Novel Reassortant Highly Pathogenic H5N2 Avian Influenza Viruses in Poultry in China

Guo Zhao1,2, Xiaobing Gu1, Xinlun Lu1, Jinjin Pan1, Zhiqiang Duan1, Kunkun Zhao1, Min Gu1, Qingtao Liu1, Liang He1, Jian Chen1, Shengqiang Ge1, Yanhong Wang1, Sujuan Chen1, Xiaoquan Wang1, Daxin Peng1, Hongquan Wan1, Xiufan Liu1,2

1 College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China, 2 Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China

Abstract

There has been multiple evidence that domestic poultry may act as a vessel for the generation of novel influenza A viruses. In this study, we have analyzed the evolution and pathogenicity of 4 H5N2 avian influenza viruses isolated from apparently healthy poultry from H5N1 virus endemic areas in China. Phylogenetic analysis revealed that two of these viruses, A/duck/Eastern China/1111/2011 (DK/EC/1111/11) and A/goose/Eastern China/1112/2011 (GS/EC/1112/11) were derived from reassortment events in which clade 2.3.4 highly pathogenic avian influenza (HPAI) H5N1 viruses acquired novel neuraminidase and nonstructural protein genes. Another two isolates, A/chicken/Hebei/1102/2010 (CK/HB/1102/10) and A/duck/Hebei/09/08/2009 (DK/HB/0908/09), possess hemagglutinin (HA) gene belong to clade 7 H5 viruses and other genes from endemic H9N2 viruses, or from viruses of various subtypes of the natural gene pool. All of these H5N2 isolates bear characteristic sequences of HPAI virus at the cleavage site of HA, and animal experiments indicated that all of these viruses but DK/HB/0908/09 is highly pathogenic to ducks. In particular, DK/EC/1111/11 and GS/EC/1112/11 are also highly pathogenic to ducks and moderately pathogenic to mice. All of these 4 viruses were able to replicate in domestic ducks and mice without prior adaptation. The emergence of these novel H5N2 viruses adds more evidence for the active evolution of H5 viruses in Asia. The maintenance of the highly pathogenic phenotype of some of these viruses even after reassortment with a new NA subtypes, their ability to replicate and transmit in domestic poultry, and the pathogenicity in the mammalian mouse model, highlight the potential threat posed by these viruses to both veterinary and public health.

Introduction

The Asian highly pathogenic avian influenza (HPAI) H5N1 viruses that emerged over a decade ago in China have evolved into over ten distinct phylogenetic clades on the basis of the hemagglutinin (HA) gene [1]. From 2000 onwards, various reassortant viruses were detected in geese, ducks, chickens, and other terrestrial poultry, with the HA gene derived from the A/goose/Guangdong/1/96-like (Gs/GD-like) lineage and the internal genes from other subtypes of influenza viruses [2,3]. Recently, HPAI H5N5 virus has been identified in domestic ducks, highlighting the role of ducks in the generation of novel H5 HPAI virus with new neuraminidase (NA) subtype [4]. Among those recognized reassortants, only a few genotypes have been persistent or prevalent [5,6]. Over the same period, HPAI H5N1 virus expanded its host range to include a variety of birds and mammalian species [6]. The endemicity in poultry and the introduction into humans of H5N1 viruses emphasize the importance of continued surveillance, isolation, and characterization of influenza virus subtypes and variants in poultry [3,4,5,6].

Influenza virus of H5N2 subtype is present in wild birds usually with low pathogenicity. After introduction into domestic poultry, however, this virus may mutate into a HPAI strain [7,8]. The acquisition of the highly pathogenic phenotype is associated with the loss of a glycosylation site at amino acid position 11, or the insertion of multiple basic residues upstream from the cleavage site, in the HA molecule [8]. In Asia, H5N2 virus was previously recorded mainly in migratory birds. In recent years, it has been isolated in poultry and mammals, including humans, pigs and dogs [9,10,11,12]. Phylogenetic analyses revealed that some gene segments of the H5N2 viruses isolated in Asia were derived from the American lineage, indicating an intercontinental exchange and dissemination of these viruses [9]. Notably, all H5N2 isolates reported in Asian countries so far were of low pathogenicity. In this study, we characterized four novel reassortant H5N2 avian influenza viruses isolated from poultry in China, which possess HA genes closely related to the circulating HPAI H5N1
Figure 1. Phylogenetic trees based on the open reading frame sequences of haemagglutinin genes of H5N2 viruses in this study and those of reference strains from GenBank. Viruses highlighted with a closed triangle were those characterised in this study. The trees were constructed using the neighbour-joining method of MEGA 4.0 with 1,000 bootstrap trials performed to assign confidence to the grouping.
doi:10.1371/journal.pone.0046183.g001
viruses. None of these isolates grouped in the HA tree (Fig. 1) with those low pathogenic H5N2 viruses previously reported in Asia [9,10,11,12]. However, the pathogenicity of these viruses for chickens, domestic ducks and mice varies. Our findings also add more evidence for the active evolution of H5N1 viruses in Asia.

