Potential of two indigenous strains of entomopathogenic nematodes, *(Steinernema feltiae* and *Heterorhabditis bacteriophora)* against the tomato leafminer (TLM), *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae), under laboratory and greenhouse environmental bioassay

Indra Kumar Kasi (entomologist2018@gmail.com)
Dr Yashwant Singh Parmar University of Horticulture and Forestry
https://orcid.org/0000-0001-8087-7934

Mohinder Singh
Dr Yashwant Singh Parmar University of Horticulture and Forestry

Kanchhi Maya Waiba
CSK HPKV: Himachal Pradesh Agricultural University

P L Lal Sharma
Dr Yashwant Singh Parmar University of Horticulture and Forestry

Research Article

Keywords: Biocontrol, Tomato, T. absoluta, S. feltiae, H. bacteriophora, Greenhouse, Environment

Posted Date: January 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1065129/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License](https://creativecommons.org/licenses/by/4.0/)

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.
Abstract

The tomato leafminer (Tuta Absoluta) is an important pest of tomato crops which have features like; high reproductive potential, invasive species are major threats to agronomic and natural ecosystems. Based on the pathogenicity of strains, only two isolates effectively show larvicidal activity. The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India. Petri dish bioassay use nematodes S. feltiae HR1 and H. bacteriophora HR2 species dose (0, 10, 20, 40, 80, 160/ IJs/cm²). The (%) 1st instar larval mortality was ranged from 24.15 to 85.38%. 2nd instar from 29.87 to 90.00%. 3rd instar from 24.15 to 90.00%. 4th instar from 31.53 to 90.00% and pupae stage mortality was ranged from 31.53 to 85.38%. Larvicidal activity after 48- and 72-hours exposure, the S. feltiae and H. bacteriophora (1.0, 1.30, 1.60, 1.90, 2.20/IJs/cm²) showed potent larvicidal activity with LC₅₀, LC₇₅ and LC₉₀ of all instars and pupa show high mortality. The strain inhibits the larval and pupal development 48 to 72 hr exposomer range from 05.42 to 23.67, LC₇₅ 20.29 to 83.12, LC₉₀ 16.52 to 98.89. Green house test is using the strain isolate of EPNS (HR1, HR2) on foliar application it caused by significant mortality results. These studies demonstrate the challenge for invasive species. The local indigenous strains of EPNS (S. feltiae HR1, H. bacteriophora HR2) as a good biocontrol agent against invasive pest of T. absoluta.

Key Message

- In the laboratory, the entomopathogenic nematode (EPN) Steinernema feltiae, and Heterorhabditis bacteriophora native isolate HR1, HR2, caused 90.00% above mortality in T. absoluta.
- In the greenhouse EPN isolate are caused 95% mortality in Tuta absoluta F₁ hybrid tomato crop plant.
- LC₅₀, LC₇₅, LC₉₀ ranged between 23.67 – 83.12 and 2.20 IJ/cm² in a period of 48 – 72 h.
- Under greenhouse conditions, a 3 foliar spraying application of EPN with a mortality achieved significant % mortality of T. absoluta.
- Additionally, native EPNS isolate have enormous potential for the control of foliage pests and may become a powerful alternative for T. absoluta control.

Introduction

Invasive species are important threats to the ecological and agricultural systems. Tomato leafminer (TLM), Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is native to South America. Outside its native place, the pest was detected for the first time in discovered in Spain in 2006 (Urbaneja et al., 2008), and since it quickly attacked 80 countries including India (CABI, 2018; CABI, 2020). The insect feeds on leaves, fruits, shoots, and apical shoots tomatoes can also cause 100 percent damage to plants in the absence of regulatory measures (Urbaneja et al., 2012; Balal et al., 2016; Biondi and Desneux, 2019). In India, the emergence of this insect was first carved with tomatoes in Pune and Bangalore in 2014 (Sridhar et al., 2014; Shashank et al., 2015; Balal et al., 2016; Sharma and Gavkare, 2017). In Himachal Pradesh, T. absoluta was first acquired in 2015 tomatoes in Nauni, Solan (Sharma and Gavkare, 2017). On problem-solving has emerged as a major threat to tomatoes in various parts of the state in open spaces and poly-houses. Previous reports indicate that in recent areas, T. absoluta quickly acquired a serious insect condition without drug abuse (Bielza, 2010; Desneux et al., 2010). T. absoluta control in particular based on pesticides and sometimes up to 14 times Insecticides while growing were needed (Campos et al., 2017; Han et al., 2019; Abbas et al., 2021; Waiba et al., 2021). Therefore, this insect is difficult to control chemically because the larvae live inside the mines and fruits where it is difficult to find pesticides. Biotic energy is high, spread speed again the ability to increase resistance to pesticides keeps the pest at the bay challenge (Desneux et al., 2010; Ingegno et al., 2013; Roditakis et al., 2013; Roditakis et al., 2015). Invasive new invasive insect, tomato pinworm / small leaf, T. Absoluta was first recorded in Pune in a tomato plant that grew in a field and a thousand houses in 2014 and in southwestern India (Karnataka state) (ICAR 2015), and to our knowledge, there are no reports of this pest in eastern and northern and eastern India. Subsequently, the pest was reported on a farmer's farm in major tomato growing districts including Himachal Pradesh.

Entomopathogenic nematodes (EPNs) from the families Heterorhabditidae and Steinemematidae are soil organisms that bind to natural insects (Kaya and Gaugler 1993). These nematodes have evolved into interactions with bacteria in the genera Photorhabdus associated with Heterorhabditis spp., it is carried in the intestines of infectious hairs (IJs) (Bird and Akhurst 1983; Arthurs et al., 2004; Silva et al., 2002; Kasi et al., 2021). Xenorhabdus is connected to Steinemema spp. and is confined to a specific skin within the intestines of IJs. Nematodes receive their treatment by tracking insects (Lewis et al., 2006; Mansour and Biondi, 2021). After IJs have found a culprit, they infect it with an orifice such as the mouth, anus or edges or by entering the cuticle (especially in Heterorhabditis spp.). As soon as the IJs enter the host, they break down their outer cuticle (Sicard et al., 2004; Ben Husin and Port, 2021) and begin to absorb the hemolymph, causing the defiant to be released by extraction (Steinemema spp.) Or recurrence (Heterorhabditis spp.) (Martens et al., 2004; Martens and Goodrich-Blair 2005). The structure of nematodes-bacteria kill the host between 24-48h through septicemia or toxemia (Dowds and Peters 1971; Forst and Clarke 2002; Ndereyimana et al., 2020). Bacteria reminiscent of nematodes, which appear as IJs from extinct insect cadaver in search of new transmitters (Poinar 1990).

