Article

Numerical Solution of Magnetized Williamson Nanofluid Flow over an Exponentially Stretching Permeable Surface with Temperature Dependent Viscosity and Thermal Conductivity

Muhammad Amjad 1☯, Iftikhar Ahmed 1☯, Kamran Ahmed 1☯, Marei Saeed Alqarni 2, Tanvir Akbar 1 and Taseer Muhammad 2*,☯

1 Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan
2 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
* Correspondence: tasgher@kku.edu.sa

Abstract: This research work describes and investigates Williamson nanofluid flow over an exponentially stretching permeable vertical plate with temperature-dependent thermal conductivity and viscosity. The governing non-linear partial differential equations (PDEs) are metamorphosed into coupled non-linear ordinary differential equations (ODEs) by using similarity transformation. The succeeding equations were numerically solved using MATLAB function bvp4c for various values of parameters. For velocity, temperature, concentration, the skin friction coefficient, and the local Nusselt number, data are presented in the form of graphs and tables. It is noted that for increasing values of magnetic parameter \(M \), Williamson parameter \(\lambda \), and viscosity parameter \(\alpha \), the boundary layer thickness of the velocity profile decreases, while it increases for the temperature profile. The findings of the present work are validated through the published results.

Keywords: Williamson fluid; MHD; variable thermal conductivity and viscosity; nanofluids; exponential stretching

1. Introduction

The research on non-Newtonian fluids has received attention because of the limited application of Newtonian fluids. Honey, ketchup, lubrication sprays, and starch, etc., are the examples of non-Newtonian fluids. Williamson [1] presented a non-Newtonian model for fluids in 1929, which depicts the rheological properties of such fluids. It is known as the Williamson fluid model in literature. Nadeem et al. [2] examined the heat transfer impacts for magnetized Williamson fluid over an exponentially stretching sheet. Amjad et al. [3] studied the MHD Williamson nanofluid with the Cattaneo–Christov (CC) heat flux model across an exponential stretching sheet. As a result of its usefulness, several researchers [4–10] have used the Williamson model to show the true behavior of fluids throughout the previous decade.

Magnetohydrodynamics (MHD) theory is attributed to the famous Nobel laureate Hannes Alfven. It is a mix of fluid mechanics and electromagnetism, which describes the behavior or treatment of a magnetic field on an electrically conducting fluid. Cancer tumor therapy, blood flow, cell separation, centrifugal pumps, tissue temperatures, and magnetic endoscopy are the applications of magnetohydrodynamics. Makinde et al. [11] studied 2D boundary layer flow of nanofluids which are chemically reacting with thermal radiation across a non-linear stretched plate. Turkylmazoglu [12] used an analytical strategy to cope with the MHD flow. Mabood et al. [13] studied the magnetized flow of a spinning fluid along a vertical plane. Talihnoee et al. [14] explored the creation of MHD entropy and spontaneous convection in nanofluids. Rashidi et al. [15] proposed that the MHD Williamson fluid has heat radiation and thermodiffusion effects on stretching porous sheets.
Several researchers have recently focused on MHD fluid flows due to their extensive range of application such as engineering and industry [16–20].

The traditional heat transfer fluids with low thermal conductivity, such as oil and water, are not able to meet the increasing demand of the more sophisticated heat transfer technologies. To resolve this issue, small solid nanoparticles are added to boost the heat conductivity of these convectional fluids. As a result, nanofluids are fluids formed by suspending tiny volumes of nanometer-sized particles in standard liquids. Choi [21] was the first to investigate and improve the thermal conductivity of fluids. Azam et al. [22–26] analyzed the impacts of Cattaneo–Christov (CC) heat flux, viscous dissipation, and transient bioconvection on magnetized Maxwell and Casson nanofluid. Azam et al. [25,26] also studied the bioconvection, activation energy dynamisms, and nonlinear thermal extrusion with gyrotactic microorganism on radiative sutterby melting nanomaterial. Sahu et al. [27] studied the Darcy–Forchheimer flow behavior and thermal inferences due to shrinking rotating disk with SW/MWCNT suspensions. Many authors have recently investigated numerous boundary layer movement challenges of a nanofluid with varied geometries [28–32].

Thermal conductivity is an important characteristic of a substance in the heat transmission procedure since it monitors the heat transfer rate in manufactured goods that rely on heat-regulating elements and high-level temperature. Many researchers [33–37] have been fascinated by the impact of changing heat conductivity and viscosity on thin film flows, nanofluid flows, and dusty fluid flows. As a result, Salawu et al. [38] analyzed the impacts of changing viscosity on radiative heat transfer and thermal conductivity by using magnetic field vertically. MHD flow with variable thermal conductivity and viscosity with a point source was studied by Choudhury et al. [39]. Shojaeian et al. [40] explored fast heat transmission and second-law assessment of non-Newtonian liquid flow in circular channels with changing thermophysical characteristics.

In the present model, we considered an exponential stretching sheet with temperature-dependent viscosity and thermal conducting using a permeable vertical surface, which has not been considered in previous models. Using similarity transformations, the system of non-linear PDEs that governs the model are transformed into a non-linear ODEs. The built-in MATLAB function bvp4c is used to solve the non-linear set of ODEs. Tables and graphs are presented to understand the impact of numerous physical parameters. To the best of our knowledge and understanding, no prior research of this kind has been undertaken.