Results

Isolation and Identification of H5N2 Virus

During our routine surveillance of avian influenza viruses at a live bird market (LBM) in Eastern China, 5 H5N1, 2 H5N3 and 4 H5N2 viruses were isolated from apparently healthy domestic poultry, which have been vaccinated with an inactivated, bivalent influenza vaccine (H5N1 and H9N2). The 4 H5N2 isolates, as listed in Table 1, were abbreviated as DK/HB/0908/09, CK/HB/1102/10, DK/EC/1111/11 and GS/EC/1112/11, respectively. DK/HB/0908/09 was isolated in ducks delivered to the LBM from Hebei province, China in August 2009, while CK/HB/1102/10 was isolated from chickens from Hebei in October 2010. DK/EC/1111/11 and GS/EC/1112/11 were isolated from ducks and geese delivered from Shandong and Jiangsu province, China, respectively, in January 2011. Viruses were purified with plaque assay and used in the subsequent analysis and experiment.

Phylogenetic Analysis

To explore the origination of these H5N2 viruses, the whole genome of each virus was sequenced and phylogenetically analysed together with a number of gene sequences selected from the GenBank. The analysis revealed that these novel H5N2 viruses were likely originated from the reassortment between HPAI H5N1 viruses and viruses of other subtypes. In the HA tree, DK/EC/1110/10 clustered with H5N1 viruses of clade 2.3.4, while viruses of other subtypes. In the HA tree, DK/EC/1110/10 was isolated from chickens from Hebei in October 2010. DK/EC/1111/11 and GS/EC/1112/11 were isolated from ducks and geese delivered from Shandong and Jiangsu province, China, respectively, in January 2011. Viruses were purified with plaque assay and used in the subsequent analysis and experiment.

Molecular Characteristics of Viral Genes

The HA gene of both DK/HB/0908/09 and CK/HB/1102/10 has an open reading frame (ORF) of 1,707 nucleotides (nt), coding for 569 amino acids, while that of DK/EC/1111/11 and GS/EC/1112/11 has an ORF of 1,704 nt, coding for 568 amino acid residues, including a signal peptide of 16 amino acids long. All of the H5N2 isolates possessed amino acid sequence characteristic of HPAI H5N1 viruses, CK/HB/1102/10 probably derived its internal genes from endemic H9N2 viruses of A/Chicken/Shanghai/F-98-like and A/Quail/Hong Kong/G1/97-like, and those of DK/HB/0908/09 were from various subtypes (Table 2).

Table 1. Characteristics of the four H5N2 influenza viruses in this study*

Virus Abbreviation	Connecting-peptide (HA)	EID₅₀ (lg/mL)	MDT (h)	IVPI (chicken)	IVPI (duck)	MLD₅₀	
A/duck/HBeijing/0908/09(H5N2)	DK/HB/0908/09	PQIEGRRRKR/G	7.32	91.2	0	0	>10²⁰
A/chicken/Hebei/1102/10(H5N2)	CK/HB/1102/10	PQIEGRRRKR/G	7.43	64.8	2.12	0.26	>10²⁰
A/duck/Eastern China/1111/2011(H5N2)	DK/EC/1111/11	PLRKKRR-KR/K	7.32	36	2.72	2.82	10^{5.5}
A/goose/Eastern China/1112/2010(H5N2)	GS/EC/1112/11	PLRKKRR-KR/G	8.50	42	2.74	2.40	10^{5.2}

*EID₅₀, 50% egg infectious dose; MDT, mean death time; IVPI, intravenous pathogenicity index; MLD₅₀, 50% mouse lethal dose, expressing as the number of EID₅₀ corresponding to 1 LD₅₀.

