GLOBAL EXISTENCE FOR THE NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION WITH FRACTIONAL DISSIPATION.

MOHAMAD DARWICH.

Wednesday 28th February, 2018

ABSTRACT. We consider the initial value problem for the fractional nonlinear Schrödinger equation with a fractional dissipation. Global existence and scattering are proved depending on the order of the fractional dissipation.

1. INTRODUCTION

Consider the Cauchy problem for the damped fractional nonlinear Schrödinger equation

\[
\begin{cases}
 iu_t - (-\Delta)\alpha u + |u|^{p-1}u + ia(-\Delta)^s u = 0, \quad (t, x) \in [0, \infty) \times \mathbb{R}^d, \\
 u(0) = u_0
\end{cases}
\]

(1.1)

where \(a > 0\) is the coefficient of friction, \(d \geq 2\), \(\alpha \in (\frac{d}{2d-1}, 1)\), \(s > 0\) with \(L^2\)-critical nonlinearity i.e \(p = 1 + \frac{4\alpha}{d}\).

In the classical case (\(\alpha = 1\) and \(a = 0\)) equation (1.1) arises in various areas of nonlinear optics, plasma physics and fluid mechanics to describe propagation phenomena in dispersive media.

When \(a = 0\) and \(0 < \alpha < 1\) equation (1.1) (called FNLS: Fractional NLS) can be seen as a canonical model for a nonlocal dispersive PDE with focusing nonlinearity that can exhibit solitary waves, turbulence phenomena which has been studied by many authors [20], [8], [10], [11], [21], [23] and [29] in mathematics, numerics, and physics. The FNLS equation is a fundamental equation of fractional quantum mechanics, which was derived by Laskin [24], [25] as a result of extending the Feynman path integral, from the Brownian-like to Levy-like quantum mechanical paths. The Cauchy problem for FNLS was studied in [14] and [15] and proved that it is well-posed and scatters in the radial energy space and in [16] the author proves that the equation is globally well posed for small data.

In this this paper we complete the \(L^2\)-critical FNLS equation with a fractional laplacian of order \(2s\), \(s > 0\). The fractional laplacian is commonly used to model fractal (anomalous) diffusion related to the Lévy flights (see

Key words and phrases. Damped Fractional Nonlinear Schrödinger Equation, Global existence.
e.g. Stroock [27], Bardos and all [3], Hanyga [18]). It also appears in the physical literature to model attenuation phenomena of acoustic waves in irregular porous random media (cf. Blackstock [4], Gaul [13], Chen-Holm [9]).

Note that for \(s = 0 \), the global existence for (1.1) was proved in [28] for a large damping term (i.e. for large \(a > 0 \)), in this paper we will obtain the global existence result for any damping term \(a > 0 \).

Finally, the case \(\alpha = 1 \) and a nonlinear damping of the type \(ia|u|^p u \), has been studied by Antonelli-Sparber and Antonelli-Carles-Sparber (cf. [1] and [2]). In this case the origin of the nonlinear damping term is multiphoton absorption.

The purpose of this paper is to prove some global well-posedness and scattering results for (1.1) in the radial case and the rest of the paper is organized as follows. Section 2 is devoted to prove the local existence results. In section 3 we will show the main results i.e the global well-posedness of equation (1.1) and the scattering.

Now let us define the following quantities:

L2-norm: \(m(u) = \| u \|_{L^2} = \left(\int |u(x)|^2 dx \right)^{1/2} \).

Energy: \(E(u) = \frac{1}{2} \| (-\Delta)^{\frac{s}{2}} u \|_{L^2}^2 - \frac{d}{4\alpha + 2d} \| u \|_{L^4}^{\frac{4p}{p-2}} + 2 \).

However, it is easy to prove that if \(u \) is a smooth solution of (1.1) on \([0, T]\), then for all \(t \in [0, T] \) it holds

\[
\frac{d}{dt} (m(u(t))) = -a \| (-\Delta)^{\frac{s}{2}} u \|_{L^2}^2; \quad \tag{1.2}
\]

\[
\frac{d}{dt} (E(u(t))) = -a \int |(-\Delta)^{\frac{s}{2}} u(t)|^2 + a3 \int |(-\Delta)^s u(t)|^p \| u(t) \|_{L^p}^{p-1} \| \sigma(t) \|.
\]

\[
\tag{1.3}
\]

Let us now state our results:

Theorem 1.1. Let \(d \geq 2 \), \(\alpha \in \left(\frac{d}{2d-1}, 1 \right) \) and \(0 < s < \alpha \), such that \(s + \alpha \geq 1 \) then there exists a real number \(\beta > 0 \) such that for any initial datum \(u_0 \in H^\alpha_{rd}(\mathbb{R}^d) \) with \(\| u_0 \|_{L^2} < \beta \), the emanating solution \(u \) is global in \(H^\alpha_{rd}(\mathbb{R}^d) \).

