Predicting the Molecular Mechanism of Shenling Baizhu San in Treating Convalescent Patients With COVID-19 Based on Network Pharmacology and Molecular Docking

Ying Zhang1,* , Li Lu1,2,* , YiWen Liu1,2, AiXia Yang2, and Yanfang Yang1

Abstract
Objective: Shenling Baizhu San (SBS) was selected as the regimen for the treatment of COVID-19 in Guangdong Province. It is mainly used for the convalescent treatment of COVID-19 patients with deficiency of both lung and spleen. In this study, we aimed to explore the mechanism of SBS in the treatment of COVID-19 through network pharmacology combined with molecular docking. Methods: The targets of active components of SBS were collected through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and ETCM databases. Using the Genecards, TTD, OMIM and other databases, the targets of COVID-19 were determined. The next step was to use a string database to build a protein–protein interactions (PPI) network between proteins, and use David database to perform gene ontology (GO) function enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct the active ingredients-core target-signaling pathway network, and finally the active ingredients of SBS were molecularly docked with the core targets to predict the mechanism of SBS in the treatment of COVID-19. Results: A total of 177 active compounds, 43 core targets and 58 signaling pathways were selected. Molecular docking results showed that the binding energies of the top six active components and the targets were all less than -5 kcal/MOL. Conclusion: The potential mechanism of action of SBS in the treatment of COVID-19 may be associated with the regulation of genes co-expressed with IL6, DPP4, PTGS2, PTGS1 and TNF.

Keywords
Shenling Baizhu San, network pharmacology, COVID-19, molecular docking

Received: June 29th, 2021; Accepted: August 20th, 2021.

Introduction
Since the end of 2019, the acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally. The WHO named it COVID-19. This has caused a serious negative impact on the health and economic development of all human beings, as well as social order. At present, there is no specific drug for treatment of this disease. We mainly promote the recovery of patients through supportive management.1 Traditional Chinese medicine (TCM) is crucial in the COVID-19 outbreak, and plays an integral role in all three processes: the prevention and treatment of COVID-19, and the recovery of patients. 2 In the preliminary treatment, TCM can significantly inhibit the deterioration of the disease, reduce the patient’s symptoms and promote the negative conversion of viral nucleic acid. At the same time, TCM can promote the conversion of severe cases into mild cases.3 This shows that TCM has a positive effect on patients with COVID-19 at different periods.

1School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
2Department of Pharmacy, Wuhan No 1 Hospital, Wuhan 430022, China
*These authors made equal contribution to this work.

Corresponding Authors:
AiXia Yang, Wuhan No 1 Hospital, Wuhan, Hubei, China.
Email: yangaixia6407@163.com

Yanfang Yang, Hubei University of Chinese Medicine, Huangjiu west road N0.16, Wuhan, Hubei,China.
Email: 1397@hbtcm.edu.cn
SBS is composed of ten Chinese medicines: *Dolichos lablab* L. (Baibiandou), *Atractylodes macrocephala* Koidz. (Baizhu), *Poria cocos* (Schw.) Wolf. (Fuling), *Glycyrrhiza uralensis* Fisch. (Gancao), *Platycodon grandiforum* (Jacq.) A. DC. (Jiegeng), *Nelumbo nucifera* Gaertn (Lianzi), *Panax ginseng* C. A. Mey. (Renshen), *Amomum villosum* Lour. (Sharen), *Dioscorea opposita* Thumb. (Shanyao), and *Coix lacryma-jobi* L. var. mayuen. (Roman. Stapf (Yiyiren). SBS is recorded in the earliest existing Chinese official pharmacopoeia “Tai Ping Hui Min He Ji Ju Fang”. SBS has the effects of replenishing the spleen, stomach and lungs. It fits the main pathogenesis of COVID-19 “damp, poison, and epidemic”. Therefore, SBS was used to recover COVID-19 patients and achieved good results. However, its current mechanism of action is not particularly clear. The motivation of this study was to use network pharmacology to analyze the active ingredients and mechanism of action of SBS, which has been clinically proved to have a therapeutic effect on COVID-19, and to confirm the relevant results by molecular docking. This can not only provide a further theoretical basis for SBS treatment of COVID-19, but also contribute to the development of new drugs.

Network pharmacology includes the technology and content of multiple disciplines such as systems biology, multi-directional pharmacology and computational biology. It can explore the connection between drugs and diseases from the overall perspective. The holistic, systematic and comprehensive nature of network pharmacology fits well with the characteristics of multiple components, multiple targets, and multiple pathways of traditional Chinese medicine. Therefore, network pharmacology is used to study the mechanism of action of traditional Chinese medicines. To understand the molecular mechanism of SBS in treating convalescent COVID-19 patients, this study used network pharmacology and molecular docking technology to explore the core targets, pathways and active...
ingredients of SBS in the treatment of COVID-19, in order to provide new ideas for the prevention and treatment of the disease by TCM. The specific process is shown in Figure 1.

