Matrine suppresses cell growth of diffuse large B-cell lymphoma via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway

Jianyou Gu (jianyoulh@hotmail.com)
The First Affiliated Hospital, Zhejiang Chinese Medical University

Xiao Wang
The First Affiliated Hospital, Zhejiang Chinese Medical University

Ling Zhang
The First Affiliated Hospital, Zhejiang Chinese Medical University

Jingjing Xiang
The First Affiliated Hospital, Zhejiang Chinese Medical University

Jingya Li
The First Affiliated Hospital, Zhejiang Chinese Medical University

Zheng Chen
The First Affiliated Hospital, Zhejiang Chinese Medical University

Yu Zhang
The First Affiliated Hospital, Zhejiang Chinese Medical University

Junfa Chen
The First Affiliated Hospital, Zhejiang Chinese Medical University

Jianping Shen
The First Affiliated Hospital, Zhejiang Chinese Medical University

Research Article

Keywords: Matrine, DLBCL, c-Myc, CaMKIIγ, CDK6

Posted Date: February 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-222638/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: C-Myc aberrations confer a more aggressive clinic behavior in diffuse large B-cell lymphoma (DLBCL). Matrine is an alkaloid extracted from Sophora flavescens Ait. It possesses anti-cancer property through inhibiting the cell proliferation and inducing the apoptosis. The present study aimed to explore the underlying mechanisms of matrine in suppressing the cell growth of DLBCL.

Methods: The influence of matrine on the viability of cultured DLBCL cell lines SU-DHL-16 and OCI-LY3 cells were determined by CCK-8. Apoptosis and cell cycle were measured by flow cytometry after matrine exposure. Western blots were taken to investigate the expression of activated Caspase-3, cleaved PARP, c-Myc, phospho-c-Myc (Ser62), CaMKIIγ, CDK4 and CDK6 after matrine treatment. Cycloheximide chase analysis was used to determine the c-Myc protein half-lives before and after matrine treatment. Growth salvage analysis was taken by ectopic expression of c-Myc.

Results: In cultured DLBCL cells, matrine suppressed cell viability in a concentration and time dependent fashion. Matrine treated SU-DHL-16 and OCI-LY3 cells for 48 h with IC_{50} value of 1.76 mM and 4.1 mM, respectively. Matrine induced apoptosis through a caspase-independent pathway and caused G0/G1 cell cycle arrest in a concentration dependent manner in DLBCL cells. The protein expression of c-Myc was inhibited while the transcription of c-Myc was not reduced by matrine. c-Myc protein half-lives were decreased from 30.4, 69.4 min to 16.6, 15.9 min after matrine treatment in SU-DHL-16 and OCI-LY3, respectively. As a critical protein kinase of c-Myc, CaMKIIγ was found to be down-regulated and c-Myc phosphorylation at Ser62 was reduced together after matrine treatment in DLBCL. The growth suppression of SU-DHL-16 cells induced by matrine was rescued by over-expression of c-Myc achieved by recombinant adenovirus infection. The decreased expression of CDK6, not CDK4, induced by matrine was rescued by ectopic expression of c-Myc protein.

Conclusions: This study has shown for the first time that matrine suppresses cell growth of DLBCL via inhibiting CaMKIIγ/c-Myc/CDK6 signaling pathway.

Background

Diffuse large B-cell lymphoma (DLBCL) is the most common class of non-Hodgkin lymphomas with a highly heterogeneous group of diseases. According to cell-of-origin determined by immunohistochemical expression of CD10, BCL6, and IRF4/MUM1, DLBCL can be assorted into two subtypes: germinal center B-cell lymphoma subtype and active B-cell/non-germinal center B-cell lymphoma [1]. The gold standard treatment for DLBCL patients is R-CHOP regimen (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) offering a 5-year overall survival of around 58% [2]. Nonetheless, about 37.2% patients develop relapsed/refractory disease during the first 10 years, with 70% of the patients dying from lymphoma within the first 2 years after disease progression [3]. Only 10% of refractory/relapsed DLBCL patients can be cured by high-dose therapy and autologous stem cell transplantation [4, 5]. The remaining 90% of patients are incurable, which demands new targeted agents for clinical trials.
MYC is widely expressed in the normal cells and the expression levels tightly correlate to cell proliferation [6]. c-Myc functions in many biological and disease processes. Deregulation of the c-Myc is a typical feature of cancer initiation and maintenance [7]. MYC dysregulation is an important characterized oncogenic event in DLBCL. MYC translocations have been confirmed in 5–14% of DLBCL and these alterations are frequently associated with BCL2 or BCL6 rearrangements [8]. MYC gains and amplifications have been found in 21–38% of DLBCL. MYC aberrations in DLBCL confer a more aggressive clinical behavior with poor prognosis [9]. c-Myc protein is intrinsically disordered and has no globular functional domains [10]. It is a big challenge to directly inhibit the function of c-Myc.

As an important part of complementary medicine, Chinese herbal medicines have been used as adjuvant treatment for cancer in China and other countries [11]. Matrine is a naturally occurring alkaloid compound extracted from Chinese herbs like Sophora flavescens. It possesses anti-inflammatory, anti-oxidant, antiviral and anti-allergic properties [12]. Recently, several reports showed that matrine has antihematological malignancy activities against leukemia, multiple myeloma, NK/T-cell lymphoma (NKTCL) [13–16]. However, the effect of matrine on DLBCL is still unknown. Present study investigated the antitumor effect of matrine in human DLBCL cells and its related molecular mechanism.

