Operating at the very low end of the crassulacean acid metabolism spectrum: *Sesuvium portulacastrum* (Aizoaceae)

Klaus Winter¹*, Milton Garcia¹, Aurelio Virgo¹ and Joseph A. M. Holtum¹,²

¹ Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
² Centre for Tropical Biodiversity and Climate Change, College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia

* Correspondence: winterk@si.edu

Received 23 May 2018; Editorial decision 28 November 2018; Accepted 30 November 2018

Editor: Christine Raines, University of Essex, UK

Abstract

Demonstration of crassulacean acid metabolism (CAM) in species with low usage of this system relative to C₃-photosynthetic CO₂ assimilation can be challenging experimentally but provides crucial information on the early steps of CAM evolution. Here, weakly expressed CAM was detected in the well-known pantropical coastal, leaf-succulent herb *Sesuvium portulacastrum*, demonstrating that CAM is present in the Sesuvioideae, the only sub-family of the Aizoaceae in which it had not yet been shown conclusively. In outdoor plots in Panama, leaves and stems of *S. portulacastrum* consistently exhibited a small degree of nocturnal acidification which, in leaves, increased during the dry season. In potted plants, nocturnal acidification was mainly facultative, as levels of acidification increased in a reversible manner following the imposition of short-term water-stress. In drought-stressed plants, nocturnal net CO₂ exchange approached the CO₂-compensation point, consistent with low rates of CO₂ dark fixation sufficient to eliminate respiratory carbon loss. Detection of low-level CAM in *S. portulacastrum* adds to the growing number of species that cannot be considered C₃ plants *sensu stricto*, although they obtain CO₂ principally via the C₃ pathway. Knowledge about the presence/absence of low-level CAM is critical when assessing trajectories of CAM evolution in lineages. The genus *Sesuvium* is of particular interest because it also contains C₄ species.

Keywords: Crassulacean acid metabolism, CO₂ assimilation, C₄ photosynthesis, facultative CAM, salt tolerance, *Sesuvium portulacastrum*, succulence.

Introduction

The Aizoaceae, a family of about 1600 species in the order Caryophyllales (Hartmann, 2017), contains more species with succulent leaves than any other eudicot family (Hernández-Ledesma et al., 2015). In three of the four sub-families of the Aizoaceae, the Aizooidae, Mesembryanthemoideae, and the Ruschioideae, succulence is associated with multiple lineages of crassulacean acid metabolism (CAM), a water-use efficient pathway of photosynthesis (von Willert et al., 1977, 1992; Smith and Winter, 1996; Arakaki et al., 2011).

The Sesuvioideae, the earliest diverging sub-family (Klak et al., 2003; Bohley et al., 2015), is unique in the Aizoaceae in that it is the only sub-family within which CAM has not yet been demonstrated unequivocally (Bohley et al., 2015) and it is the only sub-family that contains species with C₄ photosynthesis, which is present in the genera *Sesuvium* (Bittrich, 1990; Bohley et al., 2015), *Trianthema*, and *Zaleya* (Carolin et al., 1978). Within *Sesuvium*, two clades have been recognized, one composed of species with C₄-type anatomy, C₄ biochemistry,
and carbon isotope values of between –13.3 and −11.2‰ [S. congensense, S. crithmoides, S. humifusum (formerly Cypsela humifusum), S. mesembryanthemoides, and S. sesuroides] (Bohley et al., 2015, 2017), and one with isotope values of between −27.7 and −25.3‰ that are characteristic of plants with C₃ photosynthesis (S. ayresii, S. dystylum, S. maritimum, S. microphyllum, S. portulacastrum, S. sessile, and S. verrucosum) (Bohley et al., 2015). For one species, S. edmonstonei, native to the Galapagos, a reported isotope value of −21.5‰ is intermediate between those characteristic of C₃ plants and those of plants with C₄ photosynthesis or full CAM (Winter and Holtum, 2002; Bohley et al., 2015; Alonso-Cantabrana and von Caemmerer, 2016), although for plants of a northern Venezuelan population the δ¹³C value is −24‰ (Medina et al., 2008).

Despite a lack of evidence for CAM-type CO₂ dark fixation in the Sesuvioideae, the ~50 species in this small subfamily [Sesuvium, 14 spp. (Bohley et al., 2017); Trianthema, ~20 spp. (Hartmann, 2017); Tribulocarpus, two spp. (Thulin et al., 2012); Zea, six spp. (Gilbert et al., 2000)] are mostly succulent-leaved and drought-tolerant, traits common in CAM plants (Ogburn and Edwards, 2010). Bearing in mind recent reports of low-level CAM in other small succulent-leaved herbs within the Caryophyllales that exhibit C₃- or C₄-type isotopic signatures [e.g. Calandrinia (Montiaceae), Portulaca (Portulacaceae), and in the succulent-leaved vine Amsinckia baselloides (Basellaceae)] (Holtum et al., 2017a, 2017b, 2018; Winter and Holtum, 2017), we decided to test whether the ostensibly C₃ or C₄ isotope values reported for Sesuvium might mask the presence of low-level CAM. We were further encouraged to do so by a single observation of small nocturnal acidification in field-growing S. maritimum (Walter) Britton, Sterns & Poggenb. that exhibited a C₃-type isotope value of −26‰ (Martin et al., 1982).

