Actinostephanus (Gesneriaceae), a new genus and species from Guangdong, South China

Fang Wen1,2*, Zi-Bing Xin1,2*, Xin Hong3, Lei Cai4,5, Xiao-Yun Chen6, Jun-Jie Liang6, Hui-Feng Wang7, Stephen Maciejewski8, Yi-Gang Wei1,2, Long-Fei Fu1,2

1 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
2 Gesneriad Committee of China Wild Plant Conservation Association, National Gesneriaceae Germplasm Bank of GXIB, Gesneriad Conservation Center of China (GCCC), Guilin Botanical Garden, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, CN-541006 Guilin, China
3 School of Resources and Environmental Engineering, Anhui University, Hefei, CN–230601, Anhui Province, China
4 Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, CN-650201, Kunming, Yunnan Province, China
5 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, CN-650201, Kunming, Yunnan Province, China
6 Management Office, Guangdong Enping Qixingkeng Provincial Nature Reserve, CN-529400, Enping, China
7 Guangzhou Linfang Ecology Co., Ltd., Guangzhou, CN-510520, Guangdong Province, China
8 The Gesneriad Society, 2030 Fitzwater Street, Philadelphia, PA. 19146-1333 USA

Corresponding authors: Yi-Gang Wei (weiyigang@aliyun.com), Long-Fei Fu (longfeifu@126.com)

Academic editor: E. Fischer | Received 18 January 2022 | Accepted 4 March 2022 | Published 22 March 2022

Citation: Wen F, Xin Z-B, Hong X, Cai L, Chen X-Y, Liang J-J, Wang H-F, Maciejewski S, Wei Y-G, Fu L-F (2022) Actinostephanus (Gesneriaceae), a new genus and species from Guangdong, South China. PhytoKeys 193: 89–106. https://doi.org/10.3897/phytokeys.193.80715

Abstract

Actinostephanus, a new genus from southern China, is described and colorfully illustrated with a single species, A. enpingensis. This new genus is morphologically most similar to Boeica and Leptoboea, nevertheless, it can be easily distinguished from the latter two by the following characteristics, such as leaves in whorls of three, all closely clustered at the top; corolla bowl-shaped, 5-lobed, actinomorphic; capsule hard, oblong-ovoid, short, 3–4 mm long, densely appressed villous, wrapped by persistent densely pubescent calyx lobes, style persistent. The new genus and related genera were sequenced using the next-generation sequencing technique. The whole plastid genome of the new genus is 154, 315 – 154, 344 bp in length. We reconstructed phylogenetic trees using the dataset of 80 encoded protein genes of the whole plastid genome from 47 accessions based on ML and BI analyses. The result revealed that the new genus was recovering in a polytomy including Boeica,

* These authors contributed equally to this work as co-first authors.

Copyright Fang Wen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Rhynchotechum, and Leptoboea with strong support, congruent to the morphological evidence. A global conservation assessment was also performed and classifies A. enpingensis as Least Concern (LC). In addition, after a review of recently described species of Gesneriaceae, we propose that plant enthusiasts, especially Gesneriad fans, have been playing an increasingly important role in the process of new taxa-discoveries.

Keywords
Boeica, Didymocarpoideae, flora of China, IUCN, Leptoboea, phylogeny

Introduction

The family Gesneriaceae has been extensively studied since the 1970s in China. There have been 19 new genera from China discovered and published by Chinese taxonomists and botanical researchers before 2005, i.e., Allostigma W.T.Wang, Boeicopsis H.W.Li, Briggsiopsis K.Y.Pan, Buxiphyllum W.T.Wang & C.Z.Gao, Calcareoboea C.Y.Wu ex H.W.Li, Chiritopsis W.T.Wang, Didymostigma W.T. Wang, Deltocheilos W.T.Wang, Dolicholoma D.Fang & W.T.Wang, Gyrocheilos W.T.Wang, Gyrogyne W.T.Wang, Hemioeopsis W.T.Wang, Metabriggsia W.T.Wang, Paralagarosolen Y.G.Wei, Pseudochirita W.T.Wang, Schistolobos W.T.Wang, Thamnocharis W.T.Wang, Tumidinodus H.W.Li, Wentsaiboea D.Fang & D.H.Qin (Wang 1981a, b; Li 1982, 1983; Wang 1983a, b, 1984a, b; Pan 1985; Fang and Qin 2004; Wei 2004). However, the confirmation of all the genera mentioned-above relied only on the significances of morphological characters. Some were subsequently canceled in the process of compiling Flora Reipublicae Popularis Sinicae (Vol. 69) and Flora of China (Vol. 18) (Wang et al. 1990, Wang et al. 1998). Boeicopsis, Buxiphyllum, Schistolobos and Tumidinodus were treated as synonyms of Boeica Clarke, Paraboea (Clarke), Ridley, Opithandra Burtt, and Anna Pellegr, respectively (Wang et al. 1990, Wang et al. 1998; Li and Wang 2005). In addition, Opithandra was merged into Oreocharis Benth. (Möller et al. 2011).

Apart from morphological data, recognizing and describing new taxa with molecular evidence will result in a more robust and rational taxa (Fu et al. 2021). The first Chinese paper to mention the molecular method, estimated a molecular phylogeny of the previous subfamily Cyrtandroideae using two DNA regions (Wang and Li 1998). However, the Chinese described new taxa of Gesneriaceae in China using molecular evidence starting around 2010. The first one was a new genus, Litostigma Y.G.Wei, F.Wen & M.Möller. It was confirmed and published using classical taxonomy, palynology, and phylogenetic analysis (Wei et al. 2010). Since then, some redefined genera, such as Hemiboea Clarke (Weber et al. 2011a), Luxostigma Clarke (Möller et al. 2014), Oreocharis (Möller et al. 2011), Paraboea (Clarke) Ridley (Puglisi et al. 2011), Petrocodon Hance (Weber et al. 2011b), Primulina Hance (Weber et al. 2011c), etc., and newly divided or restored genera, for example, Glabrella Mich.Möller & W.H.Chen (Möller et al. 2014) and Bournea Oliv. (Chen et al. 2020), were confirmed by the molecular and morphological evidence.

