Interactions and phase transitions on graphene’s honeycomb lattice

Igor F. Herbut

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

The low-energy theory of interacting electrons on graphene’s two-dimensional honeycomb lattice is derived and discussed. In particular, the Hubbard model in the large-N limit is shown to have a semi-metal - antiferromagnetic insulator quantum critical point in the universality class of the Gross-Neveu model. The same equivalence is conjectured to hold in the physical case \(N = 2 \), and its consequences for various physical quantities are examined. The effects of the long-range Coulomb interaction and of the magnetic field are discussed.

A graphite monolayer, or graphene, emerged recently as the new frontier in physics of electronic systems with reduced dimensionality \([1]\). Such two-dimensional, or quasi-two-dimensional systems have led to some of the most startling discoveries in the condensed matter physics in the recent past, the quantum Hall effects and the metal-insulator transitions in silicon-MOSFETS and Ga-As heterostructures, and the high-temperature superconductivity in cuprates being prime examples. What makes graphene qualitatively new is its semi-metallic nature with low-energy quasiparticles behaving as ‘relativistic’ Dirac spinors over a good portion of the conducting band. The spinor structure is a general consequence of the bipartite nature of the honeycomb lattice \([2]\). Indeed, recently observed quantization rules for the Hall conductivity in cuprates, being prime examples. What makes graphene qualitatively new is its semi-metallic nature with low-energy quasiparticles behaving as ‘relativistic’ Dirac spinors over a good portion of the conducting band. The spinor structure is a general consequence of the bipartite nature of the honeycomb lattice \([2]\). Indeed, recently observed quantization rules for the Hall conductivity in cuprates, being prime examples.

The relativistic spectrum and the concomitant linearly vanishing density of states at the Fermi level, similarly as in the superconducting state of cuprates, provide graphene’s quasiparticles with an additional protection against the effects of interactions. Nevertheless, a sufficiently strong repulsion is expected to turn the semi-metallic state into a gapped insulator, possibly breaking the translational and/or the rotational symmetry in the process. Within the simplest interacting theory defined by the Hubbard model there is convincing numerical evidence for the quantum phase transition at a large Hubbard \(U \) into an antiferromagnet (AF) \([3]\). On the other hand, the long-range Coulomb interaction remains unscreened in the semi-metal (SM) \([4]\), and has been argued to favor the charge-density-wave (CDW) at strong coupling \([5]\). The competition between different instabilities, the universality class, or even the order, of the SM - insulator transition, and the interplay of interactions with the Landau quantization in the external magnetic field present some of the basic open problems. Although graphene in its natural state may not be near a critical point \([6]\), one can conceive mechanical deformations that would pull it deeper into the strong-coupling regime \([11]\). Finally, the outcome of the competition between different interactions should have consequences for the selection of the ground state in the magnetic field, even at weak coupling \([11]\).

In the present communication some of these issues are addressed by considering the half-filled Hubbard model on a honeycomb lattice, complemented with the additional long-range Coulomb interaction between electrons. The analysis is based on a useful decomposition of Hubbard’s on-site interaction on a bipartite lattice into a sum of squares of average and staggered densities, and average and staggered magnetizations. The long-range part of the Coulomb interaction may be represented by a massless scalar gauge field, whereas its main effect on the lattice scale is to provide the repulsion between nearest-neighbors. When prepared like this, in the continuum limit such an extended Hubbard model on a honeycomb lattice maps onto a \(2 + 1 \)-dimensional field theory of Dirac fermions, with \(N \) different couplings. Its apparent complexity notwithstanding, when generalized to a large number of fermion flavors \(N \), the theory admits a simple SM - AF critical point of the Gross-Neveu variety \([12]\). Coulomb interaction is marginally irrelevant at the critical point. Assuming that the equivalence with the Gross-Neveu model persists down to the physical case of \(N = 2 \), I infer the values of the critical exponents in the original Hubbard model. A more general phase diagram, and the implications of these results for graphene are discussed.

