Update on the Teratogenicity of Maternal Mycophenolate Mofetil

Lisa A. Coscia1 Dawn P. Armenti1 Ryan W. King2 Nicole M. Sifontis3 Serban Constantinescu1,4 Michael J. Moritz1,5,6

1National Transplantation Pregnancy Registry (NTPR), Gift of Life Institute, Philadelphia, Pennsylvania, United States
2University of Central Florida College of Medicine, Orlando, Florida, United States
3Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, Pennsylvania, United States
4Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States
5Department of Surgery, Lehigh Valley Health Network, Allentown, Pennsylvania, United States
6Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States

Address for correspondence Lisa A. Coscia, RN, BSN, CCTC, National Transplantation Pregnancy Registry (NTPR), Gift of Life Institute, 401 N. 3rd Street, Philadelphia, PA 19123, United States (e-mail: NTPR@giftoflifeinstitute.org).

Abstract

Mycophenolic acid (MPA) products, namely mycophenolate mofetil and mycophenolate sodium, are immunosuppressive medications used to prevent rejection in solid organ transplant recipients and to treat various autoimmune disorders. Mycophenolate therapy is considered to be teratogenic based on observational studies of pregnancies exposed to MPA, which demonstrated an increased incidence of miscarriages in pregnancies exposed to MPA during their first trimester and a pattern of birth defects in the offspring of some pregnancies exposed to MPA. Herein, we have detailed case and series reports in a comprehensive literature review summarizing what is known to date regarding fetal exposure to MPA. Based on evidence from the literature, results of postmarketing surveillance, and information from registries such as the National Transplantation Pregnancy Registry in the United States, it is advised that pregnancy be avoided by women taking MPA. Preconception planning offers the opportunity to explore the alternatives to protect the mother, her transplanted organ, and minimize fetal risk. How to proceed in cases of unplanned pregnancies exposed to MPA in transplant recipients is a complex issue. Research involving large epidemiological studies is expected to be sparse as women heed the warnings about becoming pregnant on MPA. Published recommendations for managing MPA in women of childbearing potential include discontinuing the medication prior to conception, switching the MPA to another medication, or discontinuing the MPA when the pregnancy is discovered.

Keywords
- mycophenolate mofetil
- mycophenolic acid
- mycophenolate sodium
- fetus
- immunosuppression
- teratogen
- birth defect
- transplantation
- pregnancy

Introduction

The history of mycophenolic acid (MPA) began with its discovery in 1893.1 Its immunosuppressive property was first described in 1969.2 After years of drug development, two oral forms are now available—the mofetil ester, that is, mycophenolate mofetil (MMF) and the enteric-coated mycophenolate sodium (EC-MPS), which may lower gastrointestinal adverse events associated with MMF.3 MMF was launched in the United States under the brand name CellCept by Roche

Copyright © 2015 by Georg Thieme Verlag KG, Stuttgart · New York
DOI http://dx.doi.org/10.1055/s-0035-1556743.
ISSN 2146-4596.
Laboratories (Basel, Switzerland) in 1995 for the prevention of rejection in solid organ transplantation. From the 2012 annual report of the Scientific Registry of Transplant Recipients, the majority of initial immunosuppressive regimens for transplant recipients in the United States included MPA: kidney (81%), lung (80%), liver (80%), pancreas (90%), and heart (91%). MPA products have also been used to reduce inflammation in autoimmune conditions, including lupus nephritis, vasculitis, psoriasis, erythema multiforme, rheumatoid arthritis, refractory autoimmune hepatitis, myasthenia gravis, and hyperimmunoglobulinemia D. The treatment of autoimmune conditions with MPA products is considered off-label use in the United States. EC-MPS was approved in 2004 and marketed in the United States under the brand name Myfortic by Novartis Pharmaceuticals (Basel, Switzerland). Generic formulations of both medications are now available in the United States. Both the MPA products are also marketed generically worldwide and under various brand names.

Mechanism of Action

Active metabolite MPA is formed when the prodrug MMF undergoes hepatic ester hydrolysis. MPA is a noncompetitive, reversible inhibitor of inosine monophosphate dehydrogenase and blocks de novo purine synthesis on which T- and B-lymphocytes are dependent. MPA also has a range of immunosuppressant activities and anti-inflammatory properties. The primary toxicities of MPA are gastrointestinal side effects and bone marrow suppression. For prevention of transplant rejection, MPA products are typically used in combination with a calcineurin inhibitor, cyclosporine or tacrolimus with or without prednisone. In adults, the oral dosage range for MMF is 500 to 2,000 mg/day in two divided doses, and for EC-MPS, the oral dosage range is 360 to 1,440 mg/day. MPA undergoes enterohepatic recirculation and the inactive metabolite, mycophenolic glucuronide is primarily excreted in the urine. MMF has a plasma half-life of 16 to 18 hours and EC-MPS has a half-life of approximately 12 hours after oral administration. MPA is highly bound to albumin, and plasma levels may be increased by drugs with high protein-binding capacity and by conditions affecting plasma protein levels. Unlike calcineurin inhibitors, MPA blood trough levels only weakly correlate with efficacy and do not correlate with toxicity.

Animal and Human Evidence of Teratogenicity

Animal studies showed evidence of malformations, intrauterine death, or intrauterine growth retardation at MMF doses which appear to be within recommended clinical doses based on body surface area. In rabbits, MMF caused ectopia cordis, ectopic kidney, umbilical hernia, and diaphragmatic hernia, whereas, in rats, the anomalies reported included anophthalmia, agnathia, and hydrocephaly. There have been many case and series reports regarding human exposures during pregnancy, which are presented herein. In those cases, where adverse fetal outcomes were noted, several reports measured normal karyotypes. In general, maternal exposure to MPA during pregnancy is associated with miscarriages and a likely phenotype of malformations in a percentage of infants who survive to delivery. There is a wide variety of developmental malformations seen in some fetuses exposed to MPA products, several of which are common to other teratogens or genetic syndromes, but a specific pattern of malformations has been repeatedly described in the literature as the result of exposure to MPA in the first trimester. This constellation includes isolated and conglomerate occurrences and various gradations of microtia, orofacial clefts, coloboma, hypertelorism, micrognathia, congenital heart defects, agenesis of the corpus callosum, esophageal atresia, and digital hypoplasia. In some cases, the anomalies are associated with miscarriage, stillbirth, or neonatal death, while in some, the conditions can be ameliorated with treatment after birth.