More than 100 species of EPNs have been identified worldwide (about 80% by steinennematid) and at least 13 of these species have been marketed (Shapirollan et al., 2014; Ndereyimana et al., 2019). In general, the natural violence against various insect species varies between EPN species. In addition, the differences between the types of EPNs in terms of demand management and tolerance of environmental conditions such as temperature and humidity may determine the field performance of EPNs (Martens et al., 2004; Noug, 2021). EPNs have been widely used in the control of economically important pests living in different habitats (Grewal et al., 2005; Susurluk, 2008). However, the formation of EPNs to delay the extinction or addition of supplements to increase leaf coverage and persistence of IJs have improved the use of EPNs in insect-infested animals (Williams and Walters 2000; Arthurs et al., 2004; Head et al., 2004; Kasi et al., 2021; Ben Husin and Port, 2021).
The objective of the present study was to provide fundamental information necessary for the utilization of indigenously isolated EPNs as biological control agents. The study dealt with 2 nematode species such as *S. feltiae* and *H. bacteriophora* and their pathogenicity against *Tuta absoluta* under laboratory and greenhouse conditions.

Materials And Methods

A *T. absoluta* colony was maintained on tomato plants under greenhouse conditions. The colony had been established from larvae collected in September 2020 from the vegetable science department form the tomato greenhouse in UHF, HP, India, that used *S. feltiae* and *H. bacteriophora* (Poinar) for the pest's management.

Rearing of tomato pinworm, *Tuta absoluta*

TLM larvae and pupae were collected in a place that holds full heat greenhouse. *T. Absoluta* was raised in a nursery greenhouse (Roditakis et al., 2013), at 26 ± 2 °C, 60 ± 10% RH, and L: D 8:16 photoperiod. These insects are grown in wooden cages covered with 80 mesh organdy cloth on tomato plants (*S. Lycopersicum* L.). Adults are fed 10% of the sugar solution in the oviposition cage.

Source of entomopathogenic nematodes

Two isolates of *S. feltiae* and *H. bacteriophora* were used in this study. The native isolate was obtained from soil samples, collected from Rajgarh, Hamachi Pradesh, India, using *G. mellonella* larvae as nematode traps. This isolate was cultured based on the method describe (Woodring and Kaya 1988) at 21 ± 1 °C on the last instar larvae of *G. mellonella*. Infective juveniles (IJs) that emerged during the first ten days were collected from white traps stored at 4 °C in distilled water for up to 14 days (Woodring and Kaya 1988). The nematodes were acclimatized at room temperature for about 30 min before being used in the experiments.

Effect of Nematode Concentration

Bioassays was performed in a petri dish (9 cm). Each unit is filled with 20 grams of sandy loam (Table 1). Soil moisture was adjusted to 7% (w / w). IJs were applied evenly on the sterilized sand surface at 0, 5, 10, 20, 40, 80, and 160 IJs / cm2 in 1 ml of distilled water. Final sand moisture 10% (w / w). Ten t in each instar. The containers were kept at room temperature for 1 h before placing the entire larvae on the soil surface. There are four replicas for each concentration. Under controlled conditions the containers were kept in the growth chamber for 72 h, after which the larvae were separated from the surface through a fine sieve and held individually under controlled conditions until adulthood. Three days later, 25% of the dead larvae were randomly selected and dissected under a stereomicroscope to confirm nematode infection. The experiment was performed twice.

Larvicidal activity

Each nematode species was added at different concentrations (1.00, 1.30, 1.60, 1.90, 2.20/ mL⁻¹) into the 9 cm petri dish in triplicate with 2 ml of dechlorinated sterile water and 60 larvae of tested *Tuta absoluta* strains. The larvae were provided with young tomato leaves. One Petri plate without EPNs suspension was used as a control. After 24, 48, and 72 hr the number of dead larvae was calculated. The strains that killed more than 50% of the larvae were considered pathogenic (Morton and Garcia-del-Pino 2009; Kasi et al., 2021). Two nematode isolates were examined quantitatively for larvicidal activity against *T. absoluta*, using various concentrations of EPNs suspensions. The infected larvae were observed under a stereo zoom microscope for each concentration at 72 h exposure time.

Greenhouse condition experimental fields

Study Site Selection

The experimental farm is located at an elevation of 1260 m above mean sea level with 30°52’N latitude and 77°11’E longitude with East-West orientation of poly-house which represents the mid-hill zone of Himalayas, HP, India. This is an ideal location for poly-house with various features like single door, side, and top vent, drip irrigation, fogging facility, and internal shading with 50 % green agro UV stabilized shade net.

Experimental material and layout plan

The tomato germplasm commercial market, F₁ Hybrid (BSS-816) were evaluated under a naturally ventilated poly-house having a 200 m² area. The experiment was conducted in a randomized block design (RBD) with four replications inside the modified naturally ventilated polyhouse (25 m × 10 m). Ten plants of the hybrid were planted at a spacing of 70 × 30 cm and trained on two stems in each replication.

Treatments

Table 1 Treatments used in the field experiment to control *Tuta absoluta* (M.)
Designation	Treatment description	Type of treatment
Native strain	Native strain	Entomopathogenic nematode
T1	1,00,000 / IJs / m²	Entomopathogenic nematode
T2	2,00,000 / IJs / m²	Entomopathogenic nematode
T3	4,00,000 / IJs / m²	Entomopathogenic nematode
Native strain	Native strain	Entomopathogenic nematode
T4	1,00,000 / IJs / m²	Entomopathogenic nematode
T5	2,00,000 / IJs / m²	Entomopathogenic nematode
T6	4,00,000 / IJs / m²	Entomopathogenic nematode
T7	Water	Untreated (Control)

Statistical Analysis

Insect mortality was control-corrected (Abbott 1925) and Arcsine transformed when required to meet assumptions of normality and homogeneity of variances. In all experiments, control-corrected mortality was subjected to one-factor analysis of variance (ANOVA)

\[
\text{Corrected mortality} = \frac{(\text{% mortality in treatment} - \text{% mortality in control})}{100 \times \text{% mortality in the control}} \times 100
\]

The corrected percent mortality data thus obtained for different concentrations of *Tuta absoluta* (M.) at different concentrations were subjected to probit analysis as per the method given (Finney 1971). Concentration-mortality response data was conducted. Also, LSD (*P*< 0.05) values were calculated to differentiate means among treatments.

