Low-Field Microwave-Free Magnetometry Using the Dipolar Spin Relaxation of Quartet Spin States in Silicon Carbide

Oscar Bulancea-Lindvall,1 Matthew T. Eiles,2,* Nguyen Tien Son,1,† Igor A. Abrikosov,1 and Viktor Ivády1,2,3,4,‡

1Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
2Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, Dresden D-01187, Germany
3Department of Physics of Complex Systems, Eötvös Loránd University, Egyetem tér 1-3, H-1053 Budapest, Hungary
4MTA-ELTE Lendület “Momentum” NewQubit Research Group, Pázmány Péter, Sétány 1/A, 1117 Budapest, Hungary

(Received 2 February 2022; revised 13 July 2022; accepted 21 December 2022; published 2 March 2023)

Paramagnetic defects and nuclear spins are the major sources of magnetic-field-dependent spin relaxation in point-defect quantum bits. The detection of related optical signals has led to the development of advanced relaxometry applications with high spatial resolution. The nearly degenerate quartet ground state of the silicon-vacancy qubit in silicon carbide (SiC) is of special interest in this respect, as it gives rise to relaxation-rate extrema at vanishing magnetic field values and emits in the first near-infrared transmission window of biological tissues, providing an opportunity for the development of sensing applications for medicine and biology. However, the relaxation dynamics of the silicon-vacancy center in SiC have not yet been fully explored. In this paper, we present results from a comprehensive theoretical investigation of the dipolar spin relaxation of the quartet spin states in various local spin environments. We discuss the underlying physics and quantify the magnetic field and spin-bath-dependent relaxation time T_1.

Using these findings, we demonstrate that the silicon-vacancy qubit in SiC can implement microwave-free low-magnetic-field quantum sensors of great potential.

DOI: 10.1103/PhysRevApplied.19.034006

I. INTRODUCTION

Due to their robustness, sensitivity, and versatility, point-defect quantum bits exhibit enormous potential for quantum sensing. The stringent requirements of emerging multidisciplinary applications, e.g., room-temperature operation, sensing at low or zero magnetic field, microwave-free and all-optical control, and biocompatibility, pose numerous challenges for such devices. Novel point-defect sensors that can meet some or all of these criteria are continuously sought after.

The nitrogen-vacancy (N-V) center in diamond [1] is the leading contender in quantum sensing applications [2] realized by optically addressable point-defect qubits [3]. Recent developments in N-V relaxometry [4–9], where the variation of the longitudinal spin-relaxation time is detected by optical means, have made high-temperature microwave-free sensing applications possible. Sensing at low magnetic field with such sensors is, however, not possible due to the large zero-field splitting of the triplet ground state, which requires a bias field of approximately 100 mT to bring the spin states to near degeneracy. The presence of the bias field is often undesirable, as it may perturb the sample and influence the measurement [10–13].

Relaxometry-based sensing has not been explored for other point-defect qubits, such as the divacancy [14,15] and the negatively charged silicon vacancy [16–18] in silicon carbide (SiC) [15]. The latter defect is, however, attractive for low-magnetic-field relaxometry applications owing to its small zero-field splitting value and resulting quasidegenerate electron spin states. For such applications, a detailed understanding of the relaxation processes of this defect is crucial.

The negatively charged silicon vacancy in SiC provides an optically addressable point defect the quartet ground-state spin [19] of which has a long room-temperature coherence time [20,21]. The unusual high spin state has been utilized in various applications, including quantum sensing [18,22–24], room-temperature masers [25], and...
near-infrared quantum information processing [26–28]. In recent years, considerable attention has been paid to experimental characterization of the relaxation dynamics of the quartet silicon-vacancy spin states in a broad temperature range in various SiC samples [21,29,30]. Relaxometry-based sensing schemes have also been proposed for temperature sensing and magnetometry based on the behavior at spin-level anticrossings [31,32]. However, the external field dependence of the relaxation processes due to environmental spin coupling has received little attention thus far but must be understood in detail for various relaxometry applications. Recent theoretical developments have enabled parameter-free calculations of the two major contributions to the longitudinal spin relaxation, namely the temperature-dependent spin-lattice relaxation [33–35] and the magnetic-field-dependent dipolar spin relaxation induced by local environmental spins [15,36,37].

In this paper, we study the magnetic field and local-spin-environment dependence of the dipolar spin relaxation of the V1 and V2 silicon-vacancy centers in the 4H polytype of SiC (4H-SiC) [38]. We consider various environmental spin species, such as the naturally abundant 13C and 29Si nuclear spins and spin-1/2 and spin-1 point defects, over a wide range of concentrations. We identify the most relevant level anticrossings (LACs), where environmental spins efficiently relax the quartet spin states, and quantify the spin-relaxation time T_1. We find several narrow resonances, where the spin-relaxation time can vary over several orders of magnitude within a small magnetic field interval close to $B = 0$. Utilizing these observations, we propose quantum sensors for biological use and estimate their sensitivity.