doi:10.1371/journal.pone.0046183.t001

Novel HPAI (H5N2) in Poultry in China
humans between 2005 and 2006. The consensus amino acid sequence of DK/HB/0908/09 and CK/HB/1102/10 has 6 potential N-linked glycosylation sites in HA1 (20 or 21, 33, 81, 158, 167 and 289) and two in HA2 (154 and 212), similar to clade 7 viruses. In addition, CK/HB/1102/10 has 2 potential N-linked glycosylation sites in HA1 (276 and 240). The conservative residues within the receptor binding pocket of the HA, including E190, R220, G225, Q226 and G228, were all present in these viruses, implying that they retain a typical avian virus-like receptor specificity [16]. Previous studies have shown that there are possibly 5 antigenic epitopes in HA1 associated with amino acid residues at positions 46, 62, 122, 126, 129–134, 140–145, 155–157, 160, 166, 186 and 187 [16,17,18,19]. An examination on these positions revealed R62K, A132T, S134L and T160A substitutions in HA1 of DK/EC/1111/11 and GS/EC/1112/11, and E131D, A132T and G143D in HA1 of CK/HB/1102/10.

Compared with DK/HB/0908/09, DK/EC/1111/11 and GS/EC/1112/11, the NA of CK/HB/1102/10 had a deletion of 9 residues in the stalk region, resulting in the loss of a potential glycosylation site. None of the 4 H5N2 viruses carries the Q274Y mutation in the NA, which is associated with oseltamivir resistance [20]. However, the matrix protein (M) of these viruses, except that of DK/HB/0908/09, has the S31N substitution, which is associated with amantadine resistance [20]. In the polymerase basic protein 2 (PB2), these viruses possess E and D at 627 and 701, two positions that are related to the pathogenicity of influenza viruses in the mammalian model [21,22].

Pathogenicity Experiments

The World Organisation for Animal Health (OIE) recommended that H5 HPAI virus has an IVPI greater than 1.2 or possesses characteristic multibasic amino acid sequences of HPAI virus at the cleavage site of HA (http://www.oie.int/en/
Besides, based on the 50% mouse lethal dose (MLD50), a couple of previous publications established that influenza viruses can be classified as low (MLD50 $\leq 6.5 \log_{10} EID_{50}$), medium ($6.5 \log_{10} EID_{50} < MLD_{50} \leq 3 \log_{10} EID_{50}$), or high (MLD50 $\geq 3 \log_{10} EID_{50}$) pathogenic to mice [23]. To examine the pathogenicity of these H5N2 viruses in poultry and mammalian models, we measured the intravenous pathogenicity index (IVPI) in chickens and ducks, and the MLD50 in BALB/c mice for each virus. DK/EC/1111/11 and GS/EC/1112/11 were highly pathogenic for chickens and ducks by the IVPI criteria and moderately pathogenic for mice by the MLD50 criteria [23,24], CK/HB/1102/10 was only highly pathogenic for chickens, whereas DK/HB/0908/09 was low pathogenic for all three species (Table 1).

Replication and Transmission in Ducks

Since ducks are usually in contact with chickens and wild migratory birds, we examined the replication and transmission of these H5N2 viruses in domestic ducks. Ducks infected with DK/EC/1111/11 and GS/EC/1112/11 showed clinical symptoms such as coughing, ocular and nasal discharge and conjunctivitis between 3 and 7 day-post-inoculation (dpi). Gross lesions typical of HPAI virus infection, including haemorrhage and necrosis in multiple organs, were observed in ducks euthanatized on 3 and 5 dpi. Virus was detected in all tested visceral organs (heart, liver, spleen, lung, kidney and brain) and skeletal muscle from these euthanatized birds (Table 3), and in tracheal and cloacal swabs from inoculated birds (Table 4). Virus was also detected in tracheal and cloacal swabs collected from contact birds between 2 and 7 dpi (Table 4). These data indicated systemic infection by DK/EC/1111/11 and GS/EC/1112/11 and the transmissibility of these two viruses among domestic ducks. In contrast, ducks inoculated with DK/HB/0908/09 and CK/HB/1102/10 did not show noticeable clinical symptoms. Nevertheless, the inoculated birds shed virus for 3–5 days and both viruses were transmitted to the naïve cage mates via direct contact. Histologic lesions were observed in ducks inoculated each of the 4 H5N2 viruses, however lesions were more severe in ducks inoculated with either DK/EC/1111/11 or GS/EC/1112/11. The lesions included multifocal necrosis in various visceral organs, myocarditis, hepatitis, splenitis, interstitial pneumonia, nephritis and hyalinization to necrosis of skeletal myofibers. Moderate lesions, characterized by perivascular lymphoplasmacytic cuffs around a few localized cerebral vessels and associated small foci of gliosis (Fig. 4A and 4B), were also observed in the brain of infected ducks. In contrast, ducks inoculated with DK/HB/0908/09 or CK/HB/1102/10
virus showed less evident histopathological changes, including mild multifocal hepatitis, splenitis, interstitial pneumonia and nephritis.

