Research Article

Majorization for Certain Classes of Analytic Functions Defined by Fournier–Ruscheweyh Integral Operator

Murli Manohar Gour, Pranay Goswami, Basem Aref Frasin, and Saad Althobaiti

1Department of Mathematics and Statistics, Manipal University, Jaipur, India
2School of Liberal Studies, Ambedkar University, Delhi, India
3Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan
4Department of Sciences and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Basem Aref Frasin; bafrasin@yahoo.com

1 Introduction and Definitions

For the two functions \(u \) and \(v \) which are analytic in the open unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \} \), we can define the majorization for these two functions as follows (see [1]):

\[u(z) \leq v(z) (z \in D). \] (1)

If there exists a function \(\psi(z) \) that is analytic in \(D \), then

\[|\psi(z)| \leq 1 \text{ and } u(z) = \psi(z) v(z) (z \in D). \] (2)

For the two functions \(u \) and \(v \), if the function \(u \) is subordinate to the function \(v \) defined as \(u(z) < v(z) \), if there is a Schwarz function \(w \), that is analytic in \(D \) with \(w(0) = 0 \) and \(|w(z)| < 1 \), \(z \in D \), such that \(u(z) = v(w(z)) \), \(z \in D \).

Now, on combining subordination and majorization, we define quasi-subordination as follows. For two functions \(u \) and \(v \), we say that \(u \) is quasi-subordinate to \(v \) (see [2]) and it is defined as

\[u(z) \leq_q v(z) (z \in D), \] (3)

If there are two functions \(\psi(z) \) and \(\omega(z) \) that are analytic in \(D \), then \((u(z)/\psi(z)) \) is analytic in \(D \) and

\[|\psi(z)| \leq 1 \text{ and } \omega(0) = 0, |\omega(z)| \leq |z| \leq 1 (z \in D), \] (4)

satisfying

\[u(z) = \psi(z) \omega(w(z)) (z \in D). \] (5)

Remark 1

(i) If we put \(\psi(z) = 1 \) in (5), we have the usual definition of subordination

(ii) If we put \(\omega(z) = z \) in (6), we have the usual definition of majorization

Let \(A \) denote the class of all functions of the form

\[f(z) = z + \sum_{n=0}^{\infty} a_n z^n \text{, } (z \in D), \] (6)

which are analytic in open unit disk \(D \).

The function class \(\Phi \) has been introduced and studied by Li and Srivastava [3] and is defined as

\[\Phi = \left\{ k(t): k(t) \geq 0, (0 \leq t \leq 1), \int_0^1 k(t) dt = 1 \right\}. \] (7)
Fournier and Ruscheweyh [3, 4] considered an integral operator with a nonnegative function:

\[k_a: [0, 1] \rightarrow \mathbb{R} \text{ such that } \int_0^1 k_a(t)dt = 1. \]

(8)

By substituting suitable values of parameter \(a \), there are lots of special cases of function \(k_a(t) \). We therefore consider the Fournier–Ruscheweyh integral operator to be in the following modified form [3] (see [5]):

\[\mathcal{J}_k^a f(z) = \int_0^1 k_a(t) \frac{f(tz)}{t} dt, \quad (f \in A). \]

(9)

where the real-valued functions \(k_a \) and \(k_{a-1} \) fulfill the requirements:

(1) For an acceptable parameter \(a \),

\[k_{a-1}(t) \in \Phi, k_a(t) \in \Phi \text{ and } k_a(1) = 0. \]

(10)

(2) There exists a constant \(\lambda (-1 < \lambda \leq 2) \) such that

\[\lambda k_a(t) - tk_a'(t) = (\lambda + 1)k_{a-1}(t), \]

(11)

where \(t \in (0, 1) \) and \(-1 < \lambda \leq 2\).

