Screening seven commercial essential herb oils for larvicidal activity against the mosquito *Aedes aegypti* (Linnaeus), a vector of the dengue virus

Tanawat Chaiphongpachara*, Sedthapong Laojun, Wallapa Wassanasompong
Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand.

ARTICLE INFO
Received on: 25/03/2020
Accepted on: 06/06/2020
Available online: 04/07/2020

Key words: Essential oils, *A. aegypti*, larvicidal activity, mosquito larvae, ectoparasite.

ABSTRACT
Mosquitoes are tiny flying insects of great importance as vectors to many pathogenic organisms, including viruses. *Aedes aegypti* is a primary vector of the dengue virus that causes dengue fever, which is a globally important disease, threatening people in developing countries. In this research, we screened seven commercial herb essential oils, including cassia, cinnamon, East Indian lemongrass, bay, sweet basil, holy basil, and ginger for larvicidal activity against larvae of the dengue virus vector *A. aegypti*. The results revealed the efficacy of seven commercial pure essential oils against mosquito larvae. The cinnamon oil had the highest larvicidal activity ($LC_{50} = 0.03$ ppm and $LC_{90} = 0.04$ ppm), followed by cassia, holy basil, bay, sweet basil, East Indian lemongrass, and ginger essential oils. These results are important from the public health perspective since they relate to a dengue vector that requires alternative organic substances for its control and elimination.

INTRODUCTION
Mosquitoes are tiny flying insects of great importance as vectors to many pathogenic organisms, including the viruses causing dengue fever, yellow fever, chikungunya, West Nile, Japanese encephalitis, and Zika viruses, as well as protozoa, such as *Plasmodium* spp., and filarial nematodes, such as *Wuchereria bancrofti*, *Brugia malayi*, and *Brugia timori* (Du et al., 2019; Tolle, 2009) responsible for disease and many deaths worldwide (Franklinois et al., 2019; Mirzaian et al., 2010). Mosquitoes are considered to be temporary ectoparasites, and the female mosquitoes are obliged to feed on the blood of humans or animals to develop eggs (Killick-Kendrick, 1996). The blood-sucking behavior of the females is a major factor in the transmission of dangerous pathogens to humans (Chaves et al., 2010). *Aedes aegypti* (Linnaeus, 1762), known as “the yellow fever mosquito,” is a diurnal mosquito that is an important vector of the dengue virus causing dengue fever (Powell et al., 2018). Currently, dengue fever is a globally important disease, threatening people in developing countries, especially in tropical and subtropical regions (Kraemer et al., 2015). *Aedes aegypti* lives in proximity to human habitats (domestication) for taking human blood meals and is commonly found in cities, towns, and villages (Powell and Tabachnick, 2013). Therefore, this common domestic mosquito species can transmit and spread the dengue virus to people easily and quickly. The World Health Organization has reported that the incidence of dengue has increased dramatically worldwide over the past decade and estimates that as many as 390 million cases occur annually in more than 100 countries (World Health Organization, 2020).

Almost all breeding sites of *A. aegypti* are in and around houses, with the female mosquito laying eggs in a wide variety of natural and artificial water-holding containers, such as water tanks, plastic bottles, discarded vehicle tires, and flower vases (Ferede et al., 2018). Control of *A. aegypti* populations, to reduce the risk of dengue infection, focuses on the destruction of larvae and their breeding sites and includes environmental management, source reduction, larvicide, or biological control through the cooperation of people in each area (Roiz et al., 2018). This
contrasts with practices used to control other types of mosquito, such as Culex, Mansonia, and Anopheles species, and the larvae of those are difficult to destroy since breeding sites are abundant and widespread in the natural environment, including rivers, marshes, ponds, and rice fields (Killick-Kendrick, 1996).

