KUGA-SATAKE ABELIAN VARIETIES IN POSITIVE CHARACTERISTIC

JORDAN RIZOV

Abstract. Kuga and Satake associate with every polarized complex K3 surface \((X, \mathcal{L})\) a complex abelian variety called the Kuga-Satake abelian variety of \((X, \mathcal{L})\). We use this construction to define morphisms between moduli spaces of polarized K3 surface with certain level structures and moduli spaces of polarized abelian varieties with level structure over \(\mathbb{C}\). In this note we study these morphisms. We prove first that they are defined over finite extensions of \(\mathbb{Q}\). Then we show that they extend in positive characteristic. In this way we give an indirect construction of Kuga-Satake abelian varieties over an arbitrary base. We also give some applications of this construction to canonical lifts of ordinary K3 surfaces.

Introduction

When studying algebraic curves one constructs an abelian variety, called the Jacobian of the curve. The geometry of this abelian variety describes properties of the curve. Here, we consider a similar construction for K3 surfaces. Namely, we assign to every polarized K3 surface an abelian variety with certain properties, called its Kuga-Satake abelian variety.

Let us explain briefly the construction of these varieties over \(\mathbb{C}\) due to Kuga and Satake. Starting with a polarized complex K3 surface \((X, \mathcal{L})\) one considers the second primitive Betti cohomology group \(P^2_B(X, \mathbb{Z}(1)) := c_1(\mathcal{L})^\perp \subset H^2_B(X, \mathbb{Z}(1))\). The orthogonal complement is taken with respect to the Poincaré pairing on \(H^2_B(X, \mathbb{Z}(1))\). Using the polarized \(\mathbb{Z}\)-Hodge structure on \(P^2_B(X, \mathbb{Z}(1))\) one defines a polarized \(\mathbb{Z}\)-Hodge structure of type \((1, 0), (0, 1)\) on the even Clifford algebra \(C^+(P^2_B(X, \mathbb{Z}(1)))\). One might think of this construction as “taking a square root of a Hodge structure”. Such a Hodge structure corresponds to a complex abelian variety \(A\), called the Kuga-Satake abelian variety associated to \((X, \mathcal{L})\). Using Kuga-Satake varieties one can deduce some properties of K3 surfaces, mostly of motivic nature, from the corresponding properties of abelian varieties.

At this point one may ask whether one can use this construction to define Kuga-Satake abelian varieties over subfields of \(\mathbb{C}\). Or whether one can construct Kuga-Satake abelian schemes starting with families of polarized K3 surfaces. One can find some answers in [7] and [1]. One can go even further and ask whether one can define Kuga-Satake abelian varieties in positive characteristic. We combine all these questions in one, which was originally the motivation for our work.

2000 Mathematics Subject Classification. 14J28, 14D22.

Key words and phrases. K3 surfaces, Moduli spaces, Kuga-Satake abelian varieties.
Question. Can one define Kuga-Satake abelian varieties using only methods of algebraic geometry without making use of complex analytic constructions?

Up to isogeny a positive answer to this question can be found in Theorem 7.1 in [2] and Theorem 1.5.1 in [1]. We refer also to Chapter 9 and 10.2.4 in [3]. Starting with a polarized K3 surface \((X, \mathcal{L})\), Y. André constructs a “motive” which is isomorphic to the motive of the Kuga-Satake abelian variety of \((X, \mathcal{L})\). The construction is purely algebro-geometric.

Here we solve a modification of this problem. Namely, we will be interested in a Kuga-Satake construction over an arbitrary base without putting any restriction on the “methods”. The reason is that we use the existing transcendental construction as a starting point. We explain this in more detail.

P. Deligne gives an interpretation of the Kuga-Satake construction in terms of the adjoint representation homomorphism \(\text{CSpin}(2g, 19) \rightarrow \text{SO}(2g, 19)\) and the spin representation homomorphism \(\text{CSpin}(2g, 19) \times \rightarrow \text{CSp}_{2g}\), where \(g = 2^{19}\) (see §§3 and 4 in [7]). We consider the morphisms, between the Shimura varieties associated to the groups \(\text{CSpin}(2g, 19)\), \(\text{SO}(2g, 19)\) and \(\text{CSp}_{2g}\), defined by the adjoint and the spin representations. Putting together these maps and the results of [28], for every \(n \geq 3\), we define a Kuga-Satake morphism

\[
f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{vp}}} \otimes E_n \rightarrow A_{g,d',n} \otimes E_n
\]

where \(\mathcal{F}_{2d,n^{\text{vp}}}\) is the moduli space of K3 surfaces with a primitive polarization of degree \(2d\) and a spin level \(n\)-structure (see Section 6 in [26]), and \(E_n\) is a finite abelian extension of \(\mathbb{Q}\). The morphism \(f_{d,a,n,\gamma,E_n}^{ks}\) assigns to every primitively polarized complex K3 surface with a spin level \(n\)-structure its associated Kuga-Satake abelian variety plus extra data (a polarization and a level \(n\)-structure). In this way, the first step of our program is completed. Next we show that \(f_{d,a,n,\gamma,E_n}^{ks}\) extends over an open part of \(\text{Spec}(\mathcal{O}_{E_n})\) where \(\mathcal{O}_{E_n}\) is the ring of integers in \(E_n\). More precisely, we prove the following statement.

Theorem. Let \(d, n \in \mathbb{N}\) and suppose that \(n \geq 3\). Then the Kuga-Satake morphism \(f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{vp}},E_n} \rightarrow A_{g,d',n,E_n}\) extends uniquely to a morphism

\[
f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{vp}}} \otimes \mathcal{O}_{E_n}[1/N] \rightarrow A_{g,d',n} \otimes \mathcal{O}_{E_n}[1/N]
\]

where \(N = 2dd'nl\) and \(l\) is the product of the prime numbers \(p\) whose ramification index \(e_p\) in \(E_n\) is \(\geq p - 1\).

The proof of this theorem is based on a result of G. Faltings on extension of abelian schemes.

We conclude with some applications. We show that the étale cohomology relations from §6.6.1 in [7] hold for the Kuga-Satake abelian varieties we construct. Then we focus our attention on the ordinary locus of \(\mathcal{F}_{2d,n^{\text{vp}}} \otimes \mathbb{F}_p\), where \(p\) is a prime not dividing \(N\). Suppose that \(k\) is a finite field of characteristic \(p\). One can easily see that \(f_{d,a,n,\gamma}^{ks}\) maps an ordinary point \(x = (X, \mathcal{L}, \nu)\) in \(\mathcal{F}_{2d,n^{\text{vp}}} \otimes \mathbb{F}_p(k)\) to an ordinary point \(y = (A, \mu, \epsilon)\) in \(A_{g,d',n} \otimes \mathbb{F}_p(k)\). Denote by \(x^{\text{can}} = (X^{\text{can}}, \mathcal{L}, \nu)\) the canonical lift of \(X\) over \(W(k)\) and by \(y^{\text{can}} = (A^{\text{can}}, \mu, \epsilon)\) the canonical lift of \(A\). We prove that \(f_{d,a,n,\gamma}^{ks}(x^{\text{can}}) = y^{\text{can}}\). A straightforward corollary of this is that the restriction of the Kuga-Satake morphism to the ordinary locus of \(\mathcal{F}_{2d,n^{\text{vp}}} \otimes \mathbb{F}_p\) is quasi-finite.
Notations and conventions

General. We write $\hat{\mathbb{Z}}$ for the profinite completion of \mathbb{Z}. We denote by \mathbb{A} the ring of adeles of \mathbb{Q} and by $\mathbb{A}_f = \hat{\mathbb{Z}} \otimes \mathbb{Q}$ the ring of finite adeles of \mathbb{Q}. Similarly, for a number field E we denote by \mathbb{A}_E and $\mathbb{A}_{E,f}$ the ring of adeles and the ring of finite adeles of E.

If A is a ring, $A \to B$ a ring homomorphism then for any A-module (A-algebra etc.) V we will denote by V_B the B-module (B-algebra etc.) $V \otimes_A B$.

For an algebraic stack \mathcal{F} over a scheme S and a morphism of schemes $S' \to S$ we will denote by $\mathcal{F}_{S'}$ the product $\mathcal{F} \times_S S'$ and consider it as an algebraic stack over S'.

We use the notations established in [26]. In particular, for a natural number d we write \mathcal{F}_{2d} for the Deligne-Mumford stack of K3 spaces with a primitive polarization of degree $2d$. It is a smooth stack over $\text{Spec}(\mathbb{Z}[1/2d])$. See Theorem 4.7 in [26] and §1.4.3 in [29]. For $n \in \mathbb{N}$, $n \geq 3$, and a subgroup \mathbb{K} of finite index in \mathbb{K}_n we denote by $\mathcal{F}_{2d,\mathbb{K}}$ the smooth algebraic space over $\text{Spec}(\mathbb{Z}[1/N])$ of K3 surfaces with a primitive polarization of degree $2d$ and a level \mathbb{K}-structure. If \mathbb{K} is admissible, then we denote by $\mathcal{F}_{\text{full},\mathbb{K}}$ the moduli space of K3 surfaces with a primitive polarization of degree $2d$ an a full level \mathbb{K}-structure. For details we refer to Section 6 in [26] and Section 1.5 in [29].

Let U be the hyperbolic plane and let E_8 be the positive quadratic lattice associated to the Dynkin diagram of type E_8. Denote by (L_0, ψ) the quadratic lattice $U^{\oplus 3} \oplus E_8^{\oplus 2}$. Further, let (V_0, ψ_0) be the quadratic space $(L_0, \psi) \otimes_{\mathbb{Z}} \mathbb{Q}$. Further, we use the notations established in Section 2.1 of [26].

Algebraic groups. A superscript 0 usually indicates a connected component for the Zariski topology. For an algebraic group G will denote by G^0 the connected component of the identity. We will use the superscript $^+$ to denote connected components for other topologies.

For a reductive group G over \mathbb{Q} we denote by G^{ad} the adjoint group of G, by G^{der} the derived group of G and by G^{ab} the maximal abelian quotient of G. We let $G(\mathbb{R})_+$ denote the group of elements of $G(\mathbb{R})$ whose image in $G^{\text{ad}}(\mathbb{R})$ lies in its identity component $G^{\text{ad}}(\mathbb{R})^+$, and we let $G(\mathbb{Q})_+ = G(\mathbb{Q}) \cap G(\mathbb{R})_+$.

Let V be a vector space over \mathbb{Q} and let $G \hookrightarrow \text{GL}(V)$ be an algebraic group over \mathbb{Q}. Suppose given a full lattice L in V (i.e., $L \otimes \mathbb{Q} = V$). Then $G(\mathbb{Z})$ and $G(\hat{\mathbb{Z}})$ will denote the abstract groups consisting of the elements in $G(\mathbb{Q})$ and $G(\mathbb{A}_f)$ preserving the lattices L and $L_{\mathbb{Z}}$, respectively.

Acknowledgments

This note contains the results of Chapter 4 of my Ph.D. thesis [29]. I thank my advisors, Ben Moonen and Frans Oort for their help, their support and for everything I have learned from them. I would like to thank Ben Moonen for pointing out some mistakes in the earlier versions of the text and for his valuable suggestions. I thank the Dutch Organization for Research N.W.O. for the financial support with which my thesis was done.
1. Extension of polarizations of abelian schemes

In this section, we give some results on extension of polarizations of abelian schemes. We will use them to extend Kuga-Satake morphisms in positive characteristic. We fix a discrete valuation ring R with field of fractions K and residue field k.

Lemma 1.0.1. Let A be an abelian scheme over a discrete valuation ring R and let λ_K be a polarization of the generic fiber A_K of A. Then λ_K extends uniquely to a polarization of A.

Proof. By Proposition 2.7 in Ch. 1 in [9] λ_K extends uniquely to a homomorphism $\lambda: A \to A'$ over R. It suffices to show that $2 \cdot \lambda$ is a polarization. But $2 \cdot \lambda = \varphi_M$ where $M = (\text{id}_A, \lambda)^* P_A$ and P_A is the Poincaré bundle on $A \times A'$. We conclude by Corollary VIII 7 in [25] that M is relatively ample, hence $2 \cdot \lambda$ is a polarization. □

Lemma 1.0.2. Suppose given a locally noetherian, regular scheme U and a dense open subscheme $V \subset U$ such that the codimension of $U \setminus V$ in U is at least 2. Let $A \to U$ be an abelian scheme and let λ_V be a polarization of $A_V \to V$. Then λ_V extends uniquely to a polarization λ of $A \to U$.

