Lipoprotein(a) as an Old and New Causal Risk Factor of Atherosclerotic Cardiovascular Disease

Hayato Tada, Masayuki Takamura and Masa-aki Kawashiri

Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

Lipoprotein(a) [Lp(a)], discovered in 1963, has been associated with atherosclerotic cardiovascular disease (ASCVD) independent of other traditional risk factors, including LDL cholesterol. Lp(a) is an apolipoprotein B (apoB)-containing lipoprotein, which contains an LDL-like particle. Unlike LDL, which is a primary therapeutic target to decrease ASCVD, current guidelines recommend measuring Lp(a) for risk assessments because there is no clear evidence demonstrating the clinical benefit of decreasing Lp(a) using classical drugs such as niacin. However, recent Mendelian randomization studies indicate that Lp(a) causally correlates with ASCVD. In addition, novel drugs, including PCSK9 inhibitors, as well as antisense oligonucleotide for apo(a), have exhibited efficacy in decreasing Lp(a) substantially, invigorating a discussion whether Lp(a) could be a novel therapeutic target for further ASCVD risk reduction. This review aims to provide current understanding, and future perspectives, of Lp(a), which is currently considered a mere biomarker but may emerge as a novel therapeutic target in future clinical settings.

Key words: Lipoprotein(a), Aortic valve stenosis, Atherosclerotic cardiovascular disease, LDL

Introduction

Atherosclerotic cardiovascular disease (ASCVD), including coronary artery disease and stroke, is the leading cause of mortality worldwide. Despite advancements in ASCVD prevention through LDL-lowering therapies, using statins and various other agents, so-called “residual risk” remains a significant challenge. Of several biomarkers shown as residual risks, lipoprotein(a) [Lp(a)], an apolipoprotein B (apoB)-containing lipoprotein containing a LDL-like particle, has been reported as a causal risk factor for ASCVD by Mendelian randomization studies, as well as genome-wide association studies (GWAS). Conversely, the incidence of aortic valve stenosis, based on calcific aortic valvulopathy, where no effective option exists for its progression, is growing among industrialized countries because of aging societies. Moreover, Lp(a) is considered a causal factor in calcific aortic valvulopathy development, making Lp(a) a potential therapeutic target to decrease calcific aortic valvulopathy progression.

This review aims to provide a current understanding, and future perspectives, of Lp(a), which is currently considered a mere biomarker but may emerge as a novel therapeutic target in future clinical settings.

What is Lp(a)?

Lp(a) is a particle containing two different elements. The first element is an LDL-like particle containing an apoB-100 particle, which is insoluble in water. Reportedly, the LDL-like particle in Lp(a) is larger in size and higher in lipid content, with a density marginally lower than the LDL particle isolated from the same individual. The second element is a hydrophilic glycoprotein called apo(a) that shares homology with plasminogen, giving the particle atherogenic properties. Plasminogen has five kringle domains (KI–KV); apo(a) does not contain KI–KIII but has 10 subtypes of KIV (with KIV1, and KIV3–KIV10 have one copy, and KIV2 has one to >40 copies), and one copy of KV. The apo(a) isoform size and the Lp(a)
dysfunction16 and familial hypercholesterolemia (FH), have been reported to affect its level14, 17).

\textbf{Lp(a) Catabolism}

The serum Lp(a) concentration is primarily measured by the rate of apo(a) synthesis, rather than the apo(a) degradation18, 19). In addition, the liver has been reported as a major site of apo(a) synthesis, evidenced by studies of patients undergoing therapeutic liver transplantation20). The Lp(a) assembly is a two-step process that begins with docking apo(a) to an LDL particle, followed by creating a disulfide bond between the kringle structure and apoB-100; this has been reported to occur at the hepatocyte cell surface, rather than at the endoplasmic reticulum or Golgi21). Conversely, an Lp(a) catabolism pathway remains unclear. The liver is now considered the main organ that clears Lp(a) from the circulation21), and some studies using mice models have also suggested the kidneys are contributors22, 23). Moreover, kinetic studies in humans have revealed that Lp(a) catabolism was slower than that of LDL, independent of the Lp(a) concentration24, 25). Those results suggested that synthesis, rather than catabolism, determines the Lp(a) concentration. Likewise, a plasmapheresis study reported similar results26).

