What is the gut feeling telling us about physical activity in colorectal carcinogenesis?

Maja Cigrovski Berkovic, Vjekoslav Cigrovski, Ines Bilic-Curcic, Anna Mrzljak

ORCID number: Maja Cigrovski Berkovic 0000-0003-0750-9785; Vjekoslav Cigrovski 0000-0003-4519-4235; Ines Bilic-Curcic 0000-0002-8861-5987; Anna Mrzljak 0000-0001-6270-2305.

Author contributions: Cigrovski Berkovic M, Cigrovski V, Bilic-Curcic I and Mrzljak A wrote the manuscript; all authors read and approved the final manuscript.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Medicine, research and experimental

Abstract

In the last decades, more efforts are focused on the prevention and treatment of malignant diseases, given the increase in all cancers incidence. A lifestyle change, including healthy eating habits and regular physical activity, has significantly impacted colorectal cancer prevention. The effect of dose-dependent physical activity on mortality and recurrence rates of colorectal carcinoma has been unequivocally demonstrated in observational studies. However, clear recommendations are not available on the frequency, duration, and intensity of exercise in patients with colorectal cancer due to the lack of evidence in randomized clinical trials. Regarding pathophysiological mechanisms, the most plausible explanation appears to be the influence of physical activity on reducing chronic inflammation and insulin resistance with a consequent positive effect on insulin growth factor I signaling pathways.

Key Words: Physical activity; Colorectal cancer; Insulin signaling pathway; Inflammation; Gut microbiota

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
IN INTRODUCTION

Colorectal cancer (CRC) is the fourth most common cancer worldwide, with increasing incidence due to lifestyle, environmental changes, and aging demographics; it is estimated to rise to 2.2 million new cases and 1.1 million deaths by 2030[6]. Forty-four percent of new CRC diagnoses are older patients, and 20%-25% of CRC is diagnosed at the advanced stage[6]. Five-year overall survival for CRC ranges from 58.4% to 65%[6]. CRC screening programs have led to a 16% decline in overall mortality rate without affecting incidence[6]. Thus, strategies that could prevent or decrease the burden of CRC are of major importance.

PHYSICAL ACTIVITY AND ITS RELATION TO CHRONIC DISEASES WITH A FOCUS ON CANCER

Sedentary behavior (both viewed through the prism of reduced physical activity and/or time spent on sitting) is emerging as an independent risk factor for chronic diseases such as diabetes, hypertension, obesity, and cardiovascular disease and can directly increase mortality. According to objectively assessed measurements, adults spend 50% to 60% of the day being physically inactive, in sedentary behaviors[6].

Cancer is a leading cause of death in many modern societies, although largely preventable through healthy lifestyle choices[8]. A meta-analysis of 43 observational studies recently linked the sedentary lifestyle to the development of three specific types of cancers; lung, endometrial, and colon. For the later, authors reported an 8% increase of risk in case of each 2-h increase in sitting time[9]. Another meta-analysis, which included 17 prospective studies, reported the associations between sedentary behavior and some cancer types, including CRC [relative risk, 1.30; 95% confidence interval (CI), 1.12-1.49][10].

The Reasons for Geographic and Racial Differences in Stroke study, which included a cohort of 8002 adults aged ≥ 45 years in the United States and prospectively followed them by accelerometry for a mean of 5.7 years, reported an association between greater sedentary time with greater risk of cancer mortality. Moreover, the authors found that replacing 30 min of sedentary time with physical activity (either light or moderate-vigorous) can reduce the cancer mortality for 8% and 31%, respectively[11]. Analysis of cancer risk in relation to the level of leisure-time physical activity involving more than 30 min of sedentary time with physical activity (either light or moderate-vigorous), cancer mortality can be reduced by 8% and 31%, respectively. Although the mechanisms of preventive and favorable effects of physical activity on CRC are still unknown, the most plausible are the influence on chronic inflammation and insulin resistance, with a positive effect on insulin growth factor 1 signaling pathways.

