Spin-charge interplay in electronic liquid crystals: fluctuating spin stripe driven by charge nematic

Kai Sun,1,2 Michael J. Lawler,3,4 and Eun-Ah Kim4

1Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801
2Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742
3Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902
4Department of Physics, Cornell University, Ithaca, NY 14853

(Dated: April 26, 2010)

We study the interplay between charge and spin ordering in electronic liquid crystalline states with a particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering experiments.1,2 Based on a phenomenological model, we propose that charge nematic ordering is indeed behind the formation of temperature dependent incommensurate inelastic peaks near wavevector (π, π) in the dynamic structure factor of YBa2Cu3O6+y. We strengthen this claim by providing a compelling fit to the experimental data which cannot be reproduced by a number of other ordering possibilities.

PACS numbers: 71.10.Hf,71.45.Gm,75.10.Jm

Kaleidoscopic variety of competing ordering tendencies is both a hallmark of correlated electron fluids, such as cuprate and Fe based superconductors,3,4 and a theoretical challenge. As such, a clear identification of a broken symmetry phase offers a valuable guiding principle. Recent observations of temperature, energy and doping dependent onset of anisotropy in inelastic neutron scattering (INS) studied by V. Hinkov et al.1 provides an opportunity for just such identification.

The symmetry of the “fluctuating spin stripe” phenomena (one-dimensional incommensurate spin modulation at finite energy) observed in Ref. 1 is consistent with that of a nematic phase (a metallic state that breaks rotational symmetry without breaking translational symmetry). Furthermore, the qualitative departure in the magnetic response of underdoped YBa2Cu3O6+y in Ref. 1 from that of optimally and overdoped regimes y ≳ 0.5 1,3 indicates the possible existence of a quantum critical point at around y ≈ 0.5 as we sketch in Fig. 1. In specific, low-energy features are enhanced in INS of y = 0.45 while the extensively studied high energy "hourglass" dispersion which are prominent at higher doping 1,3 is suppressed. (Considerable attention has been directed towards this resonance feature and its significance. See e.g. Ref.10.) However, despite the reported temperature dependence of the finite-frequency incommensurability being suggestive of an order parameter 11, it has not been clear how this quantity can be related to a specific order parameter since an order parameter is defined by broken symmetry of the ground state.

There has been a number of theoretical studies regarding possible signatures of electronic liquid crystal physics in the magnetic response 12–14. While these studies shed light on the hour-glass dispersion observed in y ≳ 0.5 at high energies, their connection with the low-energy phenomena in the underdoped regime with y < 0.5 is unclear. Moreover, they focused on the superconducting phase while the observed onset of fluctuating spin stripe behavior is at TN ≈ 150K, well above the superconducting ordering temperature Tc = 35K.

In this letter we propose that charge nematic ordering is the driving force behind the fluctuating spin stripe phenomena observed in underdoped YBa2Cu3O6+y. We consider a metallic system proximate to antiferromagnetic (AFM) ordering and show that charge nematic ordering quite uniquely can induce fluctuating and even static spin stripes thus providing a concrete connection between the charge stripes and spin aspects of liquid crystalline behavior in underdoped YBa2Cu3O6+y. Our claims are supplemented by a successful fit with available INS data1.

Phenomenological Model We start by noting that V.
Hinkov et al. [1] detect the dynamic onset of anisotropy through incommensurate inelastic peaks near the AFM wave vector \(Q = (\pi, \pi) \) in a metallic system (see Fig. 2). Given a microscopic theory of itinerant magnetism being an open question, we take a phenomenological approach as a first pass through the problem. In the presence of long-range AFM ordering, low-energy excitation in the particle-hole channel is dominated by gapless spin waves near \(Q \) with infinite life time:

\[
\tilde{\phi}(\mathbf{q}, \omega) = \int \frac{d^2 k d\Omega}{2(2\pi)^3} \tilde{\psi}^\dagger_\alpha(k + Q + \mathbf{q}, \Omega + \omega) \tilde{\sigma}_{\alpha\beta} \tilde{\psi}_\beta(k, \Omega),
\]

