Using of B-dot probe for z-pinch plasma diagnostics

A G Rousskikh¹, A S Zhigalin¹, V I Oreshkin¹² and R B Baksh³

¹Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., Tomsk, 634035, Russia
²National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 Russia
³Tel Aviv University, Tel Aviv 69978, Israel

E-mail: Zhigalin@ovpe2.hcei.tsc.ru

Abstract. We present experiments performed on the IMRI-5 generator (450 kA, 450 ns) with a metallic gas-puff Z-pinch with a power-law density profile. The experiments were carried out in a preembedded axial magnetic field B_z that was varied from 0 to 0.6 T. To determine the initial pinch radius r_0, we used the function $r(t)$ that was found from the time dependence of the pinch inductance $L(t)$. The time-dependent inductance $L(t)$, in turn, was determined as a function of load voltage $V_{\text{load}}(t)$ and pinch current $I(t)$. The function $r(t)$ was verified by a B-dot probe diagnostics. Measurements showed that for the “first shot” the initial radius of the metallic gas-puff Z-pinch decreased from 4 cm at $B_z=0$ to 2.1-1.7 cm at $B_z=0.15$ T. We believe that the decrease it r_0 is related to the field effect on the ion gyroradius.

1. Introduction

The studies of the interaction of a Z-pinch plasma with an axial magnetic field have a long history [1]. Interest in this problem has rekindled in connection with the Magnetized Liner Inertial Fusion (MagLIF) project (see [2] and references therein). Recent experiments on gas-puff Z-pinch implosions have demonstrated that an applied axial magnetic field B_z stabilizes substantially the pinch compression [3, 4]. However, it turned out that the field B_z not only produces a stabilizing effect on the pinch, but also reduces its compression velocity [4-7]. By the radius r_0 we imply a certain effective radius of a conductive layer whose inductance equals the inductance of an infinitely thin cylinder located coaxially inside a multi-post return conductor. Obviously, for the case of a weakly ionized material, this model representation of the dimensions of the conductive region may substantially different from the dimensions of an actual Z-pinch shell. However, for the conditions of significant conductivity, and, hence, a thin skin layer, this representation can be used to give a reasonably adequate description of the behavior of an imploding Z-pinch shell. To interpret the results of our experiment [12], we have estimated the conductivity of the material of a plasma jet having parameters close to those of the plasma jet produced in the experiment. According to our estimates, the initial conductivity of the conductive shell should be $\sigma=5\cdot10^3 \, \Omega^{-1} \cdot \text{m}^{-1}$. In view of the rise time of the IMRI-5 generator current, the initial thickness of the skin layer for our conditions should be 1.4 cm. This is the margin of error that should be considered in estimating the initial shell radius. The material conductivity increases during implosion, whereas the skin layer thickness accordingly decreases, thus making the model representation more correct.
In this paper, we performed the measuring the initial radius r_0 of an imploding Z-pinch with a pre-embedded axial magnetic field $B_{z0}=0-0.6$ T. For the goal we used two methods. In the experiment [5], metallic gas-puff Z pinches with a power-law density profile were produced using the IMRI-5 generator capable of generating current pulses of amplitude 450 kA with a 450-ns rise time. First, to estimate r_0, we used the time-varying inductance $L(t)$ determined as a function of load voltage $V_{\text{load}}(t)$ and pinch current $I(t)$. Secondly we used a B-dot probe diagnostics. We compare two methods in the paper.

2. Experimental arrangement

The experimental arrangement is shown in figure 1. Metallic gas-puff Z pinches were produced using a Bi (bismuth) plasma gun [5, 6]. The external magnetic field B_{z0} was created by a pair of solenoids spaced 1.5 cm apart, which were driven by a slow (about 500-μs rise time) capacitor. The field B_{z0} was varied by varying the time interval Δt between the onset of current passage through the solenoids and the onset of current passage through the pinch. Measurements were performed at $B_{z0}=0.15$ T ($\Delta t=47$ μs), 0.3 T (114 μs), 0.45 T (200 μs), and 0.6 T (360 μs).

The current flowing through the pinch, $I(t)$, and the voltage across the load, $V_{\text{load}}(t)$, were measured, respectively, with a Rogowski coil (RC) and a resistive voltage divider (VD). The position of the plasma boundary was sensed using five B-dot probes. One probe, \hat{B}_{150}, was built in a reverse current post at a distance of 150 mm from the pinch axis. Previously we have shown that the radius corresponding to the initial position of the pinch boundary at $B_{z0}=0$ is not greater than 3–5 cm. Therefore, it could be expected that probe \hat{B}_{150} would always be outside the pinch boundary. The other three probes, \hat{B}_{15}, \hat{B}_{29}, and \hat{B}_{36} were placed in the holes drilled in the stainless steel anode at $r_{\text{Bdot}}=15$, 29, and 36 mm away from the axis, respectively (see figure 1). For each of the probes, the distance from the loop center to the anode plane was about 3 mm. To visualize an imploding Z pinch, we performed time-gated imaging of the visible pinch radiation. A 4-frame HSFC Pro camera was used to take successive images (3 ns) in a single shot.

