Polarizabilities and tune-out wavelengths of the hyperfine ground states of 87,85Rb

Xia Wang, Jun Jiang, Lu-You Xie, Deng-Hong Zhang, and Chen-Zhong Dong

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province,
College of Physics and Electronic Engineering,
Northwest Normal University,
Lanzhou 730070, P. R. China

(Dated: October 27, 2016)

PACS numbers: 31.15.ap

I. INTRODUCTION

If an atom is placed in an AC electromagnetic field, the energy shift due to Stark effect can be written as

$$\Delta E \approx -\frac{1}{2} \alpha_d(\omega) F^2 + \ldots,$$

where $\alpha_d(\omega)$ is the dynamic dipole polarizability of quantum state at frequency ω, and F is the strength of the AC electromagnetic field. When the frequency ω is zero, $\alpha(0)$ is called static polarizability. When the frequency ω tends to the certain value, the dynamic polarizability goes to zero and the corresponding wavelength is called tune-out wavelength.

With the recent development of atomic manipulation and measurement in experimental optical traps, studies on polarizabilities of atoms and ions have been of great interest. The knowledge of static polarizabilities can be used to evaluate Stark effect [1] and the blackbody radiation(BBR) shift [2] which are very important to determine the uncertainty of atomic clock [3-5].

The tune-out wavelength was initially introduced by LeBlanc and Thywissen [6] and they discussed its application in multispices atom traps. The atom trapped in the optical lattice is released while the other atoms are still strongly trapped when the wavelength of trapping laser is equal to the tune-out wavelength of this atom. In addition, high-precision measurement of the tune-out wavelength can be used to test atomic structure calculations [7]. Up to now, the tune-out wavelengths of Rb [8-10], K [11] and metastable states of He [12] have been measured in experiment. The longest tune-out wavelength of the ground state of K is measured with an uncertainty of 1.5 pm [2]. This experiment provides the most accurate determination of the ratio of the $4s - 4p_{3/2}$ and $4s - 4p_{1/2}$ line strengths of K and the uncertainty is half as much as the theoretical uncertainty [12].

In this paper, the static and dynamic polarizabilities, and tune-out wavelengths of the ground state of Rb and the hyperfine ground states of 87,85Rb have been calculated by using relativistic configuration interaction plus core polarization(RCICP) approach. It is found that the first primary tune-out wavelengths of the $5s_{1/2}, F = 1, 2$ states of 87Rb are 790.018187(193) nm and 790.032602(193) nm severally, where the calculated result for the $5s_{1/2}, F = 2$ state is in good agreement with the latest high-precision measurement 790.032388(32) nm [Phys. Rev. A 92, 032501(2015)]. Similarly, the first primary tune-out wavelengths of the $5s_{1/2}, F = 2, 3$ states of 85Rb are 790.023515(218) nm and 790.029918(218) nm respectively. Furthermore, the tune-out wavelengths for the different magnetic sublevels M_F of each hyperfine level F are also determined by considering the contributions of tensor polarizabilities.

In the present calculations is atomic unit(a.u.), in which, mass of electron m_e and \hbar have the numerical...
value 1 and the speed of light is 137.0359991.

II. FORMULATION AND CALCULATIONS

The RCICP method is used in the present calculations. The details of calculation method are similar to those reported in Refs. 15, 16. The starting point is the Dirac-Fock (DF) calculation for the Rb\(^{+}\) ground state. The single electron orbitals of the core are made up of the linear combinations of some analytical S-spinors basis functions, which were introduced by Grant and Quiney Refs. 17, 18. S-spinors can be treated as relativistic generalizations of the Slater-type orbitals.

The effective interaction potential of the valence electron with the core is written as

\[
H = c \alpha \cdot p + \beta c^2 + V_{\text{core}}(r),
\]

where \(\alpha\) and \(\beta\) are 4 \times 4 matrices of the Dirac operator, \(p\) is the momentum operator, \(c\) is the speed of light Ref. [18]. The core operator is

\[
V_{\text{core}}(r) = -\frac{Z}{r} + V_{\text{dir}}(r) + V_{\text{exc}}(r) + V_{p}(r).
\]

The direct interaction \(V_{\text{dir}}(r)\) and exchange interaction \(V_{\text{exc}}(r)\) of the valence electron with the DF core are calculated without any approximation. The \(\ell, j\)-dependent polarization potential \(V_{p}\) is semiempirical and can be written as

\[
V_{p}(r) = -\frac{3}{2} \sum_{k=1}^{3} \frac{\alpha_{(k)}^{(\text{core})}}{2r^{2(k+1)}} \sum_{\ell,j} g_{k,\ell,j}^2(r) |\ell,j\rangle \langle \ell,j|.
\]

Here, the factors \(\alpha_{(k)}^{(\text{core})}\) are the static \(k\)-th order polarizabilities of the core electrons. In the present calculations, dipole polarizability is 9.076 a.u. Ref. [19], quadrupole polarizability is 35.41 a.u. Ref. [19], and octupole polarizability is 314 a.u. Ref. [20]. \(g_{k,\ell,j}^2(r) = 1 - \exp(-\mu(2(k+2))/\rho_{k,\ell,j}^{(2(k+2))})\) is the cutoff function to make the polarization potential finite at the origin. The cutoff parameters \(\rho_{k,\ell,j}\) that can be tuned to redo the energies of the \(ns, np\), \(nd\) states are listed in Table I.

The effective Hamiltonian of the valence electron is diagonalized in a large L-spinor basis. L-spinors can be treated as relativistic generalizations of the Laguerre-type orbitals Refs. 17, 18. This basis can be enlarged until completeness without any linear dependence problem.

III. RESULTS OF FINE STRUCTURE

A. Energies

Table II gives the present theoretical energy levels for a few low-lying excited states of Rb, which are compared with experimental energies from the National Institute of Science and Technology (NIST) tabulation Ref. [21]. The polarization potential parameters \(\rho_{k,\ell,j}\) are tuned to give the correct experimental energies of 5\(s\), 5\(p\), 4\(d\). Hence, the spin-orbit splittings of 5\(p\) and 4\(d\) are the same as experimental values. It is worth noting that the spin-orbit splittings of the 6\(p\), 7\(p\), 5\(d\), and 6\(d\) states are also very close to experimental values. For example, the spin-orbit splittings of 5\(p\) and 6\(p\) states are 0.0010825 and 0.0003536 Hartree in theory, which are in good agreement with the experimental values 0.0010826 and 0.0003532 Hartree. The spin-orbit splittings of 4\(d\) and 5\(d\) states are 0.0000023 and 0.0000131 Hartree in theory, which are also consistent with the experimental values 0.0000020 and 0.0000135 Hartree.