Replication in Mice

To investigate the replication of these H5N2 viruses in the mouse model, BALB/c mice (6-week-old, female) were inoculated intranasally with each virus, and the viral load in various organs was titrated. All of the 4 H5N2 isolates were recovered only in the lung, with mean titres (log_{10} EID_{50}) of 3.5±0.5, 3.8±0.4, 3.1±0.4, 2.5±0.2 on three dpi, and 3.4±0.4, 3.5±0.2, 2.3±0.2, 2.3±0.4 on 5 dpi, for DK/EC/1111/11, GS/EC/1112/11, CK/SH/Y1/08 (H9N2) (Fig. 4C and 4D). By contrast, only mild pneumonorrhagia was observed in mice inoculated with either DK/EC/1111/11 or GS/EC/1112/11, whose HA gene fell into clade 2.3.4 in the H5 phylogenetic tree, were isolated from ducks and geese from the same geographical location as where the H5N5 viruses were detected. There might be multiple reasons why HPAI H5N5 and H5N2 viruses were isolated from the same place. One of these is the long term endemicity of H5N1 HPAI viruses in poultry and the common practice of intermingling raising of chickens and domestic ducks and geese, which potentially provides an ideal environment for the generation of reassortant H5 HPAI viruses with NA subtypes other than N1. Considering the endemicity of clade 2.3.4 subtype H5N1 viruses in China since 2005 [1], it is plausible that H5N1 viruses have provided the backbone for generating these two novel H5N2 viruses rather than gene flow in the opposite direction. It is important to recognise that mass vaccination is the main strategy for the control of H5N1 HPAI in poultry in China [27]; however vaccination alone cannot eliminate influenza virus in poultry flocks, especially in domestic waterfowl. The emergence of these novel reassortant viruses in apparently healthy domestic poultry in China indicates that the HPAI H5 virus probably cannot be stopped without more comprehensive control measures.

Our phylogenetic analysis suggested that CK/HB/1102/10, a chicken H5N2 virus isolated from Hebei Province, China, bears HA gene from clade 7 H5N1 virus. The remaining 7 genes of this virus, however, are likely from A/Chicken/Shanghai/F/98-like and A/Quail/Hong Kong/G1/97-like H9N2 viruses (Fig. 2 and 3). H9N2 viruses are present worldwide in poultry and derive from two major influenza virus gene pools, the Eurasian and the North American [28,29]. In China, H9N2 influenza viruses have been circulating since 1994, and major genotypes were divided into five series [30]. The A/Quail/Hong Kong/G1/97-like viruses have been postulated to provide internal genes to H5N1 viruses isolated from Hong Kong in 1997 [31]. Our findings further validate that H9N2 and H5N1 subtype viruses have a two-way exchange of gene segments to generate current genotypes of both subtypes that have pandemic potential [32].

Our studies indicated that 3 of the 4 H5N2 isolates inherited highly pathogenic phenotype from the reassortment involved HPAI H5N1 viruses. This is different from HPAI H5N2 viruses reported in America, which acquired high pathogenicity through accumulation of mutations in viral components, particularly the

Table 2. Influenza viruses with the highest nucleotide identity to each gene of A/duck/Eastern China/1111/2011, A/chicken/Hebei/1102/2010 and A/duck/Hebei/0908/2009.

Gene segment	A/duck/Eastern China/1111/2011	A/chicken/Hebei/1102/2010	A/duck/Hebei/0908/2009			
Closest viruses	Nucleotide identity	Closest viruses	Nucleotide identity	Closest viruses	Nucleotide identity	
PB2	DK/EC/909/09 (H5N1)	98%	CS/KY/1/08 (H9N2)	98%	DK/NG/607/02 (H7N1)	98%
PB1	DK/EC/909/09 (H5N1)	98%	CS/China/A/10-01/10 (H9N2)	97%	JP/KI0135/08 (H6N5)	99%
PA	DK/EC/108/08 (H5N2)	98%	CS/SD/1231/08 (H9N2)	97%	DK/Korea/A93/08 (H5N2)	99%
HA	DK/EC/108/08 (H5N2)	97%	CS/VN/NCVD-swb15/08 (H5N1)	97%	CK/HD/4/08 (H5N2)	99%
NP	DK/EC/108/08 (H5N2)	97%	CS/SD/12/08 (H9N2)	97%	AB/Korea/w164/07 (H5N2)	97%
NA	DK/EC/142/06 (H3N2)	95%	CS/China/A/10-01/10 (H9N2)	98%	DK/EC/142/06 (H3N2)	97%
M	DK/EC/909/09 (H5N1)	98%	CS/China/A/10-01/10 (H9N2)	98%	DK/YZ/013/08 (H6N5)	99%
NS	DK/NC/1904/92 (H7N1)	96%	CS/SD/ZB/07 (H9N2)	98%	Korea/SH11-10/09 (H3N8)	98%

