Optimization of Friction Stir Welded Aluminium Plates by the New Modified Particle Swarm Optimization

Rasha M Hussien and Mohsin Abdullah Al-Shammari

Department of Mechanical Engineering, College of Engineering, University of Baghdad, Iraq

E-mail: r.huain1003@coeng.uobaghdad.edu.iq

Abstract. Friction Stir Welding (FSW) is a complex process that needs and trial to reach the optimal properties. In this work deals theoretical consideration done by two ways; first way is conventional Particle Swarm Optimization (PSO) and the second method is new modified Particle Swarm Optimization. The Friction stir welding data were taken from recent studies. The input to the program are nine experiments for different cases and the output is the ultimate stress for each experiment. The artificial neural network is used to relate the relation between input and output to form a cost function. The results show that the modified PSO gives the more accurate optimum result than conventional PSO when compared with other researches with maximum discrepancy 23.5%.

Keywords. Friction stir welding, Particle swarm optimization, Modified PSO.

1. Introduction

There were many benefits of FSW as compared with other welding like the absence of porosity according to very high temperature of fusion welding that leads to more study on FSW parameters that lead to optimum mechanical properties [1]. Mohammad [2] investigated the mechanical (hardness and tensile) and weld microstructural properties of the FSW for AA7075-O to AA5083-O aluminum alloys. Tensile tests showed that the mechanical properties of the welded are higher than the parent metals. The Artificial Neural Network (ANN) model was implemented to develop the relation between the FSW parameters and the mechanical properties. Proposed the hybrid multi-objective evolutionary algorithms that consists of two steps: using MOPSO to generate of a Pareto set, then obtain the best solution by using TOPSIS. Nizar [3] full factorial design of experiment is studied, the experimental data is used as an input to ANN model that is used to relate the input–output parameters of FSW. These characteristics can be optimized using four algorithms: real-coded genetic algorithm GA, binary-coded genetic algorithm GA, particle swarm optimization PSO and differential evolution DE, are coupled with the built ANN models. The results are obtained from the above algorithms and compared to evaluate the best algorithm and it is PSO algorithm with less number of alterations. Murali [4] is built an empirical relation between FSW parameters (welding speed, tool rotation and tilt angle) with yield strength and tensile strength of one pass and multi pass friction stir welded aluminum 6082 butt joints. Taguchi method with particle swarm optimization technique was used for this analyzing with three -factors three level central composite design to determine the optimal conditions. Padmanaban [5] the mathematical model was built using response surface methodology to predict the strength of the AA2024 and AA7075 friction stir welded plates and were optimized using particle
swarm optimization algorithm to find maximum tensile strength. Murali [6] is proposed an integrated WPCA-ANN-PSO approach to perform Multi response Optimization MRO of FSW in a three stage process for two welded plates of AA2024-T4 aluminum. The factors that is considered were tool rotation speed (TRS), D/d ratio and weld speed (WS). The output considered were hardness and ultimate tensile strength (UTS) of the welded plates. Pallavi [7] has been work to characterize the grain structure of friction stir welded (AA 1100) as a function of the different parameters, like plunge depth (PD), rotation speed of the tool (TRS) and speed of welding (WS). PSO has been used to obtain the optimal parameters for maximum strength and ductility with suitable grain size. FSW and FSP are very useful processes; therefore they were studied experimentally and numerically, [8-11] by the authors in order to obtain the best results regarding to the parameters of the welding and processing of the joints. The numerical technique [12-18] is considered as a helpful technique to help the researchers in their work to obtain reliable results, [19-25], but the experimental, [26-32] studies are more reliable for that. Then, the numerical results calculated comparison by experimental, [33-39], or analytical technique, [40-46], to give the discrepancy for results evaluated, [47-53]. The objective of this work is to use new origin modification on PSO method and compared with conventional PSO to get the optimal parameters of welded aluminium plates from [4,6,54] that lead to maximum ultimate stress.

