ABSTRACT: A superbase ionic liquid (IL), trihexyltetradecylphosphonium benzimidazolide ([P66614][Benzim]), is investigated for the capture of CO2 in the presence of NO2 impurities. The effect of the waste gas stream contaminant on the ability of the IL to absorb simultaneously CO2 is demonstrated using novel measurement techniques, including a mass spectrometry breakthrough method and in situ infrared spectroscopy. The findings show that the presence of an industrially relevant concentration of NO2 in a combined feed with CO2 has the effect of reducing the capacity of the IL to absorb CO2 efficiently by ~60% after 10 absorption–desorption cycles. This finding is supported by physical property analysis (viscosity, 1H and 13C NMR, and X-ray photoelectron spectroscopy) and spectroscopic infrared characterization, in addition to density functional theory (DFT) calculations, to determine the structure of the IL-NOx complex. The results are presented in comparison with another contaminant that has received limited interest previously.

KEYWORDS: ionic liquids, CO2 capture, NO2, flue gas, competitive absorption, infrared, DFT

INTRODUCTION

Post-combustion CO2 capture is an important requirement of many industrial processes. The high-temperature combustion of fossil fuels produces large quantities of CO2 (10–15 vol %), as well as other impurities, such as SO2 (0.05–0.2 vol %) and NOx (0.15–0.25 vol %), which consists predominantly of NO and NO2.1–3 The reported values are obtained before any desulfurization or denitrification technologies. In particular, NOx is known to have a significant impact on health and the environment, causing the formation of atmospheric ozone and acid rain.4 It is therefore vital that NOx emissions are regulated (40 μg·m⁻³·a⁻¹ year), leading to the fitting of NOx scrubbers to power stations, comprising oxidizing and reducing agents responsible for the conversion of NOx to N2.5 Aqueous alkanolamines have been employed as CO2 capture sorbents, but the presence of NOx was found to result in the irreversible formation of carcinogenic nitrosamines and a decrease in CO2 capture efficiency.6–8 Ionic liquids (ILs) have also been widely investigated for the capture of CO2 as a non-volatile alternative to toxic alkanolamines. However, to date, the effect of NO2 on the ability of an IL to capture CO2 in a combined feed has not been investigated.

The interest in ILs stems from the ability to alter their physiochemical properties, such as thermal stability or CO2 absorption capacity, through changing the combination of cation and anion, which enables the tuning of their properties for specific applications.9,10 For example, the amount of CO2 absorbed by a particular IL has been shown to have a strong dependence on the anion, with conventional anions only physically absorbing small quantities of CO2 compared with task-specific ILs that incorporate amine functionality and chemically absorb up to 1 nCO2:nIL.13,14 Superbase ILs (SBILs) containing an aprotic heterocyclic anion (AHA) were developed to minimize the increase in viscosity observed in amine-functionalized ILs, and they can reversibly capture a greater than equimolar amount of CO2.15–18 Extensive studies into the absorption of other acidic gases such as SO2 and NO by SBILs have found that irreversible absorption was observed in many cases, often on multiple active sites within the IL, affecting the recyclability of the system.19–25
The effect of impurities on the CO₂ uptake of the SBIL trihexyltetradecylphosphonium benzimidazolide, [P₆₆₆₁₄][Benzim], has previously been investigated in combined feeds. SO₂ was shown to deactivate the IL through binding to the absorption site available to CO₂, while the presence of NO exhibited little effect on the IL’s capacity for the uptake of CO₂.²⁶,²⁷ For NO₂, the co-binding of CO₂ and NO as carbamate and NONO-ate species, respectively, was observed at different N-sites of the benzimidazolide anion. However, competition for the same binding site was reported between CO₂ and SO₂, which markedly influenced the absorption capacity and recyclability of the IL. The differing effects of SO₂ and NO on the absorption of CO₂ by [P₆₆₆₁₄][Benzim] highlight the need to assess the components of flue gas impurities, both individually and in combination with CO₂.

The capture of NOₓ by ILs has been the focus of only a few studies, where it was found that an increased uptake is observed for NO₂ compared to NO.²⁸⁻³⁰ To date, NO₂ has not been studied in a combined feed with CO₂, so its direct influence on the ability of a sorbent to capture CO₂ is unknown. The competitive absorption of CO₂ with industrially relevant concentrations of H₂O, SO₂, or NO, independently, feeds.¹⁸,²⁶,²⁷ The use of a recently developed analytical method utilizing mass spectrometry allows the study of this superbase under realistic and dry flue gas conditions, with a feed containing 14% CO₂ and 0.2% NO₂ independently. Further molecular-level information was provided by density functional theory (DFT) calculations and spectroscopic data (NMR, IR, and X-ray photoelectron spectroscopy).

EXPERIMENTAL SECTION

Materials

Trihexyltetradecylphosphonium chloride ([P₆₆₆₁₄]Cl, 97.7 wt %, CAS: 258864-54-9) was procured from IoLiTec, and benzimidazole (98 wt %, CAS: S1-17-2) was purchased from Sigma–Aldrich. [P₆₆₆₁₄][Benzim] was prepared using a two-step synthesis method reported previously.¹⁰ The halide content was determined to be <5 ppm by a silver nitrate test.¹¹ The water content was measured to be <0.1 wt % using a Metrohm 787 KF Titrisol Karl Fischer machine. The structure and purity of the IL after synthesis and post-absorption, were analyzed by 1H NMR and 13C NMR with a Bruker Avance II 400 MHz Ultra shield Plus and carried out as neat ILs in the presence of a glass capillary insert containing a deuterated solvent (DMSO-d₆, purchased from Cambridge Isotope Laboratories Inc., CAS: 2206-27-1). Gases were obtained from BOC; argon (99.998%, CAS: 7744-37-1); carbon dioxide (99.99%, CAS: 124-38-9); nitrogen dioxide (99.99%, CAS: 10102-44-0).

