Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение

С.В. Чичерин
Омский государственный университет путей сообщения (ОмГУПС); г. Омск, Россия

АННОТАЦИЯ
Введение. Реновация жилищного фонда предполагает строительство новых зданий, где основными инженерными системами, потребляющими тепловую энергию, будут системы отопления и горячего водоснабжения (ГВС). В таких условиях задача снижения теплопотребления путем перехода на низкотемпературное теплоснабжение и использование связанных с этим технологий является актуальной.

Материалы и методы. Исследование выполнялось на базе проектируемых по всей России жилых и административных зданий, отбор объектов осуществлялся исходя из года ввода в эксплуатацию и их назначения. Источником сведений по зданиям стали документы, входящие в объем проектной и рабочей документации: планы, чертежи и пояснительные записки. Поскольку обеспечение нужд ГВС вносит основной вклад в суточные неравномерности потребления тепловой энергии, уделялось внимание оборудованию систем ГВС. Для расчетов применялся коммерческий продукт Microsoft Office Excel 2010.

Результаты. При выборе в качестве источника теплоснабжения крышной котельной возможно увеличение потребления условного топлива относительно варианта подключения к ТЭЦ, работающей на твердом топливе, на 187 314 т условного топлива. Повсеместный отказ от теплоподачи затрудняет эксплуатацию крупных систем централизованного теплоснабжения. Расчетные параметры теплоносителя в системе отопления здания отличаются от проекта: от 95/70 °С, повсеместно применяемых вплоть до начала XXI в., до 90/65 °С, соответствующих существующей практике проектирования, или 80/60 °С как на объекте в г. Севастополе. Снижение расчетных температур на 5 % недостаточно для уменьшения общего теплопотребления здания. Снижение теплопотребления объясняется выбором современных материалов для теплоизоляции трубопроводов. Использование схем автоматизации тепловых пунктов на базе регулятора ECL Comfort 310 способствует улучшению гидравлического режима системы отопления, однако слепая автоматизация приводит к нарушению качественного режима регулирования теплосети и снижению параметров теплоносителя на соседних (чаще неавтоматизированных) потребителях.

Выводы. Дополнение центрального качественного регулирования местным количественным регулированием на ИТП и установка терморегуляторов на радиаторы отопления с механической термостатической головкой имеют потенциал для снижения объема тепловой энергии, используемой неэффективно. Повышение степени управляемости системы отопления вкупе с менее дорогими и реагирующими быстрее системами автоматизации — базовые условия для повышения качества теплоснабжения в будущем.

КЛЮЧЕВЫЕ СЛОВА: теплофикация, сопротивление, график, радиатор, разводка, теплоизоляция, теплообменник, прибор учета, счетчик, вентиляция

ДЛЯ ЦИТИРОВАНИЯ: Чичерин С.В. Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение // Строительство: наука и образование. 2019. Т. 9. Вып. 3. Ст. 8. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2019.3.8

Analysis of procedures for heating, ventilation and air conditioning for transfer to low-temperature heat supply

Stanislav V. Chicherin
Omsk State Transport University (OSTU); Omsk, Russian Federation

ABSTRACT
Introduction. Renovation of housing stock supposes construction of new buildings, where the main utilities consuming heat energy will be heating and hot water supply (HWS) systems. Under such conditions the task of heat consumption reduction by transfer to low-temperature and use of the associated procedures is relevant.

Materials and Methods. Research was performed on the basis of residential and administration buildings designed within the whole Russia, the facilities were selected based on the year of putting into operation and their purpose. The source of data concerning buildings became documents included into the scope of the design and detailed documentation: plans, drawings and explanatory notes. As meeting the demands of hot water supply makes the main contribution to daily nonuni-
формы использования энергии, внимание было уделено теплоснабжению зданий.

Results. Данный подход приемлем для районов с межсезонными изменениями температуры воздуха и высоким уровнем загрязнения.

Conclusions. Средства и методы управления тепличными системами в значительной мере зависят от климатических условий региона. Реализация проектов по снижению энергопотребления и повышению эффективности использования энергии возможны только при комплексной оценке всех факторов, включая техническую, экономическую и экологическую составляющие.

KEYWORDS: district heat supply, resistance, schedule, radiator, layout, thermal insulation, heat exchanger, metering device, counter, ventilation

FOR CITATION: Chicherin S.V. Analysis of procedures for heating, ventilation and air conditioning for transfer to low-temperature heat supply, *Stroitel'stvo: nauka i obrazovanie* [Construction: Science and Education]. 2019; 9(3):8. URL: http://nsu-journal.ru. DOI: 10.22227/2305-5502.2019.3.8 (rus.).

ВВЕДЕНИЕ

Реализация программы реновации жилого фонда в г. Москве была начата в 2017 г. Благодаря ей 350 тыс. москвичей, т.е. более 1 млн человек, в срок до 2032 г. должны получить новое жилье. По итогам голосования в программу было включено 5173 дома, переселение началось в феврале 2018 г. в Восточном округе, а сегодня оно идет уже в семи округах. Федеральный закон «О публично-правовой компании по защите прав граждан — участников долевого строительства при несостоятельности (банкротстве) застройщиков и о внесении изменений в отдельные законодательные акты Российской Федерации» от 29.07.2017 № 218-ФЗ оставляет возможность для старта реализации аналогичных программ в других городах России. В таких условиях задача снижения теплопотребления путем перехода на низкотемпературное теплоснабжение и использование данных с этого проекта является актуальной. Термическое сопротивление ограждающих конструкций — величина, обратная их коэффициенту теплопередачи, способ расчета при помощи дифференциальных уравнений с граничными условиями приведен в работе [1]. Другим фактором, влияющим на параметры микроклимата внутри помещения, служит величина теплопередачи с поверхности радиатора, привычные конвекционные отопительные приборы предлагается заменять устройствами, отдающими тепло по принципу излучения [2]. Метод сравнения различных проектных решений не новый, однако, чаще всего такое сопоставление не комплексное, так как внимание уделяется только отдельным аспектам, например, электрическим отопительным приборам [3]. Сопоставление способа выработки тепловой энергии на крупном источнике и крышной газовой котельной показано в статье [4].

Низкотемпературное теплоснабжение и работа систем отопления при существенном снижении температурного графика (расчетной температуры теплоносителя в подающем трубопроводе) отличается рядом достоинств, однако, чаще всего акцент делается на конкретном аспекте функционирования такой системы, например, в публикации [5] — на переходе на количественное регулирование. Такие графики имеют преимущество и с точки зрения использования конденсационных отопительных колпаков [6], и с точки зрения вовлечения в процесс генерации нетрадиционных и возобновляемых источников энергии [7]. Н.В. Цопа вводит понятие энергетической санации [8], включающей в себя улучшение теплотехнических характеристик ограждающих конструкций, установку автоматических регуляторов, приборов учета и другие меры.

Цель исследования — проверить, соответствует ли разрабатываемая проектная документация требованиям нормативной документации, и определить, пригодны ли технологии, применяемые при проектировании объектов капитального строительства в настоящее время, для снижения теплопотребления при переходе на низкотемпературное теплоснабжение в условиях реновации жилого фонда.
МАТЕРИАЛЫ И МЕТОДЫ

Экономию условного топлива при теплофизике с разделением выработкой электроэнергии на конденсационные электростанции (КЭС) и теплоты в крышной котельной предлагается принять равной сумме двух составляющих:

\[AB = AB_1 + AB_2, \]

где \(AB_1 \) и \(AB_2 \) — разница в расходах условного топлива в котельной и ТЭЦ, ТЭЦ и КЭС на выработку одного и того же количества теплоты и электроэнергии соответственно:

\[AB_2 = (b_1 + b_2) \cdot \eta_1 - (b_1^2 + b_2^2) \cdot \eta_1, \]

где \(b_1, b_2, b_1^2, b_2^2 \) — удельные расходы условного топлива на выработку электроэнергии комбинированным и разделенным способом, а также объемы выработки электроэнергии этими способами на КЭС, г/(кВт·ч) и кВт·ч; \n
\[AB_1 = B_{pt} - B_{tt} = \frac{34,1 \cdot Q_a}{\eta_{ks} \cdot \eta_{kt}} - \frac{34,1 \cdot Q_a}{\eta_{ks} \cdot \eta_{kt}}, \]

где уменьшаемое и вычитаемое — расходы условного топлива на централизованное теплоснабжение от ТЭЦ и крышных котельных соответственно; \(\eta_{ks} \) — КПД котельной ТЭЦ с учетом потерь теплоты в паропроводах между котельной и машинным залом; \(\eta_{tt} \) — КПД тепловой сети от ТЭЦ, учитывающей тепловые потери сети; \(\eta_{kt} \) — КПД котельной; \(\eta_{ks} \) — КПД тепловых сетей от котельной; \(\eta_{tt} \) — КПД тепловых сетей от тепловых пунктов;

Удельные теплопотери здания, Дж/(м³·К) или ккал/(ч·м³·°С), определяются по формуле:

\[q_{ov} = \frac{P}{S} \cdot K_n + \frac{1}{L} \cdot K_r, \]

где \(q_{ov} \) — отопительная характеристика здания; \(P \) — периметр в плане, м; \(S \) — площадь в плане, м²; \(K_n \) — средний коэффициент теплопередачи вертикальных ограждений здания (стен), Вт/(м²·°С) или ккал/(ч·м²·°С); \(L \) — высота, м; \(K_r \) — эквивалентный коэффициент теплопередачи горизонтальных ограждений здания (перекрытий и пола), Вт/(м²·°С) или ккал/(ч·м²·°С).

Расход теплоты на отопление и вентиляцию жилых и общественных зданий (полные теплопотери) с учетом инфильтрации определяется по формулам (5) и (6):

\[Q_0 = q_{ov} \cdot V \cdot (t_n - t_1) \cdot (1 + \mu); \]

\[Q_0 = q_0 \cdot V \cdot (t_n - t_1); \]

где \(t_n \) — расчетная величина температуры внутреннего воздуха отапливаемых помещений; \(t_1 \) — температура наружного воздуха, °С; \(\mu \) — коэффициент инфильтрации; \(q_0 \) — удельный расход теплоты на вентиляцию, Дж/(см³·К) или ккал/(ч·м³·°С); \(V \) — рабочий объем вентилируемого здания, м³; \(q_0 \) также называют вентиляционной характеристикой здания.

