Selection of reference genes from two leafhopper species challenged by phytoplasma infection, for gene expression studies by RT-qPCR

Luciana Galetto1*, Domenico Bosco2 and Cristina Marzachi1

Abstract

Background: Phytoplasmas are phloem-limited phytopathogenic wall-less bacteria and represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. For gene expression studies based on mRNA quantification by RT-qPCR, stability of housekeeping genes is crucial. The aim of this study was the identification of reference genes to study the effect of phytoplasma infection on gene expression of two leafhopper vector species. The identified reference genes will be useful tools to investigate differential gene expression of leafhopper vectors upon phytoplasma infection.

Results: The expression profiles of ribosomal 18S, actin, ATP synthase ß, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and tropomyosin were determined in two leafhopper vector species (Hemiptera: Cicadellidae), both healthy and infected by "Candidatus Phytoplasma asteris" (chrysanthemum yellows phytoplasma strain, CYP). Insects were analyzed at three different times post acquisition, and expression stabilities of the selected genes were evaluated with BestKeeper, geNorm and Normfinder algorithms. In Euscelidius variegatus, all genes under all treatments were stable and could serve as reference genes. In Macrosteles quadripunctulatus, BestKeeper and Normfinder analysis indicated ATP synthase ß, tropomyosin and GAPDH as the most stable, whereas geNorm identified reliable genes only for early stages of infection.

Conclusions: In this study a validation of five candidate reference genes was performed with three algorithms, and housekeeping genes were identified for over time transcript profiling of two leafhopper vector species infected by CYP. This work set up an experimental system to study the molecular basis of phytoplasma multiplication in the insect body, in order to elucidate mechanisms of vector specificity. Most of the sequences provided in this study are new for leafhoppers, which are vectors of economically important plant pathogens. Phylogenetic indications were also drawn from sequence analysis of these genes.

Keywords: "Candidatus Phytoplasma asteris", Euscelidius variegatus, Macrosteles quadripunctulatus, Insect vectors, Housekeeping genes, BestKeeper, geNorm, Normfinder

Background

Phytoplasmas, wall-less plant pathogenic bacteria belonging to the Class Mollicutes, are classified as “Candidatus Phytoplasma spp.”, infect a wide variety of plants and cause significant economic losses worldwide [1]. In the infected plants, phytoplasmas are restricted to phloem elements and cause growth disorders, leaf and floral alterations, eventually leading to plant death. The pathogenicity mechanisms are still unclear, but some nucleus-targeted virulence factors secreted by phytoplasma cells alter plant metabolism, playing a crucial role in symptom development and insect vector interaction [2]. Phytoplasmas have a very small, A-T rich genome ranging from 530 to 1350 kb [3]. The genome is generally organized as a circular chromosome [4-6], but it is linear in “Ca. P. mali” [7]. In phytoplasma genomes, several multi-copy genes are organized in clusters of potential mobile units (PMUs), flanked by a transposase gene and inverted repeats, probably involved in host adaptation [8].
Phytoplasmas are transmitted in a persistent and propagative manner by phloem-feeding insects in the Order Hemiptera. A latent period in the vector is required by phytoplasmas to colonize the insect body, including salivary glands, and be transmitted [9]. Insect vector specificity plays a key role in the epidemiology of these pathogens, and phytoplasmas are usually transmitted by a narrow range of vector species [10], while their plant host range is usually broader [11]. For this reason, identification of the molecular determinants of vector specificity is crucial to understand the epidemiology of important phytoplasma diseases worldwide. Indeed, the major antigenic membrane protein of “Ca. P. asteris” (amp) interacts with some cytoskeleton proteins (actin and myosin) and with two subunits of ATP synthase of insect vector species only [12,13].

Identification of insect vector genes differentially expressed upon phytoplasma infection will help to better describe the molecular mechanisms regulating host-pathogen interaction. Gene expression studies based on RT-qPCR quantification of mRNA levels are extensively used in different research fields, but reliability of such an analysis depends on the use of one or more stably expressed housekeeping genes, as internal reference controls [14-16]. Expression variation of one or more stably expressed housekeeping genes, as well as genes encoding tropomyosin, an actin-binding protein involved in cytoskeleton organization, and ATP synthase β, a protein involved in specific phytoplasma-host interaction [13], were selected for expression analysis. Due to the absence of sequence information regarding the genomes of the two vector species, coding sequences were obtained from sequencing of cloned E. variegatus and M. quadripunctulatus amplicons obtained by RT-PCR driven by degenerate primers (Additional file 1: Table S1).

Among the two vector species, ribosomal 18S, actin, ATP synthase β, GAPDH, and tropomyosin DNA sequence identity values were 99, 97, 89, 87 and 93%, respectively. Corresponding amino acid sequences deduced from actin, ATP synthase β, GAPDH, and tropomyosin genes were 100, 98 and 99% similar between the two species, respectively.

