Arithmetic properties of orders in imaginary quadratic fields

HO YUN JUNG, JA KYUNG KOO, DONG HWA SHIN AND DONG SUNG YOON

Abstract

Let \(K \) be an imaginary quadratic field. For an order \(\mathcal{O} \) in \(K \) and a positive integer \(N \), let \(K_{\mathcal{O},N} \) be the ray class field of \(\mathcal{O} \) modulo \(N\mathcal{O} \). We deal with various subjects related to \(K_{\mathcal{O},N} \), mainly about Galois representations attached to elliptic curves with complex multiplication, form class groups and \(L \)-functions for orders.

Contents

1 Introduction 2
2 The generalized ideal class group isomorphic to \(C_N(\mathcal{O}) \) 5
3 The elliptic curve \(E_\mathcal{O} \) with complex multiplication by \(\mathcal{O} \) 9
4 Fields of modular functions 10
5 Form class groups 12
6 Inequalities on special values of modular functions 14
7 Extension fields of \(\mathcal{O} \) generated by torsion points of \(E_\mathcal{O} \) 17
8 Galois representations attached to \(E_\mathcal{O} \) 20
9 An isomorphism of \(C_N(D_\mathcal{O}) \) onto \(C_N(\mathcal{O}) \) 23
10 The Shimura reciprocity law 28
11 Ray class invariants for orders 29
12 An isomorphism of \(C_N(D_\mathcal{O}) \) onto \(\text{Gal}(K_{\mathcal{O},N}/K) \) 33
13 The \(L \)-functions for orders 37

2020 Mathematics Subject Classification. Primary 11R37; Secondary 11E12, 11F80, 11G05, 11R42, 11R29.
Key words and phrases. Class field theory, elliptic curves, form class groups, Galois representations, \(L \)-functions.
1 Introduction

Let K be an imaginary quadratic field. In 1935, H. Söhngen ([26]) first dealt with ray class fields for orders in K which generalizes the usual ray class fields for the maximal order O_K. Later in [28] Stevenhagen paid attention to the ray class fields for orders in order to have explicit description of Shimura’s reciprocity law (Proposition 5.1). Furthermore, Cho ([4]) constructed the fields in view of certain Diophantine equations by extending the ideas in [6].

Let O be an order in K of discriminant D_O. We denote by $I(O)$ the group of proper fractional O-ideals in the sense of [6, §7.A]. It is well known that every fractional O-ideal is proper if and only if it is invertible. We say that a nonzero O-ideal a is prime to a positive integer ℓ if $a + \ell O = O$. Let $P(O)$ be the subgroup of $I(O)$ consisting of principal fractional O-ideals. For a positive integer N, we define the subgroups of $I(O)$ and $P(O)$ as

$$I(O, N) = \langle a \mid a \text{ is a nonzero proper } O\text{-ideal prime to } N \rangle,$$

$$P_N(O) = \langle \nu O \mid \nu \in O \setminus \{0\} \text{ and } \nu \equiv 1 \pmod{NO} \rangle,$$

respectively. In particular, we have $I(O, 1) = I(O)$ (cf. [6 Exercise 7.7]) and $P_1(O) = P(O)$ because the field of fractions of O is K. Then the associated quotient group

$$C_N(O) = I(O, N)/P_N(O)$$

is isomorphic to a generalized ideal class group modulo $\ell_O NO_K$, where $\ell_O = [O_K : O]$ is the conductor of O (cf. [20 Theorem 3.1.8]). And the existence theorem of class field theory asserts that there is a unique abelian extension $K_{O,N}$ for which the Artin map for the modulus $\ell_O NO_K$ induces an isomorphism of the generalized ideal class group onto $\text{Gal}(K_{O,N}/K)$ (cf. [6 §8] or [9 V.9]). We call this extension field $K_{O,N}$ of K the ray class field of O modulo NO. In particular, $K_{O,1}$ is just the ring class field H_O of order O and $K_{O,K,N}$ is the ray class field $K_{(N)}$ modulo $(N) = NO_K$.

When $D_O \neq -3, -4$, we consider the elliptic curve E_O with j-invariant $j(E_O) = j(O)$ given by the Weierstrass equation

$$E_O : y^2 = 4x^3 - A_O x - B_O$$

as in [3]. Let $E_O[N]$ be the group of N-torsion points of E_O and $\mathbb{Q}(E_O[N])$ be the extension field of \mathbb{Q} generated by the coordinates of points in $E_O[N]$. Then it can be shown that if $N \geq 2$, then $\mathbb{Q}(E_O[N])$ contains $\mathbb{Q}(j(O))$ (Lemma 7.4). And, in the first main theorem (Theorem 7.8) of this paper, we shall compare the field $\mathbb{Q}(E_O[N])$ with $K_{O,N}$.

Theorem A. Assume that $D_O \neq -3, -4$.

(i) If $D \equiv 0 \pmod{4}$, then $\mathbb{Q}(E_O[2])$ is the maximal real subfield of $K_{O,2}$.
(ii) If $D \equiv 1 \pmod{4}$, then $\mathbb{Q}(E_\mathcal{O}[2]) = K_{\mathcal{O},2}$.

(iii) If $N \geq 3$, then $\mathbb{Q}(E_\mathcal{O}[N])$ is an extension field of $K_{\mathcal{O},N}$ of degree at most 2.

Here we put an emphasis on the fact that $\mathbb{Q}(E_\mathcal{O}[N])$ is an extension field of \mathbb{Q}, not of $\mathbb{Q}(j(\mathcal{O}))$, generated by the coordinates of N-torsion points. This fact distinguishes Theorem A from prior works of Bourdon-Clark-Pollack ([3, Lemma 8.4]) and Clark-Pollack ([5, Theorem 4.2]).

Let E be an arbitrary elliptic curve with complex multiplication by \mathcal{O} defined over $\mathbb{Q}(j(\mathcal{O}))$. Through purely algebraic arguments Bourdon-Clark ([2]) and Lozano-Robledo ([17]) independently classified all possible images of $(p$-adic) Galois representations attached to E. In §7, we shall revisit these results on Galois representations by making use of modular-analytic approach. Let

$$\rho_{\mathcal{O},N} : \text{Gal}(\mathbb{Q}(E_\mathcal{O}[N])/\mathbb{Q}(j(\mathcal{O}))) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \cong \text{Aut}(E_\mathcal{O}[N])$$

be the Galois representation attached to a specific model $E_\mathcal{O}$. Let

$$\tau_\mathcal{O} = \begin{cases} \frac{\sqrt{D_\mathcal{O}}}{2} & \text{if } D_\mathcal{O} \equiv 0 \pmod{4}, \\ -1 + \frac{\sqrt{D_\mathcal{O}}}{2} & \text{if } D_\mathcal{O} \equiv 1 \pmod{4} \end{cases}$$

(2)

with $\min(\tau_\mathcal{O}, \mathbb{Q}) = d^2 + b_\mathcal{O}const + c_\mathcal{O}$. Then we have $\mathcal{O} = [\tau_\mathcal{O}, 1] = \mathbb{Z}\tau_\mathcal{O} + \mathbb{Z}$ and $b_\mathcal{O}, c_\mathcal{O} \in \mathbb{Z}$ (cf. [6, Lemma 7.2]). Let $\widehat{W}_{\mathcal{O},N}$ be the Cartan subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ associated with the $(\mathbb{Z}/N\mathbb{Z})$-algebra $\mathcal{O}/N\mathcal{O}$ with the ordered basis $\{\tau_\mathcal{O} + N\mathcal{O}, 1 + N\mathcal{O}\}$. In the second main theorem [Theorem B], we shall describe the image of $\rho_{\mathcal{O},N}$ by using Stevenhagen’s explicit version of the Shimura reciprocity law.

Theorem B. Assume that $D_\mathcal{O} \neq -3, -4$ and $N \geq 2$. Let $\widehat{W}_{\mathcal{O},N}$ be the subgroup of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ defined by

$$\widehat{W}_{\mathcal{O},N} = \left\langle W_{\mathcal{O},N}, \begin{bmatrix} 1 & b_\mathcal{O} \\ 0 & -1 \end{bmatrix} \right\rangle.$$

(i) The image of the Galois representation $\rho_{\mathcal{O},N}$ is a subgroup of $\widehat{W}_{\mathcal{O},N}$ of index at most 2.

(ii) If -1 is a quadratic residue modulo N, then the image of $\rho_{\mathcal{O},N}$ is exactly $\widehat{W}_{\mathcal{O},N}$.

Let D be a negative integer such that $D \equiv 0$ or 1 (mod 4). Let $\mathcal{C}(D)$ be the set of primitive positive definite binary quadratic forms over \mathbb{Z} of discriminant D on which the modular group $\text{SL}_2(\mathbb{Z})$ induces the proper equivalence \sim. It was Gauss ([8]) who first introduced a composition law on $\mathcal{C}(D) = \mathcal{C}(D)/\sim$, which makes $\mathcal{C}(D)$ a group. When $D = D_\mathcal{O}$ and $N = 1$, owing to Dirichlet and Dedekind we have the isomorphism

$$\mathcal{C}(D_\mathcal{O}) \cong \mathcal{C}(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O}), \quad [Q] \mapsto [\omega_Q, 1] = [\mathbb{Z}\omega_Q + \mathbb{Z}]$$

where ω_Q is the zero of $Q(x, 1)$ in the complex upper half-plane (cf. [8, Theorem 7.7]). Let

$$\mathcal{Q}(D_\mathcal{O}, N) = \{ax^2 + bxy + cy^2 \in \mathcal{Q}(D_\mathcal{O}) \mid \gcd(a, N) = 1\}$$
on which the congruence subgroup $\Gamma_1(N)$ defines the equivalence relation $\sim_{\Gamma_1(N)}$ (§1). We shall endow the set of equivalence classes

$$C_N(D_O) = \mathbb{Q}(D_O, N)/\sim_{\Gamma_1(N)}$$

with a binary operation which reduces to the Dirichlet composition on the classical form class group $C(D_O)$, and prove the next third main theorem (Theorem 11.4).

Theorem C. The form class group $C_N(D_O)$ is isomorphic to the ideal class group $C_N(O)$.

Let F_N be the field of certain modular functions stated in [12]. Then F_N is a Galois extension of F_1 whose Galois group is isomorphic to $GL_2(\mathbb{Z}/N\mathbb{Z})/\langle -I_2 \rangle$ (cf. [21 Theorem 6.6]). By using the theory of Shimura’s canonical models for modular curves ([21 Chapter 6]), Cho proved in [4 Theorem 4] that

$$K_{O,N} = K(f(\tau_O) \mid f \in F_N \text{ is finite at } \tau_O).$$

Let $C \in C_N(O)$ and $f \in F_N$. In Definition 1.1 we shall define the invariant $f(C)$ which is a generalization of the Siegel-Ramachandra invariant (cf. [19] and [23]) considered when $O = O_K$, $N \geq 2$ and f is the $12N$th power of the Siegel function $g_{[0 \frac{1}{2}]}$ given in (13). In the fourth main theorem (Theorem 11.4), we shall justify that $f(C)$ satisfies a natural transformation rule under the Artin map $\sigma_{O,N}: C_N(O) \rightarrow Gal(K_{O,N}/K)$.

Theorem D. Let $C \in C_N(O)$ and $f \in F_N$. If f is finite at τ_O, then $f(C)$ belongs to $K_{O,N}$ and satisfies

$$f(C)^{\sigma_{O,N}(C')} = f(CC') \quad (C' \in C_N(O)).$$

Theorems C and D lead us to achieve the next fifth main theorem (Theorem 12.3) which describes the isomorphism of $C_N(D_O)$ onto $Gal(K_{O,N}/K)$ explicitly.

Theorem E. The map

$$C_N(D_O) \rightarrow Gal(K_{O,N}/K)$$

$$[Q] = [ax^2 + bxy + cy^2] \mapsto \left(f(\tau_O) \mapsto f\left[\frac{1 - a'(b + b_O)/2}{a'}\right](-\mathfrak{m}Q) \mid f \in F_N \text{ is finite at } \tau_O \right)$$

is a well-defined isomorphism, where a' is an integer which holds $ad' \equiv 1 \pmod{N}$.

For a ray class character χ modulo NO_K, let $L(s, \chi)$ be the Weber L-function (cf. [9 §IV.4]). It is well known by Kronecker’s limit formulae that $L(1, \chi)$ can be expressed by special values of the modular discriminant Δ when $N = 1$, and by Siegel-Ramachandra invariants when $N \geq 2$ (cf. [13 Chapters 20–22], [20] or [23]). On the other hand, rather than the value at 1, Stark observed in [27] that the derivative evaluated at zero $L'(0, \chi)$ would seem to be more easily applicable form. In Definition 13.1 we shall define the L-function $L_O(s, \chi)$ for a given character χ of $C_N(O)$ by

$$L_O(s, \chi) = \sum_{\mathfrak{a}} \frac{\chi([a])}{N_O(a)^s} \quad (s \in \mathbb{C}, \text{ Re}(s) > 1)$$

where \mathfrak{a} runs over all proper O-ideals prime to N and $N_O(a)$ is the norm of \mathfrak{a}. Then we shall show that $L'_O(0, \chi)$ satisfies a similar formula to that of Stark ([27 (2)]) in the following last main theorem (Theorem 14.4).
Theorem F. If χ is a character of $\mathcal{C}_N(\mathcal{O})$, then we have

$$L'_\mathcal{O}(0, \chi) = \frac{1}{\gamma_{\mathcal{O}, N} N^6} \sum_{C \in \mathcal{C}_N(\mathcal{O})} \chi(C) \ln |g_{\mathcal{O}, N}(C)|.$$

Here, $\gamma_{\mathcal{O}, N} = |\{\nu \in \mathcal{O}^* \mid \nu \equiv 1 \pmod{N\mathcal{O}}\}|$ and

$$g_{\mathcal{O}, N}(C) = \begin{cases} (2\pi)^{12} N_{\mathcal{O}}(c)^{-6}|\Delta(c)|^{-1} & \text{if } N = 1, \\ g_{12N}^{12}[0 \frac{1}{N}](C) & \text{if } N \geq 2, \end{cases}$$

where c is a proper \mathcal{O}-ideal in the class C.

In the last section, when $K = \mathbb{Q}(\sqrt{-2})$, $\mathcal{O} = [5\sqrt{-2}, 1]$ and $N = 3$, we shall present an example of the group $\mathcal{C}_N(D_\mathcal{O}) = \mathcal{C}_3(-200)$ and its application further in order to find the minimal polynomial of the invariant $g_{\mathcal{O}, 3}([\mathcal{O}])$ over K which generates the field $K_{\mathcal{O}, 3}$. It turns out that this invariant is in fact a unit as algebraic integer.

2 The generalized ideal class group isomorphic to $\mathcal{C}_N(\mathcal{O})$

Throughout this paper, we let K be an imaginary quadratic field, \mathcal{O} be an order in K and N be a positive integer. We denote the conductor and the discriminant of \mathcal{O} by $\ell_\mathcal{O}$ and $D_\mathcal{O}$, respectively. As far as we know, Schertz’s book [20] is the only reference for the fact that the ray class group $\mathcal{C}_N(\mathcal{O})$ modulo $N\mathcal{O}$ is isomorphic to a generalized ideal class group modulo $\ell_\mathcal{O}N\mathcal{O}_K$. In this section, we shall explain this fact in modern terms by adopting the ideas of [6, §7] for $N = 1$, which will be definitely helpful to develop our main theorems.

For a positive integer ℓ, we denote by

$$\mathcal{M}(\mathcal{O}, \ell) = \text{the monoid of nonzero proper } \mathcal{O}\text{-ideals prime to } \ell,$$

$$I(\mathcal{O}, \ell) = \text{the subgroup of } I(\mathcal{O}) \text{ generated by } \mathcal{M}(\mathcal{O}, \ell),$$

$$P_N(\mathcal{O}, \ell) = \langle \nu\mathcal{O} \mid \nu \in \mathcal{O} \setminus \{0\}, \nu\mathcal{O} \text{ is prime to } \ell \text{ and } \nu \equiv 1 \pmod{N\mathcal{O}} \rangle,$$

$$\mathcal{C}_N(\mathcal{O}, \ell) = I(\mathcal{O}, \ell)/P_N(\mathcal{O}, \ell).$$

Recall that $I(\mathcal{O}, 1) = I(\mathcal{O})$ and $P_1(\mathcal{O}, 1) = P_1(\mathcal{O}) = P(\mathcal{O})$, and so $\mathcal{C}_1(\mathcal{O}, 1) = \mathcal{C}(\mathcal{O})$. Furthermore, since $P_N(\mathcal{O}, N) = P_N(\mathcal{O})$, we have $\mathcal{C}_N(\mathcal{O}, N) = \mathcal{C}_N(\mathcal{O})$. And, for simplicity, we just write $\mathcal{M}(\mathcal{O}), P(\mathcal{O}, \ell), \mathcal{C}(\mathcal{O}, \ell)$ for $\mathcal{M}(\mathcal{O}, 1), P_1(\mathcal{O}, \ell), \mathcal{C}_1(\mathcal{O}, \ell)$, respectively. For $a \in \mathcal{M}(\mathcal{O})$, we denote its norm by $N_{\mathcal{O}}(a)$, namely, $N_{\mathcal{O}}(a) = |\mathcal{O}/a|$.

Lemma 2.1. Let $\nu \in \mathcal{O} \setminus \{0\}$ and $a, b \in \mathcal{M}(\mathcal{O})$. We get

(i) $N_{\mathcal{O}}(\nu\mathcal{O}) = N_{K/\mathbb{Q}}(\nu)$.

(ii) $N_{\mathcal{O}}(ab) = N_{\mathcal{O}}(a)N_{\mathcal{O}}(b)$.

(iii) $\overline{ab} = N_{\mathcal{O}}(a)\mathcal{O}$, where $\overline{\cdot}$ means the complex conjugation.

Proof. See [6, Lemma 7.14].
Lemma 2.2. If \(a \) is a nonzero \(\mathcal{O} \)-ideal, then

\[
\text{a is prime to } \ell \iff \text{N}_\mathcal{O}(a) \text{ is relatively prime to } \ell.
\]

Proof. The proof is the same as that of \([6] \text{ Lemma 7.18 (i)}\) except replacing \(f \) by \(\ell \). \(\Box \)

Remark 2.3. Observe that every nonzero \(\mathcal{O} \)-ideal prime to \(\ell \mathcal{O} \) is proper \([6] \text{ Lemma 7.18 (ii)} \).

Lemma 2.4. We have \(I(\mathcal{O}, \ell) \cap \mathcal{M}(\mathcal{O}) = \mathcal{M}(\mathcal{O}, \ell) \) for a positive integer \(\ell \).

Proof. The inclusion \(I(\mathcal{O}, \ell) \cap \mathcal{M}(\mathcal{O}) \supseteq \mathcal{M}(\mathcal{O}, N) \) is obvious.

Now, let \(a \in I(\mathcal{O}, \ell) \cap \mathcal{M}(\mathcal{O}) \). Since \(a \in I(\mathcal{O}, \ell) \), we attain \(a = bc^{-1} \) for some \(b, c \in \mathcal{M}(\mathcal{O}, \ell) \). And we get from the fact \(ac = b \) that

\[
\text{N}_\mathcal{O}(a)\text{N}_\mathcal{O}(c) = \text{N}_\mathcal{O}(b)
\]

for a positive integer \(a \).

by Lemma 2.1 (ii). Since \(b \) is prime to \(\ell \), we deduce by Lemma 2.2 that \(\text{gcd}(\text{N}_\mathcal{O}(b), \ell) = 1 \). Thus we obtain by \([6] \text{ Lemma 7.18 (i)}\) that \(\text{gcd}(\text{N}_\mathcal{O}(a), \ell) = 1 \), which implies again by Lemma 2.2 that \(a \) is prime to \(\ell \). Therefore we achieve the converse inclusion \(I(\mathcal{O}, \ell) \cap \mathcal{M}(\mathcal{O}) \subseteq \mathcal{M}(\mathcal{O}, \ell) \). \(\Box \)

Lemma 2.5. Consider the case where \(N = 1 \).

