Factors associated with single-family home survival in the 2018 Camp Fire, California

Eric Knapp (eknapp@fs.fed.us)
US Department of Agriculture Forest Service https://orcid.org/0000-0002-6991-8157

Yana S Valachovic
University of California

Stephen L Quarles
University of California

Nels G Johnson
US Forest Service: US Department of Agriculture Forest Service

Research Article

Keywords: building codes, defensible space, flame impingement, fuels, radiant heat, structure loss, wildfire, wildland-urban interface

Posted Date: June 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-580864/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The 2018 Camp Fire, which destroyed 18,804 structures in northern California, including most of the town of Paradise, provided an opportunity to investigate vegetation and housing factors associated with home loss and determine whether California's 2008 adoption of exterior building codes for homes in the wildland-urban-interface (WUI) improved survival. We randomly sampled single-family homes constructed: before 1997, 1997 to 2007, and 2008 to 2018, the latter two time periods being before and after changes to the building code. We then quantified the nearby overstory canopy cover and the distance to the nearest destroyed home and structure from aerial imagery. Using post-fire photographs, we also assessed fire damage and assigned a cause for damaged but not destroyed homes.

Results

Homes built prior to 1997 fared poorly, with only 11.5% surviving, compared with 38.5% survival for homes built in 1997 and after. The difference in survival percentage for homes built immediately before and after the adoption of Chap. 7A in the California Building Code (37% and 44%, respectively), was not statistically significant. Distance to nearest destroyed structure, number of structures destroyed within 100 m, and overstory canopy cover within 100 m of the home were the strongest predictors of survival, but significant interactions with the construction time period suggested that factors contributing to survival differed for homes of different ages. Homes > 18 from a destroyed structure and in areas with overstory canopy cover within 30–100 m of the home of < 53% survived at a substantially higher rate. Most fire damage to surviving homes resulted from radiant heat from nearby burning structures or flame impingement from ignition of near-home combustible materials.

Conclusions

Strong associations between distance to nearest destroyed structure and vegetation within 100 m and home survival in the Camp Fire indicates building and vegetation modifications are possible that would substantially improve outcomes. Among those include improvements to windows and siding in closest proximity to neighboring structures, treatment of wildland fuels, and eliminating near-home combustibles, especially in areas closest to the home (0-1.5 m).

Background

California, like many other regions having a Mediterranean climate, is set up to burn. Cool, wet winters, which promote vegetation growth, are followed by long, hot, nearly rain-free summers during which these wildland fuels are primed for combustion (Sugihara et al. 2018). Wildfires ignited by indigenous peoples and lightning were historically frequent (< 15 year mean fire return interval in many forested areas and 15–90 years in areas with shrub-dominated chaparral vegetation – (Van de Water and Safford 2011) and integral to shaping vegetation composition and structure (Leiberg 1902; Sugihara et al. 2018). While acres burned in wildfires today is still substantially less than what burned historically (Stephens et al. 2007), both acres burned and associated losses to infrastructure have been increasing in recent times with 15 of the 20 most destructive events in modern California history, based on the number of structures destroyed, occurring in the past six years (see California Fire Statistics: https://www.fire.ca.gov/media/t1rdhizr/top20_destruction.pdf).
The increase in destructive wildfire events has been linked to changes in fire frequency, development patterns, and climate. Loss of indigenous burning and active fire suppression over the past 150 or more years following Euro-American expansion into California reduced the incidence of fire in many areas. As a result, surface and vegetative fuels have increased, especially in forest and woodland areas that historically burned most frequently, leading to more severe fire when it does burn (Steel et al. 2015). Such fires are also often more intense because fire suppression has effectively eliminated much of the lower-intensity burning under more benign weather conditions. When landscapes now experience fire, most often it is when wildfire escapes initial attack under worst-case scenario weather conditions (Calkin et al. 2014). In addition, over the last several decades, warmer temperatures and longer fire seasons (Westerling et al. 2006) have increased fuel volatility and the probability of ignitions coinciding with extreme weather conditions. In other areas with longer historical fire return intervals and stand replacing fire the norm, such as chaparral ecosystems in southern California, the fire regime has not changed as dramatically (Keeley and Fotheringham 2001).

Further complicating the wildfire challenges, human populations have increased nearly ten-fold over the last 150 years, with a substantial proportion of houses built within or among wildland vegetation (Radeloff et al. 2018). Partly due to the effectiveness of fire suppression, most of these homes were not built or maintained with the goal of being able to withstand wildfire in the absence of fire suppression resources. In addition, home design or construction codes and standards to enhance a building's exterior resistance to wildfire are relatively recent (International Code Council 2003), with substantial development having occurred prior.

Post-wildfire analyses provide an opportunity to investigate why some houses survive and learn how to better co-exist with wildfire in fire-prone environments. During wildfire, buildings can be subjected to three different wildfire exposures - wind-blown embers, radiant heat, and direct flame contact (Caton et al. 2017). Embers are produced when vegetation ignites and burns (Koo et al. 2010). In large, fast-moving wildfires burning under extreme conditions, embers can be transported several kilometers or more (Koo et al. 2010) and ignite buildings directly or indirectly (Caton et al. 2017). A direct ember ignition includes embers igniting decking or siding by accumulating on or next to the material, or penetrating vents or open windows and entering the building (Quarles et al. 2010; Hakes et al. 2017). In contrast, indirect ignitions occur when embers ignite combustible materials such as vegetation, bark mulch, leaf litter, neighboring buildings, or near-home objects such as stored materials, decks, or wood fences (Quarles et al. 2010; Hakes et al. 2017). Indirect ignition scenarios ultimately result in radiant heat and/or flame contact to the home or building. Direct flame contact and extended radiant heat exposures can ignite siding and other exterior-use construction materials or break glass in windows. Radiant heat exposure often occurs when a neighboring structure ignites. Evaluations of wildfire home losses have frequently found large-scale destruction to be the result of direct or indirect ignition by embers rather than high-intensity fire in wildland fuels directly impacting the home, with burning homes then leading to house-to-house fire spread (Murphy et al. 2007; Cohen and Stratton 2008). However, the potential influence of housing density on structure losses in wildfires has varied, with some studies finding a greater probability of loss at higher housing densities (Price and Bradstock 2013; Penman et al. 2019), while other studies have reported a greater risk at lower housing densities (Syphard et al. 2012; Syphard et al. 2014). Amount of near-home combustible vegetation has also been linked to the probability of home loss in wildfires (Price and Bradstock 2013; Syphard et al. 2014; Penman et al. 2019).

Even within these record-setting fires, California leads the United States in having a building code with the objective of limiting the impact of wildfires on the built environment. In the 1960s, the state began requiring homeowners to implement defensible space fuel modifications within the first 9 m (30 ft) of a building, a distance which was expanded to 30 m (100 ft) in high fire hazard zones in 2005 (California State Board of Forestry and Fire Protection 2006). Work on standardized test methods to evaluate exterior-use construction materials for fire performance began
in the late 1990's and later incorporated into Chap. 7A, an addition to the California Building Code which was adopted in 2008. As a part of Chap. 7A, an approved list of exterior construction materials for roof coverings, vents, exterior walls, and decks, was created. Chapter 7A applies to new construction as well as remodels of existing residential and commercial buildings in some jurisdictions. The 2018 Camp Fire, which destroyed much of Paradise, California, provided an opportunity to evaluate the performance of buildings constructed after the adoption of Chap. 7A and explore factors associated with home survival.

