The peritoneum is a common site of metastasis in advanced gastric cancer (GC). Diagnostic laparoscopy is now routinely performed as part of disease staging, leading to an earlier diagnosis of synchronous peritoneal metastasis (PM). The biology of GCPM is unique and aggressive, leading to a dismal prognosis. These tumors tend to be resistant to traditional systemic therapy, and yet, this remains the current standard-of-care recommended by most international clinical guidelines. As this is an area of unmet clinical need, several translational studies and clinical trials have focused on addressing this specific disease state. Advances in genomic sequencing and molecular profiling have revealed several promising therapeutic targets and elucidated novel biology, particularly on the role of the surrounding tumor microenvironment in GCPM. Peritoneal-specific clinical trials are being designed with a combination of locoregional therapeutic strategies with systemic therapy. In this review, we summarize the new knowledge of cancer biology, advances in surgical techniques, and emergence of novel therapies as an integrated strategy emerges to address GCPM as a distinct clinical entity.

KEY POINTS

- Gastric cancer peritoneal metastasis (GCPM) is a distinct clinical entity that is common in advanced gastric cancer with dismal prognosis.
- We describe 11 biologic hallmarks of GCPM across four categories: tumor-related factors, the peritoneal microenvironment, paracrine factors, and biomechanical forces.
- Although systemic therapies may benefit patients with GCPM, the magnitude of benefit is lower.
- Therefore, a combination of peritoneal-directed treatment strategies and systemic therapy may be required for the treatment of GCPM.
- Unraveling the genomic biology of GCPM offers the opportunity to integrate these treatment strategies, which may lead to improved outcomes.

INTRODUCTION

Gastric cancer (GC) is an important cause of cancer mortality and morbidity, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer death globally. The peritoneum is a common site of metastasis for GC, occurring in nearly a third of patients at diagnosis. The prognosis of patients with GC peritoneal metastases (PM) remains dismal, with a median survival of less than 1 year. Several clinical challenges in the management of GCPM contribute to the poor prognosis. GCPM is difficult to accurately detect and measure using conventional imaging modalities, leading to an increasing use of peritoneal staging modalities such as diagnostic laparoscopy and cytology washings, which have led to earlier diagnosis of PMs.

To date, treatment algorithms and clinical practice guidelines for patients with GCPM are included under the broader umbrella of metastatic (or stage IV) GC, with recommendations largely focused only on systemic therapy. Yet, because of the difficulty in measuring GCPM on conventional imaging modalities, patients with PM-only metastatic disease do not have measurable disease, as per RECIST, a common inclusion criterion for most clinical trials. This has led to an under-representation of this subgroup of patients in major trials.
CONTEXT

Key Objective
Peritoneal metastasis (PM) is common in advanced gastric cancer (GC) and confers a dismal prognosis. Advances in genomic sequencing have provided deeper insights into the biology of GC PM. Concurrently, several clinical studies are evaluating peritoneal-directed strategies to treat GC PM. This review aims to integrate these new data to provide an update on this difficult-to-treat disease.

Knowledge Generated
We review and synthesize recent major genomic studies of GC PM into 11 biologic hallmarks across four categories, including tumor-related factors, the peritoneal microenvironment, paracrine factors, and biomechanical forces. Next, we summarize various peritoneal-directed treatment strategies that are being used to target therapeutic vulnerabilities aimed to prevent the occurrence of GC PM or its treatment.

Relevance
Integration of recent novel genomic biology unraveled in GC PM with peritoneal-specific therapeutic strategies may lead to improved outcomes of this distinct clinical entity.

Because of the presence of the peritoneal-plasma barrier and poor cancer tissue vascularity, PMs respond poorly to systemic antineoplastic therapy. This has led to the need to develop locoregional (intraperitoneal) treatment strategies such as catheter-based intraperitoneal chemotherapy, hyperthermic intraperitoneal chemotherapy (HIPEC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC). Unless patients with GC PM are enrolled in peritoneal-directed clinical trials, there are limited opportunities for direct access to the PM for tissue sampling, leading to a poor understanding of the biologic components of GC PM, such as the tumor microenvironment (TME). However, recent advances in molecular characterization and genomic sequencing have enabled analysis of various aspects of GC PM, starting with analysis of cells derived from malignant ascites and inferring the role of the TME. This has led to advances in precision oncology in this area, through subclassification of GC PM patients on the basis of gene expression profiles, and identification of novel therapeutic targets.

These emerging data of the molecular and biologic characteristics of GC PM suggest consideration of targeted (or peritoneal-directed) treatment, distinct from GC with metastases to distant organs. Here, we discuss GC PM as a unique clinical entity, explain the biology of the disease, summarize its natural history, and cover emerging biomarkers and, importantly, the potential application of genomic biology as an integrated strategy to improve existing and future potential therapeutic approaches to GC PM.

DIAGNOSIS AND EPIDEMIOLOGY OF GC PM

The diagnosis of PM made simultaneously with the primary GC is referred to as synchronous GC PM, whereas metachronous GC PM refers to the emergence of PM (usually at least 6 months) after the primary GC diagnosis.

Synchronous GC PM
Patients with synchronous GC PM may present with symptomatic ascites, with confirmation of PM through abdominal paracentesis and cytologic examination of ascitic fluid. In asymptomatic patients, synchronous GC PM is often diagnosed via (1) imaging as part of routine staging, (2) staging laparoscopy with or without peritoneal washing cytology, or (3) as an incidental intraoperative finding in patients planned for curative gastrectomy (Fig 1).

The imaging modality of choice to evaluate for distant metastases in the staging of GC is a computed tomography (CT) scan of the chest, abdomen, and pelvis. Although the specificity of CT for the detection of PM is high (97%-99%), the sensitivity is low (28%-51%). Recently, whole-body diffusion-weighted magnetic resonance imaging has emerged as an alternative imaging modality for the diagnosis of PM. Because of the difficulty in diagnosing PM through radiology, methods to standardize reporting have been created. A radiomic signature on the basis of CT phenotypes of primary tumors and adjacent peritoneum in patients with GC was developed to improve the predictive capability of CT imaging for occult GC PM. Positron emission tomography-CT is not routinely recommended for staging, in particular, for diffuse-type GC (mucinous and signet ring cell [SRC] histology) that tends to have lower uptake of 18F-fluoro-2-deoxy-o-glucose. Fluoro-2-deoxy-o-glucose positron emission tomography-CT scans were found to detect only 3% of occult PM, compared with 19% by diagnostic laparoscopy.

Diagnostic laparoscopy with or without peritoneal washing cytology is recommended for routine staging of most stage II and III tumors by various international guidelines although slight variations exist in recommendations (Fig 1). Staging laparoscopy as a preoperative staging tool has a high sensitivity (85%) and specificity (100%) in the detection of PM not found on imaging.

Several studies have shown that the rate of synchronous PM at the time of diagnosis of GC ranges between 12.9% and 26.5% (Appendix Table A1, online only). Incorporation of diagnostic laparoscopy in routine staging of
FIG 1. Diagnosis and treatment strategies of GCPM. Various groups across the world use different strategies in the management of GCPM. This figure aims to highlight the most commonly used approaches. Major guidelines (NCCN and ESMO) recommend treatment of GCPM with systemic therapy alone, similar to patients with advanced or inoperable metastatic GC. However, academic and high-volume subspecialized tertiary centers (in SG, JP, KR, CN, FR and the US, within purple boxes) tend to deploy more aggressive and experimental approaches with peritoneal-directed therapies, which are not recommended by either NCCN or ESMO. Guidelines on staging laparoscopy not represented in the figure include those from the JGCA and the SSO. JGCA recommends weakly for staging laparoscopy to decide on the treatment plan for patients with relatively high risk of peritoneal dissemination, referring also to the results of peritoneal lavage cytology using samples that are collected at staging laparoscopy, and for patients with advanced GC (TNM not otherwise specified) who can be indicated for neoadjuvant chemotherapy. SSO guidelines recommend strong consideration for diagnostic laparoscopy before the initiation of systemic chemotherapy in all patients with proven GC. AFC, French Association for Surgery; AJCC, American Joint Committee on Cancer; CN, China; CRS, cytoreductive surgery; ESMO, European Society for Medical Oncology; FR, France; GCPM, gastric cancer peritoneal metastasis; HIPEC, hyperthermic intraperitoneal chemotherapy; IPC, intraperitoneal chemotherapy; JGCA, Japanese Gastric Cancer Association; JP, Japan; KR, Korea; NCCN, National Comprehensive Cancer Network; PCI, Peritoneal Cancer Index; PIPAC, pressurized intraperitoneal aerosol chemotherapy; SG, Singapore; SSO, Society of Surgical Oncology Chicago Consensus 2020.
Integration of Genomic Biology Into Therapeutic Strategies of GC

newly diagnosed GC has led to an increase in the diagnosis of synchronous GCPM. A Dutch nationwide cohort study found that the proportion of patients with GC diagnosed with synchronous PM had increased from 18% to 26.5% over a 10-year period from 2008 to 2017.2

