Parallel and Streaming Wavelet Neural Networks for Classification and Regression under Apache Spark

Eduru Harindra Venkatesh1,2, Yelleti Vivek1, Vadlamani Ravi* and Orsu Shiva Shankar1

1 Center for Artificial Intelligence and Machine Learning, Institute for Development and Research in Banking Technology, Castle Hills Road #1, Masab Tank, Hyderabad-500076, India
2 School of Computer science and Information Sciences, University Of Hyderabad, Gachibowli, Hyderabad-500046, India
harindravenkatesh@gmail.com; yvivek@idrbt.ac.in; yravi@idrbt.ac.in; shivaorsu96@gmail.com

Abstract

Wavelet neural networks (WNN) have been applied in many fields to solve regression as well as classification problems. After the advent of big data, as data gets generated at a brisk pace, it is imperative to analyze it as soon as it is generated owing to the fact that the nature of the data may change dramatically in short time intervals. This is necessitated by the fact that big data is all pervasive and throws computational challenges for data scientists. Therefore, in this paper, we built an efficient Scalable, Parallelized Wavelet Neural Network (SPWNN) which employs the parallel stochastic gradient algorithm (SGD) algorithm. SPWNN is designed and developed under both static and streaming environments in the horizontal parallelization framework. SPWNN is implemented by using Morlet and Gaussian functions as activation functions. This study is conducted on big datasets like gas sensor data which has more than 4 million samples and medical research data which has more than 10,000 features, which are high dimensional in nature. The experimental analysis indicates that in the static environment, SPWNN with Morlet activation function outperformed SPWNN with Gaussian on the classification datasets. However, in the case of regression, the opposite was observed. In contrast, in the streaming environment i.e., Gaussian outperformed Morlet on the classification and Morlet outperformed Gaussian on the regression datasets. Overall, the proposed SPWNN architecture achieved a speedup of 1.32-1.40.

Keywords: WNN; Spark; Streaming Analytics; MapReduce; Classification; Regression

1. Introduction

In recent times, wavelet analysis [6] had become popularized in handling various tasks such as analyzing time series data [2] and images [3], speech recognition [5,9], computer vision [24], financial forecasting [22] etc. Wavelet analysis is a mathematical tool used in various areas of research. Wavelets describe the time series and are represented by local information such as frequency, duration, intensity, and time position, and by global information such as the mean states over different time periods. Both global and local information is needed for the correct analysis of a signal. The wavelet transform (WT) is a generalization of the Fourier transform (FT) and the windowed Fourier transform (WFT). The neural network which is inspired by the wavelet analysis is regarded as a Wavelet Neural Network (WNN), [14, 28] which is a combination of feed forward neural network and wavelet analysis. WNN provides the following advantage over other neural networks (NNs) it takes less training time when compared to a multilayer perceptron network [23] without sacrificing the performance.

In today’s world, almost every sector has a very huge amount of data which is formally regarded as Big data. Analysing such large data sets is more complex than standard relational databases in terms

1* Corresponding Author
of capturing, handling and processing data quickly. The main characteristics of Big data are viz., Volume, Velocity, Variety, Veracity, and Value (5V’s) [11]. Such Big Data may not be processed easily in a single system. This gave origin to a new paradigm of computing i.e., Distributed computing. This is the technique of executing a complex computation on a number of distinct processors that may exist on the same system, on many computers in the same network, or different machines [10].

To capture and analyse Big Data, several tools were proposed. Among them, the most popular tools are Apache Hadoop and Apache Spark. Apache Hadoop is a framework that enables distributed processing of large data sets across computer groups using MapReduce [4] as the programming model. It is designed to scale from a single server to thousands of machines, each machine providing local computing and storage. The framework itself does not rely on hardware to provide high availability but is designed to detect and handle application layer failures, thereby providing high availability services on a group of computers, each of which may be prone to failure. On the other hand, Apache Spark is a unified analytics engine for large-scale data processing. The main abstraction provided by Spark is the Resilient Distributed Data Set (RDD), which is a collection of partitioned items that can be operated in parallel across cluster nodes. Further, it provides high-level APIs in Java, Scala, R, and Python, and an optimization engine that supports general execution graphs. In addition, Spark also supports a broad set of advanced tools, which includes Spark SQL for SQL, structured data processing, MLlib for machine learning, GraphX for graph processing, and structured flows for incremental computation. These parallel and distributed solutions can decrease the time [8].

As we discussed earlier, Velocity is one of the important characteristic of Big Data, where the data is continuously generated by various data sources. Such data is called Streaming data. This data is being generated from thousands of data sources every second and must be processed and analyzed as quickly as possible. These streaming demands a new paradigm of solutions to handle the data which comes from time-to-time [19]. For example, Google search results, posts shared in various social media platforms, stock market trends etc.,. We can get deeper insights or extract useful information at an early phase itself, rather than waiting for the whole data. Hence, there is an utmost need to design the streaming applications to analyzing the large volumes of streaming data on-time. Creating models for the desired task is challenging and certain modifications need to be done in the extant methods to achieve the faster analysis on-time without compromising on the performance of the model [20].

Interestingly, Spark also supports streaming which is of different types. Spark Streaming is an extension of Spark’s core API, which enables scalable, high-performance, and fault-tolerant stream processing of real-time data streams. Structured Streaming is a fault-tolerant and scalable stream processing engine built on the Spark SQL engine. We can express our stream computing in the same way as batch computing on static environment. The Spark SQL engine will be responsible for running it continuously in increments and updating the final result as streaming data continues to arrive. Spark provides a high-level abstraction called discretized stream (DStreams), which represents a continuous data stream. The data can be ingested from many sources (such as Kafka, Kinesis, or TCP sockets) and can be processed using complex algorithms represented by high-level functions (such as map, reduce, join, and window). Further details of Dstreams and its operations will be discussed in detail in latter sections.

Optimization of neural networks is a crucial task to reduce losses and for providing accurate results for the desired task. Gradient descent is widely used and has been the most common approach for optimizing neural networks [17, 18]. But, when applied to large amount of data, this often consumes too much time which is not desirable. Hence, a method called Stochastic gradient descent (SGD) is proposed [32-33], is one such optimization which updates the parameters for each training sample. SGD
performs one update at a time and is much faster. Basically, SGD is proven to be handling this reducing the computational complexity without compromising on the performance of the model. This is well proven especially at high dimensional datasets. There are several variants of SGD were proposed in the literature [32-33]. Among them, SGD with mini batch gradient is proven to be effective hence this made us to adopt it in the proposed parallel model.