The paper is organized as follows. In Sec. II, we detail the models and the simulation technique used. In Sec. III, we present our computational results, while in Sec. IV we discuss our proposal for low-field relaxometry with the silicon-vacancy center. Finally, in Sec. V, we draw our conclusions.

II. METHODOLOGY

We model the relaxation dynamics of many-spin systems consisting of a quartet silicon-vacancy electron spin and a number of environmental spins of different kinds. We consider spin-1/2 13C and 29Si nuclear spins and doublet and triplet electron spin environments. More information on relevant paramagnetic defects in SiC can be found in Ref. [15]. Nuclear and electron baths are considered independently and calculated separately.

The spin Hamiltonian of the many-body system is given by

\[H = H_0 + \sum_i H_i^s + \sum_i H_i^{n} + \sum_{ij} H_{ij}, \]

where the Hamiltonian H_0 of the quartet silicon-vacancy spin includes the zero-field splitting (ZFS) and the Zeeman term (ZE),

\[H_0 = H_{ZFS} + H_{ZE} = D \left(S_z^2 - \frac{5}{4} \right) + \left(g_S S_z + g_3 \left(S_+^3 - S_-^3 \right) \right) \mu_B B_z. \]

In Eq. (2), the ZFS parameter $D = 2.6$ MHz ($D = 35.0$ MHz) for the V1 center (V2 center) in 4H-SiC [38].

The Hamiltonian H_i^s in Eq. (1) depends on the considered spin bath and, accordingly, $x = \{ n, d, t \}$. For nuclear spins, it includes only the nuclear Zeeman interaction term,

\[H_i^n = -\mu_N g_N I_{ix} B_z, \]

while for triplet electron (te) spins, the Hamiltonian includes the ZFS and the linear Zeeman term,

\[H_i^{de} = \frac{g_e \mu_B S_1 B_z}{2}, \]

where g_N is the nuclear g factor of either the 13C or the 29Si isotope, μ_N is the nuclear magneton, and I_{ix} is the doublet nuclear spin x operator. For doublet electron (de) spins, the Hamiltonian includes only the linear Zeeman term,

\[H_i^{de} = \frac{g_e \mu_B S_1 B_z}{2}, \]

where D_i and E_i are the ZFS parameters of triplet spin defect i. In our study, the triplet-spin bath consists of divacancy defects, the ZFS parameters of which can be found in Ref. [40].

The Hamiltonian H_i^n terms in Eq. (1) account for the interaction between the silicon-vacancy center and the environmental spins. For nuclear spins, the coupling term can be written as

\[H_i^n = S_i A_i I_i, \]

where S and I_i are the quartet electron spin and spin-1/2 nuclear spin vector operators, respectively, and A_i is the hyperfine tensor determined from ab initio density-functional-theory (DFT) calculations. The details of the DFT hyperfine calculations can be found in Ref. [36]. For an electron spin bath, the coupling Hamiltonian term is
equal to the magnetic dipole-dipole coupling and can be written as

\[
H_{0i}^{\text{de}} = H_{0i}^{\text{ee}} = -\frac{\mu_0 g_e^2 \mu_b^2}{4\pi r^3} \left(3 \langle \mathbf{S}_i \rangle \langle \mathbf{S}_r \rangle - \langle \mathbf{S}_i \mathbf{S}_r \rangle \right),
\]

(7)

where \(\mu_0 \) is the vacuum permeability, \(S_i \) is either the double or the triplet electron spin operator vector of environmental spin defect \(i \), \(r \) is the distance vector of the silicon vacancy and the paramagnetic defect, with \(r = |\mathbf{r}| \) and \(\mathbf{r} = \mathbf{r}/r \). Finally, the last term on the right-hand side of Eq. (1) accounts for intra-spin-bath couplings. According to our numerical tests, this term does not contribute significantly to spin-relaxation phenomena and it is neglected hereinafter.

In the numerical simulations, we investigate the relaxation dynamics of a central electron spin by utilizing a clustering-based computational method recently developed in Ref. [36] and summarized in Ref. [15]. This method uses an extended Lindbladian to facilitate effective interactions. In this work, we use first-order cluster approximation, i.e., a system of \(N \) spins is divided into \(N \) subsystems. Each subsystem includes the quartet silicon-vacancy electron spin and one spin from the surrounding spin bath. The spin Hamiltonian of the first order subsystem can be written as

\[
\tilde{H}_i^1 = H_0 + H_i + H_{0i}.
\]

(8)

Our spin-bath models include either \(N = 31 \) (spin-1/2 or spin-1) paramagnetic defects or \(N = 127 \) (\(^{13}\)C or \(^{29}\)Si) nuclear spins. According to our previous calculations in 4H-SiC [15] and diamond [36,37], these values ensure that our simulations are converged with respect to the bath size. In order to obtain ensemble-averaged quantities, we carry out averaging over different spin-bath configurations. In all cases, an ensemble of 200 random spin-bath configurations is considered. All configurations correspond to either a given isotope abundance or a given defect-electron-spin concentration. We note that in the nuclear spin-bath calculations, we do not consider those random configurations that contain \(^{13}\)C nuclear spin in the first neighbor shell of the defect. In the electron spin-bath calculations, we exclude spins exceeding 100 MHz in coupling strength, since in such cases the energy-level structure is completely mixed by the strong interaction and the center does not function as a regular silicon-vacancy qubit. These restrictions affect only a marginal part of the random ensemble.

