Phase Transitions and Gravitational Wave Tests of Pseudo-Goldstone Dark Matter in the Softly Broken $U(1)$ Scalar Singlet Model

Kristjan Kannikea, Martti Raidala

aNational Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn 10143, Estonia

Abstract

We study phase transitions in a softly broken $U(1)$ complex singlet scalar model in which the dark matter is the pseudoscalar part of a singlet whose direct detection coupling to matter is strongly suppressed. Our aim is to find ways to test this model with the stochastic gravitational wave background from the scalar phase transition. We find that the phase transition which induces vacuum expectation values for both the Higgs boson and the singlet – necessary to provide a realistic dark matter candidate – is always of the second order. If the stochastic gravitational wave background characteristic to a first order phase transition will be discovered by interferometers, the soft breaking of $U(1)$ cannot be the explanation to the suppressed dark matter-baryon coupling, providing a conclusive negative test for this class of singlet models.

1. Introduction

Scalar singlet is one of the most generic candidates for the dark matter (DM) of Universe [1, 2], whose properties have been exhaustively studied [3–6] (see [7] for a recent review and references). However, the recent results from direct detection experiments [8–10] have pushed the singlet scalar DM mass above a TeV-scale (except in a narrow region around the Higgs resonance). Thus, the singlet scalar models with the simplest scalar potential, in which the DM is stabilised by a Z_2 symmetry, appear to be strongly constrained, less natural and less attractive.

This conclusion need not hold for specific realisations of the singlet scalar DM idea. A neat observation was made in [11] that for the case of a less general scalar potential obtained by imposing an $U(1)$ symmetry that is softly broken, the direct detection cross section is strongly suppressed at tree level by the destructive interference between two contributing amplitudes. This result persists even if loop-level corrections to the direct detection cross section are considered [12, 13], making the softly broken scalar singlet model really interesting. This has motivated follow-up studies demonstrating that it is possible for pseudo-Goldstone DM to show up at the LHC [14] or in indirect detection [15].

Is there any other way to test the softly broken $U(1)$ singlet DM model experimentally and to distinguish the particular model from more general versions of singlet scalar DM? A new probe of physics beyond the Standard Model (SM) became experimentally available due to the discovery of gravitational waves (GWs) by LIGO experiment [16, 17]. It is well known that first order phase transitions generate a stochastic GW background [18–20] which can potentially be probed in future space based GW interferometers [21, 22]. While the Higgs phase transition in the SM is of second-order [23, 24] and, thus, does not generate the GW signal, in models with extended scalar sector the first order phase transition in the early Universe can become experimentally testable by the GW experiments.

GWs from the extension of the SM with a scalar singlet have been extensively studied. In general a two-step phase transition will take place in those models that can be of the first order [25, 30] and be testable with GWs [31, 38]. In general a two-step phase transition will take place in those models that can be of the first order and be testable with GWs. The aim of this work is to study the properties of the phase transition in the scalar singlet model with a softly broken $U(1)$ symmetry in order to find out whether the GW signal can distin-
guish between different versions of the singlet DM models. We reach a definitive conclusion: in this class of models with a suppressed direct detection cross section, the phase transition is necessarily of the second order and no testable GW background will be generated. Therefore, if the stochastic GW background characteristic to the first order phase transition due to scalar singlets will be discovered, the softly broken singlet model cannot be responsible for that. In this case, as a consequence, the negative results from DM direct detection experiments cannot be explained with the ideas presented in [11].

This Letter is organised as follows. We describe the model in Section 2. The phase transition in this framework is studied in Section 3. We conclude in Section 4.

2. The Model

We consider the scalar potential of the SM Higgs boson H together with a complex singlet S,
\[
V = \frac{1}{2} \mu_H^2 |H|^2 + \frac{1}{2} \mu_S^2 |S|^2 + \frac{1}{4} \lambda_S (S^2 + S^*S)^2
\]
\[+ \frac{1}{2} \lambda_H |H|^4 + \lambda_{HS} |H|^2 |S|^2 + \frac{1}{2} \lambda_S |S|^4,
\]
where the μ_S^2 term is the only one that softly breaks the $U(1)$ symmetry $S \rightarrow e^{i\alpha} S$. Without loss of generality, the parameter μ_S^2 can be taken to be real and positive.

