Exploration Period (1935–1953): The First Step Toward Standardization

Liqiong Jia, Xiaolei Li, Yuntao Shang, Xuezheng Gao, and Jie Meng

In 1936, Huang Jiqing published the Problems of Colouring and Symbols of Geological Maps of China and Nan Yanzong published Discussion on the Usage of Igneous Rock Patterns on Geological Maps. In 1937, Wang Bingzhang’s published Discussion on Symbols Colouring and Patterns of Geological Maps. These made the first step toward “unification” and “standardization” in geological mapping in China.

At this stage, regional geological mapping began to have standard norms, with 1945 and 1948 Huang Jiqing et al.’s 1:3 million Geological Maps of China and a series of Geological Maps of China (1:1 million) as representatives. Through the compilation of these maps, breakthrough of zero geological map in mainland China has been achieved.

A series of geological maps during this period systematically summarized and reflected the achievements of geological survey and geological research in China in the first half of the twentieth century, provided important basic geological data for the planning and deployment of geological work in the First Five-Year Plan of the state, and laid a solid foundation for the future comprehensive geological mapping. In addition to the gradual standardization of geological maps, there are many vivid, interesting, and exquisite hand-drawn drawings that show the beauty of nature from the perspective of geologists.

This is a pencil drawing by early geologists of rock mineral specimens examined under a microscope. The detail demonstrates the professionalism and rigor of the scientists (Fig. 3.1).

The map clearly and concisely depicts geologic columnar profiles of Jurassic strata in Wenquanxia, Caijiagou, and elsewhere (Fig. 3.2).

In these multi-color regional geological maps, strata and rocks are distinguished using different colors and patterns, mostly in yellow and green. Place names are labeled, and both Chinese and English names are provided for the most important locations. The requirements of a standard geological map are generally satisfied: the map has detailed legend, frame, latitude and longitude lines, and latitudinal and longitudinal coordinates; only compass rose is missing (Fig. 3.3).

The sketch adopts a diagonal composition and depicts the geology with lines of various thicknesses and colors. The yellowed paper is rich in old-fashioned charm (Fig. 3.5).

These generously illustrated diagrams vividly depict the tools and engineering operations of fieldwork during the early period of geological exploration (Figs. 3.8, 3.9, 3.10).

Blueprint of geological map with distinct lines and complete and orderly legends and patterns (Fig. 3.11).

Using ink and watercolors, the map depicts the strata and rock formations of the Huize section prospecting projects along the Xufu-Kunming Railway, with geographic grid and scale (Fig. 3.12).

Consists of three sketches drawn using single lines, with distinct layers and clear labels (Fig. 3.14).

A depiction of macroscopic geological bodies and an objective description of local geomorphology that superbly integrates geology and aesthetics (Fig. 3.16).

Ancient paper with distinct lines and colored by crayon (Fig. 3.17).

The profile consists of three small sections, with detailed, well-rendered geological features at a glance (Fig. 3.18).

The geological map is rich in content and cleanly drawn in single lines (Fig. 3.19).

From 1945 to 1948, under the leadership of Jiqing Huang, the director of the Regional Geological Research Office of the China Geological Survey, 14 sheets of geological map with standard sheet divisions on the scale of 1:1,000,000 were compiled. The map compilation systematically summarizes and depicts the achievements of the national geological survey in 1948 and represents the first
A depiction of macroscopic geological bodies and an objective description of local geomorphology are integrated by the sketch artist. With its small number of strokes, the geological map has the appeal of a landscape painting (Fig. 3.22).

The combination of clear, smooth single lines and coloring makes the map appealing and orderly. The map is in double-line frame, with latitudinal and longitudinal coordinates (Fig. 3.24).

These diagrams are drawn in crayon, mainly red and green. The clean lines objectively portray the local geomorphology while giving consideration to the art of sketching. The viewers feel as if they are in the midst of mountains rising on both sides (Fig. 3.25).

