Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations

Kathryn E Gibson, Gabrielle Pastenkos, Susanne Moesta and Yasuko Rikihisa*

Abstract

Neorickettsia risticii is the Gram-negative, obligate, and intracellular bacterial pathogen responsible for Potomac horse fever (PHF): an important acute systemic disease of horses. N. risticii surface proteins, critical for immune recognition, have not been thoroughly characterized. In this paper, we identified the 51-kDa antigen (P51) as a major surface-exposed outer membrane protein of older and contemporary strains of N. risticii through mass spectrometry of streptavidin-purified biotinylated surface-labeled proteins. Western blot analysis of sera from naturally-infected horses demonstrated universal and strong recognition of recombinant P51 over other Neorickettsia recombinant proteins. Comparisons of amino acid sequences for predicted secondary structures of P51, as well as Neorickettsia surface proteins 2 (Nsp2) and 3 (Nsp3) among N. risticii strains from horses with PHF during a 26-year period throughout the United States revealed that the majority of variations among strains were concentrated in regions predicted to be external loops of their β-barrel structures. Large insertions or deletions occurred within a tandem-repeat region in Ssa3. These data demonstrate patterns of geographical association for P51 and temporal associations for Nsp2, Nsp3, and Ssa3, indicating evolutionary trends for these Neorickettsia surface antigen genes. This study showed N. risticii surface protein population dynamics, providing groundwork for designing immunodiagnostic targets for PHF.

Introduction

Discovered in 1984, Neorickettsia (formerly Ehrlichia) risticii is an obligate intracellular bacterium and the causative agent of Potomac horse fever (PHF) [1-3]. The bacterium uses a digenetic trematode to survive and proliferate in its natural lifecycle [4-9]. It is through accidental ingestion of the metacercarial stage of the digenetic trematode within its insect host that the horse becomes infected with N. risticii and develops PHF [6]. PHF is an acute, severe, and potentially fatal disease of horses, normally contracted during the summer months in North America when aquatic insect larvae infested with N. risticii molt and emerge (hatch) from the water as adults [6,10]. Clinical signs range from mild (anorexia, fever, lethargy, and depression) to life-threatening (laminitis, abortion, and diarrhea followed by severe dehydration) [10,11]. The administration of tetracyclines at the early stage of infection is effective, in part by inhibiting bacterial protein synthesis and facilitating lysosome fusion with inclusions containing N. risticii [12-15]. Diagnosis of this disease is mainly done by indirect fluorescent-antibody (IFA) test based on N. risticii-infected cells and by nested polymerase chain reaction (PCR) on blood samples [5,16-22]. The only available vaccines are bacterins using the 1984 N. risticii type strain, which demonstrate inadequate efficacy [23,24].

It was determined that N. risticii has similar genetic, antigenic, and morphologic characteristics to Neorickettsia helminthoeca [25,26], which were the major reasons it, as well as Neorickettsia (formerly Rickettsia, Ehrlichia) sennetsu, was regrouped into the genus Neorickettsia [27]. In addition, the bacterial parasite, known as the Stellantchasmus falcatus (SF) agent, isolated from metacercariae in fish from Japan and Oregon [28-30] belongs to this group. N. risticii also consists of a variety of strains, based on PCR and sequencing of 16S RNA and groEL, Western blot analyses using purified bacteria as antigen, and morphology [20,22,24,31].
Little is known about *N. risticii* surface-exposed proteins, and this missing information is crucial in the understanding of bacterium-host cell interactions. Antigenic and potential surface proteins ranging between 28 and 110-kDa in mass were previously detected by Western blotting, but these proteins were not identified [32]. Immunoprecipitation of *N. risticii* labeled with \(^1\text{H}\) and *N. risticii* immune mouse sera revealed potential surface proteins ranging from 25 to 62-kDa in mass, although these proteins were not identified [33]. Antigenic proteins of 70, 55, 51, and 44-kDa masses have been demonstrated utilizing recombinant proteins; again the proteins were not identified [33]. Antigenic proteins of 70, 55, 51, and 44-kDa masses have been demonstrated utilizing recombinant proteins; again the proteins were not identified [33]. Two highly-immunodominant proteins in two *N. risticii* strains were identified as GroEL and the 51-kDa antigen (P51) [35], but it was not shown whether these proteins were surface exposed. Strain-specific antigen (Ssa) was suggested as a surface immunogenic protein with potential use in vaccine production, although it was not determined to be bacterial surface exposed [24,36].

The identification of *Neorickettsia* proteins is now achievable with the availability of whole genome sequencing data on both the type strain (Miyayama) of *N. sennetsu* [37] and the type strain (Illinois) of *N. risticii* [38]. In this paper, we determined 1) major surface proteins by proteomics analysis on *N. risticii*, 2) horse immune recognition of *N. risticii* surface proteins, and 3) strain variations in aligned sequences of these major surface proteins with respect to their predicted secondary structures.

Materials and methods

Culturing and isolation of *N. risticii* strains

N. risticii Illinois\(^1\) [3] and a Pennsylvania strain (PA-1) [6] were cultured in P388D\(_1\) cells in 75-cm\(^2\) flasks containing RPMI 1640 (Mediatech, Inc., Herdon, VA, USA) supplemented with 5-10% fetal bovine serum (FBS) (U.S. Biotechnologies, Inc., Pottstown, PA, USA) and 4-6 mM L-glutamine (Invitrogen, Carlsbad, CA, USA) at 37°C under 5% CO\(_2\). *N. risticii* was isolated from highly-infected P388D\(_1\) cells as previously described for *N. sennetsu* Miyayama\(^2\) [39].

