A REMARK ON THE UENO-CAMPANA’S THREEFOLD

CINZIA BISI, PAOLO CASCINI, AND LUCA TASIN

Dedicated to Fabrizio Catanese on his 65th birthday

Abstract. We show that the Ueno-Campana’s threefold cannot be obtained as the blow-up of any smooth threefold along a smooth centre, answering negatively a question raised by Oguiso and Truong.

1. Introduction

Let $E_\tau = \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau)$ be the complex elliptic curve of period τ. There exist exactly two elliptic curves with automorphism group bigger than $\{\pm 1\}$: these are defined respectively by the periods $\sqrt{-1}$ and the cubic root of unity $\omega := (-1 + \sqrt{-3})/2$.

We consider the diagonal action of the cyclic group generated by $\sqrt{-1}$ (resp. $-\omega$) on the product $E_{\sqrt{-1}} \times E_{\sqrt{-1}} \times E_{\sqrt{-1}}$ (resp. $E_\omega \times E_\omega \times E_\omega$) and we denote by X_4 (resp. X_6) the minimal resolution of their quotients:

$E_{\sqrt{-1}} \times E_{\sqrt{-1}} \times E_{\sqrt{-1}}/(\sqrt{-1})$ (resp. $E_\omega \times E_\omega \times E_\omega/(-\omega)$).

The minimal resolutions are obtained by a single blow-up at the maximal ideal of each singular point of the quotients above.

The threefolds X_4 and X_6 have been extensively studied in the past. In particular, they admit an automorphism of positive entropy (e.g. see \cite{Ogu15} for more details). The variety X_4 is now referred as the...
Ueno-Campana’s threefold. It has been recently shown that X_4 and X_6 are rational. Indeed, Oguiso and Truong [OT15] showed the rationality of X_6, and Colliot-Thélène [CT15] showed the rationality of X_4, after the work of Catanese, Oguiso and Truong [COT14]. The unirationality of X_4 was conjectured by Ueno [Uen75], whilst Campana asked about the rationality of X_4 in [Cam11].

The aim of this note is to give a negative answer to the following question raised by Oguiso and Truong (see [Ogu15][Question 5.11] and [Tru15][Question 2]).

Question 1.1. Can X_4 or X_6 be obtained as the blow-up of \mathbb{P}^3, $\mathbb{P}^2 \times \mathbb{P}^1$ or $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ along smooth centres?

Our main result is the following:

Theorem 1.2. Let A be an abelian variety of dimension three and let G be a finite group acting on A such that the quotient map

$$\rho : A \to Z = A/G$$

is étale in codimension 2.

Assume that there exists a resolution $f : X \to Z$ given by the blow-up of the singular points of Z and such that the exceptional divisor at each singular point of Z is irreducible.

Then X cannot be obtained as the blow-up of a smooth threefold along a smooth centre.

Note that Theorem 1.2 provides a negative answer to Question 1.1. Very recently, Lesieutre [Les15] announced that Question 1.1 admits a negative answer, using different methods.

2. Preliminary results

We use some of the methods introduced in [CT14]. Let X be a normal projective threefold with isolated quotient singularities. Given a basis $\gamma_1, \ldots, \gamma_m$ of $H^2(X, \mathbb{C})$, the cubic form associated to X is the homogeneous polynomial of degree 3 defined by:

$$F_X(x_1, \ldots, x_m) = (x_1\gamma_1 + \cdots + x_m\gamma_m)^3 \in \mathbb{C}[x_1, \ldots, x_m].$$

Note that, modulo the natural action of $\text{GL}(m, \mathbb{C})$, the cubic F_X does not depend on the choice of the base and it is a topological invariant of the underlying manifold X (see [OVdV95] for more details). In particular, if

$$\mathcal{H}_{F_X} = (\partial_{x_i}\partial_{x_j} F_X)_{i,j=1, \ldots, m}$$

denotes the Hessian matrix associated to F_X and $p \in H^2(X, \mathbb{C})$, then the rank of \mathcal{H}_{F_X} at p is well-defined.
The following basic tool was used in [CT14] in a more general context. We provide a proof for the reader’s convenience.

Lemma 2.1. Let Y be a normal projective threefold with isolated quotient singularities and let $f: X \to Y$ be the blow-up of Y along a point $q \in Y$ (resp. a curve $C \subseteq Y$). Assume that the exceptional divisor of f is irreducible and let E be its class in $H^2(X, \mathbb{C})$.

Then the rank of the Hessian matrix \mathcal{H}_{F_X} of F_X at E is one (resp. at most two).

Note that by [CT14][Lemma 2.7 and Lemma 2.12] the rank of \mathcal{H}_{F_X} is never zero.

Proof. We have $H^2(X, \mathbb{C}) = \langle E, f^*(\gamma_1), \ldots, f^*(\gamma_m) \rangle$ where $\gamma_1, \ldots, \gamma_m$ is a basis of $H^2(Y, \mathbb{C})$.

