Development of a Two-Way Evacuation Route Database Based on Interviews Conducted with Historic Preservation Area Residents

Nobuo Mishima
Professor Dr., Graduate School of Science and Engineering
Saga University, Saga-city, Saga 840-8502, Japan

Naomi Miyamoto
Fukuoka branch, Land Brain Co., Fukuoka 810-0001, Japan

Yoko Taguchi
Lecturer Dr., Graduate School of Science and Engineering
Saga University, Saga-city, Saga 840-8502, Japan

Keiko Kitagawa
Professor Dr., Faculty of Culture and Education
Saga University, Saga-city, Saga 840-8502, Japan

Yong-Sun Oh
Professor Dr., Department of Information Communication Engineering
Mokwon University, Seo-gu, Daejeon, 302-729, Korea

Sun Gyu Park
Professor Dr., Division of Architecture
Mokwon University, Seo-gu, Daejeon, 302-729, Korea

ABSTRACT

It has been determined that two-way evacuation routes that connect houses to evacuation sites should be developed to protect residents of historic preservation areas from future disasters. These routes are required because traditional buildings and other historic spatial elements are located close to each other. It is important to understand residents’ perceptions of evacuation routes that connect their houses to temporary safe places to develop evacuation system strategies that include effective two-way evacuation routes. This paper describes a procedure used to construct a two-way evacuation route database designed to preserve two study areas that was based on an interview survey conducted with area residents. The resulting database contains residents’ perceptions of evacuation routes. The database contains categorized spatial problems related to these routes that can be used for future research.

Key words: Disaster prevention, Historic area, Evacuation routes, Residents’ perceptions, Evacuation Planning Database.

1. INTRODUCTION

1.1 Background of Study

Historic preservation areas are particularly vulnerable to disasters because many people reside close together in wooden houses. Because the historic value of these areas must be protected, to protect its historic value, it can be difficult to widen narrow streets in an effort to prevent future disasters. Therefore, in some historic preservation areas in Japan, two exits for each house are required by law to prevent possible fire-related disasters. In addition, it has been recommended that residents determine two-way evacuation routes to connect their houses to temporary safe places to which residents can
1.2 Aim of Study
This paper describes a procedure used to construct a basic database of two-way evacuation routes that could be used to preserve two selected historical preservation areas. This study was based on data collected during an interview survey of residents to discover problems related to the determination of evacuation routes in the study area.

1.3 Literature Review
Current research focused on evacuation route planning can be divided into several categories: behavioral analyses of evacuees, residents’ perceptions, algorithms and programming methods, evacuation times, and evacuation databases. Behavioral analyses of evacuees examined the effects of a variety of different behavioral and managerial factors on evacuations [1-2], evacuees’ speeds while ascending or descending stairs [3], and the effects of merging that occurs on staircases, as well as ways to ease or prevent merging under a variety of conditions [4]. Surveys have been conducted to analyze residents’ perceptions of volcanic hazards [5], to clarify the risks of and reasons for evacuation [6], and to assess tourists’ perceptions of hurricanes, based on forecasts [7]. Algorithms and programming methods were created to generalize optimal evacuation plans (e.g., models used to analyze building evacuability [8], to develop mathematical modeling to simulate evacuation problems [9], to develop GIS-based mapping of evacuation choices during earthquakes [10], to develop a new multiagent system (SimTread) that calculates the shortest walking times [11], and to develop an evacuation simulator [12]). Studies have evaluated evacuation times to determine optimal routes. Decision support systems have been implemented during evacuation planning. Previous studies included an evaluation of an evacuation plan by the use of a microscopic simulation model [13], an analysis of smoke exhaustion and evacuation times in the arcade of a traditional Korean market [14], the development of a heuristic method with an incremental data structure that relies on real-world scenarios [15], and a network optimization approach to address problems with evacuation planning that occur with short notice [16]. Finally, a number of studies have developed evacuation databases to be used in planning [17].

