PNPLA3—A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease

Xiaocheng Charlie Dong *

Center for Diabetes and Metabolic Diseases, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States

Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.

Keywords: PNPLA3, rs738409, nonalcoholic steatohepatitis, alcoholic liver disease, fibrosis, cirrhosis, hepatocellular carcinoma

Alcoholic and non-alcoholic fatty liver diseases (ALD and NAFLD) have become serious public health burdens in the modern societies (1). ALD and NAFLD are chronic liver disorders that begin with hepatic triglyceride accumulation (steatosis) and progress to hepatic inflammation and fibrosis, cirrhosis and even liver cancer (2, 3). The causes of these liver diseases are multifactorial, including genetic, and environmental factors. Excess alcohol consumption, over nutrition, and physical inactivity are significant environmental risk factors (4, 5). It is believed that hepatic steatosis sets a stage for elevated susceptibility to acute and chronic inflammation in the liver. Multiple cytokines and chemokines including transforming growth factor-β (TGF-β) secreted from inflammatory immune cells trigger an activation of hepatic stellate cells (HSCs) and subsequently hepatic fibrogenesis (6).

In addition to those environmental factors, numerous genetic variants have been shown to be associated with ALD and NAFLD, including patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), glucokinase regulator (GCKR),...
membrane bound O-acyltransferase domain-containing 7 (MBOAT7), and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) (7, 8). TM6SF2 is involved in the VLDL secretion (9–15). The rs58542926 C>T variant of TM6SF2 decreases the VLDL secretion and increases hepatic triglycerides (16–25). GCKR regulates the glucokinase activity in the liver (26). The rs780094 A>G and rs1260326 C>T variants of GCKR lead to the loss of control of hepatic glucose influx and therefore increase hepatic lipogenesis (27–38). MBOAT7 catalyzes the acyl chain remodeling of phosphatidylinositol and decreases free arachidonic acid levels (39, 40). The rs641738 C>T variant of MBOAT7 increases arachidonic acid levels and hepatic inflammation (41–54). HSD17B13 has been shown to have retinol dehydrogenase activity (55). The rs72613567:TA variant of HSD17B13 is associated with increased steatosis and decreased inflammation and fibrosis (56–64). PNPLA3 has drawn a remarkable attention in the liver field since the first genome-wide association study (GWAS) revealed that a single nucleotide polymorphism (SNP) in the human PNPLA3 gene—rs738409[G] (148M) is the only non-synonymous sequence variant significantly associated with hepatic fat content in the Dallas Heart Study cohort (65).

Multiple genetic studies have since validated the association of PNPLA3(148M) with a broad spectrum of liver diseases ranging from ALD and NAFLD, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) (33, 66–117). However, the underlying pathogenic mechanisms remain elusive. This review aims to briefly summarize the PNPLA3 biology, clinical implications, and therapeutic development strategies.

PNPLA3 GENE FUNCTION

PNPLA3 has multiple names in the literature including adiponutrin (ADPN), calcium-independent phospholipase A2-epsilon (IPLA2epsilon, and chromosome 22 open reading frame 20 (C22orf20). In 2001, PNPLA3 was initially cloned from mouse 3T3 preadipocytes as a feeding-inducible gene, therefore named adiponutrin (118). In 2004, PNPLA3 was rediscovered as IPLA2epsilon by nucleotide sequence similarity search (119). In 2006, human patatin-like phospholipases including adiponutrin were grouped to the PNPLA family (120), which has 9 members (PNPLA1-9). The common feature of the PNPLA family members is the patatin-like phospholipase domain (Figure 1).
Protein sequence alignments show that the overall sequence conservation is low except a few conserved regions including the glycine-rich region and the aspartate-glycine residues of the catalytic site (120).

PNPLA3 GENE CHARACTERIZATION

Human PNPLA3 gene is localized on chromosome 22 (22q13.31). It has 9 exons that encode a 481-amino acid protein. In contrast, mouse Pnpla3 (384 amino acids) is much smaller than human PNPLA3 protein (Figure 2), as both proteins share high homology in the N-terminal half of the amino acid sequences. But the mouse Pnpla3 lacks the middle 17 residues and the C-terminal 75 residues in the human PNPLA3 protein. Therefore, it should be cautioned when implying the mouse Pnpla3 function to human PNPLA3. Another major difference between mouse and human PNPLA3 genes is the tissue-wise gene expression profiles. The human PNPLA3 gene is expressed highly in the liver and moderately in the adipose tissue, brain, kidney, and skin (120, 121); however, the mouse Pnpla3 gene is expressed at very high levels in both white and brown adipose tissues but at low levels in other tissues (118, 122). PNPLA3 is regulated by carbohydrate-response element binding protein (ChREBP) and sterol regulatory element binding protein 1c (SREBP1c) in mouse and human hepatocytes (123–125). Surprisingly, Pnpla3 gene knockout mice have normal levels of plasma and hepatic triglyceride contents and they do not develop fatty liver disease (126, 127). Interestingly, human PNPLA3(148M) transgenic mice develop hepatic steatosis on chow or high-sucrose diet (128). Pnpla3(148M) knockin mice also develop hepatic steatosis on the high-sucrose diet (129, 130) and hepatic inflammation and fibrosis on a NASH diet (131).

