THE DYNKIN INDEX AND \(\mathfrak{sl}_2 \)-SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

DMITRI I. PANYUSHEV

INTRODUCTION

The ground field \(\mathbb{k} \) is algebraically closed and of characteristic zero. Let \(G \) be a connected semisimple algebraic group with Lie algebra \(\mathfrak{g} \). In 1952, Dynkin classified all semisimple subalgebras of semisimple Lie algebras \([2]\). As a tool to distinguish different (non-conjugate) embeddings of the same algebra, Dynkin introduced the index of a homomorphism of simple Lie algebras. It will be convenient for us to split this into the notions of (1) the index of a simple subalgebra of a simple Lie algebra and (2) the index of a representation of a simple Lie algebra. After Mal’cev and Kostant, it is known that the conjugacy classes of the \(\mathfrak{sl}_2 \)-subalgebras of \(\mathfrak{g} \) are in a one-to-one correspondence with the nonzero nilpotent \(G \)-orbits in \(\mathfrak{g} \). Therefore, one can define the index of a nilpotent element (orbit) as the Dynkin index of any associated \(\mathfrak{sl}_2 \)-subalgebra. As nilpotent orbits are related to the variety of intriguing problems in representation theory, the indices of \(\mathfrak{sl}_2 \)-subalgebras of \(\mathfrak{g} \) are most interesting for us. A simple Lie algebra has three distinguished nilpotent orbits: the principal (regular), subregular, and the minimal ones. It was noticed by Dynkin that in the last case the corresponding \(\mathfrak{sl}_2 \)-index equals 1 (cf. \([2, \text{Theorem 2.4}]\)). In \([9]\), we gave a general formula for the index of a principal \(\mathfrak{sl}_2 \)-subalgebra of \(\mathfrak{g} \).

This note can be regarded as a continuation of \([9]\). Here we provide simple formulae for the index of all nilpotent orbits (\(\mathfrak{sl}_2 \)-subalgebras) in the classical Lie algebras (Theorem 2.1) and a new formula for the index of the principal \(\mathfrak{sl}_2 \) (Theorem 3.2). Then we compute the difference, \(D \), of the indices of principal and subregular \(\mathfrak{sl}_2 \)-subalgebras. Our formula for \(D \) involves some data related to the McKay correspondence for \(\mathfrak{g} \), see Theorem 3.4 and Eq. (3.3). The index of a simple subalgebra \(s \) of \(\mathfrak{g} \), \(\text{ind}(s \hookrightarrow \mathfrak{g}) \), can be computed via any non-trivial representation of \(\mathfrak{g} \), and taking different representations of \(\mathfrak{g} \), one gets different formal expression for \(\text{ind}(s \hookrightarrow \mathfrak{g}) \). For \(s \simeq \mathfrak{sl}_2 \) and classical \(\mathfrak{g} \), we obtain essentially different formulae using the simplest and adjoint representations of \(\mathfrak{g} \), and the Jordan normal form of nonzero nilpotent elements of \(s \). This yields three series of interesting combinatorial identities parameterised by partitions, see Section 2.1. We also prove that the index of a nilpotent orbit strictly decreases under the passage to the boundary of orbits (Proposition 2.2).
1. The Dynkin Indices of Representations and Subalgebras

Let \(g \) be a simple finite-dimensional Lie algebra of rank \(n \). Let \(t \) be a Cartan subalgebra, and \(\Delta \) the set of roots of \(t \) in \(g \). Choose a set of positive roots \(\Delta^+ \) in \(\Delta \). Let \(\Pi \) be the set of simple roots and \(\theta \) the highest root in \(\Delta^+ \). As usual, \(\rho = \frac{1}{2} \sum_{\gamma > 0} \gamma \). The \(\mathbb{Q} \)-span of all roots is a \(\mathbb{Q} \)-subspace of \(t^* \), denoted \(E \). Following Dynkin, we normalise a non-degenerate invariant symmetric bilinear form \((\cdot, \cdot)_g\) on \(g \) as follows. The restriction of \((\cdot, \cdot)_g\) to \(t \) is non-degenerate, hence it induces the isomorphism of \(t \) and \(t^* \) and a non-degenerate bilinear form on \(E \). We then require that \((\theta, \theta)_g = 2\), i.e., \((\beta, \beta)_g = 2\) for any long root \(\beta \) in \(\Delta \).

Definition 1 (Dynkin [2, §2]). Let \(\phi : s \to g \) be a homomorphism of simple Lie algebras. For \(x, y \in s \), the bilinear form \((x, y) \mapsto (\phi(x), \phi(y))_g\) is proportional to \((\cdot, \cdot)_s\) and the index of \(\phi \) is defined by the equality \((\phi(x), \phi(y))_g = \text{ind}(s \xrightarrow{\phi} g) \cdot (x, y)_s\), \(x, y \in s \).

