Supplementary information

Impact of shorebird predation on intertidal macroinvertebrates in a key North African Atlantic wintering site: an experimental approach
L Joulami, R El Hamoumi, Z Daief, H Bazairi and RJ Lopes
African Journal of Marine Science 41(1)
https://doi.org/10.2989/1814232X.2018.1552193

Table S1: Shorebird biomass (g) expressed as average winter values, derived from birds at Sidi Moussa coastal lagoon, Morocco, captured by the authors (2011–2012) or from data published in Cramp (1983)

Species	Scientific name	Biomass (g)	Sample size	Source
Little stint	*Calidris minuta*	21	18	Authors’ data
Curlew sandpiper	*Calidris ferruginea*	51	5	Authors’ data
Dunlin	*Calidris alpina*	43	118	Authors’ data
Red knot	*Calidris canutus*	125	6	Authors’ data
Black-tailed godwit	*Limosa limosa*	260	3	Authors’ data
Bar-tailed godwit	*Limosa lapponica*	240	4	Authors’ data
Whimbrel	*Numenius phaeopus*	415	unknown	Cramp (1983)
Curlew	*Numenius arquata*	965	unknown	Cramp (1983)
Turnstone	*Arenaria interpres*	93	6	Authors’ data
Ringed plover	*Charadrius hiaticula*	48	13	Authors’ data
Kentish plover	*Charadrius alexandrinus*	36	8	Authors’ data
Common sandpiper	*Actitis hypoleucos*	50	unknown	Cramp (1983)
Greenshank	*Tringa nebularia*	209	unknown	Cramp (1983)
Redshank	*Tringa totanus*	110	44	Authors’ data
Grey plover	*Pluvialis squatarola*	211	7	Authors’ data
Oystercatcher	*Haematopus ostralegus*	587	unknown	Cramp (1983)

Reference
Cramp S (ed.). 1986. *Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic: waders to gulls*, vol. 3. Oxford: Oxford University Press.
Table S2: Shorebird numbers (n) and densities (ind. m⁻²) in the study area at Sidi Moussa lagoon, Morocco, during the experimental procedure

Species	2011	2012										
	July	August	September	October	November	December	January	February				
	n	ind. m⁻²										
Calidris minuta	12	0.04	16	0.05	5	0.01	26	0.08	21	0.06	4	0.01
Calidris ferruginea	0	0.00	15	0.04	6	0.02	103	0.31	82	0.24	16	0.05
Calidris alpina	28	0.08	429	1.28	435	1.30	994	2.97	938	2.80	499	1.49
Calidris canutus	0	0.00	0	0.00	10	0.03	3	0.01	0	0.00	4	0.01
Limosa limosa	2	0.01	17	0.05	57	0.17	17	0.05	3	0.01	0	0.00
Limosa lapponica	17	0.05	15	0.04	2	0.01	14	0.04	25	0.07	30	0.09
Numenius phaeopus	2	0.01	1	0.00	4	0.01	5	0.01	1	0.00	0	0.00
Numenius arquata	3	0.01	1	0.00	3	0.01	5	0.01	4	0.01	4	0.01
Arenaria interpres	8	0.02	19	0.06	21	0.06	29	0.09	23	0.07	29	0.09
Charadrius hiaticula	43	0.13	86	0.26	134	0.40	154	0.46	96	0.29	82	0.24
Charadrius alexandrinus	83	0.25	125	0.37	83	0.25	58	0.17	18	0.05	12	0.04
Actitis hypoleucos	0	0.00	2	0.01	0	0.00	0	0.00	1	0.00	0	0.00
Tringa nebularia	1	0.00	16	0.05	9	0.03	8	0.02	5	0.01	6	0.02
Tringa totanus	57	0.17	42	0.13	59	0.18	72	0.21	48	0.14	39	0.12
Pluvialis squatarola	32	0.10	47	0.14	77	0.23	77	0.23	65	0.19	70	0.21
Haematopus ostralegus	0	0.00	1	0.00	1	0.00	0	0.00	0	0.00	0	0.00
Total	297	0.89	840	2.51	936	2.79	1747	5.21	1339	4.00	839	2.50
	984	2.94	1239	3.70								
Table S3: Average and standard error (SE) of the means of density (D; ind. m\(^{-2}\)) and biomass (B; g ash-free dry weight [AFDW] m\(^{-2}\)) of all benthic macroinvertebrate species per month and per treatment, during the experimental procedure at Sidi Moussa lagoon, Morocco

