The current paradigm in the field of mammalian iron biology states that body iron levels are determined by dietary iron absorption, not by iron excretion. Iron absorption is a highly regulated process influenced by iron levels and other factors. Iron excretion is believed to occur at a basal rate irrespective of iron levels and is associated with processes such as turnover of intestinal epithelium, blood loss, and exfoliation of dead skin. Here we explore iron excretion in a mouse model of iron excess due to inherited transferrin deficiency. Iron excess in this model is attributed to impaired regulation of iron absorption leading to excessive dietary iron uptake. Pharmacological correction of transferrin deficiency not only normalized iron absorption rates and halted progression of iron excess but also reversed body iron excess. Transferrin treatment did not alter the half-life of 59Fe in mutant mice. 59Fe-based studies indicated that most iron was excreted via the gastrointestinal tract and suggested that iron-loaded mutant mice had increased rates of iron excretion. Direct measurement of urinary iron levels agreed with 59Fe-based predictions that urinary iron levels were increased in untreated mutant mice. Fecal ferritin levels were also increased in mutant mice relative to wild-type mice. Overall, these data suggest that mice have a significant capacity for iron excretion. We propose that further investigation into iron excretion is warranted in this and other models of perturbed iron homeostasis, as pharmacological targeting of iron excretion may represent a novel means of treatment for diseases of iron excess.
is also believed to contribute minimally to elimination of iron from the body, despite the fact that hepatobiliary excretion is a prominent means of excretion of other metals such as manganese and copper.

In this study, we investigated iron excretion in Trfhpx/hpx mice, a model of inherited deficiency of the serum iron-binding protein transferrin.11 These mice develop anemia because transferrin is essential for iron delivery to erythroid precursors. They also develop iron excess because transferrin is essential for hepcidin expression. We and others previously observed that treatment of adult Trfhpx/hpx mice with transferrin for 2 to 3 weeks not only corrected anemia and hepcidin deficiency but also lowered liver iron concentrations.12,13 Here we exploit the latter observation to assess the effect of iron excess on iron excretion and to identify routes of iron excretion using short- and long-term transferrin treatment and radioisotopic studies. Our data suggest that the view that iron levels are dictated solely by absorption needs to be reconsidered. They also suggest that non-gastrointestinal routes of excretion, such as exfoliation of skin, play a minimal role in iron homeostasis.

Methods

Animals and transferrin treatment

Studies were approved by the Animal Care and Use Committee at Brown University. Mice were maintained on LabDiet 5010 containing 270 ppm iron. BALB/cJ Trfhpx/hpx mice were generated by crossing Trfhpx/hpx mice, which were intermittenly backcrossed to BALB/cJ mice (Jackson Laboratories). To ensure survival of Trfhpx/hpx mice after weaning, pups were injected intraperitoneally with 3 mg human transferrin (RocheSigma) 2 days after birth, then once a week until weaning at 3 weeks of age. For all experiments, mice were aged from weaning to 2 months without transferrin injections, then some were injected intraperitoneally with 3 mg human transferrin three times a week as required for specific experiments.

Non-radioactive sample harvesting and analysis

Details on the collection of blood and tissues from mice, transferrin immunoblots, measurement of hemoglobin, hepcidin, and RNA levels, tissue staining, and metal analysis are provided in the Online Supplementary Methods. Body and tissue iron levels were measured by inductively coupled plasma absorption emission spectrometry (ICP-AES) of acid-digested tissues in the Environmental Chemistry Facility at Brown University.

59Fe treatments, sample harvesting and analysis

To assess absorption, mice were fasted in metabolic cages (Tecniplast) with access to water for 4 h, then gavaged with 10 µCi 59FeCl$_3$ (Perkin Elmer) and 6 µg FeCl$_3$ in 100 µL 1 M ascorbic acid.13 The mice were then housed in metabolic cages with food and water for 16 h. 59Fe levels were measured in bodies, feces, and urine using a Triathler Gamma Counter and external NaI well-type crystal detector (Hidex). To measure body 59Fe levels, mice were anesthetized with isoflurane, placed nose-first into a 50 mL conical tube positioned vertically in the detector, and radioactivity was counted. Background counts were subtracted from all counts. Percent 59Fe absorption was calculated by expressing the sum of body and urine 59Fe levels as a percent of the sum of body, fecal, and urinary 59Fe levels.

To assess excretion, mice from the absorption studies were housed individually in regular cages for 2 months. Transferrin treatment was continued as before when indicated. Bedding was changed once a week. Some mice were housed with a ‘buddy’ mouse not administered 59Fe. Every 1 to 2 weeks, body 59Fe levels of all the mice were measured. Buddy mouse 59Fe levels never exceeded background, suggesting that coprophagy was not prominent. Details on the conversion of body 59Fe counts to 59Fe half-lives and excretion rates are given in the Online Supplementary Methods.