Biotinylation and streptavidin-affinity purification of *N. risticii* surface proteins

Biotinylation of purified *N. risticii* Illinois and PA-1 from twenty-five 75-cm\(^2\) flasks using EZ Link Sulfo-NHS-SS-Biotin (Pierce Biotechnology, Rockford, IL, USA) and subsequent bacterial lysis and collection of solubilized bacterial proteins were performed as previously described [39]. Streptavidin purification of Sulfo-NHS-SS-Biotinylated *N. risticii* proteins was then performed, followed by SDS-polyacrylamide gel electrophoresis (PAGE) and fixation and GelCode blue (Pierce) staining of the gel [39]. Proteins from four bands from *N. risticii* Illinois and proteins from four bands or band collections from PA-1 were identified by capillary-liquid chromatography-nanospray tandem mass spectrometry (Nano-LC/MS/MS) as previously described [40].

Western blotting using recombinant proteins

Recombinant P51 (rP51, 57 kDa), cloned from *N. risticii* Illinois (NRI\(_{0235}\)), and rNsp3 (35 kDa) and rNsp5 (28 kDa), cloned from *N. sennetsu* Miyayama (NSE\(_{0873}\) and NSE\(_{0875}\), respectively), were expressed by transformed BL21(DE3) cells using isopropyl-\(\beta\)-D-thiogalactopyranoside induction and His-tag purified as described previously [30,39]. Recombinant GroEL (55 kDa), derived from *N. sennetsu* Miyayama (NSE\(_{0642}\)), was acquired from stored aliquots [41]. Fifty \(\mu\)g of each recombinant protein were separated by SDS-PAGE, transferred to nitrocellulose membranes, and cut into strips. Western blotting was then performed on these strips using 1:500 dilutions of known positive horse sera samples as determined by IFA [16,21]. The membrane was subsequently incubated with a 1:1000 dilution of horseradish peroxidase-conjugated goat anti-horse (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD, USA) as secondary antibody. Enhanced chemiluminescence (ECL) LumiGLO chemiluminescent reagent (Pierce) and a LAS3000 image documentation system (FUJIFILM Medical Systems USA, Stamford, CT, USA) were used to visualize the protein bands with 300 s exposure. Bands were aligned using Precision Plus prestained protein standards (Bio-Rad Laboratories, Hercules, CA, USA).

Polymerase chain reaction, sequencing, and sequence alignment

DNA was purified from buffy coats of PHF-positive horses or cultures of *N. risticii* in P388D\(_1\) cells using the DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA, USA), according to manufacturer’s instructions. PCR amplification was then performed using either Phusion or Taq DNA polymerase (New England BioLabs, Ipswich, MA, USA) and primers designed for conserved regions through alignment of multiple *Neorickettsia* spp. and/or *N. risticii* strains (see Additional file 1). Sequencing was performed by The Ohio State University Plant-Microbe Genomics Facility. Sequences containing whole genes or gene fragments were translated and aligned mainly through the CLUSTAL W (slow/accurate) method in the MegAlign program of DNAStar (DNAStar, Madison, WI, USA); P51 was first aligned by CLUSTAL V (PAM250) method, and Ssa3 was aligned both by CLUSTAL W and manually. External loops were also aligned separately by CLUSTAL W for both P51 and Nsp3. Amino acid (aa) variations in *N. risticii* strains and other *Neorickettsia* spp. for all proteins were determined in relation to *N. risticii* Illinois. Protein alignments of the same size (including deletions as dashes) were analyzed by PHYLIP (v3.66) to obtain...
bootstrap values for 1000 replicates (using the programs SeqBoot, Protdist, Neighbor, and Consense) and to create dendograms (using the programs Protdist, Neighbor, and Drawgram) [42]. Protein properties, including antigenicity profiles and β-sheet predictions were determined using the Protean program (DNAStar). Gene and protein sequence homologies were also demonstrated using Basic Local Alignment Search Tool (BLAST) algorithms, including blastn, protein-protein blastp, and blastp [43,44].

Prediction of secondary structures
Predictions for Nsp2 and Nsp3 were based on a combination of the programming algorithm in the PRED-TMBB web server [45], hydrophobicity and hydrophobic movement profiles [46], and DNAStar MegAlign (DNAStar, Madison, WI, USA) alignment and analyses of all available Neorickettsia spp. sequences.

GenBank Accession Numbers
GenBank accession numbers of all sequences determined in this study are shown in Table 2. Nsp2 sequences previously deposited in GenBank used in this study are listed in Table 2. Nsp2 sequences included Neorickettsia illinois (NRI_0839, YP_003082043) and N. senettsu Miyayama (YP_746740). Previously-deposited Nsp3 sequences included Neorickettsia illinois (NRI_0841, YP_003082045) and N. senettsu Miyayama (YP_506742). Ssa3 sequences included Neorickettsia illinois (NRI_0872, YP_003082075) and N. senettsu Miyayama (NSE_0908, YP_506773). The Ssa1 sequence is from Neorickettsia illinois (NRI_0870, YP_003082073), and other Ssa3s are from 25-D (AAC31427) and 90-12 (AAC31428).

Results
Nano-LC/MS/MS of streptavidin-affinity purified surface proteins
Given that only the Neorickettsia illinois genome (NC_013009) has been sequenced [38], these data were used for proteomic analyses. Four Neorickettsia illinois (1984 isolate) and five Neorickettsia proteins (with conserved peptide sequences in relation to Neorickettsia Illinois) in PA-1 (2000 isolate) contained two or more peptide queries identified by Nano-LC/MS/MS (Table 3). Proteins identified for Neorickettsia Illinois were P51, GroEL (NRI_0614), Nsp3, and a conserved hypothetical protein (NRI_0567). The largest protein coverage and the largest number of peptides identified were both from P51. Proteins identified in PA-1 also included P51 and GroEL; the largest number of peptides was from P51. Minor proteins identified in PA-1 strain were DnaK (NRI_0017), ATP synthase F1, alpha subunit (AtpA, NRI_0132), and strain-specific antigen 3 (Ssa3, NRI_0872).