Proof. Applying Proposition 2.7 of Ch. 1 in [9] as in the proof of the previous lemma we see that λ_V extends uniquely to an isogeny $\lambda: A \to A'$ over U.

By assumption there is an étale covering $\pi_V: \tilde{V} \to V$ such that the pull-back $\lambda_{\tilde{V}}: A_{\tilde{V}} \to A'_{\tilde{V}}$ of λ_V is equal to $\varphi_{L_{\tilde{V}}}$ for an ample line bundle $L_{\tilde{V}}$ on $A_{\tilde{V}}$. By the Zariski-Nagata purity theorem (see Cor. 3.3 of Exp. X in [10]), the morphism π_V extends to an étale covering $\pi: \tilde{U} \to U$. Let $j: \tilde{V} \to \tilde{U}$ be the inclusion. Then the sheaf $L := j_* L_{\tilde{V}}$ is a line bundle (cf. Lemma 6.2 in Ch. V in [9]). The isogenies $\lambda_{\tilde{V}}$ and $\varphi_{L_{\tilde{V}}}$ coincide so by the unicity part of Proposition 2.7 in Ch. 1 of [9] we see that $\lambda_{\tilde{U}} = \varphi_L$.

To show that $\lambda_{\tilde{U}}$ is a polarization we apply Corollary VIII 7 of [25] as in the proof of the preceding lemma. □

2. Kuga-Satake morphisms over fields of characteristic zero

In the following, sections we will recall the construction of Kuga-Satake abelian varieties associated to polarized K3 surfaces. In our exposition we will follow [7] and [1]. In Section 2.5 we will use these ideas and the results of [28] to define Kuga-Satake morphisms over number fields.

2.1. Clifford groups. Clifford groups will play an essential role in the construction of the Kuga-Satake morphisms and in this section we give a short review of the results we use later in this note. For details we refer to Ch. V in [16] and Ch. 9 in [32].

Let d be a natural number. For simplification we change the notations of Section 2.1 in [26] by setting (L, ψ) to be the lattice (L_{2d}, ψ_{2d}) and (V, ψ) to be the quadratic space $(L_{2d}, \psi_{2d}) \otimes \mathbb{Q}$.

Denote by G the algebraic group $\text{SO}(V, \psi) \cong \text{SO}(2, 19)$ over \mathbb{Q} (see Section 2.1 in [28]). Further, following the notations of Example 5.1.4 in [26] we consider the even Clifford algebra $C^+(V)$ and the Clifford group $G_1 := \text{CSpin}(V)$ of (V, ψ). Recall that one has a homomorphism of algebraic groups

$$\alpha: \text{CSpin}(V) \to \text{SO}(V, \psi)$$
KUGA-SATAKE ABELIAN VARIETIES IN POSITIVE CHARACTERISTIC

defined by
\[\alpha(g) = (v \mapsto gv^{-1}) \]
which is called the adjoint representation of \(\text{CSpin}(V) \) on \(V \). The kernel of the adjoint representation of \(\text{CSpin}(V) \) is \(\mathbb{G}_m \) and one has a short exact sequence
\[1 \to \mathbb{G}_m \to G_1 \to G \to 1. \]
Then \(G = G_1^{\text{ad}} \) and we have that the center \(Z(G_1) \) of \(G_1 \) is \(\mathbb{G}_m \).

There is a canonical involution
\[\iota: C^+(L) \to C^+(L) \]
which acts trivially on the constants \(\mathbb{G}_m \hookrightarrow G_1 \). We define the spinorial norm
\[N: G_1 \to \mathbb{G}_m \]
by setting
\[N(g) = \iota(g)g. \]
It is a surjective homomorphism and we denote its kernel by \(\text{Spin}(V) \). The spinorial norm gives rise to a short exact sequence
\[1 \to \text{Spin}(V) \to G_1 \to \mathbb{G}_m \to 1. \]
One has that \(G_1^{\text{der}} = \text{Spin}(V) \) is the derived group of \(G \) and \(\mathbb{G}_m = G_1^{\text{ab}} \) is the maximal abelian quotient of \(G_1 \). The group \(\text{Spin}(V) \) is simply connected.

Further, we dispose of an embedding \(\text{CSpin}(V) \hookrightarrow C^+(V)^{\ast} \) and left multiplication by elements of \(\text{CSpin}(V) \) on \(C^+(V) \) gives an inclusion of algebraic groups
\[\beta: \text{CSpin}(V) \to \text{GL}(C^+(V)). \]
See §3.2 in [7]. It is called the spin representation of \(\text{CSpin}(V) \) on \(C^+(V) \).

2.2. Kuga-Satake abelian varieties associated to polarized K3 surfaces. In this section we recall the construction of Kuga-Satake abelian varieties. We will follow closely [7] and [1].

Let \((X, L) \) be a primitively polarized complex K3 surface of degree \(2d \). We use the notations established in Section 2.1 in [26]. As pointed out in Remark 2.3.2 in loc. cite., we can find a marking \(m: H^2_B(X, \mathbb{Z}(1)) \to L_0 \) such that \(m(c_1(L)) = e_1 - df_1 \). Then, we obtain an isometry \(m: P^2_B(X, \mathbb{Z}(1)) \to L \) and hence the homomorphism \(h_X: \mathbb{S} \to \text{SO}(P^2_B(X, \mathbb{Z}(1))) \) defines an element
\[h_m := m \circ h_X \circ m^{-1}: \mathbb{S} \to \text{SO}(V_\mathbb{R}) \]
of \(\Omega^\pm \). There is a unique homomorphism
\[\tilde{h}_m: \mathbb{S} \to G_{1, \mathbb{R}} \]
such that \(h_m = \alpha \circ \tilde{h}_m \), where \(\alpha: G_1 \to G \) is the adjoint representation homomorphism (see §4.2 in [7]). Let \(W \) denote the \(\mathbb{Z} \)-module \(C^+(L) \). The composition of the homomorphism \(\tilde{h}_m \) with the spin representation \(\beta: G_1 \to \text{GL}(W_\mathbb{R}) \)
\[\beta \circ \tilde{h}_m: \mathbb{S} \to \text{GL}(W_\mathbb{R}) \]
gives rise to a polarizable \mathbb{Z}-HS of type $\{(1,0), (0,1)\}$ on W. We refer to Proposition 4.5 in [7] for a proof. Hence $\beta \circ \tilde{h}_m$ defines a complex abelian variety $A = A(L,h)$, given by the condition that $H_B^2(A,\mathbb{Z}) = W$ as \mathbb{Z}-HS. Its dimension is $g = 2^{19}$.

If we take a different marking $m': H_B^2(X,\mathbb{Z}(1)) \to L_0$ with $m'(c_1(\lambda)) = e_1 - df_1$, then we have that $m' \circ m^{-1} \circ h_m(z) = h_{m'}(z) \circ m' \circ m^{-1}$ for all $z \in S$. Therefore $C^+(m' \circ m) : W \to W$ defines an isomorphism between the \mathbb{Z}-HS on W induced by $\beta \circ \tilde{h}_m$ and $\beta \circ \tilde{h}_m'$. Hence we obtain an isomorphism between the abelian varieties associated to $(W,\beta \circ \tilde{h}_m)$ and $(W,\beta \circ \tilde{h}_m')$. Thus we see that the construction described above associates to a polarized K3 surface (X,\mathcal{L}) an abelian variety A, which does not depend on the choice of a marking m.

Definition 2.2.1. The abelian variety A is called the *Kuga-Satake abelian variety* associated to (X,\mathcal{L}).

We will see in Section 2.4 how to give explicitly polarizations of A.

Example 2.2.2. We shall describe explicitly how to obtain the Hodge structure on $C^+(V)$ in terms of the one on V. Choose an orthonormal basis (e_1, e_2) of $V_+ = V_\mathbb{R}(V^{-1,1} \oplus V^{1,-1})$ and let $e_+ = e_1 e_2$. Choose an orientation of (e_1, e_2) such that $e_1 - ie_2$ spans $V^{1,-1}$. Then multiplication by e_+

$$x \mapsto e_+ x$$

defines a complex structure on $C^+(V_\mathbb{R})$ which corresponds to the morphism $\tilde{h} : S \to \text{GL}(C^+(V_\mathbb{R}))$ defined above. The Kuga-Satake abelian variety A associated to (X,\mathcal{L}) is exactly the complex torus $C^+(V_\mathbb{R})/C^+(L)$ where $C^+(V_\mathbb{R})$ is considered as a complex vector space via the complex structure given by multiplication by e_+. For further details we refer to the articles of Satake [31], Kuga and Satake [15] and van Geemen [33].

Example 2.2.3. As before X will be a complex K3 surface. Instead of taking the orthogonal complement of an ample line bundle one can consider a subgroup $N \subset c_1(\text{Pic}(X)) \subset H_B^2(X,\mathbb{Z}(1))$ and its complement

$$L_N = N^\perp \subset H_B^2(X,\mathbb{Z}(1))$$

with respect to the bilinear form ψ. Then L_N carries a natural polarized \mathbb{Z}-HS of type $\{(1,-1), (0,0), (-1,1)\}$ and one can consider again $C^+(L_N)$ and give it a polarized \mathbb{Z}-HS of type $\{(1,0), (0,1)\}$ as above. It gives rise to a complex abelian variety A_N associated to the pair (X,N). We refer to §4.1 in [23] for further comments.

For two subgroups $N \subset N' \subset \text{NS}(X)$ with $d = \dim_{\mathbb{Q}}(N'/N_{\mathbb{Q}})$ one has that A_N is isogenous to a product of 2^d copies of an elliptic curve E which has complex multiplication. See also pp. 241-242 in [15].

Example 2.2.4. Let X be an exceptional K3 surface. Then the transcendental space $T_{X,\mathbb{Q}} = c_1(\text{Pic}(X)_{\mathbb{Q}})^\perp$ is of dimension 2 over \mathbb{Q}. By the preceding remarks we conclude that A is isogenous to a product of 2^{19} copies of an elliptic curve E which has complex multiplication. See also pp. 241-242 in [15].

Remark 2.2.5. Note that from the very construction of A we have that the Mumford-Tate group $MT(A)$ is contained in G_1 viewed as a subgroup of $\text{GL}(C^+(V))$ via the spin representation (4). Moreover, from the short exact sequence (2) we see that $G_m = \ker(\alpha)$
is contained in $MT(A)$ for weight reasons and hence we have an exact sequence

$$1 \to G_m \to MT(A) \to MT(X) \to 1.$$

We also conclude that $Hg(A)$ is an extension of $Hg(X)$ by $\mathbb{Z}/2\mathbb{Z}$.

2.3. **Endomorphisms.** Denote by C^+ the opposite ring $C^+(L)^{op}$. It is non-canonically isomorphic to $C^+(L)$. Let (X, \mathcal{L}) be a primitively polarized K3 surface. Fix a marking $m: P^2_B(X, \mathbb{Z}(1)) \to L$ as in Section 2.2 and let $h_m := m \circ h_X \circ m^{-1}: \mathbb{S} \to G_\mathbb{R}$ be the homomorphism defining the \mathbb{Z}-HS on L. The right action of C^+ on $W := C^+(L)$ commutes with the morphism βh_m so the Kuga-Satake abelian variety A has complex multiplication by C^+ (cf. §4.2 in [1] and §3.3 in [7]). In other words there is an injection

$$\gamma: C^+ \hookrightarrow \text{End}(A).$$

In fact one can see that there is an isomorphism of \mathbb{Z}-HS of type $\{(-1, 1), (0, 0), (1, -1)\}$

$$\phi_{\mathbb{Z}}: C^+(L)_{\text{ad}} \to \text{End}_{C^+}(W)$$

where $C^+(L)_{\text{ad}}$ is the \mathbb{Z}-HS obtained from (L, h) using the tensor construction $C^+(\cdot)$.

2.4. **Polarizations.** Let (X, \mathcal{L}) be a complex K3 surface with a primitive polarization λ of degree $2d$ and let $m: H^2_B(X, \mathbb{Z}(1)) \to L_0$ be a marking such that $m(e_1(\mathcal{L})) = e_1 - df_1$ (see Section 2.1 and Remark 2.3.2 in [26]). Let $h_m: \mathbb{S} \to \text{SO}(V_\mathbb{R})$ be the \mathbb{Z}-HS induced on L by h_X and let A be its associated Kuga-Satake abelian variety. We will show how to give explicitly a polarization of the \mathbb{Z}-HS $W (= C^+(L) = H^2_B(A, \mathbb{Z}))$.