Consider the cubic form F_X associated to X with respect to this basis:

$$F_X(x_0, \ldots, x_m) = (x_0 E + \sum_{i=1}^{m} x_i f^*(\gamma_i))^3.$$

Since $f^*(\gamma_i) \cdot f^*(\gamma_j) \cdot E = 0$ for all $i, j = 1, \ldots, m$, we have

$$F_X(x_0, \ldots, x_m) = x_0^3 E^3 + 3 \sum_{i=1}^{m} x_0 x_i E^2 f^*(\gamma_i) + \left(\sum_{i=1}^{m} x_i f^*(\gamma_i) \right)^3.$$

Let $a = E^3$ and let $b_i = E^2 f^*(\gamma_i)$ for $i = 1, \ldots, m$. Note that if f is the blow-up of a point $q \in Y$ then $b_1 = \ldots = b_m = 0$.

Thus, we have

$$F_X(x_0, \ldots, x_m) = a x_0^3 + 3 \sum_{i=1}^{m} b_i x_0^2 x_i + G(x_1, \ldots, x_m),$$

where G is a homogeneous cubic polynomial in the variables x_1, \ldots, x_m, i.e. it does not depend on x_0. Let $p = y_0 E + \sum_{i=1}^{m} y_i f^*(\gamma_i) \in H^2(X, \mathbb{C})$, for some $y_0, \ldots, y_m \in \mathbb{C}$ and let $p' = (y_1, \ldots, y_m)$. After removing the first row and the first column, the Hessian matrix $\mathcal{H}_{F_X}(p)$ of F_X at p, coincides with the Hessian matrix $\mathcal{H}_G(p')$ of G at p'.

In particular, if $p = E$, then $p' = (0, \ldots, 0)$ and $\mathcal{H}_G(p')$ is the zero matrix. Thus, the rank of the Hessian of F_X at p is at most two. In addition, if $b_1 = \ldots = b_m = 0$, then the rank of \mathcal{H}_F at p is exactly one. □

3. **Proofs**

Lemma 3.1. Let A be an abelian variety of dimension 3 and let G be a finite group acting on A such that the quotient map $\rho: A \to Z = A/G$
is étale in codimension 2. Let F_Z be the cubic form associated to Z and let $p \in H^2(Z, \mathbb{C})$ such that $\text{rk} \mathcal{H}_{F_Z}(p) \leq 1$.

Then $p = 0$.

Proof. The morphism ρ induces an immersion of vector spaces

$$\rho^*: H^2(Z, \mathbb{C}) \to H^2(A, \mathbb{C}).$$

Thus, there exists a basis of $H^2(A, \mathbb{C})$ such that if F_A is the cubic associated to A with respect to this basis and d is the degree of ρ, then

$$F_Z(x_1, \ldots, x_m) = d \cdot F_A(x_1, \ldots, x_m, 0, \ldots, 0).$$

It is enough to show that if $q \in H^2(A, \mathbb{C})$ is such that the rank of \mathcal{H}_{F_A} at q is not greater than one, then $q = 0$.

Write $A = \mathbb{C}^3/\Gamma$ and consider z_1, z_2, z_3 coordinates on \mathbb{C}^3. Then a basis of $H^2(A, \mathbb{C})$ is given by

$$z_{ij} = dz_i \wedge dz_j \quad 1 \leq i < j \leq 3,$$

$$z_{ij} = dz_i \wedge d\bar{z}_j \quad i, j \in \{1, 2, 3\},$$

$$z_{ij} = d\bar{z}_i \wedge d\bar{z}_j \quad 1 \leq i < j \leq 3.$$

For any $x \in H^2(A, \mathbb{C})$, let x_{ij}, x_{ij} and x_{ij} be the coordinates of x with respect to the basis above and let F_A' be the cubic associated to this basis. It is enough to show that if $q \in H^2(A, \mathbb{C})$ is such that the rank of \mathcal{H}_{F_A} at q is not greater than one, then $q = 0$.

Let q_{ij}, q_{ij} and q_{ij} be the coordinates of q.

The (2×2)-minor of $\mathcal{H}_{F_A'}$ at x defined by the rows corresponding to x_{12} and x_{13} and the columns corresponding to x_{21} and x_{31} is given by

$$\begin{pmatrix} 0 & 6x_{23} \\ 6x_{23} & 0 \end{pmatrix}.$$

It follows that $q_{23} = 0$. By choosing suitable (2×2)-minors, it follows easily that each coordinate of q is zero. Thus, the claim follows. \qed

Proof of Theorem 1.2. Suppose not. Then there exists a smooth projective threefold Y such that X can be obtained as the blow-up $g: X \to Y$ at a smooth centre. Let E be the exceptional divisor of g. Let k be the number of singular points of Z and let E_1, \ldots, E_k be the exceptional divisors on X corresponding to the singular points of Z.

