DIAMOND REPRESENTATIONS OF $\mathfrak{sl}(n)$

DIDIER ARNAL, NADIA BEL BARAKA, AND NORMAN J. WILDBERGER

Abstract

In [W], there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)$ module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional $\mathcal{U}_q(\mathfrak{sl}(3))$-modules.

In the present work, we generalize this construction to $\mathfrak{sl}(n)$. We show this is in fact a description of the reduced shape algebra, a quotient of the shape algebra of $\mathfrak{sl}(n)$. The basis used in [W] is thus naturally parametrized with the so called quasi standard Young tableaux. To compute the matrix coefficients of the representation in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker relations defining the reduced shape algebra.

1. Introduction

In this paper, we consider the irreducible finite dimensional representations of the Lie algebra $\mathfrak{sl}(n) = \mathfrak{sl}(n, \mathbb{C})$. Of course these representations are well known and there are very explicit descriptions for them, for instance in [FH].

First, $\mathfrak{sl}(n)$ acts naturally on \mathbb{C}^n, its fundamental representations are the natural actions on \mathbb{C}^n, $\Lambda^2 \mathbb{C}^n, \ldots, \Lambda^{n-1} \mathbb{C}^n$, they have highest weights $\omega_1, \ldots, \omega_{n-1}$. Each simple $\mathfrak{sl}(n)$-module has a highest weight λ and this highest weight characterizes the module. Note S^λ this module, it is a submodule of the tensor product

$$Sym^{a_1}(\mathbb{C}^n) \otimes Sym^{a_2}(\Lambda^2 \mathbb{C}^n) \otimes \cdots \otimes Sym^{a_{n-1}}(\Lambda^{n-1} \mathbb{C}^n),$$

if $\lambda = a_1 \omega_1 + \cdots + a_{n-1} \omega_{n-1}$.
The direct sum S^\bullet of all the simple modules has a natural realization as the shape algebra of $\mathfrak{sl}(n)$, i.e. as the algebra $\mathbb{C}[SL(n)]^{N^+}$ of polynomial functions on the group $SL(n)$, which are invariant under the right multiplication by upper triangular matrices. Let g be an element in $SL(n)$, denote $\delta^{(s)}_{i_1,\ldots,i_s}(g)$ the determinant of the submatrix of g obtained by considering the s first columns of g and the rows $i_1 < \cdots < i_s$, then S^\bullet is generated as an algebra by the functions $\delta^{(s)}_{i_1,\ldots,i_s}$. More precisely, it is the quotient of $\mathbb{C}[\delta^{(s)}_{i_1,\ldots,i_s}]$ by the ideal $P(\delta)$ generated by the Plücker relations.

Generally a parametrization of a basis for S^λ is given by the set of semi-standard Young tableaux T of shape λ i.e. with a_{n-1} columns of size $n-1$, \ldots, a_1 columns of size 1.

Using this description, we give here a natural ordering on the set of variables $\delta^{(s)}_{i_1,\ldots,i_s}$, we determine the Groebner basis of $P(\delta)$ for this ordering, getting the corresponding basis of the quotient as monomials δ^T, for T semi-standard.

Thus the action of upper triangular matrices on this basis can be easily computed. (See for instance the description given in [LT]).

On the other hand, in [W], N. Wildberger gave a really different presentation of the simple $\mathfrak{sl}(3)$-modules. This description is based on the construction of the diamond cone for $\mathfrak{sl}(3)$, it is an infinite dimensional indecomposable module for the Heisenberg Lie algebra with a very explicit basis. The matrix coefficients are integral numbers and fixing the highest weight λ, it is easy to build the corresponding representation of $\mathfrak{sl}(3)$, on the submodule generated by this vector in the diamond cone.

In this paper, we extend this presentation to $\mathfrak{sl}(n)$. In fact the diamond cone module is a quotient of the shape algebra. We call this quotient the reduced shape algebra. It is the quotient of $\mathbb{C}[\delta^{(s)}_{i_1,\ldots,i_s}]$ by the ideal $P_{red}(\delta)$ sum of the ideal of Plücker relations and the ideal generated by $\delta^{(s)}_{1,\ldots,s} - 1$.

With the same approach as above, we define a new ordering on the variables $\delta^{(s)}_{i_1,\ldots,i_s}$, with this ordering, we can compute the Groebner basis for $P_{red}(\delta)$ and the corresponding basis for the quotient : the set of monomials δ^T, for some Young tableaux T called here quasi-standard.
The action of the upper triangular matrices on this basis is easy to compute: this gives us the diamond cone for $\mathfrak{sl}(n)$.

In order to refine the complete $\mathfrak{sl}(n)$-modules, we have to define a symmetry on each S^λ and on the corresponding submodule in the reduced shape algebra. This symmetry exchanges the role of N^+ and N^- and we get the complete $\mathfrak{sl}(n)$ representation.

Unfortunately, this symmetry corresponds to a modification of the ordering on Young tableaux, thus, if $n > 3$ to a different basis in S^λ. The n^- action on the first base is not so simple as in [W].

2. Usual (algebraic) presentation of the $\mathfrak{sl}(n)$ simple modules

Let us consider the Lie algebra $\mathfrak{sl}(n) = \mathfrak{sl}(n, \mathbb{C})$: it is the set of $n \times n$ traceless matrices, it is the Lie algebra of the Lie group $SL(n)$ of $n \times n$ matrices, with determinant 1. The Cartan algebra \mathfrak{h} is the space of diagonal matrices:

$$\mathfrak{h} = \left\{ H = \begin{bmatrix} \theta_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \theta_{n-1} & \theta_n \end{bmatrix}, \quad \theta_j \in \mathbb{C}, \quad \theta_1 + \cdots + \theta_n = 0 \right\}.$$

We put $\alpha_i(H) = \theta_i$. The root system of $\mathfrak{sl}(n)$ is the set of linear form on \mathfrak{h} generated by the $\alpha_i - \alpha_j$, $(i \neq j)$.

The usual basis Δ for the root system is given by:

$$\Delta = \{ \alpha_i - \alpha_{i+1}, \ i = 1, 2, \ldots, n-1 \}$$

The root space corresponding to the simple root $\eta_i = \alpha_i - \alpha_{i+1}$ is generated by the upper triangular matrix:

$$X_{\eta_i} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}.$$
The root space corresponding to $-\eta$ is generated by lower triangular matrix:

$$Y_\eta = \begin{bmatrix} 0 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \end{bmatrix} = tX_\eta$$

these matrices generate $\mathfrak{sl}(n)$ as a Lie algebra.

A weight λ for $\mathfrak{sl}(n)$ is a linear form:

$$\lambda : \begin{bmatrix} \theta_1 & & & & 0 \\ & \ddots & & & \\ & & \theta_n & & \\ 0 & & & & \end{bmatrix} \mapsto (a_1+\cdots+a_{n-1})\theta_1 + (a_2+\cdots+a_{n-1})\theta_2 + \cdots + a_{n-1}\theta_{n-1}.$$

If a_1, \ldots, a_{n-1} are positive integral numbers, we shall say that λ is a dominant integral weight. This is the case if and only if λ is a linear combination $\lambda = \sum_{j=1}^{n-1} a_j \omega_j$, with positive integral coefficients a_j, of the fundamental weights:

$$\omega_j = \alpha_1 + \cdots + \alpha_j : \begin{bmatrix} \theta_1 & & & & 0 \\ & \ddots & & & \\ & & \theta_n & & \\ 0 & & & & \end{bmatrix} \mapsto \theta_1 + \cdots + \theta_j \quad (1 \leq j \leq n-1).$$

The set of simple $\mathfrak{sl}(n)$-modules up to equivalence is isomorphic to the set of dominant integral weights. More precisely, $\mathfrak{sl}(n)$ acts naturally on $V = \mathbb{C}^n$ (with canonical basis e_1, \ldots, e_n), thus also on the totally antisymmetric tensor products $\wedge^j V$ ($j = 1, \ldots, n-1$) and on the symmetric tensor products $\text{Sym}^{a_1}(\wedge^1 V)$ and finally on

$$\text{Sym}^{a_1}(V) \otimes \text{Sym}^{a_2}(\wedge^2 V) \otimes \cdots \otimes \text{Sym}^{a_{n-1}}(\wedge^{n-1} V).$$

For each dominant integral weight $\lambda = \sum a_j \omega_j$, the corresponding simple module $S^\lambda(V)$ is the submodule of

$$\text{Sym}^{a_1}(V) \otimes \text{Sym}^{a_2}(\wedge^2 V) \otimes \cdots \otimes \text{Sym}^{a_{n-1}}(\wedge^{n-1} V).$$

generated by the vector:

$$v^\lambda = (e_1)^{a_1} \otimes (e_1 \wedge e_2)^{a_2} \otimes \cdots \otimes (e_1 \wedge \cdots \wedge e_{n-1})^{a_{n-1}}.$$

With this construction, we get each simple $\mathfrak{sl}(n)$-module, and two distinct weights λ, λ' give rise to inequivalent simple $\mathfrak{sl}(n)$-modules.
This action gives rise by exponentiation to a representation of $SL(n)$. Let us put
\[
\Omega = \begin{bmatrix}
0 & \varepsilon_n \\
& \ddots \\
& & \ddots \\
& & & 0
\end{bmatrix}
\]
where $\varepsilon_n = 1$ if $[n/2]$ is even and $\varepsilon_n = e^{i\pi}/n$ if $[n/2]$ is odd. Then Ω belongs to $SL(n)$. In fact, this matrix, acting by adjoint action generates the longest element of the Weyl group of $SL(n)$. It corresponds to a change in the choice of simple roots and nilpotent subalgebras n^+ and n^-, if $X = [x_{ij}]$ is a strictly upper triangular matrix, $\Omega^{-1}X\Omega = [x(n+1-i)(n+1-j)]$ is strictly lower triangular. Let us put:
\[
v^-_\lambda = (e_n)^{a_1} \otimes (e_n \land e_{n-1})^{a_2} \otimes \cdots \otimes (e_n \land \cdots \land e_2)^{a_{n-1}} = \varepsilon_n^{-|\lambda|} \Omega v^\lambda,
\]
with $|\lambda| = a_1 + 2a_2 + \cdots + (n-1)a_{n-1}$. Then v^-_λ is a lowest weight vector in $S^\lambda(V)$.

3. The shape algebra: abstract algebraic presentation

Let us put:
\[
S^\lambda(V) = \bigoplus \lambda S^\lambda(V).
\]
Since we have an explicit realization of each highest weight vector, it is possible to define a natural comultiplication Δ on $S^\lambda(V)$, just by defining
\[
\Delta : S^\lambda(V) \rightarrow \bigoplus_{\mu + \nu = \lambda} S^\mu(V) \otimes S^\nu(V)
\]
as the unique $\mathfrak{sl}(n)$-morphism sending v^λ on
\[
\Delta(v^\lambda) = \sum_{\mu + \nu = \lambda} v^\mu \otimes v^\nu.
\]
Δ is cocommutative. The contragredient module $(S^\lambda)^*$ is naturally identified with S'^λ where $'^\lambda = \sum a_{n-j} \omega_i$ if $\lambda = \sum a_i \omega_i$. By transposition, Δ defines a commutative multiplication m on $S^\lambda(V)$:
\[
m = ^t \Delta : S'^\mu(V) \otimes S'^\nu(V) \rightarrow S'^{\mu+\nu}(V).
\]
By definition, if $\mu = \sum_j b_j \omega_j$, $\nu = \sum_j c_j \omega_j$, $m(v^\mu \otimes v^\nu) = v^{\mu+\nu} = e_1^{b_1+c_1} \otimes \cdots \otimes (e_1 \land \cdots \land e_{n-1})^{b_{n-1}+c_{n-1}}$.

Since each isotypic component of the $SL(n)$ module $S^\bullet(V)$ is simple the multiplication m is characterized by this relation and the condition
\[
m(S^\mu(V) \otimes S^\nu(V)) \subset S^{\mu+\nu}(V).
\]

We shall call \textbf{shape algebra} of $SL(n)$ the algebra $S^\bullet(V)$ equipped with the above multiplication.

