Data Article

Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives

Andreanna J. Welch a,*, Katherine Collins a, Aakrosh Ratan b, Daniela I. Drautz-Moses c, Stephan C. Schuster c, Charlotte Lindqvist a,***

a Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA
b Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, Charlottesville 22908, VA, USA
c Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore

Article info

Article history:
Received 3 March 2016
Received in revised form 5 March 2016
Accepted 7 March 2016
Available online 14 March 2016

Keywords:
Hawaii
Lamiaceae
Plastid genomes
Genome structure

Abstract

These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys. “The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)” [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Biology, genetics, genomics
More specific subject area	Molecular phylogenetics and evolution
Type of data	Tables and figures
How data was acquired	High-throughput sequencing of contemporary and herbarium samples was conducted on the Illumina HiSeq 2500 and MiSeq platforms, followed by both de novo and reference-guided assemblies, mapping, and functional annotation
Data format	Raw, and analyzed
Experimental factors	De novo assemblies were created using SOAPdenovo and reference-guided assemblies were created using YASRA. Sequences were functionally annotated using DOGMA. SNPs were called and filtered using SAMtools and BCFtools
Experimental features	Data include chloroplast genome gene content, structure, and comparisons of variable loci in a suite of recently diverged species and outgroups
Data source location	Hawaii, North America, South America, Europe, Africa, and Asia
Data accessibility	Data are published with this article

Value of the data

- These data provide a summary of the characteristics and structure of the chloroplast genomes of several taxa within Lamiaceae, which can be used to increase our understanding of molecular evolution of the chloroplast genome, as well as the evolution of its structure and function.
- A comparison of variable regions in mints can be used to identify rapidly evolving regions in other taxa.
- Primer sequences described here can be used to target highly variable regions in closely related taxa.

1. Data

Raw, demultiplexed sequence reads have been deposited in the NCBI sequence read archive (SRP070171) and full chloroplast genomes for 12 mint taxa have been deposited in GenBank (KU724130-KU724141). Data presented in the text include tables and figures giving information on gene content and variability in these 12 species, as well as comparison of genome structure with other members of the order Lamiales.

2. Experimental design, materials and methods

2.1. Samples, library construction, and shotgun sequencing

We selected 12 Hawaiian mint taxa for shotgun sequencing (five contemporary and seven from herbarium collections ranging up to ~100 years old), of which two extinct species were represented by two accessions each (see Tables 1 and 2 in [1]). We also sequenced four Stachys species, representing both close and more distantly related relatives.

DNA extraction, library construction and shotgun sequencing followed the methods described in [1]. Briefly, approximately 100 mg dried leaf tissue was homogenized using the TissueLyser system (Qiagen), and DNA was extracted using the DNeasy plant mini kit (Qiagen). DNA isolated from herbarium samples was processed separately from contemporary samples using stringent protocols and controls to prevent and detect any potential contamination. For contemporary samples, DNA extracts were sheared to 200–600 bp via sonication in a Covaris S220; DNA from herbarium samples is...
naturally degraded and therefore was not sheared further. Genomic shotgun sequencing libraries were constructed following the standard Illumina Tru-seq protocol for contemporary samples, or the NEBNext Library Prep Mastermix kit (New England Biolabs) for herbarium samples. Libraries were quantified using the PicoGreen High Sensitivity assay and then pooled and sequenced on the Illumina

Table 1

Gene content of the chloroplast genome of *Stenogyne haliakalae* and 11 additional mint species.

Gene Products	Genes
Photosystem I	psaA, psaB, psaC, psaI, psaJ, ycf3 [20], ycf4 [20]
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ/lhbA
Cytochrome b6/f	petA, petB, petD, petG, petL, petN
ATP synthase	atpA, atpB, atpE, atpF, atpH, atpL
Rubisco	rbcL
NADH oxidoreductase	ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK
RNA polymerase	rpoA, rpoB, rpoC1, rpoC2
Large subunit ribosomal proteins	rpl2 [a], rpl14, rpl16, rpl20, rpl22, rpl23 [b], rpl32, rpl33, rpl36
Small subunit ribosomal proteins	rps2, rps3, rps4, rps7 [a], rps8, rps11, rps12 [b], rps14, rps15, rps16, rps18, rps19
Other functions	accD, ccsA, cemA, clpP, matK, infA
Unknown functions	ycf1 [c], ycf2 [d], ycf15 [e]
Ribosomal RNAs	rrn23 [a], rrn16 [b], rrn5 [c], rrn4.5 [d]
Transfer RNAs	trnA(UGC) [a], trnC(GCA), trnD(GUC), trnE(UUC), trnF(GAA), trnG(GCC), trnG(UCC), trnH(GUG), trnI(CAU) [e], trnI(GAU) [f], trnK(UUU), trnL(UAA), trnL(UAG), trnM(CAU), trnN(GUU) [f], trnP(UGC), trnQ(UUG), trnR(ACG) [g], trnR(UCU), trnS(GCU), trnS(GGA), trnS(UGA), trnT(GGU), trnT(UGU), trnV(UAC), trnV(GAC) [h], trnW(CCA), trnY(GUA)

a Gene fully located within the inverted repeats.

b Gene partially located within the inverted repeats.

Table 2

Genes containing introns in the chloroplast genomes of *Stenogyne haliakalae* and 11 additional mint species. Numbers represent the lengths (bp) of exons and introns in *S. haliakalae*.

Gene	Location	# Introns	Exon I	Intron I	Exon II	Intron II	Exon III	
atpF	LSC	1	143	656	410	291	616	227
clpP	LSC	2	70	658	291	616	227	
ndhA	SSC	1	552	1020	538	776		
ndhB	IR	1	755	680	776			
petB	LSC	1	5	718	651	474		
petD	LSC	1	7	728	474			
rpl16	LSC	1	8	907	392			
rpl2	IR	1	390	658	433			
rpoC1	LSC	1	434	736	1634			
rps12	LSC/IR[a]	2	113	a	231	537	25	
rps16	LSC	1	39	875	226			
trnA-UGC	IR	1	37	807	34			
trnG-UCC	LSC	1	22	690	47			
trnL-GAU	IR	1	34	938	36			
trnK-UUU	LSC	1	36	2509	34			
trnL-UAA	LSC	1	36	488	49			
trnV-UAC	LSC	1	37	579	36			
ycf3	LSC	2	123	713	229	725	152	

a Trans-spliced
Table 3
Lengths (bp) of the long single copy region (LSC), short single copy region (SSC), and inverted repeats regions (IR) for the chloroplast genomes of *Stenogyne haliakalae* and 11 additional mint species.

