NOTE ON AFFINE DELIGNE-LUSZTIG VARIETIES

XUHUA HE

Abstract. This note is based on my talk at ICCM 2013, Taipei. We give an exposition of the group-theoretic method and recent results on the questions of non-emptiness and dimension of affine Deligne-Lusztig varieties in affine flag varieties.

Introduction

Affine Deligne-Lusztig varieties was first introduced by Rapoport in [18], generalizing Deligne and Lusztig's classical construction. Understanding the emptiness/non-emptiness pattern and dimension of affine Deligne-Lusztig varieties is fundamental in the study of reduction of Shimura varieties with parahoric level structures.

In this note, we will discuss the new group-theoretic method to study affine Deligne-Lusztig varieties in affine flag varieties and answer the above questions in terms of class polynomials of affine Hecke algebras. The two key ingredients are the Deligne-Lusztig reduction [2] and the combinatorial properties of affine Weyl groups [15].

1. Affine Deligne-Lusztig varieties

1.1. Let \mathbb{F}_q be a finite field with q elements and k be an algebraic closure of \mathbb{F}_q. We consider the field $L = k((\epsilon))$ and its subfield $F = \mathbb{F}_q((\epsilon))$. The Frobenius automorphism σ of k/\mathbb{F}_q can be extended in the usual way to an automorphism of L/F such that $\sigma(\sum a_n\epsilon^n) = \sum \sigma(a_n)\epsilon^n$.

Let G be a split connected reductive group over \mathbb{F}_q and let I be a σ-stable Iwahori subgroup of $G(L)$. The affine Deligne-Lusztig variety associated with w in the extended affine Weyl group $\tilde{W} \cong I\backslash G(L)/I$ and $b \in G(L)$ is defined to be

$$X_w(b) = \{gI \in G(L)/I; g^{-1}b\sigma(g) \in IwI\}.$$

Here we embed \tilde{W} set-theoretically into $G(L)$.

2000 Mathematics Subject Classification. 14L05, 20G25.

Key words and phrases. affine Weyl groups, σ-conjugacy classes, affine Deligne-Lusztig varieties.

The author is partially supported by HKRGC grant 602011.
This is a locally closed sub-ind scheme of the affine flag variety $G(L)/I$. It is a finite dimensional k-scheme, locally of finite type over k.

1.2. To illustrate some difficulties in the study of affine Deligne-Lusztig varieties, let us begin with (classical) Deligne-Lusztig varieties. Let B be a Borel subgroup of G defined over \mathbb{F}_q, and W be the associate finite Weyl group. For any $w \in W$ and $b \in G(k)$, the classical Deligne-Lusztig variety $X_{w,b}$ is defined to be

$$X_{w,b} = \{ gB \in G(k)/B(k); g^{-1}b \sigma(g) \in B(k)wB(k) \}.$$

Note that in both the classical case and the affine cases, if b and b' are in the same σ-conjugacy class, then the associated classical/affine Deligne-Lusztig varieties are isomorphic. In other words, the classical/affine Deligne-Lusztig varieties depends on the finite/affine Weyl group element w and the σ-conjugacy class $[b]$.

However, in the classical case, $G(k)$ is a single σ-conjugacy class. Therefore, we may omit b in the definition and simply write $X_w = \{ gB \in G(k)/B(k); g^{-1} \sigma(g) \in B(k)wB(k) \}$. This is what appears in the literature. The classical Deligne-Lusztig variety X_w is always nonempty and is a smooth variety of dimension $\ell(w)$.

The loop group $G(L)$, on the other hand, contains infinitely many σ-conjugacy classes. The extra parameter $[b]$ makes the study of affine Deligne-Lusztig varieties much harder than that of the classical ones.

From a different point of view, the two parameters w and $[b]$ in the definition of affine Deligne-Lusztig varieties appear naturally. There are two important stratifications on the special fiber of a Shimura variety with Iwahori level structure: one is the Kottwitz-Rapoport stratification whose strata are indexed by specific elements $w \in \tilde{W}$; the other is the Newton stratification whose strata are indexed by specific σ-conjugacy classes $[b] \subseteq G(L)$. There is a close relation between the affine Deligne-Lusztig variety $X_w(b)$ and the intersection of the Newton stratum associated with $[b]$ with the Kottwitz-Rapoport stratum associated with w (see [9] and [23]).

