A draft genome of the brown alga, *Cladosiphon okamuranus*, S-strain: a platform for future studies of ‘mozuku’ biology

Koki Nishitsuji1,*,†, Asuka Arimoto1,†, Kenji Iwai2, Yusuke Sudo2, Kanako Hisata1, Manabu Fujie3, Nana Arakaki3, Tetsuo Kushiro4, Teruko Konishi5, Chuya Shinzato1, Noriyuki Satoh1, and Eiichi Shoguchi1,*

1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan, 2Okinawa Prefectural Fisheries Research and Extension Center, Itoman, Okinawa 901-0354, Japan, 3DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan, 4School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan, and 5Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

*To whom correspondence should be addressed: Tel. +81 98 966 8653. Fax. +81 98 966 2890. Email: koki.nishitsuji@oist.jp (Koki Nishitsuji); eiichi@oist.jp (Eiichi Shoguchi)

†The first two authors contributed equally to this work

Edited by Dr Satoshi Tabata

Received 28 March 2016; Accepted 29 June 2016

Abstract

The brown alga, *Cladosiphon okamuranus* (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. *C. okamuranus* constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of *C. okamuranus* S-strain. The genome size of *C. okamuranus* was estimated as ~140 Mbp, smaller than genomes of two other brown algae, *Ectocarpus siliculosus* and *Saccharina japonica*. Sequencing with ~100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the *C. okamuranus* genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the *E. siliculosus* genome identified a set of *C. okamuranus* genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified *C. okamuranus* genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the *Cladosiphon okamuranus* genome provides a platform for future studies of mozuku biology.

Key words: brown alga, *Cladosiphon okamuranus*, genome decoding, genes for enzymes of polysaccharide synthesis
1. Introduction

Taxonomically, brown algae (Phaeophyceae) belong to the Stramenopiles and include multicellular species. They are photosynthetic organisms with chloroplasts surrounded by four membranes, suggesting that they originated from a symbiotic relationship between two eukaryotes. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that gives brown algae their common name. Phaeophytes include many types of seaweed in the Northern Hemisphere, and they are important members of marine ecosystems, both because they create habitats for other organisms and because they provide food.

Cladosiphon okamuranus (Chordariales, Phaeophyceae), Okinawa mozuki in Japanese, is one of the important edible seaweeds. In Okinawa, C. okamuranus has been cultivated for more than 35 years by several fishermen’s associations, including those in Onna and Chinen Villages. This cultivation history has established several strains of mozuki that have similar morphology and texture. It was reported in the 36th annual report of the Japanese Cabinet Office that approximately 20 kilotons of mozuki (C. okamuranus and Nemacystis decipiens (‘Itomozuku’)) are produced annually, yielding approximately 4 billion Japanese yen in 2006. In addition, C. okamuranus and N. decipiens are sources of fucoxid, a sulfated polysaccharide found in the cell-wall matrix of brown algae that has anti-coagulant, anti-thrombin-like, and tumor-suppressing activities.

Due to their biological significance, genomes of two species of brown algae have been decoded: Ectocarpus siliculosus (Order Ectocarpales) and Saccharina japonica (Order Laminariales). The genome size of Ectocarpus is approximately 214 Mbp with 16,256 predicted protein-coding genes, while that of the latter is 545 Mbp with 18,733 predicted protein-coding genes. Several genetic features of the two brown algae have been characterized to understand their biology. A close phylogenetic relationship between Ectocarpales and Chordariales has been reported. Given its importance for fisheries, food, and possible pharmaceuticals, we decoded the draft genome of Cladosiphon okamuranus S-strain, (Order Chordariales).

2. Materials and methods

2.1. Strain and DNA extraction

The S-strain of Cladosiphon okamuranus (‘Shikenjo-kabu’) has been maintained as a stock culture at the Okinawa Prefectural Fisheries Research and Extension Center, Okinawa, Japan. It is cultivated at 22.5°C with a 12-h light-dark cycle in sea water containing 0.5% KW21 (Daiichi Seimo Co., Ltd). The life cycle of C. okamuranus includes both haploid (n) and diploid (2n) generations (Fig. 1). 2n germlings mature into sporophytes that are harvested for market. For DNA extraction, 2n germlings of C. okamuranus were frozen in liquid nitrogen and crushed to powder with a frozen-cell-crusher, Cryo-Press (Microtec Co., Ltd). Genomic DNA was extracted from the powder using an extraction kit, DNA-Suisui-VS (Rizo Co., Ltd).

