Pulse Width Modulation for Speeding Up Quantum Optimal Control Design

Qi-Ming Chen1,2 and Re-Bing Wu1,2

1Department of Automation, Tsinghua University, Beijing, 100084, China
2Center for Quantum Information Science and Technology, TNLList, Beijing, 100084, China

This paper focuses on accelerating quantum optimal control design for complex quantum systems. Based on our previous work [arXiv:1607.04054], we combine Pulse Width Modulation (PWM) and gradient descent algorithm into solving quantum optimal control problems, which shows distinct improvement of computational efficiency in various cases. To further apply this algorithm to potential experiments, we also propose the smooth realization of the optimized control solution, e.g. using Gaussian pulse train to replace rectangular pulses. Based on the experimental data of the D-Norleucine molecule, we numerically find optimal control functions in 3-qubit and 6-qubit systems, and demonstrate its efficiency advantage compared with basic GRAPE algorithm.

I. INTRODUCTION

The idea of optimally controlling the dynamical behavior of microsystems described by quantum mechanics has been an explicit dream for more than 50 years [1]. Among all the approaches to solving the resulting optimization problems, model-based optimal control relies on computer simulations of quantum dynamics and numerical optimization algorithms [2]. The early attempt to seek the counterpart of the classical optimal control theory in quantum systems may be traced to Rabitz et al. [3], in which they explicated basic concepts of quantum optimal control theory which paved the way for later approaches. From then on, the studies have been enriched by numerous optimization algorithms with various applications.

Generally, a mathematical model of the underlying quantum system is required for designing optimal controls, and the strategies for solving this model-based optimization problem can be roughly divided into two classes. One approach is based on the necessary conditions derived from Pontryagin’s Maximum Principle, i.e. “considering a pointer moving back and forth within the time interval” [2]. For that, Zhu, Sundermann, and Ho et al. proposed several quadratically convergent iterative algorithms [4–8]; Sklarz, Reich, and Schirmer et al. developed different kinds of Krotov algorithms [2, 9, 10]. The other approach is to eliminate the “Quantum Constrains”, i.e. eliminating the equality constrain of Schrödinger equation (SE) and apply classical optimization algorithms [11, 12]. The quantum gradient algorithm was first introduced by Shi et al. based on difference method [13], and it was improved by Khaneja et al. through a much more convenient way for calculating the gradient, saying the Gradient Ascent Pulse Engineering (GRAPE) method [14]; besides, algorithms such as the Newton algorithm [15–17], quasi-Newton algorithm [18, 19], and various evolutionary algorithms [20] were also proposed.

The efficiency of model-based optimizations is usually determined by two factors. One is how fast the optimization algorithm can converge to the desired solution, and the other is how fast the dynamical evolution under a given control protocol can be calculated. In order to reduce the number of iterations, Ho et al. proposed the two-point boundary-value quantum control paradigm (TBQCP) [6–8], Eitan et al. combined the Krotov and quasi-Newton methods [21], and Watts et al. constructed a easily computable mathematical expression for the target function [22, 23]. More importantly, the simulation of quantum dynamical evolution need to be fast. Palao et al. restricted the objective to only the states used directly as registers [16, 17], Yip et al. proposed the concept of “propagation toolkit” to simplify control functions [24], Arai et al. introduced the reduced time-evolution operators [25].

In our previous work [26], we proposed the Pulse Width Modulation (PWM) method for efficiently simulating time-dependent systems. It transforms an arbitrary bandwidth-limited Hamiltonian into a sequence of on and off "Hamiltonian Pulses" (called Hamiltonian in PWM form), and reduces the simulation time by a large extent. In this paper, we design a gradient algorithm based on PWM and study the resulting improvement on the optimization efficiency with respect to multi-qubit quantum systems. The rest of this paper is organised as follows. Section II briefly reviews the PWM method, and Sec. III presents the problem, derives the optimization algorithm for one-control and multi-control cases. We apply the algorithm to 3-qubit and 6-qubit systems, and compare computational efficiency with the GRAPE algorithm in Sec. IV. We show how to smooth the optimized control function by example of transforming rectangular pulses into Gaussian pulse train in Sec. V. Finally, we summarise all the results and draw the conclusions in Sec. VI. In addition, App. A shows different realizations of PWM transformation and compares PWM with 2nd-order Split Operator Method (SPO), and App. B presents the detailed Hamiltonian for the D-Norleucine we used for numerical simulation.
II. BRIEF REVIEW OF PWM

