Identification of Conduit Countries and Community Structures in the Withholding Tax Networks

Tembo Nakamoto • Yuichi Ikeda

Abstract Due to economic globalization, each country’s economic law, including tax laws and tax treaties, has been forced to work as a single network. However, each jurisdiction (country or region) has not made its economic law under the assumption that its law functions as an element of one network, so it has brought unexpected results. We thought that the results are exactly international tax avoidance. To contribute to the solution of international tax avoidance, we tried to investigate which part of the network is vulnerable. Specifically, focusing on treaty shopping, which is one of international tax avoidance methods, we attempt to identified which jurisdiction are likely to be used for treaty shopping from tax liabilities and the relationship between jurisdictions which are likely to be used for treaty shopping and others. For that purpose, based on withholding tax rates imposed on dividends, interest, and royalties by jurisdictions, we produced weighted multiple directed graphs, computed the centralities and detected the communities. As a result, we clarified the jurisdictions that are likely to be used for treaty shopping and pointed out that there are community structures. The results of this study suggested that fewer jurisdictions need to introduce more regulations for prevention of treaty abuse worldwide.

Keywords International Taxation • International tax avoidance • Network Analysis

JEL code H250, K340, K420, F230, F680

1 Introduction

The financial crisis that occurred in 2008 not only brought about a once-in-a-100-years recession in terms of economic activity, it also represented a once-in-a-100-years turning point in international taxation. In dealing with the financial crisis, European countries were forced to raise consumption tax rates to enable large-scale fiscal spending, while the media and nonprofit organizations focused on bringing to light international tax avoidance by multinational companies (Inman 2016; Americans for Tax Fairness 2015). With economic globalization, international tax avoidance has increased with the facilitation of cross-border transactions.

Since tax treaties are basically concluded between two jurisdictions[1], it has hitherto been considered that problems relating to tax treaties should be discussed between the two contracting jurisdictions. However, it has been found that using a particular bilateral tax treaty in international tax

[1] The meaning of “jurisdiction” is almost the same as that of “country and region.”
avoidance erodes the tax sources of jurisdictions that did not conclude the bilateral tax treaty. As a result, vulnerabilities in one jurisdiction’s tax treaty potentially erodes other jurisdictions’ tax bases. For example, it is said that the reason why Mongolia did not conclude a tax treaty with the Netherlands is that Mongolia was worried that its tax base would erode under a tax treaty with the European country (McGauran 2013).

Economic globalization has significant implications for multinationals’ business activities and international economic law. The activities of multinationals cross more borders and become more complex. In 1975, there were just 1,200 tax treaties worldwide; today, there are 3,200. In light of this, new thinking is beginning to emerge in the field of international tax law. It seeks to understand each jurisdiction’s economic laws, including tax laws and tax treaties, as a single legal system (Ogata 2016).

Meanwhile, in recent years, network science has made remarkable progress by offering accurate network information in various fields. Although each field is different, finding networks follows the same principle (Barabási 2016). With this advance, network science has revealed interesting results that had hitherto not been found in a broad realm from sociology to physics. This study is an attempt to highlight an interesting aspect that has not yet been found far by making use of the knowledge of network science in the realm of international taxation, focusing particularly on the issue of international tax avoidance.

In the field of international taxation, as prior studies incorporating the method of network science, some studies have analyzed the withholding tax rate on dividends (Polak S. 2014; Van't Riet et al. 2014; Hong 2017), but they only studied withholding tax on dividends. The purpose of this study is to clarify “Treaty Shopping,” which multinationals are said to use as one international tax avoidance scheme, from the viewpoint of tax rates and using the methods of network science. We study all important passive income, that is, dividends, interest, and royalties, and look for the relationships among each jurisdiction.

2 International Tax Avoidance

2.1 International Tax System

Companies are subject to various forms of taxation in the process of conducting cross-border transactions, most importantly corporate tax and withholding tax. According to international custom, each jurisdiction has the primary right to tax income which arises in or is derived from that jurisdiction (Arnold 2016). Therefore, each jurisdiction imposes corporate tax on business income arising in its jurisdiction and imposes withholding tax on dividends, interest, and royalties derived from its jurisdiction and paid to other jurisdictions. Even if dividends, interest and royalties are paid to companies in the same group, withholding tax is imposed as long as the group company is in another jurisdiction.

However, when dividends, interest, and royalties are paid to jurisdictions that conclude a tax treaty, the amount of withholding tax is often lower than usual. This is because many tax treaties have provisions to reduce the withholding tax rate or exempt the company from paying the tax altogether. This
reduction or exemption benefit is generally called a tax treaty benefit. The purpose of offering a tax treaty benefit is to encourage economic activities between the two contracting jurisdictions, so the reduction or exemption is applied only to dividends, interest, and royalties paid to the other contracting state.

2.2 Treaty Shopping

The tax treaty benefits considered, the amount of withholding tax may be reduced by circumventing the third jurisdiction rather than paying dividends, interest, and royalties directly to other jurisdictions. For example, suppose that jurisdiction A (the source jurisdiction) imposes a 25% withholding tax, and jurisdiction C imposes a 5% withholding tax (Figure 1). Because jurisdiction A has concluded a tax treaty with jurisdiction C, the withholding tax is waived for dividends, interest and royalties paid from jurisdiction A to jurisdiction C. In this case, if a company located in jurisdiction A pays dividends, interest, and royalties directly to a company located in jurisdiction B, a 25% withholding tax are imposed. However, if a company located in jurisdiction A pays its dividends, interest, and royalties to a company located in jurisdiction B via jurisdiction C (the conduit jurisdictions), it is exempted from the withholding tax for payments made between jurisdiction A and jurisdiction C because of the A = C tax treaty, and jurisdiction C imposes a 5% withholding tax on payments made between jurisdiction C and jurisdiction B. In a case where a company located in jurisdiction A pays its dividends, interest, and royalties to a company located in jurisdiction B, if it pays them via jurisdiction C, it can avoid a 20% withholding tax, compared to paying them directly.

![Fig. 1 Treaty shopping](image)

Reducing the amount of tax through the unexpected use of tax treaty benefits described above is called “Treaty Shopping.” treaty shopping is not illegal unless violates the provisions of a jurisdiction’s tax law or tax treaty, but particularly if it is done solely to reduce the amount of tax, it is called “treaty abuse” (Marian 2016) or “improper use of the convention” (OECD 2015) and should be corrected.