The Camp Fire started on the morning of 8 November 2018, with the failure of an electrical transmission line and spread rapidly through wildland fuels comprised of mixed conifer forest, brush, grass, and dead and down surface fuels (Maranghides et al. 2021). Surface fuels were unusually dry due to persistently low relative humidity throughout the summer and fall and the late onset of fall rains (Brewer and Clements 2019). Driven by strong NE winds, the fast-moving fire quickly reached the towns of Concow, Paradise, and Magalia, and became the most destructive wildfire in California history. At least 85 people were killed and 18,804 structures were destroyed. A total of 62,053 ha (153,336 acres) were burned before the fire was contained. A high proportion of the home and business losses occurred in Paradise – the largest town within the fire footprint. The fire passed from one side of Paradise to the other during one burn period over less than 12 hours (Maranghides et al. 2021). With the focus on saving people's lives, very few homes were subject to fire-fighting efforts, and survival was therefore largely a function of characteristics of the home and surrounding environment. Previous similar analyses have typically combined data across multiple res and years, with variable degrees of firefighter intervention. The massive home loss in a single burn period with the Camp Fire presents an opportunity to investigate factors with fewer confounding variables.

The objective of this research was to answer three questions: 1) did proximity to nearby burning structures factor into the probability of home survival; 2) did fuels associated with nearby vegetation factor into the probability of home survival; and 3) was the full adoption in 2008 of Chap. 7A into the California Building Code associated with improved odds of home survival?

Methods

The Butte County Assessor’s database, dated June 1, 2018, was used to extract 11,515 parcels within the Paradise city limits (Fig. 1). Parcels were sorted by use code and 7,949 single-family dwellings were selected, after discarding 89 without a listed build year. Mobile homes, businesses, and other non-single-family structures were excluded. We then linked Damage Inspection (DINS) data, obtained from CAL FIRE, to parcel number to ascertain damage sustained in the Camp Fire and whether the building was destroyed, partially damaged, or had no impact from the Camp Fire. We lumped homes classified as “damaged” into the “survived” category, because in most instances, the damage, based on photos included with the DINS data, was minor – e.g. cracked windows, bubbled exterior paint, or melted gutters, with the structure itself intact.

Sample population

For our analyses, we randomly selected 400 single-family dwellings in Paradise, stratified by three time periods (Fig. 1): Time 1 = homes built before 1997, while Time 2 (homes built from 1997 to 2007) and Time 3 (homes built from 2008 to 2018) represented the two eleven year periods on either side of the 2008 adoption of Chap. 7A in the California Building Code. If the changes to the building code improved home survival, survival percentage in time period 3 should be significantly higher than survival in time period 2, especially after adjusting for any potentially confounding variables. The stratification was done to ensure a large enough sample size in Time Period 3. Two hundred homes (out of 7288) were randomly selected in Time 1, one hundred homes (out of 519) were selected in
Time 2, and 100 homes (out of 142) were selected in Time 3 (Fig. 1). More homes were selected during Time 1 because such a low percentage (13%) of older (pre-1997) homes survived. Of the population of homes that were randomly selected by the construction period, 24 of the surviving homes were noted as damaged in the DINS report, the rest undamaged. Damage was listed as “affected (1–9%)” for 23 of the damaged homes, and “minor (10–25%)” for one.

Variables

For each randomly selected home, we used Google Earth to measure the distance from the edge of the home (as defined by edge of the roof, using pre-fire images when destroyed) to the closest edge of the nearest home and nearest structure, as well as the nearest home and nearest structure that burned. “Nearest structure” was in most cases another single-family home, but also included mobile homes, businesses, detached garages, or outbuildings such as larger sheds. Small sheds – those <120 ft\(^2\), where a building permit isn’t required – were excluded. Such smaller sheds may have posed a threat to the home as well but were more challenging to consistently quantify, especially if under a tree canopy. We determined the density of structures in the surrounding area by counting the number of single-family homes, partially-built homes, mobile homes, and businesses (excluding small sheds) with midpoints (based on a visual estimate) included within a 100 m radius centered on the target home. We then counted how many of those structures were destroyed. We visually estimated the percentage cover of overstory vegetation from Google Earth images taken prior to the fire in 2018 and/or 2017 within a 30 m radius circle centered on the selected home and between 30 m and 100 m from the selected home. Cover of the understory of grass and/or shrubs or landscape plantings was not estimated, as overstory canopy cover was relatively high, and this often obscured the understory. Some larger mid-story shrubs might have been included with the overstory due to the difficulty in distinguishing them from trees. Lot size was provided in the Butte County Assessor’s data. Whether the house was located in the Wildland Urban Interface (defined as developed areas that have sparse or no wildland vegetation but are near a large patch of wildland) or the Wildland Urban Intermix (defined as areas where houses and wildlands intermingle) was determined by overlaying a University of Wisconsin data layer on the city of Paradise (Radeloff et al. 2005). We used Radeloff et al. (2005) to define the interface as census blocks with at least 6.17 housing units km\(^{-2}\) that contained <50% wildland vegetation but were within 2.4 km of a heavily vegetated area (>75% wildland vegetation) larger than 5 km\(^2\). Intermix was defined as an area with more than 6.17 housing units km\(^{-2}\) but dominated by wildland vegetation. Percent slope was calculated as the rise between the lowest and highest point along a 100 m radius circle centered on the home.

Analysis approach

Outcome and possible explanatory variables (S1 Table) were first analyzed individually using a generalized linear model in SAS PROC GENMOD and assuming a normal distribution to evaluate whether they differed by time period or by outcome (survived, destroyed). To account for the sampling scheme, in this and all subsequent analyses, each observation was weighted by the inverse of its probability of selection – i.e., homes from Time Period 1 had a weight of 7288/200, homes from Time Period 2 had a weight of 519/100, and homes from Time Period 3 had a weight of 142/100. Comparisons among main effects (outcome, time period) and interactions (outcome × time period) were determined using Tukey’s HSD test for multiple comparisons, when significant.

To determine whether proximity to nearby burning structures or overstory canopy cover were associated with home survival, we used a generalized linear model fit for binary response data, with a logit link function and weighting to account for the sampling scheme. Variables in the initial model were:

1. Y-variable: Outcome (Survived/Destroyed); X-variables: construction time period, year built, land use category (Wildland Urban Interface/Intermix), distance to nearest destroyed structure, total structures destroyed within 100
m, overstory canopy cover within 30 m, overstory canopy cover between 30 m and 100 m, slope, and the interaction of each with the construction time period.

When independent variables were highly correlated (R > 0.6), only the one most clearly mechanistically linked to outcome was included. For example, ‘Distance to nearest structure’ was highly correlated with ‘Distance to the nearest destroyed structure’ and ‘Total structures – 100 m’ was highly correlated to ‘Total structures destroyed – 100 m’ (Table 1), so only the latter were included. Lot size was not included as there was no clear mechanistic link with home survival and we hypothesized that elements contributing to fire behavior would be captured by correlated variables. The land use category was included to quantify differences in vegetation arrangement at scales larger than 100 m. Non-significant interactions and non-significant main effects for variables that did not have a significant interaction with time were sequentially removed to produce the final model. To determine whether homes constructed after the Chap. 7A building code update survived at a significantly higher rate after factoring in all other possible confounding variables, the same analysis was conducted except without interactions with the construction time period.
Table 1
Significance of individual factors by time period, outcome (destroyed, survived), and outcome x time period for a subset of single-family homes in Paradise, CA. Means for time period, outcome, and outcome x time period (when interaction was significant) are provided below (standard error in parentheses). Levels within variables followed by different letters were significantly different ($P < 0.05$).