2.2. Genome sequencing and assembly

The Illumina platform (Miseq and Hiseq 2500) was used for sequencing. Libraries were prepared according to slight modifications of protocols provided by the manufacturer. Fragmented genomic DNA was further purified using Blue Pippin (Sage Science). A paired-end library consisting of clones ~720bp was prepared for the Miseq using a TruSeq DNA PCR-Free LT Sample Prep Kit (Illumina), and 3-kb and 8-kb mate-pair libraries were prepared for the Hiseq 2500 using a Nextera Mate Pair Sample Prep Kit (Illumina), respectively (Supplementary Table S1). Longest reads were obtained by using more reagent kits for the Hiseq. K-mer counting and estimation of genome size were performed using JELLYFISH 2.2.0 software.

Adapter sequences were trimmed from all reads using Trimmomatic-0.30. Paired-end reads of high quality (quality value ≥ 20) were assembled de novo using Newbler 2.9 (GS Assembler) to create contigs. Then subsequent scaffolding of the Newbler output was performed using SSPACE 3.0 based on Illumina mate-pair information. Gaps inside scaffolds were closed using GapCloser 1.12. Diploid sequences of gap-closed scaffolds were merged with Haplomerger-2-20151124. CEGMA 2.5 software was used to evaluate genome assembly. The mitochondrial genome was generated with the IDBA_UD 1.1.1 assembler.

2.3. Transcriptome analyses

RNA was isolated from sporophytes (2–5 cm) and 2n germlings (Fig. 1). Total RNA was extracted following the instructions of the manufacturer using DNase and an RNasey Plant mini kit (QIAGEN). Transcriptome libraries were prepared using a TruSeq Stranded mRNA Library Prep kit (Illumina). RNAs were sequenced as per the manufacturer’s instructions for the Illumina Hiseq 2500. Only sequences of high quality (quality value ≥ 20) were assembled, using Velvet 1.2.10 and Oases 0.2.08.

2.4. Gene model prediction

A set of gene model predictions (C. okamuranus Gene Model ver. 1) was generated using AUGUSTUS 3.2.1. AUGUSTUS was trained on the 9120 transcriptome contigs recommended by PASA 2.0.2 for this purpose. Gene models were produced by running AUGUSTUS on a repeat-masked genome, produced with RepeatMasker 4.0.6 refined with PASA.

2.5. Transposable elements and repetitive sequences

Repetitive sequences were detected as described previously. Tandem repeats were detected using Tandem Repeat Finder (version
with an N50 size of 21.7 kb (Table 1). The longest contig was 943.8 kb and approximately 40% of the sequences were covered by contigs ≥2 kb. Subsequent scaffolding of the 31,858 contigs of Newbler output was carried out with SSPACE using Illumina mate-pair sequence information (Supplementary Table S1). Gaps inside scaffolds were closed with GapCloser. As a result, the final assembly contained 732 scaffolds with an N50 size of 536 kb. The total scaffold length reached 170 Mb.

Bacterial contaminant scaffolds were identified in the genome of an *Ectocarpus siliculosus* strain.10 To detect scaffolds of likely bacterial origin, 732 scaffolds were classified into one large group (129.9 Mb containing 541 scaffolds) and seven smaller groups (3.6–8.0 Mb) using MaxBin software,41 which bins assembled microbial scaffolds, based on tetranucleotide frequencies, scaffold coverage levels and marker sequences. Using transcriptome mapping of *C. okamuranus* (See later) and similarities to *Ectocarpus* genes, it was confirmed that the large group contained *Cladosiphon okamuranus* scaffolds. All scaffolds of smaller groups had no mapped transcriptomes that showed exon–intron structures. For 541 scaffolds of *C. okamuranus*, the number of contigs was 2,774 and the N50 of contigs was 88 kb. The longest scaffold was 2.8 Mb, and the scaffold N50 was 416 kb (Table 1). Approximately 87% of scaffold sequences were covered with contigs of ≥20 kb. Chloroplast and mitochondrial genome sequences were included in scaffold IDs, Cok_S_s60 (599,436 bp) and Cok_S_s1074 (36,249 bp), respectively (data not shown).

