Anisotropic magnetocaloric effect in single crystals of CrI₃

Yu Liu and C. Petrovic
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Dated: May 22, 2018)

We report a systematic investigation of dc magnetization and ac susceptibility, as well as anisotropic magnetocaloric effect in bulk CrI₃ single crystals. A second-stage magnetic transition was observed just below the Curie temperature T_c, indicating a two-step magnetic ordering. The low temperature thermal demagnetization could be well fitted by the spin-wave model rather than the single-particle model, confirming its localized magnetism. The maximum magnetic entropy change $-\Delta S_M^{max}$ is about 65 J kg⁻¹ K⁻¹ and the corresponding adiabatic temperature change $\Delta T_{ad} \sim 2.34$ K are achieved from heat capacity analysis with the magnetic field up to 9 T. Anisotropy of $\Delta S_M(T, H)$ was further investigated by isothermal magnetization, showing that the difference of $-\Delta S_M^{max}$ between the ab plane and the c axis reaches a maximum value ~ 1.56 J kg⁻¹ K⁻¹ with the field change of 5 T. With the scaling analysis of ΔS_M, the rescaled $\Delta S_M(T, H)$ curves collapse onto a universal curve, indicating a second-order type of the magnetic transition. Furthermore, the $-\Delta S_M^{max}$ follows the power law of H^n with $n = 0.64(1)$, and the relative cooling power RCP depends on H^n with $m = 1.12(1)$.

I. INTRODUCTION

Layered intrinsically ferromagnetic (FM) semiconductors hold great promise for both fundamental physics and future applications in nano-spintronics. For instance, Cr₂X₂Te₆ (X = Si, Ge) and CrX₃ (X = Cl, Br, I) have recently attracted wide attention as promising candidates for long-range magnetism in monolayer. Bulk Cr₂X₂Te₆ (X = Si, Ge) shows FM order with the Curie temperature (T_c) of 32 K for Cr₂Si₂Te₆ and 61 K for Cr₂Ge₂Te₆, respectively. Scanning magneto-optic Kerr microscopy experiment shows that the T_c monotonically decreases with decreasing thickness of Cr₂Ge₂Te₆, from bulk of 68 K to bilayer of 30 K. Similarly, bulk CrI₃ shows FM with T_c of 61 K, and the magnetism can persist in mechanically exfoliated monolayer with T_c of 45 K. The magnetism in CrI₃ is intriguingly layer-dependent, from FM in the monolayer, to antiferromagnetic (AFM) in the bilayer, and back to FM in the trilayer, providing great opportunities for designing magneto-optoelectronic devices. A rich phase diagram, including in-plane AFM, off-plane FM, and in-plane FM, is further predicted by applying lateral strain and/or charge doping. Besides, the magneto-transport measurement on the thin exfoliated CrI₃ reveals a tunneling magnetoresistance as large as 10,000%, exhibiting multiple transitions to the different magnetic states. The magnetism in monolayer and/or bilayer CrI₃ can also be controlled by electrostatic doping using a dual-gate field-effect device.

Since the layered van der Waals magnetic materials may exhibit magnetocristalline anisotropy, in this paper, we study magnetocaloric effect by heat capacity and magnetization measurements around T_c. Isothermal magnetic entropy change $\Delta S_M(T, H)$ can be well scaled into a universal curve independent on temperature and field, indicating the magnetic transition is of a second-order type. Moreover, the $\Delta S_M(T, H)$ follows the power law of H^n with $n = dln | \Delta S_M | /dln(H)$. The temperature dependence of n values reaches minimum at $T \sim 60$ K, at T_c of bulk CrI₃.

II. EXPERIMENTAL DETAILS

Single crystals of CrI₃ were grown by chemical vapor transport (CVT) method and characterized as described previously. The heat capacity was measured in Quantum Design PPMS-9 system with field up to 9 T. Several crystals with mass of 5.6 mg were used in heat capacity measurement. The magnetization data as a function of temperature and field were collected using Quantum Design MPMS-XL5 system in temperature range from 10 to 100 K with a temperature step of 2 K around T_c and field up to 5 T. One crystal with mass of 1.67 mg was covered with scotch tape on both sides and used in magnetization measurement. The magnetic entropy change $-\Delta S_M$ from the magnetization data was estimated using a Maxwell relation.