Methods

Cell culture and Reagents

Human DLBCL cell lines SU-DHL-16 (germinal center B-cell lymphoma subtype) and OCI-LY3 (active B-cell lymphoma subtype) were purchased from the DSMZ collection (Germany) and cultured in RPMI 1640 medium supplemented with 10% and 15% fetal bovine serum (FBS) at 37°C with 5% CO₂ atmosphere, respectively. Vindesine sulfate was ordered from Hangzhou Minsheng Pharmaceutical Co., Ltd. (China) and dissolved in 0.9% NaCl. Matrine was obtained from Nanjing Zelang Medical Technology Co., Ltd. (China) and dissolved in RPMI 1640 medium. Cell Counting Kit-8 (CCK-8) was purchased from Good Laboratory Practice Bioscience (USA). Dead Cell Apoptosis Kit (Cat# V13241) and TRIzol were ordered from Invitrogen (USA). Cell Cycle Analysis Kit was bought from Beyotime (China). Cycloheximide (CHX) was bought from Cayman Chemical (USA). HiScript II Q RT reagent kit and ChamQ™ SYBR qPCR Master Mix kit were bought from Vazyme (Nanjing, China). The antibody for c-Myc (Cat# ab32072) was ordered from Abcam (USA). The antibodies for phospho-c-Myc (Ser62) (Cat# 13748), PARP (Cat# 9532), Caspase-3 (Cat# 9662), CDK4 (Cat# 12790) and CDK6 (Cat# 13331) were purchased from Cell Signaling Technology (USA). Ca^{2+}/calmodulin-dependent protein kinase II γ (CaMKIIγ) antibody (Cat# AP7208a) was ordered from Abgent (Suzhou, China). GAPDH antibody (Cat# 60004-1-Ig) was bought from Proteintech (USA). Prestained and western blot marker was ordered from Haigene (Harbin, China).

Cell viability analysis

The cell viability was determined by CCK-8 assay. About 40000 SU-DHL-16 and OCI-LY3 cells were plated into each well of 96 well plates, respectively. Cells were treated by increasing concentrations of matrine (125, 250, 500, 1000, 2000, 4000 µM for SU-DHL-16; 250, 500, 1000, 2000, 4000, 8000 µM for OCI-LY3) for
24 h, 48 h and 72 h, and vindesine sulfate (positive control) (0.00004, 0.0002, 0.001, 0.005, 0.025 µM) for 72 h. Negative control cells were treated with RPMI 1640 medium and 0.9% NaCl, respectively. CCK-8 was added for the viability assay. The absorbance of the solution was read by a microplate reader Epoch 2 (BioTek, USA), using a test wavelength of 450 nm. Results obtained were expressed as percentage inhibition rate to test agents. GraphPad Prism program was used to calculate half maximal inhibitory concentration (IC\(_{50}\)).

Flow cytometric analysis for apoptosis

Approximately 5 × 10\(^5\) SU-DHL-16 and OCI-LY3 cells were seeded into each well of six well plates, respectively. Cells were incubated with increasing concentrations of matrine (1, 2, 4 mM for SU-DHL-16; 2, 4, 8 mM for OCI-LY3) for 48 h. Cells mixed with RPMI 1640 medium only were used for the control. The cells were washed with chilled PBS and then resuspended in 1×binding buffer. Each sample was incubated with 5 µL Alexa Fluor 488 annexin V and 1 µL 100 µg/mL PI for 15 min in the dark at room temperature. The samples were analyzed within one hour by flow cytometry (Navios, Beckman Coulter, USA).

Cell cycle analysis

SU-DHL-16 and OCI-LY3 cells (5 × 10\(^5\)) were planted into six well plates, respectively. Increasing concentrations of matrine (0.5, 1, 2 mM for SU-DHL-16; 1, 2, 4 mM for OCI-LY3) were used to treat cells for 24 h. Cells without matrine were used for the control. The cells were collected and then fixed in 70% ice-cold ethanol at 4 °C for overnight. Cells were washed again by cold PBS and suspended in PBS containing 0.1 mg/mL RNase A and 50 µg/mL PI for 30 min at room temperature. DNA contents of cells were determined with flow cytometry within an hour. Cell cycles were resolved by ModFit LT Version 3.1 software.

Quantitative RT-PCR analysis

About 7.5 × 10\(^5\) SU-DHL-16 and OCI-LY3 cells were implanted into 6-well plates, respectively. Cells were incubated with different concentrations of matrine (1.2, 2.4, 3.6 mM for SU-DHL-16; 2, 4, 6 mM for OCI-LY3) for 24 h. Cells with medium only were taken as the control. The cells were collected. Total RNA extraction, cDNA synthesis and qPCR were performed as described previously [16]. Briefly, total RNA was isolated by TRIzol. cDNAs were synthesized from total RNA with the HiScript II Q RT reagent kit with gene-specific primers. The ChamQ™ SYBR qPCR Master Mix kit was applied for the thermocycling reaction according to the manufacturer’s instructions in the CFX384 Real Time PCR system (Bio-Rad, USA). The threshold cycle (Ct) was calculated using default threshold settings. All experiments were done in triplicates. GAPDH and β-Actin were used as the double-control to normalize mRNA input. The relative gene expression quantification was determined by the 2\(^{-}\Delta\Delta ct\) method.

