An Update on the Herbal Plant Mentha piperita

Chandini B.C.*, Karunakar Hegde
Department of Pharmacology, Srinivas College of Pharmacy, Valachil, Farangipet Post, Mangalore- 574143, Karnataka, India.
*Corresponding author's E-mail: chandinibc254@gmail.com

Received: 16-04-2022; Revised: 21-06-2022; Accepted: 28-06-2022; Published on: 15-07-2022.

ABSTRACT

Mentha piperita L. (peppermint) is one of the most widely used medicinal herbs, and its distinct aroma and flavour have attracted the attention of the food and pharmaceutical industries. *Mentha piperita* is one of the most widely used herbs in the world, with a long history of safe use in medicinal formulations. Its leaf is used to treat anti-carcinogenic, Antispasmodic, Hepato-protective, Anti-edema, Anti-allergy, Antioxidant, Neuropsychiatric, Anti-inflammation, Analgesic as well as a cooling agent, Anti-TB, Antibacterial, anti-tumorigenic, anti-diabetic, Cutaneous Wound Healing, antiurolithic. Polyphenols, which are highly effective antioxidants and less toxic than synthetic ones, are found in this plant. The goal of this review is to show that a variety of chemical compounds and their pharmacological effects have been discovered in *Mentha piperita* in several studies. This plant has been found to contain a wide range of bioactive compounds, indicating that it is a rich source of phytochemicals that could be used to treat a variety of diseases. This plant shows a promising activity in several field of studies.

Keywords: Medicinal uses, *Mentha piperita*, Pharmacological actions.

INTRODUCTION

Mentha piperita L., commonly known as peppermint, a medicinally important plant which belongs to the Family Lamiaceae (African pharmacopoeia, 1985; The Wealth of India, 1962). Mentha species are widely used for their flavouring and therapeutic benefits in many nations across the world. *Mentha piperita* is one of the most economically significant aromatic and therapeutic plants today.

This perennial herbaceous has quadrangular stems and compound clusters of light purple petals. Peppermint contains a compound called menthol a significant amount of menthol (40.7 percent). particularly menthyl esters limonin, pulegone, caryophylylene, menthyl acetate as well as pinene. Flavonoids come in a variety of forms. Eriocitrin, hesaperidin, and other compounds found in this plant kaempferol.

The leaves of peppermint are beneficial to the intestines. coriza, inflammation, buccal mucosa inflammation Due to their antispasmodic properties, they might also cause respiratory difficulties. Peppermint oil applied topically is beneficial. Pains in the neuromuscular system are reduced. This oil's also have the uses as Antifungicidal, antibacterial, antiseptic, and antipyretic properties in addition to anti-aging properties. The topical *Mentha piperita* essence treat the affected wound healing, taking into account important factors like the number of fibroblasts, epithelial cells, inflammatory cells, and vasculature, and TGF- gene expression.

The plant is farmed all throughout the world, but it also grows wild in damp environments, particularly in Europe, North America, and Asia. The United States of America, India, Japan, and the United Kingdom are the top producers and exporters of peppermint on the global market.

Synonyms

Mentha piperita (L.) Huds., *Mentha piperita* Stokes, *M. balsamea* Willd.

Taxonomy

Kingdom: Plantae.
Family: Labiatae (Lamiaceae).
Division: Angiospermae.
Genus: Mentha.
Class: Dicotyledoneae.
Sub family: Stachydoideae.
Sub class: Sympetalae.
Tribe: Satureieae.
Order: Tubiflorae.
Species: *Mentha piperita* Linnaeus (Peppermint).
Sub order: Verbenaceae.
Varieties: *Mentha piperita* var. officinalis Sole.
Vernacular Names for Mentha piperita

Arabic: Nana; Bogota: Yerba Buena; Brazil: Nortelapimento; Chinese: Po Ho; Danish: Pebermynte; Dutch: Peppermint; English: Brandy Mint, Pepper Mint; French: Menthe, Menthe anglaise; Kashimir: Pudyanu; Mexico: Menta piperita; Hungarian: Borsus menta; Italian: Menta piperita; North America: Lamb Mint, Brandy Mint, Lam Mint, Peppermint; Norwegian: Pepperminty; Polish: Pepparmunta; Portuguese: Hortelanapi mentosa; Spanish: Mentangiølsa, Menta Piperita; Swedish: Suddkrydd; Turkish: Nana; Uruguay: Menta; Indian: Hindi, Bengali, Gujarati, Punjabi, Urdu, Marathi, Tamil and Telugu: Pudina; Malayalam: Puthina.7