III. RESULTS AND DISCUSSIONS

Figures 1(a) and 1(b) exhibit the temperature dependences of zero-field cooling (ZFC) and field-cooling (FC) magnetizations $M(T, H)$ for bulk CrI₃ single crystal measured in the fields ranging from 0.05 to 5 T applied in the ab plane and along the c axis, respectively. An apparent increase in $M(T, H)$ around T_c is observed, which corresponds well to the reported paramagnetic (PM) to FM transition. The T_c is roughly defined by the minima of the dM/dT curves [insets in Figs. 1(a) and 1(b)], which is about 61 K in low fields and increases to 74 K in 5 T. The magnetization is nearly isotropic in 5 T, while in low fields, significant magnetic anisotropy is observed at low temperatures. An additional weak kink was observed below T_c with field in the ab plane. Below T_c, the magneti-
confirm it is a two-step magnetic ordering. This is thermal demagnetization at low temperature is generally observed below bulk FM transition temperature, ac susceptibility was measured at oscillated ac field of 3.8 Oe and frequency of 499 Hz applied (e) in the ab plane and (f) the c axis. Inset shows the enlargement region around T_c.

The anomaly below the PM-FM transition is clearly observed. In order to determine the accurate transition temperatures, ac susceptibility was measured at oscillated ac field of 3.8 Oe and frequency of 499 Hz. Two distinct peaks in the real part $\chi'(T)$ of CrI$_3$ at 61 K and an additional peak at 48 K, as well as the weak anomalies at corresponding temperatures along the c axis [inset in Fig. 1(f)], confirm it is a two-step magnetic ordering. This is in agreement with $d\chi(T)/dT$ data in Ref. 2 where additional anomaly was observed below bulk FM transition at 61 K.

Figure 2 displays the low temperature thermal demagnetization analysis for CrI$_3$ measured at $H = 1$ T along the c axis using both spin-wave (SW) and single-particle (SP, inset) models. For a localized moment, the thermal demagnetization at low temperature is generally explained with the spin-wave excitations which follows Bloch equation 21-24.

$$\frac{\Delta M}{M(0)} = \frac{M(0) - M(T)}{M(0)} = \frac{A T^{3/2}}{T} + B T^{5/2} + \cdots, \quad (1)$$

where A and B are the coefficients, $M(0)$ is the magnetization at 0 K. The $T^{3/2}$ term arises due to harmonic contribution and the $T^{5/2}$ term originates from higher order term in spin-wave dispersion relation. While in itinerant or band magnetism where the net moment of system is directly proportional to the displacement energy between spin-up and spin-down subbands, the thermal demagnetization is realized as a result of excitation of electrons from one subband to another. The single-particle excitation is generally expressed as 21:

$$\frac{\Delta M}{M(0)} = \frac{M(0) - M(T)}{M(0)} = C T^{3/2} \exp \frac{-\Delta}{k_B T}, \quad (2)$$

where C is the coefficient, Δ is the energy gap between the top of full subband and the Fermi level and k_B is the Boltzmann constant. Usually the $M(0)$ can be estimated from extrapolation of $M(T)$ data. As shown in Fig. 2, the SW model gives a better fitting result than the SP model up to 0.9 T_c, suggesting localized magnetism of insulating CrI$_3$. The fitting yields $A = 1.6(1) \times 10^{-4}$ K$^{-3/2}$, $B = 1.21(3) \times 10^{-9}$ K$^{-5/2}$, $C = 1.3(1) \times 10^{-3}$ K$^{-3/2}$ and $\Delta = 2.4(2)$ meV. It is not surprising that the SP model fails due to intermediate correlation in CrI$_3$. Therefore, a more accurate treatment would be Moriya’s self-consistent renormalization theory 25. It further gives that the magnetic anisotropy in CrI$_3$ comes predominantly from the anisotropic symmetric superexchange via Cr-I-Cr with large spin-orbital coupling rather than the single ion anisotropy 26.
Fig. 3(a). A clear λ-type peak that corresponds to the PM-FM transition is determined to be at \(T_c = 61 \) K in zero field, in line with the magnetization data [Figs. 1(e) and 1(f)]. Its height is lowered, broadened and shifts to higher temperatures with increase in magnetic field. The estimated heat capacity change \(\Delta C_p = C_p(T, H) - C_p(T, 0) \) as a function of temperature in various fields is plotted in Fig. 3(b). Obviously, \(\Delta C_p < 0 \) for \(T < T_c \) and \(\Delta C_p > 0 \) for \(T > T_c \), whilst, it changes sharply from negative to positive at \(T_c \), corresponding to the change from FM to PM region. The entropy \(S(T, H) \) can be calculated as:

\[
S(T, H) = \int_0^T \frac{C_p(T, H)}{T} dT.
\]

