Supplemental Information

Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data

Christoph Ogris1, Yue Hu1, Janine Arloth1,2 and Nikola S. Müller1

1Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1 85764 Neuherberg, Germany
2Department of Translational Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany

Corresponding authors: Christoph Ogris, Nikola Müller
Institution: Institute of Computational Biology
Address: Helmholtz Center Munich, Ingolstädter Landstr. 1 85764 Neuherberg, Germany
Mail: christoph.ogris@helmholtz-muenchen.de, nikola.mueller@helmholtz-muenchen.de
Supplemental Tables

| Gene symbol | #Publication hits | Gene symbol | #Publication hits |
|-------------|-------------------|-------------|-------------------|
| BRCA1       | 271 000           | HNRNPA1     | 5 370             |
| CDK2        | 74 300            | HSP90AA1    | 4 410             |
| DLG4        | 1 540             | MYC         | 1 030 000         |
| EP300       | 11 100            | SKP1        | 14 600            |
| FBXW11      | 844               | UBC         | 45 600            |
| GRB2        | 47 300            | UBE2I       | 1 630             |
| HDAC1       | 41 600            | AKT1        | 52 400            |

Sup. Table 1: KiMONo identified 14 genes which are identified as important across all 11 panCancer networks. The publication hits define the approximate amount of publication including the gene. These hits were derived using google scholar searches.
Supplemental Figures

**Sup. Figure 1:** Overview of pan cancer data for 11 different cancer types and 6 different data types. Proteomics / Rppa (blue), Copy number variations / CNV (dark blue), Methylation (limegreen), Mutations (dark green), mRNA (pink) and Clinical information (red). The intersection (yellow) denotes the amount of matched samples. In our analysis we only used the samples which were analysed across all levels.
Sup. Figure 2: Overview of network coverage for sample reduction (A) and noise level (B) benchmarks.
Sup. Figure 3: Results of benchmarking small sample sizes and different noise levels. Here, we used all inferred models which explain at least 1% of the variance in the data.
Sup. Figure 4: Overview of the available TCGA raw omic data for all 10 cancer types. Rows and columns denote the omic levels. For the clinical data level each feature is visualized separately since it consisted of binarized and continuous data.
Sup Figure 5: Robustness benchmark for A) different sample sizes and B) noise levels on MDD data. The boxplots show the performance $R^2$ of inferred gene models. Panels describing the performance of stand-alone first-order links are displayed first (Clinical, SNPs and Methylation), followed by second-order links (Prior Methylation and Transcriptome). The last panel shows the performance of inferred gene models using all available information layers. A) Data sets with different sample sizes were generated using 10% - 50% of the 107 MDD samples. B) Different test data sets were simulated by adding Gaussian noise with increasing variance. Here, the noise level reflects the $\sigma$ for ten intensities.
Supp Figure 6: Gene expression with possible influence by C) SNP and D) methylation site found with KiMONo but not with MatrixEQTL before correcting for residual effects - raw data; the dotted line represents a correlation of 1.