WNT/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder

Alexandre Vallée1,2, Yves Lecarpentier3, Jean-Noël Vallée4,5

Abstract

The neuropsychiatric disease named obsessive-compulsive disorder is composed by obsessions and/or compulsions. Obsessive-compulsive disorder etiologies are undefined. However, numerous mechanisms in several localizations are implicated. Some studies showed that both glutamate, inflammatory factors and oxidative stress could have main functions in obsessive-compulsive disorder. Glycogen synthase kinase-3β, the major negative controller of the WNT/β-catenin pathway is upregulated in obsessive-compulsive disorder. In obsessive-compulsive disorder, some studies presented the actions of the different circadian clock genes. WNT/β-catenin pathway and circadian clock genes appear to be intricate. Thus, this review focuses on the interaction between circadian clock genes and the WNT/β-catenin pathway in obsessive-compulsive disorder.

Key Words: circadian rhythms; glutamatergic pathway; inflammation; obsessive-compulsive disorder; oxidative stress; WNT/β-catenin pathway

Introduction

The neuropsychiatric disease named obsessive-compulsive disorder (OCD) affects around one to 2% of people during their life (Pellegri et al., 2020). OCD is composed by distinctive compulsions or/and obsessions and involves significant disorders for people and their surroundings. OCD etiologies are undefined. However, numerous mechanisms in several localizations are implicated, as the brain’s limbic system, orbitofrontal cortex, basal ganglia, neurotransmitters and thalamus (Noh et al., 2017). Moreover, associations between biochemical and neuro-anatomical mechanisms remain unclear (Bloch et al., 2014). OCD patients show anxiety and obsessions due to an highly response to threatening the different stimulation processes (Apergis-Schoute et al., 2017; Rouhani et al., 2019) and deficits in extinction of fear (Dougherty et al., 2018). Currently, oxidative stress (OS) (Aliçi et al., 2016), inflammation (Attwells et al., 2017) and glutamatergic pathway (Grassi and Pallanti, 2018) can play major functions in OCD etiologies. Few investigations showed the interaction between circadian rhythms (CRs) and OCD (Paterson et al., 2013). Recently, WNT/β-catenin pathway is known to be dysregulated in OCD (Thompson and Dulawa, 2019) and the association between WNT/β-catenin pathway and CRs become to be better understanding. Thus, this review focuses on the interaction between circadian clock genes and the WNT/β-catenin pathway in OCD.

Search Strategy and Selection Criteria

Studies cited in this narrative review published from 1980 to 2020 were searched on the PubMed database using the following keywords: obsessive-compulsive disorder, oxidative stress, inflammation, WNT/β-catenin pathway, glutamate, circadian clock genes, circadian rhythms.

Pathophysiology of Obsessive-Compulsive Disorder

OCD patients show anxiety and obsessions due to the activation of microglial cell (Attwells et al., 2017). Inflammatory factors in the cortico-striatal-thalamo-cortical circuit leads for elevated rate of ROS. NADPH oxidase, releasing and accumulating the ROS. NADPH oxidase, implicated, as the brain’s limbic system, orbitofrontal cortex, basal ganglia, neurotransmitters and thalamus (Noh et al., 2017). Moreover, associations between biochemical and neuro-anatomical mechanisms remain unclear (Bloch et al., 2014). OCD patients show anxiety and obsessions due to an highly response to threatening the different stimulation processes (Apergis-Schoute et al., 2017; Rouhani et al., 2019) and deficits in extinction of fear (Dougherty et al., 2018). Currently, oxidative stress (OS) (Aliçi et al., 2016), inflammation (Attwells et al., 2017) and glutamatergic pathway (Grassi and Pallanti, 2018) can play major functions in OCD etiologies. Few investigations showed the interaction between circadian rhythms (CRs) and OCD (Paterson et al., 2013). Recently, WNT/β-catenin pathway is known to be dysregulated in OCD (Thompson and Dulawa, 2019) and the association between WNT/β-catenin pathway and CRs become to be better understanding. Thus, this review focuses on the interaction between circadian clock genes and the WNT/β-catenin pathway in OCD.