A plant exhibits the CAM photosynthetic pathway when, in chloroplast-containing cells, CO₂ is incorporated at night into malic acid that is stored in vacuoles (Osmond, 1978). In the subsequent light-period, the CO₂ is retrieved from malic acid that is stored in vacuoles (Osmond, 1978). In the majority of plants with CAM, it is expressed alongside C₃ photosynthesis or, in a few species, C₄ photosynthesis (Koch and Kennedy, 1980; Winter and Holtum, 2017). The contribution of CAM to net daily carbon gain varies considerably between species. Nocturnal acidification reported for plants with CAM ranges over two orders of magnitude from 3–4 µmol H⁺ g⁻¹ fresh mass (FM; close to the lower limit of detectability) to over 400 µmol H⁺ g⁻¹ FM. At one extreme of the continuum, CAM may be the principal carbon-contributing pathway in a plant (Winter and Holtum, 2014), whereas at the other extreme the contribution of CAM to carbon gain may be extremely small [e.g. Platycerium veitchii (Holtum and Winter, 1999); Jatropha curcas (Winter and Holtum, 2015); Yucca gloriosa (Heyduk et al., 2016)]. In the latter group, the machinery for CAM is nonetheless present and the pathway is operational, although nocturnal CO₂ fixation may be masked by dark respiratory CO₂ loss.

The expression of CAM may be constitutive, i.e. non-optional in that expression is part of the pre-set processes of development and growth, or it may be facultative, i.e. optional, in that it is not always present (Winter and Holtum, 2014; Winter et al., 2015). Facultative CAM involves an induction or up-regulation of CAM in response to a stress (typically water stress) that is fully or largely lost when the stress is removed. Facultative and constitutive CAM are not necessarily mutually exclusive in a given photosynthetic organ. In a plant in which CAM is constitutively expressed, transient stress may transiently up-regulate CAM (Winter et al., 2008). Because the contribution of dark CO₂ fixation to lifetime carbon gain can be small in some facultative CAM plants and in species that exhibit low levels of constitutive CAM, such plants may exhibit isotope values similar to C₃ or C₄ plants and the detection of CAM in these species is best measured by quantifying both leaf acidification and nocturnal CO₂ exchange during a wet-dry-wet sequence.

To further investigate the possibility of CAM in the Sesuvioideae we chose as a test species S. portulacastrum. Typically regarded as a C₃ species even when growing under conditions of stress (Lüttge et al., 1989; Voznesenskaya et al., 2010; Bohley et al., 2015), a single value of overnight H⁺ increase of field-growing S. portulacastrum has been reported (Ting, 1989). The species is a pan-tropical succulent-leaved coastal herb with an extensive distribution that spans coastlines of Africa, North and South America, tropical and temperate Asia, Australia, and the Pacific islands between 35°N and 42°S (Gonçalves, 1978; Lonard and Judd, 1997; Bohley et al., 2017; Hartmann, 2017). In some regions, the salt-tolerating halophyte is cultivated for food and fodder, and used for dune stabilization and phytoremediation (Lokhande et al., 2013a, 2013b).

Here, we provide results from a detailed study of gas exchange and nocturnal acidification in plants from a Panamanian population of S. portulacastrum either cultivated in pots or growing in outdoor experimental plots throughout tropical wet-season/dry-season transitions. Conclusive evidence is provided for the presence of low-level CAM in both the stems and leaves of S. portulacastrum.

Materials and methods

Plant material

Cuttings were obtained from five plants of Sesuvium portulacastrum (L.) L. collected at Sarigua National Park, Azuero Peninsula, Republic of Panama (8.013348N, 80.485658W) and further propagated at the Smithsonian Tropical Research Institute. A voucher specimen was deposited at the herbarium of the National University of Panama (PMA) (J. Aranda, A. Virgo, M. García, K. Winter 4324; 25 October 2018).

Outdoor experiments

Two experiments were performed. In the first, at the beginning of September, 2016 (middle of the wet season), 10 cuttings were planted in forest soil in a 1.5×1.5×0.3 m raised garden bed surrounded by 3.5-cm thick wood panels at the Smithsonian Tropical Research Institute, Santa Cruz Experimental Research Facility, Gamboa, Republic of Panama.
(9.120085N, 79.701894W). Plants were exposed to full natural solar radiation and received natural rainfall. Plants were grown for 186 d. In the second experiment, which began on 1 June, 2017 (early wet season), plants derived from 25 cuttings were grown for 333 d in a mixture of 50:25:25% (v/v/v) of forest soil: potting mix (Miracle-Gro Lawn Products, Marysville, OH): sea-sand (Novesys, Panama) in a raised garden bed as described above (Fig. 1). From July to December 2017, in addition to natural rainfall, the plants received at monthly intervals 10 l of 10% seawater prepared from 3.5 g 1−1 Ocean Salt (Instant Ocean, Blacksburg, VA (e.g. Reef et al., 2016)). Leaves and stems were sampled at dusk and dawn at weekly or 2-weekly intervals, unless specified otherwise. Samples were weighed for fresh mass determination and stored in liquid nitrogen to be processed further for measurements of titratable acidity, as described below.

