Epitaxial highly ordered Sb:SnO₂ nanowires grown by the vapor liquid solid mechanism on m-, r- and a-Al₂O₃†

M. Zervos, N. Lathiotakis, N. Kelaidis, A. Othonos, E. Tanasa and E. Vasile

Epitaxial, highly ordered Sb:SnO₂ nanowires were grown by the vapor–liquid–solid mechanism on m-, r- and a-Al₂O₃ between 700 °C and 1000 °C using metallic Sn and Sb with a mass ratio of Sn/Sb = 0.15 ± 0.05 under a flow of Ar and O₂ at 1 ± 0.5 mbar. We find that effective doping and ordering can only be achieved inside this narrow window of growth conditions. The Sb:SnO₂ nanowires have the tetragonal rutile crystal structure and are inclined along two mutually perpendicular directions forming a rectangular mesh on m-Al₂O₃ while those on r-Al₂O₃ are oriented in one direction. The growth directions do not change by varying the growth temperature between 700 °C and 1000 °C but the carrier density decreased from 8 × 10¹⁹ cm⁻³ to 4 × 10¹⁷ cm⁻³ due to the re-evaporation and limited incorporation of Sb donor impurities in SnO₂. The Sb:SnO₂ nanowires on r-Al₂O₃ had an optical transmission of 80% above 800 nm and displayed very long photoluminescence lifetimes of 0.2 ms at 300 K. We show that selective area location growth of highly ordered Sb:SnO₂ nanowires is possible by patterning the catalyst which is important for the realization of novel nanoscale devices such as nanowire solar cells.

1 Introduction

Metal oxide semiconductor nanowires (NWs) such as Sb:SnO₂, Sn:In₂O₃, Al:ZnO and In:ZnO NWs have a high conductivity but they are also capable of light emission as shown for Sn:In₂O₃ NWs by O’ Dwyer et al. and Gao et al. Despite ongoing efforts into the growth and properties of such metal oxide (MO) NWs only a few have obtained epitaxial, ordered networks which is essential for the realization of novel nanoscale devices with improved performance like nanowire solar cells (NWSCs). More specifically Wan et al. have obtained ordered Sn:In₂O₃ NWs by homo epitaxy on an Sn:In₂O₃ buffer layer while Nguyen et al. and Gao et al. have obtained ordered Sn:In₂O₃ NWs by hetero epitaxy on m-, a- and c-Al₂O₃. To the best of our knowledge all other MO NWs that have been obtained previously are not oriented in an epitaxial fashion along any particular direction. It is important then to obtain earth abundant MO NWs such as Sb:SnO₂ NWs as low cost alternatives to Sn:In₂O₃.

In the past we have grown SnO₂ NWs via the vapor liquid solid (VLS) mechanism at 800 °C and 10⁻¹ mbar which had a carrier density of the order of 10¹⁶ cm⁻³ and mobility of 70 cm² V⁻¹ s⁻¹, as determined from THz conductivity spectroscopy. High conductivity SnO₂ NWs have been obtained via the incorporation of Sb, Mo³⁺ and F⁻ in SnO₂ NWs, while recently, Ma et al. showed theoretically that a semiconductor to semi-metal transition is possible via the incorporation of Pb in SnO₂. However, in most cases Sb has been used as an n-type donor impurity in SnO₂ NWs. All of the Sb:SnO₂ NWs have been obtained by using metallic Sn and Sb in the past, but they were not ordered.

Nevertheless, it is necessary to point out that Mathur et al. has obtained un-doped SnO₂ NWs via the VLS mechanism that were ordered on TiO₂ (001) which is isostructural with the tetragonal rutile crystal structure of SnO₂. Similarly, Kim et al. obtained un-doped, epitaxial, SnO₂ NWs on TiO₂ (101) while Leonardy et al. investigated the structural properties of ordered, un-doped, SnO₂ NWs on m- and c-Al₂O₃ at 700 °C by using SnO under a flow of Ar at 10 mbar. Both Mathur et al. and Leonardy et al. obtained SnO₂ NWs which were oriented in two mutually perpendicular directions while the SnO₂ NWs of Kim et al. were aligned in three directions. Others like Mazeina et al. have grown vertical, un-doped SnO₂ NWs via the VLS mechanism on c-Al₂O₃ at 900 °C with limited ordering and
uniformity. Lateral, but un-doped SnO2 NWs have also been obtained by Kim et al.\textsuperscript{28} and Choi et al.\textsuperscript{29} while more recently Wang et al.\textsuperscript{30} investigated lateral SnO2 NWs that were aligned on the surface of m-Al2O3. All of these studies on epitaxial, ordered un-doped SnO2 NWs\textsuperscript{27–30} focused primarily on their growth and structural properties. It is imperative then to investigate the electrical and optical properties of similar Sb:SnO2 NWs which is critical in evaluating their potential for subsequent use in devices such as NWSCs.

Here we show that epitaxial, ordered Sb:SnO2 NWs can be grown via the VLS mechanism on m-, r- and a-Al2O3 only in a narrow window of growth conditions. We describe their morphology, structural, electrical and optical properties, in detail and show that selective area location growth of ordered Sb:SnO2 NWs is possible which in turn is attractive for the realization of NWSCs as a low cost alternative to Sn:In2O3 NWs.

