Hymenopteran Parasitoids Associated with Scale Insects (Hemiptera: Coccoidea) in Tropical Fruit Trees in the Eastern Amazon, Brazil

Authors: Ramos, Albéryca Stephany de Jesus Costa, Lemos, Raimunda Nonata Santos de, Costa, Valmir Antonio, Peronti, Ana Lucia Benfatti Gonzalez, Silva, Ester Azedo da, et al.

Source: Florida Entomologist, 101(2) : 273-278

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.101.0219
Hymenopteran parasitoids associated with scale insects (Hemiptera: Coccoidea) in tropical fruit trees in the eastern Amazon, Brazil

Albéryca Step­hany de Jesus Costa Ramos¹, Raimunda Nonata Santos de Lemos¹, *, Valmir Antônio Costa², Ana Lucia Benfatti Gonzalez Peronti³, Ester Aze­do da Silva¹, Janainha Marques Mondego⁴, and Aldenise Alves Moreira⁴

Abstract

Fifteen species of parasitoids emerged from 6 species of scale insects, all are recorded for the first time in Maranhão State, Brazil. A total of 20 coccoid/parasitoid associations were found, 5 of which are new host records for the parasitoid species: Coccus hesperidum (L.) (Hemiptera: Coccidae) with Arrhenophagus chionaspidis (Aurivillius) (Hymenoptera: Encyrtidae); and Praelongorthezia praelonga (Douglas) (Hemiptera: Ortheziidae) with Aenasius sp. (Hymenoptera: Encyrtidae), Encyrtus aurantii (Geoffroy) (Hymenoptera: Encyrtidae), Aprostocetus sp. (Hymenoptera: Eulophidae) and Siphiphora sp. (Hymenoptera: Signiphoridae).

Key Words: Aphelinidae; biological control; Encyrtidae; natural enemies; tritrophic interactions

Resumo

Quinze espécies de parasitoides emergiram de seis espécies de cochinhas, todas são registradas pela primeira vez no Estado do Maranhão, Brasil. Um total de 20 interações cochinhas/parasitoides foram encontradas, das quais cinco são novos registros de hospedeiros para as espécies de parasitoides: Coccus hesperidum (L.) (Hemiptera: Coccidae) com Arrhenophagus chionaspidis (Aurivillius) (Hymenoptera: Encyrtidae); e Praelongorthezia praelonga (Douglas) (Hemiptera: Ortheziidae) com Aenasius sp. (Hymenoptera: Encyrtidae), Encyrtus aurantii (Geoffroy) (Hymenoptera: Encyrtidae), Aprostocetus sp. (Hymenoptera: Eulophidae) e Siphiphora sp. (Hymenoptera: Signiphoridae).

Palavras Chave: Aphelinidae; controle biológico; Encyrtidae; inimigos naturais; interações tritróficas

Scale insects (Hemiptera: Coccoidea) are phytophagous insects that infest a great number of economically important plants. These insects damage plants directly by sucking their sap, and indirectly by injecting toxic salivary secretions, attracting ants, transmitting pathogens, and encouraging the development of sooty molds (Zucchi et al. 1993). The sooty molds produced by high infestation of scale insects can inhibit photosynthesis and reduce the tree vigor. They also can stain the fruit, reducing its commercial value about 20 to 30% in highly infested crops (Oliveira et al. 2001; Barbosa & Paranhos 2004).

Parasitoids belonging to the families Aphelinidae, Encyrtidae, Eulophidae, Pteromalidae, and Signiphoridae (Hymenoptera: Chalcidoidea) are among the most important groups of natural enemies of scale insects and have been used extensively in biological control (Noyes 2017). In Brazil, the occurrence of primary and secondary parasitoids associated with scale insects were recorded in São Paulo by Toledo (1940) and Peronti et al. (2016); in Alagoas by De Santis (1972); in Brasília by Murakami & Consenza (1984); in the Rio Grande do Sul by Wolff et al. (2004, 2014) and Silva et al. (2007); in Espírito Santo by Culik et al. (2011); in the Rio de Janeiro by Rodrigues & Cassino (2012); in Roraima by Marsaro-Junior et al. (2013, 2016); and in Minas Gerais by Prado et al. (2015).

It is important to know the parasitoid species that can control scale insects, because they can maintain the populations of harmful insects below the economic injury level if properly managed (Wolff et al. 2004). Correct identification of species is essential for studies of biological control and integrated pest management (Abreu et al. 2015). According to Araújo & Zucchi (2002), for the establishment of an integrated regional management program, the knowledge of the diversity of parasitoids in the area of interest is essential. There are no such surveys in Maranhão State, so we conducted an inventory of the species of parasitoids associated with scale insects of 6 fruit tree species in the Eastern Amazon, Brazil.

