REPRESENTATION OF REAL NUMBERS BY THE
ALTERNATING CANTOR SERIES

Symon Serbenyuk
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
simon6@ukr.net

Received: 5/14/16, Accepted: 4/6/17, Published: 5/24/17

Abstract
The article is devoted to alternating Cantor series. It is proved that any real number belonging to \([a_0 - 1, a_0]\), where \(a_0 = \sum_{k=1}^{\infty} \frac{1}{d_k} \) has not more than two representations by such series, and only the numbers from a certain countable subset of real numbers have two representations. The geometry of these representations, properties of cylinder and semicylinder sets, and the simplest metric problems are investigated. Some applications of such series to fractal theory and the relation between positive and alternating Cantor series are described. The shift operator with some its applications, as well as the set of incomplete sums are studied. Necessary and sufficient conditions for a rational number to be representable by an alternating Cantor series are formulated.

Introduction
The investigation of various numeral systems is useful for the development of metric, probability, and fractal theories of real numbers, for the study of fractal and other properties of mathematical objects possessing a complicated local structure such as continuous nowhere differentiable or singular functions, random variables of Jessen-Wintner type, DP-transformations (transformations preserving the fractal Hausdorff-Besicovitch dimension), dynamical systems with chaotic trajectories, etc. [2, 3].

There exist systems of real number representations with a finite or an infinite alphabet, with redundant digits or with zero redundancy. The s-adic and nega-s-adic numeral systems [5] are examples of real number encodings with a finite alphabet, whereas numbers representations by Lüroth series [6], regular continued fractions, polybasic nega-\(\mathbb{Q}\)-representations [11], etc., are examples of encoding them with an infinite alphabet. A representation

\[
x = \frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{d_1d_2} + \cdots + \frac{\varepsilon_n}{d_1d_2\cdots d_n} + \cdots, \quad \varepsilon_n \in A_{d_n},
\]  

(1)
of a real number $x$ by a positive Cantor series $[1, 7, 8]$, is an example of a polybasic
numeral system with zero redundancy. Here $(d_n)$ is a fixed sequence of positive
integers, $d_n > 1$, and $(A_{d_n})$ is a sequence of the sets $A_{d_n} = \{0, 1, \ldots, d_n - 1\}$. This
encoding of real numbers has a finite alphabet when $(d_n)$ is bounded.

The representation of real numbers by positive Cantor series is a generalization
of the classical $s$-adic numeral system. Note that this representation is “similar” to
the following series

$$\sum_{n=1}^{\infty} \frac{1}{a_1 a_2 \cdots a_n},$$

where $(a_n)$ is a monotone non-decreasing sequence of positive integers and $a_1 \geq 1$.
This series is called an Engel series.

In 1869, Georg Cantor [1] considered series expansions of real numbers (1). There
are many papers [1, 4, 7, 10, 8] where properties of real number representations by
positive Cantor series are studied, but many problems related to these series are
not solved completely. For example, criteria of representation of rational numbers,
modeling of functions with a complicated local structure are still open problems.

Since real number expansions by positive Cantor series are useful for studying
complicated objects of fractal analysis, the notion of alternating Cantor series is
introduced in the present article. Alternating Cantor series, which generalize the
nega-$s$-adic numeral system, were not considered in publications earlier. In this
paper the foundations of the metric theory of real number representations by alternat-
ing Cantor series are given and some related problems of mathematical analysis
are considered.

Consider the main object of this article.

Let $(d_n)$ be a fixed sequence of numbers from $\mathbb{N} \setminus \{1\}$, $(A_{d_n})$ be a sequence of the
sets $A_{d_n} = \{0, 1, 2, \ldots, d_n - 1\}$.

**Definition 1.** A series of the form

$$\frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{d_1 d_2} - \frac{\varepsilon_3}{d_1 d_2 d_3} + \cdots + \frac{(-1)^n \varepsilon_n}{d_1 d_2 d_3 \cdots d_n} + \cdots,$$

where $\varepsilon_n \in A_{d_n}$ for any $n \in \mathbb{N}$, is called an alternating Cantor series.

The number $d_n$ is called the $n$th element of sum (2), and $\varepsilon_n$ is called the $n$th digit
of sum (2).

By $\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n \ldots}$ denote any number $x$ having expansion (2). This notation is called
the nega-$D$-representation of $x$. Expansion (2) of $x$ is called the nega-$D$-expansion
of $x$.

**Remark 1.** The term “nega” is used in this article, since the alternating Cantor
series expansion is a numeral system with a negative base, i.e.,

$$x = \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \cdots d_n} = \frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{(-d_1)(-d_2)} + \cdots + \frac{\varepsilon_n}{(-d_1)(-d_2) \cdots (-d_n)} + \cdots$$
If \((d_n)\) is purely periodic with the simple period \((s)\), where \(s > 1\) is a fixed positive integer, then series (2) has the form
\[
x = -\frac{\varepsilon_1}{s} + \frac{\varepsilon_2}{s^2} - \frac{\varepsilon_3}{s^3} + \cdots + \frac{(-1)^n\varepsilon_n}{s^n} + \ldots, \quad \varepsilon_n \in \{0, 1, \ldots, s - 1\}.
\]
The last-mentioned series is the nega-s-adic expansion \([5, 9]\) of numbers in \([-\frac{s}{s+1}, \frac{1}{s+1}]\).

The following series are alternating Cantor series:
1. \[
\sum_{n=1}^{\infty} \frac{(-1)^n\varepsilon_n}{s^{\alpha_1+\alpha_2+\cdots+\alpha_n}},
\]
where \(\alpha_n\) belongs to some finite subset of positive integers, \(\varepsilon_n \in \{0, 1, \ldots, s^{\alpha_n} - 1\}\) for each \(n \in \mathbb{N}\), and \(1 < s \in \mathbb{N}\) is a fixed number;
2. \[
\sum_{n=1}^{\infty} \frac{(-1)^n\varepsilon_n}{2 \cdot 3 \cdot \ldots \cdot (n+1)}, \quad \varepsilon_n \in \{0, 1, \ldots, n\};
\]
3. \[
\sum_{n=1}^{\infty} \frac{(-1)^n\varepsilon_n}{p_1p_2\cdots p_n},
\]
where \((p_n)\) is the increasing sequence of all prime numbers.

**Lemma 1.** Every alternating Cantor series is absolutely convergent and its sum belongs to \([a_0 - 1, a_0]\), where
\[
a_0 = \sum_{n=1}^{\infty} \frac{d_{2n} - 1}{d_1d_2\cdots d_{2n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1d_2\cdots d_n}.
\]

**Proof.** This statement follows from the propositions:
- the series \[
\sum_{n=1}^{\infty} \frac{\varepsilon_n}{d_1d_2\cdots d_n}
\]
is convergent;
- the condition
\[
-1 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1d_2\cdots d_n} \leq S \leq \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1d_2\cdots d_n}
\]
holds, where \(S\) is equal to the sum of series (2).
Lemma 2. Let series (2) be a fixed series,
\[ r_n = \frac{(-1)^n}{d_1d_2 \cdots d_n} \sum_{k=1}^{\infty} (-1)^k e_{n+k} \] and
\[ a_n = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{d_{n+1}d_{n+2} \cdots d_{n+k}} \]
for this series; then the following inequalities hold:
\[ \frac{a_n - 1}{d_1 \cdots d_n} \leq r_n \leq \frac{a_n}{d_1 \cdots d_n} \text{ whenever } n \text{ is even; } \]
\[ -\frac{a_n}{d_1d_2 \cdots d_n} \leq r_n \leq \frac{1 - a_n}{d_1d_2 \cdots d_n} \text{ whenever } n \text{ is odd. } \]

1. Representation of Real Numbers by Alternating Cantor Series

Lemma 3. Each number \( x \in [a_0 - 1, a_0] \) can be represented by series (2).

Proof. It is obvious that \( a_0 - 1 = \Delta_{[d_1-1]0[d_4-1]0 \ldots} \) and \( a_0 = \Delta_{[d_2-1]0[d_4-1]0 \ldots} \).

Since \( x \) is an arbitrary number from \( (a_0 - 1, a_0) \),
\[ -\frac{\varepsilon_1}{d_1} - \sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1d_2 \cdots d_{2k-1}} < x \leq -\frac{\varepsilon_1}{d_1} + \sum_{k=1}^{\infty} \frac{d_{2k} - 1}{d_1d_2 \cdots d_{2k}} \]
with 0 \( \leq \varepsilon_1 \leq d_1 - 1 \), and
\[ [a_0 - 1, a_0] = I_0 = \bigcup_{i=0}^{d_1-1} \left[ -\frac{i}{d_1} - \sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1d_2 \cdots d_{2k-1}} , -\frac{i}{d_1} + \sum_{k=1}^{\infty} \frac{d_{2k} - 1}{d_1d_2 \cdots d_{2k}} \right] \]
we have
\[ -\sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1d_2 \cdots d_{2k-1}} < x + \frac{\varepsilon_1}{d_1} \leq \sum_{k=1}^{\infty} \frac{d_{2k} - 1}{d_1d_2 \cdots d_{2k}} \]
Let \( x + \frac{\varepsilon_1}{d_1} = x_1 \). Then we obtain the following cases:

1. If the equality
\[ x_1 = \sum_{k=1}^{\infty} \frac{d_{2k} - 1}{d_1d_2 \cdots d_{2k}} \]
holds, then
\[ x = \Delta_{[d_1-1]0[d_4-1]0 \ldots} \text{ or } x = \Delta_{[d_2-1]0[d_4-1]0[d_5-1]0 \ldots} \]

2. If the first case does not hold, then \( x = -\frac{\varepsilon_1}{d_1} + x_1 \), where
\[ -\frac{\varepsilon_2}{d_1d_2} - \sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1d_2 \cdots d_{2k-1}} \leq x_1 < -\frac{\varepsilon_2}{d_1d_2} + \sum_{k=2}^{\infty} \frac{d_{2k} - 1}{d_1d_2 \cdots d_{2k}} . \]
In this case, let \( x_2 = x_1 - \frac{\varepsilon_2}{d_1 d_2} \). Then:

1. if the equality
   \[
x_2 = \sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k-1}}
   \]
   holds, then
   \[
x = \Delta_{\varepsilon_1 \varepsilon_2 [d_3-1]0[d_5-1]0\ldots}^{-D} \quad \text{or} \quad x = \Delta_{\varepsilon_1 [d_2-1]0[d_4-1]0[d_6-1]0\ldots}^{-D}
   \]
2. In the converse case,
   \[
x = -\frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{d_1 d_2} + x_2, \quad \text{where}
   \]
   \[
   -\frac{\varepsilon_3}{d_1 d_2 d_3} - \sum_{k=3}^{\infty} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k-1}} < x_2 \leq -\frac{\varepsilon_3}{d_1 d_2 d_3} + \sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k}}
   \]
   Therefore,
   \[
   -\sum_{k=2}^{\infty} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k-1}} < x_m - \frac{(-1)^{m+1} \varepsilon_{m+1}}{d_1 d_2 \cdots d_{m+1}} < \sum_{k=m+1}^{\infty} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k}}
   \]
   for some positive integer \( m \). Moreover, the following cases are possible:

