Differences in community composition of endophytic fungi between above- and below-ground tissues of *Aristolochia chilensis* in an arid ecosystem

M. J. Guevara-Araya¹, C. Vilo², A. Urzúa³ and M. González-Teuber¹*

Abstract

Background: Endophytic fungi are diverse and ubiquitous in nature, yet studies simultaneously comparing endophyte communities in above- and below-ground plant tissues are relatively scarce. The main goal of our study was to compare the diversity and community composition of endophytic fungi associated with above- and below-ground tissues of the plant *Aristolochia chilensis* in an arid ecosystem. Endophytic fungi were isolated from healthy leaves and roots of *A. chilensis*, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis.

Results: A combined total of 457 fungal isolates were cultured from leaf and root tissues, belonging to 54 operational taxonomic units (OTUs). The genera *Fusarium*, *Penicillium*, *Phialemonium* and *Trichoderma* were the most representative endophyte taxa identified in *A. chilensis* tissues; nevertheless, *Fusarium* was significantly more dominant in the below-ground community, while foliar endophyte community was dominated by *Penicillium*. Whereas OTU richness and diversity were not different between below-ground and above-ground tissues, endophyte abundance was on average twice as high in below-ground tissue than in above-ground tissue. Fungal endophyte communities in the two tissue types were significantly dissimilar.

Conclusions: Results from this study indicate that *A. chilensis* harbors a similar diversity of endophytic fungi in above- and below-ground tissues. Dominant endophytic fungi were found to be dependent on tissue type, which potentially resulted in marked differences in community structure between above- and below-ground tissues. Ecological processes potentially affecting this pattern are discussed.

Keywords: Endophytic fungi, Diversity, Community composition, *Aristolochia chilensis*

Background

Fungal endophytes frequently occur in a variety of plant structures, living intercellularly in roots, stems and leaves [1] for at least part of their life cycle without causing any apparent sign of disease in hosts [2]. They are ubiquitous in nature, and have been isolated from every organ of nearly all plant species [3]. Fungal endophytes can be transmitted either vertically, as in the case of ‘type I’ endophytic fungi of the Clavicipitaceae family that colonize grasses exclusively, or horizontally, as in the case of non-clavicipitaceous ‘type II’ endophyte, which colonize a wide range of hosts through air- and soil-borne spores [4]. Type II endophyte communities are highly phylogenetically diverse [5–7], and members of different classes and orders can frequently co-occur in the same tissue [5]. Fungal endophytes may confer diverse benefits to host plants by improving growth,
resistance to different abiotic stresses, and by protecting them from herbivores and pathogens [4].

Type II endophyte community composition has been demonstrated to be strongly influenced by both biotic and abiotic factors, such as host species, plant tissue, plant chemistry, soil nutrient availability and local environmental conditions [8–11]. Above- and below-ground tissues potentially represent contrasting habitats for endophytic fungi, which might differentially affect their ability to disperse and colonize a given host. Studies have consistently reported large dissimilarities in endophyte community composition between different tissues of the same host plant, and it has been suggested that these communities display a high degree of organ specificity within plants [12, 13]. Some studies have reported higher endophyte diversity in leaf than in root tissues [14, 15], although the opposite pattern has also been shown to be true [12], or even similar [16]. Studies on the diversity and distribution of endophytic fungi for a given plant species is relevant in order to understand how these symbionts may confer fitness benefits and ecological adaptations to plants. This is particularly true when host plants grow under extreme environmental conditions such as arid habitats.

Here we examined, using a culture-dependent method, the diversity and community composition of endophytic fungi associated with above- and below-ground tissues of the native plant species Aristolochia chilensis, growing naturally in an arid population in Northern Chile. Despite the widespread occurrence of endophytic fungi in arid environments [9, 17–19], in Chile, there is a lack of information about endophytic fungi associated with arid plants. The aims of the study were to 1) isolate and molecularly identify fungal endophytes associated with above- and below-ground tissues of A. chilensis, 2) compare richness and diversity of above- and below-ground fungal endophyte communities, 3) determine the degree of structural similarity between communities of endophytic fungi in both above- and below-ground tissues. This knowledge will advance current understanding of colonization dynamics of endophytic fungi associated with different plant tissues in Chilean arid plants.

