Commentary on: “Physical activity education in the undergraduate curricula of all UK medical schools. Are tomorrow’s doctors equipped to follow clinical guidelines?”

Alexander C. Yao BA (Hons.)

Imperial College London
Correspondence to: Alexander C. Yao
Email: alexander.c.yao@gmail.com

Article history
Received: 6 August 2012
Accepted: 8 August 2012
Available online: 12 August 2012

Provenance and Peer Review
Commissioned, editorial review

Keywords
Physical activity
Sports and exercise medicine
Medical education
Medical curriculum

Despite these results, the study remains limited by the difficulty in quantifying the hours spent teaching physical activity; only 12 schools were able to so. Physical activity teaching was often “integrated” or “difficult to assess”.¹ The study does not account for the integration of physical activity teaching into other specialties; cardiology, respiratory, physiology, endocrine, or GP/community care. The study does not address whether students are competent to promote physical activity without structured education. However, students’ perceptions of competence may poorly reflect objectively measured competence thus reinforcing the need for education and structured assessment.³ In highlighting a general paucity of physical activity teaching, this supports similar data from American and Canadian medical school curricula.⁴⁵

There are a number of reasons for change. First, the education of physical activity promotion to students is specifically recommended by the Royal College of Physicians (RCP),⁶⁷ as well as the Select Committee on Science and Technology.⁴ Additionally, recommendations for patient physical activity are embedded into 39 national guidelines of wide-range clinical conditions, including 23 National Institute for Clinical Excellence (NICE) guidelines.⁸ However, despite these recommendations, the current curriculum outlined by the General Medical Council (GMC) does not require medical schools to provide teaching in exercise/preventative medicine.¹¹

Second, physical activity promotion by health professionals is an effective means of increasing physical activity uptake.¹² Medical students need to acquire the basic knowledge, confidence, and skills to promote physical activity. Education in providing advice, risk stratification, promoting behavioural change, and exercise physiology might be included. Given the impact of physical inactivity on health,² increased integration of physical activity teaching into medical curricula would target health needs of the patient, but also adhere to Government, NICE, and RCP recommendations.

However, there remain many barriers to change. The true need for additional physical activity teaching is not well established. Management of patients is being increasingly integrated between all members of the multidisciplinary team. Specialised professionals such as dieticians, occupational therapists, physiotherapists, and rehabilitation specialists mean that the responsibility for physical activity of the patient is increasingly shared. Referring aspects of care to other professionals might limit the need for specific, additional, education in sport and exercise medicine (SEM).

Furthermore, there is currently little evidence base to indicate how further medical student education in physical activity would improve patient health outcomes. Given the common knowledge that physical exercise is beneficial, it is not clear how effective changes to the curricula would be in improving patient health or how best to quantify these changes. Would
medical students need to become experts in exercise medicine to improve patient health?
It is important to recognise these findings in the context of the time available in the curricula. Medical students’ time is in high demand with a large volume of material to cover. Given that SEM education is not currently essential, it is forced to compete with other core specialities outlined by the GMC.
Medical education in physical activity should be recognised as a powerful force in coping with the shifting demographics of the 21st Century. The potential benefit of exercise for population health is vast.\(^2\)\(^,\)\(^3\)\(^,\)\(^13\)\) Incorporation of physical exercise into the medical school curricula will help to embed its importance in medical education as reflected by national guidelines for management of conditions and the overwhelming prevalence of physical inactivity and obesity. Change will require recognition of a shortfall, and a united drive towards change. A national infrastructure is required to effectively integrate SEM into care pathways. Proposals to introduce physical activity into the Quality and Outcomes Framework (QOF) may help to formalise SEM incorporation into primary care.\(^4\) Projects such as the Move, Eat, Treat campaign\(^14\) will aid to establish awareness and promote health professionals to receive and maintain education on giving lifestyle advice throughout their careers.

Ethical approval
No ethical approval required for this study.

Conflict of interest
No conflicts of interest have been declared by the author(s).

Author contribution
Single author manuscript.

Funding
No funding source declared by author(s).

1. Weiler R, Chiew S, Coombs N, Hamer M, Stamatakis E. Physical activity education in the undergraduate curricula of all UK medical schools. Are tomorrow’s doctors equipped to follow clinical guidelines? Br J Sports Med. 2012 [Epub ahead of print].
2. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.
3. Craig R, Mindell J, Hinri V. Health Survey for England 2008: Physical activity and fitness. Summary of key findings. 2008 [online]. Available from: http://www.ic.nhs.uk/pubs/hsa-08physicalactivity (accessed: 6 August 2012).
4. Select Committee on Science and Technology. Sport and exercise science and medicine: building on the Olympic legacy to improve the nation’s health. 2012 [online]. Available from: http://www.parliament.uk/business/committees/committees-a-z/lords-select/science-and-technology-committees/news/sport-exercise-science-published (accessed: 6 August 2012).
5. Lai NM, Teng CL. Self-perceived competence correlates poorly with objectively measured competence in evidence based medicine among medical students. BMC Med Educ. 2011;11:25.
6. Connaughton a V, Weiler RM, Connaughton DP. Graduating medical students’ exercise prescription competence as perceived by deans and directors of medical education in the United States: Implications for Healthy People 2010. Public Health rep. 2001;116(3):226–34.
7. Vallance JK, Wylie M, MacDonald R. Medical students’ self-perceived competence and prescription of patient-centered physical activity. Prev Med. 2009;49(2):164–6.
8. Royal College of Physicians. How doctors can close the gap: Tackling the social determinants of health through culture change, advocacy and education. 2010 [online]. Available from: http://www.royalcollege.org.uk/sites/default/files/documents/exercise-for-life-finl.pdf (accessed: 6 August 2012).
9. Royal College of Physicians. Exercise for life: Physical activity in health and disease. Recommendations of the Sport and Exercise Medicine Committee Working Party of the Royal College of Physicians. 2012 [online]. Available from: http://www.rcplondon.ac.uk/sites/default/files/documents/exercise-for-life-finl.pdf (accessed: 6 August 2012).
10. Weiler R, Fuchs-Reiber P, Stamatakis E. Medico-legal neglect? The case for physical activity promotion and exercise medicine. Br J Sports Med. 2012;46(4):228–32.
11. General Medical Council. Tomorrow’s Doctors: Outcomes and standards for undergraduate medical education. 2009 [online]. http://www.gmc-uk.org/TomorrowsDoctors_2009.pdf (accessed: 6 August 2012).
12. Orrow G, Kinmonth a-L, Sanderson S, Sutton S. Effectiveness of physical activity promotion based in primary care: systematic review and meta-analysis of randomised controlled trials. BMJ. 2012;344:e1389.
13. Greenland A, Rimm EB, Willett WC, Andersen LB, Hu FB. A Prospective Study of Weight Training and Risk of Type 2 Diabetes Mellitus in Men. Arch Intern Med. 2012 [Epub ahead of print].
14. Move. Eat. Treat. 2012 [online]. http://www.moveeatreat.org (accessed: 6 August 2012).

Open Access
This article is published Open Access at annalsjournal.com. It is distributed under the AMS terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.