Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion

Mandeep S. Singh1,*, Jasmin Balmer1,*, Alun R. Barnard1, Sher A. Aslam1,2, Daniela Moralli3, Catherine M. Green3, Alona Barnea-Cramer1, Isabel Duncan1 & Robert E. MacLaren1,2,4

Photoreceptor transplantation is a potential future treatment for blindness caused by retinal degeneration. Photoreceptor transplantation restores visual responses in end-stage retinal degeneration, but has also been assessed in non-degenerate retinas. In the latter scenario, subretinal transplantation places donor cells beneath an intact host outer nuclear layer (ONL) containing host photoreceptors. Here we show that host cells are labelled with the donor marker through cytoplasmic transfer—94 ± 4.1% of apparently well-integrated donor cells containing both donor and host markers. We detect the occurrence of Cre-Lox recombination between donor and host photoreceptors, and we confirm the findings through FISH analysis of X and Y chromosomes in sex-discordant transplants. We do not find evidence of nuclear fusion of donor and host cells. The artefactual appearance of integrated donor cells in host retinas following transplantation is most commonly due to material transfer from donor cells. Understanding this novel mechanism may provide alternate therapeutic strategies at earlier stages of retinal degeneration.
Studies using stem cell-derived or primary donor cells have shown that transplanting photoreceptors into the degenerate retina improves vision in a variety of animal models of human inherited retinal degenerations (IRD)\(^1\)–\(^9\). When the host outer nuclear layer (ONL) has totally degenerated, exogenous photoreceptor replacement results in the de novo regeneration of this layer and the restoration of visual function\(^6\). The results of studies in which primary donor cells were transplanted into hosts that had limited degeneration\(^5\), however, made us question whether the appearance of apparently perfectly integrated fluorescently labelled photoreceptors could actually be the host cells, labelled by an artefact of cell fusion. Since there is no known mechanism for photoreceptor cells to ‘migrate’ into the outer retina, we hypothesized that stable contact might allow fluorescent subretinal cells to label host photoreceptors retrogradely—similar to the known fusion that occurs between photoreceptor outer segment discs and the retinal pigment epithelium. We also considered the evidence that after transplantation of primary or stem cell-derived photoreceptor precursors, fluorescence-tagged cells detected in the host outer nuclear layer (ONL) were reported to ‘adopt the morphology’ of the host cells\(^3\)–\(^5\)–\(^8\).

Here we show that following photoreceptor transplantation, host photoreceptor cells take up cytoplasmic material from donor photoreceptor precursors, and vice-versa. We found cytoplasmic fusion to be a common event, whereas there was no evidence of fusion between donor and host photoreceptor nuclei. The presence of donor-derived fluorescence in the host ONL could be interpreted as evidence of donor cell migration into the host retina, however our data indicate that in the majority of cases, donor cell nuclei remain in the subretinal space and donor-derived cytoplasm is transferred into host photoreceptor cells. These data call for a re-evaluation of previous data on photoreceptor transplantation and highlight a novel regenerative mechanism which could be used as therapy for blindness due to retinal degenerative diseases.

Results

Co-localization of donor and host cytoplasmic markers. To study the occurrence of intercellular transfer of components between donor and host photoreceptor cells, we transplanted FACS-sorted Nrl-GFP donor photoreceptor precursors into the subretinal space of adult host mice in which DsRed was expressed ubiquitously (CAG-DsRed)\(^9\). In the donor, green fluorescent protein (GFP) expression is restricted to post-mitotic rod precursor cells\(^5\)–\(^10\), so any GFP detected in the host ONL following transplantation would have originated from donor rods. Two weeks after transplantation, we detected extensive cytoplasmic co-localization of DsRed and GFP in cells located in the host ONL (Fig. 1a–j). We found that 93.8 ± 4.1% (mean ± s.e.m., \(n = 371\) cells from 3 eyes) of morphologically normal GFP + photoreceptor cells in the host retina also co-localized DsRed. To confirm this observation through quantitative analysis, we computed the Mander’s overlap coefficient (MOC)\(^1\)–\(^1\) to measure the co-distribution of GFP and DsRed in perinuclear photoreceptor cytoplasm in the host ONL. We found a median MOC of 0.9 (range, 0.5–1, \(n = 230\) cells in three transplanted eyes; Fig. 1k–m). As further confirmation, we performed gender-mismatched transplants of P3 female Nrl-GFP donor photoreceptors into the subretinal space of adult wild-type male hosts. Using X and Y chromosome-specific fluorescent in situ hybridization (FISH) probes, we found cytoplasmic GFP, and Y-positive nuclei, in the same cells located in the host outer nuclear layer (Fig. 2a,b). Thus photoreceptor cells in the ONL that are indisputably those of the male host (Y-positive) also contain a cytoplasmic marker from the donor (GFP). In this experiment, we did not detect polyploidy. Hence we concluded that the fusion event was cytoplasmic rather than nuclear, because the donor cell nucleus remained in the subretinal space.

