The Oncology Association of Bosnia and Herzegovina’s recommendations for fertility preservation in oncologic patients

Timur Ceric¹, Emir Sokolovic¹, Berisa Hasanbegovic¹, Anes Pastic¹, Zdenka Gojkovic³, Jelena Vladičić Mašić³, Nikola Dukić³, Inga Marijanovic³, Alma Mekić Abazovic³, Ibrahim Šišić⁵, Dijana Koprić⁶, Mustafa Hammami⁷, Senad Bajramović⁸, Taib Delić⁹, Semir Bešlija¹⁰

ABSTRACT

Malignancy is one of the major public health problems in Bosnia and Herzegovina. Along with breakthroughs in specific oncological therapy, improving the quality of life of cancer patients and management of therapy-induced side effects need to be recognized as a priority in the comprehensive cancer patient care. Fertility loss after cancer treatment is a field requiring special attention due to its various consequences on patients themselves. Although oncofertility is well-recognized area of oncology, low- to middle-income countries are facing issues with its implementation in everyday practice. Increased awareness about fertility preservation is of high priority for all specialists who participate in the medical care of cancer patients. The absence of a systemic solution and lack of expertise led to the founding of Fertility Preservation Working Group of the Oncology Association of Bosnia and Herzegovina. We have made recommendations as an expert consensus with the ultimate goal of making the first step toward enhancement of oncofertility implementation in Bosnia and Herzegovina.

KEYWORDS: Cryopreservation, fertility preservation; neoplasms; oncofertility; oncology

INTRODUCTION

Malignancy is one of the major public health problems in Bosnia and Herzegovina. Based on the data presented in the Globocan report, there were 14,673 new cases of cancer during 2020. The most common cancer types by site were lung cancer (17.1%), colorectal cancer (12.7%), breast cancer (10.6%), prostate cancer (6.1%), and gastric cancer (5.2%) [1].

Improved treatment of malignant diseases in recent decades has resulted in better survival of patients and more successful management of symptoms caused by the disease itself. However, it should be recognized that improving the quality of life of cancer patients and controlling therapeutic side effects are also priorities in cancer therapy.

Sterility after cancer therapy is one of the most significantly reported problems and requires special attention given the biological and psychological consequences whose severity is immeasurable [2]. Oncofertility is an emerging field of medicine whose main goal is to improve the quality of life of oncology patients by increasing access to opportunities to preserve fertility [3].

Although oncofertility plays an important role in oncology therapy in developed countries, the implementation of oncofertility is still problematic in moderate- and low-income countries, especially in terms of resources, expertise, and costs [4]. In a study of data from 40 centers around the world, participants responded that the most common barriers to implementing oncofertility were financial burdens for patients (62%), religious or cultural constraints (61%), and a lack of specialized providers/health facilities (24%) [5].

The Fertility Preservation Working Group of the Oncology Association of Bosnia and Herzegovina was established and launched its activities for several reasons; primarily due to the increase in the number of cancer patients of a reproductive age, but also due to the need to establish diagnostic and therapeutic

©The Author(s) (2022). This work is licensed under a Creative Commons Attribution 4.0 International License
recommendations, to facilitate cooperation and work for patients and healthcare professionals (oncologists, gynecologists, urologists, etc.) increased the quality of care for our patients. It is important to know if the patient should be referred to a specialist or a reproductive center. There are very few centers in Bosnia and Herzegovina that deal with fertility procedures, and these centers are mostly private health institutions—meaning that patients are forced to bear the financial costs of such procedures due to lack of health insurance coverage. Aforementioned factors contribute to the psychological and financial stress associated with the treatment of malignant disease, i.e., the decline in the quality of life of patients. An additional goal of the guidelines is to inform decision-makers related to this issue and to find a systemic solution that diminishes stress (psychological and financial) that accompanies malignant disease (Table 1).

ONCOFERTILITY RECOMMENDATIONS FOR BOSNIA AND HERZEGOVINA

Recommendation 1

Patients who have cancer and are at risk of infertility after cancer treatment should be offered multidisciplinary counseling. Discussion should be started as soon as possible, before initiating treatment and this should be documented in the patient’s record [6-9].