Metachronous GCPM

Metachronous GCPM is often diagnosed late when patients present with symptomatic ascites or mass effects, or can be detected on routine surveillance scans in asymptomatic patients. There are currently little data to guide surveillance strategies in patients who have undergone surgical resection of primary tumors for early-stage GC (with or without adjuvant/perioperative chemotherapy). Some clinical guidelines recommend routine annual surveillance CT scan,9 whereas others recommend scans only if patients present with symptoms or elevated serum tumor markers.11

The incidence of metachronous GCPM after curative gastrectomy ranges between 7% and 32%, within a median of 8.5-26 months after surgery in various studies (Appendix Table A1).25-33 Metachronous PM accounts for between one fifth and three fifths of all patients who have metastatic disease recurrence after gastrectomy.25,26,28-33

BIOLGIC HALLMARKS OF GCPM

The peritoneum is the largest of three serous cavities (along with the pleura and pericardium), which are known to be immunologic niches, controlled by a diverse range of signaling networks. The peritoneum consists of a basement membrane, mesothelial cells, and connective tissue including hyaluron, collagen, proteoglycans, and interstitial cells (endothelial, fibroblasts, and pericytes).34 In addition to GC, several other tumor types display a propensity to metastasize to the peritoneum, such as colorectal and ovarian tumors. Lobular breast cancer is a unique disease entity with metastatic spread to the peritoneum reported similar to GC.6 This affinity is likely due to specific molecular characteristics of the primary tumor and the interaction with peritoneum during transcoelomic metastases. Malignant ascites often contain various growth factors, cytokines and chemokines, and other soluble factors. The interaction of the niche peritoneal microenvironment and malignant ascites with tumor cells is an area of great interest from a cancer biology point of view, as perturbation of these interactions may form potential therapeutic targets (Figs 2 and 3).

Tumor-Related Factors

The dissociation of tumor cells from the primary tumor is a multistep process, which involves several pathways and networks being co-opted to enable metastasis to the peritoneal lining.

Epithelial mesenchymal transition. Epithelial mesenchymal transition (EMT) is a process through which epithelial cells undergo a transformation into a mesenchymal phenotype, with increased migratory and invasive capability, resistance to anoikis, and production of extracellular matrix (ECM) components.36 Primary GC tumors of the EMT subtype, identified using the Asian Cancer Research Group classification, were found to develop PM more frequently and had the worst prognosis, compared with all other non-EMT subtypes.37 A large multomic profiling study of malignant ascites collected from patients with GCPM was recently reported.38 The study was predominantly in diffuse subtype (Lauren classification) tumors, with integrated profiling being performed including bulk whole-genome, whole-transcriptome, and epigenetic profiling (ChiP-Seq and methylation). A key finding in this study was that unsupervised hierarchical clustering of GCPM revealed two distinct molecular subtypes: EMT and non-EMT, with the EMT group associated with diffuse GC and having poorer prognosis. Several studies are pursuing diffuse-type GC-specific treatment strategies.39,40

Downregulation of expression and function of intercellular adhesion molecules, particularly classical cadherins such as E-cadherin, has been associated with EMT and peritoneal carcinomatosis.41 High expression of discoidin domain receptor 2 (DDR2) in primary GC tumors, a type I collagen receptor tyrosine kinase, was found to be significantly associated with EMT and peritoneal dissemination and could potentially be inhibited using dasatinib, a clinically available drug used in leukemia therapy.42

Genomic drivers. Whole-genome/whole-exome sequencing and whole-transcriptome sequencing (RNA-seq) on tumor cells purified from malignant ascites of patients have started to provide some insight into the genomic determinants of GCPM.43,44 Although TP53 mutations in PM occurred at a rate similar to primary tumors, CDH1 mutations tended to occur more frequently, particularly in the diffuse subtype (Lauren classification) tumors. Novel drivers such as PIGR and SOX9 have also been identified in the tumor cells derived from malignant ascites.38 PIGR encodes the polyclonal immunoglobulin receptor, which transports polymeric immunoglobulins produced by plasma cells in the lamina propria across the epithelial barrier to be secreted into the luminal space.43 SOX9 is involved in embryonic developmental pathways.44 Clonality analyses suggest that tumor cells in malignant ascites are derived from only a single clone per patient or just a few subclones.45 Somatic copy number analysis has identified amplifications in several potential therapeutic targets such as KRAS, FGFR2, MET, ERBB2, EGFR, and MYC (several of which were found to be actionable in animal models).46 This finding is of clinical importance, as The Cancer Genome Atlas and Asian Cancer Research Group analysis of primary GC tumors report scarce aberrations of the mitogen-activated protein kinase/oncogenic pathways in diffuse GC.47,48 This suggests the importance of profiling the PM to identify potential therapeutic options for patients with refractory disease, which may be missed by profiling the primary tumor alone.
Single-cell RNA sequencing (scRNA-seq) has been recently used to characterize gene expression across thousands of cells simultaneously and provide a more granular understanding of the different cell states. In an scRNA-seq analysis of malignant ascites from 15 patients, tumor cells from different patients broadly clustered separately, reflective of the single clonality analysis described earlier. Approximately two thirds of tumor cells mapped to cells of GC origin, such as pit, mucosal, and chief cells. The remaining third mapped to other gastrointestinal organs such as the duodenum and colon. Samples could be classified into two main subtypes, on the basis of tumor cell lineage compositions—gastric-dominant (mainly gastric cell lineages) and GI-mixed (with mixed gastric and colorectal-like cells), although no significant difference was observed in the histopathologic features between these two subtypes. This classification was found to have a strong correlation with patient survival.

Evolutionary Hippo pathway dysregulation. The Hippo signaling pathway is involved in tissue homeostasis. Expression of genes involved in the Hippo pathway, including TEAD1, TEAD2, TEAD4, and WWTR1, was significantly elevated in EMT-associated malignant ascites. The role of TEAD inhibition was explored through the administration of K-975, a TEAD inhibitor, resulting in significant PM tumor suppression and improved survival in a mouse model. The transforming growth factor-β (TGF-β) superfamily consists of various cytokines and proteins including activins and inhibins, as well as bone morphogenetic proteins, and is downstream of the Hippo pathway. The TGF-β pathway is involved in several cellular processes, including EMT, cellular migration and invasion, and ECM remodeling. Excessive production of TGF-β leads to oncogenesis through dysregulation of these cellular processes. Integrative classification of malignant ascites, incorporating...
DNA, RNA, and clinicopathologic characteristics, has identified a mesenchymal and an epithelial subtype of GCPM. The mesenchymal subtype was found to have higher expression of TGF-β pathway genes, less frequent mutations of TP53 and CDH1, a lower level of chromosomal instability, and decreased response to chemotherapy.

Paracrine Factors

Malignant ascites, with its admixture of cytokines, chemokines, and growth factors, has been shown to provide a tumorigenic environment for PM. Ascites also contains multiple ligands, which are upstream regulators of signaling, leading to phenotypic changes to the cell, enhanced tumor cell proliferation and migration, and attenuated drug-induced malignant cell apoptosis.

The TGF-β pathway has been shown to be upregulated within the tumor cells, and elevated levels of the TGF-β1 cytokine have been detected in the peritoneal washings of patients with GCPM. Through the Smad pathways, TGF-β upregulates collagen and fibronectin deposition, leading to peritoneal fibrosis and increased GC tumor cell adhesion. TGF-β also increases crosstalk between cancer-associated fibroblasts (CAFs) and endothelial and other stromal cells, sustained through cytokines such as CXCLs, interleukins (ILs), and vascular endothelial growth factors (VEGFs).

Inflammatory cytokines such as tumor necrosis factor-α, interferon-γ, and the IL-6 and IL-1β, found in malignant ascites, increase the expression of adhesion molecules such as intercellular adhesion molecule-1 and vascular adhesion molecule-1 on mesothelial cells. GCPM also secretes IL-6 and IL-8, which increase cell growth, invasiveness, motility, and chemoresistance.

Several chemokines and their axes detected in malignant ascites, including CXCL1/CXCR1, CCL2/CCR4, and CXCL12/CXCR4, have been shown to play an important role in migration, chemotaxis, proliferation, and adhesion of tumor cells. Growth factors regulating various pathways instrumental to tumor cell metastasis and propagation have been found in malignant ascites of GCPM. These, which include endothelial growth factor, hepatocyte growth factor, and VEGF, induce mesothelial cell contraction, leading to exposure of the peritoneal basement membrane.

FIG 3. Regulators of metastasis to the peritoneum in GC. Metastasis of the GC primary tumor to the peritoneum is a multistep process involving several pathways and networks. In this figure, we highlight some of the key regulators of this process, with factors that determine the metastatic cascade being present in the primary tumor, malignant ascites, and the peritoneal cavity. CAF, cancer-associated fibroblast; EGF, endothelial growth factor; GCPM, gastric cancer peritoneal metastasis; HGF, hepatocyte growth factor; ICAM-1, intercellular adhesion molecule-1; TGF, transforming growth factor; TNF, tumor necrosis factor; VCAM-1, vascular adhesion molecule-1; VEGF, vascular endothelial growth factor.
permeability of the peritoneal microenvironment. Crosstalk between heparin-binding-endothelial growth factor–like growth factor, CXCR4, CXCL12, and tumor necrosis factor-α converting enzyme was shown to stimulate GCPM through an autocrine/paracrine mechanism.56

Notably, some of the paracrine factors described are not unique to GCPM. In ovarian cancer, several studies have demonstrated the possibility of using peritoneal-directed treatment to target specific paracrine factors, such as anti-IL6R (tocilizumab)57 and anti-VEGF (bevacizumab)58 therapies, to control malignant ascites, suggesting a similar potential to target these factors in GCPM.