2. Problem Description

Consider a steady and incompressible two-dimensional magnetized Williamson nanofluid flow flowing over an exponentially stretching porous surface. The surface is taken vertically. The plate is taken along the x– axis and the y– axis is perpendicular to it. The fluid is flowing with velocity U_w and is perpendicular to the plane $y \geq 0$. The transverse magnetic field $B = B_0 e^{xz}$ affects the flow direction perpendicularly. The physical model is systematically shown in Figure 1. The Stress-tensor (C_S) for the Williamson nanofluid model, as reported by [40,41], is represented by:

$$ C_S = -p I + \tau, \quad (1) $$

$$ \tau = \mu_\infty + \left(\frac{\mu_0 - \mu_\infty}{1 - \Gamma \gamma} \right) A_1, \quad (2) $$

where C_S, μ_∞, μ_0, $\Gamma > 0$, and A_1 represent additional stress tensor, infinite and zero-shear rate limiting viscosity, time constant and first Rivlin–Erickson-tensor. γ is described below:

$$ \gamma = \sqrt{\frac{\pi}{2}}. \quad (3) $$
Suppose $\mu_\infty = 0$ and $\Gamma \gamma < 1$. As a result, τ may be written as:

$$\tau = \left(\frac{\mu_0}{1 - \Gamma \gamma} \right) A_1,$$

(5)

We obtain the following results via binomial expansion:

$$\tau = (\mu_0 + (1 + \Gamma \gamma)) A_1,$$

(6)

Figure 1. Schematic geometry of the flow problem. U_w stands for the velocity at the wall, T_w denotes the wall’s temperature, C_w denotes the concentration at the wall, g denotes the gravitational acceleration, and B_0 denotes the applied magnetic field.

The governing Equations (7)–(10) derived in [6,42–45] for the under-consideration problem are:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

(7)

$$\rho \left(v \frac{\partial u}{\partial y} + u \frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial y} \left(\mu(T) \frac{\partial u}{\partial y} + \mu(T) \sqrt{2\Gamma \left(\frac{\partial u}{\partial y} \right)^2} \right) - \sigma B_0^2 u - \frac{\mu}{\rho} u$$

$$+ \rho g \beta_T (T - T_\infty) + \rho g \beta_c (C - C_\infty),$$

(8)

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left(k(T) \frac{\partial T}{\partial y} \right) + \rho c_p \left[D_B \frac{\partial C}{\partial y} + \frac{D_T}{T_\infty} \frac{\partial T}{\partial y} \right]^2$$

$$+ \sigma B_0^2 u^2 + q^*,$$

(9)

$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_T \frac{\partial^2 T}{T_\infty \partial y^2} + D_B \frac{\partial^2 C}{\partial y^2},$$

(10)
where \(q^* \) represents the non-uniform heat sink or source given as:

\[
q^* = \frac{k(T)u_w}{2\nu} (D_1(T_w - T_\infty) + E_1(T - T_\infty)),
\]

and

\[
k(T) = k_\infty(1 + \epsilon\theta(\eta)), \quad \mu(T) = \mu_\infty e^{-\alpha\epsilon}.
\]

Here, \(u, v \) represent the \(x \)-component and \(y \)-component of the velocity, respectively, in cartesian coordinates, \(v, \sigma, B_0, \Gamma, D_T, D_B, c_p, \rho, k(T), \epsilon, k_\infty, u_w, T_w, T_\infty, T_w, C_w, C_\infty, \alpha, \beta_\epsilon, \beta_T, \) and \(g \) are kinematic viscosity, electrical conductivity, constant magnetic field, time constant, coefficient of thermophoresis diffusion, specific heat, density, Brownian diffusivity, variable thermal conductivity, small parameter, ambient thermal conductivity, wall velocity, ambient temperature and concentration, wall temperature and concentration, dynamic viscosity, variable viscosity, concentration expansion coefficient, thermal expansion coefficient, gravitational acceleration, respectively. In the above, \(D_1 > 0, E_1 > 0 \) corresponds to internal heat generation, which will increase the temperature, whereas \(D_1 < 0, E_1 < 0 \) corresponds to internal heat absorption, which will decrease the temperature. Additionally, \(D_1 \) and \(E_1 \) represent the space and temperature dependent heat source/sink. The following are the relevant boundary conditions illustrated below:

\[
\begin{align*}
u(x, 0) &= u_w, \quad v(x, 0) = -\gamma(x), \quad (13a) \\
u(x, \infty) &= 0, \quad C(x, 0) = C_w, \quad (13b) \\
u(x, \infty) &= 0, \quad \theta(x, \infty) = T_\infty, \quad (13c)
\end{align*}
\]

where \(U_w = U_0 e^{\frac{\psi}{l}}, \gamma(x) = -V_0 e^{\frac{\psi}{l}}. \)

The similarity transformations are utilized to solve the Equations (8)–(10). Using Equation (14) in Equations (9) and (10), we arrived at

\[
\begin{align*}
u &= U_0 e^{\frac{\psi}{2l}} f'(\eta), \quad v = -\sqrt{\frac{U_0}{2l}} e^{\frac{\psi}{2l}} (f(\eta) + \epsilon f'(\eta)), \quad (14a) \\
\psi &= \sqrt{2U_0 \nu e^{\frac{\psi}{l}}} f, \quad \eta = \sqrt{\frac{U_0}{2l}} y e^{\frac{\psi}{2l}} \quad (14b) \\
\xi &= \psi, \quad \theta = \frac{T - T_\infty}{T_w - T_\infty} \quad (14c)
\end{align*}
\]

