Total reversal of internal carotid blood flow in a patient with severe stenosis of the brachiocephalic trunk

Carlos Eduardo Del Valle1, Luiz Fernando Tosi Ferreira2, Pedro Henrique Bragato2, Sara Lucy de Oliveira2, Fernanda de Oliveira Mauro2, Walter Junior Boim de Araújo2

ABSTRACT
Occlusions and severe stenoses of the innominate artery (brachiocephalic trunk) are rare and present with a wide variety of clinical manifestations, with hemispheric, vertebrobasilar and right upper limb ischemic symptoms. The most common cause is atherosclerosis. Duplex scanning may show right vertebral artery flow reversal, diminished subclavian flow, and several patterns of right carotid flow disturbance, including slow flow, partial flow reversal during the cardiac cycle and even complete reversal of flow in the internal carotid artery, which is a very uncommon finding. Herein, the authors describe the case of a female patient who was a heavy smoker, had severe stenosis of the brachiocephalic trunk, and had episodes of collapse. Besides the subclavian steal and partial flow reversal in the common carotid artery, duplex scanning also showed high-velocity reversed flow in the internal carotid artery during the entire cardiac cycle, a finding that is not reported in the literature at this magnitude.

Keywords: brachiocephalic trunk; ultrasonography, Doppler, duplex; brain ischemia.

RESUMO
As estenoses graves e oclusões do tronco braquiocefálico (artéria inominada) são raras, e apresentam uma grande variedade de manifestações clínicas, com alterações relacionadas a isquemia cerebral hemisférica, vertebrobasilar e de membro superior direito. A causa mais comum é a aterosclerose. A ultrassonografia vascular com Doppler pode revelar inversão de fluxo na artéria vertebral direita, hipofluxo na subclávia, e vários tipos de alterações no fluxo da carótida direita, incluindo hipofluxo, inversão parcial do fluxo durante o ciclo cardíaco, e até mesmo inversão completa do fluxo na carótida interna, achado este bastante raro. Os autores descrevem o caso de paciente do sexo feminino, tabagista, com estenose grave do tronco braquiocefálico e crises de lipotimia. Além do roubo de artéria subclávia e do fluxo parcialmente invertido na carótida comum direita, a paciente apresentava exuberante fluxo invertido na carótida interna durante todo o ciclo cardíaco, achado este não encontrado na literatura em tamanha magnitude.

Palavras-chave: tronco braquiocefálico; ultrassonografia Doppler; isquemia encefálica.

HOW TO CITE: Del Valle CE, Ferreira LFT, Bragato PH, Oliveira SL, Mauro FO, Araújo WJB. Total reversal of internal carotid blood flow in a patient with severe stenosis of the brachiocephalic trunk. J Vasc Bras. 2020;19:e20190124. https://doi.org/10.1590/1677-5449.190124
INTRODUCTION

Stenoses or occlusions of the brachiocephalic trunk (BCT, innominate artery) are rare and can present with a variety of clinical signs.1-3 Since the right subclavian artery and the right common carotid artery originate from the BCT, there may be manifestations of right upper limb ischemia, vertebrobasilar ischemia due to subclavian steal, or hemispheric symptoms related to carotid flow.2,4 Supplementary findings seen on vascular Doppler ultrasonography (USD) are highly variable. Flow reversal in the ipsilateral vertebral artery (subclavian steal phenomenon) may be accompanied by a phenomenon known as double steal, when perfusion of the ipsilateral common carotid artery also becomes dependent on the ipsilateral vertebral artery (in this case, the term “double steal” indicates that the vertebral artery perfuses both the upper limb and the right carotid).5-7 The changes detected by USD in the right carotid system can involve a variety of different abnormal flow patterns, including hypoflow with or without partial reversal of flow through the right common carotid artery, hypoflow or flow reversal through the right external carotid, and even cases in which the right internal carotid exhibits partial4,10 or total4,11 flow reversal.

This report describes a case of high-velocity reversed flow through the right internal carotid artery in a patient with asymmetric pulses and blood pressures in the upper limbs.