Peritoneal Microenvironment
The localization of free-floating tumor cells (either transcoelomic or translymphatic) to the peritoneal mesothelial lining is regulated by adhesion molecules such as CD44 and integrin and selectin superfamilies.59 Cancer-associated stem cells have been isolated with a propensity for peritoneal homing and EMT.60 Several cell types within the peritoneal microenvironment then determine the fate and progression of these tumor cells. However, because of lack of tissue availability, detailed analyses of the TME of GCPM are yet to be performed.

Mesothelial mesenchymal transition. Tumor cells adhere to the mesothelial peritoneal cells and submesothelial connective tissue through interaction of integrins.61 Mesothelial cells secrete adhesion molecules for a variety of basement membrane proteins, including collagen, laminin, and fibronectin. Mesothelial mesenchymal transition, a process well described in the field of peritoneal dialysis for renal failure, has also been reported in PM. Mesothelial cells have been demonstrated to progressively acquire features of CAFs.62 CAFs driven through TGF-β signaling pathways sustain and stimulate tumor proliferation. RHBDLF2 expressed by CAFs is induced by inflammatory cytokines present in the malignant ascites and secreted by tumor cells.63 Through TGF-β, RHBDLF2 promotes motility of CAFs inducing invasion of the ECM and lymphatic vessels. CAFs have also been associated with secretion of ILs and growth factors.69,54

Immune cell–mediated immunosuppressive niche. Few studies have been performed directly on the immune cells within the TME of the PM, and this remains an area of intense research. In one study, the TME of GCPM was inferred through bulk RNA-Seq deconvolution to deduce immune cell types and proportions and two major subgroups were identified: T-cell–exclusive and T-cell–exhausted. Immune checkpoint TIM-3, its ligand galectin-9, and VISTA were highly expressed in the T-cell–exhausted (mesenchymal) subtype, as well as TGF-β1, suggesting an immune suppressive microenvironment.7 In addition, GCPM with higher proportions of resting memory CD4 T cells tended to be associated with a more aggressive phenotype.7 Plasma cell homing through epithelial-resident KLF2 in diffuse-type GC tumors was reported in one of the largest scRNA-seq data sets of GC reported to date, including GCPM samples.64 Perturbation of this interaction may present a potential therapeutic target for GCPM. Omental neutrophils have been shown to generate extracellular traps, involving the release of a protein-rich chromatin web that functions as a premetastatic niche.65,66

Macrophages found to be residing in serous cavities such as the peritoneum have been found to have unique characteristics through GATA6-mediated homeostasis.57 Cavity-resident macrophages within the peritoneum have high levels of Tim-4, which has been shown to mediate sequestration of CD8 T cells, thereby limiting antitumor activity in PM.68 This suggests a possible strategy of using the Tim-4 blockade to enhance efficacy of CD8 T-cell–based immunotherapies in the treatment of malignant ascites. In addition, tumor-associated macrophages were found to promote PM via IL-6 and a potential therapeutic vulnerability.69

Vascular microenvironment. Milky spots are regions of lymphoid tissue found on the omentum in the peritoneal cavity. These tend to have dense capillary networks, forming a proangiogenic habitat for metastases, driven through CD105-positive vessels.70 Oncogenesis may be further propagated by tumor and mesothelial secretion of VEGFs such as VEGF and platelet-derived growth factor, which lead to abnormal, hyperpermeable blood vessel formation. Several studies have associated changes in the tumor vasculature with the immune microenvironment and oncogenic signaling, suggesting an interplay between various biologic hallmarks.71

Physical Factors
As an enclosed space, the peritoneal cavity is subject to biomechanical forces, which were shown to affect tissue homeostasis. Imbalances to this tensional homeostasis have been associated with the pathogenesis of PM. These forces have also been associated with induction of EMT or mesothelial mesenchymal transition.52 Leaky vasculature associated with PM, along with a deficient lymphatic drainage, leads to an elevated fluid pressure in the interstitium. The increased pressures within the fluid and the PM increases epithelial cell shedding and metastasis, leading to decreased diffusion and convection within the tumor and resulting in poor drug penetration.73 Although described individually, the multiple biologic hallmarks are interconnected, with several overlapping biologic programs regulating and signaling pathways. For example, the mesenchymal subtype of GCPM (v epithelial subtype) was found to have a T-cell–exhausted phenotype with increased expression of immune checkpoint TIM-3, its ligand galectin-9, VISTA, and TGF-β1.7 Other groups, sampling either primary GC tumors or GCPM, have also described molecular subgroups. An overarching similarity across these studies is the dichotomization of GCPM into...
EMT and non-EMT subgroups (Appendix Table A2, online only). Tumors with active EMT tend to have poorer survival, but more importantly, EMT-specific novel and potential therapeutic targets have been identified. Collectively, a deeper understanding of the unique biologic and molecular networks driving GCPM has identified therapeutic vulnerabilities that could be harnessed either through systemic or locoregional therapies or by a combination of both.

MOLECULAR BIOMARKERS PREDICTIVE OF GCPM

Given the poor prognosis of GCPM, significant research efforts were put into identification of biomarkers that predict the emergence of GCPM. Conventional serum tumor markers such as carcinoembryonic antigen, cancer antigen (CA) 19-9, CA 72-4, and CA125 can modestly predict GCPM recurrence.74

High mesothelin protein expression in primary GC tumors, measured by immunohistochemistry, is associated with GCPM recurrence.75 A series of studies, on the basis of bulk RNA-Seq data of primary GC tissue, showed a significant association between higher expression of SYT8, SYT13,77 and TNNI278 and the risk of developing metachronous GCPM. Other groups have studied specific patterns of the TME to develop metabolic,79 immune,80 and collagen81 signatures predictive of GCPM. In a more comprehensive, transcriptome-wide analysis, a six-gene panel predictive of both synchronous and metachronous GCPM has been identified.82 This signature consists of genes such as CAVIN2, part of the TGF-β pathway and associated with EMT.

Several studies have tried to identify predictive biomarkers for GCPM recurrence in intraoperative peritoneal lavage samples. Positive SYT13 mRNA in peritoneal lavage fluid was found to be an independent prognostic factor for peritoneal recurrence.83 MMP-7,84 CK20, FABP1, and MUC285 in peritoneal washings have also been identified as potential biomarkers for identifying patients at risk of peritoneal recurrence after gastrectomy. More recently, reduced expression of miR-29s in peritoneal exosomes was identified as a strong risk factor for GCPM development.86 However, most studies evaluating these biomarkers were retrospective in nature, with varying definitions of PM recurrence end points, and further prospective large-scale validation studies are required before these can be incorporated into clinical practice.

RISK FACTORS FOR DEVELOPMENT OF GCPM

Risk Factors

Patient characteristics such as female gender3,24,87 and primary GC tumor characteristics including more advanced T stage,24,25,28,87 nodal involvement,24,25,27,28 and distal gastric (v proximal or gastroesophageal junction) location27,87 have been identified as clinical risk factors for the development of GCPM in both metachronous and synchronous settings.

Diffuse-type GCs by Lauren’s classification, most often composed of SRCs, are more biologically aggressive than intestinal-type GCs, and correspondingly, diffuse/mixed type tumors and the presence of SRC histology have been shown to be associated with increased risk of developing PM, in both the synchronous4,23,24 and metachronous settings.25,87

Role of Adjuvant Systemic Therapy in Preventing GCPM Recurrence

Systemic chemotherapy is commonly administered in either the perioperative or adjuvant setting for patients with GC undergoing curative resection.88,92 In the ACTS-GC trial, adjuvant S-1 significantly lowered the PM recurrence rate (15% v 19% in the surgery-alone group, hazard ratio 0.69).99 However, in the CLASSIC trial, adjuvant capetitaxel plus oxaliplatin had only a small, nonsignificant effect on PM recurrence,90 whereas the addition of adjuvant docetaxel to S-1 in the JACCRO GC-07 trial did not further lower the incidence of PM recurrence.92 Various cohort studies from both Western and Asian populations found that the use of systemic therapy was not associated with a lower risk of metachronous PM after curative-intent gastrectomy.25,27-29,87 Therefore, although adjuvant chemotherapy in GC prevents distant metastases and prolongs survival, the efficacy of systemic therapy to prevent PM remains uncertain.

