Generic Incomparability of Infinite-Dimensional Entangled States

Rob Clifton

Department of Philosophy
1001 Cathedral of Learning
University of Pittsburgh, Pittsburgh, PA 15260 USA
E-mail: rclifton@pitt.edu

Brian Hepburn and Christian Wüthrich

Department of History and Philosophy of Science
1017 Cathedral of Learning
University of Pittsburgh, Pittsburgh, PA 15260 USA
E-mails: brh15@pitt.edu, wuthrich@pitt.edu

(Dated: October 30, 2018)

PACS numbers: PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.-a

Key words: entanglement, local operations, classical communication, majorization, incomparable states

NIELSEN’S CHARACTERIZATION THEOREM AND CONJECTURE

Let \mathcal{H}_n be a Hilbert space of countable dimension $n \geq 2$. For unit vectors $\psi_1, \psi_2 \in \mathcal{H}_n \otimes \mathcal{H}_n$, i.e., two states of a composite system with two isomorphic subsystems, let $\chi \prec \psi$ if it is possible to transform χ into ψ with certainty by performing local operations on the subsystems and communicating classically between their locations (LOCC). (See [1], Sec. 12.5.1 for a complete discussion.) Let ρ_ψ denote the reduced density operator on \mathcal{H}_n determined by the state ψ, and let $\vec{\rho}_\psi = \{\lambda_i^{(1)}, \ldots, \lambda_i^{(n)}\}$ denote the vector of ρ_ψ’s eigenvalues, i.e., ψ’s squared Schmidt coefficients, arranged in non-increasing order. Then Nielsen’s [2] characterization theorem asserts that $\chi \prec \psi$ iff $\vec{\rho}_\chi$ is majorized by $\vec{\rho}_\psi$, i.e., iff for all $k = 1, \ldots, n$, $\sum_{j=1}^k \lambda_j^{(j)} \leq \sum_{j=1}^k \lambda_j^{(j)}$.

One corollary of this elegant little characterization is the following simple result, to be used later on. The Schmidt number, $\sharp \psi$, of a state ψ is defined to be the number of nonzero entries of the vector $\vec{\rho}_\psi$. Thus, Nielsen’s theorem makes it easy to see that a state’s Schmidt number cannot be increased under LOCC; for, if $\sharp \psi_1 < \sharp \psi_2$, then the $\sharp \psi_1$-th inequality in the majorization condition must necessarily fail due to the normalization of the eigenvalues of a reduced density operator. In particular, then, it follows that a product state, for which the Schmidt number is 1, cannot be LOCC-transformed into an entangled state—which, of course, we already know must be true, because entanglement between systems cannot be created by local operations on either of them alone.

Consider, now, the set, S_{inc}, of all pairs (ψ_1, ψ_2) such that $\psi_1 \not\prec \psi_2$ and $\psi_2 \not\prec \psi_1$, where ‘inc’ stands for incomparable, in Nielsen’s [2] terminology. In the same paper (cf. [2], p. 3), Nielsen gave a heuristic argument for the claim that the probability of picking at random two incomparable states out of the set of all $n \times n$ entangled pure states—according to the natural, rotationally invariant measure—tends to 1 as $n \to \infty$. If true, this conjecture would appear to establish that there is a large variety of different non-interconvertible forms of pure state entanglement encountered as the dimension of a system’s state space increases without bound. However, it is not obvious how to complete Nielsen’s reasoning with a simple but rigorous argument; e.g., Życzkowski & Bengtsson (see [3], Sec. IIID) have given another argument based upon geometrical considerations, but it too is no more than heuristic.

