Cervicovaginal Microbiome Factors in Clearance of Human Papillomavirus Infection
Dai, Wenkui; Du, Hui; Li, Shuaicheng; Wu, Ruifang

Published in:
Frontiers in Oncology

Published: 01/07/2021

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.3389/fonc.2021.722639

Publication details:
Dai, W., Du, H., Li, S., & Wu, R. (2021). Cervicovaginal Microbiome Factors in Clearance of Human Papillomavirus Infection. Frontiers in Oncology, 11, [722639]. https://doi.org/10.3389/fonc.2021.722639

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Cervicovaginal Microbiome Factors in Clearance of Human Papillomavirus Infection

Wenkui Dai1,2,3†, Hui Du1,2,3†, Shuaicheng Li4* and Ruifang Wu1,2,3*

1 Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China, 2 Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China, 3 Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China, 4 Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China

Persistent high-risk human papillomavirus (hrHPV) infection is the highest risk to cervical cancer which is the fourth most common cancer in women worldwide. A growing body of literatures demonstrate the role of cervicovaginal microbiome (CVM) in hrHPV susceptibility and clearance, suggesting the promise of CVM-targeted interventions in protecting against or eliminating HPV infection. Nevertheless, the CVM-HPV-host interactions are largely unknown. In this review, we summarize imbalanced CVM in HPV-positive women, with or without cervical diseases, and the progress of exploring CVM resources in HPV clearance. In addition, microbe- and host-microbe interactions in HPV infection and elimination are reviewed to understand the role of CVM in remission of HPV infection. Lastly, the feasibility of CVM-modulated and -derived products in promoting HPV clearance is discussed. Information in this article will provide valuable reference for researchers interested in cervical cancer prevention and therapy.

Keywords: cervical cancer, high-risk HPV, CVM-targeted intervention, CVM-derived product, HPV clearance

INTRODUCTION

Persistent high-risk human papillomavirus (hrHPV) infection is the highest risk to invasive cervical cancer (ICC), which has caused an estimated 570,000 new cases and 311,000 deaths in 2018 (1). Prophylactic vaccines are effective in preventing HPV infection, but providing limited protection against pre-existing HPV infection which impact large populations in developing countries for a long-lasting period (2, 3). It will be an imperative alternative to prevent HPV-infected cervical intraepithelial neoplasia (CIN) and ICC by eliminating HPV infection. An increasing number of literatures suggests the association of natural HPV clearance and CIN regression with cervicovaginal microbiome (CVM) (4–8), which modulate a finely-tuned immune responses balancing reproductive tolerance with protection against genital infections (9). Our and other studies demonstrated predominance of one or few Lactobacillus species in CVM of healthy lower reproductive tract (LRT), including Lactobacillus crispatus (community-state type I, CST I), Lactobacillus gasseri (CST II), Lactobacillus iners (CST III) and Lactobacillus jensenii (CST V) (10–14). These Lactobacillus species benefit reproductive health by inhibiting pathogens via produced bacteriocins, lactic acid and hydrogen peroxide (15).
Emerging reports demonstrate imbalanced CVM in women with HPV infection, including increased bacterial diversity, depletion of Lactobacillus as well as identified high rate of natural HPV clearance in women with predominant L. crispatus in CVM (4, 8, 16–21). To the best of our knowledge, there is no public report investigating the mechanism of interaction between HPV and microbiome, due to difficulties to cultivate HPV in vitro and limited mouse models for HPV-mediated cervical dysplasia or cancer. Nevertheless, a number of studies support the concept that CVM modulates immune microenvironment through microbe- or microbe-host interactions to impact the risk of viral infections and clearance (9, 22–25). For instance, Lactobacillus conferred colonization resistance to Gardnerella vaginalis which induced suppressive immune responses beneficial to persistent HPV infection (22). M N Anahtar et al. demonstrated that CVM was the main modulator of immune responses in lower reproductive tract (LRT) and affected the risk of human immunodeficiency virus (HIV) infection (23). Peptidoglycans (PGN) produced by isolated vaginal L. crispatus activate Langerhans cells (LCs), which is the most important antigen presenting cells (APCs) in cervical epithelium (25), and several follow-up investigations further suggest a strong in vivo relationship between LCs activities and HPV clearance (26–28).

In this review, we first summarize the association of CVM with HPV infection and clearance, then discuss mechanisms of microbiome, host responses and HPV interaction. Lastly, several potentials are explored about how to eliminate pre-existing HPV infection via microbiome-derived products or microbiome-targeted interventions.

