Majority Colourings of Digraphs

Stephan Kreutzer† Sang-il Oum‡ Paul Seymour§
Dominic van der Zypen David R. Wood¶

Abstract. We prove that every digraph has a vertex 4-colouring such that for each vertex \(v \), at most half the out-neighbours of \(v \) receive the same colour as \(v \). We then obtain several results related to the conjecture obtained by replacing 4 by 3.

1 Introduction

A majority colouring of a digraph is a function that assigns each vertex \(v \) a colour, such that at most half the out-neighbours of \(v \) receive the same colour as \(v \). In other words, more than half the out-neighbours of \(v \) receive a colour different from \(v \) (hence the name ‘majority’). Whether every digraph has a majority colouring with a bounded number of colours was posed as an open problem on mathoverflow [7]. In response, Ilya Bogdanov proved that a bounded number of colours suffice for tournaments. The following is our main result.

Theorem 1. Every digraph has a majority 4-colouring.

Proof. Fix a vertex ordering. First, 2-colour the vertices left-to-right so that for each vertex \(v \), at most half the out-neighbours of \(v \) to the left of \(v \) in the ordering receive the same colour as \(v \). Second, 2-colour the vertices right-to-left so that for each vertex \(v \), at most half the out-neighbours of \(v \) to the right of \(v \) in the ordering receive the same colour as \(v \). The product colouring is a majority 4-colouring.

Note that this proof implicitly uses two facts: (1) every digraph has an edge-partition into two acyclic subgraphs, and (2) every acyclic digraph has a majority 2-colouring.

The following conjecture naturally arises:

Conjecture 2. Every digraph has a majority 3-colouring.
This conjecture would be best possible. For example, a majority colouring of an odd directed cycle is proper (since each vertex has out-degree 1), and therefore three colours are necessary. There are examples with large outdegree as well. For odd $k \geq 1$ and prime $n \gg k$, let G be the directed graph with $V(G) = \{ v_0, \ldots, v_{n-1} \}$ where $N^+(v_i) = \{ v_{i+1}, \ldots, v_{i+k} \}$ and vertex indices are taken modulo n. Suppose that G has a majority 2-colouring. If some sequence $v_i, v_{i+1}, \ldots, v_{i+k}$ contains more than $\frac{k+1}{2}$ vertices of one colour, say red, and v_i is the leftmost red vertex in this sequence, then more than $\frac{k-1}{2}$ out-neighbours of v_i are red, which is not allowed. Thus each sequence $v_i, v_{i+1}, \ldots, v_{i+k}$ contains exactly $\frac{k+1}{2}$ vertices of each colour. This implies that v_i and v_{i+k+1} receive the same colour, as otherwise the sequence $v_{i+1}, \ldots, v_{i+k+1}$ would contain more than $\frac{k+1}{2}$ vertices of the colour assigned to v_{i+k+1}. For all vertices v_i and v_j, if $\ell = \frac{j-i}{k+1}$ in the finite field \mathbb{Z}_n, then $j = i + \ell(k+1)$ and $v_i, v_{i+(k+1)}, v_{i+2(k+1)}, \ldots, v_{i+\ell(k+1)} = v_j$ all receive the same colour. Thus all the vertices receive the same colour, which is a contradiction. Hence the claimed 2-colouring does not exist.

Note that being majority c-colourable is not closed under taking induced subgraphs. For example, let G be the digraph with $V(G) = \{ a, b, c, d \}$ and $E(G) = \{ ab, bc, ca, cd \}$. Then G has a majority 2-colouring: colour a and c by 1 and colour b and d by 2. But the subdigraph induced by $\{ a, b, c \}$ is a directed 3-cycle, which has no majority 2-colouring.

