We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600 Open access books available
177,000 International authors and editors
195M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

The glass transition for polymers has been investigated for a long time as the mysterious physical phenomena of solid or liquid phases from the initial studies on the equation of state in pressure (P), volume (V), and temperature (T) to the recent thermal analyses with the temperature modulated differential scanning calorimeter (TMDSC) [1 – 9]. Polystyrene (PS) is one of polymers taking a leading part in the studies on the glass transition of polymers, so far showing the heat capacity jump of $28 \sim 31 \text{ J/(K mol)}$ at the glass transition. The temperature modulation of TMDSC emerged the latent heat capacity jump at the glass transition temperature (T_g), confirming the heat capacity jump data on the basis of PVT relations for PS. Also for poly(ethylene terephthalate) (PET), the abrupt heat capacity jump at T_g was observed on TMDSC curves, being not found with the standard DSC [8]. Recently, in the advances of the studies on the photonic contribution to the glass transition of polymers, the mysterious glass transition has been reasonably understood as the quantum phenomena [10 – 16]. For frozen polymer glasses, the heat capacity jump at T_g should start from the first order hole phase transition and then the glass parts should be unfrozen accompanying with the enthalpy and entropy jumps [10]. The holes are generally neighboring with the ordered parts, which are formed as pairs during the enthalpy relaxation at temperatures below T_m. First in this chapter, for isotactic PS (iPS) and PET, the heat capacity jump at the glass transition was discussed as the discontinuous change of energy in quantum state of the photon holes, followed by unfreezing of the glass parts. IPS and PET have the benzene rings being able to cause the resonance by neighboring in the side groups or the skeletal chains, respectively. Further, the details on the heat capacity jump found for iPS were also investigated for isotactic polypropylene (iPP) with methyl groups of the same 3/1 helix structure [16]. The resonance suggests the presence of remarkable photons in holes. The dimension of them is characterized by the
geometric molecular structure, e.g., the distance between reflectors such as benzene rings, affecting to the amplitude as a wave. While for the photon holes, the constant volume heat capacity could be defined as the differential coefficient of the internal energy of holes [10–16]. So for iPS, PET, and iPP, in order to confirm the identity in two heat capacities of ordered parts and holes in pairs, the heat capacity jump data per molar structural unit at the glass transition were compared with that per molar photon for the holes in ordered part / hole pairs. Here it should be noted that in the ordered part / hole pairs, the molar photon used for photon holes is equivalent to the molar structural unit for ordered parts numerically.

For iPS, PET, and iPP, surely the heat capacity jump at the glass transition was due to the discontinuous change of energy in quantum state of the resonant photon holes between neighboring benzene rings, but methyl groups for iPP, followed by unfreezing of the glass parts [14–16]. For iPS, the substance of the helix–coil transition with the enthalpy of 16.1 kJ/mol, but being smaller than the glass transition enthalpy of 18.9 kJ/mol, was shown as the ordered part / hole pairs. For PET, the ordered part / hole pairs were like the mesophase crystals with the glassy conformational disorder of ethylene glycol parts. For iPP, the helical sequences with the enthalpy of 7.4 kJ/mol or the nodules of mesophase with the enthalpy of 12.1 kJ/mol, interchanging between ordered parts and crystals automatically, were shown as the ordered part / hole pairs, depending on the presence of the crystallization upon cooling from the melt. According to above results, it could be understood that the glass transition of polymers investigated for a long time was only the collateral unfreezing phenomena of the glass parts starting by the disappearance of ordered part / hole pairs formed during the enthalpy relaxation at temperatures below T_g.

On the other hand, for iPS and iPP, from the quantum demand of hole energy at regular temperature intervals of 120 K for iPS and 90 K for iPP, the homogeneous glasses free from ordered part / hole pairs with $T_g = 240$ K and 180 K have been predicted, respectively [15, 16]. T_g of them could be understood as the first order glass phase transition temperature of the homogeneous glass [17, 18]. But, as one of other quantum possibilities for these polymers, the liquids with $T_g = 0$ K have also been predicted. In this connection, the equilibrium melting temperature, $T_m = 450$ K, for α form crystals of iPP was corresponding to 5 times the interval of 90 K. The sift of melting from α to γ form crystals between two peaks of a DSC double melting peak curve observed upon heating was discussed, relating to the formation and then disappearance of crystal / hole pairs.

2. Theoretical treatments and discussion

When the hole energy in the ordered part / hole pairs excited at the glass transition, being in equilibrium with the flow parts, is given by $h^h = 3C_p^{ph}T$, the heat capacity per molar photon for holes, $C_p^{h} (= C_p^{flow})$, is given by [10–16] (see section 4):

$$C_p^{h} (= C_p^{flow}) = 3C_p^{ph}(1 + Tdln J_h \mid dT)$$ (1)
where C_p^{flow} is the heat capacity per molar structural unit for the flow parts, being equal to C_p^α of the heat capacity per molar structural unit for the excited ordered parts [19], C_v^{ph} ($= 2.701R$) is the constant volume molar heat capacity for photons [20], R is the gas constant, J_h is the number of holes lost by T, and 3 is the degree of freedom for photons. When $dJ_h/dT = 0$ at T_g and the end temperature, T_l, of the glass transition, C_p^h at those temperatures is given by $3C_v^{\text{ph}}$. Thus, the heat capacity jump per molar photon, ΔC_p, at the glass transition is given by:

$$\Delta C_p = (C_p^h - C_v^{\text{ph}}) = 2C_v^{\text{ph}} = 44.9 J/(K \cdot \text{mol})$$ (2)

In Eq. (2), ΔC_p should be due to the discontinuous energy change from a quantum ground level for photons in the holes, that is, $(1/2)h\nu$ ($= h_0h/N_A$) to $(3/2)h\nu$ ($= 3h_0h/N_A$), where h is Planck constant, ν ($= c/\lambda$) is the frequency per second, c is the velocity of light, λ is the wavelength, N_A is Avogadro constant, and h_0 is the zero– point energy per molar photon, which also is used as the energy unit bellow. The holes in the excited ordered part / hole pairs should be in dynamical equilibrium with the spatial tubes between a chain and neighboring chains in the flow parts [21]. At the glass transition, the sigmoidal mean heat capacity curve of C_p as shown in Fig. 1 is observed generally. Even in this case, the C_p for ordered parts should be equal to the C_p^h of the mean heat capacity for the holes in ordered part / hole pairs at the glass transition:

$$C_p = C_p^h = \alpha C_v^{\text{ph}} + (1 - \alpha)C_p^{\text{ph}}$$ (3)

where α and $1 - \alpha$ are the fractions of ordered part / hole pairs with the respective holes of C_v^{ph} and C_p^{ph} ($= 3C_v^{\text{ph}}$), and C_p^{ph} is the adiabatic molar heat capacity for photons. On the other hand, the C_p for ordered parts in pairs could be divided into two components [22]:

$$C_p = \Delta C_p^x + C_p^r$$ (4)

under $\int_{T_g}^{T_l} C_p dT = \int_{T_g}^{T_l} \Delta C_p^x dT$ and $\int_{T_g}^{T_l} C_p^r dT = 0$,

where ΔC_p^x ($= C_p^{h*} - 3C_v^{\text{ph}}$) is the relative component heat capacity per molar structural unit for the excited ordered parts and C_p^r is the heat capacity change per molar structural unit due to the crystallization followed by the melting. At the glass transition, ΔC_p^x shows a peak against T, reflecting the size distribution of ordered parts. Fig. 1 shows the representative C_p curve composed of ΔC_p^x and C_p^r at the glass transition for polymers.

