This may be the author's version of a work that was submitted/accepted for publication in the following source:

Barnett, Adrian, Lucas, Margaret, Platts, David, Whiting, Elizabeth, & Fraser, John (2013)
The benefits of thermal clothing during winter in patients with heart failure: a pilot randomised controlled trial.
BJM Open, 3(4), pp. 1-7.

This file was downloaded from: https://eprints.qut.edu.au/63090/

© Copyright 2013 The Author(s)

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1136/bmjopen-2013-002799
The benefits of thermal clothing during winter in patients with heart failure: a pilot randomised controlled trial

Adrian G Barnett¹, Margaret Lucas², David Platts², Elizabeth Whiting², John Fraser²

¹ Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology, Australia, E-mail: a.barnett@qut.edu.au, Phone: ++61 7 3138 6010, Fax: ++61 7 3138 6030
² The Prince Charles Hospital, Chermside, Australia

Key words: Temperature, Heart disease, environmental health, preventive medicine

Word count: 3041
ABSTRACT

Background Many Australian cities experience large winter increases in deaths and hospitalisations. Flu outbreaks are only part of the problem and inadequate protection from cold weather is a key independent risk factor. Better home insulation has been shown to improve health during winter, but no study has examined whether better personal insulation improves health.

Data and Methods We ran a randomised controlled trial of thermal clothing versus usual care. Subjects with heart failure (a group vulnerable to cold) were recruited from a public hospital in Brisbane in winter and followed-up at the end of winter. Those randomised to the intervention received two thermal hats and tops and a digital thermometer. The primary outcome was the number of days in hospital, with secondary outcomes of General Practitioner (GP) visits and self-rated health.

Results The mean number of days in hospital per 100 winter days was 2.5 in the intervention group and 1.8 in the usual care group, with a mean difference of 0.7 (95% CI: −1.5, 5.4). The intervention group had 0.2 fewer GP visits on average (95% CI: −0.8, 0.3), and a higher self-rated health, mean improvement −0.3 (95% CI: −0.9, 0.3). The thermal tops were generally well used, but even in cold temperatures the hats were only worn by 30% of subjects.

Conclusions Thermal clothes are a cheap and simple intervention, but further work needs to be done on increasing compliance and confirming the health and economic benefits of providing thermals to at-risk groups.
Article summary

Article focus

- Despite having mild winters, many Australian cities experience a large increase in deaths and hospitalisations during winter.
- Insulating peoples’ homes has been shown to improve health during winter, but it is not known whether warmer personal insulation could also improve health.

Key messages

- The thermal clothes were generally well accepted and showed promising signs of improving health via fewer visits to GPs and better self-rated health.
- Compliance was poor amongst those people who did not feel the cold or did not like tight fitting clothes; compliance with the hat was also poor.

Strengths and limitations of this study

- This is the world’s first study to examine the potential health benefits of improved clothing using a randomised controlled trial.
- This was a small study using mainly self-reported data; larger trials with more detailed health and economic data are needed to determine the potential health benefits of thermal clothing.
INTRODUCTION

Australia has a generally warm and temperate climate, with hot summers and mild winters across most of the country. Despite the pleasant climate there are large winter increases in deaths and hospitalisations in many Australian cities.[1, 2] In Brisbane, an estimated 5,000 years of life are lost to cold-related deaths each year.[3] This is surprising as Brisbane has a subtropical climate, with average July (winter) minimum daily temperatures of 10.0 °C (Australian Bureau of Meteorology data from 1999 to 2012).

Places with mild winters have a greater risk of cold-related deaths than places with harsh winters. Previous European studies have shown that warm countries like Greece and Portugal have larger winter increases in deaths than Scandinavian countries.[4, 5] A greater impact of cold in warmer climates has also been found by comparing winter deaths in southern and northern cities in the US.[6] Observational studies comparing clothing and housing in northern and southern Europe found that people in warmer southern European countries wore fewer and less appropriate clothes on cold days,[5, 7] and that houses in cold climates were better insulated and warmer on cold days.[5, 8] If clothing and housing in warm climates were improved, then the large winter increase in deaths and hospitalisations could be reduced. Recognising and addressing the problem now is particularly important given the ageing population and predicted increase in people living with heart failure which will increase the population at risk of cold-related morbidity and mortality.[9]