N	Lot size (ha)	Dist. nearest struct. (m)	Dist. nearest destr. struct. (m)	Total structures 100m	Total structures destr. 100m	% Canopy Cover 0–30 m	% Canopy Cover 30–100 m	Slope (%)
Outcome	0.946	0.971	<0.001	0.004	<0.001	0.154	0.001	0.532
Time period	0.153	0.010	<0.001	0.002	<0.001	<0.001	0.664	0.290
Outcome x Time period	-	-	0.026	-	-	-	-	

Average (standard error)

Destroyed	296	0.42 (0.07)	15.4 (1.6)	-	10.3a (0.8)	8.9a (0.7)	40.5 (3.1)	49.1a (2.8)	6.9 (0.6)
Survived	104	0.42 (0.08)	15.5 (1.9)	-	8.1b (0.9)	5.5b (0.9)	36.0 (3.7)	40.0b (3.3)	7.2 (0.6)
Before 1997	200	0.30 (0.04)	10.9b (0.8)	-	11.4a (0.4)	9.4a (0.4)	49.5a (1.6)	46.7 (1.4)	6.4 (0.3)
1997–2007	100	0.45 (0.09)	16.1a (2.1)	-	8.0b (1.0)	5.9b (1.0)	35.7b (4.1)	43.7 (3.7)	7.5 (0.7)
2008–2018	100	0.51 (0.17)	19.3ab (4.0)	-	8.1ab (1.9)	6.3ab (1.8)	29.5b (7.9)	43.2 (7.0)	7.2 (1.4)
< 1997 Dest.	177	-	-	12.3c (0.8)	-	-	-	-	
< 1997 Surv.	23	-	-	22.3b (2.1)	-	-	-	-	
1997–2007 Dest.	63	-	-	20.0bc (3.4)	-	-	-	-	
1997–2007 Surv.	37	-	-	34.6ab (4.4)	-	-	-	-	
2008–2018 Dest.	56	-	-	16.1bc (6.8)	-	-	-	-	
2008–2018 Surv.	44	-	-	54.0a (7.7)	-	-	-	-	

We then designed models to first test the effect of variables that may have directly influenced home survival during the fire and second, to test the effect of just the variables available prior to the fire. The latter variables were ones that might be mitigated preemptively through planning, retrofitting, or vegetation management. For each of these models,
we determined the effect size and performed a regression tree analysis. Variables included for each approach (accounting for the fire, pre-fire only):

1. Y-variable, accounting for the fire: Outcome (Survived/Destroyed); X-variables: year built, distance to nearest destroyed structure, total structures destroyed within 100 m, canopy cover within 30 m, canopy cover between 30 m and 100 m, slope.

2. Y-variable, pre-fire only: Outcome (Survived/Destroyed); X-variables: year built, distance to nearest structure, total structures within 100 m, canopy cover within 30 m, canopy cover between 30 m and 100 m, slope.

To quantify the relative strength of continuous variables for explaining home survival, each of the dependent (x) variables were centered and scaled to have a mean of zero and standard deviation of one. Logistic regression (McCullagh and Nelder 1989) was then used to calculate coefficients and compare effect sizes. The logistic regression models were fit using the svyglm function from the survey package in R (Lumly 2020). A decision tree for predicting home survival was produced using the rpart function in the rpart package (Therneau and Atkinson 2019) in R, fit for binary response data with a logit link function (Breiman 1998). This approach is similar to logistic regression, where the linear predictor is a decision tree model. To determine the number of splits in the decision trees, we performed cross-validation 10,000 times to compute the optimal pruning parameters. We then used the average of the 10,000 optimal pruning parameters as the pruning parameter in the final decision tree. The latter group of statistical analyses were completed using R version 4.0.0 (R Core Team 2020). Figures were made in R using the ggplot2 package (Wickham 2016).

Visual evaluation of damaged homes

To learn more about vulnerabilities of the Paradise home sample and gain insight into potential points of fire entry, we reviewed the CAL FIRE damage inspection (DINS) spreadsheet (obtained from CAL FIRE 12/18/2018) and downloaded photographs of all damaged homes (N = 310 homes with pictures) associated with the damage assessment at: https://www.arcgis.com/apps/MapSeries/index.html?appid=af7e5bb3960a48c096ed910c640a30b3

Photographs typically keyed in on the damage, and we reviewed each, along with notes about damage in the DINS summary. Observed home damage was assigned to radiant heat, direct ember ignition, or flame impingement categories (S2 Table). Homes where flame impingement was recorded were further split into three categories: 1), caused by fuel continuity with the broader landscape (which allowed fire to reach the home), 2) indirect ember ignition (e.g., gutter contents, near-home fuels) with flames then impacting the home, or 3) unknown/undetermined. [The DINS assessment gathered similar information, but the full suite of data was not collected for over a quarter of homes and ember ignition was not separated into direct and indirect categories.] Where DINS data were collected, our evaluation was often in agreement, but there were a few instances where we differed. For example, if the DINS assessment noted “direct flame impingement” but the photo showed no charring or near home fuels consumed, we listed the damage cause as “radiant heat”. Gutter fires were variously categorized but we assigned all to the “indirect ember ignition” category. The DINS assessment also only lists a single cause of fire damage when a considerable number of homes displayed multiple causes.

Results

Overall, most (86%) of the single-family homes in Paradise were built before 1990, and homes of this age fared poorly, with only 11.6% surviving the Camp Fire (Fig. 2). Survival increased to 20.6% for homes built between 1990 and 1996, 34.3% for homes built between 1997 and 2007, and 43.0% for homes built between 2008 and 2018. The 400 randomly selected homes in our sample had similar survival rates to the full population of single-family homes − 11.5% vs.
13.3%, respectively, for the < 1997 time period (Time = 1), 37.0% vs. 34.3%, respectively, for the 1997–2007 time period (Time = 2), and 44.0% vs. 43.0%, respectively, for the 2008 to 2018 time period (Time = 3). Many of the potential explanatory variables differed over the three time periods as well, and were therefore confounded with potential construction or building code differences (Table 1). Older homes (< 1997) were on average in areas with higher housing density and had more homes burn within 100 m than homes built from 1997–2007 (Table 1). Homes built prior to 1997 had a higher average overstory canopy cover in the first 0–30 m from the home than homes built afterwards (Table 1). The 'Distance to nearest destroyed structure' × Time interaction was significant, with surviving homes a greater distance from the nearest destroyed structure in time periods one and three. This difference was especially pronounced for the newest homes (Table 1). While average lot size increased numerically over time, the differences were not significant (Table 1). Overstory canopy cover 30–100 m from the home was significantly lower for surviving homes (37.0 %) than destroyed homes (50.4%) but did not differ between time periods (Table 1). With most houses situated on top of a plateau, the average percent slope was relatively low and did not differ significantly among outcomes or time periods (Table 1). None of the variables differed between time periods 2 and 3 - immediately pre- and post-Chap. 7A adoption.

Many of the continuous variables we analyzed were significantly correlated with each other, with distance to nearest structure and distance to nearest destroyed structure (r = 0.625) and total structures within 100m and total structures destroyed within 100m (r = 0.926) being the most strongly correlated (Table 2).

Table 2
Correlation matrix of variables considered in the analyses of factors potentially contributing to home survival. The correlation coefficient (R) is above the diagonal, with statistical significance below. Distance to nearest destroyed home includes only single-family homes. Distance to nearest destroyed structure includes single-family homes, mobile homes, businesses, outbuildings, detached garages, and other large buildings.

