Vector-valued operators, optimal weighted estimates and the C_p condition

María Eugenia Cejas1,2, Kangwei Li1, Carlos Pérez1,3,4, & Israel Pablo Rivera-Ríos1,3,5

1BCAM—Basque Center for Applied Mathematics, Bilbao 48009, Spain; 2CONICET, Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina; 3Department of Mathematics, University of the Basque Country, Bilbao 48080, Spain; 4Ikerbasque, Basque Foundation of Science, Bilbao 48013, Spain; 5INMABB, CONICET, Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina

Email: mec.eugenia@gmail.com, kli@bcamath.org, cperez@bcamath.org, petnapet@gmail.com

Received July 13, 2018; accepted September 17, 2018; published online April 20, 2020

Abstract In this paper some new results concerning the C_p classes introduced by Muckenhoupt (1981) and later extended by Sawyer (1983), are provided. In particular, we extend the result to the full expected range $p > 0$, to the weak norm, to other operators and to their vector-valued extensions. Some of those results rely upon sparse domination, which in the vector-valued case are provided as well. We will also provide sharp weighted estimates for vector-valued extensions relying on those sparse domination results.

Keywords A_p weights, quantitative estimates, C_p estimates, vector-valued extensions, sparse domination, maximal functions, Calderón-Zygmund operators, commutators

MSC(2010) 42B25, 42B35

1 Introduction

1.1 C_p condition

We recall that a weight w, i.e., a non-negative locally integrable function, belongs to the Muckenhoupt A_p class for $1 < p < \infty$ if

$$[w]_p = \sup_Q \left(\frac{1}{|Q|} \int_Q w \right) \left(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}} \right)^{p-1} < \infty,$$

where the supremum is taken over all the cubes in \mathbb{R}^n with the sides parallel to the axes. In addition, in the case $p = 1$ we say that $w \in A_1$ if

$$Mw \leq \kappa w \text{ a.e.}$$

*Corresponding author
and we define \([w]_{A_p} = \inf\{\kappa > 0 : Mw \leq \kappa w \text{ a.e.}\}\). The quantity \([w]_{A_p}\) is called the \(A_p\) constant or characteristic of the weight \(w\). We say that \(w \in A_\infty\) if
\[
[w]_{A_\infty} = \sup_Q \frac{1}{w(Q)} \int_Q M(w\chi_Q) < \infty.
\]

The Calderón-Zygmund principle states that for each singular operator there exists a maximal operator that "controls" it. A paradigmatic example of that principle is the Coifman-Fefferman estimate, namely,
\[
\|T^*f\|_{L^p(w)} \leq c\|Mf\|_{L^p(w)},
\]
where \(T^*\) stands for the maximal Calderón-Zygmund operator (see Subsection 2.1 for the precise definition). This kind of estimates plays a central role in modern Euclidean harmonic analysis. In particular we emphasize its key role in the main result in [24].

The estimate in (1.1) leads to a natural question. Is the \(A_\infty\) condition necessary for (1.1) to hold? Muckenhoupt [28] provided a negative answer to the question. He proved that in the case when \(T\) is the Hilbert transform, (1.1) does not imply that \(w\) satisfies the \(A_\infty\) condition. He showed that if (1.1) holds with \(p > 1\) and \(T\) is the Hilbert transform, then \(w \in C_p\), i.e., there exist \(c, \delta > 0\) such that for every cube \(Q\) and every subset \(E \subseteq Q\) we have
\[
w(E) \leq c\left(\frac{|E|}{|Q|}\right) \int_{\mathbb{R}^n} M(\chi_Q)p w.
\]

Observe that \(A_\infty \subset C_p\) for every \(p > 0\). Muckenhoupt [28] showed, in dimension one, that if \(w \in A_p\), \(1 < p < \infty\), then \(w\chi_{[0,\infty)} \in C_p\). In the same paper it was conjectured that the \(C_p\) condition is also sufficient for (1.1) to hold, which is still open. Not much later, the necessity of the \(C_p\) condition was extended to an arbitrary dimension and a converse result was provided by Sawyer [39]. More precisely he proved the following result.

Theorem I (See [39]). Let \(1 < p < \infty\) and let \(w \in C_{p+\epsilon}\) for some \(\epsilon > 0\). Then
\[
\|T^*(f)\|_{L^p(w)} \leq c\|Mf\|_{L^p(w)}.
\]

Relying upon Sawyer’s techniques, Yabuta [40, Theorem 2] established the following result extending the classical result of Fefferman and Stein [10] relating \(M\) to the sharp maximal \(M^\#\) function [17].

Theorem II (See [40]). Let \(1 < p < \infty\) and let \(w \in C_{p+\epsilon}\) for some \(\epsilon > 0\). Then
\[
\|M(f)\|_{L^p(w)} \leq c\|M^\#f\|_{L^p(w)}.
\]

The proof of this result, although based on a key lemma from [39], is simpler than the proof of (1.2) by Sawyer. In this paper we will present a different approach for proving (1.2) based on Yabuta’s lemma which is conceptually much simpler and much more flexible. Furthermore, we extend the estimate (1.2) to the full expected range, namely \(0 < p < \infty\) and to some vector-valued operators. We remark that in the last case, the classical good-\(\lambda\) seems not to be applicable. None of the known methods yield this result.

Remark 1.1. We do not know how to extend Theorem II to the full range \(0 < p < \infty\) as in Theorems 1.2 and 1.6 below. However, this result is the key to proving those theorems in the full range.

More recently, Lerner [19] provided another proof of Yabuta’s result (1.3), improving it slightly. He established, by using a different argument, that if a weight \(w\) satisfies the following estimate:
\[
w(E) \leq \left(\frac{|E|}{|Q|}\right) \int_{\mathbb{R}^n} \varphi_p(M(\chi_Q))w,
\]
where
\[\int_0^1 \varphi_p(t) \frac{dt}{t^{\nu+1}} < \infty, \]
then (1.3) holds.

Let us now turn our attention to our contribution. We say that an operator \(T \) satisfies the condition \((D)\) if there are some constants, \(\delta \in (0,1) \) and \(c > 0 \) such that for all \(f \),
\[M_\delta^\# (Tf)(x) \leq cMf(x). \] \((D)\)

Some examples of operators satisfying the condition \((D)\) are the following:

- **Calderón-Zygmund operators.** This was observed in [2].
- **Weakly strongly singular integral operators.** These operators were considered by Fefferman [9].
- **Pseudo-differential operators.** These operators were introduced by Phong and Stein [35].
- **Oscillatory integral operators.** These operators were considered by Fefferman [9].

To be more precise, the pseudo-differential operators satisfying the condition \((D)\) are those that belong to the Hörmander class [13].

It is also possible to consider a suitable variant of the condition \((D)\) which will allow us to treat some vector-valued operators. We recall that given an operator \(G \), \(1 < q < \infty \) and \(f = \{f_j\}_{j=1}^\infty \) we define the vector-valued extension \(G_q \) by
\[G_q f(x) = \left(\sum_{j=1}^\infty |G(f_j)(x)|^q \right)^{\frac{1}{q}}. \]

We say that an operator \(T \) satisfies the \((D_q)\) condition with \(1 < q < \infty \) if for every \(0 < \delta < 1 \) there exists a finite constant \(c = C_{\delta,q,T} > 0 \) such that
\[M_\delta^\# (T_q f)(x) \leq cM(|f|_q)(x), \] \((D_q)\)
where \(|f|_q(x) = (\sum_{j=1}^\infty |f_j(x)|^q)^{\frac{1}{q}} \). Two examples of operators satisfying the \((D_q)\) condition are the Hardy-Littlewood maximal operator [6, Proposition 4.4] and any Calderón-Zygmund operator [34, Lemma 3.1].

Next, the theorems extend and improve the main result from [39] since we are able to provide some answers for the range \(0 < p \leq 1 \) and to consider vector-valued extensions. It is not clear that the method of [39] can be extended to cover both situations. Furthermore, we can extend this result to the multilinear context and other operators like fractional integrals.

Theorem 1.2. Let \(T \) be an operator satisfying the condition \((D)\). Let \(0 < p < \infty \) and let \(w \in C_{\text{max}(1,p)+\epsilon} \) for some \(\epsilon > 0 \). Then
\[\|Tf\|_{L^p(w)} \leq c\|Mf\|_{L^p(w)}. \] \((1.4)\)

Additionally, if \(1 < q < \infty \) and \(T \) satisfies the \((D_q)\) condition, then
\[\|T_q f\|_{L^p(w)} \leq c\|M(|f|_q)\|_{L^p(w)}. \]

Remark 1.3. We do not know how to extend (1.4) to rough singular integral operators or to the Bochner-Riesz multiplier at the critical index. Indeed, it is not known whether any of these operators satisfies the condition \((D)\) above.

Remark 1.4. Following a similar strategy to that in the proof of (1.4), the following result holds. Let \(I_\alpha \), \(0 < \alpha < n \), be a fractional operator and let \(1 < p < \infty \). Let \(w \in C_{p+\epsilon} \) for some \(\epsilon > 0 \). Then
\[\|I_\alpha f\|_{L^p(w)} \leq c\|M_\alpha f\|_{L^p(w)}. \]

It is possible to extend these kinds of results to the multilinear setting as follows. Following [12], we say that \(T \) is an \(m \)-linear Calderón-Zygmund operator if, for some \(1 \leq q_j < \infty \), it extends to a bounded
multilinear operator from $L^{q_1} \times \cdots \times L^{q_m}$ to L^q, where $\frac{1}{q} = \frac{1}{q_1} + \cdots + \frac{1}{q_m}$, and there exists a function K, defined off the diagonal $x = y_1 = \cdots = y_m$ in $(\mathbb{R}^n)^{m+1}$, satisfying

$$T(f_1, \ldots, f_m)(x) = \int_{(\mathbb{R}^n)^m} K(x, y_1, \ldots, y_m)f_1(y_1) \cdots f_m(y_m) \, dy_1 \cdots dy_m$$

for all $x \notin \bigcap_{j=1}^m \text{supp } f_j$; and also the similar size and regularity conditions to those in Subsection 2.1 are satisfied.

It was shown in [25], following the Calderón-Zygmund principle mentioned above, that the right maximal operator that “controls” these m-linear Calderón-Zygmund operators is defined by

$$M(\vec{f})(x) = \sup_{Q \ni x} \prod_{i=1}^m \frac{1}{|Q|} \int_Q |f_i(y_i)| \, dy_i,$$

where $\vec{f} = (f_1, \ldots, f_m)$ and where the supremum is taken over all cubes Q containing x. In fact, these m-linear Calderón-Zygmund operators satisfy a version of the condition (D) mentioned above as can be found in [25, Theorem 3.2].

Lemma 1.5. Let T be an m-linear Calderón-Zygmund operator and $\delta \in (0, \frac{1}{m})$. Then, there is a constant c such that

$$M_\delta^\#(T(\vec{f}))(x) \leq c M(\vec{f})(x). \quad (1.5)$$

This estimate is sharp since it is false in the case $\delta = \frac{1}{m}$. Also this estimate is quite useful since one can deduce the following multilinear version of the Coifman-Fefferman estimate (1.1),

$$\|T(\vec{f})\|_{L^p(w)} \leq c \|M(\vec{f})\|_{L^p(w)}, \quad 0 < p < \infty, \quad w \in A_\infty,$$

which can be found in [25] leading to the characterization of the class of (multilinear) weights for which any multilinear Calderón-Zygmund operators are bounded.

Relying upon the pointwise estimate (1.5) it is possible to establish the following extension of (1.4).

Theorem 1.6. Let T be an m-linear Calderón-Zygmund operator, and let $0 < p < \infty$. Also let $w \in C_{\text{max}\{1,mp\}+\epsilon}$ for some $\epsilon > 0$. Then

$$\|T(\vec{f})\|_{L^p(w)} \leq c \|M(\vec{f})\|_{L^p(w)}.$$

We emphasize that the method of Sawyer [39] does not produce the preceding result even for the case $p = 1$.

For commutators, the following estimates are known (see [30,34]). For every $0 < \epsilon < \delta < 1$,

$$M_\delta^\#([b,T]f)(x) \leq c_\delta, T \|b\|_{BMO}(M_\delta^\#(Tf) + M^\#(f)(x)),$$

$$M_\delta^\#([b,T]_q f)(x) \leq c_\delta, T \|b\|_{BMO}(M_\delta^\#(T_q f) + M^\#([f|_q](x)) \leq 1 < q < \infty, \quad (1.7)$$

where T is a Calderón-Zygmund operator satisfying a log-Dini condition. Relying upon them we obtain the following result.

Theorem 1.7. Let T be an ω-Calderón-Zygmund operator with ω satisfying a log-Dini condition and let $b \in \text{BMO}$. Let $0 < p < \infty$ and let $w \in C_{\text{max}\{1,p\}+\epsilon}$ for some $\epsilon > 0$. Then there is a constant c depending on the $C_{\text{max}\{1,p\}+\epsilon}$ condition such that

$$\|[b,T]f\|_{L^p(w)} \leq c \|b\|_{\text{BMO}} \|M^\# f\|_{L^p(w)}.$$

Additionally, if $1 < q < \infty$, then there is a constant c depending on the $C_{\text{max}\{1,p\}+\epsilon}$ condition such that

$$\|[b,T]_q f\|_{L^p(w)} \leq c \|b\|_{\text{BMO}} \|M^\#([f|_q]\|_{L^p(w)}.$$
Remark 1.8. We remark that a similar estimate can be derived for the general k-th iterated commutator: Let $0 < p < \infty$, $w \in C_{\max(1,p)+\epsilon}$ for some $\epsilon > 0$, and then there is a constant c depending on the $C_{\max(1,p)+\epsilon}$ condition such that

$$\| T^k f \|_{L^p(w)} \leq c \| b \|_{\text{BMO}} \| M^{k+1} f \|_{L^p(w)}.$$

In the following results we observe that rephrasing Sawyer’s method [39] in combination with sparse domination results, in the vector-valued case we settled in Subsection 1.2, we obtain estimates like (1.2) where the strong norm $\| \cdot \|_{L^p(w)}$ is replaced by the weak norm $\| \cdot \|_{L^p,\infty(w)}$. The disadvantage of this approach is that we have to restrict ourselves to the range $1 < p < \infty$.

