On simple \(\mathcal{A} \)-multigraded minimal resolutions

Hara Charalambous and Apostolos Thoma

Abstract. Let \(\mathcal{A} \) be a semigroup whose only invertible element is 0. For an \(\mathcal{A} \)-homogeneous ideal we discuss the notions of simple \(i \)-syzygies and simple minimal free resolutions of \(R/I \). When \(I \) is a lattice ideal, the simple 0-syzygies of \(R/I \) are the binomials in \(I \). We show that for an appropriate choice of bases every \(\mathcal{A} \)-homogeneous minimal free resolution of \(R/I \) is simple. We introduce the gcd-complex \(\Delta_{\gcd}(b) \) for a degree \(b \in \mathcal{A} \). We show that the homology of \(\Delta_{\gcd}(b) \) determines the \(i \)-Betti numbers of degree \(b \). We discuss the notion of an indispensable complex of \(R/I \). We show that the Koszul complex of a complete intersection lattice ideal \(I \) is the indispensable resolution of \(R/I \) when the \(\mathcal{A} \)-degrees of the elements of the generating \(R \)-sequence are incomparable.

1. Notation

Let \(\mathcal{L} \subset \mathbb{Z}^n \) be a lattice such that \(\mathcal{L} \cap \mathbb{N}^n = \{0\} \) and let \(\mathcal{A} \) be the subsemigroup of \(\mathbb{Z}^n/\mathcal{L} \) generated by \(\{a_i = e_i + \mathcal{L} : 1 \leq i \leq n\} \) where \(\{e_i : 1 \leq i \leq n\} \) is the canonical basis of \(\mathbb{Z}^n \). Since the only element in \(\mathcal{A} \) with an inverse is 0, it follows that we can partially order \(\mathcal{A} \) with the relation

\[c \geq d \iff \text{there is } e \in \mathcal{A} \text{ such that } c = d + e. \]

Let \(k \) be a field. We consider the polynomial ring \(R = k[x_1, \ldots, x_n] \). We set \(\text{deg}_\mathcal{A}(x_i) = a_i \). If \(x^\mathbf{v} = x_1^{v_1} \cdots x_n^{v_n} \), then we set

\[\text{deg}_\mathcal{A}(x^\mathbf{v}) := v_1 a_1 + \cdots + v_n a_n \in \mathcal{A}. \]

It follows that \(R \) is positively multigraded by the semigroup \(\mathcal{A} \), see \cite{13}. The lattice ideal associated to \(\mathcal{L} \) is the ideal \(I_{\mathcal{L}} \) (or \(I_{\mathcal{A}} \)) generated by all the binomials \(x^{\mathbf{u}_+} - x^{\mathbf{u}_-} \) where \(\mathbf{u}_+, \mathbf{u}_- \in \mathbb{N}^n \) and \(\mathbf{u} = \mathbf{u}_+ - \mathbf{u}_- \in \mathcal{L} \). We note that if \(x^{\mathbf{u}_+} - x^{\mathbf{u}_-} \in I_{\mathcal{L}} \) then \(\text{deg}_\mathcal{A} x^{\mathbf{u}_+} = \text{deg}_\mathcal{A} x^{\mathbf{u}_-} \). Prime lattice ideals are the defining ideals of toric varieties and are called toric ideals, \cite{23}. In general lattice ideals arise in problems from diverse areas of mathematics, including toric geometry, integer programming, dynamical systems, graph theory, algebraic statistics, hypergeometric differential equations, we refer to \cite{12} for more details.

We say than an ideal \(I \) of \(R \) is \(\mathcal{A} \)-homogeneous if it is generated by \(\mathcal{A} \)-homogeneous polynomials, i.e. polynomials whose monomial terms have the same \(\mathcal{A} \)-degree.

1991 Mathematics Subject Classification. 13D02, 13D25.

Key words and phrases. Resolutions, lattice ideal, syzygies, indispensable syzygies, Scarf complex.
Lattice ideals are clearly \mathcal{A}-homogeneous. For the rest of the paper I is an \mathcal{A}-homogeneous ideal. For $b \in \mathcal{A}$ we let $R[-b]$ be the \mathcal{A}-graded free R-module of rank 1 whose generator has \mathcal{A}-degree b. Let

$$(F_\bullet, \phi) : 0 \to F_p \xrightarrow{\phi_p} \cdots \to F_1 \xrightarrow{\phi_1} F_0 \to R/I \to 0,$$

be a minimal \mathcal{A}-graded free resolution of R/I. The i-Betti number of R/I of \mathcal{A}-degree b, $\beta_{i,b}(R/I)$, equals the rank of the R-summand of F_i of \mathcal{A}-degree b:

$$\beta_{i,b}(R/I) = \dim_k \text{Tor}_i(R/I, k)_b$$

and is an invariant of I, see [13]. The degrees b for which $\beta_{i,b}(R/I) \neq 0$ are called i-Betti degrees. The minimal elements of the set $\{ b : \beta_{i,b}(R/I) \neq 0 \}$ are called minimal i-Betti degrees. The elements of $\text{Im} \phi_{i+1} = \ker \phi_i$ are the i-syzygies of R/I in F_\bullet.

The problem of obtaining an explicit minimal free resolution of R/I is extremely difficult. One of the factors that make this problem hard to attack, is that given a minimal free resolution one can obtain by a change of basis a different description of this resolution. To obtain some control over this, in [10] we defined simple minimal free resolutions. We also defined and studied the gcd-complex $\Delta_{\gcd}(b)$ for a degree $b \in \mathcal{A}$. We used this complex to generalize the results in [19] and to construct the generalized algebraic Scarf complex based on the connected components of $\Delta_{\gcd}(b)$ for degrees $b \in \mathcal{A}$. When I is a lattice ideal we showed that the generalized algebraic Scarf complex is present in every simple minimal free resolution of R/I. This current paper analyzes in more detail the notions presented in [10]. We note that the original motivation for this work came from a question in Algebraic Statistics concerning conditions for the uniqueness of a minimal binomial generating set of toric ideals.

