Supplementary methods

Plasmid construction details:

All plasmids were cloned using *E. coli* strain DH5α and regular cloning methods. In general, plasmids were designed for integration of appropriate DNA fragments into the *B. subtilis* chromosome by DOUBLE crossover. The following list provides a brief description of the plasmid constructed. Strains, full sequences and detailed construction methods are available upon request from A.E. Below, all plasmids replicate in *E. coli* but not in *B. subtilis*; details of integration position, selection marker and integration cassette are given in parenthesis:

i. **pVK317** (ppsB::P_spoIIQ-spoIIR Neo^R) – We first constructed a ppsB integration vector containing a Neo^R gene and two fragments of the ppsB gene (515bp fragment starting at position 4066 of the ppsB nucleotide sequence and 1190bp starting at position 4864). We inserted into this vector a fragment starting 500 bp upstream of the spoIIQ gene and ending at the natural PvuII site occurring 110bp into the spoIIQ gene. This fragment was followed by another containing the spoIIR RBS and gene, starting 25bp before the spoIIR start codon and ending 38bp after the stop codon.

ii. **pVK325** (ppsB::P_spoIIR-spoIIR Neo^R) – The pVK317 spoIIQ upstream fragment and the spoIIR fragment described above were replaced by a single spoIIR fragment starting 964bp upstream of the spoIIR start codon and ending 38bp downstream of it.

iii. **AEC326** (ppsB::P_spoIIQ-spoIIR Erm) – The Neo^R resistance gene of pVK317 was replaced by the Erm^R resistance gene from ECE119 (obtained from BGSC) by cloning into the BsrGI sites of pVK317.

iv. **AEC127** (sacA::yfp Cm^R) – We used ECE174 (sacA integration plasmid¹) from the BGSC to construct a YFP reporter plasmid, where a codon-optimized version of Venus with a strong ribosome binding site, and two terminators were inserted between the EcoRI and BamHI sites of ECE174, eliminating these sites. A new multiple cloning site with EcoRI and BamHI sites was formed before the RBS to enable the introduction of reporter promoter.

v. **AEC175** (sacA::P_spoIID-yfp Cm^R) – The 232bp upstream of spoIID start codon were introduced between the EcoRI and BamHI sites of AEC127.

vi. **AEC247** (sacA::P_spoIIQ-yfp) – The 140bp upstream of spoIID start codon were introduced between the EcoRI and BamHI sites of AEC127.

vii. **AEC334** (sacA::P_gerE-yfp Cm^R) – 184bp fragment upstream of the gerE gene was cloned into AEC127 using EcoRI and BamHI.

viii. **AEC336** (sacA::P_sspA-yfp Cm^R) – 234bp fragment upstream of the sspA gene was cloned into AEC127 using EcoRI and BamHI.

ix. **AEC277** (amyE::3×yfp). We constructed an integration plasmid based on pLD30 (amyE::Spec^R integration vector²) in which 3 separate copies of yfp, each with its own RBS are flanked by terminators. A multiple cloning site was inserted before the first yfp for introducing the promoter of choice using EcoRI and BamHI restriction sites.

x. **AEC279** (amyE::P_spoIIIR-3×yfp Spec^R). The 200bp upstream of spoIIIR were ligated into the EcoRI and BamHI sites of AEC277.
xi. **AEC278** (*amyE::PspoilQ-3×yfp Spec^R* integration plasmid). The 200bp upstream of *spoilQ* were ligated into the EcoRI and BamHI sites of AEC277.

xii. **AEC344** (*ppsb::spoiIR;PspoilIR-3×yfp Neo^R*) *PspoilIR-3×yfp* was amplified from AEC279 with flanking restriction sites XXX,XXX and ligated into the corresponding sites in pVK325. The direction of the reporter is opposite to the direction of the *spoiIR* gene in a converging manner.

xiii. **AEC308** (*amyE::PspoiIEacO-mCherry lac Spec^R*): The hyper-spank promoter of pDR111 (gift from David Rudner, Harvard Medical School) was replaced by a *spoiIE* promoter that included a lacO binding site 2 base pairs downstream of the predicted -10 σ^A^ binding site (see full sequence of the promoter in Fig. S12). A ribosome binding site and a codon optimized version of *mCherry* as well as two terminators (from *rrnB* and *trpA*), were incorporated at the vector’s multiple cloning site using Sall and Spht restriction sites.

xiv. **AEC309** (*spoiIE-RBS-mCherryΩspoiIE*). *mCherry* and its RBS were ligated into pKL147^4^ between the XhoI and splh site. A 1kb fragment of *spoiIE* was subsequently cloned upstream of the RBS into the EcoRI and XhoI sites.

xv. **AEC363** (*amyE::PspoiIRacO-mCherry lac Spec^R*). The *spoiIE* promoter of AEC308 was replaced with a version of *spoiIR* promoter containing a lacO binding site 1bp downstream of the -10 σ^F^ predicted binding site (see full promoter sequence in Fig S3).

xvi. **AEC362** (*amyE::PspoiIqcacO-mCherry lac Spec^R*). The *spoiIE* promoter of AEC308 was replaced with a version of *spoiIQ* promoter containing a lacO binding site 1bp downstream of the -10 σ^F^ predicted binding site (see full promoter sequence in Fig S3).

xvii. **AEC360** (*amyE::PspoiiqacO-spooIIR-mCherry lac Spec^R*). The *spoiIE* promoter of AEC308 was replaced with the same *spoiIQ* promoter as in AES363 but without the lacO binding site. Used to calibrate *spoiIR*_{hypo} expression.

xviii. **AEC365** (*amyE::PspoiIracO-spooIIR-mCherry lac Spec^R*) *spoiIR* gene and its RBS were integrated into AEC363 between Sall and Clal restriction sites forming a bicistronic transcript with *mCherry* – see map of the integration part of the plasmid in Fig. S4.

xix. **AEC364** (*amyE::PspoiIracO-spooIIR-mCherry lac Spec^R*) *spoiIR* gene and its RBS were integrated into AEC362 between Sall and Clal restriction sites forming a bicistronic transcript with *mCherry*.

xx. **AEC369** (*amyE::PspoiIqacO-2xyfp-spooIIR-mCherry lac Spec^R*): 2 copies of *yfp* were inserted into AEC364 restriction site, to form a co-cistronic operon together with *spoiIR*.

xxi. **AEC375** (*ppsb::PspigA-mCherry*): σ^A^ promoter from the trpE gene was fused to mCherry and cloned into the ppsB integration vector, pVK317, replacing the *PspoilQ*-spoiIR construct.
B. subtilis strains:

Strains used in the paper were from PY79 or BR151 genetic backgrounds. Antibiotic resistance was switched by using antibiotic switcher vectors \(^5,^6\). The appropriate antibiotic marker is marked but the switching stages are omitted.

