EDITORIAL COMMENT

Benchmarking CKD: incidence of CKD in a European country with low prevalence of CKD and kidney replacement therapy

Alberto Ortiz 1,2,3

1IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain, 2RICORS2040, Madrid, Spain and 3Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain

Correspondence to: Alberto Ortiz; E-mail: aortiz@fjd.es

ABSTRACT

Iceland was one of six European countries with an adjusted incidence of kidney replacement therapy (KRT) in 2018 lower than 100 per million persons (pmp), along with Estonia, Montenegro, Russia, Serbia and Finland. It was also one of 10 countries with an adjusted KRT prevalence <900 pmp. Furthermore, the prevalence of chronic kidney disease (CKD) in Iceland is up to 2.44-fold lower and the death rate from CKD up to 3.44-fold lower than in other countries with a low incidence of KRT, suggesting that the low KRT incidence actually reflects a low need for KRT rather than low uptake or availability of KRT. This identifies Iceland as a benchmark for countries trying to reduce KRT incidence. Iceland also represents one of the best genetically characterized populations in the world, facilitating studies on the influence of the genetic background versus environment and lifestyle on CKD. This issue of CKJ reports the incidence and risk factors for CKD in Icelandic adults. Diabetes, acute kidney injury, hypertension, cardiovascular disease, chronic lung disease, malignancy and major psychiatric illness were associated with an increased risk of incident CKD, as were obesity and sleep apnea in women. However, in 75% of incident CKD cases, CKD was first detected in category G3 or higher, emphasizing the need for new tools that allow an earlier diagnosis of CKD that precedes the loss of >50% of the functioning kidney mass and/or wider use of albuminuria as a screening tool. The European Society of Cardiology just recommended assessing albuminuria for routine cardiovascular risk workups for all.

Keywords: albuminuria, benchmarking, chronic kidney disease, epidemiology, incidence, kidney replacement therapy, prevalence

Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, predicted to become the fifth global cause of death by 2040 and the second cause of death before the end of the century in countries with long life expectancy [1–3]. The global struggle against CKD should focus not only on countries, regions or communities with very high incidence of CKD, the so-called CKD hotspots [4], but also on countries with the lowest incidence of both CKD and kidney replacement therapy (KRT) that may be used as CKD benchmarks. CKD hotspots will advance our understanding of drivers of CKD and, in the process, identify actionable risk factors, as recently exemplified by Aguascalientes in Mexico [5, 6], that will provide insight into genetic or environmental drivers of CKD and CKD progression. In contrast, CKD benchmarks should be studied for the genetic background of the population, environmental and lifestyle factors and access to healthcare, among other factors,
that may contribute to a low incidence of CKD. A frequent barrier in the identification of both CKD hotspots and CKD benchmarks is the scarcity of data on the prevalence of CKD in national or regionally representative populations and the even lower availability of data on the incidence of CKD. Data are more complete for KRT. However, the incidence and prevalence of KRT is influenced by multiple factors beyond the incidence and prevalence of CKD [7, 8]. These additional factors include the estimated glomerular filtration rate (eGFR) at which KRT is initiated in different countries, incentives to enroll or reject patients for KRT, patient attitudes toward KRT and the availability of resources to offer KRT to all in need, and for KRT prevalence, mortality in incident KRT patients and access to kidney transplantation. Additionally, the cause of KRT may have become blurred in patients with long-standing CKD or simplified based on the presence/absence of hypertension, diabetes, kidney biopsy or cysts in imaging [9, 10]. In this issue of CKJ, Jonsson et al. [11] report both the incidence and risk factors for CKD in the Icelandic adult population in one of the most nationally representative studies to date.

