Association of COVID-19 with diabetes: a systematic review and meta-analysis

Paddy Ssentongo¹,², Yue Zhang¹, Lisa Witmer², Vernon M. Chinchilli¹ & Djibril M. Ba¹,³

Emerging evidence suggests that coronavirus disease-2019 (COVID-19) may lead to a wide range of post-acute sequelae outcomes, including new onset of diabetes. The aim of this meta-analysis was to estimate the incidence of newly diagnosed diabetes in survivors of COVID-19. We searched MEDLINE, Scopus, Cochrane Central Register of Controlled Trials and the World Health Organization Global Literature on Coronavirus Disease and clinical trial registries for studies reporting the association of COVID-19 and diabetes. Search dates were December 2019–October 16, 2022. Two investigators independently assessed studies for inclusion. Risk of bias was assessed using the Newcastle–Ottawa Scale. We estimated the effect of COVID-19 on incident diabetes by random-effects meta-analyses using the generic inverse variance method. We identified 8 eligible studies consisting of 4,270,747 COVID-19 patients and 43,203,759 controls. Median age was 43 years (interquartile range, IQR 35–49), and 50% were female. COVID-19 was associated with a 66% higher risk of incident diabetes (risk ratio, 1.66; 95% CI 1.38; 2.00). The risk was not modified by age, sex, or study quality. The median risk of bias assessment was 7. In this systematic review and meta-analysis, COVID-19 was associated with higher risk for developing new onset diabetes among survivors. Active monitoring of glucose dysregulation after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is warranted.

Methods

This study is being reported following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020. This study was deemed exempt by the Penn State Institutional Review Board.

¹Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA. ²Department of Medicine, Penn State Health Medical Center, Hershey, PA, USA. ³Department of Public Health Sciences, Penn State College of Medicine, 90 Hope Drive, Suite 2200|MCC A210, Hershey, PA 17033, USA. *email: djibrilba@phs.psu.edu
Data sources and searches. We searched MEDLINE, Scopus, Cochrane Central Register of Controlled Trials and the World Health Organization Global Literature on Coronavirus Disease and clinical trial registries for studies reporting the association of COVID-19 and diabetes without language restriction. Search dates were December 2019–October 16, 2022. The following Medical Subject Headings and keyword search terms were used: ['diabetes' OR type 2 diabetes OR type 1 diabetes OR ‘type 1 diabetes mellitus’ OR ‘type 2 diabetes mellitus’ OR ‘diabetes mellitus'] AND ['SARS-CoV-2' OR 'COVID-19' OR ‘severe acute respiratory syndrome coronavirus-2’ OR ‘coronavirus disease 2019’].

Study selection. Participant (P) Exposure (E) Comparator [C], Outcome (O) Study type (S) [PECOS] criteria was used to select studies12:

Participants Persons of all ages and sex included in studies that investigated incident diabetes in survivors of COVID-19.

Exposure COVID-19.

Comparison Non-COVID-19 group.

Outcome of interest Diabetes.

Study type Observational studies.

Pairs of independent investigators (YZ and DMB) screened the titles and abstracts of all citations and screened the full-text version of eligible studies. Disagreements in the included papers were resolved by discussion and if necessary, a third investigator (PS) was consulted.

Data extraction and quality assessment. Two investigators (YZ and DMB) worked independently to extract study the following date: authors, publication year, country of the study, study design, study-level descriptive statistics (mean (SD)/median (IQR) age in years, proportion (%) female), sample size, number with diabetes, number with COVID-19, outcome assessment, follow-up time, number of controls, risk ratio and 95% confidence interval. Newcastle–Ottawa Scale for observational studies was used to evaluate the risk of bias13. Studies with fewer than 5 stars were considered low quality; 5 to 7 stars, moderate quality; and more than 7 stars, high quality.

