NUMBER OF POINTS OF
CERTAIN ARITIN–SCHREIER CURVES

JĘDRZEJ GARNEK

Abstract. We prove a conjecture of Johansen, Helleseth and Kholosha concerning equality of exponential sums related to the cross-correlation of \(m\)-sequences. In the proof we show that certain Artin–Schreier curves have the same number of points over finite fields. This has a consequence regarding the \(L\)-polynomials of these curves.

1. Introduction

For any positive integers \(k\) and \(m\) consider the following exponential sum:

\[
G^{(k)}_m := \sum_{x \in \mathbb{F}_2^m} (-1)^{\text{tr}_{\mathbb{F}_2^m/\mathbb{F}_2}(x^{2^k+1}+x^{-1})}.
\]

The following conjecture was stated in [1].

Conjecture 1.1. \(G^{(k)}_m = G^{\text{GCD}(k,m)}_m\).

As shown in the article [1], Conjecture 1.1 is equivalent to the following statement.

Conjecture 1.2. For any positive integer \(k\) consider the smooth projective curve \(E_k\) over \(\mathbb{F}_2\) with the function field given by the equation:

\[
y^2 + y = x^{2k+1} + x^{-1}.
\]

Then:

\[
\#E_k(\mathbb{F}_{2^m}) = \#E^{\text{GCD}(k,m)}(\mathbb{F}_{2^m}).
\]

The goal of this paper is to prove Conjecture 1.2. Actually, we prove a more general criterion.

Theorem 1.3. Let \(p\) be an arbitrary prime. For any \(a, b \in \mathbb{Z}\), \((a, b) \neq (0, 0)\) consider the smooth projective curve \(C_{a,b}\) over \(\mathbb{F}_p\) with the function field given by the equation:

\[
y^p - y = x^a + x^b.
\]

If the following conditions hold:

\[
2020 \text{ Mathematics Subject Classification. Primary 11G20, Secondary 11T06.}
\]
(1) \(\text{GCD}(a_1, p^m - 1) = \text{GCD}(a_2, p^m - 1) \),
(2) \(\text{GCD}(b_1, p^m - 1) = \text{GCD}(b_2, p^m - 1) \),
(3) \(a_1, a_2 > 0, b_1 \cdot b_2 > 0 \) and \(p \nmid a_1, a_2, b_1, b_2 \),
then
\[
\#C_{a_1, b_1}(\mathbb{F}_{p^m}) = \#C_{a_2, b_2}(\mathbb{F}_{p^m}).
\]

The main idea behind Theorem 1.3 is to use the equality \(x^{p^m-1} = 1 \) valid for all \(x \in \mathbb{F}_p^\times \).

Using a simple number-theoretic result we derive from Theorem 1.3 the following corollary.

Corollary 1.4. Conjecture 1.2 is true.

By [1, Theorem 21] one obtains immediately a corollary regarding the L-polynomials of the studied family.

Corollary 1.5. Denote by \(L_{E_k}(t) \in \mathbb{Z}[t] \) the L-polynomial of \(E_k \). Then:
\[
L_{E_k}(t) = q_1(t^{p^1}) \cdots \cdot q_r(t^{p^r}) \cdot L_{E_1}(t),
\]
where \(k = \prod_{i=1}^{r} p^{\alpha_i} \) is the decomposition into prime powers and \(q_1, \ldots, q_r \in \mathbb{Z}[t] \) are certain polynomials.

Our method applies also to the family considered in the articles [3] and [5].

Corollary 1.6. Let \(p \) be an arbitrary prime. For any positive integer \(k \) consider the smooth projective curve \(C_k \) over \(\mathbb{F}_p \) with the function field given by the equation:
\[
y^p - y = x^{p^k+1} + x.
\]
Then for any \(k, m \in \mathbb{Z}_+ \):
\[
\#C_k(\mathbb{F}_{p^m}) = \#C_{\text{GCD}(k, m)}(\mathbb{F}_{p^m}).
\]

Outline of the paper. We prove Theorem 1.3 in Section 2. Section 3 contains the proofs of Corollaries 1.4 and 1.6.

Acknowledgements. The author wishes to thank Wojciech Gajda for many helpful conversations. The author also thanks Bartosz Naskręki for valuable comments regarding the first version of the manuscript.

2. **Proof of Theorem 1.3**

In this section we prove Theorem 1.3. Before the proof we need the following simple lemma. We give its proof for a lack of reference.

Lemma 2.1. The congruence
\[
a \cdot z \equiv b \pmod{n}
\]
has a solution \(z \in (\mathbb{Z}/n)^\times \) if and only if \(\text{GCD}(a, n) = \text{GCD}(b, n) \).
Proof. If the congruence (2.1) has a solution \(z \in \mathbb{Z}/n^\times \) then it is clear that \(\gcd(a, n) \mid b \) and \(\gcd(b, n) \mid a \). This easily implies that \(\gcd(a, n) = \gcd(b, n) \).