	Lot size	Year built	Dist. nearest structure	Dist. nearest dest. structure	Total Struct. 100m	Structures Destroyed 100m	Canopy Cover (%) 0-30m	Canopy Cover (%) 30-100m	Slope (%)
Lot size	0.166	0.544	0.462	-0.499	-0.435	-0.111	-0.001	0.368	
Year built	< 0.001	0.262	0.283	-0.406	-0.424	-0.419	-0.146	0.156	
Dist. nearest structure	< 0.001 < 0.001	0.625	-0.497	-0.432	-0.069	0.009	0.260	0.156	
Dist. nearest dest. structure	< 0.001 < 0.001	< 0.001	-0.471	-0.537	-0.263	-0.226	0.216	0.260	
Total struct_100m	< 0.001	< 0.001	< 0.001	0.926	0.215	-0.007	-0.299	0.260	
Struct. destroyed_100m	< 0.001 < 0.001	< 0.001	< 0.001	< 0.001	0.300	0.134	-0.233	0.260	
Canopy Cover 0-30m	0.026	< 0.001	0.171	< 0.001	< 0.001	0.571	-0.001	0.260	
Canopy Cover 30-100m	0.983	0.003	0.853	< 0.001	0.890	0.007	< 0.001	0.135	
Slope (%)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.984	0.007	
Eliminating the two most highly correlated variables (distance to nearest structure and total structures per 100m) and analyzing the remaining variables together in the same model showed that both nearby destroyed structures and overstory canopy cover were significantly associated with home survival. The ‘distance to nearest destroyed structure’ × construction time period interaction was significant (Table 3), with a much higher survival probability when homes were a larger distance from a destroyed structure, especially for homes built 1997–2007 and 2008–2018 (Fig. 3a). Total structures destroyed within 100 m also was strongly linked to home survival (Table 3), with a much higher survival probability when fewer surrounding homes burned (Fig. 3b). For the vegetation variables, the ‘CanopyCover 0-30m’ × construction time period interaction was significant (Table 3). Higher survival was noted with lower canopy cover for homes built since in 1997 and after, but was not related to survival in older (< 1997) homes (Fig. 3c). CanopyCover 30-100m also was highly significant, with a higher survival probability at lower canopy cover percentages across times (Table 3, Fig. 3d). Land use category was significant, with a higher survival rate for homes in the wildland urban intermix (29.3%) than homes in the wildland urban interface (16.0%). Year built [within construction time period] and slope were not significant and did not make it into the final model (Table 3).

Variable	DF	Chi-Square	P
Construction time period	2	68.84	< 0.001
Dist. nearest dest. structure	1	57.10	< 0.001
Tot. structures dest. 100m	1	179.77	< 0.001
Canopy cover_0-30m	1	1.61	0.205
Canopy cover_30-100m	1	162.48	< 0.001
Land use	1	4.54	0.033
Dist. nearest dest. structure × Time	2	16.45	< 0.001
Canopy cover_0-30m × Time	2	25.35	< 0.001

When the same analysis was conducted without interactions to test the effect of construction time period after correcting for covariates, homes built between 1997–2007 and 2008–2018 both survived at a significantly higher rate than homes built prior to 1997 (P < 0.001). Even though the survival rate was numerically higher for homes built after the 2008 building code update (44%) than homes built in an equivalent time period immediately before (37%), the difference was not statistically significant (adjusted P = 0.309).

For the next set of analyses, separate models (this time without specifying construction time period) were run on normalized data for 1) variables in play during the Camp Fire (including fire-related variables), and 2) variables present prior to the Camp Fire (i.e., variables that might factor into pre-fire planning). For the first model, distance to the nearest destroyed structure had the largest effect size, suggesting that the greater the distance to a burning structure, the higher the probability of survival (Fig. 4a). Also significant were canopy cover within 30–100 m and the number of
destroyed structures within 100 m. Both the latter two variables had a negative relationship with survival, with higher survival where canopy cover within a 30–100 distance was lower, and number of destroyed structures within 100 m was fewer (Fig. 4a). Year built, slope, and canopy cover within 0–30 m all had confidence intervals that overlapped with zero. When only pre-fire variables were included, housing density had the largest effect size, with greater survival when the number of structures within 100 m was low (Fig. 4b). Canopy cover within 30–100 m had the second largest effect size, with greater survival at lower canopy cover levels (Fig. 4b). Distance to nearest structure, year built, slope, and canopy cover within 0–30 m all had confidence intervals that overlapped with zero (Fig. 4b).

Decision tree analysis using variables present during the fire indicated a threshold of 18 m from nearest destroyed structure best predicted whether a home survived or not. Survival probability for homes < 18 m to the nearest destroyed structure was very low (0.058), compared with a 0.354 survival probability for homes ≥ 18 m from the nearest destroyed structure (Fig. 5a). Based on our sample, a majority (73.6%) of the homes in Paradise were < 18 m from a destroyed structure. For the 26.3% of homes ≥ 18 m from a destroyed structure, if the overstory canopy cover was also < 53% within 30–100 m, the survival probability improved to 0.481 (Fig. 5a). If the home was also built during or after 1973, the survival probability improved to 0.606 (Fig. 5a). The final split, involving just 10.2% of the homes in Paradise, suggested that for homes meeting these criteria (i.e., ≥ 18 m from the nearest destroyed structure, < 53% canopy cover within 30–100 m, and built ≥ 1973), the survival probability improved to 0.733 if slope was less than 8.2%. For the decision tree including just pre-fire variables, year built was the first split, with a probability of survival of only 0.111 for homes built before 1996 (90.8% of homes in Paradise), compared with 0.396 for homes built during or after 1996 (9.2% of homes) (Fig. 5b). For homes in this latter category, survival probability improved to 0.766 if the overstory canopy cover within 30–100 m was < 33%. If canopy cover within 30–100 was ≥ 33%, the survival probability fell to 0.239.

Damaged homes – nature of damage and cause

In our review of photographs of the 310 damaged homes in Paradise, 63% had radiant heat damage (Fig. 6a), mostly to windows and exterior walls (Fig. 6b). Window damage consisted of cracked or broken glass and damaged window framing, but frequently included both. Blistered paint or melted/sagging vinyl siding were the most common wall (siding) damages. In most cases, the source of the radiant heat was difficult to assess, as the photos focused on the damage. However, a closer investigation of 20% of randomly sampled of homes where radiant heat damage was identified demonstrated that all had at least one neighboring structure that was destroyed during the fire. The average distance to the destroyed structure was 12.1 m. Flame impingement was the next most common cause of damage (44% of damaged homes) (Fig. 6a). In most flame impingement cases (28% of the total damaged homes), the damage was interpreted to be the result of indirect ember ignition. For only 10% of damaged homes was the continuity of fuels from the broader surroundings (often needle or leaf litter) identified as the likely reason for flame impingement. For another 10% of damaged homes, whether needle or leaf litter was continuous with the surroundings or just localized next to the home could not be determined from the photograph. [Note - these three flame impingement categories do not add to 44% because some houses showed evidence of multiple flame impingement causes.] For the cases of flame impingement via indirect ember ignition, embers ignited near home flammable objects (e.g., fences, patio furniture, stored lumber), near home leaf litter, near home vegetation (or litter under that vegetation), leaf litter in gutters, or wood bark mulch, in order of frequency from most to least (S2 Table). Direct ember ignition was identified as the likely cause of damage for fewer than 6% of homes (Fig. 6a). The most common locations for embers to ignite were attached wood stairs, deckling, and window trim. Counting either direct ember ignition or flame impingement due to indirect ember ignition, embers were implicated as a cause in 33% of damaged homes.
Discussion

Burning structures and wildland fuels both influence home survival

Our analysis of post-fire outcomes in the town of Paradise suggested that both the proximity to other burning structures and nearby wildland fuels factored in the probability of home survival, with several measures of distance and density of destroyed structures and nearby overstory canopy cover emerging as significant explanatory variables. The relative importance of nearby burning home variables versus surrounding vegetation in explaining outcomes has varied among studies, with Gibbons et al. (2012) reporting canopy cover within 40m of the home to be the strongest predictor. Number of buildings within 40m was also a significant variable in their analysis. Even though both nearby burning homes and vegetation variables were included in the same models in our study, interpretations about relative strength of these two sets of factors are tempered by limitations of the vegetation data, with overstory canopy cover an imperfect measure of wildland fuel hazard.