For companies engaged in treaty shopping, this is just one of the ways to avoid withholding tax. However, for source jurisdictions, this is one of the ways in which their rights to impose taxation are eroded.
by third jurisdictions (conduit jurisdictions). It is source jurisdictions that originally have the right to impose taxation since the dividends, interest, and royalties are income derived from their jurisdiction. Nevertheless, it is the third jurisdictions that impose their tax on this income. This is why treaty shopping is regarded as a form of tax base erosion and is viewed as a problem in the area of international taxation.

In this way, when the tax laws and tax treaties of multiple countries overlap, opportunities for an unexpected reduction in the tax burden may be created. This is called international tax avoidance. We see international tax avoidance as a problem emerging in an environment where economic globalization makes the economic legal system of each country one system as a whole. This is because we use the method of network science for international taxation.

3 Withholding Tax Network

3.1 Data

The data relating to the withholding tax rate of dividends, interest, and royalties comes from Ernst Young (2017) and Diamond (2017a). The 165 jurisdictions subject to this study are as shown in Table 1. With respect to the withholding tax rate on dividends, many tax treaties apply different tax rates depending on the percentage of holdings. Generally, the higher the shareholding ratio, the lower the tax rate. The interest in this study is in the tax burden that arises when the profit is transferred within a corporate group. This is because international tax avoidance by multinationals is often done through the transfer of their profits between group companies. Therefore, assuming that the dividend was generated by a 100% wholly owned subsidiary, the lowest tax rate are applied. Regarding interest, some jurisdictions have applied different tax rates for non-bank deposits and bank deposits. For the reasons mentioned above, it is assumed that the tax rate for the non-bank deposit is applied.

Some tax treaties have other requirements for granting withholding tax exemptions or reductions, apart from the shareholding ratio mentioned above. We consider that all requirements are met in this case. Moreover, the applied withholding tax rate is not always clear because the wording in a given tax treaty and the relationship between domestic tax laws and tax treaties are not always clear. In these cases, the lowest tax rate among the possible withholding tax rates is applied. On the other hand, although some jurisdictions do not impose withholding tax according to their domestic tax laws, their tax treaties determine the withholding tax rate. Since the primary purpose of tax treaties is usually to avoid international double taxation, it is considered that withholding tax is not imposed, but only in this case, we assume that the tax rate stipulated in tax treaties is to be applied.

It is also necessary to consider corporate taxes in the third jurisdiction when calculating the strict amount of tax. This is especially true in the case of dividends. However, only a few jurisdictions impose
corporate tax on dividend income today\(^2\) (Dittmer 2012). For this reason, corporate taxes in the third jurisdiction are not considered in this study.

Table 1 165 jurisdictions subject to this study

Afghanistan	Costa Rica (Costa)					
Albania	Côte d’Ivoire (Cote)					
Algeria	Croatia	Croatia	Croatia	Croatia	Croatia	Croatia
Angola	Curacao	Curacao	Curacao	Curacao	Curacao	Curacao
Argentina	Cyprus	Cyprus	Cyprus	Cyprus	Cyprus	Cyprus
Armenia	Czech Republic (Czech)					
Australia	Denmark	Denmark	Denmark	Denmark	Denmark	Denmark
Austria	Republic (DominicanR)					
Azerbaijan	Ecuador	Ecuador	Ecuador	Ecuador	Ecuador	Ecuador
Bahamas	Egypt	Egypt	Egypt	Egypt	Egypt	Egypt
Bahrain	El Salvador (El)					
Belarus	Equatorial Guinea (Equatorial)					
Republic of Spain	Republic of Ireland (Ireland)					
Republic of Korea	Italy	Italy	Italy	Italy	Italy	Italy
Republic of Korea	Japan	Japan	Japan	Japan	Japan	Japan
Republic of Korea	Korea	Korea	Korea	Korea	Korea	Korea
Republic of Korea	Malaysia	Malaysia	Malaysia	Malaysia	Malaysia	Malaysia
Republic of Korea	Mongolia	Mongolia	Mongolia	Mongolia	Mongolia	Mongolia
Republic of Korea	Montenegro	Montenegro	Montenegro	Montenegro	Montenegro	Montenegro
Republic of Korea	Morocco	Morocco	Morocco	Morocco	Morocco	Morocco
Republic of Korea	Mozambique	Mozambique	Mozambique	Mozambique	Mozambique	Mozambique
Republic of Korea	Myanmar	Myanmar	Myanmar	Myanmar	Myanmar	Myanmar
Republic of Korea	Netherlands	Netherlands	Netherlands	Netherlands	Netherlands	Netherlands
Republic of Korea	New Zealand (NZ)					
Republic of Korea	Nicaragua	Nicaragua	Nicaragua	Nicaragua	Nicaragua	Nicaragua
Republic of Korea	Niger	Niger	Niger	Niger	Niger	Niger
Republic of Korea	Namibia	Namibia	Namibia	Namibia	Namibia	Namibia
Republic of Korea	South Africa (South)					
Republic of Korea	Slovakia	Slovakia	Slovakia	Slovakia	Slovakia	Slovakia
Republic of Korea	Slovenia	Slovenia	Slovenia	Slovenia	Slovenia	Slovenia
Republic of Korea	South Sudan (Ssudan)					
Republic of Korea	Spain	Spain	Spain	Spain	Spain	Spain
Republic of Korea	Sri Lanka (Sri)					
Republic of Korea	Suriname	Suriname	Suriname	Suriname	Suriname	Suriname

\(^2\) Many countries have introduced participation exemptions. For example, in Japan, corporate tax is exempted for 95% of dividend income.
Belgium	Estonia	Kosovo	Commonwealth of the Northern Marianas Islands (Mariana)	Swaziland		
Bermuda	Ethiopia	Kuwait	Norway	Oman	Sweden	Switzerland
Bolivia	Fiji	Kyrgyzstan				
Bonaire, Sint Eustatius and Saba (Bonaire)	Finland	Laos	Pakistan	Taiwan		
Bosnia and Herzegovina (Bosnia)	France	Latvia	Authority (Palestinian)	Tanzania		
Botswana	Gabon	Lebanon	Panama	Papua New Guinea (Papua)	Trinidad and Tobago	
Brazil	Georgia	Lesotho	Guinea			
British Virgin Islands (Virgin)	Germany	Libya	Paraguay	Tunisia		
Brunei Darussalam (Brunei)	Ghana	Liechtenstein	Peru	Turkey		
Bulgaria	Gibraltar	Lithuania	Philippines	Uganda		
Cambodia	Greece	Luxembourg	Poland	Ukraine		
Cambodia		Macau Special Administrative Region of China (Macau)	Portugal			
Cameroon	Guam	Republic of Macedonia (Macedonia)	Puerto Rico (Puerto)	Mediterranean		
Canada	Guatemala			United States		
Cayman Islands (Cayman)	Channel Islands	Guernsey	Madagascar	Qatar	US Virgin Islands	
Cape Verde	Guinea	Malawi	Romania			
3.2 Constructing the network

3.2.1 Weighted Multi Directed Graph

As a withholding tax network, we produce a weighted multi directed graph. In the graph, the vertices represent jurisdictions, and all pairs of vertices are connected by arcs because, logically, any jurisdiction can pay dividends, interest, and royalties to any other jurisdictions. Every arc has the withholding tax imposed on dividends, interest, and royalties as a weight. In addition to withholding tax, all arcs also are given a slight weight of 1×10^{-6} as a sanction. This is because it costs money, for instance registration fees, to establish a company in a jurisdiction, even if the company is only a paper company.

