Sustainable Management of Acromyrmex octospinosus (Reich): How Botanical Insecticides and Fungicides Should Promote an Ecofriendly Control Strategy
Isabelle Boulogue, Lucienne Desfontaine, Harry Ozier-Lafontaine, Gladys Loranger-Merciris

To cite this version:
Isabelle Boulogue, Lucienne Desfontaine, Harry Ozier-Lafontaine, Gladys Loranger-Merciris. Sustainable Management of Acromyrmex octospinosus (Reich): How Botanical Insecticides and Fungicides Should Promote an Ecofriendly Control Strategy. Sociobiology, Universidade Estadual de Feira de Santana, 2018, 65 (3), pp.348-357. 10.13102/sociobiology.v65i3.1640 . hal-01889346

HAL Id: hal-01889346
https://hal.archives-ouvertes.fr/hal-01889346
Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License
Sustainable Management of *Acromyrmex octospinosus* (Reich): How Botanical Extracts Should Promote an Ecofriendly Control Strategy

I Boulogne\(^1,2,3\)*, L Desfontaines\(^2\), H Ozier-Lafontaine\(^2\), G Loranger-Merciris\(^1,2\)

\(^1\) Université des Antilles et de la Guiane, UFR Sciences Exactes et Naturelles, Pointe-à-Pitre Cedex (Guadeloupe), France.

\(^2\) INRA, UR1321, ASTRO Agrosystèmes tropicaux, 97170, Petit-Bourg (Guadeloupe), France.

\(^3\) Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche Normandie Végétal FED 4277, F-76821 Mont Saint Aignan, France.

Article History

Edited by
Gilberto M. M. Santos - UEFS, Brazil
Received 04 April 2017
Initial acceptance 28 March 2018
Final acceptance 07 August 2018
Publication date 01 October 2018

Keywords

Attini, *Mammea americana*, chemical analysis, lethal concentrations, lethal doses, lethal times.

Corresponding author

Isabelle Boulogne
Normandie Université, UNIROUEN
Laboratoire Glyco-MEV EA 4358
Fédération de Recherche Normandie Végétal FED 4277, F-76821 Mont Saint Aignan, France
Email: isabelle.boulogne@univ-rouen.fr

Abstract

The leaf-cutting ant *Acromyrmex octospinosus* (Reich) causes serious damage to crops and protected areas due to its foraging activity. The main method of control of this species consists of the use of synthetic insecticides that can lead to environmental damage and negative side effects on human health. Consequently, alternative strategies, such as biopesticides, are needed. Insecticide evaluation by ingestion assays was performed using *A. octospinosus in vitro* bioassay and laboratory nests. Chemical analyses were also performed to know the contents of plant extracts. This study showed that *Mammea americana* L. is the most promising insecticidal plant extract in the control of *A. octospinosus*. Indeed, the lethal concentrations (LC\(_{50}\) and LC\(_{99}\)) and the lethal doses (LD\(_{99}\)) of the *M. americana* extract (51.31 mg.mL\(^{-1}\), 131.92 mg.mL\(^{-1}\), and 17.36 mg/g of ant respectively) were the closest to those of Fipronil, 0.03 g/kg, the commercial insecticide used as positive control.

Introduction

The synthetic pesticides used to manage insect pests cause damage to ecosystems, enhance resistance to insecticides in agricultural pests, adversely affect non-target organisms, cause environmental pollution, and have negative side effects on human health. These facts suggest a clear need for alternatives and have led to a renewed interest in biopesticides. Botanical insecticides represent an ecofriendly alternative for pest management because of their biodegradability, which results from the choice of solvent such as water (Boulogne \textit{et al} 2012c), and their potential to reduce the evolution of resistance because plant extracts that contain a mixture of active phytochemicals should reduce the rate of evolution of resistance compared to the selective pressure exerted by single pure toxins (Arnason \textit{et al} 1993).
of the genus Cyathea, are now threatened and might completely disappear due to their endemism (Boulogne et al. 2014). The United States Department of Agriculture (USDA) classifies this ant among the most serious pests of tropical and subtropical America (Pollard 1982). The main leaf-cutting ant control method is the application of granulated toxic baits, which are basically attractive citric matrices that contain a synthetic active ingredient that exerts a delayed action on workers (i.e., dechlorane, fipronil, sulfluramid GX071HB, or sulfluramid GX439) (Nagamoto et al. 2007).

Previous studies explored the activities of active ingredients (allelochemicals) from plants. These studies have shown that plant extracts cited by TRAMIL ethnopharmacological surveys have insecticidal potential for the control of the leaf-cutting ant A. octospinosus. Specifically, four plant extracts have ingestion toxicity [Mammea americana (L.) Calophyllaceae), Nicotiana tabacum L. (Solanaceae), and two extracts of Nerium oleander L. (Apocynaceae)] (Boulogne et al. 2012a). Some others have fungicidal potential to control the symbiotic fungus Leucoagaricus gongylophorus (Singer) Möller (Agaricales, Basidiomycota), particularly a foliage extract of Senna alata (L.) Roxb. (Fabaceae) (Boulogne et al. 2012b). An exhaustive literature search was conducted to identify the published papers related to insecticidal and fungicidal chemical compounds that stem from plant species. This meta-analysis revealed that alkaloids, phenolics, and terpenoids are the three main chemical classes that are most often cited for insecticidal and fungicidal activities (Boulogne et al. 2012c). To date, very few studies have used artificial nest bioassays (Hebling et al. 1996, 2000) or described the lethal doses, concentrations and times of botanical pesticides that are used for the control of leaf-cutting ants.