Western blot

After matrine treatment for indicated time, DLBCL cells were washed with chilled PBS buffer. Total cellular proteins extraction, SDS-PAGE and membrane transfer were processed step by step. Western blot was taken as described previously [16]. Briefly, membranes with proteins were blocked with 5% nonfat...
milk in TBS–Tween 20 (TBST). The membranes were then incubated with primary antibodies overnight at 4°C. After 3 washes with TBST, membranes were bound with a horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature, and developed with Immobilon Western Chemiluminescent HRP Substrate (Millipore, USA). Protein levels were determined with the densitometric intensity.

Cycloheximide chase analysis
Approximately 1.25×10^6 SU-DHL-16 and OCI-LY3 cells were treated with or without 1.76 mM and 4.1 mM matrine for 12 h, respectively. 100 µg/mL cycloheximide was then added and cells were collected at indicated time points, and western blotting was done as above description.

Growth salvage assay by ectopic expression of c-Myc
The recombinant adenovirus for c-Myc over-expression (HBAD-h-MYC-1×flag-EGFP) and control (HABD-EGFP) were purchased from Hanbio Biotechnology (Shanghai) Co., LTD. The ectopic expression of EGFP and optimal multiplicity of infection (MOI) were confirmed by fluorescence microscope. OCI-LY3 failed and only SU-DHL-16 was infected successfully by recombinant adenovirus. The optimal MOI was 600. After that, about 40000 SU-DHL-16 cells in 50 µL per well were plated into 96 well plates. Cells were divided into six groups as Control (RPMI 1640 media only), Control virus (MOI = 600), Myc virus (MOI = 600), Matrine (1.76 mM matrine), Matrine/Control virus (1.76 mM matrine with control virus at 600 MOI) and Matrine/Myc virus(1.76 mM matrine with Myc virus at 600 MOI). Blank group was set without cells and added with RPMI 1640 media. Each group had 6 replicates. Adenovirus or RPMI 1640 medium was added in 10 µL per well. The plates were horizontally centrifuged at 200 × g for 1 h at room temperature. Plates were then incubated at 37 °C and 5% CO$_2$ for 3 h. Matrine or RPMI 1640 medium was added in 40 µL per well. Cells were then incubated at 37 °C and 5% CO$_2$ for 48 h. Cell survival was detected by CCK-8 dye at 48 h.

For western blot, 1×10^6 SU-DHL-16 cells were implanted into six well plates. Cells were treated with matrine and adenovirus as above protocol. After 48 h, the cells were collected. The protein expressions of c-Myc, CDK4 and CDK6 were confirmed by western blot as above description.

Statistical analysis
Data were expressed as mean ± standard deviation. Student’s t-test was applied for comparison of the means of two groups, and one way Analysis of Variance (ANOVA) was used to assess the level of significance between the means of multiple groups. Statistical significance was defined as $p < 0.05$.

Results

Matrine inhibits the growth of DLBCL cells
The cell viability was determined to evaluate the percentage inhibition rate and IC$_{50}$ of matrine in SU-DHL-16 and OCI-LY3 cells. As shown in Fig. 1A, matrine displayed anti-proliferative activity in SU-DHL-16 cells
in a dose dependent and time dependent manner. The IC$_{50}$ values of matrine in SU-DHL-16 cells were 2.98 ± 0.03, 1.76 ± 0.05 and 1.54 ± 0.04 mM, respectively, for 24 h, 48 h and 72 h while that of vindesine in SU-DHL-16 cells for 72 h was 1.33 ± 0.02 nM. As shown in Fig. 1B, matrine also exhibited anti-proliferative activity in OCI-LY3 cells in a dose and time dependent manner. The IC$_{50}$ values of matrine in OCI-LY3 cells were 20.04 ± 0.05, 4.10 ± 0.05 and 2.67 ± 0.04 mM, respectively, for 24 h, 48 h and 72 h while that of vindesine in OCI-LY3 cells for 72 h was 0.52 ± 0.02 nM. Although exposure to matrine for a longer time than 48 h was found to be more potent in inhibiting SU-DHL-16 and OCI-LY3 cell viability, it inclined to result in increased frequency of necrotic cells, so we chose the treatment with matrine for no longer than 48 h for the following experiments in DLBCL cells.

Matrine induces apoptosis

To explore whether the growth inhibition of DLBCL cells induced by matrine was caused by apoptosis, SU-DHL-16 and OCI-LY3 cells were treated with the increasing concentrations of matrine for 48 h, and the occurrence of apoptosis was determined by the annexin V and PI staining because annexin V bound membrane phosphatidyl serine in the apoptosis and viability dye PI resolved late-stage apoptotic and necrotic cells from early-stage apoptotic cells (Fig. 2A and 2B). Overall, the result in Fig. 2C showed an increase in the percentage of apoptotic cells from 2.8 ± 0.4% in untreated cells to 3.1 ± 0.3, 13.8 ± 1.5 and 46.2 ± 2.3% for 1, 2 and 4 mM matrine treatment to SU-DHL-16 cells, respectively. As shown in Fig. 2D, matrine induced an increase in the percentage of apoptotic cells from 2.0 ± 0.6% in untreated cells to 2.4 ± 0.2, 2.8 ± 0.3 and 35.6 ± 1.2% for 2, 4 and 8 mM matrine treatment to OCI-LY3 cells, respectively.

