Sarcoidosis is a significant disease affecting the heart. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a well-validated method for identifying significant focal inflammatory sarcoid lesions. The recent progress in image interpretation in nuclear medicine improves the diagnosis and the risk stratification in patients with cardiac sarcoidosis. Especially, metabolic activity, texture analysis, phase analysis, right ventricle assessment, and digital PET/CT are promising methods to assess cardiac sarcoidosis. This review focuses on the latest data analyses and image interpretation used in nuclear medicine to assess cardiac sarcoidosis.

Keywords: Cardiac sarcoidosis, Metabolic activity, PET, Phase analysis, RV assessment, Texture analysis

Annals of Nuclear Cardiology Vol. 6 No. 1 49–52

doi: 10.17996/anc.20-00113

1) Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
2) Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
average of the SUV by the metabolic volume (6). The determination of the quantitative metabolic activity is useful for the quantification of the metabolic volume and activity and for monitoring longitudinal FDG examinations to guide the use of steroid therapy. Ahmadian et al. reported that the CMA was a reliable independent predictor of cardiac events in patients with CS (7).

Texture analysis

Recent studies note that the evaluation of FDG heterogeneity in myocardium provides diagnostic and prognostic advantages for CS patients (8, 9). A texture analysis (TA) is comprised of a group of computational methods that extracts information about relationships among adjacent pixels (2D) or voxels (3D) and evaluates the inhomogeneity. The measurement of textural features may allow better tissue characterization for in-depth assessments of PET images than is possible with the current parameters such as the SUVmax. A TA provides informative parameters that can be used to diagnose CS in terms of the quantification of the heterogeneous uptake of FDG, which cannot be captured by a visual assessment in humans. Our recent study included 21 patients with CS and 53 patients with non-CS. Texture features (as described by Ortlac (10)) are measured by using the home-made PTexture package (1). The SUV and CMV are widely overlapped between CS with pathological uptake and non-CS with physiological uptake when only 6-hr fasting is applied (1). However, 16 of the 36 texture features can discriminate CS from non-CS. The long-run emphasis (LRE), a type of gray-level run length matrix, is the best discriminator of CS. The diagnostic value of the LRE is also significantly higher than those of the SUVmax and CMV (1).

In a receiver operating curve (ROC) analysis, the cut-off value of the LRE was 13.3. It is difficult to assess the patterns of polar maps of FDG by a visual method, but the assessment can be achieved by using the LRE, which is also a type of texture feature. These cases clearly show that texture features discriminate CS patients beyond a visual assessment. The inter-operator reproducibility of TA is high, with an intraclass correlation coefficient of 0.98. Another study demonstrated that an FDG texture analysis was useful to evaluate the association between texture parameters for FDG heterogeneity and prognosis (11). The study included consecutive 62 patients with CS. Among 36 texture parameters, high gray-level run emphasis (HGRE), which is a type of gray-level run length matrix, was selected as the best predictor of major adverse cardiac events (MACE). An HGRE value ≥1,000 was significantly associated with a poor outcome. A high HGRE value indicates that there are many high gray-level runs regardless of the length of the run. This result suggests that the heterogeneity of inflammatory activity based on the spatial distribution and intensity was clearly quantified by the TA. This retrospective study included a relatively small number of patients. Further studies of larger numbers of CS patients are warranted to validate the clinical role of a texture analysis using FDG PET.

Phase analysis

An evolving technique for measuring LV mechanical dysynchrony is a phase analysis using electrocardiography (ECG)-gated single-photon emission computed tomography (SPECT) perfusion imaging. With this technique, the gated short-axis images are reconstructed to obtain the regional maximum counts from each temporal frame. Fourier transform is applied for a time-activity curve to estimate the timing of LV systole as demonstrated by the histogram. The phase

Figure 1 Quantitative analysis of cardiac uptake.

A: A maximum intensity projection (MIP) image of FDG PET and axial images of PET/CT. There are focal uptakes not only on the LV but also on the RV due to the patient’s active CS. All of the voxels with an SUV over the defined threshold (on this occasion, 1.5 times the SUVmean in the aortic blood pool) are extracted; red=cardiac lesions, aqua=extra-cardiac lesions (B). In this patient’s case, the SUVmax, CMV, and CMA were calculated as 10.7, 82.2 ml, and 361.1 ml, respectively. The polar map is created for the evaluation of the FDG distribution and heterogeneity in the LV (C).
standard deviation (PSD), which is the standard deviation of the onset of the mechanical contraction phase, and the phase histogram bandwidth (BW), which is expressed as the 95% width of the phase histogram, are the representative parameters to assess LV global mechanical dyssynchrony (Figure 2). Our study demonstrated that the MACE-free rate values can be stratified at the median of BW into the high-BW group (>56°) and the low-BW group (≤56°) (2). High BW was significantly associated with poor outcome.

