New primers for promising single-copy genes in fungal phylogenetics and systematics

I. Schmitt1, A. Crespo2, P.K. Divakar4, J.D. Fankhauser1, E. Herman-Sackett3, K. Kalb4, M.P. Nelsen3,7, N.A. Nelson1,6, E. Rivas-Plata3,7, A.D. Shimp1, T. Widholm3,7, H.T. Lumbersch3

Key words
Ascomycota
DNA replication licensing factor evolution
lichenised fungi
Mcm7
MS277
MS456
phylogeny
pre-rRNA processing protein
coding
Tsr1

Abstract Developing powerful phylogenetic markers is a key concern in fungal phylogenetics. Here we report degenerate primers that amplify the single-copy genes Mcm7 (MS456) and Tsr1 (MS277) across a wide range of Pezizomycotina (Ascomycota). Phylogenetic analyses of 59 taxa belonging to the Eurotiomycetes, Leotiomycetes, Lichinomycetes and Sordariomycetes, indicate the utility of these loci for fungal phylogenetics at taxonomic levels ranging from genus to class. We also tested the new primers in silico using sequences of Saccharomyces, Taphrinomycotina and Basidiomycota to predict their potential of amplifying widely across the Fungi. The analyses suggest that the new primers will need no, or only minor sequence modifications to amplify Saccharomyces, Taphrinomycotina and Basidiomycota.

Article info Received: 5 May 2009; Accepted: 1 July 2009; Published: 4 August 2009.

INTRODUCTION

Molecular systematics has revolutionised our view of fungal evolution. Recent large scale sequencing efforts resulted in comprehensive multi-locus phylogenies, which have significantly improved our understanding of phylogenetic relationships within fungi (Binder & Hibbett 2002, Lumbsch et al. 2004, Lutzoni et al. 2004, James et al. 2006). These data led to the first phylogenetic classification of the Fungi (Hibbett et al. 2007). However, early events in fungal evolution still remain uncertain because of missing support and resolution at the backbone of the phylogeny. We lack information, for example, about the relationships of the different ascomycete classes to one another, or the evolution within major lineages, such as the lichenised Lecanoromycetes, or the basidiomycete clade Agaricomycetes. Robust and well-supported phylogenies are essential for a better understanding of fungal evolution, and a prerequisite for studies aiming at reconstructing the evolution of non-molecular characters on the background of a molecular phylogeny.

Commonly used molecular loci in fungal phylogenetics include nuclear and mitochondrial ribosomal rDNA (18S, 28S, ITS, IGS, mtSSU, mtLSU), as well as protein-coding genes, such as RNA polymerases (RPB1 and RPB2), β-tubulin, γ-actin, ATP synthase (ATP6), and elongation factor EF-1α (TEF1α). Some single-copy protein-coding genes such as RPB1 and RPB2 are promising for yielding well resolved and highly supported phylogenies (Liu & Hall 2004, Reeb et al. 2004, Crespo et al. 2007, Lumbsch et al. 2007). Other protein-coding genes, such as the tubulins, are present in the genome in multiple copies and thus have the potential of being phylogenetically misleading (Landvik et al. 2001). Generally, slow evolving loci are more suitable for reconstruction of deep phylogenetic relationships, while loci with high rates of evolution are better for the reconstruction of more recent evolutionary events. Ribosomal loci with high and heterogeneous rates of change, such as ITS, IGS and mtSSU rDNA, can be used to distinguish taxa at the genus and species level. However, the non-coding regions of these loci are prone to significant length variation, making alignment of distantly related taxa problematic. Fast evolving ribosomal genes are therefore less useful in large scale concatenated analyses involving higher-level phylogenetic relationships. Molecular systematists are constantly searching for loci that are conserved enough to produce reliable alignments, and at the same time have sufficient variability to yield well resolved and well supported phylogenies. Analysing phylogenetic relationships at lower and higher taxonomic levels simultaneously, while using only a few loci, is desirable, because sequencing entire genomes or even multiple loci is not feasible for many phylogenetically interesting taxa. Fungal material suitable for molecular study is often limited, and culturing of many species impossible.