CEGMA analysis was carried out to evaluate the accuracy of the assembled genome (129.9 Mb). CEGMA reported 91.9% sequences (CEGMA partial) with an average degree of completeness for all sequences of 84.3%. On the other hand, CEGMA completeness values for genome sequences of *E. siliculosus* and *S. japonica* are 77.4% and 45.6% (Table 1), respectively, suggesting the assembled genome of *C. okamuranus* is the highest quality brown algal genome to date.

2.6. Gene annotation and identification

Three approaches, individually or in combination, were used to annotate protein-coding genes in the *C. okamuranus* genome. The primary approach for identification of putative *C. okamuranus* orthologous genes was reciprocal BLAST analysis. This was carried out using mutual best hits of genes of orthologous genes was reciprocal BLAST analysis. This was carried out using mutual best hits of genes of *E. siliculosus*. For this purpose, amino acid sequences were aligned using MAFFT33 with default options. Gaps and ambiguous areas were excluded using CENSOR (version 4.2)29 using Blast searches against the Repbase TE library (version 16.05).30

In the case of complex multigene families, a third annotation method was employed; sets of related sequences were subjected to phylogenetic analyses in order to more precisely determine orthologous relationships between proteins of *C. okamuranus* and *E. siliculosus*. For this purpose, amino acid sequences were aligned using MAFIT31 with default options. Gaps and ambiguous areas were excluded using SeaView version 4.5.34 manually. Based on alignment datasets, phylogenetic trees were constructed by the maximum likelihood method. A maximum likelihood phylogenetic tree was constructed with MEGA 5.2 using the best model with 1,000 bootstrap duplications.

2.7. Genome browser

A genome browser has been established for the assembled genome sequences using the JavaScript-based Genome Browser (JBrowse) 1.11.6.36 The assembled sequence and gene models are accessible at http://marinegenomics.oi.st.jp/gallery/.

2.8 Gene expression analysis

RNA-seq reads were aligned to the genome using TopHat-2.0.9,37 while FPKM values were calculated from the aligned results using Cufflinks v2.0.0.38 Gene expression levels were visualized with R package.39 The genome size of *C. okamuranus* was estimated by K-mer analysis (K-mer = 25). The peak appeared around 47 (Supplementary Fig. S1A). The estimated genome size was ~140 Mb. The *C. okamuranus* genome is the smallest phaeophyte genome sequenced to date. (Table 1). The genome size of *E. siliculosus* was estimated to be 214 Mb while that of *S. japonica* was 545 Mb (Table 1).10,31

3.2. Genome size

The genome size of *C. okamuranus* was estimated by K-mer analysis (K-mer = 25). The peak appeared around 47 (Supplementary Fig. S1A). The estimated genome size was ~140 Mb. The *C. okamuranus* genome is the smallest phaeophyte genome sequenced to date. (Table 1). The genome size of *E. siliculosus* was estimated to be 214 Mb while that of *S. japonica* was 545 Mb (Table 1).10,31

3.3. GC content

GC content of the *C. okamuranus* genome was estimated to be ~54% (Supplementary Fig. S1B and Table 1). GC contents for *E. siliculosus* and *S. japonica* are 54% and 50%, respectively; thus, the three brown algae are similar in this regard (Table 1).

3.4. RNAseq, clustering, and mapping

Transcriptomic analysis is essential to determine which genes are expressed by a given organism. RNAs extracted from germlings and sporophytes were sequenced on an Illumina HiSeq 2500 (read length, 329 x 2 bases from both samples) (Supplementary Table S1). About 44.8 giga nucleotide reads were obtained.

