An expansion for the sum of a product of an exponential and a Bessel function. II

R.B. Paris

Division of Computing and Mathematics, Abertay University, Dundee DD1 1HG, UK

Abstract

We examine the sum of a decaying exponential (depending non-linearly on the summation index) and a Bessel function in the form

$$\sum_{n=1}^{\infty} e^{-an^p} \frac{J_\nu(an^p x)}{\left(\frac{1}{2} an^p x\right)^\nu} \quad (x > 0),$$

where $J_\nu(z)$ is the Bessel function of the first kind of real order ν and a and p are positive parameters. By means of a Mellin transform approach we obtain an asymptotic expansion that enables the evaluation of this sum in the limit $a \to 0$. A similar result is derived for the sum when the Bessel function is replaced by the modified Bessel function $I_\nu(z)$ when $x \in (0, 1)$. The case of even p is of interest since the expansion becomes exponentially small in character. We demonstrate that in the case $p = 2$, a result analogous to the Poisson-Jacobi transformation exists for the above sum.

Mathematics Subject Classification: 33C05, 33C10, 33C20, 41A30, 41A60

Keywords: Bessel functions, Mellin-Barnes integral, Mellin transform, asymptotic expansion, Poisson-Jacobi transformation

1. Introduction

We consider the sum

$$S_{\nu,p}(a, x) = \sum_{n=1}^{\infty} e^{-an^p} \frac{J_\nu(an^p x)}{\left(\frac{1}{2} an^p x\right)^\nu}, \quad p > 0, \ x > 0, \ a > 0, \quad (1.1)$$

where $J_\nu(x)$ is the Bessel function of the first kind of real order ν and

$$\left(\frac{1}{2}z\right)^{-\nu}J_\nu(z) = \sum_{k=0}^{\infty} \frac{(-z^2/4)^k}{\Gamma(1+\nu+k)k!}.$$

Our interest herein is the asymptotic expansion of $S_{\nu,p}(a, x)$ in the limit $a \to 0$ when convergence of the above sum becomes slow. We employ a Mellin transform approach to express the sum as a Mellin-Barnes integral involving the Riemann zeta function $\zeta(s)$ and the Gauss hypergeometric function $\mathbf{2}_1F_1$. It is found that the resulting (algebraic) asymptotic series converges when $p < 1$ and diverges when $p > 1$; the case $p = 1$ requires the condition $a < 2\pi/\sqrt{1+x^2}$ for convergence.

*E-mail address: r.paris@abertay.ac.uk
In [2] the asymptotic expansion of the sum
\[\sum_{n=1}^{\infty} e^{-an^2} \frac{J_\nu(bn)}{(\frac{1}{2}bn)^\nu} \]
was examined for \(a \to 0 \) with \(0 < b < 2\pi \) and \(\nu > -\frac{1}{2} \). The details in this case relied on the use of a double Mellin-Barnes integral involving the zeta function when \(a < b \). When \(a = 0 \), the sum has been considered by Tričković et al. in [4], where approaches using Poisson’s summation formula and Bessel’s integral were employed to derive convergent expansions.

An interesting situation arises when \(p \) is an even integer in the sum (1.1), where the algebraic asymptotic series vanishes to leave an exponentially small contribution. We pay particular attention to the case \(p = 2 \), where it will be demonstrated that a transformation analogous to the well-known Poisson-Jacobi transformation [6, p. 124]
\[\sum_{n=1}^{\infty} e^{-an^2} = \frac{1}{2} \sqrt{\frac{\pi}{a}} - \frac{1}{2} + \frac{\sqrt{\pi}}{a} \sum_{n=1}^{\infty} e^{-\pi^2n^2/a} \quad (\Re(a) > 0) \quad (1.2) \]
holds for the sum in (1.1).

2. The asymptotic expansion of \(S_{\nu,p}(a, x) \) for \(a \to 0 \)

Let \(a > 0, x > 0, p > 0 \) and \(\nu \) be a real parameter. We consider the asymptotic expansion of the sum
\[S_{\nu,p}(a, x) = \sum_{n=1}^{\infty} e^{-an^p} \frac{J_\nu(an^p x)}{(\frac{1}{2}an^p x)^\nu} \quad (2.1) \]
for \(a \to 0 \). We adopt a Mellin transform approach as described, for example, in [3, p. 118] and write the above sum as
\[S_{\nu,p}(a, x) = (\frac{1}{2}x)^{-\nu} \sum_{n=1}^{\infty} h(an^p), \quad h(\tau) := e^{-\tau} \tau^{-\nu} J_\nu(x\tau). \]