Species	LSC (bp)	IR (bp)	SSC (bp)	Total (bp)
Haplostachys haplostachya	81,755	25,441	17,495	150,132
Haplostachys linearifolia	81,752	25,441	17,495	150,129
Phyllostegia velutina	81,765	25,440	17,496	150,141
Phyllostegia waimeae	81,744	25,448	17,517	149,722
Stachys byzantina	81,774	25,464	17,552	150,254
Stachys coccinea	82,171	25,470	17,563	150,674
Stachys sylvatica	81,807	25,414	17,560	150,195
Stenogyne bifida	81,752	25,441	17,495	150,129
Stenogyne haliakalae	81,364	25,436	17,499	149,736
Stenogyne kanehoana	81,739	25,441	17,495	150,116
Stenogyne sessilis	81,743	25,441	17,495	150,120

Fig. 1. Comparison of structure and similarity among 15 complete chloroplast genomes from the order Lamiales. *Cistanche deserticola* (102,657 bp) and *Epifagus virginiana* (70,028 bp), both members of the Orobanchaceae, are not considered here because they are parasitic and lack chlorophyll, thus demonstrating largely reduced chloroplast genomes. Blocks with the same color represent homologous regions free of internal structural changes for that subset of taxa, and those above the centerline for each taxon are in the same orientation as in *Stenogyne haliakalae*, whereas those below the line are in the reverse direction. Within each block a similarity profile for the region is plotted. Areas outside of blocks are presumed to represent lineage-specific regions of the chloroplast genome. One copy of the inverted repeat has been trimmed so that homology of the remaining repeat (area shaded in light gray) can be shown.
HiSeq and MiSeq platforms. Adapter sequences were trimmed from the reads using the Adapter-Removal software [2]. Assessment of DNA damage in old herbarium specimens was conducted using mapDamage 2.0 [3]. The presence of misincorporations characteristic of damaged DNA molecules typically found in old and degraded samples suggests that the data from herbarium samples are authentic, however, the overall levels of damage were low and within the range expected based on the age of the specimens (see Supplementary Figs. 2 and 3 in [1]).

2.2. Assembly of the Hawaiian mint reference chloroplast genome

Because no chloroplast genome sequence from a closely related taxon was available at the time this study was conducted, we implemented a combined reference-guided and de novo assembly approach [4] to determine the first complete chloroplast genome sequence for a Hawaiian mint. We assembled the sequence for Stenogyne haliakalae, an extinct species, as it had the largest number of reads. Briefly, the approach involved conducting both reference-guided assembly in YASRA 2.32 [5] with olive (Olea europaea, NC_013707; [6]) as the reference, as well as de novo assembly in

![Fig. 2. Conservation among 11 complete mint chloroplast genomes. The sequence for Haplostachys linearifolia was excluded due to missing data. A physical map is given at the top to show gene content and organization (see Fig. 2 in [1] for gene names and products). In the lower panels, regions of the genome are represented by bars, and those that are conserved among all 11 species are colored mauve, whereas those that are conserved among subsets of the taxa have different colors. The height of the bar shows the degree of similarity.](attachment:image.png)
Table 4
Sliding window analysis of variability of complete chloroplast genome sequences of three Hawaiian and three Stachys taxa (\textit{Stenogyne haliakalae}, \textit{Stenogyne bifida}, \textit{Haplostachys haplostachya}, \textit{Stachys chamissonis}, \textit{Stachys coccinea}, and \textit{Stachys sylvatica}). PICs – Potentially informative characters.

Begin	End	# PICs Stachys	# PICs Hawaiian	
1	999	8	1	
1000	1999	7	2	
2000	2999	6	4	
3000	3999	11	1	
4000	4999	7	0	
5000	5999	5	1	
6000	6999	10	1	
7000	7999	8	0	
8000	8999	6	2	
9000	9999	9	0	
10,000	10,999	4	1	
11,000	11,999	3	0	
12,000	12,999	4	0	
13,000	13,999	9	4	
14,000	14,999	4	2	
15,000	15,999	1	0	
16,000	16,999	3	0	
17,000	17,999	6	0	
18,000	18,999	5	3	
19,000	19,999	2	0	
20,000	20,999	3	0	
21,000	21,999	0	0	
22,000	22,999	5	1	
23,000	23,999	1	0	
24,000	24,999	0	0	
25,000	25,999	1	0	
26,000	26,999	4	1	
27,000	27,999	5	3	
28,000	28,999	9	2	
29,000	29,999	4	1	
30,000	30,999	11	1	
31,000	31,999	5	1	
32,000	32,999	3	0	
33,000	33,999	3	1	
34,000	34,999	8	1	
35,000	35,999	1	0	
36,000	36,999	1	0	
37,000	37,999	5	0	
38,000	38,999	0	0	
39,000	39,999	1	0	
40,000	40,999	5	0	
41,000	41,999	3	1	
42,000	42,999	1	0	
43,000	43,999	5	2	
44,000	44,999	6	1	
45,000	45,999	10	0	
46,000	46,999	3	1	
47,000	47,999	7	0	
48,000	48,999	0	0	
49,000	49,999	6	1	
50,000	50,999	3	0	
51,000	51,999	2	0	
52,000	52,999	3	1	
53,000	53,999	5	3	
54,000	54,999	8	3	
55,000	55,999	8	2	
56,000	56,999	2	0	
57,000	57,999	6	1	
Begin	End	# PICs Stachys	# PICs Hawaiian	
-------	-------	---------------	----------------	----------------
58,000	58,999	9	1	
59,000	59,999	4	2	
60,000	60,999	3	3	
61,000	61,999	7	1	
62,000	62,999	2	0	
63,000	63,999	6	1	
64,000	64,999	5	1	
65,000	65,999	6	1	
66,000	66,999	8	0	
67,000	67,999	12	0	
68,000	68,999	6	0	
69,000	69,999	0	0	
70,000	70,999	7	0	
71,000	71,999	5	3	
72,000	72,999	3	0	
73,000	73,999	3	1	
74,000	74,999	4	2	
75,000	75,999	2	1	
76,000	76,999	5	0	
77,000	77,999	5	0	
78,000	78,999	7	0	
79,000	79,999	7	1	
80,000	80,999	4	1	
81,000	81,999	10	0	
82,000	82,999	2	2	
83,000	83,999	0	1	
84,000	84,999	1	0	
85,000	85,999	1	0	
86,000	86,999	2	0	
87,000	87,999	0	0	
88,000	88,999	1	1	
89,000	89,999	0	0	
90,000	90,999	1	0	
91,000	91,999	0	0	
92,000	92,999	1	0	
93,000	93,999	0	0	
94,000	94,999	2	1	
95,000	95,999	1	0	
96,000	96,999	2	0	
97,000	97,999	0	0	
98,000	98,999	0	0	
99,000	99,999	1	0	
100,000	100,999	1	0	
101,000	101,999	1	0	
102,000	102,999	1	0	
103,000	103,999	0	0	
104,000	104,999	5	2	
105,000	105,999	1	0	
106,000	106,999	4	0	
107,000	107,999	9	0	
108,000	108,999	4	0	
109,000	109,999	16	3	
110,000	110,999	6	2	
111,000	111,999	10	1	
112,000	112,999	7	0	
113,000	113,999	8	3	
114,000	114,999	4	0	
115,000	115,999	5	0	
116,000	116,999	6	4	
117,000	117,999	9	4	
118,000	118,999	3	0	
SOAPdenovo v1.05 [7]. Assembly methods are described in more detail in [1]. The resulting contigs from both approaches were split into overlapping sequences, and then used as input for a further reference guided-assembly step in YASRA. Gaps between the final contigs were closed using PCR (see [1] for PCR reaction conditions and Supplementary Table 1 of this paper for primer information) and Sanger sequencing in both directions from high-quality DNA extracted from a contemporary sample of *Stengyne bifida*. This ensured that amplification could be carried out over potentially large gaps, which would not be possible with degraded DNA from the extinct *Stenogyne haliakalae*. Contigs and Sanger sequences were aligned in Sequencher 4.7 (Gene Codes) to create a pseudo-reference sequence [4]. Reads from *Stenogyne haliakalae* were then mapped to the pseudo-reference using BWA v. 0.6.2 [8]. The reference sequence was further refined through Sanger sequencing of areas with low coverage or poor mapping quality (e.g., the border between the inverted repeat and single copy region). Reads were mapped to the final sequence, PCR duplicates were flagged and removed with the MarkDuplicates tool of the Picard command line toolset (http://picard.sourceforge.net/index.shtml), and a consensus sequence was called using SAMtools [9].