State	\(J\)	Present Energy	Experiment
5\(s\)	1/2	-0.1535067	-0.1535066
5\(p\)	1/2	-0.0961927	-0.0961927
	3/2	-0.0951102	-0.0951101
4\(d\)	5/2	-0.0653180	-0.0653178
	3/2	-0.0653157	-0.0653158
6\(s\)	1/2	-0.0616926	-0.0617762
6\(p\)	1/2	-0.0454285	-0.0454528
	3/2	-0.0450749	-0.0450996
5\(d\)	3/2	-0.0363087	-0.0364064
	5/2	-0.0362956	-0.0363929
7\(s\)	1/2	-0.0335803	-0.0336229
4\(f\)	7/2	-0.0314334	-0.0314329
	5/2	-0.0314333	-0.0314328
7\(p\)	1/2	-0.0266661	-0.0266809
	3/2	-0.0265057	-0.0265211
6\(d\)	3/2	-0.0227249	-0.0227985
	5/2	-0.0227150	-0.0227881
8\(s\)	1/2	-0.0211350	-0.0211596
5\(f\)	7/2	-0.0201079	-0.0201073
	5/2	-0.0201077	-0.0201072
5\(g\)	7/2	-0.0200232	-0.0200233
	9/2	-0.0200232	-0.0200233

B. Dipole matrix elements

Table III gives the reduced electric dipole(E1) matrix elements for a number of low-lying excited states transitions of Rb. The matrix elements are calculated with a
TABLE III: Comparison of reduced electric dipole(E1) matrix elements (in a.u.) for the principal transitions of Rb with experimental results and other theoretical calculations.

Transition	RCICP	RMBPT all-order [22, 23]	RCCSDT [24]	RCCSD [25]	Expt.
5s - 5p₁/₂	4.221(21)	4.253(34)	4.26(3)	4.26115	4.233(2) *
5s - 5p₃/₂	5.962(30)	6.003(48)	6.02(5)	6.01328	4.2339(16) [9]
5s - 6p₁/₂	0.313(4)	0.333	0.342(2)	0.3235(9) [14]	
5s - 6p₃/₂	0.513(5)	0.541	0.553(3)	0.5230(8) [14]	
6s - 5p₁/₂	4.150(12)	4.145(10)	4.1187	4.144(3)	
6s - 5p₃/₂	6.052(17)	6.047(13)	6.0145	6.048(5)	
6s - 6p₁/₂	9.723(17)	9.721(24)	9.6839		
6s - 6p₃/₂	13.660(25)	13.647(34)	13.5918		
4d₃/₂ - 5p₁/₂	8.028(40)	8.037(43)	7.9802	8.07(2)	
4d₃/₂ - 5p₃/₂	3.625(18)	3.628(20)	3.6029	3.65(2)	
4d₃/₂ - 6p₁/₂	5.2257(87)	4.717			
4d₃/₂ - 6p₃/₂	2.2810(40)	2.055			
4d₅/₂ - 5p₁/₂	10.880(54)	10.889(58)	10.8149	10.96(4)	
4d₅/₂ - 6p₁/₂	6.846(12)	6.184			
5d₃/₂ - 5p₁/₂	1.297(56)	1.616	1.184(3)		
5d₃/₂ - 5p₃/₂	0.640(26)	0.787	0.59(2)		
5d₅/₂ - 5p₁/₂	18.209(98)	18.195(87)	18.1341		
5d₅/₂ - 5p₃/₂	8.2131(56)	8.205(27)	8.1778		
5d₅/₂ - 6p₁/₂	1.909(77)	2.334	1.76(3)		
5d₅/₂ - 6p₃/₂	24.645(16)	24.621(80)	24.5410		
4d₃/₂ - 5f₂/₅	4.630(96)	4.614(39)	4.5951		
4d₅/₂ - 5f₂/₅	1.238(26)	1.234(10)	1.2287		
5d₃/₂ - 5f₂/₅	5.54(18)	5.518(45)	5.4948		
5d₅/₂ - 4f₂/₅	25.382(11)	25.357(56)	25.3138		
5d₅/₂ - 4f₄/₅	6.786(68)	6.779(14)	6.7677		
5d₅/₂ - 4f₇/₅	30.35(51)	30.316(64)	30.2657		
([5p₁/₂](1)[5s₁/₂])]²	1.994(40)	1.992(65)	1.997(62)	1.99145	1.995(3) *
([5p₁/₂](1)[5s₁/₂])]²	1.99921(3) [9]				

*These values are the average of several experiments [26, 28] and given by Leonard et al. [9].

The ratio of the line strengths, which are the square of electric dipole matrix elements of the 5s – 5p₁/₂ and 5s – 5p₃/₂ transitions, is also given in Table III. This ratio should exactly be 2.0 in the nonrelativistic limit. The deviation of this ratio comes from the slight differences of radial wavefunctions for the spin-orbit doublet arising from the small differences of energies [32]. The present RCICP ratio 1.994(40) is in excellent agreement with average experimental value 1.995(3), larger than the latest experimental ratio 1.99221(3) which has been determined by the measurement of tune-out wavelength and the experimental matrix element of 5s – 5p₁/₂ 4.233 [9]. So far none of theoretical results are within the latest experimental error bar, but the RMBPT all-order result is the closest to this latest experimental ratio.