Strain name	Genotype	Construction method (mutant strain description)	Used in figure	Reference/source
1 PY79	Prototrophic strain			
2 AES406	PY79; spoII::Kan	RL1063 (ΔspoII)	Fig. 3c	JD lab stock
3 Jdb1153	PY79; amyE::P_spoligo_cfp Spec\(^R\)	Integration of pKM8 into PY79, Bs. codon optimized cfp		
4 AES544	PY79; amyE::P_spoligo_cfp Spec\(^R\); sacA::P_spoligo_yfp Cm\(^R\)	AEC175→jdb1153 Fig. S1b	This work	
5 AES516	PY79; spoII::Neo\(^R\); ppsB::P_spoligo_spoII Erm\(^R\)	AEC326→AES406 (spoII\(^R\))	Figs. 3c (filled square), 3e, 4b, S4c, S8a, S9	This work
6 AES525	PY79; spoII::Neo\(^R\); ppsB::P_spoligo_spoII Erm\(^R\); amyE::P_spoligo_cfp Spec\(^R\);	Jdb1153→AES516 (spoII\(^R\))	This work	
7 AES528	PY79; spoII::Neo\(^R\); ppsB::P_spoligo_spoII Erm\(^R\); amyE::P_spoligo_cfp Spec\(^R\); sacA::P_spoligo_yfp Cm\(^R\)	AEC175→AES606 (spoII\(^R\))	Figs. 2a-d	This work
8 AES569	PY79; spoII::Tet\(^R\); ppsB::spoII Neo\(^R\); amyE::P_spoligo_cfp Spec\(^R\); sacA::P_spoligo_yfp Cm\(^R\)	pVK325→AES528 (spoII\(^R\))	Fig. S1a	This work
9 AES606	PY79; spoII::Erm\(^R\); ppsB::spoII P_IIR-3×yfp Neo\(^R\)	AEC344→AES525 (spoII\(^R\))	3c (empty circle)	This work
10 AES607	PY79; spoII::Erm\(^R\); ppsB::spoII P_IIR-3×yfp Neo\(^R\); amyE::P_spoligo_cfp Spec\(^R\)	Jdb1153→AES606 (spoII\(^R\))	S2a-d, S4g	This work
11 Jdb651	PY79; amyE::TetO (Cm\(^R\) x 5); vegQP_veg_TetR-GFP Erm\(^R\)	pVK317→AES568 (spoII\(^R\))	Fig. 2e	This work
12 AES558	PY79; spoII::Tet\(^R\); amyE::TetO (Cm\(^R\) x 5); vegQP_veg_TetR-GFP Erm\(^R\)	AES406→Jdb651; High level of Cm selected for multiplication of TetO cassette	This work	
13 AES559	PY79; spoII::Tet\(^R\); amyE::TetO (Cm\(^R\) x 5); vegQP_veg_TetR-GFP Erm\(^R\); ppsB::P_spoligo_spoII Erm\(^R\)	pVK317→AES568 (spoII\(^R\))	Fig. 2e	This work
14 SL14341	JH641; ΔyabA::Cm\(^R\)	A kind gift of A.		