CASE DESCRIPTION

The patient was a 58-year-old, hypertensive female smoker (20 cigarettes/day), with symptoms of frequent episodes of collapse. During outpatients follow-up at a cardiology service, it was observed that the patient had significant differences in upper limb pulses and blood pressure levels. The patient stated that she had no previous history of stroke or transitory ischemic events or any symptoms in the right upper limb.

The difference in blood pressure levels in the upper limbs was investigated with USD of the carotid and vertebral arteries and the arteries of the upper limbs. The findings were as follows:

- complete reversal of flow in the right vertebral artery (subclavian steal phenomenon; Figure 1);
- partial flow reversal in the right common carotid, with caudal diastolic flow (Figure 2);
- complete reversal of flow in the right internal carotid (Figure 3);
- low velocity and low resistance anterograde flow in the right external carotid (Figure 4);
- low velocity hypoflow in the right subclavian (Figure 5);
- absence of flow in the BCT detectable by the method (Figure 6).

Figure 1. Reversal of flow in the right vertebral artery, constituting subclavian steal.
The investigation was continued using angiotomography, which showed atheromatous plaques with irregular surfaces and areas of ulceration causing severe stenosis in the BCT and at the origin of the right subclavian artery. The patient underwent hybrid endovascular treatment, with access obtained by dissection of the right carotid (Figure 7) and right brachial arteries, with confirmation of the lesions on the initial arteriography (Figure 8). Stenoses were treated by placement of a 6x25 mm Viabahn Gore covered stent in the BCT (because of the instability of the atheromatous plaques) and angioplasty with a 7x17 mm Express LD balloon-expandable stent in the right subclavian artery stenosis (Figure 9).

Figure 2. Partial reversal of flow in the right common carotid artery, with a to-and-fro appearance and anterograde flow during diastole only.

Figure 3. Total reversal of flow in the right internal carotid artery during the entire cardiac cycle, with systolic velocity close to 100 cm/s.
Reversed carotid flow in innominate stenosis

Figure 4. Low velocity anterograde flow in the right external carotid artery.

Figure 5. Low velocity hypoflow in the right subclavian artery.

Figure 6. No flow in the BCT detectable by the method. RCCA = right common carotid artery; RSCLA = right subclavian artery; TBC = brachiocephalic trunk.
The patient suffered no intercurrent conditions and postoperative control USD showed normalization of the flows through the right carotid artery (Figure 10). The patient has been in postoperative follow-up for 1 year and 10 months and reports that she has not had any further episodes of collapse.

DISCUSSION

Severe stenoses and occlusions of the BCT are rare conditions and their true prevalence may well be unknown. In a study analyzing 30,000 USD examinations, the prevalence of obstructive disease...
Reversed carotid flow in innominate stenosis

involving the BCT was lower than 0.1%, while angiography studies suggest that they account for around 2.5% of lesions involving the extracranial circulation. The most common cause is atherosclerosis, while other possible etiologies include Takayasu’s Arteritis, giant-cell arteritis, radiotherapy-induced actinic fibrosis, and fibromuscular dysplasia.

The most common symptoms include ischemia of the right upper limb, vertebrobasilar ischemia, and hemispheric symptoms in the territory corresponding to the right carotid system. In the case of the patient described here, the manifestations that prompted ordering of the USD examination were merely reduced pulses in the right upper limb and asymmetric blood pressures across the two upper limbs. The episodes of collapse were not initially attributed to presence of cerebrovascular disease, but as additional factors were revealed, this relationship was found to be present.

The most common USD finding in lesions involving the BCT is flow reversal in the right vertebral artery (subclavian steal phenomenon); but, in contrast with “single” subclavian steal, which occurs in obstructive lesions of the subclavian artery, there are also changes to flow in the right carotid system. Manifestations can range from reduction of peak systolic velocity in the carotid artery, with flow remaining anterograde, to cases of total reversal of flow, as reported in the present case. A hypothesis of a significant obstructive lesion of the BCT should always be considered in cases in which there is diffuse reduction of flow in the right carotid artery. If direct images of the BCT are difficult to obtain with a linear transducer, a convex or sector transducer can be used to try to directly document the lesion.

