MORPHOMETRIC STUDY OF PITUITARY GLAND WITH CORRELATION OF AGE AND GENDER USING MAGNETIC RESONANCE IMAGING

Sunima Maskey1, Dil Islam Mansur2, Subindra Karki1, Pragya Shrestha1, Sheprala Shrestha1, Mukta Singh Bhandari2

ABSTRACT

Introduction

The pituitary gland is the master gland of the body. Its size varies with age and gender. MRI is the safest and effective diagnostic tool for pituitary gland examination.

Objectives

This study was aim to determine the anteroposterior, height and transverse dimensions of normal pituitary gland in different age groups of both sex with MRI.

Methodology

It was a descriptive cross-sectional study. It consisted of 567 images of individuals (242 males and 325 females) of various age from 20 to 70 years from the Department of Radiodiagnosis, Dhulikhel Hospital.

Result

The mean anteroposterior, height and transverse dimension of pituitary gland is 9.74±1.18 mm, 5.95±1.11 mm and 11.65±2.15 mm respectively in which females have higher value. Independent sample t test showed highly significant differences (p< 0.05) between the mean anteroposterior dimension in males and females. The present study showed the mean value of anteroposterior dimension is maximum at age group 50-59. The mean value of height, transverse dimension and volume of males and females is maximum at 20-29 age group and minimum at 70-79 age group. One way ANOVA shows that there is significant difference between in height, transverse dimension and volume at different age group (p< 0.05).

Conclusion

It was concluded that the height and volume of pituitary gland is maximum at second decade of life then it gradually decreases with age. The mean value of anteroposterior, height and transverse dimension showed greater value of females than males.

KEYWORDS

Anatomy, Magnetic resonance imaging, Pituitary gland.
INTRODUCTION
The pituitary gland is the master gland which controls almost all the activities of other gland in the body.\(^1\) It is a reddish gray in color, ovoid in shape and measures about 8 mm in anteroposterior, 12 mm in transverse dimension and 5.9 mm height.\(^1,2,3\) It is located within the hypophyseal fossa of sphenoid bone and covered by a diaphragm sellae.\(^1,2\)

Magnetic resonance imaging (MRI) generate image using the nuclei of atoms inside the body which is specifically useful for soft tissues visualization.\(^4\) It is considered safe for studies since it does not use any harmful ionizing radiations and provides high resolution images.\(^5\) Likewise it is the most accurate and preferable diagnostic technique for pituitary gland.\(^6,7\)

Studies have claimed the variation size of pituitary gland associated with age, gender and pathological condition.\(^8,9\) As the size varies with age, it is very important to find the morphological dimension and correlation with age and gender. There are several disorders of pituitary gland such as pituitary adenomas, inflammation, hypertrophy of which may affect size and shape of gland.\(^6,10\) Due to variations in size and shape of pituitary with age, pituitary volume is taken as the best predictor of pituitary gland size.\(^11\)

Morphometric analysis of pituitary gland has been studied by many researchers worldwide because of its importance. Knowledge of accurate anatomical measurements of it is important for clinician for better prognosis of the diseases. The data is not sufficiently available for Nepalese population. Thus, the present study was aimed to evaluate pituitary morphometry by using MRI images.

METHODOLOGY
A descriptive cross-sectional study was conducted in the Department of Anatomy and data was collected from the Department of Radio-diagnosis, Dhulikhel Hospital/ Kathmandu University Hospital, Dhulikhel, Nepal by using images of MRI scan. MRI was performed with a 1.5 Tesla Ingenia Philips machine. The ethical clearance was obtained from IRC-KUSMS (Ref. no. 50/19). The convenient sampling technique was used for data collection. Total number of 567 images of individuals (242 males and 325 females) of various age from 20 to 70 years were taken from June 2019 to December 2020. The obtained data were studied under different age groups and each ten years were grouped as an age group. Hence, the present study consisted of 20-29, 30-39, 40-49, 50-59, 60-69 and 70-79 years age groups.\(^7\) The pituitary gland dimensions were measured by lines drawn on the images using options provided in the Digital Imaging and Communications in Medicine software and the values were directly recorded from the monitor screen in millimeter (mm). The images of individuals with routine MRI images were studied showing normal anatomy. Pathological condition with history of pituitary gland or hormone disorders, infarction, raised intra cranial pressure and unclear abnormal features of gland were excluded.