Core Tip: Sedentary lifestyle is linked to the development of colorectal cancer (CRC); each 2-h increase in sitting time increases the risk of CRC development by 8%. Additionally, engaging in physical activity can prevent 15% of CRC, and by replacing 30 min of sedentary time with physical activity (either light or moderate-vigorous), cancer mortality can be reduced by 8% and 31%, respectively. Although the mechanisms of preventive and favorable effects of physical activity on CRC are still unknown, the most plausible are the influence on chronic inflammation and insulin resistance, with a positive effect on insulin growth factor 1 signaling pathways.

Citation: Cigrovski Berkovic M, Cigrovski V, Bilic-Curcic I, Mrzljak A. What is the gut feeling telling us about physical activity in colorectal carcinogenesis? World J Clin Cases 2020; 8(23): 5844-5851

URL: https://www.wjgnet.com/2307-8960/full/v8/i23/5844.htm

DOI: https://dx.doi.org/10.12998/wjcc.v8.i23.5844
higher the physical activity level, the lower the total cancer risk\cite{12}. Similarly, a recently published umbrella review evaluating physical activity and cancer risk showed that regular physical activity might prevent seven types of cancers (colon, breast, endometrium, lung, esophagus, pancreas, and meningioma)\cite{13}.

EXERCISE AND GASTROINTESTINAL POLYPOSIS

Physical activity offers the protection against colorectal precancerous polyps\cite{14}. There was an exercise duration-related lower prevalence of colon adenomas and polyps in persons who exercised for ≥ 1 h per week as opposed to those who exercised less than an hour weekly\cite{15}. Moreover, the risk for polyp development was decreased throughout the colon, regardless of its specific part. Another study reported the exercise-related decrease in the total number of intestinal polyps, and more specifically in the development of large polyps by 67\%\cite{16}. Animal studies suggest preventing of colorectal polyp formation through pro-inflammatory cytokine interleukin-6, which is decreased after treadmill running\cite{17}.

EXERCISE AND CRC

Despite the treatment advances, new therapies have a limited impact on cure rates and colon cancer patients’ survival. Therefore, adjuvant treatment strategies, among which lifestyle interventions, are needed. Several observational studies have demonstrated the anti-cancer effects of exercise and its dose-dependent effect on decreasing cancer recurrence mortality and risk. More specifically, physical activity may prevent approximately 15\% of colon cancer\cite{18}. A systematic review by Des Guetz and colleagues\cite{19} analyzed six observational studies involving over 7500 CRC survivors and reported that higher post-diagnosis physical activity was associated with a lower risk of CRC-specific mortality (HR, 0.61; 95\% CI, 0.44-0.86) and a lower risk of all-cause mortality (HR, 0.62; 95\% CI, 0.54-0.71). Despite noticed benefits, no randomized controlled trials have been published exploring the beneficial association between physical activity and survival after CRC treatment. The Challenge Trial\cite{20} is the first prospective randomized controlled trial evaluating the effects (improvements of 3-year disease-free survival, QoL) of structured physical activity on the survival of stage 2 and 3 CRC survivors.

POTENTIAL EXPLANATIONS FOR THE PREVENTIVE ROLE OF PHYSICAL ACTIVITY IN THE CRC DEVELOPMENT

Randomized exercise trials and longitudinal studies initially suggested the link between the preventive role of physical activity on cancer through primarily weight reduction and/or prevention of weight gain\cite{21-23}, but nowadays, the association seems more direct and straightforward. There is data suggesting preventive effects even when physical activity lacked the weight loss or maintenance of healthy weight\cite{24}. Potential mechanisms might include a reduction in insulin resistance and inflammation that have been directly linked to colorectal carcinogenesis, or stimulation of digestion and intestinal motility (Figure 1). Moreover, physical activity might directly influence the molecular and genetic pathways involved in colorectal carcinogenesis and improve patient survival\cite{25}. According to available data, physical activity increases the expression of P27 and cyclooxygenase-2 (COX-2) and decreases that of insulin receptor substrate 1 and B-catenin, which correlates to improved cancer-specific survival\cite{26-30}. Another plausible mechanism in need of further exploration is the effect of physical activity on soluble intercellular adhesion molecule, which is known to affect early death and disease recurrence\cite{31}.