Free radicals lead to the diminution in efficacy of synapses (Cobley, 2018) through the affection of synaptic potentials (Pelmar, 1987). Free radicals can alter the membrane lipids through peroxidation of lipids, affecting the activity of monoamine oxidase and increased rates of antioxidant. Currently, SOD rates are elevated in patients with OCD face to non-OCD patients (Behl et al., 2010). Increased rate of production of ROS metabolites, affecting the activity of catalase, or augmentation of the generation of hydroxyl ions leading to the reduction of activation of catalase (Pigeolet et al., 1990). Several investigations have presented an association between OCD and OS through the enhancement of ROS and defense by antioxidants (Behl et al., 2010). Moreover, free-radicals affect cellular structure and MMP compounds by altering genetic structure, OS, dysregulation in mitochondria and impaired metabolism (Aliçi et al., 2016).

Inflammation

Some findings have highlighted the major function involved through inflammation in the etiology of psychiatric diseases (Khandaker et al., 2017). In OCD initiation, the association of immune system process and inflammatory factors has been shown recently (Grassi and Pallanti 2018). Some findings have shown that both inflammation and immune mechanism can lead to children OCD through increased CD16+ monocytes in comparison to non-OCD participants (Rodriguez et al., 2017). However, evidence of inflammatory factors and autoimmune system in process of OCD could be not restrained to children and acute OCD forms but may be also observed in adults (Meana-Valsecchi et al., 2018). Inflammatory role of factors in OCD was reinforced through the increased level of anti-basal ganglia antibodies compared to control subjects (Gnanavel et al., 2017). Significantly higher rates of cytokines and inflammation markers were shown in OCD patients, including TNFα and interleukins, compared to non-OCD patients (Rao et al., 2015). In OCD patients, by the use of PET imagery, observed inflammatory factors in the cortical-striatal-thalamo-cortical circuit leads for the activation of microglial cell (Attwells et al., 2017).

How to cite this article: Vallée A, Lecarpentier Y, Vallée JN (2022) WNT/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder. Neural Regen Res 17(10):2126-2130.

https://doi.org/10.4103/1673-5374.332133

Date of submission: April 16, 2021
Date of decision: June 7, 2021
Date of acceptance: July 21, 2021
Date of web publication: February 28, 2022

From the Contents

Pathophysiology of Obsessive-Compulsive Disorder 2126

The Canonical WNT/β-Catenin Pathway 2127

OCD Pathways and Circadian Rhythm 2127

Obsessive-Compulsive Disorder and WNT Pathway 2127

1Department of Clinical Research and Innovation (DCRI), Foch Hospital, Suresnes, France; 2Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux, France; 3Laboratoire de Mathématiques et Applications (LMA), Université de Poitiers, Poitiers, France; 4Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
5Correspondence to: Alexandre Vallée, MD, PhD, alexandre.g.valllee@gmail.com.
Micronidal deregulation
Micronidia are little cells of the macrophage stages from progenitors of hematopoiesis observed in brain. These cells can be observed in brain due to their macrophage markers expression (Wolf et al., 2017). Micronidia can be quiescent in physiological circumstances and can be stimulated under immune conditions. Micronidia can operate on neurogenesis control (Diaz-Aparicio et al., 2020), and neuronal and homeostasis regulation (Li and Barres, 2019). The expression with the probability stimulation of microrna implicates brain infiltration by macrophages (Li and Barres, 2018). In OCD, micronidia present a specific action on these mechanisms (Greer and Capecchi, 2002). Nevertheless, these processes remain unknown.

Glutamate
In OCD, the dysregulation of glutamate pathway could be the main target in pharmacological studies. In OCD, glutamate is the major neurotransmitter of the cortico-striatal-thalamo-cortical circuit (Battistuzze et al., 2021). Glutamate neurons are involved in the brain function compared to serotonin and dopamine, utilized by a fewer neuronal cells. Some OCD findings have presented a glutamatergic deregulation (Marinova et al., 2017; Grassi and Pallanti, 2018).