(i) If \(a \in \mathcal{M}(\mathcal{O}, \ell \mathcal{O}) \), then \(a\mathcal{O}_\mathcal{K} \in \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}) \) and \(\text{N}_\mathcal{O}(a) = \text{N}_{\mathcal{O}_\mathcal{K}}(a\mathcal{O}_\mathcal{K}) \).

(ii) If \(b \in \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}) \), then \(b \cap \mathcal{O} \in \mathcal{M}(\mathcal{O}, \ell \mathcal{O}) \) and \(\text{N}_{\mathcal{O}_\mathcal{K}}(b) = \text{N}_\mathcal{O}(b \cap \mathcal{O}) \).

(iii) The map

\[
\mathcal{M}(\mathcal{O}, \ell \mathcal{O}) \to \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}), \quad a \mapsto a\mathcal{O}_\mathcal{K}
\]

induces an isomorphism \(I(\mathcal{O}, \ell \mathcal{O}) \sim \to \mathcal{I}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}) \).

Proof. See \([6] \text{ Proposition 7.20]}\). \(\Box \)

Lemma 2.6. The map

\[
\phi : \mathcal{M}(\mathcal{O}, \ell \mathcal{O}N) \to \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}N), \quad a \mapsto a\mathcal{O}_\mathcal{K}
\]

is well defined, and uniquely gives an isomorphism \(I(\mathcal{O}, \ell \mathcal{O}N) \sim \to I(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}N) \).

Proof. Let \(a \in \mathcal{M}(\mathcal{O}, \ell \mathcal{O}N) \subseteq \mathcal{M}(\mathcal{O}, \ell \mathcal{O}) \). We get by Lemmas 2.2 and 2.3 (i) that \(\text{N}_\mathcal{O}(a) = \text{N}_{\mathcal{O}_\mathcal{K}}(a\mathcal{O}_\mathcal{K}) \) is relatively prime to \(\ell \mathcal{O}N \). So \(a\mathcal{O}_\mathcal{K} \) belongs to \(\mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}N) \) again by Lemma 2.2 which shows that the map \(\phi \) is well defined. Note further that

\[
\phi(aa') = (aa')\mathcal{O}_\mathcal{K} = (a\mathcal{O}_\mathcal{K})(a'\mathcal{O}_\mathcal{K}) = \phi(a)\phi(a') \quad (a, a' \in \mathcal{M}(\mathcal{O}, \ell \mathcal{O}N)).
\]

Let \(b \in \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}N) \subseteq \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}) \). It follows from Lemmas 2.2 and 2.3 (ii) that \(\text{N}_{\mathcal{O}_\mathcal{K}}(b) = \text{N}_\mathcal{O}(b \cap \mathcal{O}) \) is relatively prime to \(\ell \mathcal{O}N \), which implies that \(b \cap \mathcal{O} \) belongs to \(\mathcal{M}(\mathcal{O}, \ell \mathcal{O}N) \). Thus we obtain the well-defined map

\[
\psi : \mathcal{M}(\mathcal{O}_\mathcal{K}, \ell \mathcal{O}N) \to \mathcal{M}(\mathcal{O}, \ell \mathcal{O}N)
\]
Moreover, we attain that \(\nu \). (The proof is the same as that of [6, (7.21)] except replacing \(f \) by \(\ell O N \).) Now, we define a map \(\tilde{\phi} : I(O, \ell O N) \rightarrow I(O_K, \ell O N) \) by

\[
\tilde{\phi}(ac^{-1}) = \phi(a)\phi(c)^{-1} \quad (a, c \in M(O, \ell O N)).
\]

Then \(\tilde{\phi} \) is a well-defined isomorphism by [3] and the bijectivity of \(\phi \).

Lemma 2.7. If \(\nu \in O_K \setminus \{0\} \), then

\[
\nu \in O, \nu O \text{ is prime to } \ell O N \text{ and } \nu \equiv 1 \pmod{NO}
\]

\[\iff\]

\[
\nu O_K \text{ is prime to } \ell O N \text{ and } \nu \equiv a \pmod{\ell O N O_K} \text{ for some } a \in \mathbb{Z} \text{ such that } a \equiv 1 \pmod{N}.
\]

Proof. Assume that \(\nu \in O \), \(\nu O \) is prime to \(\ell O N \) and \(\nu \equiv 1 \pmod{NO} \). By Lemmas 2.2 and 2.6 (i), \((\nu O)O_K = \nu O_K\) is also prime to \(\ell O N \). Since \(\nu \equiv 1 \pmod{NO} \) and \(NO = [\ell O N O_K, N]\), we have

\[
\nu = s\ell O N + tN + 1 \quad \text{for some } s, t \in \mathbb{Z}.
\]

It follows from the fact \(\ell O N O_K = [\ell O N O_K, \ell O N] \) that

\[
\nu \equiv a \pmod{\ell O N O_K} \quad \text{with } a = tN + 1 \text{ satisfying } a \equiv 1 \pmod{N}.
\]

Conversely, assume that \(\nu O_K \) is prime to \(\ell O N \) and \(\nu \equiv a \pmod{\ell O N O_K} \) for some \(a \in \mathbb{Z} \) such that \(a \equiv 1 \pmod{N} \). Since

\[
\nu - a \in \ell O N O_K = N(\ell O K) \subseteq NO \subseteq \mathbb{O} \quad \text{and} \quad a \in \mathbb{Z} \subset \mathbb{O},
\]

we attain that

\[
\nu \in \mathbb{O} \quad \text{and} \quad \nu \equiv a \equiv 1 \pmod{NO}.
\]

Moreover, \(\nu O \) is prime to \(\ell O N \) by Lemma 2.6.

Proposition 2.8. Let \(P_{\mathbb{Z}, N}(O_K, \ell O N) \) be the subgroup of \(I(O_K, \ell O N) \) given by

\[
P_{\mathbb{Z}, N}(O_K, \ell O N) = \left\{ \nu O_K \middle| \nu \in O_K \setminus \{0\}, \nu O_K \text{ is prime to } \ell O N, \right. \\
\left. \nu \equiv a \pmod{\ell O N O_K} \text{ for some } a \in \mathbb{Z} \text{ such that } a \equiv 1 \pmod{N} \right\}.
\]

Then we get a natural isomorphism

\[
\mathcal{C}_N(O, \ell O N) \xrightarrow{\sim} I(O_K, \ell O N)/P_{\mathbb{Z}, N}(O_K, \ell O N).
\]

Proof. If \(\tilde{\phi} : I(O, \ell O N) \rightarrow I(O_K, \ell O N) \) is the isomorphism described in Lemma 2.6, then we achieve by Lemma 2.7 that

\[
\tilde{\phi}(P_{N}(O, \ell O N)) = P_{\mathbb{Z}, N}(O_K, \ell O N).
\]

Therefore we establish the isomorphism

\[
\mathcal{C}_N(O, \ell O N) \xrightarrow{\sim} I(O_K, \ell O N)/P_{\mathbb{Z}, N}(O_K, \ell O N)
\]

\[
[a b^{-1}] \mapsto [(a O_K)(b O_K)^{-1}]
\]

where \(a \) and \(b \) are nonzero \(O \)-ideals prime to \(\ell O N \).
Remark 2.9. Since $P_{\mathcal{O}_K}(\ell_0N)$ is a congruence subgroup for $\mathcal{O}_N\mathcal{O}_K$, the generalized ideal class group $I(\mathcal{O}_K, \ell_0N)/P_{\mathcal{O}_K}(\ell_0N)$ has finite order ([9, Corollary 1.6 in Chapter IV]). It then follows from Proposition 2.8 that $\mathcal{C}_N(\mathcal{O}, \ell_0N)$ has finite order as well.

Lemma 2.10. Let ℓ be a positive integer. Every class in $\mathcal{C}(\mathcal{O})$ contains a proper \mathcal{O}-ideal whose norm is relatively prime to ℓ.

Proof. See [6, Corollary 7.17].

Lemma 2.11. If ℓ is a positive integer, then the inclusion $I(\mathcal{O}, \ell) \hookrightarrow I(\mathcal{O})$ induces an isomorphism $\mathcal{C}(\mathcal{O}, \ell) \cong \mathcal{C}(\mathcal{O})$.

Proof. Let $\rho : I(\mathcal{O}, \ell) \to \mathcal{C}(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O})$ be the natural homomorphism. Then the surjectivity of ρ follows from Lemmas 2.2 and 2.10. And the proof of $\ker(\rho) = P(\mathcal{O}, \ell)$ is exactly the same as that of [6, Proposition 7.19] except replacing f by ℓ. Thus we conclude that $\mathcal{C}(\mathcal{O}, \ell) \cong \mathcal{C}(\mathcal{O})$.

Lemma 2.12. The inclusion $P(\mathcal{O}, \ell_0N) \hookrightarrow P(\mathcal{O}, N)$ gives an isomorphism

$$P(\mathcal{O}, \ell_0N)/P_N(\mathcal{O}, \ell_0N) \cong P(\mathcal{O}, N)/P_N(\mathcal{O}).$$

Proof. See [6, Lemma 15.17 and Exercise 15.10].

Proposition 2.13. The inclusion $I(\mathcal{O}, \ell_0N) \hookrightarrow I(\mathcal{O}, N)$ derives an isomorphism

$$\mathcal{C}_N(\mathcal{O}, \ell_0N) \cong \mathcal{C}_N(\mathcal{O}).$$

Proof. Since $P_N(\mathcal{O}, \ell_0N) \subseteq P_N(\mathcal{O})$, the inclusion $I(\mathcal{O}, \ell_0N) \hookrightarrow I(\mathcal{O}, N)$ renders a homomorphism

$$\mathcal{C}_N(\mathcal{O}, \ell_0N) \to \mathcal{C}_N(\mathcal{O}). \quad (6)$$

Let $a_1, a_2, \ldots, a_r \in I(\mathcal{O}, \ell_0N)$ be representatives of classes in $\mathcal{C}(\mathcal{O}, \ell_0N)$. Since we have the natural isomorphisms

$$\mathcal{C}(\mathcal{O}, \ell_0N) \cong \mathcal{C}(\mathcal{O}) \quad \text{and} \quad \mathcal{C}(\mathcal{O}, N) \cong \mathcal{C}(\mathcal{O})$$

by Lemma 2.11, we obtain an isomorphism

$$\mathcal{C}(\mathcal{O}, \ell_0N) \cong \mathcal{C}(\mathcal{O}, N).$$

Thus a_1, a_2, \ldots, a_r are also representatives of classes in $\mathcal{C}(\mathcal{O}, N)$. Now, let $b_1, b_2, \ldots, b_s \in P(\mathcal{O}, \ell_0N)$ be representatives of classes in $P(\mathcal{O}, \ell_0N)/P_N(\mathcal{O}, \ell_0N)$. Then we see by Lemma 2.12 that they are also representatives of classes in $P(\mathcal{O}, N)/P_N(\mathcal{O})$.

Note that there are natural one-to-one correspondences

$$I(\mathcal{O}, \ell_0N)/P(\mathcal{O}, \ell_0N) \times P(\mathcal{O}, \ell_0N)/P_N(\mathcal{O}, \ell_0N) \to I(\mathcal{O}, \ell_0N)/P_N(\mathcal{O}, \ell_0N), \quad \text{and} \quad I(\mathcal{O}, N)/P(\mathcal{O}, N) \times P(\mathcal{O}, N)/P_N(\mathcal{O}) \to I(\mathcal{O}, N)/P_N(\mathcal{O}).$$
Hence
\[(i = 1, 2, \ldots, r, \ j = 1, 2, \ldots, s) \]
are representatives of classes in \(C_N(O, \ell_{O_N}) \), and also of classes in \(C_N(O) \). This observation implies that the homomorphism in (3) is in fact an isomorphism.

\[\square \]

Remark 2.14. We achieve by Propositions 2.8 and 2.13 that
\[C_N(O) \simeq I(O_K, \ell_{O_N})/P_{Z,N}(O_K, \ell_{O_N}). \]

Remark 2.15. Let \(C \in C_N(O) \). By Proposition 2.13, we have
\[C = [ab^{-1}] \text{ for some } a, b \in \mathcal{M}(O, \ell_{O_N}). \]

If \(h \) is the order of the group \(C_N(O) \), then we see that
\[C = [b^h] [ab^{-1}] = [ab^{h-1}] \text{ and } ab^{h-1} \in \mathcal{M}(O, \ell_{O_N}), \]
which claims that \(C \cap \mathcal{M}(O, \ell_{O_N}) \neq \emptyset. \)

3 **The elliptic curve \(E_O \) with complex multiplication by \(O \)**

We shall introduce specific models of elliptic curves with complex multiplication.

Let \(g_2 = g_2(O) \) and \(g_3 = g_3(O) \) be the usual scaled Eisenstein series and
\[j(O) = 1728 \frac{g_3^3}{\Delta} \text{ with } \Delta = g_2^3 - 27g_3^2. \]

When \(D_O \neq -3, -4 \), we let \(E_O \) be the elliptic curve with \(j \)-invariant \(j(E_O) = j(O) \) given by the Weierstrass equation
\[E_O : y^2 = 4x^3 - A_Ox - B_O \]
with base point \(O = [0 : 1 : 0] \), where
\[A_O = \frac{j(O)(j(O) - 1728)}{2^{12}3^9} \text{ and } B_O = \frac{j(O)(j(O) - 1728)^2}{2^{18}3^{15}}. \]

If \(\wp(\cdot ; O) : \mathbb{C} \rightarrow \mathbb{C} \cup \{\infty\} \) is the Weierstrass \(\wp \)-function for the lattice \(O \) with derivative \(\wp' \), then we get a complex analytic isomorphism
\[\mathbb{C}/O \xrightarrow{\sim} E(C) \quad (\subset \mathbb{P}^2(C)) \]
\[z + O \mapsto [x(z; O) : y(z; O) : 1] = \left[\frac{g_2g_3}{\Delta} \wp(z; O) : \sqrt{\left(\frac{g_2g_3}{\Delta} \right)^3 \wp'(z; O)} : 1 \right] \]
(cf. [25, §VI.3]). Note that \(g_2g_3 \neq 0 \) because we are assuming that \(D_O \neq -3, -4 \) (cf. [6, Exercise 10.19]). For each \(v = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \in M_{1,2}(Q) \setminus M_{1,2}(Z) \), we set
\[X_v = \frac{g_2g_3}{\Delta} \wp(v_1\tau_O + v_2; O), \]
\[Y_v = \sqrt{\left(\frac{g_2g_3}{\Delta} \right)^3 \wp'(v_1\tau_O + v_2; O)}, \]
where \(\tau_O \) is the element of \(\mathbb{H} \) described in [2].

9
Lemma 3.1. Let $u, v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z})$ and $n \in M_{1,2}(\mathbb{Z})$. Then we have

(i) $X_u = X_v$ if and only if $u \equiv v$ or $-v$ (mod $M_{1,2}(\mathbb{Z})$).

(ii) $Y_{v+n} = Y_v$.

(iii) $Y_{-v} = -Y_v$.

(iv) $Y_v = 0$ if and only if $2v \in M_{1,2}(\mathbb{Z})$.

Proof. See [6, §10.A].

Proposition 3.2. The theory of complex multiplication yields the following results.

(i) $H_O = K(j(O))$.

(ii) If $D_O \neq -3, -4$ and $N \geq 2$, then

$$K_{O,N} = H_O\left(X_{\left[\begin{smallmatrix} 0 \\ N \end{smallmatrix}\right]}\right).$$

Proof. See [13, Theorem 5 in Chapter 10] and [20, Theorem 6.2.3].

4 Fields of modular functions

We shall recall some necessary properties of Fricke functions and Siegel functions.

The modular group $SL_2(\mathbb{Z})$ acts on the complex upper half-plane $\mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}$ by fractional linear transformations. Let j be the elliptic modular function on \mathbb{H}, that is,

$$j(\tau) = j([\tau, 1]) \quad (\tau \in \mathbb{H}).$$

For each $v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z})$, the Fricke function f_v on \mathbb{H} is defined by

$$f_v(\tau) = -2^{\tau^3} g_2([\tau, 1]) g_3([\tau, 1]) \frac{\varphi(v_1 \tau + v_2; [\tau, 1])}{\Delta([\tau, 1])} \quad (\tau \in \mathbb{H}).$$

And, for a positive integer N, let

$$F_N = \begin{cases} \mathbb{Q}(j) & \text{if } N = 1, \\ \mathbb{Q}(j, f_v \mid v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z}) \text{ satisfies } Nv \in M_{1,2}(\mathbb{Z})) & \text{if } N \geq 2. \end{cases}$$

Proposition 4.1. The field F_N is a Galois extension of F_1 whose Galois group is isomorphic to $GL_2(\mathbb{Z}/NZ)/\langle -I_2 \rangle$. If $\gamma \in SL_2(\mathbb{Z})$, then

$$f_{\tilde{\gamma}} = f \circ \gamma$$

where $\tilde{\gamma}$ is the image of γ in $GL_2(\mathbb{Z}/NZ)/\langle -I_2 \rangle$.

Proof. See [21, Theorem 6.6].
Furthermore, \mathcal{F}_N coincides with the field of meromorphic modular functions for the principal congruence subgroup

$$\Gamma(N) = \{ \gamma \in \text{SL}_2(\mathbb{Z}) \mid \gamma \equiv I_2 \pmod{NM_2(\mathbb{Z})} \}$$

whose Fourier coefficients belong to the Nth cyclotomic field $\mathbb{Q}(\zeta_N)$ with $\zeta_N = e^{2\pi i/N}$ (cf. [21, Proposition 6.9]).

On the other hand, for $v = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z})$, the Siegel function g_v on \mathbb{H} is given by the infinite product expansion

$$g_v(\tau) = -q^{\frac{1}{2}}B_2(v_1)e^{\pi iv_2(v_1-1)}(1 - q_z) \prod_{n=1}^{\infty} (1 - q^n q_z)(1 - q^n q_z^{-1}) \quad (\tau \in \mathbb{H}) \quad (13)$$

where $q_z = e^{2\pi i z}$ with $z = v_1 \tau + v_2$ and $B_2(x) = x^2 - x + \frac{1}{6}$ is the second Bernoulli polynomial. Observe that g_v has neither a zero nor a pole on \mathbb{H}. One can refer to [14] for further details on Siegel functions.

For $N \geq 2$, we say that $v \in M_{1,2}(\mathbb{Q})$ is primitive modulo N if N is the smallest positive integer so that $Nv \in M_{1,2}(\mathbb{Z})$. Let V_N be the set of all such primitive vectors v. We call a collection $\{h_v\}_{v \in V_N}$ of functions in \mathcal{F}_N a Fricke family of level N if

(i) h_v is holomorphic on \mathbb{H} ($v \in V_N$),

(ii) $h_u = h_v$ if $u \equiv v$ or $-v$ (mod $M_{1,2}(\mathbb{Z})$),

(iii) $h_{v^\gamma} = h_v^\gamma$ ($v \in V_N$ and $\gamma \in \text{GL}_2(\mathbb{Z}/N\mathbb{Z})/(−I_2) \simeq \text{Gal}(\mathbb{F}_N/\mathbb{F}_1)$).

