Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis

Che-Sheng Chu, Cheng-Ta Li, Andre R. Brunoni, Fu-Chi Yang, Ping-Tao Tseng, Yu-Kang Tu, Brendon Stubbs, André F. Carvalho, Trevor Thompson, Tarek k. Rajji, Ta-Chuan Yeh, Chia-Kuan Tsai, Tien-Yu Chen, Jian-Jeng Li, Chih-Wei Hsu, Yi-Cheng Wu, Chia-Ling Yu, Chih-Sung Liang

ABSTRACT

Objectives To compare cognitive effects and acceptability of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) in patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI), and to determine whether cognitive training (CT) during rTMS or tDCS provides additional benefits.

Methods Electronic search of PubMed, Medline, Embase, the Cochrane Library and PsycINFO up to 5 March 2020. We enrolled double-blind, randomised controlled trials (RCTs). The primary outcomes were acceptability and pre–post treatment changes in general cognition measured by Mini–Mental State Examination, and the secondary outcomes were memory function, verbal fluency, working memory and executive function. Durability of cognitive benefits (1, 2 and ≥3 months) after brain stimulation was examined.

Results We included 27 RCTs (n=1070), and the treatment components included high-frequency rTMS (HrTMS) and low-frequency rTMS, anodal tDCS (atDCS) and cathodal tDCS (ctDCS), CT, sham CT and sham brain stimulation. Risk of bias of evidence in each domain was low (range: 0%–11.1%). HrTMS (1.08, 9.0, 3.5–8.1) and ctDCS (0.56, 0.03–1.09) had short-term positive effects on general cognition. CT might be associated with negative effects on general cognition (−0.79, −2.06 to 0.48) during rTMS or tDCS. At 1-month follow-up, HrTMS (1.65, 0.77–2.5) and ctDCS (2.57, 0.20–4.95) exhibited larger therapeutic responses. Separate analysis of populations with pure AD and MCI revealed positive effects only in individuals with AD, tRMS and tDCS were well tolerated.

Conclusions HrTMS is more effective than atDCS for improving global cognition, and patients with AD may have better responses to tRMS and tDCS than MCI.

INTRODUCTION

Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are substantial healthcare challenges in the 21st century. The treatment of cognitive decline is key to managing AD and MCI; however, pharmacological interventions provide suboptimal benefits for AD and exhibit no effects on MCI, and curative or disease-modifying therapies are currently lacking. Accumulating evidence suggests that non-invasive electrical brain stimulation (NIBS) may be effective alternative treatments.

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are the two most widely investigated NIBS interventions. rTMS is applied to the scalp using a coil, and uses strong but brief electromagnetic pulses to modify underlying brain activity. Usually, rTMS is considered excitatory when using high-frequency (HF) protocols (>10 Hz) or intermittent theta-burst stimulation, and inhibitory when using low-frequency (LF) (<1 Hz) protocols or continuous theta-burst stimulation. In contrast, tDCS, a low-intensity electric current (usually 1–2 mA) is injected into the brain through electrodes placed over the scalp. Electrons flow from the cathode to the anode, in the radial direction. The electric current does not generate action potentials per se, but facilitates or inhibits synaptic transmission; this is mediated by an increase or decrease in the frequency of action potentials in endogenous neuronal firing, usually induced by anodal or cathodal stimulation, respectively. Although clinical protocols are highly variable, tDCS and rTMS are generally applied daily for 20–40 min, over a period of 2–5 weeks. Both techniques have proven safety and tolerability, do not require sedation or anaesthesia, and have few contraindications. Although tRMS presents a low risk of seizures, the risk can be almost mitigated by adherence to published protocols. Clinical application of rTMS, including as a treatment for major depression, is more widespread compared with the use of tDCS. Conversely, tDCS is cheaper than rTMS, is portable and is relatively easy to use, making home-use of tDCS possible.

Although the mechanisms of action of NIBS techniques remain elusive, both seem to induce long-term potentiation and depotentiation-like phenomena via several molecular and cellular mechanisms, such
as induction of synaptic strengthening and neurogenesis,12 13 Anodal tDCS (atDCS) and HFrTMS are considered ‘excitatory’ NIBS modalities, whereas cathodal tDCS (ctDCS) and LFrTMS are considered inhibitory. Both rTMS and tDCS could enhance brain activity in areas that are hyperactive, leading to changes in functional outcomes. Indeed, when targeting the dorsolateral prefrontal cortex (DLPFC), these techniques were shown to enhance working memory,14 and, regarding cognitive enhancement, promising findings have been observed for both tDCS15 and rTMS.16

Two recent pairwise meta-analyses of randomised controlled trials (RCTs) reported that rTMS improved global cognition in AD2 and MCI.18 Preliminary data on tDCS for MCI1 and AD19 have also been promising. Several studies have reported positive results on cognitive function when combining cognitive training (CT) with rTMS.20 21 However, there is also evidence suggesting negative effects of tDCS plus CT on cognitive function.22 To date, an in-depth comparison of the effects of direct rTMS and tDCS in RCTs, as well as the effects of CT during rTMS or tDCS interventions, is lacking.

In the current study, we used a systematic review and component network meta-analysis (NMA) approach to assess the cognitive effects and acceptability of different rTMS and tDCS modalities in patients with MCI or AD. We sought to investigate the effects of rTMS and tDCS on general cognitive function and specific cognitive domains; whether CT provides additional effects when combined with rTMS or tDCS; whether the treatment effects of rTMS and tDCS are sustained, and finally, whether some cognitive domains have late onset responses.

Methods
This study protocol is registered in PROSPERO (CRD42018104591). We followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension statement for NMA.24

Search strategy
Two investigators (C-SC and C-SL) independently searched PubMed, Embase and the Cochrane Library from the inception of each through to 5 March 2020. Additional unpublished and ongoing trials were identified from ClinicalTrials.gov. When data were unavailable in the articles, we contacted the authors to request the unreported data. A search algorithm was developed and adapted for each database, with no restrictions on age, setting, sex, ethnicity, language or publication year. The full search strategy with search terms (online supplemental appendix 1) and PRISMA checklist (online supplemental appendix 2) are available in the online supplemental data.

Eligibility criteria
Double-blind RCTs that made comparisons with sham treatment in patients with MCI, probable AD or AD were included. The criteria for MCI and AD are compatible with international guidelines and are listed in online supplemental table S1. Trials with fewer than five treatment sessions were excluded, as they would not be considered a therapeutic course for any brain-stimulation modality.25 LF was defined as ≤1 Hz, and HF was defined as ≥5 Hz.26

Data extraction
Two of the authors (P-TT and TYC) extracted the data of included studies using a prespecified data extraction form. Duplicates were electronically removed, and only the most recent/completed report was included.

Primary and secondary outcomes
The primary outcomes were treatment efficacy for general cognitive function and acceptability. As most of the included studies used the Mini-Mental State Examination (MMSE) to examine general cognitive function, the treatment efficacy of global cognition was based on pre–post changes in MMSE scores. If different instruments were used to measure general cognitive function, the scores were converted to MMSE scores using suggested methods.27 Acceptability referred to all-cause discontinuation, defined as premature discontinuation of treatment for any reason.

The secondary outcomes were pre–post changes in memory function, verbal fluency, working memory and executive function. In studies using several cognitive instruments to examine the same cognitive subdomain, we selected the most reliable instrument.28 For trials with follow-up outcomes, long-lasting effects were examined at 1 month, 2 months and ≥3 months after the last session of NIBS.

Quality assessment
Two independent authors (T-CY and C-KT) assessed the methodological quality of the included trials using the revised Cochrane risk of bias (ROB V.2.0) tool.29 In cases of discrepancy, a third investigator (C-SC) was consulted to obtain a consensus.

Statistical analysis
Several studies combined CT or sham CT (sham_CT) with NIBS interventions; such combination treatments can be considered a sum of two component parts. We employed an additive component NMA model for the data synthesis. A component NMA model is an extension of the standard NMA, which can analyse the relative efficacy of specific components or combinations of components. Therefore, the effect sizes of CT and sham_CT can be calculated when CT or sham_CT is combined with NIBS or sham brain stimulation (sham_BS). The current NMA had seven components: atDCS, CT, ctDCS, HFrTMS, LFrTMS, sham_BS and sham_CT.

Mean differences with 95% CIs were calculated for the primary outcomes, and standardised mean differences with 95% CIs for the secondary outcomes. For interpretation of effect sizes, we followed the rules of classifying <0.2 as very small, 0.2–0.5 as small, 0.5–0.8 as moderate and >0.8 as large.30 We calculated the relative ranking probabilities of all treatments for the target primary and secondary outcomes.

The surface under the cumulative ranking curve (SUCRA) indicated the mean rank of each treatment relative to an imaginary intervention that was the best without uncertainty. A larger area under the curve indicated a higher rank of treatment benefit on cognitive effects.

Potential inconsistencies between direct and indirect evidence were examined by the node-splitting method and the design-by-treatment model. Publication bias was investigated using Egger’s tests and comparison-adjusted funnel plots. Meta-regression analyses were conducted to examine potential effect modifiers, and the differences in effect sizes between AD and MCI were analysed. Finally, we assessed the efficacy of sham rTMS stimulation versus sham tDCS stimulation for the primary outcome as an additional proof of transitivity.

The NMA was performed using intention-to-treat analysis in R-Project (V.3.5.3, R Foundation). The p values for all
comparisons were two-tailed, and a cut-off point of 0.05 was considered statistically significant.

RESULTS
Study characteristics
The study selection process is shown in online supplemental figure S1. These 27 RCTs were published between 2011 and 2019. For the 13 rTMS trials (n=436, AD=375, MCI=61), the mean age, percentage of women and MMSE score were 70.5±4.0 years, 53.1%±16.9% and 21.1±4.2, respectively. For the 14 tDCS trials (n=634, AD=250, MCI=384), the mean age, percentage of women and MMSE score were 73.3±5.0 years, 60.5%±14.5% and 21.7±4.3, respectively. The characteristics of the included studies are summarised in online supplemental table S1.

Network plots of eligible comparisons
Figure 1A illustrates the network of eligible comparisons for the short-term effects on general cognitive function. The recruited trials generated 10 nodes contributing to 12 pairs of comparisons. There were three sham treatments (sham_BS, sham_BS+CT and sham_BS+sham_CT), and sham_BS was used as the common comparator. No study directly compared rTMS with tDCS. The network plot of long-lasting effects of NIBS is illustrated in figure 1B. The supplementary data show the network plots for the secondary outcomes (online supplemental figure S2).

Primary outcomes
Short-term effects
Figure 2A shows the short-term effects of the 10 treatments on general cognitive function. The effect size for each treatment was compared with sham_BS, and the mean pre–post MMSE changes ranged from 1.08 (95% CI, 0.35 to 1.80) for HFrTMS to −1.57 (95% CI, −3.05 to −0.09) for sham_BS+sham_CT. Statistical significance was observed for HFrTMS, atDCS and sham_BS+sham_CT. Combining CT with HFrTMS and atDCS did not result in larger effect sizes than were observed when using HFrTMS or atDCS alone. The mean pre–post MMSE changes of each component ranged from 1.08 (95% CI, 0.37 to 1.79) for HFrTMS to −1.13 for sham_CT (95% CI, −2.59 to 0.33), with statistical significance for HFrTMS and atDCS.

Long-lasting effects at 1-month follow-up
MMSE scores were increased with ctDCS, HFrTMS, HFrTMS+CT and atDCS compared with that with sham_BS, while changes for HFrTMS+CT and atDCS did not reach statistical significance (figure 2B). Both ctDCS and HFrTMS reached statistical significance and had larger effects at this time point. As observed for short-term effects, combining CT with HFrTMS and atDCS did not have larger effect sizes compared with those observed using HFrTMS or atDCS alone. Only ctDCS and HFrTMS significantly increased MMSE scores compared with those with sham_BS.

Comparison of pure AD and MCI groups
Online supplemental figure S3 illustrates the short-term pre–post MMSE changes in pure AD and MCI groups. Online supplemental appendix figure S4 depicts the long-lasting effects at 1-month follow-up. HFrTMS had both short-term (1.50, 0.61–2.40) and long-lasting (1.71, 0.86–2.56) positive effects on the population with AD. None of the treatments or components reached statistical significance in the population with MCI. Benefits of ctDCS were observed in the population with AD at 1-month follow-up.

Secondary outcomes
Memory function
HFrTMS was the only treatment and component that significantly improved memory function after the last rTMS session, with a moderate effect size (figure 3). However, this memory improvement did not persist after 1-month follow-up. atDCS was the only treatment and component that significantly impaired memory function at 1-month follow-up, with a large effect size.
Neurodegeneration

Figure 2 (A) Forest plot of NMA of changes of general cognition: short-term effects. (B) Forest plot of NMA of changes of general cognition: long-lasting effects after 1 month. atDCS, anodal transcranial direct current stimulation; BS, brain stimulation; CT, cognitive training; ctDCS, cathodal transcranial direct current stimulation; HfTMS, high-frequency repetitive transcranial magnetic stimulation; LfTMS, low-frequency repetitive transcranial magnetic stimulation; LL, lower limit; MD, mean difference; MMSE, Mini-Mental State Examination; NMA, network meta-analysis; UL, upper limit.

Figure 3 (A) Forest plot of NMA of changes of memory function: short-term effects. (B) Forest plot of NMA of changes of memory function: long-lasting effects after 1 month. atDCS, anodal transcranial direct current stimulation; BS, brain stimulation; CT, cognitive training; ctDCS, cathodal transcranial direct current stimulation; HfTMS, high-frequency repetitive transcranial magnetic stimulation; NMA, network meta-analysis; SMD, standardised mean difference.
Combining CT with HFrTMS or atDCS did not significantly increase the effect sizes, and therefore did not provide additional effects.

Verbal fluency

Both atDCS and atDCS+CT were significantly associated with short-term improvement in verbal fluency, with small effect sizes (figure 4). Combining CT with atDCS had a larger effect size than atDCS alone, and therefore provided additional effects to atDCS on verbal fluency. Considering the effect size for each component relative to sham_BS, both CT and atDCS were significantly associated with beneficial effects on verbal fluency, with small effect sizes. However, at 1-month follow-up, the beneficial effects of atDCS and CT were not significant.

Working memory

Later responses on working memory were observed for both rTMS and tDCS, as none of the treatments resulted in significant short-term effects (figure 5). Three treatments (ctDCS, HFrTMS+CT and HFrTMS) showed statistically significant effects at 1-month follow-up. Combining CT with HFrTMS had a larger effect size than HFrTMS alone, and therefore CT provided additional effects to HFrTMS on working memory. ctDCS, CT and HFrTMS were significantly associated with beneficial effects on working memory, with moderate-to-large effect sizes, when compared with sham_BS.

Executive function

None of the treatments or components reached statistical significance for short-term or long-lasting effects on executive function (online supplemental figure S5).

Longer durable effects (2 months and ≥3 months)

Due to the limited number of trials that followed up participants for longer than 1 month after the last NIBS session, NMA was not conducted to examine longer durable effects. Online supplemental table S2 summarises the effect sizes of long-lasting effects for each study on the primary and secondary outcomes. The effect sizes for each study arm ranged from −0.47 for atDCS+sham_CT in general cognitive function to 1.72 for ctDCS in memory function.

SUCRA for short-term and long-lasting effects on outcomes

Figure 6 illustrates the SUCRA of each component’s (a) short-term effects and (b) long-lasting effects at 1-month follow-up on the primary and secondary outcomes, with sham_BS as reference treatment.

For the short-term effects, HFrTMS was ranked as the best intervention for general cognitive function, and its effect size reached statistical significance. ctDCS was ranked as the best intervention for memory function, verbal fluency and working memory; however, this effect size did not reach statistical significance. CT was ranked as the best intervention for executive function, although its effect size did not reach statistical significance.

For the long-lasting effects at 1-month follow-up, ctDCS was ranked as the best intervention for all primary and secondary outcomes, although statistically significant effects were only observed for general cognitive function and working memory.

Acceptability, adverse events, and dropout

Both rTMS and tDCS were safe and well tolerated. Of the 27 studies, 8 reported no adverse events (AEs) on both active arm and sham arms, and 6 did not report any AEs during the study period. Headaches and scalp pain were the most common AEs in rTMS protocols. Scalp burning sensation and tingling were common in tDCS protocols. Detailed AEs of the 27 studies are summarised in the online supplemental table S3. The dropout rates were 5.1% (31/599) and 6.1% (29/471) in the intervention and sham treatment groups, respectively; this between-group difference was not significant ($\chi^2=0.48$, $p=0.49$).

ROB, inconsistency, publication bias, and sensitivity analysis

Based on the Cochrane ROB criteria, six studies were judged as having a high ROB, with random sequence generation being the
most frequent (online supplemental table S4). The high ROB in
each domain ranged from 0% to 11.1%.

The design-by-treatment interaction model and node-splitting
method did not detect any inconsistencies in the primary
outcome (online supplemental table S5). Visual inspection of
funnel plots and Egger’s tests (online supplemental table S6) did
not identify any risk of publication bias in the primary outcome.

Meta-regression analyses did not identify any potential effect
modifiers (online supplemental tables S6 and S7). Finally, the
pre–post changes in MMSE scores between sham rTMS and
sham tDCS stimulation were not significant (online supple-
mental figure S7).

Figure 5 (A) Forest plot of NMA of changes of working memory: short-term effects. (B) Forest plot of NMA of changes of working memory: long-lasting
effects after 1 month. atDCS, anodal transcranial direct current stimulation; BS, brain stimulation; CT, cognitive training; cdTMS, cathodal transcranial direct
current stimulation; HiFrTMS, high-frequency repetitive transcranial magnetic stimulation; LL, lower limit; NMA, network meta-analysis; SMD, standardised
mean difference; UL, upper limit.

Figure 6 NMA estimates and SUCRA values. BS, brain stimulation; CT, cognitive training; HiFrTMS, high-frequency repetitive transcranial magnetic
stimulation; LFrTMS, low-frequency repetitive transcranial magnetic stimulation; NMA, network meta-analysis; SUCRA, surface under the cumulative ranking
curve; tDCS, transcranial direct current stimulation.
DISCUSSION

We found the following primary outcomes: (1) HFrTMS and atDCS had short-term positive effects on general cognitive function; (2) HFrTMS and ctDCS revealed late larger therapeutic responses on general cognitive function; (3) CT did not provide additional effects; (4) only populations with pure AD, but not populations with MCI, significantly responded to HFrTMS and ctDCS based on subgroup analysis; and (5) all NIBS treatments were well tolerated.

For the secondary outcomes, we observed that: (1) HFrTMS had short-term positive effects on memory function, which were absent at 1-month follow-up; (2) atDCS was associated with short-term positive effects on verbal fluency, and CT provided additional effects; and (3) benefits on working memory were only observed in ctDCS and HFrTMS, and CT provided additional effects to those of HFrTMS.

Our study is the first to demonstrate that HFrTMS may have better efficacy for general cognition than atDCS, which is consistent with the treatment effects on major depressive disorder. Although the reasons underpinning the different effects of HFrTMS and atDCS on general cognitive function remain unclear, distinct pathophysiological mechanisms may indirectly influence our findings. Generally, HFrTMS stimulates gyri immediately under the coil at more localised areas, and directly triggers neuronal firing, whereas atDCS modulates resting neuronal membrane potential without neuronal firing, and stimulates less focal and more diffuse brain regions. HFrTMS and atDCS also differ substantially in terms of the effective distribution of the electric field on the cortical surface. Relative to rTMS, tDCS is more strongly influenced by skull anatomical features, with up to 50% of the electric field strength affected. Furthermore, the temporal resolution and spatial focality of rTMS are more precise than that of tDCS. Therefore, rTMS may have been more focal in the target areas, resulting in potentiation of local and distributed neuromodulatory effects.

The use of combined CT with NIBS is controversial, and evidence for an additional positive effect of CT in combination with NIBS on cognitive function remains insufficient. Previous meta-analyses have shown both positive and no positive effects reported. However, traditional meta-analyses or NMA did not specifically evaluate the cognitive effects of CT when combined with NIBS. The present study used component NMA, which enabled evaluation of each component’s effect. We observed that combining NIBS and CT had no additional positive effects on global cognition; indeed, the outcomes seemed to be poorer. The interaction between NIBS and CT on global cognition may be influenced by the complexity of functional networks in the human brain, whereby the topology, synchronisability, and other dynamic properties of functional networks are strongly affected by small-worldness and other metrics of structural connectivity. Patients with AD and MCI exhibit brain network dysfunction at both structural and functional levels; thus, the combination of NIBS and CT may not exert synergistically beneficial effects on global cognition. Other confounding factors may influence the protective effects of NIBS on cognition, such as heterogeneity of participants’ characteristics, selection of targeted brain regions, and standard CT or tailored-individualised CT. Although we did not identify potential effect modifiers based on meta-regression analyses, it is well established that CT is more effective at the earliest stage of AD.