The role of exercise on inflammation

Inflammation is a well-known risk factor not only for metabolic disorders like obesity, metabolic syndrome, and diabetes but also for CRC. In animal model studies, physical activity decreased systemic inflammation through the effect on pro-inflammatory cytokines and reduced the risk of colonic polyp formation and progression to cancer\cite{32-34}. Additionally, physical activity decreases the inflammation by affecting the
expression of inducible nitric oxide synthase and COX-2 in the colon mucosa. COX-2-positive CRC patients engaging in the highest intensity physical activity have a significant decrease in cancer-specific mortality compared to those who are least active.

Role of exercise on insulin signaling pathways

By decreasing insulin resistance and circulating insulin levels, physical activity through its effect on IGF pathway can decrease the risk of initial CRC development and its recurrence, and influence cancer mortality. Decreased insulin-like growth factor-1 levels and increased insulin-like growth factor-binding protein 3 levels may be a reasonable mechanism underlying the inverse correlation between CRC and physical activity. Study by Lee and coauthors including CRC survivors showed that engagement in postoperative physical activity decreases both insulin levels and insulin resistance, and increases insulin-like growth factor-1 and insulin-like growth factor-binding protein 3 levels. Additionally, insulin receptor substrate 1 involved in the development of insulin resistance can be used as a marker to identify patients who will benefit most from exercise in terms of cancer-related survival.

A contracting muscle, via different myokines, enhances insulin sensitivity and, at the same time, decreases the production of pro-inflammatory cytokines, which is a potential mechanism of anti-cancer effect. Recently published studies have shown that specific myokine, named the secretory protein that is acidic and rich in cysteine (SPARC protein) involved in intercellular interaction and cell differentiation, might be important for preventing CRC development by increasing tumor cell apoptosis.

The role of exercise on gut microbiota

Changes in the intestinal microbiota composition disrupt gut integrity and induce a systemic inflammatory response, contributing to establishing a chronic low-grade inflammation state with repercussions in the gut and beyond. Therefore targeting microbiota seems like a promising prevention and/or treatment concept. Emerging evidence from animal and human studies demonstrate that the exercise influences the diversity, composition, and functionality of gut microbiota. In this regard, the exercise increases butyrate-producing taxa and fecal butyrate concentrations and reduces pro-inflammatory cytokines and oxidative stress in the gut. In the context of CRC, animal studies show that spontaneous wheel activity reduces the incidence of CRC. Furthermore, exercise training reduces tumor multiplicity and the number of large tumors in mice genetically predisposed to intestinal adenomas, substantiating it with a correlation between fecal butyrate concentrations and tumor number. In CRC patients, alternations in gut microbiota are characterized by a reduced abundance of butyrate-producing taxa. Therefore exercise-induced modifications of the intestinal microbiota are likely to have implications in the prevention and treatment of CRC patients.
CONCLUSION

According to the American Cancer Society guidelines, it is important not only to avoid inactivity but also to be engaged in minimally 150 min cumulative moderate or 75 min vigorous-intensity aerobic exercise weekly, and perform at least two days per week of strength exercises in order to prevent the development of CRC or to have a favorable prognosis[22,23]. The recommendation is to increase the amount of exercise to achieve 300 min of aerobic exercise weekly if possible. Generally, no specific precautions need to be taken if participation in physical activity is incorporated slowly, when time and intensity slowly upgrade. In older individuals or those with known cardiovascular disease, sometimes a medical clearance before engaging in physical activity is needed. Similarly, if patients are on cardiotoxic chemotherapy, a cardiologist’s consult might be prudent[24]. Finally, physical activity improves the patients’ quality of life, functional status, muscle strength, depression, and decreases the risk of CRC recurrence and cancer-specific and overall mortality[25,26].

