Isolation of a new lycodine alkaloid from *Lycopodium japonicum*

Jichun Wu, Huanqin Wang, Yanfang Ma, Jinhe Jiang, Rui Zhan and Yegao Chen*

College of Pharmacy, Yanbian University, Yanji 133002, P.R. China; School of Chemistry and Chemical Engineering, Yunnan Normal University, Chenggong New Development Area, Kunming 650500, P.R. China

(Received 1 October 2014; final version received 27 October 2014)

A new lycodine alkaloid, N-methylhydroxypropyllycodine (1), was isolated from the club moss *Lycopodium japonicum* Thunb, together with five known compounds, N-methyllycodine (2), huperzine (3), β-obscurine (4), α-obscurine (5) and des-N-methyl-α-obscurine (6). Their structures were elucidated by spectroscopic analyses, including 2D NMR techniques.

Keywords: *Lycopodium japonicum*; Lycopodiaceae; lycodine alkaloid

1. Introduction

Lycopodium japonicum Thunb (Lycopodiaceae) is a traditional Chinese medicinal plant for the treatment of sprains, strains and myasthenia (Zhang & Zhang 2004; Chinese Pharmacopoeia Commission 2010). Previous investigations have shown that this plant is a rich source of lycodine alkaloids possessing diverse structures of unprecedented skeletons (Sun et al. 2008; Wang, Liu, et al. 2012; Wang, Zhang, et al. 2012). As a part of our research of structurally unique and biologically active compounds from medicinal plants of Yunnan, China, we have isolated and identified a new lycodine alkaloid, N-methylhydroxypropyllycodine (1), as well as five known compounds, N-methyllycodine (2), huperzine (3), β-obscurine (4), α-obscurine (5) and des-N-methyl-α-obscurine (6) from L. japonicum. Our procedures and findings are reported in this article (Figure 1).

2. Results and discussion

Compound 1 was obtained as a colourless gum. The molecular formula of 1 was determined to be C₂₀H₃₀N₂O by HR-EI-MS ([M] ⁺ 314.2364), implying seven degrees of unsaturation. The IR
The 1H and 13C NMR and DEPT spectra of 1 displayed three methyls, seven sp3 CH2, four sp3 and two sp2 CH, three sp2 and one sp3 quaternary C-atoms. The 13C NMR spectra [δ 157.2 (s), 157.1 (s), 135.7 (s), 135.1 (d), 121.5 (d)] showed that 1 had a trisubstituted pyridine ring. 1H–1H COSY and HSQC analyses indicated the existence of four fragments, including an isolated 2-hydroxy-propyl group. Careful inspection in the 1H and 13C NMR spectra revealed that 1 was similar to hydroxypropyllycodine (7) previously isolated from Lycopodium obscurum (Ayer & Kasitu 1989). Compound 1 differs from 7 only in the additional N-Me group instead of an N–H bond, which was further confirmed by HMBC correlations from H-17 (δ 2.65) to C-9 (δ 50.5) and C-13 (δ 59.4). Therefore, the structure of 1 was elucidated to be N-methylhydroxypropyllycodine.

By comparison of the obtained spectroscopic data with those reported in the literature, the chemical structures of known compounds were determined as N-methyllycodine (2) (Nakashima et al. 1975), huperzinine (3) (Yin et al. 2006), β-obscurine (4) (Castillo et al. 1976), α-obscurine (5) (Nakashima et al. 1975) and des-N-methyl-α-obscurine (6) (Liu & Wang 2012).

3. Experimental

3.1. Apparatus and reagents

Optical rotations were determined on a Horiba SEAP-300 spectropolarimeter (Horiba International Corporation, Kyoto, Japan). NMR spectra were recorded on a Bruker DRX-AV-500 spectrometer (Bruker BioSpin Group, Rheinstetten, Germany) at 500 MHz for 1H and 125 MHz for 13C using standard pulse sequence programs. All chemical shifts were recorded with respect to TMS as an internal standard. MS was obtained on a VG Auto Spec-3000 spectrometer (VG PRIMA, Birmingham, England). IR was measured on a Perkin-Elmer 241 polarimeter (PerkinElmer, Boston, MA, USA). Column chromatography was carried out on silica gel H (10–40 μm, Qingdao Haiyang Chemical Factory, Qingdao, China) and RP-18 (40–75 μm, Fuji Chemical Industrial Co., Ltd, Tochigi, Japan). TLC was performed on silica gel GF254 (Yantai Jiangyou Silica Gel Co., Ltd, Yantai, China). Solvents were of industrial purity and distilled prior to use.