With regards to cognition subdomain, we detected additional effects of CT on working memory and verbal fluency when combined with HFrTMS and atDCS, respectively. These findings were mainly derived from studies of HFrTMS and atDCS, which both applied individualised and tailored CT, and may therefore direct modulation of cortical areas or promote residual brain plasticity mechanisms related to specific cognitive abilities. In addition, both studies selected the left DLPFC as the single target site, as clinical and experimental findings have uniformly indicated the critical role of the DLPFC in both ‘cold’ (eg, working memory, inhibition and shifting) and ‘hot’ (eg, motivational, emotional or reward-based) executive functions. Based on our findings, stimulating a single brain area (left DLPFC) with adjunctive tailored CT may be an effective protocol for enhancing compensatory mechanisms for a specific subdomain of cognitive dysfunction in MCI or AD.

Several limitations of the study should be considered. First, the overall ROB was 22.2% in the included studies, although the ROB was unclear for random sequence generation and allocation concealment. Second, ctDCS showed efficacy for various outcomes, including immediate working memory, general cognition and working memory at 1-month follow-up. However, these findings were derived from a single study with small sample size (n=12). Third, we combined AD with MCI as our study subjects, which may increase the statistical power and generalisability of our study findings. However, AD and MCI are distinct clinical stages of neurocognitive disorders, suggesting that these conditions may respond differently to treatment. Indeed, subgroup analysis of pure AD versus MCI subgroups revealed that only the population with AD responded positively to NIBS for general cognition. Finally, sham tDCS and sham rTMS were grouped based on the assumption that they would have similar placebo responses, despite the differences in the methods.

The present study is the first systematic review and NMA to investigate the effects of NIBS on cognition in individuals with AD or MCI, and to combine direct and indirect evidence to delineate the efficacy of head-to-head comparisons of rTMS versus tDCS without combining CT on cognitive functions. We also conducted component NMA to strengthen treatment evaluation and increase the precision for assessing component effects of complex interventions; thus, enhancing the utility of the results for clinical practice.

CONCLUSION

Our data suggest that HFrTMS is more effective than atDCS for improving global cognition, and patients with AD may have better responses to rTMS and tDCS than MCI. Combining CT with NIBS, particularly tailored CT and single stimulation site of left DLPFC, may be beneficial for specific cognitive subdomain. Sustained cognitive protective effects were observed at 1-month follow-up. Overall, NIBS is well tolerated.

Author affiliations
1Department of Psychiatry and Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
2Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
3Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan
4Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
5Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
6Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
7Institute of Cognitive Neuroscience, National Central University, Jhongli, Taoyuan, Taiwan
8Laboratory of Neurosciences (LIM-27), and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department of Internal Medicine and Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil

Chu C-S, et al. J Neurol Neurosurg Psychiatry 2021;92:195–203. doi:10.1136/jnnp-2020-323870
Neurodegeneration

Contributors C-SC and ARB contributed equally as first authors, independently screened the studies, and extracted the relevant information from the manuscripts and drafted the current manuscript. Y-T and CY evaluated the risk of bias. F-CL and CY contributed in concept formation, study methodology support and manuscript revision. C-SC and ARB contributed equally as first authors, independently drafted the current manuscript. Y-T and CY screened the studies, and extracted the relevant information from the manuscripts and submitted the current manuscript.

Funding This study was supported by grants from Taipei Veterans General Hospital (V109A-18-03-MY2), Kaohsiung Veterans General Hospital (VGHKS 109-070), and the Ministry of Science and Technology (MOST 106-2314-B-075-004-MY2). In addition, this work was supported by the Brain Research Center (108BRC-8502), National Yang-Ming University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request from corresponding author (C-SC).

Supplemental material This content has been supplied by the author(s). It has been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes Any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Ping-Tao Tseng http://orcid.org/0000-0001-5761-7800 Chih-Sung Liang http://orcid.org/0000-0003-1138-5586

REFERENCES
1. Livingston G, Sommerlad A, O’gorman V, et al. Dementia prevention, intervention, and care. Lancet 2017;390:2673–74.
2. Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 2018;21:174–87.
3. Rajji TK. Transcranial magnetic and electrical stimulation in Alzheimer’s disease and mild cognitive impairment: a review of randomized controlled trials. Clin Pharmacol Ther 2019;106:776–80.
4. George MS, Aston-Jones G. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 2010;35:301–16.
5. Brunoni AR, Nitsche MA, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 2012;5:175–95.
6. Brunoni AR, Sampaio-Junior B, Motha AH, et al. Noninvasive brain stimulation in psychiatric disorders: a primer. Braz J Psychiatry 2019;41:70–81.
7. Rossi S, Hallett M, Rossi PM, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008–39.
8. Lefaucheur JP, Antal A, Aystade S, et al. Evidence-Based guidelines on the therapeutic use of transcranial magnetic stimulation. Clin Neurophysiol 2017;128:56–92.
9. Mutz J, Edgcumbe DR, Brunoni AR, et al. Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: a systematic review and meta-analysis of randomised sham-controlled trials. Neuroscience Biobehav Rev 2018;92:291–303.
10. Brunoni AR, Motha AH, Sampaio-Junior B, et al. Trial of electrical direct-current therapy through combined olfactory evoked potentials and olfactory evoked potentials. J Neuroimaging Med 2017;376:2523–32.
11. Woods AJ, Antal A, Bilskon M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2016;127:1031–48.
12. Kronberg B, Budi M, Abel T, et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul 2017;10:51–8.
13. Kim TD, Hong G, Kim J, et al. Cognitive enhancement in neurological and psychiatric disorders using transcranial magnetic stimulation (TMS): a review of modalities, potential mechanisms and future implications. Exp Neurol 2019;28:1–16.
14. Brunoni AR, Vanderhasselt M-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn 2014;86:1–9.
15. Brink A, Aimquist JF-IV, Mansfield K, et al. Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia 2018;118:107–14.
16. Martin DM, McClintock SM, Forster JJ, et al. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: a systematic review and meta-analysis of individual task effects. Depression Anxiety 2017;34:1029–39.
17. Wang X, Mao Z, Ling Z, et al. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neurosci 2020;267:791–801.
18. Xu Y, Qiu Z, Zhu J, et al. The modulation effect of non-invasive brain stimulation on cognitive function in patients with mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials. BMC Neurosci 2019;20:2.
19. Saystad M, Grani O, Rasmussen IO, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimers Res Ther 2016;8:13.
20. Zhao J, Li Z, Cong Y, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 2017;8:33864–71.
21. Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement 2020;16:641–50.
22. Das N, Spence JS, Aslan S, et al. Cognitive training and transcranial direct current stimulation in mild cognitive impairment: a randomized pilot trial. Front Neurosci 2019;13:307.
23. Martin DM, Mohan A, Alonzo A, et al. A pilot double-blind randomized controlled trial of cognitive training combined with transcranial direct current stimulation for amnestic mild cognitive impairment. J Alzheimers Dis 2019;71:503–12.
24. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777–84.
25. Valero-Cabre A, Pascual-Leone A, Rushmore RJ. Cumulative analyses of network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777–84.
26. Dayan E, Censor N, Buch ER, et al. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 2013;16:838–44.
27. Thorlund K, Walter SD, Johnston BC, et al. Pooling health-related quality of life outcomes in meta-analysis-a tutorial and review of methods for enhancing interpretability. Res Synth Methods 2011;2:189–203.
28. Martin DM, Motha A, Nikolin S, et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: an individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci Biobehav Rev 2018;90:137–45.
29 Higgins JPT, Savović J, Page MJ, et al. A revised tool for assessing risk of bias in randomized trials. In: Chandler J, McKenzie J, Boutron I, Welch V, editors. Cochrane Database of Systematic Reviews 2016;10:29–31.
30 Cohen J. Statistical power analysis for the behavioral sciences. NY: Routledge Academic, 1988.
31 Bergmann TO, Karabanov A, Hartwigs G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 2016;140:4–19.
32 Cheng CPW, Wong CSM, Lee KK, et al. Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta-analysis. Int J Geriatr Psychiatry 2018;33:e1–13.
33 Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer’s disease: a meta-analysis of the literature. Acta Psychiatr Scand 2006;114:75–90.
34 Lin Y, Jiang W-J, Shan P-Y, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: a systematic review and meta-analysis. J Neurol Sci 2019;398:184–91.
35 Nilsson J, Lebedev AV, Rydström A, et al. Direct-Current stimulation does little to improve the outcome of working memory training in older adults. Psychol Sci 2017;28:907–20.
36 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186–98.
37 Zhang E, Qin Y, Xie L, et al. High-Frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer’s disease. J Neural Transm 2019;126:1081–94.
38 Lu H, Chan SSM, Chan WC, et al. Randomized controlled trial of tDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neurol 2019;6:1938–48.
39 Nejati V, Salehinejad MA, Nitsche MA. Interaction of the left dorsolateral prefrontal cortex (l-DLPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: evidence from transcranial direct current stimulation (tDCS). Neuroscience 2018;369:109–23.
40 Khedr EM, Gamal NFE, El-Fetoh NA, et al. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Front Aging Neurosci 2014;6:275.
Online supplementary data

Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis

Content	Page
Appendix 1. Detailed search strategy	2
Appendix 2. PRISMA	19
Appendix 3. Flow diagram of trial selection	23
Appendix 4. The characteristics of the included studies	24
Appendix 5. Network plots for the secondary outcomes	31
Appendix 6. Short-term effects on general cognition divided by AD and MCI	32
Appendix 7. Long-lasting effects on general cognition at 1-month follow-up divided by AD and MCI	33
Appendix 8. Forest plots for the executive function	34
Appendix 9. The effect sizes (SMD) for studies with follow-up data longer than 1 month	35
Appendix 10. Adverse events of the included studies	36
Appendix 11. Risk of bias	43
Appendix 12. Inconsistency tests for general cognitive function	44
Appendix 13. Publication bias	45
Appendix 14. Network meta-regression of immediate effect on general cognition	46
Appendix 15. Network meta-regression of 1-month F/U effect on general cognition	47
Appendix 16. Efficacy of sham rTMS vs sham tDCS in general cognitive function	49
Appendix 1. Detailed search strategy
Date: through Mar 5, 2020

(1). PubMed N=2366
Keyword: (non-invasive brain stimulation or theta-burst stimulation or transcranial magnetic stimulation or Transcranial Direct Current Stimulation or neuromodulation) AND (dementia or Alzheimer’s disease or cognitive impairment) AND (cognitive therapy or cognitive training or cognition or language or executive or memory or disease severity or apathy) With Filters applied: Clinical Trial

(2). Psychology and Behavioral Sciences Collection N=2694
Keyword: (non-invasive brain stimulation or theta-burst stimulation or transcranial magnetic stimulation or Transcranial Direct Current Stimulation or neuromodulation) AND (dementia or Alzheimer’s disease or cognitive impairment) AND (cognitive therapy or cognitive training or cognition or language or executive or memory or disease severity or apathy)

(3). Embase N=2884
Keyword: ('non-invasive brain stimulation' OR 'theta-burst stimulation' OR 'transcranial magnetic stimulation' OR 'transcranial direct current stimulation' OR neuromodulation) AND (dementia OR 'alzheimers disease' OR 'cognitive impairment') AND ('cognitive therapy' OR 'cognitive training' OR cognition OR language OR executive OR memory OR 'disease severity' OR apathy)

(4). ClinicalTrials.gov N=88
Keyword: Dementia and brain stimulation (k=67) and mild cognitive impairment and brain stimulation (k=21)

(5). Cochrane N=1143
Keyword: (non-invasive brain stimulation or theta-burst stimulation or transcranial magnetic stimulation or Transcranial Direct Current Stimulation or neuromodulation or brain stimulation) AND (dementia or Alzheimer’s disease or cognitive impairment) AND (cognitive therapy or cognitive training or cognition or language or executive or memory or disease severity or apathy)

Excluded studies with reasons Studies excluded: n=298
(1) Review/Meta-analysis articles n=51
(2) Not cognitively impaired population and/or not interventional study n=48
(3) Other subjects n=53 (study of subjects with other health related disease = 34; healthy population =19)
(4) Other trials n=88 (ongoing trials and study protocol = 24; open label trials = 9; depression trials = 10; DBS and other intervention = 22; case report/series = 16; animal study = 7)
(5) Outcome not related to cognition n=24
(6) Duplicated database from other studies n=9
(7) No detailed data available n=6
(8) No adequate control n=6
(9) Conference Abstract n=2
(10) Less than five sessions of rTMS/tDCS n=18

(1) Review/Meta-analysis articles n=51
1. Antonenko D, Flöel A. [Non-invasive brain stimulation in neurology: Transcranial direct current stimulation to enhance cognitive functioning]. Nervenarzt. 2016 Aug;87(8):838-45; German.
2. Anderkova L, Rektorova I. Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases clinician’s perspective. J Neurol Sci 2014;339:15-25.
3. Arendash GW. Transcranial electromagnetic treatment against Alzheimer’s disease: why it has the potential
3 to trump Alzheimer’s disease drug development. J Alzheimers Dis. 2012;32(2):243-66.

4. Babiloni C, Del Percio C, Lizio R, Infarini F, Blin O, Bartres-Faz D, Dix SL, Bentivoglio M, Soricelli A, Bordet R, Rossini PM, Richardson JC. A review of the effect of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer’s disease. Curr Alzheimer Res. 2014;11:501-18.

5. Berryhill ME, Peterson DJ, Jones KT, Stephens JA. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014 Jul 25;5:800

6. Birba A, Ibáñez A, Sedeño L, Ferrari J, García AM, Zimmerman M. Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment? Front Aging Neurosci. 2017 Feb 13;9:16.

7. Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 2014 Apr;86:1-9.

8. Boggio PS, Valasek CA, Campañá C, Giglio AC, Baptista NI, Lapenta OM, Fregni F. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease. Neuropsychol Rehabil. 2011 Oct;21(5):703-16.

9. Burt T, Lisa nbh SH, Sackeim HA. Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis. Int J Neuropsychopharmacol. 2002 Mar;5(1):73-103.

10. Cantone M, Di Pino G, Capone F, Piombo M, Chiarelli D, Cheeraan B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014 Aug;125(8):1509-32.

11. Cespón J, Minnussi C, Pellicciari MC. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Res Rev. 2018 May;43:81-98.

12. Chang CH, Lane HY, Lin CH. Brain Stimulation in Alzheimer's Disease. Front Psychiatry. 2018 May 22;9:201.

13. Cheng CPW, Wong CSM, Lee KK, Chan APK, Yeung JWF, Chan WC. Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta-analysis. Int J Geriatr Psychiatry. 2018 Jan;33(1):e1-e13.

14. Cappon D, Jahanshahi M, Bisiacchi P. Value and Efficacy of Transcranial Direct Current Stimulation in the Cognitive Rehabilitation: A Critical Review Since 2000. Front Neurosci. 2016 Apr 18;10:157.

15. Cotelli M, Manenti R, Zanetti O, Minnussi C. Non-pharmacological intervention for memory decline. Front Hum Neurosci. 2012 Mar 9:6:46.

16. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566-578.

17. Elder GJ, Taylor JP. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers Res Ther. 2014 Nov 10;6(9):74.

18. Flóel A. tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage. 2014 Jan 15;85 Pt 3:934-47

19. Freitas C, Farzan F, Pascual-Leone A. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal? Front Neurosci. 2013 Apr 2;7:42.

20. Freitas C, Mondragón-Llorca H, Pascual-Leone A. Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol. 2011 Aug;46(8):611-27.

21. Hjalmsiekmenn, B, Sellsers K, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2015 Feb;15(2):145-67.

22. Freitas C, Mondragón-Llorca H, Pascual-Leone A. Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol. 2011; 46(8): 611-627.

23. Gonsalvez I, Baror R, Fried P, Santar necchi E, Pascual-Leone A. Therapeutic Noninvasive Brain Stimulation in Alzheimer’s Disease. Curr Alzheimer Res. 2017;14(4):362-376.

24. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist. 2016 Feb;22(1):83-97.

25. Hansen N. Brain stimulation for combating Alzheimer’s disease. Front Neurol. 2014 Jun 2;5:80

26. Hansen N. Action mechanisms of transcranial direct current stimulation in Alzheimer’s disease and memory loss. Front Psychiatry. 2012 May 15;3:48.

27. Hendrıkse J, Kandola A, Coxon J, Rogasch N, Yücel M. Combining aerobic exercise and repetitive transcranial magnetic stimulation to improve brain function in health and disease. Neurosci Biobehav Rev. 2017 Dec;83:11-20.

28. Hsu W-Y, Ku Y, Zanto TP, Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis. Neurobiol Aging 2015;36(8):2348e59.

29. Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage. 2014 Jan 15;85 Pt 3:948-60.

30. Lanza G, Bramanti P, Cantone M, Pennisi M, Pennisi G, Bella R. Vascular Cognitive Impairment through BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)
1. Lage C, Wiles K, Shergill SS, Tracy DK. A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition. J Neural Transm (Vienna). 2016 Dec;123(12):1479-1490
2. Liao X, Li G, Wang A, Liu T, Feng S, Guo Z, Tang Q, Jin Y, Xing G, McClure MA, Chen H, He B, Liu H, Mu Q. Repetitive Transcranial Magnetic Stimulation as an Alternative Therapy for Cognitive Impairment in Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis. 2015;48(2):463-72.
3. Lubin B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 2014;85 Pt 3:961-970.
4. Mahayana IT, Sari DC, Chen CY, Juan CH, Muggleton NG. The potential of transcranial magnetic stimulation for population-based application: a region-based illustrated brief overview. Int J Neuosci. 2014 Oct;124(10):717-23.
5. Manenti R, Cotelli M, Robertson IH, Miniussi C. Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimul. 2012 Apr;5(2):103-9.
6. McDonald WM. Neuromodulation Treatments for Geriatric Mood and Cognitive Disorders. Am J Geriatr Psychiatry. 2016 Dec;24(12):1330-1141.
7. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008; 1(4): 326-336.
8. Morriss H, Fang T, Servant D, Aarsland D, Rajkumar AP. Systematic review of the efficacy of non-pharmacological interventions in people with Lewy body dementia. Int Psychogeriatr. 2018 Mar;30(3):395-407.
9. Nardone R, Tezzon F, Höller Y, Golazewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 2014;129:351-358.
10. Nardone R, Höller Y, Tezzon F, Christova M, Schwenker K, Golazewski S, Trinka E, Brigo F. Neurostimulation in Alzheimer's disease: from basic research to clinical applications. Neurol Sci. 2015 May;36(5):689-700.
11. Nevel N, Ash EL. TMS as a Tool for Examining Cognitive Processing. Curr Neurol Neurosci Rep. 2015 Aug;15(8):52.
12. Ni Z, Chen R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener. 2015 Nov 16;4:22.
13. Norise C, Hamilton RH. Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned. Front Hum Neurosci. 2017 Jan 23;10:675.
14. Pallanti S, Marras A. Transcranial Magnetic Stimulation in Alzheimer’s Disease: A Review of Investigational and Therapeutic Findings. Alzheimer’s Disease & Parkinsonism 2015:5:1
15. Pennisi G, Ferri R, Cantone M, Lanza G, Pennisi M, Vinciguerra L, et al. A review of transcranial magnetic stimulation in vascular dementia. Dement Geriatr Cogn Disord. 2011; 31(1): 71-80.
16. Perceval G, Floel A, Meinerz M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev. 2016 Jun;65:157-72.
17. Prehn K, Floel A. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Front Cell Neurosci. 2015 Sep 14;9:355
18. Sebastian R, Tsapkini K, Tippett DC. Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: Current knowledge and future clinical applications. bnuNeuroRehabilitation. 2016 Jun 13;39(1):141-52
19. Siothena CW, Aleman A, Duskalakis ZJ, Sommer IE. Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: update and effects after one month. Schizophr Res. 2012 Dec;142(1-3):40-5.
20. Sparing R, Mottaghy FM. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction. Methods. 2008 Apr;44(4):329-37.
21. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: the Looking Glass of Transcranial Magnetic Stimulation. Behav Neurol. 2017;2017:1421326.
22. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 2014;85 Pt 3:961-970.
23. Lecerf J, Coudé P, Souteyrand Y, Rémond A, Cloutier J, Perret C. Transcranial magnetic stimulation: a review of the literature. J Neurol Neurosurg Psychiatry. 2008; 79;10:675.
24. Mahayana IT, Sari DC, Chen CY, Juan CH, Muggleton NG. The potential of transcranial magnetic stimulation for population-based application: a region-based illustrated brief overview. Int J Neuosci. 2014 Oct;124(10):717-23.
25. Manenti R, Cotelli M, Robertson IH, Miniussi C. Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimul. 2012 Apr;5(2):103-9.
26. McDonald WM. Neuromodulation Treatments for Geriatric Mood and Cognitive Disorders. Am J Geriatr Psychiatry. 2016 Dec;24(12):1330-1141.
27. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008; 1(4): 326-336.
28. Morriss H, Fang T, Servant D, Aarsland D, Rajkumar AP. Systematic review of the efficacy of non-pharmacological interventions in people with Lewy body dementia. Int Psychogeriatr. 2018 Mar;30(3):395-407.
29. Nardone R, Tezzon F, Höller Y, Golazewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 2014;129:351-358.
30. Nardone R, Höller Y, Tezzon F, Christova M, Schwenker K, Golazewski S, Trinka E, Brigo F. Neurostimulation in Alzheimer's disease: from basic research to clinical applications. Neurol Sci. 2015 May;36(5):689-700.
31. Nevel N, Ash EL. TMS as a Tool for Examining Cognitive Processing. Curr Neurol Neurosci Rep. 2015 Aug;15(8):52.
32. Ni Z, Chen R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener. 2015 Nov 16;4:22.
33. Norise C, Hamilton RH. Non-invasive Brain Stimulation in the Treatment of Post-stroke and Neurodegenerative Aphasia: Parallels, Differences, and Lessons Learned. Front Hum Neurosci. 2017 Jan 23;10:675.
34. Pallanti S, Marras A. Transcranial Magnetic Stimulation in Alzheimer’s Disease: A Review of Investigational and Therapeutic Findings. Alzheimer’s Disease & Parkinsonism 2015:5:1
35. Pennisi G, Ferri R, Cantone M, Lanza G, Pennisi M, Vinciguerra L, et al. A review of transcranial magnetic stimulation in vascular dementia. Dement Geriatr Cogn Disord. 2011; 31(1): 71-80.
36. Perceval G, Floel A, Meinerz M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev. 2016 Jun;65:157-72.
37. Prehn K, Floel A. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Front Cell Neurosci. 2015 Sep 14;9:355
38. Sebastian R, Tsapkini K, Tippett DC. Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: Current knowledge and future clinical applications. bnuNeuroRehabilitation. 2016 Jun 13;39(1):141-52
39. Siothena CW, Aleman A, Duskalakis ZJ, Sommer IE. Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: update and effects after one month. Schizophr Res. 2012 Dec;142(1-3):40-5.
40. Sparing R, Mottaghy FM. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction. Methods. 2008 Apr;44(4):329-37.
41. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: the Looking Glass of Transcranial Magnetic Stimulation. Behav Neurol. 2017;2017:1421326.