REFERENCES

1 Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683-691 [PMID: 26818619 DOI: 10.1136/gutjnl-2015-310912]

2 Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JPA, Dunlop MG, Campbell H, Timofeeva M, Theodoratou E. Gene-environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer 2019; 145: 2315-2329 [PMID: 30536881 DOI: 10.1002/ijc.32057]

3 Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2013. Ann Oncol 2013; 24: 792-800 [PMID: 23402763 DOI: 10.1093/annonc/mdt010]

4 Patel JN, Fong MK, Jagosky M. Colorectal Cancer Biomarkers in the Era of Personalized Medicine. J Pers Med 2019; 9: 3 [PMID: 3064508 DOI: 10.3390/jpm9010003]

5 National Institutes of Health. Cancer Stat Facts: Colorectal Cancer. 2020. Available from: https://www.cancer.gov/statfacts/html/colorect.html

6 Hewittson P, Glassioui P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol 2008; 103: 1541-1549 [PMID: 18479499 DOI: 10.1111/j.1572-0241.2008.01875.x]

7 Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. J Pers Med 2019; 9: 10.1039/c5jm00419j

8 Anand P, Kannumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. J Am Coll Nutr 2015; 34: 126-132 [PMID: 26935969 DOI: 10.1080/07315724.2014.975099]

9 Shen D, Mao W, Liu T, Lin Q, Lu X, Wang Q, Lin F, Ekelund U, Wijnjauleke K. Sedentary behavior and incident cancer: a meta-analysis of prospective studies. PLoS One 2014; 9: e105709 [PMID: 25153814 DOI: 10.1371/journal.pone.0105709]

10 Gilchrist SC, Howard VJ, Akinyemiju T, Judd SE, Cushman M, Hooker SP, Diaz KM. Association of Sedentary Behavior With Cancer Mortality in Middle-aged and Older US Adults. JAMA Oncol 2020; 6: 1210-1217 [PMID: 32556069 DOI: 10.1001/jamaoncol.2020.2045]

11 Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, Adami HO, Blair CK, Borch KB, Boyd E, Check DP, Fournier A, Freedman ND, Gunter M, Johannson M, Khaw KT, Linet MS, Orsini N, Park Y, Riboli E, Robien K, Schairer C, Sesso H, Sprieggs M, Van Dusen R, Wolk A, Matthews CE, Patel AV. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern Med 2016; 176: 816-825 [PMID: 27183032 DOI: 10.1001/jamainternmed.2016.1548]

12 Rezende LFM, Sá TH, Markozannes G, Rey-López JP, Lee IM, Tsilidis KK, Ioannidis JPA, Eluf-Neto J. Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770 000 cancer cases. Br J Sports Med 2018; 52: 826-833 [PMID: 29146752 DOI: 10.1136/bjsports-2017-098391]

13 Wolin KY, Yan Y, Colditz GA, Lee IM. Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer 2009; 100: 611-616 [PMID: 19209175 DOI: 10.1038/sj.bjc.6604917]

14 Sanchez NF, Stierman B, Saab S, Mahajan D, Yeung H, Francois F. Physical activity reduces risk for colon polyps in a multiethnic colorectal cancer screening population. BMC Res Notes 2012; 5: 312 [PMID: 22715975 DOI: 10.1186/1756-0500-5-312]
Baltgalvis KA, Berger FG, Peña MM, Davis JM, Carson JA. The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in ApcMin+ mice. Cancer Prev Res 202: 641-649 [PMID: 19549797 DOI: 10.1186/1940-6207.CAPR-09-0017]

Mehl KA, Davis JM, Clements JM, Berger FG, Pena MM, Carson JA. Decreased intestinal polyp multiplicity is related to exercise mode and gender in ApcMin+ mice. J Appl Physiol (1985) 2005; 98: 2219-2225 [PMID: 15894538 DOI: 10.1152/japplphysiol.00975.2004]

Vainio H, Kaaks R, Bianchini F. Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 2002; 11 Suppl 2: S94-100 [PMID: 12570341]

Des Guet G, Uzzan B, Bouillet T, Nicolas P, Chouahnia K, Zelek L, Morere JF. Impact of physical activity on cancer-specific and overall survival of patients with colorectal cancer. Gastroenterol Res Pract 2013; 2013: 340851 [DOI: 24222762]

