Effect of superabsorbent polymer solutions on structure formation and properties of cement compositions

Aleksandr Inozemtcev, Evgeniy Korolev and Thanh Qui Duong
Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, Russia
E-mail: InozemcevAS@mgsu.ru

Abstract. The development of compositions with a set of properties that are indifferent to the influence of the environment during the setting and hardening of the binder is an actual task for material science in connection with the evolution of 3D-printers in construction. The use of SAP solutions with delayed polymerization should provide the water reserve in the cement system for internal curing without loss of mobility of the mixture. An important condition is the establishment of “parity” concentrations of the polyacrylate solution at which sorption of water does not reduce the degree of cement hydration. Calorimetric and X-ray phase analyzes showed that the SAP solution in an amount of not more than 1.0 % by weight of Portland cement has a positive effect on the structure formation processes of cement stone. The formation of a more perfect crystalline structure of cement stone is observed. The SAP content of more than 1.5% by weight of Portland cement leads to a decrease in the intensity of the maxima in the radiographs corresponding to the products of hydration of Portland cement. In this case, the less perfect crystalline structure of the cement stone is associated with the formation of physical barriers by the SAP film. It has been shown that the solutions of superabsorbent polymers allow to keep the water for hydration without loss of mobility, in contrast to granular additives. The obtained dependences of the rheological properties of cement mixtures and physico-mechanical properties of cement stone on the content of SAP indicate that the effective concentrations of SAP are 0.5...1.0% by weight of Portland cement.

1. Introduction
The development of compositions with a set of properties that are indifferent to the influence of the environment during the setting and hardening of the binder is an actual task for material science in connection with the evolution of 3D-printers in construction. Conditions for intense moisture loss are occurred in the process of layer-by-layer 3D printing of cement materials. This leads to an imbalance of the water in the volume of the composite, a lack of liquid for hydration, a decrease in density, a rise of shrinkage and loss of strength. Thus, the preserve water for the hardening period including at the using hardening accelerators is important for "building ink" for 3D-printer.

As shown in [5], superabsorbent polymers (SAP) can be used to provide internal care for Portland cement hydration processes instead the saturation of lightweight aggregate by water in lightweight concrete. Most SAPs are made in the form of microsized granules, powders or fibers characterized by the possibility of water absorption in amount more than 50 times of the initial volume.

The use of superabsorbent polymers in cement mixtures has both positive and negative effects [6...10]. On the one hand, the use of SAP as a carrier of water supply to ensure the binder hydration is justified by the positive effect of reducing shrinkage. On the other hand, the granular polymers...
requires preliminary saturation by water (within 15-30 minutes) to best mobility of the mixture and operates in the structure of the composite as a source of additional pores that reduce mechanical properties. In this case, the kinetics of desorption is the most important for increasing the efficiency of SAP. Water should be migrated from the polymer to the cement system, and not in the opposite direction.

Thus, the use of SAP solutions with delayed polymerization should provide the water reserve in the cement system for internal curing without loss of mobility of the mixture. An important condition is the establishment of “parity” concentrations of the polyacrylate solution at which sorption of water does not reduce the degree of cement hydration.

2. Material and methods
The influence of a solution of a superabsorbent polymer on the processes of structure formation and properties of cement compositions was studied in this paper. Portland cement CEM I 42.5 «Lipetskccement» was used as a binder. The multi-component acrylate composition «Renovir hydrogel» used for injection drainage of structures, it is proposed to use as SAP. SAP specifications are presented in the table 1.

Table 1. Properties of polyacrylate superabsorbent polymer
Indicator
Density, kg/m³
pH
Polymerization rate, min
Bond strength, MPa
Tensile at break, %
Application temperature, °C
Biostability
Vapor permeability

The SAP solution is obtained by mixing water (W) with the three components of the polymer part (ΣA = A₁ + A₂ + A₃) and catalyst (B). The component “A₁” is acrylic acid (propenoic acid CH₂=CH−COOH) or salt (sodium polyacrylate [-CH₂−CH(COONa)-]ₙ). The component “A₂” is a crosslinking agent in which poly-saturated compounds are widely used. The component “A₃” is an initiator from peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds or redox systems.

The mobility of cement mixtures was determined by the diameter of the spread from a truncated cone. The study of the physico-mechanical properties of cement stone was carried out at the age of 28 days after hardening under adverse conditions (temperature – 27±2.5°C, humidity – less than 60 %) according to the table 2.

Table 2. The recipe for cement mixtures
Ratio
W/C
B/A₁
B/ΣA
SAP/C, %

Note. Ratio A₂/A₁ = 0.02 and A₃/A₁ = 0.08.
The relative deformation of shrinkage was determined using a longitudinal horizontal comparator IZA-2 as the ratio $\varepsilon = \Delta l/l$, where Δl is the change of the distance between the benchmarks at the age of 28 days, l is the base distance between the benchmarks at the age of 24 hours.

