The authors systematically reviewed the association between provider case volume and mortality in 101 publications involving greater than 1 million patients with esophageal, gastric, hepatic, pancreatic, colon, or rectal cancer, of whom more than 70,000 died. The majority of studies addressed the relation between hospital surgical case volume and short-term perioperative mortality. Few studies addressed surgeon case volume or evaluated long-term survival outcomes. Common methodologic limitations were failure to control for potential confounders, post hoc categorization of provider volume, and unit of analysis errors. A significant volume effect was evident for the majority of gastrointestinal cancers; with each doubling of hospital case volume, the odds of perioperative death decreased by 0.1 to 0.23. The authors calculated that between 10 and 50 patients per year, depending on cancer type, needed to be moved from a “low-volume” hospital to a “high-volume” hospital to prevent 1 additional volume-associated perioperative death. Despite this, approximately one-third of all analyses did not find a significant volume effect on mortality. The heterogeneity of results from individual studies calls into question the validity of case volume as a proxy for care quality, and leads the authors to conclude that more direct quality measures and the validity of their use to inform policy should also be explored. CA Cancer J Clin 2009;59:192-211. ©2009 American Cancer Society, Inc.

Introduction

Among the many reasons put forward for the regionalization of cancer services (particularly surgical services) is the widely held assumption that high-volume providers achieve better outcomes than low-volume providers. Since Luft et al described an inverse relation between surgical volume and mortality in 1979,1 healthcare decision-makers have been interested in the potential for regionalization of surgical services to improve patient outcomes, particularly mortality and morbidity, at lower cost. Subsequently, a plethora of research studies have examined the relation between surgical volume and outcome, and several policy strategies, particularly those designed to restrict specialty surgery to accredited high-volume providers, have been debated.

Arguments both for and against selective referral to high-volume surgical providers for specific cancer types (volume-based referral) make some sense. Advocates of volume-based referral point out the intrinsic logic that “practice makes perfect,” and use the analogy of surgical training in which, to achieve expected standards, surgical specialization is often encouraged and residents are required to perform a minimum number of relevant...
procedures.2,3 It is often implied that care by low-volume providers may be harmful for patients and may be an inefficient use of healthcare resources.

Those critical of volume-based referral argue that providers should be judged on their own outcomes and that case volume, as a proxy for quality, is an imprecise measure of individual provider performance. In this sense, volume-based referral may disenfranchise low-volume providers who provide high-quality services, just as it may provide an advantage for high-volume, low-quality providers. Such referral may not take into account a high-volume provider practicing in more than one low-volume center. Furthermore, referral to distant high-volume centers may be inconvenient for patients, who might place a greater value on receiving local care from familiar providers compared with having a reduced operative risk.3-5

Three policy-oriented questions are particularly important for informing this debate and decisions concerning the regionalization of cancer services: 1) What is the strength and robustness of the association, if any, between hospital or clinician case volume and patient outcomes? 2) Is the association clinically important? 3) Is there consistent evidence of a threshold volume effect, above which better outcomes are observed?

To answer these questions, we undertook a systematic review of research literature. Although several systematic reviews on the relation between provider volume and outcomes in cancer have been published to date,6-19 the majority are narrative, nonquantitative syntheses that fail to provide the key policy-oriented information concerning effect size or thresholds that will be influential in policy and practice debates regarding volume-based referral and volume-based service provision.

This article reports the findings for gastrointestinal cancers, which is a subset of a larger review we conducted of the volume effect on all cancer types, in which studies relating to gastrointestinal cancers comprised approximately 60% of all studies.20 By limiting this review to gastrointestinal cancers, we were able to concentrate on the appraisal and synthesis of studies and perform a meta-analysis while retaining in the review results from a breadth of clinicians, cancer types, and procedures.

Methods

Standard systematic review methods were used along with meta-analysis to combine the results of multiple studies and estimate overall effect sizes and threshold volumes.

Search Methods for the Identification of Studies

We conducted a comprehensive search to identify all relevant primary studies addressing the impact of provider (hospital or clinician) case volume on patient outcomes in the treatment of cancer. Search terms used for each of the databases are shown in Table 1. Because this topic is not typically well indexed in electronic literature databases, our search method also included systematic reviews of related topics so that reference lists could be hand-searched to identify primary studies that may not have been identified in our electronic searches. We also searched PubMed using the “related articles” function and conducted forward citation searches in the ISI Web of Knowledge database to identify primary studies published within the last 2 years that may not have been cited in any previously published systematic reviews.

Study Selection

Two researchers independently screened the title and abstracts of all citations identified from each of the searches and selected potentially relevant systematic reviews and primary studies. These were obtained in full text and were screened independently by both researchers to identify primary studies that fulfilled our selection criteria (Table 2). Any discrepancies regarding the inclusion or exclusion of a primary study in the review were settled through discussion until consensus was reached.

Quality of Research Evidence

One reviewer critically appraised all included studies to determine risk of bias and a second reviewer critically appraised a random sample of studies to check for agreement. Risk of bias was assessed by documentation of study type (randomized controlled trial, prospective or retrospective cohort study, analysis of routinely collected data), whether the analysis accounted for clustering effects, and whether important confounders were considered (see Table 3 for justification of these criteria).
Data Collection

Standardized instruments created specifically for this review were used to collect data from the included studies. A single reviewer examined and extracted relevant data from each article, and a second reviewer subsequently checked the data extraction from a random sample of studies to estimate reliability. To ensure clarity of reporting, manuscripts obtained were called “publications,” research materials within publications that addressed the association between volume and outcomes for a particular cancer surgery were called “studies,” and individual assessments of the association between either hospital or surgeon volume and either short-term or long-term outcomes were called “analyses.”

TABLE 1. Search Strategies for Bibliographic Databases

Database	Search Strategy	
OVID PreMEDLINE, MEDLINE databases	1. exp HOSPITALS/ or hospital$.mp. 2. "Specialties, Medical"/ 3. Health Facility Size/ 4. provider$.mp. 5. or/1-4 6. exp Surgical Procedures, Operative/ 7. "Surgery Department, Hospital"/ 8. (surgery or surgical or treat$ or therap$).mp. 9. exp RADIOTHERAPY/ or radiotherapy.mp. 10. or/6-9 11. "Statistics"/ 12. "Workload"/ 13. outcome$.mp. 14. volume$.mp. 15. (frequency or frequent).mp. 16. sn.fs. 17. (lvh and hvh).mp. 18. regionali$.mp. 19. (access$ adj5 indicat$).mp. 20. or/11-19 21. (speciali$ or specialt$).mp. 22. exp NEOPLASMS/ 23. cancer$.mp. 24. malignan$.mp. 25. exp Lymphoma/ or lymphoma$.mp. 26. exp Leukemia/ or leukemia$.mp. 27. myeloma$.mp. 28. (tumour$ or tumor$).mp. 29. oncolog$.mp. 30. or/22-29 31. 5 and 10 and 20 and 30	1. Systematic reviews ((((hospital* OR (health/exp AND facil$1) OR provider*)) AND (neoplasm* OR cancer* OR malignan* OR lymphoma* OR leukemia* OR myeloma* OR tumour* OR tumor* OR oncolog*) AND (volume OR turnover OR frequen* OR rate OR mortality OR regional* OR workload OR special*)) AND (meta analysis/lim OR systematic review/lim)) AND (embase/lim AND ((cancer/lim OR public health/lim OR [radiology and nuclear medicine]/lim OR [surgery]/lim) AND [humans]/lim)) 2. Primary studies (hv$ AND lv$) OR (((hospital* OR (health/exp AND facil$1) OR provider*)) AND (neoplasm* OR cancer* OR malignan* OR lymphoma* OR leukemia* OR myeloma* OR tumour* OR tumor* OR oncolog*) AND (surgery OR surgical OR radiotherapy) AND (volume OR turnover OR frequen* OR outcome* OR regional* OR workload* OR special*)) AND ((controlled clinical trial/lim OR [randomized controlled trial]/lim) AND ((cancer/lim OR public health)/lim OR [radiology and nuclear medicine]/lim OR [surgery]/lim) AND [humans]/lim AND [1979-2005/py])
We extracted as much data regarding the types of cancers and procedures as were available in the reports. We classified esophageal, gastric, hepatic, pancreatic, colon, and rectal cancers separately. We included a separate category termed “colorectal (not otherwise defined)” for studies of colorectal cancers that did not differentiate between colon and rectal cancers. From publications that included more than one type of cancer, we extracted results for each cancer type. The cutpoints used by the authors of the primary studies for defining low-volume and high-volume groups were documented along with how these cutpoints were determined.