In 2017, a plant enthusiast, Mr. Yi Huang, sent the authors some photos of a rare and distinct Gesneriaceae plant, and we considered it a new taxon but could not undertake further studies since no material was collected at that time. Coincidentally, in
Actinostephanus (Gesneriaceae), a new genus from China

2019, one of the authors, Mr. Hui-Feng Wang, collected this species while undertaking a field trip in southern Guangdong, China.

After a careful morphological comparison, we could not place it into any genus of Gesneriaceae despite it sharing some similarities with Boeica or Leptoboea. To better understand the generic placement of this species, molecular phylogenetic analysis was also performed. After consulting the relevant literature (Wang et al. 1998; Li and Wang 2005; Wei et al. 2010; Wei 2018; Wen et al. 2019) and the molecular evidence, we concluded that this new species was assignable to a new genus, Actinostephanus gen. nov.

Materials and methods

Ethics statement

The only known location where this new species was found and collected was in the Qixingkeng provincial natural reserve, Enping, Guangdong. Two authors, Ms. Xiao-Yun Chen and Mr. Jun-Jie Liang, are staff at this natural reserve. They helped us get specific permission to enter the reserve and collect specimens. Our field studies did not involve any endangered or protected species. Further, special permits to conduct this research were not required.

Material collection

This new species/genus has been monitored in the field by staff from Qixingkeng provincial natural reserve and grown by the authors at the nursery of the Gesneriad Conservation Center of China (GCCC) and National Gesneriaceae Germplasm Resources Bank of Guangxi Institute of Botany (GXIB) since the plants were collected. We also collected leaf materials of this proposed new species, using silica gel to dry them in the field for DNA extraction.

Genomic DNA extraction and sequencing

Leaf material for DNA extraction was dried using silica gel (Chase and Hills 1991). Genomic DNA was extracted using the CTAB protocol (Doyle and Doyle 1987). The total gDNA sample was sent to Majorbio (http://www.majorbio.com/, China) for library construction and next-generation sequencing. Short-insert (350 bp) paired-end read libraries preparation and 2 × 150 bp sequencing were performed on an Illumina (HiSeq4000) genome analyzer platform. Approximately 6 Gb of raw data for the new species was filtered using the FASTX-Toolkit to obtain high-quality clean data by removing adaptors and low-quality reads (http://hannonlab.cshl.edu/fastx_toolkit/download.html).

Whole plastid genome assembly and annotation

Clean reads were paired and imported in Geneious Prime (Kearse et al. 2012). For plastid genome assembly, the clean reads were mapped to published plastid genome
sequence (*Petrocodon jingxiensis*, Genbank accession number: NC_044477.1) as reference (Xin et al. 2019) using the Fine Tuning option in Geneious Prime (iterating set as 10 times) to exclude nuclear and mitochondrial reads. Then, de novo assembly was performed using Geneious Prime with a medium-low sensitivity setting to assemble the plastid genome sequence. The clean reads mapped the generated contigs using the Fine Tuning option in Geneious Prime (iterating set as 10 times) to fill gaps. Contigs could be concatenated using the Repeat Finder option implemented in Geneious Prime until a ~130 kb contig (including SSC, IR, and LSC) was built. The Inverted Repeat (IR) region was determined by the Repeat Finder option in Geneious Prime and was reverse copied to obtain the complete plastid genome. The annotation approach of the plastid genome was performed using CPGAVAS2 and PGA (Qu et al. 2019; Shi et al. 2019).

Phylogenetic analyses

To confirm the placement of this new plant, we reconstructed phylogenetic trees using the dataset of 80 encoded protein genes of the whole plastid genome. The new plant is morphologically similar to *Boeica* or *Leptoboea*, both of which belong to Subtr. Leptobaeinae C.B.Clarke (Clarke 1883). Therefore, we sampled all genera within this subtribe except for *Championia* Gardner and representatives of other subtribes within the Gesneriaceae as in-group, and 11 species represented other families as out-group. Consequently, 11 accessions were newly generated, while 36 accessions were downloaded from NCBI. Sequences obtained from this study and their information are listed in Appendix I.

All gene sequences were extracted using the PhyloSuite v1.2.2 (Zhang et al. 2020) and aligned by MAFFT v7.4 (Katoh and Standley 2013). The aligned sequences were then concatenated with PhyloSuite v1.2.2 (Zhang et al. 2020). Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian inferences (BI), respectively. For the BI tree, we employed MrBayes v3.2.6 (Ronquist et al. 2012) to obtain a maximum clade credibility (MCC) tree. The parameters set as follows: nst = 6, rates = invgamma. Bayesian inference was performed with the concatenate sequence, using two million generations, two runs, four chains, a temperature of 0.001, and 25% trees were discarded as burn-in, and trees were sampled every 1,000 generations. Then, we used ModelFinder (Kalyaanamoorthy et al. 2017) to find the best fit model for ML analysis and further conducted the ML tree using IQ-TREE v2.1.2 (Nguyen et al. 2014) with 1000 bootstrap replicates. Tree visualization was achieved in Figtree v1.4.3.

Results

Characteristics of the complete plastid genome and ribosomal DNA

The complete plastid genome of *Actinostephanus enpingensis* comprised 154,315 – 154,344 bp (Fig. 1). The characteristics and statistics of the plastid genome are summarized in Tables 1, 2.
Figure 1. Plastid genome map of *Actinostephanus enpingensis*. The thick lines on the outer complete circle identify the inverted repeat regions (IRa and IRb). The innermost track of the plastome shows the GC content. Genes on the outside and inside of the map are transcribed in clockwise and counter directions, respectively.