PROGNOSIS OF GCPM AND THE EFFECT OF SYSTEMIC THERAPY

Prognosis of GCPM

Both synchronous GCPM and metachronous GCPM portend a poor prognosis. Studies evaluating synchronous GCPM showed a dismal survival, ranging between 3 and 15 months,2,22,24,93 whereas the median survival ranged between 3 and 9 months in patients with metachronous GCPM (Appendix Table A1).26,30,33 Patients with peritoneal recurrence had shorter survival compared with patients with nonperitoneal (distant and locoregional) recurrences.27,31

Patients with synchronous PM as the only metastatic site tend to have marginally better survival compared with patients with PM with concomitant extra-PMs.3,24 The prognosis of patients with GCPM is also dependent on the PM disease burden. The Peritoneal Cancer Index (PCI) and the Japanese Gastric Cancer Association classification are two commonly used metrics to quantify GCPM.22,93 The Japanese Gastric Cancer Association classification94 describes PM as peritoneal lavage cytology-negative (CY0) and peritoneal lavage cytology-positive (CY1) and the absence (PO) or presence of macroscopic PM (P1), whereas the PCI takes into account the extent of PM by calculating the size of PM lesions across 13 pelvic-abdominal regions within the abdominal cavity.95 Regardless of the metric used, survival of patients with synchronous GCPM worsens with increasing PM burden.22,93,96,97
Role of Systemic Therapy in the Treatment of GCPM

Several systemic therapies have been introduced in the past 2 decades for the treatment of metastatic GC, including combinations of chemotherapeutic agents,99-100 targeted therapies such as trastuzumab101 or ramucirumab,102,103 and immune checkpoint inhibitors,104,105 leading to a clinically meaningful improvement in survival.25 Yet, there are several challenges in the use of systemic chemotherapy in the treatment of patients with GCPM. The presence of the plasma-peritoneal barrier and the poor blood supply of PM limit the tissue penetration and therapeutic effect of systemic agents.106,107 Patients with GCPM may also develop complications such as intestinal obstruction and, in turn, poor nutrition and performance status, which may preclude them from systemic treatment.108 Furthermore, because radiologic studies such as CT scans cannot consistently and accurately identify low-volume PM, objective assessment of treatment response remains a challenge.109,110

Within the limited number of randomized controlled trials that performed subset analysis of survival on the basis of the presence or absence of PM, patients with GCPM that received systemic therapy such as cisplatin plus S-1 (first line; SPIRIT99), ramucirumab monotherapy (second line; REGARD102), paclitaxel plus ramucirumab (second line; RAINBOW103), TAS-102 (trifluridine/tipiracil) (third line; TAGS111), and nivolumab monotherapy (second line; ATTRACTION-2112), similar to patients with metastatic GC without PM. However, the magnitude of benefit is lower in patients with PM in many of these studies compared with those without PM, confirming that PM is a negative prognostic marker among patients with inoperable metastatic GC.102,103,111,112 Furthermore, two large-scale cohort studies found that the prognosis of GC patients with synchronous and metachronous GCPM has not improved significantly over time, despite an increasing proportion of patients who received systemic therapy in the past 2 decades.2,25 These results suggest that solely using systemic therapy may inadequately treat patients with GCPM. These also highlight the need for better detection, risk stratification, and therapeutic strategies in patients with GC. In particular, patients with early-stage disease, treated with curative intent, may benefit from earlier identification of those at risk for peritoneal recurrence and interventions to prevent or at least delay the development of metachronous GCPM.

INTRAPERITONEAL THERAPEUTIC STRATEGIES FOR GCPM AND THEIR ROLE IN THE PREVENTION AND TREATMENT OF GCPM

Given the dismal prognosis of GCPM, novel peritoneal-directed strategies for the prophylaxis of metachronous GCPM and treatment of synchronous GCPM are areas of active research and clinical trials. Various modalities, in conjunction with surgery and systemic therapy, have been developed with ongoing evaluation to determine their role in the management of patients with GCPM (Fig. 4). These strategies have been used as prophylactic strategies to prevent GCPM recurrence or conversion strategies to allow surgical resection of primary tumor and GCPM or incorporated into palliative/disease control approaches with systemic therapy.

Extensive Intraoperative Peritoneal Lavage: Primary Prevention

Since free intraperitoneal cancer cells exfoliate from the primary gastric tumor and result in PM formation, the hypothesis that repeated intraoperative peritoneal lavages (extensive intraoperative peritoneal lavage [EIPL]) with saline solution during primary resection might reduce GCPM was formulated. Three randomized controlled trials failed to demonstrate significant improvement in both overall survival (OS) and peritoneal recurrence-free survival.113-115 Furthermore, patients in the EIPL arm of the EXPEN trial experienced a higher risk of adverse events compared with the standard surgery group.114 Currently, there is no established role for the use of EIPL as a prophylactic strategy in the prevention of metachronous GCPM.

HIPEC: Primary Prevention and/or Conversion to Resectable Disease

Pre-emptive, intraoperative HIPEC (most commonly with oxaliplatin, mitomycin, or cisplatin as single agent or in combination with other drugs) may eliminate progression of peritoneal implantation after curative surgery and reduce metachronous PM recurrence. A meta-analysis evaluating the role of HIPEC in addition to gastrectomy in patients with advanced GC without PM showed a significant reduction in rates of PM recurrence (risk ratio = 0.63) compared with gastrectomy alone. However, HIPEC was associated with significantly higher risk of postoperative complications, in particular, renal dysfunction.116 The ongoing multicenter phase III GASTRICHIP randomized trial (ClinicalTrials.gov identifier: NCT01882933) aims to develop definitive evidence evaluating the role of adjuvant HIPEC with oxaliplatin in patients with locally advanced GC without gross PM undergoing curative gastrectomy.117

HIPEC in addition to cytoreductive surgery (CRS) remains contentious as a treatment strategy for synchronous GCPM. The CYTO-CHIP study, an observational cohort study, demonstrated that patients with GCPM who underwent complete CRS with curative intent with HIPEC (using various agents including oxaliplatin, mitomycin, and cisplatin) had significantly longer survival compared with patients who underwent CRS alone, with similar morbidity rates across both groups.118 In particular, patients with only microscopic PM or positive peritoneal cytology (ie, PCI score 0) who underwent CRS plus HIPEC had a longer median OS than those who underwent CRS alone although the difference was not statistically significant. In a follow-up study, poorly cohesive carcinoma (including SRC histology)
was shown to be associated with poorer prognosis. CRS plus HIPEC conferred a longer median OS in this group of patients, compared with CRS alone. The GASTRIPEC trial (ClinicalTrials.gov identifier: NCT02158988), which compared CRS plus HIPEC (with mitomycin C and cisplatin) with CRS alone with pre- and postoperative systemic chemotherapy, reported no significant difference in OS nor treatment-related adverse events. Subgroup analysis demonstrated a significant improvement in OS in patients in whom complete cytoreduction (CC) was achieved in the HIPEC arm. In addition, progression-free survival was significantly longer in the HIPEC arm compared with that in the non-HIPEC arm (7.1 months vs 3.5 months, \(P = .0472 \)). Importantly, this trial was closed early because of poor patient recruitment and is underpowered for OS. On the other hand, a meta-analysis demonstrated that CRS plus HIPEC, although superior to control, was not superior to systemic chemotherapy alone. Furthermore, HIPEC was associated with a significantly higher risk of postoperative complications including respiratory failure and renal dysfunction. The benefits of CRS plus HIPEC need to be balanced against the risks; patients with low-volume PM (by PCI score) and possibility for CC are most likely to benefit from CRS plus HIPEC.

Catheter-Based Intraperitoneal Chemotherapy

The implantation of a peritoneal port is considerably less invasive than HIPEC, allows for repeated IP administration of chemotherapy, and leads to high concentrations of chemotherapeutic drugs in the peritoneal cavity, allowing prolonged direct exposure of free cancer cells or peritoneal deposits. Therefore, catheter-based intraperitoneal chemotherapy (IPC; most commonly with taxane-based drugs) plus systemic chemotherapy presents a theoretical advantage over HIPEC plus systemic chemotherapy.

Early postoperative intraperitoneal chemotherapy: Primary prophylaxis. There are little data on the use of adjuvant early postoperative intraperitoneal chemotherapy (EPIC) after curative gastrectomy in patients at high risk of PM recurrence. A randomized study of EPIC (using mitomycin C and fluorouracil), immediately postgastrectomy, compared with surgery alone, demonstrated a clinically meaningful
reduction in the rate of PM recurrence.126 However, there was a significantly higher incidence of postoperative complications in the EPIC group, including intra-abdominal bleeding and sepsis. By contrast, the more recent INFACT trial comparing adjuvant IP paclitaxel versus intravenous paclitaxel demonstrated that postgastrectomy, IP paclitaxel did not confer any survival or PM-recurrence benefit over the intravenous group.127 In view of these findings, the role of EPIC in the prevention of PM recurrence remains uncertain. The ongoing Japanese multicenter, randomized phase III PHOENIX-GC trial (JPRN-jRCT2031200087) aims to evaluate the role of IPC, in addition to gastrectomy and systemic chemotherapy, in patients with diffuse GC without distant metastasis or macroscopic PM.128

Combination of systemic and intraperitoneal chemotherapy: Conversion to resectable disease; palliative disease control.

