Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability

Mahmoud Hossam, Trung Le, He Zhao and Dinh Phung

Faculty of Information Technology, Monash University
mahmoud.hossam@gmail.com, {mhossam, trunglm, ethan.zhao, dinh.phung}@monash.edu

Poster: 2463
This restaurant is great and I will definitely come back

This place is terrific and I will definitely come back
Generation Steps

This restaurant is great and I will definitely come back

Rank words by importance

This restaurant is great and I will definitely come back

Replace with Synonyms (Perturbation)

This place is terrific and I will definitely come back

Classifier

Positive / Negative
Generation Steps: Word Importance Ranking

- **Words importance score** I_{w_i} for word w_i is a function Φ of the target model’s probability P for the whole sentence excluding w_i:

 $$I_{w_i} = \Phi(P(Y \mid X_{1:T}), P(Y \mid X_{1:T\setminus\{i\}}))$$

- Is done word by word:

 - This restaurant is great and I will definitely come back

 $$(I_{w_1})$$

 - This [_____] is great and I will definitely come back

 $$(I_{w_2})$$

 - This restaurant is great and I will definitely come [_____]... [______]

 $$(I_{w_T})$$

Problem: Number of queries needed for word ranking = Length (Sentence)
Generation Steps: Word Importance Ranking

- Challenges in black-box setting
 - Number of required queries

This restaurant is great and I will definitely come back

I wonder how I didn’t know about this before, but this place is the best!

- Raise suspicion towards attacking agent

Needs a query for each word in a sentence
Generation Steps: Word Importance Ranking

- Challenges in black-box setting
- Number of required queries

This restaurant is great and I will definitely come back

[] restaurant is great and I will definitely come back

This [] is great and I will definitely come back

[] restaurant is great and I will definitely come back

Efficient way to calculate scores?
Interpretability

- Employ Interpretability
 - Can learn important features from X
 - Objective: Maximize Mutual Information
 $$\max_{\mathcal{E}} I(X_S; Y)$$
 - Logits can be used as importance scores I_w
Explain2Attack

A) Substitute Domain

\[P(Y_b | X_b) \]

Substitute Classifier \(F_b \)

Selected Features \(X_s \)

- - - - -

Sequence \(X_b \in D_b \)

Substitute Data \(D_b \)

Selector \(\mathcal{E} \)

B) Target Domain

Candidate Adversarial Example \(X_{adv} \)

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad \ldots \quad T \]

Attacker

Importance Scores \(I_w \)

Selector \(\mathcal{E} \)

Target Sequence \(X_t \)

Legend

- Training
- Only inference
Results

- **Explain2Attack** reduced the average number of queries compared to the baseline **TextFooler**.
- And achieves same or better attack rate, with higher **Query Efficiency (QE)**

Classifier	BERT	WordCNN	WordLSTM							
Clean_Acc.	IMDB	MR	IMDB	MR	IMDB	MR	Amazon MR	IMDB	MR	Amazon MR
TextFooler (Jin et al., 2019)	11.88	13.59	**0.60**	1.50	**3.92**	**0.04**	**2.06**	**2.15**		
(Substitute Data)	(Yelp)	(Amazon MR)	(Yelp)	(IMDB)	(Amazon MR)	(IMDB)				
Explain2Attack (ours)	11.32	13.34	0.61	1.31	3.97	0.06	2.27	2.38		
Avg_Queries	TextFooler	980.5	**181.6**	444	112.8	378.7	500.2	117.5	392.7	
	Explain2Attack	873.5	184.07	404.5	108.7	349.4	440.5	114.2	369.3	
Query Efficiency (QE)	TextFooler	0.082	**0.421**	0.195	0.695	0.228	0.177	0.679	0.227	
	Explain2Attack	0.093	0.416	0.214	0.723	0.247	0.201	0.697	0.241	

Dataset	Train	Test	Avg. Length
IMDB	25K	25K	215
MR	9K	1K	20
Amazon MR	25K	25K	100
Yelp	560K	38K	152
Table 5.3: Effect of Sentence Length on Number of Queries

Target Dataset	IMDB	Amazon MR	MR						
	BERT	CNN	LSTM	BERT	CNN	LSTM			
Average Sentence Length		215			100				
Avg. Queries ↓	TextFooler	980.5	444	500.2	378.7	392.7	112.8	117.5	**181.6**
	Explain2Attack	873.5	404.5	440.5	349.4	369.3	108.7	114.2	184.07
Difference	106.5	39.5	59.7	29.3	23.4	4.1	3.3	-3.0	
Conclusion

- First framework to learn word importance in black-box setting.
- Reduces query cost and computational complexity.
- Achieves similar or better attack rates than state-of-the-art.
- Not affected by input length
 - Very efficient for long input sentences
Thank You

Poster: 2463

mahmoud.hossam@gmail.com

@mahossam