PNPLA3 ENZYMATIC ACTIVITIES

PNPLA3 has been shown to possess triacylglycerol lipase and acylglycerol transacylase activities using recombinant human PNPLA3 protein purified from S9 insect cells and triolein and mono-olein as substrates, respectively (119). However, when Huang et al. used similar recombinant human PNPLA3 protein from S9 cells to analyze lipase and transacylase activities, they only detected the lipase activity against major

Human	MYDAERGWSLSFAGCGLFYHVGYATRCLEHAPLLRDLFAGASAGALHCVGVLG	60
Mouse	MYDPERRWSLSFAGCGLFYHVGATLCLSRAPHLRLDRGCSAGALHATVFVCSL	60
Human	PLEQTLQVLSDLRKARSRNIGIFPHSFLNKSFLRQCLPANVHQLRISGKIGISLTR PL + ++L DLVRKARSNIGINP N+R G + LP NVHQ+ISGK ISLTR	120
Mouse	PLGRIMEILDMDLVRKARSRNIGTLHPFNINCKIRDGLQESLDPNDVHQISGKVIHSLTR	120
Human	VSDGENVLVSDFRSKDEVDAVCSCPIFFYSGLIPPSFRGVRVYDDGVSNPFIDAKT VSDGENVLVS+F SKDEVDAVCSCPIF SGLIPPSFRG RYDDGVSNPFDTO	180
Mouse	VSDGENVLV5EFHSKDEVDAVCSCPIFGLIPPSFRGERYVDGVSNPVLDATO	180
Human	TITVSPFYGEYDIPCVKSTNFHVTDIKLSTRLCTGNYLSSRAFVPPDLCVGEICLR TITVSPFYGE+DIPCVKSTNF HVTDIKLSTRLCTGNYLSSRAFVP PE+C	240
Mouse	TITVSPFYGEHDIPCVKSTNFHVTNI TNTLSLRTCLTNLQLLTRALFPDSVKVMECQY	240
Human	GYLDARFRFLEEGICNRPQFGLKSSSEGMDPEVAMPSWANMSLDSSPESAAALVRLEGDE GYLDARFLEEGICNPQ L ++SL +PE+ +L GD+	300
Mouse	GYLDARFLEENGICNQPSL------------------------SLSL-VAPEACELENGKVLGDK	282
Human	LDDHRLSILPDWESIDLDTSPLMELSEEMKDKGGYMSKICNLLPIRISYMVLPLTC L + +S+ DE+I +TLSP L+TALSE +KD+ GY+SK+CNLPP+RI+S+Y+MLPC+L	360
Mouse	----VPVSLOCFDNEIWTELSPSLASTEAIKDREGYSKVCNLLPVRILSIMGSLCSL	338
Human	PVESAIAIVQRLTVLGDPPDVVLWQLQWTVSVFVTRVMCLLPASR PVESAIA V RLTVTLWP+ DD+ WLVW TSSQ R+ MCLLP+R	406 481
Mouse	PVESAIAAVHRLTVPDLQDIDQQLWATSQQCARMTMCLLPSTR	384

FIGURE 2 | Human and mouse Pnpla3 protein sequence alignments. The protein sequences were aligned using the NCBI BLAST program. The identical residues are in red. The PAT domain is underlined. The 148I residue is marked by asterisk.
glycerolipids including triacylglyceride, diacylglyceride, and monoacylglyceride but not transacylase activity (132). In another study, human PNPLA3 was overexpressed and purified from HEK293 cells and showed to have a lipase activity on 1,2- o-dilauryl-rac-glycerol-3-glutaric acid-(6'-methylresorufin) ester (122). Mutation of the active-site serine within the Ser47-Asp166 catalytic dyad motif abolished the lipase activity; however, overexpression of human PNPLA3 in HEK293 cells did not decrease the cellular triglyceride levels (122). The recombinant human PNPLA3(148M) mutant from Sf9 cells was shown to lose the triglyceride hydrolase activity using triolein as substrate (133). Human wildtype PNPLA3 but not the 148M mutant recombinant protein from yeast cells also showed triglyceride hydrolase activity (134). In addition, wildtype recombinant human PNPLA3 protein purified from yeast cells also showed retinyl esterase activity using retinyl-palmitate as substrate whereas the 148M mutant protein had diminished activity (135). Retinoic acids (all-trans) have been shown to activate retinoic acid receptor (RAR) and retinoid X receptor (RXR) and subsequently downregulate fibrotic genes in HSCs (136–138). PNPLA3(148M) mutant causes a decrease in retinol levels and downregulation of RAR/RXR target genes in the LX-2 hepatic stellate cell line (139).

PNPLA3 IN LIPID DROplet HOMEOSTASIS

PNPLA3 is mostly bound to lipid droplets in mammalian cells (133, 140–142), but how this protein functions on lipid droplet remains elusive (Figure 3). Several lines of evidence suggest that PNPLA3(148M) abnormally accumulating on lipid droplets links to the impairment of lipid droplet metabolism. Wildtype PNPLA3 turns over according to fasting/feeding cycles; however, the 148M mutant PNPLA3 is resistant to ubiquitin- or autophagy-mediated protein degradation (129, 143, 144). Excess PNPLA3 on the lipid droplets seems to impair the activity of PNPLA2, also called adipose triglyceride lipase (ATGL), likely through competing with the ATGL activator —comparative gene identification 58 (CGI-58) or officially abhydrolase domain containing 5 (ABHD5) (140, 142, 145). Some data suggest that PNPLA3(148M) tends to interact with CGI-58 more strongly than the wildtype counterpart does (145). CGI-58 is also required for the targeting of PNPLA3 to lipid droplet since PNPLA3 cannot localize onto lipid droplet in the CGI-58 knockout liver cells (140).