IMBALANCED CVM IN HPV INFECTION

Emerging evidence suggests association between CVM and HPV infection and persistence. Almost all cross-sectional studies consistently found higher diversity of CVM in HPV-positive women, with or without CIN, as compared to HPV-negative individuals (16–21, 29–32). In recent decade, a growing body of literature suggests that depletion of Lactobacillus and overgrowth of anaerobic bacteria is associated with increased CVM diversity (Figure 1) (16–21, 29, 30). For individuals infected with HPV but without CIN or ICC, initial cross-sectional studies involving Korean (n=68 selected from 912 women in Healthy Twin Study) and Chinese (n=70) women identified reduced levels of Lactobacillus as well as higher abundance of bacterial vaginitis (BV)-associated bacteria such as Gardnerella, Sneathia and Megasphaera (18, 30). This is consistent with increased susceptibility to HPV infection in women withBV revealed by meta-analysis (33). Besides to Gardnerella, Sneathia and Megasphaera, additional reports found greater relative abundance of Atopobium, Bacteroides, Prevotella and lower proportion of Lactobacillus in CVM of HPV-positive women (16, 17, 29). Studies involving women with CIN or ICC consistently found significant decrease of Lactobacillus and substantial increase in CVM diversity compared with HPV-negative individuals (18, 19, 31, 32).

At species level of Lactobacillus, a marked decrease of L. crispatus was found in CVM of women with HPV infection, CIN or ICC, while L. iners-dominant CVM had higher risk of CIN (8, 18, 31, 32, 34). Additionally, women with HPV infection had accumulation of Bacteroides plebeius, Acinetobacter 1woffi, Prevotella buccae, Dialister invisus, G. vaginalis, Prevotella buccalis and Prevotella timonensis in CVM (29, 31, 32, 34). For instance, a study involving 70 women with CIN and 50 HPV-negative women indicated that 6-fold risk of CIN associated with unique CVM, which is characterized by paucity of L. crispatus, enriched A. vaginae, G. vaginalis and L. iners (30). Two independent systematic reviews and meta-analysis also found that L. crispatus correlated with decreased risk of hrHPV infection and CIN (35, 36). Compared with L. crispatus-dominant CVM, women with non-Lactobacillus- or L. iners-dominant CVM had 2-3 times higher odds of hrHPV prevalence and CIN, as well as 3-5 times higher odds of any prevalent HPV (95% CI) (35).

Besides to microbial components, emerging literature explores functional difference of CVM between HPV-positive and HPV-negative women (37–39). Functional prediction of 16S rDNA amplicon sequencing data found accumulation of multiple pathways in HPV-infected and CIN women, including those of folate biosynthesis and oxidative phosphorylation (37). Metagenomic analysis of 17 CIN, 12 ICC cases and 18 healthy individuals found enriched genes related to peptidoglycan synthesis as well as depletion of dioxin degradation and 4-oxalocrotonate tautomerase in CVM of women with CIN or ICC (38). Biofilm formation assessment identified higher formation rate in HPV-positive women (45%) compared to HPV-negative women (21.9%) (39), which may be...
attributed to increased levels of obligate anaerobic bacteria in CVM of HPV-infected women, such as G. vaginalis with sialidase-encoding gene involved in biofilm formation (8).

Above-mentioned observational studies are only possible to demonstrate association of CVM with HPV infection and CIN diseases rather than causality. Longitudinal data is increasingly applied to explore the causal link (7, 40, 41), which has profound clinical impact to provide effective alternatives for therapeutic strategies of HPV-infected CIN. Six-month follow-up of 211 Nigerian women showed the association of Lactobacillus paucity and high CVM diversity with persistent hrHPV infection (40). Analysis of serial cervicovaginal specimens obtained over 8-10 years unraveled that high relative abundance of L. crispatus in CVM had the lowest risk of HPV infection compared to other types of CVM, according to 16S V1-V2 rRNA gene amplicon sequencing and HPV DNA testing conducted annually (41). Brotman and colleagues collected self-sampled mid-vaginal swabs twice a week for 16 weeks from 32 reproductive-age women, and showed that depletion of Lactobacillus in CVM may increase the chance to acquire transient and persistent HPV infection (7). Consistently, meta-analysis involving 39 articles suggests the protection against HPV infection imposed by Lactobacillus-dominant CVM (42). Another systematic review and meta-analysis of longitudinal studies also support a causal relationship between non-Lactobacillus-dominant CVM and cervical carcinogenesis via the effect of CVM on HPV infection (RR 1.33, 95% CI) and persistence (RR 1.14) (43).

