Effect of RaceRunning on cardiometabolic disease risk factors and functional mobility in young people with moderate-to-severe cerebral palsy: protocol for a feasibility study

Jennifer Ryan, Nicola Theis, Pelagia Koufaki, Shaun Phillips, Nana Anokye, Georgia Andreopoulou, Fiona Kennedy, Kavi C Jagadamma, Petra vanSchie, Hannah Dines, Marietta L van der Linden

ABSTRACT

Introduction There is consistent evidence that people with cerebral palsy (CP) do not engage in the recommended physical activity guidelines for the general population from a young age. Participation in moderate-to-vigorous physical activity is particularly reduced in people with CP who have a moderate-to-severe disability. RaceRunning is a growing disability sport that provides an opportunity for people with moderate-to-severe disability to participate in physical activity in the community. It allows those who are unable to walk independently to propel themselves using a RaceRunning bike, which has a breastplate for support but no pedals. The aim of this study is to examine the feasibility and acceptability of RaceRunning for young people with moderate-to-severe CP and the feasibility of conducting a definitive study of the effect of RaceRunning on cardiometabolic disease risk factors and functional mobility.

Methods and analysis Twenty-five young people (age 5–21 years) with CP or acquired brain injury affecting coordination will be included in this single-arm intervention study. Participants will take part in one RaceRunning session each week for 24 weeks. Outcomes assessed at baseline, 12 and 24 weeks include body mass index, waist circumference, blood pressure, muscle strength, cardiorespiratory fitness, physical activity and sedentary behaviour, functional mobility, activity competence and psychosocial impact. Adverse events will be systematically recorded throughout the 24 weeks. Focus groups will be conducted with participants and/or parents to explore their views and experiences of taking part in RaceRunning.

Ethics and dissemination Approval has been granted by Queen Margaret University Research Ethics Committee (REC) and the South East of Scotland REC. Results will be disseminated through peer-reviewed journals and distributed to people with CP and their families through RaceRunning and Athletic Clubs, National Health Service trusts and organisations for people with disabilities.

Trial registration number NCT04034342; pre-results.

Strengths and limitations of this study

- This multicentre study will examine the feasibility and acceptability of RaceRunning for young people with moderate-to-severe cerebral palsy as well as the feasibility of conducting a definitive study of the effect of RaceRunning.
- People with a range of severities of motor impairment will be included.
- A range of outcomes relating to cardiometabolic risk will be assessed.
- There will be no control group included in the study.

INTRODUCTION

Cerebral palsy (CP) is an umbrella term for disorders affecting the development of movement and posture, which cause limitations in activities of daily living. Although CP is considered a non-progressive neurological condition, it often results in secondary conditions such as contractures, bone deformities, muscle weakness and fatigue leading to further decreased mobility. Mobility often worsens with age and can lead to diminished independence. These secondary conditions may lead to a negative cycle of physical inactivity and further deconditioning. Indeed, there is ample evidence that, from a young age, people with CP do not engage in the recommended activity levels for the general population and children with CP of 60 min moderate-to-vigorous physical activity (MVPA) per day. Participation in MVPA is particularly reduced in people with CP who have a moderate-to-severe disability. Claridge et al reported that children in Gross Motor Function Classification System (GMFCS) level I participated in 40 min of MVPA per day and this decreased with increasing GMFCS.
level to 5.5, 0.71 and 0.64 min for children in GMFCS levels III, IV and V, respectively. Reduced participation in MVPA is a modifiable risk factor for non-communicable diseases (WHO) and likely contributes to the increased risk of cardiovascular disease observed in people with CP. In both adults and children with CP, participation in MVPA is associated with reductions in risk factors for cardiometabolic diseases such as elevated blood pressure and abdominal obesity. Further, breaks from sedentary behaviour are associated with reductions in risk factors, independent of total time in MVPA in people without disability, which may be feasible for children with CP to achieve.