The remainder of the paper takes a probabilistic approach to Conjecture 2, proving several results that provide evidence for Conjecture 2. A probabilistic approach is reasonable, since in a random 3-colouring, one would expect that a third of the out-neighbours of each vertex v receive the same colour as v. So one might hope that there is enough slack to prove that for every vertex v, at most half the out-neighbours of v receive the same colour as v. Section 2 proves Conjecture 2 for digraphs with very large minimum outdegree (at least logarithmic in the number of vertices), and then for digraphs with large minimum outdegree (at least a constant) and not extremely large maximum indegree. Section 3 shows that large minimum outdegree (at least a constant) is sufficient to prove the existence of one of the colour classes in Conjecture 2. Section 4 discusses multi-colour generalisations of Conjecture 2.

Before proceeding, we mention some related topics in the literature:

- For undirected graphs, the situation is much simpler. Lovász [4] proved that for every undirected graph G and integer $k \geq 1$, there is a k-colouring of G such that every vertex v has at most $\frac{1}{k} \deg(v)$ neighbours receiving the same colour as v. The proof is simple. Consider a k-colouring of G that minimises the number of monochromatic edges. Suppose that some vertex v coloured i has greater than $\frac{1}{k} \deg(v)$ neighbours coloured i. Thus less than $\frac{k-1}{k} \deg(v)$ neighbours of v are not coloured i, and less than $\frac{1}{k} \deg(v)$ neighbours of v receive some colour $j \neq i$. Thus, if v is recoloured j, then the number of monochromatic edges decreases. Hence no vertex v has greater than $\frac{1}{k} \deg(v)$ neighbours with the same
colour as v.

- Seymour [6] considered digraph colourings such that every non-sink vertex receives a colour different from some outneighbour, and proved that a strongly-connected digraph G admits a 2-colouring with this property if and only if G has an even directed cycle. The proof shows that every digraph has such a 3-colouring, which we repeat here: We may assume that G is strongly connected. In particular, there are no sink vertices. Choose a maximal set X of vertices such that $G[X]$ admits a 3-colouring where every vertex has a colour different from some outneighbour. Since any directed cycle admits such a colouring, $X \neq \emptyset$. If $X \neq V(G)$, then choose an edge uv entering X and colour u different from the colour of v, contradicting the maximality of X. So $X = V(G)$. (The same proof shows two colours suffice if you start with an even cycle.)

- Alon [1, 2] posed the following problem: Is there a constant c such that every digraph with minimum outdegree at least c can be vertex-partitioned into two induced digraphs, one with minimum outdegree at least 2, and the other with minimum outdegree at least 1?

- Wood [8] proved the following edge-colouring variant of majority colourings: For every digraph G and integer $k \geq 2$, there is a partition of $E(G)$ into k acyclic subgraphs such that each vertex v of G has outdegree at most $\left\lceil \frac{\deg^+(v)}{k-1} \right\rceil$ in each subgraph. The bound $\left\lceil \frac{\deg^+(v)}{k-1} \right\rceil$ is best possible, since in each acyclic subgraph at least one vertex has outdegree 0.

2 Large Outdegree

We now show that minimum outdegree at least logarithmic in the number of vertices is sufficient to guarantee a majority 3-colouring. All logarithms are natural.

Theorem 3. Every graph G with n vertices and minimum outdegree $\delta > 72 \log(3n)$ has a majority 3-colouring. Moreover, at most half the out-neighbours of each vertex receive the same colour.

Proof. Randomly and independently colour each vertex of G with one of three colours $\{1, 2, 3\}$. Consider a vertex v with out-degree d_v. Let $X(v, c)$ be the random variable that counts the number of out-neighbours of v coloured c. Of course, $E(X(v, c)) = d_v/3$. Let $A(v, c)$ be the event that $X(v, c) > d_v/2$. Note that $X(v, c)$ is determined by d_v independent trials and changing the outcome of any one trial changes $X(v, c)$ by at most 1. By the simple concentration bound\(^1\),

$$
P(A(v, c)) \leq \exp\left(-\frac{(d_v/6)^2}{2d_v}\right) = \exp\left(-\frac{d_v}{72}\right) \leq \exp\left(-\frac{\delta}{72}\right).$$

\(^1\) The simple concentration bound says that if X is a random variable determined by d independent trials, such that changing the outcome of any one trial affects X by at most c, then $P(X > E(X) + t) \leq \exp\left(-t^2/2c^2d\right)$; see [5, Chapter 10]. With $E(X_v) = d_v/3$ and $t = d_v/6$ and $c = 1$ we obtain the desired upper bound on $P(X_v > d_v/2)$.