Teratogenicity Risk Assessment and Clinical Studies

Susceptibility to drug-induced malformations depends on many variables including the dose of the drug, when the drug exposure occurs, if the drug is absorbed by the developing fetal tissues, and whether there is teratogenicity in animal studies. As the pattern of malformations is not seen in all children born to mothers who took MPA during the first trimester of pregnancy or even throughout pregnancy, questions remain unanswered such as whether the risks to the fetus are timing related, dose related, associated with maternal comorbidities, pharmacogenetic factors, and/or the result of drug interactions. As the number of fetal exposures has declined because MPA has been found to be a likely human teratogen, it is less likely that sufficient epidemiological analysis will be conducted to answer these questions. While most potential mothers on MPA products will be advised to either reconsider pregnancy based on health considerations, discontinue the medication, or switch to an alternative medication prior to a planned pregnancy, best practice guidelines for what to do in the setting of an unplanned pregnancy continue to develop. When MPA was introduced in 1995, there was speculation that there may be risks associated with its use during pregnancy based on the results of animal reproductive studies. However, the original package labeling cautioned that there were no adequate human studies and that the potential benefits might have warranted the use of the drug in pregnant women despite potential risks seen in animal studies. To reflect this warning, the U.S. Food and Drug Administration (FDA) initially gave MPA a category C pregnancy designation, where fetal risk could not be ruled out. It was not until 2006 that the National Transplantation Pregnancy Registry (NTPR) reported a pattern of malformations and an association with miscarriages in transplant recipients taking MPA compared with those who did not. The pattern of malformations was noted to be microtia, including cleft lip and palate. Since the NTPR’s initial report, there have been numerous case reports.
and series further delineating this pattern of birth defects among the offspring of those treated with MPA during early pregnancy.6,12,21,29–32,36–68 In 2007, the FDA changed the pregnancy category for all MPA products from category C (fetal risk cannot be ruled out) to category D (evidence of fetal risk). Although the FDA pregnancy categorical system is expected to be changed soon, at the time of this review, clinicians still rely on the present FDA pregnancy categories.

The case and series reports to date are summarized in \textit{Tables 1} and \textit{2}. The rate of birth defects in the general U. S. population is approximately 3 to 5\%33 The NTPR analysis revealed that the incidence of birth defects in children born to transplant recipients, not including those recipients exposed to MPA, is estimated to be 4 to 5\%.54 Additionally, in a NTPR analysis, the birth defect rate was 14\% in the newborn of kidney recipients with MPA exposure during early pregnancy, as compared with 6\% in the offspring of kidney recipients when MPA was discontinued prior to pregnancy.55 Data in \textit{Tables 3} show the cumulative number of pregnancy outcomes with exposure to MPA reported in the literature to date. The frequencies of individual birth defects in these reports are described in \textit{Table 4}. From this information, the phenotypical presentation of MPA-mediated developmental anomalies appears to include microtia-external auditory canal atresia, facial clefts, cardiac, skeletal, eye, tracheoesophageal, and facial anomalies. Usually these defects occur in combinations. Several authors have described the improbability that this combination of defects could be the result of any other exposure or genetic predisposition.43,44,56

Although early miscarriage rates are difficult to quantify, the miscarriage rate in the general population is estimated to be 8 to 20\%61 Studies have shown miscarriage rates without MPA exposure in transplant patients to be approximately 13 to 22\%55,62 and in systemic lupus erythematosus (SLE) patients, the rate is 7 to 20\%53,64 Series reports of pregnancy outcomes with MPA exposure show miscarriage rates between 28 and 64\%12,28,51,55 two to three times higher than nonexposed groups. According to the NTPR, the miscarriage rate for kidney transplant recipients exposed to MPA was 52\%, which was significantly higher than the 19\% of female kidney recipients who miscarried after discontinuing MPA preconception \((p < 0.001)\).55

In 2007, along with changing the pregnancy category for all MPA products, the FDA required a black box warning be added to the prescribing information regarding an increased risk of first trimester pregnancy loss and congenital malformations in pregnancies exposed to MPA. The warning also states that females of reproductive potential taking MPA must be counseled regarding pregnancy prevention and planning.25,26 Although, in some cases, the risks to the mother of discontinuing MPA treatment may outweigh the risks to the pregnancy, it is recommended that MPA be avoided in the 6 weeks prior to conception and during pregnancy. Worldwide, these recommendations are publicized in patient and prescribing guidelines.25,26,65–67 The recommendations for taking MPA have been reinforced in the United States by an FDA-mandated Risk Evaluation and Mitigation Strategy (REMS) which was launched in 2013 for all MPA products. The FDA-mandated REMS for MPA products includes a medication guide and elements to assure safe use. The elements to assure safe use ask prescribers to complete online training, obtain patient signatures on the patient prescriber acknowledgment form, and to voluntarily report MPA pregnancy exposures to the MPA pregnancy registry. This registry collects data on pregnancies exposed to MPA within 6 weeks of conception or during pregnancy for both transplant and nontransplant indications.68 In contrast, the NTPR is a condition-based registry; thus, the data collected by the NTPR are confined to exposure in transplant recipients. The NTPR’s unique long-term follow-up, and established internal comparison groups of MPA-unexposed patients, demonstrates the value of reporting all posttransplant pregnancies to the NTPR (NTPRRegistry.org) in addition to reporting the subset of MPA exposures to the MPA REMS pregnancy registry (www.mycophenolate.rems.com).

\section*{Dose–Effect Relationship}

Studies to date have been inconclusive in determining if there is a dose–effect relationship between MPA and adverse pregnancy outcomes. An accepted teratological principle is that there is a dose–effect relationship with developmental toxicity, where there is a threshold dose below which there are no adverse fetal effects and above which there is an increase in frequency of adverse fetal effects.35 In published reports, there has been a wide range of dosages of MPA taken by mothers during pregnancy. The adult dose range for MMF is wide and adverse events have been reported when women were taking as little as 250 mg daily.65 Blood trough levels do not correlate well with drug effectiveness or toxicity; thus, blood levels of MPA are infrequently measured. The NTPR conducted an analysis of those pregnancies with exposure to MPA products based on available dosing information.69 This analysis included 105 pregnancies with 106 outcomes in 71 solid organ recipients (kidney, kidney–pancreas, liver, heart, and lung). Daily doses ranged from 250 to 3,000 mg. There were 46 live births and 14 of the 46 (30.4\%) had a variety of birth defects reported. There were 58 spontaneous abortions (miscarriages) and two stillbirths. Weekly MPA doses were analyzed comparing viable outcomes (live births with birth defects and live births without birth defects) to nonviable outcomes (stillbirths and spontaneous abortions). Mean weekly doses were 7,768 \pm 4,317 mg for viable outcomes versus 8,847 \pm 3,905 mg for nonviable outcomes. Overall, higher MPA doses were seen in those pregnancies with nonviable outcomes. For the viable outcomes, there was no significant difference between the mean weekly MPA doses when comparing live births with and without birth defects.69