1. \[
x_{m+1} = \begin{cases}
   \sum_{k>m+2} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k-1}} & \text{if } m \text{ is odd} \\
   \sum_{k>m+1} \frac{d_{2k-1} - 1}{d_1 d_2 \cdots d_{2k}} & \text{if } m \text{ is even}
   \end{cases}
   \]
   In this case,
   \[
x = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_{m+1} [d_{m+2}-1]0[d_{m+4}-1]0\ldots}^{-D}
   \]
   or
   \[
x = \Delta_{\varepsilon_1 \cdots \varepsilon_m [d_{m+1}-1]0[d_{m+3}-1]0[d_{m+5}-1]0\ldots}^{-D}
   \]

2. If there does not exist a number \( m \in \mathbb{N} \) such that the last-mentioned system is satisfied, then
   \[
x = -\frac{\varepsilon_1}{d_1} + x_1 = \cdots = -\frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{d_1 d_2} - \frac{\varepsilon_3}{d_1 d_2 d_3} + \cdots + \frac{(-1)^n \varepsilon_n}{d_1 d_2 \cdots d_n} + x_n = \ldots
   \]
   Hence,
   \[
x = \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \cdots d_n}. \quad \Box
   \]
Lemma 4. The numbers

\[ x = \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m \epsilon_{m+1} \cdots}^{-D} \quad \text{and} \quad x' = \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m \epsilon_{m+1} \cdots}^{-D}, \]

where \( \epsilon_m \neq \epsilon'_m \), are equal if and only if one of the following systems

\[
\begin{align*}
\epsilon_m + 2i &= d_m + 2i - 1 \\
\epsilon_{m+2i} &= d_m + 2i - 1
\end{align*}
\]

is satisfied for all \( i \in \mathbb{N} \).

Proof. We prove necessity. Let \( \epsilon_m = \epsilon'_m + 1 \). Then

\[
0 = x - x' = \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m \epsilon_{m+1} \cdots}^{-D} - \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m \epsilon_{m+1} \cdots}^{-D} = \frac{(-1)^{m+1}}{d_1 d_2 \cdots d_m} \left( \epsilon_m + 1 - \epsilon_{m+1}' \right) + \cdots + \frac{\epsilon_m + 1 - \epsilon_{m+i}' ( -1)^m + \cdots}{d_1 d_2 \cdots d_m},
\]

where

\[
\sum_{i=1}^{\infty} \frac{(-1)^i (\epsilon_m + 1 - \epsilon_{m+i}') d_m + 1}{d_{m+1} d_{m+2} \cdots d_{m+i}} 
\geq - \sum_{i=1}^{\infty} \frac{d_{m+i} - 1}{d_{m+1} d_{m+2} \cdots d_{m+i}} = -1.
\]

The last-mentioned inequality is an equality when

\[
\epsilon_{m+2i} = \epsilon'_{m+2i-1} = 0, \quad \epsilon_{m+2i} = d_m + 2i - 1, \quad \text{and} \quad \epsilon'_{m+2i} = d_{m+2i} - 1.
\]

In our case, the conditions of the first system follow from \( x = x' \). It is easy to see that the conditions of the second system follow from \( x = x' \) when \( \epsilon'_m = \epsilon_{m+1} \).

The proof of sufficiency is trivial. \( \square \)

Definition 2. The nega-D-representation \( \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m}^{-D} \) of some number \( x \in [a_0 - 1, a_0] \) is called periodic if there exist numbers \( m \in \mathbb{Z}_0 \) and \( t \in \mathbb{N} \) such that the equality

\[
\epsilon_{m+n+t+j} = \epsilon_{m+t+j}
\]

holds for each \( n \in \mathbb{N}, j \in \mathbb{N} \).

Denote by \( \Delta_{\epsilon_1 \epsilon_2 \cdots \epsilon_m (\epsilon_{m+1} \epsilon_{m+2} \cdots \epsilon_{m+t})}^{-D} \) any number whose nega-D-representation

is periodic with the period \( (\epsilon_{m+1} \epsilon_{m+2} \cdots \epsilon_{m+t}) \) of length \( t \).

A periodic representation is:

- purely periodic if \( m = 0 \);
- mixed periodic if \( m > 0 \).
Definition 3. Denote by
\[ x = \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n} \phi_1 (d_{m+1}) \phi_2 (d_{m+2}) \ldots \phi_t (d_{m+t+1}) \phi_2 (d_{m+t+2}) \ldots \phi_t (d_{m+2t}) \ldots \]
any quasi-periodic number \( x \). Here \( m \in \mathbb{Z}_0 \), \( t \in \mathbb{N} \), and \( \phi_1, \phi_2, \ldots, \phi_t \) are functions such that \( \phi_i (d_n) \in A_d \) for any \( n \in \mathbb{N} \) and \( i = 1, \ldots, t \). That is \( \phi_i (d_n) \) is a regularity that depends on the parameter \( d_n \).

The following numbers are quasi-periodic:
\[ \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n} 0 [d_{n+2-1} \ldots] [d_{n+1-1}] \ldots, \quad \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n} 0 [d_{n+2-1} \ldots] [d_{n+1} \ldots] \ldots, \]
etc.

Definition 4. A number \( x \in I_0 = [a_0 - 1, a_0] \) is called nega-\( D \)-rational if
\[ x = \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n \varepsilon_n} [d_{n+1-1} \ldots] [d_{n+3-1} \ldots] \ldots \]
or
\[ x = \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n \varepsilon_n} [d_{n+1-1} \ldots] [d_{n+2-1} \ldots] [d_{n+3-1} \ldots] \ldots \]
The other numbers in \( I_0 \) are called nega-\( D \)-irrational.

The next proposition follows from Lemma 3 and Lemma 4.

Theorem 1. Every nega-\( D \)-irrational number has the unique nega-\( D \)-representation. Every nega-\( D \)-rational number has two nega-\( D \)-representations, i.e.,
\[ \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n \varepsilon_{n-1} \varepsilon_n} [d_{n+1-1} \ldots] [d_{n+3-1} \ldots] = \Delta^{-D}_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n \varepsilon_{n-1} \varepsilon_n} [d_{n+2-1} \ldots] [d_{n+4-1} \ldots] \ldots \]

Remark 2. There exist sequences \( (d_n) \) such that a nega-\( D \)-rational number is an irrational number. For example, the following numbers are nega-\( D \)-rational:
\[
\begin{align*}
x &= \sum_{i=1}^{n} \frac{(-1)^i \varepsilon_i}{d_1 d_2 \cdots d_i} + \frac{(-1)^n}{d_1 d_2 \cdots d_n} \left( -1 - \sum_{j=1}^{\infty} \frac{(-1)^j}{2 \cdot 3 \cdots (j+1)} \right) \\
&= \sum_{i=1}^{n} \frac{(-1)^i \varepsilon_i}{d_1 d_2 \cdots d_i} + \frac{(-1)^n}{d_1 d_2 \cdots d_n} \left( -1 + \frac{1}{e} \right), \\
x &= \sum_{i=1}^{n} \frac{(-1)^i \varepsilon_i}{d_1 d_2 \cdots d_i} + \frac{(-1)^n}{d_1 d_2 \cdots d_n} \left( -1 - \sum_{j=1}^{\infty} \frac{(-1)^j}{2 \cdot 4 \cdots 2j} \right) \\
&= \sum_{i=1}^{n} \frac{(-1)^i \varepsilon_i}{d_1 d_2 \cdots d_i} + \frac{(-1)^n + 1}{d_1 d_2 \cdots d_n} \cdot \frac{\sqrt{e}}{e}, \end{align*}
\]
since
\[ \Delta^{-D}_{\varepsilon_1 \ldots \varepsilon_n} [d_{n+1-1} \ldots] [d_{n+3-1} \ldots] = g_n + \frac{(-1)^n}{d_1 d_2 \cdots d_n} \left( -1 - \sum_{j=1}^{\infty} \frac{(-1)^j}{d_{n+1} \cdots d_{n+j}} \right) \]
and

$$\Delta_{n+1}^{-D} = g_n + \frac{(-1)^{n+1}}{d_1 d_2 \cdots d_n} \left( 1 + \sum_{j=1}^{\infty} \frac{(-1)^j}{d_{n+1} \cdots d_{n+j}} \right),$$

where

$$g_n = \sum_{i=1}^{n} (-1)^i \varepsilon_i.$$

To avoid some inconveniences in the future, we can modify expansion (2) of \( x \in [-1 + a_0, a_0] \) to the following form

$$x = \sum_{n=1}^{\infty} \frac{1 + \varepsilon_n}{d_1 d_2 \cdots d_n} (-1)^{n+1}, \quad (3)$$

where \( x \) represented in form (3) belongs to \([0, 1]\), \( \varepsilon_n \in A_{d_n} \), and \( a_0 = -\Delta_{(1)}^{-D} \).

It is easy to see that

$$\inf \left( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1 d_2 \cdots d_n} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \varepsilon_n}{d_1 d_2 \cdots d_n} \right) = g' - \sum_{i=1}^{\infty} \frac{d_{2i} - 1}{d_1 d_2 \cdots d_{2i}} = 0$$

and

$$\sup \left( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1 d_2 \cdots d_n} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \varepsilon_n}{d_1 d_2 \cdots d_n} \right) = g' + \sum_{i=1}^{\infty} \frac{d_{2i-1} - 1}{d_1 d_2 \cdots d_{2i-1}} = 1,$$

where

$$g' = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1 d_2 \cdots d_n}.$$

By \( \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n}^{-d_n} \) denote any number \( x \in [0, 1] \) having expansion (3). This notation is called the nega-\( (d_n) \)-representation of \( x \in [0, 1] \). The number \( d_n \) in (3) is called the \( n \)th element and \( \varepsilon_n \) \( \varepsilon_n(x) \) is the \( n \)th digit of expansion (3).

2. Some Properties

Suppose that \( x = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n}^{-D} \) and \( y = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n}^{-D} \).