3
The expected number of events $A(v, c)$ that hold is
\[
\sum_{v \in V(G)} \sum_{c \in \{1, 2, 3\}} P(A(v, c)) \leq 3n \exp(-\delta/72) < 1,
\]
where the last inequality holds since $\delta > 72 \log(3n)$. Thus there exists colour choices such that no event $A(v, c)$ holds. That is, a majority 3-colouring exists.

The following result shows that large outdegree (at least a constant) and not extremely large indegree is sufficient to guarantee a majority 3-colouring.

Theorem 4. Every digraph with minimum out-degree $\delta \geq 1200$ and maximum in-degree at most $\exp(\delta/72)/12\delta$ has a majority 3-colouring. Moreover, at most half the out-neighbours of each vertex receive the same colour.

Proof. We assume $\delta \geq 1200$, as otherwise the minimum out-degree δ is greater than the maximum in-degree $\exp(\delta/72)/12\delta$, which does not make sense.

We use the following weighted version of the Local Lemma [3, 5]: Let $A := \{A_1, \ldots, A_n\}$ be a set of ‘bad’ events, such that each A_i is mutually independent of $A \setminus (D_i \cup \{A_i\})$, for some subset $D_i \subseteq A$. Assume there are numbers $t_1, \ldots, t_n \geq 1$ and a real number $p \in [0, \frac{1}{4}]$ such that for $1 \leq i \leq n$,
\[
(a) \quad \mathbb{P}(A_i) \leq p^{t_i} \quad \text{and} \quad (b) \quad \sum_{A_j \in D_i} (2p)^{t_j} \leq t_i/2.
\]

Then with positive probability no event A_i occurs.

Define $p := \exp(-\delta/72)$. Since $\delta \geq 1200$ we have $p \in [0, \frac{1}{4}]$. Randomly and independently colour each vertex of G with one of three colours $\{1, 2, 3\}$. Consider a vertex v with out-degree d_v. Let $X(v, c)$ be the random variable that counts the number of out-neighbours of v coloured c. Of course, $\mathbb{E}(X(v, c)) = d_v/3$. Let $A(v, c)$ be the event that $X(v, c) > d_v/2$. Let $A := \{A(v, c) : v \in V(G), c \in \{1, 2, 3\}\}$ be our set of events. Let $t(v, c) := t_v := d_v/\delta$ be the associated weight. Then $t_v \geq 1$. It suffices to prove that conditions (a) and (b) hold.

Note that $X(v, c)$ is determined by d_v independent trials and changing the outcome of any one trial changes $X(v, c)$ by at most 1. By the simple concentration bound,
\[
\mathbb{P}(A(v, c)) \leq \exp(-d_v/6)^2/2d_v) = \exp(-d_v/12) = \exp(-\delta t_v/72) = p^{t_v}.
\]

Thus condition (a) is satisfied. For each event $A(v, c)$ let $D(v, c)$ be the set of all events $A(w, c') \in A$ such that v and w have a common out-neighbour. Then $A(v, c)$ is mutually
independent of \(A \setminus (D(v, c) \cup \{A(v, c)\}) \). Since \(t_w \geq 1 \),

\[
\sum_{A(w, c') \in D(v, c)} (2p)^{t_w} \leq \sum_{A(w, c') \in D(v, c)} (2p)^1 = 2p|D(v, c)|.
\]