Results

Petri dish bioassay of *Tuta absoluta* life stages

bioassay of *T. absoluta* (1st instar)

The results revealed that the 1st instars larvae of the tomato leafminer were highly susceptible to two nematode species tested. After 72 h of treatment, there was an increase in (%) larval mortality in all treatments. The (%) larval mortality was ranged from 24.15 to 85.38 % (Fig 1). The highest % larval mortality was recorded in treatment with *H. bacteriophora* at 160 IJs/cm² were 85.38 % larval mortality was followed by *S. feltiae* at 160 IJs/cm² (80.76 %). The next best treatments in order of their efficacies were *H. bacteriophora* at 80 IJs/cm² (67.47 %), *S. feltiae* at 80 IJs/cm² (63.78 %) (Fig 1).

bioassay of *T. absoluta* (2nd instar):

There was no larval mortality observed in the untreated control. The (%) larval mortality was ranged from 29.87 to 90.00 %. After 72 h of treatment, the treatment *S. feltiae* at 160 IJs/cm² (90.00%) recorded the highest larval mortality of 2nd instars *T. absoluta* larvae and was found to be the most superior treatment. Which was followed by *H. bacteriophora* at 160 IJs/cm² (80.76%). The next best treatments in order of their efficacies were *S. feltiae* at 80 IJs/cm² (78.73%), *H. bacteriophora* at 80 IJs/cm² (72.08%). The (%) larval mortality was ranged from 24.15 to 90.00 % (Fig 2).

bioassay of *T. absoluta* (3rd instar):

Recorded highest larval mortality of 3rd instars *T. absoluta* larvae and found superior treatment. The highest percent larval mortality was recorded in treatment with *H. bacteriophora* at 160IJs/cm² were 90.00% larval mortality was recorded which was followed by *S. feltiae* at 160 IJs/cm² (85.38%). The next best treatments in order of their efficacies were *S. feltiae* at 80 IJs/cm² (74.12%), *H. bacteriophora* at 80 IJs/cm² (72.08%) (Fig 3).

bioassay of *T. absoluta* (4th instar):

The (%) larval mortality was ranged from 31.53 to 90.00 %. Recorded highest larval mortality of 4th instars *T. absoluta* larvae and found to be most superior treatment. The highest percent larval mortality was recorded in treatment with *S. feltiae* at 160IJs/cm² were 90.00%larval mortality was recorded which was...
followed by *H. bacteriophora* at 160 IJs/cm\(^2\) (80.76\%) (Fig 4). The next best treatments in order of their efficacies were *S. feltiae* at 80 IJs/cm\(^2\) (74.12\%), *H. bacteriophora* at 80 IJs/cm\(^2\) (67.84\%) (Fig 4).

bioassay of *T. absoluta* (Pupa):

The (%) larval mortality was ranged from 31.53 to 85.38\%. Recorded highest larval mortality of pupae stage of *T. absoluta* larvae and found to be most superior treatment. The highest % larval mortality was recorded in treatment with *H. bacteriophora* at 160 IJs/cm\(^2\) (85.38\%) larval mortality was recorded which was followed by *S. feltiae* at 160IJs/cm\(^2\) were 80.76\%. The next best treatments in order of their ecacies were *H. bacteriophora* at 80 IJs/cm\(^2\) (69.50\%), *S. feltiae* at 80 IJs/cm\(^2\) (67.47\%) (Fig 5).

Bioassay of larvicidal activity

A toxicity assay was conducted to estimate the lethal concentration of entomopathogenic nematodes to following:

Larvicidal activity (1\(^{st}\) instar)

\[\text{LC}_{50}, \text{LC}_{75} \text{ and } \text{LC}_{90} \text{ for the } S. \text{ feltiae} (1.0, 1.30, 1.60, 1.90, 2.20/\text{IJs/cm}^2), \text{H. bacteriophora} (1.0, 1.30, 1.60, 1.90, 2.20/\text{IJs/cm}^2), \text{1\(^{st}\) instar for 48 h were evaluated as } \text{LC}_{50} \text{ of 13.29 } \mu\text{g mL}^{-1}, 23.67 \text{ IJs/cm}^2 \text{ and } \text{LC}_{75} \text{ of IJs/cm}^2, 75.64 \text{ IJs/cm}^2, 78.77 \text{ IJs/cm}^2 \text{, and } \text{LC}_{90} \text{ of IJs/cm}^2, 31.64 \text{ IJs/cm}^2, 32.46 \text{ IJs/cm}^2 \text{ respectively. For 72 h exposure (Fig 6), } \text{LC}_{50} \text{ of 14.08 IJs/cm}^2, 15.94 \text{ IJs/cm}^2, \text{LC}_{75} \text{ of IJs/cm}^2, 75.64 \text{ IJs/cm}^2, 78.77 \text{ IJs/cm}^2 \text{, and } \text{LC}_{90} \text{ of IJs/cm}^2, 16.52 \text{ IJs/cm}^2, 10.07 \text{ IJs/cm}^2 \text{ (Table 1).}

Larvicidal activity (2\(^{nd}\) instar)

\[\text{LC}_{50}, \text{LC}_{75} \text{ and } \text{LC}_{90} \text{ for the } Tuta \text{ absoluta, for 48 h were evaluated as } \text{LC}_{50} \text{ of 19.29 IJs/cm}^2, 13.47 \text{ IJs/cm}^2 \text{ and } \text{LC}_{75} \text{ of IJs/cm}^2, 48.42 \text{ IJs/cm}^2, 55.26 \text{ IJs/cm}^2 \text{, and } \text{LC}_{90} \text{ of IJs/cm}^2, 45.40 \text{ IJs/cm}^2, 96.81 \text{ IJs/cm}^2 \text{, respectively. For 72 h exposure (Fig 7), } \text{LC}_{50} \text{ of 07.05 IJs/cm}^2, 07.61 \text{ IJs/cm}^2, \text{LC}_{75} \text{ of 22.85 IJs/cm}^2, 29.39 \text{ IJs/cm}^2 \text{ and } \text{LC}_{90} \text{ of 65.81 IJs/cm}^2, 65.14 \text{ IJs/cm}^2 \text{ (Table 1).}