For the different spin environments, we carry out two different time-dependent studies. First, starting from a highly polarized state of the quartet spin and a thermal state of the bath, we simulate the time propagation of the many-spin system over a short period of time, \(t = 1 \mu s \), and study the amount of population transferred from the initial state to the other states of the quartet silicon vacancy. These qualitative studies shed light on the external parameter dependence of the silicon-vacancy–environment couplings. Furthermore, the results of such calculations may be compared with photoluminescence (PL) studies [15,37]. Second, starting from similar initial states, we carry out long time-evolution simulations to quantitatively study the spin-relaxation time \(T_1 \). The simulation time \(t \) is tested and optimized for all the considered magnetic field values and spin-bath concentrations. Close to the LACs, we use 0.1 ms, while far away from the LACs, we use up to 1-ms simulation time. Similarly to the simulation time, the time step \(dt \) of the time propagation is also optimized. As a general rule, \(dt \) is selected in such a way that even the fastest coherent oscillation is well resolved in the simulations. In a sufficiently large spin bath, the initial population of the spin states relaxes as a sum of exponentially decaying modes [29,32], from which the characteristic time scale of the decay \((T_1) \) can be obtained. Here, we note that the simulation time is often much shorter than the \(T_1 \) time. Due to the extrapolation, the uncertainty of the calculated \(T_1 \) time is expectedly larger for a weakly coupled spin bath, where the decay time may reach seconds. Ensemble spin-relaxation times are obtained by averaging the time-dependent population data over the random spin-bath configurations and then fitting an exponential-decay curve to the obtained ensemble-averaged population data.

Generally, the relaxation should be considered for each mode separately. In the case of the spherical approximation applied to a spin-3/2 spin, the spin density matrix may be expanded into a basis set with separate relaxation rates,

\[
\rho(t) = I/4 + c_{D}\rho_{D}e^{-t/T_D} + c_{Q}\rho_{Q}e^{-t/T_Q} + c_{O}\rho_{O}e^{-t/T_O},
\]

(9)

where the \(I, \rho_{D}, \rho_{Q}, \) and \(\rho_{O} \) form the diagonal part of the spherically invariant multipole expansion basis [29], with separate coefficients \(\{c_{D}, c_{Q}, c_{O}\} \) and relaxation times \(\{T_D, T_Q, T_O\} \). However, since we mainly simulate the initial part of the decay, our results are likely to capture solely the fastest relaxation modes. Therefore, for the calculations performed in this work, a single exponential-decay model is deemed sufficient for quantitatively extracting characteristic relaxation times.

For high spin defects, the dipolar spin relaxation depends on the initial spin state [30]. For the silicon vacancy, we calculate the spin-relaxation effect starting from two different spin states. The initial population is either evenly distributed in the \(m_S = \{-1/2, +1/2\} \) subspace or set completely in the \(m_S = -1/2 \) state. Since the quartet electron spin is polarized in the \(m_S = \{-1/2, +1/2\} \) subspace in the optical excitation cycle, the former initial state is natural for microwave-free applications. High-fidelity initialization in a selected spin state can be achieved by applying a resonant microwave pulse [26].
In all cases, the initial state of the bath spins is set to a thermal state.

III. RESULTS

First, we report on spin-relaxation effects caused by the surrounding nuclear spin bath of the V1 and V2 centers in 4H-SiC. In order to understand the results of this section, we briefly discuss the magnetic field dependence of the quartet energy levels beforehand. As shown in Fig. 1(a) for the V2 center, the doubly degenerate $m_S = \{-1/2, +1/2\}$ and $m_S = \{-3/2, 3/2\}$ subspaces are split by $2D$ at $B = 0$, due to the ZFS interaction of the C_{3v} symmetric quartet ground state. The magnetic field applied along the three-fold rotation axis of the defect lifts the initial degeneracies and gives rise to nearly linear Zeeman shifts. For a positive magnetic field, the $m_S = -3/2$ level crosses both the $m_S = +1/2$ and the $m_S = -1/2$ levels. Inclusion of a weakly coupled spin-1/2 nuclear spin does not undermine the depicted level structure but, most importantly, its hyperfine interaction gives rise to LACs at the crossings of electronic spin states of $\Delta m_S = \pm 1$. The positions of these LACs are labeled by LAC A and LAC C in Fig. 1(a). Furthermore, second-order effects due to couplings that include two nuclear spins, or a nuclear spin and the non-linear Zeeman terms, enable quantum jumps of $\Delta m_S = \pm 2$. Such second-order effects give rise to an additional LAC midway between LAC A and LAC C, which is labeled as LAC B in Fig. 1(a). At all of these LACs, enhanced electron spin relaxation is expected due to the nuclear spin couplings.