Table 1. Summary of plastid genome of *Actinostephanus enpingensis*.

Characteristic	Actinostephanus enpingensis
Size (base pair, bp)	154,315-154,344
LSC length (bp)	85,450-85,479
SSC length (bp)	17,887-17,891
IR length (bp)	25,489-25,493
Number of genes	111-113
Protein-coding genes	77-79
tRNA genes	4
tRNA genes	30
LSC GC%	35.52%
SSC GC%	31.50%
IR GC%	43.20%
Molecular phylogenetic studies

BI and ML analyses of the dataset of 80 encoded protein genes of whole plastid genome resulted in the identical tree topologies that both indicate the three accessions of the new plant formed a strongly supported clade that was recovering in a polytomy including Boeica, Rhynchotechum, and Leptoboea in the clade of Subtr. Leptobaenae (posterior probability (PP) = 1, bootstrap support (BS) = 100%) (Fig. 2).

Ecology

Plants of the new taxon were primarily accessible in the Qixingkeng provincial natural reserve, growing on nearly vertical or steep slopes of montane yellow soil under tropical evergreen broad-leaved forest. Voucher specimens were made in the usual way (Bridson and Forman 1998) from some accessible plants that could be reached from the type locality. The conservation assessment was prepared following IUCN (2019).
Actinostephanus (Gesneriaceae), a new genus from China

Taxonomic treatment

Subfam. Didymocarpoideae

Actinostephanus F.Wen, Y.G.Wei & L.F.Fu, gen. nov.
urn:lsid:ipni.org:names:77296131-1

Diagnosis. *Actinostephanus* F.Wen, Y.G.Wei & L.F.Fu resembles two small genera, *Boeica* C.B.Clarke and *Leptoboea* Benth. according to the molecular evidence and some morphological data, but differs from the latter two by the following distinguishing characters: leaves in whorls of three, all closely clustered at the top; corolla bowl-shaped, 5-lobed, actinomorphic; capsule hard, oblong-ovoid, short, 3–4 mm long, densely

Figure 2. Phylogenetic tree of Gesneriaceae generated from maximum likelihood (ML) based on the dataset of whole-chloroplast protein-coding genes. Numbers on the branches indicate the bootstrap support (>70%) of the ML and the posterior probability (>0.8) of BI analyses.
appressed villous, wrapped by persistent densely pubescent calyx lobes, style persistent. The detailed distinguishing characters of this new genus and its congeners are listed in Table 1.

Type and only known species. *Actinostephanus enpingensis* F.Wen, Y.G.Wei & Z.B.Xin, sp. nov.

Description. Herbs, perennial, acaulescent, or forming elongated rhizome slightly fleshy growing after some years, rhizomes cylindrical, surface densely brown pubescent, fibrous root filiform, forming adventitious buds and plantlets in the middle or at the end of the fibrous root. Leaves all basal, whorls of three, sometimes opposite, all closely clustered at the top, forming a rosette, or clustered forming a rosette at the top of the rhizome after years of growth. Leaf-blades obovate elliptic, asymmetric, rarely symmetric, attenuate to base and base usually oblique, rarely aequilateral. Bracts 2. Calyx actinomorphic, 5-parted to the base. Corolla actinomorphic, bowl-shaped; tube very short, shallow bowl-shaped; limb quinquelobate, lobes equal. Stamens 4, separated, anthers dorsifixed, free, dehiscing longitudinally. Disc glabrous, margin crenulate. Ovary conical, stigma punctate. Capsule oblong-ovoid, appressed villous, wrapped by persistent calyx lobes, and the abaxial surfaces of calyx lobes covered densely pubescent. The number of seeds per capsule fewer. Seeds bigger, elliptic, both ends pointed.

Etymology. The genus name, “*Actinostephanus*”, consists of two parts, both derived from the Greek. The front part, “*Actino-*” is derived from ἀκτίς (aktís, “ray, beam”), means radiating; the latter half, “-stephanus”, is derived from Στέφανος (Stéphanos, “crown”), is also closely associated in ἄνθος (ánthos, “flower, blossom, bloom”), hints corolla. The combined Greek word-roots characterize the uncommon corolla characteristic of the new genus and species. The character of the corolla, in China’s Gesneriaceae, is rare. Only three species belonging to two genera were known to have actinoform corolla in China, namely *Bournea sinensis* Oliv., *B. leiophylla* (W.T.Wang) W.T.Wang & K.Y.Pan ex W.T.Wang and *Oreocharis esquirolii* H.Lév. before this new genus was discovered.

Vernacular name of the new genus. Chinese mandarin: Fú Guàn Jū Tái Shǔ (辐冠苣苔属).

