Facile Synthesis of a Polycatenane Compound Based on Ag-triazole Complexes and Phosphomolybdic Acid for the Catalytic Epoxidation of Olefins with Molecular Oxygen

Juan Du 1,2, Xinyu Liu 1,2, Jiaxin Zhang 1,2, Yucun Liu 1,2, Enwei Zhu 1,2, Guangbo Che 1,2,* and Mingjun Jia 3,*

1 Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
2 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
3 College of Chemistry, Jilin University, Changchun 130021, China
* Correspondence: guangbc2000@yahoo.com.cn (G.C.); jiamj@jlu.edu.cn (M.J.);
Tel.: +86-434-3295100 (G.C.); +86-431-85155390 (M.J.)

Received: 30 May 2019; Accepted: 24 June 2019; Published: 26 June 2019

Abstract: A simple and efficient approach was developed for synthesizing a metal-organic polycatenated compound composed of Ag-triazole complexes and phosphomolybdic acid (PMA) clusters. The hybrid compound, namely \([\text{Ag}_2(\text{trz})_2][\text{Ag}_{24}(\text{trz})_{18}]\text{[PmO}_{12}\text{O}_{40}]_2\) (1) (trz = 1,2,4-triazole), showed high catalytic activity, selectivity and recyclability for the epoxidation of olefins with molecular oxygen as the oxidant and isobutyraldehyde as the co-reagent, and could even work well under ambient conditions. The special polycatenane framework, formed by interlocking \([\text{Ag}_{24}(\text{trz})_{18}]^{6+}\) nanocages, provides suitable space for filling the PMA clusters. The existence of multi-interactions, including \(\pi-\pi\) stacking, Ag-Ag interactions, and electrostatic interactions, should play a determinative role in fabricating the catalytically active and stable PMA-based polycatenane catalyst for aerobic epoxidation of olefins.

Keywords: metal-organic polycatenane; heterogeneous catalysis; aerobic epoxidation; olefin

1. Introduction

Recently, a new family of supramolecular assemblies based on metal-organic compounds and polyoxometalates (POMs) has attracted great interest due to their potential applications in material science, magnetism, electrochemistry, nanomaterials, and catalysis [1–6]. As commonly used ligands, N-donor bridging bis(triazole) compounds have shown great advantages in constructing the POM-based metal-organic compounds with special structure and physicochemical properties [7–12]. Compared with conventional bipyridine ligands, bis(triazole) ligands are more flexible and have more coordination sites, which allow them to better conform to the coordination environments of POMs and metal cations.

By utilizing triazole and its derivatives as bridging ligands, some novel POM-based metal-organic compounds have been obtained [13–17]. Among them, a very interesting example reported by Lu’s group showed that an infinite three-dimensional polycatenated framework of \([\text{Ag}_2(\text{trz})_2][\text{Ag}_{24}(\text{trz})_{18}]\text{[PmO}_{12}\text{O}_{40}]_2\) (trz = 1,2,4-triazole) could be synthesized by a hydrothermal reaction of trilacunary Keggin \(\text{Na}_9[\text{A-PW}_{9}\text{O}_{34}]\cdot7\text{H}_2\text{O}\), Ag(OzCCH3) and 1,2,4-triazole [17]. The framework of the compound is composed of catenated polyhedral cages, which are constructed by mechanical interlocking of all of the vertices of the cages. The penetration of polycatenanes creates
nаносизированные поры для размещения POM-ионов, что приводит к образованию интерпенетрированных супрамолекулярных архитектур. Отметим, что примеры POM-содержащих поликатенатных фреймворков сравнительно редки, и было бы желательно изучить их физико-химические свойства, включая каталитические свойства. Однако сложный синтез, использование редко используемого реагента Na$_9$[A-PW$_9$O$_{34}$$\cdot$7H$_2$O], а также низкий выход (менее 50% на основе W) являются серьезным ограничением для дальнейшего изучения структуры и функции этого гибридного материала.

Недавно Ша и соавторы сообщили о новом подходе к синтезу трех новых POM-содержащих Ag-trz комплексов с поликатенатной структурой, содержащих различные Кеггин ионы ([$\text{SiW}_{12}\text{O}_{40}]^{4-}$, [$\text{AsW}_{12}\text{O}_{40}]^{3-}$, [$\text{PMo}_{12}\text{O}_{40}]^{3-}$) [18]. В их работе, соответствующий поликатонный кислотный каучук мог быть непосредственно использован для синтеза гибридных комплексов при определенном количестве NH$_4$VO$_3$ добавлено в синтезируемую систему. Эти POM-содержащие поликатенаты продемонстрировали обещающую емкость разряда и стабильность электрохимических свойств в качестве анодного материала в Li-ионных батареях.

В этом исследовании мы представили очень простой и эффективный метод синтеза PMA-содержащего Ag-trz поликатенатного комплекса. Результатирующий комплекс был характеризован большим количеством методов анализа, и его каталитические свойства были исследованы при так называемом "Мукайым" окислении олефинов, в котором молекулярный кислород использовался как окислитель и изобутиралифир была ко-реагентом. Предыдущие литературные исследования показали, что несколько Ag- kompleksov являются умеренно активными гетерогенными катализаторами для этих привлекательных O$_2$-сопровождающих гидрокарбон/олефиновых окислительных процессов [19–24]. Наше настоящее исследование показывает, что гибридный поликатенатный комплекс гораздо более активен, чем соответствующий POM или Ag-trz комплексы. Более того, гибридный комплекс является стабильным и легко перерабативным при использовании в качестве гетерогенного катализатора для активации молекулярного кислорода при низкой реакционной способности.