However, historic preservation areas are locations that are particularly vulnerable to disaster because many elderly people live close together in wooden houses. A number of previous studies examined disaster prevention plans for the protection of traditional buildings located in Kanazawa City, Japan [18], and assessed increased local safety because of the shortening of evacuation routes located in Senbon-syaka-do in Kyoto, Japan [19]. Street widths in these areas might be narrower than 4 m. Thus, it can be difficult to widen these streets and maintain their historic value. These streets can easily become clogged or blocked during large disasters, such as great earthquakes and large fires that might destroy buildings and block exits. If preferred evacuation routes become blocked, residents must evacuate by other routes. Therefore, the determination of two-way evacuation routes for each house is one of the most critical aspects of disaster prevention for historic preservation area residents. However, this must be achieved in addition to the maintenance of the narrow path widths. A prior study investigated the effectiveness of historic wooden back doors in Kyoto [20]. In addition, in another study [21], we assessed evacuation routes used in a Japanese historic preservation area by conducting intensive interviews with its residents. Based on our results, we proposed the use of a procedure to determine evacuation route planning for that study area. Our results indicated that maintenance of the open space located at the center of the study area was a useful method that could be used to improve evacuation routes that connected the houses to primary evacuation sites [25]. However, it can be difficult to create a database of residents’ perceptions for use in two-way evacuation route planning. Therefore, it is important to analyze residents’ perceptions, as well as problems related to evacuation routes.

2. METHOD OF STUDY

2.1 Study Areas
2.1.1 Characteristics of study areas: Our study areas consisted of two important historical preservation districts comprised of traditional buildings that were designated under the Act on Protection of Cultural Properties in 2007. The areas are located close to one another and are situated on either side of the Hama River in Kashima City, Saga Prefecture. Both areas functioned historically as station towns located along the Nagasaki Road that was built in Edo era to connect Kokura and Nagasaki. One area is known as Hamashozu Machi Hamakanaya Machi (hereafter, Area A). It has been preserved as a local town that contains straw-roofed and tile-roofed wooden townhouses built alongside narrow streets (see Figure 1). The second area is known as Hamanaka Machi Happongi Shuku (hereafter, Area B). It has been preserved as a sake-producing town that contains both tile-roofed wooden storehouses and sake factories built close together (see Figure 2). Therefore, these two areas are more vulnerable than other historic preservation areas or other dense urban areas filled with wooden structures.

2.1.2 Relaxation Ordinance: In 2010, the Kashima City
authorities enacted a relaxation ordinance to complement the building standards laws that aimed to preserve the historic characteristics of the two study areas. It released the quasi-fire prevention areas by encouraging changes in city planning. This ordinance led to relaxed regulations for roof structures and reduced restrictions on street construction activities on streets. This was achieved by the adoption of alternative methods, such as the provision of two exits for each traditional house to prevent future fire disasters. Additionally, two-way evacuation routes that connected the houses to designated final evacuation sites (e.g., Hama elementary school) were considered because large-scale disasters require street blockades. However, these routes were not recommended in the ordinance.

2.2 Flow of the Study (see Figure 3.)

2.2.1 Interview Survey: The primary method used in this study was an interview survey conducted with residents of the two study areas. The goal was to determine residents’ perceptions of the determination of two-way evacuation routes for each house during large disasters.

The interview survey was conducted between October 2009 and November 2009. Useful data was collected from 21 residents in Study Area A and 35 residents in Study Area B (see Figure 4). During the interview survey, we asked interviewees to describe evacuation routes that connected their homes to temporary safe places based on the procedure shown in Figure 3. The first question asked interviewees to describe their choices of temporary safe places. The second question asked interviewees to describe evacuation routes that connected their houses to temporary safe locations, and, in particular, to describe exits and routes to these temporary safe locations. We asked interviewees to continue until they were unable to find any other evacuation routes. We summarized the results of these interviews on a data sheet (see Figure 5). The data sheet consisted of a map and photographs of evacuation routes. The map showed exits for houses, route paths, temporary safe places, and route obstacles.

