Evaluating Hospital Case Cost Prediction Models Using Azure Machine Learning Studio

Alexei Botchkarev

Abstract

Ability for accurate hospital case cost modelling and prediction is critical for efficient health care financial management and budgetary planning. A variety of regression machine learning algorithms are known to be effective for health care cost predictions. The purpose of this experiment was to build an Azure Machine Learning Studio tool for rapid assessment of multiple types of regression models. The tool offers environment for comparing 14 types of regression models in a unified experiment: linear regression, Bayesian linear regression, decision forest regression, boosted decision tree regression, neural network regression, Poisson regression, Gaussian processes for regression, gradient boosted machine, nonlinear least squares regression, projection pursuit regression, random forest regression, robust regression, robust regression with mm-type estimators, support vector regression. The tool presents assessment results in a single table using 22 performance metrics: CoD, GMRAE, MAE, MAPE, MASE, MdAE, MdAPE, MdRAE, ME, MPE, MRAE, MSE, NRMSE_mm, NRMSE_sd, RAE, RMdSPE, RMSE, RMSPE, RSE, sMAPE, SMdAPE, SMEAPE, SSE.

Evaluation of regression machine learning models for performing hospital case cost prediction demonstrated advantage of robust regression model, boosted decision tree regression and decision forest regression.

The operational tool has been published to the web and openly available at Azure MLS for experiments and extensions.

Keywords: machine learning, regression, multiple types, models, forecasting, prediction, evaluation, Azure Machine Learning Studio, R, R package, error, accuracy, performance metrics, health care, case cost.

Note: This the 2nd version of the working paper.

It is based on an updated Azure MLS operational tool:

Botchkarev, A. (2018). Revision 2 Integrated tool for rapid assessment of multi-type regression machine learning models. Experiment in Microsoft Azure Machine Learning Studio. Azure AI Gallery. https://gallery.azure.ai/Experiment/Revision-2-Integrated-tool-for-rapid-assessment-of-multi-type-regression-machine-learning-models

In the 2nd Revision of the tool, all regression models were assessed with a newly developed Enhanced Evaluation Model (EEM) module. Number of evaluation performance metrics has been increased to 22.

EEM is available as Azure MLS experiment:

Botchkarev, A. (2018). Enhanced model evaluation with multiple performance metrics for regression analysis. Experiment in Microsoft Azure Machine Learning Studio. Azure AI Gallery. https://gallery.azure.ai/Experiment/Enhanced-model-evaluation-with-multiple-performance-metrics-for-regression-analysis

The details of the EEM are presented in:

Botchkarev, A. (2018). Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio (May 12, 2018). Available at SSRN: http://ssrn.com/abstract=3177507

Also, noted errors of the earlier version have been fixed.
Introduction

Information on patient-level cost of hospital treatment is vital for cost-effectiveness analysis (e.g. Alpenberg & Scarbrough, 2015; Teague, et al, 2011). Ability for accurate hospital case cost modelling and prediction is important for efficient health care financial management, budgetary planning and analysis purposes (e.g. Osnabrugge, et al, 2014; Corral, et al, 2016).

Various types of regression machine learning algorithms have been examined for health care cost predictions. For example, Botchkarev & Andru (2008) investigated multiple linear regression, Sushmita, et al (2015) studied regression tree, M5 model tree and random forest, Srinivasan, Currim & Ram, (2017) conducted experiments with hierarchical decision trees, random forest, linear regression and gradient-boosted trees.

Commonly, research teams investigate low number of regression types in one experiment: two to four. Also, specifics of algorithms implementation, use of different performance metrics and particularities of employed data sets make results of the studies difficult to compare, interpret and reproduce.

To overcome this problem, current research focused on developing a tool that would embrace multiple types of regression models in the same experiment, use diverse (but the same for all algorithms) performance metrics, allow for easy change of input data sets.

Methodology

Objective

The objective of the experiment was to build an Azure MLS tool and compare various types of regression machine learning models for hospital case cost prediction and select models with higher performance for further examination.

Experiment Platform

Microsoft Azure Machine Learning Studio (https://studio.azureml.net) has been selected as a platform for building a tool and conducting experiments. Selection of the Azure MLS was motivated by the following features directly contributing to the objectives of the study:

- Cloud-based machine learning as a service.
- Web-based solution – user needs browser only to work with the system. No set up, installation and maintenance concerns or complications.
- Easy to use drag and drop canvas interface for intuitively clear aggregating computing modules into an experiment.
- Several ready to use built-in regression modules.
- Flexibility of using R and Python languages to code experiments.
- Ability to integrate functions from R packages.
- Easy to access, password-protected integrated development environment.
- Capability to publish results of experiments to the web.
- Capability to re-use published experiments or their components.
- Low fee (pay as you go) or even free service.
Regression models included in the experiment

Azure built-in models:
- linear regression,
- Bayesian linear regression,
- decision forest regression,
- boosted decision tree regression,
- neural network regression and
- Poisson regression.

Azure MLS built-in algorithms were complemented by models developed using R language modules: Execute R Script and Create R model:
- Gaussian processes for regression,
- gradient boosted machine,
- nonlinear least squares regression,
- projection pursuit regression,
- random forest regression,
- robust regression,
- robust regression with mm-type estimators,
- support vector regression (support vector machine).

Data analysis

The experiment used a simulated data set intended to mimic hospital information. The data set had the following columns (features): Intervention, Diagnosis, Case Mix Group (CMG), Gender, Age Group (Age Gr), Relative Intensity Weight (RIW), Length of Stay (LOS), Cost. Total number of rows in the data set is 7,000.

An overview of the data set characteristics is provided in Appendix 1. Note that the data set is simulated and no warranties are provided as to the validity of the data and how closely it simulates real-world information.

