Small cancellations over relatively hyperbolic groups and embedding theorems

D. V. Osin *

Abstract

We generalize the small cancellation theory over ordinary hyperbolic groups to relatively hyperbolic settings. This generalization is then used to prove various embedding theorems for countable groups. For instance, we show that any countable torsion free group can be embedded into a finitely generated group with exactly 2 conjugacy classes. In particular, this gives the affirmative answer to the well-known question of the existence of a finitely generated group G other than $\mathbb{Z}/2\mathbb{Z}$ such that all nontrivial elements of G are conjugate.

1 Introduction

Originally the notion of relative hyperbolicity was proposed by Gromov [11] in order to generalize various examples of algebraic and geometric nature such as Kleinian groups, fundamental groups of hyperbolic manifolds of pinched negative curvature, small cancellation quotients of free products, etc. It has been extensively studied in the last several years from different points of view. The main aim of this paper is to generalize the small cancellation theory over hyperbolic groups developed by Olshanski [23] to relatively hyperbolic settings. Our approach is based on author’s papers [25, 26, 27], where the necessary background is provided. In the present paper we apply small cancellations over relatively hyperbolic groups to prove embedding theorems for countable groups. Further applications of our methods can be found in [1,2,4,19,20,28].

In the paper [13], Higman, B.H. Neumann, and H. Neumann proved that any countable group G can be embedded into a countable group B such that every two elements of the same order are conjugate in B. We notice that the group B in [13] is constructed as a union of infinite number of subsequent HNN–extensions and thus B is never finitely generated. On the other hand, any countable group can be embedded into a 2–generated group [13]. Our first theorem is a natural generalization of both of these results. For a group G, we denote by $\pi(G)$ the set of all finite orders of elements of G.

Theorem 1.1. Any countable group G can be embedded into a 2–generated group C such that any two elements of the same order are conjugate in C and $\pi(G) = \pi(C)$.

*This work has been partially supported by the RFBR Grants 02-01-00892, 03-01-06555, and the NSF grant DMS-0605093
Corollary 1.2. Any countable torsion–free group can be embedded into a (torsion–free) 2–generated group with exactly 2 conjugacy classes.

Since the number of finitely generated subgroups in any 2–generated groups is at most countable and the number of all torsion–free finitely generated groups is uncountable, we have

Corollary 1.3. There exists an uncountable set of pairwise non–isomorphic torsion–free 2–generated groups with exactly 2 conjugacy classes.

We note that the question of the existence of any finitely generated group with exactly 2 conjugacy classes other than \(\mathbb{Z}/2\mathbb{Z} \) was open until now. It can be found, for example, in [16, Problem 9.10] or in [3, Problem FP20]. (Positive solution has been announced by Ivanov in 1989 [14, 15] but the complete proof has never been published.) Corollary 1.3 provides the first examples of such groups. Starting with the group \(G = \mathbb{Z}/p^{n-2}\mathbb{Z} \times H \) for \(n \geq 3 \), where \(p \) is a prime number and \(H \) is a torsion–free group, we can generalize the previous result.

Corollary 1.4. For any \(n \in \mathbb{N} \), \(n \geq 2 \), there is an uncountable set of pairwise non–isomorphic finitely generated groups with exactly \(n \) conjugacy classes.

Indeed suppose that a finitely generated group \(G \) has exactly 2 conjugacy classes. If \(G \) is not torsion–free, then \(G \) is a group of exponent \(p \) for some prime \(p \) as the orders of all nontrivial elements of \(G \) are equal. If \(p = 2 \), \(G \) is abelian and hence is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \).

In case \(p > 2 \), there exist non–trivial elements \(g, t \in G \) such that

\[
t^{-1}gt = g^2.
\]

The equality \(g^{2^p-1} = t^{-p}gt^pg^{-1} = g^{-1} = 1 \) implies \(2^p - 1 \equiv 0 \pmod{p} \). However, by the Fermat Little Theorem, we have \(2^p - 2 \equiv 0 \pmod{p} \), which contradicts the previous equality. Assume now that \(G \) is torsion–free. If \(G \) is a limit of hyperbolic groups \(F/N_i \), \(i = 1, 2, \ldots \) is hyperbolic. In contrast it is impossible to construct a finitely generated group other than \(\mathbb{Z}/2\mathbb{Z} \) with exactly 2 conjugacy classes in this way.

Another theorem from [13] states that any countable group \(G \) can be embedded into a countable divisible group \(D \). We recall that a group \(D \) is said to be divisible if for every element \(d \in D \) and every positive integer \(n \), the equation \(x^n = d \) has a solution in \(D \). A natural example of a divisible groups is \(\mathbb{Q} \). The question of the existence of a finitely generated divisible group was open during a long time. The first examples of such a type were constructed by Guba [12] (see also [21]).
Later Mikhailovskii and Olshanskii [18] constructed a more general example of a finitely
generated verbally complete group, that is a group \(W \) such that for every nontrivial freely
reduced word \(w(x_i) \) in the alphabet \(x_1^{±1}, x_2^{±1}, \ldots \) and every \(v \in W \), the equation \(w(x_i) = v \)
has a solution in \(W \). That is, there are elements \(v_1, v_2, \ldots \in W \) such that \(w(v_i) = v \) in
\(W \), where \(w(v_i) \) is the word obtained from \(w(x_i) \) by substituting \(v_i \) for \(x_i \), \(i = 1, 2, \ldots \).
Comparing these results one may ask whether any countable group can be embedded into
a finitely generated divisible (or verbally complete) group. The next theorem provides the
affirmative answer.

Theorem 1.5. Any countable group \(H \) can be embedded into a 2–generated verbally complete
group \(W \). Moreover, if \(H \) is torsion–free, then \(W \) can be chosen to be torsion–free.

Note that the condition \(\pi(G) = \pi(W) \) can not be ensured in Theorem [1.5]. Indeed, it is
easy to show that if a divisible group \(W \) contains a nontrivial element of finite order, then
\(\pi(W) = \mathbb{N} \). As above, we obtain

Corollary 1.6. There exists an uncountable set of pairwise non–isomorphic 2–generated verbally complete groups.

Acknowledgment. The author is grateful to A. Minasyan and A. Olshanskii for helpful
discussions and to the anonymous referee for careful reading of the manuscript and useful
remarks.

2 Outline of the method

In this section we give the proofs of Theorem [1.5] and Theorem [1.1] modulo technical results
which are obtained in Sections 4-8. We assume the reader to be familiar with the notion of
a relatively hyperbolic group and refer to the next section for precise definitions.

Let \(G \) be a group that is hyperbolic relative to a collection of subgroups \(\{H_\lambda\}_{\lambda \in \Lambda} \). We
divide the set of all elements of \(G \) into two subsets as follows. An element \(g \in G \) is said
to be parabolic if \(g \) is conjugate to an element of \(H_\lambda \) for some \(\lambda \in \Lambda \). Otherwise \(g \) is said
to be hyperbolic. Recall also that a group is elementary if it contains a cyclic subgroup of
finite index. The following result concerning maximal elementary subgroups is proved in
[26, Theorem 4.3, Corollary 1.7].

Theorem 2.1. Let \(G \) be a group hyperbolic relative to a collection of subgroups \(\{H_\lambda\}_{\lambda \in \Lambda} \),
g a hyperbolic element of infinite order of \(G \). Then the following conditions hold.

1. The element \(g \) is contained in a unique maximal elementary subgroup \(E_G(g) \) of \(G \), where
 \[E_G(g) = \{ f \in G : f^{-1}g^nf = g^{\pm n} \text{ for some } n \in \mathbb{N} \}. \]
2. The group \(G \) is hyperbolic relative to the collection \(\{H_\lambda\}_{\lambda \in \Lambda} \cup \{E_G(g)\} \).

Given a subgroup \(H \leq G \), we denote by \(H^0 \) the set of all hyperbolic elements of infinite
order in \(H \). Recall also that two elements \(f, g \in G^0 \) are said to be commensurable (in \(G \)) if
\(f^k \) is conjugate to \(g^l \) in \(G \) for some non–zero \(k, l \).
Definition 2.2. A subgroup $H \leq G$ is called suitable, if there exist two non–commensurable elements $f_1, f_2 \in H^0$ such that $E_G(f_1) \cap E_G(f_2) = 1$.

The next lemma is proved in Section 8.

Lemma 2.3. Let G be a group hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$. Then there exist infinitely many pairwise non–commensurable (in G) elements $h_1, h_2, \ldots \in H^0$ such that for all $i = 1, 2, \ldots$, $E_G(h_i) = \langle h_i \rangle$. In particular, $E_G(h_i) \cap E_G(h_j) = \{1\}$ whenever $i \neq j$.

Our main tool is the following theorem proved in Section 8. The proof is based on a certain small cancellation techniques developed in Sections 4-7.

Theorem 2.4. Let G be a group hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$, H a suitable subgroup of G, and t_1, \ldots, t_m arbitrary elements of G. Then there exists an epimorphism $\eta: G \to \overline{G}$ such that:

1. The group \overline{G} is hyperbolic relative to $\{\eta(H_\lambda)\}_{\lambda \in \Lambda}$.
2. For any $i = 1, \ldots, m$, we have $\eta(t_i) \in \eta(H)$.
3. The restriction of η to $\bigcup_{\lambda \in \Lambda} H_\lambda$ is injective.
4. $\eta(H)$ is a suitable subgroup of \overline{G}.
5. Every element of finite order in \overline{G} is an image of an element of finite order in G. In particular, if all hyperbolic elements of G have infinite order, then all hyperbolic elements of \overline{G} have infinite order.

The next theorem is proved in [13][Corollary 1.4]. For finitely generated groups this result was first proved by Dahmani in [7]. It is worth noting that we use the theorem for infinitely generated groups in this paper.

Theorem 2.5. Suppose that a group G is hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda} \cup \{K\}$ and for some $\nu \in \Lambda$, there exists a monomorphism $\iota: K \to H_\nu$. Then the HNN–extension

$$G = \langle G, t \mid t^{-1}kt = \iota(k), \ k \in K \rangle$$

is hyperbolic relative to $\{H_\lambda\}_{\lambda \in \Lambda}$.

Theorems 1.5 and 1.1 can be obtained in a uniform way from the following result.

Theorem 2.6. Suppose that R is a countable group such that for any elementary group E satisfying the condition $\pi(E) \subseteq \pi(R)$, there exists a subgroup of R isomorphic to E. Then there is an embedding of R into a 2–generated group $S = S(R)$ such that any element of S is conjugate to an element of R in S. In particular, $\pi(S) = \pi(R)$.

Proof. The desired group S is constructed as an inductive limit of relatively hyperbolic groups as follows. Let us set

$$G(0) = R * F(x, y),$$
where $F(x, y)$ is the free group of rank 2 generated by x and y. We enumerate all elements of
\[R = \{1 = r_0, r_1, r_2, \ldots \} \]
and
\[G(0) = \{1 = g_0, g_1, g_2, \ldots \}. \]

Suppose that for some $i \geq 0$, the group $G(i)$ has already been constructed together with an epimorphism $\xi_i : G(0) \to G(i)$. We use the same notation for elements $x, y, r_0, r_1, \ldots, g_0, g_1, \ldots$ and their images under ξ_i in $G(i)$. Assume that $G(i)$ satisfies the following conditions. (It is straightforward to check these conditions for $G(0)$ and the identity map $\xi_0 : G(0) \to G(0)$.)

(i) The restriction of ξ_i to the subgroup R is injective. In what follows we identify R with its image in $G(i)$.

(ii) $G(i)$ is hyperbolic relative to R.

(iii) The elements x and y generate a suitable subgroup of $G(i)$.

(iv) All hyperbolic elements of $G(i)$ have infinite order. In particular, $\pi(G(i)) = \pi(R)$.

(v) The elements g_0, \ldots, g_i are parabolic in $G(i)$.

(vi) In the group $G(i)$, the elements r_0, \ldots, r_i are contained in the subgroup generated by x and y.

The group $G(i + 1)$ is obtained from $G(i)$ in two steps.

Step 1. Let us take the element g_{i+1} and construct a group $G(i + 1/2)$ as follows. If g_{i+1} is a parabolic element of $G(i)$, we set $G(i + 1/2) = G(i)$. If g_{i+1} is hyperbolic, the order of g_{i+1} is infinite by (iv). Furthermore, since $\pi(E_{G(i)}(g_{i+1})) \subseteq \pi(G(i)) = \pi(R)$, there is a monomorphism $\iota : E_{G(i)}(g_{i+1}) \to R$. Then we take the HNN–extension
\[G(i + 1/2) = \langle G(0), t \mid t^{-1}et = \iota(e), e \in E_{G(i)}(g_{i+1}) \rangle. \]

In both cases $G(i + 1/2)$ is hyperbolic relative to R. Indeed this is obvious in the first case and follows from the second assertion of Theorem 2.1 and Theorem 2.5 in the second case. Note also that all hyperbolic elements of $G(i + 1/2)$ have infinite order. (In the second case this immediately follows from the description of periodic elements in HNN–extensions [17], Ch. IV, Theorem 2.4.)

Step 2. First we wish to show that the subgroup generated by x and y is suitable in $G(i + 1/2)$. This is obvious in case g_{i+1} is parabolic in $G(i)$, so we consider the second case only. Since $\langle x, y \rangle$ is suitable in $G(i)$ by (iii), Lemma 2.3 yields the existence of infinitely many pairwise non–commensurable (in $G(i)$) hyperbolic elements $h_j \in \langle x, y \rangle$ of infinite order, $j = 1, 2, \ldots$, such that $E_{G(i)}(h_j) = \langle h_j \rangle$. At most one of these elements is commensurable with g_{i+1} in $G(i)$. Therefore, there exist two non–commensurable in $G(i)$ hyperbolic elements of infinite order, say $h_1, h_2 \in \langle x, y \rangle$, such that h_j is not commensurable with g_{i+1} in $G(i)$ for $j = 1, 2$. In particular, $h_j, j = 1, 2$, is not conjugate to an element of $E_{G(i)}(g_{i+1})$ as
\(\langle g_{i+1} \rangle \) has finite index in \(E_{G(i)}(g_{i+1}) \). According to Britton’s Lemma on HNN–extensions \[\text{[17, Ch. 5, Sec.2]}, \] this implies that \(h_1 \) and \(h_2 \) are hyperbolic and non–commensurable in \(G(i + 1/2) \). Furthermore, if for some \(j = 1, 2, n \in \mathbb{N}, \) and \(u \in G(i + 1/2), \) we have \(u^{-1}h^n_ju = h^n_j \), then \(u \in G(i) \) by Britton’s Lemma. Thus the explicit description of maximal elementary subgroups from the first assertion of Theorem \[\text{[2.4]}, \] yields the equality \(E_{G(i+1/2)}(h_j) = E_{G(i)}(h_j) \) for \(j = 1, 2 \). Finally since \(E_{G(i)}(h_j) = \langle h_j \rangle \) and \(h_1, h_2 \) are non–commensurable, we have

\[
E_{G(i+1/2)}(h_1) \cap E_{G(i+1/2)}(h_2) = E_{G(i)}(h_1) \cap E_{G(i)}(h_2) = \langle h_1 \rangle \cap \langle h_2 \rangle = \{1\}.
\]

By Definition \[\text{[2.2]), this means that the subgroup generated by} \] \(x \) and \(y \) is suitable in \(G(i+1/2) \).