The association between hospital or surgeon case volume and 30-day or in-hospital mortality, survival, or long-term mortality was identified for each study. When it was reported, we documented results without adjustment in natural units (ie, deaths per study population) and the estimated effect sizes before and after adjustment for potential confounding factors, expressed as odds ratios (ORs), relative risks (RRs), or hazards ratios (HRs), with stated confidence intervals and measures of significance. We identified and noted the factors for which a statistical adjustment was made.

| TABLE 2. Criteria for the Inclusion and Exclusion of Studies |
|---------------------------------|---------------------------------|
| CHARACTERISTICS | INCLUSION | EXCLUSION |
| Participants | People with gastrointestinal cancer or those undergoing procedures usually undertaken to treat gastrointestinal cancers | |
| Intervention | Surgical interventions delivered by a high-volume clinician or in a high-volume hospital | |
| Comparators | Surgical interventions delivered by a low-volume clinician or in a low-volume hospital | |
| Outcomes | Short-term and long-term mortality | Narrative reviews, editorials, letters, articles identified as preliminary reports when results are published in later versions, articles in abstract form only, case reports, and collections of case reports in which results are only presented by individual study patient and not summarized |
| Study design | Systematic reviews, meta-analyses, and randomized controlled trials; other controlled trials, comparative studies, and cohort studies were assessed | |
| Publication | No language or publication date constraints were placed | |

| TABLE 3. Justification of Quality Criteria |
|---------------------------------|---------------------------------|
| CRITERIA | JUSTIFICATION |
| Adjustment for potential confounders: | If patients treated in high-volume settings are systematically different from those treated in low-volume settings in other ways (eg, older and with greater severity of disease, with greater numbers of comorbidities, or of lower socioeconomic status), this may impact on the results, with potential differences between high-volume and low-volume settings being attributable to these confounding factors rather than the different settings. Previous studies have demonstrated a strong association between age, comorbidity, and stage of disease and patient mortality (up to eight times greater than that of provider case volume). |
| - Age | |
| - Comorbidities such as cardiac disease, lung disease, and malnutrition | |
| - Stage and severity of cancer | |
| - Surgeon case volume for studies of the effect of hospital case volume and vice versa | |
| - Adjuvant and neoadjuvant treatment (for long-term outcomes) | |
| Accounting for clustering effects in the analysis | Unit-of-analysis error, or the failure to account for clustering effects, is a potential source of bias when groups of patients are treated by different providers. A clustering effect often exists in volume–outcome studies because patients attending the same hospital or being treated by the same physician are more similar to each other than those treated in different settings, and therefore cannot be assumed to be completely independent. Because the outcomes for these studies are collected at the patient level (mortality, length of stay, complications, etc), and the unit of comparison (volume) is collected at the level of the hospital or physician, it is important to either use an appropriate unit of analysis (ie, analysis performed at the same level as the unit of comparison) or to statistically adjust for the effect of clustering. Although failure to appropriately manage clustering in an analysis does not usually lead to erroneous point estimates of effect size, it does lead to overly narrow confidence intervals and hence the potential to claim a result is statistically significant when it may not be. |
Synthesis of Results

Our broad study selection criteria and range of cancer types led us to expect there would be heterogeneity of the included studies with respect to study design, method of reporting, and analysis, making statistical aggregation of the results challenging. We therefore planned to adopt a multilevel approach to reporting and synthesis, structured to avoid giving too much weight to studies with the greatest risk of bias:

1) All included studies were reported and characterized in terms of population, methods, and whether they reported significant or nonsignificant results for differences in mortality between high-volume and low-volume surgeons or high-volume and low-volume hospitals;
2) All raw unadjusted data were entered into a regression analysis to facilitate quantitative synthesis of all analyses to demonstrate, without adjusting for confounders, the crude mortality rate for different case volumes; and
3) We reported effect sizes (presented as ORs, RRs, or HRs) and measures of precision (such as confidence intervals or \(P \) values) only from studies that met the quality criteria outlined above for which we therefore had reasonable confidence in the estimated effect size and its precision.

Analysis of Unadjusted Data

It is inappropriate to combine the results of separate studies if they have used different methods to adjust for potential confounders. It may be possible to address inconsistencies in the way that data have been adjusted in separate studies by obtaining the raw data from the authors; however, this may not always be possible and was not a feasible approach for this review. An alternative approach is to combine the raw unadjusted data from the studies, with the limitation that differences in casemix will not be taken into account. Adopting this approach meant that studies could only be combined when they had provided sufficient data describing the provider volume cutoff points, the number of hospitals or surgeons in each volume category, and the number of patients treated in each category.

The unit of analysis was the volume category stratum reported in each analysis. For example, if an analysis followed the outcomes of three groups categorized as low-, medium-, and high-case volume, that analysis would contribute three data points to the overall meta-analysis. Mean values for separate volume strata were used when specified. If the mean was not specified, the midpoint of the upper and lower cutpoints of each strata were used as point estimates. If lower cutpoints were not reported, we determined the mean as half of the upper limit. If the upper cutpoint was missing, we found that 1.5 times the lower limit of that stratum most closely approximated situations in which values were known.

Addressing hospital volume and surgeon volume separately, and short-term and long-term mortality separately, we plotted mortality against case volume for each cancer type. We transformed volume to \(\log_{(base \ 2)} \) of volume because the data were skewed by many small volume categories and only a few very large volume categories, and also for practical reasons because the effect of changes in case volume could reasonably be assumed to be multiplicative, not additive, (eg, the difference in skill when going from 5 to 10 cases per year should be similar in effect to going from 25 to 50 cases per year). To verify the existence of a consistent change in risk in association with volume increase, we overlaid a “local regression” function (“lowess” in Stata statistical software [StataCorp, College Station, Tex])\(^2\) that is sensitive to nonlinear patterns.

We then used the Stata command “xtgee” to fit a logistic regression model defining deaths in each stratum as the outcome, \(\log_{2} \) (mean volume in stratum) as a single predictor, and the number of patients in each stratum as the denominator, and accounted for clustering by study, so that the meta-analysis took into account the nonindependence of different volume strata within the same study.\(^2\) This analysis provided an estimate of the OR of the increase (or decrease) in mortality for each unit increase in volume (expressed as \(\log_{2} \) [volume]). The model coefficient estimated the proportional change in the odds of mortality for each doubling of volume (eg, if \(OR = 0.9 \), then the odds decreased by 0.1 for each doubling of volume).

Estimates of Effect From Adjusted Results

We reported adjusted results only for those studies that had included age, stage of disease, comorbidities, and both hospital and surgeon volume in the model, and in which an appropriate analysis was performed that took into account the effect of clustering of cases by provider surgeon or institution.
Results

Identification of Studies
Table 4 lists the search dates, the electronic databases searched, and the number of retrieved articles resulting from each search. A flow diagram outlining the overall search strategy and the identification of primary publications included in this systematic review is shown in Figure 1.

We identified 101 primary publications reporting 137 studies of the effect of hospital or clinician volume on the mortality outcomes of patients undergoing cancer surgery. Some publications included studies of more than one cancer type. Overall, studies addressed surgery for the following gastrointestinal cancers: esophageal cancer (28 studies), gastric cancer (22 studies), liver cancer (11 studies), pancreatic cancer (34 studies), and colorectal cancer (42 studies).

Definitions of Volume Categories
In nearly all the studies, high-volume and low-volume categories for providers were not defined a priori. Volume category cutoffs were most often determined post hoc through ranking providers (hospital or clinician) according to the number of procedures performed and then dividing the cohort into halves, tertiles, quartiles, or quintiles. Figure 2 shows how the lowest and highest volume categories were defined, revealing substantial overlap between studies. Some studies defined a given volume of cases as low volume, whereas other studies defined the same volume as high volume.