2 Methods

2.1. Epitaxial growth of Sb:SnO2 NWs

The Sb:SnO2 NWs were grown using a 1” hot wall, low pressure chemical vapour deposition (LPCVD) reactor, capable of reaching 1100 °C, which was fed via a micro flow leak valve positioned on the upstream side, just after the gas manifold which consists of four mass flow controllers. A chemically resistant, rotary pump that can reach 10\textsuperscript{-4} mbar was connected downstream. For the growth of the Sb:SnO2 NWs, metallic Sn and Sb (Aldrich, 100 Mesh, 99.9%) were weighed with an accuracy of ±1 mg. We used an excess of Sb, i.e. a mass ratio of Sn/Sb ≈ 0.1, and the total mass of Sn and Sb was kept fixed and equal to 100 mg or 0.1 g. Square samples of 10 mm × 10 mm c-, m-, r- and a-Al2O3 were cleaned sequentially in trichloroethylene, methanol, acetone, isopropanol, rinsed with de-ionised water, dried with nitrogen and then coated with ±1 nm Au. The elemental Sb and Sn as well as the c-, m-, r- or a-Al2O3 substrates were loaded in the same quartz boat which was positioned at the centre of the 1” LPCVD reactor. The latter was pumped down to 10\textsuperscript{-4} mbar and purged with 1000 sccm of Ar for 10 min at 1 mbar. Subsequently the temperature was ramped up to 800 °C at 30°C min\textsuperscript{-1} using the same flow of Ar. Upon reaching 800 °C a flow of 10 sccm O\textsubscript{2} was added to the flow of Ar in order to grow the Sb:SnO2 NWs over 10 min at 1 mbar, followed by cool down without Ar. We have grown Sb:SnO2 NWs on c-, m-, r- and a-Al2O3 using these growth conditions and changed the growth temperature between 700 °C to 1000 °C.

2.2. Characterization of Sb:SnO2 NWs

The morphology, crystal structure and composition of the Sb:SnO2 NWs was determined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray analysis (EDX). High resolution transmission electron microscopy (HRTEM) was carried out using a TECNAI F30 G2 S-TWIN operated at 300 kV. The optical properties of the Sb:SnO2 NWs were determined by steady state and transient absorption–transmission spectroscopy. The steady state and time resolved photoluminescence (PL) were also measured between 10 K and 300 K, while the electrical properties, i.e. carrier density and resistivity, were measured by the Hall effect in the Van der Pauw geometry similar to Costa et al.\textsuperscript{31} In particular the Sb:SnO2 NWs were transferred from the m-, r- or a-Al2O3 onto 10 mm × 10 mm c-Al2O3 by applying pressure. This results into a dry transfer of the ordered Sb:SnO2 NWs onto the c-Al2O3 and the formation of a planar interconnected network. We then deposited In contacts over the Sb:SnO2 NWs by thermal evaporation using a shadow mask. The Sb:SnO2 NWs on c-Al2O3 was not heated up during the deposition, and the In contacts had diameters of ≈1 mm at the four corners of the 10 mm × 10 mm c-Al2O3, but we did not anneal them. The Hall effect was measured using a GMW3470 Electromagnet at 0.3 Tesla. The magnetic field was calibrated with a Hirst GM08 Gaussmeter. A Keithley 2635 A current source and Keithley 2182A nanovoltmeter, controlled by Lab View were used to provide a current and measure the voltages.

3 Results and discussion

In the past, we have shown that the reaction of Sn with O\textsubscript{2} at 800 °C and 10\textsuperscript{-1} mbar results into a high yield and uniform distribution of SnO2 NWs on Si (001) or fused SiO\textsubscript{2}. The SnO2 NWs have average diameters of ≈50 nm, lengths up to ≈100 μm and grow by the VLS mechanism whereby Sn enters the Au catalyst particles on the surface of Si (001) or fused SiO\textsubscript{2} and forms liquid Au:Sn particles. Upon saturation, solid SnO\textsubscript{2} forms beneath the liquid Au:Sn particles via the reaction with O\textsubscript{2} at the triple phase junction, as shown in Fig. 1(a), leading to one dimensional, bottom-up growth.\textsuperscript{22} However, the SnO2 NWs obtained on Si (001) or fused SiO\textsubscript{2} were not oriented or ordered along any direction, and had a carrier density of the order of 10\textsuperscript{18} cm\textsuperscript{-3} with a mobility of 70 cm\textsuperscript{2} V\textsuperscript{-1} s\textsuperscript{-1}, as determined from THz conductivity spectroscopy.\textsuperscript{31} Hence doping is required to increase their conductivity. Recently, we showed that higher carrier densities of the order of 10\textsuperscript{18} to 10\textsuperscript{19} cm\textsuperscript{-3} may be readily obtained in Sn doped SnO2 NWs grown on both Si (001) and fused SiO\textsubscript{2}.\textsuperscript{24} We obtained a high carrier density of 4 × 10\textsuperscript{19} cm\textsuperscript{-3} in the Sn:SnO2 NWs grown on c-Al2O3 at 800 °C and 1 mbar by adding metallic Sn to SnO2 but the Sn:SnO2 NWs were not ordered or oriented in any particular direction, similar to those obtained previously on Si (001) and fused SiO\textsubscript{2}.\textsuperscript{24} This is in contrast to the findings of Mazeina et al.,\textsuperscript{28} who obtained vertical but un-doped SnO2 NWs via the VLS mechanism on c-Al2O3 at 900 °C with a limited degree of ordering and uniformity. Similarly, we did not obtain ordered Sb:SnO2 NWs on c-Al2O3 by changing the growth temperature between 800 °C and 1000 °C. The epitaxial growth and ordering of Sb:SnO2 NWs on c-Al2O3 is not favorable in view of the fact that SnO\textsubscript{2} has a tetragonal crystal structure which will not match the hexagonal crystal structure of the underlying c-Al2O3. However, we observed the formation of ordered Sb:SnO2 NWs on the sides of the c-Al2O3, as described in more detail in the ESI,\textsuperscript{†} which is related to its specific crystallographic orientation. Therefore we carried out the growth of the Sn:SnO2 NWs on m-, r- and a-Al2O3 at 800 °C and 1 mbar using the same growth conditions described above.
3.1 Growth of Sb:SnO2 NWs on m-, r- and α-Al2O3

