You-Gui-Wan ameliorates house dust mite-induced allergic asthma via modulating amino acid metabolic disorder and gut dysbiosis

Wei-Hsiang Hsu1, #, Li-Jen Lin2, #, Yen-Ming Chao1, Chung-Kuang Lu3, Shung-Te Kao2, Yun-Lian Lin1, 4, *

1 Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
2 School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
3 National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
4 Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan

Short Title: You-Gui-Wan ameliorates house dust mite-induced allergic asthma

#These authors contributed equally.

*Corresponding author:

Yun-Lian Lin, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan. Address: No.91, Hsueh-Shih Road, Taichung 40402, Taiwan. Tel: +886-4-22053366 ext. 5520; E-mail: yllin5212@gmail.com
Abstract

Introduction Allergic asthma is a worldwide health problem, and its etiology remains incompletely understood. Besides, as current therapies for allergic asthma mainly rely on administration of glucocorticoids and have many side effects, new therapy is needed. You-Gui-Wan (YGW), a traditional Chinese herbal remedy, has been used for boosting Yang, enhancing immunity and treating allergic asthma.

Objectives This study aims to explore the molecular changes during the development of allergic asthma and investigate the potential bio-signatures and the effect of YGW on house dust mite (HDM)-induced chronic allergic asthma in mice.

Methods Dermatophagoides pteronyssinus (Der p), one of HDMs, was intratracheally administered once a week for a total of 7 treatments over 6 consecutive weeks to induce allergic asthma in mice. Serum metabolomics was analyzed by LC-QTOF-MS/MS. 16S rRNA-based microbiome profiling was used to analyze gut microbiota, and the correlation between metabolomic signatures and microbial community profiling was explored by Spearman correlation analysis.

Results Serum metabolomic analysis revealed that 10 identified metabolites — acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine, were markedly elevated by Der p. These metabolites are mainly related to branch-chain amino acid (BCAA) metabolism, aromatic
amino acid (AAA) biosynthesis, and phenylalanine metabolism. YGW administration reversed 7 of the 10 identified metabolites and chiefly affected BCAA metabolism. 16S DNA sequencing revealed that YGW profoundly changed Der p-induced gut microbiota composition. Multiple correlation analysis indicated 10 selected metabolites have a good correlation with gut microbiota.

Conclusion Der p induced BCAA metabolic deviation in allergic asthma mice, and YGW administration effectively ameliorated the AA metabolic disorder, and improved gut dysbiosis. This study paves the way towards the interactions of Der-p on microbiome and gut microbiota, and the effects of YGW treatment as well as provides a support for YGW administration with potential benefits for allergic asthma.

Keywords: allergic asthma; *Dermatogoides pteronyssinus* (Der p); metabolome; gut microbiota; *You-Gui-Wan* (YGW)
Introduction

Chronic obstructive pulmonary disease (COPD) and chronic asthma represent the worldwide prevalence of long-term airway inflammation. They are among the global public health issues [1]. COPD and chronic asthma result from gene–environment interactions and allergens [2]. One of the major clinical allergens of COPD and chronic asthma is house dust mite (HDM) such as *Dermatophagoides pteronyssinus* (*Der p*) and *D. farina* (*Der f*) [3]. Most patients with COPD and chronic asthma need long-term treatment. The impact on society, economy, and medical expenditure is great and is increasing [4, 5].

Corticosteroids and β-agonists have been used as standard treatment for COPD and chronic asthma. However, they cannot cure these 2 diseases and have side effects, especially in children [5]. An effective treatment with no side effect remains an unmet need. Therefore, many patients search for complementary and alternative therapies for improving health in the remission state and non-acute phase of asthma to prevent acute exacerbations and reduce the dosage of steroids [6].

You-Gui-Wan (YGW), an herbal remedy, was firstly mentioned in *Jingyue Quanshu* (1624 A.D.) and has long been used for boosting *Yang* and enhancing immunity in traditional Chinese medicine (TCM) [7]. Previous studies reported that YGW protected the immune function against hydrocortisone-suppressed cytokine expression [8], reduced *Der p*-induced airway hyperresponse and its remodeling, and alleviated allergen-induced airway inflammation in asthma mouse models [9, 10]. However, the action mechanism remains for further investigation.

Because of the complexity of Chinese medicine and the heterogeneity of the etiology of asthma, animals could provide a relative homogenous disease model to explore potential metabolic biomarkers. Metabolomics is a systemic, comprehensive and
quantitative analysis of changes in global small-molecule metabolites in a biological matrix, which can be directly coupled to a biological phenotype response to a drug treatment or intervention. It may be a potentially powerful tool to explore the therapeutic basis and clarify the possible action mechanisms of TCM. Therefore, it has attracted much attention in TCM research and is widely used to evaluate the efficacy of TCM in recent years [11].

Gut microbiota associated with metabolic pathways and diseases has been demonstrated [12]. The expression of gut microbial-derived metabolites is associated with the IgE response to allergens and asthma [13]. The gut microbiota composition is related to gut metabolism [12, 14]. Intestinal gut disorders promote the production of metabolic endotoxins, inflammatory factors, and cytokines etc. [15]. Also, diet and TCM could have a beneficial effect on gut dysbiosis and disordered metabolism [16]. These findings highlight the importance of the gut microbiome in disease development.

In this study, we used a comprehensive metabolomics approach to analyze serum and fecal microbiota in mice with Der p-induced chronic allergic asthma, the associated metabolic pathway and the association between gut microbiome and metabolomics to explore the potential related mechanisms. We aimed to provide molecular evidence for the beneficial effects of YGW treatment in allergic asthma.

Materials and Methods

Chemicals and herbal materials

House dust mite, *Dermatophagoides pteronyssinus* (*Der p*), was purchased from Greer Laboratories (Lenoir, NC). All chemicals were obtained from Sigma (St. Louis, MO) unless otherwise specified.