Let $\iota: C^+(L) \to C^+(L)$ be the canonical involution of the even Clifford algebra. Fix a non-zero element $a \in C^+$ such that $\iota(a) = -a$. Then the skew-symmetric form

$$\varphi_a: W \otimes W \to \mathbb{Z}(-1)$$

given by

$$\varphi_a(x, y) = \text{tr}(\iota(x)ya)$$

defines a polarization for the \mathbb{Z}-HS on W if and only if the symmetric bilinear form $i\varphi_a(x, h_m(i)y)$ is positive definite (here $i = \sqrt{-1}$). Lemma 4.3 in [7] (see also Example 2.4.1) guarantees the existence of an element $a \in C^+$ for which $\pm \varphi_a$ is a polarization.

Example 2.4.1. Let e_1, \ldots, e_{21} be an orthogonal basis of (V, φ) such that $\psi(e_i, e_i) < 0$ for $i = 1, 2$. Let $m \neq 0$ be an integer such that $me_1 e_2 \in C^+(L)$. One has that $\iota(me_1 e_2) = -me_1 e_2$ and if $h \in \Omega^\pm$, then either $\varphi_{me_1 e_2}$ or $-\varphi_{me_1 e_2}$ is a polarization for \tilde{h}. For a proof we refer to [33, Prop. 5.9].

Remark 2.4.2. Note that the degree of the polarization φ_a depends only on a and d and can be computed explicitly.

Remark 2.4.3. Let $a \in C^+$ be an element such that $\iota(a) = -a$ and, say φ_a is a polarization the \mathbb{Z}-HS on W induced by \tilde{h}. Then φ_a defines a polarization $\mu: A \to A^\dagger$ which gives rise to a Rosati involution \dagger on $\text{End}^0(A) = \text{End}(A) \otimes \mathbb{Q}$. One can see that the restriction of the Rosati involution to $C^+ \otimes \mathbb{Q} \hookrightarrow \text{End}^0(A)$ (cf. (5)) is given by

$$f^\dagger = a^{-1} \iota(f)a$$

for all $f \in C^+(V)$. Hence $C^+(V)$ is stable under \dagger.
Remark 2.4.4. Note that we make some non-canonical choices to define a polarization on A. For instance, it is not clear if two different markings $m_i : H^2_B(X, \mathbb{Z}(1)) \to L_0$ for which $m_i(c_1(\lambda)) = e_1 - df_1$ give rise to two isomorphic polarized abelian varieties (A, μ_1) and (A, μ_2).

2.5. Kuga-Satake morphisms over fields of characteristic zero. Recall that we associated to every polarized complex K3 surface a complex abelian variety. We will explain here how to do this in families. Following the line of thoughts in [7] and [1] we define Kuga-Satake morphisms from the moduli spaces of polarized K3 surfaces with certain level structures to moduli stacks of polarized abelian varieties. We shall keep the notations from the previous sections.

Consider the Shimura datum (G, Ω^\pm) (cf. Section 2.2 in [28]) and let $h_0 : S \to G_R$ be an element of Ω^\pm. Let $\hat{h}_0 : \hat{S} \to G_{1,\hat{R}}$ be the unique homomorphism such that $h_0 = \alpha \circ \hat{h}_0$ (cf. Section 2.2). Define Ω^\pm_1 to be the $G_1(\mathbb{R})$-conjugacy class of \hat{h}_0. The pair (G_1, Ω^\pm_1) defines a Shimura datum with reflex field \mathbb{Q}. We refer to Appendix 1 in [1] for a proof.

The adjoint representation (1) defines a morphism of Shimura data

$$\alpha : (G_1, \Omega^\pm_1) \to (G, \Omega^\pm)$$

in the following way: $\alpha_{gr} : G_1 \to G$ is the adjoint representation homomorphism and $\alpha_{HS} : \Omega^\pm_1 \to \Omega^\pm$ the the morphism sending \hat{h} to $\alpha \circ \hat{h}$. The morphism α_{HS} is well-defined as $h = g \circ \hat{h}_0 \circ g^{-1}$ for some $g \in G_1(\mathbb{R})$ and hence $\alpha \circ \hat{h} = \alpha(g) \circ h_0 \circ \alpha(g)^{-1} \in \Omega^\pm$. Moreover $\alpha_{HS} : \Omega^\pm_1 \to \Omega^\pm$ is an analytic isomorphism (§4.2 in [7] or Lemma 4.11 in [18]).

We use the notations established in Section 5 of [26]. Fix a natural number $n \geq 3$. Let $\mathbb{K}^{sp} \subset G_1(\mathbb{A}_f)$ be a subgroup of finite index in \mathbb{K}^{sp} and denote by \mathbb{K}^a the image $\alpha(\mathbb{K}^{sp}) \subset G(\mathbb{A}_f)$ which is a subgroup of finite index in \mathbb{K}^a_n (cf. Example 5.1.4 in [26]). Then one has a morphism of quasi-projective \mathbb{Q}-schemes

$$(7) \quad \alpha_{(\mathbb{K}^{sp}, \mathbb{K}^a)} : Sh_{\mathbb{K}^{sp}}(G_1, \Omega^\pm_1) \to Sh_{\mathbb{K}^a}(G, \Omega^\pm).$$

Consider the group $C = G_m(\mathbb{Q}) \setminus \alpha^{-1}(\mathbb{K}^a)/\mathbb{K}^{sp}$. We have that

$$(8) \quad C = G_m(\mathbb{Q}) \setminus \alpha^{-1}(\mathbb{K}^a)/\mathbb{K}^{sp} = G_m(\mathbb{Q}) \setminus G_m(\mathbb{A}_f) \mathbb{K}^{sp}/\mathbb{K}^{sp} = G_m(\mathbb{Q}) \setminus G_m(\hat{Z}) \mathbb{K}^{sp}/\mathbb{K}^{sp} \simeq G_m(\hat{Z})/(G_m(\hat{Z}) \cap \mathbb{K}^{sp}).$$

The group C acts on $Sh_{\mathbb{K}^{sp}}(G_1, \Omega^\pm_1)_{\mathbb{Q}}$ via right multiplication. We have that $Z(G_1) = G_m$ and $G = G_1/Z(G_1)$. Further, by Hilbert’s Theorem 90, $H^1(k, G_m) = 0$ for all fields of characteristic zero, hence we can apply Lemma 4.13 in [18] and conclude that the morphism $\alpha_{(\mathbb{K}^{sp}, \mathbb{K}^a)} \otimes \mathbb{Q}$ is a Galois cover with a Galois group C. As C acts on $Sh_{\mathbb{K}^{sp}}(G_1, \Omega^\pm_1)_{\mathbb{Q}}$ via Hecke correspondences we see that these automorphisms are defined over \mathbb{Q}. Therefore the morphism (7) is a Galois cover with a Galois group C.

We will describe more explicitly the relation between these two Shimura varieties over \mathbb{C}. Consider the finite sets $C_{G_1} := G_1(\mathbb{Q}) \setminus G_1(\mathbb{A}_f)/\mathbb{K}^{sp}$ and $C_G := G(\mathbb{Q}) \setminus G(\mathbb{A}_f)/\mathbb{K}^a$. The homomorphism α defines a surjective map of sets $\alpha : C_{G_1} \to C_G$ (cf. (2)). Note that C naturally acts on C_{G_1} from the right. With this action the map α makes C_{G_1} into a C-torsor over C_G (in the sense of sets); in other words, if $[g] \in C_G$ and $g_1 \in G_1(\mathbb{A}_f)$ is an element with $\alpha([g_1]) = [g]$, then the map $C \to \alpha^{-1}([g])$ given by $u \mapsto [g_1 u]$ is a bijection.
One has that the decomposition of $Sh_{K^p}(G_1, \Omega_1^\pm)_C$ into connected components is

$$Sh_{K^p}(G_1, \Omega_1^\pm)_C = \coprod_{[g] \in CG} \Gamma'_[g] \Omega_1^+$$

where $\Gamma'_[g] = G_1(\mathbb{Q})_+ \cap g \mathbb{K}^p g^{-1}$, for some representative g of the class $[g]$ (see [19, §5, Lemma 5.13]. Similarly, we have that

$$Sh_{K^s}(G, \Omega^\pm)_C = \coprod_{[g] \in CG} \Gamma_[,g] \Omega^+$$

where $\Gamma_[,g] = G(\mathbb{Q})_+ \cap g \mathbb{K}^s g^{-1}$ for some representative g of $[g]$.

The morphism $\alpha_{(K^p, K^s)}$ maps the connected component $\Gamma'_[g] \Omega_1^+$ to $\Gamma_[,g] \Omega^+$ sending the class $[\hat{h}]$ to the class $[h]$ (cf. §2.2). The restriction

$$\alpha_{(K^p, K^s)} : \Gamma'_[g] \Omega_1^+ \to \Gamma_[,g] \Omega^+$$

is an isomorphism of complex quasi-projective varieties. Indeed, α maps $\Gamma'_[g]$ surjectively onto $\Gamma_[,g]$ and as $-1 \not\in \Gamma'_[g]$ (because $-1 \not\in g \mathbb{K}^p g^{-1} \supset g \mathbb{K}^p g^{-1}$) one concludes, from the short exact sequence (8) in Example 5.1.4 in [26], that $\Gamma'_[g]$ is mapped isomorphically onto $\Gamma_[,g]$. The morphism $\alpha_{HS} : \Omega_1^+ \to \Omega^+$ is an isomorphism so we see that (9) is an isomorphism as well. Further, we have that

$$\alpha_{(K^p, K^s)}^{-1}(\Gamma'_[g] \Omega_1^+) = \coprod_{u \in \mathbb{C}} \Gamma'_[g u] \Omega_1^+$$

where $g_1 \in G(\mathbb{A}_f)$ with $\alpha(g_1) = g$.

Denote by W the \mathbb{Z}-module $C^+(L)$ and choose an element $a \in C^+$ such that $\iota(a) = -a$. Recall that for such an element we have defined a bilinear form $\varphi_a : W \otimes W \to \mathbb{Z}(-1)$ (see (6)). The image of G_1 under the spin representation $\beta : G_1 \hookrightarrow \text{GL}(W_\mathbb{Q})$ is actually contained in $\text{CSp}(W_\mathbb{Q}, \varphi_a)$. Indeed, for any element $\gamma \in G_1$ we have that

$$\varphi_a(\gamma x, \gamma y) = \text{tr}(\iota(\gamma x) \gamma y) = \text{tr}(\iota(x) \iota(\gamma) \gamma y)$$

$$= \text{tr}(\iota(x) N(\gamma) y) = N(\gamma) \text{tr}(\iota(x)y)$$

$$= N(\gamma)(\varphi_a(x, y)$$

hence $\beta(\gamma) \in \text{CSp}(W_\mathbb{Q}, \varphi_a)$. Further, if the bilinear form φ_a defines a polarization for a Hodge structure $\beta \circ \hat{h}_1$ on W, then it defines a polarization for all Hodge structures $\beta \circ \hat{h}$ on W, for which \hat{h} belongs to the connected component of Ω^\pm_1 of \hat{h}. If φ_a is a polarization for those \hat{h} coming from the elements in Ω_1^+, then $-\varphi_a$ is a polarization for the \hat{h} coming from the elements in Ω^-.

Assumption 2.5.1. We assume that $a \in C^+$ is such that $\iota(a) = -a$ and that φ_a or $-\varphi_a$ defines a polarization for the \mathbb{Z}-Hodge structures induced on W by $\beta \circ \hat{h}$ for any $h \in \Omega_1^\pm$.

Under the above assumption define the inclusion of Shimura data

$$\beta : (G_1, \Omega^\pm) \hookrightarrow (\text{CSp}(W_\mathbb{Q}, \varphi_a), \mathfrak{H}^\pm).$$

as $\beta_{gr} : G_1 \hookrightarrow \text{CSp}(W_\mathbb{Q}, \varphi_a)$ being the spin representation (4) and $\beta_{HS} : \Omega_1^\pm \hookrightarrow \mathfrak{H}^\pm$ mapping \hat{h} to $\beta \circ \hat{h}$.

