INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a pneumonia outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and began in December 2019. Although the main involvement is in the respiratory system, there are also many other systemic manifestations including cardiac problems. Acute cardiac injury, which is defined by troponin I elevation has recently been reported with increased hospital mortality in patients with COVID-19. The incidence of cardiac arrhythmia was reported at a rate of 16.7% in patients with COVID-19 and the incidence increases up to 44.4% in the intensive care unit (ICU) setting. Similarly, in another study, cardiac arrhythmia was reported in 18.5% of 130 patients who had mechanical ventilation requirements.
It was shown that hospitalized patients with COVID-19 with atrial fibrillation (AF) and atrial flutter history had a higher mortality rate than those without AF.7 However, the data for the incidence of new-onset AF (NOAF) in patients with COVID-19 are limited. The most common type of new arrhythmia in COVID-19 infection was AF, and AF was mostly detected in the ICU setting.6,9 In a study, NOAF incidence was 7.5% in patients hospitalized for COVID-19.10

The ICU mortality in COVID-19 is 35.5%,11 and the rate increases up to 45% in patients who require invasive mechanical ventilation.12 Several other risk factors for mortality were defined such as older age, male sex, higher body mass index (BMI), elevated levels of D-dimer, lactate, and presence of active cancer, coronary artery disease, liver, and kidney dysfunction in patients admitted to ICU.13,14 This study aimed to determine the incidence of NOAF development in critically ill COVID-19 patients, identify possible risk factors for NOAF development, and evaluate its effect on mortality.

2 | MATERIAL AND METHODS

2.1 | Study population

After approvals from the local ethics committee (with date 01.02.2021 and number 2021/04-27) and the Turkish Ministry of Health, the retrospective cohort study was conducted in adult ICUs of our center. All adult patients (age ≥18 years) diagnosed with COVID-19 infection were included in the study between March 2020 and January 2021. SARS-CoV-2 infection was confirmed by either using reverse transcriptase polymerase chain reaction (RT-PCR) testing on respiratory samples and/or with clinical characteristics, laboratory, and computed tomography findings. The exclusion criteria of the study were having chronic AF diagnosis before COVID-19 diagnosis, presence of cardiac pacemaker/implantable cardioverter-defibrillator, atrial flutter, and NOAF development immediately after cardiopulmonary resuscitation.

2.2 | Definition for NOAF

The NOAF group consisted of patients who had their first AF attack after hospitalization for COVID-19. NOAF was defined as either (1) AF ≥1 h in duration, as noted by bedside telemetry; (2) AF <1 h in duration, but captured on the electrocardiogram, or (3) AF initiating pharmacologic therapy or electrical cardioversion according to literature.15 12-derivation electrocardiography (ECG) record is routinely obtained from all patients at the time of admission to the ICU in our center (number of beds = 30). All beds are monitored in the ICU, and nurse to bed ratio was 1/2. When there was either monitor image/alarm or examination findings that are compatible with AF; an immediate 12-derivation ECG was recorded and the intensivist and/or cardiologist confirmed the definite NOAF diagnosis. Medical and/or electrical cardioversion, if required, was decided based on the clinical condition of the patient.

2.3 | Other definitions

The cardiac injury was defined as an increase in high-sensitive (HS) troponin I levels above the 99th-percentile upper reference limit.2 Acute kidney injury (AKI) was identified according to the Kidney Disease: Improving Global Outcomes definition.16 Ventilator-associated pneumonia (VAP) was defined as pneumonia occurring more than 48 h after patients have been intubated and received mechanical ventilation. VAP was identified using a combination of positive culture results from the respiratory specimen, clinical, laboratory, and radiological findings.17 Acute myocardial infarction was defined according to the fourth universal definition of myocardial infarction,18 and cardiologist confirmation.

2.4 | Variables

The demographic data (age, gender, BMI, smoking history, comorbidities), Charlson Comorbidity Index (CCI), Acute Physiology and Chronic Health Evaluation (APACHE) II, and Sequential Organ Failure Assessment (SOFA) Scores, were recorded. Disease characteristics for COVID-19 including the date for symptom onset, RT-PCR results, radiological, and blood tests were collected. Major events during ICU stay (presence of septic shock, presence of cardiac injury, ICU acquired infections including VAP, mechanical ventilation support, AKI, and renal replacement therapy [RRT]) were recorded. The durations from symptom onset of the disease to the development of NOAF were recorded. Lengths of ICU, and hospital stays, and mortality were recorded.

2.5 | Statistical analysis

The primary outcome of the study was whether the presence of NOAF is a risk factor for mortality in COVID-19. Secondary outcomes were the risk factors associated with the development of NOAF. All categorical variables are expressed as numbers and percentages, and continuous variables were expressed as the median and interquartile range (IQR). Categorical variables between groups were compared with chi-square or Fisher’s exact test, continuous variables were compared with Mann-Whitney U-test. The independent effect of NOAF on hospital mortality was assessed with multivariate logistic regression analysis. To build the model, a purposeful selection method was used to select a subset of covariates that were considered clinically important, adjusting for confounders and statistical significance. An adjusted odds ratio (OR) and a 95% confidence interval (CI) were reported for each independent factor. A two-tailed P-value of <.05 was considered statistically significant. Statistical analysis was performed using SPSS (Statistical Package for the Social Sciences Version 24, IBM Corp., Armonk, NY, USA).
3 | RESULTS

3.1 | General characteristics

A total of 248 of 301 patients who were admitted to ICU with suspicion of COVID-19 infection were included in the study. Of them, 37 (14.9%) had NOAF (Figure 1). NOAF positive group was older than the NOAF negative group (79.0 [71.5-84.0] vs 70.0 [60.0-78.0] years, \(P < .001 \); Table 1).

