A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection

Kui-Chao Liu¹, Zhen-Yi Zhang¹, Chong-Xin Shan²,³, Zhi-Qing Feng¹, Jia-Su Li¹, Chun-Lei Song¹, Ya-Nan Bao¹, Xiao-Hui Qi¹ and Bin Dong¹

A Ln³⁺-doped (Yb³⁺, Tm³⁺ or Yb³⁺, Er³⁺ co-doped) NaYF₄ nanoparticle/poly styrene hybrid fibrous membrane (HFM) was fabricated using an electrospinning technique. The HFM shows upconversion luminescence (UCL), flexibility, superhydrophobicity and processability. The UCL membrane can be used as a fluorescence sensor to detect bioinformation from a single water droplet (~10 μl). Based on the fluorescence resonance energy transfer, the detection limits of this sensor can reach 1 and 10 ppb for the biomolecule, avidin, and the dye molecule, Rhodamine B, respectively, which are superior to most of the fluorescence sensors reported in previous works. After the fluorescence detection, the target droplet was easily removed without residues on the UCL membrane surface due to its superhydrophobic property, which exhibits an excellent recyclability that cannot be achieved by traditional liquid-based detection systems.

Light: Science & Applications (2016) 5, e16136; doi:10.1038/lsa.2016.136; published online 12 August 2016

Keywords: electrospinning; fibrous membrane; fluorescence resonance energy transfer; fluorescence sensor; superhydrophobic surface; upconversion luminescence

INTRODUCTION

Biological or medical detection by using reliable fluorescence materials as a probe has attracted growing attention in recent years because it can effectively sense the available information from the target solution within a very short time. In recent years, upconversion-luminescence (UCL) materials have attracted increasing interest for upconversion lasers, solar cells, photocatalysis, and biological labeling and sensing. Compared with traditional single-photon-excited fluorescence materials, such as semiconductor quantum dots and organic fluorophores, UCL materials exhibit numerous advantages for potential applications in a luminescent biosensor, including high sensitivity, minimum photodamage to living organisms, weak auto-fluorescence, etc. Among the UCL nanomaterials, NaYF₄ nanoparticles (NPs) co-doped with trivalent lanthanide ions (Ln³⁺) are regarded as the most promising. This is because the Yb³⁺ ions serve as a sensitizing agent to hold multiple near-infrared photons that then transfer to the luminescence center of neighboring Er³⁺ (or Tm³⁺) ions, resulting in efficient light emission in the visible region. Although the Ln³⁺ co-doped NaYF₄ NPs that have high surface areas can be easily dispersed in the liquid phase to initiate the UCL biodetection due to the fluorescence resonance energy transfer (FRET) between the upconversion-luminescence nanoparticle (UCLNP) (donor) and the chromophores (acceptor), these particulate sensors, when suspended in a target solution, are usually unstable, irreproducible and exhibit poor processability. Therefore, it is important to develop a novel free-standing solid UCL sensor that possesses not only ultra-high sensitivity but also excellent recyclability and tailorability.

The assembly of individual UCLNPs into transparent polymer nanostructures to construct an inorganic/organic hybrid material on the macroscopic scale is an efficient strategy to achieve a high-performance UCL biosensor that satisfies the above required advantages. This hybrid material can integrate the properties of both the inorganic UCLNPs (two- or multi-photon absorption and anti-stokes shift behaviors) and the organic polymer (lightweight, flexibility and processability). To develop the recycling characteristics, the UCLNPs should be coated with a hydrophobic polymer to avoid direct contact (or interaction) between the sensitive NPs and the chromophores in aqueous solutions. Furthermore, a micro- or nano-scale polymer coating is required to produce photon energy absorption and emission of the covered UCLNPs. The challenge for these designs is the proper choice of a fabrication method for efficient self-assembly of the UCLNPs into a desirable polymer micro- or nano-matrix and their further accumulation in the macroscopic scale for UCL detection.

