CD44H Regulates Tumor Cell Migration on Hyaluronate-coated Substrate

Luc Thomas, H. Randolph Byers,* Jacqueline Vink, and Ivan Stamenkovic

Department of Pathology and *Division of Dermatopathology, Massachusetts General Hospital and Harvard Medical School; and Pathology Research MGH East, Charlestown, Massachusetts 02129

Abstract. CD44 is a broadly distributed cell surface glycoprotein expressed in different isoforms in various tissues and cell lines. One of two recently characterized human isoforms, CD44H, is a cell surface receptor for hyaluronate, suggesting a role in the regulation of cell-cell and cell-substrate interactions as well as of cell migration. While CD44H has been shown to mediate cell adhesion, direct demonstration that CD44H expression promotes cell motility has been lacking. In this work we show that a human melanoma cell line, stably transfected with CD44H, displays enhanced motility on hyaluronate-coated surfaces while transfectants expressing an isoform that does not bind hyaluronate, CD44E, fail to do so. Migration of CD44H-expressing transfectants is observed to be blocked by a soluble CD44-immunoglobulin fusion protein as well as by anti-CD44 antibody, and to depend on the presence of the cytoplasmic domain of CD44. However, cells expressing CD44H cytoplasmic deletion mutants retain significant binding capacity to hyaluronate-coated substrate. Taken together, our results provide direct evidence that CD44H plays a major role in regulating cell migration on hyaluronate-coated substrate.

The cell surface glycoprotein CD44 is a polymorphic molecule as a result of differential usage of a series of exons encoding a portion of the extracellular domain and cell lineage-specific glycosylation (Stamenkovic et al., 1991; Brown et al., 1991; Hoffman et al., 1991; Gunthert et al., 1991; Stamenkovic et al., 1989). Two human isoforms of 85 and 150 kD have recently been characterized. The 85-kD isoform, CD44H, is broadly distributed in hematopoietic cells, fibroblasts, and numerous tumors of both mesenchymal and neuroectodermal origin (Stamenkovic et al., 1989; Quackenbush et al., 1990), while expression of the 150-kD isoform, CD44E, appears restricted to subsets of epithelial cells (Stamenkovic et al., 1991; Brown et al., 1991). In addition to differences in their polypeptide sequences and posttranslational modifications, the two isoforms have been shown to differ functionally. Whereas CD44H displays high affinity for hyaluronate (Aruffo et al., 1990; Culty et al., 1990; Miyake et al., 1990; Sy et al., 1991), CD44E does not mediate attachment to surface-bound hyaluronate, and its ligands remain to be identified (Stamenkovic et al., 1991; Sy et al., 1991).

As the principal cell surface receptor for hyaluronate, CD44H plays an important role in both cell-cell and cell-substrate adhesion (Stamenkovic et al., 1991; Aruffo et al., 1990; Culty et al., 1990; Miyake et al., 1990; Sy et al., 1991; Miyake et al., 1990b; St. John et al., 1990). However, mediating cell adhesion is likely to be only a part of the function of CD44H. The observations that the cytoplasmic tail of CD44 colocalizes with cytoskeletal proteins (Jacobson et al., 1984a,b; Kalomiris and Bourguignon, 1989; Lacy and Underhill, 1987; Tarone et al., 1984) and that hyaluronate accumulates in areas of cell migration, including developing limb buds (Too, 1982), and sites of inflammation (Weigel et al., 1989) and tumor invasion (Knudson et al., 1984; Knudson et al., 1989; Knudson and Knudson, 1990), are consistent with the notion that CD44H may play a major role in regulation of cell motility. Although such a function has often been alluded to (Too, 1982; Turley et al., 1991), direct evidence for a role in motility has been lacking. To determine whether expression of either of the two isoforms of CD44 influences cell motility, CD44H and CD44E, as well as two CD44H cytoplasmic deletion mutants, were stably expressed in a human CD44-negative melanoma cell line and transfectants tested for motility on and adhesion to a variety of substrates. The choice of melanoma cells was prompted by observations that melanoma cell invasiveness (Hart et al., 1991), metastatic proclivity (Turley and Tretiak, 1985) and motility (Thomas, L., and H.R. Byers, unpublished observations) correlate with CD44 expression. Our results show that expression of CD44H promotes melanoma cell migration on hyaluronate-coated surfaces while expression of CD44E has no significant effect. The observed enhancement of cell migration is shown to depend on the presence of both the extracellular and the cytoplasmic domain of CD44H, while adhesion to hyaluronate-coated substrate is predominantly determined by the extracellular domain.
Materials and Methods