There are many ways to control the immature stages of Aedes mosquitoes, including the use of insecticides (Manjarres-Suarez and Olivero-Verbel, 2013) and releasing Gambusia mosquitofish into infested water containers as a biological control (Han et al., 2015). However, these popular methods are not always suitable because of certain obstacles, such as the development of resistance to insecticides that are used regularly (Marcombe et al., 2019). Temephos (commercial name Abate), the most popular product for mosquito larva control, is a non-systemic organophosphorus insecticide, which is relatively harmless to humans (Chaiphongpachara and Moolrat, 2017; George et al., 2015). Although this chemical has been highly effective in stopping the spread of dengue virus in many countries, there have been reports of insecticide resistance in mosquito larvae, including Argentina (Albrieu Llinás et al., 2010), Bolivia (Biber et al., 2006), Brazil (Pereira Lima et al., 2003), Cuba (Bisset et al., 2004), El Salvador (Lazcano et al., 2009), Peru, and Venezuela (Rodriguez et al., 2001). The use of larvivorous fish (Gambusia) is applicable in containers that are large enough for the fish to live in and survive, but this can be a limitation to their use for controlling the larvae of dengue vectors, and in many countries, this fish is not recommended for use because it is an exotic species that may affect native aquatic fauna if it escapes into the environment (Benelli et al., 2016).

Nowadays, plant-based larvicidal products targeting Aedes larvae in breeding sources and containers are gaining increased attention and have been accepted by communities due to their non-toxic effects in the local environment (Chaiphongpachara et al., 2018; Ghosh et al., 2012). However, alternative products derived from plants for killing mosquito larvae in the water are still rare in the marketplace. Essential oils are natural products obtained from the material of a single plant species, including leaves, petals, stems, seeds, and roots (Butnariu and Sarac, 2018). They are popular and have many uses, including medicine for treating microbial skin diseases caused by Staphylococcus aureus, Staphylococcus epidermidis, and Propionibacterium acnes (Orchard and Vuuren, 2017) and in cosmetic products, such as creams and lotions (Sarkic and Stappen, 2018). Essential oils from some plants have been found to kill insects (Adorjan and Buchbauer, 2010; Campolo et al., 2018), and it is possible that, based on these, commercial products could be used to control the larval stage of dengue vectors. When considering alternative substances for insect vector control in communities, an important factor for success is that people can easily access and use them (Larson et al., 2017).

Therefore, this laboratory-based research screened seven commercially available herb essential oils reported to kill insects and larvae of some mosquito species for larvicidal activity against larvae of the dengue virus vector A. aegypti (L.). The oils were obtained from Cinnamomum cassia (Liu et al., 2014), Cinnamomum zeylanicum (Jeon et al., 2017), Cymbopogon flexuosus (Rahayu et al., 2018), Pimenta racemosa (Lee, 2006), Ocimum basilicum (Govindarajan et al., 2013), O. tenuiflorum (Kamaraj and Rahuman, 2010), and Zingiber officinale (Pushpanathan et al., 2008).

MATERIALS AND METHODS

Selection of commercial essential herb oils

Following a literature review for plants with insecticidal activity, seven commercial essential herb oils were selected, including C. cassia (kassia), C. zeylanicum (cinnamon), C. flexuosus (East Indian lemongrass), P. racemosa (bay), O. basilicum (sweet basil), O. tenuiflorum (holy basil), and Z. officinale (ginger). The essential oils were purchased from Chemipan Corporation Co., Ltd. (Bangkok, Thailand). The commercial oil products were cosmetic grade, and essential oil (100%) was obtained by steam distillation of herb leaves and packed in amber glass bottles. Detailed oil data and reports of the insecticidal properties of these plants are shown in Table 1. All experiments in this research were conducted from 2014 to 2015 in the laboratory of the College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand.

Rearing of A. aegypti larvae

The second-stage larvae of A. aegypti were received from the Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand. Bright white plastic larval trays (length 14 × width 11 × depth 7 inches) containing water were used to nurture the larvae under laboratory conditions at 70%–80% relative humidity, 25°C–28°C, and 12:12 light:dark photoperiod. Ground dog biscuits were placed in the trays only once since the larvae only take 1–2 days to develop into late third-stage larvae, which was the stage required for the larvicidal bioassay.

Table 1. Detailed data of the seven commercial essential herb oils used in this experiment with brief literature reviews of their insecticidal efficacy.

