TORUS QUOTIENT OF RICHARDSON VARIETIES IN ORTHOGONAL AND SYMPLECTIC GRASSMANNIANS

ARPITA NAYEK AND S.K. PATTANAYAK

Abstract. For any simple, simply connected algebraic group G of type B, C and D and for any maximal parabolic subgroup P of G, we provide a criterion for a Richardson variety in G/P to admit semistable points for the action of a maximal torus T with respect to an ample line bundle on G/P.

Keywords: Schubert variety, Richardson variety, Semi-stable point, Line bundle.

2010 Mathematics Subject Classification: 14F15; 20G05; 22E45.

1. Introduction

For the action of a maximal torus T on the Grassmannian $G_{r,n}$, the GIT quotients have been studied by several authors. In [7] Hausmann and Knutson identified the GIT quotient of the Grassmannian $G_{2,n}$ by the natural action of the maximal torus with the moduli space of polygons in \mathbb{R}^3 and this GIT quotient can also be realized as the GIT quotient of an n-fold product of projective lines by the diagonal action of $PSL(2, \mathbb{C})$. In the symplectic geometry literature these spaces are known as polygon spaces as they parameterize the n-sides polygons in \mathbb{R}^3 with fixed edge length up to rotation. More generally, $G_{r,n}/T$ can be identified with the GIT quotient of $(\mathbb{P}^{r-1})^n$ by the diagonal action of $PSL(r, \mathbb{C})$ called the Gelfand-MacPherson correspondence. In [13] and [14] Kapranov studied the Chow quotient of the Grassmannians and he showed that the Grothendieck-Knudsen moduli space $\overline{M}_{0,n}$ of stable n-pointed curves of genus zero arises as the Chow quotient of the maximal torus action on the Grassmannian $G_{2,n}$.

Let G be a simply connected semi-simple algebraic group over an algebraically closed field K. Let T be a maximal torus of G and B be a Borel subgroup of G containing T. In [8] and [9], the parabolic subgroups P of G containing B are described for which there exists an ample line bundle \mathcal{L} on G/P such that the semistable points $(G/P)^{ss}_T(\mathcal{L})$ are the same as the stable points $(G/P)^s_T(\mathcal{L})$. In [25] Strickland reproved these results.

In [11], when G is of type A, P is a maximal parabolic subgroup of G and \mathcal{L} is the ample generator of the Picard group of G/P, it is shown that there exists unique minimal Schubert variety $X(w)$ admitting semistable points with respect to \mathcal{L}. For other types of classical groups the minimal Schubert varieties admitting semistable points were described in [12] and [21].
A Richardson variety X_w in G/P is the intersection of the Schubert variety X_v in G/P with the opposite Schubert variety X^v therein. For $G = SL_n$ and P a maximal parabolic in G a criterion for the Richardson varieties in G/P to have nonempty semistable locus with respect to an ample line bundle \mathcal{L} on G/P is given in [10]. In this paper, we give a criterion for a Richardson variety in G/P to have nonempty semistable locus with respect to the action of a maximal torus T on G/P, where G is of type B, C and D and P is a maximal parabolic subgroup in G.

The organisation of the paper is as follows. Section 2 consists of preliminary notions and some terminologies from algebraic groups and Geometric invariant theory. Section 3 gives a necessary condition for a Richardson variety to admit a semistable point. In section 4 we give a sufficient condition for a Richardson variety in type B and C to admit a semistable point and in section 5 a sufficient condition is given for type D.

2. Preliminaries and notation

In this section, we set up some notation and preliminaries. We refer to [3], [5], [6] and [24] for preliminaries in Lie algebras and algebraic groups. Let G be a semi-simple algebraic group over an algebraically closed field K. We fix a maximal torus T of G and a Borel subgroup B of G containing T. Let U be the unipotent radical of B. Let $N_G(T)$ (respectively, $W = N_G(T)/T$) be the normalizer of T in G (respectively, the Weyl group of G with respect to T). Let B^- be the Borel subgroup of G opposite to B determined by T. We denote by R the set of roots with respect to T and we denote by R^+ the set of positive roots with respect to B. Let U_α denote the one-dimensional T-stable subgroup of G corresponding to the root α and we denote U_α^* by the open set $U_\alpha \setminus \{\text{identity}\}$. Let $S = \{\alpha_1, \ldots, \alpha_l\} \subseteq R^+$ denote the set of simple roots and for a subset $I \subseteq S$ we denote by P_I the parabolic subgroup of G generated by B and $\{n_\alpha : \alpha \in I^c\}$, where n_α is a representative of s_α in $N_G(T)$. Let $W^I = \{w \in W : w(\alpha) \in R^+ \text{ for each } \alpha \in I^c\}$ and W_I be the subgroup of W generated by the simple reflections s_α, $\alpha \in I^c$. Then every $w \in W$ can be uniquely expressed as $w = w^Iw_I$, with $w^I \in W^I$ and $w_I \in W_I$. Denote by w_0 the longest element of W with respect to S. Let $X(T)$ (respectively, $Y(T)$) denote the group of all characters of T (respectively, one-parameter subgroups of T). Let $E_1 := X(T) \otimes \mathbb{R}$ and $E_2 = Y(T) \otimes \mathbb{R}$. Let $\langle \ldots \rangle : E_1 \times E_2 \to \mathbb{R}$ be the canonical non-degenerate bilinear form. Let $\{\lambda_j : j = 1, 2, \ldots, l\} \subset E_2$ be the basis of E_2 dual to S. That is, $\langle \alpha_i, \lambda_j \rangle = \delta_{ij}$ for all $1 \leq i, j \leq l$ and let $C := \{\lambda \in E_2|\langle \alpha, \lambda \rangle \geq 0 \forall \alpha \in R^+\}$. Note that for each $\alpha \in R$, there is a homomorphism $SL_2 \xrightarrow{\phi_{\alpha}} G$ (see [2, p.19]). We have $\hat{\alpha} : G_m \to G$ defined by $\hat{\alpha}(t) = \phi_{\alpha}(t \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix})$. We also have $s_\alpha(\chi) = \chi - \langle \chi, \hat{\alpha} \rangle \alpha$ for all $\alpha \in R$ and $\chi \in E_1$.

Set $s_i = s_{\alpha_i}$ for every $i = 1, 2, \ldots, l$. Let $\{\omega_i : i = 1, 2, \ldots, l\} \subset E_1$ be the fundamental weights; i.e. $\langle \omega_i, \hat{\alpha}_j \rangle = \delta_{ij}$ for all $i, j = 1, 2, \ldots, l$.

Let $X_w = BUwB/B$ (respectively, $X^v = B^-vB/B$) denote the Schubert variety corresponding to w (respectively, the opposite Schubert variety corresponding to v). Let $X_v := BuB/B \cap B^-vB/B$ denote the Richardson variety corresponding to v and w where $v \leq w$ in the Bruhat order. Such varieties were first considered by Richardson in [22].
who shows that such intersections are reduced and irreducible whereas the cell intersection \(C_w \cap C^n \) have been studied by Deodhar [1]. Richardson varieties have shown up in several contexts: such double coset intersections \(BwB \cap B^{-v}B \) first appear in [15], [16] and their standard monomial theory is studied in [17] and [2]. We refer to [18] for preliminaries in standard monomial theory.

We recall the definition of the Hilbert-Mumford numerical function and the definition of semistable points from [19]. We refer to [20] for notations in geometric invariant theory.

Let \(X \) be a projective variety with an action of a reductive group \(G \). A point \(x \in X \) is said to be semi-stable with respect to a \(G \)-linearized line bundle \(\mathcal{L} \) if there is a positive integer \(m \in \mathbb{N} \), and a \(G \)-invariant section \(s \in H^0(X, \mathcal{L}^m)^G \) with \(s(x) \neq 0 \).

Let \(\lambda \) be a one-parameter subgroup of \(G \). Let \(x \in \mathbb{P}(H^0(X, \mathcal{L})^* \) and \(\hat{x} = \sum_{i=1}^{r} v_i \), where each \(v_i \) is a weight vector of \(\lambda \) of weight \(m_i \). Then the Hilbert-Mumford numerical function is defined by

\[
\mu^\mathcal{L}(x, \lambda) := -\min\{m_i : i = 1, \ldots, r\}
\]

Then the Hilbert-Mumford criterion says that \(x \) is semistable if and only if \(\mu^\mathcal{L}(x, \lambda) \geq 0 \) for all one parameter subgroup \(\lambda \).

We recall the following result from [23] which will be used in section 3.

Lemma 2.1. Let \(G \) be a semisimple algebraic group, \(T \) be a maximal torus, \(B \) be a Borel subgroup of \(G \) containing \(T \) and \(\overline{\mathbb{C}} \) be as defined above.

(a) Let \(\mathcal{L} \) be a line bundle defined by the character \(\chi \in X(T) \). Then if \(x \in G/B \) is represented by \(bwB \), \(b \in B \) and \(w \in W \) is represented by an element of \(N \) in the Bruhat decomposition of \(G \) and \(\lambda \) is a one parameter subgroup of \(T \) which lies in \(\overline{\mathbb{C}} \), we have \(\mu^\mathcal{L}(x, \lambda) = -\langle w(\chi), \lambda \rangle \).

(b) Given any set \(S \) of finite number of one parameter subgroup \(\lambda \) of \(T \), there is an ample line bundle \(\mathcal{L} \) on \(G/B \) such that \(\mu^\mathcal{L}(x, \lambda) \neq 0 \) for all \(x \in G/B, \lambda \in S \).

In this paper, we present results for Richardson varieties in the orthogonal and symplectic Grassmannians. For any character \(\chi \) of \(B \), we denote by \(\mathcal{L}_\chi \), the line bundle on \(G/B \) given by the character \(\chi \). We denote by \((X_w^v)^{ss}_T(\mathcal{L}_\chi) \) the semistable points of \(X_w^v \) for the action of \(T \) with respect to the line bundle \(\mathcal{L}_\chi \). Using the notations from [2] we recall the following theorem which is needed in the proofs of the main theorems.

Theorem 2.2 ([2], Proposition 6). Let \(\lambda \) be a dominant weight. The restriction to \(X_w^v \) of the \(p_\pi \), where \(v \leq e(\pi) \leq i(\pi) \leq w \) form a basis of \(H^0(X_w^v, \mathcal{L}_\lambda) \).

In the rest of this section we recall Bruhat ordering in the Weyl groups of type \(B \), \(C \) and \(D \) and how it is related to the Bruhat order for the symmetric group \(S_n \).

Bruhat order for type \(B_n \) or \(C_n \): We consider \(\alpha_1 \) as special node of Dynkin diagram for type \(B \) or \(C \). So as a set of generators of Weyl group, we take \(S = \{s_1, s_2, \ldots, s_n\} \), where \(s_1 = (1, -1) \) and \(s_i = (i - 1, i) \forall 2 \leq i \leq n \) as in [1].
As in \cite{26} we use a formula for computing the length of $\sigma \in W$ given by

$$l_B(\sigma) = \frac{inv(\sigma) + neg(\sigma)}{2},$$

(2.1)

where \(inv(\sigma) = |\{(i, j) \in [-n, n] \times [-n, n] \setminus \{0\} : i < j, \sigma(i) > \sigma(j)\}|\) and \(neg(\sigma) = |\{i \in [1, n] : \sigma(i) < 0\}|\).

