Mineralogical and geochemical changes in conglomerate reservoir rocks induced by CO₂ influx at Mihályi-Répcelak natural analogue, NW-Hungary

Viktória Forray1 · Csilla Király2 · Attila Demény3 · Dóra Cseresznyés1,4 · Csaba Szabó1 · György Falus1,4

Received: 10 January 2020 / Accepted: 11 October 2021 / Published online: 8 November 2021
© The Author(s) 2021

Abstract
A temporary solution to massive anthropogenic CO₂ emissions can be the capture of industrial CO₂ from flue gas and sequestering it in geological formations. For safe and effective storage of CO₂, interaction processes in the rock-pore fluid–CO₂ system should be known. Investigation of natural CO₂ accumulations provides valuable examples to what physical and chemical effects could be expected during CO₂ influx at future CO₂ storage sites. One of the key controlling factors of the processes occurring in natural CO₂ reservoirs is the lithology of the storage rocks, which is primarily determined by the formation conditions of these rocks. In this respect, the lithologies of individual CO₂ accumulation areas influence the processes between the host rock, the pore fluid, and the CO₂ in different ways. In the current study, we focus on a well-studied natural CO₂ storage reservoir, namely the Mihályi-Répcelak area, NW Hungary. We provide insight into the so far unstudied conglomerate reservoirs that represent a stratigraphically deeper reservoir unit with significantly different lithology and pore water compositions compared to the sandstone reservoirs. Our results indicate that dawsonite /NaAlCO₃(OH)₂/ formation also affected the conglomerate reservoirs, which indicates that at least part of the CO₂ could be trapped in mineral form. An important role of salinity in reducing the CO₂ mineral trapping capacity of the storage system is also demonstrated. Furthermore, H isotope analysis of diagenetic kaolinite was applied to trace the origin of the pore water that was present during the rock formation. Based on the data, dawsonite formation was induced by the flux of meteoric water that infiltrated during a warm and humid period and mixed with ascending CO₂.

Keywords CO₂ capture and storage · Dawsonite · Natural analogue · Conglomerate reservoir

Introduction
Due to the growth of industrial activity and the continuous expansion of the technological infrastructure since the 19th century, the number of CO₂ emitting point sources and the amount of CO₂ gas releasing into the atmosphere have increased dramatically. The atmospheric proportion of CO₂ has now exceeded 410 ppm under continuous, large-scale emissions (NOAA/ESRL 2019). Carbon dioxide accumulating in the atmosphere is thought to pose a heavy environmental risk to the society today, as it plays a major role in global climate change as a greenhouse gas, thus affecting the ecosystem and water balance of the Earth (IPCC
have a potential for CO2 storage as based on our results, (Rauzi 1999). Nevertheless, conglomerate reservoirs could primarily influence, among others, porosity, permeability, properties of rocks are primarily determined by the physical and chemical processes in an industrial CO2 storage project are likely to occur. In other words, what are the necessary conditions for the long-term safety and efficiency of CO2 trapping in deep geological environments (Watson et al. 2004). Mineral and petrophysical (porosity, permeability) properties of rocks are primarily determined by the conditions of their formation. This is especially true for sedimentary rocks where sedimentation and diagenetic processes primarily influence, among others, porosity, permeability, and reactivity. Therefore, it is essential that we know the environment and formation mechanism of rocks when examining CO2 natural analogues (Pearce et al. 2005; Holloway et al. 2007).

Former studies have focused mainly on sandstone reservoirs, whereas conglomerate rocks have been neglected in terms of CO2 storage due to their generally small volume and heterogeneity. However, the main objective of this study is to analyze the lithology and the geochemical character of conglomerate core samples that serve as natural CO2 reservoirs in the Mihályi-Répcelak area, gaining a more accurate understanding of how lithology and pore water geochemistry influence CO2 impacts in a natural environment.

This paper focuses on a distinctive isolated conglomerate reservoir at Mihályi-Répcelak area. Previous studies of conglomerate rocks, especially regarding CO2 storage, are subordinate in the literature despite evidence suggesting natural CO2 can accumulate in conglomerate reservoirs (Rauzi 1999). Nevertheless, conglomerate reservoirs could have a potential for CO2 storage as based on our results, mineral trapping of CO2 might also take place in the conglomerate rocks. Not considering mineral trapping, it was demonstrated by laboratory experiments (Wang et al. 2016) in Janggi basin (South Korea) that, due to favorable reservoir parameters, conglomerate rocks can store almost three times as much CO2 as sandstones with similar porosity and depth. Consequently, it also points to the importance of detailed or even targeted investigation of potential conglomerate reservoirs like the ones at the Mihályi-Répcelak area.

The present study investigates a well-known and extensively studied natural CO2 accumulation at Mihályi-Répcelak area, north-western Hungary, where effects of CO2 accumulation were examined in details for sandstone reservoirs and their caprocks (Király et al. 2016; Király 2017). A further study from the Mihályi-Répcelak area deals with the question of stable isotope composition of carbonate minerals, mainly dawsonite (Csresznyés et al. 2017). The results show that dawsonite precipitated from magmatic CO2, and the origin of OH is the pore water. One of the main questions of this study is whether the origin of dawsonite is the same in the conglomerate rock as in the sandstone.