Matrine regulates the expression of apoptosis-related proteins

To investigate the mechanism responsible for matrine mediated apoptosis, the apoptotic protein expressions were analyzed by western blot. Figure 2E and Supplementary Figs. 1A ~ 1C showed the results of western blot for activated cleaved Caspase-3 (17 kDa) and cleaved PARP (89 kDa) in control cultures and cultures exposed to 1.76 mM (IC$_{50}$ of 48 h) and 3.52 mM matrine for 48 h in SU-DHL-16 cells. Figure 2F and Supplementary Figs. 1D ~ 1F showed the western blot results in control cultures and cultures exposed to 4.1 mM (IC$_{50}$ of 48 h) and 8.2 mM matrine for 48 h in OCI-LY3 cells. Matrine treatment did not induce activated cleaved Caspase-3 and cleaved PARP in SU-DHL-16 and OCI-LY3 cells, which indicated that matrine induces apoptosis of DLBCL cells via caspase-independent pathway.

Matrine induces cell cycle arrest at G0/G1 phase

To further resolve the mechanism of anti-proliferative activity of matrine in DLBCL cells, cell cycle progression was examined by flow cytometric. As shown in Fig. 3, matrine induced the significant accumulation of cells in G0/G1 phase from 28.36 ± 1.28% before treatment to 33.03 ± 1.81, 35.82 ± 1.90 and 38.22 ± 2.15% after 0.5, 1 and 2 mM matrine treatment for 24 h in SU-DHL-16 cells or from 36.39 ± 2.25% before treatment to 41.20 ± 2.21, 55.42 ± 2.99 and 57.02 ± 3.03% after 1, 2 and 4 mM matrine treatment for 24 h in OCI-LY3 cells, respectively. This was accompanied by an apparent decrease of cells in S phase from 64.36 ± 0.62% before treatment to 60.07 ± 0.2, 58.47 ± 0.22 and 53.61 ± 0.19% after 0.5, 1 and 2 mM matrine treatment in SU-DHL-16 cells or from 39.58 ± 3.15% before treatment to 37.10 ± 1.70, 23.53 ± 2.37 and 17.42 ± 1.86% after 1, 2 and 4 mM matrine treatment in OCI-LY3 cells, respectively. The
proportion in G2/M phase was not significantly changed after matrine treatment in both cells. These results clearly indicated that matrine induces G0/G1 cell cycle arrest in DLBCL cells.

Matrine downregulates c-Myc expression through increased degradation

c-Myc expression is closely related to cell proliferation. The expression of c-Myc protein in DLBCL cells was then analyzed by western blot. SU-DHL-16 and OCI-LY3 cells were treated with matrine at 1.76 mM and 4.1 mM for 48 h, respectively. The levels of c-Myc protein in SU-DHL-16 and OCI-LY3 cells were significantly reduced with normalized relative expression of 0.601 ± 0.086 and 0.404 ± 0.046 after matrine treatment (Figs. 4A, 4B and Supplementary Fig. 2), respectively. These results indicated that the growth inhibition induced by matrine in DLBCL cells is associated with the downregulation of c-Myc protein.

Transcription analysis of c-Myc gene was then processed. SU-DHL-16 and OCI-LY3 cells were incubated with increasing concentrations of matrine for 24 h. The qRT-PCR results showed that c-Myc mRNA levels were significantly increased after matrine treatment in a dose dependent manner in SU-DHL-16 cells (Fig. 4C), while c-Myc mRNA levels were not significantly changed in OCI-LY3 cells (Fig. 4D).

The degradation of c-Myc protein was also evaluated by cycloheximide chase assay. The translation inhibitor cycloheximide was put into the control and matrine-treated SU-DHL-16 and OCI-LY3 cells, and c-Myc protein levels were determined at different time points by western blot. Half-lives of c-Myc protein were then estimated by GraphPad Prism program. As shown in Figs. 4E-4H and Supplementary Fig. 3, c-Myc half-lives in matrine-treated SU-DHL-16 and OCI-LY3 cells were about 16.6 and 15.9 min, while those in the control SU-DHL-16 and OCI-LY3 cells were about 30.4 and 69.4 min, respectively. The results indicated that c-Myc degradation is promoted and the stability of c-Myc is decreased in matrine-treated DLBCL cells.

Matrine reduces c-Myc phosphorylation at Ser62 through CaMKIIγ inhibition

c-Myc protein stability is tuned by two phosphorylation sites with opposite effects: threonine 58 phosphorylation promotes c-Myc degradation while serine 62 phosphorylation stabilizes c-Myc [17]. The phosphorylation of c-Myc at Ser62 in DLBCL cells was then determined by western blot. SU-DHL-16 and OCI-LY3 cells were treated with matrine at 1.76 mM and 4.1 mM for 48 h, respectively. The levels of phospho-c-Myc (Ser62) in SU-DHL-16 and OCI-LY3 cells were significantly reduced after matrine treatment suggesting the stability of c-Myc is declined (Fig. 5 and Supplementary Fig. 4).

