THE RELATIVE HELLER OPERATOR AND RELATIVE COHOMOLOGY FOR THE KLEIN 4-GROUP.

JONATHAN ELMER

Abstract. Let G be the Klein Four-group and let \mathbb{k} be an arbitrary field of characteristic 2. A classification of indecomposable $\mathbb{k}G$-modules is known. We calculate the relative cohomology groups $H^i_{\chi}(G, N)$ for every indecomposable $\mathbb{k}G$-module N, where χ is the set of proper subgroups in G. This extends work of Pamuk and Yalcin to cohomology with non-trivial coefficients. We also show that all cup products in strictly positive degree in $H^*_{\chi}(G, \mathbb{k})$ are trivial.

1. Introduction

Let G be a finite group and \mathbb{k} a field of characteristic $p > 0$. If $p \not|| |G|$, then every representation of G over \mathbb{k} is projective. Thus, by decomposing the regular module $\mathbb{k}G$ we can obtain all isomorphism classes of $\mathbb{k}G$-modules immediately.

From now on assume $p|| |G|$. Then the above is no longer true. However, it is well-known that, given a $\mathbb{k}G$-module M, we can find a projective module P_0 and a surjective $\mathbb{k}G$-morphism

$$\pi_0 : P_0 \rightarrow M.$$

If we choose P_0 and π_0 so that P_0 has smallest possible dimension, then this pair is unique, and known as the projective cover of M. The kernel of π_0 is denoted $\Omega(M)$. This is known as the Heller shift of M. $\Omega(-)$ can be viewed as an operation on the set of $\mathbb{k}G$-modules which takes indecomposable modules to indecomposable modules.

This construction can be iterated. For each $i > 0$, let $\pi_i : P_i \rightarrow \Omega_i(M)$ be the projective cover of $\Omega_i(M)$. By composing these maps with the inclusions $\Omega_i(M) \rightarrow P_{i-1}$, we obtain an exact sequence

$$\cdots P_i \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0.$$

This is an example of a projective resolution for M. If N is any $\mathbb{k}G$-module, then the above induces a complex

$$0 \rightarrow \text{Hom}_{\mathbb{k}G}(P_0, N) \rightarrow \cdots \rightarrow \text{Hom}_{\mathbb{k}G}(P_i, N) \rightarrow \cdots$$

which is not exact in general. The homology groups of this complex are by definition the groups $\text{Ext}^i_{\mathbb{k}G}(M, N)$. A special case is

$$H^i(G, N) := \text{Ext}^i_{\mathbb{k}G}(\mathbb{k}, N).$$

We call this the cohomology of G with coefficients in N.

There is a long and fruitful history of study of the cohomology groups $H^i(G, N)$ in modular representation theory. Further, one may define a pairing

$$\cdot : H^i(G, \mathbb{k}) \otimes H^j(G, \mathbb{k}) \rightarrow H^{i+j}(G, \mathbb{k})$$

Date: September 10, 2021.

1991 Mathematics Subject Classification. 20J06,20C20.

Key words and phrases. cohomology of groups, relative cohomology, modular representation theory, cup product.
which gives $H^*(G, k)$ the structure of a graded-commutative graded ring. A celebrated theorem of Evens (see [3, Theorem 4.2.1]) states that, for any G, the ring $H^*(G, k)$ is finitely generated.

Now let χ be a set of proper subgroups of G. A kG-module M is said to be projective relative to χ if M is a direct summand of $\oplus_{X \in \chi} M \downarrow_X^{\chi^G}$. Other equivalent definitions will be given in section 2. It is less well-known, but still true, that every kG-module has a unique relative projective cover with respect to χ. This is defined to be a kG-module Q_0 of smallest dimension such that

1. Q_0 is projective relative to χ;
2. There is a surjective kG-morphism $\pi_0 : Q_0 \to M$ which splits on restriction to each $X \in \chi$.

The kernel of π_0 is denoted $\Omega_\chi(M)$ and called the relative Heller shift of M with respect to χ. We can mimic the construction of (1) to obtain a relative projective resolution of M, that is, an exact sequence

$\ldots Q_1 \to Q_0 \to \ldots \to Q_0 \to M \to 0.$

of kG modules which are projective relative to χ and in which the connecting homomorphisms split over each $X \in \chi$. Given any kG-module N, the above induces a complex

$0 \to \text{Hom}_{kG}(Q_0, N) \to \ldots \to \text{Hom}_{kG}(Q_1, N) \to \ldots$

which is in general no longer exact. The homology groups of this complex are by definition the relative Ext-groups $\text{Ext}_{kG, \chi}^i(M, N)$. The relative cohomology of G with respect to χ with coefficients in N is the special case

$H^i_\chi(G, N) := \text{Ext}_{kG, \chi}^i(k, N).$

Further, one may define a pairing

$\sim : H^i_\chi(G, k) \otimes H^j_\chi(G, k) \to H^{i+j}_\chi(G, k)$

which gives $H^*_\chi(G, k)$ the structure of a graded-commutative graded ring.

Computations of $H^*_\chi(G, N)$ are rare in the literature. It is notable that the ring $H^*_{\chi_1}(G, k)$ is not finitely generated in general. This was first discovered by Blowers [4], who showed that if G_1 and G_2 are finite groups of order divisible by p, and χ_1, χ_2 are sets of subgroups of G_1, G_2 respectively with order divisible by p, then all products of elements of positive degree in $H^*_{\chi_i}(G, k)$ are zero, where $G = G_1 \times G_2$ and $\chi = \{G_1 \times X : X \in \chi_2\} \cup \{X \times G_2 : X \in \chi_1\}$. See also [5].

For the rest of this section, let $G = \langle \sigma, \tau \rangle$ denote the Klein four-group, and let k be a field of characteristic 2. We set $\chi = \{H_1, H_2, H_3\}$, the set of all proper nontrivial subgroups of G, where $H_1 = \langle \sigma \rangle$, $H_2 = \langle \tau \rangle$, $H_3 = \langle \sigma \tau \rangle$.

The cohomology groups $H^i_\chi(G, k)$ were computed, by indirect means, by Pamuk and Yalcin [10]. In the present article we recover their result, and also compute $H^*_\chi(G, N)$ for any kG-module N. Our methods are more direct; we compute an explicit relative projective resolution for each N. Of course we are helped enormously by the fact that the representations of G are completely classified. Our first main result is:

Theorem 1. Let M be an indecomposable kG-module, which is not projective relative to χ. Then we have

$\Omega_\chi(M) \cong \Omega^{-2}(M)$

if M has odd dimension, and

$\Omega_\chi(M) \cong M$

otherwise.
The ring structure of \(H^*_\chi(G, k) \) was not considered in [10]. Note, however, that if \(\chi' \) is a subset of \(\chi \) with size 2, then all products in \(H^*_\chi(G, k) \) are zero, by a special case of Blowers’ result. It is perhaps not surprising, therefore, that we have

Theorem 2. Let \(\alpha_1, \alpha_2 \in H^*_\chi(G, k) \), where both have strictly positive degree. Then \(\alpha_1 \sim \alpha_2 = 0 \).

This paper is organised as follows. In section 2 we define relative projectivity and derive the results we will need to do the computations in later sections. This section follows [9, Section 2] fairly closely. As most proofs can be constructed by adapting familiar results on projectivity to the relative case, they are omitted. In section 3 we describe the classification of modules for the Klein-four group and prove Theorem 1. We also compute \(H^*_\chi(G, N) \) for every \(kG \)-module \(N \) and prove Theorem 2.