The median duration from the onset of the COVID-19 infection symptoms to NOAF development was 10.0 (5.0-17.0) days. The median duration from hospitalization to NOAF development was 7.0 (2.0-12.5) days, and the median duration from ICU admission to NOAF development was 3.0 (0.0-10.0) days.

Chronic obstructive pulmonary disease (COPD) (24.3% vs 10.9%, respectively; \(P = .03 \)), and chronic kidney disease (CKD) (27.0%, vs 13.3%, respectively; \(P = .046 \)) were more common in the NOAF positive group than the NOAF negative group. CCI median score was higher in the NOAF positive group than the NOAF negative group as well (6.0 [5.0-7.0] vs 4.0 [2.0-6.0], respectively, \(P = .003 \)). NOAF positive group had higher blood urea nitrogen (BUN) than the NOAF negative group median values (37.1 [28.4-75.0] vs 30.0 [21.0-50.0] mg/dL, respectively, \(P = .003 \)). Although it did not reach statistical significance, PaO2/FiO2 ratio was lower in patients with NOAF than in patients without NOAF (106.0 [91.5-122.5] vs 113.0 [96.0-146.0], respectively, \(P = .14 \)).

3.2 | Cardiopulmonary complications

It was found that the median B-type natriuretic peptide (BNP) level was higher in the NOAF positive group compared to the NOAF negative group (366 [112-850] vs 96 [41-277] pg/mL, respectively, \(P = .001 \)). The BNP levels of 114 (46.0%) patients were >100 pg/mL, which is the upper limit of the normal range, and the proportion of NOAF positives was higher than the rate of NOAF negatives (64.9%, vs 42.7%, respectively; \(P = .003 \)). The median level for HS troponin I was higher in the NOAF positive group than the NOAF negative group (78.0 [17.9-325.0] vs 27.0 [9.7-118.0] ng/L respectively, \(P = .02 \)).

The cardiac injury was detected in 159 (64.1%) patients. Although the rate for cardiac injury was higher in the NOAF positive group than the NOAF negative group it did not reach a statistical significance (75.7%, vs 62.1%, respectively; \(P = .13 \)). Acute myocardial infarction was detected in 10 patients (4.0%) after the COVID-19 diagnosis. None of these patients had NOAF. Pulmonary embolism (PE) was detected in 6 patients (2.4%) after the COVID-19 diagnosis. It was shown that the incidental PE rate was higher in the NOAF positive group than the NOAF negative group (8.1% vs 1.4%, respectively; \(P = .045 \)). All the PE attacks were diagnosed before the NOAF attack.

3.3 | Major events during ICU stay

AKI and VAP were more frequent in the NOAF positive group than the NOAF negative group (for AKI 70.3%, vs 51.7%, respectively; \(P = .048 \) and for VAP 54.1%, vs 35.5%, respectively; \(P = .04 \)). The percentage of patients with secondary bacterial infection was significantly higher in the NOAF positive group than the NOAF negative group (75.7% vs 51.7%, respectively; \(P = .007 \)).

3.4 | Length of stays and mortality

No differences were detected in terms of the median length of ICU stay (for NOAF positive group 9.0 [4.5-15.0] vs for NOAF negative group 7.0 [4.0-14.0] days, \(P = .21 \)) and median length of hospital stay (for NOAF positive group 15.0 [9.5-20.5] vs for NOAF negative group: 14.0 [9.0-20.0] days, \(P = .55 \)). Although ICU mortality of patients was higher in the NOAF positive group compared to the NOAF negative group, no statistically significant difference was detected (83.8% vs 67.3%, respectively, \(P = .052 \)). Hospital mortality was higher in the NOAF positive group than the NOAF negative group (86.5%, vs 67.3%, respectively, \(P = .019 \)).

In this study, hospital mortality was 70.1% (\(n = 174 \)). Statistically significant variables for hospital mortality are reported in Table 2.