CaMKIIγ was recently validated to be one of 102 potential genes involved in a synthetic lethal interaction with c-Myc [18]. CaMKIIγ phosphorylates c-Myc at Ser62 in T cell lymphoma and NKTCL [16, 19]. The regulation of CaMKIIγ in matrine-treated DLBCL cells was then analyzed by western blot. As shown in Fig. 5 and Supplementary Fig. 4, the levels of CaMKIIγ protein were also significantly reduced after matrine treatment. These results indicated that matrine reduces c-Myc phosphorylation at Ser62 by targeting CaMKIIγ.

Matrine down-regulates CDK4/6 expression
c-Myc-induced cell proliferation is generally associated with activation of CDK4 and CDK6 to control G1/S phase progression [6]. CDK4 and CDK6 are described as c-Myc target genes. The expressions of CDK4 and CDK6 in matrine-treated DLBCL cells were then analyzed by western blot. As shown in Fig. 5 and Supplementary Fig. 4, the levels of CDK4 and CDK6 protein were also significantly decreased after matrine treatment. These results suggested that matrine reduces CDK4 and CDK6 expression through c-Myc inhibition.

Over-expression of c-Myc rescues the growth of SU-DHL-16 cells inhibited by matrine

To further investigate the mechanism of growth inhibition induced by matrine in DLBCL cells, the recombinant adenovirus for c-Myc over-expression was used to explore the salvage effect in matrine-treated SU-DHL-16 cells by CCK-8 analysis. The results showed that c-Myc recombinant adenovirus infection significantly promoted the growth of SU-DHL-16 cells while the Control recombinant adenovirus did not affect the cell growth significantly (Fig. 6A). The cell growth inhibited by matrine was significantly rescued by the c-Myc recombinant adenovirus infection, not by the Control recombinant adenovirus infection, in SU-DHL-16 cells (Fig. 6A). Western blot confirmed the over-expression of c-Myc protein in c-Myc recombinant adenovirus infected SU-DHL-16 cells (Figs. 6B, 6C and Supplementary Fig. 5). To determine whether CDK4 or CDK6 is a bona fide c-Myc target gene in SU-DHL-16 cells, the protein expressions of CDK4 and CDK6 were analyzed by western blot in SU-DHL-16 cells infected by c-Myc adenovirus or Control adenovirus with or without matrine treatment. The results clearly showed that the expression of CDK6, not CDK4, inhibited by matrine was significantly rescued by the c-Myc adenovirus infection, not by the Control adenovirus infection, in SU-DHL-16 cells (Figs. 6B, 6D, 6E and Supplementary Fig. 5), which identified that CDK6 is a bona fide c-Myc target gene in SU-DHL-16 cells. These results verified that matrine inhibits the growth of SU-DHL-16 cells through CaMKII-c-Myc-CDK6 pathway.

Discussion

Matrine is a quinolizindine alkaloid with strong anticancer property towards various types of tumors. Han et al. reported that matrine inhibited human multiple myeloma RPMI8226 and U266 cells for 48 h with IC\textsubscript{50} of 4.55 mM and 5.36 mM, respectively [15]. Ma et al. showed that matrine suppressed the growth of human chronic myeloid leukemia K562 cells with an IC\textsubscript{50} of 2 mM for 48 h treatment [13]. Our previous study showed that matrine inhibited human NKTCL NK92 cells for 48 h with IC\textsubscript{50} of 1.96 mM [16]. In current study, matrine inhibited the growth of DLBCL cell lines SU-DHL-16 and OCI-LY3 cells in a dose and time dependent manner. It displayed anti-proliferative activities against SU-DHL-16 and OCI-LY3 cells at 48 h with IC\textsubscript{50} of 1.76 ± 0.05 mM and 4.10 ± 0.05 mM, respectively. Matrine was more effective for SU-DHL-16 cells than that for OCI-LY3 cells, which meant matrine is better for germinal center B-cell lymphoma subtype than that for active B-cell lymphoma subtype. Vindesine is an alkaloid for the clinic treatment of DLBCL [20]. It inhibited the growth of SU-DHL-16 and OCI-LY3 cells with IC\textsubscript{50} of 1.33 ± 0.02 nM and 0.52 ± 0.02 nM for 72 h treatment, respectively. Considering the IC\textsubscript{50} of matrine is much higher than that of vindesine, the influence of matrine on the normal lymphocytes is of much concern. Our previous study showed that matrine with lower than 2 mM did not significantly influence the proliferation
Our previous study showed that matrine induced caspase-dependent apoptosis in NKTCL cells [16]. In present study, matrine induced apoptosis of DLBCL cell lines SU-DHL-16 and OCI-LY3 cells in a dose dependent manner from 2.8 ± 0.4% and 2.4 ± 0.2% to 46.2 ± 2.3% and 35.6 ± 1.2% after matrine treatment at different concentrations for 48 h, respectively (Fig. 2). It is interesting to notice that apoptosis caused by 2 mM matrine in SU-DHL-16 cells was less than 14% even though this dose was more than IC₅₀ (1.76 mM). The apoptosis induced by 4 mM matrine in OCI-LY3 cells was near to the control group although this dose was close to IC₅₀ (4.1 mM). These data suggests matrine does not preferentially induce apoptosis. The growth inhibition of DLBCL cells induced by matrine was partially caused by apoptosis. Furthermore, matrine did not induce the products of activated cleaved-Caspase-3 and cleaved PARP even with 2 fold of IC₅₀ in DLBCL cells (Fig. 2). The execution of apoptosis comprises both caspase-dependent and caspase-independent pathways. Apoptosis inducing factor (AIF) was critical for caspase-independent cell death by direct interaction with DNA [21]. Our finding indicated that matrine induces apoptosis of DLBCL cells through the activation of caspase-independent pathway. The detailed molecular mechanism of caspase-independent cell death induced by matrine in DLBCL cells need to be addressed in the future.

