B_s^0 Decays at Belle

Remi Louvot
(On behalf of the Belle collaboration)
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
E-mail: remi.louvot@epfl.ch

Abstract. The large data sample recorded with the Belle detector at the $\Upsilon(5S)$ energy provides a unique opportunity to study the poorly-known B_s^0 meson. Several analyses, made with a data sample representing an integrated luminosity of 23.6 fb$^{-1}$, are presented. We report the study of the large-signal $B_s^0 \to D_s^{(*)-}h^+ (h^+ = \pi^+, \rho^+)$ decays. In addition, several results on B_s^0 decays related to CP-violation studies are described. Beside the non-flavor specific $B_s^0 \to D_s^0 K^\mp$ decay, the following CP-eigenstate decays are studied: $B_s^0 \to J/\psi \eta^($, $B_s^0 \to J/\psi f_0(980)$, the charmless $B_s^0 \to h\bar{h} (h = \pi^+, K^+$, K_S^0) and the three $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ modes from which $\Delta \Gamma_s^{CP}/\Gamma_s$ is extracted.

1. Introduction
The Belle experiment [1], located at the interaction point of the KEK B factory [2], was designed for the study of B mesons\(^1\) produced in e^+e^- annihilation at the $\Upsilon(4S)$ resonance ($\sqrt{s} \approx 10.58$ GeV). After having recorded an unprecedented sample of ~ 550 millions of $\bar{B}B$ pairs, the Belle collaboration started to record collisions at higher energies, opening the possibility to study the B_s^0 meson. A significant theoretical effort on the B_s^0 potential for studying CP violation in the Standard Model (SM) and beyond has taken place from the 90’s [3]. The non-flavor specific decays such as $B_s^0 \to D_s^0 K^\mp$ are expected to be insensitive to new physics (NP); they can be used to measure the CKM angle γ [4] and help to resolve the ambiguity in the width difference in the $B_s^0 - B_s^0$ system, $\Delta \Gamma_s$ [5]. The penguin-dominated decays $B_s^0 \to K^+K^-$ are expected to be sensitive to NP [6] and the CKM angles β and γ can be extracted by comparing its branching fraction (BF) with that of $B^0 \to \pi^+\pi^-$ [7]. Finally, the decays involving a $b \to c\bar{c}s$ transition (the “golden mode”) $B_s^0 \to J/\psi\phi, B_s^0 \to J/\psi\eta^($, $B_s^0 \to J/\psi f_0(980), B_s^0 \to D_s^{(*)+}D_s^{(*)-}$, etc.) are probably the most promising, as the CP-violation effects in these modes are expected to be tiny in the SM [8]. A particular attention will be given to the $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ modes because the width difference $\Delta \Gamma_s^{CP}$ can be extracted from their total BF [9].

Up to now, a data sample of integrated luminosity of $L_{\text{int}} = (23.6 \pm 0.3)$ fb$^{-1}$ (out of a total of 120 fb$^{-1}$) has been analyzed at the energy of the $\Upsilon(5S)$ resonance ($\sqrt{s} \approx 10.87$ GeV). Since the $\Upsilon(5S)$ resonance is above the $B_s^0 B_s^0$ threshold, it was naturally expected that the B_s^0 meson could be studied with $\Upsilon(5S)$ data as well as the B mesons with $\Upsilon(4S)$ data. The main advantage with respect to the hadron colliders is the better prospects of absolute BF measurements. However, the abundance of B_s^0 mesons in $\Upsilon(5S)$ hadronic events has to be precisely determined. Above the $e^+e^- \to u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$ continuum events, the $e^+e^- \to b\bar{b}$