In recent years, efforts have been directed towards examining the effectiveness of exercise and physical activity interventions for independently ambulant people with CP. However, there is a lack of research examining the effectiveness of exercise interventions for people with CP with moderate-to-severe disability. Limited access to adapted physical activities may contribute to the lack of participation in MVPA among people with moderate-to-severe disability. RaceRunning (www.racerunning.org) is a growing disability sport that provides an opportunity for people with moderate-to-severe disability to participate in physical activity in the community. It allows those who are unable to walk independently to propel themselves using a RaceRunning bike, which has a breastplate for support but no pedals. Participants sit on the saddle and use their legs to propel themselves forward. It is estimated that worldwide approximately 2000 running bikes are used for participation in sport (ie, training sessions and competitions), physical education and therapy. Pilot studies suggest that people with CP can achieve MVPA while taking part in RaceRunning. Non-controlled small studies also indicate that RaceRunning has positive effects on aerobic capacity, bone health and muscle thickness. However, the quality of the evidence from these studies is low and no study has assessed the long-term sustainability of RaceRunning or its impact on cardiometabolic risk factors and functional mobility in people with CP. Before conducting a definitive cohort study on the effect of RaceRunning, the feasibility of conducting such a study needs to be determined.

The aim of this study is to examine the feasibility and acceptability of RaceRunning for young people with moderate-to-severe CP and the feasibility of conducting a definitive study of the effect of RaceRunning on cardiometabolic disease risk factors and functional mobility.

METHODS AND ANALYSIS

Study design

This is a multicentre single-arm intervention study. Assessments will be conducted at baseline, 12 and 24 weeks. Participants will be recruited from RaceRunning clubs, athletics clubs and National Health Service (NHS) trusts in Scotland and Gloucestershire. The study will also be advertised through social media and via organisations for people with disabilities. Potentially eligible participants will be provided with an invitation letter and an age-appropriate Participant Information Sheet. Parents of potential participants aged <16 years will be provided with a parent information sheet.

Participants

Twenty-five young people aged 5–21 years with CP or acquired brain injury affecting coordination will be included in the study. Participants are eligible to be included in the trial if they use wheeled mobility indoors and/or outdoors, but they may use an assistive mobility device indoors instead of a wheelchair. For children with CP, this encompasses children in GMFCS levels III, IV or V. Additional inclusion criteria are: having less than 15 hours of RaceRunning experience, ability to independently propel the bike for at least 30 m and ability to comprehend and follow instructions relating to participation in RaceRunning training. Participants will be excluded if they had lower limb surgery or selective dorsal rhizotomy less than 6 months prior to the start of the study or have a severe visual impairment affecting the ability to safely take part in RaceRunning training. Children and young people who have been receiving regular Botox injections and baclofen treatment for more than 6 months will be included in the study, but these will be recorded in the trial notes.

Intervention

Participants will take part in one RaceRunning session each week for 24 weeks. This hourly session will be led by an experienced RaceRunning coach, who has attended the RaceRunning coaching course (organised by RaceRunning Scotland or CP Sport England) and/or is a level 1 or 2 UK athletics coach. The coach will be supported by a physiotherapist or other health professional and (student) volunteers.

Content of the sessions will be standardised for all training groups and will consist of warmup, coordination, endurance and sprint training drills, and a cool-down period. Coordination training will be approximately 10 min in duration and consist of drills such as mouse steps (feet touching the ground as many times as possible), overexaggerated strides, one-foot pushes, high knees and two-foot pushes. Endurance training will be approximately 10–15 min duration and consist of steady running. Sprint training will consist of four to five short sprints over between 10 m and 60 m, depending on ability.