To identify routes of 59Fe excretion, mice were housed overnight for 16 h in metabolic cages at least three times during the excretion study. Feces and urine were analyzed for 59Fe levels by gamma counting then for iron and ferritin levels using ICP-AES and enzyme-linked immunosorbent assay (ELISA) as described in the Online Supplementary Methods.

Mathematical modeling

The mathematical modeling of iron levels is described in the Online Supplementary Methods. A manuscript on the model is currently under review and a preprint version of the paper is available.15

Statistical analysis

Statistical significance (<0.05) was calculated by a two-tailed t-test or one- or two-way analysis of variance (ANOVA) with a Holm-Sidak post-hoc test using SigmaPlot. Pearson correlations were also measured using SigmaPlot.

Results

Short-term transferrin treatment reduces tissue iron excess in Trfhpx/hpx mice

Short-term transferrin treatment of adult Trfhpx/hpx mice decreases liver iron concentrations.12,13 To investigate this phenomenon further, we first determined whether a 2-week course of transferrin treatment in 2-month old Trfhpx/hpx mice altered iron concentrations in organs other than the liver. As expected, transferrin treatment increased serum transferrin, blood hemoglobin, and serum hepcidin levels in mutant mice (Figure 1A-C). Treatment also normalized Fam132b RNA levels in the spleen, a site of extramedullary hematopoiesis in Trfhpx/hpx mice, with Fam132b encoding erythroferrone, which is an inhibitor of hepcidin that is expression expressed by erythroid precurors (Figure 1D).16 Transferrin treatment also corrects severe splenomegaly in mutant mice.17 Untreated Trfhpx/hpx mice accumulated iron largely in the liver and pancreas, specifically in hepatic periportal regions and exocrine pancreas, and to a lesser extent in the kidneys, heart, and other tissues (Figure 1E).11 While Trfhpx/hpx mice had stainable iron in the red pulp of the spleen, untreated Trfhpx/hpx mice had splenic iron deficiency and a paucity of stainable iron. We attribute this to the fact that hepcidin also inhibits macrophage iron export - hepcidin deficiency in mutant mice leads to persistent iron export from red pulp macrophages scavenging iron-poor red blood cells. Transferrin treatment decreased iron concentrations and tissue iron staining in the liver, pancreas, and kidneys but not in the heart or duodenum and increased iron concentrations and tissue iron staining in the spleen (Figure 1E and Figure 2). Stainable iron was also detectable in duodenal smooth muscle in untreated and treated Trfhpx/hpx mice but in duodenal enterocytes only in treated mutant mice (Figure 2B,C). Overall, transferrin treatment decreased iron concentrations in multiple organs in Trfhpx/hpx mice.
Long-term transferrin treatment corrects body iron excess in Trfhpx/hpx mice

Several scenarios could explain decreased iron concentrations in organs of transferrin-treated Trfhpx/hpx mice. Given the severity of anemia in untreated Trfhpx/hpx mice, the increase in hemoglobin levels in treated mutant mice should require mobilization of a significant amount of iron from the liver and other organs to the bone marrow. We estimated that 0.30 mg of iron were mobilized from the liver and pancreas during the first 2 weeks of treatment and that the anemia in untreated mutant mice corresponded to a deficit of 0.475 mg of hemoglobin iron.
Based upon these calculations, it is likely that changes in tissue iron levels in the first 2 weeks of transferrin treatment largely represent mobilization of iron to the bone marrow.

To explore the effect of transferrin treatment on body iron levels in $Trf^{+/+}$ mice beyond the first 2 weeks of treatment, we measured body iron content in 1- to 6-month old $Trf^{+/+}$ and $Trfhpx/hpx$ mice and in $Trfhpx/hpx$ mice treated with transferrin from 2 to 6 months of age. The mice were euthanized in order to measure body iron content and no blood was removed prior to euthanasia. After mouse pelts had been removed, gastrointestinal tracts were isolated and cleared of contents. Pelts, cleared gastrointestinal tracts, and carcasses were then analyzed for iron levels, which were summed to calculate body iron levels. We focused on body iron levels here as these would not be affected by redistribution between organs. Untreated $Trfhpx/hpx$ mice were smaller than $Trf^{+/+}$ mice, and treatment increased body sizes of $Trfhpx/hpx$ mice (Figure 3A). Body iron levels (in mg iron) and concentrations (in µg iron/g body mass) were greater in untreated $Trfhpx/hpx$ mice than in $Trf^{+/+}$ mice (Figure 3B,C). Treatment of $Trfhpx/hpx$ mice resulted in no difference in iron levels and a less than two-fold difference in iron concentrations relative to those in $Trf^{+/+}$ mice by 6 months of age (Figure 3B,C). Most untreated $Trfhpx/hpx$ mice did not survive to 6 months,

![Figure 2](image-url)

