SUPPORTING INFORMATION

Spinning Molecules, Spinning Spins: Modulation of an Electron Spin Exchange Interaction in a Highly Anisotropic Hyperfine Field

Alexander M. Brugh,1 Ruobing Wang,2 Michael J. Therien,*2 and Malcolm D. E. Forbes*1

1Center for Photochemical Sciences
Department of Chemistry
Bowling Green State University
Bowling Green, OH 43403

and

2Department of Chemistry
French Family Science Center
Duke University
Durham, North Carolina, 27708

Table of Contents

Title Page 1
Theory 2
Additional Simulations 6
References 7
1. Theory

To understand the effects of J modulation in the highly anisotropic hyperfine field of the copper-porphyrin dimer system, some basic equations are necessary. Simulation of biradicaloid steady-state EPR (SSEPR) spectra is accomplished by 1) selecting an appropriate spin Hamiltonian and basis set, 2) diagonalizing the Hamiltonian to obtain its eigenvalues, and 3) calculating the resonant EPR frequencies and transition probabilities from the energy differences for the allowed transitions using the standard selection rule: an allowed transition has a change in electron spin quantum number of ±1, and a change in nuclear spin quantum number of 0.¹

Eq 1 shows the spin Hamiltonian for a monoradical, which is the sum of the Zeeman and hyperfine interactions. Here β_e is the Bohr magneton, B_0 is the applied external magnetic field, g_1 is the electron g-factor or chemical shift, S_{1z} is electron spin along the axis of quantization forced by the applied magnetic field, along z, a_i is the hyperfine coupling constant, and I_{zi} is the nuclear spin projection along the applied field direction (z).

$$H = \beta_e \hbar^{-1} B_0 (g_1 S_{1z}) + \sum a_i S_{zi} I_{zi}$$ (1)
For a biradical species, the Hamiltonian is rewritten to account for the spin exchange interaction (J_{avg}) between the radical centers. This is the same spin Hamiltonian that used in the development of spin–correlated radical pair (SCRP) theory.\(^2\text{–}^4\)

\[
H = \beta \hbar^{-1} B_o(g_1 S_{1z} + g_2 S_{2z}) + \sum a_i S_{1z} I_{iz} + \sum a_i S_{2z} I_{iz} - J_{\text{avg}}(\frac{1}{2} + 2S_1 S_2) \tag{2}
\]

The Hamiltonian features the Zeeman and hyperfine terms for both sides of the biradical, in addition to the exchange interaction J_{avg}, which it is important to note here is written in the Dirac formalism, leading to a singlet–triplet energy gap of $-2J_{\text{avg}}$ and a singlet ground state when the value of J_{avg} is negative.

The most appropriate basis set is a singlet state and three triplet states ($|S\rangle$ and $|T_+\rangle$, $|T_-\rangle$, and $|T_0\rangle$). The eigenfunctions and energies obtained after diagonalization are given below.

Each individual alignment of the nuclear spins of the system can be written as an independent four level system electron spin system, each with its own nuclear sub-state. In other words, the spin Hamiltonian can be symmetry factored to a set of 4 x 4 matrices that are easily diagonalized and the EPR spectrum is calculated for each set of 4 biradical transitions and then summed.

\[
|1\rangle = |T_+\rangle \tag{3}
\]
\[\epsilon_1 = v_0 - J_{avg} + \sum (a_i m_i - a_j m_j)/2 \] (4)

\[|2\rangle = \cos \theta |S\rangle + \sin \theta |T_0\rangle \] (5)

\[\epsilon_2 = \Omega \] (6)

\[|3\rangle = -\cos \theta |S\rangle + \sin \theta |T_0\rangle \] (7)

\[\epsilon_3 = -\Omega \] (8)

\[|4\rangle = |T_-\rangle \] (9)

\[\epsilon_4 = -v_0 - J_{avg} - \sum (a_i m_i - a_j m_j)/2 \] (10)

Here \(v_0 \) is the center of the biradicaloid spectrum, defined rigorously as the average position defined by the two g–factors (eq 11). The terms \(m_i \) and \(m_j \) are the nuclear spin quantum numbers associated with a particular nucleus or set of equivalent nuclei.

\[v_0 = \beta B_0(g_1 + g_2)/2 \] (11)

\[\cos 2\theta = J_{avg}/\Omega \] (12)

\[\sin 2\theta = q/\Omega \] (13)

\[\Omega = \left(J_{avg}^2 + q^2 \right)^{1/2} \] (14)

\[q = \left[\beta B_0(g_1 - g_2) + \sum (a_i m_i - a_j m_j) \right]/2 \] (15)
The following new terms are defined: \(q \) is the Larmor precession frequency difference between radical centers, a result of the local magnetic field differences between spin centers, \(2 \)

\(\Omega \) is the energy difference between the two new states (|2\rangle and |3\rangle) that arise from the mixing, due to \(q \), between |S\rangle and |T_0\rangle. We assume a high field limit that excludes mixing between |S\rangle and |T_+\rangle or T_. The allowed transition energies are given as:

\[
E_{21} = \nu_0 + \left(\frac{1}{2}\right)\sum (a_i m_i - a_j m_j) - J_{avg} + \Omega
\]