KUGA-SATAKE ABELIAN VARIETIES IN POSITIVE CHARACTERISTIC 9
Let Λ_n be the congruence level n-subgroup of $\text{CSp}(W_\mathbb{Q}, \varphi_a)(\mathbb{A}_f)$ corresponding to the lattice W of $W_\mathbb{Q}$. In other words we take

$$\Lambda_n = \{ g \in \text{CSp}(W_\mathbb{Q}, \varphi_a)(\mathbb{A}_f) \mid gW_\mathbb{Z} = W_\mathbb{Z} \text{ and } g \equiv 1 \pmod{n} \}.$$

It is clear from the definitions that $\beta(\mathbb{K}^{sp}) \subset \beta(\mathbb{K}_n^{sp}) \subset \Lambda_n$ hence we obtain a morphism of quasi-projective \mathbb{Q}-schemes

$$\beta_{(\mathbb{K}^{sp}, \Lambda_n)} : \text{Sh}_{\mathbb{K}^{sp}}(G_1, \Omega^\pm) \to \text{Sh}_{\mathbb{K}_n^{sp}}(G_1, \Omega^\pm) \to \text{Sh}_{\Lambda_n}(\text{CSp}(W_\mathbb{Q}, \varphi_a), \Omega^\pm).$$

Note that fixing the lattice W, respectively the arithmetic group Λ_n, one has an immersion $\text{Sh}_{\Lambda_n}(\text{CSp}(W_\mathbb{Q}, \varphi_a), \Omega^\pm) \hookrightarrow \mathcal{A}_{g,d',n_\mathbb{Q}}$ where d' is explicitly computed in terms of d and a (cf. Remark 2.4.2). It is given by the identification of $\text{Sh}_{\Lambda_n}(\text{CSp}(W_\mathbb{Q}, \varphi_a), \Omega^\pm)$ with a component $\mathcal{A}_{g,d',n_\mathbb{Q}}$ of $\mathcal{A}_{g,d',n_\mathbb{Q}}$ corresponding to an elementary divisor sequence $\delta = (d_1, \ldots, d_r)$, uniquely determined by φ_a, with $d_1 \cdots d_r = d'$ (cf. Definition 1.3 in [5]). We can put all morphisms considered so far in the following diagram

\begin{equation}
\begin{array}{ccc}
\text{Sh}_{\mathbb{K}^{sp}}(G_1, \Omega^\pm) & \xrightarrow{\beta_{(\mathbb{K}^{sp}, \Lambda_n)}} & \mathcal{A}_{g,d',n_\mathbb{Q}} \\
\downarrow & & \downarrow_{\text{pr}_n} \\
\text{Sh}_{\mathbb{K}^{\ast}}(G, \Omega^\pm) & \xrightarrow{\alpha_{(\mathbb{K}^{\ast}, \mathbb{K}^{sp})}} & \mathcal{A}_{g,d',n_\mathbb{Q}}. \\
\end{array}
\end{equation}

First construction of Kuga-Satake morphisms. Both morphisms $\alpha_{(\mathbb{K}^{\ast}, \mathbb{K}^{sp})}$ and pr_n are quotient morphisms as $\mathcal{A}_{g,d',\mathbb{Z}[1/n]}$ is the quotient stack $[\mathcal{A}_{g,d',n_\mathbb{Q}}/\text{GL}(W_\mathbb{Q})(\mathbb{Z}/n\mathbb{Z})]$ (cf. §4.3.4 in Ch VII of [22]). Moreover, as C acts freely on $\text{Sh}_{\mathbb{K}^{sp}}(G_1, \Omega^\pm)$ we have that the stack $[\text{Sh}_{\mathbb{K}^{sp}}(G_1, \Omega_1^\pm)/C]$ is represented by the quotient scheme $\text{Sh}_{\mathbb{K}^{\ast}}(G_1, \Omega^\pm) \cong \text{Sh}_{\mathbb{K}^{sp}}(G_1, \Omega_1^\pm)/C$. The spin representation defines a homomorphism (see (8))

\begin{equation}
\beta : C = \mathbb{G}_m(\hat{\mathbb{Z}})\mathbb{K}^{sp}/\mathbb{K}^{sp} \to \text{GL}(W_\mathbb{Q})(\mathbb{Z}/n\mathbb{Z}).
\end{equation}

We will show that $\beta_{(\mathbb{K}^{sp}, \Lambda_n)}$ descends to a morphism $\beta_{\mathbb{K}^{\ast}} : \text{Sh}_{\mathbb{K}^{\ast}}(G, \Omega^\pm) \to \mathcal{A}_{g,d',\mathbb{Q}}.$ To do this we have to check that $\beta_{(\mathbb{K}^{sp}, \Lambda_n)}$ is equivariant with respect to the homomorphism (12). Both $\text{Sh}_{\mathbb{K}^{\ast}}(G, \Omega^\pm)$ and $\mathcal{A}_{g,d',n_\mathbb{Q}}$ are reduced schemes over \mathbb{Q} so we can check the statement on \mathbb{C}-valued points. In other words we have to show that

$$\beta_{(\mathbb{K}^{sp}, \Lambda_n)}(g \cdot [\hat{h}, r]_{\mathbb{K}^{sp}}) = \beta(g) \cdot \beta_{(\mathbb{K}^{sp}, \Lambda_n)}([\hat{h}, r]_{\mathbb{K}^{sp}})$$

for any $g \in C, \hat{h} \in \Omega^\pm$ and $r \in G_1(\mathbb{A}_f)$. But this is tautology as from the definitions we see that

$$\beta_{(\mathbb{K}^{sp}, \Lambda_n)}(g \cdot [\hat{h}, r]_{\mathbb{K}^{sp}}) = \beta_{(\mathbb{K}^{sp}, \Lambda_n)}([\hat{h}, r]_{\mathbb{K}^{sp}}) = [\beta \circ \hat{h}, \beta(r)]_{\Lambda_n} = \beta(g) \cdot [\beta \circ \hat{h}, \beta(r)]_{\Lambda_n} = [\beta(g) \cdot \beta_{(\mathbb{K}^{sp}, \Lambda_n)}([\hat{h}, r]_{\mathbb{K}^{sp}}).$$

Hence $\beta_{(\mathbb{K}^{sp}, \Lambda_n)}$ descends to a morphism of algebraic stacks

$$\beta_{\mathbb{K}^{\ast}} : \text{Sh}_{\mathbb{K}^{\ast}}(G, \Omega^\pm) \to \mathcal{A}_{g,d',\mathbb{Q}}.$$

Recall that in Section 2.4 of [28] we defined a period morphism $j_{d,\mathbb{K}^{\ast}} : \mathcal{F}_{2d,\mathbb{K}^{\ast},\mathbb{Q}} \to \text{Sh}_{\mathbb{K}^{\ast}}(G, \Omega^\pm)$ which sends any complex polarized K3 surface with a level \mathbb{K}^{\ast}-structure to its period point.
Definition 2.5.2. Define the Kuga-Satake morphism associated to \(d, a \) and \(\mathbb{K}^a \)

\[
f_{d,a,\mathbb{K}^a,\mathbb{Q}}^{ks} : \mathcal{F}_{2d,\mathbb{K}^a,\mathbb{Q}} \to A_{g,d',\mathbb{Q}}
\]

to be the composite \(f_{d,a,\mathbb{K}^a,\mathbb{Q}}^{ks} = \beta_{\mathbb{K}^a} \circ j_{d,\mathbb{K}^a} \).

Thus we have proved the following statement.

Proposition 2.5.3. Let \(d, n \in \mathbb{N} \) with \(n \geq 3 \) and let \(\mathbb{K}^{sp} \subset \mathbb{K}^n \) be a subgroup of finite index. Fix a non-zero element \(a \in C^+ \) which satisfies Assumption 2.5.1. Then one has a Kuga-Satake morphism

\[
f_{d,a,\mathbb{K}^a,\mathbb{Q}}^{ks} : \mathcal{F}_{2d,\mathbb{K}^a,\mathbb{Q}} \to A_{g,d',\mathbb{Q}}
\]

where \(g = 2^{19} \) and \(d' \) depends explicitly on \(a \) and \(d \). It maps every primitively polarized complex K3 surface \((X, \lambda, \nu) \) with a level \(\mathbb{K}^a \)-structure \(\nu \) to its associated Kuga-Satake abelian variety \(A \) with a certain polarization of degree \(d'^2 \).

Remark 2.5.4. Note that if \(\mathbb{K}_1 \) is a subgroup of \(G_1(\hat{\mathbb{Z}}) \) of finite index contained in \(\mathbb{K}_n^{sp} \) and such that \(\alpha(\mathbb{K}_1) = \mathbb{K}^a \), then the morphism \(\beta_{(\mathbb{K}_1, \lambda_n)} : Sh_{\mathbb{K}_1}(G_1, \Omega_1^+ \mathbb{Z}) \to A_{g,d',n,\mathbb{Q}} \) also descends to the morphism \(\beta_{\mathbb{K}^a} : Sh_{\mathbb{K}^a}(G, \Omega^+ \mathbb{Z}) \to A_{g,d',\mathbb{Q}} \).

Example 2.5.5. Take \(\mathbb{K}^{sp} \) to be the group \(\mathbb{K}^n_{\mathbb{Q}} \). Then \(\mathbb{K}^a = \mathbb{K}_n^a \) and we obtain a Kuga-Satake morphism

\[
f_{d,a,\mathbb{K}^n_{\mathbb{Q}} \mathbb{Q}}^{ks} : \mathcal{F}_{2d,\mathbb{K}^n_{\mathbb{Q}} \mathbb{Q}} \to A_{g,d',\mathbb{Q}}.
\]

Remark 2.5.6. If \(\mathbb{K}^a \) is an admissible subgroup of \(SO(V)(\hat{\mathbb{Z}}) \) (see Definition 5.3.1 in [26]), then we have an open immersion \(j_{d,\mathbb{K}^a} : \mathcal{F}_{2d,\mathbb{K}^a,\mathbb{Q}}^{full} \to Sh_{\mathbb{K}^a}(G, \Omega^+ \mathbb{Z}) \) and therefore we obtain a Kuga-Satake morphism

\[
f_{d,a,\mathbb{K}^a,\mathbb{Q}}^{ks} : \mathcal{F}_{2d,\mathbb{K}^a,\mathbb{Q}}^{full} \to A_{g,d',\mathbb{Q}}
\]

defined by \(f_{d,a,\mathbb{K}^a,\mathbb{Q}}^{ks} = \beta_{\mathbb{K}^a} \circ j_{d,\mathbb{K}^a} \).

Remark 2.5.7. One might want to descend the Kuga-Satake morphism defined in Proposition 2.5.3 to a morphism \(\mathcal{F}_{2d,\mathbb{Q}} \to A_{g,d',\mathbb{Q}} \). The essence of the problem is that the Kuga-Satake construction described above requires a non-canonical choice of an element \(a \in C^+ \) to define a polarization. One can show that the obstruction for descending the Kuga-Satake morphism to a map \(\mathcal{F}_{2d,\mathbb{Q}} \to A_{g,d',\mathbb{Q}} \) is equivalent to the problem posed in Remark 2.4.4.

Our main goal is to define Kuga-Satake morphisms in mixed characteristic. As we will see later (Remark 3.1.8) there are problems extending the morphism \(f_{d,a,n}^{ks} : \mathcal{F}_{2d,n^{sp},\mathbb{Q}} \to A_{g,d',\mathbb{Q}} \) due to the fact that \(A_{g,d'} \) is an algebraic stack. We will give a second construction of Kuga-Satake morphisms below to which we can apply the extension result of Section 3.1.

Second construction of Kuga-Satake morphisms. We will construct a morphism

\[
f_{d,a,\gamma,n,E}^{ks} : \mathcal{F}_{2d,n^{sp},E} \to A_{g,d',n,E}
\]

for a number field \(E \) which can be determined via class field theory from the data \(d, a, \gamma, n \) (see below). To do that we will first determine the fields of definition of the geometric connected components of \(Sh_{\mathbb{K}^{sp}}(G_1, \Omega_1^+ \mathbb{Z}) \) and \(Sh_{\mathbb{K}^a}(G, \Omega^+ \mathbb{Z}) \).