PNPLA3 IN HEPATIC FIBROSIS

In addition to hepatocytes, human PNPLA3 gene is also abundantly expressed in HSCs (121, 139). PNPLA3 can be induced by TGF-β but not platelet-derived growth factor (PDGF) in human HSCs (146). The same report also shows that overexpression of the wildtype PNPLA3 but not the PNPLA3(148M) mutant reduces the intracellular retinyl esters in HSCs. Interestingly, after incubation with retinol and palmitate, wildtype, but not mutant PNPLA3 decreases the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 (TIMP1), and TIMP2 from HSCs (146). Another report shows that the PNPLA3 gene expression is induced during the primary human HSC activation and knockdown of PNPLA3 by siRNA attenuates the HSC activation (139). Human HSCs with the PNPLA3(148M) variant have higher expression of inflammatory cytokines and chemokines including granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine (C-X-C motif) ligand 8 (CXCL8), and TGF-β. Overexpression of the PNPLA3(148M) variant enhances the HSC proliferation and chemotaxis (139). In contrast to the previous report regarding the retinyl palmitate lipase activity of PNPLA3 (135), Bruschi et al. have found that total retinol content and RXR and RAR signaling are both lower in the PNPLA3(148M) mutant HSCs than that in the PNPLA3 wildtype HSCs (139). Further signaling analysis has revealed that c-Jun N-terminal kinase (JNK) is highly activated in the PNPLA3(148M) HSCs. As a consequence, peroxisome proliferator-activated receptor gamma (PPARγ), a key HSC quiescence regulator, is inhibited, whereas activator protein 1 (AP-1), a proinflammatory transcription factor, is activated (139). Collectively, these dysregulations contribute to the fibrogenic phenotype in the PNPLA3(148M) HSCs. The inhibition of
Dong PNPLA3 and Chronic Liver Disease

PPARγ in the PNPLA3(148M) HSCs also negatively affects the liver X receptor alpha (LXRA) activity. As a result, cholesterol is accumulated in those mutant HSCs, and this also contributes to the inflammation and fibrogenesis in the PNPLA3(148M) HSCs (147).

PNPLA3 GENE POLYMORPHISM AND CHRONIC LIVER DISEASE

Alcoholic and non-alcoholic liver diseases often begin with simple steatosis and progress to hepatitis, fibrosis/cirrhosis, and even liver cancer. Both environmental and genetic factors contribute to the development of these chronic liver diseases. Among the well documented genes, PNPLA3 has the broad impact on ALD and NAFLD. The involvement of PNPLA3 variant rs738409 (148M) in the broad spectrum of chronic liver disease has been shown by numerous GWAS (see Table 1). In 2008, Romeo et al. identified a strong association between the PNPLA3(148M) variant and hepatic fat concentration in a GWAS on Hispanic, African American, and European American individuals (65). The 148M variant frequencies are concordant with the prevalence of NAFLD in these three ancestry groups, and their allele frequencies are: Hispanics (0.49), European Americans (0.23), and African Americans (0.17). Since then, multiple GWASs have reported a strong association of PNPLA3(148M) variant with both ALD and NAFLD (Table 1 and Figure 4). Several studies have documented a strong association of the 148M variant with liver cirrhosis (42, 76, 154, 158–160). A number of

TABLE 1	Human PNPLA3 genetic association studies in liver diseases.		
PNPLA3 SNP	Study population	Associated phenotype and significance	References
rs738409[G]	Hispanics, African Americans, European Americans, N = 9,229	Positive association with hepatic fat content (P = 5.9 × 10^-10), serum ALT (P = 1.3 × 10^-5 in Hispanics)	(65)
rs2281135[A], rs738409[G]	Europeans, N = 12,419	Positive association with ALT (P = 8.4 × 10^-16, P = 3.7 × 10^-15)	(110)
rs738409[G]	West-Eurasian populations, N = 23,274	Negative association with total cholesterol (P = 8.87 × 10^-7), non-HDL cholesterol (P = 2.27 × 10^-4), LDL cholesterol (P = 7.99 × 10^-4)	(148)
rs738409[G]	Mestizo (mixed European and Native American ancestry), N = 1,221	Positive association with ALD (OR = 1.45, P = 8.4 × 10^-4) and alcoholic liver cirrhosis (P = 2.25, P = 1.7 × 10^-10)	(89)
rs738409[G]	Caucasian (82.1%), African American (2.3%), Asian (5.4%), American Indian (3.2%), other (7%), N = 1,117	Positive association with hepatic steatosis (OR = 1.46, P = 0.03), portal inflammation (OR = 1.57, P = 2.5 × 10^-3), lobular inflammation (OR = 1.84, P = 0.005), Mallory-Denk bodies (OR = 1.6, P = 0.015), NAFLD activity score (P = 0.004), hepatic fibrosis (OR = 1.5, P = 7.7 × 10^-5)	(68)
rs738409[G]	Japanese, N = 831	Positive association with NAFLD (OR = 1.73, P = 9.4 × 10^-10)	(149)
rs738409[G]	German, N = 1,419	Positive association with alcoholic liver cirrhosis (OR = 2.79, P = 1.6 × 10^-6)	(84)
rs738409[G]	Americans and Europeans, N = 1,997	Positive association with NAFLD (OR = 3.26, P = 3.6 × 10^-43)	(83)
rs738409[G]	European Caucasians, N = 537	Positive association with chronic hepatitis C related hepatic steatosis (OR = 2.65, P = 0.034), fibrosis (OR = 3.13, P = 0.002)	(94)
rs738409[G]	German, N = 899	Positive association with liver cirrhosis (OR = 1.56, P = 0.005)	(150)
rs738409[G]	European Caucasians, N = 658	Positive association with liver cirrhosis (OR = 2.08, P = 0.02)	(91)
rs738409[G]	Japanese, N = 1,326	Positive association with NAFLD (OR = 2.05, P = 6.8 × 10^-14)	(151)
rs738409[G]	American Caucasians, Mexican Americans, N = 4,804	Positive association with hepatic steatosis and high ALT (OR = 1.36, P = 0.01)	(152)
rs738409[G]	American Caucasians, N = 751	Positive association with HCC (OR = 3.21, P = 0.02)	(153)
rs738409[G]	European Caucasians, N = 2,138	Positive association with alcoholic liver cirrhosis (OR = 2.19, P = 1.54 × 10^-46)	(42)
rs738409[G]	Chinese Han, N = 768	Positive association with NAFLD (OR = 1.52, P = 8.7 × 10^-4)	(102)
rs738409[G]	Eastern European, N = 969	Positive association with liver fibrosis (OR = 1.65, P = 0.001), liver cirrhosis (OR = 1.92, P = 5.57 × 10^-7)	(154)
rs738409[G]	European Caucasians, N = 183	Positive association with alcoholic hepatitis (OR = 1.9, P = 0.01)	(155)
rs738409[G]	Korean, N = 4,409	Positive association with NAFLD (OR = 1.54, P = 1.74 × 10^-15)	(156)
rs738409[G]	Chinese Han, N = 1,152	Positive association with ALD (OR = 1.93, P = 6.25 × 10^-14)	(115)
rs738409[G]	Europeans, N = 5,525	Positive association with HCC (OR = 1.67, P = 0.005), HCC in ALD patients (OR = 3.91, P = 1.14 × 10^-3), HCC in non-fibrotic patients (OR = 2.19, P = 0.007)	(106)
rs738409[G]	American Caucasians, N = 9,677	Positive association with NAFLD (OR = 1.79, P = 1.7 × 10^-22)	(157)
rs4823173[A], rs2896019[G], rs2281135[A]	Mexican Americans, N = 3,757	Positive association with AST (P = 3.44 × 10^-10, P = 7.29 × 10^-9, P = 8.73 × 10^-3)	(109)
reports have also shown that the 148M variant is also associated with higher risk for HCC (108). Additionally, the 148M variant has been shown to be associated with other liver diseases, including alcoholic liver disease (ALD), alcoholic hepatitis (AH), cirrhosis, and hepatocellular carcinoma (HCC). In summary, PNPLA3 is an enigmatic protein that has broad implications in metabolic liver diseases from simple steatosis to cirrhosis and liver cancer. Better understanding the biological function of PNPLA3 in lipid droplet metabolism should facilitate the therapeutic development.