Material and Methods

These studies were conducted in 3 areas of fruit production in the municipalities of São José de Ribamar (2.8483°S, 44.0594°W), São Luís (2.5130°S, 44.3024°W), and Paço do Lumiar (2.9083°S, 44.2141°W) in...
Maranhão State, Brazil. Samples of scale insects were collected monthly in the period from Jun 2014 to Aug 2015 on 6 fruit trees species: Anacardium occidentale L. var. nanum (cashew; Anacardiaceae), Citrus spp. (citrus trees; Rutaceae), Cocos nucifera L. (coconut; Areaceae), Malpighia emarginata L. (acerola; Malpighiaceae), Mangifera indica L. (mango; Anacardiaceae), and Theobroma grandiflorum (Willd. ex Spreng.) Schum. (cupuassu; Malvaceae).

The scale insects were randomly collected from infested plant tissues (leaves, stems, branches, and fruits) from 8 plants of each species of fruit tree, 5 samples per plant, over a period of 15 mo, which resulted in 3,600 samples per area. The infested samples collected were placed in labeled plastic bags with the date, place of collection and host culture, and transported to the Entomology Laboratory of the Universidade Estadual do Maranhão, Maranhão, Brazil. In the laboratory, infested samples were placed in Petri dishes lined with moist filter paper, which then were covered with plastic film and incubated in an environmental control chamber at 26 ± 1 °C, 60 ± 10% RH, and a 12:12 h (L:D) photophase.

The majority of emerged hymenopterous parasitoids obtained were double-mounted on points; however, the smaller species were slide-mounted following the techniques of Querino & Zucchi (2011). Afterwards, they were identified to genus or species level using De Santis (1964), Annecke & Prinsloo (1974), Noyes (1980), Noyes et al. (1997), and Noyes (2010) for Encyrtidae; Gibson (1995) for Eupelmidae; Schauff et al. (1997) for Eulophidae; Compere (1939), Woolley (1997), and Noyes (2010) for Encyrtidae; Gibson (1995) for Eupelmidae; Schauff et al. (1997) for Eulophidae; Compere (1939), Woolley (1997a), and Myartseva & Evans (2008) for Aphi linidae; and Woolley (1997b) for Signiphoridae.

Results

A total of 20 coccoid/hymenopteran parasitoid associations were found, 5 of which are new host records for the parasitoid species: Coccus hesperidum (L.) (Hemiptera: Coccidae) with Arrhenophagus chiaspidis (Aurivillius) (Hymenoptera: Encyrtidae); and Praelongorthezia praelonga (Douglas) (Hemiptera: Ortheziidae) with Aenasius sp. (Hymenoptera: Encyrtidae), Encyrtus auranti (Geoffroy) (Hymenoptera: Encyrtidae), Aprostocetus sp. (Hymenoptera: Eulophidae), and Signiphora sp. (Hymenoptera: Signiphoridae) (Table 1). All insects and interactions found in this study were recorded for the first time for the Maranhão State of Brazil.

Scale insects	Parasitoid	Host plant	Collection sites
Coccidae	*Arrhenophagus chiaspidis Aurivillius	Malpighia emarginata (acerola)	Paço do Lumiar
Coccus hesperidum (L)	*Cocophagus fallax Compere	Anacardium occidentale (cashew)	São José de Ribamar
Aoniella auranti (Maskell)	*Aphytis holoxanthus DeBach	Cocos nucifera (coconut)	Paço do Lumiar
Aulacaspis tubercularis (Newstead)	*Aphytis group ingnanensis	Mangifera indica (mango)	São José de Ribamar
Ortheziidae	*Signiphora sp.	Citrus sp. (citrus trees)	São Luís
Pseudococcidae	*Aphanagophora sp. aff. Alethe	Anacardium occidentale (cashew)	Paço do Lumiar

* New record for the Maranhão State (Brazil)
** New record of the interaction between parasitoid and scale insect.

Voucher specimens were deposited in the following institutions: hymenopterous parasitoids were deposited in the Collection of Entomophagus Insects “Oscar Monte”» from Instituto Biológico, Campinas, São Paulo State, Brazil; and scale insects in the Reference Collection of Insects and Mites-CRIA from Universidade Estadual Paulista, Jaboticabal, São Paulo State, Brazil. Also, specimens of both groups were deposited in the Entomological Collection “Iraci Paiva Coelho” from Universidade Estadual do Maranhão, São Luís, Maranhão State, Brazil.

Voucher specimens were deposited in the following institutions: hymenopterous parasitoids were deposited in the Collection of Entomophagus Insects “Oscar Monte”» from Instituto Biológico, Campinas, São Paulo State, Brazil; and scale insects in the Reference Collection of Insects and Mites-CRIA from Universidade Estadual Paulista, Jaboticabal, São Paulo State, Brazil. Also, specimens of both groups were deposited in the Entomological Collection “Iraci Paiva Coelho” from Universidade Estadual do Maranhão, São Luís, Maranhão State, Brazil.