The continuity equation is fulfilled, and the result of Equation (8) is given as:

\[
\begin{align*}
\frac{e^{-\alpha\epsilon}}{N_b} \left(1 + \lambda \nu^2 \right) f' - \theta' f'' + \frac{1}{2} \frac{\lambda \nu^2}{\nu} \frac{d}{dx} \left(1 + \frac{\lambda \nu^2}{\nu} \frac{d}{dx} \right) - 2f' + 2f'' - Mf' \\
- Yf' + Gr_\epsilon \theta + Gr_c \xi = 0
\end{align*}
\]

\[
\begin{align*}
f(0) &= S, f'(0) = 1, f''(\infty) \rightarrow 0.
\end{align*}
\]

Using Equation (14) in Equations (9) and (10), we arrived at

\[
\begin{align*}
(1 + \epsilon\theta) \theta'' + \epsilon\theta'^2 + \frac{Pr}{N_b} \left(f'' - f' \theta' + N_b \theta' + N_\epsilon \theta'^2 + MEc f'^2 \right) \\
+ (1 + \epsilon\theta) \left(D_1 f' + E_1 \theta \right) = 0, \quad (17)
\end{align*}
\]

\[
\begin{align*}
g'' + Sc f g' + \frac{N_\epsilon}{N_b} \theta'' = 0, \quad (18)
\end{align*}
\]

with the boundary conditions:

\[
\begin{align*}
\theta(0) &= 1, \quad g(0) = 1, \quad (19) \\
\theta(\infty) &= 0, \quad g(\infty) = 0.
\end{align*}
\]
In which, $\lambda = \frac{\sqrt{U_0^2 \epsilon^2 + \tau^2}}{\nu T}, M = \sqrt{2 \epsilon^2 \rho \nu T^3}, S = V_0 \sqrt{2 \epsilon^2 \rho \nu T^3}, Y = \frac{2 \sqrt{\epsilon^2 \rho \nu T^3}}{k_0 U_0}, Gr_T = \frac{2 \sqrt{\epsilon^2 \rho \nu T^3}}{U_0^2 \nu T^3}$.

$Gr_c = \frac{2 \sqrt{\epsilon^2 \rho \nu T^3}}{U_0^2 \nu T^3}$, $\eta = \frac{\nu \epsilon^2 \rho \nu T^3}{\eta^2}$, $N_p = \frac{\nu \epsilon^2 \rho \nu T^3}{\eta^2}$ D_B, $N_j = \frac{\nu \epsilon^2 \rho \nu T^3}{\eta^2}$, $Pr = \frac{\nu \epsilon^2 \rho \nu T^3}{\eta^2}$, $Sc = \frac{\nu \epsilon^2 \rho \nu T^3}{\eta^2}$.

$E_c = \frac{U_0^2}{T_P} (T_w - T_0)$.

Here, M, λ, Gr_T, $Nb Gr_c$, Y, N_t, S, Pr, Sc, and E_c are the magnetic parameter, Williamson parameter, local Grashof number, Brownian motion parameter, local modified Grashof number, permeability parameter, thermophoresis parameter, suction/injection parameter, Prandtl number, Schmidt number, and Eckert number, respectively.

The c_f, Nu_s, and Sh_x are specified as [6,42–44]:

\[c_f = \frac{\tau_w}{\rho U_i^2}, \quad (20) \]

\[Nu_s = \left(\frac{x q_w}{k(T)(T_w - T_0)} \right)_{y=0}, \quad (21) \]

\[Sh_x = \left(\frac{x j_w}{D_B(C_w - C_0)} \right)_{y=0}, \quad (22) \]

where τ_w, q_w, and j_w are given as:

\[\tau_w = \left(\mu(T) \left(\frac{\partial u}{\partial y} + \frac{\Gamma}{\sqrt{2}} \left(\frac{\partial u}{\partial y} \right)^2 \right) \right), \quad (23) \]

\[q_w = -k(T) \frac{\partial T}{\partial y}, \quad (24) \]

\[j_w = -D_B \frac{\partial C}{\partial y}. \quad (25) \]

Dimensionless forms of c_f, Nu_s, and Sh_x are

\[\sqrt{Re_x}c_f = -2 \left(f''(0) + \frac{\lambda}{2} f''(0) \right) e^{-\alpha y}, \quad (26) \]

\[\frac{Nu_s}{\sqrt{Re_x}} = -\left(1 + \epsilon \theta(0) \right) \theta(0), \quad (27) \]

\[\frac{Sh_x}{\sqrt{Re_x}} = -g'(0). \quad (28) \]

where the Reynolds number $Re_x = \frac{U_i l_x}{\nu}$.

3. Results and Discussion

The coupled nonlinear ODEs Equations (15), (17) and (18) along with boundary conditions (BCs) Equations (16) and (19) are solved numerically using the MATLAB built-in function bvp4c. In order to find the numerical solution of the coupled ODEs Equations (15), (17) and (18) using bvp4c, we rewrite Equations (15), (17) and (18) as an equivalent system of first-order nonlinear ODEs using $f = \zeta_1, f' = \zeta_2, f'' = \zeta_3, \theta = \zeta_4, \theta' = \zeta_5, g = \zeta_6, g' = \zeta_7$. We then encode these seven first-order ODEs with the function name “nanoode” and convert the first-order boundary conditions to the equivalent of the function name “nanobc” in MATLAB. The interval of integration is chosen to be 0 to 10 and the relative error tolerance 10^{-6} is counted in this analysis. We then call the ‘bvp4c’ function and store the obtained numerical results in the variable called “sol”.

```
sol = bvp4c (@nanoode, @nanobc, solinit, options);
```
The effects of λ, S, Gr, M, Y, Nt, Ec, Nb, Pr, and Sc on the velocity, temperature, and concentration distributions have been investigated comprehensively. In our numerical simulations, we use $M = 1.5$, $\lambda = 0.2$, $Gr_T = 0.2$, $Gr_C = 0.2$, $Y = 0.5$, $S = 0.1$, $Nb = 0.5$, $Nt = 0.5$, $Sc = 0.6$, $Ec = 0.2$, $D_1 = 0.1$, $E_1 = 0.1$, $\alpha = 0.5$, and $Pr = 2.0$. To validate our numerical results obtained using bvp4c in MATLAB, we compare the numerical values of the Nusselt number ($-\theta'(0)$) against different values of the Prandtl number with the values reported in [33] and [46–48]. These findings are closely related to the results published in the literature [33] and [46–48], as displayed in Table 1.