Fusion with cells other than rod photoreceptors. We next explored the question of whether donor cells other than developing rods could undergo fusion with mature host photoreceptor cells. Donor photoreceptor precursors were obtained by dissociating retinas from CAG-DsRed mice that were also homozygous for the rd1 mutation that were aged one to three postnatal days (P1–3). These were transplanted into the subretinal space of adult Nrl-GFP mice. The rd1 mouse has a rapid degeneration due to deficiency of beta-6 phosphodiesterase (PDE) in which rods begin to degenerate at P8 and are completely lost by P20 (refs 12,13). We hypothesized that donor rods would not be detectable in the host ONL if transplanted when aged P3 and assayed histologically three weeks later, that is, at P24 donor cell age. Surprisingly, we detected DsRed + photoreceptor cells with normal morphology, co-localizing GFP, in the host ONL (Fig. 3a–d) 3 weeks following transplantation. As DsRed was expressed in all other donor cell types (cone photoreceptors, Muller glia or other retinal cells), these could have been the source of DsRed protein that was seen in the host ONL. These findings could be explained by mature host rod photoreceptors that had fused with donor cells other than rod precursors, resulting in cytoplasmic transfer of proteins expressed exclusively by the donor cells. Alternatively, it is also possible that donor rod precursors could have been rescued from degeneration by the cytoplasmic transfer of beta-6 PDE in the reverse direction of the DsRed—from the host rod outer segments into the maturing rd1 mouse donor cells.

Assessment of bi-directional cytoplasmic transfer. To understand better the directional nature of cell fusion we explored the possibility of a Cre-lox recombination event between donor and host photoreceptors that was dependent on the transfer of protein in the opposite direction, from host to donor. We therefore generated donor mice by crossing the Ai9 Cre reporter strain (CAG-LSL-tdTomato) with the Nrl-GFP line. The progeny from this cross have GFP-positive donor rod photoreceptors containing a conditional tdTomato Cre reporter allele. Hence, the exposure of these cells to Cre recombinase would lead to tdTomato reporter expression in addition to GFP. We transplanted postnatal day 7 Ai9, Nrl-GFP donor cells into Cx-Rce host mice in which Cre expression was controlled by the cone–rod homeobox gene promoter and hence was restricted to host photoreceptor cells. We detected the occurrence of dual labelling with GFP and tdTomato (1.3% of GFP + cells counted) in the host ONL as soon as 3 days post transplantation (Fig. 3e–h). This outcome relies on two steps; first the transfer of Cre recombinase from host to donor cells to activate tdTomato expression and second, the transfer back of both tdTomato and GFP from donor into host cell (Fig. 3e–h). However the number of the GFP + host cells that also contained tdTomato was small, suggesting that the fusion event may not be stable. This is because an undetermined time would be required for the Cre-lox recombination event, whereas the GFP transfer could occur almost spontaneously after cytoplasmic fusion. It cannot, however, be excluded that this occurred by two successive fusion events, with Cre recombinase being taken up from one photoreceptor and subsequent fusion and retrograde labelling of another.