Hoeltzenbein et al12's review of 57 prospective pregnancies from the collaborative study of European Teratology Information Services also did not reveal differences in the dosages of mothers of healthy newborn compared with the offspring who were born with MPA-related abnormalities. This was the largest prospective study regarding pregnancy exposure to MPA, and confirmed the increase in miscarriage, a phenotypical pattern, and an increased incidence of birth.
Reference	Age and Indication	MPA product exposure	Concomitant immunosuppression	Other concomitant medications	Pregnancy outcomes	Birth defects
Pérgola et al (2001)³⁶	33 y kidney transplant	1,000 BID; from 6–7 wk to 26 wk 500 mg BID until delivery	Tacrolimus 7 BID adjusted per trough level, prednisone 25 daily	Nifedipine until wk 10; trimethoprim/sulfamethoxazole, acyclovir until wk 26; famotidine, erythropoietin	LB 34 wk 2,250 g	Hypoplastic nails, shortened 5th fingers, “aberrant blood vessel between trachea and esophagus”
Le Ray et al (2004)³⁷	27 y kidney transplant	500 daily until 13 wk	Tacrolimus 9 daily, prednisone 15 daily, azathioprine 50 daily (13 wk until delivery)	None reported	TOPº 22 wk	Microtia and external auditory duct atresia, cleft lip/palate, micrognathia, ocular hypertelorism, left pelvic ectopic kidney, agenesis corpus callosum
Källén et al (2005)³⁸	22 y liver transplant	“Early exposure”; dose not specified	Tacrolimus, prednisone	Ursodeoxycholic acid	LB	Esophageal atresia and complex cardiac defect, iris anomaly
El Sebaaly et al (2007)³⁹	SLE	1,000 BID	Prednisone	Hydroxychloroquine, perindopril	TOPº 25 wk	Bilateral anotia, external auditory duct atresia, polydactyly, nail hypoplasia, anterior positioning of the aorta, interventricular communication, kidney asymmetry
Perez-Aytes et al (2007)³⁹	25 y kidney transplant	500 daily until 10 wk	Tacrolimus 12 daily	None reported	LBº 41 wk 3,050 g	Cleft lip and palate, bilateral microtia, bilateral absence of external ear canals, severe micrognathia, ocular hypertelorism and ptosis, bilateral chorionetal coloboma
Tjeertes et al (2007)²¹	36 y kidney transplant	Dose not specified	Tacrolimus, prednisone	Olanzapine, nitrazepam, and haloperidol from mo 4, darbepoetin-a and methyldopa during last trimester	LBº 35 wk 2,330 g	Microtia, nonimmune hydrops fetalis
Anderka et al (2008)³⁰	19 y SLE	1,000 BID until 11–12 wk	Prednisone	Lisinopril, hydroxychloroquine in 1st trimester; acetaminophen	LBº 31 wk 980 g	Bilateral microtia, right small pinna and preauricular pit, left malformed pinna and no external auditory canal (bilateral conductive deafness)

(Continued)
Reference	Age and Indication	MPA product exposurea	Concomitant immunosuppression	Other concomitant medications	Pregnancy outcomes	Birth defects
Andrade Vila et al (2008)	35 y heart transplant	500 BID until 5 wk; 250 BID until delivery	Tacrolimus 3 BID, prednisone 5 daily	Pravastatin, diltiazem, carbamazepine	LB (weight not reported)	Left eye microphthalmia, complete bilateral atresia of the auditory conduit and middle ear, malformation of the auricular pavilion, palatine gap, mild pulmonary stenosis
Ang et al (2008)	32 y erythema multiforme (two pregnancies)	500 TID until 5 wk	Unknown	Unknown	M 7 wk	Bilateral microtia and external ear canal atresia (conductive hearing loss), right inferonasal iris and chorioretinal coloboma
Velinov and Zellers (2008)	SLE (age not reported)	500 BID until 8 wk	Adalimumab 40 QOW	None reported	LB 32 wk, 4,442 g	Arched eyebrows, bilateral microtia with aural atresia, cleft palate, hypertelorism, epicanthic folds, everted lower lip, severe tracheomalacia, micrognathia, brachydactyly
Ruiz-Campillo et al (2008)	31 y SLE	1,500 daily	Deflazacort	Acetylsalicylic acid, nifedipine, furosemide	LB³ 31 wk, 1,035 g	Severe microretrognathia, complete cleft palate
Schoner et al (2008)	SLE (age not reported)	750 BID until wk 8	Azathioprine 50 daily wk 8 to termination	None reported	TOP³ 17 wk	Macrostomia with bilateral cleft lip and palate, downward slanting palpebral fissures, eyelid colobomas, small anophthalmic eyeballs with multiple malformations, microretrognathia, atretic auditory canals, syndactyly, thymus and lung hypoplasia, heart defects, esophageal atresia with tracheoesophageal fistula, left renal agenesis, agenesis corpus callosum
Huang et al (2008)	36 y SLE	1,000 BID until 12 wk	Prednisone 30 daily	Irbesartan from 12 wk to delivery, hydroxychloroquine, felodipine	TOP³ 22 wk	Ocular hypertelorism, bilateral microtia and external auditory canal atresia, and bifold nasal tip
Dei Malatesta et al (2009)	35 y kidney transplant	500 daily	Tacrolimus 4 daily, prednisone 5 QOD	None reported	LB³ 37 wk, 2,850 g	Right eye choroidal coloboma involving the optic disc (type 1)
Reference	Age and Indication	MPA product exposure	Concomitant immunosuppression	Other concomitant medications	Pregnancy outcomes	Birth defects
-------------------------	--------------------	----------------------	-------------------------------	-----------------------------	--------------------	---
Jackson et al (2009)^{b,48}	20 y liver transplant	1,000 BID until 17 wk; 500 BID from 17 wk to delivery	Tacrolimus 5 BID, prednisone 2.5 BID	Trimethoprim/sulfamethoxazole, acyclovir begun between 17 and 27 wk	LB^c 35 wk, child death at 125 d of cardiorespiratory failure	Bilateral cleft lip and palate, multiple cardiac defects, cataracts, left microphthalmia with ocular hypertelorism, microtia with external ear canal atresia, intestinal malrotation, overlapping fingers and skeletal anomalies of the ribs and vertebrae, immature white matter development, bilateral coloboma
Parisi et al (2009)^{b,32}	36 y kidney transplant	250 BID	Tacrolimus 5 daily, prednisone 5 daily	amlodipine, metoprolol, furosemide, erythropoetin, acyclovir (1st month)	LB^c 35 wk; 2163 g; Neonatal death on day 2	Congenital diaphragmatic hernia, cleft palate, ocular hypertelorism, retrognathia, microtia with no external auditory canals, short webbed neck, esophageal atresia with tracheoesophageal fistula, bifid thoracic vertebra, short thumbs and fifth fingers with hypoplastic toenails
Zahra et al (2009)⁵⁸	34 y liver transplant	1,000 daily to 12 wk	Cyclosporine 300 mg	None reported	LB 38 wk, 2,480 g	None reported
Koshy et al (2010)⁵⁹	37 y kidney transplant	250 BID	Tacrolimus 2 BID, prednisone 5 daily	Labetalol 200 BID	LB 32 wk	Microtia, bilateral atresia of the auditory canals (intact inner ear function), downward slanting palpebral fissures, mild retrognathia, bifid uvula
Lin et al (2011)³¹	22 y kidney transplant	1,000 daily until month 3; entire bottle at about month 2 of pregnancy (attempted suicide)	Tacrolimus 6 daily, prednisone 5 daily	Omeprazole, ferrous sulfate	LB^c 40 wk, 2,064 g	Prenatal ultrasound: multiple congenital heart defects; additional postnatal findings: bilateral microtia and absent external auditory canals, preauricular skin tags, microphthalmia, inferior iris coloboma, micrognathia, hypoplasia of lower face, hard and soft cleft palate, short webbed neck, hypoplastic scapulae, mild rhizomelic shortening, bilateral cryptorchidism
defects with MPA exposure. The authors also stressed that MPA exposure past week 7 resulted in an increased risk for birth defects. The lack of definitive results in these small group analyses leaves open the question of whether the teratogenicity of MPA is dose related. Only one author reported the blood level of MPA in an infant born with microtia to a mother taking MPA during her pregnancy. Tjeertes et al found a blood level of 3.1 mg/L in the newborn, which dropped to 0.6 mg/L after 10 days. The authors were not able to correlate the infants’ blood level with maternal blood level as it was not tested, nor was the maternal dose during pregnancy reported.