THERAPEUTIC STRATEGIES FOR TARGETING PNPLA3 FOR PERSONIZED TREATMENT OF CHRONIC LIVER DISEASE

As the PNPLA3(148M) variant is quite prevalent in many populations, especially among Hispanics (65), it is very significant to develop therapeutics targeting this genetic polymorphism. According to the PNPLA3(148M) biology, there are several potential ways of targeting the 148M variant. First, the PNPLA3(148M) variant can be targeted at the RNA levels by small interfering RNA (siRNA), small hairpin RNA (shRNA), or antisense RNA oligonucleotide. A recent report has shown that triantennary N-acetylgalactosamine (GalNAC3) conjugated antisense oligonucleotides (ASO) targeting Pnpla3 in a 148M knockin mouse model significantly reduce hepatic steatosis, inflammation, and fibrosis (131), suggesting the utility of the ASO strategy. In another report, targeting Pnpla3 in the 148M knockin mice by AAV-mediated shRNA has also shown effective reduction of hepatic triglyceride contents (143). For the translational perspective, PNPLA3(148M)-allele-specific RNAi is preferred for human patients in order to avoid affecting the PNPLA3 wildtype allele as we do not fully understand the PNPLA3 biology. With the encouraging phase III clinical trial data on proprotein convertase subtilisin/kexin type 9 (PCSK9) RNAi (171), targeting the PNPLA3(148M) variant by RNAi can be an attractive strategy. Second, PNPLA3 can be targeted at the protein level. Recent data suggested that an accumulation of PNPLA3(148M) on lipid droplets is very critical for the pathogenesis of fatty liver disease (129, 130, 140, 143). Therefore, targeting PNPLA3(148M) for degradation can be a useful strategy. Recently, a proof-of-concept study using proteolysis-targeting chimera (PROTAC)-mediated degradation of Halo-tagged PNPLA3(148M) has shown a significant effect on lowering hepatic triglyceride content (143). The question will be how to degrade endogenous PNPLA3(148M) protein in a variant-specific manner. To date, there are no effective ways to specifically target the PNPLA3(148M) mutant protein. However, targeting PNPLA3 may work from another angle—an interaction between PNPLA3 and CGI-58, as the interaction can be regulated by fatty acids or synthetic CGI-58 ligands (145). Taken together, targeting PNPLA3(148M) has been increasingly appreciated for therapeutic development for multiple chronic liver diseases including ALD and NASH.

AUTHOR CONTRIBUTIONS

XD conceived the idea, gathered the data, and wrote the manuscript.

FUNDING

This work was supported in part by the US National Institutes of Health (National Institute on Alcohol Abuse and Alcoholism R21AA024550 to XD; National Institute of Diabetes and Digestive and Kidney Diseases R01DK107682 to XD and R56DK091592 to XD and P30DK097512 to Indiana Diabetes Research Center; National Center for Advancing Translational Sciences UL1TR002529 to Indiana Clinical and Translational Sciences Institute).

