In this paper, we consider the problem of quantization of classical Stäckel systems and the problem of separability of related quantum Hamiltonians. First, using the concept of Stäckel transform, all considered systems are expressed by flat coordinates of related Euclidean configuration space. Then, the so-called flat minimal quantization procedure is applied in order to construct an appropriate Hermitian operator in the respective Hilbert space. Finally, we distinguish a class of Stäckel systems which remain separable after any of admissible flat minimal quantizations.

PACS numbers: 02.30.Ik, 03.65.-w

Keywords: Stäckel system, Stäckel transform, quantum separability, minimal quantization
H_i in involution with respect to a Poisson bracket:

$$\{H_i, H_j\}_p := \mathcal{P}(dH_i, dH_j) = 0, \quad i, j = 1, 2, \ldots, n. \quad (\text{II.1})$$

The functions H_i generate n Hamiltonian dynamic systems

$$u_t = \mathcal{P}dH_i, \quad i = 1, 2, \ldots, n, \quad u \in M. \quad (\text{II.2})$$

One of the methods of solving the system of equations (II.2) is a Hamilton-Jacobi method. In this method, one linearizes equations (II.2) by performing an appropriate canonical transformation of coordinates $(q, p) \mapsto (\lambda, \mu)$, $a_i = H_i$.

The generating function $W(q, a)$ of such canonical transformation is then calculated by solving the Hamilton-Jacobi equations

$$H_i \left(q_1, \ldots, q_n, \frac{\partial W}{\partial q_1}, \ldots, \frac{\partial W}{\partial q_n} \right) = a_i, \quad i = 1, 2, \ldots, n. \quad (\text{II.3})$$

A system of equations (II.3) can be solved by separation of variables, i.e., we have to find a canonical transformation $(q, p) \mapsto (\lambda, \mu)$ to a new coordinate system (λ, μ), called separation coordinates, in which (II.3) separates to a system of n decoupled ordinary differential equations, which in turn can be solved by quadratures. In other words, in separation coordinates (λ, μ) there exist the following relations

$$\varphi(\lambda_i, \mu_i; a_1, \ldots, a_n) = 0, \quad i = 1, 2, \ldots, n$$

$$a_i \in \mathbb{R}, \quad \det \left[\frac{\partial \varphi}{\partial \lambda_j} \right] \neq 0, \quad (\text{II.4})$$

such that each of these relations involves only a single pair of canonical coordinates. The relations (II.4) are called separation relations \[13, 16\]. In this paper, we consider Liouville-integrable systems having separation relations in the following form

$$H_1 \lambda_1^{\gamma_1} + H_2 \lambda_2^{\gamma_2} + \cdots + H_n \lambda_n^{\gamma_n} = \frac{1}{2} f(\lambda_1) \mu_1^2 + \sigma(\lambda_1), \quad i = 1, 2, \ldots, n, \quad (\text{II.5})$$

where $\gamma_i \in \mathbb{Z}$ and are such that no two γ_i coincide, and f, σ are arbitrary smooth functions. Systems described by separation relations \[13, 16\] are called classical Stäckel systems.

Consider a Stäckel system described by a class of irreducible separation relations given by n copies of the following separation curve (substitution $\lambda = \lambda_i, \mu = \mu_i$ for $i = 1, 2, \ldots, n$ yields n separation relations \[13, 16\])

$$H_1 \lambda_1^{\gamma_1} + H_2 \lambda_2^{\gamma_2} + \cdots + H_n = \frac{1}{2} f(\lambda) \mu^2 + \sigma(\lambda), \quad (\text{II.6})$$

where $\gamma_1 > \gamma_2 > \cdots > \gamma_n = 0$, $\gamma_i \in \mathbb{Z}_+$ and f, σ are rational functions. Irreducible means that the set $\{\gamma_1, \ldots, \gamma_{n-1}\}$ of integers do not have a common divisor α. Otherwise, separation curve (II.6) can be reduced to the one with $\gamma_i \mapsto \frac{\gamma_i}{\alpha} \in \mathbb{Z}_+$ by a transformation $\lambda \mapsto \lambda^\alpha$. The n copies of (II.6) constitute a system of n equations linear in the unknowns H_r with the solution of the form

$$H_r = \frac{1}{2} (A_r)^{ii} \mu_i^2 + V_r(\lambda) = \frac{1}{2} (K_r G)^{ii} \mu_i^2 + V_r(\lambda), \quad r = 1, \ldots, n, \quad (\text{II.7})$$

where K_r are Killing tensors of the metric tensor $G = A_1$ and $K_1 = I$ (K_r and G are diagonal in separation coordinates (λ, μ)). Introducing a Stäckel matrix

$$S_{\gamma} = \left(\begin{array}{cccc} \lambda_1^{\gamma_1} & \lambda_1^{\gamma_2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_n^{\gamma_1} & \lambda_n^{\gamma_2} & \cdots & 1 \end{array} \right) \quad (\text{II.8})$$

separation relations following from (II.6) can be written in a compact form

$$S_{\gamma} \mathbf{H} = \mathbf{U}, \quad (\text{II.9})$$

where $\mathbf{H} = (H_1, \ldots, H_n)^T$ and $\mathbf{U} = (\frac{1}{2} f(\lambda_1) \mu_1^2 + \sigma(\lambda_1), \ldots, \frac{1}{2} f(\lambda_n) \mu_n^2 + \sigma(\lambda_n))^T$ is a Stäckel vector. It also means that tensor A_r and potential V_r in (II.7) can be expressed as

$$A_r = \text{diag}((S_{\gamma}^{-1})_r f(\lambda_1), \ldots, (S_{\gamma}^{-1})_r f(\lambda_n)), \quad V_r = (S_{\gamma}^{-1})_r \sigma(\lambda_i) \quad r = 1, \ldots, n. \quad (\text{II.10})$$
and hence

$$H_r = \frac{1}{2}(S_{\gamma}^{-1})^r f(\lambda_i)\mu^2 + (S_{\gamma}^{-1})^r \sigma(\lambda_i).$$ \tag{II.11}$$

The Stäckel matrix S_{γ}, or equivalently the set $\gamma = \{\gamma_1, \gamma_2, \ldots, 1\}$, determines a given class of Stäckel systems and we will call it a γ-class of classical Stäckel systems. For a fixed S_{γ} the metric tensor G is determined by $f(\lambda)$ and the separable potentials $V_r(\lambda)$ are determined by $\sigma(\lambda)$. In general metric G is non-flat.