\(^5\) Reference needed.\(^6\) Reference needed.
15	AES618	PY79;ΔyabA::Cm^R	Grossman	SL14341→PY79 (ΔyabA)	Fig. S11g	This work
16	AES620	PY79; spoIIR::Tet^R; ppsB::P_{spoIIQ}-spoIIR Neo^R;ΔyabA::Spec^R	(spoIIR^{delay};ΔyabA)	Fig. 4b	This work	
17	AES639	PY79;spoIIR::Tet^R; amyE::TetO (Cm^Rx5); vegQP_{veg}-TetR-GFP Erm^R; ppsB::P_{spoIIQ}-spoIIR Neo^R;ΔyabA::Spec^R	AES638→AES559 (spoIIR^{delay};ΔyabA;Tet-Dot)	Figs. S11b,c	This work	
18	AES240	sacA::P_{spoIIQ}-yfp Cm^R	AEC247→PY79	This work		
19	Jdb1	PY79; spoIIE::Kan				
20	AES462	PY79; spoIIE::Kan; amyE::P_{spoIIElacO}-mCherry lacI Spec^R	spoIIE was ligated to AEC308 and directly transformed into jdb1 (spoIIE^{hypr})	This work		
21	AES608	PY79; spoIIE::Kan; amyE::P_{spoIIElacO}-mCherry lacI Spec^R; spoIIR::Tet^R; sacA::P_{spoIIQ}-yfp Cm^R	AES240→AES462	Figs. 3d, S12e	This work	
22	AES467	PY79; spoIIE::Kan; amyE::P_{spoIIElacO}-mCherry lacI Spec^R	AEC309→PY79 (single crossover)	This work		
23	AES417	PY79; amyE::P_{spoIIElacO}-mCherry lacI Spec^R	AEC308→PY79	Figs. S12c,d	This work	
24	AES666	PY79; amyE::P_{spoIIElacO}-mCherry lacI Spec^R; sacA::P_{spoIIQ}-yfp Cm^R	AEC360→AES240	Figs. S3c,d	This work	
25	AES667	PY79; amyE::P_{spoIIElacO}-mCherry lacI Spec^R; sacA::P_{spoIIQ}-yfp Cm^R	AEC363→AES240	Figs. S3c,d	This work	
26	AES673	PY79; spoIIR::Tet^R; amyE::P_{spoIIElacO}-mCherry lacI Spec^R; sacA::P_{spoIIQ}-yfp Cm^R	AES365→AES240; spoIIR^{hypr}	Figs. 3c (empty diamond, 3uM IPTG, empty star, 6uM IPTG), S3e	This work	
27	MZ50	PY79; spoIIR::Neo^R; zdd-85::spoIIR(123°) Spec^R	spoIIR^{distal1}	Fig. 3c (filled diamond)	13	
28	MZ49	PY79; spoIIR::Neo^R; zce-82::spoIIR(94°) Spec^R	spoIIR^{distal2}	Fig. 3c (empty square)	13	
29	AI109	JH642; spo0J-GFP				
30	AES546	PY79; amyE::P_{spoIIQ}-cfp Spec^R; spo0J-GFP Cm^R	AI109→jdb1153 (spo0J-GFP)	Fig. S11b,f	This work	
31	AES548	PY79; spoIIR::Neo^R; ppsB::P_{spoIIQ}-spoIIR Erm^R amyE::P_{spoIIQ}-cfp Spec^R; spo0J-GFP Cm^R	AI109→AES525 (spoIIR^{delay};spo0J-GFP)	Fig. 4a,S11d,e	This work	
32	Jdb404	PY79; zae-			12	
---	---	---				
33	Jdb434	PY79; zdd-85::Tn917::pTV21Δ2::pD177.1::pD179.1 kanR catR spolIIA+IIAB1 IIAC(VA233)Ωerm				
34	AES652	PY79; zae-86::Tn917::pTV21Δ2::pD177.1::Ps spoIIA-3×yfp SpecR CmR				
35	AES653	PY79; amyE::P spoIIQ-3xylfp SpecR; zae-86::Tn917::pTV21Δ2::pD177.1::Ps spoIIA-3×yfp SpecR CmR				
36	AES434	PY79; amyE::P spoIIA-3xylfp SpecR				
37	AES433	PY79; amyE::P spoIIA-3xylfp SpecR				
38	AES574	PY79; spoIIR::NeoR; ppsB::P spoIIQ-spoIIR ErmR; amyE::P spoIIQ-3xylfp SpecR; sacA::P gaps-yfp				
39	AES575	PY79; spoIIR::NeoR; ppsB::P spoIIQ-spoIIR ErmR; amyE::P spoIIQ-3xylfp SpecR; sacA::P gaps-yfp				
40	AES852	PY79; ppsB::PtrpE-Cherry Erm; spoIIR::Tet; amyE::P spoIIQ-CFP				
41	AES840	PY79; zdd-85::Tn917::pTV21Δ2::pD177.1::pD179.1 kanR P spoIIA-2×yfp-spoIIR-mCherry SpecR				
42	AES853	PY79; ppsB::PtrpE-Cherry Erm; spoIIR::Tet; amyE::P spoIIQ-CFP; zdd-85::Tn917::pTV21Δ2::pD177.1::pD179.1 kanR Ps spoIIQlacO-2×yfp-spoIIR-mCherry SpecR				
43	SW171	rsfA::Tet				
44	AES629	PY79; spoIIR::Erm; ppsB::PIIR-IIIR PIIR-3xY Neo; amyE::P spoIIQ-CFP; rsfA::Tet				
45	AES766	PY79; IIIR::Erm; ppsB::PIIR-IIIR Neo; rsfA::Tet				
46	MF56	PY79; spolIGB::spolIGB-GFP Spec				
47	AES765	IIIR::Erm; ppsB::PIIR-IIIR Neo; spolIGB::spolIGB-GFP Spec				
48	Jdb401	amyE::Pspac-ftsZ-GFP				
49	AES870	IIIR::Kan; ppsB::PIIR-IIIR				

JD lab stock

This work

AEC279→jdb404

Figs. S2h-j

AEC279→PY79

Figs. S4a,b

AEC336→AES525

Fig. S8a

AEC334→AES525

Fig. S8b

AEC375, jdb1153→AES514

AEC369→jdb434

Fig. 3a,b, Fig. S5b

SW171→AES607

Fig. S4e

SW171→AES602

Fig. S4f

MF56→AES602

Fig. S5c-d

Jdb401→AES516

Fig. S8d

This work

This work
		Neo;amyE::Pspac-ftsZ-GFP			
50	BR151	trpC2 metB10 lys-3		17	
51	SL14121	BR151; spollIR::Tet^R; ppsB::P_{spollIR}-spollIR Neo^R	(spollIR^{delay})	Fig. 4b	This work
52	SL14352	BR151;ΔyabA	AI109 →BR151 (ΔyabA)		This work
53	SL14363	BR151; spollIR::Tet^R; ppsB::P_{spollIR}-spollIR Neo^R; ΔyabA	AI109 →SL14117 (spollIR^{distal}, ΔyabA)	Fig. 4b	This work
Supplementary Figures

Figure S1. Wild-type and partially penetrant sporulation. (a-b) images of typical microcolonies of (a) $spolIR^{pp}$ (AES569) and (b) wild-type cells. Arrowheads indicate different fates acquired by the cells, as defined in figure. The specific $spolIR^{pp}$ strain shown here is $spolIR^{distal}$, further described in Fig. S2 and supplementary methods. Scale bar, 1µm. (c-e) Schematic illustration of the two types of mutations used to perturb $spolIR$ expression and allow the expression of a partial penetrance set of phenotypes. (c) Wild-type sporulation: After completion of septation (blue arrows in top, solid line on ‘early’ and ‘late’ cartoons), σ^F is activated specifically in the forespore. It transcribes $spolIR$ which in turn leads to activation of σ^E in the mother-cell by cleavage of its membrane bound pro-domain. σ^E target genes in turn block completion of a second asymmetric septum (blue arrows) in mother cell. Concurrently, the distal part of the forespore chromosome (gray line) is translocated into the forespore (white arrow). Origins of replication on the two chromosomes are indicated schematically by gray dots. (d) Chromosome translocation delay mutants. In these strains, the $spolIR$ gene is moved to a distal location. Its expression is controlled either by its own promoter, P_{spolIR}, in the case of $spolIR^{distal}$, or by a stronger σ^F-controlled promoter, $P_{spolIIQ}$, in the case of $spolIR^{delay}$. In both cases, chromosomal position delays $spolIR$ expression due to the need for DNA translocation prior to activation. The delay causes some cells to fail to activate σ^E in a timely fashion, sometimes resulting in a second septum (black dashed line). (e) In LacI-repressed $spolIR^{hypo}$ mutants, a lac operator is inserted in the $spolIR$ promoter, resulting in an effective transcriptional “AND” gate: SpoIIR is expressed only when σ^F is active and LacI is induced by IPTG (not shown). This reduces the rate of expression of $spolIR$ in an IPTG-dependent manner, without affecting the time at which $spolIR$ is first expressed. Consequently, the activation of σ^E is reduced, or eliminated, leading to the same spectrum of fates observed in $spolIR^{delay}$ mutants. Figure S2 further characterizes the delay mutants, while Figure S3 further characterizes the LacI repression mutants, and Figure S4 characterize their interaction and the interaction with an additional regulator of $spolIR$, rsfA.
a