3.5 | Logistic regression analysis for hospital mortality

Multivariable analysis (Table 3) showed vasopressor requirement (OR 12.20, 95%CI 5.12-29.05, \(P < .001 \)), AKI (OR 5.53,
Characteristics	All Cases	New-onset AF	No AF	P value
Age, years	71.0 (61.0-80.0)	79.0 (71.5-84.0)	70.0 (60.0-78.0)	**<.001**
Gender				
Female	72 (29.0)	8 (21.6)	64 (30.3)	**.33**
Male	176 (71.0)	29 (78.4)	147 (69.7)	
Smoking history	54 (21.8)	11 (29.7)	43 (20.4)	**.20**
Body mass index, kg/m²	26.0 (22.5-29.2)	24.6 (20.6-27.7)	26.1 (22.5-29.3)	**.07**
RT-PCR positivity	226 (91.1)	36 (97.3)	190 (90.0)	**.21**
Comorbidities				
Hypertension	175 (70.6)	31 (83.8)	144 (68.2)	**.07**
Diabetes mellitus	91 (36.7)	14 (37.8)	77 (36.5)	**.85**
Coronary artery disease	65 (26.2)	11 (29.7)	54 (25.6)	**.68**
Congestive heart failure	39 (15.7)	9 (24.3)	30 (14.2)	**.14**
Valvular heart disease	7 (2.8)	2 (5.4)	5 (2.4)	**.28**
Neurological disease	47 (19.0)	11 (29.7)	36 (17.1)	**.10**
Chronic kidney disease	38 (15.3)	10 (27.0)	28 (13.3)	**.046**
COPD	32 (12.9)	9 (24.3)	23 (10.9)	**.03**
Malignancy	30 (12.1)	4 (10.8)	26 (12.3)	**1.00**
Hyperlipidemia	15 (6.0)	2 (5.4)	13 (6.2)	**1.00**
Chronic liver disease	2 (0.8)	0 (0.0)	2 (0.9)	**1.00**
APACHE II	22.0 (12.0-28.0)	24.0 (16.5-27.0)	20.0 (11.0-28.0)	**.15**
SOFA	5.0 (3.0-7.0)	6.0 (4.0-7.5)	5.0 (3.0-7.0)	**.14**
CCI	5.0 (2.0-7.0)	6.0 (5.0-7.0)	4.0 (2.0-6.0)	**.003**
Laboratory data				
BUN, mg/dL	31.0 (23.0-51.0)	37.1 (28.4-75.0)	30.0 (21.0-50.0)	**.003**
Creatinine, mg/dL	1.03 (0.79-1.64)	1.03 (0.87-2.17)	1.03 (0.79-1.56)	**.09**
Total bilirubin, mg/dL	0.83 (0.62-1.14)	0.96 (0.63-1.22)	0.81 (0.62-1.12)	**.27**
ALT, U/L	37.0 (24.0-63.7)	34.0 (24.0-58.5)	37.0 (24.0-65.0)	**.60**
AST, U/L	52.0 (38.0-90.7)	57.0 (38.5-10.5)	52.0 (38.0-91.0)	**.69**
LDH, U/L	554 (415-705)	521 (357-654)	555 (422-726)	**.18**
Ferritin, ng/mL	622 (338-1130)	627 (298-1562)	617 (340-1121)	**.79**
HS-troponin I, ng/L	29.0 (11.0-126.2)	78.0 (17.9-325.0)	27.0 (9.7-118.0)	**.02**
D-dimer, µg/mL	1.60 (100-384)	1.90 (120-1075)	1.60 (90-360)	**.10**
BNP (plasma), pg/mL	118 (46-324)	366 (112-850)	96 (41-277)	**.001**
CRP, mg/L	155.0 (84.7-228.2)	158.0 (104.0-219.5)	154.0 (83.0-228.7)	**.83**
Procalcitonin, ng/mL	0.33 (0.13-1.14)	0.41 (0.18-1.80)	0.32 (0.11-1.13)	**.15**
WBC, x 10⁹/µL	11.1 (7.9-15.1)	11.0 (7.5-16.7)	11.2 (7.9-15.0)	**.96**
Neutrophil, x 10⁹/µL	9.6 (6.8-13.9)	9.5 (6.4-14.1)	9.6 (6.8-14.0)	**.87**
Lymphocyte, x 10⁹/µL	0.5 (0.3-0.9)	0.5 (0.4-0.9)	0.5 (0.3-0.9)	**.83**
Lymphocyte percentages, %	5.7 (3.2-9.4)	5.4 (3.1-8.0)	5.8 (3.3-9.8)	**.45**
Hemoglobin, g/dL	12.5 (10.8-13.8)	12.3 (10.2-13.3)	12.5 (11.0-13.9)	**.18**
Platelet, x 10⁹/µL	258 (172-337)	226 (167-317)	260 (173-343)	**.21**
BNP>100 pg/mL	114 (46.0)	24 (64.9)	90 (42.7)	**.003**
HS-Troponin I > 42.9 ng/L	107 (43.1)	21 (56.8)	86 (40.8)	**.07**

Arterial blood gas analysis

pH	7.41 (7.32-7.47)	7.38 (7.27-7.46)	7.42 (7.33-7.47)	**.26**
PaO₂, mmHg	63.0 (53.0-76.0)	58.2 (46.0-69.0)	64.0 (54.0-78.0)	**.003**
PaCO₂, mmHg	34.0 (30.0-42.0)	33.0 (27.5-44.5)	35.0 (30.0-41.6)	**.46**
HCO₃⁻, mmol/L	22.2 (19.6-25.0)	21.0 (16.9-24.5)	22.8 (20.0-25.0)	**.03**
Lactate, mmol/L	2.00 (1.40-3.00)	2.10 (1.50-3.10)	2.00 (1.40-3.00)	**.49**
TABLE 1 (Continued)