Glutamate pathway has a main function for plasticity of neurons, learning and memory (Javitt et al., 2011). SLC1A1 (solute carrier, family 1, member 1) gene can be considered as the major candidate gene for OCD patients (Huang et al., 2021). SLC1A1 participates in the neuronal excitatory EAAT3 (Na+-dependent amino acid transporter 3). In astrocytes, EAAT1 and EAAT2 are the major glutamate transporters while EAAT3 is major in neurons. In astrocytes, glutamate is transformed into glutamine to be released. Neurons upread glutamine to re-converted it into glutamate (Daikin and Yudkoff, 2000). EAAT 3 role is to modulate glutamate pathway controlling pre-synaptic NMDA receptors and metabotropic glutamate receptors activating NMDA receptors (Acevedo et al., 2019). The activity of EAAT3 is deregulated by the stimulation of glycogen synthase kinase (GSK)-3β activity (Abousaab and Lang, 2016).

Higher rates of glutamate in OCD patients were observed in cerebrospinal fluid (Chakrabarty et al., 2005; Ting and Feng, 2008). Furthermore, some findings focused on magnetic resonance spectroscopy showed strong glutamatergic pathway and associated brain components, such as central nodes of the cortico-striatal-thalamo-cortical circuit in OCD (Grassi and Pallanti, 2018). Moreover, genetic pathways have also shown an association between glutamatergic genes and OCD symptoms (Xu et al., 2019).

The Canonical WNT/β-Catenin Pathway
The WNT/β-catenin pathway is implicated in several signals and molecular signaling, including cell proliferation, embryogenesis, cell migration and cell polarity, apoptosis, and organogenesis (Loh et al., 2016). However, the WNT/β-catenin pathway can be deregulated during numerous pathological states, including psychiatric disorders, neurodegenerative diseases, metabolic diseases, tissue fibrotic and cancer processes (Oren and Smith, 2017).

The WNT/β-catenin pathway belongs to the family of secreted lipid-modified glycoproteins (Al-Harthi, 2012). WNT ligands are generated by neurons and immune ystem cells of the CNS (Wang et al., 2021).

GSK-3β is one of the major negative modulators of the WNT/β-catenin pathway (Vallée et al., 2021a, b, c). GSK-3β is a negative controller of the WNT/β-catenin pathway (Bose et al., 2016). GSK-3β is involved in numerous pathological pathways, including cell membrane signaling, cell polarity, and inflammatory process (Duda et al., 2020). GSK-3β interacts by downregulating cytoplasmic β-catenin and stabilizes it leading to its migration into the nucleus. Inflammatory process is an age-associated mechanism of desmin correlated with stimulation of GSK-3β and the diminution of WNT/β-catenin pathway (Orellana et al., 2015).

Mutant mice of OCD present higher rates of GSK-3β. GSK-3β activity may be a therapeutic perseverative behaviors (Thompson and Duvall, 2019). Alterations of GSK-3β activity is involved in the initiation of several disorders, as neuropsychiatric diseases (Giese, 2009).

Obsessive-Compulsive Disorder and WNT Pathway
In OCD, few findings have shown the implication of the WNT/β-catenin pathway. Brain-derived neurotrophic factor (BDNF) is a well-known factor associated with psychiatric disorders (Motamed et al., 2017). BDNF is mainly generated in the CNS and participates in neuron viability (Colucci-D’Amato et al., 2020). A study has presented that BDNF over-activation involves the growth of neurons in association with the WNT/β-catenin pathway through the diminution of GSK-3β (Yang et al., 2015). BDNF activation enhances the stimulation of the PI3/Akt signaling. Akt signaling is a major negative regulator of β-catenin activity in the neural development (Tayyab et al., 2016). Furthermore, findings show that the downregulation of BDNF may be correlated to OCD (Hall et al., 2003) or with a sub-phenotype (Timpano et al., 2011). Recent investigations have shown that different types of BDNF genes are correlated with OCD symptoms (Xu et al., 2019).

