A Mixed-Methods Study to Examine the Role of Psychosocial Stress and Air Pollution on Hypertension in Mexican-Origin Hispanics

Amal Rammah1,2 · Kristina Walker Whitworth2,3 · Inkyu Han1,2 · Wenyaw Chan4 · Maria D. Jimenez1,2 · Sara S. Strom5 · Melissa L. Bondy6 · Elaine Symanski1,2

Received: 22 September 2017 / Revised: 4 April 2018 / Accepted: 10 April 2018 / Published online: 20 April 2018
© The Author(s) 2018

Abstract
Purpose Independent and combined effects of air pollution and psychosocial stressors on hypertension, a risk factor for cardiovascular disease, among Hispanics are not well studied.

Methods We administered a pilot-tested questionnaire on individual- and neighborhood-level psychosocial stressors, developed with community input, to nearly 2500 individuals from the MD Anderson Cancer Center cohort of Mexican-Americans. We used data from local air quality monitors to estimate individual exposures to ozone (O₃) and fine particulate matter (PM₂.₅) for the 12-month period preceding enrollment using inverse distance interpolation. We applied logistic regression models to examine relationships between exposures to psychosocial stressors and air pollution with prevalent hypertension and used stratified analyses to examine the interacting effects of these two exposures on hypertension.

Results There was a positive association between prevalent hypertension and a high frequency of feeling anxious or depressed (prevalence odds ratio (POR) = 1.36, 95% CI [1.06–1.75]) and experiencing aches and pains (POR = 1.29, 95% CI [1.01–1.64]). The odds of having hypertension were also elevated among those worrying about their own health (POR = 1.65, 95% CI [1.30–2.06]) or about not having enough money (POR = 1.27, 95% CI [1.01–1.6]). We observed an inverse association between O₃ and hypertension. There was no interaction between psychosocial stressors and O₃ on hypertension.

Conclusion Our findings add to the evidence of a positive association between individual and family stressors on hypertension among Hispanics and other racial/ethnic groups. Contrary to previous studies reporting positive associations, our results suggest that long-term exposure to O₃ may be inversely related to prevalent hypertension.

Keywords Air pollution · Psychosocial stress · Hypertension · Mexican-origin Hispanics
Introduction

A relatively large body of literature has examined associations between psychosocial stressors and hypertension, one of the leading risk factors for cardiovascular disease (CVD). Making comparisons between investigations, however, is challenging. Not only do the specific domains of psychosocial stress that have been evaluated vary between studies, but the indicators selected to measure these domains and the duration (e.g., acute versus chronic) and context (e.g., at work) in which stress occurs also differ [1]. Further, most of the research has focused on non-Hispanic whites [2–5].

Relatively less is known about the impact of psychosocial stress on the risk of hypertension among Hispanics in the United States (U.S.), for whom CVD is the leading cause of death [6]. Gallo et al. found that self-reported chronic stress was positively associated with increased odds of hypertension (OR = 1.10, 95% CI [1.02–1.19]) whereas traumatic stress was associated with a lower odds of hypertension (OR = 0.88, 95%, CI [0.82–0.93]) among adult Hispanics largely from Mexico, Cuba, and Central America [1]. Among postmenopausal Hispanic women, Zambrana et al. reported a positive association between depression and hypertension at baseline (OR = 1.25, 95% CI [1.04–1.51]), as well as between history of depression and pre-hypertensive status (OR = 1.27, 95% CI [1.01–1.61]) [7]. Acculturation has also been studied as a psychosocial risk factor for hypertension among Hispanics with conflicting findings [8–11]. Additionally, perceived race-based discrimination has been associated with hypertension among racial and ethnic minorities [12]. Hicken et al. found that racism-related vigilance, a source of chronic stress, is associated with hypertension among Hispanics (OR = 1.05, 95% CI [0.99–1.12]) [13]. Further, LeBron et al. report that Latino immigrants are more likely to experience increases in blood pressure associated with individual or institutional discrimination compared to US-born Latinos [14].

Beyond psychosocial stressors, there are ample studies underscoring the putative role of exposures to outdoor air pollutants on risk of hypertension [15–20]. Of particular concern is fine particulate matter (particulate matter with aerodynamic diameter less than 2.5 μm; PM2.5) [18, 21–24]. In contrast, fewer studies have examined the risks of hypertension associated with exposure to ozone (O3) [16, 18], a secondary air pollutant formed when oxides of nitrogen and volatile organic compounds interact in the presence of sunlight. Thus far, the relation between O3 exposure and hypertension is equivocal [25–30] and unlike PM2.5, no studies have investigated the association between O3 and hypertension among U.S. Hispanics.

