Mean Angular Diameters and Angular Diameter
Amplitudes of Bright Cepheids

P. Moskalik1 and N. A. Gorynya2

1 Copernicus Astronomical Centre, ul. Bartycka 18, 00-716 Warsaw, Poland
e-mail: pam@camk.edu.pl
2 Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya St.,
109017 Moscow, Russia
e-mail: gorynya@sai.msu.ru

ABSTRACT

We predict mean angular diameters and amplitudes of angular diameter variations for all monoperiodic Population I Cepheids brighter than $\langle V \rangle = 8.0$ mag. The catalog is intended to aid selecting most promising Cepheid targets for future interferometric observations.

1 Introduction

Because of high intrinsic brightness and existence of a tight period–luminosity relation, classical Cepheids play a central role in building cosmological distance ladder. An accurate calibration of their $P–L$ relation is, therefore, of fundamental importance. While the slope of the $P–L$ relation is well determined by Cepheids of the Large Magellanic Cloud (e.g. Udalski et al. 1999), the zero point is less certain. It is usually calibrated by nearby Cepheids, whose individual distances have to be accurately measured. This is not an easy task. Despite several different methods being applied (cf. Fouqué et al. 2003; Feast 2003), the zero point of the $P–L$ relation remains uncertain at $\Delta M_V = \pm 0.1$ mag level.

The advent of long-baseline interferometry offered a novel way of Cepheid distance determination, by using purely geometrical version of the Baade-Wesselink method (Lane et al. 2000). This approach yields the distance by comparing angular diameter changes measured by interferometry with linear diameter changes inferred from observed radial velocities. So far, the technique was successfully applied to only five Cepheids (Lane et al. 2002; Kervella et al. 2004a), but with increased resolution of next generation of interferometers (CHARA and AMBER) more Cepheids will become accessible.

The goal of this paper is to identify Cepheids, which are most promising targets for observations with existing and future interferometers. For that purpose, we calculated expected mean angular diameters and angular diameter amplitudes for 79 brightest monoperiodic Cepheids. Assumptions used in the calculations and accuracy of the method are discussed in Section 2. In Section 3 we describe the Cepheid sample and the sources of data. The results are presented in Section 4 and conclusions of the paper are summarized in Section 5.
2 Method

The goal of this paper is to estimate for Pop. I Cepheids the mean angular diameters and the amplitudes of angular diameter variations. To achieve this, we need to find for each Cepheid its distance, mean linear radius and radius changes.

Cepheid distances were calculated with the help of the period–luminosity relation. We adopted $P - L$ relation of Fouqué et al. (2003):

$$M_V = -2.735 \log P - 1.352,$$

whose slope was determined from the LMC Cepheid sample and the zero point was calibrated with Galactic Cepheids analysed with infrared surface brightness method. Eq.(1) is valid for the fundamental mode pulsators. For the first overtone Cepheids, the observed period, P_1, was converted to the fundamental mode period, P_0, with empirical formula

$$P_1/P_0 = -0.027 \log P_1 + 0.716,$$

which was derived by least square fit to periods of Galactic double-mode Cepheids (Alcock et al. 1995; modified by Feast & Catchpole 1997). Comparison of the absolute magnitudes, M_V, given by Eq.(1) and dereddened intensity mean observed magnitudes, $\langle V_0 \rangle$, yielded the Cepheid distances. Standard extinction coefficients were used: $A_V = 3.30 E(B-V)$.

The mean Cepheid radii were calculated with the period–radius relation of Gieren et al. (1998):

$$\log \langle R/R_\odot \rangle = 0.750 \log P + 1.075.$$

This formula is essentially identical to those derived by Laney & Stobie (1995) and Turner & Burke (2002). Again, periods of first overtone Cepheids were fundamentalized with Eq.(2).

Variation of Cepheid radius during pulsation cycle was calculated by integrating the observed radial velocity curve, $V_r(t)$:

$$\Delta R(t) = -p \int_{t_0}^t [V_r(t) - \gamma]$$

where $\gamma = \langle V_r \rangle$ is the mean radial velocity of the Cepheid and p is the projection factor converting observed radial velocity to pulsational velocity. For all the Cepheids we used the same constant projection factor of $p = 1.36$ (e.g. Laney & Stobie 1995; Kervella et al. 2004a).