The degree of hydration was estimated by the calorimetric method according using by the total thermal energy [11...13]. Isothermal calorimeter TAM AIR (TA Instruments) was used for calorimetric analysis of cement mixtures within 72 hours. Samples of cement mixtures were prepared at W/C = 0.5 and polymer content of 0.5-1.5 % by weight of Portland cement with a constant ratio B/A1 = 0.06. The main phases of the cement stone (W/C = 0.24, SAP concentration 0-1.5% by weight of the binder) were identified by X-ray diffraction analysis using a XRD-6000 diffractometer (Shimadzu). Shooting Conditions – cathode Cu, 15 kV, 100 μA.

3. Results and discussion
A calorimetric analysis of cement stone modified by solution of superabsorbent polymer with different concentrations was performed. Integral thermograms of the total heat release of cement stone are presented in the figure 1. It was established that the studied range of SAP concentrations (less than 1.5%) provides a heat release level close to the control composition (without SAP). This indicates a similar degree of binder hydration. The processes of structure formation of cement stone both with and without SAP are comparable. That is, the effect of SAP polymerization on Portland cement hydration is minimal.

![Figure 1. The kinetics of heat during the hydration of Portland cement with SAP](image)

An additional analysis of the influence of SAP on the processes of structure formation of cement stone can be established using X-ray phase analysis (figure 2). Diffraction reflections of the main phases of cement stone can be identified: low- and high-basic calcium hydroxidesilicates (CSH) with interplanar spacings $d = 4.92, 3.03, 2.74, 2.61, 2.18, 1.93$ and 1.80 Å, portlandite (Ca(OH)$_2$) with $d = 4.92, 2.63, 1.93$ and 1.80 Å, tobermorite (Tb) with $d = 2.76$ and 2.18 Å, calcite (CaCO$_3$) with $d = 3.03 \text{ Å}$. Note that similar interplanar spacings may belong to cement clinker minerals that complicates the identification of phases and their number.
Figure 2. The X-ray phase analysis of cement stone

An increase in the intensity of the main maxima can be noted on the X-ray graphs of cement stone with SAP (table 3). Cement stone with 0.5% SAP by weight of Portland cement is characterized by an increase in the intensity of diffraction maxima at \(d = 3.87, 2.32, 2.28, 1.76, 1.63 \) and 1.49 Å, which relate to hydration products: calcium hydrosilicates, tobermorite, calcite and calcium hydrosulfoaluminates (CHSA). Naturally, this fact can be explained by the formation of more perfect crystals of hydration products. Such a positive effect of the superabsorbent polymer on the structure formation processes is also observed for cement stone with SAP in the amount of 1.0% by weight of Portland cement. An almost twofold difference in the maxima of the products of hydration of Portland cement (CSH and Tb) can be distinguished at \(d = 3.03, 2.6, 2.74, 2.61 \) and 2.18 Å.

Obviously, an increase in the amount of SAP can have a negative effect on the structure formation of cement stone due to the creation of a physical barrier to the formation of crystals of hydration products. This is confirmed by X-ray graphs of cement stone after increasing in the SAP concentration to 1.5%. Table 3 shows that the above called peaks of hydration products for such composition have a lower intensity compared to 1.0% but greater than control composition.

Table 3. Changes in the intensity of the diffraction maxima of cement stone

\(d, \text{Å} \)	0	0.5	1.0	1.5
\(d = 4.92 \)	424	336	330	254
\(d = 3.87 \)	120	164	148	168
\(d = 3.03 \)	536	728	1278	892
\(d = 2.97 \)	212	194	294	236
\(d = 2.76 \)	448	648	1058	896

Ca(OH)\(_2\); CSH
CHSA; CSH
CSH; CaCO\(_3\)
CSH; Tb
Tb
The obtained dependences of the rheological properties of cement mixtures and the physicomechanical properties of cement stone show that varying the composition of the SAP solution to control polymerization allows to provide an internal care function and reduce shrinkage

Thus, calorimetric and X-ray phase analyzes show that SAP in an amount of not more than 1.0% by weight of Portland cement has a positive effect on the structure formation processes of cement stone. The formation of a more perfect crystalline structure of cement stone is observed. An increase in the SAP concentration more than 1.5% by weight of Portland cement leads to a decrease in the intensity of X-ray maxima corresponding to the products of hydration of Portland cement, which indicates the formation of a less perfect crystalline structure of cement stone.

The results of the study of the mobility of cement mixtures with SAP (table 4) show a slight increase in the spread diameter at the increasing of the amount of polymer in the composition. This is due to the liquid state of the polymer part, which does not have a sorbing effect before polymerization and acts as an additional wetting component, in contrast to granular absorbent additives.