WNT/β-catenin pathway and oxidative stress
The production of ROS is correlated with the diminution of the WNT/β-catenin pathway through the separation of β-catenin to TCF/LEF to Forkhead box class O (FoxO) (Almeida et al., 2009). This mechanism implicates the cytosolic accumulation of β-catenin in association with FoxO, acting as a transcription factor, and then stimulating FoxO nuclear activity (Rao et al., 2021). FoxO activates the expression of apoptotic genes (Nasrollahzadeh et al., 2021). FoxO3a interrupts the cell-cycle by the diminution of the expression of cyclin D1 (Yang et al., 2021). The stimulation of FoxO induces of apoptosis (Nasrollahzadeh et al., 2021). Nevertheless, the stimulation of the WNT/β-catenin pathway can diminish FoxO3a in the cytoplasm to counteract mitochondrial membrane permeability loss, release of cytochrome C, Bad phosphorylation, and the stimulation of caspases activities (Shang et al., 2010).

Interplay between inflammation and the WNT/β-catenin pathway
The stimulation of WNT/β-catenin signaling decreases immune markers and enhances neuroprotective actions through several interplays between astrocytes and microglia-macrophages (Halskeog et al., 2011; Epsiccolo et al., 2020).

Numerous findings have observed an opposing interplay between the WNT/β-catenin and nuclear factor kappa B (NF-κB) pathways (Ma and Hottiger, 2016). The NF-κB transcription factor family comprises 5 compounds in the cytoplasm under non-stimulated circumstances: NF-κB 1 (p50/p105), NF-κB 2 (p52/p100), RelA (p65), RelB and c-Rel (Mitchell et al., 2016). B-catenin complexes with both the compounds RelA and p50 to diminish NF-κB signalermore, by NF-κB complex, by binding to the PI3K, B-catenin decreases the NF-κB signaling pathway (Jiang et al., 2019). Downregulating role of β-catenin focused on the NF-κB pathway was observed in several cells (Ma and Hottiger, 2016). Moreover, the activation of GSK-3β inhibits B-catenin to stimulate the NF-κB signaling (Liu et al., 2020). Upregulation of β-catenin expression is correlated with increased PI3K/Akt pathway leading to a decrease in inflammatory response (Jiang et al., 2021). NF-κB pathway stimulation inhibits the complex β-catenin/TGF/LEF by increasing LIT52 in cancer cells (Cho et al., 2008). The inhibitor DK1X is targeting by the NF-κB pathway to enhance an opposing interplay for inhibiting the β-catenin expression in cytoplasm (Fimiaux et al., 2008). GSK-3β control the modulation of β-catenin expression through a direct interaction with the NF-κB pathway (Beurel et al., 2010).

Interplay between WNT/β-catenin pathway and glutamate
The modulation of the expression of β-catenin is associated with the stimulation or the inhibition of both EAAT2 and GS in astrocytes by stimulated TCF/LEF complex formation (Lutgen et al., 2016). In prefrontal cortex, the decrease of expression of β-catenin induces decreased activity of both EAAT2 and GS. Patients who present OCD symptoms was correlated with decrease of the expression of both EAAT2 and GS (Lencapeti et al., 2020). Deregulation of the WNT/β-catenin signaling involves a glutamatergic deregulation leading to the stimulation of both OS and inflammation (Lencapeti et al., 2020).

Circadian rhythms in obsessive-compulsive disorder
CRs are autonomic 24-hour cycles form gene expression to behaviour which occur in the environmental inputs and dysregulation of the expressions of lifetime rhythms could be implicated in pathologies (Roenneberg and Merrow, 2016). Recent studies have observed that CRs can play a main active in neurocognitive disorders and Haller (2016). CRs could be linked to the circadian and cerebral axis are modulated by CRs. The dysregulation of CRs could be mainly associated with impairment of these lifetime processes (McClung, 2013). Nevertheless, in OCD few studies observed the function of CRs (Nota et al., 2015; Olatunji, 2016). Patients who present OCD symptoms can show dysregulation of sleep phase occurring some disorders (Schubert and Coles, 2013). Production of both cortisol and melatonin is damaged in OCD symptoms (Kluge et al., 2007; Tang and Feng, 2008). The decrease of both cortisol and melatonin is correlated with the decrease of expression of both EAAT2 and GS (Lencapeti et al., 2020). Deregulation of the WNT/β-catenin signaling involves a glutamatergic deregulation leading to the stimulation of both OS and inflammation (Lencapeti et al., 2020).