We have that

\[
\pi_0(Sh_{\mathbb{K}^{sp}}(G_1, \Omega_1^+ \mathbb{Z})) \cong G_1(\mathbb{Q}) \backslash G_1(\mathbb{A}_f)/\mathbb{K}^{sp} \cong \mathbb{G}_m(\mathbb{A})/(\mathbb{Q}^+ \mathbb{R} > 0 N(\mathbb{K}^{sp}))
\]
where $N: G_1 \to G_1^{\text{ab}} = G_m$ is the spinorial norm homomorphism (see (3)). Denote by E_n the subfield of Q^{ab} corresponding to the group $Q \rtimes \mathbb{R}_{>0} N(\mathbb{K}^{\text{sp}})$ via class field theory (see Section 3.1 in [28]). Then, we have an isomorphism

$$\text{art}_{E_n/Q}: G_m(A)/\left(Q \rtimes \mathbb{R}_{>0} N(\mathbb{K}^{\text{sp}})\right) \to \text{Gal}(E_n/Q).$$

The Galois action on the geometric connected components of $Sh_{\mathbb{K}^{\text{sp}}}(G_1, \Omega^\pm_1)$ is given as follows: Let Y be the connected component $\Omega^+_1 / \Gamma_{[1]}$. It is defined over E_n and if $\sigma \in \text{Gal}(E_n/Q)$ is an automorphism such that $\text{art}_{E_n/Q}(\sigma) = N(g)$ for some $g \in G_1(A_f)$, then $Y^{\sigma} = \Omega^+_1 / \Gamma_{[g]}$. We have that

$$Sh_{\mathbb{K}^{\text{sp}}}(G_1, \Omega^+_1) = \bigcup_{\sigma \in \text{Gal}(E_n/Q)} Y^{\sigma}. \tag{13}$$

For details see §2 in [14]. Further, if we denote by X the connected component $\Omega^+ / \Gamma_{[1]}$ of $Sh_{\mathbb{K}^{\text{sp}}}(G, \Omega^\pm)_C$, then its field of definition E_X is a subfield of E_n and hence it is an abelian extension of Q. We have that $[E_n : E_X] = \# C = \varphi(n)$ (cf. (8)) and

$$Sh_{\mathbb{K}^{\text{sp}}}(G, \Omega^\pm) = \bigcup_{\sigma \in \text{Gal}(E_X/Q)} X^{\sigma}. \tag{14}$$

In order to define a Kuga-Satake morphism $f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{sp}},E} \to A_{g,d',n,E}$ we will give a section of $\alpha_{(\mathbb{K}^{\text{sp}}_1,\mathbb{K}^{\text{sp}}_n)}$ and use (11). We see from (9), (10), (13) and (14), that giving such a section is equivalent to giving a set-theoretic section of the homomorphism $\text{Gal}(E_n/Q) \to \text{Gal}(E_X/Q)$. For any such (set-theoretic) section $\gamma: \text{Gal}(E_X/Q) \to \text{Gal}(E_n/Q)$ one has a morphism

$$\delta_\gamma: Sh_{\mathbb{K}^{\text{sp}}}(G, \Omega^\pm) = \bigcup_{\sigma \in \text{Gal}(E_X/Q)} X^{\sigma} \cong \bigcup_{\sigma \in \text{Gal}(E_X/Q)} Y^{\gamma(\sigma)} \subset Sh_{\mathbb{K}^{\text{sp}}}(G_1, \Omega^+_1) \tag{15}$$

which is defined over E_n.

Definition 2.5.8. Define the **Kuga-Satake morphism** associated to d,a,n and γ

$$f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{sp}},E} \to A_{g,d',n,E}$$

to be the composite $f_{d,a,n,\gamma,E_n}^{ks} = \beta_{(\mathbb{K}^{\text{sp}}_d,\mathbb{K}^{\text{sp}}_n)} \circ \delta_\gamma \circ j_{\mathbb{K}^{\text{sp}}_n,E_n}$ defined over E_n.

Thus, we have proved the following statement.

Proposition 2.5.9. Let $d, n \in \mathbb{N}$ with $n \geq 3$. Let E_n and E_X be as above and suppose given a set-theoretic section γ of the homomorphism $\text{Gal}(E_n/Q) \to \text{Gal}(E_X/Q)$. Fix a non-zero element $a \in C^+$ which satisfies Assumption 2.5.1. Then one has a Kuga-Satake morphism

$$f_{d,a,n,\gamma,E_n}^{ks}: \mathcal{F}_{2d,n^{\text{sp}},E} \to A_{g,d',n,E}$$

where $g = 2^{19}$ and d' depends explicitly on a and d. It maps every primitively polarized complex $K3$ surface (X, λ, ν) with a spin level n-structure ν to its associated Kuga-Satake abelian variety A with a certain polarization of degree d'^2 and a certain level n-structure. Further, by construction, for any choice of a section γ we have that $f_{d,a,n}^{ks} \otimes E_n = pr_n \circ f_{d,a,n,\gamma,E_n}^{ks}$.

As we have seen, there are many possible ways of defining Kuga-Satake morphisms. In general, one has to make some non-canonical choices in order to find a section of $\alpha(n, \gamma, E)$ in (11) and define a morphism $\mathcal{F}_{2d,n^p,\mathbb{C}} \to A_{d',n,\mathbb{C}}$.

Below, we explain the relative Kuga-Satake construction of Deligne (cf. §5 in [7]) in our framework. Consider the diagram

$$
\begin{array}{ccc}
\Gamma'_1 \backslash \Omega^+_1 & \overset{\beta(n, \gamma, E)}{\longrightarrow} & A_{d',n,\mathbb{C}} \\
\cong & & \\
\Gamma_1 \backslash \Omega^+.
\end{array}
$$

Over \mathbb{C} one can define a morphism $\mathcal{F}_{2d,n^p,\mathbb{C}} \to \Gamma_1 \backslash \Omega^+$ by mapping all connected components of $\mathcal{F}_{2d,n^p,\mathbb{C}}$ to $\Gamma_1 \backslash \Omega^+$. See the proof of Proposition 5.7 in [7]. Composing these two maps we obtain a morphism

$$f_n : \mathcal{F}_{2d,n^p,\mathbb{C}} \to \Gamma_1 \backslash \Omega^+ \cong \Gamma'_1 \backslash \Omega^+_1 \to A_{d',n,\mathbb{C}}$$

which is the relative Kuga-Satake construction described in §5 in [7] and §5 in [1]. One can show that this morphism is defined over a number field. Suppose further, that $n = 3$ or 4. Here is a possible way to study the field of definition of f_n. Combining Proposition 8.3.5 and Theorem 8.4.3 in [1] one can see that f_n is defined over the composite of E_n with any field $K \subset \mathbb{C}$ for which $\mathcal{F}_{2d,n^p,\mathbb{Q}}$ has a K-valued point. Then by Theorem 7 in [27] the morphism f_n is defined over the composite of E_n with the fields of definition of the geometric connected components of $\mathcal{F}_{2d,n^p,\mathbb{Q}}$. In general, this field can be a non-trivial extension of E_n.

Remark 2.5.10. The construction of Kuga-Satake morphisms described in this section and the one given in [7] and [1] differ in the choice of a period morphism. We use the “modified” period map $j_{d,X,\mathbb{C}}$ in order to be able to apply the results of [28]. In this way we can control explicitly the fields of definition of the morphisms involved in the relative Kuga-Satake construction and therefore the field of definition of $f^ks_{d,a,n,\gamma,\mathbb{C}}$.

We will end this section with a result comparing the étale cohomology of a K3 surface and its associated Kuga-Satake abelian variety. Let U^i be a geometric connected component of $\mathcal{F}_{2d,n^p,\mathbb{C}}$ which is defined over a field $i : K \hookrightarrow \mathbb{C}$. Let $(\pi_{X^i} : X^i \to U^i, \lambda^i, \nu^i)$ be the pull-back of the universal family to U^i. Denote by $(\pi_{A^i} : A^i \to U^i, \mu^i, \epsilon^i)$ the polarized abelian scheme with level n-structure $f^ks_{d,a,n,\gamma,\mathbb{C}}((\pi_{X^i} : X^i \to U^i, \lambda^i, \nu^i))$.

Taking a base change $i : K \to \mathbb{C}$ we have an abelian scheme $(A^i_C \to U^i_C, \mu^i_C, \epsilon^i_C)$ which is exactly $f^ks_{d,a,n,\gamma,\mathbb{C}}((X^i_C \to U^i_C, \lambda^i_C, \nu^i_C))$ and which, by construction, has multiplication by C^+. Further, we know that $\text{End}_{U^i}(A^i_C) = C^+$ (see the beginning of §8 in [1]) and one has further that $\text{End}_{U^i}(A^i) = C^+$.

Lemma 2.5.11. There is a unique isomorphism of \mathbb{Z}-sheaves

$$C^+(P^2_{\text{et}}\pi_{X^i,*,\mathbb{Z}}(1)) \cong \text{End}_{C^+}(R^1_{\text{et}}\pi_{A^i,*,\mathbb{Z}}).$$

Proof. One repeats step by step the proof of Lemma 6.5.13 in [7].
Corollary 2.5.12. Let K be a field of characteristic zero and suppose given a K-valued point $(X, \lambda, \nu) \in \mathcal{F}_{2d,n^{sp},E_n}(K)$. If (A, μ, ϵ) is the corresponding Kuga-Satake abelian variety $f_{d,a,n,\gamma,E_n}((X, \lambda, \nu))$, then one has an isomorphism of Gal(\overline{K}/K)-modules
\[C^+(P^2_{et}(X_{\overline{K}}, \mathbb{Z}_l(1))) \cong \text{End}_{C^+}(H^1_{et}(A_{\overline{K}}, \mathbb{Z}_l)) \]
for any prime number l.

Proof. It follows from the preceding lemma. \qed

Remark 2.5.13. Note that if R is a discrete valuation ring with a maximal ideal p and field of fractions K of characteristic zero, containing E_n. Suppose given a polarized K3 surface (X, λ, α) with spin level n-structure over K and let (A, μ, β) be the corresponding Kuga-Satake abelian variety. Suppose further that X has good reduction modulo p. Then the inertia subgroup I_p acts trivially on $P^2_{et}(X_{\overline{K}}, \mathbb{Z}_l(1))$ for every l different from the characteristic of R/p. As shown in §6.6 in [7] and Lemma 9.3.1 in [1] this implies that I_p acts via a finite group on $H^1_{et}(A_{\overline{K}}, \mathbb{Z}_l)$ i.e., that A has potentially good reduction at p. Since the n-torsion is rational over K we conclude, as in Lemma 9.3.1 in [1], that A has good reduction at p.

3. Extension of the Kuga-Satake morphisms in positive characteristic

The following two sections contain the main results of this note. We show that the Kuga-Satake morphism from Definition 2.5.8 extends in positive characteristic. In this way we give a partial answer to the question posed in the beginning of the chapter.

In Section 3.1 we prove an abstract extension result concerning morphisms from smooth schemes into $A_{g,d',n}$. Then we use this in the next section to show that f_{d,a,n,γ,E_n}^s extends over an open part of Spec(\mathcal{O}_{E_n}).

3.1. The extension result. Let us fix the following notations we will use in this section:

- R will be a discrete valuation ring of mixed characteristic $(0,p)$ where $p > 2$. Denote by η and s the generic and the special points of Spec(R), respectively. Further, let K be the fraction field of R and k will denote the residue field of R;
- U will be a smooth scheme over R;
- We fix three natural numbers g, d' and $n \geq 3$ and denote by A the moduli stack $A_{g,d',n,R}$ of g-dimensional abelian varieties with polarization of degree d'^2 and Jacobi level n-structure over R. We will assume that p does not divide $d'n$.
- Assume given a morphism $f_\eta: U_\eta \to A_\eta$.

We are interested in extending the morphism f_η over R. Of course, in general one cannot expect to be able to do this without further assumptions on f_η and U. We will list some conditions below which, if satisfied, will guarantee the existence of an extension of f_η.

Assumption 3.1.1. Let x be a point on the special fiber U_s of U, let $\mathcal{O}_{U,x}$ be its local ring and denote by L the field of fractions of $\mathcal{O}_{U,x}$. Then the morphism $f_\eta: \text{Spec}(L) \to A_\eta$ extends to a morphism $\tilde{f}: \text{Spec}(\mathcal{O}_{U,x}) \to A$.

We will show that if this assumption is fulfilled for certain points of U then the morphism does extend over R. More precisely we have
Proposition 3.1.2. Let U be a smooth scheme over R and let $f_\eta: U_\eta \to A_\eta$ be a morphism. Assume that the total ramification index e of R satisfies $e < p - 1$ and that all generic points of the special fiber U_s of U satisfy Assumption 3.1.1. Then f_η extends uniquely to a morphism $f: U \to A$ over R.

Proof. We will divide the proof into several steps.

Step 1: We will prove first that if the morphism extends then the extension is unique.

Lemma 3.1.3. Let V be a scheme over R and suppose given a morphism $f_\eta: V_\eta \to A_\eta$. Assume that it extends to a morphism $f_{V'}: V' \to A$ over a dense open subscheme V' of V. Then this extension is unique.

Proof. This boils down to the fact that A is separated over R. Assume that there exist two morphisms, say F_1 and F_2 extending f_η over V. Consider the morphism $(F_1, F_2): V \to A \times_R A$. The locus where $F_1 = F_2$ is the pull-back $(F_1, F_2)^{-1}\Delta_A$ of the diagonal $\Delta_A \subset A \times_R A$ which is closed as A is separated over R. Hence we conclude that $F_1 = F_2$ on V'.

In particular, we conclude that if f extends over U, then this extension is unique.

