SUPPLEMENTARY MATERIAL

Three new acyltyramines from *Anisodus luridus* Link et Otto (Solanaceae)

Lalit Kumar Lal Das, Mradul Verma and Mahendra Sahai*

*Corresponding author: Tel. +91-9415812564
E-mail: m.sahai@rediffmail.com*
Abstract

Three new acyltyramines, N-[2-(4-hydroxyphenyl)ethyl]hentriacontanamide (1), N-[2-(4-hydroxyphenyl)ethyl]nonacosanamide (2) and N-[2-(4-hydroxyphenyl)ethyl]heneicosanamide (3) have been isolated from n-hexane extract of leaves of *Anisodus luridus* (Solanaceae). Successive extraction of defatted leaves of *A. luridus* with methanol afforded a residue on removal of solvent under reduced pressure. Residue was partitioned by means of chloroform and *n*-butanol. Chromatographic resolution of *n*-BuOH extract afforded six known compounds, apigenin (4), luteolin (5), quercetin (6), quercetin-3-O-α-L-rhamnoside (7), kaempferol 3-O-α-rhamnoside (8) and quercetin 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (9). The structures of the isolated compounds were assigned with the help of spectroscopic techniques. This is the first report of isolation of these compounds from this plant.

Keywords: *Anisodus luridus*, acyltyramines, leaves, Solanaceae
Table S1: \(^1^H\) and \(^{13}C\) NMR spectral data of compounds 1, 2 and 3

Position	\(\delta_C\)	\(\delta_H\)	\(\delta_C\)	\(\delta_H\)	\(\delta_C\)	\(\delta_H\)
2	34.6	2.11 t (7.5, 8 Hz)	34.6	2.11 t (10, 5 Hz)	34.6	2.11 t (7.5 Hz)
3	25.7	1.25 br s	25.7	1.57 t (5, 10 Hz)	25.7	1.25 br s
21	*	*	*	*	13.9	0.88 t (6.5, 7 Hz)
29	*	*	13.9	0.88 t (5 Hz)	-	-
31	13.9	0.88 t (7 Hz)	-	-	-	-
1'	40.6	3.47 q (6.5 Hz)	40.6	3.43 q (6.6 Hz)	40.8	3.47 q (6.5 Hz)
2'	36.6	2.74 t (7 Hz)	36.6	2.71 t (5, 10 Hz)	36.6	2.74 t (7, 6.5 Hz)
3'	129.7	-	129.7	-	129.7	-
4',8'	129.6	7.05 d (8 Hz)	129.6	7.02 d (10 Hz)	129.6	7.05 d (8.5 Hz)
5',7'	115.3	6.78 d (8 Hz)	115.3	6.77 d (10 Hz)	115.3	6.78 d (8.5 Hz)
6'	155.2	-	155.2	-	155.2	-

* Chemical shifts for methylenes of respective acyltyramine are shown in experimental section for the sake of proper depiction of data in the table.

\(\delta_H\) (500 MHz, CDCl\(_3\)) ; \(\delta_C\) (125 MHz, CDCl\(_3\) / CDCl\(_3\)-CD\(_3\)OD)
Table S2: 1H NMR spectral data of compounds 4-9

