Abstract—Progress requires greater global energy interconnection. This paper presents an overview of the topologies and control techniques applied to microgrids, by means of an updated bibliographic research and the most relevant articles on the use of power electronics in the microgrids interconnection. The topologies and control techniques investigated in this paper expose a reality that leads to commercial solutions applied to microgrids, giving new tools to the energy market.

Keywords—Power electronics, Microgrids, Interconnection, Topologies, Power Converters, Control, HVDC, Transmission, Electricity, Voltage, Smart Grids, Optimization.

I. INTRODUCCIÓN

El concepto de microrredes se concibe dentro del marco de desarrollar una solución energética más flexible y confiable. Las microrredes poseen la característica de contar con diversos componentes de electrónica de potencia y técnicas de control en su composición. Hoy en día, dentro del área de investigación de este tema se dispone de una gran variedad de trabajos publicados relacionados a los componentes que constituyen una microrred, como revisiones de los avances en topologías y técnicas de control de convertidores DC-DC para la interconexión de microrredes, especialmente para la producción de energía proveniente de paneles fotovoltaicos [1], así también topologías desarrolladas de tres puertos para convertidores DC-DC, las cuales permiten la integración de sistemas de almacenamiento energético y su extensión e inclusión a inversores DC-AC [2]. El presente paper describe las topologías existentes de electrónica de potencia junto a las técnicas de control utilizadas para la interconexión de microrredes eléctricas. A diferencia de los trabajos mencionados con anterioridad y otros similares disponibles en revistas científicas, el enfoque principal de este paper es exponer una visión global de los avances de la electrónica de potencia aplicada a microrredes.

II. ACTUALES TOPOLOGÍAS EXISTENTES EN ELECTRÓNICA DE POTENCIA

Dentro de las topologías actuales se encuentran las de conversión AC-DC, DC-DC, DC-AC y AC-AC [1]. Mediante la combinación de estas topologías es posible encontrar configuraciones híbridas que permiten realizar diversas aplicaciones determinadas relacionadas a la electrónica de potencia [2].

F. Díaz, Alumno Memorista de Pregrado de Ingeniería civil Mecatrónica, miembro de Laboratorio de Conversión de Energías y Electrónica de Potencia (LCEEP), Facultad de Ingeniería de la Universidad de Talca, campus Curicó, Chile, email: fadiaz11@ alumnos.utalca.cl.

M. Rivera, Director de Laboratorio de Conversación de Energías y Electrónica de Potencia (LCEEP), Facultad de Ingeniería de la Universidad de Talca, campus Curicó, Chile, email: marcoriv@utalca.cl.

P. Wheeler, Jefe de departamento de Ingeniería Eléctrica y Electrónica, Universidad de Nottingham, Inglaterra, email: patrick.wheeler@nottingham.ac.uk.

Fig. 1. PFC para compensación de armónicos: (a) fuente de voltaje y (b) fuente de corriente [7].

A. Convertidores AC-DC

Usualmente la generación de energía eléctrica a gran escala es de tipo alterna siendo generada mediante alternadores AC. Esta energía generada alimenta cargas que requieren de un suministro alterno (AC) o continuo (DC), siendo necesaria la conversión AC-DC mediante convertidores de potencia [3]. Estos convertidores pueden ser utilizados para operar en aplicaciones de bajo, medio y alto voltaje [4]. El puente de diodos o puente rectificador es la configuración más típica utilizada en la rectificación de corriente, sin embargo, este genera una distorsión armónica (THD) considerable [5], por lo que se ha optado por configuraciones más eficientes, donde los diodos han sido reemplazados por circuitos de corrección de factor de potencia (PFC), con un THD que alcanza el estándar IEEE del 5% permitido. [6]. En la Fig. 1 se observa las topologías existentes de PFC compensación de armónicos de fuente de voltaje (a) y fuente de corriente (b).
B. Convertidores DC-AC

Los convertidores DC-AC o inversores permiten generar salidas de magnitud, fase y frecuencia determinadas a partir de una fuente DC. Los inversores son utilizados en una amplia variedad de aplicaciones, desde la interconexión de paneles solares fotovoltaicos, acumuladores o baterías hasta aplicaciones industriales para controlar alta potencia [8]. Dentro de las topologías más utilizadas en el mercado se encuentran VSI (inversor con fuente de voltaje), CSI (inversor con fuente de corriente) e inversores basados en topologías puente H [9].