Iceland is one of six European countries with an adjusted incidence of KRT in 2018 <100 per million persons (pmp), together with Estonia, Montenegro, Russia, Serbia and Finland [12]. In Iceland, the adjusted prevalence of KRT is up to 2.44-fold lower and the death rate from CKD up to 3.44-fold lower than in other countries with a low incidence of KRT [13–15] (Table 1 and Fig. 1), suggesting that the low incidence of KRT actually reflects a low need of KRT rather than low uptake or availability of KRT. In this regard, the six countries with the lowest incidence of KRT in the ERA can be divided into two groups, according to the CKD prevalence and death rate (Table 1). Thus Estonia, Montenegro, Russia and Serbia have a higher CKD prevalence and death rate, despite the low incidence of KRT, while Finland and Iceland, which represent the countries with the highest gross domestic product (GDP), have a lower CKD prevalence and death rate. This identifies Iceland as a CKD benchmark for countries trying to reduce the incidence of KRT. On top of that, Iceland represents one of the best genetically characterized populations in the world [16], paving the way for studies on the influence of genetic background on CKD and its progression, as well as on the genetics-environment interaction.

In this issue of CKJ, Jonsson et al. [11] analyzed 2120147 serum creatinine measurements from 218437 adults in Iceland in 2008–2016. The population of Iceland was ∼325 000 at the time, thus the sample represents most of the adult Icelandic population. The baseline prevalence of CKD was 5.4%, 2- to 3-fold lower than reported for countries such as Spain [1]. Thereafter, 6.9% of those not having CKD at baseline developed incident CKD categories G1–G5 during the study. This corresponds to a mean annual age-standardized incidence of CKD of 671 per 100000 (0.67%/year), being slightly lower for men than for women: 649 [95% confidence interval (CI) 630–668] and 694 (95% CI 674–714), respectively. However, it reached 4000 in men and 3000 in women per 100000 in those >65 years of age. In this regard, the lifetime risk of developing CKD category G3–G5 in Iceland was estimated at 36% for women and 21% for men at the age of 45 years in a smaller study (∼19 000 participants) with follow-up to 2005 [17]. Lifetime risks decrease as persons get older. The data collected by Jonsson et al. [11] may help update these estimates and contribute to an updated European-wide estimation of lifetime risk of CKD, as there are already data

Country	Adjusted prevalence of CKD (pmp)	Median incident KRT age (years)	Median prevalent KRT age (years)	Incident KRT DM (pmp)	Prevalent KRT DM (pmp)	Age-standardized CKD prevalence pmp, 2017	Age-standardized CKD deaths pmp, 2017	Life expectancy at birth (years)	GDP per capita (US$, PPP; IMF, 2021)	
higher										
Estonia	76	772	58.5	60.1	20	15	133	89	78	3779
Montenegro	78	763	58.5	60.7	20	16	135	91	75	3779
Russia	81	813	61.6	61.8	20	19	136	95	74	3691
Finland	87	845	64.1	64.1	20	233	12830	91	79	3685
Iceland	96	859	59.6	59.6	14	85	52350	43	84.1	58151
lower										
DM, diabetes mellitus; IMF, International Monetary Fund; PPP, purchasing power parity.										

Sources: references 11–15.
for lifetime risk of KRT [18]. The European lifetime risk of KRT was estimated at 0.77% in 20-year-old women and 1.45% in 20-year-old men, although there was wide variability between countries, further illustrating the concept of CKD benchmarks. In this regard, for Finland, a country with similar KRT incidence and prevalence as Iceland, lifetime risk of KRT was estimated at 0.44% in 20-year-old women and 0.88% in 20-year-old men, well below corresponding figures of 1.20% and 2.00%, respectively, in Greece.

Jonsson et al. [11] identified diabetes, acute kidney injury (AKI), hypertension, cardiovascular disease, chronic lung disease, malignancy and major psychiatric illness as independent risk factors for incident CKD, and additionally, obesity and sleep apnea in women. Risk factors were also estimated for incident CKD categories G4–G5. Of interest, AKI conferred the highest independent risk for severe CKD for both men [hazard ratio 8.36 (95% CI 6.29–11.12)] and women [hazard ratio 2.73 (95% CI 2.55–2.93)]. This emphasizes the need to prevent AKI and the interaction between AKI and CKD, as CKD is a key risk factor for AKI [19]. In this regard, a key issue in patients with CKD is unawareness by their physicians of the diagnosis of CKD, despite laboratory values that allow the diagnosis. This was the case in ~80% of patients with strict diagnostic criteria for CKD (i.e. using both eGFR thresholds and the 3-month time frame) in Stockholm, Sweden [20, 21]. Failure of physicians to annotate a diagnosis of CKD in patient charts was associated with a higher risk of prescribing a variety of nephrotoxic medications, which may likely increase the risk of AKI and CKD progression [20]. A similar underdiagnosis of CKD has been observed in China [22].