For \(\mathcal{J}_k^a \) operator, we have

\[z(\mathcal{J}_k^a u(z))' = -\lambda(\mathcal{J}_k^a u(z)) + (\lambda + 1)\mathcal{J}_k^{a-1} u(z). \]

(12)

Remark 2

(i) If we take

\[k_a(t) = \left(\frac{2^a}{\mu(a)} \right) \left(\log \frac{1}{t} \right)^{a-1} = k_1(a > 0), \]

(13)

in (9), we get the integral operator \(\mathcal{J}_k^a \) as

\[\mathcal{J}_k^a = \frac{2^a}{z\mu(a)} \int_0^z \left(\log \frac{z}{t} \right)^{a-1} f(t) dt, \quad (f \in A, a > 0). \]

(14)

The integral operator \(\mathcal{J}_k^a \) is exactly the same as the transformation \(I_k^1 \) given by Flett [6] and studied subsequently by Li [7], Li and Srivastava [8], and many others. In the case when \(a > 1 \), then we have \(\lambda = 1 \).

(ii) If we take

\[k_a(t) = \left(\frac{a+b}{a} \right) a(1-t)^{a-1} t^b = k_2, \quad (a > 0, b > -1), \]

(15)

in (9), we get the Jung–Kim–Srivastava integral operator \(Q_k^a \) [9] (see [10–12]) as

\[Q_k^a f(z) = \left(\frac{a+b}{a} \right) \frac{a}{z^a} \int_0^z \left(1 - \frac{t}{z} \right)^{a-1} t^{b-1} f(t) dt. \]

(16)

\[(f \in A, a > 0, b > -1), \]

where

\[\left(\begin{array}{c} a \\ b \end{array} \right) = \frac{\mu(a+1)}{\mu(b+1)\mu(a-b+1)} \left(\begin{array}{c} a \\ b \end{array} \right), \quad (a, b \in \mathbb{C}). \]

(17)

In terms of known Gamma functions, the integral operator \(Q_k^a \) is analogous to the convolution operator \(L(a, b) \) by Carlson and Shaffer [13]. In the case when \(a > 1, b > -1, \) and \(0 < a + b \leq 3 \), we have \(\lambda = a + b - 1 \).

Now, we describe the following classes of analytical functions using integral operator (9).

Definition 1. The function \(f \in A \) is said to be in the class \(S_k^a [M, N; \mu] \) if and only if

\[1 + \frac{1}{\mu} \left(\frac{z(\mathcal{J}_k^a f(z))'}{\mathcal{J}_k^a f(z)} - 1 \right) \leq \frac{1 + Mz}{1 + Nz}, \]

(18)

with \(-1 < N < M < 1, k, \mu \in \mathbb{C}, \) and \(C = \mathbb{C} \setminus \{0\} \).

If we take the value of \(k \) as defined in (13) and (15), this class becomes \(S_k^{a1} [M, N; \mu] \) and \(S_k^{a2} [M, N; \mu] \), respectively.

Definition 2. The function \(f \in A \) is said to be in the class \(R_k^a (\mu) \) if and only if

\[\left[\frac{z(\mathcal{J}_k^a f(z))'}{\mathcal{J}_k^a f(z)} - \mu \right] \geq \left(\frac{z(\mathcal{J}_k^a f(z))'}{\mathcal{J}_k^a f(z)} - 1 \right) < e^c, \quad (z \in D), \]

(19)

where \(a \geq 0, k \in \Phi, \) and \(\mu \geq 0 \).

If we take the value of \(k \) as defined in (13) and (15), this class becomes \(R_k^{a1} (\mu) \) and \(R_k^{a2} (\mu) \), respectively.

Definition 3. The function \(f \in A \) is said to be in the class \(T_k^a (\theta) \) if and only if

\[e^{\theta i} \left(\frac{z(\mathcal{J}_k^a f(z))'}{\mathcal{J}_k^a f(z)} \right) < e^{\cos \theta + i \sin \theta}, \quad (z \in D), \]

(20)

where \(a \geq 0, k \in \Phi, \) and \(-\Pi/2 < \theta < \Pi/2\).

If we take the value of \(k \) as defined in (13) and (15), this class becomes \(T_k^{a1} (\theta) \) and \(T_k^{a2} (\theta) \), respectively.

A majorization problem for the normalized class of starlike functions has been investigated by MacGregor [1] and further studied by Altıntas et al. [14]. Recently, a number of researchers have studied several majorization problems for univalent and multivalent functions or meromorphic and multivalent meromorphic functions involving different operators and different classes [14–20, 22–24]. By motivating the above work, the majorization problems of the classes \(S_k^{a1} [M, N, \mu], R_k^{a1} (\mu), \) and \(T_k^{a1} (\theta) \) are investigated as follows.

