LIMITING MEASURES OF SUPERSINGULARITIES

BODAN ARSOVSKI

Abstract. Conditional on some combinatorial conjectures, we prove that the measures of supersingularities of level \(Np \) oldforms tend to the zero measure on the interval \(\left(\frac{1}{p+1}, \frac{p}{p+1} \right) \) when \(p \) is coprime to \(6N \) and \(\Gamma_0(N) \)-regular. We do this by asymptotically sharpening a local theorem by Berger, Li, and Zhu for primes bigger than 3 and weights not congruent to 1 modulo \(p+1 \).

1. Introduction

Let \(p > 3 \) be a prime number and \(k \in \mathbb{Z}_{\geq 2} \) be a positive integer. The goal of this article is to extend the computations in [Ars] and as a result compute the modulo \(p \) representations \(V_{k,a} \) for \(a \in \mathbb{Z}_p \) with “large” valuation. To avoid reintroducing cumbersome definitions, we use the same notation as in sections 1, 2, 3, 4, and 6 of [Ars], the only difference being that we do not assume that \(\nu < \frac{p-1}{2} \)—instead we consider slopes that are large with respect to the weight \(k \). To be more specific, throughout the article we fix \(a \in \mathbb{Z}_p \) such that \(v_p(a) > \left\lfloor \frac{k-1}{p+1} \right\rfloor \). The following is the main theorem in [BLZ04] (which is true for the primes 2 and 3 as well).

Theorem 1 (Berger, Li, Zhu). If \(v_p(a) > \left\lfloor \frac{k-2}{p-1} \right\rfloor \) then

\[
V_{k,a} \cong V_{k,0} \cong \begin{cases} \text{ind}(\omega_{k-1}^0) & \text{if } p+1 \nmid k-1, \\ (\mu_{\omega_-,\omega^{(k-1)/(p+1)}}_{\omega^{(k-1)/(p+1)}}) & \text{if } p+1 \mid k-1. \end{cases}
\]

(1)

Conditional on the combinatorial conjectures [A[F we prove the following theorem (recall that we assume \(p > 3 \)).

Theorem 2. If \(v_p(a) > \left\lfloor \frac{k-1}{p-1} \right\rfloor + \left\lfloor \log_p k \right\rfloor \) then

\[
V_{k,a} \cong \begin{cases} \text{ind}(\omega_{k-1}^0) & \text{if } p+1 \mid k-1, \\ \Omega_{k,a} & \text{if } p+1 \nmid k-1. \end{cases}
\]

(2)

where either \(\Omega_{k,a} \cong \text{ind}(\omega_2^{p-1}) \) or \(\Omega_{k,a} \cong \mu_{\lambda} \oplus \mu_{\lambda-1} \) for some \(\lambda \in \mathbb{F}_p \).

Theorem 2 says very little about \(V_{k,a} \) when \(p+1 \mid k-1 \), and of course we expect that \(\Omega_{k,a} \cong \mu_{\sqrt{-1}} \oplus \mu_{-\sqrt{-1}} \) and we do not expect that the error term \(\left\lfloor \log_p k \right\rfloor \) be optimal. We immediately deduce the following corollary (again conditional on the combinatorial conjectures [A[F]).

Corollary 3. Let \(N \) be a positive integer coprime to \(p \) such that \(p \) is \(\Gamma_0(N) \)-regular, and for \(l \in \mathbb{Z}_{\geq 2} \) let \(\mu_l \) be the discrete measure of supersingularities of weight \(l \), level \(\Gamma_0(Np) \) oldforms. Then the sequence of restrictions of \(\mu_l \) to the interval \(\left(\frac{1}{p+1}, \frac{p}{p+1} \right) \) tends to the zero measure on \(\left(\frac{1}{p+1}, \frac{p}{p+1} \right) \) as \(l \to \infty \).
See [Gou01] and conjecture 2.1.1 in [BG16] for a stronger question.

Proof that theorem 2 implies corollary 3. As in subsection 4.2 of [BLZ04] we can use theorem 2 to conclude that
\[\mu_l \text{ is supported on } \left[0, \frac{1}{p+1} + \frac{\log{l}}{l-1}, 1 \right] \cup \left[\frac{P}{p+1} - \frac{\log{l}}{l-1}, 1 \right], \]
and that completes the proof because
\[\frac{\log{l}}{l-1} \to 0 \]
as \(l \to \infty \)—we omit the details.

2. Setup

Let \(q = \left\lfloor \frac{k-1}{p+1} \right\rfloor \). In light of theorem 1, let us assume that
\[\left\lfloor \frac{k-2}{p+1} \right\rfloor \geq v_p(a) > q + \left\lfloor \log{p} \right\rfloor. \]
In particular,
\[k \geq \frac{1}{2}(p+1)^2. \]

Instead of computing the modulo \(p \) representation at the weight \(k \), we use known local constancy results to equate it with a corresponding representation at a suitably close weight \(k + \epsilon \approx k \) and compute the latter representation instead. This avoids problems arising from the dimension of the associated \(\text{GL}_2(\mathbb{Q}_p) \)-representation (via the local Langlands correspondence) being too small. Together with local constancy results by Chenevier and Colmez, equation (5) implies that
\[V_{k,a} \sim V_{t+2,a}. \]

This article is a continuation of [Ars], so to avoid repeating ourselves we refer to [Ars] for all the definitions. Let us just mention that there is the bijectively associated module
\[\mathfrak{G}_{t+2,a} \cong \text{ind}^G \mathfrak{S}_t/\mathcal{I}, \]
and \(\mathcal{S} \) contains the reduction modulo \(p \) of any integral element in the image of \(T - a \), where \(T \in \text{End}_{G}(\text{ind}_{G}^{\overline{\mathbb{Q}}} \Sigma) \) corresponds to the double coset of \((\ell \; 1)\) and

\[
T(\gamma \cdot \varphi_{p} v) = \sum_{\ell \in \mathbb{F}_{p}} \gamma(\ell \; \varphi_{p}) \cdot \varphi_{p} \left((\ell \; 1) \cdot v \right) + \gamma(\ell \; 0) \cdot \varphi_{p} \left((\ell \; 0) \cdot v \right).
\]