What makes this case particularly out of the ordinary, beyond the aforementioned rarity of this type of lesion, is the high velocity of the reversed flow in the right internal carotid artery (Figure 3). In our review of the literature, we found 24 articles that specifically mention changes found on vascular USD of obstructive lesions of the BCT (Table 1). Six of these describe hypoflow through the internal carotid artery without flow reversal in any phase of the cardiac cycle, and three only referred to the common carotid, without describing findings specific to the internal carotid. The most often reported finding (in 13 articles) was partial reversal of flow in the internal carotid artery, with retrograde flow during systole, but antegrade flow during diastole. Just two studies described complete reversal of flow in the internal carotid throughout the entire cardiac cycle:

![Figure 10. Comparison of the initial (A) and postoperative control (B) Doppler ultrasonography.](image-url)
Grant et al.11 observed reversal with minimal diastolic flow and Borne et al.4 observed reverse flow throughout the whole cardiac cycle, but with systolic velocity of 37 cm/s. In our review, we did not find any cases of such high-velocity reversal as in the case described here, with systolic velocities approaching 100 cm/s (Figure 3).

No flow through the BCT detectable by the method was seen on USD; however, both angiotomography and arteriography via catheter demonstrated severe subocclusive stenosis, which constitutes pseudo-occlusion (an absence of flow on Doppler, but with patency demonstrated on angiography via catheter or on angiotomography, which is a phenomenon that occurs in very accentuated stenosis). The likelihood of pseudo-occlusion is possibly higher in the BCT than in the internal carotid artery, taking into account the vessel’s deep location.3

With regard to treatment, it is well-known that the BCT is a complex region to approach, because of its large diameter, short length, and anatomy including bifurcation to the subclavian and common carotid arteries.25 Another point that merits attention is transfemoral access, which may not be possible because of poor conditions along the route (femoral and iliac arteries and the aorta).25 In the present case, the decision to use a combined access, via the right upper limb and the right common carotid artery, was taken because of the ostial position of the lesion in the BCT in angiotomography, which is normally predictive of difficult catheterization via the femoral route, and also because this technique offers good protection against perioperative embolism. Thus, direct access to the vessels of the BCT via the right common carotid artery is an attractive option. The hybrid technique is safe and effective, offering protection against distal embolization via direct control of the common carotid artery with clamping and unclamping in a selective sequence.25 The patient had attributed her frequent episodes of collapse to presumed variations in blood pressure, but her symptoms disappeared after repair of the BCT stenosis and its repercussions for cerebrovascular hemodynamics, suggesting that the symptoms were caused by encephalic ischemia.

REFERENCES

1. Guedes BF, Valeriano RP, Puglia P Jr, Arantes PR, Conforto AB. Pearls & Oy-sters: symptomatic innominate artery disease. Neurology. 2016;86(12):e128-31. http://dx.doi.org/10.1212/WNL.0000000000002483. PMid:27001994.
Inversão total do fluxo em artéria carótida interna direita em paciente com estenose grave do tronco braquiocefálico

Total reversal of internal carotid blood flow in a patient with severe stenosis of the brachiocephalic trunk

Carlos Eduardo Del Valle¹, Luiz Fernando Tosi Ferreira², Pedro Henrique Bragato², Sara Lucy de Oliveira², Fernanda de Oliveira Mauro², Walter Junior Boim de Araújo²

RESUMO
As estenoses graves e oclusões do tronco braquiocefálico (artéria inominada) são raras, e apresentam uma grande variedade de manifestações clínicas, com alterações relacionadas a isquemia cerebral hemisférica, vertebrobasilar e de membro superior direito. A causa mais comum é a aterosclerose. A ultrassonografia vascular com Doppler pode revelar inversão de fluxo na artéria vertebral direita, hipofluxo na subclávia, e vários tipos de alterações no fluxo da carótida direita, incluindo hipofluxo, inversão parcial do fluxo durante o ciclo cardíaco, e até mesmo inversão completa do fluxo na carótida interna, achado este bastante raro. Os autores descrevem o caso de paciente do sexo feminino, tabagista, com estenose grave do tronco braquiocefálico e crises de lipotimia. Além do roubo de artéria subclávia e do fluxo parcialmente invertido na carótida comum direita, a paciente apresentava exuberante fluxo invertido na carótida interna durante todo o ciclo cardíaco, achado este não encontrado na literatura em tamanha magnitude.

Palavras-chave: tronco braquiocefálico; ultrassonografia Doppler; isquemia encefálica.

ABSTRACT
Occlusions and severe stenoses of the innominate artery (brachiocephalic trunk) are rare and present with a wide variety of clinical manifestations, with hemispheric, vertebrobasilar and right upper limb ischemic symptoms. The most common cause is atherosclerosis. Duplex scanning may show right vertebral artery flow reversal, diminished subclavian flow, and several patterns of right carotid flow disturbance, including slow flow, partial flow reversal during the cardiac cycle and even complete reversal of flow in the internal carotid artery, which is a very uncommon finding. Herein, the authors describe the case of a female patient who was a heavy smoker, had severe stenosis of the brachiocephalic trunk, and had episodes of collapse. Besides the subclavian steal and partial flow reversal in the common carotid artery, duplex scanning also showed high-velocity reversed flow in the internal carotid artery during the entire cardiac cycle, a finding that is not reported in the literature at this magnitude.

Keywords: brachiocephalic trunk; ultrasonography, Doppler, duplex; brain ischemia.

Como citar: Del Valle CE, Ferreira LFT, Bragato PH, Oliveira SL, Mauro FO, Araújo WJB. Inversão total do fluxo em artéria carótida interna direita em paciente com estenose grave do tronco braquiocefálico. J Vasc Bras. 2020;19: e20190124. https://doi.org/10.1590/1677-5449.190124

¹Universidade Federal do Paraná – UFPR, Hospital de Clínicas, Unidade de Ecodoppler Vascular, Curitiba, PR, Brasil.
²Universidade Federal do Paraná – UFPR, Hospital de Clínicas, Departamento de Cirurgia, Curitiba, PR, Brasil.

Fonte de financiamento: Nenhuma.

Conflito de interesse: Os autores declararam não haver conflitos de interesse que precisam ser informados.

Submetido em: Setembro 30, 2019. Aceito em: Dezembro 24, 2019.

O estudo foi realizado no Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brasil.
INTRODUÇÃO

As estenoses ou oclusões de tronco braquiocefálico (TBC, artéria inominada) são entidades raras e podem apresentar sinais clínicos variados1-3. Pelo fato de o TBC originar a artéria subclávia direita e a artéria carótida comum direita, pode haver manifestações de isquemia de membro superior direito, isquemia vertebrobasilar por roubo de subclávia, ou sintomas hemisféricos relacionados ao fluxo carotídeo2,4. Os achados complementares na ultrassonografia vascular com Doppler (USD) são bastante variados. A inversão de fluxo na artéria vertebral ipsilateral (fenômeno do roubo de subclávia) pode ser acompanhada do chamado duplo roubo, quando a artéria carótida comum ipsilateral também passa a ter sua perfusão dependente da vertebral ipsilateral (o termo “duplo roubo” nesse caso significando que a artéria vertebral perfunde o membro superior e também a carótida direita)5-7. As alterações detectadas pela USD no sistema carotídeo direito podem assumir variados padrões de alteração de fluxo, entre eles hipofluxo com ou sem inversão parcial em artéria carótida comum direita, hipofluxo ou inversão de fluxo na carótida externa direita, e inclusive casos em que até mesmo a carótida interna direita apresenta inversão parcial8-10 ou total11 de fluxo.

O presente relato descreve um caso de inversão exuberante do fluxo na artéria carótida interna direita em uma paciente com assimetria de pulsos e de níveis pressóricos em membros superiores.

DESCRIÇÃO DO CASO

Paciente do sexo feminino, 58 anos, hipertensa e tabagista (20 cigarros/dia), com sintomas de crises frequentes de lipotimia. Observou-se diferença significativa de pulsos e medidas pressóricas em membros superiores durante acompanhamento ambulatorial com o serviço de cardiologia. A paciente negava acidente vascular encefálico ou ataque isquêmico transitório prévio, e negava sintomas no membro superior direito.

Para investigar a diferença pressórica nos membros superiores, foi solicitada USD de artérias carótidas, vertebrais e arterial de membros superiores. Os achados foram:

- inversão completa de fluxo na artéria vertebral direita (fenômeno do roubo de subclávia; Figura 1);
- inversão parcial de fluxo na carótida comum direita, com fluxo diastólico caudal (Figura 2);
- inversão completa de fluxo na carótida interna direita (Figura 3);
- fluxo anterógrado de baixa velocidade e baixa resistência na carótida externa direita (Figura 4);
- hipofluxo de baixa velocidade na subclávia direita (Figura 5);
- ausência de fluxo ao método em TBC (Figura 6).

Figura 1. Inversão do fluxo na artéria vertebral direita (ART. VERT. DIR), configurando roubo de subclávia.
A investigação prosseguiu com angiotomografia, que evidenciou placa de ateroma com superfície irregular e áreas de ulceração gerando estenose grave em TBC e na origem da artéria subclávia direita. A paciente foi submetida a tratamento híbrido endovascular com acesso por dissecção em artéria carótida direita (Figura 7) e braquial direita, com a arteriografia inicial confirmando as lesões (Figura 8). As estenoses foram tratadas com implante de endoprótese revestida Viabahn Gore 6x25 mm em TBC (devido à instabilidade da placa de ateroma) e angioplastia com stent expansível por balão Express LD 7x17 mm em estenose da artéria subclávia direita (Figura 9). A paciente apresentou
Figura 4. Fluxo anterógrafo de baixa velocidade da artéria carótida externa direita (ACED).

Figura 5. Hipofluxo de baixa velocidade na artéria subclávia direita (SUBCL DIR).

Figura 6. Ausência de fluxo detectável ao método no TBC. ACCD = artéria carótida comum direita; SUBCL D = artéria subclávia direita; TBC = tronco braquicefálico.
evolução sem intercorrências e foi submetida a USD de controle pós-operatório, que evidenciou normalização nos fluxos em artéria carótida direita (Figura 10). A paciente encontra-se com 1 ano e 10 meses de seguimento pós-operatório e relata não ter mais sofrido crises de lipotimia.

As estenoses graves e oclusões do TBC são lesões raras, e sua verdadeira prevalência pode ser desconhecida\(^1\). Em um estudo de 30.000 exames de
USD, a prevalência de doença obstrutiva do TBC foi inferior a 0,1%12, com estudos de angiografia sugerindo que ela representa em torno de 2,5% das lesões da circulação extracraneiana2. A causa mais comum é a aterosclerose, além de outras potenciais etiologias como arterite de Takayasu, arterite de células gigantes, fibrose actínica por radioterapia e displasia fibromuscular4.

Os sintomas mais comuns incluem isquemia de membro superior direito, isquemia vertebrobasilar e sintomas hemisféricos no território correspondente ao sistema carotídeo direito13. No caso da paciente descrita no presente trabalho, as manifestações que levaram à solicitação do exame de USD consistiam em apenas diminuição de pulsos no membro superior direito e assimetria da pressão arterial entre os dois membros superiores. De início, as crises de lipotimia não foram atribuídas à presença de doença cerebrovascular, mas com o decorrer dos fatos essa relação se revelou presente.

O achado mais comum na USD em lesões do TBC é a inversão de fluxo na artéria vertebral direita (fenômeno do roubo de subclávia)14; porém, ao contrário do roubo de subclávia “simples”, que ocorre em lesões obstrutivas da artéria subclávia, existem alterações de fluxo no sistema carotídeo direito1,15,16. Pode haver desde apenas redução na velocidade de pico sistólico na artéria carótida, com fluxo ainda anterógrado, até casos de inversão total do fluxo, como o relatado no presente caso. A hipótese de lesão obstrutiva significativa do TBC sempre deve ser considerada em casos nos quais o fluxo na artéria carótida direita é difusamente reduzido11. Quando imagens diretas do TBC são difíceis de obter com transdutor linear, pode-se usar transdutor convexo ou setorial, na tentativa de se obter documentação direta da lesão.