- In particular, if \(s \) is a simple subalgebra of \(g \), then the **Dynkin index of \(s \) in \(g \)** is \[
\text{ind}(s \hookrightarrow g) := \frac{(x, x)_g}{(x, x)_s}, \quad x \in s.
\]

- If \(\nu : g \to \mathfrak{sl}(M) \) is a representation of \(g \), then the **Dynkin index of the representation \(\nu \)**, denoted \(\text{ind}_D(g, M) \) or \(\text{ind}_D(g, \nu) \), is defined by

\[
(1.1) \quad \text{ind}_D(g, M) := \text{ind}(g \xrightarrow{\nu} \mathfrak{sl}(M)).
\]

It is not hard to verify that, for the simple Lie algebra \(\mathfrak{sl}(M) \), the normalised bilinear form is given by \((x, x)_{\mathfrak{sl}(M)} = \text{tr}(x^2), \ x \in \mathfrak{sl}(M)\). Therefore, a more explicit expression for the Dynkin index of a representation \(\nu : g \to \mathfrak{sl}(M) \) is

\[
\text{ind}_D(g, M) = \frac{\text{tr}(\nu(x)^2)}{(x, x)_g}.
\]

The following properties easily follow from the definition:

Multiplicativity: If \(h \subset s \subset g \) are simple Lie algebras, then

\[
\text{ind}(h \hookrightarrow s) \cdot \text{ind}(s \hookrightarrow g) = \text{ind}(h \hookrightarrow g).
\]

Additivity: \(\text{ind}_D(g, M_1 \oplus M_2) = \text{ind}_D(g, M_1) + \text{ind}_D(g, M_2) \).

It is therefore sufficient to determine \(\text{ind}_D(g, \cdot) \) for the irreducible representations.

Theorem 1.1 (Dynkin, [2, Theorem 2.5]). Let \(V_\lambda \) be a simple finite-dimensional \(g \)-module with highest weight \(\lambda \). Then

\[
\text{ind}_D(g, V_\lambda) = \frac{\dim V_\lambda}{\dim g} (\lambda, \lambda + 2\rho)_g.
\]
Although it is not obvious from the definition, the Dynkin index of a homomorphism is an integer [2, Theorem 2.2]. Dynkin’s original proof relied on classification results. In 1954, he gave a better proof that is based on a topological interpretation of the index. A short algebraic proof is given in [8, Ch. I, §3.10].

Conversely, the index of a simple subalgebra can be expressed via indices of representations. By the multiplicativity of index and Eq. (1.1), for a simple subalgebra \(s \subset g \) and a non-trivial representation \(\nu : g \to \mathfrak{sl}(M) \), we have

\[
\text{ind}(s \hookrightarrow g) = \frac{\text{ind}(s \hookrightarrow \mathfrak{sl}(M))}{\text{ind}(g \hookrightarrow \mathfrak{sl}(M))} = \frac{\text{ind}_D(s, M)}{\text{ind}_D(g, M)}.
\]

A nice feature of this formula is that one can use various \(M \) to compute the index of a given subalgebra.

Example 1.2.
(1) Let \(\mathcal{R}_d \) be the simple \(\mathfrak{sl}_2 \)-module of dimension \(d + 1 \). Then \(\text{ind}_D(\mathfrak{sl}_2, \mathcal{R}_d) = \left(\frac{d+2}{3} \right) \).

(2) Recall that \(\theta \) is the highest root in \(\Delta^+ \). By Theorem 1.1,

\[
\text{ind}_D(g, ad_g) = (\theta, \theta + 2\rho)_g = (\theta, \theta)_g(1 + (\rho, \theta^\vee)_g) = 2(1 + (\rho, \theta^\vee)_g).
\]

Note that \((\rho, \theta^\vee)_g \) does not depend on the normalisation of the bilinear form on \(\mathcal{E} \). The integer \(1 + (\rho, \theta^\vee)_g \) is customarily called the dual Coxeter number of \(g \), and we denote it by \(h^*(g) \). Thus, \(\text{ind}_D(g, ad_g) = 2h^*(g) \). In the simply-laced case, \(h^*(g) = h(g) \)—the usual Coxeter number. For the other simple Lie algebras, we have \(h^*(B_n) = 2n - 1, h^*(C_n) = n + 1, h^*(F_4) = 9, h^*(G_2) = 4 \). Applying this to Eq. (1.2) with \(M = g \) and \(\nu = ad_g \), we obtain

\[
\text{ind}(s \hookrightarrow g) = \frac{1}{2h^*(g)} \cdot \text{ind}_D(s, g).
\]

More generally, we have

Lemma 1.3. If \(s \subset g \) are simple Lie algebras and \(\nu : g \to \mathfrak{sl}(M) \) is a representation, then

\[
\text{ind}_D(s, M) = \frac{1}{2h^*(g)} \cdot \text{ind}_D(s, g) \cdot \text{ind}_D(g, M).
\]

Proof. By the multiplicativity and Eq. (1.3), we have

\[
\text{ind}_D(s, M) = \text{ind}(s \hookrightarrow g) \cdot \text{ind}(g \hookrightarrow \mathfrak{sl}(M)) = \frac{1}{2h^*(g)} \cdot \text{ind}_D(s, g) \cdot \text{ind}_D(g, M).
\]

