Learning with Analytical Models

Huda Ibeid, Siping Meng, Oliver Dobon, Luke Olson, William Gropp
University of Illinois at Urbana-Champaign
Outline

1. Motivation
2. Applications
 1. Stencil Computation
 2. Fast Multipole Method
3. Analytical Models
4. Supervised Machine Learning
5. Approach: Hybrid Model
6. Evaluation
7. Conclusions
Motivation

Pros	Cons
No or minimal training	Requires domain expertise
Requires domain expertise	Robustness
Rely on simplifying assumptions	Curse of dimensionality
Increasing architecture complexity	

Goals:
- Minimize prediction cost
- Maintain reasonable prediction accuracy
Applications

• Stencil Computation
• Fast Multipole Method
Stencil Computation

\[
\text{for } t \leftarrow 0 \text{ to } \text{timesteps do} \\
\text{for } k \leftarrow 1 \text{ to } KK - 1 \text{ do} \\
\quad \text{for } j \leftarrow 1 \text{ to } JJ - 1 \text{ do} \\
\quad \quad \text{for } i \leftarrow 1 \text{ to } II - 1 \text{ do} \\
\quad \quad \quad \chi_{i,j,k}^t = C_0 \times \chi_{i,j,k}^{t-1} + C_1 \times (\chi_{i-1,j,k}^{t-1} + \chi_{i+1,j,k}^{t-1} + \\
\chi_{i,j-1,k}^{t-1} + \chi_{i,j+1,k}^{t-1} + \chi_{i,j,k-1}^{t-1} + \chi_{i,j,k+1}^{t-1}) \\
\quad \quad \quad \text{end for} \\
\quad \text{end for} \\
\text{end for} \\
\text{end for}
\]
Stencil Computation

Assumptions

- Arithmetic and memory operations can be overlapped
- Floating point operations negligible

Given a grid size: \(N = I \times J \times K \) elements of order \(l \), total memory requirement to compute an X-Y plane

\[
S_{\text{total}} = P_{\text{read}} \times S_{\text{read}} + P_{\text{write}} \times S_{\text{write}}
\]

\[
P_{\text{read}} = 2 \times l + 1
\]

\[
S_{\text{read}} = II \times JJ
\]

\[
P_{\text{write}} = 1
\]

\[
S_{\text{write}} = I \times J
\]
Stencil Computation

On an architecture with a memory hierarchy of \(n \) cache levels, total time to compute a stencil is

\[
T = T_{L1} + T_{Li} + \cdots + T_{Ln} + T_{mem}
\]

\[
T_{Li} = T_{li}^{data} \times Hits_{Li}
\]

\[
T_{li}^{data} = data \ast \beta_{mem_{Li}}
\]

\[
Hits_{Li} = Misses_{Li-1} - Misses_{Li}
\]

\[
Misses_{Li} = \lfloor IL/W \rfloor \times JJ \times KK \times nplanes_{Li}
\]

\[
nplanes_{Li} = \begin{cases}
1, & \text{if } R_1 \\
(1, P_{read} - 1], & \text{if } \neg R_1 \land R_2 \\
(P_{read} - 1, P_{read}], & \text{if } \neg R_2 \land R_3 \\
(P_{read}, 2 \times P_{read} - 1], & \text{if } \neg R_3 \land \neg R_4 \\
2 \times P_{read} - 1, & \text{if } R_4
\end{cases}
\]

\[
R_1 : ((size_{Li}/W) \times R_{col} \geq S_{total}), \quad R_2 : ((size_{Li}/W) > S_{total}), \\
R_3 : ((size_{Li}/W) \times R_{col} > S_{read}), \quad R_4 : ((size_{Li}/W) \times R_{col} < P_{read} \times II)
\]

\[
R_{col} = P_{read}/(2 \times P_{read} - 1)
\]
Supervised Machine Learning
Stencil Computation

- \(\mathbf{X} = (l, J, K, b_i, b_j, b_k) \) where \(l \times J \times K = \{1 \times 16 \times 16 \ldots 1 \times 128 \times 128\} \) with a 16 points stride and \(b_i \times b_j \times b_k = \{1 \times 1 \times 1 \ldots l \times J \times K\} \).

(a) Decision Trees (b) Extra Trees (c) Random Forests
Hybrid Model

- Analytical model
- Two ensemble methods
- Training algorithm
- Prediction algorithm
Evaluation

Stencil Computation

- First, we evaluate hybrid approach on areas that analytical models cover accurately
- $X = (I, J, K)$ where $I \times J \times K = \{128 \times 128 \times 128 \ldots 256 \times 256 \times 256\}$ with a 16 points stride

(a) Extra Trees (b) Hybrid Model
Evaluation

Stencil Computation

- Next, we add loop blocking to the analytical models
- Analytical model $MAPE = 42\%$
- $X = (I, J, K, b_i, b_j, b_k)$ where $I \times J \times K = \{1 \times 16 \times 16 \ldots 1 \times 128 \times 128\}$ with a 16 points stride and $b_i \times b_j \times b_k = \{1 \times 1 \times 1 \ldots I \times J \times K\}$

(a) Extra Trees

(b) Hybrid Model
Evaluation

Stencil Computation

• Lastly, we evaluate the hybrid model on a region that is not covered by the analytical models

• $X = (l, J, K, t)$ where $l \times J \times K = \{128 \times 128 \times 1 \ldots 176 \times 176 \times 1\}$ with a 16 points stride and the number of threads $t = \{1 \ldots 8\}$

![Box plots for MAPE (%) with different training set sizes for (a) Extra Trees and (b) Hybrid Model.](image-url)
Evaluation

Fast Multipole Method

- FMM is a highly complex algorithm with several different phases, a combination of data structures, fast transforms, and irregular data access
- We do not tune the analytical models ($MAPE = 84.5\%$)
- $X = (t, N, q, k)$ where $t = \{1 \ldots 16\}$, $N = \{4096, 8192, 16384\}$, and $k = \{2 \ldots 12\}$

(a) Extra Trees

(b) Hybrid Model
Conclusions

• The hybrid approach is effective in predicting the execution time by reducing the MAPE score of pure machine learning models.

• The hybrid model requires small training dataset to carry out predictions with reasonable accuracy, thus making it suitable for hardware and workload changes.