We readily obtained ordered Sb:SnO2 NWs on all three surfaces i.e. m-, r- and α-Al2O3, as shown in Fig. 2, 3 and 4 respectively. The Sb:SnO2 NWs on m-Al2O3 are aligned along two mutually perpendicular directions as shown by the SEM images in Fig. 2(a and b), but are inclined with respect to the surface, similar to the SnO2 NWs obtained by Mathur et al. and Leonardy et al. In contrast, the Sb:SnO2 NWs on r-Al2O3 are all oriented along one direction as shown in Fig. 3(a)–(c). However, upon closer inspection we find that the Sb:SnO2 NWs on r-Al2O3 consist of two segments. The first segment is inclined at θ = 68° and the second segment is at an angle of θ = 89°, i.e. nearly perpendicular to the first, as shown in Fig. 3(f). This has also been observed by Jean et al. who obtained Sb:SnO2 NWs on 10 nm Au/Si (001) via the VLS mechanism at 1000 °C and 1 mbar using Sn/Sb = 50, 25 and 10 under Ar and trace amount of O2,
but their Sb:SnO₂ NWs were not aligned in any particular direction. The formation of the second segment can be prevented by reducing the growth time as will be described in more detail later. Similarly we find that the Sb:SnO₂ NWs on a-Al₂O₃ shown in Fig. 4(a–c) consist of two segments, similar to those obtained on r-Al₂O₃.

In all cases, we obtained a uniform distribution and ordering of Sb:SnO₂ NWs over the 10 mm × 10 mm, r- and a-Al₂O₃ in reproducible way, using Sn/Sb = 0.1 at 800 °C and 1 mbar as described above. Subsequently we varied the growth temperature between 700 °C to 1000 °C in order to find if any changes occur in the growth directions and ordering. The Sb:SnO₂ NWs obtained at 900 °C on m-Al₂O₃ were very similar to those obtained at 800 °C, but we find that the Sb:SnO₂ NWs obtained at 1000 °C are short, as shown in Fig. 2(c), due to the fact that the Sn and Sb are more or less completely transferred into the gas stream under the flow of Ar during the temperature ramp, before the onset of one dimensional growth. In fact, the depletion of Sb during the temperature ramp is more significant than Sn, due to the fact that Sn has a melting point of 232 °C and...
vapor pressure of $10^{-5}$ mbar, while Sb has a higher melting point of 630 °C, but a remarkably higher vapor pressure of $10^{-1}$ mbar at 1000 °C. This in turn implies an important doping limitation when trying to obtain high carrier densities and conductivity in Sb:SnO$_2$ NWs using metallic Sn and Sb. Likewise, the Sb:SnO$_2$ NWs obtained on m-Al$_2$O$_3$ at 700 °C were short, similar to those obtained at 1000 °C, due to the limited supply of Sn which has a lower vapor pressure at 700 °C, but they remained orthogonally oriented to each other. No changes occurred in the morphology and growth directions of the Sb:SnO$_2$ NWs on r- and a-Al$_2$O$_3$ by varying the temperature between 700 °C and 1000 °C. In contrast, the epitaxial growth and ordering of the Sb:SnO$_2$ NWs was critically dependent on the mass ratio of Sn/Sb. We obtained ordered Sb:SnO$_2$ NWs on m-, r- and a-Al$_2$O$_3$ only for Sn/Sb = 0.15 ± 0.05. One dimensional growth was completely suppressed when Sn/Sb < 0.1, and the Sb:SnO$_2$ NWs were not oriented in any particular direction for Sn/Sb > 0.2. Before elaborating further, it is important to mention that we did not obtain any Sb:SnO$_2$ NWs at all without adding O$_2$ to the flow of Ar during the growth step. In other words, the residual or background O$_2$ after purging and the temperature ramp was not significant, and the growth of the Sb:SnO$_2$ NWs occurred solely due to the oxygen supplied during the growth step.

Consequently the suppression of one dimensional growth for Sn/Sb < 0.1 is attributed to the total depletion and transfer of Sn into the gas stream during the temperature ramp, before the onset of growth, as it forms a liquid alloy with Sb. Note also that we did not obtain any Sb:SnO$_2$ NWs at all without adding O$_2$ to the flow of Ar during the growth step.