Remark 1.4. The “strange formula” of Freudenthal-de Vries relates the scalar square of \(\rho \) with \(\dim g \). If \(\langle , \rangle \) is the canonical bilinear form on \(\mathcal{E} \) with respect to \(\Delta \), then \(\langle \rho, \rho \rangle = \dim g/24 \) [3, 47.11]. The canonical bilinear form is characterised by the property that \(\langle \gamma, \gamma \rangle = 1/h^*(g) \) for a long root \(\gamma \in \Delta \). It follows that if \(\langle , \rangle \) is any nonzero \(W \)-invariant bilinear form on \(\mathcal{E} \) and \(\langle \gamma, \gamma \rangle = c \), then \(\langle \rho, \rho \rangle = \frac{\dim g}{24} h^*(g)c \).
2. THE INDEX OF \mathfrak{sl}_2-SUBALGEBRAS AND COMBINATORIAL IDENTITIES

If $e \in \mathfrak{g}$ is nonzero and nilpotent, then there exists a subalgebra $a \subset \mathfrak{g}$ such that $a \simeq \mathfrak{sl}_2$ and $e \in a$ (Morozov, Jacobson)[1, 3.3]. All \mathfrak{sl}_2-subalgebras associated with a given e are G_e-conjugate and we write $A_1(e)$ for such a subalgebra. In this section, we give explicit formulae for the indices $\text{ind}(A_1(e) \hookrightarrow \mathfrak{g})$ and some applications.

Let $\mathfrak{g}(V)$ be a classical simple Lie algebra (i.e., one of $\mathfrak{sl}(V)$, $\mathfrak{sp}(V)$, $\mathfrak{so}(V)$). The nilpotent elements (orbits) in $\mathfrak{g}(V)$ are parameterised by partitions of $\dim V$, and we give the formulae in terms of partitions. For $e \in \mathfrak{g}(V)$, let $\lambda(e) = (\lambda_1, \lambda_2, \ldots)$ be the corresponding partition. For $\mathfrak{sp}(V)$ or $\mathfrak{so}(V)$, $\lambda(e)$ satisfies certain parity conditions [4],[1, 5.1], which are immaterial at the moment. And, of course, $\dim V$ is even in the symplectic case.

Theorem 2.1. For a nonzero nilpotent $e \in \mathfrak{g}(V)$, with partition $\lambda(e)$, we have

(i) $\text{ind}(A_1(e) \hookrightarrow \mathfrak{sl}(V)) = \text{ind}(A_1(e) \hookrightarrow \mathfrak{sp}(V)) = \sum_i (\lambda_i + 1)$;
(ii) $\text{ind}(A_1(e) \hookrightarrow \mathfrak{so}(V)) = \frac{1}{2} \sum_i (\lambda_i + 1)$.

Proof. In all cases, we have $\mathfrak{V}|_{A_1(e)} = \bigoplus_i \mathcal{R}_{\lambda_i - 1}$.

(i) By formulae of Section 1, we have

$$\text{ind}(A_1(e) \hookrightarrow \mathfrak{sl}(V)) = \text{ind}_D(A_1(e), \mathfrak{V}) = \sum_i \text{ind}_D(A_1(e), \mathcal{R}_{\lambda_i - 1}) = \sum_i \binom{\lambda_i + 1}{3}.$$

By the multiplicativity of the index,

$$\text{ind}(A_1(e) \hookrightarrow \mathfrak{sl}(V)) = \text{ind}(A_1(e) \hookrightarrow \mathfrak{sp}(V)) \cdot \text{ind}(\mathfrak{sp}(V) \hookrightarrow \mathfrak{sl}(V)).$$

Using Theorem 1.1, one easily computes that $\text{ind}(\mathfrak{sp}(V) \hookrightarrow \mathfrak{sl}(V)) = \text{ind}_D(\mathfrak{sp}(V), \mathfrak{V}) = 1$.

(ii) Likewise, we use the fact that $\text{ind}(\mathfrak{so}(V) \hookrightarrow \mathfrak{sl}(V)) = \text{ind}_D(\mathfrak{so}(V), \mathfrak{V}) = 2$. \hfill \square

For the exceptional Lie algebras, Dynkin already computed the index for all \mathfrak{sl}_2-subalgebras [2, Tables 16–20]. His calculations can be verified as follows. *First*, for any nilpotent element $e \in \mathfrak{g}$, the Jordan normal formal of e in the simplest representation of \mathfrak{g} is determined in [7]. *Second*, using Theorem 1.1, one obtains that the indices of the embeddings associated with the simplest representations of exceptional Lie algebras are:

$$\text{ind}(E_6 \hookrightarrow \mathfrak{sl}_{27}) = 6; \quad \text{ind}(E_7 \hookrightarrow \mathfrak{sp}_{56}) = 12; \quad \text{ind}(E_8 \hookrightarrow \mathfrak{so}_{248}) = 30;$$

$$\text{ind}(F_4 \hookrightarrow \mathfrak{so}_{26}) = 3; \quad \text{ind}(G_2 \hookrightarrow \mathfrak{so}_7) = 1.$$

Combining these data with formulae of Theorem 2.1, one readily computes the indices of all \mathfrak{sl}_2-subalgebras.