There is one distinguished class of (II.6) when $\gamma_k = n - k$, i.e.

$$H_1 \lambda^{n-1} + H_2 \lambda^{n-2} + \cdots + H_n = \frac{1}{2} f(\lambda)\mu^2 + \sigma(\lambda),$$ \tag{II.12}$$
called Benenti class.

Notice, that all Stäckel systems (II.6) of two degrees of freedom ($n = 2$) are of Benenti type, as the only separation curve (II.12) is irreducible in that case.

For Benenti class, in separation coordinates (λ, μ), the Stäckel matrix

$$S = \begin{pmatrix}
\lambda^{n-1} & \cdots & 1 \\
\vdots & \ddots & \vdots \\
\lambda_1^{n-1} & \cdots & 1
\end{pmatrix}$$ \tag{II.13}$$
is a Vandermonde matrix and metric tensors are

$$G_{ii} = \frac{f(\lambda_i)}{\Delta_i}, \quad \Delta_i = \prod_{k \neq i} (\lambda_i - \lambda_k), \quad i = 1, \ldots, n.$$ \tag{II.14}$$

All metric tensors (II.14) have a common set of Killing tensors (also diagonal)

$$(K_r)^i = -\frac{\partial \rho_r}{\partial \lambda_i}, \quad r = 1, \ldots, n,$$ \tag{II.15}$$
where $\rho_r(\lambda)$ are signed symmetric polynomials (Viète polynomials)

$$\rho_1 = -(\lambda_1 + \cdots + \lambda_n), \ldots, \rho_n = (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n.$$ \tag{II.16}$$
The matrix

$$F = S^{-1}\Lambda S, \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$$ \tag{II.17}$$
is a recursion matrix for basic potentials $\sigma(\lambda) = \lambda^k$

$$V^{(k)} = F^k V^{(0)}, \quad k \in \mathbb{Z},$$ \tag{II.18}$$
where $V^{(k)} = (V_1^{(k)}, \ldots, V_r^{(k)})^T$, $V^{(0)} = (0, \ldots, 0, 1)^T$ are separable potentials determined respectively by $\sigma(\lambda) = \lambda^k$ and $\sigma(\lambda) = 1$ from separation curve (II.12). In explicit form

$$F = \begin{pmatrix}
-\rho_1 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
-\rho_{n-1} & 0 & \cdots & 1 \\
-\rho_n & 0 & \cdots & 0
\end{pmatrix}.$$ \tag{II.19}$$
Benenti class of Stäckel systems contains a sub-class of systems with flat metrics G when

$$f(\lambda) = \prod_{k=1}^m (\lambda - \beta_k) =: f_{\text{flat}}(\lambda), \quad m = 0, 1, \ldots, n.$$ \tag{II.20}$$

The important fact about Stäckel systems (II.10) is the existence of a so called Stäckel transform relating all of them. In [14] it was proved that from a set of Benenti systems with fixed metric tensor G (by fixing $f(\lambda)$), one can
construct the rest of Stäckel systems (II.6), both from Benenti class as well as from other classes. The transformation is known as a Stäckel transform:

\[\bar{H}_1 \lambda^{n-1} + \bar{H}_2 \lambda^{n-2} + \cdots + \bar{H}_n = \frac{1}{2} \bar{f}(\lambda) \mu^2 + \sigma(\lambda) \]

\[\Downarrow \text{Stäckel transform} \]

\[H_1 \lambda^{n-1} + H_2 \lambda^{n-2} + \cdots + H_n = \frac{1}{2} f(\lambda) \mu^2 + \sigma(\lambda). \]

Explicitly it is given in a matrix form

\[\mathbf{H} = W_r R(F) \mathbf{H}, \]

where \(\mathbf{H} = (H_1, \ldots, H_n)^T, \bar{\mathbf{H}} = (\bar{H}_1, \ldots, \bar{H}_n)^T, W_\gamma = S_\gamma^{-1} S, \) where \(S_\gamma, S \) are respective Stäckel matrices (II.8), (II.13) and \(R(F) = f(F) \bar{f}^{-1}(F). \) What is important, the inverse of the matrix \(W_\gamma \) is expressible by basic potentials \((S^{-1} S_\gamma)_{ij} = (W_\gamma^{-1})_{ij} = V_i^{(\gamma_i)} . \)

Now, let us choose \(\bar{f}(\lambda) = \bar{f}_{flat}(\lambda) \) and write \(\{ \bar{H}_r \} \) in respective flat coordinates \((x, y)\) (not necessary orthogonal). It means that all Stäckel Hamiltonians \(\{ H_r \} \) of (II.6) can be expressed by a flat coordinates as well, so can be considered as some quadratic in momenta functions on a phase space \(M = \mathbb{R}^{2n}. \)

Consider Stäckel Hamiltonians (II.22) written in a flat coordinates \((x, y)\) of the metric tensor \(\bar{G} \)

\[H_r = \frac{1}{2} A^{ij}_r y_i y_j + V_r(x), \quad r = 1, \ldots, n. \]

There are two natural settings for Hamiltonians (II.24) as functions on a phase space \(M = T^* Q \) (a cotangent bundle to a configuration space \(Q \)). We can consider \(Q \) as two different pseudo-Riemannian spaces. Either \(Q = (\mathbb{R}^n, \bar{g}) \) or \(Q = (\mathbb{R}^n, g) \), where \(g = \bar{G}^{-1}, \bar{g} = G^{-1}, \) and \(G = A_1. \) The second case is natural for classical separability theory, as then

\[H_r = \frac{1}{2} A^{ij}_r y_i y_j + V_r(x) = \frac{1}{2} (K_r G)^{ij} y_i y_j + V_r(x), \]

\[K_1 = I \text{ and } K_r \text{ are Killing tensors of the metric } G, \text{ non-flat in general. Obviously, in the first case, Hamiltonians (II.24) can be written as} \]

\[H_r = \frac{1}{2} A^{ij}_r y_i y_j + V_r(x) = \frac{1}{2} (T_r \bar{G})^{ij} y_i y_j + V_r(x). \]

Although tensors \(T_r \) are not Killing tensors for the flat metric \(\bar{G} \), but the representation (II.26) will be useful for admissible quantizations of \(H_r. \)

III. MINIMAL QUANTIZATIONS OF STÄCKEL SYSTEMS

Let \((Q, g)\) be a pseudo-Riemannian configuration space and

\[H = \frac{1}{2} A^{ij} p_i p_j + V(q) \]

be a function on \(T^* Q \), written in a canonical chart \((q, p)\) and associated with a symmetric contravariant two-tensor \(A \) on \(Q. \) A minimal quantization procedure \([8, 11, 12, 17]\) associates with (III.1) a self-adjoint linear operator

\[\hat{H} = -\frac{i}{\hbar^2} \nabla_i A^{ij} \nabla_j + V(q) \]

acting in a Hilbert space \(L^2(Q, \omega_g) \) of square integrable functions defined on the configuration space \(Q \) with respect to the metric volume form \(\omega_g. \) By \(\nabla_i \) we denote the covariant derivative with respect to the Levi-Civita connection.
Hence, for Stäckel Hamiltonians \[\text{(II.24)} \] we can apply either flat or non-flat minimal quantization related with representations \[\text{(II.25)} \] and \[\text{(II.26)} \], respectively. In \[\text{(10)} \] we analyzed the non-flat case. In the following paper we consider all admissible flat minimal quantizations and compare them with the non-flat one.