2.3. Assembly of additional mint chloroplast genomes

Complete or nearly complete chloroplast genomes were assembled using similar methods for 11 additional taxa: seven from the endemic Hawaiian mints (two of which were from herbarium samples) and four *Stachys* outgroups (see Tables 1 and 2 in [11]). Since the Hawaiian mints have diverged recently, we used the new chloroplast genome sequence from *Stenogyne haliakalae* as the reference during reference-guided assembly for the remaining Hawaiian taxa. The resulting contigs were aligned to create an interim sequence, and then the reads were mapped to this using BWA and a final consensus sequence called using SAMtools.

Chloroplast genome sequences for the *Stachys* outgroup taxa were assembled in a similar manner. We first assembled the chloroplast genome sequence for *Stachys chamissonis*, as this species is most closely related to the Hawaiian lineage. We conducted independent YASRA runs using *Olea europaea* as the reference, in addition to newly available sequences from *Stenogyne haliakalae, Sesamum indicum* (NC_016433) [10], *Origanum vulgare* (JX880022) [11], and *Salvia miltiorrhiza* (NC_020431) [12]. The contigs from all five runs were aligned to create an interim sequence. The reads were then mapped to the interim sequence using BWA and a consensus called using SAMtools. Once the *Stachys chamissonis* sequence was assembled we used this as the reference in YASRA for reference guided assembly of both *Stachys coccinea* and *Stachys sylvatica*. For *Stachys byzantina*, the most distantly related outgroup, we performed the initial reference-guided assembly using the sequence from *Stachys chamissonis*, as well as *Olea europaea* and *Sesamum indicum*. The rest of the assembly proceeded as described for the other *Stachys* species.

Table 4 (continued)

Begin	End	# PICs Stachys	# PICs Hawaiian
119,000	119,999	5	0
120,000	120,999	11	2
121,000	121,999	10	1
122,000	122,999	7	5
123,000	123,999	11	2
124,000	124,999	4	1
Min	0	0	0
Max	16	5	104
Total	565	5	104
Mean	4.52	0.83	
Median	4.00	0.00	
Table 5
Comparison of variability of coding genes by exon in complete chloroplast genome sequences of three Hawaiian and three *Stachys* taxa (*Stenogyne hallakalae*, *Stenogyne bifida*, *Haplostachys haplostachya*, *Stachys chamissonis*, *Stachys coccinea*, and *Stachys sylvatica*). Note: Exon numbers are defined by position in overall chloroplast genome sequence (not direction of gene) and exons that are completely conserved among these taxa and/or shorter than 100 bp have been excluded. PICs – Potentially informative characters.

Region	Length	#PICs per locus Stachys	#PICs per locus Hawaiian	% PICs per locus Stachys	% PICs per locus Hawaiian
psbA	1056	0	2	0.00	0.19
matK	1530	14	5	0.92	0.33
psbK	186	1	0	0.54	0.00
atpA	1524	5	1	0.33	0.07
atpF Exon1	411	1	0	0.24	0.00
atpI	744	1	0	0.13	0.00
rps2	711	1	0	0.14	0.00
rpoC2	4083	16	3	0.39	0.07
rpoC1 Exon1	1635	1	0	0.06	0.00
rpoC1 Exon2	435	1	0	0.23	0.00
rpoB	3213	4	0	0.12	0.00
psbD	1062	4	0	0.38	0.00
psbC	1422	3	1	0.21	0.07
psaB	2205	6	0	0.27	0.00
psaA	2253	2	0	0.09	0.00
rps4	606	1	0	0.17	0.00
ndhJ	477	3	0	0.63	0.00
ndhK	678	3	0	0.44	0.00
atpE	402	2	0	0.50	0.00
atpB	1497	4	0	0.27	0.00
rbcL	1446	12	6	0.83	0.41
accD	1467	3	0	0.20	0.00
ycf4	555	2	0	0.36	0.00
cemA	690	2	1	0.29	0.14
petA	963	2	1	0.21	0.10
rpl23	201	1	0	0.50	0.00
rpl20	387	2	0	0.52	0.00
psbB	1527	9	0	0.59	0.00
petB Exon2	651	2	1	0.31	0.15
rpoA	1014	3	1	0.30	0.10
rpl36	114	2	0	1.75	0.00
rps8	414	1	0	0.24	0.00
rpl14	369	2	0	0.54	0.00
rpl16 Exon1	393	3	0	0.76	0.00
rps3	663	3	0	0.45	0.00
rpl22	465	1	1	0.22	0.22
rps19	279	6	0	2.15	0.00
rpl2 Exon1	434	1	0	0.23	0.00
ycf2	6849	5	2	0.07	0.03
ndhB Exon1	756	1	0	0.13	0.00
rps7	468	2	1	0.43	0.21
rnr23	2811	1	0	0.04	0.00
ndhF	2229	16	0	0.72	0.00
rpl32	177	2	0	1.13	0.00
ccsA	970	3	2	0.31	0.21
ndhD	1521	11	1	0.72	0.07
psaC	244	1	0	0.41	0.00
ndhE	306	1	2	0.33	0.65
ndhG	531	1	0	0.19	0.00
ndhI	507	2	0	0.39	0.00
ndhA Exon1	539	3	0	0.56	0.00
ndhA Exon2	553	3	1	0.54	0.18
ycf1 SSC	4487	43	11	0.96	0.25
Min	114	0	0	0.00	0.00
2.4. Gene content and structure of mint chloroplast genomes

The *Stenogyne haliakalae* reference sequence and sequences from additional species were annotated using a combination of DOGMA [13], tRNAscan-SE [14], and additional manual BLAST searches. The borders of the inverted repeats were identified with the program Inverted Repeats Finder [15]. Overall the chloroplast genome sequences assembled here are very similar to other Lamiales. Table 1 shows the gene content of the *Stenogyne haliakalae* chloroplast genome, which mirrors the gene content of the chloroplast genomes for the 11 additional mint taxa, including the *Stachys* outgroups. Table 2 lists the genes that contain introns (and the number of introns present) in the mint taxa investigated here. Table 3 gives the lengths of the full chloroplast genome for each sequence assembled, as well as the lengths of the inverted repeats and single copy regions.

To compare the genome structure of the Hawaiian and *Stachys* taxa to other taxa in the order Lamiales, we conducted analyses in Mauve 2.3.1 [16] (Fig. 1). In the analysis we included *Stenogyne haliakalae*, *Stachys byzantina*, *Ajuga reptans* (NC_023102), *Andrographis paniculata* (NC_022451), *Boea hygrometrica* (NC_016468), *Jasminum nudiflorum* (NC_008407), *Lindenber gia philippensis* (NC_022859), *Olea europaea* (NC_013707), *Origanum vulgare* (JX880022), *Pinguicula ehlersiae* (NC_023463), *Salvia miltiorrhiza* (NC_020431), *Schwalbea americana* (NC_023115), *Sesamum indicum* (NC_016433), *Tectona grandis* (NC_020098), and *Utricularia gibba* (NC_021449). The chloroplast genome sequences of some taxa in this analysis demonstrated rearrangements and inversions. Therefore, one of the inverted repeats was trimmed off at the coordinates suggested by Inverted Repeats Finder so that homology could be determined with the remaining region. Seed weight was set to 19, the gap opening penalty was set to $200/C_0$, and the gap extension penalty to $30/C_0$.