2. CONJUGACY CLASSES OF \tilde{W}

2.1. To understand the affine Deligne-Lusztig varieties $X_w(b)$, one needs to understand the σ-conjugacy classes of $G(L)$ and its relation with the extended affine Weyl group \tilde{W}. We will relate the conjugacy classes of \tilde{W} with the σ-conjugacy classes of $G(L)$. Based on the decomposition $G(L) = \sqcup_{w \in \tilde{W}} IwI$, this sounds plausible. However, the

1One may consider any connected reductive group over F that splits over a tamely ramified extension of L. As discussed for example in [12, Section 6 & 7], the questions we’ll discuss in this note can be reduced to quasi-split unramified groups. For simplicity, we only consider split groups in this note.
naive map sending IwI to the σ-conjugacy class of w does not work. The reasons are as follows:

(1) Given two elements w and w' in the same conjugacy class of \tilde{W}, the set IwI and $Iw'I$ may not be σ-conjugated to each other.

(2) One σ-conjugacy class of $G(L)$ may contain elements of different conjugacy classes in \tilde{W}. For example, in the classical case, $G(k)$ is a single σ-conjugacy class and W contains several conjugacy classes.

The ideas to overcome the difficulties is to use the minimal length elements in the conjugacy classes of \tilde{W}. We will recall some properties of the minimal length elements in this section and discuss the applications to σ-conjugacy classes of $G(L)$ in the next section.

2.2. We have the semidirect product

$$\tilde{W} = P \rtimes W = \{t^\lambda w; \lambda \in P, w \in W\};$$

where P is the coweight lattice of a split maximal torus T of G. Let Q be the coroot lattice of T. Then $W_a = Q \rtimes W \subseteq \tilde{W}$ is an affine Weyl group. The length function and Bruhat order on W_a extends in a natural way to \tilde{W} and $\tilde{W} = W_a \rtimes \Omega$, where

$$\Omega = \{w \in \tilde{W}; \ell(w) = 0\} \cong P/Q.$$

Let $\kappa: \tilde{W} \to \tilde{W}/W_a$ be the natural projection. We call κ the Kottwitz map.

Let $P_Q = P \otimes \mathbb{Z} Q$ and P_Q/W be the quotient of P_Q by the natural action of W. We may identify P_Q/W with $P_Q^{+, +}$, the set of dominant rational coweights. For any $w \in \tilde{W}$, $w^{n_0} = t^\lambda$ for some $\lambda \in P$, where $n_0 = \sharp(W)$. Let ν_w be the unique element in $P_Q^{+, +}$ that lies in the W-orbit of λ/n_0. We call the map

$$\tilde{W} \to P_Q^{+, +}, \quad w \mapsto \nu_w$$

the Newton map.

Define $f: \tilde{W} \to \tilde{W}/W_a \times P_Q^{+, +}$ by $w \mapsto (\kappa(w), \nu_w)$. It is constant on each conjugacy class of \tilde{W}. We denote the image of f by $B(\tilde{W})$. Note that in general, a fiber of f contains more than one conjugacy class of \tilde{W}.

2.3. We call an element $w \in \tilde{W}$ straight if $\ell(w) = \langle \nu_w, 2\rho \rangle$, where ρ is the half sum of all the positive roots. It is easy to see that w is straight if and only if $\ell(w^n) = n\ell(w)$ for all $n \in \mathbb{N}$. We call a conjugacy class of \tilde{W} straight if it contains some straight element. Note that a straight element is automatically of minimal length in its conjugacy class.

By [15, Proposition 3.2], a conjugacy class is straight if and only if it contains a length-zero element in the extended affine Weyl group \tilde{W}_M for some standard Levi subgroup M of G.
By [15, Theorem 3.3], the map \(f : \tilde{W} \to \tilde{W}/W_0 \times P_{Q_+} \) induces a bijection from the set of straight conjugacy classes to \(B(\tilde{W}) \).

2.4. Now we discuss the minimal length elements in a conjugacy class \(\mathcal{O} \) of \(\tilde{W} \). The following result is obtained in [15], motivated by previous results of Geck and Pfeiffer [8] for finite Coxeter groups.

Theorem 2.1. Let \(\mathcal{O} \) be a conjugacy class of \(\tilde{W} \). Then

1. Each element of \(\mathcal{O} \) can be brought to a minimal length element by conjugation by simple reflections which reduce or keep constant the length.

2. Any two minimal length elements in \(\mathcal{O} \) are conjugate in the associated Braid group.

3. If moreover, \(\mathcal{O} \) is straight, then any two minimal length elements in \(\mathcal{O} \) are conjugate by cyclic shifts.