Теплотехническое совершенство ограждающих конструкций, состоящих из нескольких слоев, определяется термическим сопротивлением, \((m^2 \cdot °C)/Вт \), величиной обратной коэффициенту теплопередачи:

\[R = \frac{1}{k} = \frac{1}{\alpha_s} + \sum \frac{1}{\lambda_i}, \]

где \(\alpha_s \) — коэффициент теплопередачи внутренней поверхности ограждающих конструкций, Вт/(м²·°С); \(\delta_i \) — толщина i-го слоя ограждающей конструкции, м; \(\lambda_i \) — коэффициент теплопроводности i-го слоя ограждающей конструкции, Вт/(м·°С); \(\alpha_s \) — коэффициент теплопередачи наружной поверхности ограждающей конструкции, Вт/(м²·°С).

Одной из основных величин, влияющих на выбор оборудования теплового пункта и системы отопления, является расчетная температура теплоносителя в подающем трубопроводе, °С:

\[t_1 = t_0 + \Delta t_0' \cdot \frac{34,1}{\eta_{ks}}, \]

где \(\Delta t' \) — расчетная разность температур сетевой воды; \(\Theta \) — расчетный перепад температур в отопительной системе; \(\eta_{ks} \) — относительная отопительная нагрузка.

Температура теплоносителя на выходе из системы отопления, °С:

\[t_2 = t_1 - \Delta t_0' \cdot \eta_{ks} = t_1 + \Delta t_0' \cdot \eta_{ks} - 0,5 \Theta t_0', \]

где \(t_1 \) — температура теплоносителя после смесительного устройства перед системой отопления, °С; \(\eta_{ks} \) — относительная сопротивляемость системы к отоплению; \(\Theta t_0' \) — коэффициент температурного графика, не превышающий 15 % от расчетного расхода тепловой энергии на нужды отопления. Тогда температура воды в подающем трубопроводе определяется по уравнению (8). В противном случае присоединение систем ГВС не менее чем у 75 % потребителей должно быть выполнено по закрытой двухступенчатой схеме, а температурный график следует поделить на два диапазона. Первый — в интервале наружных температур от 8 °С до точки излома, второй — от точки излома до расчетной температуры наружного воздуха; точки температурного графика также будут определяться по формуле, аналогичной уравнению (8), но с учетом балансового коэффициента, температуры сетевой воды в подогревателях верхней и нижней ступени и недогрева в каждом диапазоне температур.
Объектами рассмотрения стали комплексы рабочей и проектной документации на строительство следующих объектов:
- многоэтажный, многоквартирный жилой дом, г. Черкесск, Карачаево-Черкесская Республика;
- многоэтажный жилой дом со встроенно-пристроенными предприятиями обслуживания населения и подземной автостоянкой пос. 68 на пересечении ул. Калинина и ул. Гайдара в III микрорайоне центральной части г. Чебоксары;
- жилой дом с инфраструктурой в районе ул. Грибоедова, д. 46 в г. Владивостоке;
- многоквартирный жилой дом в Балаклавском районе, г. Севастополь (1-я очередь) ул. Строительная, д. 31 А;
- комплексная застройка многоэтажными жилыми домами на участке между ул. Волгоградская и автомобильной дорогой на с. Кочкурово (в районе р. Тавла) г. Саранска;
- Ярославская область, Ярославский р-н, Пестреевский сельский округ, п. Красный Бор (жилой комплекс «Яковлевская слобода», стр. 3) и др.

В отличие от работы [8] в качестве объектов, применительно к которым выполнено исследование, выбраны строящиеся или проектируемые объекты капитального строительства, а не существующие здания. Для расчетов (проверки результатов расчетов) применялся коммерческий продукт Microsoft Office Excel 2010. Гидравлический расчет трубопроводов системы отопления и подбор отопительного оборудования проверялся в специализированной программе Danfoss C.O. Анализ существующих технологий отопления, вентиляции и кондиционирования (ОВК) для перехода на низкотемпературное теплоснабжение при реновации жилого фонда производился по 17 параметрам, далее имеющим численное обозначение вида «3.1», «3.2» и т.д.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1 Источник теплоснабжения

Источником теплоснабжения для большинства объектов исследования являются городские водяные тепловые сети, тепло для которых вырабатывают крупные ТЭЦ, находящиеся за чертой населенного пункта, сжигающие ископаемое топливо и пущенные в эксплуатацию при средних показателях использования энергии — 860,58 тыс. кВт·ч.

Расчетный расход топлива на здание в Ярославской области составил 163,2 м³/ч при расходе газа на внутреннее газоснабжение жилого дома — 68,3 м³/ч. Имеют место следующие потребности объекта в электрической энергии: общая расчетная мощность — 245,88 кВт, годовой расход электроэнергии — 860,58 тыс. кВт·ч.

Рассматривая сценарий ухода с угольной ТЭЦ установленной электрической мощностью 250 МВт, работающей при средних показателях использования топлива, тепловой нагрузки с годовым теплопотреблением порядка 2750 Гкал, рассчитанные по приведенным выше формулам (1)–(3), дополнительные затраты топлива составят 187 314 т у. т.

3.2 Температурные графики

Для 100 % объектов исследования теплоноситель в системе отопления — вода, но для объекта в г. Севастополь принят температурный график 80/60 °C, а для объекта в г. Владивосток параметры теплоносителя составляют 100/70 °C. Проектная температура в системе отопления еще нескольких
Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение

3.3 Схема присоединения системы отопления

Подключение системы отопления зданий к источнику тепла выполняется как по независимой схеме, так и по зависимой. В 100% случаев принимается автоматическое качественное регулирование и насосная циркуляция теплоносителя, которую обеспечивают, как правило, два насоса, один из которых является резервный. Циркуляционные насосы устанавливаются на обратном трубопроводе системы отопления здания. По давлению насосы выполняются на преодоление гидравлического сопротивления, что позволяет использовать прерывистое регулирование [9].

3.5 Схема отопления зданий — 90/65 °C. Расчет по формулам (1)–(5) с учетом климатических параметров местности показал, что средняя температура теплоносителя в подающем трубопроводе в течение отопительного периода отличается менее значительно и колеблется в диапазоне 70–75 °C.

Температурный график тепловых сетей от источника может составлять те же 90/65 °C, как в случае здания в Ярославской области, или быть большим — 105/70 °C, как в случае здания в г. Черкесск. В городе Черкесск на теплоносителях температура сетевой воды для межквартирного (летнего) периода с учетом циркуляции — 70/40 °C.

В то же время в странах Евросоюза ведется работа по переходу на системы централизованного теплоснабжения четвертого поколения, особенностями которых является применение заниженных температурных графиков (60 °C и менее), увеличенные площади отопительных приборов и использование этиленгликолевых смесей в качестве теплоносителя, что позволяет осуществлять прерывистое регулирование [9].

3.4 Схема присоединения системы ГВС

Подключение систем ГВС на всех без исключения объектах осуществляется по закрытой схеме, например, в г. Черкесск по одноступенчатой параллельной схеме. При этом ИТП оснащен регулятором, автоматически поддерживающим температуру нагреваемой воды на заданном уровне, и теплообменным аппаратом, предназначенным для нагрева холодной водопроводной воды с 5 до 60 °C теплоносителем с температурой на входе 70 °C, на выходе 40 °C. Поддержание температуры горячей воды на выходе из теплообменного аппарата на уровне 60 °C обеспечивается программируемым контроллером, который по сигналу датчика температуры определяет фактическую температуру воды, поступающей в систему ГВС, и выдает управляющий сигнал регулирующему клапану, изменения расход греющего теплоносителя. В циркуляционном трубопроводе системы ГВС устанавливается насос, имеющий три ступени частоты вращения и режим ручного управления в экстренных ситуациях.

3.5 Схема системы отопления

В 75% случаев системы отопления предусматриваются двухтрубными с нижней разводкой подающей и поквартирной горизонтальной разводкой труб от распределительной поэтажной гребеники по периметру в конструкции пола. В случае объекта в г. Владивосток предусмотрена горизонтальная однотрубная разводка при помощи так называемых «лежаков». Движение теплоносителя может быть принято тупиковым (г. Севастополь) или попутным. Прокладка стояков отопления предусматривается в выделенных шахтах межквартирных холлов. Лишь в случае здания в Ярославской области проектом предусмотрена двухтрубная система отопления с вертикальными стояками, изоляцией и теплообменником, характеризующимся отклонением температуры или расхода теплоносителя от расчетных параметров в меньшую сторону, из-за чего при определении расчетной теплоэнергетической теплообменной энергетической эффективности теплообменного аппарата стандартными методами могут возникать значительные погрешности [10], приводящие к недогрузке теплоносителя во внутреннем контуре.
дебные от жилой части, системы отопления проектируются для помещений товарищества собственников жилья, лифтовых холлов, офисов, помещений кратковременного пребывания дошкольников, оздоровительного комплекса, стоматологического кабинета и других нежилых помещений, как правило, находящихся на цокольном и/или первом этажах зданий.

3.6 Тип и размещение отопительных приборов

В качестве отопительных приборов приняты секционные биметаллические радиаторы с боковым подключением, например, БРЭМ БР-500. В здании в г. Севастополь в качестве отопительных приборов приняты стальные панельные радиаторы производителя Buderus типа K-Profil-22-50 с боковым подключением и термостатическим вентилем с предварительной настройкой производителя Danfoss типа TR-R-Y. Приборы отопления в лестничных клетках на путях эвакуации размещены на расстоянии не менее 2,2 м от поверхности пропуск и площадок лестицы до низа прибора. Отопительные приборы размещаются под световыми проемами в местах, доступных для осмотра, ремонта и очистки — открыто, под окнами (либо непосредственно вблизи окон) или у стен отапливаемого помещения. Отопительные приборы типа «температурные стены» или «теплый пол» ни в одном проекте не используются, хотя уже получили довольно широкое распространение за рубежом. С другой стороны, авторы публикации [11] показали, что в климатических условиях Китая при включении автоматической настройки производителя Danfoss типа ASV-PV25, в паре с запорным клапаном того же производителя типа ASV-M. Данные клапаны устанавливаются на подводке к этажному распределе лителю.

