SHORT COMMUNICATION

α-Glucosidase inhibitory and α-amylase inhibitory activities of compounds isolated from Uvaria rufa Blume

Passakorn Teerapongpisana, Virayu Suthiphasilpa, Tharakorn Maneerata,b, Rawiwan Charoensupb,c, Thidarat Duangyodb,c, Raymond J. And森end and Surat Laphookhieoa,b

aCenter of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, Thailand; bMedicinal Plant Innovation Center of Mae Fah Luang University, Chiang Rai, Thailand; cSchool of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand; dDepartment of Chemistry and Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada

ABSTRACT
A new C-benzylated flavone, uvariaflavone (1), along with 13 known compounds (2–14) were isolated from the twig and leaf extracts of Uvaria rufa Blume. Their structures were established by extensive spectroscopic methods. Flavones (5–8) and cyclohexene (10) were isolated from U. rufa for the first time. Most of the isolated compounds were evaluated for their α-glucosidase and α-amylase inhibitory activities. Of these, uvariaflavone (1) showed the highest α-glucosidase inhibitory activity with an IC50 value of 44.3 μM, while ferrudiol (12) displayed the highest α-amylase inhibitory activity with an IC50 value of 73.5 μM.

ARTICLE HISTORY
Received 25 October 2021
Accepted 8 February 2022

KEYWORDS
α-Amylase inhibitory activity; C-benzylated flavone; α-glucosidase inhibitory activity; Uvaria rufa Blume

1. Introduction
Uvaria rufa Blume (Annonaceae) is a woody climber tree, which is widely distributed over the tropical zones of Asia, Africa, and Australia (Tip-Pyang et al. 2011). The roots of this plant have been used in traditional medicine purposes as a stimulant for childbirth and to treat fever and kidney failure (Buncharon et al. 2016). Previous phytochemical investigations of U. rufa resulted in the isolation and identification of several types of secondary metabolites, including flavonoids (Deepralard et al. 2009; Tip-Pyang...
et al. 2011), polyoxygenated cyclohexenes (Macabeo et al. 2012), alkaloids (Tip-Pyang et al. 2011), lignans (Nguyen et al. 2015), and terpenoids (Thang et al. 2014). Some of these compounds exhibited interesting biological activities, including antimicrobial (Macabeo et al. 2012), cytotoxicity (Nguyen et al. 2015), advanced glycation end-products (AGEs) (Deepralard et al. 2009), and α-glucosidase inhibitory (Hamid et al. 2015).

As part of an ongoing investigation for anti-diabetes compounds from Thai medicinal plants (Meesakul et al. 2019; Suthiphasilp et al. 2019; Raksat et al. 2020; Phukhatmuen et al. 2021), the twig and leaf extracts of *U. rufa* were examined and these showed good α-glucosidase and α-amylase inhibitory activities with IC\textsubscript{50} values in the range of 62.6–87.1 μg/mL. These findings prompted us to further investigate their phytochemicals and anti-diabetes activities, including α-glucosidase and α-amylase inhibitory activities. This report describes the isolation and structure elucidation of a new C-benzylated flavone, uvariaruflavone (1), along with 13 known compounds (2–14) (Figure 1). The α-glucosidase and α-amylase inhibitory activities of some of the isolated compounds are also reported.

2. Results and discussion

The EtOAc extracts of the twigs and leaves of *U. rufa* were individually subjected to column chromatography (CC) over silica gel and Sephadex LH-20 to afford a new C-

![Figure 1. Compounds isolated from the twig and leaf extracts of *U. rufa*.](image)
benzylation of flavone (1) and 13 known compounds (2–14). The structures of the known compounds were identified as tectochrysin (2), moslossoflavone (3), moslofflavone (4) (Lojanapiwatna et al. 1981), isowogonin (5) (Zhang et al. 2020), 6-methoxy-7,8-dihydroxyflavone (6) (Ma et al. 2020), cirsimaritin (7) (Alwahsh et al. 2015), negletein (8) (Riaz et al. 2012), (−)-zeyleno (9), (−)-6-acetylzeylan (10) (Stevenson et al. 2007), (−)-elliopiopis B (11) (Kijjoa et al. 2002), ferrudiol (12) (Wirasathien et al. 2006), (−)-pinostrobin (13) (Kurkina et al. 2013), and benzyl benzoate (14) (Mou et al. 2017) by extensive NMR spectroscopic data analysis and comparisons made with spectroscopic data reported in the literature.