Methods

Study species

Aristolochia chilensis (Bridges ex Lindl.), endemic to Chile, is a perennial creeping herb with a distribution ranging from a Mediterranean-type climate in central Chile (33° 29’ S) to an arid climate (27° 30’ S) in the Atacama Desert in the north of the country [20]. It has dark green reniform leaves and purple-brownish protogynous flowers [21]. This study was carried out between October and November 2015 in a population of A. chilensis in the Coquimbo Region in Northern Chile (29° 58’ S; 71° 22’ W). Climate at the study site is classified as arid [22], with an average annual rainfall of approximately 80 mm [23].

Isolation and molecular identification of fungal endophytes

Ten adult Aristolochia chilensis plants of similar size and phenological stage were randomly selected in the field for leaf and root collection in October 2015. In each plant we collected three mature asymptomatic leaves and three primary healthy roots. These samples were then pooled in order to maximize fungal endophyte isolation from each individual plant. Once in the lab leaf and root material were surface-sterilized with ethanol (70%) for 3 min, sodium hypochlorite (1%) for 1 min, followed by three rinses in sterile distilled water for 3 min each [24]. The absence of any microbial growth from the water wash on PDA plates (potato-dextrose-agar, Phyto Technology Laboratories) confirmed the success of surface sterilization. We subsequently cultivated small sections of sterilized leaves and roots (0.5–1.0 cm) on PDA petri dishes plates. Plates were then incubated at room temperature (23°C) for 3–4 weeks. After that time, emerging colonies were subcultured (this procedure was repeated three times) to obtain pure isolates. Pure isolates of endophytic fungi were grown on PDA plates (Phyto Technology Laboratories) at room temperature for 5–6 weeks for further DNA extraction and molecular identification. We extracted genomic DNA from the mycelial mat using a modified method described by [25]. Fresh mycelium was ground on Mini-BeadBeater-16 (BioSpec, USA). 100 mg of ground mycelium were suspended in extraction buffer (10 mM Tris buffer pH 8.0, 10 mM EDTA, 0.5% SDS, NaCl 250 mM). To this aqueous solution, phenol:chloroform:isoamyl alcohol (25:24:1) was added and mixed slowly for 3 min. The phases were separated by centrifugation at 13,000 rpm for 10 min at room temperature. Traces of phenol were removed by treating the aqueous layer with chloroform:isoamyl alcohol (24:1). DNA was precipitated from the aqueous phase with 2.0 volumes of isopropanol. DNA was recovered by centrifugation at 10,000 rpm for 15 min at 4°C. The pellet was then washed with 70% ethanol and resuspended in molecular biology grade water (Mo Bio Laboratories, Inc). Species identification of endophytic fungi was performed using the primers ITS1-F-KYO1 (CTHGGTCATTAGAGGAASTAA) and ITS4 (TCCTCCGGCTTATGAATG). Amplification of target region (around 680 bp) was conducted with 50 μL of PCR reaction mixtures, each containing 7 μL of total genomic DNA, 1 μL of each primer (10 μM), 27.5 μL of SapphireAmp Fast PCR Master Mix (Takara) and 14.5 μL of sterilized water. PCRs was performed in a Techne TC-5000 Thermal Cycler (Fisher-Scientific, USA) with 45 cycles of 30 sec at 95°C, 1 min at 55°C, and 2 min at 72°C, respectively. The PCR products were purified with a gel extraction kit (GigaGene, USA) and sequenced in both directions. DNA sequence homology searches were performed using BLAST (NCBI).
Table 1 Identified fungal endophyte species for leaf and root tissues of *Aristolochia chilensis*. The total number of isolates (considering the total individuals) for each OTU is indicated.