To compare the genome structure of all of the Hawaiian and *Stachys* mints to each other, we conducted a separate analysis in Mauve (Fig. 2). The sequences were assumed to be collinear. The seed weight was set to 7, the gap opening penalty was set to $200/C_0$, and the gap extension penalty to $30/C_0$.

Table 5 (continued)

Region	Length	#PICs per locus	% PICs per locus	\% PICs per locus
Max	6849	43	2.15	0.65
Total	61110	225	23.43	3.45
Mean	1153	4.25	0.44	0.07
Median	678	0.00	0.33	0.00

2.5. Variability in the chloroplast genome sequences of Hawaiian mints and *Stachys* outgroups

We investigated variability among the three highest quality chloroplast genome sequences of the Hawaiian mints (*Stenogyne haliakalae*, *Stenogyne bifida*, *Haplostachys haplostachya*), and the three highest quality sequences from the *Stachys* outgroups (*Stachys chamissonis*, *Stachys coccinea*, and *Stachys sylvatica*). These species represent all of the main lineages within our samples, and were sequenced at $>10 \times$ depth. We used BWA to map the reads for each of these species onto the *Stenogyne haliakalae* reference genome and used SAMtools and BCFtools to call SNPs with a SNP quality score >30. Annotations of the *S. haliakalae* reference genome were transferred to the locations of the SNPs. We compared the levels of chloroplast genome diversity among the six genomes by identifying unique, variable positions, which we refer to as potentially informative characters (PICs) [17,18]. We did not include indels and inversions in this definition, which have been included in other analyses of chloroplast genome variability.

To analyze diversity among the chloroplast genomes, we compared the number of PICs present in 1000 bp non-overlapping sliding windows across the entire chloroplast genome sequences (Table 4, see also Fig. 5 in [1]). We also compared the number of PICs per locus for coding (Table 5, Fig. 3a), intron (Table 6, Fig. 3b), and intergenic spacer and pseudogene regions (Table 7, Fig. 3c). Because this
approach does not take into account the length of the locus, very long loci appear to have more PICs than shorter loci. Therefore, we also divided the number of PICs by the total length of the region to give the percent PICs per locus (Tables 5–7, Fig. 4). However, very short regions may still appear to
Table 6
Comparison of variability of introns in complete chloroplast genome sequences of three Hawaiian and three Stachys taxa (Stenogyne haliakalae, Stenogyne bifida, Haplostachys haplostachya, Stachys chamissonis, Stachys coccinea, and Stachys sylvatica). Note: Exon and intron numbers are defined by position in the overall chloroplast genome sequence (not direction of gene). The trnK-UUU intron contains the gene matK. Here trnK-UUU-1 refers to the region between exon 1 and matK, and trnK-UUU-2 refers to the region between matK and exon2. PICs – Potentially informative characters.

Region	Length	#PICs per locus Stachys	#PICs per locus Hawaiian	% PICS per locus Stachys	% PICS per locus Hawaiian
trnK-UUU - 1	264	5	0	1.89	0.00
trnK-UUU - 2	714	5	0	0.70	0.00
rps16	874	5	1	0.57	0.11
trnG-UCC	689	7	0	1.02	0.00
atpF	655	3	0	0.46	0.00
rpoC1	762	4	1	0.52	0.13
ycf3-1	724	0	1	0.00	0.14
ycf3-2	712	2	0	0.28	0.00
trnL-UAA	487	4	0	0.82	0.00
trnV-UAC	478	1	1	0.21	0.21
clpP - 1	615	6	0	0.98	0.00
clpP - 2	657	4	0	0.61	0.00
petB	717	2	0	0.28	0.00
petD	727	4	2	0.55	0.28
rpl16	906	6	0	0.66	0.00
rpl2	657	2	2	0.30	0.30
trnL-GAU	937	1	0	0.11	0.00
ndhA	1019	10	7	0.98	0.69
Min	264	0	0	0.00	0.00
Max	1019	10	7	1.89	0.69
Sum	12594	71	15	10.95	1.86
Mean	699.7	3.94	0.83	0.61	0.10
Median	713	4.00	0.00	0.56	0.00

Table 7
Comparison of variability of intergenic spacers and pseudogenes in complete chloroplast genome sequences of three Hawaiian and three Stachys taxa (Stenogyne haliakalae, Stenogyne bifida, Haplostachys haplostachya, Stachys chamissonis, Stachys coccinea, and Stachys sylvatica). Note: Regions that are completely conserved among these taxa and/or shorter than 100 bp have been excluded. PICs – Potentially informative characters.

Region	Length	#PICs per locus Stachys	#PICs per locus Hawaiian	% PICS per locus Stachys	% PICS per locus Hawaiian
trnH-GUG-psbA	323	8	1	2.48	0.31
psbA-trnK-UUU	244	2	0	0.82	0.00
trnK-UUU-rps16	643	5	0	0.78	0.00
rps16-trnQ-UUG	828	10	1	1.21	0.12
psbK-psbl	374	7	0	1.87	0.00
psbl-trns-GCU	121	1	1	0.83	0.83
trnS-GCU-trnG-UCC	694	5	1	0.72	0.14
trnG-UCC-trnR-UCU	160	2	0	1.25	0.00
atpF-atpH	365	5	1	1.37	0.27
atpH-atpl	975	8	5	0.82	0.51
rps2-rpoC2	337	2	0	0.59	0.00
rpoC2-rpoC1	154	1	0	0.65	0.00
rpoB-trnC-GCA	1098	6	4	0.55	0.36
trnC-GCA-petN	436	4	0	0.92	0.00
petN-psbM	509	5	2	0.98	0.39
psbM-trnD-GUC	518	3	0	0.58	0.00
trnE-UUC-trnT-GGU	570	7	1	1.23	0.18
Region	Length	#PICs per locus	% PICs per locus	#PICs per locus	% PICs per locus
--------------------------------	--------	----------------	-----------------	----------------	-----------------
trnF-GGU-psbD	1075	8	0.74	1	0.09
psbC-trnS-UGA	232	3	1.29	1	0.43
trnS-UGA-psbZ	328	3	0.91	0	0.00
psbZ-trnG-GCC	224	2	0.89	0	0.00
trnG-GCC-trnM-CAU	149	1	0.67	0	0.00
psaA-ycf3	730	7	0.96	0	0.00
ycf3-trnS-GGA	316	2	0.63	2	0.63
trnS-GGA-rps4	162	1	0.62	0	0.00
rps4-trnT-UGU	385	3	0.78	1	0.26
trnT-UGU-trnL-UAA	690	9	1.30	0	0.00
trnL-UAA-trnF-GAA	295	3	1.02	0	0.00
trnF-GAA-ndhj	658	0	0.00	1	0.15
ndhC-trnV-UAC	944	5	0.53	0	0.00
trnV-UAC-trnM-CAU	188	1	0.53	0	0.00
trnM-CAU-atpE	213	2	0.94	0	0.00
atpB-rbcL	801	1	0.12	1	0.12
rbcL-accD	707	7	0.99	2	0.28
accD-psaI	397	1	0.25	1	0.25
psaI-ycf4	434	7	1.61	0	0.00
ycf4-ermA	306	5	1.63	1	0.33
cemA-petA	217	1	0.46	1	0.46
petA-psbJ	1059	9	0.85	3	0.28
psbE-petL	915	6	0.66	1	0.11
petL-petG	174	2	1.15	0	0.00
petG-trnW-CCA	125	1	0.80	0	0.00
trnP-UGG-psaj	270	2	0.74	1	0.37
psaj-rpl33	478	5	1.05	0	0.00
rpl33-rps18	146	0	0.00	1	0.68
rps18-rpl20	216	5	2.31	0	0.00
rpl20-rps12	739	10	1.35	0	0.00
psbB-psbT	184	1	0.54	1	0.54
psbH-petB	124	1	0.81	0	0.00
petB-petD	194	1	0.52	0	0.00
infA-rps8	123	1	0.81	0	0.00
rps8-rpl14	173	3	1.73	0	0.00
rpl14-rpl16	126	1	0.79	0	0.00
rpl16-rps3	141	1	0.71	1	0.71
rps12-3’end-trnV-GAC	1448	3	0.21	0	0.00
trnA-UGC-rmn23	199	1	0.50	0	0.00
rnm4.5-rmn5	224	2	0.89	1	0.45
rnm5-trnR-AGC	234	2	0.85	1	0.43
trnR-AGC-trnN-GUU	569	2	0.35	0	0.00
ycf1Truncated	1059	1	0.09	0	0.00
ndhF-rpl32	435	5	1.15	2	0.46
rpl32-trnL-UAG	737	13	1.76	2	0.27
ccsA-ndhD	180	4	2.22	0	0.00
ndhD-psaC	105	1	0.95	0	0.00
psaC-ndhE	251	5	1.99	0	0.00
ndhG-ndhI	375	6	1.60	0	0.00
rps15-ycf1 SSC	389	3	0.77	0	0.00
Min	105	0	0.00	0	0.00
Max	1448	13	2.48	5	0.83
Sum	29192	250	62.72	43	10.44
Mean	435.7	3.73	0.94	0.64	0.16
Median	328.0	3.00	0.82	0	0.00
have a high percentage of variable sites, when in fact only a small number of the sites were variable. To minimize this, we have excluded regions less than 100 bp in length, and for clarity we have also excluded regions that were conserved among all six taxa.