2. Conventional particle swarm optimization

Particle swarm optimization (PSO) is based on the behaviours of a swarm of birds. Each particle has its own intelligence to discover well path to food, remain of the swarm are able to find the good path even they are located far away in the swarm[55]. Each particle in a swarm has two characteristics: the position and the velocity. Each particle ambulates about the design space until the best position is discovered. The simulating model is randomly searched in the design space to find the maximum value of the objective function (target), [55]. The cost function is found by using artificial neural network (ANN) to simulate the relation between input and output. Artificial neural networks (ANN) is similar to physical cellular connect by their ability to store, acquire and use their knowledge to related to the network’s performance [56-60]. Three input that is introduced to the ANN and one output with six hidden layers that is the structure of the feed forward network. Normalized done on input and output to get best result by reduce the space of solution. The function that is used to train the hidden layers is called bipolar continuous activation function (tansig).

\[
f(\text{net}) = \frac{2}{1 - \exp(-\lambda \text{net})} - 1
\]

(1)

Where, \(\lambda > 0 \). For output layer is used unipolar continuous activation functions (logsig),

\[
f(\text{net}) = \frac{1}{1 - \exp(-\lambda \text{net})}
\]

(2)

The trained value from ANN is sent to PSO and modified PSO to complete the optimization and find the best input with maximum output. The structure of ANN is shown in figure 1.

![Figure 1. Structure of ANN.](image)
Velocity and position from Conventional PSO is shown below,

\[
V_{ij}^{k+1} = w \times V_{ij}^k + c_1 \times r_1 \times ((\text{Pbest}_{ij}^k - X_{ij}^k) + c_2 \times r_2 \times (\text{Gbest}_{ij}^k - X_{ij}^k)) \\
X_{ij}^{k+1} = X_{ij}^k + V_{ij}^{k+1}
\] (3) (4)

Where; \(\text{Gbest}_{ij}^k \) : global best position, \(\text{Pbest}_{ij}^k \) : local best position, and \(w \) is the inertia.

\[
w = w_{\text{max}} - k \times (w_{\text{max}} - w_{\text{min}}) / \text{MaxIteration}
\] (5)

Where; \(k \) : current alteration, \(\text{MaxIteration} \) : Maximum number of alteration and, \(w_{\text{max}}, w_{\text{min}} \) : maximum and minimum inertia.

But the inertia in conventional PSO program is taken as a constant its value with the other constant are set in the Table (1).

Table 1. Parameters of conventional PSO.
Parameter

No. of alteration
Inertia (w)
C1
C2
Swarm size

3. Modified PSO

The original point in this paper is the equation of inertia is modified to below equation,

\[
w = (w_{\text{max}} - \frac{(w_{\text{max}} - w_{\text{min}}) \times \text{iteration}}{\text{MaxIteration}}) \times \beta^{k+1}
\] (6)

Where,

\[
\beta^{k+1} = \mu \times \beta^k \times (1 - \beta^k)
\]

And all other parameters are constant and shown in Table 2. The flow chart of PSO is shown in Fig. 2.

Table 2. Parameters of modified PSO.
Parameter

No. of alteration
C1
C2
Swarm size
\(w_{\text{max}} \)
\(w_{\text{min}} \)
\(\mu \)
Initial beta
4. Result and discussion

In this paper three different verification are done ref. [4,6,54]. The results of programs shown in table (3). In [4] there are three parameters (inputs) to optimized (rotational speed, title angle and weld speed) with nine experimental tests that are done and each of them have three value. The input to ANN network are the three above parameters and the outputs is ultimate stress. The networks are trained to do the cost function that is used in PSO and modified PSO. The result for PSO is showed good convergence but is less that of modified PSO when is compared according to ultimate stress. The ultimate stress due to modified PSO is higher that the ultimate stress due mentioned in [4] by 8.6% and due to PSO is 5.9% this is due to the inertia is continuously varying in each alteration until the best swarm is specified (the alteration is finished), for information the ref. [4] is used PSO and Taguchi method to optimized, but the input to PSO program is done by using ANOVA method to specify the most influence parameters. Murali [6] is used Taguchi-Weighted Principal Component Analysis (WPCA) approach then Artificial Neural Network (ANN) to develop the relation of factors finally is used Particle Swarm Optimization (PSO). Eight experiment that used in this paper with three input parameters (tool dimension (D/d), welding speed and rotational speed) with two values for each parameters with two outputs (but in the used program in this research only one output ultimate stress). The study is showed that the experimental optimum at (D/d=3.08, w= 936.18 rpm and v= 17 mm/min) is (ultimate stress =108.105 MPa) but the exact maximum that can be seen from table that used for training the network is (85.5MPa). The present study is shown that ultimate stress is found in (w= 1500 rpm, v=20mm/min) with ultimate stress is 276 N/mm2. Some changes done on program to do this case by changing the input matrix to two column instead of three column and the number of parameters to two instead of three parameters. The present study is shown that ultimate stress by PSO
is (274.0154N/mm²) when (w=1002.1 rpm, v=59 mm/min) and for modified PSO, the ultimate stress is (293.497N/mm²) when (w=1600 rpm, v=20 mm/min), the optimum stress that is obtained from modified PSO is higher than the optimum stress that is obtained from paper by 6.3% and for conventional PSO is 7.11%.