Therefore, in the case where jurisdiction A imposes a 20% withholding tax on the dividend and jurisdiction B imposes a 30% withholding tax, the dividend’s weighted multi directed graph is as shown in Figure 2. In other words, the arc from jurisdiction A to jurisdiction B has $20 + 1 \times 10^{-6}$ as the weight, and the arc from jurisdiction B to jurisdiction A has $30 + 1 \times 10^{-6}$.
Fig. 2 An example of jurisdiction A and jurisdiction B

We also created graphs with the arcs removed according to the threshold values. The thresholds provided are seven, 30, 25, 20, 15, 10, 5, and 0, and arcs were removed when weights exceeding the threshold were given. In the case of jurisdiction A and jurisdiction B, the arc from jurisdiction B to jurisdiction A are removed, but in graphs where the threshold value is 25 or less (Figure 3).

Fig. 3 An example of jurisdiction A and jurisdiction B. A: over threshold of 25, B: threshold 25 and 20.

3.2.2 Weighted Undirected Graph

We also constructed a network that transformed the weighted multiple directed graphs into weighted undirected graphs. In producing the weighted undirected graphs, the problem we faced is the weight added on each edge, for withholding tax rate differs depending on the jurisdiction paying dividends, interest, and royalties, even if those payments are made between the same two jurisdictions. For example, if a company in the United Kingdom pays dividends to a company in Afghanistan, no withholding tax is imposed on the dividends, but if a company in Afghanistan pays dividends to a company in the United Kingdom, a 20% withholding tax is imposed. The purpose of this paper is to identify which jurisdiction is likely to be used for treaty shopping, so we apply the higher withholding tax rate as a weight. For example, in the case of Afghanistan and the United Kingdom, it looks like Figure 4.
From the weighted undirected graphs mentioned above, we also created graphs with the edges removed according to the threshold values. This is because we believe it is possible to detect community structures between jurisdictions that uses treaty shopping and the jurisdictions that are used for treaty shopping by removing the edges with high tax rates, that is, the edges that are unlikely to be used for treaty shopping.

The thresholds provided are seven, 30, 25, 20, 15, 10, 5, and 0, and edges were removed when weights exceeding the threshold were given. For example, in the case of Afghanistan and the United Kingdom described above, a weight 20 is given in the weighted undirected graph. Therefore, vertices representing both jurisdictions are connected by edges up to the graph with a threshold value of 20, but in graphs where the threshold value is 15 or less, edges are not connected (Figure 5).

Fig. 4 An example of Afghanistan and the United Kingdom

Fig. 5 An example of Afghanistan and the United Kingdom. A: over threshold of 20, B: under threshold of 15.

4 Method of Network Analysis

4.1 Centrality calculation

Centrality is an index that shows how important a vertex is for the overall network. The higher the value, the more important the vertex is in the network. However, it is not possible to define unambiguously what are important vertices for the overall network. In this study, centrality is calculated based on the idea that the vertex contributing to the shortest paths in the network is essential to the whole network. This is because the jurisdiction used for treaty shopping is located on the shortest path. By calculating the centrality, we try to estimate which jurisdiction is easier to use for treaty shopping from the viewpoint of
withholding tax rates.

We use load centrality as the centrality of the graph (Goh et al. 2001). Load centrality was originally designed to calculate how much data processing capacity each passing point requires for the efficient movement of data packets in a network such as the Internet. The definition is as follows: Suppose one data packet is sent from vertex i to vertex j. The data packet moves along the minimum weight path. When one data packet is sent among all vertices like this, the amount of the data packets which passed through vertex k is represented by l_k. The load centrality of vertex k is given by

$$C_l(k) = \sum_{i \neq j \neq k} l_{ij}(k)$$ \hspace{1cm} (1)

Even though load centrality is sometimes thought to be similar in concept to betweenness centrality (Freeman 1979), the results differ when a graph has multiple minimum weight paths (Brandes 2008). This is because load centrality assumes a data packet is divided equally at the fork of minimum weight paths, while betweenness centrality is divided equally by the number of shortest paths (Figure 6).

In this study, we think of data packets as the amount of dividends, interest, and royalties and withholding tax rates as weight to find the vulnerabilities of the worldwide legal system (1 Introduction).

![Fig. 6](image)

Fig. 6 Difference in the treatment of multiple shortest paths between load centrality (left) and betweenness centrality (right).

4.2 Community detection

A community is a subgraph closely connected in the network. Even though it seems that there is no strict definition of “community” in network science, it is thought that the network has a community structure, if the graph can be divided into subgraphs where the edges connected has density. We detect communities in the withholding tax network because we think that we can find a community structure in the network if there are some relationships between the jurisdictions used for treaty shopping and the jurisdictions having motivations to do treaty shopping.

The problem in detecting communities is whether the communities can be detected appropriately from a network. As we have seen, if the community is regarded as a partial graph closely connected in the
network, in evaluating whether there is a community structure in the network, we basically must check whether the network is divided into subgraphs which have many edges in a given subgraph, but few edges between different subgraphs.

We evaluate our results of community detection using modularity, which is often adopted as an index of evaluating community structure. (Newman 2004a; Newman 2004b). To evaluate only significant community structures, Modularity is calculated by subtracting the expected value of the number of edges when considering the community as a random graph \(\langle t_{ij} \rangle \) from the number of edges of the divided communities \(a_{ij} \):

\[
Q = \frac{1}{2M} \sum_{ij} \left[a_{ij} - \frac{k_i k_j}{2M} \right] \delta[C(i), C(j)]
\]

(2)

where \(M \) is the total number of the edges, \(C(i) \) is subset including vertex i, and \(\delta[C(i), C(j)] \) is 1 if \(C(i) \) and \(C(j) \) are the same subset, otherwise it is 0.

In a case of weighted graphs, \(a_{ij} \) represents the weight of the edges between vertex i and vertex j rather than the number of edges between them. Similarly, \(k_i k_j \) represents the expected weight of the edges assigned randomly to vertex i.