In a recent study Aguileta et al. (2008) used a bioinformatics approach to assess the performance of single-copy protein-coding genes for fungal phylogenetics. Their analyses of 30 published fungal genomes revealed two loci, MS277 and MS456, which outperformed all other single-copy genes in phylogenetic utility. MS277 corresponds to the gene Tsr1, required for rRNA
Table 1: Material and DNA sequences used in this study.

Species	Order	Class	Source	GenBank accession
Aejlomyces capsulatus	Ostropales	Eurotiomycetes		
Arctonia delicata	Lecanorales	Lecanoromycetes	Sweden, 2002, Palice s.n. (F)	XM_001538714 XM_001541629
Arctonia teretiscula	Lecanorales	Lecanoromycetes	China (GZU – holotype)	XM_007316393 QQ_007316393
Aspergillus clavatus	Eurotiales	Eurotiomycetes		
Aspergillus fumigatus	Eurotiales	Eurotiomycetes		
Aspergillus nidulans	Eurotiales	Eurotiomycetes		
Aspergillus niger	Eurotiales	Eurotiomycetes		
Gibberella zeae	Hypocreales	Sordariomycetes		
Lecanora allophana	Lecanorales	Lecanoromycetes	Costa Rica, Lücking 16500th (F)	QQ_007316393 QQ_007316393
Lecanora carpinea	Lecanorales	Lecanoromycetes	Peru, Lumbsch 19334 (MAF)	QQ_007316393 QQ_007316393
Lecanora chloraidea	Lecanorales	Lecanoromycetes	Turkey, Lumbsch 19622 (F)	QQ_007316393 QQ_007316393
Lecanora margarodes	Lecanorales	Lecanoromycetes	Australia, Lumbsch 19066 (F)	QQ_007316393 QQ_007316393
Lecanora pulcaris	Lecanorales	Lecanoromycetes	Turkey, Lumbsch 19627c (F)	QQ_007316393 QQ_007316393
Lecanora subcarpinea	Lecanorales	Lecanoromycetes	Turkey, Lumbsch 19622a (F)	QQ_007316393 QQ_007316393
Lobothallia radiosa	Sordariomycetes	–		
Magnaportia grisea	Sordariomycetes	–	XM_364455 XM_368157	
Malcolmiiella psychrothioides	Ostropales	Lecanoromycetes	Costa Rica, Lücking s.n. (F)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 1	Ostropales	Lecanoromycetes	Thailand, Kaib 37092 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 2	Ostropales	Lecanoromycetes	Thailand, Kaib 36895 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 3	Ostropales	Lecanoromycetes	Thailand, Kaib 37093 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 4	Ostropales	Lecanoromycetes	Thailand, Kaib 36658 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 5	Ostropales	Lecanoromycetes	Thailand, Kaib 37060 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 6	Ostropales	Lecanoromycetes	Thailand, Kaib 37072 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 7	Ostropales	Lecanoromycetes	Thailand, Kaib 36832 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 8	Ostropales	Lecanoromycetes	Thailand, Kaib 37005 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 9	Ostropales	Lecanoromycetes	Thailand, Kaib 36963 (hb. Kaib)	QQ_007316393 QQ_007316393
Malcolmiiella sp. 10	Ostropales	Lecanoromycetes	Thailand, Kaib 37086 (hb. Kaib)	QQ_007316393 QQ_007316393
Neurosora crassa	Sordariomycetes	–	XM_001260497 XM_001260746	
Ochrolechia parella	Pertusarias	Lecanoromycetes	Turkey, Lumbsch 19625g (MIN)	QQ_007316393 QQ_007316393
Ochrolechia subpallescens	Pertusarias	Lecanoromycetes	USA, Lumbsch 1990a & Schmitt (MIN)	QQ_007316393 QQ_007316393
Parmeliopsis hyperopta	Lecanorales	Lecanoromycetes	Spain (MAF-Lich 10181)	QQ_007316393 QQ_007316393
Peltula euplica	Lichinorales	Lichinomycetes	USA, Lumbsch 19923b & Schmitt (MIN)	QQ_007316393 QQ_007316393
Pseudofusarium mameffii	Eurotiales	Eurotiomycetes		QQ_007316393 QQ_007316393
Pseudofusarium ampelaster	Pertusarias	Lecanoromycetes	USA, Lumbsch 1925a & Schmitt (MIN)	QQ_007316393 QQ_007316393
Pseudofusarium velatum	Pertusarias	Lecanoromycetes	USA, Lumbsch 19913c & Schmitt (MIN)	QQ_007316393 QQ_007316393
Podospora anserina	Sordariomycetes	–	XM_001912857 XM_001909251	
Psilocarpella delicata	Lecanorales	Lecanoromycetes	Peru, Lumbsch 19302g (F)	QQ_007316393 QQ_007316393
Pyrenula subpseudolida	Pyrenulales	Lecanoromycetes	Costa Rica, Lücking 17500f (F)	QQ_007316393 QQ_007316393
Pyrgillus javanicus	Pyrenulales	Lecanoromycetes	Australia, Lumbsch 1918e (F)	QQ_007316393 QQ_007316393
Sclerotinia sclerotiorum	Helotiales	Leotiomycetes		QQ_007316393 QQ_007316393
Umbrillicaria leprea	incertae sedis	Lecanoromycetes	Peru, Lumbsch 19355a (F)	QQ_007316393 QQ_007316393
Usnea endochrysea	Lecanorales	Lecanoromycetes	USA, Buck 51175 (hb. Lendemer)	QQ_007316393 QQ_007316393
Vernacularia muralis	Verrucariales	Verrucariomycetes	Czech Republic, Palice 6011 (hb. Palice)	QQ_007316393 QQ_007316393

Table 2: Primers developed in the current study.

Primer Name	Direction	Sequence (5'–3')	Position in A. nidulans mRNA (XM_658504 and XM_658778)	Corresponding amino acid sequence in A. nidulans (AN5992 and AN6266)	Length	Degeneracy
Mmcl7-079for For	ACI MGI GTI TCV GAY GTH AAR CC	709	TRVSVDKYP	23 bp	32	
Mmcl7-1348rev Rev	GAY TTD GCI GCI GCI GGR TCV CCC AT	1348	MGDGPVAKS	26 bp	16	
Mmcl7-1447rev Rev	C ATI GCI GCI GCI GTR AGR CC	1447	GLTAAXM	24 bp	8	
Tar1-1453for For	GAR TTC CCI GAY GAY ATY GAR CT	1453	EPDEIELPH	23 bp	32	
Tar1-1459for For	CCI GAY GAR ATY GAR CII CAY CC	1459	PDEIELPH	23 bp	32	
Tar1-2308rev Rev	CTT RAA RTA ICC RTG IGT ICC	2308	GTHGYFK	21 bp	8	
accumulation during biogenesis of the ribosome (Gelpin et al. 2001), while MS456 corresponds to the gene Mcm7, a DNA replication licensing factor required for DNA replication initiation and cell proliferation (Moir et al. 1982, Kearsey & Labib 1998). Alignments based on these two loci alone recovered phylogenies that had the same topology, resolution power, and branch support as phylogenies based on a concatenated analysis of all 135 orthologous single-copy genes identified from fungal genomes (Aguilera et al. 2008). Strikingly, the authors report that most protein-coding genes commonly used in fungal systems, such as RPB1, RPB2, TEF1, β-tubulin, and γ-actin are not found among the best performing genes.

In the current study we designed degenerate primers to amplify a 600–800 bp fragment of each, MS277 and MS456, over a wide range of Pezizomycotina. We tested variability and phylogenetic utility of these loci at taxonomic levels ranging from genus to class. Our analyses include in silico comparisons of the new primers to sequences of Saccharomycotina and Basidiomycota to predict primer utility in these phylogenetic groups.

MATERIALS AND METHODS

Material and GenBank sequences used in the current study are listed in Table 1. We designed new degenerate primers based on amino acid alignments of Mcm7 (MS456) and Tsr1 (MS277) of euascomycete sequences available in GenBank. These alignments included members of Dothideomycetes, Eurotiumycetes, Leotiumycetes and Sordariomycetes. Primer sequences and annealing conditions are reported in Table 2 and 3. The locations of the fragments amplified by the new primers to sequences of Aspergillus nidulans mRNA (XM_658504 and XM_658778) as reference sequences. GenBank accession numbers XM_658504 and XM_658778). Saccharomyces cerevisiae, Cryptococcus neoformans, and Schizosaccharomyces pombe (Applied Biosystems), 2.5 μL buffer, 2 μL dNTPs, 2.5–4 μL DNA template. We found that increasing the amount of forward primer Tsr1-1459for to 2.5 μL, as well as adding 2 μL MgCl (20 mM) to PCR reactions involving PCR beads often improved PCR results. PCR cycling conditions for Mcm7-709for/Mcm7-1144rev and Mcm7-709for/Mcm7-1348rev (MS456) were: initial denaturation 94 °C for 10 min, followed by 38 cycles of 94 °C for 45 s, 56 °C for 50 s, 72 °C for 1 min, and final elongation 72 °C for 5 min. PCR cycling conditions for Tsr1-1459for/Tsr1-2308rev (MS277) were the same as above except with 49 °C annealing temperature. Amplification products were stained with EZ-Vision DNA dye (Amresco) and viewed on 1 % low melt agarose gels. We excised bands of the expected length from the gel and purified them using GELase (Epitect). Alternatively, PCR products were cleaned using the BioLite Columns kit (Biotools, Madrid) according to the manufacturer’s instructions. We sequenced the fragments using Big Dye v3.1 chemistry (Applied Biosystems) and the same primers as for PCR. Cycle sequencing was executed with the following program: initial denaturation for 1 min at 96 °C followed by 32 cycles of 96 °C for 15 s, 50 °C for 10 s, 60 °C for 4 min. Sequenced products were precipitated with 25 μL of 100 % EtOH mixed with 1 μL of 3 M NaOAc, and 1 μl of EDTA, before they were loaded on an ABI PRISM 3730 DNA Analyser (Applied Biosystems). We assembled partial sequences using SeqMan v4.03 (Lasergene) and edited conflicts manually. We aligned the sequences based on amino acid sequence using ClustalW as implemented in the program BioEdit v7.0.9 (Hall 1999) and subsequently translated them back to nucleotides.

Phylogenetic analyses

We assembled two alignments including the same 59 taxa each. For phylogenetic analysis we used a maximum parsimony (MP), maximum likelihood (ML) and a Bayesian approach (B/MCMC) (Larget & Simon 1999, Huelsenbeck et al. 2001). We performed all analyses on the single gene alignments as well as on a combined alignment. We tested for potential conflict between individual datasets by comparing the 75 % MP bootstrap consensus trees. We used PAUP v4.0 (Swofford 2003), GARLI v0.96 (Zwickl 2006) and MrBayes v3.1.2. (Huelsenbeck & Ronquist 2001) to analyse the alignments. MP analyses included 100 replicates with random sequence additions and TBR branch swapping in effect. MP bootstrapping (Felsenstein 1985) was performed based on 2 000 replicates with the same settings as for the

Gene	Primer combination	Approximate fragment length	Annealing temp.	PCR success (% of attempts)
Mcm7 (MS456)	Mcm7-709for/Mcm7-1348rev	640 bp	56 °C	80 %
Mcm7 (MS456)	Mcm7-709for/Mcm7-1447rev	740 bp	56 °C	50 %
Tsr1 (MS277)	Tsr1-1459for/Tsr1-2308rev	750 bp	49 °C	40 %
Tsr1 (MS277)	Tsr1-1453for/Tsr1-2308rev	750 bp	49 °C	40 %

Table 3 Annealing conditions and PCR success rates for primers used in this study.

Table 4 Taxa used to test the fit of the new primers in silico.

Taxon	Mcm7	Tsr1
Saccharomyccotina	NP_984137	NP_984911
Ashbya gossypii	XP_454998	XP_454177
Kluyveromycyes lactis	XP_570881	NP_010223
Yarrowia lipolytica	XP_501070	XP_500653
Taphrinomycotina	NP_595645	NP_593391
Schizosaccharomycyes pombe	NP_595645	NP_593391

Fig. 1 Locations of the new primers for Mcm7 and Tsr1 using Aspergillus nidulans mRNA (XM_658504 and XM_658778) as reference sequence. Shaded areas in Tsr1 indicate regions of high sequence variability.
MP search. Likelihood analyses were run using the GTR+I+G model and default settings in GARLI. For Bayesian analyses we partitioned the dataset into three parts (each codon position) and each partition was allowed to have its own parameter values (Nylander et al. 2004). No molecular clock was assumed, and no interpartition rate heterogeneity was allowed. Heating of the chains was set to 0.2. A run with 3 000 000 generations starting with a random tree and employing 4 simultaneous chains was executed for the individual datasets. Every 100th tree was saved into a file. The first 300 000 generations (i.e. the first 3 000 trees) were deleted as the ‘burn in’ of the chain. For the combined alignment dataset we executed a run with 6 000 000 generations and deleted the initial 600 000 generations (i.e. the first 6 000 trees). We plotted the log-likelihood scores of sample points against generation time using TRACER v1.0 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure that stationarity was achieved after the first 300 000 (600 000 for the combined alignment dataset) generations by checking whether the log-likelihood values of the sample points reached a stable equilibrium value (Huelsenbeck & Ronquist 2001). Additionally, we used AWTY (Nylander et al. 2008) to compare splits frequencies in the different runs and to plot cumulative split frequencies to ensure that stationarity was reached. We calculated a majority rule consensus tree with average branch lengths of the remaining 54 000 trees (27 000 from each of the parallel runs) using the sumt option of MrBayes. For the combined alignment dataset the majority rule consensus tree consisted of 108 000 (2 × 54 000) trees from the stationarity phase. Posterior probabilities were obtained for each clade. Clades with posterior probabilities ≥ 0.95 were considered as strongly supported. Phylogenetic trees were visualised using the program Treeview (Page 1996).

RESULTS

We report 84 new sequences of Mcm7 (MS456) and Tsr1 (MS277) for 42 lichenised ascomycetes belonging to the classes Eurotiomycetes, Lecanoromycetes and Lichinomycetes (Table 1). PCR success rates for our newly developed primers were highest for the primer combination Mcm7-709for/Mcm7-709rev and Tsr1-506for/Tsr1-913rev. Sequence alignments were performed using Clustal X, and were manually adjusted using Sequencher 4.7 (Gene Codes, Ann Arbor, MI, USA). Phylogenetic analyses were performed using maximum parsimony (MP) and Bayesian inference (BI). For MP search, 1000 bootstrap replicates were performed using PAUP* version 4.0b10 (Swofford 2002) according to the following settings: stepwise addition, tree bisection reconnection (TBR) branch swapping and 1000 random addition replicates. For BI analyses we used MrBayes version 3.1.2 (Huelsenbeck & Ronquist 2001). We ran 8 parallel chains, each for 12 000 000 generations (burn-in = 3 000 000 generations) with increment of 100 trees per generation. The trees were sampled every 100 generations. The combined alignment dataset consisted of 1203 bp. This is a 50 % majority rule consensus tree based on a sampling of 108 000 B/MCMC trees. Bold branches indicate posterior probabilities ≥ 0.95. Numbers above branches are maximum parsimony bootstrap support values ≥ 70 based on 2 000 random addition replicates.

Fig. 2 Phylogeny of Pezizomycotina (Ascomycota) based on a combined alignment of Mcm7 (MS456) and Tsr1 (MS277) sequences. Total alignment length is 1203 bp. This is a 50 % majority rule consensus tree based on a sampling of 108 000 B/MCMC trees. Bold branches indicate posterior probabilities ≥ 0.95. Numbers above branches are maximum parsimony bootstrap support values ≥ 70 based on 2 000 random addition replicates.
1348rev (± 80 %), while Mcm7-709for/Mcm7-1447rev worked in ± 50 % of the attempted PCRs, and the Tsr1 primers in ± 40 %. Multiple bands were sometimes present when we used the primer combinations Mcm7-709for/Mcm7-1447rev and Tsr1-1458for/Tsr1-2308rev. Tsr1-1453for is a modification of Tsr1-1458for that we used under the same annealing conditions. We used the Aspergillus nidulans mRNA sequences of Mcm7 (XM_658504) and Tsr1 (XM_658778) as references for the locations of our primers. The full length genomic DNA sequences of Aspergillus nidulans Mcm7 and Tsr1 contain 1–2 introns of ± 60 bp length, which, however, do not overlap with the sequence fragments amplified by primers developed in this study. We found introns (length: 189–272 bp) with characteristic GT-intron-AG splice sites near the reverse primer (Tsr1-2308rev) in Tsr1 in three Lecanora species. Two hydropervariable regions containing many gaps (Tsr1: positions 198–221 and 518–628) were excluded from the phylogenetic analysis. The Mcm7 alignment contained no gaps and no ambiguously aligned regions. Properties of the sequences and alignments are summarized in Table 5. We performed parsimony bootstrap analyses on each individual dataset, and examined 75 % bootstrap consensus trees for conflict (Lutzoni et al. 2004). We used the program Modeltest v3.7 (Posada & Crandall 1998) to determine the nucleotide substitution model that best fit our data. For both datasets the program selected the GTR+I+G model.

The tree topologies obtained from the single gene datasets resulting from MP, ML and Bayesian analyses did not show any strongly supported conflicts. Thus, we present only the B/MCMC tree of the combined analysis (Fig. 2). Statistical values and number of supported nodes obtained by MP, ML and Bayesian analyses of single and combined datasets are summarised in Table 6. The Sordariomycetes were used as out-group. The classes Sordariomycetes, Leotiomyces, Eurotiomyces and Lecanoromycetes are monophyletic and highly supported (PP ≥ 95). Lichinomycetes is only represented by a single species, Peitula euploca. The phylogenetic estimate obtained from the combined analysis of Mcm7 and Tsr1 agrees with previously published phylogenies (Gargas et al. 1995, James et al. 2006). Lecanoromycetes form a supported sister group relationship with Eurotiomyces. Basal to this are Lichinomycetes and Leotiomyces. Within Lecanoromycetes, the subclasses Lecanoromycetidae and Ostropomycetidae form supported groups, while the genus Umbilicaria is in an unsupported position at the base of Lecanoromycetes. Within

Table 5 Mcm7 and Tsr1 sequence and alignment properties.

	Mcm7 (MS456)	Tsr1 (MS277)
Introns	None	some (length: 189–272 bp)
Total alignment length (bp)	573	827
Hypervariable (excluded) sites	None	188
Variable sites	357/573 (62.3 %)	489/629 (77.7 %)
Constant sites	216/573 (37.7 %)	140/629 (22.3 %)

Within-genus sequence variation (p-distances) excluding hypervariable sites:

- Malcolmia (11 OTUs): 0.0065–0.2237
- Aspergillus (7 OTUs): 0.0230–0.2219
- Lecanora (6 OTUs): 0.0377–0.2756

Introns None some (length: 189–272 bp)

Table 6 Comparison of phylogenetic analyses (MP, ML, B/MCMC) between single and combined datasets.

	Mcm7 (MS456)	Tsr1 (MS277)	Combined
MP tree length	3537	4606	8200
Number of MP trees	1	12	8
Consistency Index (CI) excluding uninformative sites	None	0.195	0.216
# of nodes supported by bootstrap ≥ 70 in MP analyses (based on 2 000 replicates)	23	30	37
ML score using GTR+I+G (GARLI)	-13732	-18424	-32262
# of nodes supported by PP ≥ 95 in B/MCMC analyses	36	38	44
EUROTOMYCETES, EUROTOMYCETIDAE AND CHAETOThYRIONYCTIDAE form supported clades. We included multiple species/strains of the genera Aspergillus (7), Lecanora (6), and Malcomiella (11) to assess within-genus variation of the analysed loci, as well as resolution power at low taxonomic levels. Genetic distances within Aspergillus, Lecanora and Malcomiella are reported in Table 5. Each of these genera forms a supported monophyletic clade with high internal resolution and support (Fig. 2).

We aligned selected members of Saccharomyces, Taphrinomyces and Basidiomyces (Table 4) with our datasets and compared the new primer sequences to the corresponding positions in these taxa. The low number of mismatches suggests that the new primers will need no adjustments or only minor modifications to also fit these phylogenetic groups (Fig. 3).