**Proposition 1.** The inequality \( x < y \) holds for any numbers \( x \) and \( y \) from \([-1 + a_0, a_0]\) if and only if there exists a number \( m \) such that

$$\varepsilon_n(x) = \varepsilon_n(y) \text{ for } n < 2m \text{ and } \varepsilon_{2m}(x) < \varepsilon_{2m}(y)$$

or

$$\varepsilon_n(x) = \varepsilon_n(y) \text{ for } n < 2m - 1 \text{ and } \varepsilon_{2m-1}(x) > \varepsilon_{2m-1}(y).$$
Proposition 2. Suppose that \( x_1 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k-1}(0)} \), \( x_2 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k}(0)} \), and \( x_3 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k+1}(0)} \), and \( \varepsilon_i \neq 0 \) for all \( i = \frac{1}{2}k + 1 \). Then the following two-sided inequality holds:

\[
x_1 < x_3 < x_2.
\]

Proof. This statement follows from the relationship

\[
x_3 = x_1 + \frac{1}{d_1d_2...d_{2k}} \left( \frac{\varepsilon_{2k}}{d_{2k+1}} \right) = x_2 - \frac{\varepsilon_{2k+1}}{d_1d_2...d_{2k+1}}.
\]

\( \square \)

Proposition 3. Suppose that \( z_1 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k}(0)} \), \( z_2 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k+1}(0)} \), and \( z_3 = \Delta^{-D}_{\varepsilon_1\varepsilon_2...\varepsilon_{2k+2}(0)} \), and \( \varepsilon_i \neq 0 \) for all \( i = \frac{1}{2}k + 2 \). Then the two-sided inequality

\[
z_2 < z_3 < z_1
\]

holds.

Proof. Since the relationship

\[
z_3 = z_1 - \frac{1}{d_1d_2...d_{2k+1}} \left( \frac{\varepsilon_{2k+1}}{d_{2k+2}} \right) = z_2 + \frac{\varepsilon_{2k+2}}{d_1d_2...d_{2k+2}}
\]

holds, we see that our statement is true. \( \square \)

3. Relations Between Positive and Alternating Cantor Series

Let \( (d_n) \) be a fixed sequence of positive integers, \( d_n > 1 \). For any \( x \in [0,1] \) there exists a sequence \( (\alpha_n) \), where \( \alpha_n \in A_{d_n} \), such that

\[
\Delta^D_{\alpha_1\alpha_2...\alpha_n...} = x = \sum_{n=1}^{\infty} \frac{\alpha_n}{d_1d_2...d_n}.
\]

It is obvious that

\[
x = \frac{\alpha_1d_2 + \alpha_2}{d_1d_2} + \frac{\alpha_3d_4 + \alpha_4}{d_1d_2d_3d_4} + \cdots + \frac{\alpha_{2n-1}d_{2n} + \alpha_{2n}}{d_1d_2...d_{2n}} + \ldots.
\]

This representation is the representation of \( x \) by a positive Cantor series with the sequence of elements \( (d'_n) \), where \( d'_n = d_{2n-1}d_{2n} \). In fact, \( 0 \leq \alpha_{2n-1}d_{2n} + \alpha_{2n} \leq d_{2n-1}d_{2n} - 1 \) and therefore,

\[
\Delta^{D'}_{\beta_1\beta_2...\beta_n...} = x = \sum_{n=1}^{\infty} \frac{\beta_n}{p_1p_2...p_n},
\]

\( (4) \)
where $\beta_n = \alpha_{2n-1}d_{2n} + \alpha_{2n}$, $p_n = d_{2n-1}d_{2n}$ for any $n \in \mathbb{N}$.

Let us consider representation (2). Using the same technique, we get

$$x = \frac{\varepsilon_2 - \varepsilon_1 d_2}{d_1 d_2} + \frac{\varepsilon_4 - \varepsilon_3 d_4}{d_1 d_2 d_3 d_4} + \cdots + \frac{\varepsilon_{2n} - \varepsilon_{2n-1} d_{2n}}{d_1 d_2 \cdots d_{2n}} + \cdots$$

But $(\varepsilon_{2n} - \varepsilon_{2n-1} d_{2n})$ belongs to $\{0, 1, \ldots, d_{2n-1}d_{2n} - 1\}$ for not all values of $\varepsilon_{2n-1}$ and $\varepsilon_{2n}$.

Consider expansion (3). Indeed, for

$$\Delta^{-(d_n)}_{\delta_1 \delta_2 \cdots \delta_n} = x = \sum_{n=1}^{\infty} \frac{1 + \delta_n}{d_1 d_2 \cdots d_n} (-1)^{n+1},$$

where

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{d_1 d_2 \cdots d_n} = \Delta_{\delta_1 \delta_2 \cdots \delta_n}^{-D},$$

we obtain

$$x = \sum_{n=1}^{\infty} \frac{d_{2n} - 1}{d_1 d_2 \cdots d_{2n}} + \frac{\delta_1 d_2 - \delta_2}{d_1 d_2} + \frac{\delta_3 d_4 - \delta_4}{d_1 d_2 d_3 d_4} + \cdots + \frac{\delta_{2n-1}d_{2n} - \delta_{2n}}{d_1 d_2 \cdots d_{2n}} + \cdots$$

Thus the number $(\delta_{2n-1}d_{2n} - \delta_{2n} + d_{2n} - 1)$ always belongs to $\{0, 1, \ldots, d_{2n-1}d_{2n} - 1\}$ for any nega-$(d_n)$-representation and

$$\Delta_{\gamma_1 \gamma_2 \cdots \gamma_n}^{D'_n} = x = \sum_{n=1}^{\infty} \frac{(\delta_{2n-1} + 1)d_{2n} - \delta_{2n} - 1}{d_1 d_2 \cdots d_{2n}}, \quad (5)$$

where $\gamma_n = (\delta_{2n-1} + 1)d_{2n} - \delta_{2n} - 1 = \delta_{2n-1}d_{2n} + d_{2n} - 1 - \delta_{2n}$.

The next statement follows from (4) and (5).

**Lemma 5.** The following functions are identity transformations:

$$x = \Delta^{D}_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n} \xrightarrow{f} \Delta^{-(d_n)}_{\varepsilon_1[d_{2n-1} \varepsilon_2 \cdots \varepsilon_{2n-1}d_{2n-1} \varepsilon_{2n}]} = f(x) = y,$$

$$x = \Delta^{-(d_n)}_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n} \xrightarrow{g} \Delta^{D}_{\varepsilon_1[d_{2n-1} \varepsilon_2 \cdots \varepsilon_{2n-1}d_{2n-1} \varepsilon_{2n}]} = g(x) = y.$$

Therefore the following functions are DP-functions (functions preserving the fractal Hausdorff-Besicovitch dimension):

$$x = \Delta^{D}_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n} \xrightarrow{f} \Delta^{-(d_n)}_{\varepsilon_1[d_{2n-1} \varepsilon_2 \cdots \varepsilon_{2n-1}d_{2n-1} \varepsilon_{2n}]} = f(x) = y,$$

$$x = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_n} \xrightarrow{g} \Delta^{D}_{\varepsilon_1[d_{2n-1} \varepsilon_2 \cdots \varepsilon_{2n-1}d_{2n-1} \varepsilon_{2n}]} = g(x) = y.$$

**Lemma 6.** The following relationships are true:
1. $\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^D - \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D} = 2\Delta_{\varepsilon_1 0 \varepsilon_3 0 \ldots}^D = -2\Delta_{\varepsilon_1 0 \varepsilon_3 0 \ldots}^{-D}$;

2. $\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^D + \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D} = 2\Delta_{0 \varepsilon_2 0 \varepsilon_4 \ldots}^D = 2\Delta_{0 \varepsilon_2 0 \varepsilon_4 \ldots}^{-D}$;

3. $\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^D - \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D} = 2\Delta_{\varepsilon_2 \varepsilon_4 \varepsilon_6 \ldots}^D - \Delta_{[d_2 - 1][d_4 - 1] \ldots}^{D'}$, $\varepsilon_n \in A_{d_n}$;

4. $\Delta_{\gamma_1 \gamma_2 \ldots \gamma_n}^{D'} = \Delta_{\gamma_1 \gamma_2 \ldots \gamma_n}^{D'} + \Delta_{[d_2 - 1][d_4 - 1] \ldots}^{D'} - 2\Delta_{\varepsilon_2 \varepsilon_4 \varepsilon_6 \ldots}^{D'}$.

4. Shift Operators

Let $F_{[-1+a_0, a_0]}^{-D}$ be the set of all nega-D-expansions of real numbers from $[-1+a_0, a_0]$.

Define the shift operator $\hat{\phi}$ of expansion (2) on $F_{[-1+a_0, a_0]}^{-D}$ by the rule

$$\hat{\phi} \left( \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \ldots d_n} \right) = \sum_{n=2}^{\infty} \frac{(-1)^n \varepsilon_n}{d_2 d_3 \ldots d_n}.$$ 

In other words,

$$\hat{\phi}(\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D}) = \Delta_{\varepsilon_2 \varepsilon_3 \ldots \varepsilon_n}^{-D} = -d_1 \Delta_{\varepsilon_2 \varepsilon_3 \ldots \varepsilon_n}^{-D}.$$ 

This operator generates some function $\hat{\phi}$ such that

$$\hat{\phi} : [-1+a_0, a_0] \rightarrow [-a_0 d_1, 1-a_0 d_1].$$

By definition, put

$$\hat{\phi}^k \left( \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \ldots d_n} \right) = \sum_{n=k+1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_{k+1} \ldots d_n}.$$ 

$$\hat{\phi}^k(\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D}) = \Delta_{\varepsilon_{k+1} \varepsilon_{k+2} \ldots}^{-D} = (-1)^k d_1 d_2 \ldots d_k \Delta_{\varepsilon_{k+1} \varepsilon_{k+2} \ldots}^{D}.$$ 

Define the generalized shift operator $\hat{\phi}_m$ of expansion (2) by the rule

$$\hat{\phi}_m \left( \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \ldots d_n} \right) = -\varepsilon_1 \frac{1}{d_1} + \ldots + (-1)^{m-1} \varepsilon_{m-1} \frac{1}{d_1 d_2 \ldots d_{m-1}} + (-1)^m \varepsilon_m \frac{1}{d_1 d_2 \ldots d_{m-1} d_{m+1}} + \ldots,$$

i.e.,

$$\hat{\phi}_m(\Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_m}^{-D}) = \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_m}^{-D}.$$ 

Remark 3. Since $(\varepsilon_n)$ and $(d_n)$ are fixed sequences in (2) for a given $x \in [a_0 - 1, a_0]$, we see that the operator $\hat{\phi}$ or $\hat{\phi}_m$ takes each number to a number represented in terms of the “other” numeral system.
It is easy to see that the operator \( \hat{\varphi} \) has exactly \( d_1 \) invariant points. These are points of the form

\[
-\frac{i}{d_1 + 1}, \quad i = 0, d_1 - 1.
\]

The operator \( \hat{\varphi} \) is not a bijection because the points \( \Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1} (\varepsilon_1 = 0, d_1 - 1) \) are preimages of the point \( \Delta_{\varepsilon_2 \varepsilon_3 \ldots} \).