Modularity is normalized so that the maximum value is 1. Therefore, it can be said that there is a strong community structure in the network as it moves closer to 1, but from an empirical point of view, if it is larger than about 0.3, it is often considered that the network has a community structure.

We use the Louvain Method for community detection (Blondel et al. 2008). This is a method which tries to detect communities having high modularity by trying to optimize local and aggregating vertices. Specifically, it is detected as follows: First, the Louvain Method assumes every vertex belongs to one community. Then, calculate how much the value of modularity rises, if each vertex belongs to the same community with an adjacent vertex,

\[
\Delta Q = \left[\frac{\Sigma_{in} + k_i \Sigma_{in}}{2M} - \left(\frac{\Sigma_{tot} + k_i \Sigma_{in}}{2M} \right)^2 \right] - \left[\frac{\Sigma_{in}}{2M} - \left(\frac{\Sigma_{tot}}{2M} \right)^2 - \left(\frac{k_i}{2M} \right)^2 \right]
\]

(3)

where, if vertex i belongs to a community, \(\Sigma_{in} \) represents the sum of the weights of edges in the community, \(\Sigma_{tot} \) represents the sum of the weights of all the edges adjacent to the vertices in the community, \(k_{i,in} \) represents the sum of the weights of edges whose vertex i is an end point, \(k_i \) represents the sum of the weights of edges in the community whose vertices i are endpoints. The combination of vertices with the greatest modularity rise are specified (the first step). Next, combinations of the specified vertices in the first step are aggregated into one vertex, and the size of the network is reduced (the second step). The first stage and the second stage are recursively repeated, and when the modularity converges, the community is
detected. The characteristic of the Louvain Method is not to assume all vertices belong to one community, but to assume each belongs to one community.

5 Result

5.1 The value of centrality

The top countries differ markedly depending on dividends, interest and royalties and the value of centrality of interest is much lower than that of interest (Table 2-4). In the area of international taxation, the Netherlands, Barbados, Cyprus, Estonia, Hungary, Luxembourg, Malta, and Switzerland, and the United Kingdom are cited as examples of jurisdictions commonly known to be likely to be used for treaty shopping (Diamond 2017b). According to the results of this study, we can see that these jurisdictions are the top jurisdictions for dividends.

Regarding the influence of the threshold, although the value of the centrality in dividends is not particularly great (Figure 7), both of the centrality values in interest and royalties are starting to decline from the time when the threshold falls below 10 (Figure 8 and 9). The results may mean that polarization is occurring at withholding tax rates on dividends at above and below 5%, but 10% and 5% withholding tax seems to be the mainstream in many jurisdictions when it comes on interest and royalties.

The results presented in this paper only mean that the tax is less if a company pays its dividends, interest, and royalties through a given jurisdiction, compared to paying them directly to other jurisdictions. It does not mean that such jurisdictions are used for treaty shopping in fact. Some ambivalent tax treaties include provisions for preventing treaty abuse while they offer tax treaty benefits (Okamura 1997). For example, to prevent treaties abuse, jurisdictions such as the United States introduce a limitation on benefits clause, and jurisdictions such as the United Kingdom introduces a principal purpose test. In this study, the presence or absence of these provisions is not considered.

Table 2 Ranking of the value of load centrality (dividends)

rank	jurisdiction	centrality	rank	jurisdiction	centrality	rank	jurisdiction	centrality
1	UK	0.070639	30	Colombia	0.006188	59	Bahamas	0.000521
2	UAE	0.058244	31	Zambia	0.006114	60	Virgin	0.000521
3	Kuwait	0.044943	32	Tunisia	0.006075	61	Gibraltar	0.000521
4	Netherlands	0.027664	33	Germany	0.005091	62	Guernsey	0.000521
5	Cyprus	0.024464	34	Liechtenstein	0.004122	63	Maldives	0.000521
6	HK	0.0239	35	Latvia	0.003342	64	Monaco	0.000521
7	Singapore	0.0228	36	Libya	0.003185	65	Sao	0.000521
8	Switzerland	0.022725	37	Bosnia	0.003125	66	Slovak	0.000519
	Country	Centrality	Threshold		Country	Centrality	Threshold	
---	-------------	------------	-----------	---	-----------	------------	-----------	
1	Mauritius	0.022512	9		Kosovo	0.002884	67	
2	Spain	0.02209	10		Sweden	0.002682	68	
3	Luxembourg	0.020043	11		Myanmar	0.002109	69	
4	Lucia	0.018178	12		Brunei	0.001908	70	
5	Bahrain	0.018153	13		Jersey	0.001433	71	
6	Malaysia	0.018115	14		Sint	0.001433	72	
7	Qatar	0.017946	15		Curacao	0.001422	73	
8	Ireland	0.017523	16		Bermuda	0.001305	74	
9	Estonia	0.016039	17		Man	0.001305	75	
10	Malta	0.015731	18		Norway	0.001206	76	
11	US	0.01268	19		Vietnam	0.00114	77	
12	South	0.011743	20		Finland	0.001128	78	
13	Mexico	0.010967	21		India	0.001058	79	
14	Oman	0.010475	22		Japan	0.000949	80	
15	Denmark	0.010308	23		Austria	0.000829	81	
16	Hungary	0.010111	24		Iraq	0.000723	82	
17	Belgium	0.009487	25		Martin	0.000723	83	
18	France	0.009139	26		Brazil	0.000706	84	
19	Lithuania	0.007719	27		Cape	0.000692	85	
20	Georgia	0.007616	28		Madagascar	0.00068	86	
21	Bulgaria	0.006243	29		Palestinian	0.000657		

A

![Graph showing centrality vs. threshold for different countries](image)

B
Fig. 7 A: Changes in the top 5 jurisdictions’ values of centrality (in the case of dividends). B: Change in top the 5 jurisdictions’ centrality ranking (in the case of dividends).