We now apply Theorem \[\text{[2.1]}, \] to the group \(G = G(i + 1/2) \), the subgroup \(H = \langle x, y \rangle \leq G(i + 1/2), \) and the set of elements \(\{t, r, i+1\} \). Let \(G(i + 1) = G \), where \(G \) is the quotient group provided by Theorem \[\text{[2.4]}, \] Since \(t \) becomes an element of \(\langle x, y \rangle \) in \(G(i + 1), \) there is a naturally defined epimorphism \(\xi_i: G(0) \to G(i + 1). \) Using Theorem \[\text{[2.4]}, \] it is straightforward to check properties (i)–(vi) for \(G(i + 1). \) This completes the inductive step.

Let \(N_1 \) denote the kernel of \(\xi_1 \). Observe that \(N_1, N_2, \ldots \) form an increasing normal series and set \(S = G(0)/N, \) where \(N = \bigcup_{i=1}^{\infty} N_i. \) By (i) the subgroup \(R \) is embedded into \(S. \) Further it is easy to see that \(S \) is \(2 \)-generated. Indeed, \(G(0) \) is generated by \(x, y, r_1, r_2, \ldots \) Condition (vi) yields \(r_i \in \langle x, y \rangle \) in \(S \) for any \(i \in \mathbb{N}. \) Thus \(S \) is generated by \(x \) and \(y \). Finally let \(s \) be an element of \(S. \) We take an arbitrary preimage \(g \in G(0) \) of \(s. \) Then the image of the element \(g \) becomes parabolic at a certain step according to (v). Thus \(s \) is conjugate to an element of \(R \) in \(S. \) The theorem is proved.

It remains to derive Theorems \[\text{[1.5]} \text{and } \text{[1.4]}. \]

**Proof of Theorem \[\text{[1.5]}, \] Let \(E \) denote the free product of all elementary groups \(E \) (taken up to isomorphism) such that \(\pi(E) \subseteq \pi(G). \) We set \(G^* = G * E. \) By a theorem from \[\text{[13]}, \] we can embed \(G^* \) into an (infinitely generated) group \(R \) such that all elements of the same order are conjugate in \(R \) and

\[
\pi(R) = \pi(G^*) = \pi(G) \tag{3}
\]

We now apply Theorem \[\text{[2.6]}, \] and embed the group \(R \) into a \(2 \)-generated group \(C = S(R) \) such that any element of \(C \) is conjugate to an element of \(R. \) As all elements of the same order are conjugate in \(R, \) this is so in \(C. \) The equality \(\pi(C) = \pi(G) \) follows from \[\text{[4]}, \] as \(\pi(C) = \pi(R) \) by Theorem \[\text{[2.6]}, \]

**Proof of Theorem \[\text{[1.6]}, \] First note that any countable group \(G \) can be embedded into an infinitely generated countable verbally complete group \(R \) in the following way. (The idea comes from the proof of the Higman–Neumann–Neumann theorem on embeddings into divisible groups.) We denote by \(F = F(a_1, a_2, \ldots) \) the free group with basis \(a_1, a_2, \ldots \). Let us enumerate the set of all pairs

\[
\{p_1, p_2, \ldots\} = \{(v, g) : v \in F \setminus \{1\}, g \in G \setminus \{1\}\}.
\]

Starting with the group \(G \) we first set \(G^* = G \) if \(G \) is torsion–free, and \(G^* = G * E_1 * E_2 \ast \ldots, \) where \(\{E_1, E_2, \ldots\} \) is the set of all elementary groups (up to isomorphism), otherwise.
Further we construct a sequence of groups $G^* = U_0 \leq U_1 \leq \ldots$ as follows. Suppose that for some $i \geq 0$, the group U_i has already been constructed and take $p_{i+1} = (v, g)$. There are two possibilities to consider.

1) The element g has infinite order. Then we define U_{i+1} to be the free product of U_i and F with the amalgamated subgroups $\langle g \rangle$ and $\langle v \rangle$.

2) The order of g is $n < \infty$. It is well–known [17, Theorem 5.2, Ch. 4] that the order of the element v in the group $H = \langle a_1, a_2, \ldots \mid r^n = 1 \rangle$ equals n. Thus the free product of U_i and H with amalgamated subgroups $\langle g \rangle$ and $\langle v \rangle$ is well–defined. We set $U_{i+1} = U_i * \langle g \rangle * \langle v \rangle H$.

Now let $U(G^*) = \bigcup_{i=0}^{\infty} U_i$. Obviously G^* embeds in $U(G^*)$, $U(G^*)$ is countable and torsion–free whenever G^* is torsion–free, and any equation of type $w(x_i) = g$, where $w(x_i)$ is a word in the alphabet $x_1^{\pm 1}, x_2^{\pm 1}, \ldots$ and $g \in G$, has a solution in $U(G^*)$. Finally we consider the sequence of groups $R_1 \leq R_2 \leq \ldots$, where $R_1 = U(G^*)$ and $R_{i+1} = U(R_i)$, $i = 1, 2, \ldots$. Clearly the group $R = \bigcup_{i=0}^{\infty} R_i$ is countable, verbally complete, torsion–free whenever G is torsion–free, and contains a copy of every elementary group E such that $\pi(E) \subseteq \pi(G)$. Let $W = S(R)$ be the group provided by Theorem 2.6.

Consider an equations $w(x_i) = v$ for some $v \in W$. By Theorem 2.6 there is an element $t \in W$ such that $t^{-1}vt \in R$. Since R is verbally complete, there is a solution $x_1 = r_1$, $x_2 = r_2, \ldots$ to the equation $w(x_i) = t^{-1}vt$ in R. Clearly $x_1 = tr_1t^{-1}$, $x_2 = tr_2t^{-1}$, \ldots is a solution to the equation $w(x_i) = v$. □

3 Preliminaries

Some conventions and notation. We write $W \equiv V$ to express the letter–for–letter equality of words W and V in some alphabet. If a word W decomposes as $W \equiv V_1UV_2$, we call V_1 (respectively, V_2) a prefix (respectively, suffix) of W. For elements g, t of a group G, gt^i denotes the element $t^{-1}gt$. Recall that a subset X of a group G is said to be symmetric if for any $x \in X$, we have $x^{-1} \in X$. In this paper all generating sets of groups under consideration are supposed to be symmetric.

All paths considered in this paper are combinatorial paths. Recall that a combinatorial path p in a CW-complex is a sequence of edges (i.e., 1-dimensional cells) $e_1e_2 \ldots e_k$, where $(e_i)_+ = (e_{i+1})_-$. If edges of the complex are labeled, we define the label of p by $\text{Lab}(p) \equiv \text{Lab}(e_1)\text{Lab}(e_2) \ldots \text{Lab}(e_k)$, where $\text{Lab}(e_i)$ is the label of e_i. We also denote by $p_+ = (e_1)_+$ and $p_- = (e_k)_-$ the origin and the terminus of p respectively. The length $l(p)$ of p is the number of edges of p.

Word metrics and Cayley graphs. Let G be a group generated by a (symmetric) set A. Recall that the Cayley graph $\Gamma(G, A)$ of a group G with respect to the set of generators A is an oriented labeled 1–complex with the vertex set $V(\Gamma(G, A)) = G$ and the edge set $E(\Gamma(G, A)) = G \times A$. An edge $e = (g, a)$ goes from the vertex g to the vertex ga and has label $\text{Lab}(e) \equiv a$. As usual, we denote the origin and the terminus of the edge e, i.e., the vertices g and ga, by e_- and e_+ respectively.

Associated to A is the so–called word metric on G. More precisely, the length $|g|_A$ of an
Figure 1: Δ' is a 0–refinement of the diagram Δ over the presentation $\langle a, b \mid a^3 = 1 \rangle$.
Recall that a path \(p \) in a metric space is called \((\lambda, c)\)-quasi-geodesic for some \(\lambda > 0, c \geq 0 \), if

\[
\text{dist}(q_-, q_+) \geq \lambda l(q) - c
\]

for any subpath \(q \) of \(p \). Let \(p \) be a path in a van Kampen diagram \(\Delta \) over \([4]\). We need the following result about quasi-geodesics in hyperbolic spaces (see, for example, [6, Ch. III. H, Theorem 1.7]).

Lemma 3.1. For any \(\delta \geq 0, \lambda > 0, c \geq 0 \), there exists a constant \(\kappa = \kappa(\delta, \lambda, c) \) with the following property. If \(M \) is a \(\delta \)-hyperbolic space and \(p,q \) are \((\lambda, c)\)-quasi-geodesic paths in \(M \) with same endpoints, then \(p \) and \(q \) belong to the closed \(\kappa \)-neighborhoods of each other.

The next result can be easily derived from the definition of a hyperbolic space by drawing the diagonal.

Lemma 3.2. Let \(M \) be a \(\delta \)-hyperbolic metric space, \(Q \) a geodesic quadrangle in \(M \). Then each side of \(Q \) belongs to the closed \(2\delta \)-neighborhood of the other three sides.

From Lemma 3.1 and Lemma 3.2, we immediately obtain

Corollary 3.3. For any \(\delta \geq 0, \lambda > 0, c \geq 0 \), there exists a constant \(K = K(\delta, \lambda, c) \) with the following property. Let \(Q \) be a quadrangle in a \(\delta \)-hyperbolic space whose sides are \((\lambda, c)\)-quasi-geodesic. Then each side of \(Q \) belongs to the closed \(K \)-neighborhood of the union of the other three sides.

Indeed it suffices to set \(K = 2(\kappa + \delta) \), where \(\kappa \) is provided by Lemma 3.1.

The proof of the next lemma is also straightforward (see [23, Lemma 1.7]).

Lemma 3.4. Let \(Q \) be a geodesic quadrangle with sides \(a,b,c,d \) in a \(\delta \)-hyperbolic space. Suppose that \(l(a) \geq 4 \max\{l(b), l(d)\} \). Then there exist subsegments \(p, q \) of the sides \(a \) and \(b \), respectively, such that

\[
\min\{l(p), l(q)\} \geq \frac{7}{20} l(a) - 8\delta \text{ and dist}(p_\pm, q_\pm) \leq 8\delta.
\]

Passing from geodesic to quasi-geodesic quadrangles one can easily obtain the following. The proof is straightforward and consists of replacing the quasi-geometric quadrangle with a geodesic one having the same vertices, application of Lemma 3.4, and then Lemma 3.1. We leave details to the reader.

Corollary 3.5. Let \(Q \) be a \((\lambda, c)\)-quasi-geodesic quadrangle with sides \(a,b,c,d \) in a \(\delta \)-hyperbolic space, \(\kappa = \kappa(\lambda, c) \) the constant provided by Lemma 3.1. Suppose that \(l(a) \geq (4 \max\{l(b), l(d)\} + c)/\lambda \). Then there exist subsegments \(p, q \) of the sides \(a \) and \(b \), respectively, such that

\[
\min\{l(p), l(q)\} \geq \frac{7}{20} (\lambda l(a) - c) - 8\delta - 2\kappa \text{ and dist}(p_\pm, q_\pm) \leq 8\delta + 2\kappa.
\]

The following lemma is also well known (see, for example, [6, CH. III.H, Theorem 1.13]). Recall that a path in a metric space is said to be \(k \)-local geodesic if any its subpath of length at most \(k \) is geodesic.

Lemma 3.6. Let \(r \) be a \(k \)-local geodesic in a \(\delta \)-hyperbolic metric space for some \(k > 8\delta \). Then \(r \) is \((1/3, 2\delta)\)-quasi-geodesic.
The next lemma can be found in [22, Lemma 25].

Lemma 3.7. There are positive constants $c_1 = c_1(\delta)$ and $c_2 = c_2(\delta)$ such that for any geodesic r-gon P in a δ-hyperbolic space, the following holds. Suppose that the set of sides of P is divided into three subsets N_1, N_2, N_3 and σ_i is the sum of lengths of sides from N_i, $i = 1, 2, 3$. Assume that $\sigma_1 > ar$ and $\sigma_2 < 10^{-3}ar$ for some $a \geq c_2$. Then there exist different sides $p_1 \in N_1$ and $p_2 \in N_1 \cup N_2$ and subsegments q_j of p_j, $j = 1, 2$, of lengths at least $10^{-3}a$ such that

$$\max\{\text{dist}((q_1)_-, (q_2)_-), \text{dist}((q_1)_+, (q_2)_+)\} \leq c_1.$$

Relatively hyperbolic groups. There are many equivalent definitions of relatively hyperbolic groups (see [5, 8, 25] and references therein). In this paper we use the isoperimetric characterization given in [25].

More precisely, let G be a group, $\{H_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$ if G is generated by X together with the union of all H_λ. (In what follows we X to be symmetric.) In this situation the group G can be regarded as a quotient group of the free product

$$F = \langle \ast_{\lambda \in \Lambda} H_\lambda \rangle \ast F(X),$$

where $F(X)$ is the free group with the basis X. Let N denote the kernel of the natural homomorphism $F \to G$. If N is the normal closure of a subset $Q \subseteq N$ in the group F, we say that G has relative presentation

$$\langle X, H_\lambda, \lambda \in \Lambda \mid Q \rangle.$$ \hfill (6)

If $\sharp X < \infty$ and $\sharp Q < \infty$, the relative presentation (6) is said to be finite and the group G is said to be finitely presented relative to the collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$.

Set

$$\mathcal{H} = \bigsqcup_{\lambda \in \Lambda} (H_\lambda \setminus \{1\}).$$

(7)

Given a word W in the alphabet $X \cup \mathcal{H}$ such that W represents 1 in G, there exists an expression

$$W = F \prod_{i=1}^k f_i^{-1} Q_i^{\pm 1} f_i$$

(8)

with the equality in the group F, where $Q_i \in Q$ and $f_i \in F$ for $i = 1, \ldots, k$. The smallest possible number k in a representation of the form (8) is called the relative area of W and is denoted by $\text{Area}^{rel}(W)$.

Definition 3.8. A group G is hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$ if G is finitely presented relative to $\{H_\lambda\}_{\lambda \in \Lambda}$ and there is a constant $L > 0$ such that for any word W in $X \cup \mathcal{H}$ representing the identity in G, we have $\text{Area}^{rel}(W) \leq L \|W\|$.

In particular, G is an ordinary hyperbolic group if G is hyperbolic relative to the trivial subgroup. An equivalent definition says that G is hyperbolic if it is generated by a finite set X and the Cayley graph $\Gamma(G, X)$ is hyperbolic. In the relative case these approaches are not equivalent, but we still have the following [25, Theorem 1.7].

10
Lemma 3.9. Suppose that G is a group hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$. Let X be a finite relative generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$. Then the Cayley graph $\Gamma(G, X \cup \mathcal{H})$ of G with respect to the generating set $X \cup \mathcal{H}$ is a hyperbolic metric space.

Observe also that the relative area of a word W representing 1 in G can be defined geometrically via van Kampen diagrams. Let G be a group given by the relative presentation \([5]\) with respect to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$. We denote by \mathcal{S} the set of all words in the alphabet \mathcal{H} representing the identity in the groups F defined by \([5]\). Then G has the ordinary (non–relative) presentation

$$G = \langle X \cup \mathcal{H} | \mathcal{S} \cup \mathcal{Q} \rangle.$$ \hfill (9)

A cell in van Kampen diagram Δ over \([6]\) is called a \mathcal{Q}–cell if its boundary is labeled by a word from \mathcal{Q}. We denote by $N_\mathcal{Q}(\Delta)$ the number of \mathcal{Q}–cells of Δ. Obviously given a word W in $X \cup \mathcal{H}$ that represents 1 in G, we have

$$\text{Area}^{rel}(W) = \min_{\text{Lab}(\partial \Delta) \equiv W} \{N_\mathcal{Q}(\Delta)\},$$

where the minimum is taken over all van Kampen diagrams with boundary label W.

