Non contiguous-finished genome sequence and description of *Microbacterium gorillae* sp. nov.

Linda Hadjadj¹, Jaishriram Rathored¹, Mamadou Bhyoe Keita¹, Caroline Michelle¹, Anthony Levasseur¹, Didier Raout¹,², Pierre-Edouard Fournier¹, Jean-Marc Rolain¹ and Fadi Bittar¹*

Abstract

Strain G3⁷ (CSUR P207 = DSM 26203) was isolated from the fecal sample of a wild gorilla (*Gorilla gorilla* subsp. *gorilla*) from Cameroon. It is a Gram-positive, facultative anaerobic short rod. This strain exhibits a 16S rRNA sequence similarity of 98.2 % with *Microbacterium thalassium*, the closest validly published *Microbacterium* species and member of the family *Microbacteriaceae*. Moreover, it shows a low MALDI-TOF-MS score (1.1 to 1.3) that does not allow any identification. Thus, it is likely that this strain represents a new species. Here we describe the phenotypic features of this organism, the complete genome sequence and annotation. The 3,692,770 bp long genome (one chromosome but no plasmid) contains 3,505 protein-coding and 61 RNA genes, including 4 rRNA genes. In addition, digital DNA-DNA hybridization values for the genome of the strain G3⁷ against the closest *Microbacterium* genomes range between 19.7 to 20.5, once again confirming its new status as a new species. On the basis of these polyphasic data, consisting of phenotypic and genomic analyses, we propose the creation of *Microbacterium gorillae* sp. nov. that contains the strain G3⁷.

Keywords: *Microbacterium gorillae*, Genome, Culturomics, Taxonomo-genomics, Gorilla stool sample

Introduction

Strain G3⁷ (= CSUR P207 = DSM 26203) is the type strain of *Microbacterium gorillae* sp. nov. This bacterium is a Gram-positive, non-spore-forming, indole-negative, facultative anaerobic rod shaped bacillus. It was isolated from the feces of western lowland gorilla in Cameroon as part of a culturomics study to describe the bacterial communities of the gorilla gut [1]. By applying a large variety of culture conditions, culturomics allowed previously the isolation of numerous new bacterial species from gorilla fecal samples [1].

Furthermore, since the creation of the genus *Microbacterium* by Orla-Jensenin (1919) [2] to date, 91 bacterial species belonging to this genus have been validly published [3]. These species are Gram-positive and non-endospore-forming bacteria. Many studies have described *Microbacterium* species in diverse origins including human clinical specimens, soil, sea sediments, plants and hairspray [4–7].

In this report, we present a summary classification, phenotypic features for *M. gorillae* sp. nov. strain G3⁷, together with the description of the complete genome sequence and annotation. These characteristics support the circumscription of the species *M. gorillae* [8].

Organism information

Classification and features

Information about the fecal sample collection and conservation are described previously [1]. Strain G3⁷ (Table 1) was isolated in January 2012 as part of a culturomics study [1] by cultivation on Columbia agar supplemented with sheep blood (BioMérieux, Craponne, France).

When compared to sequences available in GenBank, the 16S rRNA gene sequence of *M. gorillae* strain G3⁷ (GenBank accession number JX650056) exhibited an identity of 98.2 % with *Microbacterium thalassium*, the
Different growth temperatures (20, 25, 30, 37, 45 °C) were tested. Growth occurred between 25 °C and 37 °C, but the optimal growth was observed at 25 °C, 24 h after inoculation. No growth occurred at 20 and 45 °C. Colonies were 0.8 mm in diameter, appear as gray color on Columbia agar supplemented with sheep blood. Growth of the strain was tested under anaerobic and microaerophilic conditions using GENbag anaer and GENbag microaer systems, respectively (BioMérieux), and under aerobic conditions, with or without 5 % CO₂. Growth was achieved under aerobic (with and without CO₂), microaerophilic and anaerobic conditions. Gram staining showed Gram positive short bacilli (Fig. 2, left panel). A motility test with API M medium (BioMérieux) produced a negative result. Cells grown on agar do not sporulate and the rods have a mean length of 1 μm and a mean width of 0.5 μm. Both the length and the diameter were determined by negative staining transmission electron microscopy (Fig. 2, right panel).

