Determination of the Bearing Capacity of Piles Using the Cone Penetration Test

E N Yabbarova¹, A I Latypov¹ and E A Korolev¹

¹Institute of Geology and Petroleum technologies, Kazan (Volga Region) Federal University, Kazan, Russia, Kremlevskaya str. 4/5, 420008

E-mail: yabbarova.en@mail.ru, airatlat@mail.ru, edik.korolev@gmail.com

Abstract. The article is devoted to the problem of discrepancy between the data of bearing capacity of piles, determined by the data of cone penetration tests (CPT) and static tests. An example of this discrepancy is shown for one of the construction sites of the Kazan city. The reason of discrepancy for the investigated area is revealed and the method of solving the problem by creating a new correlation table for alluvial Sands, which are often the basis of piles in the city of Kazan, is proposed.

1. Introduction

Modern construction involves the use of complex structural solutions of buildings and structures. If the geological conditions are not quite favorable, the most reliable option is to use a pile Foundation.

Since the cost of pile foundations is usually much higher than the cost of shallow foundations, it is important to determine the accuracy of the bearing capacity of the piles in specific geological conditions.

Among the field methods of soil testing in natural conditions, CPT occupies one of the leaders, as it allows exploring the soil massif to a greater depth at a relatively small material cost compared to other field methods. For example, full-scale static load tests [1].

Limit of application of CPT for the calculation of the bearing capacity of piles is due to a significant discrepancy between the calculation data and the real strength values. This is because when processing the data of CPT uses a table (SP 24.13330) constructed on the basis of correlations for the soils of the entire territory of Russia.

In practice, such a mismatch leads to improper selection of piles and, as a result, to large material costs. On the territory of Kazan city, there are hundreds of cases when the design organization recommended the use of piles of a certain length, which then on the construction site could not be driven to the required depth because of their underestimated bearing capacity.

The main purpose of this study is to find the cause of the discrepancy between the bearing capacity of the piles, determined by CPT data and the real strength of the pile Foundation on the example of one of the construction sites in the city of Kazan. We also propose a way to solve this problem by creating regional correlation tables.

2. Review

The method of calculating the bearing capacity of the piles in the domestic practice is given in the current SP 24.13330.2011 "Pile foundations" [2] and is to determine the private value of the limit
resistance of the driving pile \(F_u \) cross-sectional area \(A \) (bearing area of the pile is taken over cross-sectional gross or the largest diameter) and the perimeter \(U \) (outer perimeter of the cross-section of the pile) at the sensing point as the sum of the resistance on the frontal surface \(R_s \) and the resistance to friction on the side surface of the pile \(f_i \) (unit shaft resistance):

\[
F_u = R_s A + f_i U
\]

(1)

where \(h \) is the depth of pile immersion from the ground surface, m.

The relevance of the method of CPT in Russia is confirmed by a large number of studies in this area [3-13].

Talking about foreign experience, in this case, the calculation of the bearing capacity of piles according to CPT data is performed by two approaches – direct and indirect [7]. In the indirect approach, first, the strength characteristics of the soil are determined from the sensing data, and then they are used to calculate the bearing capacity of the pile. The direct approach involves the calculation of the resistance of the soil under the tip of the probe \(q_b \) and ground resistance aside surface of the friction clutch of the probe \(f_i \) using the parameters of CPT.

The most common methods of calculation include:

1. methods in which only \(q_{eq} \) values are used to calculate \(q_b \) and \(f_i \):
 - method Bustamante and Gianessi (LCPC, Laboratoire Central des Chaussees Pontset method) [14]. Resistance under the lower end of the pile \(q_b \) (the unit toe resistance) is defined as the product of the coefficient of bearing capacity, depending on the type of soil and method of the device of the pile, \(k_b \) (coefficient as governed by the magnitude of the cone resistance, type of soil, and type of pile) to the average value of drag, \(q_{eq} \) (average cone resistance):

\[
q_b = k_b \times q_{eq}
\]

(2)

