Digital medicine is a novel and rapidly evolving field which has the potential to revolutionize the way in which healthcare is delivered, especially amongst adolescents and young adults. In order to assess the efficacy of novel medical devices, clinicians and researchers often turn to the literature for guidance. Randomized control trials and the systematic reviews and meta-analyses that they inform are considered to be at the top of the evidence hierarchy. While they are excellent tools to identify and to summarize the best available evidence to answer a specific research question, they are poorly equipped to provide a more expansive understanding of the body of relevant literature in a timely manner. In this letter we discuss the utility of the scoping review, an underutilized style of academic writing designed to map key concepts in a body of literature. This method is ideal when reporting on the fast-paced field of digital medicine, as it allows for rapid synthesis of the available literature.

Katherine E. Lewinter1, Sharon M. Hudson2, Lynn Kysh3, Marielena Lara4, Cecily L. Betz2 and Juan Espinoza2✉

Digital health is a rapidly developing field which is positioned to transform the manner in which healthcare is delivered, especially amongst adolescents and young adults. In order to assess the efficacy of novel medical devices, clinicians and researchers often turn to the literature for guidance. Randomized control trials and the systematic reviews and meta-analyses that they inform are considered to be at the top of the evidence hierarchy. While they are excellent tools to identify and to summarize the best available evidence to answer a specific research question, they are poorly equipped to provide a more expansive understanding of the body of relevant literature in a timely manner. In this letter we discuss the utility of the scoping review, an underutilized style of academic writing designed to map key concepts in a body of literature. This method is ideal when reporting on the fast-paced field of digital medicine, as it allows for rapid synthesis of the available literature.

npj Digital Medicine (2020) 3:158; https://doi.org/10.1038/s41746-020-00368-2

To illustrate, an RCT funded by a R01 grant takes ~3–5 years to plan and implement. Thus, by the time it is published and subsequently included in a SRMA, 10 or more years may have passed since the original research question was posed. In that same period of time, most digital technologies will have likely undergone one or possibly two significant revolutions as hardware and software are often upgraded on a yearly basis9. The findings of a 10-year-old study may be irrelevant to the currently available technology and clinical practice. Thus, the natural academic and funding cycle that governs the timelines of RCTs and SRMAs may lead to findings reported in manuscripts that are obsolete even before they are published.

Well-designed RCTs and SRMAs rely on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), Methodological Expectations of Campbell Collaboration Intervention Reviews (MECIR), Methodological Expectations of Cochrane Intervention Reviews (MECIR), and other protocols that are highly structured and prescribed in order to identify and to summarize the best quality evidence for a specific research question10. This necessarily strict and rigorous process limits SRMAs from providing a more expansive understanding of the body of relevant literature, thereby hindering timely contributions to the state of the science which are needed for cutting-edge application. SRMAs are also not designed to provide insights regarding clinical questions that cannot be easily addressed by RCTs or other more rigorously controlled studies. Entire segments of the literature which contribute to the development of a field of inquiry, such as cross-sectional and qualitative designed investigations, are not included as they are deemed less rigorous.

This plight of outdated and potentially irrelevant publications pertaining to digital medicine and technology is even more complicated in pediatrics, a field which is grossly underfunded as a whole. According to the 2015 US Census Bureau Data, individuals <18 years of age represented nearly one-quarter of the US population. However, of the $30 billion NIH budget that year, the total NIH pediatric research portfolio was only $3.6
Scoping reviews are an attractive scientific evidence in pediatric topics. In particular, scoping reviews can be a better tool than SRMAs for understanding the range and level of downstream effect is the publication of pediatric systematic reviews, fewer high-quality RCTs, and even fewer SRMAs. The downstream effect is the publication of pediatric systematic reviews which are often only able to identify a handful of studies, leading to the ever-too-common statement “there is insufficient evidence to form a conclusion”.14

Our Pediatric Asthma and Digital Health Research Group, which includes a research librarian, conducted searches on PubMed consisting of Medical Subject Headings (MeSH) terms and Title/Abstract keywords that combined the concept of pediatrics with systematic review, meta-analysis, or scoping reviews (Table 1). Variations in spelling and pluralization were included in order to effectively create a collection of citations that represent the publication of these methods in medicine. Our exploratory analysis showed that as of 2020, 24% of all published SRMAs were in pediatrics. Similarly, 25% of published scoping reviews addressed pediatric topics. Overall, SRMAs outnumber scoping reviews by a ratio of 57:1. Within pediatric topics, scoping reviews are outnumbered by SRMAs by a similar proportion, while being an order of magnitude fewer than adult studies. Taken together, these numbers demonstrate the significant underrepresentation of a pediatric focus among all SRMAs and scoping reviews.