cDNA Clones and Cytoplasmic Deletion Mutants
cDNA clones encoding CD44H (Stanekovic et al., 1989) and CD44E (Stamenkovic et al., 1991) were isolated previously and production of soluble CD44-immunoglobulin fusions has been described (Aruffo et al., 1990). The cytoplasmic deletion mutants CD44HΔ1 and CD44HΔ2 were generated by synthesis oligonucleotide-primed amplification of sequences encoding the extracellular, transmembrane, and truncated cytoplasmic domains of CD44H in polymerase chain reactions (PCR). A 3' oligonucleotide possessing a HindIII endonuclease restriction site was designed as follows: GCC GGG CTC CAG TTA CTT CCG CCC ACA CTT TCG ACT GAT.

Similarly, a second 3' oligonucleotide primer complementary to the reverse sequence of CD44H starting at residue 305 (CD44ΔII) was designed to contain a stop codon downstream from residue 305 and an XhoI restriction site as follows: GCC GGG CTC TAA CTT CCG CCC ACA CTT TCG ACT GAT.

Production of Soluble CD44

Production of soluble CD44-Ig and GMP140-Ig fusion proteins (called CD44 or GMP140 receptor globulins [CD44Rg] or GMP140Rg) has been described previously (Aruffo et al., 1990). Briefly, CD44-Ig and GMP140-Ig-containing expression vectors were introduced into COS cells using the calcium phosphate precipitation method. 107/ml cell suspension in PBS in 4-mm electroporation chambers. Cells were electroporated at 250 V/960 µF using a Biorad Gene Pulser (Richmond, CA) and then cultured in DME/10% FBS with 25 µg/ml of CD44Rg, GMP140Rg, anti-CD44 mAb KM201, or anti-HLA class I mAb W6/32 (ATCC), before seeding on substrate-coated wells. 1 ml of undiluted hybirdoma supernatant was used in each case. Incubation, washing and evaluation of attached cells was done as above.

Migration Assays

Coated substrates were prepared following a slight modification of the procedure of Goodman et al. (1989). Briefly, sterile glass coverslips were incubated for 6 h at 4°C in 35-mm petri dishes containing 0.5 or 5 mg/ml hyaluronic acid or chondroitin sulfate in PBS. Coverslips were then washed with PBS, incubated overnight with heat-denatured BSA, and washed with PBS. Control coverslips were treated with heat-denatured BSA only. Subconfluent cultures of the various CD44 transfectants were lifted off culture plates with EDTA, and one drop of a suspension of 106 cells was placed in the center of the coated coverslips immersed in DME/10%FBS gauged to obtain a cell density ranging between 0.4 and 1.0 cells/105µm2. After a minimum of 4 h of incubation at 37°C in 5% atmospheric CO2, cell migration was studied over a 3-h period under a Nikon Diaphot inverted microscope with a 10X phase-contact objective, in an attached, hermetically sealed ple克斯 silk Nikon NP-2 incubator at 37°C Cell migration was recorded using a Dage-MTI 65 DX video camera and a Hitachi TLC1550 time-lapse video cassette recorder. Image analysis was performed by playing back video images, digital saving of images at 0, 1, 2, and 3 h, and planar morphometry determination of the migration rate. Migration rate was defined by the algebraic sum of all the two-dimensional migration distances and expressed in µm/h. Migration of at least 35 cells was analyzed for each experimental condition. Image analysis was performed with a Microcomp image analysis system (Southern Micro Instruments, Atlanta, GA), a Nomikon digitatool, a high resolution video monitor (Sony, New York, NY) and an IBM-compatible computer (Samsung S500) equipped with a video card (PC version plus frame grabber; Imaging Technology, Woburn, MA). Data were saved as an MS-DOS (Microsoft) file and translated through a network (TOPS, Sun Microsystem Co., Berkeley, CA) to a Macintosh SE for statistical analysis using a t test. Normalized migration paths were obtained, using graphic computer software, by "grabbing" individual cell paths and "dragging" them without rotation so that the origin of each path was superimposed on one central point.

