Withdraw of prophylactic antimicrobials does not change resistome in pigs

CURRENT STATUS: POSTED

Maria Fernanda Loayza Villa
Universidad San Francisco de Quito

Email: mfloayzav@usfq.edu.ec
ORCID: https://orcid.org/0000-0002-7629-4864

Alejandro Torres
Universidad San Francisco de Quito

Lixin Zhang
Michigan State University

Gabriel Trueba
Universidad San Francisco de Quito

DOI: 10.21203/rs.2.18011/v1

SUBJECT AREAS
Large Animal Medicine

KEYWORDS
Antimicrobial prophylaxis, pigs, resistome, antimicrobial resistance, mobile genetic elements, medicated feed
Abstract

Background: The use of antimicrobials in the animal industry has increased the prevalence of antibiotic resistant bacteria and antimicrobial-resistance genes which can be transferred to human microbiota through the food chain or the environment. To reduce the influx of antibiotic-resistance to the human microbiota, restrictions on antimicrobials (in food animals) have been implemented in different countries. We investigated the impact of an antimicrobial restriction on the frequency of antimicrobial-resistant bacteria in pigs (PCI 1050) from an Ecuadorian farm.

Results: No differences in antimicrobial resistant coliforms or antimicrobial resistance genes (richness and abundance) were found when we compared animals fed with or without antibiotics. Nevertheless, the absence of antimicrobials in pigs didn’t impact the productive performance of animals.

Conclusion: Fitness costs of antimicrobial resistance in bacteria within intestinal microbiota of animals seems to be overestimated. Avoiding antimicrobials as prophylactics in pigs fed is not enough to control maintenance and spread of antimicrobial resistance.

Background

Throughout history, antimicrobials have been effective in the treatment and control of bacterial diseases and have contributed to a greater life expectancy of humanity [1]. However, the constant use of antibiotics has created a selective force increasing the frequency of antimicrobial resistance genes (ARGs) associated with mobile genetic elements (MGEs) and their spread among bacterial populations [2, 3].

Around 75% of total antimicrobial production in the world is used in the food-animal industry [1] and, larger amounts of antibiotics may be used in animals in less industrialized countries which lack regulatory policies for antibiotic use [4, 5]. The use of antimicrobials in animals causes the proliferation of commensal bacteria with ARGs and resistance can be horizontally transferred to many other bacterial species in the intestines [6, 7].

Antimicrobial-resistant commensals from farm animals can end up in food products such as meat and dairy [1, 8-10]; these bacteria can colonize human intestines and could become opportunistic human pathogens. Also, ARG associated with MGE could be transferred from bacteria from food-animals to
human microbiota [11, 12, 15-17]. For instance, *E. coli* strains isolated from healthy pigs carried an MGE with *mcr*-1 gene which confers resistance to colistin [18] and the same MGE and gene has been found in commensal microbiota in humans and other animal species [19, 20]. This interaction between bacteria from food animals and humans has driven the creation of new policies and regulations aimed to reduce the use of antibiotics in farm animals [13, 14].

In theory, if ARGs cause fitness costs in commensal bacteria in the absence of antibiotics, therefore, the reduction in antibiotic use in farms should cause a reduction in antimicrobial-resistant bacteria (ARB) food-animals [21]. However, the persistence of AR bacteria occurs thanks to compensatory evolution that allows bacteria to maintain ARGs without fitness costs [22, 23]. Experiments in which animals were deprived of antibiotics (as growth promoters) retained high levels of antibiotic resistance in numerically dominant *Escherichia coli* [24, 25] or high relative abundance of resistance genes [26]. More importantly, ARGs, multi-resistant and numerically dominant bacteria have been found in animals from organic farms [27-29]. The main objective of this study was to analyze the effect of the removal of antibiotics administered as prophylactics (higher antibiotic doses than for growth promotion) during 2 generations of animals. In this study we kept the animals receiving antibiotics close to those deprived of antibiotics to see if bacteria without ARGs can outcompete ARB for colonization in the absence of antibiotics.

