Supporting information

NMR reveals the interplay between SilE and SilB model peptides in the context of silver resistance.

Lucille Babel, Minh-Ha Nguyen, Cédric Mittelheisser, Marie Martin, Katharina M. Fromm, Olivier Walker and Maggy Hologne

Peptide sequences. The sequence of SilB-p is extracted from the complete sequence of SilB Salmonella typhimurium (Uniprot accession number Q9ZHD0) and is displayed below in yellow.

```
MASLKIYAA IIISLLIAGG LISVTAWQYL NSSQKTVPAE QKAPEKKVLF
WYDPMKPDTK PKDGKSPFFM DMDLVPKYAD ESGDKSSGGI RIDPTQVQNL
GLKTQKVTRG MLNYSQTIPA NVSYNEYQFV IQVARSDGFV EKVYPLTIGD
HVKKGTPLID ITIPWEVEAQ SEFLLLSGTG GTPTQIKGVL ERLRLAGMPE
EDIQRLRSTR TIQTRFTIKA PIDGVITAFD LRTGMNISKD KVVAVIQQMD
PVWISAAVPE SIAYLLKDT SFEISVPAYP DKTFHVKEKN ILPSVDQTRR
TLQVLQVTN KDEFLKPGMN AYLKINTQSQ EMLIFSQAV IDTGKEQRVI
TVDDEGFVNP QKIHVHLHESQ QQSGIGSGLN EGDTVVVSGL FLIDSEANIT
```

Smaller peptides of SilB-p were also studied such as Ac-GALERMRHPEK-NH₂ and Ac-EKTENSMPAMSE-NH₂ hereafter designated by SilB-p1 and SilB-p2.

The sequence of SilE-p is extracted from the complete sequence of SilE Salmonella typhimurium (Uniprot accession number Q9Z4N3) and is displayed below in blue.

```
TETVNIHERV NNAQAPAHQM QSAAAPVGIQ GTAPRMAGMD
QHEQAIAHE TMTNGSADAH QKMVESHQM MGSQTVSPTG
PSKSLAAMNE HERAAVAHEF MNNGQSQPHQ AMAEAHRRML
```

NMR experiments. 2D NMR experiments were acquired at 293 K on a 600 MHz Bruker Avance III HD spectrometer equipped with a triple-resonance probe. The NMR samples (1 mM) have been prepared in 10 mM ammonium acetate at pH 6.4. A capillary containing the lock solvent (D₂O) has been inserted into the tube to avoid any H-D exchange between D₂O and the amide protons of the peptides. NMR assignments of the two peptides have been carried out using 2D ¹H-¹H homonuclear TOCSY (mixing time 80 ms) and NOESY (mixing time 400 ms) experiments. The interaction between peptides have been characterized using chemical
shift perturbation (CSP), where a series of 1H-15N HSQC spectra have been recorded for each peptide while adding small volumes of silver stock solution (390 mM AgNO$_3$). No labelled peptides have been used for this study and NMR spectra were acquired at 15N natural abundance. To counteract the low abundance of nitrogen, sofast 1H-15N HSQC with 140 scans per spectra were recorded. The combination of homonuclear and heteronuclear experiments recorded at different concentrations of silver allowed us to assign completely 1H-15N spectra of each peptide. Those spectra are used as fingerprint of the two peptides for the interaction studies.

CD experiments. CD experiments were acquired at 293 K on a Chirascan spectrometer (Applied Photophysics). Peptide concentration was 10 µM. Each sample was prepared in 10 mM acetate ammonium solution at pH 6.4. Five repetitions have been recorded for each ratio peptide / Ag$^+$.