Immune recognition of major surface antigens by PHF-positive horse sera
Bacterial surface-exposed proteins are generally major antigens [47]. Though only Nsp3 was detected on the surface of Neorickettsia illinois by nano-LC/MS/MS, rNsp2 was included in the Western blotting studies because both Nsp3 and Nsp2 from N. senettsu Miyayama are significant surface proteins (Figure 1, Table 4) [39]. All 15 PHF-positive samples demonstrated recognition of rP51, with 11 out of 15 sera having strong recognition. N. senettsu Miyayama GroEL is 98% identical to N. risticii Illinois GroEL, and antisera to rGroEL of N. senettsu cross-reacts with GroEL from multiple species of Rickettsiales, including Neorickettsia [41]. Six out of 15 PHF-positive serum samples demonstrated strong reactivity to rGroEL, with the rest having weak to no reactivity. Nsp2 and Nsp3 from N. senettsu Miyayama are 83% and 84% identical to Nsp2 and Nsp3 from Neorickettsia Illinois, respectively, using protein-protein blastp. Only one serum sample reacted strongly to rNsp2, with the rest having weak to no reactivity. Three sera reacted strongly to rNsp3, with the rest having weak to no reactivity. All negative controls did not recognize any of the recombinant proteins.

Sequence variation in P51
P51 sequences are known to be strain variable [5,30]. Since P51 was found to be the major target of horse immune recognition, we examined in which part of the P51 molecule sequence variations occur. N. senettsu P51 was predicted to have 18 transmembrane β-barrel proteins with nine external loops [39]. N. senettsu and the SF agent, which are closely-related to Neorickettsia [28,30,48] were included for comparison. P51 alignments of a total of 52 sequences and sequence fragments from Neorickettsia during a 26-year period throughout the United States revealed high variability within regions corresponding to external loops 2 and 4 (Figure 2). Forty-three P51 sequence fragments (aa 136-176) containing most of external loop 2 (aa 120-176), and 36 P51 sequence fragments (aa 259-286) containing the entire external loop 4 were analyzed using PHYLIP (Figure 3a and 3b). Both loops 2 and 4 created patterns of clustering for sequences from states in the Eastern and Midwestern United States (East/Midwest US) and sequences from Japan, Malaysia, and US states bordering the Pacific Ocean (Pacific coast). The California strain Doc and the Ohio strain 081 did not follow this pattern, both being in East/Midwest US for external loop 2 and in Pacific coast for external loop 4. In external loop 2, Neorickettsia Illinois was only loosely associated with the other East/Midwest US sequences; in external loop 4, Neorickettsia Illinois tightly clustered with several East/Midwest US sequences. External loop 4 of 081 clustered with the SF agent strains rather than with other Neorickettsia strains.
Table 1 Sequences amplified for *Neorickettsia*

Sample ID	Location/Year	Fragment size (bp)	Gene(s) amplified	Accession no.
PA-1	Pennsylvania/2000	2091	*nsp2*, *nsp3*	HQ857586
		765	*ssa1* (p)	HQ857584
		1812	*ssa3*	HQ857585
Herodia	Pennsylvania/1999	673	*p51* (p)	HQ857589
		2133	*nsp2*, *nsp3*	HQ857588
		1460	*ssa3*	HQ857587
081	Ohio/1991	2420	*nsp2*, *nsp3*	HQ857591
		717	*ssa3* (p)	HQ857590
MN	Minnesota/2002	676	*p51* (p)	HQ857594
		2156	*nsp2*, *nsp3*	HQ857593
		1029	*ssa3* (p)	HQ857592
OV	Kentucky/1993	2103	*nsp2*, *nsp3*	HQ857596
		863	*ssa3*	HQ857595
IA03-1	Iowa/2003	1550	*nsp2* (p), *nsp3*	HQ857594
IL01-1	Illinois/2001	623	*nsp2* (p)	HQ857542
		489	*nsp3* (p)	HQ857543
IN01-1	Indiana/2001	1879	*nsp2* (p), *nsp3*	HQ857544
IN02-1	Indiana/2002	2052	*nsp2* (p), *nsp3*	HQ857545
IN02-2	Indiana/2002	542	*p51* (p)	HQ857547
		733	*nsp3* (p)	HQ857546
IN03-1	Indiana/2003	542	*p51* (p)	HQ906674
		2110	*nsp2*, *nsp3*	HQ906673
IN03-2	Indiana/2003	1361	*nsp2*, *nsp3* (p)	HQ906675
KY03-1	Kentucky/2003	673	*p51* (p)	HQ906678
		594	*p51* (p)	HQ906679
		306	*p51* (p)	HQ906680
		2095	*nsp2*, *nsp3*	HQ906677
		1129	*ssa3* (p)	HQ906676
KY03-2	Kentucky/2003	1398	*nsp2*, *nsp3* (p)	HQ906681
KY03-3	Kentucky/2003	1042	*nsp2* (p), *nsp3* (p)	HQ906682
OH07-1	Ohio/2007	259	*p51* (p)	HQ906685
		721	*ssa1* (p)	HQ906683
		1739	*ssa3*	HQ906684
OH07-2	Ohio/2007	259	*p51* (p)	HQ906686
OH07-3	Ohio/2007	1558	*nsp2* (p), *nsp3* (p)	HQ906688
OH07-4	Ohio/2007	995	*ssa3* (p)	HQ906687
		654	*p51* (p)	HQ906691
		1118	*nsp2* (p), *nsp3* (p)	HQ906690
		1029	*ssa3* (p)	HQ906689
OH10-1	Ohio/2010	768	*ssa3* (p)	HQ906692
OH10-2	Ohio/2010	660	*p51* (p)	HQ906693
TN02-1	Tennessee/2002	676	*p51* (p)	HQ906695
		622	*p51* (p)	HQ906696
		1893	*nsp2* (p), *nsp3*	HQ906694
SF Oregon	Oregon/2004	1171	*nsp2*	HQ906697
		842	*nsp3*	HQ906698
		370	*ssa3* (p)	HQ906699

*All samples, except for PA-1 and SF Oregon are from naturally-infected horses. PA-1 is an isolate from an experimental equine infection utilizing *N. risticii*-infected insects from Pennsylvania [6]. Both 081 and OV are strains of *N. risticii* previously described and with unique morphologies and sequences [5,20,22]. SF Oregon is a strain of the Stellantchasmus falcatus agent [30].