Data synthesis and analysis. The primary outcome was incident diabetes in survivors of COVID-19. For studies without measures of associations, a generalized linear mixed model was used to calculate the RR using the number of events and the sample size of each study group14. One study Barret et al. (2022) used two different national databases and reported separate results. Therefore, in this circumstance, we separated the effect estimates from Barret et al. study into two studies as one with IQVIA database and the second one with HealthVerity9. A study by McKeigure and colleagues reported two separate RRs for diabetes associated with COVID-19 at various time points, therefore, a fixed-effects model was utilized to pool the estimate within the study before conducting the random-effect meta-analysis. The pooled RR estimate for diabetes risk from each study was weighted by the inverse of its variance (inter-study plus intra-study variances). Pooled inter-study variance (heterogeneity) was estimated by DerSimonian and Laird (DL) random-effects method15. Heterogeneity among studies was evaluated using Cochran’s Q and the I² indicator expressed as percent low (25%), moderate (50%), and high (75%)16. Egger’s linear regression and Begg’s rank tests were employed to quantitatively evaluate publication bias17,18 and qualitatively with funnel plots. Statistical significance was set at p < 0.05. All statistical analyses were performed with R software version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria) using Metafor R packages.

Results

Identified studies. Figure 1 summarizes study selection process. A total of 853 studies were screened. The exclusion process yielded 8 studies3,5,9,19–23 conducted in 3 countries. Barret et al. was reported in this meta-analysis as two independent studies3. The baseline characteristics of the studies included in the systematic review are presented in Table 1. Included studies consisted of patients 47,474,506 participants, with median age of 43 years (IQR 35–49), and 50% were female. The median study quality was 7 (range 5–9).

Association of COVID-19 and incident diabetes. Of the 8 studies that characterized the risk of incident diabetes among survivors of COVID-19, the pooled point estimates was 1.66 (95% CI 1.38; 2.00, Fig. 2), implying a 66% higher risk of diabetes. The between-study variation was high ($I^2 = 94$, p < 0.0001). The risk was not modified by age, sex and study quality (Supplemental Table 1). However, when studies were stratified by geographic region, the risk was higher in studies from the United States 1.77 (95% CI 1.41; 2.22, Fig. 3), compared to those in Europe 1.33 (95% CI 1.14; 1.56).

Publication bias and study heterogeneity. Funnel plot of the included studies (Fig. 4) indicated asymmetry suggesting lack of publication bias. Quantitative analysis of publication bias with Egger’s test ($p = 0.053$) and Begg’s test ($p = 0.06$) were non-significant. Duval and Tweedie’s trim and fill test was conducted to balance the funnel plots and adjust for potential publication bias14. The analysis showed that if publication bias existed, 2 additional studies will be needed to eliminate bias and the overall effect of COVID-19 on incident diabetes changed from 1.66 (95% CI 1.38; 2.00 to 1.51 (1.21; 1.88, Fig. 5). Next, we performed influence sensitivity analyses by excluding and replacing one study at a time from the meta-analysis and calculated the RR for the remaining studies25. No substantial change from any of the pooled RR was observed when other studies were removed.
in turn, indicating that no individual study had a considerable influence on the pooled estimate. The plots for the analysis estimates are provided in Fig. 6.

Discussion

Principal findings. In this systematic review and meta-analysis of 8 cohort studies including over 47 million participants, COVID-19 was associated with a 66% higher risk of diabetes compared to the controls without COVID-19. The risk was not modified by age, sex, and study quality. The risk of bias assessment was low.

Our findings are consistent with the previous meta-analysis that assessed the proportion of COVID-19 survivors with incident diabetes. A 2021 study by Sathish and colleagues assessed a total of 3711 COVID-19 patients with 492 cases of newly diagnosed diabetes from eight studies10. In the random-effects meta-analysis model, the estimated pooled proportion of incident diabetes was 14.4% (95% CI 5.9–25.8%). They, however, noted a high degree of heterogeneity (I² 98.6%, p < 0.001). The weaknesses of the above study, however, included a lack of a control group and a very small study sample size.