The structure of this paper is as follows. In section 2 we discuss the notion of simple i-syzygies of R/I. The simple 0-syzygies of R/I when I is a lattice ideal are exactly the binomials of I. We also discuss the notion of a simple minimal free resolution of R/I. This notion requires the presence of a system of bases for the free modules of the resolution. We show that for an appropriate choice of bases every \mathcal{A}-homogeneous minimal free resolution of R/I is simple. In section 3 we discuss the gcd-complex $\Delta_{\gcd}(b)$ for a degree $b \in \mathcal{A}$. We show that the homology of $\Delta_{\gcd}(b)$ determines the i-Betti numbers of degree b. We count the numbers of binomials that could be part of a minimal binomial generating set of a lattice ideal up to a constant multiple. In section 4 we discuss the notion of indispensable i-syzygies. Intrinsically indispensable i-syzygies are present in all \mathcal{A}-homogeneous simple minimal free resolutions. For the 0-step and for a lattice ideal $I_\mathcal{L}$ this means that there are some binomials of the ideal $I_\mathcal{L}$ that are part (up to a constant multiple) of all \mathcal{A}-homogeneous systems of minimal binomial generators of $I_\mathcal{L}$. A strongly indispensable i-syzygy needs to be present in every minimal free resolution of R/I even if the resolution is not simple. For the 0-step and for a lattice ideal $I_\mathcal{L}$ this means that there are some elements of $I_\mathcal{L}$ that are part (up to a constant multiple) of all \mathcal{A}-homogeneous minimal sets of generators of $I_\mathcal{L}$, where the generators are not necessarily binomials. We consider conditions for strongly indispensable i-syzygies to exist. We show that the Koszul complex of a complete intersection lattice ideal I is indispensable when the \mathcal{A}-degrees of the elements of the generating R-sequence are incomparable.
2. Simple syzygies

We recall and generalize the definition of a simple i-syzygy, see [10] Definition 3.1, to arbitrary elements of an \mathcal{A}-graded free module. Let F be a free \mathcal{A}-graded module of rank β and let $B = \{E_i : t = 1, \ldots, \beta\}$ be an \mathcal{A}-homogeneous basis of F. Let h be an \mathcal{A}-homogeneous element of F:

$$h = \sum_{1 \leq t \leq \beta} c_{at} x^n E_i.$$

The S-support of h with respect to B is the set

$$S_B(h) = \{x^n E_i : c_{at} \neq 0\}.$$

We introduce a partial order on the elements of F:

$$h' \leq h \text{ if and only if } S_B(h') \subseteq S_B(h).$$

Definition 2.1. Let F and B be as above, let G be an \mathcal{A}-graded subset of F and let h be an \mathcal{A}-homogeneous nonzero element of G. We say that h is simple in G with respect to B if there is no nonzero \mathcal{A}-homogeneous $h' \in G$ such that $h' < h$.

In [10] Theorem 3.4 we showed that if $(\mathbb{F}_\bullet, \phi)$ is a minimal free resolution of R/I then for any given basis B of F_i there exists a minimal \mathcal{A}-homogeneous generating set of $\ker \phi_i$ consisting of simple i-syzygies with respect to B. The proof of the next proposition is an immediate generalization of the proof of that theorem and is omitted.

Proposition 2.2. Let F be a free \mathcal{A}-graded module, let B be an \mathcal{A}-homogeneous basis of F and let G be an \mathcal{A}-graded submodule of F. There is a minimal system of generators of G each being simple in G with respect to B.

Given an \mathcal{A}-homogeneous complex of free modules $(\mathbb{G}_\bullet, \phi)$ we specify \mathcal{A}-homogeneous bases B_i for the homological summands G_i. The collection of these bases forms a system of bases \mathbb{B}. We write $\mathbb{B} = (B_i)$ and we say that B_i is in \mathbb{B}.

Definition 2.3. A based complex $(\mathbb{G}_\bullet, \phi, \mathbb{B})$ is an \mathcal{A}-homogeneous complex $(\mathbb{G}_\bullet, \phi)$ together with a system of bases $\mathbb{B} = (B_i)$. Let $(\mathbb{G}_\bullet, \phi, \mathbb{B})$ and $(\mathbb{F}_\bullet, \phi, \mathbb{C})$ be two based complexes, $\mathbb{B} = (B_i)$ and $\mathbb{C} = (C_i)$. We say that the complex homomorphism $\omega: \mathbb{G}_\bullet \rightarrow \mathbb{F}_\bullet$ is a based homomorphism if for each $E \in B_i$, there exists an $H \in C_i$ such that $\omega(E) = cH$ for some $c \in k^*$.

Let I be an \mathcal{A}-homogeneous ideal and let $(\mathbb{F}_\bullet, \phi)$ be a minimal \mathcal{A}-graded free resolution of R/I. We let s be the projective dimension of R/I and let β_i be the rank of F_i. For each i we suppose that B_i is an \mathcal{A}-homogeneous basis of F_i and we let $\mathbb{B} = (B_0, B_1, \ldots, B_s)$.

Definition 2.4. ([10] Definition 3.5) Let $(\mathbb{F}_\bullet, \phi, \mathbb{B})$ be as above. We say that $(\mathbb{F}_\bullet, \phi, \mathbb{B})$ is simple if and only if for each i and each $E \in B_i$, $\phi_i(E)$ is simple in $\ker \phi_{i-1}$ with respect to B_{i-1}.