Pot experiments

Throughout 2016 and 2017, several experiments were conducted to study titratable acidity changes and gas-exchange responses during wet-dry-wet cycles. Plants were grown in terracotta pots (ranging from 0.5–3.5 l) containing potting mix (Miracle-Gro). Plants were maintained at the Tupper Centre of the Smithsonian Tropical Research Institute, Panama City (8.962568N, 79.543911W) under either full solar radiation or underneath rain shelters at 70% natural light. Growth conditions are specified in the relevant figure legends. As in the outdoor experiments, for acidity measurements mature leaves and stems excised from plants at dusk and dawn were weighed for determination of fresh mass and frozen in liquid nitrogen. In some experiments, prior to freezing the leaf area was determined using a LI-3100 leaf area meter (Li-Cor, Lincoln, NE).

Titratable acidity and dry mass

Frozen tissue was either extracted sequentially in boiling 50% ethanol and in water (Winter and Holtum, 2017), or was freeze-dried for 72 h (Labonco, Freezezone 4.5, Kansas City, MO) and reweighed for dry mass determination before extraction. All extracts were titrated with 5 mM KOH to pH 6.5.

Net CO₂ exchange

To determine daily CO₂ exchange patterns during wet-dry-wet cycles whole plants, attached branches, or individual attached leaves were studied. In one of the experiments, the shoot of a small plant was enclosed in a 4.5-cm diameter PMK-10 leaf cuvette (porometer head; Wälz, Effeltrich, FRG). After initial daily irrigation with water or a solution equivalent to 10% seawater, a drought treatment was imposed by withholding irrigation until net CO₂ uptake during the light period approached zero, after which plants were rewatered daily.

The gas-exchange cuvettes were located inside a controlled environment chamber (GC8, EGCG, Chagrin Falls, OH) operating under 12/12 h light/dark, 28/22 °C cycles. Illumination was supplied by a LED grow light (GroPro300, Model LL4L-GP300, www.LL4L.com). Photon flux densities are specified in the relevant figure legends. The cuvette was supplied with air containing 400 ppm CO₂ at a flow rate of 1.26 l min⁻¹. Net CO₂ exchange was measured in a flow-through gas-exchange system consisting of Wälz components and a LI-6252 CO₂ Analyzer (Li-Cor (Holtum and Winter, 2003)).

Results

Outdoor experiments in garden beds

Sesuvium portulacastrum experienced two distinct climatic phases when grown outside for 186 d in forest soil (Fig. 2). During the first 125 d (i.e. from September 2016 to early January 2017) it rained on many days, whereas for the final 61 d rainfall was essentially absent (Fig. 2B). As rainfall ceased, the average daily irradiance increased (Fig. 2A). By the end of March, all plants had died. During the rainy period, leaves contained low levels of titratable acidity, when expressed on a fresh mass basis, but the values were significantly greater at dawn than at dusk for 9 of 15 weekly measurements (Fig. 2C). Stem acidity measurements began in October. In all wet-season samples, stem acidity increased significantly overnight, with the dawn–dusk difference being greater in stems than in leaves (Fig. 2C, D).

Soon after initiating the experiment, we noted that leaves slightly wilted during the daytime and recovered overnight. This observation prompted us to determine fresh:dry mass ratios from December onwards, and to express leaf and stem acidities also on a dry mass basis (Fig. 2E, F).

Nocturnal acidification in leaves, on both a fresh mass (FM) and a dry mass (DM) basis, was greater during the dry season than in the rainy season (Fig. 2C, E). ΔH⁺ was 1.3±0.9 μmol g⁻¹ FM (mean±SD, n=15 d) during the wet season and 7.7±3.2 μmol g⁻¹ FM (n=8 d) during the dry season (P≤0.001). Corresponding values on a dry mass basis were 38±10 μmol g⁻¹ DM (n=4 d; wet season) and 95±26 μmol g⁻¹ DM (n=9 d; dry season) (P≤0.001). In stems, acidification was also higher during the dry season, but only when values were expressed on a fresh mass basis (5.1±2.2 μmol g⁻¹ FM, n=8 d, wet season versus 9.1±2.8 μmol g⁻¹ FM, n=9 d, dry season; P≤0.001) and not when expressed on a dry mass basis (Fig. 2D, F). As the soil dried out during the progression between seasons, the FM to DM ratios of both leaves and stems decreased (Fig. 2G, H). Diurnal reductions in leaf FM:DM were large during the wet season and decreased during the dry season (Fig. 2G). Diurnal variations in FM:DM were largely absent in stems.

