Expression of CaBP transcripts in retinal bipolar cells of developing and adult zebrafish

Glasauer, Stella; Neuhauss, Stephan

Abstract: Ca2+-binding proteins play important roles in neuronal function by transducing Ca2+ signals and thereby regulating crucial processes like synaptic signaling and neuronal development, growth and survival. The Ca2+-binding protein (CaBP) subfamily is part of the vast EF-hand containing calmodulin superfamily. Eight genes encoding CaBPs have been identified in zebrafish, and many of them are expressed in specific subpopulations of retinal neurons during development. Among them, cabp2a and cabp5b have been shown to be expressed in the retinal inner nuclear layer (INL). Here, we demonstrate that their paralogues, cabp2b and cabp5a, are also specifically expressed in the INL of the developing retina. By extending expression analysis of cabp2a, cabp2b, cabp5a and cabp5b to the adult retina, we reveal exclusive expression of all four genes in the INL after retinal development is completed. Thus, our findings suggest functions of cabp2a, cabp2b, cabp5a and cabp5b in Ca2+ signaling in mature retinal neurons, besides a role in the developing retina.

DOI: https://doi.org/10.19185/matters.201604000009

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Glasauer, Stella; Neuhauss, Stephan (2016). Expression of CaBP transcripts in retinal bipolar cells of developing and adult zebrafish. Matters:1-4.
DOI: https://doi.org/10.19185/matters.201604000009
Expression of CaBP transcripts in retinal bipolar cells of developing and adult zebrafish

Stella M Glasauer, Stephan C Neuhauss
University of Zürich, Institute of Molecular Life Sciences;

Abstract
Ca$^{2+}$-binding proteins play important roles in neuronal function by transducing Ca$^{2+}$ signals and thereby regulating crucial processes like synaptic signaling and neuronal development, growth and survival. The Ca$^{2+}$-binding protein (CaBP) subfamily is part of the vast EF-hand containing calmodulin superfamily. Eight genes encoding CaBPs have been identified in zebrafish, and many of them are expressed in specific subpopulations of retinal neurons during development. Among them, cabp2a and cabp5b have been shown to be expressed in the retinal inner nuclear layer (INL). Here, we demonstrate that their paralogues, cabp2b and cabp5a, are also specifically expressed in the INL of the developing retina. By extending expression analysis of cabp2a, cabp2b, cabp5a and cabp5b to the adult retina, we reveal exclusive expression of all four genes in the INL after retinal development is completed. Thus, our findings suggest functions of cabp2a, cabp2b, cabp5a and cabp5b in Ca$^{2+}$ signaling in mature retinal neurons, besides a role in the developing retina.

Objective
Here, we evaluate expression of cabp5a in the developing zebrafish retina and extend expression analysis of cabp2a, cabp2b, cabp5a and cabp5b to the adult retina.

Introduction
Ca$^{2+}$ signaling is required for many fundamental aspects of neuronal function, such as signaling at pre- and postsynaptic sites, gene activation, growth, development and survival [1]. Ca$^{2+}$-binding proteins sense and transduce Ca$^{2+}$ signals by undergoing conformational changes upon Ca$^{2+}$ binding, and consequently regulating target proteins. The largest group of Ca$^{2+}$-binding proteins are structurally conserved EF-hand containing proteins belonging to the calmodulin superfamily. Within this superfamily, the vertebrate-specific CaBP subfamily comprises CaBP1, CaBP2, CaBP4 and CaBP5 in mammals [2] [3] [4]. In zebrafish, the CaBP subfamily is expanded to 8 members encoded by cabp1a, cabp1b, cabp2a, cabp2b, cabp4a, cabp4b, cabp5a and cabp5b [5], most likely due to duplicate gene retention after teleost-specific whole genome duplication [6].