Results

Based on coliform counts in MacConkey Lactose (MKL) culture media with and without antimicrobials, antimicrobial resistance ratios of resistant coliforms to overall coliforms were calculated and are shown in Table 2. No significant differences between treatment groups for any antibiotic was found (p = 0.434; 0.722; 0.763 respectively). The AR ratios for tetracycline were higher than those for trimethoprim-sulfamethoxazole or ampicillin.

Antimicrobial susceptibility tests for 537 randomly selected strains (A = 266 and B = 271) showed general resistance to ampicillin (n = 397; 73.9%), amoxicillin-clavulanic ac. (n = 188; 35%), tetracycline (n = 434; 81.1%), trimethoprim-sulfamethoxazole (n = 301; 56.1%), gentamycin (n = 125; 23.3%), ciprofloxacin (n = 71; 13.2%), chloramphenicol (n = 174; 32.4%) and ceftriaxone (n =
were detected. There were no significative differences \((p \geq 0.05) \) between treatment groups neither in sows nor in piglets (in nursing or fattening phases) (Table 3). Strains with resistance to 3 or more antimicrobials were considered as multidrug resistant phenotype (MDR) \((n = 354; 65.9\%) \).

The AR richness was not different \((p \geq 0.05) \) in animals within-group neither between groups (Figure 3) and the abundance of ARGs decreased over time, although tetracycline resistance genes and MGE remained stable. Among the most abundant genes detected were aminoglycoside resistance and MGEs: Tp614, IS613, tnpA, int1-a-marko, intI2, intI1F165_ clinical, pBS228-IncP–1, trb-C, IS26, IS256, IS6100, IS91. Some of these MGEs could be responsible for the transference of resistance genes among microbiota species. Genes such as tet (32) was detected in all samples and colistin resistant gene presence was low and was reported in the category “other”. A PCR amplification of mcr-1 gene in fecal samples showed that 19 of the 20 sows carried bacteria with this gene.

A Spearman correlation test was performed on QIUIcore Omics Explore 3.4 software showed no difference of ARG relative abundance profiles between samples collected during different growth phases. Pigs at day 30, showed a higher ARG relative abundance (although not it is not statistically significant) than pigs on day 5, however, this high ARG relative abundance declined over time (Figure 3). There were no statistic differences in weigh, growth and health status among study groups (S2 supplementary materials).

Discussion

In this study, we used a commercial farm context to analyze the impact of the antimicrobial restriction on antibiotic resistance in coliforms and microbiota along the life period of 2 generations of pigs. We expected that the absence of prophylactic doses of antimicrobials in the diet will cause antimicrobial sensible bacteria to outgrow resistant ones [30, 31]. However, we did not find significant differences \((p \geq 0.05) \) in the total number of resistant coliforms nor did we find differences in resistance genes (abundance or diversity) between groups of animals receiving and those deprived of antibiotics (Figures 2, 3 and 4). We also failed to detect any differences in the microbiota resistome (amount and type of ARGs) between the two groups of animals. These results are in agreement with
other reports showing no effect of antibiotic restriction on the proportion of ARB of animals [32].
Similar AR phenotypes have been found in isolates from animals with and without antimicrobial
restrictions (conventional vs. organic farms) [27, 31, 33, 34]. Contrary, other studies showed an
important decrease in resistance bacterial isolates or resistant gene abundance after antimicrobial
removal [25, 29, 35].
Our results may indicate that ARGs are not causing a major fitness reduction in the bacterial
population from pig intestines. Under laboratory conditions, it has been shown that the fitness costs
associated with a plasmid carriage disappear and even could transform in fitness advantage after 420
generations [36].
Furthermore, this advantage could even be transmitted to other bacterial hosts never exposed to this
plasmid [36]. Under farm conditions, due to a long period of antimicrobial feed supplementation,
coliforms could be well adapted to permanent antimicrobial concentrations and the reversibility of
antimicrobial resistance in the intestine could be slow or antibiotic-sensible bacteria could not
outcompete resistant ones [23].
Antimicrobial susceptibility test showed a higher resistance frequency to tetracycline, ampicillin,
trimethoprim-sulfamethoxazole, and chloramphenicol without differences among groups; these
resistances are common in pig farms [29]. The resistance genes with higher relative abundance were
tetracycline, lactams, and aminoglycosides (Figure 3). Genes associated with tetracycline resistance
have been detected in pigs feeding with or without medicated feed which concords with the notion
tetracycline resistance genes are also common in pig´s intestinal resistome [25, 35, 37, 38]. The
presence of lactam or aminoglycoside resistance genes occurred despite these antimicrobials were
not used as growth promotor, prophylactics or therapeutics; similar observations have been reported
previously [35, 39].
These observations suggest that antibiotic restriction was not enough to reduce microbiota antibiotic
resistance in this pig farm. It is possible that AR bacteria present in the surrounding environment
colonized successfully the intestines of animals deprived of antibiotics. Reducing antibiotic resistance
in these environments may require antibiotic restriction in the totality of animals and for longer
periods [26]. The resilience of antibiotic resistance in the microbiota is an important factor against the reduction of ARB transmitted to humans [40].

