Generalization in portfolio-based algorithm selection

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University
AAAI’21
Algorithm parameters

Algorithms often have many tunable parameters

Significant impact on:

- Runtime
- Solution quality
- Memory usage
Algorithm portfolios

Best configuration for one problem is rarely optimal for another

Portfolio-based algorithm selection

1. Compile a diverse portfolio of parameter settings
2. At runtime, select one with strong predicted performance
Portfolio-based algorithm selection

Example

Input: Integer program

Runtime predictor

Runtime predictor

- Configurations in portfolio

- Parameter ρ

- Selected configuration

- 100 80 20 90 200
Example: integer programs

CombineNet: Platform for *sourcing auctions* (2001-2010)

Ran over 800 auctions, totaling over $60 billion

These auctions require solving *large integer programs*

Used algorithm portfolios: **2-3x average speedup**

Sandholm [Handbook of Market Design ’13]
Example: SATzilla

Algorithm portfolios used to sweep the 2007 SAT Competition

Xu, Hutter, Hoos, Leyton-Brown [JAIR’08]
Our contributions

First provable, end-to-end guarantees for using machine learning in portfolio-based algorithm selection

Encompassing both:
1. Learning the portfolio
2. Learning the algorithm selector
Learning a portfolio & algorithm selector

1. Fix parameterized algorithm, e.g., CPLEX
2. Receive training set S of “typical” inputs, e.g., IPs

3. Use S to learn a portfolio $\hat{\mathcal{P}}$ of configurations
 and a selector \hat{f} that maps problem instances to $\hat{\mathcal{P}}$
Learning a portfolio & algorithm selector

1. Fix parameterized algorithm
2. Receive training set S of “typical” inputs
3. Use S to learn a portfolio \hat{P} of configurations and a selector f that maps problem instances to \hat{P}

Key question: On future inputs, Will the configuration f selects have good performance?
Generalization error

Key question: On *future* inputs,
Will the configuration \(\hat{f} \) selects have good performance?

Generalization error:
Difference between *avg* performance of \(\hat{f} \) on training set and *expected* (future) performance

Small generalization error ➔ No overfitting
Generalization error

Key question: On *future* inputs,
Will the configuration \hat{f} selects have good performance?

Generalization error:
Difference between *avg* performance of \hat{f} on training set
and *expected* (future) performance

If we choose \hat{P}, \hat{f} to have good *average* performance,
we can also guarantee good *future* performance
3 sources of generalization error

1) **Size** of the portfolio

Input: Integer program

Runtime predictor

Parameter ρ

Configurations in portfolio

100 80 20 90 200
3 sources of generalization error

1) **Size** of the portfolio

2) Learning-theoretic complexity of the **algorithm selector**
3 sources of generalization error

1) **Size** of the portfolio
2) Learning-theoretic complexity of the **algorithm selector**
3) Learning-theoretic complexity of:
 the algorithm's **performance** as a function of its parameters

Unlike prior work on algorithm configuration generalization e.g:

Gupta, Roughgarden
Balcan, Dick, Sandholm, **Vitercik**
Garg, Kalai

...which only had to contend with (3)
Our results: Main message

Our theory says:

As portfolio grows, can have good configuration for any input, ...but it becomes impossible to avoid overfitting

Our experiments illustrate this tradeoff
Outline

1. Introduction
2. Model
3. Main result
4. Implications for common algorithm selectors
5. Experiments
6. Conclusions and future directions
Model

\(\mathcal{Z} \): Set of all inputs (e.g., integer programs)
\(\mathbb{R} \): Set of all parameter settings (e.g., CPLEX parameter)

Standard assumption: Unknown distribution \(\mathcal{D} \) over inputs
E.g., represents scheduling problem airline solves day-to-day
Algorithmic performance

\[u_{\rho}(z) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R} \text{ on input } z \]

E.g., runtime, solution quality, memory usage, ...

Assume \(u_{\rho}(z) \in [-1,1] \)

Can be generalized to \(u_{\rho}(z) \in [-H,H] \)
Algorithmic performance

$$u_\rho(z) = \text{utility of algorithm parameterized by } \rho \in \mathbb{R} \text{ on input } z$$

$$u^*_z(\rho) = \text{utility as a function of the parameter } \rho$$

Assumption: $u^*_z(\rho)$ is piecewise constant with $\leq t$ pieces
Algorithmic performance

Assumption: $u_z^*(\rho)$ is piecewise constant with $\leq t$ pieces

Integer programming
Balcan, Dick, Sandholm, Vitercik, ICML’18

Clustering
Balcan, Nagarajan, Vitercik, White, COLT’17
Balcan, Dick, White, NeurIPS’18; Balcan, Dick, Lang, ICLR’20

Greedy algorithms
Gupta, Roughgarden, ITCS’16

Computational biology
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, ’20
Outline

1. Introduction
2. Model
3. **Main result**
4. Implications for common algorithm selectors
5. Experiments
6. Conclusions and future directions
Generalization error

Key question: On future inputs,
Will the configuration \(\hat{f} \) selects have good performance?