The extended Hubbard model will be defined by the Hamiltonian \(H = H_0 + H_1 \) where

\[
H_0 = -t \sum_{\vec{A}, i, \sigma = \pm 1} n^\dagger_\sigma (\vec{A}) v_\sigma (\vec{A} + \vec{b}_i) + H.c.,
\]

\[
H_1 = \sum_{\vec{X}, \vec{Y}, \sigma, \sigma'} n_\sigma (\vec{X}) [U / 2 |\delta_{\vec{X}, \vec{Y}}|^2 + e^2 (1 - \delta_{\vec{X}, \vec{Y}}) / 4\pi |\vec{X} - \vec{Y}|] n_{\sigma'} (\vec{Y}).
\]

The sites \(\vec{A} \) denote one triangular sublattice of the hexagonal lattice, generated by linear combinations of the basis vectors \(\vec{a}_1 = (\sqrt{3}, -1) (a / 2) \), \(\vec{a}_2 = (0, a) \). The second sublattice is then at \(\vec{B} = \vec{A} + \vec{b}_i \), with the vector \(\vec{b} \) being either \(\vec{b}_1 = (1 / \sqrt{3}, 1) (a / 2) \), \(\vec{b}_2 = (1 / \sqrt{3}, -1) (a / 2) \), or \(\vec{b}_3 = (-a / \sqrt{3}, 0) \). \(a \) is the lattice spacing. Neutralizing background is assumed, as usual.

The doubly degenerate spectrum of \(H_0 \) at \(E (\vec{k}) = \pm t |\sum_{\alpha} \exp [\vec{k} \cdot \vec{b}_i] | \) becomes linear and isotropic in the vicinity of two non-equivalent points at the edges of the Brillouin zone at \(\pm \vec{K} \), with \(\vec{K} = (1, 1 / \sqrt{3}) (2\pi / a\sqrt{3}) \). Retaining only the Fourier components near \(\pm \vec{K} \) one can
write the quantum-mechanical action corresponding to \(H_0 \) at low energies as \(S = \int_0^{1/T} d\tau d\vec{x} L_0 \), with the free Lagrangian \(L_0 \) defined as

\[
L_0 = \sum_{\sigma = \pm 1} \bar{\Psi}_\sigma(\vec{x}, \tau) \gamma_\mu \partial_\mu \Psi_\sigma(\vec{x}, \tau),
\]

and

\[
\Psi^\dag_\sigma(\vec{x}, \tau) = T \sum_{\omega_n} \frac{d\vec{q}}{(2\pi)^2} e^{-i\omega_n \tau + i\vec{q} \cdot \vec{x}} (u^\dagger_\sigma(\vec{K} + \vec{q}, \omega_n), v^\dagger_\sigma(\vec{K} - \vec{q}, \omega_n), v^\dagger_\sigma(-\vec{K} + \vec{q}, \omega_n), u^\dagger_\sigma(-\vec{K} - \vec{q}, \omega_n)),
\]

where it was convenient to rotate the reference frame so that \(q_x = q \cdot \vec{K} / K \) and \(q_y = (\vec{K} \times \vec{q}) \times \vec{K} / K^2 \), and set \(\hbar = k_B = v_F = 1 \), where \(v_F = t a\sqrt{3}/2 \) is the Fermi velocity. Choosing \(\gamma_0 = I_2 \otimes \sigma_\tau \) implies \(\gamma_1 = \sigma_\tau \otimes \sigma_y \) and \(\gamma_2 = I_2 \otimes \sigma_x \), with \(I_2 \) as the 2 \times 2 unit matrix, and \(\vec{d} \) as the Pauli matrices. \(\Lambda \approx 1/a \) is the ultraviolet cutoff over which the linear approximation for the dispersion holds. The summation convention is adopted hereafter, but only over repeated space-time indices. Besides the ‘relativistic’ invariance, \(L_0 \) also exhibits a global invariance under the \(U(4) \), generated by \(\{ \vec{d}, \vec{\sigma} \} \), where \(I \) is the 4 \times 4 unit matrix,

\[
\gamma_{35} = \gamma_3 \otimes \gamma_5, \quad \gamma_{35} = \gamma_5 \otimes \gamma_3, \quad \text{and} \quad \gamma_{35} = i \gamma_3 \gamma_5.
\]

This is similar to the emergent ‘chiral’ symmetry of a d-wave superconductor.