CaBPs are specifically expressed in parts of the nervous system, including the retina [2] [5] [7]. The role of CaBP4 in retinal function is currently best understood. CaBP4, being within the retina specifically expressed in photoreceptors, has an established role in retinal disease and photoreceptor synaptic function [7] [8] [9] [10] [11] [12] [13] [14]. Functions of CaBPs expressed in second-order retinal neurons (i.e. bipolar and horizontal cells) are less well understood [15] [16]. Bipolar cells of the mouse retina have been reported to express CaBP5 [2], and cabp2 transcripts have also been detected in this cell type [17]. Characterization of the CaBP family in zebrafish has revealed two orthologues for each mammalian CaBP-encoding gene, and expression analysis was performed in the developing embryo [18]. Similar to mammals zebrafish cabp5b is expressed in photoreceptors, while no specific expression pattern was detected for cabp5a. cabp1a and cabp1b are both expressed in amacrine cells. Like the mammalian orthologues, cabp2a and cabp5b are expressed in retinal bipolar cells during development, while cabp2b expression was reported exclusively in hair cells. cabp5a expression has not been detected at these stages [5].
Expression of CaBP transcripts in retinal bipolar cells of developing and adult zebrafish

Figure Legend
Expression patterns of cabp2a, cabp2b, cabp5a and cabp5b analyzed by RNA in situ hybridization. (A-D) Expression in 3 day-old zebrafish larvae. (A, B1, C1, D1) Within the retina, all four genes are expressed in the inner nuclear layer (INL, arrowheads). Note strong labeling of the INL by cabp2a, cabp5a and cabp5b in contrast to comparatively weak cabp2b signal. (B2, C2, D2) In addition to the retina, cabp2b, cabp5a and cabp5b are also expressed in the inner ear (arrows). (E-H) In the adult zebrafish retina, all four genes are exclusively expressed in the INL. While central and distal regions of the INL are labeled, the proximal region remains free from staining. Scale bars correspond 100 µm (D2, applies to A-D) and 50 µm (H, applies to E-H). GCL, ganglion cell layer, INL, inner nuclear layer; Ph, photoreceptor layer.

Results & Discussion
In order to study expression of cabp2a, cabp2b, cabp5a and cabp5b in the retina, we performed RNA in situ hybridization on developing whole-mount zebrafish and on adult retinal sections. In 3 day-old zebrafish larvae, all four genes studied show clear expression in the retinal inner nuclear layer (INL) (Fig. 1 A-D). While staining for cabp2a, cabp5a and cabp5b results in strong labeling of the INL (Fig. 1 A,B1,C1,D1), cabp2b staining is only weak in the retina (Fig. 1 B1), also when compared to strong cabp2b staining observed in the inner ear (Fig. 1 B2). Expression in the inner ear can also be detected for cabp5a and cabp5b (Fig. 1 C2,D2). In the adult retina, all four cabps examined show exclusive and strong staining in the INL (Fig. 1 G-H). Based on the shape and location of labeled cell bodies, all four genes are expressed in bipolar cells (central and distal INL), and possibly in horizontal cells (distal INL). The proximal INL, harboring amacrine and displaced ganglion cells, is devoid of staining.

Expression patterns of cabp2a and cabp5b in developing retina and ear are consistent with the findings by Di Donato et al. [5]. While expression of cabp2b has previously
been reported only in sensory hair cells, we detected weak expression in the retinal INL, likely reflecting low abundance of cabp2b transcripts in this region. Here, we show for the first time expression of cabp5a expression, which is strongly expressed in the retinal INL and in the inner ear. Our finding that expression of cabp2a, cabp2b, cabp5a and cabp5b is maintained up to adulthood strongly suggests functions in the mature retinal INL.

So far, no reports on zebrafish CaBP function exist. Studies of CaBPs in mammalian cell culture and mouse retina suggest an important modulatory role in retinal signaling [16], possibly by regulation of voltage-gated Ca$^{2+}$ channels [17] and a function in synaptic vesicle recruitment [18]. Since expression of cabp5 orthologues is conserved between mammals and zebrafish, it is well conceivable that cabp5a and cabp5b have similar tasks. The diversity of Ca$^{2+}$-binding proteins expressed in the nervous system allows finely-tuned Ca$^{2+}$ signaling through their different Ca$^{2+}$ affinities, subcellular and cellular localizations and different binding partners, making them non-redundant regulators of neuronal signaling [1]. This and other studies [2] [5] [15] suggest that bipolar cells exploit a repertoire of CaBPs for decoding Ca$^{2+}$ signals, laying out the framework for further functional studies.