The modified transition operator [29–31],

\[r = r - [1 - \exp(-\frac{r^6}{\rho^6})]^{1/2} \frac{\alpha p r}{r^3}, \]

The cutoff parameter \(\rho \) used in Eq. (5) is 2.5279 a.u., which is the average of the \(s, p \) and \(d \) cutoff parameters (note, the weighting of the \(s \) is doubled to give it the same weighting as the \(p \) and \(d \) orbitals). The present RCICP calculations are compared with the relativistic many-body perturbation theory all-order method (RMBPT all-order) [22, 23] and the relativistic coupled cluster single-double and the important valence triple excitation method (RCCSDT) calculations [24]. For the 5s – 5p₁/₂ transitions, the differences among the present RCICP, RMBPT all-order, and RCCSDT theoretical results are not larger than 1%. The present RCICP results have a good agreement with the average values of experiments [26, 28] and the results of Leonard et al. [9]. For the 5s – 6p₁/₂ transitions, the present RCICP results agree with some available results [14, 22, 24] very well, and the experimental values lie in the middle of present RCICP results and other theoretical results.
TABLE IV: The dipole \(\alpha^{(1)} \), quadrupole \(\alpha^{(2)} \), and octupole \(\alpha^{(3)} \) polarizabilities (in a.u.) of the 5\(s_{1/2} \) state of Rb.

\(5s_{1/2} \)	\(\alpha^{(1)} \)	\(10^{-3} \alpha^{(2)} \)	\(10^{-5} \alpha^{(3)} \)
present RCICP	317.05(3.10)	6.479(1)	2.381(44)
DFCP [33]	317.62	6.4810	2.3738
CICP [34]	315.7	6.480	2.378
RCCSD [35]	316.17		
RCCSD [36, 37]	318.47(318.3(6))	6.491(18)	
MBPT-SD [38]	317.40		
RMBPT all-order [22, 39]	316.4/322(4)	6.525(37)	2.374(16)
RMBPT [22]		6.520(80)	2.37
Expt. [40]	319(6)		
Expt. [41]	318.79(1.42)		
Expt. [42]	320.1(6)		

C. Polarizabilities of the ground state

The static scalar polarizability is written as

\[
\alpha^{(k)}(0) = \sum \frac{f^{(k)}_{ni}}{\varepsilon_{ni}^{2}},
\]

where \(f^{(k)}_{ni} \) is the oscillator strength, and \(\varepsilon_{ni} \) is the excitation energy of the transition. The oscillator strength is defined as

\[
f^{(k)}_{ni} = \frac{\langle L_iJ_i|p^kC^k(r)||L_nJ_n\rangle^2\varepsilon_{ni}}{(2k+1)(2J_n+1)}.
\]

Table IV gives the present and some available theoretical and experimental dipole, quadrupole and octupole polarizabilities of the 5\(s_{1/2} \) state of Rb. It is found that the present RCICP results agree with the DFCP results very well. The DFCP method is the same as the present RCICP method except that DFCP uses the B-spline basis. The RCICP dipole polarizability is larger than that calculated by the nonrelativistic configuration interaction plus core polarization (CICP) [34], RCCSD of Lim et al. [35], and the RMBPT all-order method [39], but smaller than the RCCSD result of Kaur et al. [36, 37], the earlier MBPT-SD result [38], and the experimental values [40, 41]. If the experimental electric dipole matrix elements of the 5\(s \) – 5\(p_j \) transitions [9] are used in the calculation of polarizabilities, the static dipole polarizability of the 5\(s \) state is 318.743 a.u., which agrees with the experimental result [41] very well. So the differences of static dipole polarizabilities between experiments and the present results are mainly from the differences of 5\(s \) – 5\(p_j \) matrix elements. The latest experimental value [42, 320.1(6) a.u.], is larger than most of the theoretical and other experimental values.

The present quadrupole and octupole polarizabilities of the 5\(s \) state are close to the results of CICP, the relativistic many-body perturbation theory (RMBPT), RCCSD, and RMBPT all-order. The differences of the present RCICP calculations and other available results [20, 22, 54, 36, 37] are not more than 0.6%.

TABLE V: Pseudospectral oscillator strength distribution for the \(Rb^+ \). Transition energies \(\varepsilon_n \) are given in a.u..

\(n \)	\(\varepsilon_n \)	\(f_n \)
1	551.524651	2.0
2	75.117766	2.0
3	12.201477	2.0
4	1.592215	2.0
5	67.974337	6.0
6	9.575915	6.0
7	0.878715	6.0
8	4.800593	10.0

TABLE VI: Tune-out wavelengths \(\lambda_{zero} \) (in nm) of the 5\(s_{1/2} \) state of Rb.

Transition	RCICP	RMBPT	Expt.
5\(s \) – 5\(p_{1/2} \)	790.02765(20)	790.0261(7)	798.85(1)
5\(s \) – 5\(p_{3/2} \)	423.02428(391)	423.05(8)	423.018(7)
5\(s \) – 6\(p_{1/2} \)	421.07565(49)	421.08(3)	421.075(2)
5\(s \) – 6\(p_{3/2} \)			

D. Tune-out wavelengths of the ground state

The dynamic dipole polarizabilities computed with the usual oscillator strength sum-rules can be written as

\[
\alpha^{(1)}(\omega) = \sum_n \frac{f^{(1)}_{ni}}{(\varepsilon_{ni}^2 - \omega^2)}.
\]

The core polarizability is given by a pseudospectral oscillator strength distribution [34]. The distribution is derived from the single particle energies of Hartree-Fock core and listed in Table V. Each separate \((n, l)\) level is identified with one transition with a pseudo-oscillator strength that is equal to the number of electrons in the shell. The excitation energy is set by adding a constant to the Koopman energies and tuning the constant until the core polarizability is equal to the known core polarizability from the oscillator strength sum-rules.