\textbf{Measurements of Lp(a)}

Some assays of Lp(a) measurements are reportedly affected by the number of KIV2 repeats27). Nevertheless, several studies using methods sensitive to the apo(a) size reported significant correlations between Lp(a) and the ASCVD risk, consistent with those using methods independent of apo(a) size variations. Accordingly, we intend to highlight that the critical question of whose Lp(a) should be measured is more pertinent than how to measure Lp(a).

\textbf{Pathological and Physiological Roles of Lp(a)}

Lp(a) and/or apo(a) have been correlated with prothrombotic properties through interfering with reactions in fibrinolysis regulation, including plasminogen binding to fibrinogen, fibrin, and tetranection, plasminogen activation by tissue plasminogen activator (t-PA), and augmentation of plasminogen activator inhibitor-1 (PAI-1) activity28-30). Besides those interactions with the fibrinolytic system, other functional properties have been explained as its pathophysiology, including the release of monocyte chemotactic activity from endothelial cells31), inhibition of the
plasma catalyzed activation of transforming growth factor-β (TGF-β)
32), enhanced proliferation and migration of smooth muscle cells 33), proliferation of
endothelial cells 34), as well as mesangial cells 35), and
stimulation of the expression of adhesion molecules,
such as intercellular adhesion molecule-1 (ICAM-1),
vascular cell adhesion molecule-1 (VCAM-1), and
E-selectin 36, 37).

Lp(a) as a Causal Factor for the ASCVD
Development: A Standpoint from Genetic
Studies
Since the initial results from a GWAS focusing
on seven major diseases using 2000 cases and 2000
controls 38), several GWAS have been conducted to
determine novel loci related to various diseases. Of
these, correlations between common variants in LPA
loci and cardiovascular disease, including coronary
artery disease and aortic valve stenosis, have been
reported often 39, 40). Notably, common variants in an
LDL receptor markedly correlated with ASCVD, whereas
these were not related to calcific aortic valvulopathy outcome 40). Conversely, common variants in
the LPA gene markedly correlate with ASCVD, as well
as calcific aortic valvulopathy outcomes as well. Such
correlations between genetic variants, resulting in an
increase/decrease of a particular biomarker and an
outcome, could be considered a proxy of a random-
ized controlled trial using a particular inhibitor; these
are known as “Mendelian randomization studies” 41). Of
note, Mendelian randomization studies could be
useful for validating, as well as estimating, the effects/
side effects of particular drugs targeting molecule “X,
” as demonstrated in multiple lipid-modifying drugs 42-44).
Accordingly, Lp(a) could be a causal factor for
ASCVD and related diseases, including coronary heart
disease, stroke, chronic kidney disease, calcific aortic
valvulopathy, heart failure, and peripheral vascular dis-
ease 45). Overall, meta-analyses of epidemiological and
genetic studies have demonstrated that elevated Lp(a)
levels correlated with an increased risk for ASCVD
(Fig. 3).

Lp(a) and Calcific Aortic Valvulopathy
Calcific aortic valvulopathy, characterized by cal-
cium deposition and thickening of the aortic valve,
correlates with aortic valve stenosis. In addition, epi-
demiological studies have reported several risk factors,
including classical coronary risk factors, such as age,
male, body mass index, hypertension, diabetes, smok-
ing, renal dysfunction, and LDL cholesterol related to
calcific aortic valvulopathy, indicating that treating or
preventing those risk factors might decrease the risk of
developing aortic valve stenosis 7). Under these hypoth-
eses, a randomized controlled trial (RCT) was con-
ducted to determine whether further reduction of
LDL cholesterol, using ezetimibe on the top of statins,
could effectively slow the progression of aortic valve
stenosis 46). Nevertheless, no medical treatment, thus
far, has been reported to affect disease progression in
patients with calcific aortic valvulopathy. Accordingly,
Lp(a) has emerged as a “causal” risk factor based on
genetic associations, which could be potential therapeu-
tic targets to prevent calcific aortic valvulopathy.
development. Furthermore, elevated Lp(a) levels enhance the calcific aortic valvulopathy progression and, thus, the need for aortic valve replacement (Fig. 4)

