The pathophysiology of Peyronie’s disease

Erhan Ateş, Ahmet Gökçe

ÖZ

Peyronie’s disease (PD) is a progressive localized fibrotic disease of the penis. It is also considered as a wound healing disorder with fibrous and non-elastic scar formation and calcified plaque formation. Clinically, these plaques can cause deformities such as curvature, shortening and contraction of the penis and pain. Although the complete spectrum of etiologic factors for PD is unknown, multiple mechanisms have been proposed including trauma, impaired fibrin clearance, autoimmune and genetic factors. It is thought that delamination of bilaminar TA in the penis with repetitive microtrauma and subsequent inflammatory process may cause the development of the Peyronie plaques. The post-traumatic inflammatory process causes myofibroblast persistence and subsequent abnormal collagen accumulation. Accompanying abnormal fibrin accumulation and irregular form of elastic fibers, characteristic tunical fibrous plaque and scar formation occur and the inflammatory process is completed. Pathogenesis of PD has been tried to be demonstrated in animal models, cell cultures and clinical studies. A better understanding of the etiopathology of this disease is important for the development of treatment strategies.

Keywords: Peyronie’s disease, tunica albuginea, pathophysiology, fibrosis

GİRİŞ

Peyronie hastalığı (PH) penis üzerinde tunika albuginea’nın (TA) progresif lokalize fibrotik hastalığıdır. Fibröz, elastik olmayan skar formasyonu ve kalısal yapı plak oluşumu sonucu olan bu yara iyileşme bozukluğu olarak da kabul edilmektedir. Klinik olarak bu plaklar, penis egrilik, kısalma ve daralma gibi deformiteler ve ağrıya neden olabilir. Peyronie hastalığı için etiyolojik faktörlerin tam spektrumuna ve tanınan genetik faktörler dahil olmak üzere birçok etiyolojik mekanizma ileri sürülmüştür. Penise tek veya tekrarlanan traumalar ve ileri bir bilimsel analiz neden olur. Peyronie hastalığı, tunika albuginea (TA) ve TA ile erkekler kavernoz dokuların kronik inflammation ve sindirim bozukluğu yapar. PH'nin tanı için etyolojik faktörlerin tam spektrumunun bilinmemesine rağmen, genetik ve çevresel faktörler dahil olmak üzere birçok etyogenetik ve etiyolojik mekanizma ileri sürülmüşdür.

Anahtar Kelimeler: Peyronie hastalığı, tunika albuginea, patofizyoloji, fibrozis

ABSTRACT

Peyronie’s disease (PD) is a progressive localized fibrotic disease of tunica albuginea (TA) in the penis. It is also considered as a wound healing disorder with fibrous and non-elastic scar formation and calcified plaque formation. Clinically, these plaques can cause deformities such as curvature, shortening and contraction of the penis and pain. Although the complete spectrum of etiologic factors for PD is unknown, multiple mechanisms have been proposed including trauma, impaired fibrin clearance, autoimmune and genetic factors. It is thought that delamination of bilaminar TA in the penis with repetitive microtrauma and subsequent inflammatory process may cause the development of the Peyronie plaques. The post-traumatic inflammatory process causes myofibroblast persistence and subsequent abnormal collagen accumulation. Accompanying abnormal fibrin accumulation and irregular form of elastic fibers, characteristic tunical fibrous plaque and scar formation occur and the inflammatory process is completed. Pathogenesis of PD has been tried to be demonstrated in animal models, cell cultures and clinical studies. A better understanding of the etiopathology of this disease is important for the development of treatment strategies.

Keywords: Peyronie’s disease, tunica albuginea, pathophysiology, fibrosis
PATOFİZYOLOJİ

Travma

Çoğu Peyronie hastasında lezyonların penis dorsal yüzündeki olduğu görülmektedir. Ventral yüzün tek tabakalı yapısı erektsiyon sırasında dorsal bükülmeye izin vermekte, Penisin uğradığı bu bükülme, dorsal yüzde septum bölgesinde bilimleri olan T’da kaybolur. Lezyonlar arasında neden olma ve PH gelişiminde kilit rolü yer alır. Hatta, sıklıkla hastalar RNA’ya sekonder geliştiği konusunda genel bir fikir birliği vardır.

TUNİKA ALBugİNEA’NIN YAPISI

Peyronie hastalığının etiyolojisinin incelenmesinde ve analaşırlarında korpora kavernosa (KK) ve TA anatomi ve histolojisinin ilişkin bazi bilgileri gözden geçirileceğin önem kazanmaktadır. Tunika albuginea kollajen ve elastik liflerden oluşmaktadır. Kollajen lifler tropokollajen moleküllerinin bir araya gelmesinden oluşur ve dalgalar bir patern gösterir. Moleküler konfigürasyonundan dolayı gerilmeye dirençlidir ve elastik yeteneği sınırlıdır. Elastik lifler ise elastin ve mikrofibrillerden oluşmuş ve dük bir dizilim gösterir.

Normal boyutunu %150 oranında büyümeye yeteneğine sahiptir. Tunika albuginea’nın kompliyansına izin veren ve gerilmis penis uzunluğu belirleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim gösterir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir.

Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir.

NORMAL VE ANORMAL YAPISI

Normal Boyutunu %150 oranında büyümeye yeteneğine sahip ve mikrofibrillerden oluşur ve düz bir dizilim gösterir.