Proposition 2.2. If $e, e' \in \mathfrak{g}$ are nilpotent and $Ge' \subset \overline{Ge} \setminus Ge$, then

$$\text{ind}(A_1(e') \hookrightarrow \mathfrak{g}) < \text{ind}(A_1(e) \hookrightarrow \mathfrak{g}).$$
Proof. First, we prove this for $\mathfrak{g} = \mathfrak{sl}(\mathbb{V})$, and then derive the general assertion.

1) $\mathfrak{g} = \mathfrak{sl}(\mathbb{V})$. It suffices to consider the case in which Ge' is dense in an irreducible component of $\overline{Ge} \setminus Ge$.

Here $\lambda(e')$ is obtained from $\lambda(e)$ via one of the following procedures. If $\lambda_i \geq \lambda_{i+1} + 2$, then $(\ldots, \lambda_i, \lambda_{i+1}, \ldots)$ can be replaced with $(\ldots, \lambda_i - 1, \lambda_{i+1} + 1, \ldots)$. Or, a fragment $(\ldots, a + 1, a, \ldots, a, a - 1, \ldots)$ in $\lambda(e)$ can be replaced with $(\ldots, a_{k+1}, \ldots) [4, \text{Prop. 3.9}].$

In both cases, one sees that the RHS in Theorem 2.1(i) strictly decreases.

2) For an arbitrary simple \mathfrak{g}, we consider a non-trivial representation $\nu : \mathfrak{g} \to \mathfrak{sl}(\mathbb{V})$. If $Ge' \subset \overline{Ge} \setminus Ge$, then $SL(\mathbb{V})e' \subset \overline{SL(\mathbb{V})e}$. By a result of Richardson [10], each irreducible component of $SL(\mathbb{V})e \cap \mathfrak{g}$ is a (nilpotent) G-orbit. This also implies that $SL(\mathbb{V})e' \neq SL(\mathbb{V})e$.

Hence

$$\text{ind}(\mathfrak{A}_1(e') \hookrightarrow \mathfrak{g}) = \frac{\text{ind}(\mathfrak{A}_1(e') \hookrightarrow \mathfrak{sl}(\mathbb{V}))}{\text{ind}(\mathfrak{g} \hookrightarrow \mathfrak{sl}(\mathbb{V}))} < \frac{\text{ind}(\mathfrak{A}_1(e) \hookrightarrow \mathfrak{sl}(\mathbb{V}))}{\text{ind}(\mathfrak{g} \hookrightarrow \mathfrak{sl}(\mathbb{V}))} = \text{ind}(\mathfrak{A}_1(e) \hookrightarrow \mathfrak{g}). \quad \Box$$

The index of a subalgebra can be used for obtaining non-trivial combinatorial identities. Taking different \mathfrak{g}-modules M in Eq. (1.2) yields different expressions for $\text{ind}(\mathfrak{s} \hookrightarrow \mathfrak{g})$. If $\mathfrak{g} = \mathfrak{g}(\mathbb{V})$, then $\text{ind}(\mathfrak{s} \hookrightarrow \mathfrak{g})$ can be related to $\text{ind}_D(\mathfrak{s}, \mathbb{V})$ and there are two natural choices of test representations: the simplest representation, $M = \mathbb{V}$, and the adjoint representation, $M = \mathfrak{g}(\mathbb{V})$. Alternatively, one can apply Lemma 1.3 to $\mathfrak{g} = \mathfrak{g}(\mathbb{V})$ and $M = \mathbb{V}$. Anyway, the output is as follows:

- If $\mathfrak{g} = \mathfrak{sl}(\mathbb{V})$, then $\nu = \text{id}$, $\text{ind}_D(\mathfrak{s}, \mathbb{V}) = 1$, $h^*(\mathfrak{sl}(\mathbb{V})) = \dim \mathbb{V}$, and

$$\text{ind}_D(\mathfrak{s}, \mathbb{V}) = \frac{\text{ind}_D(\mathfrak{s}, \mathfrak{sl}(\mathbb{V}))}{2 \dim \mathbb{V}} . \quad (2.1)$$

- If $\mathfrak{g} = \mathfrak{sp}(\mathbb{V})$ and $\nu : \mathfrak{sp}(\mathbb{V}) \to \mathfrak{sl}(\mathbb{V})$, then $\text{ind}_D(\mathfrak{s}, \mathbb{V}) = 1$, $h^*(\mathfrak{sp}(\mathbb{V})) = \frac{1}{2} \dim \mathbb{V} + 1$, and

$$\text{ind}_D(\mathfrak{s}, \mathbb{V}) = \frac{\text{ind}_D(\mathfrak{s}, \mathfrak{sp}(\mathbb{V}))}{\dim \mathbb{V} + 2} . \quad (2.2)$$