With the mean radius and the distance to the star known, the mean angular diameter can be calculated with the formulae

$$\langle \theta \rangle = 9.305 \frac{\langle R \rangle}{d}$$
where θ is expressed in milliarcseconds ([mas]), R in units of solar radius and d in parsecs. Similarly, the total range of angular diameter variations is given by

$$\Delta \theta = \theta_{\text{max}} - \theta_{\text{min}} = 9.305 \frac{R_{\text{max}} - R_{\text{min}}}{d}. \quad (6)$$

2.1 Accuracy of Angular Diameter Estimate

The $P - L$ and $P - R$ relations represent Cepheids only in the average sense. In addition to the observational scatter, both relations have also intrinsic dispersion, which reflects non-zero width of the Cepheid instability strip. This directly affects accuracy of predicted Cepheid angular diameters.

When built with the reddening-independent Wesenheit index, the $P - L$ relation for Galactic Cepheids displays scatter of 0.17 mag (Gieren et al. 1998). There is a small contribution from distance errors of individual calibrating Cepheids, which according to Gieren et al. are accurate to $\pm 3\%$. Taking this into account, we find intrinsic dispersion of the $P - L$ relation to be 0.157 mag. This corresponds to 7.2% uncertainty of distances derived with Eq. (1) and of angular diameter amplitudes derived with Eq. (6).

Estimating uncertainty of $\langle R \rangle$ and $\langle \theta \rangle$ is somewhat more elaborate. We will do it with the help of simple theoretical relations. First, we recall that Cepheids obey well known period–mass–radius relation (e.g. Moskalik & Buchler 1993):

$$P \approx M^{-0.68} \langle R \rangle^{1.70}. \quad (7)$$

Vast majority of Pop. I Cepheids undergo core helium burning. Stars in this evolutionary phase obey a mass–luminosity relation:

$$\log(\langle L \rangle) = 3.55 \log M + \text{const.} \quad (8)$$

We adopted here the slope derived for metalicity of $Z = 0.02$ by Alibert et al. (1999), but evolutionary calculations of other authors yield very similar values. Combining Eqs. (7) and (8) we find that at a constant period, luminosity and radius of a Cepheid are related by

$$\log(\langle L \rangle) = 8.88 \log(\langle R \rangle) + \text{const.} \quad (9)$$

Knowing intrinsic dispersion of the $P - L$ relation, we find intrinsic dispersion of the $P - R$ relation to be $\sigma(\log(\langle R \rangle)) = 0.007$, or equivalently $\sigma(\langle R \rangle)/\langle R \rangle = 1.6\%$.

The estimate of mean angular diameter of a Cepheid is based on its mean radius and its distance. It is evident, that uncertainty of $\langle \theta \rangle$ is dominated by intrinsic dispersion of the distance determination. However, when derived from $P - R$ and $P - L$ relations, the radius and the distance are not independent and their inaccuracies compensate each other. Indeed, Eq. (9) shows that if Cepheid’s radius is larger than average for its period, its luminosity (and consequently derived distance) is also larger. Taking this into account, we find $\sigma(\log(\langle \theta \rangle)) = 0.39 \sigma(\log(\langle L \rangle))$. Thus, 0.157 mag intrinsic dispersion of the $P - L$
relation implies 5.6% uncertainty of mean angular diameters estimated with Eq. (5).

Apart from the intrinsic width of the instability strip, the accuracy of \(\langle \theta \rangle \) and \(\Delta \theta \) estimation is also affected by observational errors. Of these, by far the most important is the error of the colour excess \(E(B - V) \), which is \(\sim 0.03 \) mag (Fernie 1990). This corresponds to the distance uncertainty of 4.6%. Taking into account both intrinsic and random scatter, we find that our method should yield \(\langle \theta \rangle \) and \(\Delta \theta \) accurate to 7.2% and to 8.5%, respectively (1\(\sigma \) errors).

The error budget presented here does not account for systematical errors, which may result from poor knowledge of \(P - L \) and \(P - R \) relations or of the projection factor \(p \). The question of possible systematical bias of our method will be addressed in Section 5.1.