The following result gives a combinatorial characterization of the Bruhat order in B_n.

Lemma 2.3 (\cite{26}, Proposition 2.8). Let $\sigma, \tau \in W$. Then $\sigma \leq \tau$ in the Bruhat order of B_n if and only if $\sigma \leq \tau$ in the Bruhat order of the symmetric group $S_{[-n,n]\setminus\{0\}}$ where $S_{[-n,n]\setminus\{0\}}$ is the permutation group of integers $-n, -(n-1), \ldots, -1, 1, \ldots, n-1, n$.

Bruhat order for type D_n: As above we consider α_1 as special node for Dynkin diagram for type D. For a set of generators of Weyl group we have $S = \{s_1, s_2, \ldots, s_n\}$, where $s_1 = (1, -2)(-1, 2)$ and $s_i = (i-1, i)$ $\forall 2 \leq i \leq n$ as in \cite{1}.

As in \cite{26} we use a formula for computing the length of $\sigma \in W$ given by

$$l_D(\sigma) = \frac{inv(\sigma) - neg(\sigma)}{2},$$

(2.2)

where \(inv(\sigma)\) and \(neg(\sigma)\) are as defined above.

The following result gives a combinatorial characterization of the Bruhat order in D_n.

Lemma 2.4 (\cite{1}, Theorem 8.2.8). Let $\sigma, \tau \in W$. Then $\sigma \leq \tau$ in the Bruhat order of D_n if and only if

(i) $\sigma \leq_B \tau$ (Bruhat order in type B) and

(ii) $\forall a, b \in [1, n]$, if $[-a, a] \times [-b, b]$ is an empty rectangle for both σ and τ and $\sigma[-a - 1, b + 1] = \tau[-a - 1, b + 1]$, then \(\sigma[-1, b + 1] \equiv \tau[-1, b + 1] \mod 2\) where $\sigma[i, j] = |\{a \in [-n, n] : a \leq i \text{ and } \sigma(a) \geq j\}|$ for $i, j \in [-n, n]$.

3. A necessary condition for admitting semi-stable points

Let G be a simple simply-connected algebraic group and P_r be a parabolic subgroup of G corresponding to the simple root α_r. Let L_r be the line bundle on G/P_r corresponding to the fundamental weight ω_r. In this section, we provide a criterion for Richardson varieties in G/P_r to admit semistable points with respect to L_r. This criterion was proved for type A in \cite{10}.

Proposition 3.1. Let G be a simple simply connected algebraic group and let P_r be the maximal parabolic corresponding to the simple root α_r. Let L_r be the line bundle on G/P_r corresponding to the fundamental weight ω_r. Let $v, w \in W^{P_r}$. If $(X^v_w)^s(L_r) \neq \emptyset$ then $v(n\omega_r) \geq 0$ and $w(n\omega_r) \leq 0$.

Proof. Let $\chi = n\omega_r$. Assume that $(X^v_w)^s(L_\chi) \neq \emptyset$. Let $x \in ((BwP_r/P_r) \cap (B^-vP_r/P_r))^s(L_\chi)$. Then by Hilbert-Mumford criterion \cite{19} Theorem 2.1, we have $\mu^\chi(x, \lambda) \geq 0$ for all one parameter subgroups λ of T. Since $x \in ((BwP_r/P_r) \cap (B^-vP_r/P_r))^s(L_\chi)$, using
Lemma 2.1], we see that \(\mu^L(x, \lambda) = -\langle w(\chi), \lambda \rangle \) for every one parameter subgroup \(\lambda \) in the fundamental chamber associated to \(B \), and \(\mu^L(x, \lambda) = \mu^L(w_0x, w_0\lambda w_0^{-1}) = -\langle w_0v(\chi), w_0(\lambda) \rangle = -\langle v(\chi), \lambda \rangle \) for every one parameter subgroup \(\lambda \) of \(T \) in the Weyl chamber associated to \(B^- \). Since \(x \) is a semistable point, we have \(\mu^L(x, \lambda) \geq 0 \) for every one parameter subgroup \(\lambda \) of \(T \). Hence \(\langle w(\chi), \lambda \rangle \leq 0 \) for all \(\lambda \) in the Weyl chamber associated to \(B^- \). This implies that \(w(\chi) \leq 0 \) and \(v(\chi) \geq 0 \). \(\square \)

For \(G \) is of type \(A \) in [10] it is shown that the above conditions are also sufficient. For type \(B, C \) and \(D \) the example below shows that the conditions \(w(\chi) \leq 0 \) and \(v(\chi) \geq 0 \) are only necessary but not sufficient.

Example: Let \(G \) be either of type \(B_4 \) or \(C_4 \) and \(\chi = \omega_3 \). Let \(v = (1, 2, -3, 4) = s_3s_2s_1s_3 \) and \(w = (1, 4, -3, 2) = s_3s_2s_1s_3s_2s_3 \). We have \(v(\omega_3) = \alpha_4 \) and \(w(\omega_3) = -\alpha_3 \). The sections of \(L_\chi \) on \(X_w^v \) are of the form \(p_\chi P_w \) where \(m, n \in \mathbb{N} \). But, \(mw(\chi) + nw(\chi) \neq 0 \) for any \(m, n \in \mathbb{N} \). So these sections are not \(T \)-invariant. So the set \((X_w^v)^{ss}(L_\chi) \) is empty.

If \(G \) is of type \(D_4 \) and \(\chi = \omega_3 \), we take \(v = (-1, 4, -2, 3) = s_4s_1s_2s_3 \) and \(w = (-1, 2, -4, 3) = s_4s_3s_1s_2s_3 \). Here we have \(v(\omega_3) = \alpha_3 \) and \(w(\omega_3) = -\alpha_4 \). As in the last paragraph, here also we conclude that the set \((X_w^v)^{ss}(L_\chi) \) is empty.

In order to find a sufficient condition for the Richardson varieties to admit semistable points we first need to classify all \(v, w \in W^P \) satisfying the above conditions. Since \(\chi \) is a dominant weight we have \(w_1(\chi) \leq w_2(\chi) \) for \(w_1 \leq w_2 \). So we just need to describe all maximal \(v \) and minimal \(w \) such that \(v(\chi) \geq 0 \) and \(w(\chi) \leq 0 \). Note that for \(G \) is of type \(A \) since all the fundamental weights are minuscule the maximal \(v \) and minimal \(w \) satisfying the above conditions are unique (see [11]) but for other types this is not the case.

We conclude this section by introducing some notation here:

Notation: For \(s, t \in \mathbb{Z} \) such that \(s \leq t \) we set \(\{s, \ldots, t\} \). For \(p \in \mathbb{N} \) we set \(J_p = \{i_1, \ldots, i_p \} \) and \(\bar{J}_p = \{-i_p, -i_{p-1}, \ldots, -i_1 \} \). For a set \(S \subset \mathbb{Z} \), \(S \uparrow \) denotes the integers in the set \(S \) occurring in increasing order and \(S \downarrow \) denotes the integers in the set \(S \) occurring in decreasing order.

4. Type B and C

Now for \(G \) is of type \(B \) and \(C \) and for a fundamental weight \(\omega_r \), we are in a position to describe all the minimal \(w \in W^r \) and maximal \(v \in W^r \) such that \(v(\omega_r) \geq 0 \) and \(w(\omega_r) \leq 0 \).

Proposition 4.1. The set of all maximal \(v \in W^r \) such that \(v(\omega_r) \geq 0 \) for type \(B_n \) and \(C_n \) are the following:

(i) Let \(r = 1 \). Then

\[
v = \begin{cases}
(-(n-1), -(n-3), \ldots, -3, -1, 2, 4, \ldots, n-2, n), & \text{if } n \text{ is even} \\
(-(n-1), -(n-3), \ldots, -4, -2, 1, 3, 5, \ldots, n-2, n), & \text{if } n \text{ is odd}.
\end{cases}
\]
(ii) Let \(2 \leq r \leq n - 1\) and \((n + 1) - r = 2m\). For any \(i = (i_1, i_2, \ldots, i_m) \in J_{m,\lfloor 2, n\rfloor}\), there exists unique maximal \(v_i \in W_{Ir}\) such that \(v_i(\omega_r) = (\sum_{k=1}^{m} \alpha_{i_k})\). We have \(v_i = ([1, n] \setminus \{[\hat{i}], [\hat{i}']\}) \uparrow, -[\hat{i}', \hat{i}]\), where \(\hat{i}' = (i_1 - 1, i_2 - 1, \ldots, i_m - 1) \in J_{m,\lfloor 1, n-1\rfloor}\).

(iii) Let \(2 \leq r \leq n - 1\) and \((n + 1) - r = 2m + 1\). For any \(i = (i_1, i_2, \ldots, i_m) \in J_{m,\lfloor 3, n\rfloor}\), there exists unique maximal \(v_i \in W_{Ir}\) such that \(v_i(\omega_r) = (\alpha_1 + \sum_{k=1}^{m} \alpha_{i_k})\) (for \(B_n\)) and \(v_i(\omega_r) = (\frac{1}{2} \alpha + \sum_{k=1}^{m} \alpha_{i_k})\) (for \(C_n\)). We have \(v_i = ([1, n] \setminus \{[\hat{i}], [\hat{i}']\}) \uparrow, -[\hat{i}', 1, \hat{i}]\), where \(\hat{i}' = (i_1 - 1, i_2 - 1, \ldots, i_m - 1) \in J_{m,\lfloor 2, n-1\rfloor}\).

(iv) Let \(r = n\). Then \(v = (2, 3, 4, \ldots, n - 1, n, 1)\).

We prove this proposition after proving the following lemma.

Lemma 4.2. Let \(v, v_i\) are as defined in Proposition 4.1.

(i) Let \(r = 1\). Then \(w > v\) and \(l(w) = l(v) + 1\) iff \(w = s_kv\) where \(k\) takes the following values \(\{k \in \{2, 4, 6, \ldots, n - 2, n\}, \ n\ is\ even\ \} \cup \{k \in \{1, 3, 5, \ldots, n - 2, n\}, \ n\ is\ odd\}\).

(ii) Let \(2 \leq r \leq n - 1\). Then \(w > v_i\) and \(l(w) = l(v_i) + 1\) if and only if \(w\) is either \(s_{\alpha_i}v_i\) or \(s_{\alpha_i + \alpha_{i+1}}v_i\) for some \(i\) such that \(|i_t - i_{t+1}| \geq 3\) or \(s_{\alpha_i + \alpha_{i-1}}v_i\) for some \(i\) such that \(|i_t - i_{t-1}| \geq 3\).

(iii) Let \(r = n\). Then \(w > v\) and \(l(w) = l(v) + 1\) iff \(w = s_1v\).

Proof. We will prove this lemma for case (ii) and \((n + 1) - r = 2m\). For other cases the proof is similar.