Ribosomal 18S of E. variegatus (EVU15148) and M. quadripunctulatus (IX273234) matched in BLASTN with homologous genes of Flexamia areolata, Bothrogonia sp., Graphocephala atropunctata, Putoniessa rivularis, and Tettigella viridis as first five best matching hits. Sequence identities ranged between 98 and 99%.

Actin DNA sequences of E. variegatus (HQ451984) and M. quadripunctulatus (IX273235) matched in BLASTN with homologous proteins of Oncometopia nigricans, Homalodisca coagulata, Mamestra brassicaceae, Manduca sexta, Helicoverpa armigera, Agrotis ipsilon, Papilio polytes, with identities comprised 92 and 95%. Corresponding amino acid sequences deduced from actin gene of these species were at least 99% similar to those of CYP vector species.

ATP synthase β DNA sequences of E. variegatus (HQ451985) and M. quadripunctulatus (IX273236) had greatest homology with Helicoverpa zea, Strongylcentrotus purpuratus, Oreochnis niloticus, Tetraedon nigroviridis, Hemicentrotus pulcherinus and Dendroctonus ponderosae, with identities varying from 85 to 86%. Since most of DNA matching species were not insects, deduced amino acid sequences of the two CYP vector species were directly analysed in BLASTP and matched with homologous of Schistocerca gregaria, Pediculus humanus corporis, Harpegnathos saltator, Dendroctonus ponderosae, Camponotus floridanus, Apis mellifera and Nasonia vitripennis, with similarities ranging from 97 to 98%.

GAPDH gene sequences of E. variegatus (IX273239) and M. quadripunctulatus (IX273237) matched in BLASTN with homologous genes of Oncometopia nigricans, Laodelphax striatellus, Nasonia vitripennis, Culex quinquefasciatus, Spodoptera litura, with identities between 79 to 84%. Corresponding amino acid sequences deduced from GAPDH genes of these species were 87 to 98% similar to those of CYP vector species.

Tropomyosin DNA sequences of E. variegatus (IX273240) and M. quadripunctulatus (IX273238) blasted with homologous genes from Periplaneta fuliginosa, Periplaneta...
americana, Nasonia vitripennis, Blattella germanica, Lethocerus indicus, Culex quinquefasciatus and Bombyx mori, with identities varying from 79 to 84%. Corresponding amino acid sequences deduced from tropomyosin genes of these species were 93 to 98% similar to those of CYP vector species.

For most of the analyzed genes these are the first sequence information for leafhoppers, vectors of economically important plant pathogens.

Optimization of qPCR assays

To identify the best reference genes, SYBR green qPCR assays were optimized for the transcription profiling of the five genes in the two phytoplasma vector species (Table 1). Two primer pairs, one for each species, were used to amplify *tropomyosin*: TMFw237/Rv461, designed on *E. variegatus* sequence, did not produce any amplification signal from *M. quadripunctulatus* cDNA, due to two mismatches on each oligonucleotide sequence. *M. quadripunctulatus* *tropomyosin* was therefore amplified by TMFw33/Rv175. Efficiencies of qPCR reactions were calculated by amplifying amino acid sequences deduced from tropomyosin genes of these species were 93 to 98% similar to those of CYP vector species.

The Cq values obtained for each gene were compared separately for each species in healthy and infective leafhoppers, irrespective of the different sampling time (3, 20 and 40 dpa). A significant difference (Student’s t test, p = 0.032) was found for *M. quadripunctulatus actin* only, which showed higher Cqs in infected leafhoppers (27.17 ± 1.42) than in the healthy ones (24.59 ± 2.55). Consistent with this result, standard deviations of *actin* Cqs were the highest, and higher in *M. quadripunctulatus* (3.25) compared to *E. variegatus* (1.84). In a previous work aimed to identify housekeeping genes in different tissues of the triatomine Chagas' disease vector *Rhodnius prolitus*, candidate reference genes showing different Cqs were excluded from geNorm and Normfinder analysis [29]. In that case authors argued that the exclusion of genes with significant variation would improve the final results of gene expression stability analysis, as genes with major variation in expression could

Table 1 Details of the primer pairs used for qPCR

Target gene	Primer name	5′-3′ sequence	Amplicon size (bp)	Annealing Temp.	Melting peak	PCR Efficiency	R²
Ribosomal 18S	Mq Fw	AACGGCTACCACATCCAAGG	98	65°C	81.5°C²	99%	0.982
	Mq Rv2	GCCTCGGATGAGTCCCG	190	65°C	83°C²	83%	0.987
	ActFw832	AAGGACCTGTACGCCAACAC	51	60°C	85.2°C²	99%	0.982
	ActRv1021	GCTGGAAGGTGGACAGAGAG	171	60°C	84.5°C²	100%	0.995
ATP synthase β	ATPβFw622	CGCTTACTCAGGCTGTTCC	84.5°C²	83.5°C²	99%	0.998	
	ATPβRv792	GCATCAACGGTGACAGTAGA	60°C	84.5°C²	100%	0.995	
GAPDH	GAPFw632	ATCCGGTCTGGCAGCTTACTG	51	60°C	87.1°C²	85%	0.892
	GAPRv682	TCACCTAGTCGCTGCTCCCTTCT	143	60°C	85.1°C²	118%	0.947
Tropo-myosin	TMFw237	AAACCCGCGAGGAGGTGTTG	225	60°C	87.1°C²	85%	0.892
	TMFRv461	AAGGACCTGTACGCCAACAC	143	60°C	85.1°C²	118%	0.947

¹Calculated by amplifying *Euscelidius variegatus* cDNA.
²Calculated by amplifying *Macrosteles quadripunctulatus* cDNA.