Pulse Width Modulation (PWM) is a well accepted concept in control technology in power electronics [27, 28], which is based on the fact that any function $u(t)$ with finite frequency bandwidth can be well approximated at any precision by a sequence of rectangular pulses with unanimous amplitude $\varepsilon = \max_i |u(t)|$ but different pulse width t_p. To apply PWM to a quantum system, we define the Frequency Band $\Delta = [\omega_{\text{min}}, \omega_{\text{max}}]$ as the interval from the minimum to the maximum frequency of all the time-dependent variables in the Hamiltonian, and the Frequency Scope $\Omega = M\omega_{\text{min}}$ as the frequency limit one should care about, where M is called the Pulse Number within every time interval $2\pi/\omega_{\text{min}}$.

Consider an arbitrary time-dependent Hamiltonian in the semiclassical form

$$\hat{H}(t) = \hat{H}_0 + \sum_{i=1}^{\tau} u_i(t)\hat{H}_i,$$ \hspace{1cm} (1)

where H_0 and H_i's are time-independent Hamiltonians, $u_i(t)$'s are time-dependent real functions with finite bandwidth. The procedure of applying PWM in quantum system is based on Equal Integral Area Principle (EAP) [26]; in short, we divide every time interval $2\pi/\omega_{\text{min}}$ into M pieces with equal length τ, in each we replace $u_i(t)$ by a rectangular function with amplitude ε_i and width $t_p^{(k)}$ which contains equal integral area. In this way, the time-dependent Hamiltonian is transformed into the PWM form

$$\hat{H}(t) = \hat{H}_0 + \sum_{i=1}^{\tau} s_i(t)\varepsilon_i\hat{H}_i,$$ \hspace{1cm} (2)

where $s_i(t)$ is a sign function which switches among 0, ±1; $\varepsilon_i \geq \max_t |u_i(t)|$ is a constant.

We further define anti-PWM transformation as transforming Eq. (2) into Eq. (1), which replaces rectangular pulse in each time interval τ by a constant with the same integral area; moreover, the Piecewise Constant (PWC) result may be further smoothed through EAP, which may be desired in many cases [5, 29]. However, as we will see the anti-PWM transform cannot always work well when one sets a relatively large time interval τ for simplifying the optimization in complex systems, how to smooth PWM pulses through smooth pulses would be discussed in Sec. V.

III. ALGORITHM DESIGN

Consider an arbitrary time-dependent Hamiltonian in the form of Eq. (1), we name $u_i(t)$ as the i-th control signal, ε_i as the bond on the i-th control field. Our aim is to tailor $u_i(t)$ to minimize the following defined objective IF at time $t = T$

$$\text{IF} = 1 - \frac{1}{2m} \text{Re}\{\text{tr} \left[W^{\dagger} U(T, 0) \right] \},$$ \hspace{1cm} (3)

where W is the target operation, IF is called the "Infidelity" in quantum information [30].

Since optimizing the target Eq. (3) relies highly on the dynamics of the system, an efficient propagation scheme is crucial for quantum optimization. The broadly used approach is to break up the total evolution operator into small increments of duration τ in which the variation of the Hamiltonian operator is negligible, for example

$$\hat{U}(t + \tau, t) = \exp \left[-i\tau (H_0 + u(t + \frac{\tau}{2})\hat{H}_1) \right],$$ \hspace{1cm} (4)

where the sampling point $t + \frac{\tau}{2}$ is decided by the Exponential Midpoint Rule that usually guarantees a result with the highest precision [31]. This approach is called the Piecewise Constant Scheme (PWC), which applies to nearly all the existing numerical quantum algorithms, e.g. the basic GRAPE algorithm [14].

However, PWM provides an alternative approach for solving SE, with the same simplicity but higher efficiency. Based on Eq. (2), one can construct a corresponding time-independent SE in each interval τ and combine the results to calculate the propagator, for example

$$\hat{U}_M(t + \tau, t) = \exp \left[-it_f\hat{H}_0 \right] \exp \left[-it_p(H_0 \pm \varepsilon \hat{H}_1) \right] \times \exp \left[-it_f\hat{H}_0 \right].$$

where $t_p = \varepsilon^{-1} \int_{t_f}^{t_f+\tau} dt' u(t')$, $t_f = (\tau - t_p)/2$, subscript M means it is calculated by PWM transformation.