(2) Not cognitively impaired population and/or not interventional study n=48

1. Abellaneda-Perez K, Vaque-Alcazar L, Solana E, Vidal-Ptnheiro D, Bargallo N, Pascual-Leone A, Bartes-Faz D. Age-related differences in the modulation of resting-state functional connectivity following repetitive transcranial magnetic stimulation. Alzheimers and dementia. Conference: Alzheimer’s Association Apr;44(4):329-37.
2. Antonenko D, Külow N, Sousa A, Prehn K, Gritter U, Floel A. Neuronal and behavioral effects of multi-
day brain stimulation and memory training. Neurobiol Aging. 2018 Jan;61:245-254.
4. Babiloni C, Vecchio F, Rossi S, De Capua A, Bartalini S, Ulivelli M, Rossini PM. Human ventral parietal cortex plays a functional role on visuospatial attention and primary consciousness. A repetitive transcranial magnetic stimulation study. Cereb Cortex. 2007 Jan;17(6):1486-92
5. Barbieri M, Negrini M, Nitsche MA and Rivolta D. Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects. Neuropsychologia, 2016, 81, 238
6. Bonni S, Veniero D, Mastropasqua C, Ponzo V, Caltagirone C, Bozzali M, Koch G. (2015) TMS idence for a selective role of the precuneus in source memory retrieval. Behav Brain. Res. 282:70-5.
7. Bonni S, Koch G, Muniassi C, Bassi MS, Caltagirone C, Gainotti G. Role of the anterior temporal lobes in semantic representations: Paradoxical results of a cTBS study. Neuropsychologia. 2015 Sep;76:163-9.
8. Cappa SF, Sandrini M, Rossini PM, et al. The role of the left frontal lobe in action naming: tRMS evidence. Neurology. 2002;59:720-723.
9. Cooper ACG, Humphreys GW, Hullemann J, Praamstra P, Georgeson M. Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Exp. Brain Res. 2004; 155:24–29.
10. Daskalakis B, Christensen BK, Fitzgerald PB et al (2006) The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res 174(3):403–412
11. Debarnot U, Crépon B, Orsols E, Abram M, Charon S, Lion S, Roca P, Oppenheim C, Gueguen B, Ergis AM, Baron JC, Poliño P. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiol Aging. 2015 Aug;36(8):2360-9.
12. Dietrich S, Hertrich I, Müller-Dahlhaus F, Ackermann H, Belardinelli P, Desideri D, Seibold VC, Ziemann U. Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area. Front Neurosci. 2018 May 29;12:361.
13. D’Urso G, Dell’Osso B, Rossi R, Brunoni AR, Bortolomasi M, Ferrucci R, Priori A, de Bartolomeis A, Altamura AC. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression. J Affect Disord. 2017 Sep;219:25-30.
14. Esslinger, C., Schuler, N., Sauer, C., Gass, D., Mier, D., Braun, U., et al. (2012). Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Brain human mapping
15. Evers S, Bockermann I, Nyhuis PW. The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport. 2001; 12(13):2915–2918.
16. Fried PI, Schilberg L, Brem AK, Saxena S, Wong B, Cypess AM, Horton ES, Pascual-Leone A. Humans with Type-2 Diabetes Show Abnormal Long-Term Potentiation-Like Cortical Plasticity Associated with Verbal Learning Deficits. J Alzheimers Dis. 2017;55(1):89–100— type 2 DM with normal cognition
17. Gaudeau-Bosma, C., Moulier, V., Allard, A. C., Sidhoumni, D., Bouaziz, N., Braha, S., et al. (2012). Effect of two weeks of rTMS on brain activity in healthy subjects during an n-back task: A randomized double blind study. Brain Stimulation.
18. Heinen K, Feredoes E, Ruff CC, Driver J. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia. 2017 May;99:81-91.
19. Heimrath K, Sandmann P, Becke A, Müller NG, Zaehle T. Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Front Psychiatry. 2012 Jun 20;3:56.
20. Hilgetag CC, Théoret H, Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci. 2001 Sep;4(9):953-7.
21. Hwang JH, Kim SH, Park CS, Bang SA, Kim SE. Acute high-frequency rTMS of the left dorsolateral prefrontal cortex affects performance of the Wisconsin card sorting task during provision of feedback. Int J Biomed Imaging. 2008;2008:143238.
22. Köhler S, Paas T, Buckner RL, Milner B. Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. J Cogn Neurosci. 2004 Mar;16(2):178-88.
23. Koren D, Shefer O, Chistyakov A, Kaplan B, Feinsod M, Klein E (2001) Neuropsychological effects of prefrontal slow rTMS in normal volunteers: a double-blind sham-controlled study. J Clin Exp Neuropsychol 23:424–430
24. Külzow N, Cavalcanti de Sousa AV, Cesarz M, Hanke JM, Güngör A, Harder S, Koblitz S, Grittner U, Floel A. No Effects of Non-invasive Brain Stimulation on the Training in Healthy Older Adults. Front Neurosci. 2018 Jan 10;12(430)
25. Küllow N, Cavalcanti de Sousa AV, Cesarz M, Hanke JM, Güngör A, Harder S, Koblitz S, Grittner U, Floel A. No Effects of Non-invasive Brain Stimulation on the Training in Healthy Older Adults. Front Neurosci. 2018 Jan 10;12(430)
26. Kumar S, Zomorrodhi R, Ghazala Z, Goodman MS, Blumberger DM, Chem A, Fischer C, Daskalakis ZJ, Mulsant BH, Pollock BG, Rajji TK. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry. 2017 Dec 1;74(12):1266-1274. —Cross-sectional study
27. Ladenbauer J, Küllow N, Passmann S, Antonenko D, Grittner U, Tamn S, Floel A. Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage. 2016 Nov 15;142:311-323.
28. Luber B, Kimmen LH, Rakitto BC, Ehlssasser R, Stern Y, Lisanby SH. Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects.
Brain Res. 2007 Jan 12;1128(1):120-9.
29. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2000 May;111(5):800-5.
30. Mancini M, Mastropasqua C, Bonni S, Ponzo V, Cercignani M, Conforto S, Koch G, Bozzali M. (2017) Theta Burst Stimulation of the Precuneous Modulates Resting State Connectivity in the Left Temporal Pole. Brain Topogr. 30:312-319.
31. Meinzer M, Lindenberg R, Antonenko D, Flaisch T, Fiolè A. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J Neurosci. 2013 Jul 24;33(30):12470-8.
32. Narayana S, Zhang W, Rogers W, Strickland C, Franklin C, Lancaster JL and Fox PT. Concurrent TMS to the primary motor cortex augments slow motor learning. Neuroimage, 2014, 85 Pt 3, 971.
33. Nilakantan AS, Bridge DJ, Gagnon EP, Vanhaeren SA, Voss JL. Stimulation of the Posterior Cortical-Hippocampal Network Enhances Precision of Memory Recollection. Curr Biol. 2017 Feb 6;27(3):465-470.
34. Pascual-Leone A, Houser CM, Reese K, Shotland LI, Graffman J, Sato S, Valls-Sole J, Brasil-Neto JP, Wassermann EM, Cohen LG, Hallett M. 1993. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130.
35. Pobric G, Jeffries E, Lambon Ralph MA. Category-specific versus category-general semantic impairment induced by transcranial magnetic stimulation. Curr Biol. 2010 May 25;20(10):964-8.
36. Prehn K, Stengl H, Gritter U, Kosiolek R, Olschlager A, Weidemann A, Fiolè A. Effects of Anodal Transcranial Direct Current Stimulation and Serotonergic Enhancement on Memory Performance in Young and Older Adults. Neuropsychopharmacology. 2017 Jan 4;42(2):551-561.
37. Pur R, Hinder MR, Canty AJ, Summers JJ. Facilitatory non-invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity. Exp Brain Res. 2016 Dec;234(12):3411-3423.
38. Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani D, Downar J, Chen J, Chen R. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerbellous continuous theta burst stimulation. Neuroimage. 2017 Sep;158:48-57.
39. Ren W, Ma J, Li J, Zhang Z, Wang M. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Lipid Metabolism in Aging Adults. Front Aging Neurosci. 2017 Oct 17;9:334.
40. Rose NS, LaRocque JO, Riggi RJ, Gossess D, Starrett MJ, Meyer AN, Postle BR. (2016) Reactivation of latent working memories with transcranial magnetic stimulation. Science. 354: 1136-9.
41. Sandrini M, Manenti R, Brambilla M, Cobelli C, Cohen LG, Cotelli M. Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning. Neurobiol Aging. 2016 Mar;39:210-216.
42. Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Förster AF, Nicolas V, Dinse HR. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz tRMS. PLoS Biol. 2005 Nov;3(11)e362.
43. Thomson JM, Donuk D, Mascio B, Fregni F, Cerruti C. Transcranial direct current stimulation modulates efficiency of reading processes. Front Hum Neurosci. 2015 Mar 16;9:114.
44. Trojano L, Conson M, Maffei R, Grossi D. Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia. 2006;44(9):1569-74.
45. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu E, Hermiller MS, Voss JL. (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science. 345: 1054-7.
46. Wagner M, Rihs TA, Mosimann UP, Fisch HU, Schlaepfer TE. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J Psychiatri Res. 2006 Jun;40(4):315-21.
47. Woollams AM, J Lindley L, Pobric G, Hoffman P. Laterality of anterior temporal lobe repetitive transcranial magnetic stimulation determines the degree of disruption in picture naming. Brain Struct Funct. 2017 Nov;222(8):3749-3759.
48. Vanderhassett MA, De Raedt R, Baeken C, Leyman L, D’haenen H. The influence of rTMS over the left domain investigated by rTMS. Neuropsychologia. 2006;44(9):1569-74.
49. Puri R, Hinder MR, Canty AJ, Summers JJ. Facilitatory non-invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity. Exp Brain Res. 2016 Dec;234(12):3411-3423.
50. Chu C-S, et al. J Neurol Neurosurg Psychiatry 2020;0:1–9. doi: 10.1136/jnnp-2020-323870

(3) Other subjects n=53 (34+19)

study of subjects with other health related disease = 34

1. Evaluation of a Transcranial Stimulation With Direct Current on Language Disorders in Semantic Dementia [NCT03481933] → semantic dementia
2. Barr, M. S., Farzan, F., Rajji, T. K., Voinakes, A. N., Blumberger, D. M., Arenovich, T., et al. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73(6), 510–517. → Schizophrenia
3. Barr MS, Farzan F, Tran LC, Fitzgerald PB, Daskalakis ZJ. A randomized controlled trial of sequentially bilateral prefrontal cortex repetitive transcranial magnetic stimulation in the treatment of negative symptoms in schizophrenia. Brain Stimul. 2012; 5(3): 337-346 → Schizophrenia
4. Biundo R, Weis L, Fiorenzato E, Gentile G, Giglio M, Schifano R, Campo MC, Marcon V, Martinez-Martin P, Bisacchi F, Antonini A. Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients
24. FTD Patients With Predominant Negative Symptoms: Results From a Multicenter Randomized Sham-Controlled Trial. J Affect Disord. 2018 Aug 1;235:20-27.
23. Schneider-Axmann T, Falkai P, Wobrock T. Cognitive Effects of High-Frequency rTMS in Schizophrenia. J Neurol Neurosurg Psychiatry. 2016 Aug;2016:5937-5940.
22. Kozak K, Sharif-Razi M, Morozova M, Gaudette EV, Bourroni B. Preference cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur J Neurol. 2012 Nov;19(11):1404-12. doi:10.1111/j.1468-1331.2012.03616.x
21. Cotelli M, Adenzato M, Cantoni V, et al. Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. Cogn Affect Behav Neurosci. 2018;18(10):1065-1075. doi:10.3758/s13415-018-0622-4 FTD
20. Dagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson's disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017 Aug;235(8):2463-2472. doi:10.1007/s00221-017-4800-8 Parkinson's disease
19. Elder GJ, Firbank MJ, Kumar H, Chatterjee P, Chakraborty T, Dutt A, Taylor JP. Effects of transcranial direct current stimulation upon attention and visuoperceptual function in Lewy body dementia: a preliminary study. Int Psychogeriatr. 2016 Feb;28(2):341-7. doi:10.1017/S1041610215002675 DLB
18. Ferrucci R, Marikic-Sposta S, Gardini S, et al. Behavioral and Neurophysiological Effects of Transcranial Direct Current Stimulation (tDCS) in Fronto-Temporal Dementia. Front Neurol. 2018;9:235. doi:10.3389/fneur.2018.00235 FTD
17. Francis MM, Hummer TA, Vohs JL, Yung MG, Visco AC, Mehdiyoun NF, Kulig TC, Um M, Yang Z, Motamed M, Liffick E, Zhang Y, Breier A. Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study. Brain Imaging Behav. 2018 May 31. doi:10.1007/s11685-018-9690-1 early phase psychosis
16. Guse B, Falkai P, Gruber O, Whalley H, Gibson L, Hasan A, et al. (2013). The effect of long-term high frequency repetitive transcranial magnetic stimulation on working memory in schizophrenia and healthy controls – A randomized placebo-controlled, double-blind fMRI study. Behavioural Brain Research, 237, 300–307. doi:10.1016/j.bbr.2012.12.032 schizophrenia
15. Hasan A, Guse B, Cordes J, Wölvser W, Winterer G, Gaebel W, Langhuth B, Eichhammer P, Frank E, Hajak G, Ohmann C, Verde PE, Rietschel M, Ahmed R, Honer WG, Gattaz W, Schneider-Axmann T, Falkai P, Wobrock T. Cognitive Effects of High-Frequency rTMS in Schizophrenia Patients With Predominant Negative Symptoms: Results From a Multicenter Randomized Sham-Controlled Trial. Schizophr Bull. 2016 May;42(3):608-18. doi:10.1093/schbul/sbw036 schizophrenia
14. Huang YZ, Lin LF, Chang KH, Hu CJ, Liu TH, Lin YN. Priming With 1-Hz Repetitive Transcranial Magnetic Stimulation Over Contralateral Leg Motor Cortex Does Not Increase the Rate of Regaining Ambulation Within 3 Months of Stroke: A Randomized Controlled Trial. Am J Phys Med Rehabil. 2018 May;97(5):339-345. doi:10.1097/PHM.0000000000001221 stroke
13. Janssen AM, Munneke MAM, Nonnekes J, van der Kraan T, Nieuwboer A, Toni Snijders AH, Bloem BR, Frank E, Hajak G, Ohmann C, Garcia-Quintanar A, Santana-Miranda R, motive A, Axmam T, Falkai P, Wobrock T. Cognitive Effects of High-Frequency rTMS on Working Memory in Schizophrenia and Healthy Controls. Schizophr Bull. 2018 May;44(3):569-579. doi:10.1093/schbul/sby050 schizophrenia
12. Manenti R, Brambilla M, Benussi A, Rosini S, Cobelli C, Ferrari C, et al. (2016). Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov. Disord. 31, 715–724. doi:10.1002/mds.26685 Parkinson
11. Martinez-Cancino DP, Azpiroz-Leehan J, Jimenez-Angueles L, Garcia-Quintanar A, Santana-Miranda R. Effects of high frequency rTMS on sleep deprivation: A pilot study. Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:9537-9540.
10. McConathey EM, White NC, Gervits F, Ash S, Coslett HB, Grossman M, Hamilton RH. Baseline Performance Predicts tDCS-Mediated Improvements in Language Symptoms in Primary Progressive Aphasia. Front Hum Neurosci. 2017 Jun 30;11:347-358. doi:10.3389/fnhum.2017.00347 PPA
9. Martinez-Cancino DP, Azpiroz-Leehan J, Jimenez-Angueles L, Garcia-Quintanar A, Santana-Miranda R. Effects of high frequency rTMS on sleep deprivation: A pilot study. Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:9537-9540.
8. Nardone R, De Blasi P, Seidl M, Höller Y, Caleri F, Teseon F, Ladurner G, Goliaszewski S, Trinka E. Cognitive function and cholinergic transmission in patients with subcortical vascular dementia and microbleeds: a TMS study. J Neural Transm (Vienna). 2011 Sep;118(9):1349-58. doi:10.1007/s00702-011-0846-4 bipolar depression
7. Pozzi M, Seminara G, Parasassi L, Marzullo P, Fazio R, Bonaccini C, et al. Response to transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralateral visuospatial neglect in humans. Neurosci Lett. 2003 Jan 16;336(2):131-3. doi:10.1016/s0304-3940(02)02748-8 ischemia brain injury
6. Brighina F, Bischi E, Oliveri M, Piazza A, La Bua V, Daniele O, Fierro B. 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralateral visuospatial neglect in humans. Neurosci Lett. 2003 Jan 16;336(2):131-3. doi:10.1016/s0304-3940(02)02748-8 ischemia brain injury
5. Birba A, Hesse E, Sedeño L, Mikulan EP, García MDC, Álvarez J, Adolfo F, Legaz A, Bekinschtein TA, Zimmermann M, Parra M, García AM, Ibáñez A. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex. Front Aging Neurosci. 2017 Jun 8;9:178. doi:10.3389/fnagi.2017.00136 intractable epilepsy
4. Myczkowski ML, Fernandes A, Moreno M, Valiengo L, Lafer B, Moreno RA, Padberg F, Gattaz W, Brunoni AR. Cognitive outcomes of TMS treatment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2017 May;97(5):339-345. doi:10.1136/jnnp-2016-314120 stroke
3. Martinez-Cancino DP, Azpiroz-Leehan J, Jimenez-Angueles L, Garcia-Quintanar A, Santana-Miranda R. Effects of high frequency rTMS on working memory in schizophrenia and healthy controls – A randomized placebo-controlled, double-blind fMRI study. Behavioural Brain Research, 237, 300–307. doi:10.1016/j.bbr.2012.12.032 schizophrenia
2. Martinez-Cancino DP, Azpiroz-Leehan J, Jimenez-Angueles L, Garcia-Quintanar A, Santana-Miranda R. Effects of high frequency rTMS on sleep deprivation: A pilot study. Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:9537-9540.
TP. Effects of short-term, high-frequency repetitive transcranial magnetic stimulation to bilateral dorsolateral prefrontal cortex on smoking behavior and cognition in patients with schizophrenia and non-psychiatric controls. Schizophr Res. 2018 Feb 24. [Epub ahead of print] → schizophrenia
25. Qiao J, Jin G, Lei L, Wang L, Du Y, Wang X. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients. Neuropsychiatr Dis Treat. 2016 Sep 13;12:2273-2278. → alcohol dependent
26. Pennisi M, Lanza G, Cantone M, Riccieri R, Spanninoato C, Pennisi G, Di Lazzaro V, Bella R. Correlation between Motor Cortex Excitability Changes and Cognitive Impairment in Vascular Depression: Pathophysiological Insights from a Longitudinal TMS Study. Neural Plast. 2016;2016:8154969.
27. Rektorova I, Megova S, Bares M, Rektor I (2004) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–61. → Cerebrovascular disease
28. Sedlackova S, Rektorova I, Srnvalova H, Rektor I (2009) Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease. J Neural Transm 116, 1093-1101 → Parkinson’s disease
29. Silva AF, Zor Tea M, Carvalho S, Leite J, Torres IL, Fregni F, Caumo W. Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: randomized clinical trial. Sci Rep. 2017 Mar 9;7(1):135. → fibromyalgia
30. Srnvalova H, Marecek R, Rektorova I (2011) The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: A pilot rTMS study. Mov Disord 26, 1545-1548 → Parkinson’s disease
31. Thomas-Ollivier V, Foyer E, Bulteau S, Pichot A, Valvriere P, Sauvaget A, Deschamps T. Cognitive component of psychomotor retardation in unipolar and bipolar depression: Is verbal fluency a relevant marker? Impact of repetitive transcranial stimulation. Psychiatry Clin Neurosci. 2017 Sep;71(9):612-623. → bipolar
32. Tsapkini, K., Frangakis, C., Gomez, Y., Davis, C. and Hillis, A.E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: preliminary results and challenges. Aphasiology 28,1112–1130. → PPA
33. Wang J, Wu D, Chen Y, Yuan Y, and Zhang M. (2013). Effects of transcranial Direct current stimulation on language improvement and cortical activation in nonfuntional variant primary progressive aphasia. Neurosci.Lett. 549,29–33. → PPA
34. Wilke S, List J, Mekle R, Lindenberg R, Bukowski M, Ott S, Schubert F, Ittermann B, Floed A. No Effect of Anodal Transcranial Direct Current Stimulation on Gamma-Aminobutyric Acid Levels in Patients with Recurrent Mild Traumatic Brain Injury. J Neuroltrauma. 2017 Jan 15;34(2):281-290.