Amplification profiles of candidate reference genes

Cycle threshold (Cq) values obtained amplifying the five putative housekeeping genes from the two vector species were plotted (Figure 1). Cq values for the five genes ranged from 12.26 to 38.52 in *E. variegatus* and from 10.25 to 34.03 in *M. quadripunctulatus*. Ribosomal 18S showed the lowest Cq values in both species (13.52 ± 0.74, mean Cq ± std. dev. for *E. variegatus*, and 12.65 ± 1.82 for *M. quadripunctulatus*), being expressed at a very high level compared to other protein encoding mRNAs. A similar amplification profile is reported for the 18S gene of the vector Delphacodes kuschelli challenged by Mal de Rio Cuarto fivirus [28]. Amplification of *actin*, ATP synthase β, GAPDH and *tropomyosin* of *E. variegatus* showed mean Cqs of 32.89 ± 1.84, 28.05 ± 1.45, 21.19 ± 1.04, 27.62 ± 1.42, respectively. Mean Cqs of *M. quadripunctulatus* *actin*, ATP synthase β, GAPDH and *tropomyosin* were 25.66 ± 3.25, 30.57 ± 1.45, 30.30 ± 1.04, 22.23 ± 1.77, respectively.

The Cq values obtained for each gene were compared separately for each species in healthy and infective leafhoppers, irrespective of the different sampling time (3, 20 and 40 dpa). A significant difference (Student’s t test, p = 0.032) was found for *M. quadripunctulatus actin* only, which showed higher Cqs in infected leafhoppers (27.17 ± 3.62) than in the healthy ones (24.59 ± 2.55). Consistent with this result, standard deviations of *actin* Cqs were the highest, and higher in *M. quadripunctulatus* (3.25) compared to *E. variegatus* (1.84). In a previous work aimed to identify housekeeping genes in different tissues of the triatomine Chagas' disease vector *Rhodnius prolitus*, candidate reference genes showing different Cqs were excluded from geNorm and Normfinder analysis [29]. In that case authors argued that the exclusion of genes with significant variation would improve the final results of gene expression stability analysis, as genes with major variation in expression could
be selected as good references by geNorm and Normfinder algorithms. In our case instead, *M. quadripunctulatus* actin was indeed identified as the least stable gene by all the softwares and under all the experimental conditions analyzed (Tables 2, 3, 4). Moreover, in a study to select housekeeping genes for expression analyses in different tissues and development stages of honeybee, despite significant differences among *Cq* of four candidate genes, geNorm, Normfinder and BestKeeper analyses successfully identified reliable reference genes [30].

Expression stability analysis of candidate reference genes of *Euscelidius variegatus*

To identify the most suitable reference genes to describe the effects of phytoplasma infection in *E. variegatus*, transcript profiles of CYP-infected insects sampled at different times were analysed by BestKeeper [31], geNorm [32] and Normfinder [33] algorithms (Table 5). *GAPDH*, *18S* and *ATP synthase β* were the most stable genes according to BestKeeper, with x-fold change in expression ranging from 1.60 to 1.94 (threshold <2, Additional file 1: Table S2) [31].

![Figure 1 Amplification profiles of candidate reference genes.](image)

Figure 1 Amplification profiles of candidate reference genes. Box plot of qPCR cycle threshold values (*Cq*) for candidate reference genes in the two phytoplasma vector species. The median is depicted as the line across the box; the box indicates the 25th and 75th percentiles; whiskers represent the 90th and 10th percentiles.

Table 2 Reference genes ranked from the most to the least stable considering CYP-infected *Macrosteles quadripunctulatus* samples

Ranking order	BestKeeper (N = 9)	geNorm (N = 12)	Normfinder (N = 12)			
	Gene name	Std dev [± CP]	Gene name	M value	Gene name	Stability value
1	GAPDH	0.77	ATP Syn β‡	1.868	Tropomyosin†	0.708
2	Tropomyosin	1.22	Tropomyosin	1.894	ATP Syn β	1.071
3	18S	1.24	GAPDH‡	1.919	ATP Syn β	1.071
4	ATP Syn β	1.43	18S	2.516	18S	1.566
5	Actin	2.13	Actin	2.873	Actin	2.381

Best combination of two genes according with geNorm (average expression stability M = 1.087).

†Best combination of two genes according with Normfinder (stability value = 0.895).