Furthermore, accumulated CO2 appearing in conglomerate rocks is exclusive and has not been studied before at Mihályi-Répcelak area nor worldwide, even though CO2 trapping could be observed from new perspectives. The results from this study could be used to widen the knowledge about CO2–rock–porewater systems and help to make industrial CO2 geological storage safe and effective. Furthermore, conglomerates in the area represent a deeper stratigraphic unit than the sandstones, with remarkably different lithology and hypersaline pore water (Mészáros et al. 1979).

Geological background

Sedimentology and stratigraphy of the Little Hungarian Plain

Mihályi-Répcelak area is located in the Little Hungarian Plain, NW Hungary (Fig. 1), which is an extensional basin formed by NE–SW-striking faults during the Miocene and filled with Neogene sediments (Horváth 1993; Tari 1994; Kovač et al. 2007).

The pre-Pannonian sedimentary filling of Little Hungarian Plain is similar to other parts of the Pannonian Basin System. From Carpathian to Badenian, marine sediments of the Paratethys and coarse-grained alluvial sediments were formed (Sacchi and Horváth 2002; Kovač et al. 2007; Nagymarosy and Hámor 2012). The marine sediment sequences are interrupted by several tuff interbeddings which are connected to volcanic centers of Pásztori, Szány, and Tét area (Balázs and Nusszer 1987). Sarmatian sediments are represented by restricted brackish deposits of the Pannonian Lake. At the end of the Sarmatian, the Pannonian Lake lost all connection with oceans which caused gradual appearance of freshwater deposits and endemic fauna (Magyar et al. 1999).

Uplifting and erosion of Alpine-Carpathian region caused significant quantities of sediments transported to the
Pannonian Basin from the NW and started to fill the basin in the Late Miocene (Pogácsás 1984; Vakarcs et al. 1994; Juhász 1994, 1998; Magyar et al. 1999, 2013). The first shelf in the Little Hungarian Plain had formed 10 million years ago in less than 1 million years (Magyar et al. 2013). Starting from the Middle Miocene, the sedimentation was controlled by a prograding delta system arriving from the NW. The sediment sequence is uniform throughout the Pannonian Basin and reaches several km in thickness. This sequence hosts the most significant hydrocarbon, natural CO₂, and geothermal fluid resources basin wide.

The stratigraphically deeper units are characterized by alternating clayey-silty layers with fine-grained sand covered by a silt-dominated sequence. The shallower units are more dominated by medium-to-coarse grain size sand layers that are overlain by clayey layers, the latter representing fluvial sediments (Juhász 1994; Sztanó et al. 2013, 2016; Fig. 1C). At some parts of the basin, the rills of the basement reached the water level forming islands where abrasion sediments settled (Békés Formation) as assorted, unbedded conglomerates (Fig. 1C). Base material of these sediments is fine-grained sandstone with rounded gravels. It reaches its maximum thickness at the limb of structural highs, while it pinches out vertically (Juhász 1994). During recent research, Békés Formation was investigated by core samples, which are from 1411.5 to 1446.5 m depth. In every case, this formation is overlain by a dark gray to light gray, laminated to structureless clay marl serving as impermeable clayey cap rock.

Volcanic activity during the Neogene in the Little Hungarian Plain

In the Little Hungarian Plain, Late Miocene magmatic activity took place in two main phases. The Upper Miocene activity is represented by a buried magmatic body...
characterized by a large positive magnetic anomaly in Pásztori area (Balázs and Nusszer 1987). Several oil exploration drills had reached the magmatic series and discovered a unique series of alkaline trachyte in the Pannonian Basin (Kőrössy 1958). The appearance of sea sediments at the beginning of the volcanic series suggests that volcanism began in a sub-sea environment (Kőrössy 1958; Harangi et al. 1995), but increased above sea level in the Sarmatian (Tari 1994). The second magmatic phase began 6 million years ago and volcanic cones built up by alkaline basalt, basanite, and trachybasalt formed in the Little Hungarian Plain area (Balázs and Nusszer 1987; Harangi et al. 1995).

Forming of CO₂ accumulation

As a result of volcanic activity, several CO₂ reservoirs developed in the area in the sandstone and conglomerate bodies of the Middle Miocene sedimentary sequence (Mészáros et al. 1979) (Fig. 1B). In the study area, 26 of these reservoirs have been exploited and produced in the last decades. The origin of the CO₂ was identified as magmatic (Palcsu et al. 2014; Vető et al. 2014) based on stable isotope composition of the produced gas.

Samples and methods

Samples

Two drill cores representing conglomerate facies (RM19-7Rkong and RM19-8Rkong), the only samples available from over 40 boreholes, were studied whose features are shown in Table 1. The drill cores available from the area predominantly consist of layered sandstones, aleurolites, and claystones.

Both studied samples are oligomictic, well cemented, matrix supported conglomerates. In both cases, the matrix is light gray-colored and fine-grained. The appearing clasts can be sorted in three groups, which are the following: (1) kaolinitic clasts that are 0.1–2.5 cm and make at least 50 v/v% of all clasts in the rocks, (2) mm-to-cm scale fossils, and (3) metamorphic and micrite rock fragments.