An assembly of transcriptome sequences yielded 59,590 contigs (92.8 mega nucleotides (nts)) with an N50 size of 2,231 nts. Of those, 58,095 (97.4%) had a blat alignment (with default settings) to the assembled genome sequences (129.9 Mb). 37,299 of the 59,590 contigs had predicted ORFs from start to stop codons of at
least 450 nts. Of these putatively full-length RNA-seq contigs, 36,648 (98.6%) had a blat alignment to assembled scaffolds (129.9 Mb). These data were used to produce gene models for annotation.

3.5. Gene modeling
Assembled RNAseqs of *C. okamuranus*, algae EST datasets available on NCBI and putative protein coding loci found with PASA, were incorporated as AUGUSTUS 'hints.' The number of gene models was supported by mRNA sequences.

The average (arithmetic mean) length of *C. okamuranus* genes that included both exons and introns, was 7,696 bp, and that of exons translated to form proteins (coding sequence) was 2,004 bp. The average lengths of *C. okamuranus* 5’ and 3’UTRs were 911 bp and 459 bp, respectively. Cock et al. noted that *E. siliculosus* genes are intron-rich, with an average number of introns per gene of 6.98 and an average intron length of 704 bp (Table 1). This was the case in the *C. okamuranus* genome; the average number of introns per gene was 8.26 and the average intron length was 522 bp (Table 1).

3.6. Transposable elements and other genomic components
We examined the proportion of transposable elements and repetitive elements in the assembled mozuku genome. DNA transposons and retrotransposons apparently account for 0.539% and 2.491% of the *C. okamuranus* genome, respectively (Supplementary Table S2). DNA transposons included hAT (0.104%) of the assembled sequences, EnSpm (0.090%), Helitron (0.084%), PIF-Harbinger (0.056%) and others, while retrotransposons included LTR retrotransposons such as Gypsy (1.096%), Copia (0.752%) and Bel_ Pao (0.115%), and non-LTR retrotransposons such as CR1 (0.040%) and I (0.018%). The percentages of LINE (long interspersed nuclear elements) such as L1 (0.123%), Tx1, and Jockey, and SINE (short interspersed nuclear elements) were smaller in the *C. okamuranus* genome, compared to other brown algal genomes.

Including unclassified repeats, 4.1% of the *C. okamuranus* genome was composed of repetitive sequences (Table 1). This ratio is lower than in the two other brown algae, 22.7% for *E. siliculosus* and 39% for *S. japonica*, respectively. This may be that the high frequency of repeated sequences in brown algal genomes is not universal among the Phaeophyceae.

3.7. Identification of *Cladosiphon okamuranus* genes
In order to examine the utility of the assembled genome as a platform for future studies in mozuku biology, we searched for genes in the assembled *C. okamuranus* genome. By comparing genes found in the *E. siliculosus* genome, we found the corresponding mozuku genes associated with transcription factors, signaling molecules, and enzymes involved in polysaccharide biosynthesis and phlorotannin biosynthesis.

3.7.1 Transcription factors
Transcription factors play pivotal roles in many biological processes. We examined transcription factors (TFs) by searching conserved protein domains using hmmer3 and the Pfam database (e-value cut-off < e^-5). The number of domains that have been identified in the *C. okamuranus* genome was determined and compared with those in the *E. siliculosus* genome. These domains include HSF, Myb, bZIP, Zinc Finger, bHLH, CCAAT-binding, homeobox, AP2-EREBP, Nin-like, TAF, E2F, CBP/NF-Y/Archaeal and Sigma-70 r2/r3/r4 (Table 2).

This analysis showed that the *C. okamuranus* genome contains 214 transcription factor genes (Table 2), fewer than the 260 found in other brown algae.

Table 1. Comparison of draft genome assemblies of three species of brown algae, *Cladosiphon okamuranus* (Order Chordariales), *Ectocarpus siliculosus* (Order Ectocarpales), and *Saccharina japonica* (Order Laminariales)

Species	Genome size (Mb)	Total assembled length (Mb)	Number of scaffolds	N50 scaffold size (kb)	Number of contigs	N50 Contig size (bp)	Number of genes	Average coding sequence length (bp)	Average gene length (bp)	Average number of introns per gene	Average intron length (bp)	Cegma Partial (%)	Cegma Completeness (%)
C. okamuranus	140	129.9	541	416	31,858	21,705	13,640	2,004	7,696	8.26	704	91.9	84.3
E. siliculosus	214	195.8	1,561	504	14,043	32,862	16,256	1,564	6,859	6.98	704	91.5	77.4
S. japonica	545	537	13,327	252	29,670	58,867	18,733	1,636	18,373	522	704	54	45.6