Figure 2. $Trfhpx/hpx$ mice accumulate iron in the duodenum. (A-C) Mice from Figure 1 were analyzed for duodenal iron (Fe) levels by inductively coupled plasma absorption emission spectrometry (A) and tissue Fe staining in duodenal smooth muscle (B) and villi (C). In (A), data are represented as the mean ± standard error of mean. Brackets indicate statistical significance ($P<0.05$) calculated by one-way analysis of variance with a Holm-Sidak post-hoc test. Each value represents data from five mice, with males and females grouped together. In (C), the arrowhead indicates detectable Fe staining in duodenal enterocytes.
which may reflect chronic effects of iron excess and/or anemia. Overall, given that body iron levels would not be affected by iron redistribution between organs, we hypothesized that the long-term change in body iron levels in transferrin-treated \(\text{Trf}^{hpx/hpx} \) mice reflected changes in absorption and/or excretion.

\(\text{Trf}^{+/+} \) and treated \(\text{Trf}^{hpx/hpx} \) mice have similar \(^{59}\text{Fe} \) absorption rates

Untreated \(\text{Trf}^{hpx/hpx} \) mice absorb iron excessively.\(^{14} \) If transferrin treatment suppresses absorption rates below excretion rates, body iron levels would decrease without any need for increased excretion rates in \(\text{Trf}^{hpx/hpx} \) mice. To test this hypothesis, we performed intragastric \(^{59}\text{Fe} \) gavage in 2.5-month old \(\text{Trf}^{+/+} \), untreated \(\text{Trf}^{hpx/hpx} \), and transferrin-treated \(\text{Trf}^{hpx/hpx} \) mice, then analyzed \(^{59}\text{Fe} \) levels 1 h later. From herein we studied males and females separately to detect sex-specific differences. Untreated \(\text{Trf}^{hpx/hpx} \) mice absorbed more gavaged \(^{59}\text{Fe} \) than did \(\text{Trf}^{+/+} \) and treated \(\text{Trf}^{hpx/hpx} \) mice, and \(\text{Trf}^{+/+} \) and treated \(\text{Trf}^{hpx/hpx} \) mice absorbed the same amount of \(^{59}\text{Fe} \) (Figure 4A). Similar results were observed when absorption values were normalized to body mass (Figure 4B) or when mice were analyzed 1 h after gavage (data not shown). This indicated that reversal of iron excess in transferrin-treated \(\text{Trf}^{hpx/hpx} \) mice was not due to ‘hypersuppression’ of iron absorption.

\(\text{Trf}^{+/+} \) and treated \(\text{Trf}^{hpx/hpx} \) mice have similar \(^{59}\text{Fe} \) half-lives

We next assessed excretion in \(\text{Trf}^{+/+} \), untreated \(\text{Trf}^{hpx/hpx} \), and transferrin-treated \(\text{Trf}^{hpx/hpx} \) mice using \(^{59}\text{Fe} \). Mice from the absorption studies were used, as we rationalized that gavage was the most physiological means of administering \(^{59}\text{Fe} \). We repeatedly measured body \(^{59}\text{Fe} \) levels in mice for 2 months from 2.5 to 4.5 months of age (Figure 4C).

We ended the excretion study at 4.5 months as untreated \(\text{Trf}^{hpx/hpx} \) mice do not consistently survive past this age. Body \(^{59}\text{Fe} \) levels, plotted versus time, were fitted to exponential decay curves. Exponential decay equations were then used to calculate two factors: biological \(^{59}\text{Fe} \) half-lives, expressed in days, and percent body \(^{59}\text{Fe} \) excreted per day, referred to here as \(^{59}\text{Fe} \) excretion rates. \(^{59}\text{Fe} \) half-lives and \(^{59}\text{Fe} \) excretion rates are inversely proportional to each other. \(^{59}\text{Fe} \) half-lives were ~80-120 days in all mice except for untreated male \(\text{Trf}^{hpx/hpx} \) mice, which had a half-life of ~170 days (Figure 4D). \(^{59}\text{Fe} \) excretion rates were ~0.6-0.8% in all mice except for male \(\text{Trf}^{hpx/hpx} \) mice, which had an excretion rate of ~0.45% (Figure 4E). Notably, \(^{59}\text{Fe} \) half-lives and excretion rates did not differ between \(\text{Trf}^{+/+} \) and untreated \(\text{Trf}^{hpx/hpx} \) mice.

\(\text{Trf} \) mice excrete iron largely via the gastrointestinal tract

During the 2-month excretion study, mice were placed repeatedly in metabolic cages for overnight collections of feces and urine. Fecal and urinary \(^{59}\text{Fe} \) levels were expressed as a percent of body \(^{59}\text{Fe} \) levels at the time of collection, then averaged for each mouse group. Most \(^{59}\text{Fe} \) was excreted in feces (Figure 4F). Body \(^{59}\text{Fe} \) losses could be accounted for by fecal and urinary \(^{59}\text{Fe} \) losses in all mice except transferrin-treated \(\text{Trf}^{hpx/hpx} \) females (Figure 4G). Overall, these data indicate that \(\text{Trf} \) mice excreted iron largely via the gastrointestinal tract.