PROPOSITION 4.2. The collections $\{f_v\}_{v \in V_N}$ and $\{g_{12}^{vN}\}_{v \in V_N}$ are Fricke families of level N.

PROOF. See [14, Proposition 1.3 in Chapter 2] and [21, Theorem 6.6].

LEMMA 4.3. We have a relationship between j and $g_{12}^{[0 \ 1]}$ in such a way that

$$j = \left(\frac{g_{12}^{[0 \ 1]} + 16}{g_{12}^{[0 \ 1]}} \right)^3.$$

PROOF. See [6, Theorem 12.17].

Let

$$V'_N = \left\{ \begin{bmatrix} v_1 & v_2 \end{bmatrix} \in V_N \mid 0 \leq v_1, v_2 < 1 \right\},$$

$$T_N = \left\{ (u, v) \in V'_N \times V'_N \mid u \not\equiv v, -v \pmod{M_{1,2}(\mathbb{Z})} \right\}.$$

LEMMA 4.4. We deduce

$$\prod_{(u, v) \in T_N} (f_u - f_v)^6 = k \{ j^2(j - 1728)^3 \}^{\mid T_N \mid} \quad \text{for some } k \in \mathbb{Q} \setminus \{0\}.$$

PROOF. See [12, Lemma 6.2].
5 Form class groups

In this section, we shall review the classical form class groups and try to find certain generalization of these as well.

For a negative integer D such that $D \equiv 0$ or $1 \pmod{4}$, let

$$Q(D) = \left\{ Q = Q \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = ax^2 + bx + cy^2 \in \mathbb{Z}[x, y] \mid \gcd(a, b, c) = 1, b^2 - 4ac = D, a > 0 \right\}. $$

The modular group $\text{SL}_2(\mathbb{Z})$ acts on the set $Q(D)$ from the right as

$$Q^\gamma = Q \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right)$$

and induces the proper equivalence \sim on $Q(D)$ as follows:

$$Q \sim Q' \iff Q' = Q^\gamma \text{ for some } \gamma \in \text{SL}_2(\mathbb{Z})$$

(cf. [6, pp. 20–22]). We say that a form $Q = ax^2 + bxy + cy^2 \in Q(D)$ is reduced if

$$\left\{ \begin{array}{l}
|b| \leq a \leq c, \\
 b \geq 0 \text{ if either } |b| = a \text{ or } a = c.
\end{array} \right.$$

Lemma 5.1. Every form in $Q(D)$ is properly equivalent to a unique reduced form.

Proof. See [6, Theorem 2.8].

For $Q = ax^2 + bxy + cy^2 \in Q(D)$, let ω_Q be the zero of the quadratic polynomial $Q(x, 1)$ lying in \mathbb{H}, namely,

$$\omega_Q = \frac{-b + \sqrt{D}}{2a}.$$

Lemma 5.2. If $Q = ax^2 + bxy + cy^2 \in Q(D)$, then $a[\omega_Q, 1]$ is a proper O-ideal with $N_O(a[\omega_Q, 1]) = a$.

Proof. See [6, Lemma 7.5 and (7.16)].

Lemma 5.3. Let $Q = ax^2 + bxy + cy^2, Q'' = a''x^2 + b''xy + c''y^2 \in Q(D)$ such that

$$\gcd(a, a'', (b + b'')/2) = 1.$$

(i) There is a unique integer B modulo $2aa''$ such that

$$B \equiv b \pmod{2a}, \quad B \equiv b'' \pmod{2a''}, \quad B^2 \equiv D \pmod{4aa''}. \quad (14)$$

(ii) Let

$$Q''' = aa''x^2 + Bxy + \frac{B^2 - D}{4aa''}y^2 \quad (15)$$

where B is an integer satisfying (14). Then we derive

$$[\omega_Q, 1][\omega_{Q''}, 1] = [\omega_{Q'''}, 1].$$
Proof. (i) See [6, Lemma 3.2].

(ii) See [6, (7.13)].

Remark 5.4. We call the form in (15) a Dirichlet composition of \(Q \) and \(Q' \).

Lemma 5.5. Let \(Q \in \mathbb{Q}(D) \) and \(M \) be a positive integer. Then there is a matrix \(\gamma \) in \(\text{SL}_2(\mathbb{Z}) \) so that the coefficient of \(x^2 \) in \(Q' \) is relatively prime to \(M \).

Proof. See [6, Lemmas 2.3 and 2.25].

Proposition 5.6. Let \(C(D) = \mathbb{Q}(D)/\sim \) be the set of equivalence classes.

(i) The following binary operation on \(C(D) \) is well defined and makes \(C(D) \) into a finite abelian group: let \(C, C' \in C(D) \) and so \(C = [Q], C' = [Q'] \) for some \(Q = ax^2 + bxy + cy^2, Q' \in \mathbb{Q}(D) \), respectively. By Lemma 5.5 one can take a matrix \(\gamma \) in \(\text{SL}_2(\mathbb{Z}) \) for which \(Q'' = Q'\gamma = a''x^2 + b''xy + c''y^2 \) satisfies \(\gcd(a, a'', (b + b'')/2) = 1 \). We define the product \(CC' \) by the class of any Dirichlet composition of \(Q \) and \(Q'' \).

(ii) If \(D = D_\mathcal{O} \), then the map

\[
\begin{align*}
C(D_\mathcal{O}) & \to C(\mathcal{O}) \\
[Q] & \mapsto ([\omega_Q, 1])
\end{align*}
\]

is a well-defined isomorphism of \(C(D_\mathcal{O}) \) onto \(C(\mathcal{O}) \).

Proof. See [6, Theorems 3.9 and 7.7].

Now, let

\[
\mathbb{Q}(D_\mathcal{O}, N) = \{ax^2 + bxy + cy^2 \in \mathbb{Q}(D_\mathcal{O}) \mid \gcd(a, N) = 1\}
\]

and

\[
\Gamma_1(N) = \left\{ \gamma \in \text{SL}_2(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \pmod{NM_2(\mathbb{Z})} \right\}
\]

which is a congruence subgroup of \(\text{SL}_2(\mathbb{Z}) \) of level \(N \). Observe that for \(Q = ax^2 + bxy + cy^2 \in \mathbb{Q}(D_\mathcal{O}, N) \) and \(\gamma = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \in \Gamma_1(N), \)

\[
Q^\gamma \equiv Q \begin{bmatrix} 1 & q \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \equiv ax^2 + (2aq + b)xy + (aq^2 + bq + c)y^2 \pmod{N\mathbb{Z}[x, y]}.\]

This implies that \(\Gamma_1(N) \) acts on \(\mathbb{Q}(D_\mathcal{O}, N) \). Let \(\sim_{\Gamma_1(N)} \) be the equivalence relation on \(\mathbb{Q}(D_\mathcal{O}, N) \) induced from the action of \(\Gamma_1(N) \). We mean by \(C_N(D_\mathcal{O}) \) the set of equivalence classes, that is,

\[
C_N(D_\mathcal{O}) = \mathbb{Q}(D_\mathcal{O}, N)/\sim_{\Gamma_1(N)}.\]

For \(\alpha = \begin{bmatrix} s & t \\ u & v \end{bmatrix} \in \text{SL}_2(\mathbb{Z}) \) and \(\tau \in \mathbb{H} \), we write

\[
j(\alpha, \tau) = ut + v.
\]
Definition 5.7. We define a binary operation on $C_N(D_O)$ as follows: let $C, C' \in C_N(D_O)$, and so $C = [Q], C' = [Q']$ for some $Q = ax^2 + bxy + cy^2, Q' \in Q(D_O, N)$, respectively. By Lemma 5.5 there is a matrix γ in $SL_2(\mathbb{Z})$ so that $Q'' = Q' \gamma = a''x^2 + b''xy + c''y^2$ satisfies $\gcd(a, a'', (b + b'')/2) = 1$. Let Q''' be a Dirichlet composition of Q and Q''. And, set

$$\nu_1 = \frac{\omega_{Q''}}{j(\gamma, \omega_{Q''})} \quad \text{and} \quad \nu_2 = \frac{1}{j(\gamma, \omega_{Q''})}.$$

One can show that there is a pair (u, v) of integers satisfying

$$u\nu_1 + v\nu_2 = 1$$

and in $SL_2(\mathbb{Z})$ there exists a matrix σ such that

$$\sigma \equiv \begin{bmatrix} * & * \\ u & v \end{bmatrix} (\mod NM_2(\mathbb{Z})).$$

We then define

$$CC' = \left[(Q''')^{\sigma^{-1}}\right].$$

In §9 we shall prove that the binary operation given in Definition 5.7 is well defined and makes $C_N(D_O)$ a finite abelian group isomorphic to $C_N(O)$ (Theorem 9.4). And, through the binary operation on $C_N(D_O)$ we regard the natural map $C_N(D_O) \to C_1(D_O) = C(D_O)$ as a homomorphism.

6 Inequalities on special values of modular functions

We shall develop certain inequalities on the special values of j and Siegel functions. By using these inequalities we shall present another new generators of H_O and $K_{O,N}$, for later use in §7, which are different from the classical ones stated in Proposition 3.2.

Lemma 6.1. Let $\tau \in \mathbb{H}$ and $t = |e^{2\pi i \tau}|$.

(i) $|g_{\frac{1}{2}}(\tau)| \leq 2t \frac{1}{\pi} e^{-2 + \frac{1}{1+4t^2}}$.

(ii) $|g_{\frac{1}{2}}(s)(\tau)| \leq t \frac{1}{\pi} e^{\frac{1}{1+4t^2}}$ for any $s \in \mathbb{Q}$.

Proof. See [11, Lemma 5.2].

Let Q_0 be the principal form in $Q(D_O)$ defined by

$$Q_0 = \begin{cases}
 x^2 - \frac{D_O}{4}y^2 & \text{if } D_O \equiv 0 \pmod{4}, \\
 x^2 + xy + \frac{1-D_O}{4}y^2 & \text{if } D_O \equiv 1 \pmod{4},
\end{cases}$$

which represents the identity class in $C(D_O)$ (cf. [9, Theorem 3.9]). Then we see that

$$\omega_{Q_0} = \tau_O \quad \text{and} \quad [\omega_{Q_0}, 1] = O.$$

Let h_O denote the order of the group $C(O)$ and so $h_O = [H_O : K]$.

14
Lemma 6.2. Assume that $h_O \geq 2$. Let $Q = ax^2 + bxy + cy^2$ be a reduced form in $Q(D_O)$ such that $Q \neq Q_0$.

(i) $|g[0, \frac{1}{2}](\omega Q)| > 1.98e^{-\frac{\pi \sqrt{|D_O|}}{24}}$.

(ii) $\left| \frac{j(\omega Q)^2(j(\omega Q) - 1728)^3}{j(\omega Q_0)^2(j(\omega Q_0) - 1728)^3} \right| < 877383e^{-\frac{5\pi \sqrt{|D_O|}}{2}} \leq (1)$.

Proof. (i) Since Q is a reduced form in $Q(D_O)$ such that $Q \neq Q_0$, we have

$$2 \leq a \leq \sqrt{|D_O|}$$

(13 p. 24). Then we derive that

$$|g[0, \frac{1}{2}](\omega Q)| \geq 2e^{-\frac{\pi \sqrt{|D_O|}}{24}} \prod_{n=1}^{\infty} (1 - e^{-\pi \sqrt{3n}})^2 \text{ by the definition (15) and (16)}$$

$$\geq 2e^{-\frac{\pi \sqrt{|D_O|}}{24}} \prod_{n=1}^{\infty} e^{-2k^n} \text{ with } k = e^{-\frac{\pi \sqrt{3}}{100}}$$

because $1 - X > e^{-X}$ for $0 < X \leq e^{-\pi \sqrt{3}}$

$$= 2e^{-\frac{\pi \sqrt{|D_O|}}{24}} e^{-\frac{2k^n}{n}}$$

$$> 1.98e^{-\frac{\pi \sqrt{|D_O|}}{24}}.$$

(ii) First, consider the case where $D_O \leq -20$. We then observe by Lemma 6.1 (i) and (15) that

$$|g[0, \frac{1}{2}](\omega Q_0)| \leq 2^{12} e^{-\pi \sqrt{|D_O|} e^{-24 + \frac{4}{n} - \frac{24}{1 - e^{-\pi \sqrt{3n}}}}} \leq 4097e^{-\pi \sqrt{|D_O|}} < 0.0033 \quad (17)$$

and

$$|g[0, \frac{1}{2}](\omega Q)| \leq 2^{12} e^{-\pi \sqrt{|D_O|} e^{-24 + \frac{4}{n} - \frac{24}{1 - e^{-\pi \sqrt{3n}}}}} \leq 2^{12} e^{-\pi \sqrt{3} e^{-24 + \frac{4}{n} - \frac{24}{1 - e^{-\pi \sqrt{3n}}}}} < 19.71. \quad (18)$$

Hence we find that

$$\left| \frac{j(\omega Q)^2(j(\omega Q) - 1728)^3}{j(\omega Q_0)^2(j(\omega Q_0) - 1728)^3} \right| = \left| g[0, \frac{1}{2}](\omega Q_0)^{12} \right|^5 \left| \frac{\left(g[0, \frac{1}{2}](\omega Q)^{12} + 16 \right)^2 \left(g[0, \frac{1}{2}](\omega Q)^{12} + 64 \right) \left(g[0, \frac{1}{2}](\omega Q)^{12} - 8 \right)^2}{\left(g[0, \frac{1}{2}](\omega Q_0)^{12} + 16 \right)^2 \left(g[0, \frac{1}{2}](\omega Q_0)^{12} + 64 \right) \left(g[0, \frac{1}{2}](\omega Q_0)^{12} - 8 \right)^2} \right|^3$$

$$\leq \left(4097e^{-\pi \sqrt{|D_O|}} \right)^5 \left| \frac{(16 + 19.71)(64 + 19.71)(8 + 19.71)^2}{(16 - 0.0033)(64 - 0.0033)(8 - 0.0033)^2} \right|^3 \text{ by (i), (17) and (18)}$$

$$< 877383e^{-\frac{5\pi \sqrt{|D_O|}}{2}}.$$

The only remaining case is $K = Q(\sqrt{-15})$ and $O = O_K$, and so $h_O = 2$ and

$$Q_0 = x^2 + xy + 4y^2, \quad Q = 2x^2 + xy + 2y^2.$$
One can then numerically verify that (ii) also holds in this case (cf. [12, Remark 4.2]).

Proposition 6.3. The special value \(j(\tau_\mathcal{O}) = j(\omega_{Q_0}) \) generates \(H_\mathcal{O} \) over \(K \). If \(Q_1, Q_2, \ldots, Q_{h_\mathcal{O}} \) are reduced forms in \(Q(D_\mathcal{O}) \), then the special values \(j(\omega_{Q_1}), j(\omega_{Q_2}), \ldots, j(\omega_{Q_{h_\mathcal{O}}}) \) are distinct Galois conjugates of \(j(\tau_\mathcal{O}) \) over \(K \).

Proof. See Lemma 5.1, Proposition 5.6 (ii) and [15, Theorem 5 in Chapter 10].

Proposition 6.4. The special value \(\{ j(\tau_\mathcal{O})^2(j(\tau_\mathcal{O}) - 1728)^3 \}^n \) generates \(H_\mathcal{O} \) over \(K \) for any positive integer \(n \).

Proof. If \(h_\mathcal{O} = 1 \) and so \(H_\mathcal{O} = K \), then the assertion is trivial.

Now, consider the case where \(h_\mathcal{O} \geq 2 \). Since \(D_\mathcal{O} \neq -3, -4 \), we have \(j(\tau_\mathcal{O})^2(j(\tau_\mathcal{O}) - 1728)^3 \neq 0 \) (cf. [6, Theorem 7.30 (ii), (10.8) and Exercise 10.19]). Let \(\sigma \) be an element of \(\text{Gal}(H_\mathcal{O}/K) \) leaving the value \(\{ j(\tau_\mathcal{O})^2(j(\tau_\mathcal{O}) - 1728)^3 \}^n \) fixed. We then achieve

\[
1 = \left| \frac{j(\omega_{Q_0})^2(j(\omega_{Q_0}) - 1728)^3}{j(\omega_{Q_0})^2(j(\omega_{Q_0}) - 1728)^3} \right|^n \sigma
\]

\[
= \left| \frac{j(\omega_{Q})^2(j(\omega_{Q}) - 1728)^3}{j(\omega_{Q})^2(j(\omega_{Q}) - 1728)^3} \right|^n
\]

for some reduced form \(Q \) in \(Q(D_\mathcal{O}) \) by Proposition 6.3.

By Lemma 6.2 (ii), we must get \(Q = Q_0 \) and hence \(\sigma \) is the identity element. This implies by Galois theory that \(\{ j(\tau_\mathcal{O})^2(j(\tau_\mathcal{O}) - 1728)^3 \}^n \) generates \(H_\mathcal{O} \) over \(K \).

When \(D_\mathcal{O} \neq -3, -4 \), let \(E_\mathcal{O} \) be the elliptic curve given by the special model in [1]. For \(v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z}) \), recall the definitions of \(X_v \) and \(Y_v \) in [9] and [10], respectively.

Proposition 6.5. Assume that \(D_\mathcal{O} \neq -3, -4 \). If \(N \geq 2 \) and \(K_{\mathcal{O},N} \) properly contains \(H_\mathcal{O} \), then

\[
K_{\mathcal{O},N} = K \left(X_{[0 \frac{1}{2}]}, Y^2_{[0 \frac{1}{2}]} \right).
\]

Proof. Let \(L = K(X, Y^2) \) with \(X = X_{[0 \frac{1}{2}]} \) and \(Y = Y_{[0 \frac{1}{2}]} \). Since \(X \) and \(Y^2 \) belong to \(K_{\mathcal{O},N} \) by Proposition 3.2 and the relation

\[
Y^2_{[0 \frac{1}{2}]} = 4X^3_{[0 \frac{1}{2}]} - A_{\mathcal{O}}X_{[0 \frac{1}{2}]} - B_{\mathcal{O}},
\]

\(L \) is a subfield of \(K_{\mathcal{O},N} \). And, \(A_{\mathcal{O}}, B_{\mathcal{O}} \in H_\mathcal{O} \).

Suppose on the contrary that \(L \neq K_{\mathcal{O},N} \). Then there exists a nonidentity element \(\sigma \) of \(\text{Gal}(K_{\mathcal{O},N}/K) \) which leaves the values \(X \) and \(Y^2 \) fixed. Here we further note that

\[
\sigma \not\in \text{Gal}(K_{\mathcal{O},N}/H_\mathcal{O})
\]

because \(K_{\mathcal{O},N} = H_\mathcal{O}(X) \) by Proposition 3.2. Since

\[
4X^3 - A_{\mathcal{O}}X - B_{\mathcal{O}} = Y^2 = 4X^3 - A_{\mathcal{O}}^2X - B_{\mathcal{O}}^2,
\]

we obtain that

\[
(A_{\mathcal{O}}^2 - A_{\mathcal{O}})X = B_{\mathcal{O}} - B_{\mathcal{O}}^2.
\]
On the other hand, we see that

$$A_O B_O = \frac{j(\tau_O)^2(j(\tau_O) - 1728)^3}{2^{30} 3^{24}},$$

which generates H_O over K by Proposition [12]. Thus $A_O B_O$ is not fixed by σ by (19), and so $A_O^\sigma \neq A_O$ or $B_O^\sigma \neq B_O$. It follows from (20) that $A_O^\sigma \neq A_O$ and

$$X = \frac{B_O - B_O^\sigma}{A_O^\sigma - A_O} \in H_O.$$

Then we derive $K_{O,N} = H_O(X) = H_O$, which contradicts the hypothesis that $K_{O,N}$ properly contains H_O.