Petrography

During the sample preparation, two-component araldite resin was used with blue dye to make the porosity of the rock visible. The petrographic examination of the samples was carried out using an NIKON Eclipse LV100 POL type polarization microscope equipped with a NIKON DS-Fi1 digital. To get a better understanding of mineralogical and textural information, scanning electron microscopy (SEM) measurements were carried out. The Amray 1830-type electron microscopy was equipped with EDAX PV 9800 energy-dispersive X-ray spectrometer. 20 kV accelerating voltage was used in each case; the primary electron current was 1 nA. Backscattered electron (BSE) image and secondary electron image (SEI) were used during the analyses. Petrographic characterization and SEM analysis were carried out at the Eötvös Loránd University, Hungary.

Mineral modes were determined using X-ray Powder Diffraction (XRD) measurements. However, it must be noted, that several mineral phases identified under polarization microscope were not detectable during the XRD measurements. That is why, the mineral composition of the kaolinitic clasts (discussed in detail later) was estimated using image analysis on high-resolution SEM images. Volume of pores pace (in v/v%) was taken by the difference between the total pixel number and the pixel number of all the minerals. After subtracting, the area filled with minerals from the size of the whole image. The error of this porosity calculation method can be up to 5–10 v/v% due to the granules lost during grinding.

Micro-XRD

Check the cleanness of the separated kaolinite samples to the stable isotope analysis, Micro-XRD were carried out at the Institute for Geological and Geochemical Research, Budapest. Micro-XRD analysis was performed following Kovács et al. (2021) on an RIGAKU D/MAX RAPID II diffractometer, which is a combination of a MicroMax-003 third-generation microfocus, sealed-tube X-ray generator, and a curved imaging plate (IP) detector. The diffractometer is operated with CuKα radiation generated at 50 kV and 0.6 mA. The powdered samples for the micro-diffraction measurements

Table 1	Studied samples properties						
Samples	Depth (m)	Temperature (°C)	Kaolinitic clasts [v/v %]	Fossils [v/v %]	Other clasts [v/v %]	Organic material [v/v %]	Weight [g]
RM19-7Rkong	1411.5–1429	68.16	~50	~40	~5	~5	594.54
RM19-8Rkong	1429–1446	68.84	~65	~25	~10	–	505.06

The temperature was estimated by average geothermal gradient (Dövényi et al. 1983) and the average mean temperature at the area (Hungarian Meteorological Service 2018)
are encapsulated in a borosilicate-glass capillary, with a diameter of 0.3 mm and wall thickness of 0.01 mm, by a vertical manual charging process. Then, the capillary is analyzed by the micro-diffractometer in transmission mode with a beam spot diameter of 100 μm. In each measurement, 0.5–1 mg sample is placed in the funnel end of the capillary and the sample is tamped into the narrow portion. The measurement time takes about 10 min. IP is read by a laser scanning readout system in about 1 min. 2DP RIGAKU software is used to record the diffraction image from the laser readout and the operator can determine the area to integrate for a 2θ versus intensity plot. This plot is read into RIGAKU PDXL 1.8 software for data interpretation. The diffraction patterns were processed using SiroQuant V4 software, and the modal contents were determined by the Rietveld method.

Stable isotope measurements

Water contents and H isotope compositions were determined using a High-Temperature Conversion Elemental Analyser (TC/EA) attached to a stable isotope ratio measuring mass spectrometer (Sharp et al., 2001) at the Institute for Geological and Geochemical Research, Budapest. Kaolinite samples were wrapped into Ag foil capsules, pleased into a heatable carousel (Uni-prep™, Eurovector SpA, Italy), heated to 100 °C while pumped for an hour using a Cole Palmer® Air Cadet® diaphragm pump and a liquid nitrogen trap. The samples were then flushed with He and dropped into the high-temperature conversion unit (TC/EA) in a continuous flux of He carrier gas. The reaction tube was packed with glassy carbon and heated to 1430 °C. At the reaction temperature, H-bearing minerals release their volatile content and the evolving H2O is converted to H2 gas. The TC/EA unit was attached to a Thermo Finnigan delta V mass spectrometer, which was used to determine D/H ratios in the H2 gas. The hydrogen contents were calculated on the base of size of the mass 2 signal peak. The isotope compositions were expressed in the δ-notation (δ 2H = (R1/R2−1)·1000, where R1 and R2 are the D/H ratios in the sample and the standard, respectively) in permil (‰) relative to V-SMOW. The H isotope compositions of laboratory standards (IAEA CH-7 polyethylene foil and NBS-22 oil) were used for calibration yielded an average reproducibility of <±2 ‰. A δ2H value of −27.5 ± 0.7 ‰ (n = 4) was obtained for an in-house test amphibole sample (TOB-A1) that had been analyzed before at the University of Lausanne (−29 ‰, Demény et al., 2005) and at the Université Claude Bernard Lyon 1 (−28.6 ±6.0 ‰, n = 5; Fourel et al. 2017). Note that the He flushing method without heating resulted in a δ2H value of −28.8 ± 4.8 ‰ (n = 4), closer to the published values. The NBS-30 biotite standard was measured, but yielded a large scatter (from −64 to −56 ‰) in accordance with the observations of Qi et al. (2014).