Table VI shows the present three tune-out wavelengths of the 5\(s_{1/2} \) state of Rb, which are compared with the RMBPT calculations and some available experiments. In the present calculations of dynamic polarizabilities, the matrix elements of 5\(s \) – 5\(p_j \) and 5\(s \) – 6\(p_j \) transitions are replaced by the most accurate experimental values [9, 13, 14]. There are two cases that the tune-out wavelengths occur. The first case is that the tune-out wavelength exists between \(np_{1/2} \) and \(np_{3/2} \) spin-orbit doublet, such as 790.02765 nm lies in the 5\(s \) – 5\(p_j \) splitting and 421.07565 nm lies in the 5\(s \) – 6\(p_j \) splitting. The present tune-out wavelength, 790.02765 nm, is shorter than the early RMBPT result [12] by 0.007 nm, but agrees with the latest RMBPT result 790.0261(7) nm very well. There are
two experiments 10, 13 of the longest tune-out wavelength of the 5s state available. The experiment of Lam-pporese et al. 13, 790.018(2) nm, agrees with the RMBPT and the present RCICP theoretical results very well. The experiment of Catani et al. 10, 789.85(1) nm, has a big difference with the available values 9, 12, 13 and the present RCICP calculation. The reason of this difference should be from the light is not the linearly polarized in this experiment 10. The present tune-out wavelength near 421 nm agrees with the RMBPT result 12 and experimental result 14 perfectly. The second case is that the tune-out wavelength occurs when the wavelength is shorter than the $5s - n_p3/2$ transition wavelength and longer than the $5s - (n + 1)p_{1/2}$ transition wavelength, such as 423.02428 nm lies between the $5p_{3/2}$ and $6p_{1/2}$. This tune-out wavelength also has a good agreement with the experimental result 14 and MBPT result 12.

IV. RESULTS OF HYPERFINE STRUCTURE

A. Energies and Reduced matrix elements

According to first-order perturbation theory, the energy for a hyperfine state $|L,J,F\rangle$ is given 43, 44 by

$$E = E_{N,L,J} + W_F,$$

where $E_{N,L,J}$ is the energy of the unperturbed fine structure state, and W_F is the hyperfine interaction energy which can be written as

$$W_F = \frac{1}{2}AR + B\frac{3}{2}(R + 1) - 2I(I + 1)J(J + 1)\frac{1}{2I(2I - 1)2J(2J - 1)},$$

where A and B are hyperfine structure constants, and it is usual to give the A and B coefficients in MHz where 1.0 MHz = $1.519829903 \times 10^{-10}$ a.u.,

$$R = F(F + 1) - I(I + 1) - J(J + 1).$$

F is the total angular momentum of the hyperfine state, I is the nuclear spin ($I = 3/2$ for 87Rb and $I = 5/2$ for 85Rb), and J is the total angular momentum of the atomic state.

The hyperfine interaction energies of the different hyperfine levels of $5s_{1/2}$, $5p_J$ and $6p_J$ states of 87,85Rb are listed in Table VII. The hyperfine structure constants A and B are originated from other documents 22, 38, 43, 44. The energy shifts of the $5s_{1/2}$ states are about one or two order of magnitude larger than those of the $5p_J$, $6p_J$ excited states. Similarly, the hyperfine splittings of the $n_p_{1/2}$ states are obviously larger than the splittings of the $n_p_{3/2}$ states.

The dipole matrix elements between the hyperfine states are calculated by using the Wigner-Eckart theorem. The transition matrix elements between the two hyperfine states $|n_L,J,F_i\rangle$ and $|n_L,J,F_g\rangle$ can be written as

$$F_i F_g \left\{ \begin{array}{c} I \\ J_i \\ J_g \end{array} \right\} (L_g J_g I_F_g || r^k C^k(r) || L_i J_i I_F_i) = (-1)^{I+J_g+F_i+k} \times \hat{F}_i \hat{F}_g,$$

where $k = 1$ for a dipole transition and $\hat{F} = \sqrt{2F + 1}$.

The absorption oscillator strength $f_{gi}^{(k)}$ for a transition from hyperfine state $g \to i$ is defined as

$$f_{gi}^{(k)} = \frac{2}{(k+1)(2F_g + 1)} |(L_g J_g I_F_g || r^k C^k(r) || L_i J_i I_F_i)|^2 \varepsilon_{gi},$$

where ε_{gi} is the dipole matrix element.

In the present calculations, in order to consider energy dependent correction of the matrix elements, the matrix elements are treated as parametric functions of their binding energies 10. The functional form is

$$A_{ij}(E_i, E_j) \approx A_{ij}(E_{0,i}, E_{0,j}) + \frac{\partial A_{ij}}{\partial E_i}(E_i - E_{0,i}) + \frac{\partial A_{ij}}{\partial E_j}(E_j - E_{0,j}),$$

where $E_{0,i}$ and $E_{0,j}$ are the binding energies without any hyperfine splitting. The partial derivatives are evaluated
The dipole polarizability also has a tensor component

\[\alpha_{T}^{(1)}(\omega) = 6 \left(\frac{5F_g(2F_g - 1)(2F_g + 1)}{6(F_g + 1)(2F_g + 3)} \right)^{1/2} \]

\[\times \sum_{i} (-1)^{F_g + F_i} \left\{ F_g \ 1 \ F_i \ 1 \ F_g \ 2 \right\} \sqrt{\frac{f_{g_i}^{(1)}}{\varepsilon_{g_i}^{2} - \omega^{2}}} \]. (15)

The dipole polarizabilities of the hyperfine levels can be calculated by the following equation [29],

\[\alpha_{Mg}^{(1)}(\omega) = \alpha^{(1)}(\omega) + \alpha_{T}^{(1)}(\omega) \left(3M_{g}^{2} - F_g(F_g + 1) \right) F_g(2F_g - 1). \] (16)

Table IX gives the static scalar and tensor dipole polarizabilities of the hyperfine ground states of 87,85Rb. There are no other theoretical or experimental results that can be directly compared with these values in Table IX. However, the hyperfine stark shift, which is the difference of scalar polarizabilities between the hyperfine states with the same \((L, J)\) but different \(F\) quantum numbers, can be compared with other theoretical and experimental results. Table X gives the differences of scalar and tensor polarizabilities of the hyperfine ground states of 87,85Rb in a.u. There are some documents of the hyperfine Stark shifts of 87,85Rb [31,47,50] that are often reported as the Stark shift coefficients \(k\), with units of \((Hz/(V/m))\). This is converted into a.u. by multiplying \(0.4091778 \times 10^{4}\) [29]. The present hyperfine Stark shift of 87Rb is slightly smaller than the relativistic configuration interaction plus many-body perturbation(RCI + MBPT) [47], the relativistic linearized coupled cluster single-double with partial triple contributions(RLCCSDT) [48], and larger than the perturbation theory [30]. This value is also between the experimental value [49] by Mowat et al. and the experimental value [50] by Dallal et al. The present hyperfine Stark shift of 85Rb is larger than Perturbation theory [30] and experimental value [49].