The current data indicate that when photoreceptors are transplanted into the subretinal space and come into contact with the host ONL, cell fusion between donor and host facilitates intercellular exchange of cytoplasmic components. In this context, host photoreceptors may become labelled with the donor fluorescent marker. This can give rise to an artefactual
Figure 1 | The majority of putative donor cells (GFP positive) in the host outer nuclear layer also contain a fluorescent marker that is present in the host (DsRed). Postnatal day 1–3 (P1–3) Nrl-GFP donor photoreceptor precursors were transplanted into the subretinal space of adult CAG-DsRed mice without retinal degeneration and after 3 weeks, numerous GFP-positive photoreceptors were found in the host outer nuclear layer. (a) Shows merged GFP, DsRed and DAPI channels, (b) GFP only and (c) DsRed only. GFP and DsRed were co-distributed in cytoplasm in the (d) rod spherule synapse, (e–h) perinuclear cytoplasm and (i) inner segments. (j) By comparison, the majority of donor photoreceptors cells in the subretinal space contained GFP but were negative for DsRed. (k) The mean Mander’s overlap coefficient (MOC) of DsRed and GFP in cells located in the ONL was 0.9. The horizontal lines indicate the medians, the boxes extend from the 25th to 75th percentiles and the whiskers indicate the minimum and maximum values. (l) A GFP + cell located outside the host outer nuclear layer (ONL) with low DsRed and GFP co-localization (MOC = 0.059). (m) A cell located in the host ONL with a high degree of co-localization (MOC = 0.96).
appearance of donor photoreceptor precursor cells that have ‘integrated’ into the host retina and have adopted the morphology of mature rod photoreceptors. Our data indicate that this may be a false conclusion in the majority of cases.

Discussion

The observed mechanism of cell fusion in the absence of polyploidy may be explained by the merger of two separate lipid bilayer plasma membranes, resulting in the transfer of cytoplasmic contents between the fused cells. Our data support both homotypic (fusion between donor and host rods) and heterotypic cell fusion (between host rods and other donor retinal cells). We cannot currently rule out other mechanisms that might lead to fusion such as via membrane nanotubes, endocytosis or gap junctions. Cell fusion, as a phenomenon that is well described and commonly reported in development, homeostasis, disease and regeneration, is a likely explanation of the mechanism observed here. Cell fusion is known to influence the cell cycle and so this process may increase the risk of neoplasm following photoreceptor transplantation. With further understanding of cell fusion, this process may be harnessed as a therapeutic reprogramming mechanism in future stem cell-based approaches in retinal regeneration and repair.

Methods

Mouse strains. *Tg(Nrl-EGFP)* mice (herein *Nrl-GFP*) were a kind gift of A. Swaroop, Bethesda, MD, USA; mice that were homozygous for the *rd1* mutation (*Tg(CAG-DsRed*MST)1Nagy, Pde6brd1/rd1*), Jackson Laboratories) were used for experiments and also crossed to *C57BL/6* (Jackson Laboratories) wild-type mice to generate heterozygous *DsRed* animals that had a non-degenerate retina. *Gt(ROSA)26Sortm9(CAG-tdTomato)Hze* mice (Ai9, Jackson Laboratories) were obtained locally (Ed Mann, University of Oxford, UK) and crossed to *Tg(Nrl-EGFP)* to obtain compound heterozygous pups for the Cre-loxP experiment. The *Tg(Crx-Cre)1Tfur* (ref. 22) mice were obtained from V. K. Yadav (Wellcome Trust Sanger Institute, Cambridge, UK) with the approval of the originator (T.Furukawa, Osaka University, Japan). This line provided hosts for the Cre-loxP experiments and was maintained by crossing *Tg(Crx-Cre)1Tfur* heterozygotes to *C5BL/6* wild-type animals. The presence of the *Crx-Cre* transgene was identified by genotyping of ear biopsy tissue. The animals were maintained in the animal facility at the University of Oxford. All animal experiments were conducted according to the UK Home Office guidelines on the Animal (Scientific Procedures) Act of 1986 and were approved by the University of Oxford Animal Ethics Committee.

Retinal dissociation and FACS. The eyes were enucleated from postnatal day 4–7 mice and transferred to ice-cold 1× HBSS. The eyes were dissected and retinal
dissociation was performed using the Papain Dissociation System (Worthington
Biochemical Corporation, Lakewood, NJ, USA) according to the manufacturers’
instructions. The cells were re-suspended in 1× PBS and placed in a 37°C
incubator in hypotonic sterile saline (PBS) at a concentration of 20 × 10^6 cells
ml⁻¹. Propidium iodide (1 µg ml⁻¹, Sigma-Aldrich) was added before FACS sorting
to exclude dead cells. GFP-positive photoreceptors were sorted using the Beckman
Coulter Legacy MoFlo MoLS High Speed Cell Sorter or Beckman Coulter MoFlo XPD cell sorter. Different emission filters and lasers were used for GFP (529/28 emission filter, 488 laser) and pro-
pidium iodide (625/26 filter; 561 laser). The sorted cells were collected in EBS
containing 10% fetal bovine serum and kept on ice. The cells were spun at 100 RCF
for 20 min and the cell pellet was resuspended at a concentration of 200,000
cells μl⁻¹ in EBS containing 0.005% DNase I and kept on ice before
transplantation.