(1)

Here the operators \(\tilde{\psi}^\dagger_\alpha(\psi_\alpha) \) are the fermion creation (annihilation) operators with spin \(\alpha = \uparrow, \downarrow \). \(\tilde{\phi} \) and \(\tilde{\sigma} \) are vectors in spin space with \(\sigma_{\alpha\beta} \) representing (\(\alpha, \beta \)) component of Pauli matrix \(\sigma_i \) for \(i = x, y, z \). \(\mathbf{q} \) denotes the wavevector of the spinwaves measured from \(Q \) and \(\omega \) denotes their frequency. For underdoped cuprates outside dependent spin-wave gap in the absence of damping \(q \) where \(\Gamma = \text{the damping energy scale} \). Here we take the dependence of \(\Delta(q) \) sets the energy scale above which INS intensity above the spatial rotational symmetry to a discrete group. For instance in a square lattice with \(C_{4v} \) symmetry, the ordering can occur in one of two channels \(d_{xy} \) or \(d_{x^2-y^2} \) reducing the order parameter symmetry to Ising-like (a single component real field) in either case [2]. Due to this discretization of the order parameter symmetry, the nematic fluctuation below the transition temperature \(T_N \) will be massive. In \(\text{YBa}_2\text{Cu}_3\text{O}_{6+y} \), the weak external field imposed by the chain layer will likely pick the nematic to occur in the \(d_{x^2-y^2} \) channel and a representative form of order parameter can therefore be written as

\[
N = \int \frac{d^2 k}{2(2\pi)^2} \bar{N}(\cos k_x - \cos k_y) \psi_\alpha^\dagger(k) \psi_\alpha(k),
\]

(4)

However, it is important to note that any electronic quantity that is odd under 90° spatial rotation such as effective mass anisotropy ratio \(m_y - m_x / (m_y + m_x) \) or transport anisotropy \(\rho_{xx} - \rho_{yy} / (\rho_{xx} + \rho_{yy}) \) can serve as the order parameter for the nematic state [18]. In fact, short of probes that couple directly to charge quadrupole moments, nematic phases so far has been mostly detected through temperature dependent in-plane transport anisotropy in quasi 2D systems [21, 22].

In \(\text{YBa}_2\text{Cu}_3\text{O}_{6+y} \), Audo et al. [15] observed that transport anisotropy increases upon under doping below \(y \sim 0.5 \) while the effect of \(\text{CuO} \) chains diminishes. Its electronic origin is further supported by the fact that this anisotropy only sets in below a doping dependent onset temperatures \(T_N \) (180K for \(y = 0.45 \)) making nematic ordering a compelling candidate for background broken symmetry in underdoped \(\text{YBa}_2\text{Cu}_3\text{O}_{6+y} \) as advanced in Ref. [1] without a theoretical model.

Consider the effect of \(d_{x^2-y^2} \) nematic ordering below \(T_N \) on the spin fluctuations in Fig. 4. The effective action now depends on both \(\phi \) and \(N \). Away from the classical critical region near \(T_N \), the gapped nematic fluctuations can be integrated out and the effect of finite \(N \) can be represented by \(N \)-dependent coefficients in the gradient expansion of \(S[\phi, N] \) in the long distance limit. We represent such \(N \) dependence of \(S[\phi, N] \) using the \(N \) dependent “gap” \(\Delta(q; N) \). On symmetry grounds \(\Delta(q; N) \) in the long distance limit takes the following form to the quadratic order in \(q \):

\[
\Delta^2(q; N) = \Delta_0^2(N) + c_0^2(N) q^2 - c_2^2(N) N (q_x^2 - q_y^2) + \cdots
\]

(5)
where all momenta are in units of the lattice constant (i.e., \(q_x \equiv k_x a \)). Assuming tetragonal symmetry of underlying lattice in the absence of symmetry breaking field, all the functions \(\Delta_0, c_0, c_2 \) should be even functions of \(N \) since \(N \to -N \) under 90° spatial rotation. For small \(N \), we expand \(\Delta(q; N) \) in powers of \(N \) and treat \(\Delta_0, c_0, c_2 \) as independent of \(N \) to lowest order in \(N \) [23]. (Note that this approach would be only valid up to the nematic gap scale which we estimate to be about \(\sim 18 \) meV from the onset temperature for transport anisotropy \(T_N \approx 180K \).)