spoIIR_{distal}

b

Wild-type

Escape
Sporulation
Abortive Dispore
Re-sporulation
Twins

c

Wild-type sporulation

d

Chromosome translocation delay

e

LacI Repression

Early

Wild-type sporulation

Late

Wild-type sporulation

Mother Cell
Forespore
Figure S2. Variability and noise in spollIR^{pp} mutants. (a-d) The strain $\text{spollIR}^{\text{distal}}$ (AES607) allows analysis of cell-cell variability in spollIR expression. (a) spollIR was moved from its normal position along with a P_{spollIR}-3×yfp reporter cassette (3 tandem copies of yfp) to a locus (ppsB) near the replication terminus (172°). In this strain, spollIR is not expressed until the ppsB locus is translocated into the forespore, creating a delay in the initiation of its expression. Similar mutants, with spollIR inserted at other locations, are also used – see methods for details. This strain also incorporates a P_{spollIQ}-cfp reporter in an ori-proximal position (P_{spollIQ} is activated by σ^F). See Fig. S4 for more details. (b) Analysis of activation of a single typical $\text{spollIR}^{\text{distal}}$ cell. Total fluorescence is plotted vs. time for the two reporters shown in (a). The delay time, labeled T, is corrected for differences in fluorescent protein maturation times (see (i)). The expression rates are defined as the slope of total fluorescence over time, and normalized to the expression of the same yfp reporter gene inserted at an origin-proximal locus, as shown in (j). (c) Delay time, T, is variable. Histogram over $N=250$ cells is shown. The delay takes 20 ± 6 min (mean ± s.d.). (d) Expression rate is reduced to ~10% of its wild-type value, and varies substantially. This histogram is from the same data set as in (c). (e) Correlation between fate and P_{spollIR} expression. A cumulative histogram of delay time in sporulating (gray) and non-sporulating (black) sub-populations. The difference between the distributions explains 12% of the variability in this strain. spollIR expression level did not correlate well with fate (not shown). (f) Sporulation timing does not affect fate. Cells of the strain shown in Fig. 3a with sporulation time shorter than the median (denoted Short) and higher than the median (High), sporulated with the same frequency (error bars based on triplicate experiments, std. error). (g) Signaling time, defined as the interval between activation of a P_{spollIR}-yfp reporter in the forespore to the activation of a P_{spollIR}-yfp reporter for σ^E activity in the mother cell, is shorter than the chromosomal translocation delay, shown in (c). Inset: distribution of signaling times. $T_{\text{sig}}=3.7\pm0.9$ min (mean ± s.d.). (h) A strain (AES653) in which spollIR and its 3×yfp reporter are expressed at proximal positions, so that cfp and yfp should be activated simultaneously. (i) Analysis of systematic activation time differences in this strain provides a measurement of the difference in maturation times between the two fluorophores. CFP matures 9.9 ± 2.3 min (mean ± s.d.) slower than YFP. (i) Histograms of P_{spollIR}-3×yfp expression in AES653 (black) and $\text{spollIR}^{\text{distal}}$ strain (gray, re-plotted from (d)).
Figure 1

(a) Schematic representation of the sporulation process involving the sporIIR-indicator constructs. **spoIIR**
distal

(b) Time-course analysis of fluorescence intensity for P_{IIQ-cfp} and P_{IIR-yfp} constructs.

(c) Frequency distribution of delay time (T) for P_{IIR} relative activity.

(d) Frequency distribution of P_{IIR} relative activity for non-sporulating and sporulating subpopulations.

(e) Cumulative fraction of non-sporulating and sporulating subpopulations over time.

(f) Sporulation frequency distribution for short and long timing of sporulation.

(g) Fluorescence intensity over time for P_{IIQ-3Y} and P_{spoIID-3Y} constructs.

(h) Schematic representation of AES653 construct involving P_{spoIID-3×yfp} and P_{spoIIR-cfp}.

(i) Distribution of maturation time with a mean of \(<T_{maturation}> = 9.9 \pm 2.3\) min.

(j) Distribution of P_{IIR} expression for proximal and distal IIR constructs.
Figure S3. Construction and single-cell analysis of spollIR_{hypo}. (a) Sequence of P_{spollIRlacO} promoter. A lacO binding site and Sall restriction site were inserted 2bp after the σ^F -10 binding site in the parental P_{spollIR} promoter. (b) Schematic diagram of region integrated at amyE with spollIR^{hypo}. It is based on the integration plasmid pDR111 (provided by D. Rudner, Harvard Medical School). Here, the spollIR gene is expressed under the control of the P_{spollIRlacO} promoter variant shown in (a), as an operon with the mCherry reporter gene. The vector also enables integration of the E. coli lacI gene and appropriate terminators into the same locus. (c-d) P_{spollIRlacO} expression characterization. (c) A strain containing wild-type spollIR and the P_{spollIRlacO} promoter driving mCherry (AES667) was analyzed at different IPTG levels using time-lapse microscopy. mCherry levels as a function of time are shown for specific cells, at IPTG levels of 2µM (magenta), 6µM (blue) and 30µM (green). Each trace was normalized by its average expression level reduction compared to wild-type, as indicated by multipliers in legend. Also shown is the mean behavior of the parental promoter (lacking the lac operator), in strain AES666. (d) Promoter strength was defined as the average mCherry expression levels 200 to 250 minutes after σ^F activation (as measured relative to a P_{spolIIQ}-YFP reporter incorporated into the same strain at a proximal location, not shown). The average promoter strength and its variability (s.d.) are plotted against the wild-type P_{spollIR} reporter for 4 different concentrations of IPTG. Expression level is approximately linear with IPTG in the range 2-30µM IPTG. 10% of wild-type levels are achieved at ~6 µM IPTG. (e) Sporulation frequency increases with IPTG in images of spollIR^{hypo} colonies (strain AES673). Sporulation frequencies are indicated. Images are composites of phase contrast (gray levels) and P_{spolIIQ}-yfp fluorescent reporter for σ^F activity (green). Scale bar, 1µm.
a

```
492bp
5'--GCTTTCTTTGCTGG--ACGTTTATCCCAGGCTCTCCTTGTCCATAAATAG -3
5'--GGAAATTGTGAGCGGATAACAATTAGTCGACGAAACAAAGCACG--3'
```