1.1. **Notation.** All groups under consideration are finite groups, and for any group \(G \), by a \(kG \)-module we mean a finitely-generated \(k \)-vector space with compatible \(G \) action. The one-dimensional trivial \(kG \)-module will be denoted by \(kG \) or simply \(k \) when the group acting is obvious, and for \(n \in \mathbb{N} \) and \(M \) a \(kG \)-module we write \(nM \) for the direct sum of \(n \) copies of \(M \).

Acknowledgements. Thanks to an anonymous referee for some helpful suggestions.

2. Relative projectivity

In this section, let \(p > 0 \) be a prime and let \(G \) be a finite group of order divisible by \(p \). Let \(k \) be a field of characteristic \(p \) and let \(\chi \) be a set of subgroups of \(G \). Now let \(M \) be a finitely generated \(kG \)-module. \(M \) is said to be \emph{projective relative to} \(\chi \) if the following holds: let \(\phi : M \to Y \) be a \(kG \)-homomorphism and \(j : X \to Y \) a surjective \(kG \)-homomorphism which splits on restriction to any subgroup of \(H \in \chi \), then there exists a \(kG \)-homomorphism \(\psi \) making the following diagram commute.

\[
\begin{array}{ccc}
X & \xrightarrow{j} & Y \\
\downarrow & & \downarrow \phi \\
M & \xrightarrow{\psi} & 0
\end{array}
\]

Dually, one says that \(M \) is \emph{injective relative to} \(\chi \) if the following holds: given an injective \(kG \)-homomorphism \(i : X \to Y \) which splits on restriction to each \(H \in \chi \) and a \(kG \)-homomorphism \(\phi : X \to M \), there exists a \(kG \)-homomorphism \(\psi \) making the following diagram commute.

\[
\begin{array}{ccc}
0 & \xrightarrow{i} & X \\
\downarrow & & \downarrow \phi \\
M & \xrightarrow{\psi} & Y
\end{array}
\]

These notions are equivalent to the usual definitions of projective and injective \(kG \)-modules when we take \(\chi = \{1\} \). We will say a \(kG \)-homomorphism is \(\chi \)-split if it splits on restriction to each \(H \in \chi \). Since a \(kG \)-module is projective relative to \(H \) if and only if it is also projective relative to the set of all subgroups of \(H \), we often assume \(\chi \) is closed under taking subgroups.
We denote the set of G-fixed points in M by M^G. For any $H \leq G$ there is a kG-map $M^H \to M^G$ defined as follows:

$$\text{Tr}_H^G(x) = \sum_{\sigma \in S} \sigma x$$

where $x \in M$ and S is a left-transversal of H in G. This is called the relative trace or transfer. It is clear that the map is independent of the choice of S. If $H = 1$ we usually write this as Tr_G^G and call it simply the trace or transfer. For any set of subgroups χ of G we define the subspace

$$M^G,\chi := \sum_{H \in \chi} \text{Tr}_H^G(M^H)$$

and quotient

$$M^G_{\chi} := \frac{M^G}{M^G,\chi}.$$

Now let N be another kG-module. We can define an action of G on $\text{Hom}_k(M,N)$:

$$(g \cdot \phi)(x) = g\phi(g^{-1}x) \text{ for } g \in G, x \in M.$$

Notice that with this action we have $\text{Hom}_k(M,N)^G = \text{Hom}_{kG}(M,N)$. Further, the transfer construction gives a map

$$\text{Tr}_H^G : \text{Hom}_{kH}(M,N) \to \text{Hom}_{kG}(M,N).$$

There are various ways to characterize relative projectivity:

Proposition 3. Let G be a finite group of order divisible by p, χ a set of subgroups of G and M a kG-module. Then the following are equivalent:

(i) M is projective relative to χ;

(ii) Every χ-split epimorphism of kG-modules $\phi : N \to M$ splits;

(iii) M is injective relative to χ;

(iv) Every χ-split monomorphism of kG-modules $\phi : M \to N$ splits;

(v) M is a direct summand of $\oplus_{H \in \chi} M^H \uparrow^G$;

(vi) M is a direct summand of a direct sum of modules induced from subgroups in χ;

(vii) There exists a set of homomorphisms $\{\beta_H : H \in \chi\}$ such that $\beta_H \in \text{Hom}_{kH}(M,M)$ and $\sum_{H \in \chi} \text{Tr}_H^G(\beta_H) = \text{id}_M$.

The last of these is called Higman’s criterion.

Proof. The proof when χ consists of a single subgroup of G can be found in [2, Proposition 3.6.4]. This can easily be generalised. □

For homomorphisms $\alpha \in \text{Hom}_{kG}(M,N)$ we have the following:

Lemma 4. Let M, N be kG-modules, χ a collection of subgroups of G, and $\alpha \in \text{Hom}_{kG}(M,N)$. Then the following are equivalent:

(i) α factors through $\oplus_{H \in \chi} M^H \downarrow^G$.

(ii) α factors through some module which is projective relative to χ.

(iii) There exist homomorphisms $\{\beta_H : H \in \chi\} \in \text{Hom}_{kH}(M,N)$ such that $\alpha = \sum_{H \in \chi} \text{Tr}_H^G(\beta_H)$.

Proof. This is easily deduced from [2, Proposition 3.6.6]. □

The above tells us that $\text{Hom}_k(M,N)^{G,\chi}$ consists of the kG-homomorphisms which factor through a module which is projective relative to χ. We write

$$\text{Hom}^\chi_{kG}(M,N) := \text{Hom}_k(M,N)^G_{\chi}.$$
Let M be a kG-module and let X be a kG-module that is projective relative to χ. It is easily shown, using Proposition 3, that $M \otimes X$ is projective relative to χ. For example, the module $M \otimes X$ where $X = \bigoplus_{H \in \chi} k_H \uparrow^G$ is projective relative to χ. Moreover, with X as defined above, the natural map $\sigma : M \otimes X \to M$ given by
\[\sigma(m \otimes x) = m\]
is a χ-split kG-epimorphism (to see the splitting, use the Mackey Theorem). It follows that for each M, there exists a kG-module Q_0 which is projective relative to χ and a χ-split kG-epimorphism $\pi_0 : Q_0 \to M$.

Let $\pi_0 : Q_0 \to M$ and $\pi'_0 : Q'_0 \to M$ be two such pairs. The proof of Schanuel’s Lemma (see [2, Lemma 1.5.3, Lemma 3.9.1]) extends more or less verbatim to the relative case; if $K_0 = \ker(\pi_0)$ and $K'_0 = \ker(\pi'_0)$ then $K_0 \oplus Q'_0 \cong K'_0 \oplus Q_0$.

If we choose among all such pairs, one in which the dimension of Q_0 is minimal, the kernel K_0 is defined uniquely. This pair (Q_0, π_0) is called the relative projective cover of M. For this choice we set $\Omega_\chi(M) = K_0$. We can iterate this construction, setting $\Omega_\chi(M) = \Omega_\chi(\Omega^{-1}_\chi(M))$. Minimality implies that if K'_i is the kernel of any other χ-split kG-epimorphism $Q'_0 \to M$, then $K'_i \cong \Omega_\chi(M) \oplus (\text{rel. proj})$, where (rel. proj) is some module which is projective relative to χ.