Solid-Phase Peptide Synthesis (SPPS). Peptides were synthesized by SPPS (Solid-Phase Peptide Synthesis) either on a ChemMatrix® Rink-Amide resin (Biotage) for C-terminated amides (SilE-p, SilB-p1 and SilB-p2) on a 108 µmol scale with a Biotage Initiator+ Alstra automated peptide synthesizer. The resin has been swelled in DCM (dichloromethane) during 60 min. 9-fluoromethoxy-carbonyl (Fmoc)-protected amino acids (Bachem) were coupled by using HCTU (O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, Novabiochem) and HOBt (Hydroxybenzotriazole, Sigma-Aldrich) as coupling agents, DIPEA (N,N-diisopropylethylamine, Sigma-Aldrich) as organic base, and DMF (N,N′-dimethylformamide) and NMP (N-Methyl-2-Pyrrolidone) as solvents, during 60 min. After each coupling, a mixture of acetic anhydride (Acros Organics)/pyridine (Acros Organics)/DMF (1:2:7) has been added to the resin during 10 min in order to protect the unreacted functional groups. Fmoc deprotection steps were carried out twice (3 min and 10 min) by using 20% piperidine (Sigma-Aldrich) in DMF. The N-terminus was acetylated by using a mixture of acetic anhydride/pyridine/DMF (1:2:7) during 10 min. After each step, the solvent has been removed by filtration and the resin has been washed four times with DMF. Six washes with DCM have been performed after the final capping step. Side chain deprotection and peptide cleavage from the resin were carried out by adding 8 mL of a cocktail of 95.5 vol% TFA (trifluoroacetic acid, Sigma-Aldrich), 1.5 vol% EDT (ethane dithiol, Sigma-Aldrich), 1.5 vol% TIS (triisopropylsilane, Sigma-Aldrich) and 1.5 vol% water during 2 h. The TFA has been evaporated under vacuum and the peptides were precipitated and washed 3 times with cold diethyl ether. Peptides were dried and purified by semi-preparative reverse-phase HPLC (Waters 600) on a NUCLEODUR C18 HTec Column (Macherey-Nagel) with a linear gradient from 10% to 50% acetonitrile in water with 0.1% TFA, and then lyophilized. Characterization of the peptides was performed by ESI-MS (Bruker Esquire HCT) and the purity (> 95%) was controlled by analytical HPLC (Waters alliance).

Part of the 2D NMR studies were performed with a batch purchased from “Genosphere”.

Mass spectrometry. Peptides were diluted (100-500 µM) in 10 mM solution of ammonium acetate at pH 7.0 and 7.8 and silver nitrate was added (0-4 eq.). Mass spectra at pH 6.4 were also run for consistency and the same complexes were observed. Due to the low signals of the complexes compared to protonation, no spectra at this pH are shown.

Sequence alignment. The alignment has been performed by PRALINE$^{1-2}$. The scoring scheme works from 0 for the least conserved alignment position, up to 10 for the most conserved
The peptide sequence SilB\textsubscript{401-430} has been displayed using a purple rectangle on each alignment.

Figure S1. Sequences alignment for SilB \textit{Salmonella typhimurium} / CusB \textit{Escherichia coli} \textit{K12}. The sequence of the SilB model peptide used in this study has been framed in purple.
Figure S2. Sequences alignment for SilB *Salmonella typhimurium* / SilB *Cupriavidus metallidurans* CH34. The sequence of the SilB model peptide used in this study has been framed in purple. Red arrows represent the Ag⁺ interacting residues seen in the C-terminus of SilB *Cupriavidus metallidurans* CH34.
Figure S3. 1H-15N HSQC spectra and respective assignments of the different peptides (A) SilB-p, (B) SilE-p and (C) a mixture of SilE-p and SilB-p at a [SilE-p]/[SilB-p] molar ratio of 1:1. (D) Overlay of the SilE-p (green), SilB-p (red) and SilB-p/SilB-p (blue) 1H-15N-HSQC spectra. The three spectra nicely overlap and evidence the fact that SilE-p and SilB-p do not interact with each other.
1H-15N HSQC chemical shift assignments

1. SilE-p

Amino-acid	Atom	1H, ppm	Atom	15N, ppm
H80	HN	8.373	N	123.965
	HE21	7.433		
	HE22	6.777	N_E2	112.497
Q81	HN	8.454	N	121.573
K82	HN	8.330	N	122.98
M83	HN	8.328	N	122.497
V84	HN	8.123	N	122.245
E85	HN	8.406	N	125.258
S86	HN	8.283	N	117.252
H87	HN	8.497	N	120.438
Q88	HN	8.294	N	121.222
R89	HN	8.382	N	122.729
R407	HN	8.030	N	121.172
M406	HN	7.979	N	119.686
R405	HN	8.034	N	120.473
M406	HE	7.105	N_E1	120.489