Methods

The gas absorption measurement techniques used in this work were reported in detail previously, and the same protocol was followed in this work.²⁶,²⁷ To briefly summarize this, the uptake of a single component gas feed (1% NO₂ in argon) by [P₆₆₆₁₄][Benzim] was studied gravimetrically at 22 ± 0.5 °C. A mass spectrometer-based method was utilized to study the gas phase concentrations at the outlet after the IL was exposed to a mixed gas feed of 14% CO₂ + 0.2% NO₂ in Ar. A series of cycles were performed consisting of a 2 h absorption period under feed conditions at 22 °C, followed by a 2 h desorption period under Ar at 90 °C.

Analysis

The viscosity of the IL samples was measured before and after NO₂ absorption using a TA Instruments AR2000. Elemental analysis was carried out using a Thermo Scientific Flash 2000 elemental analyzer. X-ray photoelectron spectroscopy (XPS) was performed with a Kratos AXIS Ultra DLD apparatus, with a monochromated Al Kα radiation X-ray source, charge neutralizer, and hemispherical electron energy analyzer. During data acquisition, the chamber pressure was kept below 10⁻⁹ mbar. The spectra were analyzed by CasaXPS and corrected for charging using the C 1s feature at 284.8 eV.

RESULTS AND DISCUSSION

The absorption of 1% NO₂ in Ar by [P₆₆₆₁₄][Benzim] was initially examined by a gravimetric technique to allow direct comparison with the literature on the uptake of individual gases. It was found that an average of 4.60 nNO₂:IL was absorbed at saturation (Figure S1), with the higher than equimolar capacity indicating a multi-site absorption effect for NO₂, as was found for NO.²⁷ The amount of NO₂ absorbed far exceeds that found for 1% NO by the same IL (1.73 nNO:IL), indicating a different mechanism of absorption for NO₂.²⁷ The regeneration of the IL at 90 °C under argon was studied (well below the IL’s decomposition temperature of 289 °C), with 3.64 nNO₂:IL remaining after 2 h. NO₂ absorption is evidently not a reversible process, with the absorbed species strongly bound to the IL, which has also been observed for caprolactam-based ILs.²⁸

The ability of NO₂ to compete with CO₂ for absorption by [P₆₆₆₁₄][Benzim] was investigated using a combined feed through a series of absorption and desorption cycles, employing a mass spectrometry-based gas absorption rig.²⁶ Realistic flue gas concentrations of 14% CO₂ and 0.2% NO₂ were selected, with the results shown in Figure 1 (and Table S1). It demonstrates that after two cycles in the gas absorption rig, the CO₂ capacity of the IL was unaffected by the presence of NO₂ with 0.78 nCO₂:IL still absorbed. After the third cycle, a clear decrease in CO₂ capacity was observed, with 0.66 nCO₂:IL absorbed after exposure to a calculated 0.38
NO2: The ability of [P66614][Benzim] to capture CO2 in the presence of NO2 continued to decrease, reaching 0.31 nCO2:nIL after 10 absorption/desorption cycles, an ~60% reduction in capacity. It was evident that the desorption conditions (2 h under Ar at 90 °C) were unable to regenerate the original CO2 capacity. This strong irreversible absorption of NO2 is in contrast to the behavior observed with the NO co-feed, where 0.72 nCO2:nIL was still absorbed after 10 cycles.27

Following the 10 competitive absorption/desorption cycles with CO2 and NO2, the treated IL was characterized using a number of techniques. Elemental analysis showed an increase in the nitrogen content of [P66614][Benzim] from 6.10 to 7.67 wt % and an increase in the viscosity from 1087 to 1516 mPa·s (at 25 °C). These changes were assigned to the irreversible incorporation of nitrogen into the IL through the absorption of NO2. Changes in the physical properties of the IL after exposure to NO2 were more significant than those observed after exposure to NO (nitrogen content increased from 6.10 to 6.48% and viscosity from 1087 to 1235 mPa·s), correlating with the reduced effect of the NO impurity (0.72 nCO2:nIL

![Figure 1. CO2 capacity (bars) of [P66614][Benzim], calculated from the MS (±0.04 nCO2:nIL) and calculated exposure to NO2 (solid line), after multiple cycles of a 2 h absorption under a feed of 14% CO2 and 0.2% NO2 in argon, and a 2 h desorption at 90 °C. A dashed line depicts the 14% CO2 only value (0.78 nCO2:nIL).](image)

Table 1. Reaction Landscapes Showing Intermediates (I) and Transition States (TS) for N2O4 and N2O4/CO2 Absorption by [P3333][Benzim], Depicting Potential Energy Surfaces for (a) Absorption of N2O4 and (b) Subsequent Heterolytic Cleavage of the N−N Bond, (c) Absorption of Two Moles of N2O4 and (d) the Barrier to Cleavage of the N−N Bond, and (e,f) the Absorption of CO2 by [Benzim-N2O4].a
Absorbate
N2O4
(N2O4)2
N2O4 + CO2

Values are given in kJ mol⁻¹ with zero-point corrected gas phase and {solvent} corrected energies calculated at B3LYP/6-311+G* level of theory (pseudo bonds = physisorption, solid bonds = chemisorption).
was still absorbed after 10 cycles under NO and CO2.27 As the irreversible absorption of NO2 causes changes in the physical properties of the IL, NMR and XPS of the IL after exposure were performed to characterize the nature of the strongly bound NO2 species.