Out of scope. Building operational HCC model and making actual HCC predictions was out of scope.

Experiment phases

Phase 1. The purpose of the experiment Phase 1 was to investigate predictive power of the features (columns) of the data set. Azure MLS Filter-Based Feature Selection module was used to score all features with several criteria and select most important. This phase allowed identifying which columns must be used in the experiment because they contribute the most to the model results and which should not be used.

Phase 2. The purpose of the experiment Phase 2 was to compare Azure MLS built-in types of regression machine learning models: linear regression, Bayesian linear regression, decision forest regression, boosted decision tree regression, neural network regression and Poisson regression.

In Phase 2, all models were used with Azure default parameters. For convenience, outputs of all models are presented in a single table. In the modules where custom random seed number is allowed, it was set to 12345.
Output provides a single combined table of the results for all regression types models used in the experiment and the names of algorithms. R script was used to build a combined table of results. Note that outputs of the Evaluate modules for different algorithms have different format. Hence, Execute R script modules have different scripts.

Phase 3. Fine tune models’ parameters. The purpose was to tune regression model parameters to enhance performance metrics. In some sources, this process is called model optimization. Azure Tune Model Hyperparameters module was used for perform optimization.

Phase 4. Assessing models’ tolerance to change. The purpose of Phase 4 was to examine the reaction of the models on the changes introduced into computing environment and datasets, e.g. setting different seed numbers in model calculations, changing percentage of data split between the data sets used for testing and scoring, changing (adding or removing) features of the data set.

Phase 5. The objective of Phase 5 was to experiment with all 14 regression types. Both available in Azure as built-in modules and developed with R language. Azure MLS provides a “Create R Model” module to develop algorithms using R language and capitalize on a vast variety of regression methods implemented in R Studio. The following types of regression were implemented: Gaussian processes for regression, gradient boosted machine (GMB), nonlinear least squares regression, projection pursuit regression, random forest regression, robust regression, robust regression with mm-type estimators, support vector regression (support vector machine). Table 1 shows which R packages and functions were used in the experiment.

Table 1. R packages and functions were used in the experiment

Regression Type	R Package	Function
Gaussian Processes for Regression	kernlab	gausspr
Gradient Boosted Machine (GBM)	caret	train (gbm)
Nonlinear Least Squares Regression	stats	nls
Projection Pursuit Regression	stats	ppr
Random Forest Regression	randomForest	randomForest
Robust Regression	MASS	rlm
Robust Regression with MM-Type Estimators	robustbase	lmrrob
Support Vector Regression (Support Vector Machine)	E1071	svm

Performance metrics. In phases 1 to 4, Azure standard performance metrics were used to evaluate models: mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), relative squared error (RSE), coefficient of determination (CoD).

In Phase 5, Enhanced Evaluate Model module was used which increased number of performance metrics to 22: Coefficient of Determination (CoD), Geometric Mean Relative Absolute Error (GMRAE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Median Absolute Error (MdAE), Median Absolute Percentage Error (MdAPE), Median Relative Absolute Error (MdRAE), Mean Error (ME), Mean Percentage Error (MPE), Mean Relative Absolute Error (MRAE), Mean Squared Error (MSE), Normalized Root Mean Squared Error normalized to the difference between maximum and minimum actual data (NRMSE_mm), Normalized Root Mean Squared Error normalized to the standard
deviation of the actual data (NRMSE_sd), Relative Absolute Error (RAE), Root Median Square Percentage Error (RMdSPE), Root Mean Squared Error (RMSE), Root Mean Square Percentage Error (RMSPE), Relative Squared Error (RSE), Symmetric Mean Absolute Percentage Error (sMAPE), Symmetric Median Absolute Percentage Error (SMdAPE), Sum of Squared Error (SSE).

Terminology. In this paper, terms are used per the Azure MLS conventions, e.g. more commonly used R squared is called a coefficient of determination (CoD).

A list of abbreviations is shown in Appendix 6.

Outcome of the study. The operational tool has been published to the web (Botchkarev, 2018). It can be used by researchers and practitioners to reproduce the results of this study, conduct experiments with their own data sets or add more regression models to the framework.

Experiment Results

Phase 1 Results

The data set has been tested using Azure MLS Filter-Based Feature Selection module with the following selection criteria: Pearson Correlation, Mutual Information, Kendall Correlation, Spearman Correlation, Chi Squared and Fisher Score. Results are presented in Table 2.

Table 2. Scoring Data Set Features by Various Criteria

	Cost	RIW	LOS	Age_gr	CMG	Gender	Diagn	Interv
Pearson Correlation	1	0.860	0.764	0.072	0.015	0	0	0
	Cost	RIW	LOS	Age_gr	CMG	Gender	Diagn	Interv
Mutual Information	1	1.852	0.332	0.308	0.287	0.244	0.053	0.007
	Cost	RIW	LOS	Age_gr	CMG	Gender	Diagn	Interv
Kendall Correlation	1	0.957	0.494	0.156	0.023	0	0	0
	Cost	RIW	LOS	Age_gr	CMG	Gender	Diagn	Interv
Spearman Correlation	1	0.986	0.663	0.223	0.030	0	0	0
	Cost	RIW	Diagn	Interv	LOS	CMG	Age_gr	Gender
Chi Squared	1	50509	30675	24597	5424	4997	754	101
Based on the feature selection exercise, the training data set has been transformed into six (6) versions with different numbers of included features. Table 3 shows lists of columns in the dataset versions. Please note sequential removal of less important columns between versions. The table also shows the names of the tests in the further experiments based on the data sets they used.