We remark that when I is a lattice ideal then for any choice of basis B_0, the simple 0-syzygies of R/I are the binomials of I. It is an immediate consequence of Proposition 2.2 that one can construct a minimal simple resolution of R/I with respect to a system $\mathbb{B} = (B_0, \ldots, B_s)$ starting with $B_0 = \{1\}$, see also [10] Corollary 3.6. In the next proposition we show that any minimal free resolution $(\mathbb{F}_\bullet, \phi)$ of R/I becomes simple with the right choice of bases.
Proposition 2.5. Let I be an \mathcal{A}-homogeneous ideal and let (\mathbf{F}_*, ϕ) be a minimal free resolution of R/I. There exists a system of bases \mathbf{B} so that $(\mathbf{F}_*, \phi, \mathbf{B})$ is simple.

Proof. Let $C_0 = \{1\}$ and for each $i > 0$ choose a basis $C_i = \{H_{ti} : t = 1, \ldots, \beta_i\}$ of F_i. Let (\mathbf{G}_*, θ) be a simple minimal free resolution of R/I with respect to $\mathbf{D} = (D_0, \ldots, D_s)$ where $D_0 = \{1\}$ and $D_i = \{E_{ti} : t = 1, \ldots, \beta_i\}$. Since $\mathbf{G}_*, \mathbf{F}_*$ are both minimal projective resolutions of R/I there is an isomorphism of complexes $h_\bullet : \mathbf{G}_* \to \mathbf{F}_*$ that extends the identity map on R/I. In particular $h_0 = id_R$. For each i we let $H_{ti}' = h_i(E_{ti})$ and consider the set $B_i = \{H_{ti}' : t = 1, \ldots, \beta_i\}$. We note that $B_0 = \{1\}$. It is immediate that B_i is a basis for F_i. We claim that $(\mathbf{F}_*, \phi, \mathbf{B})$ is simple.

Indeed for $t = 1, \ldots, \beta_1$ using the commutativity of the diagram we get that $\phi_1(H_{t1}') = \phi_1(h_1(E_{t1})) = h_0(\theta_1(E_{t1})) = \theta_1(E_{t1})$. Since $\theta_1(E_{t1})$ is simple with respect to C_0 it follows that $\phi_1(H_{t1}')$ is simple with respect to B_0. For $i > 1$ and $t = 1, \ldots, \beta_i$ we have that $\phi_i(H_{ti}') = \phi_i(h_i(E_{ti})) = h_{i-1}(\theta_i(E_{ti}))$. Suppose that $\phi_i(H_{ti}')$ were not simple with respect to B_{i-1}. Since h_{i-1} is bijective it follows that $\theta_i(E_{ti})$ is not simple with respect to D_{i-1}, a contradiction.

Let I be an \mathcal{A}-homogeneous ideal and let (\mathbf{F}_*, ϕ) be a minimal free resolution of R/I. An i-syzygy h of R/I minimal if h is part of a minimal generating set of $\ker \phi_i$. By the graded version of Nakayama’s lemma it follows that h is minimal if and only if h cannot be written as an R-linear combination of i-syzygies of R/I of strictly smaller \mathcal{A}-degrees. The next theorem examines the cardinality of the set of minimal i-syzygies of a free resolution of R/I.

Theorem 2.6. Let I be an \mathcal{A}-homogeneous ideal and let (\mathbf{F}_*, ϕ) be a minimal free resolution of R/I. Let \equiv be the following equivalence relation among the elements of F_i: $h \equiv h'$ if and only if $h = ch', c \in \mathcal{A}^*$, and let B_i be a basis of F_i. The set of equivalence classes of the i-syzygies of R/I that are minimal and simple with respect to B_i is finite.

Proof. We will show that the number of equivalence classes of the i-syzygies that are simple and have \mathcal{A}-degree equal to an $(i + 1)$-Betti degree b of R/I is finite. By [10] Theorem 3.8] if $h, h' \in \ker \phi_i$ are simple with respect to B_i and $S_{B_i}(h) = S_{B_i}(h')$ then $h \equiv h'$. Thus it is enough to show that there is only a finite number of candidates for $S_{B_i}(h)$ when $h \in F_i$ has $\deg_A(h) = b$. We consider the set $C = \{x^a E_i : \deg_A(x^a E_i) = b, E_i \in B_i\}$. We note that $S_{B_i}(h) \subset \mathcal{P}(C)$ where $\mathcal{P}(C)$ is the power set of C. The number of basis elements $E_i \in B_i$ such that $\deg_A(E_i) \leq b$ is finite. Moreover for each E_i the number of monomials x^a such that $\deg_A(x^a) + \deg_A(E_i) = b$ is finite. It follows that C and its power set $\mathcal{P}(C)$ are finite as desired.
3. The gcd-complex

For \(b \in A \), we let \(C_b \) equal the fiber
\[
C_b := \deg_A^{-1}(b) = \deg_{\mathcal{L}}^{-1}(b) := \{ x^u : \deg_A(x^u) = b \}.
\]
Let \(I_{\mathcal{L}} \) be a lattice ideal. The fiber \(C_b \) plays an essential role in the study of the minimal free resolution of \(R/I_{\mathcal{L}} \) as is evident from several works, see [3, 9, 10, 11, 19, 20].

We denote the support of the vector \(u = (u_j) \) by \(\text{supp}(u) := \{ i : u_i \neq 0 \} \). Next we recall the definition of the simplicial complex \(\Delta_b \) on \(n \) vertices, constructed from \(C_b \) as follows:
\[
\Delta_b := \{ F \subset \text{supp}(a) : x^a \in C_b \}.
\]
\(\Delta_b \) has been studied extensively, see for example [2, 4, 5, 7, 8, 17, 18]. Its homology determines the Betti numbers of \(R/I_{\mathcal{L}} \):
\[
\beta_i(R/I_{\mathcal{L}}) = \dim_k \tilde{H}_i(\Delta_b),
\]
see [22] or [13] for a proof.

In this section we present another simplicial complex, the gcd-complex \(\Delta_{\gcd}(b) \), whose construction is based upon the divisibility properties of the monomials of \(C_b \).