Let \(\mathcal{O} \) be a straight conjugacy class and \(\mathcal{O}' \) be another conjugacy class such that \(f(\mathcal{O}) = f(\mathcal{O}') \). Then the minimal length elements in \(\mathcal{O}' \) are related to the straight elements in \(\mathcal{O} \) in the sense of [15, Theorem 3.4]. This property is used to overcome the difficulty \(\S 2.1 \) (2).

3. \(\sigma \)-CONJUGACY CLASSES OF \(G(L) \)

3.1. Recall that \(G(L) = \bigsqcup_{w \in \tilde{W}} IwI \). Let \(w \in \tilde{W} \) and \(s \in \tilde{W} \) be a simple reflection. Then

\[
IswI = \begin{cases}
IswI, & \text{if } sw > w; \\
IswI \sqcup IwI, & \text{if } sw < w.
\end{cases}
\]

\[
IwsI = \begin{cases}
IwsI, & \text{if } ws > w; \\
IwsI \sqcup IwI, & \text{if } ws < w.
\end{cases}
\]

Therefore,

\[
G(L) \cdot_\sigma IwI = \begin{cases}
G(L) \cdot_\sigma IswI, & \text{if } \ell(sws) = \ell(w); \\
G(L) \cdot_\sigma IswI \sqcup G(L) \cdot_\sigma IswI, & \text{if } \ell(sws) < \ell(w).
\end{cases}
\]

Here \(\cdot_\sigma \) denotes the \(\sigma \)-conjugation action.

This equality, together with Theorem 2.1, gives a reduction method in the study of \(G(L) \cdot_\sigma IwI \) and allows us to reduce the general case to the case where \(w \) of minimal length in its conjugacy class. This is used to overcome the difficulty \(\S 2.1 \) (1).

We have the following parameterisation of \(\sigma \)-conjugacy classes of \(G(L) \).

In [15, Section 3], we assume that \(G \) is adjoint. However, [15, Theorem 3.3] holds for any reductive group and the proof is the same as in loc. cit.
Theorem 3.1. There is a canonical bijection between
(a) The set of σ-conjugacy classes of $G(L)$;
(b) The set of straight conjugacy classes of \tilde{W};
(c) The image of $f: \tilde{W} \rightarrow \tilde{W}/W_a \times P_{Q,+}$.

Here the bijection between (a) and (c) follows from Kottwitz’s classification of σ-conjugacy classes [17] together with the fact that any σ-conjugacy class is represented by an element in \tilde{W} [7, Corollary 7.2.2]. The bijection between (b) and (c) is discussed in §2.3. The bijection between (a) and (b) (and a new proof of the classification of σ-conjugacy classes) is obtained in [12, Section 3] using the strategy in §3.1.

3.2. Now we introduce partial orders on the three sets in Theorem 3.1.

Let C, C' be σ-conjugacy classes of $G(L)$. We write $C \leq C'$ if C is contained in the closure of C'. Let O, O' be straight conjugacy classes of \tilde{W}. We write $O \leq O'$ if for some w' of minimal length in O', there exists w of minimal length in O such that $w \leq w'$ with respect to the Bruhat order in \tilde{W}. It is proved in [10, §4.7] and [11, Corollary 7.5] that \leq is a partial order on the set of straight conjugacy classes.

Let $(k, \nu), (k', \nu') \in \tilde{W}/W_a \times P_{Q,+}$. We write $(k, \nu) \leq (k', \nu')$ if $k = k'$ and $\nu' - \nu \in \sum_{\alpha} \mathbb{R}_{\geq 0} \alpha$, where α runs over all the simple roots. This partial order is studied in detail by Chai in [1].

Theorem 3.2. Let C, C' be σ-conjugacy classes of $G(L)$ and O, O' the corresponding straight conjugacy classes in \tilde{W}. Then the following conditions are equivalent:

(1) $C \leq C'$;
(2) $O \leq O'$;
(3) $f(O) \leq f(O').$

Here (1) \Rightarrow (3) is proved by Rapoport and Richartz in [19, Theorem 3.6], (3) \Rightarrow (1) is proved by Viehmann in [21, Theorem 2] and the equivalence between (1) and (2) is proved in [11, Section 11] and [13]. It is easy to show that (2) \Rightarrow (3). It is interesting to give a direct (combinatorial proof) that (3) \Rightarrow (2). 3

4. “Dimension=degree” Theorem

4.1. We first recall the reduction method of Deligne and Lusztig [2, Theorem 1.6].

Theorem 4.1. Let $w \in \tilde{W}$, and let s be a simple affine reflection.