By construction the shape algebra is generated as an algebra by the subspace $V \oplus \Lambda^2 V \oplus \cdots \oplus \Lambda^{n-1} V$. Thus it is a quotient of the algebra denoted in [FH]:
\[
A^\bullet(V) = Sym^\bullet(V \oplus \Lambda^2 V \oplus \cdots \oplus \Lambda^{n-1} V) = \bigoplus_{a_1, \ldots, a_{n-1}} Sym^{a_{n-1}}(\Lambda^{n-1} V) \otimes \cdots \otimes Sym^{a_1}(V).
\]

We define now the ideal of Plücker relations: it is the ideal P of $A^\bullet(V)$ generated by the vectors in $Sym^2(\Lambda^p V)$:
\[
(e_{i_1} \wedge \cdots \wedge e_{i_p}),(e_{j_1} \wedge \cdots \wedge e_{j_p}) + \sum_{\ell=1}^p (-1)^{p}(e_{i_1} \wedge e_{i_1} \wedge \cdots \wedge \widehat{e_{i_\ell}} \wedge \cdots \wedge e_{i_p}).(e_{i_\ell} \wedge e_{j_2} \wedge \cdots \wedge e_{j_p})
\]
and by the vectors in $\Lambda^p V \otimes \Lambda^q V$ ($p > q$)
\[
(e_{i_1} \wedge \cdots \wedge e_{i_p}),(e_{j_1} \wedge \cdots \wedge e_{j_q}) + \sum_{\ell=1}^p (-1)^{p}(e_{i_1} \wedge e_{i_1} \wedge \cdots \wedge \widehat{e_{i_\ell}} \wedge \cdots \wedge e_{i_p}).(e_{i_\ell} \wedge e_{j_2} \wedge \cdots \wedge e_{j_q}).
\]

Theorem 1.

The shape algebra $S^\bullet(V)$ is the quotient of $A^\bullet(V)$ by the ideal P.

This theorem is well known. There is a complete proof in [FH] p. 235, this result is cited by Towber in [LT] as a theorem due to Kostant.

We define a symmetry τ in S^\bullet just by putting:
\[
\tau(v) = \Omega.v \text{ if } v \in S^\bullet(V)
\]
Since the multiplication is a morphism of $\mathfrak{sl}(n)$ and $SL(n)$ module, $\tau(vv') = \tau(v)\tau(v')$. Especially, we can define the multiplication just as above by fixing $v^\lambda_\mu, v_\mu^\lambda = v^{(\lambda+\mu)}$.
Now for each matrix A in $\mathfrak{sl}(n)$, $\Omega A \Omega = \tau A$ is the matrix defined by a central symmetry on the entries of A:

$$\tau A = [a_{n+1-i,n+1-j}] \text{ if } A = [a_{i,j}]$$

If A is the matrix X_η for a positive root $\eta = \alpha_i - \alpha_j$, $\tau X_\eta = \Omega X_\eta \Omega$ is the matrix $Y_\tau \eta$ if $\tau \eta$ is the positive root $\tau \eta = \alpha_{n+1-j} - \alpha_{n+1-i}$. Then for each v in S^*:

$$(\tau \circ X_\eta \circ \tau)(v) = \Omega X_\eta \Omega \ v = Y_\tau \eta \ v$$

4. The shape algebra: geometric presentation

The shape algebra can also be viewed as an algebra of functions on a quotient $SL(n)/N^+$ of the Lie group $SL(n)$. Denote N^+ the subgroup of matrices $n^+ = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$

Let us consider the space $\mathbb{C}[SL(n)] = \mathbb{C}[g_{ij}]/(det - 1)$ of all polynomial functions f with respect to the entries g_{ij} of the matrix $g \in SL(n)$. There is a $SL(n) \times SL(n)$ action on this space, defined as follows:

$$(g_1,g_2).f(g') = f(t g_1 g' g_2).$$

Since this space is generated by the invariant finite dimensional subspaces of class of functions with degree less than N ($N = 0, 1 \ldots$), this action is completely reducible in a sum of finite dimensional simple $SL(n) \times SL(n)$ modules. The highest vector for these modules are class of functions f such that:

$$f(t^{n_1^+} g n_2^+) = f(g) \ n_1^+ \in N^+, \ n_2^+ \in N^.$$

But, let us consider the restriction of f to the dense set of g such that, for $s = 1, \ldots, n$, $\delta^{(s)}_{1,2,\ldots,n}(g) \neq 0$. On this set, using the Gauss method,
we can reduce g to a diagonal matrix, getting:

$$
g = t_n^+ \begin{bmatrix}
\delta_1^{(1)}(g) & 0 \\
\delta_1^{(2)}(g) & \delta_1^{(1)}(g) \\
\vdots & \vdots \\
\delta_1^{(n-2)}(g) & \delta_1^{(n-2)}(g) \\
\delta_1^{(n-1)}(g) & \delta_1^{(n-1)}(g)
\end{bmatrix} n_2^+.
$$

The highest weight is (λ, λ) with $\lambda = \sum a_i \omega_i$, that means f is a polynomial function in the variables

$$
\delta^{(1)} = (\delta_1^{(1)} g_1, \delta_1^{(2)} g_2, \ldots, \delta_1^{(n-1)} g_{n-1}, 1),
$$

homogeneous with degree $a_1 + \cdots + a_{n-1}, a_2 + \cdots + a_{n-1}, \ldots, a_{n-1}, 0$, i.e. the function f is a multiple of the function:

$$
\delta^\lambda = \left(\delta_1^{(1)} \right)^{a_1} \left(\delta_1^{(2)} \right)^{a_2} \cdots \left(\delta_1^{(n-1)} \right)^{a_{n-1}}.
$$

Acting with only the first factor $SL(n)$ on these functions, we get all the polynomial N^+ right invariant functions on $SL(n)$. Due to the form of the bi-invariant functions f, these functions are polynomial functions in the δ-variables:

$$
C[SL(n)]^{N^+} \simeq C[\delta_1^{(s)}]/P(\delta),
$$

where $P(\delta)$ is an ideal. Moreover each irreducible representation of $SL(n)$ happens exactly one times in this space, thus as a vector space,

$$
S^* (\mathbb{C}^n) \simeq C[SL(n)]^{N^+}.
$$

Acting on $\delta^\lambda (\lambda = \sum_i a_i \omega_i)$ on the left by $N^- = t(N^+)$, we get polynomial functions which contains only monomials of the form:

$$
\prod_{s=1}^{n-1} \prod_{k=1}^{a_s} \delta_1^{(s)}_{i_1, \ldots, i_k}.
$$

Let us call $V^{a_1, \ldots, a_{n-1}}$ the space of such functions. In view of our description, it is a simple module and the isotypic component of type λ in $C[SL(n)]^{N^+}$.
Finally the usual pointwise multiplication of polynomial functions send $V_{a_1,\ldots,a_{n-1}} \otimes V_{b_1,\ldots,b_{n-1}}$ into $V^{(a_1+b_1),\ldots,(a_{n-1}+b_{n-1})}$. Thus the above identification

$$S^\bullet(\mathbb{C}^n) \simeq \mathbb{C}[SL(n)]^{N^+},$$

characterized by $\nu^\lambda \mapsto \delta^\lambda$ is a morphism of algebra.

Proposition 1.

The shape algebra is isomorphic to the algebra $\mathcal{O}(SL(n)/N^+)$ of the regular functions on the homogeneous space $SL(n)/N^+$.

The ideal $P(\delta)$ is the ideal generated by the Plücker relations written on the δ functions.

Remark 1.

In this presentation of $S^\bullet(\mathbb{C}^n)$, the $SL(n)$ action on the elements of the shape algebra, viewed as a polynomial function f is very natural since it is just:

$$(g.f)(g') = f'(gg'), \quad g, g' \in SL(n).$$

The symmetry τ can be directly implemented in the space $\mathbb{C}[SL(n)]^{N^+}$. Indeed τ is up to conjugation by Ω, a morphism of $SL(n)$ modules and the formula

$$\tau(e_1 \wedge \cdots \wedge e_s) = \varepsilon_n^s e_n \wedge \cdots \wedge e_{n+1-s}$$

becomes here

$$\tau(\delta_{1,2,\ldots,s}^{(s)}) = \varepsilon_n^s \delta_{n,(n-1),\ldots,(n+1-s)}^{(s)}.$$

But, if we put for any regular function f on $SL(n)$, $(\theta f)(g) = f(\Omega g)$, we define a bijection from $\mathbb{C}[SL(n)]^{N^+}$ into itself such that

$$g.\theta(f) = \theta(\Omega^{-1}g\Omega.f) \quad \text{and} \quad \theta(\delta_{1,2,\ldots,s}^{(s)}) = \delta_{n,n-1,\ldots,n+1-s}^{(s)}.$$

Thus $\tau = \theta$.

5. The shape algebra: Combinatorial presentation

The usual basis of $S^\lambda(V)$ are parameterized by the semi standard Young tableaux with shape λ. Let us be more precise:
We can naturally associate to each δ variable a column C:

$$\delta^C = \delta^{(p)}_{i_1, \ldots, i_p} \rightarrow \begin{array}{c} i_1 \\ i_2 \\ \vdots \\ i_p \end{array}$$

Then if we identify two Young tableaux which differ only by a permutation of their columns, the set of Young tableaux defines a linear basis for the algebra $\mathbb{C}[\delta^{(s)}_{i_1, \ldots, i_s}]$:

$$\delta^T = \delta^{(p_1)}_{i_1, \ldots, i_{p_1}} \delta^{(p_2)}_{j_1, \ldots, j_{p_2}} \cdots \delta^{(p_k)}_{\ell_1, \ldots, \ell_{p_k}} \rightarrow \begin{array}{c} \vdots \\ \vdots \\ \ldots \end{array}$$

($p_1 \leq p_2 \leq \cdots \leq p_k$). That means, we read the Young tableau from right to left, using the following convention: if two different columns C and C' have the same height, we put in the first place in T the column C if

$$i_p = i'_p, i_{p-1} = i'_{p-1}, \ldots, i_{r+1} = i'_{r+1}, \text{ and } i_r < i'_r.$$

The Plücker relations are quadratic in the δ variables, they correspond to linear combination of Young tableaux with two columns, for instance, we get for $\mathfrak{sl}(3)$ the following relation between tableaux:

$$\delta^{(2)}_{12} \delta^{(1)}_{3} - \delta^{(2)}_{23} \delta^{(1)}_{1} + \delta^{(2)}_{13} \delta^{(1)}_{2} \rightarrow \begin{array}{ccc} 1 & 3 \\ 2 & \end{array} - \begin{array}{ccc} 2 & 1 \\ 3 & \end{array} + \begin{array}{ccc} 1 & 2 \\ 3 & \end{array}$$

In order to describe a basis for the quotient space:

$$\mathbb{S}^*(V) = \mathbb{C}[\delta^{(j)}_{i_1, \ldots, i_j}] / P(\delta),$$

we will use the notion of Groebner basis [CLO].

Let us consider the algebra $\mathbb{C}[X_1, \ldots, X_k]$ of polynomials in the variable X_i and an ideal I of $\mathbb{C}[X_1, \ldots, X_k]$.

Suppose we fix an ordering on the set of monomials $X_1^{\alpha_1} \cdots X_k^{\alpha_k}$ in $\mathbb{C}[X_1, \ldots, X_k]$ (for instance by using the lexicographic ordering on words $\alpha_1 \ldots \alpha_k$ if we put $X_1 < X_2 < \cdots < X_k$). Then any polynomial g has an unique leading term $LT(g)$; the greatest monomial happening in g for this ordering.
Definition 1.

A finite subset \(\{g_1, \ldots, g_k\} \) of an ideal \(I \) is said to be a reduced Groebner basis for \(I \) if and only if the leading term of any element of \(I \) is divisible by one of the leading term of \(g_i \) and if for all \(g_i \) no monomial of \(g_i \) is divisible by the leading term of some \(g_j, j \neq i \).

If \(\{g_1, \ldots, g_k\} \) is a reduced Groebner basis for \(I \), then the set of (classes of) monomials which are not divisible by any monomials \(\text{LT}(g_i) \) \((i = 1, \ldots, k)\) is a basis of the quotient \(\mathbb{C}[X_1, \ldots, X_k]/I \).