Strain G3ᵀ exhibited catalase activity but not oxidase activity using ID color catalase and oxidase reagent, respectively (BioMérieux). In assays with API 50CH system (BioMérieux), strain G3ᵀ produced acid from esculin, D-cellobiose, D-maltose, D-lactose, D-mannose, D-mannitol, D-saccharose, D-trehalose and gentiobiose. By contrast, acid production was not observed for glycerol, erythritol, D-arabinose, L-arabinose, D-ribose, D-xylene, L-xylene, D-adonitol, methyl-α-D-xylpyranoside, D-galactose, D-glucose, L-fructose, L-sorbose, L-rhamnose, dulcitol, inositol, D-sorbitol, methyl-α-D-mannopyranoside, Methyl-α-D-glucopyranoside, xylitol, D-tagatose, D-turanose, D-lyxose, D-fucose, L-fucose, D-arabitol, L-arabinol, potassium gluconate, potassium 2-cetogluconate, potassium 5-cetogluconate, D-melezitose, D-raffinose, Glycogen, N-acetylglucosamin, amygdalin, arbutin, salicin and hydrolysis of starch. Using APIZYM, positive enzyme activities were observed for esterase (C14), phosphatase alcalin, valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, α-galactosidase, β-galactosidase, β-glucosidase, β-glucuronidase, and α-fucosidase.

M. gorillae is susceptible to amoxicillin (25 μg), erythromycin (15UI), doxycyclin (30UI), rifampicin (30 μg), vancomycin (50 μg), amoxicillin-clavulanic acid (20 μg + 10 μg), trimethoprim-sulfamethoxazole (1.25 μg / 23.75 μg) and imipenem (10 μg) but resistant to ciprofloxacin (5 μg) and gentamycin (15 μg).

When compared to other *Microbacterium* species [10–16], *M. gorillae* sp. nov. strain G3ᵀ exhibited the phenotypic differences detailed in Additional file 1: Table S1.
Extended feature descriptions

Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) MS protein analysis was carried out as previously described [17] using a Microflex spectrometer (Bruker Daltonics, Leipzig, Germany). Twelve distinct deposits were done for strain G3\(^T\) from 12 isolated colonies. Two microliters of matrix solution (saturated solution of alpha-cyano-4-hydroxycinnamic acid) in 50% acetonitrile and 2.5% trifluoroacetic-acid were distributed on each smear and submitted at air drying for five minutes. Then, the spectra from the 12 different colonies were imported into the MALDI BioTyper software (version 2.0, Bruker) and analyzed by standard pattern matching (with default parameter settings) against 5,626 bacterial spectra including 43 spectra from 33 Microbacterium species, used as reference data, in the BioTyper database. Briefly, a score \(\geq 2\) with a species with a validly published name provided allows the identification at the species level, a score \(\geq 1.7\) but < 2 allows the identification at the genus level; and a score < 1.7 does not allow any identification. For strain G3\(^T\), no good score was obtained, suggesting that our isolate was not a member of any known species. We incremented our database with the spectrum from strain G3\(^T\) (Additional file 2: Figure S1). The gel view highlighted spectrum differences with other Microbacterium species (Additional file 3: Figure S2).

Fig. 1 Phylogenetic tree highlighting the position of Microbacterium gorillae strain G3\(^T\) relative to other type strains within the Microbacterium genus using 16S rRNA gene. GenBank accession numbers are indicated in parentheses. Sequences were aligned using MUSCLE. Alignments were then cleaned from highly divergent blocks using Gblocks version 0.91b [38]. Maximum likelihood (ML) phylogenetic tree was generated using RAxML [39], employing the GTR GAMMA substitution model with 500 bootstraps. Numbers at the nodes are percentages of bootstrap values obtained by repeating the analysis 500 times to generate a majority consensus tree. Corynebacterium diphtheriae was used as outgroup. The scale bar represents a rate of substitution per nucleotide position of 0.02. (T) indicates that the sequence used in the tree is from the type strain of the species.* indicates the strains used in the tree have a sequenced genome. # indicates that a sequenced genome is available for this species but not for the strain used to build the tree.
Genome sequencing information
Genome project history
According to phenotypic characteristics of this strain and MALDI-TOF result and because of the low 16S rRNA similarity to other members of the genus *Microbacterium*, it is likely that the strain represents a new species and thus it was chosen for genome sequencing. It was the 20th genome of a *Microbacterium* species (Genomes Online Database) and the first genome of *Microbacterium gorillae* sp. nov.

