ASYMPTOTIC STABILITY
FOR A CLASS OF MARKOV SEMIGROUPS

BEBE PRUNARU

Abstract. Let $U \subset K$ be an open and dense subset of a compact metric space and let $\{\Phi_t\}_{t \geq 0}$ be a Markov semigroup on the space of bounded Borel measurable functions on U with the strong Feller property. Suppose that for each $x \in \partial U$ there exists a barrier $h \in C(K)$ at x such that $\Phi_t(h) \geq h$ for all $t \geq 0$. Suppose also that every real-valued $g \in C(K)$ with $\Phi_t(g) \geq g$ for all $t \geq 0$ and which attains its global maximum at a point inside U is constant. Then for each $f \in C(K)$ there exists the uniform limit $F = \lim_{t \to \infty} \Phi_t(f)$. Moreover F is continuous on K, agrees with f on ∂U and $\Phi_t(F) = F$ for all $t \geq 0$.

Let E be a locally compact Hausdorff space and let $M_b(E)$ be the space of all complex-valued, bounded and Borel measurable functions on E. Let also $C_b(E)$ be the set of all continuous functions in $M_b(E)$.

A linear map $\Phi : M_b(E) \to M_b(E)$ is called a Markov operator if for each $x \in E$ there exists a probability Borel measure μ_x on E such that

$$\Phi(f)(x) = \int f \, d\mu_x \quad \forall f \in M_b(E).$$

A Markov operator Φ is said to have the strong Feller property if $\Phi(f) \in C_b(E)$ for every $f \in M_b(E)$. The main result of this paper is the following:

Theorem 1. Let K be a compact metric space and let $U \subset K$ be a dense open subset such that ∂U contains at least two points. Let $C(K)$ be the space of all continuous complex-valued functions on K and let $C(\partial U)$ be the corresponding space for ∂U.

Let $\Phi : M_b(U) \to M_b(U)$ be a Markov operator with the strong Feller property. Suppose that Φ satisfies the following conditions:

(A) For each point $x \in \partial U$ there exists $h \in C(K)$ such that $h(x) = 0$, $h(y) < 0$ for all $y \in K \setminus \{x\}$ and $\Phi(h_U) \geq h_U$ on U, where h_U is the restriction of h to U;

(B) If $g \in C(K)$ is a real valued function with $\Phi(g_U) \geq g_U$ and if there exists $z \in U$ such that $g(z) = \max\{g(x) : x \in K\}$ then g is constant on K.

Then, for each $f \in C(\partial U)$ there exists a unique function $G \in C(K)$ such that $\Phi(G_U) = G_U$ and $G(x) = f(x)$ for all $x \in \partial U$. Moreover, if $F \in C(K)$ is an arbitrary continuous extension of f to K then the sequence $\{\Phi^n(F_U)\}_n$ converges uniformly on U to G_U.

Proof. (1) First of all, it can be proved, exactly as in Proposition 1.3 from [1], that the boundary condition (A) implies the following. For each $f \in C(K)$ and for each
where \(i \) belongs to \(C \) generated by all the functions of the form \(\pi \) and let \(K \) be the norm closed subalgebra of \(C[0,1] \). By what we have already proved the first summand belongs to \(C \) and the second belongs, by the induction hypothesis, to \(C \). This shows that \(g \in C(K) \) and Dini's theorem shows that the convergence is uniform on \(K \).

(3) Let
\[
\mathcal{T}(\Psi) = \{ h \in C(K) : \Psi(h) = h \}
\]
and let \(A \) be the norm closed subalgebra of \(C(K) \) generated by \(\mathcal{T}(\Psi) \). Let \(C(\Psi) \) be the set of all \(f \in C(K) \) for which the sequence \(\{ \Psi^n(f) \} \) is uniformly convergent on \(K \) and denote \(\pi(f) \) its limit. Let also
\[
C(\Psi)_0 = \{ f \in C(\Psi) : \pi(f) = 0 \}.
\]
We will show that \(A \subset C(\Psi) \).

Let \(h \in \mathcal{T}(\Psi) \). Then \(|h|^2 \geq |h|^2 \) therefore (2) shows that \(|h|^2 \in C(\Psi) \) and also that \(\pi(|h|^2) - |h|^2 \geq 0 \). This also shows that the norm closed ideal of \(C(K) \) generated by all the functions of the form \(\pi(|h|^2) - |h|^2 \) with \(h \in \mathcal{T}(\Psi) \) is contained in \(C(\Psi)_0 \). Indeed it is easy to see that if \(f \in C(\Psi)_0 \) then \(f g \in C(\Psi)_0 \) for every \(g \in C(K) \).

We shall now prove that for any finite set of \(k \) functions from \(\mathcal{T}(\Psi) \) their product belongs to \(C(\Psi) \). Let \(k = 2 \). If \(h_1, h_2 \in \mathcal{T}(\Psi) \) then
\[
h_1h_2 = (1/4) \sum_{m=0}^{3} i^m |g_m|^2
\]
where \(i = \sqrt{-1} \) and \(g_m = (h_1 + i^m h_2) \). Since \(g_m \in \mathcal{T}(\Psi) \) we see that \(h_1h_2 \in C(\Psi) \).

Let \(k \geq 3 \) and assume that every product of at most \(k - 1 \) elements from \(\mathcal{T}(\Psi) \) belongs to \(C(\Psi) \). Let \(h_1, \ldots, h_k \) in \(\mathcal{T}(\Psi) \) and let \(g = h_1 \cdots h_k \). Then
\[
g = (h_1h_2 - \pi(h_1h_2)) \cdot h_3 \cdots h_k + \pi(h_1h_2) \cdot h_3 \cdots h_k.
\]
By what we have already proved the first summand belongs to \(C(\Psi)_0 \) and the second belongs, by the induction hypothesis, to \(C(\Psi) \). This shows that \(A \subset C(\Psi) \).