Definition 3.1. For a vector \(b \in A \) we define the *gcd-complex* \(\Delta_{\gcd}(b) \) to be the simplicial complex with vertices the elements of the fiber \(C_b \) and faces all subsets \(T \subset C_b \) such that \(\gcd(x^a : x^a \in T) \neq 1 \).

The example below compares graphically the two simplicial complexes in a particular case.

Example 1. Let \(R = \mathbb{k}[a, b, c, d] \) and let \(A \) be the semigroup \(A = \langle (4, 0), (3, 1), (1, 3), (0, 4) \rangle \). For \(b = (6, 10) \) we consider the fiber \(C_{(6,10)} = \{ bc^3, ac^2d, b^2d^2 \} \) and the corresponding simplicial complexes. We see that
\[
\Delta_{\gcd}(b) \quad \Delta_b
\]
\[
\begin{array}{c}
\bullet & a \\
\bullet & bc^3 \\
\bullet & b^2d^2 \\
\end{array}
\]
\[
\begin{array}{c}
\bullet & c \\
\bullet & d \\
\bullet & b \\
\end{array}
\]

The main theorem of this section, Theorem 3.2 was proved independently in [16].

Theorem 3.2. Let \(b \in A \). The gcd complex \(\Delta_{\gcd}(b) \) and the complex \(\Delta_b \) have the same homology.

Proof. First we consider the simplicial complex \(\Delta \) with vertices the elements of the set \(S = \{ \text{supp}(a) : x^a \in C_b \} \) and faces all subsets \(T \subset S \) such that
\[
\bigcap_{\text{supp}(a) \in T} \text{supp}(a) \neq \emptyset.
\]
We define an equivalence relation among the vertices of \(\Delta_{\gcd}(b) \): we let \(x^a \equiv x^{a'} \) if and only if \(\text{supp}(a) = \text{supp}(a') \). We note that the subcomplex \(A \) of \(\Delta_{\gcd}(b) \) on the
vertices of an equivalence class is contractible. By the Contractible Subcomplex Lemma \[6\] we get that the quotient map \(\pi: |\Delta_{\gcd}(\mathbf{b})| \rightarrow |\Delta_{\gcd}(\mathbf{b})|/|\mathbf{A}| \) is a homeotopy equivalence. A repeated application of the Contractible Subcomplex Lemma yields that \(\Delta_{\gcd}(\mathbf{b})\) and \(\Delta\) have the same homology.

Next we consider the family \(\mathcal{F}\) of the facets of \(\Delta_{\mathbf{b}}\) and the corresponding nerve complex \(N(\mathcal{F})\). The vertices of \(N(\mathcal{F})\) correspond to the facets of \(\Delta_{\mathbf{b}}\), while the faces of \(\Delta_{\mathcal{F}}\) correspond to collections of facets with nonempty intersection. It follows that \(N(\mathcal{F})\) is isomorphic to \(\Delta\). By \[21\] Theorem 7.26 the two complexes \(\Delta_{\mathbf{b}}\) and \(\Delta\) have the same homology and the theorem now follows.

The following is now immediate:

Corollary 3.3. Let \(I_\mathcal{L}\) be a lattice ideal.

\[
\beta_{i,\mathbf{b}}(R/I_\mathcal{L}) = \dim_k \tilde{H}_i(\Delta_{\gcd}(\mathbf{b})).
\]

The connected components of \(\Delta_{\gcd}(\mathbf{b})\) were used in \[10\] to determine certain complexes associated to a simple minimal free \(A\)-homogeneous resolution of \(R/I_\mathcal{L}\), see \[10\] Definitions 4.7 and 5.1. In Theorem 3.5 below we use the complex \(\Delta_{\gcd}(\mathbf{b})\) to determine the number of equivalence classes of minimal binomial generators of \(I_\mathcal{L}\). First we prove the following lemma:

Lemma 3.4. For \(\mathbf{b} \in \mathbf{A}\), let \(I_{\mathcal{L},\mathbf{b}}\) be the ideal generated by all binomials of \(I_\mathcal{L}\) of \(A\)-degree strictly smaller than \(\mathbf{b}\). Let \(G(\mathbf{b})\) be the graph with vertices the elements of \(C_\mathbf{b}\) and edges all the sets \(\{x_\mathbf{u}, x_\mathbf{v}\}\) whenever \(x_\mathbf{u} - x_\mathbf{v} \in I_{\mathcal{L},\mathbf{b}}\). A set of monomials in \(C_\mathbf{b}\) forms the vertex set of a component of \(G(\mathbf{b})\) if and only if it forms the vertex set of a component of \(\Delta_{\gcd}(\mathbf{b})\).

Proof. We note that if \(x_\mathbf{u}, x_\mathbf{v}\) belong to the same component of \(\Delta_{\gcd}(\mathbf{b})\) then there exists a sequence of monomials \(x_\mathbf{u} = x_\mathbf{u}_1, x_\mathbf{u}_2, \ldots, x_\mathbf{u}_s = x_\mathbf{v}\) such that \(d = \gcd(x_\mathbf{u}_1, x_\mathbf{u}_2) \neq 1\). Therefore

\[
x_\mathbf{u} - x_\mathbf{u}_2 = d(\frac{x_\mathbf{u}_1}{d} - \frac{x_\mathbf{u}_2}{d}) \in I_{\mathcal{L},\mathbf{b}}.
\]

It follows that \(x_\mathbf{u} - x_\mathbf{v} \in I_{\mathcal{L},\mathbf{b}}\) and \(x_\mathbf{u}, x_\mathbf{v}\) belong to the same component of \(G(\mathbf{b})\).

