POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

Wang Yusun*, Qin Mei, Wang Haibo & Pan Xue
College of Science, University of Shanghai for Science and Technology, Shanghai, China, 200093
*Email: wangyusun2012@126.com

ABSTRACT
In this paper, we derive a general expression for the pth power ($p \in \mathbb{N}$) of any complex persymmetric anti-tridiagonal Hankel (constant anti-diagonals) matrices, in terms of the Chebyshev polynomials of second kind. Numerical examples are presented, which show that our results generalize the results in [4], [5], [7].

Keywords: Anti-tridiagonal matrices; Eigenvalues; Eigenvectors; Chebyshev polynomials.
MSC2010: 15B48.

1. INTRODUCTION
From a practical point of view, Antidiagonal matrices arise frequently in many areas of mathematics and engineering, such as numerical analysis, solution of the boundary value problems, high order harmonic filtering theory[1][2]. In many of such problems, we need to calculate some matrix functions such the powers, inverse or the exponential.

There is a lot of work dealing with the inverse of a Anti-tridiagonal matrix and solving the resulting linear system can be done in an efficient way. However, computing the integer powers of Anti-tridiagonal matrices has been a very popular problem in last few years. There have been several papers on computing the positive integer powers of various kinds of square matrices by J.Rimas, Jesús Gutiérrez, Yin, etc [3]-[7]. J.Rimas [4] gave the general expression of the pth power for this type of symmetric odd order anti-tridiagonal matrices ($antitridia g_n(a,b,a)$) in 2008. In [5]-[6] a similar problem was solved for anti-tridiagonal matrices having zeros in main skew diagonal and units in the neighbouring diagonals. In 2010, the general expression for the entries of the power of odd order anti-tridiagonal matrices with zeros in main skew diagonal and elements $1,1,\cdots;1,-1,-1,\cdots,-1$ in neighbouring diagonals was derived by J.Rams [7]. In 2011, the general expression for the entries of the power of complex persymmetric or skew-persymmetric anti-tridiagonal matrices with constant anti-diagonals are presented by Jesús Gutiérrez [3]. In 2013, J.Rimas [10] gave the eigenvalue decomposition for real odd order skew-persymmetric anti-tridiagonal matrices with constant anti-diagonals ($antitridia g_n(a,b,a)$) and derived the general expression for integer powers of such matrices.

In the present paper, we derive a general expression for the pth power ($p \in \mathbb{N}$) of any complex persymmetric anti-tridiagonal matrices with constant anti-diagonals ($antitridia g_n(b,a,b)$), in terms of the Chebyshev polynomials of the second kind.

This paper is organized as follows:
- In Section 2, we give the derivation of general expression.
- In Section 3, Numerical examples are presented.
- In Section 3, we summarize the paper.

2. DERIVATION OF GENERAL EXPRESSION
In this paper, we study the entries of positive integer power of $n \times n$ complex persymmetric anti-tridiagonal matrices with constant anti-diagonals
Consider the following $n \times n$ complex Toeplitz tridiagonal matrices

\[B_n = \text{antitridiag}_n(b, a, b) = \begin{pmatrix}
 b & a & & \\
 b & a & b & \\
 & b & a & b \\
 a & b & & \\
\end{pmatrix} \tag{2.1} \]

and

\[C_n = \text{antitridiag}_n(b, 0, -b) = \begin{pmatrix}
 b & 0 & & \\
 b & 0 & -b & \\
 & b & 0 & -b \\
 & & b & 0 & -b \\
\end{pmatrix} \tag{2.2} \]

where $a \in C, b \in C \setminus \{0\}$.

The next trivial result relates the matrix B_n with A_n (or matrix C_n with D_n) and with the $n \times n$ backward identity [3]
Lemma 2.1 Let \(a \in C, b \in C \setminus \{0\} \) and \(n \in N \). Then
\[
B_n = J_n A_n, \tag{2.6}
\]
\[
C_n = J_n D_n, \tag{2.7}
\]
where \(B_n = \text{antitridia}_n(b,a,b) \), \(A_n = \text{tridiag}_n(b,a,b) \), \(C_n = \text{antitridia}_n(b,0,-b) \), \(D_n = \text{tridiag}_n(b,0,-b) \).

Proof. We have
\[
[J_n A_n]_{j,k} = \sum_{h=1}^{n} [J_n]_{j,h} [A_n]_{h,k} = [A_n]_{n+1-j,k} = \begin{cases} b, & \text{if } n + 1 - (j + k) = -1, \\ a, & \text{if } n + 1 - (j + k) = 0, \\ b, & \text{if } n + 1 - (j + k) = 1, \\ 0, & \text{other}. \end{cases}
\]
and
\[
[J_n D_n]_{j,k} = \sum_{h=1}^{n} [J_n]_{j,h} [D_n]_{h,k} = [D_n]_{n+1-j,k} = \begin{cases} -b, & \text{if } n + 1 - (j + k) = -1, \\ 0, & \text{if } n + 1 - (j + k) = 0, \\ b, & \text{if } n + 1 - (j + k) = 1, \\ 0, & \text{other}. \end{cases}
\]
This completes the proof.