Fig. 3.1 Microscopic diagram of pyrite from Mt. Liuhan, Yingde, Guangdong Province [1]
Fig. 3.2 Geologic column section of Jurassic stratum [2]
Fig. 3.3 Geological map of Gulan and Gongxian counties, southern Sichuan [3]
Fig. 3.4 Structure map of Mugui manganese mine [4]
Fig. 3.5 Geological sketch of alluvial gold mine in Taining area, Xikang District [5]
Fig. 3.6 Geological map of the phosphate mining area in village Zhongyi, Kunyang, Yunnan Province [6]
Fig. 3.7 Illustrations attached to special report on copper mines in Zhushan, Hubei Province [7]

Fig. 3.8 Diagrams of tool and operations (1) [8]. Source: Diagram of tool and operations (set of three-piece)
Fig. 3.9 Diagrams of tool and operations (2) [9]. Source: Diagram of tool and operations (set of three-piece)

Fig. 3.10 Diagrams of tool and operations (3) [10]. Source: Diagram of tool and operations (set of three-piece)
Fig. 3.11 Geological map of coalfield in Mt. Jiakua, Xiuwen County, Guizhou Province [11]
Fig. 3.12 Geological map of Huize [12]
Fig. 3.13 Geological profile of Liujiachong coalfield in Lingling [13]
Fig. 3.14 Sketches of the operating mineshafts in Mt. Etou (set of three piece) [14]
Fig. 3.15 Geological map of coalfields in the vicinity of Duyun, Guizhou Province [15]
Exploration Period (1935–1953): The First Step Toward Standardization

Fig. 3.16 Syncline sketch of Mt. Liaogao [16]

Fig. 3.17 Geological map of Jurassic coalfield in Puxin and Jiayu counties, Hubei Province [17]
Fig. 3.18 Profile of coalfield in Baoan Township, Daye, Hubei Province [18]

Fig. 3.19 Geological map of coalfields in the vicinity of Shihuiyao, Daye, Hubei Province [19]
Fig. 3.20 China geological map (Guilin sheet) [20]
Fig. 3.21 China geological map (Beijing sheet) [21]

Fig. 3.22 Cliff formed from a fault after loessification in Huaiyugou [22]
Fig. 3.23 Illustrations attached to geological survey report of deposits in the vicinities of Xuanhua, Zhuolu, and Yuxian [23]
Fig. 3.24 Geological map of Mt. Leishan, Echeng [24]
Fig. 3.25 Multiple diagrams of even faults at Mt. Guanyin [25]

Fig. 3.26 Geological profile of the vicinity of Mt. Tieshan, Daye, Hubei Province [26]
Fig. 3.27 The fourth layer sketch maps attached to report of geological exploration at Taolin, Hunan Province (sheet 1) [27]
Fig. 3.28 The fourth layer sketch maps attached to report of geological exploration at Taolin, Hunan Province (sheet 2) [28]
Fig. 3.29 Geological maps (profiles) of igneous rock and geological formations in the Zhaitang coalfield (Part II) [29]
Fig. 3.30 Geological maps (profiles) of igneous rock and geological formations in the Zhaitang coalfield (Part IV) [30]
References

1. Chen Guoda. Microscopic diagram of pyrite from Mt. Liuhuan, Yingde, Guangdong Province. 1935. doi: https://doi.org/10.12063/data.O.2018.NGA0539.T1.11.1.
2. Li Chunyu. Geologic column section of Jurassic stratum. 1938. doi: https://doi.org/10.12063/data.A.2018.NGA2909.T1.2.1.
3. Xiong Yongxian, Luo Zhengyuan. Geological map of Gulan and Gongxian Counties, southern Sichuan. 1938. doi: https://doi.org/10.12063/data.A.2018.NGA3723.T1.1.1.
4. Gao Zhenxi, Wang Zhi. Structure map of Mugui Manganese Mine. 1938. doi: https://doi.org/10.12063/data.O.2018.NGA0114.T1.4.1.
5. Cheng Yuqi, Cui Kexin, Zhou Dezhong. Geological sketch of alluvial gold mine in Taining area, Xikang District. 1939. doi: https://doi.org/10.12063/data.C.2018.NGA0774.T1.1.1.
6. Wang Weilun. Geological map of the phosphate mining area in Village Zhongyi, Kunyang, Yunnan Province. 1939. doi: https://doi.org/10.12063/data.C.2018.NGA0657.T1.2.1.
7. Anonymous. Illustrations attached to special report on copper mines in Zhushan, Hubei Province. 1940. doi: https://doi.org/10.12063/data.O.2018.NGA0907.Z1.22.1.
8. Cao Liying, Fan Jintai. Diagrams of tool and operations (1). 1940. doi: https://doi.org/10.12063/data.O.2018.NGA3713.Z1.29.1.
9. Cao Liying, Fan Jintai. Diagrams of tool and operations (2). 1940. doi: https://doi.org/10.12063/data.O.2018.NGA3713.Z1.30.1.

Fig. 3.31 Block-diagram of Panjiachong lead-zinc mine veins (sheeted zone) in Liling, Hunan Province [31]
3 Exploration Period (1935–1953): The First Step Toward Standardization

10. Cao Liying, Fan Jintai. Diagrams of tool and operations (3). 1940. doi: https://doi.org/10.12063/data.O.2018.NGA3713.T1.32.1.