PRESERVATION OF FERTILITY IN ADULT FEMALE ONCOLOGICAL PATIENTS – RECOMMENDATIONS

Recommendation 2.1

Available fertility preservation options in women include oocyte cryopreservation, ovarian tissue cryopreservation (OTC), embryo cryopreservation, in vitro oocyte maturation (IVM), ovarian transposition, gonadotropin-releasing hormone (GnRH) agonists protection (ovarian suppression), and fertility sparing surgery.

Recommendation 2.2

Cryopreservation of oocytes should be offered as an established option for fertility preservation [10-15]. Cryopreservation of oocytes, along with cryopreservation of embryos, is considered the “gold standard” for preserving fertility. The oocyte cryopreservation technique requires about two weeks to stimulate the oocytes before storing them, so the start of specific cancer treatment could be delayed [8]. The live birth rate as a measure of oocyte cryopreservation success published in Cobo et al. (2016) is 50% in women not older than 35 years and 22.9% in women older than 36 years [16].

Recommendation 2.3

Embryo cryopreservation should be offered as an established fertility preservation option [10,14,17-23]. Ovarian stimulation is required, and this procedure takes an average of two weeks [8]. The live birth rate as a measure of embryo cryopreservation success ranges from 20% to 45% [24,25].

Recommendation 2.4

OTC and reimplantation should be offered as an acceptable fertility-preservation technique and it is no longer considered experimental [7]. This technique is of the utmost importance for patients who need to start cancer treatment urgently, because ovarian stimulation is not needed, as well as for prepubertal patients for whom OTC is the only option for preserving fertility [8]. Reported live birth rates in the OTC literature from selected studies range from 18.2% to 40% [24,26-30]. Ovarian reimplantation is considered safe in terms of the risk of reintroducing cancer cells into the body, provided that previous pelvic invasion is ruled out [31]. After reimplantation of ovarian tissue, a five-year oncological monitoring is recommended [32]. Due to the higher risk of ovarian cancer in patients with the BRCA mutation, OTC for transplantation is not recommended [7].

Recommendation 2.5

Protective ovarian suppression by GnRH agonists may be offered to breast cancer patients receiving chemotherapy only when other established fertility preservation techniques such as oocytes, embryo cryopreservation, and OTC are not feasible [6]. Several randomized studies and meta-analyses have evaluated the efficacy of GnRH agonists for ovarian protection, but the results have been inconsistent [33-44].

Recommendation 2.6

IVM should be offered as an innovative option to preserve fertility in exceptional circumstances [45-47]. It should be offered to patients, in whom there is not enough time for ovarian stimulation, but in whom there is an indication for cryopreservation of oocytes. This technique should be discussed with patients who carry BRCA mutations at the time of oophorectomy if other fertility options are not feasible [7].

Recommendation 2.7

The ovarian transposition technique may be useful for patients who are candidates for pelvic radiotherapy. Patients should be informed of the limited success of this technique due to unpredictable damage of radiation dissipation [6].
TABLE 1. Oncofertility recommendations for Bosnia and Herzegovina