Following [FH], we know there is in the ideal \(P(\delta) \) the following elements for any \(p \geq q \geq r \):

\[
\delta_{i_1, i_2, \ldots, i_p}^{(p)} \delta_{j_1, j_2, \ldots, j_q}^{(q)} + \sum_{A \subset \{i_1, \ldots, i_p\}} \sum_{\#A = r} \pm \delta_{\{i_1, \ldots, i_p\} \cup \{j_1, \ldots, j_r\}}^{(p)} \delta_{A \cup \{j_{r+1}, \ldots, j_q\}}^{(p)} (*)
\]

where \(\delta_{\{i_1, \ldots, i_p\} \cup \{j_1, \ldots, j_r\}}^{(p)} = 0 \) if there is a repetition of some index and, if \(\{k_1, \ldots, k_p\} = (\{i_1, \ldots, i_p\} \setminus A) \cup \{j_1, \ldots, j_r\} \) and \(k_1 < \cdots < k_p \), then

\[
\delta_{\{i_1, \ldots, i_p\} \setminus A}^{(p)} \delta_{A \cup \{j_1, \ldots, j_r\}}^{(p)} = \delta_{k_1, \ldots, k_p}^{(p)}.
\]

Now we put an ordering on the variables \(\delta_{i_1, \ldots, i_p}^{(p)} \) by the following relations:

\[
\delta^{(1)} > \delta^{(2)} > \cdots > \delta^{(n-1)}
\]

and \(\delta_{i_1, \ldots, i_p}^{(p)} > \delta_{j_1, \ldots, j_r}^{(p)} \) if \(i_p = j_p, \ldots, i_{r+1} = j_{r+1} \) and \(i_r < j_r \).

We put the lexicographic ordering on the monomials \(\delta^T \) in \(\mathbb{C}[\delta_{i_1, \ldots, i_p}^{(p)}] \).

Remark 2.

In [FH], an ordering \(< \) on Young tableaux is defined, in fact our ordering is the reverse ordering since:

\[
\delta^T < \delta^{T'} \text{ if and only if } T' < T.
\]

Recall that a Young tableau is semi standard if its entries are increasing along each row (and strictly increasing along each column). It is well known that the set of semi standard Young tableau gives a basis for \(\mathbb{C}[\delta_{i_1, \ldots, i_p}^{(p)}]/P(\delta) \) (see [FH] for instance).
Our ordering defines an unique Groebner basis for \(P(\delta)\). We shall now build this basis.

For any non semi standard Young tableau \(T\) with 2 columns, there exists an element in \(P(\delta)\) of the form \((\ast)\). This relation can be written as:

\[
\delta^T + \sum_{j=1}^{n} \pm \delta^{T_j} \text{ with } \delta^{T_j} < \delta^T \forall j.
\]

Each \(T_j\) has the same shape as \(T\) but some of them can be non semi standard. We repeat the construction for each non semi standard \(T_j\) and finally we get, for each non semi standard \(T\) with 2 columns, an element \(f_T\) in \(P(\delta)\) such that the leading term of \(f_T\) is \(\delta^T\) and all the monomials of \(f_T\) have the form \(a.\delta^{T'}\) with \(T'\) semi standard and \(\delta^{T'} < \delta^T\).

Theorem 2.

The set

\[
G = \{f_S, \ S \text{ non semi standard with 2 columns}\}
\]

is the reduced Groebner basis of \(P(\delta)\) for our ordering.

Proof:

First denote \(NS\) the set of all monomials \(\delta^T\) with \(T\) non semi standard. Since each non semi standard \(T\) has 2 consecutive columns such that the sub tableau defined by these 2 columns is non semi standard, \(\delta^T\) is divisible by one of the \(\delta^S\), i.e., by one of the leading term of \(f_S\).

Thus the ideal \(<\delta^S>\) generated by the leading terms of \(G\) contains the vector space \(\text{span}(NS)\).

Conversely let \(T\) be a semi standard Young tableau. Suppose \(T\) belongs to the ideal \(<\text{LT}(P(\delta))>\) generated by the leading terms of all the \(f\) in \(P(\delta)\). That means:

\[
\delta^T = f - \sum_{T' < T} a_{T'} \delta^{T'}.
\]

If any \(T'\) is semi standard we keep this relation. If some of the \(T'\) are non semi standard, then \(\delta^{T'}\) is in \(<\delta^S>\) thus in \(<\text{LT}(P(\delta))>\) and we repeat the construction for \(\delta^{T'}\). We get finally:

\[
\delta^T = f_0 - \sum_{\substack{T'' < T \\text{T'' semi standard}}} a_{T''} \delta^{T''}, \ f_0 \in P(\delta).
\]

This implies that

\[
\delta^T + \sum_{T''} a_{T''} \delta^{T''} \in P(\delta).
\]
But this is impossible, since the set \(\{ \delta^T, T \text{ semi standard} \} \) is a basis for \(\mathbb{C}[\delta^{(p)}_{i_1, \ldots, i_p}]/P(\delta) \) Thus:

\[
< LT(P(\delta)) > = \text{span}(NS)
\]

Moreover, since any monomial in \(f_S \) is either \(\delta^S \) or \(a_T \delta^T \) with \(T \) semi standard, it can not be divisible by a \(\delta^{S'} \) with \(S' \neq S, S' \) non semi standard with two columns. This proves our theorem.

The usual basis of the shape algebra \(S^\bullet(V) \) by semi standard Young tableaux can thus be described as a natural basis of a the quotient of the polynomial algebra \(\mathbb{C}[\delta^{(p)}_{i_1, \ldots, i_p}] \) by the ideal of Plücker relations, if we put the ordering \(< \) on the monomials \(\delta^T \).

Especially, we can write the action of any element of the Lie algebra \(\mathfrak{sl}(n) \) on any polynomial function with variables \(\delta^{(p)}_{i_1, \ldots, i_p} \), for instance, if

\[
X_\alpha = E_{ij} \quad i \neq j
\]

then \(X_\alpha \) acts on \(\mathbb{C}[\delta^{(p)}_{i_1, \ldots, i_p}] \) as the derivation:

\[
X_\alpha f = \frac{d}{ds} \big|_{s=0} f(\exp s^t X_\alpha) = \sum_{\{i_1, \ldots, i_p\} \cap \{i, j\} = \{j\}} \pm \delta^{(p)}_{\{i_1, \ldots, i_p\}\cup\{i\}} \frac{\partial f}{\partial \delta^{(p)}_{i_1, \ldots, i_p}}.
\]

Finally, the Cartan algebra acts on \(f \) as the derivation

\[
H f = \frac{d}{ds} \big|_{s=0} f(\exp s^t H) = \sum (\theta_{i_1} + \cdots + \theta_{i_p}) \delta^{(p)}_{i_1, \ldots, i_p} \frac{\partial f}{\partial \delta^{(p)}_{i_1, \ldots, i_p}}
\]

if \(H = \begin{bmatrix} \theta_1 & 0 & \cdots & 0 \\ 0 & \theta_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta_n \end{bmatrix} \). This action defines the action on the quotient by \(P(\delta) \), since we have a Groebner basis for the ideal \(P(\delta) \), the quotient action on the basis of semi standard Young tableaux reduces to compute the canonical form of the polynomial \(X_\alpha f \) or \(H f \), this is easy to do with usual computer software.

As an illustration, we gives a graphic description of the \(N^+ \) part of the adjoint representation \(S^{\omega_1 + \omega_2}(\mathbb{C}^3) \) of \(\mathfrak{sl}(3) \) (see [K] for similar presentation).
If we change our Weyl chamber, we can repeat this construction, defining first anti semi standard tableaux as Young tableaux with entries strictly decreasing in each column and decreasing in each row. Then we define an ordering on the set of variables $\delta_{i_1 \ldots i_s}$ by putting: $\delta^{(1)} > \delta^{(2)} > \ldots$ and $\delta^{(p)}_{i_1 \ldots i_p} > \delta^{(p)}_{j_1 \ldots j_p}$ if $i_p = j_p \ldots i_{r+1} = j_{r+1}$ and $i_r > j_r$.

Let T be an anti semi standard tableau. We can associate to T a monomial:

$$\delta^T = \delta^{(c_1)}_{a_1 \ldots a_1} \delta^{(c_2)}_{a_2 \ldots a_2} \ldots$$

and exchange the variables corresponding to columns with equal height, then we get another Young tableau T' such that $\delta^T = \delta^{T'}$.

For instance:

$$T = \begin{array}{ccc}
4 & 2 & \\
3 & 1 & \\
\end{array}, \quad \delta^{(2)}_{13} \delta^{(2)}_{21} = \delta^{(2)}_{12} \delta^{(2)}_{34}, \quad T' = \begin{array}{ccc}
1 & 3 & \\
2 & 4 & \\
\end{array}$$
or:

$$T = \begin{array}{ccc}
4 & 1 & \\
3 & 2 & \\
\end{array}, \quad \delta^{(3)}_{432} \delta^{(1)}_{31} = -\delta^{(3)}_{234} \delta^{(1)}_{12}, \quad T' = \begin{array}{ccc}
2 & 1 & \\
3 & 4 & \\
\end{array}$$

Unfortunately, if $n > 2$, T' is generally not semi standard ($T = \begin{array}{ccc}
3 & 1 & \\
2 & & \\
\end{array}, \quad T' = \begin{array}{ccc}
2 & 1 & \\
3 & & \\
\end{array}$) thus our change of ordering on the variables δ defines a new Groebner basis on the shape algebra if $n > 2$.

Now, the symmetry τ corresponds to the following operation on tableaux since:

$$\tau(\delta^{(s)}_{i_1 \ldots i_s}) = \varepsilon^n \delta^{(s)}_{n+1-i_1 \ldots n+1-i_s}$$

We can define τ directly on Young tableaux by replacing each entry a_j^i of T by $n + 1 - a_j^i$. The anti semi standard tableaux are exactly the image by τ of the semi standard ones.

6. THE REDUCED SHAPE ALGEBRA: ALGEBRAIC PRESENTATION

Let V be a complex vector space with dimension n. From now one, we shall study a quotient of the shape algebra $\mathbb{S}^\bullet(V)$.
Definition 2.
Let R^+ be the ideal in the shape algebra generated by $v^\lambda - 1$:
\[R^+ = \langle v^\lambda - 1 = (e_1)^{a_1}(e_1 \wedge e_2)^{a_2} \cdots (e_1 \wedge \cdots \wedge e_{n-1})^{a_n} - 1, \quad \forall \lambda = \sum a_j \omega_j \rangle \]
\[= \langle e_1 - 1, e_1 \wedge e_2 - 1, \ldots, e_1 \wedge \cdots \wedge e_{n-1} - 1 \rangle. \]
We call reduced shape algebra and write $S^\bullet_{\text{red}}(V)$ the quotient $S^\bullet(V)/R^+$. This reduced shape algebra is no more a natural $\mathfrak{sl}(n)$ module but the ideal R is invariant under the action of the solvable group HN^+ consisting of upper triangula matrices in $SL(n)$. Thus the quotient is a HN^+ module too. The action of the Cartan group H is still diagonal, let study the N^+ (or n^+) action on $S^\bullet_{\text{red}}(V)^+$. Proposition 2.
Denote π^+ the canonical projection from $S^\bullet(V)$ to $S^\bullet_{\text{red}}(V)^+$. Then
- i) The space of vectors $u \in S^\bullet_{\text{red}}(V)^+$ such that $n^+u = 0$ is $C1$.
- ii) $S^\bullet_{\text{red}}(V)^+$ is an indecomposable module.
- iii) For any λ, the n^+ module $S^\lambda(V)$ is equivalent to the submodule $\pi^+(S^\lambda(V))$ of $S^\bullet_{\text{red}}(V)^+$.
- iv) For any $\lambda > \mu$, $\pi^+(S^\mu(V))$ is a submodule of $\pi^+(S^\lambda(V))$.

Proof
i) We know (\cite{V} p. 317 for instance) that, in each $S^\lambda(V)$, the space of vectors u such that $n^+u = 0$ is exactly Cv^λ. This gives i) in the quotient $S^\bullet_{\text{red}}(V)^+$.

ii) Let u be a non zero vector in $S^\bullet_{\text{red}}(V)^+$, the n^+ module W generated by u is finite dimensional since u is a finite sum of image through π^+ of weights vectors. The n^+ action is locally nilpotent on $S^\bullet(V)$, thus it is also locally nilpotent on $S^\bullet_{\text{red}}(V)^+$, as a consequence W contains a non trivial vector annihilated by n^+. This vector is a multiple of 1. Thus any n^+ submodule of $S^\bullet_{\text{red}}(V)^+$ contains 1, $S^\bullet_{\text{red}}(V)^+$ is an indecomposable n^+ module.

iii) Let π^+_λ be the restriction of π^+ to $S^\lambda(V)$. It is a morphism of n^+ modules. If its kernel is not vanishing, thanks to Lie theorem, the n^+ module $\text{Ker}(\pi^+_\lambda)$ contains a non zero vector annihilated by n^+, this vector is a multiple of v^λ, but $\pi^+(v^\lambda) = 1 \neq 0$. Thus π^+_λ is an isomorphism of n^+ modules.
The relation $\lambda > \mu$ is equivalent to say there is ν dominant integral weight such that $\lambda = \mu + \nu$. In $\mathfrak{S}^\bullet(V)$, the multiplication by ν^ν send $\mathfrak{S}^\mu(V)$ into $\mathfrak{S}^\lambda(V)$. In the quotient, this operation becomes the identity mapping: $\pi^+(uv^\nu) = \pi^+(u)$ for any u in $\mathfrak{S}^\mu(V)$.