Essential oil species (country of origin)	Killing arthropods and references
Cinnamomum cassia (France)	Booklice (Liu et al., 2014) and rice weevil (Lee et al., 2008)
Cinnamomum zeylanicum (China)	Dust mite, storage mite, and black planthopper (Jeon et al., 2017)
Cymbopogon flexuosus (India)	Germancockroach (Rahayu et al., 2018)
Pimenta racemosa (China)	Gall midge (Kim et al., 2012) and Culex mosquito (Leyva et al., 2012)
Ocimum Basilicum (France)	Fall armyworm (Silva et al., 2017), gypsy moth (Popović et al., 2013), vine mealybug (Karamaoua et al., 2013), Aedes mosquito (Kumar et al., 2017), and blowfly (Chil-Núñez et al., 2018)
Ocimum tenuiflorum (China)	Bean weevil (Rodriguez-González et al., 2019)
Zingiber Officinale (France)	Cotton leafworm (Hamada et al., 2018) and Culex mosquito (Madreseh-Giahfarokhi et al., 2018)
Larvicidal bioassay

The larvicidal test used in this research was carried out according to the procedures of the World Health Organization for laboratory testing of mosquito larvicides (World Health Organization, 2005). For water preparation for testing, 1 ml of absolute methanol (solvent) was mixed with deionized water to dilute each concentration of the oils. The seven commercial essential herb oils were prepared in 250-ml beakers by serial dilution to 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, and 0.175 ppm using deionized water. Following the WHO recommendations, the range of concentrations used was determined by first evaluating a wide range of concentrations until a narrow range was found, which yielded between 10% and 95% larval mortality (World Health Organization, 2005). A total of 25 late third-stage larvae were put into the beaker containing the prepared test herb oils. The mortality of mosquito larvae was recorded after 24 hours. Alive larvae were monitored for normal behavior and movement, whereas dead larvae exhibited no signs of movement. Four replicates per concentration were tested for each oil. A control treatment was also tested using deionized water mixed with 1 ml of methanol.

Statistical analyses

The mean larval mortality of A. aegypti larvae and standard error of the mean (SE) were calculated. SE was used to estimate the uncertainty due to random errors in the mean values of the data, which was calculated from the standard deviation (SD) by the square root of values in the dataset (Altman and Bland, 2005). A statistical comparison of larval mortality among different herb oils was performed using the analysis of variance, followed by the Duncan test in R software. A p-value < 0.05 was considered to be statistically significant. The probit analysis was used to calculate LC$_{50}$ and LC$_{90}$ (lethal concentration) values for toxicity and activity assessments. The median lethal concentration value is the lowest concentration that kills 50% of the tested mosquito larvae, whereas LC$_{90}$ value is the lowest concentration that kills 90% of the tested larvae. In this study, the calculations of LC$_{50}$ and LC$_{90}$ values use a graphical method based on the Log concentration of essential oils on the X-axis and percentage of larval mortality on the Y-axis. The probit analysis calculated the slope of the probit mortality with the SE of the slope, Chi-squared values, and 95% confidence intervals of the upper and lower limits. The probit analysis operations were conducted by the LdP Line software (http://www.ehabsoft.com/ldpline/).

RESULT AND DISCUSSION

The results for the larvicidal activity of seven commercial essential oils against A. aegypti larvae at the concentrations ranging from 0.025 to 0.175 ppm evaluated after 24 hours of exposure are shown in Table 2. Mortality increased with an increase in the

Essential oils	Concentrations (ppm)	Percentage of larval mortality (Means ± S.E.)	24-hour exposure			
			LC$_{50}$ (UL-LL)	LC$_{90}$ (UL-LL)	Slope ± SE	χ^2
Cassia (C. cassia)	0.025	28.00 ± 6.93	0.03	0.05	6.36 ± 0.60	2.28
	0.050	90.00 ± 4.76				
	0.075	100.00 ± 0.00				
	0.100	100.00 ± 0.00				
	0.125	100.00 ± 0.00				
	0.150	100.00 ± 0.00				
	0.175	100.00 ± 0.00				
Control	0					
Cinnamon (C. zeylanicum)	0.025	44.00 ± 5.89	0.03	0.04	7.23 ± 0.97	0.06
	0.050	98.00 ± 1.15				
	0.075	100.00 ± 0.00				
	0.100	100.00 ± 0.00				
	0.125	100.00 ± 0.00				
	0.150	100.00 ± 0.00				
	0.175	100.00 ± 0.00				
Control	0					
East Indian lemongrass (C. flexuosus)	0.025	0	0.08	0.12	7.74 ± 0.53	19.61
	0.050	5.00 ± 5.00				
	0.075	32.00 ± 15.32				
	0.100	90.00 ± 3.46				
	0.125	90.00 ± 4.76				
	0.150	95.00 ± 1.91				
	0.175	100.00 ± 0.00				
Control	0					

Continued
concentration of all seven essential oils, with no larval mortality found in the control group. Chi-squared values, which were $p > 0.05$, showed that the models were consistent with the datasets (Table 2).