MGEs are important actors in antimicrobial resistance spread [41] and in this study we observed a higher relative abundance of MGEs in samples in 30 day-old pigs (Figure 3), corresponding to the weaning period which may affect the gut microbiome [42]; this transition may cause a dysbiosis (from milk feeding to solid feed) [43, 44]. Bacteria under stress may turn on their S. O.S response which increases mobilization of MGEs and subsequent increase in numbers [45, 46]. The mobile genetic elements markers, that showed an important relative abundance, may explain the abundance of ARGs [39].

Housing the two groups of animals in the same barn may be an important factor contributing to the similarity of AR in bacteria from both groups. However, we hypothesized that microbiota of animals without antibiotics should be re-colonized by antimicrobial susceptible bacteria which should be able to outcompete AR bacteria in the surrounding environment. Finally, the withdraw of antibiotics did not have any repercussions in the growth of the animals.

Conclusions
Our observations suggest that antibiotic restriction is not enough to reduce the numbers of antibiotic-resistant bacteria in the gastrointestinal tract of food animals and their products. The maintenance of antibiotic resistance in the absence of antibiotic pressure is not easily explained, there are many evolutionary factors that are not fully understood and require additional research.

Abbreviations
AR.- Antimicrobial resistance
ARB. - Antimicrobial resistant bacteria
ARG. - Antimicrobial resistance gene
ARGs.—Antimicrobial resistance genes
MGE. - Mobile genetic element
MGEs. - Mobile genetic elements
MDR. - Multidrug resistance
MKL. - Mac Conkey Lactose
n.- number of samples
PCR.—Polymerase chain reaction
SXT. - Trimethoprim and 76 mg /liter of sulfamethoxazole
CFU.—Colonies forming units
PO. - phosphate-buffered saline solution
TSB. - tryptic soy broth
mL.- milliliter

Methods
All protocols of experimental design were approved by the ethics and biosecurity committee of the company and the Animals Ethics Committee of Universidad San Francisco de Quito before the study.

Animals
A completely random, balanced fixed-effects double-blind study was conducted in two generations of pigs housed in a farm in Ecuador. The number of animals was calculated with a statistic power test of 87% considering the probable loss of experimental units (replacement sows). The study was conducted under strict biosecurity conditions. Twenty 70-day female PCI 1050 pigs were randomly assigned to each of the 2 groups. Sows were raised in a Site 1 farm where they were inseminated and carried out their pregnancies. One group containing 10 female pigs (the control group) was fed with conventional feed formulation with antimicrobial additives (group A) and, and the other comprised 10 female pigs which were fed without antimicrobial additives in the feed (group B).