Therefore, the aims of this study were i) to determine the lethal doses, concentrations and times of four preselected insecticidal plant extracts, ii) to manage a preliminary artificial nest bioassay, and iii) to characterize their biochemical contents in terms of alkaloids, phenolics, and terpenoids, in order to determine the most promising insecticidal and fungicidal plant extracts for use in controlling entire colonies.

Material and Methods

Rearing conditions

Two adult A. octospinosus nests (all casts, queen and symbiotic fungi) were collected from the field in different locations in Guadeloupe (French West Indies) and were bred in the laboratory by housing each colony in an artificial nest. The colonies were maintained for one month in the lab after collection before the initiation of the experiments and were supplied with flowers, leaves, sugarcane, corn flakes, and water daily. The workers used in the ingestion assays were collected from these laboratory nests. Some worker vouchers were deposited in the ASTRO Lab at the National Institute of Agronomic Research (INRA) of the French West Indies and Guiana.

Experiments: source and preparation

The plants used for extract preparation were collected in different locations in Guadeloupe FWI (16°22′44.36″N-61°29′14.60″W, 16°12′25.01″N-61°29′49.42″W, 16°16′48.41″N-61°30′13.30″W, 16°11′20.65″N-61°35′39.54″W, 15°59′53.35″N-61°43′33.71″W), identified by voucher number (Boulogne,Gd,1, UAG/INRA; Boulogne,Gd,2, UAG/INRA; Boulogne,Gd,3, UAG/INRA), deposited at the herbarium of the Santo Domingo Botanical Garden and identified by a botanist of this herbarium, Mr. Brigido Peguero.

The M. americana seed maceration, the two extracts with leaves of N. oleander and the decoction of dried leaves of N. tabacum were prepared as previously described in Boulogne et al. (2012a). All the aqueous plant extracts obtained and fresh leaves of S. alata were freeze dried, ground with a coffee mill, and sieved at 0.5 mm. The residues represented 99, 139, 56, 216 and 295 grams per kilogram of fresh plants of M. americana, N. oleander (crushed), N. oleander (decoction), N. tabacum, and S. alata, respectively.

Statistical analyses

Lethal concentrations (LC₅₀ and LC₉₉), lethal dose values (LD₅₀ and LD₉₉) and lethal times (LT₅₀ and LT₉₉) (concentrations, dose and time that killed 50% and 99% of ants) and their 95% confidence intervals were calculated with logistic regression by Probit analysis. For in vitro insecticidal and preliminary artificial nests bioassays (records three times daily during 28 days for each nest), non-parametric analyses were performed with the Friedman test with multiple comparison method of Nemenyi. For chemical analysis, non-parametric analysis was performed with the Kruskal-Wallis test, multiple comparisons were performed with the Dunn method, and Bonferroni corrections. All these tests were made with XLSTAT® software.

Ingestion bioassay

Regarding control methods used against leaf-cutting ants, our objective was to find a toxic and attractive extract that exerted a delayed action on the workers. With this objective, ingestion bioassays were performed with groups of ten ant workers, which belong to the same colony (the bioassays were then repeated once again with an other colony). The ants were placed in 30 jam bottles (volume 324 mL, diameter 82 mm). Six bottles were used for each of the concentrations of the lyophilized plant extracts (i.e., 1, 5 and 10 mg.mL⁻¹), 6 bottles were negative controls, and 6 bottles containing Blitz® commercial insecticide (Granular bait, Fipronil 0.03 g/kg, 06/08/2001, 9800377) were used as positive controls. The ants were fed daily over a period of 21 days with an autoclaved artificial diet placed in plastic caps. This artificial diet was composed of glucose (50 mg.mL⁻¹), peptone (10 mg.mL⁻¹),
yeast extract (1 mg.mL⁻¹), agar (15 mg.mL⁻¹) (Bigi et al. 2004), and the freeze-dried plant extracts, distilled water (negative control), or fipronil (0.03 g/kg) q.s. to 1 L. The experiments were performed at 25 °C and 70-80% relative humidity on a 12:12 h light:dark photoperiod. Each day, the number of dead ants in each jam bottle was recorded, the caps were removed and weighed, and new caps with fresh artificial diet were offered.

The amounts of food eaten daily by the ants were corrected for the number of live ants. Mortality was analyzed on the basis on the percentages of dead ants corrected by means of Abbott formula. In all insecticidal bioassays, the concentrations used for concentration response estimates were 1, 5 and 10 mg.mL⁻¹. The delayed action of an extract was defined according to Camargo et al (2006) as follows: a weak action occurred when 50% of the ants died before 48 h, a medium action when 50% of ants died between 48 h and 72 h, and a high action when 50% of ants died after 72 h.