Courneya KS, Vardy JL, O’Callaghan CJ, Friedenreich CM, Campbell KL, Prapavessis H, Crawford JJ, O’Brien P, Dhillon HM, Jonker DJ, Chua NS, Lupichuk S, Sanatani MS, Gill S, Meyer RM, Begbie S, Bonaventura T, Burge ME, Turner J, Tu D, Booth CM. Effects of a Structured Exercise Program on Physical Activity and Fitness in Colon Cancer Survivors: One Year Feasibility Results from the CHALLENGE Trial. Cancer Epidemiol Biomarkers Prev 2016; 25: 969-977 [PMID: 27197271 DOI: 10.1158/1055-9966.EPI-15-1527]

Lee IM, Djoussé L, Sesso HD, Wang L, Buring JE. Physical activity and weight gain prevention. JAMA 2010; 303: 1173-1179 [PMID: 20332403 DOI: 10.1001/jama.2010.312]

Renehan AG, Tyson M, Egger M, Heller RF, Zwalen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569-578 [PMID: 18280327 DOI: 10.1016/S0140-6736(08)60269-X]

Ennour-Idrissi K, Maunsell E, Diorio C. Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res 2015; 17: 139 [PMID: 26541444 DOI: 10.1186/s13058-015-0647-3]

Kuiper JG, Phillas AP, Neouhouser ML, Chlebowski RT, Thomson CA, Irwin ML, Lane DS, Wactawski-Wende J, Hou L, Jackson RD, Kampman E, Newcomb PA. Recreational physical activity, systematic review and meta-analysis of randomized controlled trials. Exerc Sport Sci Rev 2010; 38: 324-366 [PMID: 21016936 DOI: 10.1097/JSS.0b013e3181d19f03]

Morikawa T, Kuchiba A, Yamauchi M, Meyerhardt JA, Shima K, Nosho K, Shinoda M, Giovannucci EL, Fuchs CS. Interaction of molecular markers and physical activity on mortality in patients with colon cancer. Clin Cancer Res 2009; 15: 5931-5936 [PMID: 19723652 DOI: 10.1158/1055-9965.EPI-09-0490]

Yamauchi M, Lacour JA, Welch J, Zeng H, Giovannucci EL, Fuchs CS. Linking obesity to colorectal cancer: recent insights into plausible biological mechanisms. Curr Opin Clin Nutr Metab Care 2013; 16: 595-600 [PMID: 24222762]
Cigrovski Berkovic M et al. Physical activity and colorectal carcinogenesis

23743611 DOI: 10.1097/MCO.0b013e32838ed10b]
35 Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, Dobs A, Savage PJ. Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 1999; 91: 1147-1154 [PMID: 10393723 DOI: 10.1093/jnci/91.13.1147]
36 Hakam A, Yeatman TJ, Lu L, Mora L, Marcet G, Nicosia SV, Karl RC, Coppola D. Expression of insulin-like growth factor-1 receptor in human colorectal cancer. Hum Pathol 1999; 30: 1128-1133 [PMID: 10534157 DOI: 10.1016/s0046-8177(99)00007-8]
37 Sax AT, Jenkins DG, Devin JL, Hughes GI, Bolam KA, Skinner TL. The insulin-like growth factor axis: A biological mechanism linking physical activity to colorectal cancer survival. Cancer Epidemiol Biomarkers Prev 2014; 38: 411-419 [PMID: 24968815 DOI: 10.1007/s10561-014-5011-2]
38 Wolpin BM, Meyerhardt JA, Chan AT, Ng K, Chan JA, Wu K, Pollak MN, Giovannucci EL, Fuchs CS. Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J Clin Oncol 2009; 27: 176-185 [PMID: 19064975 DOI: 10.1200/JCO.2008.17.9945]
39 Lee DH, Kim JY, Lee MK, Lee C, Min JH, Jeong DH, Lee JW, Chu SH, Meyerhardt JA, Ligibel J, Jones LW, Kim NK, Jeon JY. Effects of a 12-week home-based exercise program on the level of physical activity, insulin, and cytokines in colorectal cancer survivors: a pilot study. Support Care Cancer 2013; 21: 2537-2545 [PMID: 23636649 DOI: 10.1007/s00520-013-2182-7]
40 Pedersen BK. Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 2011; 25: 811-816 [PMID: 2135469 DOI: 10.1016/j.bbi.2011.02.010]
41 Aoi W, Naito Y, Takagi T, Tanimura Y, Takenami Y, Kawai Y, Sakuma K, Hang LP, Mizushima K, Hirai Y, Koyama R, Wada S, Higashi A, Akura S, Ichikawa H, Yoshikawa T. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 2013; 62: 882-889 [PMID: 22851666 DOI: 10.1136/gutjnl-2011-300776]
42 White AK, Smith RJ, Bigler CR, Brooke WF, Schauer PR. Head and neck manifestations of neurofibromatosis. Laryngoscope 1986; 96: 732-737 [PMID: 3088347 DOI: 10.1249/00005537-198607000-000183]
43 Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chihi H, Matusbara N, Hara H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008; 72: 572-576 [PMID: 18256465 DOI: 10.1271/bbb.704747]
44 Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016; 310: E982-E993 [PMID: 27117007 DOI: 10.1152/ajpendo.00537.2015]
45 Carbayo-Pescador S, Porras D, Garcia-Medivilla MV, Martinez-Florez S, Juarez-Fernandez M, Cuevas MJ, Gonzalez-Gallego J, Nistal E, Sanchez-Campos S. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Model Mech 2019; 12: dmm039206 [PMID: 30917408 DOI: 10.1242/dmm.039206]
46 Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018; 50: 747-757 [PMID: 29166320 DOI: 10.1249/MSS.0000000000001495]
47 Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, Woods T, Nugent H, Fanning A, Melgar S, Falvey EC, Holmes E, Cotter PD, O'Sullivan O, Molloy MG, Shanahan F. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems 2018; 3: e00444-18 [PMID: 29719871 DOI: 10.1128/mSystems.00444-18]
48 Munukka E, Ahtiainen JP, Puigbo P, Jalkanen S, Pahkala K, Keskiolo To, Kujala UM, Pietila S, Hollmén M, Elo L, Huovinen P, D'auria G, Pekkala S. Six-Week Endurance Exercise Alters Gut Metagenome That Is Not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol 2018; 9: 2323 [PMID: 30337914 DOI: 10.3389/fmicb.2018.02323]
49 Andrianopoulos G, Nelson RL, Bombeck CT, Souza G. The influence of physical activity in 1,2 dimethylhydrazine induced colon carcinogenesis in the rat. Anticancer Res 1987; 7: 849-852 [PMID: 3674772]
50 Basterfield L, Matthys JC. Intestinal tumours, colonic butyrate and sleep in exercised Min mice. Br J Nutr 2010; 104: 355-363 [PMID: 20347009 DOI: 10.1017/s0007114510000528]
51 Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012; 6: 320-329 [PMID: 21850056 DOI: 10.1038/ismej.2011.109]
52 Liu L, Shi Y, Li T, Qin Q, Yin J, Pang S, Nie S, Wei S. Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies. Br J Sports Med 2016; 50: 372-378 [PMID: 26500336 DOI: 10.1136/bjsports-2015-094728]
53 King AC, Whitt-Glover MC, Marquez DX, Burnam MP, Napoliolo M, Jakicie J, Fulton JE, Tennant BL. 2018 PHYSICAL ACTIVITY GUIDELINES ADVISORY COMMITTEE*. Physical
Cigrovski Berkovic M et al. Physical activity and colorectal carcinogenesis

Activity Promotion: Highlights from the 2018 Physical Activity Guidelines Advisory Committee Systematic Review. *Med Sci Sports Exerc* 2019; 51: 1340-1353 [PMID: 31095090 DOI: 10.1249/MSS.0000000000001945]

54 **Buffart LM**, Thong MS, Schep G, Chinapaw MJ, Brug J, van de Poll-Franse LV. Self-reported physical activity: its correlates and relationship with health-related quality of life in a large cohort of colorectal cancer survivors. *PLoS One* 2012; 7: e36164 [PMID: 22567135 DOI: 10.1371/journal.pone.0036164]

55 **DeTroye A**, Christner M, Eganhouse D, Manning B, Sunkin E, Gregory T. The effects of physical activity on survival in patients with colorectal cancer. *JAAPA* 2018; 31: 21-25 [PMID: 29356755 DOI: 10.1097/01.JAA.0000529767.60402.00]