Dually, we always have that M is a submodule of $M \otimes X$ with $X = \bigoplus_{H \in \chi} k_H \uparrow^G$, and the inclusion $\rho : M \to M \otimes X$ splits on restriction to each $H \in \chi$. It follows that for each M, there exists a kG-module J_0 and a χ-split kG-monomorphism $\rho_0 : M \to J_0$.

Let $\rho_0 : M \to J_0$ and $\rho'_0 : M \to J'_0$ be two such pairs. Again, by the relative version of Schanuel’s Lemma, if $C_0 = \coker(\pi)$ and $C'_0 = \coker(\pi'_0)$ then $C_0 \oplus J'_0 \cong C'_0 \oplus J_0$.

If we choose among all such pairs, one in which the dimension of J_0 is minimal, the cokernel C_0 is defined uniquely. The pair (J_0, ρ_0) is called a relative injective hull of M with respect to χ. For this choice we set $\Omega^-_\chi(M) = C_0$. We can iterate this construction, setting $\Omega^{-1}_\chi(M) = \Omega^{-1}_\chi(\Omega^{-1}(M))$. Minimality implies that if C'_i is the kernel of any other χ-split kG-monomorphism $M \to J_0$, then $C'_i \cong \Omega^{-1}_\chi(M) \oplus (\text{rel. proj})$, where (rel. proj) is some module which is projective relative to χ.

The following gives some properties of the operators Ω^i_χ.

Proposition 5. Let M_1, M_2 be kG-modules without summands which are projective relative to χ, and i, j nonzero integers. Then:

(i) $\Omega^i_\chi(M_1 \oplus M_2) \cong \Omega^i_\chi(M_1) \oplus \Omega^i_\chi(M_2)$;
(ii) $\Omega^i_\chi(M)^* \cong \Omega^{-1}(M^*)$;
(iii) $M \cong \Omega_\chi(\Omega^{-1}_\chi(M)) \oplus (\text{rel. proj}) \cong \Omega^{-1}_\chi(\Omega_\chi(M)) \oplus (\text{rel. proj})$.

Proof. (i) is obvious. (ii,iii) are easily deduced from the relative version of Schanuel’s Lemma. \(\square\)

(i) above shows that Ω^i_χ is a well-defined operator on the set of indecomposable kG-modules which are not relatively projective to χ. Note that (iii) does not say that $\Omega_\chi \circ \Omega^{-1}_\chi$ is the identity in general. If we define $\Omega^0_\chi(M)$ to be the direct sum of all summands of M which are not projective relative to χ, then we have $\Omega^{i+j} = \Omega^i_\chi \circ \Omega^j_\chi$ for all i and j.

The following result is sometimes useful.

Lemma 6. Let M be a kG-module which is projective relative to a set χ of subgroups of G. Then $M^G = \bigoplus_{H \in \chi} \text{Tr}_H^G(MH)$.

Proof. See [9, Lemma 2.9] \(\square\)
As a consequence of the above, if \(M = N \oplus (\text{rel. proj.}) \), we get that \(M^G = N^G \).

The operators \(\Omega^1 \) extend in a natural way to homomorphisms between modules. Let \(f \in \text{Hom}_k(M,N) \). Let \((Q, \pi), (Q', \pi')\) be the relative projective covers of \(M, N \). Then the relative projectivity of \(Q \) ensures the existence of a homomorphism \(\bar{f} \in \text{Hom}_k(Q, Q') \) making the following diagram commute

\[
\begin{array}{c}
\Omega_\chi(M) \quad \rightarrow \quad Q \quad \pi \quad \rightarrow \quad M \quad \rightarrow \quad 0 \\
\Omega_\chi(f, \bar{f}) \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
\Omega_\chi(N) \quad \rightarrow \quad Q' \quad \pi' \quad \rightarrow \quad N \quad \rightarrow \quad 0 \\
\end{array}
\]

and an easy diagram chase shows that the image of \(\Omega_\chi(f, \bar{f}) := \bar{f}|_{\ker(\pi)} \) is contained in \(\ker(\pi') \). In this way, \(f \) induces a homomorphism

\[
\Omega_\chi(f, \bar{f}) \in \text{Hom}_k(\Omega_\chi(M), \Omega_\chi(N)).
\]

Moreover, this homomorphism factors through a relative projective if and only if \(f \) does so.

The homomorphism \(\Omega_\chi(f, \bar{f}) \) depends, as the notation suggests, on the choice of \(\bar{f} \) in general. However, if \(\bar{f} \) and \(\tilde{f} \in \text{Hom}_k(Q, Q') \) are both homomorphisms making the diagram commute, then one can show that

\[
\Omega_\chi(f, \bar{f}) - \Omega_\chi(f, \tilde{f})
\]

factors through a relative projective.

For a given homomorphism \(f : M \rightarrow N \), denote by \([f]\) its equivalence class in \(\text{Hom}_k^\chi(M, N) \). By the discussion following Lemma 4, the equivalence class

\[
[[\Omega_\chi(f, \bar{f})]] \in \text{Hom}_k^\chi(\Omega_\chi(M), \Omega_\chi(N))
\]

does not depend on \(\bar{f} \), so we write this as \(\Omega_\chi[f] \). In this way, we obtain a well-defined homomorphism

\[
\Omega_\chi : \text{Hom}_k^\chi(M, N) \rightarrow \text{Hom}_k^\chi(\Omega_\chi(M), \Omega_\chi(N)).
\]

In a similar fashion, let \((J, \rho), (J', \rho')\) be the relative injective hulls of \(M, N \) respectively. Then relative injectivity of \(J' \) ensures the existence of a homomorphism \(\bar{f} \in \text{Hom}(J, J') \) making the following diagram commute,

\[
\begin{array}{c}
\Omega^{-1}_\chi(M) \quad \rightarrow \quad J \quad \leftarrow \quad M \quad \rightarrow \quad 0 \\
\Omega^{-1}_\chi(f, \bar{f}) \quad \quad \downarrow \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
\Omega^{-1}_\chi(N) \quad \rightarrow \quad J' \quad \leftarrow \quad N \quad \rightarrow \quad 0 \\
\end{array}
\]

and a diagram chase shows that \(\bar{f} \) induces a homomorphism

\[
\Omega^{-1}_\chi(f, \bar{f}) \in \text{Hom}(\Omega^{-1}_\chi(M), \Omega^{-1}_\chi(N)).
\]

Moreover \(\Omega^{-1}_\chi(f, \bar{f}) \) factors through a projective if and only if \(f \) does so, and although \(\Omega^{-1}_\chi(f, \bar{f}) \) depends on the choice of \(\bar{f} \) in general, the equivalence class
[Ω\(^{-1}\chi\)](f, \tilde{f}) depends only on \(f\), so we write it as \(Ω\(^{-1}\chi\)[f]\). Thus, we obtain a well-defined homomorphism

\[\Omega^{-1}_\chi : \text{Hom}_{kG}(M, N) \to \text{Hom}_{kG}(Ω^{-1}_\chi(M), Ω^{-1}_\chi(N)). \]

One can show further that, for \([f] \in \text{Hom}_{kG}(M, N)\) we have

\[[f] = Ω^{-1}_\chi Ω_\chi [f] = Ω_\chi Ω^{-1}_\chi [f], \]

which justifies the following:

Proposition 7. For all \(i \in \mathbb{Z}\), \(Ω^i_\chi(−)\) induces an isomorphism

\[\text{Hom}^X_{kG}(M, N) \cong \text{Hom}^X_{kG}(Ω^i_\chi(M), Ω^i_\chi(N)). \]

As explained in the introduction, the idea of a relatively projective cover can be extended to a relatively projective resolution; that is, an exact complex

\[\ldots \to Q_i \to Q_{i-1} \to \ldots \to Q_0 \to M \to 0 \]

of relatively projective modules in which the connecting homomorphisms split over \(χ\). If

\[\ldots \to Q'_i \to Q'_{i-1} \to \ldots \to Q'_0 \to M \to 0 \]

is another relatively projective resolution, then it turns out that any two chain maps between them are chain homotopic (see [2, Theorem 3.9.3] for the version with \(χ\) consisting of one subgroup - the proof of the more general version is the same). Consequently, for any \(kG\)-module \(N\), the homology groups of the induced complex

\[0 \to \text{Hom}_{kG}(Q_0, N) \to \ldots \to \text{Hom}_{kG}(Q_i, N) \to \ldots \]

are independent of the choice of resolution. The homology groups of this complex are by definition the relative Ext-groups \(\text{Ext}^i_{kG,χ}(M, N)\). The relative cohomology of \(G\) with respect to \(χ\) with coefficients in \(N\) is the special case

\[H^i_\chi(G, N) := \text{Ext}^i_{kG,χ}(k, N). \]

We will use a minimal relative projective resolution of the trivial module to compute relative cohomology; that is, a relatively projective resolution

\[\ldots \to Q_i \xrightarrow{∂_i} Q_{i-1} \to \ldots \to Q_0 \to k \to 0 \]

in which \(\ker(∂_{i-1}) = Ω^i_\chi(k)\). We can construct this by taking for each \(i\) a short exact sequence

\[0 \to Ω^{i+1}_\chi(k) \xrightarrow{ρ_i} Q_i \xrightarrow{π_i} Ω^i_\chi(k) \to 0 \]

and setting \(∂_i := ρ_iπ_{i+1}\). For each \(i\) let

\[δ_i : \text{Hom}_{kG}(Q_i, k) \to \text{Hom}_{kG}(Q_{i+1}, k) \]

denote the map induced by \(∂_i\).

Our main tool will be the following:

Proposition 8. Let \(N\) be a \(kG\)-module. Then we have

(i) \(H^0_\chi(G, N) = N^G;\)

(ii) \(H^1_\chi(G, N) \cong \text{Hom}^X_{kG}(Ω^0_χ(k), N).\)

The proof is the same as in the case \(χ = \{1\}\), but we give a sketch for lack of a good reference to this proof.
Proof. We first show that for each \(i \geq 0 \),
\[
\ker(\delta_i) \cong \text{Hom}_{k[G]}(\Omega^i_k(k), N).
\]
To see this, let \(\phi \in \ker(\delta_i) \subseteq \text{Hom}_{k[G]}(Q_i, N) \). For \(x \in \Omega_k^i(k) \), choose \(q \in Q_i \) such that \(\pi_i(q) = x \) and define \(\hat{\phi}(x) = \phi(q) \). Then \(\hat{\phi} \in \text{Hom}_{k[G]}(\Omega_k^i(k), N) \). The assignment \(\phi \mapsto \hat{\phi} \) is well-defined: for if \(q' \in Q_i \) with \(\pi_i(q') = x \) and \(\hat{\phi}(x) = \phi(q') \), then since \(q - q' \in \ker(\pi_i) \) we get \(q - q' \in \ker(\delta_i) \) and \(\hat{\phi}(q - q') = 0 \) since \(\phi \in \ker(\delta_i) \).

Conversely, given \(\phi \in \text{Hom}_{k[G]}(\Omega_k^i(k), N) \) we can define \(\hat{\phi} = \phi \circ \pi_i \in \ker(\delta_i) \). It’s easy to see that the two assignments are inverse to each other.

This in particular shows that (i) holds, since \(\text{Hom}_{k[G]}(k, N) \cong N^G \). We now show that \(\text{im}(\delta_{i-1}) \) consists of the homomorphisms in \(\text{Hom}_{k[G]}(\Omega_k^i(k), N) \) which factor through a module which is projective relative to \(\chi \). To see this, first suppose \(\phi \in \text{im}(\delta_{i-1}) \subseteq \text{Hom}_{k[G]}(Q_i, N) \), say \(\phi = \psi \circ \partial_{i-1} \) where \(\psi \in \text{Hom}_{k[G]}(Q_i, N) \). Then with \(x \in \Omega_k^i(k) \) and \(q, \phi \) as before we note that
\[
\psi \circ \rho_{i-1}(x) = \psi \circ \rho_{i-1} \circ \pi_i(q) = \psi \circ \partial_i(q) = \hat{\phi}(q) = \hat{\phi}(x)
\]
which shows that \(\hat{\phi} \) factors through the module \(Q_{i-1} \) which is projective relative to \(\chi \). Conversely, if \(\phi \in \text{Hom}_{k[G]}(\Omega_k^i(k), N) \) factors through any module which is projective relative to \(\chi \), then it factors through \(Q_{i-1} \), because \(\rho_{i-1} \) is injective and \(Q_{i-1} \) is also an injective module with respect to \(\chi \) by Lemma 3.

One can define a pairing \(\sim : H^1_k(G, k) \otimes H^1_k(G, k) \to H^{1+1}_k(G, k) \) in a few different ways. On the one hand, elements of \(H^1_k(G, k) = \text{Ext}_{k[G]}^1(k, k) \) can be viewed as equivalence classes of extensions of \(k \) by \(k \) split over \(\chi \), and the usual Yoneda splice gives the required pairing; see [2, Section 2.6.3.9] for details in the case \(\chi = \{1\} \) are given in [6], and all of these extend in a natural way to arbitrary \(\chi \). Happily, all these methods give the same construction. In the present article we will use the following construction: recall that
\[
H^1_k(G, k) \cong \text{Hom}_{k[G]}(\Omega^1_k(k), k).
\]
Similarly
\[
H^1_k(G, k) = \text{Hom}_{k[G]}(\Omega^1_k(k), k) \cong \text{Hom}_{k[G]}(\Omega^{1+1}_k(k), \Omega^1_k(k))
\]
with the second isomorphism arising from Proposition 7. Therefore we may define a product as follows: for \(\alpha \in H^1_k(G, k) \) and \(\beta \in H^1_k(G, k) \) choose \(f \in \text{Hom}_{k[G]}(\Omega^1_k(k), k) \), \(g \in \text{Hom}_{k[G]}(\Omega^1_k(k), k) \) representing \(\alpha, \beta \) respectively. Then \(\Omega^1_k(g) \in \text{Hom}_{k[G]}(\Omega^{1+1}_k(k), \Omega^1_k(k)) \), so that
\[
f \circ \Omega^1_k(g) \in \text{Hom}_{k[G]}(\Omega^{1+1}_k(k), k).
\]
We take \(\alpha \sim \beta \) to be the cohomology class represented by \(f \circ \Omega^1_k(g) \). This is called the cup product of \(\alpha \) and \(\beta \).