Since *S. portulacastrum* typically grows in coastal saline environments, a second outdoor experiment was conducted during the following 2017/2018 season in which plants were irrigated monthly with 10% seawater during the wet period. The input of extra moisture was small, equivalent to 4.4 mm precipitation per month. The salt was supplied to fulfill a hypothetical requirement for optimal growth, not to stress the plants *per se.*

![Fig. 1. *Sesuvium portulacastrum* growing outside in a 1.5×1.5×0.3-m raised garden bed at the Smithsonian Tropical Research Institute, Republic of Panama in January 2018.](https://academic.oup.com/jxb/article/70/22/6561/5232725)
The rainfall period lasted longer during the 2017/2018 season than during the 2016/2017 season of the first experiment (Fig. 3). Significant rainfall events extended into the middle of January 2018 (the wettest January since rainfall measurements started at the site 14 years previously). January 2018 rainfall was 80 mm, whereas January 2017 rainfall was 28 mm. In contrast to the previous experiment, plants survived the 2018 dry season.

As occurred in plants grown outdoors in non-saline soil, nocturnal acidification in S. portulacastrum was observed in both leaves and stems in plants grown outdoors under rainfall supplemented with 10% seawater (Fig. 3). During the rainy period, acidification in stems was consistently greater than in leaves, about 2-fold on a DM basis and 3-fold on a FM basis. Nevertheless, the absolute levels of nocturnal acidification in leaves and stems, irrespective on what basis they were expressed, were similar to those observed in plants grown during the previous year.

Again, during the wet season, leaves exhibited low levels of acidity on a FM basis that were significantly higher at dawn than at dusk on 22 of 28 wet-season days. On a DM basis, dawn values were higher on all wet-season days. Nocturnal acidification in leaves significantly increased during the dry season (collection dates from 27 January to 22 April 2018), from 1.4±0.8 μmol H⁺ g⁻¹ FM (n=28 d) during the wet season to 3.8±3.0 μmol H⁺ g⁻¹ FM (n=11 d) during the dry season (P≤0.05), and from 41±17 μmol H⁺ g⁻¹ DM (n=28 d) during the wet season to 68±27 μmol H⁺ g⁻¹ DM (n=11 d) during the dry season (P≤0.01). No significant dry-season increase in nocturnal acidification was observed in stems, either on a FM or a DM basis.

Experiments with potted plants

Several pot experiments were conducted to study nocturnal acidification patterns in response to short-term drought stress. Leaves of well-irrigated plants supplied with either water or 10% seawater exhibited either no or a small nocturnal acidification. In the case of the experiment shown in Fig. 4, nocturnal acidification was below 2 μmol H⁺ g⁻¹ FM under high initial soil moisture conditions. Following the imposition of water stress, the acid accumulation at night was stimulated ~19-fold. Upon rewatering, acidification was markedly reduced but was not eliminated, remaining at ~4 μmol H⁺ g⁻¹ FM.

In a separate experiment, stems of well-watered S. portulacastrum exhibited low levels of nocturnal acidification of less than 2 μmol H⁺ g⁻¹ FM (Fig. 5). Following the cessation of watering, nocturnal acidification increased ~7-fold on a FM basis. When the plants were rewatered, the nocturnal accumulation was reduced markedly but was still present at a level that was ~3-fold greater than the values at the beginning of the experiment. The dry-wet-dry acidification patterns were similar when H⁺ was expressed on a DM or area basis for leaves or on a DM basis for stems. In all cases, a strong drought-induced up-regulation of nocturnal acid accumulation was observed, which was largely, albeit not fully, reversible.

Seven gas-exchange experiments were conducted with essentially identical results, two of which are depicted in Figs 6 and 7. For a well-watered plant of S. portulacastrum, net CO₂ uptake by its shoot was restricted to the 12-h light period (Fig. 6). CO₂ efflux was relatively constant throughout the night following an initial overshoot and period of equilibration to the night temperature, although a small curvature in the nocturnal CO₂ release pattern was detectable with lower rates in the middle than at the end of the dark period. Following cessation of watering on day 4, CO₂ uptake during the day continued to increase as the shoot continued to grow, utilizing water remaining in the pot. From day 14 onwards there was a progressive reduction in both CO₂ uptake during the day and CO₂ loss at night. Daytime CO₂ exchange developed a prominent
mid-day depression of uptake. Nocturnal CO₂ exchange approached the CO₂ compensation point but never transitioned to net CO₂ gain.

Following rewatering, a recovery of CO₂ uptake in the light was observed within 4 h and dark respiration increased during the subsequent night. Within 48 h after rewatering, the shoot exhibited a pattern of CO₂ exchange similar to that observed in the original well-watered conditions. The kinetics of nocturnal CO₂ efflux in the shoots of the rewatered plants were more curved than the efflux pattern in the original well-watered plants. The rate of CO₂ loss was also greater. The daytime CO₂ uptake rates following rewatering exceeded those at the onset of the experiment because the plants continued to grow inside the gas-exchange cuvette throughout the experiment, although at a reduced rate during the period of drought.