Generalizing slightly Hamman’s decomposition, the first term in \(H_1 \) can also be rewritten as exactly

\[
\frac{U}{8} \sum_{\vec{A}} [(n(\vec{A}) + n(\vec{A} + \vec{b}))^2 + (n(\vec{A}) - n(\vec{A} + \vec{b}))^2] \]

\[
\quad - (m(\vec{A}) + m(\vec{A} + \vec{b}))^2 - (m(\vec{A}) - m(\vec{A} + \vec{b}))^2]
\]

where \(n(\vec{A}), m(\vec{A}) = u^\dagger_\sigma(\vec{A}) u_+ (\vec{A}) \pm u^\dagger_\sigma(\vec{A}) u_- (\vec{A}) \), are the particle number and the magnetization at the sites \(\vec{A} \). Variables at the second sublattice are analogously defined in terms of \(v_\sigma(\vec{B}) \).

Defining the two slow components of the fields as

\[
r^\dagger_{\vec{x}}(\vec{x}, \tau) = \int_{|\vec{k}| < \Lambda} \frac{d\vec{k}}{(2\pi)^2} e^{i\vec{k} \cdot \vec{x}} r_\sigma(\vec{k}, \tau),
\]

with \(r = u, v \), the Dirac field becomes

\[
\Psi^\dagger_\sigma(\vec{x}, \tau) e^{i(\vec{K} \cdot \vec{x})} \gamma_{35} = (u^\dagger_\sigma(\vec{x}, \tau), \gamma_{35} v^\dagger_\sigma(\vec{x}, \tau), (v^\dagger_\sigma(\vec{x}, \tau), \gamma_{35} u^\dagger_\sigma(\vec{x}, \tau))).
\]

At low energies one may then approximate

\[
r_\sigma(\vec{x}, \tau) \approx r^\dagger_\sigma(\vec{x}, \tau) + r^2_\sigma(\vec{x}, \tau),
\]

so that the spin densities on the two sublattices become

\[
r^\dagger_\sigma(\vec{x}, \tau) r_\sigma(\vec{x}, \tau) \approx \frac{1}{2} \bar{\Psi}_\sigma(\vec{x}, \tau) (I_2 + e^{i\vec{K} \cdot \vec{x}} \sigma_z \sigma_x) \otimes (\sigma_z \pm I_2) \Psi_\sigma(\vec{x}, \tau),
\]

with the plus sign for \(r = u \) and the minus for \(r = v \).

The notation is now in place to write the low-energy theory of the extended Hubbard model. In the continuum limit \((a \rightarrow 0)\) the Lagrangian becomes

\[
L = L_0 - i a_0 \sum_\sigma \bar{\Psi}_\sigma(\vec{x}, \tau) \gamma_0 \Psi_\sigma + a_0 \frac{\vec{V}^2}{2e^2} a_0 + \sum_x L_x,
\]

with

\[
L_x = g_x \left(\sum_\sigma w_{x,\sigma} \bar{\Psi}_\sigma(\vec{x}, \tau) \gamma_1 \Psi_\sigma(\vec{x}, \tau) \right)^2 +
\]

\[
\tilde{g}_x \left(\sum_{\mu = 3, 5} \sum_{\sigma = \pm 1} w_{x,\sigma} \bar{\Psi}_\sigma(\vec{x}, \tau) M_\mu \gamma_1 \gamma_\mu \Psi_\sigma(\vec{x}, \tau) \right)^2,
\]

and \(w_{d,\sigma} = w_{c,\sigma} = 1, \quad w_{f,\sigma} = w_{a,\sigma} = \sigma, \quad M_d = M_f = M_c = 1 \). The short-range couplings are \(g_d = -2 g_a = \epsilon^2 / 4K = (U - V)^2/2, \quad g_c = -2 g_a = (U - V)^2/2, \quad g_f = g_a = -2 g_f = -2 g_a = -U a^2 / 2, \quad d \) and \(c \) couplings correspond to the first (average density) and the second (staggered density), whereas \(f \) and \(a \) couplings represent the third (magnetization) and the fourth (staggered magnetization) terms in Eq. (5). The Coulomb interaction is represented by: 1) the intra-unit-cell, nearest-neighbor repulsion \(V = \epsilon^2 / \sqrt{3} / (4\alpha \epsilon) \), and the \(2K \) Fourier component \(\epsilon^2 / 2K \), and 2) its long-range part, which is recovered upon Gaussian integration over the scalar gauge-field \(a_0 \). \(\nabla \psi \) should be understood as \(|\vec{q}| \) in Fourier space.