2. Problem of Majorization for the Classes \(S_k^{a1} [M, N, \mu], R_k^{a1} (\mu), \text{ and } T_k^{a1} (\theta) \)

Theorem 1. Let the function \(f \in A \) and assume that \(g \in S_k^{a1} [M, N, \mu] \). If \(\mathcal{J}_k^a f(z) \) is majorized by \(\mathcal{J}_k^a g(z) \) in \(D \), then

\[|\mathcal{J}_k^a f(z)| \leq |\mathcal{J}_k^a g(z)| \text{ for } |z| \leq \rho_0, \]

(21)
where \(\rho_0 \) is the smallest positive root of the equation
\[
\| (M - N) + (1 + \lambda)N \| p^3 - (2|N| + \lambda + 1)p^2 \\
- (2 + \| (M - N) + (1 + 1)N \|) \rho + (\lambda + 1) = 0,
\]
where \(-1 \leq N < M \leq 1, k \in \Phi, \mu \in C^*, -1 < \lambda \leq 2, \) and \((\lambda + 1) \leq \| (M - N) + (1 + 1)N \|).

Proof. Since \(g \in S_k^p [M, N, \mu] \), then, from (18),
\[
1 + \frac{1}{\mu} \left(\frac{z(\mathcal{F}_k^a g(z))^\prime}{\mathcal{F}_k^a g(z)} - 1\right) = \frac{1 + Mw(z)}{1 + Nw(z)}
\]
where \(w \) is the analytic function in \(D \), with \(w(0) = 0 \) and \(|w(z)| \leq |z| < 1 \forall z \in \overline{D} \).

Now, from the previous equality,
\[
z(\mathcal{F}_k^a g(z))^\prime = \frac{1 + (\mu(M - N) + N)w(z)}{1 + Nw(z)}.
\]

Now, we make use of relation (12), that is,
\[
z(\mathcal{F}_k^a g(z))^\prime = -\lambda(\mathcal{F}_k^a g(z)) + (\lambda + 1)\mathcal{F}_k^{a-1} g(z),
\]
For \(-1 < \lambda \leq 2 \), then, from (24), we have
\[
\mathcal{F}_k^{a-1} g(z) = \frac{\lambda + 1 + (\mu(M - N) + (\lambda + 1)N)w(z)}{(\lambda + 1)(1 + Nw(z))},
\]
which implies that
\[
|\mathcal{F}_k^{a-1} f(z)| \leq \frac{|z| \left(1 - |\psi(z)|^2\right) (1 + |N|)}{(1 - |z|^2) (\lambda + 1) - \| (M - N) + (\lambda + 1)N \| p)} + |\psi(z)| \left| \mathcal{F}_k^{a-1} g(z) \right|.
\]

Setting \(|z| = \rho \) and \(|\psi(z)| = c \), then inequality (33) leads to
\[
|\mathcal{F}_k^{a-1} f(z)| \leq \frac{\zeta(\rho, c) \left| \mathcal{F}_k^{a-1} g(z) \right|}{(1 - \rho^2) \left(\lambda + 1\right) - \| (M - N) + (\lambda + 1)N \| p},
\]
where
\[
\zeta(\rho, c) = \rho \left(1 - c^2\right) (1 + |N|) + c (1 - \rho^2) \left(\lambda + 1\right) - \mu (M - N) + (\lambda + 1)N \| p).
\]

Then, from (34),
\[
|\mathcal{F}_k^{a-1} f(z)| \leq \eta(\rho, c) \left| \mathcal{F}_k^{a-1} g(z) \right|,
\]
where
\[
\eta(\rho, c) = \frac{\zeta(\rho, c)}{(1 - \rho^2) \left(\lambda + 1\right) - \| (M - N) + (\lambda + 1)N \| p}.
\]

From relation (36), in order to prove our result, we need to determine
\[
|\mathcal{F}_k^a g(z)| \leq \frac{(\lambda + 1)(1 + N|z|) \left| \mathcal{F}_k^{a-1} g(z) \right|}{(\lambda + 1) - \| (M - N) + (\lambda + 1)N \| |z|}.
\]
It follows that \(v(\rho) \geq 0\forall \rho \in [0, \rho_0]\), where \(\rho_0 = \rho_0 (\mu, \lambda, M, N)\) is the smallest positive root of equation (22), which proves conclusion (21).