Larvicidal activity (3\(^{rd}\) instar)

\[\text{LC}_{50}, \text{LC}_{75} \text{ and } \text{LC}_{90} \text{ for the } Tuta \text{ absoluta, for 48 h were evaluated as } \text{LC}_{50} \text{ of 09.32 IJs/cm}^2, 13.90 \text{ IJs/cm}^2 \text{ and } \text{LC}_{75} \text{ of IJs/cm}^2, 48.17 \text{ IJs/cm}^2, 60.10 \text{ IJs/cm}^2 \text{, and } \text{LC}_{90} \text{ of IJs/cm}^2, 74.18 \text{ IJs/cm}^2, 76.43 \text{ IJs/cm}^2 \text{, respectively. For 72 h exposure (Fig 8), } \text{LC}_{50} \text{ of 05.89 IJs/cm}^2, 08.92 \text{ IJs/cm}^2, \text{LC}_{75} \text{ of 20.29 IJs/cm}^2, 32.61 \text{ IJs/cm}^2 \text{ and } \text{LC}_{90} \text{ of 61.71 IJs/cm}^2, 56.63 \text{ IJs/cm}^2 \text{ (Table 1).}

Larvicidal activity (4\(^{th}\) instar)

\[\text{LC}_{50}, \text{LC}_{75} \text{ and } \text{LC}_{90} \text{ for the } Tuta \text{ absoluta, for 48 h were evaluated as } \text{LC}_{50} \text{ of 09.91 IJs/cm}^2, 13.90 \text{ IJs/cm}^2 \text{ and } \text{LC}_{75} \text{ of IJs/cm}^2, 48.17 \text{ IJs/cm}^2, 60.10 \text{ IJs/cm}^2 \text{, and } \text{LC}_{90} \text{ of IJs/cm}^2, 74.18 \text{ IJs/cm}^2, 76.43 \text{ IJs/cm}^2 \text{, respectively. For 72 h exposure (Fig 9), } \text{LC}_{50} \text{ of 05.89 IJs/cm}^2, 08.92 \text{ IJs/cm}^2, \text{LC}_{75} \text{ of 20.29 IJs/cm}^2, 32.61 \text{ IJs/cm}^2 \text{ and } \text{LC}_{90} \text{ of 61.71 IJs/cm}^2, 56.63 \text{ IJs/cm}^2 \text{ (Table 1).}

Larvicidal activity (Pupae stage)

Table 1.

Log probit analysis of larvicidal activity of tested nematode strain against tomato pinworm *Tuta absoluta* larvae instars and pupa stage
Stage of Insect	Nematode sp.	Exposure Time (hrs)	\(\text{LC}_{50} \) (IJs/cm\(^2\)) 95% LC\(_{I-CL}\)	\(\text{LC}_{90} \) (IJs/cm\(^2\)) 95% LC\(_{I-CL}\)	Intercept	Slope ± SE	\(\chi^2 \) value	P value
1- instar	S. feltiae	48	13.29 (8.17 - 21.63)	31.64 (22.35 - 88.18)	-1.004	1.3 ± 0.22	1.05	0.012**
		72	14.08 (9.99 - 20.01)	46.54 (32.74 - 66.16)	-1.49	1.5 ± 0.24	3.10	0.004**
1- instar	H. bacteriophora	48	23.67 (16.85 - 33.25)	32.46 (26.53 - 65.49)	1.07	0.1 ± 0.23	1.49	0.002**
		72	15.94 (11.85 - 21.45)	42.58 (31.65 - 57.29)	-1.90	1.3 ± 0.25	4.41	0.002**
2- instar	S. feltiae	48	14.27 (9.98 - 20.40)	48.42 (33.87 - 69.22)	-1.46	0.2 ± 0.24	2.30	0.004**
		72	07.05 (4.81 - 10.33)	22.85 (15.60 - 33.46)	-1.12	1.2 ± 0.26	1.83	0.013**
2- instar	H. bacteriophora	48	13.47 (8.98 - 20.20)	55.26 (36.85 - 82.86)	-1.24	0.1 ± 0.23	0.83	0.006**
		72	07.61 (5.02 - 11.53)	29.39 (19.40 - 44.53)	-1.01	1.5 ± 0.25	0.86	0.015*
3- instar	S. feltiae	48	19.29 (12.83 - 29.01)	50.44 (25.79 - 65.31)	-1.36	0.2 ± 0.23	0.27	0.004**
		72	07.52 (5.01 - 11.07)	25.42 (17.27 - 37.41)	-1.11	0.1 ± 0.25	2.06	0.012*
3- instar	H. bacteriophora	48	08.55 (5.42 - 13.51)	40.47 (25.63 - 63.90)	-0.93	0.1 ± 0.23	1.99	0.018*
		72	05.42 (0.35 - 0.38)	20.70 (13.41 - 31.97)	-0.85	0.2 ± 0.26	1.65	0.032*
4- instar	S. feltiae	48	09.32 (5.80 - 14.98)	48.17 (29.98 - 77.41)	-0.91	1.3 ± 0.23	0.46	0.018*
		72	05.89 (0.39 - 0.89)	20.29 (13.51 - 30.47)	-0.96	1.2 ± 0.26	1.53	0.022*
4- instar	H. bacteriophora	48	13.90 (9.16 - 21.10)	60.10 (39.60 - 91.20)	-1.21	0.1 ± 0.23	2.18	0.007**
		72	08.92 (0.60 - 13.24)	32.61 (21.98 - 48.38)	-1.14	0.2 ± 0.24	1.02	0.010*
Pupa	S. feltiae	48	09.10 (5.82 - 14.23)	41.75 (26.71 - 65.28)	-0.97	1.3 ± 0.23	2.57	0.015*
		72	08.83 (5.88 - 13.26)	33.89 (22.57 - 50.88)	-1.09	0.2 ± 0.24	1.66	0.011*
Pupa	H. bacteriophora	48	13.90 (9.16 - 21.10)	60.10 (39.60 - 91.20)	-1.21	0.1 ± 0.23	2.18	0.007**
		72	09.23 (0.63 - 13.43)	31.11 (21.40 - 45.24)	-1.23	1.5 ± 0.25	5.12	0.008**

EPNs suspensions were administered at a concentration of (IJs/cm\(^2\)).