With the Mellin transform given by \(H(s) = \int_0^\infty \tau^{s-1} h(\tau) d\tau \), we have [5, p. 385(2)]
\[H(s) = \int_0^\infty \tau^{s-\nu-1} e^{-\tau} J_\nu(x\tau) d\tau = \frac{(\frac{1}{2}x)^\nu}{\Gamma(1 + \nu)} \Gamma(s) \quad 2F_1\left(\frac{1}{2}s, \frac{1}{2}s + \frac{1}{2}; 1 + \nu; -x^2\right), \]
where \(\Gamma(s) \) is the Gauss hypergeometric function [1, p. 384]. Then upon use of the Mellin inversion theorem [3, p. 118] we obtain the integral representation in the form
\[S_{\nu,p}(a, x) = (\frac{1}{2}x)^{-\nu} \sum_{n=1}^{\infty} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} H(s)(an^p)^{-s} ds = \frac{(\frac{1}{2}x)^{-\nu}}{2\pi i} \int_{c-i\infty}^{c+i\infty} H(s) \zeta(sp) a^{-s} ds \]
\[= \frac{1}{\Gamma(1 + \nu)} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \zeta(sp) 2F_1\left(\frac{1}{2}s, \frac{1}{2}s + \frac{1}{2}; 1 + \nu; -x^2\right) a^{-s} ds, \quad (2.2) \]
where \(\zeta(s) \) is the Riemann zeta function and the integration path is such that \(c > 1/p \).

The integrand in (2.2) has simple poles at \(s = 1/p, s = 0 \) and, in general, at \(s = -k (k = 1, 2, \ldots) \). However, if \(p \) is an odd integer, the poles in \(\Re(s) < 0 \) are at \(s = -1, -3, \ldots \) on account of the trivial zeros of \(\zeta(s) \) at \(s = -2, -4, \ldots \) And if \(p \) is an even integer there are no poles in \(\Re(s) < 0 \).

Displacement of the integration path to the left over the poles (when \(p \neq 2, 4, \ldots \)) then formally produces
\[S_{\nu,p}(a, x) = \frac{1}{\Gamma(1 + \nu)} \left\{ \frac{1}{p} a^{-1/p} \Gamma(1/p) 2F_1\left(\frac{1}{2p}, \frac{1}{2p} + \frac{1}{2}; 1 + \nu; -x^2\right) - \frac{1}{2} + \Upsilon(a) \right\} \quad (2.3) \]
with
\[\Upsilon(a) = \sum_{k=1}^{\infty} \frac{(-a)^k}{k!} \zeta(-kp) _2F_1(-\frac{1}{2}, k; 1 + \nu; -x^2), \]
where we have used the fact that \(\zeta(0) = -\frac{1}{2} \). From the functional relation [1, p. 603]
\[\zeta(s) = 2^s \pi^{s-1} \zeta(1-s) \Gamma(1-s) \sin \frac{1}{2} \pi s, \] we find
\[\zeta(-kp) = -\left(\frac{2\pi}{p}\right)^{-kp} \zeta(1+kp) \Gamma(1+kp) \sin \left(\frac{1}{2} \pi kp\right) \]
so that the residue sum \(\Upsilon(a) \) can be written alternatively as
\[\Upsilon(a) = -\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-a)^k}{k!} \left(\frac{a}{(2\pi)^p}\right)^k \zeta(1+kp) \Gamma(1+kp) \sin \left(\frac{1}{2} \pi kp\right) \]
\[\times _2F_1(-\frac{1}{2}k, -\frac{1}{2}k + \frac{1}{2}; 1 + \nu; -x^2). \] (2.5)

Throughout the paper we define the acute angle \(\phi := \arctan x \). To discuss the convergence of the series (2.5) we require the large-\(k \) behaviour of the above hypergeometric function. From (A.2), this is given by
\[
\frac{1}{\Gamma(1+\nu)} _2F_1(-\frac{1}{2}k, -\frac{1}{2}k + \frac{1}{2}; 1 + \nu; -x^2)
\sim \frac{(1+x^2)^{k+\nu/2+3/4}}{\sqrt{\pi(xk)^{\nu+1/2}}} \sin((k+\nu+\frac{3}{2})\phi - \frac{1}{2} \pi \nu + \frac{1}{4} \pi) \quad (k \to \infty).
\]
Hence we see that the late terms in \(\Upsilon(a) \) are controlled in absolute value by
\[
\frac{(1+x^2)^{k/2}}{k^{\nu+1/2}} \frac{\Gamma(1+kp)}{k!} \left(\frac{a \sqrt{1+x^2}}{(2\pi)^p}\right)^k
\]
since \(\zeta(1+kp) \approx 1 \) for \(k \to \infty \). Consequently the residue sum \(\Upsilon(a) \) converges absolutely when \(p < 1 \) and diverges when \(p > 1 \). When \(p = 1 \), the sum (where only odd values of \(k \) contribute) is absolutely convergent provided \(a < 2\pi/\sqrt{1+x^2} \) and divergent otherwise. This result may be summarised in the following theorem:

