Efficient measurement of linear susceptibilities in molecular simulations: Application to aging supercooled liquids

Ludovic Berthier
Laboratoire des Colloides, Verres et Nanomatériaux, UMR 5587, Université Montpellier II and CNRS, 34095 Montpellier, France

(Dated: March 23, 2022)

We propose a new method to measure time-dependent linear susceptibilities in molecular simulations, which does not require the use of nonequilibrium simulations, subtraction techniques, or fluctuation-dissipation theorems. The main idea is an exact reformulation of linearly perturbed quantities in terms of observables accessible in unperturbed trajectories. We have applied these ideas to two supercooled liquids in their nonequilibrium aging regime. We show that previous work had underestimated deviations from fluctuation-dissipation relations in the case of a Lennard-Jones system, while our results for silica are in qualitative disagreement with earlier results.

PACS numbers: 05.10.-a, 05.20.Jj, 64.70.Pf

Correlation and response functions play a major role in condensed matter physics as they directly probe static and dynamic properties at a microscopic level [1]. At thermal equilibrium, linear response theory permits the derivation of fluctuation-dissipation relations between conjugated susceptibilities and correlations, so that both types of measurements become equivalent [2]. Depending on the technique used, experiments or simulations access one or the other quantity. For liquids, neutron scattering experiments will for instance be sensitive to spontaneous fluctuations of the density, while dielectric spectroscopy detects the response induced by an electric field [2]. Numerical simulations mainly focus on spontaneous fluctuations and probe microscopic dynamics via correlation functions [3]. However, there exist cases where the numerical measurement of response functions becomes necessary, for instance when correlation functions become too noisy to be detected [4], or in nonequilibrium situations, where correlation and response functions contain distinct physical information because fluctuation-dissipation theorems (FDT) do not hold [5]. Quantifying FDT “violations” from the simultaneous measurement of correlation and response functions is an active field of research [6]. In this work we propose an efficient method to access linear response functions in numerical simulations of molecular systems. As a physically relevant situation we apply this novel technique to study response functions of glass-forming liquids undergoing physical aging after a sudden quench to low temperature.

Direct measurements of linear susceptibilities usually proceed as follows. Consider of system of N particles described by coordinates, $\vec{r} \equiv \{ \vec{r}_i, i = 1, \cdots, N \}$, momenta, $\vec{p} \equiv \{ \vec{p}_i, i = 1, \cdots, N \}$, masses m_i, and a Hamiltonian $H(\vec{r}, \vec{p})$ containing a kinetic part, $K(\vec{p}) = \sum_i \vec{p}_i^2/(2m_i)$, and a potential part, $V(\vec{r})$. We first consider Newtonian dynamics, as used in Molecular Dynamics (MD):

$$\dot{\vec{r}}_i = \partial H / \partial \vec{p}_i, \quad \dot{\vec{p}}_i = -\partial H / \partial \vec{r}_i.$$

(1)

Physical observables, $A(t) \equiv A[\vec{p}(t), \vec{r}(t)]$, can be measured at any time in a simulation, and correlation functions, $C(t, t') = \langle A(t)B(t') \rangle_0$, are obtained by averaging over repeated measurements. The subscript “0” indicates that averages are performed over unperturbed trajectories, and we suppose that $\langle A(t) \rangle_0 = 0$. In systems which are time-translationally invariant, two-time quantities only depend on $t - t'$ but we retain the (t, t') notation as we shall also study non-stationary systems.

To measure a response function, an external field of constant amplitude h, conjugated to $B(t)$, is introduced at time t', such that the Hamiltonian contains the additional term $\delta H = -hB$ for $t > t'$. A linear susceptibility can then be defined:

$$\chi(t, t') = \int_{t'}^t dt'' \frac{\partial \langle A(t) \rangle_h}{\partial h(t'')} \bigg|_{h \to 0},$$

(2)

Step responses are considered for simplicity but the discussion holds more generally. The average in (2) is taken over perturbed trajectories, so that susceptibilities can only be measured one at a time, contrary to correlation functions which can be simultaneously measured and time averaged in a single unperturbed trajectory.