Table 1. Parasitoids associated with species of scale insects, their host plant, and collection sites (Jun 2014 to Aug 2015) at Maranhão Island (Maranhão, Brazil).
Fifteen species of Hymenoptera parasitoids were found, distributed in 4 families of Chalcidoidea: Aphelinidae - *Aphytis holoxanthus* DeBach and *Aphytis* group *lingnanensis*, *Coccophagus fallax* Compere, *Coccophagus basalis* Compere, *Encarsia* sp., *Encarsia lounsburyi* (Berlese and Paoli), and *Encarsia citrina* (Craw); Encyrtidae - *Acerophagus* sp. aff. *alexte*, *Acerophagus* sp., *Aenasius* sp., *Ar. chionaspis*, *E. aurantii*, and *Metaphycus* sp.; Eulophidae - *Aprostocetus* sp.; and Signiphoridae - *Signiphora* sp. They were reared from 6 species of scale insects: *Aonidiella aurantii* (Maskell) and *Aulacaspis tubercularis* (Newstead) (Diaspididae), *C. hesperidum* and *Pulvinaria* sp. (Coccidae), *Nipaecoccus* sp. (Pseudococcidae), and *P. praelonga* (Ortheziidae) (Table 1, Fig. 1).

Discussion

Aphelinidae and Encyrtidae are the most important families of Chalcidoidea associated with scale insects, and have been associated with 335 and 416 species of scale insects, respectively (García et al. 2016; Noyes 2017). Both families include several species used in biological control programs around the world, especially in warmer climates (Noyes et al. 1997).

Aphytis Howard has been associated with 165 species of scale insects (García et al. 2016; Noyes 2017). This genus is cosmopolitan and comprises the more efficient natural enemies of Diaspididae (Rosen & Rose 1989). In diaspidid scales, *Aphytis* species develop exclusively as primary ectoparasitoids. The adult female inserts its ovipositor through the scale cover and deposits the eggs in the space between the body and the scale cover (Yu & Luck 1988; Rosen & Rose 1989). As natural enemies, several species of this genus have been employed successfully in biological control programs for economically important armored scale insects (Rosen & DeBach 1979; García et al. 2016; Noyes 2017). In Brazil, *A. holoxanthus* was introduced in São Paulo State to control *Chrysomphalus aonidum* (L.) (Diaspididae) (Gonçalves 1962; DeBach & Rosen 1976). Ten species of Diaspididae are associated to *A. holoxanthus* in several countries (Noyes 2017).

Coccophagus Westwood includes 200 described species. Most parasitize species of Coccoidea, mainly Coccidae. Some of these parasitoids have also been associated with species of Diaspididae, Eriococcidae, Kermesidae, Pseudococcidae, and Stictococcidae (Hayat 1997; García et al. 2016; Noyes 2017). In most species of this genus the larvae of female and male of the same species develop on different hosts (Hunter & Woolley 2001). For example, the females of *Coccophagus malthusi* Girault, a secondary parasitoid, has been obtained from Ceroplastinae spp., mainly *Ceroplastes* spp., whereas the males are reared from coccids of other species or genera such as *C. hesperidum*, *Marisipoccus proteae* (Brain) [synonym *Coccus proteae* Brain], *Saissetia* spp. (Coccidae), and *Parasaissetia* spp. (Coccidae). Also, the males almost always occur on different host plants from the females (Flanders 1937; Hunter & Woolley 2001).

In Brazil, *Coccophagus basalis* Compere and *Coccophagus fallax* Compere were found on *Saissetia oleae* Olivier (Coccidae) in São Paulo, Distrito Federal, Bahia, Rio de Janeiro (Compere 1939) and Minas Gerais (Prado et al. 2015).

Encarsia Förster has over 400 species described worldwide, distributed in 26 groups, and 115 species occur in the Neotropics. This is one of the most important genera for biological control, parasitizing...
species of Aleyrodidae and Diaspididae (Evans et al. 1995; Heraty et al. 2007; Myarsetva & Evans 2008). In Brazil, E. lounsburyi was recorded on C. aonidum in the states of São Paulo (Toledo 1940), Rio de Janeiro (Gomes 1942), and in the city of Campo Grande (Parker et al. 1953). It also was recorded on Hemiberlesia cyanophylli (Signoret) and Aonidella aurantii in the state of Rio de Janeiro (De Santis 1980). On the other hand, Encarsia citrina (Craw) occurs on an unknown host in the state of Bahia (Ashmead 1904), on Chrysomphalus sp. and Apsidiotus sp. (Diaspididae) in the state of São Paulo (Parker et al. 1953; Bergmann et al. 1991), and on C. aonidum in the state of Rio de Janeiro (Gomes 1942).