In order to qualitatively study the magnetic field dependence of nuclear-spin-bath-induced spin relaxation, we carry out time-evolution simulations up to a fixed time and investigate the amount of population transferred from the initial state to the rest of the electron spin states. Figure 1(b) depicts the magnetic field dependence of the obtained population variations for the V1 and the V2 centers for two different initialization conditions denoted by “1/2 ss” and “-1/2 o.” The former means initialization in the $m_S = \{-1/2, +1/2\}$ subspace, while the latter means initialization in the $m_S = -1/2$ state only. In all cases, the population lost from the initial state is polynomially reduced as the magnetic field exceeds $B_{LAC. C}$. Note that different initialization conditions give rise to different relaxation pathways. In fact, since initialization in the $m_S = -1/2$ enables relaxation to the $m_S = +1/2$ state also, at larger magnetic fields the corresponding population transfer is twice as large as for 1/2-ss-subspace initialization.

For low magnetic field values, the decay of the initial population is sizable due to the presence of several LACs in the fine energy-level structure in this region. In case of the V2 center, the ZFS parameter of which is $D = 35$ MHz, all three LACs can be identified in the population transfer plot in Fig. 1(b). Note that LAC A is observed exclusively for the $m_S = -1/2$ initialization condition, while LAC B is observed exclusively when the $m_S = +1/2$ state is also populated. Since the ZFS is $2D = 5.2$ MHz for the V1 center, the LACs can be found very close to $B = 0$ for this center. Due to the width of the LACs, the individual peaks in the population transition curve cannot be resolved.
the spin is initialized in the $m_S = -1/2$ state only (labeled as “$-1/2 \, o$”), while for the ^{29}Si nuclear spin bath the spin is initialized in the $m_S = 1/2$, $-1/2$ subspace, with equal population in the two states (labeled as “1/2 ss”). The inset highlights relaxation times near zero magnetic field.

In order to quantitatively analyze the relaxation mechanism of a silicon-vacancy qubit in the nuclear spin bath of natural and 29Si-depleted $4H$-SiC, we carry out large-scale numerical simulations to determine the corresponding T_1 times. Figure 2 summarizes the results of these calculations. For natural samples of 4.68% 29Si and 1.07% 13C isotope content, the relaxation time is determined by the 29Si nuclear spin and the contribution of the paramagnetic 13C spins can be neglected. Indeed, the latter gives rise to a relaxation time that is 2 orders of magnitude larger than that of 29Si, which is the majority nuclear spin source in the sample. Consequently, depletion of the 29Si isotope may give rise to a substantial increase in the relaxation time, when no other relaxation generators, such as electron spins and spin-phonon coupling, are present.

The magnetic field dependence of the T_1 time clearly shows that the LACs drastically reduce the lifetime of the quartet spin in the $B = 0–60$ G interval for both the V1 and the V2 centers. Within this critical region, the T_1 time expectedly limits the coherence time, while outside of this region the T_1 time exceeds 1 ms, and the dipolar spin relaxation no longer limits the coherence time.

Next, we investigate spin-relaxation effects induced by spin-1/2 electron spins (the case of the spin-1 defect environment is briefly discussed in the Appendix). In SiC, there are several different common paramagnetic defects, the concentration of which is determined by the growth conditions and after-growth treatments. The most relevant defects and their expected concentrations in connection with the spin-relaxation processes of the divacancy qubits in $4H$-SiC are summarized in Ref. [15].

As depicted in Fig. 3(a), the fine energy-level structure of a quartet-doublet electron spin pair reveals important differences compared to the energy-level structure seen in Fig. 1(a) for the quartet electron spin system. Since both electron spins exhibit Zeeman splittings with $g \approx 2$ and the zero-field splitting value of the silicon-vacancy qubit is already suppressed at small magnetic field values, the magnetic field dependence of the energy levels of the coupled pair can be interpreted as the sum of a quintet (spin-2) and a triplet (spin-1) subspace. The triplet subspace is nearly degenerate with the three innermost states of the quintet subspace [see Fig. 3(a)]. To be able to keep track of the quartet silicon-vacancy spin states, hereinafter we use the $|m_S m_{S'}\rangle$ notation to label the states. Due to the small but nonzero ZFS of the silicon-vacancy center, four LACs (LAC 1–4) can be found in the vicinity of $B = 0$ [see the inset of Fig. 3(a)]. Furthermore, an additional LAC is found at larger magnetic field values (LAC 5). It occurs due to the nonlinearity of the quartet spin states of the silicon vacancy. We note that the position of LAC 5 may not be well defined in a natural sample, as any inhomogeneity, e.g., due to the local hyperfine fields of the two electron spins, may significantly shift the position of LAC 5.

Our qualitative study for spin-1/2 electron-spin-bath-induced spin relaxation is summarized in Fig. 3(b). When the silicon-vacancy spin is initialized in the $m_S = \{1/2, -1/2\}$ subspace, three narrow resonance peaks correspond to LAC 2–4, while a wide peak at around $B = 380$ G marks the position of LAC 5. The oscillations observable on the sides of the resonance peak of LAC 5 are a side effect of the finite simulation time and the slow coherent oscillations between states $|-3/2, +1/2\rangle$ and $|-1/2, -1/2\rangle$. For the V1 center, all LAC-related resonances occur much closer to $B = 0$.

