The representation formula for solutions of some class Hamilton–Jacobi equations

Gintautas Gudynas

Klaipėdos universitetas, Gamtos ir matematikos mokslų fakultetas
Manto 84, LT-92294 Klaipėda
E-mail: gvgintaut@balticum-tv.lt

Abstract. The lower semicontinuous solutions of Hamilton–Jacobi equation are constructed by Hopf formula, when Hamiltonian is maximum of linear functions.

Keywords: Hamilton-Jacobi equations, lower semicontinuous solutions, Hopf formula.

1 Introduction

We consider the Cauchy problem for Hamilton–Jacobi equation of the form

\begin{equation}
 u_t + H(u_x) = 0,
\end{equation}

\begin{equation}
 u(0, x) = \varphi(x)
\end{equation}

in domain \(S = \{(t, x): t > 0, x \in \mathbb{R}^n\} \) with the lower semicontinuous (lsc) initial function \(\varphi \).

For Hamilton \(H \) is convex with respect to \(u_x \), A. Douglis, S.N. Kruzkov first defined the notion of the generalized (semiconcave) solution of (1), (2).

Definition 1. The Lipschitz continuous function \(u(t, x) \) in \(S_T \) is called the generalized (semiconcave) solution of (1), (2) if \(u(t, x) \) solves (1) a.e. on \(S_T \), satisfies (2), and for \(\forall L \in \mathbb{R}^n, \exists C_\delta > 0 \), that the inequality

\begin{equation}
 u(t, x + l) - 2u(t, x) + u(t, x - l) \leq C_\delta |l|^2,
\end{equation}

holds, when \((t, x) \in S_T^\delta = \{(t, x): 0 < \delta \leq t \leq T, x \in \mathbb{R}^n\} \).

E. Hopf gave \cite{H} the representation formula for the semiconcave (1), (2) solutions.

Theorem 1. Suppose \(H(p) \) is convex and satisfies the coercivity condition

\begin{equation}
 \lim_{|p| \to \infty} \frac{H(p)}{|p|} = +\infty.
\end{equation}

Let \(\varphi \in \text{Lip}(\mathbb{R}^n) \), then the semiconcave solution of (1), (2) can be represented by formula

\begin{equation}
 u(t, x) = \min_{\xi \in \mathbb{R}^n} \left[\varphi(\xi) + t\Phi\left(\frac{x - \xi}{t}\right) \right],
\end{equation}

where \(\Phi(q) = \sup_{p \in \mathbb{R}^n} [(p, q) - H(p)] \) is the Legendre transform of \(H(p) \).
If is $H(p)$ strictly convex, S.N. Kruzkov proved [3], that formula (5) gives the semiconcave solution, when $\varphi(x)$ is bounded and lsc on R^n. The solution in this case satisfies initial condition in the sense

$$\lim_{t \to 0} u(t, x) = \varphi(x).$$

The function

$$F(t, x, \xi) = t\Phi\left(\frac{x - \xi}{t}\right)$$

satisfied the initial condition

$$F(0, x, \xi) = \begin{cases} 0, & x = \xi, \\ +\infty, & x \neq \xi \end{cases}$$

is called the fundamental solution of (1).

For example

$$u_t + a|u|_2^2 = 0,$$

$a > 0$, the Legendre transform of $H(p) = a|p|^2$ is $\Phi(q) = \frac{|q|^2}{4a}$, and the fundamental solution of (7) is

$$F(t, x, \xi) = \frac{|x - \xi|^2}{4at}.$$

2 The calculation of fundamental solutions

In order to define a function $\Phi(q)$ we need to solve the equation

$$x = H_p\varphi'(y)t + y$$

with respect y. In general we can not do it. It can be done when hamiltonian has the form

$$H(p) = \max_{i=1,\ldots,m} \left((a^i, p) + b_i \right),$$

where $a^i, p \in R^n, b_i \in R$. We define the fundamental solution and prove the representation formula (5) for solutions of

$$u_t + \max_{i=1,\ldots,m} \left((a^i, u_x) + b_i \right) = 0.$$

(9)

Notice, that the coercivity condition (4) for the hamiltonian (8) is not satisfied.

Let $x \in R$. For the linear equation

$$u_t + a_i u_x + b_i = 0,$$

where $a_i = \text{const}$, the Legendre tranform of $H(p) = a_i p + b_i$ is

$$\Phi(q) = \begin{cases} -b_i, & q = a_i, \\ +\infty, & q \neq a_i, \end{cases}$$
The representation formula for Hamilton–Jacobi equations

and the fundamental solution

\[F(t, x, \xi) = \begin{cases} -b_i t, & \xi = x - a_i t, \\ +\infty, & \xi \neq x - a_i t. \end{cases} \]

The solution can be represented by formula

\[u(t, x) = \min_{\xi \in \mathbb{R}^n} [\varphi(\xi) + F(t, x, \xi)] = \varphi(x - a_i t) - b_i t. \]

This solution does not satisfy the semiconcave property (3), when \(\varphi(x) = |x| \). Thus we need to consider the other class of generalized solutions of (1), (2), which has been defined in [1].

Definition 2. A lsc function \(u \) on \(S \) with values in \(\mathbb{R} \cup \{ +\infty \} \) is a lsc solution of (1), (2), if

\[p_t + H(p_x) = 0, \]

for all \((p_t, p_x) \in D^- u(t, x) \) (superdifferential), when \(u(t, x) < +\infty \), and

\[\lim_{(t, y) \to (t, x)} u(t, y) = \varphi(x). \]

We use the theorem which was proved in this paper.