If a sequence \( (d_n) \) is purely periodic with a period of length \( k \), then the mapping \( \hat{\varphi} \) has periodic points with a period of length \( k, k \in \mathbb{N} \), i.e.,

\[
\hat{\varphi}^{k+j} (\Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1}) = \hat{\varphi}^{kt+j} (\Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1}), \quad t = 0, 1, 2, \ldots.
\]

**Lemma 7.** If a sequence \( (d_n) \) is purely periodic with a simple period, then the following set

\[
C[-D, V] = \{ x : x = \Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1}, \varepsilon_n \in \{ v_1, v_2, \ldots, v_m \} \subset \{ 0, 1, \ldots, d_n - 1 \} \}
\]

is an invariant set under the mapping \( \hat{\varphi} \). Here \( v_1, v_2, \ldots, v_m \) are fixed positive integers, \( 1 < m \leq d_n - 1 \), and \( d_n > 2 \).

**Lemma 8.** If sequences \( (d_n) \) and \( (V_n) \) are purely periodic with a period of length \( k \), then the set

\[
C[-D, V_n] = \{ x : x = \Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1}, \varepsilon_n \in V_n = \{ v_1^{(n)}, v_2^{(n)}, \ldots, v_m^{(n)} \} \subset A_{d_n} \}
\]

is an invariant set under the mapping \( \hat{\varphi}^k \).

Define the shift operator \( \hat{\varphi} \) of the nega-D-representation of \( x \) by the rule

\[
\hat{\varphi}(x) = \hat{\varphi}(\Delta_{\varepsilon_1 \varepsilon_2 \ldots}^{d_1}) = \Delta_{\varepsilon_2 \varepsilon_3 \ldots}^{d_1} = \sum_{n=1}^{\infty} (-1)^{n} \frac{\varepsilon_{n+1}}{d_1 d_2 \ldots d_n}.
\]

It is obvious that the mapping \( \hat{\varphi} \) is not always well-defined. In fact, the inequality \( \varepsilon_{n+1} \leq d_n - 1 \) holds for not all alternating Cantor series. The next statement follows from the last-mentioned inequality.

**Lemma 9.** The operator \( \hat{\varphi} \) is well-defined if and only if the inequality

\[
d_{n+1} \leq d_n
\]

holds for any \( n \in \mathbb{N} \).

**Remark 4.** In Lemma 9, we understand that \( \hat{\varphi} \) is well-defined in the wide sense, i.e., for each \( x \in [a_0 - 1, a_0] \). In fact, for any sequence \( (d_n) \) there exist points from \( [a_0 - 1, a_0] \) such that the function \( \hat{\varphi} \) is well-defined at these points.
Lemma 10. If there exists a number \( m \in \mathbb{N} \) such that \( \varphi^m(x) = x \), then
\[
x = \left(1 + \frac{1}{(-1)^m d_1 d_2 \cdots d_m - 1}\right) \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0).
\]

Proof. Let \( x = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}^{-1} \). Then
\[
x = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}^{-1} = \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0) + \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}^{-1} 0 \varepsilon_{m+1} \varepsilon_{m+2} \cdots
\]
\[
= \varphi^m(x) = (-1)^m d_1 d_2 \cdots d_m \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0).
\]
This concludes the proof. \( \Box \)

Lemma 11. Let \( x \) be a fixed number. If there exist \( m \in \mathbb{Z}_0 \) and \( c \in \mathbb{N} \) such that \( \varphi^m(x) = \varphi^{m+c}(x) \), then
\[
x = \frac{\Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0) + (-1)^c d_{m+1} d_{m+2} \cdots d_{m+c} \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m+c}(0)}{1 + (-1)^c d_{m+1} d_{m+2} \cdots d_{m+c}}.
\]

Proof. The statement follows from the next equality:
\[
x - \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0) = (-1)^c d_{m+1} d_{m+2} \cdots d_{m+c} \varphi^m(x).
\]
\( \Box \)

Lemma 12. The equalities
\[
\varphi^k(x) = (-1)^k d_1 d_2 \cdots d_k x + (-1)^{k+1} d_1 d_2 \cdots d_k \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_k}(0)
\]
and
\[
x = (-1)^k \varphi^k(x) + (-1)^k d_1 d_2 \cdots d_k \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_k}(0)
\]
d hold for an arbitrary \( k \in \mathbb{N} \).

The next proposition follows from the last-mentioned lemma.

Lemma 13. The equality
\[
(-1)^k d_{m+1} d_{m+2} \cdots d_{m+c} \varphi^m(x) - \varphi^{m+c}(x)
\]
\[
= (-1)^m c + d_1 d_2 \cdots d_{m+c} \Delta_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_m}(0)
\]
holds for arbitrary numbers \( m \in \mathbb{N} \) and \( c \in \mathbb{N} \).

Theorem 2. The mapping \( \varphi \) is decreasing on each first rank interval \( \nabla^{-D}_c = (\inf \Delta^{-D}_c, \sup \Delta^{-D}_c) \).
Proof. Let points \( x_1 = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|x_{n-1} x_n|}^D \cdots \) and \( x_2 = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|x_{n-1} x_n|}^D \cdots \) \((x_1 < x_2)\) be arbitrary points from the interval \( \nabla_c^D \).

Since the equality \( \varepsilon_n(\hat{\varphi}(x)) = \varepsilon_{n+1}(x) \) holds and Proposition 1 is true for \( x_1 \) and \( x_2 \), we see that the inequality \( \hat{\varphi}(x_1) > \hat{\varphi}(x_2) \) holds.

The next statement follows from this theorem.

**Corollary 1.** The mapping \( \hat{\varphi} \) has a derivative almost everywhere (with respect to the Lebesgue measure).

**Theorem 3.** The mapping \( \hat{\varphi} \) is continuous at each point of the first rank interval \( \nabla_c^D \) and the endpoints of this interval are points of discontinuity of the mapping.

Proof. Let \( x = \Delta_{|x_2 x_3 x_4|}^D \cdots \) be an arbitrary nega-D-irrational point from \( \nabla_c^D \). Let \( (x_m) \) be an arbitrary sequence of points from \( \nabla_c^D \) such that \( \lim_{m \to \infty} x_m = x \).

Then
\[
\lim_{m \to \infty} x_m = x \iff \lim_{n \to \infty} n_m = \infty,
\]
where \( n_m = \min\{n : \varepsilon_n(x_m) \neq \varepsilon_n(x)\} \). The last-mentioned equivalence follows from the definition and basic properties of the nega-D-representation.

Since \( \varepsilon_n(\hat{\varphi}(x)) = \varepsilon_{n+1}(x) \) holds, we have \( \lim_{m \to \infty} \hat{\varphi}(x_m) = \hat{\varphi}(x) \). Therefore the mapping \( \hat{\varphi} \) is continuous at the point \( x \).

Let \( x_0 \) be a certain nega-D-rational point from \( \nabla_c^D \), i.e.,
\[
x_0 = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|d_n+1-1|0[d_{n+3}-1]0\cdots} = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|e_{n-1}|0[d_{n+2}-1]0[d_{n+4}-1]0\cdots}.
\]

At the same time
\[
\lim_{x \to x_0} \hat{\varphi}(x) = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|d_n+1-1|0[d_{n+3}-1]0\cdots} = \Delta_{|x_2 x_3 x_4|}^D \cdots \Delta_{|e_{n-1}|0[d_{n+2}-1]0[d_{n+4}-1]0\cdots}.
\]

Indeed, the existence of the left-hand and right-hand finite limits at each point follows from monotonicity and boundedness of the mapping.

Consider the problem of continuity of \( \hat{\varphi} \) at the point
\[
x_1 = \Delta_{|d_2-1|0[d_4-1]0\cdots} = \Delta_{|e-1|0[d_3-1]0[d_5-1]0\cdots} = x_2, \quad c \neq 0.
\]

The endpoints of the interval \( \nabla_c^D \) are the jump points of \( \hat{\varphi} \) because
\[
\hat{\varphi}(x_1) = \Delta_{|d_2-1|0[d_4-1]0\cdots} \neq \Delta_{|d_3-1|0[d_5-1]0\cdots} = \hat{\varphi}(x_2).
\]

**Theorem 4.** If the mapping \( \hat{\varphi} \) has a derivative at the point \( x = \Delta_{|x_2 x_3 x_4|}^D \cdots \), then
\[
\langle \hat{\varphi}(x) \rangle = -d_1.
\]
Proof. Suppose that \( \hat{\varphi} \) has a derivative at the point \( x_0 \). Let \( (x_n) \) be a sequence of 
\[ \Delta_{e_1(x_0)}^{-D}(e_2(x_0)) \ldots e_n(x_0)e_{n+1}(x) \ldots \] Here \( e_k(x) \neq e_k(x_0) \) for all \( k > n \). Then

\[
(\hat{\varphi}'(x))' = \lim_{\Delta x \to 0} \frac{\hat{\varphi}(x) - \hat{\varphi}(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta_{e_2(x_0)}^{-D}(e_3(x)) \ldots \Delta_{e_2(x_0)}^{-D}(e_3(x_0))}{\Delta x} \\
= - \lim_{e_n(x) \to e_n(x_0)} \frac{1}{\Delta x} \sum_{i=2}^{\infty} \frac{(-1)^i e_i(x)}{d_2 \ldots d_i} - \sum_{i=2}^{\infty} \frac{(-1)^i e_i(x_0)}{d_2 \ldots d_i} \\
= - \lim_{e_n(x) \to e_n(x_0)} \frac{1}{\Delta x} \sum_{i=1}^{\infty} \frac{(-1)^i e_i(x)}{d_1 d_2 \ldots d_i} + \sum_{i=1}^{\infty} \frac{(-1)^i e_i(x_0)}{d_1 d_2 \ldots d_i} \frac{d_1}{d_1 d_2 \ldots d_i} d_1 = -d_1.
\]

Corollary 2. The derivative of \( \hat{\varphi}_k \) does not exist at an arbitrary nega-D-rational point \( \Delta_{e_1 e_2 \ldots e_{n-1} e_n}^{-D}(d_{n+1} - 1) [d_{n+3} - 1] \ldots \) when \( k > n - 1 \).

5. Representations of Rational and Irrational Numbers

The main statements of this section are analogous to the main results of the paper [8].

Theorem 5. A rational number \( x = \frac{p}{q} \) from \([-1 + a_0, a_0] \) has a finite expansion by series (2) if and only if there exists a number \( n_0 \) such that \( d_1 d_2 \ldots d_{n_0} \equiv 0 \pmod{q} \).

