Exact convergence rates in central limit theorems for a branching random walk with a random environment in time

Zhiqiang Gao, Quansheng Liu

To cite this version:
Zhiqiang Gao, Quansheng Liu. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. 2016. hal-01095105v3

HAL Id: hal-01095105
https://hal.science/hal-01095105v3
Preprint submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exact convergence rates in central limit theorems for a branching random walk with a random environment in time

Zhiqiang Gao† Quansheng Liu ‡

January 4, 2016

Abstract

Chen [Ann. Appl. Probab. 11 (2001), 1242–1262] derived exact convergence rates in a central limit theorem and a local limit theorem for a supercritical branching Wiener process. We extend Chen’s results to a branching random walk under weaker moment conditions. For the branching Wiener process, our results sharpen Chen’s by relaxing the second moment condition used by Chen to a moment condition of the form \(\mathbb{E} X (\ln^+ X)^{1+\lambda} < \infty \). In the rate functions that we find for a branching random walk, we figure out some new terms which didn’t appear in Chen’s work. The results are established in the more general framework, i.e. for a branching random walk with a random environment in time. The lack of the second moment condition for the offspring distribution and the fact that the exponential moment does not exist necessarily for the displacements make the proof delicate; the difficulty is overcome by a careful analysis of martingale convergence using a truncating argument. The analysis is significantly more awkward due to the appearance of the random environment.

2000 Mathematics Subject Classification. Preliminary 60K37, 60J10, 60F05, 60J80.

Key Words and phrases. Branching random walk, random environment in time, central limit theorems, convergence rate.

1 Introduction

The theory of branching random walk has been studied by many authors. It plays an important role, and is closely related to many problems arising in a variety of applied probability setting, including branching processes, multiplicative cascades, infinite particle systems, Quicksort algorithms and random fractals (see e.g. [29, 30]). For recent developments of the subject, see e.g. Hu and Shi [22], Shi [36], Hu [21], Attia and Barral [4] and the references therein.

In the classical branching random walk, the point processes indexed by the particles \(u \), formulated by the number of its children and their displacements, have a fixed constant distribution for all particles \(u \). In reality this distributions may vary from generation to generation according to a random environment, just as in the case of a branching process in random environment introduced in [2, 3, 37]. In other words, the distributions themselves may be realizations of a stochastic process, rather than being fixed. This property makes the model be closer to the reality compared to the classical branching random walk. In this paper, we shall consider such a model, called a branching random walk with a random environment in time.

Different kinds of branching random walks in random environments have been introduced and studied in the literature. Baillon, Clément, Greven and den Hollander [6, 18] considered the case where the offspring distribution of a particle situated at \(z \in \mathbb{Z}^d \) depends on a random environment indexed by the location \(z \), while the moving mechanism is controlled by a fixed deterministic law. Comets and Popov [12, 13] studied the case where both the offspring distributions and the moving laws depend on a random environment.

*The project is partially supported by the National Natural Science Foundation of China (NSFC, Grants No. 11101039, No. 11171044, No. 11271045, and No. 11401590), by a cooperation program between NSFC and CNRS of France (Grant No. 11311130102) and by Human Provincial Natural Science Foundation of China (Grant No. 11JJ2001).

†School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P. R. China (gaozq@bnu.edu.cn)

‡Corresponding author, Univ. Bretagne-Sud, CNRS UMR 6205, LMBa, campus de Tohannic, F-56000 Vannes, France and Changsha University of Science and Technology, School of Mathematics and Computing Science, Changsha 410004, China (quansheng.liu@univ-ubs.fr)
indexed by the location. In the model studied in [9, 14, 23, 32, 39], the offspring distribution of a particle of generation \(n \) situated at \(z \in \mathbb{Z}^d (d \geq 1) \) depends on a random space-time environment indexed by \(\{(z, n)\} \), while each particle performs a simple symmetric random walk on \(d \)-dimensional integer lattice \(\mathbb{Z}^d (d \geq 1) \). The model that we study in this paper is different from those mentioned above. It should also be mentioned that recently another different kind of branching random walk in time inhomogeneous environments has been considered extensively, see e.g. Fang and Zeitouni (2012, [16]), Zeitouni (2012, [41]) and Bovier and Hartung (2014, [10]). The readers may refer to these articles and references therein for more information.

Denote by \(Z_n(\cdot) \) the counting measure which counts the number of particles of generation \(n \) situated in a given set. For the classical branching random walk, a central limit theorem on \(Z_n(\cdot) \), first conjectured by Harris (1963, [20]), was shown by Asmussen and Kaplan (1976, [1, 25]), and then extended to a general case by Klebaner (1982, [26]) and Biggins (1990, [7]); for a branching Wiener process, Révész (1994, [34]) studied the convergence rates in the central limit theorems and conjectured the exact convergence rates, which were confirmed by Chen (2001, [11]). Kabluchko (2012, [40]) generalized Chen’s partial results using a different method. Révész, Rosen and Shi (2005, [35]) obtained a large time asymptotic expansion in the local limit theorem for branching Wiener processes, generalizing Chen’s result.

The first objective of our present paper is to extend Chen’s results to the branching random walk under weaker moment conditions. In our results about the exact convergence rate in the central limit theorem and the local limit theorem, the rate functions that we find include some new terms which didn’t appear in Chen’s paper [11]. In Chen’s work, the second moment condition was assumed for the offspring distribution. Although the setting we consider now is much more general, in our results the second moment condition will be relaxed to a moment condition of the form \(E \mathbb{X}^k (\mathbb{X}^+)^{k+\lambda} < \infty \). It has been well known that in branching random walks, such a relaxation is quite delicate. Another interesting aspect is that we do not assume the existence of exponential moments for the moving law, which holds automatically in the case of the branching Wiener process. The lack of the second moment condition (resp. the exponential moment condition) for the offspring distribution (resp. the moving law) makes the proof delicate. The difficulty will be overcome via a careful analysis of the convergence of some associated martingales using truncating arguments.

The second objective of our paper is to extend the results to the branching random walk with a random environment in time. This model first appeared in Biggins and Kyprianou (2004, [8, Section 6]), where a criterion was given for the non-degeneration of the limit of the natural martingale; see also Kuhlbusch (2004, [27]) for the equivalent form of the criterion on weighted branching processes in random environment. For \(Z_n(\cdot) \) and related quantities on this model, Liu (2007, [31]) surveyed several limit theorems, including large deviations theorems and a law of large numbers on the rightmost particle. In [17], Gao, Liu and Wang showed a central limit theorem on the counting measure \(Z_n(\cdot) \) with appropriate norming. Here we study the convergence rate in the central limit theorem and a local limit theorem for \(Z_n(\cdot) \). Compared with the classical branching random walk, the approach is significantly more difficult due to the appearance of the random environment.

The article is organized as follows. In Section 2, we give a rigorous description of the model and introduce the basic assumptions and notation, then we formulate our main results as Theorems 2.3 and 2.4. In Section 3 we introduce some notation and recall a theorem on the Edgeworth expansions for sums of independent random variables used in our proofs. We give the proofs of the main theorems in Section 5 and 6 respectively. Whilst Section 4 will be devoted to the proofs of the reminders.

2 Description of the model and the main results

2.1 Description of the model

We describe the model as follows ([17, 31]). A random environment in time \(\xi = (\xi_n) \) is formulated as a sequence of random variables independent and identically distributed with values in some measurable space \((\Theta, \mathcal{F})\). Each realization of \(\xi_n \) corresponds to two probability distributions: the offspring distribution \(p(\xi_n) = (p_0(\xi_n), p_1(\xi_n), \cdots) \) on \(\mathbb{N} = \{0, 1, \cdots\} \), and the moving distribution \(G(\xi_n) \) on \(\mathbb{R} \). Without loss of generality, we can take \(\xi_n \) as coordinate functions defined on the product space \((\Theta^N, \mathcal{F}^\otimes N)\) equipped with the product law \(\tau \) of some probability law \(\tau_0 \) on \((\Theta, \mathcal{F})\), which is invariant and ergodic under the usual shift transformation \(\theta \) on \(\Theta^N \), \(\theta((\xi_0, \xi_1, \cdots) = (\xi_1, \xi_2, \cdots) \).

When the environment \(\xi = (\xi_n) \) is given, the process can be described as follows. It begins at time 0 with one initial particle \(\varnothing \) of generation 0 located at \(S_\varnothing = 0 \in \mathbb{R} \); at time 1, it is replaced by \(N = N_\varnothing \).
new particles $\varnothing i = i(1 \leq i \leq N)$ of generation 1, located at $S_i = L_{\varnothing i}(1 \leq i \leq N)$, where N, L_1, L_2, \cdots are mutually independent, N has the law $p(\xi_0)$, and each L_i has the law $G(\xi_i)$. In general, each particle $u = u_1 \cdots u_n$ of generation n is replaced at time $n + 1$ by N_u new particles $ui(1 \leq i \leq N_u)$ of generation $n + 1$, with displacements $L_{ui}(1 \leq i \leq N_u)$, so that the i-th child ui is located at
$$S_{ui} = S_u + L_{ui},$$
where $N_u, L_{ui}, L_{i+2}, \cdots$ are mutually independent, N_u has the law $p(\xi_n)$, and each L_{ui} has the same law $G(\xi_n)$. By definition, given the environment ξ, the random variables N_u and L_{ui}, indexed by all the finite sequences u of positive integers, are independent of each other.

For each realization $\xi \in \Theta^N$ of the environment sequence, let $(\Gamma, \mathcal{G}, P_\xi)$ be the probability space under which the process is defined (when the environment ξ is fixed to the given realization). The probability P_ξ is usually called quenched law. The total probability space can be formulated as the product space $(\Theta^N \times \Gamma, \mathcal{E}^N \otimes \mathcal{G}, \mathbb{P})$, where $\mathbb{P} = \mathbb{E}(\delta_\xi \otimes P_\xi)$ with δ_ξ the Dirac measure at ξ and \mathbb{E} the expectation with respect to the random variable ξ, so that for all measurable and positive g defined on $\Theta^N \times \Gamma$, we have
$$\int_{\Theta^N \times \Gamma} g(x, y) d\mathbb{P}(x, y) = \mathbb{E} \int_{\Gamma} g(\xi, y) dP_\xi(y).$$
The total probability \mathbb{P} is usually called annealed law. The quenched law P_ξ may be considered to be the conditional probability of \mathbb{P} given ξ. The expectation with respect to \mathbb{P} will still be denoted by \mathbb{E}; there will be no confusion for reason of consistence. The expectation with respect to P_ξ will be denoted by E_ξ.

Let T be the genealogical tree with $\{N_u\}$ as defining elements. By definition, we have: (a) $\emptyset \in T$; (b) $ui \in T$ implies $u \in T$; (c) if $u \in T$, then $ui \in T$ if and only if $1 \leq i \leq N_u$. Let
$$T_n = \{u \in T : |u| = n\}$$
be the set of particles of generation n, where $|u|$ denotes the length of the sequence u and represents the number of generation to which u belongs.