Uvariaruflavone (1) was obtained as a yellow powder, mp 194–195°C. Its molecular formula, C_{23}H_{18}O_{5}, was determined on the basis of NMR data and HRESITOFMS, which showed a [M+H]^+ ion peak at m/z 375.1219 (calcd. for C_{23}H_{19}O_{5}^+, 375.1227). UV absorption bands at λ_{max} 249, 274, and 313 nm agreed with a flavone skeleton (Lojanapiwatna et al. 1981; Meesakul et al. 2019; Ma et al. 2020). The IR spectrum of 1 displayed absorption bands at 3389 and 1654 cm\(^{-1}\) consistent with hydroxy and conjugated ketone functionalities, respectively. The ^13C and DEPT NMR spectroscopic data indicated that compound 1 contained 23 carbons, including one methyl (δ_C 56.3), one methylene (δ_C 23.0), 11 methines (δ_C 132.0, 131.7, 129.1 (× 2), 128.0 (× 2), 126.3, 120.0, 116.7, 105.9, and 90.7), and 10 quaternary carbons (δ_C 182.5, 164.3, 163.2, 157.1, 156.5, 154.7, 131.2, 125.6, 112.1, and 105.6). The ^1H NMR spectroscopic data (Table S1) displayed an olefinic proton [δ_H 6.71 (1H, s, H-3)], an aromatic proton [δ_H 6.57 (1H, s, H-8)], a monosubstituted aromatic ring [δ_H 7.89 (2H, dd, J = 8.1, 1.4 Hz, H-2’, H-6’), 7.51 (2H, m, H-3’, H-5’), and 7.54 (1H, m, H-4’), a hydrogen-bonded hydroxy proton [δ_H 13.83 (1H, s, OH-5’)], a hydroxy proton [δ_H 7.57 (1H, s, OH-3’)], a methyl group [δ_H 4.01 (3H, s, OMe-7), and a 3”-hydroxybenzyl unit [δ_H 3.96 (2H, s, H-1’”), 6.88 (1H, m, H-4’”), 7.10 (1H, td, J = 8.1, 1.6 Hz, H-5’’), 6.82 (1H, td, J = 8.1, 1.6 Hz, H-6’’), and 7.44 (1H, dd, J = 8.1, 1.6 Hz, H-6’’)]. These NMR data suggested that compound 1 had a flavone skeleton (Meesakul et al. 2019). The HMBC correlations between the hydrogen-bonded hydroxy proton (δ_H 13.83) and C-4a (δ_C 105.6), C-5 (δ_C 157.1) and C-6 (δ_C 112.1) confirmed that the hydrogen-bonded hydroxy proton was located at C-5. The location of methoxy group at C-7 was confirmed by the HMBC correlations between OMe-7 (δ_H 4.01) and H-8 (δ_C 6.57) with C-7 (δ_C 163.2). The linkage of the hydroxybenzyl group at C-6 of flavone moiety was deduced from the 3J HMBC of H-1” (δ_H 3.96) to C-5 (δ_C 157.1), C-6 (δ_C 112.1), C-7 (δ_C 163.2), C-2” (δ_C 125.6), C-3” (δ_C 154.7), and C-7” (δ_C 131.7) (Table S1). Furthermore, HMQC cross-peaks of H-8 (δ_H 6.57) to C-6 (δ_C 112.1) supported the position of the hydroxybenzyl moiety at C-6. Therefore, compound 1 had been identified as a new C-benzylation of flavone and named uvariaruflavone.

Compounds 1, 3–8, and 10–14 were evaluated for their α-glucosidase inhibitory activities. All tested compounds displayed α-glucosidase inhibitory activity with IC_{50} values in the range of 44.3-646.7 μM. Of these, uvariaruflavone (1) showed the highest α-glucosidase inhibitory activity with IC_{50} value of 44.3 μM, which is comparable to that of the positive control (acarbose, IC_{50} = 77.2 μM). The α-glucosidase inhibition of compounds 1, 5, 6, and 10–12 are reported for the first time in this study.

In the case of α-amylase inhibitory activity, compounds 1–4, 9, and 11–14 showed α-amylase inhibitory activity with an IC_{50} values ranging from 73.5-265.5 μM and
compounds 1 (uvariaruflavone) and 12 (ferrudiol) displayed the activity better than that of positive control (acarbose, IC$_{50} = 103.4 \mu M$) with the IC$_{50}$ values of 92.5 and 73.5 μM, respectively (Table S2). The α-amylase inhibition of compounds 1–4, 9, 11 and 12 are reported for the first time in this study.

3. Experimental

For the details of all experimental parts see the Supplementary material.

4. Conclusion

The phytochemical investigation of the twig and leaf of $U. rufa$ afforded one new C-benzylated flavone, uvariaruflavone (1), together with 13 known compounds (2–14). Flavones (5–8) and a cyclohexene (10) were isolated for the first time from this plant. The biological activities of tested compounds were evaluated using α-glucosidase and α-amylase inhibitory activities. C-benzylated flavone (1) exhibited the significant α-glucosidase and α-amylase inhibitory activities. An analysis of the structure-activity relationship suggested that C-hydroxybenzyl moiety at C-6 may enhances the α-glucosidase and α-amylase inhibitory activities of this family of flavonoids.

Acknowledgments

Mae Fah Luang University was acknowledged for providing the Postgraduate Scholarship and partial financial support to Mr. Passakorn Teerapongpisin.

Disclosure statement

The authors declare no conflicts of interest.

Funding

This work was supported by the Thailand Science Research and Innovation (DBG6280007).

