The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes
Hélène Hardré, Lauriane Kuhn, Catherine Albrieux, Juliette Jouhet, Morgane Michaud, Daphné Segneurin Berny, Denis Falconet, Maryse Block, Eric Maréchal

To cite this version:
Hélène Hardré, Lauriane Kuhn, Catherine Albrieux, Juliette Jouhet, Morgane Michaud, et al.. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. Frontiers in Plant Science, Frontiers, 2014, 5, pp.1-15. 10.3389/fpls.2014.00203 . hal-02637436

HAL Id: hal-02637436
https://hal.inrae.fr/hal-02637436
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes

Hélène Hardré1, Lauriane Kuhn2, Catherine Albrieux1, Juliette Jouhet1, Morgane Micheaud1, Daphné Seigneurin-Benny1, Denis Falconet1, Maryse A. Block1 and Eric Maréchal1*

1 Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSV, CEA Grenoble, Grenoble, France
2 Laboratoire de Biologie à Grande Echelle, iRTSV, CEA Grenoble, Grenoble, France

*Correspondence: Eric Maréchal, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSV, CEA Grenoble, 17 rue des Martyrs, F-38054, Grenoble 09, France
E-mail: eric.marechal@cea.fr

INTRODUCTION
The chloroplast is a specific organelle inside plant and algal cells, involved in numerous biochemical functions, including photosynthesis. This organelle derives from an ancestral cyanobacterium following an endosymbiotic event. Its membrane compartmentation is undoubtedly one of the most complex found in eukaryotic cells. In higher plants, chloroplasts are delimited by an envelope made of two membranes, the outer and the inner envelope membrane, OEM and IEM, respectively. In the stroma, additional membrane sacs, the thylakoids, provide an extensive surface for light capture and photosynthetic energy conversion. Liquid phase compartments comprise the inter-membrane space between the OEM and IEM, the stroma, and the lumen of thylakoids. Understanding the mechanisms that orchestrate the chloroplast biogenesis, differentiation and function, requires a fine sub-organellar localization of the chloroplast components. The characterization of cytosolic components associated with the envelope surface is further needed to understand the functional integration of the organelle within the rest of the cell.

The vast majority of plastid proteins are encoded by nuclear genes. Protein precursors are synthesized within the cytosol with an N-terminal chloroplastic transit peptide (Ctp). For major chloroplast precursors (small subunit of the Rubisco, the β subunits of the oxygen evolving complex and the ATPase γ subunit), the Ctp is phosphorylated in the cytosol, stimulating the association of a hetero-oligomeric complex, the guidance complex, with a 14-3-3 dimer, a cytosolic heat shock protein HSP70/Com70, and possibly several other components (Pontier et al., 2007; Li and Chiu, 2010; Lee et al., 2013). The Ctp subsequently binds to the general import machinery, the TOC/TIC translocon, which directs precursors across the envelope membranes (Li and Chiu, 2010). After import, the Ctp is cleaved by a stromal processing peptidase (for review, Li and Chiu, 2010). This process is sufficient to address the majority of
stromal and IEM proteins. Nevertheless, some Ctp-less precursors were shown to be addressed to the IEM (Tranel and Keegstra, 1996; Miras et al., 2002, 2007). With the noticeable exception of Toc75 harboring a bipartite transit peptide (Tranel et al., 1995; Tranel and Keegstra, 1996), most OEM proteins have no cleavable addressing signal and follow independent import systems (Li and Chiu, 2010). Thus, although some general processes appear to target the bulk of proteins inside chloroplast sub-compartments, none is universal, and even though Ctp features are useful for computational predictive methods, no bioinformatic tool allows determination of proteins based on mass spectrometry analyses. This was performed first using spinach chloroplast leaves as a convenient starting material yielding high amounts of pure chloroplasts and, with improvement of analytical sensitivity, with Arabidopsis leaves, benefiting of all the genomic information made available for this model. A difficulty was that 2D-PAGE resolution was unsuccessful in the recovery of trans-membrane proteins and the yield of less hydrophobic proteins decreased with loaded protein amounts. The main constraint limiting the analysis of integral proteins is due to hydrophobic polypeptides, which cannot be resolved by isoelectric focusing (IEF) and electrophoresis, even under stringent denaturing conditions. To circumvent this problem, the most hydrophobic envelope proteins were selectively extracted using organic solvents. The resulting extract could be resolved by 1-D SDS-PAGE, and proteins identified by mass spectrometry methods (Seigneurin-Berny et al., 1999; Ferro et al., 2000; Rolland et al., 2003). Owing to the selective solubility fractionation, integral envelope proteins were inventoried for the first time and miss-localizations corrected. Having performed and validated the subcellular localization of envelope protein markers by immunostaining and chloroplast visualization of GFP-protein fusions, 2D-PAGE based proteomic studies have served as references for comprehensive and highly sensitive proteome characterization of envelope sub-compartments in Arabidopsis (Rolland et al., 2006; Salvi et al., 2008; Joyard et al., 2010), which results have been made accessible via the AT_CHLORO database (Ferro et al., 2010) (http://www.grenoble.prabi.fr/at_chloro/).

A major challenge is to get access to topological information (what is inward and outward a given membrane) and how protein complexes get associated. In the present paper, we proceeded stepwise. For the convenience of pure organelle pre-treatments, we used spinach chloroplasts as a model. We used conditions allowing the resolution of envelope-associated proteins by 2-D PAGE, a procedure also efficient for the resolution of thylakoid and stroma proteins. Because no gold standard has been defined for 2-D PAGE analysis of chloroplast envelope proteins, the quality of the 2-D profiles we obtained was assessed by immunostaining with antibodies raised against envelope, thylakoid and stroma protein markers. Further protein identification was based on mass spectrometry analyses. Proteins exposed at the surface of chloroplasts were sought by complementary methods, i.e., selective superficial biotin-tagging and thermolysin-proteolysis. In addition to known envelope membrane proteins, our analyses of intact or tagged/shaved envelope membranes, showed that soluble proteins were also detected at the periphery of the envelope, sometimes associated to stable trans-envelope complexes. From this characterization, several processes were shown to be structurally associated to the envelope: a channeling of stromal protein maturation, a dynamic assembly and structural stability of some stromal and trans-envelope complexes and several important steps of stromal RNA editing. Our work introduces therefore a “tag and shave” strategy as a possible approach to characterize peripheral membrane proteins of a membrane bound organelle, bringing topological clues concerning the sub-organelar localization of proteins and their possible involvement in large functional complexes connecting sub-compartments. This technical development was performed on spinach leaves so as to provide abundant organellar material, and future directions using more accurate plant models are discussed.

MATERIALS AND METHODS

ISOULATION OF PURIFIED INTACT SPINACH CHLOROPLAST AND PREPARATION OF SPINACH CHLOROPLAST SUBFRAC TIONS

All operations were carried out at 0–5°C. Spinach leaves were obtained freshly from the market and kept overnight in the dark at 4°C so as to reduce the starch content (Joyard et al., 1982). Crude chloroplasts were isolated from 3 kg of spinach (Spinacia oleracea L.) leaves. Envelope, stroma, and thylakoid subfractions from the chloroplasts were purified as described previously (Joyard et al., 1982). All manipulations were performed at 4°C. In brief, deveined spinach leaves were homogenized in 2 L of sucrose 0.33 M, Na-pyrophosphate 30 mM, Bovine serum albumin 1 g L⁻¹, pH 7.8, for 2 s in a 4-L Waring Blender and a crude chloroplast pellet was obtained from the leaf homogenate. The pellet was washed in sucrose 0.33 M, MOPS 10 mM, pH 7.8. To avoid contamination by other membrane organelles and swollen thylakoid membranes, the chloroplast preparation was purified further by isopycnic centrifugation on a Percoll (Pharmacia) gradient (40% Percoll, 50 mL and 80% Percoll, 20 mL in washing buffer; 5000 g, 20 min). Intact chloroplasts were collected at the interface between the 40 and 80% Percoll cushions. At this stage, thermolysin treatment or biotin tagging was performed as described below. Envelope, thylakoids, and stroma were prepared from purified, intact chloroplasts after swelling in a hypotonic medium (MOPS 10 mM, MgCl₂ 4 mM, EDTA 5 mM, pH 7.8 in presence of protease inhibitors) followed by ultra-centrifugation through a step sucrose gradient (sucrose 0.6 M, 10 mL and 0.93 mM, 12 mL in MOPS 10 mM, MgCl₂ 4 mM, EDTA 5 mM, pH 7.8 in presence of protease inhibitors; 72,000 g, 1 h). The swelling medium as well as the different sucrose layers contained the following protease inhibitors: EDTA, 5 mM, phenylmethylsulfonylfluoride, 1 mM; E-aminocaproic acid, 5 mM; and benzamidine-HCl, 1 mM. The yield of envelope membranes was 2–3 mg of protein/kg of spinach leaves.
PROTEASE TREATMENT OF ISOLATED INTACT SPINACH CHLOROPLAST

