IMAGING THE TIME EVOLUTION OF ETA CARINAE’S COLLIDING WINDS WITH HST*

THEODORE R. GULL1, THOMAS I. MADURA2, JOSE H. GROH2, AND MICHAEL F. CORCORAN3,4
1 Astrophysics Science Division, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771, USA; Theodore.R.Gull@nasa.gov
2 Max-Planck-Institut für Radioastronomie, Auf dem Hugel 69, D-53121 Bonn, Germany
3 CRESST and X-ray Astrophysics Laboratory, Goddard Space Flight Center, Greenbelt, MD 20771, USA
Received 2011 September 20; accepted 2011 October 26; published 2011 November 14

ABSTRACT

We report new Hubble Space Telescope/Space Telescope Imaging Spectrograph observations that map the high-ionization forbidden line emission in the inner arcsecond of Eta Car, the first that fully image the extended wind–wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54 year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blueshifted emission (−400 to −200 km s⁻¹) is symmetric and elongated along the northeast–southwest axis, while the redshifted emission (+100 to +200 km s⁻¹) is asymmetric and extends to the north–southwest. Comparison with synthetic images generated from a three-dimensional (3D) dynamical model strengthens the 3D orbital orientation found by Madura et al., with an inclination of i ≈ 138°, an argument of periapsis of ω ≈ 270°, and an orbital axis that is aligned at the same position angle on the sky as the symmetry axis of the Homunculus, 312°. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system.

Key words: stars: atmospheres – stars: individual (Eta Carinae) – stars: mass-loss – stars: variables: general – stars: winds, outflows – supergiants

Online-only material: color figures

1. INTRODUCTION

Eta Carinae, one of the most luminous, variable objects in our Milky Way, is sufficiently close (D = 2.3 ± 0.1 kpc; Smith 2006) that we can study many of its properties throughout the electromagnetic spectrum. As noticed by Damineli (1996), the object exhibits a 5.54 year orbital period characterized by a lengthy high-ionization state with multiple high-ionization forbidden lines that disappear during a months-long low-ionization state (Damineli et al. 2008b). Eta Car is considered to be a massive, highly eccentric (e ∼ 0.9; Corcoran 2005; Nielsen et al. 2005) binary consisting of η A, a luminous blue variable (LBV), and η B, a hot, less massive companion not directly seen, but whose properties have been inferred from its effects on the wind of η A and the photoionization of nearby ejecta (Verner et al. 2005; Teodor0 et al. 2008; Mehner et al. 2010, hereafter Me10; Groh et al. 2010a, 2010b).

The total luminosity, dominated by η A, is ≳ 5 × 10⁶ L☉ (Davidson & Humphreys 1997), with the total mass of the binary exceeding 120 M☉ (Hillier et al. 2001, hereafter H01). Radiative transfer modeling of Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) spatially resolved spectroscopic observations suggests that η A has a mass ≳ 90 M☉, and a stellar wind with a mass-loss rate of ~10⁻³ M☉ yr⁻¹ and terminal speed of ~500–600 km s⁻¹ (Hillier et al. 2001, 2006, hereafter H06). Models of the observed X-ray spectrum require the wind terminal velocity of η B to be ~3000 km s⁻¹ with a mass-loss rate of ~10⁻⁶ M☉ yr⁻¹ (Pittard & Corcoran 2002).

Support for program 12013 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

* Online-only material: color figures

The spectral type of η B has been loosely constrained via modeling of the inner ejecta to be a mid-O supergiant (Verner et al. 2005; Teodor0 et al. 2008; Me10).

Three-dimensional (3D) numerical simulations suggest that the wind of η B strongly influences the very dense wind of η A, creating a low-density cavity and inner wind–wind collision zone (WWCZ; Pittard & Corcoran 2002; Okazaki et al. 2008; Parkin et al. 2009). The geometry and physical conditions of this inner region have been constrained from spatially unresolved X-ray (Henley et al. 2008), optical (Nielsen et al. 2007; Damineli et al. 2008a), and near-infrared (Groh et al. 2010a, 2010b) observations.