3. Representations of \(C_2 \times C_2 \)

In this section, let \(G = \langle \sigma, \tau \rangle \) denote the Klein four-group, and let \(k \) be a field of characteristic 2 (not necessarily algebraically closed). We set \(\chi = \{H_1, H_2, H_3\} \), the set of all proper non-trivial subgroups of \(G \), where \(H_1 = \langle \sigma \rangle, H_2 = \langle \tau \rangle, H_3 = \langle \sigma \tau \rangle \).

Let \(X : = \sigma - 1 \in kG, Y : = \tau - 1 \in kG \). Then \(X^2 = Y^2 = 0, \langle X, Y \rangle \) is isomorphic to the quotient ring
\[
R : = k[X, Y]/(X^2, Y^2),
\]
and \(kG \)-modules can be viewed as \(R \)-modules. We will describe \(R \)-modules by means of the diagrams for modules popularised by Alperin in [1]. In these diagrams,
nodes represent basis elements, and two nodes labelled \(a \) and \(b \) are joined by a south-west directed arrow if \(Xa = b \), and by a south-east directed arrow if \(Ya = b \). If no south-west arrow begins at \(a \) then it is understood that \(Xa = 0 \), similarly for \(Y \).

Our statement of the classification of \(kG \)-modules resembles that found in [7], which is based on calculations first found in [8]. We recommend the former reference as an easily accessible proof.

Proposition 9. Let \(M \) be an indecomposable \(kG \)-module. Then \(M \) is isomorphic to one of the following:

1. The module \(V_{2n+1} \) (\(n \geq 0 \)), with odd dimension \(2n + 1 \) and diagram

2. The module \(V_{-(2n+1)} \) (\(n \geq 0 \)), with odd dimension \(2n + 1 \) and diagram

Note that \(V_1 \cong V_{-1} \cong k \), with trivial \(G \)-action, but otherwise these modules are pairwise non-isomorphic.

3. The module \(V_{2n, \infty} \) (\(n \geq 1 \)), with even dimension \(2n \) and diagram

4. The module \(V_{2n, \theta} \) (\(n \geq 1 \)), with even dimension \(2n \) and diagram,

Here, \(\theta(x) = \sum_{i=0}^{n} \lambda_i x^{n-i} \) is a power of an irreducible monic polynomial with coefficients in \(k \) and the dotted line labelled by \(\theta \) indicates that \(Xa_1 = \sum_{i=1}^{n} \lambda_i b_1 \).

5. The projective indecomposable module \(P \), with dimension 4 and diagram

The following, also taken from [7], may be proved directly from the classification above.

Proposition 10. Let \(M \) be an indecomposable \(kG \)-module. Then we have

1. \(M \cong M^* \) if \(M \) is even-dimensional.
2. \(M^* \cong V_{-(2n+1)} \) if \(M \cong V_{2n+1} \) is odd dimensional.
(3) \(M^* \cong V_{2n+1} \) if \(M \cong V_{-(2n+1)} \) is odd-dimensional.

Clearly (3) follows from (2) above, but we include it for completeness. In addition,

Proposition 11. Let \(M \) be an indecomposable \(\mathbb{k}G \)-module. Then we have

1. \(\Omega(M) \cong M \) if \(M \) is even-dimensional.
2. \(\Omega^{-1}(M) \cong V_{-(2n+3)} \) if \(M \cong V_{-(2n+1)} \) is odd dimensional.
3. \(\Omega(M) \cong V_{2n+3} \) if \(M \cong V_{2n+1} \) is odd-dimensional.

Again (3) follows from (2) when we take into account that \(\Omega(M)^* \cong \Omega^{-1}(M^*) \) in general.

3.1. Relative shifts

The goal of this subsection is to prove Theorem 1.

Among the indecomposable \(\mathbb{k}G \)-modules listed in the previous section, only four are projective relative to \(\chi \). These are the projective indecomposable \(P \), and the three modules \(V_{2,\infty}, V_{2,x} \) and \(V_{2,x+1} \). Here the last two are the indecomposable modules \(V_{2,0} \) where \(\theta(x) \) is the monic irreducible \(x \) or \(x+1 \in \mathbb{k}[x] \). Note that \(\tau \) acts trivially on \(V_{2,\infty} = \mathbb{k}_{H_2} \oplus \mathbb{k}^G \), while \(\sigma \) acts trivially on \(V_{2,x} = \mathbb{k}_{H_3} \oplus \mathbb{k}^G \) and \(\sigma \tau \) acts trivially on \(V_{2,x+1} = \mathbb{k}_{H_3} \oplus \mathbb{k}^G \). As these three play an important role in what follows, we denote them by \(Q_\tau, Q_\sigma \) and \(Q_{\sigma \tau} \) respectively. We set \(Q = Q_\sigma \oplus Q_\tau \oplus Q_{\sigma \tau} \).

We begin by considering odd-dimensional modules.

Lemma 12. Let \(n \geq 0 \):

1. The relative projective cover of \(V_{-(2n+1)} \) is \(Q \oplus nP \).
2. We have \(\Omega(\chi(V_{-(2n+1)})) \cong V_{-(2n+5)} \).

Proof. Let \(M \cong V_{-(2n+1)} \) and let \(\pi : N \to M \) be its relative projective cover with respect to \(\chi \). \(N \) must decompose as a direct sum of modules of the form \(P, Q_\sigma, Q_\tau \) and \(Q_{\sigma \tau} \).

Let \(a_1, a_2, \ldots, a_n, b_0, b_1, \ldots, b_n \) be a basis of \(M \), with action given by the diagram as in Proposition 9. Since \(\pi \) is a surjective \(\mathbb{k}G \)-map and no \(a_i \) is fixed by any element of \(G \), the same must be true of their unique pre-images. The modules \(Q_\sigma, Q_\tau \) and \(Q_{\sigma \tau} \) all have non-trivial kernels. Therefore \(N \) contains at least \(n \) copies of \(P \).

On the other hand, we have, for any \(i \),

\[
M \downarrow H_i \cong \mathbb{k}_{H_i} \oplus n \mathbb{k}H_i
\]

The restrictions to \(H_1 \) of \(P, Q_\tau \) and \(Q_{\sigma \tau} \) contain no trivial \(H_1 \)-summands. So \(N \) must contain a direct summand isomorphic to \(Q_\sigma \) if \(\pi \) is to split on restriction to \(H_1 \). A similar argument (restricting to \(H_2, H_3 \)) shows that \(N \) must contain summands isomorphic to \(Q_\tau \) and \(Q_{\sigma \tau} \).