Notice that the nematic ordering allows for anisotropic flattening of the momentum dependence of \(\Delta(q; N) \) in Eq. (5) which will elongate the inelastic \((\pi, \pi)\) peak in the \(x \) direction. For \(N > N^* \), with \(N^* = c_0^2/c_2^2 \), this effect will further shift the peaks to incommensurate positions at \((\pi \pm \delta, \pi)\) at low-energy (\(\omega < \Delta(q) \) for any \(q \)) due to a dip in \(\Delta^2(q; N) \) at \(q = (\pm \delta(T), 0) \) with

\[
\delta(T) \propto (N(T) - N^*)^{1/2}.
\]

Such incommensurability will naturally have temperature dependence resulting from the temperature dependence of \(N(T) \). We represent this crossover temperature \(T^* \) for onset of such fluctuating spin stripe at \(N(T^*) = N^* \) as a dashed line in Fig. 1. It is noteworthy that while the form of Eq. (6) is reminiscent of an order parameter yet without any thermodynamic singularity at \(T = T^* \). This is independent of the unknown order parameter exponent \(\beta \) of \(N \propto (T - T_N)\beta \) and any microscopic details. As long as \(N^* \) is small and the spin waves are gapped, so that we may use the quadratic action of Eq. (5), the \((N - N^*)^{1/2} \) dependence of \(\delta \) in Eq. (6) is valid up to the estimated scale of data [25].) Note that this momentum dependence fit shown in Fig. 3 is valid up to the estimated scale of data.

key observations of transport measurements [15] and recent INS studies in YBa\(_2\)Cu\(_3\)O\(_{6+y}\) [23]. One non-trivial prediction is the temperature dependence of the incommensurability \(\delta(T) \) in the vicinity of \(T^* \).

It is straightforward to show that Eq. (6) implies temperature dependence of \(\delta(T) \) reminiscent of that of a mean field order parameter yet without any thermodynamic singularity at \(T = T^* \). This is independent of the unknown order parameter exponent \(\beta \) of \(N \propto (T - T_N)\beta \) and any microscopic details. As long as \(N^* \) is small and the spin waves are gapped, so that we may use the quadratic action of Eq. (5), the \((N - N^*)^{1/2} \) dependence of \(\delta \) in Eq. (6) is valid up to leading order in \((N - N^*) \). By inserting \(N \propto (T - T_N)^\beta \) to Eq. (6), one can show

\[
\delta \propto (T - T^*)^{1/2}.
\]

which is in good agreement with experimental observation in Ref. [1]. Thus we have established a model which yields observed \(T^* \)-dependent incommensurability.

As a practical test of our phenomenological theory, we fit the INS data of Ref. [1] with the spectral function Eq. (6) using \(\Delta(q; N) \) from Eq. (5). Fig. 2 shows a fit to momentum line cuts of INS data at \(\omega = 3 \) meV and \(T = 5K \) by setting \(g/\Gamma = 5.1 \) meV, \(\Delta_0^2 - (3\text{meV})^2/\Gamma = 2.7 \) meV, \(c_0^2/\Gamma = 16 \) meV, \(c_2^2/\Gamma = 24 \) meV. (We also include symmetry allowed quartic terms of the form \(\lambda_1(q_x^4 + q_y^4) + \lambda_2q_x^2q_y^2 + \lambda_3N(q_y^4 - q_x^4) \) to fit high \(q \) part of data [23].) Note that this momentum dependence fit at \(\omega = 3\text{meV} \) is insensitive to the relative strength between damping and gap energy scales \(\Gamma/\Delta_0 \). Only the frequency dependence is sensitive to this ratio. Similar fits at higher temperatures (\(T = 40K \) and \(T = 100K \)) hint at thermal fluctuation driven damping at higher temperatures and \(T^* \) being below 100K (see supplementary online material for details). Note that we are using a different scheme for extracting \(T^* \) from that of Ref. [1].