Characteristics of Included Studies
All included studies were observational studies and there were no controlled trials. The vast majority were analyses of data that are routinely and previously collected from hospital administrative databases, cancer registries, and a range of other specialist databases to report on patient mortality outcomes.

Tables 5 to 11 outline the characteristics of studies included in this review: provider volume assessed (hospital or clinician), outcomes reported (short-term or long-term mortality), significance of findings (as reported by the authors), adjustment made for potential confounding factors (demographics, comorbidities, clinical stage, treatment received, and both hospital and surgeon case volume), and whether the analysis accounted appropriately for the effects of clustering. The 137 studies of individual cancer types that were included reported 203 analyses of whether hospital or surgeon volume affected short-term or long-term mortality.

A total of 112 analyses (55%) attempted to determine the effect of hospital volume on short-term mortality (defined variously as either in-hospital, 30-day, surgical, or inpatient mortality). Thirty-seven analyses (18%) searched for an effect of hospital volume on long-term mortality, 38 analyses (19%) examined the effect of surgeon volume on short-term mortality, and 16 analyses (8%) attempted to determine an effect of surgeon volume on long-term mortality.

Although most studies made adjustments for some characteristics that could potentially act as confounders, only 20 (15%) included age, stage of disease, comorbidities, and both hospital and surgeon case volume as potentially confounding factors for each other. Seventy-six studies (55%) accounted for clustering of participants. Eleven studies (8%) had both adjusted for the specified confounding factors and accounted for clustering of participants.

Of 126 studies investigating the effect of hospital volume for a cancer type, 86 (68%) reported a significant association between hospital volume and either short-term or long-term mortality or both (including 17 of 27 studies of the esophagus, 14 of 20 studies of the stomach, 11 of 11 studies of the liver, 24 of 31 studies of the pancreas, 10 of 17 studies of the colon, 3 of 9 studies of the rectum, and 7 of 14 studies of the colo-

TABLE 4. Search Results From Electronic Databases

DATABASE	DATES COVERED	DATE SEARCHED	CITATIONS RETRIEVED
OVID PreMEDLINE and MEDLINE	1966-2007	May 2007	3,112
EMBASE	1968-2007	May 2007	2,390
AMI	1979-2007	May 2007	519
Cochrane Library	Issue 2, 2007		80
EconLit	1979-2007	May 2007	4
PubMed	2005-2007	June 2007	420
ISI Web of Knowledge	July 2007		214
Total (after removal of duplicate citations)			4,731

AMI, Australasian Medical Index; EMBASE, Excerpta Medica database.
rectal (not otherwise defined). Forty studies (32%) reported no significant association between hospital volume and short-term or long-term mortality (including 10 of 27 studies of the esophagus, 6 of 20 studies of the stomach, none of the 11 studies of the liver, 6 of 11 studies of the pancreas, 6 of 6 studies of the colon, 2 of 4 studies of the rectum, and 3 of 9 studies of the colon and rectum [not otherwise defined]). Sixteen (39%) studies reported a significant association between hospital volume and long-term but not short-term mortality (including 0 of 6 studies of the esophagus, 3 of 5 studies of the stomach, 0 of 0 studies of the liver, 5 of 11 studies of the pancreas, 0 of 6 studies of the colon, 2 of 4 studies of the rectum, and 6 of 9 studies of the colon and rectum [not otherwise defined]). Two studies of esophageal cancer surgery reported a significant association between surgeon volume and short-term mortality but not long-term mortality. In contrast, three studies of colorectal cancer surgery and one of pancreatic cancer surgery reported no significant impact of surgeon volume on short-term mortality, but a statistically significant relation between surgeon volume and long-term mortality was reported.

Raw Unadjusted Mortality

We were able to extract raw (unadjusted) data from 105 of the 112 analyses of the effect of hospital volume on perioperative mortality for meta-analysis. We did not undertake meta-analysis of the effect of hospital volume on long-term mortality, surgeon volume on perioperative mortality, or surgeon volume on long-term mortality because there were only small numbers of analyses available from which to obtain data.

In Figure 3, the mortality rate for each strata in each study was plotted against the midpoint of volume for that strata in each study. From the super-
imposed regression function, a consistent relation between unadjusted mortality rate and hospital case volume was evident for all cancer types except rectal cancer throughout the range of volume categories. No definite threshold point was apparent across the range of tumor types; however, the slope describing the relation between volume and outcome decreased for both esophageal and colon cancer surgery at a point lying within the range between 16 and 32 cases per year, suggesting that a potential threshold effect may be present.

Using the pooled unadjusted data, the ORs of mortality for each doubling of provider volume by-cancer type are shown in Table 12, and range from 0.77 for liver cancer to 0.90 for colon cancer surgery. All reported ORs were statistically significant. The number of patients that needed to be moved from a center treating the lowest quartile of case volume per year to a center treating the highest quartile of case volume per year in each cancer type to prevent 1 additional volume-associated death ranged from 10 (esophageal cancer) to 50 (stomach cancer). The estimates based on unadjusted data are conservative; all studies in which analyses were performed to adjust for potential confounders such as age, stage of disease, and comorbidities found that the effect of case volume was smaller after adjustment than it was when these confounders were not taken into account.

Adjusted Mortality

In Table 13, the adjusted results are presented from the 11 studies reported in 8 publications (including 2 esophageal, 2 gastric, 2 pancreatic, 3 colon, 1 rectal, and 1 colorectal study) that controlled for age, stage of disease, comorbidity, and hospital and surgeon volume, as well as accounting for the effects of clustering.

All 11 studies reported at least 1 statistically significant association between case volume and mortality. Ten analyses reported an adjusted effect estimate for hospital volume. Five of these reported on perioperative mortality, of which four reported statistically significant results.

Six analyses reported long-term survival outcomes, five of which reported statistically significant results.

Nine analyses reported an adjusted effect estimate for surgeon volume. Seven of these studies reported on perioperative mortality, four of which reported statistically significant results, and six reported long-term survival outcomes, four of which reported statistically significant results.

Four studies reported on stratified combinations of low-volume and high-volume hospitals and surgeons for gastric, colon, and rectal cancer surgery. These analyses found a statistically significant short-term and long-term mortality benefit for higher volume combinations (of surgeons and hospitals).

Of the nine analyses that examined and reported separately the effects of hospital and surgeon volume, four reported surgeon volume to have a greater effect than hospital volume, whereas three demonstrated a greater effect for hospital volume compared with surgeon volume, and in two analyses the effects of hospital volume and surgeon volume were found to be similar.

Discussion

The findings of this review provide mixed support for the use of provider case volume as a proxy for quality of care and subsequent improved outcomes in the...
care of patients with gastrointestinal cancer. A quantifiable and statistically significant relationship appears to exist between hospital case volume and short-term mortality, based on an analysis pooling data from 101 publications from 12 countries spanning more than 20 years and including at least 1,112,340 patients, of whom at least 71,673 had died at the time of last follow-up. Despite this, approxi-