Species	August 2011	November 2011	January 2012			
	Control	Exclosure	Control	Exclosure	Control	Exclosure
	D SE B SE	D SE B SE	D SE B SE	D SE B SE	D SE B SE	D SE B SE
Hydrobia ulvae	4 668 1 172 3.9 1.0	5 736 2 330 5.0 2.2	3 760 795.7 2.7 1.2	3 656 2 323 2.0 1.3	5 060 1 301 4.4 0.7	4 644 2 155 2.6 1.0
Abra terius	836 322.1 1.2 0.6	356 254.9 0.6 0.5	512 264.9 0.5 0.3	476 219.4 0.9 0.4	408 250.4 1.5 0.7	568 129.1 0.8 0.2
Nassarius pfeiferi	544 208.7 17.8 6.9	200 113.7 5.3 3.5	2 936 497.1 56.6 16.6	556 70.8 6.6 1.1	2 144 988.3 48.9 24.8	388 103.7 4.7 1.1
Corophium volutator	436 210.7 0.2 0.2	396 281.5 0.1 0.0	52 21.5 0.0 0.0	4 4.0 0.0 0.0	– – – –	4 4.0 0.0 0.0
Gibbula pennanti	420 186.1 4.7 2.4	28 15.0 0.8 0.6	248 90.0 3.1 1.0	44 19.4 0.5 0.2	128 33.8 4.6 2.7	176 60.5 2.6 0.9
Oligochaeta spp.	420 257.8 0.4 0.3	908 409.8 0.3 0.1	236 91.5 0.0 0.0	120 61.6 0.1 0.0	300 151.3 0.0 0.0	344 173.4 0.0 0.0
Cerastoderma edule	356 131.2 72.5 33.0	252 98.9 36.8 15.7	280 80.5 28.8 16.0	592 207.9 40.0 16.4	396 182.0 88.2 54.9	876 378.5 28.0 11.5
Amphipholis squamata	308 273.9 0.1 0.1	112 73.1 0.2 0.2	32 10.2 0.0 0.0	24 11.7 0.0 0.0	4 4.0 0.0 0.0	12 8.0 0.0 0.0
Actinia equina	232 89.6 1.8 1.0	80 24.5 3.3 2.4	72 22.4 1.4 0.7	172 37.7 2.8 0.6	76 30.6 1.5 0.7	156 73.6 1.3 0.7
Melita palmate	220 200.1 0.1 0.1	60 29.7 0.0 0.0	– – – –	64 29.9 0.0 0.0	8 8.0 0.0 0.0	36 14.7 0.0 0.0
Capitella capitata	176 65.5 0.1 0.0	72 38.3 0.0 0.0	72 27.3 0.1 0.0	32 12.0 0.0 0.0	88 50.8 0.1 0.0	28 15.0 0.0 0.0
Heteromastus filiformis	124 54.2 8.1 8.0	48 22.4 0.0 0.0	48 24.2 0.2 0.2	64 29.3 0.1 0.1	140 69.6 0.5 0.3	96 26.4 0.3 0.1
Tanais dulongii	100 68.7 0.0 0.0	48 27.3 0.0 0.0	32 13.6 0.0 0.0	132 56.1 0.1 0.0	20 15.5 0.0 0.0	148 58.9 0.1 0.0
Monodonta sp.	64 54.6 7.0 6.4	36 36.0 1.1 1.1	148 92.9 2.2 1.2	40 17.9 1.1 0.6	– – – –	4 4.0 0.1 0.1
Cerithium vulgatum	64 41.7 4.1 3.9	12 12.0 0.1 0.1	12 8.0 2.1 1.5	4 4.0 0.1 0.1	4 4.0 0.3 0.3	12 8.0 0.0 0.0
Euclymene palmaritana	52 42.2 0.0 0.0	4 4.0 0.0 0.0	– – – –	– – – –	– – – –	12 12.0 0.0 0.0
Tapes decussatus	48 21.5 12.5 7.4	52 17.4 16.9 6.2	44 11.7 4.7 1.9	44 4.0 10.3 3.8	44 13.3 4.5 1.5	40 17.9 3.4 1.8
Hediste diversicolor	44 7.5 1.1 0.7	12 8.0 0.1 0.1	168 118.4 0.5 0.4	44 21.4 1.1 0.5	20 11.0 0.1 0.0	20 15.5 0.6 0.5
Nemeritiens spp.	44 23.2 0.4 0.4	12 8.0 0.0 0.0	4 4.0 0.0 0.0	12 12.0 0.0 0.0	20 11.0 0.0 0.0	16 7.5 0.0 0.0
Platyhelminthes species	44 24.0 0.1 0.1	– – – –	20 20.0 0.0 0.0	4 4.0 0.0 0.0	4 4.0 0.0 0.0	4 4.0 0.0 0.0