Proinflammatory and oxidative stress pathways have been posited as underlying biological mechanisms for CVD. Potential pathways linking psychosocial stressors and CVD involve neuroendocrine activity of the autonomic nervous system (ANS) and the hypothalamus-pituitary adrenal (HPA) axis [31]. Ambient air pollutants are capable of mediating adverse cardiovascular responses through several mechanisms, such as impacting endothelial and other hemodynamic function, triggering acute autonomic imbalance and oxidative stress in the lungs with systematic inflammatory responses [15–20].

We designed a study to address the paucity of literature informing the role of air pollution and psychosocial stress on hypertension among individuals of Mexican-origin in Houston, Texas. In addition to being a busy seaport and home to the largest petrochemical complex in the country, Houston’s heavy traffic contributes to its poor air quality and the city’s diverse residents face documented health disparities [32–35].

In the present analysis, we recruited 2481 participants aged 20 years or older who enrolled in Mano a Mano Mexican-American cohort study in Houston, Harris County, Texas (n = 23,606) [38]. At baseline, participants complete an interview in the language of their choice (either English or Spanish) and provide information about health status, demographic characteristics, access to healthcare, degree of acculturation, lifestyle behaviors, and occupational and residential histories. As part of the Mano a Mano study, additional follow-up telephone interviews occur every 6 months.

For the present analysis, we recruited 2481 participants aged 20 years or older who enrolled in Mano a Mano between 2007 and 2014, based on responses to the question: “have you been told by a health professional that you have high blood pressure, also called hypertension?” After excluding participants (n = 13) without valid geographic coordinates for their residential address, the final sample size was 2468: 1135 cases with hypertension and 1333 controls without hypertension. There were 87 households with two participants and six households with more than two participants.

Methods

Study Population

Participants were randomly selected from The University of Texas MD Anderson Cancer Center (MDACC) Mano a Mano Mexican-American cohort study in Houston, Harris County, Texas (n = 23,606) [38]. At baseline, participants complete an interview in the language of their choice (either English or Spanish) and provide information about health status, demographic characteristics, access to healthcare, degree of acculturation, lifestyle behaviors, and occupational and residential histories. As part of the Mano a Mano study, additional follow-up telephone interviews occur every 6 months.

For the present analysis, we recruited 2481 participants aged 20 years or older who enrolled in Mano a Mano between 2007 and 2014, based on responses to the question: “have you been told by a health professional that you have high blood pressure, also called hypertension?” After excluding participants (n = 13) without valid geographic coordinates for their residential address, the final sample size was 2468: 1135 cases with hypertension and 1333 controls without hypertension. There were 87 households with two participants and six households with more than two participants.

 Springer
Psychosocial Stressors

We collected primary data in 2014–2015 during regularly scheduled Mano a Mano follow-up interviews. Following development of a questionnaire [39], trained interviewers administered a 32-item survey in the language preference of participants (English or Spanish) on psychosocial stressors in the home, neighborhood, and at work that they may have experienced at the time they enrolled. Questions were also asked about certain behaviors and lifestyle preferences that might affect exposure to air pollutants. Participants responded to each question using a five-point Likert scale: Not at all; Yes, a little bit; Yes, sometimes; Yes, a lot of the time; Yes, Most of the time. For analyses, responses were collapsed into three categories: low (no, not at all and yes, a little bit), medium (yes, sometimes) and high (yes, a lot of the time and yes, most of the time). Large proportions of participants (66% percent of cases and 63% of controls) did not answer the questions about work-related stressors (e.g., occupational exposure to chemicals, unsafe work conditions, working too hard). Hence, these questions were not further analyzed.

Long-Term Exposures to PM$_{2.5}$ and O$_3$

We obtained validated hourly air pollution data for O$_3$ and PM$_{2.5}$ from the Texas Commission on Environmental Quality (TCEQ), the environmental agency for the state. We used data from all active monitoring stations that continuously measured hourly O$_3$ ($n = 49$) and PM$_{2.5}$ ($n = 15$) concentrations in the 8-county greater Houston area (i.e., Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller Counties) for 2006 through 2014 (Fig. 1). We excluded one O$_3$ monitoring station and one PM$_{2.5}$ monitoring station reporting ≥25% missing observations over the entire study period. Ozone and PM$_{2.5}$ concentrations were reported in parts per billion and micrograms per cubic meter, respectively.

Exposure estimates were constructed using SAS (Version 9.4, SAS Institute, Cary, North Carolina) and ArcGIS Desktop (Release 10.2.2., Environmental Systems Research Institute (ESRI), Redlands, California). We calculated the maximum average eight-hour O$_3$ concentration within a 24-h period and the daily average PM$_{2.5}$ concentration for each monitoring station from January 1, 2006 to December 31, 2014. Using
this daily time series of O$_3$ and PM$_{2.5}$ concentrations, we assigned individual exposure estimates based on the average concentration for the 12-month period preceding baseline enrollment using inverse distance weighting (IDW; $p=2$) [40] for the three monitoring stations nearest to the participant’s geocoded residential address.

