Interplay between Inflammaging, Frailty and Nutrition in Covid-19: Preventive and Adjuvant Treatment Perspectives

A. Padilha de Lima1,2, M. Macedo Rogero3, T. Araujo Viel4, H.M. Garay-Malpartida4, I. Aprahamian5, S.M. Lima Ribeiro3,4

1. School of Medicine, University of São Paulo, São Paulo, SP, Brazil; 2. School of Physical Education, Faculty IELUSC, Joinville, SC, Brazil; 3. Public Health School, University of São Paulo, SP, Brazil; 4. School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil; 5. Department of Internal Medicine and Division of Geriatrics, Jundiaí Medical School, Jundiaí, SP, Brazil.

Corresponding Author: Sandra Maria Lima Ribeiro, University of São Paulo- Public Health School, Av Dr. Arnaldo 715, Sao Paulo- SP- Brazil, e-mail: smlribeiro@usp.br

Abstract

As humans age, their immune system undergoes modifications, including a low-grade inflammatory status called inflammaging. These changes are associated with a loss of physical and immune resilience, amplifying the risk of being malnourished and frail. Under the COVID-19 scenario, inflammaging increases the susceptibility to poor prognostics. We aimed to bring the current concepts of inflammaging and its relationship with frailty and COVID-19 prognostic; highlight the importance of evaluating the nutritional risk together with frailty aiming to monitor older adults in COVID-19 scenario; explore some compounds with potential to modulate inflammaging in perspective to manage the COVID-19 infection. Substances such as probiotics and senolytics can help reduce the high inflammatory status. Also, the periodic evaluation of nutrition risk and frailty will allow interventions, assuring the appropriate care.

Key words: COVID-19, inflammaging, nutritional risk, diet, probiotics, senolytics.

Introduction

Coronavirus disease-19 (COVID-19), caused by Coronavirus 2 (SARS-CoV-2), has infected 219,893,295 persons worldwide by September 2nd, 2021, leading to 4,555,500 deaths (https://www.worldometers.info/coronavirus). The most remarkable difference between the SARS-CoV-2 and other SARS strains previously identified is its greater transmissibility and higher morbidity and mortality (1).

Despite the high transmissibility, most infected individuals remain asymptomatic (2) or present mild symptoms; a minor percentage present severe or critical manifestations (2, 3). The patient’s global health status worsens in severe and critical manifestations. A dysfunctional systemic immune response occurs; this condition is frequently associated with a cytokine storm induced by SARS-CoV-2 (4). In addition, after hospital discharge, about 10% of the patients cannot return to the general health status they had before hospital admission or develop new clinical manifestations (5). These late manifestations have been called post-COVID-19 syndrome, and patients may present neurological, cardiovascular, and musculoskeletal disorders, burdening the functional status (6, 7). Several risk factors were implicated with the higher morbidity and mortality associated with COVID-19, such as higher age, obesity, diabetes, hypertension, coagulation dysfunctions, and inflammation disorders; organ damage involving the heart, liver, and kidneys are more associated with death (8).

The systemic inflammatory picture is a fundamental contributor to most adverse outcomes in COVID-19 (4). In this context, older adults, especially those with comorbidities and above 85 years old, generally present a higher peak of viral load and mortality than younger ones. Besides, the response to vaccination is usually reduced in older adults (9, 10). Aging and inflammation are intimately connected. Besides a higher burden of comorbidities, older adults present a typical picture of low-grade systemic inflammation (LGSI). This condition, also called inflammaging (11), seems to constitute an immune system dysregulation, possibly due to a loss of resilience to different stressors throughout life (11). Inflammaging has been considered an explanation to various geriatric syndromes, including frailty. Frailty, in turn, is conceived as a biological syndrome characterized by a decrease in the physiological reserve to respond to stressors due to the progressive failure of multiple organ systems necessary to maintain homeostasis (12). Notably, the brain, the endocrine and the immune systems, and the nutritional status are critical components involved in this process, culminating in disability and mortality (13).

Taking into account the simultaneous conditions of COVID-19 infection, inflammaging, and frailty, we aimed to: (i) bring the current concepts of inflammaging and its relationship with frailty and COVID-19 prognostic; (ii) highlight the importance of evaluating the nutritional risk together with frailty aiming to follow older adults in COVID-19 scenario, and; (iii) explore some compounds with potential to modulate inflammaging in perspective to manage the COVID-19 infection.

Inflammaging and frailty as risk factors to adverse outcomes

During the life span, the human being must deal with different stressors such as environmental (i.e., radiation, air...
pollution), biologics (i.e., microorganisms), or psychological. The coexistence with these stressors demands adaptation, remodeling, or regeneration capacity. It should involve bodily responses such as antioxidants, apoptosis, phagocytosis, as well as inflammatory, neuroendocrine, and behavioral mechanisms (11).