3 The Data

For the purpose of this paper, we limited the analysis to brightest Pop. I Cepheids, specifically to those with \(\langle V \rangle < 8.0 \) mag. The starting source was the online DDO Database of Galactic Classical Cepheids (Fernie et al. 1995), which includes 81 stars satisfying our brightness criterion. We supplemented this catalog with three recently discovered bright Cepheids: CK Cam, V898 Cen and V411 Lac. We excluded from the list four double-mode variables (CO Aur, TU Cas, EW Sct, and U TrA) as well as a peculiar variable amplitude Cepheid V473 Lyr. Because of complicated form of pulsations, these stars are not suitable targets for interferometric investigation. Our final sample contains 79 objects.

In our analysis, we adopted intensity mean magnitudes \(\langle V \rangle \) and colour excesses \(E(B - V) \) given by DDO Database. The latter are defined on a uniform scale of Fernie (1990). For \(\alpha \) UMi and V1334 Cyg, colour excesses in DDO Database are negative. We assumed \(E(B - V) = 0 \) for these two stars. For CK Cam and V411 Lac, the values of \(\langle V \rangle \) were taken from Berdnikov et al. (2000) and from Groenewegen & Oudmaijer (2000), respectively. In case of V898 Cen, we determined \(\langle V \rangle \) directly from published photometry (Berdnikov et al. 1999; Berdnikov & Caldwell 2001; Berdnikov & Turner 2001). The colour excesses of CK Cam and V898 Cen were calculated with formula of Fernie (1994), which puts them on the same scale as used in DDO Database. For V411 Lac, \(E(B - V) \) was determined by comparing observed \((B - V) \) colour (Groenewegen & Oudmaijer 2000) with \((B - V)_0 \), predicted by period–colour relation of Laney & Stobie (1994).

The radial velocity data were collected from literature and supplemented, when needed, by unpublished data available to the authors. No \(V_r \) measurements were found for V737 Cen, V898 Cen and LR TrA. Several Cepheids display orbital velocity variations. This is the case for U Aql, FF Aql, V496 Aql, RX Cam, XX Cen, AX Cir, BP Cir, SU Cyg, V1334 Cyg, T Mon, S Mus, AW Per, S Sge, W Sgr, V350 Sgr, V636 Sco, U Vul and \(\alpha \) UMi. For these stars, orbital motion was removed before pulsation velocity curve was built. We refer the reader to Moskalik et al. (2005) for detailed discussion of this procedure,
Table 1: Predicted Angular Diameters of Bright Classical Cepheids

Star	log P	$\langle V \rangle$	$E(B-V)$	d	$\langle R \rangle$	ΔR	$\langle \theta \rangle$	$\Delta \theta$
ℓ Car	1.551	3.724	0.170	564	173.0	33.060	2.854	0.545
SV Vul	1.653	7.220	0.570	1748	206.5	50.755	1.099	0.270
U Car	1.588	6.288	0.283	1622	184.7	44.013	1.059	0.252
RS Pup	1.617	6.947	0.446	1778	193.9	47.730	1.015	0.250
η Aql	0.856	3.897	0.149	263	52.1	6.386	1.845	0.226
T Mon	1.432	6.124	0.209	1382	140.9	32.557	0.949	0.219
β Dor	0.993	3.731	0.044	339	66.0	7.823	1.810	0.214
X Cyg	1.214	6.391	0.288	1054	96.8	20.870	0.855	0.184
δ Cep	0.730	3.954	0.092	251	41.9	4.870	1.554	0.181
RZ Vel	1.310	7.079	0.335	1519	114.1	27.793	0.699	0.170
ζ Gem	1.006	3.918	0.018	391	67.6	6.712	1.607	0.160
TT Aql	1.138	7.141	0.495	988	84.9	16.721	0.800	0.158
W Sgr	0.881	4.668	0.111	410	54.4	6.632	1.235	0.151
X Sgr	0.846	4.549	0.197	326	51.2	4.790	1.463	0.137
Y Oph	1.234	6.169	0.655	558	100.1	8.044	1.668	0.134
VY Car	1.279	7.443	0.243	1986	108.1	23.831	0.507	0.112
S Sge	0.923	5.622	0.127	655	58.5	7.177	0.832	0.102
Y Sgr	0.761	5.744	0.205	502	44.3	5.327	0.821	0.099
U Aql	0.847	6.446	0.399	575	51.3	5.994	0.830	0.097
U Vul	0.903	7.128	0.654	573	56.5	5.574	0.917	0.091
U Sgr	0.829	6.695	0.403	626	49.7	5.741	0.739	0.085
S Nor	0.989	6.394	0.189	924	65.6	7.809	0.661	0.079
S Mus	0.985	6.118	0.147	863	65.1	7.147	0.703	0.077
RX Cam	0.898	7.682	0.569	837	56.1	6.776	0.623	0.075
AW Per	0.810	7.492	0.534	724	48.2	5.728	0.619	0.074
RT Aur	0.571	5.446	0.051	435	31.9	3.308	0.682	0.071
W Gem	0.898	6.950	0.283	923	56.1	7.084	0.566	0.071
R Mus	0.876	6.298	0.120	851	53.9	6.184	0.590	0.068
AX Cir	0.722	5.880	0.153	550	41.4	3.933	0.700	0.067
V Cen	0.740	6.836	0.289	711	42.6	5.096	0.559	0.067
T Vul	0.647	5.754	0.064	541	36.3	3.656	0.625	0.063
YZ Sgr	0.980	7.358	0.292	1217	64.6	7.740	0.494	0.059
RV Sco	0.783	7.040	0.342	760	45.9	4.716	0.562	0.058
R Cru	0.765	6.766	0.192	823	44.6	4.986	0.504	0.056
S TrA	0.801	6.397	0.100	835	47.4	4.912	0.528	0.055
XX Cen	1.040	7.818	0.260	1702	71.6	10.016	0.391	0.055
S Cru	0.671	6.600	0.163	708	37.9	4.124	0.498	0.054
V636 Sco	0.832	6.654	0.217	819	50.0	4.766	0.568	0.054
RX Aur	1.065	7.655	0.276	1592	74.8	9.167	0.437	0.054
BB Sgr	0.822	6.947	0.284	836	49.1	4.779	0.547	0.053
Table 1: – continued