TABLE 5. Included Studies by Anatomic Site: Esophagus

STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT (D C S T V)	APPROPRIATE UNIT OF ANALYSIS
Dimick 2001	US	1,136	62	—	Sig	—	D+ C S T	No
Dimick 2003	US	8,657	NR	—	Sig	—	D+ C S T	No
Kuo 2001	US	1,193	64	—	Sig	—	D+ C S	Yes
Patti 1998	US	1,561	273	—	Sig	—	D+ C S	No
Swisher 2000	US	340	25	—	Sig	—	D C S	No
van Lanschot 2001	Netherlands	1,792	60	—	Sig	—	NR	No
Begg 1998	US	503	190	—	Sig	—	D C S	No
Birkmeyer 2002	US	6,337	1,868	—	Sig	—	D+ C S T	Yes
Finlayson 2003	US	5,282	603	—	Sig	—	D+ C S T	Yes
Urbach & Baxter 2004	Canada	613	47	—	NS	—	D C	No
Patti 1998	US	1,561	273	—	Sig	—	D+ C S	No
Lin 2006	Taiwan	6,674	111	—	Sig	—	D C	Yes
Hollenbeck 2007	US	4,020	NR	—	Sig	—	D+ C S	Yes
Birkmeyer 2006	US	6,440	2,934	—	Sig	—	D+ C S T	Yes
McCulloch 2003	UK	365	24	—	Sig	—	D C S T	Yes
Gordon 1999	US	518	51	—	Sig	—	D+ C S	Yes
Wenner 2005	Sweden	1,429	74	—	Sig	Sig	D T	Yes
Rouvelas 2007	Sweden	1,119	53	—	NS	NS	D C S T	NR
Thompson 2007	UK	1,490	53	—	NS	NS	D C S T	No
Birkmeyer 2007	US	822	206	—	Sig	—	D+ C S T	Yes
Dimick 2005	US	1,946	NR	1,118	Sig	Sig	D+ C S T	Yes
Urbach & Austin 2005	Canada	613	58	93	NS	Sig	D C	Yes
Ho 2006	US	10,023	NR	—	NS	Sig	D+ C S V	Yes
Bachmann 2002	US	322	23	—	NS	NS	D C S T V	No
Gillison 2002	UK	1,125	19	64	NS	NS	D S	No
Birkmeyer 2003	US	NR	NR	NR	Sig	Sig	D+ C S V	Yes

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers \(P < .05 \); D+, data were adjusted for additional demographic characteristics including age and sex; NR, not reported or unclear from the published data; NS, not significant.
mately one-third of all included analyses did not find any statistically significant association between hospital or clinician volume and short-term or long-term mortality.

Studies regarding this topic exhibit considerable heterogeneity with regard to design, quality, and results that limit the potential to generalize about any consistent effect of case volume on outcomes from gastrointestinal cancer surgery. The overall quality of this body of literature is in part limited by the quality of data available for review from administrative databases, upon which analyses are usually undertaken. The most significant limitations have been the degree to which the studies have adjusted for other variables known to influence outcome, especially age, comorbidities, and stage of disease, and due to the variability in definitions of high and low volume. Only approximately 8% of analyses accounted sufficiently for potential confounders in estimating the size of a volume effect, and conducted an appropriate analysis that correctly accounted for the clustered nature of the sample in estimating confidence intervals.

Acknowledging these important limitations, we can however make some conclusions that are likely to be useful for decision-making. The first relates to the strength and robustness of the association between

TABLE 6. Included Studies by Anatomic Site: Stomach

STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT	APPROPRIATE UNIT OF ANALYSIS
Birkmeyer 200231	US	31,944	3,423	—	Sig	—	D+ C S	Yes
Birkmeyer 200332	US	9,403	2,934	—	Sig	—	D+ C S T	Yes
Damhuis 200243	Netherlands	1,978	22	—	NS	—	D S	No
Finlayson 200343	US	16,081	911	NS	Sig	—	D+ C	Yes
Gordon 199945	US	705	51	NS	Sig	—	D+ C S	Yes
Jensen 200737	Denmark	537	NR	NS	Sig	—	NR	NR
Lin 200639	Taiwan	1,138	174	Sig	—	—	D C	Yes
Luft 198744	US	24,072	864	Sig	—	—	D+ C T	NR
McCulloch 200342	UK	590	24	Sig	—	—	D C S T	Yes
Reid-Lombardo 200755	US	3,277	691	Sig	—	—	D C S	No
Smith JK 200756	US	13,354	NR	Sig	—	—	D C S T	Yes
Smith DL 200747	US	1,864	214	Sig	—	—	D+ C S T	Yes
Wenner 200544	Sweden	416	74	Sig	—	—	D S	Yes
Thompson 200746	UK	499	39	NS	NS	—	D C S T	No
Birkmeyer 200747	US	3,234	407	Sig	—	—	D+ C S T	Yes
Enzinger 200748	US	448	306	NS	—	—	D+ S T	Yes
Nomura 200339	Japan	28,608	NR	Sig	—	—	D	No
Callahan 200340	US	6,434	213	1,387	Sig	Sig	D+ C S V	Yes
Hannan 200241	US	3,711	207	1,114	Sig	Sig	D+ C S V	No
Bachmann 200242	UK	405	23	Sig	NS	NS	D C S T V	Yes
Fujita & Yamazaki 200262	Japan	136	NR	21	—	—	D+ C S	No
de Gara 200339	Canada	577	NR	84	—	—	NS	NR

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers (P < .05); D+, data were adjusted for additional demographic characteristics including age and sex; NS, not significant; NR, not reported or unclear from the published data.
case volume and cancer mortality, and whether hospital or surgeon volume is more important. In our meta-analysis combining the unadjusted results of 105 analyses, a statistically significant inverse relation between hospital volume and perioperative mortality was evident for each tumor type. Nonetheless, approximately one-third of analyses found no statistically significant association between hospital or surgeon volume and short-term or long-term mortality. Although some of these studies were small and may have been underpowered, several studies finding no volume effect included more than 1,000 patients, and as many as 120,000 patients. We therefore conclude that the inverse association noted between case volume and outcome is statistically significant (for hospital case volume and short-term mortality, at least), but not very robust. The small number of studies meeting our quality threshold support this assertion; most, but not all, found statistically significant inverse associations between hospital and/or surgeon case volume and short-term or long-term mortality.

With regard to whether hospital or surgeon volume is most important, the studies we identified predominantly addressed the relation between hospital case volume and short-term perioperative mortality. Much less attention has been given to the effect of surgeon case volume, and to survival and long-term mortality outcomes.

From the small number of higher-quality studies that examined for an effect of both hospital and surgical volume and accounted for important confounders, a lack of consistent results made us unable to consider the relative importance of surgeon volume and hospital volume as predictors of perioperative or long-term mortality. Surgeon volume and hospital volume are likely to affect outcomes through quite different mechanisms, with surgeon volume affecting preoperative and intraoperative decision-making, case selection, and surgical technique, whereas the effect of hospital volume involves systems and organizational features of care including the way in which teams work together and the institution of best-practice protocols, particularly in the postoperative period. They are also likely to be highly correlated because the presence of a high-volume surgeon will usually lead to a hospital being classified as high volume, and studies need to be specifically designed to separate the effects of each. Furthermore, the results of this review provide little guidance for the immediate resolution of the potential paradox of a low-volume surgeon operating in a high-volume hospital.

Table 7. Included Studies by Anatomic Site: Liver

Study	Country	Patients	Hospitals	Surgeons	Hospital Volume	Surgeon Volume	Adjustment (D C S T V)	Appropriate Unit of Analysis
Begg 1998	US	801	286	—	Sig	—	D C S	No
Birkmeyer 2006	US	829	NR	—	Sig	—	D + C S T	Yes
Choti 1998	US	606	NR	—	Sig	—	D + C S T	No
Dimick 2003	US	569	35	—	Sig	—	D + C S T	No
Dimick 2004	US	16,582	NR	—	Sig	—	D + C S T	No
Glasgow 1999	US	507	138	—	Sig	—	D C S	No
Gordon 1999	US	293	NR	—	Sig	—	D + C S T	Yes
Hollenbeck 2007	US	3,630	NR	—	Sig	—	D + C S T	Yes
Lin 2006	Taiwan	1,872	82	—	Sig	—	D C	Yes
Fong 2005	US	3,511	1,284	—	Sig	Sig	D C T	Yes
Simunovic 2006	Canada	362	41	—	NS	Sig	D + C S	Yes