CVM IS ASSOCIATED WITH NATURAL HPV CLEARANCE AND CIN REGRESSION

According to a follow-up analysis on 55 women with HPV infection and 17 age-matched healthy HPV-negative women, L. crispatus was the most abundant Lactobacillus species in individuals with natural HPV clearance (Figure 2A) (8). Conversely, high proportion of Atopobium in CVM had significantly slowed HPV remission rate in 16-week follow-up, compared to L. crispatus-dominant CVM. Another longitudinal study involving 64 HPV16-positive women found more frequent transition between identified CSTs, including dominant Lactobacillus sp., L. iners, two mixed non-Lactobacillus of CVM, in women with persistent HPV16 infection (34% with averaged 155.5 days interval) when compared to women with natural clearance of HPV16 (19% with averaged 162 days interval) (Figure 2A) (6). Consistently, Anita Mitra and partners found more stable CVM in women with CIN2 regression, as compared to individuals with CIN persistence or progression. In this study,
87 CIN2 patients aged 16–26 years old were included in two-year follow-up showing that women with Lactobacillus-dominant CVM at baseline are more likely to regress at 12 months while slower regression was associated with Lactobacillus depletion as well as increased abundance of Megaphaera, Prevotella timonensis and G. vaginalis (4). At species level, women with L. crispatus-dominant CVM had faster regression and higher rate of CIN remission at 12 and 24 months (4).

A total of four CSTs, dominated by L. crispatus, L. iners, G. vaginalis and mixed genus, was identified in another study involving 273 women aged 18–25 years old (5). At first visit, Lactobacillus and Gardnerella abundance was associated with CIN2 regression and progression respectively. Second visit was conducted at least 305 days after first visit, and CIN2 progression had strong correlation with increased bacterial diversity. Functional prediction of 16S rDNA amplicon sequencing data further showed the positive relationship between pathway of cell motility and CIN2 regression, while progression was in association with “Xenobiotics Biodegradation and Metabolism” pathway in CVM.

Fungal components in CVM were also associated with HPV-infected CIN regression (5). Mykhaylo Usyk and colleagues found the protective effect of fungal diversity against CIN progression (OR=0.90, 0.82-1.00) (5). Among fungus Candida, Malassezia and Sporidioibolaceae, the accumulation of Candida was identified in CVM of CIN1 which had the highest regression rate (5). Additionally, a retrospective investigation on 100,605 women who had 2 smears each over a period of 12 years, found that common fungus Candida in cervicovaginal microenvironment decreased the risk of squamous intraepithelial lesions (44).

Vaginal Lactobacillus spp. can produce a large amount of lactic acid through glycogen fermentation, maintaining acidic environment to inhibit the colonization of several pathogenic species such as Chlamydia trachomatis, Neisseria gonorrhoeae and BV-associated G. vaginalis (Figure 2B) (15, 52–55). Bacteriocins produced by vaginal Lactobacillus also exhibit inhibitory effects on common pathogenic bacteria and certain fungi, such as G. vaginalis and Candida albicans (Figure 2B) (15, 56, 57). In addition, Lactobacillus hold the potential to alter surface tension and thus bacterial adhesion which is pivotal in biofilm formation via excreted biosurfactants, therefore preventing overgrowth of pathogenic anaerobes, especially G. vaginalis (Figure 2B) (22, 58–60). Another defense factor derived from vaginal Lactobacillus is H2O2, which destroys vaginal bacterial components with limited expression of H2O2-degrading enzymes, including Prevotella and Gardnerella (60, 61). Besides direct inhibition on pathogens, Lactobacillus can occupy possible niches to indirectly protect against pathogen colonization (Figure 2B). For instance, epithelium adhesin facilitates the adhesion of L. crispatus to genital mucosa and then additionally inhibits pilus-mediated adhesion of G. vaginalis (22).