The structure was initially probed by 1H NMR (Figure S2), where it was expected that changes in the spectra upon the absorption of NO2 would be caused by a change in the environment of the protons in the heterocyclic anion, which was demonstrated by a downfield shift in the peaks at 6.34/6.91/7.36 ppm (a) to 6.57/7.10/7.65 ppm (b) after the IL was treated with 1% NO2 for 24 h, similar to shifts observed with SO2 and NO.26,27 The IL from the absorption rig after the final cycle (c) displayed a similar shift, showing that the same absorbed species was formed under different conditions. In both spectra after NO2 exposure, new peaks were observed above 13 ppm, suggesting the formation of HNO3 from the reaction of NO2 with residual water in the IL. The formation of HNO3 was further confirmed by IR spectroscopy of [P66614][Benzim] after 24 h exposure to 1% NO2 (Figure S4). The 13C NMR spectra (Figure S3) showed analogous changes, where small shifts were noted for the peaks attributed to the benzimidazolide anion (114–148 ppm) due to changes in aromaticity caused by NO2 absorption.

Ex situ XPS was further used to characterize the IL post-exposure in the absorption rig. A comparison of the N 1s region showed the presence of two new N 1s photoelectron peaks at 402.0 and 406.1 eV assigned to N–O species (Figure S5). The broad peak at 402.0 eV is assigned to absorbed NO2, with the peak at a higher binding energy of 406.1 eV indicating a more oxidized N species, which can be attributed to N2O4 absorption.39,40 Absorption of NO in the same IL resulted in a single photoelectron peak observed at 402.4 eV, which was attributed to N2O2 formation.27,41 These species are expected to be strongly absorbed to the IL as the high vacuum in the XPS analyzing chamber would negate the detection of any weakly absorbed gases.

ATR-IR spectra of [P66614][Benzim] under separate CO2 or NO feeds have been reported previously, showing characteristic bands for the absorbed species, with additional changes in the spectra observed due to changes in the aromaticity of the [Benzim]− anion.27 For CO2, reversible absorption and an equimolar capacity for absorption presented a simpler system than that for multi-site absorption, which has been reported here for NO2 and NO. With the higher absorption capacity of [P66614][Benzim] for NO2 and the formation of a strongly bound species, a combined approach by theoretical DFT calculations and FTIR was utilized to investigate the nature of the absorbed species in [P66614][Benzim].

DFT calculations revealed that the formation of an N2O4 dimer, physically absorbed to the [Benzim]− anion, was the most thermodynamically favored absorption mode (Table 1a). The charge perturbation from the [Benzim]− anion strongly enhanced the rate of dimerization of NO2, pushing the equilibrium towards N2O4 formation by strongly absorbing the dimer, thus removing it from the gas phase. The N2O4 dimer was found to physisorb strongly to the [Benzim]− anion, with a zero-point corrected absorption enthalpy (E_ZPE) of −107.8 kJ·mol−1 (Tables S2 and S3). Although the absorption of N2O4 is energetically very favorable, the absorbed geometry together with a detailed comparison of grouped Mulliken charges (Tables S4 and S5) indicates that it is a purely physical process without charge transfer from the anion, in comparison to that of chemically absorbed CO2. Instead, there are extremely strong dipole interactions between the two δ+ nitrogen centers of the absorbate and the formal negative charge on the anion.

Furthermore, the physical absorption of two N2O4 dimers at both N-sites of the [Benzim]− anion was energetically favorable, with an absorption enthalpy of −210.5 kJ·mol−1 (Table 1c). The multi-site absorption and greater than equimolar absorption of NO2 to the IL correlates with the large gravimetric uptake capacity (4.60 nNO2:nIL), and the high absorption enthalpies relate to the drop in CO2 capacity observed. These findings are also consistent with the experimentally observed results, where only a small decrease in absorbed NO2 was observed after desorption, probably due to the loss of weaker, physically bound, NO2.

ATR-IR spectra recorded during the absorption of 0.2% NO2 in Ar by [P66614][Benzim] are shown in Figure 2. It is evident that upon the introduction of NO2, a series of

Figure 2. ATR-IR spectra of [P66614][Benzim] exposed to a feed of 0.2% NO2 in Ar from 0 to 2 min. The spectrum of the IL before introduction of NO2 has been subtracted from all spectra recorded under the NO2 feed. Studied at 22 °C with a flow rate of 15 cm3·min−1.
overlapping bands in the 1300–1400 cm\(^{-1}\) region increased in intensity. Interestingly, upon initial exposure to the feed, a band at 1335 cm\(^{-1}\) was the most intense in this region, but with increasing exposure time, a band at 1315 cm\(^{-1}\) dominated the spectra. In addition, bands at 1620, 1233, and 1036 cm\(^{-1}\) increased in intensity with exposure to the NO\(_2\) feed. These changing bands could indicate a change in the nature of the absorbed species or absorption of a NO\(_2\) species at another N-site on the [Benzim]\(^-\) anion, as was observed with NO\(_2\).\(^{27}\)