*bThe largest fragment size acquired containing the given gene(s) is shown. Multiple fragments may be present for a sample.

*p, partial sequence for the given gene was obtained.
Sequence variation in Nsp2

Nsp2 sequences of *N. risticii*, other than the sequence from *N. risticii* Illinois, have not been determined. Nsp2 was predicted to have eight transmembrane β-barrel domains with four external loops. A total of 20 Nsp2 proteins and protein fragments were aligned. Amino acid variations were determined in relation to *N. risticii* Illinois. Variations mainly occurred in external loops, with the most variation occurring within external loop 4 (Figure 4a). Full-length Nsp2 (including the signal peptide), with 11 sequences total, as well as the external loop 4 region (aa 244-297) with 19 sequences total were analyzed by PHYLIP (Figure 4b and 4c). For full-length Nsp2 and external loop 4, most *N. risticii* strains obtained after the year 2000 (post-2000 strains, Table 1) were 100% identical, whereas other strains were more diverse (Figure 4b and 4c). Nsp2 for both *N. risticii* Illinois and Herodia (which were 100% identical) were unique to all other *N. risticii* strains. For full-length Nsp2, 081 clustered with SF Oregon, rather than with other *N. risticii* strains. Additionally, external loop 2 (also demonstrating high variation) showed similar patterns of clustering as seen in full-length Nsp2 and external loop 4; the exceptions were MN, which was 100% identical to *N. risticii* Illinois and Herodia, and OH07-4, which had one amino acid difference in comparison to the majority of post-2000 strains in this region (data not shown).

Sequence variation in Nsp3

Nsp3 sequences of *N. risticii*, except for the sequence from *N. risticii* Illinois have also not been determined. Nsp3 was predicted to have eight transmembrane β-barrel proteins with four external loops. Alignment of a total of 21 Nsp3 proteins and protein fragments demonstrated the highest variation within predicted external loop 2, yet there was less variation in the C-terminal region comprising external loops 3 and 4 (Figure 5a). Fourteen full-length Nsp3 sequences (including signal peptides) and 17 external loop 2 regions (aa 102-136) were analyzed by PHYLIP (Figure 5b and 5c). As seen in Nsp2, *N. risticii* Illinois strains obtained after the year 2000 (post-2000 strains, Table 1) were 100% identical, whereas other strains were more diverse (Figure 5b and 5c). Nsp3 for both *N. risticii* Illinois and Herodia (which were 100% identical) were unique to all other *N. risticii* strains. For full-length Nsp3, 081 clustered with SF Oregon, rather than with other *N. risticii* strains. Additionally, external loop 2 (also demonstrating high variation) showed similar patterns of clustering as seen in full-length Nsp2 and external loop 4; the exceptions were MN, which was 100% identical to *N. risticii* Illinois and Herodia, and OH07-4, which had one amino acid difference in comparison to the majority of post-2000 strains in this region (data not shown).

Table 2 GenBank PS1 sequences used in this study

Sample ID	Accession no.	Sample ID	Accession no.
N. risticii Illinois^a	YP_003081464 11908	PA-1	AAL79561
PA-1	AAL12490	PA-2	AAL12490
Eclipse	AAC01597	Other strains	
SqCaddis	AAC01597	Ms. Annie	
SqMouse	AAL79561	ShSN-1	
S21	AAL79561	S21	
TW-1	AAR22503	SRC	
TW-2	AAR22504	SCID/CB17	
25-D	AAF0962	Shasta-horse	
90-12	AAF0962	Caddis-1	
CM1-1	AAF0962	Caddis-2	
O81	AAF0962	Siskiyou horse-1	
OV	AAF0962	Siskiyou horse-2	
Doc	AAF0962	AAF20069	
Oregon	AAF0962	AAF20070	
N. sennetsu Miyayama^b	YP_506136	Siskiyou horse-3	
Kawano	AAC01598	Juga-1	
Nakazaki	AAC01598	Stonefly-1	
25-D	AAF26749	SRC	

*All sequences listed are PS1 sequences that have been previously deposited in GenBank. *N. sennetsu* Miyayama PS1 is NSE_0242.

Table 3 Proteomics-identified proteins for two *N.risticii* strains

Locus ID	Protein name	Mol Mass (kDa)	pI^c	% (query) peptide coverage^d	Signal peptide^e
N. risticii Illinois^f	S1-kDa antigen (PS1)	54.9	8.44	49.2 (139)	Yes (20-21)
NRI_0614	Heat shock protein 60 (GroEL)	58.1	5.23	43.2 (36)	No
NRI_0841	Neorickettsia surface protein 3 (Nsp3)	25.7	5.96	12.0 (2)	Yes (24-25)
NRI_0567	Conserved hypothetical protein	50.9	4.26	9.85 (2)	No
PA-1	PS1	54.9	8.44	34.6 (41)	Yes (20-21)
NRI_0881	GroEL	58.1	5.23	45.6 (36)	No
NRI_0017	Heat shock protein 70 (DnaK)	68.4	5.18	2.20 (6)	No
NRI_0132	ATP synthase F1, alpha subunit (AtpA)	55.9	5.29	2.75 (3)	No
NRI_0872	Strain-specific surface antigen 3 (Ssa3)	41.9	6.01	2.76 or 4.72^d (2)	No

^aTheoretical isoelectric point of the given protein as predicted by ExPASy Compute pI/MW tool [64].