Normal boyutunu %150 oranında büyümeye yeteneğine sahiptir. Tunika albuginea’nın kompliyansına izin veren ve gerilmis penis uzunluğu belirleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim gösterir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir. Dış longitudinal tabaka glans penisent proksimal kuruaya uzanır ve saat 5 ve 7 hızları dışında inferior pubik ramusa yapıştır. İç tabaka ise sirküler olarak kavernozal dokuyu çevreleyen elastin içermektedir. Bu lifler dışta longitudinal, içe sirküler bir dizilim göstererek TA’ya bilirmektedir.
Peyronie hastalıkında yara bölgesinde fibrin ve kollajen birikiminde, üreticilerin artmasıyla birlikte y humlardaki yetersizlik de rol oynamaktadır. TGF-β1’ın etkisile plazminojen aktivatör inhibitör-I (PAI-1) sentezinin indüklenmesi fibrinoliminin inhibisyonuna yol açar. Ekstraselüller matriks proteinlerinin remodelling’ini, yanı kollajenolizisi sağlayarak matriks metalloproteinazlar (MMPs) ve regüasyonu doku metalloproteinaz inhibitörü (TIMPs) tarafından sağlanır. Yine TGF-β1 bir yandan kollajenolitik aktiviteyi sağlayacak olan özellikle MMP-1, MMP-8, MMP-13 üretimini inhibe ederek kolla yanıklının azalttığı, bir yandan MMP yıkımı sağlayan TIMPs sentezini artıranak MMP aktivitesini azaltır.[30,34,39–42]

Tunika albuginea’da bir taraftan kollajen birikimi olurken, bir taraftan histopatolojik değişimler olmaktadır. Normalde TAda tip 1 kollajen baskın peyronie plagında tip 3 kollajen baskın hale gelir ve kollajen lifler dalgalanmayı kaybeder. TGF-β1, MMP-10 aktivitesiyle elastik liflerin yıktığı neden olur. Elastin miktarı azalır. Elastik lifler fragmente hale gelir. Hem kollajen lif hem de elastik lif dağılımda düzensizlik görülür. Bunun sonucunda erksiyon sırasında penil deformite gelişir.[43–46]

İnflamasyonun interlaminar alana hapsolması

Travma, inflamasyon ve fibrözisin olduğu yerlere genel-likle serbest radikalleri çakır. Reaktiv oksijen sentezini tetikleyen reaktif oksijen türleri (ROS) ve reaktif azot türleri (RNs) serbest radikaller olarak isimlendirilir. Reaktiv oksijen türleri; süperoksid anyon (O2−), hidrojen peroksid (H2O2) ve hidrosil anıonyunun (OH−) etkisi. RN’ler ise nitrik oksit (NO) ve peroksinitrit’i (ONOO−) içerir. Bu serbest radikallerin varlığına “oksidatif stres hali” denir. Serbest radikallerin oluşumu ve oksidatif stres PH’da da bildirilmidir.[49]

Reaktiv oksijen türleri aşı üstünü sitokin üretimine ek olarak ortaya çikar. Oksidatif stres süreci ilk 24–48 saatte fibrinin kemotaktik aktivevitesi ile çok erken başlar.[49] Lokosit aktivasyonunda sona enflamatuar blokedeği nötrofil granülositler ve makrofajlar degranülaşıyorken ve liposomal enzimler kollajenaz, elastaz, vb. salınılmaktadır. Ayni zamanda, nötrofiller ve makrofajlar tarafından hızlı bir şekilde ROS (özelliğe süperoksid radikalleri ve hidrojen peroksid) salınımını içerir. Bu serbest radikallerin varlığında “oksidatif stres hali” denir. Serbest radikallerin oluşumu ve oksidatif stres PH’da da bildirilmidir.[49]

Reaktiv oksijen türleri aşı üstünü sitokin üretimine çek olarak ortaya çikar. Oksidatif stres süreci ilk 24–48 saatte fibrinin kemotaktik aktivitesi ile çok erken başlar.[49] Lokosit aktivasyonunda sona enflamatuar blokedeği nötrofil granülositler ve makrofajlar degranülaşıyorken ve liposomal enzimler kollajenaz, elastaz, vb. salınılmaktadır. Ayni zamanda, nötrofiller ve makrofajlar tarafından hızlı bir şekilde ROS (özelliğe süperoksid radikalleri ve hidrojen peroksid) salınımı içerir. Bu serbest radikallerin varlığında “oksidatif stres hali” denir. Serbest radikallerin oluşumu ve oksidatif stres PH’da da bildirilmidir.[49]
bir ‘olgunlaşmış’ kollajen biçimi olan kollajen 3’un kollajen 1’e oranı ezməzən olarak artar.[6] Kollajen sentezçi artarken PH’də iki oksidatif stres belirteci olan kwasit ve hemoksidajiz-I seviyelerinin de artarken PH’də iki oksidatif stres belirteci olan ksantin de artarken olduğu görülmən.[43,53-55,57,58]

Peyronie hastalığının genetik temelleri

Peyronie hastalığı’nın daha çok beyaz irkta görülmesi, otozomal dominant kalıtım durumunda Dupuytren Kontraktürü (DK) ile birlikteliğe göstermiştir ve cinsel aktif her erkeğin cinsel memesi travmanın fibröz plakla sonuçlanması genetik faktörlerin de etkili olabileceğini düşündürmektedir. Peyronie hastalığı ile ilişkili genetik faktörlerle ilgili bilgiler sınırlı olsa da son otuz yılda önemli ilerlemeler kaydettiği ve genetik etiolojiye yönelik farklı çalışmalarda HLA-2 tanımlanmıştır.

Aileli ilişki ve genetik yakınlık

Genetik yakınlık, PH’nin ailesel agregasyonu ve insan lökosit antijeninin (HLA) mutasyonunun değerlendirilebilir çalışmalarda önemli bir faktör olarak ön plan olmuştur. 1982’de 408 hastanın retrospektif analizinde hastaların %1,9’unda pozitif aile hikayesi bulunduğunu, ayrıca PH’nin etyolojik faktörler arasında genetik sebeplerin %17 oranında olduğunu bildirmişlerdir.[60] Bu çalışmada ayrıca PH’li hastalardaki DK insidansının %15,3 olduğu bildirilmiştir. Bias ve arkadaşları da aynı yıl hem PH hem de DK’dan etkilenen üç ailenin soy ağacını analiz etti, genetik faktörlerin PH patogenezinde rol önnyayabilceğini göstermiştir.[61] Üç ailede de inkomplet penetrans ile otozomal dominant kalıtım şekli tanınmış, bazı ailelerde ise üç kuşak baba babanın oğula geçiş görülmuştur.