We will construct a surjective \(\mathbb{k}G \)-homomorphism \(Q \oplus nP \to M \). The following diagrams label the basis elements:

\[
\begin{array}{cccc}
& Q_\sigma & Q_\tau & Q_{\sigma \tau} \\
Q_\sigma & & & \\
\cdots & x_1 & \cdots & x_n \\
\cdots & y_1 & \cdots & y_n \\
& & & \\
Q_\tau & & & \\
Q_{\sigma \tau} & & & \\
\end{array}
\]

The diagram for \(Q_{\sigma \tau} \) is not as described in Proposition 9, but makes sense, because \(Xa_1 = Ya_1 = b_1 \) in this case. We now define a linear map \(\pi : Q \oplus nP \to M \) by

- \(\pi(w_i) = a_i \) for \(i = 1, \ldots, n \).
- \(\pi(x_i) = b_{i-1} \) for \(i = 1, \ldots, n \).
- \(\pi(y_i) = b_i \) for \(i = 1, \ldots, n \).
The reader should check that \(\pi \) is a \(*G\)-homomorphism. The kernel of \(\pi \) is spanned by
\[
\{ z_i : i = 1,\ldots, n \} \cup \{ s_1, s_2, s_3 \} \cup \{ x_i + y_i : i = 2,\ldots, n \} \cup \{ x_1 + r_1, x_1 + r_3, y_2 + r_2 \}.
\]
It has dimension \(2n + 5 \), and the fixed-point space within this module is spanned by \(\{ z_1, z_2, \ldots, z_n, s_1, s_2, s_3 \} \), so it has dimension \(n + 3 \). It is easily checked that no element of the kernel outside of the fixed-point space is fixed by any subgroup \(H_i \).

Therefore
\[
\ker(\pi) \downarrow_{H_i} \cong k_{H_i} \oplus (n + 2)k_{H_i}
\]
for any \(i \). This, combined with (6) and the fact that
\[
(Q \oplus nP) \downarrow_{H_i} \cong 2k_{H_i} \oplus (2n + 2)k_{H_i}
\]
shows that \(\pi \) splits on restriction to any \(H_i \). The construction ensures the minimality of \(Q \oplus nP \), so \(Q \oplus nP = N \), proving (1). Further, \(\Omega_\chi(M) = \ker(\pi) \), and the classification of \(*G\)-modules, together with the fact that \(\ker(\pi) \) must be indecomposable, implies that \(\ker(\pi) \cong V_{-(2n+5)} \), proving (2).

The following follows immediately from the above using Propositions 10 and 5(3).

Lemma 13. Let \(n \geq 0 \): Then we have \(\Omega_\chi(V_{(2n+5)}) \cong V_{(2n+1)} \).

To complete the picture for odd-dimensional modules, it remains only to show that

Lemma 14. Let \(M \cong V_3 \). Then:
\begin{enumerate}

 \item The relative projective cover of \(M \) is \(Q \);

 \item We have \(\Omega_\chi(M) \cong V_{-3} \).
\end{enumerate}

Proof. We have \(M \downarrow_{H_i} \cong k_{H_i} \oplus k_{H_i} \), for \(i = 1, 2, 3 \), so once more the projective cover must contain a summand isomorphic to \(Q \). We shall construct a \(*G\)-homomorphism \(\pi : Q \to M \). We retain the notation for a basis of \(Q \) used in Lemma 12; a basis for \(M \) is \(\{ a_0, a_1, b_1 \} \) with action given as in the classification.

Define:
\[
\begin{align*}
\pi(r_1) &= a_0 \\
\pi(r_2) &= a_1 \\
\pi(r_3) &= a_0 + a_1 \\
\pi(s_1) &= \pi(s_2) = \pi(s_3) &= b_1.
\end{align*}
\]

The reader should check this is a \(*G\)-homomorphism. The kernel of \(\pi \) is spanned by \(\{ s_1 + s_2, s_2 + s_3, r_1 + r_2 + r_3 \} \), and the fixed-point space of the kernel is two-dimensional, spanned by \(\{ s_1 + s_3, s_2 + s_3 \} \). Noting that
\[
X(r_1 + r_2 + r_3) = s_2 + s_3, Y(r_1 + r_2 + r_3) = s_1 + s_3,
\]
we see that the kernel of \(\pi \) is indecomposable, and as a \(*G\)-module is isomorphic to \(V_{-3} \). Therefore
\[
\ker(\pi)H_i \oplus k_{H_i} \oplus k_{H_i}
\]
for all \(i \), from which we deduce that \(\pi \) splits on restriction to each \(H_i \). Our construction ensures the minimality of \(Q \), so \(Q \) is indeed the relative projective cover of \(M \), proving (1), and \(\ker(\pi) = \Omega_\chi(M) \cong V_{-3} \), proving (2).

We now turn to even dimensional modules. Note that \(V_{2,\infty} = Q_\tau \) is already projective relative to \(\chi \), so \(\Omega_\chi(V_{2,\infty}) \) is not defined.
Lemma 15. Let \(n \geq 2 \) and \(M \cong V_{2n, \infty} \). Then:

1. The relative projective cover of \(M \) is \(2Q_\tau \oplus (n - 1)P \);
2. We have \(\Omega_\chi(M) \cong M \).

Proof. Let \(\pi : N \to M \) be the relative projective cover of \(M \). Notice that

\[
M \downarrow_{H_i} = nkH_i
\]

for \(i = 1, 3 \) whereas

\[
M \downarrow_{H_2} = 2kH_2 \oplus (n - 1)kH_2.
\]

So if \(\pi : N \to M \) is to split on restriction to \(H_2 \), \(N \) must contain a pair of direct summands isomorphic to \(Q_\tau \). On the other hand, retaining the notation from Proposition 9, the basis elements \(a_1, \ldots, a_{n-1} \) are not fixed by any element of \(G \), so the same must be true of their unique pre-images in \(N \). From this it follows that \(N \) must contain \(n - 1 \) direct summands isomorphic to \(P \).

We will construct a \(kG \)-homomorphism \(2Q_\tau \oplus (n - 1)P \to M \). The following diagram gives the labelling for a basis of the domain:

\[
\begin{array}{ccc}
\bullet & r_1 & \bullet \\
& s_1 & \\
\bullet & r_2 & \bullet \\
& s_2 &
\end{array}
\quad
\begin{array}{ccc}
\bullet & \cdots & \bullet \\
x_1 & \cdots & x_{n-1} \\
\bullet & \cdots & \bullet \\
y_1 & \cdots & y_{n-1}
\end{array}
\]

We define:

- \(\pi(w_1) = a_i \) for \(i = 1, \ldots, n - 1 \).
- \(\pi(x_i) = b_i \) for \(i = 1, \ldots, n - 1 \).
- \(\pi(y_i) = b_{i+1} \) for \(i = 1, \ldots, n - 1 \).
- \(\pi(z_i) = 0 \) for \(i = 1, \ldots, n - 1 \).
- \(\pi(r_1) = b_1 \).
- \(\pi(s_1) = 0 \).
- \(\pi(r_2) = a_n \).
- \(\pi(s_2) = b_n \).

The reader should check that \(\pi \) is a \(kG \)-homomorphism. The kernel of \(\pi \) is spanned by

\[
\{ z_i : i = 1, \ldots, n - 1 \} \cup \{ x_i + y_{i-1} : i = 2, \ldots, n - 1 \} \cup \{ s_1, x_1 + r_2, y_{n-1} + s_2 \}.
\]

This has dimension \(2n \). The fixed points within this module are spanned by

\[
\{ z_i : i = 1, \ldots, n - 1 \} \cup \{ s_1 \}.
\]

These span the fixed points of \(H_1 \) and \(H_3 \), while \(H_2 \) has a fixed point space of dimension \(n + 1 \), spanned by the above and \(y_{n+1} + s_2 \). Therefore we have

\[
\ker(\pi) \downarrow_{H_i} \cong nkH_i
\]

for \(i = 1, 3 \) and

\[
\ker(\pi) \downarrow_{H_2} \cong 2kH_2 \oplus (n - 1)kH_2.
\]

Note that

\[
(2Q_\tau \oplus (n - 1)P) \downarrow_{H_i} \cong 2nkH_i
\]

for \(i = 1, 3 \) and

\[
(2Q_\tau \oplus (n - 1)P) \downarrow_{H_2} \cong 4kH_2 \oplus (2n - 2)kH_i.
\]

Thus, \(\pi \) splits on restriction to each \(H_i \). The construction ensures the minimality of \(2Q_\tau \oplus (n - 1)P \), so this is equal to \(N \) and we have (1). Further, \(\ker(\pi) = \Omega_\chi(M) \) must be indecomposable. By the classification (looking at the dimension of the
fixed point space of each subgroup of \(G \) to distinguish among modules of even
dimension) we must have \(\Omega_\chi(M) \cong M \) as required for (2).