^bIndicates percentage coverage of proteins by all peptides. Numbers in parentheses are the number of peptide queries for each protein identified in the given band.

^cSignal peptide presence as determined by the Center for Biological Sequence Analysis SignalP v.3.0 [65]. Parentheses indicate amino acids between which cleavage is predicted to occur in the given protein.

^dThe peptide detected twice was within the repeated region of Ssa3, therefore the percentage coverage could be two different percentages.

^eTable 2: GenBank PS1 sequences used in this study

^fhttp://www.veterinaryresearch.org/content/42/1/71

Gibson et al. Veterinary Research 2011, 42:71
Illinois had marked differences to other sequences, in particular to most post-2000 strains (Table 1). TN02-1 and IL01-1 had the highest similarity to *N. risticii* Illinois.

Sequence variation in Ssa3

Ssa3 sequences of *N. risticii*, other than that of *N. risticii* Illinois have not been ascertained. Ssa3 was included in the analysis, since unknown Ssas were previously reported as major *N. risticii* surface antigens in the 1984 Maryland strain 25-D and the 1990 Maryland strain 90-12 [31], and a small amount Ssa3 was detected in both *N. risticii* PA-1 in this study and in *N. sennetsu* Miyayama [39]. There was no signal peptide predicted for Ssa3 [38], and Ssa3 was not predicted to have a β-barrel structure. It was originally shown that ssas contain a wide variety of mainly small repeats of 10-55 bp in size [31]. Tandem repeats ranging in size from 63-156 bp are present in ssas of *N. risticii* Illinois [38]. In particular, the N terminus of Ssa3 contains 2.2 copies of a 52-aa (156 bp) tandem repeat in *N. risticii* Illinois (aa 53-196) [38]. Thirteen Ssa3 proteins and protein fragments were aligned and compared (Figure 6a). Within this N-terminal repeated region, *Neorickettsia* spp. consisted of anywhere from zero to four repeated 52-aa peptides arranged in tandem followed by a terminal 40-aa peptide similar to the 52-aa repeats (for *N. risticii* Illinois: 50% identical, E-value = 6 × 10⁻⁸, using protein-protein blastp). It appears that the number of 52-aa repeats increases over time; six post-2000 strains (Table 1) have four repeats. There is further variety in the form of point mutations within the 52-aa repeats and terminal 40-aa peptide. In addition, the terminal 40-aa peptide in SF Oregon was truncated by 9 aa (31 aa in length, with the downstream sequence aligning with the other *Neorickettsia* sequences downstream of their terminal 40-aa peptides). Of note, there are β-sheets predicted to encompass most of the repeated region (aa 40-67; 76-119; 128-167) and scattered within the C-terminal region (aa 235-433).

Sequence variation in Ssa1

Ssa1 sequences of *N. risticii*, other than that of *N. risticii* Illinois have not been determined. Given the strongest similarities between ssa1 of *N. risticii* Illinois and the unknown ssas from *N. risticii* strains 25-D (isolated in 1984) and 90-12 (isolated in 1990) [38], two ssa1 fragments...
were amplified, sequenced, and translated from PA-1 and OH07-1. PA-1 (aa 11-249) and OH07-1 (aa 1-239) Ssa1 fragments were aligned with corresponding regions from *N. risticii* Illinois Ssa1 (aa 246-469) and the Ssas from 25-D (aa 287-507) and 90-12 (aa 579-817). Ssa1 fragments from PA-1 and OH07-1, which are both post-2000 strains, clustered with the 90-12 Ssa, rather than with the 1980s isolates *N. risticii* Illinois Ssa1 and 25-D Ssa, suggesting a chronological trend (Figure 6b).

Discussion

The genes *p51*, *nsp2*, *nsp3*, and *ssa3* are uniquely evolved in *Neorickettsia* spp. The gene *p51* is a single copy gene and demonstrates only loose associations with other proteins of the family Anaplasmataceae [37,38]. The *nsp* and *ssa* genes are both potential operons, consisting of three genes tandemly arranged [38]. The *nsp*s belong to pfam01617, and similar to *Ehrlichia chaffeensis omp*-*1* (*p28*) genes (also from pfam01617) [49], the proteins

Horse IDa	Clinical signsb	Location	Year	IFA titer
1 (OH10-1)	A, F, De, Deh, C	Johnstown, OH	2010	> 1:10,240
2 (OH10-2)	A, F, De, C, L, Et, EUTH	Grove City, OH	2010	> 1:10,240
3	A, F, De, Deh, L, Et, EUTH	Richwood, OH	2010	> 1:10,240
4	A, De, F	Galloway, OH	2010	> 1:10,240
5	A, De, Deh, F, C, L	Dayton, OH	2010	> 1:10,240
6	A, F, C, L, EUTH	Loveland, OH	2010	> 1:10,240
7	U	Indiana	2010	1:5120
8	A, Di, De, Deh, F, L	Troy, OH	2008	1:1280
9	U	Kentucky	2008	1:1280
10	U	Indiana	2008	1:1280
11	A, F, Di, De, Deh	Columbus, OH	2008	1:1280
12	A, F, Di	Cattaraugus, NY	2010	1:640
13	U	Indiana	2008	1:640
14	A, F, C	Oak Hill, OH	2008	1:80
15	A, F	Utica, OH	2008	1:80
N1	U	New Jersey	2010	<1: 20
N2	U	Ohio	2010	<1: 20
N3	U	New Jersey	2010	<1: 20

aSera 1 and 2 are from the same horses as buffy coats OH10-1 and OH10-2, respectively, as identified in Table 1.
bA, anorexia; F, fever; De, depression; Deh, dehydration; C, colic; L, laminitis; Et, endotoxemia; EUTH, euthanized; U, Unknown; Di, diarrhea.
encoded by *nsp2* and *nsp3* were strain variable. As seen in the ssas, other members of the family Anaplasmataceae have genes encoding proteins containing strain-variable tandem repeats (involving amino acid variation and changes in the numbers of tandem repeats), including Trp120 (formerly gp120), Trp47 (formerly gp47), and VLPT (variable-length PCR target) from *E. chaffeensis* and Trp140 (formerly gp140), Trp36 (formerly gp36), and gp19 from *Ehrlichia canis* [50-52]. Of note, the proteins encoded by the ssas are not homologous to any proteins of the family Anaplasmataceae by blastp. Among *p51*, the *nsp5*, and the ssas, there have been no signs of intragenomic recombination events, which are seen in the *Anaplasma p44/msp2* expression locus [53,54].