In addition to the interaction between the two winds in the inner region (at spatial scales comparable to the semi-major axis length, a ≈ 15.4 AU = 0.0067 at 2.3 kpc), the 3D hydrodynamical simulations predict an outer, extended, ballistic WWCZ that stretches to distances several orders of magnitude larger than the size of the orbit (Okazaki et al. 2008; Madura 2010, hereafter M10). Observational evidence for an extended WWCZ comes from the analysis of previous HST/STIS slong observations (G09; M10; Madura et al. 2011, hereafter M11) which revealed spatially extended forbidden line emission from low- and high-ionization species at ~0′.1–0′.7 (250–1600 AU) from the central core. During the high state, [Fe ii] line emission extends up to ±500 km s⁻¹ along the STIS slit, while [Fe iii] line emission extends to ~400 km s⁻¹ for STIS slit position angles close to 45°. Radiative transfer modeling of the extended [Fe iii] emission (M10; M11) tightly constrains the orbital inclination, i ≈ 138°, close to the axis of inclination of the Homunculus, and the argument of periapsis 240° ≤ ω ≤ 270° in agreement with most researchers (Damineli et al. 2008b; Groh et al. 2010a; Parkin et al. 2009, and references therein). This constraint invalidates the claim by several groups (Falceta-Gonçalves & Abraham 2009; Kashi & Soker 2009, and references therein) that periastron occurs on the near side of η A (ω = 90°).
Here we report new HST/STIS observations, the first that fully map the inner arcsecond high-ionization, forbidden line emission of Eta Car. Maps of [Fe iii] λ4659, 35, 4702.85, and [N ii] λ5756.19 recorded in early phases following the 2009.0 periastron event show changes in the wind structures excited by FUV radiation from η B. These results demonstrate that structural changes can be followed using specific forbidden lines, leading to increased knowledge about interacting wind properties, the parameters of the binary orbit and, most importantly, the stellar properties of η B.

2. OBSERVATIONS

The HST/STIS mapping observations were obtained after the successful repair of STIS during Service Mission 4. The first visit occurred in 2009 June (φ = 12.084) as an early release observation demonstrating the repaired-STIS capabilities (Program 11506 PI: Noll). The second and third visits were scheduled in 2009 December (φ = 12.163) and 2010 October (φ = 12.323) under a CHANDRA/HST grant (Program 12013, PI: Corcoran).

All observations were performed with the 52″ × 0′.1 longslit. The strongest, most isolated, high-ionization forbidden emission lines from the inner and outer WW CZs are [Fe iii] λλ 4659, 4702 and [N ii] λ5756 (G09). The STIS gratings, G430M, centered at λ4706, and G750M, centered at λ5734, provide a spectral resolving power of about 8000.

Spatial mapping was accomplished with the standard STIS-PERP-TO-SLIT mosaic routine using the 52″ × 0′.1 aperture with multiple 0′.1 offset position spacings centered on Eta Carinae. The size of the map, given limited foreknowledge of the extended forbidden emission structure, was adjusted with each visit based upon the anticipated HST/STIS long-slit position angle (P.A.), pre-determined by the HST solar panel orientation. As buffer dumps impact the total integration time, only the central CCD rows, typically 64 (3′/2) or 128 (6′/4), were read out. The P.A.s for each visit were P.A. = 79° (φ = 12.084), −121° (φ = 12.163), and −167° (φ = 12.323). Since a full spatial map was obtained during each visit, the P.A. has little effect on the results presented here (see Figures 1 and 2).

The data were reduced with STIS GTO CALSTIS software. While data quality is similar to previous HST/STIS observations of Eta Car obtained from 1998 to 2004 (Davidson et al. 2005; G09), the CCD detector has an increased number of hot pixels, some bad columns, and increased charge transfer inefficiencies. Bright local continuum (Figure 1(b)) was subtracted from each pixel, isolating the faint forbidden line emission (Figures 1(c)–(i) and 2). Velocity channels were co-added to produce blue (−400 to −200 km s⁻¹), low-velocity (−90 to +30 km s⁻¹), and red (+100 to +200 km s⁻¹) images for each of the high-ionization forbidden lines (Figure 2). Only the high-velocity blue and red maps are sensitive to the wind–wind interaction that we model in this present work. The low-velocity maps are dominated by slow-moving, extended ejecta produced in the 19th century eruptions, and are not discussed in detail here. A refinement to the current model will include a screen of condensations to account for the low-velocity emission.