\(^1\) The notation “B” refers either to a B^0 or a B^+. Moreover, charge-conjugated states are implied everywhere.
process can produce different kinds of final states involving a pair of non-strange B mesons [10] ($B^+B^-, B^0\bar{B}^0, B^+\bar{B}^-\pi^+, B^+\bar{B}^-\pi^-, B^+\bar{B}^-\pi^0$ and $B\bar{B}\gamma$), a pair of B_s^0 mesons ($B_s^+\bar{B}_s^-, B_s^+\bar{B}_s^0$ and $B_s^0\bar{B}_s^0$), or final states involving a lighter bottomonium resonance below the open-beauty threshold [11]. The B^* and B_s^* mesons always decay by emission of a photon. The total $e^+e^-\rightarrow b\bar{b}$ cross section at the $\Upsilon(5S)$ energy was measured to be $\sigma_{b\bar{b}} = (302 \pm 14)$ pb [12, 13] and the fraction of B^0_s events to be $f_s = \sigma(e^+e^-\rightarrow B_s^{(*)}\bar{B}_s^{(*)})/\sigma_{b\bar{b}} = (20.2 \pm 3.6)\%$ [15]. The dominant B_s^0 production mode, $b\bar{b}\rightarrow B_s^0\bar{B}_s^0$, represents a fraction $f_{B_s^0\bar{B}_s^0} = (90.1^{+3.8}_{-3.0} \pm 0.2)\%$ of the $b\bar{b}\rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ events, as measured with $B_s^0\rightarrow D_s^-\pi^+$ events (see next section and Ref. [16]).

For all the exclusive modes presented here, the B_s^0 candidates are fully reconstructed from the final-state particles. From the reconstructed four-momentum in the CM, $(E_{B_s^0}, \mathbf{p}_{B_s^0})$, two variables are formed: the energy difference $\Delta E = E_{B_s^0} - \sqrt{s}/2$ and the beam-constrained mass $M_{bc} = \sqrt{s/4 - \mathbf{p}_{B_s^0}^2}$. The signal coming from the dominant $e^+e^-\rightarrow B_s^+\bar{B}_s^0$ production mode is extracted from a two-dimensional fit performed on the distribution of these two variables. The corresponding BF is then extracted using the total efficiency (including sub-BFs) determined with Monte-Carlo (MC) simulations, $\Sigma_2\mathcal{B}$, and the number of B_s^0 mesons produced via the $e^+e^-\rightarrow B_s^+\bar{B}_s^0$ process, $N_{B_s^0} = 2 \times L_{\text{int}} \times \sigma_{b\bar{b}} \times f_s \times f_{B_s^0\bar{B}_s^0} \sim 2.5 \times 10^6$.

2. Dominant CKM-favored B_s^0 Decays

We report the measurement of exclusive $B_s^0\rightarrow D_s^{(*)}h^+$ ($h^+ = \pi^+$ or ρ^+) decays [16]. These modes are expected to produce an abundant signal because of their relatively large predicted BFs [17] and their clean signatures: four charged tracks and up to two photons. The leading amplitude for the four $B_s^0\rightarrow D_s^{(*)}\pi^+$ and $B_s^0\rightarrow D_s^{(*)}\rho^+$ modes is a $b\rightarrow c$ tree diagram of order λ^2 in the Wolfenstein parametrization [18] of the CKM quark-mixing matrix [19]) with a spectator s quark. Besides being interesting in their own right, such measurements, if precise enough, can be of high importance for the current and forthcoming hadron collider experiments. It was for example pointed out [20] that the search for the very rare decay $B_s^0\rightarrow \mu^+\mu^-$ will be systematically limited by the poor knowledge of B_s^0 production, in case NP will enhance the decay probability by no more than a factor 3 above the SM expectation.

In addition, polarization measurements of B decays have become of high interest since the observation of a surprisingly large transverse polarization in $B\rightarrow \phi K^*$ decays by BaBar [21] and Belle [22]. The relative strengths of the longitudinal and transverse states can be measured with an angular analysis of the decay products. In the helicity basis, the expected $B_s^0\rightarrow D_s^-\rho^+$ differential decay width is proportional to $4f_L \sin^2 \theta_{D_s^-}\cos^2 \theta_{\rho^+} + (1-f_L)(1 + \cos^2 \theta_{D_s^-})\sin^2 \theta_{\rho^+}$, where f_L is the longitudinal polarization fraction, and $\theta_{D_s^-} - \theta_{\rho^+}$ is the helicity angle of the $D_s^-(\rho^+)$ defined as the supplement of the angle between the B_s^0 and the $D_s^- (\pi^+)$ momenta in the $D_s^-(\rho^+)$ frame.