An alternative would be to perform the derivative in Eq. (2) before taking the average. This is precisely how the FDT is derived [2]. Averages are first expressed in terms of the distribution function. Its thermal equilibrium (Gibbs-Boltzmann) form at temperature T is then assumed, and the derivative is computed analytically [2]:

$$\chi(t, t') = \frac{1}{T} \left[C(t, t) - C(t, t') \right],$$

(3)

where we have set Boltzmann’s constant to unity. An important and well-known feature of the FDT in Eq. (3)
is that the right hand side is evaluated using unperturbed trajectories, the temperature prefactor reminding us that thermal equilibrium is assumed, implying that Eq. 3 cannot be used to measure \(\chi(t,t')\) far from equilibrium.

The idea introduced in this paper is to perform the derivative before doing the average without assuming thermal equilibrium. Similar ideas were recently discussed for discrete spins [8]. In MD simulations, the subtraction technique [8] is a finite-field approximation of this idea: Two simulations are run in parallel starting from the same configuration at time \(t'\), one with \(h = 0\), the other with a small field, \(h\). The susceptibility reads:

\[
\chi(t,t') \approx \frac{\langle A(t) \rangle - \langle A(t) \rangle_0}{h}.
\]

Non-equilibrium techniques are in fact unnecessary [8], since the subtraction technique [8] is a finite-field approximation assumed to devise an unperturbed technique. The quantity \(\chi_i \equiv \partial \bar{r}_i / \partial h\) and \(\bar{q}_i \equiv \partial \bar{p}_i / \partial h\) evolve as:

\[
\dot{\bar{x}}_i = \frac{\bar{q}_i}{m_i} - \frac{\partial B(\bar{r}, \bar{p})}{\partial \bar{p}_i}, \quad \dot{\bar{q}}_i = \frac{\partial B(\bar{r}, \bar{p})}{\partial \bar{r}_i} - \frac{\sum_{j=1}^{N} \partial^2 V(\bar{r})}{\partial \bar{r}_i \partial \bar{r}_j} \cdot \bar{x}_j.
\]

The susceptibility \(\chi(t,t')\) can now be evaluated from unperturbed trajectories:

\[
\chi(t,t') = \left\langle \sum_{i=1}^{N} \left(\frac{\partial A(\bar{r}, \bar{p})}{\partial \bar{r}_i} \cdot \bar{x}_i + \frac{\partial A(\bar{r}, \bar{p})}{\partial \bar{p}_i} \cdot \bar{q}_i \right) \right\rangle_0.
\]

To illustrate the result in Eq. 5 we have performed MD simulations of a 50:20 binary Lennard-Jones (LJ) system composed of \(N = 3\) particles at density \(\rho = 1.2\). Particles interact with a LJ potential with parameters that can be found in [10], chosen to avoid crystallization at low temperature, and to study the properties of glass-forming liquids. Technical details of our simulations are as in the original paper [10]. When the temperature gets lower than \(T \approx 1\) (we use LJ units [10]), the dynamics dramatically slows down, and the system cannot be equilibrated in computer simulations below \(T \approx 0.43\).

We perform equilibrium simulations where we simultaneously solve [10] and [10] to evaluate \(\chi(t,t')\) from [10], and the correlation \(C(t,t')\). We focus on the following observables: \(A(t) = N^{-1} \sum_{j} \epsilon_j \exp[i \vec{k} \cdot \vec{r}_j(t)]\) and \(B(t) = 2 \sum_{j} \epsilon_j \cos[\vec{k} \cdot \vec{r}_j(t)]\), where \(\epsilon_j \equiv \pm 1\) is a bimodal random variable of mean \(0\) [2], such that \(C(t,t')\) corresponds to the self-intermediate scattering function [2]. The numerical burden is a mere factor two since it integrates \(12N\) instead of \(6N\) equations of motion. For \(T = 1.0\), dynamics is fast and \(\chi(t,t')\) can be evaluated in a few runs, as can be checked using the FDT. For \(T = 0.75\), where the relaxation time is \(\approx 50\) (see inset of Fig. 1), the fundamental limitation of the technique appears. In Fig. 1 we represent \(T \chi(t,t')\) evaluated from \(10^3\) independent runs using [10], as a function of \(C(t,t')\). FDT predicts the linear relation shown as a full line. For \(t - t' \ll 5\), \(\chi(t,t')\) follows the FDT. For larger \(t - t'\), the noise in the susceptibility diverges exponentially and no reliable measurement can be performed, as in subtraction techniques. Because the system is chaotic, nearby trajectories diverge exponentially quickly: While linear response fails at the level of trajectories [11], it holds at the probabilistic level [8], as suggested by the FDT derivation outlined above.