Theorem 1. For \(p > 0 \) (when \(p \neq 2, 4, \ldots \)), \(a > 0 \), \(x > 0 \), and \(\nu \) real the following expansion holds:
\[S_{\nu,p}(a, x) = \frac{1}{\Gamma(1+\nu)} \left\{ \frac{1}{p} a^{-1/p} \Gamma(1/p) _2F_1(\frac{1}{2p}, \frac{p+1}{2p}; 1 + \nu; -x^2) - \frac{1}{2} \right\} \]
\[-\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-a)^k}{k!} \left(\frac{a}{(2\pi)^p}\right)^k \zeta(1+kp) \Gamma(1+kp) \sin \left(\frac{1}{2} \pi kp\right) _2F_1(-\frac{1}{2}k, -\frac{1}{2}k + \frac{1}{2}; 1 + \nu; -x^2). \] (2.6)

When \(p < 1 \), the expansion (2.6) is an equality, but is asymptotic when \(p > 1 \). When \(p = 1 \), absolute convergence of the infinite series holds when \(a < 2\pi/\sqrt{1+ x^2} \), otherwise it is divergent.

In the following subsection we analyse the case \(p = 1 \) more carefully.

2.1 The case \(p = 1 \)

When \(p = 1 \), the poles in \(\mathcal{R}(s) < 0 \) are situated at \(s = -1, -3, \ldots \). We displace the integration path in (2.2) to the left to coincide with the path \(s = -2N + it \), \(t \in (-\infty, \infty) \), where \(N \) is a positive integer. We find
\[S_{\nu,1}(a, x) = \frac{1}{\Gamma(1+\nu)} \left\{ \frac{1}{a} _2F_1(\frac{1}{2}, 1 + \nu; -x^2) - \frac{1}{2} \right\} \]
\[+ \frac{1}{\pi} \sum_{k=0}^{N-1} (-k) \zeta(2k+2) \frac{2F_1(-k, -k - \frac{1}{2}; 1 + \nu; -x^2)}{a^{2k+1}} + R_N(a),\]

where the remainder \(R_N(a)\) is

\[
R_N(a) = \frac{1}{2\pi i} \int_{c-2N+i\infty}^{c-2N+i\infty} \Gamma(s) \zeta(s) \frac{2F_1(\frac{1}{2}s, \frac{1}{2}s + \frac{1}{2}; 1 + \nu; -x^2)}{a^{-s}} ds
\]

\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \Gamma(-2N + it) \zeta(-2N + it) \frac{2F_1(-N + \frac{1}{2}it, -N + \frac{1}{2} + \frac{1}{2}it; 1 + \nu; -x^2)}{a^{2N-it}} dt.
\]

Upon observing from (2.4) that

\[
\Gamma(-s) \zeta(-s) = -\frac{(2\pi)^s}{2\cos \frac{1}{2}\pi s},
\]

we find that

\[
|R_N(a)| < \frac{1}{4\pi} \frac{a^{2N}}{2\pi} \zeta(1 + 2N) \int_0^\infty \frac{|2F_1(-N + \frac{1}{2}it, -N + \frac{1}{2} + \frac{1}{2}it; 1 + \nu; -x^2)|}{\cosh \frac{1}{2}\pi t} dt.
\]

From (A.6) the modulus of the hypergeometric function satisfies the bound \(K(1 + x^2)^N e^{-\phi t}/(N^2 + \frac{a^2}{4}t^2)^{\nu/2+1/4}\), where \(K\) is a positive constant and \(0 < \phi < \frac{1}{2}\pi\). Hence

\[
|R_N(a)| < \frac{K}{2\pi} \frac{a\sqrt{1 + x^2}}{2\pi} \zeta(1 + 2N) \int_0^\infty \frac{\cos \phi t}{\cosh \frac{1}{2}\pi t} \frac{dt}{(N^2 + \frac{a^2}{4}t^2)^{\nu/2+1/4}} = O\left(\frac{(a\sqrt{1 + x^2})^{2N}}{2\pi}\right).
\]

Hence, as \(N \to \infty\) the remainder \(R_N(a) \to 0\) when \(a < 2\pi/\sqrt{1 + x^2}\). If this last condition is not met the series is asymptotic in character. Then we have the exact result

\[
S_{\nu,1}(a, x) = \frac{1}{\Gamma(1 + \nu)} \left\{ \frac{1}{a} \frac{2F_1(\frac{1}{2}, 1; 1 + \nu; -x^2)^2}{2\pi} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=0}^{\infty} (-k) \zeta(2k+2) \frac{2F_1(-k, -k - \frac{1}{2}; 1 + \nu; -x^2)^2}{a^{2k+1}} \right\} (a < 2\pi/\sqrt{1 + x^2}).
\]