Therefore we conclude that

$$L = K\left(\frac{X}{0 \ 1}, \frac{Y^2}{0 \ 1}\right) = K_{O,N}.$$

\[\square\]

7 Extension fields of \mathbb{Q} generated by torsion points of E_O

In §7 and §8, we assume that $D_O \neq -3, -4$. Let $E_O[N]$ be the group of N-torsion points of E_O and $\mathbb{Q}(E_O[N])$ be the extension field of \mathbb{Q} generated by the coordinates of points in $E_O[N]$. Then we have

$$\mathbb{Q}(E_O[N]) = \begin{cases} \mathbb{Q} & \text{if } N = 1, \\ \mathbb{Q}(X_v, Y_v) & \mathbb{Q}(X_v, Y_v) \mid v \in W_N) & \text{if } N \geq 2, \end{cases}$$

where

$$W_N = \{v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z}) \mid Nv \in M_{1,2}(\mathbb{Z})\}.$$

In this section, we shall examine the field $\mathbb{Q}(E_O[N])$ by comparing with $K_{O,N}$.

Lemma 7.1. Let $N \geq 2$. If $\{h_v\}_{v \in V_N}$ is a Fricke family of level N, then

$$\overline{h_v(\tau_O)} = h_v(\frac{1}{0 \ b_{-1}})(\tau_O) \quad (v \in V_N).$$

Proof. See [14, Proposition 1.4 in Chapter 2].

By the definitions (9) and (11), we attain

$$X_v = -\frac{1}{2^{7/3}} f_v(\tau_O) \quad (v \in W_N). \tag{21}$$

Remark 7.2. We find that for $v \in W_N$

$$\overline{X_v} = -\frac{1}{2^{7/3}} f_v(\tau_O)$$

$$= -\frac{1}{2^{7/3}} f_v(\frac{1}{0 \ b_{-1}})(\tau_O) \quad \text{by Proposition 4.2 and Lemma 7.1}$$

$$= X_v(\frac{1}{0 \ b_{-1}}).$$

17
Let $R_{O,N}$ be the maximal real subfield of $K_{O,N}$.

Lemma 7.3. We have

$$R_{O,N} = \mathbb{Q}\left(j(\tau_O), X_{[0 \frac{1}{N}]}\right) \quad \text{and} \quad K_{O,N} = KR_{O,N}.$$

Proof. Observe that

$$X_{[0 \frac{1}{N}]} = X_{[0 \frac{1}{N}]} \left[1 \frac{b}{1}
ight]^{(\tau_O)} \quad \text{by Remark 7.2}$$

$$= X_{[0 \frac{1}{N}]} \quad \text{by Lemma 3.1 (i),}$$

and hence $X_{[0 \frac{1}{N}]} \in \mathbb{R}$. Furthermore, since $j(\tau_O) \in \mathbb{R}$ (cf. [24, p. 179]) and K is imaginary quadratic, we derive by Proposition 3.2 that

$$R_{O,N} = \mathbb{Q}\left(j(\tau_O), X_{[0 \frac{1}{N}]}\right) \quad \text{and} \quad K_{O,N} = KR_{O,N}.$$

□

Lemma 7.4. If $N \geq 2$, then $\mathbb{Q}(X_v \mid v \in W_N)$ contains $\mathbb{Q}(j(\tau_O))$.

Proof. Let M be the maximal real subfield of H_O. Since $j(\tau_O) \in \mathbb{R}$ and

$$H_O = K(j(\tau_O)) = K\left(\{j(\tau_O)^2(j(\tau_O) - 1728)^3\}_{|T_N|}\right) \quad (22)$$

by Propositions 6.3 and 6.4, we deduce that $[H_O : M] = 2$ and

$$M = \mathbb{Q}(j(\tau_O)) = \mathbb{Q}\left(\{j(\tau_O)^2(j(\tau_O) - 1728)^3\}_{|T_N|}\right).$$

Then we find that

$$\mathbb{Q}(X_v \mid v \in W_N) \supseteq \mathbb{Q}\left(\prod_{(u,v) \in T_N} (X_u - X_v)\right)$$

$$= \mathbb{Q}\left(\{j(\tau_O)^2(j(\tau_O) - 1728)^3\}_{|T_N|}\right) \quad \text{by (21) and Lemma 4.4}$$

$$= \mathbb{Q}(j(\tau_O)) \quad \text{by (22).}$$

□

Proposition 7.5. Assume that $D_O \neq -3, -4$ and $N \geq 2$.

(i) The field $\mathbb{Q}(X_v \mid v \in W_N)$ contains $R_{O,N}$. Furthermore, $K(X_v \mid v \in W_N) = K_{O,N}$.

(ii) If $D_O \equiv 0 \pmod{4}$, then $\mathbb{Q}(X_v \mid v \in W_2) = R_{O,2}$.

(iii) If $D_O \equiv 1 \pmod{4}$ or $N \geq 3$, then $\mathbb{Q}(X_v \mid v \in W_N) = K_{O,N}$.
Proof. (i) We see that
\[R_{\mathcal{O},N} = \mathbb{Q} \left(j(\tau_{\mathcal{O}}), X_{\left[0 \frac{1}{N}\right]} \right) \]
by Lemma 7.3
\[\subseteq \mathbb{Q}(X_v \mid v \in W_N) \]
by Lemma 7.4
\[\subseteq K_{\mathcal{O},N} \]
by (3) and (21)
\[= KR_{\mathcal{O},N} \]
by Lemma 7.3.

Thus it yields that
\[K(\mathbb{Q}(X_v \mid v \in W_N)) = K_{\mathcal{O},N}. \]

(ii) If \(D_{\mathcal{O}} \equiv 0 \pmod{4} \), then we claim that for \(v \in W_2 \)
\[\overline{X}_v = X_{v^{\left[1 \frac{0}{0} \frac{-1}{1}\right]}(\tau_{\mathcal{O}})} \]
by Remark 7.2
\[= X_v \]
by Lemma 3.1 (i).

This implies by (i) that \(\mathbb{Q}(X_v \mid v \in W_2) = R_{\mathcal{O},2} \).

(iii) If \(D_{\mathcal{O}} \equiv 1 \pmod{4} \), then we establish that
\[\overline{X}_{\left[0 \frac{0}{0} \frac{0}{1}\right]} = \overline{X}_{\left[1 \frac{1}{N} \frac{0}{0}\right]}^{(\tau_{\mathcal{O}})} \]
by Remark 7.2
\[= \overline{X}_{\left[0 \frac{0}{0} \frac{0}{1}\right]} \]
by Lemma 3.1 (i).

Similarly, if \(D_{\mathcal{O}} \equiv 0 \pmod{4} \) and \(N \geq 3 \), then
\[\overline{X}_{\left[\frac{1}{N} \frac{1}{N} \frac{1}{N}\right]} = \overline{X}_{\left[\frac{1}{N} \frac{1}{0} \frac{1}{0}\right]}^{(\tau_{\mathcal{O}})} \neq X_{\left[\frac{1}{N} \frac{1}{N} \frac{1}{N}\right]} \]
by Lemma 7.3 (i).

These observations hold that if \(D_{\mathcal{O}} \equiv 1 \pmod{4} \) or \(N \geq 3 \), then
\[\mathbb{Q}(X_v \mid v \in W_N) \not\subseteq \mathbb{R}. \]

Therefore we conclude by (i) and Lemma 7.3 that \(\mathbb{Q}(X_v \mid v \in W_N) = K_{\mathcal{O},N} \).

Lemma 7.6. If \(u, v \in M_{1,2}(\mathbb{Q}) \setminus M_{1,2}(\mathbb{Z}) \) satisfy
\[2u \notin M_{1,2}(\mathbb{Z}) \quad \text{and} \quad Nu, Nv \in M_{1,2}(\mathbb{Z}), \]
then the ratio \(\frac{Y_v}{Y_u} \) lies in \(K_{\mathcal{O},N} \).

Proof. See [13, Proof of Lemma 5.3] and (3). □

Remark 7.7. (i) If \(2u \in M_{1,2}(\mathbb{Z}) \), then \(Y_u = 0 \) by Lemma 3.1 (iv).

(ii) By [13, Lemma 3.3], we have
\[\frac{Y_v}{Y_u} = \frac{g_{2v}(\tau_{\mathcal{O}})g_u(\tau_{\mathcal{O}})^4}{g_v(\tau_{\mathcal{O}})^4g_{2u}(\tau_{\mathcal{O}})}. \]
Theorem 7.8. Assume that $D_{O} \neq -3, -4$.

(i) If $D_{O} \equiv 0 \pmod{4}$, then $\mathbb{Q}(E_{O}[2])$ is the maximal real subfield of $K_{O,2}$.

(ii) If $D_{O} \equiv 1 \pmod{4}$, then $\mathbb{Q}(E_{O}[2]) = K_{O,2}$.

(iii) If $N \geq 3$, then $\mathbb{Q}(E_{O}[N])$ is an extension field of $K_{O,N}$ of degree at most 2.

Proof. We get by Lemma 3.1 (iv) that

$$\mathbb{Q}(E_{O}[2]) = \mathbb{Q}(X_{v} \mid v \in W_{2}).$$

(i) If $D_{O} \equiv 0 \pmod{4}$, then we obtain by (23) and Proposition 7.5 that $\mathbb{Q}(E_{O}[2]) = R_{O,2}$.

(ii) If $D_{O} \equiv 1 \pmod{4}$, then we derive by (23) and Proposition 7.5 (iii) that $\mathbb{Q}(E_{O}[2]) = K_{O,2}$.

(iii) If $N \geq 3$, then we find that

$$\mathbb{Q}(E_{O}[N]) = K_{O,N}(Y_{v} \mid v \in W_{N}) \text{ by Proposition 7.5 (iii)}$$

$$= K_{O,N} \left(\frac{Y_{v}}{Y_{v}} \right) \text{ by Lemma 7.6}$$

Here we observe by Proposition 3.2 that

$$Y_{v}^{2} = 4X_{v}^{3} - A_{O}X_{v} - B_{O} \in K_{O,N}.$$

Therefore $\mathbb{Q}(E_{O}[N])$ is an extension field of $K_{O,N}$ of degree at most 2.

\[\square\]

8 Galois representations attached to E_{O}

Since the elliptic curve E_{O} is defined over $\mathbb{Q}(j(E_{O}))$, the field $\mathbb{Q}(E_{O}[N])$ is a finite Galois extension of $\mathbb{Q}(j(E_{O}))$ by Lemma 7.4 and [25, pp. 53–54]. So we get the right action of the Galois group $\text{Gal}(\mathbb{Q}(E_{O}[N])/\mathbb{Q}(j(E_{O})))$ on the $\mathbb{Z}/N\mathbb{Z}$-module $E_{O}[N]$. This action gives us the faithful representation

$$\rho_{O,N} : \text{Gal}(\mathbb{Q}(E_{O}[N])/\mathbb{Q}(j(E_{O}))) \to \text{GL}_{2}(\mathbb{Z}/N\mathbb{Z}) \cong \text{Aut}(E_{O}[N])$$

with respect to the ordered basis

$$\left\{ \left[X_{[\frac{1}{N}0]} : Y_{[\frac{1}{N}0]} : 1 \right], \left[X_{[0\frac{1}{N}]} : Y_{[0\frac{1}{N}]} : 1 \right] \right\}$$

for $E_{O}[N]$ so that

$$[X_{v} : Y_{v} : 1]^\sigma = [X_{v\rho_{O,N}(\sigma)} : Y_{v\rho_{O,N}(\sigma)} : 1] \quad (v \in W_{N}).$$

In this section, we shall determine the image of $\rho_{O,N}$ by utilizing the Shimura reciprocity law.
If we let
\[
\min(\tau O, Q) = x^2 + b_O x + c_O \quad (\in \mathbb{Z}[x]),
\]
then we have a well-defined homomorphism of groups
\[
\mu_{O,N} : (O/NO)^* \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})
\]
\[
[s\tau O + t] \mapsto \begin{bmatrix} t - b_O s & -c_O s \\ s & t \end{bmatrix}.
\]
Let
\[
W_{O,N} = \mu_{O,N}((O/NO)^*) \quad \text{and} \quad U_{O,N} = \mu_{O,N}(\pi_{O,N}(O^*))
\]
where \(\pi_{O,N} : O \to O/NO\) is the canonical homomorphism. Then we achieve that
\[
W_{O,N}/U_{O,N} \simeq (O/NO)^*/\pi_{O,N}(O^*) \simeq \text{Gal}(K_{O,N}/H_O)
\]
(27)
(cf. \([6, \text{Lemma 15.17}]\)).

Proposition 8.1 (The Shimura reciprocity law). The map
\[
W_{O,N}/U_{O,N} \to \text{Gal}(K_{O,N}/H_O)
\]
\[
[\gamma] \mapsto \left(f(\tau O) \mapsto f^\gamma(\tau O) \mid f \in \mathcal{F}_N \text{ is finite at } \tau O \right)
\]
is a well-defined isomorphism. Here, \(\tilde{\gamma}\) means the image of \(\gamma\) in \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z})/\langle -I_2 \rangle \simeq \text{Gal}(\mathcal{F}_N/\mathcal{F}_1)\).

Proof. See \([4, \text{p. 859}]\) or \([6, \text{Theorem 15.22}]\). \(\square\)

Lemma 8.2. Let \(\beta \in M_2(\mathbb{Z})\) such that \(\gcd(\det(\beta), N) = 1\). If
\[
\mathbf{v}\beta \equiv \mathbf{v} \text{ or } -\mathbf{v} \pmod{M_{1,2}(\mathbb{Z})} \quad \text{for each } \mathbf{v} \in W_N,
\]
then \(\beta \equiv I_2 \text{ or } -I_2 \pmod{NM_2(\mathbb{Z})}\).

Proof. See \([13, \text{Lemma 6.1}]\). \(\square\)

Theorem 8.3. Assume that \(D_O \neq -3, -4\) and \(N \geq 2\). Let \(\hat{W}_{O,N}\) be the subgroup of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z})\) defined by
\[
\hat{W}_{O,N} = \left\langle W_{O,N}, \begin{bmatrix} 1 & b_O \\ 0 & -1 \end{bmatrix} \right\rangle.
\]

(i) The image of the Galois representation \(\rho_{O,N}\) is a subgroup of \(\hat{W}_{O,N}\) of index at most 2.

(ii) If \(-1\) is a quadratic residue modulo \(N\), then the image of \(\rho_{O,N}\) is exactly \(\hat{W}_{O,N}\).

Proof. (i) Let \(\sigma \in \text{Gal}(\mathbb{Q}(E_O[N])/\mathbb{Q}(j(E_O)))\) and \(\gamma = \rho_{O,N}(\sigma)\). We get by \(25\) that
\[
X_\mathbf{v}^\gamma = X_\mathbf{v} \quad (\mathbf{v} \in W_N).
\]
Recall that \(j(E_O) = j(\tau O) \in \mathbb{R}\) and \(K(j(E_O)) = H_O\) by Proposition 3.2 (i). Moreover, since \(K\) is imaginary quadratic, we have
\[
\sigma = \mu|_{\mathbb{Q}(E_O[N])} \text{ or } c|_{\mathbb{Q}(E_O[N])}\mu|_{\mathbb{Q}(E_O[N])} \quad \text{for some } \mu \in \text{Gal}(K(E_O[N])/H_O)
\]
(30)
where \(c \) is the complex conjugation on \(\mathbb{C} \). Then we see that

\[
X_v^\sigma = -\frac{1}{2^{7/3}} f_v(\tau_\sigma) \quad \text{by} \quad (21)
\]

\[
= -\frac{1}{2^{7/3}} f_{\nu\alpha}(\tau_\sigma) \quad \text{for some} \quad \alpha \in \hat{W}_{\mathcal{O},N}
\]

by (30), Propositions 4.2, 8.1 and Lemma 7.1

\[
= X_{\nu\alpha} \quad \text{again} \quad \text{by} \quad (21).
\]

And, it follows from (29) that

\[
X_{\nu\gamma} = X_{\nu\alpha} \quad (\nu \in W_N)
\]

and so

\[
\nu\gamma \equiv \nu\alpha \text{ or } -\nu\alpha \quad \text{(mod } M_{1,2}(\mathbb{Z}) \text{)} \quad (\nu \in W_N)
\]

by Lemma 3.1 (i). Thus we obtain by Lemma 8.2 that

\[
\gamma = \alpha \text{ or } -\alpha \text{ in } \text{GL}_2(\mathbb{Z}/N\mathbb{Z}).
\]

This observation asserts that the image of \(\rho_{\mathcal{O},N} \) is a subgroup of \(\hat{W}_{K,N} \). Furthermore, we find that

\[
|\rho_{\mathcal{O},N}(\text{Gal}(\mathbb{Q}(E_\mathcal{O}[N])/\mathbb{Q}(j(E_\mathcal{O}))))|
\]

\[
= [\mathbb{Q}(E_\mathcal{O}[N]) : \mathbb{Q}(j(E_\mathcal{O}))] \quad \text{since } \rho_{\mathcal{O},N} \text{ is injective}
\]

\[
= \begin{cases}
K_{\mathcal{O},N} : H_\mathcal{O} & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 0 \pmod{4}, \\
2[K_{\mathcal{O},N} : H_\mathcal{O}] & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 1 \pmod{4}, \\
2[K_{\mathcal{O},N} : H_\mathcal{O}] \text{ or } 4[K_{\mathcal{O},N} : H_\mathcal{O}] & \text{if } N \geq 3
\end{cases}
\]

by Proposition 3.2 (i), the fact \(j(E_\mathcal{O}) \in \mathbb{R} \) and Theorem 7.8

\[
= |W_{\mathcal{O},N}/\{I_2, -I_2\}| \times \begin{cases}
1 & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 0 \pmod{4}, \\
2 & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 1 \pmod{4}, \\
2 \text{ or } 4 & \text{if } N \geq 3
\end{cases}
\]

by Proposition 8.1 because the assumption \(D_\mathcal{O} \neq -3, -4 \) yields that \(\mathcal{O}^* = \{1, -1\} \) (cf. [6, Exercise 5.9])

\[
= |W_{\mathcal{O},N}| \times \begin{cases}
1 & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 0 \pmod{4}, \\
2 & \text{if } N = 2 \text{ and } D_\mathcal{O} \equiv 1 \pmod{4}, \\
1 \text{ or } 2 & \text{if } N \geq 3
\end{cases}
\]

\[
= |\hat{W}_{\mathcal{O},N}| \times \begin{cases}
1 & \text{if } N = 2, \\
\frac{1}{2} \text{ or } 1 & \text{if } N \geq 3.
\end{cases}
\]

Hence the image of \(\rho_{\mathcal{O},N} \) is a subgroup of \(\hat{W}_{\mathcal{O},N} \) of index at most 2.