2.2 Main results

Let $Z_n(\cdot)$ be the counting measure of particles of generation n: for $B \subset \mathbb{R}$,
$$Z_n(B) = \sum_{u \in T_n} 1_B(S_u).$$
Then $\{Z_n(\mathbb{R})\}$ constitutes a branching process in a random environment (see e.g. [2, 3, 37]). For $n \geq 0$, let \hat{N}_n (resp. \hat{L}_n) be a random variable with distribution $p(\xi_n)$ (resp. $G(\xi_n)$) under the law P_ξ, and define
$$m_n = m(\xi_n) = E_\xi \hat{N}_n, \quad \Pi_n = m_0 \cdots m_{n-1}, \quad \Pi_0 = 1.$$
It is well known that the normalized sequence
$$W_n = \frac{1}{\Pi_n} Z_n(\mathbb{R}), \quad n \geq 1$$
constitutes a martingale with respect to the filtration (\mathcal{F}_n) defined by
$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \quad \mathcal{F}_n = \sigma(\xi, N_u : |u| < n), \text{ for } n \geq 1.$$
Throughout the paper, we shall always assume the following conditions:
$$\mathbb{E} \ln m_0 > 0 \quad \text{and} \quad \mathbb{E} \left[\frac{1}{m_0} \hat{N}_0 \left(\ln^+ \hat{N}_0 \right)^{1+\lambda} \right] < \infty,$$
(2.1)
where the value of $\lambda > 0$ is to be specified in the hypothesis of the theorems. Under these conditions, the underlying branching process $\{Z_n(\mathbb{R})\}$ is supercritical, $Z_n(\mathbb{R}) \rightarrow \infty$ with positive probability, and the limit
$$W = \lim_n W_n$$

verifies $EW = 1$ and $W > 0$ almost surely (a.s.) on the explosion event $\{Z_\infty \to \infty\}$ (cf. e.g. [3, 38]).

For $n \geq 0$, define

$$l_n = \mathbb{E} \hat{L}_n, \quad \sigma_n^{(\nu)} = \mathbb{E} \left(\hat{L}_n - l_n\right)^{\nu}, \text{ for } \nu \geq 2;$$

$$\ell_n = \sum_{k=0}^{n-1} l_k, \quad s_n^{(\nu)} = \sum_{k=0}^{n-1} \sigma_k^{(\nu)}, \text{ for } \nu \geq 2, \quad s_n = (s_n^{(2)})^{\frac{1}{2}}.$$

We will need the following conditions on the motion of particles:

$$\mathbb{P}\left(\limsup_{|t| \to \infty} |\mathbb{E} e^{it\hat{L}_0}| < 1\right) > 0 \quad \text{and} \quad \mathbb{E}(|\hat{L}_0|^\eta) < \infty,$$

(2.2)

where the value of $\eta > 1$ is to be specified in the hypothesis of the theorems. The first hypothesis means that Cramér’s condition about the characteristic function of \hat{L}_0 holds with positive probability.

Let $\{N_{1,n}\}$ and $\{N_{2,n}\}$ be two sequences of random variables, defined respectively by

$$N_{1,n} = \frac{1}{\Pi_n} \sum_{u \in \mathbb{Z}_n} (S_u - \ell_n) \quad \text{and} \quad N_{2,n} = \frac{1}{\Pi_n} \sum_{u \in \mathbb{Z}_n} ((S_u - \ell_n)^2 - s_n^2).$$

We shall prove that they are martingales with respect to the filtration (\mathcal{F}_n) defined by

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \quad \mathcal{F}_n = \sigma(\xi, N_u, L_u : i \geq 1, |u| < n), \text{ for } n \geq 1.$$

More precisely, we have the following propositions.

Proposition 2.1. Assume (2.1) and $\mathbb{E}(\ln^{-m_0})^{1+\lambda} < \infty$ for some $\lambda > 1$, and $\mathbb{E}(|\hat{L}_0|^\eta) < \infty$ for some $\eta > 2$. Then the sequence $\{(N_{1,n}, \mathcal{F}_n)\}$ is a martingale and converges a.s.

$$V_1 := \lim_{n \to \infty} N_{1,n} \text{ exists a.s. in } \mathbb{R}.$$

Proposition 2.2. Assume (2.1) and $\mathbb{E}(\ln^{-m_0})^{1+\lambda} < \infty$ for some $\lambda > 2$, and $\mathbb{E}(|\hat{L}_0|^\eta) < \infty$ for some $\eta > 4$. Then the sequence $\{(N_{2,n}, \mathcal{F}_n)\}$ is a martingale and converges a.s.

$$V_2 := \lim_{n \to \infty} N_{2,n} \text{ exists a.s. in } \mathbb{R}.$$

Our main results are the following two theorems. The first theorem concerns the exact convergence rate in the central limit theorem about the counting measure Z_n, while the second one is a local limit theorem. We shall use the notation

$$Z_n(t) = Z_n((-\infty, t]), \quad \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}, \quad \Phi(t) = \int_{-\infty}^{t} \phi(x)dx, \quad t \in \mathbb{R}.$$

Theorem 2.3. Assume (2.1) for some $\lambda > 8$, (2.2) for some $\eta > 12$ and $\mathbb{E}m^{-\delta} < \infty$ for some $\delta > 0$. Then for all $t \in \mathbb{R}$

$$\sqrt{n} \left[\frac{1}{\Pi_n} Z_n(\ell_n + s_n t) - \Phi(t) W \right] \xrightarrow{n \to \infty} V(t) \quad \text{a.s.,}$$

(2.3)

where

$$V(t) = -\frac{\phi(t) V_1}{(\mathbb{E}^{(2)}_0)^{1/2}} + \frac{(\mathbb{E}^{(3)}_0)(1 - t^2) \phi(t) W}{6(\mathbb{E}^{(2)}_0)^{3/2}}.$$

Theorem 2.4. Assume (2.1) for some $\lambda > 16$, (2.2) for some $\eta > 16$ and $\mathbb{E}m^{-\delta} < \infty$ for some $\delta > 0$. Then for any bounded measurable set $A \subset \mathbb{R}$ with Lebesgue measure $|A| > 0$,

$$n \left[\sqrt{2\pi} s_n \Pi_n^{-1} Z_n(A + \ell_n) - W \int_{A} e^{-\frac{x^2}{2}} dx \right] \xrightarrow{n \to \infty} \mu(A) \quad \text{a.s.,}$$

(2.4)
where
\[
\mu(A) = \frac{|A|}{2\varepsilon_0^{(2)}} \left(-V_2 + 2\pi_A V_1 \right) + \frac{|A| c(A)}{8 (\varepsilon_0^{(2)})^2}
\]
with \(\pi_A = \frac{1}{|A|} \int_A x dx\) and
\[
c(A) = W^2 \mathbb{E} \left[(\sigma_0^{(4)} - 3(\sigma_0^{(2)})^2) + 4 (\varepsilon_0^{(3)})(V_1 - \pi_A W) - \frac{5(\varepsilon_0^{(3)})^2}{3 \varepsilon_0^{(2)}} W \right].
\]

Remark 2.5. For a branching Wiener process, Theorems 2.3 and 2.4 improve Theorems 3.1 and 3.2 of Chen (2001, [11]) by relaxing the second moment condition used by Chen to the moment condition of the form \(\mathbb{E} X (\ln^+ X)^{1+\lambda} < \infty\) (cf. (2.1)). For a branching random walk with a constant or random environment, the second terms in \(V(\cdot)\) and \(\mu(\cdot)\) are new: they did not appear in Chen’s results [11] for a branching Wiener process; the reason is that in the case of a Brownian motion, we have \(\sigma_0^{(3)} = \sigma_0^{(4)} - 3(\sigma_0^{(2)})^2 = 0\).

Remark 2.6. As will be seen in the proof, if we assume an exponential moment condition for the motion, then the moment condition on the underlying branching mechanism can be weakened: in that case, we only need to assume that \(\lambda > 3/2\) in Theorem 2.3 and \(\lambda > 4\) in Theorem 2.4. In particular, for a branching Wiener process, Theorem 2.3 (resp. Theorem 2.4) is valid when (2.1) holds for some \(\lambda > 3/2\) (resp. \(\lambda > 4\)).

Remark 2.7. In the deterministic case, Theorem 2.3 has been obtained by Kabluchko [40, Theorem 5 and Remark 2] under the second moment condition for the underlying branching mechanism.

Remark 2.8. When the Cramér condition \(\mathbb{P} \left(\limsup_{t \to \infty} |\mathbb{E} e^{i \xi L_t} | < 1 \right) > 0\) fails, the situation is different. Actually, while revising our manuscript we find that a lattice version (about a branching random walk on \(\mathbb{Z}\) in a constant environment, for which the preceding condition fails) of Theorems 2.3 and 2.4 has been established very recently in [19].

For simplicity and without loss of generality, hereafter we always assume that \(l_n = 0\) (otherwise, we only need to replace \(L_{ui}\) by \(L_{ui} - l_n\)) and hence \(\ell_n = 0\). In the following, we will write \(K_{\xi}\) for a constant depending on the environment, whose value may vary from lines to lines.

3 Notation and Preliminary results

In this section, we introduce some notation and important lemmas which will be used in the sequel.

3.1 Notation

In addition to the \(\sigma\)-fields \(\mathcal{F}_n\) and \(\mathcal{D}_n\), the following \(\sigma\)-fields will also be used:

\[
\mathcal{F}_0 = \{\emptyset, \Omega\}, \quad \mathcal{F}_n = \sigma(\xi_k, N_u, L_{ui} : k < n, i \geq 1, |u| < n) \quad \text{for} \quad n \geq 1.
\]

For conditional probabilities and expectations, we write:

\[
P_{\xi,n}(\cdot) = P_{\xi}(\cdot | \mathcal{F}_n), \quad E_{\xi,n}(\cdot) = E_{\xi}(\cdot | \mathcal{F}_n); \quad P_n(\cdot) = P(\cdot | \mathcal{F}_n), \quad E_n(\cdot) = E(\cdot | \mathcal{F}_n);
\]

\[
P_{\xi,\mathcal{D}_n}(\cdot) = P_{\xi}(\cdot | \mathcal{D}_n), \quad E_{\xi,\mathcal{D}_n}(\cdot) = E_{\xi}(\cdot | \mathcal{D}_n).
\]

As usual, we set \(N^* = \{1, 2, 3, \cdots\}\) and denote by

\[
U = \bigcup_{n=0}^{\infty} (N^*)^n
\]

the set of all finite sequences, where \((N^*)^0 = \{\emptyset\}\) contains the null sequence \(\emptyset\).

For all \(u \in U\), let \(T(u)\) be the shifted tree of \(T\) at \(u\) with defining elements \(\{N_{uv}\}\): we have 1) \(\emptyset \in T(u), 2) \forall v \in T(u) \Rightarrow v \in T(u)\) and 3) if \(v \in T(u)\), then \(v \in T(u)\) if and only if \(1 \leq i \leq N_{uv}\). Define \(T_n(u) = \{v \in T(u) : |v| = n\}\). Then \(T = T(\emptyset)\) and \(T_n = T_n(\emptyset)\).
For every integer $m \geq 0$, let H_m be the Chebyshev-Hermite polynomial of degree m:

$$H_m(x) = m! \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^k x^{m-2k} \frac{k!}{(m-2k)! 2^k}. \quad (3.1)$$

The first few Chebyshev-Hermite polynomials relevant to us are:

$$H_0(x) = 1,$$
$$H_1(x) = x,$$
$$H_2(x) = x^2 - 1,$$
$$H_3(x) = x^3 - 3x,$$
$$H_4(x) = x^4 - 6x^2 + 3,$$
$$H_5(x) = x^5 - 10x^3 + 15x,$$
$$H_6(x) = x^6 - 15x^4 + 45x^2 - 15,$$
$$H_7(x) = x^7 - 21x^5 + 105x^3 - 105x,$$
$$H_8(x) = x^8 - 28x^6 + 210x^4 - 420x^2 + 105.$$

It is known that for every integer $m \geq 0$

$$\Phi^{(m+1)}(x) = \frac{d^{m+1}}{dx^{m+1}} \Phi(x) = (-1)^m \phi(x)H_m(x). \quad (3.2)$$

3.2 Two preliminary lemmas

We first give an elementary lemma which will be often used in Section 4.