\(^{59}\text{Fe}-\text{based analyses predict relative abundance of urinary iron and fecal ferritin in }\text{Trf} \) mice

In some of the earliest radioisotope-based studies of iron excretion in mice, Finch and colleagues multiplied body \(^{59}\text{Fe} \) excretion rates by body iron levels to estimate the amount of iron excreted per day.\(^{17,18} \) We employed this approach here to further explore iron excretion in \(\text{Trf} \) mice.
mice. We performed this for 2.5- and 4.5-month-old mice, the respective ages at the beginning and end of the excretion study.

We first established body iron levels and concentrations in 2.5- and 4.5-month-old mice (Figure 5A,B). For 2.5-month-old mice, we measured body iron levels and concentrations in five male and five female mice for each experimental group using the same approach employed for Figure 3. For 4.5-month-old mice, we harvested all tissues/compartments from mice at the end of the excretion study and measured iron levels and concentrations (Table 1). Iron levels for 2.5- and 4.5-month-old mice were consistent with iron levels shown in Figure 3 where sexes were pooled (Online Supplementary Figure S1). With body iron levels established in 2.5- and 4.5-month-old mice, we next multiplied 59Fe excretion rates (Figure 4E) by body iron levels (Figure 5A) or body iron concentrations (Figure 5B) to estimate iron excretion rates with and without normalization to body mass (Figure 5C,D). At 2.5 months, iron excretion rates were predicted to be increased in all Trfhpx/hpx mice except untreated males when not normalized to body size and in all Trfhpx/hpx mice when normalized to body size. At 4.5 months, excretion rates were predicted to be increased in all Trfhpx/hpx mice irrespective of normalization to body size.

The above approach involves several assumptions. The first is that 59Fe is fully equilibrated within each mouse. To explore this, we examined the relative distribution of 59Fe.
versus iron within each experimental group harvested at the end of the excretion study at 4.5 months of age. 59Fe and iron levels correlated significantly in all groups (Online Supplementary Figure S2A). The second assumption is that 59Fe equilibrates similarly in all mice. To explore this, we examined the relative distribution of 59Fe between $^{+/+}$ and untreated or treated $^{+}$ mice. Relative distributions correlated more strongly between $^{+/+}$ and treated $^{+}$ mice than between $^{+/+}$ and untreated $^{+}$ mice (Online Supplementary Figure S2B). This was not unexpected - treated mutant mice were administered 59Fe after 2 weeks of transferrin treatment during which time hemoglobin and hepcidin levels increased significantly (Figure 1B,C).

To explicitly test 59Fe-based estimates of excretion, we next used 59Fe levels measured during the excretion study to predict urinary iron levels, then measured and compared actual excreted urinary iron levels to predicted levels. We first focused on urinary iron levels given that they solely reflect excretion. To estimate urinary iron levels, values of percent body 59Fe excreted in urine per day (Figure 4F) were multiplied by body iron levels (Figure 5A). Urinary iron levels were estimated to be increased in untreated $^{+}$ mice compared to $^{+/+}$ and treated $^{+}$ mice at 2.5 and 4.5 months of age (Figure 5E). Measurement of urinary iron levels agreed with the prediction that untreated mutant mice excreted more iron via urine than wild-type or treated mutant mice (Figure 5E and Online Supplementary Figure S3). Measured urinary iron levels also agreed with 59Fe-based predictions for all treated $^{+}$ mice. However, urinary iron levels were underestimated by 59Fe-based predictions by 5-10 µg iron per day in all untreated mutant mice and by 2 µg iron per day in female untreated mutant mice.

![Figure 5. 59Fe-based analyses predict relative abundance of urinary iron and fecal ferritin in $^{+}$ mice.](image)