The D_s^- mesons are reconstructed via three modes: $D_s^-\rightarrow \phi (\rightarrow K^+K^-)\pi^-$, $D_s^-\rightarrow K^{*0} (\rightarrow K^+\pi^-)K^-$ and $D_s^-\rightarrow K_S^0 (\rightarrow \pi^+\pi^-)K^-$. Based on the ratio of the second and the zeroth Fox-Wolfram moments [23], R_2, the continuum events are efficiently rejected by taking advantage of the difference between their event geometry (jet like, high R_2) and the signal event shape (spherical, low R_2). The $B_s^0\rightarrow D_s^-\pi^+$ and $B_s^0\rightarrow D_s^-\pi^-$ ($B_s^0\rightarrow D_s^-\rho^+$ and $B_s^0\rightarrow D_s^-\rho^+$) candidates with R_2 smaller than 0.5 (0.35) are kept for further analysis. A best candidate selection, based on the intermediate-particle reconstructed masses, is then implemented in order to keep only one B_s^0 candidate per event per mode. The M_{bc} and ΔE distributions of the 2 The BF values presented here are calculated with $f_s = (19.3 \pm 2.9)\%$ [14]. The BFs of $B_s^0\rightarrow D_s^-\pi^+$, $B_s^0\rightarrow D_s^-\rho^+$ and those in Sections 4 and 5 are calculated with $f_s = (19.5^{+3.0}_{-2.3})\%$, also provided in Ref. [14].
selected B^0 candidates for the three D_s^- modes are shown in Figs. 1 and 2, where the various components of the probability density function (PDF) used for the fit are described. The $B_s^0 \to D_s^- \rho^+$ candidates are observed with two additional variables, $\cos \theta_{D_s^-}$ and $\cos \theta_{\rho^+}$, which are the cosines of the helicity angles defined above. They are needed for the measurement of f_L.

Table 1 presents a summary of the numerical results obtained for the $B_s^0 \to D_s^{(*)-} \pi^+$ and $B_s^0 \to D_s^{(*)-} \rho^+$ modes. The different sources of systematic uncertainties affecting the measurements are identified and quoted as a second error. Our results on the B^0 decays are consistent with theoretical predictions [17] and with existing measurements (Table 1).

3. Evidence for $B^0 \to D_s^\mp K^\pm$
We searched for the Cabibbo-suppressed counterpart of $B^0 \to D_s^- \pi^+$, $B^0 \to D_s^\mp K^\pm$, which is not flavour specific [16]. The analysis is performed in the same way as that of $B^0 \to D_s^- \pi^+$, by replacing the π^+ by a K^+ candidate. The fit also includes the $B^0 \to D_s^- \pi^+$ contamination (when the pion is misidentified as a kaon). A 3.5σ evidence with $6.7_{-2.7}^{+3.4}$ events is obtained.

Figure 1. Left: M_{bc} distributions for the $B_s^0 \to D_s^- \pi^+$ (top) $B_s^0 \to D_s^- \pi^+$ (middle) and $B_s^0 \to D_s^- \rho^+$ (bottom) candidates with ΔE restricted to the $B_s^0 \bar{B}_s^0$ signal region. Right: ΔE distributions with M_{bc} restricted to the $B_s^0 \bar{B}_s^0$ signal region. The black- (green-) dotted curve represents the continuum (peaking) background, while the red-dashed curves are the signal shapes. The larger one is the signal in the $B_s^0 \bar{B}_s^0$ kinematic region and the two others, which are very close to 0, are the signals in the two other B^0 production modes ($B^0 \bar{B}_s^0$ and $B_s^0 \bar{B}_s^0$).