The above discussion motivated us to design a robust and scalable WNN algorithm to make it suitable for large datasets and high dimensional problems. Hence, we proposed scalable, parallel WNN and named it SPWNN under Apache Spark environment. The proposed SPWNN is suitable to solve both the classification and regression problems. Further, as we are dealing with Big Data, we adopted the SGD optimization in the proposed parallel model. In addition, we also proposed a online version of SPWNN to handle the streaming data.

The major contributions in the current study are as follows:

- We developed and designed a scalable parallel WNN and named it SPWNN under the Spark framework.
- SPWNN is developed under both static and streaming environments.
- The performance of the SPWNN is analysed to solve both the classification and regression problems.
- For faster optimization, SPWNN is fused with the SGD optimization principles to make it a light-weight model.

The rest of the current research study is organized as follows: Section 2 contains the literature review. Section 3 contains the background theory extensively used for this research. Section 4 contains the proposed methodology and algorithms. Section 5 contains the experiments conducted and the results yielded. Section 6 contains the conclusions to this research.

2. Background

In this section, we will discuss about the background theory relevant to the current study.

2.1 Wavelet Neural Network

Wavelets are very popular and have been applied in many fields of research. The expansion of the wavelet series shows the location of the time frequency of a given signal. By combining wavelets with neural networks (NN), wavelet neural networks (WNN) have been developed [27]. Although neural networks have important features like learning, generalization, and parallel computing, they require a large number of neurons in the hidden layer of the network to solve the function learning problem and cannot converge quickly. In addition to the good characteristics of NN, WNN can also converge quickly and provide high precision while reducing the size of the network, because the time-frequency positioning characteristics of the waves allow the shortest time to converge to their global maximum.

The WNN model combines the advantages of discrete wavelet transform and neural network processing to achieve strong nonlinear approximation capabilities and has been successfully applied to function prediction, modelling, and approximation. The Wavelet neural network (WNN) architecture is based on the multilayer perceptron (MLP). In the case of WNN, the discrete wavelet function is issued as the node activation function.
Wavelet networks are usually in the form of a three-layer network. The bottom layer represents the input layer, the middle layer is the hidden layer, and the top layer is the output layer. In the input layer, the explanatory variables are entered into the wavelet network. The hidden layer is made up of hidden units (HU). The hidden units, also called wave elements, are similar to neurons in the classical sigmoid neural network. In the hidden layer, the input variable becomes an expanded and translated version of the parent wavelet. Finally, in the output layer, the approximate value of the target value is estimated.

2.2 Parallel Stochastic Gradient Descent

In general, SGD picks data points at random from a set of data. However, in the big data environment, the data is divided into multiple partitions. The parallel SGD [31] works in the following way: (i) pick random data points at every slave node & compute the weights. (ii) collects all the weights in the master node. (iii) Aggregates the weights and the average of thus collected weights from various slaves is computed. (iv) Thus aggregated weights were broadcasted to all of the workers to further training. This process is repeated for user defined number of epochs. It's worth noting that this model aggregation and redistribution is how this implementation used several computers to train a single neural network model in a coordinated manner, as well as how this implementation is synchronous.

![Wavelet Neural Network](image)

Fig. 1: Wavelet Neural Network

2.3 RDD

RDD supports two operations: (i) Transformations, which create a new data set from an existing data set, and (ii) Actions, which return a value to the controller/driver after running a calculation or performing a computation on the dataset. RDD works differently in local and cluster. In order to run jobs, Spark divides the processing of RDD operations into tasks, and each task is run by an executor. Before execution, the Spark computing task’s closure. The closure is those variables and methods that must be visible for the executor to perform calculations in the RDD.

2.4 Discretized Stream

Spark Streaming’s underlying abstraction is the Discretized Stream, or DStream depicted in Fig. 2. It depicts a continuous stream of data, either the source's input data stream or the processed data stream.
produced by transforming the input stream. Spark's abstraction of an immutable, distributed dataset is a DStream, which is represented internally by a continuous succession of RDDs. A DStream’s RDDs each hold data from a certain interval. Any operation applied on a DStream translates to operations on the underlying RDDs. These underlying RDD transformations are computed by the Spark engine. The DStream operations hide most of these details and provide the developer with a higher-level API for convenience.

File Streams are used to read data from a file or a local location and can be used as streaming data. Here we do not require any receiver to collect the data, so there is no need to allocate any cores for receiving data. But unfortunately, this API is not available for Python API. So, we use Queue Streams in order to replicate this streaming from a file source.

Fig. 2: DStreams

2.5 Queue Streams & Window Operations

Spark provides an API to construct DStreams from a series of RDDs called Queue Stream. With this one can create an input stream from a queue of RDDs or a list, this queue Stream can process either one at a time or all at once.

Spark Streaming also provides windowed operations with which we perform various computations on the data. It also allows us to apply transformations over a sliding window of data. The source RDDs that fall within the window are combined and operated upon to produce the RDDs of the windowed DStream as depicted in Fig. 3. Any window operations need two parameters which are:

- Window Length - The duration of the window.
- Sliding Interval - The interval at which the window operation is performed.
3. Literature Survey

This section starts by discussing the works related to WNN, followed by SGD and then concludes with the discussion on streaming.

3.1 Literature Survey related to WNN

Wavelet neural networks have been proposed in the year 1992 [28]. These WNNs are used for various machine learning problems such as classification, and regression etc., One such problem statement is cost estimation using WNN [13]. The authors of [13] implemented two variants of WNN by using two different wavelet functions viz., Morlet and Gaussian. A detailed comparative analysis is conducted with the traditional SVM model and MLP and others where WNN outperformed the state-of-art models. In addition, WNN was also implemented on time series prediction [2] where the authors incorporated a linear layer used between hidden and output layers resulting in a variant of WNN. This approach allows the advantage of requiring fewer wavelets than the traditional WNN. The usefulness of the proposed approach was demonstrated by the results for the time-series prediction problem. Rainfall prediction was also done using the WNN [15]. The results state that WNN model outperformed ANN models in monthly rainfall prediction tasks. WNN model achieved over 94 percent of the efficiency index, whereas ANN models achieved 64 percent only. This proves the importance of WNN and its applicability in various case-studies. Also, WNN is also quite popular in handling dynamic systems [25]. Authors from [25], proved that fuzzy based WNN has better generalizability and able to produce IF then rules, where Gaussian activation function is used in the IF part.