3. RESULTS

3.1. Morphology and Time Evolution of the Extended Wind–Wind Collision

For each phase, we compared velocity-separated images of [Fe iii] λλ 4659, 4702 and [N ii] λ5756, and found remarkable similarities in the blue and red images between the three emission lines (see Figure 1 for 2009 June, φ = 12.084).
Figure 2. Changing shape of high-ionization [Fe III] λ4659 early in Eta Carinae’s binary period. Top row: φ = 12.084. Middle row: φ = 12.163. Bottom row: φ = 12.323. Left column: blue emission (-400 to -200 km s⁻¹). Middle column: low-velocity emission (-90 to +30 km s⁻¹). Right column: red emission (+100 to +200 km s⁻¹). Gaps between the velocity intervals are purposefully excluded to show very separate velocity fields. The color bars show flux scaled by sqrt(erg cm⁻² s⁻¹).

(A color version of this figure is available in the online journal.)

Hereafter we focus on the [Fe III] λ4659 emission, which cannot be formed by the primary star alone. Emission of [Fe III] requires 16.2 eV photons from ηB, plus thermal collisions at electron densities approaching $N_e = 10^7 \text{ cm}^{-3}$ (G09; M10; M11). By comparison, [N II] emission is produced by 14.6 eV photons at electron densities approaching $N_e = 3 \times 10^7 \text{ cm}^{-3}$. As the primary star, ηA, produces significant numbers of 14.6 eV photons (H01), [N II] emission does not fully disappear during periastron (Damineli et al. 2008a; G09). However, the red emission from [Fe III] λ4659.35 can be contaminated by blue emission from [Fe II] λ4665.75. Likewise, the red emission image of [Fe III] λ4702.85 may be depressed by He I λ4714.47 absorption. Hence, we examined the [N II] maps to ensure little or no red high-ionization emission is present.

Figure 2 shows the time evolution of the blue, low-velocity, and red components of [Fe III] λ4659 at orbital phases φ = 12.084, 12.163, and 12.323. The morphology and geometry of the extended [Fe III] λ4659 emission resolved by HST/STIS changes conspicuously as a function of velocity and time. The blue emission extends along the NE–SW direction, along P.A. ≃ 45°, which is similar to what has been suggested from previous sparse HST/STIS long-slit observations obtained at different orbital phases across cycle 11 (G09, Me10, M10, M11). At φ = 12.084, the linear structure is nearly symmetrical about the central region, but at later phases becomes more diffuse, shifting to the S and SE. The red emission is fuzzier, asymmetric, and extends primarily to the NNW at each phase. In contrast, the low-velocity structure is larger and extends diffusely northward. The low-velocity emission is heavily dominated by emission from the Weigelt blobs (Weigelt & Ebersberger 1986) and a screen of fainter condensations (Me10), located within the ηB wind-blown cavity and thusly obscuring
the much fainter WWCZ contributions. While we describe the qualitative changes of the low-velocity component, we defer the detailed modeling of this equatorial emission to a future paper.

For discussion purposes, we now isolate the central core (inner 0′3 × 0′3) as representative of the inner WWCZ, and a time-variant extended (>0′3 × 0′3) structure as representative of the outer WWCZ. These two regions have very different physical drivers. The central core exhibits X-ray (Pittard & Corcoran 2002) and He I emission, along with strong forbidden line emission. The outer WWCZ, expanding ballistically, is best traced by strong forbidden line emission. The spatially extended blue and red emission components are thought to arise in the outer WWCZ of Eta Car (G09), composed of material which was earlier part of the inner WWCZ, but over the past 5.5 year period streamed outward (M10; M11). While the primary wind is estimated to have a terminal velocity of 500–600 km s⁻¹, the peak radial velocity component of the forbidden emission lines appears to be ~400 km s⁻¹. At terminal velocity, the outer WWCZ expands at 0′25 per 5.5 year cycle, hence the current WWCZ, even at φ = 0.323, is within the 0′3 × 0′3 core.