REFERENCES

1. Younossi Z, Tacke F, Arrese M, Sharma BC, Mostafa I, Bugianesi E, et al. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology. (2018) 69:2672–8. doi: 10.1002/hep.30251

2. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. (2018) 24:908–22. doi: 10.1038/s41591-018-0104-9

3. Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, et al. Alcoholic liver disease. Nat Rev Dis Primers. (2018) 4:16. doi: 10.1038/s41572-018-0014-7
4. Hydes T, Gilmore W, Sheron N, Gilmore I. Treating alcohol-related liver disease from a public health perspective. J Hepatol. (2019) 70:223–36. doi: 10.1016/j.jhep.2018.10.036
5. Stefan N, Haring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lentc Diabetes Endocrinol. (2019) 7:313–324. doi: 10.1016/S2223-8587(18)30154-2
6. Manne V, Handa P, Kowdley KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. (2018) 22:23–37. doi: 10.1016/j.cld.2017.08.007
7. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. (2018) 68:268–79. doi: 10.1016/j.jhep.2017.09.003
8. Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol. (2019). doi: 10.1038/s41575-019-0212-0. [Epub ahead of print].
9. Mahdessian H, Taxiaris A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci USA. (2011) 108:8913–8. doi: 10.1073/pnas.1109278111
10. Fan Y, Lu H, Gao Y, Zhu T, Garcia-Barrio MT, Jiang Z, et al. Hepatic Transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology. (2016) 150:1208–18. doi: 10.1053/j.gastro.2016.01.005
11. Smagris E, Gilyard S, Basu-Ray S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipolysis but not secretion of very low density lipoproteins. J Biol Chem. (2016) 291:10659–76. doi: 10.1074/jbc.M116.719955
12. Ehrhardt N, Doche ME, Chen S, Mao HZ, Walsh MT, Bedoya C, et al. Hepatic Tm6sf2 overexpression affects cellular ApoB-traffic, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet. (2017) 26:2719–31. doi: 10.1093/hmg/ddx139
13. Luukkonen PK, Zhou Y, Nidhina Haridas PA, Dwivedi OP, Hyotyniemi T, et al. Exome-wide association study identifies a TM6SF2 variant in TM6SF2 E167K variant carriers with NAFLD. J Hepatol. (2017) 67:128–36. doi: 10.1016/j.jhep.2017.02.014
14. Musso G, Cipolla U, Cassader M, Pinach S, Saba F, De Michieli F, et al. TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. J Lipid Res. (2018) 59:1221–9. doi: 10.1194/jlr.M075028
15. O’Hare EA, Yang R, Yerges-Armstrong LM, McFarland D, Nordestgaard BG. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. (2016) 48:352–6. doi: 10.1038/ng.2901
16. Kozlitina J, Smagris E, Gilyard S, Basu-Ray S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipolysis but not secretion of very low density lipoproteins. J Biol Chem. (2016) 291:10659–76. doi: 10.1074/jbc.M116.719955
17. Milano M, Aghemo A, Mancina RM, Fischer J, Dongiovanni P, De Nicola S, et al. Hepatic Transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology. (2016) 150:1208–18. doi: 10.1053/j.gastro.2016.01.005
18. Pirola CJ, Sookoian S. The dual and opposite role of the TM6SF2-rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. J Lipid Res. (2018) 59:1221–9. doi: 10.1194/jlr.M075028
19. Zain SM, Mohamed Z, Mohamed R. Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis. J Gastroenterol Hepatol. (2015) 30:261–7. doi: 10.1111/jgh.12714
20. Santoro N, Caprio S, Pierpont B, Van Name M, Savoye M, Parks EJ. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. J Clin Endocrinol Metab. (2015) 100:E1125–32. doi: 10.1210/jc.2015-1587
21. Santoro N, Feldstein AE, Enoksson E, Pierpont B, Kursawe R, Kim G, et al. The association between hepatic fat content and liver injury in obese children and adolescents: effects of ethnicity, insulin resistance, and common gene variants. Diabetes Care. (2013) 36:1353–60. doi: 10.2337/dc12-1791
22. Santoro N, Zhang CK, Zhao H, Pakstis AJ, Kim G, Kursawe R, et al. Variant in the glucokinase regulatory protein. (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology. (2009) 50:765–9. doi: 10.1002/hep.23086
23. Sliz E, Sebert S, Wurzt P, Kangas AJ, Soinninen P, Lehtimaki T, et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LPLA1 show divergent metabolic effects. Hum Mol Genet. (2016) 25:2214–23. doi: 10.1093/hmg/ddw124
24. Trico D, Caprio S, Rosaria Umano G, Pierpont B, Nouws J, Galderisi KA, et al. A common gene variant in glucokinase regulatory protein interacts with glucose metabolism on diabetic dyslipidemia: the combined COMAD and hoorn studies. Diabetes Care. (2016) 39:1811–7. doi: 10.2337/dc15-0153
25. Simons N, Dekker JM, van Greevenbroek MM, Nijpels G, t Hart LM, van der Kallen CJ, et al. A common gene variant in glucokinase regulatory protein interacts with glucose metabolism on diabetic dyslipidemia: the combined COMAD and hoorn studies. Diabetes Care. (2016) 39:1811–7. doi: 10.2337/dc15-0153
26. Nita I, Cimpeanu A, Socol R, Boaga A, Cintula V, et al. PNPLA3 and Chronic Liver Disease.
40. Lee HC, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y, et al. LIPAT1 regulates arachidonic acid content in phosphatidylcholine and is required for cortical laminar in mice. *Mol Biol Cell.* (2012) 23:4689–700. doi: 10.1091/mbc.e12-09-0673

41. Bayste-Bavecice V, Skieciciveici J, Valantiene I, Sumskiene J, Petrenkivei K, Kondrackiæi E, et al. TM6SF2 and MBOAT7 gene variants in liver fibrosis and cirrhosis. *Int J Mol Sci.* (2019) 20:1227. doi: 10.3390/ijms20061227

