Review on Efficient Food Waste Management System Using Internet of Things

T. Bharath Kumar¹,², Deepak Prashar¹

¹School of Computer Science and Engineering (SCSE), Lovely Professional University, Jalandhar, Punjab, India; ²Assistant Professor, Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Telangana, India.

ABSTRACT

The present situation of food waste in the country is increasing from time to time which is from restaurants, households, and related industries. On the other side, to control food waste many techniques have been using from different perspectives. In recent years, one of the well-known technologies that reach new heights and showing considerable growth in all research areas is the Internet of Things (IoT). This article presents the review of the present standings of IoT in the field of food waste management by the contribution of various researchers and academicians. This article also discussed different methods like conducting questionnaires, reducing plate size in the hotel, smart garbage systems, intelligent refrigerator, strengthening the food supply chain, etc. These methods gave good results in minimizing food waste. Furthermore, different challenges and factors also mentioned during food waste at household or restaurants with future directions to researcher those who are working on this domain.

Key Words: Food Waste, IoT, Intelligent Refrigerator, Food Supply Chain, Sensors

INTRODUCTION

Meeting the food needs of an increasing population sustainably one of humanity’s major problems in the coming decades is to be focused on scarce resources while protecting the environment. Present demographic patterns and consumption habits will continue to raise food demand for at least a further 40 years. Approximately one-third of the edible portions of world food generated, it is projected that human intake is missed or unused. In reaction to this vulnerability, the FAO has The Food Loss Index has been developed to measure how much food is lost. Until it hits the retail level, output or in the supply chain 14 per cent of food is diverted across the supply chain, according to FAO 2019, Before having hit the supermarket stage.

This paper is organized into different sections. The introduction is under section I, Internet of Things under section II, Aim of the Review is under Section III, Key findings of the Review Article is under Section IV, Research gap Identification/Future Directions are under Section V, Discussion is under Section VI and Conclusion in Section VII.

Internet of Things tells about connecting physical objects like mobile phones, vehicles, home appliances etc. to the internet to exchange data from anywhere to anywhere. By having this type of technology human intervention will be reduced a lot and works will be done easily. At present by 2020 approximately 50 million devices are connected to the internet and this number will be increased from day to day [Figure 1]. The applications of IoT include health, homes, cities, energy systems, retail, logistics, industry, agriculture sector, etc. The following figure 2 shows various IoT communication technologies and figure 3 shows the current IoT enabled technologies. The goal of this literature review is to provide participants with a way to reduce food waste. It would ideally evoke more studies on IT applications for the elimination of food waste.

KEY FINDINGS

The following table 1 shows key findings in the Literature and future challenges also mentioned.

RESEARCH GAP IDENTIFICATION/FUTURE DIRECTIONS

1. Increasing the incentives for the workers of supermarkets, packaging, etc. to control the food waste.
2. Research on different policies to control food waste.
3. Finding the loss estimates of other commodities like dried fruits, dairy products etc.
4. Find other algorithms for processing, Shipment and Quality Management.
5. Improving the quality of the food items inside the smart refrigerator.
6. Investigation of food waste into bio-fuel with simple and clean methods.
7. Improvisation of better efficiency of HSGB’S.
8. Better connectivity and using protocols for communication to improve begins to collect food waste.
9. Improve the security and privacy concerns to minimize the chances of hacking the smart refrigerator.
10. Concentrate on high-quality resolution cameras for quality photos inside the smart refrigerator.
11. Use of Big data to enhance food security.
12. Improving the shelf life to minimize food waste in the supply chain.
13. Improving food tackling the methods for measuring food waste.
14. Updating the Photodiodes to RFID technology for identifying the presence of objects inside the fridge
15. Use more sensors to install on the raspberry pi to reduce the need for a plug system and apply this methodology for cabinets and living rooms.

DISCUSSION

In this review article, we can observe many ways to control food waste in different situations. The majority of the papers are focusing on food waste control in the food supply chain because this chain consists of many modules like processing, preparing, packaging, classifying, transportation and distribution. So whenever control starts in this chain automatically there will be a change in food waste before consumption. The intelligent refrigerator also takes a major portion in reducing the food waste at household and restaurants because of inbuilt sensors and machine learning technique used in the implementation. The design of smart garbage systems also played a better role in collecting food waste and sending information to the higher authorities for further action.