Theorem 1.2. Let \(d \geq 2 \), \(\alpha \in \left(\frac{d}{2d-1}, 1 \right) \) and \(s \geq \alpha \). Then the Cauchy problem (1.1) is globally well-posed in \(H^\alpha_{rd}(\mathbb{R}^d) \).

Theorem 1.3. Let \(\alpha \in \left(\frac{d}{2d-1}, 1 \right) \), \(s = \alpha \), \(u_0 \in H^\alpha_{rd}(\mathbb{R}^d) \) and \(u \in C(\mathbb{R}^+, H^\alpha_{rd}) \) be the global solution to (1.1). Then:

1. There exists \(u_+ \in L^2 \) such that \(\|(u - S_{\alpha,\alpha,s}(\cdot))u_+)(t)\|_{L^2} \to 0 \), as \(t \to +\infty \).
2. \(\|u\|_{L^{\frac{4p}{p-2}}(\mathbb{R}^d \times \mathbb{R}^d)} \to 0 \), when \(a \to +\infty \).

Acknowledgements: The author thanks Luc Molinet for his valuable remarks and comments in this paper.

2. LOCAL EXISTENCE RESULT

Recall that the main tools to prove the local existence results for the FNLS equation are the Strichartz estimates for the associated linear propagator
\[e^{i(-\Delta)^s t}. \] Let us mention that in the case \(a > 0 \) the same results on the local Cauchy problem for (1.1) can be established in exactly the same way as in the case \(a = 0 \), since the same Strichartz estimates hold.

2.1. Strichartz estimate.

Definition 2.1. A pair \((q, r)\), \(q, r \geq 2\) is said to be admissible if:

\[
\frac{4d + 2}{2d - 1} \leq q \leq \infty, \quad \frac{2}{q} + \frac{2d - 1}{r} \leq d - \frac{1}{2},
\]

or

\[
2 \leq \frac{4d + 2}{2d - 1}; \quad \frac{2}{q} + \frac{2d - 1}{r} < d - \frac{1}{2}.
\]

These Strichartz estimates read in the following proposition see [17]:

Proposition 2.1. Suppose \(d \geq 2 \), \(a = 0 \) and \(u \) be a radial solution of (1.1), then for every admissible pair \((q, r)\) satisfy the following condition:

\[
\frac{2}{q} + \frac{d}{r} = \frac{d}{2} - \gamma, \quad \frac{2}{q} + \frac{d}{r} = \frac{d}{2} + \gamma
\]

it holds:

\[
\|u\|_{(L^q_t L^r_x \cap L^\infty_t H^\gamma)} \leq \|u_0\|_{(L^q_t L^r_x \cap L^\infty_t H^\gamma)} + \|u\|^p_{(L^{q'}_t L^{r'}_x)}
\]

For \(a \geq 0 \), \(\alpha \geq 0 \) and \(s \geq 0 \) we denote by \(S_{a,\alpha,s} \) the linear semi-group associated with (1.1), i.e. \(S_{a,\alpha,s}(t) = e^{i(-\Delta)^s t-a(-\Delta)^s t} \). It is worth noticing that \(S_{a,\alpha,s} \) is irreversible.

We will see in the following proposition that that the linear semi-group \(S_{a,\alpha,s} \) enjoys the same Strichartz estimates as \(e^{i(-\Delta)^s t} \).