One possible clue to the relative importance of adjacent structures burning comes from the different outcomes for wildland urban intermix and interface homes. Houses built amongst wildland vegetation (intermix) survived at a higher rate (29%) than houses built in more of a subdivision arrangement with wildland fuels nearby (interface) (16%). The higher survival may then have been more a function of greater average distance to the nearest destroyed structure (24 m vs. 11 m in the intermix and interface, respectively) and lower average density (7.7 vs. 11.1 structures within 100 m in the intermix and interface, respectively). If proximity to wildland fuels had been the dominant driver, greater percentage losses in the wildland urban intermix would have been expected. Kramer et al. 2019, in an analysis of three-decade's worth of wildfires in California, also reported higher survival of homes in the wildland-urban intermix compared to the wildland-urban interface, and together with our results provide some additional evidence of the importance of nearby burning structures to home loss, relative to variables associated with wildland fuels. However, in our study, other factors were likely in play as well, with intermix homes being somewhat newer. In Paradise, an increasing percentage of homes were located in the intermix vs. the interface over time: 66% in time period 1, 80% in time period 2, and 88% in time period 3.

Homes as fuel

Distance to nearest destroyed structure and the total number of destroyed structures within 100 m were consistently the strongest predictors in all of our analyses. This makes intuitive sense because burning structures produce a substantial amount of radiant heat, which can ignite adjacent homes or break glass in windows, allowing embers to enter the home. Nearby burning structures are also a source of embers, which can result indirect or indirect ember ignitions of nearby structures. Our visual analysis of 310 damaged homes corroborated the results of the statistical analyses, with more homes showing evidence of damage from radiant heat exposure (often from adjacent structures burning) than from flame impingement. Our findings are consistent with other analyses of destructive wildfires showing housing density to be strongly associated with home loss (Price and Bradstock 2013; Penman et al. 2019), but in contrast to Syphard et al. (2012, 2014) and Syphard and Keeley (2020), who have reported reduced probability of home loss at higher housing densities. The difference between studies likely has to do with variation in density ranges evaluated, as well as variation in vegetation type and housing arrangement. Syphard et al. (2012) sampled large fire-prone regions with shrub-dominated vegetation in southern California, ranging from outlying WUI areas to denser cities that did not burn to answer the question of housing arrangements most prone to loss in a wildfire. Since the entire scope of our analysis was within the Camp Fire perimeter, our research question differs: when burned, what factors influenced survival? In any case, the interpretation of Syphard et al. (2012), that higher density development reduced the likelihood of loss may better apply to denser development patterns than present in Paradise, where housing densities were intermediate to low and interspersed with native (and non-native) vegetation. Such lower
density wildland urban intermix and interface development is prevalent in foothills and lower mountainous regions of central and northern California (Hammer et al. 2007).

At what distance an adjacent burning structure presents vulnerability is not well studied. Our analyses identified a threshold of 18 m from the nearest destroyed structure that best differentiated surviving and destroyed homes (Fig. 5a). Price and Bradstock (2013) found the presence of houses within 50 m to be predictive of loss. Radiant heat flux, which is inversely related to distance from the flaming source, can be a factor up to 40 m from a burning structure (Cohen 2000). Cohen (2004) reported that models predicted ignition of wood walls when less than 28 m from a crown fire in forested vegetation, with actual experimental crown fires finding ignition at a 10 m distance, but not 20 m or 30 m. The radiant heat flux adjacent to burning structures is different and likely more sustained than a similar heat flux adjacent to crowning wildland vegetation.

Between home spacing has been evaluated in post-fire assessments conducted after the Witch Fire in San Diego County, California (Insurance Institute for Business & Home Safety 2008), the Waldo Canyon Fire in Colorado Springs, Colorado (Quarles et al. 2013), and the Black Bear Cub Fire in Sevier County, Tennessee (Quarles and Konz 2016). During each of these fires, home-to-home spread was observed with spacing less than 10 m. The IBHS Witch Fire report (Insurance Institute for Business & Home Safety 2008) referred to home-to-home spread as “cluster burning”, which was not observed when homes were located more than 14 m apart. Our finding of an 18 m threshold is similar to the IBHS Witch Fire results. Regardless of the actual ideal home separation level, many homes in Mediterranean ecosystems are commonly on lot sizes with less than 18 meters of separation between buildings.

Wildland fuels and defensible space actions

Overstory canopy cover was a significant predictor of home survival in the statistical models, with the canopy cover 30–100 m away having a larger effect size than canopy cover in the immediate vicinity of the home (0–30 m) (Fig. 4a, b). This result (and other evidence, below) suggests that overstory canopy cover may only be correlated to factors that contributed to fire spread and increased the threat to homes, rather than a direct contributor. Wildland fire spread is dependent on surface fuels – litter, duff, and dead and down woody material, which would be expected to be most abundant and continuous under or adjacent to overstory tree canopy. The link between overstory canopy cover and surface fuel abundance may have been weaker from 0–30 m than distances farther removed from the home because of the greater likelihood that such surface fuels were better managed near homes, perhaps as a result of defensible space activities. In addition, the continuity of vegetative fuels is more likely to be broken up by lawns, driveways, or irrigated landscaping near the home. While vegetation abundance within 30 m has been reported to be associated home loss in southern California fires burning in shrubland vegetation types (Syphard et al. 2014), Alexandre et al. (2016) found vegetation near a building not to be a strong factor in models of loss for fires in southern California and Colorado. They theorized that the connectivity of vegetation to the home was more critical than vegetative cover.

While burning trees and associated vegetation may generate substantial flame lengths and embers which can then threaten homes, the overstory tree canopies themselves did not appear to drive fire intensity in most cases. With the Camp Fire, many overstory trees located away from burning homes survived (Keeley and Syphard 2019; Cohen and Strohmaier 2020) (Fig. 7). Rather than tree torching directly impacting nearby structures, the torching of trees and other vegetation appeared from photographs and personal observation to frequently be caused by heat from nearby burning structures. Additionally, a substantial proportion of the canopy of native tree vegetation in Paradise at the time of the fire was comprised of California black oak (*Quercus kelloggii* Newb.), a native deciduous species that would have shed at least a portion of its leaves by the time of year when the Camp Fire burned through Paradise. Even when fully leafed out, the crowns of black oak trees are relatively open with low canopy bulk density. Deciduous oak litter breaks down faster than conifer litter, and the light fuel loads in pure black oak stands tend to promote low-intensity
surface fire rather than crown fire (Skinner et al. 2006). Ponderosa pine (*Pinus ponderosa* Lawson & C. Lawson) was the other major native tree species. Leaf and needle litter can carry flames to the home or provide receptive fuels for ember ignitions, and would likely have been positively correlated to overstory tree canopy cover, especially in the fall. Embers can also ignite litter that has accumulated in gutters and roofs. High overstory canopy cover may also indicate areas where associated vegetation and surface fuels had developed to the greatest extent in the absence of fire and active management, especially at a distance from homes. With the lands in the Paradise area having no record of fire in modern recorded history (Maranghides et al. 2021), considerable vegetative ingrowth and accumulation of dead and down surface fuels was likely, especially relative to historical amounts. Ingrowth could have included brush and smaller conifers that acted as ladder fuels, leading to torching and ember generation.