Migration Inhibition Assays

Cell suspensions of CD44 transfectants were plated on sterile coverslips coated with a 5 µg/ml solution of hyaluronic acid as described above. The medium was removed, coverslips were washed in PBS, and medium (DME) containing 25 µg/ml of CD44Rg, GMP140Rg, anti-CD44 mAb KM201, or anti-HLA mAb (undiluted supernatants) was added to petri dishes containing the coverslips. The preparation was allowed to reequilibrate for 25 min at 37°C, following which migration pathways of cells were recorded and analyzed as described above.

Results

Development of Stable Human Melanoma Transfectants Expressing Wild Type or Truncated CD44 Isoforms

Previously described cDNA clones encoding CD44H (Sta-
Figure 1. CD44 constructs. Each of the constructs containing CD44-specific cDNA sequences is illustrated schematically. CD44H and CD44E represent the entire, unmodified cDNA sequences encoding the 85- and 150-kD isoforms, respectively. The leader peptide (L), the cartilage link protein-homologous region (CLP), the transmembrane region (Tm), and the cytoplasmic domain (cyt) are indicated. CD44HA1 is a cytoplasmic deletion mutant lacking the entire cytoplasmic domain with the exception of the six residues indicated; the asterisk indicates a stop codon. CD44HA2 is a second cytoplasmic deletion mutant containing the first 16 cytoplasmic residues. The last six amino acids and the inserted stop codon are indicated. CD44Rg represents the CD44-immunoglobulin fusion protein. Antibody exons are boxed and introns are represented by connecting lines. H, CH2, and CH3 denote the hinge, and constant regions CH2 and CH3 respectively. Amino acid sequences predicted at the fusion are indicated below.

Table I. CD44 Expression in Melanoma Cell Transfectants

Cell line	Transfected DNA	Mean fluorescence intensity
MC-C	pCDM8 / pSV2Neo	3
MC-44Hhigh	CD44H / pSV2Neo	385
MC-44E	CD44H / pSV2Neo	83
MC-44HA1	CD44HA1 / pSV2Neo	440
MC-44HA2	CD44HA2 / pSV2Neo	375

Each of the transfected lines in the present experiments is indicated, along with the transfected wild type or mutant cDNA (all cDNA inserts were in pCDM8) and the corresponding level of surface expression as assessed by indirect immunofluorescence. Reactivity of CD44 transfected was determined using the mAb F-10-44-2 and expressed as mean fluorescence intensity.

Attachment of CD44H and CD44E Melanoma Transfectants to Hyaluronate-coated Surfaces

CD44 transfectants were radiolabeled with [3H]-thymidine and tested for attachment to hyaluronate-coated plates. Cells were seeded onto plastic microtiter wells coated with 5 mg/ml hyaluronate, heat-denatured BSA or chondroitin-6-sulfate, allowed to attach to substrate for 30 min, and nonadherent cells removed by washing. Adherent cells were lysed, incorporated radioactivity was measured, and the number of attached cells calculated from the ratio of residual radioactivity to radioactivity incorporated by the initial number of seeded cells. MC-44Hhigh cells displayed 10-fold higher degree of attachment to hyaluronate substrates than MC-C controls while the MC-44E cell line failed to exhibit significant binding (Fig. 2). This result confirmed previous observations using lymphoma CD44 transfectants (Sy et al., 1991), as well as findings that CD44+ but not CD44− melanomas bind hyaluronate-coated substrates (Thomas, L., and H. R. Byers, unpublished observations). Attachment of CD44H transfected was effectively blocked by preincubation of transfected with anti-CD44 mAb KM201 (which recognizes both human and murine CD44) confirming previous observations of Miyake et al. (1990), and by preincubating hyaluronate-coated wells with CD44Rg (Fig. 2).