Fixing most of model parameters by the \(\omega = 3\text{meV} \), \(T = 5K \) data, we fit the frequency dependence of uniform susceptibility \(\chi''(\omega) \) at 5K. The energy dependence fit shown in Fig. 3 is valid up to the estimated scale.

Comparison with experiments The model defined by Eqs. (2) and (3) provides a natural connection between

![Fig. 2: (color online) Fit to momentum dependence of INS intensity along \(a \) (blue dots) and \(b \) (red triangles) axes. Data obtained from Ref. [1] taken at \(T = 5K \) and \(\omega = 3\text{meV} \). Note: any slight asymmetry observed in the data is not accounted for in the phenomenological model presented here.](image)

![Fig. 3: (color online) The frequency dependence of the momentum integrated spectral function. (Note: this is really only valid up to the nematic fluctuation mass scale of 18 meV.](image)
of nematic fluctuation mass (≈ 18 meV). Both Figs. 2 and 3 show good agreement with data. However, given quite a few parameters, we should stress that fitting is more of a check rather than the main result of this paper. Nonetheless, the frequency dependence allows us to estimate $\Gamma/\Delta_0 \sim 1.3$ giving a reasonable fit. Note that while one expects the spinwave to be well defined inside superconductor due to lack of low-energy excitations to scatter off, the data of Ref. 1 appears to indicate significant amount of damping. Speculating the source of this damping is beyond the scope of our paper but this might be consistent with existence of the low-energy excitations reported in superconducting underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$.[26]

Effect of Other Ordering Tendencies For completeness, we also consider the effect of two other competing orders possibly proximate to the regime of our interest: the charge stripe(smectic) and d-wave superconductivity.

For charge stripe ordering with wave vector Q_{cs} the order parameter is

$$\rho_{Q_{cs}} = \int \frac{d^2k d\Omega}{(2\pi)^3} \langle \psi^\dagger(k + Q_{cs})\psi(k) \rangle, \quad (8)$$

where the spin index α is summed over. We therefore find an additional contribution to the spinwave action

$$\delta S_{cs} = -g_{cs} \rho_{Q_{cs}} \int \frac{d^2q d\omega}{(2\pi)^3} |\tilde{\phi}(q,\omega)|^2$$

$$- g'_{cs} \rho_{Q_{cs}} \int \frac{d^2q d\omega}{(2\pi)^3} \tilde{\phi}(-q - Q_{cs},\omega) \tilde{\phi}(-q,\omega). \quad (9)$$

From Eq. (9) it is clear that the existence of charge stripe shifts the spinwave gap by a constant (g_{cs} term and it can also induce fluctuating and static spin stripe with incommensurability fixed by the charge stripe wave vector by $\delta = Q_{cs}/2$ (g'_{cs} term). However, incommensurability so induced will be T independent since it is fixed by Q_{cs}.

In the presence of d-wave pairing Δ_d the leading additional contribution to the spinwave action is

$$\delta S_{dc} = -g_{dc}|\Delta_d|^2 \int \frac{d^2q d\omega}{(2\pi)^3} |\tilde{\phi}(q,\omega)|^2. \quad (10)$$

Hence while d-wave superconductivity can also shifts the commensurate spinwave gap $\Delta(q = 0)$ by a constant $g_{sc}|\Delta_d|^2$ and enhance (for $g_{sc} < 0$) or suppress (for $g_{sc} > 0$) it cannot lead to the observed T dependent incommensurability either. These conclusions can be generalized to other pairing symmetries.