Results

The most toxic lyophilized extract was that of the *N. tabacum* dried leaf decoction with an \(LC_{50} = 1.33 \text{ mg.mL}^{-1} \) and an \(LC_{99} = 3.93 \text{ mg.mL}^{-1} \) after 24 h. The lethal concentrations (\(LC_{50} \) and \(LC_{99} \)) of the *M. americana* extract (51.31 mg.mL⁻¹ and 131.92 mg.mL⁻¹, respectively) were closest to those of Fipronil, 0.03 g/kg (78.85 mg.mL⁻¹ and 196.95 mg.mL⁻¹, respectively, Table 1).

The \(LD_{50} \) of the *N. tabacum* extract (0.87 mg/g of ant) was the closest to that of Fipronil, 0.03 g/kg (1.48 mg/g of ant), whereas the \(LD_{99} \) of the *M. americana* extract (17.36 mg/g of ant) was the closest to that of Fipronil, 0.03 g/kg (5.05 mg/g of ant, Table 1).

The \(LT_{50} \) of the *O. octospinosus* (Reich) (without extracts) with values between 0.2 and 0.3 g. The extracts at 1 mg.mL⁻¹ were more attractive than the control with values between 0.4 and 0.45 g (Figure 2).

Data on Table 3 demonstrate that the toxicity/appetency and delayed action characteristics of the *M. americana* seed extract were the most similar to those of Fipronil, 0.03 g/kg. This extract was thus chosen for the preliminary artificial nest bioassay. Although the extract of *N. tabacum* seemed to have interesting characteristics, its lack of delayed action and some toxic properties on mammals do not lead us to choose it. Indeed, its well-known alkaloid (nicotine) is known for its high level of toxicity in mammals in miming the activity of acetylcholine and binding to post-synaptic receptors to cause stimulation and subsequent depression of the central nervous system, autonomic nervous system, and muscular nerve endings (Philogène et al 2008).

Table 1- Lethal concentrations (LC50 and LC99) and lethal doses (LD50 and LD99) after 24 h with number of ants exposed, the 95% confidence intervals, likehood ratio Chi² (P value).

Extract	n	\(LC_{50} \) (mg.mL⁻¹)	95% Confidence intervals	\(LC_{99} \) (mg.mL⁻¹)	95% Confidence intervals	Chi² LR (P value)
Mammea americana	60	5.13	1.07 – 7.09	13.19	12.97 – 17.83	1.32 (<0.0001)
Nerium oleander	60	1.72	1.23 – 3.59	4.43	2.95 – 10.29	1.26 (<0.0001)
(crushed)						
Nerium oleander	60	2.78	1.62 – 9.49	6.58	3.57 – 25.19	0.96 (<0.0001)
(decoction)						
Nicotiana tabacum	60	1.33	0.99 – 2.26	3.93	2.75 – 7.54	1.45 (<0.0001)
Fipronil, 0.03 g/kg	60	7.88	4.74 – 10.12	19.69	10.81 – 24.86	1.38 (<0.0001)

Extract	n	\(LD_{50} \) (mg/g ant)	95% Confidence intervals	\(LD_{99} \) (mg/g ant)	95% Confidence intervals	Chi² LR (P value)
Mammea americana	60	4.03	3.24 – 5.54	17.36	15.24 – 20.49	1.32 (<0.0001)
Nerium oleander (crushed)	60	3.66	1.32 – 5.54	40.2	34.82 – 48.15	1.26 (<0.0001)
(decoction)						
Nicotiana tabacum	60	0.87	0.77 – 2.47	25.19	20.98 – 32.24	1.45 (<0.0001)
Fipronil, 0.03 g/kg	60	1.48	1.14 – 1.82	5.05	4.12 – 6.88	1.38 (<0.0001)
Table 2 - Lethal times (LT50 and LT99) with number of ants exposed, the 95% confidence intervals, likelihood ratio Chi², associated P values and degrees of freedom in the laboratory insecticidal bioassays of the Mammea americana extract, crushed extract of Nerium oleander dried leaves, decoction of N. oleander fresh leaves, decoction of Nicotiana tabacum dried leaves and the positive control (Blitz©).