Thus, for iPS, PET, and iPP, ΔC_p^x ($= 2C_v^{\text{ph}}$) per molar photon (mol*) was compared with the reference value of heat capacity jump, ΔC_p^{\exp}, per molar structural unit (mol) [8]. The results deviated from $\Delta C_p/\Delta C_p^{\exp} = 1$. Table 1 shows the comparison of ΔC_p^{\exp} with ΔC_p^{\exp} for these polymers, together with h_0h, at T_m, where h is the enthalpy per molar structural unit for ordered parts [14 - 16].
The values in (): our data of Fig. 6. *1: see Table 2. *2: ΔC_p^{exp} at $T_m^\infty = 535$ K.

However, the values of $\Delta C_p/\Delta C_p^{exp}$ were correlated to h_x/h_g of the number of structural units holding one photon potentially (described below). h_x at T_g is given by [10, 23]:

$$h_x = h_g + \Delta h$$ \hspace{1cm} (5)

where $h_g = RT_g^2(\partial \ln v_f/\partial T)_p$ is the glass transition enthalpy per molar structural unit due to the discontinuous free volume change of v_f from $v_f = v_0$ to $v_f + v'$ at T_g, v_f and v_0 are the free volume and the core free volume per molar structural unit. h_g is given approximately by three expressions; (1) RT_g^2/c_2 or $q_g E_a$ (in WLF equation [24], $q_g = 1/(2.303 c_1)$) is the fraction of the core free volume in glasses, c_1 and c_2 are constant, and E_a is the activation energy), (2) the molar enthalpy difference between the super – cooled liquid and the crystal at T_g: $H_g^{a} - H_g^{c}$, and (3) the sum of the conformational and cohesive enthalpies per molar structural unit at T_g: $h_g^{conf} + h_g^{int}$. For PET and iPP, the additional heat per molar structural unit, Δh, needed to melt all ordered parts by T_l in Fig. 1 is given by [10, 23]:

$$\Delta h = \Delta H - Q$$ \hspace{1cm} (6)

where $\Delta H = H_m^{a} - H_g^{c}$, H_m^{a} is the enthalpy per molar structural unit for the liquid at T_m^∞, H_g^{c} is the enthalpy per molar structural unit for the super– cooled liquid at the onset temperature, T_c of a DSC crystallization peak upon cooling, and Q is the heat per molar structural unit
corresponding to the total area of the DSC endothermic peak upon heating. While, in the case of \(h_{\text{conf}}^{\text{h}} \neq h_{\text{conf}}^{\text{g}} = 0 \) at \(T_g \), \(\Delta h \) is derived as [10]:

\[
\Delta h = T_g \{ s_{\text{g}}^{\text{conf}} - (R \ln Z_0) / x \}
\]

(7)

with \(s_{\text{g}}^{\text{conf}} = (R \ln Z + RT_g d \ln Z / dT) \)

where \(h_{\text{conf}}^{\text{h}} \) is the conformational enthalpy per molar structural unit for ordered parts, \(s_{\text{g}}^{\text{conf}} \) is the conformational entropy per molar structural unit at \(T_g \), \(Z \) is the conformational partition function for a chain, \(Z_0 = Z / Z_0 \) and \(Z_t \) are the component conformational partition function for a chain regardless of temperature and depending on the temperature, respectively, and \(x \) is the degree of polymerization. For PET and iPP, the values of \(\Delta h \) from Eq. (7) were a little smaller than those from Eq. (6), respectively. In the case of \(h_{\text{conf}}^{\text{h}} = h_{\text{conf}}^{\text{g}}, \Delta h = (RT_g \ln Z_t) / x \) was derived, applying to nylon 6 [10].

2.1. Isotactic polystyrene

From \(h^{h} = (3/2) N_A h^\nu \) and \(h^{h} = (3C_v T_g) = 24.2 \text{ kJ/mol}^* \) at \(T_g = 359 \text{ K} \), the wavenumber of \(1/\lambda = 1350 \text{ cm}^{-1} \) was derived for a photon in holes [10]. This agreed nearly with the conformation sensitive band of 1365 cm\(^{-1}\) assigned to benzene rings [25, 26]. Further from the assigned relation of one photon to one structural unit numerically, the unity of \(h^{h}/h_x = \Delta C_p / \Delta C_p^{\exp} = 1 \) at the glass transition was expected [10], applying to the ordered sequences of–TTTT– (see Fig. 2), where \(T \) is the trans isomer. However, \(\Delta C_p / \Delta C_p^{\exp} \) was 1.5 (see Table 1), where \(T_1 \) in \(\Delta C_p^{\exp} \) is ~381 K [8]. Accordingly, the number of structural units holding one photon potentially in holes, \(n = (h^{h}/h_x) \), is defined here necessarily. Fig. 2 shows the sequence models of–TTTT– (\(n = 1 \)) and unstable–TCTC– (\(n = 2 \)) for iPS, where \(C \) is the cis isomer.

According to \(h^{h}/h_x = 1.5, h_x (= 2h^\nu) = 16.1 \text{ kJ/mol} \) was derived. This corresponded to \(\Delta C_p T_g = 16.1 \text{ kJ/mol}^* \) of the \(C_p \) jump energy for holes at \(T_g \). While \(h_x \) can be also derived from the solubility parameter, \(\delta \ [= (h_x/V)^{1/2}] \), where \(h_x \) is the latent cohesive energy per molar structural unit,
corresponding to the heat of vaporization or sublimation and V is the molar volume of structural units. The relations among h^0, h_u, h_x, and h_g at temperatures before and after T_g are given by [19, 27]:

$$h^0 = h_g + h_x \quad \text{or} \quad h_g + h_x + h_w \quad \text{at} \quad T \leq T_g$$ \hspace{1cm} (8)

$$h_g = h_x \quad \text{or} \quad h_x + h_u \quad \text{at} \quad T > T_g$$ \hspace{1cm} (9)

where h_u is the heat of fusion per molar structural unit. For crystalline polymers, h_u is contained in Eqs. (8) and (9). For iPS, $h_u = 35.0 \text{ kJ/mol}$ was derived from $\delta = 9.16 \text{ (cal/cm}^3\text{)^{1/2}}$ of the mean of 12 experimental values ($\geq 9.0 \text{ (cal/cm}^3\text{)^{1/2}}$) [28], and the value of h_u from Eq. (8), 16.1 kJ/mol, agreed with that from $h^h/h_x = 1.5$ perfectly. However it was smaller than $h_g = RT_g^2/c_2^2$ = 18.9 kJ/mol. The difference in h_g and h_x, 2.8 kJ/mol, agreed with the cohesive energy of methylene residues of $h_m\text{int} = 2.8 \text{ kJ/mol}$ [29], suggesting that the ordered part / hole pairs might fill softly the parts in glassy bulks.