The CO₂ exchange pattern during a watering-droughting-rewatering cycle of a leaf of a plant, in this particular case irrigated with 10% seawater (Fig. 7), was similar to that of the shoot of a plant that was irrigated with water only (Fig. 6). The leaf of a well-watered plant exhibited net CO₂ uptake during the day and net CO₂ loss at night. At 3 d after watering ceased, daytime net CO₂ exchange began to decrease, exhibiting a progressively larger mid-day depression of uptake. CO₂ efflux at night also decreased, such that the CO₂ compensation point was reached but net nocturnal CO₂ uptake was not detected.

Within a few hours of rewatering on day 8, the rates of daytime CO₂ uptake began to recover. During the following night, nocturnal CO₂ loss gradually increased. By day 11, the patterns and extent of daytime CO₂ uptake and night-time CO₂ loss were similar to the patterns observed on day 1.

Discussion
The purpose of this study was to clarify whether CAM is present or absent in S. portulacastrum. To this end, plants grown
outdoors in the ground or potted plants grown under more controlled conditions were subjected to a range of conditions, including supplementation with NaCl and drought stress. Under most conditions, small nocturnal increases in acid content were measured in both leaves and stems, suggesting that CAM is present in *Sesuvium* and thus in the Sesuvioideae, the only sub-family of the Aizoaceae for which CAM had not yet been conclusively documented (Fig. 8). Given the ability to perform low-level CAM, *S. portulacastrum* joins a growing number of species that cannot be considered C₃ plants *sensu strictu*, although they obtain CO₂ principally via the C₃-pathway.

Whilst CAM photosynthesis is present in *S. portulacastrum*, in comparison to C₃ photosynthesis, the contribution of nocturnal CO₂ assimilation to the carbon gain of the plant is extremely small. Whole-leaf carbon isotope values of plants in the field of generally around −24 to −26‰ (Winter et al., 1981; Lüttge et al., 1989; Medina et al., 2008; Bohley et al., 2015), indicate that, averaged over the life of the plant, the vast majority of carbon is assimilated by C₃ photosynthesis during the light (Winter and Holtum, 2002). In the gas-exchange time-courses for shoots and leaves shown in Figs 6 and 7 (as well as in the additional experiments for which data are not shown), the rates of dark CO₂ fixation were not high enough to compensate fully for respiratory CO₂ loss. CO₂ exchange at night approached but did not exceed the CO₂ compensation point.

Similar levels of nocturnal acidification accumulated in plants grown in outdoor raised garden plots and in plants grown in pots under more controlled conditions. Acidification was detected effectively throughout the life of the plants, even during the wet season, although acidification levels in leaves were greater during the dry season. In contrast to the evidence from the outdoor experiments, examination of the pot experiment acidification data (Figs 4, 5) would suggest that most, if not all, of the CAM expression in leaves was facultative as acidification in non-stressed leaves was extremely low. The evidence for mostly facultative CAM in the pot experiments with controlled irrigation and for longer-term low-level CAM in the outdoor experiments is not necessarily contradictory. Observation of leaves of *S. portulacastrum* on outwardly healthy, fast-growing plants growing in the outdoor plots subject to natural daylight during the wet season indicated that the relatively elastic leaves (low elastic modulus) often appeared flaccid in the afternoons. The resultant leaf water deficit was evidently sufficient to lead to low-level CAM that persisted throughout the experiment. A similar phenomenon has been reported to induce CAM in leaves of well-watered plants of the facultative CAM plant *M. crystallinum* (Winter and Holtum, 2007), especially in plants grown under non-saline conditions.

Observations in the two outdoor experiments of increased nocturnal acidification in leaves during the dry season are
Weakly expressed CAM in *Sesuvium* is consistent with a strong facultative CAM component in leaves, while the absence of a consistent dry-season increase in nocturnal stem acidification suggests that low-level CAM in stems has a substantial constitutive component. The ability of *S. portulacastrum* to maintain nocturnal acidification levels well into the dry season, even as FM/DM ratios fell below 5 for stems and below 10 in succulent leaves, provides an indication of the relative drought-tolerance of the species. Indeed, plants growing on a saline plain in northern Venezuela have been reported to operate at xylem tensions of as low as −5.6 MPa (Lüttge et al., 1989).