H_λ–components. Finally we are going to recall an auxiliary terminology introduced in \([25]\), which plays an important role in our paper. Let G be a group, $\{H_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a finite generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$, q a path in the Cayley graph $\Gamma(G, X \cup \mathcal{H})$. A subpath p of q is called an H_λ–component for some $\lambda \in \Lambda$ (or simply a component) of q, if the label of p is a word in the alphabet $H_\lambda \setminus \{1\}$ and p is not contained in a bigger subpath of q with this property. Two H_λ–components p_1, p_2 of a path q in $\Gamma(G, X \cup \mathcal{H})$ are called connected if there exists a path c in $\Gamma(G, X \cup \mathcal{H})$ that connects some vertex of p_1 to some vertex of p_2 and $\text{Lab}(c)$ is a word consisting of letters from $H_\lambda \setminus \{1\}$. In algebraic terms this means that all vertices of p_1 and p_2 belong to the same coset gH_λ for a certain $g \in G$. Note that we can always assume c to have length at most 1, as every nontrivial element of H_λ is included in the set of generators. An H_λ–component p of a path q is called isolated if no distinct H_λ–component of q is connected to p.

The lemma below is a simplification of from \([25]\) Lemma 2.27).

Lemma 3.10. Suppose that G is a group that is hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$, X a finite generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$. Then there exists a constant $K > 0$ and a finite subset $\Omega \subseteq G$ such that the following condition holds. Let q be a cycle in $\Gamma(G, X \cup \mathcal{H}), p_1, \ldots, p_k$ a set of isolated H_λ–components of q for some $\lambda \in \Lambda$, g_1, \ldots, g_k the elements of G represented by the labels of p_1, \ldots, p_k respectively. Then for any $i = 1, \ldots, k$, g_i belongs to the subgroup $\langle \Omega \rangle \leq G$ and the lengths of g_i with respect to Ω satisfy the inequality

$$\sum_{i=1}^{k} |g_i|_{\Omega} \leq Kl(q).$$
4 Small cancellation conditions

The main aim of this and the following four sections is to generalize the small cancellation theory over hyperbolic groups developed by Olshanskii in [23] to relatively hyperbolic groups. The fact that the Cayley graph $\Gamma(G, X)$ of a hyperbolic group G generated by a finite set X is a hyperbolic metric space plays the key role in [23]. Lemma 3.9 allows to extend this theory to the case of relatively hyperbolic groups. However this extension is not straightforward as the Cayley graph $\Gamma(G, X \cup H)$ defined in the previous section is not necessarily locally finite.

Roughly speaking, one can divide results about small cancellation conditions from [23] into three classes. The first class consists of results about diagrams over presentations satisfying small cancellation conditions, which do not use local finiteness of Cayley graphs at all. They can be stated and proved in our settings without any essential changes. The main result of this kind is Lemma 4.4 stated below.

Proof of results from the second class do not use local finiteness of the Cayley graph either, but they do employ certain facts concerning geometric and algebraic properties of ordinary hyperbolic groups. These results can also be reproved with minor changes modulo the paper [25], where the corresponding facts about relatively hyperbolic groups are contained. For convenience of the reader we provide self-contained proofs in Sections 5 and 6.

Finally results of the third type explain how to chose words of some specific form satisfying small cancellation conditions. Unlike in ordinary small cancellation theory over a free group, verifying small cancellation conditions over hyperbolic groups is much harder and local finiteness of Cayley graphs is essentially used in [23]. Our approach here is different and is explained in Section 7.

Given a set of words \mathcal{R} in an alphabet \mathcal{A}, we say that \mathcal{R} is symmetrized if for any $R \in \mathcal{R}$, \mathcal{R} contains all cyclic shifts of $R^{\pm 1}$. Further let G be a group generated by a set \mathcal{A}. We say that a word R is (λ, c)-quasi-geodesic in G, if any path in the Cayley graph $\Gamma(G, \mathcal{A})$ labeled R is (λ, c)-quasi-geodesic.

Definition 4.1. Let G be a group generated by a set \mathcal{A}, \mathcal{R} a symmetrized set of words in \mathcal{A}. For $\varepsilon > 0$, a subword U of a word $R \in \mathcal{R}$ is called an ε-piece if there exists a word $R' \in \mathcal{R}$ such that:

1. $R \equiv UV, R' \equiv U'V'$, for some V, U', V';
2. $U' = YUZ$ in G for some words Y, Z in \mathcal{A} such that $\max\{|Y|, |Z|\} \leq \varepsilon$;
3. $YRY^{-1} \neq R'$ in the group G.

Similarly, a subword U of a word $R \in \mathcal{R}$ is called an ε'-piece if:

1'. $R \equiv UVU'V'$ for some V, U', V';
2'. $U' = YU^{\pm 1}Z$ in the group G for some Y, Z satisfying $\max\{|Y|, |Z|\} \leq \varepsilon$.

Recall that a word R in \mathcal{A} is said to be (λ, c)-quasi-geodesic, if some (equivalently, any) path labeled by R in $\Gamma(G, \mathcal{A})$ is (λ, c)-quasi-geodesic.
Definition 4.2. We say that the set \mathcal{R} satisfies the $C(\varepsilon, \mu, \lambda, c, \rho)$--condition for some $\varepsilon \geq 0$, $\mu > 0$, $\lambda > 0$, $c \geq 0$, $\rho > 0$, if

1. $\|R\| \geq \rho$ for any $R \in \mathcal{R}$;
2. any word $R \in \mathcal{R}$ is (λ, c)--quasi--geodesic;
3. for any ε--piece of any word $R \in \mathcal{R}$, the inequality $\max\{\|U\|, \|U'\|\} < \mu \|R\|$ holds (using the notation of Definition 4.1).

Further the set \mathcal{R} satisfies the $C_1(\varepsilon, \mu, \lambda, c, \rho)$--condition if in addition the condition (3) holds for any ε'–piece of any word $R \in \mathcal{R}$.

Suppose that G is a group defined by (10). Given a set of words \mathcal{R}, we consider the quotient group of G represented by

$$G_1 = \langle A \mid \mathcal{O} \cup \mathcal{R} \rangle. \quad (10)$$

A cell in a van Kampen diagram over (10) is called an \mathcal{R}--cell if its boundary label is a word from \mathcal{R}.

Let Δ be a van Kampen diagram over (10), q a subpath of $\partial \Delta$. Let also Π, Σ be \mathcal{R}--cells of Δ. Suppose that there is a simple closed paths

$$p = s_1q_1s_2q_2 \quad (11)$$

in Δ, where q_1 is a subpath of $\partial \Pi$, q_2 is a subpath of q (or $\partial \Sigma$), and

$$\max\{l(s_1), l(s_2)\} \leq \varepsilon \quad (12)$$

for some constant $\varepsilon > 0$. By Γ we denote the subdiagram of Δ bounded by p (see Fig. 2). If Γ contains no \mathcal{R}--cells, we say that Γ is an ε--contiguity subdiagram (or simply a contiguity subdiagram if ε is fixed) of Π to the subpath q of $\partial \Delta$ (or to Σ, respectively) and q_1 is the
contiguity arc of \(\Pi \) to \(q \) (respectively, \(\Sigma \)). The ratio \(l(q_1)/l(\partial \Pi) \) is called the contiguity degree of \(\Pi \) to \(q \) (respectively, \(\Sigma \)) and is denoted by \((\Pi, \Gamma, q)\) (respectively, \((\Pi, \Gamma, \Sigma)\)). In case \(q = \partial \Delta \), we talk about contiguity subdiagrams, etc., of \(\Pi \) to \(\partial \Delta \).

A van Kampen diagram \(\Delta \) over (14) is said to be reduced if \(\Delta \) has minimal number of \(\mathcal{R} \)-cells among all diagrams over (14) having the same boundary label.

The lemma below may be seen as a geometric reformulation of the small cancellation condition (see [23, Lemma 5.2]). We provide the proof here for the sake of completeness.

Lemma 4.3. Suppose that \(\mathcal{R} \) satisfies the \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition for some values of the parameters. Let \(\Delta \) be a reduced diagram over (14). Then for every \(\varepsilon \)-contiguity subdiagram \(\Gamma \) of a cell \(\Pi \) to another cell \(\Sigma \), we have

\[
\max\{(\Pi, \Gamma, \Sigma), (\Sigma, \Gamma, \Pi)\} < \mu. \tag{13}
\]

Proof. Let \(\partial \Gamma = s_1q_1s_2q_2 \) as above (see Fig. 2). Let \(\partial \Pi = qa \) and \(\partial \Sigma = qb \). Then the word \(U \equiv \text{Lab}(q_1) \) is an \(\varepsilon \)-piece. Indeed the first two conditions in Definition 4.2 are satisfied. If the third condition is not, then \(\text{Lab}(s_1)\text{Lab}(\partial \Pi)\text{Lab}(s_1)^{-1} = \text{Lab}(\partial \Sigma) \). That is, \(\text{Lab}(s_1q_1as_1^{-1}bq_2) = 1 \) in \(G \). Hence we can cut the subdiagram of \(\Delta \) bounded by \(s_1q_1as_1^{-1}bq_2 \) and fill the obtained hole with a diagram over (14) without \(\mathcal{R} \)-cells reducing the number of \(\mathcal{R} \)-cells by \(2b \). This contradicts the assumption that \(\Delta \) is reduced. Thus \(U \) is an \(\varepsilon \)-piece, and (13) follows from the \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition.

When dealing with a diagram \(\Delta \) over (14), it is convenient to consider the following transformations. Let \(\Sigma \) be a subdiagram of \(\Delta \) which contains no \(\mathcal{R} \)-cells, \(\Sigma' \) another diagram over (14) with \(\text{Lab}(\partial \Sigma) = \text{Lab}(\partial \Sigma') \). Then we can cut off \(\Sigma \) and fill the obtained hole with \(\Sigma' \). Note that this transformation does not affect \(\text{Lab}(\partial \Delta) \) and the number of \(\mathcal{R} \)-cells in \(\Delta \). If two diagrams over (14) can be obtained from each other by a sequence of such transformations, we call them \(\mathcal{O} \)-equivalent.

The following is an analogue of the well known Greendlinger Lemma. Recall that a path \(p \) in \(\Delta \) is called \((\lambda, c)\)-quasi-geodesic, if its label is \((\lambda, c)\)-quasi-geodesic, i.e., some (equivalently, any) path in \(\Gamma(G, A) \) with the same label is \((\lambda, c)\)-quasi-geodesic.

Lemma 4.4. Let \(G \) be a group with a presentation \(G = \langle A | \mathcal{O} \rangle \). Suppose that the Cayley graph \(\Gamma(G, A) \) of \(G \) is hyperbolic. Then for any \(\lambda \in (0, 1], c \geq 0, \) and \(\mu \in (0, 1/16], \) there exist \(\varepsilon \geq 0 \) and \(\rho > 0 \) with the following property. Let \(\mathcal{R} \) be a symmetrized set of words in \(A \) satisfying the \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition, \(\Delta \) a reduced van Kampen diagram over the presentation (14) whose boundary is \((\lambda, c)\)-quasi-geodesic. Assume that \(\Delta \) has at least one \(\mathcal{R} \)-cell. Then there exists a diagram \(\Delta' \) which is \(\mathcal{O} \)-equivalent to \(\Delta \), an \(\mathcal{R} \)-cell \(\Pi \) in \(\Delta' \), and an \(\varepsilon \)-contiguity subdiagram \(\Gamma' \) of \(\Pi \) to \(\partial \Delta' \) such that

\[
(\Pi, \Gamma, \partial \Delta') > 1 - 13\mu.
\]

The proof of this lemma is actually given in [23, Lemma 6.6] (see also the addendum in [24]) under the additional assumption that \(A \) is finite (i.e., the group \(G \) is hyperbolic). However the finiteness of \(A \) was not used in the proof, so the same proof works in our case without any changes. Following the referee’s recommendation, we provide a self-contained proof of Lemma 4.4 in Appendix.
5 Relative hyperbolicity of the quotient

Our next goal is to show that adding relations satisfying sufficiently strong small cancellation conditions preserves relative hyperbolicity. Throughout the rest of the paper (except the Appendix), let G be a group hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$, X a finite relative generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$, $A \cup H$ and $O = S \cup Q$, where S and Q are defined as in (10). In the proof of the lemma below we follow the idea from [23, Lemma 6.7] with little changes.

Lemma 5.1. For any $\lambda \in (0, 1], c \geq 0, N > 0$, there exist $\mu > 0, \varepsilon \geq 0$, and $\rho > 0$ such that for any finite symmetrized set of words \mathcal{R} satisfying the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition, the following hold.

1. The group G_1 defined by (10) is hyperbolic relative to the collection of images of subgroups $H_\lambda, \lambda \in \Lambda$, under the natural homomorphism $G \rightarrow G_1$. In particular, the Cayley graph of G_1 with respect to the generating set A is hyperbolic.

2. The restriction of the natural homomorphism $\gamma: G \rightarrow G_1$ to the subset of elements of length at most N with respect to the generating set A is injective.

Proof. Let us fix $\lambda, c > 0$ and sufficiently small $\mu < 1/16$. The exact value of μ required can easily extracted from the proof. If what follows, we assume that μ is small enough comparably to λ. Further we choose the constants ε and ρ according to Lemma 4.4. Since the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition becomes stronger as ρ increases, we may increase ρ if necessary without violating the conclusion of Lemma 4.4. The exact lower bound can be easily extracted from our proof.

For a word W in the alphabet $X \cup H$ that represents 1 in G_1, we denote by $\text{Area}^{rel}_1(W)$ its relative area, that is the minimal number k in a representation of type

$$W = F \prod_{i=1}^{k} f_i R_i^{\pm 1} f_i^{-1}$$

with the equality in the group F defined by (5), where $R_i \in R \cup Q$. Similarly, by $\text{Area}^{rel}(W)$ we denote the relative area of a word W representing 1 in G, i.e., the minimal number k in the above decomposition, where $R_i \in \mathcal{R}$.

As G is hyperbolic relative to $\{H_\lambda\}_{\lambda \in \Lambda}$, there exists a constant $L > 0$ such that for any word W in $X \cup H$ representing 1 in G, we have $\text{Area}^{rel}(W) \leq L\|W\|$. To prove the lemma it suffices to show that there is a constant $\alpha > 0$ such that for any word W representing 1 in G_1, $\text{Area}^{rel}_1(W) \leq \alpha\|W\|$. We are going to prove this inequality for

$$\alpha = \frac{3L}{\lambda - 27\mu}.$$

We proceed by induction on the length of W. Let p be a path labeled by W in $\Gamma(G, X \cup H)$. Suppose first that p is not $(1/2, 0)$-quasi–geodesic. Passing to a cyclic shift of W if necessary, we may assume that $p = p_0 p_1$, where p_0 is a subpath of p such that $\text{dist}_{X \cup H}((p_0)_-, (p_0)_+) < l(p_0)/2$. Let q be a geodesic path in $\Gamma(G, X \cup H)$ that goes from
respectively. Then

\[W = F(U_0V^{-1})(VU_1), \]

where \(U_0V^{-1} \) represents 1 in \(G \) and \(VU_1 \) represents 1 in \(G_1 \). Obviously we have

\[\|VU_1\| \leq l(p) - l(p_0) + l(q) < \|W\| - \frac{l(p_0)}{2} \]

and

\[\|U_0V^{-1}\| \leq l(p_0) + l(q) < \frac{3l(p_0)}{2}. \]

Using the inductive hypothesis, we obtain

\[\text{Area}_{rel}(W) \leq \text{Area}_{rel}(VU_1) + \text{Area}_{rel}(U_0V^{-1}) \]

\[< \alpha \left(\|W\| - \frac{1}{2}l(p_0) \right) + \frac{3}{2}l(p_0) < \alpha \|W\| \]

as \(\alpha > 3L \).