Lethal Concentration are calculated by Probit Methods.

Significant differences from control are indicated (P < 0.01; *P < 0.05).**

-LC\(_{50}\) of 08.83 IJs/cm\(^2\), 09.23 IJs/cm\(^2\); LC\(_{75}\) of 33.89 IJs/cm\(^2\), 31.11 IJs/cm\(^2\); and LC\(_{90}\) of 60.68 IJs/cm\(^2\), 72.83 IJs/cm\(^2\) were noted by using (OPSTAT) software, the best larvicidal activity was obtained during the 72 h of exposure. The S. feltiae and H. bacteriophora, strains showed potent larvicidal activity with low concentration even at 48 and 72 h of exposure to compare other strains (Table 1).

The mortality was determined through different concentrations for both 48 and 72 h exposure. The mortality rate depends on the concentration and exposure time. However, the highest mortality range was observing H. bacteriophora treatment at very low concentrations for 48 and 72 h. Even though S. feltiae showed slow mortality in 48 and 72 h exposure time, they restrained the larval development at the early pupal stage.

Efficacy of EPNs against T. absoluta in greenhouse condition

Data pertaining to the survival population of tomato leafminer Tuta absoluta on tomato one day before and 3rd, 7th 10th and 14th days after first spray was presented in (Table 2). The mean survival population of T. absoluta larvae one day before sprays was ranged from 5.77 to 7.36 larvae/ plant. The pre-treatment data was found to be non-significant indicating the uniformity population of pest throughout the experimental plot. At 14th days of first spray slight increase in the larval population was observed in all the treated plots. The mean number survival populations of larvae were ranged from 1.31 to 2.13 larvae/plant. In untreated control plot it was recorded highest 4.09 larvae/plant. The treatment with H. bacteriophora at 1,00,000 IJs/cm\(^2\) (1.31 larvae/plant) was found be consistently effective against T. absoluta followed by H. bacteriophora at 2,00,000 IJs/cm\(^2\) (1.42 larvae/plant) which were found to be equally effective.
Efficacy of entomopathogenic nematode against *Tuta absoluta* in tomato crop (overall effect of three sprays).

Treatments / (isolates)	EPNs dose/layers cm^2	Pre count	1st Spray	2nd Spray	3rd Spray							
	3 DAS	7 DAS	10 DAS	14 DAS	3 DAS	7 DAS	10 DAS	14 DAS	3 DAS	7 DAS	10 DAS	14 DAS
S. feltiae (HR1)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
1,00,000	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
S. feltiae (HR1)	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
2,00,000	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
S. feltiae (HR2)	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
4,00,000	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
H. bacteriophora (HR2)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1,00,000	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
H. bacteriophora (HR2)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
2,00,000	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Control (Water Spray)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DAS = Days after spray
*Figures in parentheses are transformed values Ÿx± 0.5
Discussion

In this study it is evident that *S. feltiae* and *H. bacteriophora* were able to kill *Tuta absoluta* larvae at various concentrations namely 1,00,000, 2,00,000 and 4,00,000 IJs/cm². *Tuta absoluta* larvae mortality increased with increase in concentrations. In this case the highest concentration tested (4,00,000 IJs/cm²) achieved the highest mortality under poly-house conditions. This mortality increase with increase in concentration can be attributed to large population of symbiotic bacteria released by EPNs when they penetrate the larvae as reported by (Eleftherianos *et al.* 2010; Han *et al.*, 2019). Steinernematid IJs retain *Xenorhabdus* symbionts within an intestinal vesicle, while *Photorhabdus* cells stick together in the anterior part of the Heterorhabditids gut and releases them upon invasion of an insect host (Dillman *et al.* 2012; Lankin *et al.*, 2021).

The third instar larvae were used; other studies revealed that EPNs were able to find and kill all the four larval instars inside or outside the leaf galleries (Batalla-Carrera *et al.*, 2010; Van Damme *et al.*, 2016; Kasi *et al.*, 2021). Found that *T. absoluta* larval stage was the most vulnerable to EPNs (Batalla-Carrera *et al.*, 2010; Ben Husin and Port, 2021). They thus emphasized the necessity to apply EPNs on the above-ground part of the tomato plant to ensure effective control of this pest using the most suitable isolates against a particular pest in a given environment (Abbas *et al.*, 2021; Mansour and Biondi, 2021).

The ability of EPNs to reach and kill *T. absoluta* larvae in leaf galleries was also reported (Batalla-Carrera *et al.*, 2010; Van Damme *et al.*, 2016; Kamali *et al.*, 2018). The local EPN isolates were able to kill *T. absoluta* and had even been found to be effective against white grubs in Rwanda (Kajuga *et al.*, 2018; Ndereyimana *et al.*, 2019), while it was not easy to find EPNs which can kill them (Laznik *et al.*, 2015). Although EPNs live naturally in soil, different researchers found that they can be used on above-ground parts of the plant to control effectively the pests living in cryptic habitats like in leaf galleries (Batalla-Carrera *et al.*, 2010; Garcia-del-Pino *et al.*, 2013; Lankin *et al.*, 2021), which concurs with the results of the present study under laboratory conditions.

The IJs multiply quickly and kill the host 24 –72 h after infection (Gozel and Kasap 2015; Van Damme *et al.*, 2016; Kasi *et al.*, 2021). This was verified in the present study where all local EPN isolates caused between 53.3 and 96.7 % mortality just within the first 24 h after inoculation, while in 72 h, they all had caused between 96.3 and 100 % mortality. This is not the case of other entomopathogens like entomopathogenic fungi, which require 3–5 days or even more time to kill their host (Reda and Hatem 2012; Abbas *et al.*, 2021).