Generalization error:
Difference between avg performance of \(\hat{f} \) on training set and expected (future) performance
Generalization error

Given samples $z_1, ..., z_N \sim \mathcal{D}$ and learned algorithm selector \hat{f},

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| \leq ?$$

- **Average empirical utility** of the configurations selected by \hat{f}
- **Expected utility** of the configuration selected by \hat{f}
Generalization error

Given samples $z_1, ..., z_N \sim \mathcal{D}$ and learned algorithm selector \hat{f},

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| \leq ?$$

Configuration selected by \hat{f}
given input z_i
Generalization error

Given **samples** \(z_1, \ldots, z_N \sim \mathcal{D} \) and learned algorithm **selector** \(\hat{f} \),

\[
\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| \leq ?
\]

Utility of the configuration selected by \(\hat{f} \) given input \(z_i \)
Generalization error

Given samples $z_1, \ldots, z_N \sim \mathcal{D}$ and learned algorithm selector \hat{f},

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| \leq ?$$

Average empirical utility of the configurations selected by \hat{f}
Generalization error

Given **samples** $z_1, \ldots, z_N \sim \mathcal{D}$ and learned algorithm **selector** \hat{f},

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| \leq ?$$

Expected utility of the configuration selected by \hat{f}
Main result

With high probability over the draw $z_1, \ldots, z_N \sim \mathcal{D}$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| = \tilde{O}\left(\sqrt{\frac{d + \kappa \log t}{N}}\right)$$

Intrinsic complexity of the set of algorithm selectors

Portfolio size

Number of pieces

Takeaway: No matter how we choose portfolio $\hat{\mathcal{P}}$ & selector \hat{f}, **Average** performance is indicative of **future** performance.
Main result

With high probability over the draw $z_1, ..., z_N \sim \mathcal{D}$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| = \tilde{O}\left(\sqrt{ \frac{d + \kappa \log t}{N} } \right)$$

Strong average performance \Rightarrow Strong future performance
Main result

With high probability over the draw $z_1, \ldots, z_N \sim \mathcal{D}$,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\hat{f}(z_i)}(z_i) - \mathbb{E}_{z \sim \mathcal{D}}[u_{\hat{f}(z)}(z)] \right| = \tilde{O} \left(\sqrt{\frac{d + \kappa \log t}{N}} \right)$$

Nearly-matching lower bound of $\tilde{\Omega} \left(\sqrt{\frac{d + \kappa}{N}} \right)$

- Intrinsic complexity of the set of algorithm selectors
- Portfolio size
- Number of pieces
Outline

1. Introduction
2. Model
3. Main result
4. Implications for common algorithm selectors
5. Experiments
6. Conclusions and future directions
Linear performance models
E.g., Xu, Hutter, Hoos, Leyton-Brown [JAIR’08]; Xu, Hoos, Leyton-Brown [AAAI’10]

Input z with features $\phi(z) \in \mathbb{R}^m$

Linear models
$\hat{\omega}^1, \hat{\omega}^2, \hat{\omega}^3, \hat{\omega}^4 \in \mathbb{R}^m$

Predicted performance
$\hat{\omega}^1 \cdot \phi(z), \hat{\omega}^2 \cdot \phi(z), \hat{\omega}^3 \cdot \phi(z), \hat{\omega}^4 \cdot \phi(z)$

Configurations in portfolio \hat{P}

Parameter ρ

Portfolio size

Training set size

Generalization error bound: $\tilde{O}\left(\sqrt{mk/N}\right)$
Regression tree performance models

E.g., Hutter, Xu, Hoos, Leyton-Brown [AIJ’14]

Input z with features $\phi(z) \in \mathbb{R}^m$

Regression trees

Predicted performance \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}

Number of leaves

Portfolio size

Training set size

Generalization error bound: $\tilde{O}\left(\sqrt{\ell \kappa \log m / N}\right)$
Clustering-based algorithm selectors
Kadioglu, Malitsky, Sellmann, Tierney [ECAI’10]

See the paper!
Outline

1. Introduction
2. Model
3. Main result
4. Implications for common algorithm selectors
5. Experiments
6. Conclusions and future directions
Experiments: Integer programming

Branch and bound: Most widely-used IP algorithm
Used by commercial solvers such as CPLEX and Gurobi

Recursively partitions feasible region to find optimal solution
Organizes partition as a search tree
Experiments: Integer programming

Tune a **variable selection** policy parameter

Distribution over combinatorial auction IPs

Leyton-Brown, Pearson, Shoham [EC’00]

Portfolio selected greedily

Regression forest performance model

Hutter, Xu, Hoos, Leyton-Brown [AIJ’14]

Features generated using open-source software

Leyton-Brown, Pearson, Shoham [EC’00]
Hutter, Xu, Hoos, Leyton-Brown [AIJ’14]
Experiments: Integer programming

How much smaller the B&B trees are (multiplicative)

- **Test** performance: 100 training IPs
- **Test** performance: 1,000 training IPs
- **Test** performance: 10,000 training IPs
- **Test** performance: 200,000 training IPs

Train performance: 200,000 training IPs
Experiments: Integer programming

Overfitting:
Training performance improves
...but test performance worsens

How much smaller the B&B trees are (multiplicative)

Test performance: 100 training IPs
Test performance: 1,000 training IPs
Outline

1. Introduction
2. Model
3. Main result
4. Implications for common algorithm selectors
5. Experiments
6. Conclusions and future directions
Conclusions and future directions

Theory and experiments illustrate a fundamental tradeoff:

As portfolio grows, can have good configuration for any input, …but it becomes impossible to avoid overfitting.
Conclusions and future directions

Theory and experiments illustrate a fundamental tradeoff:

As portfolio grows, can have good configuration for any input, ...but it becomes impossible to avoid overfitting

Future direction:

Does the diversity of a portfolio impact its generalization?