Acerophagus Smith has a wide geographic distribution, and all species have been found to be primary parasitoids of mealybugs (Noyes 2010). This genus is associated with 32 species of scale insects (García et al. 2016; Noyes 2017), of which at least 16 have been widely used in classical control biological programs (Noyes 2010). Acerophagus papayae Noyes and Schauf is efficient in control of Paracoccus marginatus Williams and Granara de Willink (Pseudococcidae) on papaya in Florida, USA (Amarekare et al. 2010), and on papaya, cassava, eggplant, jatropha, and hibiscus plants in Malaysia (Mastoi et al. 2011). It was not possible to determine the 2 Acerophagus species found in this study, but 1 of them is near A. alext Noyes, a species recorded only from Costa Rica, with no host association known (Noyes 2010). In Brazil, the only known species of the genus is A. coccois Smith, a parasitoid used for the control of Phenacoccus herreni Cox and Williams (Pseudococcidae) in cassava in Bahia and Pernambuco (Bento et al. 1999).

Aenasius Walker is mainly a New World genus, but also has been recorded from other biogeographic areas. There are more than 42 described species that are primary parasitoids of 24 species of mealybugs (Noyes & Hayat 1994; García et al. 2016; Noyes 2017). In the present study, it was verified the first record of an Aenasius species parasitizing P. praelonga (Fig. 1), which represents a new host family association. The most effective natural enemy of cotton mealybug, Phenacoccus solenopsis Tinsley (Pseudococcidae), is the endoparasitoid Aenasius bambowalei Hayat (2009; Poorni et al. 2010, Prasad et al. 2011; Shahzad et al. 2016). In Brazil, there are 11 recorded species of Aenasius, which are associated with several Pseudococcidae species (Noyes 2017).

Arrhenophagus aeviillus is a cosmopolitan genus and includes only 4 species. Arrhenophagus chionaspidis is a cosmopolitan species, parasitizing about 50 species of scale insects of the families Coccidae, Diaspididae, and Eriococcidae (Noyes 2017). In Brazil, this species was found in Pernambuco on unspecified Coccoidea (Annecke & Prinsloo 1974; De Santis 1980).

Encyrtus laterreil is a well-known cosmopolitan genus, with 94 distinct species of which 45 are associated with scale insects, mainly coccids (García et al. 2016; Noyes 2017). Species of Encyrtus have been used in biological classical biological control, for example, E. auranti Noyes from Israel was employed for biological control of C. hesperidum in Texas, USA (Prinsloo 1997). In Brazil, E. auranti was recorded in the Bahia and Santa Catarina states (Noyes 2010).

Metaphycus Mercet, with about 473 described species, plays an important role in natural control of Coccidae and Diaspididae (Guerrierri & Noyes 2000; García et al. 2016; Kapranas & Tena 2015; Noyes 2017). Where their biology is known, all species of this genus are primary endoparasitoids (Guerrierri & Noyes 2000; Kapranas & Tena 2015). These insects are facultative gregarious parasitoids, where the number of offspring they produce per scale is dependent on the size of the scale host (Bernal et al. 1999; Tena & Garcia-Mari 2009; Kapranas et al. 2011b; Kapranas & Tena 2015). Metaphycus angustifrons was introduced in California specifically for the control of black scale, S. oleae (Compere 1957; Dean & Bailey 1960; Lampson & Morse 1992; Kapranas et al. 2007). However, up until recently they have been the most abundant parasitoids of brown soft scale, C. hesperidum (Kapranas et al. 2007; Kapranas et al. 2011a). In Brazil, there are records of 5 Metaphycus species: M. albiclavatus Compere on Pseudococcus sp. (Pseudococcidae) in São Paulo (Compere 1939), M. brasiliensis Compere on Chaetacoccus bambusae (Maskell) (Pseudococcidae) in Rio de Janeiro (Compere & Annecke 1961), and on unknown hosts in São Paulo (De Santis 1980), M. discolor (De Santis) on Ceroplastes sp. (Coccidae) in Minas Gerais (De Santis 1970), M. flavus on Parthenolecanium perlatum (Cockerell) (Coccidae) in Rio de Janeiro State (Gomes 1942), and on Cerococcus parahybensis Hempel (Coccidae), Cococcus viridis and Chrysomphalus aonidum in São Paulo State (De Santis 1980). The fifth species is M. omega Noyes, which is associated with Aleurothrixus floccosus Maskell (Hemiptera: Aleyrodidae) in Pernambuco State. Also, Bergmann et al. (1991) observed an undetermined Metaphycus species associated with Apsidiotus sp. (Diaspididae) in São Paulo.