Deregulation of cell cycle is an important process in malignant transformation. Zhao et al. reported that matrine inhibited the growth of human retinoblastoma cells and induced cell cycle arrest at G0/G1 phase [22]. Jin et al. showed that matrine suppressed melanoma M21 cells proliferation by promoting G0/G1 cell cycle arrest [23]. Ma et al. reported that matrine inhibited human chronic myeloid leukemia K562 cells proliferation through promoting G0/G1 arrest [13]. Our data showed that matrine induced the accumulation of SU-DHL-16 and OCI-LY3 cells in the G0/G1 phase, which finally led to the cell growth inhibition (Fig. 3). G0/G1 cell cycle arrest is the major mechanism for the matrine induced growth inhibition in DLBCL cells.

c-Myc levels tightly correlate with cell proliferation. A major role for c-Myc in the proliferation of normal cells is to promote progression through G1 and into S phase of the cell cycle. A systematic study in 23 cell lines with short-hairpin-mediated depletion of c-Myc showed that arrest occurred at G0/G1 phase in normal cells and some tumor-derived cell lines [24]. c-Myc genetic alternations are the characterized events in DLBCL, which confer a more aggressive clinical behavior with dismal prognosis [9]. Our previous data showed that matrine inhibited the mRNA and protein expression of c-Myc in NKTCL NK92 cells [16]. Our present data showed that c-Myc protein expression was inhibited by matrine in DLBCL cells while the gene transcription of c-Myc was not suppressed (Fig. 4). The degradation of c-Myc protein was accelerated by matrine treatment in DLBCL cells. c-Myc protein half-lives were much shorter after
exposure to matrine in SU-DHL-16 and OCI-LY3 cells (Fig. 4), which meant the stabilities of c-Myc in matrine-treated DLBCL cells are decreased. The ectopic expression of c-Myc rescued the growth of matrine-treated SU-DHL-16 cells by recombinant adenovirus infection (Fig. 6), which verified that matrine inhibits the growth of SU-DHL-16 cells by c-Myc pathway.

Based on the classical cell cycle model, in the early G1 phase, mitogenic signals are first received and integrated by the expression of cyclin D that preferentially binds to and activates CDK4 and CDK6. c-Myc-induced cell proliferation is related to the increase of CDK4 and CDK6 activities to regulate G1/S progression [6]. CDK4 and CDK6 were listed as transcriptional targets of c-Myc. Hermeking et al. reported that c-Myc induced a rapid increase of CDK4 mRNA levels through four highly conserved c-Myc binding sites within the CDK4 promoter among different cell models [25]. Li et al. showed that c-Myc bound to CDK6 promoter in ChIP-on-chip analysis in the Burkitt's lymphoma Daudi cells [26]. Our data showed that the expressions of CDK4 and CDK6 protein were significantly inhibited after matrine treatment in DLBCL cells (Fig. 5). The ectopic expression of c-Myc rescued the expression of CDK6, not CDK4, in the matrine treated SU-DHL-16 cells (Fig. 6), which identified that CDK6 is a bona fide c-Myc target gene in SU-DHL-16 cells. These results verified that matrine inhibits the growth of SU-DHL-16 cells through c-Myc-CDK6 pathway.

CaMKIIγ was reported to phosphorylate Ser62 of c-Myc and increased the stability of c-Myc in T cell lymphoma. Inhibition of CaMKIIγ ameliorated T cell lymphoma burden in mice [19]. Our previous study showed that matrine inhibited the growth of NKTCL cells by modulating CaMKIIγ-c-Myc pathway [16]. Present study showed that a positive correlation between CaMKIIγ and p-c-Myc (Ser62)/c-Myc was observed in DLBCL cells. The levels of phospho-c-Myc (Ser62) and CaMKIIγ in SU-DHL-16 and OCI-LY3 cells were together remarkably reduced after matrine treatment (Fig. 5). Our findings indicated that matrine suppresses cell growth of DLBCL by regulating CaMKIIγ/c-Myc pathway. The specific functions of CaMKIIγ in DLBCL are not fully known, our data support that CaMKIIγ inhibition may be a great way to treat c-Myc-driven DLBCL.

Indirect inhibition of c-Myc represents a great opportunity to cure associated cancers. The first small molecule bromodomain inhibitor, JQ1, inhibited the c-Myc function and its target genes in DLBCL [27]. Alkaloids, such as matrine, berberine and vindesine, are strong therapeutic agents for cancers. Ma et al. reported that one of berberine derivations, quinolino-benzo-[5, 6]-dihydroisoquinodilium compound, inhibited the c-Myc transcription by selectively binding G-quadruplex c-Myc DNA in leukemia cell line HL60 [28]. Small molecule analog of berbamine, tosyl chloride-berbamine, inhibited CaMKIIγ expression to decrease c-Myc protein in c-Myc-positive leukemia cells [29]. Our data confirmed that matrine accelerated c-Myc protein degradation via CaMKIIγ inhibition in DLBCL cells. CaMKIIγ/Myc axis represents a promising target in MYC-mediated DLBCL. Matrine will be helpful for those c-Myc-driven DLBCL patients.