(A, B) Body iron (Fe) levels (A) and concentrations (B) in $^{+/+}$ mice (+/+; orange), untreated $^{+}$ mice (+/+; green), and $^{+}$ mice treated with transferrin (TF) (+/+TF, blue) harvested at 2.5 months or 4.5 months of age at the end of the excretion study shown in Figure 4. (C) mg Fe excreted per day, calculated by multiplying values in Figure 4E by values in (A). (D) mg Fe excreted per day normalized to body size, calculated by multiplying values in Figure 4E by values in (B). (E) mg Fe excreted per day in urine. 59Fe-based estimates were calculated by multiplying urinary values in Figure 4F by values in (A). Spectrophotometric measurements (spec assay) were calculated by acid digest and BPS-based assay as described in the Online Supplementary Methods. (F) µg Fe excreted per day in feces, estimated by multiplying fecal values in Figure 4F by values in (A). (G) µg ferritin excreted per day in feces measured by enzyme-linked immunosorbent assay. In all panels, data are represented as mean ± standard error of mean; each value shown represents data from at least five mice. In (A-D), at a given age, different letters indicate P<0.05 between values, calculated by one-way analysis of variance with a Holm-Sidak post-hoc test; ‘#’ indicates P<0.05 between values from 2.5- and 4.5-month old mice, calculated by a two-tailed t-test. In (E-G), brackets indicate P<0.05, calculated by one-way analysis of variance with a Holm-Sidak post-hoc test. In (E-G), asterisks indicate P<0.05 between 59Fe-based and spectrophotometry-based values, calculated by a two-tailed t-test.
We next used 59Fe measurements to investigate fecal iron excretion. To estimate excreted iron levels in feces, values of percent body 59Fe excreted in feces per day (Figure 4F) were multiplied by body iron levels (Figure 5A). Fecally excreted iron levels were estimated to be increased in all Trf$^{+/+}$ mice relative to Trf$^{-/-}$ mice and increased in untreated Trf$^{+/+}$ mice relative to treated Trf$^{+/+}$ mice for all mice except 2.5-month old male mice.

Table 1. Long-term transferrin treatment reduces or normalizes organ iron content in Trf$^{+/+}$ mice.

Sex	Tissue	$+/+$	$+/+$
		μg Fe/g tissue	$hpx/hpx +TF$
Male	Liver	164±28	3208±148
	Pancreas	48±18	1538±173
	Heart	3±1	9±2
	Lungs	29±2	100±8
	Kidneys	22±5	183±19
	Spleen	43±5	88±13
	Stomach	13±2	139±6
	S. int. A	10±1	25±2
	S. int. B	27±2	97±6
	Cecum	7±1	19±2
	Large int.	12±1	41±2
	Brain	5±2	47±5
	Pelt	244±22	510±25
	Carcass	958±97	2130±160
Female	Liver	233±25	2817±286
	Pancreas	22±5	1453±151
	Heart	2±0	8±3
	Lungs	26±2	98±11
	Kidneys	30±2	212±17
	Spleen	68±5	95±15
	Stomach	15±1	181±7
	S. int. A	8±2	24±3
	S. int. B	20±1	108±10
	Cecum	5±1	27±4
	Large int.	11±1	31±3
	Brain	7±2	43±3
	Pelt	203±23	448±23
	Carcass	506±50	1912±41

Iron (Fe) levels were measured in 4.5-month old Trf$^{+/+}$, Trf$^{-/-}$, and transferrin (TF)-treated Trf$^{+/+}$ mice at the end of the excretion study. Trf$^{+/+}$ mice were treated with TF from 2 to 4.5 months of age. Digestive organs including intestines (‘int.’) were cleared of luminal contents before analysis. S. int. A refers to the first 4 cm of the small intestine; S. int. B refers to the remaining small intestine. Cells with different shading differ significantly ($P<0.05$) for a specific organ and sex, as calculated by one-way analysis of variance with the Holm-Sidak post hoc test. Each value represents the mean ± standard error of mean of the data from at least five mice. For reference, tissue Fe levels from 2.5-month old mice shown in Figures 1 and 2 are included in parentheses; note that parenthetical tissue Fe levels represent data from five mice with males and females pooled.
reproduce iron levels in 6-month old untreated Trfhpx/hpx mice. As most untreated Trfhpx/hpx mice die before 6 months, iron loss at this age may not reflect physiological excretion but rather cell death secondary to severe iron excess or other long-term adverse effects of transferrin deficiency. When we simulated body iron levels in transferrin-treated Trfhpx/hpx mice, we could reproduce body iron levels up to 4 months but were initially unable to reproduce the decrease in body iron levels from 4 to 6 months. We considered that the decrease in iron levels from 4 to 6 months in transferrin-treated Trfhpx/hpx mice required an increase in excretion from one or more compartments or a decrease in absorption starting at 4 months. The smallest change in absorption or excretion that fitted the data was a four-fold increase in excretion from the duodenum and ‘rest of body’. Given that ‘rest of body’ in our model comprised other gastrointestinal regions including jejunum, ileum, and large intestine, this supports our 59Fe-based studies indicating that the gastrointestinal tract is the main route of excretion.

Discussion
In this study, we exploited our initial observation that transferrin treatment decreases the concentrations of iron in the organs of Trfhpx/hpx mice to explore the basis of iron excretion. For this objective, the Trfhpx/hpx model has some key advantages over other mouse models of common human diseases of iron excess such as hereditary hemochromatosis and β-thalassemia. First, Trfhpx/hpx mice develop more severe iron excess than most other models. We anticipated that the severity of iron excess would significantly increase iron levels in potential routes of excretion such as feces and urine. Second, the primary defect in Trfhpx/hpx mice can be rapidly corrected pharmacological-
ly. In contrast, the primary defect in β-thalassemia mouse models - β-globin mutations - cannot. Red cell transfusions can reverse the anemia in this disease but also introduce a large burden of exogenous iron.