Materials and Methods

Screening of Drug Targets of SBS

We used the TCMSP database (http://tcmspw.com/tcmsp.php) to retrieve the chemical constituents of Baibiandou, Baizhu, Fuling, Gancao, Jiegeng, Renshen, Sharen, Shanyao, and Yiyiren. We used the ETCM database (http://www.tcmip.cn/ETCM/index.php/Home/) to retrieve the chemical constituents of Lianzi. Then the active ingredients of SBS were screened by the two ADME attribute values: oral bioavailability (OB) $\geq 30\%$, and drug-likeness (DL) $\geq 0.18^{10,11}$ The next step was to summarize the protein targets of these active ingredients. For some active ingredients whose target is not recorded in TCMSP, we used SwissTargetPrediction (http://www.swisstargetprediction.ch/) to predict their protein targets. The obtained protein targets were normalized in the Uniprot database (https://www.uniprot.org). Finally, we summarized and deduplicated drug targets of SBS.

Targets for COVID-19

With COVID-19 as the key word, and using the DisGeNET (https://www.disgenet.org/), TTD (http://db.idrblab.net/td/), OMIM (http://www.omim.org), Genecards (https://www.genecards.org/) and DRUGBANK databases (https://www.drugbank.ca/), we respectively queried the targets of COVID-19. In the Genecards database, the higher the target score, the more closely the target is linked to COVID-19. Therefore, we selected the target with a score greater than or equal to the median as a potential target for the treatment of COVID-19. Finally, all disease targets were summarized and deduplicated.

Establishment of a PPI Network of SBS-COVID-19 Target Proteins

In order to screen out the core targets of SBS for the treatment of COVID-19, we intersected the drug targets and the disease

![Figure 2](image1.png)
Figure 2. The intersection of the drug targets of SBS and the targets of COVID-19.

![Figure 3](image2.png)
Figure 3. SBS in the treatment of COVID-19 target protein PPI network.
Drug	MOLID	Active ingredient	OB (%)	DL	Codename
Baibiandou	MOL00273	beta-carotene	37.18	0.58	BBD1
Baizhu	MOL00020	12-seneccylo-2,8E,10E-atriyentriol	62.4	0.22	BZ1
	MOL00021	14-acetyl-12-seneccylo-2,8E,10E-atriyentriol	60.31	0.31	BZ2
	MOL00022	14-acetyl-12-seneccylo-2,8Z,10E-atriyentriol	63.37	0.3	BZ3
	MOL00028	alpha-Amyrin	39.51	0.76	BZ4
	MOL00033	(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[2R,5S]-5-propan-2-yloctan-2-yl]-2,3,	36.23	0.78	BZ5
		4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[alpha]phenanthren-3-ol			
	MOL00049	3beta-acetoxyatractylene	54.07	0.22	BZ6
	MOL00072	8beta-ethoxy atracyletonolide III	35.95	0.21	BZ7
Fuling	MOL00275	trametenolic acid	38.71	0.8	FL1
	MOL00276	7,9(11)-dehydroxyatractylene	35.11	0.81	FL2
	MOL00279	Cerevisinol	37.96	0.77	FL3
	MOL00280	(2R)-2-[3S,5R,10S,13R,14R,16R,17R]-3,16-dihydroxy-4,4,10,13,	31.07	0.82	FL4
		14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[alpha]phenanthren-17-yl-			
		6-methylhept-5-enoic acid			
	MOL00282	ergosta-7,22E-dien-3beta-ol	43.51	0.72	FL5
	MOL00283	Ergosterol peroxide	40.36	0.81	FL6
	MOL00285	(2R)-2-[3S,5R,10S,13R,14R,16R,17R]-3,16-dihydroxy-4,4,10,13,	38.26	0.82	FL7
		14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[alpha]phenanthren-17-yl-			
		5-isopropyl-hex-5-enoic acid			
	MOL00287	3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid	38.7	0.81	FL8
	MOL00289	pachymic acid	33.63	0.81	FL9
	MOL00290	Poricoic acid A	30.61	0.76	FL10
	MOL00291	Poricoic acid B	30.52	0.75	FL11
	MOL00292	poricoic acid C	38.15	0.73	FL12
	MOL00296	hederagenin	36.91	0.75	FL13
	MOL00300	dehydrobiburicoic acid	44.17	0.83	FL14
Gancao	MOL01484	inermine	75.18	0.54	GC1
	MOL01792	DFV	32.76	0.18	GC2
	MOL00211	Mairin	55.38	0.78	GC3
	MOL02311	Glycyrol	90.78	0.67	GC4
	MOL00239	Jaranol	50.83	0.29	GC5
	MOL02565	Medicarpin	49.22	0.34	GC6
	MOL00354	isorhamnetin	49.6	0.31	GC7
	MOL00359	sitosterol	36.91	0.75	GC8
	MOL03656	Lupiwightone	51.64	0.37	GC9
	MOL03896	7-Methoxy-2-methyl isoflavone	42.56	0.2	GC10
	MOL00392	formononetin	69.67	0.21	GC11
	MOL00417	Calycosin	47.75	0.24	GC12
	MOL00422	kaempferol	41.88	0.24	GC13
	MOL04328	naringenin	59.29	0.21	GC14
	MOL04805	(2S,2-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]-8,8-dimethyl-2,3-dihydropyrano[2,3-f]	31.79	0.72	GC15
		chromen-4-one			
	MOL04806	eucalenone	30.29	0.57	GC16