Closest relative from Genbank	Identity (%)	Cover (%)	Genbank Accession Number	Tissue	Number of isolates
Alternaria alternata	99	100	KX516025.1	Leaf	5
Alternaria sp 1	99	100	MHO29120.1	Leaf	6
Alternaria sp 2	96	99	FN868462.1	Leaf	2
Aspergillus niger	100	100	MT074422.1	Leaf	3
Cladosporium ramotenellum 1	99	100	MK388045.1	Leaf	2
Cladosporium ramotenellum 2	99	99	MF473247.1	Root	1
Clonostachys sp	99	99	KUS56490.1	Root	14
Epicoccum nigrum	100	100	MK388043.1	Root	1
Fungal sp 1	99	99	KU839501.1	Root	15
Fungal sp 2	98	92	KU838627.1	Root	1
Fusarium decemcellulare	99	100	MF076589.1	Root	3
Fusarium equiseti	100	100	MN133053.1	Leaf	1
Fusarium oxysporum 1	100	100	MK336584.1	Leaf	3
Fusarium oxysporum 1	99	100	MK336584.1	Root	115
Fusarium oxysporum 2	100	100	MK336615.1	Leaf	1
Fusarium oxysporum 3	100	100	MK336521.1	Root	8
Fusarium sp 1	88	83	KP191630.1	Root	34
Fusarium sambucinum	99	100	KM231813.1	Root	9
Hypocrea lixi	100	100	JF923807.1	Root	1
Hypocrea viridescens	97	77	KF381075.1	Root	2
Meyerozyma caribbica	100	100	MHS45919.1	Root	1
Meyerozyma guilliermondii 1	100	86	KY104257.1	Leaf	6
Meyerozyma guilliermondii 2	100	100	MNS592978.1	Root	14
Neostagonospora sp 1	98	86	MH399526.1	Leaf	2
Penicillium corylophilum	99	96	MF475922.1	Leaf	1
Penicillium crustosum	85	100	MNS11336.1	Root	1
Penicillium expansum	99	100	MH879249.1	Leaf	1
Penicillium glabrum 1	100	100	MK910051.1	Leaf	33
Penicillium glabrum 1	100	100	MK910051.1	Root	5
Penicillium italicum	100	91	NR_163528.1	Leaf	6
Penicillium murcianum	100	100	KP016842.1	Root	3
Penicillium sp 1	97	100	MNO96594.1	Leaf	4
Penicillium sp 2	98	53	MN704702.1	Leaf	2
Penicillium sp 3	96	100	MK226541.1	Root	14
Phialemoniopsis cornearis	100	100	HJ719230.1	Root	8
Phialemoniopsis sp 1	97	96	MH268053.1	Leaf	42
Phialemoniopsis columnaris	99	98	LT821462.1	Root	2
Pleosporales sp 1	95	82	KX611040.1	Leaf	1
Preussia australis 1	99	100	KX611039.1	Leaf	4
Preussia australis 2	98	83	KX710240.1	Root	1
Sarocladium spinifex	100	100	MK336486.1	Root	1
Sordaria fimicola	99	100	MK432735.1	Leaf	2
Stemphylium eturminum	100	100	MN401375.1	Leaf	3
Scientific) according to the following program: 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 54 °C for 30 s and primer extension at 72 °C for 1 min, completed with a final extension at 72 °C for 7 min. Efficacy in the DNA extraction was verified by 1% agarose gel electrophoresis. PCR products were sent to Macrogen, South Korea, for further purification and sequencing. Sense and antisense sequences were assembled using SeqTrace software. Assembled sequences were aligned with the Codoncode Aligner software and screened using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences alignments and phylogenetic tree were constructed by using MEGA software, version 7.0 [26]. Alignments were performed with ClustalW [27], DNA weight matrix ClustalW 1.6 and default parameters. Phylogenetic reconstruction was performed by using neighbor-joining method [28], with p-distance substitution model and bootstrapping of 1000. Additional sequences from ITS1 and ITS2 regions for the phylogenetic tree were retrieved from NCBI. Fungal sequences have been deposited at the NCBI with accession numbers MT441588-MT441640.

Results
Total isolates were 167 for above-ground tissues and 290 for below-ground tissues, assigned to 27 and 27 OTUs, respectively (Table 1). OTUs were aligned and the phylogenetic tree shows different clades by taxonomic groups but shared between above- and below-ground tissues (Fig. 1). Phylogeny corroborates the species assignments done by the BLAST alignments. The most abundant taxa corresponded to the genera *Fusarium*, *Penicillium*, *Phialemoniopsis* and *Talaromyces* (Table 1, Fig. 2). Seven fungal genera, including *Cladosporium*, *Fusarium*, *Meyerozyma*, *Penicillium*, *Preussia*, *Talaromyces* and *Trichoderma* were present in both tissue types. Different endophyte taxa were found to dominate respective tissues: while the genus *Fusarium* was significantly more dominant in below-ground tissues (F1.18 = 39.5, P < 0.001, nested ANOVA) (Fig. 2), foliar endophytes were dominated by the *Penicillium* genus (F1.18 = 5.12, P = 0.036, nested ANOVA) (Fig. 2). Whereas fungal endophyte abundance was significantly higher in root than in leaf tissue (F1.18 = 4.87, P = 0.040, nested ANOVA) (Table 2), richness was not significantly affected by tissue type (richness: F1.18 = 0.34, P = 0.564, nested ANOVA) (Table 2). Neither Shannon diversity (F1.18 = 2.39, P = 0.138, nested ANOVA) nor Simpson