Proposition 2.2. Let \(d \geq 2, u_0 \in H^\gamma(\mathbb{R}^d), \gamma \in \mathbb{R}, s \geq 0 \) and \(s > \frac{d}{2d-1} \). Then for every admissible pair \((q, r)\) satisfy the following condition:

\[
\frac{2}{q} + \frac{d}{r} = \frac{d}{2} - \gamma, \quad \frac{2}{q} + \frac{d}{r} = \frac{d}{2} + \gamma
\]

it holds:

\[
\|u\|_{(L^q_t L^r_x \cap L^\infty_t H^\gamma)} \leq \|u_0\|_{(L^q_t L^r_x \cap L^\infty_t H^\gamma)} + \|u\|^p_{(L^{q'}_t L^{r'}_x)}
\]

Proof. Let for any \(t \geq 0 \), \(H_{a,s}(t, x) = \int e^{-\imath \xi \cdot x} e^{-at |\xi|^2 s} d\xi \), it holds

\[
S_{a,\alpha,s}(t) \varphi = H_{a,s}(t, \cdot) * e^{i(-\Delta)^s \varphi}, \quad \forall t \geq 0.
\]

Noticing that for \(s > 0 \), \(\|H_{a,s}(t, \cdot)\|_{L^1} = \|H_{1,s}(1, \cdot)\|_{L^1} \) and that, according to Lemma 2.1 in [26], \(H_{1,s}(1, \cdot) \in L^1(\mathbb{R}^d) \) for \(s > 0 \). Now let \(g = |u|^p \) we
have that:

\[
\|u\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} = \|S_{a,a,s}(t)(u_0) - i \int_0^t S_{a,a,s}(t-t')f(t')dt'\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} \leq \|S_{a,a,s}(t)(u_0)\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} + \| \int_0^t S_{a,a,s}(t-t')f(t')dt'\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} \nonumber \\
= \|H_{a,s}(t_0) * e^{i(t-t')^a} (u_0)\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} + \| \int_0^t H_{a,s}(t-t') * e^{i(t-t')^a} (f(t'))dt'\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} \nonumber \\
\leq \|H_{a,s}(t_0)\|_{L^1} \|e^{i(t-t')^a} (u_0)\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} + \| \int_0^t H_{a,s}(t-t') * e^{i(t-t')^a} (f(t'))dt'\|_{(L^r_t L^2_x \cap L^{r'}_x H^s)} \nonumber \\
\leq \|u_0\|_{H^s} + \|f\|_{L^q_t L^r_x} \nonumber \\
\]

With Proposition 2.2 in the hand, it is not too hard to check that the local existence results for equation (1.1) (see Theorem 4.2 in [17]). More precisely, we have the following statement:

Proposition 2.3. Let \(a \geq 0, \alpha \in \left(\frac{d}{2d-1}, 1 \right), s > 0 \) and \(u_0 \in H^a_{rd}(\mathbb{R}^d) \) with \(d \geq 2 \). There exists \(T > 0 \) and a unique solution \(u \in C([0,T]; H^a_{rd}) \cap L^{\frac{2a}{p}+2}_T L^{\frac{2a}{q}+2} \) to (1.1) emanating from \(u_0 \).

3. GLOBAL EXISTENCE RESULTS

In this section, we will prove the global existence results. Let us start by the second theorem:

3.1. Proof of theorem 1.2

To prove theorem 1.2 we will establish an a priori estimate on the Strichartz norm.

Proposition 3.1. Suppose that \(a > 0, \alpha > 0 \) and \(s > 0 \). Then there exists \(\epsilon > 0 \) such that if \(u_0 \in H^a_{rd}(\mathbb{R}^d) \) and \(\|S_{a,a,s}(\cdot)u_0\|_{L^{\frac{2a}{p}+2}_T L^{\frac{2a}{q}+2}} \leq \epsilon \), then the maximal time of the existence \(T^* \) of the solution emanating from \(u_0 \) equal to \(+\infty \).

To prove this claim, we will use the following proposition:

Proposition 3.2. There exists \(\delta > 0 \) with the following property. If \(u_0 \in L^2(\mathbb{R}^d) \) and \(T \in (0, \infty) \) are such that \(\|S_{a,a,s}(\cdot)u_0\|_{L^{p+1}([0,T], L^{p+1})} < \delta \), there exists a unique solution \(u \in C([0,T], L^2(\mathbb{R}^d)) \cap L^{p+1}([0,T], L^{p+1}(\mathbb{R}^d)) \) of (1.1). In addition, \(u \in L^q([0,T], L^r(\mathbb{R}^d)) \) for every admissible pair \((q,r)\), for \(t \in [0,T] \). Finally, \(u \) depends continuously in \(C([0,T], L^2(\mathbb{R}^d)) \cap L^{p+1}([0,T], L^{p+1}(\mathbb{R}^d)) \) on \(u_0 \in L^2(\mathbb{R}^d) \). If \(u_0 \in H^a(\mathbb{R}^d) \), then \(u \in C([0,T], H^a(\mathbb{R}^d)) \).