Oncofertility recommendations for Bosnia and Herzegovina

Recommendation	Description
Adult female oncological patients	
1.1. Patients who have cancer and are at risk of infertility after cancer treatment should be offered multidisciplinary counseling [6-9].	
1.2. Available fertility preservation options in women include oocyte cryopreservation, ovarian tissue cryopreservation, embryo cryopreservation, *in vitro* oocyte maturation, ovarian transposition, gonadotropin-releasing hormone (GnRH) agonists protection (ovarian suppression) and fertility sparing surgery.	
1.3. Embryo cryopreservation is an established option for fertility preservation [10-15].	
1.4. Ovarian tissue cryopreservation and reimplantation should be offered as an acceptable fertility-preservation technique and is no longer considered experimental [7].	
1.5. Protective ovarian suppression by GnRH agonists may be offered to breast cancer patients receiving chemotherapy only when other established fertility preservation techniques such as oocytes, embryo cryopreservation, and ovarian tissue cryopreservation are not feasible [6].	
1.6. *In vitro* oocyte maturation should be offered as an innovative option for fertility preservation in special circumstances [45-47].	
1.7. The ovarian transposition technique may be useful for patients who are candidates for pelvic radiotherapy [6].	
1.8. Patients undergoing surgical treatment for early-stage gynecological malignancies should discuss with their gynecologist the possibilities of surgical techniques to preserve fertility [7].	
Adult male oncological patients	
2.1. Cryopreservation of ejaculated sperm is a standard option for preserving fertility in mature men, oncology patients, before starting chemotherapy [6,7].	
2.2. If the semen collection by ejaculation is not feasible, surgical extraction of sperm should be offered [7].	
2.3. GnRH analogs should not be offered for male patients as a fertility preservation technique, because human studies have not shown the effectiveness of this procedure.	
2.4. Testicular tissue cryopreservation is still considered an investigational and experimental technique for fertility preservation [7,9].	

Recommendation 2.8

Patients undergoing surgical treatment of early gynecological malignancies should discuss with their gynecologist the possibilities of surgical techniques to preserve fertility [7].

Preservation of Fertility in Adult Male Oncological Patients – Recommendations

Recommendation 3.1

Cryopreservation of ejaculated sperm is a standard option for preserving fertility in mature male oncology patients, before starting chemotherapy [6,7]. If collecting semen by masturbation is not feasible, patients should be advised to discuss with their urologist other available options such as the use of phosphodiesterase type 5 inhibitors, vibration stimulation, electroejaculation, or alpha-agonist therapy for patients with retrograde ejaculation [7].

Recommendation 3.2

If collecting semen through ejaculation is not feasible, patients should be offered surgical sperm extraction. This technique is extremely important for patients with single testicles or contralateral testicular atrophy, because this group of patients is at higher risk of azoospermia [7]. Testicular sperm extraction with an operating microscope can be particularly useful for identifying focal areas with active spermatogenesis, as this technique can ensure greater efficacy in oncology patients [48].

Recommendation 3.3

GnRH analogs should not be offered for male patients as a fertility preservation technique, because human studies have not shown the effectiveness of this procedure.

Recommendation 3.4

Cryopreservation of testicular tissue is still considered an experimental technique for preserving fertility. It is the only option for preserving fertility for patients in the prepubertal period and should be offered only through clinical trials [7,49].

CONCLUSION

Increasing awareness of fertility preservation and willingness to discuss this topic is a priority for all specialists involved in the medical care of cancer patients. These recommendations were given by the Working Group for Preservation of Fertility of the Oncology Association in Bosnia and Herzegovina as an expert consensus with the goal to be the first step in improving the implementation of oncofertility in Bosnia and Herzegovina. We strongly encourage the launch of clinical trials and research projects aimed at clarifying and defining fertility preservation options for cancer patients in our country.

REFERENCES

[1] World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN 2020. Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2020. 2020. Available from: https://www.gco.iarc.fr/today/data/factsheets/populations/70-bosnia-and-herzegovina-fact-sheets.pdf [Last accessed on 2021 Oct 27].

[2] Patrizio P, Butts S, Caplan A. Ovarian tissue preservation and future fertility: emerging technologies and ethical considerations. J Natl Cancer Inst Monogr. 2005;34:107-10. https://doi.org/10.1093/jnci/34.107-10.

[3] De Vos M, Smits J, Woodruff TK. Fertility preservation in women with cancer. Lancet 2014;384(9950):1302-10. https://doi.org/10.1016/S0140-6736(14)60834-5.

[4] Bourlon MT, Anazodo A, Woodruff TK, Segelov E. Oncofertility as a universal right and a global oncology priority. JCO Glob Oncol. 2020;6:314-6.
hormone analogues for the prevention of chemotherapy induced premature ovarian failure in premenopausal women. Cochrane Database Syst Rev 2019;3:CD008018. https://doi.org/10.1002/14651858.CD008018.pub3.