Extract	n	LT50 (hours)	95% Confidence intervals	Chi² LR (P value)
Mammea americana 1mg.mL⁻¹	60	396.58	370.92 - 427.85	1.74 (<0.0001)
Mammea americana 5mg.mL⁻¹	60	122.95	115.67 - 129.89	1.13 (<0.0001)
Mammea americana 10mg.mL⁻¹	60	102.21	87.52 - 115.28	0.58 (<0.0001)
Nerium oleander (crushed) 1mg.mL⁻¹	60	778.72	573.30 - 1580.29	0.10 (0.001)
Nerium oleander (crushed) 5mg.mL⁻¹	60	82.39	36.99 - 116.88	1.26 (<0.0001)
Nerium oleander (crushed) 10mg.mL⁻¹	60	47.20	22.04 - 68.31	0.36 (<0.0001)
Nerium oleander (decoction) 1mg.mL⁻¹	60	938.23	770.46 - 1266.19	0.35 (<0.0001)
Nerium oleander (decoction) 5mg.mL⁻¹	60	261.57	233.78 - 289.15	0.10 (<0.0001)
Nerium oleander (decoction) 10mg.mL⁻¹	60	69.98	47.43 - 89.20	0.38 (<0.0001)
Nicotiana tabacum 1mg.mL⁻¹	60	172.57	124.81 - 209.42	0.66 (<0.0001)
Nicotiana tabacum 5mg.mL⁻¹	60	30.40	26.96 - 72.18	0.11 (<0.0001)
Nicotiana tabacum 10mg.mL⁻¹	60	33.88	27.94 - 66.29	0.15 (<0.0001)
Fipronil, 0.03 g/kg 1mg.mL⁻¹	60	111.94	106.97 - 116.91	1.43 (<0.0001)
Fipronil, 0.03 g/kg 5mg.mL⁻¹	60	62.80	59.34 - 66.24	1.04 (<0.0001)
Fipronil, 0.03 g/kg 10mg.mL⁻¹	60	52.78	49.79 - 55.76	0.93 (<0.0001)

Extract	n	LT99 (hours)	95% Confidence intervals	Chi² LR (P value)
Mammea americana 1mg.mL⁻¹	60	1283.84	1150.01 - 1464.90	0.17 (<0.0001)
Mammea americana 5mg.mL⁻¹	60	479.16	451.70 - 512.00	0.58 (<0.0001)
Mammea americana 10mg.mL⁻¹	60	311.96	296.46 - 330.28	1.13 (<0.0001)
Nerium oleander (crushed) 1mg.mL⁻¹	60	4513.30	2908.31 - 11067.41	0.10 (0.001)
Nerium oleander (crushed) 5mg.mL⁻¹	60	1124.38	990.54 - 1315.08	0.12 (<0.0001)
Nerium oleander (crushed) 10mg.mL⁻¹	60	557.48	519.13 - 604.91	0.36 (<0.0001)
Nerium oleander (decoction) 1mg.mL⁻¹	60	2704.99	2102.63 - 3899.17	0.35 (<0.0001)
Nerium oleander (decoction) 5mg.mL⁻¹	60	1423.15	1236.86 - 1695.78	0.11 (<0.0001)
Nerium oleander (decoction) 10mg.mL⁻¹	60	576.69	538.19 - 624.03	0.38 (<0.0001)
Nicotiana tabacum 1mg.mL⁻¹	60	1660.83	1386.44 - 2109.04	0.66 (<0.0001)
Nicotiana tabacum 5mg.mL⁻¹	60	1041.08	907.23 - 1237.89	0.10 (<0.0001)
Nicotiana tabacum 10mg.mL⁻¹	60	657.88	589.80 - 751.42	0.15 (<0.0001)
Fipronil, 0.03 g/kg 1mg.mL⁻¹	60	220.31	209.28 - 233.57	1.43 (<0.0001)
Fipronil, 0.03 g/kg 5mg.mL⁻¹	60	115.30	107.99 - 124.83	1.04 (<0.0001)
Fipronil, 0.03 g/kg 10mg.mL⁻¹	60	91.70	85.72 - 99.68	0.93 (<0.0001)

Table 3 - Summary table showing lethal concentrations, lethal doses, appetencies and delayed actions of Mammea americana extract, crushed extract of Nerium oleander dried leaves, decoction of N. oleander fresh leaves, decoction of Nicotiana tabacum dried leaves and the positive control (Blitz©). The lethal concentrations (LC50) are indicated as follows: +, LC50 > 50 mg.mL⁻¹; ++, LC50 between 50 mg.mL⁻¹ and 25 mg.mL⁻¹; and ++++, LC50 < 25 mg.mL⁻¹. The lethal concentration (LC99) are indicated as follows: +, LC99 > 100 mg.mL⁻¹; ++, LC99 between 100 mg.mL⁻¹ and 50 mg.mL⁻¹; and ++++, CL99 < 100 mg.mL⁻¹. The lethal doses (LD50) are indicated as follows: +, LD50 > 5 mg/g; ++, LD50 between 5 mg/g and 2 mg/g; and ++++, DL50 < 2 mg/g. The lethal doses (LD99) are indicated as follows: +, LD99 > 30 mg/g; ++, LD99 between 20 mg/g and 30 mg/g; and ++++, LD99 < 20 mg/g. The appetencies are indicated as follows: +, daily consumed quantity < 0.20 g; and ++, daily consumed quantity > 0.20 g. The delayed actions are indicated as follows: +, 50% of the ants died before 48 h; ++, 50% of ants died between 48 h and 72 h; and ++++, 50% of ants died after 72 h for the highest concentration (according to LT50 showed in Table 2).