The tensor polarizabilities of the hyperfine states do not exceed 10^{-4} a.u. in magnitude. The tensor polarizability of the $F = 1$ ground state of 87Rb is positive and that of the $F = 2$ ground state of 87Rb is negative. The difference of present tensor polarizabilities of the $F = 2$ and $F = 1$ ground states of 87Rb is -1.0409×10^{-4} a.u., which is less negative than the experimental value -0.8841×10^{-4} a.u. [50]. The difference between experiment and the present calculation is 1.568×10^{-5} a.u., which is larger than the experimental error bar 1.045×10^{-5} a.u. The tensor polarizability of the $F = 2$ ground state of 85Rb is positive and that of the $F = 3$ ground state of 85Rb is negative. The difference of tensor polarizabilities of the $F = 3$ and $F = 2$ ground states of 85Rb is -6.1115×10^{-5} a.u. There are
TABLE XI: Tune-out wavelengths \(\lambda_{zero} \) (in nm) of the 5\(s_{1/2} \) state. The tune-out wavelengths are given to six digits after the decimal point.

F=1	\(10^{-3} \Delta \lambda \)	F=2	\(10^{-3} \Delta \lambda \)
794.970633	-	794.984669	-
790.018187	-9.46	790.032602	+4.95
780.233113	-	780.246852	-
780.232287	-	780.246513	-
423.021740	-2.42	423.025808	+1.46
421.670240	-	421.674241	-
421.073131	-2.51	421.077158	+1.51
420.296547	-	420.300560	-
420.296519	-	420.300519	-

no other comparable theoretical and experimental data available at present.

The energy-dependent corrections of the dipole matrix elements play an important role in the calculation of dynamic polarizabilities. Omitting the matrix element correction results in the hyperfine Stark shifts about half these values, namely \(5.454 \times 10^{-3} \) a.u. of \(^{87}\text{Rb} \) and \(2.423 \times 10^{-3} \) a.u. of \(^{85}\text{Rb} \) respectively.

C. Tune-out wavelengths of the hyperfine ground states

1. \(^{87}\text{Rb} \)

Hyperfine splittings lead to two new features in the tune-out wavelengths. One feature is that the splitting of the 5\(s_{1/2} \) state has resulted in two duplicate sets of tune-out wavelengths, that for the \(F = 1 \) and \(F = 2 \) hyperfine ground states. Another feature is that the hyperfine splittings of the \(5p_{1/2} \) state have also resulted in the creation of additional tune-out wavelengths that arise from two adjacent hyperfine states each other. The hyperfine splitting of the \(5p_{1/2} \) state has resulted in one additional tune-out wavelength, located between the \(5p_{1/2}, F = 1 \) and \(5p_{1/2}, F = 2 \) states. The hyperfine structure with regard to the \(5p_{3/2} \) state brings two additional tune-out wavelengths, located between the three \(5p_{3/2}, F = 1, 2, 3 \) levels with allowed dipole transitions to the \(5s_{1/2}, F = 2 \) hyperfine state, or between the three \(5p_{3/2}, F = 0, 1, 2 \) levels with allowed dipole transitions to the \(5s_{1/2}, F = 1 \) hyperfine state. There are several tune-out wavelengths that are defined as the primary tune-out wavelengths, which are the closest to the tune-out wavelengths calculated without the hyperfine splittings.

Table XI gives the tune-out wavelengths of the two hyperfine ground states of the 5\(s_{1/2} \) state of \(^{87}\text{Rb} \). These wavelengths are given to six digits after the decimal point to ensure that all the differences of the tune-out wavelengths are at least two digits. The longest tune-out wavelengths near 794 nm occur in the hyperfine splitting of the \(5p_{1/2} \) state. These tune-out wavelengths would be hard to detect due to the very small energy splittings of the hyperfine states. The second tune-out wavelengths near 790 nm are the first primary tune-out wavelengths, which lie between the excitation thresholds of the \(5p_{1/2} \) and \(5p_{3/2} \) states. The first primary tune-out wavelengths of the 5\(s_{1/2} \) state are 790.018187 nm and 790.032602 nm respectively. The present calculation, 790.032602 nm of the 5\(s_{1/2} \), \(F = 2 \) state, is larger than the latest experiment 790.032388(32) nm \(^9\) and the difference is 0.000214 nm. This difference is still about seven times larger than the experimental error bar. The tune-out wavelengths near 423 nm are other primary tune-out wavelengths, which lie between the excitation thresholds of the \(5p_{1/2} \) and \(5p_{3/2} \) states. Similarly, the tune-out wavelengths near 421.07 nm are also primary tune-out wavelengths, which lie between the excitation thresholds of the \(6p_{1/2}\) and \(6p_{3/2} \) states. These primary tune-out wavelengths of the 5\(s_{1/2} \) state are shorter than the corresponding tune-out wavelengths of 5\(s \) state of \(\text{Rb} \), and those of the 5\(s_{1/2} \), \(F = 2 \) state are longer than the close tune-out wavelengths of 5\(s \) state of \(\text{Rb} \). The tune-out wavelengths near 780 nm, 421.67 nm, and 420.3 nm occur in the hyperfine splittings of the \(5p_{3/2} \), \(6p_{1/2} \), and \(6p_{3/2} \) states respectively, which are also very hard to detect.

The tune-out wavelengths also depend on the magnetic sublevels if tensor polarizabilities are considered. The tune-out wavelengths associated with the different magnetic sublevels of the 5\(s_{1/2} \), \(F \) states of \(^{87}\text{Rb} \) are listed in Table XII. Comparing with the tune-out wavelengths for the different magnetic sublevels of the same hyperfine ground state, the shifts of tune-out wavelengths due to tensor polarizabilities are less than \(10^{-4} \) nm. Here we focus on that the difference of the first primary tune-out wavelengths for the \(M_F = \pm 1 \) and \(M_F = 0 \) of the 5\(s_{1/2} \), \(F = 1 \) state is 9.1 \(\times 10^{-5} \) nm. The first primary tune-out wavelength of the \(M_F = 0 \) sublevel of the 5\(s_{1/2} \), \(F = 1 \) state is 790.0181259 nm. It is a little shorter than the very recent experiment 790.01858(23) nm \(^8\), and the difference is about 0.00045 nm which is nearly two times larger than the experimental error bar. The first primary tune-out wavelengths for the \(M_F = 0 \), \(M_F = \pm 1 \) and \(M_F = \pm 2 \) sublevels of the 5\(s_{1/2} \), \(F = 2 \) state are 790.0326845 nm, 790.0326434 nm and 790.0325203 nm respectively. The differences in these tune-out wavelengths for any of the different magnetic sublevels do not exceed 1.7 \(\times 10^{-4} \) nm.