Both the central and extended structures brighten with phase, but they change differently. At φ = 12.084, the central core accounts for 1/3 of the flux, but brightens only 30% by φ = 12.323. The extended emission more than doubles in brightness by φ = 12.323. Brightening of the velocity components within the core and extended structures are likewise different. The brightness of the red component is nearly constant for both the core and the extended structure. The core blue component increases by 70%, while the extended blue component doubles in brightness. The core low-velocity component increases only by 50%, but the low-velocity extended component triples in brightness and appears to shift further outward from the core. We note that between φ = 12.163 and 12.323 the brightest low-velocity component shifts from the vicinity of Weigelt C, noted by Me10, to Weigelt B and D.

These brightness changes in the core and extended structures support a scenario in which the current WWCZ, namely the direct collision between the winds of η A and η B, is contained within the 0′3 diameter core. After each periastron passage, a new secondary-wind-blown cavity must form and expand outward. The cavity rapidly approaches a balance between the far-UV (FUV) flux of η B and the cavity wall structure at critical density. However, the outer cavity wall is very thin, ionizes rapidly, and drops in density allowing FUV radiation to pass outward into the much larger, ballistically expanding outer cavity formed in the previous cycle. Within this cavity, the FUV photons encounter dense walls of primary wind. The growth in brightness in the blue images, with little change in the red images, indicates expansion in the general direction of the observer. The larger increase in brightness of the low-velocity images shows where the FUV radiation escapes through the multiple cavities built up by the wind of η B over many cycles.

3.2. Comparison with a 3D Dynamical Model

Proper interpretation of the mapping observations requires a full 3D dynamical model that accounts for the effects of orbital motion on the WWCZ. Here, we use full 3D smoothed particle hydrodynamics simulations of Eta Car’s colliding winds and radiative transfer codes to compute the intensity in the [Fe III] λ4659 line projected on the sky for a specified orbital orientation (M10; M11). The numerical simulations were performed using the same 3D SPH code as that in Okazaki et al. (2008) with identical parameters except for the mass loss rate of η A, which we changed to 10⁻³ M⊙ yr⁻¹ (H01; H06). The two stellar winds in our simulation are also taken to be adiabatic. In order to allow for a more direct comparison to the HST observations, the computational domain is a factor of ten larger than that of Okazaki et al. (2008, i.e., ±1600 AU ≈ ±0′7). Details on the radiative transfer calculations can be found in M10, M11.

Figures 3 and 4 compare the observed blue and red images at φ = 12.163 and 12.323 with those predicted by the model for the same velocity intervals. For simplicity, the zero reference phase of the spectroscopic cycle (Damineli et al. 2008a) is assumed to coincide with the zero reference phase of the orbital cycle (i.e., periastron passage) in the 3D SPH simulation. In a highly eccentric binary system like Eta Car, the two values should be within a few weeks, which will not affect the overall conclusions (Groh et al. 2010b). The binary orbit is assumed to be oriented with an inclination i = 138°, argument of periastron ω = 270°, and an orbital axis that is aligned at the same P.A. on the sky as the symmetry axis of the Homunculus, 312° (Davidson et al. 2001).⁸

The relatively compact central core produces little [Fe III] emission as densities in the WWCZ walls greatly exceed the critical density for efficient emission. The low-velocity maps, displayed on a flux scale similar to the scales for the blue and red images, would be blank while the observed low-velocity emission, heavily dominated by flux from the Weigelt blobs and fainter slow-moving clumps, extends to the northeast. As mentioned in Section 3.1, we are refining the model to include such a screen, which will be a topic in a much more encompassing paper. Hence only the red and blue components, successfully replicated in this study, are presented in Figures 3 and 4.