T_g K	h^0	h_g	Δh	h_x	h^h	h^h/h_x
359$^\circ$ (360)	43.12	18.9	5.3	24.24	24.2	1
359$^\circ$ (360)	35.03,5	18.9	2.8	16.1	24.2	1.5
240	1.73	1.75	0	0 (16.1)	---	

*1: experimental value [30]. *2: from Eq. (8). *3: from $\delta = 9.16 \text{ (cal/cm}^3\text{)^{1/2}}$. *4: for the excited ordered parts or $TTTT$-sequences. *5: $h_x = h_x\text{int} + h_x\text{conf}$ from $h_x\text{int} = -f_g\text{conf}$ at $T_g = 240 \text{ K}$ (see Fig. 4, described below). The value in () of h^h column is $h^h = 3C_v\text{ph}(T_g - T)$ at 240 K. The values of T_g, h^0, h_g, Δh, h_x, and h^h at $h^h/h_x = 1$ and 1.5 for iPS. In the 4th line, $h^h = h_x = 0$ and $h_y = 1.7 \text{ kJ/mol}$ at 240 K are shown (discussed below). The relation of $h^h = h_x = 0$ is brought by the energy radiation of $2h^h = 16.1 \text{ kJ/mol}$* at T_g and the energy loss of $h^h = 8.1 \text{ kJ/mol}$* upon cooling from T_g obeying:

$$h^h = h^h_0 - 3C_v\text{ph}(T_g - T)$$ \hspace{1cm} (10)

In Eq. (10), the specific temperature of 240 K at $h^h = 0$ agreed with the hole temperature at $h^h = 16.1 \text{ kJ/mol}$*. In the glasses upon heating from 0 K, the generation of ordered part / hole pairs at 240 K and successingly, the instant radiation of the hole energy of 16.1 kJ/mol* should bring the same state as that of $h^h = 0$ at 240 K upon cooling, suggesting $T_g = 240 \text{ K}$ for the homogeneous glass free from the ordered part / hole pairs. Altering $3C_v\text{ph}$ = $C_v\text{ch}$ in Eq. (10) to $C_v\text{ch}$, the temperature at $h^h = 0$ was $T_g = 0 \text{ K}$. While for the glasses including the ordered part /
hole pairs, $T_p = 360$ K (see Table 2) was expected from the quantum demand of hole energy at regular temperature intervals of 120 K.

For iPS, the rotational isomeric 2–state (RIS) model of T (trans) and G (gauche) or G' (gauche') is known well [31]. Fig. 3 depicts the helix structure of $–TGTGTG–$ ($n = 3$) for iPS. From $h_i/h_x (= n) = 1.5$, the intermediate sequences ($n = 1.5$) between the right or left handed helical sequence ($n = 3$) and the aperiodic sequence ($n = 0$), displaying the helix–coil transition, were predicted as the sequences of ordered parts [14, 15]. The frequency of occurrence, Γ, of the helix–coil transition should be given approximately by h_i/h_x^b in Eq. (10) with $h_i/h_x^b = 0$ at $T = 240$ K. The $\Delta C_p (= 3C_v^m)$ at $T_g = 240$ K in a glassy state of $\Gamma = 0$ was 67.4 J/(K mol*) [15].

![Figure 3](image)

Figure 3. The 3/1 helix structure of $–TGTGTG–$ ($n = 3$) and the photon sites (dashed line parts) between benzene rings for iPS.

![Figure 4](image)

Figure 4. The relation between f and T calculated for the RIS model chains ($x = 100$) of iPS. The thin line is $f = f^{\text{conf}}$ and the thick line is $f = f^{\text{conf}} + 0.81$ kJ/mol.

Fig. 4 shows the relation between $f (= f^{\text{conf}}$ or $f^{\text{conf}} + 0.81$ kJ/mol) and T calculated for the RIS model chains ($x = 100$) with the normalized statistical weight of $\eta = 1$ applied to TG isomer of
iPS, where f_{conf} is the conformational free energy per molar structural unit, being minus and decreasing with an increase in temperature. Adding the value of $-f_{\text{conf}} (= 0.81 \text{ kJ/mol})$ at 240 K to all values of the original thin line, the thick line of $f_{\text{conf}} (+ 0.81 \text{ kJ/mol})$ is depicted. In the case of $f_{\text{conf}} = h_{\text{int}}$, i.e., $(h_{\text{conf}} + h_{\text{int}}) - T_s f_{\text{conf}} = 0$ at 240 K, the sum of $-f_{\text{conf}} (= 0.81 \text{ kJ/mol})$ and $h_{\text{conf}} (= 0.89 \text{ kJ/mol})$, 1.70 kJ/mol, should be the ultimate h_g at the first order glass phase transition for the homogeneous glass free from the ordered part / hole pairs (see Table 2), where h_{int} is the cohesive enthalpy per molar structural unit, and h_{conf} and s_{conf} are the conformational enthalpy and entropy per molar structural unit.

Fig. 5 shows the schematic chart of the instantaneous state changes at $T_g (= 360 \text{ K})$ upon cooling and heating as a working hypothesis. The ordered part / hole pairs formed instantaneously at T_g upon cooling have $h^0 = h_0^b$ and $h_x = 2h_0^b$. At T_g upon heating, the ordered part / hole pairs are excited by absorbing the photon energy of $2h_0^b$ for the holes and adding the energy of h_x^b for the ordered parts, followed by the absorption of h_g for the glass parts. The equilibrium relation at the melting transition among the ordered parts, the holes, and the flow parts is shown by the dashed lines in Fig. 5. In order to melt the excited ordered part / hole pairs perfectly, further the latent heat of h_g^b is needed at T_g.

Figure 5. The schematic chart of the instantaneous state changes at T_g for iPS. The arrow marks of ↓ and ↑ show the cooling and heating directions, respectively. T_g^+ and T_g^- are the glass transition temperatures upon cooling and heating, respectively. The $h_x^b = 2h_0^b$ shows the substance of helix-coil transition between the helical sequence ($n = 3$) and the aperiodic sequence ($n = 0$). The arrow marks of \Leftrightarrow show the interaction between the ordered parts and the holes in the pairs. The Γ is the frequency of occurrence of the helix-coil transition. The dashed lines show the equilibrium relation of melting among ordered parts, flow parts, and holes in the excited state.
2.2. Poly(ethylene terephthalate)

For PET, $h_x (= h_g + \Delta h) = 24.1 \text{ kJ/mol}$ was obtained from Eq. (5), being almost equal to $h^\beta (= 3C_v^T g) = 23.0 \text{ kJ/mol}$ at $T_g = 342 \text{ K}$ [10, 23]. Thus, $h_x/h_x (= n) = 0.95$ was shown experimentally. However as shown in Table 1, $\Delta C_p/\Delta C_p^{exp}$ was 0.6. Table 3 shows the values of T_g, h_0, h_u, h_g, Δh, h_x, h^β, and h_x/h_x for PET. The two values of h_u 23.0 and 28.5 kJ/mol, are assigned to the crystals with the conformational disorder of ethylene glycol parts and the smectic–c crystals with the stretched sequences, respectively [23, 32]. $\Delta C_p/\Delta C_p^{exp}$= 0.6 at the glass transition meant that one photon was situated in the neighboring phenylene residues comprising ~60 % of the structural unit length and 40 % of ΔC_p^{exp} was brought by unfreezing of the ethylene glycol parts in a glass state [14]. This was predicted also from the data by TMDSC [8]. From $h^\beta = (3/2) N_A h_v$ and $h^\beta (= 3C_v^T g) = 23.0 \text{ kJ/mol}$ at $T_g = 342 \text{ K}$, $1/\lambda = 1290 \text{ cm}^{-1}$ was derived, agreeing with 1288 cm$^{-1}$ observed for the un-oriented samples [33].

T_g K	h_0 kJ/mol	h_u kJ/mol	h_g kJ/mol	Δh kJ/mol	h_x kJ/mol	h^β kJ/mol*	h_x/h_x
342	64.7*	23.0 (535 K)	17.6*	6.5	24.1	23.0	0.95
342	70.2*, 68.2*	28.5 (549 K)	17.6*	6.5	24.1	23.0	0.95

*1: from Eq. (8). *2: from $\delta = 10.7 (\text{cal/cm}^3)^{1/2}$ [19]. *3: $h_g = R T_g^2/c_2^2$. The values in () are T_m^∞ of the respective crystals [23].

Table 3. The values of T_g, h_0, h_u, h_g, Δh, h_x, h^β, and h_x/h_x for PET.

Figure 6. The C_p curve for the non-annealed PET film. The parts of a and b show the C_p jump to the liquid line at T_g and T_e.