Step 2: There exists a maximal open subscheme V of U such that f_η extends to a morphism $f_V: V \to A$. Indeed, if f extends over two open subschemes V_1 and V_2 of U, then by Lemma 3.1.3 above those two extensions agree on $V_1 \cap V_2$. Hence we can glue the two morphism and get a morphism $f_{V_1 \cup V_2}: V_1 \cup V_2 \to A$. This shows that one can take V to be the union of all open subschemes V' of U such that f_η extends to a morphism $f_{V'}: V' \to A$.

Step 3: Consider the graph Γ_η of $f_\eta: U_\eta \to A_\eta$ in $U_\eta \times A_\eta$. Take the flat extension $\bar{\Gamma}$ of Γ_η over R i.e., the closure of Γ_η in $U \times A$. We have the projection map $pr_1: \bar{\Gamma} \to U$. Let $\{U_s\}_{s \in I}$ be the set of connected components of the special fiber U_s and for each i let $U^{(i)}$ be the open subscheme $U \setminus (\bigcup_{j \neq i} U_s^i)$. We look at the set

$$U^{(i)}_R := \{p \in U^{(i)} \mid pr_1(p) \text{ is flat at all points of } pr_1(p)\},$$

which is open in $U^{(i)}$ (§8, Proposition 8.9.4 in EGA IV ([11])). We will call this set, with its induced scheme structure the maximal subscheme of $U^{(i)}$ over which this projection map is flat. Let V_R be the open subscheme $\bigcup_i U^{(i)}_R$ of U.

Lemma 3.1.4. The maximal open subscheme V given in Step 2 over which f_η extends is equal the open subscheme V_R of U over which the morphism $pr_1: \bar{\Gamma} \to U$ is flat.

Proof. Note first that the scheme V from Step 2 is contained in V_R. Indeed, the morphism $pr_1: pr_1^{-1}(V) \to V$ is an isomorphism, as $pr_1^{-1}(V) \subset U \times A$ is the graph of f_V, and therefore it is flat.

Since $pr_1: pr_1^{-1}(V_R) \to V_R$ is flat the dimension of the fibers is constant. It is zero on the generic fiber hence this morphism is quasi-finite. Using Zariski’s Main Theorem (§8, Theorem 8.12.6 in EGA IV ([11])) one can factor $pr_1|_{V_R}$ as an open immersion and a finite morphism $pr_1^{-1}(V_R) \to \bar{V} \to V_R$. But generically, over every connected component of V_R,
the degree of the finite morphism is one, hence it is one everywhere. This means that \(pr_1: pr_1^{-1}(V_f) \rightarrow V_f \) is an isomorphism. Hence one can extend \(f_\eta \) on \(V_f \) using the second projection map \(pr_2: \overline{\Gamma} \rightarrow A \). Therefore we get the other inclusion \(V_f \subset V \).

\[\square \]

Step 4: We will show that the open subscheme \(V \) given is Step 2 contains all generic points of \(U_s \). We need some auxiliary results.

Lemma 3.1.5. If \(x \in U \) satisfies Assumption 3.1.1, then \(x \in V \).

Proof. According to Step 3 we have to show that \(pr_1: \overline{\Gamma} \rightarrow U \) is flat at \(x \).

Claim 3.1.6. Let \(X \) be a scheme over \(R \) and let \(\Gamma_\eta \subset X_\eta \) be a closed subscheme. Take the flat extension \(\overline{\Gamma} \) of \(\Gamma_\eta \). Let \(i: Y \rightarrow X \) be a flat morphism over \(R \) and set \(\Delta_\eta : = i^*\Gamma_\eta \). Let \(\overline{\Delta} \) be the flat extension of \(\Delta_\eta \) in \(Y \). Then one has that \(\overline{\Delta} = i^*\overline{\Gamma} \).

Proof. Since flatness is stable under base change we have that \(i^*\overline{\Gamma} \rightarrow \Gamma \) is flat. Hence \(\overline{\Delta} \) is flat and \(\overline{\Delta} = i^*\overline{\Gamma} \). Therefore by uniqueness of the flat extension (see §2, Proposition 2.8.5 in EGA IV ([11])) we conclude that \(\overline{\Delta} = i^*\overline{\Gamma} \). \(\square \)

For a scheme \(X \) denote by \(|X| \) its underlying topological space.

Claim 3.1.7. Let \(X \) and \(T \) be two schemes and \(h: T \rightarrow X \) be a morphism. Take a point \(x \in |X| \), let \(i: \text{Spec}(\mathcal{O}_{X,x}) \rightarrow X \) be the morphism associated to \(x \) and let \(i^*h: i^*T \rightarrow \text{Spec}(\mathcal{O}_{X,x}) \) be the pull-back map. If \(i^*h \) is flat, then \(h \) is flat above \(x \) i.e., it is flat at all points \(t \in h^{-1}(x) \).

Proof. If \(t \in h^{-1}(x) \), then \(\mathcal{O}_{T,t} \cong (i^*T)_t \) as \(\mathcal{O}_{X,x} \)-algebras and hence we obtain the result in the claim. \(\square \)

Let us go back to the proof of the Lemma 3.1.5. We have the following diagram:

\[
\begin{array}{c}
\text{Spec}(\mathcal{O}_{U,x}) \times A \\
\downarrow \text{flat} \\
\text{Spec}(\mathcal{O}_{U,x}) \\
\downarrow \text{flat} \\
\text{Spec}(R)
\end{array}
\]

\[
\begin{array}{c}
\text{Spec}(\mathcal{O}_{U,x}) \times A \\
\downarrow \text{flat} \\
U \times A \\
\downarrow \text{flat} \\
U \\
\downarrow \text{smooth} \\
\text{Spec}(R)
\end{array}
\]

Let \(\alpha = \text{Spec}(L) \) where \(L \) is the field of fractions of \(\mathcal{O}_{U,x} \). Consider the point \(\Delta_\eta = (\alpha, f_\eta(\alpha)) \) on \(U_\eta \times A_\eta \). Then by Claim 3.1.6 applied to

\[
\begin{align*}
X &= \text{Spec}(\mathcal{O}_{U,x}) \times A \\
Y &= U \times A \text{ over } R \\
\Gamma_\eta &= \text{the graph of } f_\eta
\end{align*}
\]

we conclude that \(i^*\overline{\Gamma} = \overline{\Delta} \), where \(\overline{\Delta} \) is the flat closure over \(R \).

\[\square \]
Since Assumption 3.1.1 holds for the point x the map $f_\eta: \text{Spec}(L) \rightarrow \mathcal{A}_n$ extends to a morphism $\tilde{f}: \text{Spec}(\mathcal{O}_{U,x}) \rightarrow \mathcal{A}$ and we see that $\tilde{\Delta}$ is the graph of \tilde{f}. In particular we have that $\Delta \cong \text{Spec}(\mathcal{O}_{U,x})$ hence it is flat over $\text{Spec}(\mathcal{O}_{U,x})$. If we apply Claim 3.1.7 with $T = \Gamma$ and $X = U$ we get that $pr_1: \Gamma \rightarrow U$ is flat at x. Therefore by Step 3 we conclude that $x \in V$. This finishes the proof of the Lemma. \hfill \Box

Since all generic points of the special fiber U_s satisfy Assumption 3.1.1 we conclude that they are contained in V.

Step 5: By Step 4 there exists an open dense subscheme V of U, containing the generic points of the connected components of the special fiber U_s over which the morphism $f_\eta: U_\eta \rightarrow \mathcal{A}_n$ extends to a morphism $f_V: V \rightarrow \mathcal{A}$ over R. It corresponds to a polarized abelian scheme with level n-structure $(\mathcal{A}_V, \lambda_V, \alpha_V)$ over V.

As V contains strictly the generic fiber U_η and all generic points of the special fiber U_s we have that $\text{codim}_U U \setminus V \geq 2$. Since U is smooth over R and by assumption $e < p - 1$ then by a result of Faltings (Lemma 3.6 in [21]) one concludes that $A_V \rightarrow V$ extends to an abelian scheme $A \rightarrow U$.

Further, by Lemma 1.0.2 the polarization λ_V extends to a polarization $\lambda: A \rightarrow A^t$. Since p does not divide n, the level n-structure α_V extends uniquely to a level n-structure α on (A, λ). Hence we get a polarized abelian scheme (A, λ, α) extending $(A_V, \lambda_V, \alpha_V)$. This corresponds to a morphism $f: U \rightarrow \mathcal{A}$ extending f_η. \hfill \Box

Remark 3.1.8. We will apply Proposition 3.1.2 to show that the Kuga-Satake morphism constructed in Proposition 2.5.9 extends over an open part of $\text{Spec}(\mathcal{O}_{E_n})$, where \mathcal{O}_{E_n} is the ring of integers in E_n. One might want to use the same line of thoughts and try to extend the Kuga-Satake morphism $f^{ks}_{d,a,n,\gamma,E_n}$ defined in Proposition 2.5.3 over an open part of $\text{Spec}(\mathbb{Z})$. The problem which one comes up with is to carry on Step 3 in this situation. One can define an equivalence of the closure $\bar{\Gamma}$ of Γ. In general, the morphism $\bar{\Gamma}_\text{ft} := pr^{-1}(V_\text{ft}) \rightarrow V_\text{ft}$ might not be representable so one cannot use Zariski’s Main Theorem (Theorem 16.5 in [17]).

3.2. Extension of the Kuga-Satake morphisms.

In this section we will use the notations established in §2.5. In particular, we fix two natural numbers d and n and let us suppose that $n \geq 3$. Let γ be a set-theoretic section of the homomorphism $\text{Gal}(E_n/Q) \rightarrow \text{Gal}(E_X/Q)$. We will show below that the Kuga-Satake morphism $f^{ks}_{d,a,n,\gamma,E_n}$ extends over an open part of $\text{Spec}(\mathcal{O}_E)$ where \mathcal{O}_{E_n} the ring of integers in E_n.

Theorem 3.2.1. Let $d, n \in \mathbb{N}$, $n \geq 3$ and suppose that $a \in C^+$ satisfies Assumption 2.5.1. Then the Kuga-Satake morphism $f^{ks}_{d,n,a,\gamma,E_n}: F_{2d,n,a,\gamma,E_n} \rightarrow A_{g,d',n,E_n}$ extends uniquely to a morphism

$$f^{ks}_{d,a,n,\gamma}: F_{2d,n,a,\gamma,E_n}[1/N] \rightarrow A_{g,d',n,E_n}[1/N]$$

where $N = 2dd'n'$ and l is the product of the prime numbers p whose ramification index e_p in E_n is $p - 1$.

Proof. Let us first shorten the notations a bit by setting \mathcal{F} to be $F_{2d,n,a,\gamma,E_n}[1/N]$ and \mathcal{A} to be $A_{g,d',n,E_n}[1/N]$. Let $\pi: U \rightarrow \mathcal{F}$ be an atlas of \mathcal{F} (i.e., an étale surjective morphism) over $\mathcal{O}_{E_n}[1/N]$. We may assume that the pull-back of the universal family of
polarized K3 surfaces to U is a K3 scheme. The map $f_{d,a,n,\gamma,E_n}^{ks} : \mathcal{F}_{E_n} \to \mathcal{A}_{E_n}$ defines a morphism $f_{E_n} = f_{d,a,n,\gamma,E_n}^{ks} \circ \pi_{E_n} : U_{E_n} \to \mathcal{A}_{E_n}$. We will fist extend f_{E_n} to a morphism over $\mathcal{O}_{E_n}[1/N]$ and then using a descent argument show that it comes from a morphism

$$f_{d,a,n,\gamma}^{ks} : \mathcal{F}_{d,a,n^p,\mathcal{O}_{E_n}[1/N]} \to \mathcal{A}_{g,d',n,\mathcal{O}_{E_n}[1/N]}.$$

Let \mathfrak{p} be a prime ideal of E_n not dividing N and let $R = \mathcal{O}_{E_n,\mathfrak{p}}$ be the localization of \mathcal{O}_{E_n} at \mathfrak{p}. As before $\{s, \eta\}$ will be the special and the generic points of $\text{Spec}(R)$. In order to apply Proposition 3.1.2 to f_{E_n} and U_R, which we will denote by U^p, we have to show that all generic points of the special fiber U^p of U^p satisfy Assumption 3.1.1.