All seven commercial essential herb oils showed high toxicity to *A. aegypti* larvae (Table 2). Cinnamon essential oil had the highest larvicidal activity ($LC_{50} = 0.03$ ppm and $LC_{90} = 0.04$ ppm), followed by the essential oils of cassia ($LC_{50} = 0.03$ ppm and $LC_{90} = 0.05$ ppm), holy basil ($LC_{50} = 0.07$ ppm and $LC_{90} = 0.12$ ppm), bay ($LC_{50} = 0.07$ ppm and $LC_{90} = 0.12$ ppm), sweet basil ($LC_{50} = 0.08$ ppm and $LC_{90} = 0.12$ ppm), East Indian lemongrass ($LC_{50} = 0.08$ ppm and $LC_{90} = 0.12$ ppm), and ginger ($LC_{50} = 0.13$ ppm and $LC_{90} = 0.20$ ppm) (Table 2).

The statistical analysis ranked the essential oils as follows for efficacy: (cinnamon = cassia) > (holy basil = bay = sweet basil = East Indian lemongrass) > (ginger). The LC_{50} values are shown in Figure 1, whereas LC_{90} values are shown in Figure 2.

The results of this study revealed the efficacy against *Aedes* mosquito larvae of seven commercial pure essential oils, from cassia, cinnamon, East Indian lemongrass, bay, sweet basil, holy basil, and ginger. These products have the advantage of being easily accessible, relatively inexpensive, and environmentally-friendly (Massebo *et al*., 2009). The previous studies have indicated that many essential oils have the potential to eliminate the larvae of *A. aegypti* (Cheng *et al*., 2003; Dias and Moraes, 2014). The seven essential oils were highly toxic to mosquito larvae (all with $LC_{50} < 1$ ppm or < 1 ml/l) according to the criteria of Cheng *et al.* (2003), who stated that an LC₉₀ value <50 ml/l equated to “highly active.” The larvicidal bioactivity of essential oils is mainly attributed to the major plant components but is also

Essential oils	Concentrations (ppm)	Percentage of larval mortality (Means ± S.E.)	24-hour exposure	Slope ± SE	χ^2
Bay (P. racemosa)	0.025	0	0.07 (0.06-0.08)	6.02 ± 0.41	22.04
	0.050	9.00 ± 1.00	0.12 (0.11-0.15)		
	0.075	71.00 ± 5.00			
	0.100	78.00 ± 2.58			
	0.125	87.00 ± 3.42			
	0.150	96.00 ± 2.31			
	0.175	100.00 ± 0.00			
Control	0	0	0		
Sweet basil (O. basilium)	0.025	1.00 ± 1.00	0.08 (0.06-0.09)	7.09 ± 0.48	51.10
	0.050	8.00 ± 1.63			
	0.075	39.00 ± 5.00			
	0.100	78.00 ± 6.83			
	0.125	91.00 ± 1.91			
	0.150	100.00 ± 0.00			
	0.175	100.00 ± 0.00			
Control	0	0			
Holy basil (O. tenuiflorum)	0.025	0	0.07 (0.05-0.09)	5.62 ± 0.37	65.69
	0.050	0			
	0.075	81.00 ± 5.97			
	0.100	83.00 ± 2.52			
	0.125	87.00 ± 3.42			
	0.150	90.00 ± 4.16			
	0.175	97.00 ± 1.00			
Control	0	0			
Ginger (Z. officinale)	0.025	0	0.13 (0.12-0.14)	6.60 ± 0.51	15.91
	0.050	1.00 ± 1.00			
	0.075	11.00 ± 6.40			
	0.100	14.00 ± 3.83			
	0.125	57.00 ± 13.99			
	0.150	64.00 ± 4.90			
	0.175	88.00 ± 3.65			
Control	0	0			

ppm = parts per million, LC_{50} = concentration that killed 50% of the exposed mosquito larvae; LC_{90} = concentration that killed 90% of the exposed mosquito larvae; UL= upper limit; LL= lower limit; S.E.= standard error; χ^2= Chi-square. Four replicates per concentration were tested.
related to secondary substances, in which the former may work synergistically to enhance activity (Dias and Moraes, 2014).