Several phase II trials evaluating systemic and intraperitoneal chemotherapy (SIPC) in patients with GCPM using IP taxanes demonstrated high rates of conversion to negative peritoneal cytology (71%-86%) and 1-year survival rates of more than 70%.129,130 Although primary analysis of the phase III RCT (PHOENIX-GC) comparing S-1/systemic paclitaxel/IPC paclitaxel versus S-1/systemic cisplatin reported no statistical advantage of the IP paclitaxel group (IP \(\text{v} \) non-IP group, median OS 18 \(\text{v} \) 15 months, \(P = .080 \)), exploratory analysis adjusting for an imbalance in ascites between the two groups demonstrated an adjusted hazard ratio of 0.59, suggesting possible efficacy of the IP regimen.129 Other groups have reported successful downstaging of PM (disappearance of macroscopic GCPM and conversion to negative peritoneal cytology) after combined SIPC, allowing for conversion gastrectomy in those without extra-peritoneal unresectable metastases and leading to a median OS ranging between 21.6 and 34.6 months.130-132 These data suggest a role for combined SIPC and subsequent conversion gastrectomy in the treatment of GCPM in selected patients.

PIPAC: Palliative Disease Control

PIPAC is a novel method of intraperitoneal chemotherapy administration.133 During PIPAC, aerosolized chemotherapy is directly administered to the peritoneum through a catheter-based IPC and/or via a laparoscope. Various studies have shown that PIPAC (most commonly using cisplatin, doxorubicin, or oxaliplatin) in combination with systemic chemotherapy is safe and feasible in GCPM and has shown promise in improving outcomes.134-137 Within the limited existing literature, studies on PIPAC are mostly limited to palliative treatment for patients with PM.138 The role of PIPAC in the treatment of GCPM requires further evaluation and should only be performed within the framework of clinical trials. Numerous trials are underway in Europe, Singapore, and the International PIPAC Registry, which will provide more conclusive evidence on the role of PIPAC in GCPM.134,139,140

Geographical Differences in Treatment Strategies of GCPM

Major guidelines around the world consider synchronous GCPM to be metastatic disease and recommend palliative systemic chemotherapy (Fig 1).10,20,141,142 Although there are differences in the management of GCPM across the world, whether this is necessary because of geographical or ethnic variations in GC biology remains an area of controversy.143 In patients who have incidentally discovered GCPM during index surgery, the Korea Gastric Cancer Association guidelines recommend considering radical gastrectomy (gastrectomy with D2 lymphadenectomy) and limited CRS if CC can be achieved.144 If systemic chemotherapy leads to complete resolution of PM, conversion gastrectomy is recommended by guidelines from the National Health Commission of the People’s Republic of China and the Korea Gastric Cancer Association.11,144 Although catheter-based IPC is administered in combination with systemic chemotherapy by several academic groups in Japan, Singapore, and Korea, it remains experimental.129,131,145,146 In patients with good response to this treatment and minimal residual GCPM, conversion gastrectomy is considered. In specialized centers in the United States, GCPM patients with good response to systemic chemotherapy and low PCI proceed with laparoscopic HIPEC.141 Those with good response to systemic chemotherapy and laparoscopic HIPEC, with a low PCI score, are considered for radical surgery with CRS. By contrast, patients with good response to systemic chemotherapy with low PCI scores are subsequently offered CRS and HIPEC in specialized centers in Europe.20 Of note, European and US guidelines do not require complete resolution of GCPM and see a benefit in limited CRS if CC can be achieved. There is no consensus on the role of intraperitoneal chemotherapy after curative surgery (either conversion surgery or radical gastrectomy with CRS). A number of groups from Asia continue catheter-based IPC in the postoperative period.129,131,145,146

DISCUSSION

In conclusion, we describe GCPM as a distinct clinical entity with significant mortality and morbidity and an area of unmet clinical need. Despite earlier diagnosis of GCPM and the introduction of new systemic treatment agents, outcomes remain poor. Novel modalities of peritoneal-directed therapies are being extensively evaluated and are gradually being adopted in various countries. Concurrently, in addition to conventional clinicohistopathologic risk factors, molecular profiling of GCPM has uncovered subtypes with varying molecular biologies and disease behaviors. Importantly, several novel therapeutic targets specific to GCPM have been identified. These advances will pave the way for the integration of molecular information into prognostication, follow-up, and treatment strategies of GCPM. It is likely that future studies will consider incorporation of...
peritoneal-directed treatment with systemic therapy. One example is the PIANO study (ClinicalTrials.gov identifier: NCT03172416), which is evaluating the role of PIPAC-delivered oxaliplatin, in combination with systemic nivolumab in patients with GCPM. In principle, immunogenic cell death induced by PIPAC with oxaliplatin in a conventionally immune-cold cancer niche may render lesions hot, thereby inducing a response to systemic immune checkpoint inhibition. It is fathomable that in the future, more sophisticated intratumoral agents (such as STING agonists) may also be delivered intraperitoneally through either PIPAC or other methods, opening the door to several other combination treatment strategies that are currently being pursued in other tumor types such as melanoma. These integrated combination strategies are the most plausible way through which patients with this dreadful illness may finally have better therapeutic options.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209-249, 2021
2. Koemans WJ, Lurvink RJ, Grootscholten C, et al: Synchronous peritoneal metastases of gastric cancer origin: Incidence, treatment and survival of a nationwide Dutch cohort. Gastric Cancer 24:800-809, 2021
3. Tan HL, Chia CS, Tan GH, et al: Gastric peritoneal carcinomatosis—A retrospective review. World J Gastrointest Oncol 9:121-128, 2017
4. Allen CJ, Blumenthaler AN, Das P, et al: Staging laparoscopy and peritoneal cytology in patients with early stage gastric adenocarcinoma. World J Surg Oncol 18:39, 2020
5. Eisenhauer EA, Therasse P, Bogaerts J, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45: 228-247, 2009
6. Sugarbaker PH, Van der Speeten K, Stuart OA: Pharmacologic rationale for treatments of peritoneal surface malignancy from colorectal cancer. World J Gastrointest Oncol 2:19-30, 2010

CORRESPONDING AUTHOR
Raghav Sundar, MBBS, MMed, PhD, Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, 1E Kent Ridge Rd, Singapore 119228; Twitter: @sundar__raghav; e-mail: mdcragh@nus.edu.sg.

EQUAL CONTRIBUTION
C.-A.J.O. and R.S. contributed equally to this work.

SUPPORT
R.S. was supported by the National Medical Research Council (NMRC; NMRC/Fellowship/0059/2018, NMRC/MOH/000627). C.-A.J.O. was supported by the National Research Council Transition Award (NMRC/TA/006/2017). P.T. was supported by Duke-NUS Medical School and the Biomedical Research Council, Agency for Science, Technology and Research. As part of the Singapore Gastric Cancer Consortium, the study was also partially funded by the National Medical Research Council Open Fund-Large Collaborative Grant (OFLGC18May-0023).

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.02745.

AUTHOR CONTRIBUTIONS
Conception and design: Yong Xiang Gwee, Daryl Kai Ann Chia, Jimmy So, Wim Ceelen, Wei Peng Yong, Chin-Ann Johnny Ong, Raghav Sundar
Collection and assembly of data: Yong Xiang Gwee, Daryl Kai Ann Chia, Raghav Sundar
Data analysis and interpretation: Yong Xiang Gwee, Daryl Kai Ann Chia, Wim Ceelen, Wei Peng Yong, Patrick Tan, Chin-Ann Johnny Ong, Raghav Sundar
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AFFILIATIONS
1Department of Haematology-Oncology, National University Cancer Institute, Singapore
2University Surgical Cluster, National University Health System, Singapore
3Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
4Yong Loo Lin School of Medicine, National University of Singapore, Singapore
5Singapore Gastric Cancer Consortium, Singapore
6Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
7Cancer Science Institute of Singapore, National University of Singapore, Singapore
8Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
9Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
10SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
11Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
12Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), National Cancer Centre Singapore, Singapore
13Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Singapore General Hospital, Singapore
14Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
15SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
16SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore
17Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
18The N.1 Institute for Health, National University of Singapore, Singapore