Table 3 Data set features used in tests

Columns/Features	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Cost	Cost	Cost	Cost	Cost	Cost	Cost
RIW	RIW	RIW	RIW	RIW	RIW	RIW
LOS	LOS	LOS	LOS	LOS	LOS	LOS
Age_{gr}	Age_{gr}	Age_{gr}	Age_{gr}	Age_{gr}	Age_{gr}	Age_{gr}
Gender	Gender	Gender	Gender	Gender	Gender	Gender
CMG	CMG	CMG	CMG	CMG	CMG	CMG
Diagn	Diagn					
Interv						

Phase 2 Results

The following types of machine learning regression models available in Azure MLS as built-in modules were tested in the experiment: linear regression, Bayesian linear regression, decision forest regression, boosted decision tree regression, neural network regression and Poisson regression.

Results of the Phase 2 experiment are shown in the Appendix 2 Table A2.1.

Graphical comparisons are shown in Fig. 1 for MAE, Fig. 2 for RMSE, and Fig. 3 for CoD.
Fig. 1 Mean absolute error

Fig. 2 Root mean squared error
Fig. 3 Coefficient of determination

Experiment with Azure built-in modules workflow chart is presented in Fig. 4.

Fig. 4. Regression Comparison Experiment Flow Chart
Results Phase 3

In Phase 2, all models were trained using Train Model module, specific for each regression type, with default parameters. Azure default parameters may not, and most likely will not, be the best for a specific data set. Tuning model parameters may allow gaining better results in terms of performance metrics criteria. In some sources, this process is called model optimization. Azure Tune Model Hyperparameters module was used for perform optimization.

The structure of the experiment to tune parameters of the Decision Forest Regression is shown in Fig. 5. The chart has two parallel flows. One, for the experiment with default parameters, and the second, on the right side, for tuning the parameters. To run the tuning experiment, certain settings must be made in two modules: Decision Forest Regression (DFR) and Tune Model Hyperparameters (TMH). Settings in the DFR module define the ranges in which parameters will be tuned. There are four parameters: minimum number of samples per leaf node, number of random splits per node, maximum depth of the decision trees and number of decision trees. Settings in the TMH module define the way in which parameter values will be changed in the experiment, e.g. whether the process will involve scanning (sweeping) all possible combinations of points – Entire Grid, or sweeping will be done across random parameter values only – Random Sweeping. Also, optimization criterion must be selected in the TMH module. Mean Absolute Error was used as a criterion in all optimization experiments.

![Fig. 5. Direct Forest Regression Tuning workflow chart](image-url)
Table 4 Decision Forest Regression Tuning Results

Algorithm	Performance Metrics	Model Parameters							
	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination	Minimum number of samples per leaf node	Number of random splits per node	Maximum depth of the decision trees	Number of decision trees
Decision Forest Regression, Train	424	2332	0.23	0.34	0.66	1	128	32	8
Decision Forest Regression, Tune	403	2004	0.22	0.25	0.75	7	4340	368	724
Improvement	5.0%	14.0%	5.0%	26.1%	13.6%	-	-	-	-

Table 5 Boosted Decision Tree Regression Tuning Results

Algorithm	Performance Metrics	Model Parameters							
	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination	Number of leaves	Minimum leaf instances	Learning rate	Number of trees
Boosted Decision Tree Regression, Train	484	2138	0.26	0.29	0.71	20	10	0.2	100
Boosted Decision Tree Regression, Tune	402	1962	0.22	0.24	0.76	7	15	0.097539	38
Improvement	16.9%	8.2%	16.9%	15.8%	6.4%	-	-	-	-
Results of tuning for Decision Forest Regression, Boosted Decision Tree Regression are shown in Tables 4 and 5, respectively. These algorithms demonstrated the best ability for tuning. Each table shows performance metrics before and after tuning and optimum parameters that were identified. Also, the tables present levels of improvement for each performance metric compared to the default parameters.

Results Phase 4

The following experiments were conducted in Phase 4:

- Changing seed numbers (from initial 12345 to 98642) in the models (where possible).
- Changing percentage of split between testing data set and scoring data set from 0.5 (50% testing, 50% scoring) to 0.7 (70% testing, 30% scoring).
- Changing number of data set features: from initial cost, LOS, RIW and age group to cost, LOS, RIW.

For each option, Azure built-in regression models (5 types) were run and performance metrics were recorded and compared. Tables with metrics data are provided in the appendices and show absolute and relative variances between options:

- Changing seed numbers – Appendix 3.
- Changing percentage of split between testing data set and scoring data set – Appendix 4.
- Changing number of data set features – Appendix 5.

Results Phase 5

Combined results of an integrated tool. Fig. 6 shows combined workflow of Azure built-in and R-based regression models. Table 6 shows combined performance metrics for Azure built-in and R-based regression models. Performance of the Boosted Decision Tree Regression and Decision Forest Regression is shown for the optimized versions which moved there position up the list.

Parameters of the R-based modules were not tuned. Most models from R packages were used with default parameters.

