Optimization of Aseptic Germination System of Seeds in Soybean (Glycine max L.)

Ying Liu¹, Xiaopeng Li¹, Xiaohao Li¹, Kaizhe Liu¹, Gangshun Rao¹ and Yingbin Xue²*

¹Department of Biotechnology, Faculty of Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China.
²Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
E-mail address: liuying85168@126.com.
*Corresponding author

Abstract. The results in the process of the optimization of aseptic germination system of seeds in soybean were found as follows. Using the method of chlorine sterilization to sterilize soybean seeds for 2-4 hours were found to get the best results and found to be suitable for the growth of soybean seeds and obtainment of the best quality explants. Relative to other varieties, the soybean variety of Mao-Dou No. 5 was found to gain the best germination effects, and the localization way of seed inoculation and the light conditions had no significant effects on the germination of seeds of Glycine max.

1. Introduction

Glycine max L. is an important economic crop, so increasing the yield and optimizing the quality of soybean have become the focus of attention. Because conventional breeding techniques are affected by factors such as the incompatibility of species hybridization and linkage of undesirable genetic traits, the introduction of many other unfavorable genes at the same time as the introduction of excellent genes from other species is difficult to further utilize [1]. Therefore, people began to explore new methods of soybean breeding.

The use of transgenic technology to transfer anti-bacterial, disease-resistant and insect-resistant genes into soybean may be one of the effective ways to increase the yield and improve the quality of soybean. Meanwhile, a good soybean regeneration system can provide a suitable receptor system for soybean genetic transformation. Therefore, the establishment of a good tissue culture regeneration system, especially a good seed sterile germination system, can provide a good source of genetic transformation receptor for soybean genetic transformation, which is the prerequisite for successful genetic transformation of soybean.

The optimization of seed aseptic germination system in soybean is the key and premise of soybean genetic transformation research. The aseptic germination effect of soybean seeds is directly related to the quantity and quality of the obtained sterile explants, which seriously affects the result of subsequent tissue culture procedure. Although there have been some reports on the sterile germination of soybean, there are poor experimental reproducibilities, and the quality of the obtained explants is poor, which seriously affects the subsequent experiments. It is still the main problem faced by the soybean genetic transformation receptor system, and further research is needed.
2. Materials and Methods

2.1. Source of Seeds
The soybean varieties of named Huachun No. 2, Huachun No. 3, and Maodou No. 5 were provided by Professor Hai Nian from the Agricultural College of South China Agricultural University.

2.2. Preparation of Mediums and Condition of Culture
The basic medium is hormone-free MSB5 medium (MS salts plus B5 vitamins) [2]. All mediums were regulated pH value to 5.8-6.0 by adding 1 mol/L NaOH. 100 mg/L inositol, 7 g/L agar, 300 mg/L peptone and 25 g/L sucrose were added into the mediums, which were placed in a high pressure steam sterilizer, sterilized at a temperature of 121°C and 0.1 MPa for 15 mim. All mediums were placed at 25 ± 2°C with light cycle of 12 h/day around 2000 lux.

2.3. Sterilization of Soybean Seeds
There were three sterilization methods applied to soybean seeds, chlorine (Cl₂) [3] (soybean seeds were sterilized with chlorine for different time (2, 4 and 6 h), 0.1% mercuric chloride (HgCl₂) (the soybean seeds were dipped into 0.1% HgCl₂ solution for ten minutes), and 1% sodium hypochlorite (NaClO) (the soybean seeds were dipped into 0.1% NaClO for ten minutes). Soybean seeds were sterilized for different time (2, 4 and 6 h), and then rinsed the seeds 5 times with sterile distilled water.

2.4. Sterile Germination of Soybean Seeds
The sterilized soybean seeds were inoculated into MSB5 medium with different concentrations of BA (0, 1 and 2 mg/L) for 5 days of culture.

2.5. Data Analysis.
All the data from the experimental results were statistically analyzed using SPSS17.0 software and significant difference among average amount was tested by Duncan multiple comparison at the level of P≤0.05. Germination percentage of seeds (%) = (amount of gemmative soybean seeds / sum of used soybean seeds) × 100%. Rate of pollution (%) = (number of contaminated soybean seeds / sum of used soybean seeds) × 100%. Germination rate of grade A (%) = (number of soybean germination seedlings with hypocotyl more than 1 cm / number of germinated soybean seeds) × 100%. Germination rate of grade B (%) = (number of soybean germination seedlings with hypocotyl less than 1 cm / number of germinated soybean seeds) × 100%. Mean of raw weight increased for every seedling = (sum raw weight of seedlings after disposed - sum raw weight of seedlings before treatment) / sum number of seedlings inoculated.