On the other hand the Sb:SnO$_2$ NWs were not oriented in any particular direction for Sn/Sb > 0.2. From the above it is clear that an excess of Sb mixed with Sn provides flexible control over the Sn supplied to the Au particles which must be carefully tuned to a minimum for epitaxial growth and ordering to occur. This is further corroborated by the fact that we did not obtain ordered Sb:SnO$_2$ NWs without mixing the Sb and Sn even when Sn/Sb = 0.15 ± 0.05.

In addition to the above it is important to point out that the epitaxial growth and ordering of the Sb:SnO$_2$ NWs also depends critically on the crystal quality of the m, r- and a-Al$_2$O$_3$ surfaces. It has been shown that m-Al$_2$O$_3$ is thermodynamically unstable during high-temperature growth and nanostructured grooves composed of s- and r-facets develop along the [1120] direction. In contrast Wang et al. claimed that both the a- and r-plane of Al$_2$O$_3$ retain their surface structure at elevated temperatures. We annealed the m-, r- and a-Al$_2$O$_3$ at 1000 °C for 30 min under Ar and O$_2$ without any Sn, Sb or Au and observed a drastic reduction in the strength of the XRD peaks of the m- and a-Al$_2$O$_3$ but the r-Al$_2$O$_3$ appeared to maintain its surface crystallinity. Subsequently we deposited 1 nm of Au over the pre-annealed m-, r- and a-Al$_2$O$_3$ and tried to grow epitaxial, ordered Sb:SnO$_2$ NWs at 800 °C and 1 mbar using Sn/Sb = 0.1. As expected, we obtained ordered Sb:SnO$_2$ only on r-Al$_2$O$_3$. It appears then, that the deposition of 1 nm Au over pristine m-, r-, and a-Al$_2$O$_3$ at room temperature, prevents in some way the deterioration of the surface crystal structure and allows the epitaxial growth of ordered Sb:SnO$_2$ NWs at elevated temperatures between 700 °C to 1000 °C. In fact, the deposition of a 1 nm Au layer on the m-, r-, and a-Al$_2$O$_3$, which contain grooves or steps along specific crystallographic directions, leads to instabilities and ruptures of the Au at elevated temperatures as described by Hughes et al. These ruptures occur at high curvature sites, i.e., peaks and ridges, which act as retracting edges leading to a net flux of atoms away from the high positive curvature regions. For sufficiently thin layers, this process exposes the texture or steps of the underlying substrate, and a self-assembly of the Au particles will occur along specific crystallographic orientations. This in turn will instigate one dimensional epitaxial growth along specific crystallographic directions via the VLS mechanism, as shown in Fig. 1(b).

When Sn is added to the Au particles, it is expected to reduce the surface tension and contact angle θ with the underlying m-, r- and a-Al$_2$O$_3$ surface, as a consequence of the fact that Sn and Sb have surface tensions of $\approx 500$ mN m$^{-1}$ and 350 mN m$^{-1}$ respectively, but the surface tension of Au is $\approx 1000$ mN m$^{-1}$. A large contact angle implies that the contact area is small, and vice versa, a smaller contact angle implies a larger contact area. Consequently, an excess of Sn is expected to lead to the formation of Au–Sn particles having a small contact angle and larger contact area with the underlying m, r and a-Al$_2$O$_3$ surface, in which case they might not be able to follow the variations in the surface topography which is necessary to obtain ordered Sb:SnO$_2$ NWs. The formation of ordered Sb:SnO$_2$ NWs is possible due to a reduction of the Sn by the excess of Sb during the temperature ramp, which in turn results into sufficiently small Au–Sn liquid particles that are able to follow steps or grooves on the surface during the growth step at elevated temperatures. Epitaxial growth, then, commences laterally, after which a transition to inclined growth occurs leading to the formation of the ordered networks of SnO$_2$ NWs shown in Fig. 2, 3 and 4.

All of the Sb:SnO$_2$ NWs on m-, r- and a-Al$_2$O$_3$ exhibited clear and well resolved peaks in the XRD, as shown in Fig. 2(d), 3(d) and 4(d) respectively, corresponding to the tetragonal rutile crystal structure of SnO$_2$. For comparison, we have included the XRD of the m-, r- and a-Al$_2$O$_3$ without the Sb:SnO$_2$ NWs. More specifically, the Sb:SnO$_2$ NWs on m-, r- and a-Al$_2$O$_3$ exhibit only one or two major peaks in their XRD, consistent with the fact that they grow along specific crystallographic directions. In contrast, we observed a multitude of major peaks from the Sb:SnO$_2$ NWs on c-Al$_2$O$_3$, due to the fact that they do not grow in an epitaxial fashion along specific directions, see ESI.$^\dagger$ We did not observe any peaks related to oxides of Sb such as Sb$_2$O$_3$ or Sb$_2$O$_5$ which have melting points of 656 °C and 380 °C respectively. In addition, we do not observe any peaks suggesting the formation of Sb$_2$O$_4$, i.e. SbO$_2$ which is known to break down into Sn and O$_2$ at a higher temperature of 930 °C. Nevertheless the Sb:SnO$_2$ NWs contain Sb donor impurities as shown by the EDX spectrum in Fig. 2(e) and as confirmed previously by Raman spectroscopy.$^{34}$ Small differences in the amount of metallic Sb, i.e. for Sn/Sb = 0.15 ± 0.05, did not change the crystal structure or orientation of the Sb:SnO$_2$ NWs. We obtained exactly the same XRD spectra shown in Fig. 2, 3 and 4 for Sn/Sb = 0.1 and Sn/Sb = 0.15. However, it is important to point out that we did not detect any Sb in the Au particles on the ends of the Sb:SnO$_2$ NWs, as shown by the EDX spectrum in Fig. 3(e). This is consistent with the fact that we did not find Sb in the Au after
trying to grow Sb$_2$O$_3$, Sb$_2$O$_5$ or SbO$_2$ NWs, using just Sb, and
leads us to suggest that the Sb donor impurities are incorpora-
ted into the SnO$_2$ NWs by surface diffusion, from their sides,
as depicted in Fig. 1(c).