CONCLUSION

The Internet of Things (IoT) involvement is increasing in reducing and updating the food waste across the country from time to time. Because of the availability of many sensors and communication technologies in IoT. This article provides an extensive survey of food waste management techniques/methods. The major concern is about reducing food waste to accommodate more number of people across the country. The researcher(s) can concentrate on the above gaps to improve food availability and reduce wastage.

ACKNOWLEDGEMENT

We thank our colleagues from B V Raju Institute of Technology, Narsapur who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper. We are also grateful to authors/ editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Conflict of Interest:
There is no conflict of Interest.

Financial Support: Not applicable

Human or animal study Ethical clearance letter: Not Applicable

Informed consent: Not Applicable

Author Contribution:
T. Bharath Kumar: Literature review, Writing Manuscript, and Comparison of results.
Dr Deepak Prashar: Reviewed the complete article.

REFERENCES

1. Griffin M, Sobal J, Lyson TA. An analysis of a community food waste stream. Agriculture and Human Values. Springer Science and Business Media LLC; 2008 Dec 5;26(1-2):67–81.
2. Economic Information Bulletin No. (EIB-44) 26 pp, MARCH 2009, "Supermarket Loss Estimates for Fresh Fruit, Vegetables, Meat, Poultry, and Seafood and Their Use in the ERS Loss-Adjusted Food.
3. Jia B, Yang Y. The design of a food quality supervision platform based on the Internet of Things. Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE) IEEE; 2011 Dec.
4. Nayak GS, Gangadhar, Puttamadappa C. Intelligent Refrigerator with Monitoring Capability through Internet. IJCA 2011;34:65-68.
5. Ying F, Pengquan L. Application of Internet of Things to the Monitoring System for Food Quality Safety. 2013 Fourth International Conference on Digital Manufacturing & Automation, IEEE 2013 Jun. Available from http://dx.doi.org/10.1109/icdma.2013.71
6. Kallbekken S, Saalen H. Nudging” hotel guests to reduce food waste as a win-win environmental measure. Economics Letters 2013 Jun;119(3):325–327.
7. Karmee SK, Lin CSK. Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chemical Processes. Springer Science and Business Media LLC 2014;2(1).
8. Hong I, Park S, Lee B, Lee J, Jeong D, Park S. IoT-Based Smart Garbage System for Efficient Food Waste Management. Sci World J 2014;2014:1–13.
9. Matsoukas L, Kekos D, Loizidou M, Christakopoulos P. Utilization Of Household Food Waste For The Production Of Ethanol At High Dry Material Content. Solid Waste as a Renewable Resource [Internet]. Apple Academic Press; 2015 Jul 9;35–53.
10. Jedermann R, Nicometo M, Uysal I, Lang W. Reducing food losses by intelligent food logistics. Phil. Trans. R. Soc. A 2014;372(2017);20130302.
11. Aschemann-Witzel J, de Hooge I, Amani P, Bech-Larsen T, Oostindjé M. Consumer-Related Food Waste: Causes and Potential for Action. Sustainability 2015 May 26;7(6):6457–6477.

12. Chalak A, Abou-Daher C, Chaaban J, Abiad MG. The global economic and regulatory determinants of household food waste generation: A cross-country analysis. Waste Management 2016;48:418–422.

13. Graham-Roe W, Jessop DC, Sparks P. Predicting household food waste reduction using an extended theory of planned behaviour. Resour Conserv Recyc 2015;101:194–202.

14. Leal Filho W, Kovaleva M. Methods of Food Waste Reduction. Environ Sci Engi 2014;51:80.

15. Von Massow M, McAdams B. Table Scraps: An Evaluation of Plate Waste in Restaurants. J Food Ser Busi Res 2015;18(5):437–453.

16. Pearson D, Mirosa M, Andrews L, Kerr G. Reframing communications that encourage individuals to reduce food waste. Commun Res Pract 2016;3(2):137–154.

17. Jain V. eBin: An automated food wastage tracking system for dormitory student’s mess. International Conference on Internet of Things and Applications (IOTA), Pune, 2016:52-56.