To study polypeptides localized on the external face of the OEM, intact spinach chloroplasts were treated with thermolysin from Bacillus thermoproteolyticus (Boehringer Mannheim, Germany). Protease treatments were carried out on ice, under light conditions and using intact chloroplasts at 1 mg·mL⁻¹ of chlorophyll in buffer T containing 100 mM sucrose, 0.33 M saccharose, 20 mM MOPS pH 7.8, 1 mM CaCl₂. The reaction was terminated after 1 h with EDTA (10 mM). Treated chloroplasts were layered on a Percoll gradient as described above, in presence of EDTA (10 mM) and centrifuged at 5000 g for 20 min to obtain intact plastids. Intact treated chloroplasts were used to purify envelope, stroma, and thylakoid sub-fractions as described above (Joyard et al., 1982), in presence of EDTA (5 mM) and of a cocktail of protease inhibitors. Samples that were not treated with protease (mock) went through the same procedure except that buffer T was deprived of thermolysin.

BIOTINYLIATION OF ISOLATED INTACT SPINACH CHLOROPLAST

To study polypeptides of the OEM, intact spinach chloroplasts were superficially labeled with the hydrophilic biotinylation reagent 6-[(6-((biotinyl)amino)hexanoyl)amino]hexanoic acid, succinimidyl ester (biotin-XX,SE; Molecular Probes). Biotinylation reaction was performed during 15 min at 4°C. Chlorophyll content of intact chloroplasts was measured as described (Arnon, 1949). Chloroplast labeling reactions were carried out on ice using intact chloroplasts at 5 mg·mL⁻¹ of chlorophyll in buffer B containing 20 µM of biotin-XX,SE, 0.33 M saccharose, 50 mM sodium bicarbonate pH 8.3, 0.1% (v/v) Dimethyl Sulfoxide (DMSO). The biotinylation reaction was terminated after 15 min with hydroxyamine 5 mM. Biotinylated plastids were suspended in 0.33 M saccharose, 50 mM MOPS pH 7.8, and centrifuged at 5000 g for 20 min to obtain intact plastids. Intact treated chloroplasts were layered on a Percoll gradient in 0.33 M saccharose, 50 mM MOPS pH 7.8, and centrifuged at 5000 g for 20 min to obtain intact plastids. Intact treated chloroplasts were used to purify envelope, stroma, and thylakoid sub-fractions as described above. Intact treated chloroplasts were suspended in 0.33 M saccharose, 50 mM MOPS pH 7.8, in presence of EDTA (5 mM) and protease inhibitors and envelope, stroma, and thylakoid sub-fractions were purified as described above. Samples that were not biotinylated (mock) went through the same procedure except that buffer T was deprived of thermolysin.

ONE-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS (1-D SDS-PAGE)

Proteins prepared from intact or biotinylated spinach chloroplast sub-fractions (20 µg proteins, determined using the BCA protein assay kit, BioVision, and bovine serum albumin as a standard) were separated by SDS-PAGE (11% polyacrylamide gel) according to standard procedures. Separated proteins were either electro-transferred to nitrocellulose membranes or stained with Coomassie brilliant blue G-250.

TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS (2-D PAGE)

All reagents and materials were obtained from Bio-Rad unless indicated. Polypeptides of the chloroplast sub-fractions (stoma, thylakoid, and envelope membranes) were analyzed by 2-D PAGE. Each sub-fraction (200 µg proteins) was solubilized in 250 µl of a rehydration buffer containing 8 M urea, 2 M thiourea, 4% (w/v) CHAPS, 100 mM dithiothreitol (DTT), and 0.2% (v/v) Bio-lytes (0.1% of pH 4–6 + 0.1% of pH 5–7 or 0.2% of pH 3–10). After 30-min incubation at 20°C, the solubilized proteins were used for passive hydration of linear immobilized pH gradient (IPG) strips (7 cm; pH 4–7 or pH 3–10). Then, the 7 cm IPG strips were subjected to the following IEF program using a Bio-Rad Protein IEF System: constant voltage at 50 V for 4 h; constant voltage at 250 V for 2 h; linear increase from 250 to 4000 V over 9 h and constant voltage set at 4000 V for a total of 25 kV·h. The current was limited (50 µA per strip), and the running temperature was set at 20°C. The strips were stored at −20°C until used for second dimension. To solubilize proteins focused during the first dimension run, IPG strips were equilibrated for 20 min in equilibration buffer 1 containing 6 M urea, 20% (w/v) glycerol, 2% (w/v) SDS, 375 mM Tris-HCl, pH 8.8, 130 mM DTT, and for 40 min in equilibration buffer 2 containing 6 M urea, 20% (w/v) glycerol, 2% (v/v) SDS, 375 mM Tris-HCl, pH 8.8, 135 mM iodoacetamide. After equilibration, IPG strips were loaded on top of a 13% acrylamide gel and fixed with molten agarose solution to ensure good contact between gel and strip. Twelve gels were cast under identical conditions within multi-casting chambers. A BioRad Dodeca cell was used to ensure that gels were run under the same electrical conditions. Electrophoresis was performed at 20°C in the following buffer: 25 mM Tris-HCl, 192 mM Glycine and 2% (v/v) SDS for 1 h at 25 V followed by 2 h at 100 V. Separated proteins were either electro-transferred to nitrocellulose membranes or stained with Coomassie brilliant blue G-250.

IMMUNOBLOTTING STUDIES OF PROTEINS

Electro-transfer of proteins separated by SDS-PAGE or 2-D PAGE on nitrocellulose membranes (Hybond-ECL, Amersham, Pharmacia Biotech) was carried out using standard procedures. Western blot analyses were achieved using 300 mM NaCl, 10 mM Tris-HCl, pH 7.5, containing non-fat dried milk (50 g·L⁻¹) as blocking buffer. All antibodies were from rabbit sera. Polyclonal antibodies raised against spinach OEP10 and OEP24 [anti-OEP10 and anti-OEP24, (Joyard et al., 1982)], which are specific marker of the OEM, spinach IEP37 [anti-IEP37, (Joyard et al., 1982)], a major IEM polypeptide, spinach MGDG synthase 1 [anti-MGDG1, (Awai et al., 2001)], a minor IEM polypeptide, and polyclonal antibodies against the recombinant Arabidopsis protein ceQORH [anti-ceQORH, (Miras et al., 2002)] associated with the IEM, were used to analyze envelope fractions. Polyclonal antibodies against ketol-acid reductoisomerase [anti-KARI from spinach, (Pontier et al., 2007)], a major polypeptide from the stroma, and the α, β, and γ subunits of the ATP synthase coupling factor 1 [anti-CF1 from spinach, (Pontier et al., 2007)], a major complex from thylakoids, were used to analyze stroma and thylakoid fractions, respectively. Immune complexes were detected using horseradish-peroxidase-conjugated anti-rabbit IgGs, and chemiluminescence visualization (ECL, Amersham Bioscience).

DETECTION OF BIOTINYLATED PROTEINS

After electro-transfer of proteins separated by SDS-PAGE or 2-D PAGE on nitrocellulose, membranes were incubated overnight in 300 mM NaCl, 30 g·L⁻¹ bovine serum albumine, 10 mM...
Tris-HCl, pH 7.5. Biotinylated proteins were detected on the blots after reaction with horseradish-peroxidase-conjugated streptavidin (Strep-HRP), and chemiluminescence visualization (ECL, Amersham Bioscience) according to the manufacturer instructions.