2. Results and Discussions

2.1. Synthesis and Structure of the Catalysts

Однорецептивный синтез катализатора 1 был использован, который схож с литературными данными [17]. Некоторые модификации были внесены, чтобы улучшить успех и продукт. Например, несыщенный придонный кислотный азот катион Na$_9$[A-PW$_9$O$_{34}$$\cdot$7H$_2$O] был использован для синтеза катализатора 1 в литературе [17], который должен быть синтезирован заранее. Наше настоящее исследование подтвердило, что использование Na$_9$[A-PW$_9$O$_{34}$$\cdot$7H$_2$O] не был лучшим вариантом из-за трудоемкого синтеза и очень низким выходом. Упрощенный синтез стратегии и относительно высоким выходом катализатора 1 может быть достигнут через оптимизацию условий синтеза, как описано в экспериментальном разделе.

X-лучевое аналитическое обследование кристаллической структуры показало, что катализатор 1 имеет металлоорганический поликатенатный структуру, состоящую из трехмерного бесконечного металлоорганического поликатенатного фреймворка и [PMO$_{12}$O$_{40}$]$^{3-}$ поланонов (рисунок 1). Эта структура совпадает с предыдущим отчетом структуры в литературе [17]. Как показано на рисунке 2a, катионы Ag$^+$ и триазольные лиганды сформировали $\{\text{Ag}_{24}(\text{trz})_{18}\}$$^{16+}$ нанокаску через связи Ag-N. Одна нанокаска, у которой есть шесть связанных вершинных углов, вложена в другие шесть нанокасок, образуя 3D поликатенатный фреймворк (рисунок 2b). Двухслойный 3D поликатенатный фреймворк пронизывает друг друга, чтобы образовать конечную структуру (рисунок 2c). PMA аннонаны и Ag-trz фреймворк пронизывают через электрические взаимодействия между концевыми кислородными атомами в поланонах и Ag$^+$-атомами в 3D фреймворке. Кеггин [PW$_{12}$O$_{40}$]$^{3-}$ поланоны функционируют не только как коанноны, но также как шаблоны для формирования поликатенатного фреймворка.
The FT-IR spectrum of reference sample Ag-trz\textsubscript{3} is given in Figure 4. The peak at 1650 cm-1 belongs to the -C=N- stretching vibration, and the two peaks appeared at 1147 cm-1 and 1062 cm-1 are attributed to the N-N stretching vibration in triazole ligand [25–28]. These results suggest that the structure of the triazolyl ring is well preserved in the reference sample Ag-trz\textsubscript{3}. Compared with the infrared spectrum of 1,2,4-triazole ligand (also shown in Figure 1), three new peaks appear at 2542 cm-1 and 2673 cm-1 and 2755 cm-1 in the infrared spectrum of Ag-trz\textsubscript{3}, while the two peaks belonging to

Figure 3 shows the SEM micrograph of catalyst 1. It can be seen that the crystal of catalyst 1 has uniform positive octahedral structure. The macroscopic crystal structure is consistent with the microscopic positive octahedral cage structure.

The FT-IR spectrum of reference sample Ag-trz\textsubscript{3} is given in Figure 4. The peak at 1650 cm-1 belongs to the -C=N- stretching vibration, and the two peaks appeared at 1147 cm-1 and 1062 cm-1 are attributed to the N-N stretching vibration in triazole ligand [25–28]. These results suggest that the structure of the triazolyl ring is well preserved in the reference sample Ag-trz\textsubscript{3}. Compared with the infrared spectrum of 1,2,4-triazole ligand (also shown in Figure 1), three new peaks appear at 2542 cm-1 and 2673 cm-1 and 2755 cm-1 in the infrared spectrum of Ag-trz\textsubscript{3}, while the two peaks belonging to
the >N-H stretching vibration at 3130 cm\(^{-1}\) and 1547 cm\(^{-1}\) disappear [29,30]. These changes should be an indication that triazole molecules are bonded with silver cations.

![Figure 4. FT-IR spectra of fresh reference sample Ag-trz3, fresh 1,2,4-triazole and fresh catalyst 1.](image)

2.2. Catalytic Properties

The catalytic performance of catalyst 1 and the reference samples of Ag-trz3, CH\(_3\)COOAg and PMA were investigated for the epoxidation of cis-cyclooctene and 1-octene with air as the oxidant and IBA as co-reagent. As shown in Table 1, all catalysts are active for the epoxidation of olefins with nearly 100% selectivity to the corresponding epoxides. Among these, catalyst 1 shows the highest activity. The result of cis-cyclooctene epoxidation by catalyst 1 exhibits that about 40% conversion is achieved after 1 h and the reaction is over after 3 h at the temperature of 40 \(^\circ\)C. In comparison, the conversions of cis-cyclooctene by the reference samples of Ag-trz3, CH\(_3\)COOAg and PMA are much lower (23%, 51% and 5% conversions of cyclooctene after 3 h, respectively). Notably, the pure PMA has very low catalytic activity under the tested conditions, while the Ag salts (CH\(_3\)COOAg) and the related Ag-trz3 complex show moderate activity for the epoxidation of cyclooctene. These results suggest that silver species rather than PMA clusters are the main catalytically active sites for this reaction. Under the same reaction conditions, the reaction hardly proceed without a catalyst.