Since each out-neighbour of \(v \) has in-degree at most \(\exp(\delta/72)/12\delta \), we have \(|D(v, c)| \leq d_v \exp(\delta/72)/4\delta \) and

\[
\sum_{A(w, c') \in D(v, c)} (2p)^{t_w} \leq pd_v \exp(\delta/72)/2\delta = \exp(-\delta/72)t_v \exp(\delta/72)/2 = t_v/2.
\]

Thus condition (b) is satisfied. By the local lemma, with positive probability, no event \(A(v, c) \) occurs. That is, a majority 3-colouring exists. \(\square \)

Note that the conclusion in Theorem 3 and Theorem 4 is stronger than in Conjecture 2. We now show that such a conclusion is impossible (without some extra degree assumption).

Lemma 5. For all integers \(k \) and \(\delta \), there are infinitely many digraphs \(G \) with minimum outdegree \(\delta \), such that for every vertex \(k \)-colouring of \(G \), there is a vertex \(v \) such that all the out-neighbours of \(v \) receive the same colour.

Proof. Start with a digraph \(G_0 \) with at least \(k\delta \) vertices and minimum outdegree \(\delta \). For each set \(S \) of \(\delta \) vertices in \(G_0 \), add a new vertex with out-neighbourhood \(S \). Let \(G \) be the digraph obtained. In every \(k \)-colouring of \(G \), at least \(\delta \) vertices in \(G_0 \) receive the same colour, which implies that for some vertex \(v \in V(G) \setminus V(G_0) \), all the out-neighbours of \(v \) receive the same colour. \(\square \)

3 Stable Sets

A set \(T \) of vertices in a digraph \(G \) is a stable set if for each vertex \(v \in T \), at most half the out-neighbours of \(v \) are also in \(T \). A majority colouring is a partition into stable sets. Of course, if a digraph has a majority 3-colouring, then it contains a stable set with at least one third of the vertices. The next lemma provides a sufficient condition for the existence of such a set.

Theorem 6. Every digraph \(G \) with \(n \) vertices and minimum outdegree at least 22 has a stable set with at least \(\frac{n}{3} \) vertices.

Theorem 6 is proved via the following more general lemma.
Lemma 7. For $0 < \alpha < p < \beta < 1$, every digraph G with minimum outdegree at least

$$\delta := \left\lfloor \frac{(\beta + p) \log \left(\frac{p - \alpha}{p - \beta} \right)}{(\beta - p)^2} \right\rfloor$$

contains a set T of at least αn vertices, such that $|N^+_G(v) \cap T| \leq \beta |N^+_G(v)|$ for every vertex $v \in T$.

Proof. Let $d_v := |N^+_G(v)|$ be the outdegree of each vertex v of G. Initialise $S := \emptyset$. For each vertex v of G, add v to S independently and randomly with probability p. Let $X_v := |N^+_G(v) \cap S|$. Note that $X_v \sim \text{Bin}(d_v, p)$ and

$$P(X_v > \beta d_v) = \sum_{k \geq \lceil \beta d_v \rceil + 1} \binom{d_v}{k} p^k (1 - p)^{d_v - k}. \quad (1)$$

By the Chernoff bound2,

$$P(X_v > \beta d_v) \leq \exp \left(-\frac{(\beta - p)^2}{\beta + p} d_v \right) \leq \exp \left(-\frac{(\beta - p)^2}{\beta + p} \delta \right) \leq \frac{p - \alpha}{p}. \quad (2)$$

where the last inequality follows from the definition of δ. Let $B := \{v \in S : X_v > \beta d_v\}$. Then

$$E(|B|) = \sum_{v \in V(G)} P(v \in S \text{ and } X_v > \beta d_v).$$

Since the events $v \in S$ and $X_v > \beta d_v$ are independent,

$$E(|B|) = \sum_{v \in V(G)} P(v \in S) P(X_v > \beta d_v) = p \sum_{v \in V(G)} P(X_v > \beta d_v) \leq (p - \alpha)n.$$