Putative transcription start site

b

```
5'--GGAGAGAACCGTGAGCCGACAGTGAACGACAG--3'
sPoIR ORF
```

c

![Graph showing relative fluorescence over time from σ factor activation](image)

d

![Graph showing promoter strength vs. IPTG concentration](image)

e

IPTG (µM)	Sporulation frequency
0	5%
2	13%
3	17%
6	44%
30	92%
Figure S4. Interactions between delay and reduction in spoIIR expression. (a-b) Comparison of P_{spoIIQ}-3×yfp (AES433) and P_{spoIIR}-3×yfp (AES434) expression using single cell analysis of time-lapse movies. Both reporters are integrated in an ori-proximal position (at amyE) (a) Histograms of maximal P_{spoIIQ} and P_{spoIIR} expression for single cells show that P_{spoIIQ} is ~3 times stronger than P_{spoIIR}. (b) Temporal expression profiles of P_{spoIIQ} and P_{spoIIR} promoters in individual cells. Expression rate is defined as the time derivative of total cellular YFP fluorescence for each cell and curves are smoothed for clarity. All traces are aligned to the onset of expression and normalized by their maximal expression levels. Gray levels as in (a). These data indicate that both P_{spoIIQ} is both stronger and more sustained in its activity than P_{spoIIR}. At the mean translocation time (marked with a vertical dashed line), P_{spoIIQ} expression is two-fold higher than the maximal levels of P_{spoIIR} activity. (c) Comparison of spoIIR expression perturbations on sporulation efficiency. Shown are delay only (spoIIR$^{\text{delay}}$, AES516, where spoIIR is distally located and controlled by a P_{spoIIQ} promoter), reduction only (spoIIR$^{\text{hypo}}$) or combined delay and reduction (spoIIR$^{\text{distal}}$). The effects of the two types of perturbations are additive. The type of perturbation (delay and/or reduction in spoIIR expression) is diagrammed schematically below the plot. (d-f) RsfA, a regulator of spoIIR, affects the behavior of spoIIR$^{\text{distal}}$ mutants. (d) RsfA was shown to repress spoIIR and to be activated by σ^F (ref. 18,19), forming an incoherent feed-forward loop as indicated20. (e) A distal P_{spoIIQ}-yfp reporter shows enhanced expression in a $\Delta rsfA$ mutant, as expected. (f) In agreement with this result, the $\Delta rsfA$ partially rescues the reduction in sporulation efficiency from the spoIIR$^{\text{distal}}$ mutation.
Figure a:
- **#cells** vs. **Maximal Expression rate (Normalized)**

Figure b:
- **Normalized Expression rate** vs. **Time (min.)**

Figure c:
- **Sporulation Frequency**
 - wt, IIRdelay, IIRHypo, IIRdistal
 - Time after septation

Figure d:
- Diagram showing sigma F, rsfA, and IIR

Figure e:
- **Fluorescence (AU)** vs. **Time from first septation (AU)**
 - $P_{IIR}^{-3\times yfp@172^\circ}$
 - $\Delta rsfA$
 - rsfA$

Figure f:
- **Sporulation frequency**
Figure S5. Characterization of sporulation escape. (a) Escaping cells do not generate a second septum at the opposite pole. This FM4-64 time-lapse filmstrip shows a cell that forms a single forespore compartment (red arrow on second image) and then continues to grow (escapes) without making more compartments (compare second to third image). Finally, the cell makes two compartments and continues to form a twin cell (not shown). (b) SpoIIR is expressed in the forespore of an escaping cell. Shown is the expression of YFP (colored green), co-expressed with spoIIR in an operon in a typical cell (strain AES853). The final frame shows re-initiation of sporulation with a new forespore. (c,d) Pro-σ^E cleavage in mono-sporulating (c) and escaping (d) cells. We used a SigE-GFP fusion to follow the localization of σ^E protein in a spoIIRpp mutant (AES765). (c) In a cell that continues with sporulation, SigE-GFP is initially membrane bound16. Following spoIIR expression its membrane pro-domain is cleaved and it is released to the cytoplasm21 (compare second and third images in (c)). (d) sigE-GFP was never seen to become cytoplasmic in the escaping sub-population of the same strain as (c). Time in each filmstrip is indicated in minutes from first frame. Scale bar, 1µm.
a) FM4-64

b) \(P_{\text{spolIR}^{\text{-spolIR}}}^{\text{yfp}} \)

c) \(\text{sigE-gfp} \)
Sporulating cell

d) \(\text{sigE-gfp} \)
Escaping cell
Figure S6. Time interval between formation of two asymmetric septa in abortive disporic cells. (a) The expression of a proximal $P_{spoliIR^{-3}}$ reporter is measured at the two halves of the cell. Shown are time traces for two cells (one in magenta and the other in blue). The time between onset of activation of the two forespores varies substantially. In some cases (not shown), $P_{spoliIR}$ levels may also vary substantially between forespores. (b) Distribution of the time interval between the formation of the two septa. (c) Monitoring abortive disporic cells with the membrane stain FM4-64 yielded similar results. The time between formation of the two septa in the twin was found to be similar to that observed in the dispore (not shown).
a

- Time (minutes)
- Fluorescence (AU)
- Fluorescence over time for T_{dispore} with two cells, Cell 1 and Cell 2.

b

- Frequency distribution of T_{dispore} with peak at 22.5 minutes (n=29).