Now suppose that \(p \) is a \((1/2, 0)-\)quasi–geodesic path in \(\Gamma(G, X \cup H) \). Since \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition implies \(C(\varepsilon, \mu, 1/2, c, \rho) \) whenever \(\lambda > 1/2 \), it suffices to prove the lemma for \(\lambda \leq 1/2 \). So we may assume that \(p \) is \((\lambda, c)\)-quasi–geodesic as well. Let \(\Delta \) be a reduced diagram over \((10)\) such that \(\partial \Delta \) is labeled \(W \). Assume that \(\Delta \) has at least one \(R \)-cell. (Otherwise the lemma is obviously true.) Passing to an \(O \)-equivalent diagram if necessary and using Lemma 4.4, we can find an \(R \)-cell \(\Pi \) and a contiguity subdiagram \(\Gamma \) of \(\Pi \) to \(\partial \Delta \) with \((\Pi, \Gamma, \partial \Delta) > 1 - 13\mu \). Let \(\partial \Gamma = s_1q_1s_2q_2 \), where \(q_1 \) (respectively \(q_2 \)) is a subpath of \(\partial \Pi \) (respectively \(\partial \Delta \)) and \(\max \{\|s_1\|, \|s_2\|\} \leq \varepsilon \). Let also \(\partial \Pi = q_1u \) and \(\partial \Delta = wq_2 \).

Note that perimeter of the subdiagram \(\Xi \) of \(\Delta \) bounded by the path \(s_2^{-1}us_1^{-1}w \) is smaller than perimeter of \(\Delta \) if \(\rho \) is large enough and \(\mu \) is close to zero. Indeed as \(\Gamma \) contains no \(R \)-cells, we can regard \(s_1q_1s_2q_2 \) as a cycle in the Cayley graph \(\Gamma(G, X \cup H) \). Thus,

\[l(q_2) \geq \text{dist}_{X \cup H}((q_2)_-, (q_2)_+) \geq \text{dist}_{X \cup H}((q_1)_-, (q_1)_+) - 2\varepsilon \geq \lambda l(q_1) - c - 2\varepsilon \]

\[\geq \lambda(1 - 13\mu) l(\partial \Pi) - c - 2\varepsilon \geq \lambda(1 - 13\mu) \rho - c - 2\varepsilon. \]

(Recall that \(l(\partial \Pi) \geq \rho \) by the \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition.) On the other hand,

\[l(s_2^{-1}us_1^{-1}) \leq 2\varepsilon + 13\mu l(\partial \Pi) \leq 2\varepsilon + 13\mu \rho. \]

If \(\rho \) is big enough and \(\mu \) is small enough, the right side of (14) is greater than the right side of (15) and hence \(l(\partial \Xi) < l(\partial \Delta) \).

Therefore, by induction the total number \(n_1 \) of \(R \)- and \(Q \)-cells in \(\Xi \) is at most

\[n_1 \leq \alpha l(\partial \Xi) \leq \alpha(\|W\| - l(q_2) + l(s_2^{-1}us_1^{-1})) \]

\[\leq \alpha(\|W\| - l(\partial \Pi)(\lambda - 26\mu) + c + 4\varepsilon). \]
Furthermore, as \(q_2 \) is \((1/2, 0) \)-quasi–geodesic in \(\Gamma(G, X \cup H) \), we have

\[
l(q_2) \leq 2 \text{dist}_{X \cup H}((q_2)_-, (q_2)_+) \leq 2 \text{dist}_{X \cup H}((q_1)_-, (q_1)_+) + 2\varepsilon \leq 2l(\partial \Pi) + 4\varepsilon.
\]

Therefore, the perimeter of \(\Gamma \) satisfies

\[
l(\partial \Gamma) \leq 2\varepsilon + l(q_1) + l(q_2) \leq 3l(\partial \Pi) + 6\varepsilon.
\]

Hence we may assume that the number \(n_2 \) of \(Q \)-cells of \(\Gamma \) is at most

\[
n_2 \leq Ll(\partial \Pi) \leq 3L.l(\partial \Pi) + 6\varepsilon \leq \alpha.l(\partial \Pi)(\lambda - 27\mu) + 2\varepsilon.
\]

Finally, combining (16) and (17), we obtain

\[
\text{Area}_{1}^{\text{rel}}(W) \leq n_1 + n_2 \leq \alpha(\|W\| - \mu l(\partial \Pi) + c + 6\varepsilon) \leq \alpha\|W\|
\]

whenever \(\rho \) is big enough. This completes the proof of relative hyperbolicity of \(G_1 \). The hyperbolicity of the Cayley graph follows from Lemma 3.9.

Note that if \(\mu < 1/30 \), the inequality (14) implies

\[
\|W\| \geq \frac{1}{2}\lambda\rho - c - 2\varepsilon
\]

for every non–trivial word \(W \) which is geodesic in \(G \) and represents 1 in \(G_1 \). Therefore, the second statement of the lemma holds if we assume \(\rho \geq 2(N + c + 2\varepsilon)/\lambda \). \(\square \)

6 Torsion in the quotient

We keep all assumptions and notation introduced in the beginning of the previous section. Our next goal is to describe periodic elements in the quotient group \(G \) of a relatively hyperbolic group \(G_1 \). To this end we need an auxiliary result.

Recall that for an element \(g \in G \), the translation number of \(g \) with respect to \(A \) is defined to be

\[
\tau_A(g) = \lim_{n \to \infty} \frac{|g^n|_A}{n}.
\]

This limit always exists and is equal to \(\inf_n (|g^n|_A/n) \). The lemma below can be found in \cite[Theorem 4.43]{25}.

Lemma 6.1. There exists \(d > 0 \) such that for any hyperbolic element of infinite order \(g \in G \) we have \(\tau_{X \cup H}(g) \geq d \).

For our goals, even a stronger result is necessary.

Lemma 6.2. There exist \(\alpha > 0 \) and \(a \geq 0 \) with the following property. Suppose that \(g \) is a hyperbolic element of \(G \) of infinite order such that \(g \) has the smallest length among all elements of the conjugacy class \(g^G \). Denote by \(U \) a shortest word in the alphabet \(X \cup H \) representing \(g \). Then for any \(n \in \mathbb{N} \), any path in \(\Gamma(G, X \cup H) \) labeled \(U^n \) is \((\alpha, a) \)-quasi–geodesic.
Proof. Recall that $\Gamma(G, X \cup H)$ is hyperbolic by Lemma 3.9. First suppose that $|g|_{X \cup H} = \|U\| > 8\delta$, where δ is the hyperbolicity constant of $\Gamma(G, X \cup H)$. Since g is a shortest element in g^G and U is a shortest word representing g, there exists $k > 8\delta$ so that the path p labeled U^n is a k–local geodesic in $\Gamma(G, X \cup H)$ for any n. Therefore, by Lemma 3.6, p is $(1/3, 2\delta)$–quasi–geodesic.

Further if $|g|_{X \cup H} = \|U\| \leq 8\delta$, then for any $n \in \mathbb{N}$, we have

$$|g^n|_{X \cup H} \leq n \inf_i \left(\frac{1}{i} |g^i|_{X \cup H} \right) \geq nd \geq \frac{d}{8\delta} n|g|_{X \cup H},$$

where d is the constant provided by Lemma 6.1. Hence the path p labeled U^n is $(\frac{d}{8\delta}, 8\delta)$–quasi–geodesic. It remains to set $\alpha = \min\{\frac{1}{3}, \frac{d}{8\delta}\}$ and $a = 8\delta$.

Lemma 6.3. For any $\lambda \in (0, 1], c \geq 0$ there are $\mu > 0$, $\varepsilon \geq 0$, and $\rho > 0$ such that the following condition holds. Suppose that R is a symmetrized set of words in A satisfying the $C_1(\varepsilon, \mu, \lambda, c, \rho)$–condition. Then every element of finite order in the group G_1 given by (10) is the image of an element of finite order of G.

Proof. Let us fix $\lambda, c > 0$. Observe that the $C_1(\varepsilon, \mu, \lambda, c, \rho)$–condition becomes stronger as λ increases and c decreases. Hence it suffices to prove the lemma assuming that $\lambda < \alpha$ and $c > a$ for α and a provided by Lemma 5.2. Let us choose constants $1/16 > \mu > 0$, $\varepsilon > 0$, $\rho > 0$ such that

(*) the conclusion of Lemma 4.4 holds.

Again as in the proof of Lemma 5.1, we note that the $C_1(\varepsilon, \mu, \lambda, c, \rho)$–condition becomes stronger as μ decreases and ε, ρ increase. Hence we may decrease μ and then increase ρ and ε if necessary without violating (*). In particular, without loss of generality, we may assume that

$$\varepsilon > 2\kappa + 8\delta,$$

where $\kappa = \kappa(\lambda, c)$ is the constant provided by Lemma 3.1 and δ is the hyperbolicity constant of $\Gamma(G, X \cup H)$. We fix ε from now on.

Suppose that g is an element of order $n > 0$ in G_1 such that its preimage has infinite order in G. Assume also that g has the smallest length among all elements from the conjugacy class g^{G_1}. Denote by U a shortest word in the alphabet $X \cup H$ representing g in G_1. Then there exists a diagram Δ over (10) with boundary label U^n. By Lemma 6.2, the label of $\partial\Delta$ is (λ, c)–quasi–geodesic in G and Δ contains at least one R–cell. (For otherwise Δ is a diagram over (11) and $U^n = 1$ in G.) Note that passing from Δ to an O–equivalent diagram does not affect $\partial\Delta$ and the number of R–cells. Thus by Lemma 4.4 we can assume that there exists an R–cell Π in Δ and ε–contiguity subdiagram Γ of Π to $\partial\Delta$ such that $(\Pi, \Gamma, \partial\Delta) > 1 - 13\mu$.

Let $\partial\Gamma = s_1q_1s_2q_2$ as on Fig. 1. Since Γ has no R–cells, we may think of $s_1q_1s_2q_2$ as a quadrangle in $\Gamma(G, X \cup H)$, where q_i is (λ, c)–quasi–geodesic, and $l(s_i) \leq \varepsilon$ for $i = 1, 2$. Therefore we have

$$l(q_2) \geq dist_{X \cup H}((q_2)^-, (q_2)^+) \geq dist_{X \cup H}((q_1)^-, (q_1)^+) - l(s_1) - l(s_2)$$

$$\geq \lambda l(q_1) - c - 2\varepsilon \geq \lambda(1 - 13\mu)l(\partial\Pi) - c - 2\varepsilon \geq \lambda(1 - 13\mu)\rho - c - 2\varepsilon. \quad (19)$$
For definiteness, assume that \(r \) large enough we can make \(l(q_2) \) as large as we want.

Passing from \(U \) to a cyclic shift of \(U^\pm \) if necessary, we may assume that \(\text{Lab}(q_2) \) is a prefix of \(U^n \). We now have three cases to consider. Our goal is to show that neither of them is possible whenever \(\mu \) is small enough and \(\rho \) is large enough.

Case 1. Suppose that \(l(q_2) \geq 4\|U\|/3 \). This allows us to find two long disjoint equal subwords of \(\text{Lab}(q_2) \). More precisely, we decompose \(\text{Lab}(q_2) \) as \(\text{Lab}(q_2) \equiv WV_1WV_2 \), where

\[
\lambda^2 l(q_2)/5 \leq \|W\| \leq \lambda^2 l(q_2)/4
\]

and

\[
\|V_1\| > l(q_2)/3.
\]

Let \(q_2 = w_1v_1w_2v_2 \) be the corresponding decomposition of the path \(q_2 \). Corollary \ref{cor:subquasigeo} applied to the quadrangle \(s_1q_1s_2q_2 \) implies that there is a point \(o \in q_1 \) such that \(\text{dist}_{\partial H}(o, (w_1)_{\pm}) \leq K + \varepsilon \), where \(K \) depends on \(\lambda, c, \) and \(\delta \) only. Let \(q_1^{-1} = r_1t \), where \((r_1)_{\pm} = o. \) Thus we have

\[
dist_{\partial H}((r_1)_{\pm}, (w_1)_{\pm}) \leq K + \varepsilon
\]

Similarly one can find a subpath \(r_2^\xi, \xi = \pm 1, \) of \(q_1^{-1} \) such that

\[
dist_{\partial H}((r_2^\xi)_{\pm}, (w_2)_{\pm}) \leq K + \varepsilon.
\]

We note that \(r_1 \) and \(r_2 \) are disjoint. Indeed otherwise \(r_1 \) passes through \((r_2)_- \) or \((r_2)_+ \).

For definiteness, assume that \((r_2)_- \in r_1. \) Then we have

\[
l(r_1) \leq \frac{1}{\lambda}(\text{dist}_{\partial H}((r_1)_-, (r_1)_+) + c) \leq \frac{1}{\lambda}(l(w_1) + 2\varepsilon + K + c)
\]

\[
= \frac{1}{\lambda}(\|W\| + 2\varepsilon + K + c) \leq \lambda l(q_2)/4 + (2\varepsilon + K + c)/\lambda.
\]

On the other hand,

\[
l(r_1) \geq \text{dist}_{\partial H}((r_1)_-, (r_2)_-) \geq \lambda(\|w_1v_1\| - c - 2\varepsilon - K \geq \lambda\|V_1\| - c - 2\varepsilon - K \geq \lambda l(q_2)/3 - c - 2\varepsilon - K.
\]

These inequalities contradict each other if \(l(q_2) \) is large enough. As explained before, the later condition can always be ensured by choosing sufficiently large \(\rho \) (see \ref{rem:largeU}).

Thus we have a decomposition \(q_1^{-1} = r_1t_1r_2^\xi t_2, \xi = \pm 1. \) Let \(\text{Lab}(q_1)^{-1} \equiv R_1T_1R_2T_2 \) be the corresponding decomposition of the label. By \ref{eq:dist} and \ref{eq:dist2}, we have \(R_1 = Y_1WZ_1 \) and \(R_2 = Y_2W^\pm Z_2 \) in \(G \), where \(\|Y_i\|, \|X_i\| \leq K + \varepsilon \) for \(i = 1, 2. \) Hence \(R_1 = YR_2^\pm Z \) in \(G \), where \(\|Y\|, \|Z\| \leq 2(K + \varepsilon). \) Without loss of generality, we may assume that words \(Y \) and \(Z \) are geodesic in \(G \). Let \(abz \) be the corresponding rectangle in \(\Gamma(G, X \cup H) \), where \(\text{Lab}(a) \equiv R_1^{-1}, \text{Lab}(y) \equiv Y, \text{Lab}(b) \equiv R_2^\pm, \text{Lab}(z) \equiv Z. \) Recall that \(R_1, R_2 \) are subwords of the \((\lambda, c)\)-quasi-geodesic word \(\text{Lab}(\partial K). \) Hence \(a, b \) are \((\lambda, c)\)-quasi-geodesic.