In contrast, Jonsson et al. [11] identified intermediate or severe frailty risk scores as associated with decreased risk of incident CKD, likely reflecting the limitations of using serum creatinine to estimate GFR and diagnose CKD in patients with low muscle mass [23]. This additionally implies that the incidence of CKD may have been underestimated.

Finland was also characterized by low prevalence of CKD and low prevalence of KRT and could potentially be another CKD benchmark [12, 13]. Both have a high life expectancy, meaning that the low risk of CKD and KRT is not easily explained by competing risks or early death: Iceland, at 84.1 years, and Finland, at 81.9 years, compare favorably with Greece, at 80.9 years, as an example of a country with high lifetime risk of KRT [15]. However, Iceland and Finland KRT patients differ in several aspects. Thus Icelandic patients on KRT are younger and have a roughly 50% lower incidence and 33% lower prevalence of diabetic kidney disease, pointing to differences in the cause of CKD. Some of these differences may depend on the low population and low incidence of KRT in Iceland that may be associated with higher variability in numbers. As an example, in the 2019 European Renal Association–European Dialysis and Transplant Association report, the age of incident KRT patients was similar in Finland and Iceland, but the differences in incident diabetic kidney disease persisted [24, 25]. So what are the main causes of KRT in Iceland? Focusing on prevalence, which may display less variability than incidence data, Finland has the highest prevalence of KRT due to type 1 diabetes in Europe, and diabetic kidney disease (DKD) is the most frequent cause of prevalent DKD, while Iceland has one of the lowest KRT prevalences due to DKD, and glomerulonephritis is the most frequent cause of prevalent KRT. In this regard, Jonsson et al. [11] do not provide information on cause. In the future, CKD benchmarks may be envisioned for different causes of CKD.

Despite the potential role of Iceland as a CKD benchmark, there is still room for improvement. In 75% of incident CKD cases, CKD was first detected in category G3 or higher, emphasizing the need for new tools that allow an earlier diagnosis of CKD that precedes the loss of >50% of the functioning kidney mass and/or wider use of albuminuria as a screening tool. The European Society of Cardiology just recommended assessing albuminuria in routine cardiovascular risk workups for all [26]. In this regard, baseline albuminuria levels did not significantly influence the nephroprotection by sodium-glucose cotransport protein 2 inhibitors [27]. Thus any degree of pathological albuminuria found may benefit from intervention. Albuminuria assessment is currently restricted by many payers and healthcare systems to high-risk populations, which may limit its use in screening. As Jonsson et al. [11] have shown, the increased risk of CKD is not limited to diabetes and hypertension.
and delayed diagnosis of CKD continues to be an issue, as there
are no kidney-regenerative therapies and current therapeutic
approaches only aim at slowing CKD progression. Additionally,
implementation of screening for albuminuria among high-risk
populations may be suboptimal. On top of the limitations on
albuminuria testing, a further greater issue is the lack of tools
to identify most patients with earlier stages of CKD, for whom
albuminuria may be in the normal range when eGFR is still
>60 mL/min/1.73 m². This has been termed the blind spot of
CKD, i.e. kidney disease is ongoing, sometimes for decades, but
eGFR and albuminuria levels are not yet diagnostic of CKD [28].
A classic example is autosomal dominant polycystic kidney dis-
ease, for which there is a tool, sonography, that may identify
CKD decades earlier than albuminuria or eGFR. Tools such as
improved imaging techniques (e.g. multiparametric magnetic res-
oneance imaging) or urinary peptidomics are promising for the
earlier detection of and intervention in CKD [29, 30].