Calculated vibrational spectra for one or two moles of physisorbed N\(_2\)O\(_4\) to N-sites on the [Benzim]\(^-\) anion showed indistinguishable spectral profiles, with theoretically derived bands at 1426, 1308, and 847 cm\(^{-1}\) for one mole of physically absorbed N\(_2\)O\(_4\) (Table 2) and 1433–1427, 1313–1305, and 847 cm\(^{-1}\) for two moles of N\(_2\)O\(_4\). The bands that formed upon the introduction of NO\(_2\) at 868, 1335 and 1373 cm\(^{-1}\) correspond with the calculated bands for physisorbed N\(_2\)O\(_4\) (Table 2). Bands at 1764/68 and 1825/24 cm\(^{-1}\) were predicted for the \(v_{\text{asym}}(O-N)\) vibration when one/two moles of N\(_2\)O\(_4\) were physically absorbed, but these bands were not observed experimentally, as described by the other authors.\(^{42-44}\)

While physisorbed N\(_2\)O\(_4\) was observed initially (eq 1), the spectra showed changes with time on stream, which were not simply an increase in the intensity of the bands assigned to N\(_2\)O\(_4\), thus suggesting the evolution of the absorbed species with an increasing NO\(_2\) concentration. The N–N bond of absorbed N\(_2\)O\(_4\) has been reported to undergo heterolytic cleavage, forming [NO\(_3\)]\(^-\) and [NO\(^+\)]\(^-\) ionic species due to perturbation by an external charged species (eq 2 and 3).\(^{45,46}\)

The energy diagrams in Table 1 show the most favored reaction pathway following the physisorption of one and two moles of N\(_2\)O\(_4\). In these reaction schemes, the heterolytic cleavage of the N–N bond of absorbed N\(_2\)O\(_4\) is favorable (b), but the activation barrier for the disproportionation reaction to NO\(^+\)/NO\(_3\)\(^-\) was above 100 kJ mol\(^{-1}\) and was considered too high (Figure S6). The cleavage of the N–N bond to form [NO\(_3\)]\(^+\) and [NO\(_2\)]\(^+\), however, can occur owing to the lower barrier (41.6 kJ mol\(^{-1}\)), forming a thermodynamically stable complex, which is the favored theoretical pathway following the initial physisorption of N\(_2\)O\(_4\) on [P\(_{66614}\)][Benzim].

\[
\begin{align*}
2\text{NO}_2(g) & \leftrightarrow \text{N}_2\text{O}_4(\text{abs}) \\
\text{N}_2\text{O}_4(\text{abs}) & \leftrightarrow \text{NO}_2^+ (\text{abs}) + \text{NO}_2^- (g) \\
\text{NO}_2^+ (\text{abs}) + \text{NO}_2^- (g) & \rightarrow \text{ONO}_2(\text{abs}) \rightarrow \text{NO}^+ + \text{NO}_3^-
\end{align*}
\]

The theoretical pathway involving [NO\(_3\)]\(^+\) and [NO\(_2\)]\(^-\) species has significant implications for the absorption capacity of the IL. The [NO\(_3\)]\(^+\) ion is proposed to absorb chemically to the [Benzim]\(^-\) anion, leading to a neutral [Benzim-NO\(_2\)] complex (Table 2b). The neutralization of the [Benzim]\(^-\) anion removes the active site for absorption, causing deactivation of the anion/IL, and provides evidence for the decreased CO\(_2\) capacity. The [NO\(_2\)]\(^-\) ion stabilizes the positively charged [P\(_{3333}\)]\(^+\) cation by orienting the negatively charged oxygen atoms into a position to counter the positively charged phosphorus (Table 2c). It could be proposed that the [NO\(_2\)]\(^-\) ion reacts with, or deprotonates, the acidic \(\alpha\)-protons close to the phosphonium cation center (P–CH\(_2\)–), but this pathway was not observed (see Table 2c, which shows the lowest energy structure).\(^{47}\) Additionally, Table 1c,d shows that when two moles of N\(_2\)O\(_4\) are physically bound, which is more likely at increased exposure times, the heterolytic cleavage of the N–N bonds has little driving force due to similar initial and final state energies, as well as a higher barrier (51.9 kJ mol\(^{-1}\)).

Thus, the formation of the neutral [Benzim-NO\(_2\)] complex (Table 1d) is expected to be equilibrium-limited, leading to the gradual decrease in the CO\(_2\) capacity of the IL.

To probe the evolution of the bands in Figure 2, the spectrum after 1 min under the NO\(_2\) feed was subtracted from all subsequent spectra (Figure 3) to allow comparison with the theoretically determined band positions of the [Benzim-NO\(_2\)] and [P\(_{66614}\)][NO\(_3\)] complexes (Table 2). A new band was observed at 1233 cm\(^{-1}\), attributed to the formation of a [NO\(_2\)]\(^-\) anion, and related to vibrations at 1405 and 828 cm\(^{-1}\). Evidence of a new N–N bond was observed at 1036 cm\(^{-1}\), from the formation of the neutral [Benzim-NO\(_2\)] complex, associated with bands at 1620, 1308, and 868 cm\(^{-1}\).\(^{48-50}\) The DFT calculated species correlated well with the observed ATR spectra, and additional features were due to changes in the aromaticity of the [Benzim]\(^-\) anion, as observed with CO\(_2\)/SO\(_2\)/NO\(_2\).\(^{26,27}\) Interestingly, the changes in the anion aromaticity are observed during the physical absorption of N\(_2\)O\(_4\), showing that the strong initial interaction distorts the charge density of the anion.

