Rapid accumulation and turnover of soil carbon in a re-establishing forest

Daniel D. Richter*, Daniel Markewitz†, Susan E. Trumbore‡ & Carol G. Wells§

* Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
† Warnell School of Forest Resources, University of Georgia, Athens, Georgia 30602, USA
‡ Department of Earth System Science, University of California, Irvine, California 92697, USA
§ US Department of Agriculture, Forest Service, Forest Sciences Laboratory, Research Triangle Park, North Carolina 27709, USA

Present understanding of the global carbon cycle is limited by uncertainty over soil-carbon dynamics1±4. The clearing of the world’s forests, mainly for agricultural uses, releases large amounts of carbon to the atmosphere (up to 2×10^{11} gyr$^{-1}$), much of which arises from the cultivation driving an accelerated decomposition of soil organic matter5±7. Although the effects of cultivation on soil carbon are well studied, studies of soil-carbon recovery after cultivation are limited4±11. Here we present a four-decade-long field study of carbon accumulation by pine ecosystems established on previously cultivated soils in South Carolina, USA7. Newly accumulated carbon is tracked by its distinctive 14C signature, acquired around the onset of forest growth from thermonuclear bomb testing that nearly doubled atmospheric 14CO2 in the 1960s. Field data combined with model simulations indicate that the young aggrading forest rapidly incorporated bomb radiocarbon into the forest floor and the upper 60 cm of underlying mineral soil. By the 1990s, however, carbon accumulated only in forest biomass, forest floor, and the upper 7.5 cm of the mineral soil. Although the forest was a strong carbon sink, trees accounted for about 80%, the forest floor 20%, and mineral soil <1%, of the carbon accretion. Despite high carbon inputs to the mineral soil, carbon sequestration was limited by rapid decomposition, facilitated by the coarse soil texture and low-activity clay mineralogy.

Our most precise understanding of how land use affects soil carbon comes from decades-long field experiments that directly estimate soil change under controlled land-management regimes7±11. Although long-term soil studies are highly valued11±15, nearly all such studies examine agricultural ecosystems; remarkably few test soil changes associated with reforestation, reclamation or natural plant succession7,16.

One exception is a four-decade-long experiment at the Calhoun Experimental Forest in South Carolina, USA, which has documented changes in soil chemistry during pine-forest development from 1957 to 199717,18. Before 1957, the Calhoun soil was cultivated for cotton and other crops for more than a century, practices that depleted soil organic matter and enhanced nutrient availability from fertilization and liming. The upper 35-cm layer of mineral soils at the Calhoun forest is coarse textured (68% sand, 15% clay), which ensures macroporosity and a highly oxidized environment. Clay minerals that are present are low-activity kaolinite with little potential to physically protect organic carbon inputs from microbial attack. Similar soils are found over extensive areas of southeastern North America and the warm temperate zone and tropics20,21.

Soil studies conducted near the Calhoun forest suggest that from the early 1800s to the middle of the twentieth century, agricultural use (primarily for cotton, corn, hay and pasture) reduced organic carbon in the upper 30 cm of the Calhoun mineral soil by about 1,300 g m$^{-2}$, or by ~40% of the carbon present at 0–30-cm depth before cultivation7. Here we examine recovery of soil carbon during four decades of reforestation, by using eight permanent plots that were last harvested of cotton in 1955 and were planted in 1957 with seedlings of loblolly pine (Pinus taeda L.). On these permanent plots, soil samples have been collected on seven occasions between 1962 and 1997 using the same sampling procedures. Nearly all soil samples are archived and available for analysis.

Since 1957, the aggrading forest accumulated ~3,925 g m$^{-2}$ of new carbon in the soil profile—that is, the forest floor (O horizon) plus mineral soil: this represents carbon accumulation of nearly 100 g m$^{-2}$ yr$^{-1}$ for 40 years (Table 1). Most of the new soil carbon, 3,780 ± 251 g m$^{-2}$ (where ±251 indicates the standard error), is contained in the forest floor that now blankets the formerly cultivated mineral soil. Only 145 ± 26 g m$^{-2}$ of carbon accumulated in the underlying mineral soil (Table 1), about 4% of the new soil carbon. Although carbon in 0–7.5-cm mineral soil increased significantly ($P < 0.001$) between 1962 and the 1990s, there were no significant increases in soil carbon deeper than 7.5 cm (Fig. 1). In fact, carbon in the lowermost soil layer sampled, at 35–60 cm depth, significantly decreased during the 40-year study, perhaps due to slow oxidation of organic-carbon input from crop roots during the period of farming.