Similarly, we define $\mathfrak{S}^\bullet_{\text{red}}(V)^-$ as the quotient of $\mathfrak{S}^\bullet(V)$ by the ideal R^- generated by $\{e_n \wedge \cdots \wedge e_{n+1-s} - 1, s = 1, \ldots, n-1\}$. It is a HN^- module. If we denote π^- the canonical morphism, we get the same proposition with "$-$" instead of "$^+$" everywhere.

7. The reduced shape algebra, Geometrical presentation

As above, we can write everything in term of the functions $\delta_{i_1, \ldots, i_p}^{(p)}$.
If $R(\delta)^+$ is the ideal generated by $\delta_{1, \ldots, p}^{(p)} - 1$, we get:

$$\mathfrak{S}^\bullet_{\text{red}}(V)^+ \approx \mathbb{C}[SL(n, \mathbb{C})]^N^+ / R(\delta)^+ = \mathbb{C}[\delta_{i_1, \ldots, i_p}^{(p)}] / R(\delta)^+ + P(\delta).$$

Suppose now f is a polynomial function, invariant with respect to the right multiplication by N^+. Then f is characterized by its restriction to the dense open subset of $SL(n)$ of the matrices g such that $\delta_{1, \ldots, p}^{(p)}(g) \neq 0$ for all p. On this set, by the use of the Gauss method, we can write:

$$g = \begin{bmatrix}
g'_{11} & 0 & 0 & \cdots & 0
g'_{21} & g'_{22} & 0 & \cdots & 0
g'_{31} & g'_{32} & g'_{33} & \cdots & 0
g'_{n1} & g'_{n2} & g'_{n3} & \cdots & g'_{nn}
g'_{n+1} & \cdots & \cdots & \cdots & \cdots
\end{bmatrix}
= \begin{bmatrix}
1 & a_{12} & a_{13} & \cdots & a_{1n}
0 & 1 & a_{23} & \cdots & a_{2n}
0 & 0 & 1 & \cdots & a_{3n}
0 & 0 & 0 & \cdots & 1
\end{bmatrix}.$$

With, for all $k \geq j$:

$$g'_{jk} = \frac{\delta_{1,2,\ldots,k-1,j}^{(k)}(g)}{\delta_{1,2,\ldots,k-1}^{(k-1)}(g)}.$$
By N^+ right invariance, we get

$$f(g) = \frac{1}{\prod (\delta^{(j)}_{1,...,j}(g))^{b_j}} \Phi(\delta^{(k)}_{1,2,...,k-1,j}(g), \delta^{(j)}_{1,...,j}(g))$$

$$= \frac{1}{\prod (\delta^{(j)}_{1,...,j}(g))^{b_j}} \sum_{c_1,...,c_{n-1}} \Phi_{c_1,...,c_{n-1}}(\delta^{(k)}_{1,2,...,k-1,j}(g)) \prod_j \left(\delta^{(j)}_{1,...,j}(g) - 1 \right)^{c_j}$$

$$= \frac{1}{\prod (\delta^{(j)}_{1,2,...,j}(g))^{b_j}} \sum_{c_1,...,c_{n-1}} F_{c_1,...,c_{n-1}}(g) \prod_j \left(\delta^{(j)}_{1,...,j}(g) - 1 \right)^{c_j}.$$

By definition, the functions $\Phi_{c_1,...,c_{n-1}}$ and $F_{c_1,...,c_{n-1}}$ are polynomial, $F_{c_1,...,c_{n-1}}$ is right invariant by N^+ and

$$F_{0,...,0} - f = \left(\prod (\delta^{(j)}_{1,...,j})^{b_j} - 1 \right) f - \sum_{c_1+\cdots+c_{n-1}>0} F_{c_1,...,c_{n-1}} \prod_j \left(\delta^{(j)}_{1,...,j} - 1 \right)^{c_j}$$

belongs to $R(\delta)^+$. For any g in N^- and any $k \geq j$, we have $\delta^{(k)}_{1,...,k-1,j}(g) = g_{jk}$ and $f(g) = \Phi_{0,...,0}(g_{jk}) = F(g)$. The restriction of the function f to N^- characterizes the function $\Phi_{0,...,0}$ thus the value of $F_{0,...,0}$ and $F_{0,...,0}$ and f are in the same class modulo $R(\delta)^+$. Conversely, any polynomial function Φ on N^+ defines a function F in $\mathbb{C}[SL(n, \mathbb{C})]^N$. The restriction mapping is an isomorphism of algebra between $S^\bullet_{\text{red}}(V)^+$ and $\mathbb{C}[N^-]$.

Remark 3.

In this presentation of $S^\bullet_{\text{red}}(V)^+$, the N^+ action on the elements of the reduced shape algebra is very natural since it is just:

$$(g.f)(g') = f(\iota.gg'), \ g \in N^+, \ g' \in N^-, \ f \in \mathbb{C}[N^-].$$

But since $\mathbb{C}[\delta_{i_1,...,i_j}^{(j)}]/R(\delta)^+$ is simply $\mathbb{C}[\delta_{i_1,...,i_j}^{(j)}(i_j > j)]$, we have also:

$$S^\bullet_{\text{red}}(V)^+ \simeq \mathbb{C}[\delta_{i_1,...,i_j}^{(j)}(i_j > j)]/P_{\text{red}}(\delta)^+.$$

Where $P_{\text{red}}(\delta)^+$ is the ideal generated by the Plücker relations but where we replace the function $\delta^{(j)}_{1,...,j}$ by 1.
Especially, if $X_\alpha = E_{ij}$ $i < j$ then X_α acts on $\mathbb{C}[\delta^{(p)}_{i_1,\ldots,i_p}(i_p > p)]$ as the derivation:

$$X_\alpha f = \frac{d}{ds}|_{s=0}f(exp \ s^t X_\alpha)$$

$$= \pm \frac{\partial f}{\partial \delta^{(p)}_{\{1,\ldots,p\}\setminus \{i\}\cup \{j\}}} + \sum_{\{i_1,\ldots,i_p\}\setminus \{i,j\}=\{j\}} \pm \delta^{(p)}_{\{1,\ldots,i_p\}\setminus \{j\}\cup \{i\}} \frac{\partial f}{\partial \delta^{(p)}_{i_1,\ldots,i_p}}.$$

The same construction for $\mathcal{S}_{red}^\bullet(V^-)$ gives:

$$R^-(\delta) = \theta(R^+(\delta))$$

is the ideal generated by the set $\{\delta_{n,\ldots,(n-p+1)}^{(p)} - 1\}$, $\mathcal{S}_{red}^\bullet(V^-)$ is the quotient of $\mathbb{C}[SL(n)]^{N^+}$ (which is stabilized by θ) by $R^-(\delta)$. The Gauss formula allows to write:

$$g = \left[\begin{array}{ccc} g'_{11} & \cdots & g'_{1n} \\ \vdots & \ddots & \vdots \\ g'_{nn} & 0 & 1 \end{array} \right] \left[\begin{array}{c} 1 \\ \vdots \\ 0 \end{array} \right]$$

if $\delta_{n,\ldots,(n-p+1)}^{(p)}(g) \neq 0$ for any p.

And any f is modulo $R(\delta)^-$ characterized by its restriction to:

$$\left\{ \left[\begin{array}{ccc} g_{ij} & 1 \\ \vdots & \ddots & \vdots \\ 1 & 0 \\ \end{array} \right] \right\} = N^+ \Omega = \left\{ \left[\begin{array}{ccc} 1 & g'_{ij} \\ \vdots & \ddots & \vdots \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} 0 \\ \vdots \\ \varepsilon_n \end{array} \right] \right\}$$

Finally, if we put $f(n^+ \Omega) = h(n^+)$, we get $\mathcal{S}_{red}^\bullet(V^-) \simeq \mathbb{C}[N^+]$ with the natural N^- action:

$$(g.h)(g_1) = h(\varepsilon g g_1).$$

Theorem 3.

The reduced shape algebras are isomorphic to the algebra of polynomial functions on $N^-(N^+)$, then:

$$\mathcal{S}_{red}^\bullet(V)^+ \simeq \mathbb{C}[N^-] = \mathbb{C}[n^-]$$

$$\mathcal{S}_{red}^\bullet(V)^- \simeq \mathbb{C}[N^+] = \mathbb{C}[n^+]$$.
The last assertions of the theorem comes from the observation that the exponential mapping from the Lie algebra $\mathfrak{n}^-/(\mathfrak{n}^+)$ onto the Lie group $N^-/(N^+)$ is a polynomial bijection with inverse polynomial too.

8. The reduced shape algebra: Combinatorial presentation

8.1. Super and quasi standard Young tableaux.

In order to describe the restricted shape algebra and the restricted Plücker relations, we have to perform the quotient of the preceding construction by the ideal generated by \(\{ \delta_{12...s} - 1 \} \). On the Young tableaux this operation can be viewed as an ‘extraction’ of trivial columns.

A column whose height is \(c \) in a tableau is trivial if its entries are 1, 2, ..., \(c \), a Young tableau \(T \) is trivial if each column of \(T \) is trivial. Now let \(T \) be a Young tableau (semi standard or not), we define the extraction of trivial columns in \(T \) in the following manner:

Denote \(a_{ij} \) the entries of \(T \) (\(a_{ij} \) is in the row \(i \) and the column \(j \), for any \(j \), \(a_{ij} < a_{(i+1)j} \) and the heights \(c_1, \ldots, c_t \) of \(T \) are decreasing). We say that the tableau \(T \) is reducible if

- there is a column \(j \) whose the \(s \) top entries are 1, 2, ..., \(s \) (\(a_{ij} = i \) for \(1 \leq i \leq s \)),
- on the right of the column \(j \), there is a column \(j' \) with height \(s \) in \(T \) (there is \(j' \geq j \) such that \(c_{j'} = s \)),
- for any \(k > j \), if \(c_{k-1} > s \) and \(c_k \geq s \), \(a_{s+1,k-1} > a_{s,k} \).

Let \(T \) be a reducible Young tableau, let \(j \) the smallest index and \(s \) the largest index for which the above conditions hold. Let us suppress the trivial top part of the column \(j \) and shift to the left the right parts of the \(s \) first rows (i.e. we shift to the left every \(a_{ik} \) with \(1 \leq i \leq s \) and \(j < k \)), then we get a Young tableau \(R_1 \): the entries of \(R_1 \) are \(b_{k\ell} \) with

\[
 b_{k\ell} = \begin{cases}
 a_{k(\ell+1)} & \text{if } 1 \leq k \leq s \text{ and } j \leq \ell \leq t - 1 \\
 a_{k\ell} & \text{if } s < k \text{ or } \ell < j.
\end{cases}
\]

If the number of column of \(T \) was \(t \), then \(R_1 \) has \(t - 1 \) column, more precisely if the heights of the columns of \(T \) were: \((c_1, \ldots, c_t) \) and the columns of heights \(s \) had the number \(j', \ldots, j'' \), then the heights of the columns of \(R_1 \) are \((c'_1, \ldots, c'_{t-1}) \) with

\[
 c'_k = \begin{cases}
 c'_k = c_k & \text{if } 1 \leq k < j'' \\
 c'_k = c_{k+1} & \text{if } j'' \leq k \leq t - 1.
\end{cases}
\]
Simultaneously, we define L_1 as the Young tableau with only one trivial column with entries $1, \ldots, s$.

Now if R_1 is reducible, we repeat the above operation, extracting a second trivial column from R_1, getting two Young tableaux a trivial one with two columns L_2 and a Young tableau R_2 with $t - 2$ columns.