2. \(^{85}\text{Rb} \)

Table XIII gives the tune-out wavelengths of the 5\(s_{1/2} \), \(F = 2 \) and 5\(s_{1/2} \), \(F = 3 \) states of \(^{85}\text{Rb} \). Table XIV gives the tune-out wavelengths for the different magnetic sublevels. All analysis and properties of \(^{85}\text{Rb} \) should be interpreted with the contents of the previous section in
TABLE XII: Tune-out wavelengths λ_{zero} (in nm) of the different magnetic sublevels of $5s_{1/2}, F = 1$ and $5s_{1/2}, F = 2$ states of 87Rb. Tune-out wavelengths are given to six digits after the decimal point.

M_F	$F=1$	$M_F = -2, 2$	$M_F = -1, 1$	$M_F = 0$
λ_{zero}	$10^{-3} \Delta \lambda$	λ_{zero}	$10^{-3} \Delta \lambda$	λ_{zero}
794.9705853	-	794.9460000	-	794.9843373
790.0181259	-	790.0252033	-	790.0326845
780.2331259	-	780.2468572	-	780.2468488
780.2328185	-	780.2469393	-	780.2464233
423.0217422	-	423.0258101	-	423.0258153
421.6702358	-	421.6742354	-	421.6742949
421.0731238	-	421.0771545	-	421.0771623
420.2965477	-	420.3005609	-	420.3005598
420.2965184	-	420.3005197	-	420.3005206

TABLE XIII: Tune-out wavelengths λ_{zero} (in nm) of the $5s_{1/2}, F = 2$ and $5s_{1/2}, F = 3$ states of 85Rb. $\Delta \lambda$ (in nm) is the shifts of the primary tune-out wavelengths compared to the tune-out wavelengths of $5s$ state. Tune-out wavelengths are given to six digits after the decimal point.

λ_{zero}	$10^{-3} \Delta \lambda$	λ_{zero}	$10^{-3} \Delta \lambda$
794.975393	-	794.9815383	-
790.023515	-0.41	790.0299181	+2.27
780.237079	-	780.2440891	-
780.237860	-	780.2438999	-
423.023277	-1.00	423.0260001	+0.72
421.671676	-	421.6734549	-
421.074607	-1.04	421.0763926	+0.74
420.297985	-	420.2997699	-
420.297974	-	420.2997509	-

mind. The differences between the tune-out wavelengths of the hyperfine states of 85Rb are smaller than those of 87Rb. It is understandable since 85Rb has the smaller hyperfine structure constants than 87Rb. Similarly, the differences between the tune-out wavelengths of the hyperfine magnetic sublevels of 86Rb are also smaller than those of 87Rb.

D. Some comments on accuracy

The uncertainties of the dipole reduced matrix elements of the $5s - 5p_J$ transitions are mainly caused by the correlation effects of frozen-core model. These uncertainties are smaller than 0.5%, thus we set 0.5% as the uncertainties of the dipole reduced matrix elements. The uncertainties of dipole reduced matrix elements for the transitions of more highly-excited states are derived from the first-order parametric functions of their energies. By considering the uncertainties of dipole reduced matrix elements, the uncertainties of three tune-out wavelengths of the ground state of Rb are obtained.

Comparing with the present calculations and available experimental results [8, 9], the absolute precision of tune-out wavelengths should be about 0.0005 nm. The method used to determine the tune-out wavelengths of hyperfine states was unorthodox, being essentially a second order calculation using energy and matrix element shifts applied prior to the evaluation of the oscillator strength sum-rules. There are three main factors that influence the accuracy of the present tune-out wavelengths. Table XV shows the estimated errors of the first primary tune-out wavelengths of the $5s_{1/2}, F = 1, 2$ states of 85Rb and $5s_{1/2}, F = 2, 3$ states of 87Rb.

The first factor is the uncertainties of $5s - 5p_J$ matrix elements. An uncertainty analysis has been done for the tune-out wavelengths. Firstly, the matrix elements of $5s - 5p_{1/2}$ and $5s - 5p_{3/2}$ transitions are changed by 0.05% according to the errors between the present RCICP calculations and Ref. [9]. The matrix elements are adjusted accordingly and tune-out wavelengths are recomputed. In this case, the ratio of line strengths $5s - 5p_J$ is not changed. The shifts of the first primary tune-out wavelengths near 790.0 nm of 87Rb are about 5 fm. It is too small to explain the differences of the present calculations and experimental results [8, 9]. The shifts of the other primary tune-out wavelengths near 423.0 nm which lie in $5s - 5p_{1/2}$ and $5s - 6p_{1/2}$ transitions of 87,85Rb are 2034 fm. The shifts of the primary tune-out wavelengths near 421.0 nm which lie in $5s - 6p_{1/2}$ and $5s - 6p_{3/2}$ transitions of 87,85Rb are about 257 fm. The shifts of the tune-out wavelengths which lie in the np_J hyperfine splittings are smaller than 10^{-11} nm. Then, the ratio of line strengths $5s - 5p_J$ is changed by 0.00003. The shifts of the first primary tune-out wavelengths of 87,85Rb near 790.0 nm are 13 fm. These shifts are still much smaller than the differences between the present calculations and latest experiments [8, 9]. The shifts of the other primary tune-out wavelengths of 87,85Rb near 423.0 nm are about 6 fm. The shifts of the primary tune-out wavelengths of 87,85Rb near 421.0 nm are about 0.7 fm.

We also have checked the sensitivity of the tune-out wavelengths to the small changes in the energy-adjusted matrix elements. The tune-out wavelengths are recalculated without the modifications of matrix elements due to the energy-adjustment. The tune-out wavelengths are in-
TABLE XIV: Tune-out wavelengths λ_{zero} (in nm) of the different magnetic sublevels of $5s_{1/2}, F = 2$ and $5s_{1/2}, F = 3$ states of ^{87}Rb. Tune-out wavelengths are given to seven digits after the decimal point.

