Research Article

BLAT-Based Comparative Analysis for Transposable Elements: BLATCAT

Sangbum Lee,1 Sumin Oh,2 Keunsoo Kang,3 and Kyudong Han2,4

1 Department of Computer Science, Dankook University, Cheonan 330-714, Republic of Korea
2 Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
3 Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
4 DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea

Correspondence should be addressed to Kyudong Han; kyudong.han@gmail.com

Received 2 April 2014; Accepted 28 April 2014; Published 18 May 2014

Academic Editor: Zhixiang Lu

Copyright © 2014 Sangbum Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs) is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT) based comparative analysis for transposable elements (BLATCAT) program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

1. Introduction

The advancement of DNA sequencing technology and bioinformatics has tremendously accelerated whole genome sequencing and comparative genomic analysis. Currently, 88 genome sequences are available in the University of California, Santa Cruz (UCSC) Genome Browser website (http://www.genome.ucsc.edu/) [1]. Although the genome database is easily accessible for genome research, data analysis and interpretation still remain challenging due to the amount of sequence data and various research areas within genomics. The UCSC Genome Browser was produced in the early stage of the human genome project and provides optical effects and precise sequence alignments on query sequences [1, 2]. Users can obtain a variety of information including gene tracks, genome conservation, single nucleotide polymorphisms (SNPs), and transposable elements (TEs) from the UCSC Genome Browser [3].

In the human genome, the protein coding regions only account for about 2% of the genome, whereas TEs consist of ~50% of the primate genomes within intragenic and intergenic sequences, which are called noncoding regions [4, 5]. Most studies have focused on the protein coding regions to understand their roles in human health and disease. However, noncoding regions have been emphasized since the EN Cyclopedia of DNA Elements (ENCyclopedia of DNA Elements) project, which aims to detect new functional sources in the human genomes [6, 7].

To screen TEs in the eukaryote genomes, RepeatMasker (http://www.repeatmasker.org) [8] and Censor (http://www.girinst.org/censor/) [9] web servers have been commonly used. These software tools provide accurate and rapid repetitive DNA annotation results; the UCSC Genome Browser is also connected with them. In the comparative genomic study between six primate whole genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) [10–14], the BLAST-like alignment tool (BLAT) [15] provides an index to find homologous regions from query sequences and allows the manual retrieved alignment of query sequences from the UCSC webpage [3]. However, these processes of
manually comparing and retrieving aligned sequences from
query sequences are time consuming and difficult to use for
novice users.

Here, we propose a handy Windows-based program,
BLAT-based comparative analysis for transposable elements
(BLATCAT; http://hanlab.dankook.ac.kr/gnu/data/file/Util-
ity/765016963_ExyIiuu9_BLATCAT.exe), which automatically
and simultaneously performs BLAT, RepeatMasker, and Cen-
sor [8, 9, 15]. BLATCAT was developed to detect orthologous
regions between the primate genomes. Since other nonpri-
mate species have more genomic diversity and low-quality
sequences, it is not accurate to compare with orthologous
regions in other nonprimate species. Therefore, BLATCAT
compares only six primate genome sequences (human, chim-
panzee, gorilla, orangutan, gibbon, and rhesus macaque).
These primate genomes are adequate to analyze the evolution
of closely related species. The BLATCAT program can signifi-
cantly reduce serial steps in comparing specific regions of six
representative primate genome sequences and support both
position and sequence based approach. With these features,
the BLATCAT program is competitive for comparative analysis
of the TE in various primate species.

2. Materials and Methods

Sources. To obtain comprehensive results, the BLATCAT
program utilizes the outputs of the following four popular
applications.

2.1. UCSC Genome Browser. The UCSC Genome Browser
is an interactive website providing useful sequenced-based
tools along with a variety of genome sequence data [3]. This
website offers useful browsing service for retrieving locations
of DNA sequences, gene structures, and distribution of TEs
in the genomes by using genomic positions or gene search
terms. It currently covers genome sequences of 88 species
including the human genome [1].