Table 1. Comparative behavior of $-\theta(0)$ for different values of Pr when $M = Gr_T = Gr_C = Y = S = Ec = D_1 = E_1 = \alpha = \lambda = 0$, $Nb = 0.5$, $Nt = 0.5$.

Pr	Bidin and Nazar [45]	Ishak et al. [33]	Gangaiah et al. [47]	Present
01	0.9547	0.9548	0.9547	0.95480
02	1.4714	1.4715	1.4714	1.471454
03	1.8691	1.8691	1.8691	1.869068

Tables 2 and 3 illustrate the influences of numerous physical parameters on the skin-friction (C_f), Nusselt number ($-\theta'(0)$), and Sherwood number ($-g'(0)$). The numerical findings presented in Table 2 reveals that C_f decreases for the increasing values of λ, Gr, and α, whereas it improves for the increasing values of M, S, and Y. The $-\theta'(0)$ increases against the rising values of Gr and M and declines against the increasing values of λ, S, Y, and α. The $-g'(0)$ is increased against the rising values of Gr and increases for the increasing values of M, λ, Gr, and α and it decreases for the increasing values of S and Y. The numerical results in Table 3 show that both $-\theta'(0)$ and C_f decrease, whereas the local Sherwood number increases against the increasing values of Ec, ϵ, D_1, E_1, and Nt. Table 3 reveals the increase in the skin friction and the Nusselt number for the increasing values of the Prandtl number, whereas it shows the decrease in the local Sherwood number for the increasing values of the Prandtl number Pr. The local Nusselt number decreases, whereas the $-\theta'(0)$) and the C_f increase, for the increasing values of Nb and Sc.

Table 2. Numerical values of c_f, Nu_T against several values of λ, S, Y, α, Gr, and M.

λ	M	S	Y	α	Gr	$\sqrt{Re_x}C_f$	$\frac{Nu_T}{\sqrt{Re}}$	Sh_T/\sqrt{Re}
0.1	1.5	0.1	0.5	0.5	0.2	2.727752	0.775284	-0.293661
0.2						2.571702	0.761552	-0.287289
0.3						1.526073	0.742947	-0.287067
0.2	0.1					1.998213	0.944614	-0.358783
0.2	0.2					2.046830	0.929656	-0.354155
0.3						2.094035	0.915051	-0.349443
0.1		655				2.571702	0.761552	-0.287289
0.2						2.660746	0.831095	-0.321924
0.3						2.752719	0.904827	-0.358963
0.1						2.426609	0.781899	-0.282999
0.2						2.464228	0.776845	-0.284455
0.3						2.509028	0.771766	-0.285645
0.1						3.142260	0.803924	-0.300502
0.2						2.994002	0.793901	-0.298051
0.3						2.849405	0.782391	-0.295032
0.1						2.690235	0.726148	-0.303969
0.2						2.571702	0.761552	-0.287289
0.3						2.452374	0.785131	-0.269947
Table 3. Values of c_f, for several values of Ec, e, D_1, Pr, E_1, Nt, Nb, and Sc.

Ec	e	D_1	Pr	E_1	Nt	Nb	Sc	$\sqrt{Re_e}c_f$	$\frac{N_ ext{t}}{\sqrt{Re_e}}$	$\frac{Sh_ ext{t}}{\sqrt{Re_e}}$
0.1	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.574717	0.808828	−0.332979
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.571702	0.761552	−0.287289
0.3	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.568694	0.714233	−0.241554
0.2	0.1	0.1	2.0	0.1	0.5	0.5	0.1	2.575906	0.812989	−0.336233
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.571702	0.761552	−0.287289
0.2	0.3	0.1	2.0	0.1	0.5	0.5	0.1	2.567902	0.716566	−0.244622
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.571702	0.761552	−0.287289
0.2	0.2	0.2	2.0	0.1	0.5	0.5	0.1	2.568182	0.721545	−0.249389
0.2	0.2	0.3	2.0	0.1	0.5	0.5	0.1	2.564367	0.681163	−0.211136
0.2	0.2	0.1	1.1	0.1	0.5	0.5	0.1	2.542794	0.464327	−0.008792
0.2	0.2	0.1	1.2	0.1	0.5	0.5	0.1	2.546907	0.505713	−0.047645
0.2	0.2	0.1	1.3	0.1	0.5	0.5	0.1	2.530705	0.544153	−0.083669
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.571702	0.761552	−0.287289
0.2	0.2	0.1	2.0	0.2	0.5	0.5	0.1	2.565090	0.694352	−0.223557
0.2	0.2	0.1	2.0	0.3	0.5	0.5	0.1	2.557173	0.614035	−0.149533
0.2	0.2	0.1	2.0	0.1	0.1	0.5	0.1	2.599697	0.813838	0.198771
0.2	0.2	0.1	2.0	0.1	0.2	0.5	0.1	2.592340	0.800852	0.068572
0.2	0.2	0.1	2.0	0.1	0.3	0.5	0.1	2.585221	0.787761	−0.035755
0.2	0.2	0.1	2.0	0.1	0.5	0.1	0.1	2.472216	0.914849	−3.30832
0.2	0.2	0.1	2.0	0.1	0.5	0.2	0.1	2.539176	0.862518	−1.416708
0.2	0.2	0.1	2.0	0.1	0.5	0.3	0.1	2.559441	0.824444	−0.787946
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.1	2.564745	0.881992	−0.639324
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.2	2.566273	0.855000	−0.565911
0.2	0.2	0.1	2.0	0.1	0.5	0.5	0.3	2.567733	0.828938	−0.492478