We decompose the fields in the electroweak vacuum as
\[
S = \frac{v_s + s + i\chi}{\sqrt{2}}, \quad H = \left(\begin{array}{c} 0 \\ v_h + h \end{array} \right).
\]

Note that both the Higgs boson and the singlet will get a vacuum expectation value (VEV) (the Higgs VEV is $v_h = 246.22$ GeV). The mixing of the CP-even states h and s will yield two CP-even mass eigenstates h_1 and h_2. We identify h_1 with the SM Higgs boson with mass $m_1 = 125.09$ GeV [39]. Notice that the pseudo-Goldstone χ is the DM candidate with a mass determined by μ_S^2.

We express the potential parameters in terms of physical quantities in the zero-temperature vacuum, such as the masses $m_{1,2}^2$ of real scalars, their mixing angle θ, pseudoscalar mass m_χ^2, and the VEVs v_h and v_s:
\[
\lambda_H = \frac{m_1^2 + m_2^2 + (m_1^2 - m_2^2) \cos \theta}{2v_h},
\]
\[
\lambda_S = \frac{m_1^2 + m_2^2 + (m_1^2 - m_2^2) \cos \theta}{2v_s},
\]
\[
\lambda_{HS} = \frac{(m_1^2 - m_2^2) \sin \theta}{2v_sv_h},
\]
\[
\mu_H^2 = -\frac{1}{2}(m_1^2 + m_2^2) + \frac{1}{2v_h}(m_2^2 - m_1^2)
\]
\[\times (v_h \cos \theta + v_s \sin \theta),
\]
\[
\mu_S^2 = -\frac{1}{2}(m_1^2 + m_2^2) + 2m_\chi^2 + \frac{1}{2v_s}(m_1^2 - m_2^2)
\]
\[\times (v_s \cos \theta - v_h \sin \theta),
\]
\[
\mu_{HS}^2 = m_\chi^2.
\]

The tree-level direct detection DM amplitude vanishes at zero momentum transfer,
\[
A_{dd}(t) \propto \sin \theta \cos \theta \left(\frac{m_2^2}{t - m_2^2} - \frac{m_1^2}{t - m_1^2} \right) \approx 0,
\]
which allows one to explain the negative experimental results from DM direct detection experiments while still keeping the pseudo-Goldstone DM mass in the reach of collider searches.

3. Phase Transition

In the high temperature limit, the $U(1)$-symmetric mass terms take on temperature-dependent corrections:
\[
\mu_H^2(T) = \mu_H^2(0) + c_HT^2,
\]
\[
\mu_S^2(T) = \mu_S^2(0) + c_ST^2,
\]
where
\[
c_H = \frac{1}{48}(9g^2 + 3g'^2 + 12y_t^2 + 24\lambda_H + 4\lambda_{HS}),
\]
\[
c_S = \frac{1}{6}(\lambda_S + \lambda_{HS}).
\]

The thermal correction to μ_S^2 is zero, because the quartic couplings do not break the $U(1)$ symmetry.

For the cancellation mechanism [9] to work, the fields must end up in the $(v_h, v_s, 0)$ vacuum at zero temperature. Then the phase transition pattern consistent with the DM relic density is
\[
(0, 0, 0) \rightarrow (0, v_s, 0) \rightarrow (v_h, v_s, 0).
\]
Both steps are second-order phase transitions.
There is no possibility to engineer a first-order phase transition. The only alternative second step, which could potentially be first-order \cite{40}, would be

\[(0, 0, v_\chi) \rightarrow (v_h, v_s, 0). \]

(13)

For a first-order phase transition, however, both extrema must be minima at the same time. But if the \((v_h, v_s, 0)\) vacuum is a minimum, the \((0, 0, v_\chi)\) vacuum can only be a saddle point or maximum, because the mass squared of the \(s\) particle is \(-m_\chi^2 < 0\) in this vacuum.\footnote{When the potential contains a cubic term \cite{41}, then the phase transition \cite{41} into \((v_h, v_s, 0)\) can be first order, but such a term explicitly breaks the \(Z_2\) symmetry.}

The phase diagram for one particular point of the parameter space with correct relic density \cite{39} with the mixing angle \(\sin \theta = 0.1\), the ratio \(v_h/v_s = 0.291\), and masses \(m_2 = 1000\) GeV and \(m_\chi = 100\) GeV is shown in Fig. 1. The phase diagram in the left panel shows the evolution of fields (black line) from the \((0, 0, 0)\) vacuum (white) through the \((0, v_s, 0)\) vacuum (red) to the \((v_h, v_s, 0)\) vacuum (yellow). The phase where only the Higgs has a VEV is shown in green. The right panel demonstrates the second phase transition. The phase transition is of second-order: the Higgs VEV begins to grow continuously at the critical temperature, marked by the thin vertical line.