Star	log P	$\langle V \rangle$	$E(B-V)$	d	$\langle R \rangle$	ΔR	$\langle \theta \rangle$	$\Delta \theta$
T Cru	0.828	6.566	0.193	811	49.7	4.279	0.570	0.049
AP Sgr	0.704	6.955	0.192	831	40.1	4.419	0.449	0.049
V350 Sgr	0.712	7.438	0.312	893	40.7	4.510	0.424	0.047
ER Car	0.888	6.824	0.101	1132	55.0	5.311	0.452	0.044
BG Vel	0.840	7.635	0.448	915	50.7	4.266	0.516	0.043:
FF Aql	0.650	5.372	0.224	434	47.8	1.983	1.024	0.042
SU Cyg	0.585	6.859	0.096	792	32.6	3.556	0.383	0.042
CK Cam	0.518	7.544	0.457	577	29.1	2.626	0.469	0.042
BF Oph	0.609	7.337	0.247	809	34.0	3.438	0.391	0.040
AP Pup	0.706	7.371	0.208	985	40.2	4.084	0.380	0.039
V Vel	0.641	7.589	0.209	1002	35.9	4.168	0.334	0.039
V381 Cen	0.706	7.653	0.205	1127	40.2	4.454	0.332	0.037:
V482 Sco	0.656	7.965	0.360	965	36.9	3.826	0.356	0.037
V Car	0.826	7.362	0.174	1201	49.5	4.665	0.383	0.036
V636 Cas	0.923	7.199	0.700	566	58.5	2.134	0.961	0.035
AT Pup	0.824	7.957	0.183	1555	49.3	5.929	0.295	0.035:
R TrA	0.530	6.660	0.127	644	29.7	2.207	0.429	0.032
V1344 Aql	0.874	7.767	0.574	837	53.7	2.873	0.597	0.032
V496 Aql	0.833	7.751	0.413	1008	50.1	3.390	0.462	0.031
AH Vel	0.626	5.695	0.074	614	45.8	1.931	0.695	0.029
V1162 Aql	0.730	7.798	0.205	1242	42.0	3.817	0.314	0.029
SZ Tau	0.498	6.531	0.294	548	36.6	1.561	0.621	0.027
SU Cas	0.290	5.970	0.287	328	25.4	0.916	0.721	0.026
MY Pup	0.756	5.677	0.064	730	57.5	1.566	0.734	0.020
V659 Cen	0.750	6.598	0.134	995	57.0	2.135	0.533	0.020
GH Lup	0.967	7.635	0.364	1220	63.2	2.561	0.482	0.020
DT Cyg	0.398	5.774	0.039	501	30.7	0.944	0.570	0.018
BG Cru	0.524	5.487	0.053	505	38.3	0.930	0.705	0.017
IR Cep	0.325	7.784	0.434	632	27.0	1.122	0.398	0.017
V950 Sco	0.529	7.302	0.267	847	38.6	1.472	0.424	0.016
AV Cir	0.486	7.439	0.397	701	35.9	1.185	0.476	0.016
α UMi	0.599	1.982	0.000	120	43.7	0.173	3.388	0.013
V440 Per	0.879	6.282	0.273	822	71.5	1.066	0.809	0.012
BP Cir	0.380	7.560	0.235	828	29.7	1.047	0.394	0.012
V1334 Cyg	0.523	5.871	0.000	653	38.2	0.797	0.545	0.011
V411 Lac	0.464	7.860	0.171	1166	34.5	1.326	0.275	0.011:
V737 Cen	0.849	6.719	0.216	863	51.5	0.555	—	—
LR TrA	0.385	7.808	0.281	871	30.0	0.321	—	—
V898 Cen	0.547	7.959	0.000	1762	39.9	0.211	—	—
as well as for the list of velocity data used in the current paper. We would like to stress that the list of binaries given above is not intended to be complete. Several other Cepheids are likely binaries, e.g. U Car and T Cru (Bersier 2002) or X Sgr (Szabados 1990), but their orbital motion does not show up in the data used here.