healthy population = 19

1. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011 Apr;4(2):84-9.
2. Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012 Jul 19;521(2):148-51.
3. Beynel L, Davis SW, Crowell CA, et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS One. 2019;14(3):e0213707.
4. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation combining cognitive activity and anodal transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013 Jul;6(4):649-53.
5. Brem AK, Almequst JN, Mansfield K, Plessow F, Sella F, Santaronechi E, Orhan U, McKama J, Pavel M, Mathan S, Yeung N, Pascual-Leone A, Kadosh RC, On Behalf Of Honeywell Sharp Team Authors. Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia. 2018 Apr 9
6. Cotelli, M., Manenti, R., Petesi, M., Brambilla, M., Cosseddu, M., Zanetti, O., et al. (2014). Treatment of primary progressive aphasia by transcranial direct Current stimulation combined with language training. J.Alzheimers.Dis. 39, 799–808.
7. Cotelli M, Manenti R, Paternico D, Cosseddu M, Brambilla M, Petesi M, Premi E, Gasparotti R, Zanetti O, Padovani A, Borroni B. Grey Matter Density Predicts the Improvement of Naming Abilities After tDCS Intervention in Agranamorphic Variant of Primary Progressive Aphasia. Brain Topogr. 2016 Sep;29(5):738-51.
8. Floel A, Suttorp W, Kohl O, Kürten J, Lohmann H, Breitenstein C, Knecht S. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2012 Aug;33(8):1682-9.
9. Fregni F, Boggio PS, Nitsche M, Bemposhil F, Antal A, Feredoes E, Marcolini MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances psychiatric controls. Schizophr Res. 2005 Sep;80(1):157–68. Epub 2005 Jul 6.
10. Huey, E.D., Probasco, J.C., Moll, J., Stocking, J., Ko, M.H., Grafman, J., Wassermann, E.M., 2007. No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clin. Neurophysiol. 118, 1417–1418.
11. Looi CY, Dutta M, Brem AK, Huber S, Nuerk HC, Cohen Kadosh R. Combining brain stimulation and video
12. Javadi AH, Walsh V. Transcranial direct current stimulation (tDCS) of the left dorso-lateral prefrontal cortex modulates declarative memory. Brain Stimul. 2012 Jul;5(3):231-41.

13. Kim JJ, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014 Apr 3;564:6-10.

14. Manenti R, Brambilla M, Petesi M, Ferrari C, Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front Aging Neurosci. 2013;5:49.

15. Meinzer, M., Lindenberg, R., Sieg, M.M., Nachtigall, L., Ulm, L., Floel, A., 2014. Transcranial direct current stimulation of the primary motor cortex improves word retrieval in older adults. Front. Aging Neurosci. 6, 253.

16. Matzen LE, Trumbo MC, Leach RC, Leshikar ED. Effects of non-invasive brain stimulation on associative memory. Brain Res. 2015 Oct 22;1624:286-296.

17. Mulquiney PG, Hye K, Daskalakis ZJ, Fitzgerald P. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorso-lateral prefrontal cortex. Clin Neurophysiol. 2011 Dec;122(12):2384-9.

18. Mylius V, Jung M, Menzler K, Haag A, Khaled PH, Oertel WH, Rosenow F, LeFaucque JP. Effects of transcranial direct current stimulation on pain perception and working memory. Eur J Pain. 2012 Aug;16(7):974-82.

19. Ruf SP, Fallgatter AJ, Pfeilina C. Augmentation of working memory training by transcranial direct current stimulation (tDCS). Sci Rep. 2017 Apr 21;7(1):876.

(4) Other trials n=86 [24+9+10+22]

ongoing trials and study protocol n = 24

1. A randomized controlled trial of Theta Burst Stimulation for the treatment of mild to moderate Alzheimer’s disease [ACTRN12615000992505]

2. Repetitive Transcranial Magnetic Stimulation for Apathy in Alzheimer’s Dementia [NCT02190084]

3. Enhancing Working Memory in Patients With Early Alzheimer's Disease Through the Use of rTMS [NCT02537496]

4. Repetitive Transcranial Magnetic Stimulation for Dementia (rTMS for dementia) [NCT02621424]

5. Investigating the Effect of Repetitive Transcranial Magnetic Stimulation (rTMS) as a Treatment for Alzheimer's Disease [NCT02908815]

6. Repetitive Transcranial Magnetic Stimulation in Patients With Alzheimer Disease (AD-EMTr) [NCT03270137]

7. Noninvasive Brain Stimulation for Mild Cognitive Impairment [NCT03331796]

8. Supporting Episodic Memory With Transcranial Direct Current Stimulation in Healthy Controls and Dementia Patients [NCT03227785]

9. Transcranial Direct Current Stimulation and Early Alzheimer's disease (tDCS-AD) (tDCS-AD) [NCT03283863]

10. MR Guided tDCS in Alzheimer's Disease [NCT03322505]

11. The Effects of Transcranial Direct Current Stimulation in Mild Cognitive Impairment [NCT03441152]

12. Cathodal tDCS in MCI: A Randomized, Double-Blind, Sham-Controlled Pilot Study [NCT03521089]

13. Non-invasive Brain Stimulation Using Transcranial Direct Current Stimulation for Neuropsychiatric Symptoms of Dementia [NCT03638284]

14. Transcranial Direct Current Stimulation for Depression in Alzheimer's Disease Patient - Preliminary Research (ADAPT) [NCT0351388]

15. Using fMRI-guided TMS to Increase Central Executive Function in Older Adults (MCI_Sub) (MCI_Sub) [NCT04176406]

16. Cheng CP, Chan SS, Mak AD, Chan WC, Cheng ST, Shi L, Wang D, Lam LC. Would transcranial direct current stimulation (tDCS) enhance the effects of working memory training in older adults with mild neurocognitive disorder due to Alzheimer's disease: study protocol for a randomized controlled trial. Trials. 2015 Oct 24;16:479.

17. Hampstead BM, Sathian K, Bikson M, Stringer AY. Combined amnestic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment. Alzheimers Dement (N Y). 2017 May 15;3(3):459-470.

18. Inagawa T, Yokoi Y, Okazaki M, Nakagome K. COgnitive REhabilitation during transcranial Direct Current Stimulation (CORE-tDCS) for major or mild neurocognitive disorder patients - a protocol of a randomized controlled preliminary research. Brain stimulation. 2017:10(2):384

19. Narita Z, Yokoi Y. Transcranial direct current stimulation for depression in Alzheimer’s disease: study protocol for a randomized controlled trial. Trials. 2017 Jun 19;18(1):285→ Only four out of twenty patients finished the trial, not yet full data from Yokoi Y, Narita Z, Inagawa T, Otsuka T, Shibasaki M, Miyazawa N and Nakagome K Transcranial direct current stimulation for depression in Alzheimer’s disease patient: preliminary data from the ongoing randomized controlled trial.

20. Brain stimulation, 2017, Conference: 2nd International Brain Stimulation Conference. Spain. Conference.
open label trials = 9

depression trials = 10

1. Effect of Repetitive Transcranial Magnetic Stimulation on Language in Alzheimer's Disease [NCT00814697]
2. Study of Repetitive Transcranial Magnetic Stimulation (rTMS) as add-on Treatment for Early Alzheimer's Disease (ALSTIMAG) [NCT01481961]
3. Home-Based CR and tDCS to Enhance Cognition in Persons With Mild Cognitive Impairment and Late Life Depression [NCT02959502]
4. Antczak J, Kowalska K, Klimekowicz-Mrowiec A, Wach B, Kasprzyk K, Banach M, Rzeźnicka-Brzegowy K, Kubica J, Słowiak A. Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: an open-label pilot study. Neuropsychiatr Dis Treat. 2018 Mar 13;14:749-755.
5. Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Perez T, Khagirekht M, Marton RG, Rabey JM (2011) Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm 118:463–471
6. Devi G, Voss HU, Levine D, Abrassart D, Heier L, Halper J, Martin L, Lowe S. open-label, short-term, repetitive transcranial magnetic stimulation in patients with Alzheimer's disease with functional imaging correlates and literature review. Am J Alzheimers Dis Other Demen. 2014 May;29(3):248-55.
7. Guerriero F, Botarelli E, Mele G, Polo L, Zoncu D, Renati P, Sgarlata C, Rollone M, Ricevuti G, Maurizi N, Francis M, Rondanelli M, Perna S, Guido D, Mannu P.
8. Nguyen JP, Suarez A, Kemoun G, Meignier M, Le Saout E, Damier P, Nizard J, Lefaucheur JP. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease. Neurophysiol Clin 2017;47:471e53.
9. Nguyen JP, Suarez A, Le Saout E, Meignier M, Nizard J, Lefaucheur JP. Combining cognitive training and multi-site rTMS to improve cognitive functions in Alzheimer's disease. Brain Stimul. 2018 May-Jun;11(3):651-652.

10. Supplemental material

21. Nguyen JP, Boutoleau-Bretonniere C, Lefaucheur JP, Suarez A, Gaillard H, Chapelet G, Abad S, Van Langenhove A, Nizard J, de Decker L. Efficacy of transcranial direct current stimulation combined with cognitive training in the treatment of apathy in patients with Alzheimer's disease: study protocol for a randomized trial. Rev Recent Clin Trials. 2018 Apr 16. [Epub ahead of print]
22. Woods AJ, Cohen R, Marsiske M, Alexander GE, Czaja SJ, Wu S. Augmenting cognitive training in older adults (The ACT Study): Design and Methods of a Phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018 Feb;65:19-32.
23. Zhang J, Liu J, Li J, Zhang C, Qu M. Non-invasive brain stimulation for improving cognitive function in people with dementia and mild cognitive impairment. Cochrane Systematic Review - Intervention - Protocol Version published: 02 July 2018
24. Marron EM, Viejo-Sobera R, Quintana M, Redolar-Ripoll D, Rodríguez D, Garolera M. Transcranial magnetic stimulation intervention in Alzheimer's disease: a research proposal for a randomized controlled trial. BMC Res Notes. 2018;11(1):648.
transcranial direct current stimulation (TDCS) on depression and memory function in patients with well-controlled temporal lobe epilepsy. Epilepsy Behav. 2016 Feb;55:11-20.

9. Chu C-S, Du LL, Zeng Y. Efficacy of repetitive transcranial magnetic stimulation for alleviating clinical symptoms and suicidal ideation in elderly depressive patients: a randomized controlled trial. Nan Fang Yi Ke Da Xue Xue Bao. 2017 Jan 20:37(1):97-101. Chinese.

10. Zarkowski P, Navarro R, Pavlicova M, George MS, Avery D. The effect of daily prefrontal repetitive transcranial magnetic stimulation over several weeks on resting motor threshold. Brain Stimul. 2009 Jul;2(3):163-7.

DBS and other intervention = 22

1. Deep Brain Stimulation for Patients With Dementia With Lewy Bodies [NCT02263937]

2. Fontaine D, Deudon A, Lemaire JJ, Razouk M, Viala P, Darcourt J, et al. Symptomatic treatment of memory decline in Alzheimer’s disease by deep brain stimulation: a feasibility study. J Alzheimers Dis (2013) 34:315–23.

3. Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol (2008) 63:119–23.

4. Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartusch C, Mai JK, Zilles K, Bauer A, Matsush A, Schulz RJ, Noreik M, Bührle CP, Maintz D, Woopen C, Häusermann P, Hellmich M, Klosterkötter J, Wiltfang J, Maerouf M, Freund HJ, Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015 Mar;20(3):353-60

5. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68:521–534.

6. Laxton AW, Lipsman N, Lozano AM. Deep brain stimulation for cognitive disorders. Handb Clin Neurol. 2013;116:307-11.

7. Leoutsakos JS, Yan H, Anderson WS, Asaad WF, Baltuch G, Burke A, Chakravarty MM, Drake KE, Foote KD, Fosdick L, Giacobbe P, Mari Z, McAndrews MP, Munro CA, Oh ES, Okun MS, Pendergass JC, Ponce FA, Rosenberg PB, Sabbagh MN, Salloway S, Tang-Wai DF, Targum SD, Wolk D, Lozano AM, Smith GS, Lyketsos CG. Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): A Two-Year Follow-up Including Results of Delayed Activation. J Alzheimers Dis. 2018 Jun 9. doi: 10.3233/JAD-180121. [Epub ahead of print]

8. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, Drake KE, Lyman CH, Rosenberg PB, Anderson WS, Tang-Wai DF, Pendergrass JC, Salloway S, Asaad WF, Ponce FA, Burke A, Sabbagh M, Wolk DA, Baltuch G, Okun MS, Foote KD, McAndrews MP, Giacobbe P, Targum SD, Lyketsos CG, Smith GS. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease. J Alzheimers Dis. 2016 Sep 6:54(2):777-87.

9. Lyketsos CG, Targum SD, Pendergrass JC, Lozano AM. Deep brain stimulation: a novel strategy for treating Alzheimer’s disease. Innov Clin Neurosci. 2012 Nov;9(11-12):10-7.

10. Lv Q, Du A, Wei W, Li Y, Liu G, Wang XP. Deep Brain Stimulation: A Potential Treatment for Dementia in Alzheimer’s Disease (AD) and Parkinson’s Disease Dementia (PDD). Front Neurosci. 2018 May 29;12:360.

11. Mondragon-Rodriguez S, Perry G, Pena-Ortega F, Williams S, Tao, Amyloid Beta and Deep Brain Stimulation: Aiming to Restore Cognitive Deficit in Alzheimer’s Disease. Curr Alzheimer Res. 2017;14(1):40-46.

12. Ponce FA, Asaad WF, Foote KD, Anderson WS, Rees Cosgrove G, Baltuch GH, Beasley K, Reynolds DE, Oh ES, Targum SD, Smith GS, Lyketsos CG, Lozano AM; for The ADvance Research Group. Bilateral deep brain stimulation of the fornix for Alzheimer's disease: surgical safety in the ADvance trial. J Neurosurg. 2016 Jul;125(1):75-84.

13. Posporelis S, David AS, Ashkan K, Shothbolt P. Deep Brain Stimulation of the Memory Circuit: Improving Cognition in Alzheimer's Disease. J Alzheimers Dis. 2018 May 26.

14. Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, McAndrews MP, Tang-Wai DF, Workman CI, Smith GS and Lozano AM. Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease: Brain stimulation, 2015, 8(3), 645

15. Senova S, Chaillet A, Lozano AM. Fornical Closed-Loop Stimulation for Alzheimer's Disease. Trends Neurosci. 2018 Jul;41(7):418-428.

16. Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol 69:1141–1148

17. Viana JNM, Vickers JC, Cook MJ and Gilbert F. Currents of memory: recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer’s disease. Neurobiology of Aging. (no pagination), Neurobiol Aging. 2017 Aug:56:202-210.

18. Xu DS, Ponce FA. Deep Brain Stimulation for Alzheimer's Disease. Curr Alzheimers Res. 2017

19. Xu Y, Zhao D, Hao N, Hu Y, Bodner M, Zhou YD. Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory: a single-pulse transcranial magnetic stimulation (spTMS) study. Brain Stimul. 2015 Jan-Feb;8(1):88-91. doi: 10.1016/j.brs.2014.08.011.
20. Guerriero F, Botarelli E, Mele G, Polo L, Zoncu D, Renati P, Sgarlata C, Rollone M, Ricevuti G, Maurizi N, Francis M, Rondanelli M, Perna S, Guido D, Mannu P. An innovative intervention for the treatment of cognitive impairment- Emisymmetric bilateral stimulation improves cognitive functions in Alzheimer's disease and mild cognitive impairment: an open-label study. Neuropsychiatr Dis Treat. 2015 Sep 18;11:2391–404. → **EBS (Emisymmetric bilateral stimulation)**

21. Scherder EJ, Vuijk PJ, Swaab DF, van Someren EJ. Estimating the effects of right median nerve stimulation on memory in Alzheimer's disease: a randomized controlled pilot study. Exp Aging Res. 2007 Apr-Jun;33(2):177-86. → **median nerve stimulation**

22. Scherder EJ, Deijen JB, Vreewijk SH, Sergeant JA, Swaab DF. Cranial electrostimulation (CES) in patients with probable Alzheimer's disease. Behav Brain Res. 2002 Jan 22;128(2):215-7. → **cranial electrostimulation**

case report/series = 16

1. Avirame K, Stehberg J, Toddler D. Benefits of Deep Transcranial Magnetic Stimulation in Alzheimer Disease: Case Series. J ECT. 2016 Jun;32(2):127-33.

2. Bereau M, Magnin E, Nicolier M, Berthet L, Dariel E, Ferreira S, Sylvestre G, Monnin J, Chopard G, Bouladour H, Vandel P, Haffen E. Left Prefrontal Repetitive Transcranial Magnetic Stimulation in a Logopenic Variant of Primary Progressive Aphasia: A Case Report. Eur Neurol. 2016;76(1-2):12-8.

3. Bystad M, Rasmussen ID, Abelik K, Aslaksem PM. Accelerated Transcranial Direct Current Stimulation in Alzheimer's Disease: A Case Study. Brain Stimul. 2016 Jul-Aug;9(4):634-5.

4. Bystad M, Rasmussen ID, Gronli O, Aslaksem PM. Can 8 months of daily tDCS application slow the cognitive decline in Alzheimer's disease? A case study. Neurocase. 2017 Apr;23(2):146-148.

5. Carle G, Touat M, Bruno N, Galanaud D, Peretti CS, Valero-Cabré A, Levy R, Azuz C. Acute Frontal Lobe Dysfunction Following Prefrontal Low-Frequency Repetitive Transcranial Magnetic Stimulation in a Patient with Treatment-Resistant Depression. Front Psychiatry. 2017 May 30;8:96.

6. Cotelli M, Calabria M, Manenti R, Rosini S, Maioli C, Zanetti O, Minussi C. Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. Neurocase. 2012 Jun;18(3):217-23.

7. Costa V, Brighina F, Piccoli T, Realmuto S, Fierro B. Anodal transcranial direct current stimulation over the right hemisphere improves auditory comprehension in a case of dementia. NeuroRehabilitation. 2017;41(2):567-575.

8. Finocchiaro C, Maimone M, Brighina F, Piccoli T, Giglia G, Fierro B. A case study of Primary Progressive Aphasia: improvement on verbs after rTMS treatment. Neurocase. 2006;12(6):317–321.