![Figure 1. Experimental arrangement. The IMRI-5 generator current is switched, via the Bi plasma jet, to a stainless-steel grid cathode. The B-dot probes, \hat{B}_{15}, \hat{B}_{29}, and \hat{B}_{36} are 15, 29, 36, and 150 mm away from the axis. RC denotes a Rogowski coil and VD a resistive voltage divider.](image)

3. Experimental results

It was shown [1, 7-9] that the time-depending inductance $L_{\text{load}}(t)$ can be found from the $V_{\text{load}}(t)$ and $I(t)$ waveforms as

$$L_{\text{load}}(t) = \frac{\epsilon^2}{2I(t)} \int_0^t V_{\text{load}}(t') dt'.$$

(1)
In turn, $L_{\text{load}}(t)$ is related with the current sheath radius $r_{\text{ind}}(t)$ as

$$L_{\text{load}}(t) = L_d + 2l_{\text{pinch}} \ln \frac{r_{\text{rcp}}}{r_{\text{ind}}(t)} \ (\text{nH}) \tag{2}$$

where l_{pinch} is the pinch length, r_{rcp} is the radius of location of the return current posts, and L_d is the self-inductance of the diode in which the pinch is formed. In our experiment, L_d corresponds to the inductance of the coaxial line section between the voltage divider and the plane of the HV electrode grid, $L_d=8 \ \text{nH}$. According to (2), the inductive pinch radius $r_{\text{ind}}(t)$ can be estimated as

$$r_{\text{ind}}(t) = A \cdot \exp \left(-\frac{L(t)-L_0}{2l_{\text{pinch}}} \right) \tag{3}$$

Figure 2 presents plots of $L_{\text{load}}(t)$ and $r_{\text{ind}}(t)$ for a Bi gas-puff Z pinch imploded at $B_{z0}=0$. Formally, the calculation of $L_{\text{load}}(t)$ can be started from the time of voltage application to the diode. According to relations (1) and (2), at times $t<70 \ \text{ns}$, the load inductance $L_{\text{load}}(t)$ should be either equal to or somewhat greater than the diode inductance L_d. However, as can be seen from the respective plot in figure 2, $L_{\text{load}}(t)$ is lower than L_d up to $t=60-70 \ \text{ns}$. As the value of $L_{\text{load}}(t)$ is underestimated, the value of r_{ind} cannot be considered reliable up to $t=70 \ \text{ns}$. In light of the above we assumed that $r_0=r_{\text{ind}}(t)$ at $t=70-80 \ \text{ns}$. Note that a similar approach to estimating r_{ind} was used in [1, 10].

The values of r_0 were measured at B_{z0} equal to 0.15, 0.3, 0.45 and 0.6 T. When performing the experiment, we took into account that the gas-puff pinch dynamics is sensitive to the material desorbed from the electrodes [5]. For each field value, four shots were made and the evacuation of the vacuum chamber was stopped and the pressure in the chamber increased to atmospheric pressure. Thus, for each value of the field, the “first” shot was made with the electrodes exposed to the atmosphere. The measurement results for r_0 are presented in figure 3: blue asterisks refer to the value of r_0 in the “first” shot and red asterisks to its values in the subsequent shots. It turned out that for most of the “first” shots, r_0 was significantly greater than that for the subsequent shots. However, the behavior of the initial radius was the same for the “first” shot and for the subsequent shots: at $B_{z0}=0.15 \ \text{T}$, r_0 almost halved, and as the field was increased, its value remained almost equal to r_0 at $B_{z0}=0$.

The position of the outer boundary of the current sheath was determined by the method using a set of B-dot probes that is described in detail in [7]. Analysis has shown that as the current sheath passed by a probe, the dB/dt signal of the probe had a bell-shaped waveform and the time t_{peak} at which dB/dt was a maximum coincided with the time of passage of the sheath boundary by the probe. Figure 4 presents the waveforms of $V(t)=dB/dt$ obtained for the “first” shots at different values of B_{z0}. It can readily be seen that the signals sensed by the probes B_{29} and B_{36} at $B_{z0}=0.15 \ \text{T}$ (see figure 4b) look absolutely differently than that sensed by the same probes at $B_{z0}=0$ (see figure 4a). The signal $V(t)$ for B_{36} in figure 4b coincides in waveform with the signal $V(t)$ sensed by the probe B_{150}. The signal $V(t)$
for B_{29}, having executed several oscillations, starting from $t=100-150$ ns approaches in waveform the signal $V(t)$ sensed by the probe B_{150}. At the same time, the amplitude of the signal of the probe B_{15} starts increasing only after the 100th ns and has a pronounced maximum at $t=175$ ns. Consequently, it can be assumed that at $B_{z0}=0.15$ T the initial plasma boundary radius r_0 was between 29 and 15 mm, which is close to $r_0=2$ cm given for this mode in figure 3 (blue asterisk for $B_{z0}=0.15$ T).