Figure 2. Fit of the $B^0 \to D_s^- \rho^+$ candidates. Top: M_{bc} and ΔE distributions, similarly to Fig. 1. Bottom: helicity distributions of the $D_s^-\rho^+$ (left) and ρ^+ (right) with M_{bc} and ΔE restricted to the $B_s^0 \bar{B}_s^0$ kinematic region. The black-dotted curve represents the background, while the two red-dashed curves are the signal. The large (small) signal shape corresponds to the longitudinal (transverse) component.
Table 1. Summary of the results for the four $B_s^0 \to D^{(*)}_s \pi^+$ and $B_s^0 \to D^{(*)}_s \rho^+$ modes [16]. Top: signal yields in the $B_s^0 \bar{B}_s^0$ production mode ($N_{B_s^0 \bar{B}_s^0}$), significances (S) including systematics, total signal efficiencies (ε) including all sub-decay BF's, and BF's (B), where the uncertainty due to f_s (third error) is separated from the others systematics (second error). The first error represents the statistical uncertainties. Bottom: other measurements, obtained with the $B_s^0 \to D^+_s \pi^+$ and $B_s^0 \to D^-_s \rho^+$ analyses.

Mode	$N_{B_s^0 \bar{B}_s^0}$	S	ε (10^{-3})	B (10^{-3})
$B_s^0 \to D^+_s \pi^+$	145^{+14}_{-13}	21σ	15.8	3.7^{+0.4}_{-0.3} ± 0.4 ± 0.5
$B_s^0 \to D^{*-}_s \pi^+$	53.4^{+10.3}_{-9.4}	7.1σ	9.13	2.4^{+0.5}_{-0.3} ± 0.3 ± 0.4
$B_s^0 \to D^-_s \pi^+$	92.2^{+14.2}_{-13.2}	8.2σ	4.40	8.5^{+1.3}_{-1.2} ± 1.1 ± 1.3
$B_s^0 \to D^{*-}_s \rho^+$	77.8^{+14.5}_{-13.4}	7.4σ	2.67	11.9^{+2.2}_{-2.0} ± 1.7 ± 1.8

in the $B_s^0 \bar{B}_s^0$ signal region (Fig. 3), leading to the branching fraction $B(B_s^0 \to D^{\mp}_s K^\mp) = (2.4^{+1.2}_{-1.0}$(stat.) ± 0.3(syst.) ± 0.3(f_s)) × 10^{-4}, in agreement with the CDF result [24].

4. Observation of $B_s^0 \to K^+K^-$ and Searches for $B_s^0 \to \pi^+\pi^-$, $B_s^0 \to K^-\pi^+$ and $B_s^0 \to K^0_S K^0_S$

We present our results for the $B_s^0 \to K^+K^-$, $B_s^0 \to K^-\pi^+$, $B_s^0 \to \pi^+\pi^-$ and $B_s^0 \to K^0_S K^0_S$ charmless decays [25]. The charged pion and kaon candidates are selected using charged tracks and identified with energy deposition, momentum and time-of-flight measurements. The K^0_S candidates are reconstructed via the $K^0_S \to \pi^+\pi^-$ decay. A likelihood based on 16 modified Fox-Wolfram moments [26] is implemented to reduce the continuum, which is the main source of background.

We do observe a 5.8σ excess of 24 ± 6 events in the $B_s^0 \bar{B}_s^0$ region for the $B_s^0 \to K^+K^-$ mode (Fig. 4). The BF, $B(B_s^0 \to K^+K^-) = (3.8^{+1.0}_{-0.9}$(stat.) ± 0.5(syst.) ± 0.5(f_s)) × 10^{-5}$, is derived. However, no significant signal is seen for the other modes. Including the systematic uncertainties, we set the following upper limits at 90% confidence level: $B(B_s^0 \to \pi^+\pi^-) < 1.2 \times 10^{-5}$, $B(B_s^0 \to K^-\pi^+) < 2.6 \times 10^{-5}$ and, assuming $B(B_s^0 \to K^0_S K^0_S) = 2 \times B(B_s^0 \to K^0_S K^0_S)$,
Results about the first observation of $B^{0}_{s} \rightarrow K^{0}\bar{K}^{0}$ candidates, while $\eta\pi\eta$ mass (mass and vertex) constrained fit is then applied to the reported $[29]$. The $J/\psi R$ background is the continuum, which is reduced by requiring all the selection criteria, the one with the smallest fit residual is selected. The main E and $\Delta \sigma$) for these modes.