Extract	LC₅₀ and LC₉₉	LD₅₀	LD₉₉	Appetency	Delayed action
Mammea americana	+	++	+++	++	+++
Nerium oleander (crushed)	+++	++	+	++	++
Nerium oleander (decoction)	++	+	++	+	++
Nicotiana tabacum	+++	+++	++	+	++
Fipronil, 0.03 g/kg	+	+++	+++	++	+++
Preliminary artificial nest bioassay

To determine whether the effects of our selected extracts could be efficient against entire colonies, preliminary artificial nest bioassays were conducted. For this purpose, ten colonies were observed in field conditions in order to select the 5 most active extracts for use in the preliminary artificial nest bioassays. These colonies were placed in artificial nests and supplied with flowers, leaves, sugarcane, and corn flakes daily prior to the initiation of the bioassays. Each artificial nest was composed of 3 plastic boxes (60 × 40 × 40 cm) that were linked together by short hoses. The central box was non-transparent and hence suitable for the placement of the colony. The other two boxes on either side were transparent to simulate the outdoor environment, and the daily rations were placed in these boxes.

The nests were exposed to each of the following treatments prepared in artificial diet (one nest by treatment): M. americana extract at 10 mg.mL⁻¹, S. alata extract at 2 mg.mL⁻¹, M. americana extract combined with S. alata extract at 10 and 2 mg.mL⁻¹, respectively, a positive control (Fipronil, 0.03 g/kg), and a negative control (no extracts). The artificial diet was the same as that used in the laboratory ingestion bioassays with the addition of the lyophilized plant extracts, distilled water (negative control) or Fipronil, 0.03 g/kg. Dried Citrus sinensis (L.) Osbeck (Rutaceae) peels and Dioscorea alata L. (Dioscoreaceae) leaves (ground with a coffee mill and sieved at 0.5 mm) were added to this artificial food at 10 g.L⁻¹ because of the natural appetency and attractiveness of these components to leaf-cutting ants (Verza et al 2006). This attractive mixture has previously been tested, and its lack of insecticidal and fungicidal activities has been verified according to established protocols of ingestion bioassay and antifungal test (Boulogne et al 2012b). The diets were placed in plastic caps and offered to the ants daily. Before and after the treatments, the nests were supplied daily with flowers and leaves for 7 days. During the treatments, the nests were supplied daily for 14 days exclusively with plastic caps containing the artificial diet with or without the active extracts. The foraging activities (number
of ants incoming the nest with plant material or artificial diet during ten minutes) and quantities of food eaten were recorded three times daily at the same time for each nest before, during, and after the treatments (Lopez & Orduz 2003).

Only the nests treated with *M. americana* extract and Fipronil, 0.03 g/kg exhibited significant reductions in foraging activity (by minute) after the treatments. Similarly, only these nests exhibited significant reductions in the quantities of artificial food eaten daily in grams after the treatments. The quantities of artificial food eaten daily by these ants were significantly lower during the treatments than before or after the treatments with the exception of the nest treated with *S. alata* (Figures 3-A and B). Notably, 6 weeks after the treatment, all of the nests died out with the exception of the negative control nest (which lasted more than 2 months after this last observation). The nests treated with Fipronil, 0.03 g/kg and the *S. alata* extract contained no surviving ants or fungus gardens. The nest treated with the *M. americana* extract exhibited no surviving ants, and its fungus garden was infested with fungal competitors. The nest treated with the *M. americana* extract combined with the *S. alata* extract contained no ants and no fungus garden and was infested with fungal competitors (Figure 3-C).

Chemical analysis

The extracts were submitted to phytochemical analyses for plant secondary metabolites that are known for their potential insecticidal activities, i.e., alkaloids, phenolic...
compounds, and terpenoids. The quantity of each compound was determined using a spectrophotometer according to the following quantitative methods: alkaloids were determined using Marquis’s reagent with a colorimetric method (Szabo et al. 2003), total phenolic compounds were determined using the Folin-Ciocalteau colorimetric method (Heilerová et al. 2003), and terpenoids were determined using the iron (III) chloride-o-phosphoric acid-sulfuric acid colorimetric method (Zak et al. 1956). All values are expressed in micrograms of standard per g of freeze-dried fresh plant sample and three replications were performed.

The *N. oleander* extracts contained the greatest quantities of total alkaloids, the *N. tabacum* and *N. oleander* decoctions contained the greatest quantities of total phenolic compounds and the *N. oleander* extracts contained the most total terpenoids. Terpenoids were the most abundant compounds in all of the extracts (between 550 and 1400 mg of standard/g of freeze-dried plant sample) (Figure 4).

M. americana

We showed that the *M. americana* seed lyophilized extract induced insecticidal toxicity following ingestion. There are few data available regarding the toxicities of *M. americana*, on Attini (Boulogne et al. 2012a), but seeds of this plant showed insecticidal effects in other studies. Indeed, *M. americana* seeds exhibited activity against *Cerotoma ruficornis* (Oliver) (Coleoptera: Chrysomelidae) (Dev & Koul 1997) and *Aedes aegypti* (L.) (Diptera: Culicidae) (Sievers et al. 1949). These seeds are also larvicidal against *Laphygma frugiperda* (Smith and Abbot) (Lepidoptera: Noctuidae) and *Plutella maculipennis* (Curt.) (Lepidoptera: Acrolepiidae) (Plank 1944).

Our preliminary chemical analysis revealed that the *M. Americana* seed extract contained alkaloids, phenolics and terpenoids. Analysis of the literature revealed that the compounds responsible for the insecticidal activities of *M. americana* are well-known phenolic compounds such as coumarins and particularly mammein (Duke 1989). Methanol and ethyl acetate extractions and HPLC or LC-MS analyses have revealed 4.8 mg of coumarins per gram of seed (Yang et al. 2006).

