Formula for the Projectively Invariant Quantization on Degree Three

Sofiane BOUARROUDJ*
Department of Mathematics, Keio University, Faculty of Science & Technology
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
Tel : 81 45 563 1141 - Fax : 81 45 563 5948
mailto:sofbou@math.keio.ac.jp

Abstract

We give an explicit formula for the projectively invariant quantization map between the space of symbols of degree three and the space of third-order linear differential operators, both viewed as modules over the group of diffeomorphisms and the Lie algebra of vector fields on a manifold.

1 Introduction

Let M be a manifold of dimension n. Fix an affine connection ∇ on M. Denote by $\mathcal{F}_\lambda(M)$ the space of λ-densities on M (i.e. sections of the bundle $(\wedge^n T^* M)^{\otimes \lambda}$). This space admits naturally a structure of module over the group of diffeomorphisms $\text{Diff}(M)$ and the Lie algebra of vector fields $\text{Vect}(M)$. Consider $\mathcal{D}_{\lambda,\mu}(M)$ the space of linear differential operators acting from $\mathcal{F}_\lambda(M)$ to $\mathcal{F}_\mu(M)$. This space is a module over $\text{Diff}(M)$ and $\text{Vect}(M)$ (see [1, 2, 3, 4]). The action is given as follows: take $f \in \text{Diff}(M)$ and $A \in \mathcal{D}_{\lambda,\mu}(M)$ then

$$f^* A = f^*_{\mu} \circ A \circ f^*_{\lambda}^{-1}, \quad (1.1)$$

*Research supported by the Japan Society for the Promotion of Science.
where \(f^*_\alpha \) is the standard action of a diffeomorphism on \(\mathcal{F}_\lambda(M) \).

Differentiating the action of the flow of a vector field, one gets the corresponding action of \(\text{Vect}(M) \).

Denote by \(\mathcal{D}_{\lambda,\mu}^3(M) \) the space of third-order linear differential operators endowed with the structure of module (1.3). The module \(\mathcal{D}_{\lambda,\mu}^3(M) \) is viewed as a submodule of \(\mathcal{D}_{\lambda,\mu}(M) \).

Consider now \(\text{Pol}(T^*M) \) the space of functions on the cotangent bundle \(T^*M \), polynomials on the fibers. This space is naturally isomorphic to the space of symmetric contravariant tensor fields on \(M \). One can define a one-parameter family of \(\text{Diff}(M) \) modules by taking \(\text{Pol}_\delta(T^*M) := \text{Pol}(T^*M) \otimes \mathcal{F}_\delta(M) \). Let us give explicitly this action: take \(f \in \text{Diff}(M) \) and \(P \in \text{Pol}_\delta(T^*M) \) then

\[
f^*_\delta P = f^* P \cdot (J_f)^{-\delta},
\]

where \(f^* \) is the natural action of a diffeomorphism on contravariant tensor fields, and \(J_f \) is the Jacobian of \(f \).

Differentiating the action of the flow of a vector field, one gets the corresponding action of \(\text{Vect}(M) \).

Denote by \(\text{Pol}_0^3(T^*M) \) the space of symbols of degree three endowed with the module structure given by (1.2).

Suppose \(M := \mathbb{R}^n \) is endowed with a flat projective structure (coordinates change are projective transformations). In this case, Lecomte and Ovsienko in [4] construct a quantization map between the space \(\text{Pol}_\delta(T^*\mathbb{R}^n) \) and the space \(\mathcal{D}_{\lambda,\mu}(\mathbb{R}^n) \), equivariant with respect to the action of the Lie algebra \(\text{sl}_{n+1}(\mathbb{R}) \subset \text{Vect}(\mathbb{R}^n) \). Consider now any manifold \(M \) and fix an affine connection on it. It is interesting to ask if there exists a canonical quantization map associated to the given connection. On degree two, the author construct in [4] a quantization map depending only on the projective class of the connection (see also [3] for the conformal case). This approach generalizes Lecomte and Ovsienko’s approach for the flat case. On higher order, the problem of existence of the projectively invariant quantization map is open.