3.2 Literature Survey related to SGD

Stochastic gradient descent (SGD) is the most commonly utilized optimizing technique because it’s simple to use and easy to adapt for large volumes of data [26]. The Stochastic Approximation Method was first proposed in the year 1951 [16]. As a result, parallelizing SGD and developing SGD variants has sparked a lot of interest.

One interesting variation of SGD is mini batch stochastic gradient descent. The typical strategy of a mini-batch is to sample uniformly at every stage, leading often too large a variance. Research has been done using stratified sampling for mini-batch SGD [30]. As part of the research results were compared with dynamic and stratified sampling and also with uniform sampling. It was proven that the convergence rate has been substantially improved.

Parallelizing SGD is necessary for data which takes hours to read content from the disk as computation becomes infeasible. Simu Parallel SGD [31] is one such algorithm which proposes a data
parallel algorithm for optimization of a network. The methodology claims to involve very less utility of I/O. The algorithm can be implemented using Map Reduce and thus gains the property of handling fault tolerance. The authors of [31] claimed to produce solutions with a reduced time when parallelizing is applied. SGD has also been implemented on HPCC systems which use the synchronous data parallel SGD technique [12]. The results show a consistent decrease in the time taken for model training in terms of dataset and cluster size. It was also observed that training time when a new node is added to a cluster is relative to both computational power and communication overhead. The approach works well with various dataset sizes and can scale over several cluster sizes.

3.3 Literature Survey related to Streaming models

Computation of Streaming data involves handling large amounts of data generated at a rapid pace from various sources with low latency. The assumption of streaming data is that the potential worth of data depends on the freshness of the data. Streaming allows businesses to analyze and respond in real time. But handling this type of streaming data is difficult and it is necessary to develop parallel and scalable architectures. Real time streaming big data (RT-SBD) [19] processing engine was proposed which employs the methodology of using multicore processors for the processing of real time streaming data. The model uses a multiprocessing environment where each query is executed in parallel. A hybrid clustering scheduling algorithm is used for query assignment for the processors in the cluster.

The Research was also done using the K-means clustering algorithm for streaming data using Spark and Hadoop [21]. The work involves collecting data from slack, an application which produces real time data and sparks streaming was used for data collection. The data is clustered based on languages and this data is translated into English. Using spark streaming has facilitated the work with fast processing and promising results. It is also stated that adding more Spark servers in a distributed fashion will lead to increased scalability.

Spark’s remarkable performance was confirmed by previous works [1]. The authors of [1] also present results of Spark with different streaming inputs like Kafka, TCP and file streaming. Harmonic IO is also implemented for comparison analysis. The work also demonstrated the necessity of selecting a stream source integration that is adequate for the message size and performance requirements.

4. Proposed Methodology

This section begins with a discussion on proposed parallel WNN algorithms for regression and classification with the distinction involved. Later, how the WNN is extended for streaming problems is also discussed.

4.1 SPWNN for Classification and Regression

SPWNN is used to perform regression analysis to predict the target variable (V_k) based on input variables in a distributed environment using stochastic gradient descent (SGD). The algorithm of SPWNN is given in Algorithm 1. The major reason behind using the SGD is to decrease the time-complexity.

SPWNN for any machine learning problem i.e., for both the regression/classification starts by initializing the required parameters such as Dilation, Translation parameters, and Weight vectors which are randomly initialized (both the weights between the input layer and hidden layer and also the weights between the hidden layer and output layer), number of hidden nodes (nhn), epochs (N), learning rate
(lr), momentum (m) and batch size (bs). After initializing the parameters, all the parameters are broadcasted to all the nodes.

Once, the parameters are initialized, the mapper function is called from the driver. The data is divided into multiple partitions and on each partition, the mapper function is executed. Here, we are using the SGD optimization, hence in each partition, the mapper function is applied only on a single random point. By calling mapper, forward propagation with the SGD optimization is performed. It is to be noted that all of the partitions will get an identical model. As we had adopted mini batch SGD optimization, which is a popular and efficient method of SGD. By using Eq. (1) the V_k is computed.

$$V_k = \sum_{j=1}^{n_{\text{hidden}}} W_j f \left(\frac{\sum_{i=1}^{n_{\text{input}}} W_{ij} x_{ki} - b_j}{a_j} \right)$$

(1)

The V_k is dependant on the underlying activation function. In our approach, two different activation functions were studied (i) Morlet function (refer to Eq. (2)); (ii) Gaussian function (refer to Eq. (3)). Thereafter, the weight were updated according to V_k.

$$f(t) = \cos (1.75t) \exp \left(-\frac{t^2}{2} \right)$$

(2)

$$f(t) = \exp (-t^2)$$

(3)

The above process is performed parallel on all of the data partitions. All the gradients and computed weights in each data partition is performed parallely among worked nodes are collected at the master node. This is achieved by utilizing the steps as given in Eq. (4) – (7). The learning rate η and α is the momentum are passed as parameters. These series of steps comprising of updating weights is performed in parallel in all the data partitions.

$$\Delta W_j(t+1) = -\eta \frac{\partial E}{\partial W_j(t)} + \alpha \Delta W_j(t)$$

(4)

$$\Delta w_{ij}(t+1) = -\eta \frac{\partial E}{\partial w_{ij}(t)} + \alpha \Delta w_{ij}(t)$$

(5)

$$\Delta a_j(t+1) = -\eta \frac{\partial E}{\partial a_j(t)} + \alpha \Delta a_j(t)$$

(6)

$$\Delta b_j(t+1) = -\eta \frac{\partial E}{\partial b_j(t)} + \alpha \Delta b_j(t)$$

(7)

After the completion of the previous steps, thus trained parameters i.e., w,W,a,b were collected back to the driver. Then the average of these is computed and then the error is also computed. In the case of regression, we have used mean squared error (MSE) (refer to Eq. (8)). In the case of classification, we have used binary cross entropy (refer to Eq. (9)).

$$E = \frac{1}{n} \sum_{k=1}^{np} (Y - V_k)^2$$

(8)
\[E = \frac{1}{n} \sum_{k=1}^{np} (Y \cdot \log(V_k) + (1 - Y) \cdot \log(1 - V_k)) \]

After computing, the average weights were broadcasted to all the nodes. It is very important to note here that all of the partitions will receive identical parameters (i.e., \(w, W, a, b \)) in each iteration. The aggregation and then computing average is only done at a master node which demands the completion of the computing gradients at each data partition. In this way, the model is trained. Now, the same above process of computing gradients and then sending them off to master is continued for the user defined number of epochs, \(N \). As mentioned earlier, the above training process is the same for both the regression and classification except for the error function.