O que torna este caso particularmente distinto do habitual, afora a anteriormente mencionada raridade desse tipo de lesão, é a exuberância do fluxo invertido na artéria carótida interna direita (Figura 3). Em nossa revisão da literatura, foram encontrados 24 artigos que mencionam especificamente as alterações presentes na USD vascular em lesões obstrutivas do TBC (Tabela 11-24). Desses, seis descrevem hipofluxo na artéria carótida interna sem inversão do fluxo em nenhuma fase do ciclo cardíaco12,13,15,19,22,23, e três fazem referência apenas à carótida comum, sem descrever os achados especificamente na carótida interna1,14,17. O achado mais relatado (13 artigos) foi a inversão parcial do fluxo na artéria carótida interna, com fluxo retrógrado na sístole porém anterógrado na diástole2,3,5,10,16,18,20,21,24. Apenas dois trabalhos mostram uma inversão completa do fluxo na carótida
Fluxo carotídeo invertido em estenose de inominada

Tabela 1. Revisão bibliográfica acerca dos achados da ultrassonografia Doppler na carótida interna em pacientes portadores de lesões obstrutivas do tronco braquiocefálico. Autores mencionados em ordem alfabética.

Autor	Ano	Fluxo na artéria carotídea interna
Ackerstaff et al.	1984	Menciona apenas carótida comum
Borne et al.	2015	Inversão completa
Brunhözl e von Reutern	1989	Hipofluxo sem inversão
Calin et al.	2018	Inversão parcial
Deurdulian et al.	2016	Inversão completa
Esen et al.	2016	Inversão parcial
Fils et al.	2008	Inversão parcial
Grant et al.	2006	Inversão completa
Grosved et al.	1988	Menciona apenas carótida comum
Guedes et al.	2016	Menciona apenas carótida comum
Han et al.	2017	Inversão parcial
Horrow et al.	2008	Hipofluxo sem inversão
Maier et al.	2014	Inversão parcial
Racy	2019	Inversão parcial
Rawal et al.	2019	Hipofluxo sem inversão
Rodriguez	2016	Inversão parcial
Schwend et al.	1995	Inversão parcial
Scoutt	2019	Hipofluxo sem inversão
Sidhu e Morarji	1995	Hipofluxo sem inversão
Tenny e Fleischmann	2017	Inversão parcial
Verlato et al.	1993	Hipofluxo sem inversão
Uzun et al.	2008	Inversão parcial
Willoughby et al.	2014	Inversão parcial
Zwiebel e Pellerito	2005	Inversão parcial

internamente durante todo o ciclo cardíaco: Grant et al. mostram uma inversão com mínimo fluxo diastólico, e Borne et al. mostram fluxo inverso durante todo o ciclo cardíaco, porém com velocidade sistólica de 37 cm/s. Em nossa revisão, não foram encontrados casos de inversão tão abundante quanto no caso presentemente descrito, com velocidades sistólicas se aproximando dos 100 cm/s (Figura 3).

A USD não demonstrou fluxo detectável ao método no TBC; porém, tanto a angiotomografia como a arteriografia por cateter demonstraram estenose grave suboclusiva, o que configura pseudo-oclusão (ausência de fluxo ao Doppler porém com perviedade demonstrada em angiografia por cateter ou angiotomografia, fenômeno que ocorre em estenoses muito acentuadas). No caso do TBC, a chance de pseudo-oclusão é talvez maior do que na artéria carótida interna, tendo em vista a localização profunda daquele vaso.

No que se refere ao tratamento, é sabido que o TBC é uma região de abordagem complexa, dado seu grande diâmetro, comprimento restrito e a anatomia com bifurcação para artérias subclávia e carótida comum. Outro alvo de atenção é o acesso transfemoral, que pode ser impossibilitado devido a más condições no trajeto vascular (artérias femoral, ilíaca e aorta). No presente caso, a opção pelo acesso combinado pelo membro superior direito e pela artéria carótida comum direita foi considerada devido à natureza ostial da lesão do TBC na angiotomografia, o que normalmente prediz cateterização difícil pela via femoral, além de oferecer boa proteção contra embolismo transoperatório. Assim, o acesso direto aos vasos do TBC via artéria carótida comum direita se torna uma opção interessante. A técnica híbrida é segura e efetiva, oferecendo proteção contra embolização distal por meio do controle direto da artéria carótida comum com clampamento e desclampamento em sequência seletiva. A paciente atribuiu suas crises frequentes de lipotimia a uma suposta variação na pressão arterial, porém os sintomas desapareceram após a correção da estenose de TBC e de suas repercussões na hemodinâmica cerebrovascular, o que sugere que os sintomas eram decorrentes de isquemia encefálica.

REFERÊNCIAS

1. Guedes BF, Valeriano RP, Puglia P Jr, Arantes PR, Conforto AB. Pearls & Oy-sters: symptomatic innominate artery disease. Neurology. 2016;86(12):e128-31. http://dx.doi.org/10.1212/WNL.0000000000002483. PMid:27001994.
2. Deurdulian C, Emmanuel N, Tchelepi H, Grant EG, Malhi H. Beyond the bifurcation: there is more to cerebrovascular ultrasound than internal carotid artery stenosis. Ultrasound Q. 2016;32(3):224-40. http://dx.doi.org/10.1097/RUQ.0000000000000184. PMid:26688099.

3. Rodriguez JD. Brachiocephalic artery disease progression resulting in complex steal phenomena. J Digon Med Sonog. 2016;32(3):173-80. http://dx.doi.org/10.1177/1078564916649950.

4. Borne RT, Aghel A, Patel AC, Rogers RK. Innominate steal syndrome: a two patient case report and review. AIMS Med Sci. 2015;2:360-70. http://dx.doi.org/10.3934/mms.2015.2.360.

5. Willoughby AD, Aghel A, Patel AC, Rogers RK. Innominate steal syndrome: a two patient case report and review. AIMS Med Sci. 2015;2:360-70. http://dx.doi.org/10.3934/mms.2015.2.360.

6. Brunhölzl CH, von Reutern GM. Hemodynamic effects of right subclavian double steal syndrome. Korean J Clin Lab Sci. 2013;49(3):36-21. http://dx.doi.org/10.3324/kjcls.2013.49.3.316.

7. Han M, Jin BH, Nam HS. The role of duplex sonography in rare innominate artery occlusion. J Med Ultrason. 2016;43(3):435-8. http://dx.doi.org/10.1007/s10396-016-0713-1. PMid:27107766.

8. Filis K, Toufektzian L, Sigala F, et al. Right subclavian double steal syndrome: a case report. J Med Case Rep. 2008;2(1):392. http://dx.doi.org/10.1186/1752-1947-2-392. PMid:19108708.

9. Han M, Jin BH, Nam HS. The role of duplex sonography in rare innominate artery occlusion. J Vascular Ultrason. 2017;41(4):179-80. http://dx.doi.org/10.1177/154431671704100406.

10. Racy CB F. Occlusão do tronco arterial bráquio-cefálico. Rev Angiol Cir Vasc. 2019;2:17-9.

11. Grosveld WJ, Lawson JA, Eikelboom BC, vd Windt JM, Ackerstaff RG. Clinical implications of common carotid artery stenosis. Ann Vasc Surg. 2017;43:242-8. http://dx.doi.org/10.1016/j.avsg.2017.02.009. PMid:28478176.

12. Brunhölzl CH, von Reutern GM. Hemodynamic effects of innominate artery occlusive disease. Evaluation by Doppler ultrasound. Ultrasound Med Biol. 1989;15(3):201-4. http://dx.doi.org/10.1016/0301-5629(89)90064-1.

13. Rawal AR, Bufano C, Saeed O, Khan AA. Double steal phenomenon: a case presentation. J Med Case Rep. 2008;2(1):392. http://dx.doi.org/10.1186/1752-1947-2-392. PMid:19108708.

14. Vanezis P, Martin J, Atkinson S, et al. Innominate steal syndrome: a case report. J Med Case Rep. 2008;2(1):392. http://dx.doi.org/10.1186/1752-1947-2-392. PMid:19108708.

15. Scoutt LM, Gunabushanam G. Carotid ultrasound. Radiol Clin North Am. 2019;57(3):501-18. http://dx.doi.org/10.1016/j.rcl.2019.01.008. PMid:30928074.

16. Willoughby AD, Kellicut DC, Ching BH, Katras A, Shimabukuro M, Ayubi FS. Double steal syndrome: two case presentations. J Vasc Med Surg. 2014;2:1000143.