Otozomal dominant kalıtımı ve beyaz irkta hastalık olan DK ve HLA, konnektif dokuda anormal kollajen birikimi ile ilişkili fibrotik bozukluklar olmaları bakımından benzerdir. Gen ekspresyonu analizi DK ve PH lezyonlarında önemli bir artsmartı ile ortaya koymuştur. Biri, DHPLC ile analiz edilmiştir.[62] Genetik analizlerde HLA genlerinde upregülasyon bildirilmiştir. Ayrıca, PH ve DK dokularında kollajen degradasyonu, ossifikasyonu ve myofibroblast farklılaşması ile ilişkılı genlerde upregülasyon bildirilmiştir.[63] Son zamanlarda, PH’nin DK ile paylaştığı ve her ikisinin de genetik yaqınılklıka ilgili genik bir lokus olan WNT2 tanınlamıştır.[64]

Peyronie hastalığın olası HLA ilişkisini de araştırılmış, genel popülasyonda çözüldüğündə idiopatik PH’li hastalarda HLA-B7 çapraz reaksiyon grubunun artmış sıklığı göstermiştir.[65] Bias ve arkadaşları da HLA-B7 çapraz reaksiyonu giren grubun antijenlerinin, PH’den etkilenen her üç ailenin aile üyelerleri arasında bulunduğu ortaya koymuştur.[66] Peyronie hastalığının belirli bir HLA özgülüğü grubu ile anlaşı分钟左右 bir şekilde iliskilendirildiğine dair bu gözlem, patogenez üzerine immünolojik bir etki olduğunu ortaya koymuştur.

Otoimmün faktörler

Travmayı sekonder otoimmün yanıt, testis (testis travması, travmanın cinsel organa yayılmasının sonucunda) ve göz (genetik travma, konnektif dokuda anormal kollajen birikimi) dahil olmak üzere bir dizi başka organ sisteminde gösterilmiştir.[7] Bu nedenle, özellikle travmanın daha fazla fibrozis ve tunikal hasara yol açan bir otoimmün reaksiyonu oluşturabileceği tarihlidir. Peyronie hastalığının HLA ile ilişkisini değerlendirilen çok sayıda çalışma vardır.[66-74] Peyronie hastalığı ile HLA-B27 arasında güçlü bir ilişki bildirilirken, diğer HLA-B grubu antijenleri (HLA-Cw6, HLA-DR3, HLA-DQ2 ile anlaşı redirectTo tespit edilememiştir.[75] Öte yandan, Schiavino ve arkadaşları, PH olan hastaların %76’tünün en az bir asemptomatik immünolojik teste, %48’inin T hücre aracılı immünolojik teste, %48’inin anti-antikorlarının beingilmesi) ve %38’inin otoimmün hastalıklı marker’in sahip olduğunu göstermiştir.[76] Peyronie’li 100 erkeğin antikor düzeylerinin değerlendirildiği bir çalışmada, dolaşımdaki antipenis antikorları ve antikorların beingilmesi) ve göz (penetran travma, konnektif dokuda anormal kollajen birikimi) dahil olmak üzere bir dizi başka organ sisteminde gösterilmiştir.[77] Bu nedenle, özellikle travmanın daha fazla fibrozis ve tunikal hasara yol açan bir otoimmün reaksiyonu oluşturabileceği tarihlidir. Peyronie hastalığının HLA ile ilişkisini değerlendiren çok sayıda çalışma vardır.[66-74] Peyronie hastalığı ile HLA-B27 arasında güçlü bir ilişki bildirilirken, diğer HLA-B grubu antijenleri (HLA-Cw6, HLA-DR3, HLA-DQ2 ile anlaşı redirectTo tespit edilememiştir.[75] Öte yandan, Schiavino ve arkadaşları, PH olan hastaların %76’tünün en az bir asemptomatik immünolojik teste, %48’inin T hücre aracılı immünolojik teste, %48’inin anti-antikorlarının beingilmesi) ve %38’inin otoimmün hastalıklı marker’in sahip olduğunu göstermiştir.[76] Peyronie hastalığının HLA ile ilişkisini değerlendiren çok sayıda çalışma vardır.[66-74] Peyronie hastalığı ile HLA-B27 arasında güçlü bir ilişki bildirilirken, diğer HLA-B grubu antijenleri (HLA-Cw6, HLA-DR3, HLA-DQ2 ile anlaşı redirectTo tespit edilememiştir.[75] Öte yandan, Schiavino ve arkadaşları, PH olan hastaların %76’tünün en az bir asemptomatik immünolojik teste, %48’inin T hücre aracılı immünolojik teste, %48’inin anti-antikorlarının beingilmesi) ve %38’inin otoimmün hastalıklı marker’in sahip olduğunu göstermiştir.[76]
Tek Nükleotid Polimorfizmleri

Gen ekspresyonunun etkileyen kalıtsal tek nükleotid polimorfizmleri (SNP), yüksek seviyelerde TGF-β1 ile ilişkilendirilmişdir. TGF-β1 geninde, rs1800469 (C-509T), rs1800471 (G915C) ve rs1982073 (T + 29C) dahil olmak üzere birçok SNP tanımlanmıştır. Bu polimorfizmlerden sadece G915C PH ile ilişkilendirilmiştir. TGF-β1 proteindinde 25. pozisyonda arginin’in prolin yerine geçmesi sonucunda G915C SNP’nin, PH olan erkeklerde sağlıklı kontrol grubuna göre anlamlı bir şekilde yüksek olduğu gösterilmiştir.

Gen Ekspresyonu

Peyronie plaklarında en yüksek ekspresyon seviyesine sahip olan gen, salgılanmış bir heparin bağlayıcı protein veya fibroblast proliferasyonunu, osteoblast alımı ve osteogenezi indükleyen TGF-β1 ile ilişkilendirilmiştir. TGF-β1 geninde, rs1800469 (C-509T), rs1800471 (G915C) ve rs1982073 (T + 29C) dahil olmak üzere birçok SNP tanımlanmıştır. Bu polimorfizmlerden sadece G915C PH ile ilişkilendirilmiştir. TGF-β1 proteindinde 25. pozisyonda arginin’in prolin yerine geçmesi sonucunda G915C SNP’nin, PH olan erkeklerde sağlıklı kontrol grubuna göre anlamlı bir şekilde yüksek olduğu gösterilmiştir.