Figure 2 displays the influence of λ, M, S, Y, and Gr on the velocity distribution. Figure 2b depicts that the velocity boundary layer reduces by enhancing the magnetic parameter (M). Since the magnetic field acts as a hurdle to transport the fluid flow, it causes lessening in the velocity profile. Additionally, the rise in M enhances the Lorentz force, which generates resistance to the transport phenomenon; hence, it also decreases the fluid’s velocity. The impact of λ on the velocity profile is shown in Figure 2a. Its effect on the velocity profile is the same as earlier discussed in Figure 2b. The graphs in Figure 2c displays that the $f'(\eta)$ decreases as the suction/injection parameter S increases. Figure 2d demonstrates the influence of the permeability parameter Y on the velocity profile. In Figure 2d, it can be noticed that the $f'(\eta)$ decreases as the value of the permeability parameter Y increases. Figure 2e depicts the effect on the $f'(\eta)$ for the various values of the viscosity parameter α. The plots in Figure 2f show that the $f'(\eta)$ increases with the growing values of Gr since the buoyancy effect enhances fluid flow speed.

The effect of the variable thermal conductivity e on the temperature distribution $\theta(\eta)$ is indicated in Figure 3a. The temperature of the fluid increases by increasing the thermal conductivity e since the transmission of heat from the sheet to the fluid is higher for the higher values of e. Figure 3b characterizes the impact of the Prandtl number Pr on $\theta(\eta)$. Figure 3b shows that when the Prandtl number Pr increases, the temperature profile $\theta(\eta)$ decreases. Since the Prandtl number Pr is the ratio of momentum to thermal diffusivity, the temperature profile $\theta(\eta)$ decreases by increasing Pr. The effect of the Eckert number on $\theta(\eta)$ is presented in Figure 3c. The graph in Figure 3c shows that raising the Ec will increase in $\theta(\eta)$. The influence of irregular heat parameters D_1 and E_1 on $\theta(\eta)$ is depicted in Figure 3d,e. The $\theta(\eta)$ is enhanced as the values of D_1 and E_1 are increased. Figure 3f illustrates the impacts of the viscosity parameter α on $\theta(\eta)$. Figure 3f shows that for large values of α, the thermal boundary-layer thickness also increases.
Figure 2. (a) $f'(\eta)$ for different values of λ; (b) $f'(\eta)$ along M; (c) $f'(\eta)$ along S; (d) $f'(\eta)$ along Y; (e) $f'(\eta)$ along α; (f) $f'(\eta)$ along Gr.
Figure 3. (a) $\theta(\eta)$ along ϵ; (b) $\theta(\eta)$ along Pr; (c) $\theta(\eta)$ along Ec; (d) $\theta(\eta)$ along D_1; (e) $\theta(\eta)$ along E_1; (f) $\theta(\eta)$ along α.

Figure 4 shows the impact of Y, λ, M, Gr, and S on $\theta(\eta)$. Figure 4a illustrates the behavior of M on $\theta(\eta)$. The fluid’s temperature and the thermal boundary-layer thickness both rise as the magnetic effect rises. Physically, it occurs because the stronger the Lorentz force is, the greater the heat production is from the fluid’s surface, which increases the fluid’s temperature profile. Figure 4b depicts the effect of Y on $\theta(\eta)$. Due to an increase in Y, heat transfer from one particle to another slows down, which is responsible for the decrease in $\theta(\eta)$. Figure 4c depicts the influence of λ on $\theta(\eta)$. This has a similar
impact to that mentioned earlier in Figure 4a. Figure 4d depicts the influence of GR on \(\theta(\eta) \). As the Grashof number enhances, \(\theta(\eta) \) also increases because the buoyancy effect enhances the speed of the fluid, which, as a result, decreases \(\theta(\eta) \). The impact of \(S \) on \(\theta(\eta) \) is demonstrated in Figure 4e. It is noted that the temperature profile \(\theta(\eta) \) increases as \(S \) increases.

Figure 4. (a) \(\theta(\eta) \) for different values of \(M \); (b) \(\theta(\eta) \) for different values of \(Y \); (c) \(\theta(\eta) \) for various values of \(\lambda \); (d) \(\theta(\eta) \) along \(Gr \); (e) \(\theta(\eta) \) along \(S \).

Figure 5a shows the impact of \(Nb \) on \(\theta(\eta) \). Since the temperature profile \(\theta(\eta) \) and Brownian motion parameter \(Nb \) are directly linked, the thermal boundary-layer thickness
grows with the rising values of \(Nb \). Figure 5b illustrates the effect of \(Nt \) on \(\theta(\eta) \). As \(Nt \) rises, the temperature profile \(\theta(\eta) \) also rises, thus, the thermal boundary-layer thickness increases. Figure 5c displays the effect of \(Nb \) on the concentration profile \(g(\eta) \). By increasing the \(Nb \), the nanofluid concentration \(g(\eta) \) is decreased. The effects of \(Nt \) on the \(g(\eta) \) are depicted in Figure 5d. The graph in Figure 5d shows that when \(Nt \) increases, the concentration profile \(g(\eta) \) also increases.