Distribution and habitat. Endemic to Enping county, Guangdong province, China, under evergreen broadleaved forests in a montane mountain yellow soil area at 170–250 m altitude.
Actinostephanus (Gesneriaceae), a new genus from China

5–15 mm long, 3–8 mm in diam., fibrous root filiform, 4–6 cm long, up to 10 cm, forming adventitious buds and plantlets in the middle or at the end of fibrous root. Leaves all basal, whorls of three, sometimes opposite, all closely clustered at top forming rosette, or clustered forming rosette at the top of rhizome after years of growth, (8)9–(16)18 or more, subsessile or shortly petiolate, short petiole cylindrical, 6–15 × 3.5–4.8 mm, densely brown villous. Leaf blades chartaceous to thickly herbaceous, thin chartaceous when dried, obovate elliptic, occasionally obovate lanceolate, greenery to green, dark green after a year of growth, 7.5–15.0 × 3.5–6.0 cm, asymmetric, rarely symmetric, attenuate to base and base usually oblique, rarely aequilateral, apex rounded, obtuse to subacute, margin numerous crenulate, adaxial surfaces of young leaf blades sparsely puberulent, subsequently gradually deciduous, adaxial surfaces of mature leaf blades nearly glabrous, but abaxial surfaces of young and mature leaf blades pubescent, covered by long and obvious strigose hairs along the main and lateral veins; venation alternate along main vein, lateral veins 7–9 on each side of the midrib, main and lateral veins on adaxial surface obviously sunken and on abaxial surface distinctly

Figure 3. Photos of Actinostephanus F.Wen, Y.G.Wei & L.F.Fu gen. nov. (A. enpingensis F.Wen, Y.G.Wei & Z.B.Xin sp. nov.), the individuals in natural habitat. A habitat B habit C plant in flowering D plant in fruiting.
prominent. Inflorescence dichasium, 4–8, axially, 8–14-flowered, rarely 4–5-flowered and occasionally more than 14, 1–2-branched; peduncle sturdier, 2.2–4.5 cm long, 1.0–1.5 mm in diam., brownish-green to brownish-red, densely upward short strigose, the hairs brownish red, occasionally pink to pinkish white. Bracts 2, brownish-green, opposite, linear-lanceolate, ca. 6.0 × 1.0 mm, adaxial surface appressed pubescent, abaxial surface puberulent, apex acute, margin entire; pedicel 4.0–9.0 mm long, ca. 1.0 mm in diam., pale brownish-green to green, pubescent. Calyx actinomorphic, 5-parted to the base, segments pinkishwhite, pale pinkish-purple to pale brownish-red, equal, lanceolate, 3.5–4.0 × 1.2–1.4 mm, apex acute, margin entire, abaxial surface puberulent, adaxial surface glabrous, but persistent in the fruiting period. Corolla pale purple to pale bluish-purple, actinomorphic, bowl-shaped, 4.0–5.0 mm long/high, 65–75 mm in diam., outside puberulent, inside nearly glabrous and sparsely very few glandular-puberulent; tube very short, 1.5–2.0 mm long/high, shallow bowl-shaped; limb quinquenolate, lobes equal, half elliptic, the major axis ca. 3.5 mm long, the minor axis ca. 1.2 mm long, apex cambered, margin revolute. Stamens 4, separated, filaments nearly slender cylinder, glabrous, two longer and two shorter, longer pairs ca. 1.5 mm long, shorter pairs ca. 1.0 mm long, the four adnate to the base of corolla tube, anthers dorsifixed, free, cordate, yellowish-brown to pale greenish-brown, ca. 1.0 mm height, ca. 1.0 mm across at the bottom of the cordate shape, dehiscing longitudinally, glabrous. Disc wax yellow, ca. 1.0 mm high, glabrous, smooth, margin crenulate. Pistil 4.5–4.8 mm long, ovary pale pink, conical, sparsely inconspicuously puberulent, ca. 0.9 mm long, ca. 1.0 mm across at bottom, style translucent to white, 3.8–4.0 mm long, stigma punctate, yellow. Capsule oblong-ovoid, 4.5–5.0 mm long, 1.2–1.3 mm across, appressed villous, wrapped by persistent calyx lobes and the abaxial surfaces of calyx lobes densely pubescent; capsule hard when mature, style usually persistent, rarely dehiscent, occasionally split into 4-valves. The number of seeds per capsule fewer than 100, only 50–80, the macroaxis of seeds bigger, ca. 0.5 × 0.3 mm, brownish-black, not appendant, elliptic, both ends pointed.

Preliminary conservation status. Based on the result of our joint field surveys in the type locality and adjacent regions, the EOO and AOO of *Actinostephanus enpingensis* are about 79.5 km² and 0.1 km², respectively. So far, only one population of this species has been recorded along the local stream in the Qixingkeng provincial natural reserve, Enping city, Guangdong province, southern China, but we believe that more *A. enpingensis* populations can be found in the hills of Enping and its adjacent counties. If that is the case, the Extent of Occurrence (EOO) and Area of Occupancy (AOO) of this species will increase. Because the flowers and leaves of this species are inconspicuous, and after learning from some local people that it has no known medicinal value we feel that this species faces little risk. Moreover, almost all of these plants are growing in the protected areas of this reserve so that the species are well protected. According to the Guidelines for Using the IUCN Red List Categories and Criteria (IUCN 2019), we access this taxon as a Least Concern species (LC).
Actinostephanus (Gesneriaceae), a new genus from China

Figure 4. Photos of Actinostephanus F.Wen, Y.G.Wei & L.F.Fu gen. nov., the individuals in natural habitat. A. enpingensis F.Wen, Y.G.Wei & Z.B.Xin sp. nov. A top view of plant B upward view of plant for showing root system C top view of bud at the end of root D upward view of bud at the end of root E adaxial surfaces of leaves F abaxial surfaces of leaves G cymes H lateral view of flower I posterior view of flower J frontal view of corolla K stamens and staminodes L abaxial surfaces of calyx lobes M pistil N infructescence O capsule and persistent calyx lobes P opened capsule Q cross-section of capsule R seeds.
Discussion