Different pathogenicity levels displayed by the studied EPNs agree with other studies, using different EPN isolates (Gozel and Kasap 2015; Van Damme *et al.*, 2016; Han *et al.*, 2019). This underlines the necessity of EPNs screening and selection as emphasized (Sharma *et al.*, 2011; Biondi *et al.*, 2018), in a view to boost their efficacy of EPNs. The highest efficacy of local EPN isolates than the exotics could be explained by the fact that these EPNs (Yan *et al.*, 2016; Kasi *et al.*, 2021; Mansour and Biondi, 2021) and they might be more adapted to the local conditions than the exotics, which were isolated in a completely different environment. These results agree with the earlier findings where locally isolated biological control agents, including EPNs, performed better than exotics (Lima *et al.*, 2017; Nouh, 2021). The larvae of *T. absoluta* present susceptibility to EPNs, unlike their pupae, which present tolerance and thus a low mortality rate of less than 20% caused by EPNs (Batalla-Carrera *et al.*, 2010; Garcia-del-Pino *et al.*, 2013; Ben Husin and Port, 2021; Kasi *et al.*, 2021).

The results of this study revealed that local EPN isolates were able to find and kill *T. absoluta* larvae stages inside the leaf galleries under laboratory conditions and their efficacy increased with exposure time. The efficacy of local indigenous EPN isolates was significantly superior to that of the exotic species. This is the first study carried out in Rajighar on the good biocontrol potential of indigenous strains (HR1 and HR2) EPNs against *T. absoluta*. The results of this study form the basis for further research. High EPN efficacy obtained under laboratory conditions cannot easily be extrapolated to field efficacy. Therefore, future field experiments on tomato crops are justified to fully determine the potential of local EPN isolates against *T. absoluta* in Himachal Pradesh conditions.

List Of Abbreviations

EPN: Entomopathogenic nematodes; IJs: Infective juveniles; OPSTAT: Operational Status

Declarations

Credit authorship contribution statement

All authors jointly designed the experiment. KI conducted the laboratory bioassays, performed data analysis and drafted the manuscript with inputs from all authors. MS, MW and PS collaborated closely with KI in the whole process especially during data analysis. All authors read and approved the final manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements.

We would like to acknowledge the Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP, India-173230 for support of this research. And Indian council of Agricultural Research (ICAR) for providing necessary facilities and financial support, respectively We are also grateful to Department of entomology, Nematology laboratory used in this study.

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding authors on reasonable request.
Consent for publication

All authors agree to the publication of the submitted manuscript.

References

Abbas W, Javed N, Haq IU, Ahmed S (2021) Pathogenicity of entomopathogenic nematodes against cabbage butterfly (Pieris brassicae) Linnaeus (Lepidoptera: Pieridae) in laboratory conditions. Int J Trop Insect Sci 41:525–531. https://doi.org/10.1007/s42690-020-00236-2

Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.

Arthurs S, Heinz KM, Prasifka JR (2004) An analysis of using entomopathogenic nematodes against above-ground pests. Bulletin of Entomological Research 94: 297–306. https://doi.org/10.1079/BER2003309

Ballal CR, Gupta A, Mohan M, Lalitha Y, Verghese A (2016) The new invasive pest _Tuta absoluta_ (Meyrick) (Lepidoptera: Gelechiidae) in India and its natural enemies along with evaluation of Trichogrammatids for its biological control. Curr Sci, 110, 2155-2159. https://doi.org/10.18520/cs/v110/i11/2155-2159.

Barati R, Hejazi MJ, Mohammadi SA (2018) Insecticide susceptibility in _Tuta absoluta_ (Lepidoptera: Gelechiidae) and metabolic characterization of resistance to diazinon. J Econ Entomol 111:1551–1557. https://doi.org/10.1093/jee/toy134

Batalla-Carrera L, Morton A, Garcia-del-Pino F (2010) Efficacy of entomopathogenic nematodes against tomato leafminer _Tuta absoluta_ in laboratory and greenhouse conditions. Bio Control 55:523–530. https://doi.org/10.1007/s10526-010-9284-z

Ben Husin TO, Port GR (2021) Efficacy of entomopathogenic nematodes against _Tuta absoluta_. Biological Control 160, 104699. https://doi.org/10.1016/j.biocontrol.2021.104699

Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, _Tuta absoluta_: past, present, and future. Annu Rev Entomol 63:239–258. https://doi.org/10.1146/annurev-ento-031616-034933

Biondi A, Desneux N (2019) Special issue on _Tuta absoluta_: recent advances in management methods against the background of an ongoing worldwide invasion. Journal of Pest Science 92:1313–1315. https://doi.org/10.1007/s10340-019-01132-6

Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J of Parasit 13: 599–606. https://doi.org/10.1016/S0020-7519(83)80032-0

CABI (2020) Invasive Species Compendium, Wallingford. https://www.cabi.org/isc. Accessed 26 Oct 2020.

CABI (2018) _Tuta absoluta_. In: Invasive Species Compendium. Wallingford, UK: CAB International. Retrieved from: www.cabi.org/isc.

Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: _Tuta absoluta_ 10 years after invading Europe. Journal of Pest Science 90: 787–796. https://doi.org/10.1007/s10340-017-0867-7

Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narvaez-Vasquez CA, Gonzalez-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by _Tuta absoluta_: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215. https://doi.org/10.1007/s10340-010-0321-6

Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Steinberg PW (2012) An entomopathogenic nematode by any other name. pLos pathog 8: e1002527.

Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CABI Publishing, New York, USA, pp. 79–98.

Eleftherianos I, Joyce S, French-Constant RH, Clarke DJ, Reynolds SE (2010) Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology 137: 1695-1706. https://doi.org/10.1017/S0031182010000508

Finney DJ (1971) Statistical Analysis. Cambridge University Press.

Forst S, Clarke D (2002) Bacteria–nematode symbiosis. In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CABI Publishing, New York, USA, pp. 57–77.

Garcia-del-Pino F, Alabern X, Morton A (2013) Efficacy of soil treatments of entomopathogenic nematodes against the larvae, pupae and adults of _Tuta absoluta_ and their interaction with insecticides used against this insect. Bio Control 58:723–731. https://doi.org/10.1007/s10526-013-9525-z.