Flu outbreaks are partly responsible for the winter increase in morbidity and mortality, but cold temperatures are an important independent risk factor. A recent review of winter ill health in the UK led by Michael Marmot concluded that cold indoor temperatures are the “main cause” of the winter increase in deaths, with the flu as a “contributing factor”. [10] Many studies have shown independent effects of cold temperatures after adjusting for flu outbreaks directly, or by adjusting for season using a non-linear spline with a large number of
degrees of freedom,[11] or by using a case–crossover design. There is also strong biological plausibility of a direct effect of cold. Cold air temperatures impact the body via a colder skin temperature and by breathing in colder air. A colder skin temperature causes vasoconstriction, which leads to increased resistance in peripheral circulation and an increase in blood pressure.[12-16] Other physiological changes after cold exposure include: increased blood viscosity,[12, 16] reduced heart rate,[15] and increased inflammatory factors such as plasma cholesterol,[12, 17] fibrinogen,[17] and C-reactive protein.[18]

Improving the thermal quality of homes using either insulation or heating has been shown to improve residents’ health.[10] Studies of improved insulation and heating in Scotland demonstrated improvements in residents’ blood pressure and self-rated general health.[19, 20] A randomised controlled trial in New Zealand found home insulation was associated with better self-rated health, fewer days off school and work, and fewer visits to GPs.[21] These studies provide strong evidence that keeping people warmer in winter has many health benefits. If home insulation and heating can improve health, then this strongly suggests that better personal insulation should also improve health.

To our knowledge there are no studies of the health benefits of thermal clothing during winter. Thermal clothing protects people whether they are outside or inside, or in a heated or unheated room. Thermal clothing is a cheap, convenient and accessible intervention compared with heating which has ongoing costs that can deter some people from using it.[22] It is also a simple intervention compared with heating, which some elderly people do not use because they do not understand the heating controls.[22]

We aimed to show if there were any health benefits of wearing thermal clothing during winter in a population vulnerable to cold temperatures. Our hypothesis was that people with systolic heart failure given thermal clothing would spend less time in hospital during winter.
METHODS

We used a parallel randomised controlled trial with two groups: an intervention group that received thermal clothing, and a control group of usual care. This was a pilot trial to test the logistics of distributing thermals and whether thermals would be used by this population. We also aimed to refine our design for a larger trial by asking subjects open-ended questions at the end of the pilot on the thermals and the trial procedures. We have applied for funding for a larger trial using a sample size calculation based on the pilot data.

Subjects

Subjects were eligible for inclusion if: they had known systolic heart failure (with ventricular dysfunction or systolic dysfunction), were over 50 years old, and lived in south-east Queensland. Subjects were excluded if they: lived in a residential aged care facility, had incontinence, or were unable to give informed consent.

Heart failure patients were chosen as a group vulnerable to cold temperatures based on an Australian study of the seasonal patterns in cardiovascular disease, which found that heart failure deaths were 24% higher in winter compared with the year-round average [1]. There is also a strong biological plausibility between cold skin temperatures and heart failure via vasoconstriction and the subsequent increase in blood pressure,[23, 24] and via an increase in C-reactive protein.[18]

Heart failure patients were recruited from inpatients and those attending routine check-ups at the Heart Failure Clinic in The Prince Charles Hospital, a large tertiary referral public hospital in Brisbane. The study was approved by The Prince Charles Hospital Ethics Committee (HREC/12/QPCH/79). The study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12612000378820).
We aimed to recruit 50 subjects per group to give an 85% power to detect a halving in the average hospital bed days during winter from 6 days in the control group to 3 days in the intervention group. A halving in bed days was based on a halving in hospital admissions from a randomised controlled trial of home insulation.[25]

A 1:1 randomisation list was created by the study statistician (AGB) using randomly permuted blocks of 10 using the R software (www.r-project.org). The randomised groups were written in numbered ordered opaque envelopes. The research nurse (ML) opened each envelope in turn after the subject had signed the informed consent form. Subjects in the intervention group were given: two thermal tops and two thermal hats made of 100% polypropylene (Figure 1), an instruction sheet on when to wear the thermals (Appendix A), a digital thermometer with batteries fitted, a paper diary, a pen, and a prepaid envelope for returning the diary. The instruction sheet recommended wearing the thermals when the temperature was below 18 °C. This temperature was based on the association between outdoor temperature and death in Brisbane.[3]

Data

The paper diary was used by subjects in the intervention group to record when they wore the hat and top, and the indoor temperature. They were asked to complete the diary and record the temperature at the end of the day.