Calculation of δD values in pore water in equilibrium with kaolinite

The calculations were based on results of δD measurements in kaolinite and published fractionation equations (Faure 1998; Savin and Epstein 1970; Suzuoki and Epstein 1976; Lambert and Epstein 1980). Formation temperature (T = 70 °C) was estimated from the current depth (1411.5–1446 m) of the studied samples, the average geothermal gradient at the Little Hungarian Plain area (40 °C/km) (Dövényi et al. 1983) and the average mean temperature of the area (11 °C) (Hungarian Meteorological Service 2018).

Savin and Epstein (1970) and Suzuoki and Epstein (1976) suggested constant kaolinite–water hydrogen-isotope fractionation values of −30 ‰ and −23.4 ‰, respectively. On the other hand, Lambert and Epstein (1980) found temperature dependence in the fractionation and gave the following equation: 1000·lnα = −4.53·106/T2 + 19.4. Assuming 70 °C as formation temperature (see above), the hydrogen-isotope fractionation value is −19.1 ‰. Since α = (δDkaolinite + 1000)/(δDwater + 1000), the water composition can be calculated using the measured kaolinite compositions. To reduce the uncertainties inherent in the fractionation values given by the studies listed above, all of the calculated water compositions are reported and finally averaged.

Results

Petrography of the conglomerates

The base material consists of moderately abrasive monocrystalline quartz, mica, and plagioclase. They appear as detrital minerals. Accessory apatite, glauconite, Ti-containing minerals (rutile or anatase), pyrite, and zircon were also found. In some cases, diagenetic quartz growth was observed on the detrital quartz particles. Mica appears unoriented and shows no signs of deformation or dissolution. The plagioclase particles of size 300–450 μm occur in minimal quantities (one or two grains) in both samples. The cement material of the rocks is carbonate based on scanning electron microscopic measurements and mainly consists of calcite. In addition, minimal amounts of siderite and ankerite appear.

Fossils in the conglomerates

In the samples, 25–40 v/v% of all clasts are fossils ranging in size from 100 to 2 mm, and in all cases, they are built up by calcite. Fossils in the samples can be classified into two groups. In the matrix Ostracoda, Gastropoda, and various shells and shell fragments are dominant. Additionally, dark brown, rounded micrite fragments Milionida sp., Elphidium sp., and Sprulina sp. foraminifera were found (Galácz and Monostori 1992).
Petrography of kaolinitic clasts in the conglomerates

Kaolinitic clasts in the studied conglomerates are rounded (Fig. 2A). Results of staining method used in sample preparation implies that porosity in kaolinitic clasts is considerably higher (according to visibility of the blue epoxy) than in the matrix where the used blue dye can be detected only on micrometer scale. According to the SEM analysis, the main mineral in the kaolinitic clasts is kaolinite (~53–70 v/v %) (Table 2). Dawsonite, a new mineral phase in the rocks is the strongest evidence of CO2 presence (Worden 2006), is limited to the rim of kaolinitic clasts (A, SEM BSE). Dawsonite appears at the rim of kaolinitic clasts (A, SEM BSE) in which halite also appears (B, SEM BSE) as an evidence of salt-saturated pore water. In the direct surrounding of dawsonite, relict albite can be detached (C; SEM BSE) just like between dawsonite fibers (D; SEM BSE). daw dawsonite, kln kaolinite, mic mica, Kfs K-feldspar, ab albite, cc calcite, NaCl halite.

Table 2 Modal composition based on image analysis of the kaolinitic clasts

	RM19-7Rkong v/v%	RM19-8Rkong v/v%
Kaolinite	60	54
Mica	6	13
Dawsonite	5	7
K-feldspar	4	4
Pyrite + TiO2	2	6
Ankerite + siderite	2	5
Albite	1	7
Calcite	tr	tr
Halite	tr	tr
SiO2	tr	tr
Pore	20	13

Minerals with gray background are diagenetic, while white ones are detrital. Tr is less than 1 v/v%.
clasts. The dawsonites in the kaolinitic clasts appear as radial, fibrous minerals. The fibers reach over the edge of the kaolinitic clasts (Fig. 2A), which indicates that dawsonite is a diagenetic mineral. Between the fibers of dawsonite, relict albite and K-feldspar are observed (Fig. 2C and D).

Modal composition of the kaolinitic clasts in the two samples is similar to each other except in the presence of halite (Fig. 2B) which can be identified only in RM19-7Rkong sample. However, mineral modes strongly differ in the samples. Quantity of albite decreases with the occurrence of dawsonite in the two samples. In the RM19-7Rkong sample, there is 3 v/v% surplus in dawsonite, while it has 6 v/v% less albite than in RM19-8Rkong sample (Table 2). Pore space in the RM19-8Rkong sample is lower than in RM19-7Rkong (RM19-7Rkong: 20.36 v/v%; RM19-8Rkong: 13.36 v/v%).

Micro-XRD

According to the micro-XRD analyses, the separated kaolinite samples are clean (57–76 m/m%). Further minerals are quartz (6–20 m/m%), feldspar (3–15 m/m%), calcite (5–9 m/m%), and alunite (3–6 m/m%). Two samples contained mica (3 and 7 m/m%, Table 3).