42. Buch S, Stickel F, Trepo E, Way M, Herrmann A, Neschlak HD, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. *Nat Genet.* (2015) 47:1443–8. doi: 10.1038/ng.3417

43. Di Sessa A, Umano GR, Cirillo G, Del Prete A, Iacomino R, Marzuillo P, et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease. *J Pediatr Gastroenterol Nutr.* (2016) 63:69–74. doi: 10.1097/MPG.0000000000001979

44. Dursun A, Yalnizoglu D, Ozgul RK, Karli Oguz K, Yucel-Yilmaz D. Clinical highlights of a very rare phospholipid remodeling disease due to MBOAT7 gene defect. *Am J Med Genet B Neuropsychiatr Genet.* (2019) 183:3–4. doi: 10.1002/ajmg.b.32762

45. Helsley RN, Varadharajan V, Brown AL, Gromovsky AD, Schugar RC, et al. The impact of PNPLA3 rs738409 SNP on early in life. *Elife.* (2019) e49882. doi: 10.7554/eLife.49882

46. Krawczyk M, Rau M, Schattenberg JM, Bantel H, Pathil A, Demir M, et al. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. *J Lipid Res.* (2017) 58:247–55. doi: 10.1194/jlr.P067454

47. Luukkanen PK, Zhou Y, Hyotylainen T, Leivenon M, Arola J, Orho-Melander M, et al. The MBOAT7 rs641738 variant alters hepatic phospholipid remodeling and increases severity of non-alcoholic fatty liver disease in humans. *J Hepatol.* (2016) 65:1263–5. doi: 10.1016/j.jhep.2016.07.045

48. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, et al. The association between MBOAT7 rs641738, TM6SF2 rs58542926 and beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase 13 variant protects from hepatocellular carcinoma development in alcoholic liver disease. *Hepatology.* (2019) 70:231–40. doi: 10.1002/hep.30623

49. Romeos S, Kozltina J, Stender S, Hobbs HH, Cohen JC. PNPLA3 and chronic liver disease in blacks and hispanics. *N Engl J Med.* (2018) 379:1876–7. doi: 10.1056/NEJMct1804027

50. Salameh H, Raff E, Erwin A, Seth D, Nischalke HD, Falleti E, et al. The 148M allele of the PNPLA3 gene is associated with indices of liver damage early in life. *J Hepatol.* (2010) 53:335–8. doi: 10.1016/j.jhep.2010.02.034

51. Salameh S, Sentinelli F, Dash S, Yeo GS, Savage DB, Leonetti F, et al. Morbid obesity exposes the association between PNPLA3 1148M (rs738409) and indices of hepatic injury in individuals of European descent. *Int J Obes.* (2010) 34:190–4. doi: 10.1038/ijo.2009.216

52. Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ, Nasrin CRN. The impact of PNPLA3 rs738409 SNP on liver fibrosis progression, portal hypertension and hepatic steatosis in alcoholics. *Liver Int.* (2012) 36:902–7. doi: 10.1111/j.1478-3231.2011.02591.x

53. Salameh H, Hanayme MA, Masadhe M, Naseemuddin M, Matin T, Erwin A, et al. PNPLA3 as a genetic determinant of risk for and severity of non-alcoholic fatty liver disease spectrum. *J Clin Transl Hepatol.* (2016) 4:175–91. doi: 10.4172/2332-5964;1000139

54. Salameh H, Ralf E, Erwin A, Seth D, Nischalke HD, Falletti E, et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. *Am J Gastroenterol.* (2015) 110:846–56. doi: 10.1038/ajg.2015.137

55. Santoro N, Kursawe R, D’Adamo E, Dykas DJ, Pierpoint B, et al. The rs626238 Variant in the MBOAT7 gene is associated with insulin resistance and fatty liver in caucasian obese youth. *Am J Gastroenterol.* (2018) 113:376–83. doi: 10.1038/s41396-018-12757

56. Vitasalo A, Eloranta AM, Atalay M, Romeo S, Philajamaki J, Lakka TA. The impact of PNPLA3 rs738409 SNP on liver fibrosis and cirrhosis. *J Gastroenterol Nutr.* (2018) 37:1876–7. doi: 10.1038/nejmoa1712191

57. Shen J, Wong GL, Chan HL, Chan HY, Chu WC, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease.
Dong PNPLA3 and Chronic Liver Disease

76. Shen JH, Li YL, Li D, Wang NN, Jing L, Huang YH. The rs738409. (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis. J Lipid Res. (2015) 56:167–75. doi: 10.1194/jlr.M048777

77. Sookoian S, Castano GO, Burgueno AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res. (2009) 50:2111–6. doi:10.1194/jlr.P900013-JLR200

78. Sookoian S, Castano GO, Pirola CJ. PNPLA3 I148M variant is associated with metabolic stress-response phenotype in patients with nonalcoholic fatty liver disease. Hepatology. (2015) 61:1769. doi: 10.1002/hep.27390

79. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene. (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. (2011) 53:1883–94. doi: 10.1002/hep.24283

80. Speliotes EK, Butler JL, Palmer CD, Voight BF, Consortium G, Consortium GUARDIAN. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. Hepatology. (2010) 52:904–12. doi: 10.1002/hep.23768

81. Tian C, Stokowski RP, Kershneboich DB, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet. (2010) 42:221–3. doi: 10.1038/ng.848

82. Tong J, Guo J, Hu J, Hou S, Zhang Y, Li Q. Correlation between patatin-like phospholipase domain-containing protein 3 gene polymorphisms and liver cirrhosis in a chinese han population with chronic hepatitis B. Hepat Mon. (2014) 14:e18943. doi: 10.5812/hepatmon.18943