Integration of Genomic Biology Into Therapeutic Strategies of GC

SUN G, FERLAY J, SIEGEL RL, ET AL: GLOBAL CANCER STATISTICS 2020: GLOBOCAN ESTIMATES OF INCIDENCE AND MORTALITY WORLDWIDE FOR 36CANCERS IN 185 COUNTRIES. CA CANCER J CLIN 71:209-249, 2021
KOEMANS WJ, LURVINK RJ, GROOTSCHOLTEN C, ET AL: SYNCHRONOUS PERITONEAL METASTASES OF GaSTRIC CANCER ORIGIN: INCIDENCE, TREATMENT AND SURVIVAL OF A NATIONWIDE DUTCH COHORT. GASTRIC CANCER 24:800-809, 2021
TAN HL, CHIA CS, TAN GH, ET AL: GaSTRIC PERITONEAL CARCINOMATOSIS—A RETROSPECTIVE REVIEW. WORLD J GASTROINTEST ONCOL 9:121-128, 2017
ALLEN CJ, BLUMENTHALER AN, DAS P, ET AL: STAGING LAPAROSCOPY AND PERITONEAL CYTOMETRY IN PATIENTS WITH EARLY STAGE GaSTRIC ADENOCARCINOMA. WORLD J SURG ONCOL 18:39, 2020
EISENHAEUER EA, THERASSE P, BOGAERTS J, ET AL: NEW RESPONSE EVALUATION CRITERIA IN SOLID TUMOURS: REVISED RECIST GUIDELINE (VERSION 1.1). EUR J CANCER 45: 228-247, 2009
SUGARBAKER PH, VAN DER SPEETEN K, STUART OA: PHARMACOLOGIC RATIONALE FOR TREATMENTS OF PERITONEAL SURFACE MALIGNANCY FROM COLORECTAL CANCER. WORLD J GASTROINTEST ONCOL 2:19-30, 2010
7. Wang R, Song S, Harada K, et al: Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69:18-31, 2020
8. Sangiieky SL, Minner TJ: Malignant ascites: A review of prognostic factors, pathophysiology and therapeutic measures. World J Gastrointest Surg 4:87-95, 2012
9. National Comprehensive Cancer Network: Gastric cancer (version 5.2021), 2021. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf
10. Smyth EC, Verheij M, Allum W, et al: Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v38-v49, 2016
11. National Health Commission of the People’s Republic of China: Chinese guidelines for diagnosis and treatment of gastric cancer 2018 (English version). Chin J Cancer Res 31:707-737, 2019
12. Yajima K, Kanda T, Ohashi M, et al: Clinical and diagnostic significance of preoperative computed tomography findings of ascites in patients with advanced gastric cancer. Am J Surg 192:185-190, 2006
13. Kim SJ, Kim HH, Kim YH, et al: Peritoneal metastasis: Detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology 253:407-415, 2009
14. De Vuystere S, Vandecasteeve Y, De Bruecker Y, et al: Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: A pilot study. BMC Med Imaging 21:18, 2021
15. Kristamohan A, Thrower A, Smith SA, et al: “PAUSE”: A method for communicating radiological extent of peritoneal malignancy. Clin Radiol 72:972-980, 2017
16. Dong D, Tang L, Li ZY, et al: Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol 30:439-438, 2019
17. Kwee RM, Kwee TC: Modern imaging techniques for preoperative detection of distant metastases in gastric cancer. World J Gastroenterol 21:10502-10509, 2015
18. Gertsen EC, Brenkman HJF, van Hillegersberg R, et al: 18F-Fluorodeoxyglucose–positron emission tomography/computed tomography and laparoscopy for staging of locally advanced gastric cancer: A multicenter prospective Dutch cohort study (PLASTIC). JAMA Surg 156:e215340, 2021
19. Japanese Gastric Cancer Association: Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 24:1-21, 2021
20. Voron T, Roman B, Bergert D, et al: Surgical management of gastric adenocarcinoma. Official expert recommendations delivered under the aegis of the French Association of Surgery (AFO). J Vis Surg 17:117-126, 2020
21. Ramos RF, Scalon FM, Scalon MM, et al: Staging laparoscopy in gastric cancer to detect peritoneal metastases: A systematic review and meta-analysis. Eur J Surg Oncol 42:1315-1321, 2016
22. Gutschel S, Siegel R, Estevez-Schwarz L, et al: Surgical strategies for gastric cancer with synchronous peritoneal carcinomatosis. Br J Surg 93:1530-1535, 2006
23. Fanelli MF, Silva MJ, de Paiva TF Jr, et al: Factors correlated with peritoneal carcinomatosis and survival in patients with gastric cancer treated at a single institution in Brazil. Int J Clin Oncol 14:326-331, 2009
24. Thomassen I, van Gestel YR, van Ramshorst B, et al: Peritoneal carcinomatosis of gastric origin: A population-based study on incidence, survival and risk factors. Int J Cancer 134:622-624, 2018
25. Seyfried F, von Rahden BH, Mitas AD, et al: Incidence, time course and independent risk factors for metachronous peritoneal carcinomatosis of gastric origin—A longitudinal experience from a prospectively collected database of 1108 patients. BMC Cancer 15:73, 2015
26. Kato H, Ishikawa T, Akazawa K, et al: Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer 21:144-154, 2018
27. Honore C, Gozzi O, Messager M, et al: Risk factors of peritoneal recurrence in eso-gastric signet ring cell adenocarcinoma: Results of a multicentre retrospective study. Eur J Surg Oncol 39:236-241, 2013
28. Lee JH, Son SY, Lee CM, et al: Factors predicting peritoneal recurrence in advanced gastric cancer: Implication for adjuvant intraperitoneal chemotherapy. Gastric Cancer 17:529-536, 2014
29. Spolverato G, Eiaz A, Kim Y, et al: Rates and patterns of recurrence after curative intent resection for gastric cancer: A United States multi-institutional analysis. J Am Coll Surg 219:664-675, 2014
30. Iokura N, Chen HC, Wang X, et al: Patterns of initial recurrence in gastric adenocarcinoma in the era of preoperative therapy. Ann Surg Oncol 24:2679-2687, 2017
31. Mizrak Kaya D, Nogueras-Gonzalez GM, Harada K, et al: Risk of peritoneal metastases in patients who had negative peritoneal staging and received therapy for localized gastric adenocarcinoma. J Surg Oncol 117:678-684, 2018
32. Sasaki M, Sano T, Yarnamoto S, et al: D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med 359:453-462, 2008
33. Dang J, Liang H, Wang D, et al: Investigation of the recurrence patterns of gastric cancer following a curative resection. Surg Today 41:210-215, 2011
34. Baron MA: Structure of the intestinal peritoneum in man. Am J Anat 69:439-497, 1941
35. Cortés-Guiral D, Hübner M, Alyami M, et al: Primary and metastatic peritoneal surface malignancies. Nat Rev Dis Primers 7:91, 2021
36. Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420-1428, 2009
37. Cristescu R, Lee J, Nebozhyn M, et al: Molecular analysis of gastric cancer identifies DDR2 as a potential regulator of peritoneal dissemination. Sci Rep 6:22371, 2016
38. Dong X, Song S, Li Y, et al: Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma-rationale for targeting ARID1A deficiency. Gut 71:467-478, 2022
39. Xu R-H, Wang Z-Q, Shen L, et al: S-1 plus oxaliplatin versus S-1 plus cisplatin as first-line treatment for advanced diffuse-type or mixed-type gastric/ gastroesophageal junction adenocarcinoma: A randomized, phase 3 trial. J Clin Oncol 37, 2019 (abstr 4017)
40. Perrot-Applanat M, Vacher S, Pimpie C, et al: Differential gene expression in growth factors, epithelial mesenchymal transition and chemotaxis in the diffuse type compared with the intestinal type of gastric cancer. Oncol Lett 18:674-686, 2019
41. Yonemura Y, Nijima N, Kaji M, et al: E-cadherin and unokinase-type plasminogen activator tissue status in gastric carcinoma. Cancer 76:941-953, 1995
42. Kurashige J, Hasegawa T, Niida A, et al: Integrated molecular profiling of human gastric cancer identifies DDR2 as a potential regulator of peritoneal dissemination. Sci Rep 6:22371, 2016
43. Kaelzcl CS, Robinson JK, Chintalacharuvu KR, et al: The polymorphic immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: A local defense function for IgA. Proc Natl Acad Sci USA 88:8796-8801, 1991
44. Dong X, Song S, Li Y, et al: Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma-rationale for targeting ARID1A deficiency. Gut 71:467-478, 2022
45. Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202-209, 2014
46. Sasaki M, Sano T, Yarnamoto S, et al: D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med 359:453-462, 2008
47. Dang J, Liang H, Wang D, et al: Investigation of the recurrence patterns of gastric cancer following a curative resection. Surg Today 41:210-215, 2011
48. Baron MA: Structure of the intestinal peritoneum in man. Am J Anat 69:439-497, 1941
49. Cortés-Guiral D, Hübner M, Alyami M, et al: Primary and metastatic peritoneal surface malignancies. Nat Rev Dis Primers 7:91, 2021
50. Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420-1428, 2009
51. Cristescu R, Lee J, Nebozhyn M, et al: Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21:449-456, 2015
52. Tanaka Y, Chiwaki F, Kojima S, et al: Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat Cancer 2:962-977, 2021
53. Xu R-H, Wang Z-Q, Shen L, et al: S-1 plus oxaliplatin versus S-1 plus cisplatin as first-line treatment for advanced diffuse-type or mixed-type gastric/gastroesophageal junction adenocarcinoma: A randomized, phase 3 trial. J Clin Oncol 37, 2019 (abstr 4017).
118. Bonnot PE, Piessen G, Kepenekian V, et al: Cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal...
117. Glehen O, Passot G, Villeneuve L, et al: GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: A...
115. Guo J, Xu A, Sun X, et al: Three-year outcomes of the randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol 29:4378-4393, 2011
114. Noh SH, Park SR, Yang HK, et al: Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 15:1389-1396, 2014
113. Al-Batran SE, Homann N, Pauligk C, et al: Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 393:1948-1957, 2019
112. Kakemi Y, Yoshida K, Kodera Y, et al: Three-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 plus docetaxel versus S-1 alone in stage III gastric cancer. JACCRO GC-07. Gastric Cancer 25:186-196, 2022
111. Shiozaki H, Elimova E, Slack RS, et al: Prognosis of gastric adenocarcinoma patients with various burdens of peritoneal metastases. J Surg Oncol 113:29-35, 2016
110. Japanese Gastric Cancer Association: Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer 14:101-112, 2011
109. Jacquet P, Sugarbaker PH: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res 82: 359-374, 1996
108. Jacquet P, Sugarbaker PH: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis: Cancer Treat Res 34:555-562, 2010
107. Lee SD, Ryu KW, Eom BW, et al: Prognostic significance of peritoneal washing cytology in patients with gastric cancer. Br J Surg 99:397-403, 2012
106. Cunningham D, Starling N, Rao S, et al: Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358:36-46, 2008
105. Koizumi W, Narahara H, Hara T, et al: S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): A phase III trial. Lancet Oncol 9:215-221, 2008
104. Janjigian YY, Shitara K, Moehler M, et al: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 398:27-40, 2021
103. Fuchs CS, Tomasek J, Yong CJ, et al: Locoregional treatment of peritoneal carcinomatosis from gastric cancer. J Surg Oncol 98:273-276, 2008
102. Cunningham D, Starling N, Rao S, et al: Gastric cancer: 3rd English edition. Gastric Cancer 14:101-112, 2011
101. Bang YJ, Van Cutsem E, Feyereislova A, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 376:687-697, 2010
100. Lee SD, Ryu KW, Eom BW, et al: Prognostic significance of peritoneal washing cytology in patients with gastric cancer. Br J Surg 99:397-403, 2012
99. S-1 plus cisplatin versus S-1 alone in stage III gastric cancer. JACCRO GC-07. Gastric Cancer 25:186-196, 2022
98. Cunningham D, Allum WH, Stenning SP, et al: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11-20, 2006
97. Lee SD, Ryu KW, Eom BW, et al: Prognostic significance of peritoneal washing cytology in patients with gastric cancer. Br J Surg 99:397-403, 2012
96. Sugiyama H, Gotohda N, Konishi M, et al: Predictive factors improving survival after gastrectomy in gastric cancer patients with peritoneal carcinomatosis. World J Surg 34:555-562, 2010
95. Janjigian YY, Shitara K, Moehler M, et al: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 398:27-40, 2021
94. Japanese Gastric Cancer Association: Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer 14:101-112, 2011
93. Cunningham D, Starling N, Rao S, et al: Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358:36-46, 2008
92. Cunningham D, Starling N, Rao S, et al: Gastric cancer: 3rd English edition. Gastric Cancer 14:101-112, 2011
91. Cunningham D, Allum WH, Stenning SP, et al: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11-20, 2006
90. Noh SH, Park SR, Yang HK, et al: Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 15:1389-1396, 2014
89. Sugiyama H, Gotohda N, Konishi M, et al: Predictive factors improving survival after gastrectomy in gastric cancer patients with peritoneal carcinomatosis. World J Surg 34:555-562, 2010
88. Cunningham D, Allum WH, Stenning SP, et al: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11-20, 2006