We want to prove that $E = E_i$ for some $i = 1, \ldots, k$. Denote by p the class of E in $H^2(X, \mathbb{C})$. Lemma 2.1 implies that the rank of \mathcal{H}_{F_X} at p is not greater than two.
Let $\gamma_1, \ldots, \gamma_m \in H^2(Z, \mathbb{C})$ be a basis and let F_Z be the associated cubic form. Then $f^*\gamma_1, \ldots, f^*\gamma_m, [E_1], \ldots, [E_k]$ is a basis of $H^2(X, \mathbb{C})$ and if F_X denotes the associated cubic form, we have

$$F_X(x_1, \ldots, x_m, y_1, \ldots, y_k) = F_Z(x_1, \ldots, x_m) + \sum_{i=1}^k a_i y_i^3,$$

where $a_i = E_i^3$ is a non-zero integer, for $i = 1, \ldots, k$.

Thus, the Hessian matrix of F_X is composed by two blocks: one is the Hessian matrix of F_Z and the other one is a diagonal matrix, whose only non-zero entries are $6a_i$ for $i = 1, \ldots, k$. We may write $p = (p^0, p^1) = (p_1^0, \ldots, p_m^0, p_1^1, \ldots, p_k^1)$. We have $\text{rk} \mathcal{H}_F(p^0) \leq 2$.

We distinguish two cases. If $\text{rk} \mathcal{H}_F(p^0) = 2$, then $p^1 = (0, \ldots, 0)$ and in particular E is numerically equivalent to f^*D, for some pseudo-effective Cartier divisor D on Z. Since A is abelian, it follows that ρ^*D is a nef divisor. Thus E is nef, a contradiction.

If $\text{rk} \mathcal{H}_F(p^0) \leq 1$, then Lemma 3.1 implies that $p^0 = 0$. Thus,

$$E \equiv c_s E_s + c_t E_t$$

for some distinct $s, t \in \{1, \ldots, k\}$ and c_s, c_t rational numbers. Since E is effective non-trivial, at least one of the c_i is positive. By symmetry, we may assume $c_s > 0$. By the negativity lemma, the divisor E_s is covered by rational curves C such that $E_s \cdot C < 0$. Since E_s and E_t are disjoint, it follows that $E \cdot C < 0$, which implies that C is contained in E. Thus E_s is contained in E. Since E is prime, it follows that $E = E_s$ and $c_t = 0$.

Finally, note that g contracts $E = E_s$ to a point, as otherwise there exists a small contraction $\eta: Y \to Z$ and in particular Z is not \mathbb{Q}-factorial, a contradiction. Thus, $\rho: X \to Y$ is the contraction of E_s to the corresponding singular point on Z, which is again a contradiction. The claim follows.

Remark 3.2. As K. Oguiso kindly pointed out to us, the same proof shows that if $f: X \to Z$ is as in Theorem 1.2 and g is an automorphism on X then the set of exceptional divisors of f is invariant with respect to g. Thus, there exists a positive integer m such that the power g^m descends to an automorphism on Z.

References

[Cam11] F. Campana, *Remarks on an example of K. Ueno*, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc. Zurich, 2011, pp. 115–121.

[COT14] F. Catanese, K. Oguiso, and T. T. Truong, *Unirationality of Ueno-Campana’s threefold*, Manuscripta Math. **145** (2014), no. 3–4, 399–406.
[CT14] P. Cascini and L. Tasin, On the Chern numbers of a smooth threefold, arXiv:math/1412.1686 (2014).

[CT15] J.-L. Colliot-Thélène, Rationalité d’un fibré en coniques, Manuscripta Math. 147 (2015), no. 3-4, 305–310.

[Les15] J. Lesieutre, Some constraints on positive entropy automorphisms of smooth threefolds, arXiv:1503.07834 (2015).

[Ogu15] K. Oguiso, Some aspects of explicit birational geometry inspired by complex dynamics, Proceedings of the International Congress of Mathematics, Seoul 2014, Vol. II (2015), 695–721.

[OT15] K. Oguiso and T.T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, J. Math. Sci. Univ. Tokyo 22 (2015), no. 1, 361–385.

[OVdV95] C. Okonek and A. Van de Ven, Cubic forms and complex 3-folds, Enseign. Math. (2) 41 (1995), no. 3-4, 297–333.

[Tru15] T. T. Truong, Automorphisms of blowups of threefolds being Fano or having Picard number 1, arXiv:math.AG/1501.01515 (2015).

[Uen75] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Springer-Verlag, Berlin, 1975, Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, Vol. 439.

Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli, 35, Ferrara 44121, Italy
E-mail address: bsicnz@unife.it

Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
E-mail address: p.cascini@imperial.ac.uk

Mathematical Institute of the University of Bonn, Endenicher Allee 60 D-53115, Bonn, Germany.
E-mail address: tasin@math.uni-bonn.de