As an example, the special case \(\nu = -\frac{1}{2}\), where \(J_{-1/2}(anx)/(\frac{1}{2}anx)^{-1/2} = \cos(anx)/\sqrt{\pi}\) and

\[2F_1(-k, -k - \frac{1}{2}; \frac{1}{2}; -x^2) = (1 + x^2)^{k+1/2} \cos(2(k + \frac{1}{2})\phi),\]

yields

\[
S_{-\frac{1}{2},1}(a, x) = \frac{1}{\sqrt{\pi}} \left\{ \frac{1}{a(1 + x^2)} - \frac{1}{2} + \frac{1}{\pi} \sum_{k=0}^{\infty} (-k) \zeta(2k+2) \cos(2(k + \frac{1}{2})\phi) X^{2k+1} \right\},
\]

where \(X := a\sqrt{1 + x^2}/(2\pi)\). Evaluation of the sum then produces

\[
S_{-\frac{1}{2},1}(a, x) = \frac{1}{\sqrt{\pi}} \left\{ \frac{1}{4} \left(\coth(\pi X e^{i\phi}) + \coth(\pi X e^{-i\phi}) \right) - \frac{1}{2} \right\} = \frac{1}{2\sqrt{\pi}} \left\{ \frac{\sinh a}{\sinh a - \cos ax} - 1 \right\}
\]

\[
= \frac{1}{\sqrt{\pi}} \left\{ \frac{e^a \cos ax - 1}{1 - 2e^a \cos ax + e^{2a}} \right\}.
\]

This last result is readily verified to be the case by some straightforward algebra applied to the sum \(\pi^{-1/2} \sum_{n\geq1} e^{-an} \cos(anx)\).
3. The case $p = 2$

In the case $p = 2$, we have from (2.2) the result

$$S_{\nu,2}(a, x) = \frac{1}{\Gamma(1 + \nu)} \left\{ \frac{1}{2} \sqrt{\frac{\pi}{a}} \text{$_2$F}_1 \left(\frac{1}{4}, \frac{3}{4}; 1 + \nu; -x^2 \right) - \frac{1}{2} \right\}$$

$$+ \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(-s)\zeta(-2s) \text{$_2$F}_1 \left(-\frac{1}{2}s, -\frac{1}{2}s + \frac{1}{2}; 1 + \nu; -x^2 \right) a^s ds \right\}, \quad (3.1)$$

where in the integral we have put $s \to -s$ and $c > 0$. Since there are no poles of the integrand in $\Re(s) > 0$ (due to the trivial zeros of $\zeta(-2s)$) the expansion $Y(a)$ vanishes. This indicates that this contribution is exponentially small in the limit $a \to 0$.

Noting from (2.4) that

$$\Gamma(-s)\zeta(-2s) = \pi^{-2s-1/2}\zeta(1 + 2s)\Gamma(s + \frac{1}{2}),$$

we express the integral (with the further change of variable $s \to u - \frac{1}{2}$) as

$$\sqrt{\frac{\pi}{a}} \int_{c-i\infty}^{c+i\infty} \left(\frac{\pi^2}{a^2} \right)^{-u} Y(u)\zeta(2u) \text{$_2$F}_1 \left(-\frac{1}{2}u + \frac{1}{4}, -\frac{1}{2}u + \frac{3}{4}; 1 + \nu; -x^2 \right) du \quad (c > \frac{1}{2})$$

$$= \sqrt{\frac{\pi}{a}} \sum_{n=1}^{\infty} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{\pi^2}{a^2} \right)^{-u} Y(u) \text{$_2$F}_1 \left(-\frac{1}{2}u + \frac{1}{4}, -\frac{1}{2}u + \frac{3}{4}; 1 + \nu; -x^2 \right) du. \quad (3.2)$$

From the form\(^1\) of the integrand in (3.2) we may expect a generalised Poisson-Jacobi transformation to hold for $S_{\nu,2}(a, x)$.