Signiphora Ashmead is represented by 46 species described worldwide, distributed throughout the American continent, India, and Australia, associated with about 51 scale insect species, mainly Coccidae, Diaspididae, and Pseudococcidae (García et al. 2016; Noyes 2017). In Brazil, there are more than 14 Signiphora species, distributed in Alagoas, Pará, Amazonas, and in the southeast region (De Santis 1972, 1980).

Aprostocetus Westwood is a cosmopolitan genus, with approximately 800 described species; from these, 33 have been found associated with scale insects (Noyes 2017). This genus has an extremely varied biology (Graham 1987; LaSalle 1993; LaSalle et al. 2006; Hesami et al. 2010). Cave (2006) found Aprostocetus purpureus (Cameron) parasitizing cycad aulacaspis scale, Aulacaspis yasumatsui Takagi (Diaspididae), in Southeast Asia, and it is a potential biological control agent in Florida. Japoshivili et al. (2015) recorded 4 Aprostocetus species from 5 Kermes species (Kermesidae). There are 16 species of Aprostocetus in Brazil (Noyes 2017); 2 of them are associated with scale insects, and these are Aprostocetus chapadai (Ashmead) and Aprostocetus zemani (Brèthes) (Brèthes 1920; Parker et al. 1953; De Santis 1979). From the original description, the Aprostocetus species obtained in this study differs from A. chapadai by having only 1 row of adnotalata setae, whereas A. chapadai has 2 rows of adnotalata setae (Ashmead 1904). It is different from A. zemani because specimens have dark brown coloration, with subtle metallic tinges, whereas in A. zemani the females are mainly yellow, with dark areas on the head, mesosoma, and gaster (Brèthes 1920).

Of the new interactions between parasites and scale insects, only P. praelonga had no records of being parasitized by Hymenoptera, except in the case of Cales noacki Howard (Aphelinidae) (Gonzáles 1962) and 1 unidentified (or unknown) parasitoid wasp (García-Roa 1995). The only natural enemy recorded for citrus orthezia is Rhinoleucopephanga brasiliensis Hendel (Drosophilidae); its larva develops on the surface of the ensign scale, and may in turn be parasitized by Aprostocetus sp. (Mattle-Ferrero & Étienne 2006). This also may have occurred in the present study, with the P. praelonga female, but it was not possible to determine if the fly host was present. However, there are no reports of them being used to control the citrus orthezia.

The knowledge of the parasitoid species of scale insects, as well as their distribution, is important to increase the efficiency of these insects as biocontrol agents, and will be useful for management of this group of pests in Maranhão State, Brazil.

Acknowledgments

We extend our appreciation to FAPEMA - Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão.
Ramos et al.: Parasitoids associated with scale insects

for financial support (PROCESS: BIC-02536/12). Also to Instituto Nacional de Ciencia y Tecnologia dos Hymenoptera Parasitoides da Região Sudeste Brasileira for financial support (Process CNPq 573802/2008-4) for one of the authors (VAC). And finally, to Takumasa Kondo for reviewing the manuscript.

References Cited

Abreu JAS, Rovida AS, Conte H. 2015. Controle biológico por insetos parasitoides em culturas agrícolas no Brasil: Revisão de literatura. Uninga Review 22: 22–25.

Amarasekare KG, Mannion CM, Epsky ND. 2010. Host instar susceptibility and selection and interspecific competition of three introduced parasitoids of the mealybug Paracoccus marginatus (Hemiptera: Pseudococcidae). Environmental Entomology 39: 1506–1512.

Annecke DP, Prinsloo GL. 1974. On some new and described species of arthropod parasites of the superfamily Encyrtidae (Hymenoptera). Journal of the Entomological Society of Southern Africa 37: 35–47.

Barbosa FR, Paranhos BJ. 2004. Ameaça negra. Revista Cultivar – Hortaliças e Frutas 6: 6–7.

Bento JMS, De Moraes GJ, Bellotti AC, Castillo JA, Warumby JF, Lapoointe SL. 1999. Introduction of parasitoids for the control of the cassava mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in north-eastern Brazil. Bulletin of Entomological Research 89: 403–410.

Bergmann EC, Imenes SDL, Tavares MT. 1991. Occurrence of the scale insect Coccophagus (Hemiptera: Pseudococcidae) in Espírito Santo, Brazil. Biocontrol Science and Technology 2: 17–24.

Bernal JS, Luck RF, Morse JG. 1999. Host influences on sex ratio, longevity, and egg load in two Metaphycus species parasitic on soft scales: implications for insectary rearing. Entomologia Experimentalis et Applicata 92: 191–204.