Theorem 2. Let the function \(f \in A\), and assume that \(g \in R_k^a (\mu)\). If \(F_k^a f (z)\) is majorized by \(F_k^a g (z)\) in \(D\), then

\[
|F_k^a f (z)| \leq |F_k^a g (z)| \forall |z| \leq \rho_1,
\]

where \(\rho_1\) is the smallest positive root of the equation

\[
(\epsilon^2 + \mu (\lambda + 1) - |\lambda|) |\lambda|^2 - 2 (1 + \mu) |\lambda| - \mu (\lambda + 1 - \epsilon^2) = 0,
\]

where \(a \geq 0, k \in \Phi, \mu \geq 0, -1 < \lambda \leq 2,\) and \(|\lambda| > \mu (\lambda + 1) + e\).

Proof. Since \(g \in R_k^a (\mu)\), then, from (19) and the subordination relation,

\[
\left| \frac{z(\mathcal{F}_k^a g(z)' - \mu z(\mathcal{F}_k^a g(z))'}{\mathcal{F}_k^a g(z)} - 1 \right| = e^w(z) (z \in D),
\]

where \(w\) is the analytic function in \(D\), with \(w(0) = 0\) and \(|w(z)| \leq |z| \leq 1, \forall z \in D\). Now, let

\[
W = \frac{z(\mathcal{F}_k^a g(z))'}{\mathcal{F}_k^a g(z)}.
\]

In (45), we have

\[
W - \mu |W - 1| = e^w(z),
\]

which implies that

\[
W - \mu (W - 1) e^{i\phi} = e^{w(z)}.
\]

Then, we have

\[
W = \frac{e^{w(z) - \mu e^{i\phi}}}{1 - \mu e^{i\phi}}.
\]

From (46 and 49), we have

\[
z(\mathcal{F}_k^a g(z))' = \frac{e^{w(z) - \mu e^{i\phi}}}{1 - \mu e^{i\phi}}
\]

Now, on using (12) in (50), for \(-1 < \lambda \leq 2\), we have the following:

\[
\mathcal{F}_k^a g(z) = \frac{e^{w(z) + \lambda (1 + \mu) e^{i\phi}}}{(\lambda + 1)(1 - \mu e^{i\phi})}.
\]

which implies that

\[
|\mathcal{F}_k^a g(z)| \leq \frac{(\lambda + 1)(1 + \mu)}{|\lambda| - \mu (\lambda + 1) - \epsilon^2} |\mathcal{F}_k^a f (z)|.
\]

Now, since \(F_k^a f (z)\) is majorized by \(F_k^a g (z)\) in \(D\), then we have

\[
F_k^a f (z) = \psi(z) F_k^a g(z).
\]

Differentiating the previous equality with respect to \(z\) and then multiplying by \(z\), we get

\[
z(\mathcal{F}_k^a f(z))' = z \psi(z) (\mathcal{F}_k^a g(z))' + z \psi'(z) (\mathcal{F}_k^a g(z)).
\]

On using relation (12), we have

\[
(\lambda + 1) \mathcal{F}_k^a f(z) = z \psi'(z) \mathcal{F}_k^a g(z) + (\lambda + 1) \psi(z) \mathcal{F}_k^a g(z).
\]

This implies

\[
(\lambda + 1) |\mathcal{F}_k^a f(z)| \leq |z| |\psi(z)| |\mathcal{F}_k^a g(z)| + |(\lambda + 1) |\psi(z)| |\mathcal{F}_k^a g(z)|.
\]

Thus, note that the Schwarz function \(\psi\) satisfies the inequality (see [21])

\[
|\psi(z)| \leq \frac{1 - |\psi(z)|^2}{1 - |z|^2}; \quad (z \in D).
\]

On using (52) and (57) in (56), we have

\[
|\mathcal{F}_k^a f(z)| \leq \frac{\zeta_1(\rho, c)}{(1 - \rho^2)(|\lambda| - \mu (\lambda + 1) - \epsilon^2)} |\mathcal{F}_k^a g(z)|.
\]