MASS SPECTROMETRY AND PROTEIN IDENTIFICATION

After separation by 2-D PAGE, discrete spots were detected based on Coomassie blue-staining and excised from the gel. Correspondence between Coomassie-blue stained and chemiluminescent spots were determined based on comparisons using the ImageJ software (NIH). Relative quantities of proteins were assessed based on the staining intensity. Since Coomassie staining is not linearly correlated with absolute quantities of proteins, analyses were based on relative intensities, when comparing treated and untreated gels, allowing only most striking differences to be measured. An in-gel digestion was carried out as described (Ferro et al., 2000). Gel pieces were extracted with 5% [v/v] formic acid solution and acetonitrile from a gel corresponding to an untreated or treated sample. For this evaluation study, only one gel per condition was analyzed by mass spectrometry. Extracted peptides were desalted using C18-Zip Tips (Millipore). Elution of peptides was performed with 5–10 µl of a 50:50:0.1 (vol/vol) acetonitrile/H2O/formic acid solution. The tryptic peptide solution was introduced into a glass capillary (Protaga, Odense, Denmark) for nanoelectrospray ionization. Tryptic peptide mass fingerprints were first assessed by matrix-assisted laser desorption/ionization-time of-flight mass spectrometry (MALDI-TOF/MS) analyses as described (Journet et al., 2000). Tandem mass spectrometry experiments were carried out on a Q-TOF hybrid mass spectrometer (Micromass). Interpretation of MS/MS spectra was achieved manually and with the help of the PEPSEQ program (MassLynx software, Micromass, Manchester, UK). MS/MS sequence information was used for database searching using the BLASTCOMP program (Ferro et al., 2002) performing BLAST searches for each amino acid sequence and clustering amino acid sequences identified from common BLAST hits. BLASTP and TBLASTN were used to mine plant protein and genomic databases, respectively.

RESULTS

SELECTIVE SUPERFICIAL BIOTIN-TAGGING AND THERMOLYSIN-PROTEOLYSIS OF ISOLATED CHLOROPLASTS

Superficial proteins from chloroplasts are potentially sensitive to non-permeable tagging or proteolysis. We sought therefore to “shave” or “tag” the surface of pure and intact chloroplasts isolated from spinach leaves.

“Shaving” was the easiest since treatment with the non-permeable protease thermolysin is a well-established method to digest proteins accessible at the outer surface of the OEM (Dorne et al., 1982; Joyard et al., 1983). Based on previous works, thermolysin appears therefore as a protease of choice, which cannot access the IEM or stroma. After proteolytic digestion of surface proteins, intact chloroplasts were re-isolated on a Percoll cushion, and chloroplast sub-compartment (envelope, stroma, thylakoids) were fractionated.

Superficial protein tagging with a biotinyl group was described for *Escherichia coli* (Bradburne et al., 1993) and *Helicobacter pylori* (Sabarth et al., 2002). For our purpose, we used the biotinylation reagent 6-((biotinyl)amino)hexanoyl)amino)hexanoic acid, succinimidyl ester (biotin-XX,SE). To prevent passive diffusion of the reagent through the OEM porine, (i) biotin-XX,SE (Mr 568) was selected for its relative hydrophobicity, (ii) biotinylation reaction was short (15 min), and (iii) temperature was kept low (4°C). By this mean, no biotinylation of IEM markers was detected. The succinimidyl ester reacts covalently with primary amino groups, i.e., the accessible N-termini and the ε-amino from lysyl residues. After biotinylation, intact chloroplasts were re-isolated on a Percoll gradient, and chloroplast sub-compartments (envelope, stroma, thylakoids) were fractionated. To control the efficiency of the biotinylation, after electrophoresis and transfer on nitrocellulose membranes, tagged proteins were visualized after reaction with streptavidin conjugated to horseradish peroxidase, and chemiluminescence detection. Figure 1A shows a 1-D SDS PAGE analysis of 20 µg proteins from envelope, thylakoid and stroma fractions obtained from chloroplast treated in the absence (left) or presence (right) of biotin-XX,SE. Figure 1B shows the biotin detection in each fraction following streptavidin reaction. Antibodies raised against ketol-acid reductoisomerase (anti-KARI), a major polypeptide from spinach chloroplast stroma, and the α, β, and γ subunits of the ATP synthase coupling factor 1 (anti-CF1), a major protein from thylakoids, were used to analyze stroma and thylakoid fractions, respectively, (Figure 1C). The α and β subunits were detected in both the envelope and stromal fractions, with a relative enrichment of the β subunit in the envelope and of the α subunit in the stroma (Figure 1C). As expected, naturally biotinylated stromal proteins could be detected (Figure 1B, control). In Figure 1B a black arrow indicates the band migrating at the molecular weight of biotin carboxyl carrier protein (BCCP), a subunit of the acetyl-CoA carboxylase complex (Alban et al., 1995; Elborough et al., 1996). Additional naturally biotinylated plastid proteins (Elborough et al., 1996) were also visualized, including a major band migrating at a molecular weight of ~50 kDa (Figure 1B, control) that might correspond to the unknown 50 kDa biotin-binding protein observed in rapeseed by Elborough et al. (1996). Only a few biotin-containing proteins have been characterized in plants, involved in the catalysis of carboxylation reaction or containing a non-catalytic biotin (Nikolaou et al., 2003), including a geranyl-CoA carboxylase protein, localized in the plastid in maize, and which gene sequence has to be determined. We did not characterize the streptavidine-binding proteins we observed in the stroma of spinach chloroplasts and do not propose any tentative identification for the corresponding bands. These results confirm that in our conditions, after treatment of isolated chloroplasts with the biotinylating reagent, the envelope fraction was the predominant compartment to be differentially tagged (Figure 1B, +20 µM biot). Envelope proteins of untreated chloroplasts or after treatment with biotin-XX,SE (“tagged” chloroplasts) or with thermolysin (“shaved” chloroplasts) were subjected to 2-D PAGE (see below). Surface proteins might exhibit primary amino groups possibly tagged with biotin. They might also exhibit
Hardré et al. Biotinylation and thermolysin treatment of chloroplast OEM

FIGURE 1 | Specific chloroplast envelope biotinylation. Proteins prepared from intact (control) or biotinylated (20 µM Biot) spinach chloroplast sub-fractions (20 µg) were separated by 1D-PAGE. Polypeptides were either stained with Coomassie brilliant blue G-250 (A) or electro-transferred to nitrocellulose membranes (B,C). (B) Biotin was detected after reaction with streptavidin coupled to horse-radish peroxidase (HRP). Naturally biotinylated proteins from the stroma are indicated in control conditions (black and white arrows, see text). (C) Western blot detection of the CF1 ATPase \(\alpha \), \(\beta \), and \(\gamma \) subunits from thylakoids (anti-CF1 1/10,000) and of the ketol-acid reductoisomerase from the stroma (anti-KARI 1/5000). E, envelope; T, thylakoids; S, stroma.

leucine or phenylalanine residues possibly cleaved by thermolysin. Alternatively, some surface proteins may not exhibit any such residues and be not altered by “tag” or “shave” treatments. Thus, Table 1 summarizes the simplest surface prediction of a protein according to its sensitivity to the “tag and shave” treatments. A single biotinylation induces a molecular weight increase of \(\sim 0.45 \) Da and no charge modification. As a result, 2-D PAGE resolution of biotinylated proteins should be nearly undistinguishable from the pattern of the corresponding non-biotinylated proteins.

Table 1 | Initial assessment of envelope peripheral protein topology after “tag” or “shave” positive reactions.

Biotinylation (tagged)	Thermolysin sensitivity (shaved)	Protein at the surface of the organelle
-	-	?
+	-	yes
-	+	yes
+	+	yes

(?) In the absence of biotinylation or sensitivity to thermolysin, although the polypeptide is probably not exposed at the surface of the plastid envelope, one cannot exclude a localization at the OEM.