Table 3 Ranking of the value of load centrality (interest)

rank	jurisdiction	centrality	rank	jurisdiction	centrality	rank	jurisdiction	centrality			
1	UAE	0.041796	30	Israel	0.006243	59	Gibraltar	0.000735			
2	Switzerland	0.039489	31	Algeria	0.006228	60	Jersey	0.000735			
3	Germany	0.035639	32	Japan	0.006183	61	Macau	0.000735			
4	France	0.033565	33	Seychelles	0.006154	62	Maldives	0.000735			
5	UK	0.032811	34	Portugal	0.006108	63	Nicaragua	0.000735			
6	Hungary	0.025905	35	Zambia	0.006101	64	Paraguay	0.000735			
7	Canada	0.024145	36	Cameroon	0.006067	65	Puerto	0.000735			
8	Netherlands	0.023775	37	Denmark	0.005954	66	Martin	0.000735			
9	Sweden	0.023619	38	HK	0.003959	67	Sao	0.000735			
10	Luxembourg	0.022488	39	Finland	0.003613	68	Sint	0.000735			
11	Kuwait	0.019532	40	Bermuda	0.003085	69	Belgium	0.000732			
12	Norway	0.016801	41	Man	0.003085	70	Cayman	0.000724			
13	Ireland	0.016736	42	Poland	0.003044	71	Curacao	0.000724			
14	Czech	0.016253	43	Slovak	0.001952	72	Singapore	0.000533			
15	US	0.014057	44	Guernsey	0.001901	73	Macedonia	0.000456			
16	Estonia	0.013082	45	Monaco	0.001901	74	Australia	0.000344			
17	Malta	0.011142	46	Spain	0.001657	75	Croatia	0.000321			
18	Austria	0.01061	47	Indonesia	0.001499	76	Romania	0.000262			
19	South	0.010495	48	Colombia	0.001325	77	Korea	0.000247			
Rank	Country	Centrality	Rank	Country	Centrality	Rank	Country	Centrality	Rank	Country	Centrality
------	-------------	------------	------	--------------	------------	------	-------------	------------	------	-------------	------------
20	Cyprus	0.009644	49	Libya	0.001266	78	Saudi	0.000242			
21	Russian	0.009492	50	Liechtenstein	0.00126	79	Greece	0.000236			
22	Bahrain	0.009354	51	Malawi	0.00119	80	Panama	0.000211			
23	Latvia	0.009251	52	Zimbabwe	0.001053	81	Iceland	0.000121			
24	Italy	0.008287	53	Qatar	0.00104						
25	Belarus	0.006977	54	Suriname	0.000991						
26	Mauritius	0.006841	55	Slovenia	0.0009						
27	Oman	0.006553	56	Georgia	0.000888						
28	Ukraine	0.006507	57	Bahamas	0.000735						
29	Bulgaria	0.006357	58	Virgin	0.000735						

A

![Graph A](image)

B

![Graph B](image)

Fig. 8 A: Changes in the top 5 jurisdictions' values of centrality (in the case of interest). **B:** Changes in the
top 5 jurisdictions' centrality (in the case of interest).

Table 4 Ranking of the value of load centrality (royalties)

rank	jurisdiction	centrality	rank	jurisdiction	centrality	rank	jurisdiction	centrality
1	UAE	0.079455	30	Estonia	0.007717	59	Bulgaria	0.000396
2	Switzerland	0.079043	31	Slovak	0.006905	60	HK	0.000318
3	France	0.05139	32	Austria	0.006784	61	Bahamas	0.000312
4	Hungary	0.048268	33	Zambia	0.006121	62	Virgin	0.000312
5	Mauritius	0.047201	34	Libya	0.005969	63	Gibraltar	0.000312
6	Sweden	0.045731	35	Liechtenstein	0.005768	64	Sao	0.000312
7	Netherlands	0.042169	36	Belgium	0.005208	65	Sint	0.000312
8	Norway	0.037786	37	Russian	0.005146	66	Cayman	0.000303
9	Cyprus	0.034533	38	Bermuda	0.003427	67	Curacao	0.000303
10	Ireland	0.029864	39	Kuwait	0.003319	68	Iceland	0.000196
11	Luxembourg	0.029044	40	Finland	0.002753	69	Cameroon	0.000164
12	Senegal	0.029034	41	Georgia	0.001943	70	Belarus	0.00014
13	UK	0.024726	42	Nicaragua	0.001733	71	Malaysia	0.000116
14	Malta	0.02437	43	Paraguay	0.001733			
15	Gabon	0.024012	44	Puerto	0.001733			
16	US	0.019653	45	Martin	0.001733			
17	Spain	0.018766	46	Suriname	0.001733			
18	Bahrain	0.018091	47	Tunisia	0.001673			
19	Latvia	0.01757	48	Man	0.001374			
20	Germany	0.016731	49	Jersey	0.001374			
21	Macau	0.01241	50	Ukraine	0.001295			
22	Canada	0.012097	51	China	0.001124			
23	Monaco	0.01029	52	Czech	0.001086			
24	Korea	0.009735	53	Greece	0.001037			
25	South	0.009731	54	Singapore	0.000906			
26	Japan	0.008836	55	Croatia	0.000821			
27	Denmark	0.007992	56	Cote	0.000541			
28	Italy	0.007951	57	Seychelles	0.00047			
29	Guernsey	0.007783	58	Israel	0.000448			
Fig. 9 A: Changes in the top 5 jurisdictions’ values of centrality (in the case of royalties). B: Changes in the top 5 jurisdictions’ centrality ranking (in the case of royalties).

5.2 Communities Founded

5.2.1 Dividends

The weighted undirected graph with a threshold of 5% recorded the highest modularity (Figure 10). Its value is 0.2853738, or close to 0.3, so it can be said that the withholding tax network for dividends has a community structure. The results are as shown in Table 5 and jurisdictions in each community are arranged in descending order of centrality, which is in the weighted multi directed graph with a threshold of 5%. We identified four communities. All except community 4 has jurisdictions whose centralities are high. Community 1 includes the United Kingdom, Kuwait, the Netherlands, Switzerland, Spain, Luxembourg,
Ireland, Estonia, Malta, the United States, and other jurisdictions, community 2 includes Cyprus, Hong Kong, Lucia, Bahrain, Mauritius, and others, and community 3 includes the United Arab Emirates, Singapore, Malaysia, Qatar, and other. We cannot find a relationship between the detected communities and each jurisdiction’s location. The interesting thing is that mainland China and Hong Kong as well as India and Mauritius, which are known for their compatibility, are not in the same communities.

In the weighted undirected graph with a threshold of 5%, there were 34 vertices with no edges with other vertices. This means that dividends are subject to a withholding tax rate of more than 5% when paid from these the jurisdictions or for the jurisdictions. Therefore, it can be said that the possibility that these jurisdictions will be used for treaty shopping involved dividends is extremely low. However, the possibility that dividends will be paid for these jurisdictions remains, given that of the 165 jurisdictions subject to this analysis, some jurisdictions do not impose withholding tax initially. Therefore, if dividends are paid for 34 jurisdictions without links in a 5% threshold weighted undirected graph, at least these jurisdictions not imposing withholding tax. Among the 34 jurisdictions, it is possible that the U.S. Virgin Islands will be used as a cash box, where corporate profits are accumulated, given their lack of corporate taxation.