Our phylogenetic studies revealed that the new plant fell into Subtr. Leptoboeinae C.B.Clarke (PP = 1, BS = 100%). This subtribe belongs to Tribe Trichosporeae Nees, Subfamily Didymocarpoideae. At present, six genera have been included in this subtribe (Möller et al. 2017). Although their morphologies from different genera of this Subtribe are heterogeneous, several characters, such as the absence of large flowers, the inconspicuous to capitate stigma, straight but no-twisted fruits, and commonly 4-valved and dehiscent capsules or fleshy berries were concluded as common ones (Weber at al. 2013, Weber at al. 2020). The new plant is morphologically congruent with these characters that further indicate the monophyly of Subtr. Leptoboeinae. Within Subtr. Leptoboeinae, the new plant, was recovering in a polytomy including Boeica, Rhynchotechum, and Leptoboea. Two Boeica spp. are most closely related to Rhynchotechum, and both sisters to the type species of Boeica (B. furruginea) indicated that Boeica is not monophyletic. This relationship was congruent with previous studies (Yang et al. 2020). Expanding the sampling, and exploring key characters, is needed to re-define the Boeica. Despite this, the new genus is morphologically similar to these genera based on phyllotaxis and inflorescence cyme. However, it can be easily distinguished by corolla bowl-shaped, 5-lobed, actinomorphic, capsule densely appressed villous, wrapped by persistent densely pubescent calyx lobes and style persistent (Table 3). The most distinct characters of the new plant are its actinomorphic corolla, tiny fruit hard when mature, rarely dehiscent, occasionally split into 4-valves, style usually persistent, which are likely to be derived characters or autapomorphies. We, therefore, based on the molecular and morphological evidence, treat it as a new genus, namely, Actinostephanus.

The high levels of plant species diversity and endemism in southern and southwestern China are more and more renowned, especially in karst regions. Nevertheless, it is evident that the geographic accessibility of those mountainous areas (including townships, villages, and surrounding regions) has been hindered by terrible transport problems. It also seriously affected the understanding of plant diversity in South and Southwest China. But with the fast development of the Chinese economic and construction systems, more and more road construction projects are being carried out, forming a relatively completed road transportation system in China. Thus, there are more opportunities to discover many taxa new to science. The people have easy access to those places that were difficult to reach in past decades.

Not only do more and more taxonomists focus on the biodiversity of Gesneriaceae in China, but plant enthusiasts are also making an enormous contribution to help botanists discover rare and new Gesneriads. As previously mentioned, Mr. Yi Huang, a plant enthusiast, found the interesting Boeica-like species of Gesneriaceae in South China, and he offered this critical information to us. Thus, we will be more conscious of this uncertain species over the next few years. Therefore, we propose that plant enthusiasts, especially Gesneriad fans, are playing an increasingly important role in the process of new taxa-discoveries.

Several new species, for example, Primulina papillosa Z.B.Xin, W.C.Chou & F.Wen (Xin et al. 2021), P. purpureokylin F.Wen, Yi Huang & W.C.Chou, P. niveolanosa F.Wen, S.Li & W.C.Chou, P. persica F.Wen, Yi Huang & W.C.Chou (Li et al. 2019), were
Actinostephanus (Gesneriaceae), a new genus from China

Actinostephanus (Gesneriaceae), a new genus from China discovered by Mr. Wei-Chuen Chou, who is passionate about collecting Primulina species. He has also registered a number of new ornamental varieties by hybridization with the Gesneriad Society, the International Registration authority for Gesneriad horticultural variety. Other examples are P. longii (Z.Y.Li) Z.Y.Li and P. leiyyi F.Wen, Z.B.Xin & W.C.Chou; the scientific names paid homage to the discovers and collectors, Mr. Guang-Ri Long and Mr. Yu-Yang Lei (Li 2002; Li et al. 2019). Since 2011, at least 14 taxa in China (including those five new species above-mentioned) were discovered and published with the assistance of domestic Gesneriad enthusiasts (non-professionals/botanists/taxonomists, who are not associated with any university, institute or botanical garden), based on our statistics. They are Primulina spiradicioides Z.B.Xin & F.Wen (Xin et al. 2020a), P. hochiensis var. ochroleuca F.Wen, Y.Z.Ge & Z.B.Xin (Ge et al. 2020), P. anisocymosa F.Wen, Xin Hong & Z.J.Qiu (Hong et al. 2019), P. wuiae F.Wen & L.F.Fu (Li et al. 2017), P. qintangensis Z.B.Xin, W.C.Chou & F.Wen (Xin et al. 2020b), P. titan Z.B.Xin, W.C.Chou & F. Wen (Xin et al. 2020c), P. bipinnatifida var. zhoui (F.Wen & Z.B.Xin)W.B.Xu & K.F.Chung, P. huangii F.Wen & Z.B.Xin (Xin et al. 2018), P. duanensis F.Wen & S.L.Huang (Huang et al. 2015), P. moi F.Wen & Y.G.Wei (Zhou et al. 2015), Oreocharis aimodisca Lei Cai, Z.L.Dao & F.Wen, O. longipedicellata Lei Cai & F.Wen (Cai et al. 2020), O. panzhouensis Lei Cai, Y.Guo & F.Wen (Cai et al. 2019), Didymocarpus dissectus F.Wen, Y.L.Qiu, Jie Huang & Y.G.Wei (Wen et al. 2013).

Table 3. Comparison of morphological characters of Actinostephanus, Boeica and Leptoboea.