Treatments were maintained during the whole study period (S1, supplementary materials). Three sows from treatment A and 4 sows from treatment B farrowed at the same time (there were no differences in litter numbers between treatments) (S2. Supplementary materials), piglets were placed with their corresponding mothers. When piglets reached 20 days, they were weaned and housed in another facility where they were distributed into two separate pens for group A (n = 40) and B (n = 40) and continued with treatments of their respective mothers. Each piglet was identified with a numbered earring. Once piglets were 70 days, they were moved to site 3 for fattening (71d to 170 d)
animals were kept under the same treatment throughout this time. The productive performance was observed based on dairy weight gain along the study period and after slaughtering the carcasses weight was compared. Vaccines were administered to all animals and the antimicrobial treatment was administered under veterinarian supervision only to animals that have any diagnosed infection. Antimicrobial additives used are described in Table 1.

During the weaning and fattening phases, each pen grouped 32 piglets. Pig density was 0.45 m²/pig in the weaning phase and 0.90-1.0 m²/pig at the fattening phase. Animals from each group were monitored for 150 days (Figure 1). The type and antimicrobial concentrations in feed changed over time and have been used routinely in the farm for the two previous years (Table 1). Animals were released from the experiment at day 150 and they were slaughtered (electric stunning) at day 170.

Housing and husbandry

The maternity and weaning phases (piglets until 70 days) are carried out in pens with plastic slatted flooring, the pens for fattening phase were located in a different facility and had cement floor which was washed daily. In all growing phases, pens were protected from the sun with roof, ceiling was at 2.5 m high. Number of cages are described in Fig, 1.

Tap water and feed were administered *at libitum*, temperature ranges from 20 to 26°C. All experiments were performed under veterinary supervision. If any sick animal was detected it was immediately spared in a different cage to be treated and eliminated from the study.

Samples and phenotypic analysis

Two Rectal swabs were taken from each sow and a randomly selected piglet from each pen during one productive cycle (Figure 1). Swabs were maintained on ice for transportation to the lab facilities within 2h after collection. Intestinal coliforms were used as a microbial indicator of phenotypic resistance.

For quantification of coliform resistant bacteria in intestinal microbiota of pigs, MKL medium was supplemented with 4 mg/liter of trimethoprim and 76 mg/liter of sulfamethoxazole (SXT) [50], or 32 mg/liter of tetracycline [51], or 16mg/liter of ampicillin according to protocols described previously [52].
Swabs were eluted in 5mL of sterile tryptic soy broth (TSB) diluted in phosphate-buffered saline solution (PO) (0.0169M KH$_2$PO$_4$, 0.0719M K$_2$HPO$_4$, pH 7.2) [51]. A 0.1mL aliquot of this solution was serially diluted in 0.9 mL of PO until 10$^{-3}$ and 0.1mL of each dilution was plated onto the surface of MKL plates with and without antimicrobials [52] (S3. Supplemented materials). We estimated the ratio of resistant coliforms by counting the number of colonies in MKL plates with antimicrobials divided by the colonies in MKL plate without antimicrobials [29]. Only plates with coliform counts greater than 4 colony forming units (CFU) were recorded (S3, supplementary materials).

Antimicrobial susceptibility test

One lactose fermenting (coliform) colony from each plate was isolated and stored at –80°C in TSB with 30% glycerol [34]. Antimicrobial susceptibility tests were performed using AMP ampicillin (10g), TET tetracycline (30g), SXT trimethoprim-sulfamethoxazole (1.25/23.75g), GEN gentamycin (10g), AMC amoxicillin-clavulanic ac. (20/10g), CIP ciprofloxacin (5g), CHLOR chloramphenicol (30g) and COX ceftriaxone (30g) as representatives of the most used families of antibacterial drugs used in health care [53, 54]. The Kirby Bauer test was carried out following CLSI (Clinical & Laboratory Standards Institute) guidelines.

Molecular analysis

For molecular analysis, swabs were frozen at –80°C until they were used. DNA from swabs taken for each pig was isolated using MO BIO Power Soil DNA Isolation Kit (MO BIO, 12888–100) using swab dilution material in bead solution buffer and following manufacturer instructions. Quality and quantity were evaluated using nanodrop (Thermo Scientific) and Qubit dsDNA HS (Thermo Fisher Scientific, Oregon, USA). From sows’ samples, mcr-1 PCR amplification was performed used the conditions described previously [18]. One fecal pooled sample, from each sampling point (6 from A and 6 from B group) was analyzed in duplicate with high throughput qPCR. WaferGen SmartChip Real-time PCR system was used to detect 384 genes, 338 are informative for AR genes or MGE. Primers for these genes and associated HT- qPCR assay were designed, used, and validated in the previous studies [35, 55–57], and primer set was update recently [58] (Suppl. 1). The genetic richness was defined as the number of AR genes found in a niche.