The *M. americana* seed extract exhibited an LC$_{50}$ of 51.31 mg.mL$^{-1}$ and an LD$_{50}$ of 706.65 mg/g of insect. To compare our results with existing data we found a study of the toxicities of aqueous and ethanolic extracts of *M. americana* on *Artemia salina* L. (Anostraca: Artemiidae). This study revealed an LC$_{50}$ greater than 10 mg.mL$^{-1}$ for an aqueous extract and an LC$_{50}$ of 197 μg/mL for the ethanolic extract (Bussmann et al. 2011). Another study of coumarins in *M. americana* revealed an LD$_{50}$ of 4 μg/insect against *Phaedon cochleariae* Fab. (Coleoptera; Chrysomelidae) (Perez et al. 2010). These results might suggest that ethanolic extracts and bioguided fractionation of *M. americana* seed extracts might increase the toxicity (coumarins are less miscible in water than in ethanol).

*Figure 4 - Quantitation of the alkaloid (A), phenolic compound (B), and terpenoid (C) contents (milligrams of standard per gram of freeze-dried plant material) of the *Mammea americana* extract, crushed extract of *Nerium oleander* dried leaves, decoction of *N. oleander* fresh leaves, and decoction of *Nicotiana tabacum* dried leaves. The quantities without common letters differed significantly based on Kruskal-Wallis tests with Dunn’s multiple comparison tests and Bonferroni corrections (n=6 and df=3). The bars represent the medians, and the error bars are the 25% and 75% quartiles.*

S. alata

The nests treated with the *S. alata* extract contained no fungus garden after 6 weeks of treatment. This effect was consistent with our previous study, which showed that the *S. alata* foliar extract was fungicidal against *L. gongylophorus* (Boulogne et al. 2012b). We also reported a preliminary chemical analysis, which revealed that *S. alata* foliage contains alkaloids, phenolic compounds and terpenoids. Previous studies exhibited fungicidal activity against several other fungi and showed that the fungicidal activity of *S. alata*
foliar extracts can be attributed to phenolic compounds such as anthraquinones (Somchit et al. 2003) like chrysophanol (Palanichamy & Nagarajan 1990).

Artificial nests bioassay

We were aware that our artificial nest bioassay was really preliminary and all results of differences among extracts should be treated as preliminary and with caution. Indeed, the experimental design of the test had no replicates to the treatments and it could bias the results (differences might be attributed to differences in nests themselves and not to treatments). However, this preliminary assay is crucial and important to this study line since they show that these extracts are attractive to ants and consumed by them.

Concerning the length of treatment, similar bioassays revealed that Atta sexdens rubropilosa nests that are supplied daily with a diet containing Ricinus communis leaves exhibit gradual decreases in fungus gardens and substantial worker mortality after 6 weeks of treatment (Hebling et al. 1996). Another study of Atta sexdens nests that were fed daily with a diet containing Canavalia ensiformis L. (Leguminosae) leaves reported complete nest extinction after 11 weeks of treatments (Hebling et al. 2000).

Ant baits in field conditions

Regarding delayed action, the seed of M. americana seemed to naturally possess this property. It would be interesting to increase this delayed action of the substance with a digestible polymer using microencapsulation techniques (Benita 2005). Microcapsules could be made to contain a freeze-dried ethanolic or aqueous extracts of M. americana seeds and placed in a mix of Citrus sp. pulp and dried Dioscorea alata leaves to increase the appetency based on our laboratory results and existing data (Verza et al. 2006). These granular baits (microcapsules and attractant mixtures compressed in granular form easy to apply) might be protected in biodegradable and compostable plastics to preserve them against sunlight and adverse weather conditions. Thus, like others well known commercial formulation containing botanical extracts (e.g. pyrethrins, rotenone, sabadilla, rya, nicotine, azadirachtsin or limonene) (Weinzierl 2000), a field study should be conducted with these kinds of baits to improve our work in field conditions. However compared to these previous studies, the force of our argument is to use mixtures of active phytochemicals to reduce conventional resistance compared with the selection pressure exerted by single pure molecule (Arnason et al. 1993) and make the choice of extraction type and solvent with the greatest sustainability (water or eventually ethanol extractions) (Boulonc et al. 2012c). As the example of M. americana extract, toxicity may be increased and transformed in granular baits (microcapsules and attractant mixture) protected in a plastic. As the same way, to improve our fungicidal results (in vitro and with artificial nest) in field conditions, S. alata foliar extracts may also be transformed in granular baits.

Our results might be useful in the control of A. octospinosus and might be applicable to the control of other leaf-cutting ant species. However, we need to keep in mind that, in Guadeloupe (FWI), this species is exotic. This ant might behave different in its exotic range than in its native range (e.g. the case of Linepithema humile (Human & Gordon 1996), and the results found might only apply for non-native populations. Thus, these results should be treated with caution before their generalization.