Gozel C, Kasap I (2015) Efficacy of entomopathogenic nematodes against the Tomato leafminer, _Tuta absoluta_ (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. Turk Entomol Derg 39:229–237. https://doi.org/10.16970/ted.84972.

Grewal PS, Ehlers RU, Shapiro-Ilan DI (2005) Nematodes as Biocontrol Agents. CABI Publishing, Wallingford, UK.

Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A, Esenali UT, Jalilov A, Ali A, Shashank PR, Ismoilov K, Lu Z-Z, Wang Su, Zhang GF, Wan FH, Biondi A, Desneux N 2019. _Tuta absoluta_ continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92 (4), 1317–
Head J, Lawrence AJ, Walters KFA (2004) Efficacy of the entomopathogenic nematode, *Steinernema feltiae*, against *Bemisia tabaci* in relation to plant species. *J of Appl Entomol* 128: 543–547. https://doi.org/10.1111/j.1439-0418.2004.00882.x

ICAR (2015): *Tuta absoluta*: A New Invasive Pest Alert, New Delhi, India: Indian Council for Agricultural Research. – http://www.icar.org.in/en/node/8600

Ingegno BL, Feracini G, Gallinotti D, Alma A, Tavella L (2013) Evaluation of the effectiveness of *Dicyphus errans* (Wolff) as predator of *Tuta absoluta* (Meyrick). *Biol Control* 67: 246-52. https://doi.org/10.1016/j.biocontrol.2013.08.002.

Kajuga J, Hategekimana A, Yan X, Waweru BW, Li H, Li K (2018) Management of white grubs (Coleoptera: Scarabaeidae) with entomopathogenic nematodes in Rwanda. *Egypt J Biol Pest Control* 28:2. https://doi.org/10.1186/s41938-017-0003-2

Kalleshwaraswamy CM, Murthy S, Viraktamath CA, Krishna NK (2015) Occurrence of *Tuta absoluta* (Lepidoptera: Gelechiidae) in the Malnad and Hyderabad-Karnataka regions of Karnataka, India. *Fla Entomol* 98: 970-971. https://doi.org/10.1653/024.098.0326.

Kamali S, Karimi J, Koppenhofer AM (2018) New Insight into the Management of the Tomato Leaf Miner, *Tuta absoluta* (Lepidoptera: Gelechiidae) with Entomopathogenic Nematodes. *J Econ Entomol* 111:112-119. https://doi.org/10.1093/jee/tox332.

Kasi IK, Singh M, Waiba KM, Monika S, Waseem MA, Archie D, Gillhotra H (2021) Bio-efficacy of entomopathogenic nematodes, *Steinernema feltiae* and *Heterorhabditis bacteriophora* against the Cabbage butterfly (*Pieris brassicae* [L.]) under laboratory conditions. *Egypt J Biol Pest Control*, 31:125. https://doi.org/10.1186/s41938-021-00469-4

Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. *Annual Review of Entomology* 38: 181–206. https://doi.org/10.1146/annurev.en.38.010193.001145

Lankin G, Santiagos A, Hermosilla M, Aballay E, San-Blas E, (2021) A novel approach for the biological control of invasive Bagrada bugs with entomopathogenic nematodes. *Journal of Pest Science*, 13:34. https://doi.org/10.1007/s10340-021-00849-w

Laznik Z, Trdan S (2015) Failure of entomopathogens to control white grubs (Coleoptera: Scarabaeidae). *Acta Agric Scand* 65:95–108. https://doi.org/10.1080/09064710.2014.968199

Lewis EE, Campbell JC, Griffen C, Kaya HK, Peters A (2006) Behavioral ecology of entomopathogenic nematodes. *Biolog Control* 38: 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007

Lietti MM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *Neotrop Entomol* 34:113–119. https://doi.org/10.1590/S1519-566X2005000100016

Lima MD, Pascual PRL, Alburo HMA (2017) *Heterorhabditis taysearae* and *Heterorhabditis bacteriophora* in relation to plant species. *Ann J Entomol* 128: 543–547. https://doi.org/10.1111/j.1462-5822.2005.00585.x

Martens EC, Vivas EI, Heungens K, Cowles CE, Goodrich-Blair H (2004) Investigating mutualism between entomopathogenic bacteria and nematodes. *Biological control* 21: 1723–1735. https://doi.org/10.1111/j.1462-5822.2005.00585.x

Martens EC, Goodrich-Blair H (2005) The intestinal vesicle contains a sub-cellular structure with which *Xenorhabdus nematophila* associates during colonization initiation. *Cellular Microbiology* 7: 1723–1735. https://doi.org/10.1111/j.1462-5822.2005.00585.x

Martens EC, Vivas EL, Heungens K, Cowles CE, Goodrich-Blair H (2004) Investigating mutualism between entomopathogenic bacteria and nematodes. *Nematology Monographs and Perspectives: Proceedings of the Fourth International Congress on Nematology* 2: 447–462.

Mansour R, Blondi A (2021) Releasing natural enemies and applying microbial and botanical pesticides for managing *Tuta absoluta* in the MENA region. *Phytoparasitica* 49: 179–194. https://doi.org/10.1007/s12600-021-00849-w.

Martens EC, Goodrich-Blair H (2005) The *Steinernema carpocapsae* intestinal vesicle contains a sub-cellular structure with which *Xenorhabdus nematophila* associates during colonization initiation. *Cellular Microbiology* 7: 1723–1735. https://doi.org/10.1111/j.1462-5822.2005.00585.x

Martens EC, Vivas EL, Heungens K, Cowles CE, Goodrich-Blair H (2004) Investigating mutualism between entomopathogenic bacteria and nematodes. *Nematology Monographs and Perspectives: Proceedings of the Fourth International Congress on Nematology* 2: 447–462.

Morton A, Garcia-del-Pino F (2009) Ecological characterization of entomopathogenic nematodes isolated in stone fruit orchard soils of Mediterranean areas. *J of Invert Pathol* 102: 203–213. https://doi.org/10.1016/j.jip.2009.08.002

Ndereyimana A, Nyalala S, Murerwa P, Gaidashova S (2019) Potential of entomopathogenic nematode isolates from Rwanda to control the tomato leaf miner, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *Egypt J Biol Pest Control* 29: 57. https://doi.org/10.1186/s41938-019-0163-3.