The spatial extent of the emission compares quite favorably between the observations and the models (Figures 3 and 4), with the blue structures extending projected distances of ~1″ (2300 AU) along P.A. ~ 45°, and the red structures displaced to the NE of the core by ~0′.1–0′.4 (230–1000 AU). We display unreddened fluxes for the model structures due to known uncertainties of reddening. Model fluxes, reddened by 5–20 using typical interstellar reddening values for stars in the vicinity of Eta Car (H01; Me10) agree with the observations within a factor of a few. This discrepancy could arise due to uncertainties in the assumed stellar parameters of both stars, the reddening law and atomic physics, or systematics in the radiative transfer and hydrodynamical modeling. However, reddening is highly variable across the Carinae complex. Moreover, reddening by dust in the Homunculus and within the extended core of Eta Car may change on very small scales. Hence, we chose to display unreddened model fluxes in Figures 3 and 4.

4. DISCUSSION

This work represents the first time the extended WWCZ of a massive colliding wind binary system has been imaged using high-ionization forbidden emission lines. Spatial- and velocity-extended emission, recorded by individual HST/STIS long-slit observations at various phases and P.A.s, provided impetus to expand 3D models to simulate the wind dynamics leading to this emission. Indeed, the initial 3D dynamical model above produces red and blue images that are similar to those observed.

⁸ Davidson et al. (2001) determined the Homunculus axis of symmetry to be tilted 42° into the sky plane. We refer the reader to M11 for detailed discussion of the binary orbital inclination at 138° = 180°−42°.
Figure 3. Comparison of $\phi = 12.163$ blue and red components to 3D dynamical model. Top row: observed blue and red images. Bottom row: 3D SPH/radiative transfer images. Left column: -400 to -200 km s$^{-1}$. Right column: $+100$ to $+200$ km s$^{-1}$. Color display in all images is on a square root scale of erg cm$^{-2}$ s$^{-1}$. North is up.

(A color version of this figure is available in the online journal.)

From multiple long-slit observations, G09, M10, and M11 demonstrated that the binary orbit could be fully constrained in 3D. The noticeable symmetry in velocity for observations taken at P.A. $= 38^\circ$ (G09) is now reinforced by the spatial symmetry about the central core in the blue maps. Our modeling, of the observed maps suggests that the argument of periapsis must be closer to $\omega = 270^\circ$ than 240°, thus further reinforcing the result that η_B is on the near side of η_A at apastron, with periapsis passage on the far side (Damineli et al. 1997; Pittard & Corcoran 2002; Okazaki et al. 2008; Parkin et al. 2009; G09; M10; M11).

These and future spatial maps of Eta Car’s high-ionization forbidden emission have the potential to determine the nature of the unseen companion star η_B. The mass-loss rate of η_A and ionizing flux of photons from η_B determine which regions of Eta Car’s WWCZ are photoionized and capable of producing high-ionization forbidden line emission like the forbidden emission from Fe$^{++}$, due to 16.2 eV radiation. Comparing this mass model loss rates and UV fluxes to those of stellar models for a range of O (Martins et al. 2005; Me10) and WR (Crowther 2007) stars would allow one to obtain a luminosity and temperature for η_B. Both the current model (M10; M11) and previous individual HST/STIS long-slit observations (G09) show major changes with orbital phase, especially near periastron. Mappings at multiple phases around periastron are therefore essential in order to determine when the FUV radiation from η_B becomes trapped in the dense wind of η_A and the extended high-ionization emission vanishes, and likewise when η_B emerges from η_A’s wind and the extended emission returns.

This approach has a number of advantages over previous one-dimensional (1D) modeling efforts to constrain η_B’s properties (Verner et al. 2005; Me10), which probe the ionization structure of the Weigelt blobs. Such 1D models make considerable assumptions about the physical conditions within the blobs and intervening material, leading to poor constraints on the luminosity of η_B.

Eta Car is variable, not only on a 5.5 year period, but has a centuries-long history of variation, including two major eruptions (Davidson & Humphreys 1997; Humphreys et al. 2008; Smith & Frew 2011). These high-ionization forbidden emission lines are powerful tools for monitoring changes in the WWCZ, providing quantitative information on the properties of the individual binary components and changes thereof, including a historical record of the recent decade-long mass loss from the primary. Following this system will provide unique information on how a massive star, during the LBV stage, loses much of its mass on its way to becoming a supernova.
We sincerely thank G. Weigelt, S. Owocki, A. Damineli, and A. Okazaki for many fruitful discussions and encouragement.

