Effectiveness of Strelinikova Breathing Exercise on Respiratory Signs and Parameters among School Children with Lower Respiratory Tract Infection

Muthulakshmi C*, Kalpana Devi V

Department of Obstetrics & Gynecological Nursing, Saveetha College of Nursing, SIMATS, Thandalam, Chennai, Tamil Nadu, India

ABSTRACT

Respiratory problems are significant gathering of ailment influencing kids particularly in India and are the significant reasons for youth horribleness and mortality. Specifically, obstructive aviation route illnesses ascend in youngsters because of natural contamination and different causes. In this way, evaluation of aspiratory work test in such kids is significant. Henceforth the current investigation focused on to evaluate the adequacy of strelinikova breathing activity on respiratory signs and boundaries among younger students with respiratory parcel infection. The research configuration utilized was semi exploratory pre-test post-test plan. Purposive examining strategy was utilized to choose the 60 sample. The demographic data was collected by using the structured questionnaire and the oxygen level was measured by using the Pulse Oximeter. The peak flow rate was measured by using the Peak Flow Meter. The findings of the study revealed that there was significant difference in the measurement of oxygen saturation and respiratory rate between the experimental and control group which infers that Strelinikova Breathing Exercise on respiratory signs and parameters administered to the school age children with lower respiratory tract infection in the experimental group was found to be effective in maintaining the respiratory parameters among school age children and the current findings suggests that more extensive studies can be done at different settings and also as comparative studies.

INTRODUCTION

The respiratory framework is a continuous site of sickness in youngsters, Respiratory contaminations and hypersensitivities together are answerable for some disturbances in family life and missed from school work. Kids react diversely to respiratory ailment than do grown-ups, the respiratory changes during youth as new lung tissue keeps on framing and existing structure change fit as a fiddle and capacity. However, most respiratory conditions are more upsetting for the youngsters than the grown-up, more frequently prompting aviation route hindrance or respiratory disappointment. In respiratory parcel, lower respiratory lot contamination is one of the main normal infection happen during childhood. (George et al., 2014)

LRTIs are a steady and an inescapable medical condition which force a gigantic weight on the general public. They being regular purposes behind interview and hospitalization (Rabe et al., 2000)

The patients present with a wide range of sicknesses which range from minor self restricting ailments...
to conceivably dangerous infections (Juniper et al., 2004).

Respiratory issues are significant gathering of ailment influencing kids particularly in India and are the significant reasons for youth horribleness and mortality. Specifically, obstructive aviation route illnesses ascend in kids because of natural contamination and different causes. Thus, appraisal of aspiratory work test in such kids is significant. The PEFR is one among the lung work test which is useful in assessing obstructive lung illnesses particularly bronchial asthma. (Gupta et al., 2001) It is additionally useful in observing the infection movement and reaction to treatment. The Peak Expiratory Flow Rate (PEFR) is an exertion subordinate boundary, arising out of the enormous aviation routes inside around 100-120 msec of the beginning of constrained termination. It stays at its top for 10 msec (Dikshit et al., 2005).

It is all around archived in writing that a wide scope of geological, climatic, anthropometric, healthful, and financial states of India are related with territorial contrasts in lung function. Besides anthropometric and financial components, elevation is a significant determinant of lung function (Lommatzsch and Virchow, 2014).

Infections are the most widely recognized reason for lower respiratory parcel illness in babies and little youngsters and are a significant general medical condition in this age gathering. The tale variation of Covid that is related with the overall flare-up of the extreme intense respiratory condition and human metapneumovirus, an as of late distinguished new respiratory microbe, have focused on the proceeding with significance of viral respiratory contaminations over the entire age spectrum. (Woensel, 2003) Costs owing to viral lower respiratory lot diseases in both outpatient and inpatient settings are a significant weight on public medical services budgets. (Ahmed et al., 2013)

Every year around 3% of all kids under 1 year old enough should be admitted to the clinic with moderate or extreme viral lower respiratory parcel infection. (Newton et al., 2008) Asthma is a persistent aviation route inflammation and expanded aviation route hyper-responsiveness. Normal manifestations incorporate wheeze, hacking, chest snugness, and dyspnea which are joined by the presence of air obstruction, variable throughout brief time-frames, or reversible with treatment. The reason for asthma is unknown, but it is probably going to be polygenic infection impacted by ecological factors. (Raju et al., 2004)

In India, an expected that 57,000 passings were ascribed to Asthma in 2004 (WHO 2004)3 and it was viewed as one of the main source of horribleness and mortality in provincial India (Smith 2000). (Rietveld et al., 2000) Though effective screening, assessment, and the board systems for asthma are entrenched in big-time salary nations, these methodologies have not been completely actualized in India as proof had previously recommended that Asthma isn’t to be dealt with freely yet fitted into the general spectrum of respiratory sicknesses. Besides, despite the fact that meds that treat asthma effectively are accessible at reasonable costs, they infrequently more than one percent of the individuals who might profit from it (Naik et al., 2010).

Because of the high pervasiveness of LRTIs in the older both in medical clinic and outpatient setting, the epidemiological contrasts, atypical clinical signs, and age-related varieties in pharmacokinetics and pharmacodynamics make LRTIs the board for the old all the more testing, and normalized therapy at the beginning phase of LRTIs is basic to lessening passings and inability at present. (Liu et al., 2019)

Subsequently the current examination focused on to evaluate the adequacy of strelinikova breathing activity on respiratory signs and boundaries among younger students with respiratory lot disease.

MATERIALS AND METHODS

A quantitative approach with quasi pre-test post-test configuration was utilized to direct the investigation in pediatric ward of SMCH. 60 sample tests were chosen utilizing purposive inspecting strategy in which 30 examples were assigned to control gathering and 30 examples were distributed to trial group. The investigation was carried out with prior permission from the ethical committee.

The demographic data were collected by using a structured questionnaire. The oxygen level was measured by using the Pulse Oximeter. The peak flow rate was estimated by utilizing the Peak Flow Meter. Strelinikova breathing was taught and was instructed to carry out for 1 week. The data were analyzed descriptive and inferential statistics.

RESULTS AND DISCUSSION

Sample characteristics

The sample characteristics in the experimental group, most of them 15(50%)16(53.3%) were male, 15(50%) were studying 1 – 3 and 4 – 6 standard, 11(36.7%) were Hindus, 16(53.3%) were first born child, 15(50%) had no allergy, 24(80%) had no pet animals at home and 19(63.3%) were hospitalized for 0 – 3 days. Whereas in the control group,
Table 1: Frequency and rate dispersion of level of peak flow rate among young school age with lower respiratory tract infection. N = 60(30+30)

Group	Test	Normal	%	Mild	%	Moderate	%	Severe	%
	No.	No.	No.	No.	No.	No.	No.	No.	No.
Experimental	Pre-test	0	0	15	50.0	11	36.67	4	13.33
Group	Post-test	27	90.0	3	10.0	0	0	0	0
Control Group	Pre-test	1	3.33	11	36.67	13	43.33	4	13.33
	Post-test	25	83.33	5	16.67	0	0	0	0

Table 2: Frequency and rate appropriation of oxygen immersion among young school age children with lower respiratory tract infection. N = 60(30+30)

Group	Test	Normal	%	Mild	%	Moderate	%	Severe	%
	No.	No.	No.	No.	No.	No.	No.	No.	No.
Experimental	Pre-test	0	0	23	76.67	7	23.33	0	0
Group	Post-test	17	56.67	13	43.33	0	0	0	0
Control Group	Pre-test	0	0	13	43.33	17	56.67	0	0
	Post-test	11	36.67	19	63.33	0	0	0	0

Table 3: Comparison of post-test respiratory signs and parameters among school age children with lower respiratory tract infection. N = 60(30+30)

Variables	Experimental Mean	S.D	Control Mean	S.D	Student Independent ‘t’ Test Value
Oxygen saturation	97.57	0.50	97.23	0.68	t = 0.906 p = 0.369, N.S
Respiratory rate	27.60	2.75	30.73	2.38	t = 4.722 p = 0.0001, S***
Pulse rate	97.60	3.25	97.93	3.98	t = 0.355 p = 0.724, N.S

***p<0.001, *p<0.05, S – Significant, N.S– Not Significant

most of them 12(40%) were in the age group of 6 – 8 years, 16(53.3%) were male, 18(60%) were studying 4 – 6 standard, 12(40%) were Hindus, 16(53.3%) were first born child, 16(53.3%) had no allergy, 20(66.7%) had no pet animals at home and 19(63.3%) were hospitalized for 0 – 3 days.

Assessment of level of respiratory signs among school age children with lower respiratory tract infection

The analysis shows that in the pretest of the experimental group, 15(50%) had mild peak expiratory flow rate, 11(36.67%) had moderate peak expiratory flow rate and 4(13.33%) had severe expiratory peak flow rate. Whereas in the post-test, 27(90%) had normal peak expiratory flow rate and 3(10%) had mild peak expiratory flow rate. The analysis also portrays that in the pretest of control group, 13(43.33%) had moderate peak expiratory flow rate, 11(36.67%) had mild peak expiratory flow rate, 4(13.33%) had severe peak expiratory flow rate and only one had normal peak expiratory flow rate. Whereas in the post-test, 25(83.33%) had normal peak expiratory flow rate and 5(16.67%) had mild peak expiratory flow rate. (Table 1)

The analysis revealed that in the pretest of experimental group, 23(76.67%) had mild level of oxygen saturation and 7(23.33%) had moderate level of oxygen saturation. Whereas in the post-test, 17(56.67%) had normal oxygen saturation and 13(43.33%) had mild level of oxygen saturation. Whereas in the pretest of control group, The discoveries additionally portrays that in the 17(56.67%) had moderate level of oxygen saturation and 13(43.33%) had mild
Comparison of respiratory signs among school age children with lower respiratory tract infection

The comparison findings depict that the post-test mean score of peak expiratory flow rate in the experimental group was 269.30±73.20 and the mean score in the control group was 285.73±67.22. The calculated student independent ‘t’ test value of t = 0.906 was not found to be statistically significant. The findings also portray that the post-test mean score of oxygen saturation was 97.57±0.50 and the post-test mean score was 97.23±0.68. The calculated student independent ‘t’ test value of t = 2.159 was found to be statistically significant at p<0.05 level. It further shows that the post-test mean score of respiratory rate was 27.60±2.75, and the post-test mean score was 30.73±2.38. The calculated student independent ‘t’ test value of t = 4.722 was found to be statistically significant at p<0.001 level.

The post-test mean score of pulse rate was 97.60±3.25 and the post-test mean score was 97.93±3.98. The calculated student independent ‘t’ test value of t = 0.355 was not found to be statistically significant. By comparing the mean of experimental and the control group and the mean of experimental group is found to be less compare to mean of control group. So the Strelinkova Exercise found to be effective among the children.

CONCLUSIONS

A study conducted on the effectiveness of Strelinkova Breathing Exercise proved that there is a decrease of respiratory signs and improvement of respiratory parameters and improve the lung function.

Conflict of interest

The authors declare that they have no conflict of interest for this study.

Funding support

The authors declare that they have no funding support for this study.

REFERENCES

Ahmed, S. M., Jakribettu, R. P., Meletath, S. K. 2013. Lower respiratory tract infections (LTRIs): An insight into the prevalence and the antibiogram of the gram negative, respiratory, bacterial agents. *Journal of Clinical and Diagnostic Research*, 7(2):253–256.

Dikshit, M. B., Raje, S., Agrawal, M. J. 2005. Lung functions with spirometry: an Indian perspective–I. Peak expiratory flow rates. *Indian Journal of Physiology and Pharmacology*, 49(1):8–18.

George, D. C. E., Chopra, D. H., Garg, D. S. K., Bano, D. T., Jain, D. S., Kumar, D. A. 2014. Environmental Correlates of Bronchial Asthma in Children in a Slum of Meerut - A Cross-Sectional Study. *International Journal of Medical Research and Review*, 2(5):469–473.

Gupta, D., Aggarwal, A. N., Kumar, R., Jindal, S. K. 2001. Prevalence of Bronchial Asthma and Association with Environmental Tobacco Smoke Exposure in Adolescent School Children in Chandigarh, North India. *Journal of Asthma*, 38(6):501–507.

Juniper, E. F., Wisniewski, M. E., Cox, F. M., Emmett, A. H., Nielsen, K. E., O’Byrne, P. M. 2004. Relationship between quality of life and clinical status in asthma: a factor analysis. *European Respiratory Journal*, 23(2):287–291.

Liu, Y., Zhang, Y., Zhao, W., Liu, X., Hu, F., Dong, B. 2019. Pharmacotherapy of Lower Respiratory Tract Infections in Elderly-Focused on Antibiotics. *Frontiers in Pharmacology*, 10.

Lommatzsch, M., Virchow, C. J. 2014. Severe asthma:
definition, diagnosis and treatment. *Deutsches Ärzteblatt International*, 111(50):847–855.

Naik, M., Dhobi, G., Shah, B., Singh, G. 2010. Bacteriological and clinical profile of Community acquired pneumonia in hospitalized patients. *Lung India*, 27(2):54–54.

Newton, S. M., Brent, A. J., Anderson, S., Whittaker, E., Kampmann, B. 2008. Paediatric tuberculosis.

Pundir, N., Sylvia, R., Chanu, S., Pugazhendi, S., Kumar, C. 2018. Effectiveness of breathing exercises as play method on cardiopulmonary parameters among children with acute respiratory tract infections in a selected area of Dehradun, Uttarakhand. *International Journal of Medical Science and Public Health*, 7(4):1–1.

Rabe, K. F., Vermeire, P. A., Soriano, J. B., Maier, W. C. 2000. Clinical management of asthma in 1999: the Asthma Insights and Reality in Europe (AIRE) study. *European Respiratory Journal*, 16(5):802–807.

Raju, P. S., Prasad, K. V. V., Ramana, Y. V., Murthy, K. J. R. 2004. Pulmonary function tests in Indian girls — Prediction equations. *The Indian Journal of Pediatrics*, 71(10):893–897.

Rietveld, Everaerd, Creer 2000. Stress-induced asthma: a review of research and potential mechanisms. *Clinical & Experimental Allergy*, 30(8):1058–1066.

Woensel, J. B. M. V. 2003. Viral lower respiratory tract infection in infants and young children. *BMJ*, 327(7405):36–40.