Instead of using the amplitude of $u_i(t)$ as the decision variables of the system in GRAPE and all the other algorithms, the PWM approach utilizes the time intervals of rectangular pulses $t_p^{(k)}$ to be the decision variables. In the following, we derive the gradient formulas for combining PWM with the gradient descent algorithm.

A. Gradient formula for one-control case

Consider a Hamiltonian with only one control function

$$H(t) = H_0 + u_x(t)\hat{H}_x \quad |u_x(t)| \leq \varepsilon_x,$$

we apply PWM transformation to the Hamiltonian and obtain the corresponding propagator of time $t = T$.
\[U(T,0) = e^{-iH_0f_1^{(M)}} e^{-i(H_0+g^{(M)}H_x)f_2^{(M)}} \left(\prod_{k=1}^{M-1} e^{-iH_0(t_f^{(k)}+t_f^{(k+1)})} e^{-i(H_0+g^{(k)}H_x)t_p^{(k)}} \right) e^{-iH_0f_3^{(1)}}. \]

where
\[g^{(k)} = \begin{cases} +\varepsilon_i, & \text{if the } k\text{-th pulse is positive} \\ -\varepsilon_i, & \text{otherwise} \end{cases} \]
is a hidden binary function which indicates whether the \(k \)-th pulse is positive or negative, \(t_p^{(k)} \) is the time duration of the \(k \)-th pulses, and \(t_f^{(k)} = \left(\tau - t_p^{(k)} \right) / 2 \). Note that the superscript turns out to be either \(H_0 \) or \(H_0 + g^{(k)}H_x \), in order to save computational resource we define
\[H_0 = D_0 \Lambda_0 D_0^\dagger, \quad H_0 + g^{(k)}H_x = D_k \Lambda_k D_k^\dagger, \]
\[V_k = D_k \exp \left[-it_p^{(k)} \Lambda_k \right] D_k^\dagger, \]
\[U_1 = D_0 \exp \left[-it_1^{(1)} \Lambda_0 \right] D_0^\dagger \]
\[U_{k+1} = \left\{ D_0 \exp \left[-i(t_f^{(k)} + t_f^{(k+1)}) \Lambda_0 \right] D_0^\dagger V_k \right\} U_k, \]
where \(k = 1, \ldots, M - 1 \). Thus, we obtain the formula of the propagator and the corresponding gradient
\[U(T,0) = D_0 \exp \left[-it_1^{(1)} \Lambda_0 \right] D_0^\dagger \]
\[\frac{\partial U(T,0)}{\partial t_p^{(k)}} = \frac{-i}{2} U(T,0) \left((V_k U_k)^\dagger H_x (V_k U_k) + U_k^\dagger H_x U_k \right) \]

\[U(T,0) = e^{-iH_0f_1^{(M)}} e^{-i(H_0+H_a)f_2^{(M)}} e^{-i(H_0+H_a+H_b)f_3^{(M)}} e^{-i(H_0+H_a+H_b)t_p^{(k)}} \]
\[\times \left(\prod_{k=1}^{M-1} e^{-iH_0(t_f^{(k)}+t_f^{(k+1)})} e^{-i(H_0+H_a)t_p^{(k)}} e^{-i(H_0+H_a+H_b)t_p^{(k)}} e^{-i(H_0+H_a+H_b)t_p^{(k)}} e^{-iH_0f_3^{(1)}}. \]

Similarly, we define
\[H_0 = D_0 \Lambda_0 D_0^\dagger, \]
\[H_0 + H_a = D_a \Lambda_a D_a^\dagger, \]
\[H_0 + H_a + H_b = D_b \Lambda_b D_b^\dagger, \]
\[V_{k,1} = D_a \exp \left[-it_d^{(k)} \Lambda_a \right] D_a^\dagger, \]
\[V_{k,2} = D_b \exp \left[-it_b^{(k)} \Lambda_b \right] D_b^\dagger V_{k,1}, \]
\[V_{k,3} = V_{k,1} V_{k,2}; \]

\[U_1 = D_0 \exp \left[-it_1^{(1)} \Lambda_0 \right] D_0^\dagger \]
\[U_{k+1} = \left\{ D_0 \exp \left[-i(t_f^{(k)} + t_f^{(k+1)}) \Lambda_0 \right] D_0^\dagger V_k \right\} U_k, \]
where \(k = 1, \ldots, M - 1 \). Thus we obtain the formula of