2 Main result

The main result of this note is

Theorem 2.1 For \(n > 1 \), and for \(\delta \neq \frac{n+3}{n+1}, \frac{n+4}{n+1}, \frac{n+5}{n+1} \), there exits a quantization map \(Q : \text{Pol}_0^3(T^*M) \to \mathcal{D}_{\lambda,\mu}^3(M) \) given by

\[
P^{ijk} \mapsto P^{ijk} \nabla_i \nabla_j \nabla_k + \alpha \nabla_k P^{ijk} \nabla_i \nabla_j + \left(\beta_1 \nabla_i \nabla_j P^{ijk} + \beta_2 P^{ijk} R_{ij} \right) \nabla_k + \left(\eta_1 \nabla_i \nabla_j \nabla_k P^{ijk} + \eta_2 R_{ij} \nabla_k P^{ijk} + \eta_3 \nabla_i \nabla_j \nabla_k P^{ijk} \right) \tag{2.1}
\]

where \(R_{ij} \) are the components of the Ricci tensor of the connection \(\nabla \), the constants \(\alpha, \beta_1, \beta_2, \eta_1, \eta_2, \eta_3 \), are given by

\[
\alpha = \frac{6 + 3\lambda(1+n)}{4(1-\delta)(1+n)}, \quad \beta_1 = \frac{1 + \lambda(n+1)}{3 + (1-\delta)(1+n)} \alpha, \quad \beta_2 = \frac{2 + 3\lambda(1+n) - (4(1-\delta)(1+n)) \beta_1}{n-1}, \\
\eta_1 = \frac{\lambda(1+n) - \eta_1 (4(1-\delta)(1+n))}{n-1}, \quad \eta_2 = \frac{\lambda(1+n) \alpha - (10 + 3(1-\delta)(1+n)) \eta_1}{n-1}, \quad \eta_3 = \frac{\lambda(1+n)}{n-1},
\]
and have the following properties

(i) It depends only on the projective class of the connection ∇ (see [3]).

(ii) If $\mathcal{M} = \mathbb{R}^n$ is endowed with a flat projective structure the map (2.1) is the unique map that preserves the principal symbols, equivariant with respect to the action of the Lie algebra $\mathfrak{sl}_{n+1}(\mathbb{R}) \subset \mathfrak{Vect}(\mathbb{R}^n)$.

Proof. Let us give an idea of the proof. Let $\hat{\nabla}$ be another connection projectively equivalent to ∇. Denote by $Q_{\hat{\nabla}}$ the quantization map (2.1) written with the connection $\hat{\nabla}$. We have to prove that $Q_{\hat{\nabla}} = Q_{\nabla}$.

We need some formulæ.

Since $\hat{\nabla}$ is projectively equivalent to ∇ there exists a 1-form ω on \mathcal{M} such that the Christoffel symbols of the connections ∇ and $\hat{\nabla}$ are related by

$$\tilde{\Gamma}_{ij}^k = \Gamma_{ij}^k + \delta_i^k \omega_j + \delta_j^k \omega_i, \quad (2.2)$$

(see [3]). It follows that, for any $\phi \in \mathcal{F}_{\lambda}$, one has $\nabla_k \phi = \hat{\nabla}_k \phi + \lambda(1 + n)\omega_k$. In the same manner we can express the tensors $\nabla_i \nabla_j \phi, \nabla_i \nabla_j \nabla_k \phi$, with the tensors $\hat{\nabla}_i \hat{\nabla}_j \phi, \hat{\nabla}_i \hat{\nabla}_j \hat{\nabla}_k \phi$, respectively.