In conclusion, the recent report by Jonsson et al. [11] helps
to better characterize the epidemiology of CKD in one of the
most interesting countries in Europe from the point of view
of CKD benchmarking and to advance our understanding of CKD
epidemiology as a driver of change in the management of CKD
worldwide.

FUNDING
Funding was provided by FIS/Fondos FEDER (PI18/01366,
PI19/00588, PI19/00815, PI21/00251, DTS18/00032, ERA-
PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN
AC18/00071, ISCIII-RETIC REDinREN RDO16/0009), Sociedad Espan-
ola de Nefrología, FRIAT, Comunidad de Madrid en Biomedic-
ina B2017/BMD-3686 CIFRA2-CM, Instituto de Salud Carlos III
(ISCIII) RICORS program to RICORS2040 (RD21/0005/0001) and
FEDER funds.

CONFLICT OF INTEREST STATEMENT
A.O. has received consultancy or speaker fees or travel support
from Astellas, AstraZeneca, Amicus, Amgen, Fresenius Medical
Care, Bayer, Sanofi-Genzyme, Menarini, Kyowa Kirin, Alexion,
Otsuka and Vifor Fresenius Medical Care Renal Pharma; is
Director of the Catedra Mundipharma-UM of diabetic kidney
disease and the Catedra Astrazeneca-UAM of chronic kidney
disease and electrolytes; and is the Editor-in-Chief of CKJ.

REFERENCES
1. Ortiz A, Asociación Información Enfermedades Renales
Genéticas (AIRE-G-E), European Kidney Patients’ Federation
(EKPF), Federación Nacional de Asociaciones para la Lucha
Contra las Enfermedades del Riñón (ALCER), et al.
RICORS2040: the need for collaborative research in chronic
kidney disease. Clin Kidney J 2022; 15: 372–387
2. Foreman KJ, Marquez N, Dolgert A et al. Forecasting life ex-
pectancy, years of life lost, and all-cause and cause-specific
mortality for 250 causes of death: reference and alternative
scenarios for 2016–40 for 195 countries and territories.
Lancet 2018; 392: 2052–2090
3. Ortiz A, Sanchez-Ninio MD, Crespo-Barrio M et al. The
Spanish Society of Nephrology (SNEFRO) commentary to
the Spain GBD 2016 report: keeping chronic kidney disease
out of sight of health authorities will only magnify the prob-
lem. Nefrologia 2019; 39: 29–34
4. Martin-Cleary C, Ortiz A. CKD hotspots around the world:
where, why and what the lessons are. A CKJ review series.
Clin Kidney J 2014; 7: 519–523
5. Villalvazo P, Carriazo S, Martin-Cleary C, Ortiz A. Aguas-
calentas: one of the hottest chronic kidney disease (CKD)
hotspots in mexico and a CKD of unknown aetiology mys-
tery to be solved. Clin Kidney J 2021; 14: 2285–2294
6. Gutierrez-Peña M, Zuñiga-Macias L, Marin-Garcia R et al.
High prevalence of end-stage renal disease of unknown ori-
gin in aguascalientes mexico: role of the registry of chronic
kidney disease and renal biopsy in its approach and future
directions. Clin Kidney J 2021; 14: 1197–1206
7. Ortiz A. Burden, access and disparities in kidney disease:
chronic kidney disease hotspots and progress one step at
a time. Clin Kidney J 2019; 12: 157–159
8. Sever MŞ, Jager KJ, Vanholder R et al. A roadmap for optimiz-
ing chronic kidney disease patient care and patient-oriented
research in the eastern european nephrology community.
Clin Kidney J 2021; 14: 23–35
9. Carriazo S, Vanessa Perez-Gomez M, Ortiz A. Hypertensive
nephropathy: a major roadblock hindering the advance of
precision nephrology. Clin Kidney J 2020; 13: 504–509
10. Torra R, Furlano M, Ortiz A et al. Genetic kidney diseases as
an underrecognized cause of chronic kidney disease: the key
role of international registry reports. Clin Kidney J 2021; 14:
1879–1885
11. Jonsson AJ, Lund SH, Erikson BO et al. Incidence and risk
factors of chronic kidney disease: results of a nationwide
study in Iceland. Clin Kidney J 2022; https://doi.org/10.1093/
ckj/sfac051
12. Kramer A, Boenink R, Stel VS et al. The ERA-EDTA registry
annual report 2018: a summary. Clin Kidney J 2021; 14:
107–123
13. GBD Chronic Kidney Disease Collaboration. Global, regional,
and national burden of chronic kidney disease, 1990–2017:
a systematic analysis for the global burden of disease study
2017. Lancet 2020; 395: 709–733
14. Wikipedia. List of countries by GDP (PPP) per capita.
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_
(PPP)_per_capita (8 January 2022, date last accessed)
15. GBD 2019 Demographics Collaborators. Global age-sex-
specific fertility, mortality, healthy life expectancy (HALE),
and population estimates in 204 countries and territories,
1950–2019: a comprehensive demographic analysis for the
Global Burden of Disease Study 2019. Lancet 2020; 396:
1160–1203
16. Wuttke M, Li Y, Li M et al. A catalog of genetic loci associated
with kidney function from analyses of a million individuals.
Nat Genet 2019; 51: 957–972
17. Inker LA, Tighiouart H, Aspelund T et al. Lifetime risk of stage
3–5 CKD in a community-based sample in Iceland. Clin J Am
Soc Nephrol 2015; 10: 1575–1584
18. van den Brand JAG, Pippias M, Stel VS et al. Lifetime risk
of renal replacement therapy in europe: a population-based
study using data from the ERA-EDTA registry. Nephrol Dial
Transplant 2017; 32: 348–355
19. Martin-Cleary C, Molinero-Casares LM, Ortiz A et al. Devel-
opment and internal validation of a prediction model for
hospital-acquired acute kidney injury. Clin Kidney J 2020;
14: 309–316
20. Bosi Alessandro, Xu Yunwen, Gasparini Alessandro et al.,
Use of nephrotoxic medications in adults with chronic kid-
ney disease in Swedish and US routine care. Clin Kidney J
2022; 15: 442–451
21. Carriazo S, Villalvazo P, Ortiz A. More on the invisibility of chronic kidney disease and counting. Clin Kidney J 2022; 15: 388–392