Potential pathophysiological mechanisms of new-onset diabetes among COVID-19 survivors are complex and not fully understood. SARS-CoV-2 binds to angiotensin-converting enzyme 2 and transmembrane serine protease 2 receptors, which are expressed in key metabolic organs and tissues, including pancreatic beta cells, adipose tissue, the small intestine, and the kidneys28–30. Furthermore, it has been demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis31,32. Thus, it is plausible that SARS-CoV-2 may cause pleiotropic alterations of glucose metabolism that could lead to incident diabetes or facilitate a rapid transition from the prediabetes state to full-blown diabetes. SARS-CoV-2 is not the only virus associated with diabetes. A significant number of other viruses are associated with type 1 diabetes through molecular mimicry, including Coxsackievirus B, rotavirus, mumps virus, and cytomegalovirus33–35. Furthermore, findings from prospective studies have demonstrated a temporal association between hepatitis C virus and type 2 diabetes36.

Clinical implications of our findings and recommendations. Given the extraordinary number of COVID-19 survivors globally, the modest increase in diabetes risk could correspond to a drastic rise in the number of people diagnosed with the disease worldwide. Therefore, active monitoring of glucose dysregulation after recovery from severe COVID-19 infection is warranted. Additionally, there is a need for studies that determine various social determinants of health associated with new onset diabetes. These factors would be critical to developing effective prevention and management strategies for the disease. Lastly, future research could also focus on employing genomics data to stratify acute COVID-19 patients and predict phenotypes of patients at an increased risk of COVID-19-induced diabetes and uncover novel disease mechanisms.

Limitations. Our study has some limitations worth noting. First, a high degree of heterogeneity was observed, which could have been caused by pooling studies from different sociodemographic populations. Nevertheless, a random effects model was invoked to derive plausible estimates. Second, it is also a possibility that
Table 1. Meta-analysis characteristics of included cohort studies reporting COVID-19 and risk of diabetes.

Author (year)	Sample size, N	Female, N (%)	Outcome (diabetes assessment)	Country	Study design	Mean age (y)	Total Cases, N	Follow-up periods	Median follow-up time (D)	Reported effect sizes	Covariates in the fully-adjusted model	Quality score	COVID-19 patients	Controls				
Balfe et al. (2022)	7,178,535 (5,863 patients)	52,731 (45.4%)	ICD-10 codes (E11-E14)	Germany	Retrospective cohort study	42.6	104	March 2020 to January 2021	144	OR: 1.10 (1.05, 1.15)	Age, sex, smoking status, BMI, hypertension, hyperlipidaemia, depression, diabetes history, smoking status	3	5,863	5,863				
Barret et al. (2022)	485,021	285,628 (30.14%)	ICD-10 codes (E08-E13)	USA	Retrospective cohort study	52.3	200	March 2020 to February 2021	NA	HR: 1.31 (1.20, 1.44)	Matched on age, sex, and month of encounter	3	485,021	485,021				
Barret et al. (2022)	462,478	440,024 (50.1%)	ICD-10 codes (E08-E13)	USA	Retrospective cohort study	52.7	101	March 2020 to June 2021	NA	HR: 1.31 (1.20, 1.44)	Age, sex, and month of encounter	3	462,478	462,478				
Xie et al. (2022)	1,849,411	924,706 (50%)	ICD-10 codes (E08-E13)	USA	Cohort study	39	27,292,879	13,755,616 (54.1%)	ICD-10 codes US	9,247,505	4,607,112 (49.8%)	ICD-10 codes US	2,777,768	376,274 (13.5%)	120,288 (49.8%)	NA US		
																	46,480,150	31,840,150
Wunder et al. (2022)	2,777,768	196,274 (13.34%)	ICD-10 codes (E08-E13)	USA	Retrospective cohort study	59	515	March 2019 to March 2021	120	OR: 1.40 (1.36, 1.44)	Age, sex, ethnicity, BMI, smoking status	3	2,777,768	2,777,768				
																72,651,830	40,851,830	
Daugherty et al. (2022)	9,247,505	6,987,122 (49.9%)	ICD-10 codes	USA	Retrospective cohort study	42.4	1,884	January 2020 to October 2020	80	HR: 2.47 (1.14, 5.37)	Frequently score matching with age, sex, race, socioeconomic status, area and region, primary care physician, nephrologist	3	9,247,505	9,247,505				
Qudah et al. (2022)	27,292,879	13,755,616 (54.1%)	ICD-10 codes	USA	Retrospective cohort study	45.6	336	December 2019 to July 2021	NA	OR: 1.42 (1.38, 1.46)	Age, gender, race, ethnicity, marital status, region, and US geographical region	3	27,292,879	27,292,879				
Kondal et al. (2022)	192,285	104,285 (54.01%)	ICD-10 codes	USA	Retrospective cohort study	9.3	120	January 2020 to November 2021	NA	OR: 1.36 (1.32, 1.40)	Frequently score matching with age, sex, ethnicity, and family history of diabetes	3	192,285	192,285				
Mikkonen et al. (2022)	4,808,031	2,769,286 (59.8%)	ICD-10 codes (E08-E13)	USA	Retrospective cohort study	39.4	204	March 2020 to November 2021	NA	OR: 1.21 (1.18, 1.24)	Age, sex, and number of vaccine doses at least 14 days before	3	4,808,031	4,808,031				