Because the Calhoun forest was planted in 1957, new soil carbon derived from the forest has a distinctive isotopic composition because above-ground nuclear-bomb testing in the 1950s and 1960s greatly increased 14C in the atmosphere. The fate of new forest carbon can be examined in the ecosystem because the Calhoun forest has grown entirely within the period when the concentration of 14C has been elevated in both the global atmosphere and in inputs of carbon to the reforested soil.

Changes in soil radiocarbon (1^4C) during forest development show that soil carbon has been more dynamic than might be suggested by the gradual reaccumulation of total carbon alone. A decomposition model22 indicates that by 1965, Δ^{14}C in the forest floor approached +700‰ only one year after the 1^4C peak in the atmosphere (Fig. 2; Δ^{14}C is defined in Methods). By the 1990s, forest-floor Δ^{14}C declined to less than +300‰, lagging the decrease in atmospheric 1^4CO2 owing to incorporation of 1^4C into slow-to-decompose, humic compounds of the acidic pine forest floor (Fig. 2).

By the 1990s, bomb-produced 1^4C was most concentrated in the basal layers of the forest floor and the 0–7.5-cm mineral soil (Fig. 2). In 1992, Oe and Oa horizons (the middle and the lowest layers

Figure 1 Mineral-soil carbon (1962–97) in eight permanent plots of the Calhoun Experimental Forest, South Carolina, USA. Plots were planted with loblolly pine seedlings in 1957 following long-term cultivation for cotton and other crops. Error bars depict the spatial variation (as standard errors) among the eight permanent plots. The randomized complete block analysis of variance indicated highly significant increases over the 40 years in soil carbon at 0–7.5 cm depth ($P < 0.001$), and decreases at 35–60 cm depth ($P < 0.05$).
of forest floor) had $\Delta^{14}C$ values of $+247.3\%$ and $+309.8\%$, respectively. These older forest litter materials are enriched in ^{14}C derived from plant biomass synthesized during the era of elevated $^{14}CO_2$ (Fig. 2). The surficial Oi horizon (litterfall deposited within the past three to four years) had $\Delta^{14}C$ of $+152.2\%$, in 1992, closely comparable to that of atmospheric $^{14}CO_2$ during the late 1980s and early 1990s (Fig. 2).

Despite the relatively modest 40-year changes in mineral-soil carbon (Table 1), organic matter had incorporated ^{14}C throughout the entire 0–60-cm layer of mineral soil within 8 years after the atmosphere peaked in $^{14}CO_2$ (Fig. 2). By 1968, $\Delta^{14}C$ of mineral soil at 0–15-cm depth had increased to $+200\%$, up from -10.4% in 1962. By 1972, $\Delta^{14}C$ of the entire 0–60-cm mineral soil averaged $+125\%$, compared to less than -100% in 1962.

Since the 1960s, however, only mineral soil at 0–7.5-cm depth has maintained its elevated ^{14}C (Fig. 2). This surficial layer of mineral soil is accumulating carbon in an incipient A horizon that is slowly reforming under the forest following long-term cultivation (Fig. 1). Despite changes in ^{14}C in forest floor (1957–97) and mineral soil (in 1962, 1968, 1972, 1977, 1982 and 1990). Simulated changes in ^{14}C in forest floor (1957–96) are estimated from the decomposition model of Jorgensen and Wellington estimates of annual litterfall input over the four decades. The $\Delta^{14}C$ for the 35–60-cm sample in 1962 was not measured, but was estimated conservatively by a soil-depth-based regression.

Figure 2 Time trends of ^{14}C in the Calhoun forest ecosystem. Shown are data for anthropogenic ^{14}C (1960–97); forest floor of Oi (L), Oe (F), and Oa (H) layers (in 1992); and mineral soil (in 1962, 1968, 1972, 1977, 1982 and 1990). Simulated changes in ^{14}C in forest floor (1957–96) are estimated from the decomposition model of Jorgensen and Wellington estimates of annual litterfall input over the four decades. The $\Delta^{14}C$ for the 35–60-cm sample in 1962 was not measured, but was estimated conservatively by a soil-depth-based regression.