Covariates

Demographic characteristics were obtained during the baseline Mano a Mano interview. Age at baseline was categorized into four strata (<30, 30–39, 40–39, 50+). Education was assessed in terms of highest level completed and collapsed into three levels (< High School, High School/General Education Development (GED), and > High School education). Nativity status (U.S.- or Mexico-born) was used to measure acculturation. Annual household income in the year preceding baseline was broken down into four levels (\leq $24,999, $25,000 to $44,999, $45,000 to $74,999, \geq $75,000). Smoking and alcohol use were categorized as current, former, or never. Body Mass Index (BMI) was calculated and categorized as underweight/normal weight (< 25.0 kg/m2), overweight ($25.0 < 30.0$ kg/m2), extremely obese II ($35.0 < 40.0$ kg/m2), and extremely obese III (≥ 40.0 kg/m2). Having asthma at baseline as diagnosed by a healthcare provider was reported as “yes” or “no”.

Statistical Analyses

All statistical analyses were conducted using SAS software (Version 9.4, SAS Institute, Cary, North Carolina). We used logistic regression and computed prevalence odds ratios (POR) and 95% confidence intervals (CI) to examine associations between psychosocial stressors or air pollution and hypertension. We examined air pollution exposures as continuous or categorical (quartiles) variables, in separate models. The following variables were identified a priori as risk factors and included in all adjusted models: age, sex, nativity, smoking, alcohol, BMI, and having asthma. We also evaluated education and employment using the change-in-estimate approach [41] but their inclusion did not change the effect estimate by more than 10% and thus, they were excluded from the final models. We additionally used stratified analysis to examine potential interaction between air pollution and those psychosocial stressors that were independently associated with hypertension ($p < 0.05$).

Sensitivity Analyses

We conducted sensitivity analyses using air pollution exposure estimates constructed with a single (i.e., the closest) monitor and applied mixed-effects logistic regression models with household specified as random effect to account for the correlation among individuals living together in the same household.

The Institutional Review Boards at MDACC and the University of Texas Health Science Center at Houston (UTHHealth) approved the study and oral informed consent during phone interviews was obtained from all participants.

Results

The majority of participants lived within the Houston city limits (66.25%). The next largest proportion of participants lived in Pasadena (22.11%), a community located east of Houston, near the Houston Ship Channel and numerous industrial facilities. Individuals ranged in age from 20 to 60 years at baseline; the mean age was 53 years (SD 11.15) among cases and 40 years (SD 10.77) among controls (Table 1). Over 85% of cases and controls were women and most had less than 12 years of education (64% of cases and 57% of controls) and were born in Mexico (72% of cases and 85% of controls). A large proportion of cases (42%) and controls (39%) did not report on income (data not shown).

Selected percentiles of the distribution of O$_3$ and PM$_{2.5}$ exposures appear in Table 2. The median (IQR) O$_3$ exposure was 35.41 ppb (4.78) among cases and 36.07 ppb (2.69) among controls. The median (IQR) PM$_{2.5}$ exposure was 11.44 μg/m3 (1.12) among cases and 11.58 μg/m3 (0.85) among controls. Due to the lack of variability in estimated exposure to PM$_{2.5}$, we excluded this pollutant from subsequent analyses.

Table 3 presents adjusted associations between hypertension and sources of psychosocial stress. There was a positive association between both reporting high frequency of stress due to unfair or disrespectful treatment based on race, ethnicity, or immigration status (POR = 1.55, 95% CI [1.04–2.32]) as well as stress due to too much litter or trash in the neighborhood (POR = 1.48, 95% CI [1.06–2.07]) and hypertension. Lower odds of prevalent hypertension were observed among individuals experiencing medium (POR = 0.60, 95% CI [0.40–0.90]) and high (POR = 0.87, 95% CI [0.55–1.38]) levels of stress due to domestic violence.

Table 4 presents adjusted associations between stress-related conditions and hypertension. There was a positive association between both a high frequency of feeling anxious or depressed (POR = 1.36, 95% CI [1.06–1.75]) and experiencing aches, pains or nausea (POR = 1.29, 95% CI [1.0–1.64]) and hypertension. The odds of having hypertension were also elevated among those with concerns about health (POR = 1.65, 95% CI [1.30–2.06]) or not having enough money (POR = 1.27, 95% CI [1.01–1.6]).