YGW is composed of Rehmanniae Radix Preparata (root tuber of *Rehmannia glutinosa*), Dioscoreae Rhizoma (rhizome of *Dioscorea opposita*), Corni Fructus (fruit of *Cornus officinalis*), Eucommiae Cortex (bark of *Eucommia ulmoides*), Lycii Fructus (fruit of *Lycium chinense*), Cuscutae Semen (seed of *Cuscuta australis*), Aconiti Lateralis Radix Preparatum (daughter root tuber of *Aconitum carmichaeli*), Cinnamomi Cortex (bark of *Cinnamomum cassia*), Colla Cornus Cervi (antler of *Cervus elaphus*) and Angelicae Sinensis Radix (root of *Angelica sinensis*) at a ratio in the order of 4.4:2.2: 2.2: 2.2: 2.2: 1.1: 1.1: 0.16: 0.16. Each herb was authenticated by Kaiser Pharmaceutics, Tainan, Taiwan and the specimen number as S1 Table. The YGW extract was also supplied by Kaiser Pharmaceutics with good manufacturing practices for pharmaceuticals. The HPLC profile of YGW extract is shown in S1 Fig. The concentrated extract was resuspended in distilled water to produce a final concentration of 100 mg/ml for animal administration [9].

Statement of animal ethics

6- to 8-Week-old male BALB/c mice (20-22 g) were obtained from the National Laboratory Animal Center in Taiwan. The mice were housed individually and fed a laboratory standard diet (Lab Rodent Chow Die 5001, Ralston Purina Co.) *ad libitum*. Animals were cared and handled according to The Guide for the Care and Use of Laboratory Animals (NIH publication No. 85-12, revised 2010). The animal experiment
was reviewed and approved by the Institutional Animal Care and Use Committee of China Medical University (No. 2016-176).

Animal grouping, drug treatment, and sample collection

BALB/c male mice were randomly divided into 5 groups (n= 4 mice each) for treatment: 1) control (phosphate buffered saline [PBS]); 2) Der \(p \); 3) Der \(P \) + low-dose YGW (0.2 g/kg); 4) Der \(p \) + high-dose YGW (0.5 g/kg); 5) Der \(p \) + dexamethasone (Dex, 1 mg/kg). Dex is a synthetic non-selective glucocorticoid (GC) drug that is widely used for immunological, allergic, and inflammatory diseases treatment [17], thence, as a positive control. The dosage of YGW administrated in this study is based on the doctor’s prescriptions which is 2-6 g/70 kg YGW for an adult [18-20].

Der \(p \)-induced allergic asthma in mice mainly followed a previous method [10]. Briefly, mice were intratracheally administered 40 \(\mu \)l of Der \(p \) (2.5 \(\mu \)g/\(\mu \)l). Der \(p \) (in PBS) once a week for a total of 7 treatments over 6 consecutive weeks to induce chronic allergic asthma. YGW and dexamethasone were orally administered daily and once a week, respectively. Both YGW and dexamethasone were orally administered 30 min prior to Der \(p \) stimulation once a week. After the last treatment, mice were injected with xylazine (200 \(\mu \)g/mouse) and ketamine (2 mg/mouse) in the abdominal cavity and sacrificed [10]. Blood serum samples were collected from brachial artery after anesthesia and stored at \(-80^\circ\)C for QTOF-MS analysis. After blood collected, mouse feces were collected from the rectum as soon as possible and kept immediately at -80 \(^\circ\) C.

Measurement of airway hyperresponsivity

The airway resistance of mice was measured by using a single-chamber, whole-body
plethysmograph (Buxco Electronics, Troy, NY) with doses of methacholine (Sigma-Aldrich, St. Louis, MO) of 0, 3.125, 6.25, 12.5, 25, and 50 mg/ml. Changes in enhanced pause (Penh) represented airway resistance [9].

Measurement of total IgE and tumor necrosis factor (TNF)-α content

An amount of 100 µl serum was placed in 96-well plates to assess total IgE content with an IgE-specific enzyme-linked immunosorbent assay (ELISA) kit (BD Pharmingen) [10]. TNF-α concentration was determined with a TNF-α ELISA kit (Boster Biological Technology, CA, USA).

Blood metabolomic profiling

UPLC-QTOF-MS was run on an Agilent 1290 UPLC system (ACQUITY UPLC) coupled with the 6540-Quadrupole-Time-of-Flight (QTOF) mass system (Agilent Technologies, Santa Clara, CA, USA). The untargeted metabolomics profiling was conducted mainly as described [21]. The Trapper package (Institute for Systems Biology) was used to convert MS raw data to an mzXML format. TIPick, an in-house package, was then used to process the mzXML data and remove background signals and detect user-specified metabolites from UHPLC-MS data. Statistical analysis and interpretation focused on only TIPick-identified metabolites. Scaling-based normalization was performed according to the total ion abundance in the UPLC-MS data.

Bioinformatics analyses

Biological pathway and functional annotation of metabolomics data involved using Protein Analysis Through Evolutionary Relationships Classification System (PANTHER)
Sequencing of gut microbiota, abundance differences and diversity analyses

Total genomic DNA from fecal samples was extracted by using the column-based method (e.g., QIAamp PowerFecal DNA Kit, Qiagen). DNA quality and quantification were assessed with a Qubit fluorometer (ThermoFisher Scientific) and using the 16S Metagenomic Sequencing Library Preparation protocol from Illumina. Next-generation sequencing involved procedures previously described [23]. Different variable regions of 16S rRNA have been targeted for distinguishing bacteria [24]. The V3-V4 region was identified for distinguishing intestinal bacteria species and was amplified by using a specific primer with a barcode [24]. Reads were quality filtered by using Quantitative Insights Into Microbial Ecology v2 (QIIME2) (v. 2017.10) [25], and chimeric sequences were removed by using UCHIME [26]. The processed sequencing reads (effective tags) were clustered into operational taxonomic units (OTUs) at 97% sequence identity by using UPARSE [http://drive5.com/uparse/] [27]. Then, diversity analysis was performed, and the taxonomy classification of OTUs was assigned according to information retrieved from the Greengenes database [28]. Differences in bacteria abundance were calculated by using linear discriminant analysis (LDA) effect size (LEfSe) [29] and OTU abundance information was normalized by using a standard of sequence number corresponding to the sample with the least sequences. Differences in abundance between groups was tested by the MetaStat method with multiple comparison adjustments [30], and subsequent analysis of alpha and beta diversity involved these output normalized data.
Statistical analysis

Multivariate statistical analysis of YGW metabolomic data, including principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA), was used to analyze the covariance between the measured peak intensities in the MS spectra and the response variables [21]. All analyses involved using IBM SPSS v23.0.