We shall find the \(q \) th power \((q \in N)\) of the matrices (2.1) and (2.2). Theorem 2.2 relates all positive integer powers of the matrix \(B_n \) with \(A_n \) and \(J_n \) (or \(C_n \) with \(D_n \) and \(J_n \)).

Theorem 2.2 If \(a \in C, b \in C \setminus \{0\} \), \(n \in N \), \(B_n = \text{antitridia}_n(b,a,b) \) and \(C_n = \text{antitridia}_n(b,0,-b) \), then
\[
B_n^q = \begin{cases} A_n^q, & \text{if } q \text{ is even}, \\ J_n A_n^q, & \text{if } q \text{ is odd}. \end{cases} \tag{2.8}
\]
\[C_n^q = \begin{cases} (-1)^{\frac{q}{2}} D_n^q, & \text{if } q \text{ is even}, \\ (-1)^{\frac{q-1}{2}} J_n D_n^q, & \text{if } q \text{ is odd}. \end{cases} \quad (2.9) \]

where \(A_n = \text{tridiag}_n(b, a, b) \), \(D_n = \text{tridiag}_n(b, 0, -b) \).

Proof. We will proceed by induction on \(q \). The case \(q = 1 \) is obvious.

Suppose that the result is true for \(q \geq 1 \), and consider that case \(q + 1 \).

By the induction hypothesis we have

\[B_n^{q+1} = B_n^q B_n^q = \begin{cases} B_n J_n A_n^q, & \text{if } q + 1 \text{ is even}, \\ B_n A_n^q, & \text{if } q + 1 \text{ is odd}. \end{cases} \]

Since \(B_n = J_n A_n \), we obtain that

\[B_n^{q+1} = \begin{cases} J_n A_n J_n A_n^q, & \text{if } q + 1 \text{ is even}, \\ J_n A_n (A_n^q), & \text{if } q + 1 \text{ is odd}. \end{cases} \]

Since \(A_n \) is symmetric and \(J_n^{-1} = J_n \), we have

\[B_n^q = \begin{cases} A_n^q, & \text{if } q \text{ is even}, \\ J_n A_n^q, & \text{if } q \text{ is odd}. \end{cases} \]

Similarly, we have

\[C_n^q = \begin{cases} (-1)^{\frac{q}{2}} D_n^q, & \text{if } q \text{ is even}, \\ (-1)^{\frac{q-1}{2}} J_n D_n^q, & \text{if } q \text{ is odd}. \end{cases} \]

This completes the proof.

Next, we have to solve \(A_n^q \) and \(D_n^q \). We begin this work by reviewing a theorem regarding the Hermitian Toeplitz tridiagonal matrices \(A_n \) and \(D_n \).

Theorem 2.3 Let \(a \in C, b \in C \setminus \{0\} \) and \(n \in \mathbb{N} \). Then \(A_n \) has eigenvalues

\[\lambda_j = a + 2|b| \cos \frac{i\pi}{n+1}, 1 \leq j \leq n, \]

and \(D_n \) has eigenvalues

\[\lambda_j = 2|b| \cos \frac{i\pi}{n+1}, 1 \leq j \leq n. \]

Proof. See [6].

With the tridiagonal matrix \(A_n \), we associate the polynomial sequence \(\{P_i\}_{1 \leq i \leq n} \) characterized by a three-term recurrence relation:

\[xP_i(x) = bP_{i+1}(x) + aP_i(x) + bP_{i-1}(x), \quad i = 0, 1, \ldots, n-1. \quad (2.10) \]

With the tridiagonal matrix \(D_n \), we associate the polynomial sequence \(\{M_i\}_{1 \leq i \leq n} \) characterized by a three-term recurrence relation:

\[xM_i(x) = bM_{i+1}(x) - bM_{i-1}(x), \quad i = 0, 1, \ldots, n-1. \quad (2.11) \]

With initial conditions \(P_0(x) = 0 \), \(P_1(x) = 1 \), \(M_0(x) = 0 \), and \(M_1(x) = 1 \) we can write the relations (2.10) and (2.11) in matrix form:
\[xQ_{n-1}(x) = A_n Q_{n-1}(x) + P_n(x) E_n, \quad (2.12) \]

\[xN_{n-1}(x) = D_n N_{n-1}(x) + M_n(x) E_n, \quad (2.13) \]

where \[Q_{n-1}(x) = \begin{bmatrix} P_0(x), P_1(x), \ldots, P_{n-1}(x) \end{bmatrix}^T, \quad N_{n-1}(x) = \begin{bmatrix} M_0(x), M_1(x), \ldots, M_{n-1}(x) \end{bmatrix}^T \]

and \[E_n = [0, 0, \ldots, 1]^T \in \mathbb{R}^n. \]

Lemma 2.4 For \(i \geq 0 \), the degree of the polynomial \(P_i \) is \(i \) and \(P_i \) and \(P_{i+1} \) has no common root. The degree of the polynomial \(M_i \) is \(i \) and \(M_i \) and \(M_{i+1} \) has no common root.

Proof. See[8].

One can show that the characteristic polynomial of \(A_n \) is precisely \(nbP_n(x) \) and the characteristic polynomial of \(D_n \) is precisely \(-nbM_n(x) \). Hence the eigenvalues of \(A_n \) are exactly the roots of \(P_n \). Similarly we have the eigenvalues of \(D_n \) are exactly the roots of \(M_n \).

If \(\{\lambda_j\}_{0 \leq j \leq n-1} \) are the roots of the polynomial \(P_n \), then it follows from (2.7) that each \(\lambda_j \) is an eigenvalue of the matrix \(A_n \) and \(Q_{n-1}(x) = \begin{bmatrix} P_0(x), P_1(x), \ldots, P_{n-1}(x) \end{bmatrix}^T \) is a corresponding eigenvector [7]-[9]. For \(D_n \), we have same results. This observation should be taken into account elsewhere in the manuscript.

The polynomials \(\{P_i\}_{0 \leq i \leq n} \) and \(\{M_i\}_{0 \leq i \leq n} \) verify the well-known Christoffel-Darboux Identity:

Lemma 2.5 We have:

\[\sum_{i=0}^{n-1} P_i(x) P_i(y) = \frac{P_n(y)P_{n-1}(x) - P_n(x)P_{n-1}(y)}{y-x}, \quad \text{for} \quad x \neq y. \quad (2.14) \]

\[\sum_{i=0}^{n-1} M_i(x) M_i(y) = \frac{M_n(y)M_{n-1}(x) - M_n(x)M_{n-1}(y)}{y-x}, \quad \text{for} \quad x \neq y. \quad (2.15) \]

Proof. See[8].

Tending \(y \) to \(x \) in formulas (2.14) and (2.15), we get:

\[\sum_{i=0}^{n-1} P_i(x) P_i(x) = P'_n(x)P_{n-1}(x) - P_n(x)P'_{n-1}(x). \quad (2.16) \]

\[\sum_{i=0}^{n-1} M_i(x) M_i(x) = M'_n(x)M_{n-1}(x) - M_n(x)M'_{n-1}(x). \quad (2.17) \]

Since the matrix \(A_n \) has distinct eigenvalues \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \). Thus, the eigendecomposition of the matrix \(A_n \) is

\(A_n = TET^{-1} \),

where \(E = \text{diag}(\lambda_0, \lambda_1, \ldots, \lambda_{n-1}) \) and \(T \) is the transforming matrix formed by the eigenvectors of \(A_n \). Namely, \(T = (t_{ij} = P_{i-1}(\lambda_j))_{1 \leq i, j \leq n} \), where \(\{P_i\}_{1 \leq i \leq n} \) are defined as above. For \(D_n \), we have same results: the eigendecomposition of the matrix \(D_n \) is

\(D_n = SFS^{-1} \),

where \(F = \text{diag}(\lambda_0, \lambda_1, \ldots, \lambda_{n-1}) \) and \(S \) is the transforming matrix formed by the eigenvectors of \(D_n \). Namely, \(S = (s_{ij} = M_{i-1}(\lambda_j))_{1 \leq i, j \leq n} \), where \(\{M_i\}_{1 \leq i \leq n} \) are defined as above.
Lemma 2.6 If \(T^{-1} = (x_{i,j})_{i\leq j, j \leq n} \) and \(S^{-1} = (y_{i,j})_{i\leq j, j \leq n} \), then
\[
x_{i,j} = \frac{P_{j-1}(\lambda_{j-1})}{P_n'(\lambda_{j-1})P_n(\lambda_{j-1})},
\]
\[
y_{i,j} = \frac{M_{j-1}(\lambda_{j-1})}{M_n'(\lambda_{j-1})M_n(\lambda_{j-1})}.
\] (2.18), (2.19)

Proof. By using the relations (2.14) and (2.18) (or relations (2.15) and (2.19)), we obtain:
\[
\sum_{k=1}^{n} x_{i,k} t_{k,j} = \sum_{k=1}^{n} P_{k-1}(\lambda_{k-1})P_{k-1}(\lambda_{j-1}) = \delta_{i,j},
\]
\[
\sum_{k=1}^{n} y_{i,k} s_{k,j} = \sum_{k=1}^{n} P_{k-1}(\lambda_{k-1})P_{k-1}(\lambda_{j-1}) = \delta_{i,j},
\]
where \(\delta_{i,j} = 1 \) if \(i = j \) and \(\delta_{i,j} = 0 \) if \(i \neq j \).

This completes the proof.

For \(q \in \mathbb{N} \), we have \(A_q^T = TE^qT^{-1} \) and \(D_q^T = TF^qT^{-1} \).

We get immediately:

Theorem 2.7 Assume that \(q \in \mathbb{N} \) and \(A_q = (\alpha^{(q)}_{i,j})_{i\leq j, j \leq n} \), \(D_q = (\mu^{(q)}_{i,j})_{i\leq j, j \leq n} \).

Then:
\[
\alpha^{(q)}_{i,j} = \sum_{k=1}^{n} \frac{P_{k-1}(\lambda_{k-1})P_{k-1}(\lambda_{j-1})}{P_n'(\lambda_{k-1})P_n(\lambda_{k-1})},
\]
\[
\mu^{(q)}_{i,j} = \sum_{k=1}^{n} \frac{M_{k-1}(\lambda_{k-1})M_{k-1}(\lambda_{j-1})}{M_n'(\lambda_{k-1})M_n(\lambda_{k-1})}.
\]

By using the Cauchy Integral Formula, we can give another expressions of the coefficients \(\alpha^{(q)}_{i,j} \);
\[
\alpha^{(q)}_{i,j} = \int_{X} z^q \frac{P_{i-1}(z)P_{j-1}(z)}{P_n(z)P_{n-1}(z)} dz,
\] (2.20)
\[
\mu^{(q)}_{i,j} = \int_{Y} z^q \frac{M_{i-1}(z)M_{j-1}(z)}{M_n(z)M_{n-1}(z)} dz,
\] (2.21)

where \(X \) is a closed curve containing the roots of \(P_n \) and no roots of \(P_{n-1} \), \(Y \) is a closed curve containing the roots of \(M_n \) and no roots of \(M_{n-1} \).

Proof: Obviously this theorem holds.

Corollary 2.8 If the matrix \(A_n \) is nonsingular with \(A^{-1} = (\alpha^{(-1)}_{i,j})_{i\leq j, j \leq n} \), the matrix \(D_n \) is nonsingular with \(E^{-1} = (\mu^{(-1)}_{i,j})_{i\leq j, j \leq n} \), then
\[
A_n^{-1} = TE^{-1}T^{-1}
\] (2.22)
\[
D_n^{-1} = SF^{-1}S^{-1}
\] (2.23)
\[\alpha_{i,j}^{(-1)} = \sum_{k=1}^{n} \frac{1}{\lambda_{k-1}} \frac{P_{i-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1})}{P'_{n}(\lambda_{k-1}) P_{n-1}(\lambda_{k-1})} . \]

(2.24)

\[\mu_{i,j}^{(-1)} = \sum_{k=1}^{n} \frac{1}{\lambda_{k-1}} \frac{M_{i-1}(\lambda_{k-1}) M_{j-1}(\lambda_{k-1})}{M'_{n}(\lambda_{k-1}) M_{n-1}(\lambda_{k-1})} . \]

(2.25)

By using the Cauchy Integral Formula, we can give another expressions of the coefficients \(\alpha_{i,j}^{(-1)} \) and \(\mu_{i,j}^{(-1)} \):

\[\alpha_{i,j}^{(-1)} = \int_{X} z^{-1} \frac{P_{i-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} \, dz, \]

(2.26)

\[\mu_{i,j}^{(-1)} = \int_{Y} z^{-1} \frac{M_{i-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} \, dz, \]

(2.27)

where \(X \) is a closed curve containing the roots of \(P_{n} \) and no roots of \(P_{n-1} \), \(Y \) is a closed curve containing the roots of \(M_{n} \) and no roots of \(M_{n-1} \).

Theorem 2.9 Assume that \(q \in \mathbb{N}, B_{n}^{q} = (\beta_{i,j}^{(q)})_{1 \leq i,j \leq n} \) and \(C_{n}^{q} = (\omega_{i,j}^{(q)})_{1 \leq i,j \leq n} \). Then:

\[\beta_{i,j}^{(q)} = \begin{cases} \sum_{k=1}^{n} \frac{\lambda_{k}^{q} P_{i-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1})}{P'_{n}(\lambda_{k-1}) P_{n-1}(\lambda_{k-1})}, & \text{if } q \text{ is even}, \\ \sum_{k=1}^{n} \frac{\lambda_{k}^{q} P_{n-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1})}{P'_{n}(\lambda_{k-1}) P_{n-1}(\lambda_{k-1})}, & \text{if } q \text{ is odd}. \end{cases} \]

(2.28)

\[\omega_{i,j}^{(q)} = \begin{cases} (-1)^{\frac{q}{2}} \sum_{k=1}^{n} \lambda_{k}^{q} M_{i-1}(\lambda_{k-1}) M_{j-1}(\lambda_{k-1}), & \text{if } q \text{ is even}, \\ (-1)^{\frac{q-1}{2}} \sum_{k=1}^{n} \lambda_{k}^{q} M_{n-1}(\lambda_{k-1}) M_{j-1}(\lambda_{k-1}), & \text{if } q \text{ is odd}. \end{cases} \]

(2.29)

By using the Cauchy Integral Formula, we can give another expressions of the coefficients \(\beta_{i,j}^{(q)} \) and \(\omega_{i,j}^{(q)} \):

\[\beta_{i,j}^{(q)} = \begin{cases} \int_{X} z^{q} \frac{P_{i-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} \, dz, & \text{if } q \text{ is even}, \\ \int_{X} z^{q} \frac{P_{n-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} \, dz, & \text{if } q \text{ is odd}. \end{cases} \]

(2.30)

\[\omega_{i,j}^{(q)} = \begin{cases} (-1)^{\frac{q}{2}} \int_{X} z^{q} \frac{M_{i-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} \, dz, & \text{if } q \text{ is even}, \\ (-1)^{\frac{q-1}{2}} \int_{X} z^{q} \frac{M_{n-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} \, dz, & \text{if } q \text{ is odd}. \end{cases} \]

(2.31)

where \(X \) is a closed curve containing the roots of \(P_{n} \) and no roots of \(P_{n-1} \), \(Y \) is a closed curve containing the roots of \(M_{n} \) and no roots of \(M_{n-1} \).
Proof. From Theorem 2.2 we get:

\[
[B^q_n]_{i,j} = \begin{cases}
[A^q_n]_{i,j}, & \text{if } q \text{ is even,} \\
\sum_{n=1}^{k} [J_n A^q_n]_{i,j} & \text{if } q \text{ is odd.}
\end{cases}
\]

Namely,

\[
\beta^{(q)}_{i,j} = \begin{cases}
\alpha^{(q)}_{i,j}, & \text{if } q \text{ is even,} \\
\alpha^{(q)}_{n+1-i,j} & \text{if } q \text{ is odd.}
\end{cases}
\]

From Theorem 2.7 it follows:

\[
\beta^{(q)}_{i,j} = \begin{cases}
\sum_{k=1}^{n} \lambda_{k-1}^{p} P_{i-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1}), & \text{if } q \text{ is even,} \\
\sum_{k=1}^{n} \lambda_{k-1}^{p} P_{n-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1}), & \text{if } q \text{ is odd.}
\end{cases}
\]

By using the Cauchy Integral Formula, we can give another expressions of the coefficients \(\beta^{(q)}_{i,j} \):

\[
\beta^{(q)}_{i,j} = \begin{cases}
\int_{X} z^{q} \frac{P_{i-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} dz, & \text{if } q \text{ is even,} \\
\int_{X} z^{q} \frac{P_{n-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} dz, & \text{if } q \text{ is odd.}
\end{cases}
\]

Similarly, we have

\[
\omega^{(q)}_{i,j} = \begin{cases}
(-1)^{\frac{q}{2}} \int_{Y} z^{q} \frac{M_{i-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} dz, & \text{if } q \text{ is even,} \\
(-1)^{\frac{q-1}{2}} \int_{Y} z^{q} \frac{M_{n-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} dz, & \text{if } q \text{ is odd.}
\end{cases}
\]

This completes the proof.

Corollary 2.10 Assume that \(q \in N \), \(B^{-1}_n = (\beta^{(-1)}_{i,j})_{i\leq j, j=1} \) and \(C^{-1}_n = (\omega^{(-1)}_{i,j})_{i\leq j, j=1} \). Then:

\[
\beta^{(-1)}_{i,j} = \sum_{k=1}^{n} \frac{1}{\lambda_{k-1}} \frac{P_{i-1}(\lambda_{k-1}) P_{j-1}(\lambda_{k-1})}{P_{n}(\lambda_{k-1}) P_{n-1}(\lambda_{k-1})},
\]

\[
\omega^{(-1)}_{i,j} = \sum_{k=1}^{n} \frac{-1}{\lambda_{k-1}} \frac{M_{i-1}(\lambda_{k-1}) M_{j-1}(\lambda_{k-1})}{M_{n}(\lambda_{k-1}) M_{n-1}(\lambda_{k-1})}.
\]

By using the Cauchy Integral Formula, we can give another expressions of the coefficients \(\beta^{(-1)}_{i,j} \) and \(\omega^{(-1)}_{i,j} \):

\[
\beta^{(-1)}_{i,j} = \int_{X} z^{(-1)} \frac{P_{i-1}(z) P_{j-1}(z)}{P_{n}(z) P_{n-1}(z)} dz,
\]

(2.32)

\[
\omega^{(-1)}_{i,j} = \int_{Y} z^{(-1)} \frac{M_{i-1}(z) M_{j-1}(z)}{M_{n}(z) M_{n-1}(z)} dz,
\]

(2.33)

where \(X \) is a closed curve containing the roots of \(P_{n} \) and no roots of \(P_{n-1} \), \(Y \) is a closed curve containing the
roots of M_n and no roots of M_{n-1}.

3. NUMERICAL EXAMPLES

(a). The Persymmetric Case

Consider the n order anti-tridiagonal matrix B_n of the following type:

$$B_n = \begin{pmatrix}
1 & a & 1 & & & \\
1 & a & 1 & & & \\
& & & \ddots & & \\
& & & & & \\
a & & & & & 1
\end{pmatrix}$$

Assume that

$$A_n = \begin{pmatrix}
a & 1 & & & \\
& a & 1 & & \\
& & & \ddots & & \\
& & & & & a \\
& & & & & 1
\end{pmatrix},$$

and

$$J_n = \begin{pmatrix}
1 & & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & 1
\end{pmatrix},$$

where A_n and J_n are $n \times n$ matrix. The polynomial sequence $\{P_i\}_{i=0}^{n-1}$ verifies

$$xP_i(x) = P_{i+1}(x) + aP_i(x) + P_{i-1}(x), \quad i = 0, 1, \ldots, n-1.$$

With initial conditions $P_{-1}(x) = 0$ and $P_0(x) = 1$.

By simple calculation we can show that:

$$P_i(x) = U_i(\frac{x-a}{2}), \quad i = 0, \ldots, n,$$

where U_i are the Chebyshev polynomials [9] of the second kind which satisfies the three-term recurrence relations:

$$2xU_i(x) = U_{i+1}(x) + U_{i-1}(x),$$

with initial conditions $U_0(x) = 1$ and $U_1(x) = 2x$.

Each U_n satisfies
\[U_n(x) = \frac{\sin((n+1)\arccos x)}{\sin(\arccos x)}, \]
and thus the roots of \(U_n(x) \) are \(z_k = \cos \frac{k\pi}{n+1}, k = 1, \ldots, n \). Then, the eigenvalues of \(A \) are
\[\lambda_k = a + 2\cos \frac{k\pi}{n+1}, k = 1, \ldots, n. \]

By Theorem 2.7 We get: assume that \(q \in N \) and \(A^q = (\alpha_{i,j}^{(q)})_{|\leq s, j \leq n} \), then:
\[\alpha_{i,j}^{(q)} = 2 \sum_{k=1}^{n} (a + 2\cos \frac{k\pi}{n+1})^q \frac{U_{i-1}(\cos \frac{k\pi}{n+1})U_{j-1}(\cos \frac{k\pi}{n+1})}{U_n'(\cos \frac{k\pi}{n+1})U_{n-1}(\cos \frac{k\pi}{n+1})}. \]

If the matrix \(A \) is nonsingular, and \(A^{-1} = (\alpha_{i,j}^{(-1)})_{|\leq s, j \leq n} \). Then:
\[l\alpha_{i,j}^{(-1)} = 2 \sum_{k=1}^{n} \frac{1}{a + 2\cos \frac{k\pi}{n+1}} \frac{U_{i-1}(\cos \frac{k\pi}{n+1})U_{j-1}(\cos \frac{k\pi}{n+1})}{U_n'(\cos \frac{k\pi}{n+1})U_{n-1}(\cos \frac{k\pi}{n+1})}. \]

We can obtain:
\[\beta_{i,j}^{(q)} = \begin{cases}
2 \sum_{k=1}^{n} (a + 2\cos \frac{k\pi}{n+1})^q \frac{U_{i-1}(\cos \frac{k\pi}{n+1})U_{j-1}(\cos \frac{k\pi}{n+1})}{U_n'(\cos \frac{k\pi}{n+1})U_{n-1}(\cos \frac{k\pi}{n+1})}, & \text{if } q \text{ is even,} \\
2 \sum_{k=1}^{n} (a + 2\cos \frac{k\pi}{n+1})^q \frac{U_{n-1}(\cos \frac{k\pi}{n+1})U_{j-1}(\cos \frac{k\pi}{n+1})}{U_n'(\cos \frac{k\pi}{n+1})U_{n-1}(\cos \frac{k\pi}{n+1})}, & \text{if } q \text{ is odd.}
\end{cases} \]

and
\[\beta_{i,j}^{(-1)} = 2 \sum_{k=1}^{n} (a + 2\cos \frac{k\pi}{n+1})^{-1} \frac{U_{i-1}(\cos \frac{k\pi}{n+1})U_{j-1}(\cos \frac{k\pi}{n+1})}{U_n'(\cos \frac{k\pi}{n+1})U_{n-1}(\cos \frac{k\pi}{n+1})}. \]

If \(a = 0 \), we have the following theorems.

Theorem 3.1 Consider an odd natural number \(n = 2m + 1, m \in N \). Let \(B_n = \text{antitridia}_n(1,0,1) \) and \(\lambda_k = -2\cos \frac{k\pi}{n+1} \) for every \(1 \leq k \leq n \). Then
\[\left[B_n^* \right]_{ij} = \frac{1 + (-1)^{q+i+j}}{2n+2} \sum_{k=1}^{n-1} \beta_{i,j}(k) \lambda_k^2 (4 - \lambda_k^2) U_{n-i} \left(\frac{\lambda_k}{2} \right) U_{n-j} \left(\frac{\lambda_k}{2} \right), \]
for all \(q \in N \) and \(1 \leq i, j \leq n \), where
\[
\beta_{i,j}(k) = \begin{cases}
1, & \text{if } i + j \text{ is even}, \\
(-1)^{k-1}, & \text{if } i + j \text{ is odd}.
\end{cases}
\]
\(\lambda_k (k = 1, 2, \cdots, n) \) are the eigenvalues of the matrix \(B_n \), \(U_n(x) \) is the \(k \) th degree Chebyshev polynomial of the second kind.

Theorem 3.2 Consider an even natural number \(n = 2m \), \(m \in N \). Let \(B_n = antitridia g_n(1,0,1) \) and \(\lambda_k = -2 \cos \frac{k\pi}{n+1} \) for every \(1 \leq k \leq n \). Then
\[
[B^q_n]_{i,j} = \frac{1}{n+1} \gamma_{i,j} \sum_{k=1}^{n} \lambda_k^q (4-\lambda_k^2) U_{n-1}(\frac{\lambda_k^2}{2}) U_{n-j}(\frac{\lambda_k^2}{2})
\]
for all \(q \in N \) and \(1 \leq i, j \leq n \), where \(\gamma_{i,j} = \begin{cases}
1, & \text{if } i + j \text{ is even}, \\
0, & \text{if } i + j \text{ is odd}.
\end{cases} \)

For even order matrix \(B \) the following condition is fulfilled: \(\lambda_k \neq 0(k = 2, 4, \cdots, n) \). This means, that even order matrix \(B_n = antitridia g_n(1,0,1) \) is nonsingular (its determinant is not equal to zero) and derived expression of \(B^q_n \) can be applied for computing negative integer powers, as well. Taking \(q = -1 \), we get the following expression for elements of the inverse matrix \(B_n^{-1} \)
\[
[B_n^{-1}]_{i,j} = \frac{1}{n+1} \gamma_{i,j} \sum_{k=1}^{n} \lambda_k^q (4-\lambda_k^2) U_{n-1}(\frac{\lambda_k^2}{2}) U_{n-j}(\frac{\lambda_k^2}{2}), i, j = 0, 1, \cdots, n.
\]

If \(a = 1 \), we have the following theorems.

Theorem 3.3 Consider an even natural number \(n = 2m \), \(m \in N \). Let \(B_n = antitridia g_n(1,1,1) \) and \(\lambda_k = (-1)^{k-1}(1+2 \cos \frac{k\pi}{n+1}), (k = 1, 2, \cdots, n) \). Then
\[
[B^q_n]_{i,j} = \frac{2}{n+1} \sum_{k=1}^{n} \lambda_k^q \sin \frac{k\pi}{n+1} \sin \frac{k\pi}{n+1}
\]
\[
= \frac{2}{n+1} \sum_{k=1}^{n} [\lambda_k^q + (-1)^{i+j}(\lambda_k + 2(-1)^q)] \sin \frac{k\pi}{n+1} \sin \frac{k\pi}{n+1}.
\]

b. The Skew-persymmetric Case

For \(C_n = antitridia g_n(b,0,-b) \), if \(b = 1 \), we have the following theorem by Theorem 2.9.

Theorem 3.4 Consider \(n \in N \). Let \(C_n = antitridia g_n(1,0,-1) \) and \(\lambda_k = -2 \cos \frac{k\pi}{n+1}, (k = 1, 2, \cdots, n) \). If \(q \equiv i + j \), we have
\[
[C_n]_{i+j}^{q} = \frac{(-1)^{i+j}}{n+1} \sum_{k=1}^{n} \lambda_k^q (4-\lambda_k^2) U_{i-1}(\frac{\lambda_k^2}{2}) U_{j-1}(\frac{\lambda_k^2}{2}).
\]
In other case, we get
\[
[C_n]_{i,j}^{q} = 0,
\]
where $\tilde{i} = \begin{cases}
 i & \text{if } q \text{ is even}, \\
 n+1-i & \text{if } q \text{ is odd}.
\end{cases}$

From Theorem 3.4, we can find any of these positive integer power of $C_n = antitridia g_n(1,0,-1)$. As an example, we consider the cases $n = 3$.

$$C_3^q = \begin{cases}
 \left(\begin{array}{ccc}
 \gamma_1 & \gamma_2 & \gamma_3 \\
 \gamma_2 & \gamma_4 & \gamma_2 \\
 \gamma_3 & \gamma_2 & 0 \\
 \gamma_2 & 0 & -\gamma_2 \\
 0 & -\gamma_2 & -\gamma_3
\end{array} \right) & \text{if } q \text{ is even,} \\
 \left(\begin{array}{ccc}
 \gamma_1 & \gamma_2 & \gamma_3 \\
 \gamma_2 & \gamma_4 & \gamma_2 \\
 \gamma_3 & \gamma_2 & 0 \\
 \gamma_2 & 0 & -\gamma_2 \\
 0 & -\gamma_2 & -\gamma_3
\end{array} \right) & \text{if } q \text{ is odd.}
\end{cases}$$

where $\gamma_1 = c^{q-3}[1 + (-1)^q]$, $\gamma_2 = c^{q-3}[1 + (-1)^q]$, $\gamma_3 = -c^{q-4}[1 + (-1)^q]$, $\gamma_4 = c^{q-2}[1 + (-1)^q]$ with $c = \sqrt{2}$.

4. CONCLUSION

In this paper, we derive a general expression for the pth power ($p \in N$) of any complex persymmetric anti-tridiagonal Hankel (constant anti-diagonals) matrices with constant anti-diagonals ($antitridia g_n(b,a,b)$ and $antitridia g_n(b,0,-b)$). Numerical examples are presented. This novel expression is both an extension of the one obtained by Rimas for the powers of the matrix $antitridia g_n(1,0,1)$ with $n \in N$ (see [4] for the odd case and [7] for the even case) and an extension of the one obtained by Honglin Wu for the powers of the matrix $antitridia g_n(1,1,1)$ with $n \in N$ (see [5] for the even case). We may safely draw the conclusion: our results generalize the results in [4],[5],[7].

REFERENCES

[1]. R.M. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends in Communications and Information Theory 2 (3) (2006) 155–239.
[2]. P.M. Crespo, J. Gutiérrez-Gutiérrez, On the elementwise convergence of continuous functions of Hermitian banded Toeplitz matrices, IEEE Transactions on Information Theory 53 (3) (2007) 1168–1176.
[3]. J.Gutierrez, Powers of complex persymmetric or skew-persymmetric anti-tridiagonal matrices with constant anti-diagonals, Appl.Math.Comput. 217 (2011) 6125-6132.
[4]. J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric anti-tridiagonal matrices of odd order, Applied Mathematics and Computation 203 (2008) 573-581.
[5]. Honglin Wu, On computing of arbitrary positive powers for one type of anti-tridiagonal matrices of even order, Appl. Math. Comput. 217 (2010) 2750-2756.
[6]. Qingxiang Yin, On computing of arbitrary positive powers for anti-tridiagonal matrices of even order, Appl. Math. Comput. 203 (2008) 252-257.
[7]. J.Rimas, on computing of arbitrary positive integer power of odd order anti-tridiagonal matrices with zeros in main skew diagonal and elements 1,1,...,1;1,1,...,1 in neighbouring diagonals. Appl. Math. Comput.210(2009)64-71.
[8]. R.A.Horn, C.R. Johnson, Matrix analysis, Cambridge University press. New York. 1990.
[9]. L.Fox, J.B.parke, Chebyshev Polynomials in Numerical Analysis, Oxford University Press. London. 1968.
[10]. J.Rimas, Integer powers of real odd order skew-persymmetric anti-tridiagonal matrices with constant anti-diagonals, Appl. Math. Comput.219(2013)7075-7088.