Influence of Pinus brutia bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora

Ahu DEMİRTAŞ¹

¹Department of Physiology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Burdur/TURKEY

Key Words: catechin, intestinal bacteria, phenolic compounds, Pinus brutia bark, plant extracts, quercetin

ABSTRACT

The microflora of the intestinal tract is vital to many physiological functions, mainly fermentation and processing of dietary components, control of intestinal epithelial cell proliferation, development of the immune system, and protection against pathogens. Plant extracts have potential for treatment options that protect commensal or beneficial microflora in the intestines while eliminating pathogens. The aim of the present study was to investigate the influence of Pinus brutia (Turkish red pine) bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora using a microdilution method. Pinus brutia bark extract did not completely inhibit any intestinal bacteria. However, the extract showed a potential inhibitor activity on Salmonella Typhimurium and Staphylococcus aureus from 75 µg/mL, on Escherichia coli and Fusobacterium nucleatum from 150 µg/mL, and on Clostridium perfringens from 300 µg/mL concentrations (P<0.05). Commensal bacteria were observed to be less sensitive to the extract than those of the pathogenic strains. The extract stimulated moderately the growth of Bifidobacterium bifidum from 75 µg/mL dose (P<0.05). The extract did not show any activity on Lactobacillus acidophilus. A potential inhibitor activity was observed for Bifidobacterium infantis and Lactobacillus casei at 600-2400 µg/mL (P<0.05). As a conclusion, P. brutia bark extract, at 75-300 µg/mL dose range, had a potential to restrict pathogenic bacteria in the intestines while protect commensal or beneficial ones. Specified effects might be mainly attributed to its polyphenolic content.

Fenolik bileşikler içeren Pinus brutia kabuğu ekstraktının bağışıklık mikroflorasında bulunan bazı yerleşik ve patojenik bakteriler üzerine etkisi

ÖZ

Bağırsak kanalı mikroflorası, başlıca diyet bileşenlerinin fermentasyonu ve işlenmesini, bağışıklık epitel hücre çoğalmasının kontrollu, bağışıklık sistemini geliştiren ve patojenlere karşı koruma olmak üzere birçok fizyolojik fonksiyon için hayatı önemler. Bitki ekstraktları bağışıklık sisteminin potansiyel bir potansiyel inhibitory etkisi göstermektedir. Bu çalışmanın amacı, fenolik bileşikler içeren Pinus brutia (Türk kızılçamı) kabğu ekstraktının, bağışıklık mikroflorasında bulunan bazı yerleşik ve patojenik bakteriler üzerindeki etkisini araştırmaktır. Pinus brutia kabuğu ekstraktı herhangi bir bağışıklık bakterisi tamamen baskılamamıştır. Bununla birlikte, ekstrakt Salmonella Typhimurium ve Staphylococcus aureus üzerine 75 µg/mL, Escherichia coli ve Fusobacterium nucleatum üzerine 150 µg/mL, ve Clostridium perfringens üzerine 300 µg/mL'den başlayan konsantrasyonlarda bir potansiyel baskılayıcı aktivite göstermemiştir (P<0.05). Yerleşik bakteriler ise ekstraktta patojenlerden daha az duyarlı olduğu gözlemiştir. Ekstrakt, Bifidobacterium bifidum/un üremesini 75 µg/mL'den başlayan konsantrasyonlarda bir potansiyel baskılayıcı aktivite göstermemiştir (P<0.05). Yerleşik bakteriler ise ekstraktta patojenlerden daha az duyarlı olduğu gözlemiştir. Ekstrakt, Lactobacillus acidophilus üzerine herhangi bir potansiyel baskılayıcı aktivite göstermemiştir. Bifidobacterium infantis ve Lactobacillus casei için 600-2400 µg/mL'den başlayan konsantrasyonlardaki potansiyel baskılayıcı aktivite göstermemiştir (P<0.05). Pinus brutia kabuğu ekstraktının, 75-300 µg/mL'den başlayan konsantrasyonlara potansiyel baskılayıcı aktivite göstermemiştir (P<0.05).