To demonstrate that this is the case in a particular example we consider $\nu = -\frac{1}{2}$, where

$$\text{$_2$F}_1 \left(-\frac{1}{2}u + \frac{1}{4}, -\frac{1}{2}u + \frac{3}{4}; \frac{1}{2}; -x^2 \right) = (1 + x^2)^{-u/2-1/4} \cos(u - \frac{1}{2})\phi.$$

Then the integral in (3.2) becomes

$$\frac{1}{(1 + x^2)^{1/4}} \int_{c-i\infty}^{c+i\infty} Y^{-u} \Gamma(u) \cos((u - \frac{1}{2})\phi) du, \quad Y := \frac{\pi^2n^2}{a\sqrt{1 + x^2}}$$

$$= \frac{1}{(1 + x^2)^{1/4}} \sum_{k=0}^{\infty} \frac{(-Y)^k}{k!} \cos((k + \frac{1}{2})\phi) = \frac{1}{(1 + x^2)^{1/4}} e^{-Y \cos \phi} \cos(Y \sin \phi - \frac{1}{2}) \phi.$$

Since

$$\text{$_2$F}_1 \left(\frac{1}{4}, \frac{3}{4}, \frac{1}{2}; -x^2 \right) = \frac{\cos \frac{1}{2} \phi}{(1 + x^2)^{1/4}},$$

we finally have the expansion

$$S_{-1/2,2}(a, x) = \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} e^{-an^2} \cos(an^2 x) = \frac{1}{\sqrt{\pi}} \left\{ \frac{1}{2} \sqrt{\frac{\pi}{a}} \cos \frac{1}{2} \phi \right\}$$

$$+ \sqrt{\frac{\pi}{a}} \left\{ \frac{1}{(1 + x^2)^{1/4}} \sum_{n=1}^{\infty} \exp \left[-\frac{\pi^2n^2}{a(1 + x^2)} \right] \cos \left(\frac{\pi^2n^2x}{a(1 + x^2)} - \frac{1}{2} \phi \right) \right\}, \quad (3.3)$$

which is a generalised Poisson-Jacobi transformation. This result, however, is easily verified upon use of (1.2) applied to the sum $\pi^{-1/2} \sum_{n \geq 1} e^{-an^2} \cos(an^2 x)$.

\(^1\)In the absence of the $\text{$_2$F}_1$ function, the integral in (3.2) can be evaluated by the Cahen-Mellin integral as $\exp(-\pi^2n^2/a)$; see, for example, [3, p. 80].
3.1 The general case

We study the general case of the integral in (3.2), viz.

\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{\pi^2 n^2}{a} \right)^{-u} \Gamma(u) {}_2F_1 \left(-\frac{1}{2} u + \frac{1}{4}, -\frac{1}{2} u + \frac{3}{4}; 1 + \nu; -x^2 \right) du \quad (c > 0)
\]

\[
= \sum_{k=0}^{\infty} \frac{(-\chi)^k}{k!} {}_2F_1 \left(\frac{1}{2} k + \frac{1}{4}, \frac{1}{2} k + \frac{3}{4}; 1 + \nu; -x^2 \right), \quad \chi := \frac{\pi^2 n^2}{a}
\]

upon displacement of the integration path to the left over the poles of \(\Gamma(u) \). When \(x^2 < 1 \), we can series expand the hypergeometric function to obtain

\[
\sum_{k=0}^{\infty} \frac{(-\chi)^k}{k!} \sum_{r=0}^{\infty} \frac{(k + \frac{1}{2})_{2r}}{(1 + \nu)_r r!} (-x^2/4)^r = \frac{1}{\sqrt{\pi}} \sum_{r=0}^{\infty} \Gamma(2r + \frac{1}{2}) \Gamma(2r + 1) (x^2/4)^r \sum_{k=0}^{\infty} \frac{(-\chi)^k (2r + \frac{1}{2})_k}{k!(\frac{1}{2})_k}.
\]

The inner sum can be expressed as a confluent hypergeometric function in the form

\[
{}_1F_1 (2r + \frac{1}{2}; \frac{1}{2}; -\chi) = e^{-\chi} {}_1F_1 (-2r; \frac{1}{2}; \chi) = e^{-\chi} \frac{(2r)!}{(4r)!} H_{4r}(\sqrt{\chi})
\]

by application of Kummer’s theorem and \(H_n(x) \) is the Hermite polynomial [1, p. 328]. Thus the integral in (3.4) can be evaluated as

\[
\sqrt{\pi a} \sum_{n=1}^{\infty} e^{-\pi^2 n^2 / a} P_\nu \left(x, \frac{\pi^2 n^2}{a} \right),
\]

where

\[
P_\nu \left(x, \frac{\pi^2 n^2}{a} \right) := \sum_{r=0}^{\infty} H_{4r}(\pi n/\sqrt{a}) (1 + \nu)_r r! (-x^2/64)^r.
\]

The form (3.5) (with \(x^2 < 1 \)) demonstrates the Poisson-Jacobi-type structure for \(S_{\nu,2}(a,x) \) in (3.1). However, we have been unable to express \(P_\nu (x, \pi^2 n^2 / a) \) in a simpler, more recognisable form.

