Ultrasound combined with hysteroscopy for optimum treatment of Robert’s uterus: a case report and a review

Ying Liu†, Chenxiao Hou* and Yingjie Zhou

Abstract
Background: Robert’s uterus, also known as asymmetric septate uterus, is a rare genital malformation first reported by Dr. Robert in 1970. Robert’s uterus is characterized by a septate uterus with a blind hemicavity and an intact external fundus. According to some reports, Robert’s uterus was typically managed by laparoscopic uterine resection of a hemicavity, laparoscopic endometrectomy, and even hysterectomy. Considering that fertility preservation is important in young patients, we recommend ultrasound-guided hysteroscopic septum resection as an optimum treatment for Robert’s uterus.

Case presentation: Herein is described a clinical case of Robert’s uterus in a 15-year-old girl who was misdiagnosed for primary dysmenorrhea in the beginning. Magnetic resonance imaging (MRI) and 3-dimensional (3D) ultrasound identified an asymmetrical uterine septum. The patient was treated using ultrasound-guided hysteroscopic treatment without laparoscopy. The surgical procedure lasted less than an hour, and the symptoms of dysmenorrhea were relieved during a six months follow-up.

Conclusions: Ultrasound-guided hysteroscopic septum resection is the preferred treatment for Robert’s uterus.

Keywords: Hysteroscopy, Laparoscopy, Malformation, Robert’s uterus, Ultrasound
operating room to guide various operations to reduce intraoperative risks and complications. Frequent use of ultrasound improves training opportunities for trainers and clinicians.

Case presentation

Here, we report the case of a female patient initially misdiagnosed for primary dysmenorrhea. A 15-year-old woman suffering from dysmenorrhea with regular menstruation was referred to our department. She complained of dysmenorrhea in the past year, mainly in the right lower abdomen, accompanied by nausea, vomiting, and fever. Pain medication had to be regularly taken during menstruation. After menstruation, the pain was relieved, and the temperature returned to normal. There was no special treatment because the preliminary local pelvic 2-dimensional (2D) ultrasound showed no abnormalities in the uterus. After coming to our hospital, no apparent abnormalities were found in the gynecological physical examination. MRI performed in our department showed a single-horned uterus (Fig. 1). The residual horned uterus did not appear to be connected to the uterine cavity. Our central 3D ultrasound showed that the bottom of the uterus was slightly depressed, and the right uterine cavity was not connected to the cervix. Still, the endometrial was visible, and the left uterine cavity was connected to the cervix (Fig. 2). The patient had no symptoms of urinary abnormalities and ultrasound of the urinary system showed that both kidneys were normal. Hence, the patient was diagnosed with Robert’s uterus and scheduled for hysteroscopic treatment combined with ultrasound.

During the hysteroscopic operation a normal-sized vaginal and cervix were seen under the hysteroscopic lens. Abdominal ultrasound can guide the doctor dilated into the uterine cavity with the expansion rod in real time. Under ultrasonic display, the uterus was clearly exposed by the filling bladder. After hysteroscopic electroacupuncture entered the uterine cavity, the position of the electroacupuncture could be observed on the ultrasonic display. The lowest point where the septum was incised starting from was identified by abdominal ultrasound. The starting point was confirmed, the hysteroscopic electric needle was cut into the right uterine cavity from the left side, and blood outflow was visible. During the operation, the uterine cavity and myometrium were dotted with strong echoes due to thermal effects, but the integrity of the uterine contour could still be seen on the monitor. After the uterine septum was displayed on both sides, the uterine septum was removed from the lowest point of the uterine septum to the bottom of the uterus. A successful unification of the two sides was finally recorded (Fig. 3). Both oviduct openings were seen under hysteroscopy (Fig. 4). During a six months follow-up, dysmenorrhea disappeared.

Discussion and conclusions

Robert’s uterus, or asymmetric uterus, is an uncommon uterine müllerian anomaly first reported by Dr. Robert in 1970[3]. Ultrasound plays a key role in reproductive medicine diagnosis. Deenadayal et al. reported that a well-trained and dedicated ultra-sonographer could measure the uterine septum thickness, the outer contour of the uterus, and pelvic endometriosis using modern 3D US technology [4]. In their opinion, 3D US is better in providing a correct diagnosis and intraoperative monitoring. Most reports of Robert’s uterus are case reports for which treatment has not been established. Initially, laparotomy was the treatment choice for Robert’s uterus since the 70 s. Rebelo et al. reported the case of a 17-year-old patient who underwent a right hemicystectomy to protect fertility instead of the previously recommended total hysterectomy [5]. Capito et al. simultaneously
performed a complete endometrectomy and myome-
trium reconstruction on a 15-year-old woman diagnosed
with Robert’s uterus [6]. Vural and colleagues diagnosed a
24-year-old patient with Robert’s uterus who underwent
a laparotomy. After endometrectomy was performed
through a hysterotomy incision, she got pregnant. How-
ever, a cesarean section was performed during birth due
to combined placenta implantation [7]. The early proce-
dure would have caused serious damage to uterus, post-
operative scar pregnancy and placenta implantation. To
avoid overtreatment, Robert’s uterus should be distin-
guished from a bicornuate-unicollis uterus, which might
be requires a hemi-hysterectomy.

