Survey of mosquito-borne flaviviruses in the Cuitzmala River Basin, Mexico: do they circulate in rodents and bats?

Jesús Sotomayor-Bonilla¹,²,³*, Omar García-Suárez²,³,⁴, Nohemí Cigarroa-Toledo⁵, Rosa C. Cetina-Trejo⁵, Ana C. Espinosa-García⁴, Rosa E. Sarmiento-Silva⁶, Carlos Machain-Williams⁵, Diego Santiago-Alarcón³,⁷, Marisa Mazari-Hiriart⁴ and Gerardo Suzán²,³

Abstract

Background: RNA viruses commonly infect bats and rodents, including mosquito-borne flaviviruses (MBFV) that affect human and animal health. Serological evidence suggests past interactions between these two mammalian orders with dengue viruses (DENV), West Nile virus (WNV), and yellow fever virus (YFV). Although in Mexico there are reports of these viruses in both host groups, we know little about their endemic cycles or persistence in time and space.

Methods: Rodents and bats were captured at the Cuitzmala River Basin on the Pacific coast of Jalisco state, Mexico, where MBFV, such as DENV, have been reported in both humans and bats. Samples were taken during January, June, and October 2014, at locations adjacent to the river. Tissue samples were collected from both bats and rodents and serum samples from rodents only. Highly sensitive serological and molecular assays were used to search for current and past evidence of viral circulation.

Results: One thousand nine hundred forty-eight individuals were captured belonging to 21 bat and 14 rodent species. Seven hundred sixty-nine liver and 764 spleen samples were analysed by means of a specific molecular protocol used to detect flaviviruses. Additionally, 708 serum samples from rodents were examined in order to demonstrate previous exposure to dengue virus serotype 2 (which circulates in the region). There were no positive results with any diagnostic test.

Discussion: To our knowledge, this is the first survey of rodents and only the second survey of bats from the Pacific Coast of Mexico in a search for MBFV. We obtained negative results from all samples. We validated our laboratory tests with negative and positive controls. Our findings are consistent with other empirical and experimental studies in which these mammalian hosts may not replicate mosquito-borne flaviviruses or present low prevalence.

Conclusions: True-negative results are essential for the construction of distribution models and are necessary to identify potential areas at risk. Negative results should not be interpreted as the local absence of MBFV in the region. On the contrary, we need to establish a long-term surveillance programme to find MBFV presence in the mosquito trophic networks, identifying the potential role of rodents and bats in viral dynamics.

Keywords: Arboviruses, Rodent, Bat, Dengue, West Nile virus, Host-virus interaction

* Correspondence: chuchomayor16@gmail.com

¹Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
²Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Mosquito-borne flaviviruses (MBFVs; genus Flavivirus, family Flaviviridae) include some of the most emerging and re-emerging RNA viruses worldwide, such as dengue virus (DENV), Zika virus (ZIKV), and West Nile virus (WNV) [1]. MBFVs affect millions of humans, domestic animals, and wildlife [1]. They are transmitted by many mosquito species that feed on a diverse array of vertebrate hosts. Thus, recognizing potential hosts within transmission cycles is crucial in order to predict and prevent an eventual MBFV emergence. Recently, some MBFVs have expanded their continental distribution (ZIKV and Usutu virus) as a result of trading, travel, and the expansion of human populations (DENV and Rocio virus) [2], while epizootic and enzootic transmission cycles have proven to be very dynamic in the face of current global changes [1].

Rodent and bat communities are highly diverse, abundant, and accessible to capture in sufficient numbers to permit ecological and epidemiological studies [3]. Both host groups inhabit nearly all environments. Many species are well-adapted to human activities and harbour a high diversity of zoonotic pathogens, including MBFVs [3]. In the USA, WNV and St. Louis encephalitis virus (SLEV) have been isolated from rodents (Sciurus carolinensis) and Mexican free-tailed bats (Tadarida brasiliensis), respectively [4, 5]. There are also reports of DENV in Neotropical rodents and bats inhabiting remote sylvatic, rural, and urban areas [6–9]. However, the role of these hosts in MBFV transmission cycles remains unknown. This dearth of knowledge limits our opportunities to prevent future viral emergence events. Here, we show the results of a molecular and serological survey of MBFVs in Neotropical rodents and bats in an area where DENV outbreaks are endemic in human populations.

Methods
The study area was the Cuitzmala River Basin, located on the Pacific coast of Jalisco state in Mexico (Fig. 1). Deciduous and sub-deciduous dry tropical forest (DTF), crops, and pastures dominate the landscape. The Biosphere Reserve Chamela-Cuixmala (RBCC) is located in the lower section of the basin. There, health services in urban and rural settlements are deficient, with human cases of DENV being typical [10]. Some data also suggests DENV infection in bats [11].