Theorem 1.9. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition. Let $1 < p < \infty$ and let $w \in C_{p+\epsilon}$ for some $\epsilon > 0$. Then there exists $c = c_{T,p,\epsilon,w}$ such that

$$\| T f \|_{L^p,\infty(w)} \leq c \| M f \|_{L^p,\infty(w)}.$$

If additionally $1 < q < \infty$ then

$$\| \mathcal{T}_q f \|_{L^p,\infty(w)} \leq c \| M (|f|_q) \|_{L^p,\infty(w)}.$$

We also obtain some results for commutators which are completely new in both the scalar and the vector-valued cases.

Theorem 1.10. Let T be an ω-Calderón-Zygmund operator with ω satisfying a Dini condition and $b \in \text{BMO}$. Let $1 < p < \infty$ and $w \in C_{p+\epsilon}$ for some $\epsilon > 0$. Then there exists $c = c_{T,p,\epsilon,w}$ such that

$$\| [b,T] f \|_{L^p(w)} \leq c \| b \|_{\text{BMO}} \| M^2 f \|_{L^p(w)},$$

$$\| [b,T] f \|_{L^p,\infty(w)} \leq c \| b \|_{\text{BMO}} \| M^2 f \|_{L^p,\infty(w)}.$$

If additionally $1 < q < \infty$, then

$$\| [b,T]_q f \|_{L^p(w)} \leq c \| b \|_{\text{BMO}} \| M^2 (|f|_q) \|_{L^p(w)},$$

$$\| [b,T]_q f \|_{L^p,\infty(w)} \leq c \| b \|_{\text{BMO}} \| M^2 (|f|_q) \|_{L^p,\infty(w)}.$$

We would like to note that the preceding result extends the results based on the M^\sharp approach that hold for Calderón-Zygmund operators satisfying a log-Dini condition to the operators satisfying just a Dini condition.

1.2 Sparse domination for vector-valued extensions

In the recent years a number of authors have exploited the sparse domination approach to provide quantitative weighted estimates. Our contribution in that direction in this paper is to settle some domination results for vector-valued extensions that we state in the following results. First, we summarize some pointwise domination results.

Theorem 1.11. Let $1 < q < \infty$ and $f = \{ f_j \}_{j=1}^\infty$ such that $|f|_q \in L^\infty_\omega$. There exist 3^n dyadic lattices \mathcal{D}_j and sparse families $\mathcal{S}_j \subseteq \mathcal{D}_j$, such that the following hold.

- The maximal function.

$$|\mathcal{M}_q f|(x) \leq c_{n,q} \sum_{k=1}^{3^n} |\mathcal{A}_{\mathcal{S}_k}^q f|_q(x),$$

where

$$\mathcal{A}_k^q f(x) = \left(\sum_{Q \in \mathcal{D}_k} \langle |f|_q \rangle_Q^2 \chi_Q(x) \right)^{\frac{1}{2}}.$$
• Calderón-Zygmund operators.

\[|T_q f(x)| \leq C_T \sum_{k=1}^{2^n} A_{S_k} |f|_q(x), \]

where

\[A_S f(x) = \sum_{Q \in S} \langle |f| \rangle_Q \chi_Q(x) \]

and \(C_T = C_K + \| \omega \|_{BMO} + \| T \|_{L^2 \rightarrow L^2}. \)

• Commutators. If additionally \(b \in L_{loc}^1 \), then

\[|[b, T_q] f(x)| \leq C_T \sum_{j=1}^{2^n} (T_{S_j, b} |f|_q(x) + T_{S_j}^* |f|_q(x)), \]

where

\[T_{S_j} f(x) = \sum_{Q \in S} |b(x) - b_Q| \langle |f| \rangle_Q \chi_Q(x), \]

\[T_{S_j}^* f(x) = \sum_{Q \in S} \langle |f - b_Q| \rangle_Q \chi_Q(x). \]

We recall that if \(\Omega \in L^1(\mathbb{S}^{n-1}) \) satisfies

\[\int_{\mathbb{S}^{n-1}} \Omega = 0, \]

we can define the rough singular integral operator \(T_\Omega \) by

\[T_\Omega f(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{\Omega(y')}{|y|^n} f(x - y) dy, \]

where \(y' = y/|y| \) and the associated maximal operator by

\[T_\Omega^* f(x) = \sup_{\varepsilon > 0} \left| \int_{|y| > \varepsilon} \frac{\Omega(y')}{|y|^n} f(x - y) dy \right|. \]

We also recall the operator \(B_{(n-1)/2} \), the Bochner-Riesz multiplier at the critical index, which is defined by

\[B_{(n-1)/2}(f)(\xi) = (1 - |\xi|^2)^{(n-1)/2} \hat{f}(\xi). \]

In our next theorem we present our sparse domination results for vector-valued extensions of those kinds of operators and commutators.

Theorem 1.12. Let \(\Omega \in L^\infty(\mathbb{S}^{n-1}) \). If \(T \) is \(T_\Omega \) or \(B_{(n-1)/2} \) and \(1 < s < \frac{q' + 1}{2} \), then there exists a sparse collection \(S \) such that

\[\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} T(f_j) g_j dx \right| \leq c_{n,q} C_T s' \sum_{Q \in S} \langle |f|_q \rangle_Q \langle |g|_{q'} \rangle_{s,q} |Q|. \]

If \(1 < s < \frac{\min(q', q) + 1}{2} \), then there exists a sparse collection \(S \) such that

\[\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} T_\Omega^*(f_j) g_j dx \right| \leq c_{n,q} \| \Omega \|_{L^\infty(\mathbb{S}^{n-1})} s' \sum_{Q \in S} \langle |f|_q \rangle_{s,q} \langle |g|_{q'} \rangle_{s,q} |Q|. \]

If \(1 < s < \frac{q' + 1}{2}, 1 < r < \frac{q + 1}{2} \) and \(b \in BMO \), then

\[\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} [b, T_\Omega](f_j) g_j dx \right| \leq c_{n,q} \| b \|_{BMO} \| \Omega \|_{L^\infty(\mathbb{S}^{n-1})} s' \max\{r', s'\} \sum_{Q \in S} \langle |f|_q \rangle_{r,q} \langle |g|_{q'} \rangle_{s,q} |Q|. \]
The rest of the paper is organized as follows. In Section 2 we gather some preliminary results and definitions needed in the rest of the paper. Sections 3 and 4 are devoted to settling sparse domination results. In Section 5, we give the proofs of C_p condition estimates. Additionally, we provide two appendices. In Appendix A, we gather some quantitative estimates that follow from the sparse domination results. Finally, in Appendix B we collect some quantitative versions of unweighted estimates that are needed to obtain some of the sparse domination results.

2 Preliminaries

2.1 Notations and basic definitions

In this subsection, we fix the notation that we will use in the rest of the paper. First, we recall the definition of the ω-Calderón-Zygmund operator.

Definition 2.1. An ω-Calderón-Zygmund operator (ω-CZO) T is a linear operator bounded on $L^2(\mathbb{R}^n)$ that admits the following representation:

$$ T f(x) = \int K(x, y) f(y) dy $$

with $f \in C_\infty_c(\mathbb{R}^n)$ and $x \not\in \text{supp } f$, where $K : \mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, x) : x \in \mathbb{R}^n\} \to \mathbb{R}$ has the following properties:

The size condition. $|K(x, y)| \leq C_K \frac{1}{|x-y|^n}$, $x \neq 0$.

The smoothness condition. Provided that $|y - z| < \frac{1}{2} |x - y|$, then

$$ |K(x, y) - K(x, z)| + |K(y, x) - K(z, x)| \leq \frac{1}{|x - y|^n} \omega \left(\frac{|y - z|}{|x - y|} \right), $$

where the modulus of continuity $\omega : [0, \infty) \to [0, \infty)$ is a subadditive, increasing function such that $\omega(0) = 0$.

It is possible to impose different conditions on the modulus of continuity ω. The most general one is the Dini condition. We say that a modulus of continuity ω satisfies the Dini condition if

$$ \|\omega\|_{\text{Dini}} = \int_0^1 \omega(t) \frac{dt}{t} < \infty. $$

We will say that the modulus of continuity ω satisfies a log-Dini condition if

$$ \|\omega\|_{\text{log-Dini}} = \int_0^1 \omega(t) \log \left(\frac{1}{t} + e \right) \frac{dt}{t} < \infty. $$

Clearly, $\|\omega\|_{\text{Dini}} \leq \|\omega\|_{\text{log-Dini}}$. We recall also that if $\omega(t) = ct^\delta$, we are in the case of the classical Hölder-Lipschitz condition.

Definition 2.2. Let ω be a modulus of continuity and K be a kernel satisfying the properties in the preceding definition. We define the maximal Calderón-Zygmund operator T^* as

$$ T^* f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} K(x, y) f(y) dy \right|. $$

To end this subsection we would like to recall also the definitions of some variants and generalizations of the Hardy-Littlewood maximal function. We will denote

$$ M_s f(x) = M(|f|^s)(x)^{\frac{1}{s}}, \quad M^2 f(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f - \langle f \rangle_Q| $$

and

$$ M^2_s f(x) = M^2(|f|^s)(x)^{\frac{1}{s}}, $$
where \(s > 0 \).

Now we recall that \(\Phi \) is a Young function if it is a continuous, convex increasing function that satisfies \(\Phi(0) = 0 \) and such that \(\Phi(t) \to \infty \) as \(t \to \infty \).

Let \(f \) be a measurable function defined on a set \(E \subset \mathbb{R}^n \) with finite Lebesgue measure. The \(\Phi \)-norm of \(f \) over \(E \) is defined by
\[
\|f\|_{\Phi(L),E} := \inf \left\{ \lambda > 0 : \frac{1}{|E|} \int_E \Phi \left(\frac{|f(x)|}{\lambda} \right) dx \leq 1 \right\}.
\]

Using this \(\Phi \)-norm we define, in the natural way, the Orlicz maximal operator \(M_{\Phi(L)} \) by
\[
M_{\Phi(L)} f(x) = \sup_{x \in Q} \|f\|_{\Phi(L),Q}.
\]

Some particular cases of interest are the following:

- \(M_r \) for \(r > 1 \) given by the Young function \(\Phi(t) = t^r \).
- \(M_{L(\log L)^{\delta}} \) with \(\delta > 0 \) given by the Young function \(\Phi(t) = t \log(e + t)^\delta \). It is a well-known fact that
\[
M^{(k+1)} f \simeq M_{L(\log L)^{k}} f,
\]
where \(M^k = M \circ \cdots \circ M \).
- \(M_{L(\log \log L)^{\delta}} \) with \(\delta > 0 \) given by the Young function
\[
\Phi(t) = t \log(e + t)(\log \log(e + t))^\delta.
\]

One basic fact about this kind of maximal operators that follows from the definition of the norm is the following: Given the Young functions \(\Psi \) and \(\Phi \) such that for some \(\kappa > 0 \) and \(t > c > 0 \), \(\Psi(t) \leq \kappa \Phi(t) \), then
\[
\|f\|_{\Psi(L),Q} \leq (\Psi(c) + \kappa) \|f\|_{\Phi(L),Q},
\]
and consequently
\[
M_{\Psi(L)} f(x) \leq (\Psi(c) + \kappa) M_{\Phi(L)} f(x).
\]

Associated with each Young function \(A \) there exists a complementary function \(\bar{A} \) that can be defined as follows:
\[
\bar{A}(t) = \sup_{s > 0} \{st - A(s)\}.
\]

That complementary function is a Young function as well and it satisfies the following pointwise estimate:
\[
t \leq A^{-1}(t) \bar{A}^{-1}(t) \leq 2t.
\]

An interesting property of this associated function is that the following estimate holds:
\[
\frac{1}{|Q|} \int_Q |fg| dx \leq 2 \|f\|_{A,Q} \|g\|_{\bar{A},Q}.
\]

A case of interest for us is the case \(A(t) = t \log(e + t) \). In that case we have
\[
\frac{1}{|Q|} \int_Q |fg| dx \leq c \|f\|_{L(\log L),Q} \|g\|_{\exp(L),Q}.
\]

From that estimate by taking into account John-Nirenberg’s theorem, if \(b \in \text{BMO} \), then
\[
\frac{1}{|Q|} \int_Q |f(b - b_Q)| dx \leq c \|f\|_{L(\log L),Q} \|b - b_Q\|_{\exp(L),Q} \leq c \|f\|_{L(\log L),Q} \|b\|_{\text{BMO}}.
\]

(2.1)

For a detailed account about the ideas presented at the end of this section we refer the reader to [36,37].
2.2 Lerner-Nazarov formula

In this subsection, we recall the definitions of the local oscillation and the Lerner-Nazarov oscillation which is controlled by the former. Built upon the Lerner-Nazarov oscillation we will also introduce the formula, which will be a quite useful tool for us. Most of the ideas covered in this subsection are borrowed from [22]. Among them, we start with the definition of the dyadic lattice.

Definition 2.3. A dyadic lattice \mathcal{D} in \mathbb{R}^n is a family of cubes that satisfies the following properties:

1. If $Q \in \mathcal{D}$ then each descendant of Q is in \mathcal{D} as well.
2. For every 2 cubes Q_1, Q_2 we can find a common ancestor, i.e., a cube $Q \in \mathcal{D}$ such that $Q_1, Q_2 \in \mathcal{D}(Q)$.
3. For every compact set K there exists a cube $Q \in \mathcal{D}$ such that $K \subseteq Q$.

A way to build such a structure is to consider an increasing sequence of cubes $\{Q_j\}$ expanding each time from a different vertex. That choice of cubes gives that $\mathbb{R}^n = \bigcup_j Q_j$ and it is not hard to check that $\mathcal{D} = \bigcup_j \{Q \in \mathcal{D}(Q_j)\}$ is a dyadic lattice.