When the initial population is set in the $m_S = -1/2$ state only, we observe an unexpectedly high nearly magnetic-field-independent population transfer to the empty states [see the dashed lines in Fig. 3(b)]. To understand this observation, we refer to Fig. 3(a), which shows a degenerate pair of states at the zero value of the energy scale. This magnetic-field-independent degenerate subspace includes the $|+1/2, -1/2\rangle$ and the $|-1/2, +1/2\rangle$ states, which can be coupled by the spin flip-flop operator of the dipole-dipole interaction. Since the states are degenerate, even a weak coupling between the two electron spins can give rise to a sizable population transfer within the doublet manifold, which explains the constantly high value in Fig. 3(b). We note that recent measurements have demonstrated fast $|-1/2\rangle \leftrightarrow |+1/2\rangle$ relaxation [30] in accordance with our findings. The phenomenon of efficient spin relaxation between the $|\pm 1/2\rangle$ states and its effects on the decoherence of the V2 center is further investigated in Ref. [41].
mS in the (labeled as "-1/2 o"), while for the latter the spin is initialized
1/2 defect is set to \(10^{18} \text{cm}^{-3}\) and time ranges from 100 s to 20

spin-bath concentrations. As can be seen, the relaxation

equation of the longitudinal spin-relaxation time of

the V1 and the V2 centers for various

magnetic defects. Figure 4 presents the calculated relax-

curves that correspond to different initialization conditions. For

can be found at distinct magnetic field values. The solid pink and

dashed black lines indicate the up and down states of the spin-1/2

defect. (b) The electron-spin-defect-induced population transfer

dashed lines depict the up and down states of the spin-1/2

region. Altogether, five level anticrossings, marked by LAC 1–5,

spin system. The inset shows a close-up of the zero magnetic field

device in SiC measured through its fluorescence intensity. Such a microwave-free sensor is desirable

for various biological applications. Furthermore, the V1

and V2 silicon-vacancy centers with 862-nm and 917-nm

zero-phonon photoluminescence emit in the first near-

infrared transmission window of biological tissue (650 nm

and 950 nm) and thus such a fluorescence silicon-vacancy
sensor would also be suitable for in vivo applications.

Since the photoluminescence signal of the silicon
vacancy depends on the population of the spin states,

spin-relaxation-induced population transfers have a direct
signature in the optical signal. Under continuous optical
excitation, the silicon vacancies are probabilistically

excited and the time \(t\) spent in the ground state between
two excitations follows an exponential distribution. When
the center is in the ground state, the initial high degree of
polarization in the \(m_S = \pm 1/2\) state exponentially decays.
Therefore, the PL signal of an ensemble of silicon-vacancy
centers is equal to

\[S = CT_0 \int_0^{\infty} \varphi_{T_d}(t) e^{-t/T_1} dt, \]

(10)

where \(\varphi_{T_d}(t)\) is the probability density function of exponential
distribution, \(T_d\) is the average dwell time in the
ground state for a given excitation power, \(C\) is the spin-
dependent contrast of the optical signal, and \(T_0\) is the
fluorescence intensity of the defect. Here, we assume that
the initialization of the spin state through the optical cycle
requires negligible time in comparison with \(T_d\). After
integration, the continuous wave signal is equal to

\[S = CT_0 \frac{T_1}{T_1 + T_d} \]

(11)

and hence its derivative with respect to the spin-relaxation
time is

\[\frac{dS}{dT_1} = CT_0 \left(-\frac{T_1}{(T_1 + T_d)^2} + \frac{1}{T_1 + T_d} \right), \]

(12)

which takes its maximal value at \(T_1/T_d \rightarrow 0\). It is therefore
advisable to set the parameters of the silicon-vacancy
sensors, the excitation laser power, and the spin-defect

Next, we quantitatively investigate the magnetic field
dependence of the longitudinal spin-relaxation time of
quartet silicon vacancies surrounded by spin-1/2 paramagnetic
defects. Figure 4 presents the calculated relaxation
time of the V1 and the V2 centers for various
spin-bath concentrations. As can be seen, the relaxation
time ranges from 100 s to 20 \(\mu\)s, depending on the

concentration of the defects and the magnetic field. As expected, the LACs drastically shorten the lifetime of the
silicon-vacancy spins; however, the \(T_1\) time increases
rapidly beyond LAC 5.

IV. DISCUSSION

The careful examination of the most relevant spin-
relaxation mechanisms of the silicon-vacancy qubit pre-

sented in Sec. III allows us to propose a low-magnetic-field
relaxometry application, relying on the variation of the
spin-state lifetime due to environmental couplings of the
silicon-vacancy center in SiC measured through its fluorescence intensity. Such a microwave-free sensor is desirable
for various biological applications. Furthermore, the V1
and V2 silicon-vacancy centers with 862-nm and 917-nm
zerophonon photo luminescence emit in the first near-
infrared transmission window of biological tissue (650 nm
and 950 nm) and thus such a fluorescence silicon-vacancy
sensor would also be suitable for in vivo applications.