Migration of CD44H and CD44E Melanoma Transfectants on Hyaluronate Substrates

The principal goal of this study was to determine whether the capacity of CD44H to bind hyaluronate may promote cell migration on appropriate substrate. Migration rate of the different transfected on hyaluronate-coated surfaces was measured by image analysis after video-microscopic recording of 3-h migration pathways (Fig. 3). Transfectants expressing CD44H or CD44E at different levels were compared to CD44-negative MC-C cells for migration on hyaluronate, heat-denatured BSA and chondroitin-6-sulfate-bound hyaluronate-coated wells with CD44Rg (Fig. 2).

1. Abbreviation used in this paper: MFI, mean fluorescence intensity.
Figure 2. CD44 transfectant attachment to substrate. Attachment is represented as the percentage of seeded cells adhering to substrate after incubation and removal of nonadherent cells. 10^5 cells from each cell line were seeded per well. Substrates are denoted by shading: Hyal, hyaluronate; Ch-6-s, Chondroitin-6-sulfate. All experiments were done in triplicate and standard errors are shown.

coated surfaces. The baseline migration rate of all transfectants on heat-denatured BSA substrates was statistically homogeneous (8.8 ± 1.9, 9.4 ± 3.7, 10.1 ± 2.5, 11.4 ± 2.6 μm/h for MC-C, MC-High, MC-Low, and E, respectively). The two CD44H-expressing cell lines, MC-44Hhigh (Figs. 3 and 4) and MC-44Hlow (Fig. 4) displayed a significantly increased migration rate on hyaluronate-coated substrates, and the observed increase in motility correlated with the level of CD44H expression (Fig. 4). The migration rate of MC-44HHigh was 19 ± 2.2 and 31.9 ± 5.1 μm/h on 0.5 and 5 mg/ml hyaluronate-coated substrates, respectively, compared to 9.4 ± 3.7 (p < 0.001) on heat-denatured BSA, while that of MC-44Hlow was 16 ± 2.6 and 22.3 ± 4.3 μm/h, respectively, compared to 10.1 ± 2.5 (p < 0.001) on heat-denatured BSA (Fig. 4). CD44E-expressing transfectants failed to show any significant increase in migration rate on hyaluronate-coated surfaces when compared to BSA-coated substrates, and none of the transfectants displayed substantial acceleration on chondroitin-6-sulfate-coated coverslips (Figs. 3 and 4).

Figure 3. "Spider" diagram representation of migration pathways for 3 h of the MC-44Htransf Rg on different substrates and in the presence of soluble CD44. Coating concentrations of substrate, concentration of soluble CD44 and migration rate are indicated. Hyal Ac, Hyaluronate; Ch-6-s, Chondroitin-6-sulfate.

Migration of CD44H Melanoma Transfectants Is Blocked by Soluble CD44Rg and Anti-CD44 Antibody

To further characterize the role of CD44 in cell migration, we conducted migration blocking assays using a soluble form of CD44. The construction of chimeric CD44-immunoglobulin cDNA fusions and subsequent fusion protein production have been described previously (Aruffo et al., 1990). CD44-Ig fusion expression vectors were introduced into COS cells, and 5–8 d after transfection, COS cell supernatants containing soluble CD44 (CD44Rg for CD44-receptoriglobulin) were harvested. CD44Rg was purified on protein A columns as previously described (Aruffo et al., 1990). CD44Rg has been shown to bind hyaluronate in vitro and in vivo (Aruffo et al., 1991). In our blocking experiments, transfectants were tested for migration on 5 mg/ml hyaluronate-coated substrates in the presence of CD44Rg at a concentration of 25 μg/ml. Transfectants were first allowed to adhere to substrates, which were then subjected to incubation with CD44Rg. CD44H-expression–dependent migration on hyaluronate was found to be completely abrogated by the presence of CD44Rg (Figs. 3 and 5). The observed blocking effect was most likely the result of CD44Rg interaction with surface-bound hyaluronate, rendering it inaccessible to cell surface CD44H. GMP-140Rg controls (Aruffo et al., 1991) failed to display blocking (Fig. 5). Similarly, incubation of adherent MC-44H cells with anti-CD44 mAb KM201 (Miyake et al., 1990) resulted in inhibition of migration while incubation with an unrelated antibody had no effect (Fig. 5). These observations support the notion that CD44H plays a direct role in regulating cell migration on hyaluronate-associated substrates.