For a non-flat case \[\text{(II.25)} \] the related set of quantum operators is

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 \nabla_i A^{ij} \nabla_j + V_r(x), \quad r = 1, \ldots, n
\]

(III.3)

where \(\nabla_i \) is the covariant derivative with respect to the connection generated by metric \(g \) and for the flat representation \[\text{(II.26)} \] respectively

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 \nabla_i A^{ij} \nabla_j + V_r(x), \quad r = 1, \ldots, n,
\]

(III.4)

where \(\nabla_i \) is the covariant derivative with respect to the connection generated by a flat metric \(\hat{g} \). In order to investigate a separability of \[\text{(III.3)} \] and \[\text{(III.4)} \], let us rewrite the operators in separation coordinates \((\lambda, \mu) \) \[\text{(12)} \]

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 G^{ii} \left(K_r^{(i)} \partial^2 \gamma_{\lambda} + (\partial_i K_r^{(i)}) \partial_{\gamma_{\lambda}} \right) + V_r(\lambda),
\]

(III.5a)

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 G^{ii} \left(T_r^{(i)} \partial^2 \beta_{\lambda} + (\partial_i T_r^{(i)}) \partial_{\beta_{\lambda}} \right) + V_r(\lambda),
\]

(III.5b)

where \(\Gamma_i \) (\(\bar{\Gamma}_i \)) is the contracted Christoffel symbol defined by \(\Gamma_i = g_{il} G^{jk} \Gamma_{lj}^i \) and in orthogonal coordinates

\[
\Gamma_i = \frac{1}{2} \partial_i \ln |G| - \partial_i \ln |G^{ii}|,
\]

(III.6)

\(K_r^{(i)} \equiv (K_r)_i^j, \ T_r^{(i)} \equiv (T_r)_i^j \), and \(\partial_i = \frac{\partial}{\partial x_i} \). As all \(K_r \) are Killing tensors for the metric \(G \) so \(\partial_i K_r^{(i)} = 0 \) \[\text{(12)} \]. Thus, \[\text{(III.5)} \] can be written in the form

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 A^{ii} \left(\partial^2 \Gamma_{\lambda} + \partial_i \Gamma_{\lambda} \right) + V_r(\lambda),
\]

(III.7a)

\[
\hat{H}_r = -\frac{1}{2} \hbar^2 A^{ii} \left(\partial^2 \beta_{\lambda} + (\partial_i \ln T_r^{(i)}) \partial_{\beta_{\lambda}} \right) + V_r(\lambda).
\]

(III.7b)

A necessary and sufficient condition for separability of operators \[\text{(III.7a)} \] is a Robertson condition \[\text{(11)} \]

\[
\Gamma_i = \Gamma_i(\lambda_i) \iff \partial_j \Gamma_i = 0, \quad j \neq i,
\]

while a necessary and sufficient condition for separability of operators \[\text{(III.7b)} \] takes the form

\[
\partial_i \ln (T_r^{(i)}) - \bar{\Gamma}_i = \xi_i(\lambda_i) \iff \partial_j \xi_i = 0, \quad j \neq i.
\]

Indeed, if operators \[\text{(III.7)} \] are of the form

\[
\hat{B}_r = -\frac{1}{2} \hbar^2 A^{ii} \left(\partial^2 \gamma_i + \gamma_i \partial_i \right) + V_r(\lambda),
\]

\[
= -\frac{1}{2} \hbar^2 \left(S^{-1} \right)^i_j f(\lambda_i) \left(\partial^2 \gamma_i + \gamma_i \partial_i \right) + \left(S^{-1} \right)^i_j \sigma(\lambda_i), \quad r = 1, \ldots, n,
\]

(III.8)

where \(\hat{B}_r = \hat{H}_r(\hat{H}_r) \) and \(\gamma_i = \gamma_i(\lambda_i) \), then application of Stäckel matrix \(S \) to the system of eigenvalue problems for \[\text{(III.8)} \]

\[
S \begin{pmatrix} \hat{B}_1 \Psi \\ \vdots \\ \hat{B}_n \Psi \end{pmatrix} = S \begin{pmatrix} E_1 \Psi \\ \vdots \\ E_n \Psi \end{pmatrix}
\]

(III.9)

separates \[\text{(III.9)} \] onto \(n \) one-dimensional eigenvalue problems

\[
(E_1 \lambda^\gamma_1 + E_2 \lambda^\gamma_2 + \cdots + E_n) \psi_1(\lambda) = -\frac{1}{2} \hbar^2 f(\lambda) \left[\frac{d^2 \psi_1(\lambda)}{d\lambda^2} + \gamma_1(\lambda) \frac{d\psi_1(\lambda)}{d\lambda} \right] + \sigma(\lambda) \psi_1(\lambda),
\]

where \(\Psi(\lambda_1, \ldots, \lambda_n) = \prod_{i=1}^n \psi_1(\lambda_i) \). In the case when \(\gamma_i(\lambda_i) = \gamma(\lambda_i), \ i = 1, \ldots, n \), we have \(n \) copies of one-dimensional eigenvalue problem

\[
(E_1 \lambda^\gamma_1 + E_2 \lambda^\gamma_2 + \cdots + E_n) \psi(\lambda) = -\frac{1}{2} \hbar^2 f(\lambda) \left[\frac{d^2 \psi(\lambda)}{d\lambda^2} + \gamma(\lambda) \frac{d\psi(\lambda)}{d\lambda} \right] + \sigma(\lambda) \psi(\lambda),
\]

where \(\Psi(\lambda_1, \ldots, \lambda_n) = \prod_{i=1}^n \psi(\lambda_i) \).
IV. MINIMAL FLAT QUANTIZATION OF BENENTI CLASS