FIG. 3. (a) The energy levels of a quartet-doublet two-electron
spin system. The inset shows a close-up of the zero magnetic field
region. Altogether, five level anticrossings, marked by LAC 1–5,
can be found at distinct magnetic field values. The solid pink and
dashed black lines indicate the up and down states of the spin-1/2
defect. (b) The electron-spin-defect-induced population transfer
from the highly polarized initial state to the empty quartet spin
states of the V1 and V2 centers. The solid and dashed lines depict
curves that correspond to different initialization conditions. For
the former, the spin is initialized in the \(m_S = -1/2\) state only
(labeled as "-1/2 o"), while for the latter the spin is initialized in
the \(m_S = [1/2, -1/2]\) subspace, with equal population in the
two states (labeled as "1/2 ss"). The concentration for the spin-
1/2 defect is set to \(10^{18} \text{cm}^{-3}\) and an overall simulation time of
1 \(\mu\)s is used.
FIG. 4. The magnetic field and electron-spin-defect concentration dependence of the ensemble-averaged spin-relaxation time T_1 of (a) the V1 center and (b) the V2 center. The quartet spin state is initialized in the $m_S = \{1/2, -1/2\}$ subspace. The dashed horizontal line in (b) highlights the typical coherence time for the V2 center.

concentration in such a way that the $T_1 < T_d$ relation is ensured.

Following this model, upon applying a bias field $B_{z,0}$ at the LAC B or C magnetic field regions, monitoring the change in photoluminescence intensity will give an estimate for the relaxation time, which will correspond to a unique value for the external field in the respective monotonous regions of the relaxation time around the LACs. However, to utilize the full LAC region, one may introduce a small oscillating field $B_{z,\omega} = B_0 \sin(\omega t)$ in addition to the bias, where ω may be well below radio frequency [18]. The external field oscillation will produce an oscillating photoluminescence intensity, with an amplitude and phase difference to the $B_{z,\omega}$ field corresponding to the relaxation time and its derivative, according to

$$\frac{dS}{dt} = C T_0 \left(\frac{T_1}{(T_1 + T_d)^2} + \frac{1}{T_1 + T_d} \right) \frac{dT_1}{dB} \frac{dB_{z,\omega}}{dt},$$

which can be captured via lock-in measurement. This method will have increasing accuracy with increasing magnetic field sensitivity of the relaxation time and will enable highly sensitive low-field magnetometry in a range of ±0.3 G according to our predictions (see Fig. 5). To achieve a quantitative accuracy, however, the mapping between PL variation and magnetic field needs to be calibrated for the specific sample and orientation in relation to the c axis of the lattice. Our calculations assume alignment of the external field with the c axis and deviation from this is expected to broaden the relaxation rate peak around each LAC, which could be one way of tuning the sensing range, at the cost of sensitivity [18].

Works using lock-in measurements around the ground-state LAC of the silicon vacancy have reported an accuracy of order 0.1 μT/$\sqrt{\text{Hz}}$ at room temperature when applied to a silicon-vacancy concentration of $2 \cdot 10^{14}$ cm$^{-3}$ [18,32], which may be limited by the inherent spin contrast and intensity of the silicon-vacancy zero-phonon line. However, this measurement technique is applied in the defect-ensemble setting and increasing the concentration of silicon vacancies would be one way of improving the accuracy. Furthermore, creating silicon vacancies by irradiation will create other defects in the local environment, such as carbon vacancies, in a proportional amount, which will be beneficial in maximizing the LAC relaxation rate due to the electron spin-bath concentration.

Magnetic field sensing can therefore be realized utilizing the magnetic field dependence of the spin-relaxation time $T_1(B)$ studied in this paper. It is important to note, however, that the spin-lattice relaxation induced by

FIG. 5. The spin-relaxation curve of the V1 center at room temperature ($T_1(300 \, K) = 100 \, \mu s$) for a $C = 10^{17}$ cm$^{-3}$ spin-1/2 point-defect concentration in an isotope-purified 4H-SiC sample.
the magnetic-field-independent spin-orbit and electron-
phonon interactions needs to be taken into consideration
as well, especially at room temperature. The net relaxation
rate can be written as a sum of the two terms,

$$\frac{1}{T_1(B, T)} = \frac{1}{T_1(T)} + \frac{1}{T_1(B)}.$$ \hspace{1cm} (14)

Based on recent low-magnetic-field measurements on
the silicon-vacancy center in SiC, the spin-lattice relaxation
time $T_1(T)$, with T being the temperature, is in the
range of 100 μs at room temperature $[21,42]$. In order
to obtain a measurable magnetic-field-dependent signal,
the dipole-dipole-interaction-induced spin-relaxation time
$T_1(B)$ needs to be at least in the same order of mag-
nitude. For the V1 (V2) center, this can be achieved at
low magnetic field strength by using $C = 10^{17}$ cm$^{-3}$ ($C =
3 \times 10^{17}$ cm$^{-3}$) spin-1/2 defect concentration in the host
material.