(Continued)
Drug MOLID	Active ingredient	OB (%)	DL (%)	CODENAME	
MOL004808	glyasperin B	65.22	0.44	GC15	
MOL004810	glyasperin F	75.84	0.54	GC16	
MOL004811	Glyasperin C	45.56	0.4	GC17	
MOL004814	Isotrifoliol	31.94	0.42	GC18	
MOL004815	(E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one	39.62	0.35	GC19	
MOL004820	kanzonols W	50.48	0.52	GC20	
MOL004824	(2S)-6-(2,4-dihydroxyphenyl)-2-(2-hydroxypropan-2-yl)-4-methoxy-2,3-dihydrofuro[3,2-g]chromen-7-one	60.25	0.63	GC21	
MOL004827	Semilicosiflavone B	48.78	0.55	GC22	
MOL004828	Glepidotin A	44.72	0.35	GC23	
MOL004829	Glepidotin B	64.46	0.34	GC24	
MOL004833	Phaseoflavin	32.01	0.45	GC25	
MOL004835	Gylpalchalcone	61.6	0.19	GC26	
MOL004838	8-(6-hydroxy-2-benzofuranyl)-2,2-dimethyl-5-chromanol	58.44	0.38	GC27	
MOL004841	Licochalcone B	76.76	0.19	GC28	
MOL004848	licochalcone G	49.25	0.32	GC29	
MOL004849	3-(2,4-dihydroxyphenyl)-8-(1,1-dimethylprop-2-enyl)-7-hydroxy-5-methoxy-coumarin	59.62	0.43	GC30	
MOL004855	Licoricone	63.58	0.47	GC31	
MOL004856	Gancaonin A	51.08	0.4	GC32	
MOL004857	Gancaonin B	48.79	0.45	GC33	
MOL004860	licorice glycoside E	32.89	0.27	GC34	
MOL004863	3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-ethyl)chromone	66.37	0.41	GC35	
MOL004864	5,7-dihydroxy-3-(4-methoxyphenyl)-8-(3-methylbut-2-ethyl)chromone	30.49	0.41	GC36	
MOL004866	2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-ethyl)chromone	44.15	0.41	GC37	
MOL004879	Glycyrrhin	52.61	0.47	GC38	
MOL004882	Licoumarone	33.21	0.36	GC39	
MOL004883	Licoisoalvone	41.61	0.42	GC40	
MOL004884	Licoisoalvone B	38.93	0.55	GC41	
MOL004885	licoidinioflavanone	52.47	0.54	GC42	
MOL004891	shinpterocarpin	80.3	0.73	GC43	
MOL004898	(E)-3-[3,4-dihydroxy-5-[3-methylbut-2-etyl]phenyl]-1-(2,4-dihydroxyphenyl)prop-2-en-1-one	46.27	0.31	GC44	
MOL004903	liquiritin	65.69	0.74	GC45	
MOL004904	licopyranocoumarin	80.36	0.65	GC46	
MOL004905	3,22-Dihydroxy-11-oxo-delta12-oleanene-27-alpha-methoxy-carbonyl-29-oic acid	34.32	0.55	GC47	
MOL004907	Glyzaglarin	61.07	0.35	GC48	
MOL004908	Glabridin	53.25	0.47	GC49	
MOL004910	Glbranin	52.9	0.31	GC50	
MOL004911	Glbrenne	46.27	0.44	GC51	
MOL004912	Glbrane	52.51	0.5	GC52	
MOL004913	1,3-dihydroxy-9-methoxy-6-benzofurano[3,2-e]chromone	48.14	0.43	GC53	
MOL004914	1,3-dihydroxy-8,9-dimethoxy-6-benzofurano[3,2-e]chromone	62.9	0.53	GC54	
MOL004915	Eurycurpin A	43.28	0.37	GC55	
MOL004917	glycycoside	37.25	0.79	GC56	
MOL004924	(-)-Medicocarpin	40.99	0.95	GC57	
Drug	MOLID	Active ingredient	OB (%)	DL	Codename
------------	------------	--	--------	----	----------
MOL004935	Sigmoidin-B				
MOL004941	(2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one				
MOL004945	(2S)-7-hydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)chroman-4-one				
MOL004948	Isoglycyrol				
MOL004949	Isolicoflavonol				
MOL004957	HMO				
MOL004959	1-Methoxyphaseolpidin				
MOL004961	Quercetin der.				
MOL004966	3'-Hydroxy-4'-O-Methylglabridin				
MOL004973	licochalcone a				
MOL004974	3'-Methoxyglabridin				
MOL004978	2,3-(3R)-8,8-dimethyl-3,4-dihydro-2H-pyran[6,5-f]chromen-3-yl]-5-methoxyphenol				
MOL004990	Inflacoumarin A				
MOL004985	icos-5-enolic acid				
MOL004988	Kanzonol F				
MOL004989	6-prenylated eriodictyol				
MOL004990	7,2,4'-trihydroxy-5-methoxy-3'-arylcoumarin				
MOL004991	7-Acetoxy-2-methylisoflavone				
MOL004993	8-prenylated eriodictyol				
MOL004996	gadelaidic acid				
MOL005000	Vestitol				
MOL005001	Gancaonin G				
MOL005003	Licoagrocarpin				
MOL005007	Glyasperins M				
MOL005008	Glycyrrhiza flavonoid A				
MOL005012	Licoagroisoflavone				
MOL005013	18α-hydroxyglycyrrhetic acid				
MOL005016	Odonatin				
MOL005017	Phaseol				
MOL005018	Xambioona				
MOL005020	dehydrogasperins C				
MOL000098	quercealin				
Jiegen	MOL001689	acacetin			
MOL004355	Spinasterol				
MOL004580	cis-Dihydroquercetin				
MOL005996	2-O-methyl-3-O-D-glucopyranosyl platycogenate A				
MOL000006	luteolin				
MOL006026	dimethyl 2-O-methyl-3-O-a-D-glucopyranosyl platycogenate A				
MOL006070	robinin				
Lianzi	MOL007213	Nuciferin			
MOL004922	catechin				
MOL002419	Norooclutine				