Medicinal uses

For respiratory congestion, peppermint oil vapour is used as an inhalant. Coughs, bronchitis, and inflammation of the oral mucosa and throat are all treated with peppermint tea. It’s been used for centuries to treat colic in newborns, flatulence, diarrhea, indigestion, nausea and vomiting, morning sickness, and anorexia, as well as to a spasmytic to relieve gas and cramps. It’s also used to treat toothaches, rheumatism, muscle discomfort, and menstrual cramps. Irritable bowel syndrome, Crohn's disease, ulcerative colitis, gallbladder and biliary tract diseases, and liver complaints are all treated with Mentha piperita.1 and this have shown a promising wound healing on topical application 2 this Mentha piperita also have antiurolithiatic activity is thought to be mediated by a combination of crystal inhibitory, antioxidant, antiinflammatory, spasmytotic, and diuretic properties. Mentha piperita also improves urine and serum biochemistry, making it a safer and more cost-effective option for kidney stone prevention and treatment.4

Chemical composition

Basic components found in essential oils of Mentha species include menthol (33-60%), menthone (15-32%), isomenthene (2-8%), 18 sineol (eucalyptols) (5-13%), and menthyl acetate (2-11 percent) menthofuran (1–7%), limonene (1–7%), 1-myrcene (0.1–1.7%), -caryophyllene (2-4%), pulegone (0.5-1.6 percent) carvone carvone carvone carvone (1 percent) On the other hand, neomenthol, carvomenthone, p-cymene, aromadendrene, phellandrene, pipertone, pinene, carvacrol, -pinene, -phellandrene, and thujone are said to be present in Mentha species.5

The composition of essential oil in Mentha piperita essential oil contains acetaldehyde, amyl alcohol, menthyl esters, limone, phellandrene, pinene, pugelone, and dimethyl sulphide, as well as alpha-pinene, sabine, ocimene, gamma-terpinene, terpinolene, alpha- and beta-thujone, citronellol.

The properties of antioxidant in mentha piperita, here due to the existence of free radicals, a lack of antioxidants in the body promotes oxidative stress, which leads to a variety of pathological disorders. Antioxidants are of tremendous interest since they are a component of physiologically active compounds. A variety of physiologically active compounds that are generated by plants and have antioxidant action have been identified in the literature. Vitamin E, tannins, ascorbic acid (vitamin C), -carotene, a variety of protein compounds with enzymatic activity, flavonoids, polysaccharides, terpenoids, polyphenol compounds, and others are among them. Because to the presence of numerous bioactive compounds, Mentha piperita has antioxidant capabilities.

The leaves of menthe piperira include Menthol, menthone caffeic acid, acetaldehyde, amyl alcohol, menthyl esters, limonene, pinene, cardial glycosides, phellandrene, cadinene, pugelone, and dimethyl sulphide are some of the substances found in the extract of the leaves of Mentha piperita. Alpha-pinene, sabine, terpinolene, ocimene, diterpenes, gamma-terpinene, steroids, fenchene, alpha- and beta-thujone, coumarin, citronellol, carotenes, tocopherols, betaine, choline, saponin, tannins, and other constituents are among the constituents.6
Table 1: Effect of Mentha piperita in different models²,⁶