2.2. BLAT Search. BLAT is a pairwise DNA-sequence align-
ment algorithm that is widely used in comparative genomics
[15]. BLAT rapidly identifies similar sequences to a query
with high accuracy (>95%). The total limit of multiple query
sequences is up to 75,000 letters. BLAT search results display
a lot of information as follows: score (calculated according to
aligned length and sequence similarity), start (position of
first match on the query), end (position of last match
on the query), query size (the size of input sequence),
identity (sequence similarity), genomic coordinates (genomic
positions of the matched sequence), and strand (orientation
of the matched sequence in the genome).

2.3. RepeatMasker. RepeatMasker [8] is a TE search tool
characterizing TEs in given query sequences or genomes.
This program uses the Smith-Waterman-Gotoh algorithm,
developed by Phil Green (unpublished data). As an input, it
accepts both FASTA-formatted sequences and files.

2.4. Censor. Censor [9] is also a web-based tool that scans
DNA sequences for TEs against a reference dataset of TEs
and delivers an abridged annotation of TEs. The major
classes of TEs annotated by Censor are 40 subfamilies of
DNA transposon and LTR and non-LTR retrotransposons
including retroviruses and simple repeats. Censor is also
available to screen TEs in other species besides human TEs
[16]. It uses the same algorithm with RepeatMasker and
supports FASTA, GenBank, and EMBL formats for query
sequence.

2.5. Development Environment. BLATCAT was developed in
the environment as described below (see also Table 1). Since
it was implemented in Java (it requires Java Virtual Machine
version 1.6 or above) [17], the current executable version
of BLATCAT only supports Windows. BLATCAT is imple-
mented with three open libraries called Jsoup, Window-
builder, and Jsmooth. Briefly, Jsoup (http://jsoup.org) is
responsible for interacting with the UCSC genome browser.
Windowbuilder (https://www.eclipse.org/windowbuilder) is
used to design user interface. An executable version of
the BLATCAT program was packed with Jsmooth (http://
jsmooth.sourceforge.net).

3. Results and Discussion

3.1. BLATCAT Workflow. BLATCAT accepts two types of
input: genomic position or DNA sequence (Figures 1 and 2).
Users can choose species and different versions of genome
assembly for analysis (Figure 2(d)). In addition, the users can
extend range of searching regions up to three times by adjust-
ing "DNA option" placed at the bottom (Figure 2(e)). When
the user selects the "position" tab for a query with options
(1) BLATCAT first extracts DNA sequences of the
given positions (Figure 2(b)) and searches selected genomes
for homologous sequences via the UCSC Genome Browser
[1]. On the other hand, if the user provides genome sequences
instead of the genome positions without any options on the
"sequence" tab (Figure 3), the program directly performs
pairwise sequence alignment using the BLAT algorithm [15].
Only the most similar sequence is selected and used as a query
for searching homologous sequences. Once the homologous
sequences are extracted, repetitive DNA sequences in all
homologous sequences are identified using RepeatMasker as
default [8]. Subsequently, Censor marks TEs in the homolo-
gous sequences for visualization [9].

3.2. BLATCAT Output. The BLATCAT output provides the
following useful information for researchers. It shows the
homologous sequence and its genomic coordinate in each
species (Figure 4). BLATCAT maintains color of strings or
formats acquired from other programs, such as the UCSC
genome browser, BLAT (Figure 4), RepeatMasker (Table 4),

| Table 1: List of developmental libraries implemented in BLATCAT. |
|-----------------|-----------------|-----------------|
Development tool	Development language	Used library
Eclipse Indigo version Java EE IDE	Java (JDK 1.6)	Jsoup, Windowbuilder, and Jsmooth

BioMed Research International
and Censor (Table 5) [1, 8, 9, 15]. These results are merged and displayed at the same time upon submission (Figure 5). Excluding the user interface, all results of previous steps can be stored as a HTML file (Figure 2(h)) if the user clicks the “save HTML” button (Figure 5). Descriptions of attributes of RepeatMasker and Censor can be found in Tables 2 and 3 [8, 9]. The user can easily “copy and paste” any part of the output to other software applications.