Peyronie hastalarının ekspresyon profilerinin DK’lı hastalar ile karşılaştırıldığında bir çalışmada peyronie plakında normal TA’ya göre 15 genlik bir serinin upregüle olduğu, buna karşın hiç downregüla olmadığı gösterilmiştir. Upregüle edilen genler, kollajen yıkımıyla ilişkili MMP-2 ve MMP-9 ile ve timozinlerdir (MMP aktivatörleri). MMP-2 veya MMP-9, kasılma kuvvetlerini oluşturmak için fibroblastlar ve miyofibroblast için gerekli olan akтин-hücre iskeleti etkileşimlerinde rol alan genler olan apoptotik anormalliklerin de PH gelişiminde etkili olabileceği gösterilmiştir. Apoptotik anormalliklerin de PH gelişiminde etkili olabileceği gösterilmiştir. Apoptotik genlerin ekspresyonlarının (Fas, Fas Ligand, Bel-2, p53, caspase 3 and 8) upregüle edildiği bir çalışmada, apoptotik genlerin daha düşük ekspresyonunun kollajen üretimini artırmış ve fibrozis oluşumunu hizlandırır.

Arteryal Hastalıklar

Peyronie hastalığına karşı aktif savunma mekanizmaları

Peyronie hastalığı patofizyolojisinde rol oynamayan tüm faktörler fibrozis oluşumuna hizmet ederken, ilginç bir şekilde sistem kendi savunma mekanizması da faaliyete geçirmektedir.
Nitrik oksit sentaz

Peyronie plaklarında yükselen ROS seviyeleri, indüknebilir nitrik oksit sentaz (iNOS) formunun spontan indüksiyonu eşlik eder. Sonuç, tunikal fibroblastlardan sürekli olarak nitrik oksitdendir (NO) salınmasından.\(^{[49,50,53,55,57,58]}\) iNOS ile NO üretimi, sadece penisin erkesiyeşine sırasında oluşan nörotnal nitrik oksit sentaz'ın (nNOS) ürettiği NO'dan bağımsızdır.\(^{[90]}\) iNOS ile sentezlenen NO, kendisi de bir serbest radikal olan peroksinitriti üretmek için ROS ile reaksiyona girer, böylece ROS seviyelerini ve aktivitesinde bir serbest radikal olan peroksinitriti üretmek için ROS terörlü ve yeni bir tedavi seçeneği olarak önerilmiştir.\(^{[95]}\)

Beta timosin, MMP'ler (MMP-2 ve 9) ve decorin (TGF-β1) modellerinde plak gelişimi önlediği gösterilmiştir.\(^{[91]}\) Ayrıca, T'A'ya enjekte edilen iNOS tamamlayıcı DNA yapısına sahip gen terapisi, fibrin enjeksiyonu suç modelinde PH benzeri plaga pl妖怪n regresyonunun induksiyonu olmuştur.\(^{[92]}\)

Diğer savunma mekanizmaları

Peyronie plaklarındakı fibrotik ve antifibrotik mekanizmalar arasındaki etkileşim PH ve fibroblastlarla sınırlandırılmış; Ayrıca zamandaラインてとしやむとdiyabette KK düğ kası ve penil arterlerinde de gözlemmiştir.\(^{[92-94]}\)

Nitrik oksit sentaz sentatan bir yandan savunma mekanizmaları içinde görev üstlendiren bir yan ED gelişiminde rol oynamaktadır.\(^{[90]}\) NOS'un endotel ve nöronal formlarının antifibrotik etkilerini göstermiştir.\(^{[101-103]}\) Bununla birlikte, erectile süreçte iNOS'un rolü çok net değildir. Son zamanlarda, Ferrini ve arkadaşları, yaşlı investorin, insan kavernozal düz kas hücre kültüründe sitotoksitesi neden olduğu göstermiştir.\(^{[104]}\) NOS'nın inducingli oldukça yüksek toksitesi sahibi bir serbest radikal olan peroksinitrit, lipit peroksidasyonu ve DNA fragmentsasyonu yaparak hücre hasarına, endotel hücrelerinin, düz kas hücrelerinin ve sinir dokusunun kaybına yol açar.\(^{[90]}\) Endotelyal düz kas relaksasyonunun bozulması ve vasküler tonus değişiklikleri yoluya erectile yantın fizyolojisiyle ilgili bir etken olarak kabul edilmektedir.\(^{[104]}\)

Penile eresiyonun primer mediatörü olan NO, guanilat siklaz enzimini aktive ederek Peyronie plak üzerinde antifibrotik etkiye de sahip olan siklik guanozin monofosfat (cGMP) düzeyini arttırır.\(^{[92]}\) Rat modellerinde, sildenafil gibi PDE-5 inhibitöri ajanın uzun dönem kullanılması sonucunda Peyronie plak oluşumunun önlenibiği gösterilmiştir.\(^{[92]}\)

SONUÇ

Peyronie hastalığı ve Erektil Disfonksiyon

Peyronie hastalığı ve ED’si olan erkeklerde yapılan görünü'tüleme çalışmalarda, en az üçte birinin arteriyel yetmezliğe ve neredeyse %60’inin venooklüziv hastalığa sahip olduğunu ortaya koymaktadır. Hastalığın kronik fazında plak stabil hale gelince plak içinden geçerek dorsal vena dökülen bir emisyon vade edilerek lokal venooklüziv yetmezlik sonucu, bu venin tunikal tabakalar arasında kompresi olmamasi ED için bir etken olabilir.\(^{[99,100]}\)