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers ($P < .05$); NR, not reported or unclear from the published data; D +, data were adjusted for additional demographic characteristics including age and sex; NS, not significant.
STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT	APPROPRIATE UNIT OF ANALYSIS		
van Heek 2005	Netherlands	NR	NR	—	—	—	—	D+ C S	Yes	
Hollenbeck 2007	US	9,153	NR	—	—	—	—	D+ C S	Yes	
Lin 2007	Taiwan	1,766	86	—	NS	—	D C	Yes		
Birkmeyer 2002	US	10,530	1,868	—	—	—	—	D+ C S	Yes	
Gordon 1999	US	1,092	NR	—	Sig	—	—	—	—	
Ward 2004	US	39	NR	—	NS	—	D C	No		
Begg 1998	US	742	NR	—	—	—	—	D C S	No	
Finlayson 2003	US	3,414	483	—	—	—	—	—		
Glasgow & Mulvihill 1996	US	1,910	NR	—	—	—	—	D+ C S	Yes	
Gordon 1995	US	501	39	—	—	—	—	—		
Gordon 1998	US	795	43	—	—	—	—	—		
Gouma 2000	Netherlands	1,126	NR	—	—	—	—	—		
Ho & Heslin 2003	US	6,652	500	—	—	—	—	D C	Yes	
Imperato 1996	US	579	117	—	—	—	—	D+ C	No	
Kotwall 2002	US	24,926	720	—	—	—	—	D C	Yes	
Simonovic 1999	Canada	842	68	—	—	—	—	D C S	No	
Wade 1996	US	130	NR	—	NS	—	—	D S	No	
Jensen 2007	Denmark	581	NR	—	—	—	—	—		
Birkmeyer 2006	US	5,607	2,934	—	—	—	—	D+ C S T	Yes	
Fong 2005	US	2,592	1,101	—	—	—	—	—		
Birkmeyer 1999	US	5,01	39	—	—	—	—	D C S	No	
Birkmeyer 2000	US	1,236	48	373	—	—	—	D+ C S V	No	
Urbach & Baxter 2004	Canada	686	59	124	NS	—	—	—		
Urbach & Austin 2005	Canada	223	26	91	NS	—	—	—		
Edge 1993	US	223	26	91	NS	—	—	—		
Bachmann 2003	UK	261	23	—	—	NS	Sig	NS	D C S T V	Yes
University of Leeds 2000	UK	3,262	58	318	NS	Sig	NS	Sig	D+ T	No
Cheng 2007	China	295	9	—	—	NS	—	D C	No	
Birkmeyer 2003	US	NR	NR	NR	—	—	Sig	—	D+ C S V	Yes
Rosemurgy 2010	US	698	NR	282	—	—	Sig	—	NR	No

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); NR, not reported or unclear from the published data; —, not done or not applicable; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers (P < .05); D+, data were adjusted for additional demographic characteristics including age and sex; NS, not significant.
or a high-volume surgeon operating in several low-volume centers. Nor does it resolve the issue of whether outcomes are better for surgeons who restrict their practice to being high volume for a few complex procedures, or those who are high volume but undertake a wide range of procedures spanning several different cancer types.34

Our second conclusion relates to the magnitude of any association, and therefore its clinical importance. Using unadjusted (raw) mortality rates, which are prone to bias if casemix differs between low-volume and high-volume providers, we found that the magnitude of a volume effect is relatively consistent across tumor types, with the odds of perioperative death being within the range of 0.77 to 0.90 for each doubling of hospital case volume. Our estimate of the number of patients that needed to be moved from a low-volume service provider to a high-volume service provider to save 1 volume-associated life ranged from 10 to 50 patients for the different tumors, as estimated on the basis of a move from the lowest quartile to the highest quartile volume hospitals. The actual case volume this represented differed for each tumor type, but this form of data presentation may be a helpful guide when quantifying the potential benefits of regionalization. Although the estimated number needed to move may appear to be small, for some relatively uncommon cancers such as pancreatic and esophageal cancer, it may take many years in 1 health district to accrue sufficient cases for volume-based referral to make a measurable difference in mortality (eg, in places in which low-volume providers treat 1 to 2 cases per year, it may take 5 to 10 years of referring patients to high-volume centers to prevent 1 volume-associated death). This is likely to be an overestimate of the effect size because those studies that adjusted for

TABLE 9. Included Studies by Anatomic Site: Colon

STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT	APPROPRIATE UNIT OF ANALYSIS
Birkmeyer 200231	US	304,285	4,587	—	Sig	—	—	D+ C S T
Birkmeyer 200332	US	120,270	1,082	Sig	—	NS	—	D+ C S T
Gordon 199947	US	1,015	51	NS	—	Sig	—	D+ C S S
Khuri 199990	US	13,310	125	NS	—	Sig	—	D+ C S S
Riley & Lubitz 198591	US	22,560	6,403	Sig	—	—	—	D+ S
Lin 200639	Taiwan	13,054	178	Sig	—	—	—	D+ C T S
Marusch 200152	Germany	2,293	75	NS	—	—	—	—
Luft 198754	US	36,860	898	Sig	—	Sig	—	D+ C T NR
Simunovic 200658	Canada	8,398	151	NS	—	NS	—	D+ C S S
Birkmeyer 200747	US	43,656	845	Sig	—	—	—	D+ C S T
Meyerhardt 200355	US	3,161	1,078	Sig	—	—	—	D+ S
Callahan 200360	US	48,582	223	2,651	Sig	Sig	—	D+ C S V
Hannan 198944	US	10,297	250	1,997	Sig	Sig	—	D+ C S V
Hannan 200241	US	22,128	229	2,052	Sig	Sig	—	D+ C S V
Ko 200245	US	22,408	>900	Sig	—	Sig	—	D+ C S V
Billingsley 200756	US	21,533	661	2,678	NS	Sig	—	D+ C S T V
Schrag 200057	US	24,166	579	2,682	Sig	Sig	NS	D+ C S V

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers ($P < .05$); D+, data were adjusted for additional demographic characteristics including age and sex; NS, not significant; NR, not reported or unclear from the published data.
TABLE 10. Included Studies by Anatomic Site: Rectum

STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT	APPROPRIATE UNIT OF ANALYSIS	
					SHORT TERM	LONGER TERM	(DCSTV)		
Matthiessen 200699	Sweden	6,833	85	—	NS	—	—	D C S T	NR
Marusch 2001100	Germany	1,463	75	—	Sig	—	—	No	
Harling 2005101	Denmark	4,922	53	—	NS	NS	—	D S T	Yes
Hodgson 2003102	Canada	7,257	367	—	Sig	Sig	—	D + C S	Yes
Simons 1997103	US	2,006	125	—	Sig	—	NR	No	
Engel 2005104	Germany	884	39	—	NS	—	—	D S T	NR
Meyerhardt 2004105	US	1,330	646	—	NS	—	D + C S T	Yes	
Holm 1997106	Sweden	1,399	14	149	NS	NS	NS	D S T	No
Schrag 2002107	US	2,815	420	1,141	NS	NS	Sig	D + C S V	Yes
Ng 2006108	UK	207	NR	NR	—	NS	NS	No	
Porter 1998109	Canada	683	5	52	NS	NS	Sig	D S	No

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; NS, not significant; NR, not reported or unclear from the published data; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers (P < .05); D+, data were adjusted for additional demographic characteristics including age and sex.

TABLE 11. Included Studies by Anatomic Site: Colon and Rectum (Not Specified as Either Colon or Rectum)

STUDY	COUNTRY	PATIENTS	HOSPITALS	SURGEONS	HOSPITAL VOLUME	SURGEON VOLUME	ADJUSTMENT	APPROPRIATE UNIT OF ANALYSIS	
					SHORT TERM	LONGER TERM	(DCSTV)		
Dimick 2003110	US	20,862	842	—	Sig	—	—	D + C S	Yes
Zhang 2007111	US	38,237	383	—	Sig	—	—	D + C S	NR
Engel 2005112	Netherlands	67,594	128	—	NS	—	—	D	Yes
Simonovic 2000113	Canada	1,072	124	—	NS	NS	—	D C S	No
Rabeneck 2004114	Canada	22,633	172	—	Sig	—	—	D + C S T	No
Harmon 1999115	US	9,739	50	812	NS	NS	—	D + C S T V	No
Ho 200650	US	233,773	52	191	NS	NS	—	D + C S V	Yes
Parry 1999116	UK	812	39	112	NS	NS	NS	D S T	No
Rogers 2006117	US	28,644	397	2,993	Sig	Sig	Sig	D + C S T V	Yes
Kee 1999118	UK	3,155	19	71	Sig	—	NS	D S V	No
Renzulli 2006119	Switzerland	915	26	132	Sig	—	Sig	D S T V	Yes
Galandiuk 2006120	US	476	23	9	—	—	NS	—	No
Mella 1997121	UK	3,221	52	161	—	NS	NS	—	No
McArdle & Hole 2004122	UK	3,200	11	191	—	NS	NS	D + S	Yes