Let $T := S \setminus B$. Thus $|N^+_G(v) \cap T| \leq \beta d_v$ for each vertex $v \in T$, as desired. By the linearity of expectation,

$$E(|T|) = E(|S|) - E(|B|) = pn - E(|B|) \geq \alpha n.$$

Thus there exists the desired set T. \qed

Proof of Theorem 6. The proof follows that of Lemma 7 with one change. Let $\alpha := \frac{1}{3}$ and $\beta := \frac{1}{2}$ and $p := 0.38$. Then $\delta = 129$. If $22 \leq d_v \leq 128$ then direct calculation of the formula in (1) verifies that $P(X_v > \beta d_v) \leq \frac{p - \alpha}{p}$, as in (2). For $d_v \geq 129$ the Chernoff bound proves (2). The rest of the proof is the same as in Lemma 7. \qed

2 The Chernoff bound implies that if $X \sim \text{Bin}(d, p)$ then $P(X \geq (1 + \epsilon)pd) \leq \exp(-\frac{\epsilon^2}{3} pd)$ for $\epsilon \geq 0$. With $\epsilon = \frac{p - 1}{p} \leq 1$ we have $P(X > \beta d) \leq \exp(-\frac{(\beta - p)^2}{p + \beta} d)$.

6
Note the following corollary of Lemma 7 obtained with $\alpha = \frac{1}{2} - \epsilon$ and $p = \frac{1}{2} - \frac{\epsilon}{2}$. This says that graphs with large minimum outdegree have a stable set with close to half the vertices.

Proposition 8. For $0 < \epsilon < \frac{1}{2}$, every n-vertex digraph G with minimum outdegree at least $2\epsilon^{-2}(2 - \epsilon) \log(\frac{1}{1 - \epsilon})$ contains a stable set of at least $(\frac{1}{2} - \epsilon)n$ vertices.

4 Multi-Colour Generalisation

The following natural generalisation of Conjecture 2 arises.

Conjecture 9. For $k \geq 2$, every digraph has a vertex $(k + 1)$-colouring such that for each vertex v, at most $\frac{1}{k}\deg^+(v)$ out-neighbours of v receive the same colour as v.

The proof of Theorem 1 generalises to give an upper bound of k^2 on the number of colours in Conjecture 9. It is open whether the number of colours is $O(k)$. This conjecture would be best possible, as shown by the following example. Let G be the k-th power of an n-cycle, with arcs oriented clockwise, where $n \geq 2k + 3$ and $n \not\equiv 0 \pmod{k + 1}$. Each vertex has outdegree k. Say G has a vertex $(k + 1)$-colouring such that for each vertex v, at most ϵk out-neighbours of v receive the same colour as v. If $\epsilon k < 1$ then the underlying undirected graph of G is properly coloured, which is only possible if $n \equiv 0 \pmod{k + 1}$. Hence $\epsilon \geq \frac{1}{k}$.

Lemma 7 with $\alpha = \frac{1}{k} - \epsilon$ and $\beta = \frac{1}{k}$ and $p = \frac{1}{k} - \frac{\epsilon}{2}$ implies the following ‘stable set’ version of Conjecture 9 for digraphs with large minimum outdegree.

Proposition 10. For $k \geq 2$ and $\epsilon \in (0, \frac{1}{k})$, every n-vertex digraph G with minimum outdegree at least $2\epsilon^{-2}(\frac{k}{2} - \epsilon) \log(\frac{2k}{2k - 1})$ contains a set T of at least $(\frac{1}{k} - \epsilon)n$ vertices, such that for every vertex $v \in T$, at most $\frac{1}{k}\deg^+(v)$ out-neighbours of v are also in T.