Theorem 2. Let \(\varphi : \mathbb{R}^n \to (-\infty, +\infty] \) be lsc and satisfy

\[\varphi(x) \geq -C(|x| + 1), \quad C > 0, \quad x \in \mathbb{R}. \]

Let \(H \) be finite, continuous and convex. Then \(u \) defined by formula (5) is the unique lsc solution of (1), (2), that is bounded from below by a function of linear growth.

For the hamiltonians (8), suppose \(a_{i+1} > a_i \), the Legendre transform is

\[\Phi(q) = \begin{cases} \frac{b_i - b_{i+1}}{a_{i+1} - a_i} (q - a_i) - b_i, & q \in [a_i, a_{i+1}], \\ +\infty, & q < a_i, \quad q > a_m. \end{cases} \]

Then the function

\[F(t, x, \xi) = \begin{cases} \frac{b_i - b_{i+1}}{a_{i+1} - a_i} (x - \xi - a_i t) - b_i t, & \xi \in [x - a_{i+1} t, x - a_i t], \quad i = 1, \ldots, m - 1, \\ +\infty, & \xi < x - a_m t, \quad \xi > x - a_1 t, \end{cases} \]

is convex, satisfies a.e. (9) in \(\{(t, x) : x \in [\xi + a_1 t, \xi + a_m t]\} \) and the initial condition (6), thus, from the last theorem we have, that it is the unique fundamental solution of (9).

Example 1. Suppose we have the Cauchy problem

\[u_t + |u_x| = 0, \]

\[u(0, x) = \sin x. \]
Then
\[\Phi(q) = \begin{cases}
0, & q = [-1, 1], \\
+\infty, & q < -1, \; q > 1,
\end{cases} \]
\[F(t, x, \xi) = \begin{cases}
0, & \xi \in [x-t, x+t], \\
+\infty, & \xi < x-t, \; \xi > x+t,
\end{cases} \]
and the viscosity solution can be represented by formula
\[u(t, x) = \min_{\xi \in [x-t, x+t]} \sin(\xi). \]

It is clear, that if we construct the Legendre transform of hamiltonian (8), then we easy define the fundamental solution. Next we explain, how we can define the Legendre transform, when \(x \in \mathbb{R}^n, \; n > 1 \).

Let \(x \in \mathbb{R}^2 \). Then the Legendre transform of
\[H(p_1, p_2) = \max_{i=1,\ldots,m} \left((a^1_ip_1 + a^2_ip_2) + b_i \right) \]
can be constructed in such way:

if \(m = 1 \), then
\[\Phi(q) = \begin{cases}
-b_i, & q = a^i, \\
+\infty, & q \neq a^i,
\end{cases} \]

if \(m = 2 \), then \(\Phi(q) \) is defined in the parametric form
\[
\begin{align*}
\Phi(s) &= (b_1 - b_2)s - b_1, \\
q_1 &= (a^2_1 - a^1_1)s + a^1_1, \\
q_2 &= (a^2_2 - a^1_2)s + a^1_2,
\end{align*}
\]
where \(s \in [0, 1] \), in other points of \(\mathbb{R}^2 \) the function \(\Phi(q) = +\infty \),

if \(m \geq 3 \), then define \(Q = \text{co}\{a^i\} \)-convex hull of set \(\{a^i, \; i = 1,\ldots,m\} \) and \(Q_k = \text{co}\{a^{k_1}, a^{k_2}, a^{k_3}\} \), where \(k_1, k_2, k_3 \in \{1,\ldots,m\} \), and \(a^i \notin Q_k \), when \(i \notin \{k_1, k_2, k_3\} \). Then \(\Phi(q) = \max_k \{ (\alpha_k, q) + \beta_k \} \), when \(q \in Q \), and \(\Phi(q) = +\infty \), if \(q \notin Q \). The coefficients \(\alpha_k, \beta_k \) are determined from the identity
\[
\begin{vmatrix}
q_1 - a^1_{k_1} & q_2 - a^2_{k_1} & (\alpha_k, q) + \beta_k + b_{k_3} \\
q_1 - a^1_{k_2} & q_2 - a^2_{k_2} & b_{k_1} - b_{k_2} \\
q_1 - a^1_{k_3} & q_2 - a^2_{k_3} & b_{k_1} - b_{k_3}
\end{vmatrix} = 0.
\]

The similar structure of the Legendre transform for the hamiltonians (7) may be realized in \(\mathbb{R}^n \).
The representation formula for Hamilton–Jacobi equations

References

[1] O. Alvarez, E.N. Barron and H. Ishii. Hopf-lax formulas for semicontinuous data. *Indiana Univ. Math. J.*, 48(3):993–1035, 1999.

[2] E. Hopf. Generalized solutions of non-linear equations of 1 order. *J. Math. Mech.*, 14(6):951–974, 1965.

[3] S.N. Kruzkov. Generalized solutions of the multi-dimensional nonlinear partial differential equations of first order. 2. *Math. sbornik*, 72:93–116, 1967.

REZIUMĖ

Apie Hamiltono-Jakobi lygčių sprendinių išraiškas

G. Gudynas

Straipsnyje analizuojamos Hamiltono-Jakobi lygčių sprendinių išraiškos, kai hamiltonianas užduodamas kaip tiesinių funkcijų gaubiamoji.

Raktiniai žodžiai: Hamiltono-Jakobi lygtyms, pusiautolydžiai iš apačios sprendinio, Hopfo formulė.