We demonstrate expression of four genes encoding CaBP subfamily members in the retinal INL of zebrafish: cabp2a, cabp2b, cabp5a and cabp5b. Since all four genes are expressed in the INL of both developing and adult zebrafish, our findings suggest functions of cabp2a, cabp2b, cabp5a and cabp5b in Ca$^{2+}$ signaling in mature retinal neurons, besides possible developmental roles.

We show expression that strongly implies, but does not prove, function. The position of the cell bodies in the retina strongly suggests expression in bipolar and horizontal cells, but is not a formal proof. The study implies a functional of these CaBPs in retinal processing. The obvious next step is to genetically manipulate these genes (e.g. by CRISPR/Cas9 genome editing) and assess altered retinal function in these fish. Due to overlapping expression patterns of paralogues in the INL, it might be necessary to generate double knockouts to observe a phenotype.

Additional Information

Methods and Supplementary Material

Please see https://sciencematters.io/articles/201604000009. This work was supported by the Swiss Science Foundation (31003A_153289/1). We thank Ramon Maegert for assistance during an internship, and Kara Dannenhauer and Martin Walther for excellent animal care.

Ethics Statement

All experiments were performed in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the local authorities (Veterinäramt Zürich TV4206).

Citations

[1] Robert D. Burgoyne. "Neuronal calcium sensor proteins: generating diversity in neuronal Ca$^{2+}$ signalling". In: Nature Reviews Neuroscience 8.3 (Mar. 2007), pp. 182–193. doi: 10.1038/nrn2093. url: http://dx.doi.org/10.1038/nrn2093.

[2] F. Haeseleer et al. "Five Members of a Novel Ca$^{2+}$-binding Protein (CABP) Subfamily with Similarity to Calmodulin". In: Journal of Biological Chemistry 275.2 (Jan. 2000), pp. 1247–1260. doi: 10.1074/jbc.275.2.1247. url: http://dx.doi.org/10.1074/jbc.275.2.1247.

[3] Hannah V McCue, Lee P Haynes, and Robert D Burgoyne. "Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca$^{2+}$-binding proteins". In: BMC Research Notes 3.1 (2010), p. 118. doi: 10.1186/1756-0500-3-118. url: http://dx.doi.org/10.1186/1756-0500-3-118.

[4] Lee P. Haynes, Hannah V. McCue, and Robert D. Burgoyne. "Evolution and functional diversity of the Calcium Binding Proteins (CaBPs)". In: Front. Mol. Neurosci. 5 (2012). doi: 10.3389/fnmol.2012.00009. url: http://dx.doi.org/10.3389/fnmol.2012.00009.

[5] Vincenzo Di Donato et al. "Characterization of the Calcium Binding Protein Family in Zebrafish". In: PLoS ONE 8.1 (Jan. 2013), e53299. doi: 10.1371/journal.pone.0053299.

[6] Stella M. K. Glassauer and Stephan C. F. Neuhauss. "Whole-genome duplication in teleost fishes and its evolutionary consequences." In: *Molecular Genetics and Genomics* 289.6 (Aug. 2014). pp. 1045–1060. DOI: 10.1007/s00438-014-0889-2. URL: http://dx.doi.org/10.1007/s00438-014-0889-2.

[7] Françoise Haeseleer et al. "Essential role of Ca2+-binding Protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function". In: *Nature Neuroscience* 7.10 (Sept. 2004), pp. 1079–1087. DOI: 10.1038/nn1320. URL: http://dx.doi.org/10.1038/nn1320.

[8] Tadao Maeda et al. "A Critical Role of CaBP4 in the Cone Synapse". In: *Investigative Ophthalmology and Visual Science* 46.11 (Nov. 2005), p. 2534. DOI: 10.1167/iov.s.05-0478. URL: http://dx.doi.org/10.1167/iov.s.05-0478.

[9] Christina Zeitz et al. "Mutations in CABP4, the Gene Encoding Ca2+-binding Protein 4, Cause Autosomal Recessive Night Blindness". In: *The American Journal of Human Genetics* 79.4 (Oct. 2006), pp. 657–667. DOI: 10.1086/508067. URL: http://dx.doi.org/10.1086/508067.