c

- Frequency distribution of time between septations, with peak at 20 ± 6 minutes (mean ± s.d., n=70).
Figure S7. The twin mother-cell is a single compartment. (a) Membrane marker (FM4-64, red) does not show any sign of staining within the mother-cell of a twin-forming cell. Forespores are marked with a P_{spoIIQ}-gfp reporter. (b-f) Fluorescence recovery after photobleaching (FRAP) experiments demonstrate that the mother-cell is a single compartment. (b) Fluorescece levels were followed during a FRAP experiment as indicated by colored regions of interest (ROIs). ROI 5,6 (magenta and green respectively) monitor fluorescence level within the same cell. (c) 2/3 of the twin’s area was bleached. Marked are areas designated for bleaching. ROI6 is within the area and ROI5 is outside it. (d,e) Images of the cells immediately after photobleaching (d) and 100 seconds later (e). (f) Quantification of fluorescence levels in all ROIs (color corresponds to that in (b)). Note that fluorescence level between the two twin’s ROIs equilibrates within ~10 seconds corresponding to a diffusion coefficient of ~2.5um2/sec, comparable to previously measured cytoplasmic diffusion rates in bacterial cells22. Controls: ROI4 is an unbleached cell, while ROI7 is an entirely bleached cell.
Figure S8. Characterization of twins. (a,b) Twins activate late sporulation sigma factors. Shown are (a) σ^F (green, P_{spolI}-CFP) and σ^G (red, P_{sleB}-YFP) reporters (AES574). Note that the forespore formed prior to escape (right pole) appears green as it activates σ^F, but does not develop further. (b) σ^K reporter (green, P_{gerE}-yfp) (AES575), showing that σ^K is expressed in twins as expected. (c) A filmstrip of twin formation in a $\text{spolIR}^{\text{delay}}$ mutant, with an FM4-64 membrane marker shown in green and phase contrast images in gray. Division events occurring between the last vegetative division and formation of two mature spores are indicated: the final vegetative division (0 min); 1st asymmetric division (70); escape and a vegetative-like division (180); failed asymmetric division (220); 1st twin asymmetric division (320); 2nd twin asymmetric division (350); engulfment (410); phase bright spores (510); mother-cell lysis (790); two mature spores (860). (d) Twin spore-formers do not form an ftsZ ring after the formation of both forespores. An IPTG inducible ftsZ-GFP reporter (AES870) was inserted into a $\text{spolIR}^{\text{delay}}$ mutant. The induction of ftsZ-GFP by 20µM of IPTG led to a marked reduction in twin frequency ($<0.1\%$ of sporulating cells). The few twins that were formed during a time-lapse movie of sporulating cells did not show any ftsZ ring in the mother-cell after the formation of the twin forespores. Shown is a film strip of a twin sporulating cell showing ftsZ-GFP expression (green) and phase contrast image (gray). Time is indicated in minutes. Scale bar, 1µm.
\(\sigma^f(\text{P}_{\text{IIQ}}), \sigma^g(\text{P}_{\text{slb}}) \)

\(\sigma^g(\text{PsleB}) \)

\(\sigma^\kappa(\text{P}_{\text{gerE}}) \)

Membrane marker (FM4-64)

0 min. 70 180 220 320 350 410 510 790 860

0 min. 22 45 66 89 157 290 490 1110
Figure S9. Germination and UV-resistance of twins. (a) Twin spores re-grow upon addition of growth medium. spoIIRdelay;spo0J-GFP cells (AES548) were induced for sporulation using time-lapse conditions (see methods) and were followed until spores matured throughout the agarose pad. 8\(\mu\)l of LB was then added to the pad. Shown is a filmstrip, where twin spores form and mature. Both twin spores germinated and re-grew upon addition of LB similarly to mature monospores. Red arrowhead marks the two spores of the twin. After germination of the cell from the spore, an empty spore shell is retained in place. The green arrowhead marks the appropriate spore shells in cases where it may cause confusion. Scale bar, 1\(\mu\)m. (b,c) Twin spores are resistant to UV irradiation. Filmstrips of sporulating twin spores (b) and vegetative cells (c) that were exposed to 10 seconds of UV irradiation from an unfiltered Xenon lamp. (b) 5\(\mu\)l of LB was added to the irradiated spores. In this case, only part of the spore population germinated. Shown is a case where the two twin spores germinated. (c) Control showing that the irradiation was strong enough to kill vegetative cells. Red and green arrows are as in (a). Time is indicated in minutes (unless otherwise noted) from time of addition of LB (a,b) or irradiation by UV (c). Scale bar, 2\(\mu\)m in (b) and 3\(\mu\)m in (c).
Figure S10 Phylogenetic analysis of species producing multiple endospores (polysporogenous). Shown is a phylogenetic tree including all reported cases (to our knowledge) of polysporogenous species. All known species are in the Clostridia class. Bacillus subtilis (shown at the bottom) is part of the Bacilii class. These two classes of the firmicutes diverged about 2.7 Billion years ago but are highly homologous in their sporulation process. Polysporogenous species are sparsely represented among monosporogenous (producing only single endospore) Clostridia species. Some species are strictly twin-like (bi-polar sporulation, marked with a in paranthesis). Others may combine bi-polar formation of forespores with forespore binary fission to produce more than two spores (marked b), or only forespore binary fission (marked c). See ref. for further discussion. Phylogenetic tree was made using the Ribosomal Database Project website. References for the specific species are also marked in parentheses.
Distance(change/base-pair)

Bacilli

Polysporogenous
Monosporogenous

Clostridia

Clostridium perfringens

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium saccharolyticum

Clostridium sordellii [27 a]

Segmented filamentous bacterium [35 c]

Bacteroides disporicum [25 a]

Clostridium beijerincki [28 a]

Clostridium botulinum E [29 a]

Clostridium botulinum A

Clostridium persicinum

Clostridium clostridiosum

Clostridium vibrioforme

Clostridium perfringens

Clostridium botulinum [30,31 b]

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum E [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]

Clostridium putrefaciens

Anaerobacter polyendosporous [34 b]

Clostridium botulinum E [29 a]

Clostridium beijerincki [28 a]

Clostridium persicinum

Clostridium saccharolyticum [26 a]

Clostridium botulinum [29 a]

Clostridium botulinum A

Clostridium sporogenes [28 a]

Clostridium tetani

Clostridium botulinum [30,31 b]