INTRODUCTION

Commensal microflora in the gastrointestinal tract has various physiological activities almost equal to a virtual organ. Intestinal microflora acts like a metabolic reactor, fermenting non-digestible dietary residue, turning them into short-chain fatty acids which are absorbable energy substrates for the host. Three main short chain fatty acids (acetate, propionate, and butyrate) also stimulate proliferation and differentiation of the intestinal epithelial cells (1). Another important physiological activity of the intestinal bacteria is to form a defensive barrier against to invasion of intestinal epithelium by exogenous microorganisms. Germ-free animals were reported to be very susceptible to infections (2). Gastrointestinal tract also host opportunistic pathogens, but they have restricted growth when there is an equilibrium between species of resident bacteria.
The indiscriminate use of antibiotics can disrupt the microbial balance in the intestines and cause the overgrowth of pathogenic species which are manifested as different intestinal disorders such as irritable bowel syndrome, pseudomembranous colitis, Crohn’s disease, and colon cancer (3, 4). The faecal numbers of Faecalibacterium prausnitzii and Bifidobacterium adolescentis from intestinal commensals were lower and Ruminococcus gnavus higher in patients with Crohn’s disease than in healthy relatives (5). Thus, many studies have focused on the new alternative antimicrobial agents that protect commensal or beneficial intestinal bacteria while affecting pathogenic ones (6-8). Plant extracts and secondary plant metabolites have been reported as a possible natural treatment option for diseases caused by bacteria (9).

Pinus brutia Ten. (Turkish red pine) is naturally grown in the Mediterranean, Aegean and Black Sea regions of Turkey (10). The bark of this species is used in order to produce timber in our country. The remnants of the trees after timber production are not much in use, and therefore have a big potential as a waste material (11). Galactoglucomannan oligosaccharides which were extracted from pine wood increased growth performance, villus height and villus surface area, and decreased Salmonella typhimurium colonization in the intestines of broiler chicks (12). The bark of P. brutia is also rich in antimicrobial phenolic compounds or polyphenolics, i.e. flavonoids and phenolic acids which are particularly monomers of tannins (11, 13). Various studies indicated that plant extracts rich in polyphenolics had a potential to restrict intestinal pathogens (14), and to enhance growth of beneficial cultures (15). There are also reports that extracts from the bark of P. brutia had antimicrobial activities on several bacteria and fungi species (16, 17). However, the effects of P. brutia bark extract on intestinal bacteria particularly on the commensal ones have not been previously reported. Therefore, the aim of the present study was to investigate the influence of P. brutia bark extract on some commensal and pathogenic bacteria from the intestinal microflora.

MATERIAL and METHODS

Pinus brutia bark extract

The extract of P. brutia bark was provided by Kale Naturel Herbal Products Company, Ltd., Balıkesir, Turkey. As specified by the manufacturer, air-dried, ground and screened bark samples (powder) were extracted by distilled water with solid/liquid ratio of 1/10 for 6 h at 55°C and filtered to give homogenous liquid. The extract concentrated to a solids concentration of 20% in a rotary vacuum evaporator and dried with a spray-dryer.

Analyses of phenolic compounds of P. brutia bark extract

Phenolic compounds (Table 1) of P. brutia bark extract were quantified using a high-performance liquid chromatography (HPLC) (Shimadzu) device equipped with a photodiode array detector. An Agilent Eclipse XDB-C18 (250 × 4.60 mm) 5 μm column at 30°C and 0.8 mL/min flow speed was used.

Table 1. Phenolic compounds of P. brutia bark extract

Phenolic compounds	µg/g
Gallic acid	2.2
Protocatechuic acid	1.4
Catechin	6.4
P-hydroxy benzoic acid	0.9
Caffeic acid	1.2
Epicatechin	5.8
Vanilin	0.4
P-coumaric acid	0.2
Ferulic acid	0.2
Quercetin	17.7
Luteolin	0.2
Kaempferol	0.2
Apigenin	0.3

Bacterial strains and culture conditions

Bifidobacterium bifidum ATCC 29521, Bifidobacterium longum subsp. infantis ATCC 15697, Lactobacillus acidophilus ATCC 4356, and Lactobacillus casei ATCC 393 were used as commensal bacterial species in the tests. Pathogenic bacterial species tested were Fusobacterium nucleatum subsp. nucleatum ATCC 25586, 35

Table 2. Composition of medium 2 (for 100 mL)