Descriptive statistics are presented as mean ± SEM, median (range), or number (%). Student t, Fisher exact, or chi-square test was used to compare groups. Paired t test or Wilcoxon signed-rank test was used to compare paired data. All calculated p-values were two-tailed. Statistical significance was defined at p < 0.05.
Results

YGW reduces airway hyperresponsivity in Der p-induced chronic allergic asthma in mice

The allergic asthma model was established by repetitive administration of HDM stimulus to mouse airways as described [9, 10], which resulted in mice with allergic asthma exhibiting airway hyperresponsivity and high total IgE levels, similar to those of clinical symptoms of asthma patients [31]. The disease model group (Der p) showed a significant increase in Penh value at both 25 and 50 mg/ml methacholine as compared with the control group (Fig. 1). Moreover, at 25 and 50 mg/ml methacholine, high-dose treatment (Der p + YGW (0.5 g/kg)) (oral 0.5 g/kg YGW followed by Der p challenge) significantly decreased Penh value as compared with Der p alone (Fig. 1A). Furthermore, the positive treatment group (Der p + Dex) showed similar effects as the high-dose treatment group (Der p + YGW (0.5 g/kg)). Therefore, the high-dose treatment group was used for the following metabolomics and gut microbiota studies.

Effect of YGW on regulating serum total IgE level with Der p-induced chronic allergic asthma in mice

Total serum IgE content is higher in most patients with asthma than people without asthma [32]. To understand whether YGW regulates humoral immunity, we analysed total IgE content in serum from mice with or without YGW treatment. Total serum IgE content was higher in Der p-treated than control mice, and YGW administration could effectively reduce the total IgE content induced by Der p (Fig. 1B).

Effect of YGW on LC-MS-based metabolomics profiles in Der p-
induced chronic allergic asthma in mice

To demonstrate the system-wide mechanism of the effect of YGW, we use LC-MS for serum metabolomic analysis. Multivariate statistical methods (PCA and PLS-DA) were used to discern differences among control, Der p and treatment groups (Der p + YGW (0.5 g/kg)). Exploratory PCA was used to detect intrinsic clustering and possible outliers in the metabolome. The plot of principal component 1 versus 2 scores (S2 Fig. 2A) ($R^2_X = 0.900$, $Q^2 = 0.729$) showed an obvious separation among control, Der p and treatment groups. By further applying PLS-DA, we observed a reasonably good separation between Der p and control groups ($R^2_X = 0.896$, $R^2_Y = 0.661$, $Q^2 = 0.349$) (S2 Fig. 2B). Moreover, findings for the treatment group (Der p + YGW (0.5 g/kg)) were closer to the control group, which suggests YGW has a therapeutic effect on the metabolites changed in Der p-induced allergic asthma in mice. Also, these results revealed that the models were suitable for predicting the variables that contributed to the class clustering and had low risk of overfitting.

Unpaired t test was used to choose metabolites with statistically significant change in expression ($p < 0.05$, control vs Der p) (S2 Table). Then, metabolites with VIP score > 1.0 were selected. Significantly Der p-altered metabolite signatures included 10 metabolites: acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine (Fig. 2A and Table 1). For 7 of the 10 Der p-altered bio-signatures could be significantly reversed by YGW. The level of the remaining 3 metabolites — carnitine, hypoxanthine, and phenylalanine — could also be reversed by YGW but without statistical significance (Table 1).

Effect of YGW on metabolic pathway

IPA was used to identify the biochemical pathways which are responsible for the
observed metabolic abnormalities. In the network analysis, Der p-induced serum metabolites related to allergic asthma tended to gather in a single network. Among the several “hub” molecules at the center of this network, TNF-α was the most important marker (Fig. 2B and S3 Fig.).

To further evaluate the underlying implication of the metabolites with changed expression, we analysed the metabolic pathways by using MetaboAnalyst 4.0 (www.metaboanalyst.ca/). To define the relationships among the metabolites, we generated pathway analysis for the 10 potential biomarkers by using “mouse” as the specific model organism and revealed 7 pathways as most important in Der p-induced chronic allergic asthma. 7 metabolites significantly reversed by YGW were used to detect the potential pathway. The most important metabolic pathways (pathway impact > 0.1 and $p < 0.05$) were valine, leucine and isoleucine biosynthesis (branch-chain amino acid [BCAA] metabolism); phenylalanine, tyrosine and tryptophan biosynthesis (aromatic amino acid [AAA] biosynthesis); and phenylalanine metabolism (Fig. 2C). The results suggested that valine, leucine and isoleucine biosynthesis (BCAA metabolism) chiefly contributed to the pharmacological effects of YGW in Der p-induced allergic asthma (Fig. 2D).

Effect of YGW on gut microbiota in Der p-induced mouse chronic allergic asthma

Multiple studies have shown amino acid metabolic disorder is related to gut microbiota [33-35]. To assess the structures changed of fecal microbial communities in control, Der p, and high-dose YGW treatment, we generated an average of more than 54,000 sequences from all samples and retained 509 OTUs, then analyzed the diversity
of the microbial community (alpha diversity). The average microbiota diversity was
slightly lower in Der p only than control group, but the low microbiota diversity in Der p
group was ameliorated by YGW treatment (Fig. 3A).

Furthermore, to intuitively assess the specific changes in the microbial community
in the gut microbiota between groups, we analyzed the relative abundance of the dominant
taxa identified by sequencing in each group. The top 15 taxa generated the relative
abundance superposition histogram at the genus level (Fig. 3B). Among the top 15 taxa,
the Der p group showed increased relative abundance of Lactobacillus, Ruminococcus,
Akkermansia, Eubacterium, Bacteroides, Candidatus, Streptococcus, Staphylococcus,
and Fusobacterium but decreased abundance of Lachnospiraceae_NK4A136_group,
Alistipes, Ruminiclostridium, Blautia, Desulfovibrio, and Bifidobacterium. YGW
treatment partially reversed the change in abundance (Fig. 3B and S4 Fig.). LEfSe
analysis, a biomarker discovery tool for high-dimensional data, was used to explore the
differences by analysis of taxon abundance in the gut microbiota (from phylum to species)
between groups. LDA revealed distinct taxa in the gut microbiota of the groups. A
cladogram was generated by LEfSe analysis of sequences from each sample. We
identified 9 top differences (LDA score > 3.0) in intestinal flora between control and Der
p groups and between Der p and Der p+ YGW groups (Fig. 3C). Our LEfSe analysis
revealed that the genera Clostridiales, Blautia, and Lachnospiraceae_NK4A136_group
were enriched in control group; Ruminococcus was enriched in Der p group; and
Eubacterium, Blautia, Ruminiclostridium, and Lachnospiraceae_NK4A136_group were
enriched in Der p+ YGW group. Therefore, the composition of gut microbiota in different
groups was profoundly altered during Der p-induced allergic asthma in mice.

