ABSTRACT: Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene (EYS) encoding an ortholog of Drosophila spacemaker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are likely pathogenic, and 10.7% (3/28) are possibly pathogenic.

Received 23 April 2010; accepted revised manuscript 7 July 2010.

© 2010 WILEY-LISS, INC.
DOI: 10.1002/humu.21334
are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain. Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study.

©2010 Wiley-Liss, Inc.

KEY WORDS: EYS, Retinitis Pigmentosa, Spanish population, functional domain, recurrent mutation

INTRODUCTION

Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies featured by the loss of photoreceptor cells and clinically characterized by pigmented deposits at mid periphery of the retina that are visible on fundus examination. Patients present with night blindness as the initial symptom, which is followed by the constriction of the visual field and progressive loss of visual acuity, leading to complete blindness after several decades [Hamel, 2006]. Prevalence of nonsyndromic RP is approximately 1 in 4000. The condition may segregate as an autosomal dominant, autosomal recessive, or an X-linked recessive trait [Humphries et al., 1990]. All genes identified to date are believed to account for roughly 50% of all retinal dystrophy cases [Pomares et al., 2007]. The autosomal recessive form of RP is the commonest worldwide, accounting for approximately 39% of cases in Spain [Ayuso et al., 1995]. To date, 29 loci have been reported being responsible for arRP, of which 25 genes have been identified (http://www.sph.uth.tm.edu/Retnet/). However, all together the reported loci are responsible for only ~35-45% of the recessive RP cases, although none of them independently account for a substantial proportion of arRP (more than 10%) [Daiger et al., 2007; Hartong et al., 2006]. In contrast, the RP25 locus, identified by our group in 1998 [Ruiz et al., 1998], was estimated to be linked to 27.7% of Spanish arRP families [Barragán et al., 2008]. Recently, we have identified a new gene encoding an ortholog of Drosophila spacermaker (spam) corresponding to RP25 as a commonly mutated gene in arRP. The identification of six independent mutations, together with the presence of linked families from different ancestral origins, supports EYS (Eyes Shut Homologue, (MIM# 612424) as one of the first major genes reported for arRP [Abd El-Aziz et al., 2008]. Spanning over 2 Mb within the RP25 locus (6p12.1-6q15), EYS is the largest gene identified to be expressed in the human eye so far, and the fifth largest gene overall in the human genome. The longest isoform of EYS encodes a protein of 3165 amino acids whose function remains to be elucidated. Considering the evolutionary data and the known function of the only characterised homologue, EYS is likely to have a role in the modelling of retinal architecture [Zelhof et al., 2006]. The identification of the gene for RP25 reveals what might be the genetic basis for a significant proportion of arRP cases and thus paves the way for genetic counselling, prenatal detection, and treatment. However, further characterisation of the novel EYS protein as well as an extended mutation spectrum of EYS-related arRP would be valuable to undertake.

In the present study based on 94 families, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these novel changes, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. The estimated prevalence of distinct EYS mutations in our group of patients is of 15.9%, confirming the significant involvement of EYS in the pathogenesis of the arRP in the Spanish population. Besides, we present a detailed bioinformatic characterisation of EYS and its homologues, which would aid in the determination of the pathogenic nature of newly identified variations in EYS.
MATERIALS AND METHODS

Subjects and Clinical Data

Our current cohort of study comprises 94 unrelated Spanish families affected by arRP, all derived from the Ophthalmology Service of different Hospitals throughout Spain. The participating families conform to the phenotypic and inheritance patterns of arRP. A group of matching control individuals was also recruited. Informed consent was obtained from all participants in the study, in accordance with the tenets of the Declaration of Helsinki (Edinburgh, 2000). Clinical diagnosis was based on visual acuity, fundus photography, computerized testing of central and peripheral visual fields and electoretinography (ERG) findings. Clinical features of RP include initial hemeralopy, restriction of visual field, gradual increased bone spicule pigmentation and decrease of visual acuity, attenuation of retinal vessels, and waxy disc pallor.

Bioinformatic characterisation of EYS

Firstly, ExPASy ProtParam tool was employed to determine the physical and chemical parameters of EYS. Secondly, InterProScan program was used to search for known domains and functional sites within EYS. For a further characterisation of EYS, we used Coils and Secpred to analyse the secondary structure. SignalP 3.0 was utilised to predict the presence and localisation of signal peptide cleavage sites. The characterisation of EYS homologues was performed in different steps. Firstly, Blast analyses of the human EYS cDNA and encoded protein were run to detect annotated homologous proteins. However, only human and Drosophila were found to be completely annotated in the databases. Therefore, we employed the BLAT tool at the UCSC Genome Bioinformatics Site to identify and map sequences with high identity to the target sequences. Human and Drosophila EYS protein were used as the basis of this search. An in-silico splicing site characterisation of the positive genomic region ensued to build the homologous cDNA which was then translated into protein. Also, we identified those sequencing gaps within the genomic region of EYS homologues in different species. Comparison of protein homologues were performed using bl2seq (NCBI) and EMBOS Pairwise Alignment Algorithms: Needle and Water (EBI) alignments. The fully characterised proteins were aligned using MUSCLE (MUltiple Sequence Comparison by Log-Expectation) program at EBI.

PCR-based direct genomic sequencing of EYS

Peripheral blood samples were collected from all subjects for genomic DNA purification using an automated DNA extractor (MagNA Pure LC Instrument, Roche Diagnostics, Switzerland). Forty-eight pairs of primers were designed using the Primer 3 Output program (http://frodo.wi.mit.edu/primer3/) in order to screen the forty coding exons, the three non coding exons, the intronic flanking sequences and the regulatory factor binding sites of EYS (GenBank Reference Sequence and Version FJ416331; GI: 212675237; Transcript Reference Sequence: NM_001142800.1). PCR conditions and primer sequences employed are available upon request. The amplified products were subsequently purified using an enzymatic procedure, according to manufacture’s recommendations (EXOSAP-IT®, USB Corporation) and sequenced with a ready reaction kit (BigDye Terminator Cycle FS Ready Reaction Kit; PE-Applied Biosystems, Foster City, CA). The fragments obtained were purified using fine columns (Sephadex G-501, Sigma-Aldrich Co.) and resolved on an automated sequencer (3730 DNA Analyzer, Applied Biosystems, USA). Finally, the data was analysed using Lasergene DNASTAR® software (DNASTAR, Inc). Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. In order to evaluate the pathogenicity of the novel variants, we employed various softwares which analyse the potential role of a given variant on the function or structure of the encoded protein based on conservation and homology, physical properties of the amino acids, prediction of the protein disorder, or binding to transcription factor binding sites (TFBS) (Conseq: http://conseq.tau.ac.il/; PolyPhen (prediction of functional effect of human nsSNPs): http://coot.embl.de/PolyPhen/; SIFT (Sorting Intolerant From Tolerant): http://blocks.thrc.org/sift/SIFT.html; Disopred: http://bioinf.cs.ucl.ac.uk/disopred/disopred.html [Ramensky et al., 2002]. Besides, the tool DiANNA was employed for disulfide connectivity prediction when the variation affected a Cys residue, and NetPhos2.1 (NetPhos 2.0 Server: http://www.cbs.dtu.dk/services/NetPhos/) together with Diphos (Disorder-Enhanced Phosphorylation Sites Predictor: http://core.ist.temple.edu/pred/pred.html), to predict the
alteration of phosphorylation [Blom et al., 1999]. In addition, intronic variants were evaluated for affecting any regulatory process at the transcriptional or splicing levels (TESS Transcription Element Search System: http://www.cbil.upenn.edu/cgi-bin/tess/tess; http://www.fruitfly.org/seqtools/splice.html; Splice Signal Analysis: http://www.ebi.ac.uk/asd-srv/wb/cgi; Alternative Splicing DataBase: http://hazelton.lbl.gov/~teplitski/alt/; http://www.fruitfly.org/cgi-bin/seqtools/splice.pl; Splicing Element Annotation: http://genes.mit.edu/acescan2/index.html; ESEfinder: http://rulai.cshl.edu/tools/ESE2/; Rescue-ESE: http://genes.mit.edu/burgelab/rescue-ese/; ACESCAN2 Web Server (http://genes.mit.edu/acescan2/index.html; NetGene2 Server (http://www.cbs.dtu.dk/services/NetGene2/; http://www.ensembl.org/Homo sapiens/generegulationview; http://www.cisred.org/content/software; http://regrna.mbc.nctu.edu.tw/html/about.html. [Yeo et al., 2004; Matlin et al., 2005; Wang & Marin 2006; Fairbrother et al., 2002; Brunak et al., 1991].

GeneChip 6.0 data analysis (see Affymetrix Genotyping Console 2.1 user manual for details)

When sample requirements were fulfilled, patients underwent Copy Number Variations (CNVs) analysis with Genechip 6.0 Affymetrix array. The CEL intensity files were loaded into Genotyping Console v2.1 (Affymetrix Inc.) for analysis. All samples passed the initial contrast QC metric (>0.4) that measures the ability of the intensity files to resolve SNPs into three genotyping clusters. Copy number data were generated by comparing intensities for both SNP and copy number probes in silico to the HapMap control provided by Affymetrix. The resulting log2 ratios were then analysed using a Hidden Markov Model (HMM) to generate copy number calls for each probe. The quality of the log2 data was assessed by the degree of variation, determined by the MAPD metric. MAPD is defined as the Median of the Absolute value of all Pairwise Differences between log2 ratios for a given chip. High MAPD >0.4 (using the HapMap control) is considered to be the cut-off at which copy numbers can no longer be accurately called. None of the samples included in this study had a MAPD >0.4. Using the copy number calls provided by Genotyping Console v2.1 as a guide, a more detailed analysis was performed by interrogation of the plots of log2 ratios paying particular attention to CNV regions called by the HMM. A minimum log2 ratio cut-off of +/-0.3 was used for autosomal CNVs. This excluded any false positive calls made by the HMM algorithm. Identified CNVs in the region of EYS were checked against the Database of Genomic Variants (DGV) in Genotyping Console v2.1. CNVs were excluded from further analysis if they matched a known CNV exactly, or if occurred in a region that did not include any of the coding exons of EYS [McCarroll et al., 2006; de Smith et al., 2007; Sharp et al., 2005]. The allelic difference and loss of heterozygosity plots generated from the difference in allele intensity for each SNP were analysed to investigate parental consanguinity and as an aid to the interpretation of potential mosaicism. Genotyping was performed using the Birdseed v.2 algorithm. All samples had call rates >97.5%.

RESULTS AND DISCUSSION

Molecular diagnosis of RP is a challenging task given the important genetic heterogeneity of these groups of diseases. For most genes, many different mutations with similar consequences are known, yet other mutations in the same gene may cause different diseases. Particularly, for recessive RP, which is the most prevalent form of the disease, estimated to comprise from 50 to 60% of all RP cases, 29 loci have been described as pathogenic. In aggregate, the known mutations in arRP genes cause about ~35-45% of all cases of this form of the disease [Daiger et al., 2007; Hartong et al., 2006]. Some authors suggest that 50-60% of all arRP associated causal loci have already been identified. However, mutations in individual genes do not account for a significant proportion of arRP cases.

EYS is the largest gene identified to be expressed in the human eye so far, and appears to be a frequent cause of arRP. Thus, EYS encoded protein EYS emerges as a relevant player in arRP pathogenesis. In previous studies, a total of 8 mutations had been identified [Abd El-Aziz et al., 2008; Collin et al., 2008] by a combination of different screening methods such as direct genomic sequencing, MLPA or CGH arrays. The domain structure of EYS has been predicted from the characterised sequence of EYS [Abd El-Aziz et al., 2008; Collin et al., 2008] as having several EGF-like and Laminin G domains.
Here we report on the molecular screening of EYS in a Spanish cohort of patients with arRP. Besides, we are presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature.

Protein domains structure

We present here the identification of a putative coiled-coil structure, which is an interesting novel feature, in the central portion of the protein coincident with a region of Alpha helix overrepresentation (Fig. 1, Supp. Figure S1). The insight into the functional repercussion of both the already known signal peptide domain and the novel coiled-coil domain reported here supports a structural role for this new protein, which would be secreted and polymerize into a scaffolding that would contribute to the human retinal architecture. This is consistent with the function of Eys in Drosophila, where it is secreted by photoreceptor cells [Husain et al., 2006] and is essential for the formation of the matrix-filled interrhabdomeral space. The signal peptide and its cleavage site consensus sequence located in the N-terminal region of EYS (Fig. 1, Fig. 2) may confer a secretory nature to the protein or result in an intracellular or cytoplasmatic location of the mature protein [Jarjanazi et al., 2008]. Remarkably, we have identified the consensus sequence for this feature in EYS homologues in a number of species such as orangutan, dog, horse, marmoset, monkey and chimpanzee (data available on request). Accordingly, Drosophila Spacemaker and other proteins which share several of EYS domains have been found to be secreted and to have a structural function, such as SCUBE [Yang et al., 2002] or CMG-2 [Bell et al., 2001]. The members of SCUBE gene family contain both a signal peptide domain and multiple EGF-like repeats. Interestingly, both EYS and SCUBE1 share homology with the same protein families, such as members of the fibrillin and Notch families among others. SCUBE1 and 2 are known to form oligomers and manifest a stable association with the cell surface in vascular endothelial cells [Yang et al., 2002]. CMG-2, containing a potential signal peptide, targets to the endoplasmic reticulum and shows affinity for the basement membrane matrix proteins, collagen type IV and laminin. Similarly, CMG-1, which encodes a protein with coiled-coil domains, was observed to target to an intracellular vesicular compartment and may play as well a structural role since it has been postulated that this gene may be implicated in the regulation of capillary formation in an in-vitro model of endothelial cell morphogenesis [Bell et al., 2001].

Furthermore, the fact that we have identified a putative coiled-coil domain within EYS reinforces the idea of EYS being a key player in the organisation of human retina. Coiled coils are important structural motifs involved in a variety of important interactions [Mason & Arndt, 2004]. Dystrophin, which resembles EYS in several aspects such as presenting a point mutation/deletion pattern of mutations in human disease and belonging to the group of five longest genes in the human genome, is known to play structural roles among others. Dystrophin also contains coiled-coil domains, which are responsible for the assembly of heterodimers of the so called Dystrophin glycoprotein complex [Sadoulet et al., 1997; Böhml et al., 2008]. In this regard, it is important to mention that Drosophila Spacemaker interacts with Prominin and the cell adhesion molecule Chaoptin to choreograph the partitioning of rhabdomeres into an open system, critically affecting retinal morphogenesis [Zelhof et al., 2006].

Annotation of new homologues

With the aim of evaluating evolutionary conservation, we have performed the bioinformatic characterisation of EYS homologues in several species. Apart from Drosophila Eyes Shut, which was the first Eys gene to be annotated, and human EYS, only fragmented information was available of other EYS homologues. Here we report in detail the structures of Zebrafish, Chicken, Platypus, Opossum, Horse, Dog, Marmoset and Orangutan homologues and pairwise comparisons with human EYS/EYS (Table 1, Supp. Figure S1). However, EYS seems to be absent in some species such as those insects with a close rhabdom system or in mammals in mouse, rat and guinea pig, which represent two of the three major rodent clades [Abd El-Aziz et al., 2008].

It is noteworthy that the previously reported and newly identified functional domains described here are conserved throughout evolution. Consistently, as shown in Table 1, the more distant a species is from human, the lower the percentages of identity and similarity. Concerning the signal peptide in Drosophila, some studies report that spacemaker secretion would be upon interaction of Eys with a receptor, which could promote its spreading from the stalk to the rhabdomere to fill the interrhabdomeral space (IRS) [Husain et al., 2006]. Thus, there would be no need of a signal peptide for secretion from the photoreceptor cells.
Figure 1. Coiled coil domain prediction in human EYS protein.

Figure 2. Signal peptide and cleavage site consensus sequence prediction in human EYS protein.
Table 1. EYS homologues characterisation

Specie	Chromosomal interval (bp)	Genomic Length (bp)	Genomic Identity%	Protein Identity%	Protein Similarity%
Drosophila	chr2L:2323799-2357874	34,076	NA	23.9	37.9
Zebrafish	chr13:37105545-37227793	122,249	NA	44.0	60.3
Chicken	chr3:87827859-88369092	541,234	71.9	33.1	40.3
Platypus	chr1:33486985-34313969	1,756,349	71.7	31.8	36.6
Opossum	chr2:31252958-314990462	2,467,505	71.9	35.1	40.5
Horse	chr20:56733300-58137441	4,247,273	80.5	61.4	67.1
Dog	chr12:30185993-31709408	1,701,147	81.9	62.8	68.4
Marmoset	Several contigs*	973,997	91.4	88.8	92.2
Orangutan	chr6:63945057-65776065	1,831,009	97.3	96.8	97.5
Human	chr6:64488454-66262024	1,773,571	100.0	100.0	100.0

* Available on request
NA=Not Available

Pathogenic nature of the identified changes

In this study, 12 novel very likely pathogenic changes have been identified in 10 families. Of these 10 families, 5 present mutations in both alleles, whereas the remaining 5 have mutations in just one allele. The clearly pathogenic variants consisted of 6 truncating mutations, 1 in frame deletion of 300 nucleotides leading to a protein truncation of 100 amino acids, 1 splice site mutation and 4 missense changes. Out of the 28 novel variations, we have also identified 5 possible pathogenic changes in 5 separate families. In addition, we have detected 3 pathogenic variations previously published in ours and other populations [Abd El-Aziz et al., 2008; Collin et al., 2008] (Table 2, Table 3, Figs. 3 and 4). As mentioned in the Methods section, the sequence variants were designated in accordance with the Human Genome Variation Society recommendations (http://www.hgvs.org/mutnomen/). All the patients with mutations had received a defined clinical diagnosis of RP with a recessive mode of inheritance and were Spanish. The variations were regarded as pathogenic changes as long as they met the criteria of pathogenicity, i.e absence in 200 control individuals and the segregation with the disease phenotype within the family (Fig. 4). Particularly, missense mutations were considered pathogenic according to their effect on functional EYS domains that they target, their evolutionary conservation and/or to the fact that they are found together with a second variant, especially if this is truncating.
Figure 3. EYS mutation distribution along the domain structure of EYS/EYS. 5’ UTR and splice site variations are not included in this depiction.

Table 2. Mutation spectrum of EYS gene in Spanish families

Family ID	Nucleotide change	Predicted effect	Domains	Location in gene	Type of change	Reference of the variation
RP1052M	c.[1300-17039_1599+22208del] + [9178_9181delATAA]	p.Y433_E533del	EGF-like	Exons 9 and 10	Heterozygous	This study
		p.N3061TfsX3	LamininG	Exon 43	Heterozygous	This study
RP1237M	c.[2234A>G] + [7919G>A]	p.N745S	EGF	Exon 14	Heterozygous	This study
		p.W2640X	EGF	Exon 41	Heterozygous	This study and Abd El-Aziz et al., 2008
RP84B	c.6050G>T	p.G2017V	LamininG	Exon 29	Homozygous	This study
RP136B	c.[6632C>T] + [8834G>A]	p.S2211L	LamininG	Exon 33	Heterozygous	This study
		p.G2945E	EGF	Exon 43	Heterozygous	This study
RP367B	c.[4120C>T] + [6424+1G>T]	p.R1374X	Close to EGF	Exon 26	Heterozygous	This study
		Splice mutation		Intron 31	Heterozygous	This study
Family ID	Nucleotide change	Predicted effect	Domains	Location in gene	Type of change	Reference of the variation
-----------	------------------	------------------	---------	-----------------	----------------	---------------------------
RP358B	c.7361delA	p.H2454PfsX8	LamininG	Exon 37	Heterozygous	This study
RP60	c.78_79dupGC	p.Q27RfsX16	Signal peptide cleavage site	Exon 4	Heterozygous	This study
RP180M	c.862-10671_1766+10020del	p.G288DfsX21	EGF	Exons 6-11	Heterozygous	This study
RP33	c.4451G>A	p.W1484X	Close to coiled-coil	Exon 26	Heterozygous	This study
RP81	c.2234A>G	p.N745S	EGF	Exon 14	Heterozygous	This study

Families with novel possible pathogenic changes

Family ID	Nucleotide change	Predicted effect	Domains	Location in gene	Type of change	Reference of the variation
VRP8	c.4450T>C	p.W1484R	Close to coiled-coil	Exon 26	Heterozygous	This study
RP383	c.7507G>A	p.E2503K	LamininG	Exon 38	Heterozygous	This study
RP228B	c.-462G>C	-	-	Exon 1 5'UTR	Homozygous	This study
RP107B	c.-204G>A	-	-	Exon 3 5'UTR	Heterozygous	This study
RP509M	c.-349G>T	-	-	Exon 2 5'UTR	Heterozygous	This study

Families with very likely pathogenic changes reported in other populations

Family ID	Nucleotide change	Predicted effect	Domains	Location in gene	Type of change	Reference of the variation
RP155B	c.6714delT	p.I2239SfsX17	LamininG	Exon 33	Homozygous	This study, Collin et al., 2008.
RP194B	c.9405T>A	p.Y3135X	LamininG	Exon 43	Homozygous	This study, Collin et al., 2008.

GenBank Reference Sequence and Version FJ416331; GI: 212675237; Transcript Reference Sequence: NM_001142800.1
Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.
Table 3. Novel variations identified by direct genomic sequencing of EYS

Gene_exon	Nucleotide Change	Predicted effect	Patients Frequency	Controls frequency
EYS_1	c.-462G>C	-	2/188	0/400
EYS_2	c.-349G>T	-	1/188	0/400
EYS_3	c.-204G>A	-	2/188	0/400
EYS_4	c.748+209delA	-	1/188	-
	c.78_79dupGC	p.Q27RfsX16	1/188	0/400
EYS_6-11	c.862-10671_1766+10020del	p.G288DfsX21	2/12	0/400
EYS_9-10	c.1300-17039_1599+22208del	p.Y433_E533del	2/12	0/400
EYS_11	c.1766+61A>G	-	7/188	-
EYS_13	c.2024-14_+13insT	-	13/188	-
EYS_14	c.2234A>G	p.N745S	2/188	0/400
EYS_17+18	c.2733T>C	p.N911N	1/188	-
EYS_24	c.3684+61T>A	-	2/188	-
EYS_25	c.3877+18_22delAGATA	-	10/188	68/400
EYS_26	c.4450T>C	p.W1484R	1/188	0/400
	c.4451G>A	p.W1484X	1/188	0/400
	c.4120C>T	p.R1374X	1/188	0/400
EYS_29	c.6050G>T	p.G2017V	1/188	0/400
	c.5959A>C	T1987P	1/188	2/400
EYS_30	c.6119T>A	p.V2040D	1/188	2/400
EYS_31	c.6424+1G>T	-	1/188	0/400
EYS_33	c.6632C>T	p.S2211L	1/188	0/400
EYS_37	c.7361delA	p.H2454P65X8	1/188	0/400
EYS_38	c.7507G>A	p.E2503K	1/188	0/400
	c.7578+18C>T	-	2/188	6/400
EYS_39	c.7666A>T	p.S2556C	2/188	20/400
	c.7723+64T>A	-	3/188	34/400
EYS_43	c.9178_9181delATAA	p.N3061TfsX3	1/188	0/400
	c.8834G>A	p.G2945E	1/188	0/400

GenBank Reference Sequence and Version FJ416331; GI: 212675237; Transcript Reference Sequence: NM_001142800.1
Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.

Families with novel very likely pathogenic changes and both alleles affected

As previously mentioned, 5 out of the 10 families bearing novel very likely pathogenic changes have both alleles affected. In 4 of them, they occurred as compound heterozygotes and hence it is sufficient to explain the recessive phenotype in their corresponding patients (Table 2, Fig. 4). In the case of family RP1052M, 1 frameshift deletion of 4 nucleotides involving the loss of the last residues of the Laminin G domain in the C-terminal region
of EYS together with an in frame deletion of 300 nucleotides leading to a protein truncation of 100 amino acid residues that disrupts one EGF-like domain were identified in the same patient. In family RP1237M, the truncating p.W2640X change and the missense p.N745S variation, also occurring in heterozygosity in RP81 family, are showing a recessive segregation through generations I and II. The same applies to p.S2211L and p.G2945E double heterozygotes in family RP136B (Fig. 4). These protein substitutions p.S2211L and p.G2945E are each transmitted by one of the progenitors. The altered residues are part of Laminin G and EGF domains, respectively. Turning to evolutionary conservation, both Serine and Glycine are present in these positions in EYS homologues characterised in this study. The new residue at amino acid position 2211 is of different polarity than Serine, and the substitution of Glycine to Glutamate in position 2945 introduces an acidic polarity in a previously hydrophobic position. Whereas the latter is not tolerated according to computational predictions, the former implies the loss of one phosphorylation site (NetPhos2.1). Finally, all affected members of family RP367B were compound heterozygous for a splice site and a nonsense mutation (c.6424+1G>T, p.R1374X) (Fig. 4). The c.6424+1G>T variation is predicted to lead to an abolishment of the donor splice site located at this position. It is known that splice sites mutations may disrupt protein function by diverse mechanisms such as exon skipping or the use of cryptic acceptor sites, presenting even multiple splice outcomes for a mutation in a given splice site [Takahara et al., 2002].

The fifth family of this group, RP84B, presents a homozygous coding variation, p.G2017V, which alters a residue that lies within a Laminin G domain of the protein and it is predicted not to be tolerated by SIFT. Family segregation of this variation shows a transmission pattern compatible with the recessive trait of the disease (Fig. 4).

Families with single novel very likely pathogenic changes

The rest of the families comprising the group with novel very likely pathogenic changes present only single mutations. This is the case in families RP358B, RP60, RP180M, RP33 and RP81, with p.H2454PfsX8, p.Q27RfsX16, p.G288DfsX21, p.W1484X and p.N745S mutations, respectively (Table 2, Fig. 4).

Families with novel possible pathogenic changes

The group of families with possibly pathogenic variations is composed of 2 families bearing missense variations which did not appear in 200 control individuals and affect important domains of the protein (VRP8 and RP383, Table 2 and Fig. 4), and 3 additional families with variations in the 5’ UTR segment of EYS (RP228B, RP107B and RP509M, Table 2 and Fig. 4). Of these, transversion c.-462G>C deserves special interest as it has been identified in a homozygous state in the proband of the consanguineous family RP228B. The hypothesized pathogenic potential for this change would ensue from its position in regulatory sequences important for protein translation [Schepet et al., 2007]. Moreover, family segregation is compatible with disease.

Considering only the most likely pathogenic variations (truncating, stop, and frameshift), a prevalence estimate of 9.6% of distinct EYS variants in the Spanish arRP population can be drawn. Additionally, if the very likely pathogenic changes are included in the prevalence estimation, the figure could rise up to 15.9%. In an additional study performed in a separate population from United Kingdom, we have recently published eleven other novel mutations within EYS with probable allele frequency of 11% [Abd El-Aziz et al., 2010].

Furthermore, it is worth mentioning that many of the domains that feature EYS protein are targeted by pathogenic variations. Yet, different pathogenic mechanisms are postulated depending on the nature of the variation. Probably, in the case of variations generating a premature stop codon, most of these altered mRNA transcripts will be lost through Nonsense Mediated Decay (NMD) [Frischmeyer et al., 2002].

With regard to the coding mutations, there is not a clear clustering of both the previously reported mutations and those identified in this study to indicate a common target in the primary sequence of the protein. Although the distribution of these mutations implicated in arRP reveals 15 affected exons, a trend for alterations in residues of the C-terminal region containing alternating EGF-Laminin G domains of the protein is observed. Particularly, 4 out of the 6 missense variations are found in the Laminin G and EGF domains of the second half of the protein (Fig. 3). This is consistent with the hypothesis presented by other groups that the C-terminal region would be crucial for the function of the protein [Collin et al., 2008], and with the homology results presented in the current study, which outline the C-terminal region as one of the highly conserved intervals. Accordingly, the homology analysis presented here also reveals the high degree of evolutionary conservation of all the domains presenting altered residues by the mutations identified in arRP patients (Supp. Figure S1).
Mutation Spectrum of EYS E1783

RP1052M

II-2
p. Y433_E533del/p.N3061TfsX3
II-3
NA
II-4
p. Y433_E533del/p.N3061TfsX3
II-5
NA
II-6
p. Y433_E533del/p.N3061TfsX3
II-7
NA
II-8
p. Y433_E533del/p.N3061TfsX3

RP-1237M

I-1
p. W2640X/+ p.N745S/+ II-1
p. W2640X/p.N745S

RP-155B

I-1
p. I2239SfsX17 II-1
p. I2239SfsX17

RP194B

I-1
p. Y3135X/+ II-2
p. Y3135X

RP-84B

I-1
p. G2017V/+ II-2
p. G2017V

RP-136B

I-1
p. G2945E/+ II-1
p. G2945E/p.S2211L

Interestingly, mutations p.I2239SfsX17, p.Y3135X and p.W2640X had been previously reported as disease causing in 2 Dutch and 1 Spanish family respectively [Abd El-Aziz et al., 2008; Collin et al., 2008]. We have performed an extensive haplotype analysis and based on all available marker data we get different genotype
information associated with the mutant alleles. Therefore, it is very likely that they are recurring mutations. Identifying recurrent mutations in Caucasian and especially specific populations such as the Spanish one provides an essential source for the molecular and clinical diagnosis of such a heterogeneous disease. Furthermore, this fact reinforces our hypothesis that EYS is the first prevalent gene in arRP [Abd El-Aziz et al., 2008].

The identification of 6 missense variations within the disease related changes in EYS differs from the mainly deletion/truncation mutations reported in previous studies ([Abd El-Aziz et al., 2008; Collin et al., 2008]. Nonetheless, the identification of missense mutations in arRP patients have already been reported [Sun et al., 1997; Molday et al., 2000], suggesting a refinement of the model based on the observation that some missense alleles might behave as true null allele at the functional level and may be responsible for severe impairment of protein function. Furthermore, majority of missense mutations reported here are located in functional conserved EYS domains and are more prevalent in the domains of the second half of the protein, thereby indicating a pathologic role for such variants (Fig. 3, Supp. Figure S1).

It is noteworthy that a significant proportion of families in our study with an EYS mutation had only one identified mutation. Interestingly, structural variations have been found in 2 out of the 6 assessed patients. Besides, in the previous paper we had identified 2 large deletions which are not detectable by direct genomic sequencing [Abd El-Aziz et al., 2008] and this may explain why in a proportion of patients the second mutation remained unidentified as reported in the current work. Additional experiments consisting of Copy Number Variations (CNVs) or MLPA (Multiplex Ligation-dependent Probe Amplification) analysis would be useful to rule out long heterozygous deletions.

The identification of distinct mutations in EYS reveals a probable mutation frequency of 15.9% in the Spanish arRP population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study.

ACKNOWLEDGMENTS

We would like to thank the families who participated in the study, as well as Almudena Ávila, Teresa Jaijo and Sara Bernal for their help on DNA collection. This study was funded by PN de I+D+I 2008- 2011, Instituto de Salud Carlos III (ISCHI) –Subdirección General de Evaluación y Fomento de la Investigación, Fondo de Investigación Sanitaria (PI081131), Spain; Consejería de Salud (PI-0334/2007), Consejería de Innovación, Ciencia y Empresa (PI08-CTS-03687), Junta de Andalucía, Spain; El Centro de Investigación Biomédica en Red de Enfermedades Raras is an initiative of the Instituto de Salud Carlos III. J.I. P. was supported by Fondo de Investigación Sanitaria and M. G-dP by Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain. The research of K.W.L. was funded by the Stichting Wetenschappelijk Onderzoek Oogziekenhuis Prof. Dr. H.J. Flierenga, Rotterdam.

Contract grant sponsor: Fondo de Investigación Sanitaria, Spain; Consejería de Salud; Consejería de Innovación, Ciencia y Empresa; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER).

Contract grant number: PI081131, PI-0334/2007, PI08-CTS-03687

REFERENCES

Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E, Borrego S, Mena M, Pieras JI, El-Ashry MF, Safieh LA, Shah A, Cheetham ME, Carter NP, Chakarova C, Ponting CP, Bhattacharya SS, Antinolo G. 2008. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 40:1285-1287.

Abd El-Aziz MM, O’Driscoll CA, Kaye RS, Barragan I, El-Ashry MF, Borrego S, Antiholo G, Pang CP, Webster A, Bhattacharya SS. 2010. Identification of Novel Mutations in the ortholog of Drosophila eyes shut Gene (EYS) Causing Autosomal Recessive Retinitis Pigmentosa. Invest Ophthalmol Vis Sci, in press.

Ayuso C, García-Sandoval B, Najera C, Valverde D, Carballo M, Antinolo G. 1995. Retinitis pigmentosa in Spain. The Spanish multicentric and multidisciplinary group for research into retinitis Pigmentosa. Clin Genet 48:120–122.
Barragán I, Abd El-Aziz MM, Borrego S, El-Ashry MF, O'Driscoll C, Bhattacharya SS, Antiñolo G. Linkage validation of RP25 Using the 10K genechip array and further refinement of the locus by new linked families. 2008. Ann Hum Genet 72:454-462.

Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE. 2001. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755-2773.

Blom N, Gammeltoft S, Brunak S. 1999. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351-1362.

Böh m S, Jin H, Hughes RM, Roberts RG, Hinit s Y. 2008. Dystrobrevin and dystrophin family gene expression in zebrafish. Gene Expr Patterns 8:71-78.

Brunak S, Engelbrecht J, Knudsen S. 1991. Prediction of Human mRNA Donor and Acceptor Sites from the DNA Sequence. J Mol Biol 220:49-65.

Collin RW, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK, Zonneveld MN, Blokland EA, Strom TM, Hoyng CB, den Hollander AI, Cremers FP. 2008. Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83:594-603.

Daiger SP, Bowne SJ, Sullivan LS. 2007. Perspective on Genes and Mutations Causing Retinitis Pigmentosa. Arch Ophthalmol 125:151-158.

de Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, Tsang P, Ben-Dor A, Yakhini Z, Ellis RJ, Bruhn L, Laderman S, Froguel P, Blakemore AI. 2007. Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 16:2783–2794.

Fairbrother WG, Yeh RF, Sharp PA, Burge CB. 2002. Predictive identification of exonic splicing enhancers in human genes. Science 297:1007-1013.

Frischmeyer PA, van Hoof A, O'Donnell K, Guerrieri AL, Parker R, Dietz HC. 2002. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 22:2258–2261.

Hamel C. Retinitis pigmentosa. 2006. Orphanet J Rare Dis 1:40.

Hartong DT, Berson EL, Dryja TP. 2006. Retinitis pigmentosa. Lancet 368:1795–1809.

Humphries P, Farrar GJ, Kenna P, McWilliam P. 1990. Retinitis pigmentosa: genetic mapping in X-linked and autosomal forms of the disease. Clin Genet 38:1–13.

Husain N, Pellikka M, Hong H, Klimentova T, Choe KM, Clandinin TR, Tepass U. 2006. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483-93.

Jarjanazi H, Savas S, Pabalan N, Dennis JW, Ozcelik H. 2008. Biological implications of SNPs in signal peptide domains of human proteins. Proteins 70:394-403.

Mason JM, Arndt KM. 2004. Coiled coil domains: stability, specificity, and biological implications. ChemBiochem 5:170-176.

Matlin AJ, Clark F, Smith CW. 2005. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386-398.

McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM, International HapMap Consortium. Common deletion polymorphisms in the human genome. 2006. Nat Genet 38:86–92.

Molday LL, Rabin AR, Molday RS. 2000. A B C R expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Am J Ophthalmol 130:689.

Pomares E, Marfany G, Brón I, Carracedo A, Gonzalez-Duarte R. 2007. Novel high-throughput SNP genotyping cosegregation analysis for genetic diagnosis of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. Hum Mutat 28:511–516.

Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900.
Ruiz A, Borrego S, Marcos I, Antiñolo G. 1998. A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters. Am J Hum Genet 62:1452-1459.

Sadoulet-Puccio HM, Rajala M, Kunkel LM. 1997. Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 94:12413-12418.

Scheper GC, van der Knaap MS, Proud CG. 2007. Translation matters: protein synthesis defects in inherited disease. Nat Rev Genet 8:711-723.

Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE. 2005. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77:78–88.

Sun H, Nathans J. 1997. Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16.

Takahara K, Schwarze U, Imamura Y, Hoffman GG, Toriello H, Smith LT, Byers PH, Greenspan DS. 2002. Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. Am J Hum Genet 71:451-465.

Wang M, Marin A. 2006. Characterization and prediction of alternative splice sites. Gene 366:219-227.

Yang RB, Ng CK, Wasserman SM, Colman SD, Shenoy S, Mehraban F, Komuves LG, Tomlinson JE, Topper JN. 2002. Identification of a novel family of cell-surface proteins expressed in human vascular endothelium. J Biol Chem 277:46364-46373.

Yeo G, Hoon S, Venkatesh B, Burge CB. 2004. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci U S A 101:15700-15705.

Zelhof AC, Hardy RW, Becker A, Zuker CS. 2006. Nature 443:696–699.
SIGNAL PEPTIDE

SIGNAL PEPTIDE CLEAVAGE SITE

ONLY EGF/EGF-LIKE

EGF + ASX HYDROXYL

PUTATIVE COILED COIL DOMAIN

LAMININ G DOMAIN

Species	Sequence	Length
Orangutan	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Orangutan	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Orangutan	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Orangutan	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWDQ	238
Human	MTKSIVILSMVFHSPFINGET-CRRQLVEEHPQPSYYVNWNWLNENICLDFYRDCWF	59
Human	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Human	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Human	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWEQ	238
Marmoset	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Marmoset	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Marmoset	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Marmoset	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWDQ	238
Horse	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Horse	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Horse	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Horse	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWEQ	238
Dog	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Dog	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Dog	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Dog	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWDQ	238
Opposum	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Opposum	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Opposum	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Opposum	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWEQ	238
Platypus	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Platypus	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Platypus	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Platypus	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWDQ	238
Chicken	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Chicken	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Chicken	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Chicken	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWEQ	238
Zebrafish	MTKSIIILSMVFHSPFINGET-CRRQSVEEHPQPSYVVWNWLNENICLDFYRDCWF	59
Zebrafish	LGVNTKIDTSGNQAPQICPLQIQLGDILVISESPQLFPEINLMVSETSTFIGCVQNTT	119
Zebrafish	TEDQLLFGCRLGMHTVNSWLVSIGTHYFIVTVMASCPSPCPLGLRNLNTVKEQFCQESLS	179
Zebrafish	SEFCSGHGKCLSEAWSKYTSCHCQPFPSGKCYCQ-ELDACSFKPCKNNSCINKRENWDQ	238

p.Q27RfsX16
Species	Sequence
Drosophila	LSNPCVFGVCIDGLN--SSYSCYCIDGYTGIQCQTNWDECWSSPCQNGGTCVDGVAYYN--
Orangutan	GYECVCHPPFTGKNCSEIIIQQCQPHVCHGNCNITSNSFICECDEQFSGFPCEMSTKPC
Human	YVWQLFGAGSEEGKECQGVIDAYFFLAANCEDAICVNDPEDIYNSSCRFPREGTKEICANG
Marmoset	GYECVCHPPFTGKNCSEIIIQQCQPHVCHGNCNITSNSFICECDEQFSGFPCEMSTKPC
Horse	GYECICHPFTGKNCSEIIIDQQPYVCHGNYSNITTSNFICEDEPFSG--
Dog	GYECICHPFTGKNCSEIIIDQQPYVCHGNYSNITTSNFICEDEPFSG--
Opposum	---PTGRNCEEVIDYCR
Platypus	-YFCQCMAPFKFVN
Chicken	---CTCPENGFSNCEENVDECMSNPCQNGGLCRDRTNGYICTCQPGYLG--
Zebrafish	-YFCQCMAPFKFVN
Drosophila	LSNPCVFGVCIDGLN--SSYSCYCIDGYTGIQCQTNWDECWSSPCQNGGTCVDGVAYYN--
Orangutan	GYECVCHPPFTGKNCSEIIIQQCQPHVCHGNCNITSNSFICECDEQFSGFPCEMSTKPC
Human	YVWQLFGAGSEEGKECQGVIDAYFFLAANCEDAICVNDPEDIYNSSCRFPREGTKEICANG
Marmoset	GYECVCHPPFTGKNCSEIIIQQCQPHVCHGNCNITSNSFICECDEQFSGFPCEMSTKPC
Horse	GYECICHPFTGKNCSEIIIDQQPYVCHGNYSNITTSNFICEDEPFSG--
Dog	GYECICHPFTGKNCSEIIIDQQPYVCHGNYSNITTSNFICEDEPFSG--
Opposum	---PTGRNCEEVIDYCR
Platypus	-YFCQCMAPFKFVN
Chicken	---CTCPENGFSNCEENVDECMSNPCQNGGLCRDRTNGYICTCQPGYLG--
Zebrafish	-YFCQCMAPFKFVN

Mutation Spectrum of EYS E1789
Orangutan	Human	Marmoset	Horse	Dog	Opposum	Platypus	Chicken	Zebrafish	Drosophila
CSCLSEDSQQEYLYLCFLRWAGNMYLENTDDQENEQCQHEAICKDEINRPCSCSSLYIG	CSCLSEDSQQEYRLCFLRWAGNMYLENTDDQENEQCQHEAVCKDEINRPCSCSSLYIG	CSSFRKEDQQEYQCLCFLRWADKLYLENTDDQENEQHEAICKDEINRPCSCSSCG							
RLCVVNVDYCLGNQSISVHGLCLALSHKCNCISLQRYERNICEDEKSVSCKNGTT	RLCVVNVYCLGNHSISVHGLCLALSHCNCSGLQRYERNICEIDECKSASCKNGTT								
IHLRGYFFCKCVPGFK---GTQREIDIDECASHFCCKNAGACIDQPYNFCQVFPPK--V	IHLRGYFFCKCVPGFK---GTQCEIDIDECASHFCCKNAGACIDQPYNFCQVFPPK--V								
VDGFSCLGNPGYVGIRCEQDIDDCILNACEHLSCKDLHLSYQCVECWLSDWGNFSEQESN	VDGFSCLNPGYVGIRCEQDIDDCILNACEHLSCKDLHLSYQCVECWLSDWGNFSEQESN								
Mutation Spectrum of EYS E1791

Species	Sequence	Position
Orangutan	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	832
Human	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	833
Marmoset	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	829
Horse	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	471
Dog	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	493
Opposum	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	273
Platypus	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	40
Chicken	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	121
Zebrafish	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	53
Drosophila	ECKMNPKNNSTCIDLYPSYRCECTSGWTGQNCSEEINECDSDPCMNGLCHESTIPQF	349

Species	Sequence	Position
Orangutan	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	890
Human	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	891
Marmoset	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	886
Horse	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	508
Dog	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	539
Opposum	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	319
Platypus	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	86
Chicken	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	167
Zebrafish	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	92
Drosophila	VCLCPFPLYTGQRCQYNPCDDLLNNPCCRNNNNT--LALVDSQHICCREEEFEGKNCEDIV	391

Species	Sequence	Position
Orangutan	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	950
Human	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	951
Marmoset	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	946
Horse	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	545
Dog	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	576
Opposum	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	114
Platypus	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	409
Chicken	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	366
Zebrafish	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	434
Drosophila	KECLPLSCQETYGCEDMVVFNCRCIIRPGFSGSLCLEIEINECSSEPCKNNTGTCVLTNRFF	425

Species	Sequence	Position
Orangutan	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	1010
Human	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	1011
Marmoset	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	1006
Horse	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	550
Dog	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	581
Opposum	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	366
Platypus	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	434
Chicken	CNCIEPGHGFCELDVHKDCSPLDEENCEVYTDGNCAPGTYGCINECLDECLSE	425

Species	Sequence	Position
Orangutan	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	1070
Human	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	1071
Marmoset	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	1049
Horse	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	593
Dog	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	625
Opposum	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	409
Platypus	PCLHDGVCIDGNYTCDKKSFGFFGTHCETNANDCLSNPCPPLHGRCTELINEYPCSCDADG	135
Mutation Spectrum of EYS

Horse: AALGTGISFERYLLKHAVAIKLSLPSPTDVSSRFLNFLNGPQPAQVWKGTSVPH 778
Dog: AALGTGISFERYLLKHAVAIKLSLPSPTDVSSRFLNFLNGPQPAQVWKGTSVPH 867
Opposum:
Platypus:
Chicken:
Zebrafish: SEYTTYPHEVSKSKSEGSEEVTTVRPAAPITISVDTSSGSSSSSSEVEVTTP 657
Drosophila:

p.R1374X

Orangutan: MPIRTSAATLGFPPPRARTPTFIMSSSDFIFTPQSSLFFENQCTVATPTTTSVIRS 1429
Human: MPIRTSAATLGFPPPRARTPTFIMSSSDFIFTPQSSLFFENQCTVATPTTTSVIRS 1430
Marmoset: MPIQRTSAATLGFPPPRARTPTFIMSSSDFIFTPQSSLFFENQCTVATPTTTSVIRS 1402
Horse: LPIQASAATPFPFFLDRLGERTSSSMTDFIFPTQSSLFFEDRSSATMMSSV 833
Dog: LPIQASAATPFPFFLDRLGERTSSSMTDFIFPTQSSLFFEDRSSATMMSSV 922
Opposum:
Platypus:
Chicken:
Zebrafish:
Drosophila:

p.W1484X

Orangutan: IPGADIELNRQSLLSRGLFTLAASISATPVVRGQDAEDIEEYASDSLISRRWHRLSPPS 1489
Human: IPGADIELNRQSLLSRGLFTLAASISATPVVRGQDAEDIEEYASDSLISRRWHRLSPPS 1490
Marmoset: IPGADIELNRQSLLSRGLFTLAASISATPVVRGQDAEDIEEYASDSLISRRWHRLSPPS 1462
Horse: ILGADVELNRSSLHSGKLLKASTGAPPVVSQAEGIEEYASDSLISRRHWRLLSS 893
Dog: ILGADVELNRSSLHSGKLLKASTGAPPVVSQAEGIEEYASDSLISRRHWRLLSS 982
Opposum:
Platypus:
Chicken:
Zebrafish:
Drosophila:

p.W1484R

Orangutan:
Human:
Marmoset:
Horse: ILGADVELNRSSLHSGKLLKASTGAPPVVSQAEGIEEYASDSLISRRHWRLLSS 893
Dog: ILGADVELNRSSLHSGKLLKASTGAPPVVSQAEGIEEYASDSLISRRHWRLLSS 982
Opposum:
Platypus:
Chicken:
Zebrafish:
Drosophila:

Orangutan: ELSQTCVTASMIKSSREFQSSLHQLQSFHYESFWMNSAILASWCMGAAQITSGHS 1609
Human: ELSQTCATSMTEIKSSREFQSSLHQLQSFHYESFWMNSAILSWYMAGAETITSGHS 1610
Marmoset: ELSQTCATSMTEIKSSREFQSSLHQLQSFHYESFWMNSAILSWYMAGAETITSGHS 1582
Horse: ELSQTCATSMTEIKSSREFQSSLHQLQSFHYESFWMNSAILSWYMAGAETITSGHS 1503
Dog: ELSQTCATSMTEIKSSREFQSSLHQLQSFHYESFWMNSAILSWYMAGAETITSGHS 1102
Opposum: ELSQTCATSMTEIKSSREFQSSLHQLQSFHYESFWMNSAILSWYMAGAETITSGHS 582
Species	Sequence	Mutation	Position
Marmoset	FPTASRHLLFTRSLSLPSEILAPQQLMISDFSCVRYYGDSYLEFQNLNPNIYILE 1881	p.G2017V	2029
Horse	SPAASQTTPAIRTSLLPSEISAPRQLMISDFTCVYYGDSEYLEFQDVNLNPNNISLE 1272		
Dog	SPAASQTTPAIRTSLLPSEISAPRQLMISDFTCVYYGDSEYLEFQDVNLNPNNISLE 1325		
Opposum	------------------------------SDFSYMQYFGDSYLKFERVLLPLQNSFSE 636		
Platypus	--		
Chicken	FSCGNSQNLTVSNQSTQSGLVIPIII2MLP		
Zebrafish	--		
Drosophila	KVRTRATNGLIMLMLAAQGTKG SHYMALFLQKGLMQFQFSCG		
Orangutan	FQTSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Human	FQTFSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1970		
Marmoset	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Horse	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1970		
Dog	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Platypus	--		
Chicken	FSCGNSQNLTVSNQSTQSGLVIPIII2MLP		
Drosophila	KVRTRATNGLIMLMLAAQGTKG SHYMALFLQKGLMQFQFSCG		
Orangutan	FQTSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Human	FQTFSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1970		
Marmoset	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Horse	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1970		
Dog	FQTFSSSYGLLLYKQDSNLVDGFPIOLQFIENGLTLYHYFCGPEAKFSINTTVRDGGQ 1941		
Platypus	--		
Chicken	FSCGNSQNLTVSNQSTQSGLVIPIII2MLP		
Drosophila	KVRTRATNGLIMLMLAAQGTKG SHYMALFLQKGLMQFQFSCG		
Orangutan	WTSVSPSVAAPSVCCQDVCHNGGTCHPIFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 2143		
Human	WTSVSPSVAAPSVCCQDVCHNGGTCHPIFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 2149		
Marmoset	WTSITPSAAPSVCQGAVCHNGGTCPFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 2120		
Horse	WTSLSAPPAPSVCCQGAVCHNGGTCPFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 1505		
Dog	WTSLSAPPAPSVCCQGAVCHNGGTCPFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 1527		
Platypus	--		
Chicken	WTSVSPSVAAPSVCCQDVCHNGGTCHPIFLSRSIGVQFCDPLHFTGRFCEKDASSLFFPS 2143		

The table above shows the mutation spectrum of the EYS protein across various species, with specific focus on the human protein. The p.G2017V mutation is highlighted, indicating its presence in both orangutan and human sequences.
Species	Amino Acid Sequence	Length
Zebrafish	-----------------------------------NGQCFIEIAADNGTANQQQKYMDEPVS-----------------------------	246
Drosophila	ETPVNTGHE TIRAEQDFSNYTHCNASILVNDTLAMSDQPTWLKLPPR----------------------------------	1184
Orangutan	FNGNSYLELPFLPVLEKENRHTVIYLTIKTSLNGLTILSNQNGNNFGQFLHLFLVEGR	2203
Human		2209
Marmoset	FNGNSYLELPFLPVLEKENRHTVIYLTIKTSLNGLTILSNQNGNNFGQFLHLFLVEGR	2204
Horse	FNGNSYLELPFLPVLEKENRHTVIYLTIKTSLNGLTILSNQNGNNFGQFLHLFLVEGR	1561
Dog	FNGNSYLELPFLPVLEKENRHTVIYLTIKTSLNGLTILSNQNGNNFGQFLHLFLVEGR	1584
Opposum		
Platypus		
Chicken		
Zebrafish		
Drosophila		

Species	Amino Acid Sequence	Length
Orangutan	PSVKYGCGNSQNILTVSANYSINTNAFTPITIRYTPGSSGVGCMIEMTADGKPVQQK	2263
Human	PSVKYGCGNSQNILTVSANYSINTNAFTPITIRYTPGSSGVGCMIEMTADGKPVQQK	2269
Marmoset	PSVKYGCGNSQNILTVSANYSINTNAFTPITIRYTPGSSGVGCMIEMTADGKPVQQK	2240
Horse	PTVKYGCGNSQNILTVSANYSINTNAFTPITIRYTPGSSGVGCMIEMTADGKPVQQK	1594
Dog	PTVKYGCGNSQNILTVSANYSINTNAFTPITIRYTPGSSGVGCMIEMTADGKPVQQK	1646
Opposum		
Platypus		
Chicken		
Zebrafish		
Drosophila		

Species	Amino Acid Sequence	Length
Orangutan	DTEISQAYFESFLGHIPANVQ------IHKKGPVYGFRCILDLQVNNKEFIIDEA	2319
Human	DTEISHASQAYFESFLGHIPANVQ------IHKKGPVYGFRCILDLQVNNKEFIIDEA	2325
Marmoset	DTKISHASQAYFESFLGHIPANVQ------IHKKGPVYGFRCILDLQVNNKEFIIDEA	2296
Horse	---------QAYFESFLGHVPTNVK------IHKKGPVYGFRCILDLQVNNKEFIIDEA	1642
Dog	DTETHASQAYFESFLGHVPTNVK------IHKKGPVYGFRCILDLQVNNKEFIIDEA	1700
Opposum	---------KFGSIFLGHIPAVK------VHENMGQTYGRICREFQVNNKEFIDEA	757
Platypus	---------QAYFESFLGHIPAVK------IHKKGPVYGFRCILDLQVNNKEFIDEA	392
Chicken	---------QAYFESFLGHIPAVK------IHKKGPVYGFRCILDLQVNNKEFIDEA	460
Zebrafish	---------QAYFESFLGHIPAVK------IHKKGPVYGFRCILDLQVNNKEFIDEA	1241
Drosophila	---------QAYFESFLGHIPAVK------IHKKGPVYGFRCILDLQVNNKEFIDEA	

Species	Amino Acid Sequence	Length
Orangutan	RHGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	2360
Human	RHGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	2366
Marmoset	RRGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	2337
Horse	LRGNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	1683
Dog	LRGNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	1741
Opposum	LSGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	798
Platypus	LSGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	433
Chicken	LSGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	502
Zebrafish	LSGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	354
Drosophila	LSGKNIENCQFVPWCAHLLRCRNNGTIC-------------DNENLFCECPRLYS	

Species	Amino Acid Sequence	Length	
Orangutan	GKLQFASCCNFPAGNCATPVKSGTDIVLCPCYGSRGLCTD-------------AINITQPRFSGT	2415	
Human	GKLQFASCCNFPAGNCATPVKSGTDIVLCPCYGSRGLCTD-------------AINITQPRFSGT	2421	
Species	Sequence	Mutation	Position
------------	--	----------------	----------
Orangutan	SLNLVPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG	p.G2945E	2945
Human	SLNLVPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Marmoset	SLNLNPAINEPZGFCRQVINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Horse	SLNLVPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Dog	SLNLVPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Opposum	SLNLVPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Platypus	SLNLVNPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Chicken	SLNLVNPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Drosophila	SLNLVNPMAINEPVGFGCIRQVIINNEQLTEFGAGGGSNVGDCDCAGGNYTNCNG		
Orangutan	GECTVNGTTF-SCRCLPDWAGNTCNQSVYCLNNLCLHQSLCIPDQSFSYSCLCTLGGW	p.N3061TfsX3	3061
Human	GECTVNGTTF-SCRCLPDWAGNTCNQSVSCLINDLHQSLCIPDQSFSYSCLCTLGGW		
Marmoset	GCTKVNGTTF-SCRCLPDWAGNTCNQSYCLNNLCLHQSLCIPDQSFSYSCLCTLGGW		
Horse	GCVVNGTTF-SCQCSWPWAGNTCSEYCLNNLCLHQSLCIPDQSSSYRCLCTLGGW		
Dog	GCVVNGTTF-SCQCSWPWAGNTCSEYCLNNLCLHQSLCIPDQSSSYRCLCTLGGW		
Opposum	GCRAQGSKSF-SCKLQPWIGKREESANCNRLHLSRCIPV-QPAAYICLPLGWG		
Platypus	GECILHHTNF-SCKTPWAGNTCQSMCINNQKQHSLCIDP-QNTFYSCACPLPWG		
Chicken	GTCQVESSGF-SCFCPYQGCTYEGCSQMACVNHRRQHSLQPALLSVTCVPLGWG		
Drosophila	GCHWLEKQPHCICPEYAKGDRCEYSETCKLIPCKNNGRCLRS----GRSCPWNNGW		
Orangutan	RYCNKTSF-STATFNGYSYIKIDPQRSRNLQ---------FTTISLNFSSTTKTEG		
Human	RYCNKTSF-STATFNGYSYIKIDPQRSRNLQ---------FTTISLNFSSTTKTEG		
Marmoset	RYCNKTSF-STATFNGYSYIKIDPQRSRNLH---------FTTISLNFSSTTKTEG		
Horse	RYCNKISF-STATFNGYSYIKIDPQRSRNLH---------FTTISLNFSSTTKTEG		
Dog	RYCNKISF-STATFNGYSYIKIDPQRSRNLH---------FTTISLNFSSTTKTEG		
Opposum	RYCNKTSF-STATFNGYSYIKIDPQRSRNLH---------FTTISLNFSSTTKTEG		
Platypus	GYCETEILP-LIAKFGQNYHKTDPNYGRNLH---------FTTISLNFSSTTKTEG		
Chicken	KGCDSKIF-STATFNGYSYIKIDPQRSRNLH---------FTTISLNFSSTTKTEG		
Drosophila	FSYCEIAMSKEPPTSSFRGSNLPRPIPPKMKDDRPSLVRPRAIQVSLNFSTIEPDG		
Orangutan	LIVWNGTAQNEEENDFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Human	LIVWNGTAQNEEENDFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Marmoset	LIVWNGTAQNEEENDFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Horse	LIVWIGAENFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Dog	LIVWIGAENFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Opposum	LIVWIGAENFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Platypus	LILWMGKAEHENDNFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Chicken	LMVLGAENFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		
Drosophila	LILWMGKAEHENDNFLAIGLHNNQTLLAIVNGLERISVPMcSYNGTFFCCKN-WHHVVVIQN		

Mutation Spectrum of EYS E1799
Supp. Figure S1. EYS homologues protein alignment and domain distribution with identified variations. 5' UTR and splice site variations are not included in this figure.

Species	Alignment	Domain Distribution
Human	QTLIKAYINSLILSEDIDP------------------------HKNFVALNYDGICLYGGFEY	3092
Marmoset	QTLIKAYLNSLILSEDIDP------------------------HKNFVALNYDGICLYGGFEY	3058
Horse	QTLIKAYLDDNILSEDIDP------------------------HKKFVALNYDGISLYGGFEY	2350
Dog	QTLIKAYLDDNILSEDIDP------------------------HKKFVALNYDGISLYGGFEY	2408
Opposum	QTYFKVYLDLILFEDIDP------------------------TKNYIALNYGGSYLYGGFEF	1441
Platypus	QTIKFVYLDLILFEDIDP------------------------QRKHIALNYGGSYLYGGFEF	1033
Chicken	QTCIKVYDEELIIFEDIDP------------------------HRKYIALNYGGSYLYGGFEF	1229
Zebrafish	RTLIQVYNEERIFEDIDP------------------------FEQYVAVSGLYLYGGFEF	988
Drosophila	RSRLEQLGDDEVIFTERLPEGGRSLGSSTPRSTLARKNSKEPTISYEDVFYLGGFPN	2108
Orangutan	GRKVSIVTQEIFKTNFV------------------------FFQDP-KKIELIK-LEGYNVDGEQNEVT	3127
Human	GRKVINVTQEIFKTNFV------------------------FFQDP-KKIELIK-LEGYNVDGEQNEVT	3144
Marmoset	GRKVINITQEIFKTNFV------------------------FFQDP-KKIELIK-LEGYNVDGEQNEVT	3110
Horse	GRKVNTTEEEIFKRDFVGKID------------------------VFFQDS-KKIELIK-LEGYNVYNGDQNV	2400
Dog	GRKVNTTEEEIFKRDFVGKID------------------------VFFQDS-KKIELIK-LEGYNVYNGDQNV	2433
Opposum	GRGVNMVTQGLFNRDFIGKDKICTV------------------------VFFQDS-KKIELIK-LEGYNVYNGDQNV	1488
Platypus	GHNVSIVTQGYSQHFVGKID------------------------VFFQES-TKIQLE-LEGYNVYNGDQNV	1080
Chicken	GRKVHTATAGLFQKEFVGKID------------------------VFFQDS-KKIELIK-LEGYNVYNGDQNV	1036
Zebrafish	NRDVASVTSGVFTKGFEGSIFKDVFFQDS------------------------YLQLE-LEGYNVYNGDQNV	2165
Drosophila	SDSVSRRTKGDFPDKQCLQDIQGAEPTAITDSFYQGENIGSDHLHGDEPLT	2165

p.Y3135X