So in this note, we shall focus on rigorously establishing an elementary but slightly different result that equally well supports the intuition that the complexity of pure state entanglement increases with dimension: namely, when $n = \infty$, the set of pairs in S_{inc} lie open and dense in the Cartesian product of the unit sphere of $\mathcal{H}_n \otimes \mathcal{H}_n$ with itself. Here, the physically relevant topology is that induced by the standard Hilbert space norm, which, in particular, guarantees that two pairs of pure states will qualify as close only if they (pairwise) dictate uniformly close expectation values for all observables. Due to the fact that the unit sphere of an infinite-dimensional Hilbert space is not even locally compact, there is no sensible Lebesgue-type measure on the set of pairs of unit vectors taken from $\mathcal{H}_\infty \otimes \mathcal{H}_\infty$ (cf. [4], p. 241). Thus, the statement that S_{inc} is norm open and dense in the infinite-dimensional case is the strongest...
statement about the genericity of the set of incomparable states that one can possibly hope to make as the complement of S_{inc} is then ‘nowhere dense’ and so has measure zero.

To put it more plainly, genericity, in this context, amounts to firstly that within any finite region of the $\mathcal{H}_\infty \otimes \mathcal{H}_\infty$ space of state pairs there are uncountably many pairs that are incomparable. Secondly, since the set of comparable pairs is closed (as it’s the complement of the open set S_{inc}) then there are comparable states on the boundary of the set for which an approximating incomparable state can be found as close as you like. The converse cannot be said of any incomparable state. In this sense we claim that incomparability is more common than comparability and hence that the former is a generic property.

Moreover, as will be seen, our method of proof actually establishes that densely many of these generically incomparable pairs are in fact strongly incomparable in the sense of Bandyopadhyay et al. [3]: i.e., they cannot even be converted into one another with the help of an entanglement catalyst, or by performing collective local operations on multiple copies of the input state. Thus our result actually strengthens the intuition behind Nielsen’s conjecture.

PROOF OF GENERIC INCOMPARABILITY FOR INFINITE-DIMENSIONAL STATES

Let us first establish that S_{inc} is open—or, equivalently, its complement S'_{inc} is closed—which happens to be true for any countable value of n. To this end, let us write, when k is finite, ‘$\psi_1 \prec_k \psi_2$’ just in case $\sum_{j=1}^k (\lambda_1^{(j)} - \lambda_2^{(j)}) \leq 0$; and let us define $S_{\prec_k} \equiv \{ \psi_1, \psi_2 : \psi_1 \prec_k \psi_2 \}$, with a similar definition for S'_{\prec_k}. By Nielsen’s theorem, $S_{inc}' = (\bigcap_{k=1}^\infty S_{\prec_k}) \cup (\bigcap_{k=1}^\infty S'_{\prec_k})$, and so it suffices for us to show that each S_{\prec_k} is closed (the argument for each S'_{\prec_k} being closed is, by symmetry).

First, note that the mappings $\psi_i \mapsto \rho_{\psi_i}$, and $\rho_{\psi_i} \mapsto \{\lambda_1^{(1)}, \ldots, \lambda_1^{(k)}\}$ are both trace-norm continuous (see [3], eqns. (1)-(5)), and it is easy to see that the mapping from $\mathbb{R}^k \times \mathbb{R}^k$ to \mathbb{R}:

$$\{\lambda_1^{(1)}, \ldots, \lambda_1^{(k)}\}, \{\lambda_2^{(1)}, \ldots, \lambda_2^{(k)}\} \mapsto \sum_{j=1}^k (\lambda_1^{(j)} - \lambda_2^{(j)})$$

is jointly continuous. Therefore, so too is the mapping defined by $\Phi(\psi_1, \psi_2) = \sum_{j=1}^k (\lambda_1^{(j)} - \lambda_2^{(j)})$. Now, let $(\psi_{1m}, \psi_{2m}) \in S_{\prec_k}$ be any Cauchy sequence, where, by the completeness of Hilbert space, we know there exists a limit pair $(\tilde{\psi}_1, \tilde{\psi}_2)$. To show that S_{\prec_k} is closed, we must show that it also contains this limit pair. But, recalling that Φ is continuous, we know that $\{\Phi(\psi_{1m}, \psi_{2m})\} = \{\sum_{j=1}^k (\lambda_1^{(j)} - \lambda_2^{(j)})\}$ must be a Cauchy sequence too;

and, since the nonpositive real numbers are closed, it follows that this latter sequence converges to a real number $\sum_{j=1}^k (\lambda_1^{(j)} - \lambda_2^{(j)}) \leq 0$. Thus $(\tilde{\psi}_1, \tilde{\psi}_2) \in S_{\prec_k}$, as required.