Characteristics	All Cases	New-onset AF	No AF	P value
	(N: 248)	(n: 37)	(n: 211)	
SO2, %	91.0 (86.0-94.0)	86.0 (80.5-92.5)	91.6 (88.0-94.0)	.002
PaO2/FiO2	113.0 (95.2-142.5)	106.0 (91.5-122.5)	113.0 (96.0-146.0)	.14
PaO2/FiO2 <150, n (%)	193 (77.8)	32 (86.5)	161 (76.3)	.20

Events/therapies during ICU stay

- IMV: 198 (79.8) vs. 33 (89.2) vs. 165 (78.2) p < .18
- Successfully weaning: 19 (7.7) vs. 2 (5.4) vs. 17 (8.1) p = .53
- Vasopressor requirement: 166 (66.9) vs. 29 (78.4) vs. 137 (64.9) p < .13
- VAP: 95 (38.3) vs. 20 (54.1) vs. 75 (35.5) p = .04
- Secondary bacterial infections: 137 (55.2) vs. 28 (75.7) vs. 109 (51.7) p = .007
- Acute kidney injury: 135 (54.4) vs. 26 (70.3) vs. 109 (51.7) p = .048
- Renal replacement therapy: 66 (26.6) vs. 14 (37.8) vs. 52 (24.6) p < .10
- Acute myocardial infarction: 10 (4.0) vs. 0 (0.0) vs. 10 (4.7) p = .36
- Cardiac injury: 159 (64.1) vs. 28 (75.7) vs. 131 (62.1) p = .13
- Acute pulmonary embolism: 6 (2.4) vs. 3 (8.1) vs. 3 (1.4) p = .045
- CPR: 9 (3.6) vs. 1 (2.7) vs. 8 (3.8) p = 1.00

Treatment for COVID-19

- Favipiravir: 235 (94.8) vs. 36 (97.3) vs. 199 (94.3) p = .69
- LMWH: 235 (94.8) vs. 35 (94.6) vs. 200 (94.8) p = 1.00
- ASA: 190 (76.6) vs. 27 (73.0) vs. 163 (77.3) p = .50
- Dipiridamol: 147 (59.3) vs. 22 (59.5) vs. 125 (59.2) p = 1.00
- Corticosteroids: 190 (76.6) vs. 28 (75.7) vs. 162 (76.8) p = .83
- Pulse corticosteroid: 101 (40.7) vs. 17 (45.9) vs. 84 (39.8) p = .58
- Hydroxychloroquine: 56 (22.6) vs. 6 (16.2) vs. 50 (23.7) p = .39
- Azithromycin: 9 (3.6) vs. 0 (0.0) vs. 9 (4.3) p = .36

Treatment for NOAF

- Amiodarone: N/A vs. 34 (91.9) vs. N/A p = N/A
- Electrical cardioversion: N/A vs. 5 (13.5) vs. N/A p = N/A
- Conversion to normal sinus rhythm: N/A vs. 11 (29.7) vs. N/A p = N/A

- Length of ICU stay, days: 7.0 (4.0-14.0) vs. 9.0 (4.5-15.0) vs. 7.0 (4.0-14.0) p = .21
- Length of hospital stay, days: 14.0 (9.0-20.0) vs. 15.0 (9.5-20.5) vs. 14.0 (9.0-20.0) p = .55
- ICU mortality: 173 (69.8) vs. 31 (83.8) vs. 142 (67.3) p = .052
- Hospital mortality: 174 (70.2) vs. 32 (86.5) vs. 142 (67.3) p = .019

Note: All values are expressed as numbers (percentages) or median (interquartile range). Statistically significant values are expressed in bold.

Abbreviations: AF, atrial fibrillation; ALT, alanine transaminase; APACHE II, Acute Physiology and Chronic Health Evaluation II; ASA, acetylsalicylic acid; AST, aspartate transaminase; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary disease; CPR, cardiopulmonary resuscitation; CRP, C-reactive protein; FiO2, fraction of Inspired oxygen; HS Troponin I, high-sensitive troponin I; ICU, intensive care unit IMV, invasive mechanical ventilation; LDH, lactate dehydrogenase; LMWH, low molecular weight heparin; N/A, not applicable; NIV, noninvasive ventilation; PaCO2, partial pressure of arterial carbon dioxide; PaO2, partial pressure of arterial oxygen; RT-PCR, reverse transcription-polymerase chain reaction; SO2, arterial oxygen saturation; SOFA Score, The Sequential Organ Failure Assessment Score; VAP, ventilator associated pneumonia; WBC, white blood cell count.

aAny valvar disease.
bHistory of cerebrovascular disease or dementia.
cIncludes hematological and solid organ malignancies.
dCalculated on the day of ICU admission.
eTested on the day of ICU admission.
fLaboratory upper limit of BNP (100 pg/mL).
gLaboratory upper limit of HS-Troponin (42.9 ng/L).
hUse of any dose of vasopressor.
*N = 215; **Detected before CPR.
TABLE 2 Statistically significant variables for hospital mortality (univariate analysis)