CAM is now documented in all four sub-families of the Aizoaceae (Fig. 8A). Pronounced CAM, undoubtedly overwhelmingly constitutive, is present in the sub-families Azooideae, Mesembryanthemoideae, and Ruschioideae (Smith and Winter, 1996), and facultative CAM is present in the Mesembryanthemoideae [e.g. *Mesembryanthemum crystallinum* (Winter and Holtum, 2007) and *Aptenia cordifolia* (Treichel, 1975)] and now in the Sesuvioideae (*S. portulacastrum*). All of the sub-types of CAM, constitutive, facultative, pronounced and weak, are also known in the only other clade of the Caryophyllales with CAM plants, the sub-order Portulacineae.
In the portullugo (Portulacinae plus Molluginaceae; Ogbum and Edwards, 2010; Edwards and Ogbum, 2012), pronounced CAM predominates in most genera within the Cactaceae and Didiereaceae (Alluaudia, Alluaudiopsis, Decarya, Didierea), whereas weak and facultative CAM are more commonly expressed in the Anacampserotaceae (Guralnick and Jackson, 2001; Winter and Holtum, 2017), *Portularia* within the Didiereaceae (Ting and Hanscom 1977; Guralnick and Ting, 1986), Montiaceae (Winter and Holtum, 2011; Martin et al., 1988), Talinaceae (Herrera et al., 1991), Basellaceae (Holtum et al., 2018), and in the C4 and C3-C4 Portulacaceae (Koch and Kennedy, 1980; Winter and Holtum, 2017; K. Winter et al., unpublished results). In the thin-leafed Molluginaceae, C4 and C3 are present but CAM has not been reported (Christin et al., 2011).

CAM lineages and C4 lineages tend to cluster in certain regions of the angiosperm phylogenetic tree (Sage et al., 2011a; Edwards and Ogbum, 2012; Christin et al., 2015), with particularly closely related CAM and C4 lineages identified within the Aizoaceae, Euphorbiaceae, and Portulacinae (Klak et al., 2003, 2017; Sage et al., 2011b; Horn et al., 2012, 2014; Ocampo et al., 2013; Christin et al., 2014). Following the discovery of CAM and C4 photosynthesis in *Euphorbia* and *Portula*, *Sesuviun* becomes only the third genus known to contain both types of carbon-concentrating photosynthesis.

In the Sesuvioides, the most basal of the sub-families in the Aizoaceae, CAM is reported here in *Sesuviun*, the most derived clade (Fig. 8B). C4 is present in *Zaleya* and *Trianthema* (Muhaidat et al., 2007; Kotevaya et al., 2015), whereas neither C4 nor CAM have been reported in the most basal clade, *Tribulocarpus* (Bohley et al., 2015, 2017). Succulence is present in *Sesuviun*, *Trianthema*, and to a lesser extent in *Zaleya* and *Tribulocarpus*.

CAM and C4 are present in *Sesuviun* but they are yet to be demonstrated in the same species. The genus circumscribes a C3 clade and a C4 clade (Bohley et al., 2015, 2017). Both *S. portulacastrum* and the closely related *S. maritimum* studied by Martin et al. (1982) are in the C3 clade. It would be informative to explore whether CAM is present within members of C4 *Sesuviun* clade. In contrast to what is currently known about *Sesuviun*, in *Portula* CAM is expressed within at least three clades of C4 species and thus, in those species with CAM, it is co-expressed with C4 in the same plant (Koch and Kennedy, 1980; Holtum et al., 2017b; Winter and Holtum, 2017). In P. cryptopetala, facultative CAM is present in a C3-C4 intermediate species that exhibits a C4 cycle (Muhaidat et al., 2007; Vozsenskaya et al., 2010, 2017; K. Winter et al., unpublished results). Within the genus *Euphorbia*, which contains C3, C4, and CAM species (Webster et al., 1975; Sage et al., 2011b; Yang and Berry, 2011), there are no reports as yet of CAM within the C4 clade (subg. Chamascyce), although it appears to have repeatedly evolved alongside succulence from C3 lineages (Horn et al., 2014). Together, the *Euphorbia*, *Portula*, and *Sesuviun* lineages with their differing evolutionary histories of CAM and C4 photosynthesis provide promise for exploring the biochemical, anatomical, and ecological trajectories that favour the selection of one carbon-concentrating mechanism over the other, or permit the co-existence of both.

The ecological significance of the low-level contribution of carbon contributed by CAM to *S. portulacastrum* is as yet unassessed, but as is evident from the outdoor experiments described here, low-level and facultative CAM can be expressed over extensive periods. As a species that is a coloniser of the fringes of saline flats, *S. portulacastrum* probably spends much of its life growing slowly under conditions of saltinity, drought stress, high light, and high temperatures, as evidenced by the vividly red-coloured fleshy stems and wilted leaves frequently exhibited by plants in the field. Under such conditions one might expect CO2 assimilation in the light to be constrained by water limitation. The reductions in water loss and respiratory carbon loss enabled by the low-level CAM, an ability to accumulate compatible solutes, and to accumulate the anion oxalate (Lüttge et al. 1989), coupled with other physiological mechanisms (Lokhande et al., 2013b), presumably assist plants to cope with the stresses imposed by the environment it inhabits.

In terms of carbon-isotope composition and gas-exchange pattern, *S. portulacastrum* is C3-like. Yet our multiple measurements of plants in pots and long-term measurements in the field demonstrate that *S. portulacastrum* consistently exhibits CAM in both leaves and stems. Since the levels of nocturnal acidification are low and easy to overlook, caution is required when assessing such plants for photosynthetic pathway. This study also highlights the care required when selecting C3 control species in evolutionary studies of lineages in which CAM or C4 has evolved. CAM and C4 origins may not always represent completely independent evolutionary phenomena, and may partially share evolutionary trajectories in that one photosynthetic type can be co-opted to evolve the other (Christin et al., 2014).