Whereas such a separation would be exact for an infinitely long-range interaction, it is only an approximation for the Coulomb interaction.

The usual power counting implies that all short-range interactions in \(L \) are irrelevant, and that the charge \(e \) is a marginal coupling at the non-interacting fixed point \(g_x = \tilde{g}_x = e = 0 \). Any critical point would therefore
have to lie in the strong-coupling regime. To exert some control over it we may deform the Lagrangian from two to \(N \) flavors of the Dirac fields as follows:

\[
\bar{\Psi}_+ \Psi_+ \to \sum_{\sigma=1}^{N/2} \bar{\Psi}_x^\sigma \Psi_+^\sigma; \bar{\Psi}_- \Psi_- \to \sum_{\sigma=(N/2)+1}^N \bar{\Psi}_x^\sigma \Psi_\sigma, \tag{12}
\]

and \(g_x \to 2g_x/N, \tilde{g}_x \to 2\tilde{g}_x/N, e^2 \to 2e^2/N \). The integration over the Fourier components with \(\Lambda < q < \Lambda \) and \(-\infty < \omega < \infty \) renormalizes then the short-range couplings at \(T = 0 \) as

\[
\beta_x = \frac{dg_x}{d\ln b} = -g_x - C_x g_x^2 + O(1/N), \tag{13}
\]

\[
\tilde{\beta}_x = \frac{d\tilde{g}_x}{d\ln b} = -\tilde{g}_x + 2\tilde{g}_x^2 + O(1/N), \tag{14}
\]

with \(C_{x,a} = 4, C_{d,f} = 0 \), and with the couplings rescaled as \(g^2 a^2/\pi \to g \). To the leading order in \(1/N \) \(\beta \)-functions for different interactions thus do not mix \([14]\). Since the model when \(N = \infty \) is exactly solvable by the saddle-point method, the leading order \(\beta \)-functions may also be understood as guaranteeing that the solution is cutoff independent \([12]\). Non-analyticity of the inverse gauge-field propagator and the gauge invariance of \(L \) also dictate that

\[
\beta_x = \frac{de^2}{d\ln b} = (z - 1)e^2, \tag{15}
\]

with \(z \) as the dynamical exponent, exactly \([14]\). Relativistic invariance of \(L \) is broken when \(e \neq 0 \), and consequently \(z \neq 1 \) at finite length scales. Similarly to the bosonic case,

\[
z = 1 - \frac{e^2}{2\pi N} + O(1/N^2), \tag{16}
\]

and the charge is marginally irrelevant to the order in \(1/N \) \([13] \) \([14]\).

Besides the trivial fully attractive fixed point, the large-\(N \) \(\beta \)-functions in Eqs. \((13)-(15)\) exhibit two critical points in the attractive plane \(e^2 = g_f = g_d = \tilde{g}_x = 0 \): 1) \(g_a = -1/4, g_c = 0 \) and 2) \(g_c = -1/4, g_a = 0 \). There is also a bicritical point at \(g_a = g_c = -1/4 \), which directs the flows towards one of the two critical points (Fig. 1). The critical points are related by the symmetry under a change of sign of \(\gamma_\mu \) for ‘down’ components with \(\sigma = N/2 + 1, \ldots, N \) accompanied by the exchange of \(g_a \) and \(g_c \). The transition is either to \(A = (\sum_\sigma \bar{\Psi}_x^\sigma \Psi_\sigma) \neq 0 \), which corresponds to an AF with a finite staggered magnetization, or to a CDW, with the finite staggered density \(C = (\sum_\sigma \bar{\Psi}_x^\sigma \Psi_\sigma) \neq 0 \). The same, of course, follows from the explicit solution of the model at \(N = \infty \). The flow of \(g_f \) towards the origin also agrees with the saddle-point equations, which do not show a ferromagnetic critical point at \(N = \infty \), whereas the irrelevance of \(g_d \) simply means that the chemical potential vanishes.