![Fig. 10 Change in modularity, threshold 35 – threshold 0 (in the case of dividends)](image_url)

Table 5 Communities (dividends)

Community 1	Community 2	Community 3	no kink				
jurisdiction	centrality	jurisdiction	centrality	jurisdiction	centrality	jurisdiction	centrality
UK	0.05873	Cyprus	0.02422	UAE	0.05556	Mariana	5.39E-06
Kuwait	0.04473	HK	0.02361	Singapore	0.02252	Tanzania	8.31E-07
Netherlands	0.02641	Lucia	0.01814	Malaysia	0.01811	Afghanistan	0
Country	Centrality	Jurisdiction	Centrality	Jurisdiction			
-------------	------------	------------------	------------	------------------			
Switzerland	0.02246	Bahrain	0.01786	Qatar			
Spain	0.02187	Mauritius	0.01203	Norway			
Luxembourg	0.01975	Oman	0.01018	Vietnam			
Ireland	0.01744	Georgia	0.0076	India			
Estonia	0.01575	Bulgaria	0.00624	Japan			
Malta	0.0155	Colombia	0.00619	NZ			
US	0.01268	Liechtenstein	0.00409	Venezuela			
South	0.01173	Libya	0.00315	Fiji			
Mexico	0.01096	Kosovo	0.00285	Mozambique			
Denmark	0.01016	Myanmar	0.00207	Uruguay			
Hungary	0.00983	Brunei	0.00187	Portugal			
Lithuania	0.00749	Jersey	0.0014	Azerbaijan			
France	0.00697	Sint	0.0014	Laos			
Zambia	0.00611	Curaçao	0.00139	Morocco			
Belgium	0.00545	Bermuda	0.00127	Namibia			
Germany	0.00508	Man	0.00127	Pakistan			
Latvia	0.00318	Iraq	0.00069				
Bosnia	0.00313	Martin	0.00069				
Sweden	0.00253	Brazil	0.00068				
Finland	0.00105	Madagascar	0.00067				
Austria	0.00083	Cape	0.00066				
China	0.00045	Palestinian	0.00062				
Slovak	0.00039	Bahamas	0.00049				
Algeria	0.00037	Virgin	0.00049				
Australia	0.0003	Gibraltar	0.00049				
Macedonia	0.00027	Guernsey	0.00049				
Croatia	0.00025	Maldives	0.00049				
Poland	0.00019	Monaco	0.00049				
Czech	0.00019	Sao	0.00049				
Russian	0.00019	Macau	0.00048				
Greece	0.00018	Cayman	0.00048				
Kyrgyzstan	0.00017	Ecuador	0.00039				
Belarus	7.86E-05	Jordan	0.0003				
Uzbekistan	7.60E-05	Saudi	0.00022				
Albania	7.42E-05	Romania	0.00018				
Armenia	5.75E-05	Trinidad	0.00012				
5.2.2 Interest

The weighted undirected network with a threshold of 5% recorded the highest modularity (Figure 11). Its value is 0.283715, or close to 0.3, so it can be said that the withholding tax network for interest has a community structure. The results are as shown in Table 6 and jurisdictions in each community are arranged in descending order of centrality, which is in the weighted multi directed graph with a threshold of 5%. We identified four communities. All except community 4 have jurisdictions whose centralities are somewhat high. Community 1 includes Switzerland, Germany, France, Kuwait, the United Kingdom, Ireland, and other jurisdictions, community 2 includes Hungary, the Netherlands, Sweden, and others, and community 3 includes the United Arab Emirates and other. Although the United Arab Emirates has a high centrality value (Table 3), the size of the community to which it belongs is small (Table 6). Therefore, it may not be suitable for treaty shopping. Many European countries belong to Community 1 or 2. This may be because the European Union has issued an “Interest Directive” (2003/49/EC), which exempts corporations from

Slovenia	4.65E-05	Tunisia	1.53E-05
Egypt	3.12E-05	El	7.70E-06
Panama	3.01E-05	Guyana	6.46E-06
Ukraine	2.19E-05	Bonaire	0
Mongolia	1.67E-05	Cote	0
Korea	1.57E-05	Guatemala	0
Iceland	1.29E-05	Indonesia	0
Moldova	1.29E-05	Peru	0
Israel	1.14E-05	Sri	0
Chile	9.80E-06		
Canada	8.15E-06		
Uganda	6.15E-06		
Senegal	4.48E-06		
Jamaica	2.72E-06		
Italy	2.20E-06		
Costa	0		
Ghana	0		
Kazakhstan	0		
Montenegro	0		
Serbia	0		
Taiwan	0		
Turkey	0		
paying withholding tax on interest paid within the EU member jurisdictions, to help create EU single market. There were 47 vertices not having edges with other vertices. Regarding these vertices, the same thing can be said as for the dividends (5.2.1 Dividends).

![Fig. 11 Change in modularity, threshold 35 – threshold 0 (in the case of interest)](image)

Table 6 Communities (interest)