Migration on but Not Attachment to Hyaluronate-associated Substrate Is Abrogated in Melanomas-expressing CD44H Cytoplasmic Mutants

The observation that CD44 colocalizes with cytoskeletal proteins suggests that the presence of the cytoplasmic domain is likely to be required for attachment to and motility
Heat denatured BSA

Hyal.

Hyal. + anti-HLA I mAb

Hyal. + anti-CD44 mAb

Hyal. + CD44 Rg

Hyal. + GMP1 140 Rg

Figure 5. Blocking of migration of CD44H transfectants on hyaluronate-coated surfaces. Uninhibited migration of CD44Hmab on hyaluronate-coated glass slides compared to migration in the presence of CD44Rg (25 µg/ml) or anti-CD44 mAb KM201 (undiluted hybridoma supernatant). GMP140Rg and anti-HLA I mAb were used as controls. Baseline migration on heat-denatured BSA is shown. All experiments were done in triplicate and standard errors are shown.

on hyaluronate substrates. To test these hypotheses, melanoma cell lines transfected with cytoplasmic deletion mutants, MC-44HΔ1 and MC-44HΔ2, were assayed for attachment to and migration on hyaluronate-coated surfaces. Both cell lines expressed high levels of truncated CD44, comparable to those expressed by CD44Hmab cells (Fig. 2). The MC-44HΔ1 cell line displayed significant attachment to hyaluronate substrates when compared to MC-C and MC-44E cells (Fig. 2), although the attachment was lower than that of CD44Hmab cells, consistent with the observations of Lesley et al. (1992), suggesting that the presence of the cytoplasmic domain plays a role in stabilizing CD44 interactions with substrate. However, neither of the cytoplasmic deletion mutants displayed any significant increase in motility on hyaluronate substrates with respect to controls (Fig. 4).

Discussion

Earlier work had demonstrated that CD44H is the principal cell surface receptor for hyaluronate (Aruffo et al., 1990; Culty et al., 1990; Miyake et al., 1990), and that CD44H-expressing cells adhere to hyaluronate-coated cells and substrate in vivo and in vitro (Stamenkovic et al., 1991; Aruffo et al., 1990; Culty et al., 1990; Miyake et al., 1990; Sy et al., 1991; St. John et al., 1990). The notion that hyaluronate creates a low resistance, highly hydrated matrix, and the observations that hyaluronate production is increased at inflammatory sites (Weigel et al., 1989, Hallgren et al., 1990) and in areas of tumor invasion (Knudson et al., 1984; Knudson, et al., 1989; Knudson and Knudson, 1990; Toole et al., 1979) suggest that CD44–hyaluronate interaction may also play a role in regulating cell motility. The present study provides direct evidence that expression of CD44H in melanoma cells confers capacity not only for attachment but also for motility on hyaluronate substrates. The dual function of promoting cell attachment to and motility on substrate may help explain the physiologic role of CD44 in the regulation of cell trafficking in tissues as well as its role in tumor growth. CD44H has been suggested to mediate lymphocyte homing to lymphoid tissues (Jalkanen et al., 1986, 1987).

Unlike L-selectin (previously called Mel-14/Leu-8/LAM-1), which recognizes specific ligands on lymph node high endothelial venules (Watson et al., 1990), CD44H displays only weak reactivity with high endothelial venules in vivo (Aruffo et al., 1990) and does not appear to be necessary for lymphocyte binding to vascular endothelium. However, expression of CD44H by leukocytes is likely to be required for events following endothelial adhesion, including endothelial transmigration, penetration into the extracellular matrix of lymphoid tissue, and subsequent migration to sites of antigen presentation. Similarly, leukocytes may depend on CD44H expression for efficient penetration of inflammatory sites and migration to areas where their effector functions are required.