3.2. Plant material

The whole plants of L. japonicum were collected from Pingbian County of Yunnan Province, China in August, 2011 and identified by Prof. Shugang Lu, School of Life Science, Yunnan University, Kunming, China, where a voucher specimen (No. 1108018) has been deposited.
3.3. Extraction and isolation

The air-dried powdered whole plants of *L. japonicum* (5.5 kg) were extracted with MeOH (25 L × 4) at room temperature. The MeOH extract was partitioned between EtOAc and 1% aq. H$_2$SO$_4$, and the acidic aqueous phase was basified with aq. Na$_2$CO$_3$ to pH 10 and the alkaloids were extracted with CHCl$_3$. The crude alkaloids (10 g) were subjected to silica gel chromatography eluting with gradient CHCl$_3$:MeOH (15:1 → 5:1) to provide fractions A–C. Fr. A (2.2 g) was further isolated on RP-18 column eluting with 80% aq. MeOH, and then purified on silica gel column with CHCl$_3$:MeOH (5:1) to afford 1 (30 mg), 2 (15 mg), 3 (45 mg) and 4 (20 mg). Fr. B (1.7 g) was subjected to RP-18 chromatography eluting with 50% aq. MeOH, and then isolated on silica gel column with CHCl$_3$:MeOH (5:1), to yield 5 (40 mg) and 6 (30 mg).

3.3.1. N-methylhydroxypropyllycodine (1)

Colourless gum; [α]$_D^{27}$ = 1.70 (c = 0.0053, MeOH); EI-MS: 314 [M]$^+$, HR-EI-MS m/z: 314.2364 [M]$^+$ (calcd for C$_{20}$H$_{30}$N$_2$O: 314.2358); IR (KBr): 3441, 2924, 2866, 1631, 1571, 1409, 1115, 1085; 1H NMR (CDCl$_3$, 500 MHz): δ 7.99 (1H, d, J = 8.0 Hz, H-3), 6.95 (1H, d, J = 8.0 Hz, H-2), 4.23 (1H, m, H-19), 2.70 (1H, m, Ha-9), 2.65 (3H, s, H-17), 2.64 (1H, m, Hb-6), 2.59 (1H, m, Hb-9), 2.08 (1H, m, H-7), 1.94 (1H, m, H-12), 1.83 (1H, m, Ha-10), 1.74 (1H, m, Ha-8), 1.53 (1H, m, Ha-11), 1.43 (2H, d, J = 11.5 Hz, H-14), 1.30 (3H, d, J = 6.0 Hz, H-20), 1.27 (1H, m, Hb-11), 1.26 (1H, m, Hb-8), 1.17 (1H, m, H-15), 1.14 (1H, m, Hb-10), 0.81 (3H, d, J = 6.5 Hz, H-16); 13C NMR (CDCl$_3$, 125 MHz): δ157.2 (s, C-1), 157.1 (s, C-5), 135.7 (s, C-4), 135.3 (d, C-3), 121.5 (d, C-2), 67.2 (d, C-19), 59.4 (s, C-13), 50.5 (t, C-9), 48.1 (t, C-14), 44.1 (t, C-18), 43.8 (t, C-8), 36.4 (q, C-17), 35.2 (t, C-6), 34.5 (d, C-12), 33.8 (d, C-7), 26.9 (t, C-11), 26.5 (d, C-15), 23.1 (q, C-20), 22.4 (q, C-16), 19.6 (t, C-10).

4. Conclusion

In our study, six lycodine alkaloids were isolated from the club moss *L. japonicum* Thunb. N-methylhydroxypropyllycodine (1) was a new alkaloid with 2-hydroxy-propyl and N-Me groups.

Supplementary material

Supplementary material relating to this article is available online.

Funding

The authors acknowledge the grants from the Natural Science Foundation of China [grant number 21162045], from the Yunnan Province of China for basic research in social development [grant number 2009CC018] and from the Yunnan Education Department, China [grant number 2012y175].

References

Ayer WA, Kasitu GC. 1989. Some new Lycopodium alkaloids. Can J Chem. 67:1077–1086.

Castillo M, Loyola LA, Morales G, Singh I, Calvo C, Holland HL, Maclean DB. 1976. The alkaloids of *L. magellanicum* and the structure of magellanine. Can J Chem. 54:2893–2899.

Chinese Pharmacopoeia Commission. 2010. Pharmacopoeia of the People’s Republic of China, Part I. Beijing: China Medical Science Press.

Liu HJ, Wang Y. 2012. Study on chemical constituents of Lycopodium alkaloids. Chin J Chin Mater Med. 37:475–477.

Nakashima TT, Singer PP, Browne LM, Ayer WA. 1975. Carbon-13 nuclear magnetic resonance studies of some Lycopodium alkaloids. Can J Chem. 53:1936–1942.
Sun Y, Yang J, Meng H, He CL, Yi P, Qiao Y, Qiu MH. 2008. A new alkaloid from Lycopodium japonicum Thunb. Helv Chim Acta. 91:2107–2109.

Wang XJ, Liu YB, Li L, Yu SS, Lv HN, Ma SG, Bao XQ, Zhang D, Qu J, Li Y. 2012. Lycojaponicums D and E: two new alkaloids from Lycopodium japonicum. Org Lett. 14:5688–5691.

Wang XJ, Zhang GJ, Zhuang PY, Zhang Y, Yu SS, Bao XQ, Zhang D, Yuan YH, Chen NH, Ma SG, et al. 2012. Lycojaponicums A–C, three alkaloids with an unprecedented skeleton from Lycopodium japonicum. Org Lett. 14:2614–2617.

Yin S, Fan CQ, Wang XN, Yue JM. 2006. Lycodine-type alkaloids from Lycopodium casuarinoides. Helv Chim Acta. 89:138–143.

Zhang XC, Zhang LB. 2004. Flora of China. Vol. 6. Beijing: Science Press.