For the converse we note that the binomials of degree \(\mathbf{b}\) in \(I_{\mathcal{L},\mathbf{b}}\) are spanned by binomials of the form \(x_\mathbf{a}(x_\mathbf{r} - x_\mathbf{s})\) where \(x_\mathbf{a} \neq 1\). Moreover any such binomial determines an edge from \(x_\mathbf{a}^{x_\mathbf{r}+s}\) to \(x_\mathbf{a}^{x_\mathbf{r}+s}\) in \(\Delta_{\gcd}(\mathbf{b})\). Thus if \(x_\mathbf{u}, x_\mathbf{v}\) lie in the same component of \(G(\mathbf{b})\) then any minimal expression of \(x_\mathbf{u} - x_\mathbf{v}\) as a sum of binomials \(x_\mathbf{a}(x_\mathbf{r} - x_\mathbf{s})\) results in a path from \(x_\mathbf{u}\) to \(x_\mathbf{v}\) in \(\Delta_{\gcd}(\mathbf{b})\). \(\square\)

The graph \(G(\mathbf{b})\) was first introduced in \[9\] to determine the number of different binomial generating sets of a toric ideal \(I_\mathcal{L}\). The results stated for toric ideals in \[9\] hold more generally for lattice ideals with identical proofs. We choose an ordering of the connected components of \(\Delta_{\gcd}(\mathbf{b})\) and let \(t_i(\mathbf{b})\) be the number of vertices of the \(i\)-th component of \(\Delta_{\gcd}(\mathbf{b})\).

Theorem 3.5. Let \(I_\mathcal{L}\) be a lattice ideal and consider the equivalence relation on \(R\) of Theorem 2.7. The cardinality of the set \(T\) of equivalence classes of the minimal binomials of \(I_\mathcal{L}\) is given by

\[
|T| = \sum_{\mathbf{b} \in \mathbf{A}} \sum_{i \neq j} t_i(\mathbf{b})t_j(\mathbf{b}).
\]
SYZYGIES

Proof. In the course of the proof of [9, Theorem 2.6] applied to the lattice ideal \(I_L \) it was shown that the minimal binomials of \(A \)-degree \(b \) are the difference of monomials that belong to different connected components of \(G(b) \). Lemma 3.3 and a counting argument finishes the proof. \(\Box \)

We remark that if \(b \in A \) is not a 1-Betti degree of \(R/I_L \), then there is no minimal binomial generator of \(A \)-degree \(b \). It follows that \(\Delta_{\gcd}(b) \) has exactly one connected component. The nontrivial contributions to the formula of Theorem 3.5 come from the 1-Betti degrees of \(R/I_L \).

4. Indispensable syzygies

In this section we discuss the notion of indispensable complexes that first appeared in [10, Definition 3.9]. Intrinsically an indispensable complex of \(R/I \) is a based complex \((F\bullet, \phi, B)\) that is “contained” in any based simple minimal free resolution of \(R/I \).

The indispensable binomials of a lattice ideal \(I_L \) are the binomials that appear in every minimal system of binomial generators of the ideal up to a constant multiple. They were first defined in [15] and their study was originally motivated from Algebraic Statistics; see [1, 14, 15, 24] for a series of related papers.

Theorem 4.1. Let \(I_L \) be a lattice ideal. The indispensable binomials of \(I_L \) occur exactly in the minimal \(A \)-degrees \(b \) such that \(\Delta_{\gcd}(b) \) consists of two disconnected vertices.

Proof. This theorem was proved in [9] for toric ideals. The same proof applies to lattice ideals. \(\Box \)

An immediate consequence of Theorem 4.1 is the following:

Corollary 4.2. Let \(I_L \) be a lattice ideal and \(S \) a minimal system of \(A \)-homogeneous (not necessarily binomial) generators of \(I_L \). If \(f \) is an indispensable binomial of \(I_L \) then there is a \(c \in k^* \) such that \(cf \in S \).

Proof. Let \(f \) be an indispensable binomial of \(I_L \) and \(b = \deg_A f \). Since \(H_1(\Delta_{\gcd}(b)) = 1 \) there is a unique element \(f' \) in \(S \) of \(A \)-degree \(b \). Since \(C_b \) is a set with exactly two elements it follows that \(f' \) is a binomial. Since \(I_L \) contains no monomials, it follows that \(f' = cf \) for some \(c \in k^* \). \(\Box \)

It is clear that if \((F\bullet, \phi, B)\) is a minimal free resolution of \(R/I \) and \(f \) is an indispensable binomial, then there exists an element \(E \in B_1 \) and a \(c \in k^* \) such that \(\phi_1(E) = cf \). We let the indispensable 0-syzygies of \(R/I \) to be the indispensable binomials of \(I_L \). We extend the definition for \(i \geq 0 \):

Definition 4.3. Let \((F\bullet, \phi, B)\) be a based complex. We say that \((F\bullet, \phi, B)\) is an indispensable complex of \(R/I \) if for each based minimal simple free resolution \((G\bullet, \theta, C)\) of \(R/I \) where \(C_0 = \{1\} \), there is an injective based homomorphism \(\omega : (F\bullet, \phi, B) \to (G\bullet, \theta, C) \) such that \(\omega_0 = id_R \). If \(B = (B_j) \) and \(E \in B_{i+1} \) we say that \(\phi_{i+1}(E) \in F_i \) is an indispensable \(i \)-syzygy of \(R/I \).

It follows immediately from the definition that an indispensable \(i \)-syzygy of \(R/I \) is simple. Moreover if \((F\bullet, \phi, B)\) is an indispensable complex of \(R/I \) and \((G\bullet, \theta, W)\) is a minimal simple free resolution of \(R/I \) then the based homomorphism of Definition 4.3 is unique, up to rearrangement of the bases elements of the same \(A \)-degree.
and constant factors. In [10] Theorem 5.2 we showed that if \(I_L \) is a lattice ideal then the generalized algebraic Scarf complex is an indispensable complex.