(Continued)
Drug	MOLID	Active ingredient	OB (%)	DL	Code name
Renshen	MOL007206	Armapine	69.31	0.29	LZ4
	MOL009172	Pomuciferin	32.75	0.37	LZ5
	MOL002879	Disp	43.59	0.39	RS1
	MOL000449	Stigmasterol	43.83	0.76	C
	MOL000358	beta-sitosterol	36.91	0.75	D
	MOL003648	Inermin	65.83	0.54	RS2
	MOL004422	kaempferol	41.88	0.24	B
	MOL004492	Chrysanthematosidolaxanthin	38.72	0.58	RS3
	MOL005308	Aposiopamine	66.65	0.22	RS4
	MOL005314	Celabenzine	101.88	0.49	RS5
	MOL005317	Deoxyharringtonine	39.27	0.81	RS6
	MOL005318	Dianthiside	40.45	0.2	R57
	MOL005320	anachidonate	45.57	0.2	RS8
	MOL005321	Frutinone A	65.9	0.34	RS9
	MOL005344	ginsenoside rh2	36.32	0.56	RS10
	MOL005348	Ginsonoside-Rh4_qt	31.11	0.78	RS11
	MOL005356	Girinimbin	61.22	0.31	RS12
	MOL005357	Gomisin B	31.99	0.83	RS13
	MOL005360	malkangunin	57.71	0.63	RS14
	MOL005376	Panaxadiol	33.09	0.79	RS15
	MOL005384	suchilactone	57.52	0.56	RS16
	MOL005399	alexandrin_qt	36.91	0.75	RS17
	MOL005401	ginsenoside Rg5_qt	39.56	0.79	RS18
	MOL000787	Fumarine	59.26	0.83	RS19
Sharen	MOL001755	24-Ethylcholest-4-en-3-one	36.08	0.76	SR1
	MOL001771	poriferast-5-en-3beta-o1	36.91	0.75	SR2
	MOL001973	Sitosterol acetate	40.39	0.85	SR3
	MOL000358	beta-sitosterol	36.91	0.75	D
	MOL003975	icosa-11,14,17-trienoic acid methyl ester	44.81	0.23	SR4
	MOL000449	Stigmasterol	43.83	0.76	C
	MOL007180	vitamin-e	32.29	0.7	SR5
	MOL007514	meryl icosa-11,14-dienoate	39.67	0.23	SR6
	MOL007535	(5S,8S,9S,10R,13R,14S,17R)-17-[(4R)-4-ethyl-1,5-dimethylhexyl]-10,	33.12	0.79	SR7
		13-dimethyl-2,4,5,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[al]phenanthrene-3,6-dione			
Shanyao	MOL001559	piperlonguminine	30.71	0.18	SY1
	MOL001736	(-)-taxifolin	60.51	0.27	SY2
	MOL000310	Denudatin B	61.47	0.38	SY3
	MOL000322	Kadsurenone	54.72	0.38	SY4
	MOL005429	hancinol	64.01	0.37	SY5
	MOL005430	hancinone C	59.05	0.39	SY6
	MOL005435	24-Methylcholest-5-enyl-3beta-O-glucopyranoside_qt	37.58	0.72	SY7
	MOL005438	campesterol	37.58	0.71	SY8