To identify the most variable regions of the mint chloroplast genome for targeted re-sequencing and high resolution phylogenetic analyzes, reads from all 15 taxa subjected to shotgun sequencing...
Table 8
Tailed primers used for multiplex amplification and targeted re-sequencing in mints. Sequences complimentary to the Illumina sequencing adapters were appended to the end of each primer (Forward: 5’ TCGTGGCAGCGTCAGATGTGATGTAAGAAGACAG-[locus specific sequence] and Reverse: 5’ GTCTCGTGGGCTCGGAGATGTGATGTAAGAAGACAG-[locus specific sequence]). The loci within each region are also indicated. When the names of two genes are given with an underscore between them, the intergenic spacer between these genes is included in the amplified region.

Primer	Sequence 5’ – 3’	Tm	Loci in region (excluding priming sites)
Mint204F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCG CCC TCT ACT ATA ATG GTA GA	69.3	trnH-GUG_psbA
Mint204R	GTC TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCG CCC TCT ACT ATA ATG GTA GA	68.1	
Mint771F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	70.3	psbA
Mint771R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGC TGA GCA CAA CAT TCT	70.2	
Mint867F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	70.4	psbA
Mint867R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA ACC ATG CAT AAC ACT TCT	69.1	
Mint1170F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	70.1	
Mint1170R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA ACC ATG CAT AAC ACT TCT	69.5	
Mint1939F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	67.6	trnK-UUU Intron1, matK
Mint1939R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA GTG TCG GTA TTT GAC TAT GA	68.3	
Mint3998F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	71.2	trnK-UUU Intron2
Mint3998R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA TTC GAA CCG AAC	68.6	
Mint4546F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA TGA GCG GCT AGC ACT TCT	68.2	trnK-UUU Exon2_rps16 Exon1
Mint4546R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA TCG TGA AAT GTA TAG AGC A	69.2	
Mint4714F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCA GAT CCA TTA TCA CG	70.1	trnK-UUU Exon2_rps16 Exon1
Mint4714R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA GTG TCG GTA TTT GAC TAT GA	67.8	
Mint5533F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TCC GAT CCA GTC ATT GTG GAC TCT	69.0	rps16 Intron
Mint5533R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA GCA GAT CAC TTA TCA CG	69.7	
Mint5985F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCG CCC GAG AAA TGA ATG A	69.9	rps16 Intron
Mint5985R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA TCG TGA AAT GTA TAG AGC A	69.3	
Mint6787F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TCA GCA ATT TTA TCA CG	68.5	rps16 Exon2_trnQ-UUG
Mint6787R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA GCT GAG TGG GTA TCA CCA	69.7	
Mint7334F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TCA AAA ACG CAA CCA AAA TG	68.4	trnQ-UUG_psbK, psbK
Mint7334R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTC GCA TAA CAT CCA GGA GTG TCG TTT GCT CG	68.8	
Mint8052F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG GGT TTC TCT	69.9	psbl-trnS-GCU, trnS-GCU
Mint8052R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGA GAT GCA GGA GTG TCG TTT GCT GA	70.3	
Mint8691F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCG AAC TCA AAA ATA AAC TGT CG	68.7	trnS-GCA_trnG-UCC Exon1
Mint8691R	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCG AAC TCA AAA ATA AAC TGT CG	69.7	
Primer	Sequence 5’–3’	Tm	Loci in region (excluding priming sites)
---------------	---------------	-----	--
Mint8791F	GTC TCG GCT CGG GTA GAT TAA GAG ACA ATT AAG C	69.8	trnS-GCU_trnG-UCC Exon1, trnG-UCC Exon1
Mint8791R	TGC TCG GCA GCG TCA GAT TAA GAG ACA ATT AAG CATTTA G	68.9	
Mint10381F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG AATTATT A AAATTT TCG AAATTT TTCT TGC GAG GAT	69.0	
Mint10381R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.7	
Mint10531F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.9	
Mint10531R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.9	
Mint11293F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.9	
Mint11293R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.9	
Mint13441F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	70.3	
Mint13441R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.8	
Mint13731F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.4	
Mint13731R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.7	
Mint14054F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	67.8	
Mint14054R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	67.9	
Mint16824F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	67.7	
Mint16824R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.8	
Mint17255F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	70.8	
Mint17255R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.3	
Mint17928F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.9	
Mint17928R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.8	
Mint20423F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	70.6	
Mint20423R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.3	
Mint20572F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.4	
Mint20572R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.4	
Mint21910F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.0	
Mint21910R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.0	
Mint22486F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.8	
Mint22486R	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	68.8	
Mint23294F	TGT TGC GGT GCA GCG TCA GTA GAT TAA GAG ACA ATT AAG ATTTAT ATAG ATG TTT GAC ATG GAA ATG	69.2	

Table 8 (continued)
Primer	Sequence 5’ – 3’	Tm	Loci in region (excluding priming sites)
Mint23294R	TGC TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA TTC GAC TCC GCA TGG TT	69.7	
Mint23536F	TCG TGC GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA TTC GAC TCC GCA TGG TT	69.1	rpoB
Mint23536R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	67.2	
Mint24088F	TCG TCA GCG GCA TGT GTA TAT TAA GAG AAG GAC GCT ATT CGA TAA TGG CTG	69.3	rpoB
Mint24088R	GTC TCG TGG CTC GCA AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.3	
Mint24204R	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA TTC GAC TCC GCA TGG TT	69.9	rpoB
Mint24204R	TCG TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG TTA AGT TGA GGT ATT TTA	70.0	
Mint27582F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	69.1	rpoB_trnC-GCA
Mint27582R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	68.4	
Mint27884F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	70.4	trnC-GCA, trnC-GCA_petN, psbM
Mint27884R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.4	
Mint28672F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	68.4	petN_psbM, psbD
Mint28672R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.9	
Mint28881F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	70.0	petN_psbM, psbD
Mint28881R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.7	
Mint30267F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	69.9	trnE-UUC_trnT-GGU, psbD
Mint30267R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG TTA AGT TGA GGT ATT TTA	69.3	
Mint31916F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	71.0	psbD
Mint31916R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.5	
Mint32003F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	70.9	psbD
Mint32003R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TAA ATA CAA ATT	69.6	
Mint32348F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCT TCA GCA TGG TT	68.9	psbD
Mint32348R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TCA GCA TGG TT	70.0	
Mint33303F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCA TCA GCA TGG TT	70.6	psbC
Mint33303R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TCA GCA TGG TT	69.1	
Mint34416F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCA TCA GCA TGG TT	70.1	trnS-UGA_trnS-UGA_psbZ
Mint34416R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TCA GCA TGG TT	69.6	
Mint35190F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTC ATT GCA TCA GCA TGG TT	68.9	trnS-GCC_trnS-GCC_psbM
Mint35190R	GTC TCG GCT CGG AGA TGT GTA TAA GAG ACA GGT GTG CAC TCA GCA TGG TT	70.1	
Primer	Sequence 5′ – 3′	Tm	Loci in region (excluding priming sites)
------------	--------------------------------------	------	--
Mint35459F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG AGG ATT TGA ACC CGT GAC CT	70.2	trnM-CAU, trnM-CAU_rps14
Mint35459R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAC CAA CTC TGG GGA TCA TAA AGG	68.9	
Mint36179F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG CCA AAT TGG CTT GCA AAA TG	69.7	psaB
Mint36179R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAT GGG GTG GGA TGT TCT CTT TAT	70.0	
Mint36649F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG CCA TGC CGA AGA GAA GTT AGG CTA CCT	69.7	psaB
Mint36649R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GTC CCA TGC CAA AAT AGG CTT TTT CTG ACT	70.2	
Mint36907F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG CAT TGC CAT CAT	69.9	
Mint36907R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GGA GAT TAC AAC CGG GAA GAATT AGG	70.0	
Mint38366F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG CCA TGC TGA TCA ATC TTG GCC TTT AAA TTT	69.4	
Mint38366R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAT TGA GAG GAA GGG ACT	68.9	
Mint41292F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG TCG AAA CTC TTT GGG GGA TCT ATC ATC	69.5	ycF3 Exon1, ycF intron1
Mint41292R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GGA GGT TTA CTA CTC TCT CCA AAG AAAT GAA	69.9	
Mint43421F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG TCG GTG GGA TTA CTA TCT CTA CTA	69.5	ycF3 Exon3, rnt-S-GGA
Mint43421R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAG CCA GCC TGA ACC AAT CTA AAT CCG GAC CAC CT	70.0	
Mint47802F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG GGT GGT TGA TAC AGG AAT ATT CTA TAC AAT GAT	69.1	ndhK
Mint47802R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GGT GTC CAC TTA AAC CCG GAA	69.3	
Mint50255F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG TGG GTA CCT AAA CGG GCA CT	70.3	trnV-UAC Intron, trnV-UAC Exon2
Mint50255R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA AGT TGG TAG AGC ACC TCG T	70.0	
Mint51642F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG TGG GGA TTA CTA TCC TCC TTA	68.9	atpB
Mint51642R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GTC CAG GAA GTC TTT TGA AAG TTT GGG GGC GGA GTG	69.2	
Mint51809F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG CAA AGG ATC GGT TCA TAC AAT CTA AAT TTG GCC TTT GGT	70.3	rbcl
Mint51809R	GTC TCG TGG CCG TCA GAT GTG TAT AAG AGA CAG GAT CTC CCT	68.2	
Mint52064F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG GGA AAT ATT CCG CCA TTG TTG	69.4	atpB
Mint52064R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GTA TCA TCA TCA CCA CCA ATC	69.1	
Mint53793F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG GAC AAC TGG TGG GAC CCA TG	70.3	rbcl
Mint53793R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAC CTA GCC TTA	69.3	
Mint53955F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG AAA GCC CTA CGT GCT CTA TG	70.0	rbcl
Mint53955R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAG AAT TCT CTT CCA ATT CAA CAA ACC ATT	68.7	
Mint54300F	TCG TCG GCA GGG TCA GAT GTG TAT AAG AGA CAG TGT TTG AAT GGT TGG GAG CAA AGA ATC	68.8	rbcl
Mint54300R	GTC TCG TGG CCG AGA TGG GTA AAG GAG ACA GAT TGG CAG TGA ATC CTC CTA	69.3	
Primer	Sequence 5’ – 3’	Tm	Loci in region (excluding priming sites)
-----------------	------------------	-----	---
Mint54974F	TCG GCA CGG TCA	70.3	rbcL, rbcL_accD
	TGT AAG AGA CAG		
	TGG AGT CAG GTG		
	TAT CGT TCT GAG		
Mint54974R	GTC TCG TGG CGG	68.9	
	TCA GAT TTA GAA		
	AGA CAG CAA TTA		
	AAA AAT GCT GCA		
Mint55144F	TCG GCA CGG TCA	69.4	rbcL, accD
	TGT TAT AAG AGA		
	CAG CGG TAA TTA		
	AAC GAA ACC AAG		
Mint55144R	GTC TCG TGG CGG	69.4	
	AGA TGT TGA TAA		
	GAG ACA GTT GTG		
	GAT CCA AGA CAA		
Mint55263F	TCG GCA CGG TCA	70.5	rbcL_accD
	TGT TAT AAG AGA		
	CAG AGA CAG TCT		
	CCA TTT TTA TTC		
Mint55263R	GTC TCG TGG CGG	69.5	
	TCA GAT TTA GAA		
	AGA CAG CAA TTA		
	ACA GAG CTA GAA		
Mint56316F	TCG GCA CGG TCA	70.3	accD
	TGT TAT AAG AGA		
	CAG CGG CAA CTA		
	CCA GAA GAA ATT		
	GAA CCC ACA ACT		
Mint56316R	GTC TCG TGG CGG	70.4	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint57465F	TCG GCA CGG TCA	68.2	accD_psal
	TGT TAT AAG AGA		
	CAG TTT TTA TGT		
	AGT CAC TTA GCA		
Mint57465R	GTC TCG TGG CGG	68.2	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
	GGT GCT ACC AAG		
Mint58710F	TCG TCG GCA CGG	69.0	ycf4, ycf4_cemA
	TCA GAT TTA GAA		
	AGA CAG TGA TGA		
	GAA TTA ACC TAC		
Mint58710R	GTC TCG TGG CGG	67.7	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint59661F	TCG GCA CGG TCA	67.6	cemA, cemA_petA
	TGT TAT AAG AGA		
	CAG TTT TTA TTC		
Mint59661R	GTC TCG TGG CGG	69.3	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint60529F	TCG GCA CGG TCA	69.4	petA
	TGT TAT AAG AGA		
	CAG TTT TTA ATC		
Mint60529R	GTC TCG TGG CGG	69.1	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint60945F	TCG GCA CGG TCA	69.5	petA_psbj
	TGT TAT AAG AGA		
	CAG TTT TTA ATT		
Mint60945R	GTC TCG TGG CGG	67.2	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint61133F	TCG GCA CGG TCA	71.0	petA_psbj
	TGT TAT AAG AGA		
	CAG TTT TTA ACC		
Mint61133R	GTC TCG TGG CGG	68.8	
	TCA GAT TTA GAA		
	AGA CAG CTA GAA		
Mint62265F	TCG GCA CGG TCA	70.0	
	TGT TAT AAG AGA		
	CAG TTT TTA ACC		
Mint62265R	GTC TCG TGG CGG	70.0	
	TCA GAT TTA GAA		
Mint64488F	TCG GCA CGG TCA	69.4	trnP-UGG, trnP-UGG_psaJ
	TGT TAT AAG AGA		
	CAG AAA ACA AAC		
	CCA GCA TTA CCA		
Mint64488R	GTC TCG TGG CGG	68.6	
	TCA GAT TTA GAA		
	AGA CAG CTA GCG		
	TGT AAT TCA GCA		
Mint65276F	TCG GCA CGG TCA	68.0	psal_rpl33, rpl33
	TAT AAG AGA CAG		
	CAG TTT ACT ATG		
	GCT TGT TTA TTA		
Mint65276R	GTC TCG TGG CGG	68.8	
	TCA GAT TTA GAA		
	AGA CAG CCA GGG		
	GGG GTG GCT GAT		
Mint65764F	TCG GCA CGG TCA	69.6	rps18
	TGT TAT AAG AGA		
	CAG CCA TTA CCC		
Mint65764R	GTC TCG TGG CGG	68.8	
	TCA GAT TTA GAA		
	AGA CAG CCA GGG		
	TCG ACT CCA TCA		
Mint68295F	TCG GCA CGG TCA	67.5	clpP_Intron1, clpP_Exon2
	TGT TAT AAG AGA		
	CAG TTT CCA AAT		
Mint68295R	GTC TCG TGG CGG	69.0	
	TCA GAT TTA GAA		
	AGA CAG CCA GGA		