In order to achieve the highest sensitivity, the deriva-
tive of the relaxation time with respect to the magnetic
field $dT_1(B)/dB$ should be maximal. In this respect, the
hyperfine interaction that gives rise to local inho-
meogeneities, variation of the LAC positions, and broad-
ening of the resonance signal is undesirable. Therefore,
for high-performance sensing applications, 29Si- (and 13C-)
depleted samples are needed. In our calculations, we con-
sider relaxation mechanisms in nuclear and electron spin-
and Electronic coupling-induced polarization transfer between the
initially polarized and initially empty states over a 1-μs
simulation time $[43,44]$. Note that the spin bath includes all four possible
divacancy configurations; thus Fig. 6 shows the integrated
effect of all the different divacancies. As can be seen in

V. CONCLUSIONS

In summary, we comprehensively investigate the
dipolar spin relaxation of quartet silicon-vacancy qubits in
4H-SiC. The observed relaxation phenomena significantly
differ from the case of triplet qubits in wide-band-gap
semiconductors, such as the N-V center in diamond and the
disvacency in SiC. Due to the small zero-field splitting, the
LACs and most of the strong relaxation processes squeeze
into a small magnetic field interval close to $B = 0$. While
this region is generally avoided in experiments due to the
strong couplings, here we show that one may utilize these
effects in room-temperature microwave-free magnetic field
sensing applications. Based on our results, we propose that
the most suitable 4H-SiC sample for this purpose is a para-
magnetic isotope-purified sample that contains spin-1/2
defects in approximately 10^{17} cm$^{-3}$ concentration.

ACKNOWLEDGMENTS

We acknowledge support from the Knut and Alice Wal-
lenberg Foundation (Grant No. KAW 2018.0071). Support
from the Swedish e-Science Research Center (SeRC) and
the Swedish Government Strategic Research Area in Mate-
rials Science on Functional Materials at Linköping Univer-
sity (LiU) (Faculty Grant SFO-Mat-LiU No. 2009-00971)
is gratefully acknowledged. N.T.S. acknowledges the sup-
port from the European Union H2020 project QuanTELCO
(Grant No. 862721). This research was supported by the
National Research, Development, and Innovation Office
of Hungary within the Quantum Information National
Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-
00004) and within the grant FK 145395. The calculations
were performed using resources provided by the Swedish
National Infrastructure for Computing (SNIC), partially
funded by the Swedish Research Council through Grant
Agreement No. 2018-05973 and LiU local resources (LiU-
2015-00017-60) at the National Supercomputer Centre
(NSC).

APPENDIX: SPIN RELAXATION DUE TO SPIN-1
DEFECTS

In this appendix, we qualitatively investigate the cou-
pling of the quartet silicon-vacancy spin states to a bath
of divacancies. The concentration of these spin-1 defects
is not substantial in commonly studied 4H-SiC samples;
thus their contribution to the spin-relaxation time may
be negligible in most cases. On the other hand, when
the electron spin states are resonant, even a few neigh-
broring divacancy centers can give rise to sizable relax-
ation effects that may be undesirable from the application
point of view. To reveal the magnetic field values of the
enhanced relaxation due to divacancy spins, we study spin-
and Electronic coupling-induced polarization transfer between the
initially polarized and initially empty states over a 1-μs
simulation time $[43,44]$. Note that the spin bath includes all four possible
divacancy configurations; thus Fig. 6 shows the integrated
effect of all the different divacancies. As can be seen in
FIG. 6. Population transfer between a silicon vacancy and a bath of divacancy qubits in 4H-SiC. (a), (b) The cases of the V1 and V2 centers, respectively. The dark- and light-color curves show different spin-initialization conditions. In both cases, the figure integrates the contributions from all of the four different divacancy configurations.

Fig. 6, there are numerous resonances due to the multiple crossings between electronic states and the variance of the D_i and E_i ZFS parameters. Furthermore, the relative amplitude of certain resonance peaks may vary depending on the initial spin state of the silicon-vacancy and divacancy qubits.

As can be seen in Fig. 6, the number of resonance peaks drops as the magnetic field increases. In particular, for $300 \text{ G} < B < 400 \text{ G}$ and $500 \text{ G} < B$, no resonance peaks can be found. These magnetic field regions may be advantageous for silicon-vacancy applications when both silicon vacancies and divacancy defects are created by positive-ion implantation and subsequent annealing.
Alignment of Silicon Vacancies in 4H- and 6H-SiC, Phys. Rev. Lett. 108, 226402 (2012).

[17] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, Coherent control of single spins in silicon carbide at room temperature, Nat. Mater. 14, 164 (2015).

[18] D. Simin, V. A. Soltamov, A. V. Poshakinskiy, A. N. Anisimov, R. A. Babunts, D. O. Tolmachev, E. N. Mokhov, M. Trupke, S. A. Tarassenko, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, All-Optical dc Nanoscale Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide, Phys. Rev. X 6, 031014 (2016).

[19] D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Resonant Addressing and Manipulation of Silicon Vacancy Qubits in Silicon Carbide, Phys. Rev. Lett. 109, 226402 (2012).