Acknowledgements

This research was supported by the Smithsonian Tropical Research Institute (STRI) and the Australian Research Council Discovery Project (DP160100098). We acknowledge the assistance of Jorge Aranda who maintained the experimental plots at Gamboa.

References

Alonso-Cantabrana H, von Caemmerer S. 2016. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species. Journal of Experimental Botany 67, 3109–3121.

Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogbum RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108, 8379–8384.

Blüthgen N, 1990. Systematic studies in Aizoaceae. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 23B, 491–507.

Bohley K, Joos O, Hartmann H, Sage R, Liede-Schumann S, Kadereit JW, 2015. Phylogeny of Sesuvioides (Aizoaceae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Bohley K, Winter JD, Kadereit JW. 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Bohley K, Winter PJD, Kadereit G. 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Brotzke N, 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Brotzke N, 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Brotzke N, 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.

Brotzke N, 2017. A revision of Sesuviun (Aizoaceae, Sesuvioidae) – Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspectives in Plant Ecology, Evolution and Systematics 17, 116–130.
Christin PA, Arakaki M, Osborne CP, Edwards EJ. 2015. Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms. Molecular Biology and Evolution 32, 846–858.

Christin PA, Sage TL, Edwards EJ, Ogburn RM, Kshoreshavesh R, Sage RF. 2011. Complex evolutionary transitions and the significance of C3–C4 intermediate forms of photosynthesis in Molluginaceae. Evolution 65, 643–660.

Edwards EJ, Ogburn M. 2012. Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. International Journal of Plant Sciences 173, 724–733.

Gilbert MG, Hartmann HEK, Edwards S. 2000. Aizoaceae. In: Edwards S, Tadesse S, Demissew S, Hedberg I, eds. Flora of Ethiopia & Eritrea. Vol. 2. Addis Ababa and Uppsala: National Herbarium/Uppsala University, 240–248.

Gonçalves ML. 1978. Aizoaceae. In: Launert E, ed. Flora Zambesiaca. Vol. 4. London: Flora Zambesiaca Managing Committee, 508–521.

Guralnick LJ, Jackson MD. 2001. The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae. International Journal of Plant Sciences 162, 257–262.

Guralnick LJ, Ting IP. 1986. Seasonal response to drought and rewatering in Portulacaria afra (L.) Jacq. Oecologia 70, 85–91.

Hartmann HEK. 2017. Illustrated handbook of succulent plants: Aizoaceae. 2nd edn. Heidelberg: Springer.

Hernández-Ledesma P, Berendsohn WG, Borsch T, et al. 2015. A taxonomic backbone for the global syntheses of species diversity in the angiosperm order Caryophyllales. Willdenowia 45, 281–383.

Herrera A, Delgado J, Paraguatey I. 1991. Occurrence of inducible crassulacean acid metabolism in leaves of Talinum triangulare (Portulacaceae). Journal of Experimental Botany 42, 493–499.

Heyduk K, Burrell N, Lalani F, Leebens-Mack J. 2014. Evolutionary bursts in Euphorbia phylogeny and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution 63, 305–326.

Horn JW, van Ee BW, Morawetz JJ, Riina R, Steinmann VW, Berry PE, Wurdack KJ. 2012. Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution 63, 305–326.

Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, Wurdack KJ. 2014. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504.

Klak C, Hanacek P, Bruyns PV. 2017. Disentangling the Aizooidae: new generic concepts and a new subfamily in Aizoaceae. Taxon 66, 1147–1170.

Klak C, Khnoua A, Reeves G, Hedderson T. 2003. A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. American Journal of Botany 90, 1433–1445.

Koch K, Kennedy RA. 1980. Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiology 65, 193–197.

Kotreueva NK, Voznesenskaya EV, Edwards GE. 2015. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis. Plant Science 235, 70–80.

Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P. 2013a. Biochemical and physiological adaptations of the halophyte Sesuvium portulacastrum (L.) (Aizoaceae) to salinity. Archives of Agronomy and Soil Science 59, 1373–1391.

Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P. 2013b. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agronomy for Sustainable Development 33, 329–348.

Lonard RI, Judd FW. 1997. The biological flora of coastal dunes and wetlands. Sesuvium portulacastrum (L.). L. Journal of Coastal Research 13, 96–104.

Lüttege U, Popp M, Medina E, Cram WJ, Diaz M, Griffths H, Lee HSJ, Schäfer C, Smith JAC, Stimmel KH. 1989. Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. V. The Batis maritima-Sesuvium portulacastrum vegetation unit. New Phytologist 111, 283–291.

Martin CE, Higley M, Wang WZ. 1988. Ecophysiologica significance of CO2-recycling via Crassulacean acid metabolism in Talinum calycinum Engelm. (Portulacaceae). Plant Physiology 86, 562–568.