19
Using (19) and the triangle inequality, we obtain
\[
l(a) = \|R_1\| \geq \text{dist}_{X \cup H}((r_1)_-, (r_1)_-)
\]
\[
\geq \text{dist}_{X \cup H}((w_1)_-, (w_1)_+) - l(s_1) - \text{dist}_{X \cup H}((r_1)_+, (w_1)_+)
\]
\[
\geq \lambda l(w_1) - c - 2\varepsilon - K = \lambda \|W\| - c - 2\varepsilon - K \tag{22}
\]
\[
\geq \lambda^3 l(q_2)/5 - c - 2\varepsilon - K
\]
\[
\geq \lambda^3[\lambda(1 - 13\mu)\rho - c - 2\varepsilon]/5 - c - 2\varepsilon - K
\]

Clearly we can ensure \(l(a) > (4 \max\{l(y), l(z)\} + c)/(\lambda\cdot\lambda)\) by taking large enough \(\rho\). This allows us to apply Corollary 3.5. Thus we obtain subsegments \(a', b'\) of the sides \(a\) and \(b\), respectively, such that the distances between the corresponding ends of these subsegments is at most \(8\delta + 2\kappa\). Let \(A = \text{Lab}(a')\), \(B = \text{Lab}(b')\). Then \(A = CB^{\pm 1}D\) in \(G\), where \(\|C\|, \|D\| \leq 8\delta + 2\kappa < \varepsilon\) by (18). Using this and (22), we obtain
\[
\min\{\|A\|, \|B\|\} \geq \frac{7}{20}(\lambda l(a) - c) - 8\delta - 2\kappa \geq \mu\rho \geq \mu l(\partial\Pi)
\]
if \(\mu\) is small enough and \(\rho\) is large enough. Since \(A\) and \(B\) are disjoint subwords of \(\text{Lab}(\partial\Pi)\), this contradicts the \(C_1(\varepsilon, \mu, \lambda, c, \rho)\)–condition.

Case 2. Suppose that \(\|U\| \leq l(q_2) \leq 4\|U\|/3\), i.e., \(\text{Lab}(q_2) \equiv UV\) for some (may be empty) word \(V\), \(\|V\| \leq \|U\|/3\). Note that \(\text{Lab}(q_2) = \text{Lab}(s_2^{-1}us_1^{-1})\) in \(G_1\), hence \(g = \text{Lab}(s_2^{-1}us_1^{-1})V^{-1}\) in \(G_1\). Since \(U\) is the shortest word representing \(g\) in \(G_1\), we obtain
\[
\|U\| \leq 2\varepsilon + 13\mu l(\partial\Pi) + \|V\| \leq 2\varepsilon + 13\mu l(\partial\Pi) + \|U\|/3.
\]
Consequently,
\[
\|U\| \leq 3(2\varepsilon + 13\mu l(\partial\Pi))/2 \leq 3(2\varepsilon + 13\mu\rho)/2. \tag{23}
\]
On the other hand, using (19) we obtain
\[
\|U\| \geq 3l(q_2)/4 \geq 3(\lambda(1 - 13\mu)\rho - c - 2\varepsilon)/4.
\]
The later inequality contradicts (23) whenever \(\mu\) is small enough and \(\rho\) is large enough.

Case 3. Suppose that \(l(q_2) < \|U\|\), i.e., \(\text{Lab}(q_2)\) is a subword of \(U\). Again since \(U\) is the shortest word representing \(g\) in \(G_1\), we have \(\|\text{Lab}(q_2)\| \leq \|Q\|\) for every word \(Q\) such that \(Q = \text{Lab}(q_2)\) in \(G_1\). In particular, for \(Q = \text{Lab}(s_2^{-1}us_1^{-1})\), we obtain
\[
\|Q\| \geq \|\text{Lab}(q_2)\| = l(q_2) \geq \lambda(1 - 13\mu)\rho - c - 2\varepsilon. \tag{24}
\]
by (19). On the other hand, we obviously have \(\|Q\| \leq 2\varepsilon + 13\mu l(\partial\Pi) < 2\varepsilon + 13\mu\rho\), which contradicts (24) if \(\mu\) is small enough and \(\rho\) is large enough.

\[
20
\]
7 Words with small cancellations

Recall that G denotes a group hyperbolic relative to a collection of subgroups $\{H_\lambda\}_{\lambda \in \Lambda}$. X denotes a finite relative generating set of G with respect to $\{H_\lambda\}_{\lambda \in \Lambda}$. As above we set $A = X \cup H$. Our main goal here is to show that a certain set of words over the alphabet A satisfies the small cancellation conditions described above.

More precisely, suppose that W is a word satisfying the following conditions.

1. $W \equiv x a_1 b_1 \cdots a_n b_n$ for some $n \geq 1$, where:
 - $x \in X \cup \{1\}$;
 - a_1, \ldots, a_n (respectively b_1, \ldots, b_n) are elements of H_α (respectively H_β), where $H_\alpha \cap H_\beta = \{1\}$;
 - the elements $a_1, \ldots, a_n, b_1, \ldots, b_n$ do not belong to the set $\mathcal{F} = \mathcal{F}(\varepsilon) = \{g \in \langle \Omega \rangle : |g|_\Omega \leq K(32 \varepsilon + 70)\}$, where ε is some non-negative integer and the set Ω and the constant K are provided by Lemma 3.10.

Let SW denote the set of all subwords of cyclic shifts of $W^{\pm 1}$. As in [25], we say that a path p in $\Gamma(G, X \cup H)$ is a path without backtracking if all components of p are isolated.

Lemma 7.1. Suppose p is a path in $\Gamma(G, X \cup H)$ such that $\text{Lab}(p) \in SW$. Then

1. p is a path without backtracking.
2. p is $(1/3, 2)$–quasi–geodesic.

Proof. 1) Suppose that $p = p_1 sp_2 tp_3$, where s and t are two connected components. Passing to another pair of connected components of p if necessary, we may assume that p_2 is a path without backtracking. For definiteness, we also assume that s and t are H_α–components. Let e denote a path of length at most 1 in $\Gamma(G, X \cup H)$ connecting s_+ to t_- and labeled by an element of H_α (see Fig. 3). It follows from our choice of W and the condition $H_\alpha \cap H_\beta = \{1\}$ that $l(p_2) \geq 2$. Thus p_2 contains $m \geq l(p_2)/2 \geq 1$ H_β–components, say r_1, \ldots, r_m, and all these components are isolated components of the cycle $d = ep_2^{-1}$. Let g_1, \ldots, g_m be elements of G represented by the labels of r_1, \ldots, r_m. By Lemma 3.10, $g_i \in \langle \Omega \rangle$, $i = 1, \ldots, m$. According to (W4), we have

$$\sum_{i=1}^{m} |g_i|_\Omega \geq 70Km \geq 35Kl(p_2) > K(l(p_2) + 1) = K(l(d)).$$
This contradicts Lemma 3.10.

2) Since the set \(SW \) is closed under taking subwords, it suffices to show that \(\text{dist}_{X \cup \mathcal{H}}(p_-, p_+) \geq l(p)/3 - 2 \). In case \(l(p) \leq 6 \) this is obvious, so we assume \(l(p) > 6 \). Suppose that \(\text{dist}_{X \cup \mathcal{H}}(p_-, p_+) < l(p)/3 - 2 \). Let \(c \) denote a geodesic in \(\Gamma(G, X \cup \mathcal{H}) \) such that \(c_- = p_- \) and \(c_+ = p_+ \). Since \(p \) is a path without backtracking, any \(H_\alpha \)-component of \(p \) is connected to at most one \(H_\alpha \)-component of \(c \). Obviously the path \(p \) contains at least \(l(p)/2 - 1 \) \(H_\alpha \)-components. Therefore, at least

\[
k = l(p)/2 - 1 - l(c) > l(p)/2 - 1 - (l(p)/3 - 2) > l(p)/6 > 1
\]

of them are isolated \(H_\alpha \)-components of the cycle \(pc_1 \). Let \(f_1, \ldots, f_k \) be the elements of \(G \) represented by these components. Then as above we have \(f_i \in \langle \Omega \rangle, i = 1, \ldots, k \). By (W4), we obtain

\[
\sum_{i=1}^{k} |f_i| \geq 70Kk > 2Kl(p) > Kl(pc_1).
\]

This leads to a contradiction again. \(\square \)

Lemma 7.2. Suppose that \(upv^{-1}q^{-1} \) is an arbitrary quadrangle in \(\Gamma(G, X \cup \mathcal{H}) \) satisfying the following conditions:

(a) \(\text{Lab}(p) \equiv \text{Lab}(q^{-1}) \in SW \);
(b) \(\max\{l(u), l(v)\} \leq \varepsilon \);
(c) \(l(p) = l(q) \geq 6\varepsilon + 22 \).

Then the paths \(p \) and \(q \) have a common edge.

The proof of Lemma 7.2 is based on the following two results. (We keep the notation of Lemma 7.2 there.)

Lemma 7.3. Let us divide \(p \) into three parts \(p = p_1p_0p_2 \) such that

\[
l(p_1) = l(p_2) = 3\varepsilon + 6.
\]

Suppose that \(s \) is a component of \(p_0 \). Then \(s \) can not be connected to a component of paths \(u \) or \(v \).

Proof. Suppose that a component \(s \) of \(p_0 \) is connected to a component \(t \) of \(u \). Then \(\text{dist}_{X \cup \mathcal{H}}(s_+, t_+) \leq 1 \). Recall that the segment \([p_-, s_+] \) of \(p \) is \((1/3, 2)\)-quasi-geodesic by Lemma 7.1. Hence,

\[
l(p_1) < l([p_-, s_+]) \leq 3(\text{dist}_{X \cup \mathcal{H}}(p_-, s_+) + 2)
\]

\[
\leq 3(\text{dist}_{X \cup \mathcal{H}}(p_-, t_+) + \text{dist}_{X \cup \mathcal{H}}(t_+, s_+) + 2)
\]

\[
\leq 3(l(u) - 1 + 1 + 2) \leq 3\varepsilon + 6.
\]

However, this contradicts (26). Similarly \(s \) can not be connected to a component of \(v \). \(\square \)
Lemma 7.4. Let s_1, \ldots, s_k be consecutive components of p_0. Then q can be decomposed as $q = q_1t_1 \cdots q_kt_kq_{k+1}$, where

1) t_i is a component of q connected to s_i, $i = 1, \ldots, k$;

2) q_i contains no components for $i = 2, \ldots, k$, i.e. either $\text{Lab}(q_i) \equiv x$ or q_i is trivial.

Proof. To prove the first assertion of the lemma we proceed by induction. First let us show that s_1 is not isolated in $d = upv^{-1}q^{-1}$.

Indeed assume s_1 is isolated in d. Suppose for definiteness that s_1 is an H_α–component. We consider the maximal subpath s of p_0 such that s contains s_1 and all H_α–components of s are isolated in d. By maximality of s, either $s_- = (p_0)_-$, or $s_- = r_+$ for a certain H_α–component r of p_0 such that r is not isolated in d. (According to Lemma 7.3 this means that r is connected to an H_α–component of q.) In the first case we denote by f_1 the path up_1. In the second case, let f_1 be a path of length ≤ 1 that connects an H_α–component of q to r. In both cases we have $l(f_1) \leq 4\varepsilon + 6$. It follows from the choice of s that no H_α–component of s is connected to an H_α–component of f_1. Similarly we construct a path f_2 such that $(f_2)_- \in q$, $(f_2)_+ = s_+$, $l(f_2) \leq 4\varepsilon + 6$, and no H_α–component of s is connected to an H_α–component of f_2.

Clearly all H_α–components of s are isolated in the cycle $c = f_1sf_2^{-1}[(f_2)_-,(f_1)_-]$, where $[(f_2)_-,(f_1)_-]$ is a segment of $q^{\pm 1}$. We have

$$\text{dist}_{X\cup H}((f_1)_-,(f_2)_-) \leq l(f_1) + l(s) + l(f_2) \leq 8\varepsilon + 12 + l(s).$$

Consequently,

$$l([(f_1)_-,(f_2)_-]) \leq 3\text{dist}_{X\cup H}((f_1)_-,(f_2)_-) + 2 \leq 24\varepsilon + 42 + 3l(s).$$

Finally,

$$l(c) \leq l(f_1) + l(s) + l(f_2) + l([(f_1)_-,(f_2)_-]) \leq 32\varepsilon + 54 + 4l(s).$$

Let g_1, \ldots, g_m denote the elements represented by H_α–components of s. Note that $l(s) \leq 2m + 2$. Applying Lemma 3.10, we obtain $g_i \in (\Omega)$, $i = 1, \ldots, m$, and

$$\sum_{i=1}^{m} |g_i|_\Omega \leq Kl(c) \leq K(32\varepsilon + 54 + 4l(s)) \leq K(32\varepsilon + 62 + 8m).$$

Therefore, at least one of the elements g_1, \ldots, g_m has length at least

$$\frac{1}{m}K(32\varepsilon + 62 + 8m) \leq K(32\varepsilon + 70)$$

that contradicts (W4). Thus s_1 is not isolated in d. By Lemma 7.3 this means that s_1 is connected to an H_α–component t_1 of q.

Now assume that we have already found components t_1, \ldots, t_i of q, $1 \leq i < k$, that are connected to s_1, \ldots, s_i respectively. The inductive step is similar to the above considerations. For definiteness, we assume that s_i is an H_α–component. Then s_{i+1} is an H_β–component by the choice of W. We denote by f_1 a path of length ≤ 1 labeled by an element of H_α that connects $(t_i)_+$ to $(s_i)_+$ (Fig. 4). If s_{i+1} is isolated in the cycle

23
\[c = f_1[(s_i)_+, p_+]v^{-1}[q_+, (t_i)_+], \]
we denote by \(s \) the maximal initial subpath of the segment \([(s_i)_+, (p_0)_+]\) of \(p_0 \) such that \(s \) contains \(s_{i+1} \) and all \(H_\alpha \)-components of \(s \) are isolated in \(c \). As above, we can find a path \(f_2 \) such that \((f_2)_- \in q\), \((f_2)_+ = s_+\), \(l(f_2) \leq 4\varepsilon + 6 \), and no \(H_\alpha \)-component of \(s \) is connected to an \(H_\alpha \)-component of \(f_2 \). The inequalities (27)–(31) remain valid and we arrive at a contradiction in the same way. Thus \(s_{i+1} \) is not isolated in \(c \), i.e., it is connected to a component \(t_{i+1} \) of the segment \([(t_i)_+, q_+]\) of \(q \). This completes the inductive step.

Let us prove the second assertion of the lemma. Suppose that \(s_i, s_{i+1} \) are two subsequent components of \(p_0 \) and such that \(q_{i+1} \) contains at least one component (say, an \(H_\alpha \)-component). As above for definiteness we assume that \(s_i \) (respectively \(s_{i+1} \)) is an \(H_\alpha \)-component (respectively \(H_\beta \)-component). Let \(e_1, e_2 \) be the paths of lengths \(\leq 1 \) labeled by elements of \(H_\alpha \) and \(H_\beta \) respectively such that \((e_1)_+ = (s_i)_+, (e_1)_- = (q_{i+1})_-, (e_2)_+ = (s_{i+1})_-, (e_2)_- = (q_{i+1})_+ \) (see Fig. 5). As \(q \) is a path without backtracking, each \(H_\alpha \)-component of \(q_{i+1} \) is isolated in the cycle \(e = q_{i+1}e_2[(s_{i+1})_-, (s_i)_+]e_1^{-1} \), where \([(s_{i+1})_-, (s_i)_+]\) is a segment of \(p^{-1} \). Notice that \(l([[(s_{i+1})_-, (s_i)_+]]) \leq 1 \) as \(s_i \) and \(s_{i+1} \) are subsequent components of \(p_0 \). We denote by \(f_1, \ldots, f_m \) the elements represented by \(H_\alpha \)-components of \(q_{i+1} \). By Lemma 3.10 we have \(f_j \in (\Omega) \), \(j = 1, \ldots, m \), and

\[
\sum_{j=1}^{m} |f_j|_\Omega \leq Kl(e) \leq K(3 + l(q_{i+1})) \leq K(3 + 2m + 2) \leq 7mK.
\]

This contradicts (W4) again.
Proof of Lemma 7.2. We keep the notation introduced in Lemma 5.3 and Lemma 5.4. Let also
\[p_0 = p_1s_1 \ldots p_k s_k p_{k+1} \]
for some (may be trivial) subpaths \(p_1, \ldots, p_{k+1} \) of \(p_0 \).