Our Cepheid sample contains eighteen overtone pulsators. Except of α UMi, they have all been identified by Fourier decomposition of their lightcurves (Antonello et al. 1990; Zakrzewski et al. 2000) or radial velocity curves (Kienzle et al. 1999, 2000; Moskalik et al. 2005). The overtone nature of Polaris was first established by Feast & Catchpole (1997) on the basis of Hipparcos parallax. It was later confirmed with different methods by Moskalik & Ogozla (2000) and by Nordgren et al. (2000).

4 Results

Results of our calculations are summarized in Table 1. For each Cepheid we list logarithm of observed period $\log P$ in [d], intensity mean magnitude $\langle V \rangle$ and colour excess $E(B-V)$, both in [mag], inferred distance d in [pc], mean radius $\langle R \rangle$ and full amplitude of radius variations $\Delta R = R_{\text{max}} - R_{\text{min}}$, both in units of R_\odot, and mean angular diameter $\langle \theta \rangle$ and full amplitude of angular diameter variations $\Delta \theta$, both in [mas]. First overtone pulsators are marked with symbol FO placed next to the Cepheid’s name. The stars are ordered by decreasing $\Delta \theta$.

For three Cepheids listed at the bottom of Table 1, ΔR and $\Delta \theta$ cannot be calculated because of lack of radial velocity data. For these stars only rough estimates can be given. From our Cepheid sample we find $\Delta R/(\langle R \rangle) = 0.020-0.045$ for the overtone pulsators and $\Delta R/(\langle R \rangle) = 0.070-0.125$ for the fundamental mode pulsators with $\log P \sim 0.85$. On this basis, we estimate angular diameter amplitudes to be in the range of $0.039-0.069$ mas for V737 Cen, $0.006-0.014$ mas for LR TrA and $0.004-0.009$ mas for V898 Cen.

4.1 Comparison with Observations

It is instructive to compare Cepheid angular diameters predicted in Table 1 with those determined from actual interferometric observations. So far, mean angular diameters were measured for nine Pop. I Cepheids, but angular diameter variability was detected only in five of them. These observational results are summarized in Table 2. The values of $\langle \theta \rangle$ (and their errors) were taken from Kervella et al. (2004b), except of α UMi, for which result of Nordgren et al. (2000) is listed. The amplitudes of angular diameter variations, $\Delta \theta$, are usually not given in the papers. We recovered them from plots of Kervella et al. (2004a) and Lune et al. (2002). For η Aql, weighted mean of the two measurements is given. In all cases we assumed, somewhat arbitrarily, that the error of $\Delta \theta$ determination is the same as the corresponding error of $\langle \theta \rangle$.
Table 2: Observed Angular Diameters of Cepheids