At the end of winter all subjects were phoned by the research nurse and asked questions on their general health, recent GP visits and some details about their home. The research nurse also asked about the dates of any hospital visits during the winter. Subjects were also asked for their comments on the thermals. The subjects’ hospital notes were used to obtain their age, gender and diagnoses.
The primary outcome was the number of bed days in hospital after enrolment. Secondary outcomes were the subjects' self-reported general health and number of GP visits. The general health question was from version 1 of the SF-36 questionnaire, with five responses ranging from “Excellent” to “Very poor”. The GP visits numbers were self-reported in the previous month.

Statistical methods

The primary outcome was the number of bed days in hospital from enrolment to the end of winter (30 September). We planned to analyse this data using Poisson regression with treatment group as the independent variable and an offset of the number of days from enrolment to the end of winter to adjust for varying subject-times at risk.[26] However, after collecting the data, the assumption of independence between days was clearly not valid. We therefore used the bias corrected bootstrap to create non-parametric 95% confidence intervals for the difference between the mean number of days in hospital between the two groups.[27] The number of GP visits was also compared by examining the mean difference between groups with a 95% bootstrap confidence interval.

Self-reported general health was compared between the two groups assuming that a reported health of “Excellent” scored one and “Poor” scored five. We assumed the scores had an approximate normal distribution with common variance. The key statistic was the mean difference between groups. We verified the normal assumption by using a non-parametric bootstrap test.

The daily wearing of the hat or top (yes or no) was regressed against the daily indoor temperature in order to investigate how temperature influenced the wearing the thermals. The regression model was a generalised linear mixed model using a binomial distribution with a random intercept for each subject to control for repeated results from the same subject.[26]
The association between temperature and wearing could be non-linear, so we tried one to six degrees of freedom for the association using a natural spline,[28] and also tried a model with a random subject-specific slope for temperature. The best models for the average hat and top wearing were those with the smallest Akaike Information Criteria.[29]

All analyses were conducted using the R software (www.r-project.org). No subgroup analyses were planned or performed.

RESULTS

The start of the study was delayed from late autumn to mid-winter, so the final numbers were short of the target of 50 per group. The first subject was recruited on 21 June 2012 and the last on 31 July 2012. The flow of subjects is in Figure 2. Around 45 subjects who were initially approached were ineligible because they did not have ventricular or systolic dysfunction, or they lived outside the study’s geographic area. Around 20 subjects declined to participate because they did not like close fitting clothes or said they did not feel the cold. Two subjects (4%) did not respond after randomisation (one in each group) and three subjects in the usual care group could not participate due to illnesses unrelated to cold. Fifteen subjects (56%) in the intervention group returned the diary.

The basic characteristics of the subjects and their homes are in Table 1. Around 80% had homes with heating, air conditioning or insulation. However, seven subjects (14%) reported that they never or rarely use their heating. Three subjects lived in caravans, which can be especially cold during winter due to their generally poor insulation.

The results for the primary and secondary outcomes are in Table 2. The mean number of bed days in hospital per 100 winter days was 2.6 in the intervention group and 1.9 in the usual
care group, with a mean difference of 0.7 days more in the intervention group (95% confidence interval (CI): –1.5, 5.4).

The secondary outcomes showed some benefit for the intervention, although the differences were not statistically significant (Table 2). The average improvement in self-reported health was –0.3 (95% CI: –0.9, 0.3). There was an average of 1.2 GP visits in the intervention group compared with 1.4 in the usual care group, giving an average of 0.2 fewer GP visits in the thermals group (95% CI: –0.8, 0.3).

The estimated probabilities of wearing the hat and top by indoor temperature are in Figure 3. Seven out of 15 subjects (47%) never wore the hat. These subjects are the flat lines close to zero in Figure 3. The best model (according to the AIC) for the average hat wearing had five degrees of freedom, which is a strongly non-linear association. The average hat wearing peaked at around 30% of subjects at around 14 °C, and was close to 0% above 18 °C. Reasons for not wearing the hat included concerns about appearance, overheating and a lack of perceived need.

Four subjects wore the top regardless of the temperature, as shown by the flat lines at higher probabilities in Figure 3. For the other subjects, the probability of wearing the top declined sharply around 20 °C. These two different behaviours by temperature explain why the best model (according to the AIC) was the random slope model, as this model allows for such large between-subject differences.