(12)

Let us also note that \(\varphi_{p} + 2 \cdot a \) is a subquotient of a module which has a series whose factors are subquotients of certain \(\widetilde{N}_{0}, \ldots, \widetilde{N}_{\nu - 1} \), and for \(\alpha \in \{0, \ldots, \nu - 1\} \) we similarly define \(\text{sub}(\alpha) \), \(\text{quot}(\alpha) \), \(T_{\alpha, \alpha} \), \(T_{\alpha} \). For \(\alpha \in \mathbb{Z}_{\geq 0} \), let

\[
h_{\alpha} = \sum_{j=0}^{n} (-1)^{j} \theta^{j+n+1} r - np - \alpha - (p - 1) \in \Sigma_{\alpha},
\]

\[
h_{\alpha}^{s} = (\ell \; \ell)h_{\alpha}.
\]

(13)

For \(\alpha, \beta, R \in \mathbb{Z}_{\geq 0} \), let \(\mathcal{C}_{R}(\alpha, \beta) \) be such that

\[
\sum_{\beta = -R}^{\alpha} \mathcal{C}_{R}(\alpha, \beta) \left(\frac{R - 1}{R} \right)^{\alpha - \beta} = \left(\frac{R - 1}{R} \right)^{\alpha - 1} \in \mathbb{Q}_{p}[X].
\]

(14)

Note that both sides of equation \((14)\) are polynomials in \(X \) over \(\mathbb{Q}_{p} \) of degree \(R \).

Acknowledgements

I would like to thank professor Kevin Buzzard for his helpful remarks, suggestions, and support. This work was supported by Imperial College London and its President’s PhD Scholarship.

3. Combinatorial conjectures

Computer calculations suggest that all of the following combinatorial statements are true, and we expect to prove them at some point. Let

\[
q' = q - \left\lfloor \frac{r - 2 \alpha}{p - 1} \right\rfloor = \begin{cases}
q & \text{if } q \leq \frac{r - 2 \alpha}{p - 1}, \\
q - 1 & \text{if } q > \frac{r - 2 \alpha}{p - 1}.
\end{cases}
\]

(15)

Conjecture A. If \(\alpha \in \{q + 1, \ldots, r - q - 1\} \) and \(l \in [1, \frac{2 \alpha}{p - 1}] \cap \mathbb{Z} \) then

\[
v_{p} \left(\binom{q'}{\alpha} \right) < v_{p} \left(\binom{r}{\alpha - l(p - 1)} \left(\frac{q'}{q'} \right) \right) + l(p - 1).
\]

(16)

Conjecture B. If \(\alpha \in \{q + 1, \ldots, r - q - 1\} \) and \(l \in [q', \frac{2 \alpha}{p - 1}] \cap \mathbb{Z} \) then

\[
v_{p} \left(\binom{q'}{\alpha} \right) < v_{p} \left(\binom{r}{\alpha - l(p - 1) - \alpha} \left(\frac{q'}{q'} \right) \right) + l(p - 1) + 2 \alpha - r.
\]

(17)

Conjecture C. If \(\alpha \in \{q + 1, \ldots, r - q - 1\} \) and \(\beta \in \{0, \ldots, q'\} \) then

\[
v_{p} \left(\binom{q'}{\alpha} \right) < v_{p} \left(\binom{q'}{\beta} \right) + v_{p} \left(\mathcal{C}_{q'}(\alpha, \alpha - \beta) \right) + \alpha - \beta.
\]

(18)

Conjecture D. If \(r = q(p + 1) + 1 \) and \(l \in [1, \frac{q + 1}{p - 1}] \cap \mathbb{Z} \) then

\[
v_{p} \left(\binom{q'}{q} \right) < v_{p} \left(\binom{r}{q - l(p - 1) - \alpha} \left(\frac{q'}{q} \right) \right) + l(p - 1).
\]

(19)

Conjecture E. If \(r = q(p + 1) + 1 \) and \(l \in [q + 1, q + \frac{q + 1}{p - 1}] \cap \mathbb{Z} \) then

\[
v_{p} \left(\binom{q'}{q} \right) < v_{p} \left(\binom{r}{l(p - 1) + q} \left(\frac{q'}{q} \right) \right) + (l - q) \alpha - (p - 1) - 1.
\]

(20)

Conjecture F. If \(r = q(p + 1) + 1 \) and \(\beta \in \{0, \ldots, q - 1\} \) then

\[
v_{p} \left(\binom{q'}{q} \right) < v_{p} \left(\binom{q'}{\beta} \right) + v_{p} \left(\mathcal{C}_{q}(q, q - \beta) \right) + q - \beta.
\]

(21)
4. Lemmas

In this section we prove some technical lemmas. Where there are similarities to lemmas in [Ars] we only provide sketches of the proofs and refer to [Ars] for the details.

Lemma 4. If \(\alpha \in \{0, \ldots, n\} \) then
\[
\alpha \bullet \mathfrak{P} h_{\alpha} \equiv 3 \, p^\alpha \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \bullet \mathfrak{P} x^\alpha y^{l-\alpha} + O(p^n). \tag{22}
\]
If \(\alpha \in \{0, \ldots, n\} \), \(\beta \in \{\alpha, \ldots, n\} \), and \((C_i)_{i \in \mathbb{Z}}\) is a family of elements of \(\mathbb{Z}_p \) then
\[
\sum_{i} \left(\sum_{\alpha=\beta} \left((-\alpha+1) \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \sum_{\mu \in \mathbb{F}_p} [\mu]^{-l(\begin{smallmatrix} p & \mu \\ 0 & 1 \end{smallmatrix})} \right) \bullet \mathfrak{P} x^{\alpha} y^{l-\alpha} \right) = 3 \sum_{\alpha=\beta} \left((-\alpha+1) \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \sum_{\mu \in \mathbb{F}_p} [\mu]^{-l(\begin{smallmatrix} p & \mu \\ 0 & 1 \end{smallmatrix})} \right) \bullet \mathfrak{P} h_{\alpha-\beta} + O(p^n).
\tag{23}
\]