Transplantation and tissue collection. Host mice (5–8 weeks old) were
anaesthetized using intraperitoneal ketamine hydrochloride (dose of 80 mg kg⁻¹
body weight) and Xylazine (dose of 10 mg kg⁻¹). Additional local anaesthesia was
provided by proxymetacaine hydrochloride eye drops (0.5% w/v minims, Bausch &
Lomb). The pupils were dilated using tropicamide (1% w/v minims, Bausch &
Lomb) and phylephrine hydrochloride (2.5% w/v minims, Bausch & Lomb). The
cells were transplanted subretinally using a Hamilton syringe and a 34-gauge
needle. The animals were recovered using Antisedan (Atipamezole, 2 mg kg⁻¹
bodyweight). At up to 3 weeks post transplantation, the animals were killed and the
eyes were enucleated. Following removal of the lens, the eyes were fixed for 1 h
in 4% paraformaldehyde in PBS. The tissue was processed as described by
cryopreservation in sucrose in embedding in Tissue-Tek OCT Compound
(Sakura, Alphen aan den Rijn, The Netherlands). Cryosections were cut (18 μm)
using a Leica Cryostat and dried before storing at −80 °C.

FISH analysis. Mouse bacterial artificial chromosomes (BACs) specific for the X
(RP23-119M14 and RP23-168A19) or Y chromosome (BMQ 367K12, BMQ
451F08 and BM5Y3113) were used as FISH probes, and labelled by nick
translation (Abbot Molecular) according to the manufacturer’s instructions,
incorporating digoxigenin-11-dUTP (Roche) in the X probes and biotin-16-dUTP
(Roche) for the Y probes. To suppress the hybridization of mouse repetitive DNA
sequences, unlabeled mouse C57bl6 DNA (ThermoFisher Scientific) was added.
Cryosections of retinas derived from sex-mismatched transplantations of
GFP-positive donor cells in wild-type hosts were permeabilized in 0.5% Triton-X
in PBS, blocked in 4% BSA in PBS-T (0.025% Tween-20) for 10 min at room
temperature) and incubated in GFP booster Atto-594 (Chromotek, Germany)
diluted 1:1000 in 4% BSA in PBS-T. Following the use of the Avidin-Cy5 (Y)
633/650–700). Thin (0.8 μm) single confocal slices were used for
hybridization, the slides were washed in 0.1% Tween-20, 4% BSA, the slides were incubated for 30 min at 37
°C in a humidified chamber. After
hybridization, the slides were washed in 0.1× SSC at 60 °C. After a blocking step
in 4% paraformaldehyde in PBS. The tissue was processed as described by
cryopreservation in sucrose in embedding in Tissue-Tek OCT Compound
(Sakura, Alphen aan den Rijn, The Netherlands). Cryosections were cut (18 μm)
using a Leica Cryostat and dried before storing at −80 °C.

Co-localization analysis. Confocal microscopy was performed as described above.
Thirty-four confocal slices (3–10 EGFP þ host photoreceptors per image) were
taken from three DsRed eyes that were transplanted with FACS-sorted MyoD
EGFP donor cells. The degree of co-localization of EGFP and DsRed was measured using the co-localization analysis
programme in the ZEN software 2010. Mander’s
overlap coefficients (MOC) were computed for EGFP þ cells within the host ONL
and from a control experiment, that is, MOC = 0 (red cone arrestin staining on sections
above Tg(Nrl-L-EGFP) mice. The P values were determined by unpaired
Student’s t-test.

Data availability. The authors declare that all data supporting the findings of
this study are available within the article and all relevant data are available from the
authors, on request.

References

1. Bartsch, U. et al. Retinal cells integrate into the outer nuclear layer and
differentiate into mature photoreceptors after retinal transplantation into
adult mice. Exp. Eye Res. 86, 691–700 (2008).

2. Kwan, A. S. L., Wang, S. L., Wang, S. & Lund, R. D. Photoreceptor layer reconstruction in
a rodent model of retinal degeneration. Exp. Neurol. 159, 21–33 (1999).