Discussions We have shown that the existence of charge nematic ordering can take a system proximate to AFM and induce fluctuating spin stripe phenomena: incommensurate INS peaks. Within a symmetry based phenomenological approach we explained the observed $(T^* - T)^{1/2}$ dependence of the incommensurability. Hence, we established a concrete model connecting the spin and charge aspects of the electronic liquid crystalline behavior of YBa$_2$Cu$_3$O$_{6+y}$. We further argued that this is a unique feature of charge nematic ordering.

One natural implication of our model is the possibility that outside but close to the charge nematic phase, impurities could stabilize fluctuating or even static spin stripes. Since impurities break the crystal lattice symmetry, they naturally provide a symmetry breaking field which will induce a finite N. In weak coupling, this would be given by $N = \chi_N h_N$ where h_N captures the orientational symmetry breaking of the impurities (see Ref. 2 for a similar argument applied to charge stripes). Since the response χ_N to this perturbation is expected to be large near a nematic phase, an N larger than N^* could be induced and fluctuating spin stripes will result. If it is further larger than N_c, static spin stripes will be induced.

Several future directions include, establishing a microscopic model which reproduces our phenomenological model in the long-wavelength limit and studying the effects of a magnetic field. This latter question is particularly important in the context of observations of a magnetic field stabilizing static spin stripe phase.[2]. Since such a phase is accessible from our model, it will be interesting to include the effect of magnetic field.

Furthermore, our analysis may provide a starting point for investigating the interplay between spin and electronic liquid crystalline ordering in other systems. By now there are a growing number of candidate correlated systems for such interplay, including Mn-doped Sr$_2$Ru$_2$O$_7$[27] and Fe-based superconductors[28].

Acknowledgments We are grateful to E. Fradkin, L. Fritz, V. Hinkov, S. Kivelson, S. Sachdev, J. Tranquada for useful comments and discussions. This work was supported in part by the DOE under Contracts DE-FG02-91ER45439 at the University of Illinois and by NSF-PFC at JQI, Maryland (KS) and by the Cornell Center for Materials Research through NSF under Grant No.0520404 and by the KITP through NSF under Grant No. PHY05-51164(EAK and MJL)

Supplementary Material

Here we discuss higher temperature fits to the inelastic neutron scattering data of Ref. 1. Short of explicit temperature dependence in our phenomenological model, we consider two approaches: (a) we assume implicit temperature dependence of all symmetry allowed phenomenological parameters used in fitting the low temperature ($T = 5K$) data; (b) we assume the dominant effect of temperature is to introduce static damping due to thermal fluctuation.

Assuming implicit T- dependence of fitting parameters, we fit the momentum independent neutron scattering data taken at temperatures $T = 40 K$ and 100 K. For the fits shown in Fig. 4 the parameters are $g/\Gamma = 5.8$ meV

For charge stripe ordering with wave vector Q_{cs} the order parameter is

$$\rho_{Q_{cs}} = \int \frac{d^2k d\Omega}{(2\pi)^3} \langle \psi^\dagger(k + Q_{cs})\psi(k) \rangle, \quad (8)$$

where the spin index α is summed over. We therefore find an additional contribution to the spinwave action

$$\delta S_{cs} = -g_{cs} \rho_{Q_{cs}} \int \frac{d^2q d\omega}{(2\pi)^3} |\tilde{\phi}(q,\omega)|^2$$

$$- g'_{cs} \rho_{Q_{cs}} \int \frac{d^2q d\omega}{(2\pi)^3} \tilde{\phi}(-q - Q_{cs},\omega) \tilde{\phi}(-q,\omega). \quad (9)$$

From Eq. (9) it is clear that the existence of charge stripe shifts the spinwave gap by a constant (g_{cs} term and it can also induce fluctuating and static spin stripe with incommensurability fixed by the charge stripe wave vector by $\delta = Q_{cs}/2$ (g'_{cs} term). However, incommensurability so induced will be T independent since it is fixed by Q_{cs}.