Table 8 (continued)
Table 8 (continued)

Primer	Sequence 5' – 3'	Tm	Loci in region (excluding priming sites)
Mint68800F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT TTT GGT GCA TAC GGT TC	70.1	clpP Intron2
Mint68800R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC ATC GTG ATT TGG ATT GAA	68.9	
Mint71208F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG ATC GTG CGA CTT TGA AAT CC	69.1	psbB
Mint71208R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC CAA GTT TTT GGA ATG CTC	69.2	
Mint71701F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CGA GAA CCA CTT AAA GTG GTA CAA C	70.0	psbT, psbT_psbN, psbN
Mint71701R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC GGG TAC GCC TGA TAT ACC	69.6	
Mint72221F	TCG TCG GCC GCA TCA GAT GTG TAT AAG AGA CAG GCC TCC TTT TGT GCG TGC TCG GCC TGG GCC	70.2	psbH, psbH_petB Exon1
Mint72221R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC GGG CAA ATT GTA GTT CTA	69.5	
Mint73489F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CGA GAA CCA TTT GGA ATT GGT GTT	70.3	petB Exon2
Mint73489R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC AGT CAA GGT GGA TGG TCC	70.0	
Mint74004F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTA TGG GAG TGT GCC ACT TG	69.6	petD Intron
Mint74004R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC GAG GAG CTT ACT CAT GTA CAA C	69.5	
Mint74125F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAG ATG GCC TGG GCC TGG AC	70.6	petD Intron
Mint74125R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GAA TGG GCC GCC TAA GGA AAT TCC	68.3	
Mint75956F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CAT AAG GCC GTA TAC CAA C	69.9	rpoA
Mint75956R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GTG AGA ATG TCC GCC ATG AAT	69.4	
Mint76974F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TCT GCG GAT TAG TCG ACA TTT	69.3	rpl36
Mint76974R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC GAA ACA GGT GAG ATG CAA C	68.9	
Mint79374F	TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG ATT GCT TCT CGG TTC ATT TC	68.6	rpl16 Intron
Mint79374R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC ACG ACA TGG CTC GCG TCC	69.4	
Mint79823F	TCG TCG GCC GCA GCC TCA GAT GTG TAT AAG AGA CAG AAT AGT AAC CGA TGG GGT GG	69.0	rpl16 Intron, rpl16 Exon2, rpl16 Exon2_rps3
Mint79823R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GTC CGG AAC AAT CAA C	68.6	
Mint80282F	TCG TCG GCC GGC TCA GAT GTG TAT AAG AGA CAG TGC CTG TCC CAA ACA ATT TCC	68.6	rps3
Mint80282R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC CGA GGA ATC GAA GTA TAA	69.1	
Mint80833F	TCG TCG GCC GCA GCC TCA GAT GTG TAT AAG AGA CAG TAG CCC GGG GTT TTA ATT TC	69.2	rpl22
Mint80833R	GTC TCG TGG GCT CGG AGA TGT TAA GAG ACA GCC GCT CTT ACT AGG ACG AAA CAC	69.9	
Mint10608BF	TCG TCG GCC GCA GCC TCA GAT GTG TAT AAG AGA CAG CGG ACC CGT TTC TGA AGA GT	70.1	ycf1Truncated, ycf1-Truncated_ndhF, ndhF
Mint10608BR	GTC TCG TGG GCC TCA GAT GTG TAA GAG ACA GAT TTT GGA CAA GGG ACT AAA GAG G	68.1	
Mint107075F	TCG TCG GCC GCA GCC TCA GAT GTG TAT AAG AGA CAG CCC ATC GTG TTC TTT TAG	69.4	ndhF
Primer	Sequence 5’ – 3’	Tm	Loci in region (excluding priming sites)
------------	--	-----	--
Mint107075R	GTC TCG GCT CGG AGA TGT GTA TAA GAC ACA GGG ATT CGG CAA GGT GAT ATG	69.4	
Mint107435F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TAT TGG GCG ATT CAT AA	68.8	ndhF
Mint107435R	GTC TCG GCT CGG AGA TGT GTA TAA GAC ACA GGG GGT AAA GGG TAT TCC AAA A	69.1	
Mint107714F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TGA ATG TTT AAA TGC TTT TGT ACT	69.0	ndhF
Mint107714R	GTC TCG GCT CGG AGA TGT GTA TAA GAC ACA GGT GTA CAT CAT TCT CGG TTT GTG GCA	69.1	
Mint108575F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG CGC TTT TTG ACA AGC GGA ACT	69.1	ndhF
Mint108575R	GTC TCG GCT CGG AGA TGT GTA TAA GAC ACA GGT GCT CAC GAC ATT AGT	68.8	rpl32, rpl32_trnL-UAG
Mint109649F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG GTA TCG GCC AGC GGT AAA AGT	68.8	
Mint109649R	GTC TCG GCT CGG AGA TGT GTA TAA GAC ACA GAT TCC CGG TTT AAG AAG ATG	70.4	rpl32_trnL-UAG
Mint110066F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TCT CGC TAT CAA TCC AAA	69.2	
Mint110066R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC GTA GAA CCC TCC CTC CCC AAA	70.4	trnL-UAG, trnL-UAG_ccsA, ccsA
Mint110450F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG GGT AGA CAC GCT GCT CTT AGG	70.4	
Mint110450R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC GTC GAA ACG TCG GCA AAA GGA	67.9	
Mint111053F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG GTA TCG GCC ATC GAA AAA GAA	70.0	ccsA
Mint111053R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC GTA GGT GAC ATT CAC GGA TCA TCT TTG	68.3	
Mint113090F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG GGA TCA TCC GAT TGA AAA TGA	68.8	ndhD
Mint113090R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GAC CCA TTT TCG TTG GCT	68.9	
Mint113960F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TTT AAC AAA A	69.7	ndhE
Mint113960R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA CCT ATT TAT TTT CCA TTA GTG	67.9	
Mint116500F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG CCG TTA CGG TCG CTA TAA CAG	69.9	ndhA Intron
Mint116500R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GGC AGA CAG AAT TCC ATT GCT C	69.2	
Mint116861F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TTT CAA TCT CCG TTT TTG GA	68.7	ndhA Intron
Mint116861R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GGA ATT GGG GCT TAA AGT GTG TTT	68.4	
Mint116914F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TGG ATA GGA ACA TAC TCT GG	69.3	ndhA Intron
Mint116914R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GGT GAT GGT TAG GAA GAC CAA A	69.0	
Mint117269F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG CAA ATT TTT AAG CGG TTT T	68.9	ndhA Intron
Mint117269R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GCG TGT CAT GTC GCA AGA	69.9	
Mint117433F	TCG TCG GCA CGG TCA GAT GTG TAT AAG AGA CAG TGT CTC ACC GAA TCA CAC GTA	69.7	ndhA Exon2
Mint117433R	GTC TCG TGG GCT CGG AGA TGT GTA TAA GAC ACA GGG ATC TTA GTA TTG GTG T	69.6	
The partial genomes from all of the historical samples, except *Phyllostegia variabilis*, were mapped to the *Stenogyne haliakalae* reference sequence using BWA. SNPs were called with SAMtools and BCFtools, filtering out those with SNP quality < 30. We selected a total of 108 variable loci (see Fig. 2 in [1] for a diagram of locations) identified from single copy regions, including (1) all the regions that had a variant position among the Hawaiian mints (except where every individual had an alternative allele as compared to the reference sequence) and (2) additional regions that had variant positions among at least two of the *Stachys* species. 100 bp of flanking sequence on either side of the SNPs was retrieved from the reference genome, and PCR primers were designed using BatchPrimer3 [19], with further manual examination for quality control (e.g. to ensure that primer sequences did not fall into a gap for one of the other taxa). Sequences complementary to the Illumina sequencing adapters were appended to the end of each primer (Table 8) so that sequencing libraries could be prepared directly from the cleaned multiplex PCR products. Overall, these regions represent roughly 20,000 bp of sequence from the chloroplast genome and contain additional variable sites beyond the initial targeted SNP.