Adjusted PORs (95% CIs) for the association between O$_3$ exposure and hypertension were 0.89 (0.69–1.15), 0.44 (0.33–0.58), and 0.55 (0.42–0.72) for the second, third, and fourth quartiles of O$_3$, respectively, as compared to the lowest
Table 1 Sociodemographic characteristics and self-reported hypertension among Mexican-origin Hispanics (N=2468) (missing observations are not shown), Houston, Texas, 2007–2014

	Cases (n=1135)	Controls (n=1333)	OR	95% CI	
Age (years)					
< 30	22	219	Ref		
30–39	131	503	2.59*	1.61	4.18
40–49	271	359	7.51*	4.72	11.97
50+	711	252	28.09*	17.71	44.55
Gender					
Men	163	99	Ref		
Women	972	1234	0.48*	0.37	0.62
Nativity					
Mexico	820	1131	Ref		
USA	314	201	2.16*	1.77	2.63
Education (years)					
13+	209	264	Ref		
< 12	722	764	1.19	0.97	1.47
High school graduate/GED	203	305	0.84	0.65	1.08
Employment					
Never	192	210	Ref		
Ever	936	1103	0.93	0.75	1.15
Smoking					
Never	842	1113	Ref		
Current	81	88	1.22	0.89	1.67
Former	211	132	2.11*	1.67	2.67
Alcohol Consumption					
Never	837	1049	Ref		
Current	169	200	1.06	0.85	1.33
Former	129	79	2.05*	1.53	2.75
Body mass index (kg/m^2)					
Underweight/normal weight (< 24.9)	103	244	Ref		
Overweight (25.0 to 29.9)	303	455	1.58*	1.20	2.07
Obese I (30.0 to 34.9)	309	350	2.09*	1.59	2.76
Obese II (35.0 to 39.9)	199	168	2.81*	2.06	3.82
Obese III (≥ 40.0)	190	75	6.00*	4.22	8.54
Asthma					
No	451	342	Ref		
Yes	684	991	0.52*	0.44	0.62

OR: odds ratio; CI: confidence interval

* p < 0.05 for associations between covariates and hypertension

Table 2 Distribution of annual 8-h maximum O₃ and 24-h average PM_{2.5} exposure estimates among Mexican-origin Hispanics (N=2468), Houston, Texas, 2007–2014

	Mean ± SD	25th percentile	50th percentile	75th percentile	Range
O₃ (ppb)					
Cases	35.45 ± 1.95	34.06	35.41	38.84	27.54–42.11
Controls	35.88 ± 2.04	34.56	36.07	37.25	23.77–43.97
PM_{2.5} (µg/m³)					
Cases	11.60 ± 0.92	10.94	11.44	12.06	9.51–14.88
Controls	11.77 ± 0.92	11.24	11.58	12.09	9.36–14.92
quartile. Odds of hypertension decreased by a factor of 0.90 for each parts per billion increase in exposure to O_3 (adjusted POR = 0.90, 95% CI [0.86–0.95]). There was no evidence of effect measure modification by psychosocial stress in the association between ozone and hypertension. These results did not change when using data from a single monitor to construct air pollution exposure estimates (data not shown). Further, the results from the mixed-effects models accounting for the correlation among individuals living in the same household were similar as well (Adjusted PORs (95% CIs) were 0.89 (0.68–1.15), 0.44 (0.33–0.59), and 0.55 (0.41–0.73) for the second, third and fourth quartiles of O_3, respectively).

Discussion

We examined co-exposures to air pollution and psychosocial stress among an overburdened population, i.e., Mexican-origin Hispanics living in Houston, Texas. We observed elevated odds of prevalent hypertension with several conditions resulting from stress including feeling anxious or depressed, experiencing aches, pains, or nausea and having concerns about poor health and not having enough money. Additionally, we detected associations between hypertension and being unfairly treated or disrespected because of race, ethnicity or immigration status and having too much litter and trash in the neighborhood. While we could not examine associations with PM$_{2.5}$ because of too little variability in our exposure estimates, we found inverse associations between ozone exposure and hypertension.

In our study, experiencing a high level of stress-induced anxiety or depression was associated with a 36% increase in the odds of prevalent hypertension. Zambrana et al. reported similar associations between depression and prevalent hypertension among postmenopausal Hispanic women ages 50 and older [7]. In a meta-analysis, Meng et al. reported elevated risks of hypertension with depression, which increased with longer follow-up time [42]. We also found that a high level of stress from unfair or disrespectful treatment based on race, ethnicity or immigration status was positively associated with hypertension, which is consistent with the literature on

Table 3

Association between sources of psychosocial stressors and prevalent hypertension among Mexican-origin Hispanics ($N = 2468$) (missing observations are not shown) Houston, Texas, 2007–2014