- If $\mathfrak{g} = \mathfrak{so}(\mathbb{V})$ and $\nu : \mathfrak{so}(\mathbb{V}) \to \mathfrak{sl}(\mathbb{V})$, then $\text{ind}_D(\mathfrak{s}, \mathbb{V}) = 2$, $h^*(\mathfrak{so}(\mathbb{V})) = \dim \mathbb{V} - 2$, and

$$\text{ind}_D(\mathfrak{s}, \mathbb{V}) = \frac{\text{ind}_D(\mathfrak{s}, \mathfrak{so}(\mathbb{V}))}{\dim \mathbb{V} - 2} . \quad (2.3)$$

2.1. Combinatorial identities related to $\mathfrak{g}(\mathbb{V})$ and $\mathfrak{s} \simeq \mathfrak{sl}_2$.

If $\mathfrak{s} \simeq \mathfrak{sl}_2$ and a nonzero nilpotent element of \mathfrak{s} has the Jordan normal form with partition $\lambda = (\lambda_1, \lambda_2, \ldots)$, then $\sum_i \lambda_i = \dim \mathbb{V}$ and $\mathbb{V}|_{\mathfrak{s}} = \bigoplus_i R_{\lambda_i - 1}$. In particular, $\text{ind}_D(\mathfrak{s}, \mathbb{V}) = \sum_i (\lambda_i + 1)$, regardless of the type of $\mathfrak{g}(\mathbb{V})$. For each $\mathfrak{g}(\mathbb{V})$, we use below the simple relation between the $\mathfrak{g}(\mathbb{V})$-modules \mathbb{V} and $\mathfrak{g}(\mathbb{V})$.

1) $\mathfrak{g} = \mathfrak{sl}(\mathbb{V})$. Using the Clebsch-Gordan formula, we obtain
\[
\mathfrak{gl}(\mathbb{V})|_s = \mathbb{V} \otimes \mathbb{V}^*|_s = \bigoplus_{i,j} (\mathcal{R}_{\lambda_i-1} \otimes \mathcal{R}_{\lambda_j-1}) = \bigoplus_{i,j} \bigoplus_{k=0}^{\min\{\lambda_i-1, \lambda_j-1\}} \mathcal{R}_{\lambda_i+\lambda_j-2-2k}.
\]
Since $\mathfrak{gl}(\mathbb{V})$ and $\mathfrak{sl}(\mathbb{V})$ differ by a trivial \mathfrak{g}-module, we have $\text{ind}_D(s, \mathfrak{gl}(\mathbb{V})) = \text{ind}_D(s, \mathfrak{sl}(\mathbb{V}))$. Then using Eq. (2.1), we obtain, for an arbitrary partition $\lambda = (\lambda_1, \lambda_2, \ldots)$, the identity
\[
\sum_i \binom{\lambda_i + 1}{3} = \frac{1}{2} \sum_i \lambda_i \sum_{i,j} \sum_{k=0}^{\min\{\lambda_i-1, \lambda_j-1\}} \binom{\lambda_i + \lambda_j - 2k}{3}.
\]
In particular, for a principal nilpotent element $e \in \mathfrak{sl}(\mathbb{V})$, we have $\lambda(e) = (\dim \mathbb{V}) = (N)$, and the identity reads
\[
\binom{N + 1}{3} = \frac{1}{2N} \sum_{k=0}^{N-1} \binom{2N - 2k}{3}.
\]

2) $\mathfrak{g} = \mathfrak{sp}(\mathbb{V})$. Here
\[
\mathfrak{sp}(\mathbb{V})|_s = S^2(\mathbb{V}|_s) = \bigoplus_{i,j} (\mathcal{R}_{\lambda_i-1} \otimes \mathcal{R}_{\lambda_j-1}) \oplus \bigoplus_i S^2(\mathcal{R}_{\lambda_i-1})
\]
and $S^2(\mathcal{R}_m) = \mathcal{R}_{2m} \oplus \mathcal{R}_{2m-4} \oplus \ldots$ by a variation of the Clebsch-Gordan formula. Using Eq. (2.2), we then obtain the “symplectic identity”
\[
\sum_i \binom{\lambda_i + 1}{3} = \frac{1}{(\sum_i \lambda_i) + 2} \left(\sum_{i,j} \sum_{k=0}^{\lambda_i-1} \binom{\lambda_i + \lambda_j - 2k}{3} + \sum_i \sum_{k=0}^{[\lambda_i/2]} \binom{2\lambda_i - 4k}{3}\right),
\]
where we use the fact that $\min\{\lambda_i - 1, \lambda_j - 1\} = \lambda_j - 1$ if $i < j$. For instance, $\lambda(e) = (\dim \mathbb{V}) = (2n)$ for a principal nilpotent element $e \in \mathfrak{sp}(\mathbb{V})$, and the identity reads
\[
\binom{2n + 1}{3} = \frac{1}{2n + 2} \sum_{k=0}^{n-1} \binom{4n - 4k}{3}.
\]