We selected three study sites adjacent to the river to capture mammals: zone 1, from 2400 to 1000 m above sea level (masl); zone 2, from 1000 to 200 masl; and zone 3, from 200 masl), as well as two other sites in the RBCC. We visited each site in January, June, and October 2014. We captured rodents at three sample points per site (only one in the RBCC) separated by 500 m each, employing 100 Sherman traps per location, baited with a mixture of oats and vanilla essence. Traps were active during three consecutive nights and reviewed every morning. We captured bats at two sample points per site in riparian locations. For each sample point, we used five mist nets (9 x 3 m) that were opened after sunset and remained active for four consecutive hours. We used local field guides for taxonomic identification [12].

A representative number of rodents and bats was anaesthetized and euthanised with isoflurane and necropsied following international guidelines [13]. Liver and spleen samples from bats and rodents were immediately frozen in liquid nitrogen to conduct molecular tests. We extracted RNA from individual tissues using Trizol Reagent (Invitrogen Corp., Carlsbad, CA, USA) and then made pools of ten individual samples to perform the semi-nested pan-flavivirus PCR protocol described by Scaramozzino et al. [14], using primers cFD2 (GTGTCCCAGCCGCGGTGTCATCAG), cFCS (GTGTCCCAGCCGCGGTGTCATCAG), MAMD (AACATGATGGGRAARAGRGARAA), and FS778 (AARGGHAGYMDGHATTHTGGT). This test detects a conserved region of the NS5 gene of the MBFV genus. It is highly sensitive and detects flaviviruses at a minimum of 200 infectious doses ml\(^{-1}\), including DENV, WNV, YFV, and ZIKV, as well as unknown flaviviruses [14]. We used DENV2-RNA provided by the Arbovirology Laboratory (Universidad Autónoma de Yucatán) as a positive control and nuclease-free water as negative control. PCR products were stained with GelRed (Biotium, Inc., CA, USA) and visualised in 2% agarose gels.

We collected rodent blood samples from the retro-orbital sinus using Nobuto strips and stored them at room temperature until laboratory processing. Nobuto strips were eluted by cutting the blood-absorbing portion, placing them in a tube containing 400 µl of phosphate-buffered saline solution. Eluates were then transferred to sterile tubes. Proteins of some samples were quantified in order to guarantee the viability of the samples and the procedure.

We performed an enzyme-linked immunosorbent assay (ELISA) test (as described in Reference [15]) to look for evidence of past infection by DENV-2, as a representative MBFV. As antigen, we propagated an Asian/American genotype DENV-2 in C6/36 cells [16], and we used MAb6b6C-1 (specific for the envelope (E) protein of MBFV) as the primary antibody. We calculated seropositivity as described in reference [17], a test that has been widely used in systematic flavivirus surveys in wildlife [17].
Results
Although 1948 individuals belonging to 21 bat and 14 rodent species were captured, we were only able to screen by pan-flavivirus PCR 1569 samples from 13 rodent and 12 bat species (796 liver and 773 spleen samples; Table 1). No MBFV RNA was detected. We also examined 708 rodent serum samples for evidence of past DENV infection. All samples were negative. Negative and positive controls were as expected, supporting the quality of the detection procedures.

Discussion
Our study is the first rodent and second bat survey searching for MBFV in the Cuitzmala River Basin region [11]. We tested a representative sample of all individuals, including 10.79% in bat captured and 60.47% in rodents captured. In all cases, the results were negatives. Our findings are consistent with other empirical and experimental studies [17–20]. For example, Cabrera-Romo et al. [18] found no evidence of DENV infection in 240 Mexican bats.