Now, the Sb:SnO$_2$ NWs on m-Al$_2$O$_3$ exhibited one dominant
peak in the XRD, as shown in Fig. 2(d), corresponding to the
(002), i.e. a multiple of (001), crystallographic planes of tetra-
gonal rutile SnO$_2$. The two dimensional lattice of (001) SnO$_2$ and
the oxygen terminated surface of m-Al$_2$O$_3$ are shown in Fig. 5(a)
and (b) respectively. These have a small lattice mismatch of
0.5% so the Sb:SnO$_2$ NWs grow by a stacking of (001) planes on
m-Al$_2$O$_3$ and the in-plane epitaxial relationship is SnO$_2$ (001)\|$m$-
Al$_2$O$_3$. The growth of the Sb:SnO$_2$ NWs on m-Al$_2$O$_3$ is identical
to that of SnO$_2$ NWs obtained by Leonardy et al.$^{27}$ on m-Al$_2$O$_3$ using
SnO as opposed to Sn. For completeness, the tetragonal unit cell
of SnO$_2$ is shown in Fig. 5(c), from which one may observe that the
(101) crystallographic plane of SnO$_2$ is inclined at $\theta = 34^\circ$ with
respect to the (001). The Sb:SnO$_2$ NWs have rectangular
sections, as shown in Fig. 5(d), and grow along the [101] crys-
tallographic direction as confirmed by the HRTEM image of
Fig. 5(e). Hence the Sb:SnO$_2$ NWs are inclined at $\theta = 34^\circ$ with
respect to the surface of m-Al$_2$O$_3$ and the fourth fold symmetry
of the m-Al$_2$O$_3$ surface lattice gives rise to Sb:SnO$_2$ NWs oriented
along two mutually orthogonal directions and cross each other on m-Al$_2$O$_3$.

In contrast to the above we find that the Sb:SnO$_2$ NWs on r-
Al$_2$O$_3$ exhibited two dominant peaks in the XRD, as shown in
Fig. 3(d), corresponding to the (101) and (202) crystallographic
planes of tetragonal rutile SnO$_2$. The two dimensional lattice of
(101) SnO$_2$ and the oxygen terminated surface of r-Al$_2$O$_3$ are
shown in Fig. 6(a) and (b) respectively. These have a larger lattice
mismatch of 11%, and the in-plane epitaxial relationship is SnO$_2$
(101)$\|$r-Al$_2$O$_3$. The growth of the Sb:SnO$_2$ NWs on r-Al$_2$O$_3$ is very
similar to the un-doped SnO$_2$ NWs of Kim et al.$^{28}$ which were also
inclined at $\theta = 68^\circ$ on r-Al$_2$O$_3$. Lateral SnO$_2$ NWs have also been
obtained via the VLS mechanism by Kim et al.$^{29}$ on r-Al$_2$O$_3$ using C
and SnO$_2$ as opposed to Sn but they did not observe the transition
of growth from lateral to vertical SnO$_2$ NWs.

### 3.2 Selective area location growth of Sb:SnO$_2$ NWs on r-Al$_2$O$_3$

The VLS growth mechanism permits selective area location
growth on m-, r- and a-Al$_2$O$_3$ as we did not obtain any Sb:SnO$_2$
NWs without using Au. We obtained hexagonally ordered
Sb:SnO$_2$ NWs on r-Al$_2$O$_3$ by drop casting $\sim$10 µl of 9 µm diam-
eter polystyrene spheres on r-Al$_2$O$_3$, followed by the deposition
of a thin layer of $\sim$1 nm Au as shown in Fig. 7. Subsequently, the
spheres were removed in isopropanol by ultrasonic vibration for
1 min, and the Sb:SnO$_2$ NWs were grown on the patterned Au on
r-Al$_2$O$_3$ at 800 °C. The Sb:SnO$_2$ NWs on r-Al$_2$O$_3$ do not consist of
two segments due to the reduced growth time. One may clearly
observe that the Sb:SnO$_2$ NWs grow on the r-Al$_2$O$_3$ in a hexag-
onal pattern suggesting that one may also obtain different
geometries in order to tailor the absorption–transmission
spectrum in novel devices such as NWSCs.