The interviewees provided a variety of answers, such as, “For the first route, I would use the main exit that goes to the front street. For the second route, I would evacuate through the back door and go to my neighbor’s garden by walking between the buildings.” We categorized all responses into exits, temporary safe places, and the paths located between them. We used the terms, “from,” “to,” and “through,” and classified them respectively in Table 1, based on areas and building types. In this case, building types were categorized as several traditional buildings, single traditional building, and nontraditional building.

2.2.2 Judgments of Possible Evacuation Routes: To create the evacuation route database, we realized that judgments of possible evacuation routes were important. We based our judgments on residents’ responses to the interview survey, as well as on the results of a spatial survey. Possible evacuation routes were categorized into the following classifications: “no problems,” “with limited difficulties,” “with significant difficulties,” and “impossible.”

A route that contains no problems would be a route that contains a normal exit and path. An example of an evacuation route with limited difficulties would be a route that contains limited gaps, such as a low window and or an engawa (a type of veranda typically included in Japanese houses that is generally located between the garden and the guest room), or a
route that requires travel through another building. An example of a route with significant difficulties would be a route that contains a high window or a wide stream, or a route that requires travel between buildings. In other words, an impossible route would be too difficult for vulnerable people to travel on. For example, an impossible route would require an individual to exit from a second floor window.

2.2.3 Method of building database and analyzing: We list the results of all possible judgments in Table 1. Therefore, the value of Table 1 is a database that contains evacuation routes with a variety of difficulties for a historic area that includes residents’ perceptions. Based on Table 1, we calculated the number of evacuation routes and listed the results in Table 2. We considered the categories of possible judgments, problems inherent in each route, the order of evacuation routes mentioned by residents, and building types. These calculations can reveal the quantitative realities of study area evacuation routes (e.g., whether primary and other routes were problem-free.

Fig. 4. Object houses of the study area.

Fig. 5. Sample data sheet (Object House No. 15 located in Area A)
Table 1. Database of Residents’ Determinations of Two-way Evacuation Routes

Area A: Hamashozu Machi Hamakanaya Machi

Building Type	House No	From	Primary route to Through	Second route From To Through	Third route From To Through	Fourth route From To Through
Several Traditional Buildings	1 Temple Joju	The main exit of the main building	The open space on the riverside	The main exit - Nagasaki Road	- The engawa - The Goat wetland	- The restroom window - The Goat wetland
Single Traditional Building	2	The main exit Nagasaki Road or the road to the temple	- The high window - The street behind	- The high window - The neighbor’s parking lot	- - -	
	3	The main exit The Hama River	- The back door - The front yard	- Between the buildings - The engawa - The Goat wetland	- - -	
	4	The main exit The neighbor’s parking lot	Along the path from the high window	- The second-floor window - The neighbor’s house Via the roof	- - -	
	5	The back door of the The Goat wetland	The main exit Nagasaki Road or the road to the riverside	- The side door - Nagasaki Road	- The neighbor’s property -	
	6	The main exit The bridge or the front parking lot	- The side door - The Hama River	- From the back door - The front door between the buildings	- - -	
	7	The front of the house The bridge over the Hama River	- The side door - The Hama River	The temple approach Break Go outside The neighbor’s wall	- - -	
	8	The main exit The front parking lot	- The back door - The back yard	- - - -		
	9	The main exit The front parking space	- The back door - The neighbor’s vacant lot	- The second-floor window - Temp to the outside	- - -	
	10	The main exit The neighbor’s vacant lot	- The back door - The garden	- The engawa - The garden	- - -	
	11	The back door The neighbor’s vacant lot	- The engawa - The neighbor’s vacant lot	- The main exit The front entrance to the neighbor’s parking lot	- The side windows - The street - The neighbor’s lot	
	12	The back window The opposite side of the street	- The main exit The neighbor’s vacant lot	- The engawa - The neighbor’s vacant lot	- The front street	- - -
Nontraditional Building	13	The main exit The Hama River	- The low window - The Hama River	- Several high windows May be used with difficulty	- - -	
	14	The main exit The street	- The door - The back vacant lot	- The engawa - The neighbor’s garden	- The side window The open space near The Hama River	
	15	The main exit to The open space of the Hama River	The path The door - The parking space	Beyond the street The side window - Nagasaki Road	The temple approach The bathroom approach The neighbor’s garden	- -
	16	The main exit Nagasaki Road	- The engawa - The front yard of the temple	- The back door - Nagasaki Road	The temple	- -
	17	The front exit Nagasaki Road	- The side door - The parking space	- The back door - The Goat wetland	- - -	
	18	The main exit Nagasaki Road	- The engawa - Road 207	- The back door - The neighbor’s lot	- Another back door	- -
	19	The main exit The front vacant lot	- The high window - The back vacant lot	- - - -		
	20	The main exit The front vacant lot	- The high window - The vacant lot	- - -		
	21	The main exit The front open space	- The back door - The front street	- The high window - The street	- - -	