After completing the above training process, the trained weights are utilized were used for the prediction on the test dataset and then results were reported. In the case of classification, sigmoid is used as discretizer to predict the class.

Algorithm 1: SPWNN algorithm for both classification and regression

4.2 SPWNN for Streaming Data

In a streaming environment, the data is passed in as batches of streaming data which are obtained in a specified time interval. To handle such streaming data, SPWNN which is discussed in the previous section is not useful. Hence, we modified SPWNN to make it suitable for streaming data. Thus designed SPWNN can handle both the regression and classification analysis. The algorithm of SPWNN for streaming data is given in Algorithm 2.
Spark streaming context is initialized thereby injecting the streaming data. The entire data and partitioned into multiple batches and send as streams. Then by using Dstreams, an unbounded Spark data frame is created. In our approach, we have utilized the sliding window approach, where the data is collected in the form of batches. Each batch comprises a set of data points which are collected due to the course of the specified time interval. The number of batches to be collected is dependent on the sliding window length. These two parameters viz., sliding window length and time interval are the user defined parameters. Hence, these have to be initialized at the beginning. Suppose, the sliding window length is considered as ws, where the training is done on the first $ws-1$ batches and then testing is done on the latter batch of the sliding window. Since the length of the window is k, at a particular point in time, the window has atmost ws batches. If the window is not full (At least two batches are not streamed), then it will wait until it is full. On the other hand, if the window is full, then the k batches will be obtained from the window, training is done on the first $ws-1$ batches and test is performed on the last batch. After a certain time, or interval, the window slides by one batch. So, every time after sliding, prediction is done on the new data and training is done on the data that was predicted in the previous session. The training is performed on the first $ws-1$ batches of the window, where the weights are updated and the error is computed based on the underlying task i.e., in the case of classification (binary cross entropy is used), whereas in the case of regression (MSE is used). Using those weights the predictions were performed on the next batch which serves as the test batch.

Algorithm 2: SPWNN algorithm for streaming

1. $UnboundedTable \leftarrow \text{Incoming Streams}$
2. $\text{Initialize WindowSize (ws), Sliding Interval}$
3. $\text{Start StreamingContext(Time)}$
4. while $\text{IncomingStreams == True}$ do
5. $UnboundedTable \leftarrow \text{AppendIncomingDstreams}$
6. if Window == Full then
7. $\text{TrainData} \leftarrow \text{Window[:ws-1]}$
8. $\text{TestData} \leftarrow \text{Window[ws]}$
9. endif
10. $\text{Slide window by one position across UnboundedTable}$
11. end while
12. $\text{Stop StreamingContext}$

5. Experiments & Results

5.1 Experimental Setup

All the experiments were performed in a Hadoop-Spark cluster comprising five nodes. All the Systems have the following configuration: Processor as Intel i5 8th generation, a RAM of 32 GB each with 4 physical and 8 logical cores and Ubuntu 18.04 Operating System. The versions of Hadoop is 2.7.3 and the Spark version is 2.2.0 [7] respectively.

5.2 Dataset Description

The datasets used in the current study are given in Table 1. Regression data sets are taken from UCI repository [29]. They contain time series obtained from 16 chemical sensors exposed to gas mixtures at different concentration levels. In particular, two gas mixtures are produced: Ethylene and Methane in
the air and Ethylene and Carbon Monoxide in the air. For each measurement (each gas mixture), the signal is collected continuously for approximately 12 hours without interruption. In particular, the ethylene concentration varies between 0-20 ppm; CO is 0-600 ppm; and 0-300 ppm methane. the data is distributed in 19 columns. The first column represents the time (in seconds), the second column represents the methane (or CO) concentration set point (in ppm), the third column specifies the ethylene concentration set point (in ppm), then the next 16 columns show the records of the sensor array.

Classification datasets are taken from OpenML repository [34]. Such taken classification datasets are as follows: OVA Omentum and OVA Uterus are from GEMLeR, a collection of gene expression data sets, which can be used to compare gene expression-oriented machine learning algorithms. Every gene expression sample in these data sets comes from the large public repository expO (Expression Project for Oncology) of the International Genomics Consortium. Obtain tissue samples under standard conditions and perform gene expression analysis on a set of clinically annotated deidentified tumour samples. OVA Omentum and OVA Uterus have more than 10,000 features and Tissue is the Target variable for each dataset, which is a Categorical variable. The rest of the features were all numerical values only, where each column corresponds to values related to different factors affecting the Tissue.

Table 1: Details of the benchmark datasets

Problem	Dataset	Instances	Features	Dependent Variables	Size
Regression	Ethylene Methane	4178504	19	Ethylene, Methane	1.26 GB
Regression	Ethylene CO	4208261	19	Ethylene, CO	1.31 GB
Classification	OVA Omentum	1545	10936	Tissue	103 MB
Classification	OVA Uterus	1545	10936	Tissue	106 MB

5.3 Data Pre-Processing

For the Regression datasets, the time attribute from both files is dropped off. Thereafter, the data is normalized. The train-test split ratio is maintained as 80:20. Each regression dataset, contains two dependent variables. Currently, we are performing experiments on the multiple output single-output (MISO). Hence, each dataset is divided into two different datasets, wherein in a single case, one of the two dependent variables is used as a target while the other is used as a feature. Hence, Ethylene CO is named Ethylene CO – Ethylene where Ethylene is a dependent variable and Ethylene CO is named Ethylene CO – CO where the CO is a dependent variable. Similarly, Ethylene Methane is also named depending on the dependent variable used.