Limitations of this study focus on the DLBCL cell lines. The particular mechanism of apoptosis induction by matrine in DLBCL needs further exploration. The effects of matrine on primary DLBCL cells and
DLBCL in vivo need to be investigated in the future.

Conclusions

In summary, present study showed that matrine suppresses cell growth through G0/G1 cell cycle arrest and caspase-independent apoptosis in DLBCL cells. Our results have demonstrated for the first time that the mechanism of matrine suppressing the cell growth of DLBCL is the inhibition of CaMKIIγ/c-Myc/CDK6 signaling pathway. There is great demand for treating c-Myc-driven DLBCL. It is reasonable that matrine may be useful as a complementary medicine for DLBCL.

List Of Abbreviations

CaMKIIγ: Ca^{2+}/calmodulin-dependent protein kinase II γ; CDK: cyclin-dependent protein kinase; CHX: cycloheximide; DLBCL: diffuse large B-cell lymphoma; IC_{50}: Half maximal inhibitory concentration; NKTCL: NK/T-cell lymphoma;

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported in part by Health Commission of Zhejiang Province (2021ZB118, 2021ZQ030 and 2020ZX007) and Zhejiang Provincial Natural Science Foundation of China (LY16H290002 and LY19H270004). The funding body provided financial support and had no role in the design of the study, collection, analysis, interpretation of data, or in writing the manuscript.

Authors’ contributions
JG and JS: conception and design of research; XW, JL and ZC performed experiments; LZ, JX, YZ and JC analyzed data and interpreted results of experiments; JG drafted manuscript; JG and JS edited and revised manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-82.

2. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Fermé C, Christian B, Lepage E, Tilly H, Morschhauser F, Gaulard P, Salles G, Bosly A, Gisselbrecht C, Reyes F, Coiffier B. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005; 23(18):4117-26.

3. Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, Lefort S, Marit G, Macro M, Sebban C, Belhadj K, Bordessoule D, Fermé C, Tilly H. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010; 116(12):2040-5.

4. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M, Bosly A, Ketterer N, Shpilberg O, Hagberg H, Ma D, Brière J, Moskowitz CH, Schmitz N. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010; 28(27):4184-90.

5. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011; 2011:498-505.

6. Bretones G, Delgado MD, León J. Myc and cell cycle control. Biochim Biophys Acta. 2015; 1849(5):506-16.

7. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014; 4(6):a014241.

8. Karube K, Campo E. MYC alterations in diffuse large B-cell lymphomas. Semin Hematol. 2015; 52(2):97-106.

9. Zhou K, Xu D, Cao Y, Wang J, Yang Y, Huang M. C-MYC aberrations as prognostic factors in diffuse large B-cell lymphoma: a meta-analysis of epidemiological studies. PLoS One. 2014; 9(4):e95020.

10. McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med. 2014; 4(10):a014266.
11. Qi F, Li A, Inagaki Y, Gao J, Li J, Kokudo N, Li XK, Tang W. Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer. Biosci Trends. 2010; 4(6):297-307.

12. You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol. 2020; 11:01067.

13. Ma L, Zhu Z, Jiang L, Sun X, Lu X, Zhou M, Qian S, Jianyong L. Matrine suppresses cell growth of human chronic myeloid leukemia cells via its inhibition of the interleukin-6/Janus activated kinase/signal transducer and activator of transcription 3 signaling cohort. Leuk Lymphoma. 2015; 56:2923-30.

14. Wu D, Shao K, Zhou Q, Sun J, Wang Z, Yan F, Liu T, Wu X, Ye B, Huang H, Zhou Y. Autophagy and Ubiquitin-Mediated Proteolytic Degradation of PML/Rara Fusion Protein in Matrine-Induced Differentiation Sensitivity Recovery of ATRA-Resistant APL (NB4-LR1) Cells: in Vitro and in Vivo Studies. Cell Physiol Biochem. 2018; 48:2286-301.

15. Han Y, Zhang S, Wu J, Yu K, Zhang Y, Yin L, Bi L. Matrine induces apoptosis of human multiple myeloma cells via activation of the mitochondrial pathway. Leuk Lymphoma. 2010; 51:1337-46.

16. Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, Chen J, Yu L, Zhou Y, Wang Y, Shen J. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther. 2020; 20(1):214.

17. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000; 14:2501-14.

18. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA. 2012; 109:9545-50.

19. Gu Y, Zhang J, Ma X, Kim BW, Wang H, Li J, Pan Y, Xu Y, Ding L, Yang L, Guo C, Wu X, Wu J, Wu K, Gan X, Li G, Li L, Forman SJ, Chan WC, Xu R, Huang W. Stabilization of the c-Myc protein by CAMKIIγ gamma promotes T cell lymphoma. Cancer Cell. 2017; 32:115-28.

20. Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM, Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 2018; 28(17): 2816-26.

21. Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol. 2002; 9(9):680-4.

