Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-19 infection treatment

Cinzia Maria Chinnici, Giovanna Russelli, Matteo Bulati, Vitale Miceli, Alessia Gallo, Rosalia Busà, Rosaria Tinnirello, Pier Giulio Conaldi, Gioacchin Iannolo

ORCID number: Cinzia Maria Chinnici 0000-0001-9318-6606; Giovanna Russelli 0000-0002-1920-0892; Matteo Bulati 0000-0002-3269-935X; Vitale Miceli 0000-0001-8922-9909; Alessia Gallo 0000-0001-6737-9770; Rosalia Busà 0000-0002-7546-7209; Rosaria Tinnirello 0000-0002-4324-5097; Pier Giulio Conaldi 0000-0003-1994-8005; Gioacchin Iannolo 0000-0002-7710-4735.

Author contributions: Chinnici CM, Russelli G, Bulati M, Miceli V, Gallo A, Busà R, Tinnirello R, Conaldi PG and Iannolo G conducted the research and edited all drafts of the manuscript.

Supported by UPMC International, Pittsburgh, United States, No. 10000026; Italian Ministry of Education, University and Research, Rome, Italy, No. CTN01 _00177_888744; and PO FESR Sicilia 2014/2020 Azione 1.1.5 Project (Prometeo), No. 08PA8610200270.

Conflict-of-interest statement: The authors declare having no conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution International License (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Due to their immunomodulatory potential and release of trophic factors that promote healing, mesenchymal stromal cells (MSCs) are considered important players in tissue homeostasis and regeneration. MSCs have been widely used in clinical trials to treat multiple conditions associated with inflammation and tissue damage. Recent evidence suggests that most of the MSC therapeutic effects are derived from their secretome, including the extracellular vesicles, representing a promising approach in regenerative medicine application to treat organ failure as a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome coronavirus, caused by the newly identified agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all available instruments to fight the infection, including the inflammatory cascade caused by this pandemic disease. The use of MSCs is a valid approach to combat organ inflammation in different compartments. In addition to the lungs, which are considered the main inflammatory target for this virus, other organs are compromised by the infection. In particular, the liver is involved in the inflammatory response to SARS-CoV-2 infection, which causes organ failure, leading to death in coronavirus disease 2019 (COVID-19) patients. We herein summarize the current implications derived from the use of MSCs and their soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-based therapy in this clinical setting.

Key Words: Mesenchymal stromal cell; COVID-19; SARS-CoV-2; Organ failure;
The liver can be damaged by various factors, including cytotoxic molecules, ischemia, metabolic alterations, or viral infections. The liver is particularly vulnerable due to the immune responses that contribute to further liver damage. If the inflammation persists, a transition from acute to chronic injury can occur, inducing hepatic fibrosis. Therefore, therapies that can reduce liver inflammation/fibrosis are crucial in order to avoid organ failure and the need for transplantation.

In recent years, the use of mesenchymal stromal cells (MSCs) has been considered a promising therapeutic approach to treat liver injuries. MSCs can be isolated from different compartments including adipose tissue, umbilical cord, bone marrow, or placenta. These cells have been successfully used in different therapeutic applications aimed at reducing inflammatory responses. Moreover, the infusion of MSCs immediately after liver transplantation promotes organ regeneration and prolonged recipient survival by reducing acute inflammation.

Despite their beneficial properties, there are several limitations to the use of MSCs for cellular therapies; for example, their plasticity causes the potential risk of differentiation into undesired tissues and the possibility of malignant transformation is under debate. To overcome these issues, the use of cell-free therapy is gaining considerable attention as a treatment for liver injury, an alternative to conventional cell transplantation. Indeed, the regenerative properties of the MSC secretome include immunomodulatory effects mediated by growth factors and cytokines, such as transforming growth factor beta (TGF-β), prostaglandin E2, indoleamine 2,3-dioxygenase, hepatocyte growth factor (HGF), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α). This can also attenuate fibrogenesis. In addition, the MSC therapeutic effects could also result from the released extracellular vesicles (EVs). EVs include a highly heterogeneous group of vesicles of different size that can modulate the immune responses. Indeed, MSC-derived EVs can be selectively enriched with anti-fibrotic and anti-apoptotic factors, as well as specific non-coding RNA with therapeutic potential.

In December 2019, several cases of death from pneumonia were reported in Wuhan, later related to a new coronavirus-related disease called coronavirus disease 2019 (COVID-19). Analysis of its genome revealed it to be phylogenetically related to severe acute respiratory syndrome coronavirus (SARS-CoV). For this reason it was named SARS-CoV-2 by the World Health Organization (WHO). Due to its worldwide spread, the WHO declared COVID-19 a pandemic in March 2020. Angiotensin-converting enzyme 2 receptor (ACE2), highly expressed in the respiratory tract, was considered the main SARS-CoV-2 viral attachment for animal cells. Most likely for this reason, the lungs are the principal target organs for SARS-CoV-2. This virus triggers an exacerbated immune reaction because large amounts of different
inflammatory factors, including cytokines and chemokines, are produced by immune reactive cells.

It has been hypothesized that MSC-based therapy for COVID-19 patients can prevent the development of a cytokine storm by activating the immune system and promoting organ repair[24,25]. Intravenously injected MSCs reach the lungs, where they engraft and secrete a variety of soluble factors including anti-inflammatory factors, angiogenic factors, and EVs[26,27]. Studies aimed toward reversing COVID-19 side effects through MSC treatment are ongoing. In this review, we summarize the therapeutic potentials of the MSC secretome for treating liver injuries associated with COVID-19.

MSC SECRETOME AND EVS FOR ORGAN INJURY

The use of MSC-based therapy for regenerative medicine applications counts in the hundreds of registered clinical trials (www.clinicaltrial.gov) because of the ability of these cells to promote immunomodulation and organ regeneration[28]. The release of trophic factors has demonstrated that their action is in part attributable to their secretome and, in particular, to secreted EVs[29]. Because of their intrinsic therapeutic potential, EVs are a powerful tool of regenerative medicine for the treatment of a wide range of diseases[30]. Due to heterogeneity in size and contents, as well as lack of specific markers, distinguishing the various EV subtypes is an ongoing challenge. According to the International Society for Extracellular Vesicles (ISEV), the generic term EVs includes nano-sized particles naturally released into the extracellular space by all cell types; they are delimited by a lipid bilayer and cannot replicate[31]. The ISEV consensus suggests considering physical parameters (e.g., size or density) to distinguish “small” EVs, often referred as “exosomes” (< 100-200 nm in diameter) from “medium/large” EVs or “microvesicles” (> 200 nm). EVs are replete with diverse proteins, lipids, carbohydrates, and nucleic acids, and exert many of their functions of intercellular communicators by transferring their cargo molecules among cells. The specific cargo composition of EVs is largely defined by the tissue/cell type from which they originate[32]. Similarly to EVs from other cell types, MSC-EVs can be characterized according to the guidelines indicated by the ISEV. The available data suggest that EVs may significantly contribute to the paracrine effects of MSCs on tissue regeneration[33]. Because of EVs’ broad biological functions, as well as their ability to transfer molecules between cells, MSC-EV-based therapy represents a promising alternative to cell-based therapy. Application of MSC-EVs as a cell-free therapy has several advantages over conventional cell therapy. Primarily, EV injection carries lower safety risks because of their minimal reactivity to the immune system, and seem to be generally well tolerated, even when used xenogenically[34]. Then, because of their small size compared to MSCs, the intravenous delivery of EVs presents lower risk of vascular obstructions. Finally, EVs can also be genetically manipulated to carry desired therapeutic cargo for a broad, expanding range of potential clinical applications. The number of studies demonstrating the therapeutic potential of MSC-EVs in different disease models is growing rapidly. The beneficial effects of MSC-EV-based treatment are evidenced especially in cardioprotection and angiogenesis[35].