Table 3. The results of programs

Ref. No	Rotational results	PSO	Modified PSO
[4]	Rotational speed= 809.685 (rpm)	Rotational speed= 704 (rpm)	Rotational speed= 703 (rpm)
	Title angle=3°	Title angle=1°	Title angle=3°
	Weld speed= 1.7142 (inch/min)	Weld speed= 1.993 (inch/min)	Weld speed= 1.02 (inch/min)
	Ultimate stress= 197.4239 N/mm²	Ultimate stress= 202 N/mm²	Ultimate stress= 214 N/mm²
[6]	Rotational speed= 936.18 rpm	Rotational speed=1171.5 rpm	Rotational speed=1000 (rpm)
	D/d=3.08,	D/d =3	D/d =3
	Weld speed= 17 (mm/min)	Weld speed= 17.2 (mm/min)	Weld speed= 17(mm/min)
	Ultimate stress= 108.105 N/mm²	Ultimate stress=85.5638 N/mm²	Ultimate stress=105.4051 N/mm²
[54]	Rotational speed= 1500(rpm)	Rotational speed=1002.1(rpm)	Rotational speed=1600 (rpm)
	Weld speed= 20 (mm/min)	Weld speed=59 (mm/min)	Weld speed= 20(mm/min)
	Ultimate stress= 276 N/mm²	Ultimate stress=274.015 N/mm²	Ultimate stress= 293.497N/mm²

5. Conclusion

The new modification method presented was successfully worked based upon the PSO method in changing the inertia in each alteration of solution. The results of the PSO and the modified PSO are compared well with the other researchers work applying different experimental results (different number of input and output), the results show good verifications with these researches. The maximum improvement of modified PSO is 23.3% in ref. [6] with three input parameters (tool dimension (D/d), welding speed and rotational speed) and one output (ultimate stress).

6. References

[1] Nilesh Kumar, Wei Yuan and Rajiv S Mishra 2015 *Friction Stir Welding of Dissimilar Alloys and Materials* (Elsevier)

[2] Mohammad Hasan Shojaeefard, Reza Abdi Behnaghi, Mostafa Akbari, Mohammad Kazem Besharati Givi and Foad Farhani 2013 *Modelling and Pareto Optimization of Mechanical Properties of Friction Stir Welded AA7075/AA5083 Butt Joints Using Neural Network and Particle Swarm Algorithm* (Materials and Design) vol 44 pp 190–198

[3] Nizar Faisal Alkayem, Biswajit Parida and Sukhomay Pal 2016 *Optimization of Friction Stir Welding Process Parameters Using Soft Computing* (Springer-Verlag Berlin Heidelberg, Soft Comput)

[4] D M Nikam, N V Paithankar, A S More, A B Bansode and P P Darade 2017 *Experimental Analysis to Optimize the Process Parameter of Friction Stir Welding of Aluminum Alloy* (International Research Journal of Engineering and Technology) vol 4 no 5

[5] R Padmanaban, R Vaira Vignesh, A P Povendhan and A P Balakumharen 2018 *Optimizing the Tensile Strength of Friction Stir Welded Dissimilar Aluminium Alloy Joints Using Particle Swarm Optimization* (Materials Today: Proceedings) vol 5 pp 24820–24826

[6] Murali Ambekar and Jayant Kittur 2019 *Multiresponse Optimization of Friction Stir Welding Process Parameters by an Integrated WPCA-ANN-PSO Approach* (Materials Today: Proceedings, First International Conference on Recent Advances in Materials and Manufacturing)

[7] N Pallavi Senapati and R K Bhoi 2020 *Grain Size Optimization Using PSO Technique for Maximum Tensile Strength of Friction Stir-Welded Joints of AA1100 Aluminium* (Arabian Journal for Science and Engineering, King Fahd University of Petroleum & Minerals)

[8] Muhsin J Jweeg, Kadhim K Resan, Esraa A Abbod and Muhammad Al-Waily 2018 *Dissimilar Aluminium Alloys Welding by Friction Stir Processing and Reverse Rotation Friction Stir*
Processing (IOP Conference Series: Materials Science and Engineering) vol 454, International Conference on Materials Engineering and Science

