Weak amenability of weighted measure algebras and their second duals

M. J. MEHDIPOUR AND A. REJALI∗

Abstract. In this paper, we study the weak amenability of weighted measure algebras and prove that $M(G, \omega)$ is weakly amenable if and only if G is discrete and every bounded quasi-additive function is inner. We also study the weak amenability of $L^1(G, \omega)^{\ast\ast}$ and $M(G, \omega)^{\ast\ast}$ and show that the weak amenability of these Banach algebras are equivalent to finiteness of G. This gives an answer to the question concerning weak amenability of $L^1(G, \omega)^{\ast\ast}$ and $M(G, \omega)^{\ast\ast}$.

1 Introduction

Let G be a locally compact group with an identity element e. Let us recall that a continuous function $\omega: G \to [1, \infty)$ is called a weight function if for every $x, y \in G$

$$\omega(xy) \leq \omega(x) \omega(y) \quad \text{and} \quad \omega(e) = 1.$$

Let $C_0(G, 1/\omega)$ be the space of all functions f on G such that $f/\omega \in C_0(G)$, the space of all bounded continuous functions on G that vanish at infinity. Let also $M(G, \omega)$ be the Banach space of all complex regular Borel measures μ on G for which $\omega\mu \in M(G)$, the measure algebra of G. It is well-known that $M(G, \omega)$ is the dual space of $C_0(G, 1/\omega)$ [4, 21, 26], see [22, 24] for study of weighted semigroup measure algebras; see also [13, 14, 17]. Note that $M(G, \omega)$ is a Banach algebra with the norm $\|\mu\|_{\omega} := \|\omega\mu\|$ and the convolution product “$*$” defined by

$$\mu * \nu(f) = \int_G \int_G f(xy) \, d\mu(x) \, d\nu(y) \quad (\mu, \nu \in M(G, \omega), f \in C_0(G, 1/\omega)).$$

Let $L^1(G, \omega)$ be the Banach space of all Borel measurable functions f on G such that $\omega f \in L^1(G)$, the group algebra of G. Then $L^1(G, \omega)$ with the convolution product “$*$” and the norm $\|f\|_{1, \omega} = \|\omega f\|_1$ is a Banach algebra.

∗Corresponding author

2020 Mathematics Subject Classification: 43A10, 43A20, 47B47, 47B48.

Keywords: Locally compact group, Weak amenability, Weighted measure algebras, Second dual of group algebras.
A Borel measurable function p from $G \times G$ into \mathbb{C} is called \textit{quasi-additive} if for almost every where $x, y, z \in G$

$$p(xy, z) = p(x, yz) + p(y, zx).$$

If there exists $h \in L^\infty(G, 1/\omega)$ such that

$$p(x, y) = h(xy) - h(yx)$$

for almost every where $x, y \in G$, then p is called \textit{inner}. Let $D(G, \omega)$ be the set of all quasi-additive functions p on G such that

$$\sup_{x,y} |p(x, y)| \omega^\otimes(x, y) < \infty.$$

We denote by $I(G, \omega)$ the set of inner quasi-additive functions. For $\mu \in M(G, \omega)$, let $L^\infty(|\mu|, \omega)$ be the Banach space of all $\omega-$bounded Borel measurable functions p on G such that $\|p\|_{\omega, \mu} = \|p/\omega\|_\mu < \infty$. An element

$$P = (p_\mu)_{\mu} \in \Pi\{L^\infty(|\mu|, \omega) : \mu \in M(G, \omega)\}$$

is called a $\omega-$\textit{generalized function} on G if

$$\sup\{\|p_\mu\|_{\omega, \mu} : \mu \in M(G, \omega)\} < \infty$$

and for every $\mu, \nu \in M(G, \omega)$ with $|\mu| \ll |\nu|$ we have $p_\mu = p_\nu$, $|\mu| - a.e..$ The space of all $\omega-$\textit{generalized function} on G is denoted by $GL(G, 1/\omega)$. It is well-known from [25] that $GL(G, 1/\omega)$ is the dual of $M(G, \omega)$ for the pairing

$$\langle (p_\mu)_\mu, \nu \rangle = \int_G p_\nu \, d\nu.$$

A function $F = (F_{\mu \otimes \nu})_{\mu, \nu \in M(G, \omega)} \in GL(G \times G, \omega^\otimes)$ is called a \textit{generalized quasi-additive function} if

$$F_{(\mu \ast \nu) \otimes \eta}(xy, z) = F_{\mu \otimes (\nu \ast \eta)}(x, yz) + F_{\nu \otimes (\eta \ast \mu)}(y, zx)$$

for all $\mu, \nu, \eta \in M(G, \omega)$ and $x, y, z \in G$. The set of all generalized quasi-additive functions is denoted by $GD(G, \omega)$. If there exists $p = (p_\mu) \in GL(G, 1/\omega)$ such that for every $\mu, \nu \in M(G, \omega)$ and for almost every where $x, y \in G$

$$F_{\mu \otimes \nu}(x, y) = p_{\mu \ast \nu}(xy) - p_{\nu \ast \mu}(yx),$$

then F is said to be a \textit{generalized inner quasi-additive function}. The set of all generalized inner quasi-additive functions is denoted by $GI(G, \omega)$.
Let A be a Banach algebra and $D : A \to A^*$ be a bounded linear operator. Then D is called cyclic if $\langle D(a), a \rangle = 0$ for all $a \in A$. Let us recall that a bounded linear operator $D : A \to A^*$ is called a derivation if

$$D(ab) = D(a) \cdot b + a \cdot D(b)$$

for all $a, b \in A$. The space of all bounded continuous derivations from A into A^* is denoted by $\mathcal{Z}(A, A^*)$. If every element of $\mathcal{Z}(A, A^*)$ is cyclic, then A is called cyclically weakly amenable, however, A is called weakly amenable if every derivation $D \in \mathcal{Z}(A, A^*)$ is inner; that is, there exists $z \in A^*$ such that for every $a \in A$

$$D(a) = \text{ad}_z(a) := z \cdot a - a \cdot z.$$

The weak amenability of group algebras have been study by several authors. For example, Brown and Moran [2] studied the weak amenability of measure algebra of locally compact Abelian groups and showed that if zero is the only continuous point derivation of $M(G)$, then G is discrete. Note that if G is discrete, then $M(G)$ is weakly amenable, because in this case $M(G) = \ell^1(G)$ is always weakly amenable [8]. One can prove that if d is a non-zero continuous point derivation of $M(G)$ at

$$\varphi \in \Delta(M(G)) \cup \{0\},$$

then the map $\mu \mapsto d(\mu) \varphi$ is a continuous non-inner derivation from $M(G)$ into $M(G)^*$. In other words, $M(G)$ is not weakly amenable. These facts give rise to the conjecture that for a locally compact group G, the Banach algebra $M(G)$ is weakly amenable if and only if G is discrete; or equivalently, zero is the only continuous point derivation of $M(G)$ at a character. Dales, Ghahramani and Helemskii [3] proved this conjecture. Some authors investigated the weak amenability of the second dual of Banach algebras. For instance, Ghahramani, Loy and Willis [7] proved that if G is a locally compact Abelian group and $L^1(G)^{**}$ is weakly amenable, then G is discrete. Forrest [6] investigated the weak amenability of the dual of a topological introverted subspace X of $VN(G)$. Under certain conditions, he showed that if $A(G)^{**}$ is weakly amenable, then every Abelian subgroup of G is finite. As a consequence of this result, he improved the result of Ghahramani, Loy and Willis. In fact, for a locally compact Abelian group G, he proved that weak amenability of $L^1(G)^{**}$ is equivalent to the finiteness of G. Lau and Loy [9] considered a left introverted subspace of $L^\infty(G)$ containing $AP(G)$, say X, and studied weak amenability of X^*. One can obtain the result of weak amenability of $L^1(G)^{**}$ from Lau-Loy's theorem. Finally, Dales, Lau and Strauss [5] proved that $L^1(G)^{**}$ is weakly amenable if and only if there is no non-zero continuous point derivation of $L^1(G)^{**}$ at the discrete augmentation character; or equivalently, G is finite.

This paper is organized as follow. In Section 2 we study the weak amenability of $M(G, \omega)$ and show that $M(G, \omega)$ is weakly amenable if and only if G is discrete and every bounded quasi-additive function is inner. We also prove that cyclic weak
amenability and point amenability of $M(G, \omega)$ are equivalent to weak amenability of it. Section 3 is devoted to studies of the weak amenability of second dual of $L^1(G, \omega)$ and $M(G, \omega)$. We proved that $L^1(G, \omega)^{**}$ is weakly amenable if and only if $M(G, \omega)^{**}$ is weakly amenable; or equivalently, G is finite. We verify that cyclic weak amenability and point amenability of $L^1(G, \omega)^{**}$ and $M(G, \omega)^{**}$ are equivalent to finiteness of G.

2 Weighted measure algebras

Let ω_i be a weight function on locally compact group G_i for $i = 1, 2$. Define the weight function $\omega_1 \otimes \omega_2$ on $G_1 \times G_2$ by

$$\omega_1 \otimes \omega_2(x_1, x_2) = \omega_1(x_1)\omega_2(x_2)$$

for all $x_1 \in G_1$ and $x_2 \in G_2$. In the case where, $G_1 = G_2 = G$ and $\omega_1 = \omega_2 = \omega$, we set $\omega^\otimes = \omega_1 \otimes \omega_2$. The following result is needed to prove our results.

Proposition 2.1 Let ω_i be a weight function on locally compact group G_i for $i = 1, 2$. Then

$$M(G_1, \omega_1)^\hat{\otimes} M(G_2, \omega_2) = M(G_1 \times G_2, \omega_1 \otimes \omega_2).$$

Proof. Let $\eta_i \in M(G_i, \omega_i)$, for $i = 1, 2$. Then for every $f \in C_0(G_1 \times G_2)$, we have

$$\langle \eta_1 \otimes \eta_2, f \rangle = \int_{G_1} \int_{G_2} f(x, y) \, d\eta_1(x)d\eta_2(y).$$

It is easy to prove that

$$\eta_1 \otimes \eta_2 \in C_0(G_1 \times G_2, 1/\omega_1 \otimes \omega_2)^* = M(G_1 \times G_2, \omega_1 \otimes \omega_2).$$

Conversely, let $\eta \in M(G_1 \times G_2, \omega_1 \otimes \omega_2)$. In view of Theorem Lusin’s theorem, there exists sequences (f_n) and (g_n) in the unit ball $C_c(G_1, 1/\omega_1)$ and $C_c(G_2, 1/\omega_2)$ with compact support, respectively, such that for almost every where $x \in G_1$ and $y \in G_2$

$$f_n(x) \to 1 \quad \text{and} \quad g_n(y) \to 1$$

as $n \to \infty$. We define the functionals η_1 and η_2 by

$$\eta_1(f) = \lim_n \eta(f \otimes g_n) \quad \text{and} \quad \eta_2(g) = \lim_n \eta(f_n \otimes g)$$

for all $f \in C_0(G_1, 1/\omega_1)$ and $g \in C_0(G_2, 1/\omega_2)$. Then $\eta_1 \in M(G_1, \omega_1)$, $\eta_2 \in M(G, \omega_2)$. In fact,

$$|\eta_1(f)| \leq \|\eta\|\|f\|_{\infty, 1/\omega} \quad \text{and} \quad |\eta_2(g)| \leq \|\eta\|\|g\|_{\infty, 1/\omega}.$$
On the other hand,
\[\eta_1 \otimes \eta_2(f \otimes g) = \lim_n \eta(f \otimes g_n)\eta(f_n \otimes g) \]
\[= \lim_n \int_{G_1 \times G_2} f(x)f_n(x)g(y)g_n(y) \, d\eta(x, y). \]

Since \(\eta \) is bounded, it follows from Lebesgue dominated convergence theorem that
\(\|f_n \otimes g_n\|_{\infty, 1/\omega} \leq 1 \) and \(1 \in L^1(\eta) \). Furthermore, \(f_n \otimes g_n(x, y) \to 1 \) for every \(x \in G_1, y \in G_2 \). For every \(f \in C_0(G_1, 1/\omega_1) \) and \(g \in C_0(G_2, 1/\omega_2) \)
\[\eta_1 \otimes \eta_2(f \otimes g) = \int_{G_1 \times G_2} f \otimes g(x, y) \, d\eta(x, y) = \eta(f \otimes g). \]

It follows that for every \(h \in C_0(G_1, 1/\omega_1) \otimes C_0(G_2, 1/\omega_2) \)
\[\eta_1 \otimes \eta_2(h) = \eta(h) \]
and so for every \(h \in C_0(G_1 \times G_2, 1/\omega_1 \otimes \omega_2) \)
\[\eta_1 \otimes \eta_2(h) = \eta(h). \]

Therefore, \(\eta_1 \otimes \eta_2 = \eta. \)

For every \(f \in L^1(G, \omega) \), we define the seminorm \(T_f : M(G, \omega) \to [0, \infty) \) by
\[T_f(\mu) = \|f \ast \mu\|_{1, \omega} + \|\mu \ast f\|_{1, \omega}. \]

The locally convex topology defined by the family of seminorms \((T_f)_{f \in L^1(G, \omega)} \) is called the strict topology on \(M(G, \omega) \) with respect to \(L^1(G, \omega) \) (or briefly strict topology).

Proposition 2.2 Let \(G \) be a locally compact group and \(\omega \) be a weight function on \(G \). If \(p \in D(G, \omega) \), then there exists a unique bounded derivation \(D \in Z(M(G, \omega), M(G, \omega)^*) \) such that \(p(x, y) = \langle D(\delta_x), \delta_y \rangle \) for all \(x, y \in G \), where \(\delta \) is the Dirac measure at \(\cdot \).

Proof. Let \(p \in D(G, \omega) \). Then \(\Gamma(D_1) = p \) for some \(D_1 \in Z(L^1(G, \omega), L^\infty(G, 1/\omega)). \)

By Proposition 2.1.6 [23], there exists \(D_2 \in Z(M(G, \omega), L^\infty(G, 1/\omega)) \) such that \(D_2 \) is strict-weak* continuous and \(D_2|_{L^1(G, \omega)} = D_1 \). Hence for every \(f \in L^1(G, \omega) \),
\[\langle D_2(\delta_x), f \rangle = \lim \langle D_1(e_\alpha \ast \delta_x), f \rangle \]
\[= \lim \int_G \int_G p(x, y)(e_\alpha \ast \delta_x)(z)f(z) \, dz \, dy \]
\[= \int_G \int_G p(x, y)e_\alpha(zx^{-1})f(y) \, dz \, dy. \]

On the other hand, there exists a linear functional \(T_1 : L^1(G \times G, \omega^\odot) \to \mathbb{C} \) such that
\[\langle T_1, f \otimes g \rangle = \langle D_1(f), g \rangle \]
for all $f, g \in L^1(G, \omega)$. Since $L^1(G \times G, \omega^\otimes)$ is a closed ideal in $M(G \times G, \omega^\otimes)$, it follows that T_1 has a strict continuous extension, say $T_2 : M(G, \omega) \otimes M(G, \omega) \to \mathbb{C}$. Define $D : M(G, \omega) \to M(G, \omega)^*$ by

$$\langle D(\mu), \nu \rangle = \langle T_2, \mu \otimes \nu \rangle$$

for all $\mu, \nu \in M(G, \omega)$. If (e_α) is a bounded approximate identity of $L^1(G, \omega)$, then for every $x \in G$, $e_\alpha \ast \delta_x \to \delta_x$ in the strict topology. So

$$T_2(e_\alpha \ast \delta_x \otimes e_\alpha \ast \delta_y) \to T_2(\delta_x \otimes \delta_y).$$

Therefore,

$$\langle D(\delta_x), \delta_y \rangle = \lim \langle T_2(e_\alpha \ast \delta_x \otimes e_\alpha \ast \delta_y) \rangle = \lim \langle D_2(e_\alpha \ast \delta_x), e_\alpha \ast \delta_y \rangle = p(x, y),$$

as claimed. \hfill \Box

In the following, let $\mathcal{I}_{nn}(M(G, \omega), M(G, \omega)^*)$ be the set of all inner derivations from $M(G, \omega)$ into $M(G, \omega)^*$, and let $\mathcal{B}(M(G, \omega), M(G, \omega)^*)$ be the space of bounded linear operators from $M(G, \omega)$ into $M(G, \omega)^*$. Define the isometric isomorphism Γ from Banach space $\mathcal{B}(M(G, \omega), M(G, \omega)^*)$ onto $(M(G, \omega) \otimes M(G, \omega))^*$ by

$$\langle \Gamma(T), \mu \otimes \nu \rangle = \langle T(\mu), \nu \rangle,$$

$M(G, \omega) \otimes M(G, \omega)$ is the projective tensor product of $M(G, \omega)$; see Proposition 13 VI in [1].

Proposition 2.3 Let G be a locally compact group and ω be a weight function on G. Then the following statements hold.

(i) The function $\Gamma : \mathcal{Z}(M(G, \omega), M(G, \omega)^*) \to GD(G, \omega)$ is an isometric isomorphism. Furthermore, $\Gamma(\mathcal{I}_{nn}(M(G, \omega), M(G, \omega)^*)) = GI(G, \omega)$.

(ii) If $D \in \mathcal{Z}(M(G, \omega), M(G, \omega)^*)$, then for every $\mu \in M(G, \omega)$ there exists $F = (F_{\mu \otimes \nu})_\nu \in GD(G, \omega)$ such that $D(\mu) = (p_{\mu, \nu})_\nu$ and $p_{\mu, \nu}(y) = \int_G F_{\mu \otimes \nu}(x, y) \, d\mu(x)$ for almost every where $y \in G$.

Proof. Let $D \in \mathcal{Z}(M(G, \omega), M(G, \omega)^*)$. Then $D \in \mathcal{B}(M(G, \omega), M(G, \omega)^*)$. Putting $A = B = M(G, \omega)$ in the definition of Γ, we have

$$F := \Gamma(D) \in (M(G, \omega) \otimes M(G, \omega))^* = GL(G \times G, 1/\omega^\otimes)$$

and

$$\langle D(\mu), \nu \rangle = \langle F, \mu \otimes \nu \rangle = \int_G F_{\mu \otimes \nu}(x, y) \, d(\mu \otimes \nu)(x, y) = \int_G \int_G F_{\mu \otimes \nu}(x, y) \, d\mu(x) \, d\nu(y).$$
On the other hand, if $P = (p_{\mu})_{\mu \in M(G,\omega)}$, then
\[
\langle \text{ad}_P(\mu), \nu \rangle = \langle P \cdot \mu - \mu \cdot P, \nu \rangle = \langle P, \mu \ast \nu \rangle - \langle P, \nu \ast \mu \rangle = \int_G p_{\mu \ast \nu}(x) \, d\mu(x) d\nu(y) = \int_G \int_G (p_{\mu \ast \nu}(xy) - p_{\nu \ast \mu}(yx)) \, d\mu(x) d\nu(y).
\]

Now, by the argument used in the proof of Theorem 2.3 in [18], it can be shown that the statement (i) holds. For (ii), assume that $D \in Z(M(G,\omega), M(G,\omega)^*)$ and $\mu \in M(G,\omega)$. Then
\[
D(\mu) = (p_{\mu,\nu})_{\nu} \times GL(G, 1/\omega).
\]

Thus $D(\mu) = (p_{\mu,\nu})_{\nu}$ for some $(p_{\mu,\nu})_{\nu} \in GL(G, 1/\omega)$. Hence for every $\nu \in M(G,\omega)$, we have
\[
\langle D(\mu), \nu \rangle = \int_G p_{\mu,\nu} \, d\nu.
\]

This together with (1) shows that
\[
p_{\mu,\nu}(y) = \int_G F_{\mu \otimes \nu}(x, y) \, d\mu(x)
\]
for almost every where $y \in G$. \hfill \square

We are now in a position to prove the main result of this section.

Theorem 2.4 Let G be a locally compact group and ω be a weight function on G. Then the following assertions are equivalent.

(a) $M(G,\omega)$ is weakly amenable.

(b) For every $D \in Z(M(G,\omega), M(G,\omega)^*)$ there exists $P = (p_{\mu})_{\mu \in M(G,\omega)}$ such that $\langle D(\mu), \nu \rangle = \int_G \int_G (p_{\mu \ast \nu}(xy) - p_{\nu \ast \mu}(yx)) \, d\mu(x) d\nu(y)$ for all $\mu, \nu \in M(G,\omega)$.

(c) Every generalized quasi-additive function is inner.

(d) $M(G)$ is weakly amenable and $D(G,\omega) = I(G,\omega)$.

(e) G is discrete and every non-inner quasi-additive function in $L^\infty(G, 1/\omega)$ is unbounded.

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) follow from Proposition 2.3. By Theorem 1.2 in [3] the implication (d) \Leftrightarrow (e) holds. Also, the implication (e) \Rightarrow (a) follows from Corollary 2.5 in [18]. For (a) \Rightarrow (e), let $M(G,\omega)$ be weakly amenable and φ be a character of $M(G)$. If d is a continuous point derivation at φ on $M(G)$, then $d|_{M(G,\omega)}$ is a continuous point derivation of $M(G,\omega)$ at $\varphi|_{M(G,\omega)}$. Hence d is zero on $M(G,\omega)$. Since $M(G,\omega)$ is dense in $M(G)$, we have $d = 0$ on $M(G)$ which is implies G is discrete.
Apply Theorem 2.4 in [18] to conclude that $D(G, \omega) = I(G, \omega)$. \hfill \Box

From Theorem 4.8 in [19] and Theorem 2.4 and its proof, we may prove the next result.

Corollary 2.5 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $M(G, \omega)$ is weakly amenable.
(b) $M(G, \omega)$ is cyclically weakly amenable.
(c) $M(G, \omega)$ is point amenable.
(d) G is discrete and every non-inner quasi-additive function in $L^\infty(G, 1/\omega)$ is unbounded.

An elementary computation shows that the functions ω' and ω^* defined by

$$\omega'(x) = \omega(x^{-1}) \quad \text{and} \quad \omega^*(x) = \omega \otimes \omega'(x, x)$$

are weight functions on G. Combining Theorem 2.4 and the result of [18] we have the following result.

Corollary 2.6 Let ω and ω_0 be weight functions on a locally compact group G. Then the following statements hold.

(i) If $\omega \leq m\omega_0$ for some $m > 0$, $M(G, \omega_0)$ is weakly amenable and $I(G, \omega_0) = D(G, \omega_0)$, then $M(G, \omega)$ is weakly amenable.

(ii) If ω and ω_0 are equivalent, then weak amenability of $M(G, \omega)$ is equivalent to weak amenability of $M(G, \omega_0)$.

(iii) $M(G, \omega')$ is weakly amenable if and only if $M(G, \omega)$ is weakly amenable.

(iv) If $M(G, \omega^*)$ is weakly amenable and $I(G, \omega^*) = D(G, \omega^*)$, then $M(G, \omega)$ is weakly amenable.

(v) If G is Abelian, then $M(G, \omega^*)$ is weakly amenable if and only if $M(D, \omega^{\otimes})$ is weakly amenable, where $D := \{(x, x^{-1}) : x \in G\}$.

Let $\phi : G \to G$ be a group epimorphism and ω be a weight function on G. Then the function $\overrightarrow{\omega} : G \to [1, \infty)$ defined by $\overrightarrow{\omega}(x) = \omega(\phi(x))$ is a weight function on G.

For every quasi-additive function p, let $\mathcal{S}(p)$ be the quasi-additive function defined by

$$\mathcal{S}(p)(x, y) = p(\phi(x), \phi(y)) \quad (x, y \in G).$$

Theorem 2.4 together with Proposition 4.1 and Theorem 4.6 in [18] proves the next result.
Corollary 2.7 Let ω be weight function on locally compact group G. Then the following statements hold.

(i) If $\phi: G \to G$ is a continuous group epimorphism, $M(G, \overline{\omega})$ is weakly amenable and $\mathfrak{S}(I(G, \omega)) = I(G, \overline{\omega})$, then $M(G, \omega)$ is weakly amenable.

(ii) If G is Abelian and $M(G, \overline{\omega})$ is weakly amenable, then $M(H, \omega|_H)$ is weakly amenable, where H is a subgroup of G.

Corollary 2.8 Let ω_i be a weight function on a locally compact group G_i, for $i = 1, 2$. Then the following assertions are equivalent.

(a) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable.
(b) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is cyclically weakly amenable.
(c) $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is point amenable.
(d) $M(G_i, \omega_i)$ is weakly amenable and G_i is discrete, for $i = 1, 2$.

Proof. Let $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ be point amenable. Since $M(G_i, \omega_i)$ is unital, for $i = 1, 2$, from Proposition 2.1 we infer that then $M(G_1 \times G_2, \omega_1 \otimes \omega_2)$ is point amenable. By Theorem 2.4, $G_1 \times G_2$ is discrete. It follows that G_i is discrete, for $i = 1, 2$. Hence $M(G_i, \omega_i) = \ell^1(G_i, \omega_i)$ and so

$$\ell^1(G_1, \omega_1) \hat{\otimes} \ell^1(G_1, \omega_1) = M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$$

is weakly amenable. In view of Corollary 4.8 in [18], $\ell^1(G_i, \omega_i)$ is weakly amenable. So (c) implies (d).

Let $M(G_i, \omega_i)$ is weakly amenable and G_i is discrete, for $i = 1, 2$. By Corollary 2.5, $M(G_i, \omega_i)$ is point amenable, for $i = 1, 2$. It follows from Theorem 4.1 in [20] and Proposition 2.1 that

$$M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2) = M(G_1 \times G_2, \omega_1 \otimes \omega_2)$$

is point amenable. Again, apply Corollary 2.5 to conclude that $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable. That is, (d) implies (a). □

As a consequence of Corollary 2.8, we give the next result.

Corollary 2.9 Let ω_i be a weight function on a locally compact discrete group G_i, for $i = 1, 2$. Then the following assertions are equivalent.

(a) $\ell^1(G_1, \omega_1) \hat{\otimes} \ell^1(G_2, \omega_2)$ is weakly amenable.
(b) $\ell^1(G_1, \omega_1) \hat{\otimes} \ell^1(G_2, \omega_2)$ is cyclically weakly amenable.
(c) $\ell^1(G_1, \omega_1) \hat{\otimes} \ell^1(G_2, \omega_2)$ is point amenable.
(d) $\ell^1(G_i, \omega_i)$ is weakly amenable and G_i is discrete, for $i = 1, 2$.

We say that $T \in M(G, \omega)^*$ vanishes at infinity if for every $\varepsilon > 0$, there exists a compact subset K of G, for which $|\langle T, \mu \rangle| < \varepsilon$, where $\mu \in M(G, \omega)$ with $|\mu|(K) = 0$ and $\|\mu\|_\omega = 1$. We denote by $M_s(G, \omega)$ the subspace of $M(G, \omega)^*$ consisting of all functionals that vanish at infinity. In the case where, $\omega(x) = 1$ for all $x \in G$, we write $M_s(G, \omega) := M_s(G)$.

The space $M_s(G, \omega)$ is a norm closed subspace of $M(G, \omega)^*$. It is proved that $M_s(G, \omega)^*$ with the first Arens product is a Banach algebra [16]. For each $f \in L^1(G, \omega)$, we may consider f as a linear functional in $M_s(G, \omega)^*$. One can prove that $L^1(G, \omega)$ is a closed ideal in $M_s(G, \omega)^*$ and $M_s(G, \omega)^* = L^1(G, \omega)$ if and only if G is discrete [16]; see [15] for the case $\omega = 1$.

Corollary 2.10 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $M_s(G, \omega)^*$ is weakly amenable.

(b) $M_s(G, \omega)^*$ is cyclically weakly amenable.

(c) $M_s(G, \omega)^*$ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in $L^\infty(G, 1/\omega)$ is unbounded.

Proof. Let $M_s(G, \omega)^*$ be point amenable. Since $M(G, \omega)$ is a direct summand of $M_s(G, \omega)^*$, by Theorem 3.7 in [20], $M(G, \omega)$ is point amenable. Hence G is discrete and every non-inner quasi-additive function in $L^\infty(G, 1/\omega)$ is unbounded. Thus (c) implies (d). It is easy to see that if G discrete, then

$$M_s(G, \omega)^* = L^1(G, \omega)^* = M(G, \omega).$$

It follows that (d) implies (a). \qed

Let $L^\infty(G, 1/\omega)$ be the space of all Borel measurable functions f on G with $f/\omega \in L^\infty(G)$, the Lebesgue space of bounded Borel measurable functions on G. Let also $L^\infty_0(G, 1/\omega)$ denote the subspace of $L^\infty(G, 1/\omega)$ consisting of all functions $f \in L^\infty(G, 1/\omega)$ that vanish at infinity. It is proved that $L^\infty_0(G, 1/\omega)$ is left introverted in $L^\infty(G, 1/\omega)$.

So $L^\infty_0(G, 1/\omega)^*$ is a Banach algebra with the first Arens product [10]; see also [4, 11, 12, 21].

Corollary 2.11 Let G be a locally compact group. Then the following assertions are equivalent.

(a) $L^\infty_0(G, 1/\omega)^*$ is weakly amenable.

(b) $L^\infty_0(G, 1/\omega)^*$ is cyclically weakly amenable.

(c) $L^\infty_0(G, 1/\omega)^*$ is point amenable.

(d) G is discrete and every non-inner quasi-additive function in $L^\infty(G, 1/\omega)$ is unbounded.
Corollary 2.12 Let ω_i be a weight function on a locally compact group G_i, for $i = 1, 2$. Then the following assertions are equivalent.

(a) $M_*(G_1, \omega_1)^*$ and $M_*(G_2, \omega_2)^*$ are weakly amenable.
(b) $L_0^\infty(G, 1/\omega)^*$ and $L_0^\infty(G, 1/\omega)^*$ are weakly amenable.
(c) $M_*(G_1, \omega_1)^* \hat{\otimes} M_*(G_2, \omega_2)^*$ is weakly amenable and G_i is discrete, for $i = 1, 2$.
(d) $L_0^\infty(G, 1/\omega)^* \hat{\otimes} L_0^\infty(G, 1/\omega)^*$ is weakly amenable and G_i is discrete, for $i = 1, 2$.

Proof. Assume that $M_*(G_1, \omega_1)^*$ and $M_*(G_2, \omega_2)^*$ are weakly amenable. By Corollary 2.10, G_i is discrete and $M(G_i, \omega_i) = M_*(G_i, \omega_i)^*$ is weakly amenable, for $i = 1, 2$. It follows from Corollary 2.8 that

$$M_*(G_1, \omega_1)^* \hat{\otimes} M_*(G_2, \omega_2)^* = M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$$

is weakly amenable. So (a) implies (c).

Let $M_*(G_1, \omega_1)^* \hat{\otimes} M_*(G_2, \omega_2)^*$ be weakly amenable and G_i is discrete, for $i = 1, 2$. This implies that $M(G_1, \omega_1) \hat{\otimes} M(G_2, \omega_2)$ is weakly amenable. Thus $M_*(G_i, \omega_i)^* = M(G_i, \omega_i)$ is weakly amenable. Hence (c) implies (a). Similarly, (b) and (d) are equivalent. □

Let $LUC(G, 1/\omega)$ be the space of all continuous function f on G such that f/ω is a left uniformly continuous functions on G; for study of this space see [27]. Let $WAP(\mathfrak{a})$ be the space of all weakly almost periodic functionals on Banach algebra \mathfrak{a}, that is, $f \in \mathfrak{a}^*$ such that the map $a \mapsto af$ from \mathfrak{a} into \mathfrak{a}^* is weakly compact, where $\langle af, b \rangle = \langle f, ba \rangle$ for all $b \in \mathfrak{a}$.

Corollary 2.13 Let $WAP(L^1(G, \omega))^*$ or $LUC(G, \omega)^*$ be 0-point amenable. Then G is discrete.

Let \mathfrak{a} be one of the Banach algebras $M(G, \omega), M_*(G, \omega)^*, L_0^\infty(G, 1/\omega)^*, WAP(L^1(G, \omega))^*$ or $LUC(G, \omega)^*$.

Proposition 2.14 Let G be a locally compact group. If \mathfrak{a} is cyclically amenable, then every element of $CD(G, \omega)$ is inner.

Proof. Let $M(G, \omega)$ be cyclically amenable. Since $L^1(G, \omega)$ is a direct summand of $M(G, \omega)$, by Theorem 3.7 in [20], the Banach algebra $L^1(G, \omega)$ is cyclically amenable. It follows from Theorem 5.6 in [18] that every element of $CD(G, \omega)$ is inner. For the other cases, we only need to recall that

$$\mathfrak{a} = M(G, \omega) \oplus \mathfrak{B}$$

for some closed subspace \mathfrak{B} of \mathfrak{a}. □
3 The second dual of Banach algebras

The main result of this section is the following which solves an open problem posed in [9].

Theorem 3.1 Let G be a locally compact group. Then the following assertion are equivalent.

(a) $L^1(G, \omega)^{**}$ is weakly amenable.
(b) $L^1(G, \omega)^{**}$ is cyclically weakly amenable.
(c) $L^1(G, \omega)^{**}$ is point amenable.
(d) G is finite.

Proof. Let $\iota: L^1(G, \omega) \rightarrow L^1(G)$ be the inclusion map. Since $L^1(G, \omega)$ is dense in $L^1(G)$, ι is a continuous homomorphism with dense range. So $\iota^{**}: L^1(G, \omega)^{**} \rightarrow L^1(G)^{**}$ is epimorphism. Hence if $L^1(G, \omega)^{**}$ is point amenable, then by Theorem 2.1 in [20] the Banach algebra $L^1(G)^{**}$ is point amenable. It follows that every continuous point derivation of $L^1(G)^{**}$ at the discrete augmentation character is zero. From Theorem 11.17 in [5] infer that G is finite. So (c)\Rightarrow(d). The implications (a)\Rightarrow(b)\Rightarrow(c) follows from Theorem 4.1 in [19].

Corollary 3.2 Let G be a locally compact group. Then the following assertion are equivalent.

(a) $M(G, \omega)^{**}$ is weakly amenable.
(b) $M(G, \omega)^{**}$ is cyclic amenable.
(c) $M(G, \omega)^{**}$ is point amenable.
(d) G is finite.

Proof. Let $M(G, \omega)^{**}$ is point amenable. By Proposition 5.2 in [20], the Banach algebra $M(G, \omega)$ is point amenable. In view of Corollary 2.5, G is discrete. Hence $L^1(G, \omega)^{**}$ is weakly amenable. Now, apply Theorem 3.1.

Let us recall that if there exists a compact invariant neighborhood of e in G, then G is called an $[IN]$-group. The following result is an improvement of Theorem 3.4 in [9].

Theorem 3.3 Let G be a connected locally compact group. If either G_d is amenable or G is an $[IN]$-group, then the following assertions are equivalent.

(a) $L^1(G, \omega)^{**}$ is weakly amenable.
(b) $M(G, \omega)$ is weakly amenable.
(c) $G = \{e\}$.
Proof. Let $L^1(G,\omega)^{**}$ be weakly amenable. Since
\[L^1(G,\omega)^{**} = M(G,\omega) \oplus C_0(G,\omega)^\perp \]
and $C_0(G,\omega)^\perp$ is an ideal in $L^1(G,\omega)^{**}$, we have $M(G,\omega)$ is weakly amenable. So (a) \Rightarrow (b). Let’s show that (b) \Rightarrow (c). To this end, let $M(G,\omega)$ be weakly amenable. It follows from Theorem 2.4 that G discrete and $M(G)$ is weakly amenable. If G_d is amenable, then from Theorem 3.3 in [9] we infer that $G = \{e\}$. If G is an $[IN]$—group, then by Theorem 3.4 in [9], G is compact. Since G is also discrete, it follows that G is finite. Hence G_d is amenable. Thus $G = \{e\}$. So (b) \Rightarrow (c). The implication (c) \Rightarrow (a) is clear. □

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, Berlin/Heidelberg/New York, 1973.

[2] G. Brown and W. Moran, Point derivations on $M(G)$, Bull. London Math. Soc., 8 (1) (1976) 57–64.

[3] H. G. Dales, F. Ghahramani and A. Y. A. Helemskii, The amenability of measure algebras, J. London Math. Soc., (2) 66 (2002) 213–226.

[4] H. G. Dales and A. T. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (836) (2005).

[5] H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc., 205 (966) (2010).

[6] B. Forrest, Weak amenability and the second dual of the Fourier algebra, Proc. Amer. Math. Soc., 125 (8) (1997) 2373–2378.

[7] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., 124 (5) (1996) 1489–1497.

[8] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23 (3) (1991) 281–284.

[9] A. T. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal., 145 (1) (1997) 175–204.

[10] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc., 41 (1990) 445–460.

[11] S. Maghsoudi, M. J. Mehdipour and R. Nasr-Isfahani, Compact right multipliers on a Banach algebra related to locally compact semigroups, Semigroup Forum, 83 (2011), no. 2, 205213.

[12] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, Strong Arens irregularity of Beurling algebras with a locally convex topology, Arch. Math., 86 (5) (2006) 437–448.

[13] S. Maghsoudi and A. Rejali, Unbounded weighted Radon measures and dual of certain function spaces with strict topology, Bull. Malays. Math. Sci. Soc., 36 (1) (2013) 211–219.
WEAK AMENABILITY OF WEIGHTED MEASURE ALGEBRAS

[14] S. Maghsoudi and A. Rejali, On the dual of certain locally convex function spaces, Bull. Iranian Math. Soc., 41 (4) (2015) 1003–1017.

[15] D. Malekzadeh Varnosfaderani, Derivations, Multipliers and Topological Centers of Certain Banach Algebras Related to Locally Compact Groups, Thesis (Ph.D.)University of Manitoba, 2017.

[16] M. J. Mehdipour and GH. R. Moghimi, The existence of non-zero compact right multipliers and Arens regularity of weighted Banach algebras, preprint.

[17] M. J. Mehdipour and A. Rejali, Regularity and amenability of weighted Banach algebras and their second dual on locally compact groups, arXiv:2112.13286v1.

[18] M. J. Mehdipour and A. Rejali, Weak amenability of weighted group algebras, arXiv:2209.08346.

[19] M. J. Mehdipour and A. Rejali, Different types of weak amenability for Banach algebras, arXiv:2209.13580.

[20] M. J. Mehdipour and A. Rejali, Cohomological properties of different types of weak amenability, arXiv:4532770.

[21] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Math. Society Monographs, 22, Clarendon Press, Oxford, 2000.

[22] A. Rejali, The analogue of weighted group algebra for semitopological semigroups, J. Sci. Islam. Repub. Iran, 6 (2) (1995) 113–120.

[23] A. Rejali, Weighted function spaces on topological groups, Bull. Iranian Math. Soc., 22 (2) (1996) 43–63.

[24] A. Rejali and H. R. Vishki, Weighted convolution measure algebras characterized by convolution algebras, J. Sci. Islam. Repub. Iran, 19 (2) (2008) 169–173.

[25] Y. A. Sreider, The structure of maximal ideals in rings of measures with convolution. (Russian) Mat. Sbornik N.S., 27 (69), (1950) 297–318, English translations 1953 in :Amer. Math. Soc. Transl., 81, 365–391.

[26] R. Stokke, On Beurling measure algebras, arXiv:2107.14694v1.

[27] Z. Zaffar Jafar Zadeh, Isomorphisms of Banach Algebras Associated with Locally Compact Groups, Thesis (Ph.D.)University of Manitoba, 2015.

Mohammad Javad Mehdipour
Department of Mathematics,
Shiraz University of Technology,
Shiraz 71555-313, Iran
e-mail: mehdipour@.ac.ir

Ali Rejali
Department of Pure Mathematics,
Faculty of Mathematics and Statistics,
University of Isfahan,
Isfahan 81746-73441, Iran
e-mail: rejali@sci.ui.ac.ir