Supporting Information

Theoretical investigations on interactions of arylsulphonyl indazole derivatives as potential ligands of VEGFR2 kinase

Kornelia Czaja 1, Jacek Kujawski 1*, Paweł Śliwa 2, Rafał Kurczab 3, Radosław Kujawski 4, Anna Stodolna 1, Agnieszka Myślińska 1 and Marek K. Bernard 1*

1Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland
2Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
3Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland
4Chair and Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 5a, 60-806 Poznań, Poland
* Correspondence: mbernard@ump.edu.pl (M.K.B.), jacekkuj@ump.edu.pl (J.K.), phone 48618546670, fax 48618546680

Table of Contents:

Fig. S1 Electrostatic potential (ESP) map of docked azole 5 (1st pose) calculated at the B3LYP/6-311++G(2d,3p)//B3LYP-631G(d,p) level of theory (gaseous phase); isovalue = 0.002 a.u. ... 4

Fig. S2 Electrostatic potential (ESP) map of docked azole 7 (1st pose) calculated at the B3LYP/6-311++G(2d,3p)//B3LYP-631G(d,p) level of theory (gaseous phase); isovalue = 0.002 a.u. ... 4

Fig. S3: Geometry of the first poses of azoles 1–9 after docking procedure to 3ewh.pdb protein and their Cartesian coordinates (charge=0, multiplicity=1): ... 5

Fig. S4 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 1 and selected residues of 3ewh.pdb kinase(GAMESS program). ... 13

Fig. S5 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 2 and selected residues of 3ewh.pdb kinase(GAMESS program). ... 13

Fig. S6 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 3 and selected residues of 3ewh.pdb kinase(GAMESS program). ... 14

Fig. S7 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 4 and selected residues of 3ewh.pdb kinase(GAMESS program). ... 14

Fig. S8 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 5 and selected residues of 3ewh.pdb kinase(GAMESS program). ... 15
Fig. S9 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{et} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 7 and selected residues of 3ewh.pdb kinase (GAMESS program). ... 15

Fig. S10 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{et} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 8 and selected residues of 3ewh.pdb kinase (GAMESS program). ... 16

Fig. S11 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{et} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 9 and selected residues of 3ewh.pdb kinase (GAMESS program). ... 16

Fig. S12 Example of input file for SAPt calculations regarding the 1–Glu917 complex:............. 17

Fig. S13 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for chlorine derivative 1. .. 19

Fig. S14 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for pyrrole derivative 2. .. 20

Fig. S15 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for pyrazole derivative 3. .. 21

Fig. S16 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for dimethyl pyrazole derivative 4. .. 22

Fig. S17 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for triazole derivative 5. .. 23

Fig. S18 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for indole derivative 6. .. 24

Fig. S19 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for carbazole derivative 8. .. 25

Fig. S20 Atoms numbering for RMSF calculations of the ligand 1 and the RMSF plot for 1 within ligand–protein complex during the MD productive phase calculated complex of kinase with 1. .. 26

Fig. S21 The RMSD plot for the backbone within ligand-protein complex during the MD productive phase calculated complex of kinase with: 1–9 (Y-axis in Å); colors related with Fig. 4 given in the manuscript. .. 27

Fig. S22 Representative MD cluster for binding mode of 1 within the 1–3ewh complex (A) and its comparison with results using docking protocol (B). .. 28
Fig. S23 Hydrogen contacts with Thr916 during the MD productive phase calculated complex of kinase with derivative 3; red – angles [°], blue – distances [Å]. .. 28

Fig. S24 Hydrogen contacts with Glu917 during the MD productive phase calculated complex of kinase with derivative 3; red – angles [°], blue – distances [Å]. .. 29

Fig. S25 Hydrogen contacts with Thr916 during the MD productive phase calculated complex of kinase with derivative 6; red – angles [°], blue – distances [Å]. .. 29

Fig. S26 Hydrogen contacts with Glu917 during the MD productive phase calculated complex of kinase with derivative 6; red – angles [°], blue – distances [Å]. .. 30
Fig. S1 Electrostatic potential (ESP) map of docked azole 5 (1st pose) calculated at the B3LYP/6-311++G(2d,3p)//B3LYP-631G(d,p) level of theory (gaseous phase); isovalue = 0.002 a.u.

Fig. S2 Electrostatic potential (ESP) map of docked azole 7 (1st pose) calculated at the B3LYP/6-311++G(2d,3p)//B3LYP-631G(d,p) level of theory (gaseous phase); isovalue = 0.002 a.u.