A summary of the project information is shown in Table 2. The GenBank accession number is CDAR00000000 and consists of 14 contigs. Table 2 shows the project information and its association with MIGS version 2.0 compliance [18].

Growth conditions and genomic DNA preparation
Microbacterium gorillae sp. nov strain G3\(^T\) (= CSUR P207 = DSM 26203) was grown aerobically on 5% sheep blood-enriched Columbia agar (BioMérieux) at 25 °C. Bacteria grown on four Petri dishes were resuspended in 3x500μl of TE buffer and stored at 80 °C. Then, 500 μl of this suspension were thawed, centrifuged 3 min at 10,000 rpm and resuspended in 3x100μl of G2 buffer (EZ1 DNA Tissue kit, Qiagen). A first mechanical lysis was performed by glass powder on the Fastprep-24 device (Sample Preparation system, MP Biomedicals, USA) using 2x20 s cycles. DNA was then treated with 2.5 μg/μl lysozyme (30 min at 37 °C) and extracted using the BioRobot EZ1 Advanced XL (Qiagen). The DNA was then concentrated and purified using the Qiamp kit (Qiagen). The yield and the concentration was measured by the Quant-it Picogreen kit (Invitrogen) on the Genios Tecan fluorometer at 50 ng/μl.

Genome sequencing and assembly
Genomic DNA of *M. gorillae* was sequenced on the MiSeq Technology (Illumina Inc, San Diego, CA, USA) with the 2 applications: paired end and mate paired. The gDNA was barcoded in order to be mixed with 11 others projects with the Nextera Mate Pair sample prep kit (Illumina) and with 17 others projects with the Nextera XT DNA sample prep kit (Illumina). gDNA was quantified by a Qubit assay with the high sensitivity kit (Life technologies, Carlsbad, CA, USA) to 46.7 ng/μl. To prepare the paired end library, dilution was performed to require 1 ng of each genome as input. The « tagmentation » step fragmented and tagged the DNA. Then limited cycle PCR amplification (12 cycles) completed the tag adapters and introduced dual-index barcodes. After purification on AMPure XP beads (Beckman Coulter Inc, Fullerton, CA, USA), the libraries were then normalized on specific beads according to the Nextera XT protocol (Illumina). Normalized libraries were pooled for sequencing on the MiSeq. The pooled single strand library was loaded onto the reagent cartridge and then onto the instrument along with the flow cell. Automated cluster generation and

MIGS-31	Property	Term
MIGS-28	Libraries used	Mate pair and paired end
MIGS-29	Sequencing platforms	MiSeq-Illumina
MIGS-30	Assemblers	Spades
MIGS-31.2	Fold coverage	213X
MIGS-13	Source Material Identifier	G3\(^T\)
MIGS-12	Locus Tag	BN1193
MIGS-9	GenBank ID	CDAR00000000
MIGS-32	Gene calling method	Prodigal

Fig. 2 Gram staining (left panel) and Transmission electron microscopy using a Morgani 268D (Philips) at an operating voltage of 60 kV (right panel) of *M. gorillae* strain G3\(^T\). The scale bar represents 500 nm.
paired end sequencing with dual index reads were performed in a single 39-h run in 2x250-bp.

Total information of 7.6 Gb was obtained from a 931 K/mm² cluster density with a cluster passing quality control filters of 82.8 % (17,658,000 clusters). Within this run, the index representation for \(M. \) gorillae was determined to 5.11 %. The 732,922 paired end reads were trimmed and filtered by Trimmomatic tool using the recommended parameters for Illumina sequence data [19].