Sample	Sampling method	Dawsonite	δD [‰]
RM19-7Rkong	Micro-sampling	+	−63.0
RM19-7Rkong	Micro-sampling	+	−55.5
RM19-7Rkong	Micro-sampling	+	−56.9
RM19-7Rkong	Homogenized	−	−56.6
RM19-7Rkong	Homogenized	−	−57.3
RM19-8Rkong	Homogenized	−	−55.9
RM19-8Rkong	Homogenized	−	−55.4

In the table, ‘+’ means the sampling was carried out in dawsonite-bearing kaolinite clasts. ‘−’ means the homogenized samples are from dawsonite-free clasts. The gray-colored samples contained mica (3 and 7 m/m %).

Table 3 δD values from kaolinitic clasts

Stable isotope measurements in kaolinitic clasts

The relatively high hydroxyl content (OH⁻) of kaolinite allowed δD values to be measured in the kaolinitic clasts. Two types of samplings were carried out: (1) homogenized samples from kaolinitic clasts that are dawsonite barren and (2) controlled micro-sampling from preselected areas in the kaolinitic clasts near dawsonite precipitation. The results show that the samples containing dawsonite show slightly different δD values than the ones without dawsonite. The differences may depend on the quantity of dawsonite in the micro-sampling. The presence of dawsonite may cause a decrease in δD values. Results are shown in Table 3.

In dawsonite-bearing kaolinitic clasts, δD values are between −63.0 ‰ and −55.5 ‰, whereas in the RM19-8Rkong, the δD values are −55.4 ‰ and −55.9 ‰ (Table 3). Table 4 summaries the calculated δD values in pore water considering three different kaolinite water fractionation values, whereas the average δDwater values in dawsonite-bearing and dawsonite-free samples are shown in Table 5.

Discussion

Depositional environment

Based on the foraminiferas, *Miliolina* sp., *Elphidium* sp., *Spirulina* sp. in the micrite rock fragments, represent

Sample	Dawsonite	δDwater [‰]
RM19-7Rkong	+	−34.5
RM19-7Rkong	+	−26.7
RM19-7Rkong	+	−28.2
RM19-7Rkong	−	−27.9
RM19-7Rkong	−	−28.6
RM19-8Rkong	−	−27.1
RM19-8Rkong	−	−26.6
Average δDwater [‰]	−34.2 ‰	

Calculations were based on different empirical fractionation factors from the literature.
euhaline water of Badenian-Sarmatian (15.9–11.6 Ma) (Galácz and Monostori 1992). However, fossils, Ostracoda, Gastropoda, and shell fragments, in the matrix refer to brackish water environment (Galácz and Monostori 1992). This means redeposition that involved the studied conglomerates happened in the Pannonian time and affected the Badenian-Sarmatian sediments. In both studied samples, the appearing clasts are elongated and show a slight orientation. This may refer to episodic events, like storms, mass movements, or changing weather conditions, which caused the redeposition and formation of the conglomerates from Badenian-Sarmatian and Pannonian sediments.

The kaolinitic clasts, based on our petrographic observations, represent altered volcanoclastic fragments that have experienced transport resulting in rounded shapes. It is a question whether kaolinization of the clasts precedes transport and sedimentation or is already the manifestation of diagenetic alteration.

The preservation of original volcanic intersertal texture strongly implies that the alteration process took place after transport and sedimentation. The relics of mica and feldspars, partly kaolinitized and the lack of quartz indicate that the original rocks, from which the kaolinitic clasts formed, were probably neutral pyroclasts. These rocks could be related to the Pásztori volcano, which were active during the same time period as the formation of studied rocks (~ 10 million year ago; Harangi et al. 1995) and marked as a possible source of CO₂ migration (Vető et al. 2014). The dominant textural type, identified in the rocks derived from the volcanism from Pásztori volcano, is also intersertal (Schléder 2001), which also supports the connection between the studied rocks and Pásztori volcano. However, we cannot completely rule out the possibility that the former volcanic clast was transported already as kaolinite.

Dawsonite formation environment

After the deposition and burial of the sediments, diagenetic effects caused remarkable changes on the properties of rocks, especially in mineral composition including the formation of dawsonite. Its appearance as a new mineral is a result of CO₂-pore water-host rock interaction.

Dawsonite fibers cross the border between the kaolinitic clast and the base material, which indicates that dawsonite

Fig. 3 Dawsonite stability at the studied environment. Dawsonite precipitated in the edge of kaolinitic clast (XN, polarization microscope) (A). Albite relict occurred in the environment of dawsonite, which mixed with kaolinite (white circles) (B). CO₂ fugacity-pH diagram (Worden 2006), where the dashed line signed the actual CO₂ fugacity (C). Dawsonite stability depends on Na⁺ concentration, pH, and SiO₂ activity (Hellevang et al. 2013) (D)
appears as diagenetic mineral; hence, it was formed after the burial. Feldspar relics—mostly albite and K-feldspar—between fibers of dawsonite refer to the breakdown of albite and K-feldspar to form dawsonite (Fig. 3A). This observed process corresponds to models (Worden 2006; Zhou et al. 2014) that state the Al$^{3+}$ content of dawsonite comes from dissolution of albite and K-feldspars; meanwhile, the source of Na$^+$ content of dawsonite could be either the dissolved albite and/or, if K-feldspar was the source of Al$^{3+}$, Na$^+$ may have originated from the pore water itself. The presence of considerable concentrations of Na$^+$ in pore water is also supported by halite in RM19-7Rkong sample (Table 2), which refers the pore water being (over)saturated in NaCl.