Let $x \in |U^p|$ be a generic point. Then $\mathcal{O}_{U^p,x}$ is a discrete valuation ring with a maximal ideal \mathfrak{m}_x. Let us denote its field of fractions by L. Taking the pull-back of the universal family of polarized K3 surfaces with spin level n-structures via the canonical morphism $\text{Spec}(\mathcal{O}_{U^p,x}) \to U^p$ we obtain a K3 scheme $(X \to \text{Spec}(\mathcal{O}_{U^p,x}), \lambda, \nu)$. Then f_{E_n} gives a morphism $\text{Spec}(L) \to \mathcal{A}_{E_n}$ and let (A, μ, ϵ) be the corresponding abelian variety over L. It is the Kuga-Satake abelian variety associated to the generic fiber of $(X \to \text{Spec}(\mathcal{O}_{U^p,x}), \lambda, \nu)$. We can apply Remark 2.5.13 (or alternatively by Lemma 9.3.1 in [1]) we conclude that A has potentially good reduction and as the n-torsion points are L-rational, then A has good reduction) to see that the abelian variety A has good reduction at \mathfrak{m}_x. In other words the Néron model of A over $\mathcal{O}_{U^p,x}$ is an abelian scheme. By Lemma 1.0.1, the polarization λ extends uniquely over $\mathcal{O}_{U^p,x}$ and as \mathfrak{p} does not divide n, the level n-structure extends uniquely, as well. Hence the morphism $\text{Spec}(L) \to \mathcal{A}_{E_n}$ extends to a morphism $\text{Spec}(\mathcal{O}_{U^p,x}) \to \mathcal{A}_R$. Therefore, by Proposition 3.1.2 applied to U^p, f_{E_n} and $R = \mathcal{O}_{E_n,\mathfrak{p}}$ one can extend $f_{E_n} : U_{E_n} \to \mathcal{A}_{E_n}$ to a morphism $f_\mathfrak{p} : U^p \to \mathcal{A}_R$.

The morphism f_{E_n} can be extended uniquely over $\mathcal{O}_{E_n,\mathfrak{p}}$ for any p not dividing N. Hence we conclude that it extends uniquely to a morphism $f : U \to A$ over $\mathbb{Z}[1/N]$.

We are left to show that f descends to $\mathcal{F}_{2d,n^p,\mathcal{O}_{E_n}[1/N]}$. By Proposition 1.4 in §1, Ch. II of [13] one has the following exact sequence

$$0 \longrightarrow \text{Hom}_S(\mathcal{F}, \mathcal{A}) \overset{\alpha^*}{\longrightarrow} \text{Hom}_S(U, \mathcal{A}) \overset{pr_1^*}{\longrightarrow} \text{Hom}_S(U', \mathcal{A})$$

where $U' = U \times_{\mathcal{F}} U$. Note that both $pr_1^* (f)$ and $pr_2^* (f)$ are extensions of the morphism $pr_1^* \circ \pi^* (f_{d,a,n,\gamma,E_n}^{ks}) = pr_2^* \circ \pi^* (f_{d,a,n,\gamma,E_n}^{ks})$ over $\mathcal{O}_{E_n}[1/N]$. Since U' is a smooth scheme over $\mathcal{O}_{E_n}[1/N]$ (Definition 1.1 in [13]) and \mathcal{A} is separated just like in Lemma 3.1.3 we conclude that such an extension is unique. Hence we one has that $pr_1^* (f) = pr_2^* (f)$ and therefore by the above exact sequence f comes from a morphism

$$f_{d,a,n,\gamma}^{ks} : \mathcal{F}_{2d,n^p,\mathcal{O}_{E_n}[1/N]} \to \mathcal{A}_{g,d',n,\mathcal{O}_{E_n}[1/N]}$$

over $\mathcal{O}_{E_n}[1/N]$. \hfill \square

We end this section with a few remarks concerning the Kuga-Satake morphism in mixed characteristic.

Remark 3.2.2. In the proof of Proposition 3.1.2 we used a result of Faltings to show that certain morphisms extend in positive characteristic. This is really an essential step of our strategy for defining Kuga-Satake abelian varieties in positive characteristic. In Theorem 3.2.1 we have to exclude the primes p for which the ramification index e_p is $\geq p - 1$, as
Lemma 3.6 in [21] does not hold for these primes. See Section 6 in [6] and Section 3.4 in [21].

Remark 3.2.3. We use the notations of Theorem 3.2.1. Suppose \(k \) is a field of characteristic \(p \) such that \(p \) does not divide \(N \) and let \(R \) be a discrete valuation ring of mixed characteristic \((0, p) \) with field of fractions \(k \). Then to every primitively polarized K3 surface with a spin level \(n \)-structure \((X, \lambda, \nu)\) over \(k \) we associate via \(f_{d,a,n,\gamma}^{ks} \) a polarized abelian variety with level \(n \)-structure \((A, \mu, \epsilon)\) over \(k \). We will call \(A \) the Kuga-Satake abelian variety associated to \((X, \lambda, \nu)\). Further, if \((X_1, \lambda_1, \nu_1)\) and \((X_2, \lambda_2, \nu_2)\) are two lifts of \((X, \lambda, \nu)\) over \(R \), then the special fibers of \((A_i, \mu_i, \epsilon_i) := f_{d,a,n,\gamma}^{ks}((X_i, \lambda_i, \nu_i))\), for \(i = 1, 2 \) are the same.

Remark 3.2.4. In characteristic zero one can show that the image \(f_{d,n,a,\gamma,E_n}(\mathcal{F}_{2d,n^p,p,E_n}) \) in \(\mathcal{A}_{d,a,n,E_n} \) is locally closed. Indeed, as we saw in Proposition 2.5 the period map is open and the morphisms \(\beta_{(X_{sp}^p, \Lambda_n)} \) and \(\delta_\gamma \) involved in the construction of \(f_{d,n,a,\gamma,E_n}^{ks} \) are finite (see Definition 2.5.8). It is interesting to know if the same holds in mixed characteristic. This question is directly connected to the existence of an analogue of the Néron-Ogg-Shafarevich criterion for potentially good reduction of K3 surfaces. To our knowledge, in general, this is still an open problem.

4. Applications

We end this note with some applications of the existence of Kuga-Satake morphisms in mixed characteristic. In Section 4.1 we show that the étale cohomology relations \(\textsection 6.6.1 \) [7] and in Definition 4.5.1 in [1] hold for the Kuga-Satake abelian varieties defined in \(\textsection 3.2 \). Then, in Section 4.2, we study the behavior of \(f_{d,a,n,\gamma}^{ks} \) at ordinary points. Suppose that \(k \) is a finite field of characteristic \(p \) where \(p \) does not divide \(N \) (cf. Theorem 3.2.1) and let \((X, \mathcal{L}, \nu) \in \mathcal{F}_{2d,n^p,p}(k)\) be an ordinary point. We will prove that the canonical lift \((X_{can}, \mathcal{L}, \nu)\) over \(W(k) \) is mapped to the canonical lift \((A_{can}, \mu, \epsilon)\) of \((A, \mu, \epsilon) = f_{d,a,n,\gamma}^{ks}((X, \mathcal{L}, \nu))\).

4.1. Cohomology groups

Let \(d \) and \(n \) be two natural numbers and suppose further that \(n \geq 3 \). With the notations as in Sections 2.5 and 3.2 let \(a \in C^+ \) be an element satisfying Assumption 2.5.1 and let \(\gamma \) be a set-theoretic section of the homomorphism \(\text{Gal}(E_n/\mathbb{Q}) \to \text{Gal}(E_X, \mathbb{Q}) \). Then we have a Kuga-Satake morphism

\[
f_{d,a,n,\gamma}^{ks} : \mathcal{F}_{2d,n^p,\mathcal{O}_{E_n}[1/N]} \to \mathcal{A}_{g,d',n,\mathcal{O}_{E_n}[1/N]}
\]

where \(N = 2dd'nl \) and \(l \) is the product of the prime numbers \(p \) whose ramification index \(e_p \) in \(E_n \) is \(\geq p - 1 \).

Let \(k \) be a field of characteristic \(p \) and suppose given a \(k \)-valued point \((X, \lambda, \nu) \in \mathcal{F}_{2d,n^p,\mathcal{O}_{E_n}[1/N]}\). Denote by \((A, \mu, \beta_n)\) the polarized Kuga-Satake abelian variety with level \(n \)-structure \(f_{d,a,n,\gamma}^{ks}((X, \lambda, \nu))\).

Lemma 4.1.1. With the notations as above one has and isomorphism of \(\text{Gal}(\bar{k}/k) \)-modules

\[
C^+(\mathcal{P}_{et}^2(X_{\bar{k}}, \mathbb{Z}_l(1))) \cong \text{End}_{C^+}(H^1_{et}(A_{\bar{k}}, \mathbb{Z}_l))
\]

for any \(l \neq p \).
Proof. Let (X, λ, ν) be a lift of (X, λ, ν) over $W(k)$ (which exists because $\mathcal{F}_{2d,n^{sp}, \mathcal{O}_{En}[1/N]}$ is smooth over $\mathcal{O}_{En}[1/N]$) and let (A, μ, ϵ) be the Kuga-Satake variety $f_{d,a,n,\gamma}^{ks}((X, \lambda, \nu))$. By Corollary 2.5.12 we have an isomorphism of $\text{Gal}(\overline{K}/K)$-modules

$$\text{End}_{C^+}(P_{et}^2(X_{\overline{K}}, \mathbb{Z}_l(1))) \cong \text{End}_{C^+}(H^1_{et}(A_{\overline{K}}, \mathbb{Z}_l))$$

for any l. Hence if $l \neq p$ one can apply the smooth base change theorem for étale cohomology to prove the claimed isomorphism. \hfill \qed

Remark 4.1.2. Note that one can use this isomorphism in case $k = \mathbb{F}_q$ to compute the Newton polygon of A in terms of the Newton polygon of X. For instance one can see that if X is ordinary then A is also ordinary. We refer to Proposition 2.5 in [24] for a proof.

4.2. Canonical lifts of ordinary K3 surfaces. Let k be a perfect field of characteristic $p > 0$ and let $W(k)$ be the ring of Witt vectors. Suppose given an ordinary K3 surface X_0 over k. Denote by X/S the universal deformation of X_0 over $W(k)$. We know that S is formally smooth of dimension 20 (see Corollary 1.2 in [8]).

In Section IV of [4], Artin and Mazur define the enlarged formal Brauer group Ψ_{X_0} of X_0 which is a p-divisible group over k and such that its connected component $\Psi_{X_0}^0$ is $\hat{\text{Br}}(X_0)$. With the notations of Section 4.1 in [26], let $R \in A$ be a local artinian ring with residue field k and let $(X \to \text{Spec}(R), \phi)$ be a deformation of X_0 over R. Then the enlarged formal Brauer group Ψ_X over $\text{Spec}(R)$ exists. It is a p-divisible group over $\text{Spec}(R)$ and the isomorphism ϕ induces an isomorphism of p-divisible groups over $\text{Spec}(k)$

$$\phi_{Br}: \Psi_X \otimes_R k \to \Psi_{X_0}. $$

In other words Ψ_X is a lifting of Ψ_{X_0} over R. Let

$$\text{Def}_{Sch}(X_0): A \to \text{Sets}$$

be the covariant deformation functor defined in Section 4.1 in [26] and let

$$\text{DefBr}_{X_0}: A \to \text{Sets}$$

be the covariant functor

$$\text{DefBr}_{X_0}(R) = \{\text{isomorphism classes of pairs } (G, \phi) \text{ where } G \text{ is a } p - \text{ divisible group over } R \text{ and } \phi: G \otimes_R k \cong \Psi_{X_0}\}. $$

We have the following Serre-Tate theory for ordinary K3 surfaces:

Theorem 4.2.1 (Nygaard). For any $R \in A$ the map

$$\text{Def}_{Sch}(X_0)(R) \to \text{DefBr}_{X_0}(R)$$

defined by

$$(X \to \text{Spec}(R), \phi) \mapsto (\Psi_X, \phi_{Br})$$

is a bijection.

Proof. For a proof we refer to Theorem 1.1 in [24]. \hfill \qed

Let G be a lifting of Ψ_{X_0} over R. Since height one groups are rigid, we have precisely one lifting G^0_R of $\hat{\text{Br}}(X_0) = \Psi_{X_0}^0$ to $\text{Spec}(R)$. Similarly, étale groups are also rigid so there
is a unique lift G^et_R of $\Psi^\text{et}_{X_0}$ to $\text{Spec}(R)$. So we for any lifting G of Ψ_{X_0} to $\text{Spec}(R)$ we have an exact sequence

$$0 \to G^0_R \to G \to G^\text{et}_R \to 0$$

lifting

$$0 \to \hat{\text{Br}}(X_0) \to \Psi_{X_0} \to \Psi^\text{et}_{X_0} \to 0$$

over $\text{Spec}(R)$.