(1) If $\ell(ws) = \ell(w)$, then there exists a universal homeomorphism $X_w(b) \rightarrow X_{ws}(b)$.

3In fact, (3) \Leftrightarrow (1) \Rightarrow (2) holds for any tamely ramified group. We expect that (2) \Rightarrow (1) also holds for any tamely ramified group. As explained in the beginning of this note, it suffices to prove it for quasi-split unramified groups.
(2) If $\ell(sws) = \ell(w) - 2$, then $X_w(b)$ can be written as a disjoint union $X_w(b) = X_1 \sqcup X_2$ where X_1 is closed and X_2 is open, and such that there exist morphisms $X_1 \to X_{sws}(b)$ and $X_2 \to X_{sw}(b)$ which are compositions of a Zariski-locally trivial fiber bundle with one-dimensional fibers and a universal homeomorphism.

The reduction method, together with Theorem 2.1, in principle, reduce the study of $X_w(b)$ to the case where w is of minimal length in its conjugacy class. The latter one, is studied in detail in [14] and [12]. In particular,

Theorem 4.2. Let $w \in \tilde{W}$ be an element of minimal length in its conjugacy class and $b \in G(L)$.

1. If b and w are not in the same σ-conjugacy class of $G(L)$, then $X_w(b) = \emptyset$.
2. If b and w are in the same σ-conjugacy class of $G(L)$, then $\dim X_w(b) = \ell(w) - \langle \nu_w, 2\rho \rangle$.

The emptiness/nonemptiness pattern and dimension formula for affine Deligne-Lusztig varieties is obtained if we can keep track of the reduction step from an arbitrary element to a minimal length element. This is accomplished via the class polynomials of affine Hecke algebras.

4.2. Let \tilde{H} be the Hecke algebra associated with \tilde{W}, i.e., \tilde{H} is the associated $A = \mathbb{Z}[v, v^{-1}]$-algebra with basis T_w for $w \in \tilde{W}$ and multiplication is given by

$$T_w T_w' = T_{ww'}, \quad \text{if } \ell(w) + \ell(w') = \ell(ww');$$

$$(T_s - v)(T_s + v^{-1}) = 0, \quad \text{for any simple reflection } s.$$

It is proved in [15] that for any $w \in \tilde{W}$ and conjugacy class \mathcal{O} of \tilde{W}, there exists a unique polynomial $f_{w, \mathcal{O}} \in \mathbb{N}[v - v^{-1}]$ such that for any finite dimensional representation V of \tilde{H},

$$\text{Tr}(T_w, V) = \sum_{\mathcal{O}} f_{w, \mathcal{O}} \text{Tr}(T_{w_{\mathcal{O}}}, V),$$

where $w_{\mathcal{O}}$ is a minimal length element in \mathcal{O}.

4.3. Now we state the main result in [12], which relates the dimension of affine Deligne-Lusztig varieties with the degree of the class polynomials.

Theorem 4.3. Let $b \in G(L)$ and $w \in \tilde{W}$. Then

$$\dim(X_w(b)) = \max_{\mathcal{O}} \frac{1}{2}(\ell(w) + \ell(\mathcal{O}) + \deg(f_{w, \mathcal{O}})) - \langle \bar{\nu}_b, 2\rho \rangle,$$

here \mathcal{O} runs over conjugacy classes of \tilde{W} with $f(\mathcal{O}) = f(b)$ and $\ell(\mathcal{O})$ is the length of any minimal length element in \mathcal{O}.
Here we use the convention that the dimension of an empty variety and the degree of a zero polynomial are both $-\infty$. So in particular, $X_w(b) \neq \emptyset$ if and only if $f_{w,0} \neq 0$ for some conjugacy class \mathcal{O} of \tilde{W} with $f(\mathcal{O}) = f(b)$.

5. AFFINE DELIGNE-LUSZTIG VARIETIES FOR BASIC b

5.1. We say that an element $b \in G(L)$ is basic if $\langle \nu_b, \alpha \rangle = 0$ for any root α of G. For basic b, we are able to give a more explicit description of the emptiness/nonemptiness pattern and dimension formula, as conjectured by Görtz, Haines, Kottwitz and Reuman in [7, Conjecture 1.1.1 & Conjecture 1.1.3]. We first discuss the emptiness/nonemptiness pattern. It is given in terms of the P-alcoves introduced in [7, Definition 2.1.1].

