The Simultaneity Requirement of Quantum Superposition Principle
Chun-ming LIU*

School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
*Corresponding author

Keywords: Quantum superposition principle, Simultaneity, Schrodinger cat.

Abstract. The simultaneity requirement of quantum superposition principle is firstly considered in this paper. It has large influence on many physical phenomena including the Schrodinger cat, and the transmission of one polarized photon through a polarizer. More attention should be paid to the simultaneity requirement since the results leaded by simultaneity requirement are quite reasonable.

Introduction
The superposition principle is one of the basic foundations of quantum mechanics [1]. Quantum superposition is responsible for various new phenomena [2-3]. The understanding of quantum superposition principle is very important. It is well known that there are the spatial coherence and temporal coherence requirements in the optical interference. To our own knowledge, there is no report about the temporal requirement for the superposition principle. Here we show that the simultaneity requirement of superposition of states leads large difference and reasonably understanding of some famous cases including the Schrodinger cat, the transmission of one polarized photon through a polarizer.

The Simultaneity Requirement of Superposition of States (SRSS)
The principle of superposition of states in quantum mechanics indicates that when the states function ψ_1 and ψ_2 is the solution of Schrodinger equation,

$$\hat{H}\psi_1 = i\hbar \frac{\partial}{\partial t}\psi_1. $$

$$\hat{H}\psi_2 = i\hbar \frac{\partial}{\partial t}\psi_2. $$

then a function ψ_3 as following is also the solution state function:

$$\psi_3 = c_1\psi_1 + c_2\psi_2. $$

in which both c_1 and c_2 are constants. It seems correct since ψ_3 fits the Schrodinger equation mathematically. However, it maybe not correct in physics. Although both of ψ_1 and ψ_2 are the solution of Schrodinger equation, we do not know whether they can appear at the same time. The superposition of state functions which cannot appear at the same time should be questioned. However, it is not possible to prove that the superposition of states requires the simultaneity for micro particles. Let there be the simultaneity requirement of superposition of states (SRSS). Its correction should be judged by the results generated by SRSS.

The Influence of SRSS
The Schrodinger Cat
The Schrodinger cat indicates that the cat is in a superposition state of being alive and also being dead unless the measurement is did,

$$\psi_4 = \lambda_1 \phi_1 \varphi_1 + \lambda_2 \phi_2 \varphi_2. $$
The φ_1 means the atom remains in excited state, φ_2 means that the atom returns to ground state. The ϕ_1 shows the cat is alive. The ϕ_2 shows the cat is dead. The λ_1 and λ_2 are constants. Takes the SRSS into considered, suppose that it is not possible that an atom can remain in excited state and return to ground state at the same time. Thus, ψ_4 does not present at all. The Schrodinger cat will have two separate states:

$$\psi_5 = \lambda_1 \phi_1 \varphi_1 .$$

(5)

$$\psi_6 = \lambda_2 \phi_2 \varphi_2 .$$

(6)

ψ_5 indicates that Schrodinger cat is alive. On the other hand, ψ_6 indicates that Schrodinger cat is dead. The Schrodinger cat is alive when the atom remains in excited state. Otherwise, it is dead when the atom returns to ground state. The Schrodinger cat can be expressed by one state function as following,

$$\Psi_7 = \Psi_5 \vee \Psi_6 .$$

(7)

$\Psi_5 \vee \Psi_6$ means that the state function Ψ_7 can only select one state from the two states at one time. Equation (7) is in good accordance with the daily experience.

The Transmission of One Polarized Photon through a Polarizer

As shown in fig. 1, the red arrow is the polarization direction of light. The black arrow is the polarizer. In classic physics, the electric field of light is the vector sum:

$$\vec{E} = E_x \vec{e}_x + E_y \vec{e}_y .$$

(8)

$$E_x = E \cos \theta .$$

(9)

$$E_y = E \sin \theta .$$

(10)

$$I_T/I = \sin^2 \theta .$$

(11)

I_T and I are the intensity of transmission light and incidence light, respectively. Equation (11) shows that the intensity ratio of I_T/I is $\sin^2 \theta$ and independent with time. When the light is only consisted of one photon, what is the situation of the transmission light? Is the ratio of I_T/I is still $\sin^2 \theta$ and independent with time? The answer is no. The intensity of ratio of I_T/I should be 1 or zero because the photon cannot be separated. The measured I_T/I should be dependent on time.

Suppose that the polarizer has two effects on the photon. One is to rotate the polarization of photon to the direction of y or x. It is clear that at the same time, the polarizer can only rotate the polarization of photon to one direction. The other one is to absorb the photon when the polarization of photon is along x, or let the photon transmission when the polarization of photon is alone y direction. The total effects of polarizer can be expressed as equation (12). The state function of photon and I_T/I can be expressed by equation (13) and (14), respectively.

$$\hat{P} = \hat{P}_x \hat{A} \vee \hat{P}_y \hat{T} .$$

(12)

$$\hat{P} \Psi = \Psi_x \alpha \vee \Psi_y T .$$

(13)
\[I_T/I = 0 \lor 1. \qquad (14) \]

The \(\psi_{x,\alpha} \) indicates that the photon polarization is rotated into x direction and absorbed. The \(\psi_{y,T} \) indicates that the photon polarization rotated into y direction and transmitted. At one time, the \(I_T/I \) is 0 when the polarizer selects \(\hat{p}_x \hat{A} \). At another time, the \(I_T/I \) is 1 when the polarizer selects \(\hat{p}_y \hat{T} \).

Eigenvalue

Suppose that there is the following equation

\[\hat{\lambda} \psi_n = \lambda_n \psi_n, \quad n = 1,2. \qquad (15) \]

If the \(\psi_1 \) and \(\psi_2 \) does not appear at the same time,

\[\psi = a_1 \psi_1 \lor a_2 \psi_2. \qquad (16) \]

then the measurement value of \(\hat{\lambda} \) should be

\[\lambda = \lambda_1 \lor \lambda_2. \qquad (17) \]

the mechanism is shown in fig. 2.

![Image](image.png)

Figure 2. The measured value of a physical quantity.

It is clear from fig. 2 that the measured value is dependent on the time. When measurement was done at the red arrow indicated time, the measured value is \(\lambda_1 \). When measurement was done at the blue arrow indicated time, the measured value is \(\lambda_2 \).

Summary

The SRSS has large influence on many physical phenomena. The results leaded by SRSS are quite reasonable in many areas. The new insights resulted by SRSS should be studied further.

Acknowledgement

This study was supported financially by the Agricultural Public Welfare Project of Sichuan Province of China (grant no. 2015NZ0098), and the Fundamental Research Funds for The Central Universities (grant no. ZYGX2016J062).

References

[1] M. Oszmaniec, A. Grudka, M. Horodecki and A. Wójcik, Creating a Superposition of Unknown Quantum States, Phys. Rev. Lett. 116 (2016) 110403.

[2] S. Nimmrichter and K. Hornberger, Macroscopicity of Mechanical Quantum Superposition States, Phys. Rev. Lett. 110 (2013) 160403.

[3] S. Ghosh, R. Sharma, U. Roy and P. K. Panigrahi, Mesoscopic quantum superposition of the generalized cat state: A diffraction limit, Phys. Rev.B. 92 (2015) 053819.