Also, modules for multiple linear regression were built with both glm and lm functions. The results are not shown as they are the same as were gained for the Azure linear regression built-in model. In general, there may be a reason to use glm and/or lm functions in Azure experiments if there is a need for directly announcing independent variables in order to add or remove individual features. Functions glm and lm can be used in Azure without calling R libraries (i.e. {stats} or {cars}).
Table 6 Combined performance metrics for all models

metric_abbrev.	full_name	LR	BLR	DFR	BDTTR	PR	NNR	RFR	SVR	GRR	RRmm	RR	GBM	PPR	NLSR
CoD	Coefficient of Determination	0.7505	0.7498	0.6576	0.712	0.1769	-0.0704	0.7527	0.6852	0.5155	0.7187	0.7189	0.7432	0.7551	0.7505
GMRAE	Geometric Mean Relative Absolute Error	0.1347	0.12	0	0.0419	0.8113	0.6322	0.1007	0.1132	0.0568	0.0066	0.0067	0.115	0.0771	0.1347
MAE	Mean Absolute Error	481.748	473.493	424.2223	484.3054	1620.5862	1594.8297	465.3754	421.5048	554.6658	254.557	254.5004	472.7957	430.2943	481.748
MAPE	Mean Absolute Percentage Error	16.9101	15.9665	6.4989	8.7833	100.3632	60.1384	14.7008	16.6987	9.4456	3.0903	3.018	18.8339	10.6252	16.9101
MASE	Mean Absolute Scaled Error	0.1914	0.1881	0.1685	0.1924	0.6437	0.6335	0.1848	0.1674	0.2203	0.1011	0.1011	0.1878	0.1709	0.1914
MdAE	Median Absolute Error	149.1442	129.6546	9.1667	33.42	1175.0388	685.4257	114.5885	156.3304	52.2051	7.3101	7.335	135.6288	80.3182	149.1443
MdAPE	Median Absolute Percentage Error	10.9705	9.0271	0.6847	2.8282	66.5457	53.2716	7.4764	8.2932	3.9094	0.4761	0.4794	7.4804	5.8489	10.9705
MdRAE	Median Relative Absolute Error	0.1261	0.1174	0.0091	0.0298	0.8564	0.4501	0.089	0.1274	0.0425	0.0064	0.0065	0.1385	0.0823	0.1261
ME	Mean Error	38.4218	16.4036	-46.7055	6.3421	64.7614	1057.3001	6.3473	133.1441	291.3209	233.7708	233.4515	-45.8404	24.2121	38.4219
MPE	Mean Percentage Error	-5.8607	-8.8064	-3.7856	-3.0168	-82.826	-14.8161	-9.7483	-11.1242	-2.6764	1.016	1.0185	-13.0065	-5.5076	-5.8607
NRAE	Mean Relative Absolute Error	0.6814	0.6902	0.3027	0.4746	1.0139	2.0807	0.4587	0.3384	0.3606	0.0518	0.0518	0.3082	0.4081	0.6814
MSE	Mean Squared Error	3961510.52	3971442.311	5436572.093	4571819.748	13667407.76	16993900.55	3925499.976	4989308.675	7693262.075	4465682.959	4643364.639	4076863.627	3887478.154	3961519.431
NRMSE_max_min	Normalized Root Mean Squared Error (norm. to max - min)	0.0295	0.0295	0.0345	0.0317	0.0535	0.061	0.0293	0.0331	0.0411	0.0313	0.0313	0.0299	0.0292	0.0295
NRMSSD	Normalized Root Mean Squared Error (norm. to SD)	0.4995	0.5001	0.5851	0.5366	0.9071	1.0345	0.4972	0.561	0.696	0.5303	0.5301	0.5067	0.4948	0.4995
RAE	Relative Absolute Error	0.2591	0.2547	0.2282	0.2605	0.8717	0.8579	0.2503	0.2267	0.2846	0.1969	0.1969	0.2543	0.2315	0.2591
RMSE	Root Mean Squared Error	1.0749	0.8045	0.0682	0.284	5.0833	4.8086	0.7315	0.8508	0.8886	0.0476	0.048	0.7994	0.583	1.0749
RMSPE	Root Mean Square Percentage Error	2.2969	2.6738	2.6372	2.421	13.399	7.2965	2.5658	2.7828	2.1222	1.6774	1.677	3.1995	2.1222	2.6902
RSE	Relative Squared Error	0.2495	0.2502	0.3424	0.288	0.8231	1.0704	0.2473	0.3148	0.4845	0.2813	0.2811	0.2568	0.2449	0.2495
SMAPE	Symmetric Mean Absolute Percentage Error	15.8641	14.4157	5.3109	8.0423	61.1432	57.3569	13.1725	14.9463	9.7217	3.439	3.4404	15.9767	10.1177	15.8641
SMdAPE	Symmetric Median Absolute Percentage Error	10.9136	9.1048	0.6832	2.8373	61.1301	51.683	7.4389	8.2134	3.8986	0.4763	0.4799	7.4423	5.8373	10.9136
SSE	Sum of Squared Error	13865318318	13900048089	19028002324	160001369118	45735927158	59478651920	13739249915	17949080364	269232627623	15629880357	15621776235	14269022695	13660173540	13865318009

Combined performance metrics for all models
Fig. 6 Combined workflow of Azure built-in and R-based regression modules
Discussion

Discussion Phase 1

Selecting most informative features led to intuitively expected results. By all criteria (see Table 1), RIW feature was identified as the most important followed by LOS (with only one exception: second important by Chi Squared was Diagnosis). The scores given to RIW and LOS were significantly higher than those of other features. At the same time, Intervention, Diagnosis and Gender were found the least important by most criteria. CMG and Age Group had mixed standing in the middle of the scale.

Discussion Phase 2

Analysis of the Phase 2 testing suggested removal of some models from further consideration. A quick look at the testing results show that neural network regression and Poisson regression models have significantly lower values of all performance metrics compared to other models.

Another four (4) types of models (i.e. linear regression, Bayesian linear regression, decision forest regression and boosted decision tree regression) were compared by three (3) performance metrics: mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination (CoD). The results are presented in Table A2.2 in Appendix 2.