Two mate pair libraries were prepared with 1 and 1.5 μg of genomic DNA using the Nextera mate pair Illumina guide. The genomic DNA sample was simultaneously fragmented and tagged with a mate pair junction adapter. The pattern of the fragmentation was validated on an Agilent 2100 BioAnalyzer (Agilent Technologies Inc, Santa Clara, CA, USA) with a DNA 7500 labchip. The DNA fragments ranged from 1 kb to 11 kb in size with the majority of fragments at 8.8 and 9.4 kb of size. No size selection was performed and 45 ng for the 1st library and 600 ng for the second library of tagged fragments were circularized. The circularized DNA was mechanically sheared to small fragments with the majority at 400 and 380 bp on the Covaris device S2 in microtubes (Covaris, Woburn, MA, USA). The library profile was visualized on a High Sensitivity Bioanalyzer LabChip (Agilent Technologies Inc, Santa Clara, CA, USA) and the final concentration library was measured at 0.65 and 0.59 nmol/l respectively. The libraries were normalized at 2nM and pooled. After a denaturation step and dilution at 15 pM, the pool of libraries was loaded onto the reagent cartridge and then onto the instrument along with the flow cell. Automated cluster generation and sequencing run were performed in a single 39-h run in a 2x251-bp. The first library was loaded three times on a flowcell and the second once. Within these runs, the index representation for \(M. \) gorillae was determined as an average at 3.51 %. The 1,881,286 paired reads were filtered according to the read qualities. The global paired end and mate pair libraries lead to 2,614,208 paired reads which were trimmed by Trimmomatic [19] then assembled by Spades software using the recommended options “-careful” and “-k 127” to fix the kmer size to 127 [20]. The final assembly identified 14 scaffolds generating a genome size of 3.69 Mb which corresponds to genome coverage of 213X.

Genome properties
The genome of \(M. \) gorillae strain G3\(^T\) is 3,692,770 bp-long with a 69.3 % G+C content (Table 3, Fig. 3). Of the 3,566 predicted genes, 3,505 were protein-coding genes and 61 were RNA genes, including 4 complete rRNA operons (Additional file 4). A total of 2,412 genes (68.82 %) were assigned a putative function. A total of 6.33 % were identified as Pseudo-genes. The remaining genes were annotated as hypothetical proteins. The properties and the statistics of the genome are summarized in Table 3. The distribution of genes into COGs functional categories is presented in Table 4 and Additional file 4.

Insights from the genome sequence
Here, we compared the genome sequences of \(M. \) gorillae strain G3\(^T\) (CDAR00000000) with those of \(M. \) barkeri strain 2011-R4 (AKVP0000000), \(M. \) marsyaticum strain MF109 (ATAO00000000), \(M. \) indicum strain DSM 19969 (AULR00000000),
Microbacterium laevaniformans strain OR221 (AJGR00000000), Microbacterium luticocti strain DSM 19459 (AULS00000000), Microbacterium paraoxydans strain 77MFTsu3.2 (AQYI00000000), Microbacterium testaceum strain StLB037 (AP012052) and Microbacterium yannicii strain PS01 (CAJF00000000). The draft genome of *M. gorillae* has a larger size than those of *M. indicum*, *M. luticocti*, *M. laevaniformans*, *M. paraoxydans* and *M. barkeri*, (3.69 vs 2.81, 3.11, 3.43, 3.48 and 3.64 Mb respectively) but is smaller than those of *M. maritypicum*, *M. testaceum* and *M. yannicii* (3.69 vs 4.0, 3.98 and 3.95 Mb respectively). The G+C content of *M. gorillae* is higher than those of *M. laevaniformans* and *M. maritypicum* (69.3 vs 68.0 and 68.2 % respectively) but lower than those of *M. indicum*, *M. luticocti*, *M. testaceum*, *M. yannicii*, *M. paraoxydans* and *M. barkeri* (69.3 vs 71.4, 70.7, 70.3, 69.5, 69.5, 69.2 %, respectively). The gene content of *M. gorillae* is lower than those of *M. maritypicum* and *M. testaceum*, (3,505 vs 3,856 and 3,676 genes respectively) but higher than those of, *M. paraoxydens*, *M. yannicii*, *M. laevaniformans*, *M. barkeri*, *M. luticocti* and *M. indicum* (3,312, 3,279, 3,249, 3,099, 2,355, 2,183 genes respectively) (Table 5). However the distribution of genes into COG categories was similar

Attribute	Value	% of total
Genome size (bp)	3,692,770	100
DNA coding (bp)	3,396,745	92
DNA G + C (bp)	2,558,287	69.3
DNA scaffolds	14	
Total genes	3,566	100
Protein coding genes	3,505	98.3
RNA genes	61	1.71
Pseudo genes	226	6.33
Genes in internal clusters	ND	ND
Genes with function prediction	2,412	68.8
Genes assigned to COGs	2,202	62.8
Genes with Pfam domains	0	0
Genes with signals peptides	365	10.4
Genes with transmembrane helices	843	24.1
CRISPR repeats	0	0