*Abbreviations: PB, polybasic protein; PA, polymerase acidic protein; HA, haemagglutinin; NP, nucleocapsid protein; NA, neuraminidase; M, matrix protein; NS, nonstructural protein; DK/EC/909/09, A/duck/Eastern China/909/2009; DK/EC/108/08, A/duck/Eastern China/108/2008; DK/EC/142/06, A/duck/Eastern China/142/2006; DK/NC/1904/92, A/duck/Nanchang/1904/1992; CS/KY/1/08, A/chicken/Shanghai/1/2008; CS/China/A/10-01/10, A/chicken/China/A/10-01/2010; CS/SD/1231/08, A/chicken/Shandong/1231/2008; CS/VN/NCVD-swb15/08, A/chicken/Vietnam/NCVD-swb15/2008; CS/SD/12/08, A/chicken/Shandong/12/2008; CS/SD/ZB/07, A/chicken/Shandong/ZB/2007; CS/SD/G67/02, A/duck/Mongolia/67/2002; JP/KI0135/08, A/avian/Japan/KI0135/2008; DK/Korea/A93/08, A/duck/Korea/A93/08; CK/HD/4/08, A/duck/Huangdon/4/2008; AB/Korea/w164/07, A/avian bird/Korea/w164/2007; DK/EC/142/06, A/duck/Eastern China/142/2006; DK/YZ/013/08, A/duck/Yangzhou/013/2006; Korea/SH11-10/09, A/environment/Korea/SH11-10/2009. Data for A/goose/Eastern China/1111/2011 were identical to those for A/duck/Eastern China/1111/2011 and were not shown in this table.

doi:10.1371/journal.pone.0046183.t002
HA, after adaptation in poultry [8], HPAI H5N2 viruses have been detected in wild waterfowl in Africa [33]. These African H5N2 viruses were unrelated to any strains of HPAI H5N1 viruses. Instead, have close relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. The emergence of HPAI H5N2 viruses through reassortment in Asia further highlighted the special etiology of influenza in this area and the active interaction of H5N1 strains with viruses of other subtypes.

It is worthy of noting that one H5N2 isolate in this study, DK/HB/0908/09, was low pathogenic to chickens, ducks and mice, albeit the presence of cleavage motif characteristic of HPAI virus. The low pathogenic phenotype of H5 viruses with genetic coding for highly pathogenic viruses has been recorded previously [34]. The
Table 3. Virus titers in various tissues of mallard ducks infected with H5N2 viruses.

Strain	Day post-inoculation	Virus titres (log_{10} EID_{50} g^{-1} tissue) in						
		Heart	Liver	Spleen	Lung	Kidney	Brain	skeletal muscle
DK/HB/0908/09	3	0/2	0/2	0/2	2/2(13.0±0.1)	0/2	0/2	0/2
	5	0/2	0/2	0/2	0/2	0/2	0/2	0/2
CK/HB/1102/10	3	0/2	0/2	0/2	2/2(21.0±2.0)	0/2	0/2	0/2
	5	0/2	0/2	0/2	0/2	0/2	0/2	0/2
DK/EC/1111/11	3	2/2(3.8±0.7)	2/2(3.0±0.5)	2/2(3.2±0.5)	2/2(4.5±0.2)	2/2(4.0±0.5)	2/2(2.8±0.5)	2/2(3.5±0.2)
	5	2/2(5.2±0.7)	2/2(2.4±0.1)	2/2(1.9±1)	2/2(4.6±3.0)	2/2(3.1±0.5)	2/2(5.4±3.0)	2/2(3.0±0.6)
GS/EC/1112/11	3	2/2(5.0±0.3)	2/2(2.6±0.3)	2/2(3.1±0.4)	2/2(4.0±0.7)	2/2(4.3±0.1)	2/2(2.1±0.2)	2/2(3.2±0.2)
	5	2/2(5.4±0.3)	2/2(2.3±0.2)	1/2(1)	2/2(4.4±0.1)	2/2(3.3±0.2)	2/2(1.5±0.2)	2/2(3.1±0.1)

*Virus positive birds/tested birds.