In bold geNorm M values > 1.5.
Although actin and tropomyosin showed a Crossing Point (CP) standard deviation above the consistency limit (>1), standard deviations of CP and x-fold for BestKeeper Index of all genes were acceptable (Additional file 1: Table S2). GeNorm M values were lower than 1.5 limit for all the five genes (Table 5). GeNorm and Normfinder ranked actin and tropomyosin as the most stable genes and 18S as the most variable (Table 5). Discrepancies among different algorithms were often found when defining housekeeping genes of arthropods subjected to different experimental conditions [20,30,34-37].

GeNorm and Normfinder stability analysis considering only healthy E. variegatus samples indicated tropomyosin, ATP synthase β and GAPDH as the three most stable genes even if with different ranking order (Table 6). For BestKeeper analysis, one sample was removed due to its under-expression (over 3-fold [31]), 18S was the most stable gene, with a consistent Cp standard deviation (Table 6), and the five gene index was acceptable (Additional file 1: Table S3).

Overall, the five candidate reference genes resulted reliable housekeeping genes to analyze E. variegatus insects challenged by phytoplasma infection over time. Indeed, when considering altogether infected and healthy samples collected at different times (Table 7), for all the genes M values calculated by GeNorm were below 1.5 limit, and BestKeeper Index was acceptable (Additional file 1: Table S4). 18S was the most stable gene according to BestKeeper analysis, while the best gene combinations were GAPDH and ATP synthase β according to GeNorm and actin and GAPDH according to Normfinder.

Table 3 Reference genes ranked from the most to the least stable considering healthy Macrosteles quadripunctatus samples

Ranking order	BestKeeper (N = 15)	geNorm (N = 17)	Normfinder (N = 17)			
	Gene name	Std dev [± CP]	Gene name	M value	Gene name	Stability value
1	GAPDH	0.82	ATP Syn β	1.747	ATP Syn β	0.450
2	ATP Syn β	0.91	GAPDH	1.773	Tropomyosinβ	0.897
3	18S	1.04	18S	1.968	18S	1.016
4	Tropomyosin	1.06	Tropomyosin	2.104	GAPDH	1.085
5	Actin	1.80	Actin	2.248	Actin	1.552

*Best combination of two genes according with geNorm (average expression stability M = 0.955).
*Best combination of two genes according with Normfinder (stability value = 0.587).

Expression stability analysis of candidate reference genes of Macrosteles quadripunctatus

Transcript profiles of CYP-infected M. quadripunctatus sampled at different times analysed by BestKeeper, geNorm and Normfinder allowed to identify actin as the most variable gene according to all algorithms (Table 2). According to BestKeeper, three samples were removed from the analysis due to a 3-fold over or under-expression [31] and GAPDH was the most stable gene, being the only best gene combination for all three algorithms.

Table 4 Reference genes ranked from the most to the least stable considering all Macrosteles quadripunctatus samples

Ranking order	BestKeeper (N = 24)	geNorm (N = 29)	Normfinder (N = 29)			
	Gene name	Std dev [± CP]	Gene name	M value	Gene name	Stability value
1	GAPDH	0.79	ATP Syn β	1.706	ATP Syn β	0.529
2	ATP Syn β	1.12	GAPDH	1.923	Tropomyosinβ	0.551
3	18S	1.12	Tropomyosin	2.056	18S	0.691
4	Tropomyosin	1.18	18S	2.237	GAPDH	0.824
5	Actin	2.15	Actin	2.672	Actin	1.273

*Best combination of two genes according with geNorm (average expression stability M = 1.015).
*Best combination of two genes according with Normfinder (stability value = 0.435).

In bold geNorm M values > 1.5.
one with CP standard deviation below the consistency limit (>1). BestKeeper Index calculated including all the five genes was however acceptable, with standard deviations of CP and x-fold of 0.93 and 1.90, respectively (Additional file 1: Table S5). On the other hand, geNorm M values were above 1.5 limit for all the candidate genes (Table 2). According to Normfinder, *tropomyosin*, *ATP synthase* β and *GAPDH* were the three most stable genes, and the best gene combination was *tropomyosin* and *GAPDH*.

Similar results were obtained analyzing healthy *M. quadripunctulatus* (Table 3), and healthy and CYP-infected *M. quadripunctulatus* (Table 4). *Actin* was the least stable gene following analysis with the three algorithms. *GAPDH* and *ATP synthase* β were the most stable genes according to BestKeeper, with acceptable BestKeeper Index calculated including all the five genes (Additional file 1: Tables S6 and S7), although *GAPDH* always showed low correlation values (0.523 < \(r < 0.636 \), Additional file 1: Tables S5, S6, S7). GeNorm indicated *ATP synthase* β and *GAPDH* as the first and second most stable genes, despite M values always nearly above 1.5 limit. *ATP synthase* β and *tropomyosin* were designated by Normfinder as the two most stable genes (Tables 3 and 4).