Figure 5a shows the impact of \(Nb \) on \(\theta(\eta) \); (b) \(\theta(\eta) \) along \(Nt \); (c) \(g(\eta) \) along \(Nb \); (d) \(g(\eta) \) along \(Nt \).

Figure 5. (a) \(\theta(\eta) \) along \(Nb \); (b) \(\theta(\eta) \) along \(Nt \); (c) \(g(\eta) \) along \(Nb \); (d) \(g(\eta) \) along \(Nt \).

Figure 6 demonstrates the influence of \(M \), \(Y \), \(\lambda \), \(Gr \), and \(S \) on the concentration-profile \(g(\eta) \). The graphs in Figure 6 show that the \(g(\eta) \) increases for the rising values of \(Y \), \(M \), and \(\lambda \), whereas it is reduced for the increasing values of \(Gr \), and \(S \).
Figure 6. (a) $g(\eta)$ along Y; (b) $g(\eta)$ along M; (c) $g(\eta)$ along λ; (d) $g(\eta)$ along Gr; (e) $g(\eta)$ along S.
Figure 7 depicts that the concentration profile $g(\eta)$ reduces for the growing values of Sc.

![Graph showing concentration profile](image)

Figure 7. $g(\eta)$ along Sc.

4. Conclusions

This research paper provides the numerical solution of the Williamson nanofluid flow across an exponentially stretching, permeable vertical plate with variable temperature-dependent viscosity and thermal conductivity. The following are the significant findings of this study:

- λ, Y, S, a, and M reduce the velocity profile.
- Increases in M, ε, λ, a, D_1, E_1, Ec, Y, Nb, and Nt enhance the temperature profile $\theta(\eta)$, whereas increasing values of Gr, S, and Pr decrease the temperature profile $\theta(\eta)$.
- When M, λ, Y, and Nt are increased, the concentration profile $g(\eta)$ also increased, however the concentration profile decreases by increasing the Nb, Gr, S, and Sc.
- C_f reduces for the increasing values of ε, λ, a, D_1, E_1, Ec, Gr, and Nt, whereas it grows for the increasing values of M, S, Y, Nb, Sc, and Pr.
- The temperature profile reduces by increasing the values of M, ε, λ, a, D_1, E_1, Ec, Y, Nb, Sc, and Nt.
- Increasing values of Gr, S, and Pr will increase the Nusselt number.
- The Sherwood number grows for the increasing values of ε, λ, a, M, D_1, E_1, Ec, Y, Nb, Sc, Gr and Nt reduces for the varying values of S and Pr.

Author Contributions: Conceptualization, M.A. and I.A.; Data curation, M.A. and K.A.; Funding acquisition, M.S.A.; Investigation, T.A.; Project administration, T.M.; Software, T.A. and T.M.; Validation, T.A.; Visualization, I.A., T.A. and T.M.; Writing—original draft, M.S.A. and T.M.; Writing—review & editing, T.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Large Groups Project under grant number RGP2/206/43.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
Nomenclature

\(x, y \) Cartesian coordinates [m]
\(u, v \) Velocity components [ms\(^{-1}\)]
\(U_0 \) Rate of stretching surface
\(\beta_T \) Thermal expansion coefficient
\(\beta_C \) Concentration expansion coefficient
\(B_0 \) Magnetic field strength [NmA\(^{-1}\)]
\(C_f \) Skin friction coefficient
\(Pr \) Prandtl number
\(M \) Magnetic parameter
\(T \) Fluid temperature [K]
\(C_w \) Concentration of nanoparticles at the surface [mol]
\(k(T) \) Variable thermal conductivity [W/(mK)]
\(C \) Concentration of nanoparticles [mol]
\(C_\infty \) Ambient concentration of nanoparticles [mol]
\(U_w \) Velocity at the wall [ms\(^{-1}\)]
\(S \) Suction/injection parameter
\(\theta(\eta) \) Temperature profile
\(g(\eta) \) Concentration profile
\(N_t \) Thermophoretic parameter
\(N_u \) Local Nusselt number
\(Sh \) Local Sherwood number
\(T_w \) Surface temperature [K]
\(T_\infty \) Ambient temperature [K]
\(f \) Dimensionless stream function
\(g \) Nanoparticle volume fraction
\(Sc \) Schmidt number
\(D_B \) Brownian diffusion coefficient [m\(^2\)s\(^{-1}\)]
\(D_T \) Thermophoresis diffusion coefficient [m\(^2\)s\(^{-1}\)]
\(D_1 \) Space-dependent heat source/sink
\(E_1 \) Time-dependent heat source/sink
\(\mu_\infty \) Infinite viscosity [Nsm\(^{-2}\)]
\(\mu(T) \) Variable viscosity [Nsm\(^{-2}\)]
\(\rho_c \) Heat capacity of the nanofluid [Jm\(^{-3}\)K\(^{-1}\)]
\(Re \) Reynolds number
\(M \) Magnetic parameter
\(f'(\eta) \) Velocity profile
\(\eta \) Dimensionless similarity variable
\(\sigma \) Electrical conductivity [Sm\(^{-1}\)]
\(\Gamma \) Positive time constant
\(\alpha \) Thermal diffusivity [m\(^{-2}\)s\(^{-1}\)]
\(\rho c_p \) Heat capacity of nanoparticles [Jm\(^{-3}\)K\(^{-1}\)]
\(\nu \) Kinematic viscosity [m\(^2\)s\(^{-1}\)]
\(\rho \) Density [kgm\(^{-3}\)]
\(\lambda \) Williamson fluid parameter
\(\epsilon \) Dimensionless parameter for variable thermal conductivity
\(\eta^* \) Nonuniform heat source/sink [K/S]
\(Gr_T \) Thermal Grashof number
\(Gr_C \) Concentrated Grashof number