5 Open Problems

In addition to resolving Conjecture 2, the following open problems arise from this paper:

1. Is there a constant $\beta < 1$ for which every digraph has a 3-colouring, such that for every vertex v, at most $\beta \deg^+(v)$ out-neighbours receive the same colour as v?

2. Does every tournament have a majority 3-colouring?

3. Does every Eulerian digraph have a majority 3-colouring? Note that for an Eulerian digraph G, if each vertex v has in-degree and out-degree $\deg(v)$, then by the result for undirected graphs mentioned in Section 1, the underlying undirected graph of G has a
4-colouring such that each vertex v has at most $\frac{1}{2} \deg(v)$ in- or out-neighbours with the same colour as v. In particular, G has a majority 4-colouring. By an analogous argument every Eulerian digraph has a 3-colouring such that each vertex v has at most $\frac{2}{3} \deg(v)$ in- or out-neighbours with the same colour as v, thus proving a special case of the first question above.

4. Does every digraph in which every vertex has in-degree and out-degree k have a majority 3-colouring? A variant of Theorem 4 proves this result for $k \geq 144$.

5. Is there a characterisation of digraphs that have a majority 2-colouring (or a polynomial time algorithm to recognise such digraphs)?

6. Does every digraph have a $O(k)$-colouring such that for each vertex v, at most $\frac{1}{k} \deg^+(v)$ out-neighbours receive the same colour as v (for all $k \geq 2$)?

7. A digraph G is majority c-choosable if for every function $L : V(G) \to \mathbb{Z}$ with $|L(v)| \geq c$ for each vertex $v \in V(G)$, there is a majority colouring of G with each vertex v coloured from $L(v)$. Is every digraph majority c-choosable for some constant c? The proof of Theorem 1 shows that acyclic digraphs are majority 2-choosable, and obviously Theorem 3 and Theorem 4 extend to the setting of choosability.

8. Consider the following fractional setting. Let $S(G)$ be the set of all stable sets of a digraph G. Let $S(G, v)$ be the set of all stable sets containing v. A fractional majority colouring is a function that assigns each stable set $T \in S(G)$ a weight $x_T \geq 0$ such that $\sum_{T \in S(G, v)} x_T \geq 1$ for each vertex v of G. What is the minimum number k such that every digraph G has a fractional majority colouring with total weight $\sum_{T \in S(G)} x_T \leq k$? Perhaps it is less than 3.

Acknowledgements

This research was initiated at the Workshop on Graph Theory at Bellairs Research Institute (March 25 – April 1, 2016).

References

[1] Noga Alon. Disjoint directed cycles. *J. Combin. Theory Ser. B*, 68(2):167–178, 1996.
doi: 10.1006/jctb.1996.0062. MR: 1417794.

[2] Noga Alon. Splitting digraphs. *Combin. Probab. Comput.*, 15(6):933–937, 2006.
doi: 10.1017/S0963548306008042. MR: 2271836.
[3] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, volume 10 of Colloq. Math. Soc. János Bolyai, pages 609–627. North-Holland, 1975. https://www.renyi.hu/~p_erdos/1975-34.pdf.

[4] László Lovász. On decomposition of graphs. Studia Sci. Math. Hungar., 1:237–238, 1966. MR: 0202630.

[5] Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, volume 23 of Algorithms and Combinatorics. Springer, 2002.

[6] Paul D. Seymour. On the two-colouring of hypergraphs. Quarterly J. Math, 25(1):303–311, 1974. doi: 10.1093/qmath/25.1.303. MR: 0371710.

[7] Dominic van der Zypen. Majority coloring for directed graphs. 2016. http://mathoverflow.net/questions/233014/majority-coloring-for-directed-graphs.

[8] David R. Wood. Bounded degree acyclic decompositions of digraphs. J. Combin. Theory Ser. B, 90:309–313, 2004. doi: 10.1016/j.jctb.2003.08.004. MR: 2034031.