LP Decoding of Regular LDPC Codes in Memoryless Channels

Nissim Halabi
Guy Even

ISIT 2010
Low-Density Parity-Check Codes

Factor graph representation of LDPC codes:

- Code $\mathcal{C}(G)$ and codewords x:
 \[x \in \mathcal{C}(G) \iff \forall c_j. \sum_{x_i \in N(c_j)} x_i = 0 \pmod{2} \]

- Local-codes $C_j = C_j(G)$:
 \[x \in C_j \iff \sum_{x_i \in N(c_j)} x_i = 0 \pmod{2} \]

- (d_L,d_R)-regular LDPC code:
 \[\forall v \in \text{Variables. } \deg_G(v) = d_L \]
 \[\forall c \in \text{Checks. } \deg_G(c) = d_R \]
Maximum-Likelihood (ML) Decoding

- Log-likelihood ratio (LLR) λ_i for a received observation y_i:

\[
\lambda_i(y_i) = \ln \left(\frac{\mathbb{P}_{Y_i/X_i}(y_i / x_i = 0)}{\mathbb{P}_{Y_i/X_i}(y_i / x_i = 1)} \right)
\]

- Any memoryless binary-input output-symmetric (MBIOS) channel can be described by an LLR function.

- Maximum-likelihood (ML) decoding for any binary-input memory-less channel:

\[
\hat{x}^{ML}(y) = \arg\min_{x \in \mathcal{C}} \langle \lambda(y), x \rangle
\]
Linear Programming (LP) Decoding

- **Maximum-likelihood (ML) decoding** formulated as a linear program:

\[\hat{x}^{ML}(y) = \arg\min_{x \in \mathcal{C}} \left\langle \lambda(y), x \right\rangle = \arg\min_{x \in \text{conv}(\mathcal{C})} \left\langle \lambda(y), x \right\rangle \]
Linear Programming (LP) Decoding

- **Maximum-likelihood (ML) decoding** formulated as a linear program:

\[
\hat{x}^{ML}(y) = \arg \min_{x \in C} \langle \lambda(y), x \rangle = \arg \min_{x \in \text{conv}(C)} \langle \lambda(y), x \rangle
\]

- **Linear Programming (LP) decoding** [Fel03, FWK05] – relaxation of the polytope \(\text{conv}(C) \)

\[
\hat{x}^{LP}(y) = \arg \min_{x \in \bigcap \text{check nodes } j \text{ conv}(C_j)} \langle \lambda(y), x \rangle
\]
Linear Programming (LP) Decoding

- Maximum-likelihood (ML) decoding formulated as a linear program:

\[
\hat{x}^{ML}(y) = \arg\min_{x \in C} \langle \lambda(y), x \rangle = \arg\min_{x \in \text{conv}(C)} \langle \lambda(y), x \rangle
\]

- Linear Programming (LP) decoding [Fel03, FWK05] – relaxation of the polytope \(\text{conv}(C)\)

\[
\hat{x}^{LP}(y) = \arg\min_{x \in \bigcap_{j \text{ check nodes}} \text{conv}(C_j)} \langle \lambda(y), x \rangle
\]

\(\hat{x}^{LP}\) integral \(\Rightarrow\) success!

We also know \(\hat{x}^{LP} = \hat{x}^{ML} \in C\) (“ML certificate”)

\(\hat{x}^{LP}\) fractional \(\Rightarrow\) fail

\text{Solve LP}
Previous Bounds for LP Decoding (1)

- No tree assumption! \(\Rightarrow \) Bounds relevant for finite lengths

- Bounds for specific families of codes:
 - Cycle codes / RA(2) codes over memoryless channels [FK02,HE03].
 - Expander LDPC codes over bit flipping channels (e.g., BSC, adversarial) [FMSSW04, DDKW07].
 - Capacity achieving binary expander codes over memoryless channels [FS05].
 - Non-binary expander codes [Ska09].
Previous Bounds for LP Decoding (2)

- (d_L, d_R)-regular LDPC codes [KV06, ADS09]
 - Form of finite length bounds: $\exists c > 1. \exists t. \forall$ noise $< t$.
 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-c^{\text{girth}})
 \]
 - If girth $= \Theta(\log n)$, then
 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-n^{\gamma}), \text{ for } 0 < \gamma < 1
 \]

$n \to \infty : t$ is a lower bound on the threshold of LP decoding
Previous Bounds for LP Decoding (2)

- \((d_L,d_R)\)-regular LDPC codes [KV06, ADS09]
 - Form of finite length bounds: \(\exists c > 1. \exists t. \forall \text{ noise} < t.\)
 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-cgirth)
 \]
 - If girth = \(\Theta(\log n)\), then
 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-n^\gamma), \text{ for } 0 < \gamma < 1
 \]

\(n \to \infty\) : \(t\) is a lower bound on the threshold of LP decoding

Technique	Koetter and Vontobel ’06
Channels	Dual witness technique
Example for (3,6)-regular LDPC code	Memoryless channels
	BSC(\(p\)) threshold: \(p^{LP} > 0.01\)
	BI-AWGNC(\(\sigma\)) threshold: \(\sigma^{LP} > 0.5574, E_b/N_0^{LP} < 5.07\text{dB}\)