TWO-DIMENSIONAL ELECTROPHORESIS OF CHLOROPLAST SUBFRACTIONS

We performed 2-D PAGE analyses of chloroplast sub-fractions based on methods previously developed to analyze thylakoid peripheral and luminal proteins (Peltier et al., 2000; Schubert et al., 2002). We thus attempted to adapt the 2-D PAGE procedure for envelope samples in order to limit the poor yield in integral proteins as much as possible. Protein samples were loaded into the first electrophoretic dimension gel by rehydration of dried IEF strips (passive hydration of linear IPG strips). In most works, re-hydration of the IEF gel is usually carried out with an upper layer of mineral oil preventing water evaporation. By this technique, we noticed that after gel loading, Coomassie staining of the IEF rehydrated strip could detect little proteins, whereas substantial amounts of proteins were found in the mineral oil, with a 1-D SDS PAGE pattern close to that of chloroplast envelope (not shown). In addition to precipitation during IEF, membrane associated proteins were also lost by partition within the mineral oil before IEF loading. The 2-D PAGE resolutions reported here were therefore achieved after a 3-h passive hydration of linear IEF strips, without mineral oil over-layer, prior IEF and SDS 2-D PAGE. Figure 2 shows the envelope protein 2-D PAGE resolution after IEF on a 4–7 pH gradient. About 300 spots were visible after Coomassie staining, out of which 85 were circled for further mass spectrometry analyses. Biotinylation of envelope proteins could be globally visualized after 2-D PAGE (Figure 3B, left). Antibodies raised against the stromal ketol-acid reductoisomerase (anti-KARI), and the thylakoid ATP synthase coupling factor 1 (anti-CF1, \(\alpha \), \(\beta \), and \(\gamma \)-subunits),

www.frontiersin.org
consistently reacted with polypeptides from the stroma and thylakoid fractions, respectively, (Figure 3C). Whereas immunostaining was not observed in envelope membranes purified from thermolysin-treated samples (Figure 4C), immuno-staining with anti-KARI or anti-CF1 was not detected after 2-D PAGE of envelope proteins (not shown). Similarly, the naturally biotinylated stromal proteins detected after 1-D PAGE (Figure 1B) were not detected after 2-D PAGE (Figure 3B, center). The chemiluminescence detection threshold of immunolabeled or tagged proteins is therefore lower after 2-D PAGE, probably reflecting the relatively lower yield of 2-D PAGE compared to 1-D PAGE, with a loss of parts of the hydrophobic proteins, a phenomenon we tried to control, but which should nevertheless be considered when analyzing results. An interesting consequence of this feature is that the immunostaining of a polypeptide resolved by 2-D PAGE indicates therefore a strong immunogenic reaction.

IMMUNOSTAINING-BASED PROTEOMIC ASSESSMENT

Figure 4 shows the immunostaining-based identification of a set of envelope protein markers resolved by 2-D PAGE. Proteins were extracted from chloroplasts treated in the absence or presence of thermolysin, prior to sub-organellar fractionation (Figure 4A). Antibodies raised against OEP24, an OEM integral protein, IEP37, an IEM quinone methyl transferase and MGD1, the IEM MGDG synthase, reacted positively with envelope polypeptides (Figures 4B–D, left panels). The IEF of IEP37 was broad, an observed feature we could not explain. Main immunostaining was focused at the level of spot 26 (Figure 4C), in the acidic part of the gradient whereas the predicted IEP37 pI is 9.2 (Teyssier et al., 1996). Immunostaining at the level of spot 56 and to a lesser extent at the level of spot 57 possibly correspond to cross reactions of the antibody with minor proteins migrating at a slightly lower molecular weight compared to IEP37, with a higher pI and being sensitive to thermolysin treatment. Immunostaining of spinach chloroplast envelope proteins with the anti-IEP37 antibody can, in some cases, allow the detection of a broad band in 1D-PAGE (Figure 4H) possibly corresponding to some minor variations of the IEP37 sequence in the spinach leaves samples we collected for our experiments. Two additional antibodies, raised against OEP10 and FtsZ2 associated to the OEM and IEM, respectively, also decorated envelope polypeptides (Table 2 and Figure 4E). Although OEP10 size is 6.7 kDa, the migration of this hydrophobic polypeptide containing one transmembrane segment in our 2-D PAGE was at the apparent molecular weight of 110, as assessed by both immunostaining and mass spectrometry determination (Table 2). As expected from their known localization in the OEM or IEM (Figure 4G), OEP24 and OEP10 were “shaved” away by the thermolysin treatment, whereas IEP37 and MGD1 were still detected in thermolysin-treated samples (Figures 4B–D, right panels). These analyses provide therefore a control for the accuracy of the thermolysin treatment. Interestingly, FtsZ2 immunostaining was not observed in envelope membranes purified from thermolysin-treated chloroplast, a phenomenon reported earlier (El-Kafafi et al., 2005) and consistent with: (i) the association of this peripheral protein of the IEM to an trans-envelope complex and (ii) the dependence of this association on the integrity of some of its OEM components.

We sought whether the 2-D PAGE conditions we set up could accurately resolve basic membrane protein known to be particularly difficult to analyze by such technique. In pH 3–10 immobilized gradient conditions, polypeptides are detected after Coomassie staining in basic parts of the IEF pH gradient (Figure 4F). The ceQORH polypeptide, a basic IEM protein identified after organic solvent partition and 1-D SDS PAGE (Ferro et al., 2000; Miras et al., 2002), was immunodetected (Figure 4G). Together these data validate the quality of the 2-D PAGE conditions we used, based on the presence of envelope protein markers, consistently sensitive to the thermolysin superficial proteolysis, in a wide range of IEF pH gradient.

MASS SPECTROMETRY-BASED PROTEOMIC ASSESSMENT

Additional proteins were identified after mass spectrometry analyses. For this preliminary evaluation, we restricted or analysis to about 30 spots, for which a major protein could be identified following analysis. Indeed, although spinach chloroplast was the ideal starting material for this technical evaluation, the lack of genomic information on spinach was a clear limit of our study to identify proteins by mass spectrometry at a large scale and with a high resolution. Numerous spots allowed the detection of multiple proteins, which relative abundance could not be inferred and were not analyzed further. After discrete excision of spots, polypeptides were digested by trypsin inside the polyacylamide gel and trypic fragments were subjected to MALDI-ToF to yield a peptide mass fingerprint for database searching. Sequence identification was further confirmed by MS/MS tryptic peptides analyses. Table 2 gives the list of proteins we assessed either by immunostaining or mass spectrometry analyses, with UniProt references of spinach proteins or corresponding homologs in Arabidopsis or pea in the absence of previously sequenced genes from spinach. Identified proteins include envelope membrane
FIGURE 3 | Two-dimensional analysis of biotinylated proteins of envelope, thylakoid, and stroma from spinach chloroplast. Chloroplast envelope (E), thylakoid (T), and stroma (S) proteins (200 µg) prepared from biotinylated spinach chloroplasts were passively loaded into 7 cm pH 4–7 IPG strips. Second-dimension separation was in 13% SDS polyacrylamide gels. Proteins were either stained with coomassie blue (A) or transferred to nitrocellulose membrane for biotine detection after Streptavidin Horseradish Peroxidase conjugated analysis (Streptavidin-HRP) (B) or for western-blotting using specific markers of stroma (anti-KARI) or thylakoids (anti-CF1) (C). Major biotinylated spots were indicated on a representative gel. In the case of spot 9, a longer exposure of the nitrocellulose membrane, revealing biotinylation is also shown. Rbc SSU, Rubisco small subunit; Rbc LSU, Rubisco large subunit; oec, oxygen evolving complex; plas, plastocyanin.

apparent molecular weight (Mr) in kDa are indicated on the left.

proteins and expectedly soluble proteins, either in the cytosol or chloroplast stroma. Stromal subunits of the CF-1 ATP-synthase, i.e., α, β, and γ subunits were further inventoried. Among soluble cytosolic and stromal proteins, 11 were previously known as envelope associated (Tranel et al., 1995; Rolland et al., 2003; El-Kafafi et al., 2005; Pontier et al., 2007; Ferro et al., 2010).
Figure 4 | Two-dimensional analysis of envelope proteins prepared from thermolysin treated intact spinach chloroplast. (A–D) Isolated intact spinach chloroplasts were incubated in the absence (control) or presence (+thermolysin) of the non-permeable protease thermolysin. After chloroplast disruption, envelope sub-fractions were recovered. Envelope proteins (200 µg) were passively loaded into 7 cm pH 4–7 IPI strips. Second-dimension separation was in 13% SDS polyacrylamide gels. Proteins were either stained with Coomassie blue (A) or transferred to nitrocellulose membrane for western-blotting using specific markers of the outer envelope (Continued).
could not be attributed to an excessive proteolysis based on IEM protein markers, such as IEP37 and MGD1 that were still detected following thermolysin incubation. In pea (*Pisum sativum*), Tic40 has an apparent molecular weight of 44 kDa and has been previously detected in both IEM and OEM fractions (Ko et al., 1995), indicating a possible cohesive association with some OEM components; after incubation of pea chloroplast with thermolysin and analysis of envelope proteins, the treatment gave rise to a form with an apparent molecular weight of 42 kDa (Ko et al., 1995), which might explain that in our study, Tic40 might migrate to a position that differs from spot 25 of the 2-D PAGE. The cytosolic precursor of *Arabidopsis thaliana* Tic40 was also shown to be imported within chloroplasts in two steps, first as a soluble intermediate form, with an apparent molecular weight of 44 kDa and then as an IEM-associated form with an apparent molecular weight of 40.8 kDa (Li and Schnell, 2006). It is therefore also possible that the thermolysin treatment could affect the balance between an IEM-associated form and a soluble form of Tic40. Future works might help understanding the difference we observed. The parallel results observed for spots 2-4 (ClpC) and spot 25 (Tic40) is consistent with the co-immuno-precipitation of both Tic40 and ClpC with actin previously reported (Jouhet and Gray, 2009a,b; Franssen et al., 2011).