(ii) Let \(R \) be the image of \(\rho_{\mathcal{O},N} \). Suppose on the contrary that \(R \neq \hat{W}_{\mathcal{O},N} \). Then we derive by (i) and its proof that

\[
|\hat{W}_{\mathcal{O},N} : R| = 2
\]

(31)
and

\[N \geq 3 \quad \text{and} \quad \mathbb{Q}(E_0[N]) = K_{O,N}. \] (32)

If \(R \) contains \(-I_2\) and so

\[-I_2 = \rho_{O,N}(\sigma) \quad \text{for some} \quad \sigma \in \text{Gal}(\mathbb{Q}(E_0[N]) / \mathbb{Q}(j(E_0))), \] (33)

then we see that for \(v \in W_N \)

\[X_v^\sigma = X_{v(-I_2)} \quad \text{by (25)} \]

\[= X_v \quad \text{by Lemma \(\ref{lem:group-theory} \) (i)}. \]

This claims by Proposition \(\ref{prop:gauss-sums} \) (iii) that \(\sigma = \text{id}_{K_{O,N}} \), which contradicts (32) and (33). Thus we should have

\[R \not\ni -I_2, \] (34)

and hence

\[\langle R, -I_2 \rangle = \hat{W}_{O,N} \] (35)

by (31). Let \(t \) be an integer such that \(t^2 \equiv -1 \pmod{N} \). Since \(t + NO \in (O/NO)^* \),

\[W_{O,N} \ni \mu_{O,N}([t]) = tI_2 \quad \text{and} \quad W_{O,N} \ni \mu_{O,N}([-t]) = -tI_2, \] (36)

\(R \) contains at least one of \(tI_2 \) or \(-tI_2\) by (35). And it follows that

\[R \ni (\pm tI_2)^2 = t^2I_2 = -I_2 \quad \text{in} \quad \text{GL}_2(\mathbb{Z}/N\mathbb{Z}), \]

which contradicts (34).

Therefore we conclude that if \(-1\) is a quadratic residue modulo \(N \), then the image of \(\rho_{O,N} \) is the whole of \(\hat{W}_{O,N} \).

\[\square \]

9 An isomorphism of \(C_N(D_O) \) onto \(C_N(O) \)

By constructing a bijection between \(C_N(D_O) \) and \(C_N(O) \), we shall simultaneously prove that the binary operation on \(C_N(D_O) \) given in Definition \(\ref{def:binary-op} \) is well defined and \(C_N(D_O) \) is isomorphic to \(C_N(O) \).

Lemma 9.1. If \(Q = ax^2 + bxy + cy^2 \in \mathbb{Q}(D_O) \), then we have

\[Q \in \mathbb{Q}(D_O, N) \iff [\omega_Q, 1] \in I(O, N). \]

Proof. Let \(a = [\omega_Q, 1] \). Observe by Lemma \(\ref{lem:gauss-sums} \) that \(aa \in M(O) \) and \(N_O(aa) = a \).

Assume that \(Q \in \mathbb{Q}(D_O, N) \). Since \(\gcd(N_O(aa), N) = \gcd(a, N) = 1 \), \(aa \) lies in \(M(O, N) \) by Lemma \(\ref{lem:ideal-prop} \). Therefore \(a = (aa)(aO)^{-1} \) belongs to \(I(O, N) \).

Conversely, assume that \(a \in I(O, N) \). Then we attain \(a = bc^{-1} \) for some \(b, c \in M(O, N) \) and so

\[(aa)c = (aO)b. \]
Taking norm on both sides, we find that \(aN_\mathcal{O}(c) = a^2N_\mathcal{O}(b) \) by the fact \(N_\mathcal{O}(ab) = a \) and Lemma 2.4, and hence
\[
N_\mathcal{O}(c) = aN_\mathcal{O}(b).
\] (37)

Since \(\gcd(N_\mathcal{O}(c), N) = 1 \) by the fact \(c \in \mathcal{M}(\mathcal{O}, N) \) and Lemma 2.2, we achieve from (37) that \(\gcd(a, N) = 1 \). Thus \(Q \) belongs to \(\mathcal{Q}(D_\mathcal{O}, N) \).

\[\text{Lemma 9.2.} \] The set \(P_N(\mathcal{O}) \) coincides with
\[
P = \left\{ \frac{\nu_1}{\nu_2} \mathcal{O} \mid \nu_1, \nu_2 \in \mathcal{O} \setminus \{0\} \text{ satisfy } \nu_1\mathcal{O}, \nu_2\mathcal{O} \in \mathcal{P}(\mathcal{O}, N) \text{ and } \nu_1 \equiv \nu_2 \pmod{N\mathcal{O}} \right\}.
\]

\[\text{Proof.} \] By the definition (11) of \(P_N(\mathcal{O}) \), we deduce the inclusion \(P_N(\mathcal{O}) \subseteq P \).

Now, let \(a \in P \) and so
\[
a = \frac{\nu_1}{\nu_2} \mathcal{O} \quad \text{for some } \nu_1, \nu_2 \in \mathcal{O} \setminus \{0\} \text{ such that } \begin{cases} \nu_1\mathcal{O}, \nu_2\mathcal{O} \in \mathcal{P}(\mathcal{O}, N), \\ \nu_1 \equiv \nu_2 \pmod{N\mathcal{O}}. \end{cases}
\]

Since \(\nu_i\mathcal{O} \ (i = 1, 2) \) is prime to \(N \), that is, \(\nu_i\mathcal{O} + N\mathcal{O} = \mathcal{O} \), the coset \(\nu_i + N\mathcal{O} \) in the quotient ring \(\mathcal{O}/N\mathcal{O} \) is a unit. If we let \(m \) be the order of the unit group \((\mathcal{O}/N\mathcal{O})^\times \), then we get from the fact \(\nu_1 \equiv \nu_2 \pmod{N\mathcal{O}} \) that
\[
\nu_1\nu_2^{m-1} \equiv \nu_2^m \equiv 1 \pmod{N\mathcal{O}}.
\]

And we obtain that
\[
a = \frac{\nu_1}{\nu_2} \mathcal{O} = (\nu_1\nu_2^{m-1}\mathcal{O})(\nu_2^m\mathcal{O})^{-1} \in P_N(\mathcal{O}),
\]
which proves the converse inclusion \(P \subseteq P_N(\mathcal{O}) \). Therefore we conclude that \(P_N(\mathcal{O}) = P \).

\[\text{Proposition 9.3.} \] The map
\[
\phi_{\mathcal{O}, N} : \mathcal{C}_N(D_\mathcal{O}) \to \mathcal{C}_N(\mathcal{O})
\]
\[
[Q] \mapsto [\omega_Q, 1]
\]
is a well-defined bijection.

\[\text{Proof.} \] First, we shall show that \(\phi_{\mathcal{O}, N} \) is well defined. Let \(Q = ax^2 + bxy + cy^2 \in \mathcal{Q}(D_\mathcal{O}, N) \) and \(\gamma \in \Gamma_1(N) \) with \(\gamma^{-1} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \) (\(\in \Gamma_1(N) \)). Then we see that
\[
[\omega_{Q^\gamma}, 1] = [\gamma^{-1}(\omega_Q), 1] = \frac{1}{j(\gamma^{-1}, \omega_Q)}[\omega_Q, 1].
\] (38)

Since \(\gcd(a, N) = 1 \), we have
\[
a^{\varphi(N)} \equiv 1 \pmod{N}
\] (39)
where \(\varphi \) is the Euler totient function. Furthermore, since
\[
b^2 - 4ac = D_\mathcal{O} = b_\mathcal{O}^2 - 4c_\mathcal{O},
\]

24
and so achieve Proposition 5.6 (ii) and Lemmas 2.11, 5.5, 9.1, we derive that for some Q because $r \equiv 0$, $s \equiv 1 \pmod{N}$. Hence we obtain by \[35\], \[39\] and \[10\] that

$$[[\omega_Q, 1]] = [[\omega_Q, 1]] \in \mathcal{C}_N(O),$$

which shows that $\phi_{O, N}$ is well defined.

Second, we shall prove that $\phi_{O, N}$ is surjective. Let h be the order of the group $\mathcal{C}(O, N)$. By Proposition 5.6 (ii) and Lemmas 2.11, 5.5, 9.1 we derive that

$$\mathcal{C}(O, N) = I(O, N)/P(O, N) = \{[\omega_{Q_1}, 1]P(O, N), \ldots, [\omega_{Q_h}, 1]P(O, N)\}$$

for some $Q_i = a_i x^2 + b_i xy + c_i y^2 \in \mathcal{Q}(D_O, N)$ ($i = 1, 2, \ldots, h$). Thus we deduce the decomposition

$$\mathcal{C}_N(O) = I(O, N)/P_N(O) = (P(O, N)/P_N(O)) \cdot \{[\omega_{Q_i}, 1]P_N(O) \mid i = 1, 2, \ldots, h\}.$$

Now, let $C \in \mathcal{C}_N(O)$. By the above decomposition, we have

$$C = C' \cdot [\omega_{Q_i}, 1]P_N(O) \quad \text{for some } C' \in P(O, N)/P_N(O) \text{ and } 1 \leq i \leq h.$$

And one can take an O-ideal \mathfrak{d} in $C'^{-1} \cap \mathcal{M}(O, N)$ by Remark 2.15. Since $O = [a_i, \omega_{Q_i}, 1]$, we achieve

$$\mathfrak{d} = (ka_i \omega_{Q_i} + v)O \quad \text{for some } k, v \in \mathbb{Z}$$

and so

$$C = \left[\frac{1}{u \omega_{Q_i} + v} [\omega_{Q_i}, 1] \right] \quad \text{with } u = ka_i. \quad (41)$$

Since $\gcd(u, v, N) = 1$ by the facts $\mathfrak{d} \in \mathcal{M}(O, N)$ and $\gcd(a_i, N) = 1$, we can take a matrix $\sigma = \begin{bmatrix} * & * \\ \tilde{u} & \tilde{v} \end{bmatrix} \in SL_2(\mathbb{Z})$ such that $\tilde{u} \equiv u \pmod{N}$, $\tilde{v} \equiv v \pmod{N}$. Then we see that

$$\frac{u \omega_{Q_i} + v}{u \omega_{Q_i} + v} O = \frac{u(a_i \omega_{Q_i}) + a_i v}{u(a_i \omega_{Q_i}) + a_i v} O \in P_N(O) \quad (42)$$

by the fact $a_i \omega_{Q_i} \in O$ and Lemma 9.2. And we establish that

$$C = \left[\frac{u \omega_{Q_i} + v}{u \omega_{Q_i} + v} \right] C \quad \text{by } (12)$$

$$= \left[\frac{1}{j(\sigma, \omega_{Q_i})} [\omega_{Q_i}, 1] \right] \quad \text{by } (11)$$

$$= [[\sigma(\omega_{Q_i}), 1]]$$

$$= [[\omega_{Q_i}^{-1}, 1]].$$

Thus, if we let $Q = Q_i^{-1}$, then we get by Lemma 9.1 that

$$Q \in \mathcal{Q}(D_O, N) \quad \text{and} \quad \phi_{O, N}([Q]) = C.$$
This proves that $\phi_{\mathcal{O}, N}$ is surjective.

Third, we shall show that $\phi_{\mathcal{O}, N}$ is injective. Suppose that

$$\phi_{\mathcal{O}, N}([Q_1]) = \phi_{\mathcal{O}, N}([Q_2])$$

for some $Q_i = a_i x^2 + b_i xy + c_i y^2 \in \mathcal{O}(D, N) \ (i = 1, 2)$

Then we have

$$[\omega Q_1, 1] = \frac{\nu_1}{\nu_2} [\omega Q_2, 1]$$

for some $\nu_1, \nu_2 \in \mathcal{O} \setminus \{0\}$ such that $\nu_1 \equiv \nu_2 \equiv 1 \pmod{N\mathcal{O}}$, (43)

which implies by Proposition 5.6 (ii) that

$$Q_1 = Q_2^\gamma$$

for some $\gamma \in \text{SL}_2(\mathbb{Z})$.

And it follows from (43) that

$$[\omega Q_1, 1] = \frac{\nu_1}{\nu_2} [\gamma(\omega Q_1), 1] = \frac{\nu_1}{\nu_2} \cdot \frac{1}{j} [\omega Q_1, 1]$$

where $j = j(\gamma, \omega Q_1)$,

and hence

$$\zeta := \frac{\nu_1}{\nu_2} \cdot \frac{1}{j} \in \mathcal{O}^*.$$ (44)

Now, since $[\omega Q_1, 1] = \zeta j [\omega Q_2, 1]$ by (43) and $\omega Q_1, \omega Q_2 \in \mathbb{H}$, there is a matrix $\alpha = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ in $\text{SL}_2(\mathbb{Z})$ so that

$$\begin{bmatrix} \zeta j \omega Q_2 \\ \zeta j \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} \omega Q_1 \\ 1 \end{bmatrix}.$$ (45)

We then find by (46) that

$$\omega Q_2 = \frac{\zeta j \omega Q_2}{\zeta j} = \frac{p \omega Q_1 + q}{r \omega Q_1 + s} = \alpha(\omega Q_1),$$

which gives

$$Q_1 = Q_2^\alpha.$$ (46)

We get again by (43) and the fact $\nu_2 \equiv 1 \pmod{N\mathcal{O}}$ that

$$a_1 \nu_2(\zeta j) \equiv a_1(r \omega Q_1 + s) \equiv r(a_1 \omega Q_1) + a_1 s \pmod{N\mathcal{O}}.$$ (47)

On the other hand, we see by (43) and the fact $\nu_1 \equiv 1 \pmod{N\mathcal{O}}$ that

$$a_1 \nu_2(\zeta j) = a_1 \nu_1 \equiv a_1 \pmod{N\mathcal{O}}.$$ (48)

Thus we obtain by (17) and (48) that

$$r(a_1 \omega Q_1) + a_1 s \equiv a_1 \pmod{N\mathcal{O}},$$

from which it follows that

$$r(a_1 \omega Q_1) + a_1(s - 1) \equiv 0 \pmod{N\mathcal{O}}.$$ (49)

Since $N\mathcal{O} = [N(a_1 \omega Q_1), N]$ and $\gcd(a_1, N) = 1$, (49) implies that $r \equiv 0, s \equiv 1 \pmod{N}$ and hence $\alpha \in \Gamma_1(N)$. Therefore we achieve by (46) that

$$[Q_1] = [Q_2] \quad \text{in} \quad \mathcal{C}_N(D),$$

which proves the injectivity of $\phi_{\mathcal{O}, N}$. □
Theorem 9.4. The form class group $C_N(D_O)$ is isomorphic to the ideal class group $C_N(O)$.

Proof. Let $\phi_{O,N} : C_N(D_O) \rightarrow C_N(O)$ be the bijection given in Proposition 9.3. Let $C, C' \in C_N(D_O)$ and so $C = [Q], C' = [Q']$ for some $Q = ax^2 + bxy + cy^2, Q' = a'x^2 + b'xy + c'y^2 \in \mathcal{O}(D_O, N)$, respectively. By Lemma 5.5, we see that there is a matrix γ in $SL_2(\mathbb{Z})$ such that $Q'' = Q'' = a''x^2 + b''xy + c''y^2$ satisfies gcd($a, a'', (b + b'')/2 = 1$. We then find that

$$\phi_{O,N}(C)\phi_{O,N}(C') = [[\omega, 1][\omega', 1]]$$

$$= [\gamma(\omega Q), 1]$$

$$= \begin{pmatrix} 1/j \omega, 1 \end{pmatrix} \begin{pmatrix} 1/j \omega Q', 1 \end{pmatrix} \text{ with } j = j(\gamma, \omega Q')$$

$$= \begin{pmatrix} 1/j \omega Q''', 1 \end{pmatrix}$$

where Q''' is a Dirichlet composition of Q and Q''. By Lemma 5.6

$$= [[\nu_1, \nu_2]] \text{ where } \nu_1 = \frac{\omega Q'''}{j} \text{ and } \nu_2 = \frac{1}{j}.$$

Since $[\omega, 1][\omega Q', 1] = [\nu_1, \nu_2]$ contains 1, we derive

$$uv_1 + v\nu_2 = 1 \text{ for some unique } (u, v) \in \mathbb{Z}^2. \quad (50)$$

Furthermore, since

$$aa'[\nu_1, \nu_2] = (a[\omega Q, 1])(a'[\omega Q', 1]) \in M(O, N) \quad (51)$$

by Lemmas 2.2, 5.2 and the fact gcd($N, a) = \text{gcd}(N, a') = 1$, we must have gcd($N, u, v) = 1$. Since the reduction $SL_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}/NM_2(\mathbb{Z}))$ is surjective (Lemma 1.38), there exists a matrix

$$\sigma = \begin{pmatrix} * & * \\ u' & v' \end{pmatrix} \in SL_2(\mathbb{Z})$$

such that

$$\sigma \equiv \begin{pmatrix} * & * \\ u & v \end{pmatrix} \text{ (mod } NM_2(\mathbb{Z})). \quad (52)$$

If we let $Q''' = Q''\sigma^{-1}$, then we find by the fact $\nu_1/\nu_2 = \omega Q'''$ that

$$[\omega Q''', 1] = [\sigma(\omega Q'''), 1] = \frac{1}{j(\sigma, \omega Q''')} \omega Q''', 1] = \frac{aa'}{u'(aa'\nu_1) + v'(aa'\nu_2)}[\nu_1, \nu_2]. \quad (53)$$

Thus we establish that

$$\{u'(aa'\nu_1) + v'(aa'\nu_2)\} - aa' = \{u'(aa'\nu_1) + v'(aa'\nu_2)\} - aa'(u

\nu_1 + v\nu_2) \quad \text{by } (51)$$

$$= (u' - u)(aa'\nu_1) + (v' - v)(aa'\nu_2)$$

$$\in N(aa'\nu_1, \nu_2) \quad \text{by } (52)$$

$$\subseteq N(O) \quad \text{by } (51),$$

and hence

$$nu'(aa'\nu_1) + v'(aa'\nu_2) \equiv aa' \text{ (mod } N(O)).$$
And we attain by (53) and Lemma 9.2 that
\[\phi_{O,N}([Q''']) = [\omega_{Q'''], 1]] = [[\nu_1, \nu_2]] = \phi_{O,N}(C)\phi_{O,N}(C'). \]
Therefore the binary operation on \(\mathcal{C}_N(D_O) \) given in Definition 5.7 is well defined, which makes \(\mathcal{C}_N(D_O) \) a group isomorphic to \(\mathcal{C}_N(O) \) via the isomorphism \(\phi_{O,N} \).

10 The Shimura reciprocity law

We shall briefly review the original version of Shimura’s reciprocity law in order to prepare for \(\S 11 \).

Let \(\hat{Z} = \prod_{p: \text{primes}} Z_p \) and \(\hat{Q} = Q \otimes_{\mathbb{Z}} \hat{Z} \). Note that
\[\text{GL}_2(\hat{Q}) = \left\{ \gamma = (\gamma_p)_p \in \prod_p \text{GL}_2(\mathbb{Q}_p) \mid \gamma_p \in \text{GL}_2(\mathbb{Z}_p) \text{ for all but finitely many } p \right\} \]
(\[6, \text{Exercise } 15.6\]). Let \(\mathcal{F} \) be the field of all meromorphic modular functions, namely,
\[\mathcal{F} = \bigcup_{N=1}^{\infty} \mathcal{F}_N. \]

Proposition 10.1. There is a surjective homomorphism
\[\sigma_{\mathcal{F}} : \text{GL}_2(\hat{Q}) \to \text{Aut}(\mathcal{F}) \]
described as follows: Let \(\gamma \in \text{GL}_2(\hat{Q}) \) and \(f \in \mathcal{F}_N \) for some positive integer \(N \). One can decompose \(\gamma \) as
\[\gamma = \alpha \beta \quad \text{for some } \alpha = (\alpha_p)_p \in \text{GL}_2(\hat{Z}) \text{ and } \beta \in \text{GL}_2^+(\mathbb{Q}) \]
(\[15, \text{Theorem } 1 \text{ in Chapter } 7\]). By using the Chinese remainder theorem, take a matrix \(A \) in \(M_2(\mathbb{Z}) \) such that \(A \equiv \alpha_p \pmod{NM_2(\mathbb{Z}_p)} \) for all primes \(p \) dividing \(N \). Then we have
\[f^{\sigma_{\mathcal{F}}(\gamma)} = f^A \circ \beta \]
where \(A \) is the image of \(A \) in \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z})/\langle -I_2 \rangle \) (\(\simeq \text{Gal}(\mathcal{F}_N/\mathcal{F}_1) \)) and \(\beta \) is regarded as a fractional linear transformation on \(\mathbb{H} \).