Circadian clock gene
Numerous mechanisms are modulated by the circadian “clock” (circadian locomotor output cycles kaput). The circadian clock is shown to be in the hypothalamic suprachiasmatic nucleus. CRs are endogenous and entrainable free-running steps which last around 24 hours. Several markers could modulate CRs. These gene markers are called brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (Bmal1), cryptochrome (Cry), 2127
Interplay between the cross-regulation of the different circadian clock genes. Bmal1: Brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1; Clock: circadian locomotor output cycles kaput; Cry: cryptochrome; Per: period.

Interplay between oxidative stress and circadian rhythms
The dysregulation of Per involves OS in concordance with circadian oscillations (Beaver et al., 2012). The inhibition of Per enhances OS injuries (Krishnan et al., 2009). In neurons, Per depletion causes oxidative injuries (Krishnan et al., 2008). High rates of cortex oxidative damage to Bmal1 decrease (Musiek, 2015). At cerebral level, Bmal1 modulates in a direct manner the expression of several redox defense genes (Musiek, 2015).

Interplay between inflammation and circadian rhythms
Cytokines and chemokines are produces in a CR manner (Segal et al., 2018). Cytokine expression can be observed at different blood levels along the day stages. The dimer Bmal1/Clock can modulate the observed levels. Stimulation of Clock gene is associated with stimulation of NF-κB signaling (Spengler et al., 2012). The decrease of Clock gene by Bmal1 is also associated with the diminution of the activity of NF-κB. Moreover, Cry diminishes the protein kinase A (PKA) to decrease the expression of inflammatory makers (Narasimamurthy et al., 2012).

Interplay between glutamate and CRs
Very little findings had focused on this possible association. However, light-modulation in CNS functions are controlled through the glutamate expression (Biello et al., 2018). The receptors N-methyl-D-asparate possess behavioral shifts controlled by light (Colwell et al., 1990). In astrocytes, glutamate pathway is a major modulator of the control of CR action in the CNS (Brancaccio et al., 2019). Glutamate controls the rhythmicity of the dimer Per/Cry (Brancaccio et al., 2017).

Interplay between WNT/β-catenin pathway and CRs
Rettinoic acid-related orphan nuclear receptors modulate the β-catenin expression (Chen, 2004). CRs genes could modulate the cell cycle phases through the modulation of the WNT/β-catenin pathway (Soták et al., 2014). Bmal1 decrease is correlated with the decrease of the WNT/β-catenin pathway (Guo et al., 2012). WNT-related genes rates are augmented controlled (Reppert and Weaver, 2002). The dimer Clock/Bmal1 stimulates the transcription of retinoic acid-related orphan nuclear receptors and Rev-Erbs. By a positive loop, retinoic acid-related orphan nuclear receptors activate the stimulation of Bmal1, while by a negative loop, Rev-Erbs decrease their proper activation (Ko and Takahashi, 2006).

Figure 1 | Interplay between the cross-regulation of the different circadian clock genes.

Figure 2 | Interactions between the different molecular pathways involved and circadian clock genes in obsessive-compulsive disorder.

Conclusion
Few findings have studied the interaction between CRs and OCD. In OCD, very few studies have still studying the WNT/β-catenin pathway. However, in OCD patients, the over-activity of the GSK-3β, one of the major negative controller of the WNT/β-catenin pathway, which is consistent with a decrease of the WNT/β-catenin pathway in this disorder. The dysregulation of this signaling coupled with a deregulation in CRs could be a novel mechanism to better understand the pathophysiology of OCD characterized by OS, inflammation and dysregulated glutamate. Further clinical and animal studies are needed to better understanding the links between circadian clock genes and their expression with OCD.