### 3.3 Electrical properties of Sb:SnO$_2$ NWs on m-, r- and a-
Al$_2$O$_3$

The carrier density of the Sb:SnO$_2$ NWs grown on m-, r- and a-
Al$_2$O$_3$ at 800 °C and 1 mbar with Sn/Sb = 0.1 was measured by
the Hall effect. We obtained a carrier density of $8 \times 10^{19}$ cm$^{-3}$.
which is significantly larger than that measured previously in undoped SnO$_2$ NWs, that was of the order of $10^{16}$ cm$^{-3}$.$^{33}$ The conductivity of the Sb:SnO$_2$ NWs was found to be $\approx 3 \times 10^2$ (Ω cm)$^{-1}$ giving a mobility of $20$ cm$^2$ V$^{-1}$ s$^{-1}$ which is lower compared to $70$ cm$^2$ V$^{-1}$ s$^{-1}$ in undoped SnO$_2$ NWs that was previously measured by THz conductivity spectroscopy.$^{33}$ We did not observe a significant variation in the carrier density of the Sb:SnO$_2$ NWs on m-, r- and a-Al$_2$O$_3$, or due to slight variations of Sn/Sb $= 0.15 \pm 0.05$. We measured the Hall effect of the Sb:SnO$_2$ NWs obtained with Sn/Sb $= 0.15$ and found a carrier density of $8.3 \times 10^{19}$ cm$^{-3}$ which is very close to that obtained with Sn/Sb $= 0.1$. However the carrier density in the Sb:SnO$_2$ NWs obtained at 900 °C was smaller i.e. $6 \times 10^{18}$ cm$^{-3}$ while those obtained at 1000 °C had an even smaller carrier density of $4 \times 10^{17}$ cm$^{-3}$ and conductivity of $\approx 3$ (Ω cm)$^{-1}$. This is attributed to the transfer of the Sb into the gas stream during the temperature ramp, and before the onset of one dimensional growth, due to the high vapor pressure of Sb, which in turn limits the supply and incorporation of Sb impurities into the SnO$_2$ NWs during the growth step. This trend is consistent with

![Fig. 6](image)

**Fig. 6**  (a) Two dimensional surface lattice of SnO$_2$ (101) which grows on (b) oxygen terminated surface of r-Al$_2$O$_3$ (c) TEM image of Sb:SnO$_2$ NWs after removing from r-Al$_2$O$_3$ (d) HRTEM image of the Sb:SnO$_2$ NWs showing the (010) lattice planes.

![Fig. 7](image)

**Fig. 7** Selective area location growth of Sb:SnO$_2$ NWs on r-Al$_2$O$_3$ (a) low magnification and (b) high magnification image (c) tilted view of the Sb:SnO$_2$ NWs on r-Al$_2$O$_3$ showing that they do not consist two segments as shown in Fig. 3(f); (d) an individual sphere in contact with its six closest neighbors (e) domain of ordered spheres (f) schematic representation of the spheres on r-Al$_2$O$_3$ after the deposition of 1 nm Au in between the spheres.
the findings of Klamchuen et al., who found that the doping level in SnO₂ NWs grown at 650 °C was twice that obtained at 750 °C, attributed to a suppression of impurity re-evaporation. They also observed that the doping level did not increase further upon reducing the growth temperature from 650 °C to 550 °C, which was explained by a suppression of the diffusion length of impurity ad-atoms on the surface of the SnO₂ NWs, and the presence of a temperature activated energy barrier which is necessary for the incorporation of the Sb impurities into the host lattice of SnO₂.

We suggest that the incorporation of Sb impurities into the SnO₂ NWs occurs through the sides of the SnO₂ NWs by thermal diffusion, or, via the triple phase junction, as shown in Fig. 1(c), similar to the mechanism proposed by Klamchuen et al. This is also corroborated by the fact that we did not detect any Sb in the Au particles after attempting to grow Sb:SnO₂, Sb₂O₃ or Sb₂O₅ NWs on r-Al₂O₃ by using only Sb, and also by the fact that we did not detect any Sb in the Au:Sn nanoparticles on the ends of the Sb:SnO₂ NWs, as shown in Fig. 3(e). It is also consistent with the findings of McGinley et al., who showed that the surface of SnO₂ nanoparticles is terminated by an oxygen rich layer, but when doped n-type with 9% or 17% Sb, the impurity atoms are concentrated near the surface of the SnO₂ nanoparticles with an oxidation state of five.

In order to obtain a more detailed understanding of the electronic properties of the Sb:SnO₂ NWs we carried out electronic structure calculations from first principles using the CASTEP plane wave DFT code and the Heyd–Scuseria–Ernzerhof (HSE) exchange correlate-correlation energy functional. After relaxation of the cell, we obtained lattice constants of a = b = 4.82 Å and c = 3.23 Å which are in close agreement to reported values. DOS calculations were performed for the core of (a) the perfect SnO₂ cell and (b) the Sb-doped SnO₂ cell, shown in Fig. 8(a) and (b) respectively. The maximum of the valence band (VB) is set at zero energy level. It is evident from the partial density of states shown in Fig. 8(a) and (b) that the VB is dominated by O and the CB by Sn. The band gap was found to be 3.6 eV for the perfect structure but a slight reduction of the band gap down to 3.5 eV was observed with doping. This semi-empirical method yields a much more accurate band gap than calculations performed based on the Perdew–Burke–Ernzerhof (PBE) GGA functional which are not shown here. In addition we find that the incorporation of Sb into the SnO₂ crystal does not produce any deep levels within the band gap which are in general detrimental to the operation of optoelectronic devices such as solar cells, light emitting diodes etc. In other words the Sb impurities are incorporated into the SnO₂ lattice as substitutional donors and our calculations show that the Fermi level resides 0.46 eV above the CB edge for 12.5 at% Sb (4 × 10²¹ cm⁻³).