Lp(a) as One of the Residual Factors of Statin Therapies

Several biomarkers are considered so-called “residual risk of statin therapies;” of those, the evidence level obtained from sub-analyses, using RCTs, could be considered higher than those obtained from single-center observational studies. Thus, only a few biomarkers, including triglycerides

and Lp(a)

have been explicitly “established” as the residual risk of statin therapies through RCT investigations. Remarkably, both biomarkers have been projected to be causal factors for ASCVD development through Mendelian randomization studies. These facts motivate us to lower those biomarkers, especially among patients with ASCVD under statin therapies.

Lp(a)-Lowering Therapies

For a long time, no satisfactory therapeutic approach existed to lower Lp(a) levels. We, among other groups, have reported Lp(a) levels among FH patients were caused by LDL receptor mutations

resulting in the estimation that LDL-lowering therapies, such as statins, resins, and ezetimibe, could be useful for this purpose. However, studies using those drugs have recurrently reported almost no effect on decreasing Lp(a) levels

Conversely, recently approved proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, which elevate LDL receptor levels by inhibiting its degradation, have been reported to lower Lp(a) levels as much as 30%, with the extent of Lp(a) lowering correlating with the LDL reduction

The mechanism underlying this effect was recently the subject of a comprehensive investigation. Another option could be mipomersen, an apoB inhibitor, which could correlate with the reduction of Lp(a)

However, it almost always causes fatty liver since it blocks the secretion of apoB-containing lipoproteins from the liver. Another emerging option could be antisense oligonucleotide (ASO) targeted to apolipoprotein(a). The first-generation drug called IONIS-APO(a)Rx has been reported as a tolerable, potent therapy for decreasing Lp(a) concentrations

Recently, AKCEA-APO(a)-LRx (ISIS 681257), a second-generation, N-acetyl-galactosamine-conjugated, ASO targeted to apolipoprotein(a), was reported to
lower the mean plasma Lp(a) levels by 92%50.

Conclusions and Perspectives

Lp(a), an old molecule, has long been considered a vital causal factor of ASCVD, including calcific aortic valvulopathy. Now, specific therapies reducing Lp(a) quite effectively are projected to become available soon in clinical practice. We would witness whether such emerging novel approaches could tamp down the residual risk, as well as the progression, of calcific aortic valvulopathy.

Acknowledgments and Notice of Grant Support

None.

Conflicts of Interest

None.

References

1) Reith C, Armitage J. Management of residual risk after statin therapy. Atherosclerosis, 2016; 245: 161-170
2) Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Luca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM; IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med, 2015; 372: 2387-2397
3) Suwa S, Ogita M, Miyauchi K, Sonoda T, Konishi H, Tsuboi S, Wada H, Naito R, Dohi T, Kasai T, Okazaki S, Isoda K, Daida H. Impact of Lipoprotein (a) on Long-Term Outcomes in Patients with Coronary Artery Disease Treated with Statin After a First Percutaneous Coronary Intervention. J Atheroscler Thromb, 2017; 24: 1125-1131
4) Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J Am Coll Cardiol, 2013; 61: 1146-1156
5) Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Fanucci MG, Rust S, Bennett D, Silveira A, Malastig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M; PROCARDIS Consortium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med, 2009; 361: 2518-2528
6) CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thomp-
son JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkers L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyttikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkkanen E, Van Zuydam N, Voigt BF, Waite LL, Zhang W, Ziegler A, Absber D, Alshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudin-Boehm S, Cox D, Dimitriou M, Do R; DIAGNOM Consortium; CARDIOGENICS Consortium, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maucouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, di Maouche S, Morris AD, Müller-Nurysid M; MuTHER Consortium, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP; Schäfer A, Sivathanan M, Song C, Stewart AF, Tan ST, Thorgerisson G, van der Schot CE, Wagner PJ; Wellcome Trust Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Bo...
26) Armstrong VW, Schleef J, Thiery J, Muche R, Schuff-Werner P, Eisenhauer T, Seidel D. Effect of HELP-LDL-apheresis on serum concentrations of human lipoprotein(a): kinetic analysis of the post-treatment return to baseline levels. Eur J Clin Invest, 1989; 19: 235-240