References

Alwahsh MAA, Khairuddean M, Chong WK. 2015. Chemical constituents and antioxidant activity of $Teucrium barbeyanum$ Aschers. Rec Nat Prod. 9(1):159–163.
Buncharoen W, Saenphet K, Saenphet S, Thitaram C. 2016. $Uvaria rufa$ Blume attenuates benign prostatic hyperplasia via inhibiting 5α-reductase and enhancing antioxidant status. J Ethnopharmacol. 194:483–494.
Deepralard K, Kawanishi K, Moriyasu M, Pengsuparp T, Suttisri R. 2009. Flavonoid glycosides from the leaves of $Uvaria rufa$ with advanced glycation end-products inhibitory activity. Thai J Pharm Sci. 33:84–90.
Hamid HA, Yusoff MM, Liu M, Karim MR. 2015. α-Glucosidase and α-amylase inhibitory constituents of $Tinospora crispa$: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. J Funct Foods. 16:74–80.
Kijjoa A, Bessa J, Pinto MM, Anatchoke C, Silva AM, Eaton G, Herz W. 2002. Polyoxygenated cyclohexene derivatives from $Ellipeiopsis cherrevensis$. Phytochemistry. 59(5):543–549.
Kurkina AV, Ryazanova TK, Kurkin VA. 2013. Flavonoids from the aerial part of *Polygonum hydropiper*. Chem Nat Compd. 49(5):830–832.

Lojanapiwatna V, Promsuwansiri K, Suwannatip B, Wiriyachitra P. 1981. The flavonoids of *Uvaria rufa*. J Sci Soc Thailand. 7:83–86.

Ma S, Zhou JM, Wei HS, Wu HB. 2020. Flavones from the flowers of *Tridax procumbens* and their antioxidant activity. Chem Nat Compd. 56(2):239–241.

Macabeo APG, Tudla FA, Krohn K, Franzblau SG. 2012. Antitubercular activity of the semi-polar extracts of *Uvaria rufa*. Asian Pac J Trop Med. 5(10):777–780.

Meesakul P, Richardson C, Pyne SG, Laphookhieo S. 2019. ζ-Glucosidase inhibitory flavonoids and oxepinones from the leaf and twig extracts of *Desmos cochin chinensis*. J Nat Prod. 82(4):741–747.

Mou F, Sun Y, Jin W, Zhang Y, Wang B, Liu Z, Guo L, Huang J, Liu C. 2017. Reusable ionic liquid-catalyzed oxidative esterification of carboxylic acids with benzylic hydrocarbons via benzylic Csp3-H bond activation under metal-free conditions. RSC Adv. 7(37):23041–23045.

Nguyen TH, Ho VD, Do TT, Bui HT, Phan VK, Sak K, Raal A. 2015. A new lignan glycoside from the aerial parts and cytotoxic investigation of *Uvaria rufa*. Nat Prod Res. 29(3):247–252.

Phukhatmuen P, Meesakul P, Suthiphasilp V, Charoensup R, Maneerat T, Cheenpracha S, Limtharakul T, Pyne SG, Laphookhieo S. 2021. Antidiabetic and antimicrobial flavonoids from the twigs and roots of *Erythrina subumbrans* (Hassk.) Merr. Heliyon. 7(4):e06904.

Raksat A, Phukhatmuen P, Yang J, Maneerat W, Charoensup R, Andersen RJ, Wang YA, Pyne SG, Laphookhieo S. 2020. Phloroglucinol benzophenones and xanthones from the leaves of *Garcinia cowa* and their nitric oxide production and ζ-glucosidase inhibitory activities. J Nat Prod. 83(1):164–168.

Riaz T, Abassi MA, Ajaib M. 2012. Isolation, structure elucidation and antioxidant screening of some natural products from *Colebrookia oppositifolia*. Biosci Res. 9:68–76.

Stevenson PC, Veitch NC, Simmonds MS. 2007. Polyoxygenated cyclohexane derivatives and other constituents from *Kaempferia rotunda* L. Phytochemistry. 68(11):1579–1586.

Suthiphasilp V, Maneerat W, Andersen RJ, Phukhatmuen P, Pyne SG, Laphookhieo S. 2019. Dasymaschalolactams A-E, Aristolactams from a twig extract of Dasymaschalon dasymaschalam. J Nat Prod. 82(11):3176–3180.

Thang TD, Luu HV, Tuan NN, Hung NH, Dai DN, Ogunwande IA. 2014. Constituents of essential oils from the leaves and stem barks of *Uvaria rufa* and *Uvaria cordata* (Annonaceae) from Vietnam. J Essent Oil-Bear Plants. 17(3):427–434.

Tip-Pyang S, Payakarintarungkul K, Sichaem J, Payakarintarungkul P. 2011. Chemical constituents from the roots of *Uvaria rufa*. Chem Nat Compd. 47(3):474–476.

Wirasathien L, Pengsuparp T, Moriyasu M, Kawanishi K, Suttisri R. 2006. Cytotoxic C-benzylated chalcone and other constituents of *Ellipeiopsis cherrevensis*. Arch Pharm Res. 29(6):497–502.

Zhang Q, Shao J, Zhao T, He L, Ma H, Jing L. 2020. The role of C-8 OH on the antioxidant activity of Norwogonin and Isowogonin. Nat Prod Commun. 15(5):1934578X20924887.