Expression of CD44H is augmented in various types of malignancies (Stamenkovic et al., 1989; Stamenkovic et al., 1991). Melanomas that react with anti-CD44 mAb have been observed to express the CD44H isoform (Stamenkovic et al., 1989; Stamenkovic et al., 1991) and display higher attachment to and motility on hyaluronate-coated substrate than CD44 negative counterparts in vitro (Thomas, L., and H. R. Byers, unpublished observations). Human lymphoma cells, stably transfected with CD44H, display higher tumorigenicity and metastatic proclivity than CD44-negative parental cells or CD44E-expressing transfectants in vivo. CD44H expression may therefore provide tumor cells of different origin with a common mechanism for invasion of host tissues and formation of foci at secondary sites. Because hyaluronate is not present in free form in the ECM, but is principally bound to proteoglycans and link proteins (Lindahl and Hook, 1978), it may promote development of CD44H-expressing tumors in two ways: by facilitating tumor cell migration and tissue penetration and by providing a molecular bridge that mediates adhesion of tumor cells to host tissue stromal cells and ECM proteoglycans. Tumor cell interaction with stromal cells has been shown to stimulate secretion of angiogenic factors (West and Kumar, 1989) and hyaluronate production (Knudson et al., 1984), while attachment to proteoglycans may allow tumor cells to gain access to growth factors sequestered within the ECM (Ruoslathi, 1989; Ruoslahti and Yamaguchi, 1991). The combined effects on tumor cell motility and adhesion of CD44H-hyaluronate interaction may help explain the high degree of aggressiveness (Sy et al., 1991, Knudson et al., 1989, Horst et al., 1990) displayed by tumors expressing elevated levels of CD44H.

Anti-CD44 mAbs have been shown to block attachment of CD44H-expressing cells to hyaluronate (Lesley et al., 1990; Miyake et al., 1990). In the present study, we used anti-CD44 mAbs and soluble CD44 Rg in an attempt to inhibit migration of CD44H-expressing melanoma cells. Migration of CD44H transfectants was observed to be inhibited by the anti-CD44 mAb KM201 which prevents CD44-hyaluronate interaction (Miyake et al., 1990). In addition, our results show that soluble CD44, which reacts with hyaluronate in vitro as well as in vivo (Aruffo et al., 1990), blocks CD44H-transfector migration on hyaluronate-coated surfaces, probably by disrupting cell surface CD44-hyaluronate interaction. Taken together, these observations add further support to the notion that migration on hyaluronate is promoted by the expression of CD44H and suggest that soluble CD44 may provide a valuable tool to study tumor cell motility and invasiveness.

Antibodies to CD44 have been shown to trigger a variety
of cellular responses, including T cell activation (Shimizu et al., 1989; Denning et al., 1990) and monocyte cytokine secretion (Webb et al., 1990). These effects may be explained by signal transduction pathways involving cytoskeletal proteins with which the cytoplasmic domain of CD44 has been suggested to be associated (Jacobson et al., 1984a,b; Kalomiris and Bourguignon, 1989; Lacy and Underhill, 1987; Tarone et al., 1984). Association with the cytoskeleton also suggests that the cytoplasmic domain of CD44 may be primarily required for promotion of cell motility. This hypothesis was verified by observing that melanoma cells transfected with CD44H lacking the cytoplasmic domain fail to display enhanced motility on hyaluronate substrates. However, attachment of these cells to hyaluronate remained significant, although slightly lower than that of transfectants expressing wild-type CD44H, consistent with recent findings of Lesley et al. (1992). These observations suggest that the cytoplasmic domain of CD44H is required for cell motility but not for attachment to substrate and may have important physiologic implications. A recent study has shown that activation of macrophages results in dissociation of the cytoplasmic tail of CD44 from the cytoskeleton (Camp et al., 1991). Macrophages provide a good example of cells which may be motile or sessile depending on the function they are required to perform. Dissociation of CD44 from the cytoskeleton may result in a reduction or loss of cellular motility while allowing retention of significant substrate-binding capacity. It is attractive to speculate that invading tumor cells having penetrated host tissue, may take advantage of a similar mechanism to become immobilized and form new colonies. By selectively providing cells with adhesion and migration capability, CD44H may play a pivotal role in regulating cell trafficking in tissues in both physiologic and pathologic settings.