M_F	$F = 2$	$F = 3$					
	$M_F = -2.2$	$M_F = -1.1$	$M_F = 0$	$M_F = -3.3$	$M_F = -2.2$	$M_F = -1.1$	$M_F = 0$
794.9753668	794.9754056	794.9754185	794.9815835	794.9815382	794.9815110	794.9815020	
790.0235316	790.0236506	790.0234980	790.0298900	790.0299180	790.0299347	790.0299403	
780.2379826	780.2379764	780.2379743	780.2440913	780.2440888	780.2440870	780.2440865	
780.2378566	780.2378612	780.2378629	780.2438904	780.2438904	780.2439042	780.2439060	
423.0232785	423.0232769	423.0232764	423.0250000	423.0250014	423.0250024	423.0250028	
421.6716741	421.6716777	421.6716789	421.6734579	421.6734538	421.6734513	421.6734505	
421.0746085	421.0746070	421.0746065	421.0763902	421.0763917	421.0763927	421.0763930	
420.2979853	420.2979847	420.2979853	420.2979768	420.2979765	420.2979768	420.2979763	
420.2979732	420.2979737	420.2979738	420.2979745	420.2997503	420.2997508	420.2997510	

TABLE XV: The estimated errors (in fm) of the first primary tune-out wavelengths of the $5s - 5p$ states of ^{87}Rb. The errors that are caused by the 0.05% uncertainties of $5s - 5p_{1/2}$ and $5s - 5p_{3/2}$ matrix elements. $\delta \lambda_1$ is the errors that are caused by the 0.00003 uncertainty of the ratio of $5s - 5p_J$ line strengths. $\delta \lambda_3$ is the errors that are caused by 5% uncertainties of the matrix elements from the excited, continuum, and core-excited states. $\sum \delta \lambda_i$ is the sum of the $\delta \lambda_1$, $\delta \lambda_2$, and $\delta \lambda_3$.

F	λ_{zero}(nm)	$\delta \lambda_1$	$\delta \lambda_2$	$\delta \lambda_3$	$\sum \delta \lambda_i$
^{87}Rb	790.0181865	5	13	175	193
2	790.0326024	5	13	175	193
^{85}Rb	790.0235148	5	13	200	218
3	790.0299179	5	13	200	218

TABLE XV: The estimated errors (in fm) of the first primary tune-out wavelengths of the $5s - 5p$ states of ^{87}Rb. The errors that are caused by the 0.05% uncertainties of $5s - 5p_{1/2}$ and $5s - 5p_{3/2}$ matrix elements. $\delta \lambda_1$ is the errors that are caused by the 0.00003 uncertainty of the ratio of $5s - 5p_J$ line strengths. $\delta \lambda_3$ is the errors that are caused by 5% uncertainties of the matrix elements from the excited, continuum, and core-excited states. $\sum \delta \lambda_i$ is the sum of the $\delta \lambda_1$, $\delta \lambda_2$, and $\delta \lambda_3$.

The second factor is the uncertainties in contributions to polarizabilities from the highly-excited, continuum, and core-excited states. The contribution from excited states above $5p$ state is 11.14 a.u. in the present RCICP calculations of tune-out wavelengths, which is 4.1% difference with the value given by Leonard et al. [8]. So we changed the matrix elements of highly-excited states by 5% and the tune-out wavelengths are recomputed. The first primary tune-out wavelengths will shift 175 fm of ^{87}Rb and 200 fm of ^{85}Rb. These shifts are close to the difference between the present calculation and the latest experiment [4].

The third factor is the uncertainties of transition energies of hyperfine states. In the present calculations, the experimental resonance transition energies [10] for the hyperfine transitions are used, in which the uncertainties are smaller than 10^{-7} nm. The effect of hyperfine structure for the level higher than $6p$ is negligible. So this factor can be ignored in the present analysis.

V. CONCLUSIONS

The static and dynamic polarizabilities of the ground state of Rb have been calculated by using the RCICP method. Combining the most exact $5s - 5p_J$ matrix elements [9], three longest tune-out wavelengths of the $5s_{1/2}$ state are determined. After considering the hyperfine splittings of energy levels, the static and dynamic polarizabilities, and the tune-out wavelengths of the hyperfine ground states of $^{87,85}\text{Rb}$ are further determined. The present hyperfine stark shifts are in good agreement with the available theoretical and experimental results. Considering the contributions of tensor polarizabilities, the tune-out wavelengths for the different magnetic sublevels M_F of the hyperfine states F are obtained. It is found that the differences of the tune-out wavelengths for the different magnetic sublevels do not exceed 10^{-4} nm.

The first primary tune-out wavelengths of the $5s_{1/2}, F = 1, 2$ states of ^{87}Rb are $790.018187(193)$ nm and $790.032602(193)$ nm severally. The first primary tune-out wavelengths of the $5s_{1/2}, F = 2, 3$ states of ^{85}Rb are $790.023515(218)$ nm and $790.029918(218)$ nm respectively. The present results are compared with the recent experiments [5,6]. The differences between the present calculations and the recent experiments are still larger than the experimental error bars [5,6]. But the present RCICP first primary tune-out wavelength of $5s_{1/2}, F = 2$ state of ^{87}Rb is longer than that observed in the recent experiment [5]. Meanwhile, the present RCICP first primary tune-out wavelength of $5s_{1/2}, F = 1, M_F = 0$ state of ^{87}Rb is shorter than that observed in the latest experiment [5]. It seems that the main uncertainty of the polarizabilities from the highly-excited, continuum and core-excited states can not explain this difference completely, because the uncertainty of the remaining polarizabilities can only lead to consistently longer or consistently shorter, but not to some longer and some shorter...
than the first primary tune-out wavelengths in recent experiments. Hence, a further study will be essential.

Acknowledgments

The work of JJ was supported by National Natural Science Foundation of China (NSFC) (Grants No.11147018, 11564036). The work of LYX was supported by NSFC (Grants No. U1331122). The work of DHZ was supported by NSFC (Grants No. 11464042, U1330117). The work of CZD was supported by NSFC (Grants No. 11274254, U1332206).