Intravenously injected MSCs reach the lungs, where they engraft and secrete a variety of soluble factors including anti-inflammatory factors, angiogenic factors, and EVs[26,27]. Studies aimed toward reversing COVID-19 side effects through MSC treatment are ongoing. In this review, we summarize the therapeutic potentials of the MSC secretome for treating liver injuries associated with COVID-19.

MSC SECRETOME AND EVS FOR ORGAN INJURY

The use of MSC-based therapy for regenerative medicine applications counts in the hundreds of registered clinical trials (www.clinicaltrial.gov) because of the ability of these cells to promote immunomodulation and organ regeneration[28]. The release of trophic factors has demonstrated that their action is in part attributable to their secretome and, in particular, to secreted EVs[29]. Because of their intrinsic therapeutic potential, EVs are a powerful tool of regenerative medicine for the treatment of a wide range of diseases[30]. Due to heterogeneity in size and contents, as well as lack of specific markers, distinguishing the various EV subtypes is an ongoing challenge. According to the International Society for Extracellular Vesicles (ISEV), the generic term EVs includes nano-sized particles naturally released into the extracellular space by all cell types; they are delimited by a lipid bilayer and cannot replicate[31].

The specific cargo composition of EVs is largely defined by the tissue/cell type from which they originate[32]. Similarly to EVs from other cell types, MSC-EVs can be characterized according to the guidelines indicated by the ISEV. The available data suggest that EVs may significantly contribute to the paracrine effects of MSCs on tissue regeneration[33]. Because of EVs’ broad biological functions, as well as their ability to transfer molecules between cells, MSC-EV-based therapy represents an attractive alternative to cell-based therapy. Application of MSC-EVs as a cell-free therapy has several advantages over conventional cell therapy. Primarily, EV injection carries lower safety risks because of their minimal reactivity to the immune system, and seem to be generally well tolerated, even when used xenogenically[34]. Then, because of their small size compared to MSCs, the intravenous delivery of EVs presents lower risk of vascular obstructions. Finally, EVs can also be genetically manipulated to carry desired therapeutic cargo for a broad, expanding range of potential clinical applications. The number of studies demonstrating the therapeutic potential of MSC-EVs in different disease models is growing rapidly. The beneficial effects of MSC-EV-based treatment are evidenced especially in cardioprotection and angiogenesis[35].

Understanding the mechanisms of action behind the therapeutic effects of MSC-EVs are crucial in view of their future clinical applications. Despite increasing interest, this field is still in its infancy in identifying the relevant bioactive molecules released by MSC-EVs that play a role in tissue repair. Efforts to identify these molecules lead to the conclusion that MSC-EVs preferentially contain mRNAs and microRNAs (miRNAs) targeting genes that participate in several cellular pathways involved in tissue repair, such as angiogenesis, migration, proliferation, self-renewal, differentiation, cellular transport, and apoptosis[36,37]. The overexpression of certain miRNAs can contribute to enhancing the therapeutic efficacy of MSC-EVs. For example, MSC-EVs over-expressing miR-21 have neuroprotective effects by targeting several genes involved in the inhibition of cell apoptosis[38,39]. The list of miRNAs known to increase the therapeutic potential of MSC-EVs in numerous disease models is long, and their therapeutic effects range from tumor modulation, immune suppression, and angiogenesis to tissue regeneration[40].

In addition to miRNAs, the beneficial effect of EV-derived proteins has been explored in terms of tissue repair and anti-inflammatory effects as a treatment for liver fibrosis, ischemia, myocardial infarction, acute renal injury, neural regeneration, or in the context of bone and cartilage regeneration[40]. Proteins identified in MSC-EVs and
linked to tissue repair include glial-derived neurotrophic factor, vascular endothelial growth factor, fibroblast growth factor, HGF, and angiotensin 1[41].

Although the number of clinical studies is limited, growing evidence shows the beneficial effects of MSC-EVs on tissue injuries. The impact of MSC-EVs on tissue regeneration has been investigated in several animal models of neuronal, cardiac, bone, cartilage, kidney, muscle, wound healing, respiratory injury, and liver regeneration[41,42]. Interestingly, data from animal models indicate that MSC-EVs can exert therapeutic potential similar to their cellular origin[41,43-46]. The list of registered clinical trials (https://clinicaltrials.gov) reporting tissue injuries-treated with MSC-EVs is shown in Table 1.

MSC-EVs show great potential as a regenerative medicine treatment for liver diseases. The benefits of MSC-EVs in liver diseases are documented in animal models of both acute[20] and chronic[47] liver injuries. MSC-EVs exert a beneficial effect by alleviating fibrosis and improving regeneration of hepatocytes[46]. In particular, EVs from fetal MSCs promote hepatocyte proliferation and decrease hepatocyte apoptosis in liver injury induced by carbon tetrachloride[48], or ameliorate oxidative stress in ischemia reperfusion injury (IRI) models in rats[49] and mice[50]. Similarly, EVs of MSC-derived induced pluripotent stem cells have hepatoprotective effects on a rat model of IRI by inducing hepatocyte proliferation[51,52]. Finally, the anti-fibrotic effects of hydrogel-embedded MSC-EVs are documented in chronic liver failure[53]. The results from in vivo studies indicate EVs as essential contributors to MSC therapeutic efficacy, and suggest that MSC-EV-based therapy may be a successful alternative to cell-based treatments. Nevertheless, there are still many important questions to be answered before MSC-EVs can become a fully realized cell-free therapy. These challenges comprise studies establishing the exact contribution of EVs to MSC-based therapy, including the underlying molecule mechanisms, or identifying which EV population is the most therapeutically effective. In addition, a major ongoing debate in the field of MSC EV-based therapy concerns the purity of the obtained vesicles due to contamination of the samples with non-EV proteins, RNAs, and lipoproteins[41].