Stressor	Cases	Controls	POR*	95% CI	
Domestic violence					
Low	1023	1196	Ref		
Medium	58	85	0.60*	0.40	0.90
High	54	52	0.87	0.55	1.38
Problems with children					
Low	582	728	Ref		
Medium	249	352	1.03	0.82	1.31
High	279	249	1.17	0.92	1.49
Caring for a sick family member					
Low	788	1005	Ref		
Medium	145	156	1.03	0.77	1.37
High	202	172	0.99	0.76	1.30
Separated from family living elsewhere					
Low	866	890	Ref		
Medium	123	226	0.83	0.63	1.10
High	146	217	0.90	0.68	1.19
Contact with authorities/law enforcement					
Low	975	1112	Ref		
Medium	99	147	0.80	0.59	1.10
High	61	74	0.73	0.49	1.10
Unfair treatment/disrespect based on race, ethnicity or immigration status					
Low	179	357	Ref		
Medium	119	213	1.13	0.80	1.59
High	100	89	1.55*	1.04	2.32
Neighborhood noise					
Low	898	1106	Ref		
Medium	141	151	1.14	0.85	1.53
High	96	76	1.19	0.81	1.73
Neighborhood traffic/construction					
Low	749	884	Ref		
Medium	208	272	0.99	0.77	1.26
High	178	177	1.09	0.82	1.43
Neighborhood litter/trash					
Low	871	1070	Ref		
Medium	138	168	0.98	0.73	1.31
High	126	95	1.48*	1.06	2.07
Being safe in home or neighborhood					
Low	716	850	Ref		
Medium	255	340	0.99	0.79	1.24
High	164	143	1.21	0.90	1.62
Unknown people hanging around the neighborhood					
Low	788	922	Ref		
Medium	209	289	0.92	0.72	1.17
High	138	122	1.17	0.85	1.61
Violence at children’s school					
Low	845	956	Ref		

Table 3 (continued)

Stressor	Cases	Controls	POR*	95% CI	
Medium	152	235	0.82	0.63	1.07
High	138	142	1.13	0.84	1.52

*POR prevalent odds ratio; CI confidence interval

*p < 0.05 for associations between covariates and hypertension status

1 Adjusted for age, sex, nativity, smoking, alcohol consumption, BMI and asthma
perceived racial discrimination and hypertension [12–14]. In contrast, we observed that experiencing stress from domestic violence in the home resulted in lower odds of prevalent hypertension, which is similar to the inverse association reported previously between traumatic stressors (including physical or sexual assault) and hypertension [1].

We found an inverse association between 12-month averaged ozone exposure and prevalent hypertension. This finding is consistent with previous studies of short-term [29, 30] but not long-term exposure. Chuang et al. reported a 21.51-mmHg (95% CI [16.90–26.13]) change in systolic blood pressure and a 20.56-mmHg (95% CI [18.14–22.97]) change in diastolic blood pressure with an IQR increase of 8.95 ppb in 1-year averaged \(O_3\) concentrations among Taiwanese men and women ages 54 and older [27]. A study conducted in China found that an IQR increase of 22 µg/m³ (approximately 11 ppb) in 3-year averaged \(O_3\) concentrations increased the odds of prevalent hypertension (OR = 1.13, 95% CI [1.06–1.20]) [28]. In a study of black women in the U.S., Coogan et al. reported elevated risks of hypertension per IQR increase of 6.7 ppb of averaged \(O_3\) levels over 2 years (hazard ratio (HR) = 2.09, 95% CI [1.00–1.18]) [43].

Our study relied on prevalent cases of hypertension and was therefore unable to establish a temporal relationship between the exposures and the outcome. Further, the validity and accuracy of using self-reported hypertension have been evaluated with inconsistent results [44–49]. Hence, it will be important to evaluate the association of psychosocial stress and air pollution with incident hypertension when follow-up data become available in the Mexican-American Mano a Mano cohort. We constructed long-term estimates of \(O_3\) exposure based on the

Stress-related condition	Cases \((n = 1135)\)	Controls \((n = 1333)\)	\(\text{POR}^1\)	95% CI
Anxiety/depression due to stress	Low 596	758	Ref	
Medium 277	361	1.00	0.80	1.26
High 262	214	1.36*	1.06	1.75
Aches/pains/nausea due to stress	Low 594	754	Ref	
Medium 255	333	1.05	0.83	1.33
High 286	246	1.29*	1.01	1.64
Trouble sleeping due to stress	Low 552	740	Ref	
Medium 228	320	0.93	0.73	1.19
High 355	273	1.22	0.96	1.53
Worrying about not having enough time for oneself	Low 566	594	Ref	
Medium 226	360	0.80	0.63	1.02
High 343	379	0.96	0.77	1.20
Worrying about one’s own health	Low 430	658	Ref	
Medium 257	372	1.05	0.82	1.33
High 448	303	1.65*	1.30	2.06
Worrying about not having enough money	Low 450	518	Ref	
Medium 302	451	1.06	0.84	1.35
High 383	364	1.27*	1.01	1.60