Практика эксплуатации показывает, что в первую очередь именно неравномерный прогрев радиаторов отопителей и несоответствие их гидравлических характеристик заявленным ведет к несоблюдению потребителями Правил технической эксплуатации тепловых энергоустановок, температурных и гидравлических режимов, установленных лимитов теплопотребления на соответствие договорным нагрузкам [12].

3.7 Автоматизация системы отопления

Для гидравлической увязки (настройки проектных расходов теплоснабжения) на системе отопления используются автоматические балансировочные клапаны, например, производителя Danfoss типа ASV-PV25, в паре с запорным клапаном того же производителя типа ASV-M. Данные клапаны устанавливаются на подводке к этажному распределителю.

На поэтажных распределительных гребенках, как правило, предусматривается установка автоматических балансировочных клапанов для поддержания перепада давления в системе отопления этажа. На обратных трубопроводах от квартирных коллекторных шкафов предполагается установка ручных балансировочных клапанов для ограничения максимального расхода теплоносителя.

Для экономии потребляемой тепловой энер гии и создания комфортных условий в жилых по мещениях на подростках к отопительным приборам устанавливаются автоматические термостатические клапаны с термостатическими головками для регулирования. В верхних точках стояков предусматриваются воздушнотводчики автоматического типа.

А. Брюс-Конуа и соавторы [13] анализируют системы отопления в зданиях, где жилье предоставляется по договорам социального найма, и приходят к выводу об обязательности установки термостатических клапанов на каждом отопительном приборе.

3.8 Электрический обогрев

На двух объектах исследования был выявлен факт обогрева технических помещений при помощи электрических нагревателей. Так, для отопления помещений электроцизтовых, машинных помещений лифтов и технического подполья здания в Ярославской области служат электрические конвекторы.

В электроцитовой подвал жилого дома в г. Черкесск предусмотрен электрический конвектор BALLU. Подключение электрообогревателей выполнено с фиксированной электропроводкой, с классом защиты от поражения электрическим током, а также автоматическим регулированием температуры теплоотдающей поверхности нагревательного прибора в зависимости от температуры воздуха в помещении. Мощность электроконвекторов составляет от 1,5 до 9 кВт.

3.9 Приборы учета

Повсеместно установка узлов учета тепловой энергии предусмотрена на подающем и обратном трубопроводах тепловой сети (диаметром до 125 мм), а также на трубопроводе подпитки системы отопления (до 40 мм) в непосредственной близости к границе раздела балансовой принадлежности.

Типовой вариант размещения границ — фланцы запорной арматуры на подающем и обратном трубопроводах со стороны тепловой сети при входе в ИТП. Например, для объекта в г. Черкесск к установке на подающем и обратном трубопроводах тепловой сети предусмотрены термометры температуры теплоносителя (до 40 мм) в непосредственной близости к границе раздела балансовой принадлежности. В верхних точках стояков предусматриваются воздушнотводчики автоматического типа.
Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение

3.10 Исполнение трубопроводов

Поквартирная разводка на трех объектах выполнена из металло пластиковых труб в гофрированной трубе. Сети системы отопления еще на двух объектах выполнены из универсальных полиэтиленовых труб производителя Uponor типа Radi Pipe. Технология монтажа предполагает соединение таких трубопроводов на подвижной гильзе без уплотнительных колец. Другими достоинствами этой технологии являются: возможность сразу же нагружать место стыкового соединения давлением и температурой и возможность прокладки трубопроводов скрыто: в конструкции пола или стены.

В здании в г. Севастополь стояки и подводки к распределительным коллекторам осуществлены из металлопластиковых труб фирмы FV-Plast типа PPR FASER PN20 армированной стекловолокном. На всех оставшихся объектах магистральные трубопроводы и стояки системы отопления предусматриваются из стальных водогазопроводных труб по ГОСТ 3262-75 при диаметре до 50 мм и стальных электросварных труб по ГОСТ 10704-91 при диаметре более 50 мм. При этом установлено, что наименьшее первоначальные и дисконтированные затраты соответствуют полипропиленовым трубам, а трубы из сшитого полиэтилена и металлопластика имеют одинаковую стоимость, срок службы и схожие эксплуатационные характеристики [14]. Для компенсации температурных удлинений вертикальных стояков устанавливаются осевые сильфонные компенсаторы. При открытой прокладке такие трубопроводы, как правило, покрываются пентафталиевой краской (типа ПФ-115) за два раза по грунту ГФ-021, а в местах пересечений перекрытий прокладываются в гильзах из негорючих материалов.

3.11 Теплотехнические характеристики ограждающих конструкций, объемно-планировочные и удельные показатели, а также расход тепловой энергии

При проверке теплотехнического расчета по формулам (4)–(7) получены, в том числе численные значения сопротивления теплопередачи ограждающих конструкций. Расчет показал, что полученные величины не отличаются от заявленных в проектной документации более чем на ±5%. Для объекта в г. Севастополь они совпали с заявленными с точностью до второго знака после запятой и составили: для наружных стен — 4,02 (м² ⋅ °C)/Вт; дверей — 0,35 (м² ⋅ °C)/Вт; окон — 0,35 (м² ⋅ °C)/Вт; чердачного перекрытия — 3,1 (м² ⋅ °C)/Вт; неотапливаемого технического подполья — 2,48 (м² ⋅ °C)/Вт.

В случае здания в Ярославской области удельные потери теплоты через плоский элемент (трехслойную стену с утеплителем и облицовкой из кирпичной кладки) составили 0,215 Вт/(м² ⋅ °С), через линейные элементы (примыкания оконного блока к стене и стыки плит перекрытия со стеной) — 0,139 Вт/(м² ⋅ °С); точечные элементы (гибкие связи) 0,171–0,139 Вт/(м² ⋅ °С), при этом доля общего потока теплоты через фрагмент плоского элемента составляет 84%. Приведенное сопротивление теплопередаче фрагмента перекрытия, определенное по формуле (E.1) приложения Е СП 50.13330.2012, составило 3,92 (м² ⋅ °C)/Вт при коэффициенте теплопередачи 0,255 Вт/(м² ⋅ °С). Полученное приведенное сопротивление теплопередаче ограждения выше нормируемого значения 3,34 (м² ⋅ °C)/Вт, но чуть ниже лучших показателей 4,0 (м² ⋅ °C)/Вт, достигаемых при использовании современных трехслойных железобетонных панельных конструкций [15].

Коэффициент теплотехнической однородности, определенный по формуле (E.4) приложения Е СП 50.13330.2012, равен отношению удельных потерь 0,215 Вт/(м² ⋅ °С) и коэффициента теплопередачи 0,255 Вт/(м² ⋅ °С), т.е. 0,84. Отапливаемый объем 12-этажного здания с десятью жилыми этажами составил 50151,33 м³ при общей площади наружных ограждающих конструкций 11877,15 м² дает коэффициент компактности здания, равный 0,237 1/м, определяемый как отношение двух предыдущих величин.

Удельная вентиляционная характеристика здания определяется по формуле (Г.2) приложения Г СП 50.13330.2012 и равна 0,076 Вт/(м² ⋅ °С). Расчетная удельная характеристика расхода тепловой энергии на отопление и вентиляцию здания за отопительный период проверялась по формуле (Г.1) приложения Г СП 50.13330.2012 и не отличается от заявленного в проекте значения 0,106 Вт/(м² ⋅ °С). Полученная расчетная удельная характеристика расхода тепловой энергии на отопление и вентиляцию здания за отопительный период меньше базовой величины, требуемой СП 50.13330.2012 — 0,301 Вт/(м² ⋅ °С).

Согласно требованию Постановления Правительства РФ от 25.01.2011 № 18 базовый удельный расход тепловой энергии на отопление здания должен быть снижен на 30 % и составлять: 0,301 · 0,7 = 0,211 Вт/(м² ⋅ °С)
Расход теплоты на отопление здания (полные теплопотери) с учетом инфилтрации, определенный по формуле (5), составил 777 кВт.

3.12 Теплоизоляция трубопроводов

Во всех проектах главные стояки, все трубопроводы систем отопления, расположенные в техническом подполье, в том числе трубопроводы в помещении ИТП, и теплом чердаке, предполагается выполнить в теплоизоляции. Например, в здании в г. Черкесск для тепловой изоляции трубопроводов ИТП используется негорючая тепловая изоляция ROCKWOOL ТУ 5762-050-45757203-15. Для утепления магистральных трубопроводов применены теплоизоляционные материалы производителя Thermaflex.

3.13 Расчетные внутренние температуры

На всех, за одним исключением, объектах температура внутреннего воздуха в помещениях принимается согласно заданию на проектирование и в соответствии с ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях» составляет:
* в гаражах — 19 °C;
* в ванных комнатах и в совмещенных санитарных узлах — 25 °C;
* в жилых помещениях квартир — 21 °C;
* в кухнях — 19 °C.

В здании в г. Севастополь температура внутреннего воздуха во всем проектируемом здании принята единая — 20 °C, что больше соответствует практике проектирования объектов за рубежом [16].

3.14 Автоматизация оборудования ИТП

Всеми проектами предусматривается автоматизация работы оборудования ИТП. Качественное регулирование теплопотребления обеспечивается программируемым контроллером, который по сигналу датчика температуры наружного воздуха определяет необходимую температуру теплоносителя на входе в систему отопления, сравнивает ее с фактической температурой измеренной датчиком и выдает управляющий сигнал регулирующему клапану, изменения расход грееющего теплоносителя. Таким образом, температура теплоносителя на входе в систему отопления поддерживается автоматически в зависимости от температуры наружного воздуха по заданному графику отопления. Например, для объекта в г. Черкесск система автоматизации построена на базе регулятора ECL Comfort 310 с электронным ключом программирования приложения А368 для управления оборудованием независимых систем отопления и ГВС при централизованном теплоснабжении. Ключ А368 позволяет управлять спаренными циркуляционными насосами и системой подпитки. Для снижения пусковых токов и исключения гидравлического удара при включении/выключении циркуляционных насосов системы отопления, как правило, предусматривается использование устройств плавного пуска. С. Лазаревич и соавт [17] создали инструмент моделирования работы полностью автоматизированного ИТП, в том числе на базе регулятора ECL Comfort 310, в реальном времени в среде имитационного моделирования LabVIEW.