Electrospinning is a facile and convenient technique to produce a polymer or related hybrid fibrous membrane (HFM) by which various types of additives ranging from tiny molecules to microscopic...
Synthesis of NaYF₄ NPs co-doped with Yb³⁺ and Er³⁺ ions

The NaYF₄ NPs, which include 18% Yb³⁺ and 2% Er³⁺, were synthesized using the solvothermal method. During this synthesis process, a transparent mixture solution, which was labeled as solution A, was prepared firstly through dissolving 1.2 mmol of NaCl, 0.48 mmol of YCl₃, 0.108 mmol of YbCl₃, and 0.012 mmol of ErCl₃ into a 9 ml of ethylene glycol (EG) solvent. Afterwards, the other transparent solution, which was labeled as solution B, was obtained by mixing the 3.0 mmol of NH₄F and 0.006 mmol of hydrophilic polyethyleneimine (PEI) in a 6 ml of EG solvent. Subsequently, the solution A was added into the solution B to form a new mixture (precursor solution) after stirring vigorously for 10 min. This precursor solution was then sealed into a Teflon-lined autoclave with the volume of 25 ml and kept the temperature at 200 °C for 120 min. Thus, the target sample with white color was achieved by centrifugation, cleaned with ethanol four times and N, N-dimethylformamide (DMF) twice and finally dispersed in DMF solvent.

Synthesis of NaYF₄ NPs co-doped with Tb³⁺ and Tm³⁺ ions

The NaYF₄ NPs, which include 20% Yb³⁺ and 2% Er³⁺, were synthesized using the solvothermal method. During this synthesis process, a transparent mixture solution, which was labeled as solution A, was prepared firstly through dissolving 1.2 mmol of NaCl, 0.48 mmol of YCl₃, 0.12 mmol of YbCl₃, and 0.0012 mmol of TmCl₃ into a 9 ml of EG solvent. Afterwards, the other transparent solution, which was labeled as solution B, was obtained by mixing the 3.0 mmol of NH₄F and 0.006 mmol of hydrophilic polyethyleneimine (PEI) in a 6 ml of EG solvent. Subsequently, the solution A was added into the solution B to form a new mixture (precursor solution) after stirring vigorously for 10 min. This precursor solution was then sealed into a Teflon-lined autoclave with the volume of 25 ml and kept the temperature at 200 °C for 120 min. Thus, the target sample with white color was achieved by centrifugation, cleaned with ethanol four times and DMF twice and finally dispersed in DMF solvent.

Fabrication of the UCL membranes

Approximately 0.4 g of PS powder (Mw = 350 000) was dissolved into 5 ml of the above UCL NP/DMF solution at 50 °C (~0.08 M for the NaYF₄:Yb³⁺, Tm³⁺ NPs and for ~0.1 M of the NaYF₄:Yb³⁺, Er³⁺ NPs). This composite solution was then transferred to a plastic syringe for electrospinning. The applied negative voltage was fixed at 10 kV, and the collection distance was chose at 15 cm. Thus, the NaYF₄:Yb³⁺, Tm³⁺ and the NaYF₄:Yb³⁺, Er³⁺ NPs-embedded PS electrospin nanofibers were fabricated to produce upconversion blue emission and green emission membranes, respectively.

Characterization

The phase structures of the as-synthesized products were investigated by X-ray diffraction (XRD) technique (Cu Kα line at 0.1541 nm; XRD-6000, Shimadzu, Japan). The surface morphologies of these products were observed by a field emission scanning electron microscopy (FE-SEM) (S-4800, Hitachi, Japan), and their inner micro-structures were revealed by a transmission electron microscopy (TEM) (JEM-2100, JEOL, Japan). The optical properties of these products were detected by a Lambda 750 UV–Vis–NIR spectrophotometer (Perkin-Elmer, USA). The fluorescence spectra were recorded using a F4600 fluorimeter (Shimadzu, Japan). The water contact angles of the products were measured with a droplet analysis system (DSA100, Kruss, Germany) at five different points.

