, Ma H and Chuan X 2016 Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism. *Advanced Powder Technology* **27** 1 pp 139–144

[52] Yuan J, Yang J, Ma H and Chang Q 2017 Preparation of Zeolite F as Slow Release Fertilizers from K-Feldspar Powder. *Chem. Select* **2** 10722

[53] Novembre D, di Sabatino B, Gimeno D and Pace C 2011 Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite. *Clay Minerals* **46** pp 339–354

[54] Pereira P M, Ferreira B F, Oliveira N P et al 2018 "Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes". *Appl. Sci.* **8** 4 p 608

[55] Liguori B, Aprea P, Gennaro B, Iucolano F, Colella A and Caputo D 2019 Pozzolanic Activity of Zeolites: The Role of Si/Al Ratio. *Materials* **12** 4231