Community 1	Community 2	Community 3	no link				
jurisdiction	**centrality**	**jurisdiction**	**centrality**	**jurisdiction**	**centrality**	**jurisdiction**	**centrality**
Switzerland	0.035669	Hungary	0.022507	UAE	0.038503	Afghanistan	0
Germany	0.029059	Netherlands	0.018449	Bahrain	0.008041	Angola	0
France	0.027107	Sweden	0.018065	Mauritius	0.005814	Bolivia	0
Kuwait	0.022897	Canada	0.015561	Oman	0.00555	Botswana	0
UK	0.020226	Luxembourg	0.013706	Belgium	0.000186	Brazil	0
Ireland	0.016536	Norway	0.013524	Seychelles	4.37E-05	Brunei	0
US	0.013929	Portugal	0.006106	Lithuania	4.25E-05	Cambodia	0
Czech	0.013042	Cameroon	0.006054	Swaziland	1.04E-05	Cape	1.45E-05
Russian	0.010392	Estonia	0.005487	Mozambique	4.16E-06	Chad	0
Austria	0.009228	HK	0.003732	Senegal	2.84E-06	CongoDR	0
Latvia	0.008363	Bermuda	0.001896	Fiji	2.67E-06	Cote	0
Malta	0.008265	Man	0.001896	Malaysia	0	DominicanR	0
Cyprus	0.008104	Guernsey	0.001793	Tunisia	0	El	0
Italy	0.007799	Monaco	0.001793			Equatorial	0
Country	Centrality	Jurisdiction	Country	Centrality	Jurisdiction		
------------	------------	--------------	------------	------------	--------------		
Zambia	0.006101	0.001587	Gabon	0			
China	0.006098	0.001112	Ghana	0			
Ukraine	0.005536	0.00104	Guam	0			
Denmark	0.003865	0.001033	Guatemala	0			
Finland	0.003376	0.000973	Guinea	0			
Poland	0.002567	0.000967	Guyana	0			
South	0.002509	0.000827	Honduras	0			
Spain	0.001382	0.000717	India	0			
Qatar	0.000989	0.000717	Iraq	0			
Indonesia	0.000893	0.000717	Jamaica	0			
Belarus	0.000813	0.000717	Kazakhstan	0			
Slovenia	0.000588	0.000717	Laos	0			
Singapore	0.000468	0.000717	Lebanon	0			
Macedonia	0.000358	0.000717	Lesotho	0			
Bulgaria	0.000216	0.000717	Madagascar	0			
Korea	0.000214	0.000717	Mauritania	0			
Croatia	0.00021	0.000717	Morocco	0			
Greece	0.0002	0.000717	Myanmar	0			
Romania	0.000134	0.000717	Nigeria	0			
Panama	0.000134	0.000705	Mariana	2.82E-06			
Israel	0.000127	0.000705	Pakistan	0			
Iceland	0.0001	0.000637	Palestinian	0			
Mongolia	7.51E-05	0.000226	Papua	0			
Armenia	6.89E-05	0.000188	Philippines	0			
Japan	6.57E-05	5.25E-05	Rwanda	0			
Albania	4.40E-06	2.91E-05	Lucia	0			
Kyrgyzstan	3.96E-05	1.44E-05	Sudan	0			
Venezuela	3.03E-05	1.30E-05	Taiwan	0			
Bosnia	2.88E-05	0	Tanzania	4.79E-06			
Uruguay	2.18E-05	0	Thailand	0			
Serbia	1.66E-05	0	Trinidad	0			
Montenegro	1.58E-05	0	Uganda	0			
Moldova	1.44E-05	0	Uvigin	0			
Kosovo	1.17E-05	0					
Uzbekistan	1.04E-05	0					
CongoR	3.00E-06	0					
5.2.3 Royalties

The weighted undirected graph with a threshold of 5% recorded the highest modularity (Figure 12). Its value is 0.325377, which is over 0.3. Thus, the withholding tax network on royalties has a community structure. The results are as shown in Table 9 and jurisdictions in each community are arranged in descending order of centrality, which is in the weighted multi directed graph with a threshold of 5%. We identified five communities. All except community 5 have jurisdictions whose centralities are high. Community 1 includes Switzerland, Hungary, the Netherlands, Ireland, Malta, and so on, community 2 includes France, Sweden, Norway, Luxembourg, and others, community 3 includes Senegal, Cyprus, Bahrain, and others, and community 4 includes the United Arab Emirates, Mauritius, and other jurisdictions. Although the United Arab Emirates has a high centrality value (Table 4), the size of the community to which it belongs is small (Table 7). Many European countries belong to Community 1 or 2. This may be because the EU has issued a “Royalty Directive” (2003/49/EC), which exempt corporations from paying withholding tax on royalties paid within the EU member jurisdictions. There are 43 vertices not having edges with other vertices. Regarding these vertices, the same thing can be said as for the dividends (5.2.1 Dividends).

Namibia	2.59E-06
Azerbaijan	0
Costa	0
Mexico	0
Turkey	0

Fig. 12 Change in modularity, threshold 35 – threshold 0 (in the case of royalties)
Table 7 Communities (royalties)
Community 1	Community 2	Community 3	Community 4	No link						
jurisdiction	centrality									
Switzerland	0.061055	France	0.046474	Senegal	0.029019	UAE	0.06167	Afghanistan	0	
Hungary	0.03975	Sweden	0.040768	Cyprus	0.028238	Mauritius	0.045365	Angola	0	
Netherlands	0.030205	Norway	0.028039	Bahrain	0.015465	South	0.00097	Bolivia	0	
Ireland	0.028402	Luxembourg	0.025179	Monaco	0.009766	Malaysia	2.93E-05	Botswana	0	
Malta	0.019473	US	0.019266	Guernsey	0.007469	Oman	1.87E-05	Brazil	0	
Slovak	0.006738	Latvia	0.016999	Macau	0.006517	Indonesia	0	Brunei	0	
Austria	0.006683	UK	0.012943	Libya	0.004796	Madagascar	0	Cambodia	0	
Canada	0.006667	Japan	0.008448	Liechtenstein	0.003452	Mozambique	0	Cape	0	
Zambia	0.006121	Korea	0.008326	Bermuda	0.003191	Namibia	0	Colombia	0	
Germany	0.004096	Italy	0.007662	Kuwait	0.002856	CongoDR	0	Costa Rica	0	
Spain	0.003763	Russian	0.004358	Nicaragua	0.001707					
Finland	0.002521	Tunisia	0.001673	Paraguay	0.001707	Cameroon	0.00016	El	0	
Belgium	0.001414	Estonia	0.001627	Puerto	0.001707	Gabon	0.024003	Equatorial	0	
Ukraine	0.001283	Denmark	0.001546	Martin	0.001707	CongoR	7.79E-05	Fiji	0	
Czech	0.000641	Greece	0.000856	Suriname	0.001707	Chad	4.57E-05	Ghana	0	
Singapore	0.000521	Croatia	0.000776	Georgia	0.001528					
Israel	0.000386	Bulgaria	9.30E-05	China	0.001124	Guatemala	0	Guam	0	
Iceland	0.000135	Macedonia	8.72E-05	Man	0.000871					
Belarus	0.000118	Swaziland	2.58E-05	Jersey	0.000871	Guatemala	0	Guatemala	0	
Poland	7.41E-05	Saudi	8.63E-06	Cote	0.00054					
Kyrgyzstan	6.17E-05	Ecuador	6.92E-06	HK	0.000318					
Uzbekistan	4.15E-05	Lithuania	4.90E-06	Bahamas	0.000286					
Bosnia	3.56E-05	Panama	2.51E-06	Virgin	0.000286					
Armenia	2.49E-05	Sri	2.08E-06	Gibraltar	0.000286					
Pakistan	2.04E-05	Algeria	1.86E-05	Sao	0.000286				Kazakstan	0
Slovenia	1.41E-05	Australia	0	Sint	0.000286				Lebanon	0
Moldova	1.41E-05	Chile	0	Cayman	0.000278				Lesotho	0
Kosovo	1.34E-05	Jordan	0	Curacao	0.000278				Malawi	0
Egypt	1.25E-05	Morocco	0	Seychelles	9.93E-05				Maldives	0
Mongolia	9.67E-06	NZ	0	Bonaire	0				Mexico	0
Romania	7.09E-06	Portugal	0	Ethiopia	0				Myanmar	0
Montenegro	5.50E-06	Trinidad	0	Laos	0				Nigeria	0
Serbia	5.50E-06	Turkey	0	Mauritania	0				Marianas	2.75E-05
Venezuela	1.17E-06			Palestinian	0				Papua	0
6 Discussion

To resolve the vulnerable elements of tax treaties, it is necessary to amend them. The realm of international tax law is trying to deal with the weak links that arise from a single network that tax laws and tax treaties of each country form, in two ways. The first approach involves multilateral treaties and the second involves peer review.