The lateral resistance \(f_i \) is defined as the quotient of the average resistivity of the soil by the friction coupling of the probe (unit sleeve friction resistance), \(q_{eq} \) by a coefficient depending on the type of soil, the type of pile and the method of pile arrangement \(k_s \) coefficient as governed by magnitude of the cone resistance, type of soil, and type of pile:

\[
f_i = q_{eq} / k_s
\]

(3)

 - Aoki and De Alencar method [15]. Determination of resistance \(q_b \) is the division of the average value of the resistivity of the soil around the tip of the pile \(q_{ca} \) (the unit toe resistance) by a factor that takes into account the type of pile \(F_b \) (coefficient of type pile):

\[
q_b = q_{ca} / F_b \leq 15 \text{ MPa}
\]

(4)

Determination of the resistance on the lateral surface of the pile unit shaft resistance \(f_i \) is to divide the works of the average values of the resistivity of the soil around pile toe \(q_{ca} \) the unit toe resistance and the coefficient that takes into account the kind of soil as coefficient of type of soil on the coefficient that takes into account the type of piles \(F_c \) coefficient of type of pile:

\[
f_i = q_c \times \alpha_s / F_z \leq 120 \text{ kPa}
\]

(5)

2. methods in which \(q_c \) and \(f_s \) are used for calculation:
 - Schmertmann and Nottingham method [16, 17]. Determination of the resistance of the soil under the lower end piles, \(r_t \) (unit toe resistance) is the product of the coefficient of compaction of the soil, (dimensionless coefficient; a function of pile type, ranging from 0.8% through 1.8%) and the average resistivity of the soil in the influence zone, \(q_{ca} \) (average cone resistance is determined in an influence zone extending from 6b through 8b above the pile toe (b is the pile diameter) and 0.7b through 4b below):

\[
r_t = C \times q_{ca}
\]

(6)

Determination of the resistance of the soil on the lateral surface of the pile, \(r_s \) (unit shaft resistance) is the product of the dimensionless transition coefficient, \(K \) (dimensionless coefficient) on the resistivity of the soil along the friction sleeve of the probe, \(f_s \) (sleeve friction):

\[
r_s = K \times f_s
\]

(7)

 - method Tumay and Fakhro [18]. Cone resistance is determined by the method of Schmertmann and Nottingham [equation 6].
Determination of resistance on the side surface of the pile \(f_i \) (the unit shaft resistance) is the product of a dimensionless coefficient \(m \) (dimensionless coefficient) on the average value of the specific resistance of the soil on the friction coupling of the probe (sleeve friction) (for type II probe) \(f_{sa} \):

\[
f_i = m \times f_{sa}
\]

(8)

3. a method in which the data obtained by the piezocone testing (the piezocone) are used for calculations:

- **Eslami and Fellenius method** [19]. Determination of resistance under the pile toe, \(r_t \) (unit toe resistance) is the product of a correlation coefficient equal to 1 with the diameter or side of the pile less than 0.4 m, \(C_t \) (the correlation coefficient of 1 provided on the side of the pile is less than 0.4 m) on the average value of the "effective" resistance of the soil on the cone in the zone of influence, \(q_{et} \) (geometric average of the cone point resistance adjusted to effective stress):

\[
r_t = C_t \times q_{et}
\]

(9)

Determination of resistance on the side surface of the pile, \(r_s \) (unit shaft resistance) is to determine the product of the coefficient depending on the type of soil, \(C_s \) (shaft correlation coefficient, which is a function of soil type determined from the soil classification) and the average value of the effective drag \(q_{es} \) (geometric average of the cone point resistance adjusted to effective stress):

\[
r_s = C_s \times q_{es}
\]

(10)

4. a method in which the soil resistance under the tip of the qc probe and the parameters of the natural stress state of the soil massif (the total vertical stress from the soil's own weight \(\sigma_{vo} \), the effective vertical stress from the soil's own weight \(\sigma'_{vo} \)) are used for the calculation:

- **Almeida method** [20]. Determination of the resistance \(q_b \) is to determine the division of the difference between the \(q_c \) and the total vertical stress \(\sigma_{vo} \) on the coefficient depending on the type of pile and its material \(k_2 \):

\[
q_b = \frac{q_c - \sigma_{vo}}{k_2}
\]

(11)