83. Trepo E, Gustot T, Degre D, Lemmers A, Verset L, Demetter P, et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol. (2011) 55:260–9. doi:10.1002/hep.23768

84. Trepo E, Guyot E, Ganne-Carrie N, Degre D, Gustot T, Franchimont D, et al. PNPLA3. (rs738409 C>G) is a common risk variant associated with hepaticcellular carcinoma. Ann J Gastroenterol. (2012) 55:1307–8. doi: 10.1002/hep.23518

85. Ueyama M, Nishida N, Korenaga M, Korenaga K, Kumagai E, Yani H, et al. The impact of PNPLA3 and I2AF1 on hepaticcellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J Gastroenterol. (2016) 51:370–9. doi: 10.1007/s00535-015-1116-6

86. Verriken A, Beckers S, Francque S, Hildén H, Caron S, Zegers D, et al. A gene variant of PNPLA3, but not of APOC3, is associated with histological parameters of NAFLD in an obese population. Obesity. (2013) 21:2138–45. doi: 10.1002/oby.20366

87. Vespasiani-Gentilucci U, Gallo P, Porcaro A, Carotti S, Galati G, Piccioni L, et al. PNPLA3 rs738409 C > G polymorphism is associated with the risk of progression to cirrhosis in NAFLD patients. Scand J Gastroenterol. (2016) 51:9467–73. doi: 10.1080/030056521.2016.1161066

88. Xia MF, Ling Y, Biai H, Lin HD, Yan HM, Chang XX, et al. I148M variant of PNPLA3 increases the susceptibility to non-alcoholic fatty liver disease caused by obesity and metabolic disorders. Aliment Pharmacol Ther. (2014) 43:631–42. doi: 10.1111/apt.13521

89. Xiong G, Shi J, Wang X, Shen J, Zhang S. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China. Ann Hepatol. (2016) 15:1326–31. doi:10.1111/1755-5385.12256.x

90. Yang J, Trepo E, Nahon P, Cao Q, Moreno C, Letouze E, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. (2010) 51:1209–17. doi: 10.1002/hep.23622
plasma levels of liver enzymes. *Am J Hum Genet.* (2008) 83:520–8. doi: 10.1016/j.ajhg.2008.09.012

111. Zain SM, Mohamed R, Mahadeva S, Cheah PL, Rampal S, Basu RC, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. *Hum Genet.* (2012) 131:1145–52. doi: 10.1007/s00439-012-1343-7

112. Zampino R, Coppola N, Cirillo G, Boemio A, Grandone A, Stanzione M, et al. Patatin-like phospholipase domain-containing 3 I148M variant is associated with liver steatosis and fat distribution in chronic hepatitis B. *Dig Dis Sci.* (2015) 60:3005–10. doi: 10.1007/s00412-015-3716-7

113. Zhang S, Wu H, Wu X, Lian W, Wang Y, Zhang X, et al. Association between PNPLA3 rs738409 polymorphisms and risk of hepatitis C virus infection in Chinese population. *Hepatol Commun.* (2015) 2015:107:864–9. doi: 10.1002/hup.1091

114. Zhang Y, Cai W, Song J, Miao L, Zhang B, Xu Q, et al. Association between PNPLA3 I148M polymorphism and non-alcoholic fatty liver disease in the Uygur and Han ethnic groups of northwestern China. *PLoS ONE.* (2014) 9:e108381. doi: 10.1371/journal.pone.0108381

115. Zhang Y, Guo T, Yang F, Mao Y, Li L, Liu C, et al. Single-nucleotide rs738409 polymorphisms in the PNPLA3 gene are strongly associated with alcoholic liver disease in Han Chinese males. *Hepatol Int.* (2018) 12:429–37. doi: 10.1016/j.hepatol.2017.08.009

116. Liangpunsakul S, Beaudoin JJ, Shah VH, Puri P, Sanyal AJ, Kambhat PS, et al. Characterization of the human patatin-like phospholipase family. *J Biol Chem.* (2004) 279:48968–75. doi: 10.1074/jbc.M407841200

117. Shang L, Mashek DG. The underpinnings of PNPLA3-mediated fatty liver disease. *Hepatology.* (2019). doi: 10.1002/hep.30888. [Epub ahead of print]

118. Baulande S, Lasnier F, Lucas M, Pairault J. Adiponutrin, a transmembrane protein specifically expressed in the adipose lineage. *J Biol Chem.* (2001) 276:33336–44. doi: 10.1074/jbc.M10593200

119. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transferase activities. *J Biol Chem.* (2004) 279:49868–75. doi: 10.1074/jbc.M40421200

120. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. *J Lipid Res.* (2006) 47:1940–9. doi: 10.1194/jlr.M600185-JLR200

121. Huang Y, He S, Li JZ, Seo YK, Osborne TF, Cohen JC, et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. *Proc Natl Acad Sci USA.* (2010) 107:7892–7. doi: 10.1073/pnas.1003581070

122. Liakos E, Sun Y, Li J, Kim J, Johnstone JW, Li D, et al. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. *J Lipid Res.* (2005) 46:2477–87. doi: 10.1194/jlr.M500290-JLR200

123. Dubuquoy C, Robichon C, Lasnier F, Langlois C, Dugail I, Foufelle F, et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. *J Hepatol.* (2011) 55:145–53. doi: 10.1016/j.jhep.2010.10.024

124. Liangpunsakul S, Beaudoin JJ, Shah VH, Puri P, Sanyal AJ, Kambhat PS, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transferase activities. *J Biol Chem.* (2004) 279:48968–75. doi: 10.1074/jbc.M407841200

125. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. *J Lipid Res.* (2006) 47:1940–9. doi: 10.1194/jlr.M600185-JLR200

126. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, et al. Genetic evidence for a role of adiponutrin in the metabolism of fatty acid.
apollipoprotein B-containing lipoproteins. Hum Mol Genet. (2009) 18:4669–76. doi: 10.1093/hmg/ddp424

Hotta K, Yoneda M, Hyogo H, Ochi H, Mizusawa S, Ueno T, et al. Association of the rs738409 polymorphism in PNPLA3 with liver damage and the development of nonalcoholic fatty liver disease. BMC Med Genet. (2010) 11:172. doi: 10.1186/1471-2350-11-172

Krawczyk M, Grunhage F, Zimmer V, Lammert F. Variant adiponutrin. (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol. (2011) 55:299–306. doi: 10.1016/j.jhep.2010.10.042

Kitamoto T, Kitamoto A, Yoneda M, Hyogo H, Ochi H, Nakamura T, et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet. (2013) 132:783–92. doi: 10.1007/s00439-013-1294-3

Hernaez R, McLean J, Lazo M, Brancati FL, Hirschhorn JN, Borecki IB, et al. Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey. Clin Gastroenterol Hepatol. (2013) 11:1183–90.e1182. doi: 10.1016/j.cgh.2013.02.011

Hassan MM, Kaseb A, Etzel CJ, El-Serag H, Spitz MR, Chang P, et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog. (2013) 52(Suppl 1):E139–47. doi: 10.1002/mc.22057

Kupcinskas J, Valantiene I, Varkalaite G, Steponaitiene R, Skieceviciene J, Sumskeni J, et al. PNPLA3 and RNF7 gene variants are associated with the development of liver fibrosis and cirrhosis in an eastern European population. J Gastroenterin Liver Dis. (2017) 26:37–43. doi: 10.15403/gjld.1121.261.pnp

Beaudoin JJ, Long N, Liangpunsakul S, Puri P, Kamath PS, Shah V, et al. An exploratory genome-wide analysis of genetic risk for alcoholic hepatitis. Scand J Gastroenterol. (2017) 52:1263–9. doi: 10.1080/00365527.2017.1359664

Chung GE, Lee Y, Yim JY, Choe EK, Kwak MS, Yang JJ, et al. Genetic polymorphisms of PNPLA3 and SAMM50 are associated with nonalcoholic fatty liver disease in a Korean population. Gut Liver. (2018) 12:316–23. doi: 10.5009/gnl17306

Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, et al. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. (2019) 17:135. doi: 10.1186/s12916-019-1364-z

Burza MA, Molinaro A, Attilla ML, Rotondo C, Attilla F, Ceccanti M, et al. PNPLA3 I148M. rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of patatin-like phospholipase domain-containing 3 gene. (PNPLA3) is significantly associated with alcoholic liver cirrhosis. Aliment Pharmacol Ther. (2014) 40:571–81. doi: 10.1111/apt.12890

Chamorro AJ, Torres JL, Miron-Canelo JA, Gonzalez-Sarmiento R, Lao FJ, Marcos M. Systematic review with meta-analysis: the I148M variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) is significantly associated with alcoholic liver cirrhosis. Aliment Pharmacol Ther. (2014) 40:514–20. doi: 10.1111/apt.12310

Falletti E, Fabris C, Cmet S, Cusigh A, Bietto D, Fontanini E, et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int. (2011) 31:1137–43. doi: 10.1111/j.1478-3231.2011.02534.x

Gao X, Liu W, Yang L, Zhang X, Ma N, Wang L, et al. Association between PNPLA3 gene polymorphisms and risk of hepatitis B virus-related hepatocellular carcinoma in Han population in China: case-control study. Scand J Gastroenterol. (2017) 52:1120–7. doi: 10.1080/00365521.2017.1334088

Guyot E, Sutton A, Rufat P, Laguillier C, Mansouri A, Moreau R, et al. PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. J Hepatol. (2013) 58:312–8. doi: 10.1016/j.jhep.2012.09.036

Huang Z, Guo X, Zhang G, Liang L, Nong B. Correlation between PNPLA3 rs738409 polymorphism and hepatocellular carcinoma: a meta-analysis of 10,330 subjects. Int J Biol Markers. (2019) 34:117–22. doi: 10.1177/1724600818812471

Li JF, Zheng EQ, Xie M. Association between rs738409 polymorphism in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene and hepatocellular carcinoma susceptibility: evidence from case-control studies. Gene. (2019) 685:143–8. doi: 10.1016/j.gene.2018.11.012

Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JR, et al. Carriage of the PNPLA3 rs738409C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. (2014) 61:75–81. doi: 10.1016/j.jhep.2014.02.030

Nischalke HD, Berger C, Luda C, Berg T, Muller T, Grunhage F, et al. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS ONE. (2011) 6:e27087. doi: 10.1371/journal.pone.0027087

Rakasayot M, Chuaypen N, Khiaiphueng A, Pinjaroen N, Treeprasertuk S, Poovorawan Y, et al. Independent and additive effects of PNPLA3 and TM6SF2 polymorphisms on the development of non-B, non-C hepatocellular carcinoma. J Gastroenterol. (2019) 54:427–36. doi: 10.1007/s00535-018-01533-x

Sookoian S, Pirola CJ. PNPLA3, the triacylglycerol synthesis/hyrdrolysis/storage dilemma, and nonalcoholic fatty liver disease. World J Gastroenterol. (2012) 18:6018–26. doi: 10.3748/wjg.v18.i42.6018

Mullard A. PCSK9-lowering RNAi contender clears first phase III trial. Nat Rev Drug Discov. (2019) 18:737. doi: 10.1038/d41573-019-00153-1

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Dong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.