CONCLUSION

Thermal clothing did not reduce the number of days in hospital during winter (Table 1). Instead the number of days in hospital was higher in the group given thermal tops and hats. Small benefits were seen for the secondary outcomes of self-reported health and self-reported
GP visit numbers, which were both better in the intervention group, although the improvements were not statistically significant. These health benefits could be because subjects in the thermal group were kept warmer during winter. The benefits of keeping warm have been demonstrated using improved home insulation and heating, with high quality studies showing improved self-reported health and fewer visits to GPs.\[20, 21\] The biological mechanisms of these benefits include lower blood pressure and inflammation markers that increase in cold weather \[18\] and improved mental health.\[10\]

The thermal tops were generally well used, especially at cold temperatures (Figure 3). However, the hats were not well used, with subjects raising concerns about need, overheating and appearance. This concurs with previous research from the United Kingdom on dealing with cold, which found that hats were disliked because they were “unbecoming”.\[30\] Hats are effective at reducing the surge in blood pressure after cold exposure.\[31\] Hats can be easily removed if the temperature warms up, which makes them useful given that some subjects raised concerns about over-heating as the day warmed up. Despite the poor compliance in this study, thermal hats could still be a worthwhile intervention for cold, and we plan to try to increase their use in a larger trial by using better education about their value and a more acceptable design.

Cold is an underrated health problem. It is often seen as something to put up with, and some people even believe that exposure to cold makes them hardy.\[22\] Some people declined to participate in our study, or participated but then declined to wear the thermals, because they “did not feel the cold”. This may be due to an impaired ability to feel cold with increased age.\[32\] Ideally everyone with heart failure would protect themselves against the cold, as people with heart failure have a much greater risk of cold-related death and hospitalisation than the general population. The complacent attitudes to the dangers of cold in this population are concerning, and are likely to be part of the reason why Australia experiences
such large winter increases in deaths.[3] If larger trials of thermals are able to show health benefits then these attitudes could be reversed. Participation in the trial did change the minds of some subjects in the intervention group, who reported an improved attitude to thermals and that they would be using them again next winter.

Twenty of the 120 subjects approached refused to participate because they did not like close fitting clothes or said they did not feel the cold. This reduces the generalisability of the results to the wider population of heart failure patients, and potentially biases our results as the health benefits of thermals may be dependent on attitude towards clothing and the cold. It is possible that thermals would be of more benefit in this reluctant group, as they may do little to protect themselves against the cold and therefore have the most to gain. It is also possible that thermals would be of less benefit in this reluctant group if compliance was poor.

We asked subjects what they perceived as a cold outdoor temperature in Queensland, and the median answer was 16 °C, with a quarter of subjects answering 14 °C or less (Table 1), and one subject answering that it never gets cold. These temperatures are colder than the risk threshold of 18 ºC identified in a previous epidemiological study of deaths in Brisbane. This difference further highlights how people at-risk often underrate the dangers of cold. The World Health Organization recommends a minimum indoor temperature of 18 ºC, with a higher minimum of 20 ºC for the very old and young.[33]

Two subjects reported that the thermals improved their sleep, which was an unexpected benefit that we plan to study as part of a larger randomised controlled trial. Heart failure patients are well known to suffer sleep problems,[34] and improving sleep may be a key part of the health benefits of keeping warm.[35] A study in elderly people found that just a 0.4 °C increase in skin temperature almost doubled the proportion of nocturnal slow wave sleep and
greatly decreased the probability of early morning awakening, and this study recommended increased clothing to improve sleep in cold rooms.[36]

Thermal clothing is a cheap intervention. The two pairs of thermal tops and hats cost AUD $70 per subject, and each digital thermometer cost AUD $13. The clothes can be re-used in subsequent winters, and many subjects stated their intention to re-use them next winter. For thermal clothing to be cost-effective at the willingness to pay threshold of AUD $64,000 per quality adjusted life year (QALY),[37] would require a QALY gain of just 0.003 years (or 1 day) per person given thermal clothing. This uses a cost of AUD $150 per subject, which includes 30 minutes of nurse staff time per person.

The health benefits of thermals need to be tested using larger and more comprehensive randomised controlled trials. Trials could also be run in other countries and climates, as thermals could be beneficial in any location that experiences a winter increase in heart failure. This small study relied on self-reported data for many outcomes. Future studies could use routinely collected data to obtain detailed times and costs on healthcare use throughout winter (e.g., Medicare), which could also be used to build an economic argument for freely distributing thermals to at-risk people. We also relied on self-reported temperature, whereas automatic indoor temperature monitors would be more accurate and have less missing data. A larger study could also expand the study population to other types of cardiovascular or respiratory disease that are known to be associated with cold weather, such as myocardial infarctions and stroke.