Characteristics	All Cases (N: 248)	Dead group (n: 174)	Alive group (n: 74)	P value
Age, years	71.0 (61.0-80.0)	75.0 (66.0-81.2)	61.0 (52.0-70.2)	<.001
Body mass index, kg/m²	26.0 (22.5-29.2)	25.8 (22.0-28.0)	27.0 (23.5-30.5)	.027
Comorbidities				
Neurological disease	47 (19.0)	45 (25.9)	2 (2.7)	<.001
Chronic kidney disease	38 (15.3)	33 (19.0)	5 (6.8)	.020
Malignancy	30 (12.1)	27 (15.5)	3 (4.1)	.010
APACHE II	22.0 (12.0-28.0)	24.0 (15.0-29.2)	12.0 (9.0-22.0)	<.001
SOFA	5.0 (3.0-7.0)	6.0 (4.0-8.0)	3.0 (2.0-4.0)	<.001
CCI	5.0 (2.0-7.0)	5.5 (4.0-8.0)	2.0 (1.0-4.0)	<.001
Laboratory data				
BUN, mg/dL	31.0 (23.0-51.0)	35.0 (26.0-56.2)	24.5 (18.0-31.9)	<.001
Creatinine, mg/dL	1.03 (0.79-1.64)	1.20 (0.81-1.92)	0.95 (0.72-1.10)	<.001
ALT, U/L	37.0 (24.0-63.7)	36.0 (22.0-62.0)	42.5 (26.7-68.5)	0.035
Ferritin ng/mL	622 (338-1130)	648 (368-1217)	479 (249-1009)	.011
HS-troponin I, ng/L	29.0 (11.0-126.2)	49.5 (17.0-226.0)	27.1 (11.0-174.0)	<.001
D-dimer, µg/mL	1.60 (1.00-3.87)	2.00 (1.20-5.80)	1.05 (0.50-1.85)	<.001
BNP (plasma), pg/mL	118 (46-324)	139 (61-415)	72 (21-172)	.001
CRP, mg/L	155.0 (84.7-228.2)	169.0 (91.3-243.5)	124.0 (74.0-191.3)	.009
Procalcitonin, ng/mL	0.33 (0.13-1.14)	0.46 (0.19-1.88)	0.14 (0.07-0.28)	<.001
WBC, x 10^3/µL	11.1 (7.9-15.1)	12.2 (8.3-16.8)	9.4 (7.3-11.9)	.001
Neutrophil, x 10^3/µL	9.6 (6.8-13.9)	10.4 (7.0-14.8)	8.3 (5.9-10.8)	.002
Hemoglobin, g/dL	12.5 (10.8-13.8)	12.2 (10.3-13.6)	12.9 (11.7-14.0)	.007
Arterial blood gas analysis				
pH	7.41 (7.32-7.47)	7.38 (7.29-7.46)	7.44 (7.39-7.48)	.001
HCO₃⁻, mmol/L	22.2 (19.6-25.0)	22.0 (18.0-24.6)	24.2 (21.7-26.0)	<.001
Lactate, mmol/L	2.00 (1.40-3.00)	2.10 (1.47-3.20)	1.80 (1.20-2.40)	.002
Events/therapies during ICU stay				
IMV	198 (79.8)	173 (99.4)	25 (33.8)	<.001
Vasopressor requirement	166 (66.9)	151 (86.8)	15 (20.3)	<.001
VAP	95 (38.3)	87 (50.0)	8 (10.8)	<.001
Secondary bacterial infections	137 (55.2)	117 (67.2)	20 (27.0)	<.001
Acute kidney injury	135 (54.4)	123 (70.7)	12 (16.2)	<.001
Renal replacement therapy	66 (26.6)	62 (35.6)	4 (5.4)	<.001
Cardiac injury	159 (64.1)	131 (75.3)	28 (37.8)	<.001
NOAF	37 (14.9)	32 (18.4)	5 (6.8)	.019

Note: All values are expressed as numbers (percentages) or median (interquartile range).
Abbreviations: ALT, alanine transaminase; APACHE II, Acute Physiology and Chronic Health Evaluation II; BUN, blood urea nitrogen; CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; HS Troponin I, high-sensitive troponin I; IMV, invasive mechanical ventilation; SOFA Score, The Sequential Organ Failure Assessment Score; VAP, ventilator associated pneumonia; WBC, white blood cell count.
*N = 215

95%CI 1.87-10.92, P = .001, and high CCI (OR 1.36, 95%CI 1.10-1.66, P = .003), as factors independently associated with an increased risk of hospital mortality. However, NOAF was not an independent risk factor for hospital mortality (OR 1.42, 95%CI 0.40-5.09, P = .582).

4 DISCUSSION

This retrospective cohort study has two important results. First, NOAF incidence in critically ill COVID-19 patients is 14.9%. NOAF risk was associated with older age and the presence of comorbidities.
The incidence of NOAF in surgical and medical mixed ICUs varied between 1.7% and 29.5% in the literature. However, the occurrence of NOAF in critically ill COVID-19 patients has not been well described. Some studies have reported atrial arrhythmia and AF episodes in patients with COVID-19.8,9,20 and NOAF has mainly occurred in critically ill patients.8,9 However, in these studies, data of NOAF are limited. NOAF rate was separately reported in one study and incidence of NOAF was 7.5% (n = 12) of 160 patients who were hospitalized for COVID-19 infection.20 We have found that the incidence of NOAF in critically ill patients is 14.9%; hence the risk of developing NOAF in critically ill patients with severe covid-19 infection is relatively high.