Previous study revealed high relative abundance of Firmicutes/Bacteroidetes in gut
microbiota of asthma patients [36]; thus, we detected whether the ratio of Firmicutes to
Bacteroidetes abundance was increased in Der p-induced group. The ratio of Firmicutes to Bacteroidetes abundance in Der p, control, and Der p+ YGW groups was 0.59, 11.49, and 0.70, respectively (Fig. 3D), with no significant difference between control and Der p+ YGW groups.

Correlation between metabolomic signatures and microbial community

To investigate the interrelations between the change in metabolite levels and microbiota composition, we used Spearman rank correlation analysis of genera with the highest expression in gut microbiota and the selected serum metabolites, then represented these in a heat map (Fig. 4). Multiple correlation analysis showed a positive correlation ($p < 0.05$) between Candidatus and carnitine ($r = 0.636$), hypoxanthine ($r = 0.636$), norleucine ($r = 0.587$), methionine ($r = 0.643$), and tryptophan ($r = 0.601$). However, Blautia and Lachnospiraceae_NK4A136_group showed a negative correlation ($p < 0.05$) with most of the 10 selected metabolites: acetylcarnitine, carnitine, hypoxanthine, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine. Therefore, the expression of the 10 selected metabolites was well correlated with gut microbiota composition.
Lin et al. previously found that YGW could ameliorate airway inflammation and airway hypersensitivity in *Der p*-induced chronic allergic asthma in mice [10]. However, the action mechanism remained to be further elucidated. In this study, serum metabolomics analysis showed *Der p* markedly elevated the level of 10 metabolites — acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine. These metabolites are mainly related to BCAA metabolism, AAA biosynthesis, and phenylalanine metabolism. YGW administration reversed 7 of the 10 metabolites, chiefly BCAA metabolites. 16S DNA sequencing revealed that YGW profoundly changed the composition of *Der p*-induced gut microbiota, and multiple correlation analysis indicated the 10 selected metabolites and gut microbiota composition with good correlation.

Metabolomics is a comprehensive characterization of metabolites in biological systems that generates unique chemical fingerprints for specific cellular processes. In particular, metabolomics is increasingly used to diagnose disease, understand disease mechanisms, identify novel drug targets, customize drug treatments and monitor therapeutic outcomes [37]. Asthma and airway inflammation are complex and respond to infectious stimuli, which may result in a broad spectrum of possible metabolic products. Metabolomics could provide unique and novel insights into asthma. In this study, *Der p*-induced a mouse metabolic profile with 10 significantly raised metabolic signatures, including acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine, identified as potential biomarkers for *Der p*-induced allergic asthma. Tryptophan, phenylalanine, isoleucine, methionine, and valine are belonging to essential amino acids, which could not be
synthesized by mammalian cells. Researchers found gut microbiota, such as the genera
of *Bacteroides, Clostridium, Candidatus, Propionibacterium, Fusobacterium, Streptococcus, Lactobacillus, Akkermansia*, and *Bifidobacterium*, are contributing the
source of elevated serum methionine, BCAAs (isoleucine, leucine and valine) and
AAAs (tryptophan, phenylalanine and tyrosine) [38, 39]. Intestinal microbes can
provide amino acids to meet host requirements, contributing to the energy delivery and
modulating amino acid homeostasis [40]. A recent research also showed that HDM
could cause immune system disorder with a correlation of lower diversity of gut
microbiota [41]. In addition, current evidence suggested that the gut microbiota, such as
Staphylococcus, Rumminococcaceae, Lachnospiraceae_NK4A136_group, and
Streptococcus, have been implicated in predisposing to allergy, airway inflammation or
asthma in both experimental models and clinical studies [42]. A reduction in
Bacteroidetes and *Bifidobacteria* has been associated with the asthma [43]. Our study
exhibited that some microbiota, including *Lachnospiraceae_NK4A136_group*,
Bacteroidetes, Blautia, Desuflovibrio etc, were markedly lower, and some are higher in
Der p-induced allergic asthma. After YGW treatment, the intestinal flora structure of
the YGW treatment groups tended to be similar to that of the control group. Besides, the
correlation analysis between metabolites and gut microbiota also demonstrated that
some gut microbiota has positive correlation with amino acids changed in *Der p-
induced mouse model of chronic allergic asthma. This study provides a support that gut
microbiota has a correlation with *Der p*-induced chronic allergic asthma.

Moreover, higher carnitine and phenylalanine were detected in asthma patients [44, 45].
The level of acetylcarnitine and valine were also significantly increased in ovalbumin
(OVA)-induced asthma model [46], which are consistent with our results. Additionally,
Ho et al. have reported recently higher tryptophan level was found in HDM-induced allergic asthma [47]. However, norleucine, isoleucine, betaine and methionine found in this study have never been previously reported to be correlated with asthma.

Cytokines/chemokines promote immune cell recruitment and activation playing an integral role in the airway inflammation. Many altered metabolites share manifold statistical associations to inflammatory cells and cytokines, implicating that they may be biologically relevant metabolic changes linked to airway inflammation. Such as hypoxanthine correlated with multiple inflammatory markers including neutrophil counts and the cytokines IL-4, IL-5, IL-6, IL-8, TNF-α, and IL-1β [48]. The present investigation found Der p-induced metabolic profile changes, which involved in BCAAs metabolism, AAA biosynthesis, and phenylalanine metabolism. Rising TNF-α generates inflammatory responses, induces lipolysis and increases phenylalanine fluxes [49]. Likewise, some pathogen could up-regulate interferons, which could up-regulate tryptophanyl tRNA (tRNA_{Trp}) synthetase and involved in tryptophan catabolism [50]. Further, BCAAs can affect protein synthesis and decomposition, and promote glutamine synthesis. BCAAs mediate proteins, DNA, and RNA syntheses in lymphocytes and regulate immune functions [51, 52].