Lemma 3.1. (a) For $x, y \geq 0$,

$$\ln^+(x+y) \leq 1 + \ln^+ x + \ln^+ y, \quad \ln(1+x) \leq 1 + \ln^+ x. \quad (3.2)$$

(b) For each $\lambda > 0$, there exists a constant $K_\lambda > 0$, such that

$$\ln^+ x \leq K_\lambda x, \quad x > 0, \quad (3.3)$$

(c) For each $\lambda > 0$, the function

$$x(\ln x)^{-1-\lambda} \quad \text{is increasing for } x > e^{2\lambda}. \quad (3.4)$$

Proof. Part (a) holds since $\ln^+(x+y) \leq \ln^+(2 \max\{x, y\}) \leq 1 + \ln^+ x + \ln^+ y$. Parts (b) and (c) can be verified easily. \(\square\)

We next present the Edgeworth expansion for sums of independent random variables, that we shall need in Sections 5 and 6 to prove the main theorems. Let us recall the theorem used in this paper obtained by Bai and Zhao(1986, [5]), that generalizing the case for i.i.d random variables (cf. [33, P.159, Theorem 1]).

Let $\{X_j\}$ be independent random variables, satisfying for each $j \geq 1$

$$\mathbb{E}X_j = 0, \mathbb{E}|X_j|^k < \infty \quad \text{with some integer } k \geq 3. \quad (3.5)$$

We write $B_n^2 = \sum_{j=1}^n \mathbb{E}X_j^2$ and only consider the nontrivial case $B_n > 0$. Let $\gamma_{\nu j}$ be the ν-order cumulant of X_j for each $j \geq 1$. Write

$$\lambda_{\nu, n} = n^{(\nu-2)/2} B_n^{-\nu} \sum_{j=1}^n \gamma_{\nu j}, \quad \nu = 3, 4, \ldots, k;$$

$$Q_{\nu, n}(x) = \sum_{m=1}^{\nu} (-1)^{\nu+2s} \Phi^{(\nu+2s)}(x) \prod_{m=1}^{\nu} \frac{1}{k_m!} \left(\frac{\lambda_{m+2, n}}{(m+2)!} \right)^{k_m}$$
\[\sum = -\phi(x) \sum' H_{\nu+2s-1}(x) \prod_{m=1}^{\nu} \frac{1}{k_m!} \left(\frac{\lambda_{m+2,n}}{(m+2)!} \right)^{k_m}, \]

where the summation \(\sum' \) is carried out over all nonnegative integer solutions \((k_1, \ldots, k_\nu) \) of the equations:

\[k_1 + \cdots + k_\nu = s \quad \text{and} \quad k_1 + 2k_2 + \cdots + \nu k_\nu = \nu. \]

For \(1 \leq j \leq n \) and \(x \in \mathbb{R} \), define

\[F_n(x) = \mathbb{P}(B_{n}^{-1} \sum_{j=1}^{n} X_j \leq x), \quad v_j(t) = \mathbb{E}e^{t X_j}, \]

\[Y_{nj} = X_j \mathbb{1}_{\{ |X_j| \leq B_n \}}, \quad Z_{nj} = X_j \mathbb{1}_{\{ |X_j| \leq B_n (1+|x|) \}}, \quad W_{nj}^{(x)} = X_j \mathbb{1}_{\{ |X_j| > B_n (1+|x|) \}}. \]

The Edgeworth expansion theorem can be stated as follows.

Lemma 3.2 ([5]). Let \(n \geq 1 \) and \(X_1, \ldots, X_n \) be a sequence of independent random variables satisfying (3.5) and \(B_n > 0 \). Then for the integer \(k \geq 3 \),

\[|F_n(x) - \Phi(x) - \sum_{\nu=1}^{k-2} Q_{\nu n}(x) n^{-\nu/2}| \leq C(k) \left((1 + |x|)^{-k} B_n^{-k} \sum_{j=1}^{n} \mathbb{E}|W_{nj}^{(x)}|^{k} + (1 + |x|)^{-k-1} B_n^{k+1} \sum_{j=1}^{n} \mathbb{E}|Z_{nj}|^{k+1} \right) \]

where \(\delta_n = \frac{1}{12} B_n^{2} \left(\sum_{j=1}^{n} \mathbb{E}|Y_{nj}|^{3} \right)^{-1} \), \(C(k) > 0 \) is a constant depending only on \(k \).

4 Convergence of the martingales \(\{ (N_{1,n}, \mathcal{D}_n) \} \) and \(\{ (N_{2,n}, \mathcal{D}_n) \} \)

Now we can proceed to prove the convergence of the two martingales defined in Section 2.

4.1 Convergence of the martingale \(\{ (N_{1,n}, \mathcal{D}_n) \} \)

Proof of Proposition 2.1. The fact that \(\{ (N_{1,n}, \mathcal{D}_n) \} \) is a martingale can be easily shown: it suffices to notice that

\[\mathbb{E} \xi_n N_{1,n+1} = \mathbb{E} \xi_n \left(\frac{1}{\Pi_{n+1}} \sum_{u \in \mathcal{S}_{n+1}} S_u \right) = \frac{1}{\Pi_{n+1}} \mathbb{E} \xi_n \left(\sum_{u \in \mathcal{T}_n} \sum_{i=1}^{N_u} (S_u + L_{u_i}) \right) \]

\[= \frac{1}{\Pi_{n+1}} \sum_{u \in \mathcal{T}_n} \mathbb{E} \xi_n \left(\sum_{i=1}^{N_u} (S_u + L_{u_i}) \right) \]

\[= \frac{1}{\Pi_{n+1}} \sum_{u \in \mathcal{T}_n} m_n S_u = N_{1,n}. \]

Observe that

\[N_{1,n+1} - N_{1,n} = \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} S_u (N_u/m_n - 1) + \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} \frac{1}{m_n} \sum_{i=1}^{N_u} L_{u_i} =: I_{1,n} + I_{2,n}. \]

We shall prove the convergence of the martingale by showing that both of the series

\[\sum_{n=1}^{\infty} I_{1,n} \quad \text{and} \quad \sum_{n=1}^{\infty} I_{2,n} \quad \text{converge a.s.} \]
Define
\[I_{1,n}^1 = \frac{1}{\Pi_n} \sum_{u \in \mathcal{U}_n} S_u \left(\frac{N_u}{m_n} - 1 \right) 1_{\{N_u/m_n \leq \Pi_n\}}, \quad (4.3) \]
\[I_{1,n}^2 = \frac{1}{\Pi_n} \sum_{u \in \mathcal{U}_n} Y_u 1_{\{|Y_u| \leq \Pi_n\}} \quad \text{with} \quad Y_u = \frac{1}{m_{|u|}} \sum_{i=1}^{N_u} L_{ui}. \quad (4.4) \]

Since
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_\xi |\hat{L}_j|^q = \mathbb{E}_\xi |\hat{L}_1|^q < \infty, \quad q = 1, 2, \]
there exists a constant \(K_\xi < \infty \) depending only on \(\xi \) such that for \(n \geq 1 \) and \(|u| = n \),
\[\mathbb{E}_\xi |\tilde{L}_n| \leq K_\xi n, \quad \mathbb{E}_\xi |S_u| \leq \sum_{j=1}^{n} \mathbb{E}_\xi |\hat{L}_j| \leq K_\xi n, \quad \mathbb{E}_\xi |S_u|^2 = \sum_{j=1}^{n} \mathbb{E}_\xi |\hat{L}_j|^2 \leq K_\xi n. \quad (4.5) \]

To prove the convergence a.s. of the series \(\sum_{n=1}^{\infty} I_{q,n} (q = 1, 2) \), we only need to show that the following series converges a.s.:
\[\sum_{n=1}^{\infty} (I_{1,n} - I_{1,n}'), \quad \sum_{n=1}^{\infty} (I_{1,n}' - \mathbb{E}_\xi n I_{1,n}'), \quad \text{and} \quad \sum_{n=1}^{\infty} \mathbb{E}_\xi n I_{1,n}'. \]

First for \(q = 1 \), we see that
\[\mathbb{E}_\xi |I_{1,n} - I_{1,n}'| = \mathbb{E}_\xi \left| \frac{1}{\Pi_n} \sum_{u \in \mathcal{U}_n} S_u \left(\frac{N_u}{m_n} - 1 \right) 1_{\{N_u/m_n > \Pi_n\}} \right| \]
\[\leq \mathbb{E}_\xi \left| \frac{1}{\Pi_n} \sum_{u \in \mathcal{U}_n} \mathbb{E}_\xi |S_u| \mathbb{E}_\xi \left(\frac{N_u}{m_n} + 1 \right) 1_{\{N_u/m_n > \Pi_n\}} \right| \]
\[\leq K_\xi n \mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_n} + 1 \right) 1_{\{\tilde{N}_n/m_n > \Pi_n\}} \]
\[\leq K_\xi \left(\ln(\Pi_n + 1) \right)^{1+\lambda} \mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_n} + 1 \right) \left(\ln \left(1 + \frac{\tilde{N}_n}{m_n} \right) \right)^{1+\lambda} \]
\[\leq K_\xi n^{-\lambda} \mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_n} + 1 \right) \left(\ln \left(1 + \frac{\tilde{N}_n}{m_n} \right) \right)^{1+\lambda} \]

Observe that for \(\lambda > 1 \),
\[\mathbb{E} \sum_{n=1}^{\infty} \frac{1}{n^\lambda} \left[\mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_n} (\ln^+ \tilde{N}_n)^{1+\lambda} + (\ln^- m_n)^{1+\lambda} \right) \right] \]
\[= \sum_{n=1}^{\infty} \frac{1}{n^\lambda} \left[\mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_0} (\ln^+ \tilde{N}_n)^{1+\lambda} + (\ln^- m_n)^{1+\lambda} \right) \right] < \infty, \]
which implies that
\[\sum_{n=1}^{\infty} \frac{1}{n^\lambda} \left[\mathbb{E}_\xi \left(\frac{\tilde{N}_n}{m_n} (\ln^+ \tilde{N}_n)^{1+\lambda} + (\ln^- m_n)^{1+\lambda} \right) \right] < \infty \quad \text{a.s.} \quad (4.6) \]

Hence
\[\mathbb{E}_\xi |\sum_{n=1}^{\infty} (I_{1,n} - I_{1,n}')| \leq \sum_{n=1}^{\infty} \mathbb{E}_\xi |I_{1,n} - I_{1,n}'| < \infty, \]
\[\mathbb{E}_\xi |\sum_{n=1}^{\infty} \mathbb{E}_\xi n I_{1,n}'| = \mathbb{E}_\xi \sum_{n=1}^{\infty} |\mathbb{E}_\xi n (I_{1,n} - I_{1,n}')| \leq \sum_{n=1}^{\infty} \mathbb{E}_\xi |I_{1,n} - I_{1,n}'| < \infty. \]

It follows that the series \(\sum_{n=1}^{\infty} (I_{1,n} - I_{1,n}') \) and \(\sum_{n=1}^{\infty} \mathbb{E}_\xi n I_{1,n}' \) converge a.s.
Observe that $\sum_{k=1}^n (I_{1,k} - E_\xi \xi_{k} I_{1,k})$ is a martingale w.r.t. $\{\mathcal{F}_n\}_{n \geq 1}$. By the a.s. convergence of an L^2 bounded martingale (see e.g. [15, P. 251, Ex. 4.9]), we prove the convergence a.s. of the series $\sum_{n=1}^\infty (I_{1,n} - E_\xi \xi_{n} I_{1,n})$ by showing that of the series

$$\sum_{n=1}^\infty E_\xi (I_{1,n} - E_\xi \xi_{n} I_{1,n})^2.$$

It is immediate from the following:

$$E_\xi (I_{1,n} - E_\xi \xi_{n} I_{1,n})^2 = E_\xi \left[1 \prod_{u \leq n} S_u \left(\left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} - E_\xi \xi_{n} \left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} \right) \right]^2$$

$$= E_\xi \left[1 \prod_{u \leq n} S_u^2 E_\xi \xi_{n} \left(\left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} - E_\xi \xi_{n} \left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} \right) \right]^2$$

$$\leq E_\xi \left[1 \prod_{u \leq n} S_u^2 E_\xi \xi_{n} \left(\left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} \right) \right]^2$$

$$\leq E_\xi \left[1 \prod_{u \leq n} S_u^2 E_\xi \xi_{n} \left(\left(\frac{N_u}{m_n} - 1 \right) 1_{\frac{N_u}{m_n} \leq \Pi_u} \right) + 3 \right]$$

$$= \frac{s_n^2}{\Pi_n} \left(\frac{\hat{N}_n}{m_n} \right)^2 \left(1_{\frac{\hat{N}_n}{m_n} \leq \min(e^{\lambda}, \Pi_u)} + 1_{\frac{\hat{N}_n}{m_n} > \min(e^{\lambda}, \Pi_u)} \right) + \frac{3s_n^2}{\Pi_n}$$

$$\leq (3 + e^{\lambda}) \frac{s_n^2}{\Pi_n} + \frac{\kappa_n}{m_n} \frac{s_n^2}{\Pi_n} \left(1 + \frac{\hat{N}_n}{m_n} \right) \ln(1 + \frac{\hat{N}_n}{m_n})$$

$$\leq \kappa_n n + \kappa_n \frac{1}{m_n} \ln \left(1 + \frac{\hat{N}_n}{m_n} \right).$$

Combining the above results, we see that the series $\sum I_{1,n}$ converges a.s. Next we turn to the proof of the convergence a.s. of the series $\sum I_{2,n}$. To begin with, we prove that

$$E_\xi |U| (\ln^+ |U|)^{1+\lambda} \leq K_\xi n + K_\xi n (\ln^{-} m_n)^{1+\lambda}. \quad (4.7)$$

This follows from the fact:

$$E_\xi |U| (\ln^+ |U|)^{1+\lambda} \leq E_\xi \left[\frac{1}{m_n} \sum_{i=1}^{N_n} L_{ui} \left(\ln^+ \sum_{i=1}^{N_n} L_{ui} \right)^{1+\lambda} \right]$$

$$\leq E_\xi \left[\frac{1}{m_n} \sum_{i=1}^{N_n} L_{ui} \left(\ln^+ \sum_{i=1}^{N_n} L_{ui} \right)^{1+\lambda} + (\ln^{-} m_n)^{1+\lambda} \right]$$

$$\leq K_\lambda \frac{1}{m_n} E_\xi \sum_{i=1}^{N_n} L_{ui}^2 + 2^\lambda (\ln^{-} m_n)^{1+\lambda} \frac{1}{m_n} E_\xi \sum_{i=1}^{N_n} L_{ui}$$

$$\leq K_\lambda \frac{1}{m_n} E_\xi \sum_{i=1}^{N_n} |L_{ui}|^2 + 2^\lambda (\ln^{-} m_n)^{1+\lambda} \frac{1}{m_n} E_\xi \sum_{i=1}^{N_n} |L_{ui}|,$$

$$\leq K_\xi n + K_\xi n (\ln^{-} m_n)^{1+\lambda}.$$

Observe that

$$E_\xi |I_{2,n} - I_{2,n}'| = E_\xi \left[\frac{1}{m_n} \sum_{u \in T_n} U_u 1_{|U_u| > \Pi_u} \right].$$

9
\[
\leq E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} |Y_u| \mathbf{1}_{\{Y_u \geq \Pi_n\}} \\
\leq E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} |Y_u| \mathbf{1}_{\{Y_u \geq \Pi_n\}} (\ln^n |Y_u|)^{1+\lambda} \\
\leq K_\xi n + K_\xi (\ln^- m_n)^{1+\lambda} \\
\leq \frac{K_\xi}{n^\lambda} (1 + (\ln - m_n)^{1+\lambda})
\]

By (4.6), the series \(\sum_{n=1}^{\infty} n^{-\lambda} (1 + (\ln^- m_n)^{1+\lambda}) \) converges a.s. Thus
\begin{align*}
E_{\xi} |I_{2,n} - I'_{2,n}| &\leq \sum_{n=1}^{\infty} E_{\xi} |I_{2,n} - I'_{2,n}| < \infty, \\
E_{\xi} |\sum_{n=1}^{\infty} E_{\xi,n} I'_{2,n}| &\leq E_{\xi} |\sum_{n=1}^{\infty} E_{\xi,n} (I_{2,n} - I'_{2,n})| \leq \sum_{n=1}^{\infty} E_{\xi} |I_{2,n} - I'_{2,n}| < \infty.
\end{align*}

This implies the convergence a.s. of the series \(\sum_{n=1}^{\infty} (I_{2,n} - I'_{2,n}) \) and \(\sum_{n=1}^{\infty} E_{\xi,n} I'_{2,n} \).

To prove the convergence a.s. of the series \(\sum_{n=1}^{\infty} (I_{2,n} - E_{\xi,n} I'_{2,n}) \), we only need to show the convergence of the series: \(\sum_{n=1}^{\infty} E_{\xi} (I_{2,n} - E_{\xi,n} I'_{2,n})^2 \). This is implied by the following observation:
\[
E_{\xi} (I_{2,n} - E_{\xi,n} I'_{2,n})^2 \leq E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} E_{\xi} (|Y_u|^2 \mathbf{1}_{\{|Y_u| \leq \Pi_n\}} - (E_{\xi} |Y_u| \mathbf{1}_{\{|Y_u| \leq \Pi_n\}})^2) \\
\leq E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} E_{\xi} (|Y_u|^2 - |Y_u|^2 \mathbf{1}_{\{|Y_u| \leq \Pi_n\}}) \\
\leq E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} E_{\xi} (|Y_u|^2 \mathbf{1}_{\{|Y_u| \leq \min(e^{2\lambda, \Pi_n}\})} + |Y_u|^2 \mathbf{1}_{\{|Y_u| \leq \Pi_n\}}) \\
\leq e^{4\lambda} \frac{1}{\Pi_n} + E_{\xi} \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} E_{\xi} |Y_u|^2 \Pi_n (\ln \Pi_n)^{-1-\lambda} |Y_u| (\ln^n |Y_u|)^{-1-\lambda}^{-1} \\
\leq e^{4\lambda} \frac{1}{\Pi_n} + \frac{1}{\Pi_n} \sum_{u \in \mathcal{T}_n} E_{\xi} |Y_u|^2 \Pi_n (\ln \Pi_n)^{1+\lambda} |Y_u| (\ln^n |Y_u|)^{1+\lambda} \\
\leq e^{4\lambda} \frac{1}{\Pi_n} + \frac{K_\xi n + K_\xi (\ln^- m_n)^{1+\lambda}}{(\ln \Pi_n)^{1+\lambda}} \\
\leq e^{4\lambda} \frac{1}{\Pi_n} + \frac{K_\xi}{n^\lambda} (1 + (\ln - m_n)^{1+\lambda}).
\]

Combining the above results, we see that the series \(\sum_{n=1}^{\infty} I_{2,n} \) converges a.s.

Therefore we have proved (4.22) and the martingale \(\{N_{1,n}\} \) converges a.s. to
\[
V_1 := \sum_{n=1}^{\infty} (N_{1,n+1} - N_{1,n}) + N_{1,1}.
\]

\[\square\]

4.2 Convergence of the martingale \(\{(N_{2,n}, \mathcal{D}_n)\} \)

Proof of Proposition 4.22 To see that \(\{(N_{2,n}, \mathcal{D}_n)\} \) is a martingale, it suffices to notice that (remind that we have assumed \(\ell_n = 0 \))
\[
E_{\xi,n} N_{2,n+1} = E_{\xi,n} \left(\frac{1}{\Pi_n+1} \sum_{u \in \mathcal{T}_{n+1}} (S_u^2 - s_{n+1}^2) \right) \\
= \frac{1}{\Pi_n+1} \sum_{u \in \mathcal{T}_n} E_{\xi,n} \left(\sum_{i=1}^{N_u} (S_u + Lu_i)^2 - s_{n+1}^2 \right)
\]

10
\[
\frac{1}{\Pi_{n+1}} \sum_{u \in \mathbb{T}_n} \mathbb{E}_{\xi,n} \left(\sum_{i=1}^{N_u} (S_u^2 + 2S_uL_{ui} + L_{ui}^2 - s_{n+1}^2) \right)
\]

\[
= \frac{1}{\Pi_{n+1}} \sum_{u \in \mathbb{T}_n} \mathbb{E}_{\xi,n} \left(\sum_{i=1}^{N_u} \mathbb{E}_{\xi,n} \left((S_u^2 + 2S_uL_{ui} + L_{ui}^2 - s_{n+1}^2) | N_u \right) \right)
\]

\[
= \frac{1}{\Pi_{n+1}} \sum_{u \in \mathbb{T}_n} m_n (S_u^2 + \sigma_n^{(2)} - s_{n+1}^2) = \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} (S_u^2 - s_n^2) = N_{2,n}.
\]

As in the proof of Proposition 2.1, we will prove the convergence of the martingale \{(N_{2,n}, \mathcal{F}_n)\} by showing that

\[
\sum_{n=1}^{\infty} (N_{2,n+1} - N_{2,n}) \text{ converges a.s.}
\]

We start by giving some notation. For \(n \geq 1\) and \(|u| = n\), set

\[
J_{1,n} := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} (S_u^2 - s_n^2)(\frac{N_u}{m_n} - 1), \quad J_{1,n}' := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} (S_u^2 - s_n^2)(\frac{N_u}{m_n} - 1)1_{\{\frac{N_u}{m_n} \leq 1\}};
\]

\[
J_{2,n} := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} Q_u, \quad J_{2,n}' := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} Q_u 1_{\{|Q_u| \leq 1\}}, \quad \text{with } Q_u = \frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)});
\]

\[
J_{3,n} := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} S_u Y_u, \quad J_{3,n}' := \frac{1}{\Pi_n} \sum_{u \in \mathbb{T}_n} S_u Y_u 1_{\{|Y_u| \leq 1\}}, \quad \text{with } Y_u = \frac{1}{m_n} \sum_{i=1}^{N_u} L_{ui}.
\]

Then we see that \(N_{2,n+1} - N_{2,n} = J_{1,n} + J_{2,n} + 2J_{3,n} \). Thus the convergence a.s. of the martingale \(\{N_{2,n}\}\) will follow from the convergence a.s. of the series \(\sum J_{q,n}(q = 1, 2, 3)\). Using the above truncation and following the same procedure as in the proofs of Proposition 2.1, we can prove the convergence a.s. of the series \(\sum J_{q,n}(q = 1, 2, 3)\). We omit the details and only stress the following estimate:

\[
\mathbb{E}_{\xi}[Q_u | (\text{ln}^+ |Q_u|)^{1+\lambda}] = \mathbb{E}_{\xi} \left[\frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}) \left((\text{ln}^+ \frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}))^{1+\lambda} \right) \right]
\]

\[
\leq \mathbb{E}_{\xi} \left[\frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}) \left((\text{ln}^+ \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}))^{1+\lambda} + (\text{ln}^+ m_n)^{1+\lambda} \right) \right]
\]

\[
\leq 2^\lambda \mathbb{E}_{\xi} \left[\frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}) \left((\text{ln}^+ \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)}))^{1+\lambda} + (\text{ln}^+ m_n)^{1+\lambda} \right) \right]
\]

\[
\leq K_{\lambda} \mathbb{E}_{\xi} \left[\frac{1}{m_n} \sum_{i=1}^{N_u} (L_{ui}^2 - \sigma_n^{(2)})^2 \right] + K_{\lambda} \mathbb{E}_{\xi}(\text{ln}^+ m_n)^{1+\lambda}
\]

So the martingale \(N_{2,n}\) converges a.s. to the limit

\[
V_2 := \sum_{n=1}^{\infty} (N_{2,n+1} - N_{2,n}) + N_{2,1}.
\]

\[\square\]

5 Proof of Theorem 2.3

5.1 A key decomposition

For \(u \in (\mathbb{N}^*)^k (k \geq 0)\) and \(n \geq 1\), write for \(B \subset \mathbb{R}\),

\[
Z_n(u, B) = \sum_{v \in \mathbb{T}_n(u)} 1_B(S_{uv} - S_u).
\]
It can be easily seen that the law of $Z_n(u, B)$ under P_ξ is the same as that of $Z_n(B)$ under $P_{\theta^k \xi}$. Define

$$W_n(u, B) = Z_n(u, B) / \Pi_n(\theta^k \xi), \quad W_n(u, t) = W_n(u, (-\infty, t]),$$

$$W_n(B) = Z_n(B) / \Pi_n, \quad W_n(t) = W_n((-\infty, t]).$$

By definition, we have $\Pi_n(\theta^k \xi) = m_k \cdots m_{k+n-1}$, $Z_n(B) = Z_n(\emptyset, B)$, $W_n(B) = W_n(\emptyset, B)$, $W_n = W_n(\mathbb{R})$. The following decomposition will play a key role in our approach: for $k \leq n,$

$$Z_n(B) = \sum_{u \in T_k} Z_{n-k}(u, B - S_u). \quad (5.1)$$

Remark that by our definition, for $u \in T_k$,

$$Z_{n-k}(u, B - S_u) = \sum_{v_1 \cdots v_{n-k} \in T_{n-k}(u)} 1_B(S_{uv_1} \cdots v_{n-k})$$

represents number of the descendants of u at time n situated in B.

For each n, we choose an integer $k_n < n$ as follows. Let β be a real number such that $\max \{ \frac{3}{4}, \frac{1}{2} \} < \beta < \frac{1}{2}$ and set $k_n = \lfloor n^\beta \rfloor$, the integral part of n^β. Then on the basis of (5.1), the following decomposition will hold:

$$\Pi_n^{-1} Z_n(s_n t) - \Phi(t) W = \mathbb{A}_n + \mathbb{B}_n + \mathbb{C}_n, \quad (5.2)$$

where

$$\mathbb{A}_n = \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} [W_{n-k_n}(u, s_n t - S_u) - \mathbb{E}_{\xi, k_n} W_{n-k_n}(u, s_n t - S_u)],$$

$$\mathbb{B}_n = \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} [\mathbb{E}_{\xi, k_n} W_{n-k_n}(u, s_n t - S_u) - \Phi(t)],$$

$$\mathbb{C}_n = (W_{k_n} - W) \Phi(t).$$

Here we remind that the random variables $W_{n-k_n}(u, s_n t - S_u)$ are independent of each other under the conditional probability P_{ξ, k_n}.

5.2 Proof of Theorem 2.3

First, observe that the condition $\mathbb{E} m_0^{-\frac{\alpha}{2}} < \infty$ implies that $\mathbb{E}(\ln m_0)^{\kappa} < \infty$ for all $\kappa > 0$. So the hypotheses of Propositions 2.1 and 2.2 are satisfied under the conditions of Theorem 2.3.

By virtue of the decomposition (5.2), we shall divide the proof into three lemmas.

Lemma 5.1. Under the hypothesis of Theorem 2.3

$$\sqrt{n} \mathbb{A}_n \xrightarrow{n \to \infty} 0 \text{ a.s.} \quad (5.3)$$

Lemma 5.2. Under the hypothesis of Theorem 2.3

$$\sqrt{n} \mathbb{B}_n \xrightarrow{n \to \infty} \frac{1}{6} \mathbb{E}_{\sigma_0} (\mathbb{E}_{\sigma_0} (1 - t^2) \Phi(t) W) - (\mathbb{E}_{\sigma_0} (1 - t^2) \Phi(t) V_1) \text{ a.s.} \quad (5.4)$$

Lemma 5.3. Under the hypothesis of Theorem 2.3

$$\sqrt{n} \mathbb{C}_n \xrightarrow{n \to \infty} 0 \text{ a.s.} \quad (5.5)$$

Now we go to prove the lemmas subsequently.

Proof of Lemma 5.1. For ease of notation, we define for $|u| = k_n$,

$$X_{n,u} = W_{n-k_n}(u, s_n t - S_u) - \mathbb{E}_{\xi, k_n} W_{n-k_n}(u, s_n t - S_u), \quad \tilde{X}_{n,u} = X_{n,u} 1_{\{|X_{n,u}| < \Pi_{k_n}|}},$$

$$\tilde{A}_n = \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} \tilde{X}_{n,u}.$$
Then we see that $|X_{k_n,u}| \leq W_{n-k_n}(u) + 1$.

To prove Lemma [5.1] we will use the extended Borel-Cantelli Lemma. We can obtain the required result once we prove that $\forall \varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mathbb{P}_{k_n}(|\sqrt{n} A_n| > 2\varepsilon) < \infty. \quad (5.6)$$

Notice that

$$\mathbb{P}_{k_n}(|A_n| > 2\frac{\varepsilon}{\sqrt{n}}) \leq \mathbb{P}_{k_n}(A_n \neq \overline{A}_n) + \mathbb{P}_{k_n}(|\overline{A}_n - E_{\xi,k_n} \overline{A}_n| > \frac{\varepsilon}{\sqrt{n}}) + \mathbb{P}_{k_n}(|E_{\xi,k_n} A_n| > \frac{\varepsilon}{\sqrt{n}}).$$

We will proceed the proof in 3 steps.

Step 1 We first prove that

$$\sum_{n=1}^{\infty} \mathbb{P}_{k_n}(A_n \neq \overline{A}_n) < \infty. \quad (5.7)$$

To this end, define

$$W^* = \sup_n W_n,$$

and we need the following result :

Lemma 5.4. ([28 Th. 1.2]) Assume (2.1) for some $\lambda > 0$ and $\mathbb{E}m_0^{-\delta} < \infty$ for some $\delta > 0$. Then

$$\mathbb{E}(W^* + 1)(\ln(W^* + 1))^\lambda < \infty. \quad (5.8)$$

We observe that

$$\mathbb{P}_{k_n}(A_n \neq \overline{A}_n) \leq \sum_{u \in T_{k_n}} \mathbb{P}_{k_n}(X_{n,u} \neq \overline{X}_{n,u}) = \sum_{u \in T_{k_n}} \mathbb{P}_{k_n}(|X_{n,u}| \geq \Pi_{k_n})$$

$$= \sum_{u \in T_{k_n}} \mathbb{P}_{k_n}(|W_{n-k_n}(u) + 1 \geq \Pi_{k_n})$$

$$= W_{k_n} \left[r_n \mathbb{P}(W_{n-k_n} + 1 \geq r_n)\right]_{r_n=\Pi_{k_n}}$$

$$\leq W_{k_n} \left[\mathbb{E}(W_{n-k_n} + 1)\mathbb{I}_{W_{n-k_n} + 1 \geq r_n}\right]_{r_n=\Pi_{k_n}}$$

$$\leq W_{k_n} \left[\mathbb{E}(W^* + 1)\mathbb{I}_{W^* + 1 \geq r_n}\right]_{r_n=\Pi_{k_n}}$$

$$\leq W^*(\ln \Pi_{k_n})^{-\lambda}\mathbb{E}(W^* + 1)(\ln(W^* + 1))^\lambda$$

$$\leq K \xi W^* n^{-\lambda \delta}\mathbb{E}(W^* + 1)(\ln(W^* + 1))^\lambda,$$

where the last inequality holds since

$$\frac{1}{n} \ln \Pi_n \to \mathbb{E} \ln m_0 > 0 \ a.s., \quad (5.9)$$

and $k_n \sim n^\beta$. By the choice of β and Lemma [5.4] we obtain (5.7).

Step 2. We next prove that $\forall \varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mathbb{P}_{k_n}(|\overline{A}_n - E_{\xi,k_n} \overline{A}_n| > \frac{\varepsilon}{\sqrt{n}}) < \infty. \quad (5.10)$$

Take a constant $b \in (1, e^{\mathbb{E} \ln m_0})$. Observe that $\forall u \in T_{k_n}, n \geq 1$,

$$\mathbb{E}_{k_n} X_{n,u}^2 = \int_0^\infty 2x \mathbb{P}_{k_n}(|X_{n,u}| > x)dx = 2 \int_0^\infty x \mathbb{P}_{k_n}(|X_{n,u}| \mathbb{I}_{(|X_{n,u}| < \Pi_{k_n})} > x)dx$$

$$\leq 2 \int_0^{\Pi_{k_n}} x \mathbb{P}_{k_n}(|W_{n-k_n}(u) + 1| > x)dx = 2 \int_0^{\Pi_{k_n}} x \mathbb{P}(|W_{n-k_n} + 1| > x)dx$$

13
Then we have that

\[
\sum_{n=1}^{\infty} \mathbb{P}_{\xi, k_n} \left(|A_n - E_{\xi, k_n} A_n| > \frac{\varepsilon}{\sqrt{n}} \right)
\]

= \sum_{n=1}^{\infty} E_{\xi, k_n} \mathbb{P}_{\xi, k_n} \left(|A_n - E_{\xi, k_n} A_n| > \frac{\varepsilon}{\sqrt{n}} \right)

\leq \varepsilon^{-2} \sum_{n=1}^{\infty} n E_{\xi, k_n} \left(\Pi_{k_n}^2 \sum_{u \in T_{k_n}} E_{\xi, k_n} X_{n, u} \right) = \varepsilon^{-2} \sum_{n=1}^{\infty} n \left(\Pi_{k_n}^2 \sum_{u \in T_{k_n}} E_{\xi, k_n} \bar{X}_{n, u} \right)

\leq \varepsilon^{-2} \sum_{n=1}^{\infty} n W_{k_n} \left[2 E(W^* + 1)(\ln(W^* + 1))^\lambda (b_{k_n} + (\Pi_{k_n} - b_{k_n})(k_n \ln b)^{-\lambda}) + 9 \right]

\leq 2 \varepsilon^{-2} W^* E(W^* + 1)(\ln(W^* + 1))^\lambda \left(\sum_{n=1}^{\infty} \frac{n}{\Pi_{k_n}} b_{k_n} + \sum_{n=1}^{\infty} n (k_n \ln b)^{-\lambda} \right) + 9 \varepsilon^{-2} W^* \sum_{n=1}^{\infty} \frac{n}{\Pi_{k_n}}.

By \eqref{5.9} and \(\lambda \beta > 2 \), the three series in the last expression above converge under our hypothesis and hence \eqref{5.10} is proved.

Step 3. Observe

\[
\mathbb{P}_{k_n} \left(|E_{\xi, k_n} A_n| > \frac{\varepsilon}{\sqrt{n}} \right)
\]

\leq \frac{\sqrt{n}}{\varepsilon} E_{k_n} \left| E_{\xi, k_n} A_n \right| = \frac{\sqrt{n}}{\varepsilon} E_{k_n} \left| \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} E_{\xi, k_n} \bar{X}_{n, u} \right|

= \frac{\sqrt{n}}{\varepsilon} E_{k_n} \left| \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} \left(-E_{\xi, k_n} X_{n, u} 1_{\{|X_{n, u}| \geq \Pi_{k_n} \}} \right) \right|

\leq \frac{\sqrt{n}}{\varepsilon} \frac{1}{\Pi_{k_n}} \sum_{u \in T_{k_n}} E_{k_n} (W_{n-k_n} (u) + 1) 1_{\{W_{n-k_n} (u) + 1 \geq \Pi_{k_n} \}}

= \frac{\sqrt{n} W_{k_n}}{\varepsilon} \left[E(W_{n-k_n} + 1) 1_{\{W_{n-k_n} + 1 \geq r_{n=\Pi_{k_n}} \}} \right]_{r_n=\Pi_{k_n}}

\leq \frac{W^*}{\varepsilon} \frac{\sqrt{n}}{\Pi_{k_n}} \left[E(W^* + 1) 1_{\{W^* + 1 \geq r_{n=\Pi_{k_n}} \}} \right]_{r_n=\Pi_{k_n}}

\leq \frac{W^*}{\varepsilon} \left[\frac{1}{\ln \Pi_{k_n}} W^* + 1 \right] \ln \lambda(W^* + 1)

\leq \frac{W^*}{\varepsilon} K_{\xi} \frac{1}{\lambda \beta} W^* + 1 \ln \lambda(W^* + 1).

Then by \eqref{5.9} and \(\lambda \beta > 2 \), it follows that

\[
\sum_{n=1}^{\infty} \mathbb{P}_{k_n} \left(|E_{\xi, k_n} A_n| > \frac{\varepsilon}{\sqrt{n}} \right) < \infty.
\]

Combining Steps 1-3, we obtain \eqref{5.6}. Hence the lemma is proved. \(\square \)
Proof of Lemma \[5.2\]. For ease of notation, set
\[
D_1(t) = (1 - t^2) \phi(t), \quad \kappa_{1,n} = \frac{s_n^{(3)} - s_{k,n}^{(3)}}{6(s_n^2 - s_{k,n}^2)^{3/2}}.
\]
Observe that
\[
B_n = B_{n1} + B_{n2} + B_{n3} + B_{n4},
\]
where
\[
B_{n1} = \frac{1}{\Pi_{k,n}} \sum_{u \in T_{k,n}} \left(E_{\xi} \, k_n \, u \, (s_n - s_{k,n}) - \Phi \left(\frac{s_n - s_{k,n}}{(s_n^2 - s_{k,n}^2)^{1/2}} \right) - \kappa_{1,n} D_1 \left(\frac{s_n - s_{k,n}}{(s_n^2 - s_{k,n}^2)^{1/2}} \right) \right);
\]
\[
B_{n2} = \frac{1}{\Pi_{k,n}} \sum_{u \in T_{k,n}} \left(\Phi \left(\frac{s_n - s_{k,n}}{(s_n^2 - s_{k,n}^2)^{1/2}} \right) - \Phi(t) \right); \]
\[
B_{n3} = \kappa_{1,n} \frac{1}{\Pi_{k,n}} \sum_{u \in T_{k,n}} \left(D_1 \left(\frac{s_n - s_{k,n}}{(s_n^2 - s_{k,n}^2)^{1/2}} \right) - D_1(t) \right);
\]
\[
B_{n4} = \kappa_{1,n} D_1(t) W_{k,n}.
\]
Then the lemma will be proved once we show that
\[
\sqrt{n} B_{n1} \xrightarrow{n \to \infty} 0; \quad \sqrt{n} B_{n2} \xrightarrow{n \to \infty} - (E \sigma_0^{(2)})^{-1/2} \Phi(t)V_1; \quad \sqrt{n} B_{n3} \xrightarrow{n \to \infty} 0; \quad \sqrt{n} B_{n4} \xrightarrow{n \to \infty} \frac{1}{6} E \sigma_0^{(3)} (E \sigma_0^{(2)})^{-1/2} D_1(t)W.
\]
We will prove these results subsequently.

We first prove \((5.12)\). The proof will mainly be based on the following result about asymptotic expansion of the distribution of the sum of independent random variables:

Proposition 5.5. Under the hypothesis of Theorem \[5.4\] for a.e. \(\xi\),
\[
\varepsilon_n = n^{1/2} \sup_{x \in \mathbb{R}} \left| \mathbb{P}_\xi \left(\frac{\sum_{k=1}^{n-1} \hat{L}_k}{(s_n^2 - s_{k,n}^2)^{1/2}} \leq x \right) - \Phi(x) - \kappa_{1,n} D_1(x) \right| \xrightarrow{n \to \infty} 0.
\]

Proof. Let \(X_k = 0\) for \(0 \leq k \leq k_n - 1\) and \(X_k = \hat{L}_k\) for \(k_n \leq k \leq n - 1\). Then the random variables \(\{X_k\}\) are independent under \(\mathbb{P}_\xi\). Denote by \(v_k()\) the characteristic function of \(X_k\): \(v_k(t) := E_{\xi} e^{itX_k}\).

Using the Markov inequality and Lemma \[5.2\] we obtain the following result:
\[
\sup_{x \in \mathbb{R}} \left| \mathbb{P}_\xi \left(\frac{\sum_{k=1}^{n-1} \hat{L}_k}{(s_n^2 - s_{k,n}^2)^{1/2}} \leq x \right) - \Phi(x) - \kappa_{1,n} D_1(x) \right| \leq K_\xi \left\{ (s_n^2 - s_{k,n}^2)^{-2} \sum_{j=k_n}^{n-1} E_{\xi} |\hat{L}_j|^4 + n^6 \left(\sup_{|t| > T} \frac{1}{n} \left(k_n + \sum_{j=k_n}^{n-1} |v_j(t)| \right) + \frac{1}{2n} \right)^n \right\}.
\]

By our conditions on the environment, we know that
\[
\lim_{n \to \infty} n (s_n^2 - s_{k,n}^2)^{-2} \sum_{j=k_n}^{n-1} E_{\xi} |\hat{L}_j|^4 = E[\hat{L}_0]^4 / (E \sigma_0^{(2)})^2.
\]

By \((2.2)\), \(\hat{L}_n\) satisfies
\[
\mathbb{P} \left(\limsup_{|t| \to \infty} |v_n(t)| < 1 \right) > 0.
\]
So there exists a constant \(c_n \leq 1 \) depending on \(\xi_n \) such that

\[
\sup_{|t| > T} |v_n(t)| \leq c_n \quad \text{and} \quad \mathbb{P}(c_n < 1) > 0.
\]

Then \(\mathbb{E}c_0 < 1 \). By the Birkhoff ergodic theorem, we have

\[
\sup_{|t| > T} \left(\frac{1}{n} \sum_{j=k_n}^{n-1} |v_j(t)| \right) \leq \frac{1}{n} \sum_{j=1}^{n-1} c_j \to \mathbb{E}c_0 < 1.
\]

Then for \(n \) large enough,

\[
\left(\sup_{|t| > T} \frac{1}{n} \left(k_n + \sum_{j=k_n}^{n-1} |v_j(t)| \right) + \frac{1}{2n} \right)^n = o(n^{-m}), \quad \forall m > 0. \quad (5.17)
\]

From (5.16) and (5.17), we get the conclusion of the proposition. \(\square \)

From Proposition 5.5 it is easy to see that

\[
\sum_{|s| a.s. (5.20)
\]

Hence (5.12) is proved.

We next prove (5.13). Observe that

\[
B_{n2} = B_{n21} + B_{n22} + B_{n23} + B_{n24} + B_{n25},
\]

with

\[
B_{n21} = \frac{1}{\Pi k_n} \sum_{u \in T_{k_n}} \left[\Phi \left(\frac{s_n t - S_u}{(s^2_n - s^2_{k_n})^{1/2}} \right) - \Phi(t) - \phi(t) \left(\frac{s_n t - S_u}{(s^2_n - s^2_{k_n})^{1/2}} - t \right) \right] 1_{|S_u| \leq k_n},
\]

\[
B_{n22} = \frac{1}{\Pi k_n} \sum_{u \in T_{k_n}} \left[\Phi \left(\frac{s_n t - S_u}{(s^2_n - s^2_{k_n})^{1/2}} \right) - \Phi(t) \right] 1_{|S_u| > k_n},
\]

\[
B_{n23} = \frac{1}{\Pi k_n} \sum_{u \in T_{k_n}} \left(\frac{s_n t - S_u}{(s^2_n - s^2_{k_n})^{1/2}} - t \right) \phi(t) 1_{|S_u| > k_n},
\]

\[
B_{n24} = \frac{1}{(s^2_n - s^2_{k_n})^{1/2}} (s_n - (s^2_n - s^2_{k_n})^{1/2}) W_{k_n} \phi(t) t,
\]

\[
B_{n25} = \frac{1}{(s^2_n - s^2_{k_n})^{1/2}} \phi(t) N_{1, k_n}.
\]

By Taylor’s formula and the choice of \(\beta \) and \(k_n \), we get

\[
\tilde{c}_n = \sqrt{n} \sup_{|y| \leq k_n} \left| \Phi \left(\frac{s_n t - y}{(s^2_n - s^2_{k_n})^{1/2}} \right) - \Phi(t) - \phi(t) \left(\frac{s_n t - y}{(s^2_n - s^2_{k_n})^{1/2}} - t \right) \right| \leq \sqrt{n} \sup_{|y| \leq k_n} \left| \frac{s_n t - y}{(s^2_n - s^2_{k_n})^{1/2}} - t \right|^2 \xrightarrow{n \to \infty} 0.
\]

Thus

\[
|\sqrt{n}B_{n21}| \leq W_{k_n} \tilde{c}_n \xrightarrow{n \to \infty} 0. \quad (5.18)
\]

We continue to prove that

\[
\sqrt{n}B_{n22} \xrightarrow{n \to \infty} 0; \quad \sqrt{n}B_{n23} \xrightarrow{n \to \infty} 0. \quad (5.19)
\]

This will follow from the facts:

\[
\frac{1}{\Pi k_n} \sum_{u \in T_{k_n}} |S_u| 1_{|S_u| > k_n} \xrightarrow{n \to \infty} 0 \quad \text{a.s.;} \quad \sqrt{n} \frac{1}{\Pi k_n} \sum_{u \in T_{k_n}} 1_{|S_u| > k_n} \xrightarrow{n \to \infty} 0 \quad \text{a.s.} \quad (5.20)
\]
In order to prove (5.20), we firstly observe that
\[
E \left(\sum_{n=1}^{\infty} \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} |S_u| 1_{\{S_u > k_n\}} \right)
\]
\[
= \sum_{n=1}^{\infty} E \left(\frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} |\tilde{S}_u| 1_{\{\tilde{S}_u > k_n\}} \right) \leq \sum_{n=1}^{\infty} k_n^{-\beta} \sum_{j=0}^{k_n-1} E |\tilde{L}_j| \leq \sum_{n=1}^{\infty} k_n^{-\beta} E |\tilde{L}_0|,
\]
\[
E \left(\sum_{n=1}^{\infty} \sqrt{n} \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} 1_{\{S_u > k_n\}} \right)
\]
\[
= \sum_{n=1}^{\infty} \sqrt{n} E \{\tilde{S}_u | \tilde{S}_u > k_n\} \leq \sum_{n=1}^{\infty} \sqrt{n} k_n^{-\beta} E |\tilde{S}_u| \leq \sum_{n=1}^{\infty} \sqrt{n} k_n^{-\beta} \sum_{j=0}^{k_n-1} E |\tilde{L}_j| = \sum_{n=1}^{\infty} n^{\frac{1}{2}} k_n^{-\beta} E |\tilde{L}_0|.
\]
The assumptions on β, k_n and η ensure that the series in the right hand side of the above two expressions converge. Hence
\[
\sum_{n=1}^{\infty} \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} |S_u| 1_{\{S_u > k_n\}} < \infty, \quad \sum_{n=1}^{\infty} \sqrt{n} \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} 1_{\{S_u > k_n\}} < \infty \quad \text{a.s.},
\]
which deduce (5.20), and consequently, (5.19) is proved.

By the Birkhoff ergodic theorem, we have
\[
\lim_{n \to \infty} \frac{s_n^2}{n} = \mathbb{E} \sigma_0^{(2)},
\]
whence by the choice of $\beta < 1/4$ and the conditions on the environment,
\[
\sqrt{n} B_{n24} = \frac{\sqrt{n}}{(s_n^2 - s_{k_n}^2)^{1/2}} \frac{s_{k_n}^2}{s_n + (s_n^2 - s_{k_n}^2)^{1/2}} W_{k_n} \phi(t) \xrightarrow{n \to \infty} 0.
\]
Due to Proposition 5.1 and (5.21), we conclude that
\[
\sqrt{n} B_{n25} \xrightarrow{n \to \infty} -(\mathbb{E} \sigma_0^{(2)})^{-\frac{1}{2}} \phi(t) V_1 \quad \text{a.s.}
\]
From (5.18), (5.19), (5.22) and (5.23), we derive (5.13).

Now we turn to the proof of (5.14).

According to the hypothesis of Theorem 2.3, it follows from the Birkhoff ergodic theorem that
\[
\lim_{n \to \infty} \sqrt{n} \kappa_{1,n} = \frac{1}{6} (\mathbb{E} \sigma_0^{(2)})^{-3/2} \mathbb{E} \sigma_0^{(3)}.
\]
Notice that
\[
\left| \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} \left(D_1 \left(\frac{s_n t - S_u}{(s_n^2 - s_{k_n}^2)^{1/2}} \right) - D_1(t) \right) \right|
\]
\[
\leq \frac{2}{\Pi_{k_n}} \sum_{u \in S_{k_n}} 1_{\{S_u > k_n\}} + \frac{1}{\Pi_{k_n}} \sum_{u \in S_{k_n}} \left| D_1 \left(\frac{s_n t - S_u}{(s_n^2 - s_{k_n}^2)^{1/2}} \right) - D_1(t) \right| 1_{\{S_u \leq k_n\}}.
\]
The first term in the last expression above tends to 0 a.s. by (5.20), and the second one tends to 0 a.s. because the martingale $\{W_n\}$ converges and
\[
\sup_{|y| \leq k_n} \left| D_1 \left(\frac{s_n t - y}{(s_n^2 - s_{k_n}^2)^{1/2}} \right) - D_1(t) \right| \xrightarrow{n \to \infty} 0.
\]
Combining the above results, we obtain (5.14).

It remains to prove (5.15), which is immediate from (5.24) and the fact $W_n \xrightarrow{n \to \infty} W$.

So Lemma 5.2 has been proved.
Proof of Lemma 6.1. This lemma follows from the following result given in [24].

Proposition 5.6 ([24]). Assume the condition (2.1). Then

\[W - W_n = o(n^{-\lambda}) \quad \text{a.s.} \]

By the choice of \(\beta \) and \(k_n \), we see that

\[\sqrt{n}(W - W_{k_n}) = o(n^{\frac{1}{2} - \lambda \beta}) \xrightarrow{n \to \infty} 0. \]

Now Theorem 2.4 follows from the decomposition (5.2) and Lemmas 5.1–5.3.

6 Proof of Theorem 2.4

We will follow the similar procedure as in the proof of Theorem 2.3.

We remind that \(\lambda, \eta > 16 \) in the current setting. Hereafter we will choose \(\max\{\frac{1}{4}, \frac{1}{\eta}\} < \beta < \frac{1}{4} \) and let \(k_n = \lfloor n^{\beta} \rfloor \) (the integral part of \(n^{\beta} \)).

By (5.1), we have

\[
\sqrt{2\pi s_n \Pi_n^{-1}} Z_n(A) = W \int_A \exp\left(-\frac{x^2}{2s_n^2}\right) dx = \Lambda_{1,n} + \Lambda_{2,n} + \Lambda_{3,n},
\]

with

\[
\Lambda_{1,n} = 2\pi s_n \Pi_{k_n}^{-1} \sum_{u \in \mathcal{V}_n} \left(W_{n-k_n}(u, A - S_u) - E(\Sigma_{k_n} W_{n-k_n}(u, A - S_u)) \right);
\]

\[
\Lambda_{2,n} = \Pi_{k_n}^{-1} \sum_{u \in \mathcal{S}_{k_n}} \left(2\pi s_n \exp(\frac{x^2}{2s_n^2}) dx \right);
\]

\[
\Lambda_{3,n} = (W_{k_n} - W) \int_A \exp\left(-\frac{x^2}{2s_n^2}\right) dx.
\]

On basis of this decomposition, we shall divide the proof of Theorem 2.4 into the following lemmas.

Lemma 6.1. Under the hypothesis of Theorem 2.4 a.s.

\[nA_{1,n} \xrightarrow{n \to \infty} 0. \]

Lemma 6.2. Under the hypothesis of Theorem 2.4 a.s.

\[nA_{2,n} \xrightarrow{n \to \infty} (E\sigma_0^{(2)})^{-1}\left(-\frac{1}{2}V_2 + \mathbb{V}_A V_1 |A| + \frac{1}{2}E\sigma_0^{(3)} (E\sigma_0^{(2)})^{-2} (V_1 - \mathbb{V}_A W |A| \right) + \frac{1}{8}(E\sigma_0^{(2)})^{-2} E(\sigma_0^{(4)} - 3(\sigma_0^{(2)})^2)W |A| - \frac{5}{24}(E\sigma_0^{(2)})^{-3} (E\sigma_0^{(3)})^2 W |A|. \]

Lemma 6.3. Under the hypothesis of Theorem 2.4 a.s.

\[nA_{3,n} \xrightarrow{n \to \infty} 0. \]

Now we go to prove the lemmas subsequently.

Proof of Lemma 6.1. The proof of Lemma 6.1 follows the same procedure as that of Lemma 5.1 with minor changes in scaling. We omit the details.

Proof of Lemma 6.2. We start the proof by introducing some notation: set

\[
\kappa_{1,n} = \frac{1}{6} (s_n^2 - s_{k_n}^2)^{-3/2} (s_n^{(3)} - s_{k_n}^{(3)}), \quad \kappa_{2,n} = \frac{1}{72} (s_n^2 - s_{k_n}^2)^{-3} (s_n^{(3)} - s_{k_n}^{(3)})^2,
\]

\[
\kappa_{3,n} = \frac{1}{24} (s_n^2 - s_{k_n}^2)^{-2} \sum_{j=k_n}^{n-1} \left(\sigma_j^{(4)} - 3(\sigma_j^{(2)})^2 \right).
\]
Define for \(x \in \mathbb{R} \),

\[
D_1(x) = -H_2(x)\phi(x), \quad D_2(x) = -H_3(x)\phi(x), \quad D_3(x) = -H_4(x)\phi(x),
\]

\[
R_n(x) = \frac{(s_n^3 - s_k^3)^3}{1296(s_n^2 - s_k^2)^{3/2}}H_6(x)\phi(x) - \frac{\sum_{j=k_n}^{n-1} (\sigma_j^{(3)} - 10\sigma_j^{(3)}\sigma_j^{(4)})}{120(s_n^2 - s_k^2)^{3/2}}H_4(x)\phi(x)
\]

\[
= \frac{(s_n^3 - s_k^3)}{144(s_n^2 - s_k^2)^{3/2}}H_6(x)\phi(x),
\]

where \(H_n \) are Chebyshev-Hermite polynomials defined in (5.1). We decompose \(\Lambda_{2,n} \) into 7 terms:

\[
\Lambda_{2,n} = \Lambda_{2,n1} + \Lambda_{2,n2} + \Lambda_{2,n3} + \Lambda_{2,n4} + \Lambda_{2,n5} + \Lambda_{2,n6} + \Lambda_{2,n7},
\]

(6.5)

where

\[
\Lambda_{2,n1} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} \left[\mathbb{E}_{\xi,k_n}W_{n-k_n}(u,A - S_u) - \int_A \phi \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} \right] dx,
\]

\[
\Lambda_{2,n2} = \Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{|\{S_u| \leq k_n\}} \int_A \left[\frac{s_n^2 - s_k^2}{s_n^2 - s_k^2} \right]^{1/2} \exp\left\{ -\frac{(x-S_u)^2}{2(s_n^2 - s_k^2)} \right\} - \exp\left\{ -\frac{x^2}{2s_n^2} \right\} \right] dx,
\]

\[
\Lambda_{2,n3} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{|\{S_u| \leq k_n\}} \int_A D_1 \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} dx,
\]

\[
\Lambda_{2,n4} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{|\{S_u| \leq k_n\}} \int_A D_2 \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} dx,
\]

\[
\Lambda_{2,n5} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{|\{S_u| \leq k_n\}} \int_A D_3 \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} dx,
\]

\[
\Lambda_{2,n6} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{|\{S_u| \leq k_n\}} \int_A R_n \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} dx,
\]

\[
\Lambda_{2,n7} = \sqrt{2\pi}s_n\Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} \left[\int_A \phi \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} + R_n \left(\frac{x - S_u}{s_n^2 - s_k^2} \right)^{1/2} \right] dx 1_{\{S_u| > k_n\}}.
\]

The lemma will follow once we prove that a.s.

\[
n\Lambda_{2,n1} \xrightarrow{n \to \infty} 0,
\]

(6.6)

\[
n\Lambda_{2,n2} \xrightarrow{n \to \infty} (\mathbb{E}_0^{(2)})^{-1}(-\frac{1}{2}V_2 + \pi_A V_1)|A|,
\]

(6.7)

\[
n\Lambda_{2,n3} \xrightarrow{n \to \infty} \frac{1}{2}\mathbb{E}_0^{(3)}(\mathbb{E}_0^{(2)})^{-2}(V_1 - \pi_A W)|A|,
\]

(6.8)

\[
n\Lambda_{2,n4} \xrightarrow{n \to \infty} -\frac{5}{24}(\mathbb{E}_0^{(2)})^{-3}(\mathbb{E}_0^{(3)})^2W|A|,
\]

(6.9)

\[
n\Lambda_{2,n5} \xrightarrow{n \to \infty} \frac{1}{8}(\mathbb{E}_0^{(2)})^{-2}\mathbb{E}_0^{(4)} - 3(\mathbb{E}_0^{(2)})^2W|A|,
\]

(6.10)

\[
n\Lambda_{2,n6} \xrightarrow{n \to \infty} 0,
\]

(6.11)

\[
n\Lambda_{2,n7} \xrightarrow{n \to \infty} 0.
\]

(6.12)

The proof of (6.6) is based on the following result on the asymptotic expansion of the distribution of the sum of independent random variables:
Proposition 6.4. Under the hypothesis of Theorem 2.4, for a.e. \(\xi \),
\[
\epsilon_n = n^{3/2} \sup_{x \in \mathbb{R}} \left| \mathbb{P}_\xi \left(\sum_{k=h_n}^{n-1} \hat{L}_k \right) \leq x \right| - \Phi(x) - \sum_{\nu=1}^{3} \kappa_{\nu,n} D_{\nu}(x) - R_n(x) \xrightarrow{n \to \infty} 0.
\]

Proof. Let \(X_k = 0 \) for \(0 \leq k \leq k_n - 1 \) and \(X_k = \hat{L}_k \) for \(k_n \leq k \leq n - 1 \). Then the random variables \(\{X_k\} \) are independent under \(\mathbb{P}_\xi \). By Markov’s inequality and Lemma 6.2, we obtain the following result:
\[
\sup_{x \in \mathbb{R}} \left| \mathbb{P}_\xi \left(\sum_{k=h_n}^{n-1} \hat{L}_k \right) \leq x \right| - \Phi(x) - \sum_{\nu=1}^{3} \kappa_{\nu,n} D_{\nu}(x) - R_n(x) \leq K_\xi \left\{ (s_n^2 - s_{k_n}^2)^{-3} \sum_{j=k_n}^{n-1} \mathbb{E}_\xi |\hat{L}_j|^6 + n^{15} \right\} \left(\sup_{|t| > T_n} n \left(k_n + \sum_{j=k_n}^{n-1} |v_j(t)| \right) + \frac{1}{2n} \right)^n.
\]

By our conditions on the environment, we know that
\[
\lim_{n \to \infty} n^2 (s_n^2 - s_{k_n}^2)^{-3} \sum_{j=k_n}^{n-1} \mathbb{E}_\xi |\hat{L}_j|^6 = \mathbb{E}|\hat{L}_0|^6 / (\mathbb{E}s_0^2)^3.
\]

The required proposition concludes from (6.13) and (5.17).

Using Proposition 6.4, we deduce that
\[
|nA_{2,n1}| \leq \sqrt{2\pi s_n} n^{-1} W_{\kappa_n} \epsilon_n \xrightarrow{n \to \infty} 0,
\]
and (6.6) is proved.

Next we turn to the proof of (6.7). Using Taylor’s expansion and the boundedness of the set \(A \), together with the choice of \(\beta \) and \(k_n \), we get that
\[
\frac{s_n}{(s_n^2 - s_{k_n}^2)^{1/2}} \exp\left\{ -\frac{(x-y)^2}{2(s_n^2 - s_{k_n}^2)} \right\} - \exp\left\{ -\frac{x^2}{2s_n^2} \right\} = \frac{1}{2(s_n^2 - s_{k_n}^2)} (s_n^2 - y^2 + 2xy + o(1)),
\]
uniformly for all \(|y| \leq k_n \) and \(x \in A \) as \(n \to \infty \). By the same arguments as in the proof of (5.20), we can show that for \(\eta > 16 \), with \(\beta, k_n \) chosen above,
\[
n\Pi_{k_n}^{-1} \sum_{u \in \mathbb{T}_{k_n}} 1_{\{|S_u| > k_n\}} \xrightarrow{n \to \infty} 0 \quad \text{and} \quad \Pi_{k_n}^{-1} \sum_{u \in \mathbb{T}_{k_n}} s_u^2 1_{\{|S_u| \leq k_n\}} \xrightarrow{n \to \infty} 0 \quad \text{a.s.}
\]

Therefore as \(n \) tends to infinity, we have a.s.
\[
nA_{2,n2} = n \left[\frac{1}{2(s_n^2 - s_{k_n}^2)} \left(-|A| \Pi_{k_n}^{-1} \sum_{u \in \mathbb{T}_{k_n}} (s_u^2 - s_{k_n}^2) 1_{\{|S_u| \leq k_n\}} \right) + 2 \int_A x dx \Pi_{k_n}^{-1} \sum_{u \in \mathbb{T}_{k_n}} S_u 1_{\{|S_u| \leq k_n\}} + o(1) \right] = \frac{n}{2(s_n^2 - s_{k_n}^2)} \left(-N_{2,k_n} |A| + 2|A| \bar{\pi} A N_{1,k_n} + o(1) \right) = (2\mathbb{E}s_0^2)^{-1} (-V_2 + 2\bar{\pi} V_1) |A| + o(1),
\]
which proves (6.7).

To prove (6.8), we observe that
\[
A_{2,n3} = \frac{\kappa_{1,n} s_n}{(s_n^2 - s_{k_n}^2)^{1/2}} \Pi_{k_n}^{-1} \sum_{u \in \mathbb{T}_{k_n}} 1_{\{|S_u| \leq k_n\}} \int_A \left(\frac{(x - S_u)^3}{(s_n^2 - s_{k_n}^2)^{3/2}} - \frac{3(x - S_u)}{(s_n^2 - s_{k_n}^2)^{1/2}} \right) e^{-\frac{(x-S_u)^2}{2(s_n^2 - s_{k_n}^2)}} dx = A_{2,n31} + A_{2,n32} + A_{2,n33} + A_{2,n34},
\]

20
Combining (6.14), (6.15), (6.16) and (6.17), we deduce (6.9) and (6.10).

Elementary calculus shows that, uniformly for $|y| \leq k_n$

By Proposition 5.6, under our assumption, we have

It is clear that

By the choice of β_k, we see that

Combining (6.14), (6.15), (6.16) and (6.17), we deduce (6.9) and (6.10).

By the Birkhoff ergodic theorem, we see that

whence (6.8) follows.

By the Birkhoff ergodic theorem, we see that

whence (6.3) follows.

By the Birkhoff ergodic theorem and the definition of $H_n(x)$ and $\phi(x)$, we see that

whence (6.11) follows.

Finally because $|A_{2,n}|$ is bounded by $K \cdot \Pi_{k_n}^{-1} \sum_{u \in T_{k_n}} 1_{\{|S_u| > k_n\}}$, (6.14) implies (6.12). So the required result (6.3) follows from (6.6) - (6.12).

Proof of Lemma 6.3 By Proposition 5.6, under our assumption, we have

By the choice of β and k_n, we see that

$$n^{\hat{\phi}}(W - W_{k_n}) = o(n^{1/2} - \lambda) \xrightarrow{n \to \infty} 0.$$
Acknowledgments

The authors are grateful to the reviewers for valuable remarks and comments which lead to a significant improvement of our original manuscript. The work has benefited from a visit of Q. Liu to the School of Mathematical Sciences, Beijing Normal University, and a visit of Z. Gao to Laboratoire de Mathématiques de Bretagne Atlantique, Université de Bretagne-Sud. The hospitality and support of both universities have been well appreciated.

References

[1] S. Asmussen and N. Kaplan, Branching random walks. I, Stochastic Process. Appl. 4 (1976), no. 1, 1–13.

[2] K. B. Athreya and S. Karlin, On branching processes with random environments. I. Extinction probabilities, Ann. Math. Statist. 42 (1971), 1499–1520.

[3] K. B. Athreya and S. Karlin, Branching processes with random environments. II. Limit theorems, Ann. Math. Statist. 42 (1971), 1843–1858.

[4] N. Attia, J. Barral, Hausdorff and packing spectra, large deviations and free energy for branching random walks in \mathbb{R}^d, Comm. Math. Phys, 331 (2014), 139 – 187.

[5] Z. D. Bai and L. C. Zhao, Edgeworth expansions of distribution functions of independent random variables, Sci. Sinica Ser. A 29 (1986), no. 1, 1–22.

[6] J.-B. Baillon, Ph. Clément, A. Greven, and F. den Hollander, A variational approach to branching random walk in random environment, Ann. Probab. 21 (1993), no. 1, 290–317.

[7] J. D. Biggins, The central limit theorem for the supercritical branching random walk, and related results, Stochastic Process. Appl. 34 (1990), no. 2, 255–274.

[8] J. D. Biggins and A. E. Kyprianou, Measure change in multitype branching, Adv. in Appl. Probab. 36 (2004), no. 2, 544–581.

[9] M. Birkner, J. Geiger and G. Kersting, Branching processes in random environment—a view on critical and subcritical cases, Interacting stochastic systems, 269–291, Springer, Berlin, 2005.

[10] A. Bovier and L. Hartung, Variable speed branching Brownian motion I. Extremal processes in the weak correlation regime. Preprint, 2014+.

[11] X. Chen, Exact convergence rates for the distribution of particles in branching random walks, Ann. Appl. Probab. 11 (2001), no. 4, 1242–1262.

[12] F. Comets and S. Popov, On multidimensional branching random walks in random environment, Ann. Probab. 35 (2007), no. 1, 68–114.

[13] F. Comets and S. Popov, Shape and local growth for multidimensional branching random walks in random environment, ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007), 273–299.

[14] F. Comets and N. Yoshida, Branching random walks in space-time random environment: survival probability, global and local growth rates, J. Theoret. Probab. 24 (2011), no. 3, 657–687.

[15] R. Durrett, Probability: theory and examples, second ed., Duxbury Press, Belmont, CA, 1996.

[16] M. Fang and O. Zeitouni, Branching random walks in time inhomogeneous environments, Electron. J. Probab. 17 (2012), no. 67, 18 pp.

[17] Z. Q. Gao, Q. Liu and H. S. Wang, Central limit theorems for a branching random walk with a random environment in time. Acta Math. Sci. Ser. B Engl. Ed. 34(2014),B(2):501–512.

[18] A. Greven and F. den Hollander, Branching random walk in random environment: phase transitions for local and global growth rates, Probab. Theory Related Fields 91 (1992), no. 2, 195–249.
19. R. Grubel, Z. Kabluchko, *Asymptotic expansions for profiles of lattice branching random walks*, preprint, arXiv:1503.04616v1.

20. T. E. Harris, *The theory of branching processes*, Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin, 1963.

21. Y. Hu, *How big is the minimum of a branching random walk?* Ann. Inst. Henri Poincaré (2014+), to appear.

22. Y. Hu, Z. Shi, *Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees*. Ann. Prob. 37 (2009), no. 2, 403–813.

23. Y. Hu and N. Yoshida, *Localization for branching random walks in random environment*, Stochastic Process. Appl. 119 (2009), no. 5, 1632–1651.

24. C. M. Huang, Q. Liu, *Convergence rates for a branching process in a random environment*, Markov Process. and Related Fields 20 (2014), no. 2, 265–286.

25. N. Kaplan and S. Asmussen, *Branching random walks. II*, Stochastic Process. Appl. 4 (1976), no. 1, 15–31.

26. C. F. Klebaner, *Branching random walk in varying environments*, Adv. in Appl. Probab. 14 (1982), no. 2, 359–367.

27. D. Kuhlbusch, *On weighted branching processes in random environment*, Stoch. Process. Appl. 109 (2004), no.1, 113 – 144.

28. X. G. Liang and Q. Liu, *Weighted moments of the limit of a branching process in a random environment*. Proc Steklov Inst Math, 282 (2013), no.1, 127-145.

29. Q. Liu, *Fixed points of a generalized smoothing transformation and applications to branching processes*. Adv. Appl. Prob. 30 (1998), 85 – 112.

30. Q. Liu, *On generalized multiplicative cascades*. Stoch. Proc. Appl. 86 (2000), 263 – 286.

31. Q. Liu, *Branching random walks in random environment*, Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007) (L. Ji, K. Liu, L. Yang, and S.-T. Yau, eds.), vol. II, 2007, pp. 702–219.

32. M. Nakashima, *Almost sure central limit theorem for branching random walks in random environment*, Ann. Appl. Probab. 21 (2011), no. 1, 351–373.

33. V. V. Petrov, *Sums of independent random variables*, translated from the Russian by A. A. Brown, Springer, New York, 1975.

34. P. Révész, *Random walks of infinitely many particles*, World Scientific Publishing Co. Inc., River Edge, NJ, 1994.

35. P. Révész, J. Rosen and Z. Shi, *Large-time asymptotics for the density of a branching Wiener process*, J. Appl. Probab. 42 (2005), no. 4, 1081–1094.

36. Z. Shi. *Branching random walks*. Saint-Flour’s summer course (2012).

37. W. L. Smith and W. E. Wilkinson, *On branching processes in random environments*, Ann. Math. Statist. 40 (1969), 814–827.

38. D. Tanny, *A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means*, Stochastic Process. Appl. 28 (1988), no. 1, 123–139.

39. N. Yoshida, *Central limit theorem for branching random walks in random environment*, Ann. Appl. Probab. 18 (2008), no. 4, 1619–1635.

40. Z. Kabluchko, *Distribution of levels in high-dimensional random landscapes*, Ann. Appl. Probab. 22 (2012), no. 1, 337–362.

41. O. Zeitouni, *Branching random walks and Gaussian fields*, Notes for Lectures, 2012, http://www.wisdom.weizmann.ac.il/~zeitouni/pdf/notesBRW.pdf.