[10] Karin W. Littink et al. "A Novel Homozygous Nonsense Mutation in CABP4 Causes Congenital Cone–Rod Synaptic Disorder". In: *Investigative Ophthalmology and Visual Science* 50.5 (May 2009), p. 2534. DOI: 10.1167/iov.s.08-2553. URL: http://dx.doi.org/10.1167/iov.s.08-2553.

[11] Aldahmesh et al. "A null mutation in CABP4 causes Leber’s congenital amaurosis-like phenotype". In: *Molecular vision* 16 (2010), pp. 207–212.

[12] L. Shahiel et al. "Complex Regulation of Voltage-dependent Activation and Inactivation Properties of Retinal Voltage-gated Cav1.4 L-type Ca2+ Channels by Ca2+-binding Protein 4 (CaBP4)". In: *Journal of Biological Chemistry* 287.43 (Aug. 2012), pp. 36512–36521. DOI: 10.1074/jbc.m112.392811. URL: http://dx.doi.org/10.1074/jbc.m112.392811.

[13] Xiaoni Liu et al. "Dysregulation of Ca v 1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2". In: *Channels* 7.6 (Nov. 2013), pp. 514–523. DOI: 10.4161/chan.26376. URL: http://dx.doi.org/10.4161/chan.26376.

[14] Arif O. Khan. "CABP4 Mutations Do Not Cause Congenital Stationary Night Blindness". In: *Ophthalmology* 121.3 (Mar. 2014), e15. DOI: 10.1016/j.ophtha.2013.11.005. URL: http://dx.doi.org/10.1016/j.ophtha.2013.11.005.

[15] Fred Rieke, Amy Lee, and Françoise Haeseleer. "Characterization of Ca 2+-Binding Protein 5 Knockout Mouse Retina". In: *Investigative Ophthalmology and Visual Science* 49.11 (Nov. 2008), p. 5126. DOI: 10.1167/iovs.08–2236. URL: http://dx.doi.org/10.1167/iovs.08–2236.

[16] Izabela Sokal and Françoise Haeseleer. "Insight into the Role of Ca 2+-Binding Protein 5 in Vesicle Exocytosis". In: *Investigative Ophthalmology and Visual Science* 52.12 (Nov. 2011), p. 9131. DOI: 10.1167/iovs.11–8246. URL: http://dx.doi.org/10.1167/iovs.11–8246.

[17] Y. Nakajima et al. "Isolation of ON Bipolar Cell Genes via hrGFP-coupled Cell Enrichment Using the mGluR6 Promoter". In: *Journal of Biochemistry* 145.6 (Mar. 2009), pp. 811–818. DOI: 10.1038/nprot.2007.514. URL: http://dx.doi.org/10.1038/nprot.2007.514.

[18] Vincenzo Di Donato et al. "Characterization of the Calcium Binding Protein Family in Zebrafish". In: *PLoS ONE* 8.1 (Jan. 2013), e53299. DOI: 10.1371/journal.pone.0053299. URL: http://dx.doi.org/10.1371/journal.pone.0053299.

[19] Guiying Cui et al. "Ca 2+-binding proteins tune Ca 2+-feedback to Ca v 1.3 channels in mouse auditory hair cells". In: *The Journal of Physiology* 585.3 (Dec. 2007), pp. 791–803. DOI: 10.1113/jphysiol.2007.142307. URL: http://dx.doi.org/10.1113/jphysiol.2007.142307.

[20] Mary C. Mullins et al. "Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate". In: *Current Biology* 43 (Mar. 1994), pp. 189–202. DOI: 10.1016/s0960-9822(00)00048-8. URL: http://dx.doi.org/10.1016/s0960-9822(00)00048-8.

[21] Charles B. Kimmel et al. "Stages of embryonic development of the zebrafish". In: *Dev. Dyn.* 203.3 (July 1995), pp. 253–310. DOI: 10.1002/aja.1002030302. URL: http://dx.doi.org/10.1002/aja.1002030302.

[22] Christine Thisse and Bernard Thisse. "High-resolution in situ hybridization to whole-mount zebrafish embryos". In: *Nat Protoc* 3.1 (Jan. 2008), pp. 59–69. DOI: 10.1038/nprot.2007.514. URL: http://dx.doi.org/10.1038/nprot.2007.514.