There is no molecular evidence of MBFV, or evidence of antibody production against DENV-2, in wild rodents from Mexico, although there are reports of DENV in urban rodents (Mus musculus and Rattus rattus) [8, 21], demonstrating that environmental heterogeneity may directly affect MBFV circulation in these hosts. We found no molecular evidence of MBFVs in rodent samples or evidence of antibody production against DENV. In other countries, low prevalence of MBFV in wild rodents has been reported [17, 20]. However, sample viability is diminished by the preservation procedure and
reported in cricetid (Guiana [9]). Also, in the USA, SLEV and WNV have been
pidus), sequences have been retrieved from different rodent spe-
the time that has passed until serological testing. DENV
liver, and spleen samples tested
[57x144]Zigodontomys brevicauda, and
Proechimys cuvieri) from French
samples
DENV-2
Total ELISA for
samples
Flavivirus PCR
liver samples
Flavivirus PCR
spleen samples
Bat species
Artibeus jamaicensis 6 9
Artibeus phaeotis 1 1
Artibeus watsoni 1
Centurio senex 1 1
Cheroenicus godmani 1
Desmodus rotundus 55 51
Glossophaga commissaris 3 2
Glossophaga soricina 4 4
Leptonycteris curasoae 1
Pteronotus pamelli 3
Sturnira lilium 3
Sturnira ludovici 4 2
Rodent species
Baiomys musculus 161 162 155
Chondomys alleni 8 3 3
Liomys pictus 199 193 194
Mus musculus 8 22 23
Oryzomys couesi 50 84 81
Oryzomys melanotis 61 57 55
Osgoodomys banneranus 73 37 34
Peromyscus pulchrus 59 46 47
Rattus norvegicus 2 4 4
Rattus rattus 2 14 14
Riphotomys fulvescens 29 31 28
Sigmoidon alleni 14 15 14
Sigmoidon mascotensis 38 45 44
Spermophilus annulatus 4
Total 708 713 696
Total sample effort 708 796 773

the time that has passed until serological testing. DENV
sequences have been retrieved from different rodent spe-
cies (Oryzomys capito, Proechimys cuvieri, Mesomys his-
pidus, and Zigodontomys brevicauda) from French
Guiana [9]. Also, in the USA, SLEV and WNV have been
reported in cricetid (Sigmodon hispidus, Oryzomys palustris)
and sciurid rodents (Tamiasciurus hudsonicus, Tamias
striatus) [4, 22]. None of the wild rodent species tested in
this study were included in past surveys [8, 21].

Regarding bats, we included species previously re-
ported as positive for DENV near our study areas, such as
Artibeus jamaicensis, Sturnira lilium, Pteronotus
pamelli, and Desmodus rotundus [11]. However, we
found no molecular evidence of MBFV. There are re-
ports of DENV, WNV, and SLEV in 26 Neotropical bat
species inhabiting Southern Mexico, including frugivorous (Carollia spp.), insectivorous (Molossus spp.), nec-
tarivorous (Glossophaga soricina), and haematophagous
(Desmodus rotundus) bats [6, 9, 23, 24]. Interestingly,

viruses in nature is not straightforward, given the vast
variety of elements that influence their transmission
[25]. We suggest that (1) rodents and bats do not al-
ways participate in MBFV transmission cycles within
the region, (2) that tested species may not generate suf-
ficient viremia to be detected by RT-PCR protocols, (3)
that the presence of IgM in serum samples could not
be detected by competitive ELISA tests, and (4) that
our sampling period did not match space-time with in-
fected hosts. To rule out the role of these communities
in MBFV transmission cycles, it is necessary to imple-
ment long-term studies, to increase the number and
type of samples tested and to use more advanced mo-
olecular and serological diagnostic tests (e.g. microarrays
or plaque reduction neutralization tests). It is also es-
ential to carry out experimental studies to further de-
terminate the role of the hosts. Finally, it is crucial to
simultaneously study feeding preferences and viral cir-
culation in the regional mosquito community.

Conclusion

Bats and rodents deserve more attention as potential
alternative host species, reservoirs, and dead-end hosts
of MBFV (e.g. DENV) [6]. Negative results do not ex-
clude a potential infection state amongst hosts nor the
potential circulation of MBFV in the region. Thus, we
should not underestimate the existence of yet undiscover-
ed sylvatic and sporadic cycles that may involve host
communities connected by dispersal, and which can
maintain cycles that would otherwise become extinct in
individual species at the local level. Recognizing these
viruses in nature is not straightforward. Given the vast
variety of elements that influence their transmission
[25].

Abbreviations

DENV: Dengue virus; DNA: Deoxyribonucleic acid; E: Envelope;
ELISA: Enzyme-linked immunosorbent assay; MBFV: Mosquito-borne flavivirus;
PCR: Polymerase chain reaction; RBCC: Biosphere Reserve Chamela-Cuixmala;
RNA: Ribonucleic acid; SLEV: St. Louis encephalitis virus; TDF: Tropical dry
forest; WNV: West Nile virus; YFV: Yellow fever virus; ZIKV: Zika virus

Table 1 Bat and rodent species, and the number of serum, liver, and spleen samples tested