Malkawi et al showed that Dex could induce perturbation in several pathways, such as amino acid metabolism, pyrimidine metabolism, and nitrogen metabolism. Furthermore, Dex treatment causes significant elevation in serum levels of tyrosine and hydroxyproline, as well as significant reduction in phenylalanine, lysine and arginine [53]. Dex treatment could change the diversity and relative abundance of intestinal flora in OVA-induced asthma rats [54]. Accumulating evidences indicate that YGW is capable of
modulating the immune disorders, especially boosting the immune function to strengthen
the bodyline of defense against pathogen [6]. Previous study showed that YGW could
attenuate Der p-induced inflammation via down-regulating TGF-β, IL-4, IL-5, IL-13 and
inhibition of NF-κB activation [10]. In this study, we further demonstrated that YGW
could improve Der p-induced gut dysbiosis and significantly reverse 7 raising metabolites,
acetylcarnitine, tryptophan, norleucine, isoleucine, betaine, methionine, and valine, and
chiefly influence valine, leucine and isoleucine biosynthesis. These results were similar
to Dex. Moreover, top 10 high impact metabolites also showed a good correlation with
microbial community profiling. Combined these evidences, YGW apparently ameliorates
Der p-induced allergic asthma.

Conclusion

In conclusion, 10 identified metabolites, acetylcarnitine, carnitine, hypoxanthine,
tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine, as
potential biomarkers were markedly elevated by Der p. Seven of the metabolites —
acetylcarnitine, tryptophan, norleucine, isoleucine, betaine, methionine, and valine —
could be reversed by YGW. In addition, YGW could also improve the metabolism
pathway and the imbalance in intestinal flora in Der p-induced allergic asthma in mice.
Our study provides scientific evidence for YGW administration with potential benefits
for allergic asthma by ameliorating gut dysbiosis and improving the metabolome
imbalance.
Abbreviations

Full Name	Abbreviations
amino acid	AA
aromatic amino acid	AAA
branch-chain amino acid	BCAA
Chronic obstructive pulmonary disease	COPD
Dermatophagoides pteronyssinus	*Der p*
Dermatophagoides farina	*Der f*
dexamethasone	dex
house dust mites	HDM
Ingenuity Pathway Analysis	IPA
linear discriminant analysis	LDA
linear discriminant analysis effect size	LEfSe
operational taxonomic units	OTUs
partial least-squares discriminant analysis	PLS-DA
principal component analysis	PCA
Protein Analysis Through Evolutionary Relationships Classification System	PANTHER
Quantitative Insights Into Microbial Ecology v2	QIIME2
traditional Chinese medicine	TCM
variables important for the projection	VIP
You-Gui-Wan	YGW
Declarations

Consent for publication
Not applicable

Availability of supporting data
All supporting data have been shown in the manuscript.

Competing interests
The authors have disclosed no potential conflicts of interest.

Funding
This work was supported by Ministry of Science and Technology of Taiwan (MOST 106-2320-B-039-053 and MOST 107-2320-B-039-001).

Author contribution statement
WH Hsu: conceptualization, methodology, investigation, data curation, writing- original draft. LJ Lin and ST Kao: animal model and serum and fecal collections. YM Chao: metabolomics analysis. CK Lu: data curation. YL Lin: conceptualization, supervision, writing- revising and editing.

Acknowledgements
This work was supported by Ministry of Science and Technology of Taiwan (MOST 106-2320-B-039-053, MOST 107-2320-B-039-001, and MOST 107-2811-B-039-519). We are grateful for Dr. Yu-Lun Kuo, Biotools Microbiome Research Center of BioTools Co., Ltd. providing assists in gut microbiota analysis.
References

1. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and Chronic Obstructive Pulmonary Disease (COPD) - Differences and Similarities. Mater Sociomed. 2012;24(2):100-5. Epub 2012/01/01. doi: 10.5455/msm.2012.24.100-105. PubMed PMID: 23678316; PubMed Central PMCID: PMCPMC3633485.

2. Buist AS. Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. Eur Respir J Suppl. 2003;39:30s-5s. Epub 2003/02/08. PubMed PMID: 12572699.

3. Thomas WR, Hales BJ, Smith WA. House dust mite allergens in asthma and allergy. Trends Mol Med. 2010;16(7):321-8. Epub 2010/07/08. doi: 10.1016/j.molmed.2010.04.008. PubMed PMID: 20605742.

4. Bowman MA, Seehusen DA, Neale AV. Conversations, communication and counseling are key family medicine tactics to improve patient health. J Am Board Fam Med. 2019;32(1):1-3. Epub 2019/01/06. doi: 10.3122/jabfm.2019.01.180320. PubMed PMID: 30610133.

5. Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002-14. Epub 2009/03/07. doi: 10.1056/NEJMra0804579. PubMed PMID: 19264689.

6. Li J, Zhang F, Li J. The Immunoregulatory Effects of Traditional Chinese Medicine on Treatment of Asthma or Asthmatic Inflammation. Am J Chin Med. 2015;43(6):1059-81. Epub 2015/09/15. doi: 10.1142/S0192415X15500615. PubMed PMID: 26364661.

7. Zhang JY. Jingyue Quanshu (Jingyue's Complete Works)(reprint). China: Jiangxi Science and Technology Press; 2006.

8. Yao C, Wang L, Cai S, Wei H, Zhou X, Wang H, et al. Protective effects of a Traditional Chinese Medicine, You-Gui-Wan, on steroid-induced inhibition of cytokine production in mice. Int Immunopharmacol. 2005;5(6):1041-8. Epub 2005/04/15. doi: 10.1016/j.intimp.2005.02.001. PubMed PMID: 15829419.

9. Kao ST, Wang SD, Lin CC, Lin LJ. Jin Gui Shen Qi Wan, a traditional Chinese medicine, alleviated allergic airway hypersensitivity and inflammatory cell infiltration in a chronic asthma mouse model. J Ethnopharmacol. 2018;227:181-90. Epub 2018/09/02. doi: 10.1016/j.jep.2018.08.028. PubMed PMID: 30172058.