27) Marcovina SM, Albers JJ, Scanu AM, Kennedy H, Gia-culli F, Berg K, Couderc R, Dafi F, Rifi N, Sakurabayashi I, Tate JR, Steinmetz A. Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin Chem, 2000; 46: 1956-1967

28) Palabrica TM, Liu AC, Aronovitz MJ, Furie B, Lawn RM, Furie BC. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thromboly-sis. Nat Med, 1995; 1: 256-259

29) Edelberg JM, Gonzalez-Gronow M, Pizzo SV. Lipoprotein(a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thromb Res, 1990; 57: 155-162

30) Edelberg JM, Reilly CF, Pizzo SV. The inhibition of tissue type plasminogen activator by plasminogen activator inhibitor-1. The effects of fibrinogen, heparin, vitronectin, and lipoprotein(a). J Biol Chem, 1991; 266: 7488-7493

31) Poon M, Zhang X, Dunsky KG, Taubman MB, Harpel EDelberg JM, Reilly CF, Pizzo SV. The inhibition of tissue type plasminogen activator by plasminogen activator inhibitor-1. The effects of fibrinogen, heparin, vitronectin, and lipoprotein(a). J Biol Chem, 1991; 266: 7488-7493

32) Kojima S, Harpel PC, Rifkin DB. Lipoprotein (a) inhibits the generation of transforming growth factor beta: an endogenous inhibitor of smooth muscle cell migration. J Cell Biol, 1991; 113: 1439-1445

33) Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalf JE. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature, 1994; 370: 460-462

34) Yano Y, Seishima M, Tokoro Y, Noma A. Stimulatory effects of lipoprotein(a) and low-density lipoprotein on human umbilical vein endothelial cell migration and prolif-eration are partially mediated by fibroblast growth factor-2. Biochem Biophys Acta, 1998; 1393: 26-34

35) Morishita R, Yamamoto K, Yamada S, Matsushita H, Tomita N, Sakurabayashi I, Kaneda Y, Moriguchi A, Higaki J, Ogihara T. Stimulatory effect of lipoprotein (a) on proliferation of human mesangial cells: role of lipopro-tein (a) in renal disease. Biochem Biophys Res Commun, 1998; 249: 313-320

36) Takami S, Kihara S, Yamada S, Ishigami M, Takemura K, Kume N, Kita T, Matsuzawa Y. Lipoprotein(a) enhances the expression of intercellular adhesion mole-cule-1 in cultured human umbilical vein endothelial cells. Circulation, 1998; 97: 721-728

37) Allen S, Khan S, Tam Sp, Koschinsky M, Taylor P, Yacoub M. Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity. FASEB J, 1998; 12: 1765-1776

38) Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common dis-eases and 3,000 shared controls. Nature, 2007; 447: 661-678

39) Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennet D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M; PROCARDIS Consor-tium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med, 2009; 361: 2518-2528

40) Thansouls G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KE, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O’Brien KD, Kamstrup PR, Nordetgaard BG, Tybjærg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Jiao Y, Sjogren M, van der Pals J, Kalsch H, Mühleisen TW, Nöthen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong Q, Erbel R, Kathiresan S, Melander O, Gudnason V, O’Donnell CJ, Post WS; CHARGE Extracoronary Calcium Working Group. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med, 2013; 368: 503-512

41) Tada H, Kawashiri MA, Yamagishi M. Clinical Perspectives of Genetic Analyses on Dyslipidemia and Coronary Artery Disease. J Atheroscler Thromb, 2017; 24: 452-61