Proof. The proof is similar to the proof of lemma 13 in [Ars]. We have
\[
\alpha \bullet \mathfrak{P} h_{\alpha} \equiv 3 \, T \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \bullet \mathfrak{P}, \tag{24}
\]
where, due to the explicit equation for \(T \) and part (5) of lemma 6 in [Ars],
\[
A_{\mu} = \sum_{\xi \geq 0} \sum_{n \geq 0} (-1)^{i+j} \left(\begin{smallmatrix} i+j & n \end{smallmatrix} \right) (-\alpha+1)^{i+j} \left(\begin{smallmatrix} i+j & n \end{smallmatrix} \right) \left(\begin{smallmatrix} p & \mu \\ 0 & 1 \end{smallmatrix} \right) \bullet \mathfrak{P} x^{\alpha} y^{l-\alpha} + O(p^n), \tag{25}
\]
and
\[
A = \sum_{j=0}^{n} \mathfrak{P}^{\alpha} \left(\begin{smallmatrix} i+j & n \end{smallmatrix} \right) \left(\begin{smallmatrix} j & \mu \end{smallmatrix} \right) \sum_{\mu \in \mathbb{F}_p} [\mu]^{-l(\begin{smallmatrix} p & \mu \\ 0 & 1 \end{smallmatrix})} \bullet \mathfrak{P} x^{\alpha} y^{l-\alpha} + O(p^n). \tag{26}
\]

Equations (24), (25), and (26) imply equation (22). Equation (22) implies that
\[
\frac{ap-\alpha}{p-1} \sum_{l=\alpha-\beta} \sum_{\mu \in \mathbb{F}_p} [\mu]^{-l(\begin{smallmatrix} p & \mu \\ 0 & 1 \end{smallmatrix})} \bullet \mathfrak{P} x^{\alpha} y^{l-\alpha} + O(p^n) \tag{27}
\]
which implies equation (23). \qed

Lemma 5. Let \(\alpha \in \{0, \ldots, \delta\} \) and \(v \in \mathbb{Q} \) and the family \((D_i)_{i \in \mathbb{Z}}\) of elements of \(\mathbb{Z}_p \) be such that
\[
D_i = 0 \text{ for } i \notin \left[\frac{-\alpha}{p-1}, \frac{\alpha}{p-1} \right],
\]
\[
v \leq v_p(\theta_w(D_\alpha)) \text{ for } \alpha \leq w \leq 2\delta,
\]
\[
v < v_p(\theta_w(D_\alpha)) \text{ for } 0 \leq w < \alpha. \tag{28}
\]
For $j \in \mathbb{Z}$, let
\[\Delta_j = (-1)^{j-n}(1-p)^{-\alpha}(\frac{\alpha}{j-n})\vartheta_\alpha(D_\star), \]
so that $(\Delta_j)_{j \in \mathbb{Z}}$ is supported on the set of indices $\{n, \ldots, \alpha + n\}$ and therefore $\vartheta_\alpha(D_\star)$ is properly defined for $0 \leqslant w < \alpha$. Then $v \leqslant v_p(\vartheta_\alpha(D_\star)) \leqslant v_p(\Delta_j)$ for all $j \in \mathbb{Z}$, and
\[
\sum_i (\Delta_i - D_i) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \\
\equiv_3 - \sum_{i \leq \delta + v_p(a) - \alpha}/(p-1) D_i \bullet \overline{\vartheta}_p h_i(p-1)+\alpha \\
- \sum_{i \geq (t-\alpha'-\delta-v_p(a))/(p-1)} D_i \bullet \overline{\vartheta}_p h_{t-i(p-1)-\alpha} \\
+ E \bullet \overline{\vartheta}_p \theta^{\alpha+1} h + F \bullet \overline{\vartheta}_p h' + O(p^\delta),
\]
for some polynomials h, h' and some $E, F \in \mathbb{Z}_p$ with $v_p(E) \geq v$ and $v_p(F) > v$.

Proof. The proof is similar to the proof of lemma 14 in [178]. We have
\[
\sum_i (\Delta_i - D_i) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \\
\equiv_3 a^{-1} T \left(\sum_i (\Delta_i - D_i) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \right) \\
\equiv_3 a^{-1} \sum_i (\Delta_i - D_i) \sum_{\lambda_0 \in \mathbb{P}_p} (\frac{p}{\lambda_0}) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} (-[\lambda]x + py)^{-i(p-1)-\alpha} \\
+ a^{-1} \sum_i (\Delta_i - D_i) (p^{i(p-1)-\alpha}(\frac{p}{\lambda_0}) + p^i(p-1)+\alpha(\frac{1}{\lambda_0})) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \\
\equiv_3 a^{-1} \sum_i (\Delta_i - D_i) \sum_{\lambda_0 \in \mathbb{P}_p} (\frac{p}{\lambda_0}) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} (-[\lambda]x + py)^{-i(p-1)-\alpha} \\
- \sum_{i \leq \delta + v_p(a) - \alpha}/(p-1) D_i \bullet \overline{\vartheta}_p h_i(p-1)+\alpha \\
- \sum_{i \geq (t-\alpha'-\delta-v_p(a))/(p-1)} D_i \bullet \overline{\vartheta}_p h_{t-i(p-1)-\alpha} + O(p^\delta). \tag{31}
\]
The third congruence follows from lemma 4. We also have
\[
\sum_{\lambda_0 \in \mathbb{P}_p} (\frac{p}{\lambda_0}) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} (-[\lambda]x + py)^{-i(p-1)-\alpha} \\
\equiv_3 \sum_{\xi=0}^{2\delta} \left(\sum_{\epsilon=\alpha}^{\delta} \sum_{\lambda_0 \in \mathbb{P}_p} [-\lambda]^{t-i(p-1)-\alpha} \left(\frac{p}{\lambda_0} \right) \bullet \overline{\vartheta}_p x^{t-i(p-1)-\alpha} y^\xi + O(p^{2\delta}) \right) \\
\equiv_3 a \sum_{\xi=0}^{2\delta} \left(\sum_{\epsilon=\alpha}^{\delta} \sum_{\lambda_0 \in \mathbb{P}_p} [-\lambda]^{t-i(p-1)-\alpha} \left(\frac{1}{\lambda_0} \right) \bullet \overline{\vartheta}_p x^{t-i(p-1)-\alpha} h^\xi \right) + O(p^{2\delta}). \tag{32}
\]
The second congruence follows from lemma 4. By assumption, if
\[
X_\xi = \sum_i (\Delta_i - D_i) \left(\sum_{\lambda_0 \in \mathbb{P}_p} (\frac{p}{\lambda_0}) \bullet \overline{\vartheta}_p x^{i(p-1)+\alpha} (-[\lambda]x + py)^{-i(p-1)-\alpha} \right), \tag{33}
\]
then $v_p(X_\xi) > v$ for $\xi \in \{0, \ldots, \alpha\}$, and $v_p(X_\xi) \geq v$ for $\xi \in \{\alpha + 1, \ldots, 2\delta\}$. This means that equation (32) implies that
\[
\sum_{\xi=0}^{2\delta} X_\xi \bullet \overline{\vartheta}_p \sum_{\lambda_0 \in \mathbb{P}_p} [-\lambda]^{t-i(p-1)-\alpha} \left(\frac{1}{\lambda_0} \right) h^\xi \right) + O(p^{2\delta-\alpha}). \tag{34}
\]
which together with equation (31) implies equation (30) with
\[E^\theta_{\alpha+1} = \sum_{\xi=0}^{2\delta} X_\xi \sum_{\lambda \in F_p^*} \mathcal{K} \left[-\lambda \right]^{\alpha-\xi} (1^{(\lambda)}) h^* \xi. \]
\[F h' = \sum_{\xi=0}^{\delta} X_\xi \sum_{\lambda \in F_p^*} \mathcal{K} \left[-\lambda \right]^{\alpha-\xi} (1^{(\lambda)}) h^* \xi. \] (35)