Assuming the electronic and lattice contributions are not field dependent and in an adiabatic process of changing the field, the magnetic entropy change \(\Delta S_M \) should be \(\Delta S_M(T, H) = S_M(T, H) - S_M(T, 0) \). The adiabatic temperature change \(\Delta T_{ad} \) caused by the field change can be indirectly determined, \(\Delta T_{ad}(T, H) = T(S, H) - T(S, 0) \), where \(T(S, H) \) and \(T(S, 0) \) are the temperatures in the field \(H \neq 0 \) and \(H = 0 \), respectively, at constant total entropy \(S \). Figures 4(a) and 4(b) exhibit the \(-\Delta S_M \) and \(\Delta T_{ad} \) estimated from heat capacity data as a function of temperature in various fields, both of which exhibit its maximum near the Curie temperature and increase with increasing fields. The maxima of \(-\Delta S_M \) and \(\Delta T_{ad} \) reach the values of 5.65 J kg\(^{-1}\) K\(^{-1}\) and 2.34 K, respectively, with the magnetic field of 9 T. Since there is a large magnetic anisotropy in CrI\(_3\), it is of interest to calculate the individual magnetic entropy change for the two directions respectively.

Figures 5(a) and 5(b) show the isothermal magnetizations with field up to 5 T applied in the \(ab \) plane and along the \(c \) axis, respectively, from 10 to 100 K where data were taken every 2 K around \(T_c \). Below \(T_c \), the magnetization along the \(c \) axis saturates at a relatively low field, however, it increases slowly at low fields in the \(ab \) plane and is more harder to saturate, confirming its large magnetic anisotropy and the easy \(c \) axis. The magnetic entropy change can be obtained as:

\[
\Delta S_M(T, H) = \int_0^H \left[\frac{\partial S(T, H)}{\partial H} \right]_{T} dH.
\]

(4)

With the Maxwell’s relation \(\left[\frac{\partial S(T, H)}{\partial H} \right]_{T} = [\frac{\partial M(T, H)}{\partial T}]_{H} \), it can be further written as:

\[
\Delta S_M(T, H) = \int_0^H \left[\frac{\partial M(T, H)}{\partial T} \right]_{H} dH.
\]

(5)
In the case of magnetization measured at small discrete magnetic field and temperature intervals, \(\Delta S_M(T, H) \) could be practically approximated as:

\[
\Delta S_M(T, H) = \frac{\int_{T_i}^{T_{i+1}} M(T, H) dH - \int_{T_i}^{T_{i+1}} M(T, H) dH}{T_{i+1} - T_i}.
\]

Figures 6(a) and 6(b) gives the calculated \(-\Delta S_M \) as a function of temperature in various fields up to 5 T applied in the \(ab \) plane and along the \(c \) axis, respectively. All the \(-\Delta S_M(T, H) \) curves present a pronounced peak around \(T_c \), similar to those obtained from heat capacity data [Fig. 4(a)], and the peak broads asymmetrically on both sides with increasing field. The maximum value of \(-\Delta S_M \) under 5 T reaches 2.68 J kg\(^{-1}\) K\(^{-1}\) in the \(ab \) plane, which is 37\% smaller than that of 4.24 J kg\(^{-1}\) K\(^{-1}\) along the \(c \) axis. It is interesting to note that the values of \(-\Delta S_M \) for the \(ab \) plane are negative at low temperatures in low fields, however, all the values are positive along the \(c \) axis, indicating large anisotropy. Fig. 6(c) exhibits the field dependence of \(-\Delta S_M \) at low temperatures, in which the sign change is clearly observed with the field in the \(ab \) plane but not along the \(c \) axis. This originates most likely from the competition of the temperature dependence of magnetic anisotropy and the magnetization.