The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome. ND: Not determined
in all compared genomes (Additional file 5: Figure S3). In addition, *M. gorillae* shares 1,593, 1,658, 1,269, 1,396, 1,390, 1,416, 1,498 and 1,497 orthologous genes with *M. barkeri*, *M. maritypicum*, *M. indicum*, *M. laevaniformans*, *M. luticocti*, *M. paraoxydans*, *M. testaceum* and *M. yannicii* respectively (Table 5). Among compared genomes except *M. gorillae*, AGIOS values range from 75.51 % between *M. indicum* and *M. maritypicum* to 85.33 % between *M. maritypicum* and *M. barkeri*. When *M. gorillae* was compared to other species, AGIOS values range

Table 4 Number of genes associated with the 25 general COG functional categories

Code	Value	% of total	Description
J	149	4.25	Translation
A	1	0.03	RNA processing and modification
K	269	7.67	Transcription
L	109	3.11	Replication, recombination and repair
B	0	0.00	Chromatin structure and dynamics
D	16	0.46	Cell cycle control, mitosis and meiosis
Y	0	0.00	Nuclear structure
V	41	1.17	Defense mechanisms
T	75	2.14	Signal transduction mechanisms
M	82	2.34	Cell wall/membrane biogenesis
N	1	0.03	Cell motility
Z	0	0.00	Cytoskeleton
W	0	0.00	Extracellular structures
U	24	0.68	Intracellular trafficking and secretion
O	66	1.88	Posttranslational modification, protein turnover, chaperones
C	150	4.28	Energy production and conversion
G	257	7.33	Carbohydrate transport and metabolism
E	325	9.27	Amino acid transport and metabolism
F	69	1.97	Nucleotide transport and metabolism
H	83	2.37	Coenzyme transport and metabolism
I	151	4.31	Lipid transport and metabolism
P	184	5.25	Inorganic ion transport and metabolism
Q	95	2.71	Secondary metabolites biosynthesis, transport and catabolism
R	410	11.70	General function prediction only
S	145	4.14	Function unknown
-	1303	37.17	Not in COGs

* The total is based on the total number of protein coding genes in the annotated genome.

Table 5 Genomic comparison of *M. gorillae* sp. nov., strain G3T with other *Microbacterium* species.

Species	M. gorillae	M. barkeri	M. maritypicum	M. indicum	M. laevaniformans	M. luticocti	M. paraoxydans	M. testaceum	M. yannicii
M. gorillae	3,505	1,593	1,658	1,269	1,396	1,390	1,416	1,498	1,497
M. barkeri	75.91	3,099	2,111	1,390	1,511	1,461	1,595	1,685	1,684
M. maritypicum	75.22	85.33	3,856	1,429	1,581	1,549	1,634	1,755	1,734
M. indicum	75.39	76.16	75.51	2,183	1,296	1,191	1,324	1,446	1,349
M. laevaniformans	75.80	76.59	76.07	76.05	3,249	1,414	1,602	1,638	1,580
M. luticocti	76.41	76.99	76.50	76.34	77.94	2,355	1,595	1,433	1,512
M. paraoxydans	75.66	76.36	75.90	76.43	78.49	77.34	3,312	1,710	1,632
M. testaceum	75.64	76.48	75.84	76.30	77.64	77.64	77.52	3,676	1,723
M. yannicii	75.85	76.89	76.34	76.53	78.06	78.60	77.82	78.10	3,279

* The numbers of orthologous proteins shared between genomes (upper right triangle), average percentage similarity of nucleotides corresponding to orthologous protein shared between genomes (lower left triangle) and numbers of proteins per genome (bold)
from 75.22 % with *M. maritypicum* to 76.41 % with *M. luticoci* (Table 5). dDDH estimation of the strain G3\(^T\) against the compared genomes ranged between 19.70 to 20.50. These values are very low and below the cutoff of 70 %, thus confirming again the new species status of the strain G3\(^T\).

Conclusions

On the basis of phenotypic characteristics, phylogenetic position, genomic analyses (taxonogenomics) and GGDC results, we formally propose the creation of *Microbacterium gorillae* sp. nov. that contains the strain G3\(^T\). This strain has been isolated from a gorilla stool sample collected from Cameroon.