As discussed above, vaginal Lactobacillus play critical roles in cervicovaginal health, but not all Lactobacillus-dominant CVM benefit the host in the same manner. Lactic acid has D- and L-isomer while the former is mainly produced by L. jensenii, L. crispatus, L. gasseri and the latter is produced by L. iners and a variety of anaerobes (62). Women with L. iners- or non-Lactobacillus-dominant CVM therefore have a higher ratio of L- and D-lactate, increasing the expression of extracellular matrix metalloproteinase inducer and activating extracellular matrix metalloproteinase 8, which facilitate the entry of HPV to the basal keratinocytes by altering cervical integrity (Figure 2B) (62). Conversely, L. crispatus-dominant CVM can lead to increased cervicovaginal mucus viscosity and promote viral capture (63). Additionally, CVM predominated by L. iners is more instable than CVM with other dominant Lactobacillus species and therefore allows growth of strict anaerobes resulting in transition to non-Lactobacillus-dominant CVM (4, 64). This is consistent with findings that L. iners-dominant CVM tends to be identified in women with persistent HPV infection and progression of cervical diseases (Figure 2A) (8, 18, 31, 32, 34). On the contrary, L. crispatus-dominant CVM has the lowest possibility in transition to other CVM types (4, 13, 64), and is thus positively associated with cervicovaginal health (Figure 2A).

Though many clues exist in microbe-microbe interactions, there are no published reports exploring the mechanism of interaction between CVM and HPV, due to the difficulties of in vitro HPV cultivation. Nevertheless, a growing number of literatures demonstrate unique host immune responses (Figure 2B) (65), which mediate the CVM-HPV interactions in women with HPV infection. Oncoproteins of hrHPV can suppress presentation of hrHPV antigens and impair alarm functions of infected basal keratinocytes where HPV thrive. For example, hrHPV E7 protein can lead to repression of major histocompatibility complex I (MHC I), LMP2 as well as
control of HPV infection, can induce proliferation of T cells to enhance restoration of CVM completely, two studies in 2019 conducted vaginal microbiota transplantation (VMT) (44, 84). Herbst-Kralovetz MM and colleagues also found significant differences of CVM and cervical immune microenvironment between HPV-negative women (n=18), HPV-infected individuals without squamous intraepithelial lesion (n=11), HPV-positive women with low (n=12)/high (n=27) intraepithelial lesion, and ICC patients (n=10) (85-88). For instance, inhibitory immune checkpoint protein PD-L1 and LAG-3 were negatively correlated with Lactobacillus abundance in CVM, while TLR2 was in positive relationship with Lactobacillus abundance. Conversely, PD-L1 and LAG-3 positively correlated to dysbiosis-associated Gardnerella, Sneathia, Atopobium and Prevotella. At species level, L. crispatus and L. jensenii were in negative relationship with PD-L1, while L. gasseri was negatively associated with LAG-3. In addition, a 12-month observational study applied the combination of 16S rDNA amplicon sequencing, metagenome, transcriptional profiling and immunological profiling to demonstrate the critical role of cervicovaginal bacteria in modulating cervicovaginal immune responses and the host susceptibility to HIV (23).

APPLICATION OF CVM IN PROMOTING HPV CLEARANCE

Given the critical roles of CVM in modulating cervical immune responses, it is promising to promote HPV clearance by reconstituting CVM (Figure 3A). Taken vaginal probiotics L. crispatus strain CTV-05 for example, a randomized placebo-controlled clinical trial showed that the vaginal colonization with CTV-05 following 28-day treatment inhibited BV-associated Atopobium growth (89, 90). Another trial involving 100 participants assessed the efficacy of CTV-05 on preventing urinary tract infection (UTI), indicating the reduction of recurrent UTI when compared to placebo treatment (91). Disrupting biofilm of anaerobes is also an alternative therapy against vaginal dysbiosis, and Marrozzo J. M. et al. found 50-59% clinical cure rate of BV in 106 participants 9-12 days after treatment (92).

In addition, several in vitro and in vivo studies suggest the promise of prebiotics, which are indigestible carbohydrates, in promoting the growth of probiotics or beneficial commensals in the vagina (Figure 3A) (93-95). For example, fructooligosaccharide (FOS) and gluco-oligosaccharide (GOS) benefited the growth of L. crispatus, L. jensenii and L. vaginalis in vitro, while pathogen C. albicans, Escherichia coli and G. vaginalis could not utilize FOS/GOS as energy sources for growth (93). Significant reduction of Nugent scores was also identified in BV patients receiving intravaginal GOS gel immediately following metronidazole treatment (94). Additionally, glucomannan hydrolases (GMH) also held the potential to promote Lactobacillus spp. colonization, conferring health to the host in C. albicans-infected women (95). To re-establish the CVM completely, two studies in 2019 conducted vaginal microbiota transplantation (VMT) (96, 97). A total of 5 women with antibiotic-unresponsive and recurrent BV were included in one study, and 4 out of 5 participants had restoration of Lactobacillus-dominant CVM and long-term remission without any adverse effect at the follow-up of 5-21 months. The other study involving 20 women explained and implemented a screening approach for universal VMT donors.