$B(B^{0}_{s} \rightarrow K^{0}\bar{K}^{0}) < 6.6 \times 10^{-5}$. The later is the first limit set for the $B^{0}_{s} \rightarrow K^{0}\bar{K}^{0}$ mode. All the other values are compatible with the CDF results $[27, 28]$.

5. Study of $B^{0}_{s} \rightarrow J/\psi \eta^{(f)}$ and Search for $B^{0}_{s} \rightarrow J/\psi f_{0}(980)$

Results about the first observation of $B^{0}_{s} \rightarrow J/\psi \eta$ and the first evidence for $B^{0}_{s} \rightarrow J/\psi \eta^{'}$ are reported $[29]$. The J/ψ candidates are formed with oppositely-charged electron or muon pairs, while η candidates are reconstructed via the $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ modes. A mass (mass and vertex) constrained fit is then applied to the $J/\psi \eta$ candidates. The $\eta^{'}$ candidates are reconstructed via the $\eta^{'} \rightarrow \eta \pi^{+}\pi^{-}$ and $\eta^{'} \rightarrow \rho^{0}\gamma$ modes, while the ρ^{0} candidates are selected from $\pi^{+}\pi^{-}$ pairs. If more than one candidate per event satisfies all the selection criteria, the one with the smallest fit residual is selected. The main background is the continuum, which is reduced by requiring $R_{2} < 0.4$. The combined M_{bc} and ΔE distributions are presented in Figs. 5 ($B^{0}_{s} \rightarrow J/\psi \eta$) and 6 ($B^{0}_{s} \rightarrow J/\psi \eta^{'}$). We obtain $B(B^{0}_{s} \rightarrow J/\psi \eta) = (3.32 \pm 0.87 \text{(stat.)})^{+0.32}_{-0.28} \text{(syst.)} \pm 0.42(f_{s}) \times 10^{-4}$ and $B(B^{0}_{s} \rightarrow J/\psi \eta^{'}) = (3.1 \pm 1.2 \text{(stat.)})^{+0.5}_{-0.6} \text{(syst.)} \pm 0.4(f_{s}) \times 10^{-4}$. This is, respectively, the first observation (7.3σ) and the first evidence (3.8σ) for these modes.

Figure 4. Distributions, similarly to Fig. 1, of the $B^{0}_{s} \rightarrow K^{+}K^{-}$ candidates and the fitted PDF as a solid blue curve. The solid-red and the dotted-grey curves represent the signal and the continuum component of the PDF, respectively.

The $B^{0}_{s} \rightarrow J/\psi f_{0}(980)$ mode is especially interesting for the hadron-collider experiments because it has only four charged tracks in its final state. Recent calculations and measurements predict the ratio $R_{J/\psi} = \frac{B(B^{0}_{s} \rightarrow J/\psi f_{0}(980))}{B(B^{0}_{s} \rightarrow J/\psi \phi) \times B(\phi \rightarrow K^{+}K^{-})}$ to be ≈ 0.2 $[30]$, 0.42 ± 0.11 $[31]$ or ≈ 0.24 $[32]$, in agreement with other predictions from generalized QCD factorization $[33]$.

With the same selection for the J/ψ as described above, and the reconstruction of $f_{0}(980) \rightarrow \pi^{+}\pi^{-}$ candidates, the $B^{0}_{s} \rightarrow J/\psi f_{0}(980)$ signal is fitted using the distribution of the energy
difference, ΔE, and the $f_0(980)$ mass, $M_{\pi^+\pi^-}$ (Fig. 7). No significant signal (6.0 \pm 4.4 events, 1.7σ) is seen and we set the upper limit [34]

$$B(B_0^0 \rightarrow J/\psi f_0(980)) \times B(f_0(980) \rightarrow \pi^+\pi^-) < 1.63 \times 10^{-4} \text{ (at 90% C.L.)},$$

or, similarly, $R_{J/\phi} < 0.275$ (at 90% C.L.) using our preliminary result of $B(B_0^0 \rightarrow J/\psi \phi)$ [35]. These limits are clearly in the region of interest and an update using our full data sample (120 fb$^{-1}$) and an improved selection is being performed.