Proof. See [15, Theorem 6 in Chapter 7] or [21, Theorem 6.23]. \(\square \)

Remark 10.2. The kernel of \(\sigma_{\mathcal{F}} \) is the image of \(\mathbb{Q}^* \) through the diagonal embedding into \(\text{GL}_2(\hat{Q}) \).

Let \(\omega \in K \cap \mathbb{H} \). We define the normalized embedding
\[q_\omega : K^* \to \text{GL}_2^+(\mathbb{Q}) \]
by the relation
\[\nu \begin{bmatrix} \omega \\ 1 \end{bmatrix} = q_\omega(\nu) \begin{bmatrix} \omega \\ 1 \end{bmatrix} \ (\nu \in K^*). \]

For each prime \(p \), we can continuously extend \(q_\omega \) to the embedding
\[q_\omega, p : (K \otimes \mathbb{Z}_p)^* \to \text{GL}_2(\mathbb{Q}_p), \]
and hence to the embedding
\[q_\omega : \hat{K}^* \to \text{GL}_2(\hat{\mathbb{Q}}) \]
where \(\hat{K} = K \otimes \hat{\mathbb{Z}} \). Let \(K^{ab} \) be the maximal abelian extension of \(K \), and denote by
\[[\cdot, K] : \hat{K}^* \to \text{Gal}(K^{ab}/K) \]
the Artin map for \(K \) defined on the group \(\hat{K}^* \) of finite \(K \)-ideles. By using his theory of canonical models for modular curves, Shimura established the following reciprocity law.

Proposition 10.3. Let \(\omega \in K \cap \mathbb{H} \) and \(f \in F \). If \(f \) is finite at \(\omega \), then \(f(\omega) \) belongs to \(K^{ab} \) and satisfies
\[f(\omega)^{[s^{-1}, K]} = f^{\sigma_f(q_\omega(s))}(\omega) \ (s \in \hat{K}^*). \]

Proof. See [21, 6.31].

11 Ray class invariants for orders

We shall define invariants for each class in \(C_N(O) \) in terms of special values of modular functions, and examine their Galois conjugates via the Artin map.

Definition 11.1. Let \(C \in C_N(O) \). For each \(f \in F_N \), we define the invariant \(f(C) \) as follows:

One can take an \(O \)-ideal \(\mathfrak{c} \in C \cap M(O, N) \) by Remark 2.15. Observe that \(\gcd(N_\mathfrak{c}(\mathfrak{c}), N) = 1 \) by Lemma 2.2. Choose a \(\mathbb{Z} \)-basis \(\{\xi_1, \xi_2\} \) of \(\mathfrak{c}^{-1} \) so that
\[\xi := \frac{\xi_1}{\xi_2} \in \mathbb{H}. \]

Since \([\tau_\mathfrak{c}, 1] = \mathfrak{c} \subseteq \mathfrak{c}^{-1} = [\xi_1, \xi_2] \) and \(\tau_\mathfrak{c}, \xi \in \mathbb{H} \), we have
\[\begin{bmatrix} \tau_\mathfrak{c} \\ 1 \end{bmatrix} = A \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \text{ for some } A \in M_2(\mathbb{Z}) \cap \text{GL}_2^+(\mathbb{Q}). \quad (54) \]

On the other hand, we get by Lemma 2.1 (iii) that
\[[\tau_\mathfrak{c}, 1] = \mathfrak{c} \supseteq \tau = N_{\mathfrak{c}}(\mathfrak{c})^c_\mathfrak{c} = [N_\mathfrak{c}(\mathfrak{c})\xi_1, N_\mathfrak{c}(\mathfrak{c})\xi_2] \]
and so
\[\begin{bmatrix} N_\mathfrak{c}(\mathfrak{c})\xi_1 \\ N_\mathfrak{c}(\mathfrak{c})\xi_2 \end{bmatrix} = B \begin{bmatrix} \tau_\mathfrak{c} \\ 1 \end{bmatrix} \text{ for some } B \in M_2(\mathbb{Z}) \cap \text{GL}_2^+(\mathbb{Q}). \quad (55) \]
Thus we obtain by (54) and (55) that
\[AB \begin{bmatrix} \tau O & \tau O \\ 1 & 1 \end{bmatrix} = N_O(c) \begin{bmatrix} \tau O & \tau O \\ 1 & 1 \end{bmatrix}. \]
By taking determinant and squaring, we attain
\[\det(A)^2 \det(B)^2 D_O = N_O(c)^4 D_O, \]
which shows that \(\gcd(\det(A), N) = 1 \). We then define
\[f(C) = f(\tilde{A}(\xi)) \]
where \(\tilde{A} \) is the image of \(A \) in \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z})/\langle -I_2 \rangle \), if \(f(\tilde{A}) \) is finite at \(\xi \).

Lemma 11.2. Let \(a, b \in M(O) \). If \(a + b = O \), then \(a \cap b \subseteq ab \).

Proof. Since \(a + b = O \), we deduce
\[1 = a + b \quad \text{for some } a \in a \text{ and } b \in b. \] (56)
Let \(c \in a \cap b \). Then we see that
\[c = c(a + b) \quad \text{by (56)} \]
\[= ac + cb \]
\[\in ab \quad \text{since } a \in a, c \in b \text{ and } c \in a, b \in b. \]
This proves that \(a \cap b \subseteq ab \).

Lemma 11.3. Let \(C \in C_N(O) \) and \(f \in F_N \). The value \(f(C) \) in Definition 11.1 if it is finite, does not depend on the choice of \(c \) and \(\{\xi_1, \xi_2\} \).

Proof. We follow the notation of Definition 11.1. Let \(c' \in C \cap M(O, N) \), and let \(\{\xi'_1, \xi'_2\} \) be a \(\mathbb{Z} \)-basis of \(c'^{-1} \) so that
\[\xi' := \xi'_1 \xi'_2 \in \mathbb{H}. \]
Let \(A' \) be the matrix in \(M_2(\mathbb{Z}) \cap \text{GL}_2^+(\mathbb{Q}) \) such that
\[\begin{bmatrix} \tau O \\ 1 \end{bmatrix} = A' \begin{bmatrix} \xi'_1 \\ \xi'_2 \end{bmatrix}. \] (57)
Since \(C = [c] = [c'] \), we have
\[c' = \frac{\nu_1}{\nu_2} c \] (58)
for some \(\nu_1, \nu_2 \in O \setminus \{0\} \) satisfying
\[\nu_1 \equiv \nu_2 \equiv 1 \pmod{NO}. \] (59)
If we let \(\nu = \frac{\nu_1}{\nu_2} \) then we get by (58) that
\[[\xi'_1, \xi'_2] = c'^{-1} = \nu^{-1} c^{-1} = [\nu^{-1} \xi_1, \nu^{-1} \xi_2], \]
and hence
\[
\begin{bmatrix}
ξ'_1 \\
ξ'_2
\end{bmatrix} = B \begin{bmatrix}
ν^{-1}ξ_1 \\
ν^{-1}ξ_2
\end{bmatrix} = ν^{-1}B \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix}
\] for some \(B \in \text{SL}_2(\mathbb{Z}) \).

(60)

Note that
\[
(ν_1 - ν_2)ξ \subseteq NO \cap (ν_1 - ν_2)ξ \quad \text{by (59)}
\]
\[
\subseteq NO \cap (ν_1ν_1 + ν_2ν_2)ξ \quad \text{by (58)}
\]
\[
\subseteq NO \cap ν_2O \quad \text{by Lemma 11.2 because } ν_2O \text{ is prime to } N \text{ owing to (59)}
\]
and so
\[
[(ν - 1)τO, (ν - 1)] = (ν - 1)O \subseteq Nξ^{-1} = [Nξ_1, Nξ_2].
\]
Thus we obtain that
\[
\begin{bmatrix}
(ν - 1)τO \\
ν - 1
\end{bmatrix} = A'' \begin{bmatrix}
Nξ_1 \\
Nξ_2
\end{bmatrix}
\] for some \(A'' \in M_2(\mathbb{Z}) \cap \text{GL}_2^+(\mathbb{Q}) \).

(61)

And we find that
\[
NA'' \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix} = ν \begin{bmatrix}
τO \\
1
\end{bmatrix} - \begin{bmatrix}
τO \\
1
\end{bmatrix} \quad \text{by (61)}
\]
\[
= νA' \begin{bmatrix}
ξ'_1 \\
ξ'_2
\end{bmatrix} - A \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix} \quad \text{by (54) and (57)}
\]
\[
= (A'B - A) \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix} \quad \text{by (60)}.
\]
It then follows that
\[
NA'' \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix} = (A'B - A) \begin{bmatrix}
ξ_1 \\
ξ_2
\end{bmatrix},
\]
and hence \(NA'' = A'B - A \) and
\[
A' \equiv AB^{-1} \pmod{NM_2(\mathbb{Z})}.
\]

(62)

Finally we derive that
\[
f^A(ξ) = f^A(B^{-1}B(ξ))
\]
\[
= f^{AB^{-1}}(B(ξ)) \quad \text{by Proposition 4.1}
\]
\[
= f^{AB^{-1}}(ξ') \quad \text{by (60)}
\]
\[
= f^A(ξ') \quad \text{by (62)},
\]
which proves the well-definedness of the invariant \(f(C) \).

By composing three isomorphisms

\[\hfill \]
(i) \(C_N(\mathcal{O}) \sim C_N(\mathcal{O}, \ell_{\mathcal{O}N}) \) achieved from Proposition 2.13.

(ii) \(C_N(\mathcal{O}, \ell_{\mathcal{O}N}) \sim I(\mathcal{O}_K, \ell_{\mathcal{O}N})/P_{Z_N}(\mathcal{O}_K, \ell_{\mathcal{O}N}) \) established in Proposition 2.8.

(iii) the Artin map \(I(\mathcal{O}_K, \ell_{\mathcal{O}N})/P_{Z_N}(\mathcal{O}_K, \ell_{\mathcal{O}N}) \sim \text{Gal}(K_{\mathcal{O},N}/K) \),

we get the isomorphism

\[\sigma_{\mathcal{O},N} : C_N(\mathcal{O}) \sim \text{Gal}(K_{\mathcal{O},N}/K). \]

Let \(C_0 \) denote the identity class in \(C_N(\mathcal{O}) \).

Theorem 11.4. Let \(C \in C_N(\mathcal{O}) \) and \(f \in F_N \). If \(f \) is finite at \(\tau_{\mathcal{O}} \), then \(f(C) \) belongs to \(K_{\mathcal{O},N} \) and satisfies

\[f(C)\sigma_{\mathcal{O},N}(C') = f(CC') \quad (C' \in C_N(\mathcal{O})). \]

Proof. By Definition 11.1, Lemma 11.3 and (3), we attain

\[f(C_0) = f(\tau_{\mathcal{O}}) \in K_{\mathcal{O},N}. \] (63)

And one can take \(c \in C \cap M(\mathcal{O}, \ell_{\mathcal{O}N}) \) by Remark 2.15. Let \(\{\xi_1, \xi_2\} \) be a \(\mathbb{Z} \)-basis of \(c^{-1} \) such that

\[\xi := \frac{\xi_1}{\xi_2} \in \mathbb{H}. \]

Furthermore, let \(A \) be the matrix in \(M_2(\mathbb{Z}) \cap \text{GL}_2^+(\mathbb{Q}) \) satisfying

\[\begin{bmatrix} \tau_{\mathcal{O}} \\ 1 \end{bmatrix} = A \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}. \] (64)

Take an idele \(s = (s_p)_{p \text{ primes in } \hat{K}^* = (K \otimes \hat{\mathbb{Z}})^*} \) such that

\[\begin{cases} s_p = 1 & \text{if } p | \ell_{\mathcal{O}N}, \\ s_p(\mathcal{O}_K \otimes \mathbb{Z}_p) = c\mathcal{O}_K \otimes \mathbb{Z}_p & \text{if } p \not| \ell_{\mathcal{O}N}. \end{cases} \] (65)

If \(p | \ell_{\mathcal{O}N} \), then we see that

\[s_p(\mathcal{O} \otimes \mathbb{Z}_p) = \mathcal{O} \otimes \mathbb{Z}_p \quad \text{since } s_p = 1 \]

\[\supseteq c \otimes \mathbb{Z}_p \]

\[\supseteq N_{\mathcal{O}}(c)\mathcal{O} \otimes \mathbb{Z}_p \quad \text{by Lemma 2.1 (iii)} \]

\[= \mathcal{O} \otimes \mathbb{Z}_p \quad \text{by the fact } c \in M(\mathcal{O}, \ell_{\mathcal{O}N}) \text{ and Lemma 2.2} \]

and hence

\[s_p(\mathcal{O} \otimes \mathbb{Z}_p) = c \otimes \mathbb{Z}_p \quad (\text{if } p | \ell_{\mathcal{O}N}). \] (66)

If \(p \not| \ell_{\mathcal{O}N} \), then \(\ell_{\mathcal{O}} \) is a unit in \(\mathbb{Z}_p \) and so

\[s_p(\mathcal{O} \otimes \mathbb{Z}_p) = s_p(\mathcal{O}_K \otimes \mathbb{Z}_p) = c\mathcal{O}_K \otimes \mathbb{Z}_p = c\mathcal{O} \otimes \mathbb{Z}_p = c \otimes \mathbb{Z}_p \quad (\text{if } p \not| \ell_{\mathcal{O}N}). \] (67)

Then it follows from (66) and (67) that

\[s_p^{-1}(\mathcal{O} \otimes \mathbb{Z}_p) = c^{-1} \otimes \mathbb{Z}_p \quad \text{for every prime } p. \] (68)

32
Since
\[s_p^{-1} \begin{bmatrix} \tau_0 \\ 1 \end{bmatrix} = q_{\tau_0, p}(s_p^{-1}) \begin{bmatrix} \tau_0 \\ 1 \end{bmatrix} = q_{\tau_0, p}(s_p^{-1}) A \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \]
by (64), we deduce by (68) and the fact \(c^{-1} = [\xi_1, \xi_2] \) that
\[q_{\tau_0, p}(s_p^{-1}) A \in \text{GL}_2(\mathbb{Z}_p), \]
and so
\[q_{\tau_0}(s^{-1}) A \in \text{GL}_2(\hat{\mathbb{Z}}). \] (69)

We then find that
\[
f(C_0)_{\sigma_0, N(C)} = f(C_0)_{\sigma_0, N([q])}
= f(\tau_0)^{[s, K]} \text{ by (63) and (65)}
= f_{\sigma_0}(q_{\tau_0}(s^{-1}))_{\tau_0} \text{ by Proposition 10.3}
= f_{\sigma_0}(q_{\tau_0}(s^{-1}) A A^{-1})_{\tau_0} \text{ by Proposition 10.1 because } A^{-1} \in \text{GL}_2^+(\mathbb{Q})
= f_{\sigma_0}(q_{\tau_0}(s^{-1}) A)_{\xi} \text{ by (64)}
= f_{G}(\xi) \text{ where } G \text{ is a matrix in } M_2(\mathbb{Z}) \text{ such that }
G \equiv q_{\tau_0, p}(s_p^{-1}) A \text{ (mod } NM_2(\mathbb{Z}_p)) \text{ for all primes } p \text{ dividing } N,
\text{ by (69) and Proposition 10.1}
= f_{A}(\xi) \text{ since the fact } s_p = 1 \text{ for all primes } p \text{ dividing } N \text{ implies }
G \equiv A \text{ (mod } NM_2(\mathbb{Z}))
= f(C).
\]

This proves that \(f(C) \) is finite and belongs to \(K_{\mathcal{O}, N} \). And we further derive that for \(C' \in \mathcal{C}_N(\mathcal{O}) \)
\[
f(C)_{\sigma_0, N(C')} = (f(C_0)_{\sigma_0, N(C)})_{\sigma_0, N(C')} = f(C_0)_{\sigma_0, N(CC')} = f(CC').
\]

\[\square\]

12 An isomorphism of \(\mathcal{C}_N(D_{\mathcal{O}}) \) onto \(\text{Gal}(K_{\mathcal{O}, N}/K) \)

In this section, we shall explicitly describe the isomorphism
\[\sigma_{\mathcal{O}, N} \circ \phi_{\mathcal{O}, N} : \mathcal{C}_N(D_{\mathcal{O}}) \xrightarrow{\sim} \text{Gal}(K_{\mathcal{O}, N}/K). \]

Furthermore, we shall show that there exists a form class group associated with the principal congruence subgroup \(\Gamma(N) \).

Definition 12.1. Let \(Q \in \mathcal{Q}(D_{\mathcal{O}}, N) \) and \(f \in \mathcal{F}_N \). If \(f \) is finite at \(\tau_0 \), then we define
\[f([Q]) = f(\phi_{\mathcal{O}, N}([Q])). \]
Lemma 12.2. Let $Q = ax^2 + bxy + cy^2 \in Q(D_O, N)$ and $f \in \mathcal{F}_N$ which is finite at τ_O. Then we have

$$f([Q]) = f\left[1 - \frac{a'(b + b_O)/2}{a'}\right](-\omega_Q)$$

where a' is an integer satisfying $aa' \equiv 1 \pmod{N}$.

Proof. Let $C = \phi_O,N([Q]) = [\omega_Q, 1]$. We see by the facts $\gcd(a, N) = 1$, $a \varphi(N) \equiv 1 \pmod{N}$ and Lemma 5.2 that

$c := a \varphi(N)[\omega_Q, 1] = a \varphi(N)^{-1}(a[\omega_Q, 1]) \in C \cap M(O, N)$.