Table 1. Catalytic epoxidation of cyclooctene and 1-octene with O\(_2\)/IBA over various catalysts.\(^\text{a}\)

Catalyst	Substrate	Product	Time (h)	Conversion (%)	Related work
1	Ag-trz3		3	96	this work
	CH\(_3\)COOAg		3	23	this work
	PMA		3	5	this work
	POM@MOF\(^\text{c}\)		2.5	94	this work
	POM@MOF\(^\text{c}\)		4	95\(^\text{d}\)	Ref-31

\(^\text{a}\) Reaction conditions: catalyst 10 mg (0.001 mmol), substrate 1.0 mmol, CH\(_3\)CN 10 ml, flow of air 10 ml/min, IBA 2.0 mmol, reaction temperature 40 \(^\circ\)C. All selectivities for the epoxide are \(\geq\)99%. \(^\text{b}\) CH\(_3\)CN 5 ml. \(^\text{c}\) [Ni(4,4'-bpy)\(_2\)]\(_2\)-[VIV\(_7\)V\(_9\)O\(_{38}\)Cl]·(4,4'-bpy)·6H\(_2\)O. \(^\text{d}\) Reaction conditions: substrate 2.9 mmol, catalyst 0.02 mmol, IBA 5 mmol, CH\(_3\)CN 5 ml, air as oxidant at 35 \(^\circ\)C.

Moreover, the reference samples Ag-trz3, CH\(_3\)COOAg and PMA were obviously dissolved in the reaction mixture, revealing the homogeneous nature of these catalysts. By comparing with the related heterogeneous catalysts reported in literature work [31], we used less catalyst and isobutyr aldehyde in the reaction, and also used a higher solvent dose. We therefore found that catalyst 1 has a much
higher activity than the nickel-complex modified polyoxometalate catalyst in literature [31] for the epoxidation of cyclooctene with O2/IBA (Table 1).

In addition, the relatively inert terminal olefin of 1-octene can be also converted rapidly to the corresponding epoxide (90% conversion, nearly 100% epoxide selectivity after 4 h reaction) when 1 was used as catalyst. The activity of catalyst 1 is much higher than the other three reference samples.

These results proved that catalyst 1 not only exhibits much higher activity than reference sample Ag-trz3, CH3COOAg and PMA, but also has efficient selectivity in the epoxidation reaction systems of several olefins.

The effect of solvents on the catalytic activity of 1 was also investigated by the epoxidation reaction of cyclooctene with air/IBA (Table 2). It can be seen that CHCl3- and EtOH- and CH3CN-mediated reactions give the increasing conversions in turn at 60 °C. These results suggest that the catalytic performance of catalyst 1 was solvent dependent [32]. According to the characteristics of the solvent, it can be inferred that the conversions is related to the polarity of the solvent. The bigger the polarity is, the more favorable the reaction is.

Entry	Solvent	Temperature (°C)	Conversion (%)
1	EtOH	60	64
2	CHCl3	60	62
3	CH3CN	25	81
4	CH3CN	35	89
5	CH3CN	40	96
6	CH3CN	60	98

Reaction conditions: catalyst 10 mg (0.001 mmol), cyclooctene 1.0 mmol, solvent 10 ml, flow of air 10 ml/min, IBA 2.0 mmol, time = 3 h. All selectivities for the epoxide are ≥ 99%.

Using CH3CN as solvent, the temperature effect on the catalytic performance was also studied (Table 2, entries 3–6). “Green” in consideration of reaction conditions, the optimum temperature of the reaction is 40 °C.

In addition, the catalytic properties of catalyst 1 were also investigated for the epoxidation of other olefins. As shown in Table 3, relatively high activity and exopoxide selectivity could be achieved for the epoxidation cyclohexene and styrene at mild reaction conditions. In particularly, this catalyst could also efficiently convert the bulky molecular of cyclododecene to the corresponding epoxide, with 82% conversion and 99% selectivity of epoxide at 61 °C after 6 h reaction. These results illustrate that catalyst 1 is highly efficient for the O2/IBA-mediated epoxidation of a large scope of olefins.

Entry	Substrate	Temperature (°C)	Time (h)	Conversion (%)	Selectivity (%)	
				Epoxidation	Others	
1	cyclooctene	35	3	96	84	16
2	cyclohexene	61	8	74	75	25
3	styrene	61	6	82	>99	–

Reaction conditions: catalyst 10 mg (0.001 mmol), substrate 1.0 mmol, CH3CN 10 ml, flow of air 10 ml/min, IBA 2.0 mmol.

To verify the heterogeneity of the catalytic process, a leaching test was performed for the epoxidation of cis-cyclooctene and 1-octene over the catalyst 1. As shown in Figure 5, catalyst 1 shows...
very high stability against leaching of the active species. Besides, catalyst 1 can be easily recovered from the reaction system by filtration. The recovered solid could be reused directly as catalyst for the next run after washing with water. Catalyst 1 can be reused for at least ten cycles without significant change of conversions, proving that this system has persistent activity during the recycling experiments (Figure 6). These results suggested that the metal-organic polycatenation is truly heterogeneous catalyst under the reaction conditions employed. The high structural stability of catalyst 1 might be mainly attributed to the formation of the hybrid framework based on the Ag-triazole framework and the PMA clusters, and the relatively strong interaction between them.

![Figure 5](image1.jpg)

Figure 5. Kinetic profiles of the epoxidation of cyclooctene and 1-octene over the catalyst 1. (x) Leaching experiments of the catalyst indicating conversion of cyclooctene and 1-octene with the catalyst removed after 4h at reaction temperature. Reaction conditions: catalyst 10 mg, substrate 1.0 mmol, CH$_3$CN 10 mL, flow of air 10 mL/min, IBA 2.0 mmol, reaction temperature 40 $^\circ$C. All selectivities for the epoxide are \geq 99%.

![Figure 6](image2.jpg)

Figure 6. Recycling experiments of catalyst 1 for epoxidation of cis-cyclooctene with air/IBA. Reaction conditions: catalyst 10 mg, cis-cyclooctene 1.0 mmol, CH$_3$CN 10 mL, flow of air 10 mL/min, IBA 2.0 mmol, reaction temperature 40 $^\circ$C, reaction time 3 h. All selectivities for the epoxide are \geq 99%.