3.3. Comparison of BLATCAT with the UCSC-BLAT-RepeatMasker-Censor Procedure. Previous studies [18–25] that examined species-specific insertions/deletions mediated by TEs should inspect orthologous primate sequences at each locus using manual methods (UCSC, BLAT, and RepeatMasker/Censor). BLATCAT is a user-friendly program optimized for identifying TEs in homologous sequences of six primate species. The one-step procedure of BLATCAT allows researchers to perform comparative identification of TEs. To obtain TEs in homologous sequences of six species manually, users have to go through several steps. First, the users have to extract DNA sequence of interest from genome browsers, such as UCSC and Ensembl genome (see Figure S1 in Supplementary Material available online at http://dx.doi.org/10.1155/2014/730814) [1, 26]. Then, homologous sequences are identified by aligning the extracted sequence to the genome of interest by using BLAT or similar programs (Figure S2).
Figure 3: BLATCAT user interface for DNA sequence. (a) DNA sequence can be used as an input for analysis. (b) DNA sequence should be placed in the empty field. (c) Result appears in this empty field.

>Human chr10: 83728636-83728925
aattgtggacttttttttaacaccaatagctaccaacattgccatattggccttcttct

>Chimpanzee chr10: 83107742-83108031
aattgtggacttttttttaacaccaatagctaccaacattgccatattggccttcttct

>Gorilla chr10: 96758224-96758634
catcattatatctagcttggggttgttatcactgttggtgtgttgtgtgtgtgttgt
Figure 5: Screenshot of the BLATCAT output. All the results (Figure 4 and Tables 4 and 5, results of BLAT, RepeatMaster, and Censor) are merged and displayed in the user interface at the same time. Other contexts are identical to Figure 2.

Table 3: Description of the Censor attributes.

Attribute	Description
Name	Column Name contains locus names of submitted query sequences (first column) and Repbase library sequences (fourth column). Repbase names are hyperlinked to their sequences.
From/To	Column From/To contains beginning/ending of positions of fragment on corresponding sequence.
Class	This is class/subclass of repeat as specified in repeat annotation.
Dir	Values in column Dir indicate orientation ("d" for direct and "c" for complementary) of repeat fragment—columns 4–6.
Sim	Column Sim contains value of similarity between 2 aligned fragments.
Pos	Column Pos is roughly the ratio of positives to alignment length.
Mn:T	Column Mn:T is a ratio of mismatches to transitions in nucleotide alignment. The closer this number is to 1 the more likely is that mutations are evolutionary.
Score	This column contains the alignment score obtained from blast.

To identify TEs in these sequences, the users have to run RepeatMasker and/or Censor with each homologous sequence as a query repeatedly (Figures S3 and S4) [8, 9]. These sequential analyses require certain knowledge of algorithms and are time-consuming tasks. Our application explicitly shortens the steps for comparative TE analysis and is easy to use.

To estimate the efficiency of BLATCAT, we compared manual method and BLATCAT in the human position as a query (chr18: 40,208,090–40,208,390). The result indicates that BLATCAT (processing time: 65 sec) works five times faster than that of the manual method (processing time: 356 sec).

3.4. The Weaknesses of BLATCAT. Although BLATCAT is a straightforward approach to identify TEs in homolog regions, it also has some weaknesses due to the algorithm. First, BLATCAT requires an Internet connection since it interacts with several web applications. Second, the current version of BLATCAT only runs on the Windows operating system. Third, if the size of input sequence is more than 75,000 bases, it cannot be processed due to the size limitation of the BLAT website. However, most computers are connected to the Internet these days and the typical size of input sequence should be around several kilobases. Fourth, BLATCAT only returns the top-scoring locus of homology found by BLAT, even if there is one or more homologous loci with scores nearly as high as the top hit. Therefore, BLATCAT is comparable to other genomic tools.

4. Conclusions

BLAT only finds an orthologous region between a query sequence and another single genome. However, we developed the Windows-based BLATCAT program to simultaneously compare a query sequence with its corresponding sequences from five other primates. In addition, this tool is linked to RepeatMasker and/or Censor to identify full spectrum TEs in
Table 4: The result of RepeatMasker within BLATCAT.