Taxonomic and nomenclatural proposals

Description of Microbacterium gorillae sp. nov.

Microbacterium gorillae (go.ril.lae. NL neut. gen gorilla, pertaining to a gorilla from which the stool sample was obtained).

Cells stain Gram-positive, are small rod, non-endospore-forming, non-motile and have a diameter of 0.5 µm and a length of 1 µm. Colonies are gray and 2 mm in diameter on blood-enriched Columbia agar. Growth occurs between 25 and 37 °C, with optimal growth observed at 25 °C.

Strain G3\(^T\) exhibited catalase activity but not oxidase activity. Strain produces acid from esculin, D-cellobiose, D-maltose, D-lactose, D-mannose, D-mannitol, D-saccharose, D-trehalose and gentiobiose but not from glycerol, erythritol, D-arabinose, L-arabinose, D-ribose, D-xylose, L-xylose, D-adenitol, methyl-α-D-xylpyranoside, D-galactose, D-glucose, L-fructose, L-sorbose, L-rihamnose, dulcitol, inositol, D-sorbitol, methyl-α-D-manopyranoside, Methyl-α-D-glucopyranoside, xylitol, D-tagatose, D-turanose, D-lyxose, D-fucose, D-arabitol, L-arabitol, potassium gluconate, potassium 2-cetogluconate, potassium 5-cetogluconate, D-melezitose, D-raffinose, Glycogen, N-acetylglucosamin, amygdalin, arbutin, salicin and hydrolysis of starch.

Positive enzyme activities were observed for esterase (C4), esterase lipase (C8), leucine aramidase, phosphatase acid, naphtol-AS-BI-phosphohydrolase, α-mannosidase, α-glucosidase and N-acetyl-β-glucosaminidase. Negative results for lipase (C14), phosphatase alcalin, valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucuronidase, and α-fucosidase.

M. gorillae is susceptible to amoxicillin, erythromycin, doxycyclin, rifampicin, vancomycin, amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole and imipenem but resistant to ciprofloxacin and gentamycin.

The G+C content of the genome is 69.3 %. The 16S rRNA and genome sequences are deposited in GenBank under accession numbers JX650056 and CDAR00000000, respectively. The type strain G3\(^T\) (= CSUR P207 = DSM 26203) was isolated from the fecal sample of a western lowland gorilla from Cameroon.

Additional files

- **Additional file 1: Table S1.** Differential phenotypic characteristics between *Microbacterium gorillae* sp. nov. strain G3\(^T\) and others
 Microbacterium strains. (DOCX 14 kb)
- **Additional file 2: Figure S1.** Reference mass spectrum from *M. gorillae* strain G3\(^T\). Spectra from 12 individual colonies were compared and a reference spectrum was generated. (PPTX 44 kb)
- **Additional file 3: Figure S2.** Gel view comparing *Microbacterium gorillae* strain G3\(^T\) spectra with other members of the genus *Microbacterium*. The gel view displays the raw spectra of all loaded spectrum files arranged in a pseudo-gel like look. The x-axis records the m/z value. The left y-axis displays the running spectrum number originating from subsequent spectra loading. The peak intensity is expressed by a gray-scale scheme code. The color bar and the right y-axis indicate the relation between the color a peak is displayed with and the peak intensity in arbitrary units. Displayed species are indicated on the right. (PPTX 76 kb)
- **Additional file 4: Folder S1.** Annotation results. (RAR 1566 kb)
- **Additional file 5: Figure S3.** Distribution of functional classes of predicted genes of *M. gorillae* strain G3\(^T\) with 8 members of *Microbacterium* genus. (PPTX 63 kb)

Abbreviations

CSUR: Collection de souches de l’Unité des Rickettsies; URMIITE: Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes; DSM: Deutsche Sammlung von Mikroorganismen; MALDI-TOF MS: Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry; TE buffer: Tris-EDTA buffer; GGDC: Genome-to-Genome Distance Calculator; dDDH: digital DNA-DNA hybridization.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LH wrote the manuscript and analyzed the data. MBK performed laboratory experiments and helped to draft the manuscript. CM performed the sequencing and helped to draft the manuscript. JR and AL performed bioinformatics analysis and helped to draft the manuscript. DR, PF, JMR and FB conceived the study, participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Fadi Bittar was supported by a Chair of Excellence IRD provided by the Institut de Recherche pour le Développement / Méditerranée-Infection foundation. Mamadou Boye Keita was funded by the Méditerranée-Infection foundation. The authors thank Xegen company for automating the genome annotation process.