Монтаж средств автоматизации выполняется согласно документации соответствующего раздела, нормативным документам, стандартам и техническим условиям на конкретные виды оборудования. При этом следует учитывать требования, указанные в паспортах и инструкциях по эксплуатации на приборы и средства автоматизации, электроаппаратуру, трубопроводную арматуру и монтажные материалы, и изделия. Заземление электрооборудования КИП, металлоконструкций и кабельных проводов осуществляется в соответствии с Правилами устройства электроустановок (ПУЭ), а производство и приемка работ по монтажу и наладке систем автоматизации выполняется согласно СНиП 3.05.07-85.

Использование схем автоматизации на базе регулятора ECL Comfort 310 способствует улучшению гидравлического режима системы отопления, однако слепая автоматизация тепловых пунктов приводит к нарушению качественного режима регулирования тепловыделения и снижения необходимых параметров теплоносителя на соседних (зачастую неавтоматизированных) потребителях [18].

3.15 Вентиляция помещений

Анализ проектной документации показал, что для порядка 90 % отапливаемого объема помещений вентиляция предусматривается естественной, с притоком воздуха через неплотности в ограждающих конструкциях и через оконные проемы с функцией микропроветривания. Для обеспечения стабильной работы естественной вентиляции необходим приток наружного воздуха с помощью постоянно действующего микрокамерного проветривания. Даже для технических помещений (электрощитовые, ИТП, насосные, кладовые уборочного инвентаря) в 90 % случаев проектируется естественная вентиляция, для чего устанавливаются вытяжные регулируемые решетки (например, типа Р-150 или Р-150М).

Исклучение составляют помещения технического подполья, где обычно предусматриваются нерегулируемые вентиляционные переставные решетки и продухи, затянутые сеткой. Вентиляция машинных помещений лифтов рассчитана на ассимиляцию тепловыделений от лифтового оборудования, для чего устанавливаются дефлекторы.

Вентиляция офисов, автостоянок, санузлов и кухонь жилых домов заложивается вытяжной или приточно-вытяжной с естественным и механическим побуждением, которое организуется путем установки канальных настенных вентиляторов на двух последних и техническом этажах (г. Владивосток). В здании в г. Черкесск на двух последних этажах также предусматривается установка мало-
габаритных осевых вентиляторов — выбрано обо-
рудование типа Вентс 125 °С, позволяющее осу-
ществлять приток свежего воздуха с механическим
побуждением и возможностью регулировки произ-
водительности вентилятора. Лишь для отдельных
помещений принимаются отличные проектные
решения — например, система отопления автомо-
бильной стоянки может быть воздушной, совмещен-
ной с приточной вентиляцией. Централизованием
систем кондиционирования воздуха ни для одного
объекта не предусмотрено.

На всех, за исключением одного, объектах при-
нятия следующие значения воздухообменов: для по-
мещений кухонь — 100 м³/ч; для помещений тва-
лотов, ванных комнат и совмещенных санитарных
узлов — 25 м³/ч. Лишь для объекта в г. Черкесс воз-
духообмены для помещений кухонь приняты мень-
шие — 60 м³/ч; для помещений туалетов и ванных
комнат такие же — 25 м³/ч; из совмещенных сани-
тарных узлов — больше, 50 м³/ч. Однако, как пока-
зывают зарубежные исследования, даже при равных
расчетных значениях воздухообменов содержание
вредных веществ и углекислого газа в помещениях
может отличаться на 37–47 % в зависимости от вы-
бранных для системы вентиляции способа подачи
воздуха, назначения, конструктивного исполнения,
и не может быть точно установлено без выполнения
сложного численного моделирования или проведе-
ния экспериментальных исследований [19]. Вытяж-
ка осуществляется через эти же помещения, через
жалюзиные решетки (например, типа ВР-Г, имею-
щие возможность регулировки и полного закрытия).
Для обеспечения перетекания воздуха на входе в ту-
алеты, ванные комнаты и совмещенные санитарные
узлы предусматривается подрез двери не менее 10–
15 мм от пола. Решетки установлены на расстоянии
не менее 50 мм от потолка, через них воздух посту-
пает в вентиляционные каналы. На двух объектах
вентиляционные каналы предполагается выполнить
в строительном исполнении из бетонных венти-
ляционных каналов в гильзах из негорючих материа-
лов, обеспечивающих нормируемый предел
огнестойкости пересекаемого ограждения. В зда-
нии в г. Черкесс дополнительно для защиты тепло-
обменного оборудования и трубопроводов системы
ГВС от карбонатного накипеобразования предус-
матривается предварительная обработка исходной
воды электромагнитным устройством Anti-Ca++.

Воздухоудаление из систем отопления осущест-
вляется при помощи автоматических воздухоотвод-
чиков, расположенных в наивысших точках систем.
В нижних точках установлены спускные краны.

На вводе в ИТП устанавливается гризевик для
удаления мелких и крупных взвешенных частиц из
теплоносителя. Размер гризеволонта выбирается в
соответствии с диаметром трубопровода, на кото-
ром он устанавливается. Гризевик оснащается ау-
томатическим воздухоотводчиком в верхней части
корпуса и дренажным клапаном в нижней части корпуса.
Для защиты запорной арматуры, приборов управле-
ния, насосов и теплообменного оборудования на по-
дающем трубопроводе устанавливаются фильтры
механического типа. Диаметр фильтра, как и в случае
гризевика, должен соответствовать диаметру трубо-
провода. Повышение надежности также обеспечи-
вается притоком свежего воздуха.
С.В. Чичерин

10

Том 9. Выпуск 3 (33) Строительство: наука и образование

3.17 Соответствие проектных решений требованиям нормативно-технического регулирования

Установлено, что вся проектная документация была выполнена на основании заданий на проектирование; согласно указаниям СП 54.13330.2011 «Здания жилые многоквартирные», СП 50.13330.2012 «Тепловая защита зданий», ГОСТ Р 21.1101-2013 «Система проектной документации для строительства (СПДС). Основные требования к проектной и рабочей документации», СП 73.13330.2016 «Внутренние санитарно-технические системы зданий», СП 41-101-95 «Проектирование тепловых пунктов» и др., а также технической документации предлагаемого к установке оборудования. Расчетная температура наружного воздуха для расчета системы отопления принимается по СП 131.13330.2012 «Строительная климатология».

Проверка параметров выбранного оборудования и расчетных характеристик инженерных систем, выполненная в специализированной программе Danfoss C.O. и Microsoft Office Excel 2010 показала, что полученные значения также не отличаются от заявленных в проектной документации более чем на ±5 %. Отступлений от заданий на проектирование, кроме случая замены источника теплоснабжения для объекта в г. Владивосток, выявлено не было.

ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

Вся рассмотренная проектная документация была разработана в соответствии с противопожарными и другими нормами, действующими на территории РФ, заданиями на проектирование, градостроительными регламентами, планами земельного участка и документами о пригодности его использования для строительства. Принятые проектом конструктивные решения, инженерные сети и системы соответствуют технологическим и эксплуатационным требованиям, требованиям экологического, санитарно-гигиенического регулирования и обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных рабочими чертежами мероприятий. Значима роль технических регламентов, устанавливающих требования по обеспечению безопасной эксплуатации зданий, строений, сооружений и безопасного использования прилегающих к ним территорий.

В целом, такие решения как дополнение центрального качественного регулирования местным количественным регулированием на ИТП и установка терморегуляторов на радиаторы отопления с механической термостатической головкой, ставшие более доступными за последние время, имеют хороший потенциал для снижения объема тепловой энергии, используемой неэффективно. Повышение степени управляемости системы отопления вкупе с менее дорогими и реагирующими быстрее системами автоматизации — базовые условия, необходимые для повышения качества теплоснабжения в будущем.

С другой стороны, хотя проектами и предусмотрены мероприятия по улучшению теплотехнических характеристик ограждающих конструкций и оснащению приборами учета за расходом тепловой энергии, воды и электроэнергии, но лишь эти мероприятия не создают достаточных предпосылок для развития возобновляемой энергетики и сокращения выбросов парниковых газов в атмосферу, способствующих переходу на низкотемпературное теплоснабжение и вступающих в силу в странах Евросоюза.

ЛИТЕРАТУРА

1. Хрусталев Б.М., Сизов В.Д. Определение сопротивления теплопередаче ограждающих конструкций // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2018. Т. 61. № 1. С. 47–59. DOI: 10.21122/1029-7448-2018-61-1-47-59

2. Панченко В.В. Воздушно-лучистое отопление на базе двухконтурного теплогенератора с инфракрасными излучателями // Градостроительство и архитектура. 2018. Т. 8. № 1 (30). С. 40–43. DOI: 10.17673/Vestnik.2018.01.7

3. Лямбель А.Н., Пахалуев В.М., Щеклеин С.Е. Об электроотоплении многоквартирного дома в комплексе «Энергосистема–Дом» // Международный научный журнал Альтернативная энергетика и экология. 2018. № 19–21 (267–269). С. 91–100. DOI: 10.15518/isjaee.2018.19-21.091-100

4. Ильина Г.З., Жилин А.Н. Сравнение источников теплоснабжения для многоквартирного жилого дома на основе индивидуального теплового пункта и крышной газовой котельной // Молодежный вестник Уфимского государственного авиационного технического университета. 2018. № 1 (18). С. 57–59.

5. Панферов С.В., Панферов В.И. Управление отоплением зданий при низкотемпературных режимах теплоснабжения // Вестник Южно-Уральского
Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение

С. 1–20

государственного университета. Сер.: Строительство и архитектура. 2018. Т. 18. № 3. С. 60–67. DOI: 10.14529/build180309

6. Зиганшин М.Г., Шаймарданова А.И. Эффективность сжигания газового топлива в двухконтурных настенных бытовых котлах // Жилищное хозяйство и коммунальная инфраструктура. 2018. № 1 (4). С. 27–35.

7. Абильдинова С.К., Мусабеков Р.А., Расмухаметова А.С., Чичерин С.В. Оценка энергетической эффективности цикла теплового насоса со ступенчатым сжатием // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2019. Т. 62. № 3. С. 293–302. DOI: 10.21122/1029-7448-2019-62-3-293-302

8. Цопа Н.В. Анализ основных способов проведения энергетической санации в жилых зданиях // Строительство и техногенная безопасность. 2018. № 11 (63). С. 67–78.

9. Чичерин С.В. Переход на системы теплообмена четвертого поколения отложен в долгий ящик // Сантехника, отопление, кондиционирование. 2019. № 5. С. 37–40.

10. Рыжилкова Т.А., Рудяк В.Я. Влияние расходов теплоносителей на параметр теплообменника при переменных режимах его работы // Вестник МГСУ. 2019. Т. 14. Вып. 5 (128). С. 621–633. DOI: 10.22227/1997-0935.2019.5.621-633

11. Wang Z., Luo M., Geng Y., Lin B., Zhu Y. A model to compare convective and radiant heating systems for intermittent space heating // Energy and Buildings. 2018. Vol. 173. Pp. 206–220. DOI: 10.1016/j.enbuild.2018.05.023

12. Абильдинова С.К., Чичерин С.В. Моделирование системы централизованного теплоснабжения с учетом работы с абонентами и особенностей эксплуатации насосного оборудования // Вестник МГСУ. 2019. Т. 14. Вып. 6. С. 748–755. DOI: 10.22227/1997-0935.2019.6.748-755

13. Bruce-Konuah A., Jones R.V., Fuertes A., Messi L., Giretti A. The role of thermostatic radiator valves for the control of space heating in UK social-rented households // Energy and Buildings. 2018. Vol. 173. Pp. 206–220. DOI: 10.1016/j.enbuild.2018.05.023

14. Жерлыкина М.Н., Конопова М.С. Технико-экономическое сравнение различных материалов труб, применяемых при поквартирной разводке системы отопления // Жилищное хозяйство и коммунальная инфраструктура. 2018. № 1 (4). С. 96–103.

15. Овсянников Н.В., Максимов В.Б. Энергоэффективные наружные стеновые панели каркасно-панельных зданий // Вестник Томского государственного архитектурно-строительного университета. 2018. Т. 20. № 6. С. 107–114. DOI: 10.31675/1607-1859-2018-20-6-107-114

16. Chicherin S.V. Comparison of a district heating system operation based on actual data — Omsk city, Russia, case study // International Journal of Sustainable Energy. 2019. Vol. 38. Issue 6. Pp. 603–614. DOI: 10.1080/14786451.2018.1548466

17. Lazarević S., Čongradac V., Andelković A.S., Čapko D., Kanović Ž. A novel approach to real-time modelling of the district heating substation system using LabVIEW // Journal of Cleaner Production. 2019. Vol. 217. Pp. 360–370. DOI: 10.1016/j.jclepro.2019.01.279

18. Смирнов В.В., Яворовский Ю.В., Сеников В.В. Экспериментальное подтверждение локализации переменных гидравлических режимов в тепловых пунктах с термогидравлическим распределителем // Вестник Ивановского государственного энергетического университета. 2018. № 6. С. 5–14.

19. Ye X., Kang Y., Yang F., Zhong K. Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode // Building and Environment. 2019. Vol. 157. Pp. 34–46. DOI: 10.1016/j.buildenv.2019.04.045

20. Kong X., Xi C., Li H., Lin Z. A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating // Building and Environment. 2019. Vol. 157. Pp. 34–46. DOI: 10.1016/j.buildenv.2019.04.045

Поступила в редакцию 15 июня 2019 г.
Принята в доработанном виде 5 августа 2019 г.
Одобрена для публикации 31 августа 2019 г.

О б а в о р е: Станислав Викторович Чичерин — аспирант кафедры теплоэнергетики; Омский государственный университет путей сообщения (ОмГУПС); 644046, г. Омск, пр-т Маркса, д. 35; ORCID: 0000-0002-9359-9678; man_csv@hotmail.com.
INTRODUCTION

Implementation of the program on renovation of housing stock in Moscow was commenced in 2017. Due to it 350 thous. of Moscow families, i.e. over 1 mln. of persons shall obtain new residence within the term till 2032. According to the results of voting, 5,173 houses were included into the program, re-housing started in February of 2018 in the Eastern district, and this day it has already been implemented in seven districts. Federal Law “About Public Not-for-Profit Organisation on Protection of Rights of Citizens – Shared Construction Participants at Insolvency (Bankruptcy) of the Builders and about Introduction of Changes in Separate Legislative Acts of the Russian” No. 218-FZ dated July 29th, 2017 provides the possibility to start implementation of the similar programs in other towns of Russia. Under such conditions the task of heat consumption reduction by transfer to low-temperature heat supply and use of the associated procedures is relevant. Heat resistance of enclosing structures is a value to be reciprocal to their heat-transfer factor, the calculation method using differential equations with boundary conditions is given in the work [1]. The other factor influencing the parameters of microclimate inside the room is a value of heat removal from surface of radiators; traditional convective heating appliances are proposed to be replaced with appliances giving up heat by radiation principle [2]. The method for comparison of different design solutions is not new, however, such comparison is not complex, as the attention is paid only to separate aspects, for example, electrical heating appliances [3]. Comparison of the method for heat energy generation on large source and separate method, as well as volumes of power generation by these methods at condensation power plant, g/(kW·h) and kW·h;

\[
\Delta G = \Delta G_H + \Delta G_p, \tag{1}
\]

where \(\Delta G_H\) and \(\Delta G_p\) — differences in consumptions of equivalent fuel in boiler house and heat power plant, heat power plant and condensation power plant for generation of one and the same amount of heat and power accordingly:

\[
\Delta G_p = \left(g_c^p + g_t^p \right) \cdot H_p - \left(g_{CHP}^p + g_h^p \right) \cdot H_{CHP}, \tag{2}
\]

where \(g_c^p\), \(g_t^p\), \(g_{CHP}^p\), \(H_p\), \(H_{CHP}\) — a specific consumption of equivalent fuel for generation of power by combined and separate method, \(H_{CHP}\) is a plan area, m.\(^2\); normalizing to it 350 thous. of Moscow families, i.e. over 1 mln. of persons shall obtain new residence within the term till 2032. According to the results of voting, 5,173 houses were included into the program, re-housing started in February of 2018 in the Eastern district, and this day it has already been implemented in seven districts. Federal Law “About Public Not-for-Profit Organisation on Protection of Rights of Citizens – Shared Construction Participants at Insolvency (Bankruptcy) of the Builders and about Introduction of Changes in Separate Legislative Acts of the Russian” No. 218-FZ dated July 29th, 2017 provides the possibility to start implementation of the similar programs in other towns of Russia. Under such conditions the task of heat consumption reduction by transfer to low-temperature heat supply and use of the associated procedures is relevant. Heat resistance of enclosing structures is a value to be reciprocal to their heat-transfer factor, the calculation method using differential equations with boundary conditions is given in the work [1]. The other factor influencing the parameters of microclimate inside the room is a value of heat removal from surface of radiators; traditional convective heating appliances are proposed to be replaced with appliances giving up heat by radiation principle [2]. The method for comparison of different design solutions is not new, however, such comparison is not complex, as the attention is paid only to separate aspects, for example, electrical heating appliances [3]. Comparison of the method for heat energy generation on large source and separate method, as well as volumes of power generation by these methods at condensation power plant, g/(kW·h) and kW·h;

\[
\Delta G_T = G_{PT} - G_{TT} = \frac{34.1 \cdot Q}{\eta_{IN}} \cdot \eta_{IN} - \frac{34.1 \cdot Q}{\eta_{IN}} \cdot \eta_{IN}, \tag{3}
\]

where minuend and subtrahend — a consumption of equivalent fuel for district heating from heat power plant and roof boiler houses accordingly; \(\eta_{IN}\) — an efficiency of boiler house at the heat power plant considering heat losses in steam pipelines between boiler room and engine room; \(\eta_{OD}\) — an efficiency of heat network from the heat power plant considering heat losses of the network; \(\eta_{BO}\) — an efficiency of boiler house; \(\eta_{NH}\) — an efficiency of heat networks from boiler house;

The specific heat losses of the building, J/(cm\(^2\)·K) or kcal/(m\(^2\)·°C), are determined by the following formula:

\[
q_{OV} = \frac{P}{S} \cdot K_V + \frac{1}{L} \cdot K_H, \tag{4}
\]

where \(K_V\) — an average heat-transfer factor of vertical enclosures of the building (walls), W/(m\(^2\)·K) or kcal/(h·m\(^2\)·°C); \(K_H\) — an average heat-transfer factor of horizontal enclosures of the building (floorings and floor), W/(m\(^2\)·K) or kcal/(h·m\(^2\)·°C); \(P\) — a perimeter in the plan; \(m\); \(S\) — a plan area, m\(^2\); \(L\) — a height, m; \(q_{OV}\) is also called as a heating characteristic of the building. Heat consumption for heating and ventilation of residential and public buildings (full heat losses) considering infiltration is determined by formula (5) and (6):
Анализ технологий отопления, вентиляции и кондиционирования для перехода на низкотемпературное теплоснабжение

(5) \[Q_0 = q_{out} \cdot V \cdot (t_{in} - t_{out}) \cdot (1 + \mu); \]

(6) \[Q_{vent} = q_{vent} \cdot V \cdot (t_{in} - t_{out}), \]

where \(t_{out} \) — an outside air temperature, °C; \(t_{in} \) — a design value of inside air temperature of heated premises; \(\mu \) — an infiltration coefficient; \(q_{vent} \) — a specific heat consumption for ventilation, \(\text{J} / (\text{s} \cdot \text{m}^3 \cdot \text{K}) \) or \(\text{kcal} / (\text{h} \cdot \text{m}^3 \cdot \text{°C}) \); \(V \) — an outside bulk of vented building, \(\text{m}^3 \); \(q_{vent} \) is also called as a ventilation characteristic of the building.

The heat engineering efficiency of enclosing structures consisting of several layers is determined by heat resistance, \((\text{m}^2 \cdot \text{°C}) / \text{W}\), being a value to be reciprocal to heat-transfer factor:

(7) \[R = \frac{1}{k} = \frac{1}{\alpha_i} + \sum \frac{\delta_i \cdot \lambda}{\alpha_{out}}, \]

where \(\alpha_i \) — a heat transfer factor of internal surface of enclosing structures, \(\text{W} / (\text{m}^2 \cdot \text{°C}) \); \(\delta_i \) — a thickness of the \(i \)-th layer of enclosing structure, \(\text{m} \); \(\lambda \) — a heat conductivity factor of the \(i \)-th layer of enclosing structure, \(\text{W} / (\text{m} \cdot \text{°C}) \); \(\alpha_{out} \) — a heat transfer factor of external surface of enclosing structure, \(\text{W} / (\text{m}^2 \cdot \text{°C}) \).

One of the basic values influencing selection of equipment of the heat point and the heating system is a design temperature of coolant in delivery pipeline, °C:

(8) \[\tau_1 = t_{in} + \Delta t'_{0} \cdot \overline{Q}^{0.8} + (\delta t_{t} - 0.5\delta') \cdot \overline{Q}. \]

where \(\Delta t'_{0} \) — a design difference of temperatures of delivery water; \(\theta \) — a design temperature difference in heating system; \(\overline{Q} \) — a relative heating load.

Coolant temperature at output of the heating system, °C:

(9) \[\tau_2 = \tau_1 - \delta t_{t} \cdot \overline{Q} = t_{in} + \Delta t'_{0} \cdot \overline{Q}^{0.8} - 0.5\delta' \cdot \overline{Q}. \]

Coolant temperature downstream mixing device upstream heating system, °C:

(10) \[\tau_3 = \tau_2 + \theta \cdot \overline{Q} = t_{in} + \Delta t'_{0} \cdot \overline{Q}^{0.8} + 0.5\delta' \cdot \overline{Q}. \]

The ratio between loads of hot water supply (HWS) and heating influences on, weather central control will be performed by heating load or by combined load of heating and HWS. Central constant flow/variable temperature control by heating load is reasonable in the heat supply systems with hourly average load of HWS not exceeding 15% from the design consumption of heat energy for demands of heating. Then water temperature in delivery pipeline is determined by formula (8). Otherwise connection of HWS system for 75% of consumers minimum shall be performed by closed two-stage circuit, and the temperature chart shall be divided into two ranges. The first one is within the range of outside temperatures from 8 °C to breakpoint, the second one is from the breakpoint to the design temperature of outside air; points of temperature chart will be determined by formula being similar to equation (8), but considering balance sheet ratio, temperature of delivery water in heaters of top and bottom stage and underheating within each temperature range.

The considered facilities became the set of detailed and design documentation for construction of the following facilities:

- multistory, apartment building, Cherkessk, the Karachayevo-Cherkessian Republic;
- multistory apartment house with integrated attached service establishments for population and underground parking pos. 68 at the intersection of Kalinina St. and Gaydara St. in III microdistrict of central part of Cheboksary;
- residential building with infrastructure in the area of Griboedova St., 46 in Vladivostok;
- apartment building in Balaklava District, Sevastopol (1st phase), Stroitelnaya St., 31 A;
- complex development of multistory apartment house within the section between Volgogradskaya St. and motor road to Kochkurovo village (in the area of the Tavla River), in Saransk;
- the Yaroslav Region, Yaroslav District, Pestretsovsky rural district, Krasny Bor village (residential estate “Yakovlevskaya Sloboda, bld. 3”), etc.

As distinct from the work [8], constructed or designed capital construction facilities are selected as facilities, in relation to which the research is performed, but not the existing buildings. For calculations (check of calculation results), the commercial product of Microsoft Office Excel 2010 was used. Hydraulic calculations of pipelines for heating system and selection of heating equipment were checked with special program Danfoss C.O. Analysis of existing procedures of heating, ventilation and air conditioning (HVAC) for transfer to low-temperature heat supply during renovation of housing stock was performed by 17 parameters herein-after referred to as the type number identification “3.1”, “3.2”, etc.

RESULTS

3.1 Heat Supply Source

For the most part of examined facilities, the heat supply source is urban water heat supply network, heat for which is generated by large heat power plants located outside the settlement area, burning fossil fuel and started at the end of the XX century. The standard connection point is a new (designed) heat chamber.

Only in relation to the residential building with infrastructure in the area of Griboedova St., 46 in Vladivostok, the heat supply is supposed to be provided from the existing urban networks from the Central Steam and Water Boiler House. Heat supply being non-standard for native towns has occurred for the reason that at the end of 1970s of the XX century boiler house replaced coal heat power plant put out of operation due to environmental considerations. Thus, within over 40 years, water for urban networks was heated by system water heater, steam for which was supplied from Vladivostok.
The heating system is water, but the temperature chart per building was 163.2 m³/h at flow rate of gas for interheat accounting, automation and supply of heat energy. For 100 % of cases, the individual heat point is located in a separate room in crawl spaces at elevations below the ground level. Entrance of the room is provided from outdoors or inside the building, the room height is at least 2.0 m. For water flow the floors are designed with slope to the side of water collection sump, mainly, covered with removable grating. Water, which design pressure is usually 1.6 MPa in primary circuit (from the side of heat network), is used everywhere as a coolant in the heat supply system. The heat supply systems are double-pipe; three- and four-pipe variants being specific for central heating station and local boiler houses were not included into consideration.

The heat supply source of buildings in Sevastopol and the Yaroslav Region is an individual gas roof boiler house. Even in this case in the separate room or boiler house room, the individual heat point is designed for heat accounting, automation and supply of heat energy.

In the Yaroslav Region the design fuel flow rate per building was 163.2 m³/h at flow rate of gas for internal gas supply of the residential house to be 68.3 m³/h. There are the following demands of the facility for electric energy: total design power is 245.88 kW, annual electric energy consumption is 860.58 thous. kWh.

Additional fuel consumptions will be 187,314 tons of fuel oil equivalent considering the scenario of transfer from coal heat power plant with installed electric power of 250 MW operating at average indices of fuel use, heat load with annual heat consumption about 2,750 Gcal calculated by the above mentioned formula (1)–(3).

3.2 Temperature Charts

For 100 % of examined facilities, the coolant in the heating system is water, but the temperature chart 80/60 °C is accepted for the facility in Sevastopol, and parameters of coolant are 100/70 °C for the facility in Vladivostok. The design temperature in the heating system of several buildings is 90/65 °C. Calculation by formula (1)–(5) considering climatic parameters of the area has shown that the average temperature of the coolant in the delivery pipeline within the heating season differs less significantly and fluctuates within the range of 70–75 °C.

The temperature chart of heating networks from the source can also be 90/65 °C, as in case of the building in the Yaroslav Region, or be more — 105/70 °C, as in case of the building in Cherkessk, then at the individual heat point it is necessary to organize mixing of the coolant for its parameter correspondence with standards SNiP and SanPiN.

According to the attached technical conditions water supply is supposed for needs of hot water supply via dead-end open circuit for connection to the heat supply system almost at all facilities during the summer period, only for the facility in Cherkessk the design temperature chart of delivery water for non-heating (summer) season is given considering circulation — 70/40 °C.

At the same time in the countries of European Union work is performed on transfer to the district heating systems of the fourth generation, which features are use of underrated temperature charts (60 °C and below), increase of area for heating appliances and use of ethylene-glycol mixtures as coolant that allows performing discontinuous control [9].

3.3 Diagram of Heating System Connection

The building heating system is connected to the heat source both by independent and dependent diagrams. In 100 % of cases, the automatic constant flow/variable temperature control and pump circulation of the coolant, which is mainly ensured by two pumps, one of which is standby, is accepted. Circulating pumps are installed on return pipelines of the building heating system. By pressure, the pumps are designed for overcoming of hydraulic resistance of the heat-exchanger for the heating system (at independent diagram) and internal heating system of the building (in all cases). Each pump is equipped with the function of engine speed control and function of automatic setting of pump head depending on the coolant consumption.

At independent diagram in 100 % of cases, the provision is also made for installation of two plate-type heat exchangers: one is operating and one is standby. To compensate increase in volume of heated coolant in closed circuit of the heating system, the provision is made for installation of two expansion tanks. For protection of the system from emergency pressure increase, the provision is made for installation of safety relief valves of normally closed type. Filling and makeup of the heating system connected to the independent diagram are ensured by two pumps from return pipeline of the heating network. Makeup pumps are shut down by signal of the pressure sensor.

The significant disadvantage of the heating system connection via independent diagram is vulnerability of such systems at operating procedure characterizing by deviation of temperature or coolant consumption for the design parameters to the lower side, therefore when determining design heating efficiency of the heat exchanger by standard methods, significant errors [10] resulting in coolant underheating in internal circuit can occur.
3.4 Diagram of Hot Water Supply System Connection

At all facilities without exception, connection of hot water supply systems is provided by closed diagram, for example, by single stage parallel circuit in Cherkessk. In this case, the individual heat point is equipped with a controller automatically maintaining the temperature of heated water at the specified level, and a heat exchanger intended for heating of cold mains water from 5 to 60 °C with the coolant having input temperature of 70 °C, and output temperature of 40 °C. At output of the heat exchanger temperature maintaining for hot water at the level of 60 °C is ensured by the programmable controller, which determines actual water temperature supplied into the hot water supply system by signal of the temperature sensor, and generates control signal to the control valve changing consumption of the heating coolant. In circulation pipeline of the hot water supply system pump having stages of rotation speed and manual control mode in emergency situations is installed.

3.5 Diagram of Heating System

In 75 % of cases, the heating system diagrams are provided to be double-pipe with bottom distribution supply mains and horizontal pipe layout from apartment to apartment from distribution floor-by-floor manifold along the perimeter in the floor structure. In case of facility in Vladivostok, the provision is made for horizontal single-pipe layout using the so-called bottom millstones. Coolant movement can be accepted to be dead-end (Sevastopol) or following. Layout of heating standpipes is provided in the special shafts of inter-apartment halls. Only in case of building in the Yaroslav Region, the project provides double-pipe heating system with vertical standpipes used everywhere till the beginning of the XXI century.

Review of the design documentation provided in the form of graphical schemes and drawings has shown that the heating and hot water supply systems for residential houses are usually zoned, division is performed at least into two areas. Then independent heating systems separated from the residential part are designed for rooms of housing cooperative, lift halls, offices, and rooms for short-term staying of preschool children, health complex, dental room and other non-residential premises, mainly, located in the basement and/or ground floors of the buildings.

3.6 Type and Arrangement of Heating Appliances

Sectional bimetallic radiators with side connection are provided as heating appliances, for example, BREM BR500. In the building in Sevastopol, steel panel radiators of K-Profil-22-50 type with side connection made by Buderus and with preset thermostatic regulator of RTR-R-Y type made by Danfoss are accepted as heating appliances. On staircases along escape routes the heating appliances are arranged at a distance of 2.2 m minimum from surface of treads and stair landing to appliance bottom. Heating appliances are located under area lights in the places being accessible for inspection, repair and cleaning — open, under windows (or directly near windows) or near the walls of the heated room. Heating appliances of “wall heating” or “under-floor heating” type are not used in any project, though they have already become widespread abroad. On the other hand, authors of the publication [11] have shown that under climatic conditions of China standard traditional convectors and radiators are even more preferred.

Operating practice shows that firstly particularly uneven heating of radiators or their non-compliance with the claimed hydraulic characteristics result in non-observance of the Operating Rules and Regulations by the consumers for heat generating plants, temperature and hydraulic conditions, specified limits of heat consumption for correspondence with contract loads [12].

3.7 Heating System Automation

For hydraulic integration (setting of design coolant consumption) in the heating system automatic balancing valves are used, for examples, valves of ASV-PV25 type made by Danfoss together with shutoff valve of ASV-M type made by the same manufacturer. These valves are installed at connecting pipe to floor distributor.

On floor by floor distribution manifolds the provision is mainly made for installation of automatic balancing valves to maintain differential pressure in the floor heating system. On return pipelines from apartment manifold boxes installation of manual balancing valves is supposed to limit maximum coolant consumption.

To save the consumer heat energy and create comfortable conditions in living spaces on connecting pipes to heating appliances automatic thermostat valves with thermostatic heads for control are installed. At top points of standpipes, the provision is made for air bleeders of automatic type.

A. Bruce Conua and joint authors [13] analyse the heating systems in buildings, where residence is provided under the contract of social rent and come to a conclusion about obligatoriness to install thermostat valves on each heating appliance.

3.8 Electrical Heating

At two researched facilities, the fact of heating in engineering and utility services rooms using electrical heaters was detected. So for heating of switchboard rooms, lift engine rooms and crawl space in the building in the Yaroslav Region electrical convector heaters are used.

In switchboard room located in the basement of the residential house in Cherkessk, the provision is made for electrical convector heater BALLU. Electrical heaters are connected with fixed wiring with class of protection from electrical shock and automatic temperature control for heat-release surface of the heating appliance depending on air temperature in the room. Power of electric convectors is from 1.5 to 9 kW.
3.9 Metering Devices

Everywhere installation of heat energy meter stations is provided on return and delivery pipelines of heating network (with diameter up to 125 mm), as well as on pipeline for heating system makeup (up to 40 mm) in close proximity to the boundary line of inventory responsibility. Standard variant for boundary arrangement is flanges of shutoff valves on delivery and return pipelines from the side of heating network at entrance of individual heat point. For example, for facilities in Cherkessk electromagnetic flow meters VZLYOT ER of Light M model with design ERSV-440F V DN65 mm with the measurement range of 0.4784–119.6 m³/h in amount of two pieces are accepted for installation on delivery and return pipelines of the heat supply system. Electromagnetic flow meter VZLYOT ER of Light M model with design ERSV-440F V DN20 mm with the measurement range of 0.04528–11.32 m³/h is accepted for installation on makeup pipeline of heating system. Measurement error of such electromagnetic flow meters is ±2%.

Considering zoning in the building in Vladivostok, total accounting of heat flows for heating, ventilation and hot water supply is provided in individual heat point by heat meters of MultiCal III UF type separately for residential building, offices and parking area. In 75% of cases the provision is made for apartment-by-apartment installation of metering devices, for which purpose, for example, individual heat meters made by Danfoss with SonoSafe 10/0.6 type (Sevastopol) can be used. Only at one facility based on use of double-pipe heating system with vertical standpipes accounting of heat energy is performed on each heating appliance, for which purpose distribution meters INDIVID I equipped with LCD display are installed in apartments.

3.10 Pipeline Design

Apartment-by-apartment layout at three facilities is made of reinforced-plastic pipes in corrugated tube. Heating system networks at two more facilities are made of universal polyethylene pipes of Radi Pipe type made by Uponor. Installation procedure proposes connection of such pipelines with moving sleeve without O-rings. Other advantages of this procedure are as follows: the possibility to immediately load the place of joint with pressure and temperature and the possibility to lay the pipeline is concealed: in the floor or wall structure.

In the building in Sevastopol, standpipes and connecting pipes to distribution headers are made of polypropylene pipe of PPR FASER PN20 type made by FV-Plast reinforced with fiberglass. At all remaining facilities main pipelines and standpipes of the heating system are provided from steel gas and water supply pipes as per GOST 3262-75* at diameter up to 50 mm and steel electric-welded pipes as per GOST 10704-91 at diameter over 50 mm. Moreover, it is found that minimum initial and discount expenses correspond to polypropylene pipes, and pipes from cross-linked polyethylene and reinforced plastic have similar cost, service life and similar operating characteristics [14]. For compensation of thermal expansions of vertical standpipes axial expansion bellows are installed. At open laying such pipelines are generally coated with pentaerythritol-modified phthalic paint (PF-115 type) at two times on primers GF-021, and in the places of flooring intersection they are laid in sleeves made of incombustible materials.

3.11 Thermal Performances of Enclosing Structures, Space-Planning and Specific Indices, as well as Consumptions of Heat Energy

During check of thermotechnical calculation by formula (4)–(7), numerical values of heat transfer resistance of enclosing structures are also obtained. Calculation has shown that the obtained values don’t differ from the ones specified in the design documentation by more than ±5%. For the facility in Sevastopol, they coincided with the claimed ones with an accuracy to hundredth and were as follows: for external walls — 4.02 (m²·°C)/W; doors — 0.35 (m²·°C)/W; windows — 0.35 (m²·°C)/W; attic floor — 3.1 (m²·°C)/W; unheated crawl space — 2.48 (m²·°C)/W.

In relation to the building in the Yaroslav Region, specific losses through flat cell (three-layer wall with insulant and masonry lining) were 0.215 W/(m²·°C); through lineal elements (adjoining of window frame to the wall and joint of ceiling panel with wall) — 0.139 W/(m·°C); point elements (flexible connections) 0.171–0.139 W/(m·°C), moreover, the share of total heat flow through a fragment of flat cell is 84%.

Reduced total thermal resistance of flooring fragment determined by formula (F.1) in Appendix F of SP 50.13330.2012 was 3.92 (m²·°C)/W. The obtained reduced total thermal resistance for enclosure is above the rated value 3.34 (m²·°C)/W, but is slightly lower than the best indices 4.0 (m²·°C)/W, achieved when using up-to-date three-layer reinforced concrete panel structures [15].

Heat engineering uniformity factor determined by formula (F.4) in Appendix F of SP 50.13330.2012 is equal to specific losses ratio of 0.215 W/(m²·°C) and heat-transfer factor 0.255 W/(m²·°C), i.e. 0.84. The heated volume of 12-storey building with ten apartment floors is 50,151.33 m³ at the total area of external enclosing structures of 11,877.15 m² provides volume-to-size ratio of the building to be 0.237 l/m determined as the ratio of two previous values.

Specific ventilation characteristic of the building is determined by formula (D.2) in Appendix D of SP 50.13330.2012 and equals to 0.076 W/(m·°C). Specific performance of heat energy consumption for heating and ventilation of the building within heating season was checked by formula (D.1) in Appendix D of SP 50.13330.2012 and doesn’t differ from the value speci-
Analyzing technologies of heating, ventilation, and air conditioning for transitioning to low-temperature heating

3.14 Automation of Equipment for Individual Heat Point

According to the requirements of Order of the Government of the Russian Federation No. 18 dated January 25th, 2011 the basic specific heat energy consumption for heating of the building shall be reduced by 30% and equal to: 0.301\cdot0.7 = 0.211 \text{ W/} (\text{m}^3\cdot\text{°C})

Heat consumption for heating of the building (full heat losses) considering infiltration is determined by formula (5) and equals to 777 kW.

3.12 Pipeline Thermal Insulation

In all projects, main standpipes, all pipelines of heating system located in crawl space including pipelines in the individual heat point room and heated attic floor are supposed to be made with thermal insulation. For example, in the building in Cherkessk for thermal insulation of individual heat point pipelines incombustible thermal insulation ROCKWOOL TU 5762-050-45757203-15 is used. For winterization of main pipelines, thermal insulating materials made by Thermaflex are used.

3.13 Design Internal Temperatures

At all facilities except for one, the inside air temperature in rooms shall be taken according to the designing assignment and according to GOST 30494-96 “Residential and Public Buildings. Microclimate Parameters for Indoor Enclosures” and equals to as follows:

- in lavatories — 19 °C;
- in bathing rooms and combined lavatories — 25 °C;
- in living spaces of apartments — 21 °C;
- in kitchens — 19 °C;

In the building in Sevastopol in the whole designed building the inside air temperature is accepted to be uniform — 20 °C, that corresponds to designing practice of the facilities abroad to a great extent [16].

3.14 Automation of Equipment for Individual Heat Point

All projects provide automation of equipment operation for individual heat point. Constant flow/variable temperature control for heat consumption is ensured by the programmable controller, which determines the required coolant temperature at output of the heating system by signal of the outside air temperature sensor, compares it with actual temperature measured by the sensor and generates control signal to the control valve changing consumption of the heating coolant. Thus, the coolant temperature at input of the heating system is maintained by automatics depending on outside air temperature by the specified heating schedule. For example, for the facility in Cherkessk, the automation system is constructed on the basis of regulator ECL Comfort 310 with electronic key to program application A368 to control equipment in independent heating and hot water supply system at centralized heat supply. Key A368 allows controlling double circulating pumps and makeup system. To reduce starting currents and exclude hydraulic impact while switching on/off the circulating pumps in the heating system, the provision is generally made for use of the soft starters. S. Lazarevich and joint authors [17] have created the tool to simulate operation for completely automated individual heat point, particularly on the basis of regulator ECL Comfort 310, in real time in simulation modelling environment LabVIEW.

Automation means are installed according to the documentation of the appropriate section, regulatory documents, standards and technical conditions for the certain equipment types. Moreover, it is necessary to consider the requirements specified in certificates and operating instructions for automation devices and means, electrical equipment, pipeline valves and installation materials and products. Grounding of I&C electrical equipment, metal structures and cabling is performed according to the Electric Installation Code (EIC), and performance and acceptance of works on installation and adjustment of the automation systems correspond to SNiP 3.05.07-85.

Use of automation diagrams on the basis of regulator ECL Comfort 310 contributes to improvement of hydraulic control for heating systems, however, concealed automation results in violation of high-quality mode for heat network control and decrease of coolant parameters on adjacent (often non-automated) consumers [18].