The anisotropy decreases with increasing temperature, whereas the magnetization may exhibit opposite behavior. At low fields, the magnetization at higher temperature could be larger than that at lower temperature [Figs. 1(a,c) and Fig. 5(a)], which gives a negative \(-\Delta S_M \). To shed more light on the nature of magnetic transition, we have further analyzed the magnetocaloric data following a recently proposed scaling model. It is constructed by

FIG. 5. (Color online). Representative magnetization isothermals at various temperatures for (a) the \(ab \) plane and (b) the \(c \) axis.

FIG. 6. (Color online). Temperature dependence of isothermal magnetic entropy change \(-\Delta S_M \) obtained from magnetization measurements at various magnetic fields change (a) in the \(ab \) plane and (b) along the \(c \) axis. Insets: the normalized \(\Delta S_M \) as a function of the rescaled temperature \(\theta \). (c) Field dependence of \(-\Delta S_M \) at low temperatures.
normalizing all the $-\Delta S_M$ curves against the respective maximum $-\Delta S_M^{\text{max}}$, namely, $\Delta S_M/\Delta S_M^{\text{max}}$ by rescaling the temperature θ below and above T_c as defined in the following equations:

$$\theta^- = (T_{\text{peak}} - T)/(T_r - T_{\text{peak}}), \quad T < T_{\text{peak}},$$

$$\theta^+ = (T - T_{\text{peak}})/(T_r - T_{\text{peak}}), \quad T > T_{\text{peak}},$$

where T_r and T_r^* are the temperatures of the two reference points that have been selected as those corresponding to $\Delta S_M(T_r, T_r^*) = \frac{1}{2}\Delta S_M^{\text{max}}$. As shown in the insets of Figs. 6(a) and 6(b), all the $-\Delta S_M(T, H)$ curves in various fields collapse into a single curve, indicating a second-order magnetic transition for CrI$_3$.

The rotating magnetic entropy change ΔS_M^R induced by rotating the applied magnetic field from the ab plane into the c axis direction can be represented as:

$$\Delta S_M^R(T, H) = S_M(T, H_c) - S_M(T, H_{ab})$$

$$= [S_M(T, H_c) - S_M(T, 0)] - [S_M(T, H_{ab}) - S_M(T, 0)]$$

$$= \Delta S_M(T, H_c) - \Delta S_M(T, H_{ab}).$$

It illustrates that ΔS_M^R is equal to the difference value of the magnetic entropy change ΔS_M for $H//c$ and for $H//ab$, as depicted in Fig. 7. The maximum $-\Delta S_M^{\text{Rmax}}$ and the width of the main peak increase with increasing field. The field dependence of $-\Delta S_M^{\text{Rmax}}$ is presented in the inset of Fig. 7, changing from 0.94 J kg$^{-1}$ K$^{-1}$ for 1 T to 1.56 J kg$^{-1}$ K$^{-1}$ for 5 T. In addition, the temperature corresponding to $-\Delta S_M^{\text{Rmax}}$ shows weak field dependence, however, an additional anomaly just below that was also observed in line with the second-stage magnetic ordering at a fixed temperature of 48 K.

For a material displaying a second-order transition, the field dependence of the maximum magnetic entropy change shows a power law $-\Delta S_M^{\text{max}} = aH^n$ where a is a constant and the exponent n is related to the magnetic order and depends on temperature and field as follows:

$$n(T, H) = d\ln |\Delta S_M| / d\ln(H).$$

For a FM system above T_c, the direct integration of the Curie-Weiss law indicates that $n = 2$. Based on a mean field approach, it becomes field independent at T_c and corresponds to $n = 2/3$. However, recent experimental results exhibit deviation from $n = 2/3$ in the case of some soft magnetic amorphous alloys. In addition, there is a relationship between the exponent n at T_c and the critical exponents of the materials as follows:

$$n(T_c) = 1 + \frac{\beta - 1}{\beta + \gamma} = 1 + \frac{1}{\delta}[1 - \frac{1}{\beta^*}],$$

where β, γ, and δ are related with the spontaneous magnetization M_s below T_c, the inverse initial susceptibility x_0^{-1} above T_c, and the isotherm $M(H)$ at T_c, respectively. In the case of magnetic refrigerators there is another important parameter that evaluates its cooling efficiency of the refrigerator is the relative cooling power (RCP):