2. SilB-p

Amino-acid	Atom	1H, ppm	Atom	15N, ppm
G401	HN	8.209	N	114.385
A402	HN	8.288	N	123.613
L403	HN	8.101	N	119.801
E404	HN	8.013	N	120.367
R405	HN	8.034	N	120.473
M406	HE	7.105	N_E1	120.489
R407	HN	8.030	N	121.172
H408	HN	8.319	N	119.478
E410	HN	8.256	N	122.020
K411	HN	8.261	N	122.433
T412	HN	8.105	N	115.087
E413	HN	8.355	N	122.559
N414	HN	8.39	N	129.751
S415	HN	8.137	N	116.06
M416	HN	8.223	N	123.019
A418	HN	8.309	N	123.872
M419	HN	8.263	N	119.159
S420	HN	8.180	N	116.653
E421	HN	8.628	N	120.563
Q422	HN	8.267	N	121.247
V424	HN	8.165	N	120.281
N425	HN	8.382	N	121.729
M426	HN	8.298	N	121.662
H427	HN	8.441	N	118.798
S428	HN	8.180	N	116.653
G429	HN	8.398	N	110.631
H430	HN	8.299	N	118.534
Figure S4. Mass spectrum of SilB-p1 in presence of 4 equivalents of silver nitrate at pH 7.0.
Figure S5. Mass spectra of SilB-p2 in presence of 4 equivalents of silver nitrate at pH 7.0.

Table S1. Mass spectrometry signals of complexes observed when adding 4 equivalents of silver(I) to SilB-p peptides

Peptide	m/z	Intensity
SilB-p1		
(pH 7.0, MW= 1364.6 g/mol)	491.4 [M+2H+Ag]^3+	9e4
	736.3 [M+H+Ag]^2+	4.4e5
	748.3 [M+Na+H+Ag]^2+	1.6e5
	758.6 [M+2Na+Ag]^2+	6e4
	1472.3 [M+Ag]^+	3.5e4
	790.6 [M+2Ag]^2+	3e4
SilB-p2		
(pH 7.0, MW= 1394.5 g/mol)	751.4 [M+H+Ag]^+	1.25e5
	762.0 [M+Na+Ag]^2+	1.25e5
	773.4 [M+2Na+Ag]^2+	9.0e4
	784.5 [M+3Na+Ag]^2+	3.5e4
	1501.1 [M+Ag]^+	4.0e4
	803.8 [M+2Ag]^2+	2.5e4
Figure S6. Chemical shift perturbations of the histidine and methionine 1H resonances upon addition of an increasing concentration of AgNO$_3$ (0 to 1.9 mM) to a solution of SilB-p1 (500 µM) in HEPES buffer (20 mM, pD 7.8).

Figure S7. Chemical shift perturbations of the methionines 1H resonances upon addition of an increasing concentration of AgNO$_3$ (0 to 1.4 mM) to a solution of SilB-p2 (300 µM) in HEPES buffer (20 mM, pD 7.8).

Table S2. Overview of the binding constants obtained by 1H NMR spectroscopy in HEPES buffer (20 mM, pD=7.8) for the two different peptides SilB-p1 and SilB-p2. The binding constants were derived from the titration curves obtained in Fig. S6,7 by means of a 1:1 model (see Appendix 1 below).

Peptide	K_d
SilB-p1	8 ± 2 µM
SilB-p2	2 ± 1 µM
Figure S8. CD experiments during the silver titration of SilB-p (10 μM) in ammonium acetate solution (10 mM, pH = 6.4). Five repetitions have been recorded for each ratio.

Figure S9. Hypothetical mechanism of the interplay between SilB and SilE derived from our observations. At low silver concentration, the C-terminus of SilB may accommodate two silver ions with a possible further transfer to SilC. When the silver concentration significantly increases, the system triggers a rapid remodeling with SilE acting as a regulator to avoid saturation of the efflux pump.
Appendix 1. Dissociation constants calculation