Characters	Actinostephanus	Boeica	Leptoboea
Habit	perennial herb but acaulescent, or elongated rhizome slightly fleshy growing after some years	subshrub, or perennial herb	Subshrub
Stem	Acaulescent	erect aerial stem, sometimes stolon, stem more or less lignified	erect aerial stem, lignified
Stolon and root system	no stolon, fibrous root filiform, at the end of root with ability for cloning	stolon or no stolon; roots no fecundity	no stolon; roots no fecundity
Leaf	whorls of three, all closely clustered at top	alternative	branches and leaves opposite, usually clustered at annual shoots
Inflorescence	cyme, corymbose, 1- or 2-branched; peduncle sturdier	cyme, multi-branched, occasionally no-branched; peduncle sturdier	cyme, corymbose, multi-branched; peduncle and pedicel slender similar to filiform
Corolla	actinomorphic, bowl-shaped, limb and tube nearly isometric, lobes deflexed	campanulate, corolla tube shorter than limb; limb slightly bilabiate, 5-lobed, lobes equal or slightly unequal	campanulate, small; limb slightly bilabiate, 5-lobed, lobes nearly equal
Capsule	oblong-ovoid, short, appressed villous, wrapped by persistent calyx lobes, and the calyx lobes also outside covered densely pubescent; hard when mature, style usually persistent, rarely dehiscent, occasionally split into 4-valves	linear, long, glabrous, apex pointed, style no persistent	long linear, long, glabrous, style no persistent
Seed	the number of seeds per capsule fewer, only 50–80	the number of seeds per capsule numerous, hundreds	the number of seeds per capsule numerous, hundreds

Table 3. Comparison of morphological characters of Actinostephanus, Boeica and Leptoboea.
Acknowledgements

We thank Mr. Zhang-Jie Huang for his helpful suggestion about the scientific name of this genus and species; Mr. Yi Huang from Guangdong for his discovery of this species distribution information; Mr. Wen-Hua Xu for his excellent arrangement of figures; Mr. Ye-Wang Li, Mr. Yue-Bing Zheng, Mr. Yi-Wei Situ, Mr. Song-Huang Wu, Ms. Xiao-Cui Cao, Mr. Shao-Gang Feng from Guangdong Enping Qixingkeng Provincial Nature Reserve for their help in field work. We also thank Mr. Michael LoFurno (Adjunct Professor, Temple University) from Philadelphia, the USA, for his editorial assistance. This study was financially supported by the National Natural Science Foundation (31860047), the Key Sci. & Tech. Research and Development Project of Guangxi (Guike AD20159091 & ZY21195050), the Guangxi Natural Science Foundation (2020GXNSFBA297049), the capacity-building project of SBR of CAS (KFJ-BRP-017-68), the Foundation of Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain (19-050-6 & 19-187-5), the Basal Research Fund of GXIB (Guizhiye20009 & Guizhifa010), 21st Talent project of “Ten-Hundred-Thousand” in Guangxi and the Fund of Technology Innovation Alliance of Flower Industry (2020hhlm005).

References

Bridson D, Forman L (1998) The Herbarium Handbook (3rd edn.). Royal Botanic Gardens Kew, London, 346 pp.

Cai L, Guo Y, Zhang RM, Dao ZL, Wen F (2019) Oreocharis panzhouensis (Gesneriaceae), a new species from karst regions in Guizhou, China. Phytotaxa 393(3): 287–291. https://doi.org/10.11646/phytotaxa.393.3.5

Cai L, Huang ZJ, Wen F, Dao ZL (2020) Two new species of Oreocharis (Gesneriaceae) from karst regions in Yunnan and notes on O. tetraptera and O. brachypoda from China. PhytoKeys 162: 1–12. https://doi.org/10.3897/phytokeys.162.52174

Chase MW, Hills H (1991) Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40(2): 215–220. https://doi.org/10.2307/1222975

Chen WH, Zhang YM, Guo SW, Zhang ZR, Chen L, Shui YM (2020) Reassessment of Bournea Oliver (Gesneriaceae) based on molecular and palynological evidence. PhytoKeys 157: 27–41. https://doi.org/10.3897/phytokeys.157.55254

Clarke CB (1883) Cyrtandreae. In: de Candolle AC (Ed.) Monographiae phanerogamarum 5/1. Masson, Paris.

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin 19: 11–15.

Fang D, Qin DH (2004) Wentsaiboea D.Fang & D.H.Qin, a new genus of the Gesneriaceae from Guangxi, China. Zhiwu Fenlei Xuebao 42(6): 533–536.

Fu LF, Monro AK, Yang TG, Wen F, Pan B, Xin ZB, Zhang ZX, Wei YG (2021) Elatostema qinzhouense (Urticaceae), a new species from limestone karst in Guangxi, China. PeerJ 9: e11148. http://doi.org/10.7717/peerj.11148
Actinostephanus (Gesneriaceae), a new genus from China

Ge YZ, Xin ZB, Fu LF, Chou WC, Huang Y, Huang ZJ, Maciejewski S, Wen F (2020) Primulina hochiensis var. ochroleuca (Gesneriaceae), a new variety from a limestone area of Guangxi, China, and errata on five new species of Primulina. PhytoKeys 152: 111–120. https://doi.org/10.3897/phytokeys.152.50968

Hong X, Keene J, Qiu ZJ, Wen F (2019) Primulina anisocymosa (Gesneriaceae), a new species with a unique inflorescence structure from Guangdong, China. PeerJ 7: e6157. https://doi.org/10.7717/peerj.6157

Huang SL, Fu LF, Li JJ, Ge YZ, Ma W, Wen F, Zhou SB (2015) Primulina duanensis sp. nov. (Gesneriaceae) from Guangxi, China. Nordic Journal of Botany 33(2): 209–213. https://doi.org/10.1111/njb.00649

IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf [accessed 4 Sep 2019]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thirer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Li HW (1982) Two new genera and one little known genus of Gesneriaceae from Yunnan. Yunnan Zhi Wu Yan Jiu 4(3): 241–247.

Li HW (1983) One new genus and one new recorded genus of Gesneriaceae from Yunnan. Yunnan Zhi Wu Yan Jiu 6(4): 171–174.

Li ZY (2002) A New Species of Chirita (Gesneriaceae) from Guangxi, China. Novon 12(4): 492–494. https://doi.org/10.2307/3393127

Li ZY, Wang YZ (2005) Plants of Gesneriaceae in China. Henan Science and Technology Publishing House, Zhengzhou.