Table 2. Number of transcription factors (TFs) in the brown algae, *Cladosiphon okamuranus* and *Ectocarpus siliculosus*

Family	*Cladosiphon okamuranus*	*Ectocarpus siliculosus*
Myb	58 (27.1%)	59 (22.7%)
CBF/NF-Y/Archaeal	35 (16.3%)	42 (16.2%)
Zn_finger, C2H2-type	23 (10.7%)	30 (11.5%)
Zn_finger, CCCH-type	22 (10.3%)	24 (9.2%)
bZIP	17 (7.9%)	23 (8.8%)
HSF	13 (6.1%)	22 (8.5%)
TAF	10 (4.7%)	18 (6.9%)
Sigma-70 r2/r3/r4	9 (4.2%)	10 (3.8%)
Zn_finger, TAZ-type	7 (3.3%)	7 (2.7%)
Nin-like	5 (2.3%)	1 (0.4%)
bHLH	3 (1.4%)	2 (0.8%)
Homeobox	3 (1.4%)	7 (2.7%)
AP2-EREBP	3 (1.4%)	4 (1.5%)
E2F-DP	3 (1.4%)	4 (1.5%)
CXC/Cthesmin	3 (1.4%)	4 (1.5%)
Zn_finger, GATA-type	0 (0.0%)	1 (0.4%)
Fungal TRF	0 (0.0%)	2 (0.8%)
Total	214	260

*Percentage of the family within the brown algal genome.
Figure 2. Heat maps compared with gene expression levels of germlings and sporophytes of *Cladophora okamuranus* based on FPKM values. Gene IDs for the genome browser are indicated by sXXX.XXXXXX. (A) Expression levels of transcription factors shown in Table 2. (B) Expression levels of receptor kinase genes shown in Supplementary Fig. S2. (C) Expression levels of *C. okamuranus* genes potentially contributing to biosynthetic pathways of sulfated fucans, alginates, and phlorotannin shown in Figs. 3–5 and Supplementary Table S3.
the *E. siliculosus* genome. However, the ratio of transcription factor genes to total genes was ~1.6% in both genomes. The most abundant TF in both genomes was the Myb family, with 58 and 59 genes in the *C. okamuranus* and *E. siliculosus* genomes, respectively. The next most abundant TFs were CBF/NF-Y/archaeal (35), Zinc Finger C2H2-type (23) and Zinc Finger CCCH-type (22). The *C. okamuranus* genome likely contains three genes for bHLH domains, three for homeobox domains and 17 genes for bZIP domains. The expression level of bZIP genes seems to be similar in germlings and sporophytes, whereas some of CBF/NF-Y/archaeal genes may have different expression levels (Fig. 2A). Expression and function of phaeophyte TF genes should be expressly examined in future studies.

3.7.2 Signaling molecules

Cell–cell signaling molecules play pivotal roles in organismal development and cellular physiological activity. Cock et al. specifically analyzed membrane-spanning receptor kinase genes, since receptor kinases have been shown to function in developmental processes in both animals and green plants. They showed that *Ectocarpus* receptor kinases form a monophyletic clade, as in the case of animals and plants, suggesting that brown algae evolved independently of other taxa. The present domain analysis, using the Pfam database, showed that the *C. okamuranus* and *E. siliculosus* genomes contain 286 and 338 genes for protein kinase domains, which are both equivalent to about 2.1% of total genes.

Cock et al. identified five genes for stramenopile-lineage-specific receptor kinases in *E. siliculosus*. The *C. okamuranus* genome likely contains at least two genes for brown algal-specific receptor kinases (Cok_S_s144_12294 and Cok_S_s043_7434), which have orthologous relationships with *E. siliculosus* genes (Supplementary Fig. S2). Three other genes are additional candidates (Cok_S_s126_11689, Cok_S_s097_10483 and Cok_S_s044_7515). All five genes are found on different scaffolds. RNA-seq reads...
demonstrate that Cok_S144_12294 is expressed in both germlings and sporophytes (Fig. 2B).