Peyronie plaklarında yükselen ROS seviyeleri, indüknebilir nitrik oksit sentaz (iNOS) formunun spontan indüksiyonu eşlik eder. Sonuç, tunikal fibroblastlardan sürekli olarak nitrik oksitdendir (NO) salınmasından.\(^{[49,50,53,55,57,58]}\) iNOS ile NO üretimi, sadece penisin erkesiyeşine sırasında oluşan nörotnal nitrik oksit sentaz'ın (nNOS) ürettiği NO'dan bağımsızdır.\(^{[90]}\) iNOS ile sentezlenen NO, kendisi de bir serbest radikal olan peroksinitriti üretmek için ROS ile reaksiyona girer, böylece ROS seviyelerini ve aktivitesinde bir serbest radikal olan peroksinitriti üretmek için ROS terörlü ve yeni bir tedavi seçeneği olarak önerilmiştir.\(^{[95]}\)

Beta timosin, MMP'ler (MMP-2 ve 9) ve decorin (TGF-β1) modellerinde plak gelişimi önlediği gösterilmiştir.\(^{[91]}\) Ayrıca, T'A'ya enjekte edilen iNOS tamamlayıcı DNA yapısına sahip gen terapisi, fibrin enjeksiyonu suç modelinde PH benzeri plaga pl妖怪n regresyonunun induksiyonu olmuştur.\(^{[92]}\)

Diğer savunma mekanizmaları

Peyronie plaklarındakı fibrotik ve antifibrotik mekanizmalar arasındaki etkileşim PH ve fibroblastlarla sınırlandırılmış; Ayrıca zamandaラインてとしやむとdiyabette KK düğ kası ve penil arterlerinde de gözlemmiştir.\(^{[92-94]}\)

Nitrik oksit sentaz sentatan bir yandan savunma mekanizmaları içinde görev üstlendiren bir yan ED gelişiminde rol oynamaktadır.\(^{[90]}\) NOS’un endotel ve nöronal formlarının antifibrotik etkilerini göstermiştir.\(^{[101-103]}\) Bununla birlikte, erectile süreçte iNOS’un rolü çok net değildir. Son zamanlarda, Ferrini ve arkadaşları, yaşlı investorin, insan kavernozal düz kas hücre kültüründe sitotoksitesi neden olduğu göstermiştir.\(^{[104]}\) NOS’nın inducingli oldukça yüksek toksitesi sahibi bir serbest radikal olan peroksinitrit, lipit peroksidasyonu ve DNA fragmentsasyonu yaparak hücre hasarına, endotel hücrelerinin, düz kas hücrelerinin ve sinir dokusunun kaybına yol açar.\(^{[90]}\) Endotelyal düz kas relaksasyonunun bozulması ve vasküler tonus değişiklikleri yoluya erectile yantın fizyolojisiyle ilgili bir etken olarak kabul edilmektedir.\(^{[92]}\)

Penile eresiyonun primer mediatörü olan NO, guanilat siklaz enzimini aktive ederek Peyronie plak üzerinde antifibrotik etkiye de sahip olan siklik guanozin monofosfat (cGMP) düzeyini arttırır.\(^{[92]}\) Rat modellerinde, sildenafil gibi PDE-5 inhibitöri ajanın uzun dönem kullanılması sonucunda Peyronie plak oluşumunun önlenibiği gösterilmiştir.\(^{[92]}\)
KAYNAKLAR

1. Lascaratos J, Poulakou-Rembelakou E, Rembelakos A, Marketos S. The first case of epispadias: An unknown disease of the Byzantine Emperor Heraclius (610–641 AD). Br J Urol 1995;76:380–3.

2. Murphy LJ, Tolis. Miscellaneous: Peyronie’s disease (fibrous cavernositis). In: Murphy LJ, Tolis. The History of Urology. 1st ed. Springfield, IL: Charles C Thomas Pub Ltd; 1972; pp.485–6.

3. Campbell E, Colton J. Warts and tubercles occurring on the penis or other parts of the body; corns and black warts. In: The surgery of Theodoric ca. AD 1267, 1st ed., Vol 2. New York, NY: Appleton-Century-Crofts; 1960. pp.109–14.

4. Kuss R, Gregoir W. L’Induration Plastique des Corps Caverneux. In: Histoire Illustrée de L’Urologie de l’Antiquité a nos jours, 1 st ed. Paris: Roger Dacosta; 1984. pp.461–4.

5. Van Buren VH, Keyes EL. Practical treatment on the surgical disease of the urinary tract. New York: Appleton-Century-Crofts, Inc.; 1874.

6. DiBenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. A Population-Based Study of Peyronie’s Disease: Prevalence and Treatment Patterns in the United States. Adv Urol 2011;2011:282503. [CrossRef]

7. Smith BH. Peyronie’s disease. Am J Clin Pathol 1966;45:670–8.

8. Levine LA. Peyronie’s disease and erectile dysfunction: Current understanding and future direction. Indian J Urol 2006;22:246–50. [CrossRef]

9. Carson CC. Peyronie’s disease: medical and surgical management. In: Hellstrom WJG, editor. Handbook of sexual dysfunction. San Francisco: American Society of Andrology; 1999. pp.93–8.

10. Gelbard MK, Dorey F, James K. The natural history of Peyronie’s disease. J Urol 1990;144:1376–79. [CrossRef]

11. Schwarzer U, Sommer F, Klotz T, Braun M, Reifenrath B, Engelmann U. The prevalence of Peyronie’s disease: results of a large survey. BJU Int 2001;88:727–30. [CrossRef]

12. Kadioglu A, Oktar T, Kandirali E, Kendirci M, Sanli O, Ozsoy C. Incidentally diagnosed Peyronie’s disease in men presenting with erectile dysfunction. Int J Impot Res 2004;16:540–3. [CrossRef]

13. Kadioglu A, TelFeki A, Erol B, Oktar T, Tunc M, Tellaloglu S. A retrospective review of 307 men with Peyronie’s disease. J Urol 2002;68:1075–9. [CrossRef]

14. Al-Thakafi S, Al-Hathal N. Peyronie’s disease: A literature review on epidemiology, genetics, pathophysiology, diagnosis and work-up. Trans Androl Urol 2016;5:280–9. [CrossRef]