4. Two generalisations

An extension of the sum in (1.1) is given by

\[
S_{\nu,p}^\mu (a,x) = \sum_{n=1}^{\infty} e^{-an^p \nu} J_\nu (an^p x) \frac{x^\nu}{(2in^p x)^\nu-\mu},
\]

where \(\mu \) is real. The same procedure employed in Section 2 yields the integral representation

\[
S_{\nu,p}^\mu (a,x) = \frac{(\frac{1}{2})^\mu}{\Gamma(1 + \nu)} \frac{1}{2\pi i} \Gamma(s + \mu) \zeta(sp) \int_{c-i\infty}^{c+i\infty} \Gamma(s + \mu - \nu, 1 + \nu; -x^2) a^{-s} ds,
\]

where \(c > \max\{1/p, -\mu\} \). Poles of the integrand are situated at \(s = 1/p \) and \(s = -\mu - k \), although some poles can be deleted on account of the trivial zeros of \(\zeta(sp) \) and it is possible to have a double pole at \(s = 1/p \) when \(\mu = -1/p, -1/p - 1, \ldots \). As an example, we display the particular case \(p = 2 \) and \(\mu \neq -\frac{1}{2}, -\frac{3}{2}, \ldots \), to obtain

\[
S_{\nu,p}^\mu (a,x) = \frac{(\frac{1}{2})^\mu}{\Gamma(1 + \nu)} \Gamma(\mu + \frac{1}{2}) \frac{1}{2^{\nu / 2}} {}_2F_1 \left(\frac{\nu + 1}{2}, \frac{1}{2} \mu + \frac{3}{4}; 1 + \nu; -x^2 \right)
\]
\[-\sin \frac{\pi \mu}{\pi} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{a}{(2\pi)^2} \right)^{n+k} \zeta(1+2\mu+2k)\Gamma(1+2\mu+2k)_{2}F_{1}(-\frac{1}{2}k; -\frac{1}{2}k + \frac{1}{2}; 1 + \nu; -x^2) \}, \]

(4.2)

where we have made use of the functional relation in (2.4).

When \(\mu = 1 \) it is seen that the infinite sum of residues in (4.2) vanishes, which provides us with another example of a generalised Poisson-Jacobi transformation. When \(\nu = \frac{1}{2} \), we obtain

\[S_{1/2,2}(a, x) = \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} e^{-an^2} \sin(an^2x) = \frac{x}{\sqrt{\pi}} \left\{ \frac{1}{4} \sqrt{\pi} a \left(\frac{1}{2} \right)_{2}F_{1} \left(\frac{1}{4}, \frac{3}{4}; \frac{1}{2}; -x^2 \right) + R(a) \right\} \]

\[= \frac{1}{\sqrt{\pi}} \left\{ \frac{1}{2} \sqrt{\frac{\pi}{a}} \sin \frac{\pi}{2} \phi + xR(a) \right\}. \]

(4.3)

Here

\[R(a) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(1-s)\zeta(-2s)_{2}F_{1} \left(\frac{1-s}{2}, \frac{2-s}{2}; \frac{3}{2}; -x^2 \right) a^s ds \quad (c > 0) \]

\[= \sqrt{\pi} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{\pi^2}{a} \right)^{-u} \Gamma(u)\zeta(2u)_{2}F_{1} \left(\frac{1}{2}, \frac{3}{4}; \frac{1}{2}; -x^2 \right) du, \]

since from (2.4)

\[\Gamma(1-s)\zeta(-2s) = -\frac{(u - \frac{1}{2})}{\pi^s a^{1/2}} \Gamma(u)\zeta(2u) \quad (s \to u - \frac{1}{2}). \]

Making use of the identity

\[_{2}F_{1} \left(-\frac{1}{2}u + \frac{3}{4}, -\frac{1}{2}u + \frac{5}{4}; \frac{3}{2}; -x^2 \right) = (1 + x^2)^{u/2 - 1/4} \frac{\sin((u - \frac{1}{2})\phi)}{x(u - \frac{1}{2})}, \]

we then obtain

\[xR(a) = -\sqrt{\pi} \frac{1}{a} \left(1 + x^2 \right)^{1/4} \sum_{n=1}^{\infty} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{\pi^2 n^2}{a \sqrt{1 + x^2}} \right)^{-u} \Gamma(u) \sin((u - \frac{1}{2})\phi) du \]

\[= \sqrt{\pi} \frac{1}{a} \left(1 + x^2 \right)^{1/4} \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{(-Y)^k}{k!} \sin((k + \frac{1}{2})\phi), \quad Y := \frac{\pi^2 n^2}{a \sqrt{1 + x^2}}. \]

Then since

\[\sum_{k=0}^{\infty} \frac{(-Y)^k}{k!} \sin((k + \frac{1}{2})\phi) = -e^{-Y} \cos \phi \sin(Y \sin \phi - \frac{1}{2} \phi), \]

we finally obtain

\[xR(a) = -\sqrt{\pi} \frac{1}{a} \left(1 + x^2 \right)^{1/4} \sum_{n=1}^{\infty} \exp \left[-\frac{\pi^2 n^2}{a(1 + x^2)} \right] \sin \left(\frac{\pi^2 n^2 x}{a(1 + x^2)} - \frac{1}{2} \phi \right). \]

(4.4)

Combination of (4.3) and (4.4) then gives the expansion of \(S_{1/2,2}(a, x) \) for \(a > 0 \) and clearly has the form of a generalised Poisson-Jacobi transformation. This result is easily verified upon use of (1.2) applied to the sum \(\pi^{-1/2} \sum_{n \geq 1} e^{-an^2} \sin(an^2x) \).