C. Convertidores DC-DC

Los convertidores DC-DC reciben una entrada de voltaje DC para entregar una salida DC de mayor o menor nivel de voltaje, invirtiendo su polaridad para algunas topologías. En microrredes, estos convertidores son ampliamente utilizados como interfaz entre la red eléctrica y sistemas de almacenamiento o vehículos eléctricos. Dentro del mercado se encuentran dos tipos de estos convertidores, los aislados y no aislados [10]. Los convertidores DC-DC sin aislación se caracterizan por disponer de almacenamiento electromagnético lo que los hace grandes y pesados. Estos convertidores pueden clasificarse en convertidores reductores, elevadores y reductor-elevador [7].

1) Convertidores DC-DC sin Aislamiento Galvánico:

a) Convertidor Buck: El convertidor buck es un convertidor reductor de voltaje, el cual mediante una alimentación DC obtiene una salida DC con un nivel de voltaje más bajo [10].

b) Convertidor Boost: El convertidor boost se caracteriza por ser alimentado por un voltaje DC y obtener una salida DC con un nivel de voltaje más bajo [11].

c) Convertidor Buck-Boost: El convertidor buck-boost puede actuar como reductor y como elevador de voltaje. Este convertidor actúa como un convertidor Buck o un convertidor Boost dependiendo del ciclo de trabajo del transistor de conmutación. Este convertidor solo puede trabajar en modo continuo [12].

d) Convertidor Cuk: El convertidor cuk es un convertidor reductor de voltaje y su salida tiene una polaridad inversa al de entrada. Este convertidor tiene la capacidad de trabajar en modo continuo o discontinuo [13].

e) Convertidor SEPIC: El convertidor SEPIC (single-ended primary inductor converter) es un convertidor reductor con una salida no inversora. Los convertidores SEPIC también son utilizados como convertidores DC-DC aislados mediante la conexión en serie de dos de estos convertidores [14].

f) Convertidor Zeta: El convertidor zeta puede actuar como reductor o como elevador de voltaje, además de tener una salida no inversora. Este convertidor a menudo se le conoce como doble SEPIC [15].

2) Convertidores DC-DC con Aislamiento Galvánico:

a) Convertidor Flyback: El convertidor flyback es un convertidor DC-DC similar al convertidor Buck-Boost en funcionamiento. Es apropiado para aplicaciones de baja potencia, menores a 100W [13].

b) Convertidor Forward: Este convertidor puede variar el nivel de voltaje de su salida dependiendo del número de vueltas del transformador. Es apropiado para aplicaciones de media potencia, entre 200W y 500W [13].

c) Convertidor Push-Pull: El transformador de este convertidor tiene excitación bidireccional. Presenta un bajo nivel de ruido y un flujo constante de corriente [16].

d) Convertidor Medio Puente: La fuente de alimentación de este convertidor puede ser dividida por medio de la implementación de capacitores, obteniendo distintos niveles de alimentación. Esta topología permite un menor grado de deterioro del conmutador y usualmente es utilizado en aplicaciones sobre los 500W [17].

e) Convertidor Puente Completo: Este convertidor opera como un convertidor reductor de voltaje. Es utilizado en aplicaciones de alta potencia, sobre 1kW [18].
D. Convertidores AC-AC

Históricamente los convertidores AC-AC han sido ampliamente utilizados en la industria, usualmente para controlar la velocidad de giro de motores AC. Hoy en día estos convertidores están siendo utilizados y estudiados para la interconexión entre microrredes y sistemas de generación eléctrica. Estos convertidores son capaces de entregar una salida AC con diferentes amplitudes, fases o frecuencias, según lo requiera la carga. Básicamente un convertidor AC-AC puede conformarse por un rectificador y un inversor unidos por un enlace DC, sin embargo existen topologías que cumplen el mismo propósito sin contar con un enlace DC. Los convertidores de este tipo básicamente se dividen en dos tipos, cicloconversores y convertidores matriciales.