Repeating this construction, after m steps, we get a trivial Young tableau L_m with m column and a Young tableau R_m with $t-m$ columns.

This construction stops when the Young tableau R_m is not reducible we say R_m is irreducible and call R_m the residue of T.

Definition 3. (Super, left and right Young tableaux)

A super Young tableau is a pair $S = (L, R)$ of two Young tableaux, the left one L is a trivial Young tableau, the right one, R is an irreducible Young tableau. L or R can be the empty tableau without any column.

Our construction defines a mapping f (the extraction mapping) from the set \mathcal{Y} of Young tableaux into the set \mathcal{SY} of super young tableaux $f(T) = S = (L, R)$.

If λ is the sequence of the heights of the column of T: $\lambda = (c_1 \leq \cdots \leq c_t)$ and $\mu = (c'_1 \leq \cdots \leq c'_\ell)$ and $\nu = (c''_1 \leq \cdots \leq c''_{\ell'})$ the corresponding sequence for L and R (one of these sequences can be empty), then μ and ν are two disjoint subsequences of λ and λ is the ‘union’ of μ and ν: we refine the sequence λ by putting together the elements of μ and ν and ordering them in a decreasing sequence.

Starting with an irreducible Young tableau R, we can insert to it any family of trivial columns, say $\{D_1, \ldots, D_\ell\}$, getting a new tableau T. We insert these column in the following way: if the height of D_i is d_i, we insert D_1, \ldots, D_i such that any column of T, after D_i has height strictly less then d_i, the columns of T before D_i are the columns of R with length at least d_i, with their ordering and the column D_j ($j < i$). Then T is a Young tableau. Of course, if $\ell > 0$, T is reducible.

Let us try to extract a trivial column from T. Among the new column, the first one is D_1 with height d_1. In T this column is the column p. Suppose the first trivial column extracted from T is the s
top elements of the column \(j \), with \(j < p \). Since \(R \) is irreducible, there is a \(k > j \) such that \(c_{k-1}^R > s \), \(c_k^R \geq s \) and \(a_{s+1,k-1}^R \leq a_{s,k}^R \) (we denote \(c_k^R \) the height of the column \(k \) and \(a_{i,j}^R \) the \(i,j \)-entry in \(R \)). We choose the smallest such \(k \). Since we can now extract the trivial column from \(T \), there is, in \(T \), at least one new column, say \(D \), between the two columns \(k-1, k \) in \(R \), which are now columns \(k_1, k_2 \) in \(T \). We choose for \(D \) the last one: \(D \) is the column \(k_2-1 \) in \(T \). The height of \(D \) is \(c_{T_k_2-1}^T = s + 1 \leq a_{s+1,k-1}^R \leq a_{s,k}^R = a_{s,k_2}^T \).

We cannot extract the trivial column consisting of the \(s \) top elements of the column \(j \), with \(j < p \). Of course, we can extract all the column \(p \) of \(T \). Thus, in the computing of \(f(T) \), the first step is just to eliminate the column \(D_1 \) from \(T \), repeating this construction, we get \(f(T) = (L, R) \) where \(L \) is the trivial tableau \((D_1, \ldots, D_l) \). We proved that \(f \) is a surjective mapping by defining a mapping \(h \) from \(SY \) to \(Y \) such that \(f \circ h(L, R) = (L, R) \).

Definition 4. (Quasi standard tableaux)

A super Young tableau \(S = (L, R) \) is said quasi-standard if its right tableau \(R \) is semistandard.

A Young tableau \(T \) is said quasi-standard if it is irreducible and semistandard.

Let us denote by \(QSY \) (resp. \(QY \)) the set of quasi standard super Young tableaux (resp. quasi standard Young tableaux). Denote \(SE_M \) the set of semistandard Young tableaux.

Lemma 1. (\(f \) is a bijection from \(SE_M \) onto \(QSY \))

The mapping \(f \), when restricted to \(SE_M \) is a one-to-one onto mapping from \(SE_M \) onto \(QSY \).

Proof

First it is clear that if \(T \) is semistandard, then each tableau in the sequence \(R_1, \ldots, R_m \) defined above is still semistandard, then \(f \) is a map from \(SE_M \) to \(QSY \).

Now let \(S = (L, R) \) be an element of \(QSY \). Denote the rows of \(L \) by \((L_1', \ldots, L_u') \), their lengths being \(\ell_1', \ldots, \ell_u' \). Similarly, denote \((L_1'', \ldots, L_v'') \) the rows of \(R \), their lengths being \(\ell_1'', \ldots, \ell_v'' \). We define the new tableau \(T = g(S) \) as the tableau with the row \(i \) contains (from
left to right) ℓ'_i entries i, then the ℓ''_i entries of the row i of R. In fact, T is a Young tableau since if $a^T_{i,j}$ is an entry of T, it is either i or an entry of R ($a^T_{i,j} = a^R_{i,j-\ell'_i}$ if $a^R_{i,s}$ are the entries of R). In any case, $a^T_{i,j} \geq i$.

If $a^T_{i,j} = i$, then $a^T_{i,j} = i < i + 1 = a^T_{i+1,j}$. If $a^T_{i,j} = a^R_{i,j-\ell'_i}$ since $\ell'_i \geq \ell'_{i+1}$, $a^T_{i+1,j} = a^R_{i+1,j-\ell'_{i+1}}$ and $a^T_{i,j} = a^R_{i,j-\ell_i} < a^R_{i+1,j-\ell_i} \leq a^R_{i+1,j-\ell'_{i+1}} = a^T_{i+1,j}$.

T is semistandard: by construction each row in T is a increasing sequence of entries. g is a map from QSY to SEM.

The map g is the inverse mapping of f. Indeed if T is semistandard, if a column C of T begins by a trivial part, then all the columns before C begin with the same trivial part and suppressing the top of the first column or the top of C is the same operation, thus to construct the sequence R_1, \ldots, R_m, we just have to consider the first column at each step.

Starting with $T = g(S)$, we can extract at each step a trivial column having the height of the corresponding column of L, but no more, since R is irreducible. Thus $f \circ g(S) = S$, for any $S \in QSY$.

Conversely, starting with a semistandard T, we build first $f(T) = (L, R)$ and by construction the rows of L are the left part of the rows of T, thus $g \circ f(T) = T$.

8.2. Quasi standard Young tableaux and Groebner basis.
In this section we shall repeat the construction of section 3 but for the ideal $R(\delta)^+$ and the quasi standard Young tableaux.

First, we choose the following elimination order on the variables δ: defining the degree $\text{deg}(\delta^{(s)}_{i_1, \ldots, i_s})$ as 1 if $i_s > s$ ($\delta^{(s)}_{i_1, \ldots, i_s}$ is not trivial) and 0 if $i_s = s$ ($\delta^{(s)}_{i_1, \ldots, i_s}$ is trivial), the degree of δ^T is the sum of degree of each variables and $T > T'$ if and only if:

$$\begin{cases}
\text{deg}(\delta^T) > \text{deg}(\delta^{T'}) \\
\text{or} \\
\text{deg}(\delta^T) = \text{deg}(\delta^{T'}) \text{ and } T > T' \text{ for the preceding ordering.}
\end{cases}$$

Now we look for the leading terms of elements of $R(\delta)^+$, for this ordering. We saw that the leading terms of elements of $P(\delta)$ for the preceding ordering were non semistandard monomials.
Let T be a non quasi standard tableau.

Case 1: T is non semi standard.

Then T contains a non semistandard tableau with two columns T^0: $\delta^T = \delta^U \delta^{T^0}$. For T^0, we saw there is a Plücker relation P_{T^0} in $P(\delta)$ whose leading term for the ordering of section 3 was T^0.

Case 1.1: T^0 contains a trivial column C_i, since T^0 is non semistandard, it is its second column. $\delta_{T^0} = \delta_{U \delta_{T^0}}$. For T^0, we saw there is a Plücker relation P_{T^0} in $P(\delta)$ whose leading term for the ordering of section 3 was T^0.

Thus the relation P_{T^0} has the following form:

$$P_{T^0} = \delta^{T^0} - \sum_{A \subseteq \{a_1, \ldots, a_c\}} \pm \delta^{(s)}_{A \cup \{b_{j+1}, \ldots, b_s\}} \delta^{(c)}_{\{a_1, \ldots, a_c\} \setminus A \cup \{b_1, \ldots, b_j\}}$$

If a tableau S in this relation contains a trivial column, i.e $S = C_1 C_2$ with C_1 trivial, we replace S by C_2 since

$$\delta^S - \delta^{C_2} = V_s \delta^{C_2}.$$

Repeating this operation, we get an element

$$P_{T^0}' = \delta^{T^0} - \sum_{S < T^0} \pm \delta^{(S)}.$$

Case 2: T is semi standard.

If T has only one column, this column is trivial T is the leading term of some $P_T = \delta^T - 1$ in $R(\delta)^+$. Since T is semi standard the construction of the super Young tableau $f(T)$ begins with the extraction of the top s elements $1, \ldots, s$ of the first column of T. Let us look to the two first columns of T, C_1^T and
By hypothesis, $\delta C_1^T = \delta_{1,\ldots,s,a_{s+1},\ldots,a_{c_1}}^{(c_1)}$, $\delta C_2^T = \delta_{b_1,\ldots,b_s,b_{s+1},\ldots,b_{c_2}}^{(c_2)}$ and $b_s < a_{s+1}$.

Let us define ∂T as the tableau with the following first columns $C_1^{\partial T}$ and $C_2^{\partial T}$:

\[\delta C_1^{\partial T} = \delta_{b_1,\ldots,b_s,a_{s+1},\ldots,a_{c_1}}^{(c_1)}, \quad \delta C_2^{\partial T} = \delta_{1,\ldots,s,b_{s+1},\ldots,b_{c_2}}^{(c_2)}; \]

the other columns of ∂T being $C_i^{\partial T} = C_i^T$ ($i \geq 3$). Let us write the Plücker relation corresponding to these two columns and s:

\[\delta T - \delta \partial T - \sum_{A \subset \{1,\ldots,s,a_{s+1},\ldots,a_{c_1}\}} \sum_{A \neq \{1,\ldots,s\}} \sum_{A \neq \{1,\ldots,s\}} \pm \prod_{i \geq 3} \delta C_i^{T} \delta_{A \cup \{b_{s+1},\ldots,b_{c_2}\}}^{(c_2)} \delta_{\{1,\ldots,s,a_{s+1},\ldots,a_{c_1}\} \setminus A \cup \{b_1,\ldots,b_s\}}^{(c_1)} \]

\[= \delta T - \delta \partial T - \sum_A \pm \delta T_A. \]

Each term δT_A in the sum has a second column containing a_i with $i > s$, thus $a_i \geq a_{s+1} > b_s$ and $\delta_{A \cup \{b_{s+1},\ldots,b_{c_2}\}}^{(c_2)} < \delta C_i^T$, $\delta T_A < \delta T$.

If $c_2 = s$, $deg(\delta \partial T) < deg(\delta T)$, δT is the leading term of an element in $R(\delta)^+$. If $c_2 > s$, we repeat this construction for ∂T, forgetting its first column. We get the following element of $R(\delta)^+$:

\[\delta \partial T - \delta \partial^2 T - \sum_{B \subset \{1,\ldots,s,b_{s+1},\ldots,b_{c_2}\}} \sum_{B \neq \{1,\ldots,s\}} \sum_{B \neq \{1,\ldots,s\}} \pm \prod_{i \geq 4} \delta C_i^{T} \delta_{B \cup \{c_{s+1},\ldots,c_{c_3}\}}^{(c_3)} \delta_{\{1,\ldots,s,b_{s+1},\ldots,b_{c_2}\} \setminus B \cup \{c_1,\ldots,c_3\}}^{(c_2)} \delta C_i^{\partial T} \]

\[= \delta \partial T - \delta \partial^2 T - \sum_B \delta T_B. \]

Each term δT_B in the sum has a third column containing b_i with $i > s$, thus $b_i \geq b_{s+1} > c_s$ and $\delta_{B \cup \{c_{s+1},\ldots,c_{c_3}\}}^{(c_3)} < \delta C_3^T$, $\delta T_B < \delta T$.

Repeating this operation we finally get an element in $R(\delta)^+$ of the form:

\[\delta T - \delta \partial^k T - \sum_j \delta T_j \]

with $\delta T_j < \delta T$ for all j, the column $k + 1$ of $\partial^k T$ is trivial, $deg(\delta \partial^k T) < deg(\delta T)$ and δT is the leading term of an element of $R(\delta)^+$.

Remark 4.
The tableau $\partial^k T$ considered here is (perhaps up a reordering of the columns with height s) the tableau $h(C, R_1)$ if C is the first trivial column:

$$\delta^C = \delta^{(s)}_{1 \ldots s}$$

and R_1 the first step in the process of trivial columns extraction from T.

We got an element of $R(\delta)^+$:

$$\delta^T - \delta^{R_1} - \sum \pm \delta^{T_j} (R_1 < T, T_j < T)$$

If R_1 is quasi standard, we stop the process. If it is not the case, we continue the extraction, getting new tableaux $T'_k < R_1 < T$. Finally we get: $T = g(L, R)$ with $L \neq \emptyset$ and $\delta^T - \delta^R - \sum a_k \delta^{T_k}$ belongs to $R(\delta)^+$. If R is quasi standard $R < T$, $T_k < T$. We repeat this operation for each non quasi standard T_k; getting an element $P_T = \delta^T - \delta^R - \sum a_k \delta^{T_k}$ with $T_k < T$, T_k quasi standard, $P(T)$ in $R(\delta)^+$. We proved that each non quasi standard Young tableau is the leading term of an explicit element P_T of $R(\delta)^+$. Let us now prove that any quasi standard Young tableau is not a leading term of an element in $R(\delta)^+$. Let λ be a highest weight for $\mathfrak{sl}(n)$ and V^λ the corresponding simple module. We saw that V^λ is naturally a sub-module of $S^*_\text{red}(V)$. More precisely, V^λ is the space spanned by the classes modulo $R(\delta)^+$ of the monomials δ^T for all Young tableau T of shape λ. A basis for V^λ is given by the classes of the monomials δ^T for T semi standard with shape λ in the quotient $\mathbb{C}[\delta]/R(\delta)^+$. Let us consider the sub-space W^λ of V^λ spanned by the quasi standard and semi standard Young tableau of shape λ. A basis of V^λ is given by the classes of δ^T, T semi standard with shape λ modulo $R(\delta)^+$. Either T is quasi standard and (δ^T) is a basis of W^λ or $T = g(L, R)$, we saw $\delta^T - \delta^R = \sum a_k \delta^{T_k}$ modulo $R(\delta)^+$ with T_k quasi standard $T_k < T$ and R is quasi standard with shape $\mu \prec \lambda$. This proves that V^λ is a subspace of $\bigoplus_{\mu \preceq \lambda} W^\mu$. But since g is injective,

$$\dim V^\lambda = \sum_{\mu \preceq \lambda} \dim(W^\mu) \text{ thus } V^\lambda = \bigoplus_{\mu \preceq \lambda} W^\mu.$$
T_j modulo $R(\delta)^+$. Finally we get an element in $R(\delta)^+$ of the form $T + \sum_j a_j \delta^{T_j}$, with any T_j quasi standard and strictly smaller than T. The shape μ_j of T_j is thus smaller than λ. But this is impossible since the sum $\sum_{\mu \leq \lambda} W^{\mu}$ is direct.

Finally, as in section 3, for each non quasi standard Young tableau, we get an element in $R(\delta)^+$ of the form:

$$P_{red}^T = \delta^T - \sum_j a_j \delta^{T_j}$$

with δ^{T_j} strictly smaller than δ^T and quasi standard.

Let T be a non quasi standard tableau with shape λ. We shall say that T is minimal if it does not contain any non quasi standard tableau with shape $\mu < \lambda$. For instance a semi standard non quasi standard tableau with one column or with 2 columns without trivial column are minimal.

If $n \leq 3$ there are no other semi standard, minimal, non quasi standard tableaux, but if $n \geq 4$ there is semi standard, minimal, non quasi standard tableau with 3 columns for instance:

$$\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & \\
\end{array}$$

Theorem 4. The Groebner basis

The set

$$G = \{P_{red}^T, \ T \text{ semi standard minimal non quasi standard or}$$

$$T \text{ non semi standard with 2 columns, without any trivial column} \}$$

is the reduced Groebner basis of $R(\delta)^+$ for our ordering.

Proof:

We saw that

$$< LT(R(\delta)^+) >= \{\delta^T, T \text{ non quasi standard}\}.$$

If T contains a trivial column C, δ^T is divisible by δ^C and C is minimal semi standard non quasi standard.

If T is non semi standard, it contains a non semi standard tableau S with 2 columns, without any trivial column.
If T does not contain any trivial column and is semi standard then by definition it contains a minimal non quasi standard tableau S but S is by construction semi standard.

Thus

$$<LT(G) > = <LT(R(\delta)^+) > .$$

Now each monomial in any P_{red}^T of G which are not the leading term, are $a_T \delta^{T'}$ with T' quasi standard.

But if $S \subset T'$, then S is also quasi standard. Indeed, S is semi standard, suppose S non quasi standard then S contains a first column

$$C_1 = (1, 2, \ldots, s, a_{s+1}, \ldots, a_{C_1}),$$

other column

$$C_i = (b_1, b_2, \ldots, b_s, b_{s+1}, \ldots)$$

a last column

$$C_t = (c_1, c_2, \ldots, c_t)$$

with $t \leq s$.

We can extract $(1, 2, \ldots, s)$ from S.

Now, we can refind T from S by adding some columns before C_1, between columns of S or after C_1. But T is semi standard. By considering each case for these new columns, we directly see that the top $(1, 2, \ldots, s)$ of columns C_1 can still be extracted from T which is impossible since T is quasi standard.

Thus any monomial of P_{red}^T is not divisible by the leading term of another P_{red}^T.

This means that G is the reduced Groebner basis of $R(\delta)^+$ for our ordering.

The same result holds with the anti standard tableau, image by τ of the quasi standard tableaux.

The anti quasi standard tableaux can be defined exactly as the quasi standard tableaux by extracting ”trivial” top of columns like:

$$\begin{array}{c}
\hline
n \\
\hline
n - 1 \\
\vdots \\
n - s \\
\hline
\end{array}$$

They are still the image by τ of the quasi standard tableaux.
Remark 5.

In fact, if \(n \leq 3 \), the quasi standard Grobner basis is invariant under the action of \(\theta \). Similarly, with the symmetry \(\tau \), if we identify \(\tau(T) \) with \(\pm T' \) with \(T' \) the Young tableau such that \(\delta \tau(T) = \delta T' \), then \(T \) quasi standard implies \(T' \) quasi standard. In the study of \(\mathfrak{sl}(4) \) below, we shall see this no more true for \(n > 3 \).

Let us now picture the adjoint representation of \(\mathfrak{sl}(3) \) in \(\mathbb{S}_{\text{red}}^+ \) equipped with its Groebner basis:
and the same representation in $\mathbb{S}_r^{-}_{red}$ equipped with its Groebner basis is:
We resume our construction by the two following diagrams:

\[A^\bullet(V) = \mathbb{C}[V \oplus (V \wedge V) \oplus \cdots \oplus (V \wedge \cdots \wedge V)] \]

\[\downarrow \]

\[S^\bullet(V) = \mathbb{C}[V \oplus \cdots \oplus V^{n-1}] / P \]

\[\pi^- \searrow \pi^+ \]

\[\mathbb{C}[V \oplus \cdots \oplus V^{n-1}] / (P + R^-) \mapsto S^\bullet_{red} \mapsto \mathbb{C}[V \oplus \cdots \oplus V^{n-1}] / (P + R^+) \]

and:

\[\theta \searrow \]

\[\mathbb{C}[[\delta_{i_1, \ldots, i_s}]_{i_1 > \cdots > i_s}] / P(\delta) = \mathbb{C}[SL(n)]^{N^+} / P(\delta) \]

\[= \mathbb{C}[[\delta_{i_1, \ldots, i_s}]_{i_1 > \cdots > i_s}] / P(\delta) \]

\[Vect(antisemistandard) = Vect(semistandard) \]

\[\nearrow \]

\[\mathbb{C}[N^-] / (P(\delta) + R(\delta)^-) \simeq \mathbb{C}[SL(n)]^{N^-} / (P(\delta) + R(\delta)^+) \]

\[\mathbb{C}[[\delta_{i_1, \ldots, i_s}]_{i_1 < \cdots < i_s}] / P_{red}(\delta)^- = \mathbb{C}[[\delta_{i_1, \ldots, i_s}]_{i_1 > \cdots > i_s}] / P_{red}(\delta)^- \]

\[Vect(antiquasistandard) = Vect(quasistandard) \]

9. The \textit{sl}(2) Case

9.1. Representations of \textit{sl}(2).

The \textit{sl}(2)-simple modules are characterized by a highest weight \(a \). More precisely, the basis of \textit{sl}(2) is:

\[X_\alpha = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad H_\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Y_\alpha = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}. \]

If \(a \) is a positive integer, the simple module \(\pi^a \) acting on the space \(V^a \) is \(a + 1 \)-dimensional, with a basis \(v_n \) (\(0 \leq n \leq a \)) and the matrices of
the action are:

\[
\pi^a(X_\alpha) = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
& & \ddots & \ddots \\
0 & & & 0
\end{bmatrix},
\]

\[
\pi^a(H_\alpha) = \begin{bmatrix}
a & 0 & 0 & 0 \\
0 & a - 2 & 0 & 0 \\
& & \ddots & \ddots \\
0 & & & -a
\end{bmatrix},
\]

\[
\pi^a(Y_\alpha) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
& & \ddots & \ddots \\
0 & & & 1
\end{bmatrix}.
\]

There is only one fundamental representation, associated to the weight \(\omega_1\). We realize it in the space generated by the functions \(\delta^{(1)}_1(g) = g_{11}, \delta^{(1)}_2(g) = g_{21}\). The other representations are realized on the space of homogeneous polynomial functions of degree \(a\) in these variables.

9.2. **Shape and reduced shape algebra.**

There are no Plücker relation between \(g_{11}\) and \(g_{22}\), thus the shape algebra is isomorphic to the algebra

\[
A^\bullet(V) = \mathbb{C}[g_{11}, g_{21}] \simeq S(V).
\]

The reduced shape algebra is the quotient by the ideal generated by \(g_{11} - 1\). Let us put:

\[
n^- = \left\{ \begin{bmatrix} 0 & 0 \\ x & 0 \end{bmatrix} \right\}, \quad N^- = exp(n^-) = \left\{ \begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix} \right\}.
\]

Then:

\[
S^\bullet_{red}(V)^+ = \mathbb{C}[\delta^1_2] = \mathbb{C}[X],
\]

The \(X_\alpha\) acts on a polynomial function as the operator:

\[
X_\alpha = \frac{\partial}{\partial X}.
\]

We realize the \(\mathfrak{sl}(2)\)-diamond cone as the half line of the entire nodes \(0, 1, \ldots, a, a + 1, \ldots\), at each node \(n\), we put the quasi standard Young tableau \(\begin{array}{c} 2 \\ \ldots \\ 2 \end{array}\) or the monomial \(X^n\). We have an explicit basis for
the representation of N^+ on the diamond cone defined by the action of X_α, pictured by the graph:
For any $a \geq 0$, we define the diamond D_a as the graph generated by X^a, the vector space V^a as the vector space with basis the nodes of D_a.

We saw that the anti semi standard (resp. the anti quasi standard) basis can be identified with the semi standard (resp. the quasi standard) basis. More precisely, a being fixed, the action of τ on V^a, denoted by $\tau^{(a)}$ is defined as:

$$\tau^{(a)}(X^n) = X^{a-n}$$

We can see $\tau^{(a)}$ as the succession of the operations:

- Completion of the tableau T ($\text{compl}[2\ldots2] = [1\ldots1][2\ldots2]$)
- Action of τ ($\tau(\text{compl}[2\ldots2]) = [2\ldots2][1\ldots1]$)
- Reordering ($\text{ord}(\tau(\text{compl}[2\ldots2])) = [1\ldots1][2\ldots2]$)
- Cancelling the trivial columns $[1]\ldots[1]$...

We put:

$$Y_\alpha(X^n) = (\tau^{(a)} \circ X_\alpha \circ \tau^{(a)})(X^n) = (a-n)X^{n+1}$$

and $H_\alpha = [X_\alpha, Y_\alpha]$ or:

$$H_\alpha(X^n) = [(n+1)(a-n) - n(a-n+1)]X^n = (a-2n)X^n.$$

We complete the diamond D_a by adding the edges corresponding to the Y_α-action.