[20] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, Coherent control of single spins in silicon carbide at room temperature, Nat. Mater. 14, 164 (2015).

[21] D. Simin, H. Kraus, A. Sperlich, T. Ohshima, G. V. Astakhov, and V. Dyakonov, Locking of electron spin coherence above 20 ms in natural silicon carbide, Phys. Rev. B 95, 161201 (2017).

[22] S.-Y. Lee, M. Niethammer, and J. Wrachtrup, Vector magnetometry based on $s = 3/2$ electronic spins, Phys. Rev. B 92, 115201 (2015).

[23] M. Niethammer, M. Widmann, S.-Y. Lee, P. Stenberg, O. Kordina, T. Ohshima, N. T. Son, E. Janzén, and J. Wrachtrup, Vector Magnetometry Using Silicon Vacancies in 4H-SiC under Ambient Conditions, Phys. Rev. Appl. 6, 034001 (2016).

[24] A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Optical thermometry based on level anticrossing in silicon carbide, Sci. Rep. 6, 33301 (2016).

[25] H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Room-temperature quantum microwave emitters based on spin defects in silicon carbide, Nat. Phys. 10, 157 (2014).

[26] R. Nagy, M. Niethammer, M. Widmann, Y.-C. Chen, P. Udvarhelyi, C. Bonato, J. U. Hassan, R. Karhu, I. G. Ivanov, N. T. Son, J. R. Maze, T. Ohshima, O. O. Soykal, A. Gali, S.-Y. Lee, F. Kaiser, and J. Wrachtrup, High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide, Nat. Commun. 10, 1954 (2019).

[27] N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, C. Babin, M. Widmann, M. Niethammer, J. U. Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, and D. A. Awschalom, Developing silicon carbide for quantum spintronics, Appl. Phys. Lett. 116, 190501 (2020).

[28] C. Babin, et al., Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence, Nat. Mater. 21, 67 (2022).

[29] V. A. Soltamov, C. Kasper, A. V. Poshakinskiy, A. N. Anisimov, E. N. Mokhov, A. Sperlich, S. A. Tarasenko, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Excitation and coherent control of spin qubit modes in silicon carbide at room temperature, Nat. Commun. 10, 1678 (2019).

[30] A. J. Ramsay and A. Rossi, Relaxation dynamics of spin-3/2 silicon vacancies in 4H-SiC, Phys. Rev. B 101, 165307 (2020).

[31] A. N. Anisimov, D. Simin, V. A. Soltamov, S. P. Lebedev, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Optical thermometry based on level anticrossing in silicon carbide, Sci. Rep. 6, 33301 (2016).

[32] S. A. Tarassenko, A. V. Poshakinskiy, D. Simin, V. A. Soltamov, E. N. Mokhov, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Spin and optical properties of silicon vacancies in silicon carbide—a review, Phys. Status Solidi (b) 255, 1700258 (2018).

[33] J. Gugler, T. Astner, A. Angerer, J. Schmiedmayer, J. Majer, and P. Mohn, Ab initio calculation of the spin lattice relaxation time T_1 for nitrogen-vacancy centers in diamond, Phys. Rev. B 98, 214442 (2018).

[34] J. Park, J.-J. Zhou, and M. Bernardi, Spin-phonon relaxation times in centrosymmetric materials from first principles, Phys. Rev. B 101, 045202 (2020).

[35] J. Xu, A. Habib, S. Kumar, F. Wu, R. Sundararaman, and Y. Ping, Spin-phonon relaxation from a universal ab initio density-matrix approach, Nat. Commun. 11, 2780 (2020).

[36] V. Ivády, Longitudinal spin relaxation model applied to point-defect qubit systems, Phys. Rev. B 101, 155203 (2020).

[37] V. Ivády, H. Zheng, A. Wickenbrock, L. Bougas, G. Chatzidimos, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, D. Budker, I. A. Abrikosov, and A. Gali, Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study, Phys. Rev. B 103, 035307 (2021).

[38] V. Ivády, J. Davidsson, N. T. Son, T. Ohshima, I. A. Abrikosov, and A. Gali, Identification of Si-vacancy related room-temperature qubits in 4H silicon carbide, Phys. Rev. B 96, 161114 (2017).

[39] V. Ivády, I. A. Abrikosov, and A. Gali, First principles calculation of spin-related quantities for point defect qubit research, npj Comput. Mater. 4, 76 (2018).

[40] A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. A. Awschalom, Polyttype control of spin qubits in silicon carbide, Nat. Commun. 4, 1819 (2013).

[41] O. Balança-Lindvall, M. T. Eiles, N. T. Son, I. A. Abrikosov, and V. Ivády, Isotope purification induced reduction of spin relaxation and spin coherence times in semiconductors (2022), ArXiv:2205.05105.

[42] H. Singh, A. N. Anisimov, S. N. Nagalyuk, E. N. Mokhov, P. G. Baranov, and D. Suter, Experimental characterization of spin-3/2 silicon vacancy centers in 6H-SiC, Phys. Rev. B 101, 134110 (2020).