15. Jarow J, Lowe FC. Penile trauma: an etiologic factor in Peyronie’s disease and erectile dysfunction. J Urol 1997;158:1388–90. [CrossRef]

16. Devine CJ, Somers KD, Jordan GH, Schlossberg SM. Proposal: trauma as a cause of Peyronie’s lesion. J Urol 1997;157:285–90. [CrossRef]

17. Junqueiro LC, Carneiro J, Kelley RO. Basic Histology, 7th ed. Norwalk CN: Appleton and Lange; 1992. p.95.

18. Udelson D, Nehra A, Hatzichristou DG, Azadzoi K, Moreland RB, Krane J, et al. Engineering analysis of penile hemodynamic and structural dynamic relationships: Part I. Clinical implications of penile tissue mechanical properties. Int J Impot Res 1998;10:15–24. [CrossRef]

19. Hsu GL, Brock GB, Martinez-Piétreiro L, Nunes L, von Heyden B, Lue TF, Tanagho EA. The three-dimensional structure of the tunica albuginea: anatomical and structural levels. Int J Impot Res 1992;4:117–29.

20. Hsu GL, Brock G, Martinez-Piétreiro L, von Heyden B, Lue TF, Tanagho EA. Anatomy and strength of the tunica albuginea: its relevance to penile prosthesis extrusion. J Urol 1994;151:1205–8. [CrossRef]

21. Brock G, Hsu GL, Nunes L, von Heyden B, Lue TF. The anatomy of the tunica albuginea in the normal penis and in Peyronie’s disease. J Urol 1997;157:276–81. [CrossRef]

22. Goldstein AM, Mechan JP, Morrow JW, Buckley PA, Rogers FA. The fibrous skeleton of the corpora cavernosa and its probable function in the mechanism of erection. Br J Urol 1985;57:574–8. [CrossRef]

23. Gelbard M. Peyronie’s disease. In: Hashmat AI, Das S, editors. The Penis. Philadelphia: Leta and Febiger; 1993. pp.244–365.

24. Kraji R. The treatment of loss of penile rigidity associated with Peyronie’s disease. Scand J Urol Nephrol Suppl 1997;179:147–50.

25. Devine CJ Jr. International Conference on Peyronie’s disease advances in basic and clinical research. March 17-19, 1993. Introduction. J Urol 1997;157:272–5.

26. Devine CJ Jr, Horton CE. Peyronie’s disease. Clin Plast Surg 1988;15:405–9.

27. Van de Water L. Mechanisms by which fibrin and fibronectin appear in healing wounds: implications for Peyronie’s disease. J Urol 1997;157:306–10. [CrossRef]

28. Somers KD, Dawson DM. Fibrin deposition in Peyronie’s disease plaque. J Urol 1997;157:311–5. [CrossRef]

29. El-Sakka AI, Salabas E, Dincer M, Kadioglu A. The pathophysiology of Peyronie’s disease. Arab J Urol 2013;11:272–7. [CrossRef]

30. Garaffa G, Trost LW, Serefoğlu E, Tost, G, Hellstrom WJG. Understanding the course of Peyronie’s disease. Int J Clin Pract 2013;67:781–8. [CrossRef]

31. Gentile V, Modesti A, La Pera G, Vasaturo F, Medica A, Prigioieti G, et al. Ultrastructural and immunohistochemical characterization of the tunica albuginea in Peyronie’s disease and veno-occlusive dysfunction. J Androl 1996;17:96–103. [CrossRef]

32. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016;44:450–62. [CrossRef]

33. Diegelmann RF. Cellular and biochemical aspects of normal and fibrous wound repair. J Urol 1997;157:306–10. [CrossRef]

34. Gonzalez-Cadavid NF, Magee TR, Ferrini M, Qian A, Vernet D, DiBenedetti DB. Cellular and biochemical aspects of normal and fibrous wound repair. J Urol 1997;157:311–5. [CrossRef]

35. Inhibition of histone deacetylase 2 mitigates profibrotic TGF-b1 responses in fibroblasts derived from Peyronie’s plaque. Asian J Androl 2013;15:640–5. [CrossRef]
37. Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017;121:57–84. [CrossRef]

38. Ilg MM, Mateus M, Stebbeds WJ, Milenkovic U, Christopher N, Muneer A, et al. Antifibrotic synergy between phosphodiesterase type 5 inhibitors and selective oestrogen receptor modulators in Peyronie’s disease models. Eur Urol 2019;75:329–40. [CrossRef]

39. Moreland RB, Nehra A. Pathophysiology of Peyronie’s disease. Int J Impot Res 2002;14:406–10. [CrossRef]

40. Del Carlo M, Cole AA, Levine LA. Differential Calcium Independent Regulation of Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinases by Interleukin-1b and Transforming Growth Factor-b in Peyronie’s Plaque Fibroblasts. J Urol 2008;179:2477–55. [CrossRef]

41. Edwards DR, Leco KJ, Beaudry PP, Atadja PW, Veillette C, Riabowol KT. Differential effects of transforming growth factor-b1 on the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in young and old human fibroblasts. Exp Gerontol 1996;31:207–23. [CrossRef]

42. Mulhall JP. The clinical implications of basic science research in Peyronie’s disease, a guide to clinical management. In: Levine LA, editor. Current Clinical Urology: Peyronie’s Disease. Totowa, NJ, USA: Humana Press; 2007. pp.39–58.

43. Akkus E, Carrier S, Baba K, Hsu GL, Padma-Nathan H, Nunes L, Lue TF. Structural alterations in the tunica albuginea of the penis: impact of Peyronie’s disease, ageing and impotence. Br J Urol 1999;77:47–53. [CrossRef]

44. Bitsch M, Kromann-Andersen B, Schou J, Sjøntoft E. The genetic and bacteriological aspects of Peyronie’s disease. J Clin Pathol 1992;45:364–70. [CrossRef]

45. Chiang PH, Chiang CP, Shen MR, Huang CH, Wang CJ, Huang YJ, Sheih TY. Study of the changes in collagen of the tunica albuginea in venogenic impotence and Peyronie’s disease. Eur Urol 1999;32:48–51. [CrossRef]

46. Dini G, Grappone C, Del Rosso M, Lunghi F, Bartolletti R. Intracellular collagen in fibroblasts of Peyronie’s disease. J Submicrosc Cytol 1986;18:605–11.