$$RCP = -\Delta S_M^{\text{max}} \times \delta T_{\text{FWHM}},$$

FIG. 7. (Color online). Temperature dependence of magnetic entropy change $-\Delta S_M^R$ obtained by rotating from the ab plane to the c axis in various fields. Inset: the maximum $-\Delta S_M^{\text{Rmax}}$ as a function of field H.
where $-\Delta S_M^{max}$ is the maximum entropy change near T_c, and δT_{FWHM} is the full-width at half maxima. The RCP corresponds to the amount of heat that can be transferred between the cold and hot parts of the refrigerator in an ideal thermodynamic cycle.\(^{20}\) Actually, the RCP also depends on the magnetic field H with the rule $RCP = bH^n$, where m is related to the critical exponent δ as follows

$$b = 1 + \frac{1}{\delta}.$$ \hspace{1cm} (13)

Figure 8(a) summarized the field dependence of $-\Delta S_M^{max}$ and RCP with $H//c$. The value of RCP is calculated as 122.6 J kg\(^{-1}\) for the magnetic field change of 5 T for CrI\(_3\), which is about one half of those in manganites and one order of magnitude lower than in ferrites.\(^{37,38}\) Fitting of the $-\Delta S_M^{max}$ gives that $n = 0.667 (1)$ [Fig. 8(a)], which deviates the value of $n = 0.667$ in the mean-field theory and is close to that of $n = 0.637$ in the three-dimensional (3D) Heisenberg model, in line with its localized magnetism nature. Fitting of the RCP generates that $m = 1.12 (1)$ [Fig. 8(a)], which is close to the values estimated from the critical exponent δ. The obtained critical exponents of CrI\(_3\) as well as the values of different theoretical models are summarized in Table I.\(^{20,32-34}\)

Material	Theoretical model	Reference	Technique	β	γ	δ	n	m
CrI\(_3\)	This work	$-\Delta S_M^{max} = aH^n$	This work	$RCP = bH^n$	0.64(1)	1.12(1)		
			Modified Arrott plot	0.284(3)	1.146(11)	5.04(1)	0.500(2)	1.198(1)
			Kouvel-Fisher plot	0.260(4)	1.136(6)	5.37(4)	0.470(1)	1.186(1)
			Critical isotherm			5.32(2)		1.188(1)
Mean field	Theory		0.5	1.0	3.0	0.667	1.333	
3D Heisenberg	Theory		0.365	1.386	4.8	0.637	1.208	
3D XY	Theory		0.345	1.316	4.81	0.606	1.208	
3D Ising	Theory		0.325	1.24	4.82	0.569	1.207	
Tricritical mean field	Theory		0.25	1.0	5.0	0.4	1.20	

In summary, we have studied in detail the magnetism and magnetocaloric effect of bulk CrI\(_3\) single crystal. The second-stage magnetic transition was clearly observed at $T = 48$ K, just below the Curie temperature $T_c = 61$ K, indicating two-step magnetic ordering and suggesting that detailed neutron scattering measurements are of interest to shed more light on its microscopic mechanism. A second-order transition from the PM to FM phase around T_c has been confirmed by the scaling analysis of magnetic entropy change $-\Delta S_M$. The $-\Delta S_M$ follows the power law of H^n with $n(T, H) = d\ln |\Delta S_M| / d\ln (H)$, as well as the field dependence of RCP. The n values reach the minimum at 60 K, i.e., its actual T_c. Considering its ferromagnetism can be maintained upon exfoliating bulk crystals down to a single layer, further investigation on the size dependence of magnetocaloric effect is of interest.

ACKNOWLEDGEMENTS

This work was supported by the US DOE-BES, Division of Materials Science and Engineering, under Contract No. de-sc0012704 (BNL).

1. M. A. McGuire, G. Clark, S. KC, W. M. Chance, G. E. Jellison, Jr., V. R. Cooper, X. D. Xu, and B. C. Sales, Phys. Rev. M 1 014001 (2017).
2. M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem. Mater. 27, 612 (2015).
3. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Nature 546, 270 (2017).
4. K. L. Seyler, D. Zhong, D. R. Klein, S. Guo, X. Zhang, B. Huang, E. Navarro-Moratalla, L. Yang, D. H. Cobden, M. A. McGuire, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. D. Xu, Nature Physics 14, 277 (2018).