References

1. Williamson, R.V. The Flow of Pseudoplastic Materials. Ind. Eng. Chem. 1929, 21, 1108–1111. [CrossRef]
2. Nadeem, S.; Hussain, S.T. Heat Transfer Analysis of Williamson Fluid over Exponentially Stretching Surface. Appl. Math. Mech. 2014, 35, 489–502. [CrossRef]
3. Amjad, M.; Ahmed, K.; Akbar, T.; Muhammad, T.; Ahmed, I.; Alshomrani, A.S. Numerical Investigation of Double Diffusion Heat Flux Model in Williamson Nanofluid over an Exponentially Stretching Surface with Variable Thermal Conductivity. *Case Stud. Therm. Eng.* 2022, 36, 102231. [CrossRef]

4. Kothandapani, M.; Prakash, J. Effects of Thermal Radiation Parameter and Magnetic Field on the Peristaltic Motion of Williamson Nanofluids in a Tapered Asymmetric Channel. *Int. J. Heat Mass Transf.* 2015, 81, 234–245. [CrossRef]

5. Ahmed, K.; Akbar, T. Numerical Investigation of Magnetohydrodynamics Williamson Nanofluid Flow over an Exponentially Stretching Surface. *Adv. Mech. Eng.* 2021, 13, 16878140211019876. [CrossRef]

6. Hayat, T.; Bashir, G.; Waqas, M.; Alsaedi, A. MHD 2D Flow of Williamson Nanofluid over a Nonlinear Variable Thickened Surface with Melting Heat Transfer. *J. Mol. Liq.* 2016, 223, 836–844. [CrossRef]

7. Ahmed, K.; Akbar, T.; Muhammad, T.; Alghamdi, A.M. Heat Transfer Characteristics of MHD Flow of Williamson Nanofluid over an Exponential Permeable Stretching Curved Surface with Variable Thermal Conductivity. *Case Stud. Therm. Eng.* 2021, 28, 101544. [CrossRef]

8. Ahmed, K.; McCash, L.B.; Akbar, T.; Nadeem, S. Effective Similarity Variables for the Computations of MHD Flow of Williamson Nanofluid over a Non-Linear Stretching Surface. *Processes* 2022, 10, 1119. [CrossRef]

9. Ahmed, K.; Akbar, T.; Muhammad, T. Physical Aspects of Homogeneous-Heterogeneous Reactions on MHD Williamson Fluid Flow across a Nonlinear Stretching Curved Surface Together with Convective Boundary Conditions. *Math. Probl. Eng.* 2021, 2021706961. [CrossRef]

10. Ahmed, K.; Khan, W.A.; Akbar, T.; Rasool, G.; Alharbi, S.O.; Khan, I. Numerical Investigation of Mixed Convective Williamson Fluid Flow over an Exponentially Stretching Permeable Curved Surface. *Fluids* 2021, 6, 260. [CrossRef]

11. Makinde, O.D.; Mabood, F.; Ibrahim, M.S. Chemically Reacting on MHD Boundary-Layer Flow of Nanofluids over a Non-Linear Stretching Sheet with Heat Source/Sink and Thermal Radiation. *Therm. Sci.* 2018, 22, 495–506. [CrossRef]

12. Turkylmazoglu, M. An Analytical Treatment for the Exact Solutions of MHD Flow and Heat over Two–Three Dimensional Deforming Bodies. *Int. J. Heat Mass Transf.* 2015, 90, 781–789. [CrossRef]

13. Mabood, F.; Ibrahim, S.M.; Lorenzini, G. Chemical Reaction Effects on MHD Rotating Fluid over a Vertical Plate Embedded in Porous Medium with Heat Source. *J. Eng. Thermophys.* 2017, 26, 399–415. [CrossRef]

14. Hashemi-Tilehnooei, M.; Dogonchi, A.S.; Seyyedi, S.M.; Chamkha, A.J.; Ganji, D.D. Magnetohydrodynamic Natural Convection and Entropy Generation Analyses inside a Nanofluid-Filled Incinerator-Shaped Porous Cavity with Wavy Heater Block. *J. Therm. Anal. Calorim.* 2020, 141, 2033–2045. [CrossRef]

15. Rashidi, S.; Esfahani, J.A.; Masakiyan, M. Applications of Magnetohydrodynamics in Biological Systems—Review on the Numerical Studies. *J. Magn. Magn. Mater.* 2017, 439, 358–372. [CrossRef]

16. Madhu, M.; Shashikumar, N.S.; Thriveni, K.; Gireesha, B.J.; Mahanthesh, B. Irreversibility Analysis of the MHD Williamson Fluid Flow through a Microchannel with Thermal Radiation. *Waves Random Complex Media* 2022, 1–23. [CrossRef]

17. Mishra, P.; Kumar, D.; Kumar, J.; Abdel-Aty, A.-H.; Park, C.; Yahia, I.S. Analysis of MHD Williamson Micropolar Fluid Flow in Non-Darcian Porous Media with Variable Thermal Conductivity. *Case Stud. Therm. Eng.* 2022, 36, 102195. [CrossRef]

18. Almaneeaa, A. Numerical Study on Heat and Mass Transport Enhancement in MHD Williamson Fluid via Hybrid Nanoparticles. *Alexandria Eng. J.* 2022, 61, 8343–8354. [CrossRef]

19. Reddy, M.V.; Lakshminarayana, P. MHD Radiative Transport Flow of Williamson Nanofluid with Cattaneo-Christov Model over a Stretching Sheet through a Porous Medium in the Presence of Chemical Reaction and Suction/Injection. *J. Porous Media* 2022, 25, 1–15. [CrossRef]

20. Asjad, M.I.; Zahid, M.; Inc, M.; Baleanu, D.; Almohsen, B. Impact of Activation Energy and MHD on Williamson Fluid Flow in the Presence of Bioconvection. *Alexandria Eng. J.* 2022, 61, 8715–8727. [CrossRef]

21. Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; OSTI: Oak Ridge, TN, USA, 1995.