The commercial cinnamon essential oil had the highest larvicidal activity, with a \(LC_{50} = 0.03 \text{ ppm} \) and \(LC_{90} = 0.04 \text{ ppm} \).

This result is consistent with the previous research, demonstrating that this oil could eliminate the larvae of \textit{A. aegypti} (Luis, 2010), as well as control larvae of \textit{Culex tritaeniorhynchus} and \textit{Anopheles subpictus} (Govindarajan, 2011). Knauth \textit{et al}. (2018)
studied cinnamon essential oil (C. zeylanicum) and found that cinnamaldehyde (65%–80%) and eugenol (5%–10%) were the primary constituents. Cinnamaldehyde is an organic aromatic compound commonly found in cinnamon essential oil (Kaskatepe et al., 2010). Cheng et al. (2004) revealed that cinnamaldehyde had the effect of killing larvae of A. aegypti based on a laboratory experiment, whereas eugenol is a natural phenylpropanoid, formally derived from guaiacol, and is found in many aromatic and medicinal plants such as cinnamon, clove, and bay leaves (Carvalho et al., 2015). The previous research has studied the activity of eugenol derivatives against A. aegypti larvae and found that they were associated with the death of larvae (Barbosa et al., 2012).

Although pure cinnamon essential oil was the most effective, the other six essential oils (from cassia, holy basil, bay, sweet basil, East Indian lemongrass, and ginger) also exhibited strong effects against A. aegypti larvae, all with LC₅₀ and LC₉₀ values < 1 ppm. The cassia essential oil contains terpenoids as the major components (Zhang et al., 2019), which have reported toxicity to insects (Castilhos et al., 2018), whereas other essential oils have different major compounds including β-caryophyllene (38.90%) in holy basil (Sharma et al., 2016), eugenol (45.2%–52.7%) in the bay (Alitouou et al., 2012), linalool (44.18%) in sweet basil (Ismael, 2006), citral-a (33.1%) in East Indian lemongrass (Chowdhury et al., 2010), and zingiberene (23.69%) in ginger (Choudhari and Kareppa, 2013). All of these major compounds are toxic to insects (Tabari et al., 2017; Tak and Isman, 2016). These results are consistent with the previous research reporting the toxicity of cassia (Zhu et al., 2008), holy basil (Chokechaijaroenporn et al., 1994), bay (Leyva et al., 2009), sweet basil (Kumar et al., 2017), East Indian lemongrass (Cavalcenti et al., 2004), and ginger essential oils (Kalaivani et al., 2012) to mosquito larvae.

In this study, differences in the efficacy of the seven essential oils against mosquito larvae allow them to be placed into three groups according to their strength: group 1—cinnamon and cassia, group 2—holy basil, bay, sweet basil, and East Indian lemongrass, and group 3—ginger. This information could be important when selecting different essential plant oils to control larvae within a community. The differences in the efficacy of the different types of oil arise from several factors, primarily active components in the plants and the extraction method (Dias and Moraes, 2014). The larvicideal test used in this study has shown that the efficacy of commercial pure essential oils to kill mosquito larvae in water is very high compared to results from the previous research (Dias and Moraes, 2014). The high efficacy on mosquito larvae may be because essential oils, which are commercially available, are cosmetic grade pure oils which are not diluted or affected by solvents or other additives.

CONCLUSION

The results from this research are important from the public health perspective since they relate to a dengue vector (mosquito) that requires alternative organic substances for its control and elimination. It is clear that commercial essential oils of cassia, cinnamon, East Indian lemongrass, bay, sweet basil, holy basil, and ginger are highly effective at killing Aedes mosquito larvae. The important advantage of these oils is that they are easily accessible to the public and their use in the community could be promoted to aid control of A. aegypti larvae further.