The next theorem examines when the Koszul complex of a lattice ideal generated by an \(R \)-sequence of binomials is indispensable. Let \(I \) be an ideal generated by an \(R \)-sequence \(f_1, \ldots, f_s \) and let \((\mathbf{K}_*, \phi)\) be the Koszul complex on the \(f_i \). We denote the basis element \(e_{j_1} \wedge \cdots \wedge e_{j_t} \) of \(K_i \) by \(e_J \) where \(J \) is the ordered set \(\{j_1, \ldots, j_t\} \) and let \(\text{sgn}[j_k, J] = (-1)^{k+1} \). For each \(j \in J \) we write \(J_j \) for the set \(J \setminus \{j\} \). The canonical system of bases \(\mathbf{B} = (B_0, \ldots, B_s) \) consists of the following: \(B_0 = \{1\} \), \(B_1 = \{e_i : i = 1, \ldots, s\} \) where \(\phi(e_i) = f_i \) and \(B_i = \{e_J : J = \{j_1, \ldots, j_t\}, 1 \leq j_1 < \cdots < j_t \leq s\} \) where

\[
\phi_i(e_J) = \sum_{j \in J} \text{sgn}[j, J] f_j e_{J_j}.
\]

In [10] Example 3.7 it was shown that \((\mathbf{K}_*, \phi, \mathbf{B})\) is a simple minimal free resolution of \(R/I \).

Theorem 4.4. Let \(I_L = (f_1, \ldots, f_s) \) be a lattice ideal where \(\{f_i : i = 1, \ldots, s\} \) is an \(R \)-sequence of binomials such that \(B_i = \text{deg}_A(f_i) \) are incomparable. Let \((\mathbf{K}_*, \phi)\) be the Koszul complex on the \(f_i \) and let \(\mathbf{B} \) be the canonical system of bases of \(\mathbf{K} \). Then \((\mathbf{K}_*, \phi, \mathbf{B})\) is an indispensable complex of \(R/I_L \).

Proof. Let \(f_i = x^{b_i} - x^{c_i} \). We note that if \(e_J \in B_i \) then

\[
\text{deg}_A(e_J) = \sum_{i \in J} \text{deg}_A f_i
\]

and \((\mathbf{K}_*, \phi)\) is \(\mathcal{A} \)-homogeneous. The incomparability assumption on the degrees of the \(f_i \) shows that each \(B_i \) is minimal and that \(\beta_{i, B_i}(R/I) = 1 \). It follows that \(f_i \) is an indispensable binomial, see [9] Corollary 3.8. We also note that for each \(i \), \(C_{b_i} \) consists of exactly two monomials.

Let \((\mathbf{G}_*, \theta, \mathbf{W})\) be a simple minimal resolution of \(R/I_L \) where \(\mathbf{W} = (W_0, \ldots, W_s) \) and \(W_0 = \{1\} \). We let \(\omega_0 = \text{id}_R : K_0 \to G_0 \). We prove that there is a based isomorphism \(\omega : (\mathbf{K}_*, \phi, \mathbf{B}) \to (\mathbf{G}_*, \theta, \mathbf{W}) \) which extends \(\omega_0 \) by showing that if \(\omega_i : K_i \to G_i \) has been defined for \(i \leq k \) then \(\omega_{k+1} \) can be constructed with the desired properties. Thus we assume that for each basis element \(e_J \) of \(B_k \) there exists \(c_J \in \mathbb{K}^* \) and \(H_J \in W_k \) such that \(\omega_k(e_J) = c_J H_J \). We note that if \(e_L \in B_{k+1} \) then \(\omega_k \phi_{k+1}(e_L) \).

i.e.

\[
\sum_{j \in L} \text{sgn}[j, L] f_j c_{L,j} H_{L,i}
\]

is a simple \(k \)-syzygy with respect to \(W_k \). This follows as in the proof of [9] Corollary 3.8. We will define \(\omega_{k+1} : K_{k+1} \to G_{k+1} \) by specifying its image in the basis elements \(e_L \) of \(B_k \) so that the following identity holds:

\[
\theta_{k+1} \omega_{k+1}(e_L) = \omega_k \phi_{k+1}(e_L)\,.
\]

Since \(\omega_k \phi_{k+1}(e_L) \) is a \(k \)-syzygy, it follows that

\[
\omega_k \phi_{k+1}(e_L) = \sum_{i=1}^{t} \theta_{k+1}(p_i H_i)
\]

where \(H_i \in W_{k+1} \) and \(\text{deg}_A(p_i H_i) = \text{deg}_A(e_L) \). We will show that \(t = 1 \). First we notice that for some \(i \)

\[
S_{W_k}(\theta_{k+1}(p_i H_i)) \cap S_{W_k}(\omega_k(\phi_{k+1}(e_L))) \neq \emptyset.
\]
Without loss of generality we can assume that this is the case for \(i = 1 \) and we write \(H \) in place of \(H_1 \). Moreover we can assume that

- \(\mathcal{K} = \{1, \ldots, k + 1\} \) and that
- \(x^{a_1}H_{k+1} \in S_{W_z}(\theta_{k+1}(H)) \cap S_{W_z}(\omega_k(\phi_{k+1}(e_L))) \).

Let \(q_L = \) be the coefficient of \(H_{k+1} \) in \(\theta_{k+1}(H) \). We have that \(\deg_A(p_1q_L) = b_1 \). We will show that \(p_1q_L \) is a constant multiple of \(f_1 \). For \(t \in L_1 \) we write \(L_{1,t} \) for the set \(L_1 \setminus \{t\} \). Since \(\theta_{1,0}(H) = 0 \) the coefficient of \(H_{L_{1,t}} \), in \(\theta_{k+1}(H) \) must be zero for any \(t \in L_1 \). The contributions to this coefficient come from the differentiation of the term of \(\theta_{k+1}(H) \) involving \(H_{L_{1,t}} \), and all other terms of \(\theta_{k+1}(H) \) involving \(H_{L_{1,t}} \)

where \(L' \setminus \{t'\} = L_{1,t} \). Let \(X \) be the set consisting of such \(L' \) and let \(q' \) be the coefficient of \(H_{L_{1,t}} \) when \(L' \in X \). We get

\[
0 = \text{sgn}[t, L_1]q_L + \sum_{L' \in X} q' \text{sgn}[t', L']f_{t'}.
\]