Fig. 6 shows the C_p curve converted from DSC curve data for the non-annealed PET film cooled to 323 K (50 °C) at 5 K/min from 573 K (300 °C). T_g agreed almost with 342 K of [8]. T_e of the
end temperature of melting is 535 K (262 °C). The parts of a, b, and a – b of C_p jump to the liquid line at T_g and T_e were correlated to the structural unit length, the lengths of phenylene and glassy ethylene glycol residues, respectively. Fig. 7 shows the parts in the structural unit related to a, b, and a – b.

Figure 7. The parts in the structural unit related to the C_p jumps of a, b, and a – b shown in Fig. 6 for PET. The part attached to the spindle mark shows the phenylene residue holding one photon together with the neighboring same residue (omitted here).

2.3. Isotactic polypropylene

According to the scheme of the formation of ordered part / hole pairs at T_g upon cooling (see Fig. 5), for iPP with T_g = 270 K, h_x (= 2h_0) = 12.1 kJ/mol was derived, being much larger than h_x = H_x – H_y = 6.2 kJ/mol [34] and h_x (= h_y + Δh) = 7.4 kJ/mol, where Δh = ΔH – Q, ΔH = H_m – H_c (see Eqs. (5) and (6)). The used data are as follows: T_c = 403.6 K, T_m = 450 K for α form crystals, ΔH = 4.89 kJ/mol [34], and Q = 3.76 kJ/mol for the sample annealed at 461.0 K for 1 hour [10, 35]. However, h_0 (= h_y + h_c) = 18.3 kJ/mol from Eq. (8) was almost equal to h_x (= 3h_0) = 18.2 kJ/mol, meaning the appearance of frozen glasses with h_y = h_c + 0.1 kJ/mol. For holes with C_p ph even upon cooling from T_g, Eq. (10) showed the specific temperature of 180 K, at which all ordered part / hole pairs should be disappeared because of h_x = 0, corresponding to 240 K for iPS [15]. At temperatures below 180 K, all should be in a state of the homogeneous glass with T_g = 180 K. The ΔC_p (= 3C_v ph) = 67.4 J/(K mol*) at T_g = 180 K was the same as that of iPS with T_g = 240 K. Fig. 8 shows the relation between f (= f_conf or f_conf + 0.1 kJ/mol) and T calculated for RIS model chains (x = 100) with the normalized statistical weight of σ = 1 applied to TT isomer of iPP [36, 37]. The f_conf at temperatures below and above 180 K is minus and decreases with an increase in temperature. The absolute value of f_conf = – 0.102 kJ/mol at 180 K equaled to h_x = 0.1 kJ/mol at 270 K. Adding the cohesive enthalpy of h_conf = 0.102 kJ/mol to f_conf (= – 0.102 kJ/mol), from f = f_conf + h_conf = 0 and h_conf = 0.18 kJ/mol at T_g = 180 K, h_x = h_conf + h_conf) = 0.28 kJ/mol is derived as the first order glass phase transition enthalpy for the homogeneous glass composed
of isolated chains, but with the cohesive energy of h^int and free from ordered part/ hole pairs (see Table 5).

\[f = f^{\text{int}} + 0.1 \text{kJ/mol}. \]

On the other hand, altering $3C_v^{ph} = C_v^{ph}$ in Eq. (10) to C_v^{ph}, the temperature at $h=0$ was $T_g = 0$ K as well as iPS. From $s^{\text{coex}} = 0.38 J/(K \text{ mol})$ of constant at temperatures below 70 K, the sequence model of $-\text{TGTGTGTTG'/TG'T-}$ in a liquid state was predicted, where T is trans, G is gauche, G' is gauche' isomer, and TT is the trans–trans isomer shifting always to the left or right direction on a sequence [38]. From $h_x = 12.1 \text{kJ/mol}$, the nodules of mesophase interchanging between crystals and ordered parts automatically were predicted in the glasses. According to the equilibrium relation in crystals and ordered parts of this class (D in Table 4) given by $f_x = 2f_u [10, 39]$, $2h_u = h_x = 2.9 \text{kJ/mol}$ for α form crystals, corresponding to $2T_m(s_u - s_x/2)$, which was almost equal to $h_x^{\text{coex}} = 2.8 \text{kJ/mol}$ of the cohesive energy of methylene residues in the sequences, where f_x and s_x are the free energy and entropy per molar structural unit for ordered parts, and f_u and s_u are those for crystals.

According to Flory’s theory [40] on the melting of the fringe–type crystals with a finite crystal length of ζ, the end surface free energy of crystals per unit area, σ at $(df_u/d\zeta) = 0$ is given by:

\[\sigma_{e} = \mu \left(\frac{RT\zeta}{2}\right)\left[\left(\frac{1}{x - \zeta + 1}\right) + \left(\frac{1}{\zeta}\right)\ln\left(\frac{x - \zeta + 1}{x}\right)\right] \]

(11)

where ϕ is the amorphous fraction and μ is the conversion coefficient of mol/m3. In this context:

\[2\sigma_{e}/\zeta = \mu (f_x - f_u) \]

(12)

\[f_x = RT \left[\left(\frac{1}{\zeta}\right)\ln\left(\frac{x - \zeta + 1}{x}\right)\right] - \ln P_c \]

(13)
where P_c given by $|(x - \zeta + 1)/x|^{1/\zeta}$ for fringe-type crystals, is the probability that a sequence occupies the lattice sites of a crystalline sequence. Moreover:

$$f_u - (f_x + f_x') = 0$$

(14)

Eq. (11) is obtained when $\ln P_c = -1/(x - \zeta + 1)$. From Eq. (14), the relations are derived based on f_u and f_x at $f_x' \geq 0$, and those can be grouped into four equilibrium classes (A ∼ D) and one non-equilibrium class (X) as shown in Table 4. Class A of $f_u = f_x$ at $f_x' = 0$ shows the dynamic equilibrium relation between the ordered parts and the crystal parts of same fringe-type, leading to $\sigma_c = 0$, and that, $\zeta = 0/0$ in Eq. (16) (described below). For class B, $f_u = -f_x'$ from Eq. (14) with $f_x' = 0$ refers to the anti-crystal holes and $f_x = 0$ is assigned to the ordered parts of $\zeta = \infty$. The interface between the anti-crystal holes and the ordered parts should work as the reflector of photons. In this case, the even interface made of the folded chain segments should be avoided through the random reflection. According to Eq. (12) with $h_x - h_u = \sigma_c/(\mu \zeta)$, the respective interface energies of the hole and the ordered part are compensated each other at the common interface, thus leading to $f_x = 0$ [10]. For class C, $f_x = f_x'$ from Eq. (14) with $f_x = 0$ is assigned to the ordered parts of $\zeta \neq \infty$ (i.e., a kebab structure) and $f_u = 0$ to the crystals of $\zeta = \infty$ (i.e., a shish structure). Class D of $f_u (= f_x') = f_x/2$ is related to the equilibrium in crystal and ordered parts. For those with folded chains, the reversible change from crystal or ordered parts to other parts is expected to take place automatically. The relations in class X do not satisfy Eq. (14), suggesting that the holes of class B cannot be replaced by the crystals with $\zeta \neq \infty$. Fig. 9 shows the schematic structure models of bulk polymers conformable to A ∼ X classes in Table 4.

f_x'	f_x	f_u	Class
$=0$	$=0$	$=0$	A
>0	$=0$	$=-f_x'$	B
	$=f_x'$	$=0$	C
	$=2f_u$	$=f_x/2 = f_x'$	D
	$=0$	$=f_x'$	X

Table 4. Relations of equilibrium (A ∼ D) and non-equilibrium (X) in f_x and f_u at $f_x' \geq 0$ for crystalline polymers [10, 39].