LIVER FAILURE IN COVID-19 PATIENTS

SARS-CoV-2 is the etiological agent of the pandemic COVID-19, characterized by respiratory distress and/or hypoxemia, fever, fatigue, dry cough and, in severe cases, septic shock, metabolic acidosis, and death[54]. SARS-CoV-2, as with other coronaviruses, enters the host cells by binding to the ACE-2 receptor[55], while the serine protease transmembrane serine protease 2 is required for S protein priming[56]. Despite the higher tropism for the respiratory tract, SARS-CoV-2 also targets other tissues, given that the ACE2 receptor is widely distributed in other tissues[57-61]. To shed light on the SARS-CoV-2 tropism, Nardo et al[62] analyzed, on the Human Protein Atlas, the expression levels of two proteins, ACE-2 receptor and TMPRSS2, in different human tissues, thus revealing a higher expression in the intestine and gall bladder, but their absence in the liver. A single-cell analysis, performed on healthy human liver samples, showed that while ACE-2 expression level in cholangiocytes is comparable to that of alveolar cells in the lungs, it is barely detectable in hepatocytes[63]. Interestingly, the liver cell line HuH7 is an established permissive cell type for both SARS-CoV and SARS-CoV-2 infection, and has recently been extensively used as a model in SARS-CoV-2 studies[64,65]. In addition, an in vitro study found that SARS-CoV-2 infection leads to a decrease of cholangiocellular tight junction protein claudin 1 mRNA expression, implying a reduced barrier function of cholangiocytes[66]. The presence of SARS-CoV-2 receptors in the gastrointestinal (GI) tract suggests an important role of the hepatobiliary tract in viral replication and excretion[67]. In fact, the virus has also been isolated from stool samples[68]. The involvement of the GI tract in COVID-19 disease is confirmed by the GI symptoms occurring in more than 60% of infected patients, as lack of appetite, loss of smell and taste, anorexia, diarrhea, abdominal pain, nausea, and vomiting[69-74]. Moreover, post-mortem biopsies of SARS-CoV-2-infected patients showed the presence of the viral genome in hepatocytes and the GI tract by reverse transcription polymerase chain reaction (RT-PCR)[75-77].

Though liver failure in COVID-19 patients has been considered marginal, the incidence of hepatic tissue injury in these patients ranges from 14.8% to 53%[78], while mortality ranges from 58.06% to 78%[79,80]. The liver is a key organ in nearly all metabolic processes, has immunologic functions, and is the main detoxifying organ.
Moreover, because of the production of albumin, acute phase reactants and coagulation factors, the liver can strongly affect the multisystem manifestations of COVID-19[62]. In fact, modified levels of hepatic function indicators such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, gamma-glutamyl transferase, and bilirubin have been observed in patients with COVID-19, and principally in severe diseases[59,81-84]. Many studies have shown that liver injury occurs in the early stage of the disease, with mild or moderate increase of ALT, AST, or bilirubin together with a decrease in albumin levels[79,85,86]. High AST levels have been associated with the highest mortality risk[57,87], while decreased albumin levels have been associated with severe infection and poor prognosis[88,89]. Since the specific pathogenetic mechanism by which the virus causes liver injury is still unclear, many hypotheses have been offered, including immune-mediated damage. The triggering of an exacerbated immune response to the viral infection leads to a massive release of cytokines and inflammation mediators known as cytokine storm, which is responsible for immune-mediated liver damage[89] (Figure 1).

High levels of cytokines and chemokines (i.e. IL-1β, IL-2, IL-6, IL-8, IL-10, IL-17, interferons [IFNs], IFN-induced protein 10, TNF-α, granulocyte-macrophage colony-stimulating factor [GM-CSF], monocyte chemoattractant protein-1, macrophage inflammatory protein-1α) and other inflammatory molecules (PCR, ferritin, lactate dehydrogenase, D-dimer) have been observed in severe SARS-CoV-2-infected patients[54,57,88,90-92]. This highly inflammatory milieu leads to multiorgan damage, including liver failure, and is strictly linked to poor prognosis and death in COVID-19 patients[88,90]. As confirmation, liver samples from COVID-19 patient autopsies have revealed micro-vesicular steatosis and inflammation[93-95]. In fact, SARS-CoV-2 infects both hepatic cells and bile duct epithelium, causing liver impairment by direct cytopathic effect, as demonstrated by high transaminase levels and post-mortem liver biopsy specimens showing moderate micro-vesicular steatosis and mild lobular and portal activity[79]. Furthermore, the presence of SARS-CoV-2 has been found in parenchymal cells and vascular endothelium of the liver in COVID-19 patients[76,77].

Additional causes of liver injury can include hypoxia, hypovolemia, and microvascular thrombosis. The hypoxic state associated with COVID-19 can induce ischemic/hypoxic liver injury[87-89]. Considering that COVID-19 patients suffer from severe hypoxia, with the induction of ACE2 receptor expression on hepatocytes[96], a direct infection of hepatocytes by SARS-CoV-2 in hypoxic conditions has been suggested[25]. Liver injury can also be drug-induced. Most of the drugs used against SARS-CoV-2 are potentially hepatotoxic: Antivirals (lopinavir/ritonavir, remdesivir, umifenovir), antibiotics (macrolides, quinolones), chloroquine, tocilizumab, and steroids as well as antipyretic drugs used for fever in COVID-19[79,90,97,98]. Moreover, it must be considered that the majority of COVID-19 patients developing liver complications have a pre-existing chronic liver disease, rendering them more susceptible to liver injury. Interestingly, it has been reported that liver fibrotic/cirrhotic conditions lead to an increase of ACE-2 receptor expression in hepatocytes[96], thus suggesting again a possible role of pre-existing pathological liver injury.

Tissue injury disease	Condition	Treatment	Trial ID	Status
Chronic lung disease	Pediatric bronchopulmonary dysplasia	BM-MSC-derived EVs	NCT03857841	Phase I
Lung disease	Pneumonia, COVID-19	BM-MSC-derived EVs	NCT04490324	Not yet recruiting
Lung disease	Pneumonia, COVID-19	Inhalation of mesenchymal stem cell exosomes	NCT04276987	Phase I
Multiple organ failure	Multiple organ dysfunction syndrome	MSC exosomes	NCT04356300	Not yet recruiting
Lung disease	Pulmonary infection	MSC exosomes	NCT04544215	Recruiting
Dry eye	GVHD	UC-MSC exosomes	NCT04213248	Recruiting
Cartilage injury	Osteoarthritis	Secretome or EVs from adipose MSCs	NCT04223622	Not yet recruiting
Skin disease	Dystrophic epidermolysis bullosa	BM-MSC EVs	NCT04173650	Phase II
Brain	Cerebrovascular disorders	Allogenic MSCs enriched with miR-124	NCT03844433	Phase II

BM: Bone marrow; COVID-19: Coronavirus disease 2019; EV: Extracellular vesicle; GVHD: Graft-versus-host disease; MSC: Mesenchymal stromal cell; UC: Umbilical cord.
MSCs in liver failure for COVID-19 infection

Figure 1 Schematic representation of severe acute respiratory syndrome coronavirus 2 impact on lungs and liver. Cytokine storm with the cascade triggered by natural killer (NK) cells, T helper (Th) cell and monocytes, and the production of inflammatory cytokines (interleukin 1 beta [IL-1β], IL-2, IL-6, IL-8, IL-10, IL-17, interferons [IFNs], IFN-induced protein 10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor [GM-CSF]). The infection in the liver causes an increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and bilirubin, and a decrease in albumin. Mesenchymal stromal cells (MSCs) can reduce the inflammatory response by extracellular vesicle (EV) release (large ≥ 200 nm and small ≤ 150 nm). ER: Endoplasmic reticulum; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

conditions in exacerbating SARS-CoV-2 hepatic tropism.