Setting \(|z| = \rho\) and \(|\psi(z)| = c (0 \leq c \leq 1)\), then inequality (58) leads to

\[
|\mathcal{F}_k^a f(z)| \leq \frac{\zeta_1(\rho, c)}{(1 - \rho^2)(|\lambda| - \mu (\lambda + 1) - \epsilon^2)} |\mathcal{F}_k^a g(z)|.
\]

where

\[
\zeta_1(\rho, c) = \rho (1 + \mu)(1 - c^2) + c (1 - \rho^2)(|\lambda| - \mu (\lambda + 1) - \epsilon^2).
\]

Then, from (59),

\[
|\mathcal{F}_k^a f(z)| \leq \eta_1(\rho, c) |\mathcal{F}_k^a g(z)|.
\]

Here,

\[
\eta_1(\rho, c) = \frac{\zeta_1(\rho, c)}{(1 - \rho^2)(|\lambda| - \mu (\lambda + 1) - \epsilon^2)}.
\]

From relation (61), in order to prove our result, we need to determine

\[
\rho_1 = \max\{\rho \in [0, 1]; \eta_1(\rho, c) \leq 1 \forall c \in [0, 1]\},
\]

\[
= \left[\max\{\rho \in [0, 1]; G_1(\rho, c) \geq 0 \forall c \in [0, 1]\} \right],
\]

where

\[
G_1(\rho, c) = (1 - \rho^2)(1 - c)(|\lambda| - \mu (\lambda + 1) - \epsilon^2) - \rho (1 + \mu)(1 - c^2).
\]

A simple calculus shows that the inequality \(G_1(\rho, c) \geq 0\) is equivalent to

\[
u_1(\rho, c) = (1 - \rho^2)(|\lambda| - \mu (\lambda + 1) - \epsilon^2) - \rho (1 + \mu)(1 + c) \geq 0.
\]

However, the function \(\nu_1(\rho, c)\) takes its minimum value at \(c = 1\), that is,
\[
\min \{ u_1(\rho, c) \mid c \in [0, 1]\} = u_1(\rho, 1) = v_1(\rho),
\]
where
\[
v_1(\rho) = (1 - \rho^2)(|\lambda| - \rho(\lambda + 1) - \rho^2) - 2\rho(1 + \mu) = 0.
\]

Thus, note that the Schwarz function \(\phi \) satisfies the inequality (see [21])
\[
|\psi'(z)| \leq \frac{1 - |\psi(z)|^2}{1 - |z|}; \quad (z \in D).
\]

On using (71) and (78) in (77), we have
\[
|\mathcal{F}_k^{-1} f(z)| \leq \left(\frac{|z|(1 - |\psi(z)|^2)\sec \theta |}{(1 - |z|)^3(\lambda - (\lambda + 1)|\tan \theta - e^0| + |\psi(z)|)} \right) |\mathcal{F}_k^{-1} g(z)|.
\]

Setting \(|z| = \rho \) and \(|\psi(z)| = c \) \((0 \leq c \leq 1)\), then inequality (79) leads to
\[
|\mathcal{F}_k^{-1} f(z)| \leq \left(\frac{\zeta_2(\rho, c)}{(1 - \rho^2)(\lambda - (\lambda + 1)|\tan \theta - e^0|)} \right) |\mathcal{F}_k^{-1} g(z)|.
\]

Then, from (80),
\[
|\mathcal{F}_k^{-1} f(z)| \leq \eta_2(\rho, c) |\mathcal{F}_k^{-1} g(z)|,
\]
where
\[
\eta_2(\rho, c) = \frac{\zeta_2(\rho, c)}{(1 - \rho^2)(\lambda - (\lambda + 1)|\tan \theta - e^0|)}.
\]

From relation (82), in order to prove our result, we need to determine
\[
\rho^* = \max\{\rho \in [0, 1]; \eta_2(\rho, c) \leq \forall c \in [0, 1]\} = \max\{\rho \in [0, 1]; G_2(\rho, c) \geq \forall c \in [0, 1]\}
\]
where
\[
G_2(\rho, c) = (1 - \rho^2)(1 - c)(\lambda - (\lambda + 1)|\tan \theta - e^0| - \rho(1 + c)|\sec \theta| \geq 0.
\]