Assume now that \(\gcd(a, n) = \gcd(b, n) =: D \) and define the integers \(a', b', n' \) by the equations:

\[
a = D \cdot a', \quad b = D \cdot b', \quad n = D \cdot n'.
\]

Note that by assumption \(\gcd(a', n') = \gcd(b', n') = 1 \). Thus the congruence \(a' \cdot z \equiv b' \pmod{n'} \) has a solution \(z_0 \). One easily checks that \(\gcd(z_0, n') = 1 \). Using Chinese Remainder Theorem we may choose \(t \in \mathbb{Z} \) such that for every \(p \mid n \):

\[
t \equiv \begin{cases}
1 \pmod{p}, & \text{if } p \mid z_0, \\
0 \pmod{p}, & \text{if } p \nmid z_0.
\end{cases}
\]

Then one may take \(z := z_0 + t \cdot n' \). Indeed, \(z \in \mathbb{Z}/n^\times \), since for every prime \(p \mid n \) one of the following cases holds:

- \(1^\circ \) \(p \mid z_0 \). Then \(p \nmid n' \) and thus \(z \equiv z_0 + n' \not\equiv 0 \pmod{p} \).
- \(2^\circ \) \(p \nmid z_0 \). Then \(z \equiv z_0 \not\equiv 0 \pmod{p} \).

It is immediate that \(z \) satisfies (2.1). \(\square \)

We prove now Theorem 1.3. Let \(X \) be an Artin–Schreier curve over \(\mathbb{F}_{p^m} \) with the function field given by the equation \(y^p - y = f(x) \). Consider the canonical \(\mathbb{Z}/p \)-cover \(\pi : X \to \mathbb{P}^1 \), \(\pi(x, y) = x \). Then for every \(P \in \mathbb{P}^1(\overline{\mathbb{F}_p}) \):

\[
\#\pi^{-1}(P) = \begin{cases}
p, & \text{if } P \text{ is not a pole of } f, \\
1, & \text{if } P \text{ is a pole of } f \text{ and } p \nmid v_P(f).
\end{cases}
\]

(see e.g. [6, sec. 2.2]). Moreover, if \(P \) is a pole of \(f \) and \(p \nmid v_P(f) \) then \(\pi^{-1}(P) \subset X(\mathbb{F}_{p^m}) \) by the ’efg theorem’ (cf. [7, Proposition 4.1.6]). Therefore the condition (3) of Theorem 1.3 assures that the curves \(C_{a_1,b_1}, C_{a_2,b_2} \) have the same number of points at infinity and both contain or both do not contain the point \((0,0)\). Hence we may count only points \((x,y)\) with \(x \in \mathbb{F}_{p^m}^\times \).

Note that for any \(x \in \mathbb{F}_{p^m}^\times \) one has \(x^{p^m-1} = 1 \). Therefore, if

\[
a_1 \equiv a_2 \pmod{p^m - 1}
\]

then \(x^{a_1} = x^{a_2} \) and

\[
\#C_{a_1,b}(\mathbb{F}_{p^m}) = \#C_{a_2,b}(\mathbb{F}_{p^m}). \quad (2.2)
\]
Observe that \((x, y) \mapsto (x, y + x^a)\) provides an isomorphism between \(\mathcal{C}_{p,a,b}\) and \(\mathcal{C}_{a,b}\). Thus:

\[(2.3) \quad \#\mathcal{C}_{a,b}(\mathbb{F}_{p^m}) = \#\mathcal{C}_{p,a,b}(\mathbb{F}_{p^m})\]

Assume finally that \(\gcd(a_1, p^m - 1) = \gcd(a_2, p^m - 1)\) and \(a_1 \cdot a_2 > 0\). Then by Lemma 2.1

\[a_1 \equiv a_2 \cdot z \pmod{p^m - 1}\]

for some \(z \in (\mathbb{Z}/(p^m - 1))^\times\). Note that \((\mathbb{Z}/(p^m - 1))^\times = \langle p \rangle\), since for \(0 < s < m\) one has \(p^m - 1 \nmid p^s - 1\). Hence

\[z \equiv p^t \pmod{p^m - 1}\]

for some \(t \in \mathbb{N}\). By (2.2) and (2.3) it follows that:

\[\#\mathcal{C}_{a_1,b}(\mathbb{F}_{p^m}) = \#\mathcal{C}_{a_2,b}(\mathbb{F}_{p^m}).\]

Similarly, if \(\gcd(b_1, n) = \gcd(b_2, n)\) and \(b_1 \cdot b_2 > 0\) then

\[\#\mathcal{C}_{a,b_1}(\mathbb{F}_{p^m}) = \#\mathcal{C}_{a,b_2}(\mathbb{F}_{p^m}).\]

This ends the proof of Theorem 1.3.