18. Garcia-Garcia G, Woolley E, Rahimifard S, Colwill J, White R, Needham L. A Methodology for Sustainable Management of Food Waste. Waste Biomass Valor 2016;8(6):2209–2227.

19. Ciaghi A, Villaforita A. Beyond food sharing: Supporting food waste reduction with ICTs. 2016 IEEE International Smart Cities Conference (ISC2) [Internet]. IEEE; 2016 Sep; Available from: http://dx.doi.org/10.1109/isc2.2016.7580874.

20. Bhatt A, Fiaidihi J. Next-Generation Smart Fridge System using IoT. Inst Electr Electro Engi 2020 Apr 8;

21. Irani Z, Sharif AM, Lee H, Aktas E, Topaloglú Z, van’tWout T, et al. Managing food security through food waste and loss: Small data to big data. Comp Operat Res 2018;98:367–383.

22. Wen Z, Hu S, De Clercq D, Beck MB, Zhang H, Zhang H, et al. Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management. Waste Management 2018;73:26–38.

23. Jayalakshmi K, Pavithra S, Aarthi C. Waste to wealth — A novel approach for food waste management. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). IEEE; 2017 April.

24. Qin Y, Zhu H, Zheng L, Ding J. Intelligent Refrigerator Based on Internet of Things. 22017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) IEEE; 2017 July.

25. Sraisth. Solar-Driven Cold Storage Units to Reduce Food Waste. Mediterranean Green Buildings & Renewable Energy [Internet]. Springer International Publishing; 2016 Dec 14:909–19. Available from: http://dx.doi.org/10.1007/978-3-319-30746-6_71.

26. Sakaguchi L, Pak N, Potts MD. Tackling the issue of food waste in restaurants: Options for measurement method, reduction and behavioural change. J Cleaner Prod 2018;180:430–436.

27. Shweta AS. Intelligent refrigerator using ARTIFICIAL INTELLIGENCE. 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore 2017:464-468.

28. Edward M, Karyono K, Meidia H. Smart fridge design using NodeMCU and home server based on Raspberry Pi 3. 2017 4th International Conference on New Media Studies (CONMEDIA), IEEE; 2017 Nov.

29. Wu HH, Chuang YT. Low-Cost Smart Refrigerator. 2017 IEEE International Conference on Edge Computing (EDGEC). IEEE 2017 Jun.

30. Dalmia S. Visual screens in Canteens providing Real-Time information of Food Waste. 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). IEEE 2018 Aug.

31. Michelin L, Principato L, Iasevoli G. Understanding Food Sharing Models to Tackle Sustainability Challenges. Ecol Econ 2018 Mar;145:205–17.

32. Hajdib H, Anzer A, Tabaza HA, Ahmed W. A Food Waste Reduction Mobile Application.2018 6th International Conference on Future Internet of Things and Cloud Workshops (Fi-CloudW). IEEE; 2018 Aug.

33. Principato L. Factors and Behaviours Affecting Food Waste at Consumption Level: The Household Food Waste Journey Model. Food Waste Consu Level. 2018;15–34.

34. McCullough MM. How Can the Internet of Things Reduce Waste in the Supply Chain? University of Tennessee Honors Thesis Projects. 2018. https://trace.tennessee.edu/utk_chnonoproj/2218.

35. Jagtap S, Bhatt C, Thik J, Rahimifard S. Monitoring Potato Waste in Food Manufacturing Using Image Processing and Internet of Things Approach. Sustainability 2019 Jun 5;11(11):3173.

36. Lakshmi Narayan SP, Kavinkartik E, Prabhu E. IoT Based Food Inventory Tracking System. Advances in Signal Processing and Intelligent Recognition Systems. Springer Singapore 2019;13:41–52.

37. Elavarsri G, Murugabooopathi G, Kathirvel S. Fresh Fruit Supply Chain Sensing and Transaction Using IoT. 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCONS) [Internet]. IEEE; 2019 Apr.

38. Phiri G, Trevorrow P. Sustainable Household Food Management Using Smart Technology. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT) [Internet]. IEEE; 2019 Jun.