42) Myocardial Infarction Genetics Consortium Investigators, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, Lange LA, Fontanillas P, Gupta N, Duga S, Goel A, Farrall M, Salehedin D, Ferrario P, König I, Asselta R, Merlini PA, Marziliano N, Notarangelo MF, Schick U, Auer P, Assimes TL, Reilly M, Wilensky R, Rader DJ, Hovingh GK, Meitinger T, Kessler T, Kastrati A, Laugwitz KL, Siscovich D, Rotter JI, Hazen SL, Tracy R, Cresci S, Spertus J, Jackson R, Schwartz SM, Natarajan P, Crosby J, Muzny D, Ballantyne C, Rich SS, O’Donnell CJ, Abecasis G, Sunaev S, Nickerson DA, Buring JE, Ridker PM, Chas-man DI, Austin E, Kullo J, Weeke PE, Shaffer CM, Bastarache LA, Denny JC, Roden DM, Palmer C, Deloukas P, Lin DY, Tang ZZ, Erdmann J, Schunkert H, Danesh J, Marrugat J, Elsoula D, McPherson R, Watkins H, Reiner AP, Wilson JG, Altschuler D, Gibbs RA, Lander ES, Boerwinkle E, Gabriel S, Kathiresan S. N Engl J Med, 2014; 371: 2072-2082

43) Nomura A, Won HH, Khera AV, Takeuchi F, Ito K, McCarthy S, Emdin CA, Klarin D, Natarajan P, Zekavat SM, Gupta N, Peloso GM, Boreck IB, Teslovich TM, Asselta R, Duga S, Merlini PA, Correa A, Kessler T, Wilson JG, Bown MJ, Hall AS, Braund PS, Carey DJ, Murray MF, Kirchner HL, Leader JB, Lavage DR, Manus JN, Hartz DE, Samani NJ, Schunkert H, Marrugat J, Elsoula D, McPherson R, Watkins H, Reiner AP, Wilson JG, Altschuler D, Gibbs RA, Lander ES, Boerwinkle E, Gabriel S, Kathiresan S. N Engl J Med, 2014; 371: 2072-2082

44) Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, Di Angelantonio E, Arveiler D, Assimes TL,
Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-Jensen J, Bottiger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen Yi, Chowdhury R, Christensen C, Chu AT, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dubé M, Ebeling T, Eiriksdottir G, Eskin T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikee-Schmidt R, Fritsche LG, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giuliianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Hoyo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MK, Jensen GB, Jørgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Koop kernberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, Langenberg C, Langsted A, Launer LJ, Lauritzen T, Liewald DCM, Lin LA, Linneberg A, Loos RJF, Lu Y, Lu X, Mågi R, Malarstig A, Manichaikul A, Manning AK, Mäntyselkä P, Marouli E, Masca NGD, Maschio A, Meigs J, Metspalu A, Metspalu M, Meyers TM, Miettinen O, Moespsalz A, Morris AP, Morrison AC, Mulas A, Müller-Nurysidu M, Munroe PB, Neville MJ, Nielsen JB, Nielsen SF, Nordestgaard BG, Orдовes JM, Mehran R, O’D’onnell CJ, Orho-Melander M, Molony CM, Muntendam P, Padmanabhan S, Palmer CNA, Pasko D, Patel AP, Pedersen O, Perola M, Peters A, Pisinger C, Pitsis G, Polasek O, Poulter N, Psaty BM, Rader DJ, Rasheed A, Rauramaa R, Reilly DF, Reiner AP, Renström T, Richards TR, Ridker PM, Rioux JD, Robertson JR, Robertson NR, Roden DM, Rotter JL, Rudan I, Salomaa V, Samani NJ, Sanna S, Sattar N, Schmidt EM, Scott RA, Sever P, Sevilla RS, Shaffer CM, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith BH, Somayajula S, Southam L, Spector TD, Speliotes EK, Starr JM, Stirrups KE, Stitziel NO, Strauch K, Stringham HM, Surendran P, Tada H, Kawashiri MA, Nomura A, Yoshimura K, Itoh H, Komuro I, Yamagishi M. Serum triglycerides predict first cardiovascular events in diabetic patients with hypercholesterolemia and retinopathy. Eur J Prev Cardiol, 2018; 25: 1852-1860.