Lemma 6. Let \((C_i)_{i \in \mathbb{Z}}\) be any family of elements of \(\mathbb{Z}_p\). Suppose that \(\alpha \in \{0, \ldots, \delta\} \) and \(\beta \in \{\alpha, \ldots, n\} \) and \(v \in \mathbb{Q}\) and
\[D_i = [i \in \left(\frac{-\alpha}{p-1}, \frac{-\beta}{p-1}\right)] D_i + \sum_{i=\alpha-\beta}^{\alpha} C_i (p^{-\beta+\alpha}) \] (36)
satisfy
\[v \leq v_p (\partial_w (D_*)) \] (37)
\[v < v_p (\partial_w (D_*)) \] (38)
\[\text{Note that } (D_i)_{i \in \mathbb{Z}} \text{ is supported on the finite set of indices } \left\{ \frac{-\alpha}{p-1}, \ldots, \frac{-\beta}{p-1} \right\}. \]

Then
\[(1 - p)^{-\alpha} \left[\right. \sum_{\alpha} \sum_{\beta} C_i p^l \sum_{\mu \in F_p^*} \mathcal{K} \left[\mu \right] \left(0^{(\mu)} \right) \sum_{\nu} \mathcal{K} h_{\alpha-\beta} + O(p^\delta) \]
(39)

for some polynomials \(h, h'\) and some \(E, F \in \mathbb{Z}_p\) with \(v_p (E) \geq v\) and \(v_p (F) > v\).

Proof. Lemma 4 implies that
\[\sum_i (D_i - D_i') \sum_{\nu} x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \]
(40)
Equation (39) together with lemma 5 implies that
\[\sum_i \mathcal{K} \sum_{\nu} x^{i(p-1)+\alpha} y^{-i(p-1)-\alpha} \]
(41)
Lemma 7. If $\alpha \in \mathbb{Z}_{\geq 1}$ and $\beta \in \{0, \ldots, \alpha\}$ then

$$v_p\left(\binom{\alpha}{\beta}\right) \leq \lfloor \log p \alpha \rfloor.$$ \hfill (42)

Proof. A theorem by Kummer says that

$$v_p\left(\binom{\alpha}{\beta}\right)$$

is the number of times one carries over a digit when adding β and $\alpha - \beta$, and is therefore strictly less than the number $\lfloor \log p \alpha \rfloor + 1$ of digits of α.

$$\blacksquare$$

5. Proof of theorem [2]

The goal of this section is to compute $\mathfrak{T}_{t+2,a}$. Let Q be an infinite-dimensional factor of $\mathfrak{T}_{t+2,a}$. The first two subsections imply the following two facts about Q.

1. Q is not a factor of \hat{N}_α for $\alpha \in \{0, \ldots, \nu - 1\}$.
2. Q is not a factor of \hat{N}_α for $\alpha \in \{\nu + 1, \ldots, \nu - 1\}$.

From these two facts we can conclude that either Q is a factor of $\text{ind}^G\text{sub}(\varrho)$ or it is a factor of $\text{ind}^G\text{quot}(\varrho)$. In light of Berger’s modulo p local Langlands correspondence and as in section 10 of [Ars] this means that

$$\mathfrak{T}_{k,a} \simeq \mathfrak{T}_{t+2,a} \simeq \text{ind}^G(\omega^\varrho_{r+1}) \otimes \omega^\varrho \simeq \text{ind}^G(\omega^{r+1}) \simeq \mathfrak{T}_{k,0}$$

for $r - \varrho(p + 1) \in \{-1, \ldots, p - 1\} \setminus \{-1, 1, p - 2\}$. The next two subsections prove the following facts about two of the remaining cases $r - \varrho(p + 1) \in \{1, p - 2\}$.

3. If

$$r - \varrho(p + 1) = p - 2$$

(and therefore $\text{sub}(\varrho) \simeq \sigma_{p-2}(\varrho)$) then Q is a factor of $\text{ind}^G\text{quot}(\varrho)$.

4. If

$$r - \varrho(p + 1) = 1$$

(and therefore $\text{quot}(\varrho) \simeq \sigma_{p-2}(\varrho + 1)$) then Q is a factor of $\text{of ind}^G\text{quot}(\varrho)/T_{q,\varrho}$.

These four claims together complete the proof as in [Ars]—we omit the details.