10. The $\text{sl}(3)$ case

10.1. Representations of $\text{sl}(3)$.

The \(\mathfrak{sl}(3) \)-simple modules are characterized by their highest weight. More precisely, the basis of \(\mathfrak{sl}(3) \) is:

\[
X_\alpha = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_\beta = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X_{\alpha+\beta} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
\]

\[
H_\alpha = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad H_\beta = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},
\]

\[
Y_\alpha = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Y_\beta = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad Y_{\alpha+\beta} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.
\]

The simple modules have non multiplicity free weights. We can describe then by using the reduced shape algebra. The fundamental modules are three dimensional, they are realized on the space \(V_{\omega_1} = \mathbb{C}^3 \) and \(V_{\omega_2} = \wedge^2 \mathbb{C}^3 \).

For each pair of natural integers, there is an unique irreducible representation \(\pi(a, b) \) with highest weight \(a\omega_1 + b\omega_2 \).

10.2. Shape and reduced shape algebra.

Now we have just one Plücker relation: let us put as above:

\[
\delta^{(1)}_1 = g_{11}, \quad \delta^{(1)}_2 = g_{21}, \quad \delta^{(1)}_3 = g_{31}
\]

\[
\delta^{(2)}_{12} = g_{11}g_{22} - g_{12}g_{21}, \quad \delta^{(2)}_{13} = g_{11}g_{32} - g_{12}g_{31}, \quad \delta^{(2)}_{23} = g_{21}g_{32} - g_{22}g_{31}.
\]

Then the unique Plücker relation is:

\[
\delta^{(1)}_1 \delta^{(2)}_{23} - \delta^{(1)}_2 \delta^{(2)}_{13} + \delta^{(1)}_3 \delta^{(2)}_{12} = 0.
\]

The shape algebra is the quotient of the algebra of polynomial functions in these 6 variables by the above relation.

The reduced shape algebra is obtained by imposing \(\delta^{(1)}_1 = 1 \) and \(\delta^{(2)}_{12} = 1 \).

An explicit description of a basis for this module \(V^{(a,b)} \) and the \(X_\eta, Y_\eta, H_\eta \) actions on this basis can be found in [W] for instance. More precisely, Wildberger defines a diamond cone \(D \) in \(\mathbb{R}^3 \) and an infinite dimensional vector space \(V \) with basis:

\[
B = \{ e_{m,n,\ell}, \ (m, n, \ell) \in D \subset \mathbb{R}^3 \}
\]

\[
= \{ e_{m,n,\ell}, \ m, n \geq 0, \ -n \leq \ell \leq 2m - n, \ m - 2n \leq \ell \leq m, \ \ell \equiv \max(m,n) \mod 2 \}.
\]
He defines the action of X_η on these vectors $e_{m,n,\ell}$ and the irreducible module $V^{(a,b)}$ with highest weight $a\varpi_1 + b\varpi_2$ is the module generated by the X_η action on the highest weight vector $e_{a+b,a+b,a-b}$.

A basis for this module is an explicit subset $B^{(a,b)}$ of B. There is a symmetry $\tau_{(a,b)}$ on $V^{(a,b)}$, $\tau_{(a,b)}(B^{(a,b)}) = B^{(a,b)}$ and the Y_η, H_η actions are defined as:

$$Y_\eta = \tau_{(a,b)} \circ X_\eta \circ \tau_{(a,b)}, \quad H_\eta = [X_\eta, Y_\eta]$$

see [W] for explicit formulas.

Let us put:

$$n^- = \begin{cases} [0 \ 0 \ 0] \\ x \ 0 \ 0 \\ u \ y \ 0 \end{cases}, \quad N^- = e^x(n^-) = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ u + \frac{xy}{2} & y & 1 \end{pmatrix}.$$

Then:

$$\delta_2^{(1)} = X, \quad \delta_3^{(1)} = \frac{xy}{2} + u = U, \quad \delta_{13}^{(2)} = Y, \quad \delta_{23}^{(2)} = \frac{xy}{2} - u = E$$

and

$$S^*_{red}(V)^+ \simeq \mathbb{C}[x, y, u]$$

$$= \mathbb{C}[\delta_2^{(1)}, \delta_3^{(1)}, \delta_{13}^{(2)}, \delta_{23}^{(2)}]/(\delta_3^{(1)} + \delta_{23}^{(2)} - \delta_2^{(1)} \delta_{13}^{(2)})$$

$$= \mathbb{C}[X, Y, U, E]/(U + E - XY).$$

The quasi standard ordering on variables is:

$$\delta_3^{(1)} < \delta_2^{(1)} < \delta_{23}^{(2)} < \delta_{13}^{(2)}, \text{ or } U > X > E > Y.$$

Then the leading term for this basis is $\delta_2^{(1)} \delta_{13}^{(2)} = XY$, thus we get the basis:

$$\big\{ (\delta_3^{(1)})^u (\delta_{23}^{(2)})^e (\delta_2^{(1)})^x = U^u E^e X^x, \quad u, \ e, \ x \in \mathbb{N} \big\}$$

$$\bigcup \big\{ (\delta_3^{(1)})^u (\delta_{23}^{(2)})^e (\delta_2^{(1)})^y = U^u E^e Y^y, \quad u, \ e, \ y \in \mathbb{N}, \ y > 0 \big\}.$$

Now the action of X_α, X_β and $X_{\alpha+\beta}$ on these polynomials are the following:

$$X_\alpha = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial u}, \quad X_\beta = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial u}, \quad X_{\alpha+\beta} = \frac{\partial}{\partial u},$$
or

\[X_\alpha(X) = 1, \quad X_\alpha(Y) = 0, \quad X_\alpha(U) = 0, \quad X_\alpha(E) = Y, \]
\[X_\beta(X) = 0, \quad X_\beta(Y) = 1, \quad X_\beta(U) = X, \quad X_\beta(E) = 0, \]
\[X_{\alpha+\beta}(X) = 0, \quad X_{\alpha+\beta}(Y) = 0, \quad X_{\alpha+\beta}(U) = 1, \quad X_{\alpha+\beta}(E) = -1. \]

Then the \(X_\eta \) acting by derivations on the polynomial functions \(\phi \), we
refind the diamond cone, the diamond \(D^{(a,b)} \), the vector space \(V^{(a,b)} \), the
symmetry \(\tau^{(a,b)} \) and the complete diamond graphs on \(D^{(a,b)} \) described
in \([W]\) with the identification:

\[
\begin{align*}
\epsilon_{m,n,t} &= U^{n-m-t} E^{m-t} X^n - X^{-n} & \text{if } m > n \\
\epsilon_{m,n,t} &= U^{m+n-t} E^{m-t} Y^n & \text{if } m = n \\
\epsilon_{m,n,t} &= U^{m+t} E^{m-n+t} Y^n - X^n & \text{if } m < n,
\end{align*}
\]

our basis coincide with the basis \(B \) given by Wildberger, for \(\mathbb{S}^{\bullet}_{\text{red}}(V)^+ \).

10.3. \(X_\eta \) action, Symmetry and \(Y_\eta \) action.

With our notations, we have the following identification between
column and variables \(X, U, Y, E \):

\[
\begin{align*}
X &= \delta_2^{(1)}(g) \quad \rightarrow \quad 2 \\
U &= \delta_3^{(1)}(g) \quad \rightarrow \quad 3 \\
Y &= \delta_{13}^{(2)}(g) \quad \rightarrow \quad 1 \quad 3 \\
E &= \delta_{23}^{(2)}(g) \quad \rightarrow \quad 2 \quad 3
\end{align*}
\]

The unique reduced Plücker relation is:

\[
\begin{bmatrix} 3 \\ 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \\ 2 \\ 3 \end{bmatrix} = 0
\]

For instance the \(X_\alpha \) action on our basis is exactly the Wildberger’s one:

\(U^a E^e X^x \)	\(e U^{a+1} E^{e-1} X^{x-1} + (e + x) U^a E^e X^{x-1} \) (\(x > 0 \))
\(U^a E^e Y^y \)	\(e U^a E^{e-1} Y^{y+1} \) (\(y \geq 0 \))
or

\[
\begin{array}{|c|c|}
\hline
\epsilon_{m,n,\ell} & \frac{m-n+1}{2} \epsilon_{m-1,n,\ell+1} + (m-n+\frac{m-n+1}{2}) \epsilon_{m-1,n,\ell-1} \quad (m > n) \\
\epsilon_{m,n,\ell} & (m-n+\frac{n+\ell}{2}) \epsilon_{m-1,n,\ell} \quad (n > m) \\
\hline
\end{array}
\]

and the \(X_\beta\) action:

\[
\begin{array}{|c|c|}
\hline
U^u E^x X^x & u U^{u-1} E^x X^{x-1} \quad (x > 0) \\
U^u E^y Y^y & u U^{u-1} E^x Y^{y-1} + y U^u E^y Y^y \quad (y \geq 0) \\
\hline
\end{array}
\]

or

\[
\begin{array}{|c|c|}
\hline
\epsilon_{m,n,\ell} & (n-\frac{m-n+1}{2}) \epsilon_{m,n-1,\ell} \quad (m > n) \\
\epsilon_{m,n,\ell} & (n-m+\frac{n+\ell}{2}) \epsilon_{m,n-1,\ell+1} + (n+\frac{n+\ell}{2}) \epsilon_{m,n-1,\ell-1} \quad (n \geq m) \\
\hline
\end{array}
\]

For \(\mathfrak{sl}(3)\), our symmetry \(\tau\) on quasi standard Young tableaux induces a very simple transformation on \(V^{(a,b)}\).

Starting with a quasi standard Young tableau \(T\) with \(a'\) columns of height 1 and \(b'\) columns of height 2, \(a' \leq a\) and \(b' \leq b\), we complete \(T\) by adding \(a-a'\) trivial columns \([1]^{a-a'}\) and \(b-b'\) trivial columns \([2]^{b-b'}\). For instance:

\[
a = 5, \ b = 3 \ T = \begin{array}{ccc}
2 & 2 & 3 \\
3 & 3 & 3
\end{array}, \ compl(T) = \begin{array}{ccccc}
1 & 2 & 2 & 1 & 1 \\
2 & 3 & 3 & 3
\end{array}
\]

Then we compute \(\tau(\text{compl}(T))\), we reorganize the columns as above and finally we suppress the trivial columns, on our example:

\[
\tau(\text{compl}(T)) = \begin{array}{cc}
3 & 2 \\
2 & 2
\end{array}
\begin{array}{cc}
2 & 2 \\
3 & 3
\end{array}
\begin{array}{c}
2 \\
1
\end{array}
= \begin{array}{cc}
1 & 2 \\
2 & 2
\end{array}
\begin{array}{cc}
1 & 2 \\
2 & 3
\end{array}
\begin{array}{c}
3 \\
3
\end{array}
\approx \begin{array}{ccc}
2 & 2 & 2 \\
3 & 3 & 3
\end{array}
\]

The resulting quasi standard tableau will be denoted \(\tau^{(a,b)}(T)\). Explicitly we get with the polynomial notations:

\[
\tau^{(a,b)}(U^u E^x X^x) = U^{a-(x+u)} E^{b-u} X^x \\
\tau^{(a,b)}(U^u E^x X^x) = U^{a-u} E^{b-(y+u)} Y^y
\]
or:

\[
\tau^{(a,b)}(\epsilon_{m,n,\ell}) = \epsilon_{a+b-n,a+b-m,a-b+m-n-\ell}
\]
We refine the symmetry, thus the Y_η and H_η actions of Wildberger ([W]).

11. The $\mathfrak{sl}(4)$ case

11.1. Representations of $\mathfrak{sl}(4)$.
As above, we have simple roots α, β and γ, with:

$$ X_\alpha = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_\beta = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_\gamma = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. $$

Moreover we have positive roots $\alpha + \beta$, $\beta + \gamma$ and $\alpha + \beta + \gamma$, with:

$$ X_{\alpha+\beta} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_{\beta+\gamma} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad X_{\alpha+\beta+\gamma} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. $$

We put $Y_\eta = {}^tX_\eta$ and

$$ H_\alpha = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad H_\beta = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad H_\gamma = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}. $$

The fundamental representations are 4 and 6 dimensional, they are associated to the fundamental highest weight ω_1 for the canonical representation on $V = \mathbb{C}^4$, ω_2 for the representation on $\wedge^2 V$ and ω_3 for the representation on $\wedge^3 V$. These fundamental representations are easy to describe, the reduction of the tensor product of any two of them is completely described in [FH]. Especially, we get the Plücker relations via this decomposition.