6. Study of $B_0^0 \rightarrow D_s^{(*)}+D_s^{(*)}-$ and Measurement of $\Delta \Gamma^{CP}/\Gamma_s$

We finally report the results from our analysis of the $B_0^0 \rightarrow D_s^{(*)}+D_s^{(*)}-$ decays [36]. These modes are CP eigenstates and CKM favored ($b \rightarrow c\bar{c}s$ transition of order λ^2). In the heavy-quark limit, they are CP even and dominate $\Delta \Gamma$ [9]. The relative width difference of the $B_0^0 - B_s^0$ system can be obtained from the relation $\Delta \Gamma^{CP}/\Gamma_s = \frac{2\times B(B_0^0 \rightarrow D_s^{(*)}+D_s^{(*)}-)}{1-B(B_0^0 \rightarrow D_s^{(*)}+D_s^{(*)}-)}$. In order to reconstruct the $B_0^0 \rightarrow D_s^{(*)}+D_s^{(*)}-$ candidates, we form D_s^{-} candidates from 6 modes: $D_s^{-} \rightarrow \phi\pi^-$, $D_s^{-} \rightarrow K^{*0}\pi^-$, $D_s^{-} \rightarrow K_s^0\pi^-$, $D_s^{-} \rightarrow \phi\rho^-$, $D_s^{-} \rightarrow K^{*0}\pi^-$ and $D_s^{-} \rightarrow K_s^0\pi^-$. Only one
candidate per event is selected based on the values of $M(D_s^-)$ and $M(D_s^{*-}) - M(D_s^-)$. The same likelihood as in Sec. 4 is used to reject 80% of the continuum events, while 95% of the signal is kept. The ΔE and M_{bc} distributions for each of the three $B_s^0 \rightarrow D_{s^0}^{(*)+} D_{s^0}^{(*)-}$ modes are fitted simultaneously. The signal PDF is made of two components studied with signal MC simulations: the correctly reconstructed candidates and the wrong combinations in which a non-signal track (photon) is included in place of a true daughter track (photon). In addition the so-called cross-feed contributions are included: a $D_s^{\pm}D_s^\mp (D_s^{\pm}D_s^{\mp})$ event can be selected as a $D_s^{\pm}D_s^- (D_s^{\pm}D_s^-)$ candidate with a lower energy because one photon is missing; conversely, a $D_s^{\mp}D_s^\pm (D_s^{\mp}D_s^\pm)$ candidate can be reconstructed as a $D_s^{\mp}D_s^\pm (D_s^{\mp}D_s^\pm)$ candidate with an additional photon, hence its energy larger than expected.

The fit results can be seen in Fig. 8 while the numerical values are reported in Table 2. With
the relation above, we extract
\[
\Delta \Gamma_s^{CP} / \Gamma_s = (14.7^{+3.6}_{-3.0} \text{(stat.)} \pm 4.4 \text{(syst.)}) \times 10^{-2}.
\]
This value is in agreement with the SM expectations [37] and with the results from ALEPH, (25^{+21}_{-14})\% [38], DO, (7.2 \pm 3.0)\% [39], and CDF, (12^{+9}_{-10})\% [40]. With only 23 fully-reconstructed signal events, our measurement is already competitive with the Tevatron values.

7. Conclusion
We presented recent results on \(B_s^0 \) decays obtained from 23.6 fb\(^{-1} \) of \(\Upsilon(5S) \) data recorded by the Belle detector. While modes with large statistics can provide precise measurements of BF\(\text{s} \) and \(B_s^{(*)} \) properties, first observations of several \(CP \)-eigenstate \(B_s^0 \) decays are a confirmation of the large potential of our 120 fb\(^{-1} \) e\(^+\)e\(^-\) \(\to \Upsilon(5S) \) data sample and advocate an ambitious \(B_s^0 \) program at super-\(B \) factories.