Table 2. Depicts the Experimental and [Theoretical] IR Vibrations when [P\(_{66614}\)][Benzim] Is Exposed to NO\(_2\)

Species	Vibration	IR vibration (cm\(^{-1}\))
(a) [[Benzim]-[N\(_2\)O\(_4\)]	v(N-N)	868 [847]
	v(O-N-O)	1335 [1308]
	v(N=O)	1373 [1426]
	v_\(\text{asym}(O-N)\)	1764/1825
(b) [Benzim-NO\(_2\)]	v(O-N-O)	868 [843]
	v(N-N)	1036 [1071]
	v(O-N-O)	1308 [1312-47]
	v_\(\text{asym}(O-N)\)	1620 [1630-76]
(c) [P\(_{66614}\)][NO\(_2\)]	v(O-N-O)	828 [816]
	v(O-N-O)	1233 [1236]
	v_\(\text{asym}(O-N)\)	1405 [1383]
Combining both the DFT calculations and the FTIR spectroscopic study allowed the determination of the absorbed species and how the speciation changed with time. The DFT results indicate the thermodynamically stable intermediates, while FTIR provides evidence for the proposed intermediates and the kinetics of absorption. Together, the results indicate the strong physical absorption of N₂O₄ followed by the deactivation of the IL through the formation of [Benzim-NO₂][PRRRR][NO₂] complexes at increased exposure times, which would be expected to result in a loss of absorption sites for CO₂ and the co-absorption of CO₂ was therefore studied as well.

A co-feed of 14% CO₂ and 0.2% NO₂ in Ar was investigated, simulating conditions in the gas absorption rig (Figure 3ii), to study whether bands assigned to the neutral complex would form and influence the CO₂ absorption capacity of the IL (as observed in the absorption rig results). The chemical absorption of CO₂ results in the formation of a carbamate species, with bands at 1709 (C=O) and 1281 cm⁻¹ (N=COO⁻) quickly increasing during the first minute of exposure to the feed, which is caused by the greater concentration of CO₂ in the feed. Simultaneously, bands associated with the physical absorption of N₂O₄ grow (1373 and 1334 cm⁻¹) due to the strong absorption enthalpy of the species (~107.8 kJ·mol⁻¹) (Table 1a). As the exposure time increases, the band at 1709 cm⁻¹ (C=O) is noted to decrease, while weak bands at 1233, 1036, 868, and 828 cm⁻¹ appear, indicating the chemical absorption of NO₂ to the [Benzim]⁻ anion and the formation of [P₆₆₆₁₄][NO₂]. This correlates with the stepped reduction in CO₂ capacity observed in the gas absorption rig. Subtracted data in Figure S7 show that bands due to the heterolytic cleavage of physisorbed N₂O₄ are observed to form with and without the presence of CO₂. The absorption of CO₂ does not hinder the absorption and subsequent heterolytic cleavage of N₂O₄, which, however, deactivates the IL to further absorption of CO₂.

The physical absorption of N₂O₄ at one site drastically changes the kinetics and thermodynamics of absorption at the remaining site, where the barrier for CO₂ activation is low (6.1 kJ·mol⁻¹) (Table 1e,f). Calculations show that the co-absorption of N₂O₄ and CO₂ to separate N-sites is thermodynamically stable (~147.3 kJ·mol⁻¹), aided by the low concentration of NO₂. After an extended period, both the deactivation of the [Benzim]⁻ anion and the larger absorption enthalpy of the binding of two moles of N₂O₄ (~210.5 kJ·mol⁻¹) suggest that decreases in CO₂ capacity are observed due to the loss of absorption sites. The reaction mechanism between the IL and CO₂/NO₂ is depicted in Figure S9, showing how the binding of a second N₂O₄ dimer further deactivates [P₆₆₆₁₄][Benzim] for CO₂ capture, before the formation of the [Benzim-NO₂][PRRRR][NO₂] complexes occurs at increased exposure times. The irreversible nature of the bound species is further demonstrated through studying the regeneration of the IL at 90 °C (Figure S8), where it was clear that the NO₂ species could not be fully desorbed from [P₆₆₆₁₄][Benzim].

These results differ from those when NO is in the co-feed, where the co-absorption of both CO₂ and NO was observed. The results obtained previously with NO were rationalized by the reaction landscape depicted in Figure S10, where the reduction of CO₂ is a barrierless process, and the activation barrier to form the NONO-ate complex is relatively high, showing a preference for the absorption of CO₂. After the formation of the carbamate, slow deactivation of the IL is observed in the presence of NO via a CO₂ bond intermediate (which enables NO to co-bind). Using in silico techniques, this observation was explained by the relatively high kinetic barriers for the formation of the NO₂ species bound to the IL from NO, as opposed to NO₂. Therefore, it is evident that an alternative absorption mechanism occurs, accelerating the effect that NO₂ has on the uptake of CO₂.

A summary of the effect of the different waste gas stream impurities on [P₆₆₆₁₄][Benzim] studied here is shown in Figure 4. It is clear that SO₂ has the greatest effect on reducing the CO₂ uptake in ILs followed by NO₂ and finally NO, in clear accord with the calculated absorption energies of ~123.9 kJ·mol⁻¹.27
and in this particular case, an absorbed on multiple sites in the form of N2O4. This species with di...impurities will still be required (gas scrubbers and traps).