[9] Kadhim K Resan, Abbas A Alasadi, Muhammad Al-Waily and Muhsin J. Jweeg 2018 Influence of Temperature on Fatigue Life for Friction Stir Welding of Aluminum Alloy Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 2

[10] Worood Hussein and Mohsin Abdullah Al-Shammari 2018 Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy (IOP Conference Series: Materials Science and Engineering) vol 454, International Conference on Materials Engineering and Science

[11] Sadiq emad Sadiq, Sadeq Hussein Bakhy and Muhsin Jaber Jweeg 2020 Effects of Spot Welding Parameters on the Shear Characteristics of Aluminum Honeycomb Core Sandwich Panels in Aircraft Structure (Test Engineering and Management) vol 83 pp 7244-7255

[12] Muhsin J Jweeg 1983 Application of Finite Element Analysis to Rotating Fan Impellers (Doctoral Thesis, Aston University)

[13] Muhsin J Jweeg, Ali S Hammood and Muhammad Al-Waily 2012 A Suggested Analytical Solution of Isotropic Composite Plate with Crack Effect (International Journal of Mechanical & Mechatronics Engineering) vol 12 no 5

[14] Rasha Hayder Al-Khayat, Maher A R Sadiq Al-Baghdadi, Ragad Aziz Neama and Muhammad Al-Waily 2018 Optimization CFD Study of Erosion in 3D Elbow During Transportation of Crude Oil Contaminated with Sand Particles (International Journal of Engineering & Technology) Vol 7 no 3 pp 1420-1428

[15] Mahmud Rasheed Ismail, Zaman Abud Almalik Abud Ali and Muhammad Al-Waily 2018 Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 5

[16] Mohsin Abdullah Al-Shammari, Lutfi Y Zedan and Akram M Al-Shammari 2018 FE Simulation of Multi-Stage Cold Forming Process for Metal Shell of Spark Plug Manufacturing (1st International Scientific Conference of Engineering Sciences), 3rd Scientific Conference of Engineering Science

[17] H J Abbas, M J Jweeg, Muhammad Al-Waily and Abbas Ali Diwan 2019 Experimental Testing and Theoretical Prediction of Fiber Optical Cable for Fault Detection and Identification (Journal of Engineering and Applied Sciences) vol 14 no 2 pp 430-438

[18] Mohsin Abdullah Al-Shammari, Qasim H Bader, Muhammad Al-Waily and A M Hasson 2020 Fatigue Behavior of Steel Beam Coated with Nanoparticles under High Temperature (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 287-298

[19] Najdat A Mahmood, Muhsin J Jweeg and Mumtaz Y Rajab 1989 Investigation of Partially Pressurized Thick Cylindrical Shells (Modelling, Simulation & Control. B. AMSE Press) vol 25 no 3 pp 47-64

[20] Muhammad Al-Waily and Zaman Abud Almalik Abud Ali 2015 A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering) vol 15 no 4

[21] Saif M Abbas, Ayad M Takakh, Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES) (International Journal of Mechanical Engineering and Technology) vol 9 no 7 pp 560-569

[22] Muhsin J Jweeg, Muhammad Al-Waily, Ahmed K Muhammad and Kadhim K Resan 2018 Effects of Temperature on the Characterisation of a New Design for a Non-Articulated Prosthetic Foot (IOP Conference Series: Materials Science and Engineering) vol 433, 2nd International Conference on Engineering Sciences

[23] Muhammad Al-Waily, Emad Q Hussein and Nabras A Aziz Al-Roubaiee 2019 Numerical Modeling for Mechanical Characteristics Study of Different Materials Artificial Hip Joint with Inclination and Gait Cycle Angle Effect (Journal of Mechanical Engineering Research & Developments) vol 42 no 4 pp 79-93
[24] Hussein I Mansoor, Mohsin Al-Shammari and Amjad Al-Hamood 2020 *Theoretical Analysis of the Vibrations in Gas Turbine Rotor* (IOP Conference Series: Materials Science and Engineering) vol 671, 3rd International Conference on Engineering Sciences

[25] Esraa A Abbod, Muhammad Al-Waily, Ziadoon M R Al-Hadrayi, Kadhim K Resan and Saif M Abbas 2020 *Numerical and Experimental Analysis to Predict Life of Removable Partial Denture* (IOP Conference Series: Materials Science and Engineering) vol 870, 1st International Conference on Engineering and Advanced Technology, Egypt