Author contributions: Manuscript writing: AV. All authors participated in re-writing, editing, and validation, contributed equally to this review, and approved the final manuscript.

Conflicts of interest: The authors declare no conflicts of interest.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

Aboussa A, Lang F (2016) Up-regulation of excitatory amino acid transporters EAAT3 and EAAT4 by lithium sensitive glycogen synthase kinase GSK3β. Cell Physiol Biochem 40:1252-1260.

Aharith L (2012) Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 7:725-730.

Alci D, Bulbul F, Virti O, Ural A, Altindag A, Alpak G, Alici H, Ermis B, Orkmez M, Taysi S, Savas H (2016) Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci 70:109-115.

Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL (2009) Increased lipid oxidation stress is oxidative increased, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 284:27438-27448.

Apergis Schoute AM, Gillan CM, Fineberg NA, Fernandez-Egea E, Sahakian BJ, Robbins TW (2017) Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc Natl Acad Sci U S A 114:3216-3221.

Attwell S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, Xu C, Richter MA, Kahn A, Kish SJ, Houle S, Ravindran L, Meyer JH (2017) Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry 74:833-840.

Battistuzo MC, Sottib B, Shavit RG, Lopes AC, Cappi C, de Mathis MA, Pastorelli B, Diniz JB, Silva RMF, Miguel EC, Hoester MO, Daiday MC (2021) Lower ventromedial prefrontal cortex glutamate levels in patients with obsessive-compulsive disorder. Front Psychiatry 12:668304.

Beaver LM, Kliachko V, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC, Radyuk SN, Griebelwicz JM (2012) Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS One 7:e50454.
Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD (2010) Relationship of possible stress-related biochemical markers to oxidative/anti-oxidative status in obsessive-compulsive disorder. Neuropsychobiology 61:210-214.

Beurel E, Michalek SM, Jope RS (2010) Indirect and innate immune responses regulated by glycogen synthase kinase 3α (GSK3α). Trends Immunol 31:24-31.

Biello SM, Bonsall DR, Atkinson LA, Molyneux PC, Harrington ME, Lall GS (2018) Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol Aging 66:75-84.

Bloch MH, Barchard CA, Zipperer L, Jakubovski E, Landers SE, Wiesenberg A, Pittenger C, Leckman JF (2010) Metabolomics: hallmarking associated with poor treatment outcome in obsessive-compulsive disorder. Mol Psychiatry 19:1025-1030.

Branancio M, Edwards MD, Patton AP, Smillie NJ, Chesham JE, Maywood ES, Hastings MH (2019) Cell autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:1588-1590.

Branancio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocyte control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:1420-1435.

Chakrabarty K, Bhattatharya S, Christopher R, Khanna S (2005) Glutamatergic dysfunction in OCD. Neuropsychopharmacology 30:1735-1740.

Chen Y, Lang G (2014) PPARs integrate the mammalian clock and energy metabolism. PPAR Res doi: 10.1155/2014/630317.

Chen T (2004) Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone 35:83-95.

Chen X, Xiang H, Yu S, Li Y, Wu T (2021) Research progress in the role and mechanism of Cadenin-11 in different diseases. J Cancer 12:1190-1139.

Cho HH, Song J, Yu M, Yu SS, Choi SI, Kim DW, Jung JS (2008) Differential effect of Erbalpha on beta-catenin/TCF pathway in various cancer cells. FEBS Lett 582:616-622.

Cobley JN (2018) Synapse pruning: mitochondrial ROS with their hands on the shears. Acta Mol Cell Res 1867:1187-1189.

Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological and therapeutic relevance for neuron survival and neuroprotection. Mol Neurodegener 15:33.

Diaz-Aparicio I, Paris I, Sierra-Torre V, Plaza-Zabala A, Rodriguez-Iglesias N, Marquez-Mercado I, Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in obsessive-compulsive disorder. Acta Neurobiol Exp 60:83-93.

Duda P, Akula SM, Abrams SL, Steelman LS, Gizak A, Rakus D, McCubrey JA (2020) GSK-3 regulates autophagy-related AMPK-dependent apoptosis in a linker with osteogenesis. Diabetesologia 53:536-540.