3) $\mathfrak{g} = \mathfrak{so}(\mathbb{V})$. Here $\mathfrak{so}(\mathbb{V}) \simeq \wedge^2(\mathbb{V})$ and $\wedge^2(\mathcal{R}_m) = \mathcal{R}_{2m-2} \oplus \mathcal{R}_{2m-6} \oplus \ldots$. Then using Eq. (2.3) we obtain the “orthogonal identity”
\[
\sum_i \binom{\lambda_i + 1}{3} = \frac{1}{(\sum_i \lambda_i) - 2} \left(\sum_{i<j} \sum_{k=0}^{\lambda_j-1} \binom{\lambda_i + \lambda_j - 2k}{3} + \sum_i \sum_{k=1}^{[\lambda_i/2]} \binom{2\lambda_i + 2 - 4k}{3}\right).
\]
In particular, if $\dim \mathbb{V} = 2n$, then $\lambda(e) = (2n - 1, 1)$ for a principal nilpotent element $e \in \mathfrak{so}(\mathbb{V})$, and the identity is
\[
\binom{2n}{3} = \frac{1}{2n - 2} \left(\binom{2n}{3} + \sum_{k=1}^{n-1} \binom{4n - 4k}{3}\right).
3. On the Index of Principal and Subregular \mathfrak{sl}_2-Subalgebras

If $e \in \mathfrak{g}$ is a principal (= regular) nilpotent element, then the corresponding \mathfrak{sl}_2-subalgebras are also called principal. We refer to [2, n. 29] and [5, Sect. 5] for properties of principal \mathfrak{sl}_2-subalgebras. The set of non-regular nilpotent elements contains a dense G-orbit [1, 4.2]. The elements of this orbit and corresponding \mathfrak{sl}_2-subalgebras are said to be subregular. Write $(\mathfrak{sl}_2)^{pr}$ (resp. $(\mathfrak{sl}_2)^{sub}$) for a principal (resp. subregular) \mathfrak{sl}_2-subalgebra of \mathfrak{g}. In [9], we obtained a uniform expression for $\text{ind}((\mathfrak{sl}_2)^{pr} \hookrightarrow \mathfrak{g})$. To recall it, we need some notation.

Let θ_s denote the short dominant root in Δ^+. (In the simply-laced case, we assume that $\theta = \theta_s$.) Set $r = ||\theta||^2/||\theta_s||^2 \in \{1, 2, 3\}$. Along with \mathfrak{g}, we also consider the Langlands dual algebra \mathfrak{g}^\vee, which is determined by the dual root system Δ^\vee. Since the Weyl groups of \mathfrak{g} and \mathfrak{g}^\vee are isomorphic, we have $h(\mathfrak{g}) = h(\mathfrak{g}^\vee)$. However, the dual Coxeter numbers can be different (cf. B_n and C_n). The half-sum of the positive roots for \mathfrak{g}^\vee is $\rho^\vee := \frac{1}{2} \sum_{\gamma > 0} \gamma^\vee = \sum_{\gamma > 0} \gamma / (\gamma, \gamma)_\theta$.

It is well-known (and easily verified) that $(\rho^\vee, \gamma)_\theta = \text{ht}(\gamma)$ for any $\gamma \in \Delta^+$. (This equality does not depend on the normalisation of a bilinear form on \mathcal{E}.) It follows that $h^*(g^\vee) = 1 + (\rho^\vee, \theta_s) = 1 + \text{ht}(\theta_s)$. Our first uniform expression is

Theorem 3.1 ([9, Theorem 3.2]). $\text{ind}((\mathfrak{sl}_2)^{pr} \hookrightarrow \mathfrak{g}) = \frac{\dim \mathfrak{g}}{6} h^*(\mathfrak{g}^\vee)r$.

Below, we give yet another expression for this index. Let Δ^+_l (resp. Δ^+_s) be the set of long (resp. short) positive roots. In the simply-laced case, all roots are assumed to be short and $r = 1$.

Theorem 3.2. $\text{ind}((\mathfrak{sl}_2)^{pr} \hookrightarrow \mathfrak{g}) = 2(\rho^\vee, \rho^\vee)_\theta = \sum_{\gamma \in \Delta^+_l} \text{ht}(\gamma) + r \sum_{\gamma \in \Delta^+_s} \text{ht}(\gamma)$.

Proof. In view of our choice of the form $(\ , \)_\theta$, we have

$$2 \rho^\vee = \sum_{\gamma \in \Delta^+} 2 \gamma / (\gamma, \gamma)_\theta = \sum_{\gamma \in \Delta^+_l} \gamma + r \sum_{\mu \in \Delta^+_s} \mu.$$

Consequently,

$$2(\rho^\vee, \rho^\vee)_\theta = (\rho^\vee, \sum_{\gamma \in \Delta^+_l} \gamma + r \sum_{\mu \in \Delta^+_s} \mu)_\theta = \sum_{\gamma \in \Delta^+_l} \text{ht}(\gamma) + r \sum_{\gamma \in \Delta^+_s} \text{ht}(\gamma),$$

which yields the second equality.