At the rapid glass transition absorbing the photon energy of $2h_0$ at T_g upon heating, the ordered part / hole pairs should be excited immediately and then melted, followed by unfreezing of the glass parts. At the slow glass transition, the disappearance and then crystallization of ordered part / hole pairs should occur upon heating, bringing the new crystal parts [16]. In the closed system that the both heats of crystallization and melting should be cancelled out according to Eq. (4), those should be melted by T_l in Fig. 1. While in the open system that the heat irradiated by crystallization was escaped out of the system, T_l corresponded to T_m (450 K for α form crystals) and $h_0 (= h_x + h_u + h_0) = 21.0 \text{ kJ/mol}$ in Eq. (8) agreed...
perfectly with the value of $h^b (= 3h^b_0) + h^m$, where $h^b_0 (= h^g + \Delta h)$ is 7.4 kJ/mol, being larger than $h^g (= h^g_0/3) = 6.1$ kJ/mol*. In this context, $h^g - h^g_0 = 0.1$ kJ/mol, $h^u - h^u_0 = 1.3$ kJ/mol, and $h^x - h^x_0 = 1.4$ kJ/mol. The sum of them was equal to $h^m = 2.8$ kJ/mol. Thus, $n (= h^b/h^g) = 2.5$ was shown, almost corresponding to $\Delta C_p/\Delta C_p^{exp} = 2.3$. Table 5 shows the values of T_g, h_0, h_u, h_g, h_x, and h^m/h^x for iPP. From $h^h (= 3h^h_0) = 18.2$ kJ/mol* at $T_g (= 270 \text{ K})$, the wavenumber of $1/\lambda = 1022$ cm$^{-1}$ was derived for a photon in holes [10]. This agreed nearly with 1045 cm$^{-1}$ relating to the crystallinity [41]. Accordingly, one photon should be situated between the neighboring methyl groups in the helical sequence.

T_g K	h_0 kJ/mol	h_u kJ/mol	h_g kJ/mol	h_x kJ/mol	h^h kJ/mol*	h^h/h_x
270	18.31	---	6.23	12.1	18.2	1.5
270	21.11	7.52	6.23	7.4	18.2	2.5
180	0.281	---	0.284	0	0	---

*1: from Eq. (8). *2: h_u for α form crystals. *3: $h_g = H^g_x - H^g_c$, *4: $h^h = h^h_x + h^h_{conf}$ from $h^h_x = f^h_{conf}$ at $T_g = 180 \text{ K}$.

Table 5. The values of T_g, h_0, h_u, h_g, h_x, h^h, and h^h/h_x for iPP.
2.3.1. Equilibrium melting temperature, T_m^∞

For PET discussed in the previous section 2.2, T_l in Fig. 1 corresponded to $T_m^\infty = 535$ K for the crystals with conformational disorder of ethylene glycol parts, but with a chain axis parallel to c-axis of a cell. This finding in PET was also discussed in iPP with $T_m^\infty = 435$ K, 450 K, and 462 K for β, α, and γ form crystals, respectively, which were found by DSC measurements [35]. Above all, $T_m^\infty = 450$ K for α form crystals could be T_l in Fig. 1 of the temperature expected from the quantum demand of hole energy at regular temperature intervals of 90 K. Experimentally, T_m^∞ is determined as the intersection temperature between an extrapolation line of $T_m = T_e$ in the melting peaks without superheating and a $T_m = T_a$ line, where T_e is the melting temperature from T_a to T_e, T_a is the annealing (crystallization) temperature, and T_e is the end temperature of melting peak. While at T_m^∞, the processes of melting and crystallization should occur reversibly, so that T_m^∞ equals to both temperatures of T_e and T_a, T^\star and T^\star_a on a $T_m = T_e$ line. The line through two points of T_m^∞ should be parallel to the abscissa of T_a, because T_m^∞ is only one [23].

For the bulk contained α form crystals with $h_u = 7.46$ kJ/mol, the sum of $h_g - h_0 + h_x - h_0 + h_u - h_0 = 3.8$ kJ/mol was equal to $h_m^\infty = 2.8$ kJ/mol (see section 2.3). While for the bulk contained only γ form crystals with $h_u = 8.70$ kJ/mol, the difference in h_m^∞ and $(h_u - h_0)$ was 0.2 kJ/mol, suggesting $h_g = h_x = h_0 + 0.1$ kJ/mol. Figs. 10 and 11 show the DSC single and double melting peak curves for the iPP films annealed at $T_a = 461.0$ K and 441.5 K for 1 hour, respectively. Here the single melting peak curve in Fig. 10 is divided into α and β peaks, and the double melting peak curve in Fig. 11 is divided into γ, α, and β peaks. In both Figures, T_b is the temperature that the extrapolation line from the line segment with a highest slope in the lower temperature side of the melting peak intersects the base line. The onset temperature of the extrapolation line, T^\star, is also the end temperature of the residual peak appeared by subtracting the area of single or double peak with T_b from the total endothermic peak area. The β peak is considered to be due to the melting of small crystals attached around the crystal lamellae of α form. The mean of end temperatures in β peaks found for some annealing samples agreed closely with $T_e = 435$ K of β form crystals [42].

Table 6 shows the values of T_b, T^\star, Q_m, ΔQ_m, Δh^β, and $\Delta h^\beta/\Delta Q_m$, in α and γ peak curves for the iPP films annealed at 461.0 K and 441.5 K for 1 hour. Where Q_m is the heat per molar structural unit corresponding to the area of α or γ peak from T_b and ΔQ_m is the heat per molar structural unit corresponding to the area from T_b to T^\star of α or γ peak and relating to the melting of crystals recrystallized newly from β to α form or α to γ form. For the holes of crystal / hole pairs formed newly by recrystallization from T_b to T^\star of β or α peak, the hole energy per molar photon, Δh^β, is given by [10]:

$$\Delta h^\beta = 3C_v^p h^b \left(T^\star - T_b \right)$$

(15)

As shown in Table 6, the small difference in ΔQ_m and Δh^β could be regarded as significant for the formation and then disappearance of crystal / hole pairs from T_b to T^\star. For the shift from
\[\frac{\Delta h}{\Delta Q_m} \] was 1.21 contrary to our expectation, but at \(T^* = 435 \) K of the mean of \(T_m^\infty \) for \(\beta \) form crystals, \(\frac{\Delta h}{\Delta Q_m} = 0.98 \) was derived. For the shift from \(\alpha \) to \(\gamma \) peak, it was 0.61, meaning the melting of original \(\gamma \) form crystals with 39% of \(\Delta Q_m \); 0.13 kJ/mol. The relay of melting from \(\alpha \) to \(\gamma \) form crystals between two peaks of a DSC double melting peak curve should be done through the mediation of the formation and then disappearance of the crystal / hole pairs with 61% of \(\Delta Q_m \); 0.20 kJ/mol (= \(\Delta h^\gamma \)), which agreed with the difference in \(h_{m}^{\infty} \) and \((h_{u} - h_{l}) \) perfectly, corresponding to \((h_{u} + h_{l}) - 2h_{l} = 0.2 \) kJ/mol suggested above.

\(\beta \) to \(\alpha \) peak in Fig. 11, \(\frac{\Delta h^\beta}{\Delta Q_m} \) was 1.21 contrary to our expectation, but at \(T^* = 435 \) K of the mean of \(T_m^\infty \) for \(\beta \) form crystals, \(\frac{\Delta h^\beta}{\Delta Q_m} = 0.98 \) was derived. For the shift from \(\alpha \) to \(\gamma \) peak, it was 0.61, meaning the melting of original \(\gamma \) form crystals with 39% of \(\Delta Q_m \); 0.13 kJ/mol. The relay of melting from \(\alpha \) to \(\gamma \) form crystals between two peaks of a DSC double melting peak curve should be done through the mediation of the formation and then disappearance of the crystal / hole pairs with 61% of \(\Delta Q_m \); 0.20 kJ/mol (= \(\Delta h^\gamma \)), which agreed with the difference in \(h_{m}^{\infty} \) and \((h_{u} - h_{l}) \) perfectly, corresponding to \((h_{u} + h_{l}) - 2h_{l} = 0.2 \) kJ/mol suggested above.

Figure 10. DSC single melting peak curve composed of \(\alpha \) and \(\beta \) peaks for the iPP film annealed at 461.0 K for 1 hour. The thin line is the part of an original DSC curve. \(T_b \) is the onset temperature of \(\alpha \) peak and \(T^* \) is the end temperature of \(\beta \) peak.

Figure 11. DSC double melting peak curve composed of \(\alpha \), \(\beta \), and \(\gamma \) peaks for the iPP film annealed at 441.5 K for 1 hour. The thin lines are the parts of an original DSC curve. \(T_b \) is the onset temperature of \(\gamma \) or \(\alpha \) peak and \(T^* \) is the end temperature of \(\alpha \) or \(\beta \) peak.
Table 6

The values of T_b, T^*, Q_m, ΔQ_m, Δh^β, $\Delta h^\gamma/\Delta Q_m$ of α and γ peak curves for the iPP films annealed at 461.0 K and 441.5 K for 1 hour.

T_a (K)	Form	T_b (K)	T^* (K)	Q_m (kJ/mol)	ΔQ_m (kJ/mol)	Δh^β (kJ/mol)	$\Delta h^\gamma/\Delta Q_m$
461.0	α	429.6	434.2	2.05	0.38	0.24	0.63
441.5	α	423.7	437.7	2.16	0.78	0.94	1.21
	γ	446.9	449.9	1.64	0.33	0.20	0.61

The values in () show T_m^∞, Δh^β, and $\Delta h^\gamma/\Delta Q_m$ at T_m^∞ for β form crystals.

2.3.2. ζ distribution function, $F(\zeta)$

Next, the α peak curve in Fig. 10 and the two divided peak curves of α and γ in Fig. 11 starting to melt at T_b were converted into the crystal length (ζ) distribution function, $F(\zeta)$. The ζ is according to Gibbs–Thomson given by:

$$
\zeta = \left| \frac{T_m^{\infty}}{(T_m^{\infty} - T_m)} \right| \frac{2 \sigma_e}{(\mu h_u)}
$$

(16)

where T_m is the corrected melting temperature. In the calculation of ζ, the values of T_m^{∞}, h_u, h_x, and the corrected T_m are needed previously. For h_u, the reference value was used (see Table 8). The value of σ_e was evaluated by [43, 44]:

$$
\sigma_e = \mu h_u \left([RT_m^{\infty} + (H_x - h_x)(T_m^{\infty} - T_m)] / [2(H_x - h_x)T_m^{\infty}] \right)
$$

(17)

with $H_x = 2h_u - Q_m$

where c^* is the cell length of c–axis. The term of square blanket in Eq. (17) is dimensionless. h_u refers to the heat of fusion of crystals with a crystal form liking to evaluate σ_e. h_u could be calculated from Eqs. (5) and (6), but in Fig. 11, using H_m^{∞} at T_m^{∞} of the other α or γ form crystals (sub–crystals). Table 7 shows the values of h_u for the iPP films annealed at 461.0 K and 441.5 K for 1 hour, together with the values of T_a, T_b, T^*, Q, ΔH, Δh, and h_x used in the calculation of h_u. Q and ΔH are defined in Eq. (6). The value of h_u for the iPP sample of $T_a = 441.5$ K was smaller than h_u of the sub–crystals (see Table 8). Further, the value of h_u in the row of γ form, 6.85 kJ/mol, was ~0.7 kJ/mol larger than h_u (= 6.22 kJ/mol). Also the value of h_u in the line of α form, 8.07 kJ/mol, was ~0.7 kJ/mol larger than h_u (= 7.35 kJ/mol) for the sample of $T_a = 461.0$ K. Therefore, the value of h_u (= h_x + h_u + h_0) in Eq. (8) for the iPP sample annealed at 441.5 K was 0.7 kJ/mol larger than that for the iPP sample of $T_a = 461.0$ K. The cause could be attributed to Δh affected by $F(\zeta)$ (see Eq. 18) of α form crystals, leading the characteristic R–L image (see Fig. 15).
Form*1
(T/K)	T_a	T_b	T_e	Q	ΔH	Δh	h_x	h_g
α (461.0)	403.6	429.6	449.2	3.76	4.89	1.13	6.22	7.35
α (441.5)	403.6	423.7	449.5	4.41	6.26	1.85	6.22	8.07
γ (441.5)	403.6	446.9	461.9	4.41	5.04	0.63	6.22	6.85

*1: The form of main crystals liking to evaluate σ_e. *2: ΔH calculated using H_m at T_m∞ of the sub–crystals with the form of α or γ shown in ().

T_a	Form	T_p	h_u	h_x	h_0	Q_m	σ_e
461.0	α	435.9	7.46	7.35	14.8	2.05	36.0×10^{-3} (26.7×10^{-3})
441.5	α	442.8	7.46	8.07	15.5	2.16	45.2×10^{-3} (30.8×10^{-3})
γ	450.9	8.70	6.85	15.6	1.64	26.5×10^{-3} (22.2×10^{-3})	

The values in () are σ_e at T_m∞ (Q_m = 0).

Table 7. The values of h_u, T_p, T_a, T_e, Q, ΔH, Δh, and h_g for the iPP films annealed at 461.0 K and 441.5 K for 1 hour.

Table 8. The values of σ_e, T_p, h_u, h_x, h_0, and Q_m for the iPP films annealed at 461.0 K and 441.5 K for 1 hour.

Table 8 shows the values of σ_e at T_p for α and γ form crystals contained in the iPP films annealed at 461.0 K and 441.5 K for 1 hour, together with the values of T_p, h_u, h_x, h_0, and Q_m used in the calculation of σ_e, where T_p is the melting peak temperature. The σ_e of α form was larger than that of γ form, because according to Eq. (17), the σ_e was mainly dependent on h_x. For α and γ forms in the sample of T_a = 441.5 K, h_0 (= h_u + h_x) at T (> T_g) of Eq. (9) was ~15.5 kJ/mol, nevertheless the values of h_u were different. T_p is corrected by 0.6 K (436.5 K → 435.9 K) for the sample of T_a = 461.0 K and 0.2 K (443.0 K → 442.8 K) for α form and 0.8 K (451.7 K → 450.9 K) for γ form in the sample of T_a = 441.5 K to the lower temperature side, according to our concept [45].

F(ζ) is defined as [23]:

\[F(ζ) = \left(\frac{δQ_m}{Q_m} \right) / ζ = n_c / [N_c(T_e - T_b)] \]

where δQ_m (= ζ_n_cQ_m/[N_c(T_e - T_b)]) is the heat change per molar structural unit per K, n_c is the number of crystal sequences with ζ, N_c is the number of structural units of crystals melted in the temperature range from T_b to T_e. δQ_m/Q_m is given by:
\[
\frac{\delta Q_m}{Q_m} = \left(\frac{dQ}{dt}\right) \left[\int_{T_b}^{T_e} \frac{dQ}{dt}dT\right]^{-1}
\]

where \(dQ/dt\) is the heat flow rate of DSC melting curve and \(t\) is time (see Figs. 10 and 11). Figs. 12 and 13 show \(F(\zeta)\) of \(\alpha\) and \(\gamma\) peak curves converted from the DSC single and double melting peak curves for the iPP films annealed at 461.0 K and 441.5 K for 1 hour.

Figure 12. \(F(\zeta)\) of \(\alpha\) peak curve for the iPP film annealed at 461.0 K for 1 hour.