As mentioned above, a similar differential pattern was observed for FtsZ2 (Figure 4E). In the three cases we pointed here, the resolved spots match the mature Tic40, ClpC, or FtsZ2 proteins rather than their cytosolic precursors. These internal proteins are therefore inaccessible to thermolysin and their disappearance from the 2-D PAGE cannot be due to direct proteolysis. A possible common scenario could therefore be a disassembly from the IEM. Concerning FtsZ2, this division-ring component is indeed mostly present in the stroma of chloroplasts but also associated with the envelope as part of a trans-envelope complex that protrudes on the cytosolic side of the envelope (El-Kafafi et al., 2005; Falconet, 2012). Based on these three examples, which should nevertheless be confirmed by detailed analyses, in addition to OEM proteins detection, the tag and shave approach could also highlights IEM proteins which association to the IEM is strictly dependent on complexes protruding at the outer surface, and happens to be deeply destabilized when OEM components are cleaved by thermolysin-proteolysis.

DISCUSSION

TOPOLOGICAL AND STRUCTURAL INFORMATION BROUGHT BY THE “TAG AND SHAVE” STRATEGY AND 2-D PAGE BASED PROTEOMIC ANALYSIS

It is still not known if an ideal electrophoretic technique would provide the exhaustive separation of both integral and peripheral envelope membrane-associated proteins, but the present study explores an optimized technique that might help completing the inventory initiated by 1-D PAGE based proteomic analyses. The proteins we identified after 2-D PAGE resolution were mainly peripheral or soluble. The confidence in results, concerning particularly the possible cross-contaminations, depends strongly on the purity of the treated material. For technical reasons, we used spinach chloroplasts as a working model, because of the high amount of starting material and the possibility to repeat experiments, but it is clearly not the ideal material since we lack some genomic information. Based on our evaluation, with molecular markers of spinach chloroplast sub-compartments and the exploration of the validity and limits of the method, this work can now serve as the basis for a well characterized model at the genomic and proteomic scales, such as *Arabidopsis thaliana*, pea (Franssen et al., 2011) or *Brassica rapa* (Cheng et al., 2011).

We thus paid attention to the sub-organellar fractionation methods and controlled the purity of the chloroplast sub-fractions using antibodies raised against stroma and thylakoid markers (Figures 1, 3). Some stromal proteins were associated, at least partly, to biotinylated spots, like the Fructose 1,6-bisphosphate aldolase or Cpn60-β (Table 2). The intensity of biotinylation in these two spots was low although the Coomassie staining was high. In the case of Fructose 1,6-bisphosphate aldolase, both cytosolic and stromal isoforms could be detected by mass spectrometry analyses (with marker peptides MVDVLIEQGIVPGK and TVSVISPNGPSALVK for the chloroplastic isoform; VTPEVIAEYTVR and TADGKPFVDAMK for the cytosolic one, Table 2). It is obvious that following this preliminary study, we need to determine whether polypeptides were tagged prior import, explaining the presence of biotinylated precursors of stromal proteins, or if multiple envelope proteins co-migrated at the same level of the 2-D PAGE, mixing polypeptides of various sub-compartments including biotinylated OEM proteins. Following this evaluation study, perspectives include the analysis of tagged/shave proteins with a method that does not depend on 2-D-PAGE. This is currently feasible using the high detection sensitivity of mass spectrometry applied to protein mixtures: search for biotin signatures in peptides analyzed by mass spectrometry will simply resolve this question.

Motivation for an additional chloroplast envelope proteomic analysis should either be to provide information that is not available in other studies. The “tag and shave” strategy intended therefore to bring topological information, i.e., exposure of peripheral proteins at the surface of the organelle (Table 1, Figure 5). Insights on membrane-associated proteins involved in the sorting of cytosolic protein precursors, such as chaperones and translocon components, in the maturation and assembly of proteins, particularly Rubisco, in the carbon metabolism or in the stromal RNA editing, could therefore be obtained (Table 2). The present study also highlighted the disappearance from the envelope fraction of well-characterized internal proteins.

Figure 4 Continued

membrane, anti-OEP24 (B) or the inner envelope membrane, anti-IEP37 (C), anti-MGD1 (D) and anti-FtsZ2 (E, F). Spinach chloroplast envelope proteins (200 µg) were passively loaded into 7 cm pH 3–10 IPG strips. Second-dimension separation was in 13% polyacrylamide gels. Proteins were either stained with Coomassie blue (F) or transferred to nitrocellulose membrane for western-blotting using polyclonal antibodies against the recombinant Arabidopsis protein ceODRH1 (G). (H) Standard SDS-PAGE analysis of spinach chloroplast envelope proteins used in the present study and western blotting using anti-IEP37, anti-OEP24, and anti-FtsZ2 polyclonal antibodies. (I) Schematic representation of protein markers. OEM, outer envelope membrane; IEM, inner envelope membrane. Apparent molecular weight (Mr) in kDa are indicated on the left.
Polypeptides associated to the spinach envelope membranes based on immunostaining (*), MS- (**) , or MS/MS (***) analyses	Uniprot reference	Spot number	Mr (kDa)	Isoelectric point	Tag and shave	Protein localization (in Arabidopsis)
		Match Gel	Match Gel	Biotinylation	Thermolysin sensitivity	

STROMAL RNA EDITING

28RNP 28kDa ribonucleoprotein (****)	P28644a	72	25.2	35.0	4.40	4.50	+ + +	Stroma\(^1\) + IEM\(^1\)	
CSP41 mRNA-binding protein (****)	O24365a	50	44.8	46.0	6.11	6.00	–	–	Stroma\(^1\) + Thyl\(^1\) + IEM\(^1\)

PROTEIN IMPORT COMPONENTS, CHAPERONES, AND PROTEASES

Cytosolic HSP70/Com70 (****)	P29357a	7	71.7	74.0	5.12	5.20	++	++	Cytosol\(^2\) + OEM\(^2\)
Translocon Tic110 (****)	Q8LPR9a	1	109.9	110.0	5.21	5.20	– (↑ upper part of spot 1)	– (↑ upper part of spot 1)	IEM\(^1\)
Translocon Tic40-like protein (****)	Q9FMDD5b	25	49.2	50.0	5.38	4.50	–	+ +	IEM\(^1\)
ClpC, member of the HSP100 family (**)	O98447a	2, 3, 4	99.4	99.0	8.78	5.50	–	–	Stroma\(^1\) + IEM\(^1\)
ClpP5, subunit of the ATP-dependent Clp protease (**)	Q9S834b	62	32.3	30.0	8.35	6.50	–	–	Stroma\(^1\) + IEM\(^1\)
HSP70, member of the DNAK family (****)	O50036a	9	76.1	74.0	6.19	5.00	– (↑ on part of spot 84)	–	Stroma\(^1\)
Cpn21, member of the GroEL family, co-chaperone of Cpn60 (****)	Q02073a	60	26.9	35.0	8.45	6.50	–	–	Stroma\(^1\) + IEM\(^1\)
Cpn60\(^γ\), member of the GroES family, Rubisco binding-protein (****)	P08927a	17	62.9	60.0	5.85	5.30	–	–	Stroma\(^1\)