Component	Amount (g/L)
Trypticase peptone (BD 211921 Bacto™)	1.0
Yeast extract (Sigma Y1625)	0.25
Mineral solution 1	15 mL
Mineral solution 2	15 mL
Clarified rumen fluid	20 mL
Resazurin (Sigma R7017)	0.0001 g
Sodium lactate (70% w/v)	1.0 g
Glucose	0.2 g
Maltose	0.2 g
Cellobiose (Sigma 22150)	0.2 g
Cysteine HCl (Sigma C7880)	0.05 g
NaHCO₃ (Sigma S5761)	0.4 g
Deionized water	to 100 mL

Mineral solution 1 – 3 g/L K₂HPO₄ (Sigma P3786); Mineral solution 2 – 3 g/L KH₂PO₄ (Sigma P9791), 6 g/L (NH₄)₂SO₄ (Sigma A4915), 6 g/L NaCl (Sigma 57653), 0.6 g/L MgSO₄•7H₂O (Sigma 230391), and 0.6 g/L CaCl₂ (Sigma C1016).
Clostridium perfringens ATCC 13124, Staphylococcus aureus subsp. aureus ATCC 12600, Escherichia coli ATCC 11775, and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 29630.

The media used to culture different intestinal strains were as follows: B. bifidum, Mann Rogosa Sharpe (MRS) broth with 0.05% cysteine (MRS-C); L. acidophilus and L. casei, MRS broth; E. coli and S. Typhimurium, Luria–Bertani (LB) medium; S. aureus, tryptic soy broth (TSB); and B. infantis, C. perfringens, and F. nucleatum, liquid form of medium 2 (18). Medium 2 was prepared under CO\textsubscript{2}, as previously described (18) with only slight modification. Trypticase peptone was used instead of casitone in medium 2 (Table 2). Ruminal fluid which was used as a component of the anaerobic media brought from the slaughterhouse, mixed, and filtered through three layers of cheesecloth to partition into liquid and solid (digesta) fractions. The liquid fraction was centrifuged at 15000 rpm, and the clear supernatant was used as a component of the media (Table 2). Escherichia coli, S. Typhimurium, and S. aureus were grown aerobically at 37°C for 24 h. All others were grown at 37°C for 24 h under an atmosphere of 80% N\textsubscript{2}, 10% CO\textsubscript{2}, and 10% H\textsubscript{2} in an anaerobic cabinet (Whitley DG250, Don Whitley, West Yorkshire, UK).

The influence of P. brutia bark extract on commensal intestinal bacteria. The results represent the mean ± standard error. * indicates the difference of the treatments compared with the control (0 μg/mL) (P < 0.05).

Determination of the influence of P. brutia bark extract on bacterial growth

The influence of P. brutia bark extract on the growth of intestinal bacterial strains was tested by a broth dilution method on 96-well plates in the anaerobic cabinet (19). Tests for E. coli, S. Typhimurium, and S. aureus were performed in a laminar flow box. Stock solution of P. brutia bark extract (100 mg/mL) was prepared dissolving extract in 50% (v/v) ethanol. Dilutions of extract (2400, 1200, 600, 300, 150, 75, 37.5, 18.8, 9.4 and 4.7 μg/mL) were made from the stock solution in the bacterial strain specific growth media. For broth microdilution, 200 μl of each dilution was distributed over a 96-well plate (Flat bottom, Corning 3599). A 20 μl of inoculum which compromising 4×10^8 cell/mL overnight bacterial culture were transferred into each well. Each strain was tested in triplicate wells. At the same time, negative control wells without extract and media control wells without bacteria were maintained for each set. Plates were incubated for 24 h at 37°C in the anaerobic cabinet and in an incubator for E. coli, S. Typhimurium, and S. aureus. Bacterial growth was detected with a microplate reader at 600 nm (Epoch, BioTek, USA). A significantly lower OD\textsubscript{600} value compared to control dose (0 μg/mL) was accepted as potential antibacterial activity (20) while significantly higher value was accepted as stimulatory effect (21).

Statistical analyses

Statistical analysis was carried out by the use of one-way ANOVA followed by Dunnett’s test. Each well of a 96-well plate was an experimental unit. A value of P<0.05 was taken to indicate a significant difference.