B. Gradient formula for multi-control case

Consider a more general case where the Hamiltonian contains multiple control functions, e.g. the following 2-control case
\[H(t) = H_0 + u_x(t)H_x + u_y(t)H_y, \quad |u_{x,y}(t)| \leq \varepsilon_{x,y}. \]

We define:
\[t_a^{(k)} = t^0_{p,x}, \quad t_b^{(k)} = t^0_{p,y} \]
\[t_a^{(k)} = t^0_{p,x}, \quad t_b^{(k)} = t^0_{p,y} + \frac{t^0_{f,x} - t^0_{f,y}}{2} \]
\[H^{(k)}_i = g_x^{(k)} H_x, \quad H^{(k)}_b = g_y^{(k)} H_y; \]
\[t_a^{(k)} = t^0_{p,y}, \quad t_b^{(k)} = t^0_{p,x}, \quad t_a^{(k)} = t^0_{p,x} + \frac{t^0_{f,x} - t^0_{f,y}}{2} \]
\[H^{(k)}_i = g_y^{(k)} H_y, \quad H^{(k)}_b = g_x^{(k)} H_x; \]
where
\[g_i^{(k)} = \begin{cases} +\varepsilon_i, & \text{if the } k\text{-th pulse of } i\text{-th control is positive} \\ -\varepsilon_i, & \text{otherwise} \end{cases} \]
the propagator and the corresponding gradient

\[U(T,0) = D_0 \exp \left[-it^{(k)}_p \lambda_0 \right] D_0^\dagger V_{m,3} U_m \]
(12)

\[\frac{\partial U(T,0)}{\partial t^{(k)}_p} = -\frac{i}{2} U(T,0) \left((V_{k,3} U_k)^\dagger H_a (V_{k,3} U_k) + U_k^\dagger H_a U_k \right) \]

\[\frac{\partial U(T,0)}{\partial t^{(k)}_b} = -\frac{i}{2} U(T,0) \left((V_{k,2} U_k)^\dagger H_b (V_{k,2} U_k) + (V_{k,1} U_k)^\dagger H_b (V_{k,1} U_k) \right) \]

C. Algorithm design

Without loss of generality, we present the whole procedure for the algorithm according to the one-control case:

1. Diagonalize the Hamiltonian \(H_0 \) and \(H_0 + g^{(k)} H_Z \) using Eq. (5), and guess the initial pulse intervals \(t^{(k)}_p \).
2. Calculate the exponents \(V_k \) and \(U_k \) using Eq. (6) and (7), the propagator and the gradient using Eq. (8).
3. Evaluate \(\partial U(T,0)/\partial t^{(k)}_p \) and update \(t^{(k)}_p \) by gradient descent method (or other descent methods [11]).
4. Evaluate the infidelity IF in Eq. (3) with these new \(t^{(k)}_p \), repeat step (1)-(3) if the result is not satisfactory.
5. Using anti-PWM transformation or smooth pulses to generate a smooth result.

Since Eq. (5) and (9) allow one to diagonalize and calculate the exponents previously (offline), it transforms the large number of calculations of exponents with matrices on the shoulder Eq. (4) into exponentials with only scalars on the shoulder Eq. (8) and (12), which may simplify the computational complexity and accelerate the simulation of quantum dynamics by a large extent; moreover, Eq. (5)-(7) and Eq. (9)-(11) can be recycled in Eq. (8) and (12) for calculating the time evolution and the corresponding gradient. Thus, we may expected that PWM should be very efficient for solving optimization problems, especially in complex situations.

IV. OPTIMIZATION EXAMPLES

Consider the example of D-Norleucine molecule which contains six homonuclear carbon spins that can be encoded as qubits for Nuclear Magnetic Resonance (NMR) quantum computation. The system’s Hamiltonian reads [32, 33]

\[H(t) = H_0 + u_x(t) H_x + u_y(t) H_y \]