While, the Classification datasets, OVA Omentum and OVA Uterus are of high dimensional. Thereafter, the data is normalized. Same as previous, the train-test split ratio is 80:20. It’s very important to note that, training with these many features didn't yield good results, so feature selection is performed and was needed. We have introduced the feature selection based on t-value statistics, where the features are sorted based on their t-value. The higher the t-value, the better the feature has to be selected. In our analysis, we have taken the top 100 features for the training classification model.
5.4 Classification Models

In this section, the results of the classification model in a static environment and on streaming data are discussed. The static results are presented in Table 3 and the streaming results are discussed in Table 4 to Table 7.

It turned out that overall, the SPWNN with Morlet as the activation performed well in the static environment. However, in streaming, SPWNN with Gaussian as the activation function outperformed the Morlet.

5.4.1 Classification results in Static Environment

Table 2: Best Hyperparameter combination for the classification dataset in static environment

Hyperparameter	Value
Number of hidden nodes (nhn)	150
Learning rate	0.45
Momentum	0.999
Batch size	32
Epochs	100

After rigorous hyperparameter tuning the best performing combination is presented in Table 2. All the experiments were performed in the same cluster configuration as discussed in Section 5.2. It is observed that the training time consumed by SPWNN is almost similar irrespective of the activation function. The results after performing different activation functions are given in Table 3. The Area under Receiver Operator Characteristic Curve (AUC) measure is considered to choose the best model. Because, AUC is proven to be a robust measure when handling imbalanced datasets. SPWNN with Morlet as the activation function outperformed SPWNN with Gaussian in both datasets. The above analysis is observed since Morlet activation achieved a faster convergence than the Gaussian. Also, Morlet was able to learn the underlying hidden pattern better than the Gaussian which resulted in achieving better specificity. The same is observed in Fig A.1 and Fig A.2 where the graphs show how the SPWNN achieved sensitivity, specificity and AUC at various levels of epochs.

Table 3: Classification Results in Static Environment

Dataset	A.F	Specificity	Sensitivity	AUC	Training Time (s)	Testing Time (s)
OVA Uterus	Morlet	0.818792	0.986885	0.964186	2245.39	1.50
OVA Uterus	Gaussian	0.902685	0.908197	0.94199	2191.60	1.78
OVA Omentum	Morlet	0.94586	0.874194	0.957791	2215.45	2.99
OVA Omentum	Gaussian	0.812081	0.990164	0.955382	2181.52	2.72

* where A.F is activation function

5.4.2 Classification results on Streaming Environment

The best performing hyperparameter combination for SPWNN for streaming is presented in Table 4. The window size is chosen as 2. Hence, there are two different stream batches in each window. Here, the training is performed on the former stream batch and the testing is performed on the latter stream batch respectively. The total number of stream batches was fixed to be 10 in our experiment analysis. The results of OVA Omentum where the activation function (AF) is Morlet are discussed in Table 5 and results with respect to Gaussian AF are discussed in Table 6. The results were given for every batch to show the behaviour of the proposed streaming model.
Table 4: Best Hyperparameter combination for the classification dataset in streaming environment

Hyperparameter	Value
Number of hidden nodes (nhn)	150
Learning rate	0.2
Momentum	0.999
Batch size	16
Epochs	100

Here also, the training time is almost similar for both the AFs. The results after performing with different activation functions are given in Table 5 and Table 6 for the OVA Uterus dataset and the results corresponding to OVA Omentum with Morlet are given in Table 7 and Gaussian in Table 8. As discussed earlier, there are 9 sliding windows, and the average AUC obtained over them is considered for evaluating the best model. In the streaming environment, unlike in a static environment, SPWNN with Gaussian outperformed SPWNN with Morlet. This owes to the fact that Gaussian is able to learn the underlying hidden pattern better than the Morlet. Even while comparing window wise, Gaussian outperformed Morlet in terms of AUC in majority of the windows in both the datasets. In the case of OVA Uterus dataset, SPWNN with Gaussian achieved almost similar AUC when compared to SPWNN with Morlet. However, it achieved significantly better in the case of the OVA Omentum dataset.

Table 5: Results obtained by SPWNN on OVA Uterus with A.F: Morlet in streaming environment

Streaming Batches	Specificity	Sensitivity	AUC
Batch 1	0.96692125	0.73943662	0.97183099
Batch 2	0.95858957	0.92253521	0.81690141
Batch 3	0.96245785	0.94366197	0.87323944
Batch 4	0.98031145	0.78169014	0.99295775
Batch 5	0.94544733	0.84507042	0.93661972
Batch 6	0.97361635	0.8943662	0.95774648
Batch 7	0.95129935	0.77464789	0.96478873
Batch 8	0.95065463	0.92957747	0.80985916
Batch 9	0.9360246	0.8028169	0.97183099
Average	0.95836915	0.84820031	0.921752741

Table 6: Results obtained by SPWNN on OVA Uterus with A.F: Gaussian in streaming environment

Streaming Batches	Specificity	Sensitivity	AUC
Batch 1	0.95427494	0.61267606	0.99145675
Batch 2	0.93746281	0.66901409	0.97183099
Batch 3	0.9188653	0.78169014	0.95774648
Batch 4	0.93984329	0.78169014	0.96478873
Batch 5	0.85553462	0.78873239	0.88732394
Batch 6	0.90909542	0.87323944	0.91549296
Batch 7	0.89565562	0.85915493	0.87323944
Batch 8	0.92030351	0.85915493	0.85211268
Batch 9	0.92615552	0.8028169	0.87323944
Average	0.91746567	0.78090766	0.92080349
Table 7: Results obtained by SPWNN on OVA Omentum with A.F: Morlet in streaming environment

Streaming Batches	Specificity	Sensitivity	AUC
Batch 1	0.90258688	0.91156463	0.79591837
Batch 2	0.73316674	0.59863946	0.78911565
Batch 3	0.93641538	0.95238095	0.68707483
Batch 4	0.95839696	0.93877551	0.86394558
Batch 5	0.94506918	0.88435374	0.86394558
Batch 6	0.9080013	0.93877551	0.79591837
Batch 7	0.9494655	0.94557823	0.82312925
Batch 8	0.92179583	0.62328767	0.93150685
Batch 9	0.94234378	0.84931507	0.89726027
Average	**0.910804618**	**0.849185641**	**0.827534971**