3D volumetric sagial scan was performed and reconstruction done of axial coronal and sagittal. The mid sagittal image measured anteroposterior dimension and height (cranio-caudal) [Figure- 1]. The coronal image measured transverse dimension [Figure- 2]. Pituitary gland volume was estimated by using formula: \(V = \text{anteroposterior dimension} \times \text{height} \times \text{transverse dimension} \times 0.52.\)

Data was collected and entered in Microsoft excel and analyzed using the Statistical Package for the Social Sciences version 16.0 for descriptive statistical analysis. P-value was calculated to find the level of significance and P value <0.05 was considered as significant.

RESULTS
The mean anteroposterior, height and transverse dimension of pituitary gland in which all values of females were found to be more than males is described in Table 1. Independent sample t test showed highly significant differences (p< 0.05) between the mean anteroposterior dimension in males and females.

\[\text{Figure 1: C-D shows measurement of anteroposterior dimension, E-F shows measurement of height.}\]

\[\text{Figure 2: A-B shows measurement of transverse dimension.}\]
Furthermore, the mean value of anteroposterior, height and transverse dimension of pituitary gland in different age group is shown in Table 2. The present study showed the mean value of anteroposterior dimension is maximum at age group 50-59 yrs. It was found that the height, transverse dimension and volume is highest at 20-29 yrs age group. One way ANOVA shows that there is significant difference between in height, transverse dimension and volume at different age group (p< 0.05).

The mean value of anteroposterior, height, transverse dimension and volume of pituitary gland in different age group and in both sex is described in Table 3.

Anteroposterior dimension: The mean value of anteroposterior dimension of males is maximum (10.05±0.97 mm) at 50-59yrs age group and minimum (9.32±1.15 mm) at 70-79 yrs age group. Similarly, the mean value of anteroposterior dimension of females is maximum (10.01±1.31 mm) at 20-29 yrs age group and minimum (9.40±1.05 mm) at 60-69 yrs age group. The mean values of females is larger in all group except 50-59 yrs and 60-69yrs age group (Table 3).

Height: The mean value of height of males and females is highest at 20-29 yrs age group i.e. 6.19±0.99 mm and 6.38±1.13 mm respectively and lowest at 70-79 yrs age group 401.42 ± 115.16 mm3 respectively) and minimum at 70-79 yrs age group (236.95 ± 96.08 mm3 and 305.58 ± 110.18 mm3 respectively). The differences between the mean volume in males and females at all groups were found to be insignificant except at 20-29 yrs age group where it is highly significant (p<0.05) (Table 3). The conducted study showed that the mean volume of gland shows significant association with puberty age with maximum value at 20-29 yrs age group which is gradually decreasing with the age.

Table 1: Anteroposterior dimension, height, transverse dimension and volume of pituitary gland.

Age Group	Anteroposterior Dimension (mm)	Height (mm)	Transverse Dimension (mm)	Volume (mm3)
Total (567)	9.74±1.18	5.95±1.11	11.65±2.15	352.51±107.74
Males(242)	9.62±1.08	5.87±1.10	11.56±2.14	341.17±103.29
Females(325)	9.83±1.25	6.01±1.12	11.72±2.16	360.96±110.33
p-value	0.03	0.13	0.38	0.03

Table 2: Pituitary gland in different age groups.

Age Group (yrs)	Anteroposterior Dimension (mm)	Height (mm)	Transverse Dimension (mm)	Volume (mm3)
20-29	9.82±1.21	6.30±1.07	12.11±1.91	751.47±205.75
30-39	9.71±1.13	6.00±1.17	11.93±2.07	696.72±215.85
40-49	9.66±1.28	5.77±0.98	11.80±2.16	659.50±188.45
50-59	9.90±1.14	5.66±1.00	10.78±2.10	602.81±165.89
60-69	9.47±0.97	5.61±1.21	11.21±2.28	592.92±185.43
70-79	9.51±1.18	5.35±1.16	9.84±2.64	504.30±200.27
P-value (one way ANOVA)	0.25	0.00	0.00	0.00
DISCUSSION