Another extension is the sum

\[T_{\nu,p}(a, x) = \sum_{n=1}^{\infty} e^{-an^p} \frac{I_{\nu}(an^p x)}{(\frac{2}{a} n^p x)^\nu}, \quad x \in (0, 1), \]

\[= \frac{1}{\Gamma(1+\nu)} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \zeta(s)_{2}F_{1} \left(\frac{1}{4}, \frac{3}{4}; \frac{1}{2} + \frac{1}{2}; \frac{1}{2} + \nu; x^2 \right) a^{-s} ds \quad (c > 1/p), \]

(4.5)
where $I_0(z)$ is the modified Bessel function of the first kind. Then we obtain the same expansion given in (2.3) and (2.5) with the argument of the hypergeometric function replaced by x^2. When $0 < p < 1$ the infinite series of residues is convergent but divergent (asymptotic) when $p > 1$.

The special case $p = 1$ yields

$$T_{\nu,1}(a, x) = \frac{1}{\Gamma(1 + \nu)} \left\{ \frac{1}{a} {2F_1}(\frac{1}{2}, 1; 1 + \nu; x^2) - \frac{1}{2} \right\}$$

$$+ \frac{1}{\pi} \sum_{k=1}^{\infty} (-1)^k \left(\frac{a}{2\pi} \right)^{2k+1} \zeta(2k + 2) {2F_1}(-k, -k + \frac{1}{2}; 1 + \nu; x^2) \right\}. \quad (4.6)$$

From (A.5), the leading large-k behaviour of the above hypergeometric function is given by

$$2F_1(-k, -k + \frac{1}{2}; 1 + \nu; x^2) \sim \frac{\Gamma(1 + \nu)}{2\sqrt{\pi}} \frac{(1 + x)^{2k+\nu+3/2}}{(kx)^{\nu+1/2}} \quad (k \to \infty)$$

so that the infinite sum in (4.6) converges when $a < 2\pi/(1 + x)$. If $a(1 + x)/(2\pi) = 1$, we have convergence of the sum for $\nu > -\frac{1}{2}$, since it is easily seen that the hypergeometric series is positive for $k \geq 1$.

5. Concluding remarks

In Theorem 1 we have presented the expansion of $S_{\nu,p}(a, x)$ for $p > 0$ ($p \neq 2, 4, \ldots$) with the parameters $a > 0$ and $x > 0$. This expansion is convergent when $p < 1$ but is asymptotic when $p > 1$. In the case $p = 1$ convergence requires the condition $a < 2\pi/\sqrt{1 + x^2}$. When p is an even integer the character of the expansion changes to become exponentially small. In two cases when $p = 2$ it was possible to display a generalised Poisson-Jacobi transformation, although both follow in a straightforward manner from (1.2). An attempt at the general case managed to establish the standard infinite sum of exponentials of the form $\exp[-\pi^2n^2/a]$ in (3.5), although the factor $P_{\nu}(x, \pi^2n^2/a)$ could not be simplified.

The situation when $p = 4$, or higher, is more complicated and preliminary investigation suggests a composite of expansions each containing the exponential factor $\exp[-\pi^2n^2/a]$. We do not consider this situation further here, nor how the expansion might change as $p \to 2$.

Appendix: The large-k behaviour of some hypergeometric functions

In this appendix we determine the large-k asymptotic behaviour of the hypergeometric functions appearing in the main body of the paper. We first consider the function

$$F \equiv 2F_1(-k, -k + \frac{1}{2}; 1 + \nu; -x^2) \quad (k \to +\infty), \quad (A.1)$$

where $x^2 > 0$. From [1, pp. 388, 390] we have

$$F = (1 + x^2)^{2k+\nu+3/2} 2F_1(k + \nu + 1; k + \nu + \frac{1}{2}; 1 + \nu; -x^2)$$

$$= (1 + x^2)^{2k+\nu+3/2} \frac{\Gamma(1 + \nu)\Gamma(k + 1)}{2\pi i \Gamma(k + \nu + 1)} \int_0^{(1+)} \frac{t^{k+\nu}(t - 1)^{-k-1}}{(1 + x^2 t)^{k+\nu+3/2}} dt, \quad (A.2)$$