DISCUSSION

We developed new degenerate primers, which amplify fragments of the single-copy protein-coding genes Mcm7 and Tsr1 in Pezizomyces. Our studies confirm that Mcm7 and Tsr1 are suitable loci for the reconstruction of phylogenetic relationships among fungi (Aguilera et al. 2008). We were able to obtain sequences from representatives of 5 classes and 11 orders of euascomycetes, demonstrating the ability of the primers to amplify a wide range of unrelated taxa. Additionally we tested primer fit in silico using members of Saccharomyces, Taphrinomyces and Basidiomyces and found that the new primers can be used for these groups as well, possibly with slight sequence modifications.

Our analyses within Pezizomyces show that Mcm7 and Tsr1 are able to resolve large scale as well as fine scale phylogenetic relationships. The sequences are alignable across a wide range of unrelated taxa and at the same time have sufficient variability to resolve within-genus relationships (Table 5). This property sets the new loci apart from commonly used ribosomal markers, such as ITS or mtSSU, which also have the power to resolve lower level phylogenetic relationships, but may yield ambiguous and saturated alignments, when used to compare distantly related taxa. We predict that Mcm7 and Tsr1 have an even higher potential to resolve phylogenetic relationships between fungi when analyzed in combination with other routinely used datasets, such as 18S, 28S, RPB1 and RPB2.

Mcm7 and Tsr1 are two relatively long (~2.5 kb) single-copy genes which can be aligned across major fungal lineages, such as Ascomycota and Basidiomycota (Aguilera et al. 2008). The fact that Homo sapiens sequences can be used as outgroups (Aguilera et al. 2008, www.systematicbiology.org, online Appendix 5) indicates that these loci might also be useful for phylogenetic studies involving fungi as well as non-fungal organisms.

Acknowledgements We thank Fabian Ernemann (Chicago) and Paul Nelson (St. Paul) for support with lab work and sequence editing. This study was supported by start-up funds to I.S. from the University of Minnesota, Student Research Funding to NAM from Augsburg College, NSF grants DEB-0516116 (PI: HTL) and DEB-0715660 (PI: Robert Lücking) to the Field Museum, and the Spanish Ministry of Science and Innovation through a Ramon y Cajal grant (RYC2007-01576) to PKD. We wish to thank James Lendemer (New York), Robert Lücking (Chicago), and Zdenek Palice (Prague) for allowing us to use their collections for DNA isolation. Several of the new sequences were generated in the Pritzker Laboratory at the Field Museum.

REFERENCES

Aguilera G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T. 2008. Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology 57: 613—627.

Binder M, Hibbett DS. 2002. Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Molecular Phylogenetics and Evolution 22: 76—90.

Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, Wiklund E, Bawingan PA, Wedin M. 2007. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812—824.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783—791.

Gargas A, Depriest PT, Grube M, Tehler A. 1995. Multiple origins of lichen symbioses in Fungi suggested by SSU rDNA phylogeny. Science 268: 1490—1495.

Gelperin D, Horton L, Beckman J, Hensold J, Lemmon SK. 2001. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. mRNA—A Publication of the RNA Society 7: 1268—1283.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95—98.

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509—547.

Huelsenberg JP, Ronquist F. 2001. MBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754—757.

Huelsenberg JP, Ronquist F, Nielsen R, Bolhback JP. 2001. Evolution – Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310—2314.

James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 516—522.

Kearsey SE, Labib K. 1998. MCM proteins: evolution, properties, and role in DNA replication. Biochimica et Biophysica Acta 1398: 113—136.

Landvik S, Eriksson OE, Berbee ML. 2001. Neoeleota — a fungal dinosaur? Evidence from beta-tubulin amino acid sequences. Mycologia 93: 1151—1163.

Larget B, Simon DL. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750—759.

Liu YJ, Hall BD. 2004. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II, phylogeny. Proceedings of the National Academy of Sciences 101: 4507—4512.

Lumbsch HT, Schmitt I, Mangold A, Wedin M. 2007. Ascomycota sequences can be used as outgroups (Aguilera et al. 2008, www.systematicbiology.org, online Appendix 5) indicates that these loci might also be useful for phylogenetic studies involving fungi as well as non-fungal organisms.