For oxidation/epoxidation reaction, utilization efficiency of sacrificial reductant and material balance is shown in Table S1. In addition, the typical GC charts are shown in supplementary materials.

FT-IR and XRD measurements were carried out to investigate the structural stability of catalyst 1. The FT-IR spectra show that there is no obvious difference between the used catalysts (after the reaction of cyclooctene and 1-octene epoxidations) and the fresh one (Figure 7). The XRD patterns indicate that the characteristic diffraction peaks for the used catalysts are consistent with the fresh catalyst 1 (Figure 8). These results suggested that the structure of catalyst 1 is kept well during the reaction process.
The XPS measurements were carried out for various samples. Figure 9 shows the Ag 3d spectra of catalyst 1, Ag-trz3 and CH3COOAg. There are two major peaks of Ag 3d, assigned to Ag 3d5/2 at 368.55 eV and Ag 3d3/2 at 374.6 eV photoelectrons, respectively, indicating that Ag species existed in the form of Ag⁺ [29,33–38]. The Ag BE values for catalyst 1 shift positively compared with other samples, which can be assigned to the charge interaction between PMA ions and silver cations.

The XPS spectra of N 1s is shown in Figure 10. For trz and Ag-trz3, the appearance of binding energies at 399.7 eV is attributed to the N 1s of =N- or -NH- on triazole ring [39–41]. Compared with triazole, the binding energies of N 1s in the catalyst 1 shift positively (from 399.7 eV to 399.85 eV), thus helping to improve the catalytic activity [31,42,44]. Meanwhile, the formation of the Mo6+ oxidation state [42–44]. After introducing the PMA into the infinite three-dimensional polycatenated framework, the Mo3d peaks shift slightly toward lower binding energies (Mo3d5/2 at 233.3 eV and Mo3d3/2 at 236.5 eV), further reflecting the presence of interaction between PMA units and the polycatenated framework.

Figure 7. FT-IR spectra of fresh catalyst 1 (a) and used one in cyclooctene epoxidation (b) and used one in 1-octene epoxidation (c).

Figure 8. XRD patterns of fresh catalyst 1 (a), used one in cyclooctene epoxidation (b), used one in 1-octene epoxidation (c) and the simulated pattern.

Figure 9. X-ray photoelectron Ag 3d spectra of catalyst 1, Ag-trz3 and CH3COOAg.
suggesting that relatively strong coordinative interaction is present between Ag\(^+\) and triazole ligands in this catalyst.

![X-ray photoelectron Ag 3d spectra of catalyst 1, Ag-trz3 and CH3COOAg.](image)

Figure 9. X-Ray photoelectron Ag 3d spectra of catalyst 1, Ag-trz3 and CH3COOAg.

Figure 10. X-ray photoelectron N1 spectra of catalyst 1, Ag-trz3 and trz.

Figure 11 shows the Mo 3d spectra of PMA and catalyst 1. For PMA, the Mo 3d spectrum is deconvoluted into one doublet Mo3d5/2 at 233.3 eV and Mo3d3/2 at 236.5 eV, which is attributed to the Mo6+ oxidation state [42–44]. After introducing the PMA into the infinite three-dimensional polycatenated framework, the Mo3d peaks shift slightly toward lower binding energies (Mo3d5/2 at 232.75 eV and Mo3d3/2 at 235.85 eV), further reflecting the presence of interaction between PMA units and the polycatenated framework.

![X-ray photoelectron Mo3d spectra of PMA and catalyst 1.](image)

Figure 11. X-ray photoelectron Mo3d spectra of PMA and catalyst 1.

In general, the polycatenane compounds have a relatively large open framework, which is suitable for the diffusion of the reactants to increase the substrate contact with the catalyst active sites, thus helping to improve the catalytic activity [31,42,44]. Meanwhile, the formation of multidimensional supramolecular structure through multiple weak interactions, such as charge interaction and hydrogen bonds, should be very critical in fabricating highly efficient and stable POM-based catalysts [12,42,45]. In our case, the relatively high stability of the catalysts 1 should be mainly due to the following reasons. First, the infinite three-dimensional polycatenated framework consisting of Ag\(^+\) and 1,2,4-triazole ligand could effectively inhibit the aggregation of PMA clusters by space limitation. Second, the abundant electron-rich terminal oxygen atoms of PMA anions and the Ag\(^+\) cations located in the whole 3-D framework can result in the formation of multi-interactions. In another word, the Ag\(^+\) atoms existed in the 3-D framework can produce electrostatic interaction with the PMA anion from different directions, thus being beneficial to the formation of a highly stable PMA-based catalyst.
For the aerobic oxidation of olefin in the presence of IBA, it is believed that the epoxidation reaction may follow acylperoxy radicals (formed in autoxidation) or alkylperoxy radicals (formed in cooxidation process). In general, cooxidation affords yields of epoxides that are much higher than those obtained from the autoxidation of the olefin alone, since acylperoxy radicals are more selective than alkylperoxy radicals in favoring addition relative to abstraction [46–51]. Therefore, it seems reasonable to propose that the epoxidation of olefins over catalyst 1 should be mainly follow a cooxidation mechanism of aldehydes and olefins. This is shown in Scheme 1. The first step of the reaction should involve the adsorption/activation process of IBA on catalyst 1, to generate carbon-center free radicals of RCO•. Subsequently, it reacts with the surface adsorbed O2 to produce acylperoxy radicals (RCO3•). After that, RCO3• could either react directly with olefin to get epoxides and RCOOH, or interact with IBA to form RCO• and RCO3H, which is another active intermediate for the epoxidation of olefin.

Scheme 1. Proposed mechanism for epoxidation of olefins on catalyst 1.