Our study is the first report of the toxicities of M. Americana seed, N. oleander leaf, and N. tabacum leaf freeze-dried extracts due to ingestion by Attini. It allowed us to determine the lethal doses, concentrations and times of four insecticidal plant extracts that were selected for examination based on previous studies. This study revealed that the M. americana seed extract was the most similar in terms of toxicity/appetency and delayed action to the commercial bait Fipronil, 0.03 g/kg. Our analyses also revealed that these extracts contained alkaloids, phenolics, and terpenoids. The preliminary artificial nest bioassays showed that the most promising insecticidal (M. americana) and fungicidal (S. alata) plant extracts might be useful in the control of A. octospinosus in Guadeloupe and where the species is exotic.

Further studies should be conducted to optimize the toxicities of these extracts against A. octospinosus, to verify that they lack toxicity against non-targeted organisms and to confirm their activities in entire nests in natural conditions.

Acknowledgements

The authors thank Cécilia Delag, Fred Burner, Andève Mulciba, Guy Gougougnan, Michèle Salles, and Hervé Mauléon for their technical assistance.

References

Arnason, J.T., Mackinnon, S., Durst, A., Philogene, B.J.R., Hasbun, C., Sanchez, P., Poveda, L., San Roman, L., Isman, M.B., Satasook, C., Towers, G.H.N., Wiriyachitra, P., Maclaughlin, J.L. (1993). Insecticides in Tropical Plants with Non-Neurotoxic Modes of Action. In Downum, K.R., Romeo, J.T., Stafford, H.A. (Eds), Phytochemical potential of tropical plants, Recent advances in phytochemistry. New York: Plenum Press. doi: 10.1007/978-1-4999-1783-6_5

Benita, S. (2005). Microencapsulation: Methods and Industrial Applications. New York: CRC Press.

Bigi, M.F., Torkomian, V.L., De Groote, S.T., Hebling, M.J.A., Bueno, O.C., Pagnocca, F.C., Fernandes, J.B., Vieira, P.C., Da Silva, M.F.G. (2004). Activity of Ricinus communis (Euphorbiaceae) and Ricinine against the leaf-cutting Ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and
the Symbiotic Fungus *Leucoagaricus gongylophorus*. Pest Management Science, 60: 933-938. doi: 10.1002/ps.892

Boulogne, I., Germosen-Robineau, L., Ozier-Lafontaine, H., Jacoby-Koaly, C., Aurela, L., Loranger-Merciris, G. (2012a). *Acromyrmex octospinosus* (Hymenoptera: Formicidae) Management. Part I: Effects of TRAMIL’s Insecticidal Plant Extracts. Pest Management Science, 68: 313-320. doi: 10.1002/ps.2267

Boulogne, I., Ozier-Lafontaine, H., Germosen-Robineau, L., Desfontaines, L., Loranger-Merciris, G. (2012b). *Acromyrmex octospinosus* (Hymenoptera: Formicidae) Management: Effects of TRAMIL’s Fungicidal Plant Extracts. Journal of Economic Entomology, 105: 1224-1233. doi: 10.1603/EC11313

Boulogne, I., Ozier-Lafontaine, H., Loranger-Merciris, G. (2014). Leaf-Cutting Ants, Biology and Control. In Lichtfouse, E. (Eds), Sustainable Agriculture Reviews. Switzerland: Springer International Publishing.

Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L., Loranger-Merciris, G. (2012c). Insecticidal and Antifungal Chemicals Produced by Plants: a Review. Environmental Chemistry Letters, 10: 325-347. doi: 10.1007/s10311-012-0359-1

Bussmann, R., Malca, G., Glenn, A., Sharon, D., Nilsen, B., Parris, B., Dubose, D., Ruiz, D., Saleda, J., Martinez, M. (2011). Toxicity of Medicinal Plants Used in Traditional Medicine in Northern Peru. Journal of Ethnopharmacology, 137: 121-140. doi: 10.1016/j.jep.2011.04.071

Camargo, R.S., Forti, L.C., Lopes, J.F.S., Nagamoto, N.S. (2006). Studies on Leaf-cutting Ants, *Acromyrmex* spp. (Formicidae, Attini): Behavior, Reproduction and Control. Recent Research Developments in Entomology, 5: 1-21.

Cameron, R.S., Riggs, C. (1985). Distribution, Impact and Control of the Texas leaf-cutting Ant: 1983 Survey Results. Texas Forest Service. Houston: Texas A & M University System.

Dev, S., Koul, O. (1997). Insecticides of Natural Origin. New-York: CRC Press.

Duke, J. (1989). Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. Boca Raton: CRC press.