Therefore, in the life course towards aging, damages accumulate, culminating in loss of resilience. This statement is coherent with the vicious frailty cycle proposed by Fried & Watson (13), where the immune system assumes an important role (14, 15). Antigenic stimulus throughout life can lead to an imbalance in the immune system and consequent low-grade systemic inflammation (inflammaging), which have been associated with many age-related conditions and diseases (11), including frailty.

Different models have been adopted to conceptualize frailty (12, 16). Despite their differences, all the models are associated with adverse outcomes such as disability, falls, hospitalization, and death (12). These concepts align with the modern geroscience theory of aging underpinned by mechanisms that stand out the LGSI and immune dysfunction (17). Therefore, frailty can be seen as a clinical measure of the degree of accelerated aging and inflammaging as a downstream pathway of this process.

Contributors to inflammaging: cell senescence and molecular damage patterns

Besides inflammaging, aging is featured by many other biological processes, for instance, cellular senescence. Cell senescence is characterized by a permanent growth-arrested stage; senescent cells are featured by resistance to apoptosis (18) and increased metabolic activity (19). Some hallmarks of senescent cells have been identified, including different factors of tissue damage, altered stem and progenitor cells, hemostasis, altered growth factors, and increased secretion of inflammatory cytokines and chemokines (i.e., IL-6, IL-8, monocyte chemoattractant protein-1, and plasminogen-activated inhibitor-1). Along with these hallmarks, the cells acquire the so-called senescence-associated secretory phenotype (SASP), typically with inflammatory features (20).

Another characteristic of the aging phenotype is the reduced capacity of cell machinery to recognize, metabolize or eliminate damage patterns derived from oxidative stress, inflammation, autophagy, and aged stem cells (21). These patterns can be apoptotic cells, antigenic molecules and organelles, metabolites, cell debris, and reactive species (22). These patterns, defined as damage-associated molecular patterns (DAMPs), are recognized by immune cells, resulting in activation of inflamasomes (18) and consequent secretion of cytokines (i.e., IL-1α, IL-1β, IL-6, IL-8, and IL-18) (23, 24). Franceschi et al. (24) named these DAMPs as self-damage signals. Therefore, cell senescence and DAMPs generation are interrelated (25, 26).

Contributors to inflammaging: the gut

The gut microbiota has a crucial role in inflammaging. It can release inflammatory products, which Franceschi et al. (24) named quasi-self-damage signals. Many aging-related factors can modify the gut microbiota, favoring the growth of pathogenic bacteria (i.e., Fusobacteria, Clostridia, Eubacteria) (27) and the reduction of some beneficial bacteria (i.e., Firmicutes, Bacteroides, and Bifidobacterium). These beneficial bacteria are featured by the ability to ferment polysaccharides and originate short-chain fatty acids (SCFA) (28, 29). The SCFAs, besides several metabolic functions, have fundamental immunological roles: (i) are the primary energy substrate to gut epithelial cells (29); (ii) regulate the secretion of cytokines and chemokines and are capable of inhibiting some inflammatory pathways (i.e., NF-κB and TNF-α expression); (iii) can improve the antigens presentation and differentiation of naïve CD4+ T cells into Tregs (30-33); (iv) help neutrophils chemotaxis and regulate the production of reactive oxygen species (ROS) by these cells (34, 35); and (v) in B cells, stimulate antibody production (36). Because of all these factors, bacterial unbalance and the reduced production of SCFA are associated with abnormal activation of the gut-associated lymphoid tissue (GALT), modifying the tolerance pattern of the immune cells (37, 38).

Changes in the gut environment harm its barrier function, allowing the passage of bacterial fragments (i.e., lipopolysaccharide-LPS) to the blood flow (39, 40). These fragments bind to specific pattern-recognizing receptors (PRRs), mainly the toll-like receptor-4 (TLR-4); these bindings trigger inflammatory signaling cascades that ultimately stimulate innate immune responses with a generation of pro-inflammatory cytokines, chemokines, eicosanoids, and ROS (41, 42). It is essential to highlight that the production of inflammatory cytokines constitutes a feedback cycle since these molecules stimulate the activity of TLRs (41). This inflammatory picture is named metabolic endotoxemia (43) and brings local and systemic consequences. For instance, it impairs endothelial cell function and contributes to atherosclerosis (44, 45); it leads to hepatic steatosis and insulin resistance (46); in the pancreas, it favors the β cell dysfunction (47); in skeletal muscle, it increases the risk of sarcopenia (45, 48, 49); and in the brain, it increases the neuroinflammation (50).