[1] M. S. Safronova, U. I. Safronova, and S. G. Porsev, Phys. Rev. A 87, 032513 (2013), URL http://link.aps.org/doi/10.1103/PhysRevA.87.032513
[2] M. S. Safronova, S. G. Porsev, U. I. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. A 87, 012509 (2013).
[3] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502 (2006), URL http://link.aps.org/doi/10.1103/PhysRevA.74.020502
[4] T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, Phys. Rev. Lett. 109, 263004 (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.109.263004
[5] Y. Cheng, J. Jiang, and J. Mitroy, Phys. Rev. A 88, 022511 (2013), URL http://link.aps.org/doi/10.1103/PhysRevA.88.022511
[6] L. J. LeBlanc and J. H. Thywissen, Phys. Rev. A 75, 053612 (2007).
[7] W. F. Holmgren, R. Trubko, I. Hromada, and A. D. Cronin, Phys. Rev. Lett. 109, 243004 (2012).
[8] F. Schmidt, D. Mayer, M. Holmann, T. Laush, F. Kindermann, and A. Widera, Phys. Rev. A 93, 022507 (2016), URL http://link.aps.org/doi/10.1103/PhysRevA.93.022507
[9] R. H. Leonard, A. J. Fallon, C. A. Sackett, and M. S. Safronova, Phys. Rev. A 92, 052501 (2015), URL http://link.aps.org/doi/10.1103/PhysRevA.92.052501
[10] J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, Phys. Rev. Lett. 103, 140401 (2009), URL http://link.aps.org/doi/10.1103/PhysRevLett.103.140401
[11] B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, Phys. Rev. Lett. 115, 043004 (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.043004
[12] B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 84, 043401 (2011).
[13] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. Inguscio, and F. Minardi, Phys. Rev. Lett. 104, 153202 (2010), URL http://link.aps.org/doi/10.1103/PhysRevLett.104.153202
[14] C. D. Herold, V. D. Vaidya, X. Li, S. L. Rolston, J. V. Porto, and M. S. Safronova, Phys. Rev. Lett. 109, 243003 (2012).
[15] J. Jiang, L. Y. Tang, and J. Mitroy, Phys. Rev. A 87, 032518 (2013).
[16] J. Jiang and J. Mitroy, Phys. Rev. A 88, 032505 (2013), URL http://link.aps.org/doi/10.1103/PhysRevA.88.032505
[17] I. P. Grant and H. M. Quiney, Phys. Rev. A 62, 022508 (2000).
[18] I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules Theory and Computation (Springer, New York, 2007).
[19] W. R. Johnson, D. Kolb, and K. Huang, At. Data Nucl. Data Tables 28, 333 (1983).
[20] S. G. Porsev and A. Derevianko, J. Chem. Phys. 119, 844 (2003).
[21] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2016, June 15], National Institute of Standards and Technology, Gaithersburg, MD. (2015).
[22] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 052508 (2011), URL http://link.aps.org/doi/10.1103/PhysRevA.83.052508
[23] M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[24] B. Arora, D. K. Nandy, and B. K. Sahoo, Phys. Rev. A 85, 012506 (2012).
[25] R. Pal, M. S. Safronova, W. R. Johnson, A. Derevianko, and S. G. Porsev, Phys. Rev. A 75, 042515 (2007).
[26] U. Volz and H. Schmoranzer, Phys. Scr. T65, 48 (1996).
[27] J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, Phys. Rev. A 57, 2448 (1998), URL http://link.aps.org/doi/10.1103/PhysRevA.57.2448
[28] R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, Phys. Rev. A 66, 024502 (2002), URL http://link.aps.org/doi/10.1103/PhysRevA.66.024502
[29] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[30] T. Lee, T. P. Das, and R. M. Sternheimer, Phys. Rev. A 11, 1784 (1975).
[31] J. L. Snyder, Phys. Lett. 21, 172 (1966).
[32] J. Migdalek and Y.-K. Kim, J. Phys. B 31, 1947 (1998).
[33] Q. H.-X. Tang Yong-Bo, Li Cheng-Bin, Chinese Physics B 23, 63101 (pages 0) (2014), URL http://cjp.iphy.ac.cn/EN/abstract/article_59819.shtml
[34] J. Mitroy and S. Novikov, Phys. Rev. Lett. 90, 183202 (2003).
[35] I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, J. Chem. Phys. 122, 104103 (2005).
[36] K. Kaur, J. Kaur, B. Arora, and B. K. Sahoo, Phys. Rev. B 90, 245405 (2014), URL http://link.aps.org/doi/10.1103/PhysRevB.90.245405
[37] J. Kaur, D. K. Nandy, B. Arora, and B. K. Sahoo, Phys. Rev. A 91, 012705 (2015), URL http://link.aps.org/doi/10.1103/PhysRevA.91.012705
[38] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev. A 60, 4476 (1999).
[39] A. Derevianko, W. R. Johnson, M. S. Safronova, and
J. F. Babb, Phys. Rev. Lett. 82, 3589 (1999).

[40] R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson, Phys. Rev. A 10, 1131 (1974).

[41] W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin, Phys. Rev. A 81, 053607 (2010).

[42] M. D. Gregoire, I. Hromada, W. F. Holmgren, R. Trubko, and A. D. Cronin, Phys. Rev. A 92, 052513 (2015), URL http://link.aps.org/doi/10.1103/PhysRevA.92.052513.

[43] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).

[44] L. J. Armstrong, Theory of the Hyperfine Structure of Free Atoms (Wiley-Interscience, New York, 1971).

[45] U. D. Rapol, A. Krishna, and V. Natarajan, European Physical Journal D 23, 185 (2003), physics/0307090.

[46] D. A. Steck, available online at http://steck.us/alkalidata/revision2.1.4 (2010).

[47] E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 97, 040802 (2006).

[48] M. S. Safronova, D. Jiang, B. Arora, C. W. Clark, M. G. Kozlov, U. I. Safronova, and W. R. Johnson, IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 57, 94 (2010).

[49] J. R. Mowat, Phys. Rev. A 5, 1059 (1972).

[50] Y. Dallal and R. Ozeri, Phys. Rev. Lett. 115, 183001 (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.183001.