Table 4. Virus titers in oropharyngeal and cloacal swabs of experimentally infected mallards.

Strain	Infection sample	2 dpi	3 dpi	5 dpi	7 dpi	9 dpi					
		T	C	T	C	T	C				
DK/HB/0908/09	Inoculated	4/4* (1.3±0.2)	4/4 (1.2±0.1)	4/4 (1.6±0.2)	4/4 (2.3±0.1)	4/4 (1.2±0.2)	4/4 (1.3±0.2)	3/4 (<1)	2/4 (<1)	0/4	0/4
	Contacted	0/2	0/2	2/2 (1.5±0.2)	2/2 (2.4±0.1)	2/2 (1.3±0.1)	2/2 (1.1±0.1)	1/2 (<1)	2/2 (<1)	0/2	0/2
CK/HB/1102/10	Inoculated	4/4 (1.3±0.2)	4/4 (1.4±0.1)	4/4 (2.3±0.4)	4/4 (2.3±0.2)	4/4 (1.9±0.4)	4/4 (1.6±0.4)	3/4 (<1)	1/4 (<1)	0/4	0/4
	Contacted	0/2	0/2	2/2 (2.4±0.1)	2/2 (2.5±0.1)	2/2 (1.6±0.3)	2/2 (1.3±0.2)	2/2 (<1)	1/2 (<1)	0/2	0/2
DK/EC/1111/11	Inoculated	4/4 (2.5±0.7)	4/4 (1.8±0.4)	4/4 (3.4±0.9)	4/4 (1.9±0.4)	4/4 (2.4±0.7)	4/4 (1.5±0.4)	3/4 (<1)	2/4 (<1)	0/4	0/4
	Contacted	2/2 (1.4±0.3)	2/2 (1.7±0.2)	2/2 (4.0±0.2)	2/2 (1.4±0.1)	2/2 (2.0±0.5)	2/2 (1.3±0.2)	2/2 (<1)	2/2 (<1)	0/2	0/2
GS/EC/1112/11	Inoculated	4/4 (3.9±0.9)	4/4 (1.9±0.5)	4/4 (4.2±0.3)	4/4 (3.5±0.1)	4/4 (1.2±0.2)	4/4 (1.3±0.7)	3/4 (<1)	4/4 (<1)	0/4	0/4
	Contacted	2/2 (2.2±0.5)	2/2 (1.8±0.1)	2/2 (2.4±0.2)	2/2 (1.8±0.5)	2/2 (2.0±0.2)	2/2 (1.3±0.2)	2/2 (<1)	2/2 (<1)	0/2	0/2

Abbreviations: dpi, day post-inoculation; T, oropharyngeal swab; C, cloacal swab.

*Virus positive birds/tested birds.

Average virus titer of infected samples (log_{10} EID_{50}±SD).

doi:10.1371/journal.pone.0046183.t004

doi:10.1371/journal.pone.0046183.t003
laboratory animal welfare and ethical of Jiangsu Administrative Committee of Laboratory Animals.

Virus Isolation and Identification

As part of routine surveillance on avian influenza viruses, we performed a monthly sampling in a LBM in Yangzhou, Jiangsu Province, China, from July 2002 to May 2011. This LBM is the largest one in Eastern China, and has a total daily transaction of 10,000 geese and 30,000 chickens, 5,000 ducks. Cloacal swabs were collected from 5 chickens, 15 ducks and 15 geese randomly selected from each consignment shipped to the LBM from local farms or introduced from neighbouring provinces, such as Shandong, Anhui, Zhejiang and Hebei. Swab samples were maintained in transport medium containing antibiotics and kept at 4°C until transported to the laboratory. Samples were processed and inoculated into embryonated specific pathogen-free (SPF) chicken eggs. The presence of virus in allantoic fluid was confirmed with hemagglutination assay. Viruses were plaque purified three times in Madin-Darby canine kidney (MDCK) cells and propagated in eggs. The HA and NA subtypes were identified with reverse transcription-polymerase chain reaction (RT-PCR) and sequencing as previously described [36,37]. All experiments with infectious virus were conducted in biosafety level 3 laboratory facilities.