Strategies to Reduce Maternal MPA Exposure

Ghafari and Sanadgol reported the outcome of 61 pregnancies in 53 kidney recipients, among them 38 recipients had pregnancies with exposure to MMF. Neither the number of live births with MMF exposure was reported nor the exposure to MMF in the newborn with birth defects were mentioned (clubfoot and two infants with large facial hemangiomas). The authors concluded that MMF may be as safe as azathioprine (AZA) in pregnancy, by comparing the MMF outcomes to 15 recipients with AZA exposure as there were no differences between the outcomes.

Klieger-Grossmann et al also postulate that the incidence of malformations with exposure to MPA may be lower than the 27% that was originally reported. In their prospective study of 10 pregnancies on MPA for varying reasons, there were five live births (no malformations), four miscarriages, and one termination. They identified one retrospective case of MPA exposure where the baby exhibited microtia and severe hearing loss. The authors did recommend diagnostic imaging in the case of MPA exposure to ascertain whether the phenotypic malformations are visualized.

It has become common practice during prepregnancy planning for clinicians to either discontinue MPA or switch MPA to another medication that is considered safe to take during pregnancy. This approach is not effective for unplanned pregnancies or if the mother’s treated condition is not responsive to other medications. The NTPR compared 114 pregnancies conceived on MPA to 163 pregnancies where MPA was discontinued prior to conception in kidney recipients. The women who discontinued MPA had significantly longer transplant-to-conception intervals and lower peripartum serum creatinine levels, as well as a significantly higher rate of live births and a lower incidence of birth defects, as previously discussed. Rejection rates during pregnancy and graft loss within 2 years of delivery were similar between the groups. Thus, for the short term, discontinuing MPA did not adversely affect graft function and resulted in more favorable pregnancy outcomes.

MPA Alternatives

For transplant recipients, the common alternative agent used when switching from MPA is AZA, which historically is

Reference	Age and indication	MPA product exposure	Other concomitant medications	Pregnancy outcomes	Concomitant immunosuppression	Other concomitant medications	Birth defects
Perales-Puchalt et al (2012)	25 y kidney transplant	Dose not specified	None reported	LB (gestational age and birth weight not specified)	None reported	None reported	Cleft palate

Abbreviations: BID, mg twice a day; LB, live birth; M, miscarriage; MPA, mycophenolic acid; QOD, mg every other day; QOW, mg every other week; S, stillbirth; SLE, systemic lupus erythematosus; TID, mg three times a day; TOP, termination of pregnancy.

Note: Unless noted, medication was continued throughout pregnancy.

This table (continued)
Table 2 Series reports with exposure to mycophenolate

Reference and cases reported in the reference	Age and Indication	MPA product exposurea	Concomitant immunosuppression	Concomitant medications	Pregnancy outcome	Birth defects
Ortiz et al (2009)60	5 mothers 5 pregn-	Mean daily dose 1.5 daily	Prednisone (5)	Hydroxychloroquine (4), alendronate (3), benazepril (1)	3 LB 2 M	None
Klieger-Grossmann et al (2010)50	10 mothers 11 preg-	750 daily	Not reported	Not reported	4 M (36%) 6 LB 1 TOP	1 (17%)
1	42 y kidney trans-	250 BID wk 8–13	Not reported	Not reported	LB 37 wk 2,850 g	None
2	36 y SLE	500 daily	Not reported	Not reported	M 8 wk	None
3	29 y SLE	500 daily until wk 5	Not reported	Not reported	TOP 12 wk	None
4	27 y SLE	500 BID	Not reported	Not reported	M 8 wk	None
5	24 y SLE	500 BID	Not reported	Not reported	M 12 wk	None
6	34 y kidney trans-	500 BID until wk 6	Not reported	Not reported	LB 36 wk 2,900 g	None
7	32 y autoimmune	500 BID until wk 12	Not reported	Not reported	M 13 wk	None
8	39 y kidney trans-	500 BID until wk 6	Not reported	Not reported	LB 37 wk 2,375 g	None
9	26 y rheumatoid ar-	500 daily until wk 7	Not reported	Not reported	LB 42 wk 2,960 g	None
10	Unknown	500 BID until wk 12	Not reported	Not reported	LB	Microtia with hearing loss
Hoeltzenbein et al (2012)12	57 pregnancies	1,000 BID	Prednisone	Hydroxychloroquine, perindopril	16 M (28%) 29 LB 12 TOP	8 malformations 6 LB (21%) 2 TOP due to malformations
1	SLE	750 daily until wk 8	Prednisone, azathioprine	Enalapril, hydroxy-	TOP 25 wk	See ► Table 1 (case report by El Sebaaly et al)39
2	SLE	500 daily	Prednisone	Hydroxychloroquine,	TOP 23 wk	Microtia, external ear canal atresia, colobomal cyst, olfactory nerve agenesis, hypertelorism, malar hypoplasia, brachycephaly, microretrognathia, esophageal atresia type III, retroesophageal right subclavian artery, campito-/clindactyly

