Accuracy of percutaneous pedicle screw insertion in spinal fixation of traumatic thoracic and lumbar spine fractures

Tamer Orief, Mohammad Alfawareh¹, Mohammad Halawani¹, Walid Attia¹, Khaled Almusrea¹

Department of Neurosurgery, Sheikh Khalifa Specialty Hospital, Ras Al-Khaimah, United Arab Emirates; Department of Spine Surgery, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia

E-mail: *Tamer Orief - tamer.orief@sksh.ae; Mohammad Alfawareh - alfawarehm@yahoo.com; Mohammad Halawani - halawani7@hotmail.com; Walid Attia - attwali@hotmail.com; Khaled Almusrea - kalmusrea@hotmail.com

*Corresponding author

Received: 06 January 18 Accepted: 13 March 18 Published: 10 April 18

Abstract

Background: Percutaneous insertion of pedicle screws was developed as a minimally invasive alternative to the different open spinal procedures. Here, we determined the accuracy of percutaneous pedicle screw insertion.

Methods: For 60 consecutive patients with thoracic/lumbar spine fractures, computed tomography (CT) studies were utilized to assess the accuracy of percutaneous pedicle screw positioning. A screw was identified as cortical encroachment if the pedicle cortex could not be visualized, while Frank penetration was defined if screw trajectory being located obviously outside the pedicle boundaries [e.g., subdivided as minor (<3 mm), moderate (3–6 mm), and severe (>6 mm)].

Results: Sixty patients received 410 pedicle screws placed percutaneously. Of these, 294 screws (71.7%) were ideally placed inside the pedicle. Alternatively, 56 screws (13.6%: 18 cases) showed pedicle encroachment and 60 screws (14.6%: 23 cases) showed pedicle penetration, e.g., 38 (9.2%) minor penetration and 22 (5.3%) were malpositioned (4.8% moderate and 0.5% severe). New postoperative neurological symptoms were identified in two cases (3.3%), where severe screw penetration was identified.

Conclusion: Percutaneous pedicle screw insertion in 60 patients receiving 410 percutaneously placed pedicle screws yielded 294 ideally placed, 56 showing pedicle encroachment, 60 (14.3%, 23 cases) exhibiting varying degrees of pedicle penetration, with 2 showing new postoperative neurological deficits (severe screw misplacement). Of interest, this technique proved to be more challenging in the thoracic spine. Larger series are needed to better establish the average rate of neurological injuries associated with percutaneous thoracic/lumbar screw misplacement.

Key Words: Fixation, fractures, percutaneous, screw

How to cite this article: Orief T, Alfawareh M, Halawani M, Attia W, Almusrea K. Accuracy of percutaneous pedicle screw insertion in spinal fixation of traumatic thoracic and lumbar spine fractures. Surg Neurol Int 2018;9:78.

http://surgicalneurologyint.com/Accuracy-of-percutaneous-pedicle-screw-insertion-in-spinal-fixation-of-traumatic-thoracic-and-lumbar-spine-fractures/
INTRODUCTION

The percutaneous insertion of pedicle screws into the thoracic and/or lumbar spine (T/L) is a minimally invasive alternative to open surgical techniques. However, it is important to analyze the accuracy, safety, and reliability of the percutaneous T/L screw insertion as screw misplacement may contribute to neurological deficits and instability of the construct (e.g., resulting in screw loosening).

Here, we utilized computed tomography (CT) to document postoperative screw positioning in 60 consecutive patients with traumatic thoracic and lumbar spine fractures (e.g., axial assessment of medial and lateral pedicle penetration/breaches).

MATERIALS AND METHODS

Within the first week following traumatic spinal injuries, 60 consecutive patients underwent the percutaneous placement of 410 transpedicular screws to address thoracic and/or lumbar (T/L) spine fractures addressing Table 1. Those exhibiting T/L fractures with retropulsed bony segments or the need for spinal decompression were excluded from the study.

Preoperative CT scans were utilized to plan the appropriate screw diameter and length to be utilized intraoperatively. A classical percutaneous technique was utilized to insert 4.5 and 6.5 mm pedicle screws (e.g., depending on the pedicle diameter in the preoperative CT scans).

Within the first postoperative week, screw locations were evaluated on thin-slice CT scans by three independent observers (an experienced spinal surgeon and two senior radiologists). On CT, the cortical walls of the pedicles were examined for bone defects, while the most superior and inferior slices of each pedicle were assessed to detect caudal/cranial screw penetration. Frank screw malpositioning, as defined by Learch and Wiesner, and new postoperative neurological symptoms deficits were assessed for all patients\(^3\) [Table 2].