\(\sigma^{\text{Max-Product}} = 0.8223\)
\(E_b/N_0^{\text{Max-Product}} \sim 1.7\text{dB}\)
Previous Bounds for LP Decoding (2)

-

- Form of finite length bounds: \(\exists c > 1. \exists t. \forall \text{ noise} < t. \)

 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-c^{girth})
 \]

- If girth = \(\Theta(\log n) \), then

 \[
 \Pr(\text{LP decoder success}) \geq 1 - \exp(-n^{\gamma}), \quad \text{for} \ 0 < \gamma < 1
 \]

\(n \to \infty \) : \(t \) is a lower bound on the threshold of LP decoding

Technique	Koetter and Vontobel ’06	Arora, Daskalakis and Steurer ’09
Channels	Dual witness technique	Primal LP analysis
Example for	Memoryless channels	BSC
(3,6)-regular LDPC code	BSC(\(p \)) threshold: \(p^{LP} > 0.01 \)	BSC(\(p \)) threshold: \(p^{LP} > 0.05 \)
	BI-AWGNC(\(\sigma \)) threshold: \(\sigma^{LP} > 0.5574 \) \(E_b/N_0^{LP} < 5.07\text{dB} \)	\(p^{BP} = 0.084 \) \(\sigma^{\text{Max-Product}} = 0.8223 \) \(E_b/N_0 \text{ Max-Product} \sim 1.7\text{dB} \)
Our Results

- Extension of ADS’09 from BSC to MBIOS channels:
 - Combinatorial characterization: Local Opt. ⇒ LP Opt.
 - Alternative proofs using graph covers [VK05]
 - Finite length bound: decoding errors decrease doubly exponential in the girth of the factor graph
 - Example: for (3,6)-regular LDPC code, ∀ σ ≤ 0.605
 \[P_{err} < \frac{1}{125} e^{\frac{3}{2}} \frac{1}{\sigma^2} n \cdot c^2 \frac{1}{4^g} \]
 for some constant \(c < 1 \).

- Lower bound on thresholds of LP decoding for regular LDPC codes
 - Analytic bounds for MBIOS
 - “Density evolution” bounds on thresholds for BI-AWGNC
 - Example: for (3,6)-regular LDPC code
 \[\sigma^{\text{LP}} > 0.735 \]
 \[E_b/N_0^{\text{LP}} < 2.67 \text{dB} \]
 \((\sigma^{\text{Max-Product}} = 0.8223) \)
 \((E_b/N_0^{\text{Max-Product}} \sim 1.7 \text{dB}) \)
Skinny Trees Embedded in Factor Graphs

Consider a subgraph τ of G:

- root $= v_0 \in V_L$
- $\tau \subseteq \text{Ball}(v_0, 2h)$
- $\forall v \in \tau \cap V_L : \deg_{\tau}(v) = \deg_G(v)$.
- $\forall c \in \tau \cap V_R : \deg_{\tau}(c) = 2$.

- $\text{girth}(G) > 4h \Rightarrow \tau$ is a tree – Skinny Tree

Moreover, in a d_L left regular graph all skinny trees are isomorphic to:
Cost of a Weighted Skinny Tree [ADS09]

- Given layer weights $\omega : \mathbb{N} \rightarrow \mathbb{R}$, define ω-weighted skinny tree τ of height $2h$.

- Given assignment of LLR values λ to variable nodes, define the cost of an ω-weighted skinny tree τ.

$$\text{val}_\omega(\tau, \lambda) \triangleq \sum_{l=0}^{h-1} \sum_{v \in \tau \cap V_{2l}} \omega_l \cdot \lambda_v$$
Proving Error Bounds using Local Optimality [following ADS09]

- **Local optimality** – sufficient condition for the (global) optimality of a decoded codeword based on skinny trees

- **Theorem:** Fix $h < \frac{1}{4} \text{girth}(G)$ and $\omega \in \mathbb{R}^h$. Then
 \[
 \mathbb{P}\{\text{LP decoding fails}\} \leq \mathbb{P}\{\exists \text{skinny tree } \tau. \text{val}_\omega(\tau, \lambda) \leq 0 \mid x = 0^n\}.
 \]

- **Task:** bound the probability that there exists a weighted skinny tree with non-positive cost.
Computing $\mathbb{P} [\min_{\tau} val_\omega (\tau; \lambda) \leq 0]$

- \mathcal{T} – induced graph of factor graph G on $\text{Ball}(v_0, 2h)$
- $\{ \gamma \}$ – values associated with variable nodes.
- Y_l – variable nodes of \mathcal{T} at height $2l$.
- X_l – check nodes of \mathcal{T} at height $2l+1$.
- Dyn. Prog. recurrence for computing min cost skinny tree in \mathcal{T}:

Basis: leaves: $Y_0 = \omega_0 \gamma$

Step: checks: $X_l = \min \{ Y_l^{(1)}, ..., Y_l^{(d_R-1)} \}$

vars: $Y_l = \omega_l \gamma + X_{l-1}^{(1)} + ... + X_{l-1}^{(d_L-1)}$

\mathcal{T} for $(3,6)$-regular graph, $h=2$
Computing $\mathbb{P}[\min \text{val}_\omega(\tau;\lambda) \leq 0]$

- \mathcal{T} – induced graph of factor graph G on Ball(v_0, $2h$)
- $\{\gamma\}$ – values associated with variable nodes.
- Y_l – variable nodes of \mathcal{T} at height $2l$.
- X_l – check nodes of \mathcal{T} at height $2l+1$.
- Dyn. Prog. recurrence for computing min cost skinny tree in \mathcal{T}:

 Basis: leaves: $Y_0 = \omega_0 \gamma$
 Step: checks: $X_l = \min \left\{ Y^{(1)}_l, \ldots, Y^{(d_R-1)}_l \right\}$
 vars: $Y_l = \omega_l \gamma + X^{(1)}_{l-1} + \ldots + X^{(d_L-1)}_{l-1}$

- **Process:** let $\{\gamma\}$ = components of LLR random vector λ.
- BI-AWGN(σ) + all zeros assumption:
 $$\lambda_i = 1 + \phi_i \text{ where } \phi_i \sim \mathcal{N}(0, \sigma^2).$$

\mathcal{T} for (3,6)-regular graph, $h=2$
Density Evolution Based Bound for BI-AWGNC(\(\sigma\))

Theorem: Let \(G\) denote a \((d_L,d_R)\)-regular bipartite graph with girth \(\Omega(\log n)\), and let \(\mathcal{C}(G)\) denote the LDPC code defined by \(G\). Consider the BI-AWGNC(\(\sigma\)). Then, LP decoding succeeds with probability at least \(1 - \exp(-n^\gamma)\) for some constant \(0 < \gamma < 1\), provided that:

1. \(s < \frac{1}{4} \text{girth}(G)\), and
2. \[\min_{t \geq 0} \mathbb{E} e^{-tX_s} < \left((d_R - 1)e^{-\frac{1}{2\sigma^2}}\right)^{-\frac{1}{d_L-2}}\]

Condition (2) holds for \(\sigma < \sigma_0\), where

\[\sigma_0 \triangleq \sup \left\{ \sigma > 0 \mid \min_{t \geq 0} \mathbb{E} e^{-tX_s} \cdot \left((d_R - 1)e^{-\frac{1}{2\sigma^2}}\right)^{-\frac{1}{d_L-2}} < 1 \right\}\]
Gaussian PDFs’ Evolution

- Probability density functions of X_l for $l = 0, \ldots, 4$
 $(d_L, d_R) = (3, 6)$, and $\sigma = 0.7$.

$$Y_0 = \omega_0 \gamma$$
$$X_l = \min \{ Y_l^{(1)}, \ldots, Y_l^{(d_R-1)} \}$$
$$Y_l = \omega_l \gamma + X_{l-1}^{(1)} + \ldots + X_{l-1}^{(d_L-1)}$$

Numeric computation based on quantization following methods used in implementations of density evolution
Threshold bound values for finite s, $(d_L,d_R)=(3,6)$

$$\sigma_0 \triangleq \sup \left\{ \sigma > 0 \mid \min_{t \geq 0} \mathbb{E}e^{-tX_s} \cdot \left((d_R - 1)e^{-\frac{1}{2\sigma^2}} \right)^{\frac{1}{d_L-2}} < 1 \right\}$$

s	σ_0	E_b/N_0 [dB]
0	0.605	4.36
1	0.635	3.94
2	0.66	3.61
3	0.675	3.41
4	0.685	3.29
6	0.7	3.1
10	0.715	2.91
22	0.735	2.67

Region for which $5e^{-\frac{1}{2\sigma^2}} \mathbb{E}e^{-tX_4} < 1$ as a function of t and σ for $(d_L, d_R) = (3, 6)$.

Max-Product threshold: $\sigma = 0.82$, $E_b/N_0 \sim 1.7$ dB
Summary

- Extended analysis of ADS’09 to MBIOS channels:
 - We saw a sketch of one of the main results:
 - Bound on the threshold of LP decoding for regular LDPC codes with log girth over BI-AWGNC.
 - “Density evolution” bounds: a step towards closing the gap to BP-based threshold
 - More in the paper:
 - Reformulations of some results of ADS’09 in terms of graph covers [VK’05]
 - Combinatorial characterization:
 - Local Opt. \Rightarrow LP Opt.
 - Derivation of finite length bound

“LP Decoding of Regular LDPC Codes in Memoryless Channels” @ arXiv
Future Directions

■ Further understanding the gap to BP-based algorithms thresholds

■ For BI-AWGNC, applying Gaussian approximation techniques to “density evolution” bound
 ⇒ Better thresholds (?)

■ Vontobel [Von10] generalized the geometrical aspects of ADS’09 via normal graphs. Can a modified “DE style” analysis improve performance guarantees?
Thank You!