(Continued)
Reference and cases reported in the reference	Age and indication of pregnancy	MPA product exposure	Concomitant medications	Concomitant immunosuppression	Birth defects
3 Kidney transplant	500 daily until 10 wk	Unknown dose until 8 wk	Tacrolimus, prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
4 SLE	500 daily until 8 wk	1,000 daily until 18 wk	Tacrolimus, azathioprine, prednisone	Cyclosporine, prednisone	Large left sided deft lip and palate and bilateral auditory canal atresia
5 Kidney transplant	Unknown dose until 8 wk	Various doses in early pregnancy	Cyclosporine, prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
6 Liver transplant	1,440 daily (EC-MPS) until 5 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
7 Hyper IgD syndrome	1,280 daily (CARTA) until 5 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
8 Unknown	Unknown dose until 8 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
9L B	Unknown dose until 8 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
10 Unknown dose until 8 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney	
114 Kidney transplant: 114 recipients, 113 pregnancies outcomes	1,400 BID until 16 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
125 BD until 11 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney	
13 500 BD switched to sirolimus at 24 wk	Various doses in early pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney	
14 Case 1	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
15 Case 2	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
16 Case 3	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
17 Case 4	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
18 Case 5	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney
19 Case 6	1,000 BID until 16 wk	Dose unknown throughout pregnancy	Tacrolimus and prednisone	Most on a calcineurin inhibitor	Microtia, external auditory canal atresia, begin cystic kidney

NTPR (2013)^

NTPR (2013)^

Case report by Parisi et al^

Not reported in Table 1

Continued
considered safe for use during pregnancy.75–79 The NTPR analyzed 56 recipients (46 kidney, 7 pancreas–kidney, 2 heart, 1 lung) who conceived 58 pregnancies after switching from MPA to AZA more than 6 weeks prior to conception.79 Pregnancy outcomes included 51 live births (88%), 4 spontaneous abortions (7%), 2 stillbirths, and 1 therapeutic abortion. The stillbirths were associated with placenta previa and tetraploidy. Birth defects reported were familial clubfoot (two) and hypospadias (two). Half of the recipients resumed MPA postpartum. At last maternal follow-up, 2 (4%) kidney recipients reported graft loss within 2 years of delivery (remained on AZA), 1 pancreas–kidney recipient lost pancreatic function during pregnancy, and the remaining 53 recipients reported adequate transplant function. From this study, it was concluded that switching from MPA to AZA more than 6 weeks prior to conception can result in successful pregnancy outcomes without an increased incidence of graft loss within 2 years of delivery. In this study group, 4% of kidney recipients lost their graft, whereas the NTPR reported a graft loss of 6 to 8% within 2 years of delivery in kidney recipients. This group also did not exhibit the increased miscarriage rate or pattern of birth defects found in pregnancies conceived while taking MPA during pregnancy.

Al Maimouni et al.72 reported on seven SLE patients who switched from MPA to AZA in anticipation of pregnancy. Although pregnancy outcomes were not reported, there was no increased disease activity in the 6 months following the switch.72 In another study of 23 SLE patients who switched from MPA to AZA in anticipation of pregnancy, 18 patients delivered 18 live births. Although three of the patients had to restart MPA due to renal flares and another had a renal flare postpartum, the authors concluded that patients with stable lupus nephritis in remission could safely switch from MPA to AZA in anticipation of pregnancy.71 A similar study of eight SLE females, which assessed the rate of renal flares associated with switching from MMF to AZA in anticipation for pregnancy, showed that three out of the eight patients had renal flares following the switch. Of the three patients who had renal flares, two became pregnant, and both developed preeclampsia leading to a cesarean delivery in one at 35 weeks and birth by induction at 37 weeks in the other. Those who experience renal flares had significantly higher urine protein creatinine ratios, anti-dsDNA titers, and abnormal C3 at the time of switching medications, suggesting that these variables may be possible predictors of adverse outcomes in SLE patients who switch medications prior to pregnancy.73

Paternal MPA Exposure

Owing to the risks in female patients with exposure to MPA during pregnancy, questions have arisen regarding fathering pregnancies while taking MPA. Overall, the outcomes of pregnancies fathered by male transplant recipients appear similar to those of the general population and the MPA embryopathies have not been noted in those pregnancies fathered by transplant recipients; thus, MPA is considered safe for male patients to take at the time of conception. This is

Table 2 (Continued)

Reference and cases reported in the reference	Age and indication of pregnancy	MPA product exposure	Concomitant immunosuppression	Concomitant medications	Pregnancy outcome	Birth defects	
Mohamed-Ahmed et al (2014)53	Liver transplant: 7 pregnancies; heart transplant: 2 pregnancies	500 mg qd until 4 wk	Tacrolimus and prednisone	Labetalol, Coumadin switch to enoxaparin sodium	LB 34 wk 1,758 g	Ventricular septal defect	Not reported
						"Good fetal outcome" (2)	"Poor fetal outcome" (7)

Abbreviations: BID, mg twice a day; LB, live birth; M, miscarriage; MPA, mycophenolic acid; QOD, every other day; S, stillbirth; SLE, systemic lupus erythematosus; TID, three times a day; TOP, termination of pregnancy.

Note: Unless noted, medication was continued throughout pregnancy.

a Denotes gestational age in weeks.

b May overlap with NTPR.

c Poor fetal outcome defined as stillbirth, miscarriage, very low birth weight (<1,500 g), small for gestational age (<10th%), congenital anomaly, admission to neonatal unit, very preterm.

References:

1. Coscia et al. Teratogenicity of Maternal Mycophenolate Mofetil. Journal of Pediatric Genetics Vol. 4 No. 2/2015

Paternal MPA Exposure

Owing to the risks in female patients with exposure to MPA during pregnancy, questions have arisen regarding fathering pregnancies while taking MPA. Overall, the outcomes of pregnancies fathered by male transplant recipients appear similar to those of the general population and the MPA embryopathies have not been noted in those pregnancies fathered by transplant recipients; thus, MPA is considered safe for male patients to take at the time of conception. This is
supported by an NTPR study of 152 male recipients with exposure to MPA who fathered 205 pregnancies (208 outcomes, including three pairs of twins). Pregnancy outcomes included 194 (93%) live births and 14 (7%) spontaneous abortions. Among live births, there were six malformations reported, for an incidence of 3.1%. No specific pattern of malformations was identified.

Limitations of Clinical Studies

It has been suggested that the rate of birth defects in MPA-exposed pregnancy outcomes is inflated owing to the potential bias in reporting retrospective analyses versus prospectively ascertained cases. There is some variability in the data in these reports, as some of the cases were reviewed retrospectively. Do retrospective analyses over- or underreport adverse outcomes? If you take a snapshot of reporting, it is possible that adverse outcomes are reported more frequently. However, with longer-term studies, two factors may counteract: (1) consistency in rates of adverse outcomes reporting over time equilibrate and (2) women with successive pregnancies blend retrospective and prospective data.

Practical Approach and Recommendations

There are several strategies that seem prudent when prescribing MPA. Prior to initiation of MPA in a woman of reproductive potential, there should be extensive counseling, stressing the importance of appropriate contraception and a discussion regarding the potential risks if the woman were to become pregnant, that is, increased rate of miscarriage and the possibility that the infant could exhibit a certain pattern of malformations. The FDA-mandated medication guide that accompanies MPA products includes the warnings that there should be a negative pregnancy test within 1 week of starting MPA and that two different types of effective birth control should be used simultaneously for 4 weeks before starting MPA, throughout MPA therapy, and for the 6 weeks following any discontinuation of MPA, and that the effectiveness of oral contraceptives may be affected by MPA. These same cautions are also in prescribing information published outside of the United States.