Since \(f_1, \ldots, f_s \) is a complete intersection it follows that \(q_L \in \langle f_L : L' \in X \rangle \). Therefore \(b_1 \geq \deg_A(q_L) \geq \deg_A(f_L) \) for at least one \(t' \). By the incomparability of the degrees of the \(f_i \) it follows that \(t' = 1 \), and \(q_L \) is a constant multiple of \(f_1 \) and thus \(p_1 \in k^* \). Moreover we have shown that for each \(t \) in \(L_1 \) there is a term in \(\theta_{k+1}(H) \) involving \(H_{L_{1,t}} \). By a degree consideration it follows that the coefficient of this term has degree \(b_1 \) and thus repeating the above steps we can conclude that the coefficient of this term is a constant multiple of \(f_1 \). It follows that

\[
S_{W_z}(\omega_k(\phi_{k+1}(e_L))) \subset S_{W_z}(\theta_{k+1}(H)).
\]

Since \(\theta_{k+1}(H) \) is simple it follows that

\[
S_{W_z}(\omega_k(\phi_{k+1}(e_L))) = S_{W_z}(\theta_{k+1}(H)),
\]

and \(\theta_{k+1}(H) = c \omega_k(\phi_{k+1}(e_L)) \) where \(c \in k^* \). We let \(H_L = H \) and \(c_L = c^{-1} \). It follows that the homomorphism \(\omega_{k+1} : K_{k+1} \rightarrow G_{k+1} \) defined by setting

\[
\omega_{k+1}(e_L) = c_L H_L
\]

has the desired properties.

Next we consider strongly indispensable complexes.

Definition 4.5. Let \((F, \phi, B) \) be a based complex. We say that \((F, \phi, B) \) is a strongly indispensable complex of \(R/I \) if for every based minimal free resolution \((G, \theta, C) \) of \(R/I \), (not necessary simple) with \(C_0 = \{1\} \), there is an injective based homomorphism \(\omega : (F, \phi, B) \rightarrow (G, \theta, C) \) such that \(\omega_0 = id_R \). If \(B = (B_j) \) and \(E \in B_i \) we say that \(\phi_{i+1}(E) \in F_i \) is a strongly indispensable \(i \)-syzygy of \(R/I \).

Strongly indispensable complexes are indispensable. This is a strict inclusion as \([10]\), Example 6.5] shows. When \(I_C \) is a lattice ideal, the algebraic Scarf complex \([19]\), Construction 3.1], is shown to be “contained” in the minimal free resolution of \(R/I_C \), \([19]\) Theorem 3.2], and is a strongly indispensable complex. Moreover as follows from Corollary \([12]\), the strongly indispensable 0-syzgies of \(R/I_C \) coincide with the indispensable 0-syzgies of \(R/I_C \) and are the indispensable binomials of \(I_C \). For higher homological degrees this is no longer the case. First we note the following:

Theorem 4.6. Let \(I_C \) be a lattice ideal and let \((F, \phi, B) \) be a strongly indispensable complex for \(R/I_C \). Let \(B = (B_j) \), \(E \in B_{i+1} \) and \(\deg_A(E) = b \). Then \(\dim_k \tilde{H}_i(\Delta_{gcd}(b)) = 1 \) and \(b \) is a minimal \(i \)-Betti degree of \(R/I_C \).
Proof. Suppose that \(\dim_k \tilde{H}_i(\Delta_{gcd}(b)) > 1 \) or that there is an \(i \)-Betti degree \(b' \) such that \(b' < b \). Let \((G_\bullet, \theta, C)\) be a minimal resolution of \(R/I_L \) where \(C = (C_i) \), let \(\omega : (F_\bullet, \phi, B) \longrightarrow (G_\bullet, \theta, C) \) be the based homomorphism of Definition 4.5 and suppose that \(\omega(E) = cH \) where \(H \in C_{i+1} \) and \(c \in k^* \). By our assumptions there exists \(H' \in C_{i+1} \) such that \(H' \neq H \) and \(\deg_{A}(H) \leq b \). Let \(x^a \in C_{b-b'} \). By replacing \(H \) with \(H + x^a H' \) we get a new basis \(C'_i+1 \) of \(G_{i+1} \) and a new system of bases \(C' = (C'_j) \), where \(C'_j = C_{j-1} \) for \(j \neq i+1 \). Let \(\omega' : (F_\bullet, \phi, B) \longrightarrow (G_\bullet, \theta, C') \) be the based homomorphism of Definition 4.5 \(\omega_j = \omega'_j \) for \(j \leq i \). Let \(H'' \in C_{i+1} \) be such that \(\omega'_{i+1}(E) = c'H'' \) where \(c' \in k^* \). Thus

\[
\theta_{i+1}(c'H'') = \theta_{i+1}(\omega'_{i+1}(E)) = \omega'_{i+1}(E) = \omega_{i+1}(E) = \theta_{i+1}(\omega_{i+1}(E)) = c\theta_{i+1}(cH).
\]

It follows that \(c'H'' - cH \in \ker \theta_{i+1} \). If \(H'' \neq H + x^a H' \) then \(H'' \in C_{i+1} \) and we get a direct contradiction to the minimality of \((G_\bullet, \theta, C)\). If \(H'' = H + x^a H' \) then \(\theta_{i+1}(c'H - c\omega_{i+1}(E)) = 0 \). Examination of the two cases when (a) \(c' \neq c \), and (b) \(c' = c \), leads again to a contradiction of the minimality of the resolution \((G_\bullet, \theta, C)\).