(Continued)
Drug	MOLID	Active ingredient	OB (%)	DL (%)	Codename
MOL005440	Isofucosterol	43.78	0.76	SY9	
MOL000449	Stigmasterol	43.83	0.76	C	
MOL005458	Dioscoreside C_qt	36.38	0.87	SY10	
MOL000546	diosgenin	80.88	0.81	SY11	
MOL005461	Donadexanthin	38.16	0.54	SY12	
MOL005463	Methylkimmifugoside_qt	31.69	0.24	SY13	
MOL005465	AIDS180907	45.33	0.77	SY14	
MOL000953	CLR	37.87	0.68	E	
MOL001323	Sitosterol alpha	43.28	0.78	YYR1	
MOL001494	Mandenol	42	0.19	YYR2	
MOL002372	(6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetraocosa-2,6,10,14,18,22-hexaene	33.55	0.42	YYR3	
MOL002882	(2R)-2,3-dihydroxypropyl (Z)-octadec-9-enoate	34.13	0.30	YYR4	
MOL000359	sitosterol	36.91	0.75	A	
MOL000449	Stigmasterol	43.83	0.76	C	
MOL008118	Coixenolide	32.4	0.43	YYR5	
MOL008121	2-Monooikin	34.23	0.29	YYR6	
MOL000953	CLR	37.87	0.68	E	
targets by R language, and drew the Venn diagram. Next, the core targets were submitted to the STRING database (https://string-db.org/). We selected multiple proteins for analysis and set the organism to Homo sapiens.19 By setting the minimum required interaction score to medium confidence (0.400), a PPI network about the SBS and COVID-19 target proteins was established; this was then imported into Cytoscape 3.8.0 for visualization.

Gene Ontology and KEGG Pathway Enrichment Analysis
Through the DAVID database (https://david.ncifcrf.gov/), for the core targets which had been acquired in the previous step, GO function enrichment analysis and KEGG pathway enrichment analysis were performed.20,21 We used Omicshare tool (http://www.omicshare.com) to draw the bubble chart of the KEGG pathway and GO enrichment analysis for the bar chart.

Construction of the Active Ingredients-Disease Target-KEGG Pathway Network
In order to clarify the relationship between the active ingredients of SBS, the targets of COVID-19, and the pathway of action, Cytoscape 3.8.0 was used to establish a network of active ingredients of SBS-targets of COVID-19-action pathways. In this network diagram, the point (Node) represents the components, targets and pathways, and the edge (Edge) represents the connection between them. Then we analyzed the network topology parameters of the active ingredients and disease targets. Using Degree, Betweenness and Closeness as reference indicators, we chose these parameters to determine the core targets and the main active ingredients that play a role.22

Molecular Docking Verification
RSCB PDB database (http://www.rcsb.org/) was used to find the PDB structure of the core targets,23 and TCMSP was used to search for the MOL2 structure of the active ingredients. We used the SwissDock platform (http://www.swissdock.ch/) for online molecular docking.24,25 The binding strength between the core targets of COVID-19 and the active ingredients of SBS were judged by the binding energy.26,27 The smaller the binding energy, the more stable was the binding between the ligand and the receptor, and the greater the possibility of interaction.28

Results

The Active Ingredients of SBS and Their Corresponding Targets
After screening by considering the two restrictive conditions of oral bioavailability (OB) and drug-likeness (DL), Baibiandou in SBS has 1 active ingredient, Baizhu has 7 active ingredients, Fuling has 15 active ingredients, Gancao has 92 active ingredients, Jiegeng has 7 active ingredients, Lianzi have 5 active ingredients, Renshen has 22 active ingredients, Sharen has 10 active ingredients, Shanyao has 16 active ingredients, and Yiyiren has 9 active ingredients. By summing up the active ingredients of the ten medicines, 177 were obtained after removing duplication. At the same time, we acquired 681 drug targets after removing duplication. Detailed information of some of the active compounds is shown in Table 1.

Table 2. The Main Active Ingredients of SBS in the Treatment of COVID-19.