Electrostatic potential (ESP) map of ligands 1–4, 6, 8–9 are given in our previous reports:
Czaja K., Kujawski J., Kamel K., Bernard M.K. Selected arylsulphonyl pyrazole derivatives as potential Chk1 kinase ligands – computational investigations. *J. Mol. Model.* **2020**, *accepted*. doi: 10.1007/s00894-020-04407-3.

Fig. S3: Geometry of the first poses of azoles 1–9 after docking procedure to 3ewh.pdb protein and their Cartesian coordinates (charge=0, multiplicity=1):

Azole 1
Cartesian coordinates:

Atom	X	Y	Z
C	16.0510	-6.9860	7.7230
C	16.2670	-7.4220	6.3760
C	15.4640	-8.5850	6.2730
N	14.8610	-8.7350	7.4960
N	15.2170	-7.7770	8.3740
C	15.3870	-9.3380	5.0920
C	16.1370	-8.8980	4.0150
C	16.9400	-7.7370	4.1160
C	17.0280	-6.9870	5.2750
H	14.2270	-9.4570	7.7970
Cl	17.8510	-7.2510	2.7180
S	16.7820	-5.5790	8.5570
O	15.7730	-4.5110	8.4580
O	18.1450	-5.3940	8.0450
C	16.8960	-6.0800	10.2750
C	16.0530	-5.4900	11.2160
C	16.1540	-5.8780	12.5510
C	17.0840	-6.8450	12.9560
C	17.2090	-7.2370	14.4070
C	17.9190	-7.4200	11.9850
C	17.8360	-7.0440	10.6480
H	14.7700	-10.2220	5.0260
H	16.1090	-9.4480	3.0860
H	17.6520	-6.1080	5.3320
H	15.3330	-4.7440	10.9150
H	15.5040	-5.4260	13.2860
H	18.6390	-8.1680	12.2810
H	18.4870	-7.4900	9.9110
H	16.4780	-6.6840	14.9970
H	18.2130	-7.0040	14.7610
H	17.0260	-8.3060	14.5110

Azole 2
Cartesian coordinates:

Atom	X	Y	Z
C	17.0350	-7.0480	5.3230
C	16.9240	-7.7510	4.1500
C	16.0610	-8.8830	4.0560
C	15.3260	-9.3180	5.1190
C	15.4390	-8.5880	6.3190
N	14.8480	-8.7540	7.5700
H 14.15800 -9.45200 7.85900
N 15.25100 -7.77200 8.46700
C 16.09700 -7.02300 7.78600
C 16.26600 -7.47400 6.42300
N 17.67800 -7.35300 2.98300
C 18.67200 -6.37000 2.93200
C 19.11800 -6.27900 1.66300
C 18.39200 -7.23000 0.87500
C 17.52500 -7.86400 1.69000
S 16.86700 -5.57500 8.51400
O 18.59400 -5.55200 7.84300
O 15.60300 -4.20700 8.45400
C 16.99200 -6.07100 10.24500
C 16.17100 -5.47100 11.18800
C 16.25600 -5.87100 12.51100
C 17.14900 -6.86700 12.90000
C 17.95600 -7.46300 11.93400
C 17.25200 -7.28700 14.36400
C 17.88000 -7.07200 10.60600
H 17.69200 -6.19400 5.40000
H 15.98800 -9.41000 3.11600
H 14.68500 -10.18400 5.04400
H 19.02300 -5.78300 3.76800
H 19.88500 -5.60900 1.30500
H 18.51700 -7.40700 -0.18300
H 16.83000 -8.63600 1.39400
H 15.47300 -4.70100 10.89400
H 15.62200 -5.40500 13.25100
H 18.64900 -8.23900 12.22300
H 18.50500 -7.54200 9.86200
H 18.00000 -8.07300 14.46500
H 17.54400 -6.42800 14.96800
H 16.28600 -7.65900 14.70400

Azole 3
Cartesian coordinates:

C 16.03800 -7.00000 7.70700
C 16.24500 -7.42800 6.35600
C 15.44900 -8.59400 6.25700
N 14.86300 -8.75700 7.48600
N 15.21900 -7.80000 8.36600
C 15.36700 -9.33300 5.06600
C 16.10500 -8.88500 3.98900
C 16.90700 -7.71600 4.08000
C 16.97800 -6.97300 5.24700
H 14.23600 -9.48600 7.78900
S 16.77700 -5.59700 8.53800
O 18.14100 -5.41500 8.02800
O 15.77400 -4.52100 8.43800
C 16.88800 -6.09400 10.25900
Azole 4