Besides to CVM-targeted interventions, CVM-derived products hold the promise as immune modulators, such as adjuvants of therapeutic vaccines (Figure 3B). Jie Song and co-workers demonstrated that PGN produced by a vaginal L. crispatus strain enhanced the expression of cell-membrane TLR2 and TLR6 to activate LCs (25), which play a pivotal role in capturing and presenting HPV antigens. The products of specific bacterial components have the potential to be effective adjuvants as a series of clinical trials demonstrated enhanced efficacy of therapeutic vaccines adjuvanted with TLR agonists which attributed to the wide range of pathogen-associated molecular pattern molecules and damage-associated molecular pattern molecules (102-106). Additionally, candin produced by common vaginal fungal pathobiont Candida could be utilized as adjuvant for therapeutic vaccine, which partly explain the protection of vaginal Candida against HPV infection (44, 83, 84).

CONCLUSION

CVM appears to play a crucial role in HPV acquisition and persistence as well as subsequent development of squamous...
intraepithelial lesion. Cross-sectional nature of most studies makes it difficult to derive a causal link between CVM and HPV infection or clearance. In addition, many prior reports described CVM in relatively small cohorts, which analysis results could be compounded by various factors, such as smoking and sex activities. Prospective cohort study will be needed in the future to prove that CVM could prevent HPV infection and promote HPV clearance. This information will determine the promise of CVM interventions as novel therapies, with the advantage of low-cost feasibility in developing countries. Nevertheless, it is imperative to find the most protective strains before developing CVM-targeted probiotics or prebiotics, for which the efficacy can be impacted by pre-existent CVM. For example, L. crispatus-dominated CVM confers high colonization resistance to other microbes and even probiotic L. crispatus strain, while pre-colonization of the vagina with endogenous L. iners allows growth of anaerobes. Therefore, CVM structure should be taken into consideration when it comes to assess the efficacy of specific probiotics and prebiotics. However, 16S rDNA amplicon sequencing that most studies applied has limitations in conducting strain-level analysis and microbe-microbe/host interactions of CVM, necessitating the utilization of multi-omics in analyzing “key microbial strains”. Then mechanistic studies of these strains should be conducted further to the utilization of “key microbial strains” as immune modulators in prevention and clearance of HPV infection. Given the importance of cervical epithelial LCs in presenting HPV antigens to induce HPV-specific CMI, it will be an effective mediator of therapeutic vaccine immunity. As discussed above, specific microbial strains in CVM hold the potential to activate HPV-suppressed LCs, suggesting the promise of microbial products as robust activator of immunity against HPV or adjuvants in therapeutic vaccines. In the future, the combination of culture-independent and -dependent techniques should be applied to screen promising microbial strains and products which functions can be assessed in cell lines or animal models. Lastly, though VMT can modify the whole cervicovaginal microenvironment, randomized, placebo-controlled studies for large cohorts are required to determine the clinical efficacy as well as long-term benefits.
AUTHOR CONTRIBUTIONS

WD and RW made substantial contributions to the design and writing of this manuscript. HD and SL contributed to the discussion and conception of the work. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68 (6):394–424. doi: 10.3322/caac.21492

2. Hildesheim A, Herrero R, Wacholder S, Rodriguez AC, Solomon D, Bratti MC, et al. Effect of Human Papillomavirus 16/18 L1 Viral spike Particle Vaccine Among Young Women With Preexisting Infection: A Randomized Trial. JAMA (2007) 298(7):743–53. doi: 10.1001/jama.298.7.743

3. Group FIS. Quadrivalent Vaccine Against Human Papillomavirus to Prevent High-Grade Cervical Lesions. N Engl J Med (2007) 356(19):1915–27. doi: 10.1056/NEJMoa061741

4. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. The Vaginal Microbiota Associates With the Regression of Untreated Cervical Intraepithelial Neoplasia 2 Lesions. Nat Commun (2020) 11 (1):1999. doi: 10.1038/s41467-020-15856-y

5. Usyk M, Zolnik CP, Castle PE, Porras C, Herrero R, Gradissimo A, et al. Cervicovaginal Microbiome and Natural History of HPV in a Longitudinal Study. PloS Pathog (2020) 16(3):e1008376. doi: 10.1371/journal.ppat.1008376