According to (20) and condition c) of Lemma 7.2, we have
\[l(p_0) \geq 6\varepsilon + 22 - l(p_1) - l(p_2) \geq 10. \]

Since \(s_1, \ldots, s_k \) are subsequent components and \(\text{Lab}(p_0) \) is a subword of a cyclic shift of \(W^{\pm 1} \), at most one of the paths \(p_2, \ldots, p_k \) is non–trivial. Therefore, there are at least 5 subsequent components \(s_i, \ldots, s_{i+4} \), such that \(p_i, \ldots, p_{i+4} \) are trivial. Without loss of generality we may assume \(i = 1 \). Similarly, by Lemma 7.3, we can find at least three subsequent components among \(t_1, \ldots, t_5 \), say \(t_1, t_2, t_3 \), such that \((t_1)_+ = (t_2)_- \) and \((t_2)_+ = (t_3)_- \). Let \(w \) be an element represented by the label of any path that goes from \((t_1)_+ = (t_2)_- \) to \((s_1)_+ = (s_2)_- \). For definiteness we assume that \(t_1 \) and \(s_1 \) are \(H_\alpha \)–components. Since \(t_1 \) and \(s_1 \) are connected, we have \(w \in H_\alpha \). On the other hand, the \(H_\beta \)–components \(t_2 \) and \(s_2 \) are also connected. Hence \(w \in H_\beta \). Thus \(w \in H_\alpha \cap H_\beta = \{1\} \), i.e. the vertices \((t_2)_- \) and \((s_2)_- \) coincide. Similarly the vertices \((t_2)_+ \) and \((s_2)_+ \) coincide. In particular, \(t_2 \) and \(s_2 \) are edges labeled by the same element of \(H_\beta \), i.e., \(t_2 \) and \(s_2 \) coincide. \(\square \)

Now we are ready to prove the main result of this section.

Theorem 7.5. Suppose that \(W \) is a word in \(\mathcal{A} \) satisfying the conditions (W1)–(W4) and, in addition, \(a_i \neq a_j^{\pm 1}, b_i \neq b_j^{\pm 1} \) whenever \(i \neq j \) and \(a_i \neq a_i^{-1}, b_i \neq b_i^{-1}, i, j \in \{1, \ldots, n\} \). Then the set \(W \) of all cyclic shifts of \(W^{\pm 1} \) satisfies the \(C_1(\varepsilon, \frac{3\varepsilon+11}{n}, \frac{1}{3}, 2, 2n+1) \) small cancellation condition.

Proof. The first two conditions from Definition 4.2 follow from the choice of \(W \) and Lemma 7.1. Suppose that \(U \) is an \(\varepsilon \)–piece of a word \(R \in \mathcal{W} \). Assume that \(\max\{\|U\|, \|U'\|\} \geq \mu\|R\| \) for \(\mu = \frac{3\varepsilon+11}{n} \), that is,
\[\max\{\|U\|, \|U'\|\} \geq \frac{3\varepsilon+11}{n}(2n+1) > 6\varepsilon + 22. \]

(Here and below we use the notation of Definitions 4.2 and 4.1) Without loss of generality we may assume that \(\|U\| \geq 6\varepsilon + 22 \). By the definition of an \(\varepsilon \)–piece, there is a quadrangle \(wp^{-1}q^{-1} \) in \(\Gamma(G, X \cup \mathcal{H}) \) satisfying conditions (a)–(c) of Lemma 7.2 and such that labels of \(p \) and \(q \) are \(U \) and \(U' \) respectively.

Let \(e \) be the common edge of \(p \) and \(q \). Then we have
\[R \equiv U_1\text{Lab}(e)U_2V \]
and
\[R' \equiv U'_1\text{Lab}(e)U'_2V', \]
where \(U_1\text{Lab}(e)U_2 \equiv U \) and \(U' \equiv U'_1\text{Lab}(e)U'_2 \). Since \(\text{Lab}(e) \) appears in \(W^{\pm 1} \) only once, \(R, R' \) are cyclic shifts of the same word \(W^{\pm 1} \) and
\[U_2VU_1 \equiv U'_2V'U'_1. \]
Note also that
\[Y = U_1'U_1^{-1} \]
in \(G \) as \(Y^{-1}U_1'U_1^{-1} \) is a label of a cycle in \(\Gamma(G, X \cup \mathcal{H}) \). Therefore, the following equalities hold in the group \(G \):
\[YRY^{-1} = U_1'U_1^{-1}U_1\text{Lab}(e)U_2VU_1(U_1')^{-1} = U_1'\text{Lab}(e)U_2'V'U_1'(U_1')^{-1} = R' \]
that contradicts the third condition from Definition 4.2.

Similarly, if \(U \) is an \(\varepsilon' \)-piece, then \(R \equiv UVU'V' \) for some \(U, U', V, V' \), where both subwords \(U \) and \(U' \) contain a certain letter from \(X \cup \mathcal{H} \). In this case we arrive at a contradiction again as any letter \(a \in X \cup \mathcal{H} \) appears in \(R \) only once, and if \(a \) appears in \(R \), then \(a^{-1} \) does not. \(\square \)

Finally, we note that the condition \(x \in X \cup \{1\} \) in Theorem 7.5 is not really restrictive since we can always add any element \(x \in G \) to the set \(X \) without violating relative hyperbolicity.

8 Suitable subgroups and quotients

Throughout this section, we keep the assumption that \(G \) is hyperbolic relative to a collection of subgroups \(\{H_\lambda\}_{\lambda \in \Lambda} \). The proof of Lemma 2.3 is based on the following auxiliary result.

Lemma 8.1. Suppose that for some \(\lambda, \mu \in \Lambda \), \(\lambda \neq \mu \), \(H_\lambda \) and \(H_\mu \) contain elements of infinite order and \(H_\lambda \cap H_\mu = \{1\} \). Then there are \(f \in H_\lambda \), \(g \in H_\mu \) such that \(fg \) is a hyperbolic element of infinite order and \(E_G(fg) = \langle fg \rangle \).

Proof. We set \(\varepsilon = 2(\kappa + \delta) \), where \(\kappa = \kappa(\delta, 1/3, 2) \) is the constant provided by Lemma 8.1 and \(\delta \) is the hyperbolicity constant of \(\Gamma(G, X \cup \mathcal{H}) \). It is convenient to assume that \(\kappa, \delta \in \mathbb{N} \).

Let \(F = F(\varepsilon) \) be the set defined by (25). Since \(\Omega \) is finite, \(F \) is finite, and hence there are elements \(f \in H_\lambda \setminus F \) and \(g \in H_\mu \setminus F \) of infinite order. In particular,
\[f^2 \neq 1, \quad g^2 \neq 1. \tag{32} \]

Note that the word \(W = (fg)^m \) satisfies conditions (W1)-(W4). (Here \(f \) and \(g \) are regarded as letters of \(H_\lambda \).) By Lemma 7.1 for any \(m \in \mathbb{N} \), the word \((fg)^m \) is \((1/3, 2)\)-quasi–geodesic in \(\Gamma(G, X \cup \mathcal{H}) \). In particular, \(fg \) is a hyperbolic element. Indeed otherwise the length \(|(fg)^m|_{X \cup \mathcal{H}} \) would be bounded uniformly on \(m \).

Now suppose that \(a \in E_G(fg) \). Then by Theorem 2.1, \(a(fg)^ma^{-1} = (fg)^{\pm m} \) for some \(m \in \mathbb{N} \). Passing to a multiple of \(m \) if necessary, we may assume that
\[m \geq 3|a|_{X \cup \mathcal{H}} + 12(\kappa + \delta) + 20. \tag{33} \]

Let \(a_1a_2b_2 \) be a quadrangle in \(\Gamma(G, X \cup \mathcal{H}) \) such that \(a_1, a_2 \) are geodesic, the labels \(\text{Lab}(a_1) = \text{Lab}(a_2^{-1}) \) represent \(a \) in \(G \), and \(\text{Lab}(b_1) = \text{Lab}(b_2^{-1}) \equiv (fg)^{\pm m} \). Let also \(b_1 = b_1'pb_1'' \) (Fig. B), where
\[l(b_1') = l(b_1'') = 3(l(a_1) + 2(\kappa + \delta) + 3). \tag{34} \]
As b_1 is $(1/3,2)$–quasi–geodesic, we have

$$\text{dist}_{X\cup H}(p_\pm, (b_1)_\pm) \geq \frac{1}{3}l(b'_1) - 2 \geq l(a_1) + 2(k + \delta) + 1.$$ \hfill (35)

Further by Corollary 3.3, there is a point $s \in a_1 \cup b_2 \cup a_2$ such that $\text{dist}_{X\cup H}(s, p_-) \leq 2(k + \delta)$. If $s \in a_1$, then we have

$$\text{dist}_{X\cup H}(p_-, b_-) \leq \text{dist}_{X\cup H}(p_-, s) + \text{dist}_{X\cup H}(s, b_-) \leq 2(k + \delta) + l(a_1)$$

that contradicts (35). For the same reason s cannot belong to a_2. Thus $s \in b_2$. Without loss of generality, we may assume that s is a vertex of $\Gamma(G, X \cup H)$. Similarly there exists a vertex $t \in b_2$ such that $\text{dist}_{X\cup H}(t, p_+) \leq 2(k + \delta)$. Let u, v be geodesics in $\Gamma(G, X \cup H)$ connecting s to p_- and t to p_+ respectively and let q denote the segment $[s, t]$ of b_2^{-1}.

According to (33) and (34), we have

$$l(p) \geq 2m - 6(l(a_1) + 2(k + \delta) + 3) \geq 12(k + \delta) + 22.$$

Hence we may apply Lemma 7.2 for the quadrangle $upv^{-1}q^{-1}$ and $\varepsilon = 2(k + \delta)$. Thus there exists a common edge e of p and q. In particular, this and (32) imply that $a(fg)^m a^{-1} = (fg)^m (not (fg)^{-m})$.

There are two possibilities for labels of the segments $[(b_1)_-, e_-]$ and $[(b_2)_+, e_-]$ of b_1 and b_2 respectively. Namely both these labels are either of the form $(fg)^n$ (possibly for different n) or of the form $(fg)^k f$. In both cases $a = (fg)^l$ for a certain l as labels of a_1 and $[(b_2)_+, e_-][(b_1)_-, e_-]^{-1}$ represent the same element of G. Thus $a \in \langle fg \rangle$ and $E_G(fg) = \langle fg \rangle$.

\[\square \]

Proof of Lemma 2.3 Let $f_1, f_2 \in H^0$ be non–commensurable elements of H such that $E_G(f_1) \cap E_G(f_2) = \{1\}$. By Theorem 2.1, G is hyperbolic relative to the collection $\{H_\lambda\}_{\lambda \in \Lambda} \cup E_G(f_1) \cup E_G(f_2)$.

We construct a sequence of desired elements h_1, h_2, \ldots by induction. By Lemma 5.1, there are $f \in E_G(f_1), g \in E_G(f_2)$ such that the element $h_1 = fg$ is hyperbolic (with respect to the collection $\{H_\lambda\}_{\lambda \in \Lambda} \cup E_G(f_1) \cup E_G(f_2)$) and $E_G(h_1) = \langle h_1 \rangle$. Theorem 2.1 implies that G is hyperbolic relative to the collection $\{H_\lambda\}_{\lambda \in \Lambda} \cup E_G(f_1) \cup E_G(f_2) \cup E_G(h_1)$. Further we construct a hyperbolic (with respect to $\{H_\lambda\}_{\lambda \in \Lambda} \cup E_G(f_1) \cup E_G(f_2) \cup E_G(h_1)$) element h_2 as a product of an element of $E_G(f_1)$ and an element of $E_G(f_2)$ as above. As h_2 is hyperbolic, it is not commensurable with h_1. Applying Theorem 2.1 again we join $E_G(h_2)$ to the collection of subgroups with respect to which G is hyperbolic and so on. Continuing this procedure, we get what we need. \[\square \]
To prove Theorem 2.4 we need the following two observations. The first one is a particular case of Theorem 2.40 from [25].

Lemma 8.2. Suppose that a group \(G \) is hyperbolic relative to a collection of subgroups \(\{ H_\lambda \}_{\lambda \in \Lambda} \cup \{ S_1, \ldots, S_m \} \), where \(S_1, \ldots, S_m \) are finitely generated and hyperbolic in the ordinary (non-relative) sense. Then \(G \) is hyperbolic relative to \(\{ H_\lambda \}_{\lambda \in \Lambda} \).

The next lemma is a particular case of Theorem 1.4 from [25].

Lemma 8.3. Suppose that a group \(G \) is hyperbolic relative to a collection of subgroups \(\{ H_\lambda \}_{\lambda \in \Lambda} \). Then

(a) For any \(g \in G \) and any \(\lambda, \mu \in \Lambda, \lambda \neq \mu \), the intersection \(H_\lambda^g \cap H_\mu \) is finite.

(b) For any \(\lambda \in \Lambda \) and any \(g \notin H_\lambda \), the intersection \(H_\lambda^g \cap H_\lambda \) is finite.

Proof of Theorem 2.4. Obviously it suffices to deal with the case \(m = 1 \). The general case will follow if we apply the theorem for \(m = 1 \) several times.

Let \(t \in G \) be an arbitrary element. Passing to a new relative generating set \(X' = X \cup \{ t \} \) if necessary, we may assume that \(t \in X \). By Lemma 2.3 there are non-commensurable elements \(h_1, h_2 \in H^0 \) such that \(E_G(h_1) \) and \(E_G(h_2) \) are cyclic. According to Theorem 2.1 \(G \) is hyperbolic relative to \(\{ H_\lambda \}_{\lambda \in \Lambda} \cup E_G(h_1) \cup E_G(h_2) \).

Let \(\mu, \varepsilon, \rho \) be constants such that the conclusions of Lemma 5.1 and Lemma 6.3 are satisfied for \(\lambda = 1/3, \varepsilon = 2, n = 1 \). By Theorem 7.5 there are \(n \) and \(m_1, \ldots, m_n \) such that the set \(R \) of all cyclic shifts and their inverses of the word

\[
R \equiv t h_1^{m_1} h_2^{m_2} \ldots h_1^{m_n} h_2^{m_n}
\]

in the alphabet \(A = X \cup H \cup (E_G(h_1) \setminus \{ 1 \}) \cup (E_G(h_2) \setminus \{ 1 \}) \) satisfies the \(C(1/3, 2, \varepsilon, \mu, \rho) \)-condition (here \(h_i^{m_i} \) is regarded as a letter in \(E_G(h_1) \setminus \{ 1 \}, i = 1, 2, j = 1, \ldots, n \). Indeed it suffices to chose large enough \(n \) and \(m_1, \ldots, m_n \) satisfying \(m_i \neq \pm m_j \) whenever \(i \neq j \). Let \(G_1 \) be the quotient of \(G \) obtained by imposing the relation \(R = 1 \) and \(\eta \) the corresponding natural homomorphism.