Outcome measures

Demographic, CP-related characteristics and self-reported physical activity will be assessed at baseline. The Physical Activity Questionnaire for Children (PAQ-C) and Adolescents (PAQ-A) will be used to assess self-reported physical activity. Both questionnaires provide a summary of physical activity scores derived from nine items, each
scored on a 5-point scale. The PAQ-C and PAQ-A are valid and reliable in children.16-18

The following outcomes will be assessed at baseline, 12 and 24 weeks. Questionnaires will be completed at Queen Margaret University or the University of Gloucestershire, or at the participant’s home if requested. Objective measures will be assessed at the location where RaceRunning sessions are completed. Participants will be asked to refrain from strenuous or unusual exercise 24 hours before the assessment and to have a light meal at least 2 hours before the assessment of objective measures. Assessors will follow a standardised protocol to complete all assessments.

Body mass index

Body mass will be measured to the nearest kilogram using flat medical scales (Seca). For those who are not able to stand independently, the weight will be recorded while sitting on a chair on the scales. For participants who are able to stand (with or without support), body height will be measured (to the nearest millimetre (mm)) in standing using a portable stadiometer. For those who are unable to stand unsupported, a height measurement will be taken supine, also using a portable stadiometer. In case of severe contractures in both legs, knee height will be measured (to the nearest mm) in standing using a portable stadiometer. For those who are able to stand (with or without support), body height will be measured and used to estimate the height using published, validated equations based on a population of children with CP. Body mass index will be calculated as mass divided by height squared (kg/m\(^2\)).

Waist circumference

For waist circumference, midpoints between the lower rib margin and the iliac crest will be marked and the circumference will be measured to the nearest mm by positioning the measuring tape over the mid-distance mark on both sides. This method has shown to have adequate reliability and measurement error in children.20

Thigh and calf circumference

For an estimation of the muscle bulk, a tape measure will be used to measure thigh and calf circumference to the nearest mm. For the calf, the location of the circumference measurement will be in the most prominent point of the muscle belly. For the thigh, the measurement point will be at 50% on the line from the anterior superior iliac spine to the superior part of the patella. The average of three measurements will be used for the analysis.

Resting heart rate and blood pressure

Heart rate will be assessed using SunTech Tango M2 in DKA mode for the recording of resting ECG. Three chest ECG electrodes will be used to record resting ECG. If this is not feasible (eg, lack of cooperation of the young person), then resting heart rate will be recorded through a chest belt.

Blood pressure will be assessed using an automated blood pressure monitor with an appropriately sized cuff. The cuff, with an integrated microphone for the automatic detection of the Korotkoff sound, will be placed on the left arm with the centre of the bladder over the brachial artery. The bladder will encircle at least 80% of the arm but not more than 100%. The participant will be asked to sit quietly for between 5 min and 10 min in an upright position with his/her back against the chair and the measurement arm supported at the level of the heart.

After sitting quietly for at least 5 min, resting blood pressure and heart rate will be recorded in triplicate, with a 1 min interval between measurements. The average of the three readings of systolic blood pressure (mm Hg), diastolic blood pressure (mm Hg) and heart rate (bpm) will be used in the analysis. Efforts will be made to assess blood pressure and heart rate at a similar time of day at all assessments. Assessment will take place in a private, quiet, well-ventilated room of adequate size.

Knee extensor muscle strength

Knee extensor strength will be assessed using digital myometry in sitting with the knee flexed in 90°. This test will be repeated two times with each leg. It is a reliable method of measuring strength in children with CP.21

