The Possible Protective Effect of Resveratrol on Diazinon-Induced Oxidative Stress and Hepatic Injury

Fereshteh Mehri¹, Mohammad Taghi Goodarzi², Maryam Esfahani³

Abstract

Diazinon, one of the most known organophosphate pesticides (OPs), has harmful effects on human organs. Acetylcholinesterase inhibition, oxidative stress, and inflammation are the major mechanisms of diazinon toxicity. Diazinon has several toxic effects on the liver. Resveratrol (RES) is a natural polyphenol compound with antitumor, anti-diabetic, anti-obesity, anti-oxidant, anti-aging, and anti-inflammatory effects. This compound can inhibit lipid peroxidation, protein oxidation, and DNA damage. Moreover, it can induce sirt-1, PI3K/AKT, and HO-1 pathways (negative regulators of inflammatory pathways). A large body of evidence indicated that resveratrol can attenuate liver damage by organophosphates. In this short review, we discuss the significant role of this phytoestrogen and antioxidant against the hepatotoxic effect of diazinon as an OP. With elucidation of the role of this supplement in reducing harmful effects of diazinon, it can be used as a protective agent in people at risk of adverse effects of diazinon.

Keywords: Diazinon, Oxidative stress, Inflammation, Liver, Toxicity, Resveratrol
and endothelial cells are more sensitive to oxidative stress. Kupffer cells can produce several cytokines such as tumor necrosis factor alpha (TNFα). Concerning stellate cells, the proliferation and collagen synthesis of hepatic stellate cells are triggered by lipid peroxidation caused by oxidative stress. Additionally, oxidative stress alters metabolic pathways that control normal biological functions (14).

Organophosphates cause histopathological disturbances in the liver which lead to disturbances in metabolic pathways of lipids, carbohydrates, and proteins. Previous studies indicated that diazinon increases the activity of gluconeogenesis enzymes including glycogen phosphorylase and phosphoenolpyruvate carboxykinase. Moreover, diazinon can alter liver protein metabolism (decrease in total protein and albumin) (15).

Various studies confirmed that hepatotoxicity induced by diazinon is related to inflammation (16). Diazinon increased hepatic expression and serum level of TNF-α (17). OP exposure and the high level of pro-inflammatory cytokines have a close association (16,18).

Diazinon can activate apoptotic pathways in the liver via caspase9 and caspase3 activation, increase in Bax/Bcl2 ratio, suppression of endoplasmic chaperone with anti-apoptotic properties (19,20).

It seems that implementing the supplementation strategy to ameliorate the toxic effect of diazinon may provide public health benefits. It is suggested that various substances stop the harmful effects of diazinon on the liver (21). Many studies investigated bioactive compounds extracted from plants with potential therapeutic effects (22). Plants produce low-molecular-weight secondary metabolites which have important roles in the defense system against infections or stress (23). Among them, resveratrol (RES), as a type of polyphenolic compound and phytoalexin, caught remarkable attention. Several plant species, such as peanuts, pistachios, berries, grapes, and nuts can produce RES (24). Red grape is a rich source of RES, it has been estimated that fresh grape skin contains about 50–100 g of resveratrol/g (25). Adverse conditions such as stress, injury, UV irradiation, and fungal infection can induce ROS generation (26).

Pharmacological studies on RES reported anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, anti-obesity, anti-diabetic, cardioprotective, neuroprotective, and anti-microbial properties of RES (27). Furthermore, health benefits of RES were indicated in treating several hepatic disorders including acetaminophen, ethanol, carbon tetrachloride, atherogenic diet induced hepatotoxicity and ischemia/reperfusion-induced damage of the liver (28).

RES treatment can decrease thiobarbituric acid reactive substances level, increase SOD and CAT activities and inhibit activation of nuclear factor NF-κB (as a ROS sensitive transcription factor) (29-32). Various investigations confirmed that RES significantly suppresses cell membrane lipid peroxidation, protein oxidation, and DNA damage because it can directly scavenge different free radicals (33,34). RES is an activator of sirtuin-1 (SIRT-1) (35) which has a role in cell survival (via decreasing oxidative stress and improving forkhead box O transcription factors (36). SIRT-1 has an important function in modulating lipid metabolism, oxidative stress, and inflammation in the liver (37).

Anti-inflammatory effects of RES are indicated by direct inhibition of cyclooxygenase-2 activity (38) and reduction of gene expression of inflammatory mediators such as inducible interleukine-6 (IL-6) and interleukine-1 beta (IL-1β) (39).

RES decreases the expression of cytochrome c, Bax, and caspase 3 and restored anti-apoptotic markers to control level (40). RES has genoprotective effect on genotoxicity induced by permethrin (an insecticide) in cultured human lymphocytes (41).