Statistical analysis
All collected data were registered in MS EXCEL software and descriptive and inferential statistical analysis were performed in INFOSTAT (Statistic Software Vs 2017). The impact of the antimicrobial restriction on coliforms count, on the susceptibility patterns of isolates, and animal performance was compared with T-test and Chi-Square respectively (≤0.05). HT-qPCR data were analyzed according to previously established methods [35, 59]. Specifically, ∆∆CT method was used to normalize and calculate the fold change. Moreover, the relative abundance of ARGs was calculated with normalization to the universal 16S rRNA; estimated from the Ct value with a conservative threshold Ct of 30 as the gene copy detection limit. Calculated data represent the copy number per 16S rRNA gene copy. QIUcore Omics Explore 3.4 software was used to show heat maps.

Declarations
Ethics approval and consent to participate
All the experimental procedures were approved by the Animal Ethics Committee at Universidad San Francisco de Quito document Nr. 2016–004. A technical committee in the company provided their approval for this study (document number Cn.Ce.Ca.16.04). Company’s consent was implicit as the protocols were designed jointly between the researchers and Company’s technical personnel; this agreement was confirmed in a consent letter sent from the Company to the Animal Ethics Committee at Universidad San Francisco de Quito was required. The number of animals under research was approved by farm managers. All facility adequation and sampling methods were performed under farm’s veterinarian supervision. Approval of all the protocols and approval publications were obtained from the technical managers of the company. The name of the company was kept confidential at the company’s request. There is no national requirement to obtain IRB approval for this type of studies.
Availability of data and materials
The datasets analyzed during the current study are available from the corresponding author under any request
Competing interests
The research was conducted without any potential conflict of interest.
Funding
This project was funded by Universidad San Francisco de Quito Grant No. 11182. USFQ and the Company (we weren’t authorized to disclose the name of the company).
Author contributions
GT Funding acquisition, Farm access agreement, and project conceptualization
FL: Experimental design, field and lab techniques, sampling procedures, data register and analysis, write and edition of the publication.
AT: experimental design, farm permissions, and animal welfare.
LZ: Molecular methodology, technical support in high throughput qPCR. WaferGen SmartChip Real-time PCR system and data analysis.
LZ and GT manuscript edition
All authors have read and approved the manuscript.

Acknowledgments
We thank Germán Romo, Manuel Salgado, Gustavo Nava, and Edgar Velarde for their technical advice.

References
1. Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57:2857–76. doi:10.1080/10408398.2015.1077192.
2. Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol. 2013;4 SEP:1–13.
3. Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine. Vet Microbiol. 2014;170:1–9. doi:10.1016/j.vetmic.2014.01.013.
4. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6:47. doi:10.1186/s13756-017-0208-x.
5. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science
6. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 2013;23:1163–9. doi:10.1101/gr.155465.113.23.

7. Neu HC. The crisis in antibiotic resistance. Science. 1992;257:1064–73.

8. Van Den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics: Links between animals and humans. Int J Antimicrob Agents. 2000;14:327–35.

9. Locatelli C, Cremonesi P, Caprioli A, Carfora V, Ianzano A, Barberio A, et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J Dairy Sci. 2017;100:608–19. doi:10.3168/jds.2016–11797.

10. Baker M, Hobman JL, Dodd CER, Ramsden SJ, Stekel DJ. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiol Ecol. 2016;92:1–10.

11. Zdolec N, Dobranić V, Butković I, Koturić A, Filipović I, Medvid V. Antimicrobial susceptibility of milk bacteria from healthy and drug-treated cow udder. Vet Arh. 2016;86:163–72.

12. Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7 FEB:1–10.

13. Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014;5 July:334. doi:10.3389/fmicb.2014.00334.

14. Pugh DM. The EU precautionary bans of animal feed additive antibiotics. Toxicol Lett. 2002;128:35–44.

15. Clelia A. Food Spoilage and Food Safety: Is There a Link? Elsevier Ltd; 2016.
16. Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-Ordóñez A. The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain. Genes (Basel). 2018;9:1-28.

17. Capita R, Alonso-calleja C. Antibiotic-Resistant Bacteria: A Challenge for the Food Industry Antibiotic-Resistant Bacteria: Crit Rev Food Sci Nutr. 2012;53:11-48.

18. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161-8. doi:10.1016/S1473-3099(15)00424-7.

19. Wang R, Van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9:1-9. doi:10.1038/s41467-018-03205-z.

20. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Butaye P, Goossens H. Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid. Lancet Infect Dis. 2016;16:283-4. doi:10.1016/S1473-3099(16)00012-8.

21. Wegener HC. Antibiotics in animal feed and their role in resistance development. Curr Opin Microbiol. 2003;6:439-45.

22. Andersson DI, Hughes D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat. 2012;15:162-72. doi:10.1016/j.drup.2012.03.005.

23. Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260-71. doi:10.1038/nrmicro2319.

24. Ahmed S, Olsen JE, Herrero-Fresno A. The genetic diversity of commensal Escherichia coli strains isolated from non- antimicrobial treated pigs varies according to age
group. PLoS One. 2017;12:1-18. doi:10.1371/journal.pone.0178623.

25. Mathew AG, Upchurch WG, Chattin SE. Incidence of Antibiotic Resistance in Fecal Escherichia coli Isolated from Commercial Swine Farms. J Anim Sci. 1998;76:429-34.

26. Pakpour S, Jabaji S, Chenier MR. Frequency of Antibiotic Resistance in a Swine Facility 2.5 Years After a Ban on Antibiotics. Microb Ecol. 2012;63:41-50.

27. Gerzova L, Babak V, Sedlar K, Faldynova M, Videnska P, Cejkova D, et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS One. 2015;10:1-10.

28. Mollenkopf DF, De Wolf B, Feicht SM, Cenera JK, King CA, van Balen JC, et al. Salmonella spp. and Extended-Spectrum Cephalosporin-Resistant Escherichia coli Frequently Contaminate Broiler Chicken Transport Cages of an Organic Production Company. Foodborne Pathog Dis. 2018;15:583-8.

29. Österberg J, Wingstrand A, Jensen AN, Kerouanton A, Cibin V, Barco L, et al. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four european countries. PLoS One. 2016;11:1-12. doi:10.1371/journal.pone.0157049.

30. Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM. Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect Dis. 2009;9:357-64.

31. Sato K, Bartlett PC, Kaneene JB, Downes FP. Comparison of Prevalence and Antimicrobial Susceptibilities of Campylobacter spp. Isolates from Organic and Conventional Dairy Herds in Wisconsin. Appl Environ Microbiol. 2004;70:1442-7.

32. Jensen HH, Hayes DJ. Impact of Denmark’s ban on antimicrobials for growth promotion. Curr Opin Microbiol. 2014;19:30-6. doi:10.1016/j.mib.2014.05.020.

33. Miranda JM, Mondragón A, Vázquez BI, Fente CA, Cepeda A, Franco CM. Influence of
farming methods on microbiological contamination and prevalence of resistance to antimicrobial drugs in isolates from beef. Meat Sci. 2009;82:284–8. doi:10.1016/j.meatsci.2009.01.020.

34. Cho S, Fessler CP, Diez-Gonzalez F, Wells SJ, Hedberg CW, Kaneene JB, et al. Antimicrobial Susceptibility of Shiga Toxin-Producing Escherichia coli Isolated from Organic Dairy Farms, Conventional Dairy Farms, and County Fairs in Minnesota. Foodborne Pathog Dis. 2007;4:178–86.

35. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci. 2012;109:1691–6. doi:10.1073/pnas.1120238109.