Acknowledgments

We thank the Bernice P. Bishop Museum, The National Tropical Botanic Garden, and the Volcano Rare Plant Facility for access to samples. Webb Miller provided helpful advice on data analysis. We also thank the Center for Computational Resources at the University of Buffalo for access to computational resources. This work was supported by the College of Arts and Sciences, University at Buffalo.

Table 8 (continued)

Primer	Sequence 5' – 3'	Tm	Loci in region (excluding priming sites)
Mint119376F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTT TGA CAA ATA GGC CAG CA	69.3	rps15
Mint119376R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	68.0	
Mint122192F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTT TTC GTG TTT TTT TT	67.9	ycf1 single copy
Mint122192R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	70.0	
Mint122492F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA AAC ACT TTT GAG AAG AAG GA	68.2	ycf1 single copy
Mint122492R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	69.4	
Mint122638F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTT TTC GTC TCA AAC AAA AG	68.8	ycf1 single copy
Mint122638R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	69.1	
Mint123159F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTT GTT GAA ATT GAT GAA ATG	69.2	ycf1 single copy
Mint123159R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	69.4	
Mint124145F	TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG TTT TGC TCA GAT GGA ATT GGA TTA CTT C	69.1	ycf1 single copy
Mint124145R	GTC TCG TGG CTT CAG AAG TAA GAG ACA GTG TTA CAT GTA AAC TTT TGT TTT C	69.3	
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.03.037.

References

[1] A.J. Welch, K. Collins, A. Ratan, D.I. Drautz-Moses, S.C. Schuster, C. Lindqvist, The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae), Mol. Phylogen. Evol. 99 (2016) 16–33.
[2] S. Lindgreen, AdapterRemoval: easy cleaning of next-generation sequencing reads, BMC Res. Notes 5 (2012) 337.
[3] H. Jónsson, A. Ginolhac, M. Schubert, P.L.F. Johnson, L. Orlando, mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters, Bioinformatics 13 (2013) 1682–1684.
[4] R. Cronn, A. Liston, M. Parks, D.S. Gernandt, R. Shen, T. Mockler, Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology, Nucleic Acids Res. 36 (2008) e122.
[5] A. Ratan, Pennsylvania State University, University Park, PA, 2009.
[6] R. Mariotti, N.G.M. Culterra, C.M. Díez, L. Baldoni, A. Rubini, Identification of new polymorphic regions and differentiation of cultivated olives (*Olea europaea L.*) through plastome sequence comparison, BMC Plant Biol. 10 (2010) 211.
[7] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li, H. Yang, J. Wang, J. Wang, De novo assembly of human genomes with massively parallel short read sequencing, Genome Res. 20 (2010) 265–272.
[8] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.
[9] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, & 1000 Genome Project Data Processing Subgroup, The sequence alignment/map (SAM) format and SAMtools, Bioinformatics 25 (2009) 2078–2079.
[10] D.-K. Yi, K.-J. Kim, Complete chloroplast genome sequences of important oilseed crop *Sesamum indicum L.*, PLoS One 7 (2012) e35872.
[11] B. Lukas, J. Novak, The complete chloroplast genome of *Origanum vulgare L.* (Lamiaceae), Gene 528 (2013) 163–169.
[12] J. Qian, J. Song, H. Gao, Y. Zhu, J. Xu, X. Pang, H. Yao, C. Sun, X. Li, C. Li, J. Liu, H. Xu, S. Chen, The complete chloroplast genome sequence of the medicinal plant *Salvia miltiorrhiza*, PLoS One 8 (2013) e57607.
[13] S.K. Wyman, R.K. Jansen, J.L. Boore, Automatic annotation of organellar genomes with DOGMA, Bioinformatics 20 (2004) 3252–3255.
[14] P. Schattner, A.N. Brooks, T.M. Lowe, The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snRNAs, Nucleic Acids Res. 33 (2005) W686–W689.
[15] P.E. Warburton, J. Giordano, F. Cheung, Y. Gelfand, G. Benson, Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes, Genome Res. 14 (2004) 1861–1869.
[16] A.E. Darling, B. Mau, N.T. Perna, progressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement, PLoS One 5 (2010) e11147.
[17] J. Shaw, E.B. Lickey, J.T. Beck, S.B. Farmer, W.B. Liu, J. Miller, K.C. Siripun, C.T. Winder, E.E. Schilling, R.L. Small, The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot 92 (2005) 142–166.
[18] J. Shaw, E.B. Lickey, E.E. Schilling, R.L. Small, Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot. 94 (2007) 275–288.
[19] F.M. You, N. Huo, Y.Q, Gu, M.-C. Luo, Y. Ma, D. Hane, G.R. Lazo, J. Dvorak, O.D. Anderson, BatchPrimer3: a high throughput web application for PCR and sequencing primer design, BMC Bioinf. 9 (2008) 253.
[20] E. Boudreau, Y. Takahashi, C. Lemieux, M. Turmel, J.-D. Rochais, The plastome ycf3 and ycf4 open reading frames of *Chlamydomonas reinhardtii* are required for the accumulation of the photosystem 1 complex, EMBO J. 16 (1997) 6095–6104.