We thank Terri Anderson for culturing transfectant cell lines and evaluating CD44 expression. This work was supported by National Institutes of Health grants GM-43257 and CA-55735 (I. Stamenkovic) and CA-45587 (H.R. Byers). L. Thomas was supported in part by "La Bourse Marc Chapalit de Recherche Dermatologique" (France).

Received for publication 17 February 1992 and in revised form 11 May 1992.

References

Arufo, A., I. Stamenkovic, M. Melnick, C. B. Underhill, and B. Seed. 1990. CD44 is the principal cell surface receptor for hyaluronate. Cell. 61:1303-1313.

Arufo, A., W. Kolamus, G. Walz, P. Fredman, and B. Seed. 1991. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 67:35-44.

Brown, T. A., T. Bouchard, T. St. John, E. Wayne, and W. G. Carter. 1991. A novel variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 65:13-24.

Hallgren, R., B. Gertbin, and G. Tufveson. 1990. Hyaluronic acid accumulation is associated with inverting rat kidney graft. J. Exp. Med. 173:2063-2076.

Hart, I. R., M. Birch, and J. F. Marshall. 1991. Cell adhesion receptor expression during melanoma progression and metastasis. Cancer Metastasis Rev. 10:115-128.

Hoffmann, M., W. Rudy, M. Zoller, C. Tolg, H. Ponta, P. Herrlich, and U. Gunthert. 1991. CD44 splice variants confer metastatic behaviour in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res. 51:5292-5297.

Hori, C., I. L. M. Meijer, T. Radaszkiewicz, G. J. Ossekoote, J. H. M. Van Krieken, and S. Pals. 1990. Adhesion molecules in the prognosis of diffuse large cell lymphoma: expression of a lymphocyte homing receptor (CD44), LA-1 (CD11a/18), and ICAM-1 (CD54). Leukemia. 4:595-599.

Jacobson, K., D. O'Dell, B. Holthied, T. L. Murphy, and J. T. August. 1984a. Redistribution of a major cell surface glycoprotein during cell movement. J. Cell Biol. 99:1613-1623.

Jacobson, K., D. O'Dell, and J. T. August. 1984b. Lateral diffusion of an 80,000-dalton glycoprotein in the plasma membrane of murine fibroblasts: relationships to cell structure and function. J. Cell Biol. 99:1624-1633.

Jalkanen, S., R. F. Bargatze, L. R. Herron, and E. C. Butcher. 1986. Homing receptors and the control of lymphocyte migration. Immunol. Rev. 91:39-60.

Jalkanen, S., R. F. Bargatze, and E. C. Butcher. 1987. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kd glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J. Cell Biol. 103:883-900.

Kalomiris, E. L., and L. Y. W. Bourguignon. 1989. Lymphoma protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85-tyrakiny binding. J. Cell Biol. 6.4:311-3119.

Knudson, C. B., and W. Knudson. 1990. Similar epithelial-stromal interactions in the regulation of hyaluronic production during limb morphogenesis and tumor invasion. Cancer Lett. 52:113-122.

Knudson, C. B., I. Stamenkovic, and B. Toole. 1984. Interactions between human tumor cells and fibroblasts stimulate hyaluronic synthesis. Proc. Natl. Acad. Sci. USA. 81:6767-6771.

Knudson, C. B., I. Stamenkovic, X. Qi, L. R. Nemec, and B. Toole. 1989. The role and regulation of tumor-associated hyaluronan. The biology of hyaluronan. Ciba Found. Symp. 143:159-169.

Lacy, B. E., and C. B. Underhill. 1987. This hyaluronate receptor is associated with actin filaments. J. Cell Biol. 105:1395-1404.