45) Emdin CA, Khera AV, National P, Klarin D, Won HH, Peloso GM, Stitziel NO, Nomura A, Zekavat SM, Bick AG, Gupta N, Aslanta R, Duga S, Merliena PA, Correa A, Kessler T, Wilson JG, Bown MJ, Hall AS, Braun PS, Samani NJ, Schunkert H, Marrugat J, Elosua R, McPherson R, Farrall M, Watkins H, Willer C, Abecasis GR, Felix JF, Vasan RS, Lande E, Rader DJ, Danesh J, Ardis-sino D, Gabriel S, Saleheen D, Kathiresan S; CHARGE– Heart Failure Consortium; CARDIoGRAM Exome Consortium. Phenotypic Characterization of Genetically Low- ered Human Lipoprotein(a) Levels. J Am Coll Cardiol, 2016; 68: 2761-2772.

46) Rossebø AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerds T, Gohilkhe-Bärwolf C, Holme I, Keesäniemi Y, Malbeck W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K, Willenheimer R; SEAS Investigators. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med, 2008; 359: 1343-1356.

47) Capoulade R, Chan KL, Yeang C, Mathieu P, Bossé Y, Dumesnil JG, Tam JW, Teo KK, Mahmut M, Yang X, Witztum JL, Arsenault BJ, Després JP, Pifarot P, Tsimakis S. Oxidized Phospholipids, Lipoprotein(a), and Progression of Calcific Aortic Valve Stenosis. J Am Coll Cardiol, 2015; 66: 1236-1246.

48) Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, Mundel H, Olsson AG. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol, 2015; 65: 2267-2275.

49) Tada H, Kawashira MA, Nomura A, Yoshimura K, Itoh H, Komuro I, Yamagishi M. Serum triglycerides predict first cardiovascular events in diabetic patients with hypercholesterolemia and retinopathy. Eur J Prev Cardiol, 2018; 25: 1852-1860.

50) Albers JJ, Slee A, O’Brien KD, Robinson JG, Kashyap ML, Kivligherovicz PO Jr, Xu P, Marcovina SM. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol, 2013; 62: 1575-1579.

51) Khera AV, Everett BM, Caulfield MP, Hantash FM, Wohlgenuth J, Ridker PM, Mora S. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation, 2014; 129: 635-642.

52) Fieseler HG, Armstrong VW, Wieland E, Thiery J, Schütz E, Walli AK, Seidel D. Serum Lp(a) concentrations are unaffected by treatment with the HMG-CoA reductase inhibitor Pravastatin: results of a 2-year investigation. Clin Chim Acta, 1991; 204: 291-300.

53) Awad K, Mikhailidis DP2, Katsiki N3, Muntner P4, Ban-ach M5,6,7; Lipid and Blood Pressure Meta-Analysis Col- laboration (LBPMC) Group. Effect of Ezetimibe Mono-therapy on Plasma Lipoprotein(a) Concentrations in Patients with Primary Hypercholesterolemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Drugs, 2018; 78: 453-62.

54) Ginsberg HN, Stein EA. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol, 2014; 114: 711-715.

55) Watts GF, Chan DC, Somaratne R, Wasserman SM, Scott R, Marcovina SM, Barrett PHR. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur Heart J, 2018; 39: 2577-2585.

56) Reyes-Soffer G, Pavlyha M, Ngai C, Thomas T, Holleran
57) Nandakumar R, Matveyenko A, Thomas T, Pavlyha M, Ngai C, Holleran S, Ramakrishnan R, Ginsberg HN, Karmally W, Marcovina SM, Reyes-Soffer G. Effects of mipomersen, an apolipoprotein B100 antisense, on lipoprotein (a) metabolism in healthy subjects. J Lipid Res, 2018; 59: 2397-2402

58) Tsimikas S. Potential Causality and Emerging Medical Therapies for Lipoprotein(a) and Its Associated Oxidized Phospholipids in Calcific Aortic Valve Stenosis. Circ Res, 2019; 124: 405-415