Let $P = MN$ be a semistandard parabolic subgroup of G and $w \in \tilde{W}$. We say that w is a P-alcove element if $w \in \tilde{W}_N$ and $N(L) \cap wIw^{-1} \subseteq N(L) \cap I$.

Theorem 5.1. Let $w \in \tilde{W}$ and $b \in G(L)$ be a basic element. Then $X_w(b) \neq \emptyset$ if and only if for any semistandard parabolic subgroup $P = MN$ such that w is a P-alcove element, $\kappa_M(b) \in \kappa_M([b] \cap M(L))$.

The “only if” part is proved in [7, Theorem 1.1.2] as a consequence of the Hodge-Newton decomposition for affine Deligne-Lusztig varieties [7, Theorem 1.1.4]. The “if” part is proved in [5, Theorem A] by showing that the notion of P-alcoves is compatible with the Deligne-Lusztig reduction. An algebraic proof of the analogy of Hodge-Newton decomposition for affine Hecke algebras and a new proof of the “only if” part of the Theorem 5.1 is obtained in [16].

5.2. Define

- $\eta_1 : \tilde{W} = P \rtimes W \to W$, the projection map.
- $\eta_2 : \tilde{W} \to W$ such that $\eta_2(w)^{-1}w$ lies in the dominant Weyl chamber.
- $\eta(w) = \eta_2(w)^{-1}\eta_1(w)\eta_2(w)$.

As a consequence of Theorem 5.1, there is a simpler criterion for emptiness/nonemptiness if w lies in the shrunken Weyl chamber.

Corollary 5.2. Assume that the Dynkin diagram of G is connected. Let $b \in G(L)$ be a basic element and $w \in \tilde{W}$ lies in the shrunken Weyl chamber. Then $X_w(b) \neq \emptyset$ if and only if $\kappa(b) = \kappa(w)$ and $\eta(w)$ is not in any proper parabolic subgroup of W.

5.3. The following dimension formula is conjectured in [7, Conjecture 1.1.3] and proved in [12, Theorem 12.1].
Theorem 5.3. Let $b \in G(L)$ be a basic element and $w \in \tilde{W}$ lie in the shrunken Weyl chamber. If $X_w(b) \neq \emptyset$, then
\[
\dim X_w(b) = \frac{1}{2}(\ell(w) + \ell(\eta(w)) - \text{def}(b)),
\]
where $\text{def}(b)$ is the defect of b.

Here the lower bound is obtained by constructing an explicit sequence from w to a minimal length element w' in some conjugacy class of \tilde{W} (in most cases, w and w' are not in the same conjugacy class). The upper bound is obtained by combining the “partial conjugation” method in [10] and the dimension formula for affine Deligne-Lusztig varieties in affine Grassmannian in [6, Theorem 2.15.1] and [20, Theorem 1.1]. If w lies in the shrunken Weyl chamber, then the lower bound and the upper bound coincide and the theorem is proved.\footnote{I learned from E. Viehmann [22] that her student Paul Hamacher recently proved the conjectural dimension formula for affine Deligne-Lusztig varieties in affine Grassmannian for unramified groups. Combining this result, with the proof in [12] as we outlined above, and [5, Proposition 2.5.1], we are able to generalize the above theorem to any tamely ramified groups.}

It is a challenging problem to give a close formula of $\dim X_w(b)$ for w in the critical strips.

6. Affine Deligne-Lusztig varieties for nonbasic b

6.1. An element $w \in \tilde{W}$ can be written in a unique way as $xt^\mu y$, where $x, y \in W$ and $\mu \in P$ such that $t^\mu y$ sends the fundamental alcove to an alcove in the dominant Weyl chamber. In this case, $\eta(xt^\mu y) = yx$.

Let w_0 be the longest element in W. For any $\mu \in P_+$, $w_0 t^\mu$ is the unique maximal element in its $W \times W$-coset. For such element, there is a complete answer for the emptiness/nonemptiness pattern and dimension formula.