Overall, performance metrics of all models display similar association with number of features of the testing data set. Performance improves (i.e. MAE and RMSE decrease and CoD increases) when certain data set features are removed (going from Test 1 to Test 6). Significant improvement is observed going from Test 1 to Test 3 (i.e. diagnosis, intervention, case mix group columns are removed one by one). For the tests from 4 to 6, performance of all models stabilizes at the same ranges: 400-500 dollars for MAE, 1,990-2,300 dollars for RMSE, and 0.65-0.75 for CoD. The only exception is the performance of the DFR model, which has certain drop of results in Test 5. Based on the Phase 2 experiments further testing was conducted with testing data sets 4, 5 and 6. Comparison of individual performance of the models gives mixed results. The best MAE is shown by Decision Forest Regression (DFR). The best RMSE is demonstrated by Linear Regression (LR) and Bayesian Linear Regression (BLR). The best CoD is recorded for Decision Forest Regression (DFR) and Boosted Decision Tree Regression (BDT).

To re-iterate, the differences in performance metrics for all models were not significant, and all of them were admitted to Phase 3 experiment with data sets Test 4 to Test 6.

As it was noted, Test 4 to Test 6 contain features with most predictive power, identified in the feature selection exercise. So, the results of the feature selection process and results of the errors analysis in the experiment support each other and confirm that using less informative features is not only leading to inefficiency, but also may directly decrease the performance of prediction.

An attempt was made to combine less informative features (Intervention, Diagnosis, CMG, Gender) into a single column using Azure Principal Component Analysis (PCA) module (located in Scale and Reduce, Data Transform). Combined column (a set of positive and negative numbers) has been added to the data set in Test 4. The experiment did not reveal any improvement of performance by any type of regression. Analysis of this combined column using Filter Based Feature Selection module also shows that the predictive power of the combined feature was negligible (but not zero).
Discussion Phase 3

Parameter tuning experiments have shown that Decision Forest Regression and Boosted Tree Regression models are responsive to parameter sweeping. Optimization by the minimum mean average error demonstrated improvement by 5% for Decision Forest Regression and 16.9% for Boosted Tree Regression (see Tables 4 and 5). All other performance metrics improved for optimized models as well. Decrease of the root mean squared error (RMSE) provides evidence that larger errors were less proliferant in the tuned models as large errors contribute the most to the value of the RMSE. Both optimized Decision Forest Regression and Boosted Tree Regression models demonstrate similar absolute values of performance metrics: 402-403 dollars for mean average error and 0.75-0.76% for coefficient of determination.

Parameter tuning experiments with all other types of regression, i.e. linear regression, Bayesian linear regression, neural network regression and Poisson regression, either were not possible or did not produce improvements in performance metrics compared to default options.

Discussion Phase 4

Seed number change experiment has shown that algorithms Decision Forest Regression and Boosted Decision Tree Regression are tolerant to the change (Appendix 3). The change in MAE was under 1%.

Changing split ratio from 0.5 to 0.75, i.e. making testing data set larger, led to enhanced performance of most algorithms by MAE (Appendix 4).

Changing number of data set features from initial cost, LOS, RIW (HCC-Test_5) and age group to cost, LOS, RIW (HCC-Test_6), i.e. removing age group column, enhanced MAE of most algorithms by 2-8%, except Bayesian Linear Regression and Random Forest Regression (Appendix 5).

Discussion Phase 5

Results of the experiments with all 14 models show that performance metrics, especially MAE, vary in a wide range (see Table 6). In terms of MAE, minimum error is around $250 and maximum is around $550. Robust regression demonstrated the best performance (MAE $255). This result is significantly better than for all other R-based models. Also, robust regression outperforms all Azure MLS built-in models. To confirm this finding, robust regression has been calculated with two different algorithms: rlm function from {MASS}, and lmrob function from {robustbase}. Both algorithms returned practically same results.

For majority of the methods, coefficient of determination is close to 0.70 - 0.75.

Combined performance metrics for Azure built-in and R-based regression models (considering parameter tuning), show that Robust Regression model performed the best (MAE $255) followed by Boosted Decision Tree Regression ($402) and Decision Forest Regression ($403). Although, the latter two display this performance only with tuning (optimization). These algorithms also displayed good tolerance to changes.

Application of the tool is not limited to cost prediction. The tool can also be used for similar types of predictions, e.g. hospital length of stay prediction, or in sectors other than health care.
Limitations
Note that the tool has been built and tested using numerical only data with no n.a. (missing) elements. Certain regression models do not except categorical data and conversion to numerical format may be required.

Note that the data set used in the experiment is simulated and no warranties are provided as to the validity of the data and how closely it simulates real-world information.

Note that, because of the previous point, the numerical results of the experiment cannot be used to make actual predictions.

Concluding Remarks
The practical contribution of this study is in delivering an Azure Machine Learning Studio tool for rapid assessment of multiple types of regression models. The operational tool has been published to the web at Azure MLS (Botchkarev, 2018a). It can be used by researchers and practitioners to reproduce the results of this study, conduct experiments with their own data sets or add more regression models to the framework.

The tool offers environment for comparing 14 types of regression models (linear regression, Bayesian linear regression, decision forest regression, boosted decision tree regression, neural network regression, Poisson regression, Gaussian processes for regression, gradient boosted machine, nonlinear least squares regression, projection pursuit regression, random forest regression, robust regression, robust regression with mm-type estimators, support vector regression) in a unified experiment and presents assessment results in a single table using 22 performance metrics: Coefficient of Determination (CoD), Geometric Mean Relative Absolute Error (GMRAE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Median Absolute Error (MdAE), Median Absolute Percentage Error (MdAPE), Median Relative Absolute Error (MdRAE), Mean Error (ME), Mean Percentage Error (MPE), Mean Relative Absolute Error (MRAE), Mean Squared Error (MSE), Normalized Root Mean Squared Error normalized to the difference between maximum and minimum actual data (NRMSE_mm), Normalized Root Mean Squared Error normalized to the standard deviation of the actual data (NRMSE_sd), Relative Absolute Error (RAE), Root Median Square Percentage Error (RMedSPE), Root Mean Squared Error (RMSE), Root Mean Square Percentage Error (RMSPE), Relative Squared Error (RSE), Symmetric Mean Absolute Percentage Error (sMAPE), Symmetric Median Absolute Percentage Error (SMdAPE), Sum of Squared Error (SSE).