Fluorescence detection on a single water droplet

A schematic diagram of the fluorescence measurement is presented in Figure 3c in which the optical signals generated from both the UCL membrane and the detecting droplet are investigated simultaneously. The as-fabricated membrane was put onto the upside of a glass slide, and an intersection angle of 45° was maintained between this glass slide and the incident laser (980-nm diode). Then, a water droplet (10 μl) containing a certain concentration of avidin or RhB was dropped onto the membrane surface. The continuous 980-nm diode laser was used to pump the droplet position of the membrane surface, and the corresponding signal was collected using an iHR 550 spectrometer located along the vertical direction of the incident laser at a spectral resolution of 0.1 nm. All of the measurements were conducted at room temperature.

RESULTS AND DISCUSSION

The Ln³⁺-doped NaYF₄ NPs were synthesized via a facile solvothermal method with hydrophilic PEI as the surfactant to guide the growth of the crystals, and the upconversion (UC) emission spectra were finely tuned from the visible to near-infrared region by modulating the ratios or species of the dopants (Yb³⁺, Tm³⁺ and Er³⁺) in the NaYF₄ host lattice. Meanwhile, the synthesized Ln³⁺-doped NaYF₄ NPs were well-dispersed in the solvent of DMF. This provided a favorable opportunity for electrospinning of the UCLNPs/PS HM due to the good solubility of the PS polymer in the DMF solvent. Thus, the as-synthesized UCLNPs were centrifuged to remove the excess residual surfactant and solvent and then dispersed in DMF solution. To manifest strong UC emission intensity, a high concentration of Ln³⁺-doped NaYF₄ NPs was required (~0.08 M for the NaYF₄:Yb³⁺, Tm³⁺ NPs and ~0.1 M for the NaYF₄:Yb³⁺, Er³⁺ NPs). Afterwards, the PS polymer, the host matrix, was also dissolved into the UCLNP-suspended solution to obtain the electrospun precursor solution. After electrospinning this viscous solution, the UCLNPs could be immersed within the PS nanofibers, which then interweaved to form a HFM. In our present work, the NaYF₄:Yb³⁺, Tm³⁺ and NaYF₄:Yb³⁺, Er³⁺ NP-embedded PS electrospin nanofibers were fabricated to produce blue and green UCL membranes, respectively. The UCL originated from the embedded NaYF₄:Yb³⁺, Tm³⁺ (Er³⁺) NPs, which allowed the electrospun HFM to be used as a UCL sensor with high sensitivity. Furthermore, because of the intrinsic nature of the PS nanofibrous framework, the free-standing HFM is also flexible and freely tailorable.

Figure 1a shows the TEM image of the as-synthesized NaYF₄:Yb³⁺, Tm³⁺ NPs. The particles are spherical in shape with an average diameter of 35 ± 10 nm. The high-resolution TEM (HRTEM) image
NaYF4:Yb3+,Tm3+ NPs are in agreement with the characteristic peaks of the polymer. All of the diffraction peaks on the curve of the pure PS nano-structure of the electrospun nano-fibers, which correspondingly originated from the cubic NaYF4 crystals (JCPDS-77-2042), indicating the high crystallinity of the polymer. According to the Cassie–Baxter equation\(^{39,42}\):

$$\cos \theta \ast = f_1 \cos \theta_1 + f_2 \cos \theta_2$$

where \(\theta\) and \(\theta^\ast\) are the WCA on a flat surface and a rough surface, respectively, and \(f_1\) and \(f_2\) are the fractions of liquid/solid and liquid/gas contact areas, for which \(f_1 + f_2 = 1\). We conclude that an electrospun membrane with a rough surface could enhance the hydrophobic property of the PS polymer by either decreasing the liquid/solid contact areas.