3.7.3. Genes associated with biosynthesis of polysaccharides

Genes encoding enzymes for polysaccharide metabolism in brown algae have been predicted in the E. siliculosus genome. Usinginformatics methods, we investigated gene families for biosynthesis of sulphated fucans and alginates, compounds characteristic of brown algae. Genes encoding enzymes involved in biosynthetic pathways are apparently conserved between C. okamuranus and E. siliculosus, although downstream enzymes of the polysaccharide biosynthesis pathways are likely to be expanded in each lineage.

3.7.3.1 Fucoidans

Fucoidans are a family of sulfated homo- and heteropolysaccharides of brown algae that include L-fucose residues. The family comprises a broad spectrum of polysaccharides, from compounds with high uronic acid content and very little fucose and sulfate, to almost pure ε-L-fucan, in which the dominant monosaccharide is fucose. GDP-mannose and L-fucose are original sources of GDP-fucose, which is then transformed from fucan to sulfated fucan (Fig. 3A). Seven enzymes are likely involved in this pathway (Fig. 3A).

Examination of genes for enzymes in both the C. okamuranus and E. siliculosus genomes identified two genes encoding GDP-mannose 4,6-dehydratase and one for GDP-L-fucose synthase (Fig. 3A and Supplementary Table S3). The presence of a candidate gene (FK-GFPP) for a bifunctional enzyme possessing both L-fucokinase and GDP-fucose pyrophosphorylase activities was identified in the C. okamuranus genome (Fig. 3A). These enzyme genes were expressed at germling and sporophyte stages (Fig. 2C). Comparison of the C. okamuranus and E. siliculosus genomes revealed syntenic localization of enzyme genes, suggesting the presence of an enzymatic gene cluster in both species (Fig. 3B). Two other enzymatic genes that contain a sulfotransferase domain and a hydrolase domain are clustered with FK-GFPP. The 3' region of FK-GFPP contains an ankyrin-repeat domain (Fig. 3B).

In addition, the C. okamuranus and E. siliculosus genomes contain four genes for fucosyltransferase, and six genes for sulfo transferase, respectively (Fig. 3A). Identification of genes that encode enzymes involved in sulfated fucan biosynthesis suggests that C. okamuranus provides a good source of fucoids, which should be further characterized in future studies.

3.7.3.2. Alginates

Alginates are cell-wall constituents of brown algae. They are chain-forming heteropolysaccharides consisting of blocks of mannuronic
acid and glucuronic acid. Composition of the blocks varies by species and by the part of the thallus from which the extraction is made. Enzymes involved in the alginate biosynthetic pathway, including GDP-mannose 6-dehydrogenase (GMD) and mannuronate C5-epimerase (MC5E), have been identified in genomes of E. siliculosus and C. okamuranus (Fig. 4A and Supplementary Table S3). The number of enzymatic genes is comparable in both species. Some of MC5E-coding genes likely have different expression levels in germlings and sporophytes (Fig. 2C). These expression data will be useful for functional analyses of these enzymes.

Previous studies showed that E. siliculosus and S. japonica possess three genes for GMDs of possible bacterial origin. Examination of the C. okamuranus genome and further molecular phylogenetic analyses indicated that the C. okamuranus genome also contains three GMD genes for this key enzyme (Fig. 4A and B and Supplementary Table S3). Twenty-four MC5E genes of C. okamuranus have homology to E.

Figure 5. A molecular phylogenetic tree of two proteins similar to type III PKS in the Cladosiphon okamuranus genome. The ML tree was constructed with a WAG + G + I model. Proteins are indicated by brown stars. Other protein sequences refer to Meslet-Cladiere et al.50.
References

1. Adl, S.M., Simpson, A.G., Farmer, M.A., et al. 2005, The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. *J. Eukaryot. Microbiol.*, 52, 399–451.

2. Keeling, P.J. 2009, Chromalveolates and the evolution of plastids by secondary endosymbiosis. *J. Eukaryot. Microbiol.*, 56, 1–8.