3. Materials and Methods

3.1. Synthesis of the Catalysts

3.1.1. Synthesis of \([\text{Ag}_2(\text{trz})_2] \cdot [\text{Ag}_{24}(\text{trz})_{18}] \cdot [\text{PMo}_{12}\text{O}_{40}]_2 \) (1)

\[
\text{CH}_3\text{COOAg} (0.1001 \text{ g, 1mmol}), \text{H}_3\text{PMo}_{12}\text{O}_{40} (0.3651\text{g, 0.2 mmol}), 1,2,4-\text{triazole (0.1392 g, 2.0 mmol)} \]

and water (15 mL) were added in succession. After stirring the mixture (pH = 4) for 1 h at room temperature, it was sealed in a 25 mL Teflon-lined autoclave and heated at 160 °C for 96 h, followed by cooling to room temperature with a rate of 10 °C·h⁻¹. Light green block type crystals, being suitable for X-ray analysis, were collected. The entire yield is 81% based on Mo. The CCDC number of catalyst 1 is 873140.

3.1.2. Reference Sample Ag-trz3

For comparison, the silver complex derived from CH3COOAg and 1,2,4-triazole ligand was synthesized under the similar hydrothermal condition, just without the addition of PMA. Some white powder microcrystals were obtained with a 55% yield based on Ag. The resultant complex is denoted as Ag-trz3, in which the mole ratio of Ag/trz is determined by elemental analysis.

3.2. Materials and Methods

\[
\text{CH}_3\text{COOAg (≥99%), H}_3\text{PMo}_{12}\text{O}_{40 (≥99%)}, 1, 2, 4-\text{triazole (trz, ≥99%), cis-cyclooctene (95%), 1-octene (95%), chloroform (≥99%), acetonitrile (≥99%, AR), ethanol (≥99.7%, AR) and isobutyraldehyde (IBA) were obtained commercially (aladdin-e Inc., Shanghai, China) and used without additional purification.}
\]
FT-IR spectra were recorded on a Nicolet AVATAR 370 DTGS spectrometer (Thermo Electron (Shanghai) Instruments Co., Shanghai, China) in the range 400–4000 cm\(^{-1}\). FT-IR (KBr, 4000–400 cm\(^{-1}\)) of catalyst 1: 3116(s), 1778(m), 1635(m), 1517(s), 1425(s), 1307(s), 1140(s), 1053(s), 934(m), 831(w), 626(w), 435(w).

Elemental analyses of (C, H and N) were carried out with a Vario EL III elemental analyzer. Elemental analyses of Ag and Mo were carried out with a 2100DV ICP-AES spectrometer. Elemental analysis (\%) calcld for C\(_{40}\)H\(_{40}\)N\(_{60}\)O\(_{80}\)Ag\(_{26}\)P\(_{2}\)Mo\(_{24}\) (catalyst 1 formula weight = 7809.08): Ag 35.91, Mo 29.49, C 6.15, H 0.51, N 10.76; found: Ag 35.89, Mo 29.54, C 6.22, H 0.44, N 10.73. There are no water molecules exist.

Powder X-ray diffraction (XRD) measurements were performed on a Shimadzu XRD-6000 diffractometer (40 kV, 30 mA) (Shimadzu (Shanghai) Global Laboratory Consumables Co., Ltd., Shanghai, China) using Ni-filtered Cu-K\(\alpha\) radiation in the angular range 2\(\theta\) = 5°–50° at 293 K. SEM measurements were performed on JSM-6510 Series Scanning Electron Microscope.

Intensity data were measured on a Siemens SMART CCD (SLC Changchun Branch, Changchun, China) with graphite-monochromatized Mo-K\(\alpha\) radiation (\(\lambda\) = 0.71073 Å) at 293 K and corrected for adsorption by the SADABS program [52]. The structure of the crystal was solved by direct method and refined by full-matrix least-squares method with the SHELXL-97 program package [53]. The hydrogen atoms attached to carbon positions were placed in geometrically calculated positions.

3.3. Catalyst Test

The catalytic oxidation reaction was carried out in a 50 mL three-necked bottle equipped with a stirring bar, reflux condenser, and gas supply. Solvent, olefin, IBA and catalyst were added into the flask respectively, and the whole device was placed in a temperature-controlled oil bath. All catalysts were ground into powder in a mortar, which is then put into the reaction system. To commence the reaction, oxygen was passed through the reactor at a flow rate of 10 ml/min\(^{-1}\) under atmosphere. The oxidation products of the reaction were analyzed and quantified by Shimadzu GC-8A gas chromatograph (Shimadzu (Shanghai) Global Laboratory Consumables Co., Ltd., Shanghai, China) with an HP-5 capillary column.

4. Conclusions

A metal-organic polycatenated compound based on PMA and Ag-triazole complexes was synthesized in a very simple and efficient way. This compound showed excellent catalytic activity and selectivity for the aerobic Mukaiyama epoxidation of olefins as a catalyst. Combined with the characteristics of the structure, we can see that the supramolecular structure is a very open framework, which is suitable for the diffusion of the reactants to increase the substrate contact with the catalyst active sites, thus helping to improve the catalytic activity. This catalyst is heterogeneous in nature and can be easily recycled without a decrease in activity. This shows that catalyst 1 has very excellent stability. This result also indicates that weak interactions such as non-covalent mechanical interactions and weak interactions should be critical for the stability of the catalyst.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/7/568/s1, Figure S1 The GC spectrogram of 1-octene. Figure S2 The GC spectrogram of cyclooctene. Figure S3 The crystal cell structure of catalyst 1. Figure S4 The 2D frameworks form a three-dimensional polycatenated framework through interlocking of vertex angles. Table S1. Catalytic epoxidation of cyclooctene and 1-octene with O\(_2\)/IBA over catalyst 1. Table S2 Crystal data and structure refinement of catalyst 1.