We suggest that the strongly limited nature of dawsonite mineral reactions in the conglomerates, compared to overlying sandstones (Király et al. 2016), can be related to the high salinity and, therefore, low CO$_2$ solubility in the system. The appearance of halite confirms the high salinity in the pore water. In a NaCl–H$_2$O–CO$_2$ system, CO$_2$ activity dramatically decreases as the salt content grows (e.g., Duan et al., 2006). Therefore, the presence of CO$_2$ is mostly expected as free phase, resulting in much lower reactivity compared to dissolved CO$_2$ and lower degree of pore water–reservoir rock interaction. However, it is notable that the formation of dawsonite vs. kaolinite depends strongly on the micro-environmental conditions.

Considering the origin of pore water, the increased local geothermal heat flow, as results of volcanic activity in the area during Upper Miocene, caused emergence of convective flow in groundwater system. Mixing of magmatic water to the infiltrating solutions along with the CO$_2$ cannot be excluded, but, in this case, the meteoric water should have had even higher H isotope compositions than magmatic water, which has generally lower ΔD values (around − 80 ‰, Boettcher and O’Neil 1980; Kyser and O’Neil 1984).

Possible origin of the dawsonite-bearing kaolinite forming pore water

Considering that the rock is not composed of significant amount of hydrogen-bearing minerals (minerals with crystalline water or OH$^-$ content), which would influence the ΔD values of the percolating water, the hydrogen-isotope composition of kaolinite represents the percolating water during the formation of kaolinite. Based on the rounded shape of kaolinitic clasts (Fig. 2A), the alteration of sediments into kaolinite clasts may have started during early lithification, which means the present pore water may have come from the infiltrating meteoric water. Since the dawsonite-bearing kaolinite clasts yield almost the same water hydrogen isotope composition (− 35.4 ‰) as the dawsonite-free clasts do (− 33.2 ‰) (see Table 5), the isotopic compositions of the percolating solutions may have been similar during kaolinite and dawsonite formation (related to fluid origin), regardless the chemical differences that might have been determined by water-rock interactions.

Concluding remarks

The present study investigated effects of natural CO$_2$ flooding on a conglomerate formation at Mihályi-Répcelak area in Hungary. The studied conglomerate rocks formed by epidosic redeposition during the Lower Pannonian era (~10 million years ago) and became CO$_2$ reservoirs in the same era.

The presence of dawsonite is the clearest evidence of CO$_2$ interaction, which means that at least part of the CO$_2$ trapped in mineral form. The variability in porosity and mineral composition within the studied conglomerates strongly
influences the reaction processes induced by the presence of CO₂. Beside the rock properties, the geological setting of the studied formation, facies, properties of surrounding rocks, and regional groundwater flow system also influence the CO₂-related processes.

Our results highlight the prevailing influence of geological setting of reservoirs such as relief of basement, the sedimentary sequence and the hydrogeological properties of the area, thereby the salinity of the system, which dramatically reduces the potential of mineral trapping of CO₂. Therefore, in case of a possible industrial CO₂ storage project, investigation of the mineral composition and caprocks alone is not sufficient. Significant attention should be given to the complete geological environment of the selected area. Otherwise, efficiency of CO₂ trapping during storage could be compromised, increasing the risk of any industrial CO₂ storage project.

Acknowledgements The study was carried out in cooperation between Eötvös Loránd University (ELTE) and Mining and Geological Survey of Hungary (MBFSZ) (contract numbers: TTK 2461/1/2013 and MBFSZ 206-114 / 2013) and was furthermore supported by the OTKA program (K-131353) of the National Research, Development and Innovation Office of Hungary, the ELTE Institutional Excellence Program (1783-3/2018/FEKUTSRAT) of the Hungarian Ministry of Human Capacities and ELTE Research and Instrument Core Facility (KKMC) (KMOP project number 4.2.1/B-10-2010-002). The Hungarian Academy of Sciences financially supported the stable isotope laboratory of the Institute for Geological and Geochemical Research (Budapest) in the course of the study (INFRA-2018/310). We are grateful to Dan Uehara to correct our English in the article. Prepared with the professional support of the Doctoral Student Scholarship Program of the Co-operative Doctoral Program of the Ministry of Innovation and Technology Financed from the National Research, Development and Innovation Fund (KDP-2020-9712/44 to Dóra Cseresznyés).