4. Conclusions

Pseudo-Goldstone DM in singlet scalar models with softly broken \(U(1)\) presents an appealing possibility to sidestep constraints from direct detection on more general class of scalar singlet DM with a \(Z_2\) symmetry. Motivated by the aim to find additional tests of this framework we study the thermal phase transition pattern of the model. In order the model to work, the mechanism that cancels the direct detection cross section needs both the Higgs boson and the singlet to have VEVs. For that reason, the possible phase transitions in this model are necessarily of the second order and, therefore, cannot produce any detectable gravitational wave signal.

Thus, a possible future discovery of a stochastic gravitational wave background characteristic to strong first order phase transition would strongly disfavor or even rule out this class of models. In this case the suppression of DM scattering cross section off nuclei must be explained by other means.

Acknowledgement

We would like to thank V. Vaskonen for discussions. This work was supported by the Estonian Research Council grant PRG434, the grant IUT23-6 of the Estonian Ministry of Education and Research,
and by the EU through the ERDF CoE program project TK133.

References

[1] V. Silveira, A. Zee, Scalar Phantom, Phys.Lett. B161 (1985) 136. doi:10.1016/0370-2693(85)90624-0

[2] J. McDonald, Gauge Singlet Scalars as Cold Dark Matter, Phys. Rev. D50 (1994) 3637–3649. arXiv:hep-ph/0702143 doi:10.1103/PhysRevD.50.3637

[3] V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D79 (2009) 015018. arXiv:0811.0393 doi:10.1103/PhysRevD.79.015018

[4] C. Burgess, M. Pospelov, T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B610 (2001) 709–729. arXiv:hep-ph/0011335 doi:10.1016/S0550-3213(01)00913-2

[5] J. M. Cline, K. Kainulainen, P. Scott, C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D88 (2013) 055025. [Erratum: Phys. Rev.D92,no.3,039906(2015)]. arXiv:1306.4710 doi:10.1103/PhysRevD.92.039906.10.1103/PhysRevD.92.039906

[6] A. Djouadi, O. Lebedev, Y. Mambrini, J. Quevillon, Implications of LHC searches for Higgs–portal dark matter, Phys. Lett. B709 (2012) 65–69. arXiv:1112.3299 doi:10.1016/j.physletb.2012.01.062

[7] P. Athron, et al., Status of the scalar singlet dark matter model, Eur. Phys. J. C77 (8) (2017) 568. arXiv:1705.07931 doi:10.1140/epjc/s10052-017-5113-1

[8] D. Akerib, et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2) (2017) 021303. arXiv:1608.07648 doi:10.1103/PhysRevLett.118.021303

[9] E. Aprile, et al., Dark Matter Search Results from a One Tonne-Year Exposure of XENON1T arXiv:1805.12562

[10] X. Cui, et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (18) (2017) 181302. arXiv:1708.06917 doi:10.1103/PhysRevLett.119.181302

[11] C. Gross, O. Lebedev, T. Toma, Cancellation Mechanism for Dark-Matter–Nucleon Interaction, Phys. Rev. Lett. 119 (19) (2017) 191801. arXiv:1708.02253 doi:10.1103/PhysRevLett.119.191801

[12] D. Azevedo, M. Dufour, F. Grzedzielski, D. Huang, M. Iglicki, R. Santos, One-loop contribution to dark matter-nucleon scattering in the pseudoscalar dark matter model arXiv:1810.06105

[13] K. Ishiwata, T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level, JHEP 12 (2018) 080. arXiv:1810.08139 doi:10.1007/JHEP12(2018)080

[14] K. Huitu, N. Koivunen, O. Lebedev, S. Mondal, T. Toma, Probing pseudo-Goldstone dark matter at the LHC arXiv:1812.05952

[15] T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen, K. Tuominen, Direct and indirect probes of Goldstone dark matter arXiv:1812.05996

[16] B. P. Abbott, et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (6) (2016) 061102. arXiv:1602.03837 doi:10.1103/PhysRevLett.116.061102

[17] B. P. Abbott, et al., GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (24) (2016) 241103. arXiv:1606.04855 doi:10.1103/PhysRevLett.116.241103

[18] C. J. Hogan, NUCLEATION OF COSMOLOGICAL PHASE TRANSITIONS, Phys. Lett. 133B (1983) 172–176. doi:10.1016/0370-2693(83)90553-1