Cardiac involvement, such as myocardial injury, myocardial ischemia, myocarditis, cardiogenic shock, acute cor pulmonale, thrombosis is relatively high. With severe illness.

ICU settings, however, this study included only critically ill patients.8,9 This study included a heterogeneous group of patients from both ICU and non-ICU settings, however, this study included only critically ill patients with severe illness.

We believe that the higher rate of cardiac injury was probably due to the population studied. Previous reports previously reported. We believe that the higher rate of developing NOAF in critically ill patients with severe covid-19 infection is relatively high.

However, the etiology of cardiac arrhythmias in COVID-19 has not yet been fully clarified. The most proposed mechanisms are hypoxia because of acute respiratory distress, increased inflammatory response, and myocardial damage caused by cytokine crisis, increase in catecholamine, direct viral endothelial damage, acid-base, and electrolyte abnormalities may trigger atrial and ventricular arrhythmia.23 However, the etiology of cardiac arrhythmias in COVID-19 is not yet been fully clarified. The most proposed mechanisms are hypoxia because of acute respiratory distress, increased inflammatory response, and myocardial damage caused by cytokine crisis, increase in catecholamine, direct viral endothelial damage, acid-base, and electrolyte abnormalities.24,25 In this study, the PaO2/FiO2 ratio was lower in patients with NOAF than in patients without NOAF, but there was no statistically significant difference. More comprehensive studies are required to investigate the effect of hypoxemia on NOAF development in patients with COVID-19.

The incubation period for COVID-19 is median 5-6 days; however, it can be up to 14 days.26,27 This relatively short period is not sufficient for developing fibrosis-related conditions; therefore, it is expected that this short incubation period does not increase the risk of AF.25 Since patients with COVID-19 who developed AF were older and had comorbidities, such as hypertension,10,28 it was considered that COVID-19 infection triggers NOAF in the presence of a previously predisposing factor.25 Our findings are also consistent with these reports as patients who had NOAF in this study were older and had higher CCI as well. It was observed that NOAF was developed during the first days of acute illness (median day 3.0 [0.0-10.0]) which is similar to previously reported.29,30

To date, the acute cardiac injury was observed between 12.0% and 29.8% in patients with COVID-19.2-4,31,32 The frequency of cardiac injury was 64.1% in our study and this rate was higher than previously reported. We believe that the higher rate of cardiac injury was probably due to the population studied. Previous reports included a heterogeneous group of patients from both ICU and non-ICU settings, however, this study included only critically ill patients with severe illness.

Our results suggest that patients with COPD are more vulnerable to NOAF development. Previously reported risk factors in ICU patients were advanced age, male sex, accompanying cardiovascular diseases, acute renal failure, acute respiratory failure, shock, sepsis, pulmonary artery catheter use, vasopressor use, need for mechanical ventilation, increased fluid load, and organ failure.33,34 A study reported that incidental AF frequency was approximately 4 times higher in patients with severe COPD than in non-COPD patients.35 NOAF prevalence was between 4.7% and 15% in stable patients with COPD,36 and around 20%-30% in severe patients with COPD.37 Impaired gas exchange and oxidative stress were considered the possible causes triggering NOAF in COPD.38 Respiratory failure and hypoxemia because of COVID-19 may have increased the risk of NOAF in this specific group of patients.

In our study, it was also found that NOAF was mostly detected in patients who developed secondary bacterial infections in ICU follow-ups. AF was reported to be the most common arrhythmia in patients with sepsis39 and was also associated with increased mortality in this group of patients.50 The use of vasopressor also contributes to NOAF development in septic shock patients.34

It was observed that PE rate was higher in the NOAF positive group than the NOAF negative group in this cohort. We believe that the coexistence of NOAF and PE deserves specific attention in COVID-19. A meta-analysis reported that the PE prevalence was 16.5% in COVID-19 infection, which is relatively high.41 PE-induced ventricular dysfunction and increased atrial tension may be a factor for triggering AF.42

New AF attacks have deleterious effects, such as increasing heart rate, causing irregular rhythm and losses in atrial systole, and neurohormonal activation. For this reason, NOAF development can further complicate critical disease or may limit response to therapy.43 Cardiac output may decrease because of loss of atrial systole and tachycardia, and acute heart failure may develop.33,34 It was found in some studies that NOAF development correlate with the severity of critical illness.45

Although no independent relations were detected in some previous studies between NOAF and hospital mortality,46-48 some studies

TABLE 3	Logistic regression analysis for risk factors of hospital mortality	
	OR (95% CI)	P value
Vasopressor requirement	12.20 (5.12-29.05)	<.001
AKI	4.53 (1.87-10.92)	.001
Charlson comorbidity index	1.36 (1.10-1.66)	.003
APACHE II	0.99 (0.92-1.06)	.822
SOFA*	1.22 (0.95-1.58)	.108
New-onset atrial fibrillation	1.42 (0.40-5.09)	.582

Statistically significant values are expressed in bold.
Abbreviations: AKI, acute kidney injury; APACHE II, Acute Physiology and Chronic Health Evaluation II; CI, confidence interval; OR, odds ratio; SOFA, The Sequential Organ Failure Assessment Score.