11. Yi Huang. Geological Map of Coalfield in Mt. Jiakua, Xiuwen County, Guizhou Province. 1940. doi: https://doi.org/10.12063/data.B.2018.NGA0031.T1.5.1.

12. Li Shuming. Geological map of Huize. 1941. doi: https://doi.org/10.12063/data.A.2018.NGA1160.T1.10.1.

13. Anonymous. Geological profile of Liujiachong Coalfield in Lingling. 1942. doi: https://doi.org/10.12063/data.B.2018.NGA2699.T1.2.1.

14. Chen Guangyuan. Xu Hongyou. Sketches of the operating mine-shafts in Mt. Etou (set of three piece). 1942. doi: https://doi.org/10.12063/data.O.2018.NGA9071.T1.4.1.

15. Xie Jiarong. Geological map of coalfields in the vicinity of Duyun, Guizhou Province. 1944. doi: https://doi.org/10.12063/data.A.2018.NGA1940.T1.3.1.

16. Hu Min, Song Hongnian. Syncline sketch of Mt. Liaogao. 1947. doi: https://doi.org/10.12063/data.O.2018.NGA0082.T1.11.1.

17. Gao Zhenxi, Chu Xuchun, Li Yuying, He Lixiang. Geological map of Jurassic coalfield in Puxin and Jiayu Counties, Hubei Province. 1947. doi: https://doi.org/10.12063/data.B.2018.NGA7662.T1.1.1.

18. Li Yuying, Gao Zhenvi. Profile of coalfield in Baoan Township, Daye, Hubei Province. 1948. doi: https://doi.org/10.12063/data.A.2018.NGA0243.T1.3.1.

19. Gao Zhenvi, Li Yuying. Geological map of coalfields in the vicinity of Shihuiyao, Daye, Hubei Province. 1948. doi: https://doi.org/10.12063/data.B.2018.NGA2444.T1.1.1.

20. Huang Jiqing. China Geological Map (Guilin Sheet). 1948. doi: https://doi.org/10.12063/data.A.2018.NGA12044.T1.1.1.

21. Huang Jiqing. China Geological Map (Beijing Sheet). 1948. doi: https://doi.org/10.12063/data.A.2018.NGA12044.T1.1.1.

22. Ye Lianjun, Wang Yu, Guan Shicong. Cliff formed from a fault after loessification in Huaiyugou. 1951. doi: https://doi.org/10.12063/data.O.2018.NGA2324.T1.35.1.

23. Bureau of Industry, the Chahar Provincial Government. Illustrations attached to geological survey report of deposits in the vicinities of Xuanhua, Zholu and Yuxian. 1951. doi: https://doi.org/10.12063/data.O.2018.NGA5324.T1.2.1.

24. Wang Junying. Geological map of Mt. Leishan, Echeng. 1952. doi: https://doi.org/10.12063/data.A.2018.NGA4848.T1.3.1.

25. He Lixian. Multiple diagrams of even faults at Mt. Guanyin. 1952. doi: https://doi.org/10.12063/data.O.2018.NGA6693.T1.28.1.

26. Cheng Yuqi et al. Geological profile of the vicinity of Mt. Tiehean, Daye, Hubei Province. 1953. doi: https://doi.org/10.12063/data.A.2018.NGA66059.T1.4.1.

27. Zhang Yangcao. The fourth layer sketch maps attached to report of geological exploration at Taolin, Hunan Province (sheet 1). 1953. doi: https://doi.org/10.12063/data.O.2018.NGA6605.T2.266.1.

28. Zhang Yangcao. The fourth layer sketch maps attached to report of geological exploration at Taolin, Hunan Province (sheet 2). doi: https://doi.org/10.12063/data.O.2018.NGA6605.T2.300.1.

29. Wang Bingzhang. Geological maps (profiles) of igneous rock and geological formations in the Zhaitang Coalfield (Part II). doi: https://doi.org/10.12063/data.A.2018.NGA0357.T1.1.1.

30. Wang Bingzhang. Geological maps (profiles) of igneous rock and geological formations in the Zhaitang Coalfield (Part IV). doi: https://doi.org/10.12063/data.A.2018.NGA0357.T1.3.1.

31. Liao Shifan. Block-diagram of Fanjiachong Lead-Zinc Mine Veins (sheeted zone) in Liling, Hunan Province. 1952. doi: https://doi.org/10.12063/data.C.2018.NGA5006.T1.4.1.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.