The dramatic increase in the number of scoping reviews in medicine (Fig. 1) is likely secondary to their utility and timeliness. Scoping reviews are an attractive scientific alternative and may be a better tool than SRMAs for understanding the range and level of evidence in pediatric topics. In particular, scoping reviews can be very useful in the assessment of digital health as the academic and funding life cycles of RCTs and SRMAs limit their ability to address the need for timely synthesis of the evidence to allow for an impact on such a quickly evolving field. For example, a recent scoping review of digital health apps in inflammatory bowel disease by Yin et al provides a systematic overview of apps that have been clinically evaluated, a summary of the evidence from each study, key features, and emerging themes and trends in the field. The more inclusive nature of scoping reviews allowed the authors to broadly group apps into categories (education, monitoring, treatment, follow-up, and patient satisfaction), to determine how they related to each other, and to make observations and recommendations about gaps in knowledge and future opportunities for research. Despite the utility of scoping reviews, a negative bias exists as they are thought to be less rigorous and less structured than traditional SRMA. The implementation of standardized reporting guidelines for scoping reviews is certainly imperative to ensuring consistency in the literature. The high-impact pediatric journals (Pediatrics, JAMA Pediatrics, Journal of Pediatrics, Child Development, The Journal of Child Psychology and Psychiatry) do not include scoping reviews as article submission options in their author guidelines, even while specifically identifying systematic reviews, meta-analyses, and narrative reviews as acceptable formats. This academic bias is likely to make scoping reviews less attractive projects for pediatric researchers, resulting in missed opportunities to meaningfully contribute to the literature and to advance pediatric research. A well-designed scoping review could potentially offer crucial insight into the implementation of new technological advances designed to monitor various medical conditions, including the impact that these devices have on patient education, quality of life, integration of patient data into the electronic health record, and other pertinent health outcomes. In the case of digital health, scoping reviews will become absolutely necessary to better understand the development and implementation of new devices at an appropriate pace. This is perhaps most pressing in pediatrics, a population who is so dependent on technology. We hope that these comments call attention to this important issue.

Table 1. PubMed search strategies.

| Search name                     | Search syntax                                                                 | N of records |
|---------------------------------|-------------------------------------------------------------------------------|--------------|
| All systematic reviews and meta-analyses | ("Systematic Review" [Publication Type] OR (systematic[sb]) OR Meta-Analysis[Publication Type]) OR "systematic review"[Title] OR "systematic reviews"[Title] OR meta-analysis[Title] OR meta-analyses[Title] OR PRISMA[Title]) | 239,473      |
| All scoping reviews             | "scoping review"[Title]                                                      | 4187         |
| Pediatric systematic reviews and meta-analyses | ("Infant"[Mesh] OR "Child"[Mesh] OR "Adolescent"[Mesh] OR "Minors"[Mesh]) OR "Pediatrics"[Mesh] OR "Pediatricians"[Mesh] OR "Hospitals, Pediatric"[Mesh] OR neonat* OR newborn OR newborns OR infant* OR baby OR babies OR nursery OR nurseries OR toddler OR toddlers OR preschool* OR pre-school* OR kindergarten* OR kid OR kids OR juvenile OR juveniles OR youth OR youths OR youngster OR youngsters OR girl OR girls OR boy OR boys OR pre-school OR pre-adolescence* OR pre-adolescent* OR pre-teen OR adolescent* OR teen* OR pediatric*) AND ("Systematic Review" [Publication Type] OR (systematic[sb]) OR Meta-Analysis[Publication Type]) OR "systematic review"[Title] OR "systematic reviews"[Title] OR meta-analysis[Title] OR meta-analyses[Title] OR PRISMA[Title]) | 57,282       |
| Pediatric scoping reviews       | ("Infant"[Mesh] OR "Child"[Mesh] OR "Adolescent"[Mesh] OR "Minors"[Mesh]) OR "Pediatrics"[Mesh] OR "Pediatricians"[Mesh] OR "Hospitals, Pediatric"[Mesh] OR neonat* OR newborn OR newborns OR infant* OR baby OR babies OR nursery OR nurseries OR toddler OR toddlers OR preschool* OR pre-school* OR kindergarten* OR kid OR kids OR juvenile OR juveniles OR youth OR youths OR youngster OR youngsters OR girl OR girls OR boy OR boys OR pre-school OR pre-adolescence* OR pre-adolescent* OR pre-teen OR adolescent* OR teen* OR pediatric*) AND "scoping review"[Title] | 1031         |
DATA AVAILABILITY