Lemma 2.4. Given a dyadic lattice \mathcal{D} there exist 3^n dyadic lattices \mathcal{D}_j such that

$$\{3Q : Q \in \mathcal{D}\} = \bigcup_{j=1}^{3^n} \mathcal{D}_j$$

and for every cube $Q \in \mathcal{D}$ we can find a cube R_Q in each \mathcal{D}_j such that $Q \subseteq R_Q$ and $3l_Q = l_{R_Q}$.

Remark 2.5. Fix \mathcal{D}. For an arbitrary cube $Q \subseteq \mathbb{R}^n$ there is a cube $Q' \in \mathcal{D}$ such that $\frac{l_Q}{2} < l_{Q'} \leq l_Q$ and $Q \subseteq 3Q'$. It suffices to take the cube Q' that contains the center of Q. From the lemma above it follows that $3Q' = P \in \mathcal{D}_j$ for some $j \in \{1, \ldots, 3^n\}$. Therefore, for every cube $Q \subseteq \mathbb{R}^n$ there exists $P \in \mathcal{D}_j$ such that $Q \subseteq P$ and $l_P \leq 3l_Q$. From this it follows that $|Q| \leq |P| \leq 3^n|Q|$.

Definition 2.6. $S \subseteq \mathcal{D}$ is an η-sparse family with $\eta \in (0, 1)$ if for each $Q \in S$ we can find a measurable subset $E_Q \subseteq Q$ such that $\eta|Q| \leq |E_Q|$ and all the E_Q’s are pairwise disjoint.

We also recall here the definition of the Carleson family.

Definition 2.7. We say that a family $S \subseteq \mathcal{D}$ is Λ-Carleson with $\Lambda > 1$ if for each $Q \in S$ we have that

$$\sum_{P \in S, P \subseteq Q} |P| \leq \Lambda|Q|.$$

The following result that establishes the relationship between Carleson and sparse families was obtained in [22] and reads as follows.

Lemma 2.8. If $S \subseteq \mathcal{D}$ is an η-sparse family then it is a $\frac{1}{\eta}$-Carleson family. Conversely if S is Λ-Carleson then it is $\frac{1}{\Lambda}$-sparse.

Now we turn to recall the definition of the local oscillation [18] which is given in terms of decreasing rearrangements.

Definition 2.9 (Local oscillation). Given $\lambda \in (0, 1)$, a measurable function f and a cube Q, we define

$$\bar{w}_\lambda(f; Q) := \inf_{c \in \mathbb{R}} ((f - c)\chi_Q)^*(\lambda|Q|).$$
For any function g, its decreasing rearrangement g^* is given by

$$g^*(t) = \inf \{ \alpha > 0 : \{ x \in \mathbb{R}^n : |g| > \alpha \} \subseteq t \}.$$

In particular,

$$(f - c)\chi_Q)^*(\lambda|Q|) = \inf \{ \alpha > 0 : \{ x \in Q : |f - c| > \alpha \} \subseteq \lambda|Q| \}.$$

Now we define the Lerner-Nazarov oscillation [22]. We would like to observe that decreasing rearrangements are not involved in the definition.

Definition 2.10 (Lerner-Nazarov oscillation). Given $\lambda \in (0, 1)$, a measurable function f and a cube Q, we define the λ-oscillation of f on Q as

$$w_\lambda(f; Q) := \inf \{ w(f; E) : E \subseteq Q, |E| > (1 - \lambda)|Q| \},$$

where

$$w(f; E) = \sup_E f - \inf_E f.$$

It is not hard to check that the Lerner-Nazarov oscillation is controlled by the local oscillation.

Lemma 2.11. Given a measurable function f, we have that for every $\lambda \in (0, 1)$,

$$w(f; Q) \leq 2\hat{w}_\lambda(f; Q).$$

Theorem III (Lerner-Nazarov formula). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that for each $\varepsilon > 0$,

$$|\{ x \in [-R, R]^n : |f(x)| > \varepsilon \}| = o(R^n) \quad \text{as} \quad R \to \infty.$$

Then for each dyadic lattice \mathcal{D} and every $\lambda \in (0, 2^{-n-2})$ we can find a regular $\frac{1}{6}$-sparse family of cubes $\mathcal{S} \subseteq \mathcal{D}$ (depending on f) such that

$$|f(x)| \leq \sum_{Q \in \mathcal{S}} w_\lambda(f; Q) \chi_Q(x) \quad a.e.$$

3 Proof of Theorem 1.11

3.1 Hardy-Littlewood maximal operator

We are going to prove

$$\overline{M}_q f(x) \leq c_{n,q} \sum_{k=1}^{3^n} \left(\sum_{Q \in \mathcal{D}_k} \left(\frac{1}{|Q|} \int_Q |f|_q \right)^q \chi_Q(x) \right)^{\frac{1}{q}}.$$

First, we observe that from Remark 2.5 it readily follows that

$$M f(x) \leq c_n \sum_{k=1}^{3^n} M^{D_k} f(x).$$

By taking that into account it is clear that

$$\overline{M}_q f(x) \leq c_n \sum_{k=1}^{3^n} \overline{M}_{q,D_k} f(x).$$ \hspace{1cm} (3.1)$$

The following estimate for local oscillations

$$\hat{w}_\lambda((\overline{M}_{q,D_k} f)^q; Q) \leq \frac{c_{n,q}}{\lambda^q} \left(\frac{1}{|Q|} \int_Q |f|_q \right)^q,$$
was established in [4, Lemma 8.1]. Now we recall that by Lemma 2.11,

\[w_\lambda((\overline{M}_q^D f)^q; Q) \leq 2 w_\lambda((\overline{M}_q^D f)^q; Q). \]

Then

\[w_\lambda((\overline{M}_q^D f)^q; Q) \leq \frac{c_{n,q}}{\lambda^q} \left(\frac{1}{|Q|} \int_Q |f|^q \right)^q. \]

By using the Lerner-Nazarov formula (see Theorem III), there exists a \(\frac{1}{q} \)-sparse family \(\mathcal{S} \subset \mathcal{D} \) such that

\[\overline{M}_q^D f(x) \leq \sum_{Q \in \mathcal{S}} w_\lambda((\overline{M}_q^D f)^q; Q)\chi_Q(x) \]

\[\leq \frac{2c_{n,q}}{\lambda^q} \sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_Q |f|^q \right)^q \chi_Q(x). \]

Consequently,

\[\overline{M}_q^D f(x) \leq c_{n,q} \left(\sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_Q |f|^q \right)^q \chi_Q(x) \right)^{\frac{1}{q}}. \]

Applying this to each \(\overline{M}_q^D f(x) \) in (3.1), we obtain the desired estimate.

3.2 Calderón-Zygmund operators and commutators

To settle this case we borrow ideas from [20] and [23]. Let \(T \) be an \(\omega \)-CZO with \(\omega \) satisfying the Dini condition and \(1 < q < \infty \). We define the grand maximal truncated operator \(M_{T_\alpha} \) by

\[M_{T_\alpha} f(x) = \sup_{Q \ni x} \sup_{\xi \in Q} |T_\alpha(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)|. \]

We also consider a local version of this operator

\[M_{T_\alpha, Q_0} f(x) = \sup_{x \in Q \subseteq Q_0} \sup_{\xi \in Q} |T_\alpha(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)|. \]

Lemma 3.1. Let \(T \) be an \(\omega \)-CZO with \(\omega \) satisfying the Dini condition and \(1 < q < \infty \). The following pointwise estimates hold:

1. For a.e. \(x \in Q_0 \),

\[|T_\alpha(f\chi_{3Q_0})(x)| \leq c_n \|T_\alpha\|_{L^1 \to L^\infty} |f|_q(x) + M_{T_\alpha, Q_0} f(x). \]

2. For all \(x \in \mathbb{R}^n \),

\[M_{T_\alpha} f(x) \leq c_{n,q}(\|\omega\|_{\text{Dini}} + C_K) \overline{M}_q f(x) + \overline{T}_q f(x). \] \hspace{1cm} (3.2)

Furthermore,

\[\|M_{T_\alpha}\|_{L^1 \to L^\infty} \leq c_{n,q} C_T, \]

where \(C_T = C_K + \|\omega\|_{\text{Dini}} + \|T\|_{L^2 \to L^2} \).

Proof. Both estimates essentially follow from adapting arguments in [20] so we will establish just (3.2). Let \(x, \xi \in Q \). Denote by \(B_x \) the closed ball centered at \(x \) of radius \(2\text{diam}Q \). Then \(3Q \subset B_x \), and we obtain

\[|T_\alpha(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)| \leq |T_\alpha(f\chi_{\mathbb{R}^n \setminus B_x})(\xi) + T_\alpha(f\chi_{B_x \setminus 3Q})(\xi)| \]

\[\leq |T_\alpha(f\chi_{\mathbb{R}^n \setminus B_x})(\xi) - T_\alpha(f\chi_{B_x \setminus B_x})(\xi)| \]

\[+ |T_\alpha(f\chi_{B_x \setminus 3Q})(\xi)| + |T_\alpha(f\chi_{\mathbb{R}^n \setminus B_x})(\xi)|. \]
By the smoothness condition, and the triangle inequality in \(\ell^q\) we have
\[
|T_q(f\chi_{R^n\setminus B_\epsilon})(\xi) - T_q(f\chi_{R^n\setminus B_\epsilon})(x)|
= \left| \sum_{j=1}^{\infty} |T(f_j\chi_{R^n\setminus B_\epsilon})(\xi)|^q \right|^{\frac{1}{q}} - \left(\sum_{j=1}^{\infty} |T(f_j\chi_{R^n\setminus B_\epsilon})(x)|^q \right)^{\frac{1}{q}}
\leq \left(\sum_{j=1}^{\infty} |T(f_j\chi_{R^n\setminus B_\epsilon})(\xi) - T(f_j\chi_{R^n\setminus B_\epsilon})(x)|^q \right)^{\frac{1}{q}}.
\]

Now using the smoothness condition (see \([20, \text{Proof of Lemma 3.2(ii)}]\))
\[
|T(f_j\chi_{R^n\setminus B_\epsilon})(\xi) - T(f_j\chi_{R^n\setminus B_\epsilon})(x)| \leq c_n\|\omega\|_{\text{Dini}} Mf_j(x),
\]
we have
\[
|T_q(f\chi_{R^n\setminus B_\epsilon})(\xi) - T_q(f\chi_{R^n\setminus B_\epsilon})(x)| \leq c_n\|\omega\|_{\text{Dini}} \left(\sum_{j=1}^{\infty} |Mf_j(x)|^q \right)^{\frac{1}{q}} = c_n\|\omega\|_{\text{Dini}} M_q f(x).
\]

On the other hand, the size condition of the kernel yields
\[
|T_q(f\chi_{B_\epsilon\setminus 3Q})(\xi)| \leq \left| \sum_{j=1}^{\infty} |T(f_j\chi_{B_\epsilon\setminus 3Q})(\xi)|^q \right|^{\frac{1}{q}}
\leq c_n C_K \left(\sum_{j=1}^{\infty} \left(\frac{1}{|B_\epsilon|} \int_{B_\epsilon} |f_j| \right)^q \right)^{\frac{1}{q}}
\leq c_n C_K \left(\sum_{j=1}^{\infty} (Mf_j(x))^q \right)^{\frac{1}{q}}
\leq c_n C_K M_q f(x).
\]

To end the proof of the pointwise estimate we observe that
\[
|T_q(f\chi_{R^n\setminus B_\epsilon})(x)| \leq T_q f(x).
\]

Now, taking into account the pointwise estimate we have just obtained and Theorem B.7 below it is clear that
\[
\|T_q\|_{L^1 \to L^1, \infty} \leq c_{n,q} C_T.
\]

This ends the proof.

Having the results above at our disposal, now we sketch the proofs of the case of Calderón-Zygmund operators and commutators in Theorem 1.11. Since the case of Calderón-Zygmund operators is simpler, we just show the case of commutators, to make clear how the ideas in \([20, 23]\), need to be adapted to the case of vector-valued extensions.

From Remark 2.5 it follows that there exist \(3^n\) dyadic lattices such that for every cube \(Q\) of \(\mathbb{R}^n\) there is a cube \(R_Q \in D_j\) for some \(j\) for which \(3Q \subset R_Q\) and \(|R_Q| \leq 9^n|Q|\).