Pituitary gland is very important neuroendocrine organ which secretes hormones that is essential for life. MRI is most preferable diagnostic technique for the examination of soft tissues.\(^2\) It is therefore important to get normal pituitary gland value of MRI images. Pituitary gland variations are noted among individuals from different part of the world.\(^8\,9\) Change in the shape and size often affected by age and gender. The variations in size also reflects hormonal function imbalance.\(^10\)

In our study the overall mean height was 5.95±1.11 mm which is lesser than the study done by Yadav et al., Lamichhane et al. and Kumar.\(^3,8,12\) In contrast, the finding of Suzuki et al. has lower mean value than our study. Fewer study done by Mohammad et al., Kato et al., Shaya et al. and Grams et al. showed the mean value of height almost comparable with our study.\(^13-16\)

Many studies done in different places showed there is maximum increase of height of pituitary gland in their second decade of life which is similar with our study.\(^14,15,17\) This suggest the change of hormonal levels which cause changes in morphology of the gland.

The decline in the height of gland with age also shows the hormonal changes with aging and physiological atrophy. In our study minimum mean height (5.35±1.16 mm) was found in the age group of 70-79 yrs which was supported by the study done by Lamichhane et al. and Sinclair et al.\(^3,15,17\) The result from this study give a mean value of 11.65±2.15 mm for transverse dimension of gland which is comparatively smaller than the value reported by other studies.\(^2,10,17\) A study done by Sinclair et al. showed similar result with a maximum mean transverse dimension of pituitary gland of 12.11±1.91 mm for 20-29 yrs age group.\(^17\)

In this study the total mean transverse dimension for females (11.72±2.16 mm) is greater than males (11.56±2.14 mm) which agreed the study done by Kato et al., Sinclair et al. and Ibinaiye et al.\(^14,17,19\) The present study showed that the mean values of anteroposterior dimension of males (9.62±1.08 mm) and females (9.83±1.25 mm) is lower than the study conducted by Kato et al., Sinclair et al. and Ibinaiye et al.\(^14,17,19\)

The result from this study give a mean value of 352.51±107.74 mm similar finding was observed among the Sudanese population.\(^15\) A study done on Inedial Indian population showed the lower mean value than ours.\(^20\) Generally, the volume were higher at the early puberty age than in the declining years. The present study revealed the maximum mean value is for the age group 20-29 yrs (751.47±205.75 mm\(^3\)) then it gradually decrease with age. Similar the study done among Sudanese, Indian, Nepali, Nigerian and Kashmiri population showed maximum volume at 20-29 yrs age group which supported our study.\(^3,8,15,19\)

A study done in India revealed the mean volume of
females (360.96±110.33 mm³) is greater than that of males (341.17±103.29 mm³) which is similar to our study.¹¹ In contrast, Ibinaiye et al. reported larger values in male.¹⁹

CONCLUSION
The present study showed the height and volume of pituitary gland is maximum at second decade of life then it gradually decreases with age. The mean value of anteroposterior, height and transverse dimension showed greater value of females than male. It could also establish normal reference values for MRI of pituitary gland which may be used in diagnosis and treatment of diseases.

RECOMMENDATIONS
It is highly recommended to conduct similar study including large population to see the sexual dimorphism in Nepalese population.

LIMITATIONS OF THE STUDY
Study could not include the population from other part of the country so the result obtained from this study could not be generalized to other population.

ACKNOWLEDGEMENTS
Authors would like to thank staffs of the Department of Radio-diagnosis, Dhulikhel Hospital for their cooperation and help in data collection.