(16)

\[
E_{31} = \nu_0 + \left(\frac{1}{2}\right)\sum (a_i m_i - a_j m_j) - J_{avg} - \Omega
\]

(17)

\[
E_{42} = \nu_0 + \left(\frac{1}{2}\right)\sum (a_i m_i - a_j m_j) + J_{avg} - \Omega
\]

(18)

\[
E_{43} = \nu_0 + \left(\frac{1}{2}\right)\sum (a_i m_i - a_j m_j) + J_{avg} + \Omega
\]

(19)
Figure S1 contains an energy level diagram of these electronic states and allowed transitions. For the transition probabilities, there are two sets of equivalent probabilities:

\[t_{p1} (1\rightarrow2, 2\rightarrow4) = (\cos(0.5 \times \arctan(q/J)))^2 \]
\[t_{p2} (1\rightarrow3, 3\rightarrow4) = (\sin(0.5 \times \arctan(q/J)))^2 \]

The additional terms that describe the J_{mod} theory have been presented in detail previously. Using the Redfield formalism, we treat the line shape as an effect of J modulation.
using perturbation theory to add T_1 and T_2 relaxation processes. Two simple equations result, expressed in terms from the spin Hamiltonian diagonalization procedure described above, which are easy to incorporate into the simulation program for EPR spectra of biradicals and biradicaloids.

$$T_1^{-1} = 4\langle V^2 \rangle \tau_e \left(q^2 / \omega^2\right)$$

$$T_2^{-1} = 2\langle V^2 \rangle \tau_e (1 \pm J / \omega)$$

The correlation times for the paddle-wheel motion of the porphyrin rings as a function of temperature were obtained from the Arrhenius equation:

$$k_r = A e^{-E_a/kT}$$

Where the terms have their usual meanings: k_r is the rate constant for the motion, A is a pre-exponential factor assumed to be 10^{10} s$^{-1}$, k = Boltzmann's constant. The term E_a is the activation energy for the rotational motion obtained from the slope of the plots of J_{mod} vs. $1/T$, where T is the absolute temperature. The correlation times reported in the paper are the inverse of k_r.
2. Additional Simulations

Figure S2: Experimental and simulated spectra for PCu-PZn-PCu in toluene at 298K (~1 µM), in the same layout as Figure 4 in the main body of the paper.

Figure S3: Experimental and simulated spectra for PCu-PZn-PCu at 323K (~1 µM). In the center, simulations are presented with increasing values of J_{avg} with fixed J_{mod} and on the right with increasing values of J_{mod} and fixed J_{avg}. The best fit spectrum in the center for both datasets.
3. References

1. Closs, G. L.; Norris, J. R. Spin-Polarized Electron Paramagnetic Resonance Spectra of Radical Pairs in Micelles. Observation of Electron Spin-Spin Interactions. *J. Phys. Chem.* **1987**, *91* (13), 3592–3599.

2. Closs, G. L.; Forbes, M. D. E. *J. Phys. Chem.* EPR Spectroscopy of Electron Spin Polarized Biradicals in Liquid Solutions. Technique, Spectral Simulation, Scope, and Limitations. *1991*, *95* (5), 1924–1933.

3. Tarasov, V. F.; Jarocha, L. E.; Avdievich, N. I.; Forbes, M. D. E. TREPR Spectra of Micelle-Confined Spin Correlated Radical Pairs: I. Molecular Motion and Simulations. *Photochem. Photobiol. Sci.* **2014**, *13*, 439–453.

4. Tarasov, V. F.; Jarocha, L. E.; Forbes, M. D. E. TREPR Spectra of Micelle-Confined Spin Correlated Radical Pairs: II. Spectral Decomposition and Asymmetric Line Shapes. *Photochem. Photobiol. Sci.* **2014**, *13*, 454–463.

5. Avdievich, N. I.; Forbes, M. D. E. Dynamic Effects in Spin-Correlated Radical Pair Theory: J Modulation and a New Look at the Phenomenon of Alternating Line Widths in the EPR Spectra of Flexible Biradicals. *J. Phys. Chem.* **1995**, *99* (24), 9660–9667.

6. Forbes, M. D. E.; Avdievich, N. I.; Ball, J. D.; Schulz, G. R. *J. Phys. Chem.* Chain Dynamics Cause the Disappearance of Spin-Correlated Radical Pair Polarization in Flexible Biradicals. **1996**, *100* (33), 13887–13891.
7. Avdievich, N. I.; Dukes, K. E.; Forbes, M. D. E.; DeSimone, J. M. J. Phys. Chem. A Time-Resolved EPR Study of a 1,9-Flexible Biradical Dissolved in Liquid Carbon Dioxide. Observation of a New Spin-Relaxation Phenomenon: Alternating Intensities in Spin-Correlated Radical Pair Spectra. 1997, 101 (4), 617–621.