11.2. Shape and reduced shape algebra.
Now we have 10 Plücker relations: let us put as above:

$$ \delta_i^{(1)} = g_{i1}, \quad \delta_{ij}^{(2)} = \begin{bmatrix} g_{i1} & g_{i2} \\ g_{j1} & g_{j2} \end{bmatrix}, \quad \delta_{ijk}^{(3)} = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} \\ g_{j1} & g_{j2} & g_{j3} \\ g_{k1} & g_{k2} & g_{k3} \end{bmatrix}. $$
Then we have 4 Plücker relations between the $\delta^{(1)}$ and $\delta^{(2)}$:

$$
\begin{align*}
\delta^{(1)}_1 \delta^{(2)}_{23} - \delta^{(1)}_2 \delta^{(2)}_{13} + \delta^{(1)}_3 \delta^{(2)}_{12} &= 0, \\
\delta^{(1)}_2 \delta^{(2)}_{34} - \delta^{(1)}_3 \delta^{(2)}_{24} + \delta^{(1)}_4 \delta^{(2)}_{23} &= 0, \\
\delta^{(1)}_1 \delta^{(2)}_{24} - \delta^{(1)}_2 \delta^{(2)}_{14} + \delta^{(1)}_4 \delta^{(2)}_{13} &= 0, \\
\delta^{(1)}_1 \delta^{(2)}_{24} - \delta^{(1)}_3 \delta^{(2)}_{14} + \delta^{(1)}_4 \delta^{(2)}_{12} &= 0.
\end{align*}
$$

There are also 4 relations between the $\delta^{(2)}$ and $\delta^{(3)}$:

$$
\begin{align*}
\delta^{(2)}_{14} \delta^{(3)}_{234} - \delta^{(2)}_{24} \delta^{(3)}_{134} + \delta^{(2)}_{34} \delta^{(3)}_{124} &= 0, \\
\delta^{(2)}_{12} \delta^{(3)}_{134} - \delta^{(2)}_{13} \delta^{(3)}_{124} + \delta^{(2)}_{14} \delta^{(3)}_{123} &= 0, \\
\delta^{(2)}_{12} \delta^{(3)}_{234} - \delta^{(2)}_{23} \delta^{(3)}_{124} + \delta^{(2)}_{24} \delta^{(3)}_{123} &= 0, \\
\delta^{(2)}_{13} \delta^{(3)}_{234} - \delta^{(2)}_{23} \delta^{(3)}_{124} + \delta^{(2)}_{34} \delta^{(3)}_{123} &= 0.
\end{align*}
$$

And one between the $\delta^{(2)}$:

$$
\delta^{(2)}_{12} \delta^{(2)}_{23} - \delta^{(2)}_{13} \delta^{(2)}_{24} + \delta^{(2)}_{14} \delta^{(2)}_{23} = 0.
$$

And finally one between the $\delta^{(1)}$ and the $\delta^{(3)}$:

$$
\delta^{(1)}_1 \delta^{(3)}_{234} - \delta^{(1)}_2 \delta^{(3)}_{134} + \delta^{(1)}_3 \delta^{(3)}_{124} - \delta^{(1)}_4 \delta^{(3)}_{123} = 0.
$$

The shape algebra is the quotient of the algebra of polynomial functions in these 14 variables by the 10 above relations.

The reduced shape algebra is obtained by imposing $\delta^{(1)}_1 = 1$, $\delta^{(2)}_{12} = 1$ and $\delta^{(3)}_{123} = 1$.

Let us put:

$$
n^- = \begin{pmatrix}
0 & 0 & 0 & 0 \\
x & 0 & 0 & 0 \\
u & y & 0 & 0 \\
w & v & z & 0
\end{pmatrix}
$$

and

$$
N^- = exp(n^-) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
u + \frac{xy}{2} & y & 1 & 0 \\
\frac{w + \frac{xy}{2} + \frac{zu}{2}}{2} + \frac{xyz}{6} & v + \frac{yz}{2} & z & 1
\end{pmatrix}.
$$

Then we get:

$$
\delta^{(1)}_1 = 1, \quad \delta^{(1)}_2 = X, \quad \delta^{(1)}_3 = \frac{xy}{2} + u = U, \quad \delta^{(1)}_4 = w + \frac{xy}{2} + \frac{zu}{2} + \frac{xyz}{6} = A.
$$
and
\[\delta^{(3)}_{123} = 1, \quad \delta^{(3)}_{124} = Z, \quad \delta^{(3)}_{134} = yz - \xi_2 = W, \quad \delta^{(3)}_{234} = \frac{xyz}{6} - \frac{xv}{2} - \frac{zu}{2} + w = C \]
and
\[\delta^{(2)}_{12} = 1, \quad \delta^{(2)}_{13} = Y, \quad \delta^{(2)}_{24} = \frac{xyz}{3} + \frac{xv}{2} - \frac{zu}{2} - w = D, \quad \delta^{(2)}_{34} = \frac{xy^2z}{12} + sv - yw = B. \]

Now:
\[S_{\text{red}}(V)^+ \simeq C[x, y, z, u, v, w] \]
\[= C[\delta^{(1)}_2, \ldots, \delta^{(1)}_4, \delta^{(2)}_{13}, \ldots, \delta^{(2)}_{34}, \delta^{(3)}_{124}, \ldots, \delta^{(3)}_{234}] / P_{\text{red}}(\delta)^+ \]
\[= C[X, Y, Z, U, E, W, V, A, C, D, B] / P_{\text{Pluck}} \]
where \(P_{\text{Pluck}} \) is the ideal generated by the 10 polynomials:
\[P_{\text{Pluck}} = \langle U - XY + E, D - XV + A, B - UV + YA, XB - UD + AE, B - YD + EV, C - XW_1 + UZ - A, V C - DW + PZ, W - YZ + V, C - EZ + D, YC - EW + B \rangle. \]

We chose the following ordering for our variables:
\[Z < W < C < Y < E < V < D < B < X < U < A. \]

Then the leading terms of this basis are:
\[XY, XV, UV, BX, YZ, EZ, YC, VC, XW, EV, UDW, UDY. \]

Now the basis of our space, i.e. the nodes of the \(\mathfrak{sl}(4) \)-diamond are monomials
\[X^x Y^y Z^z W^w V^v U^u E^e A^a C^c D^d B^b \]
with:
\[0 = xy = xv = uw = bx = yz = ez = yc = vc = xw = ev = udw = udy. \]

The action of our generators \(X_\alpha, X_\beta \) and \(X_\gamma \) on these polynomials are:
\[X_\alpha = \partial_x - \frac{y}{2} \partial_u + \left(\frac{yz}{12} - \frac{v}{2} \right) \partial_w, \]
\[X_\beta = \partial_y + \frac{x}{2} \partial_u - \frac{z}{2} \partial_v + \frac{xz}{6} \partial_w, \]
\[X_\gamma = \partial_z + \frac{y}{2} \partial_v + \left(\frac{xy}{12} + \frac{u}{2} \right) \partial_w. \]
Then we get:

\[X_\alpha(X) = 1, \quad X_\beta(X) = 0, \quad X_\gamma(X) = 0, \]
\[X_\alpha(Y) = 0, \quad X_\beta(Y) = 1, \quad X_\gamma(Y) = 0, \]
\[X_\alpha(Z) = 0, \quad X_\beta(Z) = 0, \quad X_\gamma(Z) = 1, \]
\[X_\alpha(U) = 0, \quad X_\beta(U) = X, \quad X_\gamma(U) = 0, \]
\[X_\alpha(E) = Y, \quad X_\beta(E) = 0, \quad X_\gamma(E) = 0, \]
\[X_\alpha(W) = 0, \quad X_\beta(W) = Z, \quad X_\gamma(W) = 0, \]
\[X_\alpha(V) = 0, \quad X_\beta(V) = 0, \quad X_\gamma(V) = Y, \]
\[X_\alpha(A) = 0, \quad X_\beta(A) = 0, \quad X_\gamma(A) = U, \]
\[X_\alpha(C) = W, \quad X_\beta(C) = 0, \quad X_\gamma(C) = 0, \]
\[X_\alpha(D) = V, \quad X_\beta(D) = 0, \quad X_\gamma(D) = V, \]
\[X_\alpha(B) = 0, \quad X_\beta(B) = D, \quad X_\gamma(B) = 0. \]

Thus the \(X_\eta \) for \(\eta \) simple are acting on our basis of the reduced shape algebra by giving linear combination with integral coefficients, indeed, we find first such a linear combination on \(\mathbb{Z} \) (even \(\mathbb{Z}^+ \)) coefficients but on monomials which are perhaps not all admissible, then we come back to admissible monomials, using the reduced Plücker relations, but these relations are with coefficients \(\pm 1 \), thus we finally get a combination of monomials in the basis with coefficients in \(\mathbb{Z} \).

11.3. Symmetry.

Now the symmetry \(\tau \) on Young tableaux does not induce a simple operation \(\tau^{(abc)} \) on the basis of the simple module \(V^{(abc)} \).

For instance the tableau

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

= \(ZU \) is an element of the basis of \(V^{(1,0,1)} \) (see fig.). Repeating the operation performed for \(\mathfrak{sl}(2) \) and
we get:
\[\text{compl} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \quad \tau(\text{compl} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}) = \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = - \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \]

but this tableau is not quasi standard: the extraction of the trivial top \(1\) of the first column is not trivial:

\[\tau^{(1,0,1)} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = - \begin{pmatrix} 2 & 3 \\ 4 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} \end{pmatrix} \]

or:

\[\tau^{(1,0,1)}(ZU) = -WX = -C - ZU + A \]

We prefer to keep the new Groebner basis to see \(\tau\) as a global change of basis inside the reduced shape algebra and to realize \(Y_{\tau_n} = \tau X_n \tau\) by using the two basis. For instance in \(V^{(101)}\) the basis is:

\[\{1, X, U, A, Z, W, C, WU, WA, CU, CA, CX, ZU, ZA, ZX\} \]

the image by \(\tau_{\text{compl}}\) of this basis is:

\[\{AC, UC, XC, C, WA, ZA, A, ZX, Z, X, 1, WX, W, WU\} \]

The matrix of \(Y_{\tau_n}\) on this new basis is exactly the matrix of \(X_n\) in the old one.

Here is the presentation for adjoint representation \(V^{(1,0,1)}\) of \(SL(4)\):
References

[ABW] D. Arnal, N. Bel Baraka, N. Wildberger “Quantum diamond modules of $SL(3)$”; submitted to International Journal of Algebra and Computation.

[CLO] D. Cox, J. Little, D. O’shea “Ideals, varieties, and algorithms”; Springer-Verlag, New York Inc. (1996).

[FH] W. Fulton, J. Harris “Representation theory”; Springer-Verlag, New York Inc. (1991).

[K] M. Kashiwara ”Bases cristallines des groupes quantiques”; Cours Specialiss, 9. Societ Mathematique de France, Paris (2002).

[Li] P. Littelmann “Crystal Graphs and Young Tableaux”; J. Algebra, vol. 175 (1995).

[LT] G. Lancaster, J. Towber “Representation-functors and flag-algebras for the classical groups”; J. Algebra, vol. 59 (1979).

[V] V.S. Varadarajan “Lie groups, Lie algebras, and their representations”; Springer-Verlag, New York ; Berlin (1984).

[W] N. Wildberger “Quarks, diamonds and representation of $sl(3)$”; submitted to Duke. Math. Journal.

Institut de Mathématiques de Bourgogne, UMR CNRS 5584, Université de Bourgogne, U.F.R. Sciences et Techniques B.P. 47870, F-21078 Dijon Cedex, France
E-mail address: Didier.Arnal@u-bourgogne.fr

Institut de Mathématiques de Bourgogne, UMR CNRS 5584, Université de Bourgogne, U.F.R. Sciences et Techniques B.P. 47870, F-21078 Dijon Cedex, France
E-mail address: Nadia.Bel-Baraka@u-bourgogne.fr

School of Mathematics, University of New South Wales, Sydney 2052, Australia
E-mail address: n.wildberger@unsw.edu.au