Bat species	Total USA for DENV* serum samples	Total Pan-Flavivirus PCR liver samples	Total Pan-Flavivirus PCR spleen samples
Artibeus jamaicensis	6	9	
Artibeus phaeotis	1	1	
Artibeus watsoni	1		
Centurio senex	1	1	
Cheroenicus godmani	1	1	
Desmodus rotundus	55	51	
Glossophaga commissaris	3	2	
Glossophaga soricina	4	4	
Leptonycteris curasoae	1	1	
Pteronotus pamelli	3	1	
Sturnira lilium	3	4	
Sturnira ludovici	4	2	
Rodent species			
Baiomys musculus	161	162	155
Chondomys alleni	8	3	3
Liomys pictus	199	193	194
Mus musculus	8	22	23
Oryzomys couesi	50	84	81
Oryzomys melanotis	61	57	55
Osgoodomys banneranus	73	37	34
Peromyscus pulchrus	59	46	47
Rattus norvegicus	2	4	4
Rattus rattus	2	14	14
Riphotomys fulvescens	29	31	28
Sigmoidon alleni	14	15	14
Sigmoidon mascotensis	38	45	44
Spermophilus annulatus	4		
Total	708	713	696
Total sample effort	708	796	773
Acknowledgements
We acknowledge the Posgrado en Ciencias de la Producción y de la Salud Animal of the Universidad Nacional Autónoma de México. We also thank the Consejo Nacional de Ciencia y Tecnología for the grant to JS-B. In addition, our thanks to the Disease Ecology and One Health Group of the Veterinary Faculty (UNAM) and to the personnel of the Laboratorio Nacional de Ciencias de la Sostenibilidad (UNAM) and of the Laboratorio de Arbovirología (UADY). Special thanks to Dr. Christopher R. Stephens for the review the manuscript.

Funding
This study was funded by the PAPIIT project IG 200231 and by CONACYT Proyectos Nacionales 2014-247005 project.

Authors’ contributions
JS-B, DS-A, ACE-G, MMH, and GS conceived the study. JS-B, NC-T, and RC-C performed the laboratory tests. CM-W and RES-S supervised the laboratory tests. JS-B, DS-A, NC-T, and CC-W helped to write the first draft of the manuscript, and DS-A, NC-T, RES-S, CA-W, and GS worked on the final version of the manuscript. All authors read and approved the final manuscript.

Ethics approval
This survey was performed according to the Animal Ethics Guidelines and with the Ethical Authority’s permission (SGPA/DGVS 08013/13).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Coyoacán, México City, Mexico. 2Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Coyoacán, México City, Mexico. 3Asociación Mexicana de Medicina de la Conservación Kalaan Kab, A.C., Ciclistas 63 Col. Country Club, Coyoacán, México City, Mexico. 4Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n anexo Jardín Botánico exterior, Ciudad Universitaria, Coyoacán, México City, Mexico. 5Laboratorio de Arbovirología, Centro de Investigaciones Regional “Hidro de Noguchi”, Universidad Autónoma de Yucatán , Mérida, Yucatán, México. 6Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Coyoacán, México City, Mexico. 7Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México.