1) Cicloconversores: Los cicloconversores usualmente son conocidos como variadores de frecuencia, convierten la alimentación AC de una frecuencia determinada a una salida AC de frecuencia deseada distinta a la de alimentación, sin la necesidad de un enlace DC. Los cicloconversores son utilizados ampliamente en la industria para realizar el control de velocidad en motores AC de alta potencia [19].

2) Convertidores Matriciales: Los convertidores matriciales están diseñados con un tamaño compacto, haciendo uso de switches bidireccionales, obteniendo en la salida una señal AC con un factor de potencia unitario [20].

III. ACTUALES TÉCNICAS DE CONTROL APLICADAS A CONVERTIDORES DE POTENCIA

Las técnicas de control en convertidores de potencia han evolucionado en función de las necesidades que requieren éstos, en relación a generar una entrada o salida de mayor eficiencia y fiabilidad. Su función es regular las variables principales, como voltaje, corriente o potencia, con la finalidad de obtener un máximo rendimiento [21]. El desarrollo de la teoría de control a permitido establecer técnicas de control variadas para la interconexión de microrredes con sistemas de generación, como las convencionales, donde se encuentran técnicas como control de banda de histéresis, control lineal, control de modo deslizante (SMC) y predictivo. Así como técnicas de control inteligentes basadas en el desarrollo del campo de la inteligencia artificial, tales como control por redes neuronales artificiales (ANN), lógica difusa y ANFIS (adaptive neuro fuzzy interface system) [22].

A. Control de Banda de Histéresis

El control por banda de histéresis es un control de tipo no lineal relativamente simple y considera un ancho de banda de histéresis dado para el error. Esta técnica de control además puede implementarse como control de corriente o control directo de potencia (Direct Power Control, DPC). El ancho de banda de histéresis que caracteriza a esta técnica de control conlleva la necesidad de implementar filtros de gran tamaño, con un alto costo monetario, debido al considerable contenido armónico que se genera, producto de la conmutación variable que se produce al tener ese ancho de banda [23]. En microrredes, es utilizado como control de corriente, con la finalidad de ajustar la corriente de salida a la red, asegurando la correcta transmisión de la energía [24].

B. Control Lineal

Para controladores lineales en la interconexión de microrredes es común el uso de controladores PI y controladores PR. Estos se basan principalmente en generar estabilidad en el dominio de la frecuencia. El tipo de control lineal más utilizado es el proporcional integral (PI), sin embargo, este tipo de control presenta problemas frente a perturbaciones, por lo que como alternativa se implementa un control proporcional resonante (PR), sin embargo, este presenta problemas debido a la complejidad de su implementación y dificultad de diseño para rechazar múltiples armónicos.

C. Control de Modo Deslizante (SMC)

El control de modo deslizante (SMC) es un método de control no lineal que altera la dinámica de un sistema no lineal mediante la aplicación de una señal de control discontinua que obliga al sistema a deslizarse a lo largo de una sección transversal del comportamiento normal del sistema. El control SMC se caracteriza por presentar una frecuencia de conmutación variable, error en régimen permanente y baja dinámica en variaciones de carga. Este tipo de control es utilizado en microrredes para mantener estable el nivel de voltaje del enlace DC y mantener una corriente sinusoidal proveniente de una entrada de voltaje AC en presencia de variaciones significativas en la potencia de las cargas [25].