3. Cavalier-Smith, T. 1999, Principles of protein and lipidtargeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. *J. Eukaryot. Microbiol.*, 46, 147–66.

4. Van Den Hoek, C., Mann, D.G. and Jahn, H.M. 1995, Algae: An Introduction to Phycology. Cambridge University Press, Cambridge.

5. Yoshida, T., Suzuki, M. and Yoshinaga, K. 2015, Checklist of marine algae of Japan (revised in 2015). *Ipn. J. Phycol (Sôrû)*, 63, 129–89.

6. Tako, M., Nakada, T. and Hongou, F. 1999, Chemical characterization of fucoidan from commercially cultured nemacystus decipiens (Itomozuku). *Biosci. Biotechnol. Biochem.*, 63, 1813–5.

7. Baba, M., Snoeck, R., Pauwels, R. and de Clercq, E. 1988, Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. *Antimicrob. Agents Chemother.*, 32, 1742–5.

8. Lin, T.Y. and Hassid, W.Z. 1966, Pathway of algalic acid synthesis in the marine brown alga, *Fucus gardneri* Silva. *J. Biol. Chem.*, 241, 5254–5.

9. Michel, G., Tonon, T., Scornet, D., Cock, J.M. and Kloareg, B. 2010, The cell wall polysaccharide metabolism of the brown alga *Ectocarpus siliculosus*. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. *New Phytol.*, 188, 82–97.

10. Cock, J.M., Sterck, L., Rouze, P., et al. 2010, The *Ectocarpus* genus and the independent evolution of multicellularity in brown algae. *Nature*, 465, 617–21.

11. Ye, N., Zhang, X., Miao, M., et al. 2015, Saccharina genomes provide novel insight into kelp biology. *Nat. Commun.*, 6, 6986.

12. Stemer, B.L., Stam, W.T., Olsen, J.L. and Pedersen, P.M. 1998, Phylogenetic relationships of the brown algal orders *Ectocarpales*, *Chordarariales*, *Dictyosiphonales*, and *Tilopteridales* (*Phaeophyceae*) based on RUBISCO large subunit and spacer sequences. *J. Phycol.*, 34, 1038–48.

13. Bentley, D.R. 2006, Whole-genome re-sequencing. *Curr. Opin. Genet. Dev.*, 16, 545–52.

14. Markus, G. and Kingsford, C. 2011, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics*, 27, 764–70.

15. Hirakawa, H., Shirasawa, K., Kosugi, S., et al. 2014, Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. *DNA Res.*, 21, 169–81.

16. Bolger, A.M., Lohse, M. and Usadel, B. 2014, Trimomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30, 2114–20.

17. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. and Pirovano, W. 2011, Scaffolding pre-assembled contigs using SSPACE. *Bioinformatics*, 27, 578–9.

18. Li, R., Fan, W., Tian, G., et al. 2010, The sequence and de novo assembly of the giant panda genome. *Nature*, 463, 311–7.

19. Huang, S., Chen, Z., Huang, G., et al. 2012, HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. * Genome Res.*, 22, 1581–1588.

20. Patra, G., Bradnam, K. and Korf, I. 2007, CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. *Bioinformatics*, 23, 1061–7.

21. Peng, Y., Leung, H.C., Yiu, S.M. and Chin, F.Y. 2012, IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, 28, 1420–8.

22. Zerbino, D.R. and Birney, E. 2008, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.*, 18, 821–9.
23. Schulz, M.H., Zerbino, D.R., Vingron, M. and Birney, E. 2012, Oasis: robust de novo RNA-seq assembly across the dynamic range of expression levels. *Bioinformatics*, 28, 1086–92.

24. Stanke, M., Diekhans, M., Baertsch, R. and Haussler, D. 2008, Using native and syntenically mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*, 24, 637–44.

25. Haas, B.J., Delcher, A.L., Mount, S.M., et al. 2003, Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. *Nucleic Acids Res.*, 31, 5654–66.

26. Takeuchi, T., Kawashima, T., Koyanagi, R., et al. 2012, Draft genome of the pearl oyster *Pinctada fucata*: a platform for understanding bivalve biology. *DNA Res.*, 19, 117–30.