Funding Open access funding provided by ELKH Research Centre for Astronomy and Earth Sciences.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arts R, Beaubien S, Benedictus T, Czernichowski-Lauriol I, Fabriol H, Gastine M, Gundogan O, Kirby G, Lombardi S, May F, Pearce J,
Persoglia S, Remmelts G, Riley N, Sohrabi M, Stead R, Vercelli S, Vizika-Kavvadias O (2008) What does CO2 geological storage really mean? CO2 GeoNet Eur Netw Excel 20:20

Balázs E, Nusszer A (1987) Magyarország medenceterületeinek kunsági (pannonia s str) emetebeti vulkanizmusa. In: LXIX. Yearbook of Geology Institute of Hungary. Budapest, Hungary, pp 95–103

Boettcher AL, O’Neil JR (1980) Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: Evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280:594–621

Burch AA, Utescher T, Mosbrugger V, Gabrielyan I, Ivanov DA (2006) Late Miocene climate in the circum- Alpine region: a quantitative analysis of terrestrial palaeofloras. Palaeogeography, Palaeoclimatology, Palaeoecology 238:270–280. https://doi.org/10.1016/j.palaeo.2006.03.028

Czerszynszy D, Gy C, Cs S, Ks K, Cs S, Gy F (2017) Stable isotope compositions of different mineral phases found in a natural CO2-reservoir (NW-Hungary): implication for their origin. Energy Proced 114:2812–2818. https://doi.org/10.1016/j.egypro.2017.03.1399

Czuppon G, Demény A, Leél-Őssy S, Ővari M, Molnár M, Stieber J, Kiss K, Kármán K, Surányi G, Haszpra L. (2018) Cave monitoring in the Béke and Baradla caves (Northeastern Hungary): implications for the conditions for the formation cave carbonates. Int J Speoleol 47:13–28. https://doi.org/10.5038/1827-806X.47.1.2110

De Silva GDP, Ranjith PG, Perera MSA (2015) Geochemical aspects of CO2 sequestration in deep saline aquifers: a review. Fuel 155:128–143. https://doi.org/10.1016/j.fuel.2015.03.045

Demény A, Vennemann TW, Homonnay Z, Milton A, Embey-Isztin Duan Z, Sun R, Zhu C, Chou IM (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl–, and SO42–. Mar Chem 98:131–139. https://doi.org/10.1016/j.marchem.2005.09.001

2009/31/EK: Directive 2009/31/EC of the European Parliament and of the Council on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDF. Accessed 23 Apr 2009

Faure G (1998) Principles and applications of geochemistry. John Wiley & Sons Ltd, New Jersey, p 615

Fouriel F, Lécuyer C, Demény A, Boulvais P, Lange L, Jacob DE, Faure G (1998) Principles and applications of geochemistry. John Wiley & Sons Ltd, New Jersey, p 615

Fourel F, Lécuyer C, Demény A, Boulvais P, Lange L, Jacob DE, Faure G (1998) Principles and applications of geochemistry. John Wiley & Sons Ltd, New Jersey, p 615

Fourel F, Lécuyer C, Demény A, Boulvais P, Lange L, Jacob DE, Faure G (1998) Principles and applications of geochemistry. John Wiley & Sons Ltd, New Jersey, p 615

Kovács I, Németh T, KissBenkó BGZ (2021) Application of capillaryelectrochromatography for the calculation of CO2 solubility at pH 0.9 to 5 and temperature of 22, 60 and 77°C. Appl Geochem 25(10):1575–1586. https://doi.org/10.1016/j.apgeochem.2010.08.007

Holloway S, Pearce JM, Hards VL, Ohsumi T, Gale J (2007) Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 32:1194–1201. https://doi.org/10.1016/j.energy.2006.09.001

Horváth F (1993) Towards a mechanical model for information of the Pannonian basin. Tectophysics 226:333–357. https://doi.org/10.1016/0040-1951(93)90126-5

Hungarian Meteorological Service (2018) Magyarország éghajlata. https://www.met.hu/eghajlat_magyarorszag_eghajlat,eghajlat_visszatekinteto/elmuti_ekv_idojarasa/main.php?url=horometrekket. Accessed 10 Dec 2019

IPCC (IntergovernmentalPanelonClimateChange) (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 248

IPCC (IntergovernmentalPanelonClimateChange) (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge

Juhasz G (1994) Magyarországi neogén medencérészek pannoniai s.l. idelesősorának összehasonlított elemzése. Földtani Közlöny 124(4):341–365

Juhasz G (1998) A magyarországi neogén mélymedencék pannoniai képződményeinek litosztratigráfiája. In: Bérczi I, Jambor Á (eds) Magyarország geológiái képződményeinek rétegtaná. Magyar Olajipari Részvénytársaság és a Magyar Állami Földtani Intézet kiadása, Budapest, pp 469–484 (in Hungarian)

Király C (2017) Mihályi-Répcelak természetes CO2-előfordulás környezetgeokémiai vizsgálata. PhD thesis, Eötvös Loránd University, Budapest, Hungary, p 161

Király C, Sendula E, Szamosfalvi Á, Káldos R, Könya P, Kovács IJ, Füri J, Zs B, Gy F (2016) The relevance of dawsonite precipitation in CO2 sequestration in the Mihályi-Répcelak area, NW Hungary. In: Armitage PJ, Butter AR, Churchill JM, Csoma AE, Hollis C, Lander RH, Omma JE, Worden RH (eds) Reservoir quality of clastic and carbonate rocks: analysis. Modelling and prediction geological society. London Special Publications, London, p 435

Kőrössy L (1958) Adatok a kisalföld mélyföldtanához. Földtani Közlöny 1399.