Let \(w > v_i\) and \(l(w) = l(v_i) + 1\). Then \(w = s_{\beta}v_i\), for some positive root \(\beta\) such that height of \(\beta\) is less than or equal to 2. So, \(\beta\) is either \(\alpha_j\) or \(\alpha_j + \alpha_{j+1}\) for some simple root \(\alpha_j\).

Case 1: \(\beta = \alpha_j\).

If \(\beta = \alpha_i\), then \(s_{\beta}v_i(\omega_r) = \sum_{k \neq i} \alpha_{i_k} - \alpha_{i_t}\). Since \(s_{\beta}v_i(\omega_r) < v_i(\omega_r)\) and \(\omega_r\) is a dominant weight we have \(s_{\beta}v_i > v_i\). Since \(\beta\) is a simple root we have \(l(s_{\beta}v_i) = l(v_i) + 1\).

If \(\beta = \alpha_j, j \neq i\), then \(s_{\beta}v_i(\omega_r) \geq v_i(\omega_r)\). So \(s_{\beta}v_i \leq v_i\) in \(W_{Ir}\), a contradiction.

Case 2: \(\beta = \alpha_j + \alpha_{j+1}\).

If \(j = i_t\) and \(|i_t + 1 - i_t| \geq 3\) then \(s_{\beta}v_i(\omega_r) = \sum_{k \neq i_t} \alpha_{i_k} - \alpha_{i_t+1}\). So \(s_{\beta}v_i(\omega_r) < v_i(\omega_r)\) and hence \(s_{\beta}v_i > v_i\). Now we will show that \(l(s_{\beta}v_i) = l(v_i) + 1\) for this \(\beta\).

Note that \(s_{\beta}v_i = ([i, \hat{i}]\downarrow, [\hat{i}, \hat{i}']\uparrow, \{1, n\} \setminus \{[\hat{i}], [\hat{i}']\} \uparrow, -[\hat{i}', \hat{i}]\) where \(\hat{i}' = (i_1 - 1, i_2 - 1, \ldots, i_{t-1} - 1, i_t + 1, i_{t+1} - 1, \ldots, i_m - 1)\). In \(v_i\), the position of \(i_t + 1\) is right to the position of \(i_t - 1\) and left to \(i_t\) but in \(s_{\beta}v_i\) the position of \(i_t\) remains unchanged and the positions of \(i_t + 1\) and \(i_t - 1\) are interchanged. Similarly in \(v_i\) the position of \(-i_t - 1\) is right to \(-i_t\) and left to \(-i_t + 1\) but in \(s_{\beta}v_i\) the position of \(-i_t\) remains unchanged and the positions of \(-i_t - 1\) and \(-i_t + 1\) are interchanged. So \(inv(s_{\beta}v_i) = inv(v_i) + 2\). Hence \(l(s_{\beta}v_i) = l(v_i) + 1\).
If \(j = i_t \) and \(|i_{t+1} - i_t| = 2\) then since \(s_\beta v_\omega = v_\omega \), we have \(s_\beta v_\omega = v_\omega \) in \(W^r \), a contradiction.

If \(j, j + 1 \neq i_t \) then \(s_\beta v_\omega = v_\omega \). So \(s_\beta v_\omega \leq v_\omega \) in \(W^r \), a contradiction.

Case 3. \(\beta = \alpha_{j-1} + \alpha_j \). In this case the proof is similar to the previous case.

The converse part is clear from the definition of \(v_\omega \). \(\square \)

Proof of proposition 4.1: We prove case (ii). The proofs of other cases are similar.

We prove that for any \(\omega \in J_{m,[2,n]} \) there exists \(v_\omega \in W^r \) such that \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Note that,

\[
\omega_r = 2m(\alpha_1 + \alpha_2 + \cdots + \alpha_r) + \sum_{i=1}^{2m-1} (2m - i)\alpha_{r+i}, 2 \leq r \leq n - 1.
\]

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).

Now consider the partial order on \(J_{m,[2,n]} \), given by \((i_1, i_2, \ldots, i_m) \leq (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k, \forall k \) and \((i_1, i_2, \ldots, i_m) < (j_1, j_2, \ldots, j_m)\) if \(i_k \leq j_k \forall k \) and \(i_k < j_k \) for some \(k \). We will prove the theorem by induction on this order.

For \((j_1, j_2, \ldots, j_m) = (n - (2m - 2), n - (2m - 4), \ldots, n - 2, n)\), we have \(v_\omega = \sum_{k=1}^m \alpha_{i_k} \).
Proposition 4.3. The set of all minimal \(w \) in \(W^r \) such that \(w(\omega_r) \leq 0 \) for type \(B_n \) and \(C_n \) are the following:

(i) Let \(r = 1 \). Then

\[
w = \begin{cases}
 (n, -(n-2), \ldots, -2, 1, 3, \ldots, n-3, n-1), & \text{if } n \text{ is even} \\
 (n, -(n-2), \ldots, -3, -1, 2, 4, \ldots, n-3, n-1), & \text{if } n \text{ is odd.}
\end{cases}
\]

(ii) Let \(2 \leq r \leq n - 1 \). For \((n + 1) - r = 2m, i \in J_{m, [2, n]} \) and \(v_i(\omega_r) = \sum_{k=1}^{m} \alpha_{ik} \), we have \(w_\uparrow = s_{i_1} s_{i_2} \ldots s_{i_m} v_\uparrow = ([1, n]\{i, j\} \uparrow, -i, -j) \) where \(j' = (i_1 - 1, i_2 - 1, \ldots, i_m - 1) \). In this case \(w_\uparrow(\omega_r) = -v_i(\omega_r) \).

(iii) Let \(2 \leq r \leq n - 1 \). For \((n + 1) - r = 2m + 1, i \in J_{m, [3, n]} \) and \(v_i(\omega_r) = \alpha_1 + \sum_{k=1}^{m} \alpha_{ik} \), we have \(w_\uparrow = s_{i_1} s_{i_2} \ldots s_{i_m} v_\uparrow = ([1, n]\{i, j\} \uparrow, -i, -j) \), where \(j' = (i_1 - 1, i_2 - 1, \ldots, i_m - 1) \) \(J_{m, [2, n-1]} \). In this case also \(w_\uparrow(\omega_r) = -v_i(\omega_r) \).

(iv) For \(r = n \), \(w = (2, 3, \ldots, n - 1, n, 1) \).

Proof. For the proof of minimality of \(w \) refer to [12].

Proposition 4.4. Let \(v, w, v_\downarrow \), and \(w_\downarrow \) be as stated in Proposition 4.1 and Proposition 4.3 respectively.

(i) For \(2 \leq r \leq n - 1 \), \(X^w_{v_\downarrow} \) is nonempty if and only if \(|i_k - j_k| \leq 1 \) \(\forall 1 \leq k \leq m \).

(ii) For \(r = 1, n \), \(X^w_{v_\downarrow} \) is not empty for any \(v \) and \(w \).

Proof. We will prove this lemma for \(2 \leq r \leq n - 1 \) and \((n + 1) - r = 2m \). For other cases the proof is similar.

Let \(X^w_{v_\downarrow} \) be nonempty. So \(v_\downarrow < w_\downarrow \). Since \(l(v_\downarrow) = l(v_\downarrow) \) we have \(l(w_\downarrow) - l(v_\downarrow) = m \). By the repeated application of Lemma 4.2 we have \(w_\downarrow = \prod_{\text{card}(\beta)=m} s_\beta v_\downarrow \) for some \(\beta \) such that \(\beta \)'s is either \(\alpha_i \), or \(\alpha_i + \alpha_{i+1} \) or \(\alpha_i + \alpha_{i-1} \) for some \(i \). So \(w_\downarrow(\omega_r) = -\sum_{j_k:|i_k-j_k| \leq 1} \alpha_{j_k} \).

Hence, \(|i_k - j_k| \leq 1 \) \(\forall 1 \leq k \leq m \).

Conversely, let \(|i_k - j_k| \leq 1 \) for all \(1 \leq k \leq m \). So, \(w_\downarrow = \prod_{t \in \{t: i_t = j_t\}} s_{\alpha_{i_t}} \prod_{t \in \{t: j_t = i_t - 1\}} s_{\alpha_{i_t} + \alpha_{i_t + 1}} \prod_{t \in \{t: j_t = i_t + 1\}} s_{\alpha_{i_t + 1} + \alpha_{i_t + 1}} v_\downarrow \). The arrows \(\uparrow \) and \(\downarrow \) denote that the reflections in the product are applied in increasing and decreasing order of \(t \) respectively. Since \(i, j \in J_{m, [2, n]} \) and \(|i_k - j_k| \leq 1 \), we see that the sets \(\{ \bigcup_{\{t: j_t = i_t + 1\}} \{i_t - 1, i_t, i_t + 1\} \} \), \(\{ \bigcup_{\{t: j_t = i_t - 1\}} \{i_t - 1, i_t - 1, i_t\} \} \) and \(\{ \bigcup_{\{t: j_t = i_t\}} \{i_t - 1, i_t\} \} \) are mutually disjoint.
In the first step we see that when we multiply \(v_1 \) by \(s_{\alpha_t+\alpha_t+1} \) in increasing order of \(t \in \{ t : j_t = i_t + 1 \} \) then after each multiplication the product is greater than \(v_1 \) and the length increases by 1. Let \(t \) be maximal such that \(j_t = i_t + 1 \). By lemma 4.2, \(s_{\alpha_t+\alpha_t+1}v_1 > v_1 \) and \(l(s_{\alpha_t+\alpha_t+1}v_1) = l(v_1) + 1 \).

Let \(t \) be such that \(i_t-1 = i_t - 2 \) and \(j_{t-1} = i_{t-1} + 1 \). Note that \(s_{\alpha_t+\alpha_t+1}v_1 = (-i, \hat{i}, [-n, -1], \{[\hat{i}], [-\hat{i}] \} \uparrow, [1, n] \{[\hat{i}], \hat{i} \} \uparrow, [-\hat{i}], \hat{i} \} \), where \(\hat{i} = (i_1 - 1, i_2 - 1, \ldots, i_t - 3, i_t + 1, i_t + 1, \ldots, i_{m-1}, 1 \) and \(s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1 = (-i, \hat{i}, [-n, -1], \{[\hat{i}], [-\hat{i}] \} \uparrow, [1, n] \{[\hat{i}], \hat{i} \} \uparrow, [-\hat{i}], \hat{i} \} \), where \(\hat{i} = (i_1 - 1, i_2 - 1, \ldots, i_t - 1, i_t + 1, i_t + 1, \ldots, i_{m-1}, 1 \).

In \(s_{\alpha_t+\alpha_t+1}v_1 \), the position of \(i_t - 3 \) is left to the positions of both \(i_t - 1 \) and \(i_t - 2 \) but in \(s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1 \), the position of \(i_t - 2 \) remains unchanged and the positions of \(i_t - 1 \) and \(i_t - 3 \) are interchanged. Similarly the positions of \(-i_t + 1 \) and \(-i_t + 2 \) are also interchanged in \(s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1 \). So \(inv(s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1) = inv(s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1) + 2 \). Hence \(l(s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1) = l(s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1) + 1 \). By lemma 2.3 we see that \(s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1 < s_{\alpha_{i_t-2}+\alpha_{i_t-1}}s_{\alpha_{i_t}+\alpha_{i_t+1}}v_1 \).