MSCs and Immunomodulation in COVID-19

The immunomodulatory properties of MSCs represent a promising therapeutic approach for the treatment of autoimmune and inflammatory diseases[99]. The anti-inflammatory and regenerative properties of MSCs have been established in numerous preclinical models of immune-related disorders including graft-vs-host disease, sepsis, inflammatory bowel disease, and allergic airway disease[100-103]. Recent phase I/II clinical trials have shown that the infusion of MSCs immediately after liver transplantation promoted organ regeneration and prolonged recipient survival by reducing acute inflammation, thus suggesting that MSCs can be a promising candidate for cell-based immunotherapy in solid organ transplantation[10,104]. In addition, murine models of liver fibrosis showed that human MSC-derived EVs are able to reduce hepatic inflammation and fibrosis through a decrease of TGF-β, IFN-γ, IL-1, IL-2 and TNF-α levels, an increase of Treg numbers, and a reduction of collagen deposition, all acting together to combat necrosis in the liver[105-107] (Figure 1). Among others, liver injury has been reported as a common complication in SARS-CoV-2 infection, with the degree of liver damage strictly related to the severity of COVID-19[92,108-110]. Although the exact mechanism of liver injury in COVID-19 patients is still unknown, it has been suggested that either the progression of pre-existing hepatic diseases or a direct damage of the liver can be associated with the systemic inflammation caused by SARS-CoV-2 infection, toxicity of anti-viral drugs, or hypoxia-reperfusion injury[109,110].

Pathogenic T cells are rapidly activated after SARS-CoV-2 infection, thus producing GM-CSF, IL-6, and other proinflammatory factors. GM-CSF will further activate inflammatory monocytes (CD14+CD16+), which in turn produce a larger amount of IL-6 and other pro-inflammatory factors, triggering the cytokine storm, which is the main cause of the organ damage, such as in the lungs, kidney, and liver[110]. Recently, the use of MSCs has been proposed as a promising therapeutic approach for COVID-19 patients. The effectiveness and safety of MSC-based treatment are supported by several clinical studies, suggesting that MSC therapy may improve the clinical outcomes of COVID-19 patients through immunomodulation, regulation of
inflammatory response, and promotion of tissue repair[111-115]. Moreover, a vast number of clinical trials that use MSCs to treat COVID-19 have already been registered (http://www.chictr.org.cn; https://clinicaltrials.gov). According to their immunomodulatory properties, the use of MSC-based therapies could be a novel strategy to counteract the harmful effects on the liver caused by SARS-CoV-2 infection.

DISCUSSION

Among the numerous drug treatments, which include antiviral therapy, cytokine inhibitors (e.g., IL-6), and specific antibody treatment (serum/monoclonal)[116], MSCs represent a potential option for critical cases[117]. As discussed above, SARS-CoV-2 infection induces a cytokine storm, causing acute respiratory distress syndrome and multiple-organ failure. IL-6 inhibition by tocilizumab was positively tested in a randomized clinical trial (http://www.chictr.org.cn/showprojen.aspx?proj=49409). Likewise, in this inhibition MSCs can represent a valid alternative, and it has been shown that EV administration counteracts IL-6-induced acute liver injury (ALI) in rat models through the presence of miR-455-3p[118]. MSC treatment showed that the symptomatology of patients was relieved within 2-4 d after MSC infusion, with oxygen saturation increasing to 95% at rest[119]. Another study involved critically ill COVID-19 patients treated with an infusion of human umbilical cord MSCs. In this case, the patients were treated with three different infusions of cells at an interval of 3 d, displayed no observable side effects, and were able to walk within 4 d[115]. Leng et al[119] showed that after infusion of MSCs in COVID-19 patients, the number of peripheral lymphocytes increased, while the levels of C-reactive protein decreased. In addition, in MSC-treated COVID-19 patients compared with those treated with conventional therapy a clear reduction of the major pro-inflammatory cytokine TNF-α, and an increase of IL-10 concentration were observed[119]. Therefore, in an immune-mediated disease condition like COVID-19 infection, the anti-inflammatory activities of MSCs could contribute to improving the conditions of patients after their infusion.

Despite the limited published data, and based on various studies, it could be speculated that SARS-CoV-2 induces ALI[79]. SARS-CoV-2 could insult the liver either directly, by the cytopathic effect of the virus after infections of the hepatocytes, or indirectly, by induction of uncontrolled immune reaction, oxidative stress, and/or by pharmacological treatments for COVID-19 that induce liver injury. However, the mechanisms underlying liver impairment in COVID-19 patients are still unknown. Tian et al[94] found sinusoidal dilatation and focal macrovesicular steatosis in liver biopsies obtained post-mortem from four patients with COVID-19 and, in one of these, SARS-CoV-2 RNA was isolated from liver tissue. Wang et al[73] found that four patients (2.9% of 138 patients hospitalized for COVID-19) had chronic liver disease. In another study, cases of ALI were reported in 13 of 274 patients (4.7%)[120]. Interestingly, Richardson et al[121] showed that, in a study including 5700 COVID-19 patients, 58.4% and 39% developed higher levels of ALT and AST, respectively. In addition, among these patients, 56 (1%) developed acute hepatic injury (32320003). Therefore, many COVID-19 patients showed higher levels of both ALT and AST, and mainly in patients with severe disease, liver impairment can occur[54,59,120].