Notice that if \(\theta(x) = x^n \), then \(V_{2n,\theta} \) can be obtained from \(V_{2n,\infty} \) by applying
the automorphism of \(G \) which swaps \(\sigma \) and \(\tau \). Similarly if \(\theta(x) = (x+1)^n \), then \(V_{2n,\theta} \)
can be obtained from \(V_{2n,\infty} \) by applying the automorphism of \(G \) which swaps \(\sigma \tau \)
and \(\tau \). We therefore obtain immediately from Lemma 15 above that \(\Omega_\chi(M) = M \)
if \(M \) is one of these.

It remains only to prove the following:

Lemma 16. Let \(n \geq 1 \) and let \(M \cong V_{2n,\theta} \), where \(\theta \) is neither \(x^n \) nor \((x+1)^n \).
Then:

1. The relative projective cover of \(M \) is \(nP \);
2. \(\Omega_\chi(M) \cong M \).

Proof. Observe that \(M / H_i = nkH_i \) for each \(i \). The proof of [7, Proposition 3.1]
shows that the projective (as opposed to relatively projective) cover of \(M \) is \(nP \) and
\(\Omega(M) \cong M \), so there is a surjective \(kG \)-homomorphism \(\pi : nP \to M \) with kernel
isomorphic to \(M \). Noting that \(nP / H_i \cong 2nkH_i \) for each \(i \), we see that \(\pi \) splits on
restriction to each \(H_i \). On the other hand, if \(N \) is a \(kG \)-module having \(Q_\tau \) (resp.
\(Q_\sigma, Q_{\sigma\tau} \)) as a direct summand then \(N / H_i \) contains a pair of trivial \(kH_i \)-modules as
direct summand, and no surjective homomorphism \(N \to M \) may split. This shows the
minimality of the dimension of \(nP \) among relatively projective modules with a
\(\chi \)-split epimorphism to \(M \), i.e. we have proved (1). We also have

\[
\Omega_\chi(M) = \ker(\pi) = \Omega(M) \cong M
\]
as required for (2). \(\square \)

Remark 17. Combining all the Lemmas in this section with Proposition 11, we
obtain Theorem 1.

3.2. Computing Cohomology

In this subsection we will determine \(H^i(G, N) \) for all \(i \geq 0 \) and for all indecomposable \(kG \)-modules \(N \). First observe that if \(N \) is
projective relative to \(\chi \), then \(H^i(G, N) = 0 \) for all \(i > 0 \): this is an immediate
consequence of Proposition 8(ii). Further, recall from part (i) of the same that
\(H^0_\chi(G, N) = N^G \) for any \(kG \)-module. It follows that:

Proposition 18. Let \(N \in \{ P, Q_\sigma, Q_\tau, Q_{\sigma\tau} \} \). Then,

\[
\dim(H^i_\chi(G, N)) = \begin{cases}
1 & \text{if } i = 0, \\
0 & \text{otherwise.}
\end{cases}
\]

Now we consider even-dimensional modules which are not relatively projective.
Recall that for \(i > 0 \) we have

\[
H^i_\chi(G, N) = \text{Hom}^i_{kG}(\Omega^{-i}_\chi(k), N) \cong \text{Hom}^i_{kG}(k, \Omega^{-i}_\chi(N)) \cong \text{Hom}^i_{kG}(k, N) \cong N^G,
\]

using the fact that, for these modules \(N \), we have \(\Omega^{-i}_\chi(N) \cong N \).

We obtain by direct calculation:

Proposition 19. Let \(N \) be an even-dimensional \(kG \)-module which is not projective
relative to \(\chi \). Then,

\[
\dim(H^i_\chi(G, N)) = \begin{cases}
n & \text{if } N \cong V_{2n,\infty} \text{ or } N \cong V_{2n,\sigma} \text{ where } \theta(x) = x^n \text{ or } \theta(x) = (x+1)^n, \text{ for any } i, \\
n - 1 & \text{otherwise.}
\end{cases}
\]

if \(N \cong V_{2n,\infty} \) or \(N \cong V_{2n,\sigma} \) where \(\theta(x) = x^n \) or \(\theta(x) = (x+1)^n \), while

\[
\dim(H^i_\chi(G, N)) = n
\]

for any \(i \), if \(V \cong V_{2n,\theta} \) for some other choice of \(\theta \).
For odd-dimensional modules we proceed as follows. Let \(N \) be an odd-dimensional indecomposable module and let \(i > 0 \). Then
\[
H^i_N(G, N) = \text{Hom}_G(\Omega^i_G(k), N) \cong \text{Hom}_G(k, \Omega^{-i}_G(N)) \cong \text{Hom}_G(k, \Omega^{2i}(N)) \cong \Omega^{2i}(N)^G
\]
using Theorem 1. Suppose \(N \cong V_{2n+1} \) where \(n \geq 0 \). Then \(\Omega^{2i}(N) \cong V_{2(n+2i)+1} \). A basis for \(V_{2(n+2i)+1} \) is given by \(\{ a_0, a_1, \ldots, a_{n+2i}, b_1, b_2, \ldots, b_{n+2i} \} \), with action given by the diagram in Proposition 9. The \(b_i \) are all fixed points, and in addition \(a_0 \) is fixed by \(H_1, a_{n+2i} \) by \(H_2 \) and \(a_0 + a_1 + \ldots + a_{n+2i} \) by \(H_3 \). Therefore \(b_1, b_{n+2i} \) and \(b_1 + b_2 + \ldots + b_{n+2i} \) lie in \(\Omega^{2i}(N)^G \). We therefore have

Proposition 20. Let \(N \cong V_{2n+1} \) for some \(n \geq 0 \). Then
1. \(\dim(H^i_N(G, N)) = n \) if \(n > 0 \), and 1 if \(n = 0 \).
2. \(\dim(H^i_N(G, N)) = \max(0, n+2i-3) \) for \(i > 0 \).

Remark 21. This includes [10, Theorem 1.2] as a special case \((n = 0)\).

For the remaining odd dimensional modules things are a little more complicated, since \(\Omega^{2i}(N) \) eventually moves into the “positive” part of the spectrum. We begin by noting that if \(n \geq 0 \), then \(V^H_{-(2n+1)} = V^G_{-(2n+1)} \) for all \(i \). Therefore \((V^G_{-(2n+1)})^G = 0 \).