Table 4. Rheological properties of mixtures and physico-mechanical properties of cement stone with a solution of SAP

W/ΣA	ΣA/C, %	Dsp, mm	ρ, kg/m³	Rfx, MPa	Rcom, MPa	ε, mm/m	
1	0	0.00	192.8	2100	7.15	70.4	2.4
2	95	0.25	197.8	2095	6.95	68.5	1.0
3	47	0.50	201.5	2095	6.85	70.7	1.2
4	23	1.00	197.8	2100	6.90	69.7	2.6
5	18	1.25	198.0	2100	7.00	71.7	2.7
6	15	1.50	206.5	2095	6.93	70.1	3.7
7	11	2.00	199.5	2100	6.70	70.8	4.9

Notes: Dsp is a spread diameter, ρ is the average density, Rfx is the flexure strength, Rcom is the compressive strength, ε is the relative deformation at the age of 21 days.

Table 4 shows that the effect of SAP on the average density of cement stone is insignificantly. The value of average density of cement stone varies within the margin of error. The value of indicators of mechanical properties changes analogously within 5 %: flexural strength varies from 6.70 to 7.15 MPa, the changing range of compressive strength is 68.5-71.7 MPa. A decrease in deformation of cement stone under adverse hardening conditions at the age of 21 days is also seen. The amount of SAP to 1% by weight of Portland cement leads to a decrease in shrinkage strain by 2 times. Thus, the use of SAP solutions shows the possibility of leveling the negative impact of sorption processes by polymer during the preparation, forming and initial hardening periods. SAP in a liquid state due to delayed polymerization does not absorb water and does not prevent wetting of the dispersed phase with stirring and hydration of the binder, but keep water further after polymerization.
deformation. An effective concentration of SAP, ensuring the preservation of rheological properties, strength and also reducing deformations, is 0.5-1.0% by weight of Portland cement.

4. Conclusions
Calorimetric and X-ray phase analyzes showed that the SAP solution in an amount of not more than 1.0% by weight of Portland cement has a positive effect on the structure formation processes of cement stone. The formation of a more perfect crystalline structure of cement stone is observed. The SAP content of more than 1.5% by weight of Portland cement leads to a decrease in the intensity of the maxima in the radiographs corresponding to the products of hydration of Portland cement. In this case, the less perfect crystalline structure of the cement stone is associated with the formation of physical barriers by the SAP film.

It has been shown that the solutions of superabsorbent polymers allow to keep water for hydration without loss of mobility, in contrast to granular additives. The obtained dependences of the rheological properties of cement mixtures and physico-mechanical properties of cement stone on the content of SAP indicate that the effective concentrations of SAP are 0.5-1.0% by weight of Portland cement.

Acknowledgments
The work was carried out within the framework of the agreement No 075-15-2019-1223 on granting subsidies for the implementation of the federal target program "Research and development in priority areas for the development of the scientific and technological complex of Russia for 2014-2020" (project identifier - RFMEFI58318X0072) with the financial support from the Ministry of Science and Higher Education of the Russian Federation.

References
[1] Inozemtcev A S, Duong T Q 2019 E3S Web of Conferences 97 pp 02010
[2] Buswell R A, Silva Leal de W R, Jones S Z, Dirrenberger J 2018 Cement and Concrete Research 112 pp 37–49
[3] Pustovgar A P, Adamtsevich A O, Volkov A A 2018 Industrial and Civil Engineering 2018 9 pp 12–20
[4] Inozemtcev A S, Korolev E V, Duong T Q 2018 IOP Conference series: Materials science and engineering 365 pp 032009
[5] Inozemtcev A S, Korolev E V, Duong T Q 2019 Magazine of Civil Engineering 5 (89) pp 179–186
[6] Yang J, Liu L, Liao Q, Wu J, Zhang L 2019 Construction and Building Materials 201 (20) pp 401–407
[7] Schröfl Ch, Mechtcherine V, Gorges M 2012 Cement and Concrete Research 42 (6) pp 865–873
[8] Wang F, Yang J, Hu S, Li X, Cheng H 2016 Cement and Concrete Research 81 pp 112–121
[9] Mechtcherine V, Reinhardt H-W 2012 State of the Art Report Prepared by Technical Committee 225-SAP p 170
[10] Lura P, Durand F, Loukili A, Kovler K, Jensen O M 2006 RILEM Proc. PRO. RILEM Publications S.A.R.L. 52 pp 117–126
[11] Adamtsevich A O, Pashkevich S A, Pustovgar A P 2013 Magazine of Civil Engineering 3 (38) pp 36–42
[12] Adamtsevich A O, Pustovgar A P 2015 Dry building mixes 4 pp 26–29
[13] Pustovgar A P, Lavdansky P A, Yesenov A V, Adamtsevich A O, Vedenin A D 2014 Scientific and Technical Bulletin of the Volga Region 4 pp 179–181