SW Score	perc	perc	perc	query	position in query	Matching repeat	Position in repeat	ID
510	28.2	6.4	4.5	Human	10 355 (135)	C HAL1b	LINE/L1	(406) 2015 1664 5
475	28.7	6.4	4.2	Chimpanzee	10 355 (135)	C HAL1b	LINE/L1	(405) 2016 1664 1
792	20.5	1.3	0.0	Gorilla	1 151 (460)	+ L1MC1	LINE/L1	6176 6328 (5) 3
402	29.3	7.3	4.8	Gorilla	133 476 (135)	C HAL1b	LINE/L1	(406) 2015 1664 4*
478	28.6	6.7	4.8	Orangutan	10 355 (135)	C HAL1b	LINE/L1	(406) 2015 1664 6
465	29.1	6.6	4.3	Gibbon	11 373 (116)	C HAL1b	LINE/L1	(406) 2015 1645 2
319	32.7	6.6	2.1	Rhesus	24 342 (135)	C HAL1b	LINE/L1	(425) 1996 1664 7

The RepeatMasker output is displayed. Descriptions of the attributes can be found in Table 1. *indicates that there is a higher-scoring match whose domain partly (<80%) includes the domain of this match [8].

Table 5: The result of Censor within BLATCAT.

Name (SVG plot; alignments; masked)	From	To	Name (SVG plot; alignments; masked)	From	To	Class	Dir	Sim	Pos/Mm : Ts	Score
Human (SVG plot; alignments; masked)	10	368	HAL1B	610 973	NonLTR/L1	c	0.7003	2.0667	774	
Chimpanzee (SVG plot; alignments; masked)	10	368	HAL1B	610 974	NonLTR/L1	c	0.6955	2.0652	745	
Chimpanzee	386 434	Gypsy-2_HMM-I	5194 5247	LTR/Gypsy	c	0.8039	1.6	209		
Gorilla (SVG plot; alignments; masked)	1	151	L1MC1	923 1075	NonLTR/L1	d	0.7843	1.3478	757	
Gorilla	154 489	HAL1B	610 953	NonLTR/L1	c	0.6907	1.8936	674		
Orangutan (SVG plot; alignments; masked)	10	361	HAL1B	610 973	NonLTR/L1	c	0.7064	1.8298	761	
Orangutan	386 434	Gypsy-2_HMM-I	5194 5247	LTR/Gypsy	c	0.6966	1.9375	765		
Gibbon (SVG plot; alignments; masked)	11	367	HAL1B	610 973	NonLTR/L1	c	0.6907	1.8936	674	
Gibbon	385 433	Gypsy-2_HMM-I	5194 5247	LTR/Gypsy	c	0.8039	1.6	209		
Rhesus (SVG plot; alignments; masked)	24	355	HAL1B	610 954	NonLTR/L1	c	0.6677	1.9231	606	

The Censor output is shown. Each table shows the result of each species obtained from the Censor analysis.

The primate genomes. BLATCAT is an easy-to-use tool and is more effective than manual work. Therefore, we believe that BLATCAT is a valuable tool for a comparative analysis of TEs in primate genomes.

Conflict of Interests

The authors declare that no conflict of interests exists in this paper.

Acknowledgment

The present work was conducted with funding from the Research Fund of Dankook University in 2013.

References

[1] D. Karolchik, G. P. Barber, J. Casper et al., "The UCSC genome browser database: 2014 update," *Nucleic Acids Research*, vol. 42, pp. D764–D770, 2014.

[2] W. J. Kent, C. W. Sugnet, T. S. Furey et al., “The human genome browser at UCSC,” *Genome Research*, vol. 12, no. 6, pp. 996–1006, 2002.

[3] R. M. Kuhn, D. Haussler, and W. J. Kent, “The UCSC genome browser and associated tools,” *Briefings in Bioinformatics*, vol. 14, no. 2, pp. 144–161, 2013.

[4] E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” *Nature*, vol. 409, no. 6822, pp. 860–921, 2001.

[5] Y. J. Kim, J. Lee, and K. Han, “Transposable elements: no more ‘JunkDNA’,” *Genomics & Informatics*, vol. 10, no. 4, pp. 226–233, 2012.