A simple calculus shows that the inequality \(G_2(\rho, c) \geq 0 \) is equivalent to
\[
\eta_2(\rho, c) = (1 - \rho^2)(1 - c)(\lambda - (\lambda + 1)|\tan \theta - e^0| - \rho(1 + c)|\sec \theta| \geq 0.
\]

However, the function \(\eta_2(\rho, c) \) takes its minimum value at \(c = 1 \), that is,
\[
\min \{ u_2(\rho, c) \mid c \in [0, 1]\} = u_2(\rho, 1) = v_2(\rho),
\]
where
\[
\zeta_2(\rho, c) = \frac{\zeta_2(\rho, c)}{(1 - \rho^2)(\lambda - (\lambda + 1)|\tan \theta - e^0|)}.
\]
Corollary 3. Let the function $f \in A$, and assume that $g \in S_0^k [M, N, \mu]$. If $\mathcal{P}^m f(z)$ is majorized by $\mathcal{P}^m g(z)$ in D, then
\[
|\mathcal{P}^{m-1} f(z)| \leq |\mathcal{P}^{m-1} g(z)| |z| \leq \rho_2,
\]
where ρ_2 is the smallest positive root of the equation
\[
|\mu(M - N) + 2\mu(N + 1)\rho^2 - 2(2 + \mu(M - N) + 2N)|\rho + 2 = 0,
\]
where $-1 \leq M < M \leq 1, \mu \in C^*$, and $2 \geq |\mu(M - N) + 2N|$.

3. Corollaries and Consequences

If we take the values of k defined in (13) and (15), then the above theorems give the following corollaries.

Corollary 1. Let the function $f \in A$, and assume that $g \in S_0^k [M, N, \mu]$. If $\mathcal{P}^m f(z)$ is majorized by $\mathcal{P}^m g(z)$ in D, then
\[
(1 - \rho^2)^{(\lfloor \lambda \rfloor - (\lambda + 1)\tan \theta - \rho^2)} - 2(2 + \mu(M - N) + 2N)|\rho + (a - b)| = 0.
\]
(88)

It follows that $v_2(\rho) \geq 0$, $\rho \in [0, \rho^*]$, where $\rho^* = (\theta, \lambda)$ is the smallest positive root of (69), which proves conclusion (68).

Corollary 2. Let the function $f \in A$, and assume that $g \in S_0^k [M, N, \mu]$. If $\mathcal{P}^m f(z)$ is majorized by $\mathcal{P}^m g(z)$ in D, then
\[
|\mathcal{P}^{m-1} f(z)| \leq |\mathcal{P}^{m-1} g(z)| |z| \leq \rho_3,
\]
where ρ_3 is the smallest positive root of the equation
\[
(e^\theta - (a + b)^2 - 2(2 + \mu(M - N) + 2N)|\rho + (a - b)\theta = 0,
\]
where $a \geq 0, \mu \geq 0$, and $1 > 2\mu + e$.

Corollary 3. Let the function $f \in A$, and assume that $g \in T_k(\theta)$. If $\mathcal{P}^m f(z)$ is majorized by $\mathcal{P}^m g(z)$ in D, then
\[
|\mathcal{P}^{m-1} f(z)| \leq |\mathcal{P}^{m-1} g(z)| |z| \leq \rho_3',
\]
where ρ_3' is the smallest positive root of the equation
\[
(e^\theta + 2\mu(\lambda - 1)\rho^2 - 2(2 + \mu(M - N) + 2N)|\rho + (1 - 2\tan \theta - \rho^2) = 0,
\]
where $a \geq 0, -(\pi/2) < \theta < (\pi/2)$, and $1 > 2\tan \theta + e$.

Corollary 4. Let the function $f \in A$, and assume that $g \in S_0^k [M, N, \mu]$. If $Q^m f(z)$ is majorized by $Q^m g(z)$ in D, then
\[
|Q^{m-1} f(z)| \leq |Q^{m-1} g(z)| |z| \leq \rho_4,
\]
where ρ_4 is the smallest positive root of the equation
\[
|\mu(M - N) + (a + b)N|\rho^3 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b)| = 0,
\]
where $-1 \leq M < M \leq 1, \mu \in C^*$, and $a > 1, b > -1$, and $(a + b) \geq |\mu(M - N) + (a + b)N|$.