Turning now to the density of S_{inc}, what we shall actually establish is that the set of strongly incomparable pairs, $S_{st \ inc}$, is dense when $n = \infty$. A pair of entangled states (ψ_1, ψ_2) is called strongly incomparable just in case $\psi_1 \not\prec \psi_2$ and $\psi_2 \not\prec \psi_1$ and it is not possible to convert finitely many copies of one of (ψ_1, ψ_2) into the other, even with the help of a (finite-dimensional) catalyst. To say that ψ_1 cannot be converted into ψ_2, even using multiple copies, is to say that for no (finite) value of m is it the case that

$$\psi_1 \otimes \cdots \otimes \psi_1 \not\prec \psi_2 \otimes \cdots \otimes \psi_2.$$

That there are states that cannot be transformed *singly* into each other by LOCC, but can be so transformed by local collective operations if multiple copies of the input state are available, was confirmed recently by Bandyopadhyay et al. [3]. To say that a state ψ_1 cannot be converted into ψ_2 even with the help of a catalyst is simply to say that there is no entangled state v (with finite Schmidt number) such that $\psi_1 \otimes v < \psi_2 \otimes v$. Again, it was pointed out by Jonathan and Plenio [6] that there are states that cannot be transformed into each other by LOCC, but can be so transformed with the help of a suitable catalyst.

Henceforth, we shall require only one simple sufficient condition for a pair of states (ψ_1, ψ_2) with finite Schmidt numbers to be strongly incomparable, viz.,

$$\lambda_1^{(1)} > \lambda_2^{(1)} \text{ AND } \sharp\psi_1 > \sharp\psi_2,$$

or

$$\lambda_1^{(1)} < \lambda_2^{(1)} \text{ AND } \sharp\psi_1 < \sharp\psi_2.$$

Let us prove by reductio that this condition, (C), is indeed sufficient for incomparability. Thus, suppose that, in fact, (ψ_1, ψ_2) are not strongly incomparable, but that their respective Schmidt values meet condition (C). Then, either for some finite m there is a catalyst v such that $\psi_1^{\otimes m} \otimes v < \psi_2^{\otimes m} \otimes v$ or, similarly, in the reverse direction. But then, by the first majorization condition in Nielsen’s characterization theorem, plus its corollary that a state’s Schmidt number cannot be increased under LOCC, it follows that either

$$(\lambda_1^{(1)})^m \lambda_1^{(1)} \leq (\lambda_2^{(1)})^m \lambda_2^{(1)} \text{ AND } (\sharp\psi_1)^m (\sharp v) \geq (\sharp\psi_2)^m (\sharp v),$$

or that the same two expressions hold with the inequalities reversed. Thus, upon cancellation, we see that it must be the case that either $\lambda_1^{(1)} \leq \lambda_2^{(1)}$ and $\sharp\psi_1 \geq \sharp\psi_2$, or $\lambda_1^{(1)} \geq \lambda_2^{(1)}$ and $\sharp\psi_1 \leq \sharp\psi_2$—a condition that is easily seen to be logically inconsistent with (C).

Turning, finally, to the proof that $S_{st \ inc}$ is dense, first observe that the set of all $\psi \in \mathcal{H}_\infty \otimes \mathcal{H}_\infty$ for which
the entries of $\bar{\rho}_\psi$ are all nonzero—for simplicity, we call these complete states—is itself dense. For, if a state ψ merely has a Schmidt decomposition involving finitely many terms, i.e., $\psi = \sum_{j=1}^{p<\infty} \lambda^{(j)} x^{(j)} \otimes y^{(j)}$, it is approximated arbitrarily closely by the sequence of (normalized) complete states $\psi_m = \sum_{j=1}^{\infty} \lambda^{(j)} \tilde{x}^{(j)} \otimes \tilde{y}^{(j)}$ where
\[
\lambda^{(j)} = \begin{cases} \lambda^{(j)}/(1 + m^{-1}) > 0 & \text{when } j \leq p, \\ 1/(2^{j-p}(m+1)) > 0 & \text{when } j > p,
\end{cases}
\]
and the orthonormal bases $\tilde{x}^{(j)}$, $\tilde{y}^{(j)}$ respectively extend the orthonormal sets $x^{(j)}$, $y^{(j)}$ beyond the index value p. Thus, the set consisting of complete pairs of states (ψ_1, ψ_2) is a dense set. Furthermore, it is quite easy to see that any complete pair of states with $\lambda_1^{(1)} = \lambda_2^{(1)}$ can be arbitrarily closely approximated by complete pairs that do not satisfy that identity. So, in sum: the set, call it $S_{c\neq}$, of all complete pairs of states, whose first Schmidt coefficients are unequal, form a dense set. We are going to show that every element of $S_{c\neq}$ can itself be approximated arbitrarily closely using members of $S_{st\ inc}$, which therefore must also be a dense set.