Viral Sequencing

Viral RNA was extracted from allantoic fluid with Trizol LS reagent (Invitrogen, Carlsbad, CA). Viral RNA was reverse transcribed with the 12 bp primer 5'-AGCAGACAGCCAGG-3'. PCR was performed using specific primers as described by Hoffmann et al. [38]. PCR products were purified with the TaKaRa Agarose Gel DNA Purification Kit Ver. 2.0 (TaKaRa, Dalian, China) and sequenced by the Nanjing GenScript Biotech Co., Ltd.

Phylogenetic Analyses

Influenza virus sequences used in the phylogenetic comparison in this study were obtained from the NCBI Influenza Virus Resource [http://www.ncbi.nlm.nih.gov/genomes/FLU/]. The representative sequences were selected by randomly choosing one that had been isolated from China and that was similar to other sequences (genetic distance <2.0%). Some representative sequences from other countries were also included in the analysis. Editing, analysis and alignment of sequence data were performed with BioEdit 7.0 and Clustal X, respectively. Phylogenetic trees based on coding sequences of individual genes were constructed using the Kimura two-parameter model and neighbour-joining algorithm in the program MEGA (version 4.0) with 1,000 bootstraps. All branches supported by a >70% bootstrap value were considered as the same group in the phylogenetic trees. The sequence data obtained in this study are available in GenBank under accession numbers JQ041387–JQ041418.

Animal Experiments

In the IVPI test, 4 groups of ten 6-week-old SPF chickens (Beijing Experimental Animal Centre, Beijing) and 4 groups of ten 6-week-old mallard ducks (anas platyrhynchos) were intravenously inoculated with 0.2 ml of 1:10 dilution of the infectious allantoic fluid of each H5N2 isolate. Oropharyngeal and cloacal swabs, and sera from each duck were collected for viral isolation and antibody detection to exclude pre-existing influenza A virus infection. The EID\(_{50}\) was determined by serial titration of virus in SPF eggs and was calculated with the method described by Reed and Muench [39]. Groups of 6-week-old female BALB/c mice (Beijing Experimental Animal Centre, Beijing) were lightly anesthetized and inoculated intranasally with 10\(^{3.0}\) EID\(_{50}\) of each virus in diluted in 50 µl PBS to evaluate the MLD\(_{50}\) [39,40].

To examine the replication and transmission of these H5N2 viruses in ducks, 4 groups of 4-week-old mallard ducks (eight birds/group) were intranasally inoculated with 10\(^{7.0}\) EID\(_{50}\) of each virus in a volume of 0.1 ml. On 1 dpi, another eight 4-week-old mallard ducks (2 for each group) were placed into the same isolator to serve as contacts. Ducks were observed daily for clinical signs of disease. On 2, 3, 5, 7, 9, 11 and 14 dpi, oropharyngeal and cloacal swabs were collected from 4 inoculated ducks and 2 contact birds to estimate the virus shedding. In addition, on 3 and 5 dpi, 4 inoculated ducks were euthanatized and tissues (heart, liver, spleen, lung, kidney, brain and skeletal muscle) were collected from each duck for virus titration, observation of gross lesions and histopathology [41].

To investigate the replication of each virus in mice, 4 groups of nine 6-week-old female BALB/c mice were inoculated intranasally with 10\(^{7.0}\) EID\(_{50}\) of each virus in 50 µl PBS under slight anaesthesia. Control mice were mock-infected with PBS. Three mice per group were euthanatized on 3 and 5 dpi, and organs (heart, liver, spleen, lung, kidney and brain) were harvested for virus isolation. Briefly, tissues were homogenised in 1.0 ml PBS. After clarification, the supernatant was titrated in embryonated SPF eggs for infectivity. In addition, 3 mice per group were euthanatized at 5 dpi, and organs (heart, liver, spleen, lung, kidney and brain) were collected for histopathology [41].

All animal experiments were performed in animal biosafety level 3 facilities at Yangzhou University.

Author Contributions

Conceived and designed the experiments: GZ X. Liu. Performed the experiments: GZ XG X. Lu JP ZD KZ QL LH JC. Analyzed the data: GZ HW MG SG YW SC XW DP X. Liu. Drafted the manuscript: GZ HW MG SG YW SC XW DP X. Liu. Contributed reagents/materials/analysis tools: GZ MG. Wrote the manuscript: GZ HW MG SG YW SC XW DP X. Liu.