Li S, Xin ZB, Hong X, Fu LF, Wen F (2017) Primulina wuae (Gesneriaceae), a new species from southern China. Gardens’ Bulletin (Singapore) 69(2): 307–313. https://doi.org/10.26492/gbs69(2).2017-09

Li S, Xin ZB, Chou WC, Huang Y, Pan B, Maciejewski S, Wen F (2019) Five new species of the genus Primulina (Gesneriaceae) from limestone areas of Guangxi Zhuangzu autonomous region, China. PhytoKeys 127: 77–91. https://doi.org/10.3897/phytokeys.127.35445

Möller M, Middleton DJ, Nishii K, Wei YG, Sontag S, Weber A (2011) A new delineation for Oreocharis incorporating an additional ten genera of Chinese Gesneriaceae. Phytotaxa 23(1): 1–36. https://doi.org/10.11646/phytotaxa.23.1.1

Möller M, Chen WH, Shui YM, Atkins H, Middleton DJ (2014) A new genus of Gesneriaceae in China and the transfer of Briggisia species to other genera. Gardens’ Bulletin (Singapore) 66: 195–205.
Möller M, Nampy S, Janeesha AP, Weber A (2017) The Gesneriaceae of India: Consequences of updated generic concepts and new family classification. Rheedea 27(1): 23–41. https://doi.org/10.22244/rheedea.2017.27.1.5

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300

Pan KY (1985) Genus novum Gesneriacearum e Sichuan et Yunnan. Zhiwu Fenlei Xuebao 23(3): 216–219.

Puglisi C, Middleton DJ, Triboun P, Möller M (2011) New insights into the relationships between Paraboea, Trisepalum, and Phylloboea (Gesneriaceae) and their taxonomic consequences. Taxon 60(6): 1693–1702. https://doi.org/10.1002/tax.606014

Qu X, Moore MJ, Li D, Yi T (2019) PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15(1): 1–12. https://doi.org/10.1186/s13007-019-0435-7

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Research 47(W1): W65–W73. https://doi.org/10.1093/nar/gkz345

Wang WT (1981a) Quinque genera nova Gesneriacearum e Sina. Bulletin of Botanical Research 1(3): 21–51.

Wang WT (1981b) Genus novum primitivum Gesneriacearum e Sina. Zhiwu Fenlei Xuebao 19(4): 485–489.

Wang WT (1983a) Genus novum Gesneriacearum e Guangxi. Guangxi Zhi Wu 3(1): 1–6.

Wang WT (1983b) Three new genera of Gesneriaceae from China. Botanical Research 1: 15–24.

Wang WT (1983c) Duo genera nova Gesneriacearum e Sina. Zhiwu Fenlei Xuebao 21(3): 320–324.

Wang WT (1984a) Genus novum Gesneriacearum e Yunnan. Yunnan Zhi Wu Yan Jiu 6(4): 397–401.

Wang WT (1984b) Duo genera nova Gesneriacearum e Sina Australi. Zhiwu Fenlei Xuebao 22(3): 185–190.

Wang XQ, Li ZY (1998) The application of sequence analysis of rDNA fragment to the systematic study of the Subfamily Cyrtandroideae (Gesneriaceae). Zhiwu Fenlei Xuebao 36(2): 97–105.

Wang WT, Pan KY, Li ZY (1990) Gesneriaceae. In: Wang WT (Ed.) Flora Reipublicae Popularis Sinicae, Vol. 69. Science Press, Beijing.

Wang WT, Pan KY, Li ZY, Weitzman AL, Skog LE (1998) Gesneriaceae. In: Wu ZY, Raven PH (Eds) Flora of China, Vol. 18. Science Press, Beijing and Missouri Botanic Garden, St. Louis.

Weber A, Wei YG, Sontag S, Möller M (2011a) Inclusion of Metabriggsia into Hemiboea (Gesneriaceae). Phytotaxa 23(1): 37–48. https://doi.org/10.11646/phytotaxa.23.1.2

Weber A, Wei YG, Puglisi C, Wen F, Mayer V, Möller M (2011b) A new definition of the genus Petrocodon (Gesneriaceae). Phytotaxa 23(1): 49–67. https://doi.org/10.11646/phytotaxa.23.1.3

Weber A, Middleton DJ, Forrest A, Kiew R, Lim CL, Rafidah AR, Sontag S, Triboun P, Wei YG, Yao TL, Möller M (2011c) Molecular systematics and remodeling of Chirit
Actinostephanus (Gesneriaceae), a new genus from China

Weber A, Clark JL, Möller M (2013) A new formal classification of Gesneriaceae. Selbyana 31(2): 68–94.

Weber A, Middelton DJ, Clark JL, Möller M (2020) Keys to the infrafamilial taxa and genera of Gesneriaceae. Rhedea 30(1): 5–47. https://doi.org/10.22244/rhedea.2020.30.01.02

Wei YG (2004) Paralagarosolen Y.G.Wei, a new genus of the Gesneriaceae from Guangxi, China. Zhiwu Fenlei Xuebao 42(6): 528–532.

Wei YG (2018) The Distribution and Conservation Status of Native Plants in Guangxi, China. China Forestry Publishing House, Beijing, 876 pp.