This manuscript is a commentary and not an original study. The data discussed herein is freely available from PubMed, but may also be requested from the corresponding author.

Received: 28 April 2020; Accepted: 16 November 2020;

REFERENCES

1. Elenko, E., Underwood, L. & Zohar, D. Defining digital medicine. Nat. Biotechnol. 33, 456–461 (2015).
2. Badawy, S. M. et al. Patient-centered eHealth interventions for children, adolescents, and adults with sickle cell disease: systematic review. J. Med. Internet Res. 20, e10940 (2018).
3. Ramsey, W. A. et al. eHealth and mHealth interventions in pediatric cancer: a systematic review of interventions across the cancer continuum. Psychooncology 29, 17–37 (2020).
4. Zhao, J., Freeman, B. & Li, M. Can mobile phone apps influence people’s health behavior change? An evidence review. J. Med. Internet Res. 18, e287 (2016).
5. Rideout, V. J. & Robb, M. B. The Common Sense Census: Media Use by Tweens and Teens. https://www.commonsensemedia.org/sites/default/files/uploads/research/2019-census-8-to-18-key-findings-updated.pdf. (Common Sense Media, 2019).
6. Radovic, A. & Badawy, S. M. Technology use for adolescent health and wellness. Pediatrics 145, S186–S194 (2020).
7. Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004).
8. Daudt, H. M., van Mossel, C. & Scott, S. J. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. BMC Med. Res. Methodol. 13, 48 (2013).
9. Orben, A. Teenagers screens and social media: a narrative review of reviews and key studies, Soc. Psychiatry Psychiatr. Epidemiol. 55, 407–414 (2020).
10. Liberati, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6, e1000100 (2009).
11. Gitterman, D. P., Langford, W. S. & Hay, W. W. Jr. The fragile state of the National Institutes of Health Pediatric Research Portfolio, 1992–2015: doing more with less? JAMA Pediatr. 172, 287–293 (2018).
12. Hay, W. W. Jr. et al. Child health research funding and policy: imperatives and investments for a healthier world. Pediatrics 125, 1259–1265 (2010).
13. Gitterman, D. P., Langford, W. S. & Hay, W. W. Jr. The uncertain fate of the National Institutes of Health (NIH) pediatric research portfolio. Pediatr. Res. 84, 328–332 (2018).
14. Bow, S. et al. A descriptive analysis of child-relevant systematic reviews in the Cochrane Database of Systematic Reviews. BMC Pediatr. 10, 34 (2010).
15. Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32 (2005).
16. Pham, M. T. et al. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res. Synth. Methods 5, 371–385 (2014).
17. Yin, A. L., Hachuel, D., Pollak, J. P., Scherl, E. J. & Estrin, D. Digital health apps in the clinical care of inflammatory Bowel disease: scoping review. J. Med. Internet Res. 21, e14630 (2019).
18. Brien, S. E., Lorenzetti, D. L., Lewis, S., Kennedy, J. & Ghali, W. A. Overview of a formal scoping review on health system report cards. Implement Sci. 5, 2 (2010).
19. Dinh-Le, C., Chuang, R., Chokshi, S. & Mann, D. Wearable health technology and electronic health record integration: scoping review and future directions. JMIR Mhealth Uhealth 7, e12861 (2019).

AUTHOR CONTRIBUTIONS

K.L. was responsible for drafting the manuscript with input from all authors and performing additional literature review. L.K. performed the main literature search and generated the data and content for Table 1. S.H., C.B., and M.L. contributed to refining the concepts presented, structuring the manuscript, and providing edits and insights. J.E. conceived the project and main conceptual ideas, generated the initial outline, and performed the data analysis used to generate Fig. 1. All authors contributed to analysis, writing, and editing.

COMPETING INTERESTS

The authors declare no competing interests.
ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to J.E.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020