5.1. No infinite-dimensional factor of $\mathfrak{T}_{t+2,a}$ is a subquotient of \hat{N}_α for $\alpha \in \{0, \ldots, \nu - 1\}$. Let $\alpha \in \{0, \ldots, \nu - 1\}$. Let

$$M^{(r)}_\alpha = \left(\binom{r-\alpha+j}{i(p-1)+j}\right)_{\{i \mid i(p-1)+\alpha \in \varrho(r-\varrho), \alpha - \varrho \leq j \leq \alpha\}}.$$

Then $M^{(r)}_\alpha$ has

$$R \leq \left\lfloor \frac{r-2p+1}{p-1} \right\rfloor \leq \varrho + 1$$

rows and $C = \varrho + 1$ columns. Let

$$M^{(r)\prime}_\alpha = \left(\binom{r-\alpha+j}{i(p-1)+j}\right)_{\{i \mid i(p-1)+\alpha \in \varrho(r-\varrho), \alpha - R \leq j \leq \alpha\}}$$

\hfill (46)
be the right $R \times R$ submatrix of $M^{(r)}_\alpha$. Lemma [7] and the equation
\[
(r - \alpha + j)_{i(p-1)+j} = (i(p-1) + \alpha)_{i-j}^{-1}
\] (47)
imply that the \mathbb{Z}_p-module determined by the image of $M^{(r)\prime}_\alpha$ contains $p^{[\log_p k]} \times$
the \mathbb{Z}_p-module determined by the image of the matrix
\[
M^{(r)\prime \prime}_\alpha = \left((\begin{smallmatrix} i(p-1)+\alpha \\ \alpha-j \end{smallmatrix}) \right)_{0 \leq i,j < R}
\] (48)
with corresponding entries $\left((\begin{smallmatrix} i(p-1)+\alpha \\ \alpha-j \end{smallmatrix}) \right)_{0 \leq i,j < R}$.
For some $\gamma \in \mathbb{Z}_{\geq 0}$, $M^{(r)\prime \prime}_\alpha$ is obtained from
\[
M^{(r)\prime \prime \prime}_\alpha = \left((\begin{smallmatrix} (i(p-1)+\gamma) \\ j \end{smallmatrix}) \right)_{0 \leq i,j < R}
\] (49)
by permuting the rows. By Vandermonde’s convolution formula,
\[
M^{(r)\prime \prime \prime}_\alpha = \left((\begin{smallmatrix} (i(p-1)) \\ j \end{smallmatrix}) \right)_{0 \leq i,j < R} \cdot \left((\begin{smallmatrix} \gamma \\ j-i \end{smallmatrix}) \right)_{0 \leq i,j < R}.
\] (50)
Since
\[
\left((\begin{smallmatrix} \gamma \\ j-i \end{smallmatrix}) \right)_{0 \leq i,j < R}
\] is upper triangular with 1’s on the diagonal and
\[
\det \left((\begin{smallmatrix} (i(p-1)) \\ j \end{smallmatrix}) \right)_{0 \leq i,j < R} = (p-1)^R \det \left((\begin{smallmatrix} 1 \\ j \end{smallmatrix}) \right)_{0 \leq i,j < R} = (p-1)^R
\] (51)
by a variant of Vandermonde’s determinant identity, the reduction modulo p of $M^{(r)\prime \prime \prime}_\alpha$ has full rank (in characteristic p). Therefore, for each u such that
\[
u(p-1) + \alpha \in [\rho + 1, r - \rho - 1],
\] there exist constants $C_\alpha(r, u), \ldots, C_\alpha - r(r, u)$ such that
\[
\sum_{i=\alpha-r}^{\alpha} C_i(r, u)_{i(p-1)+j} \equiv [i = u]p^{[\log_p k]}
\] (52)
for all i such that
\[
i(p-1) + \alpha \in [\rho + 1, r - \rho - 1].
\] By adding linear combinations of equation (52) for varying u, we get that
\[
\sum_{i(p-1)+\alpha \in [\rho + 1, r - \rho - 1]} \sum_{i=\alpha-r}^{\alpha} C_i_{i(p-1)+l} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha}
+ \sum_{i(p-1)+\alpha \in [0, \rho]} \sum_{i=\alpha-r}^{\alpha} D_i_{i(p-1)+l} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha}
\equiv p^{[\log_p k]} \varrho^\alpha x^{p-1} y^{r-\alpha(p+1)+p+1} \in \mathbb{Z}_p
\] (53)
for some C_i, D_i. Let $D_i(r)$ be the coefficient of $x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha}$ on the left side of equation (53). Then
\[
\varrho w(D_{\bullet}(r)) = \sum_i D_i(r)_{i(p-1)+j} \equiv [i = w] p^{[\log_p k]}
\] (54)
is zero for $0 \leq w < \alpha$, and has valuation that is greater than or equal to $[\log_p k]$ for $w \geq \alpha$, with equality for $w = \alpha$. Let D_i be the coefficient of $x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha}$ in
\[
\sum_{i(p-1)+\alpha \in [\rho + 1, r - \rho - 1]} \sum_{i=\alpha-r}^{\alpha} C_i_{i(p-1)+l} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha}
+ \sum_{i(p-1)+\alpha \in [0, \rho]} \sum_{i=\alpha-r}^{\alpha} D_i_{i(p-1)+l} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha},
\] (55)
where $D_i'' = D_i'$ and $D_i'' = D_i' - D_i$ for $i(p-1) + \alpha \in [0, \rho]$. Since
\[
\nu_p((i(p-1) + \alpha)! \leq \nu_p(g!) \leq k
\] (56)
for $i(p-1)+\alpha \in [0,\varrho]$, it is easy to show by using lemma 5 in [Ars] that
\[\vartheta_w(D_{\bullet}) = \vartheta_w(D_{\bullet}(r)) + O(ep^{-k-W}) \] (57)
for all $0 \leq w \leq W$. In particular, we can apply lemma 6 to the constants $(D_i)_{i \in \mathbb{Z}}$ and to $v = [\log_p k]$, and as a result get that
\[(1-p)^{-\alpha} \vartheta(D_{\bullet}) \bullet \sum_{\varrho \in \mathbb{Q}_p, \varrho \vDash \theta^\alpha x^{n(p-1)}y^t-\alpha(p+1)-n(p-1)} \]
\[= \sum_{\varrho \in \mathbb{Q}_p} \sum_{i=\alpha}^{\alpha} C \varrho^\alpha \sum_{\mu \in \mathbb{F}_q} [\mu]^{-t}(\alpha,1) \bullet \varrho \theta^{t-\alpha-\mu} h_{\alpha-t} \]
\[+ \sum_{i(\varrho-1)+\alpha \in [0,\varrho]} \varrho_{\varrho-1} + \alpha \theta^{t-\alpha-\mu} h_{\alpha-t} \]
\[- \sum_{i \neq (\varrho-1) \alpha \in [0,\varrho]} \varrho_{\varrho-1} + \alpha \theta^{t-\alpha-\mu} h_{\alpha-t} \]
\[+ E \bullet \varrho \theta^{t-\alpha-\mu} h + F \bullet \varrho \theta^{t-\alpha-\mu} h + O(p^\delta), \] (58)
for some h,h' and some $E,F \in \mathbb{Z}_p$ with $v_p(E) \geq [\log_p k]$ and $v_p(F) > [\log_p k]$. Here
\[D_i'' = D_i'' - \sum_{\varrho \in \mathbb{Q}_p} [\mu]^{-t}(\alpha,1) \bullet \varrho \theta^{t-\alpha-\mu} h_{\alpha-t} \]
(59)
for all i such that
\[i(p-1)+\alpha \in [0,\varrho] \cup [t-\varrho,\varrho]. \]
The left side of equation (58) is $p^{[\log_p k]} \psi$, where ψ is an integral element whose reduction modulo p represents a generator of \hat{N}_α. We can use lemma 4 to get that the first and second lines on the right side of equation (58) are
\[O(p^{v_p(\varrho-\alpha)}) = O(p^{[\log_p k]}). \] (60)
We can also use equation (53) to get that
\[D_i = O(p^{[\log_p k]}). \] (61)
for all i such that
\[i(p-1)+\alpha \in [0,\varrho] \cup [t-\varrho,\varrho]. \]
This is because
\[D_i = D_i(r) + O(ep^{-v_p(\delta)}) \] (62)
for all i such that $i(p-1)+\alpha \in [0,\varrho]$, and
\[D_{i-1} = D_{i-1}(r) + O(ep^{-v_p(\delta)}) \] (63)
for all i such that $i(p-1)+\alpha \in (t-\varrho,\varrho]$. We also have, due to equation (53),
\[D_w = O(ep^{-v_p(\delta)}) \] (64)
for all i and all
\[w \in \mathbb{Z}_{<0} \cup \mathbb{Z}_{\geq 0}. \]
This, together with lemma 4, implies that the sum of the third and fourth lines on the right side of equation (58) is $p^{[\log_p k]} \times$ an integral element whose reduction modulo p represents the trivial element of \hat{N}_α. Finally, the fifth line of on the right side of equation (58) is evidently $p^{[\log_p k]} \times$ an integral element whose reduction modulo p represents the trivial element of \hat{N}_α. So, similarly as in the
main proof in [Ars], we can conclude that no infinite-dimensional factor of $\Theta_{t+2,a}$ is a subquotient of \tilde{N}_α—again we omit the details.