9. Haffen E, Chopard G, Pretalli JB, Magnin E, Nicolier M, Monnin J, et al. A case report of daily left prefrontal repetitive transcranial magnetic stimulation (tTMS) as an adjunctive treatment for Alzheimer disease. Brain Stimul 2012;5:264-266.

10. Hara T, Abo M, Sasaki N, Yamada N, Niimi M, Kenmoku M, Kawakami K, Saito R. Improvement of higher brain dysfunction after brain injury by repetitive transcranial magnetic stimulation and intensive rehabilitation therapy: case report. Neuroreport. 2017 Sep 6;28(13):800-807.

11. Iannone A, Brasil-Neto J, Cruz APM, Satter C, Allam N. Therapeutic effect of transcranial direct current stimulation on neuropsychological symptoms of an elderly patient: A case report. Dement Neuropsychol. 2017 Jul-Sep;11(3):304-307.

12. Marras A, Pallanti S. Transcranial magnetic stimulation for the treatment of pharmacoresistant non-delusional auditory verbal hallucinations in dementia. Case Rep Psychiatry 2013, 2013:930304.

13. Penolazzi B, Bergamaschi S, Pastore M, Villani D, Sartori G, and Mondini S. (2015). Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: a case study. Neuropsychol Rehabil. 25, 799–817.

14. Takahashi, S., Mizukami, K., Yasuno, F. and Asada, T. (2009). Depression associated with dementia in Lewy bodies (DLB) and the effect of somatotherapy. Psychogeriatrics, 9, 56–61.

15. Trebbonastoni A, Raccab R, de Lena C, Zangen A, Inghilleri M. Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimul. 2013;6(4):545–553.

16. Turnbull IM, McGeer PL, Beattie L, Calne D, Tate B (1985) Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type: a preliminary report. Appl Neurophysiol 48:216–217.
1. Alberici A, Bonato C, Calabria M, Agosti C, Zanetti O, Minucci C, Padovani A, Rossini PM, Borroni B. The contribution of TMS to frontotemporal dementia variants. Acta Neurol Scand. 2010 Nov;118(4):275-80.

2. Alagona G, Ferri R, Pennisi G, Carnemolla A, Maci T, Donina E, Maertens de Noordhout A, Bella R. Motor cortex excitability in Alzheimer's disease and in subcortical ischemic vascular dementia. Neurosci Lett. 2004 May 20;362(2):95-8.

3. Anderkova L, Eliasova I, Marecek R, Janouseva E, Rektorova I. Grey matter atrophy in mild Alzheimer's disease impacts on cognitive effects of noninvasive brain stimulation. Clinical Neuropsychology. 2016 Mar;127(3):e28.

4. Binney RJ, Embleton KV, Jefferies E, Parker GJ, Ralph MA. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb Cortex. 2010 Nov;20(11):2728-38.

5. Bonni S, Lupu F, Lo Gerfo E, Martorana A, Ferri R, Calagione C, Koch G. Altered parietal-motor connections in Alzheimer's disease patients. J Alzheimers Dis. 2013;33(2):525-33.

6. Cárdenas-Mores L, Grön G, Kämmer T. Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: a functional imaging study. Hum Brain Mapp. 2011 Nov;32(11):1948-60.

7. Di Lazzaro V, Pilato F, Dileone M, Proifice P, Marra C, Ranieri F, Quaranta D, Gainotti G, Tonali PA. In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol. 2008 Nov;119(11):2494-500.

8. Gazzina S, Benussi A, Premi E, Paternico D, Cristillo V, Dell'Era V, Cossedu M, Archetti S, Alberici A, Gasparotti R, Padovani A, Borroni B. Neuroanatomical Correlates of Transcranial Magnetic Stimulation in Presymptomatic Granulin Mutation Carriers. Brain Topogr. 2018 May;31(3):488-497.

9. Guerra A, Petrichella S, Vollero L, Ponzo D, Pasqualetti P, Määttä S, Mervaala E, Könönen M, Bressi F, Iannello G, Rossini PM, Ferrari F. Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: a TMS mapping study. Clin Neurophysiol. 2015 May;126(5):906-13.

10. Julkunen P, Jauhiainen AM, Könönen M, Paäkkönen A, Karhu J, Soininen H. Combining transcranial magnetic stimulation and electroencephalography may contribute to assess the severity of Alzheimer's disease. Int J Alzheimers Dis. 2011;2011:654794.

11. Julkunen P, Jauhiainen AM, Westerér-Punnonen S, Pirinen E, Soininen H, Könönen M, Paäkkönen A, Määttä S, Karhu J. Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer's disease: a pilot study. J Neurosci Methods. 2008 Jul 30;172(2):270-6.

12. Khedr EM, Ahmed MA, Darwish ES, Ali AM. The relationship between motor cortex excitability and severity of Alzheimer's disease: a transcranial magnetic stimulation study. Neurophysiol Clin. 2011 Jul;41(3):107-13.

13. Koch G, Di Lorenzo F, Del Olmo MF, Bonni S, Ponzo V, Calagione C, Bozzali M, Martorana A. Reversal of LTP-Like Cortical Plasticity in Alzheimer's Disease Patients with Tau-Related Faster Clinical Progression. J Alzheimers Dis. 2016;50(2):605-16.

14. Lahr J, Peter J, Minkova L, Lauer E, Reis J, Heimbach B, Hüll M, Normann C, Nissen C, Klöppel S. No difference in paired associative stimulation induced cortical neuroplasticity between patients with mild cognitive impairment and elderly controls. Clin Neurophysiol. 2016 Feb;127(2):1254-1260.

15. Nardone R, Höller Y, Batikhe AC, Höller P, Lochner P, Tezzon F, Trinka E, Brigo F. Subjective memory impairment and cholinergic transmission: a TMS study. J Neural Transm (Vienna). 2015 Jun;122(6):873-6.

16. Peter J, Lahr J, Minkova L, Lauer E, Grothe MJ, Teipel S, Köstering L, Kaller CP, Heimbach B, Hüll M, Normann C, Nissen C, Reis J, Klöppel S. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment. J Alzheimers Dis. 2016 Jun 18;53(3):991-1001.

17. Ragert P, Dinse HR, Pleger B, Wöltinger C, Frombacht E, Schwenkreis P, Tegenthoff M. Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neurosci Lett. 2003 Sep 11;348(2):105-8.
18. Schwarzer V, Bährend I, Rosenstock T, Dreyer FR, Vajkoczky P, Picht T. Aphasia and cognitive impairment decrease the reliability of rTMS language mapping. Acta Neurochir (Wien). 2018 Feb;160(2):343-356.

19. Taylor JP, Firbank M, Barnett N, Pearce S, Livingstone A, Mosimann U, Eyre J, McKeith IG, O'Brien JT. Visual hallucinations in dementia with Lewy bodies: transcranial magnetic stimulation study. Br J Psychiatry. 2011 Dec;199(6):492-500.

20. Tegenthoff M, Rager P, Pleger B, Schwenkreis P, Förster AF, Nicolas V, Dinse HR. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol. 2005 Nov;3(11):e362.

21. Trebbastoni A, Giilo F, D’Antonio F, Cambieri C, Cecchini M, de Lena C, Inghilleri M. Chronic treatment with rivastigmine in patients with Alzheimer’s disease: a study on primary motor cortex excitability tested by 5 Hz repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2012 May;123(5):902-9.

22. Waterston ML, Pack CC. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation. PLoS ONE. 2010; 5(4):1–10.

23. Wooliams AM, Madrid G, Lambon Ralph MA. Using neurostimulation to understand the impact of premorbid individual differences on post-lesion outcomes. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12279-12284.

24. Enhancing Spatial Navigation Using Non-Invasive Brain Stimulation. [ClinicalTrials.gov Identifier: NCT01958437]

(6) Duplicated database from other studies n=9

1. Aslaksen PM. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimers Res Ther. 2016 Mar 23;8(1):13→ same population with results from ClinicalTrials.gov [NCT02518412]

2. Bonni S, Picazio S, Di Lorenzo F, Bonni S, Picazio S, Ponzo V, Pellicciari MC, Casula E, Serra L, Manzini M, Calitragione C, Martorana A, Bozzali M and Koch G. Repetitive TMS of the default mode network: a randomized, double-blinded, cross-over study trial in MCI patients. Journal of alzheimer’s disease. Conference: 9th convegno nazionale SINDEM. Italy. 2016, 52, S60 and Di Lorenzo F, Bonni S, Picazio S, Ponzo V, Pellicciari MC, Casula E, Serra L, Manzini M, Calitragione C, Martorana A, Bozzali M and Koch G. Repetitive TMS of the default mode network: a randomized, double-blinded, cross-over study trial in MCI patients. Brain stimulation, 2017, Conference: 2nd International Brain Stimulation Conference. Spain. Conference Start: 20170305. Conference End: 20170308. 10(2), 491

3. Drumond Marra HL, Myczkowski ML, Maia Memoria C, et al. 2015. Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study. Behav Neurol 2015: 287843→ Same population of results from clinicaltrial.gov [NCT01292382]

4. Gandelman-Marton R, Aichenbaum S, Dobronevsky E, Khagirekht M, Rabey JM. Quantitative EEG After Brain Stimulation and Cognitive Training in Alzheimer Disease. J Clin Neurophysiol. 2017 Jan;34(1):49-54.→ same population with Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Martin RG, Khagirekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J Neurol Transm (Vienna). 2013 May;120(5):813-9.

5. Lee J, Oh E, Sohn EH and Lee AY. Repetitive transcranial magnetic stimulation combined with cognitive training in Alzheimer’s disease. Alzheimers & dementia, 2016, Conference: Alzheimer's Association International Conference: 2016. Conference Start: 20160722. Conference End: 20160728. 12(27 Supplement), P616→ same population with Lee J, Choi BH, Oh E, Sohn EH, Lee AY. 2016. Treatment of Alzheimer’s disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study. J Clin Neurol 12: 57–64.

6. Padala PR, Padala KP, Lensing SY, Jackson AN, Hunter CR, Parkes CM, Dennis RA, Bopp MM, Caceda R, Mennemeier MS, Roberson PK, Sullivan DH. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: A double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res. 2018 Mar;261:312-318→ Same population of results from clinicaltrial.gov [NCT02190019]

7. Rutherford GA and Moussavi Z. RTMS as a treatment for Alzheimer’s disease. Alzheimer’s & dementia., 2014, 10, P453.→ same population with Rutherford G, Lithgow B, Moussavi Z. Short and long-term effects of rTMS treatment on Alzheimer’s disease at different stages: a pilot study. J Exp Neurosci. 2015;9:43–51.

8. Roncero C, Kniefl H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in amnestic Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (N Y). 2017 Mar 24;3(2):247-253.→ Same population with Roncero C, Service E, Malus M, Solomon S, Thiel A, Probst S and Chertkow H. Dementia patients have reduced anoma following picture naming training and anodal tDCS stimulation. Brain stimulation, 2017; Conference: 2nd International Brain Stimulation Conference. Spain. Conference Start: 20170305. Conference End: 20170308. 10(2), 491

9. Suemoto CK, Apolinario D, Nakamura-Palacios EM, Lopes L, Paraizo Leite RE, Sales MC, Nitirini R,
(7) No detailed data available n=6
1. Repetitive transcranial magnetic stimulation for apathy treatment in Alzheimer's disease: a randomised, double-blind, controlled study [NCT01885806] → Complete but unknown status in ClinicalTrial.gov
2. Therapeutic Role of Transcranial DCS in Alzheimer [NCT03313518] → Complete but unknown results in the ClinicalTrial.gov
3. A Pilot Study of rDCS for Mild to Moderate Alzheimer's Disease [NCT02227953] → unknown status in ClinicalTrial.gov
4. Coppi E, Ferrari L, Nuara A, Chieffo R, Houdayer E, Bianco M, Bernasconi MP, Falautano M, Zangen A, Comi G, Magnani G and Leocani L. Deep repetitive transcranial magnetic stimulation with H-coil in Alzheimer's disease: a double-blind, placebo-controlled pilot study. European journal of neurology., 2015, 22, 277
5. Fini L, Cobelli C, Boscolo Galasso I, Ferrari C, Cotelli M, Frisoni GB, Pizzini FB, Manenti R, Piervani M. Non-invasive intervention in Alzheimer's disease with transcranial direct current stimulation Links. Neurodegenerative diseases. Conference: 13th international conference on alzheimer's and parkinson's diseases, AD/PD 2017. Austria.
6. Tousi B, Pascual-Leone A, Sadowsky C, Sabbagh M, Agronin M, Alva G, Armon C, Bernick C, Keegan A, Karantzoulis S. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training in alzheimer patients: safety results of medical device pivotal multi-center study. Neurodegenerative diseases. 2017; 17: 526

(8) No adequate control n=6
1. Alcalá-Lozano R, Morelos-Santana E, Cortés-Sotres JF, Garza-Villarreal EA, Sosa-Ortiz AL, González-Olvera JJ. Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer's disease. Brain Stimul. 2018 May-Jun;11(3):625-627.
2. Murugaraja V, Shivakumar V, Sivakumar PT, Sinha P, Venkatasubramanian G. Clinical utility and tolerability of transcranial direct current stimulation in mild cognitive impairment. Asian J Psychiatr. 2017 Dec;30:135-140. → open-label study
3. Peña-Gomez C, Solé-Padullés C, Clemente IC, Junqué C, Bargalló N, Bosch B, Molinuevo JL, Valls-Solé J, Pascual-Leone A, Bartés-Faz D. APOE status modulates the changes in network connectivity induced by brain stimulation in non-demented elders. PLoS One. 2012;7(12):e51833. → non-dementia
4. Rabey JM, Dohrnovesky E. Repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: clinical experience. J Neural Transm (Vienna) 2016;123(1449):55. → open-label study
5. Wang P, Zhang H, Han L, Zhou Y. Cortical function in Alzheimer's disease and frontotemporal dementia. Transl Neurosci. 2016 Nov 13;7(1):116-125. → non-RCT
6. Wu Y, Gu J, Leng WJ, Huang H, Zhao XQ. [Clinical study of repetitive transcranial magnetic stimulation in the treatment of behavioral and psychological symptoms in patients with Alzheimer's]. In: Chinese Medical Dis. 2015;48(1):251-60.

(9) Conference Abstract n=2
1. Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Villanelli F, Carelli L, Saibene F, Critelli R, Cecconi P, Baselli G, Nenni R, Farina E. The efficacy of Multidimensional Stimulation Therapy in mild to moderate Alzheimer's disease patients: a randomized controlled trial with fMRI. Alzheimer's and dementia, 2011, 23, S47. 6th Sindem Meeting: Italian Association for the Study of Dementia linked to the Italian Neurological Society, SIN, Italy. 2011-03-17 to 2011-03-19.
2. Liu C, Herrmann N, Gallagher D, Rajji T, Vieira D, Li A, Lanctot K. Evaluating the effects of transcranial direct current stimulation electrode placement on cognition in mild cognitive impairment and alzheimer's disease. Brain Stimulation. 2019; 12, 409-410.

(10) Less than five sessions of rTMS/DCS n=18
1. Brain stimulation, aging and cognition: investigating neuroplasticity and cognitive enhancement following brain stimulation in amnestic mild cognitive impairment. [Register number: ACTRN12615008865831]
2. Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I. Distinct Pattern of Gray Matter Atrophy in Mild Alzheimer's Disease Impacts on Cognitive Outcomes of Noninvasive Brain Stimulation. J Alzheimers Dis. 2015;48(1):251-60.
3. Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I. Repetitive transcranial magnetic stimulation enhanced attention and psychomotor speed in patients with early Alzheimer’s disease. Neurodegenerative disease. 2015;15:823.
4. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current...
Supplemental material

The study selection process

The study selection process is shown in Figure 1. We identified 7482 potential records and considered 36 studies eligible. Of these studies, three were identified from The study selection process is shown in Figure 1. We identified 7482 potential records used tDCS [Boggio PS et al., 2012; Cotelli M et al., 2014; Khedr EM et al., 2014; BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

and because the study subjects were the same as those of another study [Rutherford G et al., 2015; Lee J et al., 2016; Zhao J et al., 2017; Koch G et al., 2018; Sabbagh M et al., 2019; Zhang F et al., 2019] and 14 trials was excluded because of apparently dissimilar data [Coppi E et al., 2016; Pini L et al., 2017; Zhang M et al., 2017]. Two clinical trials (viz., NCT01504958 and NCT01894620) identified from ClinicalTrial.gov were excluded because the results were unavailable [NCT01885806 and NCT01894620] and because the study subjects were the same as those of another study [Rutherford G et al., 2015]. Consequently, 27 RCTs satisfied all inclusion criteria, among which 13 trials used rTMS [NCT01504958; Cotelli M et al., 2011; Ahmed MA et al., 2012; Rabey JM et al., 2013; Drumond Marra HL et al., 2015; Wu Y et al., 2015; Rutherford G et al., 2015; Lee J et al., 2016; Zhao J et al., 2017; Koch G et al., 2018; Padala PR et al., 2018; Sabbagh M et al., 2019; Zhang F et al., 2019] and 14 trials used tDCS [Boggio PS et al., 2012; Cotelli M et al., 2014; Khedr EM et al., 2014;
Suemoto CK et al., 2014; Bystad M et al., 2016; Yun K et al., 2016; Das N et al., 2019; Gomes MA et al., 2019; Im JJ et al., 2019; Inagawa T et al., 2019; Khedr EM et al., 2019; Lu H et al., 2019; Manor B et al., 2019; Martin DM et al., 2019].

References
NCT01894620. The Effect of rTMS Treatment on Alzheimer's and Sleep Quality. In: https://ClinicalTrials.gov/show/NCT01894620.
NCT01504958. Effects of a Combined Transcranial Magnetic Stimulation (TMS) and Cognitive Training in Alzheimer Patients. In: https://ClinicalTrials.gov/show/NCT01504958.
NCT01885806. Repetitive Transcranial Magnetic Stimulation for Apathy Treatment in Alzheimer's Disease. In: https://ClinicalTrials.gov/show/NCT01885806.
Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neural Repair. 2012;259(1):83-92.
Ash E, Bregman N, Moore O, Korczyz A, Zangen A. Transcranial magnetic stimulation of deep brain regions in alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2014;10(4):P450.
Brem A-K, Schilling L, Freitas C, Atkinson N, Selgenson E, Pascual-Leone A. Effects of cognitive training and rTMS in Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2013;9(4):P664.
Boggio PS, Ferrucci R, Mameli F, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimul. 2012;5(3):223-230.
Bystad M, Gronli O, Rasmussen ID, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer's disease: a randomized, placebo-controlled trial. Alzheimers Res Ther. 2016;8(1):13.
Coppi E, Ferrari L, Nuara A, et al. Deep repetitive transcranial magnetic stimulation with the H-coil in Alzheimer’s disease: A placebo-controlled, double-blind study. Clin Neurophysiol. 2016;127(3):e122.
Cotelli M, Manenti R, Rosini S, Brambilla M, Zanetti O, Miniuissi C. Brain stimulation in Alzheimer disease. Neuropsychol Trends. 2010;8:57-60.
Cotelli M, Calabria M, Manenti R, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 2011;82(7):794-797.
Cotelli M, Manenti R, Brambilla M, et al. Anodal tDCS during face-name associations memory training in Alzheimer's patients. Front Aging Neurosci. 2014;6:38.
Das N, Spence JS, Aslan S, et al. Cognitive Training and Transcranial Direct Current Stimulation in Mild Cognitive Impairment: A Randomized Pilot Trial. Front Neurosci. 2019;13:307. Published 2019 Apr 12.
Drumond Marra HL, Myczkowski ML, Maia Memoria C, et al. Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study. Behav Neurol. 2015;2015:287843.
Gomes MA, Akiba HT, Gomes JS, Trevizol AP, de Lacerda ALT, Dias ÂM. Transcranial direct current stimulation (tDCS) in elderly with mild cognitive impairment: A pilot study. Dement Neuropsychol. 2019;13(2):187–195.
Im JJ, Jeong H, Bikson M, et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer's disease. Brain Stimul. 2019;12(5):1222–1228.
Inagawa T, Yokoi Y, Narita Z, Maruo K, Okazaki M, Nakagome K. Safety and Feasibility of Transcranial Direct Current Stimulation for Cognitive Rehabilitation in Patients With Mild or Major Neurocognitive Disorders: A Randomized Sham-Controlled Pilot Study. Front Hum Neurosci. 2019;13:273. Published 2019 Sep 6.
Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Alzheimer's Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Neurol. 2016;12(1):57-64.
Lu H, Chan SSM, Chan WC, Lin C, Cheng CPW, Linda Chui Wa L. Randomized controlled trial of TDCs on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neuro. 2019;6(10):1938–1948.
Khedri EM, Salama RH, Abdel Hameed M, Abo Elfetoh N, Seif P. Therapeutic Role of Transcranial Direct Current Stimulation in Alzheimer Disease Patients: Double-Blind, Placebo-Controlled Clinical Trial. Neurorehabil Neural Repair. 2019;33(5):384–394.
Khedri EM, Gamal NF, El-Fettoh NA, et al. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease. Front Aging Neurosci. 2014;6:275.
Koch G, Bonni S, Pelipeciari MC, et al. Transcranial magnetic stimulation of the preoccipital enhances memory and neural activity in prodromal Alzheimer's disease. Neuroimage. 2018;169:302-311.
Manor B, Zhou J, Harrison R, et al. Transcranial Direct Current Stimulation May Improve Cognitive-Motor Function in Functionally Limited Older Adults. Neurorehabil Neural Repair. 2018;32(9):788–798.
Martin DM, Mohan A, Alonzo A, et al. A Pilot Double-Blind Randomized Controlled Trial of Cognitive Training Combined with Transcranial Direct Current Stimulation for Amnestic Mild Cognitive Impairment. J Alzheimers Dis. 2019;71(2):503–512.
Padala PR, Padala KP, Lensing SY, et al. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: A double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res. 2018;261:312-318.
Pini L, Galasso IB, Ferrari C, et al. Non-invasive brain modulation of aberrant networks in alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2017;13(7):P129-P130.