\(\text{POR}\) prevalent odds ratio; CI confidence interval

* \(p < 0.05\) for associations between covariates and hypertension status

1 Adjusted for age, sex, nativity, smoking, alcohol consumption, BMI and asthma

Table 4 Associations between stress-related conditions and prevalent hypertension among Mexican-origin Hispanics \((N = 2468)\), Houston, Texas, 2007–2014
residential address of each participant using a relatively large air pollution database from stationary monitors in the study region. Thus, our exposure assessment likely captured spatial and temporal influences on outdoor air levels of ozone. Yet, the lack of equally distributed monitors in the study area may have introduced some error in our exposure assessment. Notwithstanding the complex and multi-dimensional aspects of stress that make it difficult to study, a strength of our study was in the use of mixed methods to assess exposure to psychosocial stressors.

Our study provides evidence of positive associations between multiple indicators of psychosocial stress in the family, social and neighborhood environments and hypertension in an ethnically homogenous population of Mexican-origin Hispanics. As CVD remains the leading cause of death among U.S. Hispanics, developing interventions that target some of these potentially modifiable sources of psychosocial stress may lead to improvements in cardiovascular health among this population.

Author Contributions Elaine Symanski designed the study and provided oversight for all aspects of data collection, analysis and interpretation. Melissa Bondy and Sara Strom provided access to the Mano a Mano cohort. Sara Strom oversaw data collection via phone interviews and Maria Jimenez served as the liaison between the MD Anderson Cancer Center interviewers and UTHealth School of Public Health researchers. Wenyaw Chan provided oversight of the statistical analysis; Amal Rammah performed all analyses. Amal Rammah and Elaine Symanski drafted the manuscript and Kristina Whitworth, Inkyu Han, and Sara Strom offered revisions of the manuscript. All authors contributed to and approved the final version.

Funding This work was supported by the U.S. Environmental Protection Agency (EPA) STAR grant (#83458101) and the National Institute of Occupational Safety and Health (NIOSH) Education and Research Center Grant (#5T42OH008421). The Mexican-American cohort study is partially supported by funds from the University of Texas MD Anderson Duncan Family Institute for Cancer Prevention and Risk Assessment and by funds collected pursuant to the Comprehensive Tobacco Settlement to the University of Texas MD Anderson Cancer Center. Funders had no role in the study design, data analysis or the preparation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

Ethical Approval The Institutional Review Boards at MDACC and the University of Texas Health Science Center at Houston (UTHealth) approved the study and oral informed consent during phone interviews was obtained from all participants. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Gallo LC, Roehs SC, Fortmann AL, Cameneth MR, Penedo FJ, Perreira K, et al. Associations of chronic stress burden, perceived stress, and traumatic stress with cardiovascular disease prevalence and risk factors in the Hispanic community health study/study of Latinos sociocultural ancillary study. Psychosom Med. 2014;76(6):468–75. https://doi.org/10.1097/PSY.0000000000000069.

2. Cuffee Y, Ogedegbe C, Williams NJ, Ogedegbe G, Schoenthaler A. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16(10):483. https://doi.org/10.1007/s11906-014-0483-3.

3. Esler M. Mental stress and human cardiovascular disease. Neurosci Biobehav Rev. 2017;74(Pt B):269–76. https://doi.org/10.1016/j.neubiorev.2016.10.011.

4. Sruinn TM. Chronic psychosocial stress and hypertension. Curr Hypertens Rep. 2010;12(1):10–6. https://doi.org/10.1007/s11906-009-0084-8.

5. Ushakov AV, Ivanchenko VS, Gagarina AA. Psychological stress in pathogenesis of essential hypertension. Curr Hypertens Rev. 2016;

6. Statistical Fact Sheet—Populations. Hispanics/Latinos and cardiovascular diseases—Statistics. Dallas: American Heart Association; 2016.

7. Zambrana RE, Lopez L, Dinwiddie GY, Ray RM, Eaton CB, Phillips LS, et al. Association of baseline depressive symptoms with prevalent and incident pre-hypertension and hypertension in postmenopausal Hispanic women: results from the Women’s Health Initiative. PLoS One. 2016;11(4):e0152765. https://doi.org/10.1371/journal.pone.0152765.

8. Eamranond PP, Legeda TD, Dier-Roux AV, Kandula NR, Palmas W, Siscovick DS, et al. Association between language and risk factor levels among Hispanic adults with hypertension, hypercholesterolemia, or diabetes. Am Heart J. 2009;157(1):53–9. https://doi.org/10.1016/j.ahj.2008.08.015.