27. Benson, G. 1999, Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res.*, 27, 573–80.

28. Price, A.L., Jones, N.C. and Pevzner, P.A. 2005, De novo identification of repeat families in large genomes. *Bioinformatics*, 21 Suppl 1, i351–8.

29. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O. and Walichiewicz, J. 2005, Repbase update, a database of eukaryotic repetitive elements. *Cytogenet. Genome Res.*, 110, 462–7.

30. Jurka, J., Karonen, P., Dagman, V. and Pelton, P. 1996, CENSOR – a program for identification and elimination of repetitive elements from DNA sequences. *Comput. Chem.*, 20, 119–21.

31. Finn, R.D., Mistry, J., Schuster-Bockler, B., et al. 2006, Pfam: clans, web tools and services. *Nucleic Acids Res.*, 34, D247–51.

32. Eddy, S.R. 1998, Profile hidden Markov models. *Bioinformatics*, 14, 755–63.

33. Katoth, K., Misawa, K., Kuma, K. and Miyata, T. 2002, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.*, 30, 3916–25.

34. Gouy, M., Guindon, S. and Gascuel, O. 2010, SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Mol. Biol. Evol.*, 27, 2214–21.

35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.*, 28, 2731–9.

36. Skinner, M.E., Uzilov, A.V., Stein, L.D., Mungall, C.J. and Holmes, I.H. 2009, JBrowse: a next-generation genome browser. *Genome Res.*, 19, 1630–8.

37. Trapnell, C., Pachter, L. and Salzberg, S.L. 2009, TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics*, 25, 1105–11.

38. Trapnell, C., Williams, R.A., Pertea, G., et al. 2010, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.*, 28, 511–5.

39. Kraskov, A., Stogbauer, H., Andrzejak, R.G. and Grassberger, P. 2005, Hierarchical clustering using mutual information. *Europhys. Lett.*, 70, 278–84.

40. Szekely, G.J. and Rizzo, M.L. 2005, Hierarchical clustering via joint between-within distances: Extending Ward's minimum variance method. *J. Classif.*, 22, 151–83.

41. Wu, Y.W., Tang, Y.H., Tringe, S.G., Simmons, B.A. and Singer, S.W. 2014, MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. *Microbiome*, 2, 26.

42. Connan, S. and Stengel, D.B. 2011, Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. *Aquat. Toxicol.*, 104, 1–13.

43. Thomas, N.V. and Kim, S.K. 2011, Potential pharmacological applications of polyphenolic derivatives from marine brown algae. *Environ. Toxicol. Pharmacol.*, 32, 325–35.

44. Dakora, F.D. 1995, Plant flavonoid: biological molecules for useful exploitation. *Anat. J. Plant Physiol.*, 22, 87–99.

45. Sieburth, J.M. and Conover, J.T. 1965, Slicks associated with Trichodesmium Blooms in the Sargasso Sea. *Nature*, 205, 830–1.

46. Pavia, H. and Toth, B.G. 2000, Inducible chemical resistance to herbivory in the brown seaweed *Ascosiphon nodosum*. *Ecology*, 81, 3215–25.

47. Ansler, C.D. and Fairhead, V.A. 2006, Defensive and sensory chemical ecology of brown algae. *Adv. Botanical Res.*, 43, 1–91.

48. Bottcher, A.A. and Targett, N.M. 1993, Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphaster maculos. *Ecology*, 74, 891–903.

49. Le Lann, K., Connan, S. and Stiger-Pouvreau, V. 2012, Phenoc, TPC and size-fractioning phenolics variability in temperate Sargassaceae (Phaeophyceae, Fucales) from Western Brittany: native versus introduced species. *Mar. Environ. Res.*, 80, 1–11.

50. Meslet-Cladiere, L., Delage, L., Leroux, C.J., et al. 2013, Structure/function analysis of a type iii polyketide synthase in the brown alga *Ectocarpus siliculosus* reveals a biochemical pathway in phlorotannin monomer biosynthesis. *Plant Cell*, 25, 3089–103.

51. Gutz, S., Arnold, R., Sebastian-Leon, P., et al. 2011, B2G-FAR, a species-centered GO annotation repository. *Bioinformatics*, 27, 919–24.