where the complete form of \(H_0 \) and \(H_x,y \) are given in App. B, \(u_{x,y}(t) \) are the control functions implemented by radio-frequency magnetic fields, \(\varepsilon = 2MHz \) is the bound on the amplitude of control fields.
a rather high control precision IF = 0.95 × 10^{-3}. To test the performance of the continuous control fields transformed from PWM pulses with different parameter M, we vary M from 50 to 2.5 × 10^5 to optimize the same problem and anti-transformed the optimized PWM pulses into continuous fields. Figure 2(c) reveals the relation between the performance of the continuous control field and the pulse number M of the optimization process. We found that the anti-transformed fields could still provide a rather accurate result if the PWM time interval τ ≤ 1 μs (M ≥ 1 × 10^4) for this problem; however, it is very difficult to obtain a satisfactory continuous field when τ ≥ 1 μs (M ≤ 1 × 10^4). This can be explained by that EAP works under the condition of small time interval τ, for it is equivalently using only the 1st-order term of Magnus expansion [26]. Nevertheless, since in the latter case the time interval τ for preparing each pulse is relatively long, directly using on and off pulses may be applicable in contemporary laboratory conditions. On this regard, one may think the results for small pulse number M is still acceptable, which further saves the optimization procedure by a large extent.

B. 6-qubit example with 2 controls

We consider a larger system with two control functions for manipulating all the six spins in the molecule, which is regarded to be very difficult for seeking optimal solutions [34]. The target operation is to realize the CNOT gate on \(C_1 \) and \(C_2 \) at time \(T = 10 \) s while remain the rest spins unchanged, saying

\[
W = U_{CNOT} \otimes I^4,
\]

where \(I \) is identity. The time duration may touch the limit of the dephasing time in many NMR systems; nevertheless, it can be achieved in well-prepared samples and in a good experimental apparatus at reasonably high magnetic fields [30]. In this regard, we still focus on seeking optimal control solutions in closed systems.

We start from a randomly chosen initial fields of \(u(0) \), set \(M = 1 \times 10^5 \) to transform the Hamiltonian into

FIG. 2. (Color online) The PWM optimized continuous field (a) in the time domain and (b) in the frequency domain, for the gate control over \(C_1, C_2, \) and \(C_3 \) with accuracy requirement IF ≤ 1 × 10^{-3} and \(M = 1 \times 10^5 \); (c) Infidelity IF of continuous control fields, which are transformed from those optimized PWM pulses with different pulse number M. The red line is fitted by the numerical samples (blue dots).
the PWM form, and apply the gradient optimization algorithm to look for optimal solutions. Figure 3 shows the optimization procedure which achieves the infidelity $IF = 3.89 \times 10^{-4}$ after 24 iterations. We further changed other target operations and also met no any trap in the optimization process, which is consistent with the landscape of quantum system from the practical perspective, saying the traps of optimization are usually avoidable when the time duration is very long [35]. On the other hand, the PWM algorithm achieves a very high precision with only 24 iterations. It reveals that PWM is highly efficient to handle high dimension, high accuracy, and long time interval problems which are regarded as rather difficult for other algorithms [34].

C. Efficiency analysis

PWM speeds up quantum optimal control in accelerating the simulation of quantum dynamical evolution. To quantitatively compare the optimization efficiency of basic GRAPE algorithm and PWM based gradient algorithm, we suppose the iterations before achieving the target are of the same scale for the two algorithms, and compare the CPU time t_c of the two method for calculating a desired propagator $U(T, 0)$ [36]. For simplicity, we consider the 1-control case, use the Hamiltonian of 6-qubit example, and set the desired control function $u(t) = \sin(\omega t)$ for $\omega = 50$KHz.

Figure 4 displays the relation among the frequency scope Ω (which corresponds to pulse number M), time duration t, and the computational efficiency (CPU time t_c). Roughly speaking, PWM shows a distinct advantage in saving computational resources, at $T = 20\mu$s, $IF = 1 \times 10^{-1}$ the PWM algorithm saves 29.6% computational time for corresponding evolution; at $T = 200\mu$s, $IF = 1 \times 10^{-8}$ the PWM algorithm saves 29.7% computational time. Though compared with the low-dimensional results the computation advantage becomes more and more small with the increase of system dimension [26], PWM still shows a nearly 30% time saving in the 6-qubit system. Since a quantum optimization problem usually requires solving SE many times, and solving that for high-dimensional problems needs extremely long computation time, the 30% time saving in fact saves a large quantity of computational resources and makes it possible for optimizing complex systems.