3. Lamba, D. A., Gust, J. & Beh, T. A. Transplantation of human embryonic stem
cell-derived photoreceptors restores some visual function in Cxrx-deficient mice.

4. Lamba, D. A. et al. Generation, purification and transplantation of photoreceptors
derived from human induced pluripotent stem cells. PLoS ONE 5, e8763 (2010).

5. MacLaren, R. E. et al. Retinal repair by transplantation of photoreceptor
precursors. Nature 444, 203–207 (2006).

6. Singh, M. S. et al. Reversal of end-stage retinal degeneration and restoration of
visual function by photoreceptor transplantation. Proc. Natl. Acad. Sci. USA 110,
1101–1106 (2013).

7. Pearson, R. A. et al. Restoration of vision after transplantation of
photoreceptors. Nature 485, 99–103 (2012).

8. Gonzalez-Cordero, A. et al. Photoreceptor precursors derived from three-
dimensional embryonic stem cell cultures integrate and mature within adult
degenerate retina. Nat. Biotechnol. 31, 741–747 (2013).

9. Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004).

10. Akimoto, M. et al. Targeting of GFP to newborn rods by Nrl promoter and
temporal expression profiling of flow-sorted photoreceptors. Proc. Natl Acad.
Sci. USA 103, 3890–3895 (2006).

11. McDonald, J. H. & Dunn, K. W. Statistical tests for measures of colocalization
in biological microscopy. J. Microsc. 252, 295–302 (2013).

12. Bowes, C. et al. Retinal degeneration in the rd mouse is caused by a defect in the
β subunit of rod cGMP-phosphodiesterase. Nature 347, 677–680 (1990).

13. LaVail, M. M. & Sidman, R. L. C57Bl/6 mice with inherited retinal
degeneration. Arch. Ophthalmol. 91, 394–400 (1974).

14. Perez-Vargas, J. et al. Structural basis of erythrocit cell-cell fusion. Cell 157,
407–419 (2014).

15. Podbielwicz, B. et al. The C. elegans developmental fusogen EFF-1 mediates
homotypic fusion in heterologous cells and in vivo. Dev. Cell 11, 471–481 (2006).

16. Davis, D. M. & Sowinski, S. Membrane nanotubes: dynamic long-distance
communications between animal cells. Nat. Rev. Mol. Cell Biol. 9, 431–436 (2008).

17. Valianas, V. et al. Connexin-specific cell-to-cell transfer of short interfering
RNA by gap junctions. J. Physiol. 568, 459–468 (2005).

18. Alvarez-Dolado, M. & Martinez-Losa, M. Cell fusion and tissue regeneration.
Adv. Exp. Med. Biol. 713, 161–175 (2011).

19. Lluis, F. & Cosnuda, M. P. Cell-fusion-mediated somatic-cell reprogramming:
a mechanism for tissue regeneration. J. Cell. Physiol. 223, 6–13 (2010).

20. Lu, X. & Kang, Y. Cell fusion as a hidden force in tumor progression.
Cancer Res. 69, 8536–8539 (2009).

21. Sanges, D. et al. Wnt/beta-catenin signaling triggers neuron reprogramming
and regeneration in the mouse retina. Cell Rep. 4, 271–286 (2013).

22. Nishida, A. et al. Otsc2 homeobox gene controls retinal photoreceptor cell fate
and pineal gland development. Nat. Neurosci. 6, 1255–1263 (2003).

Acknowledgements

This work was funded by the Medical Research Council (UK), the Royal College of
Surgeons of Edinburgh, the Special Trustees of Moorfields Eye Hospital, the UK Ministry
of Defence, the NIHR Biomedical Research Centres at Moorfields Eye Hospital and
Oxford University Hospitals NHS Foundation Trust, and the Wellcome Trust.

Author contributions

R.E.M., M.S.S., A.R.B., J.B. and C.M.G. conceived the experiments. M.S.S., J.B., S.A.A.,
I.D., A.R.C., A.R.B. and D.M. performed the experiments. R.E.M., M.S.S., J.B., D.M. and
A.R.B. wrote the manuscript. All the authors contributed to data analysis and
approved the final manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Singh, M. S. et al. Transplanted photoreceptor precursors
transfer proteins to host photoreceptors by a mechanism of cytoplastic fusion.
Nat. Commun. 7, 13537 doi: 10.1038/ncomms13537 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.