Bréthes J. 1920. Insectos útiles y daninos de Rio Grande do Sul y de La Plata. Anales Sociedad Rural Argentina 54: 281–290.

Cave RD. 2006. Biological control agents of the cactus aulacaspis scale, Aulacaspis yasumatsui (Bern.) in South America. University of California Publications in Entomology 75: 75–90.

Compere H. 1939. The insect enemies of the black scale, Saissetia oleae (Bern.) in South America. University of California Publications in Entomology 75: 1–5.

De Santis L. 1970. Una nueva especie de encírtido del Brasil (Hymenoptera: Encyrtidae). Boletim da Universidade Federal do Paraná (Zoologia) 4: 13–15.

De Santis L. 1972. Complejo entomofágico de Aclera campinensis (Hom.) en el estado de Aлагоas (Brasil). Anais da Sociedade Entomológica do Brasil 1: 17–24.

De Santis L. 1979. Catálogo de los himenópteros calicoidoideos de América al sur de los Estados Unidos. Publicación Especial Comisión de Investigaciones Científicas Provincia de Buenos Aires, Argentina.

De Santis L. 2008. Catálogo de los Himenópteros Brasileños de la serie Parasitica incluyendo Bethyloidae. Editora da Universidade Federal do Paraná, Curitiba, Paraná, Brazil.

Evans GA, Polaszek A, Bennett FD. 1995. The taxonomy of the Encarsia flavuscelatum species-group (Hymenoptera: Aphelinidae) parasitoids of Hormaphidia (Homoptera: Aphiidae). Oriental Insects 29: 33–45.

Flanders SE. 1937. Ovipositional instincts and developmental sex differences in the genus Cocophagus. University of California Publication in Entomology 6: 401–22.

Garcia M, Denno B, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. http://www.scalenet.info (last accessed 23 Apr 2017).

García-Roa F. 1995. Manejo de Orthezia proeliongia, plaga de cítricos. ICA CORPAICA, Palmita, Colombia.

Gibson GAP. 1995. Parasitic wasps of the subfamily Eupelminae: classification and revision of the genus Hymenoptera: Chalcidoidea: Eupelmidae). Associated Publishers, Gainesville, Florida, USA.

Gomes JG. 1942. Subsídos á sistemática a dos calcídios brasileiros. Boletim da Escola Nacional de Agronomia 2: 9–45.

Gonçalves CR. 1962. Perspectivas de combate biológico das principais pragas das plantas cultivadas na baixada Fluminense. Boletim do Instituto de Ecologia e Experimentação Agrícolas 21: 73–76.

Graham MWR. 1987. Reclassification of the European Tetrastichinae (Hymenoptera: Eulophidae), with a revision of certain genera. Bulletin of the British Museum (Natural History). Entomology (Supplement) 55: 1–392.

Granara De Willink MCG. 1999. Las cochinillas blandas de la República Argentina (Homoptera: Coccoidea: Coccidae). Associated Publishers, Gainesville, Florida, USA.

Guerrieri E, Noyes JS. 2000. Review of the European species of genus Metaphycus Mercet (Hymenoptera, Chalcidoidea: Encyrtidae), parasitoids of scale insects (Homoptera: Coccoidea). Systematic Entomology 25: 147–222.

Gullan PJA. 1984. Revision of the gall-forming coccoid genus Apion morpha Rübsamen (Homoptera: Eriococcidae: Apionomorphinae). Australian Journal of Zoology, Supplementary Series 32: 1–203.

Hayat M. 1997. Aphelinidae, pp. 111–145 in Ben-Dov Y, Hodgson CJ. [eds.]. Soft Scale Insects – Their Biology, Natural Enemies and Control. Elsevier Science, Amsterdam, Netherlands.

Hayat M. 2009. Description of a new species of Aenasis Walker (Hymenoptera: Encyrtidae), parasitoid of the mealybug, Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) in India. Biosystematica 3: 21–26.

Heraty J, Woolley J, Polaszek A. 2007. Catalog of the Encarsia of the World. University of California, Riverside, California, USA.

Hesami S, Ebrahimi E, Ostovan H, Shojaei M, Kamali K, Yegorenko L. 2010. Contribution to the study of Eulophidea (Hymenoptera: Chalcidoidea) of Fars Province of Iran: I-subfamilies Entedoninae and Tetrastichinae. Munis Entomology and Zoology 5: 148–157.

Hunter MS, Woolley JB. 2001. Evolution and behavioral ecology of heteronematous aphelid parasitoids. Annual Review of Entomology 46: 251–290.

Kapranas A, Morse JG, Pacheco P, Forster LD, Luck RF. 2007. Survey of brown soft scale insectos and mites. Journal of the Rio Grande Valley Horticultural Society 42: 288–299.