D indicates statistical analysis adjusted for patient age and sex; C, data were adjusted for comorbidities; S, data were adjusted for stage of disease (eg, tumor stage or emergent admission); T, data were adjusted for treatment received or type of procedure; V, both hospital and surgeon volume variables were considered in the analysis (eg, hospital volume data were adjusted for surgeon volume or surgeon volume data were adjusted for hospital volume); —, not done or not applicable; NS, not significant; NR, not reported or unclear from the published data; Sig, reported statistically significant difference for improved mortality outcomes at high-volume providers (P < .05); D+, data were adjusted for additional demographic characteristics including age and sex.
A third conclusion of this review relates to whether a threshold volume effect is apparent. A threshold hospital volume above which mortality is much lower for a specified treatment was not apparent in our analysis of unadjusted data, although an inflection in the line of best fit was evident at 16 to 32 cases per year for esophageal and colon cancer surgery. Hospital volume appeared to be associated inversely with mortality across the volume spectrum in this analysis, and therefore the exact volume of cases that a hospital needs to manage to achieve acceptable outcomes remains a value judgment in most instances.

A limitation of this review is that it focused only on mortality outcomes because these are most widely reported in the literature. However, mortality is not the only important outcome measure in cancer studies and, increasingly, research is focusing on whether there is an association between provider case volume and nonmortality outcomes such as quality of life and disease recurrence, or tumor-specific outcomes such as colostomy use or wide local excision versus mastectomy in patients with breast cancer. The emergence of this information in volume-related research may be important for several reasons. First, these nonmortality outcomes are especially important to patients, as well as to payers and to clinicians, and this information may be helpful for informing the trade-off between mortality and patient choice to be treated close to home. Second, and importantly in

TABLE 12. Summary Mortality Risk From Unadjusted Data

TUMOR TYPE	STUDIES	HOSPITALS	PATIENTS	DEATHS	EFFECT ON MORTALITY OF DOUBLING HOSPITAL CASE VOLUME OR (95% CI)	UPPER LIMIT LOWER QUARTILE, CASES/YEAR	LOWER QUARTILE MORTALITY, %	LOWER LIMIT UPPER QUARTILE, CASES/YEAR	UP QUARTILE MORTALITY, %	NNT*
Esophagus	24	3,405	45,822	4,177	0.81 (0.77-0.84)	3	16.7	18	6.7	10
Stomach	14	5,058	179,540	16,369	0.88 (0.86-0.91)	6	8.8	33	6.8	50
Liver	10	1,831	24,792	1,731	0.77 (0.72-0.83)	5	11.6	34	2.9	11
Pancreas	30	7,282	64,215	7,092	0.78 (0.73-0.84)	3	12.8	20	5.3	13
Colon†	13	7,309	575,235	31,896	0.90 (0.88-0.92)	18	9.8	175	3.6	16
Rectum†	5	562	88,005	5,503	1.07 (1.01-1.14)	8	4.8	46	7.2	—
All colon, rectum, and colon and rectum (not otherwise defined)	27	10,239	797,971	42,304	0.91 (0.89-0.93)	16	7.5	135	4.7	36

OR indicates odds ratio; 95% CI, 95% confidence interval; NNT, number needed to treat.

*Patients needed to be moved from a lower quartile hospital to an upper quartile hospital to prevent 1 volume-associated death (calculated by 100/[lower quartile mortality–upper quartile mortality]).

†Excludes studies in which patients with colon and rectal cancer were considered collectively and were not differentiated into specific tumor groups (1,369 hospitals, 107,750 patients, and 3,714 deaths).
TABLE 13. Effect of Case Volume in Studies That Adjusted For Age, Stage of Disease, Comorbidities, and Both Hospital and Surgeon Volume, and That Also Accounted for Clustering in the Analysis

STUDY (CANCER TYPE)	NO. OF HOSPITALS, SURGEONS, AND PATIENTS	MORTALITY OUTCOME	MORTALITY RANGE, %	HOSPITAL VOLUME	SURGEON VOLUME	COMBINED HOSPITAL AND SURGEON VOLUME					
				VOLUME CATEGORIES	ADJUSTED EFFECT	VOLUME CATEGORIES	ADJUSTED EFFECT	VOLUME CATEGORIES	ADJUSTED EFFECT		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		
					Increase of 10 cases		Increase of 10 cases		Increase of 10 cases		
					OR=0.60 (0.36-0.99, 95% CI)		OR=0.92 (0.85-0.99, 95% CI)		OR=1.80 (1.13-2.87, 95% CI)		

*H indicates hospitals; S, surgeons; NR, not recorded; P, patients; HR, hazards ratio; OR, odds ratio; LVH, low-volume hospital; HVH, high-volume hospital; LVS, low-volume surgeon; HVS, high-volume surgeon; VLVH, very low-volume hospital; MHS, moderate-volume hospital; RR, relative risk; VLVS, very low-volume surgeon; MVS, moderate-volume surgeon; VHVS, very high-volume hospital; VHHS, very high-volume surgeon.

*Study sample represents a subset of the total number of patients treated, and should not be used to identify volume thresholds.
light of this review, nonmortality measures are often process measures (such as patients undergoing a particular operation or treatment) rather than outcome measures (such as mortality) and may provide alternative indicators of the quality of care.

The heterogeneity of results in this review calls into question the usefulness of case volume alone as a proxy for quality in healthcare decision-making. Overall, the studies in this review, when combined, demonstrate a quantifiable and statistically significant inverse association between case volume and mortality, yet on an individual study level such an association was not always evident. Thus, volume is only ever at best an imperfect proxy for healthcare quality. Well-chosen process measures and individual risk-adjusted outcome measures may also play a role in reflecting quality of care and predicting patient outcomes. Analyses incorporating such data may yield evidence to suggest what it is that high-volume providers do to obtain better outcomes. However, it is still unclear whether process-based outcome measures, such as those used in the Surgical Care Improvement Project (SCIP), and direct measurement of risk-adjusted outcomes, such as is used in the National Surgical Quality Improvement Program (NSQIP), offer more robust estimates of quality than case volume alone can provide from studies of previously collected administrative data.123

Findings of the current study regarding case volume can provide some guidance for service planning and volume-based referral. High-volume hospitals in general have lower perioperative mortality rates for most gastrointestinal cancer surgery. There is limited evidence that suggests the association may extend to long-term outcomes, and may apply to surgery case volume as well. On the basis of mortality outcomes alone, it appears prudent to support volume-based referral and high-volume centers. However, there are also clearly some low-volume providers who get good results, and therefore referral to relatively low-volume providers should be supported if good outcomes can be demonstrated by process measures or by risk-adjusted outcomes, or if there are compelling personal or medical reasons for the patient to be treated close to home.

Future research in this area should address long-term and nonmortality outcomes, not just surgical mortality, and further examine the relative contributions of hospital case volume, surgeon volume, and the volume characteristics of other providers involved in patient care, incorporating important study design criteria such as a priori consistent and meaningful definitions if categorizations of high and low volumes are used, adjustment for potential confounding factors, and appropriate consideration of unit of analysis. The generalizability of these findings to other types of cancer needs to be tested, and more economic analyses are needed to weigh the benefits of any improvement in outcome against measures of patient preference and service accessibility.

Acknowledgement

The authors thank Silva Zavarsek for help with the systematic review, Pearline Han for assistance with the analysis, Professor Robert JS Thomas for providing the stimulus for the study and advice, and Dr. David Birks and Adam Chapman for advice.
22. Dimick JB, Cattaneo SM, Lipsett PA, Pronovost PJ. High-volume centers for esophagectomy: what is the number needed to achieve low postoperative mortality? Dis Esophagus. 2004;17:310-314.

23. Finlayson EV, Goodney PP, Birkmeyer JD. Hospital volume and operative mortality in cancer surgery: a national study. Arch Surg. 2003;138:721-725; discussion 726..