Using the developed rapid assessment Azure MLS tool, various types of regression machine learning models were evaluated for performing hospital case cost prediction. The higher performance was demonstrated by robust regression model, and tuned versions of the boosted decision tree regression and decision forest regression.

Acknowledgement
The views, opinions and conclusions expressed in this document are those of the author alone and do not necessarily represent the views of the author’s current or former employers.
References

Alpenberg, J., & Scarbrough, D. P. (2015). Lean Healthcare and Ontario Case Costing - An Examination of Strategic Change and Management Control Systems (December 14, 2014). 2015 Canadian Academic Accounting Association (CAAA) Annual Conference. Available at SSRN: https://ssrn.com/abstract=2538288 or http://dx.doi.org/10.2139/ssrn.2538288

Botchkarev, A., & Andru, P. (2008, May). Using financial modelling for integrated healthcare databases. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on (pp. 001973-001976). IEEE.

Botchkarev, A. (2018a). Revision 2 Integrated tool for rapid assessment of multi-type regression machine learning models. Experiment in Microsoft Azure Machine Learning Studio. Azure AI Gallery. https://gallery.azure.ai/Experiment/Revision-2-Integrated-tool-for-rapid-assessment-of-multi-type-regression-machine-learning-models

Botchkarev, A. (2018b). Enhanced model evaluation with multiple performance metrics for regression analysis. Experiment in Microsoft Azure Machine Learning Studio. Azure AI Gallery. https://gallery.azure.ai/Experiment/Enhanced-model-evaluation-with-multiple-performance-metrics-for-regression-analysis

Botchkarev, A. (2018c). Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio (May 12, 2018). Available at SSRN: http://ssrn.com/abstract=3177507

caret: Classification and Regression Training. R package. https://cran.r-project.org/web/packages/caret/index.html

Corral, M., Ferko, N., Hogan, A., Hollmann, S. S., Gangoli, G., Jamous, N., ... & Kocharian, R. (2016). A hospital cost analysis of a fibrin sealant patch in soft tissue and hepatic surgical bleeding. ClinicoEconomics and outcomes research: CEOR, 8, 507.

e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). R package. https://cran.r-project.org/web/packages/e1071/index.html

kernlab: Kernel-Based Machine Learning Lab. R package. https://cran.r-project.org/web/packages/kernlab/index.html

MASS: Support Functions and Datasets for Venables and Ripley's MASS. R package. https://cran.r-project.org/web/packages/MASS/index.html

MSBVAR: Markov-Switching, Bayesian, Vector Autoregression Models. R package. https://cran.r-project.org/web/packages/MSBVAR/index.html

Osnabrugge, R. L., Speir, A. M., Head, S. J., Jones, P. G., Ailawadi, G., Fonner, C. E., ... & Rich, J. B. (2014). Prediction of costs and length of stay in coronary artery bypass grafting. The Annals of thoracic surgery, 98(4), 1286-1293. DOI: https://doi.org/10.1016/j.athoracsur.2014.05.073

randomForest: Breiman and Cutler's Random Forests for Classification and Regression. R package. https://cran.r-project.org/web/packages/randomForest/index.html

robustbase: Basic Robust Statistics. R package. https://cran.r-project.org/web/packages/robustbase/index.html
Srinivasan, K., Currim, F., & Ram, S. (2017). Predicting High Cost Patients at Point of Admission using Network Science. *IEEE Journal of Biomedical and Health Informatics*, volume: PP, issue: 99. DOI: 10.1109/JBHI.2017.2783049

Sushmita, S., Newman, S., Marquardt, J., Ram, P., Prasad, V., Cock, M. D., & Teredesai, A. (2015, May). Population cost prediction on public healthcare datasets. In *Proceedings of the 5th International Conference on Digital Health 2015* (pp. 87-94). ACM.

stats: The R Stats Package. R package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

Teague, L., Mahoney, J., Goodman, L., Paulden, M., Poss, J., Li, J., ... & Krahn, M. (2011). Support surfaces for intraoperative prevention of pressure ulcers in patients undergoing surgery: a cost-effectiveness analysis. *Surgery, 150*(1), 122-132.
Appendix 1. Data Set Characteristics

Table A1.1

Intervention	Diagnosis	Case Mix Group (CMG)	Gender	Age Group	Relative Intensity Weight (RIW)	Length of Stay (LOS)	Cost
1GJ50BA	C3480	129	F	11	1.463	3	1,480
1GJ50BA	C781	129	M	11	1.463	3	1,510
1FU89NZ	C783	129	F	15	1.405	2	1,460
3GY20WC	A157	135	F	6	1.499	19	3,200
3GY20WA	A150	135	M	17	2.135	13	2,230
3AN20WA	A152	135	M	9	1.499	4	1,540

Fig. A1.1 Histogram of large costs
Fig. A1.2 Histogram of lower costs

Fig. A1.3 Histogram of Relative Intensity Weights
Fig. A1.4 Distribution of Age Groups

Fig. A1.5 Distribution of Interventions (60 or more cases)
Fig. A1.6 Distribution of Diagnoses (50 or more cases)

Fig. A1.7 Distribution of Numbers of Cases by CMG (50 or more cases)
Appendix 2. Phase 2 Experiment
Table A2.1