Star	log P	$\langle \theta_{LD} \rangle$	$\Delta \theta_{LD}$
α UMi	0.599	3.280 ± 0.020	——
δ Cep	0.730	1.521 ± 0.010	——
X Sgr	0.846	1.471 ± 0.033	——
η Aql	0.856	1.791 ± 0.022	0.212 ± 0.026
W Sgr	0.881	1.312 ± 0.029	0.163 ± 0.029
β Dor	0.993	1.884 ± 0.024	0.207 ± 0.024
ζ Gem	1.006	1.688 ± 0.022	0.179 ± 0.030
Y Oph	1.234	1.438 ± 0.051	——
ℓ Car	1.551	2.988 ± 0.012	0.529 ± 0.012

NOTE – $\langle \theta_{LD} \rangle$ and $\Delta \theta_{LD}$ (in [mas]) are limb darkened angular diameters, see e.g. Kervella et al. (2004a).

In Fig. 1 we plot observed vs. predicted values of $\langle \theta \rangle$ and $\Delta \theta$ for Cepheids of Table 2. A very good overall agreement is evident. Ratios of observed-to-predicted values of $\langle \theta \rangle$ and of $\Delta \theta$ are plotted vs. fundamental mode period in Fig. 2. The ratios show no trends with the pulsation period. Predicted angular diameter amplitudes, $\Delta \theta_{\text{pred}}$, differ from the observed ones by no more than 1.3σ. The weighted mean of $\Delta \theta_{\text{obs}}/\Delta \theta_{\text{pred}}$ ratio is

$$\frac{\Delta \theta_{\text{obs}}}{\Delta \theta_{\text{pred}}} = 0.973 \pm 0.021.$$

In case of $\langle \theta \rangle_{\text{obs}}/\langle \theta \rangle_{\text{pred}}$, a statistically significant scatter of $\sigma = 0.042$ is seen. This is not unexpected and reflects intrinsic dispersion of $P - L$ and $P - R$ relations used to estimate $\langle \theta \rangle$. The weighted mean of $\langle \theta \rangle_{\text{obs}}/\langle \theta \rangle_{\text{pred}}$ ratio is

$$\frac{\langle \theta \rangle_{\text{obs}}}{\langle \theta \rangle_{\text{pred}}} = 1.011 \pm 0.014.$$

We conclude, that the method outlined in Section 2 yields estimates of $\langle \theta \rangle$ and of $\Delta \theta$, which are statistically unbiased and in good agreement with the observations across the entire range of pulsation periods.

4.2 Prospective Targets for Interferometric Observations

In Fig. 3 we display $\langle \theta \rangle$ and $\Delta \theta$ vs. pulsation period for all Cepheids of our sample. Fundamental mode and overtone pulsators are plotted as filled and open circles, respectively.

At currently demonstrated level of technology, the achievable accuracy of $\langle \theta \rangle$ determination is about 0.01 mas (see Table 2). This implies a lower limit of $\langle \theta \rangle = 1.0$ mas, if measurement with 1% accuracy is required. Angular diameters of 13 Cepheids are above this limit, four of which have not been yet observed.
Figure 1: Observed vs. predicted mean angular diameters (top) and angular diameter amplitudes (bottom) for Cepheids of Table 2. Error bars of $\langle \theta \rangle$ are smaller than the symbols. The dotted lines have slope of unity and are not fits to the data.
Figure 2: $\langle \theta \rangle_{\text{obs}}/\langle \theta \rangle_{\text{pred}}$ (top) and $\Delta \theta_{\text{obs}}/\Delta \theta_{\text{pred}}$ (bottom) vs. fundamental mode period for Cepheids of Table 2. Period of α UMi was fundamentalized with Eq.(2)
Figure 3: Predicted mean angular diameters (top) and full amplitudes of angular diameter variations (bottom) for Classical Cepheids brighter than $\langle V \rangle = 8.0$ mag. Fundamental and overtone pulsators are plotted with filled and open circles, respectively. Reference values of $\langle \theta \rangle = 1.0$ mas and $\Delta \theta = 0.15$ mas (see text) are marked with dotted lines.
(SV Vul, U Car, RS Pup and overtone pulsator FF Aql). Measuring \(\langle \theta \rangle \) with 2\% precision is achievable for additional 39 stars.