Parts of plant	Compound	Effect
In humans, an herbal mixture including MP leaves	-	Activation of two epithelial chloride channels reduced anion secretion. The calcium activated channel and the cAMP-dependent cystic fibrosis transmembrane conductance regulator were identified.
Leaves extract of MP in fish	Potassium, calcium, iron, manganese and magnesium. Vitamin A, C and E	Growth, immunological (in skin, mucus, and blood serum), and haematological parameters, as well as amylase activity and the amount of lactic acid bacteria, all increased in a dose-dependent manner.
The leaves’ essential oil is found in minced beef	menthol (33.59%) and isomenthone (33%)	Decrease in TBARS - Thiobarbituric acid reactive substances values.
Musca domestica and Anopheles stephensi essential oils	Menthol and menthone	Substantial larvicidal activity against housefly and Anopheles stephensi
Leaves in excision wound model	decarboxyroxamarinic acid galactoside	Reduce the levels of lipid peroxides and increase the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase at the wound site (healing activity); decrease the levels of lipid peroxides and increase the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase.
The topical application of essence of MP in Cutaneous Wound Healing in rat model	pulegone, iso menthone, piperitone, carvone, and dehydrocarvone.	The Mentha piperita essence helps with wound healing acceleration in several ways. Mentha piperita essence increases expression of the Transforming growth factor-β (TGF-β) gene as an important factor in wound healing.
Essential oil in the plant and in chocolate	In plant: peppermint: menthol (30.35 %), menthone (21.12 %), and others; in Chocolate mint: menthol (28.19 %) and menthone (15.53 %).	Peppermint has a greater antibacterial action than chocolate mint against E. coli, Streptococcus aureus, and Pseudomonas aeruginosa. Peppermint outperformed chocolate mint in the antioxidation test, while chocolate mint outperformed peppermint in the scavenging NO radical activity and as an anti-inflammatory.
Leaves calves and piglets	-	Therapeutic option for gastrointestinal and respiratory diseases in calves and piglets.

5. Anti-allergy properties
By reducing compound 48/80-induced histamine release from rat peritoneal mast cells in animals, Mentha piperita aqueous extract has exhibited dose-dependent anti-allergic action.¹²

6. Antioxidant properties
Methanolic extracts of these plants demonstrated antioxidant activity, neurochemical characteristics, and protection against hydrogen-peroxide-induced toxicity in PC12 cells. The PC12 cells were significantly protected from oxidative stress by Mentha piperita.¹³

7. Neuropsychiatric effects
Peppermint has been suggested as a central nervous system stimulant in some studies. Based on possible changes in brain activity, studies on the effectiveness of aromas on cognitive performance, perceived physical workload, and pain responses have been conducted.¹⁴

8. Anti-inflammation properties
In a xylene-induced ear edema test in mice and a cotton pellet granuloma test in rats, extract from these plants demonstrated anti-inflammatory effect.¹⁵

9. Analgesic as well as a cooling agent
Peppermint oil stimulates cold receptors on the skin, causing blood vessels to dilate, resulting in cooling and analgesic effects.¹⁶

10. Cardiovascular activity
Mentha piperita has been shown to have vasodilating qualities in some animals, as well as reducing systolic pressure and heart rate. Another benefit of peppermint oil is the relaxation of bronchial smooth muscles.¹⁷

11. Anti-TB properties
A patient who breathed peppermint essential oil demonstrated antituberculosis efficacy.¹⁸

12. Effects that are anti-tumorigenic
Mice were given Mentha piperita leaves, which have anti-tumor capabilities.¹⁹

13. Antibacterial properties
Peppermint oil and other leaf extracts have been shown to have antibacterial properties, inhibiting the development of both gram positive and negative bacteria.²⁰
14. Radio protective activity
In mice bone marrow, the leaf extract of these plants displayed radioprotective effects against radiation-induced chromosomal damage.**

15. Anti-diabetic properties.
Peppermint juice has been shown to lower glucose, cholesterol, low-density lipoprotein cholesterol (LDL-c), and triglyceride levels in treated rats.**

16. Antiuricithic effects.
The study proved *Mentha piperita*’s preventative and therapeutic ability against urolithiasis, as well as providing scientific support for the folklore notion that it may prevent and cure kidney stones. *Mentha piperita*’s antiuricithic properties are thought to be mediated by a combination of crystal inhibitory, antioxidant, antiinflammatory, spasmyltic, and diuretic actions.**

17. Cutaneous Wound Healing properties.
Mentha piperita essence increases the expression of the Transforming Growth Component (TGF) gene, which is a key factor in wound healing. According to histologic measures, gene expression amount wound diameter and healing percentage topical use of *Mentha piperita* essence is effective in rats’ cutaneous open wound healing. It shortens the inflammatory phase, deepens the granulated tissue, helps with angiogenesis, causes the proliferative phase to start sooner, and finally accelerates wound healing.**

CONCLUSION
Mentha piperita has been found to contain a wide range of bioactive compounds, indicating that it is a rich source of phytochemicals that could be used to treat a variety of diseases. Some of the beneficial biological effects suggest that this plant may have anti-oxidant, antiinociceptive, antiinflammatory, antimicrobial, anti-carcinogenic, antiviral, anti-allergic, and antitumorigenic properties, wound healing property, antiuricithic effects indicating its potential for disease prevention and treatment.