3. Results

3.1. Influence of Different Sterilization Time on Soybean Seeds with Chlorine
Soybean seeds were treated using chlorine with various sterilization time before being cultured. Results of the experiments were summarized in Table 1. The results shown clearly that 6 hours was too long, 2 and 4 hours did well almost the same. For plain reason, 2-4 hours were considered more suitable and adopted for sterilization on soybean seeds with chlorine.

Table 1. Results of sterilizing time of chlorine on germination of soybean seeds

Sterilization time (h)	Germination rate (%)	Rate of grade A (%)	Germination rate of grade B (%)	Rate of pollution (%)
2	86.12a	89.70a	10.30b	14.26a
4	78.89a	82.86a	17.14b	20.00a
6	66.11b	72.30b	27.70a	18.89a

Note: the sterilized huachun No. 2 soybean seeds were inoculated on MSB5 medium without hormone, and the statistical data were obtained after 5 days of culture. Data followed with different letters in the same column were significantly different at the level of P≤0.05 level.
3.2. Influence of Different Sterilizing Methods on Germination of Soybean Seeds

Soybean seeds were treated with various sterilization methods before being cultured (Table 2). From the results shown in Table 2, it was clear that the effect of soybean seeds sprouting was affected by the way of sterilization observably. Chlorine was much more effective for the sterilization of soybean seeds and more conducive to germination of soybean seeds (Table 2).

Table 2. Comparison of three sterilization methods

Sterilization methods	Germination rate (%)	Germination rate of grade A (%)	Germination rate of grade B (%)	Rate of pollution (%)
Cl₂	93.00a	87.76a	12.24b	2.00b
0.1 % HgCl₂	58.00b	30.35b	69.65a	10.67b
1 % NaClO	48.00b	23.63b	76.37a	26.33a

Note: the sterilized huachun No. 2 soybean seeds were inoculated on MSB5 medium without hormone, and the statistical data were obtained after 5 days of culture. Data followed with different letters in the same column were significantly different at the level of P≤0.05 level.

3.3. Effects of Different Light Conditions on Seed Germination of Soybean

Date summarized in Table 3 indicated that light conditions didn’t play an obvious role on germination of soybean seeds. The germination rate of seeds and the quality of germinated seeds were not affected by light conditions significantly (Table 3).

Table 3. Results of light conditions on germination of soybean seeds

Light conditions	Germination rate (%)	Germination rate of grade A (%)	Germination rate of grade B (%)
2 d dark+3 d light	98.33a	86.29a	13.71a
5 d light	100a	96.67a	3.33a
5 d dark	96.67a	92.93a	7.07a

Note: the sterilized huachun No. 2 soybean seeds were inoculated on MSB5 medium with 1mg/L BA, and the statistical data were obtained after 5 days of culture. Data followed with different letters in the same column were significantly different at the level of P≤0.05 level.

3.4. Effects of Inoculation Way on Soybean Seeds Sprouting

The effects of inoculation way on seeds sprouting was also conducted. Results of the experiments were summarized in Table 4. From the data it was clear that the way of inoculation had no significant effects on seeds germination.

Table 4. Results of light conditions on germination of soybean seeds

Way of inoculation	Germination rate (%)	Germination rate of grade A (%)	Germination rate of grade B (%)
A	98.33a	86.30a	13.70a
B	93.33a	80.00a	20.00a
C	100.00a	83.33a	16.67a

Note: the sterilized huachun No. 2 soybean seeds were inoculated on MSB5 medium with 1mg/L BA, and the statistical data were obtained after 5 days of culture. Data followed with different letters in the same column were significantly different at the level of P≤0.05 level. A: the umbilicus was placed downward; B: the umbilicus was placed upward; C: the umbilicus was placed horizontally.