Figure 13. \(f(\zeta)\) of \(\alpha\) (thick line) and \(\gamma\) (thin line) peak curves for the iPP film annealed at 441.5 K for 1 hour.
Table 9 shows the ζ range and ζ in F(ζ) of α and γ peak curves obtained for the samples of Ta = 461.0 K and 441.5 K, where ζ is ζ at the maximum of F(ζ). For α peak, F(ζ) in Fig. 12 showed a sharp peak with the ζ range of 10 nm ~ 3870 nm and ζ = 14.6 nm, and in Fig 13, F(ζ) showed the roundish curve with the ζ range of 10 nm ~ 250 nm and ζ = 19.5 nm, whereas for γ peak, F(ζ) showed the sharp peak with the ζ range of 8 nm ~ 840 nm and ζ = 11.2 nm. The maximum of ζ was calculated using Te (~T_m) observed actually for each sample. At T_e = T_m, the maximum of ζ should be infinite at σ_e ≠ 0, because the melt at T_e could be interchanged in equilibrium to the imaginary crystals of ζ = ∞. In the σ_e = 0 of the class A in Table 4, ζ = 0/0 of indetermination at T_m is derived from Eq. (16). The refraction point at ζ = 55 nm on the thick line of α peak in Fig. 13 is that of dQ/dt at T_b (= 446.9 K) in Fig. 11. For the sample of Ta = 441.5 K, the ζ range of α peak was narrower than that of γ peak, because upon cooling, α form crystals should be formed around γ form crystals. As the result, the value of h_x at the interfaces between α and γ form crystals increased only ~0.7 kJ/mol (derived above). The ζ range of α peak calculated for the sample of Ta = 461.0 K was much larger than those of α and γ form crystals for the sample of Ta = 441.5 K.

T_a (K)	Form	ζ range (nm)	ζ_p (nm)
461.0	α	10 - 3870	14.6
441.5	α	10 - 250	19.5
	γ	8 - 840	11.2

Table 9. The ζ range and ζ_p in F(ζ) of α and γ peaks for the iPP films annealed at 461.0 K and 441.5 K for 1 hour.

In the last stage, the ζ distribution of a single–crystal like image was drawn from F(ζ). The number of crystal sequences in a radius direction, R_n, is given by [10]:

\[
R_n = (\Delta N / \pi)^{1/2}
\]

with \(\Delta N = N_c \left(T_e - T_b \right) \left(\int_{\zeta_m}^{\zeta_i} F(\zeta) d\zeta - \int_{\zeta_m}^{\zeta_i} F(\zeta) d\zeta \right) \)

where \(\zeta_m \) and \(\zeta_i \) are the maximum and the minimum of ζ, respectively. Figs. 14 and 15 show the representation of R (= ±R_n) and L (= ±\zeta/2) for α and γ form crystals in the iPP films (per 1g) annealed at 461.0 K and 441.5 K for 1 hour.

From the comparison of both figures, the change of image in α form crystal lamellae by annealing, and further in Fig. 15, the difference in packing states of α and γ form crystals in same ζ range can be seen at the view of 2D disk image.
3. Conclusion

For iPS, PET, and iPP, the heat capacity jump at the glass transition was due to the discontinuous change of energy in quantum state of the photon holes between neighboring benzene rings, but methyl groups for iPP, followed by unfreezing of glass parts. For iPS and iPP, the homogeneous glasses free from ordered part/hole pairs with $T_g=240$ K and 180 K were predicted, respectively. For iPP, the cohesive energy of methylene residues was subdivided into the transition enthalpies of glasses, ordered parts, and crystals, whereas for iPS, it agreed

![Figure 14.](image1.png)

Figure 14. Representation of $R (= \pm R_n)$ and $L (= \pm \zeta/2)$ for α form crystals in the iPP film (per 1g) annealed at 461.0 K for 1 hour. The horizontal lines show R of the imaginary crystals melting from ζ_n to $\zeta=0$.

![Figure 15.](image2.png)

Figure 15. Representation of $R (= \pm R_n)$ and $L (= \pm \zeta/2)$ for α (thick line) and γ (thin line) form crystals in the iPP film (per 1g) annealed at 441.5 K for 1 hour. The horizontal lines show R of the imaginary crystals melting from ζ_n to $\zeta=0$.

3. Conclusion

For iPS, PET, and iPP, the heat capacity jump at the glass transition was due to the discontinuous change of energy in quantum state of the photon holes between neighboring benzene rings, but methyl groups for iPP, followed by unfreezing of glass parts. For iPS and iPP, the homogeneous glasses free from ordered part/hole pairs with $T_g=240$ K and 180 K were predicted, respectively. For iPP, the cohesive energy of methylene residues was subdivided into the transition enthalpies of glasses, ordered parts, and crystals, whereas for iPS, it agreed
with the difference between the transition enthalpies of glasses and ordered parts, but the transition enthalpy of glasses was larger than that of ordered parts. The photonic contribution of 60% to the heat capacity jump at the glass transition found for PET meant that one photon was situated in the neighboring phenylene residues comprising ~60% of the structural unit length and the residual jump of 40% was brought by unfreezing of the ethylene glycol parts in a glass state. $T_m = 450$ K for α form crystals of iPP could be the temperature of the quantum demand of hole energy at regular temperature intervals of 90 K. The shift of melting from α to γ form crystals by DSC measurements was done through the mediation of the formation and then disappearance of crystal / hole pairs. The interface parts formed in α and γ form crystals by annealing brought the excess energy of ~0.7 kJ/mol to the enthalpy of the ordered parts. This result was reflected clearly to the single crystal like image depicted on the basis of the crystal length distribution function.

4. A list of abbreviations (italic in Eqs.)

- α: fraction of ordered part / hole pairs with C_{pph}
- $1 - \alpha$: fraction of ordered part / hole pairs with C_{pph}
- C_p: mean heat capacity per molar structural unit for ordered parts in ordered part / hole pairs
- C_{pph}: mean heat capacity per molar photon for holes in ordered part / hole pairs
- C_{ph}: heat capacity per molar photon for holes in excited ordered part /hole pairs
- C_{ph}^*: adiabatic molar heat capacity for photons
- C_{ph}^v: constant volume molar heat capacity for photons
- C_{pflow}: heat capacity per molar structural unit for flow parts
- $C_{p'}$: heat capacity change per molar structural unit due to crystallization followed by melting
- $C_{p''}$: heat capacity per molar structural unit for ordered parts in excited ordered part /hole pairs
- c: velocity of light
- c^*: cell length of c-axis
- c_1 and c_2: constants in WLF equation
- dQ/dT: heat flow rate of DSC melting curves
- δQ_m: heat change per molar structural unit per K
- ΔC_p: heat capacity jump per molar photon at the glass transition
- ΔC_p^{exp}: experimental heat capacity jump per molar structural unit at the glass transition
- ΔC_p^*: relative component heat capacity per molar structural unit for excited ordered parts
- Δh: additional heat per molar structural unit needed to melt all ordered parts
Δh^h: hole energy of crystal / hole pairs formed newly by recrystallization
δ: solubility parameter
E_a: activation energy
F(ζ): crystal length (ζ) distribution function
f: free energy per molar structural unit
f^conf: conformational free energy per molar structural unit
f^conf_g: conformational free energy per molar structural unit at T_g
f_x: free energy per molar structural unit for ordered parts
f_u: free energy per molar structural unit for crystals
ϕ: amorphous fraction
Γ: frequency of occurrence of the helix–coil transition
H_m: enthalpy per molar structural unit for the liquid at T_m
H_c: enthalpy per molar structural unit for the super-cooled liquid at T_c
H_g: enthalpy per molar structural unit for the crystal at T_g
h^h: hole energy per molar photon for holes in ordered part / hole pairs
h_0: zero–point energy per molar photon, or energy unit per molar photon
h_u: heat of fusion per molar structural unit
h_x: enthalpy per molar structural unit for ordered parts
h_g: glass transition enthalpy per molar structural unit
h^conf: conformational enthalpy per molar structural unit
h^conf_g: conformational enthalpy per molar structural unit at T_g
h^conf_x: conformational enthalpy per molar structural unit for ordered parts
h^int: cohesive enthalpy per molar structural unit
h^int_g: cohesive enthalpy per molar structural unit at T_g
h^int_h: cohesive energy per molar structural unit for methylene residues
h: Plank constant
η: statistical weight
J_h: number of holes lost by T at the glass transition
ϕ_c : fraction of core free volume in glasses