some individuals in the control groups could have had undetected mild or asymptomatic COVID-19 because they had not been tested. Such non-differential misclassification of the exposure may underestimate the strength of the association of COVID-19 with the onset of diabetes. Lastly, due to the limited number of studies included in the present meta-analysis, we did not categorize the risk by the type of diabetes such as type 1 and type 2.
Study, Pub Year, Country	Risk Ratio	RR	95% CI	Weight
Rathmann et al, 2022, Germany	1.28	[1.05; 1.57]	11.7%	
Barrett et al, 2022, US	1.31	[1.20; 1.44]	13.1%	
Xie et al, 2022, US	1.40	[1.36; 1.44]	13.4%	
Qeadan et al, 2022, US	1.42	[1.38; 1.46]	13.4%	
McKeigue et al, 2022, UK	1.42	[1.11; 1.82]	10.9%	
Kendall et al, 2022, US	1.83	[1.37; 2.45]	10.2%	
Wander et al, 2022, US	2.40	[2.18; 2.64]	13.0%	
Daugherty et al, 2021, US	2.47	[1.14; 5.37]	4.1%	
Barrett et al, 2022, US	2.66	[1.98; 3.57]	10.1%	

Overall (Random−Effect Model)

Heterogeneity: $I^2 = 94\%$, $p < 0.0001$

Risk Ratio 1.66 [1.38; 2.00] 100.0%

Figure 2. Forest plot for the overall pooled estimate for the association of COVID-19 and incident diabetes. Effect size values represent risk ratio and corresponding 95% CI. Blue squares and their corresponding lines are the point estimates of each study and 95% confidence intervals (95% CI). Maroon diamonds represent the pooled estimate (width denotes 95% CI). Heterogeneity ($I^2 = 94\%$, p for heterogeneity < 0.0001; 8 studies).

Study, Pub Year, Country	Risk Ratio	RR	95% CI	Weight
Barrett et al, 2022, US	1.31	[1.20; 1.44]	13.1%	
Xie et al, 2022, US	1.40	[1.36; 1.44]	13.4%	
Qeadan et al, 2022, US	1.42	[1.38; 1.46]	13.4%	
Kendall et al, 2022, US	1.83	[1.37; 2.45]	10.2%	
Wander et al, 2022, US	2.40	[2.18; 2.64]	13.0%	
Daugherty et al, 2021, US	2.47	[1.14; 5.37]	4.1%	
Barrett et al, 2022, US	2.66	[1.98; 3.57]	10.1%	

Overall (Random−Effect Model)

Heterogeneity: $I^2 = 96\%$, $p < 0.0001$

Risk Ratio 1.77 [1.41; 2.22] 77.4%

Figure 3. Forest plot of studies stratified by geographic regions.
Figure 4. Funnel plots to assess potential for small-study publication bias. Symmetrical inverted funnel plot suggested absence of publication bias.

Figure 5. Funnel plots from trim and fill analysis. Duval & Tweedie trim and fill analytical method suggests that the adjusted effect estimates would fall in the range of 1.21 to 1.88, and 2 studies were added.

Study, Pub Year, Country	Risk Ratio	RR	95% CI	P-value	Tau2	Tau	I²
Omitting Xie et al, 2022, US	1.71	1.38; 2.11	< 0.01	0.0763	0.2762	95%	
Omitting Barrett et al, 2022, US	1.57	1.32; 1.86	< 0.01	0.0494	0.2223	94%	
Omitting Barrett et al, 2022, US	1.72	1.40; 2.11	< 0.01	0.0709	0.2662	99%	
Omitting Daugherty et al, 2021, US	1.63	1.36; 1.98	< 0.01	0.0887	0.2621	99%	
Omitting Wander et al, 2022, US	1.55	1.31; 1.82	< 0.01	0.0418	0.2046	74%	
Omitting Rathmann et al, 2022, Germany	1.72	1.40; 2.11	< 0.01	0.0703	0.2652	99%	
Omitting Qeadan et al, 2022, US	1.70	1.36; 2.11	< 0.01	0.0773	0.2780	99%	
Omitting Kendall et al, 2022, US	1.65	1.33; 2.03	< 0.01	0.0770	0.2775	99%	
Omitting McKeege et al, 2022, UK	1.70	1.36; 2.09	< 0.01	0.0788	0.2771	95%	

Random effects model 1.66 [1.38; 2.00] < 0.01 0.0680 0.2609 94%

Figure 6. Influence and outlier (leave-one-out meta-analysis) analysis for the association of COVID-19 and incident diabetes. The results of our outlier and influence analysis show the recalculated pooled point estimate ranged from 1.55 to 1.72 when one study was omitted each time.
Conclusions. In this systematic review and meta-analysis, COVID-19 was a risk factor for developing new onset diabetes among survivors. Active monitoring of glucose dysregulation after recovery from severe acute respiratory syndrome coronavirus 2 infection is warranted.

Data availability
All data generated for this study are included in this manuscript.

Received: 12 July 2022; Accepted: 11 November 2022
Published online: 23 November 2022

References
1. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis 20(5), 533–534 (2020).
2. Centers for Disease Control and Prevention. Long COVID or Post-COVID Conditions. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html. Accessed 25 June 2022.
3. Barrett, C. E. et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years: United States, March 1, 2020–June 28, 2021. MMWR Morb. Mortal. Wkly. Rep. 71(2), 59–65 (2022).
4. Khunti, K. et al. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care 44(12), 2645–2655 (2021).
5. Rathmann, W., Kuss, O. & Kostev, K. Incidence of newly diagnosed diabetes after Covid-19. Diabetologia 65(6), 949–954 (2022).
6. Steenblock, C. et al. COVID-19 and metabolic disease: Mechanisms and clinical management. Lancet Diabetes Endocrinol. 9(11), 786–798 (2021).
7. Singh, A. K. & Khunti, K. COVID-19 and diabetes. Annu. Rev. Med. 73, 129–147 (2022).
8. Steenblock, C. et al. COVID-19 and metabolic disease: Mechanisms and clinical management. Lancet Diabetes Endocrinol. 9(11), 786–798 (2021).
9. Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: A cohort study. Lancet Diabetes Endocrinol. 10(5), 311–321 (2022).
10. Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J. & Zimmet, P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab. 23(3), 870–874 (2021).
11. Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).
12. Metzler, C. M., Campbell, S., Chew-Graham, C., McNally, R. & Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for quantitative systematic reviews. BMC Health Serv. Res. 14(1), 1–10 (2014).
13. Wells, G. A. et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses (Oxford University Press, 2000).
14. Chang, B.-H. & Hoaglin, D. C. Meta-analysis of odds ratios: Current good practices. Med. Care 55(4), 328 (2017).
15. DerSimonian, R. & Kacker, R. Random-effects model for meta-analysis of clinical trials: An update. Contemp. Clin. Trials 28(2), 105–114 (2007).
16. Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327(7414), 557–560 (2003).
17. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109), 629–634 (1997).
18. Beggs, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).
19. Wender, P. L. et al. The incidence of diabetes among 2,777,768 veterans with and without recent SARS-CoV-2 infection. Diabetes Care 45(4), 782–788 (2022).
20. Daugherty, S. E. et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ 373, n1098 (2021).
21. McKeigue, P. M. et al. Relation of incident type 1 diabetes to recent COVID-19 infection: Cohort study using e-health record linkage in Scotland. Diabetes Care https://doi.org/10.2337/dc22-0385 (2022).
22. Qeadan, F. et al. COVID-19 and metabolic disease: Mechanisms and clinical management. Lancet Diabetes Endocrinol. 9(11), 786–798 (2021).
23. Kendall, E. K., Olaker, V. R., Kaelber, D. C., Xu, R. & Davis, P. B. Association of SARS-CoV-2 infection with new-onset type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw. Open 5(9), e2233014–e2233014 (2022).
24. Duval, S. & Tweedie, R. Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2), 455–463 (2000).
25. Viechtbauer, W. & Cheung, M. W. L. Outlier and influence diagnostics for meta-analysis. Biometrics 56(5), 1088–1101 (2000).
26. Sterne, J. A., Becker, B. J. & Egger, M. The funnel plot. In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments, 75–98 (2005).
27. Patsopoulos, N. A., Evangelou, E. & Ioannidis, J. P. Sensitivity of between-study heterogeneity in meta-analysis: Proposed metrics and empirical evaluation. Int. J. Epidemiol. 37(5), 1148–1157 (2008).
28. Wu, C.-T. et al. SARS-CoV-2 infects human pancreatic & β cells and elicits β cell impairment. Cell Metab. 33(8), 1565-1576.e1565 (2021).
29. Shaharuddin, S. H. et al. Deleterious effects of SARS-CoV-2 infection on human pancreatic cells. Front. Cell Infect. Microbiol. 11, 678482–678482 (2021).
30. Suresh, V. et al. Tissue distribution of ACE2 protein in syrian golden hamster (Mesocricetus auratus) and its possible implications in SARS-CoV-2 related studies. Front. Pharmacol. 11, 330 (2021).
31. Müller, J. A. et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab. 3(2), 149–163 (2021).
32. Wu, C.-T. et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 33(8), 1565-1576.e1565 (2021).
33. Hyoty, H. & Taylor, K. W. The role of viruses in human diabetes. Diabetologia 45(10), 1353–1361 (2002).
34. Pak, C. Y., Eun, H. M., McArthur, R. G. & Yoon, J. W. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet 2(8601), 1–4 (1988).
35. Honeymann, M. C., Stone, N. L. & Harrison, L. C. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: Potential for mimicry with rotavirus and other environmental agents. Mol. Med. 4(4), 231–239 (1998).
36. Wang, C. S., Wang, S. T., Yao, W. J., Chang, T. T. & Chou, P. Hepatitis C virus infection and the development of type 2 diabetes in a community-based longitudinal study. Am. J. Epidemiol. 166(2), 196–203 (2007).
Author contributions
Designed research (project conception, development of overall research plan, and study oversight): P.S. and D.M.B. Data extraction: Y.Z., P.S., and D.M.B. Analyzed data: P.S. and D.M.B. Performed statistical analysis: P.S. Wrote the first draft of the manuscript: P.S. and D.M.B. Review and editing: P.S., L.W., V.M.C. and D.M.B. All authors have read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-24185-7.
Correspondence and requests for materials should be addressed to D.M.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022