ACKNOWLEDGMENTS

The authors would like to acknowledge the College of Allied Health Science, Suan Sunandha Rajabhat University, Thailand, for supporting research activities.

CONFLICT OF INTEREST

The authors declared that they have no conflict of interests.

REFERENCES

Adorjan B, Buchbauer G. Biological properties of essential oils: An updated review. Flavour Fragr J, 2010; 25:407–26.

Albrieu Llinás G, Seccacini E, Gardenal CN, Licastro S. Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem Inst Oswaldo Cruz, 2010; 105(1):113–6.

Alitouou GA, Noudogbessi JP, Sesou P, Tonouewa A, Avlessi F, Menut C, Sohouinhoue DCK. Chemical composition and biological activities of essential oils of Pimenta racemosa (Mill.) J. W. Moore. from Benin. Int J Biosci, 2012; 2(9):1–12.

Altmann DG, Bland JM. Standard deviations and standard errors. BMJ, 2005; 331:903.

Barbosa JD, Silva VB, Alves PB, Gumina G, Santos RL, Sousa DP, Cavalcenti SC. Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci, 2012; 68(11):1478–83.

Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: past, present, and future. Insects, 2016; 7(4):52.

Biber PA, Dueñas JR, Almeida FL, Gardenal CN, Almirón WR. Laboratory evaluation of susceptibility of natural subpopulations of Aedes aegypti larvae to temephos. J Am Mosq Control Assoc, 2006; 22(3):408–11.

Bisset JA, Magdalena Rodríguez M, Fernández D, Pérez O. Status of resistance to insecticides and resistance mechanisms in larvae from playa municipality collected during the intensive campaign against Aedes aegypti in Havana City, 2001–2002. Rev Cubana Med Trop, 2004; 56(1):61–6.

Butnaru M, Sarac I. Essential oils from plants. J Biotechnol Biomed Sci, 2018; 1(4):35–43.

Campaolo O, Giunti G, Russo A, Palmeri V, Zappalà L. Essential oils in stored product insect pest control. J Food Qual, 2018; 2018:6906105.

Castilhos RV, Grützmacher AD, Coats JR. Acute toxicity and sublethal effects of terpenoids and essential oils on the predator Chrysopelea externa (Neuroptera: Chrysopidae). Neotrop Entomol, 2018; 47(2):311–7.

Carvalho AA, Andrade LN, De Sousa EBV, De Sousa DP. Antitumor phenylpropanoids found in essential oils. Biomed Res Int, 2015; 2015:392674.

Cavalcenti ESB, Morais SM de, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz, 2004; 99(5):541–4.

Chaipongppachara T, Moolrat L. Insecticide resistance of temephos on Aedes aegypti as dengue vector in Samut Songkhram, Thailand. Ann Trop Med Publ Health, 2016; 10(6):1439–42.

Chaipongppachara T, Sumchung K, Chansukh KK. Larvicidal and adult mosquito attractant activity of Auricularia auricula-judae mushroom extract on Aedes aegypti (L.) and Culex sitiens Wiedemann. J Appl Pharm Sci, 2018; 8(8):021–5.

Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kiron UD. Blood feeding patterns of mosquitoes: Random or structured? Front Zool, 2010; 7(3):1–11.

Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol, 2003; 89(1):99–102.
Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem, 2004; 14(14):4395–400.

Chil-Núñez I, Mendoça PM, Escalona-Arranz JC, Cortinhas LB, Dutok-Sánchez CM, de Carvalho Queiroz MM. Insecticidal effects of Ocimum sanctum var. cubensis essential oil on the diseases vector Chrysomya putoria. J Pharm Pharmacogn Res, 2018; 6(3):148–57.

Chokchamijareonporn O, Bunyapraphatsara N, Kongchuenis S. Mosquito repellent activities of ocimum volatile oils. Phytomedicine, 1994; 1(2):135–9.

Choudhari SS, Karpepa BM. Identification of bioactive compounds of Zingiber officinale roseo rhizomes through gas chromatography and mass spectrometry. IJPRD, 2013; 5(8):16–20.

Chowdhury SR, Tandon PK, Chowdhury AR. Chemical composition of the essential oil of Cymbopogon flexuosus (steud) wats. growing in kumaon region. J Essent Oil-Bearing Plants, 2010; 13(5):588–93.