The intravenous administration of MSCs lowered the elevated serum levels of AST and ALT, and increased the amount of HGF, resulting in reduction of ALI[122]. Moreover, in a rat model of ALI, MSCs inhibited neutrophil infiltration, oxidative stress, and hepatocyte apoptosis[123], showing that MSC treatment had significant systemic anti-inflammatory effects and reduction of hepatic inflammation. Moreover, MSCs can prevent lung damage not only directly, with anti-inflammatory activity, but also indirectly by supporting liver function in maintaining the plasma level of albumin (Figure 1). Johnson et al[124] recently underscored the interplay between albumin and SARS-CoV-2, while the importance of albumin in COVID-19 patients has also been strongly stressed by several research teams, who describe a “capillary leak syndrome” in infected patients. This extravascular leakage of intravascular fluids is induced by hypoglobulinemia[125]. A histological analysis of COVID-19 lungs in SARS-CoV-2-infected patients confirmed the presence of pulmonary vascular permeability where the endothelial cells appear swollen[126]. Hypoalbuminemia is an indication of liver dysfunction in the elderly, where it is, per se, an index of increased mortality[127]. The large amounts of extravascular fluid due to the resulting vascular permeability, require mechanical ventilation to overcome the problem.
CONCLUSION

At present, there is no standardized therapy for COVID-19 patients. Though many innovative treatments have been rapidly approved, additional experimental therapies are necessary to treat the worse cases of infection. Despite the fact that all MSC clinical trials for COVID-19 treatment are currently focused on lung/respiratory function, and some of the exclusion criteria are liver disease/insufficiency, we believe, on the basis of current studies, that MSC-based therapy can also help liver dysfunction correlated with SARS-CoV-2 infection.

REFERENCES

1 Guicciardi ME, Gorees GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut 2005; 54: 1024-1033 [PMID: 15951554 DOI: 10.1136/gut.2004.053850]
2 Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018; 10: 1-7 [PMID: 29399273 DOI: 10.4254/wjhl.v10.i1.1]
3 Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9: 227 [PMID: 30143052 DOI: 10.1186/s13287-018-0972-4]
4 Zauk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JL, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Cell Biol 2002; 13: 4279-4295 [PMID: 12475952 DOI: 10.1091/mcb.02-02-0105]
5 Miranda JP, Filipe E, Fernandez AS, Almeida JM, Martins JP, De La Fuente A, Abal M, Barcia RN, Cruz P, Cruz H, Castro M, Santos JM. The Human Umbilical Cord Tissue-Derived MSC Population UCX(®) Promotes Early Matrogenic Effects on Keratinocytes and Fibroblasts and G-CSF-Mediated Mobilization of BM-MSCs When Transplanted In Vivo. Cell Transplant 2015; 24: 865-877 [PMID: 24480602 DOI: 10.3727/096368913X676231]
6 Coller DC, Class R, DiGirolamo CM, Prokop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97: 3213-3218 [PMID: 10725391 DOI: 10.1073/pnas.070034097]
7 Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells Int 2019; 2019: 7486279 [PMID: 30911299 DOI: 10.1155/2019/7486279]
8 Magatti M, De Munari S, Vertua E, Gibelli L, Wengerl GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008; 26: 182-192 [PMID: 17901399 DOI: 10.1634/stemcells.2007-0491]
9 Sargent A, Miller RH. MSC Therapeutics in Chronic Inflammation. Curr Stem Cell Rep 2016; 2: 168-173 [PMID: 28135600 DOI: 10.1007/s40778-016-0044-6]
10 Wang W, Du Z, Yan J, Ma D, Shi M, Zhang M, Peng C, Li H. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB. Gut 2007; 56: 112532 [PMID: 25479410 DOI: 10.1371/journal.pone.0112532]
11 Volarevic V, Markovic BS, Gadzic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci 2018; 15: 36-45 [PMID: 29333086 DOI: 10.7150/ijms.21666]
12 Herberts CA, Kwa MS, Henssen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9: 29 [PMID: 21418664 DOI: 10.1186/1479-5876-9-29]
13 Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 2020; 11: 377 [PMID: 32883343 DOI: 10.1186/s13287-020-01895-1]
14 Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68: 1272-1285 [PMID: 29425678 DOI: 10.1016/j.jhep.2018.01.030]
15 Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, Yarmush ML. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 2007; 363: 247-252 [PMID: 17869217 DOI: 10.1016/j.bbrc.2007.05.150]
16 Bulati M, Miceli V, Gallo A, Amico G, Carcione C, Pampalone M, Conaldi PG. The Immunomodulatory Properties of the Human Amnion-Derived Mesenchymal Stromal/Cells Are Induced by INF-γ Produced by Activated Lymphomonocytes and Are Mediated by Cell-To-Cell Contact and Soluble Factors. Front Immunol 2020; 11: 54 [PMID: 32117234 DOI: 10.3389/fimmu.2020.00554]
17 Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doepplner TR, Eppler M, Horn PA, Beelen DW, Giebel B. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28: 970-973 [PMID: 24445866 DOI: 10.1038/leu.2014.41]
18 Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10: 98 [PMID: 30885249 DOI: 10.1186/s13287-019-1204-2]
19 Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49: e346 [PMID: 28682021 DOI: 10.1038/emm.2017.63]

20 Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular Vesicles from Bone Marrow-Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice. Stem Cells Transl Med 2017; 6: 1262-1272 [PMID: 28213267 DOI: 10.1002/sctm.160023]

21 Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W, Xie W, Holmes EC, Gao GF, Wu G, Wu C, Shen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565-574 [PMID: 32007145 DOI: 10.1016/S0140-6736(20)30251-8]

22 Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79: 14614-14621 [PMID: 16282461 DOI: 10.1128/JVI.79.23.14614-14621.2005]

23 Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, Zhu J, Zhang Q, Wu J, Liu L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020; 92: 595-601 [PMID: 32100877 DOI: 10.1002/jmv.25726]

24 Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6: 526-539 [PMID: 25426250 DOI: 10.4226/wjsc.v6.i5.526]

25 Lizardo-Thiebaud MJ, Cervantes-Alvarez E, Limon-de la Rosa N, Tejeda-Dominguez F, Palacios-Jimenez M, Mendez-Guerrero O, Delave-Marquez M, Rodriguez-Alvarez F, Romero-Morales B, Liu WH, Huang CA, Kershonihohle D, Navarro-Alvarez N. Direct or Collateral Liver Damage in SARS-CoV-2-Infected Patients. Semin Liver Dis 2020; 40: 321-330 [PMID: 32886936 DOI: 10.1055/s-0040-17151108]

26 Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafrontaine P, Prokop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54-63 [PMID: 19570514 DOI: 10.1016/j.stem.2009.05.003]

27 Hu S, Park J, Liu A, Lee J, Zhang X, Hao Q, Lee JW. Mesenchymal Stem Cell Microvesicles Restore Protein Permeability Across Primary Cultures of Injured Human Lung Microvascular Endothelial Cells. Stem Cells Transl Med 2018; 7: 615-624 [PMID: 29733762 DOI: 10.1002/sctm.17-0276]

28 Chinnici CM, Pietrosi G, Iannolo G, Amico G, Cuscino N, Pagano V, Conalgi PG. Mesenchymal stromal cells isolated from human fetal liver release soluble factors with a potential role in liver tissue repair. Differentiation 2019; 105: 14-26 [PMID: 30553176 DOI: 10.1016/j.dif.2018.12.001]

29 Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54-63 [PMID: 19570514 DOI: 10.1016/j.stem.2009.05.003]

30 Tsiapalis D, O'Driscoll L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells 2020; 9 [PMID: 32316428 DOI: 10.3390/cells90400991]