36. Dionisio F, Conceição IC, Marques ACR, Fernandes L, Gordo I. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett. 2005;1:250–2.

37. Koga VL, Scandorieiro S, Vespero EC, Oba A, De Brito BG, De Brito KCT, et al. Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Biomed Res Int. 2015;2015.

38. Kazimierczak KA, Scott KP, Kelly D, Aminov RI. Tetracycline Resistome of the Organic Pig Gut. Appl Environ Microbiol. 2009;75:1717–22. doi:10.1128/AEM.02206–08.

39. Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, et al. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014;8:1566–76. doi:10.1038/ismej.2014.12.

40. Lehtinen S, Blanquart F, Croucher NJ, Turner P, Lipsitch M, Fraser C. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc Natl Acad Sci U S A. 2017;114:1075–80. doi:10.1073/pnas.1617849114.
41. Jansen G, Aktipis CA. Resistance Is Mobile: The Accelerating Evolution of Mobile Genetic Elements Encoding Resistance. J Evol Med. 2014;2:1–3. doi:10.4303/jem/235873.

42. Frese SA, Parker K, Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome. 2015;3:1–10. doi:10.1186/s40168–015-0091–8.

43. Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 2017;25:851–73. doi:10.1016/j.tim.2017.05.004.

44. Isaacson R, Kim HB. The intestinal microbiome of the pig. Anim Heal Res Rev. 2012;13:100–9.

45. Shapiro RS. Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens. PLOS Pathog. 2015;11:e1004678.

46. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427:72–4.

47. De Been M, Lanza V, De Toro M, Scharringa J, Dohmen W, Du Y, et al. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages. Plos Genet. 2014;10.

48. Sinlapasorn S, Lulitanond A, Angkititrakul S, Chanawong A, Wilailuckana C, Tavichakorntrakool R, et al. SCCmec IX in meticillin-resistant staphylococcus aureus and meticillin-resistant coagulase-negative staphylococci from pigs and workers at pig farms in Khon Kaen, Thailand. J Med Microbiol. 2015;64:1087–93.

49. Marshall BM, Levy SB. Food Animals and Antimicrobials: Impacts on Human Health. Clin Microbiol Rev. 2011;24:718–33. doi:10.1128/CMR.00002–11.

50. Schmidt JW, Agga GE, Bosilevac JM, Brichta-Harhay DM, Shackelford SD, Wang R, et
al. Occurrence of antimicrobial-resistant Escherichia coli and Salmonella enterica in the beef cattle production and processing continuum. Appl Environ Microbiol. 2015;81:713–25. doi:10.1128/AEM.03079-14.

51. Agga GE, Schmidt JW, Arthur TM. Effects of in-feed chlortetracycline prophylaxis of beef cattle on animal health and antimicrobial-resistant Escherichia coli. Appl Environ Microbiol. 2016; October.

52. Bibbal D, Dupouy V, Ferré JP, Toutain PL, Fayet O, Prè MF, et al. Impact of Three Ampicillin Dosage Regimens on Selection of Ampicillin Resistance in Enterobacteriaceae and Excretion of bla TEM Genes in Swine Feces. Appl Environ Microbiol. 2007;73:4785–90. doi:10.1128/AEM.00252–07.

53. Eisenberg JNS, Goldstick J, Cevallos W, Trueba G, Levy K, Scott J, et al. In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador. J R Soc Interface. 2012;9:1029–39.

54. Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C. Antimicrobial resistance in escherichia coli isolates from Swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol. 2009;75:559–66. doi:10.1128/AEM.01821–08.

55. Guo X, Stedtfeld RD, Hedman H, Eisenberg JNS, Trueba G, Yin D, et al. Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environ Sci Technol. 2018;52:8165–72. doi:10.1021/acs.est.8b01667.

56. Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270. doi:10.1038/nmicrobiol.2016.270.

57. Su J-Q, Wei B, Ou-Yang W-Y, Huang F-Y, Zhao Y, Xu H-J, et al. Antibiotic Resistome and Its Association with Bacterial Communities during Sewage Sludge Composting.
Tables

Table 1. Antimicrobial additives used in pigs farm as prophylactics in group A.