REFERENCES
1. Shah PP, Mello PM. A review of medicinal uses and pharmacological effects of *Mentha piperita*. Indian Journal of Natural Products and Resources (UNPR), 2014;3(4):214-221.
2. Amirzade-Iranaq MH, Tajik M, Amirmohammadi M, Yazdi FR, Takzaree N. Topical *Mentha piperita* Effects on Cutaneous Wound Healing: A Study on TGF-β Expression and Clinical Outcomes. WJPS 2022;11(1):86-96.
3. Masłowski M, Aleksieiev A, Miedzianowska J, Strzeleck K. Potential application of peppermint (*Mentha piperita* L.), german chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) as active fillers in natural rubber biocomposites.
4. Jamshed A, Jabeen Q. Pharmacological Evaluation of *Mentha piperita* Against Urolithiasis: An In Vitro and In Vivo Study. Dose-Response. 2022 Jan;10(20):15993258211073087.
5. Sevindik M. Pharmacological properties of Mentha species. J Tradit Med Clin Natur. 2018 Jan;7(2):259.
6. Trevisan SC, Menezes AP, Barbhalo SM, Guiguier EL. Properties of *mentha piperita*: a brief review. World J Pharm Med Res. 2017;3(1):309-13.
7. Fayed MA. *Mentha piperita* L.-A promising dental care herb mainly against cariogenic bacteria. Universal Journal of Pharmaceutical Research. 2019;4(3):33-8.
8. Jain D, Pathak N, Khan S, Raghuram GV, Bhargava A, Samarth R, et al. Evaluation of cytotoxicity and anticarcinogenic potential of Mentha leaf extracts. Int J Toxicol 2011;30(2):225-36.
9. Hills JM, Aaronson PI. The mechanism of action of peppermint oil on gastrointestinal smooth muscle: an analysis using patch clamp electrophysiology and isolated tissue pharmacology in rabbit and guinea pig. Gastroenterology 1991;101(1):55-65.
10. Sharma A, Sharma MK, Kumar M. Protective effect of *Mentha piperita* against arsenic-induced toxicity in liver of Swiss Albino mice. Basic Clin Pharmacol Toxicol 2007;100(4):249-57.
11. Yasukawa K, Yamaguchi A, Arita J, Sakurai S, Ikeda A, Takido M. Inhibitory effect of edible plant extracts on 12-O-tetradecanoylphorbol-13-acetate-induced ear oedema in mice. Phytother Res 1993;7(2):185-9.
12. Sroka Z, Becka I, Cisowski W. Antiradical and antiH2 O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z Naturforsch C J Biosci 2005;60(11-12):826-32.
13. López V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AK, Calvo MI. Neuroprotective and neurochemical properties of mint extracts. Phytother Res 2010;24(6):869-74.
14. Balakrishnan A. Therapeutic Uses of Peppermint –A Review. J Pharm Sci Res 2015;7(7):474-476.
15. Atta AH, Alkofahi A. Anti-nociceptive and antiinflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol 1998;60(2):117-24.
16. Balakrishnan A. Therapeutic uses of peppermint - A review. J Pharm Sci & Res 2015;7(7):474-76.
17. Khanna R, MacDonald JK, Levesque BG. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol 2014;48(6):505-12.
18. Shkurupiĭ VA, Odintsova OA, Kazarinova NV, Tkrachenko KG. Use of essential oil of peppermint (Mentha piperita) in the complex treatment of patients with infiltrative pulmonary tuberculosis. Probl Tuberk Bolezn Legk 2006;9:43-5.

19. Samarth RM, Panwar M, Kumar M, Kumar A. Protective effects of Mentha piperita Linn on benzo[a]pyrene-induced lung carcinogenicity and mutagenicity in Swiss albino mice. Mutagenesis. 2006;21(1):61-6.

20. Singh R, Shushni MAM, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem 2015;8(3):322-8.

21. Barbalho SM, Damasceno DC, Spanda APM, da Silva VS, Martuchi KA, Oshiwa M, et al. Metabolic profile of offspring from diabetic Wistar rats treated with Mentha piperita (peppermint). Evid Based Complement Alternat Med; 2011:430237.

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: globalresearchonline@rediffmail.com
New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com