17
Rabey JM, Dobronovsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm (Vienna). 2013;120(5):813-819.

Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer's disease and frontotemporal dementia. Alzheimers Dement (N Y). 2017;3(2):247-253.

Rutherford G, Lithgow B, Moussavi Z. Short and Long-term Effects of rTMS Treatment on Alzheimer's Disease at Different Stages: A Pilot Study. J Exp Neurosci. 2015;9:43-51.

Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease [published online ahead of print, 2019 Dec 23]. Alzheimers Dement. 2019;S1552-5260(19)35367-1.

Suemoto CK, Apolinario D, Nakamura-Palacios EM, et al. Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer's disease: a randomized, double-blind, sham-controlled trial. Brain Stimul. 2014;7(2):308-313.

Wu Y, Xu W, Liu X, Xu Q, Tang L, Wu S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer's disease: a randomized, double-blind, sham-controlled study. Shanghai Arch Psychiatry. 2015;27(5):280-288.

Yun K, Song IU, Chung YA. Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimers Res Ther. 2016;8(1):49. Published 2016 Dec 1.

Zhang M, Xia ZF, Zhang F, Qin Y, Huang X. Cognitive effects of high frequency repetitive transcranial magnetic stimulation in Alzheimer's disease: a pilot clinical study. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2017;13(7):P260-P261.

Zhang F, Qin Y, Xie L, Zheng C, Huang X, Zhang M. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer's disease. J Neural Transm (Vienna). 2019;126(8):1081–1094.

Zhao J, Li Z, Cong Y, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget. 2017;8(20):33864-33871.
Appendix 2. PRISMA

PRISMA checklist of current network meta-analysis

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review incorporating a network meta-analysis (or related form of meta-analysis)	1
ABSTRACT			
		Provide a structured summary including, as applicable:	
		Background: main objectives Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and synthesis methods, such as network meta-analysis. Results: number of studies and participants identified; summary estimates rankings may also be discussed. Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity. Discussion/Conclusions: limitations; conclusions and implications of findings. Other: primary source of funding; systematic review registration number with registry name	4-5
Structured summary	2	with corresponding confidence/credible intervals; treatment	
INTRODUCTION			
Rationale	3	already known, including mention of why a network meta-analysis has been conducted	7–9
		Provide an explicit statement of questions being addressed, with	
Objectives	4	reference to participants, interventions, comparisons, outcomes, and study design (PICOS)	7–9
METHODS			
Protocol and	5	Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.	10
registration		Specify study characteristics (e.g., PICOS, length of follow-up) and	
		report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification).	10-11
Eligibility criteria	6	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	10-11 and appendix 1 and 3
Information sources	7		
Topic	Page		
--	------		
Search	8		
Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated	10-11 and appendix 1 and 3		
State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	10-11 and appendix 1 and 3		
Study selection	9		
Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators	11		
Data collection process	10		
List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made	11		
Data items	11		
Describe methods used to explore the geometry of the treatment network under study and potential biases related to it. This should include how the evidence base has been graphically summarized for presentation, and what characteristics were compiled and used to describe the evidence base to readers.	12-14, figure 1 and appendix 5		
Geometry of the network	S1		
Risk of bias in individual studies	12		
Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	12-14 and appendix 11		
Summary measures	13		
State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of additional summary measures assessed, such as treatment rankings and surface under the cumulative ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from meta-analyses.	12-14, figure 2-6, and appendices 6-8		
Planned methods of analysis	14		
Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to: Handling of multigroup trials; Selection of variance structure; Selection of prior distributions in Bayesian analyses; and Assessment of model fit	12-14		
Assessment of inconsistency	S2		
Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the treatment network(s) studied. Describe efforts taken to address its presence when found.	12-14 and appendix 12		
Risk of bias across studies	15		
Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	12-14 and appendix 13		
Additional analyses	16		
Describe methods of additional analyses if done, indicating which were prespecified. This may include, but not be limited to, the	12-14 and appendix 14 and 15		

Chu C-S, et al. J Neurol Neurosurg Psychiatry 2020;0:1–9. doi: 10.1136/jnnp-2020-323870
following: Sensitivity or subgroup analyses; Meta-regression analyses; Alternative formulations of the treatment network; and Use of alternative prior distributions for Bayesian analyses (if applicable).

RESULTS

Section	Description	References
Study selection	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	15 and appendix 1 and 3.
Presentation of network structure	Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.	15-17, Figure 1 and appendix 5.
Summary of network geometry	Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.	15–17 and appendix 4 and 10.
Study characteristics	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	15-17 and appendix 4, 9, 10 and 16.
Risk of bias within studies	Present data on risk of bias of each study and, if available, any outcome level assessment.	20-21 and appendix 11.
Results of individual studies	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information from larger networks.	15–19, figure 2-5, and appendix 6-8 and 10.
Synthesis of results	Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus on comparisons versus a particular comparator (e.g., placebo or standard care), with full findings presented in an appendix. League tables and forest plots may be considered to summarize pairwise comparisons. If additional summary measures were explored (such as treatment rankings), these should also be presented.	15–19, figure 2-6, and appendix 6-8.
Exploration for inconsistency	Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, P values from statistical tests, or summary of inconsistency estimates from different parts of the treatment network.	20-21 and appendix 12.
Risk of bias across studies	Present results of any assessment of risk of bias across studies for the evidence base being studied.	20-21 and appendix 11.
Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).

DISCUSSION

Summary of evidence
Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, researchers, and policymakers).

Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).

Limitations

Conclusions
Provide a general interpretation of the results in the context of other evidence, and implications for future research.

FUNDING
Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network.

From: Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777-784.
Appendix 3 (eFigure S1). Flow diagram of trial selection

Records identified through database searching (n = 9175)

Duplicate records excluded (n = 395)

Records after duplicates removed (n = 8780)

Excluded by title and abstract (n = 8437)

Full-text articles assessed for eligibility (n = 343)

Articles excluded according to (n = 298)
1. Review/Meta-analysis
2. Not cognitively impaired population and/or not interventional study
3. Other subjects (study of subjects with other health related diseases; healthy population)
4. Other trials (ongoing trials and study protocol; open label trials; depression trials; DBS and other intervention; case report series; animal study)
5. Outcome not related to cognition
6. Duplicated database from other studies
7. No detailed data available
8. No adequate control
9. Conference abstract
10. Less than five sessions of rTMS/DCS

Studies with potential eligibility (n = 36)

Articles excluded according to (n = 9)
1. Dissimilar study subjects
2. Lack of detailed data
3. Results were unavailable from ClinicalTrials.gov
4. Same population from other study

Studies included in current network meta-analysis (n = 27)
Appendix 4 (eTable S1). The characteristics of the included studies

Study	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Mean age	Gender (female)	Study design, follow-up	Cognitive assessment	Cognitive assessment	Others		
Sabbath et al., 2019	AD	MMSE = 18 to 26, ADAS-Cog > 17, CDR = 1 or 2, DSM-IV	HFtMS-six regions + CT vs sham (ADM)	109 (59 vs 50)	76.8	45.3%	Parallel, 1 month	ADAS-Cog	N/A	N/A		
Zhang et al., 2019	Probable AD	NINCDS-ADRDA	HFtMS-Lt DLPFC + CT vs sham + CT (ADM)	28 (15 vs 13)	68.8 ± 8.1	78.6%	Parallel, 1 month	MMSE	ACE III-memory	N/A	VF: MMSE-verbal fluency, WM: MMSE-attention	
Zhao et al., 2017	AD	MMSE = 18 to 26, CDR = 1 or 2, DSM-IV	HFtMS-parietal and posterior TL vs sham (ADM)	30 (17 vs 13)	70.2 ± 5.6	57.1%	Parallel, six weeks	MMSE	ADAS-Cog-memory	ADAS-Cog-EF	LANG: ADAS-Cog-LANG	
Lee et al., 2016	Probable AD	MMSE = 18 to 26, CDR = 1 or 2, DSM-IV	HFtMS-six regions + CT vs sham + sham CT	26 (18 vs 8)	70.9 ± 5.9	60.4%	Parallel, six weeks	MMSE	ADAS-Cog-memory	ADAS-Cog-EF	LANG: ADAS-Cog-LANG	
Author, year	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Mean age	Gender (female)	Study design, follow-up	Cognitive assessment	Gender	Study design, follow-up	Cognitive assessment	
--------------	-----------	---------------------	---	--	----------	----------------	------------------------	---------------------	--------	------------------------	---------------------	
Rutherford et al., 2015,	Probable AD	MoCA = 5 to 26, MADRS < 20	HFrTMS-bilateral DLPFC vs sham (ADM)	10	range: 40 to 90	N/A	Crossover, no f/u	ADAS-Cog	WIA-memory	WIA	N/A	
Wu et al., 2015	Probable AD	MMSE < 24, BEHAVE-AD > 8, NINCDS-ADRDA	HFrTMS-Lt DLPFC vs sham (risperidone)	52 (26 vs 26)	71.7 ± 4.9	59.6%	Parallel, 1 month	ADAS-Cog	ADAS-Cog	ADAS-Cog-Attention	LANG: ADAS-Cog-LANG	
Rabey et al., 2013	Probable mild to moderate AD	MMSE = 18 to 24, CDR = 1, DSM-IV	HFrTMS-six brain regions + CT vs sham + sham CT (AchEIs)	15 (7 vs 8)	74.1 ± 9.1	33.3%	Parallel, no f/u	ADAS-Cog	N/A	N/A		
Ahmed et al., 2012	Probable AD	NINCDS-ADRDA	HFrTMS-bilateral DLPFC vs LF-rTMS-bilateral DLPFC vs sham	45 (15 vs 15 vs 15)	67.6 ± 6	64.5%	parallel, 3-armed study, 1 and 3 months	MMSE	N/A	N/A		
Cotelli et al., 2015	Probable	MMSE = 16	HFrTMS-Lt	10 (5 vs 5)	72.8 ± 5.3	N/A	Parallel	MMSE	SCP	CET	LANG:	
Author, year	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Gender (female)	Study design, follow-up	Cognitive assessment	GCF	Memory	EXE	Others	
--------------	-----------	---------------------	---	--	----------------	------------------------	----------------------	-----	--------	-----	--------	
2011	moderate	NINCDS-ADRDA	DLPFC vs sham (AchEIs)	16 (10 vs 6)	69.4	Parallel, 1 month	SC-BADA	f/u	N/A	N/A		
NCT01504958, 2010	AD	NINCDS-ADRDA and DSM-IV	HFrTMS-five brain regions + CT vs sham + sham CT	16 (10 vs 6)	69.4	Parallel, 1 month	ADAS-Cog	N/A	N/A	N/A		
rTMS in MCI (k=3)												
Koch et al., 2018	Prodromal	AD	HFrTMS-precuneus vs sham (N/A)	14	70 ± 5.1	Crossover, no f/u	MMSE	MMSE	N/A	Exit-25	WM: DSST	
Padala et al., 2018	MCI	MMSE > 23, Petersen criteria	HFrTMS-Lt DLPFC vs sham (antidepressants)	9	65.6 ± 9.3	Crossover, 1 month	3MS	N/A	Exit-25	WM: TMT-A		
Drumond et al., 2015	MCI	MoCA ≤ 24; CDR = 0; GDS < 5; HAMD-17 < 7, HAMA-14 < 8	HFrTMS-Lt DLPFC vs sham (N/A)	34 (15 vs 19)	65.2 ± 3.8	Parallel, 1 month	N/A	RBMT	TMT-B	VF/AN	WM: LNST	
tDCS in AD (k=8)												
Inagawa et al., 2019	Major or neurocognitive disorder	MMSE≥18, CDR≤2, DSM-V	atDCS-Lt DLPFC + CT vs sham + CT (ADM)	19 (7 vs 12)	76.3 ± 7.0	Parallel, 2 weeks	MMSE	N/A	FAB	N/A		
Author, year	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Mean age	Gender (female)	Study design, follow-up	Cognitive assessment	GCF	Memory	EXE	Others
-------------	-----------	---------------------	--	--	----------	----------------	-----------------------	-------------------	-----	--------	-----	--------
Khedr et al., 2019	Probable AD	NINCDS-ADRDA	atDCS-bil TL vs sham (memantine)	46 (23 vs 23)	64.7 ± 4.1	40.8%	Parallel, no f/u	MMSE	N/A	CDT	N/A	
Im et al., 2019	Probable AD	CDR = 0.5 or 1, DSM-IV or NINCDS-ADRDA	atDCS-Lt DLPFC vs sham (AchEIs)	20 (12 vs 8)	73.1 ± 7.9	83.1%	Parallel, no f/u	MMSE	SVLT-delayed recall	Stroop test	LANG: BNT, WM: SVLT-immediate recall	
Bystad et al., 2016	Probable AD	MMSE ≥ 18, NINCDS-ADRDA	atDCS-Lt TL vs sham (AchEIs)	25 (12 vs 13)	72.6 ± 8.7	44.6%	Parallel, no f/u	MMSE	CVLT-II delayed recall	CDT	WM: TMT-A	
Cotelli et al., 2014	Probable mild to moderate AD	NINCDS-ADRDA	atDCS-Lt DLPFC + CT vs sham + CT (AchEIs)	24 (12 vs 12)	75.7 ± 5.5	79.2%	Parallel, 3 and 6 months	MMSE	RAVLT-delayed recall	TMT-B	LANG: PNT-action	
Khedr et al., 2014	Probable AD	NINCDS-ADRDA	atDCS-Lt DLPFC vs sham (memantine)	34 (11 vs 12)	68.9 ± 6.4	44.1%	Parallel, 1 and 2 months	MMSE	WAIS-III Digit span	WAIS-III-block design	LANG: WAIS-III vocabulary, WM: WAIS-III	
Author, year	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Mean age	Gender (female)	Study design, follow-up	Cognitive assessment	Others			
-------------------	-------------------	---------------------------	--	--	----------	-----------------	--------------------------	---------------------	-----------			
Suemoto et al., 2014	Probable or possible AD	MMSE = 10 to 20, NINCDS-ADRDA	atDCS-Lt DL-PFC vs sham (ADM)	40 (20 vs 20)	80.4 ± 7.7	70%	Parallel, no f/u	ADAS-Cog	GCF, Memory, EXE, Digit symptom coding			
Boggio et al., 2012	AD	MMSE > 15, NINCDS-ADRDA and DSM-IV	atDCS-bilateral TL vs sham (AChEIs)	30 (15 vs 15)	78.9 ± 8.4	46.7%	Crossover, 1 month	ADAS-Cog	VAT, N/A			
Gomes et al., 2019	MCI	Petersen criteria	atDCS-Lt DPFC vs sham (N/A)	58 (29 vs 29)	72.3 ± 8.6	72.5%	Parallel, 90 days but no raw data available	MMSE	G-CAMCOG, O-CAMC, LANG: CAMCOG-LANG; VF: CAMCOG-VF; WM: TMT-A			
Martin et al., 2019	MCI	NIAAA criteria	atDCS-Lt DPFC + CT vs sham + CT (no AChEIs)	68 (33 vs 35)	71.7 ± 6.4	66.2%	Parallel, 3 months	N/A	CVLT-II, N/A			

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Author, year	Diagnosis	Diagnostic criteria	Intervention (combined with medications)	Subjects, total (intervention vs control)	Mean age	Gender (female)	Study design, follow-up	Cognitive assessment	EXE	Others
Das et al., 2019	MCI	CDR = 0.5, MMSE = 24 to 30, Petersen Criteria	atDCS-IFG + CT vs sham + CT (N/A)	22 (12 vs 10)	62.9 ± 8.0	72.7%	Parallel, 3 months	N/A	CVLT	DKEFS Card Sort
Lu et al., 2019	MCI	CDR ≤ 0.5, MMSE = 22 to 27, DSM-V	atDCS-Lt LTC + CT vs sham + CT vs atDCS-Lt LTC + sham CT (no ADM)	201 (69 vs 64 vs 68)	74.0 ± 6.5	53.8%	Parallel, 1 and 2 months	MMSE WLLT-delay recall	CVFT WMC	
Manor et al., 2018	MCI	MMSE ≥ 18; Walking speed and TMT-B	atDCS-Lt DLPFC vs sham (N/A)	19 (9 vs 10)	80.4 ± 4.3	52.7%	Parallel, 1 month	N/A	N/A	TMT-B/TMT -A
Yun et al., 2016	MCI	Petersen criteria	atDCS-Lt DLPFC vs sham (N/A)	16 (8 vs 8)	73.9 ± 6.2	68.8%	Parallel, no f/u	N/A	HVLT N/A N/A	

Brief summary:

(i) The 27 trials were published between 2011 and 2019, and 9 trials used MCI population. Two studies had three arms, and the remaining had two arms. There were four crossover trials.

(ii) For the rTMS trials (n = 455), the mean age was 70.6 ± 3.8 years, percentage of women participants was 53.4% ± 16.3%, MMSE score was 20.9 ± 4.0, and study duration was 3.6 ± 2.0 weeks.

(iii) For the tDCS trials (n = 634), the mean age was 73.3 ± 5.0 years, percentage of women participants was 60.5% ± 14.5%, MMSE score was 21.7 ± 4.3, and study duration was 4.1 ± 5.5 weeks.
Abbreviation: ACE III: Addenbrooke’s Cognitive Examination III; AChEIs: acetylcholinesterase inhibitors; AD: Alzheimer’s disease; ADAS-Cog: Alzheimer’s Disease Assessment Scale-cognitive subscale; ADM: Anti-dementia Medication; AES: Apathy Evaluation Scale; AN: Animal Naming; AVLT: Auditory Verbal Learning Test; BEHAVE-AD: Behavioral Pathology in Alzheimer’s disease rating scale; BNT: Boston Naming Test; CAMCOG: The Cambridge Cognitive Examination; CDR: Clinical Dementia Rating; CDS: Cornell Depression Scale; CDT: Clock Drawing Test; CFT: Cognitive Estimation Test; COWAT: Controlled Oral Word Association Test; CVFT: Category Verbal Fluency Test; CVLT: California Verbal Learning Test; DCT: Digit Cancellation Task; DKEFS: Delis–Kaplan Executive Function System; DLPFC: Dorsolateral Prefrontal Cortex; DSM: Diagnostic and Statistical Manual of Mental Disorders; DSST: Digit Symbol Substitution Test; EXE: executive function; EXIT-25: Executive interview; FAB: Frontal Assessment Battery; GDS: Geriatric Depression Scale; HAMA: Hamilton Anxiety Rating Scale; HAMD: Hamilton Depression Rating Scale; HFrTMS: high frequency rTMS; HVLT: Hopkins Verbal Learning Test; IFG: Inferior Frontal Gyrus; LANG: language function; LFrTMS: low frequency rTMS; LNST: Letter-number Sequencing Test; LTC: Lateral Temporal Cortex; MADRS: Montgomery-Asberg Depression Rating Scale; MCI: Mild Cognitive Impairment; MMSE: Mini-Mental State Examination; MoCA: Montreal Cognitive Assessment; N/A: not available; NIAAA: National Institute on Aging-Alzheimer's Association workgroups; NINCDS-ADRDA: National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and related disorders association; NPI: Neuropsychiatric Inventory; NPS: Neuropsychiatric Symptoms; PIQ: performance IQ; PNT: Picture Naming Task; RAVLT: Rey Auditory Verbal Learning Test; RBMT: Rivermead Behavioral Memory Test; Ref: reference area; SAS: Starkstein Apathy Scale; SC-BADA: Subtest from the Battery for Analysis of Aphasic Deficits; SCP: Serial Curve Position; SVLT: Seoul Verbal Learning Test; TL: Temporal Lobe; TMT-B: Trail Making Test part B; VAT: Visual Attention Task; VF/AN: verbal fluency/animal naming; VRT: Visual Recognition Task; WAIS-III: Wechsler adult intelligent scale-third edition; WMM: Working Memory; WMC: Working Memory Capacity; WIA: Word Image Association; WRT: Word Recognition Task; 3MS: Modified Mini-Mental State Examination; atDCS: anodal transcranial direct current stimulation; ctDCS: cathodal transcranial direct current stimulation; rTMS: repetitive transcranial magnetic stimulation.

a Not including stimulation sessions in the maintenance period.

b Dubois B et al., Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 Mar;12(3):292–323.

c Petersen RC et al., Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 1999;56,303–308.

d Whiteside DM et al., Verbal Fluency: Language or Executive Function Measure? Appl Neuropsychol Adult. 2016;23(1):29–34.