In the presence of d-wave pairing Δ_d the leading additional contribution to the spinwave action is

$$\delta S_{dc} = -g_{dc}|\Delta_d|^2 \int \frac{d^2q d\omega}{(2\pi)^3} |\tilde{\phi}(q,\omega)|^2. \quad (10)$$

Hence while d-wave superconductivity can also shifts the commensurate spinwave gap $\Delta(q = 0)$ by a constant $g_{sc}|\Delta_d|^2$ and enhance (for $g_{sc} < 0$) or suppress (for $g_{sc} > 0$) it cannot lead to the observed T dependent incommensurability either. These conclusions can be generalized to other pairing symmetries.

Discussions We have shown that the existence of charge nematic ordering can take a system proximate to AFM and induce fluctuating spin stripe phenomena: incommensurate INS peaks. Within a symmetry based phenomenological approach we explained the observed $(T^* - T)^{1/2}$ dependence of the incommensurability. Hence, we established a concrete model connecting the spin and charge aspects of the electronic liquid crystalline behavior of YBa$_2$Cu$_3$O$_{6+y}$. We further argued that this is a unique feature of charge nematic ordering.

One natural implication of our model is the possibility that outside but close to the charge nematic phase, impurities could stabilize fluctuating or even static spin stripes. Since impurities break the crystal lattice symmetry, they naturally provide a symmetry breaking field which will induce a finite N. In weak coupling, this would be given by $N = \chi_N h_N$ where h_N captures the orientational symmetry breaking of the impurities (see Ref. 2 for a similar argument applied to charge stripes). Since the response χ_N to this perturbation is expected to be large near a nematic phase, an N larger than N^* could be induced and fluctuating spin stripes will result. If it is further larger than N_c, static spin stripes will be induced.

Several future directions include, establishing a microscopic model which reproduces our phenomenological model in the long-wavelength limit and studying the effects of a magnetic field. This latter question is particularly important in the context of observations of a magnetic field stabilizing static spin stripe phase.[2]. Since such a phase is accessible from our model, it will be interesting to include the effect of magnetic field.

Furthermore, our analysis may provide a starting point for investigating the interplay between spin and electronic liquid crystalline ordering in other systems. By now there are a growing number of candidate correlated systems for such interplay, including Mn-doped Sr$_2$Ru$_2$O$_7$[27] and Fe-based superconductors[28].

Acknowledgments We are grateful to E. Fradkin, L. Fritz, V. Hinkov, S. Kivelson, S. Sachdev, J. Tranquada for useful comments and discussions. This work was supported in part by the DOE under Contracts DE-FG02-91ER45439 at the University of Illinois and by NSF-PFC at JQI, Maryland (KS) and by the Cornell Center for Materials Research through NSF under Grant No.0520404 and by the KITP through NSF under Grant No. PHY05-51164(EAK and MJL)
The low temperature fluctuating stripe behaviour.

The system is then in a nematic phase with anisotropic structure factor at $T = 5K$ values and setting $\Gamma = 5K$.

At higher temperatures we observe from this fit that $c_0 > c_2$ at $T = 100K$ while $c_0 < c_2$ for both 40K and 5K.

Consider the second approach to fitting mentioned above. Since $T = 40K > h\omega/k_B$ for the neutron energy transfer of $\omega = 3\text{meV}$, sizable damping due to thermal fluctuation is expected at 40K compared to $T = 5K$.

Hence, we incorporate thermal fluctuation driven damping into the effective action through $\Gamma_0(T)$ such that $\Gamma_0(T = 5K) = 0$.

$$S[\phi] = \frac{1}{g} \int \frac{d^2q d\omega}{(2\pi)^3} \left(\Delta \Gamma_0 + i\Gamma |\omega| + \omega^2 - \Delta^2 (q) \right) |\phi(q, \omega)|^2.$$

It turns out both 5K data and 40K data can be fit by fixing all other parameters except overall intensity to their 5K values and setting $\Gamma_0(T = 40K) / \Gamma = 1.4 \text{meV}$ (see Fig. 5). This signifies enhanced damping as the main difference between these data sets.