Corollary 5. Let the function $f \in A$, and assume that $g \in R_0^k (\mu)$. If $Q^m f(z)$ is majorized by $Q^m g(z)$ in D, then
\[
|Q^{m-1} f(z)| \leq |Q^{m-1} g(z)| |z| \leq \rho_5,
\]
where ρ_5 is the smallest positive root of the equation
\[
(\rho^2 + (a + b)(\pi/2 - (a + b)\theta)^2 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b) = 0,
\]
where $a \geq 0, b > -1, \mu \geq 0$, and $|a + b - 1| = |(a + b) + e|$.

Corollary 6. Let the function $f \in A$, and assume that $g \in T_k(\theta)$. If $Q^m f(z)$ is majorized by $Q^m g(z)$ in D, then
\[
|Q^{m-1} f(z)| \leq |Q^{m-1} g(z)| |z| \leq \rho_5',
\]
where ρ_5' is the smallest positive root of the equation
\[
(\rho^2 + (a + b)(\pi/2 - (a + b)\theta)^2 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b) = 0,
\]
where $a \geq 0, b > -1, \mu \geq 0$, and $|a + b - 1| = |(a + b) + e|$.

If we take $M = 1$ and $N = -1$, then Theorem 1, Corollary 1, and Corollary 4 give the following results.

Corollary 7. Let the function $f \in A$, and assume that $g \in S_0^k [1, -1, \mu]$. If $\mathcal{F}^m f(z)$ is majorized by $\mathcal{F}^m g(z)$ in D, then
\[
|\mathcal{F}^{m-1} f(z)| \leq |\mathcal{F}^{m-1} g(z)| |z| \leq \rho_0,
\]
where ρ_0 is the smallest positive root of the equation
\[
|2\mu - (1 + \lambda)(\pi - (\mu + 1)\rho^2 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b) = 0,
\]
where $k \in \Phi, \mu \in C^*, -1 < \lambda < 2, (\lambda - 1) \geq |2\mu - (1 + \lambda)|$.

Corollary 8. Let the function $f \in A$, and assume that $g \in S_0^k [1, -1, \mu]$. If $\mathcal{F}^m f(z)$ is majorized by $\mathcal{F}^m g(z)$ in D, then
\[
|\mathcal{F}^{m-1} f(z)| \leq |\mathcal{F}^{m-1} g(z)| |z| \leq \rho_2,
\]
where ρ_2 is the smallest positive root of the equation
\[
|\mu - (1 + \lambda)|\rho^2 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b) = 0,
\]
where $\mu \in C^*$ and $1 \geq |\mu - 1|$.

Corollary 9. Let the function $f \in A$, and assume that $g \in S_0^k [1, -1, \mu]$. If $Q^m f(z)$ is majorized by $Q^m g(z)$ in D, then
\[
|Q^{m-1} f(z)| \leq |Q^{m-1} g(z)| |z| \leq \rho_4,
\]
where ρ_4 is the smallest positive root of the equation
\[
|2\mu - (a + b)(\pi/2 - (2 + a + b)\theta)^2 - 2(2 + \mu(M - N) + (a + b)N)|\rho + (a + b) = 0,
\]
where $\mu \in C^*, a > 1, b > -1$, and $(a + b) \geq |(a + b) - (a + b)|$.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors have contributed equally to the paper.

Acknowledgments

This work was supported by the Taif University Researchers Supporting Project (TURSP-2020/305), Taif University, Taif, Saudi Arabia.