Cartesian coordinates:
C 17.04700 -7.07600 5.28200 5.28200
C 16.26900 -7.48200 6.38100
C 16.94000 -7.80700 4.10800
C 15.43500 -8.62100 6.28400
C 16.10000 -8.95200 4.02600
C 15.34900 -9.37700 5.10300
C 16.06300 -7.03300 7.72400
N 15.20700 -7.79600 8.38100
N 14.83500 -8.75500 7.51000
H 14.17000 -9.45000 7.80800
S 16.78000 -5.60400 8.52700
O 18.14400 -5.49500 7.97300
O 15.83200 -4.48800 8.43600
C 16.91800 -6.07500 10.25200
C 16.08900 -5.46800 11.19600
C 16.19300 -5.85100 12.53200
C 17.11600 -6.82500 12.93700
C 17.24400 -7.21200 14.39000
C 17.93100 -7.42200 11.96300
C 17.84000 -7.05600 10.62400
N 17.67700 -7.44800 2.95000
N 17.44100 -8.13700 1.79200
C 18.22900 -7.57400 0.88200
Azole 5
Cartesian coordinates:
C 16.98300 -6.97900 5.25600
C 16.90800 -7.72700 4.09200
C 16.10300 -8.89100 3.99600
C 15.36000 -9.33500 5.07300
C 15.44500 -8.59400 6.26200
N 14.85500 -8.75000 7.49000
H 14.22300 -9.47500 7.79300
N 15.21300 -7.79400 8.36900
C 16.03900 -6.99800 7.71300
C 16.24600 -7.43000 6.36300
N 17.65800 -7.33800 2.94900
N 18.63000 -6.38300 3.02900
C 19.06400 -6.31700 1.78100
N 18.44400 -7.15300 0.89900
C 17.56800 -7.77600 1.66300
S 16.78700 -5.59700 8.54200
O 18.15000 -5.42500 8.02600
O 15.78700 -4.51900 8.44000
C 16.89900 -6.09300 10.26200
C 17.84700 -7.04600 10.64000
C 17.92900 -7.41700 11.97800
C 17.08400 -6.84900 12.94400
C 16.14500 -5.89300 12.53400
C 17.20700 -7.23800 14.39700
C 16.04600 -5.50800 11.19800
H 17.58500 -6.08400 5.31000
Azole 6
Cartesian coordinates:
C 16.06000 -6.99700 7.72800
C 16.28200 -7.40700 6.37400
C 15.46900 -8.56100 6.24400
N 14.86800 -8.73800 7.46400
N 15.21800 -7.79500 8.36100
C 15.39200 -9.28300 5.04400
C 16.15700 -8.82700 3.98600
C 16.96600 -7.66200 4.09300
C 17.02900 -6.94000 5.27900
H 14.22200 -9.45800 7.74500
S 16.73900 -5.57000 8.57100
O 18.10500 -5.42500 8.03700
O 15.76600 -4.47400 8.48600
C 16.86400 -6.07100 10.28900
C 17.82100 -7.01800 10.65500
C 17.91900 -7.39400 11.99300
C 17.07700 -6.84000 12.96600
C 17.21000 -7.23000 14.41800
C 16.12500 -5.88900 12.56500
C 16.01300 -5.49800 11.23500
N 17.70100 -7.24800 2.95400
C 18.72700 -6.30500 2.97500
C 19.22100 -6.11500 1.71700
C 18.47600 -6.97100 0.83600
C 18.50700 -7.20300 -0.55000
C 17.53100 -7.67100 1.63500
C 17.60500 -8.10200 -1.10300
C 16.66500 -8.77200 -0.29700
C 16.61100 -8.56700 1.07700
H 14.76300 -10.15600 4.95000
H 16.14000 -9.37000 3.05300
H 17.63300 -6.04800 5.35700
H 18.47500 -7.45200 9.91300
H 18.65700 -8.12600 12.28500
H 15.46800 -5.45300 13.30300
H 15.27900 -4.76300 10.93900
Azole 7
Cartesian coordinates:

H 19.08100 -5.79700 3.86000
H 20.02200 -5.44700 1.43600
H 19.22200 -6.68900 -1.17600
H 17.62500 -8.29000 -2.16600
H 15.97100 -9.46000 -0.75600
H 15.88600 -9.08000 1.69100
H 17.99800 -7.97600 14.52400
H 17.46200 -6.34900 15.00900
H 16.26600 -7.64600 14.77000
Azole 8
Cartesian coordinates:

O 14.76600 -6.12700 8.96700
S 16.22000 -6.00400 8.74400
O 16.89000 -4.70000 8.82700
C 16.59500 -6.72200 7.14300
C 17.79200 -6.38800 6.50800
C 18.06800 -6.93900 5.26000
C 17.16500 -7.81600 4.63700
C 17.48800 -8.42600 3.29500
C 15.96700 -8.12100 5.29600
C 15.67400 -7.58200 6.54800
C 16.97000 -7.10900 9.93000
N 17.63600 -8.17700 9.49200
N 18.11700 -8.80300 10.58400
C 18.66100 -9.64000 10.45900
C 17.77600 -8.15000 11.73800
C 17.02100 -7.03700 11.35100
C 17.85700 -8.09700 13.14800
N 16.69400 -6.37500 12.49900
N 17.19500 -7.02500 13.58100
C 15.87000 -5.19200 12.69800
H 18.49300 -5.71300 6.97700
H 18.99300 -6.68800 4.76200
H 15.25800 -8.78600 4.82600
H 14.74900 -7.82700 7.04800
H 18.37300 -8.81100 13.77400
H 16.66800 -9.07300 2.98300
H 18.40300 -9.01200 3.37400
H 17.62600 -7.63400 2.55900
H 15.55600 -4.80100 11.73000
H 14.99100 -5.45600 13.28600
H 16.44600 -4.43300 13.22700

Azole 9
Cartesian coordinates:
C 17.09300 -7.24300 5.16600
C 16.85800 -8.01100 3.98100
C 18.06800 -6.22400 5.09800
N 17.52000 -7.78500 2.81500
C 18.72800 -6.00900 3.90500
C 18.41600 -6.81300 2.79000
C 16.31400 -7.57800 6.32700
C 15.38900 -8.63800 6.25100
C 15.89800 -9.08000 3.97300
C 15.16800 -9.40700 5.07900
C 16.16600 -7.12000 7.67700
N 15.25600 -7.81100 8.34800
N 14.79800 -8.72900 7.47700
H 14.09400 -9.38300 7.78500
S 16.91800 -5.71300 8.50600
O 18.30500 -5.61200 8.01400
O 16.00600 -4.56700 8.36700
C 16.97800 -6.18700 10.23100
C 17.89900 -7.15300 10.63900
C 17.97100 -7.48700 11.98900
C 17.13900 -6.86900 12.93400
C 17.20500 -7.25800 14.39100
C 16.23200 -5.89200 12.49400
C 16.14500 -5.54600 11.14800
H 18.29400 -5.62200 5.96600
H 19.47500 -5.23300 3.82700
H 18.93800 -6.62500 1.86400
H 15.74900 -9.64300 3.06300
H 14.45300 -10.21600 5.06300
H 18.54500 -7.63400 9.91900
H 18.68000 -8.23500 12.31400
H 15.59100 -5.40100 13.21100
H 15.44400 -4.79300 10.81900
H 17.96600 -8.02600 14.52800
H 16.23700 -7.64600 14.70800
H 17.45900 -6.38300 14.98900
Fig. S4 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy ($E_{\text{es}}, E_{\text{ex}}, E_{\text{ct} + \text{mix}}, E_{\text{dis}}, G_{\text{sol}}$; kcal/mol) between docked azole 1 and selected residues of 3ewh.pdb kinase (GAMESS program).

Fig. S5 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy ($E_{\text{es}}, E_{\text{ex}}, E_{\text{ct} + \text{mix}}, E_{\text{dis}}, G_{\text{sol}}$; kcal/mol) between docked azole 2 and selected residues of 3ewh.pdb kinase (GAMESS program).
Fig. S6 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 3 and selected residues of 3ewh.pdb kinase (GAMESS program).

Fig. S7 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy (E_{es}, E_{ex}, E_{ct} + mix, E_{dis}, G_{sol}; kcal/mol) between docked azole 4 and selected residues of 3ewh.pdb kinase (GAMESS program).
Fig. S8 Calculated interaction energies (\(E_{\text{tot}}\); kcal/mol) and the contributions to the total energy (\(E_{\text{es}}, E_{\text{ex}}, E_{\text{ct} + \text{mix}}, E_{\text{dis}}, G_{\text{sol}}\); kcal/mol) between docked azole 5 and selected residues of 3ewh.pdb kinase (GAMESS program).

Fig. S9 Calculated interaction energies (\(E_{\text{tot}}\); kcal/mol) and the contributions to the total energy (\(E_{\text{es}}, E_{\text{ex}}, E_{\text{ct} + \text{mix}}, E_{\text{dis}}, G_{\text{sol}}\); kcal/mol) between docked azole 7 and selected residues of 3ewh.pdb kinase (GAMESS program).
Fig. S10 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy ($E_{\text{es}}, E_{\text{ex}}, E_{\text{et + mix}}, E_{\text{dis}}, G_{\text{sol}}$; kcal/mol) between docked azole 8 and selected residues of 3ewh.pdb kinase (GAMESS program).