24. Urbach DR, Baxter NN. Does it matter what a hospital is “high volume” for? Specificity of hospital volume-outcome associations for surgical procedures: analysis of administrative data. Qual Saf Health Care. 2004;13:379-383.

25. Urbach DR, Bell CM, Austin PC. Differences in operative mortality between high- and low-volume hospitals in Ontario for 5 major surgical procedures: estimating the number of lives potentially saved through regionalization. CMAJ. 2005;168:1409-1414.

26. Ward MM, Jaana M, Wakefield DS, et al. What would be the effect of referral to high-volume hospitals on patients with esophageal cancer? J Rural Health. 2004;20:334-354.

27. Jensen LS, Bendixen A, Kehlet H. Organisation and early outcomes of major upper gastrointestinal cancer surgery in Denmark 1996-2003. Scand J Surg. 2007;96:41-45.

28. Simonovic M, Rempel E, Theriault ME, et al. Influence of hospital characteristics on operative death and survival of patients after major cancer surgery in Ontario. Can J Surg. 2006;49:25-29.

29. Lin HC, Xirasagar S, Lee HC, Chai CY. Hospital volume and inpatient mortality after cancer-related gastrointestinal resections: the experience of an Asian country. Ann Surg Oncol. 2006;13:1182-1188.

30. Hollembeck BK, Dunn RL, Miller DC, Daigoux S, Taich DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.

31. Birkmeyer JD, Sun Y, Goldladen A, Birkmeyer NJ, Stukel TA. Hospital volume and process of care in high-risk cancer surgery. Cancer. 2006;106:2476-2481.

32. McCulloch P, Ward J, Tekkis PP. Mortality and morbidity in gastro-oesophageal cancer surgery: initial results of ASCOT multi-centre prospective cohort study. BMJ. 2003;327:1192-1197.

33. Gordon TA, Bowman HM, Bass EB, et al. Complex gastrointestinal surgery: impact of provider experience on clinical and economic outcomes. J Am Coll Surg. 1999;189:46-56.

34. Wenner J, Zillig T, Bladstrom A, Alvegren S, Tahc DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.

35. Birkmeyer JD, Sun Y, Goldladen A, Birkmeyer NJ, Stukel TA. Volume and process of care in high-risk cancer surgery. Cancer. 2006;106:2476-2481.

36. McCulloch P, Ward J, Tekkis PP. Mortality and morbidity in gastro-oesophageal cancer surgery: initial results of ASCOT multicentre prospective cohort study. BMJ. 2003;327:1192-1197.

37. Gordon TA, Bowman HM, Bass EB, et al. Complex gastrointestinal surgery: impact of provider experience on clinical and economic outcomes. J Am Coll Surg. 1999;189:46-56.

38. Wringer J, Zillig T, Bladstrom A, Alvegren S, Tahc DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.

39. Lin HC, Xirasagar S, Lee HC, Chai CY. Hospital volume and inpatient mortality after cancer-related gastrointestinal resections: the experience of an Asian country. Ann Surg Oncol. 2006;13:1182-1188.

40. Hollembeck BK, Dunn RL, Miller DC, Daigoux S, Taich DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.

41. Birkmeyer JD, Sun Y, Goldladen A, Birkmeyer NJ, Stukel TA. Hospital volume and process of care in high-risk cancer surgery. Cancer. 2006;106:2476-2481.

42. McCulloch P, Ward J, Tekkis PP. Mortality and morbidity in gastro-oesophageal cancer surgery: initial results of ASCOT multi-centre prospective cohort study. BMJ. 2003;327:1192-1197.

43. Gordon TA, Bowman HM, Bass EB, et al. Complex gastrointestinal surgery: impact of provider experience on clinical and economic outcomes. J Am Coll Surg. 1999;189:46-56.

44. Wenner J, Zillig T, Bladstrom A, Alvegren S, Tahc DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.

45. Birkmeyer JD, Sun Y, Goldladen A, Birkmeyer NJ, Stukel TA. Hospital volume and process of care in high-risk cancer surgery. Cancer. 2006;106:2476-2481.

46. McCulloch P, Ward J, Tekkis PP. Mortality and morbidity in gastro-oesophageal cancer surgery: initial results of ASCOT multicentre prospective cohort study. BMJ. 2003;327:1192-1197.

47. Gordon TA, Bowman HM, Bass EB, et al. Complex gastrointestinal surgery: impact of provider experience on clinical and economic outcomes. J Am Coll Surg. 1999;189:46-56.