122. Yang XJ, Huang CQ, Suo T, et al: Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: Final results of a phase III randomized clinical trial. Ann Surg Oncol 18:1575-1581, 2011
123. Kobayashi D, Kodera Y: Intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis. Gastric Cancer 20:111-121, 2017
124. Kono K, Yong WP, Okajama H, et al: Intraperitoneal chemotherapy for gastric cancer with peritoneal disease: Experience from Singapore and Japan. Gastric Cancer 20:122-127, 2017
125. Kitayama J, Ishigami H, Yamaguchi H, et al: Treatment of patients with peritoneal metastases from gastric cancer. Ann Gastroenterol Surg 2:116-123, 2018
126. Yu W, Whang I, Chung HY, et al: Indications for early postoperative intraperitoneal chemotherapy of advanced gastric cancer: Results of a prospective randomized trial. World J Surg 25:985-990, 2001
127. Takahashi N, Kanda M, Yoshikawa T, et al: A randomized phase II multicenter trial to explore efficacy of weekly intraperitoneal in comparison with intravenous paclitaxel administered immediately after gastrectomy to the patients with high risk of peritoneal recurrence: Final results of the INPACT trial. Gastric Cancer 21:1014-1023, 2018
128. Ishigami H, Tsuji Y, Shinhara H, et al: Intraperitoneal chemotherapy as adjuvant or perioperative chemotherapy for patients with type 4 scirrhous gastric cancer: PHOENIX-GC2 trial. J Clin Med 10:5666, 2021
129. Ishigami H, Fujisawa Y, Fukushima R, et al: Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastases: PHOENIX-GC trial. J Clin Oncol 36:1922-1929, 2018
130. Kitayama J, Ishigami H, Yamaguchi H, et al: Salvage gastrectomy after intravenous and intraperitoneal paclitaxel (PTX) administration with oral S-1 for peritoneal dissemination of advanced gastric cancer with malignant ascites. Ann Surg Onc 21:539-546, 2014
131. Chan DT, Syn NL, Yap R, et al: Conversion surgery post-intraperitoneal paclitaxel and systemic chemotherapy for gastric cancer carcinomatosis peritonei. Are we ready? J Gastrointest Surg 21:425-433, 2017
132. Ishigami H, Yamaguchi H, Yamashita H, et al: Surgery after intraperitoneal and systemic chemotherapy for gastric cancer with peritoneal metastasis or positive peritoneal cytology findings. Gastric Cancer 20:128-134, 2017
133. Alyami M, Hubner M, Grass F, et al: Pressurised intraperitoneal aerosol chemotherapy: Rationale, evidence, and potential indications. Lancet Oncol 20: e368-e377, 2019
134. Garg PK, Jara M, Alberto M, et al: The role of pressurized intraPeritoneal aerosol chemotherapy in the management of gastric cancer: A systematic review. Pleura Peritoneum 4:20180127, 2019
135. Tan HL, Kim G, Charles CJ, et al: Safety, pharmacokinetcs and tissue penetration of PIPAC paclitaxel in a swine model. Eur J Surg Oncol 47:1124-1131, 2021
136. Kim G, Tan HL, Sundar R, et al: PIPAC-OX: A phase I study of oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy in patients with peritoneal metastases. Clin Cancer Res 27:1875-1881, 2021
137. Alyami M, Bonnot PE, Mercier F, et al: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for unresectable peritoneal metastasis from gastric cancer. Eur J Surg Oncol 47:123-127, 2021
138. Alberto M, Brandl A, Garg PK, et al: Pressurized intraperitoneal aerosol chemotherapy and its effect on gastric-cancer-derived peritoneal metastases: An overview. Clin Exp Metastasis 36:14, 2019
139. Oliver Goetze T, Al-Batran SE, Pabst U, et al: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) in combination with standard of care chemotherapy in primarily untreated chemo naive upper gi adenocarcinomas with peritoneal seeding—A phase III/III trial of the AIO/CAOGI/ACO. Pleura Peritoneum 3:20180113, 2018
140. Ewen C, Jovin I, Poccard M. PIPAC EstOx 01: Pressurized intraPeritoneal aerosol chemotherapy with cisplatin and doxorubicin (PIPAC C/D) in gastric peritoneal metastasis: A randomized and multicenter phase II study. Pleura Peritoneum 3:20180116, 2018
141. Chicago Consensus Working Group: The Chicago consensus on peritoneal surface malignancies: Management of gastric metastases. Ann Surg Oncol 27: 1768-1773, 2020
142. Muro K, Van Cutsem E, Narita Y, et al: Pan-Asian adapted ESMO clinical practice guidelines for the management of patients with metastatic gastric cancer: A JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann Oncol 30:19-33, 2019
143. Yeoh KG, Tan P: Mapping the genomic diaspora of gastric cancer. Nat Rev Cancer 22:71-84, 2022
144. Guideline Committee of the Korean Gastric Cancer Association (KGCA), Development Working Group and Review Panel: Korean practice guideline for gastric cancer 2018: An evidence-based, multi-disciplinary approach. J Gastric Cancer 19:1-48, 2019
145. Yonemura Y, Sako S, Wakama S, et al: History of peritoneal surface malignancy treatment in Japan. Indian J Surg Oncol 10:3-11, 2019
146. Kono K, Yong WP, Okajama H, et al: Intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis: PHOENIX-GC2 trial. J Clin Oncol 47:1124-1131, 2021
147. Yeoh KG, Tan P: Mapping the genomic diaspora of gastric cancer. Nat Rev Cancer 22:71-84, 2022
148. Meric-Bernstam F, Larkin J, Tabernero J, et al: Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 397:1010-1022, 2021
149. Abbasi SY, Taani HE, Saad A, et al: Advanced gastric cancer in Jordan from 2004 to 2008: A study of epidemiology and outcomes. Gastrointest Cancer Res 4: 122-127, 2011
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Integration of Genomic Biology Into Therapeutic Strategies of Gastric Cancer Peritoneal Metastasis

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/fwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Wei Peng Yong
Consulting or Advisory Role: AbbVie/Genentech, Amgen, Bristol Myers Squibb, Ipsen, Novartis, AstraZeneca
Speakers’ Bureau: Lilly, Sanofi/Aventis, Taiho Pharmaceutical, Eisai, Bayer, MSD Oncology
Travel, Accommodations, Expenses: Pfizer