V. SMOOTH PWM PULSES

Though we have demonstrated that PWM has the ability to efficiently find optimal controls in very complex systems, a smooth control is usually preferable in experimental realization such as superconducting control system [29] or laser control system [5, 37]. Typically, this mission is implemented by introducing a smooth error function into the objective, and re-optimize the control problems [5, 29]; however, the way to smooth PWM pulses is more straights forward, and this approach may be also applied to smoothing results from other algorithms.

The first approach is using anti-PWM transformation, which replaces rectangular pulse by a continuous function with the same integral area in each time interval τ. This approach also meets the conclusion in [29], where the author found "the target fidelity does not depend on the shape of the pulse" for the subspace-selective self-adaptive differential evolution algorithm (SuSSADE). Since the number of control parameters are equal, one may smooth the piecewise constant control field by using EAP and obtain the same continuous field, rather than sacrifice the efficiency by introducing the error function.
In fact, as we demonstrated in Sec. II the anti-transformation does not always work when one sets a relatively large τ. Here, we propose another approach for smoothing PWM pulses; that is, we transform the rectangular pulses into continuous pulses, e.g. Gaussian pulses. Detail discussion of this can be found in [26]; in short, the rectangular pulses can be well approximated by a sequence of Gaussian pulses $\exp \left[-\frac{\pi t^2}{t_p^2}\right]$ with the same value of t_p. Figure 5(a) shows the relation between the rectangular pulses and the corresponding Gaussian pulses in time domain. Fig. 5(b) reveals the properties of the two in frequency domain. It demonstrates the Gaussian pulses can well approximate the PWM pulses within a large frequency band. However, though the Gaussian pulse works for a relatively larger τ, it does not always work also. How to effectively smooth PWM pulses is still an open problem for further discussions.

VI. CONCLUSIONS

Combining Pulse Width Modulation (PWM) and gradient algorithm, we applied PWM into quantum optimal control problems. Compared with the basic GRAPE algorithm, the our algorithm raised the efficiency by a large extant, which provides us a highly efficient way for solving various optimization problems. In fact, PWM can also be imbedded in other descendent algorithms, such as Newton algorithm, quasi-Newton algorithm, and various evolutionary algorithms. In addition, since we have demonstrated in [26] that the rectangular pulses generated by PWM are rather robust with noise and can also be implemented by other functions (e.g. the Gaussian pulse train), it indicates the result of PWM algorithm may be directly applied into experiments. Thus, the PWM algorithm may highly simplify the current experiment relying on subtle control of shaped pulses, and provide a very robust and reliable quantum optimal control design.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Grants No. 61134008, No. 61374091, and No. 91221205). We thank Professor Herschel Rabitz from Princeton University for useful discussions.

Appendix A: Other forms of PWM pulses

According to the EAP, one may find there may be various ways for generating PWM pulses. In other words,
two Hamiltonians in the PWM form are identical within the frequency scope Ω as long as
\[t_{p,1} \varepsilon_{x,1} = t_{p,2} \varepsilon_{x,2}, \]
where \(t_{p,k} \) for \(k = 1, 2 \) represents the time duration of the pulses in the \(k \)-th Hamiltonian, \(\varepsilon_{x,k} \) are the control amplitudes of the corresponding PWM pulses which can be virtually varied for computational simulation. For example, we can raise the pulse amplitude by \(f \) and shrink the pulse duration \(t_{p,k} \) by \(1/f \), and keep the frequency properties of PWM pulse within \(\Omega \) unchanged.

Figure 6 shows the relation between \(f \varepsilon_x \) and the infidelity IF, where we consider the 1-control case, use the Hamiltonian of 6-qubit example, and set \(u(t) = \sin(\omega t) \) for \(\omega = 50KHz \) for calculating propagator \(U(T, 0) \) for \(T = 20\mu s \). On one hand, the infidelity IF increases slightly but still remains at a very small value when we raise the control amplitude \(\varepsilon_x \) by \(f \) times and shrink the pulse duration \(t_p \) by \(1/f \) times. On the other hand, it indicates the optimal choice for choosing the control amplitude is \(\varepsilon_x = \max|u_x(t)| \). Since the Hamiltonian of the PWM form converges to the exactly form of the 2-order Split Operator method (SPO) in \([38]\) when \(\varepsilon_x \) goes to infinity, we may conclude that the PWM transformation always provides a much accuracy result than the SPO method \([26]\).