Note: D = density, SE = standard error, B = biomass (g AFDW m\(^{-2}\)).
Species	August 2011					November 2011					January 2012																								
	D	SE	B	SE		D	SE	B	SE		D	SE	B	SE																					
Prionospio tentaculata	44	34.3	0.0	0.0	0.0	8	4.9	0.0	0.0	0.0	8	4.9	0.0	0.0	0.0																				
Idotea chelipes	24	16.0	0.0	0.0	0.0	20	15.5	0.0	0.0	0.0	124	38.7	0.1	0.0	0.0																				
Chironomidae spp.	24	7.5	0.0	0.0	0.0	16	4.0	0.0	0.0	0.0	44	13.3	0.0	0.0	0.0																				
Abra alba	20	12.6	0.4	0.3	0.1	12	4.9	0.2	0.1		–	–	–	–																					
Cyathura carinata	20	12.6	0.2	0.2	0.2	12	12.0	0.0	0.0	0.0	20	15.5	0.0	0.0	0.0																				
Lagis keroni	20	15.5	0.0	0.0	0.0	12	8.0	0.0	0.0	0.0	72	30.1	0.2	0.1																					
Glycera tridactyla	16	9.8	0.0	0.0	0.0	12	12.0	0.0	0.0	0.0	4	4.0	0.0	0.0	0.0																				
Microdeutopus clifer	16	9.8	0.0	0.0	0.0	4	4.0	0.0	0.0	0.0	4	4.0	0.0	0.0																					
Lysianassa ceratina	12	12.0	0.0	0.0	0.0	32	20.6	0.0	0.0	0.0	4	4.0	0.0	0.0	36																				
Glyceria tridactyla	8	4.9	0.0	0.0	0.0	4	4.0	0.0	0.0	0.0	4	4.0	0.0	0.0	11.7																				
Carcinus maenas	8	4.9	0.0	0.0	0.0	24	11.7	0.7	0.6	0.0	4	4.0	0.0	0.0	8																				
Notomastus latericeus	8	8.0	0.0	0.0	0.0	8	8.0	0.0	0.0	0.0	–	–	–	–	–																				
Aonides oxycephala	8	8.0	0.0	0.0	0.0	12	8.0	0.0	0.0	0.0	28	17.4	0.0	0.0	16																				
Polyplacophora spp.	8	4.9	0.0	0.0	0.0	4	4.0	0.0	0.0	0.0	12	8.0	0.0	0.0	8																				
Scrobicularia plana	4	4.0	1.7	1.7	1.7	12	8.0	2.3	1.7		12	12.0	0.6	0.6	16																				
Upogebia pusilla	4	4.0	1.4	1.4	1.4	8	8.0	0.1	0.1	0.1	4	4.0	0.2	0.2	4																				
Natancia sp.	4	4.0	0.1	0.1	0.1	–	–	–	–	–	4	4.0	0.2	0.2	–																				
Asticella sp.	4	4.0	0.0	0.0	0.0	–	–	–	–	–	–	–	–	–	–																				
Diopatra neapollitana	4	4.0	0.0	0.0	0.0	–	–	–	–	–	12	8.0	0.2	0.2	–																				
Amphithoe ferox	4	4.0	0.0	0.0	0.0	–	–	–	–	–	4	4.0	0.1	0.1	–																				
Prionospio malongreni	4	4.0	0.0	0.0	0.0	8	8.0	0.0	0.0	0.0	–	–	–	–	–																				
Species	August 2011	November 2011	January 2012																																
--------------------------	-------------	---------------	--------------																																
	D	SE	B	SE																															
Haminoea navicula	–	–	–	–	4	4.0	0.0	0.0	–	–	–	–	8	4.9	0.0	0.0	–	–	–	–	16	7.5	0.0	0.0											
Lekanesphaera levii	–	–	–	–	–	–	–	–	12	8.0	0.0	0.0	–	–	–	–	4	4.0	0.0	0.0	–	–	–	–	–	–	–								
Loripes lucinalis	–	–	–	–	4	4.0	0.1	0.1	4	4.0	0.2	0.2	–	–	–	–	12	12.0	0.0	0.0	–	–	–	–	–	–	–								
Lumbrineris lateilli	–	–	–	–	4	4.0	0.0	0.0	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–					
Malacoceros fuliginosus	–	–	–	–	16	11.7	0.0	0.0	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–						
Merceralia enigmatica	–	–	–	–	–	–	–	–	–	–	–	–	4	4.0	0.0	0.0	12	8.0	0.0	0.0	–	–	–	–	–	–	–	–	–	–					
Nassarius reticulatus	–	–	–	–	4	4.0	0.2	0.2	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–					
Nephtys cirrosa	–	–	–	–	–	–	–	–	–	–	–	–	4	4.0	0.2	0.2	–	–	–	–	–	–	–	–	–	–	–	–	–	–					
Paracentrotus lividus	–	–	–	–	4	4.0	0.0	0.0	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–					
Solen marginatum	–	–	–	–	4	4.0	3.5	3.5	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–					
Sthenelais boa	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Figure S1: Variation of the weight of clay and organic matter (percentage) during the exclosure experiment at Sidi Moussa lagoon, Morocco, 2011–2012. Average values and standard error of the mean (SEM) per treatment are shown.