39. Fan H. Theoretical Basis and System Establishment of China Food Safety Intelligent Supervision in the Perspective of Internet of Things. IEEE 2019;7:71686–95.

40. Patel H, Sheth S, Farhad SM. Cloud-Based Temperature and Humidity Alert System to Prevent Food Poisoning. 2019 Cybersecurity and Cyberforensics Conference (CCC) IEEE 2019 May.

41. Garcia-Flores R, Juliano P, Petkovic K. Handling food waste and losses: Criticalities and methodologies. Sustainable Food Supply Chains 2019;21:261–276.

42. Lifeguard J, Manning L. Use of intelligent applications to reduce household food waste. Crit Rev Food Sci Nutr 2019;60(6):1048–1061.

43. Jagtap S, Rahimifard S. Unlocking the Potential of the Internet of Things to Improve Resource Efficiency in Food Supply Chains. Earth Syst Sci 2019;56:287–301.

44. Miguez M, Marioni M, Ortiz M, Vogel G, Arnaud A. An IoT-based electronic price-tag for food retail.2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS) IEEE; 2019 Nov.

45. Wang K, Ti Y, Liu D, Chen S. A Smart Refrigerator Architecture that Reduces Food Ingredients Waste Materials and Energy Consumption. Ekoloji 2019;28(107):4873-4878.

46. Kim J, Rundle-Thiele S, Knox K, Burke K, Bogomolova S. Consumer perspectives on household food waste reduction campaigns. J Cleaner Prod 2020 Jan;243:118608.

47. Venkatesan G, Mithuna R, Gandhimathi S. IOT-based Monitoring of lab-scale constitutive landfill model of food waste. Materials 2020;33:2729–2734.

48. Gao X, Ding X, Hou R, Tao Y. Research on Food Recognition of Smart Refrigerator Based on SSD Target Detection Algorithm. Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science [Internet]. ACM; 2019 Jul.
49. Lopez BE, Hertel T. Global food waste across the income spectrum: Implications for food prices, production and resource use. Food Policy 2020;101874.
50. Soma T, Li B, Maclaren V. Food Waste Reduction: A Test of Three Consumer Awareness Interventions. Sustainability 2020;12:907.
51. Saha. Using Machine Learning in Refrigerator to Keep Inventory (April 8, 2020). Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST) 2020:1-7.
52. Pitchai R, Sharath Kumar G, Varma AD, Madhu Babu CH. Potato Plant Disease Detection Using Convolution Neural Network. Int J Curr Res Rev 2020;12(20):152-156.

Figure 1: IoT Devices Connectivity growth [Source: Cisco IBSG, April 2011].

Figure 2: IoT Communication Technologies.
Table 1: Review of Literature Methodologies

S. no.	Title/Citation Reference	Method/Technique/Component used	Results	Future Challenges
1	Mary Griffin et al¹	Interviews and Observation in Acquisition used.	Food Waste Reduction	Future analyses may reveal changes as well as identify trends in food system waste streams.
2	Jean C et al²	Proper Packaging, Proper maintenance of temperature in the store and Training	Food Loss Reduction in Vegetables, Fruits, Poultry and Seafood.	Finding the loss estimates of other commodities like dried fruits, dairy products etc.
3	Bing Jia et al³	PFQC & Matching algorithm	Food Quality is monitoring to reduce food waste	The blend and conduct of the variables that influence food quality should be resolved for additional investigation.
4	G. Subramanya Nayak et al⁴	IEEE 802.3U Ethernet technology, IR Sensor, LCD Display and Buzzer	Food Item Waste control in the refrigerator	Future work suggested focusing on the quality of the food items.
5	Fu Ying et al⁵	Quality Safety monitoring system and Cloud Technology	Food Quality and Safety	
6	Steffen Kallbekken et al⁶	Reducing plate size in hotel	Food waste was reduced by 20%	
7	Sanjib Kumar Karmee et al⁷	Lipid and carbohydrate extraction	Biofuel generation from the extraction of Lipid and Carbohydrate	Future research should be focused on investigating the food waste into biofuel with simple and clean methods.
8	Insung Hong et al⁸	Smart Garbage Bin and RFID Technology	Reduces food waste by 33%	Improvisation of better efficiency of HSGB’S.
9	Leonidas Matsakas et al⁹	Food Waste and Sugar contents as raw material for extraction of methanol	Methanol extracted from Food Waste	
Table 1: (Continued)