Cardiorespiratory fitness

There are currently no validated measures of maximum aerobic capacity for people with moderate-to-severe CP who are non-ambulant and/or unable to propel a wheelchair. For this research, a RaceRunning specific field-based incremental test for determining peak oxygen consumption (VO\(_{2\text{peak}}\)) will be used. The test is based on existing field-based incremental protocols for young people with CP.22 Instead of 10 m shuttles, as in the original tests, cones will be placed around the track every 10 m, which will avoid the participants having to do a 180° turn. Participants will walk/run between each cone at a set incremental speed determined by a signal. Those participants who are able to complete 100 m in less than 40 s will perform an adapted shuttle run test for GMFCS level I (Shuttle RaceRunning test I (SRRT-I)), others will perform the adapted shuttle run test for GMFCS level II (Shuttle RaceRunning test II (SRRT-II)). Both tests consist of 23 levels each lasting 1 min with an increase in the speed of 0.25 km/hour at each level. The starting speed of the SRRT-I is 5 km/h and the starting speed of the SRRT-II is 2 km/hour. The test will end on reaching volitional exhaustion. If participants do not complete one shuttle within the allocated time, then they will be encouraged to continue. The test will be terminated if the participants do not complete two consecutive shuttles within the allocated time.

Expired gas exchange data will be collected in real time throughout the test using a portable online gas analyser (Metamax 3B (CORTEX Biophysik GmbH, Germany)). Heart rate will be monitored throughout the test using a chest-based transmitter (H10, Polar) and recorded by the Metamax software at a sample rate of 60 Hz.

The test protocol described previously allows direct measurement of the following outcomes: VO\(_{2\text{peak}}\), ventilatory threshold, minute ventilation, breathing frequency,
submaximal and maximal heart rate, respiratory exchange ratio, ventilatory efficiency ratios and \(\text{O}_2 \) pulse. \(\text{VO}_{2\text{peak}} \) will be determined as the highest observed value of \(\text{VO}_2 \) over a 10s epoch during the last completed 20s in the final stage of the test. In addition, we will assess work efficiency at different exercise intensities that will correspond to a complete stage of the SRRT.

Physical activity and sedentary behaviour

Steps per day, time spent in an upright position per day, number of transfers per day and time spent in sitting and lying (ie, sedentary time) will be recorded using the activPAL3µ activity monitor. The activPAL3µ is a small, lightweight device that is worn on the anterior aspect of the person's thigh. It incorporates accelerometry and inclinometry data to provide information on the volume of time people spend in sedentary, upright and ambulatory activities. The activPAL is a valid measure of activity in children with CP.23

Participants will be asked to wear the activPAL3µ on their least affected leg for 7 continuous days. They will be asked to remove the monitor only for bathing and swimming. Participants will be provided with instructions on how to attach the monitor and a diary to log time spent sleeping and non-wear time. Participants will return the monitors at the training session after the assessment or via post in a stamped addressed envelope provided by the researcher.

Functional mobility

The Functional Mobility Scale (FMS) will be used to assess functional mobility. The FMS describes the level of a child’s functional mobility in everyday life over 5, 50 and 500m, representing the home, school and community settings, respectively.24 For each distance, an ordinal rating from 1 (wheelchair) to 6 (confident walking on all surfaces) is assigned depending on the amount of assistance required for the child’s mobility.

Activity competence

The Canadian Occupational Performance Measure (COPM) will be used to identify important physical activities for each participant and to record the change in participants’ perceived performance of this activity and the satisfaction with this performance over time.25 The COPM is reliable and valid for use in young people.26

At baseline, in a semistructured interview, the researcher will ask the participant (or where appropriate the parents/carer together with, the or on behalf of the participant) to identify up to five physical activity-related activities of daily living, which are important but problematic to the participant. The participant will then be asked to rate his/her current performance on each of these activities on a Visual Analogue Scale ranging from 1 (cannot do at all) to 10 (no problem at all) at 12-week and 24-week assessments, the researcher will list the same five activities and the participant will be asked to repeat the rating of his/her performance and satisfaction on these activities. A change score of ≥2 is considered clinically meaningful in the COPM manual,27 whereas a study with older adults reported an optimal cut-off value ranged from 0.9 and 1.9.28

Psychosocial impact

The Psychosocial Impact of Assistive Devices Scale will be used to record the impact of using a RaceRunner on a range of psychosocial outcomes such as happiness, self-esteem, independence and quality of life. It is a valid and reliable tool that consists of 26 items and can be completed by the parents/carer together with, the or on behalf of the participant.29

