Prevalence of cancer disease in Thi_Qar Provence

Hanaa D AL-Mozan¹, Hind M Mousa ² and Bushra J Al-Badry³
¹ Biology Department - College of Science – University of Thi-Qar
²Pathological Analysis Department - College of Science – University of Thi-Qar
Email : hindmousa155@yahoo.com

Abstract. For the purpose of reaching and trying to control the causes of cancer, Data information about (sex, age, location , type of cancer, year) was collected for 2892 patients and for five consecutive years from the health department of Dhi Qar and from the districts of (AL-Nasiriyah, Suq al-Shuyukh, AL- Shatrah, AL- Rifai, and AL-Chabaish). The result was that the highest incidences of cancer (24.1%) in 2011 and the lowest rate of cancer (15.6%) in 2010, and the following cancers were the most common : lung, bladder, larynx, central nervous system, liver, lymphatic, ovary, stomach, breast, prostate, blood, pancreas, uterus, kidney, colon, rectum, skin, thyroid, soft tissue and cancers in other sites of the body . But, lung cancer is the most common, which was highest in 21.1% in 2014 . The age group (greater than 75 years) was the most vulnerable to cancer (33.7%) in 2010 and (10-14 years) group was the least vulnerable to cancer and reached the highest rate (1.4%) in 2014 . Nasiriyah included the highest number of cancer cases and the highest rate of cases (55.9%) in 2010. Numbers of males suffering from cancer were greater than numbers of females suffering from cancer and the highest rate was 57% for males in 2011 .

1. Introduction

Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells. If the disease is not controlled, it leads to death. The causes of many types of cancers are still unknown, especially those that occur during childhood

(ACS, 2017) . Global cancer rates are increasing in general and in Iraq, particularly for many reasons, including population changes, lifestyles in the developing world, wars and displacement .In 2008, about 12.7 million cancer cases were diagnosed, and 7.6 million people died of cancer worldwide (Jemal et al., 2012)

One in eight deaths worldwide is dying from cancer, cancer deaths worldwide surpass cancer deaths from AIDS, tuberculosis and malaria combined. By 2050, it is estimated that there will be approximately 27 million new cases of cancer globally compared to only 12 million new cases of cancer recorded in 2007 (ACS, 2007).

Causes of cancer may be external factors such as tobacco, chemicals, radiation, infectious organisms, lifestyle and increased body weight or internal non-adjustable such as inherited mutations, hormonal disorders, immune conditions and mutations that occur from metabolism. These factors may
work simultaneously or in a regular sequence to initiate and promote cancer growth (ACS, 2007; Jemel et al., 2012).

Age is the most important risk factor for cancer development (Jonson, 2010). Although cancer can affect any age, most people who are diagnosed with advanced invasive cancer are in the aging phase and their rates are over the age of 65 (Jonson, 2010; Pawelec et al., 2010).

In their study, Husain & Al-Alawachi (2014) reported that the top 10 repeat cancers in Iraq in 2008 were breast cancer followed by lung cancer, leukemia, bladder and brain cancer and central nervous system, non Hodgkin lymphoma, colon cancer, Stomach cancer, skin cancer except melanoma, and finally throat cancer.

Their study also revealed that the number of registered cancer cases was 5720 in Iraq at 31.05 per 100,000 in 1991 and increased to 14,180 (44.46) per 100,000 population in 2008. The rate of cancer in Iraq increased With an aging per 100,000 population under the age of 10 years to 398 per 100,000 population at the age of 70 (Husain & Al-Alawachi, 2014).

The most frequent cancers were breast cancer, lung, bronchitis, urinary bladder, and blood cancers. Prostate and skin cancers were the least frequent, and breast cancer was the first female killer, according to Weheed et al (2011). While lung cancer and bronchitis is the first killer in males. The study also found that cancer in Thi Qar is a major, growing, multiple causes, consequences and exclusion of a particular type. The study proved that there are rare and other cancers occurring at an early age and in increasing percentage of injuries and deaths annually in most areas and districts of the governorate and for all age groups in both sexes.

From the above we found that it is necessary to have a comprehensive study in Thi Qar to identify the most prevalent cancer patterns and distribution in our province over five consecutive years and ways of prevention and early detection through awareness of the health of the people in the province for the risk of these cancers and the need for tests and periodic detection precautionary for women to prevent breast cancer, which is one of the top ten cancers registered in Thi-Qar and the first killer of women throughout Iraq.

2. Patients and methods

The data (sex, age, location, type of cancer, year) were collected for 2892 people with cancer for five consecutive years (2010, 2011, 2012, 2013, 2014) through their forms obtained from the Department of Statistics in the Department of Health Thi Qar, where this department receives cases of infection from all hospitals in the province with its five beds (Nasiriyyah, Suq al-Shuyukh, Shatrah, Rifa'i and Chabaish). The injuries were sorted by sex, age, place of residence, type of cancer, year.

3. Results and Discussion

The highest percent of cancer incidences was 24.1% in 2011 and the lowest percent was (15.6%) in 2010. The incidence of lung cancer was highest in 504 among the other cancers of the five years and reached the highest percentage (21.1%) in 2014 and 10.2% in 2010. The lowest cancer of the tissues was the lowest (0.8%) in 2014 (Table 1)

| Table 1: Distribution of cancer incidence rates during the five years (2010-2014) |
Cancer arises as a result of the transformation of cells from normal to cancer and develops over time into malignant tumors that threaten human life. Cancer deaths occur almost as a result of the following behavioral and dietary factors: high BMI, inadequate intake of fruits and vegetables, physical activity and tobacco and alcohol use (GBD 2015), as these carcinogenic changes occur as a result of the interaction between individual genetic factors and external environmental factors, UV and ionizing radiation, carcinogenic agents (asbestos, tobacco smoke components, fungal toxins such as aflatoxin (a food contaminant) and heavy metal pollution eg arsenic (one of the drinking water contaminants) and lead (Air contaminants) (Ferlay et al., 2012) . And carcinogenic biological agents, for example viruses and bacteria. human papilloma is an example of virusus, which causes cervical cancer, Hepatitis B virus and Hepatitis C virus , that cause liver cancer and is the most common type of cancer. Also, Helicobacter pylori that causes stomach cancer (Plummer et al., 2016).

Since 1991, Iraq has been exposed to radiation and is still under its influence, leading to the spread of cancer in Iraq, especially in the south. The use of depleted uranium against Iraq has resulted in a sevenfold increase in cancer cases, lung cancer four times and lung cancer mortality five times.

Many international organizations, such as the Food and Agriculture Organization of the United Nations (FAO), the World Food Program (WFP), and the World Health Organization (WHO) have shown radioactive contamination in the soil and in some plants with varying concentrations of thorium 243, radium 226, and bismuth 214, which is higher than normal, resulting in mysterious diseases such as leukemia, lymphoma and breast cancer. And noted the need to study the level of radiation activity under its influence, leading to the spread of cancer in Iraq, especially in the south. The use of depleted uranium against Iraq has resulted in a sevenfold increase in cancer cases, lung cancer four times and lung cancer mortality five times.

Cancer type	2010 No.	2011 %	2012 No.	2013 %	2014 No.	Total No.					
Lung	46	10.2%	131	18.8%	97	16.5%	107	18.7%	123	21.1%	504
Bladder	58	12.9%	94	13.5%	82	14%	83	14.5%	59	10.1%	376
Lungs	55	12.2%	44	6.3%	14	2.4%	6	1%	7	1.2%	126
The central nervous system	70	15.5%	105	15th%	46	7.8%	56	9.8%	60	10.3%	337
Liver	28	6.2%	39	5.6%	52	8.9%	35	6.1%	51	8.7%	205
Lymphatic system	31	6.9%	49	7%	26	4.4%	2	0.3%	7	1.2%	115
Ovary	21	4.7%	10	1.4%	7	1.2%	8	1.4%	7	1.2%	53
Stomach	17	3.8%	25	3.6%	15th	2.6%	23	4%	21	3.6%	101
Breast	21	4.7%	33	4.7%	39	6.6%	37	6.5%	41	7%	171
Prostate	6	1.3%	10	1.4%	12	2%	10	1.7%	3	0.5%	41
The Blood	0	0.0%	1	0.1%	5	0.9%	17	3%	13	2.2%	36
Pancreas	34	7.5%	30	4.3%	29	4.9%	24	4.2%	32	5.5%	149
Uterus	0	0.0%	9	1.3%	16	2.7%	10	1.7%	10	1.7%	45
the kidney	0	0.0%	2	0.3%	8	1.4%	13	2.3%	7	1.2%	30
The Straight colon - Bone	1	0.2%	12	1.7%	21	3.6%	14	2.4%	24	4.1%	72
the skin	0	0.0%	7	1%	21	3.6%	15th	2.6%	11	1.9%	54
Thyroid	0	0.0%	0	0.0%	2	0.3%	4	0.7%	4	0.7%	10
Soft issue	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	0.8%	1
Other sites of the body	63	14%	97	13.9%	92	15.7%	107	18.7%	95	16.3%	454
Total of each year	451	15.6%	698	24.1%	587	20.3%	573	19.8%	583	20.2%	2892
Changes in the glands or hormonal changes associated with aging contribute to the development of certain cancers (WHO, 2010). Nasiriyah was the most frequent (1476) cancer cases for the five years and reached the highest rate of incidence (55.9%) in 2010 and the lowest rate (47%) in 2012, and Al-chabayish was the least number (104) incidences, with the highest percent (4.6%) in 2014 and the lowest (2.9%) in 2011 (Table 3).

The results showed a decrease in an incidence rates as moved away from the center of the governorate. The city's atmosphere is characterized by an increase in radiation pollution from the communication towers, as well as the pollution of the and the lack of vegetation to control pollution (Vincisand Husgafvel, 2005) combined with the consumption of food crops treated with chemical fertilizers led to the rapid development of cancer, detection and registration, compared to cases in areas away from the centers of cities, which are still in the early stages due to lack of pollutants (Wilkinson and Cameron, 2004).

Table 2: Distribution of cancer rates, according to age groups for the five years.

Year	2010	2011	2012	2013	2014	Total					
Age group	No.	%									
Less than 5 years	9	2%	15	1.4%	3	0.5%	302	52.7%	18	3.1%	347
(5-9)	3	0.7%	8	1.1%	8	1.4%	5	0.9%	7	1.2%	31
(10-14)	2	0.4%	6	0.9%	6	1%	1	0.2%	8	1.4%	23
(15-19)	5	1.1%	7	1%	12	2%	5	0.9%	9	1.5%	38
(20-24)	12	2.7%	10	1.4%	10	1.7%	6	1%	9	1.5%	47
(25-29)	9	2%	15	2.1%	6	1%	2	0.3%	11	1.9%	43
(30-34)	23	5.1%	14	2%	13	2.2%	8	1.4%	16	2.7%	74
(35-39)	6	1.3%	31	1.7%	21	3.6%	13	2.3%	19	3.3%	71
(40-44)	10	2.2%	18	2.6%	26	4.4%	15th	2.6%	22	3.8%	91
(45-49)	13	2.9%	31	4.4%	32	5.5%	14	2.4%	33	5.7%	123
(50-54)	29	6.4%	45	6.4%	28	4.8%	12	2.1%	32	5.5%	146
(55-59)	27	6%	64	9.2%	50	8.5%	27	4.7%	38	6.5%	206
(60-64)	37	8.2%	89	12.8%	80	13.6%	47	8.2%	91	15.6%	344
(65-69)	60	13.3%	85	12.2%	92	15.6%	34	5.9%	92	15.8%	363
(70-74)	54	12%	88	12.6%	58	9.9%	33	5.8%	63	10.8%	296
Greater than 75 years	152	33.7%	191	27.4%	142	24.2%	49	8.6%	115	19.7%	649
Total	451	15.6%	698	24.1%	587	20.3%	573	19.8%	583	20.2%	2892

Table 3: Distribution of cancer rates according to province areas for the five years.

Year	2010	2011	2012	2013	2014	Total			
Area	No.	%	No.	%	No.	%	No.	%	No.
Nasiriyah	252	55.9%	362	51.9%	276	47%	298	52%	288
Shuq-alsheukh	53	11.8%	71	10.2%	72	12.3%	82	14.3%	75
Al-Rifaa	58	12.9%	123	17.6%	99	16.9%	67	11.7%	95
Shatrah	69	15.3%	122	17.5%	120	20.4%	108	18.8%	98
Chabaish	19	4.2%	20	2.9%	20	3.4%	18	3.1%	27
Total	451	15.6%	698	24.1%	587	20.3%	573	19.8%	583

Males had the highest incidence of cancer, where the highest percent among males (57%) in 2011 and the lowest percentage (51.3%) in 2014. The highest rate of an incidences were recorded in females (48.7%) in 2014 and the lowest percentage (43%) in 2011 (Table 4).
The higher incidence of male compared with females may be related to several factors, most notably the likelihood of males being more likely to be infected by females as a result of smoking (Secretan et al., 2009; IARC 2004). Other studies point to the difference in genetic factors (Okomoto et al., 2005).

Sexual hormones also have an effect on infection as Soulsby (1982) has shown that male hormones lead to decreased cellular immunity, while female hormones increase female immunity.

Table 4: Distribution of cancer incidence by sex for the five years.

Year	Sex	No.	%	Total										
	Male	242	53.7%	308	52.5%	301	52.5%	299	51.3%					1548
	Females	209	46.3%	284	47.5%	272	47.5%	284	48.7%					1344
	Total	451	15.6%	588	24.1%	573	19.8%	583	20.2%					2892

4. References

[1] Albert’, B., Johnson, A., Lewis, J., et al. (2002) The Preventable Causes of Cancer. Molecular Biology of the Cell. 4th Edition, Garland Science, New York.

[2] American Cancer Society. (2007). Global Cancer facts and figures 2007. Atlanta (GA), American Cancer Society, Inc. No. 861807 pp:52.

[3] American Cancer Society. (2017). Global Cancer facts and figures 2017. Atlanta (GA), American Cancer Society, pp:72.

[4] Anisimov, V.N., Sikora, E. and Pawelec, G. (2009) Relationships between Cancer and Aging: A Multilevel Approach. Biogerontology, 10, 323-338. http://dx.doi.org/10.1007/s10522-008-9209-8.

[5] Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11

[6] GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 Oct; 388 (10053):1659-1724

[7] Husain H. Y. & Al-Alawachi, S.F. A. .(2014) . Incidence Rates, Pattern and Time Trends of Registered Cancer in Iraq (1991-2008) Population and Hospital Based . Registry .OALib J. (1): 1-6.

[8] IARC monographs on the evaluation of carcinogenic risks to humans. Volume 83. Tobacco smoke and involuntary smoking. Lyon: International Agency for Research on Cancer; 2004.

[9] Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global Cancer Statistics. CA: A Cancer Journal for Clinicians, 61, 69-90.

[10] Johnson, G. (2010) Unearthing Prehistoric Tumors, and Debate. The New York http://www.nytimes.com/2010/12/28/health/28cancer.html

[11] Okomoto, K.; Brook, M.G. and Gilson, R. (2005). Association of functional gene polymorphisms of matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 with the progression of chronic liver disease. J. Gastro. Hepatol., 20 : 1102-1108.

[12] Pawelec, G., Derhovanessian, E. and Larbi, A. (2010) Immunosenescence and Cancer. Critical Reviews in Oncology/Hematology, 75, 165-172.

[13] Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016 Sep;4(9):e609-16. doi: 10.1016/S2214-109X(16)30143-7.

[14] Secretan B, Straif K, Baan R, et al. A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 2009;10:1033–1034. doi: 10.1016/S1470-2045(09)70326-2.
[15] Soulsby, E.J. (1982). Helminthes Arthropoda and protozoa of domesticated animals. 6th Ed. Monning Veterinary Helminthology and Entomology. Bailliere. Tindal and human being. Adv. Pediat. London. 1-60.

[16] Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: biomarker studies in human populations. Carcinogen. 2005;26:1846–1855. doi: 10.1093/carcin/bgi216.

[17] Weheed F. S., Mussa H. N., Assi A. N, and Yaseen S. J. (2011). Cancer in Thi-Qar Governorate: Pattern and distribution of cancer cases during 2005-2009. Thi-Qar Medical Journal TQMJ: 5 (3): 43-49.

[18] Wilkinson D, Cameron K. Cancer and cancer risk in South Australia: what evidence of a rural–urban health differential? Aust J Rural Health. 2004;12:61–66. doi: 10.1111/j.1038-5282.2004.00555.x.

[19] WHO Report on Cancer (2010). [http://www.who.int/nmh/publications/ncd_report_chapter1.pdf]