Additionally, tuning the basicity of the IL by selecting anions...alternative methods of removing acidic...required, but a consideration of impurities and sorbent feasibility and optimization of ILs in such a process are still...and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0002-4178-8629; Phone: +33 (0) 2 47 36 73 29; Email: jj@univ-tours.fr; Fax: +33 (0) 2 47 36 70 73

Christopher Hardacre – Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0001-7256-6765; Phone: +44 (0) 161 306 2672; Email: c.hardacre@manchester.ac.uk

Authors
S. F. Rebecca Taylor – Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0002-6175-2631

Helen Daly – Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0002-1019-8490

Matthew G. Quesne – School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom; UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom; orcid.org/0000-0001-5130-1266

Nora H. de Leeuw – School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

C. Richard A. Catlow – School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom; UK

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.1c01451. Gravimetric results (Figure S1); absorption rig data displayed in Figure 1 (Table S1); NMR data and 1H/13C NMR spectra (Figures S2 and S3, respectively); ATR-IR spectra after the absorption of 1% NO2 (Figure S4); N 1 s XPS spectra (Figure S5); calculated absorption energies (Tables S2 and S3) and grouped Mulliken charges/spin populations for various gases to [P3333][Benzim] (Tables S4 and S5); potential energy landscape of oxygen transfer from bound NO2 (Figure S6); ATR-IR difference spectra of the absorption of NO2 and N2O + CO2 co-feed (Figure S7); ATR-IR spectra showing desorption of the NO2 and N2O + CO2 co-feed (Figure S8); mechanism depicting the effect of N2O4 adsorption on the CO2 recyclability of [P66614][Benzim] (Figure S9); potential energy landscape of CO2/NO absorption (Figure S10); listed Cartesian co-ordinates (PDF)

SUMMARY AND CONCLUSIONS
The accelerated effect of a flue gas contaminant, NOx, on the deactivation of [P66614][Benzim] was investigated and compared to NO. Industrially relevant gas concentrations were used to demonstrate how small amounts of impurities can dramatically change the capability of a sorbent to capture CO2 and in this particular case, an ~60% decrease in CO2 capacity was observed. This decrease was corroborated by other experimental techniques and DFT calculations, showing the importance of considering contaminants when designing ionic liquids, or new sorbents in general, for CO2 capture. Spectroscopic results in combination with DFT calculations showed that NOx was predominately strongly physically adsorbed on multiple sites in the form of N2O4. This species was then found to undergo heterolytic cleavage resulting in the deactivation of the IL. The ability to investigate the effects of flue gas impurities, individually and competitively, on the uptake of CO2, is an important experimental tool in the development of new sorbents and highlights the need for rigorous experimental methods, preferably in tandem with theoretical studies and the investigation of more complex, realistic multi-component feeds.

Overall, these results show the importance of investigating the effect of flue gas contaminants. Further studies into the feasibility and optimization of ILs in such a process are still required, but a consideration of impurities and sorbent recyclability is an essential factor. Significant improvements in tuning the selectivity and absorption enthalpies of ILs to reversibly capture NOx or SO2 at high efficiencies are challenging, and alternative methods of removing acidic impurities will still be required (gas scrubbers and traps). Additionally, tuning the basicity of the IL by selecting anions with different pK values presents an interesting opportunity for the pretreatment of waste gas feeds, where contaminants such as NOx could be reversibly captured.

Figure 4. CO2 uptake of [P66614][Benzim] after exposure to an increasing amount of flue gas impurity after multiple absorption/desorption cycles of a feed containing 14% CO2 and 0.2% impurity; dashed line, 14% CO2 only value. Green triangles, SO2. Red solid diamonds, NO2. Blue circles, NO. Adapted with permission from ref 26. Copyright 2018 American Chemical Society. Adapted with permission from ref 27. Copyright 2019 American Chemical Society

−107.8, and −91.1 kJ·mol−1, respectively (CO2 = −52.1 kJ·mol−1). It should be noted that, whereas the formation of the NONO-ate is thermodynamically stable (from the absorption of NO), this process is kinetically slow, hindered by the high concentration of CO2 in the gas feed.
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsuschemeng.1c01451

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge funding from the EPSRC under grant no. EP/N009533/1, a multi-disciplinary approach to generating low carbon fuels, carried out in collaboration with the University of Manchester, Queen’s University Belfast, Cardiff University, and University College London. Open access data can be found via the University of Manchester research portal. A.J.G. further acknowledges funding from the Department for Employment and Learning. Computing facilities for this work were provided by ARCCA at Cardiff University, HPC Wales, and through the membership of the UK’s Materials Chemistry Consortium (MCC). Additionally, computing resources were provided by the STFC Scientific Computing Department’s SCARF cluster. The MCC is funded by the EPSRC (EP/F067496). The UK Catalysis Hub is thanked for resources and support provided via the membership of the UK Catalysis Hub Consortium and funded by EPSRC (grants EP/R026815/1, EP/E026541/1, and EP/M013219/1).

REFERENCES

(1) Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture. *Energy Fuels* 2006, 20, 1514−1520.

(2) Erli, G.; Knoezeninger, H. *Handbook of Heterogeneous Catalysis; vol. 5* (Wiley-VCH: 1997).

(3) Gao, J.; Wang, S.; Zhao, B.; Qij, G.; Chen, C. Pilot-scale experimental study on the CO2 capture process with existing of SO2: Degradation, reaction rate, and mass transfer. *Energy Fuels* 2011, 25, 5802−5809.

(4) Clean Air Technology Centre. *Nitrogen Oxides (NOx), Why and How They Are Controlled; EPA 456/F-99-006R; United States Environmental Protection Agency: Research Triangle Park, 1999.

(5) European Parliament Directive 2008/50/EC of 21 May 2008 on ambient air quality and cleaner air for Europe; European Union law: [Online]. [Accessed 22 October 2018]. Available at: https://eur-lex.europa.eu/.

(6) Fostás, B.; Gangstad, A.; Nenseter, B.; Pedersen, S.; Sjovoll, M.; Sørensen, A. L. Effects of NOx in the flue gas degradation of MEA. *Energy Procedia* 2011, 4, 1566−1573.