First, let us analyze the case of two quantizations inside the Benenti class, where in (II.22) \(W_y = I \). Assume that \(\{\tilde{H}_r\} \) is a Benenti system with a flat metric generated by \(\tilde{f}_{\text{flat}}(\lambda) \). Then, any other Benenti system \(\{H_r\} \) is given by

\[
\mathbf{H} = R(F)\mathbf{\tilde{H}}, \quad R(F) = f(F)\tilde{f}_{\text{flat}}^{-1}(F)
\]

and separation curves for \(\{\tilde{H}_r\} \) and \(\{H_r\} \) are

\[
\tilde{H}_1\lambda^{n-1} + \tilde{H}_2\lambda^{n-2} + \cdots + \tilde{H}_n = \frac{1}{2}\tilde{f}_{\text{flat}}(\lambda)\mu^2 + \tilde{\sigma}(\lambda)
\]

\[
H_1\lambda^{n-1} + H_2\lambda^{n-2} + \cdots + H_n = \frac{1}{2}f(\lambda)\mu^2 + \sigma(\lambda),
\]

\[
\sigma(\lambda) = R(\lambda)\tilde{\sigma}(\lambda) = f(\lambda)\tilde{\sigma}(\lambda)/\tilde{f}_{\text{flat}}(\lambda).
\]

The relation \(\mathbf{IV.2} \) follows from the following relations which hold in separation coordinates:

\[
A_r = \sum_k R(F)_{rk}\tilde{A}_k = R(\Lambda)\tilde{A}_r,
\]

\[
\mathbf{V} = R(F)\tilde{\mathbf{V}} = S^{-1}R(\Lambda)\tilde{\mathbf{\sigma}}(\lambda), \quad \tilde{\mathbf{\sigma}}(\lambda) = (\tilde{\sigma}(\lambda_1), \ldots, \tilde{\sigma}(\lambda_n))^T.
\]

Indeed, for rational \(f(\lambda) \) \(\mathbf{IV.3} \) follows from the fact that it is fulfilled for \(R(F) = F - \beta I \) and \(R(F) = (F - \beta I)^{-1} \). To prove \(\mathbf{IV.4} \) observe that \(\mathbf{V} = S^{-1}\tilde{\mathbf{\sigma}}(\lambda) \) and \(R(F) = S^{-1}R(\lambda)S \). Hence \(\mathbf{V} = R(F)S^{-1}\tilde{\mathbf{\sigma}}(\lambda) = S^{-1}R(\lambda)\tilde{\mathbf{\sigma}}(\lambda) \).

Now, let us go back to operators \(\mathbf{III.7} \). As for metric \(\mathbf{II.14} \) from Benenti class \(\Gamma \), \(A_{\hat{r}} = -\frac{1}{2}\frac{\partial f(\lambda)}{\partial \lambda} \) and as follows from \(\mathbf{IV.3} \) \(T_{\hat{r}}^{(i)} = R(\lambda_i)\tilde{T}_{\hat{r}}^{(i)} \) then, using the relation \(\mathbf{III.10} \), we have

\[
\hat{H}_r = -\frac{1}{2}h^2(S^{-1})_r^i \left[f(\lambda_i)\frac{\partial^2}{\partial \lambda_i^2} + \frac{d f(\lambda_i)}{d \lambda_i} \frac{\partial}{\partial \lambda} \right] + (S^{-1})_r^i\sigma(\lambda),
\]

\[
\hat{H}_r = -\frac{1}{2}h^2(S^{-1})_r^i \left[f(\lambda_i)\frac{\partial^2}{\partial \lambda_i^2} + \left(\frac{d f(\lambda_i)}{d \lambda_i} - \frac{1}{2}\tilde{f}_{\text{flat}}(\lambda_i)\frac{d \tilde{f}_{\text{flat}}(\lambda_i)}{d \lambda_i}\right) \frac{\partial}{\partial \lambda} \right] + (S^{-1})_r^i\sigma(\lambda),
\]

so equations \(\mathbf{IV.5} \) take the form \(\mathbf{III.8} \) with \(\gamma(\lambda_i) = \frac{d f(\lambda_i)}{d \lambda_i} \) in the case of Eq. \(\mathbf{IV.5a} \) and \(\gamma(\lambda_i) = \frac{d f(\lambda_i)}{d \lambda_i} - \frac{1}{2}\tilde{f}_{\text{flat}}(\lambda_i)\frac{d \tilde{f}_{\text{flat}}(\lambda_i)}{d \lambda_i} \) in the case of Eq. \(\mathbf{IV.5b} \). As a consequence all operators \(\{\hat{H}_r\} \) as well as \(\{\tilde{H}_r\} \) have common eigenfunctions:

\[
\hat{H}_r\Psi = E_r\Psi, \quad \hat{H}_r\tilde{\Psi} = E_r\tilde{\Psi}, \quad r = 1, \ldots, n,
\]

where \(\Psi(\lambda_1, \ldots, \lambda_n) = \prod_{k=1}^n \psi(\lambda_k), \tilde{\Psi}(\lambda_1, \ldots, \lambda_n) = \prod_{k=1}^n \tilde{\psi}(\lambda_k), \) and \(\psi(\lambda_k) \) and \(\tilde{\psi}(\lambda_k) \) are \(n \) copies of one-dimensional eigenvalue problems

\[
(E_1\lambda^{n-1} + E_2\lambda^{n-2} + \cdots + E_n)\psi(\lambda) = \left(\frac{1}{2}h^2f(\lambda)\frac{d^2\psi(\lambda)}{d\lambda^2} + \frac{1}{2}f(\lambda)\frac{d\psi(\lambda)}{d\lambda}\right) + \sigma(\lambda)\psi(\lambda),
\]

\[
(E_1\lambda^{n-1} + E_2\lambda^{n-2} + \cdots + E_n)\tilde{\psi}(\lambda) = \left(\frac{1}{2}h^2f(\lambda)\frac{d^2\tilde{\psi}(\lambda)}{d\lambda^2} + \left(\frac{d f(\lambda)}{d \lambda} - \frac{1}{2}\tilde{f}_{\text{flat}}(\lambda)\frac{d \tilde{f}_{\text{flat}}(\lambda)}{d \lambda}\right)\frac{d\tilde{\psi}(\lambda)}{d\lambda}\right) + \sigma(\lambda)\tilde{\psi}(\lambda).
\]

Equations \(\mathbf{IV.7a} \) and \(\mathbf{IV.7b} \) represent the non-flat and flat minimal quantizations of separation curve \(\mathbf{IV.2} \). Moreover,

\[
[\hat{H}_r, \hat{H}_s] = 0, \quad [\hat{H}_r, \tilde{H}_s] = 0.
\]