[34] Munster PN, Moore AP, Ismail-Khan R, Cox CE, Laevevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo) adjuvant chemotherapy for breast cancer. J Clin Oncol 2012;30(5):533-8. https://doi.org/10.1200/JCO.2011.34.6890.

[35] Bedawy MA, Abou-Setta AM, Desai N, Hurd W, Starks D, El-Nashar SA, et al. Gonadotropin-releasing hormone analog cotreatment for preservation of ovarian function during gonado-toxic chemotherapy: A systematic review and meta-analysis. Fertil Steril 2012;95(3):906-14.e1-4. https://doi.org/10.1016/j.fertnstert.2010.11.017.

[36] Del Mastro L, Boni L, Michelotti A, Gamucci T, Olmeo N, Gori S. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: A randomized trial. JAMA 2011;306(3):269-76. https://doi.org/10.1001/jama.2011.991.

[37] Demeestere I, Brice P, Peccatori FA, Kentos A, Dupuis J, Zachee P, et al. No Evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: Final long-term report of a prospective randomized trial. J Clin Oncol 2016;34(22):2568-74. https://doi.org/10.1200/JCO.2015.65.8864.

[38] Lamberti M, Poggio F, Levaggi A, Del Mastro L. Protecting ovaries during chemotherapy through gonad suppression: A systematic review and metaanalysis. Obstet Gynecol 2015;126(1):901. https://doi.org/10.1097/AOG.0000000000000905.

[39] Leonard RC, Adamson DJ, Bertelli G, Mansi J, Yellowlees A, et al. GnRH agonist on ovarian function after modern adjuvant breast chemotherapy. N Engl J Med 2015;372(10):923-32. https://doi.org/10.1056/NEJMoa1413204.

[40] Moore HC, Unger JM, Phillips KA, Boyle F, Hitre E, Porter D. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: The GBG 37 ZORO study. J Clin Oncol 2011;29(17):2334-41. https://doi.org/10.1200/JCO.2010.32.5704.

[41] Munhoz RR, Pereira AA, Sasse AD, Hoff PM, Traina TA, Hudis CA, et al. Gonadotropin-releasing hormone agonists for ovarian function preservation in premenopausal women undergoing chemotherapy for early-stage breast cancer: A systematic review and meta-analysis. JAMA Oncol 2016;2:65-73. https://doi.org/10.1001/jamaoncol.2015.3552.

[42] Elgindy E, Sibai H, Abdelghani A, Mostafa M. Protecting ovaries during chemotherapy through gonad suppression: A systematic review and meta-analysis. Obstet Gynecol 2015;126:187-95. https://doi.org/10.1097/AOG.00000000000001074.

[43] Lamberti M, Moore HC, Leonard RC, Loibl S, Munster P, Bruzzzone M, et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: A systematic review and meta-analysis of individual patient-level data. J Clin Oncol 2018;36(19):1981-90. https://doi.org/10.1200/JCO.2018.78.0858.

[44] Creux H, Monnier P, Son WY, Buckett W. Thirteen years’ experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet 2018;35:83-92. https://doi.org/10.1007/s11552-017-2018-0.

[45] Grynfelt M, Daghe Bayeck B, Papanikolaou EG, Sier F, Sermonadde N, Sonigo C. BRCA1/2 gene mutations do not affect the capacity of oocytes from breast cancer candidates for fertility preservation to mature in vitro. Hum Reprod 2011:34:372-9.

[46] Furuhashi K, Ishikawa T, Hashimoto H, Yamada S, Ogata S, Mizusawa Y, et al. Onco-testicular sperm extraction: Testicular sperm extraction in azoospermic and very severely oligozoospermic cancer patients. Andrologia. 2013;45(2):107-10.

[47] Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kiesch S, et al. ESHRE Task Force On Fertility Preservation In Severe Diseases. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod. 2015;30(11):2493-75. https://doi.org/10.1093/humrep/dev90.

Related articles published in BJBMS

1. 2020 consensus guideline for optimal approach to the diagnosis and treatment of HER2-positive breast cancer in Bosnia and Herzegovina

Semir Bešlija et al., BBJMS, 2020