As mentioned above, organ iron concentrations decreased in transferrin-treated Trfhpx/hpx mice. A similar phenomenon has been described in mouse models of hereditary hemochromatosis and β-thalassemia. Hepcidin deficiency is a key characteristic of both diseases. Administration of pharmacological agents that induce hepcidin expression or mimic hepcidin activity delays worsening of organ iron excess or led to mobilization of iron from these organs and excretion from the body remains to be determined. We propose that the decreased organ iron levels in these models reflects a combination of normalized iron absorption and increased excretion rates.

The increased excretion rates we estimated for Trf mice are similar to those previously reported. In two of the earliest studies on iron excretion in mice, injected 55Fe cleared from the body of Swiss mice with a half-life of 140 days, which is equivalent to a loss of 0.5% body 55Fe per day. We observed that 59Fe cleared from all Trf mice except untreated male Trfhpx/hpx mice with a half-life of 80-120 days and a loss of 0.6-0.8% body 59Fe per day (Figure 4D,E). In the older studies, iron-sufficient Swiss mice excreted 11.5 μg iron/day, while mice with increased body secondary to dietary or intravenous iron loading excreted 14-57 μg iron/day. These values were similar to those we predicted for Trf mice based on our 59Fe studies (Figure 5C).

We also used rates of body 55Fe loss in urine and feces to estimate the rate at which iron was excreted via urine and feces. Measured urinary iron levels agreed with our 55Fe-based estimates of urinary iron levels except for untreated mutant mice, in which actual iron levels were much higher than predicted. The reason for this underestimation is not clear, although it may reflect the fact that perturbations in iron homeostasis in untreated Trfhpx/hpx mice are quite severe compared to those in Trf- and treated Trfhpx/hpx mice. We also estimated the levels of fecally excreted iron in all mouse groups. While total fecal iron levels were not informative, the relative abundance of fecally excreted iron. Whether fecal ferritin solely represents a marker of iron excess in Trf mice or plays a mechanistic role in iron excretion remains to be determined. The source of fecal ferritin is also not known at this time. Possible sources include sloughed epithelial cells and biliary excretion.

We propose that our study can be used as an initial step in a reconsideration of the physiological basis of iron excretion and the significance of its role in iron homeostasis. While humans and rodents may differ in their rates and routes of iron excretion, the possibility that iron excretion affects body iron levels has implications for treatment of human disease. Notably, a seminal work by Green et al. in 1968 indicated that adult men of Bantu origin, a population with increased iron stores, have increased daily iron losses. Development of hepcidin mimetics or agonists is an active area of research and may lead to novel treatments for hereditary hemochromatosis, β-thalassemia, and other diseases of iron excess. If body iron levels are regulated largely by absorption, treatment of patients with hepcidin agonists or mimetics will prevent worsening of iron excess but will not reverse additional treatment modalities such as chelation will be required to clear excess iron from the body. If body iron levels do influence iron excretion, treatment of patients with hepcidin agonists should result in decreased body iron burden - with rates of iron absorption normalized, excess iron will clear from the body through physiological mechanisms.

The means by which iron is excreted from the body have not yet been established. Iron excretion is currently attributed to multiple processes including exfoliation of dead skin, blood loss, and turnover of intestinal epithelium (Figure 7). Our data indicating that iron is excreted largely via the gastrointestinal tract suggest that skin exfoliation does not play a prominent role. The possibility that increased blood loss contributes prominently to excretion in Trfhpx/hpx mice is also unlikely given that 5Fe half-lives did not decrease in Trfhpx/hpx mice relative to those in Trf- mice (Figure 4D). The possibility that turnover of intestinal epithelium is a major route of iron excretion is stronger. It is supported by the fact that intestinal epithelium in mice turns over in less than 1 week. Whether Trfhpx/hpx mice do load excess iron into gastrointestinal organs (Table 1) but histological iron staining indicates that a considerable fraction of this iron in younger mutant mice resides in smooth muscle, not enterocytes (Figure 2). Pountney et al. previously demonstrated that non-heme iron levels are similar in enterocytes isolated from Trfhpx/hpx mice and treated Trfhpx/hpx mice. Based on this, we suggest that the increased duodenal iron levels we measured in Trfhpx/hpx mice largely reflect smooth muscle iron loading (Figure 2). The observation by Pountney et al. that transferrin can be internalized by enterocytes isolated from Trfhpx/hpx mice may also explain stable iron observed in enterocytes of treated but not untreated Trfhpx/hpx mice - it may represent uptake of different transferrin across the basolateral membrane of enterocytes. Overall, a careful investigation of the potential role of epithelial turnover to iron excretion would require a quantitative assessment of multiple factors: enterocyte iron levels, the biochemical form of enterocyte iron, and the rate of epithelial turnover in gastrointestinal organs in multiple models of iron excess and deficiency.