(7) Supap, T.; Shi, H.; Idem, R.; Gelowitz, D.; Campbell, C.; Ball, M. Nitratosamine Formation Mechanism in Amine-Based CO2 Capture: Experimental Validation. *Energy Procedia* 2017, 114, 952−958.

(8) Magee, P. N.; Barnes, J. M. The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. *Br. J. Cancer* 1956, 10, 114−122.

(9) Rogers, R. D.; Seddon, K. R. Ionic Liquids—Solvants of the Future? *Science* 2003, 302, 792−793.

(10) Greer, A. J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. *Molecules* 2020, 25, 5207.

(11) Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Green processing using ionic liquids and CO2. *Nature 1999*, 399, 28−29.

(12) Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Improving carbon dioxide solubility in ionic liquids. *J. Phys. Chem. B* 2007, 111, 9001−9009.

(13) Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. Dual amino-functionalised phosphonium ionic liquids for CO2 capture. *Chemistry 2009*, 15, 3003−3011.

(14) Gurkan, B. E.; de la Fuente, J. C.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.; Brennecke, J. F. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. *J. Am. Chem. Soc.* 2010, 132, 2116−2117.

(15) Wang, C.; Luo, X.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S. Tuning the basicity of ionic liquids for equimolar CO2 capture. *Angew. Chem., Int. Ed.* 2011, 50, 4918−4922.

(16) Seo, S.; Quiroz-Guzman, M.; DeSilva, M. A.; Lee, T. B.; Huang, Y.; Goodrich, B. F.; Schneider, W. F.; Brennecke, J. F. Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture. *J. Phys. Chem. B* 2014, 118, 574−5751.

(17) Gohdrone, T. R.; Bum Lee, T.; DeSilva, M. A.; Quiroz-Guzman, M.; Schneider, W. F.; Brennecke, J. F. Competing Reactions of CO2 with Cations and Anions in Azolide Ionic Liquids. *ChemSusChem* 2014, 7, 1970−1975.

(18) Taylor, S. F. R.; McCrellas, C.; McStay, J.; Jacquemin, J.; Hardacre, C.; Mercy, M.; Bell, R. G.; de Leeuw, N. H. CO2 Capture in Wet and Dry Superbase Ionic Liquids. *J. Solution Chem.* 2015, 44, 511−527.

(19) Wang, C.; Cui, G.; Luo, X.; Xu, Y.; Li, H.; Dai, S. Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption. *J. Am. Chem. Soc.* 2011, 133, 11916−11919.

(20) Cui, G.; Zheng, J.; Luo, X.; Lin, W.; Ding, F.; Li, H.; Wang, C. Tuning anion-functionalized ionic liquids for improved SO2 capture. *Angew. Chem., Int. Ed. Eng.* 2013, 52, 10620−10624.

(21) Chen, K.; Lin, W.; Yu, X.; Luo, X.; Ding, F.; He, X.; Li, H.; Wang, C. Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas. *AIChE J.* 2015, 61, 2028−2034.

(22) Chen, K.; Shi, G.; Zhou, X.; Li, H.; Wang, C. Highly Efficient Nitric Oxide Capture by Azole-Based Ionic Liquids through Multi-Site Absorption. *Angew. Chem. Int. Ed. 2016*, 55, 14364−14368.

(23) Cao, N.; Gan, L.; Xiao, Q.; Lv, X.; Lin, W.; Li, H.; Wang, C. Highly Efficient and Reversible Nitric Oxide Capture by Function-Bound Ionic Liquids through Multiple-Site Absorption. *ACS Sustainable Chem. Eng.* 2020, 8, 2990−2995.

(24) Sun, Y.; Ren, S.; Hou, Y.; Zhang, K.; Zhang, Q.; Wu, W. Highly Efficient and Reversible Absorption of Low-Concentration NO by Amino-Acid-Based Ionic Liquids. *ACS Sustainable Chem. Eng* 2020, 8, 3283−3290.

(25) Zhai, R.; He, X.; Mei, K.; Chen, K.; Cao, N.; Lin, W.; Li, H.; Wang, C. Ultra-high Nitric Oxide Capture by Tetraakis(azolyl)borate Ionic Liquid through Multiple-Sites Uniform Interaction. *ACS Sustainable Chem. Eng.* 2021, 9, 3357−3362.

(26) Taylor, S. F. R.; McClellon, M.; McReynolds, C.; Daly, H.; Greer, A. J.; Jacquemin, J.; Hardacre, C. Understanding the Competitive Gas Absorption of CO2, and SO2, in Superbase Ionic Liquids. *Ind. Eng. Chem. Res.* 2018, 57, 17033−17042.

(27) Greer, A. J.; Taylor, S. F. R.; Daly, H.; Quesne, M.; Catlow, C. R. A.; Jacquemin, J.; Hardacre, C. Investigating the Effect of NO on the Capture of CO2 Using Superbase Ionic Liquids for Flue Gas Applications. *ACS Sustainable Chem. Eng.* 2019, 7, 3567−3574.

(28) Yuan, E.; Guo, B.; Zhang, D.; Shi, L.; Sun, H.; Wang, Y. Absorption of NO and NO2 in Caprolactam Tetrabutyl Ammonium Halide Ionic Liquids. *J. Air Waste Manage. Assoc.* 2011, 57, 1393−1397.

(29) Li, X.; Zhang, L.; Li, L.; Hu, Y.; Liu, J.; Xu, Y.; Luo, C.; Zheng, C. NO Removal from Flue Gas Using Conventional Imidazolium-Based Ionic Liquids at High Pressures. *Energy Fuels* 2018, 32, 6039−6048.