The above exercise suggests that in Monte-Carlo (MC) simulations, where phase space is sampled probabilistically rather than deterministically, response functions could be efficiently evaluated. In a standard MC simulation [3], a configuration, \(C_t\), is reached at time \(t\). A trial configuration, \(C'_t\), is accessed with acceptance rate \(A_{C_t \rightarrow C'_t}\), generally defined from the energy change between the two configurations, e.g. the Metropolis rule [3] used in the following. The transition probability from \(C_t\) to \(C_t+1\) reads:

\[
\delta_{C_t \rightarrow C_t+1} = \delta_{C_t \rightarrow C_t} A_{C_t \rightarrow C_t} + \delta_{C_{t+1} \rightarrow C_t} (1 - A_{C_t \rightarrow C_t}).
\]

Averages now mean sampling a large number, \(N\), of trajectories, \((A(t)B(t'))_0 = \sum_{k} A_k(t)B_k(t')P_k(t' \rightarrow t),\) where \(A_k(t)\) is the value of \(A\) at time \(t\) in trajectory \(k\), and \(P_k(t \rightarrow t')\) is the probability of trajectory \(k\) between times \(t'\) and \(t\) starting from \(C_t\),

\[
P_k(t' \rightarrow t) = \prod_{t''=t}^{t'-1} W_{C_{t''} \rightarrow C_{t''+1}^k},
\]

where \(C_{t''}^k\) is the configuration visited at time \(t''\) in trajectory \(k\). The susceptibility reads \(\chi(t,t') = \partial_h \langle N^{-1} \sum_k A_k(t)P_k(t' \rightarrow t) \rangle\), and can be reformulated as an unperturbed average,

\[
\chi(t,t') = (A(t)R(t' \rightarrow t))_0,
\]

where \(R(t'' \rightarrow t) \equiv \sum_{t''} \partial_h \ln(W_{C_{t''} \rightarrow C_{t''+1}^k})\). In Fig. 1 we report the simultaneous measurement of \(\chi(t,t')\), estimated via [10], and of \(C(t,t')\) using \(10^3\) independent MC runs of the binary Lennard-Jones mixture described above for \(T = 0.75\). (The details of the numerics appeared recently [12].) The measurement now easily ex-
tends over the whole range of timescale over which $C(t, t')$ changes, and FDT is perfectly obeyed. Although MC trajectories are chaotic, no exponential divergence of the noise is observed, at variance with the MD case. What Eq. (5) in fact does is to use a single unperturbed trajectories to evaluate the value the observable $A(t)$ would have taken if an infinitesimal field had been applied. Additionally, the evaluation of Eq. (3) is computationally free since it only requires updating one observable, $R(t' \to t)$, during the production of unperturbed trajectories. Finally, several susceptibilities and correlations may now be computed during the same simulation, and time averaging is easily implemented. The main limitation of the method is again statistics: $\chi(t, t')$ now takes the form of a multi-time correlator, and its measurement becomes statistically costly as $t - t'$ gets too large. We find an algebraic growth of the noise, as in spin systems [7], which is nevertheless a drastic improvement over exponential growth. A second drawback is the need to replace Newtonian by Monte-Carlo dynamics since the resulting dynamics are not necessarily equivalent. Quantitative agreement between MC and MD dynamics was recently reported for the LJ system described above [12].