See [3] for the proof

Proposition 3.3. Let \(u_0 \in H^a \) and \(u \) be the solution of (1.2). Let \(T^* \) be the maximal time of the existence of \(u \) such that \(\|u\|_{L^{\frac{2a}{p}+2}_{\infty,T^*}[0,T^*) L^{\frac{2a}{q}+2}} < +\infty \), then \(T^* = +\infty \).
Proof. Observe that $\| S_{\alpha, \theta}(.)u_0 \|_{L_{\alpha}^{\frac{4\alpha}{d}+2}(0, T; L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2})} \to 0$ as $T \to 0$. Thus for sufficiently small T, the hypotheses of Proposition 3.2 are satisfied. Applying iteratively this proposition, we can construct the maximal solution $u \in C([0, T^*), H^\alpha(\mathbb{R}^d)) \cap L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}([0, T^*), L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}(\mathbb{R}^d))$ of (1.1). We proceed by contradiction, assuming that $T^* < \infty$, and $\| u \|_{L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}(0, T; L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2})} < \infty$.

Let $t \in [0, T^* - t)$. For every $s \in [0, T^* - t)$ we have

$$S(.)u(t) = u(t + \tau) + i \int_0^t \frac{\partial}{\partial \tau} S_{\alpha, \theta}(t - \tau)(|u|^{p-1} u) d\tau.$$

Then by Strichartz estimate, there exists $K > 0$ such that:

$$\| S_{\alpha, \theta}(.)u(t) \|_{L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}([0, T^* - t), L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}(\mathbb{R}^d))} \leq \| u \|_{L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}([0, T^*), L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}(\mathbb{R}^d))} + K(\| u \|_{L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}([0, T^*), L_{\frac{4\alpha}{d}+2}^{\frac{4\alpha}{d}+2}(\mathbb{R}^d))}^{\frac{4\alpha}{d}+1}$$

Therefore, for every s close enough to T^*, it follows that

$$\| S_{\alpha, \theta}(.)u(t) \|_{L^\infty([0, T^* - t), L^\infty(\mathbb{R}^d))} \leq \delta.$$

Applying Proposition 3.2 we find that u can be extended after T^*, which contradicts the maximality.

Now let us return to the proof of proposition 3.1.

Let $q = \frac{4\alpha(1+p)}{d(p-1)} = \frac{4\alpha}{d} + 2$ and $q' = \frac{4\alpha + \theta}{4\alpha + 2d}$, then q' verifies: $\frac{1}{q'} = \frac{1}{q} + \frac{p-1}{\theta}$, by Holder inequalities and the Strichartz estimate we obtain:

$$\| u \|_{L_\theta^q L_p^{p+1}} \lesssim \| u_0 \|_{L_2} + \| u \|_{L_\theta^q L_p^{p+1}}^{p-1} \| u \|_{L_\theta^q L_p^{p+1}} \lesssim \| u_0 \|_{L_2} + \| u \|_{L_\theta^q L_p^{p+1}}^p \| u \|_{L_\theta^q L_p^{p+1}}$$

Remark that:

$$\frac{2\alpha}{\theta} = d\left(\frac{1}{2} - \frac{1}{r}\right), \quad \frac{2\alpha}{\theta} = d\left(\frac{1}{2} - \frac{1}{r}\right)$$

Now $\frac{2\alpha}{\theta} + 2\frac{d-1}{r} < d - \frac{1}{r}$ if $\alpha > \frac{d}{2d+1}$.