Table 1 Soil carbon inputs and 40-yr accretions

Annual soil carbon input† (g m$^{-2}$ yr$^{-1}$)	Forest floor	0–15 cm	15–60 cm
Annual canopy litterfall‡	245 (11.9)	0	0
Annual DOC input†	8 (13.1)	32 (28.1)	19 (34.5)
Annual rhizo-deposition‡	37 (23.0)	63 (14.1)	26 (26.5)
Annual carbon input	290	96	45
Total soil carbon accretion* (g m$^{-2}$)	3,780 (18.8)	145 (50.5)	0

* Annual soil carbon inputs (in the 1990s) and four-decade soil carbon accretion in eight permanent plots of the Calhoun Experimental Forest, South Carolina, USA. Reported are means and (in parentheses) coefficients of variation in % among the eight permanent plots.

† Soil carbon accretion is estimated for forest floor over 1957–97, and for 0–60-cm mineral soil over 1962–97. Carbon accretions were statistically significant in 0–7.5-cm mineral soils, but not in 7.5–60-cm layers. Bulk densities for mineral soils are 1.52 Mg m$^{-3}$ in 0–35-cm layers of mineral soil and 1.44 Mg m$^{-3}$ at 35–60 cm (ref. 18).

‡ Inputs of canopy litterfall to forest floor were estimated in 1991–92. Inputs of dissolved organic carbon (DOC) were estimated in bi- or tri-weekly collections over two years (1992–94); into forest floor from DOC in canopy throughfall; into 0–15-cm mineral soil from DOC in water infiltrating from the forest floor; and into 15–60-cm soil from DOC in water draining into soil at 15-cm depth. Inputs of carbon from rhizo-deposition were estimated in 1984–95 from 50% of the live fine-root (<2-mm) biomass in forest floor, or mineral soil at 0–15 and 15–30 cm depth. Fine roots were sampled in 1984–95, every three weeks over 18 months. The 50% factor is used as a conservative estimate of carbon inputs from rhizo-deposition.

From an ecosystem perspective, this aggrading forest is a strong carbon sink. Accumulation of carbon is especially pronounced in tree biomass and the forest floor relative to that in mineral soil. During the growth of this forest, trees accumulated 14,060 g m$^{-2}$ of carbon (between 1957 and 1990), compared with 3,780 g m$^{-2}$ in the forest floor (1957–97) and 145 g m$^{-2}$ in surficial mineral soil (1962–97). Annual carbon accretions thus averaged about 426, 94 and 4 g m$^{-2}$ in the three ecosystem components, respectively.

The overall pattern of carbon sequestration suggests a low carbon-storage potential for mineral soils compared to that in biomass and forest floor; a similar conclusion has been reached from a review of soil-carbon gains under primary vegetative successions. Yet in comparison to other forested soils recovering from previous cultivation, the mineral soil at the Calhoun forest seems to be relatively slow to recover organic carbon. Previous estimates of mineral-soil carbon gains under forests range from 21 to 55 g m$^{-2}$ yr$^{-1}$, while soils at the Calhoun forest gained carbon at 4.1 g m$^{-2}$ yr$^{-1}$ (Table 1). Although changes in soil carbon are not easy to estimate, the Calhoun experiment provides an approach for making these estimates: especially useful are its well replicated permanent plots, extensive within-plot composite sampling, and soil archive. The main factors driving relatively low carbon accumulations in Calhoun mineral soils are coarse soil texture, low soil surface area, low-activity clay mineralogy, and warm and humid climate. A network of long-term soil-ecosystem experiments similar to that at the Calhoun, at sites that encompass a range of controlling variables of soil and ecosystem carbon, would greatly facilitate future modeling and management of the carbon cycle.