[19] P. J. Steinhardt, Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay, Phys. Rev. D25 (1982) 2074. doi:10.1103/PhysRevD.25.2074

[20] E. Witten, Cosmic Separation of Phases, Phys. Rev. D30 (1984) 272–285. doi:10.1103/PhysRevD.30.272

[21] V. Corbin, N. J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435–2446. arXiv:gr-qc/0512039 doi:10.1088/0264-9381/23/7/014

[22] P. A. Seoane, et al., The Gravitational Universe arXiv:1407.5720

[23] K. Kajantie, M. Laine, K. Rummukainen, M. E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?, Phys. Rev. Lett. 77 (1996) 2887–2890. arXiv:hep-ph/9901021 doi:10.1103/PhysRevLett.77.2887

[24] Y. Aoki, F. Csikor, Z. Fodor, A. Ukawa, The Endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice, Phys. Rev. D60 (1999) 013001. arXiv:hep-lat/9901023 doi:10.1103/PhysRevD.60.013001

[25] J. R. Espinosa, B. Griparic, T. Konstandin, F. Riva, Electroweak Baryogenesis in Non-minimal Composite Higgs Models, JCAP 1201 (2012) 012. arXiv:1110.2876 doi:10.1088/1475-7516/2012/01/012

[26] J. M. Cline, K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 1301 (2013) 012. arXiv:1210.4196 doi:10.1088/1475-7516/2013/01/012

[27] J. R. Espinosa, T. Konstandin, F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B854 (2012) 592–630. arXiv:1107.5441 doi:10.1016/j.nuclphysb.2011.09.010

[28] T. Alanne, K. Tuominen, V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, Nucl. Phys. B889 (2014) 692–711. arXiv:1407.0688 doi:10.1016/j.nuclphysb.2014.11.001

[29] T. Alanne, K. Kainulainen, K. Tuominen, V. Vaskonen, Baryogenesis in the two doublet and inert singlet extension of the Standard Model, JCAP 1608 (08) (2016) 057. arXiv:1607.03503 doi:10.1088/1475-7516/2016/08/057

[30] T. Tenkanen, K. Tuominen, V. Vaskonen, A Strong Electroweak Phase Transition from the Inflaton Field, JCAP 1609 (09) (2016) 037. arXiv:1606.00663 doi:10.1088/1475-7516/2016/09/037

[31] M. Kakizaki, S. Kanemura, T. Matsui, Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition, Phys. Rev. D92 (11) (2015) 115007. arXiv:1509.08394 doi:10.1083/PhysRevD.92.115007

[32] K. Hashino, M. Kakizaki, S. Kanemura, P. Ko, T. Matsui, Gravitational waves and Higgs boson couplings for phase transition in the model with a singlet scalar field, Phys. Lett. B766 (2017) 49–54. arXiv:1609.00297 doi:10.1016/j.physletb.
[33] V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D95 (12) (2017) 123515. arXiv:1611.02073 doi:10.1103/PhysRevD.95.123515.

[34] P. Huang, A. J. Long, L.-T. Wang, Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves, Phys. Rev. D94 (7) (2016) 075008. arXiv:1608.06619 doi:10.1103/PhysRevD.94.075008.

[35] M. Artymowski, M. Lewicki, J. D. Wells, Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology, JHEP 03 (2017) 066. arXiv:1609.07143 doi:10.1007/JHEP03(2017)066.

[36] A. Beniwal, M. Lewicki, J. D. Wells, M. White, A. G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108. arXiv:1702.06124 doi:10.1007/JHEP08(2017)108.

[37] F. P. Huang, Z. Qian, M. Zhang, Exploring dynamical CP violation induced baryogenesis by gravitational waves and colliders, Phys. Rev. D98 (1) (2018) 015014. arXiv:1804.06813 doi:10.1103/PhysRevD.98.015014.

[38] A. Beniwal, M. Lewicki, M. White, A. G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model arXiv:1810.02380.

[39] G. Aad, et al., Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803. arXiv:1503.07589 doi:10.1103/PhysRevLett.114.191803.

[40] T. Vieu, A. P. Morais, R. Pasechnik, Electroweak phase transitions in multi-Higgs models: the case of Trinification-inspired THDSM, JCAP 1807 (07) (2018) 014. arXiv:1801.02670 doi:10.1088/1475-7516/2018/07/014.

[41] A. Alves, T. Ghosh, H.-K. Guo, K. Sinha, D. Vagie, Collider and Gravitational Wave Complementarity in Exploring the Singlet Extension of the Standard Model arXiv:1812.09333.