References
[1] A. Abashian et al. (Belle Collaboration) 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 479 117.
[2] S. Kurokawa and E. Kikutani 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 499 1.
[3] I. Dunietz 1995 Phys. Rev. D 52 2048; I. Dunietz, R. Fleischer and U. Nierste 2001 Phys. Rev. D 63 114015.
[4] R. Aleksan, I. Dunietz and B. Kayer 1992 Z. Phys. C 54 653; R. Fleischer 2003 Nucl. Phys. B 671 459.
[5] S. Nandi and U. Nierste 2008 Phys. Rev. D 77 054010.
[6] D. London and J. Matias 2004 Phys. Rev. D 70 031502.
[7] R. Fleischer 1999 Phys. Lett. B 459 306.
[8] P. Ball and R. Fleischer 2000 Phys. Lett. B 475 111.
[9] R. Aleksan et al. 1993 Phys. Lett. B 316 567.
[10] A. Drutskoy et al. (Belle Collaboration) 2010 Phys. Rev. D 81 112003.
[11] K.F. Chen et al. (Belle Collaboration) 2008 Phys. Rev. Lett. 100 112001.
[12] A. Drutskoy et al. (Belle Collaboration) 2007 Phys. Rev. Lett. 98 052001.
[13] G.S. Huang et al. (CLEO Collaboration) 2007 Phys. Rev. D 75 012002.
[14] K. Nakamura et al. (Particle Data Group) 2010 J. Phys. G 37 075021.
[15] D. Asner et al. (Heavy Flavor Averaging Group) 2010 arXiv:1010.1589 [hep-ex].
[16] R. Louvot et al. (Belle Collaboration) 2009 Phys. Rev. Lett. 102 021801; 2010 Phys. Rev. Lett. 104 231801.
[17] A. Deandrea et al. 1993 Phys. Lett. B 318 549; R.H. Li, C.D. Lü and H. Zou 2008 Phys. Rev. D 78 014018.
[18] L. Wolfenstein 1983 Phys. Rev. D 28 2403.
[19] N. Cabibbo 1963 Phys. Rev. Lett. 10 531; M. Kobayashi and T. Maskawa 1973 Prog. Theor. Phys. 49 652.
[20] B. Adeva et al. (LHCb Collaboration) 2009 arXiv:0912.4179v1 [hep-ex].
[21] B. Aubert et al. (BaBar Collaboration) 2003 Phys. Rev. Lett. 91 171802.
[22] K.F. Chen et al. (Belle Collaboration) 2003 Phys. Rev. Lett. 91 201801.
[23] G.C. Fox and S. Wolfram 1978 Phys. Rev. Lett. 41 1581.
[24] T. Aaltonen et al. (CDF Collaboration) 2009 Phys. Rev. Lett. 103 191802.
[25] C.C. Peng et al. (Belle Collaboration) 2010 Phys. Rev. D 82 072007.
[26] S.H. Lee et al. (Belle Collaboration) 2003 Phys. Rev. Lett. 91 261801.
[27] A. Abulencia et al. (CDF collaboration) 2006 Phys. Rev. Lett. 97 211802.
[28] T. Aaltonen et al. (CDF Collaboration) 2009 Phys. Rev. Lett. 103 031801.
[29] I. Adachi et al. (Belle Collaboration) 2009 arXiv:0912.4134 [hep-ex].
[30] S. Stone and L. Zhang 2009 Phys. Rev. D 79 074024.
[31] K.M. Ecklund et al. (CLEO Collaboration) 2009 Phys. Rev. D 80 052009.
[32] P. Colangelo, F. De Fazio and W. Wang 2010 Phys. Rev. D 81 074001.
[33] O. Leitner et al. 2010 Phys. Rev. D 82 076006.
[34] R. Louvot 2010 Proceedings of Science PoS(FPCP 2010)015.
[35] R. Louvot 2009 arXiv:0905.4345v2 [hep-ex].
[36] S. Esen et al. (Belle Collaboration) 2010 Phys. Rev. Lett. 105 201802.
[37] A. Lenz and U. Nierste 2007 J. High Energy Phys. JHEP06(2007)072.
[38] R. Barate et al. (ALEPH Collaboration) 2000 Phys. Lett. B 486 286.
[39] V.M. Abazov et al. (D0 Collaboration) 2009 Phys. Rev. Lett. 102 091801.
[40] T. Aaltonen et al. (CDF Collaboration) 2008 Phys. Rev. Lett. 100 121803.