Most interesting for interferometric observations are those Cepheids, whose angular diameter variations can be detected. Such a feat has been possible for stars with \(\Delta \theta > 0.15 \text{ mas} \) (cf. Table 2). 13 Cepheids satisfy this condition. These variables cover uniformly the period range of \(\log P = 0.73 - 1.65 \) (see Fig. 3) and as such, are very well suited for calibration of Cepheid \(P - \dot{L} \) and \(P - \dot{R} \) relations. So far, only for five of them angular diameter variations have been measured. The remaining eight Cepheids are SV Vul, U Car, RS Pup, T Mon, X Cyg, \(\delta \) Cep, RZ Vel, and TT Aql. Their pulsations can be resolved with accuracy already demonstrated by existing interferometers. We encourage observers to concentrate their efforts on these objects.

5 Conclusions

Optical/near infrared long-baseline interferometry offers new ways of studying Cepheid pulsations. With the goal of aiding such studies, we calculated expected mean angular diameters and amplitudes of angular diameter variations for all monoperiodic Population I Cepheids brighter than \(\langle V \rangle = 8.0 \text{ mag} \). Distances to the stars and their mean linear radii were estimated with \(P - \dot{L} \) (\(V \)-band) and \(P - \dot{R} \) relations, respectively. The amplitudes of radius variations were calculated precisely, by integrating the observed radial velocity curves. Resulting mean angular diameters and angular diameter amplitudes are listed in Table 1. This catalog is intended to serve as a planning tool for future interferometric observations of Cepheids.

Of particular interest are Cepheids, in which angular diameter changes associated with pulsations can be detected. For such stars, distances and linear radii can be determined by purely geometrical Baade-Wesselink method (e.g. Lane et al. 2000; Kervella et al. 2004a). This approach combines measured angular diameter variations with linear displacement of the photosphere, inferred by integrating the observed radial velocity curve.

Determination of mean angular diameter, which is possible for many more Cepheids, is also of great interest. Such measurements combined with accurately calibrated period–radius relation can yield distances to low amplitude or far away Cepheids, whose angular diameter changes are too small to be detected. This will vastly enlarge the sample of objects available for calibrating Cepheid \(P - \dot{L} \) relation.

Measuring angular diameters for many Cepheids covering widest possible range of effective temperatures is also invaluable for precise calibration of surface brightness-colour relations (Nordgren et al. 2002; Kervella et al. 2004c). These relations are a cornerstone of the near-IR Barnes-Evans method, which has a potential of measuring accurate distances even to Cepheids in the Magellanic Clouds (e.g. Storm et al. 2004; Gieren et al. 2005).

We identified 13 Cepheids with angular diameter amplitudes large enough to be measured with precision already provided by VINCI/VLTI and PTI inter-
ferometers. For seven of them, no interferometric observations exist and for the eighth one (δ Cep) only mean angular diameter was published. Five of these stars are easily accessible to VLTI facility.

With VLTI/AMBER interferometer (baseline 202m) coming into service in 2005 and CHARA array already in operation (baseline of 330m), the number of Cepheids accessible to interferometric study will sharply increase. Currently, the magnitude limit for both instruments is $K \sim 6$mag (Sturmann et. al. 2003; AMBER Commissioning 2 preliminary report, [http://www-laog.obs.ujf-grenoble.fr/amber/]. This places almost all Cepheids of our sample within reach. Both AMBER and CHARA can work not only in K-band ($\lambda = 2.18\mu m$), but also in H-band ($\lambda = 1.65\mu m$). With shorter wavelength and longer baseline the expected angular resolution will increase 2-3 times, as compared to VINCI/VLTI performance. Consequently, the number of Cepheids, for which angular diameter variations (hence geometrical distances) can be measured will more than double, reaching ~ 30. The mean angular diameters could be determined to 1% precision in more than 50 Cepheids and to 2% precision in all Cepheids of our sample. With planned extension of CHARA and AMBER capabilities to J-band and eventually to V-band, further increase in resolution is expected in the future. The list of Cepheids with interferometrically detectable pulsations will continue growing longer, creating excellent prospect for very accurate calibration of Cepheid $P - L$ and $P - R$ relations.

Acknowledgements This work has been supported in part by KBN grant 5 P03D 030 20.