Even though our data showed a stronger association between overstory tree cover and home survival for distances beyond which defensible space is typically mandated (100 ft, or 30 m), this does not mean that vegetation modification within 30 m is unimportant. For reasons described earlier, the fuel hazards contributing to outcome were likely not well captured by the overstory canopy cover variable, especially in this near-home zone. In addition, once structures become involved, defensible space vegetation modification to 30 m (100 ft) may be insufficient to mitigate ember and radiant heat exposures contributing to home loss. In an analysis of CAL FIRE DINS data over multiple fires, including the Camp Fire, Syphard and Keeley (2019) reported that defensible space was a poor predictor of outcome, with structural variables (e.g., eave construction details, numbers of windowpanes (double vs. single), vent screen size) more highly correlated with home survival. The low predictive power of defensible space may be partially due to the coarseness with which defensible space is classified in the DINS data, with broad distance categories not fully capturing spacing, composition, or flammability of the vegetation. In addition, in many destructive wildfires, a large portion of homes are lost through direct or indirect ember ignition and not flame impingement associated with the continuity with wildland fuels (Murphy et al. 2007; Cohen and Stratton 2008). With embers capable of igniting fuels over 1–2 km away, the protective effect of vegetation modification within 30 m of the house does not guarantee survival when fire-fighting resources are not present. Modifications in this region, however, do provide access and a safer means of protecting a home when firefighting resources are available.

Our analysis relied upon aerial photo interpretation, and we could not assess surface fuels under dense tree canopies. As a result, and because of the likely indirect effect of leaf litter coming from the canopy, we caution against the interpretation of the canopy cover variables used in this study, and cover percentages in the decision trees, as guides to forest thinning targets. Furthermore, surface and near-ground live fuels are considered the priority for altering fire behavior and influencing fire hazard (Agee and Skinner 2005). Higher canopy cover may be correlated to the rate of surface litter and woody fuel accumulation but does not necessarily directly translate to high fire hazard if these surface fuels are managed and maintained at low levels. Patchiness and arrangement relative to prevailing winds can also reduce threat posed by near-home vegetation (Gibbons et al., 2018).

Did the adoption of Chap. 7A into the California Building Code influence survival?

While the survival rate for homes built in the 11 years after the adoption of Chap. 7A to the California Building Code in 2008 was numerically slightly higher than the survival rate of homes built in the 11 years immediately before, the difference was not statistically significant. It is possible that significance might have been found with a larger sample size, but even so, any influence of the building code update was likely swamped by other factors. This was not a surprise because of the many interacting variables that affect building performance, in addition to building products rated to resist exterior fire exposures. The 2008 Chap. 7A building code update institutionalized several important and worthwhile changes to construction in high fire hazard zones, including the use of ember and flame-resistant vents.
These changes may improve the probability of survival for some types of wildfire (e.g., vegetation and wind-driven fires); however, the changes were apparently not sufficient to fully protect buildings from radiant heat exposures from nearby burning structures. Radiant heat can break window glass and allow embers to enter the building (Penman et al. 2019). Chapter 7A mandated the use of tempered glass in one pane of a double-paned window, but the magnitude of radiant heat exposure was likely still too much in many cases, or other vulnerabilities remain.

Variation in factors contributing to home loss across construction time periods

In models for predicting survival, the significant interaction of several of the potential explanatory variables with construction time period suggested that the factors most strongly influencing home vulnerability differed for homes of different ages. Homes built in the most recent two eleven-year periods (1997–2007 and 2008–2018) survived at a significantly higher rate than homes built prior to 1997. Factors potentially contributing to this increase include trends towards a longer average distance to the nearest structure and nearest destroyed structure, and a larger average lot size. Newer homes had lower overstory canopy cover in the immediate vicinity (0-30m), whereas the older homes tended to be concentrated near the center of Paradise, where overstory tree cover was higher. The two most recent construction time periods also saw changes in building construction including roofing materials having longer periods of robust performance (i.e., 30–50 years of service life), double-pane windows (as a result of changes to the energy code), and increased use of noncombustible fiber-cement siding. Many of these improvements, which potentially make newer homes less vulnerable to wildfire exposures, occurred well before the 2008 Chap. 7A update to the building code. Older homes may also have developed vulnerabilities resulting from overdue home maintenance. We speculate that with a higher proportion of newer homes surviving the ember onslaught, outcome then depended to a greater extent on degree of radiant heat exposure from nearby burned structures. This hypothesis is supported by the much stronger influence of distance to nearest burned structure and the number of structures burned within 100 m for newer (1997 and after) than older <1997) homes. A substantially lower proportion of older homes survived regardless of the distance to or density of nearby burned structures, suggesting other vulnerabilities (such as maintenance issues). Another factor that may have increased the survival probability of newer homes was simply less time for occupants to accumulate combustible items on their properties (e.g., sheds, stored objects, wood piles, play structures). The difference between distance to nearest home and distance to nearest structure was much greater for older than newer homes (data not shown), indicative of structures such as sheds, detached garages, or other outbuildings being added to properties over time. Our summary of damage location and cause for damaged homes as well as first-hand accounts (Maranghides et al. (2021); N. Wallingford, personal communication) indicated such non-vegetative items were frequently ignited by embers and the reason for a flame impingement exposure.

Difficulties in post-wildfire interpretation

A primary challenge in determining the potential causes for building survival after wildfire can be the variation in fire behavior experienced and/or firefighter response across the population of homes evaluated. However, in this study the home losses largely occurred during one burn period under relatively consistent burning conditions, and with the focus of first responders on evacuation, very few homes likely saw any intervention by firefighters. The DINS assessment indicated that only seven of the 400 randomly selected homes (1.7%) experienced some defensive action by firefighters, with six of these homes surviving and one destroyed by the fire. Therefore, the Camp Fire provided a more homogenous burn environment than in many other post-fire evaluations of home survival, most of which combined data across multiple fires and years (e.g., (Syphard et al. 2012; Alexandre et al. 2016; Penman et al. 2019; Syphard and Keeley 2019)). However, while similar factors may be pertinent in other wildfires, it is still important to recognize that the variables identified here were specific to the housing, vegetation, and topographic conditions found in Paradise, and may not apply elsewhere.
Determining pre-fire structural characteristics post-fire is challenging and availability of such data is generally limited (Syphard and Keeley 2019). Details about near-home vegetation, especially within the first 1.5 m of the structure, which has been shown to be an especially vulnerable location for ember ignition, were not available. We were also not able to quantify the presence and distance to small sheds and other storage structures, the age and condition of the roofing, or individual residents' maintenance practices. The DINS data (e.g., extent of vegetation clearing for defensible space, siding type, type of window glass (single or multi-pane), deck construction, and presence of attached fencing) have value, but missing data and lack of information for structures not damaged or destroyed limit the utility for some analyses. We instead focused on variables that could be consistently evaluated on every home, such as overstory canopy cover and distance to the nearest destroyed structure. Our vegetation variables were, however, coarse, and likely missed factors that contributed to home survival.

Lastly, for the damaged home cause and area of damage summary, it is important to acknowledge that the vulnerabilities may differ for damaged and destroyed homes. With evidence for what contributed to loss no longer available for destroyed homes, damaged homes provide a picture of the different vulnerabilities, but the relative contribution of factors involved may not be the same.