Corollary 3. There exist sequences \( (d_n) \) such that every rational number has the finite nega-D-expansion. Consider the following examples:

\[
\sum_{n=1}^{\infty} \frac{(-1)^n e_n}{2 \cdot 3 \ldots (n+1)}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n e_n}{2 \cdot 4 \ldots 2n}
\]

Lemma 14. The equality

\[
\Delta_{e_1 e_2 \ldots e_n}^{-D}(d_n) + \Delta_{e_1 e_2 \ldots e_n}^{-D}(d_n) + \Delta_{e_1 e_2 \ldots e_n}^{-D}(1) = 0
\]

holds for each \( n \in \mathbb{N} \).

Corollary 4. There exist alternating Cantor series (3) such that a number of the form \( \Delta_{e_1 e_2 \ldots e_n}^{-D}(d_n) \) is an irrational number.

The following propositions are equivalent.

Theorem 6. A number \( x_0 \in [-1 + a_0, a_0] \) is a rational number if and only if there exist \( k \in \mathbb{Z}_0 \) and \( t \in \mathbb{N} \) such that

\[ \hat{\varphi}^k(x) = \hat{\varphi}^t(x). \]
Theorem 7. A number \( x_0 \in [-1 + a_0, a_0] \) is a rational number if and only if there exist \( k \in \mathbb{Z}_0 \) and \( t \in \mathbb{N} \) \((k < t)\) such that
\[
\Delta_{k}^{D} \cdots 0_{\varepsilon_{k+1} \varepsilon_{k+2} \varepsilon_{k+3} \cdots} = (-1)^{t-k}d_{k+1}d_{k+2} \cdots d_{t} \Delta_{t}^{D} \cdots 0_{\varepsilon_{t+1} \varepsilon_{t+2} \varepsilon_{t+3} \cdots}.
\]

Theorem 8. A number \( x \) is a rational number if and only if the sequence \((\hat{\varphi}^k(x))\), where \( k = 0, 1, 2, \ldots \), contains at least two identical terms.

6. Foundations of the Metric Theory

Let \((d_n)\) be a fixed sequence of positive integers, \(d_n > 1\). Let \(c_1, c_2, \ldots, c_m\) be an ordered tuple of integers such that \(c_i \in \{0, 1, \ldots, d_i - 1\}\) for \(i = 1, m\).

Definition 5. A nega-D-cylinder of rank \( m \) with base \( c_1c_2 \cdots c_m \) is a set \(\Delta_{c_1c_2 \cdots c_m}^{-D}\) formed by all numbers of the segment \([-1 + a_0, a_0]\) with nega-D-representations in which the first \( m \) digits coincide with \(c_1, c_2, \ldots, c_m\), respectively, i.e.,
\[
\Delta_{c_1c_2 \cdots c_m}^{-D} = \{x : x = \Delta_{c_1c_2 \cdots c_n}^{-D} \varepsilon_n, \ldots, \varepsilon_j = c_j, j = 1, m\}.
\]

Lemma 15. A nega-D-cylinder is a closed interval, i.e.,
\[
\Delta_{c_1c_2 \cdots c_m}^{-D} = \begin{cases} 
\left[g_m + \frac{(-1)^m}{d_1d_2 \cdots d_m} (a_m - 1), g_m + \frac{(-1)^m}{d_1d_2 \cdots d_m} a_m\right] & \text{if } m \text{ is even} \\
\left[g_m + \frac{(-1)^m}{d_1d_2 \cdots d_m} a_m, g_m + \frac{(-1)^m}{d_1d_2 \cdots d_m} (a_m - 1)\right] & \text{if } m \text{ is odd},
\end{cases}
\]
where
\[
a_m = \sup_{j=1}^{\infty} \frac{(-1)^j \varepsilon_{m+j}}{d_{m+1}d_{m+2} \cdots d_{m+j}}, \quad g_m = \sum_{i=1}^{m} \frac{(-1)^i c_i}{d_1d_2 \cdots d_i}.
\]

Proof. Let \( m \) be even and \( x \in \Delta_{c_1c_2 \cdots c_m}^{-D} \), i.e.,
\[
x = \sum_{i=1}^{m} \frac{(-1)^i c_i}{d_1d_2 \cdots d_i} + \sum_{j=m+1}^{\infty} \frac{(-1)^j \varepsilon_j}{d_1d_2 \cdots d_j},
\]
where \(\varepsilon_j \in \{0, 1, \ldots, d_j - 1\}\); then
\[
x' = g_m - \sum_{k=1}^{\infty} \frac{d_{m+2k-1} - 1}{d_1d_2 \cdots d_{m+2k-1}} \leq x \leq g_m + \sum_{k=1}^{\infty} \frac{d_{m+2k} - 1}{d_1d_2 \cdots d_{m+2k}} = x''.
\]
Hence \( x \in [x', x''] \) and \(\Delta_{c_1c_2 \cdots c_m}^{-D} \subseteq [x', x'']\).
Since the equalities
\[ \sum_{j=1}^{\infty} \frac{d_{m+2j} - 1}{d_1d_2 \cdots d_{m+2j}} = \frac{1}{d_1d_2 \cdots d_m} \sup_{j=1}^{\infty} \frac{(-1)^j \varepsilon_{m+j}}{d_{m+1}d_{m+2} \cdots d_{m+j}} \]
and
\[ -\sum_{j=1}^{\infty} \frac{d_{m+2j-1} - 1}{d_1d_2 \cdots d_{m+2j-1}} = \frac{1}{d_1d_2 \cdots d_m} \inf_{j=1}^{\infty} \frac{(-1)^j \varepsilon_{m+j}}{d_{m+1}d_{m+2} \cdots d_{m+j}} \]
hold, we have \( x \in \Delta^{-D}_{c_1c_2 \cdots c_m} \) and \( x', x'' \in \Delta^{-D}_{c_1c_2 \cdots c_m} \).

**Lemma 16.** Nega-\( D \)-cylinders have the following properties:

1. \( \inf \Delta^{-D}_{c_1c_2 \cdots c_m} = \begin{cases} g_m - \frac{1}{d_1d_2 \cdots d_m} \sum_{j=1}^{\infty} \frac{d_{m+2j-1}}{d_{m+1}d_{m+2} \cdots d_{m+2j-1}} & \text{if } m \text{ is even} \\ g_m - \frac{1}{d_1d_2 \cdots d_m} \sum_{j=1}^{\infty} \frac{d_{m+2j-1}}{d_{m+1}d_{m+2} \cdots d_{m+2j}} & \text{if } m \text{ is odd} \end{cases} \)

2. \( \sup \Delta^{-D}_{c_1c_2 \cdots c_m} = \begin{cases} g_m + \frac{1}{d_1d_2 \cdots d_m} \sum_{j=1}^{\infty} \frac{d_{m+2j-1}}{d_{m+1}d_{m+2} \cdots d_{m+2j}} & \text{if } m \text{ is even} \\ g_m + \frac{1}{d_1d_2 \cdots d_m} \sum_{j=1}^{\infty} \frac{d_{m+2j-1}}{d_{m+1}d_{m+2} \cdots d_{m+2j}} & \text{if } m \text{ is odd} \end{cases} \)

3. \( |\Delta^{-D}_{c_1c_2 \cdots c_m}| = \frac{1}{d_1d_2 \cdots d_m} \).

4. \( \Delta^{-D}_{c_1c_2 \cdots c_m} \subset \Delta^{D}_{c_1c_2 \cdots c_m} \).

5. \( \Delta^{-D}_{c_1c_2 \cdots c_m} = \bigcup_{c=0}^{d_{m+1}-1} \Delta^{D}_{c_1c_2 \cdots c_m} \).

6. \( \lim_{m \to \infty} |\Delta^{-D}_{c_1c_2 \cdots c_m}| = 0. \)

7. \( \frac{|\Delta^{-D}_{c_1c_2 \cdots c_m}|}{|\Delta^{D}_{c_1c_2 \cdots c_m}|} = \frac{1}{d_{m+1}}. \)
8. 
\[
\begin{align*}
\sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m & = \inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_{m+1} & \text{if } m \text{ is odd} \\
\sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m & = \inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m c & \text{if } m \text{ is even},
\end{align*}
\]
where \( c \neq d_{m+1} - 1 \).

9. 
\[
\Delta_{\mathcal{D}_c}^{-D} c_m \cap \Delta_{\mathcal{D}_c}^{-D} c_m = \begin{cases} 
\Delta_{\mathcal{D}_c}^{-D} c_m & \text{if } e_i = c_i \text{ for } i = 1, m \\
\emptyset & \text{if } \exists i (i < m) \text{ such that } c_i \neq c_i \\
\emptyset & \text{if } \exists i \text{ such that } c_i \neq e_i, c_m \neq c_m - 1.
\end{cases}
\]
Here \( e_m \neq 0 \) in the last case.

10. 
\[
\bigcap_{m=1}^{\infty} \Delta_{\mathcal{D}_c}^{-D} c_m = x = \Delta_{\mathcal{D}_c}^{-D} c_m.
\]

Proof. Properties 1 and 2 follow immediately from the definition of \( \Delta_{\mathcal{D}_c}^{-D} c_m \). Property 3 is a corollary of these properties. Properties 6 and 7 follow from Property 3.

Property 4. Let \( m \) be even. Let us prove that the conditions
\[
\begin{align*}
\inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m c & \geq \inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m \\
\sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m c & \leq \sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m
\end{align*}
\]
hold. In fact,
\[
\inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m c - \inf_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m = g_m + \frac{(-1)^{m+1} c}{d_1 d_2 \cdots d_{m+1}} \\
+ \frac{(-1)^{m+1}}{d_1 d_2 \cdots d_{m+1}} \left( \frac{d_{m+3} - 1}{d_{m+2} d_{m+3}} + \frac{d_{m+5} - 1}{d_{m+4} d_{m+5}} + \cdots \right) - g_m \\
- \frac{(-1)^m}{d_1 d_2 \cdots d_m} \left( \frac{d_{m+1} - 1}{d_{m+1} d_{m+2} d_{m+3}} - \frac{d_{m+3} - 1}{d_{m+1} d_{m+2} d_{m+3}} - \frac{d_{m+5} - 1}{d_{m+1} \cdots d_{m+5}} - \cdots \right) \\
= \frac{d_{m+1} - 1 - c}{d_1 d_2 \cdots d_{m+1}} \geq 0.
\]
If the condition \( c = d_{m+1} - 1 \) holds, then the last inequality is an equality. As above,
\[
\begin{align*}
\sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m - \sup_{\mathcal{D}_c} \Delta_{\mathcal{D}_c}^{-D} c_m c & = \frac{(-1)^m}{d_1 d_2 \cdots d_m} \left( \frac{d_{m+2} - 1}{d_{m+1} d_{m+2}} + \frac{d_{m+4} - 1}{d_{m+1} \cdots d_{m+4}} + \cdots \right) \\
+ g_m - g_m - \frac{(-1)^{m+1} c}{d_1 \cdots d_{m+1}} - \frac{(-1)^{m+1}}{d_1 \cdots d_{m+1}} \left( \frac{d_{m+2} - 1}{d_{m+2}} - \frac{d_{m+4} - 1}{d_{m+2} \cdots d_{m+4}} - \cdots \right) \\
= \frac{c}{d_1 d_2 \cdots d_{m+1}} \geq 0.
\end{align*}
\]
Here the last inequality is an equality whenever the condition \( c = 0 \) holds.