Let us fix a cube \(Q_0 \subset \mathbb{R}^n\). We claim that there exists a \(1/2\)-sparse family \(F \subseteq D(Q_0)\) such that for a.e. \(x \in Q_0\),
\[
|b, T_q f\chi_{3Q_0})(x)| \leq c_n C_T \sum_{Q \in F} (|b(x) - b_{R_Q}| |f|_q 3Q + |(b - b_{R_Q})||f|_q 3Q) \chi_Q(x).
\]

Arguing as in \([23]\) from (3.3) it follows that there exists a \(1/2\)-sparse family \(F\) such that for every \(x \in \mathbb{R}^n\),
\[
|b, T_q f(x)| \leq c_n C_T \sum_{Q \in F} (|b(x) - b_{R_Q}| |f|_q 3Q + |(b - b_{R_Q})||f|_q 3Q) \chi_Q(x).
\]
Now we observe that since $3Q \subset R_Q$ and $|R_Q| \leq 3^n|3Q|$ we have that $|h||3Q| \leq c_n|h|_{R_Q}$. Setting
\[S_j = \{ R_Q \in \mathcal{D}_j : Q \in \mathcal{F} \} \]
and using that \mathcal{F} is $\frac{1}{2}$-sparse, we obtain that each family S_j is $\frac{1}{2^n}$-sparse. Then we have
\[\left| \frac{b,T}{q} f(x) \right| \leq c_n C_T \sum_{j=1}^{3^n} \int (|b(x) - b_R| |f||q|_R + \langle (b - b_R)|f||q|_R \rangle \chi_R(x). \]
To prove the claim it suffices to prove the following recursive estimate: There exist pairwise disjoint cubes $P_j \in \mathcal{D}(Q_0)$ such that $\sum_j |P_j| \leq \frac{1}{2}|Q_0|$ and for a.e. $x \in Q_0$,
\[\left| \frac{b,T}{q} (f \chi_{3Q_0})(x) |\chi_{3Q_0}(x) \right| \leq c_n C_T (|b(x) - b_{R_{Q_0}}| |f||q|_{3Q_0} + \langle (b - b_{R_{Q_0}})|f||q|_{3Q_0} \rangle + \sum_j \left| \frac{b,T}{q} (f \chi_{3P_j})(x) |\chi_{P_j}(x) \right| + \sum_j \left| \frac{b,T}{q} (f \chi_{3P_j})(x) |\chi_{P_j}(x) \right| \]
Iterating this estimate we obtain the claim with $\mathcal{F} = \{ P_k^j \}$, where $\{ P_0^j \} = \{ Q_0 \}$, $\{ P_1^j \} = \{ P_j \}$ and $\{ P_k^j \}$ are the cubes obtained at the k-th stage of the iterative process. Now we observe that for any arbitrary family of disjoint cubes $P_j \in \mathcal{D}(Q_0)$ we have that by the sublinearity of $\frac{b,T}{q}$,
\[\left| \frac{b,T}{q} (f \chi_{3Q_0})(x) |\chi_{3Q_0}(x) \right| \leq \left| \frac{b,T}{q} (f \chi_{3Q_0})(x) |\chi_{3Q_0 \cup P_j}(x) \right| + \sum_j \left| \frac{b,T}{q} (f \chi_{3Q_0 \cup P_j})(x) |\chi_{P_j}(x) \right| \]
So it suffices to show that we can choose a family of pairwise disjoint cubes $P_j \in \mathcal{D}(Q_0)$ with
\[\sum_j |P_j| \leq \frac{1}{2}|Q_0| \]
and such that for a.e. $x \in Q_0$,
\[\left| \frac{b,T}{q} (f \chi_{3Q_0})(x) |\chi_{3Q_0 \cup P_j}(x) \right| + \sum_j \left| \frac{b,T}{q} (f \chi_{3Q_0 \cup P_j})(x) |\chi_{P_j}(x) \right| \]
\[\leq c_n C_T (|b(x) - b_{R_{Q_0}}| |f||q|_{3Q_0} + \langle (b - b_{R_{Q_0}})|f||q|_{3Q_0} \rangle). \]
Now we recall that
\[[b,T]f = [b - c, T]f = (b - c)Tf - T((b - c)f) \]
for every $c \in \mathbb{R}$. Then
\[\left| \frac{b,T}{q} (f \chi_{3Q_0})(x) |\chi_{3Q_0 \cup P_j}(x) \right| \]
\[= \sum_{k=1}^{\infty} \left| \frac{b - b_{R_{Q_0}}}{T} (f \chi_{3Q_0})(x) \right|^q \chi_{3Q_0 \cup P_j}(x) \]
\[\leq \sum_{k=1}^{\infty} \left| \langle (b(x) - b_{R_{Q_0}})|T|f \chi_{3Q_0})(x) - T((b - b_{R_{Q_0}})f \chi_{3Q_0})(x) \rangle \right|^q \chi_{3Q_0 \cup P_j}(x) \]
\[\leq \sum_{k=1}^{\infty} \left| \langle (b(x) - b_{R_{Q_0}})|T|f \chi_{3Q_0})(x) - T((b - b_{R_{Q_0}})f \chi_{3Q_0})(x) \rangle \right|^q \chi_{3Q_0 \cup P_j}(x) \]
\[= |b(x) - b_{R_{Q_0}}| T_q (f \chi_{3Q_0})(x) \chi_{3Q_0 \cup P_j}(x) + T_q ((b - b_{R_{Q_0}})f \chi_{3Q_0})(x) \chi_{3Q_0 \cup P_j}(x). \]
Analogously we also have
\[\sum_j \left| \frac{b,T}{q} (f \chi_{3Q_0 \cup P_j})(x) |\chi_{P_j}(x) \right| \]
\[\leq \sum_j \left| \langle (b(x) - b_{R_{Q_0}})|T_q (f \chi_{3Q_0 \cup P_j})(x) + T_q ((b - b_{R_{Q_0}})f \chi_{3Q_0 \cup P_j})(x) \right| \chi_{P_j}(x). \]
In addition, we combine both estimates
\[|b,T_q(f_{x3Q_0})(x)|\chi_{Q_0}\cup \bigcup_j P_j(x) + \sum_j |b,T_q(f_{x3Q_0\setminus 3P_j})(x)|\chi_{P_j}(x) \leq I_1 + I_2, \]
where
\[I_1 = |b(x) - b_{RQ_0}| \left(|T_q(f_{x3Q_0})(x)|\chi_{Q_0}\cup \bigcup_j P_j(x) + \sum_j |T_q(f_{x3Q_0\setminus 3P_j})(x)|\chi_{P_j}(x) \right) \]
and
\[I_2 = |T_q((b - b_{RQ_0})f_{x3Q_0})(x)|\chi_{Q_0}\cup \bigcup_j P_j(x) + \sum_j |T_q((b - b_{RQ_0})f_{x3Q_0\setminus 3P_j})(x)|\chi_{P_j}(x). \]

Now we define the set \(E = E_1 \cup E_2 \), where
\[E_1 = \{ x \in Q_0 : |f| > \alpha_n(|f|_{3Q_0}) \} \cup \{ x \in Q_0 : \mathcal{M}_{T_q,Q_0}f > \alpha_n C_T(|f|_{3Q_0}) \} \]
and
\[E_2 = \{ x \in Q_0 : |b - b_{RQ_0}|(|f|_{3Q_0}) > \alpha_n(|b - b_{RQ_0}|(|f|_{3Q_0}) \}
\]
\[\cup \{ x \in Q_0 : \mathcal{M}_{T_q,Q_0}((b - b_{RQ_0})f) > \alpha_n C_T(|b - b_{RQ_0}|(|f|_{3Q_0}) \}. \]

Since \(\mathcal{M}_{T_q} \) is of the weak type \((1,1)\) with
\[\|\mathcal{M}_{T_q}\|_{L^1 \rightarrow L^{1,\infty}} \leq c_n C_T, \]
from this point it suffices to follow the arguments given in [23, Theorem 1.1], taking into account Lemma 3.1 to end the proof.

4 Proof of Theorem 1.12

To settle Theorem 1.12, unlike our previous approach, we do not need to go through the original proof. This is due to a very nice observation by Culiuc et al. [5], combined with the corresponding results for the scalar setting. Let us recall first those results.

Theorem IV (See [3, Theorems A and B]). Let \(T \) be \(T_\Omega \) or \(B_{(n-1)/2} \). Then for all \(1 < p < \infty \), \(f \in L^p(\mathbb{R}^n) \) and \(g \in L^{p'}(\mathbb{R}^n) \), we have
\[\left| \int_{\mathbb{R}^n} T(f)gdx \right| \leq c_n C_T \sum_{Q \in \mathcal{S}} \langle |f| \rangle_Q \langle |g| \rangle_{s,q} |Q|, \]
where \(\mathcal{S} \) is a sparse family of some dyadic lattice \(\mathcal{D} \),
\[\begin{cases} 1 < s < \infty, & \text{if } T = B_{(n-1)/2} \text{ or } T = T_\Omega \text{ with } \Omega \in L^\infty(\mathbb{S}^{n-1}), \\ q' \leq s < \infty, & \text{if } T = T_\Omega \text{ with } \Omega \in L^{q,1} \log L(\mathbb{S}^{n-1}) \end{cases} \]
and
\[C_T = \begin{cases} ||\Omega||_{L^\infty(\mathbb{S}^{n-1})}, & \text{if } T = T_\Omega \text{ with } \Omega \in L^\infty(\mathbb{S}^{n-1}), \\ ||\Omega||_{L^{q,1} \log L(\mathbb{S}^{n-1})}, & \text{if } \Omega \in L^{q,1} \log L(\mathbb{S}^{n-1}), \\ 1, & \text{if } T = B_{(n-1)/2}. \end{cases} \]

For \(T_\Omega \) with \(\Omega \in L^\infty(\mathbb{S}^{n-1}) \) the following sparse domination was provided in [7]:
\[\left| \int_{\mathbb{R}^n} T_\Omega(f)g \right| \leq c_n ||\Omega||_{L^\infty(\mathbb{S}^{n-1})} s' \sum_{Q \in \mathcal{S}} \langle |f| \rangle_{s,q} \langle |g| \rangle_{s,q} |Q|, \quad 1 < s < \infty. \] (4.1)

In the case of commutators, the following result was recently obtained in [38], hinging upon the techniques in [21].
Theorem V. Let T_{Ω} be a rough homogeneous singular integral with $\Omega \in L^\infty(S^{n-1})$. Then, for every compactly supported $f, g \in C^\infty(\mathbb{R}^n)$, every $b \in \text{BMO}$ and $1 < p < \infty$, there exist 3^n dyadic lattices \mathcal{D}_j and 3^n sparse families $\mathcal{S}_j \subset \mathcal{D}_j$ such that

$$
|\langle [b, T_{\Omega}f, g] \rangle| \leq C_n s'\|\Omega\|_{L^\infty(S^{n-1})} \sum_{j=1}^{3^n} (\mathcal{T}_{\mathcal{S}_j, 1, s}(b, f, g) + \mathcal{T}_{\mathcal{S}_j, 1, s}^*(b, f, g)),
$$

where

$$
\mathcal{T}_{\mathcal{S}_j, r, s}(b, f, g) = \sum_{Q \in \mathcal{S}_j} \langle |f| \rangle_{r, Q} \langle |(b - b_Q)g| \rangle_{s, Q} |Q|,
$$

$$
\mathcal{T}_{\mathcal{S}_j, r, s}^*(b, f, g) = \sum_{Q \in \mathcal{S}_j} \langle |(b - b_Q)f| \rangle_{r, Q} \langle |g| \rangle_{s, Q} |Q|.
$$

Analogously as we did in the preceding sections, if $1 < q < \infty$ and T is T_{Ω} or $B_{(n-1)/2}$ and $b \in L^1_{\text{loc}}$, we consider the corresponding vector-valued versions of T and $[b, T]$ that are defined as follows:

$$
\mathcal{T}_q f(x) = \left(\sum_{j=1}^{\infty} |T(f_j)|^q \right)^{\frac{1}{q}}
$$

$$
[b, T]_q f(x) = \left(\sum_{j=1}^{\infty} |[b, T](f_j)|^q \right)^{\frac{1}{q}}.
$$

Having those results at our disposal, we have

$$
\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} T(f_j) g_j dx \right| \leq c_n C_T s' \sum_{j} \sum_{Q \in \mathcal{S}_j} \langle |f_j| \rangle_{Q} \langle |g_j| \rangle_{s, Q} |Q|
$$

$$
\leq 2c_n C_T s' \int_{\mathbb{R}^n} \sum_{j} M_1, s (f_j, g_j) (x) dx,
$$

where $M_{r, s}(f, g)(x) = \sup_{Q \ni x} \langle |f| \rangle_{r, Q} \langle |g| \rangle_{s, Q}$ and $\langle |h| \rangle_{u, Q} = \langle |h|^u \rangle_{u, Q}$ with $u > 1$.

In the case of T_{Ω}, by taking into account (4.1) and arguing as above,

$$
\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} T_{\Omega}^*(f_j) g_j dx \right| \leq 2c_n C_T s' \int_{\mathbb{R}^n} \sum_{j} M_{s, s} (f_j, g_j) (x) dx.
$$

For the commutator $[b, T_{\Omega}]$ with $b \in \text{BMO}$ and $\Omega \in L^\infty(S^{n-1})$, taking into account Theorem V, we observe that by choosing $u = \frac{s + 1}{2}$, then $u' \leq 2s'$ and we have

$$
\sum_{Q \in \mathcal{S}_j} \langle f \rangle_{Q} \langle (b - b_Q)g \rangle_{u, Q} |Q| \leq \sum_{Q \in \mathcal{S}_j} \langle f \rangle_{Q} \langle (b - b_Q)u(\frac{q}{2})r, Q g \rangle_{s, Q} |Q|
$$

$$
\leq c_n u \left(\frac{s}{u} \right)' \|b\|_{\text{BMO}} \sum_{Q \in \mathcal{S}_j} \langle f \rangle_{Q} |g|_{s, Q} |Q|
$$

$$
\leq c_n u \left(\frac{s}{u} \right)' \|b\|_{\text{BMO}} \sum_{Q \in \mathcal{S}_j} \langle f \rangle_{r, Q} |g|_{s, Q} |Q|
$$

$$
\leq c_n s' \|b\|_{\text{BMO}} \sum_{Q \in \mathcal{S}_j} \langle f \rangle_{r, Q} |g|_{s, Q} |Q|.
$$

On the other hand,

$$
\sum_{Q \in \mathcal{S}_j} \langle (b - b_Q)f \rangle_{Q} |g|_{u, Q} |Q| \leq c_n r' \|b\|_{\text{BMO}} \sum_{Q \in \mathcal{S}_j} \langle f \rangle_{r, Q} |g|_{s, Q} |Q|,
$$
from which it readily follows that
\[|\langle [b, T_b] f, g \rangle| \leq c_n s'(s' + r') \|b\|_{\text{BMO}} \sum_{Q \in S_j} \langle f \rangle_{r,Q} \langle g \rangle_{s,Q} |Q|. \]

Consequently,
\[\left| \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^n} [b, T_b](f_j) g_j dx \right| \leq c_n s' \max\{s', r'\} \|b\|_{\text{BMO}} \int_{\mathbb{R}^n} \sum_j \mathcal{M}_{r,s}(f_j, g_j)(x) dx, \]

where \(\mathcal{M}_{r,s}(f, g)(x) = \sup_{Q \ni x} \langle |f| \rangle_{r,Q} \langle |g| \rangle_{s,Q}. \) The considerations above reduce the proof of Theorem 1.12 to providing a sparse domination for \((\mathcal{M}_{r,s})_{1}(f, g). \) That was already done in [5]. Here we would like to track the constants, and thus present an alternative proof.