5.2. No infinite-dimensional factor of $\Theta_{t+2,a}$ is a subquotient of \tilde{N}_α for $\alpha \in \{g + 1, \ldots, \nu - 1\}$. Let $\alpha \in \{g + 1, \ldots, \nu - 1\}$. Let
\begin{equation}
C_l = \mathcal{C}_{\theta}(\alpha, l) \left(\frac{r}{r-l}\right)
\end{equation}
for $l \in \{\alpha - g', \ldots, \alpha\}$. As in subsection 5.1 we can conclude that
\begin{equation}
\sum_{i(p-1)+\alpha \in (\alpha, g' + \alpha)} \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{r-\alpha+l}{i(p-1)+l}\right) x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha} = 0 \in \tilde{\Sigma}_r.
\end{equation}
Let D_i be the coefficient of $x^{i(p-1)+\alpha} y^{t-i(p-1)-\alpha}$ in
\begin{equation}
\sum_{i(p-1)+\alpha \in (\alpha, t-r + g' + \alpha)} \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{t-\alpha+l}{i(p-1)+l}\right) x^{i(p-1)+\alpha} y^{t-i(p-1)-\alpha}.
\end{equation}
Then it is easy to show by using lemma 5 in [Ars] that
\begin{equation}
\vartheta_w(D_\ast) = O(ep^{-k-2\delta})
\end{equation}
for all $0 \leq w \leq 2\delta$. In particular, we can apply lemma 6 to the constants $(D_i)_{i \in \mathbb{Z}}$ and to $v = \delta$, and as a result get that
\begin{equation}
\sum_{p^{-\alpha}}^{ap^{-\alpha}} \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{p(l)}{p^{l+1}}\right) \sum_{\mu \in \mathcal{P}_p}[\mu]^{-t} \left(\begin{smallmatrix} p & \alpha \\ 0 & 1 \end{smallmatrix}\right) \mathcal{\tilde{G}}_{\mu} h_{\alpha-l}
\end{equation}
\begin{equation}
= \sum_{\alpha \in [0, \alpha] \cup (t-r+g'+\alpha)}\sum_{l=\alpha-g'}^{\alpha} D_i \left(\begin{smallmatrix} p & \alpha \\ 0 & 1 \end{smallmatrix}\right) \mathcal{\tilde{G}}_{\mu} h_{\alpha-l} + O(p^\delta),
\end{equation}
where
\begin{equation}
D_i = \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{t-\alpha+l}{i(p-1)+l}\right)
\end{equation}
for all i such that
\begin{equation}
i(p-1) + \alpha \in [0, \alpha] \cup (t-r+g'+\alpha) + \alpha, t].
\end{equation}
By approximating D_i with $D_i (r) + O(ep^{-v}(D_i))$ as in subsection 5.1 we can show that the third and fourth lines of equation (69) are in
\begin{equation}
O(p^{\alpha-2v(p)}(\alpha)) = O(ap^{-\alpha+(k-3v_p(a)-p+3)}) = O(ap^{-\alpha+(p-3)(k/(p-1)-1)}) = O(ap^{-\alpha+2[\log_p k]}),
\end{equation}
Consequently we get that
\begin{equation}
\sum_{i(p-1)+\alpha \in [0, \alpha] \cup (t-r+g'+\alpha) + \alpha, t} \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{t-\alpha+l}{i(p-1)+l}\right) \mathcal{\tilde{G}}_{\mu} h_{\alpha-l} + O(ap^{-2[\log_p k]}).
\end{equation}
Lemma 4 and the definition of $(C_l)_{\alpha-g' \leq l \leq \alpha}$ then imply that
\begin{equation}
\sum_{i(p-1)+\alpha \in [0, \alpha]} X_i \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix}\right) \sum_{\mu \in \mathcal{P}_p}[\mu]^{-t} \left(\begin{smallmatrix} p & \alpha \\ 0 & 1 \end{smallmatrix}\right) \mathcal{\tilde{G}}_{\mu} h_{\alpha-l} + O(p^{2[\log_p k]}),
\end{equation}
\begin{equation}
= \sum_{i(p-1)+\alpha \in [0, \alpha]} \sum_{l=\alpha-g'}^{\alpha} C_l \left(\frac{t-\alpha+l}{i(p-1)+l}\right) \sum_{\mu \in \mathcal{P}_p}[\mu]^{-t} \left(\begin{smallmatrix} p & \alpha \\ 0 & 1 \end{smallmatrix}\right) \mathcal{\tilde{G}}_{\mu} h_{\alpha-l} + O(p^{2[\log_p k]}),
\end{equation}
\begin{equation}