To derive the corresponding binding constant for the SilE-p/Ag⁺ interaction, CSPs were analyzed by calculating the combined amide chemical shift perturbation (Δδ) as
\[\Delta\delta = \left(\frac{(\Delta\delta_T^2 + \Delta\delta_N^2)}{2} \right)^{1/2} \]
By considering a two sites interaction and a 2:1 stoichiometry, we assume that two silver ions can bind to either of the two SilE-p binding sites. The perturbations observed on SilE-p do not discriminate between the two sites so that the observed chemical shift perturbation is a weighted average between the two extreme values corresponding to the free (Δδ=0) and ligand-bound state (Δδ=Δδ_{LB}). For a 2:1 binding model, considerations based on partitioning between the free and various ligand-bound states of SilE-p give:

\[\Delta\delta = \Delta\delta_{LB} \left([L_0] + 2[P_0] + K_d - \sqrt{[L_0]^2 + 2[P_0] + K_d} \right) - 8[L_0][P_0] / 4[P_0] \]

where [P_0] and [L_0] are the total molar concentrations of SilE-p and Ag⁺ respectively.

The dissociation constant \(K_d \) and \(\Delta\delta_{LB} \) were fitted with non-linear regression by using an in-house Matlab (The MathWorks, Inc) based program. Errors were estimated by sampling 100 initial guesses, assuming 10% error on the protein and ligand concentrations.

To derive the dissociation constant corresponding to the SilB-p/Ag⁺ interaction, we have used a two sites sequential model that can be described by:

\[[P] + [L] \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} [PL_1] \overset{k_2}{\underset{k_{-2}}{\rightleftharpoons}} [PL_2] \]

where \(P \) stands for the free protein, \(PL_1 \) the partly bound protein and \(PL_2 \) the totally bound protein. The two dissociation constants can be written as:

\[K_{d_1} = \frac{k_1}{k_{-1}} \quad \text{and} \quad K_{d_2} = \frac{k_2}{k_{-2}} \]

Assuming fast exchange, the chemical shift perturbation can be rewritten as:

\[\Delta\delta = p_1 \Delta\delta_p + p_{PL_1} \Delta\delta_{PL_1} + p_{PL_2} \Delta\delta_{PL_2} \]

where \(p_i \) is the corresponding populations of the different complexes. The concentrations of the different complexes are:

\[[P] = \frac{[P_T] \cdot K_{d_1} \cdot K_{d_2}}{K_{d_1} \cdot K_{d_2} + [L] \cdot K_{d_2} + [L]} \]
\[[PL_1] = \frac{[L] \cdot [P_T] \cdot K_{d_2}}{K_{d_1} \cdot K_{d_2} + [L] \cdot K_{d_2} + [L]} \]
\[[PL_2] = \frac{[L] \cdot [P_T]}{K_{d_1} \cdot K_{d_2} + [L] \cdot K_{d_2} + [L]} \]

where \(P_T \) stands for the total protein concentration. \(\Delta\delta \) can be recast as:

\[\Delta\delta = \frac{K_{d_1} \cdot K_{d_2} \cdot \Delta\delta_p + [L] \cdot K_{d_1} \cdot \Delta\delta_{PL_1} + [L] \cdot \Delta\delta_{PL_2}}{K_{d_1} \cdot K_{d_2} + [L] \cdot K_{d_2} + [L]} \]

where the two extreme values correspond to the free (\(\Delta\delta_p=0 \)) and totally bound protein (\(\Delta\delta=\Delta\delta_{PL_2} \)) and \([L] \) is obtained by solving the following cubic equation:

\[[L]^3 + [L]^2 \left(K_{d_2} + [P_T] - [L_T] \right) + [L] \left(K_{d_1} \cdot K_{d_2} + K_{d_2} \cdot [P_T] - K_{d_2} \cdot [L_T] \right) - [L_T] \cdot K_{d_1} \cdot K_{d_2} = 0 \]
The four parameters comprising K_{d1}, K_{d2}, $\Delta \delta_{PL1}$ and $\Delta \delta_{PL2}$ were fitted with non-linear regression by using an in-house Matlab (The Mathworks, Inc) based program. Errors were estimated by sampling 500 initial guesses, assuming 10% error on protein and ligand concentration.

References

1. Simossis, V. A.; Heringa, J., The PRALINE online server: optimising progressive multiple alignment on the web. *Computational Biology and Chemistry* **2003**, *27* (4), 511-519.
2. Simossis, V. A.; Heringa, J., PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. *Nucleic Acids Research* **2005**, *33* (suppl_2), W289-W294.