So let $(\psi_1, \psi_2) \in S_{c\neq}$ be arbitrary. If $\lambda_1^{(1)} > \lambda_2^{(1)}$, let us choose the sequence of (finite Schmidt number) pairs (ψ_{1m}, ψ_{2m}) in such a way that
\[
\bar{\rho}_{\psi_{1m}} = \left\{ \frac{\lambda_1^{(1)}}{\sum_{j=1}^{m} \lambda_1^{(j)}}, ..., \frac{\lambda_1^{(m)}}{\sum_{j=1}^{m} \lambda_1^{(j)}}, 0, 0, 0, ... \right\},
\]
\[
\bar{\rho}_{\psi_{2m}} = \left\{ \frac{\lambda_2^{(1)}}{\sum_{j=1}^{m-1} \lambda_2^{(j)}}, ..., \frac{\lambda_2^{(m-1)}}{\sum_{j=1}^{m-1} \lambda_2^{(j)}}, 0, 0, 0, 0, ... \right\}.
\]
By construction, $\lim_{m \to \infty} (\psi_{1m}, \psi_{2m}) = (\psi_1, \psi_2)$, $\# \psi_{1m} > \# \psi_{2m}$ for all m (since, by completeness of (ψ_1, ψ_2), $\lambda_1^{(j)}, \lambda_2^{(j)} \neq 0$ for all j), and for all sufficiently large m, $\lambda_1^{(1)} > \lambda_2^{(1)}$ (since, $\lambda_1^{(1)} > \lambda_2^{(1)}$). Thus, the pairs (ψ_{1m}, ψ_{2m}) approximate (ψ_1, ψ_2) and, in virtue of satisfying condition (C), are strongly incomparable for all sufficiently large m. Similarly, if instead $\lambda_1^{(1)} < \lambda_2^{(1)}$ holds for the pair (ψ_1, ψ_2), an analogous approximating sequence of (for all sufficiently large m, strongly incomparable) pairs (ψ_{1m}, ψ_{2m}) is obtained simply by interchanging the definitions of ψ_{1m} and ψ_{2m} above.

[1] Nielsen, M. A. & Chuang, I. L. (2000), *Quantum Computation and Quantum Information*. Cambridge: Cambridge University Press.

[2] Nielsen, M. A. (1999), ‘Conditions for a class of entanglement transformations’, *Physical Review Letters* 83 (2): 436–439.

[3] Życzkowski, K. & Bengtsson, I. (2001). ‘Relativity of Pure States of Infinite-Dimensional Systems are Generically Nonseparable’, *Physical Review Letters* 83: 436–439.

[4] Bourbaki, N. (1984), *Elements of the History of Mathematics*. Berlin: Springer-Verlag.

[5] Bandyopadhyay, S., Roychowdhury, V. P., & Sen, U. (2001). ‘A Classification of Incomparable States’, *Physical Review Letters* 83: 436–439.

[6] Clifton, R. & Halvorson, H. (1999), ‘Bipartite Mixed States of Infinite-Dimensional Systems are Generically Nonseparable’, *Physical Review A* 61: 012108.

[7] Jonathan, D. & Plenio, M. B. (1999), ‘Entanglement-Assisted Local Manipulation of Pure Quantum States’, *Physical Review Letters* 83: 3566–3569.