Methods. Requests for additional testing are routinely documented by medical technologists using a standardized form. These are reviewed by a technologist, clinical pathology resident, microbiology fellow or laboratory director, and further testing is approved or denied. Requests from 8/15/16 to 12/15/16 were analyzed by the rationale for testing, the outcome, and the reason for approving or denying the request.

Results. We recorded 497 requests from 411 specimens (Figure 1). 281 requests were reviewed for educational opportunities (Figure 3). A handout describing laboratory workflow was created for ID fellows and PharmD. Result reporting and susceptibility testing for specific bug-drug combinations were updated after discussion with antibiotic stewardship. A microbiology ‘survival guide’ will be created for on-call pathology residents.

These requests were reviewed for educational opportunities (Figure 3). A handout describing laboratory workflow was created for ID fellows and PharmD. Result reporting and susceptibility testing for specific bug-drug combinations were updated after discussion with antibiotic stewardship. A microbiology ‘survival guide’ will be created for on-call pathology residents.

Conclusion. Phone call requests to the microbiology laboratory can be used to identify opportunities for education based on provider background. The electronic medical record can be used for antimicrobial stewardship and result updates. The microbiology laboratory reduces low-value care by educating providers when additional testing is not beneficial.
the total assessment (7 points), knowledge-based questions (4 points) and application-based questions (3 points) were compared using an independent samples t-test.

Results. 171 second and 55 third-year medical students completed the assessment. Overall mean scores were significantly higher for MSIIIs (5.47, SD 1.10) compared with MSIs (4.79, SD 1.40) (P < 0.01). This difference in scores was due to superior performance on the application-based questions by MSIIIs (2.51, SD 0.63) compared with MSIs (1.77, SD 1.03) (P < 0.01). There was no difference on knowledge-based items between MSIIIs (2.96 SD 0.74) and MSIs (3.02, SD 0.80) (P = 0.62). Overall scores for MSIIIs completing their medicine clerkship later in the year vs. earlier trended higher (5.69 vs. 5.32, P = 0.60).

Conclusion. MSIIIs demonstrated equal knowledge and superior application of AS principles despite not having had a formal curriculum in the subject. Active learning strategies, such as the flipped classroom, may not be able to substitute for experiential learning when it comes to teaching systems-based practices such as AS. An iterative approach to teaching AS, starting in the preclinical years, may be more meaningful and warrants further evaluation.

Background. The method in which infectious diseases (ID) content is taught influences the career choices of healthcare professionals. A survey of medical residents found that memorization was the most common teaching method used for 78% of residents that were uninterested in a career in ID compared with only 33% for residents who were interested in an ID career. Alternatives to memorization need to be investigated and assessed.

Methods. During a one-time 3 hour session, pharmacy students engaged in 6 game-based active learning strategies each lasting 20 minutes. These strategies included audience response (Kahoot), simulation (Seprite), problem-based learning (Carmen STD-go), a card game (BugOut!), a board game (Chutes and Ladders), and a quiz game (Catchphrase). Students then completed a survey for each game.

Results. Forty-one students participated in the study and completed surveys. Students used a Likert scale from 1 to 10 (1=lowest value, 10=highest value) to evaluate aspects of each game. The mean educational value scores were Chutes and Ladders 5.38, Kahoot 7.24, Catchphrase 7.07, Seprite 6.71, Carmen STD-go 6.20, and BugOut! 6.20. Educational value scores were statistically higher for the audience response, board, and quiz game compared with the simulation, card, and problem-based learning games. The percent of students that would recommend adding each game to the curriculum was 92.7% for Catchphrase, 87.8% for Chutes and Ladders, 82.9% for Kahoot, 78.0% for Carmen STD-go, 68.3% for Seprite, and 61.0% for BugOut!. The percent of students indicating that the game increased their level of interest in ID was 97.9% for Chutes and Ladders, 75.6% for Kahoot, Carmen STD-go, and BugOut!, and 65.9% for Seprite.

Conclusion. The majority of students indicated that all games increased their level of interest in ID and would recommend adding them to their schools curriculum. These six active learning games appear to be viable options for inclusion into teaching techniques and may increase healthcare students’ career interest in ID.

Disclosures. All authors: No reported disclosures.

1430. Problem Based Learning (PBL) in an Infectious Diseases Fellowship

Carlos Izada, MD1; FAFPC1; and Alex Izada,1 Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, 1Research Assistant, Infectious Diseases, Cleveland Clinic, Cleveland, Ohio

Session: 160. ID Medical Education

Friday, October 6, 2017: 12:30 PM

Background. Problem Based Learning (PBL) is an active learning process that adheres to key principles of adult learning theory. PBL is widely used in undergraduate medical education. To our knowledge there have been no published reports of PBL based curricula at the residency/fellowship level. Factors include time and labor for development, scheduling constraints, and competing clinical demands. We describe the implementation of a PBL based curriculum in an ID fellowship and its potential application to the American College of Graduate Medical Education (ACGME) Milestones.

Methods. From 2003–5 a PBL-based core curriculum was developed for the ID fellowship at the Cleveland Clinic, replacing a didactic lecture-based curriculum. The PBL group consisted of 6–7 fellows and one preceptor, 2 hours per week. Cases were presented as diagnostic unknowns including radiographs, images, and pathologic materials. Core materials were presented through MOODLE, a web-based, interactive platform. Fellows worked separately and were allowed access to reference materials. Answers were submitted in a standardized short-answer format. For each case, the fellow listed his/her “top 3” differential diagnoses, described the pros and cons for each diagnosis, and then chose the best answer. “Grade 1” was assigned if the actual diagnosis matched the fellow’s top choice; “grade 2” if the actual diagnosis was one of the top 3 diagnoses; grade “3” if the actual diagnosis was not within the top 3. Descriptive statistics and repeated-measures ANOVA was used to analyze test scores.