Fig. S11 Calculated interaction energies (E_{tot}; kcal/mol) and the contributions to the total energy ($E_{\text{es}}, E_{\text{ex}}, E_{\text{et + mix}}, E_{\text{dis}}, G_{\text{sol}}$; kcal/mol) between docked azole 9 and selected residues of 3ewh.pdb kinase (GAMESS program).
Fig. S12 Example of input file for SAPt calculations regarding the 1–Glu917 complex:
memory 12 Gb

```
molecule {
  0 1
  N 13.09300 -12.93400  9.83300
  H 12.37400 -12.58900 10.46800
  C 12.68400 -13.52800  8.56300
  H 13.03400 -14.58600  8.53500
  C 13.30300 -12.77600  7.38300
  O 13.43000 -11.55100  7.41100
  C 11.16200 -13.51300  8.43700
  H 10.83100 -14.12700  7.56700
  H 10.69100 -14.09500  9.26300
  C 10.57300 -12.10200  8.36200
  H 11.10600 -11.49200  7.59600
  H 10.83000 -11.51800  9.27600
  C  9.07900 -12.08400  8.11700
  O  8.59300 -12.87700  7.28200
  O  8.37100 -11.22400  8.77700
  H 14.07100 -12.86600 10.07800
  H  7.84600 -10.58600  9.26700
  O 13.69900 -13.43600  6.34100
  H 13.99200 -13.92500  5.56900
  --
  C 16.05100 -6.98600  7.72300
  C 16.26700 -7.42200  6.37600
  C 15.46400 -8.58500  6.27300
  N 14.86100 -8.73500  7.49600
  N 15.21700 -7.77700  8.37400
  C 15.38700 -9.33800  5.09200
  C 16.13700 -8.89800  4.01500
  C 16.94000 -7.73700  4.11600
  C 17.02800 -6.98700  5.27500
  H 14.22700 -9.45700  7.79700
  Cl 17.85100 -7.25100  2.71800
  S 16.78200 -5.57900  8.55700
  O 15.77300 -4.51100  8.45800
  O 18.14500 -5.39400  8.04500
  C 16.89600 -6.08000 10.27500
  C 16.05300 -5.49000 11.21600
  C 16.15400 -5.87800 12.55100
  C 17.08400 -6.84500 12.95600
  C 17.20900 -7.23700 14.40700
  C 17.91900 -7.42000 11.98500
  C 17.83600 -7.04400 10.64800
  H 14.77000 -10.22200  5.02600
  H 16.10900 -9.44800  3.08600
  H 17.65200 -6.10800  5.33200
```
units angstrom
}

set globals {
 basis jun-cc-pvdz
 df_basis_scf jun-cc-pvdz-jkfit
 df_basis_mp2 jun-cc-pvdz-ri
 guess sad
 scf_type df
}

set sapt { print 1 }

energy('sapt0')
Fig. S13 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for chlorine derivative 1.
Fig. S14 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for pyrrole derivative 2.
Fig. S15 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for pyrazole derivative 3.
Fig. S16 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for dimethyl pyrazole derivative 4.
Fig. S17 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for triazole derivative 5.
Fig. S18 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white purple, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for indole derivative 6.
Fig. S19 The protein–ligand interactions (a; hydrogen bonds – green, hydrophobic – white, ionic – pink, water bridges – blue) and schematic of detailed ligand atom interactions (b) for carbazole derivative 8.
Fig. S20 Atoms numbering for RMSF calculations of the ligand 1 and the RMSF plot for 1 within ligand–protein complex during the MD productive phase calculated complex of kinase with 1.
Fig. S21 The RMSD plot for the backbone within ligand-protein complex during the MD productive phase calculated complex of kinase with: 1–9 (Y-axis in Å); colors related with **Fig. 4** given in the manuscript.
Fig. S22 Representative MD cluster for binding mode of 1 within the 1–3ewh complex (A) and its comparison with results using docking protocol (B).

Fig. S23 Hydrogen contacts with Thr916 during the MD productive phase calculated complex of kinase with derivative 3; red – angles [°], blue – distances [Å].
Fig. S24 Hydrogen contacts with Glu917 during the MD productive phase calculated complex of kinase with derivative 3; red – angles [°], blue – distances [Å].

Fig. S25 Hydrogen contacts with Thr916 during the MD productive phase calculated complex of kinase with derivative 6; red – angles [°], blue – distances [Å].
Fig. S26 Hydrogen contacts with Glu917 during the MD productive phase calculated complex of kinase with derivative 6; red – angles [°], blue – distances [Å].