3.5. Comparison of Germination Effects of Soybean Seeds Among Different Genotypes

Furthermore, the effects of genotype on the germination were tested among three varieties (Table 5). The results indicated that the germination was much more effective for the variety of Mao-Dou No. 5 (Table 5).
Table 5. Comparison of the effects on culture responses of treatment among three varieties

Genotypes	Germination rate (%)	Germination rate of grade A (%)	Germination rate of grade B (%)
Maodou No. 5	100a	97.00a	3.00b
Huachun No. 3	90.00ab	83.00ab	17.00ab
Huachun No. 2	83.33b	73.00b	27.00a

Note: the sterilized soybean seeds were inoculated on MSB5 medium, and the statistical data were obtained after 5 days of culture. Data followed with different letters in the same column were significantly different at the level of P≤0.05 level.

4. Discussion

Cl2 has a strong role in killing microorganisms. The research results showed that good sterilizing effect for soybean seeds could be obtained via using chlorine [4]. In this research, the sterilization effectiveness and germination effect of soybean seeds with three kinds of sterilization methods were compared subsequently, and it was found that the chlorine had the best effect and was suitable for sterilization of soybean seeds. Cl2 has the function of surface sterilization, and can also penetrate into the gaps of seed coats, so the sterilization effect of it will be more thorough. However, HgCl2 and NaClO solution may enter the seed coats through the swelling effect of the seeds, which will cause certain damage and injury for the seeds, affecting the germination of seeds. Therefore, sterilization of soybean seeds is preferably carried out by Cl2.

The results suggested that the seeds of Gypsophila davurica could germinate in the presence or absence of light [5]. Our findings suggested that there was no significant difference in the germination effect of soybean seeds under the three light conditions of culture.

The growth and development of seedlings were affected by the way of inoculation and placement of seeds to mediums in Juglans regia [6]. However, the results of this experiment shown that the inoculation orientation of seeds on mediums has no significant effect on the germination in soybean. This might be the result of different plants having different developmental characteristics.

Some reports found that the physiological and biochemical characteristics of different genotype of seeds in maize (Zea mays) had some differences during germination [7]. The results of this experiment shown that the germination effects of different genotypes of soybean seeds were different, which might be determined by the genetic characteristics of the seeds themselves.

5. Summary

The very good results of germination effects on soybean seeds was gained successfully, when the sterilization method of Cl2 was applied to sterilizing for 2-4 hours. Moreover, the soybean variety of Mao-Dou No. 5 was found to obtain the best germination effects. However, the localization way of seeds inoculation to mediums and the light conditions both had no obvious affect on the germination of seeds in soybean.

6. Acknowledgments

This work were supported by Natural Science Foundation of Guangdong Province (2018A030310057 and 2020A1515011570), Foundation of Education Department of Guangdong Province (2019KTSCX059), Program for Nanhai Youth Scholar Project of Guangdong Ocean University, Program for Scientific Research Start-up Funds of Guangdong Ocean University (R17023 and R19031), the Project of Science and Technology of Zhanjiang City (2016B01004), the Project for Innovation and Strong School of Department of Education of Guangdong Province (2016KQNCX067), and the College Students Innovation and Entrepreneurship Training Program(CXXL2019054).

7. References

[1] Li W X, Lu W H, Li W B, et al. Effects of genotypes on regeneration and transformation of soybean cotyledonary node system. Chinese Journal of Crop Sciences, 2007, (3): 71-73.
[2] Liu Y, Yu L, Fu Y L, et al. Transformation of ALO gene mediated by Agrobacterium tumefaciens in soybean using hypocotyl explants and spotted incubation method. BMCE2013, DEStech Publications, Inc, 2014: 263-269.

[3] Di R, Pwcell V, Collins G B, et al. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursorgene. Plant Cell Reports, 1996, 15: 746-750.

[4] Liu H K, Wei Z M. A method for disinfection of soybean mature seeds. Plant Physiology Communications, 2002, (3): 260-261.

[5] Yue H, Liu Z, Li Y Z. Effects of different temperature, light, storage time and PEG Stress on seed germination of bead bamboo. Journal of Jiangxi Agricultural University, 2012, 34(1): 72-76.

[6] Tbimko M M, Wang S J. Effects of seed placement on root formation and trunk formation of walnut seedlings. Forestry Practical Techniques, 1964, (1): 1-3.

[7] Liu H S, Li Y L, Wang D Q, et al. Changes in physiological and biochemical characteristics of different S(22) genotype maize seeds during germination[J]. Plant Physiology Communications, 1999, (1): 15-17.