Kovács I, Andreyeva-Grigorovich A, Bajraktarevic Z, Brzobohaty R, Filipesca S, Fodor L, Harzhauser M, Nagymarossy A, Oszczypko N, Pavelic D, Rögl F, Saffic B, Slive L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58(6):579–606

Király C, Németh T, KissBenkó BGZ (2021) Application of capillaryelectrochromatography for the calculation of CO2 solubility at pH 0.9 to 5 and temperature of 22, 60 and 77°C. Appl Geochem 25(10):1575–1586. https://doi.org/10.1016/j.apgeochem.2010.08.007

Kovács I, Németh T, KissBenkó BGZ (2021) Application of capillarymethod in micro X-ray diffraclometry (µ-XRD): a useful technique for the characterisation of small amounts of clay minerals. Cent Eur Geol. https://doi.org/10.1556/24.2020.00005

Kyoto Protocol (1998) Kyoto protocol to the United Nations framework convention on climate change. https://unfccc.int/resource/docs/convkp/kpeng.pdf

Kyser TK, O’Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:2123–2133
Lambert SJ, Epstein S (1980) Stable isotope investigations of an active geothermal system in Valles Caldera, Jemez Mountains, New Mexico. J Volcanol Geoth Res 8:111–129

Magyar I, Geary HD, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167. https://doi.org/10.1016/S0012-820X(98)00155-2

Magyar I, Radijocevic D, Sztanó O, Synak R, Ujszászi K, Pócsik M (2013) Progradation of the paleo Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global Planet Change 103:168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007

Mészáros L, Dallos E, Vágó L, Csúji P, Darabos A, Marton T, Gy S, Ferenczy Z (1979) A Miáthú kiutatási terület lehetőlő fázisú zárójelentése, a szen-dioxid- és a „nem éghető” kevert gáztelepe vagyonzsámítása. Hungarian Oil & Gas Company Plc, Budapest, p 116

Nagyamarosy A, Hámor G (2012) Genesys and evolution of Pannonian Basin. In: Haas J (ed) Geology of Hungary, regional geology review. Springer, Berlin, pp 149–200

NOAA/ESRL (2019) Trends in atmospheric carbon dioxide. www.esrl.noaa.gov/gmd/ccgg/trends. Accessed 10 Dec 2019

Panisova J, Balázs A, Zs Z, Bielik M, Horváth F, Sz H, Schmidt S, Palcsu L, Vető I, Futó I, Vodila G, Papp L, Major Z (2014) In-reservoir use of NBS-30 biotite for hydrogen-isotope measurements with on-line high-temperature conversion systems. Rapid Commun Mass Spectrom 28:1987–1994

Pearce JM, Shepherd TJ, Kemp SJ, Wagner D, Rochelle CA, Bouch JE, Nador A, Vetö I, Baker J, Toth G, Lombardi S, Annuziattelis A, Beaubien SE, Cioletti G, Pauwels H, Chernichowski-Lauriol I, Gaus I, Le Nindre YM, Girard JP, Serra H, Petelot-Giraud E, Guern-Marat C, Orlic B, Schroot B, Schuttehennel A, Hatziyannis G, Spyridonos E, Metaxas A, Brune S, Hagendorf, J, Teschner M, Faber E, Poggenburg J, Iliffe J, Kroos BM, Alles A, Hildenbrand A, Heggland R, Iliffe J, Nador A, Vető I, Csizmeg J, Cs S (2014) Mantle-related CO2, merasedimentary HC-N2 gas and oil traces in the Répcelak and Mihályi accumulations, W-Hungary–mixing of three fluids of very different origin. Cent Eur Geol 57(1):53–69. https://doi.org/10.1556/CEuGeol.57.2014.1.3

Panisova J, Balázs A, Zs Z, Bielik M, Horváth F, Sz H, Schmidt S, Götzé H (2017) Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano. Int J Earth Sci 107:1713–1730. https://doi.org/10.1007/s00531-017-1567-5

Paris Agreement (2015) Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.L.A.S. No. 16–1104. https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf

Qi H, Coplen TB, Olack GA, Vennemann TW (2014) Caution on the use of NBS-30 biotite for hydrogen-isotope measurements with on-line high-temperature conversion systems. Rapid Commun Mass Spectrom 28:1987–1994

Rauzi SL (1999) Carbon dioxide in the StJohns–Springville Area, Apache Country, Arizona. Arizion Geo Surv Open-File Rep 99-2-24

Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:43–63

Spear JD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178:197–210. https://doi.org/10.1016/S0009-2541(01)00262-5

Sztanó O, Magyar I, Szónoky M, Lantos M, Müller P, Lenkey L, Katona L, Csillag G (2013) A Tihanyi Formáció a Balaton környékén: típusszélvény, képződési körülmények, rétegtani jellemzés. Földtani Közlöny 143(1):73–98

Zilahi-Sebess L (2013) Országos geotermikus potenciál-felmérése eredményei. Új utak a földtudományban, Országos Kőolajipari Tröszt tani Közlöny 143(1):73–98

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.