Six regions included: Broca’s area, Wernicke’s area, bilateral DLPFC, and bilateral parietal somatosensory association cortex.

Six regions included: Broca’s area, Wernicke’s area, bilateral DLPFC, and bilateral parietal somatosensory association cortex.

After two weeks RCT, all patients received true stimulation during 2 to 4 weeks. All patients received follow-up evaluation at week 12.

After two weeks RCT, all patients received true stimulation during 2 to 4 weeks. All patients received follow-up evaluation at week 12.

Five regions include: left and right parietal cortex (somatosensory association cortex), left and right DLPFC (dorsolateral prefrontal cortex), and left superior temporal gyrus (Broca’s area).
Appendix 5 (eFigure S2). Network plots for the secondary outcome

Immediate evaluation after last session	Follow-up assessment after 1 month
Memory function	
	![Network Plot](image1)
	![Network Plot](image2)
Verbal fluency	
	![Network Plot](image3)
	![Network Plot](image4)
Working memory	
	![Network Plot](image5)
	![Network Plot](image6)
Executive function	
	![Network Plot](image7)
	![Network Plot](image8)
Appendix 6 (eFigure S3). Short-term effects on general cognition divided by AD and MCI

(a) AD population

Treatment	vs. sham_BS (MMSE Changes from Baseline)	MD	95% CI
HFrTMS	-0.15 [-1.23; 0.93]	0.00	
ctDCS	0.00		
atDCS	-0.31 [-2.14; 1.53]	0.00	
sham_BS + CT	0.10 [-0.22; 0.42]	0.00	
sham_BS + sham_CT	-1.65 [-3.06; -0.25]	0.00	

(b) MCI population

Treatment	vs. sham_BS (MMSE Changes from Baseline)	MD	95% CI
atDCS + CT	-0.50 [-1.74; 0.74]	0.00	
atDCS	0.00		
atDCS + sham_CT	0.29 [-0.23; 0.82]	0.00	
sham_BS + CT	0.10 [-0.22; 0.42]	0.00	
sham_BS	0.00		
HFrTMS	0.49 [-0.25; 1.22]	0.00	

Forest Plot for Components

Components	MD	95% LL	95% UL
HFrTMS	1.50	0.63	2.39
ctDCS	1.09	-0.79	2.97
atDCS	0.61	-0.06	1.28
LFrTMS	-0.31	-2.06	1.44
CT	-1.07	-2.43	0.29
sham_CT	-1.15	-3.22	0.92

32
Appendix 7 (eFigure S4). Long-lasting effects on general cognition at 1-month follow-up divided by AD and MCI

(a) AD population

Treatment	vs. sham_BS (MMSE Changes from Baseline)	MD	95%–CI
cDCS	2.70 [0.67; 4.73]		
HF/TMS	1.71 [0.86; 2.56]		
HF/TMS+CT	0.68 [-0.54; 1.90]		
atDCS	0.30 [-0.64; 1.25]		
sham_BS	0.00		
LF/TMS	-0.08 [-2.06; 1.90]		
atDCS+CT	-0.72 [-2.51; 1.07]		
atDCS+sham_CT	-0.84 [-2.72; 1.04]		
sham_BS+CT	-1.03 [-2.52; 0.46]		
sham_BS+sham_CT	-1.14 [-2.84; 0.56]		

(b) MCI population

Treatment	vs. sham_BS (MMSE Changes from Baseline)	MD	95%–CI
HF/TMS	3.50 [-0.62; 7.62]		
atDCS	1.47 [-2.44; 5.38]		
atDCS+CT	1.12 [-1.74; 3.97]		
atDCS+sham_CT	0.76 [-1.92; 3.45]		
sham_BS+CT	0.35 [-1.41; 2.11]		
sham_BS	0.00		

Forest Plot for Components

Components	MD	95% LL	95% UL
cDCS	2.70	0.76	4.64
HF/TMS	1.71	0.88	2.54
atDCS	0.31	-0.62	1.24
sham_BS (Ref.)	0.00	-1.58	1.38
CT	-0.10	-1.58	1.38
sham_CT	-0.21	-1.91	1.49
LF/TMS	-0.44	-2.08	1.20

Pre-Post Changes in MMSE Scores

Forest Plot for Components

Components	MD	95% LL	95% UL
HF/TMS	3.50	-0.62	7.62
CT	1.89	-0.51	4.30
sham_CT	1.19	-0.73	3.11
CT	1.12	-1.40	3.65
sham_BS (Ref.)	0.00	0.00	0.00

Pre-Post Changes in MMSE Scores
Appendix 8 (eFigure S5). Forest plots for the executive function

(a) Immediate effects

(b) Long-lasting effects after 1 month
Appendix 9 (eTable S2). The effect sizes (SMD) for studies with follow-up data longer than 1 month

Source	Protocol	General cognition	Memory function	Verbal fluency	Working memory	Executive function
Lu 2019	atDCS+CT	0.11 (0.10)	0.34 (0.10)	0.39 (0.10)	0.43 (0.10)	
	sham_BS+CT	0.04 (0.10)	0.22 (0.10)	0.19 (0.10)	0.22 (0.10)	
	atDCS+sham_CT	0.27 (0.10)	0.18 (0.10)	0.35 (0.10)	0.17 (0.10)	
Khedr 2014	atDCS	1.12 (0.30)	0.21 (0.24)	0.82 (0.27)	0.22 (0.24)	0.61 (0.26)
	ctDCS	1.70 (0.35)	1.72 (0.35)	1.43 (0.32)	0.96 (0.27)	1.04 (0.28)
	sham_BS	0.16 (0.24)	0.00 (0.23)	0.00 (0.23)	-0.14 (0.24)	0.39 (0.24)
≥ 3 month						
Source	Protocol	General cognition	Memory function	Verbal fluency	Working memory	Executive function
Ahmed 2012	HFrTMS	1.29 (0.27)				
	LFrTMS	0.16 (0.20)				
	sham_BS	-0.26 (0.20)				
Cotelli 2014	atDCS+CT	-0.16 (0.23)	0.00 (0.22)	-0.09 (0.22)	0.35 (0.23)	-0.03 (0.22)
	sham_BS+CT	-0.06 (0.22)	0.34 (0.23)	0.48 (0.24)	0.00 (0.22)	0.24 (0.23)
	atDCS+sham_CT	-0.47 (0.24)	0.00 (0.22)	0.09 (0.22)	0.14 (0.23)	0.07 (0.22)

Abbreviation: CT, cognitive training; ctDCS, cathodal transcranial direct current stimulation; HF, high-frequency; LF, low-frequency; rTMS, repetitive transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; sham_BS, sham brain stimulation; sham_CT, sham cognitive training; SMD, standardized mean difference
Appendix 10 (eTable S3). The reported adverse effects of the included studies.

Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions) for the brain area(s)	Adverse events
Sabbagh et al., 2019, parallel	AD (MMSE = 18 to 26, CDR = 1 or 2, DSM-IV)	HF-rTMS + CT vs sham (anti-dementia medications)	HF-rTMS (10 Hz, 110% MT, 1300 pulses, 30 sessions) for the Bil DLPFC, Bil inferior parietal lobe, Broca’s and Wernicke’s areas	There are 13 participants reporting adverse events, with 11 in the active and 2 in the sham group. The side effects included headache (5.4%), scalp/skin discomfort (3.1%), neck pain/stiffness (1.5%), and fatigue (0.7%). All were mild and most resolved on the day of occurrence with either minor or no action.
Zhang et al., 2019, parallel	Probable AD, NINCDS-ADRDA	HF-rTMS + CT vs sham + CT (anti-dementia medications)	HF-rTMS (10 Hz, 100% MT, 1000 pulses, 20 sessions) for the Lt DLPFC and Lt lateral temporal lobe	At the first treatment, some participants slight tingling in the scalp or mild muscle contraction around the area of stimulation. All discomfort disappeared when the stimulus was paused. No other adverse effects occurred during the treatment.
Koch et al., 2018, crossover	Prodromal AD (CDR = 0.3 ± 0.3, Dubois’s diagnostic criteria)	HF-rTMS vs sham	HF-rTMS (20 Hz, 100% MT, 1600 pulses, 10 sessions) for the precuneus	Unreported
Padala et al., 2018, crossover	MCI (MMSE > 23) Petersen criteria	HF-rTMS vs sham (antidepressants)	HF-rTMS (10 Hz, 120% MT, 3000 pulses, 10 sessions) for the Lt DLPFC	There were 16 adverse events in 9 subjects, and most adverse events were experienced while receiving rTMS (14 events in 8 subjects) compared to only 2 events with sham treatment (neck discomfort and ER visit for unrelated wrist pain). The most common adverse event was discomfort at the treatment site (8 events in 6 subjects) with 4 subjects rating the discomfort as mild, 1 as moderate, and 1 as severe. One subject who experienced severe pain was discontinued from the study. The remaining adverse events related to rTMS were shock sensation at treatment site (n = 1) or to eye (2 events in 1 subject), facial twitching (n = 1), insomnia (n = 1), and dizziness upon standing (n = 1); all of which were mild.
Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions*) for the brain area(s)	Adverse events
---------------------------	--------------------------------	---	---	---------------
Zhao et al., 2017, parallel	AD (MMSE = 18 to 26, CDR = 1 or 2), DSM-IV	HF-rTMS vs sham (anti-dementia medications)	HF-rTMS (20 Hz, N/A, 4000 pulses, 30 sessions) for the Bil temporal and parietal lobes	Two patients in the rTMS treatment group and one in the sham group had the adverse effect, and they had the mild headache and fatigue after the first treatment.
Lee et al., 2016, parallel	Probable AD (MMSE = 18 to 26, CDR = 1 or 2), DSM-IV	HF-rTMS + CT vs sham + CT (AchEIs)	HF-rTMS (10 Hz, 90% MT for bilateral DLPFC and Broca’s area, 110% MT for bilateral pSAC and Wernicke’s area, 1200 pulses, 30 sessions) for the Bil DLPFC, Bil pSAC, Broca’s and Wernicke’s areas	One patient in the sham group complained of mild headache and fatigability at the first visit. That patient withdrew.
Drumond et al., 2015, parallel	MCI (MoCA ≤ 24), CDR = 0, GDS < 5, HAMD-17 < 7, HAMA-14 < 8, unknown criteria	HF-rTMS vs sham	HF-rTMS (10 Hz, 110% MT, 2000 pulses, 10 sessions) for the Lt DLPFC	rTMS group: Headache (n = 10), scalp pain (n = 9). Sham group: Headache (n = 5), cervical pain (n = 1), scalp pain (n = 2), burning scalp (n = 1).
Rutherford et al., 2015, crossover	Probable AD (MoCA = 5 to 26, MADRS < 20), unknown criteria	HF-rTMS vs sham (anti-dementia medications)	HF-rTMS (20 Hz, 90 to 100% MT, 2000 pulses, 10 sessions) for the Bil DLPFC	Unreported
Wu et al., 2015, parallel	Probable AD (MMSE < 24, BEHAVE-AD > 8), NINCDS-ADRAD (risperidone)	HF-rTMS vs sham	HF-rTMS (20 Hz, 80% MT, 1200 pulses, 20 sessions) for the Lt DLPFC	Transient headache (4 cases in the intervention group and 5 cases in the control group). These side effects were mild and well tolerated. Overall, 30.8% (8/26) of the participants in the intervention group experienced an adverse event during the study while 26.9% (7/26) in the control group experienced an adverse event (X^2 =0.09, p=0.760).
Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions*) for the brain area(s)	Adverse events
---------------------------	---------------------------------	---	---	---------------
Rabey et al., 2013, parallel	Probable mild to moderate AD (MMSE = 18 to 24, CDR = 1), DSM-IV	HF-rTMS+ CT vs sham + sham CT (AchEIs)	HF-rTMS: 10 Hz, 90% MT for Bil DLPFC and Broca’s area, 110% MT for Bil pSAC and Wernicke’s area, 1300 pulses (max: 1500 pulses), 30 sessions for the Bil DLPFC, Bil pSAC, Broca’s and Wernicke’s areas	No patients experienced side effects or adverse events.
Ahmed et al., 2012, parallel, 3-armed study	Probable AD, NINCDS-ADRDA	HF-rTMS vs LF-rTMS vs sham	HF-rTMS (20 Hz, 90% MT, 2000 pulses, 5 sessions) vs LF-rTMS (1Hz, 100% MT, 2000 pulses, 5 sessions) for the Bil DLPFC	All the patients tolerated rTMS well without any adverse effects.
Cotelli et al., 2011, parallel	Probable moderate AD (MMSE = 16), NINCDS-ADRDA	HF-rTMS vs sham (AchEIs)	HF-rTMS: 20 Hz, 110% MT, 2000 pulses, 10 sessions for the Lt DLPFC	All participants tolerated rTMS well and did not report any adverse effects.
NCT01504958, 2010, parallel	AD, NINCDS-ADRDA and DSM-IV	HF-rTMS + CT vs sham	HF-rTMS (20 Hz, N/A, 1800 pulses, 30 sessions) for the Bil DLPFC, Bil pSAC, and Broca’s areas	One subject experienced serious adverse events in the sham rTMS with sham cognitive training group (a 5cm contusion and subtle rib fracture resulting from a fall at home). Five subjects experienced adverse events in the rTMS with cognitive training group. These adverse events included hearing impairment (n = 1), blurry vision (n = 1), neck pain (n = 3), scalp pain (n = 3), soreness (n = 1), achiness (n = 1), muscle heaviness (n = 1), headache (n = 5), tiredness (n = 3), dizziness (n = 1), and anxiousness (n = 1).
Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions*) for the brain area(s)	Adverse events
---------------------------	---------------------------------	---	---	---------------
Das et al., 2019, parallel	MCI (CDR = 0.5, MMSE = 24 to 30), Petersen criteria	atDCS + CT vs sham + CT, 22 (atDCS, 12), 62.9 ± 8.0, 72.7%	atDCS (2 mA, 20 mins, 8, 20 s) for the inferior frontal gyrus (Ref: contralateral shoulder)	Unreported
Gomes et al., 2019, parallel	MCI, Petersen criteria	atDCS vs sham, 58 (atDCS, 29), 72.3 ± 8.6, 72.5%	atDCS (2 mA, 30 mins, 10, 30 s) for the Lt DLPFC (Ref: Rt supraorbital area)	Unreported
Im et al., 2019, parallel	Probable AD (CDR = 0.5 or 1), NINCDS-ADRDA or DSM-IV	atDCS vs sham (AchEIs), 20 (atDCS, 12), 73.1 ± 7.9, 83.1%	atDCS (2 mA, 30 mins, 180, 30 s) for the Lt DLPFC (Ref: Rt DLPFC)	Unreported
Inagawa et al., 2019, parallel	Mild or major neurocognitive disorder (MMSE ≥ 18, CDR ≤ 2), DSM-V	atDCS + CT vs sham + CT (anti-dementia medications), 19 (atDCS, 7), 76.3 ± 7.0, 50.0%	atDCS (2 mA, 20 mins, 10, 30 s) for the Lt DLPFC (Ref: Rt supraorbital area)	Adverse events were reported 11 in tDCS and 33 in sham group without significant difference. Neither severe adverse events nor the need for medications by adverse events were reported in each group.
Khedr et al., 2019, parallel	Probable AD, NINCDS-ADRDA ADRDA	atDCS vs sham (memantine), 46 (atDCS, 23), 64.7 ± 4.1, 40.8%	atDCS (2 mA, 20 mins, 10, 30 s) for the Bil temporal-parietal region (Ref: deltoid muscle)	All the patients tolerated tDCS well without major adverse effects. Minor effects were observed in 2 patients in the active tDCS group who recorded itching, headache, and dizziness that disappeared after a few hours after the first session, but not in subsequent sessions.

Abbreviations: MCI = mild cognitive impairment; CDR = Clinical Dementia Rating; MMSE = Mini-Mental State Examination; atDCS = anodal tDCS; CT = cognitive training; tDCS = transcranial direct current stimulation; DLPFC = dorsolateral prefrontal cortex; AchEIs = acetylcholinesterase inhibitors; Lt = left; Rt = right; C時の = 76.3 ± 7.0, 50.0%; Bil = bilateral.
Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions*) for the brain area(s)	Adverse events
Lu et al., 2019, parallel, 3-armed study	Mild neurocognitive disorder (CDR ≤ 0.5, MMSE = 22 to 27), DSM-V	atDCS + CT vs sham + CT vs atDCS + sham CT, 201 (atDCS + CT, 69; sham + CT, 64), 74.0 ± 6.5, 53.8%	atDCS (2 mA, 10 mins, 12, 30 s) for Lt lateral temporal cortex (Ref: contralateral upper limb)	Three cases had skin lesions under the cathodal electrode during repeated sessions of tDCS. No differences between tDCS + CT group (2/69) and tDCS + sham CT (1/68).
Martin et al., 2019, parallel	MCI, NIAAA criteria	atDCS + CT vs sham + CT (no AChEIs), 68 (atDCS, 33), 71.7 ± 6.4, 66.2%	atDCS (2 mA, 30 mins, 15, 30 s) for the Lt DLPFC (Ref: Rt DLPFC)	No serious adverse effects were reported. All minor adverse effects without significant difference between groups were reported, including redness, tingling, mild burning, pain, nausea, light headedness, headache, blurred vision, and fatigue. For the ITT sample, the most common adverse events reported across all sessions were: tingling (25.9%), redness (16.2%), mild burning (11%), and itching (10.5%).
Manor et al., 2018, parallel	MCI (MMSE ≥ 18), unknown criteria	atDCS vs sham, 19 (atDCS, 9), 80.4 ± 4.3, 52.7%	atDCS (2 mA, 20 mins, 10, 60 s) for the Lt DLPFC (Ref: Rt supraorbital area)	No significant differences were found between groups.
Bystad et al., 2016, parallel	Probable AD (MMSE ≥ 18), unknown criteria	atDCS vs sham (AchEIs), 25 (atDCS, 13), 72.6 ± 8.7, 44.6%	atDCS (2 mA, 30 mins, 6, 30 s) for the Lt temporal cortex (Ref: Rt frontal cortex)	The tDCS intervention was both safe and well-tolerated, so no adverse effects were reported.
Cotelli et al., 2014, parallel	Probable mild to moderate AD, NINCDS-ADRDA	atDCS + CT vs sham + CT (AchEIs), 24 (atDCS, 12), 75.7 ± 5.5, 79.2%	atDCS (2 mA, 25 mins, 10, 40 s) for the Lt DLPFC (Ref: Rt deltoid)	Unreported
Author, year, study design	Population, diagnostic criteria	Intervention (medications, cognitive training)	Protocol (frequency, intensity, pulses per condition, total stimulation sessions*) for the brain area(s)	Adverse events
-----------------------------	--------------------------------	---	---	---------------
Khedr et al., 2014, parallel	Probable AD, NINCDS-ADRDA	atDCS vs ctDCS vs sham (memantine), 34 (atDCS, 11; ctDCS, 12); 68.9 ± 6.4, 44.1%	atDCS (2 mA, 30 mins, 6, 30 s) for the Lt temporal cortex (Ref: Rt supraorbital region)	All the patients tolerated tDCS well without any adverse effects except two patients under active stimulation recorded itching, headache, and dizziness that were disappear after few hours.
Suemoto et al., 2014, parallel	Probable or possible AD (MMSE = 10 to 20), NINCDS-ADRDA	atDCS vs sham (anti-dementia medications), 40 (atDCS, 20), 80.4 ± 7.7, 70%	atDCS (2 mA, 20 mins, 6, 20 s) for the Lt DLPFC (Ref: Rt orbit)	Some minor side effects, namely scalp burning sensation and tingling, were more common in the tDCS patients compared to sham group (P ¼ 0.03 and P ¼ 0.003, respectively). Other side effects were similar in both groups of stimulation.
Yun et al., 2016, parallel	MCI, Petersen criteria	atDCS vs sham, 16 (tDCS 8), 73.9 ± 6.2, 68.8%	atDCS (2 mA, 30 mins, 9, 20 s) for the Lt DLPFC	No patient reported adverse effects.
Boggio et al., 2012, crossover	AD (MMSE > 15), NINCDS-ADRDA and DSM-IV	atDCS vs sham (AChEIs), 15, 78.9 ± 8.4, 46.7%	atDCS (2 mA, 30 mins, 5, 30 s) for the Bil temporal cortex (Ref: Rt deltoid)	All 15 patients tolerated tDCS therapy well and none of them reported adverse effects.