Hall D, Dhalla A, Charalambos A, Gogos JA, Karayiorgou M (2003) Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am J Hum Genet 73:370-376.

Halleskog C, Mulder J, Dahlström J, Mackee K, Hortobágyi T, Tanila H, Kumar Puli L, Färber K, Harkany T, Schulte G (2011) BDNF signaling in activated microglia is proinflammatory. Glia 59:119-131.

Hernandez-Quiles M, Broekema MF, Kalikov E (2021) PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol (Lausanne) 12:624412.

Huang X, Liu J, Cong J, Zhang X (2021) Association between the SLCA1A glutamate transporter gene and obsessive-compulsive disorder in the Chinese Han population. Neuropsychiatr Dis Treat 17:347-354.

Huber O, Kermel R, Langosch D (1999) Mutations affecting transcription segment interaction impair adhesion of C. elegans. J Cell Sci 112:4415-4423.

Janich P, Pascual G, Merlos-Saurez A, Battle E, Ripperger J, Albrecht U, Cheng HY, Obrietan KD, Di Croce L, Benita SA (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480:209-214.

Javitt DC, Schoepf D, Kalivas PW, Volpe ND, Zaraate C, Merchant K, Bear MF, Umbricht D, Hajas M, Potter WZ, Lee CM (2011) Translating glutamate: from pathophysiology to treatment. Sci Transl Med 3:102 rr2.

Jeon M, Rahman N, Kim YS (2016) Wnt/beta-catenin signaling plays a direct role in methyl gallate-mediated inhibition of adipogenesis. Biochem Biophys Res Commun 479:22-26.

Jiang K, Yang J, Song C, He F, Yang L, Li X (2021) Enforced expression of miR-92b blocks E. coli lipopolysaccharide-mediated inflammatory injury by activating the PI3K/AKT/beta-catenin pathway via targeting PTEN. Int J Biol Sci 17:1289-1301.

Kawashu T, Sekine K, Shikami M, Chihara K, Tomita K, Kubo K, Nakajima K, Nabeshima Y, Shiramine K (2010) Rab GTPase-dependent endocytosis, Rab5b antagonizes autophagy and morphological degradation of N-cadherin. Neuron 67:588-602.

Khadkale GM, Dantzer R, Jones PB (2017) Immunopsychiatry: important facts. Psychol Med 47:2229-2237.

Kluger M, Schussler K, Künzel HE, Dresler M, Yasouridis A, Steiger A (2007) Increased nocturnal secretion of APTC and cortisol in obsessive compulsive disorder. J Psychiatr Res 41:928-933.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.

Ko CH, Takahasi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet doi: 10.1093/hmg/ddl207.
Marinova Z, Chuang DM, Fineberg N (2017) Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr Neuropharmacol 15:977-995.

Mataix-Cols D, Frans E, Pérez-Vigil A, Kuja-Halkola R, Gromark C, Isomaa K, Fernández de la Cruz R, Serlachius E, Leckman JF, Crowley JJ, Rücker C, Almquist C, Lichtenstein P, Larsson H (2018) A total-population multigenerational family clustering study of autism spectrum disorders in obsessive-compulsive disorder and Tourette's/chronic tic disorders. Mol Psychiatry 23:1652-1658.

McClellan GA (2018) Is hormones control circadian rhythm all? Let me count the ways... Biol Psychiatry 74:242-249.

Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NRXn system. Wiley Interdiscip Rev Syst Biol Med 8:227-241.

Motañed S, Karimi I, Jafari F (2017) The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): kill two birds with one stone. Metab Brain Dis 32:651-665.

Moya PR, Dodman NH, Timpano KR, Rubenstein LM, Rana Z, Fried RL, Reichert LF, Heiman GA, Tischfeld JA, King RA, Goldziczka M, Ginns EI, Wendland JR (2013) Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet 21:850-854.

Musiek ES (2015) Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol 6:29.

Narasimamurthy R, Hatoni M, Naya SK, Liu F, Panda S, Verma JM (2012) Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A 109:12662-12667.