Also, one can shift all the pulses by a small time shift and still keep the frequency properties (nearly) unchanged within the scope. Thus, one may raise the control amplitude by \(f \) and shrink the pulse duration \(t_{p,i} \) by \(1/f \), and shift these pulses by \((1- m) \tau/2 \) where \(m \) stands for the number of different control fields while keep the evolution propagator \(U(T, 0) \) almost unchanged. This provides one way to separately design the PWM pulses for different controls \(u_k(t) \)'s; that is, the generated PWM pulses make the controls act one-by-one in circle without any overlap. For convenience, we briefly give the gradient formula for the case of 2-controls in the following without proving:

\[
H_0 = D_0 \Lambda_0 D_0^\dagger, \quad \text{(A1)}
\]

\[
H_0 + g_z^{(k)} H_z = D_x \Lambda_x D_x^\dagger, \quad H_0 + g_y^{(k)} H_y = D_y \Lambda_y D_y^\dagger;
\]

\[
V_{k,1} = D_0 \exp \left[-i \left(t_{j,x}^{(k)} + t_{f,y}^{(k)} \right) \Lambda_0 \right] D_0^\dagger \times D_x \exp \left[-i t_{p,x}^{(k)} \Lambda_x \right] D_x^\dagger, \quad \text{(A2)}
\]

\[
V_{k,2} = D_y \exp \left[-i t_{p,y}^{(k)} \Lambda_y \right] D_y^\dagger;
\]

\[
U_1 = D_0 \exp \left[-i t_{j,x}^{(1)} \Lambda_0 \right] D_0^\dagger, \quad \text{(A3)}
\]

\[
U_{k+1} = \left(D_0 \exp \left[-i \left(t_{j,x}^{(k+1)} + t_{f,y}^{(k)} \right) \Lambda_0 \right] D_0^\dagger V_{k,2} V_{k,1} \right) U_k;
\]

\[
\begin{array}{cccccc}
C_1 & C_2 & C_3 & C_4 & C_5 & C_6 \\
C_1 & 17662 \\
C_2 & 53.9 & 5382.4 \\
C_3 & 0.8 & 33.96 & 4006.7 \\
C_4 & 2.47 & 0 & 33.96 & 2435.8 \\
C_5 & 0 & 3.03 & 0 & 34.73 & 2216.6 \\
C_6 & 0 & 2.42 & 0 & 34.93 & 2105.8 \\
\end{array}
\]

Table I. The chemical shifts \(\delta \omega_0/2\pi \) (diagonal elements, in unit of Hz) and coupling strengths \(J_{jk} \) (off-diagonal elements, in unit Hz) of the carbon spins in D-Norleucine (CAS NO: 327-56-0). The data are experimentally obtained and provided by University of Science and Technology of China (unpublished).

\[
U(T, 0) = D_0 \exp \left[-i t_{j,y}^{(k)} \Lambda_0 \right] D_0^\dagger V_{k,2} V_{k,1} U_k \quad \text{(A4)}
\]

\[
\frac{\partial U(T, 0)}{\partial t_{p,x}} = -\frac{i}{2} U(T, 0) \left((V_{k,1} U_k)^\dagger H_x (V_{k,1} U_k) + U_k^\dagger H_x U_k \right)
\]

\[
\frac{\partial U(T, 0)}{\partial t_{p,y}} = -\frac{i}{2} U(T, 0) \left((V_{k,2} V_{k,1} U_k)^\dagger H_y (V_{k,2} V_{k,1} U_k) + (V_{k,1} U_k)^\dagger H_y (V_{k,1} U_k) \right).
\]

Appendix B: Hamiltonian of the selected carbon spins in the D-Norleucine molecule

Consider \(m \) spins of the six and ignore their couplings to the remaining spins. The drift and control Hamiltonians are as follows:

\[
H_0 = h \sum_{k=1}^{m} \delta \omega_0 S_z^k + 2\pi h \sum_{1 \leq j < k \leq m} J_{jk} (S_x^j S_x^k + S_y^j S_y^k + S_z^j S_z^k),
\]

\[
H_{x,y} = -\hbar \sum_{k=1}^{m} (1 - \delta_k) S_{x,y}^k,
\]

where

\[
S_{x,y,z}^k = \frac{1}{2} I_2^{(k-1)} \otimes \sigma_{x,y,z} \otimes I_2^{(m-k)}
\]

are spin operators act on the \(k \)-th spin, \(\otimes \) represents the Kronecker product, \(\sigma_{x,y,z} \) represent the standard Pauli operators. The chemical shift \(\delta \omega_0 \) of each spin and \(J \)-coupling constants \(J_{jk} \) between them are listed as the diagonal and off-diagonal elements in **Table I.**
[1] W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).