Conclusions

The results of this study support the idea that both proximities to neighboring burning structures and surrounding vegetation influence home survival with wildfire. Denser developments, built to the highest standards, may protect subdivisions against direct flame impingement of a vegetation fire, but density becomes a detriment once buildings ignite and burn. Recent examples of losses in areas of higher density housing include the wind-driven 2017 Tubbs Fire in northern California, where house-to-house spread resulted in the loss of over 1400 homes in the Coffey Park neighborhood (Keeley and Syphard 2019), and the wind-driven 2020 Almeda Fire in southern Oregon, which destroyed nearly 2800 structures, many in denser areas in the towns of Talent and Phoenix (Cohen and Strohmaier 2020). Once fire becomes an urban conflagration, proximity to nearby burned structures becomes especially important because occupied structures contain significant quantities of fuel, produce substantial heat when burned, and are a source of additional embers. For density to be protective, home, and other structure ignitions would need to be rare. Fifty-six percent of homes in Paradise built during or after 2008 did not survive, illustrating that much improvement is needed in both current building codes and how we live in wildfire prone WUI areas before proximity to nearby structures becomes a benefit rather than a vulnerability. The threat posed by nearby burning structures as well as our finding of an apparent strong influence of vegetation 30–100 m from the home – a distance that in most cases encompasses multiple adjacent properties – demonstrates that neighbors need to work together to improve the overall ability of homes and communities to resist wildfire exposures.

To maximize survivability, homes need to be designed and maintained to minimize the chance of a direct flame contact, resist ember ignition, and survive extended radiant heat exposure. Our analyses demonstrating the strong influence of nearby burning structures on home survival suggests improvements to resist radiant heat exposures may be warranted in the California Building Code – i.e. increasing the standards for buildings within a certain minimum distance of other structures. Some possible improvements might include noncombustible siding with rating minimums tied to proximity to other structures, both panes in windows consisting of tempered glass, or installation of deployable non-combustible shutter systems. Additionally, certain options for complying with Chap. 7A are better for resisting radiant heat and flame contact exposures and could minimize fire spread to other components. Whereas the International Code Council’s Wildland Urban Interface Building Code (International Code Council 2017) provides three ignition-resistant construction classes to allow for material restrictions as a function of exposure level, Chap. 7A consists of one level, so is binary in nature in that a building either needs to comply, or it does not. Interaction between
components, for example, siding, window, and the under-eave area on an exterior wall, is not considered. The Australian building code for construction in bushfire prone areas, AS 3959 (Standards Australia 2018) incorporates six different construction classes based on anticipated radiant heat, flame, and ember exposure levels.

Our summary of damaged but not destroyed homes in Paradise was in line with other reports showing a high proportion of home ignitions indirectly resulting from embers (Mell et al. 2010). Embers frequently ignited near home combustibles such as woody mulch, fences, and receptive vegetation with flames and/or associated radiant heat then impacting the home itself, supporting awareness of the importance of combustibles within the first 1.5 m (5 ft) of the building on home survival. A re-interpretation of defensible space fuel modifications is needed to increase the building’s resistance and exposure to embers and direct flame contact, especially in the area immediately around a building and under any attached deck or steps. This does not diminish the value of defensible space fuel modifications 9 to 30 m (30 to 100 ft) away from the home, which not only reduces fuel continuity and the probability of direct flame contact to the home, but also provides firefighters a chance to intervene.

While our data show a relationship between home loss and vegetative fuels (high overstory canopy cover likely associated with a greater litter and woody fuel abundance, as well as other wildland understory vegetation) that can contribute to fire intensity and ember generation, the WUI fire loss issue has been described as home ignition problem more so than a wildland fire problem (Cohen 2000; Calkin et al. 2014). The damaged home data were in line with this view, with few homes showing evidence of continuity with wildland fuels that would contribute to flame impingement, but numerous homes with near home fuels, both from manmade and natural sources, that led to direct or indirect ember ignitions.

California's Mediterranean climate will continue to challenge its residents with regular wildfire exposure throughout the state. Whether through modifying the nearby surface and vegetative wildland fuels or the home itself, adapting to wildfire will take time. The good news is that the trend in survival is improving with newer construction practices. However, with 56% of houses built after 2008 still succumbing to the Camp Fire, much room for improvement remains. Our data suggest it is possible to build (and maintain) buildings that have a high probability of surviving a worst-case scenario type of wildfire, even in fire-prone landscapes such as the Paradise area. Newer homes built after 1972, where the nearest burning structure was > 18 m away, and fuels associated with vegetation 30–100 m from the home kept at moderate and lower levels (< 53% canopy cover) had a 61% survival rate – an approximately 5-fold improvement over the Paradise housing population as a whole. Survival percentages substantially higher still are potentially possible if all components of risk, including ember generation in nearby wildland fuels, continuity of wildland and other fuels on the property, and home ignitability are sufficiently mitigated.

Abbreviations

DINS
Damage Inspection

WUI
Wildland Urban Interface

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable
Availability of data and materials: All data generated or analyzed during the study are included in the published article and its supplementary information files.

Competing interests: The authors declare that they have no competing interests.

Funding: Analysis and writing of this article were performed without any additional funding, other than the salaries of the authors.

Authors’ contributions: EK, YV, and SQ developed the research questions and designed the study, with statistical guidance provided by NJ. Statistical analyses were performed by NJ and EK. All authors contributed to writing the manuscript.

Acknowledgements: C Abbott quantified many of the variables used in the analyses of the 400-home sample. N Wallingford (CAL FIRE), who was assigned to the Camp Fire and managed the post-fire damage inspection (DINS) team, kindly reviewed a draft, and provided insightful comments. We also thank Z Lunder, who gave us the tour of Paradise shortly after the fire, which inspired the questions this paper sought to address.

References

Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211:83–96.

Alexandre PM, Stewart SI, Mockrin MH, Keuler NS, Syphard AD, Bar-Massada A, Clayton MK, Radeloff VC (2016) The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape Ecology 31(2):415–430. https://doi.org/10.1007/s10980-015-0257-6

Breiman L (ed) (1998) Classification and regression trees, Repr. Chapman & Hall [u.a.], Boca Raton

Brewer MJ, Clements CB (2019) The 2018 Camp Fire: Meteorological Analysis Using In Situ Observations and Numerical Simulations. Atmosphere 11(1):47. https://doi.org/10.3390/atmos11010047

California State Board of Forestry and Fire Protection (2006) General guidelines for creating defensible space.

Calkin DE, Cohen JD, Finney MA, Thompson MP (2014) How risk management can prevent future wildfire disasters in the wildland-urban interface. Proceedings of the National Academy of Sciences 111(2):746–751. https://doi.org/10.1073/pnas.1315088111

Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2017) Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions. Fire Technology 53(2):429–473. https://doi.org/10.1007/s10694-016-0589-z

Cohen J, Stratton R (2008) Home destruction evaluation: Grass Valley Fire, Lake Arrowhead, California. U. S. Department of Agriculture, Forest Service, Pacific Southwest Region, Vallejo, CA, USA. Tech. Paper R5-TP-026b

Cohen J, Strohmaier D (2020) Community destruction during extreme wildfires is a home ignition problem. In: Wildfire Today. https://wildfiretoday.com/2020/09/21/community-destruction-during-extreme-wildfires-is-a-home-ignition-problem/. Accessed 10 Feb 2021

Cohen JD (2000) Preventing disaster: home ignitability in the wildland-urban interface. Journal of Forestry 98:15–21.
Cohen JD (2004) Relating flame radiation to home ignition using modeling and experimental crown fires. Canadian Journal of Forest Research 34:1616–1626.

Gibbons P, Gill AM, Shore N, Moritz MA, Dovers S, Cary GJ. 2018. Options for reducing house-losses during wildfires without clearing trees and shrubs. Landscape and Urban Planning 174:10-17.