Table 8: Results obtained by SPWNN on OVA Omentum with AF: Gaussian in streaming environment

Streaming Batches	Specificity	Sensitivity	AUC
Batch 1	0.91026887	0.91156463	0.82312925
Batch 2	0.8741728	0.80952381	0.89795918
Batch 3	0.94145958	0.93877551	0.83673469
Batch 4	0.95390809	0.86394558	0.95238095
Batch 5	0.96001666	0.8707483	0.91836735
Batch 6	0.91286038	0.95918367	0.82993197
Batch 7	0.96233051	0.91156463	0.89115646
Batch 8	0.9392006	0.89041096	0.86986301
Batch 9	0.96631638	0.85616438	0.93150685
Average	**0.935614874**	**0.890209051**	**0.8834477474**

5.5 Regression Models

In this section, the results of the regression model in a static environment and on streaming data are discussed. The static results are presented in Table 10 and the streaming results are discussed in Table 11 to Table 14.

It turned out that overall, the SPWNN with Gaussian performed better than the SPWNN with Morlet in most of the cases in the static environment. However, in streaming, SPWNN with Gaussian as the activation function outperformed the Morlet.
5.5.1 Regression results on Static Environment

Table 9: Best Hyperparameter combination for the regression dataset in static environment

Hyperparameter	Value
Number of hidden nodes (nhn)	10
Learning rate	0.45
Momentum	0.999
Batch size	2048
Epochs	1000

After rigorous hyperparameter tuning the best performing combination is presented in Table 9. All the experiments were performed in the same cluster configuration as discussed in Section 5.2. It is observed that the training time consumed by SPWNN is almost similar irrespective of the activation function. The results after performing with different activation functions are given in Table 10.

In the case of regression, mean squared error (MSE) is considered the metric to decide the best model. The results indicate that except in the case of Ethylene CO, where Ethylene is considered as the prediction variable, SPWNN with Gaussian as the activation function outperformed SPWNN with Morlet. The above analysis is observed owing to the fact that Gaussian activation achieved a faster convergence than the Morlet. Also, Gaussian can learn the underlying hidden pattern better than the Morlet which resulted in achieving lower MSE. The same is observed in Fig A.1 and Fig A.2 where the graphs show how the SPWNN achieved MSE at various levels of epochs.

Table 10: Regression results obtained by SPWNN in static environment

Dataset	Prediction variable	A F	MSE on Test	Training Time (s)	Testing Time (s)
Ethylene CO	CO	Morlet	0.055885709	11458.69	23.69
Ethylene CO	CO	Gaussian	0.045988779	11669.34	39.45
Ethylene CO	Ethylene	Morlet	0.044376956	11772.71	16.79
Ethylene CO	Ethylene	Gaussian	0.062724334	11521.48	46.93
Ethylene CO	Methane	Morlet	0.037892088	11656.79	26.64
Ethylene Methane	Methane	Morlet	0.028004120	11156.69	33.46
Ethylene Methane	Ethylene	Morlet	0.046449774	11181.62	43.39
Ethylene Methane	Ethylene	Gaussian	0.039013186	11564.88	44.93

5.5.2 Regression results on Streaming Environment

Table 11: Best Hyperparameter combination for the regression dataset in streaming environment

Hyperparameter	Value
Number of hidden nodes (nhn)	10
Learning rate	0.20
Momentum	0.999
Batch size	512
Epochs	100

The best performing hyperparameter combination for SPWNN for streaming is presented in Table 11. The window size is chosen as 2. Hence, there are two different stream batches in each window. Here,
the training is performed on the former stream batch and the testing is performed on the latter stream batch respectively. The total number of stream batches was fixed to be 20 in our experiment analysis. The results of Ethylene Methane- Ethylene, where the activation function (AF) is Morlet are discussed in Table 12 and results with respect to Gaussian AF, are discussed in Table 13. Similarly, results corresponding to Ethylene Methane – Methane were discussed in Table 14 (Morlet as AF) and Table 15 (Gaussian as AF) respectively. Also, Ethylene CO – Ethylene were discussed in Table 16 and Table 17 where Morlet and Gaussian as AFs. Similarly, Ethylene CO – CO were discussed in Table 18 (Morlet as AF) and Table 19 (Gaussian as AF) respectively. The results were given for every batch to show the behaviour of the proposed streaming model.

Here also, the training time is almost similar for both the AFs. As discussed earlier, there are 19 sliding windows, and the average MSE obtained over them is considered for evaluating the best model. In the streaming environment also, SPWNN with Gaussian outperformed SPWNN with Morlet in the majority of the cases except in Ethylene CO - CO. This owes to the fact that Gaussian can learn the underlying hidden pattern better than Morlet. While comparing window wise also, Gaussian outperformed Morlet in terms of MSE in the majority of the datasets in the majority of the windows. The above analysis is observed owing to the fact that Gaussian activation achieved a faster convergence than the Morlet. Also, Gaussian was able to learn the underlying hidden pattern better than Morlet which resulted in achieving lower MSE.
Table 12: Results obtained by SPWNN on Ethylene Methane - Ethylene, AF: Morlet in streaming environment

Streaming Batches	Test MSE
Batch 1	0.12393604
Batch 2	0.07378749
Batch 3	0.07004135
Batch 4	0.19466037
Batch 5	0.09869748
Batch 6	0.09127234
Batch 7	0.05604061
Batch 8	0.12436425
Batch 9	0.12374341
Batch 10	0.12379226
Batch 11	0.12349314
Batch 12	0.124275
Batch 13	0.12370406
Batch 14	0.12352001
Batch 15	0.12432016
Batch 16	0.12404439
Batch 17	0.12378456
Batch 18	0.12389296
Batch 19	0.12351377
Average	**0.1155201928**

Table 13: Results obtained by SPWNN on Ethylene Methane - Ethylene, AF: Gaussian in streaming environment