Linear

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	1,021.63	670.6467	482.412255	482.443797	481.747978	471.563505
Root Mean Squared Error	2,967.65	2,198.52	1991.121625	1991.249278	1990.356631	1990.329583
Relative Absolute Error	0.4716	0.3607	0.259489	0.259506	0.259131	0.253653
Relative Squared Error	0.4464	0.3045	0.249727	0.249752	0.249529	0.249522
Coefficient of Determination	0.5536	0.6955	0.75028	0.750248	0.750471	0.750478

Bayesian Linear

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	739.8899	576.1372	482.2839	482.311151	473.495256	476.96975
Root Mean Squared Error	2,364.67	2,044.82	1991.130386	1991.273283	1992.847789	1994.770778
Relative Absolute Error	0.3416	0.3099	0.25942	0.259434	0.254692	0.256561
Relative Squared Error	0.2834	0.2634	0.249723	0.249758	0.250154	0.250637
Coefficient of Determination	0.7166	0.7366	0.750277	0.750242	0.749846	0.749363
Negative Log Likelihood	24,916.53	32,106.44	32321.59	32323.42614	32331.75165	32342.06309

Neural Network

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	2,532.85	1,594.87	1601.497564	1748.52086	1594.829661	1607.3112
Root Mean Squared Error	4,483.38	4,094.28	4063.073195	4325.924503	4122.365892	4162.185279
Relative Absolute Error	1.1693	0.8579	0.864143	0.940527	0.857856	0.86457
Relative Squared Error	1.0189	1.0559	1.039843	1.178735	1.070413	1.091192
Coefficient of Determination	-0.0189	-0.0559	-0.039843	-0.178735	-0.070413	-0.091192

Decision Forest

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	644.997	597.7595	440.321772	401.660865	424.222292	389.802885
Root Mean Squared Error	2,598.89	2,362.32	2155.820307	2117.165828	2331.645791	2081.307669
Relative Absolute Error	0.3469	0.3215	0.236848	0.216053	0.228189	0.209674
Relative Squared Error	0.4254	0.3515	0.292741	0.282337	0.342439	0.272854
Coefficient of Determination	0.5746	0.6485	0.707259	0.717663	0.657561	0.727146
Negative Log Likelihood	27,291.69	26,583.40	17,439,424,124.15	15,080,721,829.81	112,070,075,644.37	15,426,891,145.67

Poisson

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	1,772.26	1,601.68	1617.676485	1618.231891	1620.586192	1635.02305
Root Mean Squared Error	3,883.55	3,586.31	3617.879354	3617.419128	3614.886964	3628.874961
Relative Absolute Error	0.8181	0.8615	0.870146	0.870444	0.871711	0.879476
Relative Squared Error	0.7645	0.8101	0.824454	0.824245	0.823091	0.829473
Coefficient of Determination	0.2355	0.1899	0.175546	0.175755	0.176909	0.170527
Boosted Decision Tree

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error	650.26	491.41	505.035206	486.052036	484.305374	451.464217
Root Mean Squared Error	2,576.34	2,153.41	2207.492363	2142.714129	2138.181411	2136.901733
Relative Absolute Error	0.300186	0.264327	0.271658	0.261447	0.260507	0.242842
Relative Squared Error	0.336461	0.292086	0.306942	0.289192	0.28797	0.287626
Coefficient of Determination	0.663539	0.707914	0.693058	0.710808	0.71203	0.712374

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Features used in tests	Cost	Cost	Cost	Cost	Cost	Cost
RIW	RIW	RIW	CIW	RIW	RIW	RIW
LOS	LOS	LOS	LOS	LOS	LOS	LOS
Age_gr	Age_gr	Age_gr	Age_gr	Age_gr	Age_gr	Age_gr
Gender	Gender	Gender	Gender	Gender	Gender	Gender
CMG	CMG	CMG	CMG	CMG	CMG	CMG
Diagn	Diagn	Diagn	Diagn	Diagn	Diagn	Diagn
Interv	Interv	Interv	Interv	Interv	Interv	Interv

Table A2.2

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Mean Absolute Error						
Linear (LR)	1022	671	482	482	482	472
Bayesian Linear (BLR)	740	576	482	482	473	477
Decision Forest (DFR)	645	598	440	402	424	390
Boosted Decision Tree (BDT)	650	491	505	486	484	451

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Root Mean Squared Error						
Linear (LR)	2,968	2,199	1,991	1,991	1,990	1,990
Bayesian Linear (BLR)	2,365	2,045	1,991	1,991	1,993	1,995
Decision Forest (DFR)	2,599	2,362	2,156	2,117	2,332	2,081
Boosted Decision Tree (BDT)	2,576	2,153	2,207	2,143	2,138	2,137

	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
Coefficient of Determination						
Linear (LR)	0.55	0.70	0.75	0.75	0.75	0.75
Bayesian Linear (BLR)	0.72	0.74	0.75	0.75	0.75	0.75
Decision Forest (DFR)	0.57	0.65	0.71	0.72	0.66	0.73
Boosted Decision Tree (BDT)	0.66	0.71	0.69	0.71	0.71	0.71

	Cost	Cost	Cost	Cost	Cost	Cost
RIW	RIW	RIW	RIW	RIW	RIW	RIW
LOS	LOS	LOS	LOS	LOS	LOS	LOS
Age_gr	Age_gr	Age_gr	Age_gr	Age_gr	Age_gr	Age_gr
Gender	Gender	Gender	Gender	Gender	Gender	Gender
CMG	CMG	CMG	CMG	CMG	CMG	CMG
Diagn	Diagn	Diagn	Diagn	Diagn	Diagn	Diagn
Interv	Interv	Interv	Interv	Interv	Interv	Interv
Appendix 3. Change of performance metrics values due to seed number change*