AChEIs: acetylcholinesterase inhibitors; AD: Alzheimer’s disease; ADAS-Cog: Alzheimer’s Disease Assessment Scale-cognitive subscale; AVLT: Auditory Verbal Learning Test; BEHAVE-AD: Behavioral Pathology in Alzheimer’s disease rating scale; CDR: Clinical Dementia Rating; CDT: Clock Drawing Test; CET: Cognitive Estimation Test; CVLT: California Verbal Learning Test; DCT: Digit Cancellation Task; DLPFC: dorsolateral prefrontal cortex; DSM: Diagnostic and Statistical Manual of Mental Disorders; EXE: executive function; EXIT-25: Executive interview; FAB: Frontal Assessment Battery; GDS: Geriatric Depression Scale; HAMA: Hamilton Anxiety Rating Scale; HAMD: Hamilton Depression Rating Scale; HF-rTMS: high frequency rTMS; LANG: language function; LF-rTMS: low frequency rTMS; MADRS: Montgomery–Asberg Depression Rating Scale; MEM: memory function; MMSE: Mini-Mental State Examination; MoCA: Montreal Cognitive Assessment; N/A: not available; NINCDS-ADRDA: National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and related disorders association; NPS: neuropsychiatric symptoms; PIQ: performance IQ; PNT: Picture Naming Task; RAVLT: Rey Auditory Verbal Learning Test; RBMT: Rivermead Behavioral Memory Test; Ref: reference area; SCP: Serial Curve Position; TMT-B: Trail
Making Test part B; VF/AN: verbal fluency/animal naming; VRT: Visual Recognition Task; WAIS-III: Wechsler adult intelligent scale-third edition; WIA: Word Image Association; 3MS: Modified Mini-Mental State Examination; aDCS: anodal transcranial direct current stimulation; cDCS: cathodal transcranial direct current stimulation; rTMS: repetitive transcranial magnetic stimulation; pSAC: parietal somatosensory association cortex.

a Not including stimulation sessions in the maintenance period.

b Dubois B et al., Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 Mar;12(3):292-323.

c Petersen RC et al., Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 1999;56,303–308.

d Whiteside DM et al., Verbal Fluency: Language or Executive Function Measure? Appl Neuropsychol Adult. 2016;23(1):29-34.
Appendix 11 (eTable S4). Risk of bias of the included studies

Domain	Low risk of bias	Unclear risk of bias	High risk of bias
Random sequence generation (selection bias)	11.1%		
Allocation concealment (selection bias)	0%		
Blinding of participants and personnel (performance bias)	7.4%		
Blinding of outcome assessment (detection bias)	3.7%		
Incomplete outcome data (attrition bias)	0%		
Selective reporting (reporting bias)	0%		
Other bias	0%		

The proportion of high risk of bias in each domain

Year	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
2017	2	2	2	2	2	2	
2016	2	2	2	2	2	2	
2015	2	2	2	2	2	2	
2014	2	2	2	2	2	2	
2013	2	2	2	2	2	2	
2012	2	2	2	2	2	2	
2011	2	2	2	2	2	2	
2010	2	2	2	2	2	2	
2009	2	2	2	2	2	2	
2008	2	2	2	2	2	2	
2007	2	2	2	2	2	2	
2006	2	2	2	2	2	2	
2005	2	2	2	2	2	2	
2004	2	2	2	2	2	2	
2003	2	2	2	2	2	2	
2002	2	2	2	2	2	2	
2001	2	2	2	2	2	2	
2000	2	2	2	2	2	2	
1999	2	2	2	2	2	2	
1998	2	2	2	2	2	2	
1997	2	2	2	2	2	2	
1996	2	2	2	2	2	2	
1995	2	2	2	2	2	2	
1994	2	2	2	2	2	2	
1993	2	2	2	2	2	2	
1992	2	2	2	2	2	2	

Chu C-S, et al. J Neurol Neurosurg Psychiatry 2020;0:1–9. doi: 10.1136/jnnp-2020-323870
Appendix 12 (eTable S5). Inconsistency tests for general cognitive function

Node-splitting model

Comparison	Number of Studies	Direct Evidence	Random effects model	MD 95% CI	Immediate effects on general cognition	Long-lasting effects on general cognition
atDCS=atDCS	1 0.66				–0.63 [−2.07; 1.19]	–0.83 [−3.29; 1.63]
Indirect estimate					−0.41 [−3.79; 2.79]	−0.35 [−3.75; 3.06]
Network estimate					−0.40 [−2.47; 1.69]	−1.80 [−4.17; 0.58]
atDCS+CT-atDCS+sham_CT	1 0.94				0.20 [−1.08; 1.48]	0.18 [−1.12; 1.40]
Direct estimate					0.22 [−1.06; 1.50]	2.80 [−2.84; 8.45]
Indirect estimate					0.20 [−1.04; 1.44]	0.31 [−0.96; 1.58]
Network estimate					–0.01 [−1.20; 1.22]	–6.19 [−29.86; 42.06]
atDCS+sham_BT-atDCS+sham_BT+CT	1 0.94				0.20 [−1.11; 1.51]	0.02 [−1.25; 1.23]
Direct estimate					0.22 [−1.77; 3.21]	0.74 [−1.24; 2.62]
Indirect estimate					0.20 [−1.06; 1.47]	0.72 [−1.25; 2.69]
Network estimate					–0.00 [−1.34; 1.34]	–1.59 [−3.50; 0.39]
atDCS+sham_BT	1 0.84				1.08 [−0.08; 3.00]	1.96 [−0.26; 4.16]
Direct estimate					1.21 [−0.52; 3.95]	1.96 [−0.26; 4.16]
Indirect estimate					1.00 [−0.87; 3.04]	0.27 [−1.48; 1.91]
Network estimate					0.20 [−1.12; 1.54]	0.20 [−1.12; 1.54]
HYFTMS+HYFTMS	1 0.84				2.05 [−0.04; 4.06]	2.20 [−0.08; 4.48]
Direct estimate					1.92 [−0.47; 5.30]	1.96 [−0.77; 4.59]
Indirect estimate					1.40 [−0.44; 3.24]	2.79 [0.75; 4.87]
Network estimate					–0.08 [−2.08; 1.92]	–1.95 [−7.77; 3.85]
HYFTMS+sham_BT	1 0.85				–0.08 [−2.08; 1.92]	0.20 [−0.05; 0.45]
Direct estimate					–0.10 [−2.08; 1.88]	0.26 [−0.06; 0.58]
Indirect estimate					–0.70 [−2.54; 1.14]	–0.92 [−3.38; 1.54]
Network estimate					–0.40 [−2.39; 1.59]	–1.40 [−3.50; 0.70]

All P-values for the differences between direct and indirect estimates were > 0.05

Design-by-treatment

Comparison	Number of Studies	Direct Evidence	Random effects model	MD 95% CI	Immediate effects on general cognition	Long-lasting effects on general cognition
atDCS=atDCS	1 0.73				–0.83 [−3.29; 1.63]	–0.83 [−3.29; 1.63]
Direct estimate					–1.80 [−4.17; 0.58]	–3.50 [−6.30; 2.30]
Indirect estimate					0.20 [−1.08; 1.48]	0.18 [−1.12; 1.40]
Network estimate					0.22 [−1.06; 1.47]	2.80 [−2.84; 8.45]
atDCS+CT-atDCS+sham_CT	2 0.96				0.18 [−1.12; 1.40]	0.31 [−0.96; 1.58]
Direct estimate					2.80 [−2.84; 8.45]	6.19 [−29.86; 42.06]
Indirect estimate					0.31 [−0.96; 1.58]	0.02 [−1.25; 1.23]
Network estimate					0.04 [−1.20; 1.22]	0.04 [−1.20; 1.22]
atDCS+sham_BT+CT	3 1.00				6.19 [−29.86; 42.06]	6.19 [−29.86; 42.06]
Direct estimate					6.19 [−29.86; 42.06]	6.19 [−29.86; 42.06]
Indirect estimate					–1.95 [−7.77; 3.85]	–1.95 [−7.77; 3.85]
Network estimate					2.96 [0.35; 5.57]	2.96 [0.35; 5.57]

All P-values for the differences between direct and indirect estimates were > 0.05

Q = 2.4, df = 3, p = 0.49

Q = 5.4, df = 5, p = 0.37
Appendix 13 (eFigure S6). Funnel plots for the primary outcome

Immediate effect

\[p = 0.8381 \text{ (Egger)} \]

Long-lasting effect

\[p = 0.9572 \text{ (Egger)} \]
Appendix 14 (eTable S6). Network meta-regression of immediate effect on general cognition

Effect modifier	Protocol	Coef.	SE	Z	P	95% LL	95% UL
MCI	HFrTMS	-1.56	0.99	-1.57	0.12	-3.50	0.39
	atDCS	-0.29	0.84	-0.35	0.72	-1.93	1.34
	atDCS+CT	2.45	651.41	0.00	1.00	-1274.28	1279.19
	sham_BS+CT	2.46	651.40	0.00	1.00	-1274.27	1279.20
Sample size	HFrTMS	0.05	0.06	0.85	0.39	-0.07	0.17
	HFrTMS+CT	-0.02	3.39	0.00	1.00	-6.67	6.63
	LFrTMS	-0.02	0.09	-0.23	0.82	-0.20	0.16
	atDCS	-0.01	0.04	-0.23	0.82	-0.08	0.06
	atDCS+CT	0.01	4.03	0.00	1.00	-7.89	7.90
	sham_BS+CT	0.01	4.03	0.00	1.00	-7.89	7.90
	sham_BS+sham_CT	1.01	3.42	0.30	0.77	-5.68	7.71
Age	HFrTMS	-0.38	0.25	-1.49	0.14	-0.88	0.12
	HFrTMS+CT	-0.06	25.03	0.00	1.00	-49.12	49.00
	atDCS	-0.08	0.04	-1.83	0.07	-0.17	0.01
	atDCS+CT	0.25	141.34	0.00	1.00	-276.78	277.28
	sham_BS+CT	0.25	141.37	0.00	1.00	-276.83	277.33
	sham_BS+sham_CT	0.08	25.04	0.00	1.00	-48.99	49.16
Female	HFrTMS	0.15	0.09	1.65	0.10	-0.03	0.32
	HFrTMS+CT	0.02	18.60	0.00	1.00	-36.44	36.48
	atDCS	0.00	0.03	0.94	0.36	-0.05	0.05
	atDCS+CT	-0.07	34.59	0.00	1.00	-67.86	67.72
	sham_BS+CT	-0.07	34.58	0.00	1.00	-67.85	67.71
	sham_BS+sham_CT	0.00	18.60	0.00	1.00	-36.46	36.46
MMSE	HFrTMS	-0.06	0.08	-0.76	0.45	-0.22	0.09
	HFrTMS+CT	-0.24	128.62	0.00	1.00	-252.34	251.85
	LFrTMS	-0.17	0.23	-0.73	0.47	-0.62	0.28
	atDCS	-0.06	0.07	-0.83	0.41	-0.21	0.08
	atDCS+CT	0.47	111.07	0.00	1.00	-217.22	218.16
	sham_BS+CT	0.48	111.06	0.00	1.00	-217.20	218.16
	sham_BS+sham_CT	0.59	128.62	0.00	1.00	-251.51	252.69
AchEI	HFrTMS	1.02	0.39	1.75	0.08	-0.13	2.17
	atDCS	-0.30	0.82	-0.36	0.72	-1.91	1.32
	atDCS+CT	-2.45	649.78	0.00	1.00	-1276.01	1271.10
	sham_BS+CT	-2.46	649.78	0.00	1.00	-1276.02	1271.09

*: P-value < 0.05

Abbreviation: AchEi, acetylcholine esterase inhibitor; ctDCS, cathodal transcranial direct current stimulation; Coef., coefficient; CT, cognitive training; HF, high-frequency; LF, low-frequency; LL, lower limit; MCI, mild cognitive impairment; MMSE, mini-mental status examination; rTMS, repetitive transcranial magnetic stimulation; SE, standard error; sham_BS, sham brain stimulation; sham_CT, sham cognitive training; SMD, standardized mean difference; tDCS, transcranial direct current stimulation; UL, upper limit.
Appendix 15 (eTable S7). Network meta-regression of 1-month F/U effect on general cognition

Effect modifier	Protocol	Coef	SE	Z	P	95% LL	95% UL
MCI	atDCS+CT	0.37	652.64	0.00	1.00	-1278.78	1279.52
	atDCS+sham_CT	0.93	652.64	0.00	1.00	-1278.22	1280.08
	sham_BS+CT	0.65	652.64	0.00	1.00	-1278.49	1279.80
Sample size	HF/TMS	0.05	0.05	0.86	0.39	-0.06	0.15
	HF/TMS+CT	0.07	2.99	0.02	0.98	-5.78	5.93
	LF/TMS	0.09	0.13	0.70	0.49	-0.16	0.34
	atDCS	0.87	0.64	1.36	0.17	-0.38	2.11
	atDCS+CT	-0.15	3.00	-0.05	0.96	2.60	5.72
	atDCS+sham_CT	-0.15	3.00	-0.05	0.96	2.60	5.72
	sham_BS+CT	-0.15	3.00	-0.05	0.96	-6.02	5.72
	sham_BS+sham_CT	0.64	3.01	0.21	0.83	-5.26	6.54
Age	HF/TMS	-0.16	0.48	-0.34	0.74	-1.11	0.79
	HF/TMS+CT	0.25	22.88	0.01	0.99	-44.59	45.08
	atDCS	-0.35	0.26	-1.34	0.18	-0.85	0.16
	atDCS+CT	1.86	23.15	0.08	0.94	-43.52	47.23
	atDCS+sham_CT	1.64	23.15	0.07	0.94	-43.75	47.02
	sham_BS+CT	1.75	23.14	0.08	0.94	-43.60	47.11
	sham_BS+sham_CT	0.53	22.91	0.02	0.98	-44.38	45.43
Female	HF/TMS	0.12	0.26	0.48	0.63	-0.38	0.62
	HF/TMS+CT	0.02	12.26	0.00	1.00	-24.00	24.05
	atDCS	-1.33	0.92	-1.45	0.15	-3.13	0.47
	atDCS+CT	-0.05	12.26	0.00	1.00	-24.08	23.97
	atDCS+sham_CT	-0.05	12.26	0.00	1.00	-24.08	23.97
	sham_BS+CT	-0.02	12.26	0.00	1.00	-24.04	24.01
	sham_BS+sham_CT	0.47	12.34	0.04	0.97	-23.71	24.66
MMSE	HF/TMS	-0.06	0.08	-0.76	0.45	-0.22	0.09
	HF/TMS+CT	-0.24	128.62	0.00	1.00	-252.34	251.85
	LF/TMS	-0.17	0.23	-0.73	0.47	-0.62	0.28
	atDCS	-0.06	0.07	-0.83	0.41	-0.21	0.08
	atDCS+CT	0.47	111.07	0.00	1.00	-217.22	218.16
	sham_BS+CT	0.48	111.06	0.00	1.00	-217.20	218.16
	sham_BS+sham_CT	0.59	128.62	0.00	1.00	-251.51	252.69
AchE1	HF/TMS	0.86	1.96	0.44	0.66	-2.98	4.69
	HF/TMS+CT	0.00	407.58	0.00	1.00	-798.84	798.83
	atDCS+CT	-0.62	407.58	0.00	1.00	-799.47	798.23
	atDCS+sham_CT	-1.19	407.59	0.00	1.00	-800.04	797.66
	sham_BS+CT	-0.91	407.58	0.00	1.00	-799.75	797.93
sham_BS+sham_C	0.50	407.58	0.00	1.00	-798.34	799.34	

*: P-value < 0.05

Abbreviation: AchEI, acetylcholine esterase inhibitor; ctDCS, cathodal transcranial direct current stimulation; Coef., coefficient; CT, cognitive training; HF, high-frequency; LF, low-frequency; LL, lower limit; MCI, mild cognitive impairment; MMSE, mini-mental status examination; rTMS, repetitive transcranial magnetic stimulation; SE, standard error; sham_BS, sham brain stimulation; sham_CT, sham cognitive training; SMD, standardized mean difference; tDCS, transcranial direct current stimulation; UL, upper limit.
Appendix 16 (eFigure S7). Efficacy of sham rTMS vs sham tDCS in general cognitive function

Immediate Effect: Sham_rTMS vs Sham_tDCS in General Cognition

Group by study name	Statistics for each study	Std diff in means	Std error	Variance	Lower limit	Upper limit	Z-Value	p-Value
rTMS								
Koch 2018		0.367	0.271	0.467	0.314	0.389	1.252	0.215
rTMS		0.250	0.201	0.297	-0.224	-0.029	1.245	0.215
Lee 2016		0.265	0.278	0.296	0.265	0.289	1.265	0.215
Rufford 2015		0.311	0.251	0.326	-0.385	0.004	1.421	0.156
Patey 2013		0.111	0.275	0.428	0.049	0.403	1.386	0.087
Cobelli 2011		0.060	0.346	0.426	0.009	0.559	1.001	0.312
Ahmed 2012		0.089	0.200	0.394	0.034	0.402	1.048	0.297
Zhang 2019		0.238	0.221	0.369	-0.010	0.760	1.377	0.169
Sabrakh 2019		1.245	0.146	0.201	0.889	1.531	5.530	0.000
ICDIS		0.349	0.186	0.292	0.023	0.674	2.101	0.036
Gomes 2019		0.000	0.144	0.201	0.002	0.000	1.000	0.300
Inagami 2019		0.010	0.224	0.050	-0.449	0.282	0.000	1.000
Lu 2019		0.246	0.058	0.101	0.056	0.438	2.508	0.012
Chen 2018		0.000	0.205	0.246	0.000	0.000	1.000	0.300
Khare 2019		0.173	0.163	0.208	0.042	0.329	1.000	0.300
Im 2019		-0.332	0.281	0.284	0.079	0.279	-1.180	0.238
ICDS		0.077	0.215	0.246	0.046	0.399	0.380	0.719
Khare 2014		0.465	0.246	0.260	0.017	0.947	1.891	0.059
Somarco 2014		-0.122	0.174	0.203	0.030	0.463	0.218	0.804
Baggio 2012		0.258	0.203	0.241	-0.140	0.657	1.270	0.224
ICDIS		0.058	0.066	0.075	0.190	0.848	0.596	

Group Difference: P-value = 0.106

1-Month F/U Effect: Sham_rTMS vs Sham_tDCS in General Cognition

Group by study name	Statistics for each study	Std diff in means	Std error	Variance	Lower limit	Upper limit	Z-Value	p-Value
rTMS								
Pettles 2018		-0.217	0.391	0.568	-0.729	0.295	-0.831	0.406
rTMS		0.204	0.244	0.266	0.286	1.343	-0.239	0.632
NCT01509058		-0.030	0.346	0.120	0.709	0.949	-0.096	0.931
NCT01509059		-0.174	0.319	0.102	0.798	0.451	-0.545	0.586
Lee 2016		0.804	0.315	0.199	0.396	1.421	2.952	0.011
Yu 2015		0.273	0.150	0.052	-0.301	0.756	1.763	0.078
Ahmed 2012		0.050	0.230	0.040	-0.392	0.262	0.300	1.000
Zhang 2019		0.212	0.217	0.047	-0.214	0.638	0.977	0.329
Sabirakh 2019		0.452	0.115	0.013	-0.226	0.677	3.029	0.0030
ICDIS		0.253	0.108	0.012	-0.042	0.405	2.300	0.019
Inagami 2019		0.098	0.224	0.050	-0.341	0.538	0.439	0.680
Lu 2019		0.246	0.098	0.010	0.054	0.439	2.508	0.012
Chen 2018		0.000	0.246	0.060	-0.460	0.460	0.000	1.000
ICDS		0.341	0.230	0.053	-0.110	0.792	1.462	0.158
Khare 2014		0.310	0.239	0.057	-0.159	0.778	1.296	0.185
Baggio 2012		0.172	0.201	0.041	-0.223	0.697	0.654	0.533
ICDIS		0.217	0.071	0.005	0.078	0.395	3.073	0.002

Group Difference: P-value = 0.775