Now, we find that

$$c^{-1} = a^{-\varphi(N)+1}b^{-1} \quad \text{where } b = a[\omega_Q, 1] (\in M(O, N))$$

$$= a^{-\varphi(N)+1}N_O(b)^{-1}\bar{b} \quad \text{by Lemma 2.1 (iii)}$$

$$= a^{-\varphi(N)+1}a^{-1}(a[\omega_Q, 1]) \quad \text{by Lemma 5.2}$$

$$= a^{-\varphi(N)+1}[-\omega_Q, 1].$$

Thus, if we take

$$\xi_1 = -a^{-\varphi(N)+1}\omega_Q \quad \text{and} \quad \xi_2 = a^{-\varphi(N)+1},$$

then we achieve

$c^{-1} = [\xi_1, \xi_2] \quad \text{and} \quad \xi := \frac{\xi_1}{\xi_2} = -\omega_Q \in \mathbb{H}.$

Furthermore, since

$$-\omega_Q = \frac{1}{a} \left(\tau_O + \frac{b + b_O}{2}\right),$$

we obtain that

$$\begin{bmatrix} \tau_O \\ 1 \end{bmatrix} = A \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \quad \text{with} \quad A = \begin{bmatrix} a \varphi(N) & -a \varphi(N)^{-1}(b + b_O)/2 \\ 0 & a \varphi(N)^{-1} \end{bmatrix}.$$

Since

$$A \equiv \begin{bmatrix} 1 & -a'(b + b_O)/2 \\ 0 & a' \end{bmatrix} \pmod{NM_2(\mathbb{Z})},$$

we conclude by Definition 11.1 and Lemma 11.3 that

$$f([Q]) = f(C) = f\left[1 - \frac{a'(b + b_O)/2}{a'}\right](-\omega_Q).$$

Theorem 12.3. The map

$$C_N(D_O) \to \text{Gal}(K_O.N/K)$$

$$[Q] = [ax^2 + bxy + cy^2] \mapsto \left(f(\tau_O) \mapsto f\left[1 - \frac{a'(b + b_O)/2}{a'}\right](-\omega_Q) \right) \quad f \in \mathcal{F}_N \text{ is finite at } \tau_O$$

is a well-defined isomorphism, where a' is an integer which holds $aa' \equiv 1 \pmod{N}$.

\[\square\]
Then we find that \(N \) is bijective because
\[
\phi_{O,N} : C_N(D_O) \overset{\sim}{\to} \text{Gal}(K_{O,N}/K).
\]

Let \(Q = ax^2 + bxy + cy^2 \in Q(D_O, N) \) and \(f \in F_N \) which is finite at \(\tau_O \). If we let \(C = \phi_{O,N}(Q) \), then we find that
\[
f(\tau_O)^{\psi_{O,N}(Q)} = f(C_0)^{\sigma_{O,N}(C)} \quad \text{by (63)}
\]
\[
= f(C) \quad \text{by Theorem 11.4}
\]
\[
= f(Q) \quad \text{by Definition 12.1}
\]
\[
= f\left[1 - a'(b + b\phi)/2\right](-\overrightarrow{Q}) \quad \text{where } a' \text{ is an integer satisfying } aa' \equiv 1 \pmod{N},
\]
by Lemma 12.2.

And, the result follows from (3).

Fix a positive transcendental number \(t \). Then the extension \(K_{O,N}(\sqrt[t]{1})/K(t) \) is Galois because \(K_{O,N} \) contains \(\zeta_N \) by (3). Since the polynomial \(x^N - t \) in \(x \) is irreducible over \(K_{O,N}(t) \), we establish the isomorphism
\[
\mathbb{Z}/NZ \overset{\sim}{\to} \text{Gal}(K_{O,N}(\sqrt[t]{1})/K_{O,N}(t))
\]
\[
[m] \mapsto (\sqrt[t]{1} \mapsto \zeta_N^m \sqrt[t]{1}).
\]

Furthermore, since \(\sqrt[t]{1} \) is also a transcendental number, we get the following isomorphism
\[
\text{Gal}(K_{O,N}(\sqrt[t]{1})/K(\sqrt[t]{1})) \overset{\sim}{\to} \text{Gal}(K_{O,N}/K)
\]
\[
\sigma \mapsto \sigma|_{K_{O,N}}.
\]

Lemma 12.4. We have
\[
\text{Gal}(K_{O,N}(\sqrt[t]{1})/K(t)) = \text{Gal}(K_{O,N}(\sqrt[t]{1})/K_{O,N}(t)) \rtimes \text{Gal}(K_{O,N}(\sqrt[t]{1})/K(\sqrt[t]{1}))
\]
where \(\text{Gal}(K_{O,N}(\sqrt[t]{1})/K(\sqrt[t]{1})) \) acts on \(\text{Gal}(K_{O,N}(\sqrt[t]{1})/K_{O,N}(t)) \) by conjugation.

Proof. Let
\[
G = \text{Gal}(K_{O,N}(\sqrt[t]{1})/K(t)), \quad N = \text{Gal}(K_{O,N}(\sqrt[t]{1})/K_{O,N}(t)) \quad \text{and} \quad H = \text{Gal}(K_{O,N}(\sqrt[t]{1})/K(\sqrt[t]{1})).
\]

Note that the map
\[
N \times H \to NH
\]
\[
(\sigma_1, \sigma_2) \mapsto \sigma_1\sigma_2
\]
is bijective because \(N \cap H = \{\text{id}_{K_{O,N}(\sqrt[t]{1})}\} \). Since the extension \(K_{O,N}(t)/K(t) \) is abelian, \(N \) is normal in \(G \) by Galois theory. Moreover, we see that
\[
|N| \cdot |H| = |N| \cdot |\text{Gal}(K_{O,N}(t)/K(t))| = |G|.
\]

Therefore we conclude that \(G \) is the semidirect product of the normal subgroup \(N \) and \(H \) in the sense of [16] p. 76].
Since the group $\Gamma_1(N)$ acts on the set $\mathcal{Q}(D_O, N)$, so does its subgroup $\Gamma(N)$. Let $\sim_{\Gamma(N)}$ be the equivalence relation on $\mathcal{Q}(D_O, N)$ induced from the action of $\Gamma(N)$.

Lemma 12.5. If $Q = ax^2 + bxy + cy^2 \in \mathcal{Q}(D_O, N)$ and $\gamma = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \in \Gamma_1(N)$, then we have

$$Q^\gamma = (ap^2 + bpr + cr^2)x^2 + (2apq + 2bqr + 2crs + b)xy + (aq^2 + bqs + cs^2)y^2.$$

Proof. It is straightforward from the fact $\det(\gamma) = ps - qr = 1$.

Corollary 12.6. One can regard $\mathcal{Q}(D_O, N)/\sim_{\Gamma(N)}$ as a group isomorphic to the Galois group $\text{Gal}(K_{O,N}(\sqrt[3]{t})/K(t))$.

Proof. For $Q \in \mathcal{Q}(D_O, N)$, we denote by $[Q]_{\Gamma(N)}$ and $[Q]_{\Gamma_1(N)}$ its classes in $\mathcal{Q}(D_O, N)/\sim_{\Gamma(N)}$ and $\mathcal{C}_N(D_O)$, respectively. Define a map

$$\psi : \mathcal{Q}(D_O, N)/\sim_{\Gamma(N)} \to \text{Gal}(K_{O,N}(\sqrt[3]{t})/K(t))$$

by

$$[Q]_{\Gamma(N)} = [ax^2 + bxy + cy^2]_{\Gamma(N)} \mapsto \begin{pmatrix} f(\tau_O) \mapsto f([Q]_{\Gamma_1(N)}) & (f \in \mathcal{F}_N \text{ is finite at } \tau_O) \\ \sqrt[3]{t} \mapsto \zeta_N^{b' - b} \sqrt[3]{t} \end{pmatrix}.$$

First, we shall check that ψ is well defined. Let $Q = ax^2 + bxy + cy^2$, $Q' = a'x^2 + b'xy + c'y^2 \in \mathcal{Q}(D_O, N)$ such that $[Q]_{\Gamma(N)} = [Q']_{\Gamma(N)}$. Since there is a natural surjection $\mathcal{Q}(D_O, N)/\sim_{\text{SL}_2(\mathbb{Z})} \to \mathcal{C}_N(D_O)$, we attain $[Q]_{\Gamma_1(N)} = [Q']_{\Gamma_1(N)}$ and so

$$f([Q]_{\Gamma_1(N)}) = f([Q']_{\Gamma_1(N)}) \quad (f \in \mathcal{F}_N \text{ is finite at } \tau_O).$$

Furthermore, since

$$Q' = Q^\gamma \quad \text{for some } \gamma = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \in \Gamma(N),$$

we find that

$$\frac{b' - b}{2} = apq + bqr + crs \quad \text{by Lemma 12.5}$$

$$\equiv 0 \pmod{N} \quad \text{because } q \equiv r \equiv 0 \pmod{N}.$$

Thus we obtain that

$$\frac{b' - b_O}{2} \equiv \frac{b - b_O}{2} \pmod{N},$$

and hence

$$\zeta_N^{b' - b_O} \sqrt[3]{t} = \zeta_N^{b - b_O} \sqrt[3]{t}.$$

Therefore ψ is well defined.

Second, we shall prove that ψ is injective. Suppose that

$$\psi([Q]_{\Gamma(N)}) = \psi([Q']_{\Gamma(N)})$$

for some $Q = ax^2 + bxy + cy^2$, $Q' = a'x^2 + b'xy + c'y^2 \in \mathcal{Q}(D_O, N)$.

Since

$$f([Q]_{\Gamma_1(N)}) = f([Q']_{\Gamma_1(N)})$$

for all $f \in \mathcal{F}_N$ finite at τ_O,
we get by Theorem 12.3 that
\[Q' = Q' \Gamma \] for some \(\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \Gamma_1(N). \)

Moreover, since \(\zeta_{N}^{-\frac{b - b_{O}}{2}} = \zeta_{N}^{-\frac{b' - b_{O}}{2}} \), we achieve
\[\frac{b - b_{O}}{2} \equiv \frac{b' - b_{O}}{2} \pmod{N} \] (72)
and derive that
\[
0 \equiv \frac{b' - b}{2} \pmod{N} \quad \text{by (72)}
\]
\[
\equiv apq + bqr + crs \quad \text{by Lemma 12.5}
\]
\[
\equiv aq \pmod{N} \quad \text{because} \quad p \equiv 1 \text{ and } r \equiv 0 \pmod{N}.
\]

It then follows from the fact \(\gcd(a, N) = 1 \) that \(q \equiv 0 \pmod{N} \). Thus \(\gamma \) belongs to \(\Gamma(N) \) and so
\[[Q]_{\Gamma(N)} = [Q']_{\Gamma(N)}. \]

This observation shows the injectivity of \(\psi \).

Third, we shall show that \(\psi \) is surjective. Let \(\sigma \in \text{Gal}(K_{O,N}(\sqrt[1]{t})/K(t)) \). Then there exists a pair \((Q, m) \) of \(Q = ax^2 + bxy + cy^2 \in \mathbb{Q}(D_{O,N}) \) and \(m \in \mathbb{Z} \) such that
\[f(\tau_{O}) \sigma = f([Q]_{\Gamma_1(N)}) \quad (f \in \mathcal{F}_{N} \text{ is finite at } \tau_{O}) \quad \text{and} \quad \sqrt[1]{t} \sigma = \zeta_{N}^{m} \sqrt[1]{t} \]
by Theorem 12.3, (70), (71) and Lemma 12.4. Observe that these actions of \(\sigma \) completely determine \(\sigma \). If we set
\[Q' = a'x^2 + b'xy + c'y^2 = Q_{1}(a' \{ m - (b - b_{O})/2 \}) \]
where \(a' \) is an integer satisfying \(aa' \equiv 1 \pmod{N} \), then we get that
\[f(\tau_{O}) \psi([Q']_{\Gamma_1(N)}) = f([Q]_{\Gamma_1(N)}) \quad (f \in \mathcal{F}_{N} \text{ is finite at } \tau_{O}) \]
and
\[\sqrt[1]{t} \psi([Q']_{\Gamma_1(N)}) = \zeta_{N}^{\frac{b'-b_{O}}{2}} \sqrt[1]{t} = \zeta_{N}^{m} \sqrt[1]{t} \]
by Lemma 12.5. Thus we have \(\sigma = \psi([Q']_{\Gamma_1(N)}) \), which proves that \(\psi \) is surjective as desired.

Finally, through the bijection \(\psi \) we can endow the set \(\mathbb{Q}(D_{O,N})/\sim_{\Gamma(N)} \) with a binary operation so that \(\mathbb{Q}(D_{O,N})/\sim_{\Gamma(N)} \) is isomorphic to \(\text{Gal}(K_{O,N}(\sqrt[1]{t})/K(t)) \).

13 The \(L \)-functions for orders

As an analogue of the Weber \(L \)-function for a ray class character modulo \(NO_{K} \), we shall define an \(L \)-function for a character of \(\mathcal{C}_{N}(O) \).
Definition 13.1. Let χ be a character of $\mathcal{C}_N(\mathcal{O})$.

(i) We define the L-function $L_{\mathcal{O}}(\cdot, \chi)$ by

$$L_{\mathcal{O}}(s, \chi) = \sum_{a \in M(\mathcal{O}, N)} \frac{\chi([a])}{N_{\mathcal{O}}(a)^s} \quad (s \in \mathbb{C}, \operatorname{Re}(s) > 1)$$

where $[a]$ is the class of a in $\mathcal{C}_N(\mathcal{O})$.

(ii) For each $C \in \mathcal{C}_N(\mathcal{O})$, we define the ζ-function $\zeta_{\mathcal{O}}(\cdot, C)$ by

$$\zeta_{\mathcal{O}}(s, C) = \sum_{a \in C \cap M(\mathcal{O}, N)} \frac{1}{N_{\mathcal{O}}(a)^s} \quad (s \in \mathbb{C}, \operatorname{Re}(s) > 1).$$

Remark 13.2. (i) We have

$$L_{\mathcal{O}}(s, \chi) = \sum_{C \in \mathcal{C}_N(\mathcal{O})} \chi(C) \zeta_{\mathcal{O}}(s, C).$$

(ii) In Definition 13.1 (i), what if $\mathcal{C}_N(\mathcal{O})$ and $M(\mathcal{O}, N)$ are replaced by $\mathcal{C}_N(\mathcal{O}, \ell_{\mathcal{O}}N)$ and $M(\mathcal{O}, \ell_{\mathcal{O}}N)$, respectively? For a character ψ of $\mathcal{C}_N(\mathcal{O}, \ell_{\mathcal{O}}N)$, define

$$L_{\mathcal{O}}(s, \psi) = \sum_{a \in M(\mathcal{O}, \ell_{\mathcal{O}}N)} \frac{\psi([a])}{N_{\mathcal{O}}(a)^s} \quad (s \in \mathbb{C}, \operatorname{Re}(s) > 1)$$

where $[a]$ is the class of a in $\mathcal{C}_N(\mathcal{O}, \ell_{\mathcal{O}}N)$. In particular, if $\ell_{\mathcal{O}}$ divides N, then we get $\mathcal{C}_N(\mathcal{O}, \ell_{\mathcal{O}}N) = \mathcal{C}_N(\mathcal{O})$ and so $L_{\mathcal{O}}(s, \psi) = L_{\mathcal{O}}(s, \psi)$. Let $\tilde{\psi}$ be the character of the ray class group $\mathcal{C}_{\ell_{\mathcal{O}}N}(\mathcal{O}_K)$ achieved by composing three homomorphisms

$$\mathcal{C}_{\ell_{\mathcal{O}}N}(\mathcal{O}_K) \xrightarrow{\text{natural}} I(\mathcal{O}_K, \ell_{\mathcal{O}}N)/P_{\mathbb{Z}, N}(\mathcal{O}_K, \ell_{\mathcal{O}}N) \xrightarrow{\sim} \mathcal{C}_N(\mathcal{O}, \ell_{\mathcal{O}}N) \xrightarrow{\psi} \mathbb{C}^*.$$

Here the second isomorphism is the one established in Proposition 2.8. And we find by Lemmas 2.3 (i) and 2.6 that

$$L_{\mathcal{O}}(s, \psi) = \sum_{a \in M(\mathcal{O}, \ell_{\mathcal{O}}N)} \frac{\tilde{\psi}([a\mathcal{O}_K])}{N_{\mathcal{O}_K}(a\mathcal{O}_K)^s} = \sum_{b \in M(\mathcal{O}_K, \ell_{\mathcal{O}}N)} \frac{\tilde{\psi}([b])}{N_{\mathcal{O}_K}(b)^s} = L_{\mathcal{O}_K}(s, \tilde{\psi}).$$

When $N = 1$, Meyer (118) gave a concrete formula for the value $L_{\mathcal{O}_K}(1, \tilde{\psi})$.

Lemma 13.3. Let $Q = ax^2 + bxy + cy^2 \in \mathcal{Q}(D_{\mathcal{O}}, N)$, $\epsilon = [w_Q, 1]$ and $[c]$ be the class of ϵ in $\mathcal{C}_N(\mathcal{O})$. Let

$$P = \{ \lambda \in a\mathbb{T} \mid \lambda \neq 0 \text{ and } \lambda \equiv 1 \pmod{N\mathcal{O}} \}.$$

(i) We get $[c] \cap M(\mathcal{O}, N) = \{ \lambda \epsilon \mid \lambda \in P \}$.

(ii) If $\lambda, \mu \in P$, then

$$\lambda \epsilon = \mu \epsilon \iff \mu = \zeta \lambda \text{ for some } \zeta \in \mathcal{O}^* \text{ such that } \zeta \equiv 1 \pmod{N\mathcal{O}}.$$
Proof. (i) Let \(\lambda \in P \). We see that
\[
\lambda c \in [c] \quad \text{and} \quad \lambda \in a\overline{c} = \frac{1}{a}(ac)(\overline{ac}) = \mathcal{O}
\]
by Lemmas 2.1 (iii) and 5.2. It then follows from Lemma 2.4 that
\[
\lambda c \in I(\mathcal{O}, N) \cap \mathcal{M}(\mathcal{O}) = \mathcal{M}(\mathcal{O}, N).
\]
Thus we attain the inclusion
\[
\{ \lambda c \mid \lambda \in P \} \subseteq [c] \cap \mathcal{M}(\mathcal{O}, N).
\]
Now, let \(a \in [c] \cap \mathcal{M}(\mathcal{O}, N) \). Since \(a \in [c] \), we have
\[
a = \lambda c \quad \text{with} \quad \lambda = \frac{\lambda_1}{\lambda_2}
\]
for some \(\lambda_1, \lambda_2 \in \mathcal{O} \setminus \{0\} \) such that \(\lambda_1 \equiv \lambda_2 \equiv 1 \pmod{NO} \).
Therefore we derive from the fact \(a \subseteq \mathcal{O} \) that
\[
\lambda \in c^{-1} = a\overline{c} \subseteq \mathcal{O}
\]
again by Lemmas 2.1 (iii) and 5.2. Moreover, since
\[
\lambda_2 \lambda = \lambda_1 \quad \text{and} \quad \lambda_1 \equiv \lambda_2 \equiv 1 \pmod{NO},
\]
we deduce \(\lambda \equiv 1 \pmod{NO} \), and hence \(\lambda \in P \) and \(a = \lambda c \in \{ \lambda c \mid \lambda \in P \} \). This proves the converse inclusion
\[
[c] \cap \mathcal{M}(\mathcal{O}, N) \subseteq \{ \lambda c \mid \lambda \in P \}.
\]
(ii) Assume that \(\lambda c = \mu c \). Then we attain \(\lambda \mathcal{O} = \mu \mathcal{O} \) and so \(\mu = \zeta \lambda \) for some \(\zeta \in \mathcal{O}^* \).
Furthermore, since \(\lambda \equiv \mu \equiv 1 \pmod{NO} \), we must have \(\zeta \equiv 1 \pmod{NO} \). And, the converse is obvious.

Let
\[
\gamma_{\mathcal{O},N} = |\{ \nu \in \mathcal{O}^* \mid \nu \equiv 1 \pmod{NO} \}|.
\]

Proposition 13.4. Let \(C \in C_N(\mathcal{O}) \) and so \(C = \phi_{\mathcal{O},N}([Q]) \) for some \(Q = ax^2 + bxy + cy^2 \in \mathcal{O}(D, N) \) by Proposition 9.3. Then we have
\[
\zeta_{\mathcal{O}}(s, C) = \frac{1}{\gamma_{\mathcal{O},N}(N^2a)^{s}} \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,-\frac{a'}{N})\}} \frac{1}{|m(-\overline{Q}) + n + a' \frac{N}{N}|^{2s}}
\]
where \(a' \) is an integer which satisfies \(aa' \equiv 1 \pmod{N} \).