Area B: Hamanaka Machi Happongi Shuku

Building Type	House No	From	Primary route to Through	Second route From To Through	Third route From To Through	Fourth route From To Through
Several Traditional Buildings	1	The shop exit The front street	- The back door - The back door	- The open space on the riverside - The buildings	- The Goat wetland	- The front street
	2	The main exit The street	- The kitchen door - The parking lot	- Between the buildings	- The second floor - The Goat wetland	- - -
	3	The main exit The street The shop	- The back door - The kitchen door	The parking door lot	- - - -	
	4	The shop The elementary The front store	The back door of the The Hama river	- The side door	The neighbor’s	- -
Sample	Traditional Building					
---------	----------------------					
5	From the main exit					
6	The main exit					
7	The main exit					
8	The shop exit					
9	The main exit					
10	The back door					
11	The main exit					
12	The main exit					
13	The shop exit					
14	The back door					
15	The main exit					
16	The main exit					
17	The back door					
18	The main exit					
19	The main exit					
20	The main exit					
21	The main exit					
22	The main exit					
23	The main exit					
24	The main exit					
25	The main exit					
26	The main exit					
27	The kitchen door					
28	The main exit					
29	The main exit					
30	The kitchen door					
31	The main exit					
32	The main exit					
33	The main exit					

Nontraditional Building
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

International Journal of Contents, Vol.9, No.2, Jun 2013
3. ANALYSIS OF THE PRESENT SITUATION

3.1 Determination of two-way evacuation routes

We determined that two-way evacuation routes could not be established for ten houses because of several current conditions: Three single traditional houses and two nontraditional houses were located in Area A. One single traditional house and four nontraditional houses were located in Area B. Two-way escape routes could be established for the remaining 45 houses.

We attempted to determine residents’ perceptions of temporary safe places (see Figure 6). We also attempted to evaluate the time required to reach final evacuation locations based on the locations of temporary safe places.

3.2 Residents’ perceptions of evacuation routes

Based on Tables 1 and 2, our determinations of residents’ perceptions of evacuation routes are listed below:

- Only two primary routes contained significant difficulties. The remaining 54 primary routes did not contain evacuation difficulties.
- With respect to secondary routes, five routes contained limited difficulties and ten routes contained significant difficulties. We determined that one route was impossible because it required an individual to exit from a second story window.
- With respect to tertiary routes, eight routes contained limited difficulties, ten routes contained significant difficulties, and five routes were impossible.

With regard to quaternary routes, 40 residents had no routes, and only one route had no difficulties.