Dias CN, Moraes DFC. Essential oils and their compounds as Aedes aegypti (Diptera: Culicidae) larvicides: review. Parasitol Res, 2014; 113(2):565–92.

Du S, Liu Y, Liu J, Zhao J, Champagne C, Tong L, Zhang R, Zhang F, Qin CF, Ma P, Chen CH, Liang G, Liu Q, Shi PY, Cazelles B, Wang P, Tian H, Cheng G. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat Commun, 2019; 10(1):13–24.

Ferede G, Tiriune M, Abate E, Kassa WJ, Wondimenesh Y, Damitie D, Tessema B. Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiol Health, 2018; 40:e2018015.

Franklinos LH, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis, 2019; 19(9):e302–12.1.

George L, Lenhart A, Toledo J, Lazaar A, Han WW, Velayudhan R, Runge Ranzinger S, Horstick O. Community-effectiveness of temephos for dengue vector control: a systematic literature review. PLoS Negl Trop Dis, 2015; 9(9):e0004006.

Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res, 2012; 135(5):581–98.

Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhyncus Giles and Anopheles stephensi Grassi (Diptera: Culicidae). Asian Pac J Trop Med, 2011; 4(2):106–11.

Govindarajan M, Sivakumar M, Rajasekar S, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Anopheles quinquefasciatus. In: Farzana P (ed.). Insecticides—pest engineering, pp 13–63, 2010.

Hamada HM, Awad M, El-Hefy M, Moustafa MAM. Insecticidal activity of garlic (Allium sativum) and Ginger (Zingiber officinale) oils on the cattle leafworm, spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Afr Entomol, 2018; 26(1):84–94.

Han WW, Lazaar A, Mccall PJ, George L, Runge-Ranzinger S, Toledo J, Velayudhan R, Horstick O. Efficacy and community effectiveness of larvivorous fish for dengue vector control. Trop Med Int Heal, 2015; 20(9):1239–56.

Ismael M. Central properties and chemical composition of Ocimum basilicum essential oil. Pharm Biol, 2006; 44(8):619–26.

Jeon YJ, Lee SG, Lee HS. Acaricidal and insecticidal activities of essential oils of Cinnamomum zeylanicum barks cultivated from France and India against Dermatophagoides spp., Tyrophagus putrescentiae and Ricinia spp. Appl Biol Chem, 2017; 60:259–64.

Kalaivan I, Senthil-Nathan S, Murugesan AG. Biological activity of selected Lamiaeae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res, 2012; 110(3):1261–8.

Kamaraju C, Rahuman AA. Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pac J Trop Med, 2011; 134(1):101–6.

Karamaouna F, Kimbaris A, Michaelakis A, Papachristos D, Polissiou M, Papatsakona P, Tsora E. Insecticidal activity of plant essential oils against the vine mealybug, planococcus ficus. J Insect Sciim, 2013; 13(142):1–13.

Kaskatebe B, Kyiymaci ME, Simsek D, Erol HB, Erdem SA. Comparison of the contents and antimicrobial activities of commercial and natural cinnamon oils. Indian J Pharm Sci, 2016; 78(4):541–8.

Killick-Kendrick R. Medical entomology for students. Trans R Soc Trop Med Hyg, 1996; 90(5):590.

Kim JR, Haribalan P, Son BK, Ahn YJ. Fumigant toxicity of plant essential oils against Camptomysia cortica ols (Diptera: Cecidomyiidae). J Econ Entomol, 2012; 105(4):1329–34.

Knauth P, López ZL, Hernández GJA, Sevilla MTE. Cinnamom essential oil: chemical composition and biological activities. In: Anaberta CM, Victor M RG (eds.). Essential oils production, applications and health benefits. Nova Science Publishers, Hauppauge, New York, pp 215–44, 2018.

Kraemer MUG, Sinka ME, Duda KA, Myline AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendricks G, Schaffner F, Eliyarz IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, William Wint GR, Golding N, Hay SI. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife, 2015; 30:e08347.

Kumar S, Warikoo R, Mishra M, Samal RR, Shrankhla Pannei K, Dagar VS, Sharma A. Impact of Ocimum Basilicum leaf essential oil on the survival and behaviour of an Indian strain of dengue vector, Aedes aegypti (L.). Vector Biol J, 2017; 2(2):1–6.