Patrick Tan
Stock and Other Ownership Interests: Tempus Healthcare, Auristone Pte Ltd
Patents, Royalties, Other Intellectual Property: Patents related to cancer epigenetics

Raghav Sundar
Honoraria: MSD, Bristol Myers Squibb, Lilly, Roche, Taiho Pharmaceutical, AstraZeneca, AstraZeneca, DKSH
Consulting or Advisory Role: Bristol Myers Squibb, Eisai, Taiho Pharmaceutical, Bayer, Merck, Novartis, MSD
Research Funding: Paxman, MSD
Travel, Accommodations, Expenses: Roche, AstraZeneca, Taiho Pharmaceutical, Eisai

No other potential conflicts of interest were reported.
TABLE A1. Prevalence and Prognosis of Patients With Gastric Cancer With Peritoneal Metastases by Geographical Region

Author	Year	Country	Study Population	Rates of PM, %/No. of Patients	Survival of Patients With GCPM
Shiozaki et al	2016	United States	145 patients diagnosed with GCPM and treated at a single institution between 2000 and 2014	Not applicable	Median OS 15 months Patients with a lower burden of PM had longer OS
Fanelli et al	2009	Brazil	186 patients diagnosed with GC and treated at a single institution between January 1994 and December 2004	12.9/24	Not available
Gretschel et al	2006	Germany	660 patients diagnosed with GC and treated at a single institution between January 1992 and June 2004	16.7/110	Median disease-specific survival (according to first edition JGCA classification):
Seyfried et al	2015	Germany	1,108 patients diagnosed with GC and treated at a single institution between January 1986 and July 2013	14.7/158	With PM as the only metastatic site 4.6 months (95% CI, 4.0 to 5.2)
Thomassen et al	2014	the Netherlands (Southern)	5,220 patients diagnosed with GC in the Eindhoven Cancer Registry between 1995 and 2012	13.5/706	With PM + other sites of metastases 3.3 months (95% CI, 2.8 to 4.0)
Koemans et al	2021	the Netherlands	3,733 patients diagnosed with GC in the Netherlands Cancer Registry between 1999 and 2017	Range between 17.9% and 26.5% (from 2008 to 2017)	Median OS 3.6-4.4 months
Abbasi et al	2010	Jordan	162 patients with advanced, inoperable GC treated at a single institution between January 2004 and December 2008	42.6/69	Not available
Katai et al	2017	Japan	118,367 patients with GC who underwent gastric resection between 2001 and 2007 across 367 institutions in Japan	5.3/6,310	5-year OS 9.5% (95% CI, 8.7 to 10.3)
					5-year DSS 11.9% (10.9 to 12.9)
					By contrast, patients with no peritoneal involvement at the point of surgery had a 5-year
					OS of 74.6% (95% CI, 74.4 to 74.8) and a 5-year DSS of 82.9 (95% CI, 82.7 to 83.1)

(continued on following page)
Author	Year	Country	Study Population	Rates of PM, %/No. of Patients	Survival of Patients With GCPM
Tan et al	2017	Singapore	271 patients with GCPM diagnosed at initial metastatic presentation and treated at a single institution between January 2010 and December 2014	Not applicable	Median OS 8.7 months (95% CI, 7.1 to 10.1)
Spolverato et al	2014	United States	817 patients who underwent curative gastrectomy among 7 major academic institutions between 2000 and 2012	11.3/92 37.7% of all recurrence	Median peritoneal RFS 8.5 months
Spolverato et al	2014	United States	817 patients who underwent curative gastrectomy among 7 major academic institutions between 2000 and 2012	11.3/92 37.7% of all recurrence	Median survival after recurrence 2.7 months
Spolverato et al	2014	United States	817 patients who underwent curative gastrectomy among 7 major academic institutions between 2000 and 2012	11.3/92 37.7% of all recurrence	Worse compared with locoregional recurrence 9.1 months and hematogenous recurrence 4.8 months, \(P = .01 \)
Ikoma et al	2017	United States	488 patients who underwent curative resection in a single institution between January 1995 and December 2014	12.5/61 49% of all recurrence	Median peritoneal RFS 1.3 years (95% CI, 0.7 to 1.7)
Ikoma et al	2017	United States	488 patients who underwent curative resection in a single institution between January 1995 and December 2014	12.5/61 49% of all recurrence	Median OS after PM recurrence 0.6 years (95% CI, 0.4 to 0.9) versus locoregional recurrence 1 year (95% CI, 0.3 to 3.1) and distant nonperitoneal recurrence 0.8 years (95% CI, 0.5 to 1; \(P = .05 \))
Mizrak Kaya et al	2017	United States	164 patients who underwent curative resection in a single institution between January 2002 and December 2014	13.4/22 45.8% of all recurrence	Median peritoneal RFS 15.6 months (range 8.5-81.7 months)
Mizrak Kaya et al	2017	United States	164 patients who underwent curative resection in a single institution between January 2002 and December 2014	13.4/22 45.8% of all recurrence	Median OS 1.9 years significantly lower compared with those without PM (median 1.9 years vs 10.2 years, HR 7.26 [95% CI, 4.07 to 12.95]; \(P < .001 \))
Honoré et al	2013	France	424 patients with esogastric carcinoma who underwent curative resection across 19 surgical centers	19.1/81	Median peritoneal RFS 15.1 ± 8.5 months
Honoré et al	2013	France	424 patients with esogastric carcinoma who underwent curative resection across 19 surgical centers	19.1/81	Median OS 17.2 months
Honoré et al	2013	France	424 patients with esogastric carcinoma who underwent curative resection across 19 surgical centers	19.1/81	Significantly lower when compared with patients with locoregional recurrence (23.5 months, \(P = .015 \))
Seyfried et al	2015	Germany	1,108 patients diagnosed with GC and treated at a single institution between January 1986 and July 2013	16/64 44.3% of all recurrence	Median peritoneal RFS 17.7 (15.1 to 20.3) months
Seyfried et al	2015	Germany	1,108 patients diagnosed with GC and treated at a single institution between January 1986 and July 2013	16/64 44.3% of all recurrence	
Sasako et al	2008	Japan	523 patients who underwent curative resection (D2 lymphadenectomy alone or D2 lymphadenectomy plus para-aortic lymph node dissection) across 24 institutions between July 1995 and April 2001	15.7/82 38.1% of all recurrences	Not available

(continued on following page)
TABLE A1. Prevalence and Prognosis of Patients With Gastric Cancer With Peritoneal Metastases by Geographical Region (continued)

Author	Year	Country	Study Population	Rates of PM, %/No. of Patients	Survival of Patients With GCPM
Deng et al³³	2011	China	308 patients who underwent curative resection in a single institution between January 1997 and December 2000	31.8/98 58.0% of all recurrences	Median DFS 26 months Median survival after recurrence 6 months
Lee et al²⁸	2014	Korea	805 patients who underwent curative resection in a single institution between May 2003 and December 2009	17.9/144 58.8% of all recurrence	Median survival time after recurrence 9.4 months Significantly lower compared with patients with nonperitoneal recurrence (14.6 months)
Katai et al²⁶	2017	Japan	118,367 patients who underwent gastric resection between 2001 and 2007 across 367 institutions in Japan	6.56/7,769 44.3% of all recurrence	Not available

Abbreviations: DFS, disease-free survival; DSS, disease-specific survival; GCPM, gastric cancer peritoneal metastasis; HR, hazard ratio; JGCA, Japanese Gastric Cancer Association; OS, overall survival; RFS, recurrence-free survival.

TABLE A2. Comparison of Studies Investigating Gene Expression Profiles of GC and/or PM Samples

Author	Year	Sample Sequenced	Non-EMT	EMT	Potential Treatment Target(s) in the EMT Subtype
ACRG Cristescu et al³⁷	2015	Primary GC	MSI MSS/TP53 + MSS/TP53–	MSS/EMT subtype Develop PM more frequently and poorer prognosis compared with all other subtypes	Not applicable
Kurashige et al⁴²	2016	Primary GC	Patients with PM tended to show a more pronounced GDES. Patients with higher GDES also had poorer prognosis	DDR2	
Wang et al⁷	2019	PM E.a and E.b	M	Patients with the M subtype were shown to be less responsive to chemotherapy compared with patients with the E subtypes	TGF-ß1, immune checkpoint TIM-3 and its ligand galectin-9 and another immune checkpoint VISTA
Tanaka et al³⁸	2021	PM Non-EMT group	EMT group	Poorer prognosis compared with the non-EMT group	TEAD

NOTE. Findings across the various studies broadly dichotomize GC and GCPM into two groups: EMT and non-EMT, with the EMT subtype predisposed to PM, poorer prognosis, and poorer response to chemotherapy.

Abbreviations: ACRG, Asian Cancer Research Group; DDR2, discoidin domain receptor 2; E.a, epithelial-like, a; E.b, epithelial-like, b; EMT, epithelial-mesenchymal transition; GDES, gastric dissemination expression signature; GC, gastric cancer; M, mesenchymal-like; MSI, microsatellite instability; MSS, microsatellite stable; PM, peritoneal metastasis; TGF, transforming growth factor.