31 Thiré C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Ba...
Chinnici CM et al. MSCs in liver failure for COVID-19 infection

E, Lim R, Lim SK, Linê A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörinez AM, Lütvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariain J, Mariscal J, Martens-Uzunova ES, Martin-Jaural L, Martens MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Möller Jørgensen M, Morales-Kastaresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazareddin I, Nejsum P, Neri C, Neri T, Nieuwland R, Nolan JP, Nolte-T Holand EN, Noren Hooten N, N'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Orizt LA, Ostøeikootex X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaff MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovcova I, Poon IK, Powell BH, Prada I, Pulliam L, Queenberry P, Radegheri A, Raffai RL, Raimondo S, Rah J, Ramírez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts BD, Rodrigues SC, Rohde E, Rome S, Roushoup KM, Rughetti A, Russell AE, Saï P, Sahoo S, Salas-Hueneuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schouen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelp GV, Shetty AK, Shiba K, Siljanorpir J, Silveira PR, Silveira AM, Skowronek A, Snyder OL 2nd, Soar RS, Sodar BW, Sokemadji C, Stotillo J, Stahl PD, Stoorvogel W, Stott SL, Swars EF, Swift S, Tahara T, Tewari M, Timms K, Tiwari S, Tixa C, Tkac M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, Van niel G, van Rooyen MF, van Wijnen AJ, Vasconcelos MH, Vechetti I Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Waxbom MH, Weaver A, Webber JP, Wechter V, Wehman AM, Weiss DJ, Welsh JD, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfjam J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappoli V, Zarubova J, Zékas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkov AC, Zucchi D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1353750 [PMID: 30637094 DOI: 10.1080/20013078.2018.1535750]

Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019; 8 [PMID: 31311206 DOI: 10.3390/cells8070727]

Zhang B, Tian X, Hao I, Xu G, Zhang W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tissue Regeneration. Cell Transplant 2020; 29: 963689720908500 [PMID: 33207341 DOI: 10.1177/0963687920908500]

Salcik AF, Lázaro-Ibáñez E, Forsgard MA, Shatnyeva O, Osteikootex X, Karlsson F, Heath N, Ingelsten M, Rose J, Harris J, Maisonne J, Bates SM, Clausen M, Eil D, Leonard E, Fellows MD, Dekker N, Edmünts N. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale 2019; 11: 6990-7001 [PMID: 30916762 DOI: 10.1039/c8nr08720b]

Amosse J, Martinez MC, Le Lay S. Extracellular vesicles and cardiovascular disease. Stem Cell Investig 2017; 4: 102 [PMID: 29359141 DOI: 10.21037/sci.2017.11.07]

Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, van Wijnjen AJ, Lerman LO. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 2014; 551: 55-64 [PMID: 25158130 DOI: 10.1016/j.gene.2014.08.041]

Chinnici CM, Amico G, Gallo A, Iannolo GM, Cucino N, Vella S, Cariceno C, Nascari D, Conalid PG. Small Extracellular Vesicles from Human Fetal Dermal Cells and Their MicroRNA Cargo: KEGG Signaling Pathways Associated with Angiogenesis and Wound Healing. Stem Cells Int 2020; 2020: 8889379 [PMID: 32856539 DOI: 10.1155/2020/8889379]

Zhang H, Wang Y, Lv Q, Gao J, Hu L, He Z. MicroRNA-21 Overexpression Promotes the Neuroprotective Efficacy of Mesenchymal Stem Cells for Treatment of Intracerebral Hemorrhage. Front Neural 2018; 9: 931 [PMID: 30439705 DOI: 10.3389/fnene.2018.00931]

Kang J, Li Z, Zhi Z, Wang S, Xu G. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther 2019; 26: 491-503 [PMID: 31570818 DOI: 10.1038/s41434-019-0101-8]

Park KS, Bandeira E, Shelp GV, Lösser C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10: 288 [PMID: 31547882 DOI: 10.1186/s13287-019-1398-3]

Varderidou-Miniasin S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 2020; 10: 5979-5997 [PMID: 32483342 DOI: 10.7150/thno.40122]

Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9: 28-38 [PMID: 31647191 DOI: 10.1002/sctm.19-0205]

Kim DK, Nishida H, An SY, Shetty AK, Bartosh TJ, Procop DJ. Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 2016; 113: 170-175 [PMID: 26699510 DOI: 10.1073/pnas.1522297113]

Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. Mesenchymal stem cell-derived microvesicles protect...
against acute tubular injury. J Am Soc Nephrol 2009; **20**: 1053-1067 [PMID: 19389847] DOI: 10.1681/ASN.20080710798

45 **Stone ML**, Zhao Y, Robert Smith J, Weiss ML, Kron IL, Laubach VE, Sharma AK. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir Res 2017; **18**: 212 [PMID: 29268735] DOI: 10.1186/s12931-017-0704-9

46 **Rostom DM**, Atta N, Khalifa HM, Abou Nazel MW, El Sabaawy EA. The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage. Tissue Eng Regen Med 2020; **17**: 537-551 [PMID: 32506351] DOI: 10.1087/ser-200267-3

47 **Mardpour S**, Hassani SN, Mardpour S, Sayahpour F, Vosough M, Ai J, Aghdamni N, Hamidieh AA, Baharvand H. Extracellular vesicles derived from human embryonic stem cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. J Cell Physiol 2018; **233**: 9330-9344 [PMID: 29262658] DOI: 10.1002/jcp.26413

48 **Tan CY**, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; **5**: 76 [PMID: 24915963] DOI: 10.1186/sct465

49 **Yao J**, Zheng J, Cai J, Zeng K, Zhou C, Zhang J, Li S, Li H, Chen L, He L, Chen H, Fu H, Zhang Q, Chen G, Yang Y, Zhang Y. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J 2019; **33**: 1695-1710 [PMID: 30226809] DOI: 10.1096/fj.201801311R

50 **Haga H**, Yan IK, Borrelli DA, Matsuda A, Parasarman M, Shukla N, Lee DD, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transpl 2017; **23**: 791-803 [PMID: 28407355] DOI: 10.1002/lgt2.24770

51 **Nong K**, Wang W, Niu X, Hu B, Ma C, Bai Y, Wu B, Wang Y, Ai K. Hepatoproteective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; **18**: 1548-1559 [PMID: 27592404] DOI: 10.1016/j.jcyt.2016.08.002

52 **Du Y**, Li D, Han C, Wu H, Xu L, Zhang M, Zhang J, Chen X. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway. Cell Physiol Biochem 2017; **43**: 611-625 [PMID: 28934733] DOI: 10.1159/000480553

53 **Mardpour S**, Ghianini MH, Sadeghi-Abandansari H, Mardpour S, Nazari A, Shokari F, Baharvand H. Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure. ACS Appl Mater Interfaces 2019; **11**: 37421-37433 [PMID: 31525863] DOI: 10.1021/acsami.9b10126