Similarly, the last-mentioned system of inequalities is true in the case of odd \( m \).

Property 5 follows from Property 4 and the definition of \( \Delta_{c_1c_2...c_m}^{-D} \).

Property 8. Let \( m \) be odd. Then

\[
\sup \Delta_{c_1c_2...c_m}^{-D} - \inf \Delta_{c_1c_2...c_m}[c+1] = \frac{(-1)^{m+1}c}{d_1d_2...d_{m+1}} + \frac{(-1)^{m+1}}{d_1d_2...d_{m+1}}a_{m+1} - \frac{c+1}{d_1d_2...d_{m+1}}(-1)^{m+1} - \frac{(-1)^{m+1}}{d_1d_2...d_{m+1}}(a_{m+1} - 1) = 0.
\]

Let \( m \) be even. Then

\[
\sup \Delta_{c_1c_2...c_m}[c+1] - \inf \Delta_{c_1c_2...c_m}^{-D} = \frac{(-1)^{m+1}}{d_1d_2...d_{m+1}}(c+1) + \frac{(-1)^{m+1}}{d_1d_2...d_{m+1}}(a_{m+1} - 1) - \frac{(-1)^{m+1}}{d_1d_2...d_{m+1}}a_{m+1} = 0.
\]

Property 9 follows from properties 1, 2, and 8.

Property 10. From Property 4 it follows that

\[
\Delta_{c_1}^{-D} \subset \Delta_{c_1c_2}^{-D} \subset \Delta_{c_1c_2c_3}^{-D} \subset ... \subset \Delta_{c_1c_2...c_n}^{-D} \subset \ldots
\]

Since the last lemma and Cantor’s intersection theorem are true, we obtain

\[
\bigcap_{n=1}^{\infty} \Delta_{c_1c_2...c_n}^{-D} = x = \Delta_{c_1c_2...c_n}^{-D}.
\]

\[\square\]

7. Simplest Metric Problems

Let \( k \) be a fixed positive integer, \( c \) be a fixed digit from \( A_d \). Consider the following set

\[
\Delta_c^k = \{ x : x = \Delta_{c_1c_2...c_k-1c_k+1...}^{-D} \}.
\]

Lemma 17. The set \( \Delta_c^k (k > 1) \) is the union of nega-\( D \)-cylinders of rank \( k \).

Proof. Let \( k = 1 \). Then it is easy to see that \( \Delta_c^1 = \Delta_c^{-D} \).

Let \( k = 2 \). Then

\[
\Delta_c^2 = \Delta_{0c}^{-D} \cup \Delta_{1c}^{-D} \cup \Delta_{2c}^{-D} \cup ... \cup \Delta_{[d_1-1]c}^{-D}.
\]

Let \( k = n \). Then

\[
\Delta_c^n = \Delta_{00...00c}^{-D} \cup \Delta_{00...01c}^{-D} \cup ... \cup \Delta_{[d_1-1][d_2-1]...[d_{n-1}-1]c}^{-D}.
\]

\[\square\]
Lemma 18. The Lebesgue measure of $\Delta^k_c$ is equal to $\frac{1}{d_k}$.

Proof. It is easy to see that

\[
\lambda(\Delta^k_c) = \frac{d_1-1}{d_1} \cdots \frac{d_k-1}{d_k} |\Delta^D_{c_1c_2\ldots c_{k-1}c}| = \frac{1}{d_k} \sum_{c_1=0}^{d_1-1} \cdots \sum_{c_{k-1}=0}^{d_{k-1}-1} |\Delta^D_{c_1c_2\ldots c_{k-1}c}| = \frac{1}{d_k}.
\]

$\square$

Corollary 5. The Lebesgue measure of $\Delta^k_c = \{ x : x = \Delta^D_{c_1c_2\ldots c_k} \}$ is equal to $1 - \frac{1}{d_k}$.

Lemma 19. The diameter of the set $\Delta^k_c$ is calculated by the following formula

\[
d(\Delta^k_c) = \frac{d_1d_2\cdots d_k - d_k + 1}{d_1d_2\cdots d_k}.
\]

Proof. Let $k$ be even,

\[
ak = \inf \sum_{j=1}^{\infty} \frac{(-1)^j c_{k+j}}{d_{k+1}d_{k+2}\cdots d_{k+j}}.
\]

Then

\[
d(\Delta^k_c) = \max \sum_{i=1}^{k-1} \frac{(-1)^i c_i}{d_1d_2\cdots d_i} + \frac{(-1)^k c}{d_1d_2\cdots d_k} + \frac{(-1)^k}{d_1d_2\cdots d_k} a_k
\]

\[
- \min \sum_{i=1}^{k-1} \frac{(-1)^i c_i}{d_1d_2\cdots d_i} - \frac{(-1)^k c}{d_1d_2\cdots d_k} - \frac{(-1)^k}{d_1d_2\cdots d_k} (a_k - 1)
\]

\[
= \left( \frac{d_2 - 1}{d_1d_2} + \frac{d_3 - 1}{d_1d_2d_3} + \cdots + \frac{d_{k-2} - 1}{d_1d_2\cdots d_{k-2}} \right)
\]

\[
+ \left( \frac{d_1 - 1}{d_1} + \frac{d_3 - 1}{d_1d_2d_3} + \cdots + \frac{d_{k-1} - 1}{d_1d_2\cdots d_{k-1}} \right) + \frac{(-1)^k}{d_1d_2\cdots d_k}
\]

\[
= 1 - \frac{1}{d_1d_2\cdots d_{k-1}} + \frac{(-1)^k}{d_1d_2\cdots d_k} = \frac{d_1d_2\cdots d_k - d_k + 1}{d_1d_2\cdots d_k}.
\]

Let $k$ be odd. Then

\[
d(\Delta^k_c) = \left( \frac{d_2 - 1}{d_1d_2} + \frac{d_4 - 1}{d_1d_2d_4} + \cdots + \frac{d_{k-1} - 1}{d_1d_2\cdots d_{k-1}} \right)
\]

\[
- \left( \frac{d_1 - 1}{d_1} - \frac{d_3 - 1}{d_1d_2d_3} - \cdots - \frac{d_{k-2} - 1}{d_1d_2\cdots d_{k-2}} \right) + \frac{(-1)^{k+1}}{d_1d_2\cdots d_k}
\]

\[
= 1 - \frac{1}{d_1d_2\cdots d_{k-1}} + \frac{1}{d_1d_2\cdots d_k} = \frac{d_1d_2\cdots d_k - d_k + 1}{d_1d_2\cdots d_k}.
\]

$\square$
Let \((c_1, c_2, \ldots, c_m)\) and \((k_1, k_2, \ldots, k_m)\) be fixed tuples of positive integers such that \(c_i \in A_{d_{k_i}}, \ i = 1, m, 0 < k_1 < k_2 < \ldots < k_m\). Consider the following set
\[
\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m} = \{ x : x = \Delta_{x_1 \ldots x_m}^{D} = \Delta_{x_1 \ldots x_m}^{D} - 1 \},
\]

**Lemma 20.** The Lebesgue measure of the set \(\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}\) is calculated by the formula
\[
\lambda (\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}) = \prod_{i=1}^{m} \frac{1}{d_{k_i}}.
\]

**Proof.** It is easy to see that
\[
\lambda (\Delta_{c_1 c_2}^{k_1 k_2}) = \frac{1}{d_{k_2}} \frac{d_{k_2-1}}{d_{k_2-1}} \ldots \frac{d_{k_1+1}}{d_{k_1+1}} |\Delta_{c_1}^{k_1}| = \frac{1}{d_{k_2}} \frac{1}{d_{k_1}} = \lambda (\Delta_{c_1}^{k_1}) \lambda (\Delta_{c_2}^{k_2}).
\]
Clearly,
\[
\lambda (\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}) = \frac{1}{d_{k_m}} \frac{1}{d_{k_{m-1}}} \ldots \frac{1}{d_{k_1}} = \frac{1}{d_{k_1} d_{k_2} \ldots d_{k_m}}.
\]

**Corollary 6.** Sets of the form \(\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}\) are metrically independent, i.e.,
\[
\lambda \left( \bigcap_{i=1}^{m} \Delta_{c_i}^{k_i} \right) = \prod_{i=1}^{m} \lambda (\Delta_{c_i}^{k_i}).
\]

**Lemma 21.** The diameter \(d (\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m})\) of the set \(\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}\) is calculated by the formula
\[
d (\Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m}) = 1 - \sum_{i=1}^{m} \frac{d_{k_i} - 1}{d_{1} d_{2} \ldots d_{k_i}}.
\]

**Proof.** Let \(K = \{k_1, k_2, \ldots, k_m\}\) and \(l = 1, 2, \ldots,\) Then
\[
\sup \Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m} - \inf \Delta_{c_1 c_2 \ldots c_m}^{k_1 k_2 \ldots k_m} = \sum_{2l = j \in K, j < k_m} d_{j-1} + \sum_{2l+1 = j \in K, j < k_m} \frac{(-1)^{1}}{d_{1} d_{2} \ldots d_{k_m}} + \sum_{p=1}^{\infty} \frac{(-1)^{k_m}}{d_{1} d_{2} \ldots d_{k_m}} + \frac{d_{k_m+2p} - 1}{d_{1} d_{2} \ldots d_{k_m+2p}}
\]
\[
- \sum_{2l = j \in K, j < k_m} \frac{1 - d_{j}}{d_{1} d_{2} \ldots d_{k_m}} - \sum_{2l+1 = j \in K, j < k_m} \frac{(-1)^{k_m}}{d_{1} d_{2} \ldots d_{k_m}} + \frac{d_{k_m+2p+1} - 1}{d_{1} d_{2} \ldots d_{k_m+2p+1}}
\]
\[
= - \sum_{0 < j < k_m, j \notin K} \frac{d_{j} - 1}{d_{1} d_{2} \ldots d_{k_m}} + \frac{1}{d_{1} d_{2} \ldots d_{k_m}} = 1 - \sum_{i=1}^{m} \frac{d_{k_i} - 1}{d_{1} d_{2} \ldots d_{k_i}}.
\]
8. Alternating Cantor Series and the Hausdorff-Besicovitch Dimension Faithfulness

Let $\Phi_1$ be the family of all closed intervals, $\Phi_2$ be the family of all possible rank cylinders $\Delta_{c_1c_2\ldots c_n}$, and $E$ be an arbitrary subset of $[a_0-1, a_0]$. 