Acknowledgements: Thanks to Wilderness Wear Australia for providing the thermals gratis. Thanks to Hope Becker for entering the data.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Wilderness Wear Australia provided the thermals gratis.
Figure legends

Figure 1: The thermals and thermometer supplied to the intervention group

Figure 2: Flow of subjects from enrolment to analysis

Figure 3: Estimated probabilities of wearing the thermal hat and top by indoor temperature. The thin grey lines are the individual subject estimates (n = 15), and the thick black line is the average estimate.
Table 1: Basic characteristics of the subjects and their homes (n = 50)

	Usual care (n=24)	Intervention (n=26)
Subject		
Age, years, mean (SD)	64 (9)	64 (8)
Female, n (%)	6 (25)	5 (19)
Diagnosis = dilated cardiomyopathy, n (%)	9 (38)	14 (54)
Diagnosis = ischemic cardiomyopathy, n (%)	12 (50)	9 (35)
Diagnosis = Other, n (%)	3 (13)	3 (12)
Ejection fraction (%), mean (SD)	35 (12)	36 (12)
Diabetic, n (%)	6 (25)	5 (19)
What is a cold outdoor temperature (°C)?, median, IQR	17 (12–18)	15 (14–18)†
Home		
Type = House	17 (71)	21 (81)
Type = Apartment/Unit	4 (17)	2 (8)
Type = Townhouse/Semi-detached	1 (4)	2 (8)
Type = Caravan	2 (8)	1 (4)
Home age, years, median (IQR)	23 (15–36)	20 (16–39)
Any heating in home, n (%)	18 (75)	21 (81)
Any air conditioning in home, n (%)	18 (75)	21 (81)
Roof insulation, n (%)	20 (83)	18 (72)

SD = standard deviation, IQR = inter-quartile range

† One subject felt that it never gets cold in Queensland.
Table 2: Comparisons of the primary and secondary outcomes between the intervention and usual care groups

Variable	Mean	Mean difference (95% CI)	
	Intervention	Usual Care	
Bed days in hospital (primary)†	2.5	1.8	0.7 (–1.5, 5.4)
Number of GP visits (secondary)	1.2	1.4	–0.2 (–0.8, 0.3)
Self-reported health (secondary)‡	2.7	3.0	–0.3 (–0.9, 0.3)

† Per 100 winter days
‡ 1 = Excellent, …, 5 = Very poor

CI = confidence interval
References

1. Barnett, A., J. Fraser, and M. de Looper, *The seasonality in heart failure deaths and total cardiovascular deaths in Australia*. Australian and New Zealand Journal of Public Health, 2008. 32(5): p. 408-413.

2. Wang, X., et al., *Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996–2005*. International Journal of Biometeorology, 2009. 53(6): p. 535-541.

3. Huang, C., et al., *The impact of temperature on years of life lost in Brisbane, Australia*. Nature Clim. Change, 2012. 2(4): p. 265-270.

4. Healy, J.D., *Excess winter mortality in Europe: a cross country analysis identifying key risk factors*. Journal of Epidemiology and Community Health, 2003. 57(10): p. 784-789.

5. The Eurowinter Group, *Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe*. The Lancet, 1997. 349(9062): p. 1341-1346.

6. Curriero, F.C., et al., *Temperature and mortality in 11 cities of the eastern United States*. Am J Epidemiol, 2002. 155(1): p. 80-7.

7. Donaldson, G.C., H. Rintamäki, and S. Näyhä, *Outdoor clothing: its relationship to geography, climate, behaviour and cold-related mortality in Europe*. International Journal of Biometeorology, 2001. 45(1): p. 45-51.

8. Bøkenes, L., et al., *Annual variations in indoor climate in the homes of elderly persons living in Dublin, Ireland and Tromsø, Norway*. The European Journal of Public Health, 2011. 21(4): p. 526-531.

9. Field, B., *Heart failure. . . what of the future?* 2003, Australian Institute of Health and Welfare.

10. Marmot Review Team, *The Health Impacts of Cold Homes and Fuel Poverty*. 2011, London: Friends of the Earth England.

11. Huang, C., et al., *The impact of temperature on years of life lost in Brisbane, Australia*. Nature Clim. Change, 2012. 2(4): p. 265–270.