48. Wringer J, Zillig T, Bladstrom A, Alvegren S, Tahc DA, Win JT. Volume-based referral for cancer surgery: informing the debate. J Clin Oncol. 2007;25:91-96.
between hospital volume and late survival after pancreaticoduodenectomy. Surgery. 1999;126:178-183.
81. van Oost EJ, Luiten EJ, van de Poll-Franse LV, Coebergh JW, van den Eijden-van Raaij AJ. Outcome of surgical treatment of pancreatic, peri-ampullary and ampullary cancer diagnosed in the south of The Netherlands: a cancer registry based study. Eur J Surg Oncol. 2003;29:548-552.
82. Nordback I, Parviaimen M, Ratsy S, Kuivaniemi H, Sand J. Resection of the head of the pancreas in Finland: effects of hospital and surgeon on short-term and long-term results. Scand J Gastroenterol. 2002;37:1454-1460.
83. Lieberman MD, Kilburn H, Lindsey M, Brennan MF. Relation of perioperative deaths to hospital volume among patients undergoing pancreatic resection for malignancy. Ann Surg. 1995;222:638-645.
84. Sosa JA, Bowman HM, Gordon TA, et al. Importancy of hospital volume in the overall management of pancreatic cancer. Ann Surg. 1998;228:429-438.
85. Edge SB, Schmiege RE Jr, Rosenlof LK, Wilhelm MC. Pancreas cancer resection outcome in 865 hospital centers in 1989-1990. Cancer. 1993;71:3502-3508.
86. Bachmann MO, Alderson D, Peters TJ, et al. Influence of specialization on the management and outcome of patients with pancreatic cancer. Arch Surg. 2001;136:171-175.
87. University of Leeds. Northern and Yorkshire Cancer Registry Information Service: cancer treatment policies and their effects on survival: pancreas. Leeds, UK: Northern and Yorkshire Cancer Registry Information Service; 2000.
88. Cheng QB, Zhang BH, Zhang YJ, et al. Predictive factors for complications after pancreaticoduodenectomy. J Surg Res. 2007;139:22-29.
89. Rosemurgy AS, Bloomston M, Serafini FM, Coon B, Murr MM, Carey LC. Frequency with which surgeons undertake pancreaticoduodenectomy determines length of stay, hospital charges, and in-hospital mortality. J Gastrointest Surg. 2001;5:21-26.
90. Khuri SF, Daley J, Henderson W, et al. Relation of surgical volume to outcome in eight common operations: results from the VA National Surgical Quality Improvement Program. Ann Surg. 1999;230:414-429; discussion 429-432.
91. Riley G, Lubitz J. Outcomes of surgery among the Medicare aged: surgical volume and mortality. Health Care Financ Rev. 1985;7:37-47.
92. Marusch F, Koch A, Schmidt U, et al. Effect of caseload on the short-term outcome of colon surgery: results of a multicenter study. Int J Colorectal Dis. 2001;16:362-369.
93. Meyerhardt JA, Catalano PJ, Schrag D, et al. Association of hospital procedure volume and outcomes in patients with colon cancer at high risk for recurrence [see comment] [erratum appears in Ann Intern Med. 2004 Mar;140(5):494-495]. Ann Intern Med. 2003;139:649-657.
94. Hannan EL, O’Donnell JF, Kilburn H Jr, Bernard HR, Yazici A. Investigation of the relationship between volume and mortality for surgical procedures performed in New York State hospitals. JAMA. 1989;262:503-510.
95. Ko CY, Chang JT, Chaudhry S, Kominski G. Are high-volume surgeons and hospitals the most important predictors of in-hospital outcome for colon cancer resection? Surgery. 2002;132:268-273.
96. Billingsley KG, Morris AM, Dominitz JA, et al. Surgeon and hospital characteristics as predictors of major complications following colon cancer surgery: understanding the volume-outcome relationship. Arch Surg. 2007;142:23-31; discussion 32.
97. Schrag D, Cramer LD, Bach PB, Cohen AM, Warren JL, Begg CB. Influence of hospital procedure volume on outcomes following surgery for colon cancer. JAMA. 2000;284:3028-3035.
98. Schrag D, Panageas KS, Riedel E, et al. Surgeon volume compared to hospital volume as a predictor of outcome following primary colon cancer resection. J Surg Oncol. 2003;83:68-78; discussion 78-79.
99. Matiixeis P, Hallbock O, Rutegard J, Sjodahl R. Population-based study of risk factors for postoperative death after anterior resection of the rectum. Br J Surg. 2006;93:498-503.
100. Marusch F, Koch A, Schmidt U, Pross M, Gastinger I, Lippert H. Hospital caseload and the results achieved in patients with rectal cancer. Br J Surg. 2001;88:1397-1402.
101. Harling H, Bulow S, Moller LN, Jorgensen T, Danish Colorectal Cancer Group. Hospital volume and outcome of rectal surgery in Denmark 1994-99. Colorectal Dis. 2005;7:90-95.
102. Hodgson DC, Zhang W, Zaslavsky AM, Fuchs CS, Wright WE, Ayanian JZ. Relation of hospital volume to colostomy rates and survival for patients with rectal cancer [see comment]. J Natl Cancer Inst. 2003;95:708-716.
103. Simons AJ, Ker R, Groszen S, et al. Variations in treatment of rectal cancer: the influence of hospital type and caseload. Dis Colon Rectum. 1997;40:641-646.
104. Engel J, Kerr J, Eckel R, et al. Influence of hospital volume on local recurrence and survival in a population sample of rectal cancer patients. Eur J Surg Oncol. 2005;31:512-520.
105. Meyerhardt JA, Tepper JE, Niedzwiecki D, et al. Impact of hospital procedure volume on surgical operation and long-term outcomes in high-risk curatively resected rectal cancer: findings from the Intergroup 0114 Study. J Clin Oncol. 2004;22:166-174.
106. Holm T, Johansson H, Cedermark B, Ekelund G, Rutqvist L-E. Influence of hospital- and surgeon-related factors on outcome after treatment of rectal cancer with or without preoperative radiotherapy. Br J Surg. 1997;84:657-663.
107. Schrag D, Panageas KS, Riedel E, et al. Hospital and surgeon volume as predictors of outcome following rectal cancer resection. Ann Surg. 2002;236:583-592.
108. Ng VV, Tytherleigh MG, Fowler L, Farouk R. Subspecialisation and its effect on the management of rectal cancer. Ann R Coll Surg Engl. 2006;88:181-184.
109. Porter GA, Soskolne CL, Yakimets WW, Newman SC. Surgeon-related factors and outcome in rectal cancer. Ann Surg. 1998;227:157-167.
110. Van Heek NT, Kuhlmann KFD, Scholten RJ, et al. Hospital volume and mortality after pancreatic resection: a systematic review and an evaluation of intervention in The Netherlands. Ann Surg. 2005;242:546-547, discussion 544-547.
111. Gordon TA, Burleson GP, Tielsch JM, Cameron JL. The effects of regionalization on cost and outcome for one general high-risk surgical procedure. Ann Surg. 1995;221:43-49.
112. Gordon TA, Bowman HM, Tielsch JM, Bass ER, Burleson GP, Cameron JL. Statewide regionalization of pancreaticoduodenectomy and its effect on in-hospital mortality. Ann Surg. 1998;228:71-78.
113. Gouma DJ, van Geenen RC, van Gulik TM, et al. Rates of complications and death after pancreaticoduodenectomy: risk factors and the impact of hospital volume. Ann Surg. 2000;232:786-795.
114. Ho V, Heslin MJ. Effect of hospital volume and expediency of in-hospital mortality for pancreaticoduodenectomy. Ann Surg. 2003;237:509-514.
115. Imperato PJ, Nenner RP, Starr HA, Will TO, Rosenberg CR, Dearie MB. The effects of regionalization of cancer outcomes for a high risk surgical procedure: a study of the Whipple procedure in New York State. Ann J Med Qual. 1996;11:193-197.
116. Kotwall CA, Maxwell JG, Brinker CC, Koch GG, Cogsvinton DL. National estimates of mortality rates for radical pancreaticoduodenectomy in 25,000 patients. Ann Surg Oncol. 2002;9:847-854.
117. Simonovic M, To T, Theriault M, Langer B. Relation between hospital surgical volume and outcome for pancreatic resection for neoplasm in a publicly funded health care system. CMAJ. 1999;160:643-648.
118. Wade TP, Halaby IA, Stapleton DR, Virgo KS, Johnson FE. Population-based analysis of trends in treatment of pancreatic and Whipple resection: Department of Defense hospitals, 1989-1994. Surgery. 1996;120:680-685; discussion 686-687.
119. Birkmeyer JD, Finlayson SR, Tosteson AN, Sharp TS, Tosteson AL, Fisher ES. Effects of hospital volume on in-hospital mortality with pancreaticoduodenectomy. Surgery. 1999;125:250-256.
120. Birkmeyer JD, Warshaw AL, Finlayson SR, Grove MR, Tosteson AN. Relationship with hospital volume and late survival after pancreaticoduodenectomy. Surgery. 1999;126:1831-1837.
111. Zhang W, Ayanian JZ, Zaslavsky AM. Patient characteristics and hospital quality for colorectal cancer surgery. *Int J Qual Health Care*. 2007;19:11-20.

112. Engel AF, Oomen JLT, Knol DL, Cuesta MA. Operative mortality after colorectal resection in the Netherlands. *Br J Surg*. 2005;92:1526-1532.

113. Simunovic M, To T, Baxter N, et al. Hospital procedure volume and teaching status do not influence treatment and outcome measures of rectal cancer surgery in a large general population. *J Gastrointest Surg*. 2000;4:324-330.

114. Rabeneck L, Davila JA, Thompson M, El-Serag HB. Surgical volume and long-term survival following surgery for colorectal cancer in the Veterans Affairs Health-Care System. *Am J Gastroenterol*. 2004;99:668-675.

115. Harmon JW, Tang DG, Gordon TA, et al. Hospital volume can serve as a surrogate for surgeon volume for achieving excellent outcomes in colorectal resection. *Ann Surg*. 1999;230:404-411; discussion 411-413.

116. Parry JM, Collins S, Mathers J, Scott NA, Woodman CB. Influence of volume of work on the outcome of treatment for patients with colorectal cancer. *Br J Surg*. 1999;86:475-481.

117. Rogers SO, Wolf RE, Zaslavsky AM, Wright WE, Ayanian JZ. Relation of surgeon and hospital volume to processes and outcomes of colorectal cancer surgery. *Ann Surg*. 2006;244:1003-1011.

118. Kee F, Wilson RH, Harper C, et al. Influence of hospital and clinician workload on survival from colorectal cancer: cohort study. *BMJ*. 1999;318:1381-1385.

119. Renzulli P, Lowy A, Malbach R, Egeli RA, Metzger U, Laffer UT. The influence of the surgeon’s and the hospital’s caseload on survival and local recurrence after colorectal cancer surgery. *Surgery*. 2006;139:296-304.

120. Glandiuk S, Mahid SS, Polk HC Jr, Turina M, Rao M, Lewis JN. Differences and similarities between rural and urban operations. *Surgery*. 2006;140:589-596.

121. Mella J, Biffin A, Radcliffe AG, Stamatakis JD, Steele RJ. Population-based audit of colorectal cancer management in two UK health regions. Colorectal Cancer Working Group, Royal College of Surgeons of England Clinical Epidemiology and Audit Unit. *Br J Surg*. 1997;84:1731-1736.

122. McArdle CS, Hole DJ. Influence of volume and specialization on survival following surgery for colorectal cancer. *Br J Surg*. 2004;91:610-617.

123. Birkmeyer JD, Dimick JB, Staiger DO. Operative mortality and procedure volume as predictors of subsequent hospital performance. *Ann Surg*. 2006;243:411-417.