RESULTS

Effects of P. brutia bark extract on intestinal bacteria are presented in Figure 1 and Figure 2. Pinus brutia bark extract did not completely inhibit any intestinal bacteria. However, the extract showed a potential inhibitor activity on S. Typhimurium and S. aureus from 75 μg/mL, on E. coli and F. nucleatum from 150 μg/mL, and on C. perfringens from 300
µg/mL concentrations (P<0.05). Commensal bacteria, on the other hand, were observed to be less sensitive to the extract than those of the pathogenic strains. The extract stimulated moderately the growth of B. bifidum from 75 µg/mL dose (P<0.05). The extract did not show any activity on L. acidophilus. A potential inhibitor activity was observed for B. infantis and L. casei at 600-2400 µg/mL dose range (P<0.05).

DISCUSSION

The gut is a natural habitat composed of several bacterial communities that are in a dynamic relationship with each other and the host. Commensal bacteria compete with pathogenic species for substrates and binding sites on the intestinal epithelium. Antibiotic treatment decreases the diversity of commensal microflora and leads to expansion of the intestinal pathogens like C. difficile and S. Typhimurium which cause colitis and gastroenteritis (22). Hence, not to inhibit or even stimulate beneficial bacteria in the intestines during antibacterial treatments is of great importance in terms of health and physiology of both humans and animals.

Salmonella Typhimurium, S. aureus, C. perfringens, and E. coli are among the most prevalent causes of foodborne infections and gastroenteritis (23-25). In the present study, P. brutia bark extract exhibited a potential antibacterial action on these species at various doses starting from the smallest dose of 75 µg/mL, although the extract did not completely inhibit the bacterial growth. There is no report about the effects of this extract on intestinal bacterial species, however Dğrak et al. (16) reported that E. coli DM and S. aureus Cowan 1 were resistant to acetone and methanol extracts of P. brutia bark.

Similarly, trunk bark extract of P. brutia had no inhibition on S. aureus and very low inhibition on E. coli (17). On the other hand, potential antibacterial action of P. brutia bark extract on intestinal pathogens in the present study might be caused by the polyphenolic compounds it contains. Pinus brutia bark extract used in this study contained several polyphenolic compounds mainly flavonoids and phenolic acids, some of which were monomeric units of tannins (Table 1). The main phenolic compound contained in the P. brutia bark extract used in this study was quercetin. It was reported that quercetin exhibited antibacterial effect on food-borne pathogens, S. aureus (MTCC-3160), E. coli, and S. Typhimurium (MTCC 3224) starting from the dose of 28.12 ppm (26). Catechin, epicatechin, and gallic acid which were the other dominant phenolic compounds belong to P. brutia bark extract in the present study were reported to inhibit strongly the growth of the same strain of C. perfringens (27). In that study (27), the minimal inhibitor concentrations of purified polyphenols were lower than that of plant extracts that contain them. Despite the potential antibacterial effect of the extract used in this study, the reason for its lack of inhibition may be the relatively low amount of phenolic components it contains.

Fusobacterium nucleatum, the other enteropathogen, is associated with the stages of colorectal neoplasia development (28). Pinus brutia bark extract had an inhibitory potential on this bacterium from 150 µg/mL concentration. P-hydroxy benzoic acid, gallic acid, ferulic acid, caffeic acid, quercetin, catechin, epicatechin, and apigenin presented in the extract were reported to show antibacterial activity against to F. nucleatum (ATCC 10953) at a dose range of 62.5-2500 µg/mL (29). Polyphenolic compounds exert antibacterial activity via increasing the permeability of bacterial membranes and
decreasing cell surface charges, causing rupture or forming pores, with consequent leakage of intracellular components (30). Catechin also could chelate metals essentials as enzymatic cofactors involved in bacterial growth (31).

Bifidobacterium spp. and Lactobacillus spp. species are part of normal microbiota of the gastrointestinal tract and considered as beneficial bacteria with various physiological functions (32). These bacteria are also the most used species as probiotics in the manufacturing of food products (33). Pinus brutia bark extract did not have any adverse effect on B. infantis and L. casei up to 600 μg/mL dose in the present study. Grape seed extract which is rich in phenolic compounds such as (+)-catechin, (-)-epicatechin, and gallic acid inhibited strains of L. casei at some degree at the highest dose (1 mg/mL) but not at the lower doses (0.25 and 0.50 mg/L) similar to the results in this study (34). Pinus brutia bark extract did not affect L. acidophilus, the other commensal, at any doses. Gallic acid, one of the phenolic components of the extract, did not inhibit the L. acidophilus ATCC 4356 that was the same strain used in this study at a dose of 500 μg/mL (35). Lactobacillus acidophilus CECT 362 was also resistant to tea phenolic extracts, the composition of which was similar to the extract used in this study, containing caffeine; (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate, and gallic acid (36).

Pinus brutia bark extract, furthermore, increased the growth of B. bifidum which is among to commensals, up to about 15% starting from 75 μg/mL dose in the present study. Quercetin, catechin, and epicatechin were the main polyphenolic compounds found in the extract. Gwiazdowska et al. (37) reported that quercetin increased growth of B. bifidum NCFB 2235 up to 20% at 2, 20, and 100 μg/mL concentrations while no significant stimulation effect was observed for Bifidobacterium adolescentis except for the concentration of 2 μg/mL. The effect of quercetin seems to depend on both the bacterial strain and the concentration administered. Additionally, Tzounis et al. (38) stated that the polyphenols (+)-catechin and (-)epicatechin found in the diet can be utilized by faecal microflora even in the presence of preferential bacterial energy sources such as fructo-oligosaccharides and sucrose. Authors also reported that (+)-catechin supplementation (150 mg/L) enhanced significantly the growth of Bifidobacterium spp. Thus, the stimulating effect of the Pinus brutia bark extract on B. bifidum might be due to the polyphenolic compounds it contains. Many other studies also suggest that polyphenols may promote the proliferation, growth or survival of beneficial microorganisms in the gut microflora (39). Lactic acid bacteria such as Bifidobacterium spp. and Lactobacillus spp. are able to use polyphenols as a substrate (40). Lactobacillus plantarum strains can degrade tannic acid to gallic acid and glucose, and then use the end products to obtain energy (40). The fact that phenolic compounds enhance the consumption of nutrients such as sugars by bacteria may be the other possible mechanism for stimulatory effects of phenolic compounds (41).

CONCLUSION

Pinus brutia bark extract, at 75-300 μg/mL dose range, had a potential to restrict pathogenic bacteria in the intestines while protect commensal or beneficial ones. Specified effects might be mainly attributed to its polyphenolic content. Further in vitro and in vivo studies required on the effects of this extract on mixed cultures of intestinal bacteria to clarify its beneficial effects on the gut health.

REFERENCES

1. Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008; 76: 3360-73.
2. Taguchi H, Takahashi M, Yamaguchi H, Osaki T, Komatsu A, Fujoka Y, et al. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J Med Microbiol. 2002; 51: 336-43.
3. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003; 361: 512-19.
4. Flint HJ, Wallace RJ. Obesity and colorectal cancer risk: impact of the gut microbiota and weight-loss diets. Open Obes J. 2010; 2: 50-62.
5. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011; 60: 631-7.
6. Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J Appl Microbiol. 1998; 84: 439-43.
7. Phoem AN, Voravuthikunchai SP. Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota. J Microbiol Biotechnol Food Sci. 2012; 21: 739-45.
8. Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology. 2012; 158: 2870-77.
9. Gomes FMS, da Cunha Xavier J, Dos Santos JFS, de Matos YMLS, Tintino SR, de Freitas TS, et al. Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microb Pathogenesis. 2018; 115: 175-8.
10. Avinc O, Celik A, Gedik G, Yavas A. Natural dye extraction from waste barks of Turkish red pine (Pinus brutia Ten.) timber and eco-friendly natural dyeing of various textile fibers. Fiber Polym. 2013; 14(5): 866-73.
11. Kivrak I, Kivrak S, Harmandar M, Cetintaş Y. Phenolic compounds of Pinus brutia Ten.: chemical investigation and quantitative analysis using an ultra-performance liquid chromatography tandem mass spectrometry with electrospray ionization source. Rec Nat Prod. 2013; 7(4): 313-9.
12. Rajani J, Dastar B, Samadi F, Karimi Torshizi MA, Abdulkhani A, Esfandaryarpour S. Effect of extracted galactoglucamannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Brit Poultry Sci. 2016; 57(5): 682-92.
Influence of Pinus brutia bark...