In addition, we calculated the conduction band (CB) potential profile, and one dimensional electron gas (1DEG) charge distribution, along the radial direction, via the self-consistent solution of the Poisson–Schrödinger (SCPS) equations, in the effective mass approximation, as described in detail elsewhere. The SCPS calculations were carried out by taking into account the effective mass and dielectric constant of SnO₂, i.e. $m^*_e = 0.3$ (ref. 44 and 45) and $\epsilon_r = 13.5$ (ref. 46 and 47) respectively. In order to obtain a carrier density of $8 \times 10^{19}$ cm⁻³ as determined from the Hall effect we have taken the Fermi level to be energetically located at 0.3 eV above the CB edge, at the surface of the Sb:SnO₂ NWs. This is consistent with the electronic structure calculations of Mishra et al., who showed that the Sb impurities in SnO₂ form a band, which has an energetic overlap with the conduction band and a nearly free electron structure, i.e. behaves like a metallic band. It is also consistent with Li et al., who calculated the electronic structure of Sb:SnO₂ for 6.25% Sb, and found that the Fermi level moves into the CB upon the incorporation of Sb, and displays metallic character, but also with Farahani et al., who showed that the Fermi level resides at 0.33 eV above the CB edge at the surface of Sb:SnO₂ epitaxial layers grown by molecular beam epitaxy on r-Al₂O₃.

The CB potential profile with respect to the Fermi level, i.e. $E_C - E_F$ and 1DEG charge distribution, versus distance along the radial direction of the Sb:SnO₂ NWs, is shown in Fig. 8(d), where we have taken the donor impurities to be confined between $r =$ 20 and 40 nm. The CB edge potential profile is near flat band in the vicinity of the core and the 1DEG charge distribution has a maximum at the core and a local maximum at the surface. It should be noted that we obtain similar band profiles and charge distributions by taking a uniform distribution of Sb impurities throughout the Sb:SnO₂ NWs. However, the 1DEG in the vicinity of the core is expected to have a higher mobility when the density of donor impurities is larger at the surface than the core, as is the case in Fig. 9(d). In other words, the incorporation of Sb impurities into the SnO₂ NWs via surface diffusion is not a drawback in the end. We estimate that the mobility in the Sb:SnO₂ NWs with a maximum carrier density of the order of $10^{20}$ cm⁻³ is a few tens of cm² V⁻¹ s⁻¹ (ref. 23 and 24) so the resistivity of the Sb:SnO₂ NWs is of the order of $10^{-3}$ Ω cm which in turn is attractive for the deposition of metal contacts with low resistance and the fabrication of high performance devices.

### 3.4 Optical properties of Sb:SnO₂ NWs on m-, r- and a-Al₂O₃

In the past the transmission of light through Sb:SnO₂ NWs has not been investigated as they were not ordered or oriented along any particular direction which in turn leads to a considerable suppression of transmission and transparency. In contrast a higher transmission of light is expected to occur through ordered MO NWs. We measured the steady state transmission through the Sb:SnO₂ NWs that were grown at 800 °C on r-Al₂O₃ as shown in Fig. 9(d). The Sb:SnO₂ NWs have an optical transmission of 80% above 800 nm but they absorb light in the visible between 400 nm to 800 nm. We do not observe any interference effects since the spacing between the Sb:SnO₂ NWs is considerably smaller than the wavelength of light. In addition we find that the Sb:SnO₂ NWs on r-Al₂O₃ obtained at 900 °C and 1000 °C have a higher transparency compared to those obtained at 800 °C due to their shorter lengths. In order to understand the origin of the absorption we have measured the transient absorption through the Sb:SnO₂ NWs on an fs time scale as shown in Fig. 9(a)–(c). In all cases, we
observe a strong peak in the time evolution of the differential absorption between 500 nm and 600 nm attributed to the surface plasmon resonance (SPR) of the Au–Sn particles, corresponding to sizes between 10 nm and 100 nm (ref. 51) and the existence of surface states lying energetically in the energy gap of SnO2. One may observe a slight blue shift of the peak from 900 °C to 1000 °C in Fig. 9(b) and (c), consistent with that observed in the steady state transmission, that might be related to the smaller size of the Au–Sn particles due to the depletion of Sn that occurs during the temperature ramp and/or the elimination of mid gap states at elevated temperatures. It is important to point out, that the transparency of the Sb:SnO2 NWs on r-

![Graph showing differential absorption](image)

Fig. 8  (a) DOS for un-doped SnO2 and (b) DOS for Sb:SnO2 with 12.5 at% (≡ 4 x 10^{21} cm^{-3}) (c) structural model showing Sb substitutional donor impurity in SnO2 (d) SCPS CB potential profile (red) and 1DEG charge distribution (blue) versus distance along the radial direction of a Sb:SnO2 NWs with a diameter of 80 nm taking E_C − E_F = −0.3 eV at the surface and assuming a uniform distribution of ionized donor impurities N_D^+ = 1 x 10^{19} cm^{-3} between r = 20 and 40 nm.

![Graph showing ultrafast differential transient absorption](image)

Fig. 9  Ultrafast, differential transient absorption dα versus optical delay r (ps) and probe wavelength λ (nm) through the Sb:SnO2 NWs grown on r-Al2O3 at (a) 800 °C, (b) 900 °C and (c) 1000 °C; (d) steady state transmission of light through the Sb:SnO2 NWs grown on r-Al2O3 at different temperatures.
Al₂O₃ may be increased further by selective area location growth as shown in Fig. 7 which leads to a higher transmission through the voids between the Sb:SnO₂ NW.