Lemma 4.1. Let \(1 < q < \infty, 1 \leq s < \frac{q+1}{2} \) and \(1 \leq r < \frac{q+1}{2}. \) Then there exists a sparse family of dyadic cubes \(S \) such that
\[\frac{M_{1,s}}{1}(f, g) \leq c_n q' \sum_{Q \in S} \langle |f| \rangle_{r,Q} \langle |g| \rangle_{s,Q} \chi_Q. \]

Proof. Again, we use the three lattice theorems to reduce the problem to studying the related dyadic maximal operator. Namely, we shall prove
\[\frac{M_{1,s}^D}{1}(f, g) \leq c_n q' \sum_{Q \in S} \langle |f| \rangle_{r,Q} \langle |g| \rangle_{s,Q} \chi_Q, \]

where \(\mathcal{D} \) is a dyadic grid and
\[\mathcal{M}_{1,s}^D(f, g)(x) = \sup_{Q \ni x} \langle |f| \rangle_{r,Q} \langle |g| \rangle_{s,Q}. \]

We shall use the Lerner-Nazarov formula. So we only need to calculate the local mean oscillation. For every \(x \in Q_0, \) notice that
\[\mathcal{M}_{r,s}^D(f, g)(x) = \max \left\{ \mathcal{M}_{r,s}^D(f \chi_Q, g \chi_Q)(x), \sup_{Q \in \mathcal{D}} \langle |f| \rangle_{r,Q} \langle |g| \rangle_{s,Q} \right\}, \]

and the second term on the right is constant, so based on this we define
\[K_0 = \sum_{j \in \mathbb{Z}} \sup_{Q \ni x} \langle |f_j| \rangle_{r,Q} \langle |g_j| \rangle_{s,Q}. \]

Then
\[|\{ x \in Q_0 : \langle (\mathcal{M}_{1,s}^D)_{1}(f, g)(x) - K_0 \rangle > t \} | \leq |\{ x \in Q_0 : \langle (\mathcal{M}_{1,s}^D)_{1}(f \chi_Q, g \chi_Q)(x) \rangle > t \} |. \]

Now we are in the position to apply the Fefferman-Stein inequality for vector-valued maximal operators. Since we need to track the constants, here we use the version in Grafakos’ book [11, Theorem 5.6.6]:
\[\|M_q(f)\|_{L^{1,\infty}} \leq c_n q' \|f\|_{L^1}. \] (4.3)

We also need Hölder’s inequality for the weak type spaces, which can also be found in [11, p. 16]:
\[\|f_1 \cdots f_k\|_{L^{p,\infty}} \leq p - \frac{1}{p} \prod_{i=1}^{k} p_i^{\frac{-1}{p_i}} \|f_i\|_{L^{p_i,\infty}}, \] (4.4)

where \(\frac{1}{p} = \sum_{i=1}^{k} \frac{1}{p_i} \) and \(0 < p_i < \infty. \) With (4.3) and (4.4) at hand, we have that since \(1 < r, s < \infty, \)
\[\|M_{q}^{D} f\|_{L^{r+s,\infty}} \leq r^{\frac{1}{r+s}} s^{\frac{1}{r+s}} \|M_{q} f\|_{L^{r,\infty}} \|M_{s}^{r} g\|_{L^{s,\infty}}. \]
\[
\leq r^\frac{1}{2} s^\frac{1}{2} \left(\frac{r + s}{r s} \right) \frac{r + s}{r} \|\bar{M}_q f\|_{L^p(w)} \|\bar{M}_q g\|_{L^p(w)}
\]
\[
\leq r^\frac{1}{2} s^\frac{1}{2} \left(\frac{r + s}{r s} \right) \frac{r + s}{r} \|\bar{M}_q f\|_{L^p(w)} \|\bar{M}_q g\|_{L^p(w)}
\]
\[
\leq c_n r^\frac{1}{2} s^\frac{1}{2} \left(\frac{r + s}{r s} \right) \frac{r + s}{r} \left(\frac{q}{s} \right) \left(\frac{q}{s} \right) \|\bar{M}_q f\|_{L^p(w)} \|\bar{M}_q g\|_{L^p(w)}.
\]

Now we observe that \(c_n r^\frac{1}{2} s^\frac{1}{2} \left(\frac{r + s}{r s} \right) \frac{r + s}{r} \left(\frac{q}{s} \right) \left(\frac{q}{s} \right) \leq c_n q q' = \kappa.\) Then,
\[
|\{x \in Q_0 : |(\bar{M}_{1,s}^p)(f \chi_{Q_0}, g \chi_{Q_0})| > t\}| \leq \frac{\kappa \epsilon}{t^{1/\theta}} \left(\int_{Q_0} |f|^p \right)^{1/\theta} \left(\int_{Q_0} |g|^p \right)^{1/\theta}.
\]

Taking into account the preceding estimates, we have
\[
\omega_\lambda((\bar{M}_{1,s}^p)(f, g), Q_0) \leq ((\bar{M}_{1,s}^p)(f, g - K_0)^\lambda |Q_0|) \leq c_n q q' \lambda^{-\frac{\epsilon}{\theta}} \langle |f|\rangle_{q', Q_0} \langle |g|\rangle_{q', Q_0} \chi_{Q_0} \leq c_n q q' \lambda^{-2} \langle |f|\rangle_{q', Q_0} \langle |g|\rangle_{q', Q_0} \chi_{Q_0},
\]
where the last inequality holds since \(0 < \lambda < 1.\) From this point, a direct application of the Lerner-Nazarov formula (see Theorem III) together with the \(3^n\)-dyadic-lattice trick ends the proof. \(\square\)

5 Proofs of \(C_p\) condition estimates

5.1 Proofs of \(M^\#\) approach results

Proof of Theorem 1.2. Let \(\delta \in (0, 1)\) be a parameter to be chosen. Then, by the Lebesgue differentiation theorem,
\[
\|T(f)\|_{L^p(w)} \leq \|M(T(f)\delta)^\frac{1}{\delta}\|_{L^p(w)} = \|M(T(f)\delta)^\frac{1}{\delta}\|_{L_p^\delta(w)}.
\]

Now we choose \(\delta \in (0, 1)\) such that
\[
\max\{1, p\} < \frac{p}{\delta} < \max\{1, p\} + \varepsilon.
\]

If we denote \(\varepsilon_1 = \max\{1, p\} + \varepsilon - \frac{p}{\delta}\) then, since \(w \in C_{\max\{1, p\} + \varepsilon, m},\) we have that \(w \in C_{p/\delta + \varepsilon_1}\) and a direct application of Theorem II combined with the condition \(\langle D_q \rangle\) yields
\[
\|T(f)\|_{L^p(w)} \leq c \|M^\#(T(f)\delta)\|_{L_p^\delta(w)} = c \|M^\#_\delta(T(f)\delta)\|_{L_p^\delta(w)} \leq c \|M f\|_{L^p(w)},
\]
which is the desired result. The vector-valued case is analogous, assuming the \(\langle D_q \rangle\) condition instead; so we omit the proof. \(\square\)

Proof of Theorem 1.6. The proof is similar to the case \(m = 1.\) Let \(\delta \in (0, \frac{1}{m})\) be a parameter to be chosen. Then, as above,
\[
\|T(\tilde{f})\|_{L^p(w)} \leq \|M(|T(\tilde{f})\delta)^\frac{1}{\delta}\|_{L_p^\delta(w)}.
\]

Now we choose \(\delta \in (0, \frac{1}{m})\) such that
\[
\max\{1, mp\} < \frac{p}{\delta} < \max\{1, mp\} + \varepsilon.
\]

If we denote \(\varepsilon_m = \max\{1, mp\} + \varepsilon - \frac{p}{\delta}\) then, since \(w \in C_{\max\{1, mp\} + \varepsilon, m},\) we have that \(w \in C_{p/\delta + \varepsilon_m}\) and a direct application of Theorem II combined with (1.5) yields
\[
\|T(\tilde{f})\|_{L^p(w)} \leq c \|M^\#(|T(\tilde{f})\delta)\|_{L_p^\delta(w)} = c \|M^\#_\delta(T(\tilde{f})\delta)\|_{L_p^\delta(w)} \leq c \|M(\tilde{f})\|_{L^p(w)},
\]
as we want to prove. \(\square\)
Proof of Theorem 1.7. We will use the key pointwise estimate (1.6): If $0 < \delta < \delta_1$, there exists a positive constant $c = c_{\delta, \delta_1, T}$ such that

$$M^\#_\delta([b, T]f)(x) \leq c_{\delta, \delta_1, T} \|b\|_{\text{BMO}} (M_{\delta_1}(T f) + M^2(f)(x)).$$

By the Lebesgue differentiation theorem,

$$\|([b, T]f)\|_{L^p(w)} \leq \|M([b, T]f)^\delta\|_{L^p(w)}^{\frac{1}{\delta}}.$$

We choose $0 < \delta < \delta_1 < 1$ such that

$$\max\{1, p\} < \frac{P}{\delta_1} < \frac{P}{\delta} = \max\{1, p\} + \varepsilon.$$

Now, if we denote $\varepsilon_1 = \max\{1, p\} + \varepsilon - \frac{P}{\delta}$, then, since $w \in C_{\max\{1, p\} + \varepsilon}$, we have that $w \in C_{P/\delta + \varepsilon_1}$ and a direct application of Theorem II yields

$$\|([b, T]f)\|_{L^p(w)} \leq c\|M_{\delta_1}(T f)\|_{L^p(w)}^{\frac{1}{\delta}}.$$

Combining the preceding estimate with (1.6), we have

$$\|([b, T]f)\|_{L^p(w)} \leq c\|b\|_{\text{BMO}} (\|M_{\delta_1}(T f)\|_{L^p(w)} + \|M^2 f\|_{L^p(w)}).$$

For the second term we are done, while for the first one, by taking into account our choice for δ_1 and arguing as in the proof of Theorem 1.2,

$$\|M_{\delta_1}(T f)\|_{L^p(w)} \leq c\|M f\|_{L^p(w)}$$

and we are done. Taking into account (1.7) the vector-valued case is analogous so we omit the proof.

5.2 Proofs of Theorems 1.9 and 1.10

The proof of Theorem 1.9 is actually a consequence of the sparse domination combined with the following Theorem.

Theorem 5.1. Let $1 < p < q < \infty$. Let S be a sparse family and $w \in C_q$. Then

$$\|A_S f\|_{L^p(w)} \leq c\|M f\|_{L^p(w)},$$

$$\|A_S f\|_{L^{p, \infty}(w)} \leq c\|M f\|_{L^{p, \infty}(w)}.$$

Something analogous happens with Theorem 1.10. It is a consequence of the sparse domination combined with the following result.

Theorem 5.2. Let $1 < p < q < \infty$. Let S be a sparse family and $w \in C_q$, and $b \in \text{BMO}$. Then

$$\|T_{b, S} f\|_{L^p(w)} \leq c\|b\|_{\text{BMO}} \|M f\|_{L^p(w)},$$

$$\|T_{b, S} f\|_{L^{p, \infty}(w)} \leq c\|b\|_{\text{BMO}} \|M f\|_{L^{p, \infty}(w)}$$

and

$$\|T_{b}^* S f\|_{L^p(w)} \leq c\|b\|_{\text{BMO}} \|M^2 f\|_{L^p(w)},$$

$$\|T_{b}^* S f\|_{L^{p, \infty}(w)} \leq c\|b\|_{\text{BMO}} \|M^2 f\|_{L^{p, \infty}(w)}.$$

To establish the preceding results we will rely upon some lemmas that are based on the ideas of [39].
5.2.1 Lemmata

In this subsection we present the technical lemmas needed to establish Theorems 1.9 and 1.10. The results here are essentially an elaboration of Sawyer’s arguments [39].

Let $\Omega_k := \{f > 2^k\}$ and define

$$\left(M_{k,p,q}(f)(x)\right)^p = 2^{kp} \int_{\Omega_k} \frac{d(y,\Omega_k^e)^{(p-1)}}{d(y,\Omega_k^e)^p + |x-y|^q} dy.$$

When Ω_k is open let $\Omega_k = \bigcup_j Q_j^k$ be the Whitney decomposition, i.e., Q_j^k's are pairwise disjoint and

$$8 < \frac{\text{dist}(Q_j^k, \Omega_k^e)}{\text{diam}Q_j^k} \leq 10, \quad \sum_j \chi_{6Q_j^k} \leq C_n \chi_{\Omega_k}.$$

Then it is easy to check that

$$M_{k,p,q}(f)^p \approx 2^{kp} \sum_j M(\chi_{Q_j^k})^q.$$

Our key lemma is the following.