RES plays an important role in metabolic pathways. In vivo studies showed that RES can increase and decrease hepatic expression of enzymes involved in lipolysis and lipogenesis, respectively (42). In addition, RES improves glucose metabolism by increasing insulin receptor substrate 1, glucose transporter type4, peroxisome proliferator-activated receptor α and Y (43).

The hepatoprotective effects of resveratrol against fibrosis (44) and oxidative stress (45) are reported. RES can significantly decrease the expression of fibrosis-related genes including transforming growth factor beta1, collagen type-1, α-smooth muscle actin, and hydroxyproline in rat with dimethylnitrosamine induced liver fibrosis (46). The protective effect of RES against fibrogenesis is mediated by its polyphenol capacity (47).

RES treatment significantly decreased liver damage induced by CCl4 via suppression of lipid peroxidation, improvement of hepatic GSH depletion (following CCl4 administration), enhancement of GST activity, and nodule growth inhibition (48).

RES has beneficial effect on hepatic injury after hemorrhage via up-regulation of PI3K/AKT and HO-1 (regulators of various crucial events in the inflammatory response), and modulation of inflammatory cytokines (49).

The ameliorating effect of RES in OPs toxicity was reported. In vitro studies presented that RES can attenuate neurotoxic effects in PC12 cells via suppression of ROS production and enhancement of enzymatic antioxidant systems.

RES reduced the expression of apoptotic markers and restored the expression of anti-apoptotic markers, thereby preserving the PCL2 cells from programmed cell death (40). RES can boost the catalytic activity of Cyp2d22/
CYP2D6 in mice treated with maneb (MB), a fungicide, and paraquat (PQ), a herbicide. These xenobiotic-metabolizing enzymes have protective effects against parkinsonism induced by MB and PQ (50).

Animal model indicated that RES could inhibit the inflammatory response, oxidative stress, and apoptosis induced by paraquat (one of the world’s most widely used herbicide). RES significantly declined serum AST and ALT, MDA, and hepatic TNF-α levels and the expression of apoptosis markers (including p53, Bax). In addition, this compound increased anti-apoptotic gene (BCL-2) expression and liver GSH level. Histopathological studies of the liver confirmed these results (51).

The anti-oxidative effect of resveratrol has been indicated in rats treated with glyphosate-based herbicides (GBH) via reducing MDA levels and increasing GSH levels. Moreover, RES minimized liver injury induced by GBH via improvement in biochemical markers such as AST, ALT, and ALP. These changes were reflected in the histopathological assessment of the liver (52).

Malathion is another organophosphate pesticide which significantly increases the level of liver enzymes including ALT, AST, and ALP and damages hepatocytes. In vivo studies showed that RES improved the activity of liver antioxidant enzymes and decreased lipid peroxidation and liver enzymes. Additionally, RES decreased serum nitric oxide level and lipid peroxidation in malathion-treated rats compared to the control group. RES suppresses liver damage by malathion via oxidative stress inhibition (47). RES administration can moderate the genotoxic effect of malathion in the liver by decreasing 8-hydroxyguanosine concentration. RES can improve malathion-induced histopathological changes in the liver (53). Moreover, RES has protective effects on renal damage induced by malathion. This antioxidant can reduce kidney MDA, blood urea nitrogen, nitric oxide levels and improve renal TAC level. Histopathological findings confirm these beneficial effects (54).

Figure 1 shows a summary of the antioxidant effects of RES on hepatotoxicity induced by diazinon.

![Image](image_url)

Figure 1. The Possible Effect of Resveratrol on Oxidative Stress and Inflammation Induced by Diazinon in Liver. GSH: glutathione; SOD: superoxide dismutase; CAT: catalase; ROS: reactive oxygen species; TNF-α: tumor necrosis factor α; †: Stimulatory effect; ‡: Inhibitory effect.

Conclude adverse effects of diazinon.

Conflict of Interest Disclosures
The authors declare no conflicts of interest.

Acknowledgments
The authors would appreciate the Deputy of Research and Technology of Hamadan University of Medical Sciences for financial support of the study.