*Calculated on the day of ICU admission.
found that NOAF was associated with increased hospital mortality regardless of the severity of the critical disease. However, in this study, NOAF was not an independent risk factor for hospital mortality in multivariate analysis.

5 | LIMITATIONS AND STRENGTHS OF THE STUDY

This study has several limitations. First, the results are from a single center and could not be generalized. Second, it is impossible to differentiate whether NOAF developed due to COVID-19–related cardiac involvement or due to critical illness itself. Third, we could not analyze long-term consequences of NOAF. However, the study has some strengths. We think that our findings are valuable as NOAF development in critical COVID-19 studied to a lesser extent. Second, the diagnostic accuracy for NOAF was high as the diagnosis was confirmed by an intensivist/cardiologist in all cases.

6 | CONCLUSION

Older patients with comorbidities have a high risk of developing NOAF in severe COVID-19 infection. The prognostic significance of NOAF on ICU and hospital mortality in these patients merits further research.

CONFLICT OF INTEREST

The Authors declare no Conflict of Interests for this article.

ORCID

Bişar Ergün https://orcid.org/0000-0003-4828-7576
Begüm Ergün https://orcid.org/0000-0003-2920-9214
Melih Kaan Sözmey https://orcid.org/0000-0001-8595-9760
Murat Küçük https://orcid.org/0000-0003-1705-645X
Mehmet Nuri Yakar https://orcid.org/0000-0002-3542-3906
Bilgin Cömert https://orcid.org/0000-0002-2148-5356
Ali Necati Gökmen https://orcid.org/0000-0002-3225-7666
Erdem Yaka https://orcid.org/0000-0002-6644-4240