Both the experimental resolution and the phenomenological nature of our theory make it difficult for a multi parameter fit to be deterministic. However, the above demonstrates that our theory offers a sensible fit to the data for multiple line cuts in momentum space and the temperature dependence of the neutron scattering structure factor. In particular, these finite temperature fits demonstrate that T^* in the range of $40K \lesssim T^* \lesssim 100K$ and additional thermal fluctuation at 40K compared to 5K are consistent with the data.

FIG. 4: Fit to momentum dependence of INS intensity along a (blue dots) and b (red triangles) axes at $T = 40K$ with $\omega = 3 \text{meV}$.

FIG. 5: Single-parameter fitting to momentum dependence of INS intensity along a (blue dots) and b (red triangles) axes at $T = 40K$ and $\omega = 3 \text{meV}$ with phonon scatterings.

[1] V. Hinkov et al., Science 319, 597 (2008).
[2] D. Haug et al., arXiv:0902.3335 (unpublished).
[3] S. A. Kivelson and H. Yao, Nat Mater 7, 927 (2008).
[4] P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmuller and S. Parkin (John Wiley and Sons, 2007), vol. 1: Fundamentals and Theory.
[5] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).
[6] S. M. Hayden et al., Nature 429, 531 (2004).
[7] V. Hinkov et al., Nature 430, 650 (2004).
[8] V. Hinkov et al., Nat Phys 3, 780 (2007).
[9] J. M. Tranquada et al., Nature 429, 534 (2004).
[10] J. M. Tranquada, cond-mat/0512115 (unpublished).
[11] Although YBa$_2$Cu$_3$O$_{6+x}$ is orthorhombic due to the chain layer, the lattice constants show no sign of sharp change below chain ordering temperature near room temperature, Horn et al, Phys. Rev. Lett 59, 2772(1987). Hence we view this as small symmetry breaking field choosing the direction of nematic ordering.
[12] H. Yamase and W. Metzner, Phys. Rev. B 73, 214517 (2006).
[13] M. Vojta, T. Vojta, and R. K. Kaul, Phys. Rev. Lett. 97, 097001 (2006).
[14] Y.-J. Kao and H.-Y. Kee, Phys. Rev. B 72, 024502 (2005).
[15] Y. Ando, K. Segawa, S. Komiyama, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
[16] V. Barzykin et al., Phys. Rev. B 49, 1544 (1994); S. Sachdev et al., Phys. Rev. B 51, 14874 (1995); A. Chubukov et al., J. Phys.: Condens. Matt. 8, 10017 (1996).
[17] G. Baym and C. Pethick, Landau Fermi Liquid Theory (Wiley, New York, 1991).
[18] V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 (2001).
[19] T. Sun, B. M. Fregoso, M. J. Lawler, and E. Fradkin, Phys. Rev. B 78, 085124 (2008).
[20] E.-A. Kim et al., Phys. Rev. B 77, 184514 (2008).
[21] K. B. Cooper et al., Phys. Rev. B 65, 241313(R) (2002).
[22] R. A. Borzi et al., Science 315, 214 (2007).
[23] A quadratic coupling between N^2 and the $|\phi(q = 0)|^2$
was discussed by M. Vojta in \texttt{arXiv:0901.3145} correspond to N^2 contribution to $\Delta_0(N)$.

[24] M. Matsuda \textit{et al.}, \textit{Phys. Rev. Lett.} \textbf{101}, 197001 (2008).

[25] $\lambda_1/\Gamma = 26$ meV, $\lambda_2/\Gamma = 50$ meV and $\lambda_3 N/\Gamma = 18$ meV.

[26] Y. Kohsaka \textit{et al.}, \textit{Nature} \textbf{454}, 1072 (2008).

[27] M. A. Hossain \textit{et al.}, arXiv:0906.0035 (unpublished).

[28] J. Zhao \textit{et al.}, arXiv:0903.2686 (unpublished).