Determination of the resistance on the lateral surface of the pile \(f_i \) lies in the definition of dividing the difference between the frontal resistance \(q_c \) and the vertical full voltage \(\sigma_{vo} \) reduction factor applied to piles \(k_1 \):

\[
 f_i = \frac{(q_c - \sigma_{vo})}{k_1}
\]

(12)

3. **Geological engineering aspects of the construction site**

Exploring site is located on the right Bank of the Kazanka River in Kazan city [figure 1]. In 2012, the Palace of water sports was built there. It is a complicated structure with dimensions of 187.5x74 m and a height of 25 m. Reinforced concrete piles with a cross section of 0.3x0.3 m length of 12 m was taken as foundations.

Geological structure of the site is characterized by Quaternary alluvial-deluvial deposits based on Neogene deposits [figure 2].

Geomorphologically, the research site is located within the I terrace of the Kazanka river.

The surface of building site is relatively flat, with a general slope of 2-3 degree in the South-West direction, characterized by absolute altitude from 56.9 m in the Northern part to 53.9 m in the South-West.

Based on CPT data, the length of the piles was taken to be 12 m, however during the construction piles managed to score at a depth from 6 to 9 m.

4. **Study procedure**

To obtain real values of the bearing capacity of the piles at the site, control tests of the piles by static load were carried out. The test points are shown in figure 1. The results of field trials are presented in the table 1 and 2.
Figure 1. Scheme of building elements and field work points.

Figure 2. Geological engineering section on the line I-I (The location of the section line is shown in Figure 1). 1- earth; 2a- very stiff clay; 3a-very stiff loam; 6a- fine sand; 7a- medium sand; N2a- neogene very stiff clay.

Table 1. Values of physical properties of the soils.

Engineering geological element	Soil type	Density, g/sm³	Void ratio, arb. units	Water content, arb. units	Liquidity index	
2v	firm clay	1.87	0.93	0.32	0.6	
3b	firm-stiff loam	1.97	0.71	0.24	0.4	
3v	soft-firm loam	1.9	0.86	0.3	0.6	
3g	very soft-firm loam	1.9	0.87	0.31	0.9	
6a	fine saturated sand	2.06	0.56	0.21		
7a	medium saturated sand	2.07	0.56	0.2		
№ pile	section (cm)	length (m)	ultimate resistance of pile of CPT F_d, kN	ultimate resistance of pile of static load test F_d, kN	divergence	soil under the lower end of the pile
--------	--------------	------------	---	--	------------	-------------------------------------
16	30x30	7.7	500	1200	2.2	saturated sand
21	30x30	8.68	1077	1330	1.4	
513	30x30	8.58	800	1500	2.3	
769	35x35	8.6	1200	1600	1.6	
2062	35x35	8.71	932	1100	1.25	
4739	35x35	7.3	1040	1480	1.7	

5. Conclusion

By authors it was analyzed the data of CPT of alluvial Quaternary Sands at the construction site of the Palace of water sports in Kazan city. The study showed that the average value of the limit resistance of the pile according to the results of CPT was 924.8 kN, and the average value of the limit resistance of the pile according tests by static load amounted to 1368.3 kN. That is, the discrepancy is on average 1.7 times.

The similar discrepancy was revealed for other ground areas of the Kazan city and the Republic of Tatarstan. Now the data of several thousand CPT points were analysed.

The analysis of obtained results shows that the main reason for the discrepancy is using of the recommended SP 24.13330 coefficients of transition from the probe resistance under the probe tip to the limit resistance of the soil under the lower end of the pile β. For example, according to SP 24.13330, β values for piles of the investigated site are in the range of 0.26-0.40. At the same time, to obtain real values of pile resistance, the specified range should be 0.43-0.60.

Table 3 is showing the values of coefficients β for driving piles according to SP 24.13330 and proposed by the authors for alluvial Quaternary Sands.