When a patient plans a pregnancy, it is recommended that the patient discuss with her health care provider her health considerations should she discontinue MPA and the alternatives, given the patient’s specific issues. In many cases, it is reasonable to switch MPA to a medication that is safer to use during pregnancy, such as temporarily replacing MPA with AZA in conjunction with adding or increasing prednisone, in an attempt to balance the risks. Ideally, MPA should be discontinued at least 6 weeks prior to conception. There are several reports supporting this strategy. No doubt there are uncommon situations where the potential immunosuppressive benefit of taking MPA while pregnant would outweigh the potential risk to the fetus, considering the alternative medications and the reports of the high miscarriage rates and the incidence of birth defects.

The more challenging situation is when a patient has an unplanned pregnancy resulting in MPA exposure during organogenesis. In the published series and case reports,
different strategies were used with varying results. MPA was decreased when pregnancy was discovered,36,48 MPA was switched to another agent41,79 or MPA was discontinued.29,30 In other cases, pregnancy termination was recommended based on potential risks or the results of diagnostic testing.37,39 Although not all pregnancies exposed to MPA beyond organogenesis have resulted in adverse outcomes, the treatment decision is complex as it takes into account the fetal risks as well as the health of the mother and transplanted organ. The obstetrician and neonatal and transplant teams should be prepared for the delivery of a newborn that may have defects if there was MPA exposure.

Huang et al42 suggest that further discussion with the patient in the form of genetic counseling should take place regarding the possibility of fetal malformations in the event of MPA exposure during the first trimester. Repeat fetal sonography is advisable to attempt prenatal diagnosis of any MPA embryopathy focusing on the potential craniofacial abnormalities. Echocardiography at 23 weeks to rule out cardiac defects. This will allow for the appropriate staff and timely interventions after delivery.84

After the pregnancy, there is a question of when to resume MPA. The postpartum period is a fragile time for patients from both health and lifestyle standpoints. Abrupt pharmacokinetic changes follow delivery. Maternal immune reconstitution poses a threat. Postpartum depression also threatens medication adherence. Careful monitoring during the postpartum period is recommended. Some transplant patients risk rejection if they stay off MPA for too long, whereas other patients can tolerate a MPA-free regimen. If the patient desires subsequent pregnancies, the question arises whether she should remain off MPA until she conceives again or if she should resume MPA until conception is planned.

Breastfeeding

Special consideration should also be given to the patient who wishes to breastfeed. Because it is expected that MPA is secreted in human breast milk, the product labeling advises against breastfeeding while taking MPA. In animal studies, MPA was found in breast milk and there is no published information about the measurement of MPA in human breast milk. Patients who have discontinued MPA prior to or during their pregnancy are frequently taking other medications for which breastfeeding has historically been discouraged. Breastfeeding and the use of human milk confer unique nutritional and nonnutritional benefits to the infant and the mother88 and detecting the presence of a drug in human milk does not always imply a risk to the infant. One hundred four transplant recipients participating in the NTPR reported breastfeeding their infants; among them seven children born between 2002 and 2008 (five kidney, two heart) were breastfed while their mothers were maintained on MPA. To date none have reported adverse effects due to breastfeeding.89

Continued long-term follow-up of MPA-exposed offspring is warranted as they mature into adulthood, to identify any subtle, lasting effects of immunosuppression exposure. All transplant centers are encouraged to continue to report all pregnancies in transplant recipients to the NTPR.

In Memoriam

This article is dedicated to Vincent T. Armenti, MD, PhD (1952–2014), the founder and principal investigator of the NTPR. His guidance and leadership allowed the NTPR to flourish and provide countless transplant recipients with scientific information on which to base their family planning decisions.

Acknowledgments

The NTPR acknowledges the cooperation of transplant recipients and the personnel in more than 250 centers in North America who have contributed their time and information to the NTPR. The NTPR is supported by grants from Astellas Pharma US, Inc.; Pfizer Inc.; and Bristol-Myers Squibb Company.

References

1. Sollinger HW. A few memories from the beginning. Transplantation 2005;80(2, Suppl):S178–S180
2. Mitsui A, Suzuki S. Immunosuppressive effect of mycophenolic acid. J Antibiot (Tokyo) 1969;22(8):358–363
3. Sabbatini M, Capone D, Gallo R, et al. EC-MPS permits lower gastrointestinal symptom burden despite higher MPA exposure in patients with severe MMF-related gastrointestinal side-effects. Fundam Clin Pharmacol 2009;23(5):617–624
4. Organ Procurement and Transplantation Network and Scientific Registry of Transplant Recipients 2010 data report. Am J Transplant 2012;12(Suppl 1):1–156
5. Dooley MA, Jayne D, Ginzier EM, et al; ALMS Group. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med 2011;365(20):1886–1895
6. Hu W, Liu C, Xie H, Chen H, Liu Z, Li L. Mycophenolate mofetil versus cyclophosphamide for inducing remission of ANCA vasculitis with moderate renal involvement. Nephrol Dial Transplant 2008;23(4):1307–1312
7. Callen JP, Krueger GG, Lebwohl M, et al; AAD. AAD consensus statement on psoriasis therapies. J Am Acad Dermatol 2008;49(5):897–899
8. Ang GS, Simpson SA, Reddy AR. Mycophenolate mofetil embryopathy may be dose and timing dependent. Am J Med Genet A 2008;146A(15):1963–1966
9. Goldblum R. Therapy of rheumatoid arthritis with mycophenolate mofetil. Clin Exp Rheumatol 1993;11(Suppl 8):S117–S119
10. Czaja AJ. Current and prospective pharmacotherapy for autoimmune hepatitis. Expert Opin Pharmacother 2014;15(12):1715–1736
11. Silvestri NJ, Wolfe GI. Treatment-refractory myasthenia gravis. J Clin Neuromuscul Dis 2014;15(4):167–178
12. Hoeltenbein M, Elefant E, Vial T, et al. Teratogenicity of mycophenolate confirmed in a prospective study of the European Network of Teratology Information Services. Am J Med Genet A 2012;158A(3):588–596
13. Fujiyama N, Miura M, Kato S, Sone T, Isobe M, Satoh S. Involvement of carboxylesterase 1 and 2 in the hydrolysis of mycophenolate mofetil. Drug Metab Dispos 2010;38(12):2210–2217
14. Allison AC, Egui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000;47(2-3):85–118
15 Sollinger HW; U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995;60(3):225–232