Proteomics results performed on two strains of *N. risticii* established that *p51* is a dominant surface-expressed protein. The recognition of recombinant *p51* by PHF horse sera, even by 1:80 IFA titer sera suggests *p51* is expressed and highly recognized within the present day naturally-infected horses. Despite *p51* amino acid sequence variation among *N. risticii* strains, this strong universal recognition by horse immune sera suggests r*P51* may serve as a defined serodiagnostic antigen. Furthermore, the study suggests that there are immunodominant conserved

Figure 3 P51 amino acid sequence variations among *Neorickettsia* sequences. Dendrograms of P51 from (A) a 41-aa fragment (counting all insertions) including the majority of predicted external loop 2 with 43 sequences and (B) a 31-aa fragment (counting all insertions) including the entire predicted external loop 4 with 36 sequences are shown with bootstrap values greater than 50.0% for 1000 replicates. *, bootstrap value of 90.0% or greater. East/Midwest US, sequences from states in the Eastern and Midwestern US. Pacific coast, sequences from Japan, Malaysia, and US states bordering the Pacific Ocean. GenBank accession numbers for P51 sequences are listed in Tables 1 and 2.
peptide sequences within P51 which might serve as even more specific PHF diagnostic antigens.

Sequence comparison of these surface-exposed proteins of *N. risticii* strains, with respect to the predicted protein secondary structure, the majority of which are clinical isolates, indicates there are hot spots within the genes with greater strain divergence. These include external loops 2 and 4 in P51, external loop 4 in Nsp2, external loop 2 in Nsp3, and the repeated region of Ssa3. P51 showed strong geographical association; and

Figure 4 Nsp2 amino acid sequence variations. (A) Amino acids different from *N. risticii* Illinois, including insertions and deletions are divided by the number of sequences plotted for each amino acid position (# aa diffs). The horizontal axis displays Nsp2 amino acid positions (aa position) including the signal peptide and all detected amino acid insertions (309 aa total). SP, signal peptide. E, external loop; and TM, transmembrane domain are based on the predicted secondary structure. The number of sequences available at each amino acid position on Nsp2 (# seq) is shown below. (B) Dendrograms of Nsp2 from the full-length protein, including the signal peptide (12 sequences total) and (C) the predicted external loop 4 (55 aa, including all insertions; 19 sequences total) are shown with bootstrap values greater than 50.0% for 1000 replicates. *, bootstrap value of 90.0% or greater. Post-2000 sequences are shown in the shaded area. GenBank accession numbers of new sequences are listed in Table 1.
Figure 5 Nsp3 amino acid sequence variations. (A) Amino acids different from *N. risticii* Illinois, including insertions and deletions are divided by the number of sequences plotted for each amino acid position (# aa diffs). The horizontal axis displays Nsp3 amino acid positions (aa position) including the signal peptide and all detected amino acid insertions (264 aa total). SP, signal peptide. E, external loop; and TM, transmembrane domain are based on the predicted secondary structure. The number of sequences available at each amino acid position on Nsp3 (# seqs) is shown below. (B) Dendrograms of Nsp3 from the full-length protein, including the signal peptide (14 sequences total) and (C) the predicted external loop 2 (57 aa, including all insertions; 17 sequences total) are shown with bootstrap values greater than 50.0% for 1000 replicates. *, bootstrap value of 90.0% or greater. Post-2000 sequences are shown in the shaded area. GenBank accession numbers of new sequences are listed in Table 1.
Figure 6 Ssa amino acid variations and repeated regions (A) Ssa3 changes in amino acids, including insertions and deletions were divided by the number of sequences for each amino acid position (# aa diffs). The length of Ssa3 (horizontal axis) displays Ssa3 amino acid positions (aa position) and includes all amino acid insertions (537 aa total), and the number of sequences available at each amino acid position on Ssa3 (# seqs) is given. The amplified Ssa3 repeat region location (aa 53-196, in relation to N. risticii Illinois) and variety are demonstrated below. Dark gray boxes indicate the 52-aa repeats found in the N. risticii sequences. Light gray boxes indicate the terminal 40-aa peptide found in all Neorickettsia sequences. Black lines indicate amino acid variations in relation to N. risticii Illinois. The box containing diagonal lines in SF indicates a 9-aa truncation in the 40-aa peptide in relation to the other Neorickettsia spp. (B) The dendrogram of a 241-aa fragment of Ssa1, including all insertions (five sequences total) is shown. *, bootstrap value of 90.0% or greater. GenBank accession numbers of new sequences are listed in Table 1.
Nsp2, Nsp3, and Ssa3 showed temporal association. Importantly, *N. risticii* Illinois (upon which vaccines for PHF are produced) is distinct from most East/Midwest US strains (P51) and most post-2000 strains (Nsp2, Nsp3, and Ssa3), which may be a contributing factor in PHF vaccine failure [24,55].

There are outlier strains which do not fit the geographical and temporal patterns. These include 081 [20,22], the Kentucky strain OV [22], and the Kentucky strain Herodia. Unique sequences in other *N. risticii* strains, such as TN02-1 (P51, Nsp2, and Nps3), KY03-3 (Nsp2), IL01-1 (Nsp3), and OH10-1 (Ssa3), suggest that variation contrary to the popular geographical and temporal influences may be more widespread. When additional contemporary sequences and sequences from more varied geographic regions become available, these analyses are expected to improve.