Hysteroscopic metroplasty has become an accepted
procedure for the treatment of the uterine septum as the
endometrial damage is small, scar formation is avoided,
and the operating time is short. In recent years, hys-
teroscopic treatment of Robert’s uterus has generally
been performed under laparoscopic monitoring [8]. We
have performed a comparison of the ultrasound-guided
and laparoscopic-guided hysteroscopies for metroplasty.
Vigoureux et al. showed that hysteroscopic with abdo-
nal ultrasound guidance has advantages in both short-
term and long-term postoperative complications, such as
perforation and persistent septum [9].

In our abdominal ultrasound-guided hysteroplasty
case, the bladder was filled to expose the fundus of the
uterus. Our experienced sonographer could see the
dilation path in real time during cervical dilation. Hys-
teroplasty requires the surgeon to move up from the
lowest end of the asymmetric diaphragm. Hysteroplasty
maximizes the uterine cavity, and the remaining fundus
muscle layer should be greater than 1 cm. All of these
requirements can be achieved with abdominal ultra-
sound guidance. It should be noted that the absence of
laparoscopy occurred only when there was no endo-
metriosis in the preoperative evaluation. Considering
that preoperative MRI and ultrasound did not indi-
cate ovarian endometriosis in our case, we designed a
therapeutical strategy of ultrasound-guided hystero-
scopic surgery with the patient’s parents permission.
We believe that hysteroscopic hysteroplasty guided by
abdominal ultrasound is necessary even in the presence
of preoperative pelvic endometriosis. Abdominal ultra-
sound guidance can compensate for the deficiency of
laparoscopic guidance and obtain real-time mediastinal
resection information. Women with known intrauter-
ine pathologic factors should undergo ultrasound-con-
trolled surgical hysteroscopy to avoid unnecessary
laparoscopy.

Fig. 3 Image of hysteroscopic surgery. **A** Asymmetric uterine septum visible under hysteroscopy. **B** Right fallopian tube opening revealed after mediastectomy. **C** Complete uterine cavity after hysteroscopy.

Fig. 4 Ultrasonic monitoring picture. **A** Only the filling of the left uterine cavity could be seen on the ultrasound, and the asymmetric uterine septum could be clearly shown and measured in this section. **B** Real-time display of electric hook position under bladder filling (black arrow). **C** Abdominal ultrasound monitoring of uterine cavity communication.
Abbreviations
MRI: Magnetic resonance imaging; 3D: 3-Dimensional; 2D: 2-Dimensional; US: Ultrasound; AFS: American Fertility Society.

Acknowledgements
The authors would like to thank all members of the Department of Gynaecology at the Second Hospital of Hebei Medical University for their scientific advice and encouragement.

Author contributions
CXH and YL contributed to conceptualization and resource acquisition for the study. CXH conducted the literature search and wrote the original draft of the manuscript. YJZ contributed to the writing, reviewing, and editing of the manuscript. All authors have read and approved the manuscript.

Author information
Ying Liu is first author. Chenxiao Hou is corresponding author.

Funding
This work was supported by Grants from the Hebei Province Health Commission of China (20180304). The funding supported authors for the research and publication of this article.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Written informed consent for publication of their clinical details and/or clinical images was obtained from the patient.

Competing interests
The authors declare that they have no competing interests.

Received: 9 March 2022 Accepted: 24 July 2022
Published online: 07 August 2022

References
1. Di Spiezio SA, Campo R, Gordts S, Spinelli M, Cosimato C, Tanos V, et al. The comprehensiveness of the ESHRE/ESGE classification of female genital tract congenital anomalies: a systematic review of cases not classified by the AFS system. Hum Reprod. 2015;30(5):1046–58.
2. Acién P, Acién MI. The history of female genital tract malformation classifications and proposal of an updated system. Hum Reprod Update. 2011;17(5):693–705.
3. Robert H. Asymmetrical bifidities with unilateral menstrual retention. Chirurgie. 1970;96:796–9.
4. Deenadayal M, Günther V, Alkatout I, Freytag D, Deenadayal-Mettler A, Deenadayal Tolani A, et al. Critical role of 3D ultrasound in the diagnosis and management of Robert’s uterus: a single-centre case series and a review. Facts Views Vis Obgyn. 2021;13(1):41–9.
5. Rebelo T, Almeida e Sousa LA, Sampiao MG, Martins MJ, Santos AA. Asymmetric septate uterus with unilateral menstrual retention. A rare uterine malformation. Acta Med Port. 1997;10(10):721–4.
6. Capito C, Sarnacki S. Menstrual retention in a Robert’s uterus. J Pediatr Adolesc Gynecol. 2009;22(5):e104–6.
7. Vural M, Yıldız S, Cece H, Camuzcuoğlu H. Favourable pregnancy outcome after endometrectomy for a Robert’s uterus. J Obstet Gynaecol. 2011;31(7):668–9.
8. Shah N, Changede P. Hysteroscopic management of Robert’s uterus. J Obstet Gynaecol India. 2020;70(1):86–8.
9. Vigoureux S, Fernandez H, Capmas P, Levalliant JM, Legendre G. Assessment of abdominal ultrasound guidance in hysteroscopic metroplasty. J Minim Invasive Gynecol. 2016;23(1):78–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.