We now apply Eq. (3) to measure $\chi(t, t')$ after a sudden quench to very low temperature. Physical properties of the system now depend on the time t' spent since the quench, the system “ages” [13]. Energy slowly decreases with time, while dynamics gets slower [13]. The FDT in Eq. (3) no more applies, and the following generalization was suggested for glassy materials [14],

$$\frac{\partial}{\partial t'} \chi(t, t') = -\frac{X(t, t')}{T} \frac{\partial}{\partial t'} C(t, t'),$$

(7)

where $X(t, t')$ is the fluctuation-dissipation ratio (FDR), $X(t, t') = 1$ at equilibrium. Deviations of the FDR from unity serve to quantify the distance from equilibrium [14].

Earlier attempts to measure $X(t, t')$ in molecular glasses [15, 16] used the following protocol: quench the system at $t' = 0$; apply a small field and measure $\chi(t, t')$ for times $t \geq t'$; build a parametric “FD plot” of $\chi(t, t')$ vs $C(t, t')$. Crucially, this amounts to replacing $\partial \mu$ by ∂k in (7), a procedure which is correct if $X(t, t')$ is not an explicit function of t and t'. Unbiased FDR measurements require instead the evaluation of $\chi(t, t')$ at fixed time t for different t', so that the FDR can be graphically deduced from the slope, $-X(t, t')/T$, of FD plots. This is numerically too costly if non-equilibrium techniques are used. The difficulty is easily overcome with Eq. (6), and we shall therefore report the first unbiased FDR measurements in aging molecular liquids.

In Fig. 2 we use both time parametrizations to build FD plots in two glass-formers: the LJ system described above, and the BKS model for silica [18]. The LJ results are qualitatively consistent with earlier reports [12]. The plots consist of two distinct pieces, FDT being satisfied for small $t - t'$, “violated” for large $t - t'$. Strikingly, FD plots are well-described by two straight lines, leading to a sensible definition of a constant FDR, x, at large $t - t'$. However, it is obvious in Fig. 2 that (incorrectly) estimating x from fixed-t' measurements yields values that seriously differ from unbiased estimates from fixed-t data, an error made in all previous FDR measurements [15]. Both estimates only become equivalent if a non-trivial limiting FD plot is found at large time [14].

For silica, we find similar FD plots, and similar quantitative discrepancies between both time parametrizations. The disagreement with earlier results is more pronounced for silica since FDR larger than unity were reported [10]. We have repeated our measurements at several temperatures between 500 and 2500 K, several wavevectors from 0.3 to 13 Å$^{-1}$, both for Si and O atoms. We consistently find FD plots as in Fig. 2 with $X(t, t') < 1$. We have numerically checked that this discrepancy cannot be explained by non-linear effects potentially present in the data of Ref. [16]. Using non-equilibrium techniques with large fields we find that non-linear effects yield even smaller apparent FDR values.

We have used the flexibility offered by Eq. (6) to characterize further the properties of FDRs in both aging liquids in Fig. 3. The top panel presents evidence that different observables share the same FDR value, obtained by changing the wavevector used to evaluate dynamic functions. Similar results were obtained for silica. The middle panel shows that Si and O atoms in silica display similar FD plots, with equal FDR values. Again, we find similar results for the two types of particles in the LJ mixture. These results suggest that it is sensible to define, for fixed t, a unique FDR value $x(t)$ characterizing the non-equilibrium part of FD plots. These findings are therefore compatible with the physical idea [5] that slow rearrangements in aging supercooled liquids behave as if they were thermalized at an “effective temperature” de-
effects can be detected. Remarkably, we find that FDRs
are biased numerical estimates of FDRs in aging molecular
liquids, and to extend its determination to a wide range of
times, temperatures, and observables. We showed that
previous analysis quantitatively underestimated FDT vi-
olations in LJ systems, while our results for silica are in
qualitative disagreements with earlier results.

I thank J.-L. Barrat who suggested to reconsider the
aging regime of BKS silica and followed this work, and
R.L. Jack and W. Kob for useful discussions and remarks
on the manuscript.