REFERENCES

Alcock, C. et al. 1995 , Astron. J., 109, 1652.
Alibert, Y., Baraffe, I., Hauschildt, P. & Allard, F. 1999 , Astron. Astrophys., 344, 551.
Antonello, E., Poretti, E. & Reduzzi, L. 1990 , Astron. Astrophys., 236, 138.
Berdnikov, L. N. & Caldwell, J. A. R. 2001, Journal of Astronomical Data, 7, 3.
Berdnikov, L. N. & Turner, D. G. 2001 , Astrophys. J. Suppl. Ser., 137, 209.
Berdnikov, L. N., Dambis, A. K. & Vozyakova, O. V. 2000 , Astron. Astrophys. Suppl. Ser., 143, 211.
Berdnikov, L. N., Ignatova, V. V. & Turner, D. G. 1999, IBVS 4724.
Bersier, D. 2002 , Astrophys. J. Suppl. Ser., 140, 465.
Feast M. W. 2003, in D. Alloin, W. Gieren eds., Stellar Candles for Extragalactic Distance Scale, Lecture Notes in Physics, Vol. 635, p. 45.
Feast, M. W. & Catchpole, R. M. 1997 , MNRAS, 286, L1.
Fernie, J. D. 1990 , Astrophys. J. Suppl. Ser., 72, 153.
Fernie, J. D. 1994 , Astrophys. J., 429, 844.
Fernie, J. D., Beattie, B., Evans, N. R. & Seager, S. 1995, IBVS 4148.
Fouqué, P., Storm, J. & Gieren, W. 2003, in D. Alloin, W. Gieren eds., Stellar Candles for Extragalactic Distance Scale, Lecture Notes in Physics, Vol. 635, p. 21.
Gieren, W. P., Fouqué, P. & Gómez, M. 1998 , Astrophys. J., 496, 17.
Gieren, W., Storm, J., Barnes, T. G. et al., 2005, [arXiv:astro-ph/0503637].
Groenewegen, M. A. T. & Oudmaijer, R. D. 2000 , Astron. Astrophys., 356, 849.
Kervella, P., Nardetto, N., Bersier, D. et al. 2004a , Astron. Astrophys., 416, 941.
Kervella, P., Bersier, D., Mourard, D. et al. 2004b , Astron. Astrophys., 423, 327.
Kervella, P., Bersier, D., Mourard, D. et al. 2004c , Astron. Astrophys., 428, 587.
Kienzle, F., Moskalik, P., Bersier, D. & Pont, F. 1999 , Astron. Astrophys., 341, 818.
Kienzle, F., Pont, F., Moskalik, P., & Bersier, D. 2000, in L. Szabados, D. Kurtz eds., The Impact of Large-Scale Surveys on Pulsating Star Research, IAU Coll. 176, ASP Conference Series, Vol. 203, p. 239.

Lane, B. F., Kuchner, M. J., Boden, A. F. et al. 2000, Nature, 407, 485.

Lane, B. F., Creech-Eakman, M. J. & Nordgren, T. E. 2002, Astrophys. J., 573, 330.

Lane, C. D. & Stobie, R. S. 1994, MNRAS, 266, 411.

Lane, C. D. & Stobie, R. S. 1995, MNRAS, 274, 337.

Moskalik, P. & Buchler, J. R. 1993, in J. M. Nemec, J. M. Matthews eds., New Perspectives on Stellar Pulsation and Pulsating Variable Stars, IAU Coll. 139 (Cambridge Univ. Press, p. 237.

Moskalik, P., & Ogloza, W. 2000, in L. Szabados, D. Kurtz eds., The Impact of Large-Scale Surveys on Pulsating Star Research, IAU Coll. 176, ASP Conference Series, Vol. 203, p. 237.

Moskalik, P., Gorynya, N. A., Samus, N. N. & Krzyt, T. 2005, in preparation.

Nordgren, T. E., Armstrong, J. T., Germain, M. E. et al. 2000, Astrophys. J., 543, 972.

Nordgren, T. E., Lane, B. F., Hindsley, R. B. & Kervella, P. 2002, Astron. J., 123, 3380.

Storm, J., Carney, B. W., Gieren, W. P. et al. 2004, Astron. Astrophys., 415, 531.

Sturmann, J., ten Brummelaar, T. A., Ridgway, S. et al., 2003, SPIE, 4838, 1208.

Szabados, L. 1990, MNRAS, 242, 285.

Turner, D. G. & Burke, J. F. 2002, Astron. J., 124, 2931.

Udalski, A., Szymański, M., Kubiak, M. et al. 1999, Acta Astron., 49, 201.

Zakrzewski, B., Ogloza, W. & Moskalik, P. 2000, Acta Astron., 50, 387.