3. Proof of Corollaries 1.2 and 1.6

In this section we will denote \((a, b) := \gcd(a, b)\) for brevity.

Lemma 3.1. Let \(p\) be a prime and \(k, m \in \mathbb{N}\). Then:

\[(p^k + 1, p^m - 1) = \begin{cases}
\frac{p^{(2k,m)} - 1}{p^{(k,m)} - 1}, & \text{if } v_2(k) < v_2(m), \\
1, & \text{otherwise},
\end{cases}\]

where \(v_2(k)\) denotes the 2-adic valuation of \(k\).

Proof. Let \(\Phi_n\) denote the \(n\)-th cyclotomic polynomial. Recall that if \(d_1/d_2\) is not a power of a prime then the resultant of \(\Phi_{d_1}(x)\) and \(\Phi_{d_2}(x)\) is 1, see e.g. [2]. Therefore, for some \(A, B \in \mathbb{Z}[x]\):

\[A(x) \cdot \Phi_{d_1}(x) + B(x) \cdot \Phi_{d_2}(x) = 1,
\]

which implies that:

\[(3.1) \quad (\Phi_{d_1}(p), \Phi_{d_2}(p)) = 1.
\]
Therefore:

\[
(p^k + 1, p^m - 1) = \left(\frac{p^{2k} - 1}{p^k - 1}, p^m - 1 \right)
\]

\[
= \left(\prod_{d_1 | 2k} \Phi_{d_1}(p), \prod_{d_2 | m} \Phi_{d_2}(p) \right)
\]

\[
= \prod_{d | (2k, m), d | (k, m)} \Phi_d(p) \cdot \left(\prod_{d_1 | 2k} \Phi_{d_1}(p), \prod_{d_2 | m, d_2 | k} \Phi_{d_2}(p) \right)
\]

\[
= \frac{p^{(2k, m)} - 1}{p^{(k, m)} - 1} \cdot \left(\prod_{d_1 | 2k} \Phi_{d_1}(p), \prod_{d_2 | m, d_2 | k} \Phi_{d_2}(p) \right)
\]

\[
= \frac{p^{(2k, m)} - 1}{p^{(k, m)} - 1}.
\]

(the last equality is a consequence of (3.1)). The proof follows. \(\square\)

Let \(k, m \in \mathbb{N}, d := (k, m)\). Using Lemma 3.1 we can easily check that for curves \(E_k\) and \(E_d\) and the assumption of Theorem 1.3 is satisfied. Indeed, observe that \(v_2(d) = \min\{v_2(k), v_2(m)\}\) and therefore

\[v_2(d) < v_2(k)\] if and only if \(v_2(k) < v_2(m)\).

Hence:

\[
(p^k + 1, p^m - 1) = \begin{cases}
 p^d + 1, & \text{if } v_2(k) < v_2(m) \\
 1, & \text{otherwise}
\end{cases}
\]

\[
= \begin{cases}
 p^d + 1, & \text{if } v_2(d) < v_2(m) \\
 1, & \text{otherwise}
\end{cases}
\]

\[
= (p^d + 1, p^m - 1).
\]

This proves Corollaries 1.4 and 1.6.

References

[1] O. Ahmadi, G. McGuire, and A. Rojas-León. Decomposing Jacobians of curves over finite fields in the absence of algebraic structure. J. Number Theory, 156:414–431, 2015.

[2] T. M. Apostol. Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc., 24:457–462, 1970.

[3] I. Blanco-Chacón, R. Chapman, S. Fordham, and G. McGuire. Divisibility of L-polynomials for a family of curves. In Contemporary developments in finite fields and applications, pages 1–10. World Sci. Publ., Hackensack, NJ, 2016.
[4] A. Johansen, T. Helleseth, and A. Kholosha. Further results on m-sequences with five-valued cross correlation. *IEEE Trans. Inform. Theory*, 55(12):5792–5802, 2009.

[5] G. McGuire and E. S. Yılmaz. Divisibility of L-polynomials for a family of Artin-Schreier curves. *J. Pure Appl. Algebra*, 223(8):3341–3358, 2019.

[6] R. Pries and H. J. Zhu. The p-rank stratification of Artin-Schreier curves. *Ann. Inst. Fourier (Grenoble)*, 62(2):707–726, 2012.

[7] T. Szamuely. *Galois groups and fundamental groups*, volume 117 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2009.

Address

Adam Mickiewicz University, Faculty of Mathematics and Computer Science, ul. Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland

Email address: jgarnek@amu.edu.pl