Lesley, J., R. Schulte, and R. Hyman. 1990. Binding of hyaluronic acid to lymphoid cell lines is inhibited by monoclonal antibodies against Fgp-1. Exp. Cell Res. 187:224-233.

Lesley, J., Q. He, K. Miyake, A. Hamann, R. Hyman, and P. W. Kincaide. 1992. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J. Exp. Med. 175:257-266.

Lindahl, U., and M. Höök. 1978. Glycosaminoglycans and their binding to biological macromolecules. Annu. Rev. Biochem. 47:385-417.

Miyake, K., C. B. Underhill, J. Lesley, and P. W. Kincaide. 1990. Hyaluronic acid function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. Exp. Med. 172:69-75.

Quackenbush, E. J., S. Verr, A. Greaves, and M. Letarte. 1990. Confirmation by peptide sequence and co-expression on various cell types of the identity of CD44 and P85 glycoproteins. Mol. Immunol. 27:974-955.

Ruoslahti, E. 1989. Proteoglycans in cell regulation. J. Cell Biol. 105:1369-1373.

Ruoslahti, E., and Y. Yamaguchi. 1991. Proteoglycans as modulators of growth factor activities. Cell. 64:857-869.

Seed, B. 1987. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homolog to its receptor CD2. Nature (Lond.). 329:840-842.

Shimizu, Y., G. A. van Seventer, R. Sirragian, L. Wahl, and S. Shaw, 1989. Dual role of the CD44 molecule in T cell adhesion and activation. J. Immunol. 143:2457-2463.

Stamenkovic, I., M. Amiot, J. M. Pesando, and B. Seed. 1989. A lymphocyte homing molecule implicated in lymphocyte and homing is a member of the cartilage link protein family. Cell. 56:1057-1062.

Stamenkovic, I., A. Aruffo, M. Amiot, and B. Seed. 1991. The hematopoietic and endothelial forms of CD44 are distinct polypeptides with different adhesive potentials for hyaluronate bearing cells. EMBO (Eur. Mol. Biol. Organ.) J. 10:343-348.

St. John, T., J. Meyer, R. Idzerda, and W. M. Gallatin. 1990. Expression of CD44 confers a new adhesive phenotype on transfected cells. Cell. 64:957-962.

Sy, M. S., Y. J. Guo, and I. Stamenkovic. 1991. Distinct effects of two CD44 isoforms on tumor growth in vivo. J. Exp. Med. 174:859-866.

Tarone, G., R. Ferracini, G. Galetto, and P. Comoglio. 1984. A cell surface protein confers metastatic potential to rat carcinoma cells. Cell. 36:609-612.

Toole, B. P. 1981. Glycosaminoglycans in morphogenesis. In Cell Biology of laminin promotes locomotion of myoblasts over extracellular matrix. J. Cell Biol. 109:799-809.
Toole, B. P., C. Biswas, and J. Gross. 1979. Hyaluronate and invasiveness of the rabbit V2 carcinoma. *Proc. Natl. Acad. Sci. USA.* 76:6299-6303.

Turley, E. A., and M. Tretiak. 1985. Glycosaminoglycan production by marine melanoma variants in vivo and in vitro. *Cancer Res.* 45:5096-5105.

Turley, E. A., L. Austen, K. Vandeligt, and C. Clary. 1991. Hyaluronan and cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. *J. Cell Biol.* 112:1041-1047.

Watson, S. R., Y. Imai, C. Fennie, J. S. Geoffroy, S. D. Rosen, and L. A. Lasky. 1990. A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules. *J. Cell Biol.* 110:2221-2229.

Weigel, P. H., S. I. Frost, R. D. LeBoeuf, and C. T. McGary. 1989. The specific interaction between fibrinogen and hyaluronan: possible consequences in haemostasis, inflammation, and wound healing. *Ciba Found. Symp.* 143:248-264.

West, D. C., and S. Kumar. 1989. Hyaluronan and angiogenesis. *Ciba Found. Symp.* 143:187-207.