[26] Muhsin J Jweeg, S Z Said 1995 *Effect of Rotational and Geometric Stiffness Matrices on Dynamic Stresses and Deformations of Rotating Blades* (Journal of the Institution of Engineers (India): Mechanical Engineering Division) vol 76 pp 29-38

[27] Muhammad Al-Waily, Alaa Abdulzahra Deli, Aziz Darweesh Al-Mawash and Zaman Abud Almalik Abud Ali 2017 *Effect of Natural Sisal Fiber Reinforcement on the Composite Plate Buckling Behavior* (International Journal of Mechanical and Mechatronics Engineering) vol 17 no 1

[28] Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 *Analytical Investigation of Buckling Behavior of Honeycombs Sandwich Combined Plate Structure* (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 4 pp 771-786

[29] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2018 *Analytical and Numerical Investigations for Dynamic Response of Composite Plates Under Various Dynamic Loading with the Influence of Carbon Multi-Wall Tube Nano Materials* (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 6 pp 1-10

[30] Muhsin J Jweeg, Abdulraeem Abdulrazzaq Ahumday and Ali Faik Mohammed Jawad 2019 *Dynamic Stresses and Deformations Investigation of the Below Knee Prosthesis using CT-Scan Modeling* (International Journal of Mechanical & Mechatronics Engineering) vol 19 no 1

[31] Ekhlas Edan Kader, Akram Mahdi Abed and Mohsin Abdullah Al-Shammari 2020 *Al2O3 Reinforcement Effect on Structural Properties of Epoxy Polysulfide Copolymer* (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 320-328

[32] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2020 *Fatigue Characterization of Laminated Composites used in Prosthetic Sockets Manufacturing* (Journal of Mechanical Engineering Research and Developments) vol 43 no 5 384-399

[33] Ghathi G Hameed, Muhsin J Jweeg and Ali Hussein 2009 *Springback and Side Wall Curl of Metal Sheet in Plain Strain Deep Drawing* (Research Journal of Applied Sciences) vol 4 no 5

[34] Muhammad Al-Waily, Maher A R Sadiq Al-Baghdadi and Rasha Hayden Al-Khayat 2017 *Flow Velocity and Crack Angle Effect on Vibration and Flow Characterization for Pipe Induce Vibration* (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 5

[35] Ragad Aziz Neama, Maher A R Sadiq Al-Baghdadi and Muhammad Al-Waily 2018 *Effect of Blank Holder Force and Punch Number on the Forming Behavior of Conventional Dies* (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 4

[36] Marwah Mohammed Abdulridha, Nasreen Dakel Fahad, Muhammad Al-Waily and Kadhim K Resan 2018 *Rubber Creep Behavior Investigation with Multi Wall Tube Carbon Nano Particle Material Effect* (International Journal of Mechanical Engineering and Technology) vol 9 no 12

[37] Yousuf Jamal Mahboba and Mohsin Abdullah Al-Shammari 2019 *Enhancing Wear Rate of High-Density Polyethylene (HDPE) by Adding Ceramic Particles to Propose an Option for Artificial Hip Joint Liner* (IOP Conference Series: Materials Science and Engineering) vol 561

[38] Marwah Ali Husain and Mohsin Abdullah Al-Shammari 2020 *Analytical Solution of Free Vibration Characteristics of Partially Circumferential Cracked Cylindrical Shell* (Journal of Mechanical Engineering Research and Developments) vol 43 no 3 pp 442-454

[39] Muhammad Al-Waily, Iman Q Al Saffar, Suhair G Hussein and Mohsin Abdullah Al-Shammari 2020 *Life Enhancement of Partial Removable Denture made by Biomaterials Reinforced by Graphene Nanoplates and Hydroxyapatite with the Aid of Artificial Neural Network* (Journal of Mechanical Engineering Research and Developments) vol 43 no 6 pp 269-285