Author Contributions: Conceptualization, J.D.; Data curation, X.L.; Formal analysis, G.C. and M.J.; Funding acquisition, Y.L. and M.J.; Investigation, X.L. and J.Z.; Methodology, J.D. and E.Z.; Project administration, J.D.; Resources, Y.L.; Supervision, G.C.; Writing—original draft, J.D.; Writing—review & editing, M.J.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21173100, 21703078).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Roy, S.; Vemuri, V.; Maiti, S.; Manoj, K.S.; Subbarao, U.; Peter, S.C. Two Keggin-Based Isostructural POMOF Hybrids: Synthesis, Crystal Structure, and Catalytic Properties. Inorg. Chem. 2018, 57, 12078–12092. [CrossRef] [PubMed]

2. Li, X.; Zhou, K.F.; Tong, Z.B.; Yang, J.B.; Sheng, N.; Li, J.S.; Sha, J.Q. Keggin polyoxometalates based hybrid compounds containing helix/nanocages for colorimetric biosensing. J. Solid State Chem. 2018, 265, 372–380. [CrossRef]

3. Jiang, W.; Chen, L.; Cheng, W.W.; Dong, Y.Y.; Gong, J.J.; Shen, H.C.; Xu, Y. Three hybrid tungstosilicates: Confinement of SiW$_{12}$O$_{40}^{4-}$ anions in rigid concave surfaces with excellent nonlinear optical performance and interesting magnetic properties. Polyhedron 2018, 151, 185–191. [CrossRef]

4. Tian, P.; He, X.; Li, W.X.; Zhao, L.; Fang, W.; Chen, H.; Zhang, F.Q.; Zhang, W.Q.; Wang, W. Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J. Mater. Sci. 2018, 53, 12016–12029. [CrossRef]

5. Kaczmarek, A.M. Eu$^{3+}$/Tb$^{3+}$ and Dy$^{3+}$ POM@MOFs and 2D coordination polymers based on pyridine-2,6-dicarboxylic acid for ratiometric optical temperature sensing. J. Mater. Chem. C 2018, 6, 5916–5925. [CrossRef]

6. Sha, J.Q.; Li, X.; Li, J.S.; Yang, X.Y.; Zhang, H.F.; Yue, M.B.; Zhou, K.F. Acidity Considerations in the Self-Assembly of POM/Ag/trz-Based Compounds with Efficient Electrochemical Activities in LIBs. Cryst. Growth Des. 2018, 18, 2289–2296. [CrossRef]

7. Wang, X.L.; Zhao, D.; Tian, A.X.; Ying, J. Three 3D silver-bis(triazole) metal–organic frameworks stabilized by high-connected Wells–Dawson polyoxometalates. Dalton Trans. 2014, 43, 5211–5220. [CrossRef]

8. Ying, J.; Chen, Y.G.; Wang, X.Y. A series of 0D to 3D Anderson-type polyoxometalate-based compounds obtained under ambient and hydrothermal conditions. CrystEngComm 2019, 21, 1168–1179. [CrossRef]

9. Somayeh, T.; Masoud, M.; Hossein, E.H.; Antonio, F. Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coord. Chem. Rev. 2016, 309, 84–106. [CrossRef]

10. Hao, X.L.; Jia, S.F.; Ma, Y.Y.; Wang, H.Y.; Li, Y.G. Two new Keggin-type polyoxometalate-based entangled coordination networks constructed from metal-organic chains with dangling arms. Inorg. Chem. Commun. 2016, 72, 132–137. [CrossRef]

11. Bai, X.; Lin, H.Y.; Sun, J.J.; Liu, G.C.; Wang, X.; Wang, X.L. Two Anderson-type polyoxometalate-induced various Co-complexes based on a rigid pyrazine-bis(triazole) ligand. Inorg. Chem. Commun. 2018, 92, 151–156. [CrossRef]

12. Song, X.J.; Yan, Y.; Wang, Y.N.; Hu, D.W.; Xiao, L.N.; Yu, J.H.; Zhang, W.X.; Jia, M.J. Hybrid compounds assembled from copper-triazole complexes and phosphomolybdic acid as advanced catalysts for the oxidation of olefins with oxygen. Dalton Trans. 2017, 46, 16655–16662. [CrossRef] [PubMed]

13. Liu, B.; Yang, J.; Yang, G.C.; Ma, J.F. Four New Three-Dimensional Polyoxometalate-Based Metal–Organic Frameworks Constructed From $\text{[Mo}_6\text{O}_{18}(\text{O}_2\text{AsPh})_2]^{3+}$ Polyoxoanions and Copper(I)-Organic Fragments: Syntheses, Structures, Electrochemistry, and Photocatalysis Properties. Inorg. Chem. 2013, 52, 84–94. [CrossRef] [PubMed]

14. Shi, Z.Y.; Gu, X.J.; Peng, J.; Yu, X.; Wang, E.B. From Molecular Double-Ladders to an Unprecedented Polycatenation: A Parallel Catenated 3D Network Containing Bicapped Keggin Polyoxometalate Clusters. Eur. J. Inorg. Chem. 2006, 2, 385–388. [CrossRef]

15. Wang, X.L.; Lin, H.Y.; Bi, Y.F.; Chen, B.K.; Liu, G.C. An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW$_{12}$O$_{40}^{4-}$ anion. J. Solid State Chem. 2008, 181, 556–561. [CrossRef]

16. Du, X.D.; Li, C.H.; Zhang, Y.; Liu, S.; Ma, Y.; You, X.Z. Coordination polymers based on the octamolybdate and flexible bis(triazole) ligands with different spacer lengths. CrystEngComm 2011, 13, 2350–2357. [CrossRef]