Statistical analyses
Differences in relative abundance of the most prevalent fungal endophyte genera, fungal endophyte abundance (number of fungal isolates), species richness (number of OTUs), Chao-1 (richness estimator) index, and Shannon and Simpson diversity indices between above- and below-ground tissues were assessed using non-metric multidimensional scaling (NMDS) plots. Plots were constructed based on a Bray-Curtis coefficient of similarity of the incidence and abundance of taxa found in different tissues. In addition, the degree of structural similarity between above- and below-ground communities was assessed using similarity indices based on presence/absence data (Jaccard and Sorensen). All analyses were performed using the R statistical package [29].

Table 1 | Identified fungal endophyte species for leaf and root tissues of *Aristolochia chilensis*. The total number of isolates (considering the total individuals) for each OTU is indicated (Continued)

Closest relative from Genbank	Identity (%)	Cover (%)	Genbank Accession Number	Tissue	Number of isolates
Stemphylium vesicarium	99	92	MN401397.1	Leaf	2
Stemphylium vesicarium	99	98	MNS34849.1	Leaf	10
Stemphylium vesicarium	98	81	MHO84268.1	Leaf	12
Stemphylium vesicarium	96	85	MN328386.1	Leaf	1
Talaromyces amestolkiae	100	100	MN086355.1	Leaf	11
Talaromyces amestolkiae	100	100	MN086355.1	Root	9
Talaromyces minialuteus	96	100	KY591916.1	Root	16
Trichoderma atroviride	99	100	MK460812.1	Leaf	1
Trichoderma atroviride	99	99	MK460812.1	Root	1
Trichoderma breve	99	97	MN40089.1	Root	1
Trichoderma sp.	99	100	MT035967.1	Root	9

Guevara-Araya et al. Revista Chilena de Historia Natural (2020) 93:3 Page 4 of 9
diversity ($F_{1.18} = 2.01, P = 0.174$, nested ANOVA) were significantly different between leaf and root tissues (Table 2). The ANOSIM indicated that fungal endophyte community composition significantly differed between plant tissues ($R = 0.673; P = 0.001$). This was visualized with a NMDS (with Bray-Curtis distance) that showed a clear grouping in fungal endophyte communities between above- and below-ground tissues (Fig. 3). As a complementary method, β diversity analyses returned high dissimilarity values between above- and below-ground tissues (Jaccard = 0.145, Sorensen = 0.253) (with a range of 0–1, with 1 representing greatest species similarity).

Discussion

The main goal of this study was to compare diversity and community composition of fungal endophytes between above- and below-ground tissues of the arid plant *Aristolochia chilensis*. Although there were no differences in diversity between above- and below-ground tissues, we found, in agree with previous findings [13, 30, 31], that number of fungal isolates from below-ground tissues was greater than that from above-ground parts. It has been suggested that tissue longevity might be a relevant factor influencing this pattern [31]. Longer life of roots in comparison to leaves, particularly in arid environments, might explain the higher number of fungal endophytes associated to below-ground tissues. Different endophyte genera were found to dominate respective tissues; *Fusarium* was dominant in below-ground tissues, whereas *Penicillium* dominated above-ground parts. Both *Fusarium* and *Penicillium* have previously been reported as common inhabitants in leaves and roots of diverse plant species [24, 32–35] and in plants inhabiting arid environments [19, 24, 35]. The genus *Penicillium*, interestingly, has been found to be also a dominant endophyte in other plant species native of arid environments in Chile, including *Chenopodium quinoa* and *Prosopis chilensis* [24, 35]. Associations of *Penicillium* endophytes with these species was shown to help plants to respond better to drought stress and improve plant growth [35, 36]. Additionally, the genus *Fusarium* has been demonstrated to be a source of bioactive metabolites, which might assist host plants under attack by insects and/or pathogens [37]. Considering the increase evidence demonstrating that endophytic fungi enhance plant resistance to abiotic stress [36, 38, 39], association of *A. chilensis* with an array of fungal endophytes in its
tissues might be of crucial importance for its performance under arid conditions.