Using also formula (2.2) one has $\nabla_i P^{ijk} = \hat{\nabla}_i P^{ijk} + ((1 + n)\delta - (n + 5))\omega_i P^{ijk}$. In the same manner we can express the tensors $\nabla_j \nabla_i P^{ijk}, \nabla_k \nabla_j \nabla_i P^{ijk}, R_{ij}, \nabla_k R_{ij}$, with the tensors $\hat{\nabla}_j \hat{\nabla}_i P^{ijk}, \hat{\nabla}_k \hat{\nabla}_j \hat{\nabla}_i P^{ijk}, \hat{R}_{ij}, \hat{\nabla}_k \hat{R}_{ij}$. Replacing now these formulæ into (2.1), we see that $Q_{\hat{\nabla}} = Q_{\nabla}$ if and only if the constants $\alpha, \beta_1, \beta_2, \eta_1, \eta_2, \eta_3$ are given as above.

To prove part (ii), recall that the Lie algebra $\mathfrak{sl}_{n+1}(\mathbb{R})$ can be identified with the Lie subalgebra of $\mathfrak{Vect}(\mathbb{R}^n)$ generated by the vector fields $\partial_i, x^i\partial_j, x^ix^j\partial_j$, where (x^i) is the coordinates of the projective structure. The proof now is a simple computation (see [3]).

For the particular values of δ :

Proposition 2.2 If $\delta = \frac{n+3}{n+1}, \frac{n+4}{n+1}, \frac{n+5}{n+1}$, there exists a quantization map given by (2.1) with particular values of λ, μ, given in the following table

δ	λ	μ	α	β_1	β_2	η_1	η_2	η_3
$n+5$	-2	$n+3$	t	t	4	1	4	t
$n+4$	-2	$n+2$	0	t	$4+2$	2	2	$6+2t$
$n+3$	-2	$n+1$	0	0	4	1	4	$2+1+t$
$n+3$	-1	$n+3$	t	1	1	$9+t$	3	$3-3n$
$n+3$	-1	$n+2$	3	1	1	4	2	$1+2t$
$n+3$	-1	$n+1$	0	0	4	1	4	$2+1+t$
$n+3$	-1	$n+1$	0	0	4	1	4	$2+1+t$
$n+3$	-1	$n+1$	0	0	4	1	4	$2+1+t$
$n+3$	-1	$n+1$	2	0	1	1	4	$2+1+t$
$n+3$	-1	$n+1$	0	0	4	1	4	$2+1+t$
$n+3$	-1	$n+1$	0	0	4	1	4	$2+1+t$
Here t is a parameter.

Remark 2.3 (i) For the particular values of δ, the quantization map (2.1) is not unique (it is given by the parameter t).

(ii) In the one dimensional case, the quantization map was given in [2, 4].

(iii) Another approach to the quantization map equivariant with respect to the action of the conformal group in a Riemannian manifold was given in [3, 7].

Acknowledgments. I am grateful to Ch. Duval and V. Ovsienko for the statement of the problem. I am also grateful to H. Gargoubi and S. E. Loubon Djounga for fruitful discussions, and Y. Maeda and Keio University for their hospitality.

References

[1] Bouarroudj, S., Projectively equivariant quantization map, Lett. Math. Phy. 51: (4) (2000), 265-274.

[2] Cohen, P., Manin, Yu., and Zagier, D., Automorphic pseudodifferential operators, in Algebraic Aspects of Integrable Systems, Prog. Nonlinear Differential Equations Appl. 26, Birkhäuser, Boston, 1997, 17-47.

[3] Duval, C. and Ovsienko, V., Conformally equivariant quantization, math. DG/9801122.

[4] Gargoubi, H., Sur la géométrie de l’espace des opérateurs différentiels linéaires sur \mathbb{R}, Bull. Soc. Roy. Sci. Liège. Vol. 69, 1, 2000, pp. 21-47.

[5] Kobayashi, S. and Nagano, N., On projective connections, J. Math. Mech. 13:2 (1964) 215–235.

[6] Lecomte, P. B. A., and Ovsienko, V., Projectively invariant symbol calculus, Lett. Math. Phy. 49 (3) (1999), 173-196.

[7] Loubon Djounga, S. E., Equivariant quantization for the third-order linear differential operators on a conformally flat manifold, To appear in J. Geo. Phy.