Contributors to inflammaging: adipose tissue and dietary fat

The aging-related increase and redistribution of body fat stand out in visceral white adipose tissue (44). The high-fat content in this tissue allows the infiltration of M1 macrophages and T lymphocytes. These immune cells, and the adipocytes themselves, release cytokines and chemokines (i.e., MCP-1, IL-1β, IL-6, and TNF-α), which sets an inflammatory profile (51, 52). In addition to these processes, the existing adipose tissue vasculature does not support the tissue’s expansion, reducing the entry of oxygen and activating the hypoxia-inducible factor-1 (HIF-1) that targets inflammatory genes.
Immunosenescence and inflammaging

Immunosenescence is a state of functional decline of the immune system, involves both the adaptive and innate immune arms, and is related to aged bone marrow and thymus involution (55, 56). Some features of immunosenescence will be briefly described. In the innate arm, the neutrophils show reduced chemotaxis, phagocytic activity, and intracellular killing of the pathogens. These cells also present defective ROS production (57, 58). The macrophages become hyperreactive due to inflammatory cytokines in blood flow. Dendritic cells are reduced (59), and these cells diminish phagocytosis and cytokines synthesis (60, 61). The natural killer cells (NK) have their number reduced, and the existing ones proliferate less (62), with reduced cytotoxicity and cytokine/chemokine synthesis. These changes result in a weakened response to pathogens.

There is a decline in lymphopoiesis and consequent reduced differentiation and proliferation of T- and B-cells concerning adaptive immunity. The B-cells, precursor, and their antibody-producing plasma cells decrease in number (63). Consequently, the “immunological space” is filled with memory cells with low receptor diversity; there is also a reduction in the T-cell diversity because the class-switching is reduced or impaired. Hence, there is a shrinking of the naive CD4+ T-cells, altering the CD4+/CD8+ ratio. These processes lead to difficulties in dealing with new antigens and weakened responses to vaccination (64).

An intriguing aspect of immunosenescence is the increased production of regulatory subtypes of myeloid and lymphoid cells. Typically, these cells inhibit the function of other immune cells induced by pathological and inflammatory conditions. Therefore, they are fundamental to the resolution of acute inflammation. However, in chronic inflammation and inflammaging, regulatory cells are induced in a compensatory immunosuppressor network involving diverse subgroups of regulatory cells. This regulatory phenotype leads some authors to define immunosenescence as different from the typical cell senescence, being a compensatory remodeling to inflammaging (65, 66).

Covid-19 pathology and its relationship with frailty and inflammaging

The SARS-CoV-2 virus enters the body via nasal cells, and its main targets are the alveolar epithelial type II cells. Initially, the viral spike “S” protein binds the angiotensin-converting enzyme-2 (ACE-2) receptor. Afterward, the host’s type 2 transmembrane serine protease (TMPRSS2) cleaves the ACE-2 and activates the “S” protein, promoting viral uptake and endocytosis. The virus releases its RNA and replicates using the host’s machinery from its entry into other cells. From this point, the host generates new viruses, allowing the infection to progress.

Depending on the host’s immune resilience, the virus reaches the lung, triggering a local immune response. The delayed-type I interferon increases the virus’ sensing; the alveolar epithelial cells release monocyte chemoattractant, increasing, therefore, the monocytes and neutrophils into the lungs and promoting an exacerbated release of pro-inflammatory cytokines, chemokines, and growth factors. Systemic inflammation leads to vasodilation, contributing to the infiltration of monocytes and lymphocytes in the heart and lung. These responses decrease the interferon levels, raise neutrophil extracellular traps, and increase pyroptosis. The pyroptosis, in turn, increases the activity of NOD-like receptor protein-3 inflammasome (NLRP3), which releases several cytokines and chemokines, featuring the cytokine storm (i.e., IL-1β, IL-2, IL-2R, IL-6, IL-7, IL-8 IL-10, IP10, MIP1A, and TNF-α) (2, 67, 68). The cytokine storm can cause a leak of nuclear or mitochondrial DNA (mtDNA), which is recognized by PRRs, especially in macrophages (69), increasing the inflammatory status. The occurrence of lung edema can fill the alveolar space, leading to the early-phase acute respiratory distress syndrome. This syndrome reduces the oxygen uptake, causing diffusing intravascular coagulation and thrombotic complications increasing the risk of sepsis and multiorgan failure and deaths.

Therefore, the SARS-CoV-2 infection demands a responsive and resilient immune system. In this scenario, it becomes clear that inflammaging and immunosenescence increase the vulnerability to poor prognostic (70, 71). The risk is increased in older adults with chronic diseases because they favor mechanisms by which the SARS-CoV-2 escapes the immune surveillance. Older adults deserve special attention at the COVID-19 pandemic. However, age and multimorbidity cannot be the only measures for severity or prognosis. The inflammaging increases the susceptibility to infection, augment the possibility of aggravating, and enhance the difficulty of recovering after the COVID-19 disease; thus, a permanent screening of indicators of physical resilience is crucial. In this perspective, frailty and nutrition must be considered.