Eqs. \((14)\), however, appear to exhibit additional critical points at \(\tilde{g}_x = 1/2 \). These, however, would occur within the AF or the CDW, and are artifacts of our procedure which checks only the stability of the semi-metal. It is easy to see from the explicit solution that the existing gap prevents such an additional transition. All \(\tilde{g}_x \) are therefore irrelevant.

The transition in the pure, \(e = 0 \), repulsive Hubbard model with \(g_a < 0 \) and \(g_c > 0 \) in the large-\(N \) limit is controlled therefore by the critical point \(A \). Recalling that \(g_a = Ua^2\Lambda/(8\pi) \), with \(\Lambda \approx 1/a \), and \(ta^\sqrt{3}/2 = 1 \) by our convention, one finds that this corresponds to the critical value of \(U_c/t \approx 5.5 \), certainly fortuitously close to the values found in numerical calculations \([7] \). Above the critical interaction the system develops a gap, at the same time becoming insulating and antiferromagnetic.

At the critical line \(g_c = g_f = g_d = \tilde{g}_x = e^2 = 0 \), upon the change of sign of \(\gamma \)-matrices for ‘down’ components the Lagrangian becomes identical to the much studied Gross-Neveu model in 2+1 dimensions \([12]\). Evidently, the Gross-Neveu critical point has only one unstable direction to the order \(1/N \). Since the actual expansion parameter is \(4N \), I expect this feature to survive even for \(N = 2 \). This leads to the conjecture that the SM-AF transition in the Hubbard model is continuous and described by the \(N = 2 \) Gross-Neveu critical point, at which

\[
\langle \bar{\Psi}_x(q, \omega) \Psi_\sigma(q', \omega) \rangle \sim (q^2 + \omega^2)^{(\eta_\Psi - 1)/2}, \tag{17}
\]

with the fermion’s anomalous dimension \(\eta_\Psi = (2/(3\pi^2 N)) + O(1/N^2) \). \([17]\). The order parameter’s correlation function at the critical point also decays as:

\[
\langle A(x, \tau) A(0, 0) \rangle \sim (x^2 + \tau^2)^{-(1+\eta)/2}, \tag{18}
\]

where \(\eta \) is the standard anomalous dimension, and \(\eta = 1 - 16/(3\pi^2 N) + O(1/N^2) \). The correlation length diverges at the critical point with the exponent \(\nu = 1 + 8/(3\pi^2 N) + O(1/N^2) \), and the usual scaling laws are expected to be satisfied. The critical exponents have been computed to the order \(1/N^2 \) (with \(\eta_\Psi \) known even to the order \(1/N^3 \)) \([15]\), as well as being determined by Monte Carlo calculations, the \(e \)-expansion \([18]\), and the exact renormalization group \([14]\). In summary, for \(N = 2 \) one finds \(\eta_\Psi = 0.038 \pm 0.006, \nu = 0.97 \pm 0.07, \) and \(\eta = 0.770 \pm 0.016 \). \([13]\).

The presence of gapless fermions on the semi-metallic side places the Gross-Neveu phase transition outside the usual Ginzburg-Landau-Wilson paradigm, as evidenced by the large anomalous dimension \(\eta_\Psi \) for example. In fact, the Gross-Neveu model probably defines the simplest such a universality class. Its distinct characteristic is the fermion’s anomalous dimension \(\eta_\Psi \), which governs the disappearance of quasiparticles as the transition is approached on the semi-metallic side. Scaling dictates that the residue of the quasiparticle pole behaves as

\[
Z_\Psi \sim (U_c - U)^{\eta_\Psi}, \tag{19}
\]
so that a very small γ_0 would make it appear discontinuous at $U = U_c$.

In the AF, the eight generators that anticommute with $\sigma_z \otimes \gamma_0$ become broken; these are $(I_2, \sigma_z) \otimes (\gamma_3, \gamma_5)$ and $(\sigma_x, \sigma_y) \otimes (I, \gamma_{35})$. Among these only $(\sigma_x, \sigma_y) \otimes I$, which generate the usual spin rotations, correspond to the exact symmetry at $U = 0$, whereas the rest emerge as generators of approximate symmetries only at low energies. In the insulating phase the Goldstone bosons which correspond to the emerging generators are gapped, due to the irrelevant terms excluded from L. The low-energy spectrum in the insulator consists therefore only of the usual magnons.

The long-range nature of Coulomb interaction is found to be irrelevant at a large N. On the scale of lattice spacing, however, Coulomb interaction leaves its imprint on the initial value of the coupling g_c, as indicated right below Eq. (11), for example [21]. In general, if the nearest-neighbor repulsion V is made sufficiently strong so that the line of initial conditions in Fig. 1 reaches left of the point C, there is an additional semi-metal - CDW transition. Identifying V with $\sim e^2/a$ gives an alternative mechanism to that of ref. 8 for the CDW formation. The two lines of continuous transitions merge above a certain V, when the line of initial conditions comes left of the point B. The direct transition between the AF and the CDW is discontinuous. It seems natural, however, to assume that in reality $U > V$, which would suggest a single, continuous, antiferromagnetic transition.

For graphene, $t \approx 2.5 eV$, $U \approx 5 - 12 eV$, $U/V \approx 2 - 3$, so that the system is probably on the SM side of the transition. The external magnetic field, however, changes the density of states into a series of delta-functions, so that the transition can now in principle take place even at an infinitesimal coupling [11]. In the magnetic field the flow of the couplings should be cutoff at $\sim 1/l_B$, where $l_B \gg a$ is the magnetic length. If the large-N picture presented here holds for $N = 2$, in the the pure, $e = 0$, Hubbard model, at a sufficiently low field all couplings would become negligible compared to g_0. This would suggest that the magnetic field, at least with the Zeeman term neglected and the long-range component of the interaction screened by a metallic substrate, for example, should ‘catalyze’ the antiferromagnetic order at a weak U.

The author thanks G. Sawatzky for a helpful correspondence. This work has been supported by NSERC of Canada.

[1] K. S. Novoselov et. al., Science 306, 666 (2004).
[2] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[3] K. S. Novoselov et. al., Nature 438, 197 (2005); Y. Zhang et. al., Nature 438, 201 (2005).
[4] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).
[5] N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006); ibid. 72, 174406 (2005).
[6] S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992); L. M. Martelo et. al., Z. Phys. B 103, 335 (1997); T. Pavia et. al. Phys. Rev. B 72, 085123 (2005).
[7] J. Gonzalez, F. Guinea, M. A. H. Vozmediano, Nucl. Phys. B424, 595 (1994); Phys. Rev. B 59, 2474 (1999).
[8] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001); H. Leal and D. V. Khveshchenko, Nucl. Phys. B 687, 323 (2004).
[9] See, however, F. R. Wagner and M. Lepetit, J. Phys. Chem. 100, 11050 (1996), and references therein, for possible evidence to the contrary.
[10] T. A. Gloor and F. Mila, Eur. Phys. J. B 38, 9 (2004).
[11] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994).
[12] D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[13] I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002); ibid. 94, 237001 (2005); Phys. Rev. B 66, 094504 (2002).
[14] I. F. Herbut, Phys. Rev. Lett. 87, 137004 (2001); see also in I. Herbut, A Modern Approach to Critical Phenomena, (Cambridge University Press, 2006, in press), Ch. 8.
[15] K. Kaveh and I. F. Herbut, Phys. Rev. B 71, 184519 (2005).
[16] O. Vafek, preprint cond-mat/0605642.
[17] A. M. Vasil’ev, S. E. Derkachov, N. A. Kilev, and A. S. Stepanenko, Teor. Mat. Fiz. 92, 486 (1992); ibid. 97, 364 (1993); J. A. Gracey, Int. J. Mod. Phys. A 9, 727 (1994).
[18] L. Kärkkäinen, L. Lacaze, P. Lacock, and B. Petersson, Nucl. Phys. B 415, 781 (1994); Phys. Rev. Lett. 86, 958 (2001); F. Höfling, C. Novak, and C. Wetterich, Phys. Rev. B 66, 205111 (2002).
[19] B. Seradjeh and I. F. Herbut, Phys. Rev. B 66, 184507 (2002).
[20] See also, J. Alicea and M. P. A. Fisher, cond-mat/0604601.