17. Kuang, X.F.; Wu, X.Y.; Yu, R.M.; Donahue, J.P.; Huang, J.S.; Lu, C.Z. Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages. Nat. Chem. 2010, 2, 461–465. [CrossRef]

18. Sha, J.Q.; Li, M.T.; Yang, X.Y.; Sheng, N.; Li, J.S.; Zhu, M.L.; Liu, G.D.; Jiang, J.Z. New Route toward POM[6]Catenane Members for Lithium-Ion Batteries. Cryst. Growth Des. 2017, 17, 3775–3782. [CrossRef]
19. Sahoo, D.P.; Patnaik, S.; Rath, D.; Parida, K.M. Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions. *Inorg. Chem. Front.* 2018, 5, 879–896. [CrossRef]

20. Cao, L.J.; Tao, P.P.; Li, M.C.; Lyu, F.C.; Wang, Z.Y.; Wu, S.S.; Wang, W.X.; Huo, Y.F.; Huang, L.; Lu, Z.G. Synergistic Effects of C/α-MoC and Ag for Efficient Oxygen Reduction Reaction. *J. Phys. Chem. Lett.* 2018, 9, 779–784. [CrossRef]

21. Laura, M.; Jiménez, D.; Luiz, A.P. Molecular oxygen adsorption and dissociation on Au12M clusters with M= Cu, Ag or Er. *Eur. Phys. J. D.* 2018, 72, 51–60.

22. Luo, W.W.; Liu, G.; Wang, X.; Lei, X.L.; Ouyang, C.Y.; Liu, S.Q. The adsorption and dissociation of oxygen on Ag (111) supported ξ3 borophene. *Phys. B Condens. Matter* 2018, 537, 1–6. [CrossRef]

23. Wu, Y.S.; Yuan, S.S.; Feng, R.; Ma, Z.C.; Gao, Y.Z.; Xing, S.T. Comparative study for low-temperature catalytic oxidation of o-xylene over doped OMS-2 catalysts: Role of Ag and Cu. *Mol. Catal.* 2017, 442, 164–172. [CrossRef]

24. Li, Y.F.; Liu, F.F.; Fan, Y.; Cheng, G.; Song, W.; Zhou, J.L. Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. *Appl. Surf. Sci.* 2018, 462, 207–212. [CrossRef]

25. Gümüş, M.K.; Kansız, S.; Aydemir, E.; Gorobets, N.Y.; Dege, N. Structural features of 7-methoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4] triazole[1,5-c][1,3,5]benzoxadiazoic: Experimental and theoretical (HF and DFT) studies, surface properties (MEP, Hirshfeld). *J. Mol. Struct.* 2018, 1168, 280–290. [CrossRef]

26. Jin, R.Y.; Zeng, C.Y.; Liang, X.H.; Sun, X.H.; Liu, Y.F.; Wang, Y.Y.; Zhou, S. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. *Bioorganic Chem.* 2018, 80, 253–260. [CrossRef]

27. Calu, L.; Badea, M.; Korosín, N.Č.; Chifiriuc, M.C.; Bleotu, C.; Stanică, N.; Silvestro, L.; Maurer, M.; Olar, R. Spectral, thermal and biological characterization of complexes with a Schiff base bearing triazole moiety as potential antimicrobial species. *J. Therm. Anal. Calorim.* 2018, 134, 1839–1850. [CrossRef]

28. Aouad, M.R.; Messali, M.; Rezki, N.; Zaqri, N.A.; Warad, I. Single proton intramigration in novel 25. Dudley, H.W.; Lan, F. Gümüş, M.K.; Kansız, S.; Aydemir, E.; Gorobets, N.Y.; Dege, N. Structural features of 7-methoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4] triazole[1,5-c][1,3,5]benzoxadiazoic: Experimental and theoretical (HF and DFT) studies, surface properties (MEP, Hirshfeld). *J. Mol. Struct.* 2018, 1168, 280–290. [CrossRef]

29. Vinita; Tiwari, M.; Prakash, R. Colorimetric detection of picric acid using silver nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. *Appl. Surf. Sci.* 2018, 449, 174–180. [CrossRef]

30. Dudley, H.W.; Lan, F. *Spectroscopic Methods in Organic Chemistry*; McGraw-Hill: London, UK, 1966; Volume 222, price 38s.

31. Wang, S.; Liu, Y.W.; Zhang, Z.; Li, X.H.; Tian, H.R.; Yan, T.T.; Zhang, X.; Liu, S.; Sun, X.W.; Xu, L.; et al. One-Step Template-Free Fabrication of Ultrathin Mixed-Valence Polyoxovanadate-Incorporated Metal-Organic Framework Nanosheets for Highly Efficient Selective Oxidation Catalysis in Air. *ACS Appl. Mater. Interfaces* 2019. [CrossRef]

32. Wang, J.; Zou, Y.C.; Sun, Y.; Hemgesberg, M.; Schaffner, D.; Gao, H.C.; Song, X.J.; Zhang, W.X.; Jia, M.J.; Thiel, W.R. Electrostatic immobilization of phosphomolybdic acid on imidazolium-based mesoporous organosilicas for catalytic olefin epoxidation. *Chin. J. Catal.* 2014, 35, 532–539. [CrossRef]

33. Huang, Y.; Zhang, X.Y.; Zhu, G.X.; Gao, Y.J.; Cheng, Q.F.; Cheng, X.W. Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. *Sep. Purif. Technol.* 2019, 215, 490–499. [CrossRef]

34. Feng, Z.Z.; Yu, J.J.; Sun, D.P.; Wang, T.H. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance. *J. Colloid Interface Sci.* 2016, 480, 184–190. [CrossRef] [PubMed]