(30) Kunov-Kruse, A. J.; Thomasssen, P. L.; Riisager, A.; Mossin, S.; Fehrmann, R. Absorption and Oxidation of Nitrogen Oxide in Ionic Liquids. *Chem.-A Eur. J.* 2016, 22, 11745−11755.
(31) Oster, K.; Goodrich, P.; Jacquant, J.; Hardacre, C.; Ribeiro, A. P. C.; Elsiniawi, A. A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 2018, 121, 97–111.

(32) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T.; Honda, Y. Kitaó, O.; Nakai, H.; Velev, T.; Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E. Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J.; Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, J.; Farkas, O.; Curl, R. J., Ditchfield, R., Fox, D. J. Gaussian, Inc.: Wallingford CT, 200.

(33) Sahu, S.; Quesne, M. G.; Davies, C. G.; Dyn, M.; Ivanović-Brunovska, I.; Siegl, M. A.; Jameson, G. N. L.; De Visser, S. P.; Goldberg, D. P. Direct observation of a nonheme iron(IV)-oxo complex that mediates aromatic C-F hydroxylation. J. Am. Chem. Soc. 2014, 136, 13542–13545.

(34) Neu, H. M.; Yang, T.; Baglia, R. A.; Yosca, T. H.; Green, M. T.; Quesne, M. G.; de Visser, S. P.; Goldberg, D. P. Oxygen-Atom Transfer Reactivity of Axially Ligated Mn(V)-Oxo Complexes: Evidence for Enhanced Electrophilic and Nucleophilic Pathways. J. Am. Chem. Soc. 2014, 136, 13845–13852.

(35) Timmins, A.; Quesne, M. G.; Borowski, T.; de Visser, S. P. Group Transfer to an Aliphatic Bond: A Biomimetic Study Inspired by Nonheme Iron Halogenases. ACS Catal. 2018, 8, 8685–8698.

(36) Mercy, M.; Rebecca Taylor, S. F.; Jacquant, J.; Hardacre, C.; Bell, R. G.; De Leeuw, N. H. The addition of CO2 to four superbase ionic liquids: a DFT study. Phys. Chem. Chem. Phys. 2015, 17, 28674–28682.

(37) Zhurko, G.; Zhurko, D. Chemcraft Program. Academic version 1.5. 2004.

(38) Grimmer, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(39) Polonetti, G.; Alnot, P.; Brundle, C. R. The adsorption and reactions of NO2 on the Ag(111) surface. I. XPS/UPS and annealing studies between 90 and 300 K. J. Phys. Chem. A 2000, 104, 13534–13545.

(40) Sysoev, V. I.; Okotrub, A. V.; Gusel’nikov, A. V.; Smirnov, D. A.; Bulashova, L. G. In situ XPS Observation of Selective NOx Adsorption on the Oxygenated Graphene Films. Phys. status solidi (2018) 255, 17002671–17002675.

(41) Ruiz-Soria, G.; Pérez Paz, A.; Sauer, M.; Mowbray, D. J.; Lacovig, P.; Dalmiglio, M.; Lizzit, S.; Yanagi, K.; Rubio, A.; Goldoni, A.; Ayala, P.; Piclier, T. Revealing the Adsorption Mechanisms of Nitrosoxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes. ACS Nano 2014, 8, 13756–1383.

(42) Koch, T. G.; Horn, A. B.; Chesters, M. A.; McCoustra, M. R. S.; Sodeau, J. R. A low-temperature reflection-absorption infrared spectroscopic study of ultrathin films of dinitrogen tetroxide and dinitrogen pentoxide on gold foil. J. Phys. Chem. 1995, 99, 8362–8367.

(43) Wang, J.; Koel, B. E. IRAS Studies of NOx, N2O5, and N2O4 Adsorbed on Au(111) Surfaces and Reactions with Coadsorbed H2O. J. Phys. Chem. A 1998, 102, 8573–8579.

(44) Cataldo, F.; Compagnini, G.; D’Urso, L.; Mita, V.; Strazzulla, G.; Ursini, O.; Angelini, G. Adsorption of dinitrogen tetroxide (N2O4) on multi-walled carbon nanotubes (MWCNTs). Fullerene Nanotubes Carbon Nanostruct. 2008, 16, 154–164.

(45) Pidko, E. A.; Mignon, P.; Geerlings, P.; Schoonheydt, R. A.; Van Santen, R. A. A periodic DFT study of N2O4 disproportionation on alkali-exchanged zeolites X. J. Phys. Chem. C 2008, 112, 5510–5519.

(46) Lignell, H.; Varner, M. E.; Finlayson-Pitts, B. J.; Benny Gerber, R. Isomerization and ionization of N2O4 on model ice and silica surfaces. Chem. Phys. 2012, 405, 52–59.

(47) Yeaton, D. J.; Jacquant, J.; Plechkova, N. V.; Maréchals, M.; Seddon, K. R. Induced Proton Behaviour in Aprotic Ionic Liquids by Anion Basicity for Efficient Carbon Dioxide Capture. Chem-PhysChem 2020, 21, 1369–1374.

(48) Busca, G.; Lorenzelli, V. Infrared study of the adsorption of nitrogen dioxide, nitric oxide and nitrous oxide on hematite. J. Catal. 1981, 72, 303–313.

(49) Weston, R. E., Jr.; Brodasky, T. F. Infrared Spectrum and Force Constants of the Nitrite Ion. J. Chem. Phys. 1957, 27, 683–689.

(50) Gatehouse, B. M.; A survey of the infrared spectra of NO2 in metal complexes. J. Inorg. Nucl. Chem. 1958, 8, 79–86.