Gibbons P, van Bommel L, Gill AM, Cary GJ, Driscoll DA, Bradstock RA, Knight E, Moritz MA, Stephens SL, Lindenmayer DB (2012) Land Management Practices Associated with House Loss in Wildfires. PLoS ONE 7(1):e29212. https://doi.org/10.1371/journal.pone.0029212

Hakes RSP, Caton SE, Gorham DJ, Gollner MJ (2017) A Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United States. Fire Technology 53(2):475–515. https://doi.org/10.1007/s10694-016-0601-7

Hammer RB, Radeloff VC, Fried JS, Stewart SI (2007) Wildland - urban interface housing growth during the 1990s in California, Oregon, and Washington. International Journal of Wildland Fire 16(3):255–265. https://doi.org/10.1071/WF05077

Insurance Institute for Business & Home Safety (2008) MEGA FIRES: The Case for Mitigation. Tampa, FL

International Code Council (2003) International urban-wildland interface code 2003. International Code Council, Country Club Hills, IL

International Code Council (2017) International codes.

Keeley JE, Fotheringham CJ (2001) Historic fire regime in southern California shrublands. Conservation Biology 15(6):1536–1548.

Keeley JE, Syphard AD (2019) Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecology 15(1):24, s42408-019-0041-0. https://doi.org/10.1186/s42408-019-0041-0

Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. International Journal of Wildland Fire 19(7):818–843. https://doi.org/10.1071/WF07119

Leiberg JB (1902) Forest conditions in the northern Sierra Nevada, California. U.S. Department of the Interior, U.S. Geological Survey, Professional paper No. 8, Series H, Forestry 5., Washington, DC

Lumly T (2020) Survey: analysis of complex survey samples.

Maranghides A, Link E, Mell W “Ruddy,” Hawks S, Wilson M, Brewer W, Brown C, Vihnaneck B, Walton WD (2021) A Case Study of the Camp Fire – Fire Progression Timeline. National Institute of Standards and Technology, Gaithersburg, MD.

McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman and Hall, London, UK.

Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland - urban interface fire problem - current approaches and research needs. International Journal of Wildland Fire 19(2):238–251. https://doi.org/10.1071/WF07131
Murphy K, Rich T, Sexton T (2007) An assessment of fuel treatment effects on fire behavior, suppression effectiveness, and structure ignition on the Angora Fire. U.S. Department of Agriculture, Forest Service, Pacific Southwest Region, Technical Paper, R5-TP-025.

Penman SH, Price OF, Penman TD, Bradstock RA (2019) The role of defensible space on the likelihood of house impact from wildfires in forested landscapes of south eastern Australia. International Journal of Wildland Fire 28(1):4–14. https://doi.org/10.1071/WF18046

Price O, Bradstock R (2013) Landscape Scale Influences of Forest Area and Housing Density on House Loss in the 2009 Victorian Bushfires. PLoS ONE 8(8):e73421. https://doi.org/10.1371/journal.pone.0073421

Quarles S, Konz L (2016) Black Bear Cub Fire, Sevier County, Tennessee. Insurance Institute for Business & Home Safety, Richburg, SC.

Quarles S, Leschak P, Cowger R, Worley K, Brown RPE, Iskowitz C (2013) Lessons learned from Waldo Canyon: Fire Adapted Communities Mitigation Assessment Team findings. Fire Adapted Communities Coalition.

Quarles SL, Valachovic Y, Nakamura GM, Nader GA, de Lasaux MJ (2010) Home survival in wildfire-prone areas: building materials and design considerations. University of California, Agriculture and Natural Resources.

R Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecological Applications 15(3):799–805. https://doi.org/10.1890/04-1413

Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Martinuzzi S, Syphard AD, Stewart SI (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences USA 115(13):3314–3319. https://doi.org/10.1073/pnas.1718850115

Skinner CN, Taylor AH, Agee JK (2006) Klamath Mountains bioregion. In: Sugihara NG, van Wagtendonk JW, Shaffer KE, Fites-Kaufman J, Thode AE (eds) Fire in California's Ecosystems. University of California Press, Berkeley and Los Angeles, CA, pp 170–194.

Standards Australia (2018) Construction of buildings in bushfire-prone areas. AS3959

Steel ZL, Safford HD, Viers JH (2015) The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 6(1):Article 8

Stephens SL, Martin RE, Clinton NE (2007) Prehistoric fire area and emissions from California's forests, woodlands, shrublands, and grasslands. Forest Ecology and Management 251:205–216.

Sugihara NG, Keeler-Wolf T, Barbour MG (2018) Chapter 1. Introduction: Fire in California vegetation. In: Fire in California's Ecosystems, 2nd edn. University of California Press.

Syphard AD, Brennan TJ, Keeley JE (2014) The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire 23(8):1165–1175. https://doi.org/10.1071/WF13158

Syphard AD, Keeley JE (2020) Why are so many structures burning in California? Fremontia 47(2):28–35.
Syphard AD, Keeley JE (2019) Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire 2(3):49. https://doi.org/10.3390/fire2030049

Syphard AD, Keeley JE, Massada AB, Brennan TJ, Radeloff VC (2012) Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS ONE 7(3):e33954. https://doi.org/10.1371/journal.pone.0033954

Therneau T, Atkinson B (2019) rpart: Recursive Partitioning and Regression Trees.

Van de Water KM, Safford HD (2011) A summary of fire frequency estimates for California vegetation before Euro-American settlement. Fire Ecology 7:26–58.

Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943.

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis, 2nd ed. 2016. Springer International Publishing: Imprint: Springer, Cham

Figures

Figure 1

Map showing the perimeter of Paradise, California, with the location of 400 randomly selected homes built during three time periods (pre-1997, 1997-2007, and 2008-2018).
Figure 2

Percentage of surviving single-family homes in Paradise by decade of construction.
Figure 3

Probability of home survival with a) distance (m) to nearest destroyed structure, b) the number of destroyed structures within a 100m radius, c) overstory canopy cover within 0-30m, and d) overstory canopy cover within 30-100m, for homes built during three time periods (before 1997, 1997-2007, and 2008-2018). A vertical dotted line in (a) shows the 18 m threshold between survival and destruction identified by the regression tree analysis (Figure 5a).
Figure 4

Effect sizes for two logistic regression models of home survival in the town of Paradise during the 2018 Camp Fire, including continuous variables (a) present during the fire, and (b) only variables present pre-fire. Regressions were based on a random sample of 400 homes.
Figure 5

Regression trees for predicting home survival in the town of Paradise in the 2018 Camp Fire, with models including continuous variables (a) present during the fire, and (b) only variables present pre-fire, both based on a random sample of 400 homes. Survival proportion is listed in bold under each branch, along with the percentage of homes in Paradise that each branch applied to (in parenthesis).
Figure 6

Percentage of damaged but not destroyed homes in Paradise by a) fire damage cause category and b) fire damage location. Fire damage cause was either radiant heat, direct ember ignition, or flame impingement. Flame impingement was further subdivided into flame impingement due to indirect ember ignition, fuel continuity with the broader landscape, or unknown. Numbers were based on visual assessment of photos taken by the CAL FIRE inspectors and information in the CAL FIRE DINS (damage inspection) data. Totals exceed 100% because some homes had multiple sources of fire damage.
Figure 7

Aerial image showing a portion of Magalia just NW of Paradise, illustrating a gradient of fire damage to overstory vegetation with distance from destroyed homes. At least in some areas, burning homes may have influenced the effects to overstory vegetation more than burning canopy vegetation influenced the outcome to homes. Photo: Owen Bettis, Deer Creek Resources.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CampFire400HomeSample.csv
- CampFireParadiseDamagedHomes.xlsx
- MetadataCampFireHomeSurvivalKnappetal.docx