\end{equation}
where

\[
X_i = p^{-i(p-1)} {t \choose i(p-1)+\alpha} (t' - i), \\
X_i^* = p^{i(p-1)+2t} {t \choose i(p-1)+\alpha} (t' - i).
\]

(74)

By conjecture [A],

\[
v_p(X_0) = v_p \left({\alpha \choose \alpha} \right) < v_p \left(p^{-i(p-1)} {t \choose i(p-1)+\alpha} (t' - i) \right) = v_p(X_i)
\]
for all \(i \) such that \(i(p-1) + \alpha \in [0, \alpha) \). By conjecture [B]

\[
v_p(X_0) = v_p \left({\alpha \choose \alpha} \right) < v_p \left(p^{i(p-1)+2t} {t \choose i(p-1)+\alpha} (t' - i) \right) = v_p(X_i^*)
\]
for all \(i \) such that \(i(p-1) + \alpha \in (t - r + \rho(p-1) + \alpha, t] \). By conjecture [C]

\[
v_p(X_0) = v_p \left({\alpha \choose \alpha} \right) < v_p \left(\mathcal{C}_p(\alpha, l) \right)= v_p \left(C_l p^l \right) = v_p(C_l p^l)
\]
for all \(l \in \{\alpha - \rho', \ldots, \alpha\} \). Moreover, by lemma [7]

\[
v_p(X_0) = v_p \left({\alpha \choose \alpha} \right) < v_p \left(\frac{p}{\pi} \right) < 2 \left[\log_p k \right].
\]

(78)

So if we divide both sides of equation (73) by \(\frac{p}{\pi} \) we get an integral element, and if we reduce that integral element modulo \(p \) then the only contributing term to the result is the “\(i = 0 \)” term in the first line of equation (73). Therefore we can conclude that \(\mathcal{S} \) contains

\[
\left(\frac{p}{\pi} \right) \bullet \mathbb{F}_p h_\alpha,
\]

which represents a generator of \(\hat{\mathcal{N}}_\alpha \), and we can conclude the desired result.

5.3. If \(r - \rho(p+1) = p - 2 \) then no infinite-dimensional factor of \(0_{t+2,a} \) is a subquotient of \(\text{ind}^G \text{sub}(q) \). Let \(r - \rho(p+1) = p - 2 \), so that

\[
\text{sub}(q) \cong \sigma_{p-2}(q).
\]

(80)

The proof in this case is very similar to the proof in subsection 5.1, so we just give a rough sketch. We let

\[
M^{(r)} = \left(\frac{r}{i(p-1)+\rho} \right)_{\{i \mid i(p-1)+\rho \in [\rho, r-r \rho)\}}.
\]

(81)

As in subsection 5.1 we can prove that the image of a certain lattice under the right square submatrix of \(M^{(r)} \) (seen as an endomorphism) contains \(p^{[\log_p k]} \times \) that lattice. We can conclude the following analogous equation to equation (53).

\[
\sum_{i(p-1)+\rho \in [\rho+1, r-r \rho-1]} \sum_{j=0}^p C_i \left(\frac{r-p+\rho}{i(p-1)+\rho} \right) \sum_{e \in [\rho, r-r \rho] \cap [\rho, r-\rho]} \sum_{f : e \times p-1 \rho \times e \times (p-1)-p+1} D^{(r+1)+\rho} \left(e \times (p-1)+\rho \right)
\]

\[
= p^{[\log_p k]} \theta^e y^{r-\rho(p+1)}
\]

(82)

for some integers \(\sum_{j=0}^p D^{(r)} \). The main difference is that we must write \(\theta^e y^{r-\rho(p+1)} \) instead of \(\theta^e x^{p-1} y^{r-\rho(p+1) - p+1} \). This then means that we can only conclude that

\[
D_{w} = O(e p^{-v_p(\delta)})
\]