22. Wang HY, Ding GH, Lin H et al. Influence of doctors’ perception on the diagnostic status of chronic kidney disease: results from 976 409 individuals with electronic health records in China. Clin Kidney J 2021; 14: 2428–2436

23. Ortiz A, Sanchez-Niño MD. Sarcopenia in CKD: a roadmap from basic pathogenetic mechanisms to clinical trials. Clin Kidney J 2019; 12: 110–112

24. Boenink R, Astley ME, Huijben JA et al. The ERA registry annual report 2019: summary and age comparisons. Clin Kidney J 2022; 15: 452–472

25. ERA-EDTA Registry Annual Report 2019. https://www.era-online.org/registry/AnnRep2019.pdf (10 January 2021, date last accessed)

26. Visseren FLJ, Mach F, Smulders YM et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42: 3227–3337

27. Delanaye P, Wissing KM, Scheen AJ. Sodium-glucose cotransporter 2 inhibitors: renal outcomes according to baseline albuminuria. Clin Kidney J 2021; 14: 2463–2471

28. Sanchez-Niño MD, Sanz AB, Ramos AM et al. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase. Clin Kidney J 2017; 10: 188–191

29. Rodriguez-Ortiz ME, Pontillo C, Rodríguez M et al. Novel urinary biomarkers for improved prediction of progressive egfr loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep 2018; 8: 15940; correction Sci Rep 2018; 8: 17822

30. Makvandi K, Hockings PD, Jensen G et al. Multiparametric magnetic resonance imaging allows non-invasive functional and structural evaluation of diabetic kidney disease. Clin Kidney J 2022; https://doi.org/10.1093/ckj/sfac054