10. Lin LJ, Lin CC, Wang SD, Chao YP, Kao ST. The immunomodulatory effect of You-Gui-Wan on Dermatogoides-pteronyssinus-induced asthma. Evid Based Complement Alternat Med. 2012;2012:476060. Epub 2012/06/08. doi: 10.1155/2012/476060. PubMed PMID: 22675381; PubMed Central PMCID: PMCPMC3363355.

11. Wang M, Chen L, Liu D, Chen H, Tang DD, Zhao YY. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem Biol Interact. 2017;273:133-41. Epub 2017/06/18. doi: 10.1016/j.cbi.2017.06.011. PubMed PMID: 28619388.
12. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564-72. Epub 2014/02/08. doi: 10.1053/j.gastro.2014.01.058. PubMed PMID: 24503132; PubMed Central PMCID: PMCPMC4216184.

13. Abdel-Aziz MI, Vijverberg SJH, Neerincx AH, Kraneveld AD, Maitland-van der Zee AH. The crosstalk between microbiome and asthma: exploring associations and challenges. Clin Exp Allergy. 2019;49(8):1067-86. Epub 2019/05/31. doi: 10.1111/cea.13444. PubMed PMID: 31148278.

14. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13-22. Epub 2014/10/01. doi: 10.1017/S0029665114001463. PubMed PMID: 25268552.

15. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330-9. Epub 2015/09/05. doi: 10.1136/gutjnl-2015-309990. PubMed PMID: 26338727; PubMed Central PMCID: PMCPMC4752653.

16. Feng W, Ao H, Peng C, Yan D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res. 2019;142:176-91. Epub 2019/03/01. doi: 10.1016/j.phrs.2019.02.024. PubMed PMID: 30818043.

17. Johnson DB, Kelley B. Dexamethasone. StatPearls. Treasure Island (FL)2020.

18. Cheng CY, Chang JH. Effect of You-Gui-Wan on patient with allergic rhinitis: A case report. Journal of Integrated Chinese and Western Medicine. 2018;20(2):39-49.

19. Jiang XH, Deng YL, Lu H, Duan H, Zhen X, Hu X, et al. Effect of rat medicated serum containing you gui wan on mouse oocyte in vitro maturation and subsequent fertilization competence. Evid Based Complement Alternat Med. 2014;2014:152010. Epub 2014/12/23. doi: 10.1155/2014/152010. PubMed PMID: 25530775; PubMed Central PMCID: PMCPMC4228818.

20. Wang YF, Chen LW, Yang RC. Zuo Gui Wan and You Gui Wan. The Journal of Taiwan Pharmacy. 2011;27(3):34-7. doi: 10.7019/TPJ.

21. Hsu WH, Lee CH, Chao YM, Kuo CH, Ku WC, Chen CC, et al. ASIC3-dependent metabolomics profiling of serum and urine in a mouse model of fibromyalgia. Sci Rep. 2019;9(1):12123. Epub 2019/08/23. doi: 10.1038/s41598-019-48315-w. PubMed PMID: 31431652; PubMed Central PMCID: PMCPMC6702159.

22. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486-W94. Epub 2018/05/16. doi: 10.1093/nar/gky310. PubMed PMID: 29762782; PubMed Central PMCID: PMCPMC6030889.

23. Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, et al. Comparison of two next-generation sequencing technologies for resolving highly
3. complex microbiota composition using tandem variable 16S rRNA gene regions.

PubMed PMID: 20880993; PubMed Central PMCID: PMCPMC3001100.

24. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of
16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A.
1985;82(20):6955-9. Epub 1985/10/01. doi: 10.1073/pnas.82.20.6955. PubMed PMID:
2413450; PubMed Central PMCID: PMCPMC391288.

25. Hall M, Beiko RG. 16S rRNA Gene Analysis with QIIME2. Methods Mol Biol.
2018;1849:113-29. Epub 2018/10/10. doi: 10.1007/978-1-4939-8728-3_8. PubMed
PMID: 30298251.

26. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity
and speed of chimera detection. Bioinformatics. 2011;27(16):2194-200. Epub 2011/06/28. doi: 10.1093/bioinformatics/btr381. PubMed PMID: 21700674; PubMed Central PMCID: PMCPMC3150044.

27. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads.
Nat Methods. 2013;10(10):996-8. Epub 2013/08/21. doi: 10.1038/nmeth.2604. PubMed PMID: 23955772.

28. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible
with ARB. Appl Environ Microbiol. 2006;72(7):5069-72. Epub 2006/07/06. doi:
10.1128/AEM.03006-05. PubMed PMID: 16820507; PubMed Central PMCID:
PMCPMC1489311.

29. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al.
Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Epub 2011/06/28. doi: 10.1186/gb-2011-12-6-r60. PubMed PMID: 21702898; PubMed Central PMCID: PMCPMC3218848.

30. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for
microbial marker-gene surveys. Nat Methods. 2013;10(12):1200-2. Epub 2013/10/01.
doi: 10.1038/nmeth.2658. PubMed PMID: 24076764; PubMed Central PMCID:
PMCPMC4010126.

31. Yu CK, Shieh CM, Lei HY. Repeated intratracheal inoculation of house dust mite
(Dermatophagoides farinae) induces pulmonary eosinophilic inflammation and IgE
antibody production in mice. J Allergy Clin Immunol. 1999;104(1):228-36. Epub
1999/07/10. PubMed PMID: 10400866.

32. Oettgen HC, Geha RS. IgE regulation and roles in asthma pathogenesis. J Allergy
Clin Immunol. 2001;107(3):429-40. Epub 2001/03/10. doi: 10.1067/mai.2001.113759.
PubMed PMID: 11240941.

33. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and
host metabolism. Nature. 2012;489(7415):242-9. Epub 2012/09/14. doi: 10.1038/nature11552. PubMed PMID: 22972297.

34. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698-703. Epub 2009/02/24. doi: 10.1073/pnas.0812874106. PubMed PMID: 19234110; PubMed Central PMCID: PMCPMC2656143.

35. Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes Nutr. 2017;12:27. Epub 2017/10/19. doi: 10.1186/s12263-017-0582-2. PubMed PMID: 29043007; PubMed Central PMCID: PMCPMC5628494.

36. Begley L, Madapoosi S, Opron K, Ndum O, Baptist A, Ryssø K, et al. Gut microbiota relationships to lung function and adult asthma phenotype: a pilot study. BMJ Open Respiratory Research. 2018;5(1):e000324. doi: 10.1136/bmjresp-2018-000324.

37. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473-84. Epub 2016/03/12. doi: 10.1038/nrd.2016.32. PubMed PMID: 26965202.

38. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648-52. Epub 2017/11/24. doi: 10.1038/nature24661. PubMed PMID: 29168502; PubMed Central PMCID: PMCPMC5850949.

39. Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J. 2018;89(1):3-11. Epub 2017/11/23. doi: 10.1111/asj.12937. PubMed PMID: 29164733.

40. Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr. 2000;130(7):1857S-64S. Epub 2000/06/27. doi: 10.1093/jn/130.7.1857S. PubMed PMID: 10867063.

41. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592-602. Epub 2015/05/15. doi: 10.1016/j.chom.2015.04.007. PubMed PMID: 25974301; PubMed Central PMCID: PMCPMC4443817.

42. Ver Heul A, Planer J, Kau AL. The human microbiota and asthma. Clin Rev Allergy Immunol. 2019;57(3):350-63. Epub 2018/11/15. doi: 10.1007/s12016-018-8719-7. PubMed PMID: 30426401.

43. Ouwehand AC, Isolauri E, He F, Hashimoto H, Benno Y, Salminen S. Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol. 2001;108(1):144-5. Epub 2001/07/12. doi: 10.1067 mai.2001.115754.
44. Asilsoy S, Bekem O, Karaman O, Uzuner N, Kavukcu S. Serum total and free carnitine levels in children with asthma. World J Pediatr. 2009;5(1):60-2. Epub 2009/01/28. doi: 10.1007/s12519-009-0011-8. PubMed PMID: 19172335.

45. Chang C, Guo ZG, He B, Yao WZ. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis. Acta Pharmacol Sin. 2015;36(11):1356-66. Epub 2015/11/04. doi: 10.1038/aps.2015.102. PubMed PMID: 26526201; PubMed Central PMCID: PMCPMC4635323.

46. Shou Q, Jin L, Lang J, Shan Q, Ni Z, Cheng C, et al. Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying paoniflorin for the treatment of allergic asthma. Front Pharmacol. 2018;9:1531. Epub 2019/02/15. doi: 10.3389/fphar.2018.01531. PubMed PMID: 30761008; PubMed Central PMCID: PMCPMC6362974.

47. Ho WE, Xu YJ, Cheng C, Peh HY, Tannenbaum SR, Wong WSF, et al. Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. J Proteome Res. 2014;13(8):3771-82. Epub 2014/06/24. doi: 10.1021/pr5003615. PubMed PMID: 24956233.

48. Bush A. Cytokines and chemokines as biomarkers of future asthma. Front Pediatr. 2019;7:72. Epub 2019/04/04. doi: 10.3389/fped.2019.00072. PubMed PMID: 30941335; PubMed Central PMCID: PMCPMC6434699.

49. Bach E, Moller AB, Jorgensen JO, Vendelbo MH, Jessen N, Olesen JF, et al. Intact pituitary function is decisive for the catabolic response to TNF-alpha: studies of protein, glucose and fatty acid metabolism in hypopituitary and healthy subjects. J Clin Endocrinol Metab. 2015;100(2):578-86. Epub 2014/11/07. doi: 10.1210/jc.2014-2489. PubMed PMID: 25375979.

50. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247-65. Epub 2003/07/10. doi: 10.1046/j.1440-1711.2003.t01-1-01177.x. PubMed PMID: 12848846.

51. Calder PC. Branched-chain amino acids and immunity. J Nutr. 2006;136(1 Suppl):288S-93S. Epub 2005/12/21. doi: 10.1093/jn/136.1.288S. PubMed PMID: 16365100.

52. Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. Metabolites of Dietary Protein and Peptides by Intestinal Microbes and their Impacts on Gut. Curr Protein Pept Sci. 2015;16(7):646-54. Epub 2015/07/01. PubMed PMID: 26122784.

53. Makkawi AK, Alzoubi KH, Jacob M, Matic G, Ali A, Al Faraj A, et al. Metabolomics based profiling of dexamethasone side effects in rats. Front Pharmacol. 2018;9:46. Epub 2018/03/06. doi: 10.3389/fphar.2018.00046. PubMed PMID: 29503615; PubMed Central PMCID: PMCPMC5820529.
54. Kong YH, Shi Q, Han N, Zhang L, Zhang YY, Gao TX, et al. Structural modulation of gut microbiota in rats with allergic bronchial asthma treated with recuperating lung decoction. Biomed Environ Sci. 2016;29(8):574-83. Epub 2016/09/24. doi: 10.3967/bes2016.076. PubMed PMID: 27660221.
Figure legend

Fig. 1 Effect of *You-Gui-Wan* (YGW) on airway hyperresponsiveness and serum total IgE in mice.

(A) Evaluation of airway hyperresponsiveness by methylcholine 2 days after last tracheal administration of dust mite, *Dermatophagoides pteronyssinus* (*Der p*). (B) Effect of YGW on total serum IgE level with *Der p*-induced asthma. Data mean ± SEM.

*** p < 0.001, * p < 0.05 (vs control); ## p < 0.01, # P < 0.05 (vs *Der p*).

1: control, 2: *Der p*, 3: *Der p* + dex (1 mg/kg), 4: *Der p* + YGW (0.2 g/kg), 5: *Der p* + YGW (0.5 g/kg)

Fig. 2 Metabolite signatures from PLS-DA of serum samples in *Der p* and control groups for the variables important projection (VIP) scores and analysis of pathways affected by *Der p*-induced chronic asthma and YGW treatment in mice.