(4) Consider the map
\[
\rho : A \to C(\partial U)
\]
that takes any \(f \in A \) into its restriction to \(\partial U \). It turns out that \(\rho \) is onto. To see this, we first observe that the boundary condition (A) together with (2) implies that for each \(x \in \partial U \) there exists \(g \in C(K) \) such that \(g(x) = 0 \), \(g(y) < 0 \) for every \(y \in \partial U - \{x\} \) and \(\Phi(gu) = gu \). In particular \(g \in \mathcal{T}(\Psi) \). This shows that the range
of ρ separates the points of ∂U therefore ρ is onto. This proves the existence part of the theorem. Uniqueness follows easily from (B).

(5) We shall denote

\[\theta : C(K) \to C(K) \]

the map which takes a function \(f \in C(K) \) into the uniquely determined function in \(T(\Psi) \) which agrees with \(f \) on \(\partial U \). It follows that for each \(f \in C(\Psi) \) we have \(\theta(f) = \pi(f) \). In particular, \(\theta(f) = f \) for every \(f \in T(\Psi) \).

Let

\[L = \{ g \in C(K) : g = \pi(|h|^2) - |h|^2 \text{ for some } h \in T(\Psi) \}. \]

If \(g \in L \), then it follows from (3) that \(g \geq 0 \). Moreover \(\Psi(g) \leq g \) hence \(\Phi(gu) \leq gu \).

Suppose now that there exists a point \(z_0 \in U \) such that \(g(z_0) = 0 \) for every \(g \in L \). It then follows from (B) that \(g = 0 \) on \(U \) hence on \(K \) for every \(g \in L \). This easily implies that \(T(\Psi) \) is closed under multiplication hence it equals \(A \). Indeed if \(h_1 \) and \(h_2 \) are functions in \(T(\Psi) \) then \(\pi(h_1 h_2) - h_1 h_2 \) can be written as a linear combination of elements from \(L \) (see step 3). It then follows that \(\pi(h_1 h_2) = h_1 h_2 \) therefore \(T(\Psi) = A \).

This shows that the map \(\theta : C(K) \to C(K) \) defined above is multiplicative on \(C(K) \) and its range equals \(A \). Let \(M \) be the maximal ideal space of \(A \) and for each \(h \in A \) let \(\hat{h} \in C(M) \) be its Gelfand transform. Since \(A \) is self-adjoint, the Gelfand transform is an isometric isomorphism from \(A \) onto \(C(M) \) (the Banach algebra of all continuous, complex-valued functions on \(M \)). It then follows that there exists a continuous one-to-one map \(\gamma : M \to K \) such that \(\theta(f) = f \circ \gamma \) for every \(f \in C(K) \).

Moreover, since \(A \subset C(K) \) there exists a continuous surjective map \(\lambda : K \to M \) such that \(h = \hat{h} \circ \lambda \) for every \(h \in A \).

We now claim that \(\gamma(M) \subset \partial U \). Suppose there exists \(\alpha \in M \) such that \(z = \gamma(\alpha) \in U \). Then there exists a non-constant real valued function \(h \in A \) such that

\[\hat{h}(\alpha) = \sup\{ h(x) : x \in K \}. \]

Every such \(h \) attains its maximum only on \(\partial U \). However

\[\hat{h}(\alpha) = h(\gamma(\alpha)) = h(z) \]

This shows that \(\gamma(M) \subset \partial U \).

Let \(z \in U \) and let \(x = \gamma \circ \lambda(z) \). Then \(x \in \partial U \). Let \(h \in T(\Psi) \) which attains its maximum on \(K \) only at this point. Then

\[h(z) = (h \circ \gamma \circ \lambda)(z) = (\hat{h} \circ \lambda)(z) = h(z). \]

We get a contradiction. This means that there is no \(z_0 \in U \) such that \(g(z_0) = 0 \) for all \(g \in L \).

(6) It follows from (5) that

\[\partial U = \{ x \in K : g(x) = 0 \text{ for every } g \in L \}. \]

It then follows that the closed ideal of \(C(K) \) generated by \(L \) is precisely the ideal of all \(f \in C(K) \) which vanish identically on all points of \(\partial U \). Recall now that we already proved in part 3 that for any \(g \) in the closed ideal generated by \(L \) the sequence \(\{ \Psi^n(g) \} \) converges uniformly to 0. In particular, this holds true for all functions \(g \) of the form \(g = f - \theta(f) \) with \(f \in C(K) \). This completes the proof of this theorem.

□
This proof works as well for Markov semigroups with continuous parameter. Examples of Markov operators on complex domains which satisfy all the conditions in Theorem 1 are given in [1]. As a matter of fact, the results and the methods used in [1] strongly motivated and inspired our research. We have also used some ideas appearing in [3]. Theorem 1 can be used to give an alternate proof for the main result in [2].

REFERENCES

[1] J. Arazy and M. Englis, *Iterates and the boundary behavior of the Berezin transform*, Ann. Inst. Fourier, 51 (2001) 1101-1133.
[2] C. Liu, *Iterates of a Berezin-type transform*, J. Math. Anal. Appl. 329 (2007) 822-829.
[3] B. Prunaru, *Lifting fixed points of completely positive semigroups*, Integral Equations and Operator Theory, to appear.