Streaming Batches	Test MSE
Batch 1	0.04954237
Batch 2	0.0692704
Batch 3	0.04018015
Batch 4	0.06255346
Batch 5	0.12202037
Batch 6	0.12435347
Batch 7	0.12410548
Batch 8	0.12427145
Batch 9	0.05127125
Batch 10	0.04764669
Batch 11	0.09311369
Batch 12	0.05625233
Batch 13	0.07235238
Batch 14	0.12344497
Batch 15	0.12431177
Batch 16	0.05355372
Batch 17	0.05513086
Batch 18	0.05183397
Batch 19	0.068624
Average	**0.079675408021**
Table 14: Results obtained by SPWNN on Ethylene Methane - Methane, AF: Morlet in streaming environment

Streaming Batches	Test MSE
Batch 1	0.11095944
Batch 2	0.11099098
Batch 3	0.10724215
Batch 4	0.12713889
Batch 5	0.11061057
Batch 6	0.10502671
Batch 7	0.10616078
Batch 8	0.10557956
Batch 9	0.10466019
Batch 10	0.10560901
Batch 11	0.10550903
Batch 12	0.10487179
Batch 13	0.10503021
Batch 14	0.1069103
Batch 15	0.09554048
Batch 16	0.0587573
Batch 17	0.05695155
Batch 18	0.10409125
Batch 19	0.1044101
Average	**0.10189738314**

Table 15: Results obtained by SPWNN on Ethylene Methane - Methane, AF: Gaussian in streaming environment

Streaming Batches	Test MSE
Batch 1	0.2036292
Batch 2	0.16782641
Batch 3	0.09504617
Batch 4	0.17521183
Batch 5	0.20498493
Batch 6	0.0845818
Batch 7	0.05578543
Batch 8	0.11388623
Batch 9	0.12824928
Batch 10	0.07030886
Batch 11	0.11057301
Batch 12	0.09306753
Batch 13	0.09478232
Batch 14	0.02507607
Batch 15	0.05470719
Batch 16	0.03640039
Batch 17	0.01953907
Batch 18	0.04297256
Batch 19	0.0633842
Average	**0.0814470302975433**
Table 16: Results obtained by SPWNN on Ethylene CO - Ethylene, AF: Morlet in streaming environment

Streaming Batches	Test MSE
Batch 1	0.1521719
Batch 2	0.17107978
Batch 3	0.15176993
Batch 4	0.15144301
Batch 5	0.14428568
Batch 6	0.12974817
Batch 7	0.09812364
Batch 8	0.08547947
Batch 9	0.06285561
Batch 10	0.09247555
Batch 11	0.06300222
Batch 12	0.07052327
Batch 13	0.15408002
Batch 14	0.06293924
Batch 15	0.06318491
Batch 16	0.08479652
Batch 17	0.16855028
Batch 18	0.11286866
Batch 19	0.05984846
Average	**0.1094329642**

Table 17: Results obtained by SPWNN on Ethylene CO - Ethylene, AF: Gaussian in streaming environment

Streaming Batches	Test MSE
Batch 1	0.15039672
Batch 2	0.15245786
Batch 3	0.14977086
Batch 4	0.14955621
Batch 5	0.14797773
Batch 6	0.14970488
Batch 7	0.14931455
Batch 8	0.05991966
Batch 9	0.06808535
Batch 10	0.0878329
Batch 11	0.04406603
Batch 12	0.06351105
Batch 13	0.06830484
Batch 14	0.05413749
Batch 15	0.05023188
Batch 16	0.08657154
Batch 17	0.05751673
Batch 18	0.07321593
Batch 19	0.04820837
Average	**0.0953042413**
Table 18: Results obtained by SPWNN on Ethylene Methane - CO, AF: Morlet in streaming environment

Streaming Batches	Test MSE
Batch 1	0.15200634
Batch 2	0.15267159
Batch 3	0.14880514
Batch 4	0.14860076
Batch 5	0.08102283
Batch 6	0.24311809
Batch 7	0.11596852
Batch 8	0.11308452
Batch 9	0.10755804
Batch 10	0.11518632
Batch 11	0.08722476
Batch 12	0.10341598
Batch 13	0.07294112
Batch 14	0.06055401
Batch 15	0.14785037
Batch 16	0.14714199
Batch 17	0.14714337
Batch 18	0.14809651
Batch 19	0.14717899
Average	0.1283983551

Table 19: Results obtained by SPWNN on Ethylene Methane - CO, AF: Gaussian in streaming environment

Streaming Batches	Test MSE
Batch 1	0.14918636
Batch 2	0.14883504
Batch 3	0.14758017
Batch 4	0.14721954
Batch 5	0.10613069
Batch 6	0.30087736
Batch 7	0.0927142
Batch 8	0.11539932
Batch 9	0.10297482
Batch 10	0.08172066
Batch 11	0.09331961
Batch 12	0.09650104
Batch 13	0.07961465
Batch 14	0.10225569
Batch 15	0.14756432
Batch 16	0.14788124
Batch 17	0.14783506
Batch 18	0.14871924
Batch 19	0.14799978
Average	0.13180677866983
5.7 Speedup analysis

Scalability is used as a measure which reflects the ability of the system to effectively use resources. Speedup is an indicator to verify our parallel architecture's performance, it is defined as the relationship between the serial execution time of the best sequential algorithm to solve the problem and the time it takes for the parallel algorithm to solve the same problem in p processors. The mathematical formulation of Speed up is given in Eq. (10).

\[
\text{Speed Up} = \frac{T_S}{T_P}
\]

Speedup achieved by the proposed model is given in Table 20. The time taken by the SPWNN in both the datasets is almost similar. Further, the effect of change in activation function is also observed to be nothing. Hence, the speed up analysis is conducted on only one dataset in each machine learning task i.e., in classification and regression. It is observed that proposed SPWNN achieved speedup of 1.32-1.40.

Table 20: Speed up Results

Model	Sequential version execution time	SPWNN execution time	Speed Up
Regression Model	15673.45	11156.69	1.40
Classification Model	1512.67	1142.21	1.32

6. Conclusions

In summary, we developed a Scalable and Parallelized Wavelet Neural Network (SPWNN), under the Apache Spark environment to solve both regression and classification problems. To achieve horizontal parallelization, we employed parallel SGD algorithm to train the SPWNN. The same data was used in the streaming environment with the help of Queue Streams in Spark Streaming to handle big data effectively. As for classification, Morlet worked better for OVA Omentum and OVA Uterus datasets. However, while streaming, the Average MSE error obtained by SPWNN with Gaussian activation function turned out to be less than that of Morlet activation function in the majority of the cases.