References

1. Eagles D, Siregar ES, Dung DH, Weaver J, Wong F, et al. (2009) H5N1 highly pathogenic avian influenza in Southeast Asia. Rev Sci Tech 28: 341–348.
2. Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyring KG, et al. (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99: 8950–8955.
3. Guan Y, Poon LL, Cheung CY, Ellis TM, Lim W, et al. (2004) H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101: 8156–8161.
4. Gu M, Liu W, Cao Y, Peng D, Wang X, et al. (2011) Novel Reassortant Highly Pathogenic Avian Influenza (H5N3) Viruses in Domestic Ducks, China. Emerg Infect Dis 17: 1060–1061.
5. Li KS, Guan Y, Wang J, Smith GJ, Xu KM, et al. (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430: 209–213.
6. Chen H, Smith GJ, Li KS, Wang J, Fan XH, et al. (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 103: 2845–2850.
7. Snoeck CJ, Adelyaunju AT, De Landtsheer S, Ottosson U, Manu S, et al. (2011) Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds. J Gen Virol 92: 1172–1183.
8. Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML (1996) Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77 (Pt 7): 1493–1504.
9. Cheng MG, Soda K, Lee MS, Lee SH, Sakoda Y, et al. (2010) Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008. Avian Dis 54: 883–893.
24. Katz JM, Pascoa PN, Song MS, Baek YH, Kim CJ, et al. (2009) Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. J Virol 83: 4205–4215.

23. Chen H, Deng G, Li Z, Tian G, Li Y, et al. (2004) The evolution of H5N1 avian influenza in Japan and the factors associated with high H5N2-neutralizing antibody titer. J Epidemiol 18: 160–166.

22. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of H9N2 influenza virus. J Virol 75: 5156–5161.

21. Li Z, Chen H, Jiao P, Deng G, Tian G, et al. (2005) Molecular basis of antigenic drift of H5N1 influenza viruses in wild birds, domestic poultry and humans in China from 2004 to 2009. J Virol 84(17): 8389–97.

20. Scholtissek C, Quack G, Kleck H, Webster RG (1999) How to overcome resistance of influenza A viruses against adamantane derivatives. Antiviral Res 37: 83–95.

19. Li Z, Chen H, Jiao P, Deng G, Tian G, et al. (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79: 12058–12064.

18. Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, et al. (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83: 2497–2505.

17. Scholtissek C, Quack G, Kleck H, Webster RG (1998) Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J Virol 64: 2941–2947.

16. Philppott M, Hoe C, Sheerar M, Himshaw VS (1990) Hemagglutinin mutations in influenza A/duck/US/8/1958. J Virol 54: 27–35.

15. Li Y, Shi J, Zhong G, Deng G, Tian G, et al. (2010) Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry and humans in China from 2004 to 2009. J Virol 84(17): 8389–97.

14. Sun L, Lu X, Li C, Wang M, Liu Q, et al. (2009) Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS One 4: e5476.

13. Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, et al. (1992) Evidence of infection by H3N2 highly pathogenic avian influenza viruses with low virulence for chickens in in vivo tests. Avian Pathol 36: 347–350.

12. Ogata T, Yamazaki Y, Okabe N, Nakamura Y, Tashiro M, et al. (2008) Human H5N2 avian influenza infection in Japan and the factors associated with high H5N2-neutralizing antibody titer. J Epidemiol 18: 160–166.

11. Guo-Bao Z, Zong-Shuai L, Yan-Li Z, Shui-Jun J, Zhe-Jing X (2011) Genetic characterization of a novel influenza A virus H5N2 isolated from a dog in China. Vet Microbiol 155(2–4): 409–416.

10. Lee JH, Pascua PN, Song MS, Baek YH, Kim CJ, et al. (2009) Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. J Virol 83: 4205–4215.

9. Lu X, Tumpey TM, Morken T, Zaki SR, Cox NJ, et al. (1999) A mouse model for influenza A virus pathogenesis in mice. J Virol 74: 10807–10812.

8. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. AmJEpidemiol 27: 493–497.

7. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146: 2275–2289.

6. Lu X, Tumpey TM, Morken T, Zaki SR, Cox NJ, et al. (1999) A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol 73: 5093–5111.

5. Seres D, Eley AR, Eley BD, Shieh HK, Clemons ME, et al. (2002) Generation and characterization of H9N2 influenza viruses possessing H3N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74: 9372–9380.

4. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–79.

3. Scholtissek C, Quack G, Kleck H, Webster RG (1998) How to overcome resistance of influenza A viruses against adamantane derivatives. Antiviral Res 37: 83–95..

2. Li Z, Chen H, Jiao P, Deng G, Tian G, et al. (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79: 12058–12064.

1. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 1040–1042.