Martin CE, Lubbers AE, Teeri JA. 1992. Variability in crassulacacean acid metabolism: a survey of North Carolina succulent species. Botanical Gazette 143, 491–497.

Medina E, Francisco AM, Wingfield R, Csañas OL. 2008. Halofitosismo en plantas de la costa caribe de Venezuela: halófitas y halotolerantes. Acta Botanica Venezuelica 31, 49–80.

Muhaidaat R, Sage RF, Dengler NG. 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. American Journal of Botany 94, 362–381.

Ocampo G, Kotevaya NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT. 2013. Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae. American Journal of Botany 100, 2398–2402.

Ogburn RM, Edwards EJ. 2010. The ecological water-use strategies of succulent plants. Advances in Botanical Research 55, 179–225.

Osmond CB. 1978. Crassulacean acid metabolism: a curiosity in context. Annual Review of Plant Physiology 29, 379–414.

Reef R, Slot M, Motro U, Motro Y, Adame MF, Garcia M, Aranda J, Lovelock CE, Winter K. 2011a. The C4 plant lineages of Euphorbia subgenus Chamaeayce (Euphorbiaceae). Journal of Experimental Botany 62, 3183–3195.

Smith JAC, Winter K. 1996. Taxonomic distribution of crassulacean acid metabolism. In: Winter K, Smith JAC, eds. Crassulacean acid metabolism. Berlin, Heidelberg: Springer, 427–436.

Thulin M, Thiede J, Liede-Schumann S. 2012. Phylogeny and taxonomy of Tribulocarpus (Aizoaceae): a paraphyletic species and an adaptive shift in morphological characters. Taxon 61, 55–66.

Ting IP. 1989. Photosynthesis of arid and subtropical succulent plants. Also 12, 387–406.

Ting IP, Hanscom Z. 1977. Induction of acid metabolism in Portulacaria afra. Plant Physiology 59, 511–514.

Treichel S. 1975. Crassulaceensäuferwachstum bei einem salztoleranten Vertreter der Aizoaceae: Apenia cordifolia. Plant Science Letters 4, 141–144.

von Willert DJ, Eller BM, Wenger MA, Brinckmann E, Ihlenfeldt HD. 1992. Life strategy of succulents in deserts. Cambridge: Cambridge University Press.

von Willert DJ, Thomas DA, Lobin W, Curds E. 1977. Ecophysiological investigations in the family of the Mesembryanthemaceae. Oecologia 29, 67–76.

Voznesenskaya EV, Kotevaya NK, Edwards GE, Ocampo G. 2010. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C4–C3 intermediate in genus Portulaca L. (Portulacaceae). Journal of Experimental Botany 61, 3647–3662.

Voznesenskaya EV, Kotevaya NK, Edwards GE, Ocampo G. 2017. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C4–C3 transition form in Sesuvium portulacastrum (L.) (Aizoaceae) to salinity. Archives of Agronomy and Soil Science 59, 1373–1391.
intermediates and NAD-ME C₄ species with Pilosoid-type Kranz anatomy. Journal of Experimental Botany 68, 225–239.

Webster GL, Brown WV, Smith BN. 1975. Systematics of photosynthetic carbon fixation pathways in Euphorbia. Taxon 24, 27–33.

Winter K, Garcia M, Holtum JA. 2008. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. Journal of Experimental Botany 59, 1829–1840.

Winter K, Holtum JA. 2002. How closely do the δ¹³C values of crassulacean acid metabolism plants reflect the proportion of CO₂ fixed during day and night? Plant Physiology 129, 1843–1851.

Winter K, Holtum JA. 2007. Environment or development? Lifetime net CO₂ exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiology 143, 98–107.

Winter K, Holtum JAM. 2011. Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Functional Plant Biology 38, 576–582.

Winter K, Holtum JAM. 2014. Facultative CAM plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Journal of Experimental Botany 65, 3425–3441.

Winter K, Holtum JAM. 2015. Cryptic crassulacean acid metabolism (CAM) in Jatropha curcas L. Functional Plant Biology 42, 711–717.

Winter K, Holtum JAM. 2017. CO₂-exchange patterns demonstrate facultative CAM photosynthesis (crassulacean acid metabolism) in four small C₃ and C₄ leaf-succulents. Australian Journal of Botany 65, 103–108.

Winter K, Holtum JA, Smith JA. 2015. Crassulacean acid metabolism: a continuous or discrete trait? New Phytologist 206, 73–78.

Winter K, Osmond CB, Pate JS. 1981. Coping with salinity. In: Pate JS, McComb AJ, eds. The biology of Australian plants. Perth: University of Western Australia Press, 88–113.

Yang Y, Berry PE. 2011. Phylogenetics of the Chamaesyce clade (Euphorbia, Euphorbiaceae): reticulate evolution and long-distance dispersal in a prominent C₄ lineage. American Journal of Botany 98, 1486–1503.