Average value of soil resistance q_s, kPa	Coefficient values β	According to SP 24.13330	Proposed by the authors
<1000	0.90	0.90	
2500	0.80	0.80	
5000	0.65	0.75	
7500	0.55	0.70	
10000	0.45	0.65	
15000	0.35	0.55	
20000	0.30	0.45	
>30000	0.20	0.35	

The most promising way to solve this discrepancy is the creation of private regional tables according to CPT for different types of soils, and in the future – territorial building standards for
Kazan and the Republic of Tatarstan, which will improve the accuracy of engineering-geological surveys and increase the economic profitability of construction.

References
[1] GOST 19912 2012 Soils Field test methods: cone penetration test and dynamic probing p 24
[2] SP 24.13330 2011 Pile Foundations (Moscow) p 85
[3] Boldyrev G G 2017 Guidance on the interpretation of cone penetration test and dynamic probing for geotechnical design (Moscow: Prondo) p 476
[4] Ryzhkov I B and Isaev O N 2010 Cone penetration testing of soils (Moscow: Publishing house of the association of building universities) p 496
[5] Golferd I Z 2013 Correlation between cone penetration soil test data using the devices of the first and the second types Int J Geotechnics 3 66–70
[6] Yershov A V and Nutrikhin V V 2011 Evaluation of the bearing capacities of cast-in-situ screw piles using cone penetration test data Engineering surveys 42–52
[7] Yershov A V 2011 Prospects of development of the methods of calculating pile bearing capacity using cone penetration test Int J. Geotechnics 1 60–75
[8] Strokova L A, Dmitrieva S A, Omskchina N V and Osmushkin A V 2019 Experience of engineering-geological zoning on bearing capacity of soils of the industrial site of Elga coal-preparation plant in Yakutia Bulletin of the TPU Geo Assets Engineering 330(2) 175–85
[9] Dranovskiy A N and Latypov A A 2010 To interpretation of results of static sounding of the soil bases News of the KSUAЕ 1(13) 162–9
[10] Ponomaryov A V Bezgodov M A and Bezgodov P A 2015 Comparison of methods for determination of the bearing capacity of driven piles using the cone penetration test in soft clay Bulletin of PNRPU Construction and Architecture 24–38
[11] Yabbarova E N and Latypov A I 2018 To the question of determining the physic-mechanical properties of soils on the territory of Kazan city by the cone penetration test Fundamental science and technology - promising developments XIX proc. 16th int. scientific practical conf. (North Charleston) USA 13–5
[12] Maskaleva V V 2014 Bearing capacity of pile by the theoretical method, by methods of static and dynamic sounding Construction of Unique Buildings and Structures 3 105–11
[13] Yabbarova E N and Latypov A I 2019 Construction of correlation dependencies between the data of cone penetration test of soils and indicators of their condition on the example of the Vakhitovsky district of the city of Kazan Proc. of theses of reports of the int. scientific practical conf. 17th Ural mining industry (Ekaterinburg: Ural State Mining University) 74–5
[14] Bustamante M and Giaeneselli L 1982 Pile bearing capacity predictions be means of static penetrometer CPT Proc. of the 2d Eur. Symp. On Penetration Testing Amsterdam 2 493–500
[15] Aoki N and De Alencar D 1975 An approximate method to estimate the bearing capacity of piles Proc. of the 5th Pan-American Conf. of Soil Mech. And Found. Eng. Buenos Airies 1 367–76
[16] Schmertmann J H 1978 Guidelines for cone penetration test, performance and design Report № FHWA-TS-78-209 to Department of Transportation Washington D C USA: Department of Transportation p 145
[17] Nottingham L C 1975 Use of quasi-static friction cone penetrometer data to estimate capacity of displacement piles Ph. D. thesis Gainesville USA: department of Civil Engineering of University of Florida p 553
[18] Tumay M T and Fakhroo M 1982 Friction pile capacity prediction in cohesive soils using electric quasi-static penetration tests Interim Research Report №1 to research and Development Section of Louisiana Department of Transporation and Development p 275
[19] Eslami A and Fellenius B H 1997 Pile capacity by direct CPT and CPTu methods applied to 102 case histories Canadian Geotechnical J. 34 886–904
[20] Almeida M Danziger F and Lunne T 1996 Use of piezocone test to the axial capacity of driven and jacked piles in clay Canadian geotechnical J. 33(1) 23–41