Now let \(N \cong V_{-(2n+1)} \) where \(n \geq 1 \). For \(i \leq n/2 \) we have \(\Omega^{2i}(N) \cong V_{-(2n-2i)+1} \). Therefore
\[
H^i_N(G, N) = \text{Hom}_G(\Omega^i_G(k), N) \cong \text{Hom}_G(k, \Omega^{-i}_G(N)) \cong \text{Hom}_G(k, \Omega^{2i}(N)) \cong \Omega^{2i}(N)^G.
\]
For \(i > n/2 \) we have \(\Omega^{2i}(N) \cong V^{2i-n}_{-(n-1)+1} \). We therefore obtain the following:

Proposition 22. Let \(N \cong V_{-(2n+1)} \) where \(n \geq 1 \). Then
\[
dim(H^i_N(G, N)) = \begin{cases} n + 1 - 2i & i \leq n/2 \\ \max(0, 2i - n - 3) & i > n/2. \end{cases}
\]

3.3. Calculating cup products.

The aim of this section is to prove Theorem 2. We begin with a lemma:

Lemma 23. Let \(M \cong V_{-(2m+1)} \) and \(N \cong V_{-(2n+1)} \) for some \(m > n \geq 0 \). Let \(\phi \in \text{Hom}_G(M, N) \). Then
1. \(\text{im}(\phi) \subseteq N^G \);
2. \(M^G \subseteq \text{ker}(\phi) \).

Proof. Note first that \(\phi(M^G) \subseteq N^G \) for arbitrary \(G \) and \(kG \)-modules \(M \) and \(N \). Let \(a_1, a_2, \ldots, a_m, b_1, b_1, \ldots, b_m \) and \(a'_1, a'_2, \ldots, a'_m, b'_1, b'_1, \ldots, b'_n \) be bases of \(M \) and \(N \) respectively, with action given by the diagrams in proposition 9. Note that if \(n = 0 \), then (1) is immediate. So suppose \(n > 0 \) and (1) does not hold: then we can find a maximal \(k \geq 1 \) such that \(\phi(a_k) \notin N^G \).

We claim that \(k = m \). To see this, write
\[
\phi(a_k) = \sum_{i=1}^{n} \lambda_i a'_i \mod N^G.
\]
Then
\[
\phi(b_k) = \phi(Ya_k) = Y\phi(a_k) = \sum_{i=1}^{n} \lambda_i b'_i.
\]
If \(k < m \) then also
\[
\phi(b_k) = \phi(Xa_{k+1}) = X\phi(a_{k+1}) = 0
\]
since \(\phi(a_{k+1}) \in N^G \). So \(\lambda_i = 0 \) for all \(i \) and \(\phi(a_k) \in N^G \), a contradiction.
Now we claim that, for all $0 \leq j \leq n$, we have
\begin{equation}
\phi(a_{m-j}) = \sum_{i=j+1}^{n} \lambda_i a_{i-j} \mod N^G
\end{equation}
and $\lambda_i = 0$ for $i = 1, \ldots, j$. We prove this by induction on j. The base case $j = 0$ is true by definition. Assuming the above for some $0 \leq j < n$ and noting that $n < m$, we have
\[
\phi(b_{m-j-1}) = \phi(Xa_{m-j}) = X\phi(a_{m-j}) = \sum_{i=j+1}^{n} \lambda_i b_{i-j-1}.
\]
But
\[
\phi(b_{m-j-1}) = \phi(Ya_{m-j-1}) = Y\phi(a_{m-j-1}) = b_1, \ldots, b_n
\]
which shows that $\lambda_{j+1} = 0$. Therefore
\[
\phi(b_{m-j-1}) = \sum_{i=j+1}^{n} \lambda_i b_{i-j-1},
\]
which shows that
\[
\phi(a_{m-j-1}) = \sum_{i=j+1}^{n} \lambda_i a_{i-j-1} \mod N^G
\]
proving our claim. Taking $j = n$ in (9) shows that $\phi(a_m) \in N^G$, a contradiction. This proves (1).

For (2), let $x \in M^G$. We may write
\[
x = \sum_{i=0}^{m} \mu_i b_i
\]
for some coefficients μ_i. Then
\[
\phi(x) = \sum_{i=0}^{m} \mu_i \phi(b_i) = \mu_0 \phi(Xa_0) + \sum_{i=1}^{m} \mu_i \phi(Ya_{i-1}) = \mu_0 \phi(a_0) + Y\phi(\sum_{i=1}^{n} \mu_i a_i) = 0
\]
by (1).

The following is immediate:

Corollary 24. Let $L \cong V_{-(2l+1)}$, $M \cong V_{-(2m+1)}$ and $N \cong V_{-(2n+1)}$ for some $l > m > n \geq 0$. Let $\phi \in \text{Hom}_{kG}(M, N)$ and $\psi \in \text{Hom}_{kG}(L, M)$. Then $\phi \circ \psi = 0$.

We may now proceed with the proof of Theorem 2:

Proof. Let $i, j > 0$. Let $\alpha \in H^i(G, k)$ and $\beta \in H^j(G, k)$. Choose $\phi \in \text{Hom}_{kG}(\Omega^i_G(k), k)$ and $\psi \in \text{Hom}_{kG}(\Omega^j_G(k), k)$, such that the equivalence classes
\[
[\phi] \in \text{Hom}_{kG}(\Omega^i_G(k), k), [\psi] \in \text{Hom}_{kG}(\Omega^j_G(k), k)
\]
represent α and β respectively. By definition, $\alpha \sim \beta$ is represented by $[\phi \circ \Omega^i_G(\psi)]$.

By Lemma 12 we have
\[
\phi \in \text{Hom}(V_{-(2i+1)}, V_{-(i-1)}), \Omega^i_G(\psi) \in \text{Hom}(V_{-(2i+2j+1)}, V_{-(2i+1)})
\]
and by Corollary 24 the composition of these two is the trivial map.
REFERENCES

[1] J. L. Alperin. Diagrams for modules. *J. Pure Appl. Algebra*, 16(2):111–119, 1980.
[2] D. J. Benson. *Representations and cohomology. I*, volume 30 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, second edition, 1998. Basic representation theory of finite groups and associative algebras.
[3] D. J. Benson. *Representations and cohomology. II*, volume 31 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, second edition, 1998. Cohomology of groups and modules.
[4] James V. Blowers. The cohomology rings of certain finite permutation representations. *Proc. Amer. Math. Soc.*, 45:157–163, 1974.
[5] Daniel G. Brown. Relative cohomology of finite groups and polynomial growth. *J. Pure Appl. Algebra*, 97(1):1–13, 1994.
[6] Jon F. Carlson. Cohomology and representation theory. In *Group representation theory*, pages 3–45. EPFL Press, Lausanne, 2007.
[7] Sunil Chebolu and Ján Minác. Representations of the miraculous Klein group. *Math. Newsl.*, 21/22(4-1):135–145, 2012.
[8] S. B. Conlon. Modular representations of $C_2 \times C_2$. *J. Austral. Math. Soc.*, 10:363–366, 1969.
[9] Jonathan Elmer. Symmetric powers and modular invariants of elementary abelian p-groups. *J. Algebra*, 492:157–184, 2017.
[10] Semra Pamuk and Ergün Yalçın. Relative group cohomology and the orbit category. *Comm. Algebra*, 42(7):3220–3243, 2014.

Middlesex University, The Burroughs, Hendon, London, NW4 4BT UK
Email address: j.elmer@mdx.ac.uk