Another potential contributor to gastrointestinal iron excretion is hepatobiliary excretion. This process is largely ignored by the current view of mammalian iron biology. The reason for this is not apparent. One study in rats excluded bile as a route of excretion, but this was based on the observation that bile duct ligation did not impair the decrease in body iron levels in rats switched from an iron-rich to an iron-deficient diet. The use of bile duct ligation is a concern given that this is an established method for inducing liver cirrhosis. Multiple studies, most of which were performed in rats, have shown that iron is readily detectable in bile and that biliary iron levels decrease in conditions of iron deficiency and increase in conditions of iron excess. Several of these studies involved the use of chelators - our statement that iron is readily detectable in bile refers to the measurement of biliary iron in control animals not exposed to chelators. Overall, a full investigation of the contribution of biliary excretion to systemic iron excretion would require measurement of multiple parameters. While our preliminary analysis indicates that biliary iron levels are increased in
untreated \(\text{Tfr}^{+/+} \) mice relative to those in \(\text{Tfr}^{-/-} \) mice at 2.5 months of age (Online Supplementary Figure S7), the rate at which biliary iron is eliminated from the body is not only influenced by biliary iron levels. Dietary iron deficiency can alter rates of bile synthesis in rats. In rats, iron can also undergo enterohepatic circulation, the process by which substances excreted in bile are reabsorbed by the small intestine and transported back to the liver. A study of the role of hepatobiliary iron excretion would require measurement of bile synthesis rates and iron levels and rates of enterohepatic circulation in multiple animal models of iron excess and deficiency. Analysis of the biochemical form of biliary iron is also warranted, as this may indicate a potential mechanism for iron excretion. Iancu et al. observed electron-dense material within bile canaliculi similar in appearance to hemosiderin. This type of study, along with a study of the contribution of epithelial turnover to iron excretion, would also need to be performed in both male and female subjects given that \(^{59}\)Fe excretion rates were decreased in untreated male but not female \(\text{Tfr}^{+/+} \) mice (Figure 4E).

Acknowledgments
The authors would like to thank Joseph Orchard and David Murray for assistance with metal measurements and Iqbal Hamza and Anatoly Zhitkovich for reviewing the manuscript. This work was supported by NIH grants DK54122 and DK110049 (TBB) and GM082049 (PM).