RV assessment

The evaluation of the right ventricle’s FDG uptake provides helpful information because the physiological FDG uptake of an RV is rare compared to such uptake in the LV (Figure 1). The importance of RV assessment to evaluate the disease severity of CS has also been recognized. We recently evaluated 28 patients who underwent an endomyocardial biopsy (EMB) among 70 consecutive CS patients (12). Among the 28 patients with CS, a positive EMB result was detected in six patients (21%). This positive rate is almost the same as that reported in a 2008 Scientific Statement (13). However, when we focused on the RV uptake, the results revealed that the patients with positive RV FDG uptake had a significantly higher frequency of positive EMB results. This finding suggests that RV involvement indicates the spread of disease activity into the whole heart so that the rate of positive biopsy results was high. In terms of MACE, RV FDG uptake was more frequently associated with poor outcome compared to negative RV FDG uptake.

Digital PET/CT

A digital PET/CT scanner has high spatial resolution compared to analog PET/CT scanners (14). This high resolution can improve the detection of patchy sarcoidosis lesions in the heart, which is similar to the ability of cardiac MRI. MRI delayed enhancement shows multiple lesions including those in the RV wall, transmural enhancement in the anterior wall, and epicardial and endocardial enhancement in the lateral wall and septum. Regarding the lateral wall, digital PET clearly delineates epicardial and endocardial lesions at this site, similarly to MRI.

Figure 2 Phase analysis using SPECT perfusion imaging. Fourier transform was applied for the time-activity curve to estimate the timing of LV systole as demonstrated by the histogram. Case A had normal perfusion and normal entropy = 36 (%), phase SD = 7 (°), and bandwidth = 28 (°) estimated by the histogram. Case B was a patient with severe multiple perfusion defects and high dispersion of the histogram of the phase analysis with high bandwidth: entropy = 78 (%), phase SD = 81 (°), bandwidth = 327 (°).
Conclusion
The progress in image interpretation continues to overcome the limitations of diagnoses and risk stratifications provided by the conventional visual assessments of FDG PET and perfusion SPECT in patients with CS. Our recent efforts illustrate another valuable method that can be used to further advance artificial intelligence-guided diagnoses.

Acknowledgments
None.

Sources of funding
None.

Conflicts of interest
None.

Reprint requests and correspondence:
Masanao Naya, MD, PhD
Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, Hokkaido, 060-8638 Japan
E-mail: naya@med.hokudai.ac.jp

References
1. Manabe O, Ohira H, Hirata K, et al. Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2019; 46: 1240‒7.
2. Koyanagawa K, Naya M, Aikawa T, et al. Prognostic value of phase analysis on gated single photon emission computed tomography in patients with cardiac sarcoidosis. J Nucl Cardiol 2019. doi: 10.1007/s12350-019-01660-9. [Epub ahead of print]
3. Kumita S, Yoshinaga K, Miyagawa M, et al; Committee for diagnosis of cardiac sarcoidosis using 18F-FDG PET, Japanese Society of Nuclear Cardiology. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis—2018 update: Japanese Society of Nuclear Cardiology recommendations. J Nucl Cardiol 2019; 26: 1414‒33.
4. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329‒36.
5. Osborne M, Kolli S, Padera RF, et al. Use of multimodality imaging to diagnose cardiac sarcoidosis as well as identify recurrence following heart transplantation. J Nucl Cardiol 2013; 20: 310‒2.
6. Manabe O, Kroenke M, Aikawa T, et al. Volume-based glucose metabolic analysis of FDG PET/CT: The optimum threshold and conditions to suppress physiological myocardial uptake. J Nucl Cardiol 2019; 26: 909‒18.
7. Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 925‒39.
8. Sperry BW, Tamarappoo BK, Oldan JD, et al. Prognostic impact of extent, severity, and heterogeneity of abnormalities on 18F-FDG PET scans for suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2018; 11: 336‒45.
9. Schildt JV, Loimaala AJ, Hippeläinen ET, Ahonen AA. Heterogeneity of myocardial 2-[18F] fluoro-2-deoxy-D-glucose uptake is a typical feature in cardiac sarcoidosis: A study of 231 patients. Eur Heart J Cardiovasc Imaging 2018; 19: 293‒8.
10. Orhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 2014; 55: 414‒22.
11. Manabe O, Koyanagawa K, Hirata K, et al. Prognostic value of 18F-FDG PET using texture analysis in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2020; 13: 1096‒7.
12. Omote K, Naya M, Koyanagawa K, et al. 18F-FDG uptake of the right ventricle is an important predictor of histopathologic diagnosis by endomyocardial biopsy in patients with cardiac sarcoidosis. J Nucl Cardiol 2019. doi: 10.1007/s12350-018-01541-7. [Epub ahead of print]
13. Anderson L, Pennell D. The role of endomyocardial biopsy in the management of cardiovascular disease: A Scientific Statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Eur Heart J 2008; 29: 1696. author reply: 1696‒7.
14. Manabe O, Oyama-Manabe N, Nagai T, Furuya S, Anzai T. Detailed visualization of the right and left ventricular, left atrial, and epicardial involvement of cardiac sarcoidosis with novel semiconductor PET/CT. Eur J Nucl Med Mol Imaging 2019. doi: 10.1007/s00259-019-04577-0. [Epub ahead of print]