Algorithm	Absolute Change	Relative Change								
	Mean Absolute	Root Mean	Relative Absolute	Relative Squared	Coefficient of Determination					
	Error	Squared Error	Error	Error						
Bayesian Linear Regression	-97	-86.97	-0.06	0.00	0.00	-20.55%	-4.36%	-22.64%	-1.65%	0.55%
Boosted Decision Tree Regression	1	-291.05	0.00	-0.06	0.06	0.30%	13.61%	-1.43%	-20.47%	8.28%
Decision Forest Regression	-2	58.55	-0.01	0.04	-0.04	-0.44%	2.51%	-2.19%	11.30%	-5.88%
Linear Regression	-84	-93.42	-0.05	-0.01	0.01	-17.45%	-4.69%	-19.50%	-2.30%	0.76%
Neural Network Regression	-27	-32.98	-0.03	0.06	-0.06	-1.71%	-0.80%	-3.48%	5.17%	78.60%
Poisson Regression	-801	-58225.07	-0.45	-223.99	223.99	-49.44%	-1610.70%	-52.04%	-27212.98%	126611.77%

*Seed number was changed in all modules from 12345 to 98642.
Data set HCC-Test_5.
Split 0.5

Appendix 4. Change of performance metrics values due to change of split ratio*

Algorithm	Absolute Change	Relative Change								
	Mean Absolute	Root Mean	Relative Absolute	Relative Squared	Coefficient of Determination					
	Error	Squared Error	Error	Error						
Bayesian Linear Regression	10	248	0.00	0.03	-0.03	2.2%	12.5%	-0.8%	10.7%	-3.6%
Boosted Decision Tree Regression	47	340	0.02	0.05	-0.05	9.7%	15.9%	7.0%	17.6%	-7.1%
Decision Forest Regression	13	510	0.00	0.10	-0.10	3.1%	21.9%	0.2%	28.9%	-15.0%
Linear Regression	11	249	0.00	0.03	-0.03	2.3%	12.5%	-0.7%	10.8%	-3.6%
Neural Network Regression	-70	419	-0.06	0.06	-0.06	-4.4%	10.2%	-7.5%	6.0%	91.0%
Poisson Regression	71	361	0.01	0.05	-0.05	4.4%	10.0%	1.5%	5.6%	-26.0%

*Split ratio was changed from 0.5 to 0.75 (increasing testing data set).
Data set HCC-Test_5.
Seed number 12345.
Appendix 5. Change of performance metrics values due to change of number of data set features *

Algorithm	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
Bayesian Linear Regression	-3	-2	0.00	0.00	-0.7%	-0.1%	-0.7%	-0.2%	0.1%	
Boosted Decision Tree Regression	33	1	0.02	0.00	6.8%	0.1%	6.8%	0.1%	0.0%	
Decision Forest Regression	34	250	0.02	0.07	-0.07	8.1%	10.7%	8.1%	20.3%	-10.6%
Linear Regression	10	0	0.01	0.00	2.1%	0.0%	2.1%	0.0%	0.0%	
Poisson Regression	-14	-14	-0.01	-0.01	0.01	-0.9%	-0.4%	-0.9%	-0.8%	3.6%
Random Forest Regression	38	-30	0.03	0.00	8.2%	-1.5%	11.5%	0.9%	1.0%	

* Changing number of data set features from initial cost, LOS, RIW (HCC-Test_5) and age group to cost, LOS, RIW (HCC-Test_6), i.e. removing age group column.
Seed number 12345.
Split ratio 0.75.
Appendix 6. Abbreviations

- Age_gr: Age group
- BDTR: Boosted Decision Tree Regression
- BLR: Bayesian Linear Regression
- CMG: Case Mix Group
- CoD: Coefficient of Determination
- DFR: Decision Forest Regression
- Diagn: Diagnosis
- GBM: Gradient Boosted Machine
- GMRAE: Geometric Mean Relative Absolute Error
- GPR: Gaussian Processes for Regression
- Interv: Intervention
- LOS: Length of stay
- LR: Linear Regression
- MAE: Mean Absolute Error
- MAPE: Mean Absolute Percentage Error
- MASE: Mean Absolute Scaled Error
- MdAE: Median Absolute Error
- MdAPE: Median Absolute Percentage Error
- MdRAE: Median Relative Absolute Error
- ME: Mean Error
- MPE: Mean Percentage Error
- MRAE: Mean Relative Absolute Error
- MSE: Mean Squared Error
- NLSR: Nonlinear Least Squares Regression
- NNR: Neural Network Regression
- NRMSE_mm: Normalized Root Mean Squared Error (normalized to the difference between maximum and minimum actual data)
- NRMSE_sd: Normalized Root Mean Squared Error (normalized to the standard deviation of the actual data)
- PPR: Projection Pursuit Regression
- PR: Poisson Regression
- RAE: Relative Absolute Error
- RFR: Random Forest Regression
- RIW: Relative intensity weight
- RMdSPE: Root Median Square Percentage Error
- RMSE: Root Mean Squared Error
- RMSPE: Root Mean Square Percentage Error
- RR: Robust Regression
- RR mm: Robust Regression with Mm-Type Estimators
| Abbreviation | Description |
|--------------|---------------------------------------|
| RSE | Relative Squared Error |
| sMAPE | Symmetric Mean Absolute Percentage Error |
| SMdAPE | Symmetric Median Absolute Percentage Error |
| SSE | Sum of Squared Error |
| SVR | Support Vector Regression |
| TMH | Tune Model Hyperparameters |