(83)

for all \(w \in \mathbb{Z} \cup \mathbb{Z} (-\frac{1}{2}) \).
(rather than for all \(w \in \mathbb{Z}_{\leq 0} \cup \mathbb{Z}_{> t - 2p} \)) in the equation
\[
(1 - p)^{e} \vartheta_{e}(D_{\ast}) \bullet \varpi_{p} \theta_{p} e_{p}; x^{n(p - 1)} y^{t - e(p + 1) - n(p - 1)} \\
= \sum_{i \geq 0}^{n(p - 1)} C_{i} P_{\ast}^{\prime} \sum_{\mu \in \mathbb{F}_{p}} [\mu]^{-t} \left(\frac{\mu}{\mu} \right) \bullet \varpi_{p} h_{0} - l \\
+ \sum_{i \in \mathbb{F}_{p}} D_{i} \bullet \varpi_{p} h_{i(p - 1) + e} \\
+ \sum_{i \in \mathbb{F}_{p}} D_{i} \bullet \varpi_{p} h_{i(p - 1) + e} \\
+ E \bullet \varpi_{p} \theta_{p}^{t+1} h + F \bullet \varpi_{p} h! + O(p^{\delta}),
\]
for some \(h, h' \) and some \(E, F \in \mathbb{Z}_{p} \) with \(v_{p}(E) \geq [\log_{p} k] \) and \(v_{p}(F) \geq [\log_{p} k] \), which is the analogous equation to equation (57). In other words, the difference is that \(D_{0} \) is not negligible, and instead
\[
D_{0} = \vartheta_{e}(D_{\ast}) + O(p^{\delta}).
\]
So upon dividing equation (84) by \(\vartheta_{e}(D_{\ast}) \) and reducing modulo \(p \) we get that \(\mathcal{I} \) contains
\[
1 \bullet \varpi_{p} \left(\theta_{p} e_{p}; x^{n(p - 1)} y^{t - e(p + 1) - n(p - 1)} + h_{0} \right).
\]
It is easy to show that his represents a generator of \(\text{ind}^{G} \text{sub}(\varrho) \) (but is trivial in \(\text{ind}^{G} \text{quot}(\varrho) \)), which finishes the proof of the desired result as in subsection 5.1.

5.4. **If** \(r - \varrho(p + 1) = 1 \) **then** each infinite-dimensional factor of \(\mathfrak{S}_{t+2,a} \) **is a subquotient of** \(\text{ind}^{G} \text{quot}(\varrho)/T_{q,e} \). **Let** \(r - \varrho(p + 1) = 1 \), so that
\[
\text{quot}(\varrho) \cong \sigma_{p-2}(\varrho + 1).
\]
Just as in in subsection 5.3, we can conclude that \(\mathcal{I} \) contains a representative of a generator of \(\text{ind}^{G} \text{sub}(\varrho) \). So it remains to show that \(\mathcal{I} \) contains a representative of a generator of
\[
T_{q,e} \left(\text{ind}^{G} \text{quot}(\varrho) \right).
\]
Let
\[
C_{i} = \mathfrak{C}_{\varrho}(\varrho, t) \left(\frac{t}{\varrho} \right)
\]
for \(l \in \{0, \ldots, p\} \). As in subsection 5.2 we can conclude that
\[
\sum_{i \in \mathbb{F}_{p}} \sum_{\mu \in \mathbb{F}_{p}} [\mu]^{-t} \left(\frac{\mu}{\mu} \right) \bullet \varpi_{p} h_{0} - l \\
\cong \sum_{i = 0}^{p-1} C_{i} P_{\ast}^{\prime} \sum_{\mu \in \mathbb{F}_{p}} [\mu]^{-t} \left(\frac{\mu}{\mu} \right) \bullet \varpi_{p} h_{0} - l + O(p^{2[\log_{p} k]}),
\]
where
\[
X_{i} = p^{-i} \left(\frac{t}{\varrho} \right) \left(\frac{e-i}{\varrho} \right),
\]
\[
X_{i}^{*} = p^{-i} \left(\frac{t}{\varrho} \right) \left(\frac{e-i}{\varrho} \right).
\]
Again, by conjecture [D]
\[
v_{p}(X_{0}) = v_{p} \left(\left(\frac{t}{\varrho} \right) \right) < v_{p} \left(p^{-i} \left(\frac{t}{\varrho} \right) \left(\frac{e-i}{\varrho} \right) \right) = v_{p}(X_{i})
\]
for all i such that $i(p - 1) + \varrho \in [0, \varrho]$. By conjecture E,
\[v_p(X_0) = v_p \left(\binom{t}{\varrho} \right) < v_p \left(p^{(i\varrho)(p-1)-1} \binom{t}{i(p-1)+\varrho} \binom{\varrho-i}{\varrho} \right) = v_p(X_1) \] (93)
for all i such that $i(p - 1) + \varrho \in (t - r + \varrho, t]$. By conjecture F,
\[v_p(X_0) = v_p \left(\binom{t}{\varrho} \right) < v_p \left(C_\varrho \left(t \binom{\varrho}{l} p^l \right) \right) = v_p(C lp^l) \] (94)
for all $l \in \{1, \ldots, \varrho\}$. And, by lemma 7,
\[v_p(X_0) = v_p \left(\binom{t}{\varrho} \right) = v_p \left(\binom{t}{\varrho} \right) < 2 \lfloor \log_p k \rfloor. \] (95)
This means that if we divide both sides of equation (90) by $\binom{t}{\varrho}$ and reduce the resulting integral element modulo p, the two contributing terms are the “$i = 0$” term in the first line of equation (90) and the “$l = 0$” term in the third line of equation (90). Therefore \mathcal{S} contains
\[\sum_{\mu \in \mathbb{F}_p} \left(\binom{\mu}{\varrho} \right) \in \mathbb{F}_p, \] (96)
which is a representative of a generator of $T_{q, \varrho} \left(\text{ind}_G \text{quot}(\varrho) \right)$, (97)
and that completes the proof. ■

References

[Ars] Bodan Arsovski, On the reductions of certain two-dimensional crystalline representations, preprint. [https://arxiv.org/abs/1711.03057]

[BLZ04] Laurent Berger, Hanfeng Li, and Hui June Zhu, Construction of some families of two-dimensional crystalline representations, Mathematische Annalen 329 (2004), no. 2, 365–377.

[BG16] Kevin Buzzard and Toby Gee, Slopes of modular forms, Families of Automorphic Forms and the Trace Formula (2016), 93–109.

[Gou01] Fernando Q. Gouvêa, Where the slopes are?, Journal of the Ramanujan Mathematical Society 16 (2001), no. 1, 75–99.