Metabacterium polyspora [30,31 b]
Figure S11. The relation between over-replication and twin formation. (a) To visualize the chromosome, we used a tetO cassette inserted into the amyE locus (a proximal locus ~30° from the origin of replication). TetR-GFP, expressed under the control of the veg promoter, binds to the tetO cassette to form a bright localized GFP “dot”. (b) The distribution of chromosomal GFP dot number prior to formation of the first septum (as determined from FM4-64 staining in a time-lapse movie). Shown are the distributions of TetR-GFP dots in an otherwise wild-type (green) and ΔyabA (red) strains. Sporulation was assayed by FM4-64 stain showing asymmetric division (see methods). spo0J-GFP (blue) forms a GFP chromosomal dot by binding to its endogenous binding sites. Sporulation was assayed in this case by the activation of PspoIIQ-cfp in the forespore. In the ΔyabA strain, dot number is estimated from cells in which dots could be resolved; in ~70% of the cells no discernible dots were observed, possibly introducing a bias. (c-d) Addition of over-replication mutation to spoIIRdelay allows twin formation on the primary sporulation attempt. This is demonstrated in the filmstrips of two strains: spoIIRdelay combined with ΔyabA and a TetR-GFP chromosomal dot system (AES548) (c) and spoIIRdelay combined with spo0J-GFP (AES639) (d). In both cases, vegetative cells with 3 chromosomal dots prior to asymmetric division sporulate to form twins. (c) spoIIRdelay;ΔyabA mutant. Phase contrast image in gray, TetR-GFP shown in green (both dots and cytoplasmic/nucleoid background are stained). FM4-64 membrane staining (red) is shown at 120, 150, and 270 minutes to indicate asymmetric septation events and twin sporulation in a single mother-cell. FM4-64 staining was omitted from earlier and later time points for clarity. At later stages of sporulation Pveg stops expressing and the TetR-GFP degrades, preventing visualization of dots. (e) A sporulating colony of a spoIIRdelay;spo0J-GFP mutant. Twin sporulating cells are indicated by red arrowheads. Polyploid monospores are indicated with yellow arrowheads. (f) The sporulation success of polyploid mother-cell vs. monoploid (regular) mother-cell was estimated for the two population in a spo0J-GFP mutant, by measuring the fraction of cells that started sporulation and reached the phase bright spore stage. Monoploid success rate is 97% (n=60) while polyploidy success is 75% (n=94). (g) ΔyabA cells show environmental variation in twin formation. We find that in liquid cultures the mutant shows 3% twin:total spore ratio, while in time-lapse conditions virtually no twins were found.
Figure S12. Properties of the *spolIE*_{hypo} construct. (a) Sequence of the modified P_{spolIE} promoter, P_{IIElacO}. A lacO operator site was added to the promoter 2bp from the σ^A -10 site. Two restriction sites (AgeI and SalI) were introduced further downstream, as shown. A relatively short promoter was used to prevent the inclusion of two neighboring tRNA genes. Binding sites for Spo0A~P, σ^A, and LacI, as well as transcription and translation start sites, are indicated. (b) Structure of the vector used for integrating the *spolIE*_{hypo} mutation into the *amyE* site. The vector includes the P_{spolIElacI} promoter driving *spolIE* and *mCherry* in an operon. It also includes the *lacI* gene from *E. coli* and appropriate terminators (including *trp* and *rrnB* terminators that were inserted between the gene and *lacI*, not present in the original pDR111 vector). (c) Time traces of individual cells carrying the P_{spolIElacO} promoter at different concentrations of IPTG (color coded, see figure). Traces are very similar in shape (and in their temporal relation to other sporulation reporters, not shown) but differ in amplitude. Traces are aligned in time so that t=0 is set to the time that cells reach 20% of the average maximal level for the specific induction strength. (d) Promoter strength as a function of IPTG. Strength is calculated as the mean of maximum intensity of individual traces for a given IPTG levels (Error bars are the s.d. of the distribution). The traces are well-fit by a Michaelis-Menten curve with affinity K=34µM, similar to that of P_{spolIRlacO} and comparable to the known IPTG binding affinity to free LacI. (e) Images of a *spolIE*_{hypo} mutant carrying a P_{spolIQ-yfp} reporter at two concentrations of IPTG (30µM and 1mM), where sporulation efficiency is close to 100% when signaling is not blocked (not shown). When a signaling null mutation (∆*spolIR*) is added, a much higher rate of escape (where the mother-cells grow but do not asymmetrically re-septate) is found in the lower IPTG (≈70% of cells), compared to the higher IPTG (≈25% cells). Examples of escaping (red arrowheads) and abortively disporic (yellow arrowheads) cells are shown in the two images.
spoIE Hypo

Fluorescence (AU)

![Fluorescence Graph](image)

Time (minutes)

spo0A

20bp

5' - TAACAATCC...TTTTATTACGAAATCTTTTCTCATAACCGGA - 3'

5' - TATCAAGCAGAAACCCTCGTTGTTATTGTTACCTCTT - 3'

5' - TGGCAAAATCTCCTGTCGTATATGTTTGAGCGTTAACATTCCGGAAATTCTTTTCATAAACGAA - 3'

5' - TATCAAGGCAGAAACCGTCGAAGATTTCTTTGGTATTGTTACCTTCTT - 3'

5' - CAACGAATATAAACCGGTGACCGAGGATGGGAGATGAGAGGAATGGAA - 3'

spo0A

spo0A

spo0A

5' - TTGACAAAATCCTATCTGTGCTTTCGCTATAATGAATTGTGAGCGGATAACAATTACAGG - 3'

5' - CAACGAATATAAACCGGTGACCGAGGATGGGAGATGAGAGGAATGGAA - 3'

IPTG levels (µM)

![IPTG Graph](image)

30µM IPTG

70% Escape

1mM IPTG

25% Escape

salI

SpoIIE RBS

SpoIIE ORF

e

![Images](image)
Figure S13. Analysis of DNA content in monosporic C. oceanicum cells. Sporulating cells from a liquid culture were placed on an agarose pad with membrane marker (FM4-64, 2µg/ml) and DNA marker (Vybrant DyeCycle green, 50nM) and imaged. Cells which met the following conditions were analyzed for mother-cell length and DNA content: (1) Only a single forespore by membrane staining, (2) Engulfment process had begun, and (3) The forespore showed marked DNA stain, indicating that DNA translocation was completed on nearly so. (a) A two dimensional plot of total mother-cell DNA fluorescence vs mother-cell’s length. A small subpopulation (~10%) of cells are both longer and have higher total fluorescence (right of dashed line). (b) Cells were grouped into two groups with lengths shorter or longer than 5µm (dashed line in (a)). Mean fluorescence of the shorter cells was about half that of the longer cells, consistent with the possibility that the long cells are polyploid.
Movie 1. Partial penetrance of spolIR^{PP} strains. Shown is a spolIR^{delay} microcolony growing and sporulating (strain AES528). Cells are marked by a forespore specific σ^F reporter (green) and mother-cell specific σ^E reporter (red). Arrows indicate cells according to the following color code: Orange – sporulation, yellow – dispore, magenta – escape, green – twin. Individual frames are 20 min apart.