Adverse events

The safety of the intervention will be determined by recording the incidence of adverse events (AEs) including falls and injuries between baseline and 24 weeks. An AE will be defined as ‘any untoward medical occurrence affecting a participant that does not necessarily have a causal relationship with the intervention’.30 At 12 and 24 weeks, researchers will systematically enquire about changes in the participant’s health or any AEs since the last assessment. Standardised questioning will be used to probe the participant regarding specific types of AEs, for example, falls, injuries, increase in muscle pain or spasticity. Participants will also be asked to record any AEs experienced during training in their RaceRunning diaries. Trainers will also be asked to contact the research team if the participant experiences an AE while participating in the intervention. The following are expected non-serious AEs in response to the intervention: delayed onset muscle soreness, mild fatigue, saddle discomfort, shoe scuffing and foot discomfort.

A serious AE will be defined as an untoward medical occurrence/effect that results in death, is life-threatening, requires hospitalisation or prolongation of existing hospitalisation, or results in persistent or significant disability or incapacity.

Economic evaluation

This study will assess the feasibility of conducting an economic evaluation alongside a definitive cohort study of the effects of RaceRunning to reduce cardiometabolic disease risk and improve functional mobility. For this study, we will assess the feasibility of collecting data on health service use and health-related quality of life. Health service use will be assessed using a modified version of the Client Service Receipt Inventory (CSRI). The CSRI collects retrospective information on service utilisation, service-related issues and income.31 Health-related quality of life will be assessed using the EuroQol-5 dimension (Youth) (EQ-5D-Y).32

Process evaluation

Fidelity

Fidelity to the intervention will be assessed by recording the overall volume of aerobic exercise achieved during RaceRunning, according to the Frequency, Intensity,
Time, Type (FIT) principle. Attendance, training duration and content for every session will be recorded by the coach. The intensity of the training sessions will be assessed for each participant by monitoring heart rate during three training sessions at week 1, 12 and 20 of the intervention.

Between week 3 and 8, 9 and 16, and 17 and 24, respectively, participants will be filmed during a RaceRunning session using a standard video camera for analysis of their running characteristics such as the propulsion technique (eg, bilateral, unilateral, in-phase), presence of foot drag and the presence of involuntary head or upper limb movement. This analysis of movement technique will enhance our understanding of the factors influencing maximum aerobic capacity and work efficiency.

Qualitative data collection
Focus groups will be conducted from a constructivist phenomenological perspective, aiming to explore a socially constructed phenomenon from the perspectives of participants. This balances different ways of looking at knowledge and knowing, and we will prioritise the constructivist perspective in analysis whenever possible. Focus groups will be conducted with participants and/or their parents where appropriate to explore the views and experiences on taking part in RaceRunning.

Topic guides for the focus groups will be developed and piloted by the research team based on the study aims and available literature. An experienced qualitative researcher from Queen Margaret University will facilitate the focus groups, flexibly based around the topic guide. The focus groups will last around 60 min and will be recorded using digital audio recorders. There will also be an observer present who will take field notes (eg, body language) during the focus group. The digital audio-recordings of the focus groups will be transcribed verbatim by the researcher and supplemented by observer notes.

Patient and public involvement
A person with CP was involved in the design of the study and will be involved in the conduct and reporting of the study.

Data analysis
As this is a feasibility study, no formal statistical analysis of the effectiveness of the intervention will be undertaken. The analysis will be conducted in order to determine the feasibility and acceptability of the intervention, and the feasibility of conducting a definitive study.

Descriptive statistics (eg, mean, SD, range, median, IQR and percentages) will be used to report recruitment, retention, attendance at RaceRunning sessions, outcome measure completion, and outcomes and AEs at baseline, 12 and 24 weeks, respectively. Generalised estimating equations will be used to explore changes in outcomes over 24 weeks. Analyses will be conducted using Stata (Statcorp) and SPSS 27 (IBM Corp).