Kapranas A, Hardy ICW, Luck RF, Morse JG. 2011a. Parasitoid developmental mortality in the field: patterns, causes and consequences for sex ratio and virginity. Journal of Animal Ecology 80: 192–203.

Kapranas A, Giudice DLO, Morse GP, Luck RF. 2011b. Biology and behaviour of Metaphycus angustifrons Compere (Hymenoptera: Encyrtidae), a newly established parasitoid of soft scale insects (Homoptera: Coccidae) in California. Biological Control 56: 139–144.

Kapranas A, Morse JG, Pacheco P, Forster LD, Luck RF. 2007. Survey of brown soft scale Coccus hesperidum L. parasitoids in southern California citrus. Biological Control 42: 288–299.

Kapranas A, Ten A. 2015. Encyrtid parasitoids of soft scale insects: biology, behaviour and their use in biological control. Annual Review of Entomology 60: 195–211.

Lampson LJ, Morse JG. 1992. A survey of black scale, Coccus hesperidum (L.) parasitoids in southern California citrus. Biological Control 42: 288–299.

Lasalle J. 1993. Aprostocetus (Ooetetrastichus) theioneus (Masi) (Hymenoptera: Eulophidae): a hyperparasitoid on the cereal stem borer Chilo partellus (Lepidoptera: Pyralidae) in Africa. Zoologisk Mededelingen 67: 447–450.

LaSalle J, Schauf ME, Hansson C. 2006. Familia Eulophidae, pp. 356–374 In Hansson P, Gauld I [eds.]. Hymenoptera de la Región Neotropical. Memoirs of the American Entomological Institute, Gainesville, Florida, USA.

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 17 May 2020
Terms of Use: https://bioone.org/terms-of-use
Mastoi MI, Azura NA, Muhammad R, Idris AB, Ibrahim Y. 2011. First report of papaya mealybug *Paracoccus marginatus* (Hemiptera: Pseudococcidae) from Malaysia. Australian Journal of Basic and Applied Sciences 5: 1274–1250.

Marsaro Júnior AL, Peronti ALBG, Penteado-Dias AM, Morais EGF, Pereira PRVS. 2013. First report of *Macronellicoccus hirsutus* (Green, 1908) (Hemiptera: Coccoidea: Pseudococcidae) and the associated parasitoid *Anagyrus kamali* Mouri, 1948 (Hymenoptera: Encyrtidae), in Brazil. Brazilian Journal of Biology 73: 413–418.

Marsaro Júnior ALM, de Souza Filho MF, da Silva RA, Stríkis PC. 2016. First report of natural infestation of *Pereskiacaeulea* Mill. (Cactaceae) by *Ceratocita capitata* (Wiedemann) (Diptera: Tephritidae) in Brazil. Brazilian Journal of Agriculture - Revista de Agricultura 86: 151–154.

Matli-Ferrero D, Étienne J. 2006. Cochenilles des Antilles françaises et quelques autres îles des Caraïbes (Hemiptera, Coccoidea). Revue Française d’Entomologie 28: 161–190.

Miller DR, Davidson JA. 2005. Armored Scale Insect Pests of Trees and Shrubs. CRC Press, Amsterdam, Netherlands.

Myartseva SN, Evans GA. 2008. Genus *Murakami* Y. , Abe N, Cosenza GW. 1984. Parasitoids of scale insects and aphids. Prasad YG, Huber JT, Woolley JB [eds.], Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Canada.

Myartseva SN, Evans GA. 2008. *Genus Encarsia* Förster of México (Hymenoptera: Chalcidoidea: Aphi- neliniidae). A revision, key and description of new species. Serie Avispas Parasiticas de Plagas y otros Insectos, Cd. Victoria, Mexico.

Noyes JS. 2008. A review of the genera of Neotropical Encyrtidae (Hymenoptera: Chalcidoidea). Applied Entomology and Zoology 19: 237–244.

Noyes JS. 2010. Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), 3. Subfamily Encyrtinae: Encyrtini, Echthroplexiellini, Discodini, Oobiini and Ixodiphagini, parasitoids associated with bugs (Hemiptera), insect eggs (Hymenoptera), and ticks (Acari). Memoirs of the American Entomological Institute Gainesville, Florida, USA.

Noyes JS. 2017. Universal Chalcidoidea Database. http://www.nhm.ac.uk/chalcidooids (last accessed 24 Apr 2017).

Noyes JS, Hayat M. 1994. Oriental Mealybug Parasitoids of the Anagyrini (Hymenoptera: Encyrtidae). CAB International, Wallingford, United Kingdom.

Noyes JS, Woolley JB, Zolnerowich G. 1997. Encyrtidae, pp. 170–320 in Gibson GAP, Huber JT, Woolley JB [eds.], Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Canada.