Finally it is worthwhile considering the PL obtained from the Sb:SnO₂ NWs, grown on r-Al₂O₃ at 800 °C, as shown in Fig. 10(a), in which case we observe emission at λ = 600 nm (≈2.1 eV) and 300 K. Bulk SnO₂ has a direct energy band gap of 3.7 eV but the even–parity symmetry of the conduction-band minimum and valence-band maximum states prohibits band–edge radiative transitions which has limited the use of SnO₂ for the fabrication of light emitting diodes. The PL at 2.1 eV is attributed to radiative recombination between deep donor and acceptor like states residing energetically in the energy band gap of SnO₂ that are related to oxygen vacancies. We observe a suppression of the maximum at λ = 600 nm and the emergence of emission at λ = 470 nm (≈2.6 eV) by decreasing the temperature from 300 K to 10 K due to radiative recombination via shallower levels as proposed by Luo et al. However an interesting aspect of the PL emission at 2.1 eV and 2.6 eV is that it has a lifetime of τ = 0.2 ms as shown by the time resolved PL in Fig. 10(b). This is considerably higher than the lifetimes extracted from SnO₂ rods and particles which are of the order of 100 ns (ref. 54) and comparable to Eu doped SnO₂ nanocrystals. Hence, in principle, the Sb:SnO₂ NWs described here may be processed into devices capable of light emission but also NWSCs.

To the best of our knowledge no one has previously used ordered networks of Sn:In₂O₃ or Sb:SnO₂ NWs to make NWSCs despite the fact that Battaglia et al. has showed that periodic photonic nanostructures outperform their random counterparts in trapping light in solar cells. It is desirable then to use these highly conductive, ordered networks, of Sb:SnO₂ NWs in order to improve the performance of all-solid state NWSCs. In addition the Sb:SnO₂ NWs can be used in perovskite solar cells as an electron transport layer (ETL). According to Jiang et al., a traditional ETL such as TiO₂, is not very efficient for charge extraction at the interface, especially in planar structures. In addition, the devices using TiO₂ suffer from serious degradation under ultraviolet illumination. SnO₂ shows a better band alignment with the perovskite absorption layer and higher electron mobility, which is helpful for electron extraction. Consequently the specific ordered networks of Sb:SnO₂ NWs described here may serve as a scaffold on top of which one may deposit a perovskite absorber layer and a hole transport layer in order to create a p–n junction solar cell.

4 Conclusions

We have grown epitaxial, ordered Sb:SnO₂ NWs via the VLS mechanism on m-, r- and a-Al₂O₃ between 700 °C and 1000 °C using metallic Sn containing an excess of Sb i.e. for Sn/Sb = 0.15 ± 0.05 under a flow of Ar and O₂ at 1.5 ± 0.5 mbar. One dimensional growth was suppressed for Sn/Sb < 0.1 while the Sb:SnO₂ NWs were not oriented along any particular direction for Sn/Sb > 0.2. Consequently highly conductive and directional Sb:SnO₂ NWs may only be obtained in a narrow window of growth conditions. All of the Sb:SnO₂ NWs have the tetragonal rutile crystal structure and square sections. The Sb:SnO₂ NWs are oriented along two mutually perpendicular directions forming a rectangular mesh on m-Al₂O₃ with a maximum lattice mismatch of 0.1%. In contrast the Sb:SnO₂ NWs on r-Al₂O₃ are all oriented in one direction but have a larger lattice mismatch of 10%. The morphology and growth directions of the Sb:SnO₂ NWs on m-, r- and a-Al₂O₃ did not change by varying the growth temperature between 700 °C and 1000 °C but the carrier density changed from 8 × 10¹⁸ cm⁻³ to 4 × 10¹⁷ cm⁻³ due to the re-evaporation and limited incorporation of Sb donor impurities into the SnO₂ NWs with increasing temperature. All of the Sb:SnO₂ NWs had a high transmission of 80% above 800 nm and absorbed light between 400 nm to 800 nm primarily due to the SPR of the Au particles. The transmission may be improved significantly by selective area location growth which we have shown that is possible on r-Al₂O₃ by patterning the catalyst. In addition the Sb:SnO₂ NWs on m-, r- and a-Al₂O₃ are capable of light emission with remarkably long lifetimes of 0.2 ms and are attractive for the realization of NWSCs.

Conflicts of interest

There are no conflicts of interest to declare.

References

1 Q. Wan, E. N. Dattoli and W. Lu, Appl. Phys. Lett., 2007, 90, 222107.
2 M. Zervos, C. Mihaiescu, J. Giapintzakis, C. Luculescu, N. Florini, P. Komninou, J. Kioseoglou and A. Othonos, APL Mater., 2014, 2, 056104.
3 S. N. Bai, H. H. Tsai and T. Y. Tseng, Thin Solid Films, 2007, 516, 155.
4 H. Duan, H. He, L. Sun, S. Song and Z. Ye, Nanoscale Res. Lett., 2013, 8(1), 493.
5 C. O. Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb and C. M. S. Torres, Nat. Nanotechnol., 2009, 4, 239.