If we take $\gamma = 0$ in the Strichartz estimate this gives with Holder inequality:

$$\| u \|_{L_\theta^q L_r^r} \lesssim \| S_{\alpha, \theta}(.)u_0 \|_{L_\theta^q L_r^r} + \| u \|_{L_\theta^q L_p^{p+1}}^p \| u \|_{L_\theta^q L_p^{p+1}} \lesssim \epsilon + \| u \|_{L_\theta^q L_r^r}^p \| u \|_{L_\theta^q L_r^r} \lesssim \epsilon$$

Noticing that the fractional Leibniz rule (see [22]) and by Holder inequality, leads to

$$\| u \|_{L_\theta^q L_r^r} \lesssim \| u \|_{L_\theta^q L_r^r} + \| u \|_{L_\theta^q L_r^r}^p \| u \|_{L_\theta^q L_r^r} \lesssim \| u \|_{L_\theta^q L_r^r} \| u \|_{L_\theta^q L_r^r}^p \| u \|_{L_\theta^q L_r^r} \lesssim \epsilon \| u \|_{L_\theta^q L_r^r}$$

This implies, with Strichartz estimates in the hand, that:

$$\| u \|_{L_\theta^q H_\alpha^r} \lesssim \| u_0 \|_{H_\alpha^r} + \epsilon \| u \|_{L_\theta^q H_\alpha^r}$$

this gives that:

$$\| u \|_{L_\theta^q H_\alpha^r} \lesssim \| u_0 \|_{H_\alpha^r} + \frac{\epsilon}{1 - \epsilon} \| u \|_{L_\theta^q H_\alpha^r}$$
Now, with Strichartz estimate:

\[
\|u\|_{L^\infty H^\alpha} \lesssim \|u_0\|_{H^\alpha} + \|u|u|^{p-1}\|_{L^{p'} H^{\alpha',r}} \\
\lesssim \|u_0\|_{H^\alpha} + e^{p-1}\frac{\|u_0\|_{H^\alpha}}{1-e^{p-1}} \\
\lesssim 1 + e^{p-1}\frac{\|u_0\|_{H^\alpha}}{1-e^{p-1}}
\]

Then for \(\epsilon\) small we obtain

\[
\|u\|_{L^\infty T H^\alpha} < \infty
\]

this gives that \(T = \infty\).

Now we are ready to prove Theorem 1.2

Let \(u \in C([0,T];H^\alpha_{rd}(\mathbb{R}^d))\) be the solution emanating from some initial datum \(u_0 \in H^\alpha_{rd}(\mathbb{R}^d)\). We have the following a priori estimates:

Lemma 3.1. Let \(u \in C([0,T];H^\alpha_{rd}(\mathbb{R}^d))\) be the solution of (1.1) emanating from \(u_0 \in H^\alpha_{rd}(\mathbb{R}^d)\). Then

\[
\|u\|_{L^\infty T L^2} \leq \|u_0\|_{L^2} \quad \text{and} \quad \|(-\Delta)^{\frac{s}{2}} u\|_{L^2_{t}L^2} \leq \frac{1}{\sqrt{2a}} \|u_0\|_{L^2}.
\]

Proof. Assume first that \(u_0 \in H^\infty(\mathbb{R}^d)\). Then \(\text{(L.1)}\) ensures that the mass is decreasing as soon as \(u\) is not the null solution and \(\text{(L.2)}\) leads to

\[
\int_0^T \|(-\Delta)^{\frac{s}{2}} u(t)\|^2_{L^2} dt = -\frac{1}{2a} (\|u(T)\|^2_{L^2} - \|u_0\|^2_{L^2}) \leq \frac{1}{2a} \|u_0\|^2_{L^2}.
\]

This proves \(\text{(3.1)}\) for smooth solutions. The result for \(u_0 \in H^\alpha(\mathbb{R}^d)\) follows by approximating \(u_0\) in \(H^\alpha\) by a smooth sequence \((u_0^n) \subset H^\infty(\mathbb{R}^d)\). \(\square\)

From the first estimate in \(\text{(3.1)}\) we can obtain that:

\[
\|u\|_{L^2_{t}L^2} \leq T^{\frac{1}{2}} \|u\|_{L^\infty L^2} \leq T^{1/2} \|u_0\|_{L^2}
\]

and thus by interpolation:

\[
\|(-\Delta)^{\frac{s}{2}} u\|_{L^2_{t}L^2} \lesssim \|(-\Delta)^{\frac{s}{2}} u\|_{L^4_{t}L^\infty} \|u\|_{L^2_{t}L^2} \lesssim \frac{1}{a^\frac{\theta}{d}} T^{\frac{\theta}{2}(1-\frac{\theta}{d})}
\]