The surface wettability of the as-electrospun HFMs was investigated using water contact angle (WCA) measurements. The WCA results and selected water droplet images that were tested on different positions of the HFM are shown in Figure 2c. All of the water droplets erect on the membrane surfaces with an average CA of \(\sim 153^\circ\), which implies that a superhydrophobic surface on the UCL membrane was constructed via the rational combination of the low surface energy of the polymer and the unique hierarchical micro-/nanostructures of the electrospun fibrous membrane. The as-electrospun UCL membrane, which is interweaved by the randomly-oriented PS nanofibers, possesses a relatively rough surface compared with the flat PS film. This may result in a decreased contact area between the water droplet and the electrospun PS membrane by trapping the air bubbles in the spaces between the interwoven PS fibers. According to the Cassie–Baxter equation\(^{39,42}\):

$$\cos \theta \ast = f_1 \cos \theta_1 + f_2 \cos \theta_2$$

where \(\theta\) and \(\theta^\ast\) are the WCA on a flat and rough surface, respectively, and \(f_1\) and \(f_2\) are the fractions of liquid/solid and liquid/gas contact areas, for which \(f_1 + f_2 = 1\). We conclude that an electrospun membrane with a rough surface could enhance the hydrophobic property of the PS polymer by either decreasing the liquid/solid contact areas.

The surface wettability of the as-electrospun HFMs was investigated using water contact angle (WCA) measurements. The WCA results and selected water droplet images that were tested on different positions of the HFM are shown in Figure 2c. All of the water droplets erect on the membrane surfaces with an average CA of ~153°, which implies that a superhydrophobic surface on the UCL membrane was constructed via the rational combination of the low surface energy of the polymer and the unique hierarchical micro-/nanostructures of the electrospun fibrous membrane. The as-electrospun UCL membrane, which is interweaved by the randomly-oriented PS nanofibers, possesses a relatively rough surface compared with the flat PS film. This may result in a decreased contact area between the water droplet and the electrospun PS membrane by trapping the air bubbles in the spaces between the interwoven PS fibers. According to the Cassie–Baxter equation\(^{39,42}\):

$$\cos \theta \ast = f_1 \cos \theta_1 + f_2 \cos \theta_2$$

where \(\theta\) and \(\theta^\ast\) are the WCA on a flat and rough surface, respectively, and \(f_1\) and \(f_2\) are the fractions of liquid/solid and liquid/gas contact areas, for which \(f_1 + f_2 = 1\). We conclude that an electrospun membrane with a rough surface could enhance the hydrophobic property of the PS polymer by either decreasing the liquid/solid contact areas.

The surface wettability of the as-electrospun HFMs was investigated using water contact angle (WCA) measurements. The WCA results and selected water droplet images that were tested on different positions of the HFM are shown in Figure 2c. All of the water droplets erect on the membrane surfaces with an average CA of ~153°, which implies that a superhydrophobic surface on the UCL membrane was constructed via the rational combination of the low surface energy of the polymer and the unique hierarchical micro-/nanostructures of the electrospun fibrous membrane. The as-electrospun UCL membrane, which is interweaved by the randomly-oriented PS nanofibers, possesses a relatively rough surface compared with the flat PS film. This may result in a decreased contact area between the water droplet and the electrospun PS membrane by trapping the air bubbles in the spaces between the interwoven PS fibers. According to the Cassie–Baxter equation\(^{39,42}\):

$$\cos \theta \ast = f_1 \cos \theta_1 + f_2 \cos \theta_2$$

where \(\theta\) and \(\theta^\ast\) are the WCA on a flat and rough surface, respectively, and \(f_1\) and \(f_2\) are the fractions of liquid/solid and liquid/gas contact areas, for which \(f_1 + f_2 = 1\). We conclude that an electrospun membrane with a rough surface could enhance the hydrophobic property of the PS polymer by either decreasing the liquid/solid contact areas.