Theorem 4.6 shows that the two conditions

1. \(\dim_k \tilde{H}_i(\Delta_{gcd}(b)) = 1 \)
2. \(b \) is a minimal \(i \)-Betti degree

are necessary for the existence of a strongly indispensable \(i \)-syzygy in \(A \)-degree \(b \). The following example shows that these conditions are not sufficient for the existence of an indispensable \(i \)-syzygy and consequently of a strongly indispensable \(i \)-syzygy.

Example 2. Consider the lattice ideal \(I_L = \langle f_1, f_2 \rangle \) where \(f_1 = x_1 - x_2 \), \(f_2 = x_2 - x_3 \) and \(\deg_{A} f_i = 1 \). Let \((K_\bullet, \phi)\) be the Koszul complex on the \(f_i \). By considering the \(i \)-Betti numbers for \(i = 1, 2 \) it is immediate that \(\dim_k H_2(\Delta_2) = 1 \) and \(2 \) is a minimal 2-Betti degree. However there is no indispensable complex of length greater than 0, since the generators of \(I_L \) are not indispensable binomials.

Generic lattice ideals are characterized by the condition that the binomials in a minimal generating set have full support, [19]. In this case the Scarf complex is a minimal free resolution of \(R/I_L \) and each of the Betti degrees of \(R/I_L \) satisfy the conditions of Theorem 4.6. We finish this section by giving the strongest result for the opposite direction of Theorem 4.6.

Theorem 4.7. Let \(I_L \) be a lattice ideal. The \(A \)-homogeneous minimal free resolution \((F_\bullet, \phi, B)\) of \(R/I_L \) is strongly indispensable if and only if for each \(i \)-Betti degree \(b \) of \(R/I_L \), \(b \) is a minimal \(i \)-Betti degree and \(\dim_k \tilde{H}_i(\Delta_{gcd}(b)) = 1 \).

Proof. One direction of this theorem follows directly from Theorem 4.6. For the other direction we assume that \(b \) is minimal whenever \(b \) is an \(i \)-Betti degree and that \(\dim_k \tilde{H}_i(\Delta_{gcd}(b)) = 1 \) for all \(i \). Let \((G_\bullet, \theta, D)\) be a minimal free resolution of \(R/I_L \). By assumption the \(A \)-degrees of the elements of \(D_i \) are distinct and incomparable. It follows that the \(A \)-homogeneous isomorphism \(\omega : F \longrightarrow G \) that extends \(\id_R : F_0 \longrightarrow C_0 \) is a based homomorphism.

Acknowledgment
The authors would like to thank Ezra Miller for his essential comments on this manuscript.
References

[1] S. Aoki, A. Takemura and R. Yoshida, Indispensable monomials of toric ideals and Markov bases, Journal of Symbolic Computation 43 (2008) 490-507.

[2] A. Aramova and J. Herzog, Koszul cycles and Eliahou-Kervaire type resolution, J. Algebra 181 (1996) 347-370.

[3] D. Bayer, B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew. Math. 502 (1998), 123-140.

[4] E. Briaies, A. Campillo, C. Marijuan and P. Pisón, Combinatorics of syzygies for semigroup algebra, Collectanea Mathematica 49 (1998) 239-256.

[5] W. Bruns and J. Herzog, Semigroup rings and simplicial complexes, J. Pure Appl. Algebra 122 (1997) 185-208.

[6] A. Bjorner and J. W. Walker A homotopy complementation formula for partially ordered sets, European J. Combin. 4 (1983), 11–19.

[7] A. Campillo and Ph. Gimenez, Syzygies of affine toric varieties, J. Algebra 225 (2000) 142-161.

[8] A. Campillo and P. Pisón, L’idéal d’un semi-group de type fini, Comptes Rendues Acad. Sci. Paris, Série I, 316 (1993) 1303-1306.

[9] H. Charalambous, A. Katsabekis, A. Thoma, Minimal systems of binomial generators and the indispensable complex of a toric ideal, Proc. Amer. Math. Soc. 135 (2007) 3443-3451.

[10] H. Charalambous, A. Thoma, On the generalized Scarf complex for lattice ideals, preprint.

[11] P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26 (1) (1998) 363-397.

[12] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996) 1-45.

[13] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics 227 Springer Verlag, New York 2005.

[14] H. Ohsugi and T. Hibi, Indispensable binomials of finite graphs, J. Algebra Appl. 4 (2005), no 4, 421-434.

[15] H. Ohsugi and T. Hibi, Toric ideals arising from contingency tables, Proceedings of the Ramanujan Mathematical Society’s Lecture Notes Series, (2006) 87-111.

[16] I. Ojeda and A. Vigneron-Tenorio, Simplicial complexes and minimal free resolution of monomial algebras, preprint, [arXiv:0810.4836v1]

[17] P. Pisón Casares, The short resolution of a lattice ideal, Proc. Amer. Math. Soc. 131 (2003) 1081-1091.

[18] P. Pisón Casares and A. Vigneron-Tenorio, First syzygies of toric varieties and diophantine equations in congruence, Commun. Algebra 29 (2001) 1445-1466.

[19] I. Peeva and B. Sturmfels, Generic lattice ideals, J. Amer. Math. Soc. 11 (1998) 363-373.

[20] I. Peeva and B. Sturmfels, Syzygies of codimension 2 lattice ideals, Math Z. 229 (1998) no 1, 163-194.

[21] J. Rotman, An introduction to Algebraic Topology, Graduate Texts in Mathematics 119 Springer Verlag, New York 1988.

[22] R. Stanley, Combinatorics and commutative algebra, Progress in Mathematics 41, Birkhäuser, Boston 1996.

[23] B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series, No. 8 American Mathematical Society Providence, R.I. 1995.

[24] A. Takemura and S. Aoki, Some characterizations of minimal Markov basis for sampling from discrete conditional distributions, Ann. Inst. Statist. Math., 56 (1)(2004) 1-17.

Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, 54124, GREECE

E-mail address: hara@math.auth.gr

Department of Mathematics, University of Ioannina, Ioannina 45110, GREECE

E-mail address: athoma@cc.uoi.gr