T.G. acknowledge the hospitality of MPIR during his multiple visits. We thank the referee for insightful comments leading to an improved presentation.

REFERENCES

Corcoran, M. F. 2005, AJ, 129, 2018
Crowther, P. A. 2007, ARA&A, 45, 177
Damineli, A. 1996, ApJ, 460, L49
Damineli, A., Conti, P. S., & Lopes, D. F. 1997, New Astron., 2, 107
Damineli, A., Hillier, D. J., Corcoran, M. F., et al. 2008a, MNRAS, 386, 2330
Damineli, A., Hillier, D. J., Corcoran, M. F., et al. 2008b, MNRAS, 384, 1649
Davidson, K., & Humphreys, R. M. 1997, ARA&A, 35, 1
Davidson, K., Martin, J., Humphreys, R. M., et al. 2005, AJ, 129, 900
Davidson, K., Smith, N., Gull, T. R., Ishibashi, K., & Hillier, D. J. 2001, AJ, 121, 1569
Falceta-Gonçalves, D., & Abraham, Z. 2009, MNRAS, 399, 1441
Groh, J. H., & Damineli, A. 2004, IBVS, 5492, 1
Groh, J. H., Madura, T. I., Owocki, S. P., Hillier, D. J., & Weigelt, G. 2010a, ApJ, 716, L223
Groh, J. H., Nielsen, K. E., Damineli, A., et al. 2010b, A&A, 517, A9
Gull, T. R., Nielsen, K. E., Corcoran, M. F., et al. 2009, MNRAS, 396, 1308 (G09)
Henley, D. B., Corcoran, M. F., Pittard, J. M., et al. 2008, ApJ, 680, 705
Hillier, D. J., Davidson, K., Ishibashi, K., & Gull, T. 2001, ApJ, 553, 837 (H01)
Hillier, D. J., Gull, T., Nielsen, K., et al. 2006, ApJ, 642, 1098 (H06)
Humphreys, R. M., Davidson, K., & Koppelman, M. 2008, AJ, 135, 1249
Kashi, A., & Soker, N. 2009, MNRAS, 397, 1426
Madura, T. I. 2010, PhD thesis, Univ. Delaware (M10)
Madura, T. I., Gull, T. R., Owocki, S. P., et al. 2011, MNRAS, in press (M11)
Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436, 1049
Mehner, A., Davidson, K., Ferland, G. J., & Humphreys, R. M. 2010, ApJ, 710, 729 (Me10)
Nielsen, K. E., Corcoran, M. F., Gull, T. R., et al. 2007, ApJ, 660, 669
Nielsen, K. E., Gull, T. R., & Vieira Kober, G. 2005, ApJS, 157, 138
Okazaki, A. T., Owocki, S. P., Russell, C. M. P., & Corcoran, M. F. 2008, MNRAS, 388, L39
Parkin, E. R., Pittard, J. M., Corcoran, M. F., Hamaguchi, K., & Stevens, I. R. 2009, MNRAS, 394, 1758
Pittard, J. M., & Corcoran, M. F. 2002, A&A, 383, 636
Smith, N. 2006, ApJ, 644, 1151
Smith, N., & Frew, D. J. 2011, MNRAS, 415, 2009
Teodoro, M., Damineli, A., Sharp, R. G., Groh, J. H., & Barbosa, C. L. 2008, MNRAS, 387, 564
Verner, E., Bruhweiler, F., & Gull, T. 2005, ApJ, 624, 973
Weigelt, G., & Ebersberger, J. 1986, A&A, 163, L5

Figure 4. Comparison of $\phi = 12.323$ blue and red components to 3D dynamical model same as in Figure 3. Changes are subtle as η_B physically is close to the position of apastron; the ionization structure is primarily expanding.

(A color version of this figure is available in the online journal.)