3.15 Ventilation of Rooms

Analysis of the design documentation has shown that for about 90 % of heated space of the rooms ventilation is provided to be natural with air inflow through leak in enclosing structures and through window openings with function of micro venting. To ensure stable operation for natural ventilation, outside air inflow is required using constantly operating micro slit venting. Even for engineering and utility services rooms (switchboard rooms, individual heat points, pump rooms, cleaning equipment storage rooms) in 90 % of cases, natural ventilation is designed, for which purpose controlled exhaust grilles are installed (for example, R-150 or R-150M type). Exclusion is rooms of crawl space, where the provision is usually made for non-controlled ventilating transfer grills and air holes equipped with net. Ventilation in lift engine rooms is designed for assimilation of heat emissions from lift equipment, for which purpose deflectors are installed.

Ventilation of offices, parking areas, water closets and kitchens in residential houses is designed to be exhaust or plenum and exhaust to be natural and forced, which is organized by installation of duct wall fans on the last two floors and crawl floor (Vladivostok). In the
3.16 Description of Technical Solutions Ensuring Reliability and Protection from Harmful Influences during Operation of the Systems under Normal and Extreme Conditions

In all systems all required measures are used to prevent vibration transmission to building constructions and ensure the rated parameters of noise occurring during operation of ventilation systems. Particularly, cross sections of ventilation channels and ventilating grills of natural ventilation, as well as diameters of pipelines for water heating systems are accepted considering allowable equivalent level of sound in rooms.

Pipelines in the places of intersection of internal walls, division walls are laid in sleeves from incombustible materials, sleeve edges shall be at one level with surfaces of walls, division walls, floorings and by 30 mm higher than surfaces of finished floor. Closing of gaps and holes in the places of pipeline laying is provided by incombustible materials ensuring the rated fire resistance limit of the intersected enclosure. In the building in Cherkessk additionally for protection of the heat exchange equipment and pipelines of hot water supply system from carbonate scale formation the provision is made for preliminary processing of source water with electromagnetic unit Anti-Ca++.

Air is removed from the heating systems by means of automatic venting devices located in the top points of the systems. In the bottom points drain valves are installed.

At input of individual heat point, the mud collector is installed for removal of small and large suspended particles form coolant. The size of the mud collector is chosen according to the pipeline diameter, on which it is installed. The mud collector is equipped with an automatic venting device in the top part of the body and a drain valve in the bottom part of the body. For protection of stop valves, control devices, pumps and the heat exchange equipment on delivery pipeline mechanical filters are installed. As in case of the mud collector, the filter diameter shall correspond to the pipeline diameter. Improvement of reliability is also ensured due to 100% redundancy of pump and heat exchange equipment of the individual heat point.

Pipeline emptying of the heating system is mainly provided by gravity with air gap through the drain valve installed at the base of standpipes in the individual heat point room. Drains are removed from the sump into the system drain sewage system by submersible pump with level gage.

3.17 Correspondence of Design Solutions with the Requirements of the Regulatory and Technical Control

It is found that the whole design documentation was drawn up based on the designing assignment according to the guidelines of SP 54.13330.2011 “Residential Apartment Buildings”, SP 50.13330.2012 “Thermal Protection of Buildings”, GOST R 21.1101-2013.
"System of Design Documents for Construction. Main Requirements for Design and Working Documents" SP 73.13330.2016 "Internal Sanitary Systems of Buildings", SP 41-101-95 "Designing of Heat Points", etc., as well as technical documentation for equipment proposed for installation. Design outside air temperature for calculation of heating system is accepted according to SP 131.13330.2012 "Construction Climatology".

Check of parameters for chosen equipment and design characteristics of utilities performed in the specialized program Danfoss C.O. and Microsoft Office Excel 2010 has shown that the obtained values don’t also differ from ones claimed in the design documentation by more than ±5 %. Deviation from the designing assignments, except for cases of heat supply source for the facility in Vladivostok, has not been detected.

CONCLUSION AND DISCUSSION

The whole considered design documentation was developed according to the fire-fighting and other standards being applicable within the Russian Federation, designing assignments, town-planning regulations, plot plans and documents about suitability of its use for construction. The design solutions, utilities and systems accepted in the project correspond to process and operating requirements, requirements of ecological, sanitary and hygienic regulation and ensure facility operation being safe for life and health of people when observing the measures specified in the detailed drawings. The role of the technical regulations determining the requirements on assurance of safe operation of buildings, structures, facilities and safe use of the adjacent areas is significant.

In general, such solutions as supplementation of central high-quality control by local constant temperature/variable flow control at individual heating unit and installation of temperature controllers on heating radiators with mechanical thermostatic head becoming more available within the last time have good potential for reduction of the heat energy volume used ineffectively. Increase in level of controllability for heating system together with cheaper and responsive automation systems are basic conditions required for increase in quality of heat supply in future.

On the other hand, though the projects provide measures on improvement of heat engineering characteristics for enclosing structures and equipping with metering devices for consumption of heat energy, water and electric energy, but only these measures don’t create sufficient preconditions for development of renewable power engineering and reduction of emissions of greenhouse gases into the atmosphere contributing to transfer to low-temperature heat supply and coming into force in the countries of the European Union.

REFERENCES

1. Khroustalev B.M., Sizov V.D. Determining heat transmission resistance of enclosing structures. Energy. Proceedings of Higher Educational Institutions and Energy Associations of the CIS. 2018; 61(1):47-59. DOI: 10.21122/1029-7448-2018-61-1-47-59 (rus.).

2. Panchenko V.V. Air-radiant heating on the basis of a two-flow heat generator with infrared emitters. City Planning and Architecture. 2018; 8:1(30):40-43. DOI: 10.17673/Vestnik.2018.01.7 (rus.).

3. Lyambel A.N., Palahuel V.M., Shcheklein S.E. On the heating of an apartment house in the powerhouse complex. International Journal of Alternative Energy and Ecology. 2018; 19-21(267-269):91-100. DOI: 10.15518/isjacee.2018.19-21.091-100 (rus.).

4. Ilina G.Z., Zilin A.N. Comparison of the source of heat supply for an apartment building on the basis of an individual heat point and a roof gas boiler house. Youth Bulletin of Ufa State Aviation Technical University. 2018; 1(18):57-59. (rus.).

5. Panferov S.V., Panferov V.I. Heating management for buildings with low-temperature modes of heat supply. Bulletin of the South Ural State University. Ser.: Building and Architecture. 2018; 18(3):60-67. DOI: 10.14529/build180309 (rus.).

6. Ziganshin M.G., Shaymardanova A.I. Efficiency of combustion of gas fuel in two-concrete walled household boilers. Housing and Communal Infrastructure. 2018; 1(4):27-35. (rus.).

7. Abildinova S.K., Musabekov R.A., Rasmukhametova A.S., Chicherin S.V. Evaluation of the energy efficiency of the stage compression heat pump cycle. Energy. Proceedings of Higher Educational Institutions and Energy Associations of the CIS. 2019; 62(3):293-302. DOI: 10.21122/1029-7448-2019-62-3-293-302 (rus.).

8. Tsopa N.V. Analysis of the basic methods of carrying out the energy sanitation in residential buildings. Construction and Industrial Safety. 2018; 11(63):67-78. (rus.).

9. Chicherin S.V. Transition to the fourth generation heat supply systems put off indefinitely. Plumbing, Heating, Air Conditioning. 2019; 5:37-40. (rus.).

10. Rafalskaya T.A., Rudyak V.Ya. Influence of coolant flow rates on the heat exchanger parameter at variable operation modes. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2019; 14(5):621-633. DOI: 10.22227/1997-0935.2019.5.621-633 (rus.).

11. Wang Z., Luo M., Geng Y., Lin B., Zhu Y. A model to compare convective and radiant heating systems for intermittent space heating. Applied Energy. 2018; 215:211-226. DOI: 10.1016/j.apenergy.2018.01.088
12. Abildinova S.K., Chicherin S.V. District heating system simulation considering consumer and pump operation features. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2019; 14(6):748-755. DOI: 10.22227/1997-0935.2019.6.748-755 (rus.).

13. Bruce-Konuah A., Jones R.V., Fuertes A., Messi L., Giretti A. The role of thermostat radiator valves for the control of space heating in UK social-rented households. Energy and Buildings. 2018; 173:206-220. DOI: 10.1016/j.enbuild.2018.05.023

14. Zherlykina M.N., Kononova M.S. Technical and economic comparison of various pipe materials used in apartment-wiring of the heating system. Housing and communal infrastructure. 2018; 1(4):96-103. (rus.).

15. Ovsyannikov S.N., Maksimov V.B. Energy-efficient exterior wall panels of frame-panel buildings. Bulletin of Tomsk State University of Architecture and Civil Engineering. 2018; 20(6):107-114. DOI: 10.31675/1607-1859-2018-20-6-107-114 (rus.).

16. Chicherin S.V. Comparison of a district heating system operation based on actual data – Omsk city, Russia, case study. International Journal of Sustainable Energy. 2019; 38(6):603-614. DOI: 10.1080/14786451.2018.1548466

17. Lazarević S., Čongradac V., Andelković A.S., Čapko D., Kanović Ž. A novel approach to real-time modelling of the district heating substation system using LabVIEW. Journal of Cleaner Production. 2019; 217:360-370. DOI: 10.1016/j.jclepro.2019.01.279

18. Smirnov V.V., Yavorovskiy Yu.V., Senikov V.V. Experimental confirmation of the localization of variable hydraulic modes in heat points with a thermo-hydraulic distributor. Bulletin of Ivanovo State Power Engineering University. 2018; 6:5-14. (rus.).

19. Ye X., Kang Y., Yang F., Zhong K. Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode. Building and Environment. 2019; 160:106159. DOI: 10.1016/j.buildenv.2019.03.045

20. Kong X., Xi C., Li H., Lin Z. A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Building and Environment. 2019; 157:34-46. DOI: 10.1016/j.buildenv.2019.04.045

Received June 15, 2019.
Adopted in its final form on August 5, 2019.
Approved for publication August 31, 2019.

B i o n o t e s: Stanislav V. Chicherin — postgraduate student of the Department of Heat Power Engineering; Omsk State Transport University (OSTU); 35 Marksa pr., Omsk, 644046, Russian Federation; ORCID: 0000-0002-9359-9678; man_csv@hotmail.com.