MOLID	Ingredient	Degree	Betweenness	Closeness
MOL000098	Quercetin	17	0.058275	0.47981
MOL005013	18α-hydroxyglycyrrhetic acid	12	0.019422	0.416495
MOL003975	icosa-11,14,17-trienoic acid methyl ester	12	0.038206	0.453933
MOL00422	Kaempferol	11	0.015495	0.455982
MOL005314	Celabenzine	11	0.016192	0.346484
MOL000310	Denuadin B	11	0.015989	0.362657
MOL004905	3,22-Dihydroxy-11-oxo-delta(12)-oleane-27-alpha-methoxycarbonyl-29-oic acid	10	0.02936	0.455982
MOL000006	Luteolin	10	0.022777	0.458051
MOL005357	Gomisin B	9	0.006295	0.331691
MOL000287	3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid	8	0.013807	0.453933

Table 3. The Core Targets of SBS in the Treatment of COVID-19.

GENE	Degree	Betweenness	Closeness
PTGS2	119	0.393546	0.60479
NOS2	81	0.176099	0.492683
PPARG	78	0.134258	0.476415
PTGS1	63	0.08263	0.43913
DPP4	42	0.038387	0.391473
F2	35	0.035773	0.40239
TNF	30	0.066564	0.392996
IFNG	18	0.01629	0.35689
IL6	18	0.017761	0.359431
NR3C1	16	0.034032	0.362007
Therefore, the score with a target ≥ 11.045 was set as the disease target of COVID-19. Next, the disease targets collected in the five databases were summarized and deduplicated. Finally, we obtained 164 disease targets.

Construction of the PPI Network of the Target Protein of SBS for the Treatment of COVID-19

We took the intersection between the targets of active ingredients and the targets of COVID-19, and used R language to draw the Venn diagram (Figure 2); 43 core targets were obtained. These were then submitted to the STRING database, and the PPI network, which is about the targets of SBS for the treatment of COVID-19, was built. It was optimized by Cytoscape 3.8.0 (Figure 3).

GO Function Enrichment Analysis and KEGG Pathway Enrichment Analysis

In the GO analysis, there were 256 items related to biological process (BP), mainly including inflammatory response, positive regulation of nitric oxide biosynthetic process, positive regulation of transcription from RNA and response to lipopolysaccharide. There were 45 items on molecular function (MF), mainly including Ras guanyl-nucleotide exchange factor activity, receptor binding, drug binding, cytokine activity and steroid hormone receptor activity. There were 25 items related to cellular component (CC), mainly including membrane raft, cell surface and lysosome. According to the P value, we selected the top 10 items about BP, CC, and MF to draw a bar graph. The result is shown in Figure 4. From the enrichment analysis of the KEGG pathway, it can be seen that SBS has 58 pathways in the treatment of COVID-19, mainly including leishmaniasis, tuberculosis, malaria, HIF-1 signaling pathway, Jak-STAT signaling pathway, influenza A, and PI3K-Akt signaling pathway. According to the P value, we selected the top 20 pathway enrichments to draw a bubble chart (Figure 5). From the results of enrichment analysis, it can be seen that SBS treatment of COVID-19 is the result of multiple targets and multiple pathways.

Active Ingredients of SBS-Targets of COVID-19-KEGG Pathway Network Diagram

In order to clarify the main active ingredients and core targets of SBS in the treatment of COVID-19, a network diagram which is...
GENE Ingredient Binding energy (Kcal/MOL)
DPP4(4L72) 18α-hydroxyglycyrrhetic acid
F2(3E6P) 18α-hydroxyglycyrrhetic acid
IFNG(1FG9) 18α-hydroxyglycyrrhetic acid
IL6(4O9H) 18α-hydroxyglycyrrhetic acid
NO52(5TP6) 18α-hydroxyglycyrrhetic acid
NRC31(3BQD) 18α-hydroxyglycyrrhetic acid
PPARG(7AWD) 18α-hydroxyglycyrrhetic acid
PTGS2(4RS0) 18α-hydroxyglycyrrhetic acid
DPP4(4L72) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
F2(3E6P) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
IFNG(1FG9) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
IL6(4O9H) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
NOS2(5TP6) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
NRC31(3BQD) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
PPARG(7AWD) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
PTGS2(4RS0) 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid
DPP4(4L72) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
F2(3E6P) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
IFNG(1FG9) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
IL6(4O9H) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
NOS2(5TP6) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
NRC31(3BQD) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
PPARG(7AWD) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
PTGS2(4RS0) 3β-Hydroxy-24-methylene-8-lanostene-21-oic acid
DPP4(4L72) Celabenzine
F2(3E6P) Celabenzine
IFNG(1FG9) Celabenzine
IL6(4O9H) Celabenzine
NOS2(5TP6) Celabenzine
NRC31(3BQD) Celabenzine
PPARG(7AWD) Celabenzine
PTGS2(4RS0) Celabenzine
DPP4(4L72) Denudatin B
F2(3E6P) Denudatin B
IFNG(1FG9) Denudatin B
IL6(4O9H) Denudatin B
NOS2(5TP6) Denudatin B
NRC31(3BQD) Denudatin B
PPARG(7AWD) Denudatin B
PTGS2(4RS0) Denudatin B
DPP4(4L72) Gomisin B
F2(3E6P) Gomisin B
IFNG(1FG9) Gomisin B
IL6(4O9H) Gomisin B
NOS2(5TP6) Gomisin B
NRC31(3BQD) Gomisin B
PPARG(7AWD) Gomisin B
PTGS2(4RS0) Gomisin B
DPP4(4L72) icosa-11,14,17-trienoic acid methyl ester
F2(3E6P) icosa-11,14,17-trienoic acid methyl ester
IFNG(1FG9) icosa-11,14,17-trienoic acid methyl ester
IL6(4O9H) icosa-11,14,17-trienoic acid methyl ester
NOS2(5TP6) icosa-11,14,17-trienoic acid methyl ester
NRC31(3BQD) icosa-11,14,17-trienoic acid methyl ester
PPARG(7AWD) icosa-11,14,17-trienoic acid methyl ester
PTGS2(4RS0) icosa-11,14,17-trienoic acid methyl ester
DPP4(4L72) kaempferol
F2(3E6P) kaempferol