By Lemma 5.1 \(G_1 \) is hyperbolic relative to the images of \(H_\lambda, \lambda \in \Lambda \) and \(E_G(h_1), E_G(h_2) \). As any elementary group is hyperbolic, \(G_1 \) is also hyperbolic relative to \(\{ \eta(H_\lambda) \}_{\lambda \in \Lambda} \) according to Lemma 8.2. The inclusion \(\eta(t) \in \eta(H) \) follows immediately from the equality \(R = 1 \) in \(G_1 \). The third assertion of the theorem follows from Lemma 5.1 b) as any element from the union \(\bigcup_{\lambda \in \Lambda} H_\lambda \) has length 1.

Similarly as \(\eta \) is injective on \(E_G(h_1) \cup E_G(h_2) \), \(\eta(h_1) \) and \(\eta(h_2) \) are elements of infinite order. Note also that \(\eta(h_1) \) and \(\eta(h_2) \) are not commensurable in \(G_1 \). Indeed otherwise the intersection \((\eta(E_G(h_1)))^g \cap \eta(E_G(h_2)) \) is infinite for some \(g \in G \) contradictory the first assertion of Lemma 8.3. Assume now that \(g \in E_{G_1}(\eta(h_1)) \), where \(E_{G_1}(\eta(h_1)) \) is the maximal elementary subgroup of \(G_1 \) containing \(\eta(h_1) \). By the first assertion of Theorem 2.1 \((\eta(h_1^m)) = \eta(h_1^{\pm m}) \) for a certain \(m \neq 0 \). Therefore, \((\eta(E_G(h_1)))^g \cap \eta(E_G(h_1)) \) contains \(\eta(h_1^m) \) and in particular this intersection is infinite. By the second assertion of Lemma 8.3
this means that \(g \in \eta(E_G(h_1)) \). Thus we proved that \(\eta(E_G(h_1)) = E_{G_1}(\eta(h_1)) \). The same is true for \(h_2 \). Finally, using injectivity of \(\eta \) on \(E_G(h_1) \cup E_G(h_2) \) again, we obtain

\[
E_{G_1}(\eta(h_1)) \cap E_{G_1}(\eta(h_2)) = \eta(E_G(h_1)) \cap \eta(E_G(h_2)) = \eta(E_G(h_1) \cap E_G(h_2)) = \{1\}.
\]

This means that the image of \(H \) is a suitable subgroup of \(G_1 \). To complete the proof it remains to note that the last assertion of the theorem follows from Lemma 6.3.

9 Appendix. The proof of Lemma 4.4

Following the referee’s recommendation, we provide here the proof of Lemma 4.4 which is a particular case of Lemma 9.7 below. As we mentioned in Section 4, Lemma 4.4 (as well as Lemma 9.7) is, in fact, proved in [23], although it is stated in a slightly different way there. The proof below follows [23] with little improvements. We stress that all results of this section should be credited to Olshanski.

Throughout the Appendix, let \(G \) denote a group with a presentation (4). Suppose that the Cayley graph \(\Gamma(G,A) \) of \(G \) is hyperbolic.

We start with an auxiliary result. Recall that a graph is simple if it has no loops and multiple edges.

Lemma 9.1. Let \(\Xi \) be a simple planar graph. Suppose that some non-negative weights \(\nu(o) \), \(\nu(e) \) are assigned to each vertex \(o \) and each edge \(e \) of \(\Xi \). Assume also that there exists a constant \(a \) such that \(\nu(e) \leq a \nu(o) \) for any incident edge \(e \) and vertex \(o \). Then the sums \(\nu_0 \), \(\nu_1 \) of the weights of all vertices and edges of \(\Phi \), respectively, satisfy \(\nu_1 \leq 5a\nu_0 \).

Proof. By the well-known consequence of the Euler Formula, every simple planar graph contains a vertex of degree at most 5. The statement of the lemma easily follows from this by induction.

The proof of Lemma 4.4 is divided into a sequence of lemmas. In what follows, let \(G \) be a group given by (4) such that the Cayley graph \(\Gamma(G,A) \) of \(G \) is hyperbolic. We fix \(\lambda \in (0,1], c \geq 0, \mu \in (0,1/16) \) and take

\[
\varepsilon > c_1 + 2\kappa,
\]

where \(c_1 = c_1(\delta) \) and \(\kappa = \kappa(\delta, \lambda, c) \) are the constants provided by Lemma 3.7 and Lemma 3.1 respectively. Let (10) be a presentation that satisfies the \(C(\varepsilon, \mu, \lambda, c, \rho) \)-condition, where \(\rho \) is sufficiently large. (The exact lower bound for \(\rho \) which ensures that all arguments below are correct can be easily extracted from the proofs.)

Let also \(\Delta \) be a diagram over (10). Below we prove Lemma 4.4 by induction on the number of \(\mathcal{R} \)-cells in \(\Delta \). To complete the inductive step, we will have to deal with the case when \(\partial \Delta \) consists of at most 4 quasi-geodesic segments. More precisely, let \(\partial \Delta = q_1 \cdots q_r \) for some \(1 \leq r \leq 4 \), where \(q_1, \ldots, q_r \) are \((\lambda, c) \)-quasi-geodesic. We call the subpaths \(q_1, \ldots, q_r \) sections of \(\partial \Delta \).

Definition 9.2. A set \(M \) of \(\varepsilon \)-contiguity subdiagrams of cells to cells or cells to sections of \(\partial \Delta \) is called distinguished, if
(a) Distinct subdiagrams in \mathcal{M} are disjoint.

(b) The sum of lengths of contiguity arcs of all subdiagrams from \mathcal{M} is not less than the same sum for any other collections satisfying (a).

(c) \mathcal{M} contains minimal number of subdiagrams among all collections satisfying (a), (b).

Further let $\Gamma \in \mathcal{M}$ be a ε-contiguity subdiagram whose boundary is decomposed according to (11) and (12). The paths s_1, s_2 are called *side arcs* of Γ. If Γ is an ε-contiguity subdiagram of a cell Π_1 to a section of $\partial \Delta$, the contiguity arc q_1 of $\partial \Pi$ (and all its edges) is called *outer*. If Γ is an ε-contiguity subdiagram of a cell Π_1 to a cell Π_2, q_1 (and all its edges) is called *inner*. The edges of Π_1 that are neither inner nor outer are called *unbound*. Every maximal subpath of $\partial \Pi_1$ consisting of unbound edges is called an *unbound arc* of Π_1.

The notion of an unbound arc of a section of $\partial \Delta$ is defined in the same way.

To each distinguished set \mathcal{M} of ε-contiguity diagrams, we associate a planar graph Φ_M as follows. Choose a point $o(\Pi)$ inside every R–cell Π of Δ. The set of vertices of Φ_M consists of all such $o(\Pi)$. If there exists an ε-contiguity subdiagram $\Gamma \in \mathcal{M}$ of a cell Π_1 to a cell Π_2, the two vertices $o(\Pi_1)$ and $o(\Pi_2)$ are connected by an (unoriented) edge through Γ. Further let Φ'_M be the graph obtained from Φ_M in the following way. For each $i = 1, \ldots, r$, we add to Φ_M a vertex O_i outside of Δ and for each ε-contiguity subdiagram Γ of a cell Π to q_i, we connect $o(\Pi)$ to O_i by an edge passing through Γ. Clearly Φ'_M is also planar (see Fig. 7).

Let now Δ be a reduced diagram over (10), which has $n \geq 1$ R-cells. The next 4 results are proved under the following additional assumption. It will be eliminated later in Lemma 9.6.

\begin{itemize}
 \item[(*)] For any distinguished system of ε-contiguity subdiagrams \mathcal{M} in Δ, the graph Φ_M is simple and inside every 2-gon of Φ'_M, there is a vertex of Φ_M.
\end{itemize}

Let also \mathcal{M} be a distinguished system of ε-contiguity subdiagrams of Δ. Cutting off all R-cells and subdiagrams $\Gamma \in \mathcal{M}$, we obtain a set of diagrams $\Delta_1, \ldots, \Delta_d$ over Π (see Fig. 7). Each of them may have holes. The boundary $\partial \Delta_i$ of each diagram may be thought of as a union of n_i arcs, where each arc is of one of the following types.

- **(A1)** An unbound arc of an R-face.
- **(A2)** An unbound arc of $\partial \Delta$.
- **(A3)** A side arc of some ε-contiguity subdiagram from \mathcal{M}.

Lemma 9.3. Suppose that Δ satisfies (*). In the notation introduced above, we have

$$\sum_{i=1}^{d} n_i \leq 53n.$$

Proof. Let v, e, f denote the number of vertices, edges, and regions of (the planar realization of) Φ'_M, respectively. By (*), every region of it (except possibly for the outer one) has degree at least three. Hence $f \leq 2e/3 + 1$. By the Euler formula, we have $e \leq v + f - 2 \leq v + 2e/3 - 1$. This implies $e \leq 3(v - 1) \leq 3(n + 3) \leq 12n$.

30
Figure 7: A distinguished set of ε-contiguity subdiagrams (dark grey) in a diagram Δ with five R-cells (white) and the corresponding graph Φ'_M.

Since unbound arcs of boundaries of R-cells and sections of $\partial \Delta$ are separated by contiguity arcs, the total number of arcs of type (A1) or (A2) in Δ is not greater than

$$2|\mathcal{M}| + n + r \leq 2e + n + 4 \leq 24n + n + 4 \leq 29n.$$

Clearly the number of arcs of type (A3) is at most $2|\mathcal{M}| = 2e \leq 24n$. So the total number of arcs of types (A1)-(A3) is at most $53n$. \square

All results below are proved up to passing from Δ to an O-equivalent diagram (see the definition before Lemma 4.4).

Lemma 9.4. Suppose that Δ satisfies (\ast). Let S denote the sum of lengths of all unbound arcs of type (A1) in Δ. Then $S < n\sqrt{\rho}$.

Proof. Let S_i denote the sum of lengths of all arcs of type (A1) in $\partial \Delta_i$, $i = 1, \ldots, d$. Assume that $S \geq n\sqrt{\rho}$. Then

$$S_i \geq n_i\sqrt{\rho}/60 \quad (37)$$

for some i. Indeed otherwise we have

$$S = \sum_{i=1}^{d} S_i \leq \frac{\sqrt{\rho}}{60} \sum_{i=1}^{d} n_i < n\sqrt{\rho}$$

31
By Lemma 3.3

For every \(i = 1, \ldots, d \), the diagram \(\Delta_i \) has at most \(n_i \) holes. Hence we can cut it by \(l \leq n_i \) paths \(t_1, \ldots, t_l \) into a simply connected diagram \(\widetilde{\Delta}_i \). We assume that the collection of cutting paths \(t_1, \ldots, t_l \) is chosen so that the sum \(\sum_{i=1}^{l} l(t_i) \) is minimal. The boundary of \(\widetilde{\Delta}_i \) decomposes into \(k_i \) subpaths, each of which is either \(t_j^{+1} \) for some \(j = 1, \ldots, l \), or an arc of one of the types (A1)-(A3) (or a part of such an arc arising after cutting along \(t_1, \ldots, t_l \)). Therefore,

\[
 k_i \leq 4n_i. \tag{38}
\]

Note also that passing to a diagram which is \(O \)-equivalent to \(\Delta \) if necessary, we may assume that the labels of \(t_i \)'s are geodesic in \(G \) without loss of generality. Indeed if \(w_i \) is a geodesic word representing the same element as \(\text{Lab}(t_i) \) in \(G \), let \(\Sigma_i \) be a diagram over \(\{1\} \) with boundary label \(w_i(\text{Lab}(t_i))^{-1} \). Further let \(\Xi_i \) be the diagram obtained by gluing \(\Sigma_i \) and its mirror copy along \(w_i \). Clearly \(\text{Lab}(\partial(\Xi_i)) = \text{Lab}(t_i)(\text{Lab}(t_i))^{-1} \). We can use 0-refinement (see the subsection “Van Kampen diagrams” in Section 3) to create a copy \(t'_i \) of the paths \(t_i \) in \(\Delta \) with the same label and endpoints such that \(t_i(t'_i)^{-1} \) bounds a subdiagram consisting of 0-cells. Further we cut this subdiagram and fill in the obtained hole with \(\Xi_i \). After this transformation, the vertices \((t_i)- \) and \((t_i)+ \) are connected by a path whose label \(w_i \) is geodesic in \(G \), and we can replace \(t_i \) with that paths. Note that this transformation does not affect \(\partial \Delta \), \(R \)-cells, and distinguished \(\varepsilon \)-contiguity subdiagrams.

Similarly we may assume that for every (sub)arc \(p \) of an arc of type (A1)-(A3) in \(\partial \widetilde{\Delta}_i \), the diagram \(\widetilde{\Delta}_i \) contains a path \(\tilde{p} \) with the same endpoints as \(p \) such that \(\text{Lab}(\tilde{p}) \) is geodesic in \(G \) and \(p(\tilde{p})^{-1} \) bounds a subdiagram over \(\{1\} \). Since \(\widetilde{\Delta}_i \) is a simply connected diagram over \(\{1\} \), its 1-skeleton can be naturally mapped to \(\Gamma(G, A) \) by a map preserving labels and orientation. In what follows we keep the same notation \(t_i^{\pm1}, p, \) etc., for the images of the paths \(t_i^{\pm1}, p, \) etc., in \(\Gamma(G, A) \) (although \(t_i^{-1} \) is not the inverse path of \(t_i \) there). In particular, \(p \) and \(\tilde{p} \) belong to the closed \(\kappa \)-neighborhoods of each other in \(\Gamma(G, A) \) by Lemma 3.1.

In the notation of Lemma 3.7, let \(N_2 \) consist of images of segments \(t_i^{\pm1}, i = 1, \ldots, l \), in \(\Gamma(G, A) \) and images of \(\tilde{p} \) for (sub)arcs \(p \) of type (A2). Further let \(N_1 \) and \(N_3 \) consist of images of \(\tilde{p} \) for (sub)arcs \(p \) of type (A1) and (A3), respectively.

Clearly \(\sigma_1 \leq \varepsilon k_i \). On the other hand, by (37) and (38) we obtain

\[
 \sigma_1 = \sum_{\tilde{p} \in N_1} l(p_1) \geq \sum_{\tilde{p} \in N_1} (\lambda l(p) - c) \geq \lambda S_i - k_i c > \lambda n_i \sqrt{\rho}/60 - k_i c
\]

\[
 \geq \lambda k_i \sqrt{\rho}/240 - k_i c = k_i(\lambda \sqrt{\rho}/240 - c).
\]

Taking large enough \(\rho \), we may assume that \(a = \lambda \sqrt{\rho}/240 - c > \max\{1000 \varepsilon, c_2\} \). Hence by Lemma 3.7 there exist subsegments \(\tilde{q}_j, j = 1, 2, \) of some \(\tilde{p}_1 \in N_1 \) and \(\tilde{p}_2 \in N_1 \cup N_2 \), respectively, such that \(l(p_j) \geq 10^{-3} a, j = 1, 2 \), and the distance between the respective endpoints of \(p_1 \) and \(p_2 \) is at most \(c_1 \). This means that there exist subsegments \(q_j \) of \(p_j, j = 1, 2 \), of lengths at least \(10^{-3} a - 2 \kappa \) such that

\[
 \max\{\text{dist}_{X \cup H}((q_1)^-, (q_2)^-), \text{dist}_{X \cup H}((q_1)^+, (q_2)^+)\} \leq 2 \kappa + c_1 < \varepsilon. \tag{39}
\]

The later inequality uses (36). Now there are two cases to consider.
Figure 8: Replacing a cutting path with a shorter one.

Case 1. $\bar{p}_2 \in N_1$. That is, q_1 and q_2 are subpaths of boundaries of some R-cells in Δ. After passing to an O-equivalent diagram if necessary, we may assume that there exists a subdiagram Γ of Δ such that $\partial \Gamma = q_1 s_1 q_2^{-1} s_2$, where $l(s_j) < \varepsilon$, $j = 1, 2$, and Γ does not intersect R-cells and distinguished ε-contiguity subdiagrams. This contradicts the maximality of M.