Building Type	Category	Problems	Primary route	Second route	Third route	Fourth route										
Several Traditional Building	Route	Route without problems	1	8	9	1	6	7	0	5	5	0	0	0	0	
	Route	Route with limited difficulties	0	0	0	0	0	0	1	0	1	2	2	1	2	2
	Route	from the engawa	0	0	0	0	1	1	1	0	1	1	1	0	1	1
	Route	from low window	0	1	1	1	0	0	0	0	0	0	0	0	0	0
	Route	Route with significant	0	0	0	0	1	1	1	0	1	1	1	0	1	1
	Route	from high window	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Route	through between buildings	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Route	Impossible route	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Route	- No route	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Subtotal		1	8	9	1	6	7	0	5	5	0	0	0	0	0
Single Traditional Building	Route	Route without problems	10	15	25	7	12	19	3	5	8	0	0	0	0	0
	Route	Route with limited difficulties	0	0	0	1	0	1	2	3	5	0	2	1	2	2
	Route	from the engawa	0	1	1	1	3	3	5	2	2	2	2	2	2	2
	Route	from low window	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Route	Route with significant	1	1	2	3	4	7	2	3	5	1	2	3	1	2
	Route	from high window	1	1	2	3	4	7	2	3	5	1	2	3	1	2
	Route	through between buildings	0	1	3	4	1	1	0	0	0	0	0	0	0	0
	Route	Impossible route	0	0	0	0	0	0	3	1	4	0	0	0	0	0
ACKNOWLEDGMENT

This research was supported by Grants-in-Aid for Scientific Research (representative: Assoc. Prof. N. Mishima) and the Program for the Promotion of Methodological Innovation in Humanities and Social Sciences by Cross-Disciplinary Fusing (representative: Prof. K. Kitagawa). In addition, we are thankful for the support and cooperation provided by the Kashima City Authority and by individuals who resided in the study areas.

REFERENCES

[1] K. Dow and S. L. Cutter, "Crying Wolf: Repeat Responses to Hurricane Evacuation Orders," Coastal Management, vol. 26, no.4, 1998, pp. 237-252.

[2] T. E. Drabek, "Understanding Disaster Warning Responses," The Social Science Journal, vol. 36, no.3, 1999, pp. 515-523.

[3] M. Nara, Y. Oshima, and M. Watanabe, "Walking Speed Of People in Refuge - Walking on Stairs," Bulletin of Japanese Association of Fire Science and Engineering, vol. 45, no.1-2, 1996, pp. 11-17.

[4] T. Sano, N. Takeichi, T. Kimura, Y. Ohmiya, Y. Yoshida, and H. Watanabe, "Characteristics of Confluence of Two Occupant Flows on Staircases in High-Rise Buildings," Journal Of Architecture And Planning, vol. 598, 2005, pp. 51-56.

[5] O. K. Bird, G. Gisladottir, and D. Dominey-Howes, "Residents' Perceptions of Volcanic Hazards and Evacuation Procedures," Natural Hazards and Earth System Sciences, vol. 9, 2009, pp. 251-266.

[6] D. M. Brommer and J. C. Senkbeil, "Pre-landfall Evacuee Perception of the Meteorological Hazards Associated with Hurricane Gustav," Natural Hazards, 2010.

[7] C. Matyas, S. Srinivasan, I. Cahiayanto, B. Thapa, L. Pennington-Gray, and J. Villegas, "Risk Perception and Evacuation Decisions of Florida Tourists Under Hurricane Threats: A Stated Preference Analysis," Natural Hazards, 2011.

[8] L. Chalmet, R. Francis, and P. Saunders, "Network Model for Building Evacuation," Fire Technology, vol. 18, no.1, 1982, pp. 90-113.

[9] H. W. Hamacher and S. A. Tandra, "Mathematical Modeling of Evacuation Problems: A State of The Art," Pedestrian and Evacuation Dynamics, 2002, pp. 227-266.

[10] C.-A. Tai, Y.-L. Lee, and C.-Y. Lin, "Urban Disaster Prevention Shelter Location and Evacuation Behavior Analysis," Journal of Asian Architecture and Building Engineering, vol. 9, no.1, 2010, pp. 215-220.

[11] T. Kimura, T. Sano, K. Hayashida, N. Takeichi, Y. Minegishi, Y. Yoshida, and H. Watanabe, "Representation Of Crowds In a Multi-Agent Model: Development Of Pedestrian Simulation System Simtread," Journal of Architecture and Planning, vol. 74, no.636, 2009, pp. 371-377.