Methods

Research area and field experiment. The Calhoun Experimental Forest is one of the world’s longest running experiments in which forest-soil properties are measured periodically in replicated permanent plots with all soil samples archived.
Soil archive, radiation and total carbon. The Duke Soil Archive stores air-dried soil samples at room temperature in sealed glass containers. Total soil carbon was analysed in powdered samples with a Perkin-Elmer CHN combustion instrument. Radiocarbon was measured by accelerator mass spectrometry (AMS) on graphite targets prepared from soil organic matter and is reported as Δ14C, the per mil deviation of 14C/12C compared with a decay-corrected oxalic acid standard. Positive values of Δ14C indicate presence of bomb-produced 14C, and negative values indicate predominance of old soil organic matter with 14C that has experienced significant radioactive decay (half-life is 5,730 yr). Radiocarbon was estimated using AMS of composite samples made from soil from the eight plots at each depth. Analysis of variance and means separation tests were used to test effects of time on soil carbon accumulation.

Soil carbon inputs. To estimate carbon inputs to soils, carbon in litterfall, fine roots, and soil water were estimated. Litterfall was sampled in each of the eight permanent plots with five collectors (each 0.72 m2 in area) per plot. Canopy litterfall was collected monthly during 1991–92.

Fine roots were sampled volumetrically using a 6-cm-diameter corer that collected undisturbed cores of O horizon and mineral soil from 0–15–30 cm depths. Soil cores were taken every three weeks for 18 months in 1994–95. Samples were returned to the laboratory where fine roots (<2 mm) were separated from soil by wet-sieving and hand picking. Live roots were separated from dead, and the former were ashed to estimate carbon contents (taken as half the loss on ignition). Only the live fraction of the fine roots is reported here, and carbon inputs from fine-root turnover were simply estimated as 50% of live fine-root carbon in forest floor, or mineral soil at 0–15 and 15–30 cm depth. This factor (50%) is taken to be a conservative estimate of carbon inputs from rhizo-deposition.

DOC was determined in atmospheric precipitation (wet deposition), canopy throughfall, and solutions draining forest floor and several depths of mineral soils to 60 cm (ref. 19). Wet-only precipitation was collected by an Aerochem Metric sampler. Throughfall was collected in three bulk precipitations of CO2 and H2CO3 by acidiﬁcation and sparging with N2 gas. This factor (50%) is taken to be a conservative estimate of carbon inputs from rhizo-deposition.

Acknowledgements. We thank P. Heine, N. Bethal, S. Boul, R. Christman, M. Hofmockel, V. Jin, J. Raikes, M. Bongiulli, K. O'Neill, W. H. Schlesinger, J. Swanson and S. Zheng for contributions to this work. The Calhoun Experimental Forest was supported by the USDA Forest Service, Duke University, the Ecosystems Program of the NSF, and the National Research Initiative Ecosystems and Soils Programs of the USDA.

Correspondence and requests for materials should be addressed to D.D.R. (e-mail: drichter@duke.edu).

Cretaceous age for the feathered dinosaurs of Liaoning, China

Carl C. Swisher III1, Yuan-qing Wang†, Xiao-lin Wang††, Xing Xu‡ and Yuan Wang‡

1 Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA
2 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, People’s Republic of China
3 Natural History Museum, Changchun University of Science and Technology, 6 Xiningxiu Street, Changchun, 130026, People’s Republic of China

The ancient lake beds of the lower part of the Yixian Formation, Liaoning Province, northeastern China, have yielded a wide range of well-preserved fossils: the ‘feathered’ dinosaurs Sinosauropteryx, Protarchaeopteryx and Caudipteryx, the primitive birds Confuciusornis and Liaoningornis, the mammal Zhangheotherium and the reportedly oldest flowering plant, Araucfraege. Equally well preserved in the lake beds are a wide range of fossil plants, insects, bivalves, conchostracans, ostracods, gastropods, fish, salamanders, turtles, lizards, the frog Callobatrachus and the pterosaur Eosipterus. This uniquely preserved assemblage of fossils is providing new insight into long-lived controversies over bird–dinosaur relationships1,2, the early diversification of birds3–10 and the origin and evolution of flowering plants4. Despite the importance of this fossil assemblage, estimates of its geological age have varied widely from the Late Jurassic to the Early Cretaceous. Here we present the first 40Ar/39Ar dates unambiguously associated with the main fossil horizons of the lower part of the Yixian Formation, and thus, for the first time, provide accurate age calibration of this age period.