The surface wettability of the as-electrospun HFMs was investigated using water contact angle (WCA) measurements. The WCA results and selected water droplet images that were tested on different positions of the HFM are shown in Figure 2c. All of the water droplets erect on the membrane surfaces with an average CA of ~153°, which implies that a superhydrophobic surface on the UCL membrane was constructed via the rational combination of the low surface energy of the polymer and the unique hierarchical micro-/nanostructures of the electrospun fibrous membrane. The as-electrospun UCL membrane, which is interweaved by the randomly-oriented PS nanofibers, possesses a relatively rough surface compared with the flat PS film. This may result in a decreased contact area between the water droplet and the electrospun PS membrane by trapping the air bubbles in the spaces between the interwoven PS fibers. According to the Cassie–Baxter equation\(^{39,42}\):

$$\cos \theta \ast = f_1 \cos \theta_1 + f_2 \cos \theta_2$$

where \(\theta\) and \(\theta^\ast\) are the WCA on a flat and rough surface, respectively, and \(f_1\) and \(f_2\) are the fractions of liquid/solid and liquid/gas contact areas, for which \(f_1 + f_2 = 1\). We conclude that an electrospun membrane with a rough surface could enhance the hydrophobic property of the PS polymer by either decreasing the liquid/solid contact areas.
contact areas or increasing the liquid/gas contact areas. Thus, water droplets with a quasi-spherical shape can be easily aligned on the HFM surfaces with designed patterns. For example, the four letters 'DLUN' were patterned, as shown in Figure 2c. Using the advantage of the superhydrophobic surface, the dye or biomolecules that were dissolved in the water droplets were carried away after detection, therefore produce a self-cleaning function for the UCL membrane. In addition, as a result of the free-standing and flexible properties for the electrospun polymer membrane, we could tailor or process these membranes into arbitrary structural shapes on the macroscopic scale, such as a rectangle, zigzag forms, a cylinder, etc (Figure 2d).

Engineering and integrating the well-designed functional properties in the as-fabricated solid membrane may produce new ideas for sensing fluorescence molecules from a single water droplet. Here, we used aqueous solutions of avidin and RhB as the target liquid to evaluate the sensitive performance of the as-fabricated UCL membrane. Avidin is a common fluorescence biomolecule with a wide light- absorption band that overlaps with the UC emission spectrum of the NaYF₄:Yb³⁺, Tm³⁺/PS HFM in the blue light region. Meanwhile, the absorption peak of RhB has a certain degree of overlap with the UC emission spectrum of the NaYF₄:Yb³⁺, Er³⁺/PS HFM in the green light region (Figure 3a). The overlapped spectra of the UCL membrane (as the donor) and the fluorescence molecule (as the acceptor) may induce an energy transfer process via long-range dipole-dipole interactions, the so-called FRET, which will enhance the luminescence emission intensity from the fluorophore at a very low concentration. To fulfill this energy transfer process, another essential condition is to maintain the distance between the donor and acceptor fluorophores to within a few nanometers. As shown in the TEM images of the as-fabricated hybrid nanofibers (Supplementary Fig. S1), some of the UCLNPs are exposed on the nanofiber surfaces with a PS coating layer that is thinner than 3 nm. Therefore, in our case, the FRET process occurs when loading the target droplet on the surface of the as-fabricated membrane to perform the UCL detection. Upon irradiation with visible light with photon energies that are equal to the main UC emission from the UCL membranes (480 nm for the NaYF₄:Yb³⁺, Tm³⁺/PS HFM and 540 nm for the NaYF₄:Yb³⁺, Er³⁺/PS HFM), the photoluminescence (PL) bands for the aqueous solution of avidin and RhB should be ~525 and 610 nm, respectively (Figure 3b).