S. no.	Title/Citation Reference	Method/Technique/Component used	Results	Future Challenges
10	Reiner Jedermann et al⁹	Intelligent Shelf life using sensors	Food loss reduction	Further research into consumers and food waste can contribute to the sharpening of consumer behaviour theories and the application of these theories to sustainable consumption and the interactions observed in consumer’s food wastage.
11	Jessica Aschemann-Witzel et al⁹	Using expert interviews	Motivated to reduce consumer food waste.	
12	Ali Chalak et al¹⁰	Redistributing the surplus food & Ordinary Least Squares (OLS) mechanism	Reduced food waste at the household level	Further work will be focused on household waste across the country and promoting quantification techniques
13	Ella Graham-Rowe et al⁹	Extended Theory of Planned Behavior (ETPB)	Reducing food waste at household level	To increase the number of items measuring food waste.
14	W Leal Filho et al⁴¹	Educating the people about food waste occurrence and guidelines to minimize and conducting surveys	Reducing food waste	
15	MV Massow ⁵⁷	Mathematical estimation (the LP model) and photographic evaluation	Reducing food waste in plates at restaurants	Future research focused on calculating plate waste in different hotels or food centres.
16	David Pearson et al⁶⁸	Qualitative Interviews	Food waste reduction	Future work depends on the results of the present approach used in this paper.
17	Varsha Jain⁷⁷	eBin using Raspberry Pi, Arduino	Collecting food Waste at Student Hostel.	Extending the work to accommodate more people to reduce food waste
18	Guillermo Garcia-Garcia et al⁸⁸	The used methodology depends on some indicators to measure the food waste like Edible, state, packaging, Treatment and complexity etc.	Reducing food waste	
19	Aaron Ciaghi and Adolfo Villaflorita⁹⁹	Surplus Recoverability Waste (SRW) framework and ICT tools	Food waste reduction and encouraging surplus food sending to charities or needy people	Future work should focus on implementing these interfaces for other Geographical regions.
20	Aadhya Bhatt et al⁹⁰	AWS platform, RaspberryPi Kit and User Interface	Food item availability and food item waste reduction	Focus on improving the models.
21	Zahir Irani et al⁹¹	Fuzzy cognitive Map	Enhanced food security	Use of Big data to enhance food security
22	Zongguo Wen et al²²	RFW IoT enabled system	Reduced food waste in restaurants in the city of Suzhou, China	RFID Technology should be renewed
23	K. Jayalakshmi et al⁵³	IoT enabled smart garbage system	Reduction of food waste at house, academia, industry	
S. no.	Title/Citation Reference	Method/Technique/Component used	Results	Future Challenges
-------	--------------------------	---------------------------------	---------	-------------------
24	Shouming Qiao et al\(^4\)	Intelligent Refrigerator using cloud server and RFID technology	Refrigerator controlling to reduce food waste	Find the other efficient model to improve cold storage market standards.
25	Sraisth\(^5\)	Solar cold Storage Technology	Reducing food waste.	Future work should be focused on improving food tackling the methods for measuring food waste.
26	Leo Sakaguchi\(^6\)	Used a method to improve the Operational efficiencies to monitor and measures food waste, resizing the landfill bins.	Food Waste Reduction at Restaurants	Future work suggested using more sensors to install on the raspberrypi3 to reduce the need for a plug system and apply this methodology for cabinets and living rooms.
27	Shweta AS\(^7\)	Artificial Intelligence &HSV Model	Conversion of Traditional Fridge to Smart and Items waste reduced	Recommended to focus on the quality of the products inside the fridge.
28	Matthew Edward\(^8\)	Raspberry Pi3, Node MCU, Photo Diode, temperature Sensor &Android Application	Conversion of the traditional fridge to the smart fridge and reducing the food item waste	Further work recommended updating the Photodiodes to RFID technology for identifying the presence of objects inside the fridge.
29	Hsin-Han Wu\(^9\)	Used RaspberryPi3, Light Sensor, IR Distance Sensor, cloud service which is Google firebase, touch screen and Android GUI.	Conversion of the traditional fridge to the smart fridge and reducing the food item waste	Further work suggested using more sensors to install on the raspberrypi3 to reduce the need for a plug system and apply this methodology for cabinets and living rooms.