16 Mathew TH; Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years. Transplantation 1998;65(11):1450–1454

17 European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 1995;345(8961):1321–1325

18 Kobashigawa J, Miller L, Renlund D, et al; Mycophenolate Mofetil Investigators. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998;66(4):507–515

19 The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 1996;61(7):1029–1037

20 Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34(6):429–455

21 Tjeertes IF, Bastiaans DE, van Ganzevinkel CJ, Zegers SH. Neonatal anemia and hydrops fetalis after maternal mycophenolate mofetil use. J Perinatol 2007;27(1):62–64

22 Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014;88(7):1351–1389

23 Le Meur Y, Büchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496–2503

24 Wang X, Qin X, Wang Y, et al. Controlled-dose versus fixed-dose mycophenolate mofetil for kidney transplant recipients: a systematic review and meta-analysis of randomized controlled trials. Transplantation 2013;96(4):361–367

25 Mycophenolate mofetil [Package insert]. South San Francisco, CA: Genentech USA Inc; 2013

26 Mycophenolic acid [Package insert]. East Hanover, NJ: Novartis Pharmaceuticals; 2013

27 Eckardt K, Stahlmann R. Use of two validated in vitro tests to assess the embryotoxic potential of mycophenolic acid. Arch Toxicol 2010;84(1):37–43

28 Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation 2006;82(12):1698–1702

29 Perez-Aytes A, Ledo A, Boso V, et al. In utero exposure to mycophenolate mofetil: a characteristic phenotype? Am J Med Genet A 2008;146A(1):1–7

30 Anderka MT, Lin AE, Abuelo DN, Mitchell AA, Rasmussen SA. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am J Med Genet A 2009;149A(6):1241–1248

31 Lin AE, Singh KE, Strauss A, Nguyen S, Rawson K, Kimonis VE. An additional patient with mycophenolate mofetil embryopathy: cardiac and facial analyses. Am J Med Genet A 2010;155A(4):748–756

32 Parisi MA, Zayed H, Slavotinek AM, Rutledge JC. Congenital diaphragmatic hernia and microtia in a newborn with mycophenolate mofetil (MMF) exposure: phenocopy for Franks syndrome or broad spectrum of teratogenic effects? Am J Med Genet A 2009;149A(6):1237–1240

33 Finnell RH. Teratology: general considerations and principles. J Allergy Clin Immunol 1999;103(2, Pt 2):S337–S342

34 Fawcett LB, Brent RL. Developmental toxicology, drugs, and fetal teratogenesis. In: Reece EA, Hobkins JC, eds. Clinical Obstetrics: The Fetus and Mother. 3rd ed. Malden, MA: Blackwell Publishing Inc; 2007:217–235

35 Wilson JG. Embryological considerations in teratology. Ann N Y Acad Sci 1965;123:219–227

36 Pérgola PE, Kancharla A, Riley DJ. Kidney transplantation during the first trimester of pregnancy: immunosuppression with mycophenolate mofetil, tacrolimus, and prednisone. Transplantation 2001;71(7):994–997

37 Le Ray C, Coulomb A, Elefant E, Fidyman R, Audibert F. Mycophenolate mofetil in pregnancy after renal transplantation: a case of major fetal malformations. Obstet Gynecol 2004;103(5, Pt 2):1091–1094

38 Källén B, Westgren M, Aberg O, Loolausso P. Pregnancy outcome after maternal organ transplantation in Sweden. BJOG 2005;112(7):904–909

39 El Sebaaly Z, Charpentier B, Snaoujdi R. Fetal malformations associated with mycophenolate mofetil for lupus nephritis. Nephrol Dial Transplant 2007;22(9):2722

40 Velinov M, Zellers N. The fetal mycophenolate mofetil syndrome. Clin Dysmorphol 2008;17(1):77–78

41 Schoner K, Steinhard J, Figiel J, Rehder H. Severe facial clefts in acrofacial dysostosis: a consequence of prenatal exposure to mycophenolate mofetil? Obstet Gynecol 2008;111(2, Pt 2):483–486

42 Huang SY, Chueh HY, Shaw SW, Shih JC, Cheng Pj. Sonographic diagnosis of fetal malformations associated with mycophenolate mofetil exposure in utero. Am J Obstet Gynecol 2008;199(2):e6–e8

43 Vento M, Perez Aytes A, Ledo A, Boso V, Carey JC. Mycophenolate mofetil during pregnancy: some words of caution. Pediatrics 2008;122(1):184–185

44 Carey JC. “Where observation is concerned, chance favors only the prepared mind.” Obstet Gynecol 2008;111(2, Pt 2):479–480

45 Andrade Vila JH, da Silva JP, Guilhen CJ, Baumgratz JF, da Fonseca L. Even low dose of mycophenolate mofetil in a mother recipient of heart transplant can seriously damage the fetus. Transplantation 2008;86(2):369–370

46 Pisoni CN, D’Cruz DP. The safety of mycophenolate mofetil in pregnancy. Expert Opin Drug Saf 2008;7(3):219–222

47 Dei Malatesta MF, Rocca B, Gentile T, et al. A case of coloboma in a newborn to a woman taking mycophenolate mofetil in pregnancy after kidney transplantation. Transplant Proc 2009;41(4):1407–1409

48 Jackson P, Paquette L, Watikier V, Randolph L, Ramanathan R, Seri L. Intrauterine exposure to mycophenolate mofetil and multiple congenital anomalies in a newborn: possible teratogenic effect. Am J Med Genet A 2009;149A(6):1231–1236

49 Perales-Puchalt A, Vila Vives JM, López Montes J, Diago Almela VJ, Perales A. Pregnancy outcomes after kidney transplantation-immunosuppressive therapy comparison. J Matern Fetal Neonatal Med 2012;25(8):1363–1366

50 Klieger-Grossmann C, Chitayat D, Lavign S, et al. Prenatal exposure to mycophenolate mofetil: an updated estimate. J Obstet Gynaecol Can 2010;32(8):794–797

51 Coscia LA, McGorry CH, Ohler L, Moritz MJ, Armenti VT. Pregnancy outcomes in heart transplant recipients with exposure to mycophenolic acid products. [Abstract] J Heart Lung Transplant 2013;32(4):39A

52 National Transplantation Pregnancy Registry (NTPR). 2013 Annual report: Gift of Life Institute: Philadelphia, PA: NTPR; 2014

53 Mohamed-Ahmed O, Nelson-Piercy C, Bramham K, et al. Pregnancy outcomes in liver and cardiothoracic transplant recipients: a UK national cohort study. PLoS ONE 2014;9(2):e89151

54 Coscia LA, Constantinescu S, Moritz MJ, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. In: Terasaki PI, Cecka JM, eds, Clinical Transplants 2010. Los Angeles, CA: Terasaki Foundation Laboratory; 2011:65–85

Journal of Pediatric Genetics Vol. 4 No. 2/2015
Teratogenicity of Maternal Mycophenolate Mofetil Coscia et al.