Possible explanations for extensive DNA sequence variation within *Neorickettsia* include the defective DNA repair systems in both *N. risticii* and *N. sennetsu* [37,38]. This would result in higher mutation rates for *Neorickettsia* [56], which would agree with the temporal changes and the production of outlier strains of *N. risticii*. P51 variation showed substantial geographical association, suggesting these variations were selected under local environmental pressures. It is possible that geographical association of *N. risticii* sequence variation is due to *N. risticii* strains being selected within essential reservoir trematode populations. In addition, diverse *N. risticii* strains may have emerged due to selective pressures inflicted on the infected trematodes and/or on the trematodes' hosts [4-9,57-59]. Humoral immunity would thus not play any direct role in creating genetic diversity within *N. risticii* populations. Since *Neorickettsia* spp. are known (*N. risticii* and *N. helminthoeca*) and suspected to be vertically transmitted within their trematode hosts [8,13,60], mammalian infection is not expected to be required for maintaining *Neorickettsia* in the natural environment.

Regardless the cause, this genetic variation would result in increased *N. risticii* survival as a species. *N. risticii* surface protein genetic diversity revealed in the present study will help in understanding variations in PHF virulence and clinical signs. It may also be possible to use this new molecular knowledge for vaccine development. It would, however, necessitate taking into account that the pathogen is an obligate intracellular pathogen, indicating that not only humoral immune responses, but also cell-mediated immunity would play an active role in preventing bacterial infection [61-63].

Genes encoding the two original Ssas, called P85 (90-12) and P50 (25-D) are most related to *ssa1* from *N. risticii* Illinois [24,31,38,55], but they also show similarities to *ssa2* and the non-coding region between *ssa1* and *ssa2* using blastn. Although both are Maryland isolates, the 25-D strain was isolated six years earlier than the 90-12 strain [31], suggesting both temporal variation and the potential development of chimeras of multiple Ssas and non-coding regions in P50, P85, and post-2000 Ssa1 (due to the similarities to PA-1 and OH07-1 Ssa1 fragments to P85). It is possible that the high variability of Ssa1 may have prevented PA-1 Ssa1 from being identified by proteomics. However, there is the obvious lack of large numbers of peptides identified by proteomics for Ssas in *N. risticii* Illinois using the isogenic Illinois strain sequence data and in *N. sennetsu* using Miyayama isogenic strain data [39]. It is likely that Ssas are not a dominant surface protein in mammalian cells.

In conclusion, our data demonstrate the variety present within major surface proteins of *N. risticii*, and they suggest conservation among geographical regions and time periods. In addition, P51 is implicated as the major surface antigen of *N. risticii*. These data will be valuable in developing better diagnostic methods and may help in the development of more efficacious vaccines.

Additional material

Additional file 1: Supplemental Table 1. Primers utilized for PCR amplification. Word document demonstrating primers utilized for PCR amplification of *p51*, *nsp2*, *nsp3*, *ssa1*, and *ssa3*.

Acknowledgements

We would like to thank the members of the Mass Spectrometry and Proteomics Facility, including Dr Kari Green-Church for their expertise and assistance. We would like to thank Dr Minggun Lin for his technical advice and assistance and Dr Koshiro Miura for his assistance in training GP. This work was funded by grant R01AI07885 from the National Institutes of Health. KEG was partially supported by T32 RR0070703, and GP and SM were funded by T35 RR021310 from the National Institutes of Health.

Authors’ contributions

KEG drafted the manuscript, designed primers, performed PCR and overall sequence analyses, and created secondary structures and dendrograms. GP designed primers, performed PCR, and performed preliminary sequence analyses. SM performed all SDS-PAGE and Western blotting experiments and gathered clinical data. YR edited the manuscript and supervised all research. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 11 March 2011 **Accepted:** 2 June 2011 **Published:** 2 June 2011

References

1. Rikihisa Y, Perry B: Causative agent of Potomac horse fever. *Vet Rec* 1984, 115:554-555.
2. Rikihisa Y, Perry B, Cordes D: Rickettsial link with acute equine diarrhoea. *Vet Rec* 1984, 115:390.
3. Holland CJ, Ristic M, Cole AI, Johnson P, Baker G, Goetz T: Isolation, experimental transmission, and characterization of causative agent of Potomac horse fever. *Science* 1985, 227:522-524.
4. Barbour AE, Reubel GH, Madigan JE, Vredesvoorde LK, Miller PE, Rikihisa Y: Detection of *Ehrlichia risticii* the agent of Potomac horse fever in
freshwater stream snails (Pleuroceridaceae Juga spp.) from northern California. Appl Environ Microbiol 1998, 64:2888-2893.

5. Kanter M, Mott J, Ohashi N, Fried B, Reed S, Lin YC, Rikihisa Y: Analysis of 16S rRNA and 51-kilodalton antigen gene and transmission in mice of Ehrlichia risticii in virgulate trematodes from Elmia livenscens snails in Ohio. J Clin Microbiol 2000, 38:3349-3351.

6. Mott J, Muramatsu Y, Seaton E, Martin C, Reed S, Rikihisa Y: Molecular analysis of Neorickettsia risticii in adult aquatic insects in Pennsylvania, in horses infected by ingestion of insects, and isolated in cell culture. J Clin Microbiol 2002, 40:690-693.

7. Chae JS, Pusterla N, Johnson E, Derock E, Lawler SP, Madigan JE: Lack of lysosomal fusion with phagosomes. Prevention of Potomac horse fever. J Emerg Med 2000, 37:619-625.

8. Gibson KE, Rikihisa Y, Zhang C, Martin C: Neorickettsia risticii is vertically transmitted in the trematode Acanththrium oreogeneum and horizontally transmitted to bats. Environ Microbiol 2005, 7:263-272.