Theorem 6.1. Let $b \in G(L)$ and $\mu \in P_+$. Then $X_{w_0 t^\mu}(b) \neq \emptyset$ if and only if $f(b) \leq f(t^\mu)$. In this case,
\[
\dim X_{w_0 t^\mu}(b) = \langle \mu - \nu_b, \rho \rangle + \ell(w_0) - \frac{1}{2}\text{def}(b).
\]
6.2. For other w, not much is known. Görtz, Haines, Kottwitz and Reuman made the following conjecture [7, Conjecture 9.5.1 (b)] which relates the affine Deligne-Lusztig variety $X_w(b)$ with $X_w(b')$ for basic b'.

Conjecture 6.2. Let $b \in G(L)$ and b' be a basic element in $G(L)$ such that $\kappa(b) = \kappa(b')$. Then for $w \in W$ with sufficiently large length, $X_w(b) \neq \emptyset$ if and only if $X_w(b') \neq \emptyset$. In this case,

$$\dim X_w(b) = \dim X_w(b') - \langle \nu_b, \rho \rangle + \frac{1}{2}(\text{def}(b') - \text{def}(b)).$$

Many numerical evidence for group of small rank is obtained by computer in support of this conjecture. Another evidence for split b is obtained in [13].

Theorem 6.3. Assume that the Dynkin diagram of G is connected. Let $\mu \in P_+$ and $\lambda \in Q$ be a dominant and regular coweight. Then for any $x, y \in W$, $X_{x\mu + \lambda y}(t^{\nu_y}) \neq \emptyset$ if and only if yx is not in any proper parabolic subgroup of W. In this case,

$$\dim X_{x\mu + \lambda y}(t^{\nu_y}) = \langle \lambda, \rho \rangle + \frac{1}{2}(\ell(x) + \ell(y) + \ell(yx)).$$

Acknowledgment

We are grateful to M. Rapoport and E. Viehmann for their comments on this note.

References

[1] C.-L. Chai, *Newton polygons as lattice points*, Amer. J. Math. 122 (2000), 967–990.

[2] P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. of Math. (2) 103 (1976), no. 1, 103–161.

[3] Q. Gashi, On a conjecture of Kottwitz and Rapoport, Ann. Sci. École Norm. Sup. (4) 43 (2010), no. 6, 1017–1038.

[4] U. Görtz and X. He, *Dimension of affine Deligne-Lusztig varieties in affine flag varieties*, Documenta Math. 15 (2010), 1009–1028.

[5] U. Görtz, X. He and S. Nie, *P-alcoves and nonemptiness of affine Deligne-Lusztig varieties*, arXiv:1211.3784.

[6] U. Görtz, T. Haines, R. Kottwitz, D. Reuman, *Dimensions of some affine Deligne-Lusztig varieties*, Ann. Sci. École Norm. Sup. (4) 39 (2006), 467–511.

[7] U. Görtz, T. Haines, R. Kottwitz, D. Reuman, *Affine Deligne-Lusztig varieties in affine flag varieties*, Compos. Math. 146 (2010), no. 5, 1339–1382.

[8] M. Geck and G. Pfeiffer, *On the irreducible characters of Hecke algebras*, Adv. Math. 102 (1993), no. 1, 79–94.

[9] T. Haines, *Introduction to Shimura varieties with bad reduction of parahorlc type*, Clay Math. Proc. 4 (2005), 583–642.

[10] X. He, *Minimal length elements in some double cosets of Coxeter groups*, Adv. Math. 215 (2007), no. 2, 469–503.

[11] X. He, *Minimal length elements of extended affine Weyl group, I*, arXiv:1004.4040, preprint.
[12] X. He, Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math., to appear.
[13] X. He, unpublished note.
[14] X. He and G. Lusztig, A generalization of Steinberg’s cross-section, J. Amer. Math. Soc. 25 (2012), 739–757.
[15] X. He and S. Nie, Minimal length elements of extended affine Weyl group, II, arXiv:1112.0824.
[16] X. He and S. Nie, P-alcoves, parabolic subalgebras and cocenters of affine Hecke algebras, preprint.
[17] R. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339.
[18] M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque (2005), no. 298, 271–318.
[19] M. Rapoport and M. Richartz, On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996), 153–181.
[20] E. Viehmann. The dimension of affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. (4) 39 (2006), 513–526.
[21] E. Viehmann, Newton strata in the loop group of a reductive group, Amer. J. Math. 135 (2013), no. 2, 499–518.
[22] E. Viehmann, Private communication, 08/20/2013.
[23] E. Viehmann and T. Wedhorn, Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann. 356 (2013), no. 4, 1493–1550.

Department of Mathematics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

E-mail address: maxhhe@ust.hk