Case 2. $\bar{p}_2 \in N_2$. If q_2 is a subpaths of $\partial \Delta$, we get a contradiction as above by constructing a new ε-contiguity subdiagram of an R–cell to $\partial \Delta$. Thus we only need to deal with the case $p_2 = t_j \pm 1$. Without loss of generality, we may assume that $p_2 = t_j$. Let $t_j = uq_2v$. By (39), after passing to an O-equivalent diagram if necessary, we can find a paths s of lengths at most ε in Δ connecting $(q_2)_-$ to $(q_1)_-$ (see Fig. 8). Note that

$$l(us) \leq l(t_j) - l(q_2) + \varepsilon \leq l(t_j) - (10^{-3}(\lambda\sqrt{\rho}/240 - c) - 2\kappa) + \varepsilon < l(t_j)$$

if ρ is large enough. This contradicts our assumption that $\sum_{i=1}^{l} l(t_i)$ is minimal.

Thus in both cases we obtain a contradiction. Hence $S < n\sqrt{\rho}$. □

Lemma 9.5. Suppose that Δ satisfies (\ast). Let Σ_0 and Σ denote the sum of lengths of all outer arcs and the sum of perimeters of all R-cells in Δ, respectively. Then $\Sigma_0 > (1-11\mu)\Sigma$.

Proof. For each R-cell Π of Δ, we assign the weight $\nu(o) = l(\partial \Pi)$ to the corresponding vertex o of the estimating graph Φ_M. Clearly the sum of weights of all vertices in Φ_M equals Σ. Further let $\Gamma \in M$ be a distinguished ε-contiguity subdiagram with $\partial \Gamma = s_1 q_1 s_2 q_2$, where q_1, q_2 are the contiguity arcs. We assign the weight $\nu(e) = l(q_1) + l(q_2)$ to the edge e corresponding to Γ. Note that the sum of weights of all edges in $\Gamma \in M$ is equal to the sum of lengths Σ_{inn} of all inner arcs in Δ.

By Lemma 4.3, $\nu(e) \leq 2\mu \nu(o)$ whenever o and e are incident. Hence $\Sigma_{inn} \leq 10\mu \Sigma$ by Lemma 9.1 and (\ast). By Lemma 9.4 we have $S < \Sigma/\sqrt{\rho}$, where S is the sum of lengths of
all unbound arcs, since the perimeter of every R-cell in Δ is at least ρ by the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition. Therefore,

$$\Sigma_0 = \Sigma - \Sigma_{int} - S > \Sigma - 10\mu \Sigma - \Sigma/\sqrt{\rho} > (1 - 11\mu)\Sigma$$

if $\rho > \mu^{-2}$.

The following corollary is immediate.

Corollary 9.6. Suppose that Δ satisfies (\ast). Passing to an O-equivalent diagram if necessary, we can find an R-cell Π of Δ and disjoint ε-contiguity subdiagrams $\Gamma_{i,j}$ of Π to sections q_j, $j = 1, \ldots, r$ of $\partial \Delta$ such that $\sum_{i,j} (\Pi, \Gamma_{i,j}, q_j) > 1 - 11\mu$.

We are now ready to eliminate assumption (\ast) and prove the main result of the Appendix, of which Lemma 4.4 is a particular case corresponding to $r = 1$. For convenience, we recall all assumptions here.

Lemma 9.7. Let G be a group with a presentation (\mathcal{A}). Suppose that the Cayley graph $\Gamma(G, \mathcal{A})$ of G is hyperbolic. Then for any $\lambda \in (0, 1]$, $c \geq 0$, and $\mu \in (0, 1/16]$, there exist $\varepsilon \geq 0$ and $\rho > 0$ with the following property. Let \mathcal{R} be a symmetrized set of words in \mathcal{A} satisfying the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition, Δ a reduced van Kampen diagram over the presentation (\mathcal{A}) such that $\partial \Delta = q_1 \cdots q_r$ for some $1 \leq r \leq 4$, where q_1, \ldots, q_r are (λ, c)-quasi-geodesic. Assume that Δ has at least one \mathcal{R}-cell. Then up to passing to an O-equivalent diagram, the following conditions hold.

(a) The diagram Δ satisfies (\ast).

(b) There is an \mathcal{R}-cell Π of Δ and disjoint ε-contiguity subdiagrams Γ_j of Π to sections q_j, $j = 1, \ldots, r$, of $\partial \Delta$ (some of them may be absent) such that $\sum_{j=1}^r (\Pi, \Gamma_j, q_j) > 1 - 13\mu$.

Proof. We proceed by induction on n, the number of \mathcal{R}-cells in Δ.

(a) Suppose that there are multiple edges in Φ_M. That is, there are two distinguished ε-contiguity subdiagrams Θ_1 and Θ_2 between some \mathcal{R}-cells Π_1 and Π_2. Consider a subdiagram Ξ in Δ such that: (i) $\partial \Xi = s_1t_1s_2t_2$, where s_j is a side arc of Θ_j and t_j is a subpaths of $\partial \Pi_j$, $j = 1, 2$; (ii) Ξ does not contain Π_1 and Π_2. By the definition of \mathcal{M}, we can not include Θ_1 and Θ_2 into a single ε-contiguity subdiagram of Π_1 to Π_2. This means that Ξ contains at least one \mathcal{R}-cell. On the other hand, the number of \mathcal{R}-cells in Ξ is smaller than n according to (ii). Hence by the inductive assumption, there is an \mathcal{R}-cell Π in Ξ and ε-contiguity subdiagrams $\Gamma_1, \ldots, \Gamma_4$ of Π to s_1, t_1, s_2, t_2, respectively, such that

$$(\Pi, \Gamma_1, s_1) + \cdots + (\Pi, \Gamma_4, t_2) > 1 - 13\mu.$$

On the other hand $(\Pi, \Gamma_2, t_1) + (\Pi, \Gamma_4, t_2) < 2\mu$ by Lemma 4.3 since Γ_2 and Γ_4 are ε-contiguity subdiagrams of Π to Π_1 and Π_2, respectively. Further if u is a contiguity arc of Π to s_1, then $l(u) \leq \lambda^{-1}(3\varepsilon + c)$ since u is (λ, c) quasi-geodesic and $l(s_1) \leq \varepsilon$. Therefore,
Thus

\[(\Pi, \Gamma_1, s_1) + \cdots + (\Pi, \Gamma_3, s_2) < \frac{\mu}{2}.\]

We obtain a contradiction since \(1 - 13\mu > 3\mu\) for \(\mu < 1/16\).

Thus the graph \(\Phi_{M'}\) does not have multiple edges. Arguing as above, it is easy to show that \(\Phi_{M'}\) can not contain loops either. The only difference is that the subdiagram \(\Xi\) will be bounded by \(st\), where \(l(s) < \varepsilon\) and \(t\) is a subpath of \(\partial \Pi_1\). (Here \(\Pi_1\) is the \(R\)-cell of \(\Delta\) such that there is a lop incident to the corresponding vertex in \(\Phi_{M'}\).)

Finally inside every 2-gon \(ef\) of \(\Phi_{M'}\) there is a vertex of \(\Phi_{M'}\), thus one can include the \(\varepsilon\)-contiguity subdiagrams corresponding to the edges \(e\) and \(f\) of \(\Phi_{M'}\) into a single \(\varepsilon\)-contiguity subdiagram in the obvious way, contrary to the definition of \(\mathcal{M}\).

(b) By (a), we can choose an \(R\)-cell \(\Pi\) in \(\Delta\) (passing to an \(O\)-equivalent diagram if necessary) and subdiagrams \(\Gamma_{i,j}\) satisfying the inequality in Corollary 9.6. Let us consider the subdiagram \(\Gamma^1\) of \(\Delta\) such that: (i) \(\partial \Gamma^1 = s_1 t_1 s_2 t_2\), where \(s_1, s_2\) are side arcs of some of \(\Gamma_{i,1}\)'s and \(t_1, t_2\) are subpaths of \(\partial \Pi\) and the section \(q_1\) of \(\partial \Delta\), respectively; (ii) \(\Gamma^1\) contains all \(\Gamma_{i,1}\)'s. Let \(m_1\) be the number of \(R\)-cells in \(\Gamma^1\). We similarly construct \(\Gamma^2, \ldots, \Gamma^r\) and define \(m_2, \ldots, m_r\).

Suppose that the cell \(\Pi\) is chosen in such a way that the sum \(m(\Pi) = m_1 + \cdots + m_r\) is minimal among all cells satisfying the condition \(\sum_{i,j} (\Pi, \Gamma_{i,j}, q_j) > 1 - 11\mu\). If \(m_1 = \cdots = m_r = 0\), then each of the sets \(\{\Gamma_{i,1}\}, \ldots, \{\Gamma_{i,1}\}\) consists of at most one diagram. Indeed otherwise one could include at least 2 of them into a single \(\varepsilon\)-contiguity subdiagram, which contradicts the definition of \(\mathcal{M}\).

Thus we may assume that \(m_1 > 0\). Then by Corollary 9.6 and the inductive assumption, the subdiagram \(\Gamma^1\) contains an \(R\)-cell \(\Pi'\) and \(\varepsilon\)-contiguity subdiagrams \(\Gamma'_{i,1}, \ldots, \Gamma'_{i,4}\) of \(\Pi'\) to \(s_1, t_1, s_2, t_2\), respectively, such that

\[\sum_{i=1}^{k_1} (\Pi', \Gamma'_{i,1}, s_1) + \cdots + \sum_{i=1}^{k_4} (\Pi', \Gamma'_{i,4}, t_2) > 1 - 11\mu\] (40)

Note that \(k_2 \leq 1\) since all \(\Gamma'_{i,2}\)'s are \(\varepsilon\)-contiguity subdiagrams of \(\Pi'\) to \(\Pi\) and \(\Delta\) satisfies (s) by (a). If \(k_2 = 1\), we have \((\Pi', \Gamma'_{1,2}, t_1) < \mu\) by Lemma 11.3. Further if \(k_1 \geq 1\), we can construct an \(\varepsilon\)-contiguity subdiagram \(\Gamma\) of \(\Pi'\) to \(t_1\) such that: (i) \(\partial \Gamma = st\), where \(l(s) \leq 3\varepsilon\) and \(t\) is a subpath of \(\partial \Pi'\); (ii) \(\Gamma\) contains at least one \(R\)-cell. This leads to a contradiction as in part (a).

Thus \(k_1 \leq 1\) and if \(k_1 = 1\) we obtain \((\Pi', \Gamma'_{i,1}, s_1) < \mu/2\) as in part (a). Similarly \(k_3 \leq 1\) and if \(k_3 = 1\), we have \((\Pi', \Gamma'_{i,3}, s_2) < \mu/2\). These inequalities together with (40) imply \(\sum_{i=1}^{k_4} (\Pi', \Gamma'_{i,4}, t_2) > 1 - 13\mu\). However \(m(\Pi') < m(\Pi)\) since the cell \(\Pi'\) counts in \(m(\Pi)\) but not in \(m(\Pi')\). This contradicts the choice of \(\Pi\).

References

[1] G. Arzhantseva, M.R. Bridson, T. Januszkiewicz, I. J. Leary, A. Minasyan, J. Swiatkowski, Infinite groups with fixed point properties, arXiv:0711.4238.
[2] G. Arzhantseva, A. Minasyan, D.V. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, *J. Algebra*, 315 (2007), no. 1, 165–177.

[3] G. Baumslag, A. Myasnikov, V. Shpilrain, Open problems in combinatorial group theory. Second edition, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), 1–38, *Contemp. Math.*, 296, Amer. Math. Soc., Providence, RI, 2002

[4] I. Belegradek, D. Osin, Rips construction and Kazhdan property (T), *Groups, Geom., & Dynam.* 2 (2008), 1-12. 2006.

[5] B.H. Bowditch, Relatively hyperbolic groups, prep., 1999.

[6] M. Bridson, A. Haefliger, Metric spaces of non–positive curvature, Springer, 1999.

[7] F. Dahmani, Combination of convergence groups, *Geom. Topol.* 7 (2003), 933–963.

[8] B. Farb, Relatively hyperbolic groups, *GAFA*, 8 (1998), 810–840.

[9] S.M. Gersten, H. Short, Rational subgroups of biautomatic groups, *Ann. of Math.*, (2) 134 (1991), 125–158.

[10] E. Ghys, P. de la Harpe, Eds., *Sur les groupes hyperboliques d’ap\’res Mikhael Gromov*, Progress in Math., 83, Birkati\ss er, 1990.

[11] M. Gromov, Hyperbolic groups, Essays in Group Theory, MSRI Series, Vol.8, (S.M. Gersten, ed.), Springer, 1987, 75–263.

[12] V.S. Guba, A finitely generated complete group (Russian), *Izv. Akad. Nauk SSSR Ser. Mat.* 50 (1986), no. 5, 883–924; English translation: Math. USSR-Izv. 29 (1987), no. 2, 233–277.

[13] G. Higman, B.H. Neumann, H. Neumann, Embedding theorems for groups, *J. London Math. Soc.*, 24 (1949), 247–254.

[14] S.V. Ivanov, On some finiteness conditions in semigroup and group theory, *Semigroup Forum* 48 (1994), no. 1, 28–36.

[15] S.V. Ivanov, A. Yu. Ol’shanskii, Some applications of graded diagrams in combinatorial group theory, Groups—St. Andrews 1989, Vol. 2, 258–308, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.

[16] The Kourovka notebook. Unsolved problems in group theory. Fifteenth augmented edition. Edited by V. D. Mazurov and E. I. Khukhro. Rossii\'skaya Akademiya Nauk Sibirskoe Otdelenie, Institut Matematiki, Novosibirsk, 2002.

[17] R.C. Lyndon, P.E. Shupp, *Combinatorial Group Theory*, Springer–Verlag, 1977.

[18] K.V. Mikhajlovskii, A. Yu. Olshanskii, Some constructions relating to hyperbolic groups, Geometry and cohomology in group theory (Durham, 1994), 263–290, London Math. Soc. Lecture Note Ser., 252, Cambridge Univ. Press, Cambridge, 1998.
[19] A. Minasyan, Groups with finitely many conjugacy classes and their automorphisms, arXiv:0704.0091.

[20] A. Minasyan, D. Osin, Normal automorphisms of hyperbolic groups, arXiv:0809.2408v2.

[21] A.Yu. Ol’shanskii, Geometry of defining relations in groups, Kluwer Academic Publisher, 1991.

[22] A.Yu. Olshanskii, Periodic quotients of hyperbolic groups, Math. USSR Sbornik 72 (1992), no. 2, 519–541.

[23] A.Yu. Olshanskii, On residualing homomorphisms and G–subgroups of hyperbolic groups, Int. J. Alg. Comp., 3 (1993), 4, 365–409.

[24] A.Yu. Olshanskii, On the Bass-Lubotzky question about quotients of hyperbolic groups, J. Algebra 226 (2000), no. 2, 807–817.

[25] D. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs Amer. Math. Soc. 179 (2006), no. 843.

[26] D. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput., 16 (2006), no. 1, 99–118.

[27] D. Osin, Relative Dehn functions of HNN–extensions and amalgamated products, Contemp. Math. 394 (2006), 209–220.

[28] D. Osin, Factorizable groups and finiteness conditions, in preparation.

Stevenson Center 1326, Department of Mathematics, Vanderbilt University
Nashville, TN 37240, USA

E-mail address: denis.osin@gmail.com