9. Gibson KE, Rikihisa Y: Molecular link of different stages of the trematode host of Neorickettsia risticii to Acanthocephalum oreogeneum. Environ Microbiol 2008, 10:2064-2073.

10. Knowles RC, Anderson C, Shipley W, Whitlock R, Perry B, Davidson J: Acute Equine Diarreahea Syndrome (AEDS): A Preliminary Report. In Proceedings of the 29th annual convention of the American Association of Equine Practitioners. Edited by: Milne FJ. Las Vegas, Nevada: American Association of Equine Practitioners; 1988:353-357.

11. Long MT, Goetz TE, Kakoma I, Whiteley HE, Lock TE, Holland CJ, Foreman JH, Baker GJ: Evaluation of fetal infection and abortion in pregnant ponies experimentally infected with Ehrlichia risticii. Am J Vet Res 1995, 56:1307-1316.

12. Rikihisa Y, Jiang BM: Neorickettsia risticii and horizontal transmission in mice of Ehrlichia risticii. Infect Immun 1998, 66:3682-3688.

13. Rikihisa Y, Zhang C, Kanter M, Cheng Z, Ohashi N, Fukuda T: Analysis of p51, groEL, and the major antigen PS1 in various species of Neorickettsia, an obligate intracellular bacterium that infects trematodes and mammals. J Clin Microbiol 2004, 42:3823-3826.

14. Biswas B, Vemulapalli R, Dutta SK: Molecular basis for antigenic variation of a protective strain-specific antigen of Ehrlichia risticii. Infect Immun 1998, 66:3682-3688.

15. Kaylor PS, Crawford TB, McElwain TF, Palmer GH: Passive transfer of antibody to Ehrlichia risticii protects mice from ehrlichiosis. Infect Immun 1999, 67:2959-2962.

16. Dutta SK, Mattingly BL, Shankarappa B: Antibody response to Ehrlichia risticii and antibody reactivity to the component antigens in horses with induced Potomac horse fever. Infect Immun 1989, 57:2959-2962.

17. Perryman LE, Palmer GH: Ehrlichia risticii strains with eight antibiotic. Antimicrob Agents Chemother 1988, 32:896-901.

18. Rikihisa Y, Dumler JS, Daich GA: Neorickettsia risticii. In The Proteobacteria, Part C: Bergey's Manual of Systematic Bacteriology. Volume 2, 2 edition. Edited by: Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York, NY: Springer; 2005:132-137.

19. Rikihisa Y: Rickettsial Diseases. In Equine Internal Medicine. 2 edition. Edited by: Reed SM, Bayly WM, Sellon DC. Philadelphia, PA: W. B. Saunders; 2004:96-109.

20. Wells MY, Rikihisa Y: Lack of lysosomal fusion with phagosomes containing Ehrlichia risticii in P388D1 cells: abrogation of inhibition with octotrypticin. Infect Immun 1988, 56:1209-1215.

21. Mott J, Rikihisa Y, Zhang Y, Reed SM, Yu CY: Comparison of PCR and culture to the indirect fluorescent-antibody test for diagnosis of Potomac horse fever. J Clin Microbiol 1997, 35:2215-2219.

22. Ristic M, Holland CJ, Dawson JE, Sessions J, Palmer J: Diagnosis of equine monocytic ehrlichiosis (Potomac horse fever) by indirect immunofluorescence. Am J Vet Med Res 1986, 189:39-46.

23. Rikihisa Y, Reed SM, Sams RA, Gordon JC, Pretzman CI: Serosurvey of horses with evidence of Ehrlichia monocytic ehrlichiosis. J Am Vet Med Assoc 1990, 197:1327-1332.

24. Rikihisa Y: The tribe Ehrlichiae and ehrlichial diseases, Clin Microbiol Rev 1991, 4:286-308.

25. Chaichanasiriwithaya W, Rikihisa Y, Yamamoto S, Reed S, Crawford TB, Penryman LE, Palmer GH: Antigenic, morphologic, and molecular characterization of new Ehrlichia risticii isolates. J Clin Microbiol 1994, 32:3036-3033.

26. Pretzman CI, Rikihisa Y, Ralph D, Gordon JC, Bech-Nielsen S: Enzyme-linked immunosorbent assay for Potomac horse fever disease. J Clin Microbiol 1987, 25:31-36.

27. Wen B, Rikihisa Y, Fuerst PA, Chaichanasiriwithaya W: Diversity of 16S rRNA genes of new Ehrlichia strains isolated from horses with clinical signs of Potomac horse fever, Int J Syst Bacteriol 1995, 45:315-318.

28. Palmer JE: Prevention of Potomac horse fever. Cornell Vet 1989, 79:201-205.

29. Dutta SK, Vemulapalli R, Biswas B: Association of deficiency in antibody response to vaccine and heterogeneity of Ehrlichia risticii strains with Potomac horse fever vaccine failure in horses. J Clin Microbiol 1998, 36:506-512.

30. Rikihisa Y, Stills H, Zimmerman G: Isolation and continuous culture of Neorickettsia helminthoeca in a macrophage cell line. J Clin Microbiol 1991, 29:1928-1933.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Park J, Rikihisa Y: Inhibition of Protection against murine potomac horse fever by an L-arginine-dependent killing of intracellular "Ehrlichia risticii" by macrophages treated with gamma interferon. Infect Immun 1992, 60:3504-3508.

Park J, Rikihisa Y: Protection against murine potomac horse fever by an inactivated "Ehrlichia risticii" vaccine. Vet Microbiol 1991, 27:339-350.

Gastiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Baroch A: Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook. Edited by: Walker JM. Totowa, N.J: Humana Press; 2005:571-607.

Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.

doi:10.1186/1297-9176-42-71

Cite this article as: Gibson et al.: Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations. Veterinary Research 2011 42:71.