6. Berggrund M, Gustavsson I, Aarnio R, Lindberg JH, Sanner K, Wikstrom I, et al. Temporal Changes in the Vaginal Microbiota in Self-Samples and its Association With Persistent HPV16 Infection and CIN2. Virol J (2020) 17 (1):147. doi: 10.1186/s12985-020-01420-z

7. Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay Between the Temporal Dynamics of the Vaginal Microbiota and Human Papillomavirus Detection. J Infect Dis (2014) 210(11):1723–33. doi: 10.1093/infdis/jiu330

8. Di Paola M, Sani C, Clemente AM, Iossa A, Perisi E, Castronovo G, et al. Characterization of Cervico-Vaginal Microbiota in Women Developing Persistent High-Risk Human Papillomavirus Infection. Sci Rep (2017) 7 (1):10200. doi: 10.1038/s41598-017-09842-6

9. Al-Nasiry S, Ambrosino E, Schlaepfer M, Morre SA, Wieten L, Voncken JW, et al. Cross-Sectional Study. BMC Genomics (2014) 15:1070. doi: 10.1186/1471-2164-15-1070

10. Anahat MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory Responses in the Female Genital Tract. Immunity (2015) 42(5):965–76. doi: 10.1016/j.immuni.2015.04.019

11. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the Vaginal Microbiome Alter the Innate Immune Response and Barrier Properties of the Human Vaginal Epithelia in a Species-Specific Manner. J Infect Dis (2014) 210(12):1989–99. doi: 10.1093/infdis/jiu004

12. Song J, Lang F, Zhao N, Guo Y, Zhang H. Vaginal Lactobacilli Induce Differentiation of Monocytic Precursors Toward Langerhans-Like Cells: In Vitro Evidence. Front Immunol (2018) 9:2437. doi: 10.3389/fimmu.2018.02437

13. Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, et al. Association of HPV Infection and Clearance With Cervicovaginal Immunology and the Vaginal Microbiota. Mucosal Immunol (2017) 10 (5):1310–9. doi: 10.1038/mi.2016.129

14. Kindt N, Descamps G, Seminero I, Bellier J, Lechien JR, Pottier C, et al. Langerhans Cell Number Is a Strong and Independent Prognostic Factor for Head and Neck Squamous Cell Carcinomas. Oral Oncol (2016) 62:1–10. doi: 10.1016/j.oraloncology.2016.08.016

15. Miyagi J, Kinjo T, Tsuchako K, Higa M, Iwama S, Kamada Y, et al. Extremely High Langerhans Cell Infiltration Contributes to the Favourable Prognosis of HPV-Infected Squamous Cell Carcinoma and Adenocarcinoma of the Lung. Histopathology (2001) 38(4):355–67. doi: 10.1046/j.1365-2559.2001.01607.x

16. Chao XP, Sun TT, Wang S, Fan QB, Shi HH, Zhu L, et al. Correlation Between the Diversity of Vaginal Microbiota and the Risk of High-Risk Human Papillomavirus Infection. Int J Gynecol Cancer (2019) 29(1):28–34. doi: 10.1111/ijgc.2018-00032

17. Zhou Y, Wang L, Pei F, Ji M, Zhang F, Sun Y, et al. Patients With Lr-Hpv Infection Have a Distinct Vaginal Microbiota in Comparison With Healthy Controls. Front Cell Infect Microbiol (2019) 9:294. doi: 10.3389/fcimb.2019.00294

18. Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The Association of Uterine Cervical Microbiota With An Increased Risk for Cervical Intraepithelial Neoplasia in Korea. Clin Microbiol Infect (2015) 21(7):674 e1–9. doi: 10.1016/j.cmi.2015.02.026

19. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervicovaginal Microbiota Is Associated With Increased Vaginal Microbiome Diversity. Sci Rep (2015) 5:16865. doi: 10.1038/srep16865

20. Borgia MA, Lombardo A, Gnidula M, Desideri D, Gessi S, et al. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol (2020) 11:378. doi: 10.3389/fimmu.2020.00378

21. Lu L, Tong B, Sun TT, Wang S, Fan QB, Shi HH, et al. Cross-Sectional Study. J Infect Dis (2014) 210(11):1723–33. doi: 10.1093/infdis/jiu330

22. Di Paola M, Sani C, Clemente AM, Iossa A, Perisi E, Castronovo G, et al. Characterization of Cervico-Vaginal Microbiota in Women Developing Persistent High-Risk Human Papillomavirus Infection. Sci Rep (2017) 7 (1):10200. doi: 10.1038/s41598-017-09842-6

23. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervicovaginal Microbiota Is Associated With Increased Vaginal Microbiome Diversity. Sci Rep (2015) 5:16865. doi: 10.1038/srep16865

FUNDING

This work was supported by Shenzhen High-level Hospital Construction Fund (YBH2019-260), Shenzhen Key Medical Discipline Construction Fund (No. SZXK027) and Sanming Project of Medicine in Shenzhen (No. SZSM202011016).
Human Papillomavirus Infection. *PloS One* (2020) 15(9):e0238705. doi: 10.1371/journal.pone.0238705.