Results. 33 fellows completed the PBL curriculum (2005–2015). Each trainee completed an average of 130 cases. About 60% of cases were derived from the preceptor’s patients, the remainder were abstracted from the literature. Year 2 fellows demonstrated significantly more grade 1 and 2 responses compared with Year 1 fellows. Diagnostic accuracy (grade 1 responses) increased for individual trainees when tracked serially over two years.

Conclusion. An on-line PBL curriculum can be successfully integrated into an ID fellowship. A simple scoring system can be used to grade PBLs, and track development of medical knowledge and medical decision making, two of the ACGME Milestones.

Disclosures. All authors: No reported disclosures.

1431. A study assessing the educational value of serious games in infectious diseases – Going beyond memorization

Meghan Jeffers, PharmD2; and Lauren Biehle, PharmD, BCPS3; Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy, Aurora, Colorado, 2University of Wyoming School of Pharmacy, Laramie, Wyoming

Session: 160. ID Medical Education

Friday, October 6, 2017: 12:30 PM

Background. Active Learning using smartphone technology can be implemented as a tool for teaching medical students (MS) and residents (Rs). The use of technology would increase participation and enhance student learning by engaging them in solving ID clinical case scenarios. Our objective was to describe the methods used and to share the opinions of the users of such active learning methods.

Methods. The smartphone applications used were Socrative and WhatsApp. We used Socrative during the Universidad Peruana de Ciencias Aplicadas (UPC) ID course for MS in two different ways. In selected lectures (4 of 32), teacher paced questions were asked based on clinical scenarios related to the topic reviewed, and by voluntary homework questionnaires (student paced). At the British American Hospital (BAH): Medicine Department (MS and Rs) Socrative was used similarly: during some teacher paced lectures (2) and during the baseline MS exams and Rs mid-year exam and voluntary homework questions (student paced). WhatsApp is currently used at the BAH with questions send from Monday to Friday. MS/Rs answer individually via WhatsApp to the mentor in charge. The right answer is given the next day. Questions using WhatsApp deal with recent cases seen at the wards or in the outpatient clinic, and are designed so that the MS/Rs must do quick literature searches in order to provide the right answer.

Results. Forty-one MS/Rs answered the survey on Socrative use, 25 of 48 (52%) of Carmen STD-go and 16 (89%) BSMS/Rs from BAH answered the survey. Six had used before WhatsApp as a teaching tool. All felt the methodology was useful for learning and promoting reading and would recommend this methodology to promote learning on a student paced way.

Conclusion. Socrative and WhatsApp can be used for teaching ID through MS/ Rs smartphones. Most MS/Rs who were surveyed recommended the use of such methods in their education.

Disclosures. All authors: No reported disclosures.

1432. Medical Education in Infectious Diseases. Using Smartphone Apps for Active Learning

Luis Valder, MD 1,2; Andrea Gray, MD1; Gaston Ramos, MD2; and Hugo Sia, MD2; 1Universidad Peruana de Ciencias Aplicadas, Lima, Peru, 2British American Hospital (Clínica Anglo American), Lima, Peru

Session: 160. ID Medical Education

Friday, October 6, 2017: 12:30 PM

Background. Active Learning using smartphone technology can be implemented as an alternative to teaching medical students (MS) and residents (Rs). The use of technology would increase participation and enhance student learning by engaging them in solving ID clinical case scenarios. Our objective was to describe the methods used and to share the opinions of the users of such active learning methods.

Methods. The smartphone applications used were Socrative and WhatsApp. We used Socrative during the Universidad Peruana de Ciencias Aplicadas (UPC) ID course for MS in two different ways. In selected lectures (4 of 32), teacher paced questions were asked based on clinical scenarios related to the topic reviewed, and by voluntary homework questionnaires (student paced). At the British American Hospital (BAH): Medicine Department (MS and Rs) Socrative was used similarly: during some teacher paced lectures (2) and during the baseline MS exams and Rs mid-year exam and voluntary homework questions (student paced). WhatsApp is currently used at the BAH with questions send from Monday to Friday. MS/Rs answer individually via WhatsApp to the mentor in charge. The right answer is given the next day. Questions using WhatsApp deal with recent cases seen at the wards or in the outpatient clinic, and are designed so that the MS/Rs must do quick literature searches in order to provide the right answer.

Results. Forty-one MS/Rs answered the survey on Socrative use, 25 of 48 (52%) of Carmen STD-go and 16 (89%) BSMS/Rs from BAH answered the survey. Six had used before WhatsApp as a teaching tool. All felt the methodology was useful for learning and promoting reading and would recommend this methodology to promote learning on a student paced way.

Conclusion. Socrative and WhatsApp can be used for teaching ID through MS/ Rs smartphones. Most MS/Rs who were surveyed recommended the use of such methods in their education.

Disclosures. All authors: No reported disclosures.

1433. Use of simulation for antimicrobial stewardship Infectious Disease fellowship curriculum

Alice Barsoonian, MD1; Brian White, DO2; and Heather Yun, MD, FIDSA3; Infectious Disease Service, Department of Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, Texas, 1Infectious Disease Service, Department of Medicine, San Antonio Military Medical Center, JBSA Fort San Antonio, Texas, 2Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, Joint Base San Antonio–Fort Sam Houston, Texas

Session: 160. ID Medical Education

Friday, October 6, 2017: 12:30 PM