54 **Huang C**, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; **395**: 497-506 [PMID: 31986264] DOI: 10.1016/S0140-6736(20)30183-5

55 **Li W**, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; **426**: 450-454 [PMID: 14647384] DOI: 10.1038/nature02145

56 **Hoffmann M**, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; **181**: 271-280. e8 [PMID: 3214651] DOI: 10.1016/j.cell.2020.02.052

57 **Zhou F**, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang T, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Su S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; **395**: 1045-1062 [PMID: 32170176] DOI: 10.1016/S0140-6736(20)30566-3

58 **Hamming I**, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; **203**: 631-637 [PMID: 15141377] DOI: 10.1002/path.1570

59 **Zhang C**, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020; **5**: 428-430 [PMID: 32145190] DOI: 10.1016/S2468-1253(20)30057-1

60 **Yan R**, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; **367**: 1444-1448 [PMID: 32132184] DOI: 10.1126/science.abb2762

61 **Xu H**, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; **12**: 8 [PMID: 32094436] DOI: 10.1038/s41368-020-0074-x

62 **Nardo AD**, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int 2021; **41**: 20-32 [PMID: 33190346] DOI: 10.1111/liv.14730

63 **Chai X**, Hu L, Zhang Y, Han W, Lu Z, Ke A, Zhou J, Shi G, Fang N, Fan J, Cai J, Lan F. Specific
ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. 2020 Preprint. Available from: bioRxiv:2020.02.03.931766 [DOI: 10.1101/2020.02.03.931766]

Chu H, Chan JF, Yuen TT, Shuai H, Yuan S, Wang Y, Hu B, Yip CC, Tsang JO, Huang X, Chai Y, Yang D, Hou Y, Chik KK, Zhang X, Fung AY, Tsoi HW, Cai JP, Chan WM, Ip JD, Chu AW, Zhou J, Lung DC, Kok KH, To KK, Tsang OT, Chan KH, Yuen KY. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 2020; 1: e14-e23 [PMID: 32835326 DOI: 10.1016/S2254-5247(20)30004-5]

Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschmitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Brany N, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen JH, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020; 27: 125-136. e7 [PMID: 32579880 DOI: 10.1016/j.stem.2020.06.015]

Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, Lv T, Liang J, Zhang Q, Xu W, Xie Y, Wang X, Yuan Z, Zhang R, Lin X. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 2020; 11: 771-775 [PMID: 32303993 DOI: 10.1007/s13238-020-00718-6]

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19-associated acute respiratory distress syndrome. Lancet Respir Med 2020, 8: 420-422 [PMID: 32085846 DOI: 10.1016/S2213-2600(20)30076-X]

Xiao F, Tang M, Zhang X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020; 158: 1831-1833. e3 [PMID: 32142773 DOI: 10.1053/j.gastro.2020.02.055]

Luo S, Zhang X, Xu H. Don't Overlook Digestive Symptoms in Patients With 2019 Novel Coronavirus Disease (COVID-19). Clin Gastroenterol Hepatol 2020; 18: 1636-1637 [PMID: 32205220 DOI: 10.1016/j.cgh.2020.03.043]

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Cheung Y, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; Chinese Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 [PMID: 32109013 DOI: 10.1056/NEJMoa2002322]

Zhu Z, Zhao N, Shu Y, Han S, Chen B, Shu X. Effect of Gastrointestinal Symptoms in Patients With COVID-19. Gastroenterology 2020; 158: 2294-2297 [PMID: 32199880 DOI: 10.1053/j.gastro.2020.03.020]

Reed WD, Zhou JC, Hathorn KE, McCarty TR, Bazazabari AN, Thompson CC, Shen L, Chan WW. Prevalence and Characteristics of Gastrointestinal Symptoms in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection in the United States: A Multicenter Cohort Study. Gastroenterology 2020; 159: 765-767. e2 [PMID: 32333911 DOI: 10.1053/j.gastro.2020.04.045]

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infecte Pneumonia in Wuhan, China. JAMA 2020; 323: 1061-1069 [PMID: 32031570 DOI: 10.1001/jama.2020.1585]

Schmulson M, Davalos MF, Berumen J. Beware: Gastrointestinal symptoms can be a manifestation of COVID-19. Rev Gastroenterol Mex 2020; 85: 282-287 [PMID: 32376072 DOI: 10.1016/j.rjgm.2020.04.001]

Lin L, Jiang X, Zhang Z, Huang S, Fang Z, Gu Z, Gao L, Shi H, Mai L, Liu Y, Lin X, Lai R, Yan Z, Li X, Shan H. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69: 997-1001 [PMID: 32241895 DOI: 11.1136/gutjnl-2020-321013]

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203: 622-630 [PMID: 15141376 DOI: 10.1002/path.1560]

Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J, Asa SL, Faure P, Akhavan P, Akhavan, Low DP, Chung WC, Cheong KH, Teo TK, Tan JY. Liver injury during highly pathogenic human coronavirus infection. J Hepatol 1994; 21: 193-197 [PMID: 15609228 DOI: 10.1016/0168-8278(94)90129-0]

Zheng J, Wang X, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol 2020; 92: 680-682 [PMID: 32124995 DOI: 10.1002/jmv.25742]

Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020; 40: 998-1004 [PMID: 32170806 DOI: 10.1111/liv.14435]

Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, Song Q, Jia Q, Wang J. Clinical characteristics of 82 cases of death from COVID-19. PLoS One 2020; 15: e0235458 [PMID: 32645044 DOI: 10.1371/journal.pone.0235458]

Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, Talukdar R, Sharma M, Qi X, Rao PN, Reddy DN. Systematic review with meta-analysis: liver manifestations and outcomes of COVID-19 infection.
in COVID-19. *Aliment Pharmacol Ther* 2020; 52: 584-599 [PMID: 32638436 DOI: 10.1111/ajp.15916

82 Yadav DK, Singh A, Zhang Q, Bai X, Zhang W, Yadav RK, Zhiwei L, Adhikari VP, Liang T. Involvement of liver in COVID-19: systematic review and meta-analysis. *Gut* 2021; 70: 807-809 [PMID: 32669289 DOI: 10.1136/gutjnl-2020-322072

83 Kumar-M P, Mishra S, Iha DK, Shakila J, Choudhury A, Mohindra R, Mandavdhare HS, Dutta U, Sharma V. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. *Hepatol Int* 2020; 14: 711-722 [PMID: 32623633 DOI: 10.1007/s12072-020-10071-9

84 Liu C, Jiang ZC, Shao CX, Zhang HG, Yue HM, Chen ZH, Ma BY, Liu WY, Huang HH, Yang J, Wang Y, Liu HY, Xu D, Wang JT, Yang JY, Pan HQ, Zou SQ, Li JF, Lei JQ, Li X, He Q, Gu Y, Qi XL. [Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study]. *Zhonghua Gann Zhang Bing Za Zhi* 2020; 28: 107-111 [PMID: 32077660 DOI: 10.3760/cma.j.issn.1007-3418.2020.02.003