We have introduced a new technique to efficiently
measure linear susceptibilities in molecular simulations
which only uses unperturbed trajectories to evaluate re-
sponse functions and outperforms subtraction techniques
in Monte-Carlo simulations. Applied to aging super-
cooled liquids, the technique allowed us to report the first
unbiased numerical estimates of FDRs in aging molecular
liquids, and to extend its determination to a wide range of
times, temperatures, and observables. We showed that
previous analysis quantitatively underestimated FDT vi-
olations in LJ systems, while our results for silica are in
qualitative disagreements with earlier results.

I thank J.-L. Barrat who suggested to reconsider the
aging regime of BKS silica and followed this work, and
R.L. Jack and W. Kob for useful discussions and remarks
on the manuscript.

![Graphs showing temperature dependence of FDR](image)

FIG. 3: Top: FD plots for fixed T and t in the LJ system
and different wavevectors displaying the same nonequilibrium
value of the FDR. Middle: FD plots for Si and O (horizontally
shifted by 0.2) in BKS for fixed T, $k = 2.7A^{-1}$, and various t.
For $t = 4.10^4$, the FDR $x = 0.51$ fits both sets of data. Bottom:
Temperature dependence of the FDR at a single large
time, $x(t = 10^4)$, for LJ and BKS systems. The temperature
is normalized by the mode-coupling temperature T_c. A linear
behavior (dashed line) is observed at low T.

Fined by $T_{\text{eff}}(t) \equiv T/x(t)$ [14], with $T_{\text{eff}}(t) > T$ in
the two investigated systems. Our data indicate that $T_{\text{eff}}(t)$
decreases very slowly with t. Finally, the bottom panel
shows the temperature dependence of the FDR measured
at a single large time, $x(t = 10^4)$. To compare both liq-
uids we have to normalize the temperature by some tem-
perature scale. We choose the “mode-coupling” temper-
Distrib. 2013, 4, 1030-1044.

[1] D. Forster, Hydrodynamic fluctuations, broken symme-
try, and correlation functions (Benjamin, Reading, MA,
1975).

[2] J.P. Hansen, I.R. Mc Donald, Theory of simple liquids
(Elsevier, Amsterdam, 1986).

[3] M. Allen and D. Tildesley, Computer Simulation of Liq-
uids (Oxford University Press, Oxford, 1987).

[4] G.V. Paolini and G. Ciccotti, Phys. Rev. A 35, 5156
(1987).

[5] J. Kurchan, Nature 433, 222 (2005).

[6] A. Crisanti and F. Ritort, J. Phys. A 36, R181 (2003).

[7] C. Chatelain, J. Stat. Mech. P06006 (2004); F. Ricci-
tersenghi, Phys. Rev. E 68, 065104 (2003).

[8] G. Ciccotti and G. Janucci, Phys. Rev. Lett. 35, 789
(1975).

[9] J. Hubbard and J.L. Beeby, J. Phys. C: Solid State Phys.
2, 556 (1969).

[10] W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376
(1994).

[11] N.G. van Kampen, Phys. Norv. 5, 279 (1971).

[12] L. Berthier and W. Kob, to be published in J. Phys.:
Condens. Matter, cond-mat/0610253.

[13] W. Kob and J.-L. Barrat, Phys. Rev. Lett. 78, 4581
(1997).

[14] L.F. Cugliandolo, J. Kurchan, and L. Pelti, Phys. Rev. E
55, 3898 (1997).

[15] G. Parisi, Phys. Rev. Lett. 79, 3660 (1997); J.-L. Barrat
and W. Kob, Europhys. Lett. 46, 637 (1999); R. Di
Leonardo, L. Angelani, G. Parisi, and G. Ruocco Phys.
Rev. Lett. 84, 6054 (2000).

[16] A. Scala, C. Valeriani, F. Sciortino, and P. Tartaglia,
Phys. Rev. Lett. 90, 115503 (2003).

[17] This ambiguity is for instance absent in driven fluids
where stationarity is restored, see L. Berthier and J.-L.
Barrat, J. Chem. Phys. 116, 6228 (2002).

[18] We simulate the BKS model for silica [B.W.H. van Beest,
G.J. Kramers, and R.A. van Santen, Phys. Rev. Lett. 64,
1955 (1990)] with $N = 1008$, at density $\rho = 2.37$ g/cm3;
MC simulations proceed as for the LJ system [12].