Community structure was found to be highly dissimilar between above- and below-ground tissues; calculation of Jaccard and Sorensen indices provided further evidence for community compositional differences between tissue types, suggesting low species turnover between above- and below-ground tissues. These results agree with previous studies that suggest that community composition is strongly determined by plant tissue type [12, 13, 40]. Taken together, endophyte colonization appears to exhibit tissue specificity, and its occurrence within the host is apparently not systemic. In *A. chilensis*, it was observed that roots and leaves shared seven fungal endophyte genera, suggesting that common taxa in both tissues may come from a similar source. Whereas previous studies have found a similar pattern as that observed here [31], other studies showed that in rare occasions a same fungal species was found in both tissues [12, 41, 42].

Different ecological processes might contribute to a high degree of organ specificity for fungal endophyte communities. On the one hand, an important factor is the spore source; leaves and roots may obtain fungal endophytes from different sources [43], including airborne spores for leaf endophytic fungi and inoculum present in the nearby soil for root-associated fungal endophytes. On the other hand, additional biotic and abiotic factors, including host tissue chemistry, temperature and precipitation may also be involved in shaping fungal endophyte communities [44–47]. For example, differences in host chemistry may differentially promote differences in fungal endophyte community and in dominant members of the community [44, 48]. Moreover, it was demonstrated that distinct ecological processes structure above- and below-ground endophyte communities in coastal dune ecosystems [49]. Whereas the strongest filter for leaf endophyte communities was host species, the abiotic environment primarily structured root endophyte communities [49]. Fungal endophyte communities are highly dynamic [45, 50], and processes involved in success endophyte colonization still need to be deeply elucidated.

In conclusion, based on a culture dependent approach, our study reveals that *A. chilensis* harbors a similar diversity of endophytic fungi in above- and below-ground tissues. Nevertheless, dominant endophytic fungi were found to be dependent on tissue type, which potentially resulted in marked differences in community structure between both tissues. More research is required to improve understanding of endophyte colonization dynamics in different host tissues, as well as of the consequences of these interactions for establishment and

Table 2 Diversity indices for endophytic fungi inhabiting leaf and root tissues in *Aristolochia chilensis*

	Leaves	Roots
Abundance (*)	16.2 ± 3.9	30.8 ± 5.2
Richness (ns)	6.4 ± 0.58	5.6 ± 1.2
Shannon diversity (ns)	1.46 ± 0.11	1.11 ± 0.19
Simpson diversity (ns)	0.68 ± 0.05	0.54 ± 0.07

The average ± SE (N = 10 individuals) are shown. Asterisks indicate significance level: * P < 0.05, ** P < 0.01, *** P < 0.001, ns indicates non-significant differences.
performance of the host plant. Further experimental studies are required to elucidate the effects of dominant endophytic fungi on plant tolerance of *A. chilensis* to arid environmental conditions.

Conclusions

Different endophyte taxa were found to dominate respective tissues, which potentially influence differences in community structure between above- and below-ground tissues in *A. chilensis*. A full understanding of dynamics and processes involved in endophyte colonization and community composition still requires more research, and need to include the effects of environmental factors as well as of host plant traits. Simultaneous studies of above- and below-ground endophytes seem necessary to obtain insights into the ecological significance of such communities for host performance.

Abbreviations

OTU: Operational taxonomic units; %: Percent; mg: milligrams; mM: milimolar; μM: micromolar; μL: microliter; min: minute; rpm: Revolutions per minute; bp: Base pair; DNA: Deoxyribonucleic acid

Acknowledgements

We thank Natalia López and Andrea Morales at Universidad de La Serena for their valuable help in the lab.

Authors’ contributions

Experimental design: MJG-A, MG-T. Fieldwork: MJG-A. Lab work: MJG-A and AU. Data analysis: MJG-A, CV. Manuscript preparation: MJG-A, MG-T. All authors read and approved the final version of the manuscript.
Cao LX, You JL, Zhou SN. Endophytic fungi from leaves and roots of the grass Holcus lanatus. Fungal Divers. 2010;41:115–23.

Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO. Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol. 2008;74:2805–13.

Loro M, Valero-Jiménez CA, Nozawa S, Márquez LM. Diversity and composition of fungal endophytes in semiarid Northwest Venezuela. J Arid Environ. 2012;85:46–55.