[12] W. Chiewchongkol, T. Koga, and K. Hirate, "Development of an Evacuation Simulator Using A Walkthrough System and Research On Evacuation Behavior in the Case of Fire," Journal of Asian Architecture and Building Engineering, vol. 10, no.1, 2011, pp. 101-108.

[13] M. Jha, K. Moore, and B. Pashaie, "Emergency Evacuation Planning with Microscopic Traffic Simulation," Journal of the Transportation Research Board, no.1886, 2004, pp. 40-48.

[14] T. Kim, B. S. Kim, and K. Kim, "Smoke Movement and Evacuation Time in the Arcade of a Traditional Market Using Numerical Simulation," Journal of Asian Architecture and Building Engineering, vol. 6, no.2, 2007, pp. 403-410.

[15] S. Kim, B. George, and S. Shekhar, "Evacuation route planning: Scalable heuristics," Proc. the 15th annual
Nobuo Mishima
He received the B.E., M.E., and D.E. in urban engineering from the University of Tokyo, Japan in 1988, 1990, and 1995 respectively. He was employed by Saga University, Japan as a Lecturer between 1995 and 1998, an Assistant Professor between 1998 and 2007, an Associate Professor between 2007 and 2013, and as a Professor beginning in 2013. His main research interests include urban planning and design.

Naomi Miyamoto
She received the B.E., and M.E. from Saga University, Saga, Japan, in 2010, and 2012 respectively. She is a member of staff at Land Brain Co., which is a consultancy office for city planning in Japan. Her current research interests are city planning and field surveys of historic areas. Her primary field of study is urban planning. She is a member of the Architectural Institute of Japan.

Yoko Taguchi
She received the B.E., M.E., and D.E. in architecture from Tokyo Institute of Technology, Japan in 1997, 1999, and 2006 respectively. She was employed by Yonago National College of Technology, Japan as an Assistant Professor between 2006 and 2008. She was employed by Saga University, Japan as an Assistant Professor between 2008 and 2011, and as a Lecturer beginning in 2011. Her main research interests include architectural planning and design.

Keiko Kitagawa
She received the B.S., M.S., and D.S. from Toyo University, Japan in 1973, 1976, and 1979 respectively. She was employed by Koriyama Woman University as a Lecturer between 1979 and 1984. She was employed as an Associate Professor during 1984-94, and as a Adjunct Professor by Lutheran Bible Institute 1987, U.S.A, Professor during 1994-1997. She worked as an Assistant Professor of saga University between 1997-2000, and as a Professor since 2000. Her main research interests include Gerontology and Social Work.

Yong-Sun Oh
He received B.S., M.S., and Ph.D. degrees in electronic engineering from Yonsei University, Seoul, Korea, in 1983, 1985, and 1992, respectively. He worked as an R&D engineer at System Development Division of Samsung Electronic Co. Ltd., Kiheung, Kyungki-Do, Korea, from 1984 to 1986. He joined the faculty of the Dept. of Information Communication Engineering, Mokwon University, Daejeon, Korea, in 1988. During 1998-1999 he served as a visiting professor of Korea Maritime University, Busan, Korea, where he was nominated Head of the Academic Committee of the Korea Institute of Maritime Information and Communication Sciences. He returned to Mokwon University in 1999 and served as Dean of the Central Library and Information Center from 2000 to 2002 and as Director of the Corporation of Industrial Educational Programs from 2003 to 2005. He worked as an Invited Researcher at ETRI from 2007 to 2008. Recently he served as President of KoCon from 2006 to 2012, and as Dean of Eng. College and Dean of Management Strategic Affairs of Mokwon Univ. from 2010 to 2012. He is currently a professor of Mokwon University and Head of Prospering Committee of KoCon. His research interests include digital communications and their applications. He is currently interested in personalized e-Learning and variety of convergences.
Sun Gyu Park
After having acquired the degree of the doctor in Tokyo University in September, 2004, he is in office to a professor at Mokwon University division of architecture from March, 2009. The research field is an initial crack prediction of the concrete and reduction technology development, development of the blast furnace slag concrete using alkali activator, a performance enhancement of the recycled aggregate concrete.