References
1. Coffey R, Ganz T. Iron homeostasis: an anthropocentric perspective. J Biol Chem. 2017;292(31):12727–12734.
2. Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int Symp Home Hemodial. 2017;21(Suppl 1):56–520.
3. Muckenthaler MU, Rivella S, Hentze MW, Calvi B. A red carpet for iron metabolism. Cell. 2017;168(5):544–561.
4. Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;69(6):399–413.
5. Wallace DF. The regulation of iron absorption and homeostasis. Clin Biochem Rev. 2016;37(2):51–62.
6. Brissot P, Cavey T, Ropert M, Guggenbuhl P, Loretal O. Genetic hemochromatosis: pathophysiology, diagnostic and therapeutic management. Fresse Med. 2017;46(12 Ft 2):e288–e295.
7. Kawabata T. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol. 2018;107(1):31–43.
8. Asadov C, Alamirzaeva Z, Mammadova T, Alyeva G, Gafarov S, Mammadov J. \(\beta \)-thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol. 2018;108(1):5–21.
9. Cappelli MD, Motta I. New therapeutic targets in transfusion-dependent and -independent thalassemia. Hematol Am Soc Hematol Educ Program. 2017;2017(1):278–283.
10. Gupta R, Musallam KM, Taher AT, Rivella S. Ineffective erythropoiesis: anemia and iron overload. Hematol Oncol Clin North Am. 2018;32(2):215–221.
11. Bu JT, Bantinikas TB. The use of hypotransferrinemic mice in studies of iron biology. Biometals. 2015;28(3):473–480.
12. Bartnikas TB, Andrews NC, Fleming MD. Transferrin is a major determinant of hepatic hepcidin expression in hypotransferrinemic mice. Blood. 2011;117(2):630–637.
13. Raja KB, Pountney DJ, Simpson RJ, Peters TJ. Importance of anemia and transferrin levels in the regulation of intestinal iron absorption in hypotransferrinemic mice. Blood. 1999;94(9):3185–3192.
14. Buys SS, Martin CB, Eldridge M, Kushner JP, Kaplan J. Iron absorption in hypotransferrinemic mice. Blood. 1991;78(12):3288–3290.
15. Farmar JH, Mendes F. A computational model to understand mouse iron physiology and diseases. bioRxiv. 2018;528899.
16. Kaurz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–694.
17. Stevens AR, White PL, Hegsted DM, Finch CA. Iron excretion in the mouse. J Biol Chem. 1958;205(1):161–165.
18. Chappelle E, Gabriol BW, Stevens AR, Finch CA. Regulation of body iron content through excretion in the mouse. Am J Physiol. 1955;182(2):390–392.
19. Skline BS, Whitaker P, Cooke A, Cook JD. Ferritin excretion and iron balance in humans. Br J Haematol. 1995;90(3):681–687.
20. Farmar JH, Davis G, Shevchuk H, Mendes F. Modeling the dynamics of mouse Fe body distribution: hepcidin is necessary but not sufficient. BMC Syst Biol. 2017;11(1):57.
21. Casu C, Oikonomidou PR, Chen H, et al. Minibhepcin peptides as disease modifiers in mice affected by \(\beta \)-thalassemia and polycythemia vera. Blood. 2016;128(2):263–276.
22. Gelderman MF, Baek JH, Yalamanchili A, et al. Reversal of hemochromatosis by apo-
transferrin in non-transfused and trans-
fused HBhBt/b (heterozygous b1/b2 glo-
bolin gene deletion) mice. Haematologica. 2015;100(5):611–622.
23. Guo S, Casu C, Gardenghi S, et al. Reducing TMFS decreases iron overload in a hepatic-deficient mouse model of severe
hemochromatosis. Blood. 2012;120(15):3829–3836.
24. Schmidt PJ, Toudjarska I, Sendamarai AK, et al. An RNAi therapeutic targeting Tmprss6
reduces iron overload in Hfe(−/−) mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. Blood.
2015;126(1):1200–1208.
25. Green R, Charlton R, Seftel H, et al. Body
iron excretion in man: a collaborative study. Am J Med. 1968;45(3):356–353.
26. Casev C, Nemeth E, Rivella S. Heparin ago-
nists as therapeutic tools. Blood. 2010;115(16):1790–1794.
27. Cheng H, Bjørknes M. Cell production in mouse intestinal epithelium measured by
stathmokinetic flow cytometry and Coulter particle counting. Anat Rec.
1985;207(3):427–434.
28. Creamer B, Shorter RG, Bamforth J. The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut.
1961;2110–118.
29. Williams JM, Duckworth CA, Burkitt MD,
Watson AJM, Campbell BJ, Fritchard DM. Epithelial cell shedding and barrier func-
tion: a matter of life and death at the small intestinal villus tip. Vet Pathol.
2015;52(3):445–455.
30. Fournet DJ, Konijn AM, McKie AT, et al. Iron proteins of duodenal enterocytes iso-
lated from mice with genetically and exper-
imentally altered iron metabolism. Br J
Haematol 1999;105(4):1066–1073.
31. Oates FS, Jeffrey GP, Basclain RA, Thomas C, Morgan EH. Iron excretion in iron-over-
loaded rats following the change from an
iron-loaded to an iron-deficient diet. J Gastroenterol Hepatol. 2000;15(6):665–674.
32. Marques TG, Chaib E, da Fonseca JH, et al. Review of experimental models for induc-
ing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection. Acta Cir
Bras. 2012;27(8):589–594.
33. Blaha K, Cikrt M, Nerudová J, Ponka HF. Biliary iron excretion in rats following treatment with analogs of pyridoxal iso-
nicotinoyl hydrazine. Blood. 1999;91(11): 4568–4572.
34. Goss JA, Barshes NR, Karpen SJ, Gao F-Q, Wyllie S. Liver ischemia and ischemia-
reperfusion induces and trafficks the multi-
specific metal transporter ApoB to bile
duct canaliculi: possible preferential trans-
port of iron into bile. Biol Trace Elem Res.
2008;122(1):26–41.
35. Hultcrantz R, Glumann H. Studies on the rat liver following iron overload: biochemi-
cal studies after iron mobilization. Lab
Investig. 1982;46(4):383–392.
36. Drummond GS, Rosenberg DW, Kappas A. Intestinal heme oxygenase inhibition and
increased biliary iron excretion by metallo-
porphyrins. Gastroenterology. 1992;102(4
Pt 1):1170–1175.
37. Schumann K, Schäfer SG, Forth W. Iron
absorption and biliary excretion of transferrin in rats. Res Exp Med (Berl.). 1986;186
(3):215–219.
38. Zanninelli G, Choudury R, Loréal O, et al. Novel orally active iron chelators (3-
hydroxypropyridin-4-ones) enhance the biliary excretion of plasma non-transferrin-
bound iron in rats. J Hepatol 1997;27(1):
176–184.
39. Brissot P, Bolder U, Schteingart CD, Arnaud
al and laser microprobe analysis observa-
tions. J Pathol. 1995;177(1):83–94.