λ and $1/\lambda$: wavelength and wave number

mol : molar structural unit

mol^* : molar photon

μ : conversion coefficient of mol/m3

N_A : Avogadro constant

N_c : number of structural units of crystals melted in the temperature range from T_b to T_e

n : number of structural units holding one photon potentially

n_ξ : number of crystal sequences with ξ

v : frequency per second

P : pressure

P_c : probability that a sequence occupies the lattice sites of a crystalline sequence

Q : heat per molar structural unit corresponding to the total area of DSC endothermic curve

Q_m : heat per molar structural unit corresponding to the area of a DSC melting curve from T_b

R : gas constant

R_n : number of crystal sequences at the radius direction of an imaginary single crystal lamella depicted on the basis of $F(\xi)$

s_u : entropy of fusion per molar structural unit

s_x : entropy per molar structural unit for ordered parts

s_{conf} : conformational entropy per molar structural unit

s_{conf}^* : conformational entropy per molar structural unit at T_g

σ_e : end surface free energy of a crystal per unit area

σ : statistical weight

T : temperature

T_g : glass transition temperature

T_m : melting temperature

T_m^* : equilibrium melting temperature

T_e and T^* : end temperature of DSC melting peak curve

T_1 : end temperature of the glass transition

T_c : onset temperature of DSC crystallization peak curve upon cooling
T_b: onset temperature of DSC melting peak curve upon heating
T_a: annealing temperature
T_p: DSC melting peak temperature
V: volume per molar structural unit
v_f: free volume per molar structural unit
v_0: core free volume per molar structural unit
x: degree of polymerization
Z: conformational partition function for a chain
Z_0: component conformational partition function for a chain regardless of temperature
Z_t: component conformational partition function for a chain depending on temperature
ζ: crystal length
ζ_p: crystal length at the maximum of $F(\zeta)$
ζ_n: crystal length at the minimum of ζ
ζ_x: crystal length at the maximum of ζ

Acknowledgements

The author would like to thank the late Professor em. B. Wunderlich of the University of Tennessee and Rensseler Polytechnic Institute for the long time encouragement.

Author details

Nobuyuki Tanaka*
Address all correspondence to: thermodyna_nt@kki.biglobe.ne.jp
Gunma University, Gunma, Japan

References

[1] T. G. Fox, P. J. Flory, J. Polym. Sci., 14, 315(1954).
[2] G. Natta, P. Corradini, D. Sianesi, D. Morero, J. Polym. Sci., 51, 527(1961).
[3] G. Gee, Polymer, 7, 177(1966).
[4] A. L. Renninger, D. R. Uhlmann, J. Polym. Sci., Phys., 16, 2237(1978).
[5] R. J. Roe, A. E. Tonelli, Macromolecules, 12, 878(1979).
[6] L. H. Judovits, R. C. Bopp, U. Gaur, B. Wunderlich, J. Polym. Sci., 24, 2725(1986).
[7] G. Brinke, L. Oudhuis, T. S. Ellis, Thermochimica Acta, 238, 75(1994).
[8] B. Wunderlich, “Thermal Analysis of Polymeric Materials”, Springer, (2005).
[9] B. Wunderlich, J. Appl. Polym. Sci., 105, 49(2007).
[10] N. Tanaka, Y. Mastai Ed: “Advances in Crystallization Processes”, InTech, p163(2012).
[11] N. Tanaka, Preprints of 45th Japanese Conference on Calorimetry and Thermal Analysis (Hachioji), p20(2009).
[12] N. Tanaka, Preprints of 46th Japanese Conference on Calorimetry and Thermal Analysis (Tsu), p27(2010).
[13] N. Tanaka, Preprints of 47th Japanese Conference on Calorimetry and Thermal Analysis (Kiryu), p27(2011).
[14] N. Tanaka, 62nd SPSJ Annual Meeting, Polymer Preprints (CD), Kyoto, 62, (2013).
[15] N. Tanaka, Preprints of 49th Japanese Conference on Calorimetry and Thermal Analysis (Narashino), p137(2013).
[16] N. Tanaka, 63th SPSJ Annual Meeting, Polymer Preprints (CD), Nagoya, 63, (2014).
[17] F. Zamponi, Nature Phys., 7, 99(2011).
[18] G. Biroli, Nature Phys., 10, 555(2014).
[19] N. Tanaka, Polymer, 33, 623(1992).
[20] L. H. Hill, “Introduction to Statistical Thermodynamics”, Addison–Wisley, Massachusetts, p456(1960).
[21] T. McLeish, Physics Today, 61, No. 8, (2008).
[22] N. Tanaka, Thermochimica Acta, 374, 1(2001).
[23] N. Tanaka, Polymer, 49, 5353(2008).
[24] J. D. Ferry, “Viscoelastic Properties of Polymers”, Reinhold, New York, (1961).
[25] M. Kobayashi, S. Hanafusa, T. Yoshioka, S. Koizumi, Japanese J. Polym. Sci. and Tech., 53, 575(1996).
[26] Spectroscopic Soc. of Japan, “Infrared and Raman Spectroscopy”, Kodansha Sci., Tokyo, (2011).
[27] N. Tanaka, G. Wypych Ed: “Handbook of Solvents”, ChemTech Publishing, Toronto, p253(2001).

[28] H. Burell, J. Brandrup, E. H. Immergut, “Polymer Handbook”, Interscience, New York, (1966).

[29] C. W. Bunn, J. Polym. Sci., 16, 323(1955).

[30] H. Yoshida, Netsusokutei, 13(4), 191(1986).

[31] D. Y. Yoon, P. R. Sundararajan, P. J. Flory, Macromolecules, 8, 776(1975).

[32] G. Allegra Ed: “Interfaces and mesophases in polymer crystallization 2”, Berlin, Springer, p288(2005).

[33] J. Stokr, B. Schneider, D. Doskocilova, J. Lovy, P. Sedlacek, Polymer, 23, 714(1982).

[34] B. Wunderlich, ATHAS databank (1992 Recommended Data).

[35] N. Tanaka, 56th SPSJ Annual Meeting, Polymer Preprints (CD), Nagoya, 56, (2006).

[36] P. J. Flory, J. E. Mark, A. Abe, J. Am. Chem. Soc., 88, 639(1966).

[37] A. Nakajima, M. Hosono, “Molecular Properties of Polymers”, Kagakudojin, (1969).

[38] N. Tanaka, Polymer, 34, 4941(1993).

[39] N. Tanaka, 58th SPSJ Annual Meeting, Polymer Preprints (CD), Kobe, 58, (2009).

[40] P. J. Flory, J. Chem. Phys., 17, 223(1949).

[41] J. P. Luongo, J. Appl. Polym. Sci., 3, 302(1960).

[42] J. X. Li, W. L. Cheung, D. Jia, Polymer, 40, 1219(1999).

[43] N. Tanaka, Proceedings of the 5th Italian Conference on Chemical and Process Engineering, Florence, 949(2001).

[44] N. Tanaka, H. Fujii, J. Macromol. Sci., B42, 621(2003).

[45] N. Tanaka, Gunma University, Japanese Patent 4228080.