Growth phase	Age (days)	Antimicrobial	Dose, ppm	Administration via
0	21 - 28	Tilmicosin	200	Food
		Colistin	40	Food
1	29 - 34	Tiamulin	150	Food
		Chlortetracycline	450	Food
2	35 - 45	Tiamulin	150	Food
		Chlortetracycline	450	Food
3	45 - 70	Tiamulin	150	Food
		Chlortetracycline	450	Food
4	70 - 85	Chlortetracycline	450	Food
5	123 - 139	Chlortetracycline	450	Food

Table 2. Antimicrobials used as supplements to MacConkey Lactose (MKL) culture media.

Antimicrobial	Concentration	Reference
Tetracycline	TET	32mg/L (Agga et al., 2016)
Ampicillin	AMP	16 mg/L (Bibbal et al., 2007; Havelaar et al., 1987)
Trimethoprim-Sulfamethoxazole	SXT	4mg/L 76mg/L (Schmidt et al., 2015)
Doxycycline		
		25mg/Kg/PV Water
		10mg/Kg/PV Water

Table 3. Total count of coliform colony forming units (CFU) in Mac Conkey lactose without
antimicrobials. The average and standard deviation (SD) is shown for each treatment. Antimicrobial resistance ratios for ampicillin (AMP), cotrimoxazole (SXT) and Tetracycline (TET) were calculated using the total count of coliform colony forming units in Mac Conkey Lactosa plates with antimicrobials divided by the total count of coliform in Mac Conkey Lactosa without antimicrobials.

AGE (days)	TOTAL COUNT (AVERAGE)	SD	AMP	SXT	TET	TOTAL COUNT (AVERAGE)	SD	AMP	SXT	TET
5	1.73E+07	1.15E+07	0.48	1.22	2.15	2.34E+07	1.10E+07	0.39	1.55	2.38
30	6.71E+05	1.01E+06	0.78	0.56	0.66	5.15E+04	7.92E+04	0.98	0.43	0.97
50	9.17E+05	8.70E+05	0.26	0.48	0.83	8.90E+05	8.41E+04	0.48	0.48	1.01
100	2.46E+05	1.68E+05	0.38	0.94	0.99	7.40E+04	1.16E+03	0.48	1.48	0.72
140	1.08E+05	1.68E+05	0.34	0.32	1.05	2.65E+05	2.55E+04	0.25	0.14	1.2

Figures
Figure 1

Workflow for a productive pig’s cycle of each treatment group (A and B). Treatment group A. were fed with antimicrobial supplements. Treatment group B were fed without antimicrobial supplements. Ten young female figs (70d) were randomly selected for each treatment. All farrowed piglets were maintained under the same treatment group until day 2 (breastfeeding phase). A homogeneous group of 32 piglets (similar age and weight) within each treatment group were selected to form a weaning phase pen (since 22 days to 70 days) that was conserve until the slaughter phase (170 days). Rectal swabs samples were collected at 1.- 5 days; 2.- 30 days; 3.- 50 days: 4.- 100 days. 5.- 140 days. Samples from sows were taken at 180 days (6).
Figure 2

Antimicrobial resistance genes (ARGs) richness. Number of genes of each class of antimicrobial target. In columns there are assigned the growing phase of piglets (1.- 5 days; 2.- 30 days; 3.- 50 days; 4.- 100 days; 5.- 140 days) and sows (6.- 180 days). Animals feeding antimicrobials were identified as A and animal without antimicrobial additives were identified with B.
Relative abundance (RA%) of antimicrobial resistance genes, grouped by sampling phase and treatment group (A.- Pigs fed antimicrobials; B.- pigs without antimicrobials in feed; 1.-5 days; 2.- 30 days; 3.- 50 days: 4.- 100 days. 5.- 140 days) and sows (6.- 180 days).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
S3 suplement materials pigs.docx
S2 suplement materials pigs.docx
NC3Rs ARRIVE Guidelines Checklist 22nov.pdf
S1 sulement materials pigs.docx
Supplementary materials Pigs.xlsx