35. Nagaraju, P.; Hafeedh, D.; Mohammed, R.A.R.; Abdulrahim, A.A.Z.; Muhammad, A.D.; Arshid, M.A.; Sharif, F.Z.; Lachezar, A.P. Methanol Synthesis Using CO2 and H2 on Nano Silver-Ceria Zirconia Catalysts: Influence of Preparation Method. *J. Nanosci. Nanotechnol.* 2019, 19, 3197–3204. [CrossRef]

36. Gambardella, A.; Berni, M.; Graziani, G.; Kovtun, A.; Liscio, A.; Russo, A.; Visani, A.; Bianchi, M. Nanostructured Ag thin films deposited by pulsed electron ablation. *Appl. Surf. Sci.* 2019, 475, 917–925. [CrossRef]
37. Ji, X.B.; Chen, Y.X.; Paul, B.; Vadivel, S. Photocatalytic oxidation of aromatic alcohols over silver supported on cobalt oxide nanostructured catalyst. *J. Alloy. Compd.* 2019, 783, 583–592. [CrossRef]

38. Raghunath, D.; Venkata, S.S.; Hugues, K.P.; Madhumita, B.; Vinesh, M.; Arjun, M. Silver decorated magnetic nanocomposite (Fe₃O₄@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. *Appl. Catal. B Environ.* 2019, 244, 546–558.

39. Matjaž, F. EQCM and XPS analysis of 1, 2, 4-triazole and 3-amino-1, 2, 4-triazole as copper corrosion inhibitors in chloride solution. *Corros. Sci.* 2013, 77, 350–359.

40. Yang, L.Y.; Xin, L.L.; Gu, W.; Tian, J.L.; Liao, S.Y.; Du, P.Y.; Tong, Y.Z.; Zhang, Y.P.; Lv, R.; Wang, J.Y.; et al. A new carboxyl-copper-organic framework and its excellent selective absorbability for proteins. *J. Solid State Chem.* 2014, 218, 64–70. [CrossRef]

41. Bentiss, F.; Traisnel, M.; Gengembre, L.; Lagrenée, M. A new triazole derivative as inhibitor of the acid corrosion of mild steel: Electrochemical studies, weight loss determination, SEM and XPS. *Appl. Surf. Sci.* 1999, 152, 237–249. [CrossRef]

42. Gao, W.X.; Sun, X.Y.; Niu, H.L.; Song, X.J.; Li, K.G.; Gao, H.C.; Zhang, W.X.; Yu, J.H.; Jia, M.J. Phosphomolybdic acid functionalized covalent organic frameworks: Structure characterization and catalytic properties in olefin epoxidation. *Microporous Mesoporous Mater.* 2015, 213, 59–67. [CrossRef]

43. Zhang, H.Y.; Miao, A.J.; Jiang, M. Fabrication, characterization and electrochemistry of organice inorganic multilayer films containing polyoxometalate and polyviologen via layer-by-layer self-assembly. *Mater. Chem. Phys.* 2013, 141, 482–487. [CrossRef]

44. Song, X.J.; Hu, D.W.; Yang, X.T.; Zhang, H.; Zhang, W.X.; Li, J.Y.; Jia, M.J.; Yu, J.H. Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. *ACS Sustain. Chem. Eng.* 2019, 7, 3624–3631. [CrossRef]

45. Du, J.; Yu, J.H.; Tang, J.Y.; Wang, J.; Zhang, W.X.; Thiél, W.R.; Jia, M.J. Supramolecular Assemblies Directed by Hydrogen Bonds and π–π Interactions and Based on N-Heterocyclic-Ligand-Modified β-Octamolybdate-Structure and Catalytic Application in Olefin Epoxidation. *Eur. J. Inorg. Chem.* 2011, 15, 2361–2365. [CrossRef]

46. Charles, F.H.; Hendrik, C.A.; Van, B.; Pieter, M.H. Reactions of Some Peracids and Hydroperoxides with Cobalt(II) and Cobalt(III) Acetate in Acetic Acid Solution. *Ind. Eng. Chem. Prod. Res. Dev.* 1979, 18, 38–43.

47. Wang, Q.B.; Cheng, Y.W.; Wang, L.J.; Li, X. Semicontinuous Studies on the Reaction Mechanism and Kinetics for the Liquid-Phase Oxidation of p-Xylene to Terephthalic Acid. *Ind. Eng. Chem. Res.* 2007, 46, 8980–8992. [CrossRef]

48. Denisov, E.T. Redox Reactions of Atoms and Radicals with Ions in Solution. *Russ. Chem. Rev.* 1971, 40, 24–32. [CrossRef]

49. Kamiya, Y.; Ingold, K.U. The Metal-Catalyzed Autoxidation of Tetralin. *Can. J. Chem. J.* 1964, 42, 1027–1043. [CrossRef]

50. Navarro, M.; Escobar, A.; Landaeta, V.R.; Visbal, G.; Linares, F.L.; Luis, M.L.; Fuentes, A. Catalytic Oxidation of Tetralin by Biologically Active Copper and Palladium Complexes. *Appl. Catal. A Gen.* 2009, 363, 27–31. [CrossRef]

51. Chung, Y.M.; Ahn, W.S.; Lim, P.K. Organic-Water Interfacial Synthesis of α-Tetralone Using Nickel-Tetraethylpentamine Complex Catalysts. *J. Catal.* 1998, 173, 210–218. [CrossRef]

52. Sheldrick, G.M. SADABS; Siemens Analytical X-ray Instrument Division: Madison, WI, USA, 1995.

53. Sheldrick, G.M. SHELXL-97: A Program for Crystal Structure Determination; University of Gottingen: Gottingen, Germany, 1997.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).