Qualitative data analysis
The analysis will be carried out separately for data collected from children and data collected from parents. Transcripts will be read for the initial understanding and a participant summary will be prepared for each focus group. Feedback will be sought from the participants on the summary, which will be added to the transcripts. For the next stage of analysis, the researcher will familiarise with the data while noting down initial observations, which will be followed by the coding of the whole data set. With the help of these codes, the text with similar meanings will be thereby categorised to themes with assigned labels and definitions. A second researcher will carry out a secondary analysis of a selected sample to check the coding and interpretation and for confirming themes. Any lack of agreement between the researchers on interpretation or themes will be resolved through discussion. Any modification will be applied to the relevant sample. Relationships between themes may be explored if evidence of links exists and/or themes may be grouped into further categories. Qualitative software NVIVO will be used for interview analysis.

Sample size
This is a feasibility study and thus no sample size calculation has been performed. Twenty-five people will be recruited to the study.

ETHICS AND DISSEMINATION
The trial will be conducted in full conformance with the principles of the Declaration of Helsinki and to MRC Good Clinical Practice (GCP) guidelines. All researchers working on the trial will receive training in GCP-ICH guidelines. It will also comply with all applicable UK legislation and Queen Margaret University and the University of Gloucestershire Research integrity guidance.

The study has ethical approval from the South East Scotland Research Ethics Committee and Queen Margaret University Research Ethics Committee (reference 19/ SS/0035). Written informed consent will be obtained from participants aged 16 years and older. For those aged 16–17 years, written informed consent will also be obtained from a parent/guardian. Written informed assent will be obtained from participants younger than 16 years of age and written informed consent will be obtained from his/her parent or guardian.

The findings for this study will be distributed through peer-reviewed journals, RaceRunning and Athletic Clubs, NHS trusts, organisations for people with disabilities, for example, CP Sport, and at national and international conferences.

Author affiliations
1 College of Health and Life Sciences, Brunel University London, Uxbridge, UK
2 Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
3 School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
REFERENCES