RUBISCO, RUBISCO MATURATION AND ASSEMBLY

Rubisco LSU (**)	P00875a	23, 24	52.7	53.0	6.13	6.40	– (↑ upper part of spot 23-24)	– (↑ upper part of spot 23-24)	Stroma\(^1\) + Env\(^1\)
Rubisco SSU 2 (**)	Q14383a	84	20.3	21.0	8.24	6.50	–	–	Stroma\(^1\) + Env\(^1\)
Rubisco SSU N-methyltransferase I (****)	Q9TIM3a	10	54.9	57.0	5.16	4.50	–	–	Stroma\(^1\)
Rubisco activase (**)	P10871a	30, 38, 40	51.5	48–52.0	6.62	5.30	–	–	Stroma\(^1\)

OTHER CARBON METABOLISM COMPONENTS

Hexokinase 1 (****)	Q9SEK3a	20, 21	54.1	60.0	5.41	5.80	++	+ + +	OEM\(^1\) + Mit, Vac, Nucl\(^1\)
Carbonic anhydrase (****)	P16016a	60	34.5	34.0	6.61	6.30	–	–	IEM\(^1\) + Stroma\(^1\)
Phosphoglycerate kinase (****)	P29409a	54	45.5	42.0	5.83	6.50	–	–	Stroma\(^1\)
Fructose-1,6-biphosphatase aldolase (****)	P10969a	49	42.4	44.0	6.85	5.80	+	–	Stroma\(^1\) + CytoSol\(^1\)
Fructose-1,6-biphosphatase (****)	P22418a	55	37.1	37.0	5.52	5.50	+	–	Stroma\(^1\)
Sedoheptulose-1,7-bisphosphatase (****)	O20252a	28	42.0	45.0	5.87	5.00	–	–	Stroma\(^1\)
Transketolase (**)	O20250a	5, 6	80.2	75.0	6.20	5.50	–	–	Stroma\(^1\)
Phosphoribulokinase (****)	P09559a	39	44.9	49	5.82	5.70	+	–	Stroma\(^1\)
NAD-malate dehydrogenase (****)	O81609a	47	42.6	35.0	7.01	5.5	–	–	IEM\(^1\) + Stroma\(^1\)

THYLAKOID NUCLEAR ENCODED CF-1 SUBUNITS

CF1-ATP synthase alpha chain (**)	P06450a	11	55.4	57.0	5.16	5.20	–	–	Thyl\(^1\) + Env\(^1\)
CF1-ATP synthase beta chain (**)	P00825a	16, 18	53.7	54.0	5.22	5.55	–	–	Thyl\(^1\) + Env\(^1\)
CF1-ATP synthase delta chain (**)	P11402a	74	27.6	28.0	5.80	4.50	–	–	Thyl\(^1\) + Env\(^1\)

ENVELOPE GLYCEROLIPID AND QUINONE METABOLISMS

MGD1 monogalactosyldiacylglycerol synthase (*)	Q9SM44a	12–15	53.7	54.0	5.22	5.00	–	–	IEM\(^1\)
IEP37 quinone methyltransferase (*)	P23525a	≈26	36.8	36.0	9.49	4–7	–	–	IEM\(^1\)
CeQORH quinone oxidoreductase homolog (*)	Q9SV68b	nd	34.4	40.0	9.05	9.60	–	–	IEM\(^1\)

(Continued)
proteins that associate in strong or lose complexes. Close vicinity of the chloroplast envelope membranes, involving the most striking biological processes that appear to occur in the illustrated by the schematic spots 6, 7, and 8. Below, we discuss which stability depends on the integrity of OEM components, are patterns after a “tag and shave” analysis. Trans-envelope complexes, should be demonstrated.

In the IEM complex to the OEM, which presence and function would require a component of the inter-membrane space link- a stable trans-envelope complex. The results obtained with Tic40 ing the IEM complex to the OEM, which presence and function would require a component of the inter-membrane space link-

- Proteins that associate in strong or lose complexes. Close vicinity of the chloroplast envelope membranes, involving the most striking biological processes that appear to occur in the illustrated by the schematic spots 6, 7, and 8. Below, we discuss which stability depends on the integrity of OEM components, are patterns after a “tag and shave” analysis. Trans-envelope complexes, should be demonstrated.

Table 2 | Continued

PLASTID DIVISION

Protein	Uniprot reference	Spot number	Mr (kDa)	Isoelectric point	Tag and shave	Protein localization in Arabidopsis		
FtsZ2 (*)	O82533b	nd	45.2	50.0	5.01	6.00	+ + +	IEM4 + Stroma1,3 + Thyl3

OTHER ENVELOPE PROTEINS

Protein	Uniprot reference	Spot number	Mr (kDa)	Isoelectric point	Tag and shave	Protein localization in Arabidopsis			
OEP24 (*)	Q41393a	73	16.2	29.0	4.84	4.80	+ + +	+ + +	OEM1
OEP10 (* and ***)	P19407a	8	6.4	110.0	6.01	4.5	+ + +	+ + +	OEM1

The tag and shave intensity is given as a scale: –, no effect on the characterized spot; +, ++, ++++, increasing effects of the tag or shave treatment. For biotinylation, the scale is estimated by the average size of the biotinylated spots being smaller, +; identical, ++; or bigger, ++++; when compared to the size of the overlapping Coomassie-stained spots. (+), partial tag or shave of a large 2-D PAGE spot. Uniprot accession numbers were given from 1 Spinacea oleracea; 2 Arabidopsis thaliana; and 3 Pismum sativum. Abbreviations: Env, envelope; IEM, inner envelope membrane; Mit, mitochondria; OEM, outer envelope membrane; Thyl, thylakoid; nd, not defined after Coomassie staining; Nuc, nucleus; Vac, vacuole. Previously determined localization of proteins was obtained from works by 1 Ferro et al. (2010), 2 Ko et al. (1992), 3 Headleywood et al. (2007), and 4 El-Kafafi et al. (2005).
The degradation of mistargeted or misfolded stroma proteins. In the
known to direct specific proteins for degradation by the ClpP
membranes (Rolland et al., 2003; Ferro et al., 2010). ClpC is also
reported in large-scale proteomic studies of chloroplast envelope
co-chaperone Cpn21-GroES. All these proteins were previously
ClpP protease complex, the beta-subunit of Cpn60-GroEL and its
HSP70-DnaK homolog protein, ClpC, the ClpP1 subunit of the
and Chiu, 2010; Lee et al., 2013). Here, we detect the stromal
specific chaperones, co-chaperones, co-factors and proteases (Li
bly on the stromal side. These processes involve general and
prepares the accurate folding, processing, maturation and assem-
translocon, bridging the TOC and TIC moieties, and because it
might depend on the integrity of protein components exposed at
the outer surface of the chloroplasts. By contrast, Cpn60 associ-
ates (Chou et al., 2003). Our study suggests that the strength
of the association of Tic40-ClpC on the stromal side of Tic110
routefs some polypeptide stowar Clp degradation
nucleus, i.e., ClpP5, at the periphery of the IEM, facilitates the
route of some polypeptides toward ClpP degradation via ClpC.
The ClpP5 subunit is still bound to the IEM after thermolysin
 treatment of chloroplasts (Table 2), whereas ClpC dissociates
from the IEM under these conditions. Thus, although the ClpC:
chaperone and ClpP complex are topologically close and ready to
interact, their association to the IEM is regulated differently via
conformational status of other protein components.

The stromal Cpn60 chaperonin can form large tetradecamers,
one containing the two stromal Cpn60 isoforms, i.e., Cpn60-α
and Cpn60-β and the other consisting solely of Cpn60-β sub-
units (Dickson et al., 2000). The Cpn60-α/Cpn60-β tetradecamer
is considered the major Cpn60 chaperonin in the stroma. Here,
Cpn60-β is the sole subunit characterized in high amounts in
the vicinity of the envelope and it is possible that a specific
Cpn60-β tetradecamer might be associated to the IEM in spinach.
The unique subunit that was detected in proteomic analyses of
pure thylakoid membranes is the other isoform, Cpn60-α (Peltier
et al., 2000). By contrast in Arabidopsis, only Cpn60-α could be
found associated to the envelope (Ferro et al., 2010). The Cpn60-
GroEL complex is known to form a central cavity that captures
incompletely folded proteins. To that respect, Cpn21, a mem-
ber of the GroEL family, was found associated to the envelope
membranes (Table 2). This is consistent with the presence of a
Cpn60/Cpn21 system that is functionally active in the IEM, in
association with Tic110. Cpn60/Cpn21 is therefore topologically
close to the imported protein precursors.

The chloroplast Cpn60 was initially identified as an abun-
dant oligomeric protein that transiently binds the nascent large
subunits of Rubisco, prior to their assembly into the Rubisco
holoenzyme. Cpn60 chaperones are therefore often functionally
annotated as a “Rubisco-binding protein.” The characterization
of Rubisco SSU and LSU, of Cpn60 and its co-chaperonine Cpn21
and of Rubisco SSU N-methyltransferase in tight contact with the
envelope membrane (Table 2) might be useful to better under-
stand Rubisco SSU import, processing, methylation and assembly
with LSU. The Rubisco SSU N-methyltransferase detected here
(Table 2) has not been previously characterized in proteomic
analyses of pure envelope membranes (Rolland et al., 2003; Ferro
et al., 2010). An association to the IEM is supported by measures
of O- and N-methylation of Rubisco SSU in purified envelope
fraction, although such modification is not ubiquitous in the
plant kingdom, apparently not essential and possibly minor in
spinach (Mininno et al., 2012). Interestingly, the methyltrans-
ferase was also shown to be effective on another substrate, the
fructose 1,6 bisphosphate aldolase (Mininno et al., 2012) also
detected here (Table 2). This preliminary analysis also provided
information that might be useful to better comprehend ATP
synthase subunits import, assembly and possible association to
envelope membranes (Table 2).

CONCLUSION

In the present paper, we describe a method for a differential
proteomic analysis of chloroplast envelope membrane peripheral

TABLE 2

Envelope Membrane Proteins	Cpn60-α	Cpn60-β
Tic110	+	+
Toc75	+	+
ClpC	+	+
Cpn60	+	+
Cpn21	+	+

FIGURE 2

Aim: Biotinylation and thermolysin treatment of chloroplast OEM

(Figure 2) using specific markers of the outer envelope membrane, anti-OEP24

Proteins were either untreated (control), treated with the non-permeable thermolysin

protease (shave) or superficially biotinylated (tag), prior to envelope

fractionation. Envelope proteins were subsequently resolved by 2D-PAGE

and biotinylated (tagged) by the biotin-XX,SE

Isolated chloroplasts

were either untreated (control), treated with the non-permeable thermolysin

protease (shave) or superficially biotinylated (tag), prior to envelope fractionation. Envelope proteins were subsequently resolved by 2D-PAGE as shown in Figure 2. Proteins were either stained with Coomassie blue (A,C) or transferred to a nitrocellulose membrane for Western-blotting using a specific marker of the outer envelope membrane, anti-OEP24 (B) or for biotin detection (D). A magnified detail of the gel is shown. Spot 73 that corresponds to OEP24 (black arrow) is detected with the antibody raised against OEP24 (B), and is consistently degraded (shaved) by the thermolysin protease (C) and biotinylated (tagged) by the biotin-XX,SE treatment. As a control, spot 69 (white arrow) is neither shaved nor tagged.

2013; Jarvis and Lopez-Juez, 2013). Cross-linking experiments showed that Tic40 is associated with Tic110, Toc75 and ClpC. The presence of Cpn60 could not be detected in Tic40 immunoprecipitates (Chou et al., 2003). Our study suggests that the strength of the association of Tic40-ClpC on the stromal side of Tic110 might depend on the integrity of protein components exposed at the outer surface of the chloroplasts. By contrast, Cpn60 association to Tic110 is not destabilized and involves therefore distinct binding mechanisms.

The initial association of protein precursors on the stromal side of the envelope is a fundamental event of protein import, because it brings a driving force for precursors through the translocon, bridging the TOC and TIC moieties, and because it prepares the accurate folding, processing, maturation and assembly on the stromal side. These processes involve general and specific chaperones, co-chaperones, co-factors and proteases (Li and Chiu, 2010; Lee et al., 2013). Here, we detect the stromal HSP70-DnaK homolog protein, ClpC, the ClpP1 subunit of the ClpP protease complex, the beta-subunit of Cpn60-GroEL and its co-chaperone Cpn21-GroES. All these proteins were previously reported in large-scale proteomic studies of chloroplast envelope membranes (Rolland et al., 2003; Ferro et al., 2010). ClpC is also known to direct specific proteins for degradation by the ClpP serine peptidase complex (Peltier et al., 2001), involved in the degradation of mistargeted or misfolded stroma proteins. In the turnover of TIC components, it is not known if ClpC could be involved in the degradation of some TIC proteins, like Tic40. The occurrence of both ClpC and a ClpP subunit encoded in the nucleus, i.e., ClpP5, at the periphery of the IEM, facilitates the route of some polypeptides toward ClpP degradation via ClpC. The ClpP5 subunit is still bound to the IEM after thermolysin treatment of chloroplasts (Table 2), whereas ClpC dissociates from the IEM under these conditions. Thus, although the ClpC-chaperone and ClpP complex are topologically close and ready to interact, their association to the IEM is regulated differentially via conformational status of other protein components.
FIGURE 6 | Topological information possibly provided by the tag and shave strategy, coupled with 2D-PAGE proteomic analyses. Chloroplasts isolated from leaves are either superficially tagged with biotin (A), superficially shaved by proteolysis with thermolysin (C) or untreated (B). (A) Outer envelope membrane (OEM) proteins that are possibly biotinylated are detected after biotin detection (proteins 1, 2, and 8), whereas OEM proteins that fail to be biotinylated are not tagged under these conditions (protein 3). Internal proteins (proteins 4, 5, 6, and 7) are not tagged. (C) Outer envelope membrane proteins that are possibly degraded by thermolysin disappear from the 2D-PAGE gel (proteins 2, 3, and 8, indicated by crosses), whereas OEM proteins that fail to be degraded are not shaved under these conditions (protein 1). Internal proteins are theoretically not shaved. However, internal proteins (such as protein 6) that bind to the IEM depending on the integrity of OEM proteins (stable trans-envelope complex, such as 6-7-8), will dissociate form the envelope after thermolysin treatment (protein 6, indicated by an arrow).

proteins after 2D-PAGE resolution and immunological and mass spectrometry-based protein assessments. A basic proteomic snapshot of the most abundant proteins detected after Coomassie staining was investigated after treatment of intact chloroplasts following a superficial protein “tagging” with biotin or a superficial protein “shaving” with thermolysin. This study supports that information can be collected on the exposure of some OEM proteins at the surface of the chloroplast, but also on internal protein components, which association to the IEM relies on the stability of trans-envelope protein complexes and on the integrity of some OEM components. Future perspectives include an in-depth analysis of the envelope membrane proteome of “tagged or shaved” samples, using a more accurate plant model, as Arabidopsis, with carefully purified chloroplasts. Perspectives include the analysis of the chloroplast envelope proteome using, more sensitive mass spectrometry analytical methods. The systematic analysis of biotinylated peptides by mass spectrometry (based on the mass shift introduced by biotin) will be a simple way to analyze the topology of OEM proteins, with possible cross contaminations by IEM or stromal precursors biotinylated in the course of their import. Following this evaluation of the method, the “tag and shave” strategy is therefore promising to bring refined topological information in large scale analyses. It could also be implemented, once validated, in the characterization of other membrane-limited organelles such as mitochondria.

ACKNOWLEDGMENTS
Authors wish to thank M. Neuburger for setting up biotintagging conditions. The authors were supported by Agence Nationale de la Recherche (ANR-10-BLAN-1524, ReGal; ANR-12-BIME-0005, DiaDomOil; ANR-12-JCJC, ChloroMitoLipid),
REFERENCES

Alban, C., Jullien, J., Job, D., and Douce, R. (1995). Isolation and characterization of biotin carboxylase from pea chloroplasts. *Plant Physiol.* 109, 927–935.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. *Plant Physiol.* 24, 1–15. doi: 10.1104/pp.24.1.1

Awai, K., Marechal, E., Block, M. A., Brun, D., Masuda, T., Shimada, H., et al. (2001). Two types of MGDG synthase genes, found widely in both 16:3 and 183 plants, differentially mediate galactolipid synthesis in photosynthetic and nonphotosynthetic tissues in *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U.S.A.* 98, 10960–10965. doi: 10.1073/pnas.181331498

Bradburne, J. A., Godfrey, P., Choi, J. H., and Mathis, J. N. (1993). In vivo labeling of Escherichia coli cell envelope proteins with N-hydroxysuccinimide esters of biotin. *Appl. Environ. Microbiol.* 59, 663–668.

Cheng, E., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., et al. (2011). BRAD, the genet-ics and genomics database for Brassica plants. *BMC Plant Biol.* 11:136. doi: 10.1186/1471-2229-11-136

Chou, M. L., Fitzpatrick, L. M., Tu, S. L., Budziszewski, G., Potter-Lewis, S., Akiti, M., et al. (2003). Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. *EMBO J.* 22, 2970–2980. doi: 10.1093/emboj/cdg281

Dickson, R., Weiss, C., Howard, R. J., Alldrick, S. P., Ellis, R. J., Lorimer, G., et al. (2000). Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. *J. Biol. Chem.* 275, 11829–11835. doi: 10.1074/jbc.275.16.11829

Dorne, A. J., Block, M. A., Joyard, J., and Douce, R. (1982). The galactolipid—galactosyltransferase is located on the outer surface of the outer membrane of the chloroplast envelope. *FEBS Lett.* 145, 30–34. doi: 10.1016/0014-5793(82)81200-3

Elborough, K. M., Winz, R., Deka, R. K., Markham, J. E., White, A. J., Rawsthorne, S., et al. (1996). Biotin carboxyl carrier protein and carboxyltransferase sub-units of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. *Biochem. J.* 315, 101–113.

El-Kafafi, S., Mukherjee, S., El-Shami, M., Putaux, J. L., Block, M. A., Pignot, Paintrand, I., et al. (2005). The plastid division proteins, FtsZ1 and FtsZ2, differ in subplastidial localization and curated information on envelope proteins. *Plant Biol.* 7, 298–306. doi: 10.1055/s-2004-822383

Ferro, M., Salvi, D., Seigneurin-Berny, D., Garin, J., et al. (2010). Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. *Prog. Lipid Res.* 49, 128–158. doi: 10.1016/j.plipres.2009.10.003

Journet, E., Job, D., Albrecht, B., and Douce, R. (1993). Biotinylation and thermolysin treatment of chloroplast OEM proteins facilitated by an actin-TOC-TIC-VIPP1 complex. *Plant Signal. Behav.* 4, 986–988. doi: 10.4161/psb.4.10.9665

Jouhet, J., and Gray, J. C. (2009a). Interaction of actin and the chloroplast protein import apparatus. *J. Biol. Chem.* 284, 19132–19141. doi: 10.1074/jbc.M109.012831

Jouhet, J., and Gray, J. C. (2009b). Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIG-VIPP1 complex? *Plant Signal. Behav.* 4, 986–988. doi: 10.4161/psb.4.10.9665

Ko, K., Bornemissa, O., Kourtz, L., Ko, Z. W., Plaxton, W. C., and Cashmore, A. R. (1992). Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. *J. Biol. Chem.* 267, 2986–2993.

Lee, D. W., Jung, C., and Hwang, I. (2013). Cytosolic events involved in chloroplast protein targeting. *Biochem. Biophys. Acta* 1833, 245–252. doi: 10.1016/j.bbamcr.2012.03.006

Li, H. M., and Chiu, C. C. (2010). Protein transport into chloroplasts. *Annu. Rev. Plant Biol.* 61, 157–180. doi: 10.1146/annurev-arplant-042809-112222

Li, M., and Schnell, D. J. (2006). Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. *J. Cell Biol.* 175, 249–259. doi: 10.1083/jcb.200605162

May, T., and Soll, J. (2000). 14-3-3 proteins form a guidance complex with chloroplast protein import apparatus. *J. Biol. Chem.* 275, 21034–21044. doi: 10.1074/jbc.M1112959976

Mininni, M., Brugiere, S., Pautre, V., Gilgen, A., Ma, S., Ferro, M., et al. (2012). Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. *J. Biol. Chem.* 287, 21034–21044. doi: 10.1074/jbc.M1112959976

Miras, S., Salvi, D., Ferro, M., Grunwald, D., Garin, J., and Jouhet, J., et al. (2002). Non-canonical transit peptide for import into the chloroplast. *J. Biol. Chem.* 277, 47770–47778. doi: 10.1074/jbc.M207477200

Miras, S., Salvi, D., Piette, L., Seigneurin-Berny, D., Grunwald, D., Reinbothe, C., et al. (2007). Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. *J. Biol. Chem.* 282, 29482–29492. doi: 10.1074/jbc.M610286200

Nikolau, B. J., Ohlrogge, J. B., and Wurtele, E. S. (2003). Plant biotin-containing carboxylases. *Arch. Biochem. Biophys.* 414, 211–222. doi: 10.1016/S0003-9861(03)01156-3

Peltier, J. B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., et al. (2000). Proteomics of the chloroplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. *Plant Cell* 12, 53–64. doi: 10.1105/tpc.12.1.53

Peltier, J. B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., et al. (2000). Proteomics of the chloroplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. *Plant Cell* 12, 53–64. doi: 10.1105/tpc.12.1.53

Peltier, J. B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., et al. (2000). Proteomics of the chloroplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. *Plant Cell* 12, 53–64. doi: 10.1105/tpc.12.1.53

Peltier, J. B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., et al. (2000). Proteomics of the chloroplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. *Plant Cell* 12, 53–64. doi: 10.1105/tpc.12.1.53
Rolland, N., Ferro, M., Ephritikhine, G., Marmagne, A., Ramus, C., Brugiere, S., et al. (2006). A versatile method for deciphering plant membrane proteomes. *J. Exp. Bot.* 57, 1579–1589. doi: 10.1093/jxb/erj162

Rolland, N., Ferro, M., Seigneurin-Berny, D., Garin, J., Douce, R., and Joyard, J. (2003). Proteomics of chloroplast envelope membranes. *Photosynth. Res.* 78, 205–230. doi: 10.1023/B:PRES.0000066891.12416.6c

Sabarth, N., Lamer, S., Zimny-Arndt, U., Jungblut, P. R., Meyer, T. F., and Bumann, D. (2002). Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. *J. Biol. Chem.* 277, 27896–27902. doi: 10.1074/jbc.M204473200

Salvi, D., Rolland, N., Joyard, J., and Ferro, M. (2003). Proteomics of chloroplast envelope membranes. *Photosynth. Res.* 78, 205–230. doi: 10.1023/B:PRES.000006891.12416.6c

Seigneurin-Berny, D., Rolland, N., Garin, J., and Joyard, J. (1999). Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. *Plant J.* 19, 217–228. doi: 10.1046/j.1365-313X.1999.00511.x

Soll, J. (2002). Protein import into chloroplasts. *Curr. Opin. Plant Biol.* 5, 529–535. doi: 10.1016/S1369-5266(02)00296-0

Teyssier, E., Block, M. A., Douce, R., and Joyard, J. (1996). Is E37, a major polypeptide of the inner membrane from plastid envelope, an S-adenosyl methionine-dependent methyltransferase? *Plant J.* 10, 903–912. doi: 10.1046/j.1365-313X.1996.10050903.x

Tranel, P. J., Froehlich, J., Goyal, A., and Keegstra, K. (1995). A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. *EMBO J.* 14, 2436–2446.

Tranel, P. J., and Keegstra, K. (1996). A novel bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. *Plant Cell* 8, 2093–2104. doi: 10.1105/tpc.8.11.2093

Vitlin, A., Weiss, C., Demishtein-Zohary, K., Rasouly, A., Levin, D., Pisanty-Farchi, O., et al. (2013). Chloroplast beta chaperonins from *A. thaliana* function with endogenous cpn10 homologs in vitro. *Plant Mol. Biol.* 77, 105–115. doi: 10.1007/s11103-011-9797-6

Zhang, X. P., and Glaser, E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. *Trends Plant Sci.* 7, 14–21. doi: 10.1016/S1360-1385(01)02180-X

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 January 2014; accepted: 25 April 2014; published online: 16 May 2014. Citation: Hardré H, Kuhn L, Albrieux C, Jouhet J, Michaud M, Seigneurin-Berny D, Falconet D, Block MA and Maréchal E (2014) The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. *Front. Plant Sci.* 5:203. doi: 10.3389/fpls.2014.00203

This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Hardré, Kuhn, Albrieux, Jouhet, Michaud, Seigneurin-Berny, Falconet, Block and Maréchal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.