22. Zhao B, Li B, Bai S, Shen L, Ren R, Jonas JB, Xu X, Lu Q, Liu Q. Effects of matrine on proliferation and apoptosis of cultured retinoblastoma cells. Graefes Arch Clin Exp Ophthalmol. 2012; 250(6): 897-905.

23. Jin H, Sun Y, Wang S, Cheng X. Matrine activates PTEN to induce growth inhibition and apoptosis in V600EBRAF harboring melanoma cells. Int J Mol Sci. 2013; 14(8): 16040-57.
24. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, Prochownik EV, Nikiforov MA. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008; 27(13): 1905-15.

25. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O’Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A. 2000; 97(5):2229-34.

26. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci U S A. 2003; 100(14):8164-9.

27. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, Rahl PB, Sun HH, Yeda KT, Doench JG, Reichert E, Kung AL, Rodig SJ, Young RA, Shipp MA, Bradner JE. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013; 24:777-90.

28. Ma Y, Ou TM, Tan JH, Hou JQ, Huang SL, Gu LQ, Huang ZS. Quinolino-benzo-[5, 6]-dihydroisoquinolium compounds derived from berberine: a new class of highly selective ligands for G-quadruplex DNA in c-myc oncogene. Eur J Med Chem. 2011; 46:1906-13.

29. Yu Q, Wang P, Yang L, Wu Z, Li S, Xu Y, Wu B, Ma A, Gan X, Xu R. Novel synthetic tosyl chloride-berbamine regresses lethal MYC-positive leukemia by targeting CaMKIIγ/Myc axis. Biomed Pharmacother. 2019; 117:109134.

Figures

![Figure 1](image1)

Figure 1

Anti-proliferation of matrine in DLBCL cells. (A-B) SU-DHL-16 and OCI-LY3 cells were treated with matrine and vindesine at different concentrations for different times. The total viable cells were determined by CCK-8 assay. Analyses in triplicates.
Figure 2

Apoptosis induction of matrine in DLBCL cells through caspase-independent pathway. (A-B) SU-DHL-16 and OCI-LY3 cells were treated by matrine at different concentrations for 48 h and then determined for apoptotic cells by annexin V and PI staining with flow cytometry. (C-D) Percent of apoptotic cells induced by matrine at various concentrations. (E-F) SU-DHL-16 and OCI-LY3 cells were treated with different concentrations of matrine for 48 h, followed by western blot. GAPDH was used as a loading control. Full-
length blots are presented in Supplementary Figure 1. Analyses in triplicates. (**p< 0.01 compare to 0 mM group)

Figure 3

G0/G1 cell cycle arrest in matrine-treated DLBCL cells. (A-B) SU-DHL-16 and OCI-LY3 cells were exposed to matrine at different concentrations for 24 h and then stained with PI and analyzed for DNA content by flow cytometry. (C-D) Distribution of cell cycle percent induced by matrine at various concentrations. Analyses in triplicates. (*p< 0.05, **p< 0.01 compare to 0 mM group)
Reduced c-Myc protein expression by matrine in DLBCL cells. (A-B) SU-DHL-16 and OCI-LY3 cells were exposed to 1.76 mM and 4.1 mM matrine for 48 h, respectively, and c-Myc protein levels were measured by western blot. Full-length blots are presented in Supplementary Figure 2. (C-D) c-Myc mRNA levels in SU-DHL-16 and OCI-LY3 cells were determined by quantitative RT-PCR at 24 h after different concentrations of matrine treatment (n.s., not significant; **p < 0.01 compared to 0 mM group). (E-F) CHX chase assay for the half-life of c-Myc. SU-DHL-16 and OCI-LY3 cells were treated with or without 1.76 mM
and 4.1 mM matrine for 12 h, respectively. Cells were then treated with CHX for the indicated minutes, and western blotting was performed. Full-length blots are presented in Supplementary Figure 3. (G-H) c-Myc levels were quantified relative to GAPDH levels and graphed as percent c-Myc protein remaining after CHX treatment. Half-lives of c-Myc were calculated from exponential line equations and shown for each treat. Analyses in triplicates.

Figure 5
Matrine inhibited DLBCL cells via CaMKIlγ/c-Myc/CDK pathway. (A-B) SU-DHL-16 and OCI-LY3 cells were treated with 1.76 mM and 4.1 mM matrine for 48 h, respectively, and followed by western blot for CaMKIlγ, p-c-Myc (Ser62), c-Myc, CDK6 and CDK4 antibodies. GAPDH was used as loading control. Full-length blots are presented in Supplementary Figure 4. (C-D) The relative intensities of target proteins were normalized to those of loading control. Analyses in triplicates. (*p < 0.05, **p < 0.01)
Figure 6

Salvage of matrine-induced growth inhibition rescued by ectopic expression of c-Myc. (A) SU-DHL-16 cells were treated with or without 1.76 mM matrine and recombinant c-Myc adenovirus or control adenovirus for 48 h. The total viable cells were determined by CCK-8 analysis. (B) Western blot for c-Myc, CDK6 and CDK4 antibodies. GAPDH was used as loading control. Full-length blots are presented in Supplementary Figure 5. (C-E) The relative intensities of target proteins were normalized to those of loading control. Analyses in triplicates. (n.s., not significant; *p < 0.05, **p < 0.01)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- ResubmittedSupplementaryMaterialfiles20210218.docx