References

[1] T. H. MacGregor, "Majorization by univalent functions," Duke Mathematical Journal, vol. 34, pp. 95–102, 1967.
[2] M. S. Robertson, "Quasi-subordination and coefficient conjectures," Bulletin of the American Mathematical Society, vol. 76, pp. 1–9, 1970.
[3] J. L. Li and H. M. Srivastava, "Starlikeness of functions in the range of a class of an integral operators," Integral Transforms and Special Functions, vol. 15, pp. 96–103, 2004.
[4] R. Fournier and S. Ruscheweyh, "On two extremal problems related to univalent functions," Rocky Mountain Journal of Mathematics, vol. 24, pp. 529–538, 1994.
[5] S. P. Goyal, P. Goswami, and Z.-G. Wang, "Subordination and superordination results involving certain analytic functions," J. Appl. Math., Stat., Inform. vol. 7, no. 2, 2011.
[6] T. M. Flett, "The dual of an inequality of Hardy and Littlewood and some related inequalities," Journal of Mathematical Analysis and Applications, vol. 38, no. 3, pp. 746–765, 1972.
[7] J.-L. Liu, "Notes on Jung-Kim-Srivastava integral operator," Journal of Mathematical Analysis and Applications, vol. 294, no. 1, pp. 96–103, 2004.
[8] J. L. Li and H. M. Srivastava, "Some questions and conjectures in the theory of univalent functions," Rocky Mountain Journal of Mathematics, vol. 28, pp. 1035–1041, 1998.
[9] I. B. Jung, Y. C. Kim, and H. M. Srivastava, "The Hardy space of analytic functions associated with certain one-parameter families of integral operators," Journal of Mathematical Analysis and Applications, vol. 176, no. 1, pp. 138–147, 1993.
[10] B. A. Frasin, "New properties of the Jung-Kim-Srivastava integral operators," Tamkang J. Math. vol. 42, no. No.2, pp. 205–215, 2011.
[11] S. Owa and H. M. Srivastava, "Some applications of the generalized Libera integral operator," Proceedings of the Japan Academy Series A: Mathematical Sciences, vol. 62, no. 4, pp. 125–128, 1986.
[12] H. M. Srivastava and S. Owa, "A certain one-parameter additive family of operators defined on analytic functions," Journal of Mathematical Analysis and Applications, vol. 118, no. 1, pp. 80–87, 1986.
[13] T. Bulboacă, "Classes of first-order differential subordinations," Demonstratio Mathematica, vol. 35, pp. 287–292, 2002.
[14] O. Altintaş, Ö. Özkan, and H. M. Srivastava, "Majorization by starlike functions of complex order, Complex Var.," Theory Appl, vol. 46, no. 3, pp. 207–218, 2001.
[15] P. Goswami, B. Sharma, and T. Bulboacă, "Majorization for certain classes of analytic functions using multiplier transformation," Applied Mathematics Letters, vol. 23, no. 5, pp. 633–637, 2010.
[16] P. Goswami and M. K. Aouf, "Majorization properties for certain classes of analytic functions using the Salagean operator," Applied Mathematics Letters, vol. 23, no. 11, pp. 1351–1354, 2010.
[17] S. P. Goyal and P. Goswami, Majorization for Certain Classes of Meromorphic Functions Defined by Integral Operator, pp. 57–62, Ann. Univ. Mariae Curie-Sklodowska, Sect. A2, 2012.
[18] S. P. Goyal and P. Goswami, "Majorization for certain classes of analytic functions defined by fractional derivatives," Applied Mathematics Letters, vol. 22, no. 12, pp. 1855–1858, 2009.
[19] H. Tang, M. Aouf, and G. Deng, "Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator," Filomat, vol. 29, no. 4, pp. 763–772, 2015.
[20] H. Tang and G. Deng, "Majorization problems for two subclasses of analytic functions connected with the Liu-Owa integral operator and exponential function," J.Ineq. Appli., 2018.
[21] Z. Nehari, Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto, London, 1955.
[22] M. Arif, M. U. Al-Haq, O. Barukah, S. A. Khan, and S. Abdullah, "Majorization results for certain subfamilies of analytic functions," J. Funct. Spaces, vol. 2021, Article ID 5548785, 2021.
[23] S. Bulut, E. A. Adegani, and T. Bulboaca, "Majorization Results for a general subclass of meromorphic multivalent functions," U.P.B. Sci. Bull., Series A, vol. 83, no. 2, 2021.
[24] A. Çetinkaya, "Majorization problems for subclasses of univalent functions involving the Jung-Kim-Srivastava integral operator," Conference Proceeding Science and Technology, vol. 4, no. 3, pp. 238–241, 2021.