[6] E. P. Consortium, B. E. Bernstein, E. Birney et al., “An integrated encyclopedia of DNA elements in the human genome,” *Nature*, vol. 489, no. 7414, pp. 57–74, 2012.

[7] E. P. Consortium, “The ENCODE (ENCyclopedia Of DNA elements) project,” *Science*, vol. 306, no. 5696, pp. 636–640, 2004.

[8] A. F. A. Smit, R. Hubley, and P. Green, “RepeatMasker Open-3.0,” 1996–2010, http://www.repeatmasker.org.

[9] O. Kohany, A. J. Gentles, L. Hanks, and J. Jurka, “Annotation, submission and screening of repetitive elements in Repbase:
[10] The Chimpanzee Sequencing and Analysis Consortium, "Initial sequence of the chimpanzee genome and comparison with the human genome," Nature, vol. 437, no. 7055, pp. 69–87, 2005.

[11] E. S. Lander, L. M. Linton, B. Birren et al., "Initial sequencing and analysis of the human genome," Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[12] D. P. Locke, L. W. Hillier, W. C. Warren et al., "Comparative and demographic analysis of orang-utan genomes," Nature, vol. 469, no. 7331, pp. 529–533, 2011.

[13] Rhesus Macaque Genome Sequencing and Analysis Consortium, R. A. Gibbs, J. Rogers et al., "Evolutionary and biomedical insights from the rhesus macaque genome," Science, vol. 316, no. 5822, pp. 222–234, 2007.

[14] A. Scally, J. Y. Dutheil, L. W. Hillier et al., "Insights into hominid evolution from the gorilla genome sequence," Nature, vol. 483, no. 7388, pp. 169–175, 2012.

[15] W. J. Kent, "BLAT—the BLAST-like alignment tool," Genome Research, vol. 12, no. 4, pp. 656–664, 2002.

[16] J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, and J. Walichiewicz, "Repbase update, a database of eukaryotic repetitive elements," Cytogenetic and Genome Research, vol. 110, no. 1–4, pp. 462–467, 2005.

[17] J. Gosling, "Feel of Java," Computer, vol. 30, no. 6, pp. 53–57, 1997.

[18] A. B. Carter, A. H. Salem, D. J. Hedges et al., "Genome-wide analysis of the human Alu Yb-lineage," Human Genomics, vol. 1, no. 3, pp. 167–178, 2004.

[19] K. Han, J. Lee, T. J. Meyer, P. Remedios, L. Goodwin, and M. A. Batzer, "L1 recombination-associated deletions generate human genomic variation," Proceedings of the National Academy of Sciences, vol. 105, no. 49, pp. 19366–19371, 2008.

[20] K. Han, J. Lee, T. J. Meyer et al., "Alu recombination-mediated structural deletions in the chimpanzee genome," PLoS Genetics, vol. 3, no. 10, pp. 1939–1949, 2007.

[21] J. Lee, R. Cordaux, K. Han et al., "Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons," Gene, vol. 390, no. 1-2, pp. 18–27, 2007.

[22] J. Lee, K. Han, T. J. Meyer, H.-S. Kim, and M. A. Batzer, "Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons," PLoS ONE, vol. 3, no. 12, Article ID e4047, 2008.

[23] A. C. Otieno, A. B. Carter, D. J. Hedges et al., "Analysis of the human Alu Ya-lineage," Journal of Molecular Biology, vol. 342, no. 1, pp. 109–118, 2004.

[24] S. K. Sen, K. Han, J. Wang et al., "Human genomic deletions mediated by recombination between Alu elements," The American Journal of Human Genetics, vol. 79, no. 1, pp. 41–53, 2006.

[25] H. Wang, J. Xing, D. Grover, D. J. Hedges, J. A. Walker, and M. A. Batzer, "SVA elements: a hominid-specific retroposon family," Journal of Molecular Biology, vol. 354, no. 4, pp. 994–1007, 2005.

[26] T. Hubbard, D. Barker, E. Birney et al., "The Ensembl genome database project," Nucleic Acids Research, vol. 30, no. 1, pp. 38–41, 2002.