During the COVID-19 pandemic, frailty, a clinical expression of vulnerability to immune dysfunction, is an
These three conditions have in common an inflammatory profile overlapping between frailty, sarcopenia, and malnutrition; reduced muscle mass. Cederholm (173) highlighted the existing diseases, reduced food intake, reduced physical activity, and components of the vicious cycle of frailty. These include NR, rates in older adults infected by COVID-19 (85, 86). Dysfunction, can favor the NR. It is associated with high fatality (84). Also, comorbidities, such as diabetes-related hormonal 19 status, the higher prevalence of NR or undernutrition worsening COVID-19; therefore, the more severe the COVID-19 showed higher NR scores, significantly associated with evaluating their nutritional risk (NR). The critically ill patients with COVID-19 (346 severe and 67 critically ill), ageusia. A study conducted in Wuhan, China, including 413 requirements is challenging due to anorexia, anosmia, and, consequently, nutrition requirements. Achieving these parameters to help the dietary planning; (vi) discussing predictive outcome to clinical decisions; (iv) monitoring frailty together with symptoms and outcomes in post-COVID; (v) using frailty evaluation to plan physical exercises, to prevent or counteract the muscle losses, and to investigate some metabolic possibilities to counteract the immunosenescence. Going beyond and following Cederholm (173), we would reinforce the importance of simultaneously evaluating frailty and nutritional risk. Rapid screening tools can improve the assessment process. Also, assessing dietary intake and associated factors (for instance, loss of appetite) would help plan interventions.

Nutritional and functional status

The aging process raises the risk of malnutrition, which can rapidly increase and aggravate the management of severe respiratory infections. Respiratory burden means a hypermetabolic condition, which increases energy expenditure and, consequently, nutrition requirements. Achieving these requirements is challenging due to anorexia, anosmia, and ageusia. A study conducted in Wuhan, China, including 413 patients with COVID-19 (346 severe and 67 critically ill), evaluated their nutritional risk (NR). The critically ill patients showed higher NR scores, significantly associated with worsening COVID-19; therefore, the more severe the COVID-19 status, the higher prevalence of NR or undernutrition (84). Also, comorbidities, such as diabetes-related hormonal dysfunction, can favor the NR. It is associated with high fatality rates in older adults infected by COVID-19 (85, 86).

A lower metabolic rate and higher NR are essential components of the vicious cycle of frailty. These include NR, diseases, reduced food intake, reduced physical activity, and reduced muscle mass. Cederholm (173) highlighted the existing overlapping between frailty, sarcopenia, and malnutrition; these three conditions have in common an inflammatory profile (acute or chronic) and nutrition deficiencies. The presence of diseases can aggravate these conditions, increasing the risk of disabilities and even death. Importantly, these conditions are reversible if appropriately identified and treated. Older adults, being more prone to develop severe cases of COVID-19, should be evaluated for these conditions. Low-cost and practical strategies must be thought out and implemented before, during, and at the recovery of COVID-19 disease.

Maltese et al. (2020), in a systematic review, highlighted some important aspects to be accounted for the management of older adults in the COVID-19 scenario: (i) monitoring older adults in home isolation; (ii) including frailty in the analysis of vaccination responses; (iii) using frailty, instead of age, as a predictive outcome to clinical decisions; (iv) monitoring frailty together with symptoms and outcomes in post-COVID; (v) using frailty evaluation to plan physical exercises, to prevent or counteract the muscle losses, and to investigate some metabolic parameters to help the dietary planning; (vi) discussing possibilities to counteract the immunosenescence. Going beyond and following Cederholm (173), we would reinforce the importance of simultaneously evaluating frailty and nutritional risk. Rapid screening tools can improve the assessment process. Also, assessing dietary intake and associated factors (for instance, loss of appetite) would help plan interventions.

Nutrients and non-nutrients compounds

In the perspective of attenuating some manifestations of inflamming and frailty, it is essential to recognize some modifiable factors to interfere with immune modulator strategies. In the present review, we will explore, as modifiable factors, the gut (considering probiotics administration) and the cell senescence (considering senolytics substances administration).

The gut as a target: administration of probiotics

SARS-CoV-2 directly or indirectly affects the gut microbiota, especially in older adults, causing symptoms similar to intestinal inflammation (i.e., nausea, diarrhea, loss of appetite, and abdominal pain) (6, 87, 88). Also, gut-derived toxins can affect the lungs, aggravating respiratory syndrome (89). There is evidence that changes in the intestinal microbiota regulate viral infection through several mechanisms (90-92). For instance, it has been mentioned that possibly, the hypoxemia observed in the course of the disease can lead to a decrease in some genera of probiotic bacteria (Bifidobacterium, Lactobacillus, and Eubacterium) and an increase in other pathogenic bacteria (93). The over-administration of antibiotics in the COVID-19 treatment protocols is also a relevant factor affecting the intestinal microbiota. Gastrointestinal (GI) disturbances with changes in microbiota affect up to 50% of the COVID-19 patients and 17.6% of the severe cases (94, 95). Zuo et al. compared COVID-19 infected and non-infected patients’ microbiota, finding increased opportunistic bacteria (Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, and Morganella morganii) in the infected ones (96).
Besides, Gu et al. investigated bacterial groups modified with SARS-CoV-2 infection and identified a reduction in genders related to SCFA production (Faecalibacterium, Fusibacterium, and Eubacterium hallii) (95).