30	Shivani Dalmia\(^10\)	Real-Time information update regarding food waste in canteens	Food Waste Reduction In College	
31	Laura Michelin et al\(^11\)	Sharing for Money, Charity and Community	Distribution of food waste to charities, Communities.	Identify suitable models to reduce waste.
32	Ayesha Anzer et al\(^12\)	firebase storage & app	Food waste reduction in Restaurants	Extending our app to have many types of donating users either from organizations such as restaurants, or a family or a single user.
33	L.Principato\(^13\)	Planning, Pre-consumption, In-store are for Waste in House and Interviews conducted for outside home	Reducing food at House Level and outside House	Analysts are urged to fill the system with different factors and impacts that sway on inefficient conduct.
34	MM McCullough\(^14\)	Described the models to reduce waste.	Reducing food waste in the supply chain	
35	S Jagtap et al\(^15\)	Food waste tracker using Intelligent scale &Cloud Storage	Digitization of Food waste reduction tracking system	
36	SP Lakshmi Narayan et al\(^16\)	MQTT Broker & Arduino Desktop & Android Application	Real-Time monitoring of Kitchen room	The data could give bits of information into the typical utilization of the kitchen products, and can be used to upgrade the system of fundamental need obtaining
37	G. Elavarasai et al\(^17\)	MQ3 sensor,DHT11 & Arduino	Fresh fruit sensing for reducing food waste	Usage of these sensors for the boxes at the bottom.
S. no.	Title/Citation Reference	Method/Technique/Component used	Results	Future Challenges
--------	--------------------------	--------------------------------	---------	------------------
38	Grace Phiri et al³⁸	Food Trek App using Smart Technology	Food waste reduction using the app	Further research is necessary to initiate permanent behaviour change.
39	Huiling Fan³⁹	Theory of framework is discussed	Food safety and reduction of waste	
40	Hitendra Patel et al⁴⁰	Cloud-based system for monitoring temperature	Food poisoning avoided	Automation for the adjustments in the hotter or cooler change the temperature in like manner.
41	Rodolfo Garcia-Flores et al⁴¹	Smart packaging and Flexible expiry dates and other technologies like BlockChain & IoT	Food Waste and loss at household and outside the house	
42	Liegeard J et al⁴²	Intelligent packaging and Intelligent fridge	Food loss and food waste	Further examination ought to be attempted to investigate the socio specialized issues.
43	S Jagtap et al⁴³	Convolution neural network (CNN), Image Processing and IoT.	Reducing potato waste in food processing	Further work will focus on the ability to handle multiple types of food waste at a higher speed and improve the performance of the system.
44	Matias Miguez et al⁴⁴	IoT-based electronic price-tag	Reduction of food loss in the food supply chain	
45	Kun Wang et al⁴⁵	Picture Sharing method using Image Processing and IoT.	Reducing food waste and Energy consumption	
46	Jason Kim et al⁴⁶	Conducted online survey by keeping the following questions:	Reducing food waste	
47	G Venkatesan et al⁴⁷	land fill model using IoT	Food Waste reduction	
48	Xiaoyan Gao⁴⁸	SSD Detection Algorithm of Artificial Intelligence	Identifying food inside the fridge in turn waste item reduction	
49	Emiliano Lopez Barrera et al⁴⁹	Based on the Food Availability (FA), Estimates of physical activities (EPA), basal metabolic rates (BMR) and Body Mass Index (BMI)	Impact of food waste across the globe on the perception of income.	
50	Tammara Soma et al⁵⁰	Education campaigns: Hangouts, community engagement approach and gamification approach.	Food waste Reduction	
51	Debarghya Saha⁵¹	YOLOv3 machine learning detection algorithm & RaspberryPi3	Food Item Detection and update of stock inside the refrigerator	To add more categories of items as well as continue improving our to better train the model for even more accuracy.
52	Pitchai⁵²	Described Convolution Neural Network	To increase the production of potato.	To build the novel model and compare the results.