Position	Compound 4'	Compound 5	Compound 6	Compound 7	Compound 8	Compound 9						
	δ_H	δ_C										
2	2	157.3	164.4	146.4	157.0	155.9	156.8					
3	6.97,	103.7	6.78,	103.2	135.4	134.4	133.3	133.5				
	s	s										
4	-	181.6	-	182.0	-	175.5	-	172.2	-	176.9	-	177.6
5	-	163.7	-	99.1	-	160.7	-	161.3	-	158.8	-	161.4
6	5.88,	98.9	6.29,	164.2	6.17	98.2	6.21,	99.1	6.22	97.2	6.15,	99.1
	s	d	, d	d	d	s						
	1.9	1.8	1.8	1.8								
	Hz	Hz	Hz	Hz								
7	-	164.6	-	94.2	-	164.0	-	164.6	-	163.1	-	164.8
8	6.03,	94.0	6.55,	157.6	6.42	93.5	6.39,	94.1	6.39,	92.2	6.35,	94.6
	s	d	, d	d	d	s						
	1.9	1.8	1.8	1.8								
	Hz	Hz	Hz	Hz								
9	-	157.3	-	104.6	-	156.4	-	156.9	-	156.6	-	156.9
10	-	103.4	-	161.8	-	103.2	-	104.0	-	103.3	-	104.1
1'	-	121.1	-	121.8	-	122.1	-	121.2	-	120.0	-	121.9
2'	7.70,	128.4	7.54,	113.7	7.64	115.3	7.30,	115.9	6.95,	129.2	7.51,	116.5
	d	dd	, d	d	d	s						
	8.8	7.5	2.1	1.9	7.0							
	Hz	Hz	Hz	Hz								
3'	6.57,	116.0	-	146.6	-	144.9	-	145.6	7.77,	113.9	-	145.0
	d								d			
	8.8								7.0			
	Hz								Hz			
4'	-	161.2	-	150.0	-	148.1	-	148.5	-	160.4	-	148.0
5'	6.57,	116.0	7.00,	116.3	6.88	115.6	6.86,	116.1	7.77,	113.9	6.83,	115.5
------	------	------	------	------	------							
d,	d,	d,	d,	d,	d,							
8.8	7.5	8.7	8.8	7.0	9.1							
Hz	Hz	Hz	Hz	Hz	Hz							
6′	7.70,	128.4	7.52,	119.3	7.63	121.7						
d,	dd,	dd,	d,	d,	d,							
8.8	7.5	8.7	8.8	7.0	9.1							
Hz	&	&	Hz	Hz	Hz							
2.0	2.1	1.9										
1″	-	-	-	-	-							
			5.25,	102.3	5.39,	100.8	101.5					
d,	d,	d,	1.8	1.2	5							
Hz	Hz	Hz										
2″	-	-	-	-	-							
			3.69,	78.8	4.0,	69.4	4.5,	74.3				
-					3.0,		3.0,					
m			3.10,			m	m					
3″	-	-	-	-	-							
			3.69,	78.8	4.0,	69.5	4.5,	76.7				
-					3.0,		3.0,					
m			3.10,			m	m					
4″	-	-	-	-	-							
			3.69,	71.7	4.0,	70.6	4.5,	70.3				
-					3.0,		3.0,					
m			3.10,			m	m					
5″	-	-	-	-	-							
			3.69,	70.5	4.0,	69.3	4.5,	76.1				
-					3.0,		3.0,					
m			3.10,			m	m					
6″	-	-	-	-	-							
			0.85,	17.9	0.94,	14.9	4.5,	67.3				
d,	d,	d,	6.0	6.9	3.0,							
Hz	Hz	Hz										
1''	-	-	-	-	-	-	-	-	-	4.5-3.0, 101.6 m		
2''	-	-	-	-	-	-	-	-	-	4.5-3.0, 70.8 m		
3''	-	-	-	-	-	-	-	-	-	4.5-3.0, 70.6 m		
4''	-	-	-	-	-	-	-	-	-	4.5-3.0, 72.1 m		
5''	-	-	-	-	-	-	-	-	-	4.5-3.0, 68.5 m		
6''	-	-	-	-	-	-	-	-	-	4.5-3.0, 17.9 m		
Figure S1: FT-IR spectra of alkyltrimines 1-3
Figure S2: 1H NMR spectrum of compound 1 (N-hentriacontanoyltyramine)

Figure S3: 1H NMR spectrum of compound 2 (N-nonacosanoyltyramine)
Figure S4: 1H NMR spectrum of compound 3 (N-heneicosanoyltyramine)

Figure S5: 13C NMR spectrum
Figure S6: $^1H-^1H$ COSY spectrum