Li et al. formulated their hypothesis under the statement that patients with hypertension have an increased risk for COVID-19 and a high percentage of GI symptoms (97). They studied spontaneously hypertensive rats, who typically presented higher expression of ACE-2 and TMPRSS2 in the gut epithelium, and depleted SCFA producers’ bacteria. The results showed that butyrate downregulates some essential genes for SARS-CoV2 infection. At the same time, SCFA upregulated some antiviral pathways. The authors concluded that the increased COVID-19 risk in hypertension is partly due to the gut’s cumulative depletion of butyrate-producing bacteria.

Additionally, Pascoal et al. infected healthy colon epithelial cells with the SARS-CoV-2. They found that the treatment with SCFAs reduced the expression of genes related to the detection and replication of viral molecules (i.e., RIG1, TMPRSS2, and the IFNλ, receptor). However, they did not find any difference in the viral load with SCFA treatment.

Several studies have explored the possibility of using probiotics in SARS-CoV-2 infection. A report published in February 2020 suggested using probiotics added to the usual treatment (98) to control the severity of the disease. Baude et al. recommended that some species of Lactobacillus, Bifidobacterium, and Pediococcus are essential for reducing the viral load (99). Other studies performed in China showed that some patients with COVID-19 exhibited intestinal microbial dysbiosis characterized by reduced genders such as Bifidobacterium and Lactobacillus, suggesting supplementation with pre- or probiotics to return to eubiosis, decreasing the risk of infection (100).

As with other infectious respiratory diseases, the probiotic regulatory role in COVID-19 depends on the strain’s specificity and the health condition of the host immune system. The SARS-CoV-2 induces an acute inflammatory bowel response via ACE2 and TMPRSS2, characterized by infiltration of the mucosa of macrophages, neutrophils, and T cells (101). Due to this, it has been hypothesized that probiotics may have a beneficial role in patients with gastrointestinal symptoms and those with mild to moderate systemic symptoms without respiratory impairment and help to prevent disease progression. The National Health Commission of China suggested using probiotics as a complementary treatment for gastrointestinal symptoms, such as diarrhea and reducing the risk of secondary infections due to microbial translocation in severe cases of COVID-19 (98). These suggestions represent a complementary tool to decrease the inflammation related to SARS-CoV-2 and favor the recovery of damages to the intestinal mucosa through the modulation of the intestinal microbiota.

From the information above, we can infer some mechanisms related to probiotics in COVID-19: (i) direct interaction with the virus; (ii) stimulation of the innate mucosal immune response; (iii) reduction of intestinal permeability; (iv) production of antiviral metabolites; and (v) promotion of the systemic acquired immune response through a regulatory and anti-inflammatory effect, especially during the cytokine storm (102, 103).

On the other hand, some caution is necessary since the administration of microorganisms to patients with critical illnesses can lead to any injury, such as exacerbating inflammation. For this reason, in patients with severe disease and critically ill patients, the administration of probiotics should be evaluated, and essential safety issues should be considered (104). In contrast, the increase in innate defenses can probably help prevent COVID-19 in the initial stage of infection, especially in older adults. Therefore, a prophylactic administration of probiotics could be justified by their ability to maintain the integrity of the GALT and bacterial eubiosis, necessary to inhibit the entry of the virus into intestinal cells (89). Until vaccines are massively administered, improving the intestinal microbiota profile through personalized nutritional supplementation may be one of the prophylactic ways in which the impact of COVID-19 can be minimized in immunocompromised older adults. However, robust clinical trials are needed to elucidate these hot topics and identify the most valuable and safe environment for the administration of probiotics. Several registered trials that aim to investigate the efficiency of probiotics in treating COVID-19 patients are ongoing (101).

Cell senescence as a target: Administration of polyphenols

The overproduction of pro-inflammatory cytokines can lead us to compare this cellular condition to a SASP profile. This hypothetical profile raises the possibility of administering senolytic substances. Senolytics are compounds that induce apoptosis of senescent cells, reducing chronic inflammation and oxidative stress; therefore, they potentially reduce the risk of chronic diseases, malnutrition, and frailty (25). Some nutrients or non-nutrient molecules, as well as synthetic or natural products, are considered senolytics. Recently, some groups proposed using senolytic substances as possible therapeutics for COVID-19 since senescent phenotype (SASP) is strongly related to increased respiratory depression in COVID-19 patients (105, 106).

Polyphenols are phytochemicals present in fruits, vegetables, and plant-derived beverages. They represent diverse compounds separated into classes according to their chemical structures, including phenolic acids, flavonoids, stilbenes, curcuminoids, and lignans (107).

Among the polyphenols, curcumin, a natural hydrophobic polyphenol derived from the rhizome of Curcuma longa, modulates several molecular targets, including NF-κB, and the expression of the induced genes by this transcription factor (i.e., COX-2, iNOS, VCAM-1, ICAM-1, TNF-α, IL-1, IL-6, IL-8, IL-12, and interferon-γ). Curcumin increases antioxidant defense mechanisms by upregulating transcription and expression levels of antioxidant enzymes and improving mitochondrial function (108-111). Studies in vitro showed that 5 μM curcumin presented senolytic properties with a reduction in some hallmarks of senescence (i.e., p16, IL-6, IL-8, MMP3, and MMP13) (112). However, curcumin has lower
bioavailability, which compromises its senolytic activity. A combination with piperine, alginates, or nanocapsules improves its stability and bioavailability (113).

Curcumin has been considered a perspective for treating COVID-19 based on its antiviral properties (114). For instance, in India, Pawar et al. (2021) conducted a double-blind, randomized controlled trial with symptomatic adult patients with COVID-19. They compared two groups, the first receiving a commercial probiotics-based compound (containing lactic acid Bacillus and Vitamin B), and the second receiving 525 mg curcumin with 2.5 mg piperine. Both treatments were given in similar capsules, twice a day for 14 days from the day of admission. The authors found many clinical improvements in patients in the curcumin group; however, there were no significant differences from the probiotics group (115). Also, Valizadeh et al. (2020) studied 40 COVID-19 patients divided into two groups, where the first (20 patients) received 160 mg of Nano-curcumin in four 40 mg capsules daily for 14 days, and the control group (20 patients) received a placebo. They investigated the mRNA expression and cytokine secretion levels of IL-1β, IL-6, TNF-α, and IL-18 (116). The nano-curcumin group presented improved results, especially in IL-1β and IL-6 mRNA expression and secretion.

Resveratrol (3,4,5-trihydroxy-stilbene) is a phytoalexin composed of two phenolic rings linked by a double bond. This compound exists in two isoforms: trans-resveratrol and cis-resveratrol, with trans-resveratrol being the most stable form, which is found in grapes, berries, red wine, peanuts, among other fruits and nuts. Resveratrol attenuates the expression of proinflammatory cytokines in cells stimulated with LPS. It reduces the activation of the transcription factors NF-κB and AP-1. Additionally, resveratrol potentiated insulin on glucose uptake via AMPK in skeletal muscle cells (117-119). Timmers et al. (2011) verified that resveratrol supplementation (150 mg/day) activated AMPK, increased SIRT1 and PGC-1α protein levels, and improved mitochondrial muscle respiration on the fatty acid-derived substrate in the muscle of healthy, obese men (120). Besides, resveratrol reduced systolic blood pressure and the HOMA index.

In conditions caused by virus infections other than COVID-19, resveratrol decreased symptoms of the common cold in children (121) and reduced TNF-alpha levels and diarrhea due to rotavirus in piglets (122). Once the potential of resveratrol to inhibit the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) replication was described (123), the use of this compound as an adjunctive treatment of COVID-9 was suggested as a possible perspective. Pasquereau et al. found reduced viral titer by 80% with resveratrol in another member of the coronavirus family, the (HCoV)-229E (124). In another in vitro study, Yang et al. verified the effects of resveratrol on SARS-CoV-2 replication in Vero cell culture. Resveratrol was incubated with Vero cells before and or after their infection with SARS-CoV-2 (125). The inhibitory rate in cells treated with resveratrol after SARS-CoV-2 infection was excessive at 98%, similar to the full-time treatment (pre and after treatment together). These two preliminary studies suggest that resveratrol can inhibit SARS-CoV-2 infection in the in vitro cell culture. However, to resveratrol’s role in treating Covid-19, double-blinded clinical trials should be considered in futures studies.

The importance of preventive strategies in aging

As demonstrated above, The SARS-CoV-2 is a virus with high transmissibility. Most infected individuals remain asymptomatic or present mild symptoms. However, specific population groups, including older adults, are more vulnerable to developing severe or critical manifestations of COVID-19. In the present manuscript, we demonstrated that inflammaging and frailty are important contributors to this increased vulnerability. Therefore, in a pandemic environment, lifestyle-based preventive strategies should be highlighted.

In this context, the anti-inflammatory potential of diet has been extensively studied, especially from the Mediterranean dietary pattern (MDP). Traditionally, the MDP is high in vegetables, legumes, fruits, nuts, and cereals (mainly unrefined); moderate to high in fish and olive oil; moderate in fermented dairy products, especially cheese and yogurt; low in red meat and derivatives; moderate in alcohol, particularly in the form of wine, with meals. This food pattern is also high in monounsaturated/saturated fatty acids, fiber, and different phytochemicals (126). Furthermore, the MDP includes fresh, locally produced, and not modified or minimal modifications from their natural state (127). As discussed throughout this manuscript, all these components play essential roles in modulating systemic inflammation, oxidative stress, and apoptosis (128).

It is interesting to analyze that the most recent studies on MDP have shown a view beyond simple food intake. New proposals have included environmental aspects and physical activity as an essential preventive and healthy lifestyle. It is known that decreased physical activity has a detrimental role in muscle quality, and inappropriate nutritional habits favor the acceleration of immunosenescence and inflammaging (129).

Physical activity can alter the systemic inflammation of older adults regardless of their level of intensity, reducing blood fibrinogen and C-reactive protein levels. It should be noted that all significant influences on fibrinogen and C-reactive protein by displacement of different physical activity behaviors remained after adjustment for metabolic risk status among participants.

Physical inactivity has shown a strong association with an increased risk for severe COVID-19 outcomes. Sallis et al. carried out a cohort study with 48,440 adults showing that patients with COVID-19 who were consistently inactive had a greater chance of hospitalization, admission to the intensive care unit, and death than those who met the physical activity guidelines (130). A recently published international guideline on physical activity and exercise for older adults aims to facilitate the prescription of exercise by non-specialists according to several diseases or geriatric syndromes (131).

In Figure 1, we constructed a framework putting together inflammaging with associated factors and outcomes, together with the possibilities of preventing or assisting the treatment with nutrition.
Figure 1. The interplay between malnutrition and chronic inflammation leads to a state of physiological vulnerability typical of unhealthy aging. An older adult in this condition has a greater susceptibility of COVID-19 aggravation after contact with Sars-Cov-2. Strategies such as diet and physical activity may prevent physiological vulnerability and are postulated to fight off COVID-19 aggravation. Also, those strategies can be explored to promote healthy aging and improve the management of diseases, increasing the probability of recovery with less severe sequelae.

Conclusion

The inflammaging can trigger conditions such as malnutrition and frailty and, consequently, increase the vulnerability to COVID-19 aggravation. It is mandatory to monitor older adults concerning nutrition, functional status, and frailty. These evaluations will allow interventions, assuring the appropriate care. We highlighted the possibility of interventions with substances directed to control the inflammatory status via the gut or cell senescence.

Funding statement: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest: The authors declare no conflicts of interest.

Authors’ contribution: SMLR planned the manuscript; APL, MMR, TAV, HMGM, and SMLR searched the literature, wrote the manuscript, and revised the final version; IA revised the final version and contributed with a clinical practice point of view.

References

1. Kumar A, Singh R, Kaur J, Pandey S, Sharma V, Thakur L et al. Wuhan to World: The COVID-19 Pandemic. Front Cell Infect Microbiol. 2021;11:596201. doi: 10.3389/fcimb.2021.596201.

2. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. doi: 10.1016/j.arr.2020.101205.

3. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell. 2020;182:1401-18.e18. doi: 10.1016/j.cell.2020.08.002.

4. García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441. doi: 10.3389/fimmu.2020.01441.

5. Carfi A, Bernabei R, Landi F, Group GAC-P-ACS. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603-5. doi: 10.1001/jama.2020.12603.

6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5.

7. Mao L, Lin H, Wang M, Hu Y, Chen S, He Q et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683-90. doi: 10.1001/jamaneurol.2020.1127.

8. Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021;49:15-28. doi: 10.1007/s15010-020-01509-1.

9. Wu Z, McGroogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/jama.2020.2648.

10. Vellas C, Delobel P, de Souto Barreto P, Iozpet J. COVID-19, Virology and Geroscience: A Perspective. J Nutr Health Aging. 2020;24:683-91. doi: 10.1007/s12603-020-1416-2.

11. Franceschi C, Bonafé M, Valensin S, Olivier F, De Luca M, Ottaviani E et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-54. doi: 10.1111/j.1749-6632.2000.tb06651.x.

12. Hooijendijk EO, Afifalo J, Ersrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. Lancet. 2019;394:1365-75. doi: 10.1016/S0140-6736(19)31786-6.

13. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottlieber J et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146-56. doi: 10.1093/gerona/56.3.m146.

14. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L et al. The immune system in extreme longevity. Exp Gerontol. 2008;43:61-5. doi: 10.1016/j.exger.2007.06.008.

15. Hazelde J, Lord JM. Innate immunosenescence: underlying mechanisms and clinical relevance. Biogerontology. 2015;16:187-201. doi: 10.1007/s10522-014-9514-3.

16. Dent E, Morley JE, Cruz-Jentoft AJ, Woodhouse L, Rodríguez-Mañas L, Fried LP et al. Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. J Nutr Health Aging. 2019;23:771-87. doi: 10.1007/s12603-019-1273-z.
INTERPLAY BETWEEN INFLAMMING, FRAILTY AND NUTRITION IN COVID-19:

17. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709-13. doi: 10.1016/j.cell.2014.10.039.

18. Salminen A, Kaariranta K, Kauppinen A. Inflamming: disturbed interplay between autophagy and inflammammasomes. Aging (Albany NY). 2012;4:166-75. doi: 10.1632/aging.100444.

19. Kirkland JL, Tchkonia T. Cellular Senescence: A Translational Perspective. EBioMedicine. 2017;21:21-8. doi: 10.1016/j.ebiom.2017.04.013.

20. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123:966-72. doi: 10.1172/JCI62098.

21. López-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:12-26. doi: 10.1016/j.cell.2013.05.039.

22. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017;7:1960. doi: 10.3389/fimmu.2017.01960.

23. Xia S, Zhang X, Zheng S, Khanabadi R, Kalionis B, Wu J et al. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J Immunol Res. 2016;2016:826874. doi: 10.1155/2016/826874.

24. Franceschi C, Gararrigan P, Parini P, Gianciulli C, Santoro A. Inflamming: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-90. doi: 10.1038/s41574-018-0014-y.

25. Kirkland JL, Tchkonia T, Zhu Y, Niederhofer LJ, Robbins PD. The Clinical Potential of Nutorcic Drugs. J Gerontol A Biol Sci Med Sci. 2019;74:2387-90. doi: 10.1161/jaha.119.107469.

26. Lavasani M, Robinson AR, Lu A, Song M, Feduska JM, Ahani B et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun. 2012;3:608. doi: 10.1038/ncomms1611.

27. Woodmansey EJ. Intestinal bacteria and ageing. J Appl Microbiol. 2007;103:1178-96. doi: 10.1111/j.1365-2672.2007.03400.x.

28. Hoj JM, Daneman N, Scott KP, Louis P. Links between diet, gut microbiota and gut metabolism. Proc Nutr Soc. 2015;74:13-22. doi: 10.1017/S0032040414001463.

29. Levy M, Blacher E, Elainy E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8-15. doi: 10.1016/j.mib.2016.10.003.

30. Park J, Kim M, Kang SG, Janusch AH, Cooper P, Patterson J et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Microbial Immunol. 2015;8:80-93. doi: 10.1016/j.micimm.2014.11.001.

31. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlodyš Y et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569-73. doi: 10.1126/science.1241165.

32. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061-9. doi: 10.1001/jama.2020.1855.

33. Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1384-92. doi: 10.1152/ajpgi.00540.2011.

34. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. doi: 10.1146/annurev.immunol.23.021304.145024.

35. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22:849-55. doi: 10.1016/j.jnutbio.2010.07.009.

36. Kim MK, Jeon JH, Kim SW, Moon JS, Cho NH, Han E et al. The Clinical Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu, South Korea. Diabetes & Metabolism Journal. 2020;44:602-+. doi: 10.4093/dmj.2020.0146.

37. Noda M, Tsuchiya K, Horiuchi Y, Kono H, Sato H, Kamada H et al. Moderate to severe COVID-19 pneumonia in 12 patients: a Retrospective review. J Med Virol. 2020;92:1422-39. doi: 10.1002/jmv.25992.

38. Izurieta HS, Graham DJ, Jiao Y, Hu M, Lu Y, Wu Y et al. Natural History of Coronavirus Disease 2019: Risk Factors for Hospitalizations and Deaths Among >26
CoV infection by resveratrol. BMC Infect Dis. 2017;17:144. doi: 10.1186/s12879-017-2253-8.

124. Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C et al. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses. 2021;13. doi: 10.3390/v13020354.

125. Yang M, Wei J, Huang T, Lei L, Shen C, Lai J et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res. 2021;35:1127-9. doi: 10.1002/ptr.6916.

126. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean Diet; a Literature Review. Nutrients. 2015;7:9139-53. doi: 10.3390/nu7115459.

127. Martínez-González M, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients. 2017;9. doi: 10.3390/nu9111226.

128. Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and Vascular Effect of the Mediterranean Diet. Int J Mol Sci. 2019;20. doi: 10.3390/ijms20194716.

129. Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients. 2020;12. doi: 10.3390/nu12030622.

130. Sallis R, Young DR, Tartof SY, Sallis JF, Sall J, Li Q et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br J Sports Med. 2021. doi: 10.1136/bjsports-2021-104080.

131. Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging. 2021;25:824-53. doi: 10.1007/s12603-021-1665-8.

How to cite this article: A. Padilha de Lima, M. Macedo Rogero, T. Araujo Viel, et al. Interplay between Inflammaging, Frailty and Nutrition in Covid-19: Preventive and Adjuvant Treatment Perspectives. J Nutr Health Aging. 2022;26(1):67-76, http://dx.doi.org/10.1007/s12603-021-1720-5