Taken together these results indicated that, according to BestKeeper and NormFinder, *ATP synthase* β, *tropomyosin* and *GAPDH* were the most stable genes, while for geNorm analyses, the five selected genes were not stable enough as references for *M. quadripunctulatus* transcript profiling upon CY phytoplasmal infection. In previous studies, this species has been described as the most susceptible to CY infection in terms of pathogen multiplication rate [26] and reduced longevity of infected insects [38] compared to *E. variegatus* and *Euscelis incisus*, both CYP vectors. Moreover, *M. quadripunctulatus* has a faster development and a shorter life span than the other two vector species, and consistently become infective after a shorter latent period than *E. variegatus* (18 d vs 30 d, respectively) [23,26]. Moreover, the analysis of *M. quadripunctulatus* candidate reference genes with geNorm, considering different sampling dates separately (Table 8), showed that, at the first sampling date (3 dpa), all genes but *18S* had an acceptable M value, at the second date (20 dpa), only two genes (*ATP Synthase* β and *GAPDH*) remained below 1.5 limit, whereas at the last sampling (40 dpa), no genes were acceptable as references. The high phytoplasmal concentration and the instability of genes involved in different metabolic pathways at late stages of infection are consistent with the reduced fitness parameters observed for this vector species.

Conclusions

In this study a validation of candidate reference genes was performed to identify housekeepings for transcript profiling of two leafhopper vector species infected by CY phytoplasmal.

According to three analytic methods, all five genes of *E. variegatus* were stable enough to serve as references, and *ATP synthase* β, *GAPDH*, *actin* and *tropomyosin* were the most stable ones. Leafhopper ATP synthase β and actin

Table 5 Reference genes ranked from the most to the least stable considering CYP-infected *Euscelidius variegatus* samples

Ranking order	BestKeeper (N = 13)	geNorm (N = 13)	Normfinder (N = 13)			
	Gene name	Std dev ± CP	Gene name	M value	Gene name	Stability value
1	GAPDH	0.68	Actin*	0.963	Tropomyosin	0.149
2	18S	0.77	Tropomyosin*	1.016	Actin†	0.167
3	*ATP Syn* β	0.96	*ATP Syn* β	1.091	GAPDH	0.170
4	Actin	1.20	GAPDH	1.105	*ATP Syn* β†	0.171
5	Tropomyosin	1.33	18S	1.345	18S	0.238

Best combination of two genes according with geNorm (average expression stability M = 0.517).

†Best combination of two genes according with Normfinder (stability value = 0.094).

Table 6 Reference genes ranked from the most to the least stable considering healthy *Euscelidius variegatus* samples

Ranking order	BestKeeper (N = 16)	geNorm (N = 17)	Normfinder (N = 17)			
	Gene name	Std dev ± CP	Gene name	M value	Gene name	Stability value
1	18S	0.31	Tropomyosin	1.225	ATP Syn β‡	0.127
2	*Tropomyosin*	1.01	GAPDH	1.296	Tropomyosin‡	0.130
3	GAPDH	1.06	*ATP Syn* β‡	1.366	GAPDH	0.160
4	*Actin*	1.14	18S	1.482	Actin	0.170
5	*ATP Syn* β	1.46	*Actin*	1.611	18S	0.176

‡Best combination of two genes according with geNorm (average expression stability M = 0.823).

†Best combination of two genes according with Normfinder (stability value = 0.074).

In bold geNorm M values > 1.5.
proteins interact with the major antigenic phytoplasma membrane protein and probably are involved in determining vector specificity [12,13]. Despite these interactions, there are no evidences of ATP synthase β and actin deregulation in insect proteome, and indeed their transcript profiles were stable upon phytoplasma infection. On the other hand, the situation with M. quadripunctulatus was less clear, and actin was always the least stable gene upon time and infection. According to BestKeeper and Normfinder, ATP synthase β, tropomyosin and GAPDH were the most stable genes upon time and infection, but, according to geNorm, none of the candidate genes was acceptable as reference upon the entire experimental period. GeNorm analysis at each sampling date identified stable reference genes only for early stages of infection.

Reference genes to study effect of phytoplasma infection on gene expression are species specific and need to be evaluated under different experimental conditions.

The identified reference genes, besides adding new insights into the transcriptome of the poorly characterized phytoplasma vectors, are useful tools to further investigate differential gene expression of leafhoppers upon phytoplasma infection.

Methods

Phytoplasma strain, insect vectors and experimental samples

Chrysanthemum yellows phytoplasma (CYP, 16Sr-1B), belonging to “Candidatus Phytoplasma asteris” [39] was originally isolated from Argyranthemum frutescens (L.) Schultz-Bip in Liguria, Italy, and it was maintained by insect transmission on daisy, Chrysanthemum carinatum Schousboe. Healthy colonies of Euscelidius variegatus and Macrosteles quadripunctulatus, vectors of CYP [23], were maintained on oat, Avena sativa L. in growth chambers at 25°C and with a photoperiod of 16:8 (L:D) h.