The first set of commutation relations was proved in \(\mathbf{[10]} \) and follows from the fulfillment of the pre-Robertson condition \(\mathbf{[12]} \)

\[
\partial^2_i \Gamma_i - \Gamma_j \partial_i \Gamma_j = 0, \quad i \neq j
\]
for $\Gamma_i = -\frac{1}{2} \partial_i \ln f(\lambda_i)$. The second set of commutation relations follows from the analog of the pre-Robertson condition

$$\partial_i^2 \gamma_i - \gamma_j \partial_i \gamma_j = 0, \quad i \neq j,$$

(IV.9) where

$$\gamma_i = \Gamma_i - \partial_i \ln R(\lambda_i) = -\frac{1}{2} \partial_i \ln f_{\text{flat}}(\lambda_i) - \partial_i \ln R(\lambda_i).$$

The condition (IV.9) can be obtained repeating the procedure from [12] (Section V) under substitution $K_r^{(i)} \rightarrow R(\lambda) K_r^{(i)}$. Summarizing that part, we proved that for any classical Benenti system, there exists an n-parameter family (II.20) of minimal flat quantizations, which preserves quantum separability.

V. MINIMAL FLAT QUANTIZATION FOR ARBITRARY γ-CLASS

Let us consider the case $R = 1$. Then,

$$\mathbf{H} = W_r \mathbf{H},$$

(V.1)

where separation curves for \bar{H}_r and H_r are

$$H_r \lambda^{n-1} + \bar{H}_r \lambda^{n-2} + \cdots + \bar{H}_n = \frac{1}{2} \bar{f}_{\text{flat}}(\lambda) \mu^2 + \bar{\sigma}(\lambda)$$

$$\downarrow W_\gamma$$

$$(V.2)$$

$$(V.2)$$

and Hamiltonian operators for non-flat and flat minimal quantizations of H_r are of the form (III.7). Γ_r in (III.7a) is a reduced Christoffel symbol for a metric tensor G, and it was proved in [10] that for arbitrary γ-class $\partial_i \Gamma_r \neq 0$, $j \neq i$ and we lose a separability. In operator \bar{H}_r from (III.7b) $\Gamma_r = -\frac{1}{2} \partial_i f_{\text{flat}}(\lambda)$, hence does not depend on $\lambda_j \neq \lambda_i$, so we have to analyze only the term $\partial_i T_r^{(i)} / T_r^{(i)}$. A very useful form of $T_r^{(i)}$ was derived in [18]. Consider polynomial $P = \sum_{r=1}^n H_r \lambda^r$ from separation curve (V.2). Its order is γ_1 which we denote by $\gamma_1 = n + k - 1$. Notice that for $k = 0$ we are in the Benenti class. There is k missing monomials λ^{n+k-n_i} in polynomial P, enumerated by (n_1, \ldots, n_k). For example, if $P = H_1 \lambda^3 + H_2 \lambda + H_3$, then $n = 3$, $k = 2$, $n_1 = 2$, $n_2 = 3$. In [18] was proved that

$$T_r^{(i)} = \frac{1}{\phi} \chi_r^{(i)},$$

(V.3)

where $\chi_r^{(i)}$ is λ_i-independent and

$$\phi = \det \begin{pmatrix} \rho_{n_1-1} & \cdots & \rho_{n_1-k} \\ \vdots & \ddots & \vdots \\ \rho_{n_k-1} & \cdots & \rho_{n_k-k} \end{pmatrix}$$

(V.4)

where $\rho_0 = 1$, $\rho_m = 0$ for $m > n$ and $m < 0$, and remaining ρ_m are given by (II.16). Hence, (III.7b) takes the form

$$\hat{H}_r = \frac{1}{2} \hbar^2 A_{ii} \left(\partial_i^2 - \left(\frac{\partial_i \phi}{\phi} - \frac{1}{2} \partial_i \bar{f}_{\text{flat}} \right) \partial_i \right) + V_r(\lambda).$$

(V.5)

It can be proved that for any ϕ, $\partial_j \left(\frac{\partial \phi}{\phi} \right) \neq 0$ for $j \neq i$. As a result, all admissible flat minimal quantizations of a non-Benenti γ-class destroy a quantum separability.

VI. SEPARABLE DEFORMATIONS OF STÄCKEL HAMILTONIANS

In order to make all Hamiltonians \hat{H}_r separable, we need to get rid of the terms

$$\frac{1}{2} \hbar^2 \left(A_{ii} \frac{\partial_i \phi}{\phi} \right) \partial_i$$

(VI.1)
from (V.5). Terms (V.11) are generated by appropriate linear in momenta terms in Hamiltonians \(H_r \). Define a vector field \(u_r \) with components

\[
\mathbf{u}_r^i = A_r^{ij} \frac{\partial \varphi}{\partial \varphi^j}
\]

(VI.2)

in separation coordinates. Then, consider a deformed Hamiltonians in flat coordinates

\[
H_r(h) = \frac{1}{2} A_r^{ij} y_i y_j - \frac{1}{2} i \hbar u_r^i(x) y_i + V_r(x) + \frac{1}{4} \hbar^2 w_r(x) \]

(VI.3)

where \(w_r = \sum_i \frac{\partial u_r^i}{\partial x_i} \). Appropriate quantum operator in flat minimal quantization takes a form

\[
\hat{H}_r = \frac{-1}{2} \hbar^2 \nabla_i A_r^{ij} \nabla_j - \frac{1}{4} \hbar^2 (\nabla_i u_r^i + u_r^i \nabla_i) + \frac{1}{4} \hbar^2 w_r(x) + V_r(x)
\]

(VI.4)

and in separation coordinates

\[
\hat{H}_r = \frac{-1}{2} \hbar^2 A_r^{ij} \left[\partial_i^2 + \frac{1}{2} (\partial_i \ln \tilde{f}_{\flat}(\lambda_i)) \partial_i \right] + V_r(\lambda).
\]

(VI.5)

Hence all \(\hat{H}_r \) separate to a single one-dimensional eigenvalue problem:

\[
(E_1 \lambda y_1 + E_2 \lambda y_2 + \cdots + E_n) \tilde{\psi}(\lambda) = \frac{1}{2} \hbar^2 \left(\tilde{f}_{\flat}(\lambda) \frac{d^2 \tilde{\psi}(\lambda)}{d\lambda^2} + \frac{1}{2} \frac{d \tilde{f}_{\flat}(\lambda)}{d\lambda} \frac{d \tilde{\psi}(\lambda)}{d\lambda} \right) + \tilde{s}(\lambda) \tilde{\psi}(\lambda).
\]

(VI.6)

Nevertheless \(\hat{H}_r \) are not Hermitian anymore, since the extra terms \(-\frac{1}{4} \hbar^2 (\nabla_i u_r^i + u_r^i \nabla_i) \) are anti-Hermitian operators in a Hilbert space \(L^2(Q, \omega_g) \).