[2] S. G. Schirmer and P. de Fouquieres, New Journal of Chemistry 13, 702 (2011).

[3] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950 (1988).

[4] W. Zhu, J. Botina, and H. Rabitz, The Journal of Chemical Physics 108, 1581 (1998); W. Zhu and H. Rabitz, ibid. 109, 385 (1998).

[5] K. Sundermann and R. de Vivie-Riedle, The Journal of Chemical Physics 110, 1896 (1999).

[6] T. S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010).

[7] T.-S. Ho, H. Rabitz, and S.-I. Chu, Computer Physics Communications 182, 14 (2011), computer Physics Communications Special Edition for Conference on Computational Physics Kaohsiung, Taiwan, Dec 15-19, 2009.

[8] S. L. Liao, T. S. Ho, S. I. Chu, and H. Rabitz, Phys. Rev. A 84, 031401 (2011).

[9] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002).

[10] D. M. Reich, M. Ndong, and C. P. Koch, The Journal of Chemical Physics 136, 104103 (2012).

[11] S. Boyd and L. Vandenberghe, Convex optimization (Cambridge university press, 2004) pp. 215-288.

[12] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Phys. Rev. A 84, 022305 (2011).

[13] S. Shi and H. Rabitz, The Journal of Chemical Physics 92, 364 (1990).

[14] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Journal of Magnetic Resonance 172, 296 (2005).

[15] R. Kosloff, Annual Review of Physical Chemistry 45, 145 (1994).

[16] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002).

[17] J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).

[18] A. Borzi, G. Stadler, and U. Hohenester, Phys. Rev. A 66, 053811 (2002).

[19] U. Hohenester, P. K. Rekdal, A. Borzi, and J. Schmiedmayer, Phys. Rev. A 75, 023602 (2007).

[20] E. Zahedinejad, S. Schirmer, and B. C. Sanders, Phys. Rev. A 90, 032310 (2014).

[21] R. Eitan, M. Mundt, and D. J. Tannor, Phys. Rev. A 83, 053426 (2011).

[22] P. Watts, J. c. v. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M. Reich, M. H. Goerz, and C. P. Koch, Phys. Rev. A 91, 062306 (2015).

[23] M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. c. v. Vala, M. M. Müller, S. Montangero, and T. Calarco, Phys. Rev. A 91, 062307 (2015).

[24] F. Yip, D. Mazziotti, and H. Rabitz, The Journal of Chemical Physics 118, 8168 (2003).

[25] K. Arai and Y. Ohnuki, Phys. Rev. A 92, 062302 (2015).

[26] Q. M. Chen and R. B. Wu, “Pulse width modulation for simulating time-dependent quantum systems,” e-print arXiv:1607.04054 (2016).

[27] D. G. Holmes and T. A. Lipo, Pulse width modulation for power converters: principles and practice, Vol. 18 (Wiley-IEEE Press, 2003).

[28] F. Vasca and L. Iannelli, Dynamics and Control of Switched Electronic Systems (Springer London, 2012) pp. 25-61.

[29] E. Zahedinejad, J. Ghosh, and B. C. Sanders, Phys. Rev. Lett. 114, 200502 (2015).

[30] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76, 1037 (2005).

[31] A. Castro, M. A. L. Marques, and A. Rubio, The Journal of Chemical Physics 121, 3425 (2004).

[32] T. M. Zhang, R. B. Wu, F. H. Zhang, T. J. Tarn, and G. L. Long, IEEE Transactions on Control Systems Technology 23, 2018 (2015).

[33] Q. M. Chen, R. B. Wu, T. M. Zhang, and H. Rabitz, Phys. Rev. A 92, 063415 (2015).

[34] K. W. Moore, R. Chakrabarti, G. Riviello, and H. Rabitz, Phys. Rev. A 83, 012326 (2011).

[35] D. V. Zhidanov and T. Seideman, Phys. Rev. A 92, 052109 (2015).

[36] The CPU time t_c is measured using the tic and toc commands in Matlab 2014b.

[37] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).

[38] A. D. Bandrauk and H. Shen, Can. J. Chem. 70, 555 (1992).