RESULTS

The highest level of percutaneous instrumentation of this series was T7, and the lowest was L5. Of 410 screws, 175 (42.6%) were placed at the thoraco-lumbar junction (T11–L2) [Figure 1]. According to CT, 294 of 410 screws (71.7%) were ideally placed inside the pedicle (e.g., in the middle on both axial/sagittal CTs) [Figure 2a and b]. In 18 cases, 56 screws (13.6%) showed pedicle encroachment [Figure 3a and b]. In 23 cases, 60 screws (14.6%) showed pedicle penetration, 38 (9.2%) mild, 20 (4.8%) moderate, and 2 (0.5%) showing severe pedicle penetration (e.g., at right T11 and L4 pedicles) [Figures 4–6, Table 3].

Only 2 patients (3.33%) exhibited new postoperative neurological deficits. In the first patient, the right L4 root injury was attributed to severe medial screw penetration of the right L4 pedicle: this deficit partially resolved after screw adjustment (motor fully resolved/residual sensory deficit) [Figure 6b]. The second patient exhibited a right L5 pedicle perforation, but improved without additional surgery [Figure 5b].

Four patients had pin tract superficial infection not related to the position of the screws; all were treated with antibiotics, and none of required revision surgery.

DISCUSSION

The reported misplacement rates for thoracic and lumbar percutaneously placed pedicle screws ranges

Table 1: Characteristics of the studied cases

Characteristics of the studied cases	Value	
Number	60	
Duration of the study	2014-2017	
Gender	Male 33	Female 27
Age	Range 19-67 years	Mean 43 years
Mechanism of the spine fracture	Motor Vehicle Accident	
	39 (65%)	21 (35%)

Table 2: Classification of screw position in the spine

Classification of screw malposition in the spine	Description
Encroachment penetration	If the Pedicle cortex could not be visualized
Minor	When screw trajectory was <3mm outside the pedicular boundaries
Moderate	When screw trajectory was 3-6 mm outside the pedicular boundaries
Severe	When screw trajectory was >6 mm outside the pedicular boundaries
In 1988, Weinstein et al. showed that simple roentgenograms were insufficient for the evaluation of adequate pedicle screw placement. Later, Farber et al. documented that CT scans showed 10 times more pedicle violations vs. radiographs. Different studies documented varying criteria for CT-documented pedicle screw misplacement. Heintel et al. evaluated 111 patients who underwent 502 percutaneous screw placements; 98% of screws were ideally placed in the pedicle according to their postoperative CT evaluations.

Schizas et al. reported a 23% incidence of screw penetration (15 patients, 60 percutaneous screws); severe pedicle penetration of 3.3% with an overall screw penetration rate of 30% on sagittal images.

In the present study, the authors utilized CT to postoperatively analyze the placement of 410 screws in 60 patients; 294 screws (71.7%) were ideally placed, 13.6% showed encroachment. Another 14.6% demonstrated screw penetration; mild (9.2%), moderate (4.8%), and severe (0.5%) [Table 3]. Of interest, the incidence of new neurological deficits resulting from pedicle screw malpositioning was 3.3% (2 cases).

Previously, different studies documented varying criteria for screw misplacement. Heintel et al. evaluated 111 patients who underwent 502 percutaneous screw placements; 98% of screws were ideally placed in the pedicle according to the postoperative CT evaluation.
Here the question is on the accuracy of CT analysis, given the nearly perfect incidence of screw placement. Schizas et al. reported a 23% incidence of screw penetration (15 patients, 60 percutaneous screws): severe pedicle penetration of 3.3% with an overall screw penetration rate of 30% was demonstrated on sagittal images. In other studies, the frequencies of new neurological deficits ranged from 2 to 5%.

CONCLUSION

Percutaneous thoracic/lumbar pedicle screw insertion is demanding and should only be performed by experienced spine surgeons familiar with the technique of pedicle screw placement. Notably, it is even more challenging in the thoracic spine. Although the risk of screw misplacement of 5.3% is low, larger series are needed to better establish the average rate of neurological injuries associated with screw misplacement.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Farber GL, Place HM, Mazur RA, Jones DE, Damiano TR. Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography. Spine 1995;20:1494-9.
2. Heintel TM, Berglehner A, Meffert R. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures: A prospective trial. Eur Spine J 2013;22:495-502.
3. Learch TJ, Massie JB, Pathria MN, Ahlgren BA, Garfin SR. Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: A proposed systematic approach to improve accuracy of interpretation. Spine (1976) 2004;29:767-73.
4. Schizas C, Michel J, Kosmopoulos V. Computed tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J 2007;16:613-7.
5. Schulze CJ, Munzinger E, Weber U. Clinical relevance of accuracy of pedicle screw placement. A computed tomographic-supported analysis. Spine 1998;23:2215-20.
6. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine 1988;13:1012-8.