Now, we obtain another expression for $(\rho^\vee, \rho^\vee)_\theta$ applying the “strange formula” of Freudenthal-de Vries to Δ^\vee and \mathfrak{g}^\vee, cf. Remark 1.4. If $\mu \in \Delta_s$, then μ^\vee is a long root in
\[\Delta^\vee \text{ and } (\mu^\vee, \mu^\vee)_0 = 2r. \text{ Therefore, } 2(\rho^\vee, \rho^\vee)_0 = \frac{2\dim(\mathfrak{g}^\vee)}{24} 2r h^*(\mathfrak{g}^\vee) = \frac{\dim \mathfrak{g}}{6} r h^*(\mathfrak{g}^\vee), \text{ which is exactly the index of } (\mathfrak{sl}_2)^{pr}. \]

Remark 3.3. It was noticed in [9] that the index of \((\mathfrak{sl}_2)^{pr}\) is preserved under the unfolding procedure \(\mathfrak{g} \rightsquigarrow \tilde{\mathfrak{g}}\) applied to the multiply laced Dynkin diagram, the four pairs \((\mathfrak{g}, \tilde{\mathfrak{g}})\) being \((\mathbf{C}_n, \mathbf{A}_{2m-1}), (\mathbf{B}_n, \mathbf{D}_{n+1}), (\mathbf{F}_4, \mathbf{E}_6), (\mathbf{G}_2, \mathbf{D}_4)\). Using Theorem 3.2, we may look at this coincidence from another angle. Let \(\tilde{\Delta}\) be the root system of \(\tilde{\mathfrak{g}}\) with respect to a Cartan subalgebra \(\tilde{\mathfrak{t}}\). The embedding \(\mathfrak{t} \rightarrow \tilde{\mathfrak{t}}\) induces a surjective map \(\pi : \tilde{\Delta}^+ \rightarrow \Delta^+\) such that \(\pi^{-1}(\Delta^+_i) \rightarrow \Delta^+_i\) is one-to-one and \(#\pi^{-1}(\gamma) = r\) for \(\gamma \in \Delta^+_i\). Furthermore, \(\pi\) is height-preserving. Thus, we get the natural equality \(\sum_{\gamma \in \Delta^+_i} \text{ht}(\gamma) + r \sum_{\gamma \in \Delta^+_j} \text{ht}(\mu) = \sum_{\tilde{\gamma} \in \tilde{\Delta}^+_i} \text{ht}(\tilde{\gamma})\), which again “explains” the coincidence of two indices.

Our next goal is to provide a simple uniform expression for the difference of the indices of subalgebras \(\mathfrak{sl}_2^{pr}\) and \((\mathfrak{sl}_2)^{\text{sub}}\). To this end, we need the relationship between the structure of \(\mathfrak{g}\) as the module over \((\mathfrak{sl}_2)^{pr}\) or \((\mathfrak{sl}_2)^{\text{sub}}\), see e.g. [11, Ch. 7]. Let \(m_1, \ldots, m_n\) be the exponents of \(\mathfrak{g}\). As was shown by Kostant [5],

\[(3.1) \quad \mathfrak{g}|_{(\mathfrak{sl}_2)^{pr}} = \bigoplus_{i=1}^n \mathcal{R}_{2m_i}.\]

To deal with the subregular \(\mathfrak{sl}_2\)-subalgebras, we may assume that \(n = \text{rk}(\mathfrak{g}) \geq 2\) and also \(1 = m_1 < m_2 \leq \ldots \leq m_{n-1} < m_n = h(\mathfrak{g}) - 1\). Then

\[(3.2) \quad \mathfrak{g}|_{(\mathfrak{sl}_2)^{\text{sub}}} = \left(\bigoplus_{i=1}^{n-1} \mathcal{R}_{2m_i} \right) \oplus \mathcal{R}_{a-2} \oplus \mathcal{R}_{b-2} \oplus \mathcal{R}_{h(\mathfrak{g})-2},\]

where \(a + b = h(\mathfrak{g}) + 2\). Assume that \(a \leq b\) and note that \((a, b, h(\mathfrak{g}))\) are just \((w_r, w_{r+1}, w_{r+2})\) in [11, p. 112]. Below, we write \(h\) and \(h^*\) for \(h(\mathfrak{g})\) and \(h^*(\mathfrak{g})\), respectively.

Theorem 3.4. \(D := \text{ind}((\mathfrak{sl}_2)^{pr} \hookrightarrow \mathfrak{g}) - \text{ind}((\mathfrak{sl}_2)^{\text{sub}} \hookrightarrow \mathfrak{g}) = \frac{h}{h^*} \left(\binom{h}{2} + \frac{(a - 2)(b - 2)}{4} \right).\)

Proof. If \(\mathfrak{g}|_{\mathfrak{sl}_2} = \bigoplus_j \mathcal{R}_{n_j}\), then Eq. (1.3) shows that \(\text{ind}(\mathfrak{sl}_2 \hookrightarrow \mathfrak{g}) = \frac{1}{2 h^*} \sum_j \binom{n_j + 2}{3}\). Therefore, by Eq. (3.1) and (3.2), the difference \(D\) equals

\[\frac{1}{2 h^*} \left(\binom{2h}{3} - \binom{h}{3} - \binom{a}{3} - \binom{b}{3} \right).\]