D. Control Predictivo

Existen diferentes tipos de control predictivo, sin embargo, lo que lo caracteriza es la utilización de un modelo del sistema para calcular predicciones del comportamiento de las variables a controlar, junto a un criterio de optimización que permite actuar de la manera más eficiente. [26]
El control predictivo deadbeat utiliza un modelo del sistema para calcular la tensión que anula el error en el tiempo de una muestra, aplicando en consecuencia la tensión haciendo uso de un modulador. Sin embargo, este tipo de control es sensible a eventuales variaciones en sus parámetros, lo que requiere de configuraciones adicionales para compensar esta sensibilidad. El control predictivo basado en modelo (MPC) es el más utilizado para predecir y optimizar la salida de un convertidor en función de un criterio de optimización predefinido. Este tipo de control incluye estrategias de control óptimo, control de procesos con tiempos muertos, control de procesos multivariables, etc. Esto hace del MPC una de las técnicas de control más completas. Dentro de las ventajas del MPC se encuentran:

- Los retardos producidos en la respuesta del sistema pueden ser compensados.
- El controlador presenta un nivel de implementación sencillo.
- Permite modificaciones o extensiones para aumentar su eficiencia dentro de aplicaciones específicas.

Sin embargo, el control MPC presenta algunas desventajas, como la densidad de cálculos que se deben realizar en comparación a otras técnicas de control, la correcta representación del modelo dinámico del sistema influye directamente en la eficiencia del controlador, además de que si los parámetros del sistema son variables en el tiempo, se debe considerar un algoritmo de estimación de parámetros.

E. Control Basado en Inteligencia Artificial

Con el desarrollo de las áreas de la ingeniería informática y teoría de control se ha logrado implementar técnicas de control más sofisticadas, lo que ha dado lugar a los controladores inteligentes. Dentro de las técnicas de control basadas en inteligencia artificial destaca el control de lógica difusa, éste se basa en el conocimiento del sistema por parte del diseñador, siendo éste el parámetro que define la eficiencia del controlador, esta es la base de las técnicas de este tipo de controladores, en donde varía el grado de conocimiento y cómo este se puede generar a través del entrenamiento de la inteligencia artificial. Estos tipos de control son utilizados dentro de las microrredes para lograr controlar de manera inteligente los parámetros de potencia activa y reactiva que se inyecta a la microrred.
IV. EJEMPLOS EXISTENTES PARA LA INTERCONEXIÓN DE MICORREDES

La transmisión en AC es utilizada ampliamente en la implementación de microrredes y redes eléctricas convencionales para distribución o transmisión en alta potencia, mientras que la transmisión en DC es utilizada para interconectar distancias de extrema longitud, por ejemplo, los cables submarinos intercontinentales. Esto debido a que en grandes longitudes existe una menor cantidad de pérdidas por transmisión DC que en AC. Sin embargo, con el fin de aprovechar las bajas pérdidas de la transmisión DC en largas extensiones de terreno, se han desarrollados sistemas de transmisión de energía eléctrica de alto voltaje en corriente continua (HVDC, por sus siglas en inglés) [27]. A continuación se presentan las principales características de los sistemas HVDC, junto a su participación dentro del mercado energético junto a la electrónica de potencia.

A. Sistemas HVDC

Las redes y microrredes eléctricas trabajan en el dominio AC, debido a su robustez en sistemas de transmisión a diversos niveles de voltaje. Los sistemas HVDC permiten la interconexión de sistemas AC no sincronizados, esto mediante un enlace HVDC, ya que este enlace tiene la capacidad de controlar el flujo de corriente sin depender de la sincronización de las redes que se desean interconectar. La interconexión se produce realizando la transformación AC-DC (rectificación) de la red AC que se desea interconectar, ésta pasa por una etapa de enlace HVDC con una transformación DC-DC, para finalmente sincronizar con la otra red AC partícipe de la interconexión mediante una transformación DC-AC (inversión).