References

1. Gökçimen A, Gulle K, Demirin H, Bayram D, Kocak A, Altuntas I. Effects of diazinon at different doses on rat liver and pancreas tissues. Pestic Biochem Physiol. 2007;87(2):103-8. doi: 10.1016/j.pestbp.2006.06.011.
2. Shah MD, Iqbal M. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol. 2010;48(12):3345-53. doi: 10.1016/j.fct.2010.09.003.
3. Alinejad S, Zamani N, Abdollahi M, Mehrpour O. A narrative review of acute adult poisoning in Iran. Iran J Med Sci. 2017;42(4):327-46.
4. Beydilli H, Yılmaz N, Çetin ES, Topal Y, Celik OI, Sahin C, et al. Evaluation of the protective effect of silibinin against diazinon induced hepatotoxicity and free-radical damage in rat liver. Iran Red Crescent Med J. 2015;17(4):e25310. doi: 10.5812/ircmj.17(4);e25310.
5. Abu-Qare AW, Abou-Donia MB. Inhibition and recovery of maternal and fetal cholinesterase enzyme activity following a single cutaneous dose of methyl parathion and diazinon, alone and in combination, in pregnant rats. J Appl Toxicol. 2001;21(4):307-16. doi: 10.1002/jat.761.
6. Sams C, Cocker J, Lennard MS. 544 Metabolism of chlorpyrifos and diazinon by human liver microsomes. Toxicol Lett. 2003;144 Suppl 1s:146. doi: 10.1016/s0378-4274(03)90543-1.
7. Karalliedde LD, Edwards P, Marrs TC. Variables influencing the toxic response to organophosphates in humans. Food Chem Toxicol. 2003;41(1):1-13. doi: 10.1016/s0278-6915(02)00232-6.
8. El-Shenawy NS, El-Salmy F, Al-Eisa RA, El-Ahmary B. Amelioratory effect of vitamin E on organophosphorus insecticide diazinon-induced oxidative stress in mice liver. Pestic Biochem Physiol. 2010;96(2):101-7. doi: 10.1016/j.pestbp.2009.09.008.
9. Tsitsimpikou C, Tzatzarakis M, Fragkiadaki P, Kovatsi L, Stivaktakis P, Kalogeraki A, et al. Histopathological lesions, oxidative stress and genotoxic effects in liver and kidneys following long term exposure of rabbits to diazinon and propoxur. Toxicology. 2013;307:109-14. doi: 10.1016/j.
and challenges. Arch Biochem Biophys. 2011;508(2):164-70.

Antioxidant resveratrol for skin disorders: promise, prospects, and mechanisms. J Cosmet Dermatol. 2006;5(4):152-9.

Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape seeds: a natural antioxidant. J Med Food. 2008;11(1):95-101.

Prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis. 2010;20(8):618-25.

Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G582-8. doi:10.1152/ajpgi.00521.2005.

Le Lay S, Sanz G, Martinez MC, Andriantsitohaina R. Oxidative stress and metabolic pathologies: from an adipocytic point of view. Oxid Med Cell Longev. 2014;2014:908539. doi:10.1155/2014/908539.

Teimouri F, Amirakbarian N, Esmaily H, Mohammadirad A, Aliahmadi A, Abdollahi M. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum Exp Toxicol. 2006;25(12):697-703. doi:10.1191/0960327106ht5064.

Timcheh Hariri A, Moallemin SA, Mahmoudi M, Memar B, Hosseinzadeh H. Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol. 2010;48(10):3083-8. doi:10.1016/j.fct.2010.07.010.

Ahmadi-Naji R, Heidarian E, Ghatreh-Samani K. Evaluation of the effects of the hydroalcoholic extract of *Terminalia chebula* fruits on diazinon-induced liver toxicity and oxidative stress in rats. Avicenna J Phytomed. 2017;7(5):454-66.

Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, et al. Occupational and environmental exposure to pesticides and cytotoxic pathways in chronic diseases (Review). Int J Mol Med. 2016;38(4):1012-20. doi:10.3892/ijmm.2017.2728.

Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol. 2017;68(4):261-75. doi:10.1515/ahrh-2017-0859.

Lari P, Rashedinia M, Abnous K, Hosseinzadeh H. Crocin ameliorates oxidative stress in type 2 diabetic rats. Biochimie. 2012;94(2):374-83. doi:10.1016/j.biochem.2011.08.005.

Asadi S, Rahimi Z, Saidijam M, Shabab N, Goodarzi MT. Effects of resveratrol on FOXO1 and FOXO3a genes expression in adipose tissue, serum insulin, insulin resistance and serum SOD activity in type 2 diabetic rats. Int J Mol Cell Med. 2018;7(3):176-84. doi:10.22088/ijmcm.bums.7.3.176.

Asadi S, Moradi MN, Khvipour N, Goodarzi MT, Mahmoodi M. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats. Biol Trace Elem Res. 2017;177(1):132-8. doi:10.1007/s12011-016-0861-6.

Sengottuvelan M, Deepthi K, Naikini N. Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Chem Biol Interact. 2009;181(2):193-201. doi:10.1016/j.cbi.2009.06.004.