Then routine transformations, where we repeatedly use the relation \((a - 1) + (b - 1) = h\), simplify this expression to the desired form. For instance, we first transform \(\binom{a}{3} + \binom{b}{3}\) into \(\frac{h}{6}(h^2 - 3(a - 1)(b - 1) - 1)\), etc. \(\square\)

In the following table, we gather the relevant data for all simple Lie algebras.
THE DYNKIN INDEX AND \(sl_2 \)-SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

\(g \)	\(A_n \)	\(B_n \)	\(C_n, n \geq 3 \)	\(D_n, n \geq 4 \)	\(E_6 \)	\(E_7 \)	\(E_8 \)	\(F_4 \)	\(G_2 \)
ind\((sl_2^{pr} \to g)\)	\(\binom{n+2}{3} \)	\(\frac{1}{2} \binom{2n+2}{3} \)	\(\frac{1}{2} \binom{2n+1}{3} \)	\(\frac{1}{2} \binom{2n}{3} \)	156	399	1240	156	28
\(D \)	\(\binom{n+1}{2} \)	\(2n^2 \)	\(4n(n-1) \)	\(2n(n-2) \)	72	168	480	96	24
\(a \)	2	2	4	4	6	8	12	6	4
\(b \)	\(n+1 \)	\(2n \)	\(2n-2 \)	\(2n-4 \)	8	12	20	8	4
\(D/b \cdot \text{rk}(g) \)	\(1/2 \)	1	2	1	\(3/2 \)	2	3	3	3

Remark 3.5. The numbers \((a, b)\) frequently occur in the study of the McKay correspondence and finite subgroups of \(SL_2 \), see e.g. [6]. Recall that Slodowy associates a finite subgroup of \(SL_2 \) to any \(g \) (not only of type A-D-E) [11, 6.2]. Let \(\tilde{\Gamma} \subset SL_2 \) be the finite subgroup corresponding to \(g \). Then (i) \(ab/2 = \# \tilde{\Gamma} \), (ii) \(\{a, b, h\} \) are the degrees of basic invariants for the associated 2-dimensional representation of \(\tilde{\Gamma} \), and (iii) the Poincaré series of this ring of invariants is \(\frac{1 + T^h}{(1 - T^a)(1 - T^b)} \). Using the first relation, one can also write

\[
D = \frac{h}{h^*} \cdot \frac{h(h - 2) + \# \tilde{\Gamma}}{2}.
\]

Remark 3.6. Let us point out some curious observations related to \(D \).

- It is always true that \(D \leq 2h \cdot \text{rk}(g) \), and the equality holds if and only if \(g \) is of type \(G_2, F_4, E_8 \). Furthermore, if \(h \) is even (which only excludes the case of \(A_{2n} \)), then \(D/\text{rk}(g) \) is an integer.

- It is always true that \(D \leq 3b \cdot \text{rk}(g) \), and the equality holds if and only if \(g \) is of type \(G_2, F_4, E_8 \). Moreover, for each classical series, the ratio \(D/b \cdot \text{rk}(g) \) is constant.

It might be interesting to find an explanation for these properties and understand the meaning of the constant \(D/b \cdot \text{rk}(g) \).

Acknowledgements. I would like to thank the Mathematisches Institut der Friedrich-Schiller-Universität (Jena) for the warm hospitality during the preparation of this article.

References

[1] D.H. Collingwood and W. McGovern. “Nilpotent orbits in semisimple Lie algebras”, New York: Van Nostrand Reinhold, 1993.

[2] Е.Б. Дынкин. Полупростые подалгебры полупростых алгебр Ли, Матем. Сборник, т.30, №2 (1952), 349–462 (Russian). English translation: E.B. Dynkin. Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., II Ser., 6 (1957), 111–244.

[3] H. Freudenthal and H. de Vries. “Linear Lie groups”, New York: Academic Press, 1969.

[4] W. Hesselink. Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc., 222 (1976), 1–32.

[5] B. Kostant. The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 973–1032.
[6] B. Kostant. The Coxeter element and the branching law for the finite subgroups of $SU(2)$. “The Coxeter legacy”, 63–70, Amer. Math. Soc., Providence, RI, 2006.

[7] R. Lawther. Jordan block sizes of unipotent elements in exceptional algebraic groups, *Comm. Alg.*, 23 (1995), 4125–4156.

[8] A.L. Onishchik. “Topology of transitive transformation groups”, Leipzig: J. Barth–Verlag, 1994.

[9] D. Panyushev. On the Dynkin index of a principal sl_2-subalgebra, *Adv. Math.*, 221, no. 4 (2009), 1115–1121.

[10] R.W. Richardson. Conjugacy classes in Lie algebras and algebraic groups, *Ann. Math.*, 86 (1967), 1–15.

[11] P. Slodowy. ”Simple singularities and simple algebraic groups”, Lect. Notes Math. 815, Berlin: Springer, 1980.

Institute for Information Transmission Problems of the R.A.S., Bol’shoy Karetnyi per. 19, Moscow 127994 Russia

E-mail address: panyushev@iitp.ru