Larson JL, Dale A, Held D, McGraw B, Richmond DS, Wickings K, Williamson RC. Optimizing pest management practices to conserve pollinators in turf landscapes: current practices and future research needs. J Integr Pest Manag, 2017; 8(1):1–10.

Lazcano JAB, Rodríguez MM, San Martín JL, Romero JE, Montoya R. Assessing the insecticide resistance of an Aedes aegypti strain in El Salvador. Rev Panam Salud Publica, 2009; 26(3):229–34.

Lee EJ, Kim JR, Choi DB, Ahn YJ. Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). J Econ Entomol, 2008; 101(6):1960–6.

Lee HS. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens palliens. J Am Mosq Control Assoc, 2006; 22(2):292–5.

Leva M, Marquetti Fernández M, Tacoronte J, Scull R, Tionno Tinnmonova O, Mesa A, Montada D. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae). Rev Biomed, 2009; 20:5–13.

Leva M, Tionno O, Tacoronte JE, Carmen Marquetti del M, Montada D. Essential plant oils and insecticidal activity in Culex quinquefasciatus. In: Farzana P (ed.). Insecticides—pest engineering, InTech, Rijeka, Croatia, pp 221–38, 2012.

Liu XC, Cheng J, Zhao NN, Liu ZL. Insecticidal activity of essential oil of Cinnamomum cassia and its main constituent, trans-cinnamaldehyde, against the booklice, Liposcelis bostrychophila. Trop J Pharm Res, 2014; 13(10):1697–702.

Luis S. Estudo químico e atividade larvicida frente a Aedes aegypti do óleo essencial das folhas de Cinnamomum zeylanicum (canela). Dissertation, Federal University of Maranhão, São Luís, Brazil, pp 13–63, 2010.

Madreseth-Ghafarakhshi S, Pirali Y, Dehghami-Samani A, Dehghami-Samani A. The insecticidal and repellent activity of ginger (Zingiber officinale) and eucalyptus (Eucalyptus globulus) essential oils against Culex theileri Theobald, 1903 (Diptera: Culicidae). Ann Parasitol, 2018; 64(4):351–60.

Manjarres-Suarez A, Olivero-Verbel J. Chemical control of Aedes aegypti: a historical perspective. Rev Costarric Salud Pública, 2013; 22:68–75.
Marcombe S, Fustec B, Cattel J, Chanphetsarat S, Thammanvong P, Phommavanh N, David JP, Corbel V, Sutherland IW, Hertz JC, Brey PT. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Negl Trop Dis, 2019; 13(12):e0007852.

Massefo F, Tadesse M, Bekele T, Balkew M, Gebre-Michael T. Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. African J Biotechnol, 2009; 8(17):4183–8.

Miraian E, Durham MJ, Hess K, Goad JA. Mosquito-borne illnesses in travelers: a review of risk and prevention. Pharmacotherapy, 2010; 30(10):1033–43.

Orchard A, Van Vuuren S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid Based Complement Altern Med, 2017; 4517971.

Pereira Lima JB, Pereira Da-Cunha M, Carneiro Da Silva R, Ribeiro Galardo AK, Da Silva Soares SD, Aparecida Braga I, Pimentel Ramos R, Valle D. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espirito Santo, Brazil. Am J Trop Med Hyg, 2003; 68(3):329–33.

Popović Z, Kostić M, Stanković S, Milanović S, Sivčev I, Kostić I, Kljačić P. Ecologically acceptable usage of derivatives of essential oil of sweet basil, ocimum basilicum, as antifeedants against larvae of the gypsy moth, lymantria dispar. J Insect Sci, 2013; 13:161.

Powell JR, Gloria-Soria A, Kotsakiozi P. Recent history of Aedes aegypti: Vector genomics and epidemiology records. Bioscience, 2018; 30(10):1033–43.

How to cite this article:
Chaiphongpachara T, Laojun S, Wassanasompong W. Screening seven commercial essential herb oils for larvicidal activity against the mosquito Aedes aegypti (Linnaeus), a vector of the dengue virus. J Appl Pharm Sci, 2020; 10(07):043–050.