Based on the above results and analyses, we conducted fluorescence sensing tests on a single water droplet containing trace amounts of fluorescence molecules by using the as-fabricated UCL membranes as the sensors. The schematic diagram of the fluorescence measurement is presented in Figure 3c in which the optical signals generated from both the UCL membrane and the detecting droplet are detected simultaneously. As observed in Figure 3d, upon excitation of the avidin droplet-loaded NaYF₄:Yb³⁺, Tm³⁺/PS HFM with the 980-nm LD, a new PL emission band at ~530 nm emerged in the emission spectrum in comparison with that of the pure NaYF₄:Yb³⁺, Tm³⁺/PS HFM. Furthermore, by increasing the avidin concentration in the water droplet, the blue thulium emission centered at 480 nm decreased gradually, and the avidin emission peak at ~530 nm increased accordingly. No emission from either avidin or RhB was observed under 980-nm irradiation because there is almost no light absorption in this wavelength region for these fluorophores. Thus, the
feature fluorescence group of the avidin molecule in the water droplet absorbed the photon energy in the blue region that was generated from the 980-nm-excited NaYF₄:Yb⁺³⁺, Tm⁺³⁺/PS HFHM that overlapped with its absorption spectrum. It then emitted lower-energy green-light photons via a down-conversion luminescence process. Thus, we easily sensed relevant bioluminescence information from a target droplet by detecting variations in the fluorescence intensities using the UCL membrane as a free-standing solid sensor. To further strengthen this conclusion, we detected a water droplet containing different concentrations of RhB by using the NaYF₄:Yb⁺³⁺, Er⁺³⁺/PS HFHM under irradiation of 980 nm. As expected, the characteristic fluorescence band of RhB that centered at ~ 610 nm was observable in the emission spectrum of the UCL membrane. Meanwhile, this emission band increased gradually with the RhB concentration, which was accompanied by the decrease in the green emission centered at 540 nm (Figure 3e). Thus, based on the FRET process between the UCL membrane donor and the fluorescence molecule acceptor, UCL detection on a single water droplet was successfully achieved using the as-fabricated HFHM sensor. Notably, this new sensor exhibited not only an excellent linear relationship between the luminescence intensity (detecting the emission peak at 530 and 610 nm for avidin and RhB, respectively) and the concentration of the target fluorescence molecules (Figure 3f) but also at ultra-low detection limits (or ultra-high sensitivity), such as at 1 ppb for avidin and 10 ppb for RhB. However, it is difficult to detect the available information from the fluorescence molecule solution with a concentration that is equal to the above values by using pure UCLNPs as the sensors (Supplementary Fig. S6). Therefore, after strategic integration of the UCLNPs into the PS electrospun fibrous membrane that had unique hierarchical micro-/nanostructures, the sensing performance on the fluorescence molecules was significantly improved. The detection limits are lower than most of the reported limit concentrations detected by other types of fluorescent sensors that are based on UCL materials (Table 1).

To determine the influence of the FRET process on the UCL detection more clearly, a control experiment was implemented in which the NaYF₄:Yb⁺³⁺, Tm⁺³⁺/PS HFHM was used as the sensor to detect the RhB droplet. The results show that a characteristic fluorescence band that belongs to the RhB molecule appears on the emission spectrum of the NaYF₄:Yb⁺³⁺, Tm⁺³⁺/PS HFHM under 980-nm irradiation. Meanwhile, the luminescence intensity is still dependent on the concentration changes of the RhB droplet and inversely proportional to the intensity of the 1G₄→H₆ emission band of the Tm⁺³⁺ ion, which peaked at 480 nm (Supplementary Fig. S7). There is no FRET process between the NaYF₄:Yb⁺³⁺, Tm⁺³⁺/PS HFHM and the RhB molecules due to their mismatched spectral characteristics, as shown in Figure 3a. Therefore, the higher-energy blue photons emitted from the NaYF₄:Yb⁺³⁺, Tm⁺³⁺/PS HFHM under excitation of 980 nm can induce interband transitions of the RhB molecules, resulting in the emission of lower-energy photons at ~ 610 nm, according to the stokes shift rule. Further investigation found that the RhB emission peak shifted gradually towards the longer wavelength side with increasing concentration (Supplementary Fig. S7). This can be attributed to the reabsorption effect of the dye⁴⁷. However, when the concentration of RhB was lower than 10 ppm in the water droplet, no trace of fluorescence emission related to the RhB was detected in the spectrum. The above observation demonstrates that the detection limit (or the sensitivity) of

![Figure 3](image-url)
Table 1 Structure and detection parameters of the UCL fluorescent sensors