Author details

1. Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMIITE), UM63, CNRS7278, IRD 198, Inserm 1095, Iju Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
2. King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia.

Received: 4 June 2015 **Accepted:** 8 April 2016 **Published online:** 14 April 2016
et al. Standards in Genomic Sciences (2016) 11:32

References

1. Bittar F, Keita MB, Lagier JC, Peeters M, Delaporte E, Raoult D. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturotics and molecular tools. Sci Rep. 2014;4:7174.

2. Skennan VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol. 1980;30:225–420.

3. Abstract for the genus Microbacterium. Nameforlife, LLC. Retrieved June 26, 2015. (doi:10.1601/tx.6034).

4. Neindeing K, Foddi R, Funke G. Identities of Microbacterium spp. Encountered in Human Clinical Specimens. Clin J Microbiol. 2008;46:3646.

5. Anand S, Bala K, Saxena A, Schumann P, Lal R. Microbacterium amylovoricum sp. nov., isolated from an industrial waste site. Stand J Syst Evol Microbiol. 2012;62:2114–20.

6. Bakir MA, Kudo T, Benno Y. Microbacterium hatanonis sp. nov., isolated as a contaminant of hairspray. Int J Syst Evol Microbiol. 2008;58(Pt 3):654–8.

7. Alves A, Resco R, Coreia A, Trujillo ME. Microbacterium proteolyticum sp. nov. isolated from roots of Halimone portulacoides. Int J Syst Evol Microbiol. 2015;65(Pt 6):1794–8.

8. Sentausa E, Fournier PE. Advantages and limitations of genomics in prokaryotic taxonomy. Clin Microbiol Infect. 2013;19(9):790–5.

9. Meier-Kolthoff JP, Gökşer M, Spéder C, Klönk HP. When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol. 2013;196:13–48.

10. Zhang Y, Ren H, Zhang G. Microbacterium hydrothermal sp. nov., an actinobacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol. 2014;64:3508–12.

11. Shivaji S, Bhadra B, Rao RS, Chatuverdi P, Pindik RK, Raghukumar C. Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol. 2007;57:1819–22.

12. Vaz-Moreira I, Lopes AR, Faisen E, Schumann P, Nunes OC, Manaa CM. Microbacterium lutococci sp. nov. isolated from sewage sludge compost. Int J Syst Evol Microbiol. 2008;58:1700–4.

13. Laffineur K, Avesani V, Corou G, Charlier J, Janssens M, Wauters G, et al. Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. J Clin Microbiol. 2003;41(5):2242–6.

14. Schippers A, Bosecker K, Spéder C, Schumann P. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol. 2005;55(Pt 1):65–60.

15. Sharma P, Dine SM, Thibeaut S, Bittar F, Roux V, Gomez C, et al. Phenotypic and genotypic properties of Microbacterium yannicii, a recently described multidrug resistant bacterium isolated from a lung transplanted patient with cystic fibrosis in France. BMC Microbiol. 2013;13:97.

16. Takeuchi M, Hatano K. Proposal of six new species in the genus Microbacterium and transfer of “Flavobacterium marinotypicum” ZoBell and Upham to the genus Microbacterium as Microbacterium marinotypicum comb. nov. Int J Syst Bacteriol. 1998;48 Pt 3:973–82.

17. Seng P, Drancourt M, Gourtier F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–51.

18. Field D, Garrity G, Gray T, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:2541–7.

19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

20. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria class nov. Int J Syst Bacteriol. 1997;47:749–91.

21. Validation List no. 53 in IJSEM. Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IB. Int J Syst Evol Microbiol. 1995;25:418–9.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.

23. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

24. Stamatakis A, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.

25. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.

27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

28. Bankievich A, Nurst S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

29. Prodigal. [http://prodigal.southernmethodist.edu].

30. GenBank database. http://www.ncbi.nlm.nih.gov/genbank.

31. Lowe TM, Eddy SR. T-RNAScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:965–64.

32. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:308–10.

33. Bendten JØ, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.

34. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.

35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

36. Stamatakis A, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.

Submit your next manuscript to BioMed Central and we will help you at every step:

• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit