Determination of Radionuclides and Heavy Elements in the Rising Dust in the Small Side of Diwaniyah City due to the Movement of Wheels and Cars

K H Obayes1, K H Mahdi2, R M Nassif2 and H L Mansour3

1 Department of Physics, College of Education, University of Al-Qadisiyah, Qadisiyah Governorate, Iraq, cvvc519@yahoo.com.

2 College of Education for pure sciences, Ibn al-Haytham, University of Baghdad, Baghdad, Iraq, khalidhm_61@yahoo.com, raadalkhafag@yahoo.com.

3 Department of Physics, College of Education, Mustansiriyah University, Baghdad, Iraq, dr.hazimlouis@yahoo.com.

Abstract. This research aims to determine the concentration of radionuclides in dust samples on the public streets of the small side of Diwaniyah city in Iraq as a result of movements of wheels and cars using the gamma spectra and high purity germanium detector (HPGe) with resolution of (2.3 keV) for energy (1.332 MeV) of cobalt ⁶⁰⁶⁰Co. Dust samples were collected from the streets Diwaniyah city with (26) samples prepared for measurement. The results of the specific activity concentration of Uranium-238, Thorium-232, Potassium-40 and Cesium-137 were (14.66±0.950, 26.29±2.431, 219.04±15.150 and 11.49±0.876) Bq/kg respectively. The radiation parameters Ra eq, absorbed dose rate, annual effective external exposure rate and annual effective dose rate of internal exposure were (69.122 Bq/kg, 31.787 nGy/h, 0.0389 mSv/y, 0.155 mSv/y) respectively. The value of the external risk index (H ex), the internal risk index (H In) and the risk index for gamma radiation was (0.186, 0.226 and 0.506) respectively. The results obtained from granular volumetric analysis of dust patterns as a result of movement of cars and vehicles indicate that most of dust for some samples of the study area was sandy-silt with a little clay (Sandy Silt Clayey). These components of dust depend on the energy and speed of the transport wind, Volumetric granules.

Key word: High purity Germanium Detector, Gamma Ray, Heavy Elements, Radioactivity.
1. Introduction

In many areas of the world, soils are exposed to pollution of toxic heavy metals as a result of human activity in many fields, especially industry and agriculture, the addition of phosphate fertilizers, manufacturing, mining and waste disposal. These activities are a major source of air pollution in minutes loaded with heavy elements. On the other surfaces washed by rain and transferred by water dissolved or suspended and eventually to the soil [1] and can be said that the pollution of these heavy elements is one of the biggest problems for the time of the soil and water sources. There is another form of air pollution associated with environmental pollution is an increase of radioactive isotopes in the environment as a result of the atomic dust falling from dust emissions from the industrial use of nuclear energy and nuclear bombs [2].

Radioactivity is defined as the automatic transformation of an element's radioactive nuclei into other, more stable elements through the emission of a particular type of radiation, the emitted radiation is the alpha, beta and gamma rays. Many radioisotopes such as Ra-226, U-235, U-238, Th-232 and K-40 are found naturally in rocks and in soil. Other radioactive isotopes such as Cs, Co, I, Kr, Pu and Sr are mainly produced as fission products from the atomic dust of atomic bombs, nuclear reactors or other sources of radiation [3].

Radiation, whether solid, liquid or gaseous, is combined with elements of the environment such as water, air and soil. The speed of gas diffusion is often greater in air than in liquid or solid, resulting in widespread pollution in large areas where wind plays a distinctive role. Radiated dust leads to contamination of soil and water [4]. Thus human are exposed to a low level of radiation background, since radiation has an effect on the environment, which may remain for many years to affect the genetic makeup of humans and animals, leading to a genetic defect that affects the future generations. Moreover, the effect of this pollution reaches water and soil and enters the food chain of both humans and animals [5]. Thus, the need to study the effect of radiation and detection and the extent of pollution of the environment using several techniques for the detection of radioactive materials such as gamma ray spectroscopy.

2. Location of studied area

The province of Diwaniyah occupies the southern part of the middle of the Mesopotamian plain, which is one of the provinces of the Middle Euphrates bordered to the north by Babil province and to the south by Al-Muthanna province and from the east by Wasit and Dhi Qar provinces. The direction of wind mostly north-west. The Diwaniyah River divided the Diwaniyah province into areas which included several residential neighborhoods. (26) samples of rising dust by cars and vehicles were collected from streets in small side of Diwaniyah city in order to calculating the concentrations of radionuclides using a gamma ray spectrometry, in addition to four samples of them were selected to calculating the concentration of heavy elements using a special device. Figure (1) shows the map of the districts of Qadisiyah Governorate (Diwaniyah province) showing the collection sites.
Figure 1. Map of the districts of (Diwaniyah province).
3. Experimental

Dust samples were collected from the streets of Diwaniyah (26) samples using an electric device for dust extraction. They were prepared for measurement by drying them at 100°C for two hours, grinding them and then were sieved with a (75μm) sieve kept in petri dish with a Radius of 4.25 cm and height of 1 cm for one month to get radiation equilibrium. Gamma spectrometer system, which consists of "3x3" (CANBEERA) high purity germanium detector, that operates with voltage of (3500 Volts), with efficiency of (40%) and resolution of (2.3 keV) at (1.332 MeV) for the cobalt-60. The detector is surrounded by a lead shield to protect it from the radioactive background. This system were at the College of Education for Pure Sciences / Ibn al- Haytham at Baghdad University. Figure (2) illustrates the measurement system which calibrated as in reference [6].

![Figure 2. The measurement system.](image)

Then (15g) of dust samples from 4 areas that selected from the city limits with the desert region and carefully placed in bags. These samples were transferred to the Geochemistry Laboratory at the Geology Department, University of Baghdad for analysis by XRD and XRF methods to determine clay minerals and heavy elements (iron, zinc, copper, cobalt, lead, nickel and cadmium). These systems shown in figures (3). These samples were prepared by drying in oven at 60 °C and then were grinded into a powder.

![Figure 3. XRD and XRF device.](image)
4. Results and discussion

4.1. Specific activity concentration of samples

The specific activity concentration of the dust samples were obtained as a result of the movement of cars and vehicles in the small side of Diwaniyah city in Bq/kg units using the high purity germanium detector (HPGe). The specific activity was obtained using the following equation [7]:

\[A = \frac{\text{Area under peak}}{I_\gamma \times E_{ff} \times m \times t} \pm \sqrt{\frac{\text{Area under peak}}{I_\gamma \times E_{ff} \times m \times t}} \quad \ldots \quad (1) \]

Where:

\(A \): represents the specific activity concentration measured in units of (Bq / kg)

\(\text{Area under peak} \) : Area under peak represents the net area below the peak

\(t \): represents the measuring time in second (10800 s)

\(I_\gamma \) : represents the energy intensity of Gamma rays

\(E_{ff} \) : The efficiency of the detector

\(m \) : represents the mass of the sample.

Table (1) shows the gamma energies for isotopes used in the present work.

Series	Equivalent isotope	Half–life	E (keV)	\(I_\gamma \) (\(E_\gamma \))
232 Th	212 Pb	10.64 h	238.63	43.50
238 U	214 Pb	26.80 m	351.92	35.10
232 Th	208 Tl	3.07 m	583.19	30.58
238 U	214 Bi	19.90 m	609.32	44.60
......	137 Cs	30 y	661.61	87.50
232 Th	228 Ac	6.13 h	911.16	26.60
......	40 K	1.2 \times 10^9 y	1460.80	10.67

The specific activity concentration of the bismuth-214 and lead-214 at energies of (609.32, 351.92) keV were adopted as an equivalent for the specific activity concentration of uranium-238 by selecting the most highest activity, and the specific activity concentration of actinium-228, lead-212 and thallium-208 at energies of (583.19, 238.63, 911.16) keV as an equivalent of the specific activity of thorium-232, the specific activity concentration of potassium-40 was at (1460.8) keV and the specific activity concentration of cesium-137 was at (661.61) keV, Figures (4) to (7) show the specific activity concentration in samples.
Table (2) shows the overall results of the specific activity for ^{238}U, ^{232}Th, ^{40}K and ^{137}Cs in 26 samples of dust street from different locations the Small Side of Diwaniyah City in Iraq. It is clear from this table that average value of specific activity for ^{238}U was found (14.66±0.950 Bq/kg), While the average value of specific activity for ^{232}Th of (26.29±2.431 Bq/kg), the average value of specific activity for ^{40}K was found (219.04±15.150 Bq/kg) and the average value of specific activity for of ^{137}Cs of (11.49±0.876 Bq/kg).

Table 2. Specific activity concentration of different nuclides in dust samples of the small sides in Diwaniyah city.

Sample Code	Location	U-238 (Bq/kg)	Th-232 (Bq/kg)	K-40 (Bq/kg)	Cs-137 (Bq/kg)
S1	University Site / first Location	15.59±0.925	25.29±2.382	296.63±16.338	4.76±0.665
S2	University Site / Second Location	22.04±1.083	30.15±2.573	311.43±16.640	2.10±0.573
S3	Cultural Site / first Location	25.21±1.1763	31.88±2.692	324.47±17.290	5.70±0.714
S4	Hakim Site / first Location	13.35±0.839	26.94±2.377	227.81±14.354	5.50±0.662
S5	Hakim Site / Second Location	11.56±1.064	16.28±1.910	168.94±12.905	6.06±0.675
S6	Professors Site / first Location	18.60±1.028	16.29±2.037	243.00±15.655	3.64±0.651
S7	Towards Shamia Site / first Location	11.08±0.822	22.82±2.353	116.61±12.580	3.99±0.669
S8	Towards Shamia Site / Second Location	2.94±0.521	15.33±2.037	226.22±15.873	6.24±0.768
S9	Karar Site / first Location	6.70±1.004	17.70±2.180	119.46±13.124	2.43±0.639
S10	Karar Site / Second Location	10.21±0.817	40.16±3.099	329.26±18.135	16.49±1.039
S11	Karar Site / Third Location	11.52±0.860	17.31±0.738	235.93±16.100	11.25±0.911
S12	Green Site / first Location	17.86±0.984	29.76±2.558	199.77±14.205	17.91±1.003
S13	Green Site / Second Location	15.82±0.909	24.94±2.31	247.16±14.859	9.16±0.771
S14	Green Site / Third Location	12.86±1.222	27.36±2.601	357.05±18.584	17.98±1.066
S15	Industrial Site / first Location	9.39±0.789	16.84±2.137	206.07±15.392	18.64±1.087
S16	Industrial Site / Second Location	9.72±0.800	21.16±2.345	212.78±15.554	18.78±1.090
S17	Ramadan Site / first Location	19.04±1.420	39.30±3.069	194.12±15.099	17.93±1.071
S18	Ramadan Site / Second Location	19.12±1.422	39.94±3.091	210.55±15.500	16.54±1.019
S19	Algeria Site / first Location	15.23±0.970	26.34±2.573	240.41±16.203	9.87±0.874
S20	Algeria Site / Second Location	23.59±1.182	37.35±2.999	266.54±16.795	17.93±1.071
S21	Teachers Site / Site / first Location	24.63±1.193	29.63±2.677	161.03±14.061	15.10±0.993
S22	Teachers Site / Second Location	24.65±1.141	22.37±2.260	216.59±14.598	16.28±0.968
S23	Heritage Site / first Location	4.53±0.598	26.12±2.564	158.28±14.185	16.40±0.990
S24	Heritage Site / Second Location	10.11±1.127	30.78±2.738	121.23±13.078	15.95±1.020
S25	Heritage Site / Third Location	12.98±0.840	31.06±2.56	123.12±12.023	17.44±0.977
S26	Virginity Site / first Location	12.72±0.897	20.29±2.305	180.68±14.763	7.58±0.809
	the average	14.66±0.950	26.29±2.431	219.04±15.150	11.49±0.876

World average | 35 | 30 | 400 | 14.8
Figure 4. Specific activity concentration levels of U-238 in dust samples.

Figure 5. Specific activity concentration levels of Th-232 in dust samples.
4.2. Calculation of Radiation hazard parameters (indices) for dust samples:
The following radiation hazard indices were determined for the dust samples in the present work
A. Radium Equivalent
B. Absorbed Dose
C. The Annual Effective Dose Equivalent
D. External Hazard Index
E. Internal Hazard Index
F. Activity Concentration Index
Using the following equations[9][10][11]:
\[R_{eq}(Bq.kg^{-1}) = A_{Ra} + 1.43 A_{Th} + 0.077 A_K \] \hspace{1cm} \text{... (2)}
\[D_Y(nGy.h^{-1}) = 0.462 A_{Ra} + 0.604 A_{Th} + 0.0417 A_K \] \hspace{1cm} \text{... (3)}
The average value of (\(\text{Ra}_{\text{eq}}\)) was equal to (0.186) , Current results show that (\(H_{\text{ex}}\)) in the studied areas is less than the accepted average which is equal to (1) , Where the results showed that (\(\text{AEDE}_{\text{in}}\)) in the studied areas is less than the accepted average which is equal to (55 nGy/h) , The average value of (\(\text{AEDE}_{\text{out}}\)) was found (69.122 Bq/kg) , Results show that (\(\text{Ra}_{\text{eq}}\)) in the studied areas is less than the accepted average which is equal to (370 Bq/kg), while the average value of (\(D_{\gamma}\)) was (31.787 nGy/h) , Results show that (\(D_{\gamma}\)) in the studied areas is less than the accepted average which is equal to (55 nGy/h) , the average value of (\(\text{AEDE}_{\text{out}}\)) was found (0.155 mSv/y) , Where the results showed that (\(\text{AEDE}_{\text{in}}\)) in the studied areas is less than the accepted average which is equal to (1 mSv/y) , While the results showed that the average value of (\(\text{AEDE}_{\text{out}}\)) (0.0389 mSv/y) less than the accepted average which is equal to (1 mSv/y). The average value of (\(H_{\text{in}}\)) was equal to (0.226) which is less than the accepted average which is equal to (1), While the average value of (\(H_{\text{ex}}\)) was found(0.186) , Current results show that (\(H_{\gamma}\)) in the studied areas is less than the accepted average which is equal to (1). The average value of (\(I_{\gamma}\)) which is equal to (0.506) which is less than the accepted average which is equal to (1).

Table 3. The radiation hazard indices in dust samples of the small side in Diwaniyah city.

Sample Code	Location	Ra\(_{\text{eq}}\) (Bq/Kg)	\(D_{\gamma}\) (nGy/h)	\(\text{AEDE}_{\text{out}}\) (mSv/y)	\(\text{AEDE}_{\text{in}}\) (mSv/y)	\(H_{\text{ex}}\)	\(H_{\text{in}}\)	\(I_{\gamma}\)
S\(_{1}\)	University Site / first Location	74.606	34.852	0.0427	0.170	0.201	0.243	0.554
S\(_{2}\)	University Site / Second Location	89.146	41.385	0.0507	0.203	0.230	0.300	0.656
S\(_{3}\)	Cultural Site / first Location	95.801	44.441	0.0545	0.218	0.258	0.326	0.703
S\(_{4}\)	Hakim Site / first Location	69.428	31.944	0.0391	0.156	0.187	0.223	0.510
S\(_{5}\)	Hakim Site / Second Location	47.867	22.227	0.0272	0.109	0.129	0.160	0.352
S\(_{6}\)	Professors Site / first Location	60.619	28.571	0.0350	0.140	0.163	0.214	0.448
S\(_{7}\)	Towards Shamiya Site / first Location	52.704	23.770	0.0291	0.116	0.142	0.172	0.379
S\(_{8}\)	Towards Shamiya Site / Second Location	42.294	20.057	0.0246	0.098	0.114	0.122	0.323
S\(_{9}\)	Karar Site / first Location	41.222	18.773	0.0230	0.092	0.111	0.129	0.301
S\(_{10}\)	Karar Site / Second Location	93.004	42.709	0.0523	0.209	0.251	0.278	0.689
S\(_{11}\)	Karar Site / Third Location	54.448	25.619	0.0314	0.125	0.147	0.178	0.407
S\(_{12}\)	Green Site / first Location	75.809	34.561	0.0423	0.169	0.204	0.253	0.549
S\(_{13}\)	Green Site / Second Location	70.524	32.683	0.0400	0.160	0.190	0.233	0.519
S\(_{14}\)	Green Site / Third Location	79.496	37.364	0.0458	0.183	0.214	0.249	0.597
S\(_{15}\)	Industrial Site / first Location	49.348	23.107	0.0283	0.113	0.133	0.158	0.368
S\(_{16}\)	Industrial Site / Second Location	56.370	26.147	0.0320	0.128	0.152	0.178	0.418
S\(_{17}\)	Ramadan Site / first Location	90.195	40.632	0.0498	0.199	0.243	0.295	0.649
S\(_{18}\)	Ramadan Site / Second Location	92.467	41.746	0.0512	0.204	0.249	0.301	0.667
S\(_{19}\)	Algeria Site / first Location	71.425	32.978	0.0404	0.161	0.192	0.234	0.525
S\(_{20}\)	Algeria Site / Second Location	97.543	44.581	0.0546	0.218	0.263	0.327	0.708
S\(_{21}\)	Teachers Site / first Location	79.417	35.998	0.0441	0.176	0.214	0.281	0.567
S\(_{22}\)	Teachers Site / Second Location	73.324	33.935	0.0416	0.166	0.198	0.264	0.332
4.3. Calculation of Clay Metal Concentrations and Heavy Elements of Samples:

The results were obtained for (4) samples by particle size analysis. The results were based on the energy and speed of the winds of the dust storms, which carry the mixture of the different grains in dry seasons, including sand, silt and clay. Table 4 shows the results of the volumetric analysis and classification[5].

Table 4. The results of the volumetric analysis and classification.

Sample Code	Location	Sand%	Silt%	Clay%	Classification
S1	University Site	45	50	5	Sandy Silt
S2	Karar Site	72	24	4	Silty Sand
S3	Green Site	56	36	8	Silty Sand
S4	Virginity Site	66	32	12	Silty Sand
Min		45	24	4	
Mix		72	50	12	
Average		59.75	35.5	7.25	

Figure (8) The XRD pattern of the non-clay elements for samples (S2). Figure (9) shows the XRD pattern of the identification of clay elements for samples (S2).

The results of the analysis were determined by X-ray diffraction method (XRD). The non-clay minerals of 4 samples selected from the studied areas were examined in the range of 20° (2-50) (jibs, quartz, calcite, feldspar and dolomite, respectively) Shown in Figure (8) . Clay minerals were also identified and diagnosed in the dust patterns of the selected areas, depending on the basal reflections characteristic of each mineral (Palygorskite , Kaolinite , Montmorillonite , Chlorite , Illite and Chlorites – Montmorillonite Mixed Layers) Shown in Figure (9).

![Figure 8. XRD pattern of sample (S2) (non-clay elements).](image-url)
Figure 9. XRD pattern of sample (S₂) (clay elements).

The concentrations of heavy metals (Fe, Ni, Cu, Zn, Cd, Pb, Co) were performed using an XRF device. These elements were selected for their effect on the environment and on humans, animals and plants. Table (5) illustrates the concentrations of these elements in dust samples.

Table 5. The concentrations of the elements in the dust of the studied streets.

Samples	Pb (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Cd (ppm)
S₁	41.864	7924.0	2.448	49.000	16.111	84.782	2
S₂	37.037	9772.0	2.448	59.500	23.973	75.978	2
S₃	98.116	11952.5	2.448	67.645	51.813	119.739	2
S₄	50.496	9877.0	2.448	56.063	17.722	57.000	2
Average	56.878	9881.25	2.448	58.052	27.404	84.374	2
Accepted limit	10	38000	8	40	30	50	0.06

Conclusions

1- The results obtained showed that most of the specific Activity concentration rates of the different nuclides were lower than the global average as indicated in tables (2). However, the S₁₀ and some other samples a higher level of specific activity concentrations than the global average for Th-232.

2- As for the results of radioactive effects, they were all less than the rate allowed globally, but although the rates are lower than the global average, we believe that the accumulation may have a negative impact on the public health.

3- The results obtained by X-ray analysis have shown that the sources of these minerals were different, either from the weathering process of the source rocks in the geological formations of Western Sahara or their sources which were transported from distant places with the wheels of the vehicles which supply these materials as they pass on the outskirts of the street.

4- We propose that the process should be sprinkled with water to reduce the environmental damage while conducting regular monitoring of aerosol pollutants and also support to this study with geological surveys and geochemical studies of the region.
References

[1] Pouyat RV, Yesilonis ID, Russell-Anelli J and Neerchal NK 2007 Soil chemical and physical properties that differentiate urban land-use and cover types Soil, Sci. Soc. Am. J. vol.71 No.3 pp.1010-1019.

[2] Ahemad M and Kibret M 2014 Mechanisms and applications of plant growth promoting rhizobacteria: current perspective, J. King Saud Univ. vol.26 No.1 pp.1-20.

[3] El-Taher A and Al-Turki A 2014 Soil-to-plant transfer factors of naturally occurring radionuclides for selected plants growing in Qassim, Saudi Arabia, Life Sci. J. vol.11 No.10 pp.965-972.

[4] Yeung ZLL, Kwok RCW and Yu KN 2003 Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF), Appl. Radiat. Isot. vol.58 No.3 pp.339-346.

[5] Rasaq B and Zainab FO 2015 Assessment of Activity Concentrations of Radionuclide with Depth in Wasteland Soils in Abeokuta, Southwest Nigeria, Phys. Sci. Int. J. vol.5 No.1 p.51.

[6] Al-ubaidi KH, Al-nasri SK and Al-jelehawy KH 2018 Preparation and Measurement of Soil Standard Source as a Petri Dish Using 152Eu Isotope, Int. J. Sci. and Res. vol.7 No.2 pp. 2319-7064.

[7] Harb S, Abbady A, El-Kamel AH, Abd EM and Rashed W 2008 Concentration of U-238, U-235, Ra-226, Th-232 and K-40 for some granite samples in eastern desert of Egypt, Proc. of the 3rd Environmental Phys. Conf., 19-23 Feb. Aswan, Egypt, pp.109-117.

[8] Knoll GF 2010 Radiation detection and measurement (New York : John Wiley & Sons).

[9] Ajayi IR and Ajayi OS 1999 Estimation of absorbed dose rate and collective effective dose equivalent due to gamma radiation from selected radionuclides in soil in Ondo and Ekiti State, south-western Nigeria, Radiat. Prot. Dosimetry vol. 86 No.3 pp.221-224.

[10] Thabayneh KM and Jazzar MM 2012 Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem Province-Palestine, Open J. Soil Sci. vol. 2, No.1, p.7.

[11] Venturini L and Nisti MB 1997 Natural radioactivity of some Brazilian building materials, Radiat. Prot. Dosimetry vol.71 No.3 pp. 227–229.