Massimo NC, Devan MN, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, ÓRien JM, Sandberg DC, Arnold AE. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol. 2015;70:61–76.

Ruiz E, Aristolochiaceae Juss. In: Marticorena C, Rodríguez R, editors. Flora de Chile. Concepción: Editorial Conception, Universidad de Concepción; 2001. p. 33–4.

Stolt GC, Gianoli E. Pollination biology and floral longevity of Aristolochia chilensis in an arid ecosystem. Plant Ecol Divers. 2013;6:181–6.

Di Castri F, Hajek ER. Bioclimatología de Chile. Santiago de Chile: Viceministerio Académica de la Universidad Católica de Chile; 1976.

Chilean Meteorological Service (DMC, www.meteochile.gob.cl).

González-Teuber M, Vilo C, Bascurán-Godoy L. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom Data. 2017;11:109–12.

Nicholson TP, Rudd BAM, Dawson MJ, Lazarus CM, Simpson TJ, Cox RJ. Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chern Biol. 2001;8:157–78.

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

R Development Core Team R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.

Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers. 2011;47:19–27.

Jin H, Yang X, Lu D, Li C, Yan Z, Li X, Zeng L, Qin B. Phylogenetic diversity and tissue specificity of fungal endophytes associated with the medicinal plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Leeuwenhoek. 2015;108:835–50.

Mackvé-Kientz JG, Janssen HB, Abdullah SK, Descote S, Salinas J, Lopez-Lorca LV. Fungal endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium species. FEMS Microbiol Ecol. 2008;64:90–105.

Rosa LH, Almeida Vieira M, Santiago IF, Rosa CA. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Birtl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol. 2010;73:178–89.

Potshangbam M, Indira Devi S, Sahoo D, Strobel GA. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. 2017;8:323.

González-Teuber M, Urzáiz A, Morales A, Ibáñez C, Bascurán-Godoy L. Benefits of a root fungal endophyte on physiological processes and growth of a vulnerable legume tree Prosopis chilensis (Fabaceae). J Plant Ecol. 2018;12:64–71.

González-Teuber M, Urzáiz A, Plaza P, Bascurán-Godoy L. Effects of root endophytic fungi on response of the crop Chenopodium quinoa to drought stress. Plant Ecol. 2018;219:231–40.

Toghuoe RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology. 2020;11:1–21.

Rodríguez RJ, Redman RS, Henson JM. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Chang. 2004;9:261–72.

Dastgoee KMG, Wylie SJ. Plant-fungi association: Role of fungal endophytes in improving plant tolerance to water stress. In: Singh DP, Singh HB, Prabha R, editors. Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer Nature; 2017.
40. Kumar DSS, Hyde KD. Biodiversity and tissue-recurrence of endophytic fungi from *Tripterygium wilfordii*. Fungal Divers. 2004;17:69–90.
41. Suryanarayanan TS, Vijaykrishna D. Fungal endophytes of aerial roots of *Ficus benghalensis*. Fungal Divers. 2001;8:155–61.
42. Su YY, Guo LD, Hyde KD. Response of endophytic fungi of *Stipa grandis* to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Divers. 2010;43:93–101.
43. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compan S, Campisano A, Döring M, Sessitsch A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.
44. González-Teuber M, Vilo C, Guevara-Araya MJ, Salgado-Luarte C, Gianoli E. Plant resistance traits influence endophytic fungi colonization and community composition in a south American temperate rainforest. J Ecol. 2018. https://doi.org/10.1111/1365-2745.13314.
45. Zimmerman NB, Vitousek PM. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci U S A. 2012;109:13022–7.
46. Giauque H, Hawkes CV. Climate affects symbiotic fungal endophyte diversity and performance. Am J Bot. 2013;100:1435–44.
47. Campisano A, Albanese D, Yousaf S, Pancher M, Donati C, Pertot I. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ Microbiol. 2017;19:3353–64.
48. Arnold A, Mejía L, Kylo D, Rojas EI, Maynard Z, Robbins N, Herre EA. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA. 2003;100:15649–54.
49. David AS, Seabloom EW, May G. Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb Ecol. 2016;71:912–26.
50. Jin H, Yan Z, Liu Q, Yang X, Chen J, Qin B. Diversity and dynamics of fungal endophytes in leaves, stems and roots of *Stellera chamaejasme* L. in northwestern China. Antonie Leeuwenhoek. 2013;104:949–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.