Xiao NN. Effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. Biomol Ther (Seoul). 2015;23(4):374-8. doi:10.4062/biomolther.2015.015.

Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187-95. doi:10.1074/jbc.M501250200.

Pan H, Finkel T. Key proteins and pathways that regulate lifespan. J Biol Chem. 2017;292(16):6452-60. doi:10.1074/jbc.R116.771915.

Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci. 2017;13(7):852-67. doi:10.7150/ijbs.19370.

Subbaraoaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem. 1998;273(34):21875-82. doi:10.1074/jbc.273.34.21875.

Limagne E, Lançon A, Delmas D, Cherkaooui-Malki M, Latruffe N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between primary chondrocytes and macrophages. Nutrients. 2016;8(5). doi:10.3390/nu8050280.

Kumar V, Tripathi VK, Singh AK, Lohani M, Kuddus M. Trans-resveratrol restores the damages induced by organophosphorus pesticide-monocrotophos in neuronal cells. Toxicol Int.
41. Turkez H, Aydin E. The genoprotective activity of resveratrol on permethrin-induced genotoxic damage in cultured human lymphocytes. Braz Arch Biol Technol. 2013;56(3):405-11. doi: 10.1590/S1516-89132013000300008.

42. Zhang D, Yan Y, Tian H, Jiang G, Li X, Liu W. Resveratrol supplementation improves lipid and glucose metabolism in high-fat diet-fed blunt snout bream. Fish Physiol Biochem. 2018;44(1):163-73. doi: 10.1007/s10666-017-0421-9.

43. Faghihzadeh F, Hekmatdoost A, Adibi P. Resveratrol and liver: a systematic review. J Res Med Sci. 2015;20(8):797-810. doi: 10.4103/1735-1995.168805.

44. Mohseni R, Arab Sadeghabadi Z, Goodarzi MT, Karimi J. Co-administration of resveratrol and beta-aminopropionitrile attenuates liver fibrosis development via targeting lysyl oxidase in CCl(4)-induced liver fibrosis in rats. Immunopharmacol Immunotoxicol. 2019;41(6):644-51. doi: 10.1080/08923973.2019.1688829.

45. Khazaei M, Karimi J, Sheikh N, Goodarzi MT, Saidijam M, Khodadadi I, et al. Effects of resveratrol on receptor for advanced glycation end products (RAGE) expression and oxidative stress in the liver of rats with type 2 diabetes. Phytother Res. 2016;30(1):66-71. doi: 10.1002/ptr.5501.

46. Hong SW, Jung KH, Zheng HM, Lee HS, Suh JK, Park IS, et al. The protective effect of resveratrol on dimethylthiourea-induced liver fibrosis in rats. Arch Pharm Res. 2010;33(4):601-9. doi: 10.1007/s12272-010-0415-y.

47. Jalili C, Farzaei MH, Roshankhah S, Salashshoor MR. Resveratrol attenuates malathion-induced liver damage by reducing oxidative stress. J Lab Physicians. 2019;11(3):212-9. doi: 10.4103/jlp.jlp_43_19.

48. Roy S, Sannigrahi S, Majumdar S, Ghosh B, Sarkar B. Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxid Med Cell Longev. 2011;2011:703676. doi: 10.1155/2011/703676.

49. Yu HP, Yang SC, Lau YT, Hwang TL. Role of Akt-dependent up-regulation of hemeoxygenase-1 in resveratrol-mediated attenuation of hepatic injury after trauma hemorrhage. Surgery. 2010;148(1):103-9. doi: 10.1016/j.surg.2009.12.008.

50. Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP. Resveratrol potentiates cytochrome P450 2d2-mediated neuroprotection in manebe- and parquat-induced parkinsonism in the mouse. Free Radic Biol Med. 2012;52(8):1294-306. doi: 10.1016/j.freeradbiomed.2012.02.005.

51. El-Boghdady NA, Abeldelwab NF, Nooh MM. Resveratrol and montelukast alleviate parquat-induced hepatic injury in mice: modulation of oxidative stress, inflammation, and apoptosis. Oxid Med Cell Longev. 2017;2017:9396425. doi: 10.1155/2017/9396425.

52. Turkmen R, Birdane YO, Demirel HH, Kabu M, Ince S. Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicol Res (Camb). 2019;8(2):238-45. doi: 10.1039/c8tx00287h.

53. Akbel E, Anslan-Acaroz D, Demirel HH, Kucukkurt I, Ince S. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb). 2018;7(3):503-12. doi: 10.1039/c8tx00030a.

54. Jalili C, Roshankhah S, Moradi Y, Salashshoor MR. Resveratrol attenuates malathion-induced renal damage by declining oxidative stress in rats. Int J Pharm Investig. 2018;8(4):192-9.