Oliveira MRV, Henneberry TJ, Anderson P. 2001. History, current status, and collaborative research projects for collaborative research projects for crop protection in the Americas. Crop Protection 20: 9–723.

Prados E, Alvarenga TM, Santa-Cecília LVC. 2015. Parasitoids associated with the black scale *Saissetia oleae* (Hemiptera: Pseudococcidae) in olive trees in Minas Gerais State, Brazil. Acta Scientiarum. Agronomy 37: 411–416.

Prasad YG, Prabhakar M, Sreedevi G, Thirupathi M. 2011. Spatio-temporal dynamics of the parasitoid, *Aenasius bambawalei* Hayat (Hymenoptera: Encyrtidae) on mealybug, *Phenacoccus solenopsis* Tinsley in cotton based cropping systems and associated weed flora. Journal of Biological Control 25: 198–202.

Prinslo GL. 1997. Encyrtidae, pp. 655–687 In Bou-Dov Y, Hodgson CJ [eds.], Soft Scale Insects - Their Biology, Natural Enemies and Control. Elsevier Press, Amsterdam, Netherlands.

Querino RB, Zucchi RA. 2011. Guia de Identificação de *Trichogramma* para o Brasil. Embrapa Informação Tecnológica, Brasília, Distrito Federal.

Rodrigues WC, Cassino PCR. 2012. Parasitoides associados a cochenilhas e aleirodideos (Sternorrhyncha) de plantas citricas no estado do Rio de Janeiro. Entomobraziliens 5: 33–36.

Rosen D, Debach P. 1979. Species of *Aphytis* of the World: Hymenoptera: Aphelinidae. Israel Universities Press, Jerusalem, Israel.

Rosen D, Rose M. 1989. *Aphytis floriniae* sp. nov. (Hymenoptera: Aphelinidae), a parasite of tea scale, *Florinia theae* Green, from India. Oriental Insects 23: 269–273.

Schaff ME, Lasalle J, Coote LD. 1997. *Euploïpha*, pp. 327–429 in Gibson GAP, Huber JT, Woolley JB [eds.], Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Canada.

Shahzad MQ. 2016. Parasitic effects of solitary endoparasitoid, *Aenasius bambawalei* Hayat (Hymenoptera: Encyrtidae) on cotton mealybug, *Phenacoccus solenopsis* Tinsley (Hymenoptera: Pseudococcidae). Advances in Entomology 4: 90.

Silva LN, Wolff VRS, Pulz CE, Silva DC. 2007. Predadores e parasitoides de *Diaspididae* (Hemiptera, Sternorrhyncha) em citros - coleção didática do Museu Prof. Ramiro Gomes Costa. Revista Brasileira de Agroecologia 2: 745–748.

Tena A, Garcia-Mari F. 2009. Brood size, sex ratio and egg load of *Metaphycus lounsburyi* (Hymenoptera: Encyrtidae) when parasitizing adult females of black scale *Saissetia oleae* (Hemiptera: Coccidae) in the field. Biological Control 51: 110–115.

Toledo AD. 1940. Notas sobre a biologia do *Chrysophalthus aonioid* (L.) (Hymenoptera) no estado de São Paulo, Brasil. Arquivos do Instituto Biológico 11: 559–578.

Williams DJ, Granara De Willink MCG. 1992. Mealybugs of Central and South America. CAB International, Wallingford, United Kingdom.

Wolff VRS, Botton M, Silva DC. 2014. Diaspidideos e parasitoides associados ao cultivo da videira no Rio Grande do Sul, Brasil. Revista Brasileira de Fruticultura 36: 835–841.

Wolff VRS, Pulz CE, Silva DD, Mezzomo JB, Prade CA. 2004. Inimigos naturais associados à Diaspididae (Hemiptera, Sternorrhyncha), ocorrentes em *Citrus sinensis* (Linnaeus) Osbeck, no Rio Grande do Sul, Brasil: I – joaninhas e fungos entomopatogênicos. Arquivos do Instituto Biológico 71: 355–361.

Woolley JB. 1997. *Aphelinidae*, pp. 134–150 in Gibson GAP, Huber JT, Woolley JB [eds.], Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Canada.

Woolley JB. 1997b. *Aphis* (Hemiptera), sp. pp. 693–690 in Gibson GAP, Huber JT, Woolley JB [eds.], Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa, Canada.

Yu DS, Luck RF. 1988. Temperature-dependent size and development of California red scale (Homoptera: Diaspididae) and its effect on host availability for the ectoparasitoid, *Aphytis melinus* DeBach (Hymenoptera: Aphelinidae). Environmental Entomology 17: 154–161.

Zucchi RA, Silveira Neto S, Nakano O. 1993. Guia de Identificação de Pragas Agrícolas. FEALQ, Piracicaba, São Paulo, Brazil.