Ndereyimana A, Nyalala S, Murerwa P, Gaidashova S (2020) Field efficacy of entomopathogens and plant extracts on *Tuta absoluta* Meyrick (Lepidoptera: Gelechiidae) infesting tomato in Rwanda. *Crop Protection*, 105183. https://doi.org/10.1016/j.cropro.2020.105183

Nouh GH (2021) Efficacy of the entomopathogenic nematodes isolates against *Spodoptera littoralis* (Boisduval) and *Agrotis ipsilon* (Hufnagel) (Lepidoptera: Noctuidae). *Egypt J Biol Pest Control* 31:1–5. https://doi.org/10.1186/s41938-021-00374-w

Poinar GO (1990) Biology and taxonomy of Steinemematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–58.

Reda AM, Hatem AE (2012) Biological and eradication parameters of the tomato leaf miner, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) affected by two biopesticides. *Bol San Veg Plagas* 38:321–333.
Roditakis E, Skarmoutsou C, Staurakaki M, Martinez-Aguirre MR, Garcia-Vidal L, Bielza P, Haddi K, Rapisarda C, Rison JL, Bassi A, Teixeira LA (2013) Determination of baseline susceptibility of European populations of *Tuta absoluta* (Meyrick) to indoxacarb and chlorantraniliprole using a novel dip bioassay method. Pest Manag Sci 69:217–227. https://doi.org/10.1002/ps.3442.

Roditakis E, Vasilis EA, Grispou M, Stavrakaki M, Nauj R, Gravouil M, Bassi A (2015). First report of *Tuta absoluta* resistance to diamide insecticides. J Pest Sci, 88: 9-16. https://doi.org/10.1007/s10340-015-0643-5

Shapiro-Ilan D, Han, R, Qiu, X (2014) Production of entomopathogenic nematodes. In: Morales-Ramos, J., Rojas, G., Shapiro-Ilan, D.I. (Eds.), Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens. Academic Press, Elsevier Inc., San Diego, California, USA, pp. 321–356.

Sharma MP, Sharma AN, Hussaini SS (2011) Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status—a mini review. Arch Phytopathology Plant Protect 44: 855–870. https://doi.org/10.1080/03235400903345315

Sharma PL, Gavikare O (2017) New Distributional Record of Invasive Pest *Tuta absoluta* (Meyrick) in North-Western Himalayan Region of India. National Academy Science Letters 40: 217–220. https://doi:10.1007/s40009-016-0526-1

Susurluk A (2008) Potential of the entomopathogenic nematodes *Steinernema feltiae*, *S. weiseri* and *Heterorhabditis bacteriophora* for the biological control of the sugar beet weevil *Bothynoderes punctiventris* (Coleoptera: Curculionidae). J Pest Sci 81:221–225. https://doi.org/10.1007/s10340-008-0209-x

Urbaneja A, Gonzalez-Cabrera J, Amo J, Gabarra R (2012) Prospects for the biological control of *Tuta absoluta* in tomatoes of the Mediterranean basin. Pest Manage Sci, 68: 1215-1222. https://doi.org/10.1002/ps.3344.

Urbaneja AR, Vercher V, Navarro F, Mari G, Porcuna JL (2008) La polilla del tomate, *Tuta absoluta*. Phytoma Espana, 194: 16-23. http://hdl.handle.net/20.500.11939/4087.

Van Damme VM, Beck BK, Berckmoes E, Moerkens R, Wittemans L, De Viss R (2016) Efficacy of entomopathogenic nematodes against larvae of *Tuta absoluta* in the laboratory. Pest Manag Sci 72:1702–1709. https://doi.org/10.1002/ps.4195.

Waiba KM, Sharma P, Kumar KL, Chauhan S (2021) Studies of Genetic Variability of Tomato (*Solanum lycopersicum*) Hybrids under Protected Environment. International Journal of Bio-resource and Stress Management 12: 264-270. https://doi.org/10.23910/1.2021.2211.

Williams EC, Walters KFA (2000) Foliar application of the entomopathogenic nematode *Steinernema feltiae* against leaf miners on vegetables. Bio Sci and Techn 10: 61–70. https://doi.org/10.1080/095831500029396

Woodring JL, Kaya HK (1988) Steinemematid and heterorhabditid nematodes: a handbook of biology and techniques. Arkansas Agricultural Experiment Station, Fayetteville.

Yan X, Waweru B, Qiu X, Hategikimana A, Kajuga J, Li H (2016) New entomopathogenic nematodes from semi-natural and small-holder farming habitats of Rwanda. Bio Sci Techn 26:820–834. https://doi.org/10.1080/09583157.2016.1159658.

Figures

![1st Instar](image_url)
Figure 1

Efficacy of *S. feltiae* and *H. bacteriophora* against 1st instar of *T. absoluta*

![Graph showing efficacy of *S. feltiae* and *H. bacteriophora* against 1st instar of *T. absoluta*]

Figure 2

Efficacy of *S. feltiae* and *H. bacteriophora* against 2nd instar of *T. absoluta*

![Graph showing efficacy of *S. feltiae* and *H. bacteriophora* against 2nd instar of *T. absoluta*]

Figure 3

Efficacy of *S. feltiae* and *H. bacteriophora* against 3rd instar of *T. absoluta*

![Graph showing efficacy of *S. feltiae* and *H. bacteriophora* against 3rd instar of *T. absoluta*]

Figure 4

Efficacy of *S. feltiae* and *H. bacteriophora* against 4th instar of *T. absoluta*

![Graph showing efficacy of *S. feltiae* and *H. bacteriophora* against 4th instar of *T. absoluta*]

Figure 5

Efficacy of *S. feltiae* and *H. bacteriophora* against pupae of *T. absoluta*

![Graph showing efficacy of *S. feltiae* and *H. bacteriophora* against pupae of *T. absoluta*]
Figure 6
1st instar Log Dose response Curve

Figure 7
2nd instar Log Dose response Curve

Figure 8
3rd instar Log Dose response Curve

Figure 9
4th instar Log Dose response Curve

Figure 10
Pupae log Dose response Curve