The proposed SPWNN can further be extended for the multi-layer SPWNN to enable to learn more complex patterns thereby making it Scalable and Parallelized Deep Wavelet Neural Network (SPDWWNN). In future, we would like to explore various other wavelet transforms which could be used as activation functions in different hidden layers to achieve better results with a small number of hidden nodes. Streaming SPWNN model can further be extended to solve nowcasting the GDP and other such financial time series etc.
Appendix

Fig. A.1. Classification Results on OVA Omentum Dataset

Fig. A.2. Classification Results on OVA Uterus Dataset
Fig. A.3. Regression Results on Ethylene Methane Dataset
(a) Methane Concentration - Morlet
(b) Methane Concentration - Gaussian
(c) Ethylene Concentration - Morlet
(d) Ethylene Concentration - Gaussian

Fig. A.4. Regression Results on Ethylene CO Dataset
(a) CO Concentration - Morlet
(b) CO Concentration - Gaussian
(c) Ethylene Concentration - Morlet
(d) Ethylene Concentration - Gaussian
References

[1] Blamey B, Hellander A, Toor S. (2019). Apache spark streaming, Kafka and harmonicio: a performance benchmark and architecture comparison for enterprise and scientific computing. In International Symposium on Benchmarking, Measuring and Optimization, pp. 335–347. Springer.

[2] Chen Y, Yang B, Dong J. (2006). Time-series prediction using a local linear wavelet neural network. Neurocomputing, vol. 69(4-6), pp. 449–465.

[3] De Silva DDN, Vithanage HWMK, Fernando KSD, Piyati-lake S. (2020). Multi-path learnable wavelet neural network for image classification. In Twelfth International Conference on Machine Vision (ICMV 2019), vol. 11433, pp. 114331O.

[4] Dean J, Ghemawat S. (2008). MapReduce: Simplified data processing on large clusters. Commun. ACM, vol. 51(1): pp. 107–113.

[5] Graves A, Schmidhuber J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural networks, vol. 18, pp. 602–610.

[6] Grossmann A, Morlet J. (1984). Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, vol. 15, pp. 723–736.

[7] Apache Spark https://spark.apache.org/ -- retrieved on January 26 2021.

[8] Hegde V, Usmani S. (2016). Parallel and distributed deep learning. Intech. report, Stanford University.

[9] Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, vol. 29(6) pp. 82–97.

[10] Holohan A, Garg A. (2005). Collaboration online: The example of distributed computing. Journal of Computer-Mediated Communication,10(4): JCMC10415, 2005.

[11] Ishwarappa, Anuradha J. (2015). A brief introduction on big data 5vs characteristics and Hadoop technology. Procedia Computer Science, International Conference on Computer, Communication and Convergence (ICCC 2015), pp. 319-324.

[12] Kennedy RKL, Khoshgoftaar TM, Villanustre F, Humphrey T. (2019). A parallel and distributed stochastic gradient descent implementation using commodity clusters. Journal of Big Data, vol. 6, pp. 1–23.

[13] Vinay Kumar K, Ravi V, Carr M, Raj Kiran N. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, vol. 81 pp. 1853–1867.

[14] Pati YC, Krishnaprasad PS. (1993). Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations. IEEE transactions on neural networks, vol. 4, pp. 73–85.

[15] Ramana RV, Krishna B, Kumar SR, Pandey NG. (2013). Monthly rainfall prediction using wavelet neural network analysis. Water resources management, vol. 27, pp. 3697–3711.

[16] Robbins H, Monro S. (1951). A stochastic approximation method. The annals of mathematical statistics, pp. 400–407.

[17] Ruder S. (2016). An overview of gradient descent optimization algorithms. Corr, abs/1609.04747, 2016.

[18] Rumelhart DE, Hinton GE, Williams RJ. (1986). Learning Internal Representations by Error Propagation, MIT Press, Cambridge, MA, USA, pp. 318-362.

[19] Safaei AA. (2017). Real-time processing of streaming big data. Real-Time Systems, vol. 53, pp. 1–44.

[20] Twomey J, Smith Alice. (1999). Validation and Verification. Artificial Neural Networks for Civil Engineers: Fundamentals and Applications.
[21] Venkatesan NJ, Nam CS, Kim E, Shin DR, et al. (2017). Analysis of real-time data with spark streaming. Journal of Advances in Technology and Engineering Research, vol. 3, pp. 108–116.

[22] Steven W. (2001). An empirical analysis of data requirements for financial fore-casting with neural networks. Journal of management information systems, vol. 17, pp. 203–222.

[23] Wang G, Guo L, Hong D. (2013). Wavelet neural network using multiple wavelet functions in target threat assessment. The Scientific World Journal.

[24] Xu K, Ba J, Kiros R, Cho KH, Courville A, Salakhudinov R, Zemel R, Bengio Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning, pp. 2048–2057.

[25] Yilmaz S, Oysal Y. (2010). Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Transactions on Neural Networks, vol. 21, pp. 1599–1609[1].

[26] Zhang J, Christopher DS, Miliaugas I, Christopher R e. (2016). Parallel SGD: When does averaging help? arXiv preprint arXiv:1606.07365.

[27] Zhang J, Walter GG, Miao Y, Wayne Lee WN. (1995). Wavelet neural networks for function learning. IEEE Transactions on Signal Processing, vol. 43, pp. 1485–1497.

[28] Zhang Q, Benveniste A. (1992). Wavelet networks. IEEE transactions on Neural Networks, vol. 3, pp. 889–898.

[29] UCI data repository: https://archive.ics.uci.edu/ml/datasets --retrieved on March 27, 2021

[30] Peilin Z, Zhang T. (2014). Accelerating minibatch stochastic gradient descent using stratified sampling. arXiv preprint arXiv:1405.3080, 2014.

[31] Zinkevich M, Weimer M, Smola AJ, Li L. (2010). Parallelized stochastic gradient descent. In NIPS, vol. 4, pp. 4

[32] Bottou L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_16.

[33] Bottou L. (2012). Stochastic Gradient Descent Tricks. In: Montavon, G., Orr, G.B., Müller, KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_25

[34] OpenML Open Source Datasets https://www.openml.org/home -- retrieved on March 27, 2021