VII. EXAMPLES

As first example let us consider a pseudo-Euclidean space \(E^3 \) with signature \((+ + -)\) and flat non-orthogonal coordinates \((x_1, x_1, x_3)\) such that

\[
\tilde{g} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
\]

(VII.1)

Then, consider the following Stäckel geodesic system on \(T^* E^3 \)

\[
\tilde{h}_1 = G_i y_i y_j = y_1 y_3 + \frac{1}{2} y_2^2,
\]

\[
\tilde{h}_2 = (\tilde{K}_2 \tilde{G})^{ij} y_i y_j = \frac{1}{8} x_1^2 y_1 - \frac{1}{4} x_1 x_3 y_2^2 + \frac{1}{8} x_3^2 y_2^2 + \left(\frac{1}{4} x_1 x_2 + 1 \right) y_1 y_2 - \frac{1}{4} (x_1 x_3 + x_2^2) y_1 y_3 - \frac{1}{4} x_2 x_3 y_1 y_3,
\]

\[
\tilde{h}_3 = (\tilde{K}_3 \tilde{G})^{ij} y_i y_j = \left(\frac{1}{4} x_1 x_2 + \frac{1}{2} \right) y_1^2 - \frac{1}{4} x_1 x_3 y_1 y_2 - \frac{1}{4} x_2 x_3 y_1 y_3 + \frac{1}{4} x_3^2 y_2^2.
\]

One can check that \(\{\tilde{h}_i, \tilde{h}_j\} = 0 \). The transformation to separation coordinates \((\lambda, \mu)\) is generated by \(19\)

\[
\begin{align*}
\lambda_1 + \lambda_2 + \lambda_3 &= \frac{1}{2} x_1 x_3 + \frac{1}{4} x_2^2, \\
\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 &= \frac{1}{2} x_2 x_3, \\
\lambda_1 \lambda_2 \lambda_3 &= \frac{1}{4} x_3^2
\end{align*}
\]

(VII.2)

and the related separation curve is

\[
\tilde{h}_1 \lambda^2 + \tilde{h}_2 \lambda + \tilde{h}_3 = \frac{1}{2} \lambda^2 \mu^2.
\]
operator F in x-coordinates is

$$F = \begin{pmatrix} \frac{1}{2}x_1x_3 + \frac{1}{2}x_2^2 & 1 & 0 \\ \frac{1}{2}x_2x_3 & 0 & 1 \\ \frac{1}{4}x_3^2 & 0 & 0 \end{pmatrix},$$

so separable potentials $\tilde{V}_i^{(k)}$ are given by (II.18). For example, the first nontrivial potential is

$$\tilde{V}^{(3)} = F^3 \tilde{V}^{(0)} = \begin{pmatrix} \frac{1}{2}x_1x_3 + \frac{1}{2}x_2^2 \\ \frac{1}{2}x_2x_3 \\ \frac{1}{4}x_3^2 \end{pmatrix}$$

and separation curve for Hamiltonians $\tilde{H}_i = \tilde{h}_i + \tilde{V}_i^{(k)}$, $i = 1, 2, 3$, takes the form

$$\tilde{H}_1 \lambda^2 + \tilde{H}_2 \lambda + \tilde{H}_3 = \frac{1}{2} \lambda^3 \mu^2 + \lambda^k.$$

Now, let us consider the following Stäckel transform

$$\begin{align*}
H_1 \lambda^2 + H_2 \lambda + H_3 &= \frac{1}{2} \lambda^3 \mu^2 + \lambda^{r-s+3} \\
\downarrow R(F) &= F^{s-3} \\
H_1 \lambda^2 + H_2 \lambda + H_3 &= \frac{1}{2} \lambda^3 \mu^2 + \lambda^r.
\end{align*}$$

(VII.3)

so, $\mathbf{H} = F^{s-3} \mathbf{H}$ and in particular, for $s = 4$ and $r = 4$, we have for $H_i = h_i + V_i^{(4)}$

$$\begin{align*}
h_1 &= \frac{1}{8} x_1^2 y_1^2 + \frac{1}{8} x_2^2 y_2^2 + \frac{1}{8} x_3^2 y_3^2 + \left(\frac{1}{4} x_1 x_2 + 1 \right) y_1 y_2 + \frac{1}{4} x_1 x_3 y_1 y_3 + \frac{1}{4} x_2 x_3 y_2 y_3, \\
h_2 &= \left(\frac{1}{4} x_1 x_2 + \frac{1}{2} \right) y_1^2 - \frac{1}{4} x_2 x_3 y_2^2 - \frac{1}{4} x_1 x_3 y_1 y_3 + \frac{1}{4} x_2 x_3 y_1 y_3 + \frac{1}{4} x_3^2 y_3 y_3, \\
h_3 &= \frac{1}{4} x_3^2 y_1 y_3 + \frac{1}{8} x_3^2 y_2^2
\end{align*}$$

and

$$\begin{align*}
V_1^{(4)} &= \frac{1}{4} x_1^2 x_3^2 - \frac{1}{4} x_1 x_2^2 x_3 + \frac{1}{16} x_1^4 + \frac{1}{2} x_2 x_3, \\
V_2^{(4)} &= \frac{1}{4} x_1 x_2 x_3^2 + \frac{1}{8} x_3^4 x_3 + \frac{1}{4} x_2 x_3, \\
V_3^{(4)} &= \frac{1}{16} x_3^4 \left(2 x_1 x_3 + x_2^2 \right).
\end{align*}$$

(VII.4)

Of course, again canonical transformation generated by (VII.2) is a transformation to separation coordinates, with separation curve (VII.3) and $s = r = 4$.