(Continued)
about the active ingredients of SBS - disease targets - KEGG pathway network was constructed by Cytoscape 3.8.0. Analyzing this network with NetworkAnalyzer, we obtained the main active ingredients and core targets of SBS for the treatment of COVID-19; the network diagram is shown in Figure 6. The results showed that quercetin, 18α-hydroxyglycyrrhetic acid,
icosa-11,14,17-trienoic acid methyl ester, kaempferol, 3,22-dihydroxy-11-oxoolean-12-ene-27α-methoxycarbonyl-29-oic acid, luteolin, gomisin B, 3β-hydroxy-24-methylene-lanost-8-ene-21-oic acid, celabenzine, and denudatin B were the main active ingredients of SBS for the treatment of COVID-19, and that PTGS2, NOS2, PPARG, PTGS1, DPP4, F2, TNF, IFNG, IL6, and NR3C1 were their core targets; their specific network topology parameters are shown in Tables 2 and 3.

Results of Molecular Docking Between Active Ingredients and Core Targets

The core targets were molecularly docked with the main active ingredients. The likelihood of the ligand interacting with the receptor is determined by the binding energy between them. The results of molecular docking are shown in Table 4, and the details of molecular docking in Figure 7.

Discussion

Since the outbreak of COVID-19 at the end of 2019, it has caused great harm to human health all over the world. At present, there is no specific drug for COVID-19 in clinic. Therefore, it is of great significance to screen traditional Chinese medicines, and to know their active components, core targets and active pathways that have a therapeutic effect on COVID-19.

We obtained some core active ingredients of SBS for the treatment of COVID-19, including quercetin, kaempferol, luteolin and gomisin B. Quercetin has anti-inflammatory, antioxidant, antiviral, and protective effects on liver, kidney, and heart, and some studies have shown that it may regulate multiple signaling pathways by inhibiting the activity of recombinant human angiotensin-converting enzyme 2 (ACE2), and then play a therapeutic effect on COVID-19.29-31 Quercetin can down-regulate the Jak -STAT signal pathway to improve the gas exchange function of the lungs, reduce the release of inflammatory mediators, and reduce lung injury, which is consistent with the results of the enrichment analysis of the KEGG pathway in our study.32 At the same time, quercetin has a high affinity for 3-chymotrypsin-like protease (3CLpro), which is the receptor protein of SARS-CoV-2 like ACE2.33,34 Both kaempferol and luteolin are flavonols, which have various biological functions such as antiviral, anti-inflammatory and immune regulation.35,36 Some scholars have found that kaempferol and luteolin can effectively fight SARS-CoV-2 infection through molecular dynamics simulation research and MM-PBSA combined free energy calculation technology, which coincides with our research.37 Gomisin B has a variety of pharmacological effects such as anti-asthma, anti-infection, protection of liver and...
heart, and can also reduce the inflammatory response of lung injury. The above evidence suggests that various components in SBS may play anti-inflammatory and anti-virus roles by inhibiting the binding of SARS-CoV-2 to receptor proteins.

In addition to targeting ACE2 and 3CLpro, SBS has also been shown to regulate IL6 to relieve the symptoms of COVID-19. Among the core targets of SBS for the treatment of COVID-19, PTGS2 and PTGS1 are important targets of the arachidonic acid metabolism pathway. They can directly promote the production of IL-6 by activating PGE2. The level of IL6 is associated with acute respiratory distress syndrome. The progressive increase in IL6 is a clinical warning indicator for the deterioration of the disease in the “Chinese Novel Coronavirus Diagnosis and Treatment Program”. Studies have shown that serum TNF-α cytokines in patients with COVID-19 were significantly increased. The continuous production of pro-inflammatory cytokines such as TNF-α and IL6 can lead to immune disorders and lead to respiratory failure. Some studies have also shown that dipeptidyl peptidase-4 (DPP4) can be another possible receptor for the