85 Duan ZP, Chen Y, Zhang J, Zhao J, Lang ZW, Meng FK, Bao XL. [Clinical characteristics and mechanism of liver injury in patients with severe acute respiratory syndrome]. *Zhonghua Ganzang Bing Zazi* 2003; 11: 493-496 [PMID: 1293916

86 Duan XF, Liu Z, Hao R, Luo L, Zhang YN. [The dynamic change of liver injury in patients with severe acute respiratory syndrome]. *Zhonghua Ganzang Bing Zazi* 2004; 12: 439 [PMID: 15268817

87 Wang Y, Liu S, Liu H, Li W, Liu F, Jiang L, Li X, Xu P, Zhang L, Zhao L, Cao Y, Kang J, Yang J, Li L, Liu X, Li Y, Nie R, Mu J, Lu F, Zhao S, Liu J, Zhao J. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. *J Hepatol* 2020; 73: 807-816 [PMID: 32437830 DOI: 10.1016/j.jhep.2020.05.002

88 Zhong P, Xu J, Yang D, Shen Y, Wang L, Feng Y, Du C, Song Y, Wu C, Hu X, Sun Y. COVID-19-associated gastrointestinal and liver injury: clinical features and potential mechanisms. *Signal Transduct Target Ther* 2020; 5: 256 [PMID: 33139693 DOI: 10.1038/s41392-020-00373-7

89 Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. *Lancet Gastroenterol Hepatol* 2020; 5: 529-530 [PMID: 33203680 DOI: 10.1016/S2468-1253(20)30084-4

90 Lozano-Sepulveda SA, Galan-Huerta K, Martinez-Acuña N, Arellanos-Soto D, Rivas-Estilla AM. SARS-CoV-2 another kind of liver aggressor, how does it do that? *Ann Hepatol* 2020; 19: 592-596 [PMID: 32858226 DOI: 10.1016/j.ahep.2020.08.062

91 Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. *J Clin Invest* 2020; 130: 2620-2629 [PMID: 32217835 DOI: 10.1172/JCI137244

92 Li J, Fan JG. Characteristics and Mechanism of Liver Injury in 2019 Coronavirus Disease. *J Clin Transl Hepatol* 2020; 8: 13-17 [PMID: 32274341 DOI: 10.14218/JCTH.2020.00019

93 Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. *Am J Clin Pathol* 2020; 153: 725-733 [PMID: 32275742 DOI: 10.1093/ajcp/aqaa062

94 Tian S, Xiong Y, Liu H, Niu L, Guo J, Xiao SY. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. *Mod Pathol* 2020; 33: 1007-1014 [PMID: 32210399 DOI: 10.1038/s41379-020-0536-x

95 Hanley B, Lucas SB, Yould E, Swift B, Osborne M. Autopsy in suspected COVID-19 cases. *J Clin Pathol* 2020; 73: 239-242 [PMID: 32198191 DOI: 10.1136/jclinpath-2020-206522

96 Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM, Angus PW. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. *Gut* 2005; 54: 1790-1796 [PMID: 16166274 DOI: 10.1136/gut.2004.062398

97 Lee WM, Hynan LS, Rossaro L, Fontana RJ, Stratvitz RT, Larson AM, Davern TJ 2nd, Murray NG, McCashland T, Reisch JS, Robuck PR. Acute Liver Failure Study Group. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acuteonchronic acute liver failure. *Gastroenterology* 2009; 137: 836-846, 846. e1 [PMID: 19524577 DOI: 10.1053/j.gastro.2009.06.006

98 Green J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lesureux FX, Nicasirri E, Oda R, Yoo K, Quirós-Roldán E, Studemirzij A, Redinski J, Ahmed S, Bennett J, Chelliah D, Chen D, Chihara S, Cohen SH, Cunningham J, D’Arminio Monforte A, Ismail S, Kato H, Lapadula G, L’Her E, Maeno T, Majumder S, Massari M, Mora-Rillo M, Mutoh Y, Nguyen D, Verweij E, Zoufaly A, Osumi AO, DeZure A, Zhao Y, Zhong L, Chokkalingam A, Elboudwarej E, Telep L, Timbs L, Henne I, Sellers S, Cao H, Tan SK, Winterbourne L, Desai P, Mera R, Gagger A, Myers RP, Brainard DM, Childs R, Flanagan T. Compassionate Use of Remdesivir for Patients with Severe Covid-19. *N Engl J Med* 2020; 382: 2327-2336 [PMID: 32275812 DOI: 10.1056/NEJMoa2007016

99 Rad F, Ghorbani M, Mohammadi Roushandeh A, Habibi Roudkaner M. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. *Mol Biol Rep* 2019; 46: 1533-1549 [PMID: 30623280 DOI: 10.1007/s11033-019-04588-x

100 Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft vs host disease. *Eur J Immunol* 2008; 38: 1745-1755 [PMID: 18493986 DOI:
Chinnici CM et al. MSCs in liver failure for COVID-19 infection

TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020; 323: 2052-2059 [PMID: 32320003 DOI: 10.1001/jama.2020.6775]

Hwang Y, Kim JC, Tae G. Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization. Biomaterials 2019; 209: 67-78 [PMID: 31026612 DOI: 10.1016/j.biomaterials.2019.04.019]

Wang Y, Wang JL, Ma HC, Tang ZT, Ding HR, Shi XL. Mesenchymal stem cells increase heme oxygenase 1-activated autophagy in treatment of acute liver failure. Biochem Biophys Res Commun 2019; 508: 682-689 [PMID: 30528392 DOI: 10.1016/j.bbrc.2019.04.019]

Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 Bound Human Serum Albumin and Systemic Septic Shock. Front Cardiovasc Med 2020; 7: 153 [PMID: 33088822 DOI: 10.3389/fcvm.2020.00153]

Wu MA, Fossali T, Pandolfi L, Carsana L, Ottolina D, Frangipane V, Rech R, Tosoni A, Lopez G, Agarossi A, Cogliati C, Meloni F, Marchini B, Nebuloni M, Catena E, Colombo R. Hypoalbuminemia in COVID-19: assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med 2021 [PMID: 33411411 DOI: 10.1111/joim.13208]

Bahloul M, Ketata W, Lahyeni D, Mayoufi H, Kotti A, Smaoui F, Kallel N, Daoud E, Bouaziz M, Kammoun S. Pulmonary capillary leak syndrome following COVID-19 virus infection. J Med Virol 2021; 93: 94-96 [PMID: 32519786 DOI: 10.1002/jmv.26152]

Corti MC, Guralnik JM, Salive ME, Sorkin JD. Serum albumin level and physical disability as predictors of mortality in older persons. JAMA 1994; 272: 1036-1042 [PMID: 8089886]