9. Lopez L, Peralta CA, Lee A, Zeki Al Hazzouri A, Haan MN. Impact of acculturation on cardiovascular risk factors among elderly Mexican Americans. Ann Epidemiol. 2014;24(10):714–9. https://doi.org/10.1016/j.annepidem.2014.07.011.

10. Rodriguez CJ, Allison M, Daviglus ML, Isasi CR, Keller C, Leira EC, et al. Status of cardiovascular disease and stroke in Hispanics/Latinos in the United States: a science advisory from the American Heart Association. Circulation. 2014;130(7):593–625. https://doi.org/10.1161/cir.000000000000071.

11. Rodriguez F, Hicks LS, Lopez L. Association of acculturation and country of origin with self-reported hypertension and diabetes in a heterogeneous Hispanic population. BMC Public Health. 2012;12:768. https://doi.org/10.1186/1471-2458-12-768.

12. Dolezsar CM, McGrath JJ, Herzig AJ, Miller SB. Perceived racial discrimination and hypertension: a comprehensive systematic review. Health Psychol: Off J Div Health Psychol, Am Psychol Assoc. 2014;33(1):20–34. https://doi.org/10.1037/a0033718.
13. Hicken MT, Lee H, Morenoeff J, House JS, Williams DR. Racial/ethnic disparities in hypertension prevalence: reconsidereing the role of chronic stress. Am J Public Health. 2014;104(1):117–23. https://doi.org/10.2105/ajph.2013.301395.

14. LeBron AMW, Schulz AJ, Mentz G, Reyes AG, Gamboa C, Israel BA, et al. Impact of change over time in self-reported discrimination on blood pressure: implications for inequities in cardiovascular risk for a multi-racial urban community. Ethnicity Health. 2018:1–19. https://doi.org/10.1080/13557858.2018.1425378.

15. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. https://doi.org/10.1161/CIRC.0b013e3181dbee1.

16. Cai Y, Zhang B, Ke W, Feng B, Lin H, Xiao J, et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension. 2016;68(1):62–70. https://doi.org/10.1161/hypertensionaha.116.07218.

17. Franklin BA, Brook R, Arden Pope C 3rd. Air pollution and cardiovascular disease. Curr Probl Cardiol. 2015;40(5):207–38. https://doi.org/10.1016/j.cpcrd.2015.01.003.

18. Giorgi P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des. 2016;22(1):28–51.

19. Gold DR, Mittleman MA. New insights into pollution and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016;8(1):E8–e19. https://doi.org/10.3978/j.issn.2072-4139.2015.11.37.

20. Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–6.

21. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012;125(6):767–72. https://doi.org/10.1161/circulationaha.111.052753.

22. Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016;8(1):E8–e19. https://doi.org/10.3978/j.issn.2072-4139.2015.11.37.

23. Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens. 2014;32(11):2130–40; discussion 41. https://doi.org/10.1097/jhj.0000000000000342.

24. Zhang Z, Laden F, Forman JP, Hart JE. Long-term exposure to particulate matter and self-reported hypertension: a prospective analysis in the Nurses’ health study. Environ Health Perspect. 2016;124:1414–20. https://doi.org/10.1289/ehp.1603.

25. Brook RD, Kousha T. Air pollution and emergency department visits for hypertension in Edmonton and Calgary, Canada: a case-crossover study. Am J Hypertens. 2015;28(9):1121–6. https://doi.org/10.1093/ajh/hpu302.

26. Chiang KJ, Yan YH, Cheng TJ. Effect of air pollution on blood pressure, blood lipids, and blood sugar: a population-based approach. J Occup Environ Med / Am Coll Occup Environ Med. 2010;52(3):258–62. https://doi.org/10.1097/JOM.0b013e3181ceff7a.

27. Chiang KJ, Yan YH, Chiu SY, Cheng TJ. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup Environ Med. 2011;68(1):64–8. https://doi.org/10.1136/oem.2009.052704.

28. Dong QH, Qian ZM, Xaverius PK, Trevathan E, Maalouf S, Parker J, et al. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension. 2013;61(3):578–84. https://doi.org/10.1161/hypertensionaha.111.00003.

29. Hoffmann B, Luttmann-Gibson H, Cohen A, Zanobetti A, de Souza C, Foley C, et al. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ Health Perspect. 2012;120(2):241–6. https://doi.org/10.1289/ehp.1103647.

30. Szyzskowicz M, Rowe BH, Brook RD. Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension. The Can J Cardiol. 2012;28(3):360–6. https://doi.org/10.1161/jcja.2011.06.011.

31. Cuevas AG, Williams DR, Albert MA. Psychosocial factors and hypertension: a review of the literature. Cardiol Clin. 2017;35(2):223–30. https://doi.org/10.1016/j.ccl.2016.12.004.