55 Constantinescu S, Axelrod P, Coscia L, Moritz MJ, Armenti VT. Pregnancy outcomes in kidney recipients who discontinued mycophenolic acid products prior to conception. [Abstract] J Am Soc Nephrol 2013;24:S161A
56 Carey JC, Martinez L, Balken E, Leen-Mitchell M, Robertson J. Determination of human teratogenicity by the astute clinician method: review of illustrative agents and a proposal of guidelines. Birth Defects Res A Clin Mol Teratol 2009;85(1):63–68
57 Ruiz-Campillo C, Castillo F, Perapoch J, Salcedo S. Mycophenolate mofetil use for lupus nephritis during pregnancy: report of a case of fetal malformations and literature update. The Internet J Gynecology Obstetrics 2008;11(2)
58 Zahra T, Seyed Alireza T, Shirin S. Successful pregnancies in two orthotopic liver transplant (OLT) recipients in Iran: two case reports. J Reprod Infertil 2009;10(3):225–229
59 Koshy AN, Strong D, Earles G, Fassett RG. Congenital malformations with low-dose mycophenolate mofetil after liver transplantation. Nephrology (Carlton) 2010;15(1):133–135
60 Ortiz EC, Torralba KD, Evelyn CM Jr, Q, Francisco P. Fetal and maternal outcomes with mycophenolate mofetil (MMF) exposure during first trimester of pregnancy in patients with systemic lupus erythematosus. [Abstract] Arthritis Rheum 2009;60(5):1587
61 March of Dimes. Pregnancy Loss. Available at: http://www.marchofdimes.org/loss/miscarriage.aspx. Accessed December 11, 2014.
62 Armenti VT, Radomski JS, Moritz MJ, Branch KR, McGrory CH, Coscia LA. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. In: Cecka JM, Terasaki PI, eds. Clinical Transplants 1997. Los Angeles, CA: UCLA Tissue Typing Laboratory; 1998:101–112
63 Closwes ME, Magder LS, Witter F, Petri M. The impact of increased lupus activity on obstetric outcomes. Arthritis Rheum 2005;52(2):514–521
64 Smyth A, Oliveira GH, Lahr BD, Bailey KR, Norby SM, Garovic VD. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol 2010;5(11):2060–2068
65 EBPG Expert Group on Renal Transplantation. European best practice guidelines for renal transplantation. Section IV: Long-term management of the transplant recipient. IV.10. Pregnancy in renal transplant recipients. Nephrol Dial Transplant 2002;17(Suppl 4):50–55
66 European Medicines Agency European Public Assessment Report. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000082/WC500021859.pdf. Accessed December 19, 2014
67 Medsafe New Zealand Medicines and Medical Devices Safety Authority. Available at: http://www.medsafe.govt.nz/profs/datasheet/c/Cellceptcapsuspinf.pdf. Accessed December 19, 2014
68 Kim M, Rostas S, Gabardi S. Mycophenolate fetal toxicity and risk evaluation and mitigation strategies. Am J Transplant 2013;13(6):1383–1389
69 Sifontis NM, Constantinescu S, Coscia LA, et al. Pregnancy outcomes with exposure to mycophenolic acid products: is there a dose relationship? [Abstract] Am J Transplant 2011;11(S2):206
70 Ghaafari A, Sanadgil H. Pregnancy after renal transplantation: ten-year single-center experience. Transplant Proc 2008;40(1):251–252
71 Fischer-Betz R, Specker C, Brinks R, Aringer M, Schneider M. Low risk of renal flares and negative outcomes in women with lupus nephritis conceiving after switching from mycophenolate mofetil to azathioprine. Rheumatology (Oxford) 2013;52(6):1070–1076
72 Al Maimouni H, Gladman DD, Ibarzez D, Urowitz MB. Switching treatment between mycophenolate mofetil and azathioprine in lupus patients: indications and outcomes. Arthritis Care Res (Hoboken) 2014;66(12):1905–1909
73 Jordan N, D’Cruz D. Lupus nephritis flares precipitated by switching from mycophenolate mofetil to azathioprine in pre-pregnancy planning. Arthritis Rheum 2013;65(S10):580
74 Bertsias GK, Tektonidou M, Amoura Z, et al; European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 2012;71(11):1771–1782
75 Kasiske BL, Zeier MG, Chapman JR, et al; Kidney Disease: Improving Global Outcomes. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int 2010;77(4):299–311
76 Goldstein LH, Dolinsky G, Greenberg R, et al. Pregnancy outcome of women exposed to azathioprine during pregnancy. Birth Defects Res A Clin Mol Teratol 2007;79(10):696–701
77 Cleary BJ, Källén B. Early pregnancy azathioprine and pregnancy outcomes. Birth Defects Res A Clin Mol Teratol 2009;85(7):647–654
78 Langagerra V, Pedersen L, Gislum M, Nergard B, Sørensen HT. Birth outcome in women treated with azathioprine or mercaptopurine during pregnancy: A Danish nationwide cohort study. Aliment Pharmacol Ther 2007;25(1):73–81
79 Sifontis NM, Coscia LA, Lundgren MP, et al. Pregnancy outcomes in solid organ transplant recipients with a switch from a mycophenolic acid product to azathioprine prior to conception. [Abstract] Am J Transplant 2013;13(55)161
80 Jones A, Clary M, McDermott E, et al. Outcomes of pregnancies fathered by solid-organ transplant recipients exposed to mycophenolic acid products. Prog Transplant 2013;23(2):153–157
81 Ward RA, Brier ME. Retrospective analyses of large medical databases: what do they tell us? J Am Soc Nephrol 1999;10(2):429–432
82 Kennedy DL, Uhl K, Kweder SL. Pregnancy exposure registries. Drug Saf 2004;27(4):215–228
83 Cox E, Martin BC, Van Staa T, Garbe E, Siebert U, Johnson ML. Good research practices for comparative effectiveness research: approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: the International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report—Part II. Value Health 2009;12(S8):1053–1061
84 Merlob P, Stahl B, Klinger G. Tetrad of the possible mycophenolate mofetil embryopathy: a review. Reprod Toxicol 2009;28(1):105–108
85 Coscia LA, Constantinescu S, Davison JM, Moritz MJ, Armenti VT. Immunosuppressive drugs and fetal outcome. Best Pract Res Clin Obstet Gynaecol 2014;28(8):1174–1187
86 Hou S. Pregnancy in renal transplant recipients. Adv Chronic Kidney Dis 2013;20(3):253–259
87 Hahn BH, McMahon MA, Wilkinson A, et al; American College of Rheumatology. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken) 2012;64(6):797–808
88 Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012;129(3):e827–e841
89 Constantinescu S, Pai A, Coscia LA, Davison JM, Moritz MJ, Armenti VT. Breast-feeding after transplantation. Best Pract Res Clin Obstet Gynaecol 2014;28(8):1163–1173