Repeating this process we can see that \(\prod_{t \in \{ t : j_t = i_t + 1 \} \uparrow} s_{\alpha_t+\alpha_t+1}v_1 > v_1 \) and the length is increased by the number of reflections multiplied.

Since \(\bigcup_{\{ t : j_t = i_t + 1 \}} \{ i_t - 1, i_t, i_t + 1 \} \), \(\bigcup_{\{ t : j_t = i_t - 1 \}} \{ i_t - 2, i_t - 1, i_t \} \) and \(\bigcup_{\{ t : j_t = i_t \}} \{ i_t - 1, i_t \} \) are mutually disjoint, by repeating the above process we see that \(\prod_{t : j_t = i_t} s_{\alpha_t} \prod_{t : j_t = i_t - 1 \downarrow} s_{\alpha_t+\alpha_{t-1}} \)

\(\prod_{t : j_t = i_t \downarrow} s_{\alpha_t+\alpha_{t+1}}v_1 > v_1 \) and the length is increased by the number of reflections multiplied. So \(w_1 > v_1 \) and hence \(X_{w_1}^v \) is nonempty. \(\square \)

Remark: Note that \(\hat{i} \) denotes the positions of the simple roots with nonzero coefficients in \(w_1(\omega_r) \) and similarly, \(\hat{j} \) denotes the positions of the simple roots with nonzero coefficients in \(w_1(\omega_r) \).

Theorem 4.5. Let \(v, w, v_1 \) and \(w_1 \) be as stated in Proposition 4.1 and Proposition 4.3 respectively.

(i) For \(2 \leq r \leq n - 1 \), \((X_{w_2}^v)^{ss} (L_r) \) is nonempty if and only if \(\hat{i} = \hat{j} \).

(ii) For \(r = 1 \) and \(n \), \((X_{w_1}^v)^{ss} (L_r) \) is non-empty for any \(v \) and \(w \).

Proof. We will prove this theorem for case (i). Proof of case (ii) is similar. Let \(\hat{i} = \hat{j} \). Then we have \(v_1(\omega_r) + w_1(\omega_r) = 0 \). So \(p_{v_1}w_1 \) is a non-zero \(T \)-invariant section of \(L_r \) on \(G/P_r \) which does not vanish identically on \(X_{w_2}^v \). Hence, \((X_{w_2}^v)^{ss} (L_r) \) is non-empty.

Conversely, if \(\hat{i} \neq \hat{j} \), then there exists \(t \) such that \(j_t \neq i_t \). Since \(X_{w_1}^v \neq \emptyset \), by Proposition 4.4 we have \(j_t = i_t + 1 \) or \(j_t = i_t - 1 \). If \(j_t = i_t + 1 \) then \(w_1(\omega_r) = -\sum_{k \neq t} \alpha_i - \alpha_{i+1} \) and if \(j_t = i_t - 1 \) then \(w_1(\omega_r) = -\sum_{k \neq t} \alpha_i - \alpha_{i-1} \). Let \(u \in W_r^T \) be such that \(v_1 \leq u \leq w_1 \). Then
u is of the form $u = \prod_{\beta} s_{\beta} v_2$, where β's are some positive roots. For $j_t = i_t + 1$ at most one β can be $\alpha_{i_t} + \alpha_{i_t+1}$ and none of the other β's can contain α_{i_t} or α_{i_t+1} as a summand. So in $u(\omega_r)$, the coefficient of α_{i_t} is either zero or one and the coefficient of α_{i_t+1} is either zero or -1. Similarly for $j_t = i_t - 1$ at most one β can be $\alpha_{i_t} + \alpha_{i_t-1}$ and none of the other β's can contain α_{i_t} or α_{i_t-1} as a summand. So in $u(\omega_r)$ the coefficient of α_{i_t} is either zero or one and the coefficient of α_{i_t-1} is either zero or -1. For $j_t = i_t + 1$, $u(\omega_r)$ contains either α_{i_t} or α_{i_t+1} as a summand and for $j_t = i_t - 1$, $u(\omega_r)$ contains either α_{i_t} or α_{i_t-1} as a summand. Hence there does not exist a sequence $v_L = u_1 \leq u_2 \leq \ldots \leq u_k = w_L$ such that $\sum_{t=1}^k u_t(\omega_r) = 0$ and so we don’t have a non-zero T-invariant section of L_r which is not identically zero on $X_{u_L}^{\nu_L}$. So, we conclude that the set $(X_{u_L}^{\nu_L})^s_{T}(L_r)$ is empty. \hfill \square

We illustrate Proposition 4.4 and Theorem 4.5 with an example.

Example: B_5, $\omega_4 = (2, 2, 2, 2, 1)$

i	v_L	$v_L(\omega_2)$	$w_L(\omega_2)$	w_L
(2)	(3, 4, 5, -1, 2)	(0, 1, 0, 0, 0)	(0, -1, 0, 0, 0)	(3, 4, 5, -2, 1)
(3)	(1, 4, 5, -2, 3)	(0, 0, 1, 0, 0)	(0, 0, -1, 0, 0)	(1, 4, 5, -3, 2)
(4)	(1, 2, 5, -3, 4)	(0, 0, 0, 1, 0)	(0, 0, 0, -1, 0)	(1, 2, 5, -4, 3)
(5)	(1, 2, 3, -4, 5)	(0, 0, 0, 0, 1)	(0, 0, 0, 0, -1)	(1, 2, 3, -5, 4)

So from the above observation, $X_{w_L}^{v_L(2)}$, $X_{w_L}^{v_L(3)}$, $X_{w_L}^{v_L(4)}$, $X_{w_L}^{v_L(5)}$, $X_{w_L}^{v_L(6)}$, and $X_{w_L}^{v_L(7)}$ are all non-empty. We have $(X_{w_L}^{v_L(2)})^s_T(L_4)$, $(X_{w_L}^{v_L(3)})^s_T(L_4)$, $(X_{w_L}^{v_L(4)})^s_T(L_4)$, $(X_{w_L}^{v_L(5)})^s_T(L_4)$, $(X_{w_L}^{v_L(6)})^s_T(L_4)$ and $(X_{w_L}^{v_L(7)})^s_T(L_4)$ are empty whereas $(X_{w_L}^{v_L(2)})^s_T(L_4)$, $(X_{w_L}^{v_L(3)})^s_T(L_4)$, $(X_{w_L}^{v_L(4)})^s_T(L_4)$ and $(X_{w_L}^{v_L(5)})^s_T(L_4)$ are non-empty.

5. **Type D**

As in types B and C here also for a fundamental weight ω_r, we describe all the maximal $v \in W^{I_r}$ and minimal $w \in W^{I_r}$ such that $v(\omega_r) \geq 0$ and $w(\omega_r) \leq 0$ and then we use the same techniques to describe $v, w \in W^{I_r}$ for which the Richardson variety X_w^v have nonempty semistable locus for the action of a maximal torus T and with respect to the line bundle L_r.

Proposition 5.1. Let G be of type D_n. Let $v \in W^{I_r}$ be maximal such that $v(\omega_r) \geq 0$. Then the description of v is the following:

(i) For $r = 1$, $v(4\omega_1) = \begin{cases} 2\alpha_2 + 2\sum_{i=2}^{n/2} \alpha_{2i}, & n \equiv 0 \pmod{4} \\ 2\alpha_1 + 2\sum_{i=2}^{n/2} \alpha_{2i}, & n \equiv 2 \pmod{4} \\ \alpha_1 + 3\alpha_2 + 2\alpha_3 + 2\sum_{i=2}^{n/2} \alpha_{2i+1}, & n \equiv 1 \pmod{4} \\ 3\alpha_1 + \alpha_2 + 2\alpha_3 + 2\sum_{i=2}^{n/2} \alpha_{2i+1}, & n \equiv 3 \pmod{4}. \end{cases}$
where \(v = \begin{cases}
(n-1), -(n-3), \ldots, -3, -1, 2, 4, 6, \ldots, n-2, n), & n \equiv 0 \pmod{4} \\
(n-1), -(n-3), \ldots, 3, 1, 2, 4, 6, \ldots, n-2, n), & n \equiv 2 \pmod{4} \\
(n-1), -(n-3), \ldots, -4, -1, 2, 3, 5, \ldots, n-2, n), & n \equiv 1 \pmod{4} \\
(n-1), -(n-3), \ldots, -4, 1, 2, 3, 5, \ldots, n-2, n), & n \equiv 3 \pmod{4}.
\end{cases} \)

(ii) For \(r = 2 \), \(v(4\omega_2) = \begin{cases}
2\alpha_1 + 2\sum_{i=2}^{n} \alpha_{2i}, & n \equiv 0 \pmod{4} \\
2\alpha_2 + 2\sum_{i=2}^{n} \alpha_{2i}, & n \equiv 2 \pmod{4} \\
3\alpha_1 + \alpha_2 + 2\alpha_3 + 2\sum_{i=2}^{n-1} \alpha_{2i+1}, & n \equiv 1 \pmod{4} \\
\alpha_1 + 3\alpha_2 + 2\alpha_3 + 2\sum_{i=2}^{n-1} \alpha_{2i+1}, & n \equiv 3 \pmod{4}.
\end{cases} \)

where \(v = \begin{cases}
(n-1), -(n-3), \ldots, -3, 1, 2, 4, 6, \ldots, n-2, n), & n \equiv 0 \pmod{4} \\
(n-1), -(n-3), \ldots, -3, -1, 2, 4, 6, \ldots, n-2, n), & n \equiv 2 \pmod{4} \\
(n-1), -(n-3), \ldots, -4, 1, 2, 3, 5, \ldots, n-2, n), & n \equiv 1 \pmod{4} \\
(n-1), -(n-3), \ldots, -4, 1, 2, 3, 5, \ldots, n-2, n), & n \equiv 3 \pmod{4}.
\end{cases} \)

(iii) Let \(3 \leq r \leq n-1 \). For \((n+1) - r = 2m\) and for any \(\hat{i} = (i_1, i_2, \ldots, i_m) \in J_{m,[1,n]} \setminus Z \), there exists an unique \(v_\hat{i} \in W^r \) such that \(\sum_{k=1}^{m} \alpha_{i_k} \), where \(Z = \{(1,3,i_1,i_2,\ldots,i_{m-2}) : i_k \in \{5,\ldots,n-1,n\} \text{ and } i_{k+1} - i_k \geq 2, \forall k\} \).

(a) For \(\hat{i} \in J_{m,[3,n]}, v_\hat{i}(\omega_r) = \sum_{k=1}^{m} \alpha_{i_k} \), where \(Z = \{(1,3,i_1,i_2,\ldots,i_{m-2}) : i_k \in \{5,\ldots,n-1,n\} \text{ and } i_{k+1} - i_k \geq 2, \forall k\} \).

(b) For \(\hat{i} \in J_{m-1,[4,n]}, v_{\hat{i}}(\omega_r) = \alpha_1 + \sum_{k=1}^{m-1} \alpha_{i_k} \), with

\[
v_{\hat{i}} = \begin{cases}
([3, n] \backslash \{\hat{i},\hat{\omega}'\}) \uparrow, -\hat{i}', 1, 2, \hat{i}, & m \text{ is odd} \\
(-t, [3, n] \backslash \{t, \hat{i}, \hat{\omega}'\}) \uparrow, -\hat{i}', 1, 2, \hat{i}, & m \text{ is even},
\end{cases}
\]

where \(t = \min\{[3, n] \backslash \{\hat{i}, \hat{\omega}'\}\} \).

(c) For \(\hat{i} \in J_{m-1,[4,n]}, v_{\hat{i}}(\omega_r) = \alpha_2 + \sum_{k=1}^{m-1} \alpha_{i_k} \), with

\[
v_{\hat{i}} = \begin{cases}
([t, [3, n] \backslash \{t, \hat{i}, \hat{\omega}'\}) \uparrow, -\hat{i}', 1, 2, \hat{i}, & m \text{ is odd} \\
([3, n] \backslash \{\hat{i}, \hat{\omega}'\}) \uparrow, -\hat{i}', 1, 2, \hat{i}, & m \text{ is even},
\end{cases}
\]

where \(t = \min\{[3, n] \backslash \{\hat{i}, \hat{\omega}'\}\} \).

(iv) Let \(3 \leq r \leq n-1 \). For \((n+1) - r = 2m+1\) and for any \(\hat{i} = (i_1, i_2, \ldots, i_{m+1}) \in J_{m,[4,n]}, \) there exists unique \(v_\hat{i} \in W^r \) such that \(v_\hat{i}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \sum_{k=1}^{m} \alpha_{i_k} \). Also, for any \(\hat{i} = (i_1, i_2, \ldots, i_{m-1}) \in J_{m-1,[5,n]}, \) there exists unique \(v_{\hat{i}} \in W^r \) such that \(v_{\hat{i}}(\omega_r) = \frac{3}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k=1}^{m-1} \alpha_{i_k} \). We have:

\[
(a) v_\hat{i} = \begin{cases}
(-1, [3, n] \backslash \{\hat{i}, \hat{\omega}'\}) \uparrow, -\hat{i}', 2, \hat{i}, & m \text{ is odd} \\
(1, [3, n] \backslash \{\hat{i}, \hat{\omega}'\}) \uparrow, -\hat{i}', 2, \hat{i}, & m \text{ is even}.
\end{cases}
\]
(b) \(v_{2,1} = \begin{cases} (4, [5, n]) & \text{if } m \text{ is odd} \\ (-4, [5, n]) & \text{if } m \text{ is even} \end{cases}\)

(c) \(v_{2,2} = \begin{cases} (4, [5, n]) & \text{if } m \text{ is odd} \\ (-4, [5, n]) & \text{if } m \text{ is even} \end{cases}\)

(v) For \(r = n, v = (1, 3, 4, 5, \ldots, n - 1, n, 2)\) with \(v(\omega_n) = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2\).

Proof. The proof of the proposition is similar to the proofs for type B and C which uses the following crucial lemma. \(\square\)

Lemma 5.2. Let \(v, v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}\) are as defined in Proposition 5.1.

(i) Let \(r = 1\). Then \(w > v\) and \(l(w) = l(v) + 1\) if \(w = s_kv\) where \(k\) takes the following values:

\[
\begin{align*}
&k \in \{2, 4, 6, \ldots, n - 2, n\}, \quad n \equiv 0(\mod 4) \\
&k \in \{1, 4, 6, \ldots, n - 2, n\}, \quad n \equiv 2(\mod 4) \\
&k \in \{2, 5, 7, \ldots, n - 2, n\}, \quad n \equiv 1(\mod 4) \\
&k \in \{1, 5, 7, \ldots, n - 2, n\}, \quad n \equiv 3(\mod 4).
\end{align*}
\]

(ii) Let \(r = 2\). Then \(w > v\) and \(l(w) = l(v) + 1\) if \(w = s_kv\) where \(k\) takes the following values:

\[
\begin{align*}
&k \in \{2, 4, 6, \ldots, n - 2, n\}, \quad n \equiv 0(\mod 4) \\
&k \in \{1, 4, 6, \ldots, n - 2, n\}, \quad n \equiv 2(\mod 4) \\
&k \in \{2, 5, 7, \ldots, n - 2, n\}, \quad n \equiv 1(\mod 4) \\
&k \in \{1, 5, 7, \ldots, n - 2, n\}, \quad n \equiv 3(\mod 4).
\end{align*}
\]

(iii) Let \(3 \leq r \leq n - 1\) and \((n + 1) - r = 2m + 1\). Then,

(a) \(w > v_{1,1}\) and \(l(w) = l(v_{1,1}) + 1\) if \(w = s_{a_{it}}v_{1,1}\) or \(s_{a_{it} + a_{it+1}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) or \(s_{a_{it} + a_{it-1}}v_{1,1}\) for \(i_t: |i_t - i_{t-1}| \geq 3\) or \(s_{a_{it} + a_{it+1} + a_{it-1}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{1,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\).

(b) \(w > v_{1,2}\) and \(l(w) = l(v_{1,2}) + 1\) if \(w = s_{a_{it}}v_{1,2}\) for \(k \in \{1, i_t\}\) or \(s_{a_{it} + a_{it+1}}v_{1,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) or \(s_{a_{it} + a_{it-1}}v_{1,2}\) for \(i_t: |i_t - i_{t-1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1}}v_{1,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{1,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{1,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 5\).

(c) \(w > v_{2,1}\) and \(l(w) = l(v_{2,1}) + 1\) if \(w = s_{a_{it}}v_{2,1}\) for \(k \in \{1, i_t\}\) or \(s_{a_{it} + a_{it+1}}v_{2,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) or \(s_{a_{it} + a_{it-1}}v_{2,1}\) for \(i_t: |i_t - i_{t-1}| \geq 3\) with \(i_t \geq 6\) or \(s_{a_{it} + a_{it+1} + a_{it-1}}v_{2,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 6\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{2,1}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 6\).

(d) \(w > v_{2,2}\) and \(l(w) = l(v_{2,2}) + 1\) if \(w = s_{a_{it}}v_{2,2}\) for \(k \in \{2, i_t\}\) or \(s_{a_{it} + a_{it+1}}v_{2,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) or \(s_{a_{it} + a_{it-1}}v_{2,2}\) for \(i_t: |i_t - i_{t-1}| \geq 3\) with \(i_t \geq 6\) or \(s_{a_{it} + a_{it+1} + a_{it-1}}v_{2,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 6\) or \(s_{a_{it} + a_{it+1} + a_{it-1} + a_{it-2}}v_{2,2}\) for \(i_t: |i_t - i_{t+1}| \geq 3\) with \(i_t \geq 6\).

(v) Let \(r = n\). Then \(w > v\) and \(l(w) = l(v) + 1\) if \(w = s_1v\) or \(s_2v\).
Proof. We prove this lemma only for case (iv) and part (b). Proofs of the other cases are similar to this case.

Let \(w \in W^{I_r} \) such that \(w > v_{l,1} \) and \(l(w) = l(v_{l,1}) + 1 \). Then \(w = s_\beta v_{l,1} \), with \(ht(\beta) \leq 2 \) or \(\beta = \alpha_1 + \alpha_3 + \alpha_4 \) when \(i_1 \geq 6 \). Note that \(v_{l,1}(\omega_r) = \frac{3}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k=1}^{m-1} \alpha_{i_k} \).

Case 1. \(\beta = \alpha_k \), a simple root.

If \(k = i_t \), then \(s_{\alpha_t} v_{l,1}(\omega_r) = \frac{3}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k \neq t} \alpha_{i_k} - \alpha_{i_t} \). Since \(s_\beta v_{l,1}(\omega_r) < v_{l,1}(\omega_r) \) and \(\omega_r \) is a dominant weight we have \(s_\beta v_{l,1} > v_{l,1} \). Since \(\beta \) is a simple root so \(l(s_\beta v_{l,1}) = l(v_{l,1}) + 1 \).

If \(\beta = \alpha_1 \), then \(s_1 v_{l,1}(\omega_r) = -\frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k \neq t} \alpha_{i_k} \). So \(s_1 v_{l,1}(\omega_r) < v_{l,1}(\omega_r) \). Hence \(s_1 v_{l,1} > v_{l,1} \) with \(l(s_3 v_{l,1}) = l(v_{l,1}) + 1 \).

If \(\beta = \alpha_2 \) or \(\alpha_3 \), then \(s_\beta v_{l,1} = v_{l,1} \) in \(W^{I_r} \), a contradiction.

If \(k \notin \{1, 2, 3, i_t\} \), then \(s_\beta v_{l,1}(\omega_r) > v_{l,1}(\omega_r) \). Hence \(s_\beta v_{l,1} < v_{l,1} \), a contradiction.

Case 2. \(\beta = \alpha_k + \alpha_{k+1} \), a positive root of height 2.

If \(k = i_t \) with \(|i_t - i_{t+1}| \geq 3 \), then \(s_\beta v_{l,1}(\omega_r) = \frac{3}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k \neq t} \alpha_{i_k} - \alpha_{i_{t+1}} < v_{l,1}(\omega_r) \). So \(s_\beta v_{l,1} > v_{l,1} \). Now we prove that \(l(s_\beta v_{l,1}) = l(v_{l,1}) + 1 \).

We will prove this case for \(m \) is odd. Note that \(s_\beta v_{l,1} = (-\hat{i}, -3, -2, -1, \hat{\beta}, [-n, -5] \setminus \{[-l], [-\hat{\beta}]\} \uparrow, -4, 4, [5, n] \setminus \{(l), \hat{\beta}\} \uparrow, -\hat{\beta}, 1, 2, 3, \hat{i}) \) where \(\hat{\beta} = (i_1 - 1, i_2 - 1, \ldots, i_{t-1} - 1, i_t + 1, i_{t+1} - 1 \ldots, i_m - 1) \). In \(v_{l,1} \), the position of \(i_t + 1 \) is right to the position of \(i_t - 1 \) and left to the position of \(\hat{i}_t \) but in \(s_\beta v_{l,1} \), the position of \(i_t \) remains unchanged and the positions of \(i_t + 1 \) and \(i_t - 1 \) are interchanged. Similarly in \(v_{l,1} \) the position of \(-i_t - 1 \) is right to the position of \(-i_t \) and left to the position of \(-i_t + 1 \) but in \(s_\beta v_{l,1} \) the position of \(-i_t \) remains unchanged and the positions of \(-i_t - 1 \) and \(-i_t + 1 \) are interchanged. So \(inv(s_\beta v_{l,1}) = inv(v_{l,1}) + 2 \) and hence \(l(s_\beta v_{l,1}) = l(v_{l,1}) + 1 \).

If \(k = i_t \) with \(|i_t - i_{t+1}| = 2 \), then \(s_\beta v_{l,1} = v_{l,1} \) in \(W^{I_r} \) since \(s_\beta v_{l,1}(\omega_r) = v_{l,1}(\omega_r) \), a contradiction.

If \(\beta = \alpha_k + \alpha_{k+1} \) and \(k \notin \{2, 3, i_t\} \) then \(s_\beta v_{l,1}(\omega_r) \geq v_{l,1}(\omega_r) \) we have \(s_\beta v_{l,1} \leq v_{l,1} \) in \(W^{I_r} \), a contradiction.

If \(k = 3 \) then \(\beta = \alpha_3 + \alpha_4 \). So \(s_\beta v_{l,1}(\omega_r) > v_{l,1}(\omega_r) \) and hence \(s_\beta v_{l,1} < v_{l,1} \), a contradiction.

If \(k = 2 \) then \(\beta = \alpha_2 + \alpha_3 \), then \(s_\beta v_{l,1}(\omega_r) = v_{l,1}(\omega_r) \) and hence \(s_\beta v_{l,1} = v_{l,1} \) in \(W^{I_r} \), a contradiction.

If \(j, j + 1 \neq i_t \) then \(s_\beta v_{l,1}(\omega_r) \geq v_{l,1}(\omega_r) \) and \(s_\beta v_{l,1} \leq v_{l,1} \) in \(W^{I_r} \), a contradiction.

Case 3. If \(\beta = \alpha_{k-1} + \alpha_k \), a positive root of height 2 the proof is similar to above case.

Case 4. If \(\beta = \alpha_1 + \alpha_3 \), then \(s_\beta v_{l,1} = s_3 s_1 v_{l,1} \). From the reduced expression of \(v_{l,1} \) we see that \(l(s_3 v_{l,1}) = l(v_{l,1}) + 2 \), a contradiction.
Case 5. If $\beta = \alpha_1 + \alpha_3 + \alpha_4$ with $i_1 \geq 6$, then $s_{\beta v_{1,1}}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 - \alpha_4 + \sum \alpha_{i_k} < v_{1,1}(\omega_r)$. So $s_{\beta v_{1,1}} > v_{1,1}$. We show that $l(s_{\beta v_{1,1}}) = l(v_{1,2}) + 1$.

We will prove this case for m is odd. Note that $s_{\beta v_{1,1}} = (-1, -3, -2, 4, \{\lceil i \rceil, \lceil i' \rceil \}) \uparrow , \lceil i \rceil , -4, 2, 3, \lceil i' \rceil)$. So $inv(s_{\beta v_{1,1}}) = inv(v_{1,2}) + 4$ and $neg(s_{\beta v_{1,1}}) = neg(v_{1,2}) + 2$. Hence $l(s_{\beta v_{1,1}}) = l(v_{1,2}) + 1$.

Proof of the converse is clear from the definition of maximal v such that $v(\omega_r) \geq 0$. \square

Proposition 5.3. Let G be of type D_n and let $v, v_{1,1}, v_{1,2}, v_{1,3}, v_{1,4}$ be as defined in Proposition 5.1. Let $w \in W^r$ be minimal such that $w(\omega_r) \leq 0$. Then the description of w is the following:

(i) For $r = 1$, $w = \begin{cases} (-n, -(n - 2), \ldots, -4, -2, 1, 3, 5, \ldots, n - 3, n - 1), & n \equiv 0(\text{mod } 4) \\ (-n, -(n - 2), \ldots, -4, -2, -1, 3, 5, \ldots, n - 3, n - 1), & n \equiv 2(\text{mod } 4) \\ (-n, -(n - 2), \ldots, -5, -3, -2, 1, 4, \ldots, n - 3, n - 1), & n \equiv 1(\text{mod } 4) \\ (-n, -(n - 2), \ldots, -5, -3, -2, 1, 4, \ldots, n - 3, n - 1), & n \equiv 3(\text{mod } 4). \end{cases}$

(ii) For $r = 2$, $w = \begin{cases} (n, -(n - 2), \ldots, -4, -2, -1, 3, 5, \ldots, n - 3, n - 1), & n \equiv 0(\text{mod } 4) \\ (n, -(n - 2), \ldots, -4, -2, -1, 3, 5, \ldots, n - 3, n - 1), & n \equiv 2(\text{mod } 4) \\ (n, -(n - 2), \ldots, -3, -2, 1, 4, 6, \ldots, n - 3, n - 1), & n \equiv 1(\text{mod } 4) \\ (n, -(n - 2), \ldots, -3, -2, 1, 4, 6, \ldots, n - 3, n - 1), & n \equiv 3(\text{mod } 4). \end{cases}$

(iii) Let $3 \leq r \leq n - 1$ and $(n + 1) - r = 2m$.

If $\lceil i \rceil \in J_m[3,n]$ then $w_{\lceil i \rceil} = s_t s_r \ldots s_1 v_\lceil i \rceil$ with $w_{\lceil i \rceil}(\omega_r) = -v_\lceil i \rceil(\omega_r)$ and

\[
w_{\lceil i \rceil} = \begin{cases} (1, [2,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, r), & m \text{ is odd} \\ (1, [2,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, r), & m \text{ is even}. \end{cases}
\]

If $\lceil i \rceil \in J_{m-1}[4,n]$ then $w_{\lceil i \rceil} = s_t s_r \ldots s_1 v_{1,\lceil i \rceil}$ with $w_{1,\lceil i \rceil}(\omega_r) = -v_{1,\lceil i \rceil}(\omega_r)$ and

\[
w_{1,\lceil i \rceil} = \begin{cases} (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, -1, r), & m \text{ is odd where } t = min[3,n]\{\lceil i \rceil, \lceil i' \rceil\}. \\ (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, -1, r), & m \text{ is even}. \end{cases}
\]

If $\lceil i \rceil \in J_{m-1}[4,n]$ then $w_{2,\lceil i \rceil} = s_t s_r \ldots s_1 v_{2,\lceil i \rceil}$ with $w_{2,\lceil i \rceil}(\omega_r) = -v_{2,\lceil i \rceil}(\omega_r)$ and

\[
w_{2,\lceil i \rceil} = \begin{cases} (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, -1, r), & m \text{ is odd where } t = min[3,n]\{\lceil i \rceil, \lceil i' \rceil\}. \\ (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, -1, r), & m \text{ is even}. \end{cases}
\]

(iv) Let $3 \leq r \leq n - 1$ and $(n + 1) - r = 2m + 1$.

For $\lceil i \rceil \in J_m[4,n]$ and $v_{1,\lceil i \rceil}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \sum_{k=1}^{m} \alpha_{i_k}$, we have $w_{\lceil i \rceil} = s_t s_r \ldots s_1 v_{\lceil i \rceil}$.

In this case $w_{\lceil i \rceil}(\omega_r) = -v_{\lceil i \rceil}(\omega_r)$ and

\[
w_{\lceil i \rceil} = \begin{cases} (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, r), & m \text{ is odd} \\ (1, [3,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -2, r), & m \text{ is even}. \end{cases}
\]

For $\lceil i \rceil \in J_{m-1}[5,n]$ and $v_{1,\lceil i \rceil}(\omega_r) = \frac{3}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_3 + \sum_{k=1}^{m} \alpha_{i_k}$, we have $w_{2,\lceil i \rceil} = s_t s_r \ldots s_1 v_{2,\lceil i \rceil}$.

\[
w_{2,\lceil i \rceil} = \begin{cases} (4, [5,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -3, -2, r), & m \text{ is odd} \\ (4, [5,n]\{[\lceil i \rceil, \lceil i' \rceil] \} \uparrow , -i, -3, -2, r), & m \text{ is even}. \end{cases}
\]
For $i \in J_{m-1, [5,n]}$ and $v_{i,2}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{3}{2} \alpha_2 + \alpha_3 + \sum_{k=1}^{m-1} \alpha_{ik}$, we have $w_{i,1} = s_1 s_3 s_2 s_i s_{i+1} \ldots s_{i-1} v_{i,2}$.

In these cases $w_{i,1}(\omega_r) = -v_{i,1}(\omega_r)$ and $w_{i,2}(\omega_r) = -v_{i,2}(\omega_r)$ and

$$w_{i,1} = \begin{cases} (-4, [5, n] \setminus \{i, j\} \uparrow \rightarrow, -i, -3, -2, -1, j), & m \text{ is odd} \\ (4, [5, n] \setminus \{i, j\} \uparrow \rightarrow, -i, -3, -2, -1, j), & m \text{ is even.} \end{cases}$$

(v) For $r = n$, we have $w = s_1 s_2 v$ and in this case $w(\omega_r) = -v(\omega_r)$.

Proof. For the proof of minimality of w refer to [12].

Proposition 5.4. Let $v, w, v_{i,1}, w_{i,1}, v_{i,2}, w_{i,2}, v_{i,1}, w_{i,1}, v_{i,2}, w_{i,2}$ be defined in Proposition 5.1 and Proposition 5.3. Let $w \in W^{P_r}$ be minimal and $v \in W^{P_r}$ be maximal such that $w(\omega_r) \leq 0$ and $v(\omega_r) \geq 0$. Then $X^v_w \neq \emptyset$ iff the pair (v, w) is one of the following:

(i) Let $3 \leq r \leq n - 1$. For $(n+1) - r = 2m$:

$$(v, w) = \begin{cases} (v_{i,1}, w_{i,2}), & s.t. |i_k - j_k| \leq 1 \forall 1 \leq k \leq m \\ (v_{i,1}, w_{i,2}), (v_{i,2}, w_{i,2}), & s.t. |i_{k+1} - j_k| \leq 1 \forall 1 \leq k \leq m - 1 \text{ with } i_1 = 3 \\ (v_{i,1}, w_{i,2}), (v_{i,2}, w_{i,2}), & s.t. |i_k - j_{k+1}| \leq 1 \forall 1 \leq k \leq m - 1 \text{ with } j_1 = 3. \end{cases}$$

For $(n+1) - r = 2m + 1$:

$$(v, w) = \begin{cases} (v_{i,1}, w_{i,2}), & s.t. |i_k - j_k| \leq 1 \forall 1 \leq k \leq m \\ (v_{i,1}, w_{i,2}), (v_{i,2}, w_{i,2}), & s.t. |i_{k+1} - j_k| \leq 1 \forall 1 \leq k \leq m - 1 \text{ with } i_1 = 4 \\ (v_{i,1}, w_{i,2}), (v_{i,2}, w_{i,2}), & s.t. |i_k - j_{k+1}| \leq 1 \forall 1 \leq k \leq m - 1 \text{ with } j_1 = 4. \end{cases}$$

(ii) For $r = 1, 2$ or n, $X^v_w \neq \emptyset$ for any v and w.

Proof. Let X^v_w be non-empty. So, $v \leq w$. We prove this part for case (i), $(n+1) - r$ is odd and $(v, w) = (v_{i,1}, w_{i,2})$. For other cases the proofs are similar. Let $(n+1) - r = 2m + 1$. We have $v_{i,1} < w_{i,1}$. Now assume that $|i_{k+1} - j_k| \leq 1, \forall 1 \leq k \leq m - 1$. We need to show that $i_1 = 4$. If not, then $i_1 > 4$. This implies that the coefficient of α_4 in $v_{i,1}(\omega_r)$ is zero. Since $l(w_{i,1}) - l(v_{i,2}) = m + 2$ and $w_{i,1} > v_{i,2}$ there exists $m + 2$ positive roots β such that $w_{i,1} = \prod_{\text{card(\beta)=m+2}} s_\beta v_{i,1}$. On the other hand we have $v_{i,2}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 + 0.\alpha_3 + 0.\alpha_4 + \sum_{k=1}^{m} \alpha_{ik}$ and $w_{i,2}(\omega_r) = -\frac{3}{2} \alpha_1 - \frac{1}{2} \alpha_2 - \alpha_3 - \sum_{k=1}^{m-1} \alpha_{jk}$. So, $w_{i,2} = \prod_{\text{te\{ij=it+1\}}} s_{\alpha_{it+1}} \prod_{\text{te\{ij=it+1\}}} s_{\alpha_{it+1} + \alpha_{it+1} - 1} s_{\alpha_{it+1} + \alpha_{it+1} + 1} s_{s_1 s_3 s_1 s_3 s_2 s_5 s_5 \ldots s_{i-1} s_{i+1}}(v_{i,1} \ldots v_{i,1})$. Note that the expression in the square bracket contains exactly $m - 1$ reflections corresponding to $m - 1$ distinct positive roots and it is independent of the word in between this expression and $v_{i,1}$. So we have, $w_{i,1} = \prod_{\text{card(\beta)>m+2}} s_\beta v_{i,1}$, a contradiction.

So, $i_1 = 4$.

Let $i_1 = 4$. We will show that $v_2 < w_{j,1}$ implies that $|i_{k+1} - j_k| \leq 1$, $\forall 1 \leq k \leq m - 1$. Since $l(w_{j,1}) - l(v_2) = m + 2$, by Lemma 5.2 we have $w_{j,1} = (\prod_{\text{card}(\beta) = m-1} s_{s_1}s_3s_4s_3s_2v_1)$ for positive roots β such that β is either α_i, or $\alpha_i + \alpha_{i+1}$ or $\alpha_i + \alpha_{i-1}$ for some i, $2 \leq t \leq m$. So $w_{j,1}(\omega_r) = -\frac{3}{2}\alpha_1 - \frac{1}{2}\alpha_2 - \alpha_3 - \sum_{j_k : |i_{k+1} - j_k| \leq 1} \alpha_{j_k}$. Hence, $|i_{k+1} - j_k| \leq 1$, $\forall 1 \leq k \leq m - 1$.

Conversely, let $v = v_2$, $w = w_{j,1}$ with $|i_{k+1} - j_k| \leq 1$, $\forall 1 \leq k \leq m - 1$ and $i_1 = 4$. Then we need to show that $v_2 < w_{j,1}$. Note that in this case $w_{j,1} = \prod_{\{t,j=t_i+1\} \uparrow} s_{\alpha_{t_{i+1}}} \prod_{\{t,j=t_i+1\} \downarrow} s_{\alpha_{t_{i+1}} + \alpha_{t_{i+1} + 1}} (s_{\alpha_1})(s_{\alpha_2}) v_2$. We claim that in this product multiplication of each reflection to v_2 amounts to increase the length by one and the product is greater than v_2. Since $j \in J_{m,[4,n]}$, $j \in J_{m-1,[5,n]}$ and $|i_{k+1} - j_k| \leq 1$, $\forall 1 \leq k \leq m - 1$ with $i_1 = 4$ we observe that the sets $\bigcup_{\{t,j=t_i+1\} \downarrow} \{i_{t+1} - 1, i_{t+1}, i_{t+1} + 1\}$ and $\bigcup_{\{t,j=t_i+1\} \uparrow} \{i_{t+1} - 1, i_{t+1}\}$ are mutually disjoint.

It is easy to see that $s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2 > v_2$ and $l(s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2) = l(v_2) + 3$.

Now we claim that $s_{\alpha_1}s_{\alpha_2} s_{\alpha_2} v_2 < \prod_{\{t,j=t_i+1\} \uparrow} s_{\alpha_{t_{i+1}} + \alpha_{t_{i+1} + 1}} s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2$ and the length is increased by the number of reflections multiplied. Let t be maximal such that $j_t = i_{t+1} + 1$. Since the sets $\{1,2,3,4\}$ and $\bigcup_{\{t,j=t_i+1\} \downarrow} \{i_{t+1} - 1, i_{t+1}, i_{t+1} + 1\}$ are mutually disjoint, from Lemma 5.2 we see that $s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2 < s_{\alpha_{t_{i+1} + \alpha_{t_{i+1} + 1}}} s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2$.

Let t be such that $i_t = i_{t+1} - 2$ and $j_{t-1} = i_t + 1$. We have $s_{\alpha_1}s_{\alpha_{t+1}} s_{\alpha_{t+1} + \alpha_{t+1} + 1}s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2(\omega_r) = -\frac{3}{2}\alpha_1 - \frac{1}{2}\alpha_2 - \alpha_3 - \sum_{k=2,\neq (t,t+1)} \alpha_{i_k} - \alpha_{i_{t+1} + 1} - \alpha_{i_{t+1}}$. So $s_{\alpha_1}s_{\alpha_{t+1}} s_{\alpha_{t+1} + \alpha_{t+1} + 1}s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2 < s_{\alpha_{i_{t+1} + \alpha_{i_{t+1} + 1}}} s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2(\omega_r)$. Hence $s_{\alpha_1}s_{\alpha_{t+1}} s_{\alpha_{t+1} + \alpha_{t+1} + 1}s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2 > s_{\alpha_{i_{t+1} + \alpha_{i_{t+1} + 1}}} s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2$. From the one line notations of these two elements we see that the length is increasing by 1.

Repeating this process we conclude that $v_2 < \prod_{\{t,j=t_i+1\} \uparrow} s_{\alpha_{t_{i+1}}} \prod_{\{t,j=t_i+1\} \downarrow} s_{\alpha_{t_{i+1} + \alpha_{t_{i+1} + 1}}} s_{\alpha_1}s_{\alpha_3 + \alpha_4} s_{\alpha_2} v_2$. □

Theorem 5.5. Let G be of type D_n and let P_r be the maximal parabolic subgroup corresponding to the simple root α_r. Let L_r be the line bundle corresponding to the fundamental weight ω_r. Then $(X^v)^*_T(L_r)$ is non-empty if and only if the pair (v,w) is one of the following:
(i) For $3 \leq r \leq n - 1$,

$$(n + 1) - r = 2m: \quad (v, w) \text{ s.t. } \begin{cases} v \leq v_{11} \text{ and } w \geq w_{11} \\ v \leq v_{12} \text{ and } w \geq w_{12} \\ v \leq v_{21} \text{ and } w \geq w_{21}. \end{cases}$$

$$(n + 1) - r = 2m + 1: \quad (v, w) \text{ s.t. } \begin{cases} v \leq v_{11} \text{ and } w \geq w_{11} \\ v \leq v_{12} \text{ and } w \geq w_{12} \\ v \leq v_{21} \text{ and } w \geq w_{21}. \end{cases}$$

(ii) For $r = 1, 2$ and n, $(X^v_w)^{ss}(L_r)$ is non-empty for any v and w.

where $v, w, v_{11}, v_{12}, v_{21}, v_{22}, v_{11}', v_{12}', v_{21}', v_{22}'$ are as in Proposition 5.3.

Proof. Now since $X^v_w \subseteq X^v_w$ implies $(X^v_w)^{ss}(L_r) \subseteq (X^v_w)^{ss}(L_r)$, we can assume that v is maximal and w is minimal having the property that $v(\omega_r) \geq 0$ and $w(\omega_r) \leq 0$. We prove the theorem for case (i) and $(n + 1) - r$ is odd. For other cases the proof is similar.

Let $(n + 1) - r = 2m + 1$. For each pair (v, w), we construct a non-zero T-invariant section of L_r on G/P_r which is not identically zero on X^v_w.

For $(v, w) = (v_{12}, v_{21})$ we have $v_{12}(\omega_r) + w_{21}(\omega_r) = 0$. So $p_{v_{12}}p_{w_{21}}$ is a non-zero T-invariant section of L_r on G/P_r which is not identically zero on X^v_w.

For $(v, w) = (v_{12}, v_{21})$, we consider the sequence $v_{12} \leq s_1v_{12} \leq s_1s_3s_1v_{12} \leq s_2s_1s_3s_1\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_1v_{12} = w_{21}$. We have $v_{12}(\omega_r) + s_1v_{12}(\omega_r) + s_1s_3s_1\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_1v_{12}(\omega_r) + w_{21}(\omega_r) = 0$ and so $p_{v_{12}}p_{w_{21}}p_{s_1v_{12}}p_{s_1s_3s_1\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_1v_{12}}$ is a non-zero T-invariant section of L_r on G/P_r which is not identically zero on X^v_w.

For $(v, w) = (v_{12}, v_{21})$, we consider the sequence $v_{12} \leq s_2v_{12} \leq s_1s_\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_2v_{12} = w_{12}$. We have $v_{12}(\omega_r) + s_2v_{12}(\omega_r) + s_1s_\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_2v_{12}(\omega_r) + w_{12}(\omega_r) = 0$ and so $p_{v_{12}}p_{w_{12}}p_{s_1s_\alpha_{i_1}s_\alpha_{i_2} \ldots s_{\alpha_{i_{m-1}}}s_3s_2v_{12}}$ is a non-zero T-invariant section of L_r on G/P_r which does not vanish identically zero on X^v_w.

So, in all these cases we conclude that $(X^v_w)^{ss}(L_r) \neq \emptyset$.

Conversely, let $(X^v_w)^{ss}(L_r)$ be non-empty.

Let $(v, w) = (v_{12}, w_{21})$. If $i \neq j$, then there exists t such that $j_t \neq i_t$. Since $X^v_w \neq \emptyset$, by proposition 5.4 we have either $j_t = i_t + 1$ or $j_t = i_t - 1$. If $j_t = i_t + 1$ then $w_{j_t}(\omega_r) = -\frac{1}{2}\alpha_1 - \frac{3}{2}\alpha_2 - \alpha_3 - \sum_{k=1, \neq t}^{m-1} \alpha_{i_k} - \alpha_{i_t + 1}$ and if $j_t = i_t - 1$ then $w_{j_t}(\omega_r) = -\frac{1}{2}\alpha_1 - \frac{3}{2}\alpha_2 - \alpha_3 - \sum_{k=1, \neq t}^{m-1} \alpha_{i_k} - \alpha_{i_t - 1}$. Let $u \in W^J_r$ be such that $v_{12} \leq u \leq w_{21}$. Then u is of the form $u = (\prod_{\beta} s_\beta)v_{12}$, where β's are some positive roots. For $j_t = i_t + 1$ at most one β can be $\alpha_{i_t} + \alpha_{i_t + 1}$ and none of the other β's contain α_{i_t} or $\alpha_{i_t + 1}$ as a summand. So in $u(\omega_r)$ the coefficient of α_{i_t} is either zero or one and the coefficient of $\alpha_{i_t + 1}$ is either zero or -1. Similarly for $j_t = i_t - 1$ at most one β can be $\alpha_{i_t} + \alpha_{i_t - 1}$ and none of the other β's contain α_{i_t} or $\alpha_{i_t - 1}$ as a summand. So in $u(\omega_r)$ the coefficient of α_{i_t} is either zero or one and the coefficient of $\alpha_{i_t - 1}$ is either zero or -1. For $j_t = i_t + 1$, $u(\omega_r)$ contains either α_{i_t} or $\alpha_{i_t + 1}$ as a summand and for $j_t = i_t - 1$, $u(\omega_r)$ contains either α_{i_t} or $\alpha_{i_t - 1}$.
as a summand. So, there does not exist any sequence $v_{i,1} = u_1 \leq u_2 \leq \ldots \leq u_k = w_{j,2}$ such that $\sum_{t=1}^{k} u_t(\omega_r) = 0$. So we don’t have a nonzero T-invariant section which is not identically zero on X_w^v.