Movies 2. *C. oceanicum* sporulation – Shown are three channels of a time-lapse movie of a sporulating *C. oceanicum* colony; Phase contrast (left), DNA marker (Vybrant DyeCycle Green, middle) and membrane marker (FM4-64, right). Individual frames are 10 min apart. See Methods for more details on *C. oceanicum* time-lapse procedures.
1. Middleton, R. & Hofmeister, A. New shuttle vectors for ectopic insertion of genes into Bacillus subtilis. *Plasmid* 51, 238-45 (2004).

2. Garsin, D.A., Paskowitz, D.M., Duncan, L. & Losick, R. Evidence for common sites of contact between the antisigma factor SpoIIAB and its partners SpoIIAA and the developmental transcription factor sigmaF in Bacillus subtilis. *J Mol Biol* 284, 557-68 (1998).

3. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M. & Elowitz, M.B. An excitable gene regulatory circuit induces transient cellular differentiation. *Nature* 440, 545-50 (2006).

4. Lemon, K.P. & Grossman, A.D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. *Science* 282, 1516-9 (1998).

5. Steinmetz, M. & Richter, R. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. *Gene* 142, 79-83 (1994).

6. Chary, V.K., Amaya, E.I. & Piggot, P.J. Neomycin- and spectinomycin-resistance replacement vectors for Bacillus subtilis. *FEMS Microbiol Lett* 153, 135-9 (1997).

7. Youngman, P., Perkins, J.B. & Losick, R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. *Plasmid* 12, 1-9 (1984).

8. Doan, T., Marquis, K.A. & Rudner, D.Z. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. *Mol Microbiol* 55, 1767-81 (2005).

9. Dworkin, J. & Losick, R. Does RNA polymerase help drive chromosome segregation in bacteria? *Proc Natl Acad Sci U S A* 99, 14089-94 (2002).

10. Noirot-Gros, M.F. et al. An expanded view of bacterial DNA replication. *Proc Natl Acad Sci U S A* 99, 8342-7 (2002).

11. Noirot-Gros, M.F. et al. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. *Proc Natl Acad Sci U S A* 103, 2368-73 (2006).

12. Dworkin, J. Transient genetic asymmetry and cell fate in a bacterium. *Trends Genet* 19, 107-12 (2003).

13. Zupancic, M.L., Tran, H. & Hofmeister, A.E. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. *Mol Microbiol* 39, 1471-81 (2001).

14. Lin, D.C., Levin, P.A & Grossman, A.D. Bipolar localization of a chromosome partition protein in Bacillus subtilis. *Proc Natl Acad Sci U S A* 94, 4721-6 (1997).

15. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. *PLoS Biol* 2, e328 (2004).

16. Fujita, M. & Losick, R. An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. *Mol Microbiol* 43, 27-38 (2002).
17. Karow, M.L., Glaser, P. & Piggot, P.J. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 92, 2012-6 (1995).
18. Juan Wu, L. & Errington, J. Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. J Bacteriol 182, 418-24 (2000).
19. Wang, S.T. et al. The Forespore Line of Gene Expression in Bacillus subtilis. Journal of Molecular Biology 358, 16-37 (2006).
20. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64-68 (2002).
21. Hilbert, D.W. & Piggot, P.J. Compartamentalization of Gene Expression during Bacillus subtilis Spore Formation. Microbiol. Mol. Biol. Rev. 68, 234-262 (2004).
22. Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J.B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181, 197-203 (1999).
23. Battistuzzi, F.U., Feijao, A. & Hedges, S.B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4, 44 (2004).
24. Paredes, C.J., Alsaker, K.V. & Papoutsakis, E.T. A comparative genomic view of clostridial sporulation and physiology. Nature Reviews Microbiology 3, 969-978 (2005).
25. Horn, N. Clostridium disporicum sp. nov., a Saccharolytic Species Able to Form Two Spores per Cell, Isolated from a Rat Cecum. Int J Syst Bacteriol 37, 398-401 (1987).
26. Keis, S., Shaheen, R. & Jones, D.T. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerincki, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51, 2095-103 (2001).
27. Oren, A. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Archives of Microbiology 136, 42-48 (1983).
28. Santo, L.M., Hohl, H.R. & Frank, H.A. Ultrastructure of putrefactive anaerobe 3679h during sporulation. J Bacteriol 99, 824-33 (1969).
29. Smith, L.D. Clostridium oceanicum, sp. n., a sporeforming anaerobe isolated from marine sediments. J Bacteriol 131, 811-3 (1970).
30. Angert, E.R., Brooks, A.E. & Pace, N.R. Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178, 1451-6 (1996).
31. Angert, E.R. & Losick, R.M. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci U S A 95, 10218-23 (1998).
32. Angert, E.R. & Clements, K.D. Initiation of intracellular offspring in Epulopiscium. Mol Microbiol 51, 827-35 (2004).
33. Angert, E.R., Clements, K.D. & Pace, N.R. The largest bacterium. Nature 362, 239-41 (1993).
34. Duda, V.I., Lebedinsky, A.V., Mushegjan, M.S. & Mitjushina, L.L. A new anaerobic bacterium, forming up to five endospores per cell —Anaerobacter polyendosporus gen. et spec. nov. Archives of Microbiology 148, 121-127 (1987).
35. Chase, D.G. & Erlandsen, S.L. Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. *J. Bacteriol.* **127**, 572-583 (1976).

36. Angert, E.R. Alternatives to binary fission in bacteria. *Nat Rev Microbiol* **3**, 214-24 (2005).

37. Cole, J.R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. *Nucl. Acids Res.* **37**, D141-145 (2009).