The multilateral treaty aims to amend tax treaties of each country uniformly, instead of sequentially revising tax treaties through bilateral negotiations as in the past. When a jurisdiction ratifies a multilateral treaty, the new provisions stipulated in the multilateral treaty overwrites the existing provisions of any tax treaties that jurisdiction has concluded, producing the same effect as that of an amendment to the tax treaty. In order for many jurisdictions to ratify a multilateral treaty, the multilateral treaty can effectively include only the minimum standard deemed necessary for the prevention of treaty abuse. From the intention of trying to be “fair” to each jurisdiction, it seems possible only to make revisions to each jurisdiction’s tax treaties “uniformly.” However, according to this study, only some jurisdictions are conducive to treaty shopping, so to solve treaty abuse, it seems sufficient to amend the tax treaties of those jurisdictions for the time being. This would mean fewer jurisdictions that need to obtain consensus, which we believe would allow additional provisions to be introduced into the tax treaties.

Peer review means that jurisdictions monitors each other to determine whether provisions are being adequately enforced in each jurisdiction. Again, according to this study, there is a possibility that effective monitoring can be carried out when focusing the monitoring on jurisdictions likely to be used for treaty shopping.

Moreover, international tax avoidance using tax havens is also drawing attention. Because treaty shopping is generally used for shifting companies’ profits to tax havens (Picciotto 1992), resolving treaty

3 However, seeking prevention measures only for specific countries also has the risk of disrupting efforts towards international tax avoidance. About how the harmful tax competition taking the initiative by the OECD was abandoned, see Sharman (2006).
shopping may also resolve international tax avoidance using tax havens.

7 Conclusion

In this study, we were able to clarify which jurisdictions are likely to be used for treaty shopping from the viewpoint of the withholding tax rates, and the relationships between jurisdictions that are likely to be used for treaty shopping and jurisdictions which give rise to a motivation to undertake treaty shopping. However, it cannot be determined from withholding tax rates alone whether these jurisdictions are being used for treaty shopping in reality. As a future task, we would like to study the relationship between withholding tax rates and the economic activities of multinationals by using corporate data.

Conflict of interest statement On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgement The present study was supported in part by the Ministry of Education, Science, Sports, and Culture, Grants-in-Aid for Scientific Research (B), Grant No. 17904923 (2017-2019) and (C), Grant No. 26350422 (2014-16). This study was also supported by MEXT as Exploratory Challenges on Post-K computer (Studies of Multi-level Spatiotemporal Simulation of Socioeconomic Phenomena).

References

Arnold B. J. (2016) International Tax Primer. Kluwer Law International BV, the Netherlands.
Barabási A. (2016) Network Science. Cambridge University Press, Cambridge.
Blondel V. D., Guillaume J., Lambiotte R., Lefebvre E. (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008.
Brandes U. (2008) On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30 (2):136-145.
Dittmer P. (2012) A Global Perspective on Territorial Taxation. Special Report No.202, Tax Foundation.
Diamond W. H., Byrnes William. H., IV, Munro R. J. (2017a) Foreign Tax & Trade Briefs - International Withholding Tax Treaty Guide. Matthew Bender & Company, Inc., New York.
Diamond W. H., Diamond D. B., Byrnes William. H., IV, Munro R. J. (2017b) Tax Havens of the World. Matthew Bender & Company, Inc., New York.
Ernst Young (2017) Worldwide Corporate Tax Guide 2017.
EPSU (the European Federation of Public Service Unions), SEIU (the Service Employees International Union), EFFAT (the European Federation of Trade Unions in the Food, Agriculture and Tourism sectors), War on Want (2015) Unhappy Meal: €1 Billion in Tax Avoidance on the Menu at McDonald's.
Freeman L. C. (1979) Social Network, Vol. 1, 215-239.
Goh K., Kahng B., Kim D. (2001) Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters 87(27):1-4.
HJI Panayi C., Avi-Yonah R. S. (2010) Rethinking Treaty-Shopping: Lessons for the European Union. U of Michigan Law & Econ, Empirical Legal Studies Center Paper No. 10-002.
Hong S. (2017) Tax Treaties and Foreign Direct Investment: A Network Approach.
Inman P. (2016) Google Tax Deal Under Fire as It Emerges Figure Included Share Options Scheme. TheGuardian.com, United Kingdom.
Loomis C. S. (2011) The Double Irish Sandwich: Reforming Overseas Tax Havens. 43 St. Mary’s L.J. 825
Marian O. (2016) UNILATERAL RESPONSES TO TAX TREATY ABUSE: A FUNCTIONAL APPROACH. Brooklyn Journal Of International Law, 41(3):1157-1183.
McGauran K. (2013) Should the Netherlands sign tax treaties with developing countries?. Stichting Onderzoek Multinationale Ondernemingen, Amsterdam.
Newman M. E. J., Girvan M. (2004a) Finding and evaluating community structure in networks. Physical Review E, Vol. 69, article No. 026113.
Newman M. E. J. (2004b) Analysis of weighted networks. Phys. Rev. E 70 056131.
OECD (2015) Preventing the Granting of Treaty Benefits in Inappropriate Circumstances, Action 6 - 2015 Final Report, OECD/G20 Base Erosion and Profit Shifting Project. OECD Publishing, Paris.
Ogata K. (2016) Debate about Anti-Tax Avoidance Measures under the BEPS Project etc. (in Japanese). Financial Review 126:196-225.
Okamura T. (1997) Kokusai kazei [International Taxation]. Iwanami kouza Gendai no hō 8 Seifu to kigyō [Iwanami course Modern law 8 Governments and Companies]. Iwanami Shoten, Publishers, Tokyo (in Japanese).
Picciotto S. (1992) International Business Taxation – A Study in the Internationalization of Business Regulation. Quorum Books, New York.
Polak S. (2014) Algorithms for the Network Analysis of Bilateral Tax Treaties. Master’s thesis conducted at UvA/CWI/CPB.
Sharman J. C. (2006) Heavens in a storm: the struggle for global tax regulation. Cornell University Press, New York.
Van’t Riet M., Lejour (2014) A. Ranking the Stars: Network Analysis of Bilateral Tax Treaties. CPB Discussion Paper 290.