REFERENCES

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.
2. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–10.
3. Wu T, Fan Y, Chen M, Xu Y, Wang X, Zhan L, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–8.
4. Guo T, Fan Y, Chen M, Wu X, Zhan L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–8.
5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020;323(11):1061–9.
6. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372–4.
7. Peltzer B, Manoche KK, Ying X, Kirzner J, Ip JE, Thomas G, et al. Outcomes and mortality associated with atrial arrhythmias among patients hospitalized with COVID-19. J Cardiovasc Electrophysiol. 2020;31(12):3077–85.
8. Colon CM, Barrios JG, Chiles JW, McElwee SK, Russell DW, Maddox WR, et al. Atrial arrhythmias in COVID-19 patients. JACC: Clinical Electrophysiology. 2020;6:1189–90.
9. Bhatia A, Mayer MM, Adusumalli S, Hyman MC, Oh E, Tierney A, et al. COVID-19 and cardiac arrhythmias. Hear Rhythm. 2020;17(9):1439–44.
10. Sanz AP, Tahoces LS, Pérez RO, Ferrer EG, Recalde ÁS, Gómez JLZ. New-onset atrial fibrillation during COVID-19 infection predicts poor prognosis. Cardiol J. 2021;28(1):34–40.
11. Armstrong RA, Kane AD, Kursumovic E, Oglesby FC, Cook TM. Mortality in patients admitted to intensive care with COVID-19: an updated systematic review and meta-analysis of observational studies. Anaesthesia. 2021;76(4):537–48.
12. Lim ZJ, Subramaniam A, Reddy MP, Blecher G, Kadam U, Afroz A, et al. Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation. Am J Respir Crit Care Med. 2021;203(1):54–66.
13. Wendel García PD, Fumeaux T, Guerri P, Heuberger DM, Montomoli J, Roche-Campo F, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: initial report of the international RISC-19-ICU prospective observational cohort. eClinicalMedicine. 2020;25:100449. https://doi.org/10.1016/j.eclinm.2020.100449
14. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020;180(11):1–12.
15. Fernando SM, Mathew R, Hibbert B, Rochwerg B, Munshi L, Walkey AJ, et al. New-onset atrial fibrillation and associated outcomes and resource use among critically ill adults - a multicenter retrospective cohort study. Crit Care. 2020;24(1).
16. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.
17. Spalding MC, Cripps MW, Minshall CT. Ventilator-associated pneumonia: new definitions. Crit Care Clin. 2017;33(2):277–92.
18. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64.
19. Wetterslev M, Haase N, Hassager C, Belley-Cote EP, Mcintyre WF, An Y, et al. New-onset atrial fibrillation in adult critically ill patients: a scoping review. Intensive Care Med. 2019;45:928–38.
20. Iacopino S, Placentino F, Colella J, Pesce F, Pardeo A, Filannino P, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018;72(18):2231–64.
21. Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. 2008;3(1):127–55.
22. Antzelevitch C, Burashnikov A. Overview of basic mechanisms of cardiac arrhythmia. Card Electrophysiol Clin. 2011;3:23–45.
23. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020;31:1003–8.
25. Gawałko M, Kaplon-Cieślicka A, Hohl M, Dobrev D, Linz D. Cardiovascular comorbidities and potential clinical implications. Int J Cardiol Heart Vasc. 2020;30:100631.
26. Yu P, Zhu J, Zhang Z, Han Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. J Infect Dis. 2020;221(11):1757–61.
27. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (CoVid-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–82.
28. Sala S, Peretto G, De Luca G, Farina N, Campochiaro C, Tresoldi M, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. PACE - Pacing Clin Electrophysiol. 2020;43(8):891–3.
29. Arrigo M, Ishihara S, Feliot E, Rudiger A, Deye N, Cariou A, et al. New-onset atrial fibrillation in critically ill patients and its association with mortality: a report from the FROG-ICU study. Int J Cardiol. 2018;266:95–9.
30. Guenancia C, Binquet C, Laurent G, Vinault S, Bruyère R, Prin S, et al. Incidence and predictors of new-onset atrial fibrillation in septic shock patients in a medical ICU: data from 7-day Holter ECG monitoring. PLoS ONE. 2015;10(5):e0127168.
31. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
32. Kuno T, Takahashi M, Obata R, Maeda T. Cardiovascular comorbidities, cardiac injury, and prognosis of COVID-19 in New York City. Am. Heart J. 2020;226:24–5.
33. Wu Z, Fang J, Wang Y, Chen F. Prevalence, outcomes, and risk factors of new-onset atrial fibrillation in critically ill patients: a systematic review. Int Heart J. 2020;61(3):476–85.
34. Bedford JP, Harford M, Petrinic T, Young JD, Watkinson PJ. Risk factors for new-onset atrial fibrillation on the general adult ICU: a systematic review. Int J Cardiol. 2019;253:169–75.
35. Konecny T, Park JY, Somers KR, Konecny D, Orban M, Soucek F, et al. Relation of chronic obstructive pulmonary disease to atrial and ventricular arrhythmias. Am J Cardiol. 2014;114(2):272–7.
36. Buch P, Friberg J, Scharling H, Lange P, Prescott E. Reduced lung function and risk of atrial fibrillation in the Copenhagen City Heart Study. Eur Respir J. 2003;21(6):1012–6.
37. Martinez CH, Han MLK. Contribution of the environment and comorbidities to chronic obstructive pulmonary disease phenotypes. Med Clin North Am. 2012;96:713–27.
38. Terzano C, Romani S, Conti V, Paone G, Oriolo F, Vitarelli A. Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur Rev Med Pharmacol Sci. 2014;18(19):2908–17.
39. Shahreya M, Fahhoum R, Akineyey O, Bhandari S, Dang G, Khouzam RN. Severe sepsis and cardiac arrhythmias. Ann Transl Med. 2018;6(1):6.
40. Christian SA, Schorr C, Ferchau L, Jarbrink ME, Parrillo JE, Gerber DR. Clinical characteristics and outcomes of septic patients with new-onset atrial fibrillation. J Crit Care. 2008;23(4):532–6.
41. Suh YJ, Hong H, Ohana M, Bomppard F, Revel MP, Valle C, et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology. 2021;298(2):E70–80.
42. Hald EM, Enga BF, Lechen ML, Mathiesen EB, Njølstad I, Wilsgaard T, et al. Venous thromboembolism increases the risk of atrial fibrillation: the Tromso study. J Am Heart Assoc. 2014;3(1):1–7.
43. Liu WC, Lin WY, Lin CS, Bin HH, Lin TC, Cheng SM, et al. Prognostic impact of restored sinus rhythm in patients with sepsis and new-onset atrial fibrillation. Crit Care. 2016;20(1):373.
44. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham heart study. Circulation. 2003;107(23):2920–5.
45. Seguin P, Signoret L, Laviolle B, Branger B, Mallet P, et al. Incidence and risk factors of atrial fibrillation in a surgical intensive care unit. Crit Care Med. 2004;32(3):722–6.
46. Gupta S, Tiuroiopati R, Green C. Atrial fibrillation and mortality in critically ill patients: a retrospective study. Am J Crit Care. 2015;24(4):336–41.
47. Annane D, Sébille V, Duboc D, Le Heuzey JY, Sadoul N, Bouvier E, et al. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Crit Care Med. 2008;178(1):20–5.
48. Carrera P, Thongprayoon C, Cheungpasitporn W, Iyer VN, Moua T. Epidemiology and outcome of new-onset atrial fibrillation in the medical intensive care unit. J Crit Care. 2016;31:102–6.
49. Shaver CM, Chen W, Janz DR, May AK, Darbar D, Bernard GR, et al. Atrial fibrillation is an independent predictor of mortality in critically ill patients. Crit Care Med. 2015;43(10):2104–11.

How to cite this article: Ergün B, Ergan B, Sözen MK, Küçük M, Yakar MN, Cömert B, et al. New-onset atrial fibrillation in critically ill patients with coronavirus disease 2019 (COVID-19). J Arrhythmia. 2021;37:1196–1204. https://doi.org/10.1002/joa3.12619