Received: 10 May Accepted: 24 September 2018
Published online: 24 October 2018

References
1. Gould E, Pettersson J, Higgs S, Chareel R, de Lamballerie X. Emerging arboviruses: why today? One Health. 2017;4:1–13.
2. Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop. 2017;166:155–63.
3. Olival KJ, Hosseini PR, Zambrana-Torelló C, Ross N, Bogich TL, Daszak P, et al. Detection of new flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39:221–2.
4. Blitvich BJ, Fernandez-Salas I, Contreras-Cordero JF, Marleeene NL, Gonzalez- Rojas JJ, Komar N, et al. Serologic evidence of West Nile virus infection in horses, Coahuila state, Mexico. Emerg Infect Dis. 2003;9:953–6.
5. Blitvich BJ, Fernandez-Salas I, Contreras-Cordero JF, Marleeene NL, Gonzalez-Rojas JJ, Komar N, et al. Serologic evidence of West Nile virus infection in horses, Coahuila state, Mexico. Emerg Infect Dis. 2003;9:953–6.
6. Vicente-Santos A, Moreira-Soto A, Soto-Garita C, Chaverri LG, Chaves A, Drexler JF, et al. Neotropical bats that co-habit with humans function as dead-end hosts for dengue virus. PLoS Negl Trop Dis. 2017;11:e0005537.
7. Mачайн Williams C, Lopez-Uribe M, Talavera-Aguilar L, Vera-Escalante L, Puerto-Manzano F, Uliba A, et al. Serologic evidence of flavivirus infection in bats in the Yucatan Peninsula of Mexico. J Wildl Dis. 2013;49:1–8.
8. Cigarró-Toledo N, Talavera-Aguilar AG, Baak-Baak CM, García-Rejón JE, Hernandez-Betancourt S, Blitvich BJ, et al. Serologic evidence of flaviviruses infections in peridomestic rodents in Merida, Mexico. J Wildl Dis. 2015;52:162–72.
9. De Thoisy B, Lacoste V, Germain A, Muñoz-Jordan J, Colón C, Mauffrey JF, et al. Dengue infection in neotropical forest mammals. Vector-Borne Zoonotic Dis. 2009;9:157–70.
10. Centro Nacional de Programas Preventivos y Control de Enfermedades. Boletín Epidemiológico del Sistema Nacional de Vigilancia Epidemiológica. https://www.gob.mx/cms/uploads/attachment/file/322890/tem35.pdf. Accessed 1st August 2018.
11. Aguilar-Setién A, Romero-Almazán ML, Sánchez-Hernández C, Figueroa R, Juárez-Palma LP, García-Flores MM, et al. Dengue virus in Mexican bats. Epidemiol Infect. 2008;136:1678–83.
12. Ceballos G, Miranda A, Fierro rejecting animals to the mammals of the Jalisco Coast, Mexico. 1st ed. La Huerta, Jalisco: Fundación Ecológica de Cuicamala AC and Universidad Nacional Autónoma de México; 2000.
13. Sikes RS, Gannon WL. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal. 2011;92:235–53.
14. Scaramozzino N, Crane JM, Jouan A, DeBriel DA, Stoll F, Garin D. Comparison of Flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the N55 gene sequences. J Clin Microbiol. 2001;39:221–2.
15. Blitvich BJ, Fernandez-Salas I, Contreras-Cordero JF, Marleeene NL, Gonzalez-Rojas JJ, Komar N, et al. Serologic evidence of West Nile virus infection in horses, Coahuila state, Mexico. Emerg Infect Dis. 2003;9:953–6.
16. Loroñó-Pino MA, Fafan-Ale JA, Zapata-Perea AL, Rosado-Paredes EP, Flores-Flores LF, García-Rejón JE, et al. Introduction of the American/Asian genotype of dengue 2 virus into the Yucatan state of Mexico. Am J Trop Med Hyg. 2004;71:485–92.
17. Blitvich BJ, Juarez-Ibarra L, Tucker B, Rowley W, Platt K. Antibodies to West Nile virus in raccoons and other wild peridomestic mammals in Iowa. J Wildl Dis. 2009;45:1163–8.
18. Cabrera-Romo S, Max Ramirez C, Recio-Totoro B, Tolentino-Chi J, Lanz H, Del Angel RM, et al. No evidence of dengue virus infections in several species of bats captured in central and southern Mexico. Zoonoses Public Health. 2016;63:579–83.
19. Cabrera-Romo S, Recio-Totoro B, Alcalá AC, Lanz H, Del Angel RM, Sánchez-Cordero V, et al. Experimental inoculation of Anopheles jamaicensis bats with dengue virus serotypes 1 or 4 showed no evidence of sustained replication. Am J Trop Med Hyg. 2014;91:1227–34.
20. De Thoisy B, Dussart P, Kaaonjji M. Wild terrestrial rainforest mammals as potential reservoirs for flaviviruses (yellow fever, dengue 2 and St Louis encephalitis viruses) in French Guiana. Trans R Soc Trop Med Hyg. 2004;98:409–12.
21. Torres-Castro M, Poot-Pérez M, Moguel-Lehmer C, Reyes-Hernández B, Pantii-May A, Noh-Pech H, et al. Detection molecular of Flavivirus in suero sanguíneo de roedores capturados en Yucatán, México. Rev Invest Vet Peru. 2017;28:831–8.
22. Briaudzi D, McMellan JR, Barretto XG, Blitvich BJ, Mead DG, O’Connor J, et al. Evidence for West Nile virus spillover into the squirl population in Atlanta, Georgia. Vector-Borne Zoonotic Dis. 2015;15:303–10.
23. Abundes-Gallegos J, Salas-Rojas M, Galvez-Romero G, Perea-Martínez L, Obregón-Méndez CY, Morales-Malacara JB, Chomel BB, et al. Detection of dengue virus in bat flies (Diptera: Streblidae) of common vampire bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico. J Wildl Dis. 2015;51:129–31.
24. Sotomayor-Bonilla J, Chaves A, Rico-Chavez O, Rostal MK, Ojeda-Flores R, Salas-Rojas M, et al. Dengue virus in bats from southeastern Mexico. Am J Trop Med Hyg. 2014;91:129–31.
25. Reisen W. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol. 2010;55:461–83.