[40] Ameer A Kadhim, Muhammad Al-Waily, Zaman Abud Almalik Abud Ali, Muhsin J Jweeg and Kadhim K. Resan 2018 *Improvement Fatigue Life and Strength of Isotropic Hyper Composite...*
Materials by Reinforcement with Different Powder Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 2
[41] Saif M Abbas, Kadhim K Resan, Ahmed K Muhammad and Muhammad Al-Waily 2018 Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various Composite Materials Types Effect (International Journal of Mechanical Engineering and Technology) vol 9 no 9 pp 383–394
[42] Muhsin J Jweeg, Zaid S Hammoudi and Bassam A Alwan 2018 Optimised Analysis, Design, and Fabrication of Trans-Tibial Prosthetic Sockets (IOP Conference Series: Materials Science and Engineering) vol 433, 2nd International Conference on Engineering Sciences
[43] Mohsin Abdullah Al-Shammari, Sahar Emad Abdullah 2018 Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures (IOP Conference Series: Materials Science and Engineering) vol 433, 2nd International Conference on Engineering Sciences
[44] Suhair Ghazi Hussein, Mohsin Abdullah Al-Shammari, Ayad M Takhakh and Muhammad Al-Waily 2020 Effect of Heat Treatment on Mechanical and Vibration Properties for 6061 and 2024 Aluminum Alloys (Journal of Mechanical Engineering Research and Developments) vol 43 no 1 pp 48-66
[45] Hussein I Mansoor, Mohsin Abdullah Al-shammari and Amjad Al-Hamood 2020 Experimental Analysis of Cracked Turbine Rotor Shaft using Vibration Measurements (Journal of Mechanical Engineering Research and Development) vol 43 no 2 pp 294-304
[46] Muhsin. J Jweeg, Salah N Alnomani and Salah K Mohammad 2020 Dynamic Analysis of A Rotating Stepped Shaft with and without Defects (IOP Conference Series: Materials Science and Engineering) vol 671, 3rd International Conference on Engineering Sciences
[47] Mohsin Abdullah Al-Shammari, Emad Q Hussein and Ameer Alaa Oleiwi 2017 Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 6
[48] Mahmud Rasheed Ismail, Muhammad Al-Waily and Ameer A Kadhim 2018 Biomechanical Analysis and Gait Assessment for Normal and Braced Legs (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 3
[49] Ahmed Khaleel Abdulameer and Mohsin Abdullah Al-Shammari 2018 Fatigue Analysis of Syme’s Prosthesis (International Review of Mechanical Engineering) vol 12 no 3
[50] Jumaa S Chiad, Muhammad Al-Waily and Mohsin Abdullah Al-Shammari 2018 Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders (International Journal of Mechanical Engineering and Technology) vol 9 no 9 pp 305–317
[51] Mohsin Abdullah Al-Shammari 2018 Experimental and FEA of the Crack Effects in a Vibrated Sandwich Plate (Journal of Engineering and Applied Sciences) vol 13 no 17
[52] Muhammad Al-Waily, Mohsin Abdullah Al-Shammari and Muhsin J Jweeg 2020 An Analytical Investigation of Thermal Buckling Behavior of Composite Plates Reinforced by Carbon Nano Particles (Engineering Journal) vol 24 no 3
[53] S E Sadiq, S H Bakhy and M J Jweeg 2020 Crashworthiness Behavior of Aircraft Sandwich Structure with Honeycomb Core Under Bending Load (IOP Conference Series: Materials Science and Engineering)
[54] Mohsin Abdullah Al-Shammari and Worood H Ibrahim 2018 Effect of Friction Stir Welding and Friction Stir Processing Parameters on The Efficiency of Joints (Al-Nahrain Journal for Engineering Sciences) vol 21 no 2 pp 230-237
[55] Singiresu S Rao 2009 Engineering Optimization Theory and Practice (John Wiley & Sons, Inc)
[56] Jacek M Zurada 1992 Introduction to Artificial Neural Systems (West Group; First Edition)
[57] Rashia M Hussien and Mohsin Abdullah Al-Shammari 2020 Prediction of Physical and Mechanical Properties of Aluminum Metal Matrix Composite Using Artificial Neural Networks (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 409-416
[58] Ehab N Abbas, Muhammad Al-Waily, Tariq M Hammza and Muhsin J Jweeg 2020 An Investigation to the Effects of Impact Strength on Laminated Notched Composites used in Prosthetic Sockets Manufacturing (IOP Conference Series: Materials Science and Engineering,
2nd International Scientific Conference of Al-Ayen University) vol 928

[59] Sadiq Emad Sadiq, Muhsin J Jweeg and Sadeq H Bakhy 2020 *The Effects of Honeycomb Parameters on Transient Response of an Aircraft Sandwich Panel Structure* (IOP Conference Series: Materials Science and Engineering) vol 928

[60] Muhammad Al-Waily, Moneer H Tolephih and Muhsin J Jweeg 2020 *Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles* (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928