Lemma 5.3. Suppose that $1 < p < q < \infty$ and that ω satisfies the C_q condition (see Subsection 1.1). Then for all compactly supported f,

$$\sup_k \int (M_{k,p,q}(Mf))^p \omega \leq C \|Mf\|_{L^p(\omega)}^p.$$

Proof. Let $\Omega_k := \{f > 2^k\} = \bigcup_j Q_j^k$ be the Whitney decomposition. Let N be a positive integer (to be chosen later) and fix a Whitney cube Q_i^{k-N}. We now claim

$$|\Omega_k \cap 3Q_i^{k-N}| \leq C_n 2^{-N} |Q_i^{k-N}|.$$

(5.1)

Indeed, let $g = f \chi_{22\sqrt{n}Q_i^{k-N}}$ and $h = f - g$. Let $x_0 \in 22\sqrt{n}Q_i^{k-N} \setminus \Omega_{k-N}$. It is easy to check that for any $x \in 3Q_i^{k-N}$, we have

$$M(h)(x) \leq c_n M(f)(x_0) \leq c_n 2^{k-N}.$$

Let N be sufficiently large such that $c_n 2^{-N} \leq 1/2$. Then

$$|\Omega_k \cap 3Q_i^{k-N}| = |\{x \in 3Q_i^{k-N} : M(f) > 2^k\}|$$

$$\leq |\{x \in 3Q_i^{k-N} : M(g) > 2^{k-1}\}|$$

$$\leq 2^{1-k} c_n \int g \leq 2^{1-k} c_n |22\sqrt{n}Q_i^{k-N}| M(f)(x_0)$$

$$\leq C_n 2^{-N} |Q_i^{k-N}|.$$

As that in [39], define $S(k) = 2^{kp} \sum_j \int M(\chi_{Q_j^k})^q \omega$ and $S(k; N, i) = 2^{kp} \sum_j \int M(\chi_{Q_j^k})^q \omega$, where the latter sum is taken over those j for which $Q_j^k \cap Q_i^{k-N} \neq \emptyset$. Since $Q_j^k \cap Q_i^{k-N} \neq \emptyset$ together with (5.1) implies $\ell(Q_j^k) \leq \ell(Q_i^{k-N})$ for large N, and this further implies $Q_j^k \subset Q_i^{k-N}$, we have

$$S(k; N, i) \leq \int 2^{kp} \sum_{j : Q_j^k \subset 3Q_i^{k-N}} |M(\chi_{Q_j^k})|^q \omega$$

$$= \int_{5Q_i^{k-N}} + \int_{\mathbb{R}^n \setminus 5Q_i^{k-N}} =: I + II \quad \text{for large } N.$$

By the argument in [39], we know

$$I \leq C_\delta 2^{kp} w(5Q_i^{k-N}) + \delta 2^{kp} \int |M(\chi_{Q_i^{k-N}})|^q \omega,$$
where we have used $M(\chi_{6Q_i^k-N}) \approx M(\chi_{Q_i^k-N})$. Next, we estimate II, and we have

$$II \leq c_n 2^{kp} \int_{\mathbb{R}^n \setminus 5Q_i^k-N} \frac{\sum |Q_j|^q}{|x - c_{Q_i^k-N^n}|^q} w(x) dx$$

$$\leq c_{n,q} 2^{kp} \int_{\mathbb{R}^n \setminus 5Q_i^k-N} \left(\frac{2^{-N}|Q_i^k-N|}{|x - c_{Q_i^k-N^n}|^n} \right)^q w(x) dx$$

$$\leq c_{n,q} 2^{N(p-q)(2(k-N))} \int |M\chi_{Q_i^k-N}|^q w.$$

Thus for large N (depending on p, q),

$$S(k) \leq \sum_i S(k; N, i)$$

$$\leq C_\delta c_n 2^{kp} w(\Omega_{k-N}) + (\delta 2^N p + c_{n,q} 2^{N(p-q)}) S(k-N)$$

$$\leq C_n,\delta 2^{kp} w(\Omega_{k-N}) + \frac{1}{2} S(k-N).$$

Taking the supremum over $k \leq M$, we get

$$\sup_{k \leq M} \int (M_{k,p,q}(Mf))^p w \leq c_{n,p,q} ||M(f)||_{L^p,\infty(w)}^p,$$

provided that

$$\sup_{k \leq M} \int (M_{k,p,q}(Mf))^p w < \infty.$$

By monotone convergence, we can assume that f has compact support, say $\text{supp} f \subset Q$. Without loss of generality, assume $f \geq 0$ and $2^s < \langle f \rangle_Q \leq 2^{s+1}$. Then it is easy to check that

$$M(f) \gtrsim 2^s M(\chi_Q).$$

Moreover, for $k \geq s+1$, $\Omega_k \subset 3Q$ and we have

$$\sup_{s+1<k\leq M} 2^{kp} \sum_j \int M(\chi_{Q_j^k})^q w \leq \sup_{s+1<k\leq M} 2^{kp} \int M(\chi_Q)^q w$$

$$= \sup_{s+1<k\leq M} 2^{kp} \sum_{\ell \geq 1} \int_{2^{\ell+1}Q \setminus 2^{\ell}Q} M(\chi_Q)^q w + \sup_{s+1<k\leq M} 2^{kp} \int_{2Q} M(\chi_Q)^q w$$

$$=: I + II.$$

First, we estimate II. We have

$$II \leq 2^{Mp} w(2Q) \leq 2^{Mp} w \left(\left\{ x : M\chi_Q(x) \geq \frac{1}{2^n} \right\} \right)$$

$$\leq 2^{Mp} c_{n,p} ||M\chi_Q||_{L^p,\infty(w)}^p \leq 2^{Mp-2sp} c_{n,p} ||Mf||_{L^p,\infty(w)}^p < \infty.$$

Next, we estimate I. Direct calculations give us

$$I \leq \sup_{s+1<k\leq M} 2^{kp} \sum_{\ell \geq 1} c_{n,q} 2^{-n\ell} w(2^{\ell+1}Q \setminus 2^{\ell}Q)$$

$$\leq \sup_{s+1<k\leq M} 2^{kp} \sum_{\ell \geq 1} c_{n,q} 2^{-n\ell} w \left(\left\{ x : M(\chi_Q) \geq \frac{1}{2^{(\ell+1)n}} \right\} \right)$$

$$\leq 2^{Mp} c_{n,q} \sum_{\ell \geq 1} 2^{-n(q-p)\ell} ||M(\chi_Q)||_{L^p,\infty(w)}^p$$

$$\leq c_{n,p,q} 2^{Mp-2sp} ||Mf||_{L^p,\infty(w)}^p < \infty.$$
It remains to consider the case $k \leq s$. We still follow the idea of Sawyer [39], but with slight changes. In this case, $\Omega_k \subset (2^{\frac{k}{\ell+1}} + 1)Q$. Then again,

$$
\sup_{k \leq s} 2^{kp} \int |M(xQ_k^j)|^q w \leq 2^{kp} \sup_{k \leq s} \int |Mx_{2^{\frac{k}{\ell+1}}Q}|^q w
$$

$$
= 2^{kp} \sup_{m \geq 0} 2^{-mp} c_{n,q} \int |Mx_{2^{\frac{m}{\ell+1}}Q}|^q w

\leq 2^{kp} \sup_{m \geq 0} 2^{-mp} c_{n,q} \int \sum_{\ell \geq 1} \int_{2^{\frac{m}{\ell+1}}Q \backslash 2^{\frac{m}{\ell+1}}Q} |Mx_{2^{\frac{m}{\ell+1}}Q}|^q w

\leq c_{n,p,q} \|Mf\|_{L^p,w} < \infty,
$$

where the last step follows from similar calculations to the ones above. Now

$$
\sup_{k \leq M} \int (A_{k,p,q}(Mf))^{p} w \leq c_{n,p,q} \|M(f)\|_{L^p,w}^{p},
$$

and taking the supremum over M we conclude the proof.

Our last result in this subsection is the following technical lemma.

Lemma 5.4. Let $w \in C_q$ and $\{Q_j^k\}_j$ be a collection of disjoint cubes in $\{Mf > 2^k\}$. Then

$$
\sum_{j} 2^{kp} M(xQ_j^k) q w \lesssim \int M(\chi_{Q_j^k}) q w \lesssim \int M(\chi_{c_nP}) q w \leq c_n \int M(\chi_P) q w
$$

and the result follows.

5.2.2 **Proof of Theorem 5.1**

We only provide the proof for the strong type (p, p) estimate, since the weak type (p, p) is analogous. Let $\gamma > 0$ be a small parameter that will be chosen. Then we have that

$$
\|A_S f\|_{L^p(w)}^p \leq c_p \sum_{k \in \mathbb{Z}} 2^{(k+1)p} w(\{ x : 2^k < A_S f(x) \leq 2^{k+1} \})
$$

$$
\leq c_p \sum_{k \in \mathbb{Z}} 2^{kp} w(\{ x : A_S f(x) > 2^k \})
$$

$$
\leq c_p \sum_{k \in \mathbb{Z}} 2^{kp} w(\{ x : A_S f(x) > 2^k, M(f)(x) \leq \gamma 2^k \})
$$

$$
+ c_p \sum_{k \in \mathbb{Z}} 2^{kp} w(\{ x : M(f)(x) > \gamma 2^k \})
$$

$$
\leq c_p \sum_{k \in \mathbb{Z}} 2^{kp} w(\{ x : A_S f(x) > 2^k, M(f)(x) \leq \gamma 2^k \}) + c_{p, \gamma} \|Mf\|_{L^p(w)}^p.
$$

So we only need to estimate

$$
\sum_{k \in \mathbb{Z}} 2^{kp} w(\{ x : A_S f(x) > 2^k, M(f)(x) \leq \gamma 2^k \}).
$$
split $S = \bigcup_m S_m$, where

$$S_m := \{Q \in S : 2^m < (f)_{Q} \leq 2^{m+1}\}.$$

It is easy to see that, if $2^m \geq \gamma 2^k$, then for $x \in Q \in S_m$, $Mf(x) > \gamma 2^k$. Set $m_0 = \lceil \log_2(\frac{1}{\gamma}) \rceil + 1$. Then we have

$$\sum_{k \in \mathbb{Z}} 2^{kp}w \left(\left\{ x : A_Sf(x) > 2^k, M(f)(x) \leq \gamma 2^k \right\} \right)$$

$$= \sum_{k \in \mathbb{Z}} 2^{kp}w \left(\left\{ x : \sum_{m \leq k - m_0} A_Sm f(x) > 2^k \left(1 - \frac{1}{\sqrt{2}}\right) \sum_{m \leq k - m_0} 2^{m+k+m_0}, M(f)(x) \leq \gamma 2^k \right\} \right)$$

$$\leq \sum_{k \in \mathbb{Z}} 2^{kp} \sum_{m \leq k-m_0} w \left(\left\{ x : A_Sm f(x) > \left(1 - \frac{1}{\sqrt{2}}\right) 2^{m+k+m_0}, M(f)(x) \leq \gamma 2^k \right\} \right).$$

Denote $b_m = \sum_{Q \in S_m} \chi_Q$. Then $A_Sm f \leq 2^{m+1} b_m$. Therefore, if we denote by S_m^* the collection of maximal dyadic cubes in S_m, taking into account the local exponential decay for sparse operators (see, for example, [29]), then

$$\left\{ A_Sm f(x) > \left(1 - \frac{1}{\sqrt{2}}\right) 2^{m+k+m_0} \right\}$$

$$\leq \left\{ b_m > \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{m+k+m_0} \right\}$$

$$\leq \sum_{Q \in S_m} \left| \left\{ x \in Q : b_m > \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{m+k+m_0} \right\} \right| \leq \exp(-c2^{-m+k+m_0}) \sum_{Q \in S_m^*} |Q|.$$

Now, by the C_q condition, we have

$$w \left(\left\{ A_Sm f(x) > \left(1 - \frac{1}{\sqrt{2}}\right) 2^{m+k+m_0} \right\} \right)$$

$$= \sum_{Q \in S_m} w \left(\left\{ x \in Q : A_Sm f(x) > \left(1 - \frac{1}{\sqrt{2}}\right) 2^{m+k+m_0} \right\} \right)$$

$$\leq \exp(-c2^{-m+k+m_0}) \sum_{Q \in S_m^*} \int M(\chi_Q)qw.$$

Since $\bigcup_{Q \in S_m} Q \subset \{ x : Mf(x) > 2^m \}$, a combined application of [39, Lemma 4] and Lemma 5.4 yields the desired result.

5.2.3 Proof of Theorem 5.2

We may assume that $\|b\|_{\text{BMO}} = 1$. Again we just settle the strong type estimate, since the weak-weak type (p,p) estimate is analogous.

First we note that by using (2.1),

$$T_{b,S}f(x) = \sum_{Q \in S} \frac{1}{|Q|} \int_Q |b - b_Q||f|\chi_Q \lesssim \|b\|_{\text{BMO}} \sum_{Q \in S} \|f\|_{L^1(Q, \chi_Q) \chi_{Q}} = \|b\|_{\text{BMO}} A_{L^1} L^1 \cdot Sf.$$

Now we observe that we have

$$\|A_{L\log L} L^1 \cdot Sf\|_{L^p(w)}^p \leq \sum_{k \in \mathbb{Z}} 2^{(k+1)p} w \left(\left\{ x : 2^k < A_{L\log L} L^1 \cdot Sf \leq 2^{k+1} \right\} \right)$$

$$\leq c_p \sum_{k \in \mathbb{Z}} 2^{kp} w \left(\left\{ x : A_{L\log L} L^1 \cdot Sf(x) > 2^k \right\} \right)$$

$$\leq c_p \sum_{k \in \mathbb{Z}} 2^{kp} w \left(\left\{ x : A_{L\log L} L^1 \cdot Sf(x) > 2^k, M_{L\log L} f(x) \leq \gamma 2^k \right\} \right).$$
So we only need to estimate
\[\sum_{k \in \mathbb{Z}} 2^{k}p \left(\{ x : A_{L \log L, S} f(x) > 2^{k}, M_{L \log L} f(x) \leq \gamma 2^{k} \} \right) \]

Split \(S = \bigcup_{m} S_{m} \), where
\[S_{m} := \{ Q \in S : 2^{m} < \| f \|_{L^{Q}, L} \leq 2^{m+1} \} . \]

It is easy to see that, if \(2^{m} \geq \gamma 2^{k} \), then for \(x \in Q \in S_{m} \), \(M_{L \log L} f(x) > \gamma 2^{k} \). Set \(m_{0} = \lfloor \log_{2} (\frac{1}{\gamma}) \rfloor + 1 \).