Hebling, M.J.A., Maroti, P.S., Bueno, O.C., Da Silva, O.A., Pagnocca, F.C. (1996). Toxic Effects of Leaves of *Ricinus communis* (Euphorbiaceae) to Laboratory Nests of *Atta sexdens rubropilosa* (Hymenoptera: Formicidae). Bulletin of Entomological Research, 86: 253-256. doi: 10.1017/S0007485300052536

Hebling, M.J.A., Bueno, O.C., Pagnocca, F.C., Da Silva, O., Maroti, P. (2000). Toxic Effects of *Canavalia ensiformis* L. (Leguminosae) on Laboratory Colonies of *Atta sexdens* L. (Hym.,Formicidae). Journal of Applied Entomology, 124: 33-35. doi: 10.1046/j.1439-0418.2000.00424.x

Heilerova, L., Buckova, M., Tarapci, P., Silhara, S., Labuda, J. (2003). Comparison of Antioxidative Activity Data for Aqueous Extracts of Lemon Balm (*Melissa officinalis* L.), Oregano (*Origanum vulgare* L.), Thyme (*Thymus vulgaris* L.), and Agrimony (*Agrimonia eupatoria* L.) Obtained by Conventional Methods and the DNA-based Biosensor. Czech Journal of Food Sciences, 21: 78-84.

Human, K.G., Gordon, D.M. (1996). Exploitation and Interference Competition between the Invasive Argentine Ant, *Linepithema humile*, and Native Ant Species. Oecologia, 105: 405-412. doi: 10.1007/BF00328744

Lewis, T. (1975). Colony Size, Density and Distribution of Leaf-cutting Ant, *Acromyrmex octospinosus* (Reich) in Cultivated Fields. Ecological Entomology, 127: 51-64. doi: 10.1111/j.1365-2311.1975.tb00552.x

Lopez, E., Orduz, S. (2003). *Metarhizium anisopliae* and *Trichoderma viride* for Control of Nests of the Fungus-Growing Ant, *Atta cephalotes*. Biological Control, 27: 194-200. doi: 10.1016/S1049-9644(03)00005-7

Nagamoto, N., Forti, L., Raetano, C. (2007). Evaluation of the Adequacy of Diflubenzuron and Dechlorane in Toxic Baits for Leaf-cutting Ants (Hymenoptera: Formicidae) Based on Fungicidal Activity. Journal of Pest Science, 80: 9-13. doi: 10.1007/s10340-006-0143-8

Palanchamy, S., Nagarajan, S. (1990). Antifungal Activity of Cassia alata Leaf Extract. Journal of Ethnopharmacology, 29:337-340. doi: 10.1016/0378-8741(90)90043-S

Pérez, P.S., Corley, C.J., Farji-Brener, A.G. (2011). Potential Impact of the Leaf-cutting Ant *Acromyrmex lobicornis* on Conifer Plantations in Northern Patagonia, Argentina. Agricultural and Forest Entomology, 13: 191-196. doi: 10.1111/j.1365-2311.2010.00515.x

Perez, O.P., Lazo, F.J., Morales, J.E.T., Khambay, B.P. (2010). Isolation and Characterization of Active Compounds from *Mammea americana* Lin. Revista Cubana de Quimica, 19: 74-77.

Philogene, B., Regnault-Roger, C., Vincent, C. (2008). Biopesticides d’Origine Végétale: Bilan et Perspectives. Biopesticides d’Origine Végétale. Paris: Lavoisier Eds.

Plank, H. (1944). Insecticidal Properties of Mamey and Other Plants in Puerto Rico. Journal of Economic Entomology, 37: 737-739. doi: 10.1093/jee/37.6.737

Pollard, G.V. (1982). A Review of the Distribution, Economic Importance and Control of Leaf-cutting Ants in the Caribbean Region with an Analysis of Current Control Programmes. Urgent Plant Pest and Disease Problems in the Caribbean. Meeting of the Society for Plant Protection in the Caribbean, Kingston: Ministry of Agriculture.

Sievers, A., Archer, A., Wandre, W., Moore, H., Mc Govran, E.
(1949). Insecticidal tests of plants from tropical America. Journal Economic Entomology, 42: 549-551. doi: 10.1093/jee/42.3.549

Somchit, M.N., Reezal, I., Elysha, Nur, I., Mutalib, A.R. (2003). In vitro Antimicrobial Activity of Ethanol and Water Extracts of Cassia alata. Journal of Ethnopharmacology, 84: 1-4. doi: 10.1016/S0378-8741(02)00146-0

Szabó, B., Lakatos, Á., Köszegi, T., Botz, L. (2003). HPTLC and HPLC Determination of Alkaloids in Poppies Subjected to Stress. JPC - Journal of Planar Chromatography - Modern TLC, 16: 293-297. doi: 10.1556/JPC.16.2003.4.9

Verza, S.S., Forti, L.C., Matos, C.A., Garcia, M.G., Nagamoto, N.S. (2006). Attractiveness of Citrus Pulp and Orange Albedo Extracts to Atta sexdens rubropilosa (Hymenoptera: Formicidae). Sociobiology, 47: 391-399.

Weinzierl, R.A. (2000). Botanical Insecticides, Soaps, and Oils. Biological and biotechnological control of insect pests. Boca Raton: CRC Press.

Yang, H., Jiang, B., Reynertson, K.A., Basile, M.J., Kennelly, E.J. (2006). Comparative Analyses of Bioactive Mammea coumarins from Seven Parts of Mammea americana by HPLC-PDA with LC-MS. Journal of Agricultural and Food Chemistry, 54: 4114-4120. doi: 10.1021/jf0532462

Zak, B., Luz, D., Fisher, M. (1956). Determination of serum cholesterol. The American Journal of Medical Technology, 23: 283-287.