Let $(v, w) = (v_{i,2}, w_{j,1})$ where $i = (i_1, i_2, \ldots, i_m)$ and $j = (j_1, j_2, \ldots, j_m)$. Then $v_{i,2}(\omega_r) = \frac{1}{2} \alpha_1 + \frac{1}{2} \alpha_2 + \alpha_4 + \sum_{k=2}^{m} \alpha_i$ and $w_{j,1}(\omega_r) = -\frac{3}{2} \alpha_1 - \frac{1}{2} \alpha_2 - \alpha_3 - \sum_{k=2}^{m} \alpha_i$. Then any $u \in W^r$ such that $v_{i,2} \leq u \leq w_{j,1}$ is of the form $u = (\prod \beta_i) v_{\beta,2}$ where β’s are some positive roots. At most one β can be $\alpha_3 + \alpha_4$ and none of the other β’s can contain α_3 or α_4 as a summand. So, the coefficient of α_4 in $u(\omega_r)$ is either zero or one and the coefficient of α_3 in $u(\omega_r)$ is either zero or -1. So for any such u, $u(\omega_r)$ contains either α_3 or α_4 as a summand. So, in this case also there is no non zero T-invariant section which is not identically zero on X_w^v.

Let $(v, w) = (v_{i,2}, w_{j,1})$ with $i_1 = 4$. If $(i_2, i_3, \ldots, i_m) \neq j$, then there exists t such that $j_t \neq i_{t+1}$. Since $X_{w_{j,1}}^{v_{i,2}} \neq \emptyset$, by proposition 5.4 we have $j_t = i_{t+1} + 1$ or $j_t = i_{t+1} - 1$. If $j_t = i_{t+1} + 1$ then $w_{j,1}(\omega_r) = -\frac{3}{2} \alpha_1 - \frac{1}{2} \alpha_2 - \alpha_3 - \sum_{k=1, k \neq t}^{m-1} \alpha_i - \alpha_{i_{t+1}+1}$ and if $j_t = i_{t+1} - 1$ then $w_{j,1}(\omega_r) = -\frac{3}{2} \alpha_1 - \frac{1}{2} \alpha_2 - \alpha_3 - \sum_{k=1, k \neq t}^{m-1} \alpha_i - \alpha_{i_{t+1}-1}$. Then any $u \in W^r$ such that $v_{i,2} \leq u \leq w_{j,1}$ is of the form $u = (\prod \beta_i) v_{\beta,2}$, where β’s are some positive roots. For $j_t = i_{t+1} + 1$ at most one β can be $\alpha_{i_{t+1}+1} + \alpha_{i_{t+1}+1}$ and none of the other β’s contain $\alpha_{i_{t+1}}$ or $\alpha_{i_{t+1}+1}$ as a summand. So, in $u(\omega_r)$ the coefficient of $\alpha_{i_{t+1}}$ is either zero or one and the coefficient of $\alpha_{i_{t+1}+1}$ is either zero or -1. Similarly for $j_t = i_{t+1} - 1$ at most one β can be $\alpha_{i_{t+1}} + \alpha_{i_{t+1}-1}$ and none of the other β’s contain $\alpha_{i_{t+1}}$ or $\alpha_{i_{t+1}-1}$ as a summand. So, in $u(\omega_r)$ the coefficient of $\alpha_{i_{t+1}}$ is either zero or one and the coefficient of $\alpha_{i_{t+1}-1}$ is either zero or -1. For $j_t = i_{t+1} + 1$, $u(\omega_r)$ contains either $\alpha_{i_{t+1}}$ or $\alpha_{i_{t+1}+1}$ as a summand and for $j_t = i_{t+1} - 1$, $u(\omega_r)$ contains either $\alpha_{i_{t+1}}$ or $\alpha_{i_{t+1}-1}$ as a summand. So, like in previous cases here also we don’t have a non zero T-invariant section which is not identically zero on X_w^v.

For the pair $(v, w) = (v_{i,2}, w_{j,1})$ with $i \neq j$ the proof is similar as in the cases in type B and C.

We illustrate Proposition 5.4 and Theorem 5.5 with an example.

Example: D_5, $\omega_3 = (\frac{3}{2}, \frac{3}{2}, 3, 2, 1)$

v	$v(\omega_3)$	$w(\omega_3)$	w
v_4 = $(-1, 5, -3, 2, 4)$	$(\frac{1}{2}, \frac{1}{2}, 0, 1, 0)$	$(-\frac{1}{2}, -\frac{1}{2}, 0, -1, 0)$	$(1, 5, -4, -2, 3) = w(4)$
v_5 = $(-1, 3, -4, 2, 5)$	$(\frac{1}{2}, \frac{1}{2}, 0, 0, 1)$	$(-\frac{1}{2}, -\frac{1}{2}, 0, 0, -1)$	$(1, 3, -5, -2, 4) = w(5)$
v_1 = $(4, 5, 1, 2, 3)$	$(\frac{3}{2}, \frac{3}{2}, 1, 0, 0)$	$(-\frac{1}{2}, -\frac{3}{2}, -1, 0, 0)$	$(4, 5, -3, -2, 1) = w_2$
v_2 = $(-4, 5, -1, 2, 3)$	$(\frac{3}{2}, \frac{3}{2}, 1, 0, 0)$	$(-\frac{3}{2}, -\frac{1}{2}, 1, 0, 0)$	$(-4, 5, -3, -2, -1) = w_1$
So from the above observation, $X_{v_1}^{(4)}$, $X_{w_1}^{(4)}$, $X_{v_1}^{(5)}$, $X_{w_1}^{(5)}$, $X_{v_1}^{(4)}$, $X_{w_1}^{(4)}$, $X_{v_2}^{(5)}$, $X_{w_2}^{(5)}$, $X_{v_1}^{(4)}$, $X_{w_1}^{(4)}$, $X_{v_2}^{(4)}$, $X_{w_2}^{(4)}$, $X_{v_1}^{(5)}$ and $X_{v_2}^{(5)}$ are all non-empty. We have $(X_{v_1}^{(5)})^s_{T}(L_3)$, $(X_{w_1}^{(4)})^s_{T}(L_3)$, $(X_{v_2}^{(4)})^s_{T}(L_3)$, and $(X_{v_1}^{(5)})^s_{T}(L_3)$ are empty whereas $(X_{v_1}^{(4)})^s_{T}(L_3)$, $(X_{w_2}^{(4)})^s_{T}(L_3)$, and $(X_{v_2}^{(4)})^s_{T}(L_3)$ are non-empty.

References

[1] A. B. Jörner, F. Brenti, (2005) Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer-Verlag, New York.
[2] M. Brion, V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651-680 (electronic).
[3] R. W. Carter (1985), Finite groups of Lie type, conjugacy classes and complex characters, John Wiley and Sons.
[4] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499-511.
[5] J. E. Humphreys (1972). Introduction to Lie algebras and representation theory, Springer, Berlin Heidelberg.
[6] J. E. Humphreys (1975), Linear Algebraic Groups. Springer, Berlin.
[7] Hausmann, C and Knutson, A. Polygon spaces and Grassmannians. L’Enseignement Mathematique 43 (1997), no. 1-2, 173-198.
[8] S. S. Kannan, Torus quotients of homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.) 108(1) (1998) 1–12.
[9] S. S. Kannan, Torus quotients of homogeneous spaces-II, Proc. Indian Acad. Sci. (Math. Sci.) 109(1) (1999) 23-39.
[10] S. S. Kannan, S. K. Pattanayak, K. Paramasamy, S. Upadhyay, Torus quotients of Richardson varieties, Comm.in algebra 119(4) (2009) 469-485.
[11] S. S. Kannan, Pranab Sardar, Torus quotients of homogeneous spaces of the general linear group and the standard representation of certain symmetric groups, Proc. Indian Acad. Sci. (Math. Sci.) 119(1) (2009) 81–100.
[12] S. S. Kannan, S. K. Pattanayak, Torus quotients of homogeneous spaces-minimal dimensional Schubert varieties admitting semi-stable points, Proc. Indian Acad. Sci. (Math. Sci.) 119(4) (2009) 469-485.
[13] Kapranov, M. M. Chow quotients of Grassmannians-I, I. M. Gelfand Seminar, Adv. Soviet Math. 16, Part 2, Amer. Math. Soc., Providence, 1993, 29-110.
[14] Kapranov, M. M. Veronese curves and Grothendieck-Knudsen moduli space $\overline{M}_{0,n}$, J. Algebraic Geom. 2 (1993), 239-26.
[15] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math., 53 (1979), 165-184.
[16] D. Kazhdan, G. Lusztig, Schubert varieties and Poincare duality, Proc. Symp. Pure. Math., A.M.S., 36 (1980), 185-203.
[17] V. Lakshmibai, P. Littelmann, Equivanant K-theory and Richardson varieties, Journal of Algebra 260 (2003) 230-260.
[18] V. Lakshmibai, K. N. Raghavan, (2008). Standard Monomial Theory- Invariant theoretic approach, Encyclopaedia of Mathematical Sciences, 137. Invariant Theory and Algebraic Transformation Groups, 8, Springer-Verlag, Berlin.
[19] D. Mumford, J. Fogarty, F. Kirwan, (1994) Geometric Invariant theory (Third Edition), (Berlin Heidelberg, New York: Springer-Verlag).
[20] P. E. Newstead, (1978). Introduction to Moduli Problems and Orbit Spaces, TIFR Lecture Notes.
[21] S. K. Pattanayak, Minimal Schubert Varieties admitting semistable points for exceptional cases, Comm. Algebra, Vol. 42, no. 9 (2014), 3811-3822.
[22] R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math., (N.S.), 3 (1992), 69-77.

[23] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math. 95 (1972), 511–556.

[24] T. A. Springer, (2009) Linear algebraic groups, Modern Birkhäuser Classics, Boston, MA: Birkhäuser Boston Inc.

[25] E. Strickland, Quotients of flag varieties by a maximal torus, Math. Z. 234(1), 1-7 (2000).

[26] F. Incitti, (2006) Bruhat order on the involutions of classical Weyl groups. Adv. in Appl. Math. 37, no. 1, 68111.

Arpita Nayek, Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, Kanpur-208016, India, Email: anayek@iitk.ac.in,

S.K. Pattanayak, Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, Kanpur-208016, India, Email: santosha@iitk.ac.in,