Figure 3. Initial pinch radius versus axial magnetic field: blue asterisks refer to the value of r_0 in the “first” shot and red asterisks to its values in the subsequent shots.

Figure 4. B-dot probe signals for the “first” shots. One probe, B_{150}, was built in a reverse current post at a distance of 150 mm from the pinch axis. The other three probes, B_{15}, B_{29}, and B_{36}, were placed in the holes drilled in the stainless steel anode at $r_{Bdot}=15$, 29, and 36 mm away from the axis, respectively.

We estimated r_0 for the “first” shots using the relation

$$r_0 = r_{Bdot} + v(t_{peak} - \Delta t),$$

(4)

where r_{Bdot} is the B-dot position, v is the compression velocity of the Z-pinch, and $\Delta t=70$ ns is the time period during which the current sheath was formed. The values of v were taken from [6]. The estimates obtained with the use of (4) are presented in table 1.
Table 1. The measured specific deposited energy averaged over seven shots. As discussed above, energy is deposited in a foil during the initial resistive heating stage.

B_{z0}, T	r_{lidot}, cm	$v \times 10^7$, cm/s	t_{peak}, ns	r_0, cm
0	3.6	1.45	145	4.6
0.15	1.5	1	180	2.6
0.3	2.9	0.75	175	3.7
0.45	3.6	0.6	227	4.5

The values of r_0 given in table 1 are somewhat greater than that obtained by determination of the pinch radius as a function of the time-varying pinch inductance $L(t)$ (see figure 3). Nevertheless, the trend is the same as in figure 3: at $B_{z0}=0.15$ T the radius r_0 nearly halves compared to that at $B_{z0}=0$.

4. Conclusion

Experimental results allow the following conclusion: The values of r_0 obtained with the use of B-dot probes agree with the results obtained by determining the pinch radius as a function of the time-varying pinch inductance $L(t)$.

Acknowledgments
This work is supported by the Russian Science Foundation (grant No. 16-19-10142), and scholarship of the President of the Russian Federation to young scientists and post-graduate students (Zhigalin A.S.; Contest SP-2016).

References
[1] Giuliani J L and Comisso R J 2015 IEEE Trans. Plasma Sci. 43 2385.
[2] Hansen S B, Gomez M R, Sefkow A B, Slutz S A, Sinars D B, Hahn K D, Harding E C, Knapp P F, Schmit P F, Awe T J, McBride R D, et al. 2015 Physics of Plasmas 22 056313.
[3] Gourdain P A, Concepcion R J, Evans M T, et al 2013 Nucl. Fusion 53, 083006.
[4] Mikitchuk D, Stollberg C, Doron R, Kroupp E, Maron Y, Strauss H R, Velikovich A L, and Giuliani J L 2014 IEEE Trans. Plasma Sci. 42 2330.
[5] Roussikhik A G, Zhigalin A S, Oreshkin V I, Frolova V, Velikovich A L, Yushkov G Yu, and Baksh R B 2016 Phys. Plasmas 23 063502.
[6] Mikitchuk D, Cvejic M, Doron R, Kroupp E, Maron Y, Giuliani J, and Velikovich A 2017 IEEE 21st Pulsed Power Conf., 18-22 June, Brighton, UK (in preparation for publication).
[7] Roussikhik A G, Zhigalin A S, Oreshkin V I, and Baksh R B 2017 Phys. Plasmas 24 063519.
[8] Murphy D P, Allen R J, Weber B V, Phipps D G, Comisso R, Apruzese P, and Mosher D 2008 Rev. Sci. Instrum. 79 10E306.
[9] Liangping W, Mo Li, Juanjuan H, Jiao W, Ning G, and Aici Q 2014 Phys. Plasmas 21 062706.
[10] Comisso R J, Apruzese J P, Mosher D, Murphy D P, Weber B V, Banister J W, Tailor B H, Levine J S, Qi N, Sze H M, Bixler A, Coleman P L, Jarema A, Kishine V, Lee S, Krishnan M, Thompson J, Wilson K, Coverdale C A, Deeney C 2007 IEEE 16th Pulsed Power Conf., 17-22 June, Albuquerque, NM, USA, pp. 1773–1779.
[11] Savage M, Bennett N, Gall B, Garcia M, Gardner S, Lake P, Molnar S, Olson R, Ormond G, Schmidt A, Sipe N, and Weber T 2017 IEEE 21st Pulsed Power Conf., 18-22 June, Brighton, UK (in preparation for publication).
[12] Roussikhik A G, Oreshkin V I, Zhigalin A S, and Yushkov G Yu, 2016 Phys. of Plasmas 23 113507.