where the integration path is a closed contour starting and finishing at $t = 0$ that encircles $t = 1$ in the positive sense. The above integral can be written as

$$\frac{1}{2\pi i} \int_0^{(1+)} e^{\psi(t)} f(t) dt,$$
Then we obtain the leading large-\(k \) behaviour given by

\[
2F_1(-k, -k - \frac{1}{2}; 1 + \nu; -x^2) \sim \frac{\Gamma(1 + \nu)}{2\sqrt{\pi}} \frac{(1 + x^2)^{k+\nu/2+3/4}}{(xk)^{\nu+1/2}} \sin\left((2k + \nu + \frac{3}{2})\phi - \frac{1}{2}\pi\nu + \frac{1}{4}\pi\right) \quad (k \to \infty). \tag{A.4}
\]

In the special case \(\nu = -\frac{1}{2} \), (A.4) yields

\[
2F_1(-k, -k - \frac{1}{2}; 1 + \nu; -x^2) \sim (1 + x^2)^{k+1/2} \cos((2k + 1)\phi),
\]

which is the exact result.

For the function with positive argument

\[
2F_1(-k, -k - \frac{1}{2}; 1 + \nu; x^2) \quad x \in (0, 1),
\]

the procedure is similar, where now \(\psi(t) = \log[(t/((t - 1)(1 - x^2)t)] \) with saddles at \(\pm 1/x \). The integration path can be deformed to pass over the saddle at \(t_s = 1/x \), where the direction of integration at the saddle is \(\frac{1}{2}\pi - \frac{1}{4}\arg \psi''(t_s) = \frac{1}{4}\pi + \phi \); the steepest descent path through the saddle at \(-i/x \) is the reflection of the path in the upper half-plane. The integration path can then be expanded to infinity around an infinite arc to pass over both saddles, which contribute equally to the integral.

Application of the saddle-point method [1, p. 47] shows that the contribution to the integral from the saddle \(t_s = i/x \) is

\[
-\sqrt{\frac{2\pi}{k(-\psi''(t_s))}} f(t_s)e^{k\psi(t_s)} = -\sqrt{\frac{\pi}{k}} \frac{(1 + x^2)^{-k-\nu/2-3/4}}{x^{\nu+1/2}} \exp\left[-i(2k + \nu + \frac{3}{2})\phi + \frac{1}{2}\pi i(\nu - \frac{1}{2})\right]
\]

with the conjugate expression from the saddle \(t_s = -i/x \). Hence, noting that the ratio of gamma functions multiplying the integral in (A.2) is \(\Gamma(1 + \nu)k^{-\nu} \) for large \(k \), we obtain the final result

\[
2F_1(-k, -k - \frac{1}{2}; 1 + \nu; -x^2) \sim \frac{\Gamma(1 + \nu)}{\sqrt{\pi}} \frac{(1 + x^2)^{k+\nu/2+3/4}}{(xk)^{\nu+1/2}} \sin\left((2k + \nu + \frac{3}{2})\phi - \frac{1}{2}\pi\nu + \frac{1}{4}\pi\right) \quad (k \to \infty).
\]

Finally, we require an estimate for

\[
|2F_1(-N + \frac{1}{2}it, -N + \frac{1}{2} + \frac{1}{2}it; 1 + \nu; -x^2)|, \quad t \in (-\infty, \infty)
\]
that appears in the estimation of the remainder term $R_N(a)$ in (2.7). The procedure follows that employed in the estimation of (A.1) with k replaced by $N - \frac{1}{2}it$. The modulus of the exponential factor in (A.3) becomes $e^{-\phi t}/(1 + x^2)^N$, with the result that

$$|_{2F1}(-N + \frac{1}{2}it, -N + \frac{1}{2} + \frac{1}{2}it; 1 + \nu; -x^2)| \leq \frac{K(1 + x^2)^N e^{-\phi t}}{(N^2 + \frac{1}{4}t^2)^{\nu/2 + 1/4}}, \quad (A.6)$$

where K is a positive constant.

References

[1] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.

[2] R.B. Paris, The evaluation of single Bessel function sums, Math. Aeterna 8 (2018) 71–82.

[3] R.B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, Cambridge, 2001.

[4] S.B. Tričković, M.V. Vidanović and M.S. Stanković, On the summation of series in terms of Bessel functions, J. Anal. Appl. 25 (2006) 393–406.

[5] G.N. Watson, A Treatise on Bessel Functions, Cambridge University Press, Cambridge, 1952.

[6] E.T. Whittaker and G.N. Watson, Modern Analysis, Cambridge University Press, Cambridge, 1952.