**Theorem 9.** If a sequence $(d_n)$ is bounded, then the family $\Phi_2$ of coverings of $[a_0-1, a_0]$ is faithful for the Hausdorff-Besicovitch dimension calculation.

**Proof.** Let us find conditions for $(d_n)$ such that the inequality

$$m^0_\varepsilon(E, \Phi_1) \leq m^0_\varepsilon(E, \Phi_2)$$

holds for $\Phi_2 \subset \Phi_1$.

Let $u$ be an arbitrary closed interval of covering of $E$, $k$ be the minimal positive integer such that $u$ does not contain nega-D-cylinders $\Delta_{-D}^{-D}c_2\ldots c_{k-1}$ of rank $k-1$. Then $u$ belongs to not more than $d_k$ cylinders of rank $k$ but $u$ contains a cylinder of rank $k+1$. Hence,

$$m^0_\varepsilon(E, \Phi_1) \leq m^0_\varepsilon(E, \Phi_2) \leq d_k d_{k+1} m^0_\varepsilon(E, \Phi_1),$$

where

$$m^0_\varepsilon(E, \Phi) = \inf_{d(E_j) \leq \varepsilon} \sum_j d^\alpha(E_j)$$

for a fixed $\varepsilon > 0$, a fixed $\alpha > 0$, and covering of $E$ by sets $E_j$ with diameters $d(E_j) \leq \varepsilon$.

Note that $d_k d_{k+1} \leq (\max_n \{d_n\})^2 < \infty$ whenever $(d_n)$ is bounded. Indeed,

$$0 < \lambda_1 = \frac{1}{\max_n \{d_n\}} \leq \frac{|\Delta_{-D}^{-D}c_2\ldots c_{n+1}|}{|\Delta_{c_1c_2\ldots c_n}|} = \frac{1}{d_{n+1}} \leq \frac{1}{2} = \lambda_2 < 1,$$

where $\lambda_1$ and $\lambda_2$ are fixed numbers for an arbitrary $n \in \mathbb{N}$. It is true if and only if a sequence $(d_n)$ is bounded. \qed

9. Sets of Incomplete Sums

Let $(d_n)$ be a fixed sequence of positive integers, $d_n > 1$, and let $(\varepsilon_n)$ be a fixed sequence of digits. Then we have a fixed number of the form

$$\Delta_{-D}^{-D}c_1c_2\ldots c_n = s_0 = \sum_{n=1}^{\infty} \frac{(-1)^n \varepsilon_n}{d_1 d_2 \ldots d_n}.$$  \hspace{1cm} (6)

Let $(A'_{\varepsilon_n})$ be a sequence of $A'_n = \{0, \varepsilon_n\}$ and

$$L'_{s_0} = A'_1 \times A'_2 \times A'_n \times \ldots = \{\delta : \delta = (\delta_1, \delta_2, \ldots, \delta_n, \ldots), \delta_n \in A'_n\}.$$
Definition 6. A number of the form
\[ s = s(\delta) = \sum_{n=1}^{\infty} \frac{(-1)^{n}d_n}{d_1d_2 \cdots d_n}, \]  
(7)
where \( \delta = (\delta_n) \in L_{s_{0}}, \) is called an incomplete sum of alternating Cantor series (6).

By \( M_{s_{0}} \) denote the set of all incomplete sums of alternating Cantor series (6), i.e.,
\[ M_{s_{0}} = \{ x : x = \Delta_{\delta_{1}\delta_{2} \cdots \delta_{n} \cdots}^{D} (\delta_{n}) \in L_{s_{0}} \}. \]

It is obvious that
\[ M_{s_{0}} \subseteq \left[ -\sum_{k=1}^{\infty} \frac{\varepsilon_{2k-1}}{d_{1}d_{2} \cdots d_{2k-1}}, \sum_{k=1}^{\infty} \frac{\varepsilon_{2k}}{d_{1}d_{2} \cdots d_{2k}} \right] = I_{s_{0}}^{M_{s_{0}}} \text{ for } s_{0} = \Delta_{\varepsilon_{1}\varepsilon_{2} \cdots \varepsilon_{n} \cdots}^{D}, \]
and \( M_{s_{0}} = \{ 0 \} \) for \( s_{0} = 0. \) Moreover,
\[ \bigcup_{s_{0}} M_{s_{0}} = \left[ -\sum_{k=1}^{\infty} \frac{d_{2k-1}}{d_{1}d_{2} \cdots d_{2k-1}}, \sum_{k=1}^{\infty} \frac{d_{2k}}{d_{1}d_{2} \cdots d_{2k}} \right]. \]

We begin with definitions.

Definition 7. A cylinder of rank \( m \) with base \( c_{1}c_{2} \cdots c_{m} \) is a set of the following form
\[ \Delta_{c_{1}c_{2} \cdots c_{m}}^{M_{s_{0}}} = \left\{ x : x = \sum_{i=1}^{n} \frac{(-1)^{i}c_i}{d_1d_2 \cdots d_i} + \sum_{j=n+1}^{\infty} \frac{(-1)^{j}\delta_j}{d_1d_2 \cdots d_j} \right\}, \]
where \( c_{1}, c_{2}, \ldots, c_{n} \) are fixed numbers from \( A_{1}', A_{2}', \ldots, A_{n}', \) respectively, and \( \delta_{j} \in A_{j}. \)

Definition 8. A cylindrical closed interval (interval) \( I_{c_{1}c_{2} \cdots c_{n}}^{M_{s_{0}}} (\nabla_{c_{1}c_{2} \cdots c_{n}}^{M_{s_{0}}}) \) of rank \( n \) with base \( c_{1}c_{2} \cdots c_{n} \) is a closed interval (interval) whose endpoints coincide with endpoints of \( \Delta_{c_{1}c_{2} \cdots c_{n}}^{M_{s_{0}}}. \)

The following properties of cylindrical sets follow from Definition 7:
1. \[ \inf \Delta_{c_{1}c_{2} \cdots c_{n}}^{M_{s_{0}}} = \begin{cases} \Delta_{c_{1}c_{2} \cdots c_{n}0^* \varepsilon_{n+2}^* \varepsilon_{n+4}^* \cdots}^{D} & \text{if } n \text{ is odd} \\ \Delta_{c_{1}c_{2} \cdots c_{n}\varepsilon_{n+1}^* \varepsilon_{n+3}^* \varepsilon_{n+5}^* \cdots}^{D} & \text{if } n \text{ is even} \end{cases} \]
2. \[ \sup \Delta_{c_{1}c_{2} \cdots c_{n}}^{M_{s_{0}}} = \begin{cases} \Delta_{c_{1}c_{2} \cdots c_{n} \varepsilon_{n+1}^* \varepsilon_{n+3}^* \varepsilon_{n+5}^* \cdots}^{D} & \text{if } n \text{ is odd} \\ \Delta_{c_{1}c_{2} \cdots c_{n}0^* \varepsilon_{n+2}^* \varepsilon_{n+4}^* \cdots}^{D} & \text{if } n \text{ is even} \end{cases} \]
3. \[
\lim_{n \to \infty} d(\Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}}) = \lim_{n \to \infty} \Delta_{\Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}}}^{D} = 0.
\]

4. If \( \varepsilon_{n+1} \neq 0 \), then \( \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} = \Delta_{c_1 e_2 \ldots e_{n+1}}^{M_{c_0}} \).

5. \[
\Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \subset I_{c_1 e_2 \ldots e_n}^{M_{c_0}} \subset \Delta_{c_1 e_2 \ldots e_n}^{-D},
\]
where \( M_{c_0} \subset \bigcup_{c_i \in A_i'} \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \subset \bigcup_{c_i \in A_i'} I_{c_1 e_2 \ldots e_n}^{M_{c_0}}. \)

6. \[
\left| \Delta_{c_1 e_2 \ldots e_n}^{-D} \setminus (\Delta_{c_1 e_2 \ldots e_{n+1}}^{-D} \cup \Delta_{c_1 e_2 \ldots e_{n+1}}^{M_{c_0}}) \right| = \begin{cases} 
\frac{d_{n+1} - 2}{d_1 d_2 \cdots d_{n+1}} & \text{if } \varepsilon_{n+1} > 0 \\
\frac{d_{n+1} - 1}{d_1 d_2 \cdots d_{n+1}} & \text{if } \varepsilon_{n+1} = 0.
\end{cases}
\]

Here by \( | \cdot | \) denote the length of an interval and by \( \setminus \) denote the difference of sets.

Lemma 22. Let \( s_0 = \Delta_{c_1 e_2 \ldots e_{n+1}}^{-D} \) be a fixed number, \((c_n)\) be an arbitrary fixed sequence from \( L'_s \); then the following are true:

1. \[
\bigcap_{i=1}^{\infty} \Delta_{c_1 e_2 \ldots e_n}^{-D} = \bigcap_{i=1}^{\infty} \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} = \Delta_{c_1 e_2 \ldots e_n}^{-D}.
\]

2. \[
\Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \cap M_{s_0} = \Delta_{c_1 e_2 \ldots e_n}^{-D} \cap M_{s_0},
\]
where \( M_{s_0} = \bigcap_{n=1}^{\infty} \left( \bigcup_{c_i \in A_i'} \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \right) \)
and \( A_i' = \{0, \varepsilon_i\} \) for all positive integers \( i \).

Proof. 1. Let \( x = \Delta_{c_1 e_2 \ldots e_n}^{-D} \). From the definition of \( \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \) it follows that \( \Delta_{c_1 e_2 \ldots e_n}^{-D} = x \in \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \). Therefore \( x \in \bigcap_{n=1}^{\infty} I_{c_1 e_2 \ldots e_n}^{M_{c_0}} \). The first statement follows from Property 5 of \( \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \).

2. Let \( x \in M_{s_0} \). Then \( x \) belongs to a certain cylinder \( \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \subset \Delta_{c_1 e_2 \ldots e_n}^{-D} \). Let us consider the set \( \Delta_{c_1 e_2 \ldots e_n}^{-D} \cap M_{s_0} \). Numbers of the form \( \Delta_{c_1 e_2 \ldots e_n}^{-D} \delta_{n+1} \delta_{n+2} \delta_{n+k} \ldots \) where \( \delta_{n+k} \in A_{n+k} \), are elements of this set. Consequently, \( \Delta_{c_1 e_2 \ldots e_n}^{-D} \cap (\Delta_{c_1 e_2 \ldots e_n}^{-D} \cap M_{s_0}) \).