32. Zhang C, Liu Y, Gao W, Pan Y, Gao Y, Shen J, et al. The Direct and Indirect Association of Cervical Microbiota With the Risk of Cervical Intraepithelial Neoplasia. *Cancer Med* (2018) 7(5):2172–9. doi: 10.1002/cam4.14171.

33. Liang Y, Chen M, Qin L, Wan B, Wang H. A Meta-Analysis of the Relationship Between Vaginal Microecology, Human Papillomavirus Infection and Cervical Intraepithelial Neoplasia. *Infect Agent Cancer* (2019) 14:29. doi: 10.1186/s13027-019-0243-8.

34. Seo SS, Oh HY, Lee JK, Kong JS, Lee DO, Kim MK. Combined Effect of Diet and Cervical Microbiome on the Risk of Cervical Intraepithelial Neoplasia. *Clin Nutr* (2016) 35(6):1344–41. doi: 10.1016/j.clnu.2016.03.019.

35. Norenjag H, Du J, Olosovon M, Verstraeten H, Engrstrand L, Brusselaers N. The Vaginal Microbiota, Human Papillomavirus and Cervical Dysplasia: A Systematic Review and Network Meta-Analysis. *BJOG* (2020) 127(2):171–80. doi: 10.1111/1471-0528.15854.

36. Wang H, Ma Y, Li R, Chen X, Wan L, Zhao W. Associations of Cervicovaginal Lactobacillae With High-Risk Human Papillomavirus Infection, Cervical Intraepithelial Neoplasia, and Cancer: A Systematic Review and Meta-Analysis. *J Infect Dis* (2019) 220(8):1243–54. doi: 10.1093/infdis/jiu325.

37. Tango CN, Seo SS, Kwon M, Lee DO, Chang HK, Kim MK. Taxonomic and Functional Differences in Cervical Microbiome Associated With Cervical Cancer Development. *Sci Rep* (2020) 10(1):9720. doi: 10.1038/s41598-020-76003-7.

38. Kwon M, Seo SS, Kim MK, Lee DO, Lim MC. Compositional and Functional Differences Between Microbiota and Cervical Carcinogenesis as Identified by Shotgun Metagenomic Sequencing. *Cancers* (Basel) (2019) 11(3):309. doi: 10.3390/cancers11030309.

39. Donmez HG, Akgör U, Cagan M, Ozgül N, Beksac MS. The Relationship Between the Presence of HPV Infection and Biofilm Formation in Cervicovaginal Smears. *Infection* (2020) 48(5):735–40. doi: 10.1007/s10150-020-01478-5.

40. Dareng EO, Ma B, Adebamowo SN, Farnoost A, Ravel J, Pharoah PP, et al. Vaginal Microbiota Diversity and Parsimony of Lactobacillus Species Are Associated With Persistent hrHPV Infection in HIV Negative But Not in HIV Positive Women. *Sci Rep* (2020) 10(1):19095. doi: 10.1038/s41598-020-76003-7.

41. Reimers LL, Mehta SD, Massad LS, Burk RD, Xie X, Ravel J, et al. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Infected Women. *J Infect Dis* (2016) 214(9):1361–9. doi: 10.1093/infdis/jiw374.

42. Tamarelle J, Thieubaut ACM, de Barbeyrac B, Bebear C, Ravel J, Delacroque-Astagneau E. The Vaginal Microbiota and its Association With Human Papillomavirus, Chlamydia Trachomatis, Neisseria Gonorrhoeae and Mycoplasma Genitalium Infections: A Systematic Review and Meta-Analysis. *Clin Microbiol Infect* (2019) 25(1):35–47. doi: 10.1016/j.cmi.2018.04.019.

43. Brusselaers N, Shrestha S, van de Wijgert J, Verstraeten H. Vaginal Dysbiosis and the Risk of Human Papillomavirus and Cervical Cancer: Systematic Review and Meta-Analysis. *Am J Obstet Gynecol* (2016) 221(1):9–18.e8. doi: 10.1016/j.ajog.2018.12.011.