(A) VIP analysis based on the weighted coefficients of the PLS-DA model used to rank the contribution of metabolites to the discrimination of *Der p* and control groups by LC-MS/MS. (B) Network pathways identified by using IPA and MetaboAnalyst software. Molecular network of serum of *Der p* group. Direct interactions are represented by continuous lines and indirect interactions by dashed lines. The red nodes represent upregulated metabolites and green nodes downregulated metabolites. Metabolites were inferred in the *Der p* group from changes in serum levels of intermediates during substance metabolism. Pathways affected by (C) *Der p* and (D) high-dose YGW (0.5 g/kg) treatment.

Fig. 3 Summary of gut microbiota affected by *Der p*-induced chronic asthma and YGW treatment in mice

(A) Comparison of gut microbiota (Shannon diversity index) among control, *Der p*, and
Der p + YGW (0.5 g/kg) groups. (B) Gut microbial composition and abundance at the

genus level. Each bar represents the top 15 bacterial species ranked by relative

abundance. (C) Cladogram generated from LEfSe analysis showing the association

between taxon (the levels represent, from inner to outer rings, phylum, class, order,

family, and genus). (D) Ratio of Firmicutes/Bacteroidetes relative abundance. Data are

mean ± SEM. *P < 0.05 (vs control); #P < 0.05 (vs Der p)

Fig. 4 Heat map of correlations between expression of metabolites and microbiota

composition

Spearman’s correlation heat map showing the correlation between significantly

expressed gut metabolites, genera of gut microbiota, and selected serum metabolites.

Color intensity represents the magnitude of correlation. Red represents positive

correlations and blue negative correlations. + p < 0.05; ++ p < 0.01.

S1 Fig. High-performance liquid chromatography (HPLC) chromatogram of

YGW extract.

HPLC was run on a Hitachi 5160; 5430 DAD with 5310 oven (40°C); column:

COSMOSIL 5C18-AR-II (250 x 4.6 mm); solvents: A, acetonitrile; B, 0.01% H₃PO₃;

mobile phase: 0-15 min, 5-12% A; 15-30 min, 12% A; 30-40 min, 12-40% A; 40-45

min, 40-80% A; 45-46 min, 100 % A; detector: UV: 220 nm; flow rate: 1 ml/min.

S2 Fig. PCA and PLS-DA analysis of metabolites with changed expression among

control, Der p and Der p + YGW (0.5 g/kg) groups

Scatter plots of scores of (A) PCA and (B) PLS-DA by LC-QTOF-MS of serum from

control (blue), Der p (red), Der p + YGW (0.5 g/kg) groups (green).
S3 Fig. Effect of YGW on TNF-α level in mouse serum

Data are mean ± SEM. *** $P < 0.001$, *$P < 0.05$ (vs control); #*$P < 0.01$, #*$P < 0.05$ (vs Der p).

1: control, 2: Der p, 3: Der p + dex (1 mg/kg), 4: Der p + YGW (0.2 g/kg), 5: Der p + YGW (0.5 g/kg)

S4 Fig. Relative abundance of the top 15 gut microbiota genera in control, Der p and Der p + YGW (0.5 g/kg) groups.

Differential expression of genera of gut microbiota. Shows relative abundance of Lactobacillus, Lachnospiraceae_NK4A136_group, Ruminococcus, Alistipes, Akkermansia, Eubacterium, Blautia, Ruminiclostridium, Bacteroides, Candidatus, Streptococcus, Staphylococcus, Desulfovibrio, Bifidobacterium, and Fusobacterium.

Data are mean ± SEM. *$P < 0.05$ (vs control); #*$P < 0.05$ (vs Der p)
Table 1 Potential biomarker candidates in Der p-altered metabolite signatures

Metabolite name	HMDB	Der p	Der p + YGW (0.5 g/kg)			
		Der p/control	p value (vs. control)	VIP value (vs. control)	Der p + YGW (0.5 g/kg)/control	p value (vs. Der p)
Acetylcarnitine	HMDB0000201	1.432	0.033	4.829	0.967	0.030
Betaine	HMDB0000043	1.242	0.010	3.241	0.915	0.019
Carnitine	HMDB0000062	1.212	0.028	1.599	1.056	0.244
Hypoxanthine	HMDB000157	1.212	0.028	1.599	0.915	0.246
Isoleucine	HMDB000172	1.227	0.014	3.906	0.902	0.007
Methionine	HMDB000696	1.289	0.041	1.430	0.999	0.037
Norleucine	HMDB001645	1.238	0.021	1.666	0.907	0.018
Phenylalanine	HMDB000159	1.230	0.031	2.711	0.998	0.127
Tryptophan	HMDB000929	1.346	0.049	1.577	0.875	0.048
Valine	HMDB000883	1.192	0.031	3.513	0.896	0.029

VIP, variables important for the projection
Fig. 1

(A) Graph showing the effect of varying concentrations of methacholine on Pen H. The control group is represented by solid circles, Der p group by open circles, Der p + Dex (1 mg/kg) by black triangles, Der p + YGW (0.2 g/kg) by white triangles, and Der p + YGW (0.5 g/kg) by gray triangles. The x-axis represents the concentration of methacholine (mg/ml), and the y-axis represents Pen H.

(B) Bar graph showing the total IgE levels (ng/ml) across different conditions. The x-axis represents different conditions, and the y-axis represents total IgE levels. The bars are labeled with asterisks and hashtags to indicate statistical significance.
Fig. 2

Graph A shows a bar graph with metabolites such as Acetyl carnitine, Isoleucine, Valine, Betaine, Creatine, Tryptophan, Phenylalanine, Glycerophosphocholine, Norleucine, Carnitine, Hypoxanthine, Methionine, Butyrylcarnitine, Isobutyrylcarnitine, and Lysine ranked by their VIP scores.

Graph B is a network diagram illustrating metabolic pathways and interactions among compounds such as hypoxanthine, riboflavin, l-lysine, and fatty acids, among others.

Graphs C and D present scatter plots comparing pathway impact against -log(p) for different metabolic pathways: Valine, leucine and isoleucine biosynthesis, Phenylalanine, tyrosine and tryptophan biosynthesis, and Phenylalanine metabolism.

The plots indicate significant enrichment in these pathways based on statistical significance (-log(p)).
Fig. 3

(A) Shannon index

(B) Relative Abundance (%)

(C) Control vs. Der p

(D) Firmicutes / Bacteroidetes ratio

Figures indicating changes in gut microbiota with exposure to Der p and YGW.