Proof. Let \(c = [\omega Q, 1] \). Then we find that
\[
\zeta_{\mathcal{O}}(s, C) = \sum_{a \in [c] \cap \mathcal{M}(\mathcal{O}, N)} \frac{1}{N_{\mathcal{O}}(a)^s}
\]
\[
\sum_{\lambda \in P} \frac{1}{N_{\mathcal{O}}(\lambda \mathcal{C})^s}
\]
where \(P = \{\lambda \in \mathcal{A} \mid \lambda \neq 0 \text{ and } \lambda \equiv 1 \pmod{\mathcal{O}}\}\),
by Lemma 13.3

\[
\sum_{\lambda \in P} \left(\frac{N_{\mathcal{O}}(\lambda \mathcal{C})}{N_{\mathcal{O}}(\lambda \mathcal{O})N_{\mathcal{O}}(\mathcal{A})} \right)^s
\]
by Lemmas 2.1 (ii) and 5.2

\[
\sum_{\lambda \in P} \left(\frac{a^2}{N_{K/Q}(\lambda) \cdot a} \right)^s
\]
by Lemmas 2.1 (i) and 5.2

\[
\sum_{(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}, \nu \neq 1 \pmod{\mathcal{N}} \text{ such that } m \neq 0, \nu^{-1} m \equiv 0 \pmod{\mathcal{N}}}
\]
because \(\lambda \in P, a\mathcal{C} = [-a\mathcal{O}, a] \) and \(\mathcal{O} = [-a\mathcal{O}, 1]\)

\[
\sum_{(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}, \nu \neq 1 \pmod{\mathcal{N}}}
\]
by Lemmas 2.1 (i) and 5.2

\[
\sum_{(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}, \nu \neq 1 \pmod{\mathcal{N}}}
\]

\[
14 \text{ Derivatives of } L\text{-functions at } s = 0
\]

In this section, we shall derive a formula of the derivative \(L'_{\mathcal{O}}(0, \chi)\) in terms of ray class invariants for the order \(\mathcal{O}\).

By Lemma 2.1 (ii), we can extend the norm map \(N_{\mathcal{O}} : \mathcal{M}(\mathcal{O}) \to \mathbb{Z}\) to the well-defined function
\[
I(\mathcal{O}) \to \mathbb{Q}, \quad ab^{-1} \mapsto N_{\mathcal{O}}(a)N_{\mathcal{O}}(b)^{-1} \quad (a, b \in \mathcal{M}(\mathcal{O}))
\]
and denote it again by \(N_{\mathcal{O}}\).

Definition 14.1. Let \(C \in \mathcal{C}_N(\mathcal{O})\).

(i) Let \(N = 1\). Take a proper \(\mathcal{O}\)-ideal \(\mathfrak{c}\) in the class \(C\) and define
\[
g_{\mathcal{O}, N}(C) = g_{\mathcal{O}, 1}(C) = (2\pi)^{12} N_{\mathcal{O}}(\mathfrak{c}^{-1})^6 |\Delta(\mathfrak{c}^{-1})|.
\]

(ii) If \(N \geq 2\), then we define
\[
g_{\mathcal{O}, N}(C) = g_{\mathcal{O}, 1}^{12N}(\mathfrak{c}^{-1})(C).
\]

Remark 14.2. (i) Let \(\{\xi_1, \xi_2\}\) be a \(\mathbb{Z}\)-basis for \(\mathfrak{c}^{-1}\) such that
\[
\xi := \frac{\xi_1}{\xi_2} \in \mathbb{H}.
\]
By using Lemma 2.1 (i) and the well-known fact that the function
\[
\mathbb{H} \to \mathbb{C}, \quad \tau \mapsto |\Delta([\tau, 1])|
\]

40
is a modular form for $\text{SL}_2(\mathbb{Z})$ of weight 12 ([15] Theorem 3 in Chapter 3 and Theorem 5 in Chapter 18)), we find that
\[
(2\pi)^{12} N_\mathcal{O}(c^{-1})^6 |\Delta(c^{-1})| = (2\pi)^{12} N_\mathcal{O}([\xi, 1])^6 |\Delta([\xi, 1])|.
\] (73)
And one can readily check that this value depends only on the class C, not on the special choice of c.

(ii) Since the modular form Δ and the Siegel function $g_{12}^{[0, \frac{N}{2}]}$ have no zeros and poles on \mathbb{H}, the invariant $g_{\mathcal{O}, N}(C)$ is always finite and nonzero.

(iii) If $N \geq 2$, then $g_{\mathcal{O}, N}(C) = g_{12}^{[0, \frac{N}{2}]}(C)$ belongs to $K_{\mathcal{O}, N}$ and satisfies
\[
g_{\mathcal{O}, N}(C)^{\sigma_{\mathcal{O}, N}(C')} = g_{12}^{[0, \frac{N}{2}]}(C)^{\sigma_{\mathcal{O}, N}(C')} = g_{12}^{[1, \frac{N}{2}]}(CC') = g_{\mathcal{O}, N}(CC')
\] by Theorem 11.4.

(iv) Recently, Jung and Kim showed that if $D_\mathcal{O} \neq -3, -4$ and $N \geq 2$, then $g_{\mathcal{O}, N}(C_0)^n$ generates $K_{\mathcal{O}, N}$ over K for any nonzero integer n ([10] Theorem 1.1).

For a pair $(\omega, z) \in \mathbb{C} \times \mathbb{H}$, we define the ξ-function $\xi(\cdot, \omega, z)$ by
\[
\xi(s, \omega, z) = \sum_{(m, n) \in \mathbb{Z}^2 \text{ such that } mz + n + \omega \neq 0} \frac{1}{|mz + n + \omega|^{2s}} \quad (s \in \mathbb{C}, \text{Re}(s) > 1).
\]
Put
\[
\eta(z) = e^{\frac{\pi i}{12}} \prod_{n=1}^{\infty} \left(1 - e^{2\pi i nz}\right),
\]
\[
\vartheta_1(\omega, z) = 2e^{\frac{\pi i}{12}} \left(\sin \pi \omega\right) \eta(z) \prod_{n=1}^{\infty} \left(1 - e^{2\pi i (nz + \omega)}\right) \left(1 - e^{2\pi i (nz - \omega)}\right).
\] (74)

Proposition 14.3 (Kronecker’s limit formula). The ξ-function satisfies the following properties.

(i) It has an analytic continuation on the whole complex plane and
\[
\xi(0, \omega, z) = \begin{cases}
-1 & \text{if } \omega \in [z, 1], \\
0 & \text{if } \omega \notin [z, 1].
\end{cases}
\]

(ii) If we let $\xi' = \frac{d\xi}{ds}$, then
\[
\xi'(0, \omega, z) = \begin{cases}
-\ln \left|4\pi^2 \eta(z)^4\right| & \text{if } \omega \in [z, 1], \\
-\ln \left|\frac{\vartheta_1(\omega, z)}{\eta(z)} e^{\frac{\pi i \omega}{z-\frac{1}{2}}}\right|^2 & \text{if } \omega \notin [z, 1].
\end{cases}
\]

Proof. See [1, Theorem 4], [22] or [27].
Theorem 14.4. If \(\chi \) is a character of \(C_N(O) \), then we have

\[
L'_O(0, \chi) = -\frac{1}{\gamma O, N 6N} \sum_{C \in \mathcal{C}_N(O)} \chi(C) \ln |g_{O, N}(C)|.
\]

Proof. Let \(C \in \mathcal{C}_N \) and so \(C = \phi_{O, N}([Q]) \) for some \(Q = ax^2 + bxy + cy^2 \). Let \(a' \) be an integer satisfying \(a\alpha \equiv 1 \pmod{N} \). Since

\[
\zeta(O, s, C) = \frac{1}{\gamma O, N(N^2a)^s} \xi(s, \frac{a}{N}, -\omega_Q)
\]

by Proposition 13.4, we find that

\[
\zeta'_O(0, C) = \frac{1}{\gamma O, N} \left(-\ln(N^2a)\xi(0, \frac{a}{N}, -\omega_Q) + \xi'(0, \frac{a}{N}, -\omega_Q) \right)
\]

by Proposition 14.3 (i)

\[
= \frac{1}{\gamma O, N} \times \left\{ \begin{array}{ll}
\ln a - \ln |4\pi^2\eta(-\omega_Q)| & \text{if } N = 1, \\
-\frac{1}{6} \ln |g_{(0 \frac{a}{N})}(-\omega_Q)|^2 & \text{if } N \geq 2,
\end{array} \right.
\]

by Proposition 14.3 (ii)

\[
= \frac{1}{\gamma O, N} \times \left\{ \begin{array}{ll}
-\frac{1}{6} \ln |g_{O, 1}(C)| & \text{if } N = 1, \\
-\frac{1}{6N} \ln |g_{O, N}(C)| & \text{if } N \geq 2,
\end{array} \right.
\]

by Lemma 5.2 and Definitions 13, 74.

Therefore we conclude that

\[
L'_O(0, \chi) = \sum_{C \in \mathcal{C}_N(O)} \chi(C) \zeta'_O(0, C) = -\frac{1}{\gamma O, N 6N} \sum_{C \in \mathcal{C}_N(O)} \chi(C) \ln |g_{O, N}(C)|.
\]

\[\square\]

15 An example of \(C_N(D_O) \)

We shall present an example of \(C_N(D_O) \) and its application further in order to find the minimal polynomial of the invariant \(g_{O, N}(C_0) \) over \(K \).

Let \(K = \mathbb{Q}(\sqrt{2}) \) and \(O = [5\sqrt{2}, 1] \). Then we get

\[
D_O = -200, \quad \ell_O = 5, \quad \tau_O = 5\sqrt{2}, \quad \min(\tau_O, Q) = x^2 + b_{O}x + c_{O} = x^2 + 50.
\]

On the other hand, there are six reduced forms of discriminant \(D_O = -200 \), namely,

\[
Q_1 = x^2 + 50y^2, \quad Q_2 = 2x^2 + 25y^2, \\
Q_3 = 3x^2 - 2xy + 17y^2, \quad Q_4 = 3x^2 + 2xy + 17y^2, \\
Q_5 = 6x^2 - 4xy + 9y^2, \quad Q_6 = 6x^2 + 4xy + 9y^2.
\]

42
Let $N = 3$, and set

\[
\tilde{Q}_1 = Q_1 = x^2 + 50y^2, \quad \tilde{Q}_2 = Q_2 = 2x^2 + 25y^2,
\]
\[
\tilde{Q}_3 = Q_3 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = 17x^2 + 2xy + 3y^2, \quad \tilde{Q}_4 = Q_4 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = 17x^2 - 2xy + 3y^2,
\]
\[
\tilde{Q}_5 = Q_5 \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = 11x^2 - 8xy + 6y^2, \quad \tilde{Q}_6 = Q_6 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 11x^2 + 8xy + 6y^2.
\]

so as to have $\tilde{Q}_i \in \mathcal{Q}(D_O, N)$ ($i = 1, 2, \ldots, 6$). By utilizing the fact

\[
W_{O,N}/U_{O,N} \simeq \text{Gal}(K_{O,N}/H_O) \simeq P(\mathcal{O}, N)/P_N(\mathcal{O}) \simeq P(\mathcal{O}, \ell_O N)/P_N(\mathcal{O}, \ell_O N)
\]

(27) and Lemma 2.12 and Lemma 2.2, we attain

\[
P(\mathcal{O}, \ell_O N)/P_N(\mathcal{O}, \ell_O N) = \left\{ [\mathcal{O}], [\tau_\mathcal{O} \mathcal{O}] = \left[\left[\frac{\sqrt{3}}{9}, 1 \right] \right] \right\},
\]

which corresponds to the subgroup $\{[\tilde{Q}_1], [50x^2 + y^2]\}$ of $C_N(D_O) = C_3(-200)$. In the group $C_N(D_O)$, we let

\[
g_i = [\tilde{Q}_j] \quad \text{and} \quad g_{i+6} = g_i \cdot [50x^2 + y^2] \quad (i = 1, 2, \ldots, 6).
\]

By adopting Definition 5.7 one can readily find that $g_j = [\tilde{Q}_j]$ ($j = 7, 8, \ldots, 12$) with

\[
\tilde{Q}_7 = 50x^2 + y^2, \quad \tilde{Q}_8 = 25x^2 + 2y^2,
\]
\[
\tilde{Q}_9 = 22x^2 - 36xy + 17y^2, \quad \tilde{Q}_{10} = 22x^2 + 36xy + 17y^2,
\]
\[
\tilde{Q}_{11} = 25x^2 + 30xy + 11y^2, \quad \tilde{Q}_{12} = 25x^2 - 30xy + 11y^2.
\]

The group table of $C_N(D_O)$ is given as follows.

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	
g_1	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	
g_2	g_2	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_3	g_3	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_4	g_4	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_5	g_5	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_6	g_6	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_7	g_7	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_8	g_8	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_9	g_9	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_{10}	g_{10}	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_{11}	g_{11}	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2
g_{12}	g_{12}	g_1	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_2

Since $C_N(D_O)$ has three elements g_2, g_7, g_8 of order 2, it is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_6$. 43
Write $\tilde{Q}_i = a_i x^2 + b_i x y + c_i y^2$ ($i = 1, 2, \ldots, 12$). We then achieve that

$$\min(g_{O,N}(C_0), K) = \prod_{C \in \mathcal{C}_N(O)} \left(x - g_{12N}^{(0)}(C) \right)$$

by Definition 14.1 (ii) and Remark 14.2 (iii), (iv)

$$= \prod_{i=1}^{12} \left(x - \left(g_{12N}^{(0)}[0 a_i']^{(-\omega \tilde{Q}_i)}\right) \right)$$

where a'_i is an integer such that $a_i a'_i \equiv 1 \pmod{N}$

by Definition 12.1 and Lemma 12.2

$$= \prod_{i=1}^{12} \left(x - g_{12N}^{(0)}[0 a_i']\left(1 - a'_i(b_i + b_{O})/2\right)\right)$$

by Proposition 4.2.

By making use of the definition (13), one can numerically estimate $\min(g_{O,3}(C_0), K)$ as

$$x^{12} - 19732842623587344380x^{11} + 85622274889372918445313749346x^{10}$$

$$+ 583422788794106041501392970996250100x^9$$

$$+ 2412956602599045666947505580865471555967855x^8$$

$$+ 462203004758636935674310042178173142345125210120x^7$$

$$+ 5159639382647422206917922996901583694331066838711900x^6$$

$$+ 202375300752001975403428909178152428797277946213173155269640x^5$$

$$+ 4487601627619641192200184812721309459195966653602482165478526149968226x^4$$

$$- 2883328681523953153105049905288236082227616017140993789678594572300x^3$$

$$+ 4487601627619641192200184812721309459195966653602482165478526149968226x^2$$

$$- 198336994240544255644192507478303953455541722620x + 1.$$
Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] B. C. Berndt, *Identities involving the coefficients of a class of Dirichlet series VI*, Trans. Amer. Math. Soc., 160 (1971), 157–167.

[2] A. Bourdon and P. L. Clark, *Torsion points and Galois representations on CM elliptic curves*, Pacific J. Math. 305 (2020), no. 1, 43–88.

[3] A. Bourdon, P. L. Clark and P. Pollack, *Anatomy of torsion in the CM case*, Math. Z. 285 (2017), no. 3–4, 795–820.

[4] B. Cho, *Primes of the form $x^2 + ny^2$ with conditions $x \equiv 1 \mod{N}, y \equiv 0 \mod{N}$*, J. Number Theory 130 (2010), no. 4, 852–861.

[5] P. L. Clark and P. Pollack, *The truth about torsion in the CM case, II*, Q. J. Math. 68 (2017), no. 4, 1313–1333.

[6] D. A. Cox, *Primes of the Form $x^2 + ny^2$–Fermat, Class field theory, and Complex Multiplication*, 3rd ed. with solutions, with contributions by Roger Lipsett, AMS Chelsea Publishing, Providence, R.I., 2022.

[7] I. S. Eum, J. K. Koo and D. H. Shin, *Binary quadratic forms and ray class groups*, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 695–720.

[8] C. F. Gauss, *Disquisitiones Arithmeticae*, Leipzig, 1801.

[9] G. J. Janusz, *Algebraic Number Fields*, 2nd ed., Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.

[10] H. Y. Jung and C. H. Kim, *Modularity of Galois traces of ray class invariants*, Ramanujan J. 54 (2021), no. 2, 355–383.

[11] H. Y. Jung, J. K. Koo and D. H. Shin, *Generation of ray class fields modulo 2, 3, 4 or 6 by using the Weber function*, J. Korean Math. Soc. 55 (2018), no. 2, 343–372.

[12] H. Y. Jung, J. K. Koo and D. H. Shin, *Class fields generated by coordinates of elliptic curves*, Open Math. 20 (2022), no. 1, 1145–1158.

[13] H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, *On some p-adic Galois representations and form class groups*, Mathematika 68 (2022), no. 2, 535–564.

[14] D. Kubert and S. Lang, *Modular Units*, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
[15] S. Lang, *Elliptic Functions*, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Springer-Verlag, New York, 1987.

[16] S. Lang, *Algebra*, 3rd ed., Grad. Texts in Math. 211, Springer-Verlag, New York, 2002.

[17] Á. Lozano-Robledo, *Galois representations attached to elliptic curves with complex multiplication*, Algebra Number Theory 16 (2022), no. 4, 777–837.

[18] C. Meyer, *Über einige Anwendungen Dedekindscher Summen*, J. Reine Angew. Math. 198 (1957), 143–203.

[19] K. Ramachandra, *Some applications of Kronecker’s limit formula*, Ann. of Math. (2) 80 (1964), 104–148.

[20] R. Schertz, *Complex multiplication*, New Mathematical Monographs, 15, Cambridge University Press, Cambridge, 2010.

[21] G. Shimura, *Introduction to the Arithmetic Theory of Automorphic Functions*, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.

[22] T. Shintani, *A proof of the classical Kronecker limit formula*, Tokyo J. Math. 3 (1980), no. 2, 191–199.

[23] C. L. Siegel, *Lectures on Advanced Analytic Number Theory*, Notes by S. Raghavan, Tata Institute of Fundamental Research Lectures on Mathematics 23, Tata Institute of Fundamental Research, Bombay 1965.

[24] J. H. Silverman, *Advanced Topics in the Arithmetic of Elliptic Curves*, Grad. Texts in Math. 151, Springer-Verlag, New York, 1994.

[25] J. H. Silverman, *The Arithmetic of Elliptic Curves*, 2nd ed., Grad. Texts in Math. 106, Springer, Dordrecht, 2009.

[26] H. Söhngen, *Zur Komplexen Multiplikation*, Math. Ann. 111 (1935), no. 1, 302–328.

[27] H. M. Stark, *Class fields and modular forms of weight one*, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 277–287, Lecture Notes in Math. 601, Springer, Berlin, 1977.

[28] P. Stevenhagen, *Hilbert’s 12th problem, complex multiplication and Shimura reciprocity*, Class field theory—its centenary and prospect (Tokyo, 1998), 161–176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.

Department of Mathematics
Dankook University
Cheonan-si, Chungnam 31116
Republic of Korea
E-mail address: hoyunjung@dankook.ac.kr

Department of Mathematical Sciences
KAIST
Daejeon 34141
Republic of Korea
E-mail address: jkgoo@kaist.ac.kr