47. Lue TF. Peyronie’s disease. An anatomioclinically-based hypothesis and beyond. Int J Impot Res 2002;14:411–3. [CrossRef]

48. El-Sakka AI, Selph CA, Yen TSB, Dahiya R, Lue TF. The effect of surgical trauma on rat tunica albuginea. J Urol 1998;159:1700–7. [CrossRef]

49. Sikka SC, Helstrom WJG. Role of oxidative stress and antioxidants in Peyronie’s disease. Int J Impot Res 2002;14:353–60. [CrossRef]

50. Bivalacqua TJ, Champion HC, Hestrom WJG. Implications of nitric oxide synthase isofoms in the pathophysiology of Peyronie’s disease. Int J Impot Res 2002;14:345–52. [CrossRef]

51. Paulis G, Brancato T. Inflammator mechanisms and oxidative stress in Peyronie’s disease: Therapeutic rationale and related emerging treatment strategies. Inflamm Allergy Drug Targets 2012;11:48–57. [CrossRef]

52. Van’t Hof RJ, Armour KJ, Smith LM. Armour KE, Wei XQ, Liew FY, Ralston SH. Requirement of the inducible nitric oxide synthase pathway for IL-1- induced osteoclastic bone resorption. Proc Nat Acad Sci U S A 2000;97:7993–8. [CrossRef]

53. Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A, Rajfer J, Gonzalez-Cadavid NF. Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide 2002;6:283–94. [CrossRef]

54. Vernet D, Ferrini MG, Valente EG, Magee TR, Bou-Gharios G, Rajfer J, Gonzalez-Cadavid NF. Effect of nitric oxide on the differentiation of fibroblasts into myofibroblasts in the Peyronie’s fibrotic plaque and in its rat model. Nitric Oxide 2002;7:262–76. [CrossRef]

55. Valente EG, Vernet D, Ferrini MG, Qian A, Rajfer J, Gonzalez-Cadavid NF. L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie’s fibrotic plaque and related fibroblast cultures. Nitric Oxide 2003;9:229–44. [CrossRef]

56. Quan TE, Cowper S, Wu SP, Bockenstedt LR, Buca LA. Circulating fibrocytes: collagensecreting cells of the peripheral blood. Int J Biochem Cell Biol 2004;36:598–606. [CrossRef]

57. Davila HH, Ferrini MG, Rajfer J, Gonzalez-Cadavid NF. Fibrin as an inducer of fibrosis in the tunica albuginea of the rat: a new animal model of Peyronie’s disease. BJU Int 2003;91:830–8. [CrossRef]

58. Davila HH, Magee TR, Vernet D, Rajfer J, Gonzalez-Cadavid NF. Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie’s disease. Biol Reprod 2004;71:1568–77. [CrossRef]

59. Herrati AS, Pastuszak AW. The Genetic Basis of Peyronie’s Disease: A Review. Sex Med Rev 2016;4:85–94. [CrossRef]

60. Chilton CP, Castle WM, Westwood CA, Pryor JP. Factors associated in the etiology of Peyronie’s disease. BJU 1982;54:748–50. [CrossRef]

61. Bias WB, Nyberg LM Jr, Hochberg MC, Walsh PC, Opitz JM. Peyronie’s disease: a newly recognized autosomal-dominant trait. Am J Med Genet 1982;12:227–35. [CrossRef]

62. Hindoja S, John S, Stanley JK, Watson SJ, Bayat A. The heritability of Dupuytren’s disease: familial aggregation and its clinical significance. J Hand Surg 2006;31:204–10. [CrossRef]

63. Qian A, Meals RA, Rajfer J, Gonzalez-Cadavid NF. Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 2004;64:394–404. [CrossRef]

64. Byström J, Rubio C. Induratio penis plastica (Peyronie’s disease): Clinical features and etiology. Scand J Urol Nephrol 1976;10:12–20. [CrossRef]

65. Somers KD, Siamon EN, Wright GL Jr, Devine CJ Jr, Gilbert DA, Horton CE. Isolation and characterization of collagen in Peyronie’s disease. J Urol 1989;141:629–31. [CrossRef]

66. Dolmans GH, Werker PM, de Jong IJ, Nijman RJ, Wijmenga C, Ophoff RA. WNT2 Locus Is Involved in Genetic Susceptibility of Peyronie’s Disease. J Sex Med 2012;9:1430–4. [CrossRef]

67. Willscher MK, Czwalka WF, Novicki DE. The association of histocompatibility antigens of the B7 cross-reacting group with Peyronie’s disease. J Urol 1979;122:34–5. [CrossRef]

68. Somers KD, Dawson DM, Wright GL Jr, Leffell MS, Rowe MJ, Blumemink GG, et al. Cell culture of Peyronie’s disease plaque and normal penile tissue. J Urol 1982;127:585–8. [CrossRef]

69. Nachtegaele DA, Rearden A. Peyronie’s disease is associated with an HLA class II antigen HLA-DQ5, implying an autoimmune etiology. J Urol 1996;156:1300–4. [CrossRef]

70. Schiavino D, Sasso F, Nucera E, Alcini E, Gulino G, Milani A, Patriarca G. Immunologic findings in Peyronie’s disease: a controlled study. Urology 1997;50:764–8. [CrossRef]

71. Rompel R, Weidner W, Mueller-Eckhardt G. HLA association of idiopathic Peyronie’s disease: an indication of autoimmune phenomena in etiopathogenesis? Tissue Antigens 1991;38:104–6. [CrossRef]

72. Rompel R, Mueller-Eckhardt G, Schroeder-Printzen I, Weidner W. HLA antigens in Peyronie’s disease. Urol Int 1994;52:34–7. [CrossRef]

73. Ralph DJ, Schwartz G, Moore W, Pryor JP, Ebinger A, Bottazzo GF. The genetic and bacteriological aspects of Peyronie’s disease. J Urol 1997;157:291–4. [CrossRef]

74. Ralph DJ, Mirakian R, Pryor JP, Bottazzo GF. The immunological features of Peyronie’s disease. J Urol 1996;155:159–62. [CrossRef]
75. Stewart S, Malto M, Sandberg L, Colburn KK. Increased serum levels of anti-elastic antibodies in patients with Peyronie's disease. J Urol 1994;152:105–6. [CrossRef]

76. Somers KD, Winters BA, Dawson DM, Leffell MS, Wright GL Jr, Devine CJ Jr, et al. Chromosome abnormalities in Peyronie's disease. J Urol 1987;137:672–5. [CrossRef]

77. El-Sakkal AL, Hassoba HM, Pillatisetty RJ, Dahiya R, Lue TF. Peyronie's disease is associated with an increase in transforming growth factor-beta protein expression. J Urol 1997;158:1391–4. [CrossRef]

78. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV. Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998;66:1014–20. [CrossRef]

79. Hauck EW, Hauptmann A, Schmelz HU, Bein G, Weidner W. Hackstein H. Prospective analysis of single nucleotide polymorphisms of the transforming growth factor beta-1 gene in Peyronie's disease. J Urol 2003;169:369–72. [CrossRef]

80. Szardening-Kirchner C, Konrad L, Hauck EW, Haag SM, Eickelberg O, Weidner W. Upregulation of mRNA expression of MCP-1 by TGFbeta1 in fibroblast cells from Peyronie's disease. World J Urol 2009;27:123–30. [CrossRef]

81. Milenkovic U, Janky R, Hatzichristodoulou G, van Renterghem J, Szardening-Kirchner C, Konrad L, Hauck EW, Hauptmann A, Schmelz HU, Bein G, Weidner W. Hackstein H. Prospective analysis of single nucleotide polymorphisms of the transforming growth factor beta-1 gene in Peyronie's disease. J Urol 2003;169:369–72. [CrossRef]

82. Sambiase NV, Higuchi ML, Nuovo G, Gutierrez PS, Fiorelli S, Higuchi ML, Nuovo G, Gutierrez PS, Fiorelli S. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related coronary artery disease. J Am Coll Cardiol 1999;34:1435–9. [CrossRef]

83. Wong YK, Dawkins KD, Ward ME. Circulating Chlamydia pneumoniae DNA as a predictor of coronary artery disease. J Am Coll Cardiol 1999;34:1435–9. [CrossRef]

84. Smith BH, Subclinical Peyronie's disease. Am J Clin Pathol 1969;52:385.

85. Vande Berg JS, Device CJ, Horton CE, Somers KD, Wright GL Jr, Leffell MS, et al. Peyronie's disease: an electron microscopic study. J Urol 1981;126:333–6. [CrossRef]

86. Gonzalez-Cadavid NF, Rajfer J. Therapy of erectile function: potential future treatments. Endocrine 2004;23:167–76. [CrossRef]

87. Kim JJ, Bae JH, Moon DG, Shim KS, Kim YS. Novel animal model of Peyronie's disease by tunical injection of autologous blood. J Sex Med 2004;1:51.

88. Ferrini M, Magee TR, Vernet D, Rajfer J, Gonzalez-Cadavid NF. Aging-related expression of inducible nitric oxide synthase (iNOS) and markers of tissue damage in the rat penis. Biol Reprod 2001;64:974–82. [CrossRef]

89. Ferrini MG, Davila HH, Valente EG, Gonzalez-Cadavid NF, Rajfer J. Aging-related induction of inducible nitric oxide synthase (iNOS) is vasculoprotective in the arterial media. Cardiovasc Res 2004;61:796–805. [CrossRef]

90. Kovanecz I, Ferrini MG, Davila HG, Rajfer J, Gonzalez-Cadavid NF. Pioglitazone ameliorates penile corpora veno-occlusive dysfunction (CVOD) in a rat model of type 2 diabetes. J Urol 2005;173:283–4. [CrossRef]

91. Akman T, Telkeli A, Armagan A, Kilicaslan I, Ozerman B, Tepeker A, Kadioğlu A. Decorin as a new treatment alternative in Peyronie's disease: preliminary results in the rat model. Andrologia 2013;45:101–6. [CrossRef]

92. Chung E, De Young I, Solomon M, Brock GB. Peyronie's disease and mecanotransduction. An in vitro analysis of the cellular changes to Peyronie's disease in a cell-culture strain system. J Sex Med 2013;10:1259–67. [CrossRef]

93. Gonzalez-Cadavid NF, Rajfer J. Molecular and cellular aspects of the parophysiology of Peyronie's disease. Drug Discovery Today. Disease Mech 2004;1:99–106.

94. Gholami SS, Gonzalez-Cadavid NF, Lin CS, Rajfer J, Lue TF. Peyronie's disease: a review. J Urol 2003;169:1234–41. [CrossRef]

95. Pryor J, Akkus E, Alter G, Jordan G, Lebret T, Levine L, et al. Peyronie's Disease. J Sex Med 2004;1:110–5. [CrossRef]

96. Lopez JA, Jarow JP. Penile vascular evaluation of men with Peyronie's disease. J Urol 1993;149:53–5. [CrossRef]

97. Burnett AL. Nitric oxide in the penis: physiology and pathology. J Urol 1997;158:1391–4. [CrossRef]

98. Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 1992;326:90–4. [CrossRef]

99. Bivalacqua TJ, Champion HC, Mehta YS, Abdel-Mageed AB, Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ, et al. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int J Impot Res 2000;12 Suppl 3:S8–17. [CrossRef]

100. Rajasekaran M, Hellstrom WJ, Sikka SC. Nitric oxide induces oxidative stress and mediates cytotoxicity to human cavernosal cells in culture. J Androl 2001;22:34–9. [CrossRef]