Healthy and CYP-infected insects analysed for gene expression were from the same colony and belonged to the same unique generation. To this purpose, approximately 200 fecundated adult females of each species were allowed to lay eggs on oat plants for 24 h. About 30 fourth instar nymphs were caged on CYP-infected daisies for an acquisition access period (AAP) of 7 days and then transferred to healthy oat plants for the latent period; the remaining insects, not exposed to infected plants, were used as healthy samples. Total RNAs were extracted from healthy and CYP-infected insects collected at 3, 20 and 40 days after the start of the AAP. Five to ten insects for each category (healthy and CYP-infected) of the two species were taken at each sampling date. In the end, 30 (17 healthy and 13 CYP-infected) E. variegatus and 29 (17 healthy and 12 CYP-infected) M. quadripunctulatus were subjected to stability analysis to determine putative reference genes.

RNA extraction, quality control and reverse transcription

For gene isolation purpose, total RNAs were extracted from batches of five E. variegatus and ten M. quadripunctulatus

Table 7 Reference genes ranked from the most to the least stable considering all Euscelidius variegatus samples

Ranking order	Gene name	Std dev	M value	Stability value
1	18S	0.56	1.143	Actin*
2	GAPDH	0.89	1.220	GAPDH*
3	Tropomyosin	1.18	1.256	ATP Syn β*
4	ATP Syn β	1.24	1.366	Actin*
5	Actin	1.27	1.423	Tropomyosin

*Best combination of two genes considering individuals sampled at 40 dpa (average expression stability M = 0.864).

Table 8 Reference genes ranked by geNorm in Macrosteles quadripunctulatus individuals sampled at different times after acquisition

Ranking order	Gene name	M value	Gene name	M value	Gene name	M value
1	Trpomosin	0.826	ATP Syn β	1.440	GAPDH	1.923
2	ATP Syn β	0.903	GAPDH	1.498	ATP Syn β	1.965
3	Actin	0.916	Tropomyosin	1.711	18S	2.598
4	GAPDH	1.133	18S	2.126	Actin	2.803
5	18S	1.721	Actin	2.294	Tropomyosin	2.889

§Best combination of two genes considering individuals sampled at 4 dpa (average expression stability M = 0.394).
¶Best combination of two genes considering individuals sampled at 20 dpa (average expression stability M = 0.806).
*Best combination of two genes considering individuals sampled at 40 dpa (average expression stability M = 0.864). In bold geNorm M values > 1.5.
healthy adults with TRIzol reagent (Life Technologies) and reverse transcribed to cDNA with MuLV Reverse Transcriptase and Random Hexamers (Applied Biosystems) following manufacturer’s recommendations and 1 µl was used in PCR with degenerated primers.

For gene expression analysis, total RNA was extracted from healthy or CYP-infected single insects with TRIzol reagent (Life Technologies) and treated with DNase I (Applied Biosystems) following manufacturer’s recommendations. The RNA concentration was measured with a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific), the RNA purity was checked by the 260/280 nm ratio (accepted values ranged between 1.8 and 2), and the RNA integrity was determined by denaturing agarose gel ratio (accepted values ranged between 1.8 and 2), and the specificity of the PCR products was verified by melting curve analysis for all samples.

Gene isolation and sequence analysis
For gene isolation purpose, E. variegatus and M. quadripunctulatus cDNAs were amplified with degenerated primers designed on the consensus sequences of the five putative reference genes obtained by aligning coding sequences of several insect species available in genbank (Additional file 1: Table S1). PCR products, corresponding to partial sequences of the five putative housekeeping genes, were gel-purified by GeneClean (MP Biomedicals), cloned into pGemT Easy vector (Promega), and sequenced by BMR Genomics (Padova, Italia). Sequences were assembled, in silico translated, and analysed by Mega5 software [40].

qPCR assays
The minimum information for publication of qPCR experiments (MIQE) guidelines were followed [41]. To determine amplification efficiencies and specificity of each primer pairs used in qPCR assays, 10-fold cDNA dilution series of each insect species were used, from undiluted to 1:1000. To exclude DNA contamination, non reverse transcribed RNA samples were also included in the analysis.

For expression analysis of the five candidate reference genes, all the experimental samples for each species were processed in the same reverse transcription event, the obtained cDNAs were diluted 1:2 in ddH2O and 2 µl were used in qPCR within three days. Each sample was analyzed in duplicate in 96 well plate in a total reaction of 20 µl, containing 300 nM of each primer, 1X SYBR Green PCR Master Mix (Applied Biosystems) and 2 µl of diluted cDNA. All the experimental samples of each insect species were amplified in five different qPCR plates, one for each primer pair, in order to amplify the same gene from all the samples in the same reaction. No template controls and a pooled cDNA, including equimolar amount of each samples, were always included in each plate. Reactions were performed on a StepOnePlus Real Time PCR System thermal cycler (Applied Biosystems) using the following cycling conditions: 95°C for 3 min and 40 cycles at 95°C for 15 s and 60°C or 65°C (18S and actin) for 1 min. The specificity of the PCR products was verified by melting curve analysis for all samples.

Data analysis
Cq values were submitted to Grubb’s test for outlier detection [42], and compared between different conditions using one-way ANOVA or Student’s t-test, depending on the number of experimental groups analysed. These statistical analyses were performed using SigmaPlot 11 (Systat Software).

To calculate the stability of candidate reference genes the algorithms BestKeeper [31], geNorm [32], and NormFinder [33] were used. BestKeeper uses Cq values to determine the fold variation of different target and housekeeping genes, combining the latter ones into an index. Reference genes can be ordered from the most stable, exhibiting the lowest variation expressed as standard deviation (SD) and coefficient of variance (CV), to the least stable, exhibiting the highest variation.

Raw Cq values were transformed into relative quantities according with geNorm and NormFinder requirements. GeNorm calculates for each reference gene a stability measurement (M value) based on the geometric mean of all studied genes and the pairwise variation. NormFinder calculates a stability value and indicates the best combination of two genes in terms of expression stability among a set of candidate reference genes. The lower are the GeNorm M value and the NormFinder stability index, the more stable is the gene.

Additional file

Additional file 1: Table S1. Details of primers used to amplify and sequence insect genes. Table S2: Descriptive statistics calculated by BestKeeper considering CYP-infected Euscelidius variegatus samples. Table S3: Descriptive statistics calculated by BestKeeper considering healthy Euscelidius variegatus samples. Table S4: Descriptive statistics calculated by BestKeeper considering all Euscelidius variegatus samples. Table S5: Descriptive statistics calculated by BestKeeper considering healthy Macrosteles quadripunctulatus samples. Table S6: Descriptive statistics calculated by BestKeeper considering all Macrosteles quadripunctulatus samples. Table S7: Descriptive statistics calculated by BestKeeper considering healthy Macrosteles quadripunctulatus samples.

Abbreviations
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; CYP: Chrysanthemum yellows phytoplasma; dpa: Days post acquisition; Cq: Cycle threshold; CP: Crossing Point; AAP: Acquisition access period.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LG performed the experimental procedures and data analysis. DB reared insects. CM supervised the research. LG wrote the manuscript, CM and DB assisted in revising it and provided helpful discussions. All authors read and approved the final manuscript.

Acknowledgements
This research was supported by the grant “Studi su fitoneplanas della vite e loro vettori: sensibilità varietale e efficienza di acquisizione di Flavescenza dorata, caratterizzazione, diffusione e vettori di Legno nero, tecniche di riduzione del danno” from Piemonte Region.

Author details
1Istituto di Virologia Vegetale, CNR, Strada delle Casce 73, 10135 Torino, Italy.
2Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Via Leonardo Da Vinci 44, 10095 Grugliasco, TO, Italy.

Received: 10 May 2013 Accepted: 19 September 2013

Published: 11 October 2013

References
1. Dickinson M, Tuffen M, Hodgetts J. Phyttoplasma. In The Phytoplasmas: An introduction. 998th edition. Edited by Dickinson M, Hodgetts J. Totowa, NJ: Humana Press; 2013:1–14.
2. Sugio A, Maclean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 2011; 49:175–195.
3. Kube M, Mitrovic J, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. Sci World J 2012; 2012:185942.
4. Bi X, Zhang J, Ewing A, Miller SA, Jancso Radel A, Shevchenko OV, Tyukerman K, Watanuki T, Ladise A, Campbell JW, Hogenhout SA. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 2006; 188:3682–3696.
5. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Manimekalai R, Hogenhout SA, Nakada D, Miyata S, Uegaki M, Namba S. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 2004; 36:27–29.
6. Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of “Candidatus Phytoplasma australasiae” (Subgroup tuf-Australasia I: rp-A) and “Ca. Phytoplasma asteris” strains QY-M and AY-WB. J Bacteriol 2009; 190:3799–3819.
7. Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E. The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali”. BMC Genomics 2008; 9:306.
8. Sugio A, Hogenhout SA. The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbial 2012; 15:247–254.
9. Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol 2006; 51:191–111.
10. Bosco D, D’Amelio R. Phytoplasmas: genomes, plant hosts and vectors. In Transmission specificity and competition of multiple phytoplasmas in the insect vector. Edited by Weintraub PG, Jones P, Wallingford, UK. CAB; 2010:293–308.
11. Foissac Y, Wilson MR. Phytoplasmas: genomes, plant hosts, and vectors. In Current and possible future distributions of phytoplasmosis diseases and their vectors. Edited by Weintraub PG, Jones P, Wallingford, UK. CAB; 2010:309–324.
12. Suzuki S. From the cover: interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci 2006; 103:4252–4257.
13. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachi C. The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafflower vectors. J Insect Sci 2011; 11:623–71.
14. Dandus J, Ling M. Reference genes for measuring mRNAs expression. Theory Biosci 2012; 131:215–223.
15. Derveaux S, Vandemeule I, Hellermans J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50:227–230.
16. Huggett J, Dheda K, Bustin S, Zumbi A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005, 6:279–284.
17. Lord JC, Hartzler K, Tougtes M, Oppert B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J Microbiol Methods 2010, 80:219–221.
18. Palazzi JP, O’Donnell MJ. Identification, spatial expression analysis and functional characterization of a pyrokinin-1 receptor in the Chagas’ disease vector, Rhodinus prolius. Mol Cell Endocrinol 2012; 363:35–45.
19. Parn RM, Peersia MH, Di Ponzio R, Rodrigues JO, Guarnier AA, Gontijo NF, Araujo RN. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodinus prolius (Hemiptera, Reduviidae) under different environmental conditions by quantitative real-time PCR. BMC Research Notes 2012; 5:128.
20. Schraillien B, De Graaf DC, Geissens K, Brunain M, Peelman LJ, Jacobs FJ. Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honey bee, Apis mellifera, after a bacterial challenge. J Insect Sci 2008; 8:33.
21. Xu Y, Zhou W, Zhou Y, Wu J, Zhou X. Transcriptome and comparative gene expression analysis of Sagotella furcifera (Horvath) in response to Southern Rice Black-Stripped Dwarf Virus. PLoS ONE 2012; 7:e36238.
22. Li R, Xie W, Wang S, Wu Q, Yang Y, Yang X, Pan H, Zhou X, Bai L, Xu B, Zhou X, Zhang Y. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 2013; 8:e53006.
23. Palermo S, Arzone A, Bosco D. Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leaffoppers Macrosteles quadrupunctulatus and Euscelidius variegatus. Entomol Exp Appl 2001; 99:347–354.
24. Galetto L, Nardi M, Saracco P, Bresan A, Marzachi B, Bosco D. Distant vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus. Entomol Exp Appl 2009; 131:200–207.
25. Galetto L, Marzachi C, Demichelis S, Bosco D. Host plant determines the phytoplasma transmission competence of Eupompa decisio (Hemiptera: Cicadellidae). J Econ Entomol 2011; 104:360–366.
26. Bosco D, Galetto L, Leoncini P, Saracco P, Raccab B, Marzachi C. Interrelationships between “Candidatus Phytoplasma asteris” and its leafflower vectors (Homoptera: Cicadellidae). J Econ Entomol 2007; 100:1504–1511.
27. Saracco P, Bosco D, Veratti F, Marzachi C. Quantification over time of chrysanthemum yellows phytoplasma (16Sr-5) in leaves and roots of the host plant Chrysanthemum carinatum (Choussboe) following inoculation with its insect vector. Physiol Mol Plant Pathol 2006; 69:212–219.
28. Maroniche GA, Sagadin M, Mongelli VC, Traul GA, Del Val M. Reference gene selection for gene expression studies using RT-qPCR in virus-infected plantlets. Viral J 2011; 8:308.
29. Majerowicz D, Alves-Bezerra MA, Logullo A, Fonseca-de-Souza AL, Meyer-Fernandes JR, Bazz GR, Godin GC. Looking for reference genes for real-time quantitative PCR experiments in Rhodinus prolius (Hemiptera: Reduviidae). Insect Mol Biol 2011; 20:713–722.
30. Lourenço AP, Mackert A, DosSantos Cristina A, Simões ZLP. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 2008; 39:372–385.
31. Pfaffl MW, Tichopad A, Prgomet C, Neuviens TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 2004; 26:509–515.
32. Vandemeule I, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of quantitative real-time RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3:34.
33. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004; 64:2545–2550.
34. Shi X-Q, Guo W-C, Wan P-J, Zhou L-T, Ren X-L, Ahmut T, Fu K-Y, Li Q-Q. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). BMC Research Notes 2013; 6:953.
35. Bansal R, Mamidala P, Mian MAR, Mittapalli O, Michel AP. Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). J Econ Entomol 2012; 105:1432–1438.
tissues from Bombus terrestris and Bombus lucorum of different ages.
Anal Biochem 2010, 397:118–120.

37. Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Broeck J, Simonet G: Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 2009, 10:56.

38. D’Amelio R, Palermo S, Marzachi C, Bosco D: Influence of Chrysanthemum yellows phytoplasma on the fitness of two of its leafhopper vectors, Macrosteles quadripunctulatus and Euscelidius variegatus. Bulletin of Insectology 2008, 61:349–354.

39. Lee I-M: "Candidatus Phytoplasma asteris", a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbial 2004, 54:1037–1048.

40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731–2739.

41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611–622.

42. Burns MJ, Nixon GL, Foy CA, Harris N: Standardisation of data from real-time quantitative PCR methods - evaluation of outliers and comparison of calibration curves. BMC Biotechnol 2005, 5:31.

doi:10.1186/1756-0500-6-409

Cite this article as: Galetto et al.: Selection of reference genes from two leafhopper species challenged by phytoplasma infection, for gene expression studies by RT-qPCR. BMC Research Notes 2013 6:409.