La interconexión en sistemas eléctricos ha permitido el intercambio energético en países de Europa desde la década de 1950, con las instalaciones de sistemas HVDC implementadas en la Unión Soviética entre las ciudades de Moscú y Kashira [28]. Los enlaces HVDC permiten transportar la energía generada en los grandes centros de generación eléctrica a lugares remotos que muchas veces representan un difícil acceso para redes de transmisión AC convencionales, por ejemplo, en Canadá, líneas HVDC transportan la energía producida mediante fuentes hidroeléctricas a estaciones de conversión DC-AC para su uso en la red del sur de la provincia de Manitoba [29].

En 2016, la corporación multinacional Grupo ABB llegó a un acuerdo con las autoridades de China, para construir un enlace HVDC con un voltaje de 1100 kV, con una longitud de 3,000 km y 12 GW de potencia. Este acuerdo ha establecido un nuevo récord mundial como el enlace de mayor potencial eléctrico, mayor distancia y mayor capacidad de transmisión, actualmente este enlace de altísima potencia es denominado como enlace de corriente continua de voltaje ultraalto (UHVDC, por sus siglas en inglés) [30].

B. Convertidores HVDC

Para realizar las conversiones antes mencionadas para interconexión de microrredes y redes eléctricas, en sistemas de alto voltaje es necesario implementar topologías que permitan el máximo aprovechamiento de las características que requieren los sistemas. Los convertidores HVDC utilizados actualmente para interconexión de microrredes son dos, los convertidores commutados por línea y los convertidores de fuente de voltaje [31].

El convertidor commutado por línea (LCC, por sus siglas en inglés), se caracteriza por no tener control sobre la dirección del flujo de corriente, sin embargo, este tipo de topología es ampliamente utilizado en sistemas HVDC. Los convertidores LCC se utilizan en proyectos que requieren una muy alta capacidad y una muy alta eficiencia energética. Utilizando topologías como el puente rectificador de seis y de doce pulsos, haciendo uso de tiristores en lugar de diodos. En cambio, el convertidor fuente de voltaje (VSC, por sus siglas en inglés) es utilizado principalmente en interconexión de sistemas AC de menor tensión, por ejemplo, para la implementación de enlace HVDC en campos eólicos de gran escala a la red eléctrica. Este convertidor puede tener una topología multinivel para lograr diversos niveles de voltajes y una mayor calidad de onda en la salida.

Durante los últimos años se han desarrollado topologías VSC con compensación de armónicos que logran disminuir la cantidad de pérdidas por conmutación y poseen un alto rendimiento armónico en su configuración multinivel [32]. Actualmente la compañía japonesa Toshiba posee productos dentro de sus servicios técnicos para transmisión y distribución eléctrica para sistemas HVDC. Toshiba es una marca presente en todos los proyectos HVDC de su país, logrando posicionarse como líder en distribución de soluciones de HVDC. La marca japonesa cuenta con convertidores VSC multinivel en el proyecto HVDC Hokkaido-Honshu, que comprende un enlace HVDC de 300 MW, 250kV DC y 1200 A. Junto a convertidores LCC en el proyecto que comprende la interconexión de la línea Montenegro a una línea en construcción de origen italiano. Interconectando de esta manera dos sistemas eléctricos de distinta frecuencia de 500 kV [33].

V. CONCLUSIONES

En este trabajo se ha presentado una revisión de las herramientas tecnológicas actuales utilizadas para la interconexión de microrredes, exponiendo las topologías de electrónica de potencia y las principales técnicas de control utilizadas en microrredes, otorgando una visión global sobre los actuales usos de estas herramientas y su participación en el mercado. En la actualidad las topologías de electrónica de potencia han permitido un desarrollo de nuevas soluciones comerciales de alto rendimiento y la evolución del sistema eléctrico a nivel mundial en vías de lograr un sistema de mayor interconexión, abriendo caminos al mercado de producción de energía.

AGRADECIMIENTOS

Los autores agradecen el apoyo financiero del Proyecto FONDECYT Regular 1160690.