Then we have
\[\sum_{k \in \mathbb{Z}} 2^{k}p \left(\{ x : A_{L \log L, S} f(x) > 2^{k}, M_{L \log L} f(x) \leq \gamma 2^{k} \} \right) \]
\[= \sum_{k \in \mathbb{Z}} 2^{k}p \left(\left\{ x : \sum_{m \leq k-m_{0}} A_{L \log L, S_{m}} f(x) > 2^{k} \left(1 - \frac{1}{\sqrt{2}} \right) \sum_{m \leq k-m_{0}} 2^{m-k+m_{0}} m_{m+k} \right) \right) \]
\[\leq \sum_{k \in \mathbb{Z}} 2^{k} \sum_{m \leq k-m_{0}} w \left(\left\{ x : A_{L \log L, S_{m}} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) \right. \right) \sum_{Q \in S_{m}^{*}} |Q|, \]

Denote \(b_{m} = \sum_{Q \in S_{m}} \chi_{Q} \). Then \(A_{L \log L, S_{m}} f \leq 2^{m+1} b_{m} \). Therefore, by sparseness,
\[\left| \left\{ x : \sum_{m \leq k-m_{0}} A_{L \log L, S_{m}} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) \right. \right) \sum_{Q \in S_{m}^{*}} |Q|, \]

where \(S_{m}^{*} \) is the collection of maximal dyadic cubes in \(S_{m} \). By the \(C_{q} \) condition, we have
\[w \left(\left\{ x : A_{L \log L, S_{m}} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) \right. \right) \sum_{Q \in S_{m}^{*}} \int M(\chi_{Q})^{q} w. \]

Since
\[\bigcup_{Q \in S_{m}^{*}} \{ x : M_{L \log L} f(x) > 2^{m} \} \subseteq \{ x : M(M f)(x) > 2^{m-n} \}, \]

we have that from Lemma 5.4,
\[\sum_{Q \in S_{m}^{*}} \int M(\chi_{Q})^{q} w \lesssim 2^{-(m-n)p} \int M_{m-n,p,q} (M(M f))^{p} w. \]

This yields
\[\sum_{k \in \mathbb{Z}} 2^{k}p \left(\{ x : A_{L \log L, S} f(x) > 2^{k}, M_{L \log L} f(x) \leq \gamma 2^{k} \} \right) \]
\[\lesssim \sum_{k \in \mathbb{Z}} 2^{k} \sum_{m \leq k-m_{0}} exp\left(-c_{1}2^{-m-k+m_{0}} \right) \int M_{m-n,p,q} (M(M f))^{p} w \]

and we are done.

Now we turn our attention to \(T_{b,S} f(x) \). We observe that arguing as before, we have
\[\| T_{b,S} f(x) f \|_{L^{p}(w)} \lesssim \sum_{k \in \mathbb{Z}} 2^{(k+1)p} w \left(\{ x : 2^{k} < T_{b,S} f(x) \leq 2^{k+1} \} \right) \]
Therefore,
\[\left\{ x : \mathcal{T}_{b_S} f(x) > 2^k, M(f)(x) \leq \gamma 2^k \right\} \]

So we only need to estimate
\[\sum_{k \in \mathbb{Z}} 2^{kp} \mathbb{P}\left\{ x : \mathcal{T}_{b_S} f(x) > 2^k, M(f)(x) \leq \gamma 2^k \right\} . \]

Split \(S = \bigcup_m S_m \), where
\[S_m := \{ Q \in S : 2^m < \langle f \rangle_Q \leq 2^{m+1} \} . \]

It is easy to see that, if \(2^m \geq \gamma 2^k \), then for \(x \in Q \in S_m \), \(M(f)(x) > \gamma 2^k \). Set \(m_0 = \lfloor \log_2 \left(\frac{1}{\gamma} \right) \rfloor + 1 \). We have
\[
\sum_{k \in \mathbb{Z}} 2^{kp} \mathbb{P}\left\{ x : \mathcal{T}_{b_S} f(x) > 2^k, M(f)(x) \leq \gamma 2^k \right\} \\
= \sum_{k \in \mathbb{Z}} 2^{kp} \mathbb{P}\left\{ x : \sum_{m \leq k - m_0} \mathcal{T}_{b_S} f(x) > 2^k \left(1 - \frac{1}{\sqrt{2}} \right) \sum_{m \leq k - m_0} 2^{\frac{m-k+m_0}{2}}, M(f)(x) \leq \gamma 2^k \right\} \\
\leq \sum_{m \leq k - m_0} \sum_{m \leq k - m_0} w \left(\left\{ x : \mathcal{T}_{b_S} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) 2^{\frac{m-k+m_0}{2}}, M(f)(x) \leq \gamma 2^k \right\} \right) .
\]

Now we observe that
\[\mathcal{T}_{b_S} f(x) \leq 2^{m+1} \sum_{Q \in S_m} |b(x) - b_Q| \chi_Q . \]

Therefore,
\[
\left| \left\{ \mathcal{T}_{b_S} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) 2^{\frac{m+k+m_0}{2}} \right\} \right| \\
\leq \left| \left\{ \sum_{Q \in S_m} |b(x) - b_Q| \chi_Q > \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{-\frac{m+k+m_0}{2}} \right\} \right| \\
= \sum_{Q \in S_m} \left| \left\{ x \in Q : \sum_{P \subseteq S_m, P \subseteq Q} |b(x) - b_P| \chi_P > \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{-\frac{m+k+m_0}{2}} \right\} \right|,
\]

where \(S_m^* \) is the collection of maximal dyadic cubes in \(S_m \). Now taking into account \([23, \text{Lemma 5.1}]\), we have that there exists a sparse family \(\tilde{S}_m \) containing \(S_m \) such that
\[|b(x) - b_P| \chi_P(x) \leq \|b\|_{BMO} c_n \sum_{R \subseteq P, P \in S_m} \chi_R(x) = c_n \sum_{R \subseteq P, P \in S_m} \chi_R(x) . \]

Taking that into account we can continue the preceding computation as follows:
\[
\sum_{Q \in S_m} \left| \left\{ x \in Q : \sum_{P \subseteq S_m, P \subseteq Q} \left(c_n \sum_{R \subseteq P, P \in S_m} \chi_R(x) \right) \chi_P > \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{-\frac{m+k+m_0}{2}} \right\} \right| \\
\leq \sum_{Q \in S_m^*} \left| \left\{ x \in Q : \left(\sum_{P \subseteq S_m, P \subseteq Q} \chi_P \right)^2 > c \frac{\sqrt{2} - 1}{2\sqrt{2}} 2^{-\frac{m+k+m_0}{2}} \right\} \right| \\
\leq \exp(-c 2^{-\frac{m+k+m_0}{2}}) \sum_{Q \in S_m^*} |Q| .
\]

Hence, combining the preceding estimates and using the \(C_q \) condition, we have
\[w \left(\left\{ \mathcal{T}_{b_S} f(x) > \left(1 - \frac{1}{\sqrt{2}} \right) 2^{\frac{m+k+m_0}{2}} \right\} \right) \leq \exp(-c 2^{-\frac{m+k+m_0}{2}}) \sum_{Q \in S_m^*} \int M(\chi_Q)^q w . \]
Since $\bigcup_{Q \in S^*_m} Q \subset \{x : Mf(x) > 2^m\}$, we have that from Lemma 5.4,
\[
\sum_{Q \in S^*_m} \int M(\chi_Q)^q w \lesssim 2^{-mp} \int M_{m,p,q}(Mf)^p w.
\]
This yields
\[
\sum_{k \in \mathbb{Z}} 2^{kp} w(\{x : T_{b,S,m} f(x) > 2^k, M(f)(x) \leq \gamma 2^k\}) \lesssim \sum_{k \in \mathbb{Z}} 2^{kp} \sum_{m \in k - m_0} \exp(-\gamma c^2 t^{m+k+m_0}) 2^{-mp} \int M_{m,p,q}(Mf)^p w
\]
and we are done.

Acknowledgements This work was supported by the Basque Government through the Basque Excellence Research Centre 2018–2021 Program, Agencia Estatal de Investigación/European Regional Development Fund of UE (Grant No. MTM 2017-82160-C2-1-P), Acronym “Harmonic Analysis and Quantum Mechanics”, Spanish Ministry of Economy and Competitiveness through Basque Center for Applied Mathematics Severo Ochoa Excellence Accreditation (Grant No. SEV-2013-0323), Universidad Nacional del Sur (Grant No. 11/X752), Agencia Nacional de Promoción Científica y Tecnológica of Argentina (Grant No. PICT 2014-1771), Juan de la Cierva-Formación 2015 (Grant No. FJCI-2015-24547) and Consejo Nacional de Investigaciones Científicas y Técnicas/Proyectos de Investigación Plurianuales of Argentina (Grant No. 11220130100329CO).

References

1. Álvarez J, Hounie J, Pérez C. A pointwise estimate for the kernel of a pseudo-differential operator with applications. Rev Un Mat Argentina, 1991, 37: 184–199
2. Álvarez J, Pérez C. Estimates with A_∞ weights for various singular integral operators. Boll Unione Mat Ital (9), 1994, 7: 123–133
3. Conde-Alonso J M, Culiuc A, Di Plinio F, et al. A sparse domination principle for rough singular integrals. Anal PDE, 2017, 10: 1255–1284
4. Cruz-Uribe D, Martell J M, Pérez C. Sharp weighted estimates for classical operators. Adv Math, 2012, 229: 408–441
5. Culiuc A, Di Plinio F, Ou Y. A sparse estimate for multisublinear forms involving vector-valued maximal functions. In: Bruno Pini Mathematical Analysis Seminar. Lund: DOAJ, 2018, 168–184
6. Curberra G P, García-Cuerva J, Martell J M, et al. Extrapolation with weights, rearrangement invariant function spaces, modular inequalities and applications to singular integrals. Adv Math, 2006, 203: 256–318
7. Di Plinio F, Hytönen T, Li K. Sparse bounds for maximal rough singular integrals via the Fourier transform. Ann Inst Fourier (Grenoble), 2020, in press
8. Domingo-Salazar C, Lacey M T, Rey G. Borderline weak type estimates for singular integrals and square functions. Bull Lond Math Soc, 2016, 48: 63–73
9. Fefferman C. Inequalities for strongly singular convolution operators. Acta Math, 1970, 124: 9–36
10. Fefferman C, Stein E M. H^p spaces of several variables. Acta Math, 1972, 129: 137–193
11. Grafakos L. Classical Fourier Analysis, 3rd ed. Graduate Texts in Mathematics, vol. 249. New York: Springer, 2014
12. Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164
13. Hörmander L. Pseudo-differential operators and hypoelliptic equations. Proc Sympos Pure Math, 1967, 10: 138–183
14. Hytönen T P, Li K. Weak and strong A_p-A_{∞} estimates for square functions and related operators. Proc Amer Math Soc, 2018, 146: 2497–2507
15. Hytönen T P, Roncal L, Tapiola O. Quantitative weighted estimates for rough homogeneous singular integrals. Israel J Math, 2017, 218: 133–164
16. Ibáñez-Firnzkorn G H, Rivera-Ríos I P. Sparse and weighted estimates for generalized Hörmander operators and commutators. Monatsh Math, 2020, 191: 125–173
17. Journé J-L. Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. New York: Springer-Verlag, 1983
18. Lerner A K. A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull Lond Math Soc, 2010, 42: 843–856
19. Lerner A K. Some remarks on the Fefferman-Stein inequality. J Anal Math, 2010, 112: 329–349
20. Lerner A K. On pointwise estimates involving sparse operators. New York J Math, 2016, 22: 341–349
Appendix A Consequences of sparse domination results

The following results are obtained by combining the sparse domination results provided above and the ideas in [14,23] and a suitable adaption of the conjugation method in the case of the one weighted setting for the commutator.

Theorem A.1 (A_p weak and strong type estimates). Let $1 < p, q < \infty$ and $w \in A_p$. Then we have the following results.

- The maximal function.

 \[
 \|M_q(\sigma f)\|_{L^p(w)} \lesssim \left[w \right]_{A_p} \left[\left[\sigma \right]_{A_\infty} \right] \| f \|_{L^p(\sigma)},
 \]

- Calderón-Zygmund operators.

 \[
 \|T_q(\sigma f)\|_{L^p(w)} \lesssim c_{n,p,q} C_T \left[w \right]_{A_p} \left[\left[\sigma \right]_{A_\infty} \right] \| f \|_{L^p(\sigma)},
 \]

 \[
 \|T_q(\sigma f)\|_{L^{p,\infty}(w)} \lesssim c_{n,p,q} C_T \left[w \right]_{A_p} \left[\left[\sigma \right]_{A_\infty} \right] \| f \|_{L^p(\sigma)}.
 \]

- Commutators of Calderón-Zygmund operators.

 \[
 \| [b, T_q] f \|_{L^p(w)} \lesssim c_{n,p,q} C_T \left[w \right]_{A_p} \left[\left[\sigma \right]_{A_\infty} \right] \| f \|_{L^p(\sigma)}.
 \]
If $\mu, \lambda \in A_p$, $\nu = (\frac{\mu}{\lambda})^{\frac{1}{p}}$. If $b \in \text{BMO}_{\nu}$, namely if $\|b\|_{\text{BMO}_{\nu}} = \sup_Q \frac{1}{|Q|} \int_Q |b - b_Q|dx < \infty$, then
\[
\|b, T_q f\|_{L^p(\lambda)} \leq c_{n, p, q} C_T \max\{\|\mu\|_{A_p}[\nu, A_p]\}^{\max\{1, \frac{1}{\nu r}\}} \|b\|_{\text{BMO}_{\nu}} \|f\|_{L^p(\mu)}.
\]

- Rough singular integrals, commutators and $B_{(n-1)/2}$.
\[
\|T_q f\|_{L^p(w)} \leq c_{n, p, q} C_T [w]^{\frac{1}{A_p}}([w]_{A_\infty} + [\sigma]_{A_\infty}) \min\{[\sigma]_{A_\infty}, [w]_{A_\infty}\},
\]
\[
\|T_q f\|_{L^p(w)} \leq c_{n, p, q} \Omega (\|f\|_{L^\infty(\mathbb{R}^n)}^{(2^n - 1)}[w]^{\frac{1}{A_p}}([w]_{A_\infty} + [\sigma]_{A_\infty}) \max\{[\sigma]_{A_\infty}, [w]_{A_\infty}\}),
\]
\[
\|b, T_q f\|_{L^p(w)} \leq c_{n, p, q} \Omega (\|f\|_{L^\infty(\mathbb{R}^n)}^{(2^n - 1)}[w]^{\frac{1}{A_p}}([w]_{A_\infty} + [\sigma]_{A_\infty}) \max\{[\sigma]_{A_\infty}, [w]_{A_\infty}\}^2).
\]

The following estimates can be obtained by using the proofs for sparse operators contained in [8, 23].