44. Engberts MK, Verbruggen BS, Boon ME, van Haften M, Heintz AP. Candida and Dysbacteriosis: A Cytologic, Population-Based Study of 100.605 Asymptomatic Women Concerning Cervical Carcinogenesis. *Cancer* (2007) 111(5):269–74. doi: 10.1002/cncr.22947.

45. Brielstein AM, Moncla BJ, Stevens CE, Hillier SL. Sialidases (Neuraminidases) in Bacterial Vaginosis and Bacterial Vaginosis-Associated Microflora. *J Clin Microbiol* (1992) 30(3):663–6. doi: 10.1128/JCM.30.3.663-666.1992.

46. Holmes KK, Chen KC, Lipinski CM, Eschenbach DA. Vaginal Redox Potential in Bacterial Vaginosis (Non-specific Vaginitis). *J Infect Dis* (1985) 152(2):379–82. doi: 10.1093/infdis/152.2.379.

47. Anderson BL, Cu-Uvin S, Raker CA, Fitzsimmons C, Hillier SL. Subtle Perturbations of Genital Microflora Alter Mucosal Immunity Among Low-Risk Pregnant Women. *Am J Obstet Gynecol Sci* (2011) 90(5):510–9. doi: 10.1111/j.1600-0412.2011.01082.x.

48. Hedges SR, Barrientes F, Desmond RA, Schwebke JR. Local and Systemic Cytokine Levels in Relation to Changes in Vaginal Flora. *J Infect Dis* (2006) 193(4):556–62. doi: 10.1086/499824.
in-Water Emulsion Induces Robust E7-Specific CD8 T Cell Responses and TC-1 Tumor Eradication. *BMC Cancer* (2019) 19(1):540. doi: 10.1186/s12885-019-5725-y

100. Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen Priming With Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses Through Novel Induction of a Type I IFN Response. *J Immunol* (2019) 202(12):3524–36. doi: 10.4049/jimmunol.1801634

101. Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, et al. Phase II Trial of Imiquimod and HPV Therapeutic Vaccination in Patients With Vulval Intraepithelial Neoplasia. *Br J Cancer* (2010) 102(7):1129–36. doi: 10.1038/sj.bjc.6605611

102. Ribelles P, Benbouziane B, Langella P, Suarez JE, Bermudez-Humaran LG. Protection Against Human Papillomavirus Type 16-Induced Tumors in Mice Using Non-Genetically Modified Lactic Acid Bacteria Displaying E7 Antigen at Its Surface. *Appl Microbiol Biotechnol* (2013) 97(3):1231–9. doi: 10.1007/s00253-012-4575-1

103. Lee TY, Kim YH, Lee KS, Kim JK, Lee IH, Yang JM, et al. Human Papillomavirus Type 16 E6-Specific Antitumor Immunity Is Induced by Oral Administration of HPV16 E6-Expressing Lactobacillus Casei in C57BL/6 Mice. *Cancer Immunol Immunother* (2010) 59(11):1727–37. doi: 10.1007/s00262-010-0903-4

104. Kawanaka K, Adachi K, Kojima S, Taguchi A, Tomio K, Yamashita A, et al. Oral Vaccination Against HPV E7 for Treatment of Cervical Intraepithelial Neoplasia Grade 3 (CIN3) Elicits E7-Specific Mucosal Immunity in the Cervix of CIN3 Patients. *Vaccine* (2014) 32(47):6233–9. doi: 10.1016/j.vaccine.2014.09.020

105. Adachi K, Kawanaka K, Yokoyama T, Fujii T, Tomio A, Miura S, et al. Oral Immunization With a Lactobacillus Casei Vaccine Expressing Human Papillomavirus (HPV) Type 16 E7 Is an Effective Strategy to Induce Mucosal Cytotoxic Lymphocytes Against HPV16 E7. *Vaccine* (2010) 28(16):2810–7. doi: 10.1016/j.vaccine.2010.02.005

106. Poo H, Pyo HM, Lee TY, Yoon SW, Lee JS, Kim CJ, et al. Oral Administration of Human Papillomavirus Type 16 E7 Displayed on Lactobacillus Casei Induces E7-Specific Antitumor Effects in C57/BL6 Mice. *Int J Cancer* (2006) 119(7):1702–9. doi: 10.1002/ijc.22035

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Dai, Du, Li and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.