32. Bangia KS, Symanski E, Strom SS, Bondy M. A cross-sectional analysis of polycyclic aromatic hydrocarbons and diesel particle matter exposures and hypertension among individuals of Mexican origin. Environ Health: Glob Access Set Source. 2015;14:51. https://doi.org/10.1186/s12940-015-0039-2.

33. Chakraborty J, Collins TW, Grineski SE, Montgomery MC, Hernandez M. Comparing disproportionate exposure to acute and chronic pollution risks: a case study in Houston, Texas. Risk Anal: Off Publ Soc Risk Anal. 2014;34(11):2005–20. https://doi.org/10.1111.risa.12224.

34. Collins TW, Grineski SE, Chakraborty J, Montgomery MC, Hernandez M. Downscaling environmental justice analysis: determinants of household-level hazardous air pollutant exposure in greater Houston. Ann Assoc Am Geogr. 2015;105(4):684–703.

35. Han I, Guo Y, Afshar M, Stock TH, Symanski E. Comparison of trace elements in size-fractionated particles in two communities with contrasting socioeconomic status in Houston, TX. Environ Monit Assess. 2017;189(2):67. https://doi.org/10.1007/s10661-017-5780-2.

36. Pastor M, Morello-Frosch R. Integrating public health and community development to tackle neighborhood distress and promote well-being. Health Affairs (Project Hope). 2014;33(11):1890–6. https://doi.org/10.1377/hlthaff.2014.0640.

37. Sadd JL, Pastor M, Morello-Frosch R, Scoggins J, Jeddle B. Playing it safe: assessing cumulative impact and social vulnerability through an environmental justice screening method in the South Coast Air Basin, California. Int J Environ Res Public Health. 2011;8(5):1441–59. https://doi.org/10.3390/ijerph8051441.

38. Chow WH, Chrisman M, Daniel CR, Ye Y, Gomez H, Dong Q, et al. Cohort profile: the Mexican American Mano a Mano cohort. Int J Epidemiol. 2017;46(2):e3. https://doi.org/10.1093/ije/dyx016.

39. Symanski E, Karpman M, Jimenez M, Lopez DS, Felknor SA, Upadhyaya M, et al. Using a community-engaged approach to develop a bilingual survey about psychosocial stressors among individuals of Mexican origin. J Health Care Poor Underserved. 2015;26(4):1456–71. https://doi.org/10.1353/ijh.2015.0136.

40. Waller LA, Gotway CA. Applied spatial statistics for public health data. Wiley; 2004.

41. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Lippincott Williams & Wilkins; 2008.

42. Meng L, Chen D, Yang Y, Zheng Y, Hui R. Depression increases the risk of hypertension incidence: a meta-analysis of prospective cohort studies. J Hypertens. 2012;30(5):842–51. https://doi.org/10.1097/JHJ.0b013e32835080b7.

43. Coogan PF, White LF, Yu J, Brook RD, Burnett RT, Marshall JD, et al. Long-term exposure to NO2 and ozone and hypertension incidence in the Black women’s health study. Am J Hypertens. 2017;30(4):367–72. https://doi.org/10.1093/ajh/hpw168.

44. Goldman N, Lin IF, Weinstein M, Lin YH. Evaluating the quality of coding abstracts in the Department of Veterans Affairs National Health Care Utilization Data. J Clin Epidemiol. 2003;56(2):148–54.

45. Mentz G, Schulz AJ, Mukherjee B, Raganathan TE, Perkins DW, Israel BA. Hypertension: development of a prediction model to adjust self-reported hypertension prevalence at the community level. BMC Health Serv Res. 2012;12:312. https://doi.org/10.1186/1472-6963-12-312.
46. Ning M, Zhang Q, Yang M. Comparison of self-reported and biomedical data on hypertension and diabetes: findings from the China health and retirement longitudinal study (CHARLS). BMJ Open. 2016;6(1):e009836. https://doi.org/10.1136/bmjopen-2015-009836.

47. Peterson KL, Jacobs JP, Allender S, Alston LV, Nichols M. Characterising the extent of misreporting of high blood pressure, high cholesterol, and diabetes using the Australian health survey. BMC Public Health. 2016;16:695. https://doi.org/10.1186/s12889-016-3389-y.

48. Sorensen M, Hoffmann B, Hvidberg M, Ketzel M, Jensen SS, Andersen ZJ, et al. Long-term exposure to traffic-related air pollution associated with blood pressure and self-reported hypertension in a Danish cohort. Environ Health Perspect. 2012;120(3):418–24. https://doi.org/10.1289/ehp.1103631.

49. White K, Avendano M, Capistrant BD, Robin Moon J, Liu SY, Maria GM. Self-reported and measured hypertension among older US- and foreign-born adults. J Immigr Minor Health. 2012;14(4):721–6. https://doi.org/10.1007/s10903-011-9549-3.