CONFLICT OF INTEREST
None

FINANCIAL DISCLOSURE
None

REFERENCES
1. Kulkarni NV. Pituitary gland. Clinical anatomy, 2nd edition. Jaypee brothers medical publishers, New Delhi 2012. p. 508-9.
2. Standing S, Diencephalon. Gray’s anatomy the anatomical basis of clinical practice, 39th edition. Churchill-Livingstone: Elsevier, London 2005. p. 321-3.
3. Lamichhane TR, Pangeni S, Paudel S, Lamichhane HP. Age and gender related variations of pituitary gland size of healthy Nepalese people using Magnetic Resonance Imaging. Am. J. Biomed. Eng. 2015; 5(4): 130-135. DOI: 10.5923/a.jbme.20150504.03
4. Chauhan R, Gambhir M. Various techniques used in radiology. Surface and radiological anatomy, 1st edition. Avichal publishing company, New Delhi 2018. p. 117-21.
5. Zrazhevskiy P, Mark S, Xiaohu G. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. ChemSoc Rev. 2010; 39(11): 4326-54. DOI: 10.1039/b915139g
6. Tsunoda A, Okuda O, Sato K. MR height of the pituitary gland as a shape of normal pituitary gland: age and sex related changes. J. clin. diag. 2017; 11(12):1-4. DOI: 10.7860/jcdr/2017/31034.10933
7. Davis PC, Hoffman C, Spencer T, Tindall GT, Braun IF. MR imaging of pituitary adenoma: CT, clinical, and surgical correlation. Am J Roentgenol.1987 April; 148: 797-802. DOI: 10.2214/ajr.148.4.797
8. Yadav P, Singhal S, Chauhan S, Harit S. MRI evaluation of size and shape of normal pituitary gland: age and sex related changes. J. clin. imaging 2017; 43: 50-6. DOI: https://doi.org/10.1159/000487067
9. Suzuki M, Takashima T, Kadoya M, Konishi H, Kameyama T, Yoshikawa J et al. Height of normal pituitary gland on MR imaging: Age and sex differentiation. J Comput Assist Tomogr. 1990; 14(1): 36-9. DOI: 10.1097/00004728-199001000-00006
10. Elster AD, Chauhan R, Williams DW, Key LL. Pituitary gland: MR imaging of physiologic hypertrophy in adolescence. Radiology. 1990; 174: 681-8. DOI: https://doi.org/10.1148/radiology.174.3.2305049
11. Kumar JU, Kavitha Y. MR volumetry of pituitary gland in Indian adults to establish normal reference values. Int J anatradiol surg. 2017; 6(1): 36-9. DOI: 10.7860/IJARS/2017/24458:2239
12. Kumar A. MRI evaluation of normal pituitary gland with age and sex related variations in Kashmiri population. Indian J. Sci. Res. 2019; 10(1): 165-70.DOI: 10.32606/ijsr.v10i1.00025
13. Mohammad S, Hossein AE, Habibeheh AP, Mohammad K. Height, shape and anterior-posterior diameter of pituitary gland on magnetic resonance imaging among patients with multiple sclerosis compared to normal individuals. Iran J. Neuroradiol. 2017; 16(4):218-20. PMID: 29736228
14. Kato K, Saeki N, Yamaura A. Morphological changes on MR imaging of the normal pituitary gland related to age and sex: main emphasis on pubescent females. J Clin Neurosci. 2002; 9(1): 53-6. DOI: 10.1054/jcne.2001.0973
15. Shayma H, Ayad CE, Rana AE, Awadia G, Alaa I, Moawia G et al. The pituitary gland measurements in Sudanese females using magnetic resonance imaging. Int. J. Biomed. 2020; 10(4): 397-401. DOI: 10.21103/Article10(4)_OA13
16. Grams AE, Gempt J, Stahl A, forschler A. Femalespituitary size in relation to age and hormonal factors. Neuroendocrinology. 2010; 92: 128–32. DOI: 10.1159/000314196
17. Sinclair J, Kanodia AK, Schembri N, Suharshan T, Guntur P. MRI measurement of normal pituitary size using volumetric imaging in Scottish patients. Current Trends in Curr Trends Clin Med Imaging. 2017 April; 1(3): 43-7. DOI: 10.19080/CTCMI.2017.01.555563
18. Muhammad FI, Zafar S, Ishrat S, Amir O. Pituitary height on Magnetic Resonance Imaging observation of age and sex related changes. J Pak Med Assoc. 2008; 58(5): 261-4. PMID: 18655404
19. Ibinaiye PO, Olarinoye-Akoreda S, Kajogbola O, Bakari AG. Magnetic resonance imaging determination of normal pituitary gland dimension in Zaria, Northwest Nigerian Population. J Clin Imaging Sci. 2015; 5:29. DOI: 10.4103/2156-7514.157853
20. Raghuprasad MS, Manivannan M. Volumetric and morphometric analysis of pineal and pituitary glands of an Indian inedial subject. Ann Neurosci. 2018; 25: 279–88. DOI: 10.1159/000487067