1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007;109:8–14.
2. Opheim A, Jahnssen R, Olsson E, et al. Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol 2009;51:381–8.
3. Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil 2014;36:1–9.
4. Ryan JM, Allen E, Gormley J, et al. The risk, burden, and management of non-communicable diseases in cerebral palsy: a scoping review. Dev Med Child Neurol 2018;60:753–64.
5. Peterson MD, Gordon PM, Hurvitz EA. Chronic disease risk among adults with cerebral palsy: the role of premature sarcopenia, obesity and sedentary behaviour. Obes Rev 2013;14:171–82.
6. Claridge EA, McPhee PG, Timmons BW, et al. Quantification of physical activity and sedentary time in adults with cerebral palsy. Med Sci Sports Exerc 2015;47:1719–26.
7. Ryan JM, Crowley VE, Hensey O, et al. Habitual physical activity and cardiometabolic risk factors in adults with cerebral palsy. Res Dev Disabil 2014;35:1995–2002.
8. Ryan JM, Hensey O, McLoughlin B, et al. Reduced moderate-to-vigorous physical activity and increased sedentary behaviour are associated with elevated blood pressure values in children with cerebral palsy. Phys Ther 2014;94:1144–53.
9. Healy GN, Matthews CE, Dunstan DW, et al. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J 2011;32:590–7.
10. Ryan JM, Cassidy EE, Noorduyn SG, et al. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev 2017;6:CD011660.
11. Bloemen M, Van Wely L, Mollema J, et al. Evidence for increasing physical activity in children with physical disabilities: a systematic review. Dev Med Child Neurol 2017;59:1004–10.
12. Bolster E, Verschuren O, Dalmije A, et al. Training with racetracer or wheelchair for wheelchair-using children with cerebral palsy? Ped Phys Ther 2015;27:312–4.
13. Bolster EAM, Dalmije AJ, de Wolf GS, et al. Reliability and construct validity of the 6-minute racetracer test in children and youth with cerebral palsy. GMFCS levels III and IV. Phys Occup Ther Pediatr 2017;37:210–21.
14. Bryant E, Cowan D, Walker-Bone K. The introduction of petra running-bukes (race runners) to non-ambulant children with cerebral palsy: a pilot study. Dev Med Child Neurol 2015;57:34–5.
15. Von Walden F, Hjalmarsson E, Kvist O, et al. Racerunning training for 12 weeks improves aerobic capacity in adolescents and young adults with cerebral palsy. Dev Med Child Neurol 2018;60:59.
16. Capio CM, Sit CHR, Abernethy B, et al. Physical activity measurement instruments for children with cerebral palsy: a systematic review. Dev Med Child Neurol 2010;52:908–16.
17. Crocker PR, Bailey DA, Faulkner RA, et al. Measuring general levels of physical activity: preliminary evidence for the physical activity questionnaire for older children. Med Sci Sports Exerc 1997;29:1344–9.
18. Voss C, Dean PH, Gardner RF, et al. Validity and reliability of the physical activity questionnaire for children (PA-QC) and adolescents (PA-QA) in individuals with congenital heart disease. PLoS One 2017;12:e0175806.
19. Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med 1995;149:658–62.
20. Stomfai S, Ahrens W, Bammann K, et al. Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes 2011;35:S45–51.
21. Seniorou M, Thompson N, Harrington M, et al. Reliability of strength measurements in healthy children and children with cerebral palsy using a digital myometer. Gait Posture 2002;16:175–6.
22. Verschuren O, Takken T, Ketelaar M, et al. Reliability and validity of data for 2 newly developed shuttle run tests in children with cerebral palsy. Phys Ther 2006;86:1107–17.
23. McAlonan MT, Hutchins S, Twiste M, et al. Validation of the activPAL activity monitor in children with hemiplegic gait patterns resultant from cerebral palsy. Prosthet Orthot Int 2014;38:393–9.
24. Graham HK, Harvey A, Rodda J, et al. The functional mobility scale (FMS). J Pediatr Orthop 2004;24:514–20.
25. Law M, Baptiste S, McColl M, et al. The Canadian occupational performance measure: an outcome measure for occupational therapy. Can J Occup Ther 1990;57:82–7.
26. Cusick A, Lannin NA, Lowe K. Adapting the Canadian performance measure for use in a paediatric clinical trial. Disabil Rehabil 2007;29:761–6.
27. Law M, Baptiste S, Carswell A, et al. The Canadian occupational performance measure. 4 edn. Ottawa, Canada: Canadian Association of Occupational Therapists, 2005.
28. Eyssen ICJM, Steultjens MPM, Oud TAM, et al. Costing psychiatric interventions. In: Graham HK, Harvey A, Rodda J, et al. The functional mobility scale (FMS). J Pediatr Orthop 2004;24:514–20.
29. Graham HK, Harvey A, Rodda J, et al. The functional mobility scale (FMS). J Pediatr Orthop 2004;24:514–20.
30. NIHR. Clinical trials toolkit: glossary. Available: http://www.ct-toolkit.ac.uk/glossary/ [Accessed 16 Dec 2019].
31. Beecham J, Knapp M. Costing psychiatric interventions. In: Measuring mental health needs. 2 edn. London: Royal College of Psychiatrists, 2001:1–22.
32. Kreimeier S, Greiner W, EQ-S-D-Y as a health-related quality of life instrument for children and adolescents: the instrument’s characteristics, development, current use, and challenges of developing its value set. Value Health 2019;22:31–7.
33. Gribich C. Qualitative research in health; an introduction. London: Sage, 1999.