As was considered in previous sections, we have two natural minimal quantizations. One, the flat minimal quantization expressed by Levi-Civita connection of metric \tilde{g} (VII.1) and second, expressed by Levi-Civita connection of metric tensor $g = G^{-1}$, where

$$G = \begin{pmatrix} \frac{1}{4} x_1^2 x_3 & \frac{1}{4} x_1 x_2 & \frac{1}{4} x_1 x_3 \\ \frac{1}{4} x_1 x_2 & \frac{1}{4} x_2^2 & \frac{1}{4} x_2 x_3 \\ \frac{1}{4} x_1 x_3 & \frac{1}{4} x_2 x_3 & \frac{1}{4} x_3^2 \end{pmatrix}$$

is generated by $h_1 = \frac{1}{2} G^{ij} y_i y_j$. As g has constant Ricci scalar $R_S = \frac{1}{2}$, the second admissible minimal quantization is non-flat.
In flat quantization, related to metric tensor \bar{g} Christoffel symbols vanish and quantum operators \hat{H}_r related to classical Hamiltonian functions H_r are

$$\hat{H}_1 = -\hbar^2 \left(\frac{1}{8} (x_1^2 \partial_1^2 + x_2^2 \partial_2^2 + x_3^2 \partial_3^2) + \left(\frac{1}{4} x_1 x_2 + 1 \right) \partial_1 \partial_2 + \frac{1}{4} x_1 x_3 \partial_1 \partial_3 + \frac{1}{4} x_2 x_3 \partial_2 \partial_3 + \frac{1}{2} (x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3) \right) + V_4^{(r)},$$

$$\hat{H}_2 = -\hbar^2 \left[\left(\frac{1}{4} x_1 x_2 + \frac{1}{2} \right) \partial_2^2 + \frac{1}{4} x_2 x_3 \partial_2^2 - \frac{1}{4} x_1 x_3 \partial_1 \partial_2 + \frac{1}{4} x_2 x_3 \partial_1 \partial_3 + \frac{1}{4} x_3^2 \partial_3^2 + \frac{3}{8} x_2 \partial_1 + \frac{3}{8} x_3 \partial_2 \right] + V_2^{(r)},$$

$$\hat{H}_3 = -\hbar^2 \left[\frac{1}{4} x_3^2 \partial_1 \partial_3 + \frac{1}{8} x_3^2 \partial_2^2 + \frac{1}{4} x_3 \partial_1 \right] + V_3^{(r)}.$$ (VII.5)

Obviously these operators are Hermitian in $L^2(\mathcal{Q}, \omega_g)$. Substituting $r = 4$ (VII.4) one can check directly the commutativity of operators \hat{H}_r (VII.5).

In (λ, μ) coordinates eigenvalue problems (IV.6) reduce to three copies of one-dimensional eigenvalue problem

$$(\bar{E}_1 \lambda^2 + \bar{E}_2 \lambda + \bar{E}_3) \bar{\psi}(\lambda) = -\frac{1}{2} \hbar^2 \left[\lambda^s \frac{d^2 \bar{\psi}}{d \lambda^2} + \left(s - \frac{3}{2} \right) \lambda^{s-1} \frac{d \bar{\psi}}{d \lambda} \right] + \lambda^r \bar{\psi}$$

for operators \hat{H}_r of minimal flat quantization and

$$(E_1 \lambda^2 + E_2 \lambda + E_3) \psi(\lambda) = -\frac{1}{2} \hbar^2 \left[\lambda^s \frac{d^2 \psi}{d \lambda^2} + \frac{1}{2} \lambda^{s-1} \frac{d \psi}{d \lambda} \right] + \lambda^r \psi,$$

for operators \hat{H}_r of minimal non-flat quantization with $f(\lambda) = \lambda^r$.

As our second example let us consider again a pseudo-Euclidean space E^3 with signature $(+, +)$ and flat, non-orthogonal coordinates (x_1, x_1, x_3) such that

$$\bar{g} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad (VII.6)$$

Then, consider the following Stäckel geodesic system on T^*E^3

$$\tilde{h}_1 = \bar{G}^{ij} y_i y_j = y_1 y_2 + \frac{1}{2} y_3^2,$$

$$\tilde{h}_2 = (\bar{K}_2 \bar{G})^{ij} y_i y_j = \frac{1}{8} x_1^2 y_1^2 - \frac{1}{2} x_2^2 y_2^2 + \frac{1}{2} x_1 y_1 y_2 - \frac{1}{2} x_3 y_1 y_3,$$

$$\tilde{h}_3 = (\bar{K}_3 \bar{G})^{ij} y_i y_j = \frac{1}{8} x_1^2 y_1^2 + \left(\frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 \right) y_2^2 - \frac{1}{2} x_3 y_1 y_3 - \frac{1}{4} x_1 x_3 y_2 y_3.$$

One can check that $\{\tilde{h}_1, \tilde{h}_2\} = 0$. The transformation to separation coordinates (λ, μ) is generated by $[19]$

$$\lambda_1 + \lambda_2 + \lambda_3 = -x_1,$$

$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = x_2 + \frac{1}{4} x_1^2,$$

$$\lambda_1 \lambda_2 \lambda_3 = \frac{1}{4} x_3^2.$$ (VII.7)

The related separation curve is

$$\tilde{h}_1 \lambda^2 + \tilde{h}_2 \lambda + \tilde{h}_3 = \frac{1}{2} \lambda \mu^2,$$

operator F ([11.19] in x-coordinates takes the form

$$F = \begin{pmatrix} -x_1 & 1 & 0 \\ -x_2 - \frac{1}{4} x_1^2 & 0 & 1 \\ \frac{1}{2} x_1^2 & 0 & 0 \end{pmatrix}.$$
so, separable potentials \(\tilde{V}^{(k)} \) are given by \(\text{(III.18)} \). For example, the \(\tilde{V}^{(4)} \) potential and separation curve for Hamiltonians \(\tilde{H}_i = \tilde{h}_i + \tilde{V}^{(4)}_i \) are

\[
\tilde{V}^{(4)} = F^4 \tilde{V}^{(0)} = \begin{pmatrix} \frac{3}{4} x_1 - x_2 \\ \frac{1}{4} x_1^3 + x_1 x_2 + \frac{1}{4} x_3^2 \\ -\frac{1}{4} x_1 x_3 \end{pmatrix}
\]

\[
\tilde{H}_1 \lambda^2 + \tilde{H}_2 \lambda + \tilde{H}_3 = \frac{1}{2} \lambda \mu^2 + \lambda^4.
\]

First, let us consider the following Stäckel transform

\[
\tilde{H}_1 \lambda^2 + \tilde{H}_2 \lambda + \tilde{H}_3 = \frac{1}{2} \lambda \mu^2 + \lambda^4
\]

\[
\downarrow W_\gamma
\]

\[
H_1 \lambda^2 + H_2 \lambda + H_3 = \frac{1}{2} \lambda \mu^2 + \lambda^4,
\]

where \(\gamma = (3, 1, 0) \) and from \(\text{(II.23)} \)

\[
W_\gamma = \begin{pmatrix} -\frac{1}{x_1} & 0 & 0 \\ \frac{1}{x_1} & 1 & 0 \\ \frac{1}{x_1^2} & 0 & 1 \end{pmatrix}.
\]