Interpolating now between \(\text{(3.2)}\) and the first estimate of \(\text{(3.1)}\) we get

\[
\|u\|_{L^2_{t}H^{\alpha}_{rd}} \lesssim \frac{1}{a^\frac{\theta}{d}} T^{\frac{\theta}{2}(1-\frac{\theta}{d})} \quad \text{where} \quad \theta = \frac{4a}{d} + 2
\]

and the embedding \(H^{\frac{\theta}{2}}(\mathbb{R}^d) \hookrightarrow L^{\frac{4a}{d}+2}(\mathbb{R}^d)\) ensures that

\[
\|u\|_{L^\infty T L^{\frac{4a}{d}+2}} \lesssim \frac{1}{a^\frac{\theta}{d}} T^{\frac{\theta}{2}(1-\frac{\theta}{d})}.
\]
Denoting by T^* the maximal time of existence of u and letting T tends to T^*, this contradicts proposition (3.3) whenever T^* is finite. This proves that the solutions are global in $H^\alpha(\mathbb{R}^d)$.

Remark 3.1. Note that for $s = \alpha$, we have that $\|u\|_{L^{4\alpha+2}_T L^{4\alpha+2}(\mathbb{R}^d)} \lesssim 1$ for any $T > 0$ which show that

$$
\|u\|_{L^{4\alpha+2}(\mathbb{R}^d)} < +\infty
$$

In plus,

$$
\|u\|_{L^{4\alpha+2}(\mathbb{R}^d)} \to 0, \quad \text{when} \quad a \to +\infty
$$

3.2. Proof Theorem 1.1

Now we will prove the global existence for small data, to do this we will use the following fractional Gagliardo-Niremberq inequalities (see [19]):

Lemma 3.2. Let q, r be any real numbers satisfying $1 \leq q, r \leq \infty$, and s, s_1 be two reals numbers. If u is any functions in $C_0^\infty(\mathbb{R}^d)$, then

$$
\|D^s u\|_{L^p} \leq C \|D^{s_1} u\|_{L^r}^{1-a} \|u\|_{L^r}^{1-a}
$$

where

$$
\frac{1}{p} = \frac{s}{d} + a(\frac{1}{r} - \frac{s_1}{d}) + (1 - a)\frac{1}{q},
$$

for all a in the interval

$$
\frac{s}{s_1} \leq a \leq 1,
$$

where C is a constant depending only on d, s, s_1, q, r and a.

Now we have the following one:

Proposition 3.4. Let $\alpha > 0$ and $u \in H^\alpha(\mathbb{R}^d)$. Then there exists $C = C(d, \alpha)$ such that:

$$
\|(-\Delta)^{\alpha/2} u\|^2 \left(\frac{1}{2} - C \|u\|_{L^2}^{2\alpha} \right) \leq E(u(t))
$$

Proof of proposition 3.4

We have that:

$$
E(u(t)) = \frac{1}{2} \|(-\Delta)^{\alpha/2} u\|_{L^2}^2 - \frac{d}{4\alpha + 2d} \|u\|_{L^{4\alpha+2}}^{4\alpha+2}
$$

But by the fractional Gagliardo-Niremberq inequality there exists $A = A(\alpha, d)$ such that:

$$
\int |u|^{4\alpha+2} \, dx \leq A \left(\int \|(-\Delta)^{\alpha/2} u\|^2 \, dx \right) \left(\int |u|^2 \, dx \right)^{2\alpha}
$$

then

$$
E(u(t)) \geq \frac{1}{2} \|(-\Delta)^{\alpha/2} u\|_{L^2}^2 - A \frac{d}{4\alpha + 2d} \left(\int \|(-\Delta)^{\alpha/2} u\|^2 \, dx \right) \left(\int |u|^2 \, dx \right)^{2\alpha}
$$

$$
= \|(-\Delta)^{\alpha/2} u\|_{L^2}^2 \left(\frac{1}{2} - A \frac{d}{4\alpha + 2d} \left(\int |u|^2 \, dx \right)^{2\alpha} \right).
$$
Now let us return to the proof of theorem 1.1.
Let \(u \in C([0, T]; H^\infty(\mathbb{R}^d)) \) be a solution to (1.1) emanating from \(u_0 \in H^\infty(\mathbb{R}^d) \). Then it holds
\[
\frac{d}{dt} E(u(t)) = -a \int (\langle -\Delta \rangle^{\frac{s}{d}} u(t))^2 + a Im \int ((\langle -\Delta \rangle^{\ast} u(t)) |u(t)|^{p-1} u(t)
\]
and Hölder inequalities in physical space and in Fourier space lead to
\[
\int ((\langle -\Delta \rangle^{\ast} u) |u|^{p+1}) \leq \| (\langle -\Delta \rangle^{\ast} u) \|_{L^2} \| u \|_{L^{p+1}}^{p+1+\alpha}
\]
with
\[
\| (\langle -\Delta \rangle^{\ast} u) \|_{L^2} \leq \| (\langle -\Delta \rangle^{\ast}^{\frac{s+\alpha}{d}} u) \|_{L^{\infty}} \| u \|_{L^{\alpha+\beta}}.
\]
Using Gagliardo-Nirenberg inequality, we obtain
\[
\| u \|_{L^{\infty}}^{\frac{\alpha+\beta}{d} + 2} \leq C_d^\frac{\alpha+\beta}{d} \| \nabla u \|_{L^2} \| u \|_{L^\infty}^{\frac{\alpha+\beta}{d} + 2 - \alpha}.
\]
This estimate together with Cauchy-Schwarz inequality (in Fourier space)
\[
\| \nabla u \|_{L^2} \leq \| (\langle -\Delta \rangle^{\ast}^{\frac{s+\alpha}{d}} u) \|_{L^2} \| u \|_{L^{\infty}}^{\frac{s+\alpha}{d} + 1} \| u \|_{L^{\infty}}^{\frac{s+\alpha}{d} - \frac{2}{d}}.
\]
lead to
\[
\| u \|_{L^{\infty}}^{\frac{\alpha+\beta}{d} + 1} \leq C_d^\frac{\alpha+\beta}{d} \| (\langle -\Delta \rangle^{\ast}^{\frac{s+\alpha}{d}} u) \|_{L^2} \| u \|_{L^{\infty}}^{\frac{s+\alpha}{d} + 1 - \frac{2}{d}}.
\]
Combining the above estimates we eventually obtain
\[
\frac{d}{dt} E(u(t)) \leq a \| (\langle -\Delta \rangle^{\ast}^{\frac{s+\alpha}{d}} u) \|_{L^2}^2 (C_d^\frac{\alpha+\beta}{d} \| u \|_{L^\infty}^{\frac{2}{d}} - 1)
\]
which together with (3.4) implies that \(E(u(t)) \) is not increasing for \(\| u \|_{L^2} \leq \frac{1}{C_d^\frac{\alpha+\beta}{d}} \) implies \(E(u(t)) \leq E(u_0) \) for all \(t \geq 0 \).
Now with proposition 3.4 in the hand we obtain that \(\| (\langle -\Delta \rangle^{\ast} u) \|_{L^2} \leq E(u_0), \) for \(\| u_0 \|_{L^2} \) small enough. This finishes the proof.

Proof of theorem 1.3: The second part of this theorem was proved previously (see remark 3.1). Let us prove the scattering: Let \(v(t) := S_{-a, -\alpha, -s}(t) u(t) \) then
\[
v(t) = u_0 + i \int_0^t S_{a, \alpha, s}(s)(\| u \|_{L^{\frac{2d}{d+\alpha}}}^{\frac{2d}{d+\alpha}} u(s)) ds.
\]
Therefore for \(0 < t < \tau \),
\[
v(t) - v(\tau) = i \int_\tau^t S_{a, \alpha, s}(-t')(\| u \|_{L^{\frac{2d}{d+\alpha}}}^{\frac{2d}{d+\alpha}} u) dt'.
\]
It follows from Strichartz’s estimates (as previously) that:
\[
\| v(t) - v(\tau) \|_{L^2} = \| i \int_\tau^t S_{a, \alpha, s}(-t')(\| u \|_{L^{\frac{2d}{d+\alpha}}}^{\frac{2d}{d+\alpha}} u) \|_{L^2} \leq \| u \|_{L^{\frac{2d}{d+\alpha} + 2}(t, \tau)}^{\frac{2d}{d+\alpha} + 2}
\]
But by remark 3.1, for \(s = \alpha \) we have that \(u \in L^{\frac{2d}{d+\alpha} + 2}((0, \infty), L^{\frac{4d}{d+2}}) \), then the right hand side goes to zero when \(t, \tau \to +\infty \). The scattering follows from the Cauchy criterion.
References

[1] P. Antonelli and C. Sparber. Global well-posedness for cubic NLS with nonlinear damping. Comm. Partial Differential Equations, 35 (2010) 4832-4845.

[2] P. Antonelli, R. Carles and C. Sparber. On nonlinear Schrödinger-type equations with nonlinear damping. Int. Math. Res. Not. (2015), no. 3, 740-762.

[3] C. Bardos, P. Penel, P. Frisch and P.L. Sulem. Modified dissipativity for a nonlinear evolution equation arising in turbulence. Arch. Rat. Mech. Anal, 71 (1979) 4237-256.

[4] D.T. Blackstock. Generalized Burgers equation for plane waves. J. Acoust. Soc. Am. 77 (1985), no. 3, 2050-2053.

[5] T. Cazenave. Semilinear Schrödinger equations. volume 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 2003.

[6] T. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), 59-69, Lecture Notes in Phys., 347, Springer, Berlin, 1989.

[7] T.Cazenave and F.Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation. Nonlinear Anal. 14 (1990), 807-836.

[8] D. Cai, A. J. Majda, D.W.McLaughlin, and E.G.Tabak. Dispersive wave turbulence in one dimension. Phys. D 152/153 (2001), 551-572, Advances in nonlinear mathematics and science. MR 1837929 (2002k:76069)

[9] W. Chen and S. Holm. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115 (2004), no. 4, 1424-1430.

[10] Y. Cho, H. Hajaiej, G. Hwang, and T. Ozawa. On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity. Funkcial. Ekvac. 56 (2013), no. 2, 193-224. MR 3114821

[11] Y. Cho, G. Hwang, S. Kwon, and S.Lee. Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations. Nonlinear Anal. 86 (2013), 12-29. MR 3053553

[12] B. Dodson. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Advances in Mathematics 285 (2015), 1589-1618.

[13] L. Gaul. The influence of damping on waves and vibrations. Mech. Syst. Signal Process. 13 (1999), no. 1, 1-30.

[14] B. Guo, and D. Huang Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 53, 083702 (2012).

[15] B. Guo and Z. Huo Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differential Equations 36(2), 247-255 (2010).

[16] Z. Guo, Y. Sire, Y. Wang, and L. Zhao. On the energy-critical fractional Schrödinger equation in the radial case. e-print arXiv:1310.6816v1 [math.AP] (2013).

[17] Z Guo and Y. Wang. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124(1), 1-38 (2014).

[18] A. Hanyga. Multi-dimensional solutions of space-fractional diffusion equations. Proc. R. Soc. London, Ser. A 457 (2001), 2993-3005.

[19] H.Hajaiej, L. Molinet, T.Ozawa and B. Wang. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. IMA Kyoto Kurokoku Bessatsu B26, 159-199 (2011).

[20] A. D. Ionescu and F.Pusateri. Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266 (2014), no. 1, 139-176. MR 3121725129. MR 3054599

[21] C.Klein, C.Sparber, and P.Markowich.Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), no. 2172, 20140364, 26. MR 3269035

[22] C. E. Kenig, G. Ponce, and L. Vega.Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle. Comm. Pure App. Math, 46 (1993), no. 4, 527-620.
[23] J. Krieger, E. Lenzmann, and P. Raphael. *Nondispersive solutions to the L^2-critical half-wave equation*. Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129.

[24] N. Laskin. *Fractional Quantum Mechanics and Levy Path Integrals*. Physics Letters 268 A 2000, 298-304.

[25] N. Laskin. *Fractional Schrödinger equation*. Physical Review E66: 056108 2002.

[26] C. Miao, B. Yuan and B. Zhang, *Well-posedness of the Cauchy problem for the fractional power dissipative equations*. Nonlinear Analysis, 68 (2008) 461-484

[27] D. Stroock. *Diffusion processes associated with Lévy generators*. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 3, 209-244.

[28] T. Saanouni. *Remarks on damped fractional Schrödinger equation with pure power nonlinearity*. Journal of Mathematical Physics 56, 061502 (2015); doi: 10.1063/1.4922114

[29] M.I. Weinstein. *Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation*. Comm. Partial Differential Equations 12 (1987), no. 10, 1133-1173.

Mohamad Darwich: Faculty of Sciences, Laboratory of Mathematics, Doctoral School of Sciences and Technology, Lebanese University Hadat, Lebanon.