Material	Sensor type	Fluorescent molecule	Detection limit	Ref.
NaYF₄:Yb,Er	Particle	R6G	~110 ppm	28
NaYF₄:Ce/Tb	Nanoparticle	Avidin	~0.34 ppm	25
Y₂O₃:Si:Yb,Er	Particle	Phycobiliprotein	~0.07 ppm	26
NaYF₄:Yb,Tm/TiO₂	Solid film	Avidin	~3.3 ppb	29
NaYF₄:Yb,Tm/PS	Fibrous membrane	Avidin	~1 ppb	Our work
NaYF₄:Yb,Er/PS	Fibrous membrane	RhB	~10 ppb	Our work
As shown in Figure 4a, the clean NaYF₄:Yb³⁺, Tm³⁺/PS HFM exhibits a classic UC emission spectrum of Tm³⁺ ions upon irradiation at 980 nm. When an avidin droplet (10 ppm) was loaded onto the HFM surface with the position at P1, the avidin emission peak at ~ 525 nm appeared, and the blue thulium emission centered at 480 nm decreased accordingly (Figure 4b). After removal of this avidin droplet via pipette, the emission spectrum of the NaYF₄:Yb³⁺, Tm³⁺/PS HFM was restored to the characteristic emission profile of the 980-nm-excited Tm³⁺ (Figure 3c). Meanwhile, the corresponding optical image indicates the self-cleaning property of the superhydrophobic membrane sensor (inset in Figure 3c). Interestingly, upon injecting another droplet containing RhB (10 ppm) on the P1 position of the NaYF₄:Yb³⁺, Tm³⁺/PS HFM, the characteristic fluorescence band of RhB was observed without any noise. Correspondingly, the luminescence intensity of the ¹G₄→³H₆ transition of Tm³⁺ significantly decreased (Figure 4d). Thus, we conclude that this high-sensitive UCL membrane sensor exhibits excellent recyclability, which has not been achieved using traditional liquid-based detection systems. Moreover, by using this type of flexible and free-standing UCL membrane (for example, NaYF₄:Yb³⁺, Tm³⁺/PS HFM) as the sensor, the pH of the single droplet can be extracted by detecting the spectral evolution on the characteristic fluorescent peak of RhB. Generally, some functional groups in dye molecules, such as the carboxylic group in RhB, can be protonated in solution. We can therefore change the fluorescence characteristics of dye molecules according to the concentration of dissociative H⁺ (refs. 48,49). As shown in Figure 4e, upon increasing the pH in the target droplet, the fluorescence peak position of the RhB molecule gradually blue shifts. Further investigation indicates a good linear relationship between the fluorescence peak position of the RhB molecule and the pH of the water droplet (Figure 4f), suggesting reliable performance for the UCL membrane sensor.

CONCLUSIONS

We developed a novel solid state UCL biosensor that was fabricated by embedding UCLNP clusters into a transparent PS nanofibrous-matrix to form a flexible, free-standing and tailorable HFM. The PS-covered clusters consisted of NaYF₄:Yb³⁺, Tm³⁺ (or Er³⁺) NPs that contributed to the UCL property of the as-electrospun HFM. Moreover, the rational combination of the low surface energy of the polymer PS and the unique hierarchical micro-/nanostructures of the electrospun fibrous membrane results in superhydrophobicity for this UCL membrane. These advantages make this hybrid nanomaterial a high-performance UCL biosensor for single droplet detection. Meanwhile, this high-performance UCL sensor also exhibits excellent recyclability due to its superhydrophobic self-cleaning surface.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51402038, 11474066 and 11274057), the Program for New Century Excellent Talents in University (NCET-13-0702), the Technology Foundation for Selected Overseas Chinese Scholars from the Ministry of Personnel of
China, the Scientific Research Foundation for Doctors of Liaoning Province (Grant No. 20141118), the Educational Committee Foundation of Liaoning Province (Grant No. L2014547), the Science and Technology Project of Liaoning Province (Grant No. 2012222009), the Program for Liaoning Excellent Talents in University (LNET) (Grant No. LR2015016), the Science and Technology Development Fund of Dalian (Grant Nos. 2014111H134 and 201512H201) and the Fundamental Research Funds for Central Universities (Grant Nos. DC201502080203 and DC201502080304).