Then, according to \(\text{(V.1)} \)

\[
H_1 = -\frac{1}{x_1} y_1 y_2 - \frac{1}{2} x_1 y_2^2 - \frac{3}{4} x_1 - \frac{x_2}{x_1},
\]

\[
H_2 = \frac{3}{2} y_1^2 - \frac{1}{2} x_2 y_2^2 + \frac{1}{8} \left(3x_1 - \frac{1}{4} x_2^2 \right) y_3^2 + \frac{1}{4} \left(x_1 - \frac{x_2}{x_3} \right) y_1 y_2 - \frac{1}{2} x_3 y_2 y_3 + \frac{1}{2} \frac{x_3^2}{x_3} + \frac{1}{2} \frac{x_1}{x_3} + \frac{1}{4} \frac{x_3}{x_1},
\]

\[
H_3 = \frac{1}{8} x_3^2 y_2^2 + \frac{1}{8} \left(\frac{x_2}{x_3} + 4x_2 + \frac{3}{4} x_3 \right) y_3^2 + \frac{1}{4} \frac{x_2}{x_1} y_1 y_2 - \frac{1}{2} x_3 y_3 y_3 - \frac{1}{4} x_1 x_3 y_3 y_3 - \frac{1}{16} x_1 x_3^2 - \frac{1}{4} x_2 x_3^2,
\]

where

\[
A_1 = \begin{pmatrix} 0 & -\frac{1}{x_1} & 0 \\ 0 & 0 & -\frac{1}{x_1} \end{pmatrix},
\]

\[
A_2 = \begin{pmatrix} 1 & \frac{3}{4} x_1 - \frac{x_2}{x_1} & 0 \\ 0 & -x_2 & -\frac{1}{2} x_3 \end{pmatrix},
\]

\[
A_3 = \begin{pmatrix} \frac{1}{2} x_1 & \frac{1}{2} x_3 & \frac{1}{2} x_3 \\ -\frac{1}{2} x_3 & \frac{1}{2} x_1 & \frac{1}{2} x_3 \\ -\frac{1}{2} x_3 & -\frac{1}{2} x_1 x_3 & \frac{1}{2} x_3 + x_2 + \frac{1}{2} x_3 \end{pmatrix}.
\]

Of course, again canonical transformation generated by \(\text{(VII.7)} \) is a transformation to separation coordinates, with separation curve \(\text{(VII.8)} \).

We have two natural minimal quantizations. One, the flat minimal quantization expressed by Levi-Civita connection of metric \(g \) \(\text{(VII.6)} \) and second, expressed by Levi-Civita connection of metric tensor \(g = G^{-1} \), where \(G = A_1 \).

In \((\lambda, \mu) \) coordinates Hamiltonian operators for non-flat and flat minimal quantizations are given respective by \(\text{(III.7a)} \) and \(\text{(V.5)} \). As

\[
\Gamma_i = -\frac{1}{2} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_1 + \lambda_2 + \lambda_3} \right), \quad \frac{\partial_i \varphi}{\varphi} = \frac{1}{\lambda_1 + \lambda_2 + \lambda_3},
\]

hence both quantizations are non-separable.

The deformation \(\text{(VI.3)} \) of classical Hamiltonians, with respective vector fields

\[
u_1 = \left(\frac{1}{x_1}, 0, 0 \right), \quad \nu_2 = \left(\frac{1}{x_1} - \frac{x_2}{x_1}, 0, 0 \right), \quad \nu_3 = \left(0, \frac{1}{4} x_1^2 - \frac{x_3}{x_1}, 0 \right),
\]

leads to commuting (non-Hermitian) operators \(\text{(VI.4)} \) and the following one-dimensional eigenvalue problem

\[
(E_1 \lambda^3 + E_2 \lambda + E_3) \tilde{\psi}(\lambda) = -\frac{1}{2} \hbar^2 \left(\lambda \frac{d^2 \tilde{\psi}}{d\lambda^2} + \frac{1}{2} \frac{d\tilde{\psi}}{d\lambda} \right) + \lambda^4 \tilde{\psi}(\lambda).
\]
VIII. ACKNOWLEDGMENTS

This work is partially supported by the Scientific and Technical Research Council of Turkey (TUBITAK), 2221-Fellowships for Visiting Scientists and Scientists on Sabbatical Leave Programme.

[1] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
[2] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys. (N. Y.) 111, 61 (1978).
[3] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys. (N. Y.) 111, 111 (1978).
[4] G. Dito and D. Sternheimer, in Deformation quantization, IRMA lectures in mathematics and theoretical physics, Vol. 1, edited by G. Halbout (Walter de Gruyter, Berlin, New York, 2002) pp. 9–54.
[5] Z.-J. Liu, Lett. Math. Phys. 20, 151 (1990).
[6] J. A. Toth, J. Funct. Anal. 130, 1 (1995).
[7] J. Harnad and P. Winternitz, Commun. Math. Phys. 172, 263 (1995).
[8] I. V. Mykytiuk, A. K. Prykarpatksy, R. I. Andrushkiw, and V. H. Samoilenko, J. Math. Phys. 35, 1532 (1994).
[9] M. Błaszak and Z. Domaradski, Ann. Phys. (N. Y.) 339, 89 (2013), arXiv:1305.4518 [math-ph].
[10] M. Błaszak, Z. Domaradski, A. Sergyeyev, and B. Szablowski, Phys. Lett. A 377, 2564 (2013), arXiv:1305.5686 [nlin.SI].
[11] S. Benenti, C. Chanu, and G. Rastelli, J. Math. Phys. 43, 5183 (2002).
[12] S. Benenti, C. Chanu, and G. Rastelli, J. Math. Phys. 43, 5223 (2002).
[13] A. Sergyeyev and M. Błaszak, J. Phys. A 41, 105205 (2008).
[14] M. Błaszak and K. Marciniak, Studies in Appl. Math. 129, 26 (2012).
[15] E. K. Sklyanin, Prog. Theor. Phys. Supplement 118, 35 (1995).
[16] M. Błaszak, Phys. Rev. E 79, 056607 (2009).
[17] C. Duval and G. Valent, J. Math. Phys. 46, 053516 (2005).
[18] M. Błaszak, J. Phys. A 38, 1667 (2005).
[19] M. Błaszak and A. Sergyeyev, Phys. Lett. A 365, 28 (2007).