17. Ackersaff RG, Honeved H, Sowikowski JMG, Moel FL, Eikelboom BC, Ludwig JW. Ultrasonic duplex scanning in atherosclerotic disease of the innominate, subclavian and vertebral arteries. A comparative study with angiography. Ultrasound Med Biol. 1984;10(4):409-18. http://dx.doi.org/10.1016/0301-5629(84)90195-9. PMid:28478176.

18. Calin A, Rosca M, Beladan C, et al. Unexpected vascular Doppler findings in an asymptomatic patient with marked blood pressure difference between arms. Rom J Cardiol. 2018;28:466-8.

19. Horrow MM, DeMauro CA, Lee JS. Carotid Doppler: low velocity as a sign of significant disease. Ultrasound Q. 2008;24(3):155-60. http://dx.doi.org/10.1097/RUQ.0b013e3181817f37. PMid:18776788.

20. Maier S, Bajko Z, Motaraianu A, et al. Subclavian double steal syndrome presenting with cognitive impairment and dizziness. Rom J Neurol. 2014;13:144-9.

21. Schwend RB, Hambsch K, Baker L, Wann K, Torruella A, Otis SM. Carotid steal syndrome: a case study. J Neuroimaging. 1995;5(3):195-7. http://dx.doi.org/10.1177/105262089500500402. PMid:7266831.

22. Siddhu PS, Morarji Y. Case report: a variant of the subclavian steal syndrome. Demonstration by duplex Doppler imaging. Clin Radiol. 1995;50(6):420-2. http://dx.doi.org/10.1016/S0003-9825(05)83145-9. PMid:7789032.

23. Verlato F, Avruscio GP, Milite D, Salmistraro G, Deriu GP, Signorini GP. Diagnosis of high-grade stenosis of innominate artery. Angiology. 1993;44(11):845-51. http://dx.doi.org/10.1177/0003319793044010101. PMid:8239055.

24. Macakoski V, von Deimling C, Mordini P, et al. Transcarotid approach for retrograde stenting of proximal innominate and common carotid artery stenosis. Ann Vasc Surg. 2017;43:2242-8. http://dx.doi.org/10.1016/j.jvasv.2017.02.009. PMid:28478176.

Informações sobre os autores
CEDV - Mestre e Doutorando, Departamento de Cirurgia, Universidade Federal do Paraná (UFPR); Médico, Ultrasonografia Vascular com Doppler, Hospital de Clínicas, UFPR; Cirurgião vascular; Título de especialista, Sociedade Brasileira de Angiologia e de Cirurgia Vascular (SBACV) e área de atuação em Doppler Vascular e Cirurgia Endovascular; SBACV e Colégio Brasileiro de Radiologia (CBR).
LFTF - Residente em Cirurgia Vascular, Hospital de Clínicas, UFPR; PHB e SLO - Residentes em Cirurgia Geral, Hospital de Clínicas, UFPR; FOM - Médica cirurgiã vascular, Hospital de Clínicas, UFPR; Hospital do Idoso Zilda Arns; Cirurgiá vascular; Título de especialista, SBACV e área de atuação em Cirurgia Endovascular, SBACV e CBR.
WJBA - Mestre e doutor, Departamento de Cirurgia, Universidade Federal do Paraná, Médico, Cirurgia Endovascular e Angiorradiologia do Hospital de Clínicas, UFPR, Cirurgia vascular, Hospital do Idoso Zilda Arns; Preceptor, Programa de Residência Médica em Cirurgia Vascular e Endovascular, Hospital Angelina Caron; Cirurgiá vascular; Título de especialista, SBACV e área de atuação em Doppler Vascular e Cirurgia Endovascular, SBACV e CBR.

Contribuição dos autores
Concepção e desenho do estudo: CEDV, WJBA
Análise e interpretação dos dados: CEDV, WJBA
Coleta de dados: CEDV, LFTF, PHB, SLO, FOM, WJBA
Redação do artigo: CEDV, LFTF, PHB, SLO, WJBA
Revisão crítica do texto: CEDV, LFTF, PHB, SLO, FOM, WJBA
Aprovação final do artigo*: CEDV, LFTF, PHB, SLO, WJBA
*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.