Nasrollahzadeh A, Momeny F, Fasehee H, Yaghmaie M, Bashash D, Mousavi SA, Ghaifan SH (2021) anti-proliferative activity of disulfiram through regulation of the AKT-FOSO axis: a protemic study of molecular targets. Biochem Biophys Acta Mol Cell Res 1868:11907.

Noh HJ, Tang R, Flannick J, Swofford H, Growden DE, Johnson JP, van Groothuizen G, Grünblatt E, Andressen ER, Dufour JD, Patel PO, Koolman M, Hultman C, Pato MT, Pato CN, Rasmussen SA, Jenike MA, Hanna GL, et al. (2017) Introducing evolutionary regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder. Nat Commun 8:774.

Nota JA, Sharkey KM, Coles ME (2015) Sleep, arousal, and circadian rhythms in adults with obsessive-compulsive disorder: a meta-analysis. Neurosci Biobehav Rev 51:100-107.

Orellana AM, Vasconcellos AR, Leite JA, de Sá LIMA L, Andreotti DZ, Munhoz CD, Kawamoto EM, Scavone C (2015) Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/β-CATENIN signaling in rat hippocampus. Aging 7:1094-1111.

Oren G, Smith BD (2017) Eliminating cancer stem cells by targeting embryonic signaling box protein O signaling mediates epithelial repair in kidney injury. Am J Pathol 186:1076-1087.

Paterson JL, Reynolds AC, Ferguson SA, Dawson D (2013) Sleep and obsessive-compulsive disorder in pediatric patients with obsessive-compulsive disorder. J Neuroinflammation 10:261.

Pellegrini L, Maietti E, Rucci P, Casadei G, Maina G, Fineberg NA, Albert U (2020) Suicide in patients with obsessive-compulsive disorder (OCD). J Affect Disord 26:R432-443.

Pellman TD, Taub SD, Yoon JS, Wang YM, Lee VW, Alexander SI, Harris DC, Zheng G (2021) Promotion of β-catenin/forkhead box protein C-12 mediated NFκB transcription and nuclear translocation by acrylamide-induced cell cycle arrest by targeting FoxO3. Food Chem Toxicol 153:112319.

Pellman TD, Taub SD, Yoon JS, Wang YM, Lee VW, Alexander SI, Harris DC, Zheng G (2021) Promotion of β-catenin/forkhead box protein C-12 mediated NFκB transcription and nuclear translocation by acrylamide-induced cell cycle arrest by targeting FoxO3. Food Chem Toxicol 153:112319.

Pincock JR, Sambamurthy R, Hatoni M, Naya SK, Liu F, Panda S, Verma JM (2012) Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 100:63-72.

Pilgrim K, Kim JH, Min YJ, Kang HJ, Lee HJ, Park SW, Im YH, Lim D, Lee SH, Lim JG, Kim YH, Kang KB (2021) PPARγ agonist decreases NFκB activation in human monocyte cells. J Neurosci Res 99:1001-1009.

Pincock JR, Sambamurthy R, Hatoni M, Naya SK, Liu F, Panda S, Verma JM (2012) Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 100:63-72.

Pirzadeh A, Zarei A, Zarei A (2020) A total-population multigenerational family clustering study of obsessive-compulsive disorder and Tourette disorder phenotypes. Eur J Hum Genet 21:850-854.

Pilla A, Lecarpentier Y (2021a) Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma. Int J Mol Sci 22:3798.

Pilla A, Lecarpentier Y (2021b) Interplay of opposing effects of the WNT/β-catenin pathway and PPARY and implications for SARS-CoV2 treatment. Front Immunol 12:66693.

Pilla A, Lecarpentier Y (2021c) Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry doi: 10.1038/s41380-021-01086-1.

Pilla A, Lecarpentier Y, Vallene J (2021a) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021b) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021c) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021d) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021e) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021f) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021g) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021h) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021i) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021j) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021k) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021l) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021m) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021n) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021o) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.

Pilla A, Lecarpentier Y, Vallene J (2021p) Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 11:204.