Wei YG, Wen F, Chen WH, Shui YM, Möller M (2010) Litostigma, a new genus from China: A morphological link between basal and derived Didymocarpoid Gesneriaceae. Edinburgh Journal of Botany 67(1): 161–184. https://doi.org/10.1017/S0960428609990291

Wen F, Qiu YL, Huang J, Zhao B, Wei YG (2013) Didymocarpus dissectus sp. nov. (Gesneriaceae) from Fujian, eastern China. Nordic Journal of Botany 31(3): 316–320. https://doi.org/10.1111/j.1756-1051.2012.00057.x

Wen F, Li S, Xin ZB, Fu LF, Cai L, Qin JQ, Pan B, Hong X, Pan FZ, Wei YG (2019) The Updated Plant List of Gesneriaceae in China against the Background of Newly Chinese Naming Rules. Guangxi Sciences 26(1): 37–63. https://doi.org/10.13656/j.cnki.cnxs.20190225.002

Xin ZB, Li S, Zhang RL, Fu LF, Dong J, Wen F (2018) Primulina zhoui and P. huangii (Gesneriaceae), two new species from limestone areas in Guangxi, China. Taiwania 63(1): 54–60. https://doi.org/10.6165/tai.2018.63.54

Xin ZB, Fu LF, Fu ZX, Li S, Wei YG, Wen F (2019) Complete chloroplast genome sequence of Petrocodon jingxiensis (Gesneriaceae). Mitochondrial DNA. Part B, Resources 4(2): 2771–2772. https://doi.org/10.1080/23802359.2019.1624208

Xin ZB, Huang ZJ, Fu LF, Li S, Wang BM, Wen F (2020a) Primulina spiradiclidioi (Gesneriaceae), a new species from limestone areas in Guangxi, China. Annales Botanici Fennici 57(4–6): 245–248. https://doi.org/10.5735/085.057.0408

Xin ZB, Huang ZJ, Chou WC, Huang Y, Meng DC, Wen F (2020b) Primulina qintangensis (Gesneriaceae), a new species from limestone areas of Guangxi, China. Xibei Zhiwu Xuebao 40(8): 1424–1427. https://doi.org/10.7606/jrxb.v2i3.1994

Xin ZB, Chou WC, Maciejewski S, Fu LF, Wen F (2021) Primulina papillosa (Gesneriaceae), a new species from limestone areas of Guangxi, China. PhytoKeys 177: 55–61. https://doi.org/10.3897/phytokeys.177.63878

Yang LH, Wen F, Kong HH, Sun ZX, Su LY, Kang M (2020) Two new combinations in Oreocharis (Gesneriaceae) based on morphological, molecular, and cytological evidence. PhytoKeys 157: 43–58. https://doi.org/10.3897/phytokeys.157.32609

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348–355. https://doi.org/10.1111/1755-0998.13096
Appendix I

The following is a list of used samples that are ordered alphabetically by taxon with their GenBank accession number of whole plastid genome sequences respectively. The samples with newly generated sequences are listed with the complete voucher information.

Actinostephanus enpingensis_B5 Qixingkeng Provincial Nature reserve, Enping City, Guangdong, WF210730-02, IBK!, OM176663; Actinostephanus enpingensis_B6 Qixingkeng Provincial Nature reserve, Enping City, Guangdong, FZY210502-01, IBK!, OM176664; Actinostephanus enpingensis_B7 Qixingkeng Provincial Nature reserve, Enping City, Guangdong, WF210730-01, IBK!, OM176665; Boeica baiseense_G37 Liujun village, Youjiang District, Baise City, Guangxi, WYG180520-05, IBK!, OM176669; Boeica ferruginea_G38 Pu Luong Nature Reserve, Thanh Hoa Province, Vietnam, WF21030328-01, IBK!, OM176670; Boeica multixerivia_G39 Jingping County, WF190814-01, IBK!, OM176671; Beccarinda cordifolia_B4 Dulongjiang, Gongshan County, Yunnan, XZB2104, IBK!, OM176662; Leptoboea multiflora_B15 Kauai National Forest, Thailand, WF180508-05, IBK!, OM176668; Litostigma coriaceifolium_WF174 Maling Gorge, Xingyi City, Guizhou, FLF170420-01, IBK!, OM176672; Rhynchotechum nirijuliense_B9 Beibeng to Mihan, Medog County, Xizang, WF200910-06, IBK!, OM176666; Rhynchotechum vestitum_B10 Beibeng to Mihan, Medog County, Xizang, WF200910-22, IBK!, OM176667; Achimenes cettoana_NC_050917; Achimenes erecta_NC_051524.1; Catalpa fargesii_NC_053866.1; Chirita eburnea_NC_036100.1; Corallodiscus flabellatus_NC_050944.1; Doroceras hygrometricum_NC_016468.1; Fraxinus hupehensis_NC_052770.1; Haberlea rhodopensis_NC_031852.1; Hemiboea ovalifolia_NC_054358.1; Lysionotus pauciflorus_NC_034660.1; Nicotiana otophora_NC_032724.1; Noronhia intermedia_NC_042276.1; Oreocharis cotinifolia_NC_053771.1; Oreocharis esquirolii_MT612436.1; Oreocharis mileensis_MK342624.1; Oxyrychus indicum_NC_049086.1; Paulownia elongata_NC_045085.1; Petrocodon jingxiensis_NC_044477.1; Premna microphylla_NC_026291.1; Primulina brachytricha var. magnibracteata_MF77037.1; Primulina eburnea_MF472011.1; Primulina huaijiensis_NC_036413.1; Primulina liboensis_NC_036101.1; Primulina linearifolia_NC_036414.1; Primulina ophiopogoides_NC_054175.1; Primulina tenuituba_MW245830.1; Solanum dulcamara_NC_035724.1; Stachys sylvatica_NC_029824.1; Streptocarpus ionanthus subsp. grandifolius_MN935471.1; Streptocarpus ionanthus subsp. grossei_MN935469.1; Streptocarpus ionanthus subsp. orbicularis_MN935470.1; Streptocarpus ionanthus subsp. ripicola_MN935473.1; Streptocarpus ionanthus subsp. velutinus_MN935472.1; Streptocarpus teitensis_NC_037184.1; Syringa oblata_MT872639.1; Verbena officinalis_NC_056142.1;