Figure 7. Detailed view of molecular docking.
virus. The existence and severity of COVID-19 are related to the reduction of DPP4, which may be a possibility for disease monitoring in the course of the disease.42 A study proved that SARS-CoV-2 also uses DPP4 as a co-receptor when entering cells; the suppression of DPP4 was not only for halting the progression to the hyper-inflammatory state, but also for reducing viral infection to target cells in COVID-19 patients.43 Network pharmacology and molecular docking analysis show that SBS may play a role in an anti-inflammatory and have an antioxidant effect by regulating IL-6, TNF, DPP4 and other targets after virus infection of host cells, thereby playing a role in the treatment of COVID-19.

In this pharmacological network-based study, we studied the potential mechanism of SBS in the treatment of COVID-19. The results showed that SBS could reduce the inflammatory response, apoptosis and immune defense of SARS-CoV-2 infection. In addition, we provide several potential targets for the treatment of COVID-19, which may help to develop new treatment options. However, our study has several limitations. First, our results need to be further verified by subsequent pharmacodynamic and pharmacokinetic experiments. Secondly, a more comprehensive database of traditional Chinese medicine is needed to make the results of network pharmacological analysis more reliable. Third, even if we combine the results of network pharmacology and molecular docking, we still could not fully understand the accurate treatment mechanism of SBS.

Conclusion
In China’s struggle with COVID-19, SBS, a traditional Chinese medicine formula, has been proven to be effective in treating patients with COVID-19. In summary, we obtained the active ingredients of SBS and explored the complex pharmacological mechanism of SBS for the treatment of COVID-19 through network pharmacology. The comprehensive analysis of the active ingredients and core targets of SBS by network pharmacology showed that the effect of SBS is the result of multi-component, multi-target and multi-channel interaction in the treatment of COVID-19.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Health Commission of Hubwi Province (grant number ZY2019Z011).

Availability of Data and Materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval
Ethical Approval is not applicable for this article.

ORCID iDs
Ying Zhang https://orcid.org/0000-0002-0151-8413
Li Lu https://orcid.org/0000-0003-2520-6390

Statement of Human and Animal Rights
This article does not contain any studies with human or animal subjects.

Statement of Informed Consent
There are no human subjects in this article and informed consent is not applicable.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

References
1. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324(8):782-793. doi:10.1001/jama.2020.12839
2. Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmazie 2020;155:104743. doi:10.1016/j.pharmazie.2020.104743
3. Zhao Z, Li Y, Zhou L, et al. Prevention and treatment of COVID-19 using traditional Chinese medicine: a review. PLoS One 2020;15(5):e0236131. doi:10.1007/s12968-020-05083-8
4. Ji HJ, Kang N, Chen T, et al. Shen-ling-bai-zhu-san, a spleen-tonifying Chinese herbal formula, alleviates lactose-induced chronic diarrhea in rats. J Ethnopharmacol 2019;233(2):153-161. doi:10.1016/j.jep.2018.07.031
5. Ang L, Lee HW, Choi JY, Zhang J, Soo Lee M. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integr Med Res 2020;9(2):100407. doi:10.1016/j.imr.2020.100407
6. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013;11(2):110-120. doi:10.1016/s1875-5364(13)60037-0
7. Zhou Z, Chen B, Chen S, et al. Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Alternat Med 2020;2020:1047856. doi:10.1155/2020/1047856
8. Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6:13. doi:10.1186/1758-2946-6-13
9. Xu HY, Zhang YQ, Liu ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(D1):D976-d982. doi:10.1093/nar/gky987
disease-2019 (nCOVID-19). J Biomol Struct Dyn. 2021:1-13. doi:10.1080/07391102.2021.1892529

38. Szopa A, Dziurka M, Warzocha A, Kubicza P, Klimek-Szczytkowicz M, Ekiert H. Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules. 2018;23(12):3103. doi:10.3390/molecules23123103

39. Hui L, Zhang X, An X, et al. Higher serum procalcitonin and IL-6 levels predict worse diagnosis for acute respiratory distress syndrome patients with multiple organ dysfunction. Int J Clin Exp Pathol. 2017;10(7):7401-7407.

40. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395 (10223):497-506. doi:10.1016/s0140-6736(20)30183-5

41. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992-1000.e3. doi:10.1016/j.chom.2020.04.009

42. Posadas-Sánchez R, Sánchez-Muñoz F, Guzmán-Martín CA, et al. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci. 2021;276(2):119410. doi:10.1016/j.lfs.2021.119410

43. Phyu Khin P, Cha SH, Jun HS, Lee JH. A potential therapeutic combination for treatment of COVID-19: synergistic effect of DPP4 and RAAS suppression. Med Hypotheses. 2020;144:110186. doi:10.1016/j.mehy.2020.110186