Also, if \( x \in (\Delta_{c_1 e_2 \ldots e_n}^{-D} \cap M_{s_0}) \), then \( x \in \Delta_{c_1 e_2 \ldots e_n}^{M_{c_0}} \). \( \square \)
Theorem 10. The set \( M_{s_0} \) of incomplete sums of alternating Cantor series (6) is:

1. the one-element set \( \{0\} \) whenever \( s_0 = 0 \);
2. a finite set whenever the condition \( \varepsilon_n \neq 0 \) holds for a finite number of \( n \) in \( s_0 = \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n}^{-D} \);
3. the segment \( [-\frac{2}{3}, \frac{1}{3}] \) whenever \( d_n = \text{const} = 2 \) for all \( n \in \mathbb{N} \) and \( s_0 = -\frac{1}{3} \);
4. a union of finite number of segments whenever there exists a finite number of \( m_i \) \( (i = 1, k_0 \), \( k_0 \) is a fixed number) that \( d_{m_i} \neq 2 \) and \( s_0 = \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_{m_0}}^{-D} \);
5. an uncountable, perfect, and nowhere dense set of zero Lebesgue measure whenever \( s_0 \neq 0 \) and \( d_n > 2 \) hold for an infinite number of \( n \).

Proof. Since an alternating Cantor series is the nega-binary sum

\[
-\frac{\varepsilon_1}{2} + \frac{\varepsilon_2}{2^2} - \frac{\varepsilon_3}{2^3} + \cdots + \frac{(-1)^n \varepsilon_n}{2^n} + \ldots,
\]

where \( \varepsilon_n \in \{0, 1\} \), whenever \( d_n = \text{const} = 2 \) and the set \( M_{s_0} \) is \( C[-D, A_n^*] \), we see that statements 1-4 are true.

We now prove statement 5 is true. Let the mapping \( f : M_{s_0} \to C[E, V_n] \), where \( V_n = A_n^* \), be given by

\[
x = \Delta_{\delta_1 \delta_2 \ldots \delta_n}^{-D} \sum_{n=1}^{\infty} \frac{1}{(2 + \delta_1)(2 + \delta_1 + \delta_2) \cdots (2 + \delta_1 + \cdots + \delta_n)} = \Delta_{\delta_1 \delta_2 \ldots \delta_n}^{-D} = f(x) = y.
\]

Here \( \Delta_{\delta_1 \delta_2 \ldots \delta_n}^{-D} \) is the representation by an Engel series. This mapping is not a bijection at the nega-D-rational points

\[
\Delta_{\delta_1 \delta_2 \ldots \delta_{k-1} \delta_k[d_{k+1}-1][d_{k+2}-1][d_{k+3}-1] \ldots}^{-D} = \Delta_{\delta_1 \delta_2 \ldots \delta_{k-1} \delta_k-1[d_{k+2}-1][d_{k+3}-1] \ldots}^{-D}.
\]

It is true when \( s_0 = \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_{k-1}[d_{k+1}-1][d_{k+2}-1][d_{k+3}-1] \ldots}^{-D} \).

Since the set of nega-D-rational numbers is not more than countable in \( M_{s_0} \), we can use one of the representations of a nega-D-rational number (e.g., the first representation) when the argument is a nega-D-rational number. Hence \( M_{s_0} \) is uncountable, since \( C[E, V_n] \) is uncountable.

Let us prove that the set \( M_{s_0} \) is nowhere dense. Choose a cylinder \( \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_{n-1}}^{-D} \) such that the condition \( \varepsilon_n \neq 0 \) holds for \( s_0 = \Delta_{\varepsilon_1 \varepsilon_2 \ldots \varepsilon_{n-1}}^{-D} \). Consider the mutual
placement of $\Delta_{c_1\cdots c_n-1,0}$ and $\Delta_{c_1\cdots c_n-1}$. Let $n$ be even. Then

$$
\inf_{c_1\cdots c_n-1} \Delta_{c_1\cdots c_n-1,0} - \sup_{c_1\cdots c_n-1} \Delta_{c_1\cdots c_n-1,0} = \sum_{i=1}^{n-1} \frac{(-1)^i c_i}{d_1 d_2 \cdots d_i} + \frac{\varepsilon_n}{d_1 d_2 \cdots d_n} - \sum_{k=1}^{\infty} \frac{\varepsilon_{n+2k-1}}{d_1 d_2 \cdots d_{n+2k-1}} - \sum_{i=1}^{n-1} \frac{(-1)^i c_i}{d_1 d_2 \cdots d_i} - \sum_{k=1}^{\infty} \frac{\varepsilon_{n+2k}}{d_1 d_2 \cdots d_{n+2k}} \geq 0.
$$

That is the cylinders are left-to-right situated and the last-mentioned difference equals zero when $s_0 = \Delta_{c_1\cdots c_n-1,0}^{-1/2} [d_{n+1-1}] [d_{n+2-1}] [d_{n+3-1}] \ldots$. Similarly, the inequality

$$
\inf_{c_1\cdots c_n-1} \Delta_{c_1\cdots c_n-1,0} - \sup_{c_1\cdots c_n-1} \Delta_{c_1\cdots c_n-1,0} \geq 0
$$

holds when $n$ is odd. That is cylinders $\Delta_{c_1\cdots c_n,0}$ are right-to-left situated. Thus for any interval belonging to $[\inf M_{s_0}, \sup M_{s_0}]$ there exists a subinterval that does not contain points from $M_{s_0}$, since $\Delta_{c_1\cdots c_n-1,0}^{-1/2} \cap \Delta_{c_1\cdots c_n-1,0}^{-1/2} \neq \emptyset$ if and only if

$$
\varepsilon_n = 0 \text{ or } s_0 = \Delta_{c_1\cdots c_n-1,0}^{-1/2} [d_{n+1-1}] [d_{n+2-1}] [d_{n+3-1}] \ldots.
$$

Let us prove that $M_{s_0}$ is a closed set without isolated points. Choose an arbitrary limit point $x_0$ from $M_{s_0}$. From the definition of a limit point it follows that for all $\varepsilon > 0$ an interval $(x_0 - \varepsilon, x_0 + \varepsilon)$ contains at least one point (that does not coincide with $x_0$) from $M_{s_0}$. If there does not exist a unique closed interval $I_{\delta_1(x_0)\delta_2(x_0)\ldots\delta_n(x_0)}^{M_{s_0}}$ such that $x_0 \in I_{\delta_1(x_0)\delta_2(x_0)\ldots\delta_n(x_0)}^{M_{s_0}}$, then $x_0$ belongs to one of the adjacent to $M_{s_0}$ intervals. Therefore there exists $\varepsilon_0 > 0$ such that $(x_0 - \varepsilon_0, x_0 + \varepsilon_0) \cap M_{s_0} = \emptyset$. In this case, $x_0$ is not a limit point. If there exists a closed interval $I_{\delta_1(x_0)\delta_2(x_0)\ldots\delta_n(x_0)}^{M_{s_0}}$, then

$$
x_0 = \bigcap_{n=1}^{\infty} I_{\delta_1(x_0)\delta_2(x_0)\ldots\delta_n(x_0)}^{M_{s_0}} \text{ and } x_0 \in M_{s_0}.
$$

Hence $M_{s_0}$ is a closed set.

Suppose there exists a certain isolated point $x' = \Delta_{\delta_1,\delta_2,\ldots,\delta_n}^{-1/2}$. Then there exists $\varepsilon_0 > 0$ such that

$$
(x' - \varepsilon_0, x' + \varepsilon_0) \cap (M_{s_0} \setminus \{x'\}) = \emptyset. \tag{8}
$$

Take a number $m$ such that $d(M_{s_0}^{M_{\delta_1,\delta_2,\ldots,\delta_m}}) < \varepsilon_0$ and $\varepsilon_{m+1}(s_0) \neq 0$. Then $M_{s_0}^{M_{\delta_1,\delta_2,\ldots,\delta_m}} \subset (x' - \varepsilon_0, x' + \varepsilon_0)$ and

$$
x' \neq x = \Delta_{\delta_1,\delta_2,\ldots,\delta_{m+2}}^{-1/2} \in (x' - \varepsilon_0, x' + \varepsilon_0) \cap M_{s_0},
$$

Hence $M_{s_0}$ is a closed set.
where
\[ \sigma = \begin{cases} 
\varepsilon_{m+1} & \text{if } \delta_{m+1} = 0 \\
0 & \text{if } \delta_{m+1} \neq 0.
\end{cases} \]

The last condition contradicts (8). The set \( M_{s_0} \) does not contain isolated points.

Let us calculate the Lebesgue measure of \( M_{s_0} \). Let \( F_k \) be the union of closed intervals \( I_{c_1^k \ldots c_n^k} \) of rank \( k \) \( (c_k \in A_k^k) \). Then \( M_{s_0} \subset F_k \subset F_{k+1} \) for all \( k \in \mathbb{N} \) and \( \lambda(M_{s_0}) \leq \lim_{k \to \infty} F_k \). Since the condition \( d(\Delta_{c_1^m \ldots c_n^m}) = |I_{c_1^m \ldots c_n^m}| \) and the properties of \( \Delta_{c_1^m \ldots c_n^m} \) hold, it follows that
\[
\lambda(M_{s_0}) \leq \lim_{k \to \infty} \left( 2^k \cdot \prod_{h=0}^{N_k} \varepsilon_k(s_0) \cdot \varepsilon_{k+2}(s_0) \cdot \varepsilon_{k+3}(s_0) \ldots \right) = \lim_{k \to \infty} \left( \frac{2^k}{d_1 d_2 \ldots d_k} \cdot \sum_{i=k+1}^{\infty} \frac{\varepsilon_i(s_0)}{d_{k+1} \ldots d_i} \right) = 0. \Box
\]

References

[1] G. Cantor, Ueber die einfachen Zahlensysteme, Z. Math. Phys. 14 (1869), 121-128.
[2] K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
[3] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications. Second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
[4] J. Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Mathematics 502, Springer, 1976.
[5] S. Ito and T. Sadahiro, Beta-expansions with negative bases, Integers 9 (2009), 239-259.
[6] S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Metric properties of alternating Lüroth series, Port. Math. 48 (1991), no. 3, 319-325.
[7] B. Mance, Normal Numbers with Respect to the Cantor Series Expansion, Dissertation, The Ohio State University, 2010.
[8] S. Serbenyuk, Cantor series and rational numbers, available at https://arxiv.org/abs/1702.00471
[9] S. O. Serbenyuk, On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. J. Phys. Math. 15 (2013), 168-187, available at https://www.researchgate.net/publication/292970280 (in Ukrainian)
[10] S. O. Serbenyuk, Real numbers representation by the Cantor series, International Conference on Algebra dedicated to 100th anniversary of S.M. Chernikov: Abstracts, Dragomanov National Pedagogical University, Kyiv, 2012. - P. 136, available at https://www.researchgate.net/publication/30189984
[11] S. Serbenyuk, Nega-Q-representation as a generalization of certain alternating representations of real numbers, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech. 1 (35) (2016), 32-39, available at https://www.researchgate.net/publication/308273000 (in Ukrainian)