Theorem A.2 (Endpoint estimates). Let $1 < p, q < \infty$, w be a weight and $v \in A_1$. Then we have the following results.

- Calderón-Zygmund operators.
\[
\|T_q f\|_{L^1(\infty)(w)} \leq c_{\Phi} \int_{\mathbb{R}^n} \left| f(x) \right|_{q} M_{\Phi} w(x)dx,
\]
where
\[
c_{\Phi} = \int_{1}^{\infty} \frac{\Phi^{-1}(t)}{t^2 \log(e + t)}dt.
\]
From this estimate we derive the following:
\[
\|T_q f\|_{L^1(\infty)(w)} \leq [v]_{A_1} \log(e + [v]_{A_\infty}) \int_{\mathbb{R}^n} \left| f(x) \right|_{q} v(x)dx.
\]

- Commutators.
\[
w(\{x \in \mathbb{R}^n : \|b, T_q f\| > t\}) \leq c_T \frac{c_{\Phi}}{t} \int_{\mathbb{R}^n} \Phi\left(\frac{\|f\|_{\text{BMO}}}{t}\right) M_{\Phi} v(x)dx,
\]
where $\Phi(t) = t \log(e + t)$ and $c_{\Phi} = \int_{1}^{\infty} \frac{\Phi^{-1}(t)}{t \log(e + t)}dt$. From this estimate it follows that
\[
v(\{x \in \mathbb{R}^n : \|b, T_q f\| > t\}) \leq [v]_{A_1} [v]_{A_\infty} \log(e + [v]_{A_\infty}) \int_{\mathbb{R}^n} \Phi\left(\frac{\|f\|_{\text{BMO}}}{t}\right) v(x)dx.
\]

Using the results for sparse operators contained in [7, 26, 27, 33, 37] we obtain the following result.

Theorem A.3 (Fefferman-Stein type inequalities). Let w be a weight, $1 < p < \infty$ and $r > 1$ be small enough. Then the following hold.

- Calderón-Zygmund operators and commutators.
\[
\|b, T_q f\|_{L^p(w)} \leq c_{n, q} C_T \|b\|_{\text{BMO}} (pp')^{2(r')^{\frac{1}{r'}}} \|f\|_{L^p(M, w)},
\]
\[
\|T_q f\|_{L^p(w)} \leq c_{n, q} C_T pp' (r')^{\frac{1}{p'}} \|f\|_{L^p(M, w)}.
\]

- Rough singular integrals, commutators and $B_{(n-1)/2}$.
\[
\|T_q f\|_{L^p(w)} \leq c_{n, p, q} C_T (r')^{\frac{1}{p'}} \|f\|_{L^p(M, w)},
\]
\[
\|T_q f\|_{L^p(w)} \leq c_{n, p, q} \Omega (\|f\|_{L^\infty(\mathbb{R}^n)}^{(2^n - 1)}(r')^{\frac{1}{p'}} \|f\|_{L^p(M, w)},
\]
\[
\|b, T_q f\|_{L^p(w)} \leq c_{n, p, q} \|b\|_{\text{BMO}} \Omega (\|f\|_{L^\infty(\mathbb{R}^n)}^{(2^n - 1)}(r')^{\frac{1}{p'}} \|f\|_{L^p(M, w)}.
\]

Theorem A.4. Let $1 < s < p < \infty$, $r > 1$ be small enough and $w \in A_s$. Then the following hold.
• Calderón-Zygmund operators and commutators.

\[
\|\mathcal{T}_q f\|_{L^p(w)} \leq c_{n,q}C_{\text{pp}}\left[|w|^{1/2}|w|^{1/\alpha_{\lambda}}\right] \|f\|_{L^p(w)},
\]

\[
\|b,\mathcal{T}_q f\|_{L^p(w)} \leq c_{n,q}\|f\|_{\text{BMO}}(p_{\text{pp}})^2\left[|w|^{1/2}|w|^{1+1/\alpha_{\lambda}}\right] \|f\|_{L^p(w)}.
\]

• Rough singular integrals, commutators and \(B_{(n-1)/2}\).

\[
\|\mathcal{T}_q(f)\|_{L^p(w)} \leq c_{n,p,q}\left[|w|^{1/\alpha_{\lambda}}|w|^{1/2}\right] \|f\|_{L^p(w)},
\]

\[
\|\mathcal{B}_q(f)\|_{L^p(w)} \leq c_{n,p,q}\Omega\left|L^\infty(S^{n-1})\right|\left[|w|^{1/\alpha_{\lambda}}|w|^{1+1/\alpha_{\lambda}}\right] \|f\|_{L^p(w)},
\]

\[
\|b,\mathcal{B}_q(f)\|_{L^p(w)} \leq c_{n,p,q}\|b\|_{\text{BMO}}\Omega\left|L^\infty(S^{n-1})\right|\left[|w|^{1/\alpha_{\lambda}}|w|^{2+1/\alpha_{\lambda}}\right] \|f\|_{L^p(w)}.
\]

In the following theorems we gather some estimates in the spirit of [29], with some of them already contained there, that can be settled by combining sparse domination results with the ideas in [16,32].

Theorem A.5. Let \(1 < q < \infty\), \(T\) be an \(\omega\)-Calderón-Zygmund operator with \(\omega\) satisfying the Dini condition and \(b \in \text{BMO}\). Assume also that \(\text{supp } f_q \subseteq Q\). Then

\[
|\{x \in Q : \mathcal{T}_q f(x) > tM(|f_q|(x))\}| \leq c_1e^{-ct^q}|Q|,
\]

\[
|\{x \in Q : \mathcal{B}_q f(x) > tM(|f_q|(x))\}| \leq c_1e^{-ct^q}|Q|,
\]

\[
|\{x \in Q : |b,\mathcal{T}_q f(x)| > tM^2(|f_q|(x))\}| \leq c_1e^{-\sqrt{ct^q}}|Q|.
\]

We will finish this section with a similar type result for rough singular integrals.

Theorem A.6. Let \(\Omega \in L^\infty(S^{n-1})\) and \(T = \mathcal{T}_\Omega\) or \(T = B_{(n-1)/2}\). Let also \(Q\) be a cube and \(f\) satisfy \(\text{supp } f \subseteq Q\). Then there exist some constants \(c, \alpha > 0\) such that

\[
|\{x \in Q : |Tf(x)| > tM f(x)\}| \leq ce^{-\sqrt{ct^q}}|Q|, \quad t > 0.
\]

Remark A.7. We believe that the preceding estimate is not sharp, and we conjecture that the decay should be exponential rather than subexponential.

Appendix B Unweighted quantitative estimates

In this appendix, we collect some quantitative unweighted estimates for Calderón-Zygmund operators satisfying the Dini condition and their vector-valued counterparts. These estimates are somehow implicit in the literature and are a basic ingredient for our fully-quantitative sparse domination results. Our first result provides a quantitative pointwise estimate involving \(M_\delta^2\) and \(T\). It can be obtained following the strategy devised in [2]. It is not hard to check that the following estimate holds.

Proposition B.1. Let \(T\) be an \(\omega\)-Calderón-Zygmund operator satisfying the Dini condition. For each \(0 < \delta < 1\) we have

\[
M_\delta^2(Tf)(x_0) \leq 2^{n+1}\left(\frac{1}{1-\delta}\right)^{1/2}\left(\|T\|_{L^2 \rightarrow L^2} + \|\omega\|_{\text{Dini}}\right)Mf(x_0).
\]

Our next result provides quantitative control of \(\|\mathcal{T}_q\|_{L^1 \rightarrow L^1,\infty}\).

Proposition B.2. Let \(1 < q < \infty\) and \(T\) be an \(\omega\)-Calderón-Zygmund operator satisfying the Dini condition. Then

\[
\|\mathcal{T}_q\|_{L^1 \rightarrow L^1,\infty} \leq c_n\|\omega\|_{\text{Dini}} + \|T\|_{L^q \rightarrow L^q},
\]

Furthermore, since \(\|T\|_{L^q \rightarrow L^q} \leq c_n\|\omega\|_{\text{Dini}} + \|T\|_{L^2 \rightarrow L^2}\),

\[
\|\mathcal{T}_q\|_{L^1 \rightarrow L^1,\infty} \leq c_n\|\omega\|_{\text{Dini}} + \|T\|_{L^2 \rightarrow L^2}.
\]

Proof. It suffices to follow the proof in [34], by considering the Calderón-Zygmund decomposition with respect to the level \(\alpha\lambda\) and then optimizing in \(\alpha\). \(\square\)
Appendix B.1 Boundedness of \overline{M}_q on $L^{p, \infty}$

In this subsection, we prove that $\overline{M}_q : L^{p, \infty} \to L^{p, \infty}$. For that purpose we will use the following Fefferman-Stein type estimate obtained in [31, Theorem 1.1].

Theorem B.3. Let $1 < p < q < \infty$. Then, if g is a locally integrable function, we have that

\[
\int_{\mathbb{R}^n} \overline{M}_q f g \leq \int_{\mathbb{R}^n} |f|_q Mg.
\]

As we announced, using the estimate in Theorem B.3, we can obtain the following result.

Theorem B.4. Let $1 < p, q < \infty$. Then

\[
\|\overline{M}_q f\|_{L^{p, \infty}} \leq c_{n, q}\|f\|_{L^{p, \infty}}.
\]

Proof. Let us fix $1 < r < \min\{p, q\}$. Then

\[
\|\overline{M}_q f\|_{L^{p, \infty}} = \|(\overline{M}_q f)^\frac{r}{p}\|_{L^{p, \infty}} = \|(\overline{M}_q f)^\frac{p}{r}\|_{L^{r, \infty}}.
\]

Now by duality

\[
\|(\overline{M}_q f)^\frac{r}{p}\|_{L^{r, \infty}} \leq \left(\sup_{\|g\|_{L^r} = 1} \left| \int_{\mathbb{R}^n} (\overline{M}_q f)^\frac{p}{r} g \right| \right)^{\frac{1}{r}},
\]

and using Theorem B.3 together with Hölder’s inequality in the context of Lorentz spaces we have

\[
\left| \int_{\mathbb{R}^n} (\overline{M}_q f)^\frac{p}{r} g \right| \leq \int_{\mathbb{R}^n} |(\overline{M}_q f)^\frac{p}{r} g| \leq \int_{\mathbb{R}^n} |f|^\frac{r}{p} |Mg|
\leq \|f\|^\frac{r}{p} \|Mg\|_{L^\infty}
\leq c_{n, p, q}\|f\|_{L^{p, \infty}} \leq c_{n, p, q} \|f\|_{L^{p, \infty}}.
\]

In summary

\[
\|\overline{M}_q f\|_{L^{p, \infty}} = \|(\overline{M}_q f)^\frac{p}{r}\|_{L^{r, \infty}} \leq (c_{n, p, q}\|f\|_{L^{p, \infty}})^{\frac{1}{r}} \leq c_{n, p, q} \|f\|_{L^{p, \infty}}.
\]

This completes the proof. \qed

Appendix B.2 Weak type $(1, 1)$ of $T^* q$

In this subsection, we present a fully quantitative estimate of the weak type $(1, 1)$ of $T^* q$ via a suitable pointwise Cotlar inequality.

Now we recall Cotlar’s inequality for T^*. In [15, Theorem A.2] the following result is obtained.

Lemma B.5. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition and let $\delta \in (0, 1)$. Then

\[
T^* f(x) \leq c_{n, \delta}(M_\delta(|Tf|))(x) + (\|T\|_{L^2 \to L^2} + \|\omega\|_{\text{Dini}})M f(x).
\]

Armed with this lemma we are in the position to prove the following pointwise vector-valued Cotlar’s inequality.

Lemma B.6. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, $\delta \in (0, 1)$ and $1 < q < \infty$. Then

\[
T^* q f(x) \leq c_{n, \delta}(\overline{M}_q (|Tf|)^\delta)(x) + (\|T\|_{L^2 \to L^2} + \|\omega\|_{\text{Dini}})\overline{M}_q f(x),
\]

where $|Tf|^{\delta}$ stands for $\{ |Tf_j|^{\delta} \}_{j=1}^\infty$.

Proof. It suffices to apply Lemma B.5 to each term of the sum. \qed
Theorem B.7. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition, and $1 < q < \infty$. Then

$$\|T^q f\|_{L^{1,\infty}} \leq c_{n,\delta,q}(\|T\|_{L^2 \to L^2} + \|\omega\|_{\text{Dini}})\|f\|_{L^1}.$$

Proof. Using the previous lemma, we have

$$\|T^q f\|_{L^{1,\infty}} \leq c_{n,\delta}(\|M^q \delta (|T_f|^\delta)_x\|_{L^{1,\infty}} + (\|T\|_{L^2 \to L^2} + \|\omega\|_{\text{Dini}})\|M_q f\|_{L^{1,\infty}}).$$

For the second term we have

$$\|M_q f\|_{L^{1,\infty}} \leq c_{n,q}\|f\|_{L^1},$$

so we only have to deal with the first term.

Using that $M_q : L^{p,\infty} \to L^{p,\infty}$ (see Theorem B.4), we have

$$\|M^q \delta (|T_f|^\delta)_x\|_{L^{1,\infty}} = \|M^q (|\mathcal{T} f|^\delta)_x\|_{L^{1,\infty}} \leq C_{n,\delta,q}\|\mathcal{T} f\|_{L^{1,\infty}} = C_{n,\delta,q}\|\mathcal{T} q f\|_{L^{1,\infty}} \leq C_{n,\delta,q}\|\mathcal{T} q f\|_{L^{1,\infty}}\|f\|_{L^1}.$$