If we consider the trivial extension $G = G^0_R \times G^\text{et}_R$, then by Theorem 4.2.1 above there is a unique lifting X^can_R of X_0 over $\text{Spec}(R)$ such that $\Psi_{X^\text{can}_R} = G^0_R \times G^\text{et}_R$. For any $n \in N$ taking $R = W_n$ we obtain a lifting $X_n = X^\text{can}_{W_n}$. The projective system $\{X_n\}$ defines a proper flat formal scheme $\{X_n\}$ over $\text{Spf}(W)$. It is algebrizable and defines a K3 scheme X^can over $\text{Spec}(W)$ called the canonical lift of X_0. Every line bundle of X_0 lifts uniquely to a line bundle on X^can. For a proof of these facts we refer to Proposition 1.8 in [24].

With the notations established in Section 2.5 let d and $n \geq 3$ be two natural numbers, and let $a \in C^+$ be an element satisfying Assumption 2.5.1. Choose a set-theoretic section γ of the homomorphism $\text{Gal}(E_n/\mathbb{Q}) \to \text{Gal}(E_X/\mathbb{Q})$ so that we have a Kuga-Satake morphism

$$f^k_s : \mathcal{F}_{d,n,p} \to \mathcal{A}_g.d',n.$$

where $N = 2dd'nl$ and l is the product of the prime numbers p whose ramification index ϵ_p in E_n is $\geq p - 1$. Let $k = \mathbb{F}_q$ be a finite field and suppose given an ordinary point $(X_0, \mathcal{L}_0, \nu_0) \in \mathcal{F}_{2d,n,p} \cdot \mathcal{O}_{E_n}(1)[N](k)$ (in particular p does not divide N). Denote by $(X^\text{can}, \mathcal{L})$ the canonical lift of X_0 to W. The spin level n-structure ν_0 also lifts uniquely to a spin level n-structure on X^can as p does not divide N. Denote by (A^k_s, μ, ϵ) the abelian scheme $f^k_s(X^\text{can}, \mathcal{L}, \nu)$ over $\text{Spec}(W)$ and let (A_0, μ_0, ϵ_0) be the triple $(A^k_s, \mu, \epsilon) \otimes k$ over k.

The following result was suggested to us by B. Moonen.

Proposition 4.2.2. The abelian scheme A^k_s is the canonical lift of A_0 over $\text{Spec}(W)$.

Proof. By Theorem 2.7 in [24] we know that, after a base change $R' \to R$, the abelian scheme A^k_s is isogenous to the canonical lift A^can of A_0. Hence we conclude that A^k_s is a quasi-canonical lift.

Let

$$\text{Def}_{(A_0, \mu_0)} : A \to \text{Sets}$$

be the covariant functor

$$\text{Def}_{(A_0, \mu_0)}(R) = \{\text{isom. classes of polarized abelian schemes } (A, \mu, \phi) \text{ over } R \text{ and an isomorphism } \phi : (A, \mu) \otimes_R k \to (A_0, \mu_0)\}.$$

This functor is representable by a formal smooth scheme $\mathfrak{A}_{(A_0, \mu_0)}$ which has a structure of a formal torus. For details we refer to Theorems 1.2.1 and 2.1 in [12] and Ch. III, §1 of [20].

The lift A^k_s/W defines a point $s \in \mathfrak{A}_{(A_0, \mu_0)}(W)$. Just like in Lemma 1.5 in Chapter III, §1 in [20] we conclude that since A^k_s is a quasi-canonical lift then s is a torsion point. As $\mathfrak{A}_{(A_0, \mu_0)}(W)$ is l-divisible for all $l \neq p$ we have that $s^{p^m} = 1 \in \mathfrak{A}_{(A_0, \mu_0)}(W)$. But s is defined over W which is unramified and any p^m torsion point is defined over ramified rings unless $m = 0$. Hence, $s = 1$ which corresponds to the canonical lift in the Serre-Tate coordinates. Therefore, A^k_s is the canonical lift of its special fiber. \qed
Let \mathfrak{p} be a prime ideal of \mathcal{O}_{E_n} which does not divide N and let $k := \mathcal{O}_{E_n}/\mathfrak{p}$ be its residue field. It is a finite field and let p be its characteristic. Let R be the localization of \mathcal{O}_{E_n} at \mathfrak{p}. It is a discrete valuation ring with a residue field k. By Proposition 4.2.2 we have that F-space X have that $(\mathcal{F}_{2d,n^p,k}(2))$ is quasi-finite. Therefore the algebraic space $\mathcal{F}_{2d,n^p,R}$ is an étale morphism of noetherian schemes and

$$\beta_{(\mathbb{Q}^{sp}_{\Lambda_2}^{\mathfrak{p}}, \Lambda_2)}^* \circ \delta_{\gamma} : \mathbb{H}_{\mathbb{Q}^{sp}_n}^{\mathfrak{p}}(G, \Omega^\pm)_{E_n} \to \mathcal{A}_{g,d',n,E}$$

is a quasi-finite morphism. Therefore $f_{d,a,n,\gamma,E_n}^{ks}$ is a quasi-finite morphism. To finish the proof we have to show that for any $\bar{\mathfrak{k}}$-valued point $y \in \mathcal{A}_{g,d',n,k}(\bar{\mathfrak{k}})$ there are only finitely many $\bar{\mathfrak{k}}$-valued points $x \in \mathcal{F}_{2d,n^p,k}(\bar{\mathfrak{k}})$ such that $f_{d,a,n,\gamma,k}(x) = y$.

Suppose that (X_1, λ_1, ν_1) and (X_2, λ_2, ν_2) are two ordinary K3 surfaces over a finite field $L \subset k$ in $\mathcal{F}_{2d,n^p,k}(L)$ such that

$$f_{d,a,n,\gamma,k}^{ks}(X_1, \lambda_1, \nu_1) = f_{d,a,n,\gamma,k}^{ks}(X_2, \lambda_2, \nu_2) = (A, \mu, \epsilon).$$

Taking a finite extension of L, if needed, we may assume that λ_1 and λ_2 are classes of ample line bundles \mathcal{L}_1 and \mathcal{L}_2 on X_1 and X_2, respectively. Let $(X_1^{\text{can}}, L_1, \nu_1)$ and $(X_2^{\text{can}}, L_2, \nu_2)$ be the two canonical lifts over $W(L)$. Denote the field of fractions of $W(L)$ by K. We have that $(X_1, L_1, \nu_1) \cong (X_2, L_2, \nu_2)$ if and only if $(X_1^{\text{can}}, L_1, \nu_1) \otimes K \cong (X_2^{\text{can}}, L_2, \nu_2) \otimes K$. By Proposition 4.2.2 we have that

$$f_{d,a,n,\gamma,k}^{ks}((X_1^{\text{can}}, L_1, \nu_1) \otimes K) = f_{d,a,n,\gamma,k}^{ks}((X_2^{\text{can}}, L_2, \nu_2) \otimes K) = (A^{\text{can}}, \mu, \epsilon) \otimes K$$

hence we conclude the $f_{d,a,n,\gamma,k}^{ks}$ is quasi-finite from the fact that $f_{d,a,n,\gamma,E_n}^{ks}$ is quasi-finite.

Combining Theorem 16.5 in [17] and Corollary 6.16 in Ch. II, §6 of [13] with the preceding corollary we obtain the following result.

Corollary 4.2.4. There exists a scheme Z over R, a finite morphism $\pi : Z \to \mathcal{A}_{g,d',n,R}$ and an open immersion $i : \mathcal{F}_{2d,n^p,R}^{\text{ord}} \hookrightarrow Z$ such that $f_{d,a,n,\gamma,R}^{ks} = \pi \circ i$. Therefore the algebraic space $\mathcal{F}_{2d,n^p,R}^{\text{ord}}$ is a scheme.
References

[1] Y. André. On the Shafarevich and Tate Conjectures for Hyperkähler Varieties. *Mathematische Annalen*, 305:205–248, 1996.

[2] Y. André. Pour Une Théorie Inconditionnelle des Motifs. *Pub. Math. I.H.E.S.*, 83:5–49, 1996.

[3] Y. André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes), volume 17 of *Panoramas et Synthèses*. Société Mathématique de France, 2004.

[4] M. Artin and B. Mazur. Formal Groups Arising from Algebraic Varieties. *Ann. scient. Éc. Norm. Sup.*, 10:87–132, 1977.

[5] A. J. de Jong. The Moduli Spaces of Polarized Abelian Varieties. *Math. Ann.*, 295:485–503, 1993.

[6] A. J. de Jong and F. Oort. On Extending Families of Curves. *J. Alg. Geom.*, 6:545–562, 1997.

[7] P. Deligne. La Conjecture de Weil pour les Surfaces K3. *Invent. Math.*, 15:206–226, 1972.

[8] P. Deligne. Relèvement des Surfaces K3 en Caractéristique Nulle. In *in Surfaces Algébriques*, volume 868 of *Lecture Notes in Mathematics*, pages 58–79. Springer-Verlag, 1981.

[9] G. Faltings and C-L. Chai. *Degenerations of Abelian Varieties*. Number 22 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1990.

[10] A. Grothendieck. *Revêtements Étales et Groupe Fondamental (SGA1)*, volume 224 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1971.

[11] A. Grothendieck and J. Dieudonné. *Eléments de Géométrie Algébrique*, volume 4,8,11,17,20,24 and 32. Publ. Math. de l’I.H.E.S., Paris, 1960-1967.

[12] N. Katz. Serre-Tate Local Moduli. In *in Surfaces Algébriques*, volume 868 of *Lecture Notes in Mathematics*, pages 138–202. Springer-Verlag, 1981.

[13] D. Knutson. *Algebraic Spaces*, volume 203 of *Lecture Notes in Mathematics*. Springer-Verlag, 1971.

[14] G. Laumon and L. Moret-Bailly. *Champs Algébriques*. Number 39 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 2000.

[15] J. S. Milne. The Points on a Shimura Variety Modulo a Prime of Good Reduction. In *in The Zeta Function of Picard Modular Surfaces*, R. Langlands and D. Ramakrishnan eds., pages 151–253. Univ. de Montréal, Montréal, QC, 1992.

[16] J. S. Milne. *Introduction to Shimura Varieties*. Manuscript, 2004. available on http://www.jmilne.org.

[17] B. Moonen. *Special Points and Linearity Properties of Shimura Varieties*. PhD thesis, University of Utrecht, 1995.

[18] B. Moonen. Models of Shimura Varieties in Mixed Characteristic. In *in Galois Representations in Arithmetic Algebraic Geometry*, A.J. Scholl and R. L. Taylor eds., pages 267–350. Cambridge Univ. Press, 1998.

[19] L. Moret-Bailly. *Pinceaux de Variétés Abéliennes*, volume 129 of *Astérisque*. Soc. Math. de France, 1985.

[20] D. Morrison. The Kuga-Satake Variety of an Abelian Surface. *J. of Algebra*, 92:454–476, 1985.

[21] N. O. Nygaard. The Tate Conjecture for Ordinary K-3 Surfaces over Finite Fields. *Invent. Math.*, 74(2):213–237, 1983.

[22] M. Raynaud. *Faisceaux Ample sur les Schémas en Groupes et les Espaces Homogénes*, volume 119 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1970.

[23] J. Rizov. Moduli Stacks of Polarized K3 Surfaces in Mixed Characteristic. *to appear in Serdika Math. J.*, pages 1–37, math.AG/0506120.

[24] J. Rizov. Fields of Definition of Rational Points on Varieties. *Preprint 1315*, pages 1–6, 2004. Utrecht.

[25] J. Rizov. Complex Multiplication for K3 Surfaces. *preprint*, pages 1–30, 2005, math.AG/0508018.

[26] J. Rizov. *Moduli of K3 Surfaces and Abelian Varieties*. PhD thesis, University of Utrecht, 2005.

[27] J. Rizov. Non-Emptiness of the Height Strata of the Moduli Stack of Polarized K3 Surfaces. *preprint*, pages 1–15, 2005, math.AG/0506271.
[31] I. Satake. Clifford Algebras and Families of Abelian Varieties. *Nagoya J. Math.*, 27-2:435–446, 1966.

[32] W. Scharlau. *Quadratic and Hermitian Forms*, volume 270 of *Grundlehren der Mathematischen Wissenschaften*. Springer-Verlag, 1985.

[33] B. van Geemen. Kuga-Satake Varieties and the Hodge Conjecture. In *The Arithmetic and Geometry of Algebraic Cycles*, eds. B.B. Gordon *et al*., pages 51–82. Kluwer Acad. Publ., 2000.

E-mail address: danence@gmail.com