12. Keatinge, W.R., et al., *Increases In Platelet And Red Cell Counts, Blood Viscosity, And Arterial Pressure During Mild Surface Cooling: Factors In Mortality From Coronary And Cerebral Thrombosis In Winter*. British Medical Journal (Clinical Research Edition), 1984. 289(6456): p. 1405–1408.
13. Ulmer, H., et al., *Estimation of seasonal variations in risk factor profiles and mortality from coronary heart disease*. Wiener klinische Wochenschrift, 2004. 116(19–20): p. 662–668.

14. Barnett, A.G., et al., *The effect of temperature on systolic blood pressure*. Blood Pressure Monitoring, 2007. 12(3): p. 195–203.

15. Budd, G.M. and N. Warhaft, *Body temperature, shivering, blood pressure and heart rate during a standard cold stress in Australia and Antarctica*. The Journal of Physiology, 1966. 186(1): p. 216–232.

16. Pozos, R.S. and D. Danzl, *Human physiological responses to cold stress and hypothermia*, in Medical Aspects of Harsh Environments. 2001. p. 351–382.

17. Neild, P., et al., *Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X*. Clinical Science, 1994 86(1): p. 43–48.

18. Halonen, J., et al., *Associations between outdoor temperature and markers of inflammation: a cohort study*. Environmental Health, 2010. 9(1): p. 42.

19. Walker, J., et al., *The effects on health of a publicly funded domestic heating programme: a prospective controlled study*. Journal of Epidemiology and Community Health, 2009. 63(1): p. 12-17.

20. Lloyd, E.L., et al., *The effect of improving the thermal quality of cold housing on blood pressure and general health: a research note*. Journal of Epidemiology and Community Health, 2008. 62(9): p. 793-797.

21. Howden-Chapman, P., et al., *Effect of insulating existing houses on health inequality: cluster randomised study in the community*. BMJ, 2007. 334(7591): p. 460.

22. Tod, A.M., et al., *Understanding factors influencing vulnerable older people keeping warm and well in winter: a qualitative study using social marketing techniques*. BMJ Open, 2012. 2(4).

23. Ulmer, H., et al., *Estimation of seasonal variations in risk factor profiles and mortality from coronary heart disease*. Wiener klinische Wochenschrift, 2004. 116(19-20): p. 662–668.

24. Hess, K.L., et al., *Aging affects the cardiovascular responses to cold stress in humans*. Journal of Applied Physiology, 2009. 107(4): p. 1076-1082.

25. Chapman, R., et al., *Retrofitting houses with insulation: a cost–benefit analysis of a randomised community trial*. Journal of Epidemiology and Community Health, 2009. 63(4): p. 271-277.
26. Annette J. Dobson, A.B. and A.G. Barnett, *An Introduction to Generalized Linear Models, Third Edition*. 2008: Taylor & Francis Group.

27. Efron, B. and R. Tibshirani, *An Introduction to the Bootstrap*. 1993: Chapman & Hall.

28. Ruppert, D., P. Wand, and R.J. Carroll, *Semiparametric Regression*. 2003: Cambridge University Press.

29. Burnham, K.P. and D.R. Anderson, *Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach*. 2002: Springer.

30. Day, R. and R. Hitchings, ‘Only old ladies would do that’: Age stigma and older people’s strategies for dealing with winter cold. *Health & Place*, 2011. 17(4): p. 885-894.

31. Li, Y., H. Alshaer, and G. Fernie, Blood pressure and thermal responses to repeated whole body cold exposure: effect of winter clothing. *European Journal of Applied Physiology*, 2009. 107(6): p. 673-685.

32. Yochihara, Y., et al., Physiological responses and thermal sensations of the elderly in cold and hot environments. *Journal of Thermal Biology*, 1993. 18(5–6): p. 355-361.

33. Howden-Chapman, P., Housing standards: a glossary of housing and health. *Journal of Epidemiology and Community Health*, 2004. 58(3): p. 162-168.

34. Naughton, M.T. and G. Lorenzi-Filho, *Sleep in Heart Failure*. Progress in Cardiovascular Diseases, 2009. 51(4): p. 339-349.

35. Okamoto-Mizuno, K. and K. Mizuno, Effects of thermal environment on sleep and circadian rhythm. *Journal of Physiological Anthropology*, 2012. 31(1): p. 14.

36. Raymann, R.J.E.M., D.F. Swaab, and E.J.W. Van Someren, Skin deep: enhanced sleep depth by cutaneous temperature manipulation. *Brain*, 2008. 131(2): p. 500-513.

37. Shiroiwa, T., et al., International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? *Health Economics*, 2010. 19(4): p. 422-437.