22. Azam, M.; Xu, T.; Nayak, M.K.; Khan, W.A.; Khan, M. Gyratropic Microorganisms and Viscous Dissipation Features on Radiative Casson Nanoliquid over a Moving Cylinder with Activation Energy. *Waves Random Complex Media* 2022, 1–23. [CrossRef]

23. Azam, M.; Abbas, N.; Ganesh Kumar, K.; Mali, S. Transient Bioconvection and Activation Energy Impacts on Casson Nanofluid with Gyratropic Microorganisms and Nonlinear Radiation. *Waves Random Complex Media* 2022, 1–20. [CrossRef]

24. Azam, M. Effects of Cattaneo-Christov Heat Flux and Nonlinear Thermal Radiation on MHD Maxwell Nanofluid with Arrhenius Activation Energy. *Case Stud. Therm. Eng.* 2022, 34, 102048. [CrossRef]

25. Azam, M.; Mabood, F.; Khan, M. Bioconvection and Activation Energy Dynamisms on Radiative Sutterby Melting Nanomaterial with Gyratropic Microorganism. *Case Stud. Therm. Eng.* 2022, 30, 101749. [CrossRef]

26. Azam, M. Bioconvection and Nonlinear Thermal Extrusion in Development Ofchemically Reactive Sutterby Nano-Material Due to Gyratropic Microorganisms. *Int. Commun. Heat Mass Transf.* 2022, 130, 105820. [CrossRef]

27. Sahu, S.K.; Shaw, S.; Thatoi, D.N.; Azam, M.; Nayak, M.K. Darcy-Forchheimer Flow Behavior and Thermal Inferences with SWCNT/MWCNT Suspensions Due to Shrinking Rotating Disk. *Waves Random Complex Media* 2022, 1–29. [CrossRef]

28. Magyari, E.; Pantokratoras, A. Note on the Effect of Thermal Radiation in the Linearized Rosseland Approximation on the Heat Transfer Characteristics of Various Boundary Layer Flows. *Int. Commun. Heat Mass Transf.* 2011, 38, 554–556. [CrossRef]

29. Chamkha, A.J.; Aly, A.M. MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects. *Chem. Eng. Commun.* 2010, 198, 425–441. [CrossRef]
30. Gorla, R.S.R.; Chamkha, A. Natural Convective Boundary Layer Flow over a Nonisothermal Vertical Plate Embedded in a Porous Medium Saturated with a Nanofluid. *Nanoscale Microscale Thermophys. Eng.* 2011, 15, 81–94. [CrossRef]
31. Chamkha, A.J.; Abbassbandy, S.; Rashad, A.M.; Vajravelu, K. Radiation Effects on Mixed Convection about a Cone Embedded in a Porous Medium Filled with a Nanofluid. *Mechanica* 2013, 48, 275–285. [CrossRef]
32. RamReddy, C.; Murthy, P.; Chamkha, A.J.; Rashad, A.M. Soret Effect on Mixed Convection Flow in a Nanofluid under Convective Boundary Condition. *Int. J. Heat Mass Transf.* 2011, 64, 384–392. [CrossRef]
33. Ishak, A.; Nazar, R.; Bachok, N.; Pop, I. MHD Mixed Convection Flow near the Stagnation-Point on a Vertical Permeable Surface. *Phys. A Stat. Mech. its Appl.* 2010, 389, 40–46. [CrossRef]
34. Manjunatha, S.; Gireesha, B.J. The Effects of Variable Viscosity and Thermal Conductivity on MHD Flow and Heat Transfer of a Dusty Fluid. *Ain Shams Eng. J.* 2016, 7, 505–515. [CrossRef]
35. Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A. The Effects of Variable Viscosity and Thermal Conductivity on a Thin Film Flow over a Shrinking/Stretching Sheet. *Comput. Math. Appl.* 2011, 61, 3391–3399. [CrossRef]
36. Palani, G.; Kim, K.-Y. Numerical Study on a Vertical Plate with Variable Viscosity and Thermal Conductivity. *Arch. Appl. Mech.* 2010, 80, 711–725. [CrossRef]
37. Abu-Nada, E. Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection. *Int. J. Heat Fluid Flow* 2009, 30, 679–690. [CrossRef]
38. Salawu, S.O.; Dada, M.S. Radiative Heat Transfer of Variable Viscosity and Thermal Conductivity Effects on Inclined Magnetic Field with Dissipation in a Non-Darcy Medium. *J. Niger. Math. Soc.* 2016, 35, 93–106. [CrossRef]
39. Choudhury, M.; Hazarika, G.C. The Effects of Variable Viscosity and Thermal Conductivity on MHD Flow Due to a Point Sink. *Matematicas Enseñanza Univ.* 2008, 16, 21–28.
40. Shojaeian, M.; Yildiz, M.; Koşar, A. Convective Heat Transfer and Second Law Analysis of Non-Newtonian Fluid Flows with Variable Thermophysical Properties in Circular Channels. *Int. Commun. Heat Mass Transf.* 2015, 60, 21–31. [CrossRef]
41. Alarifi, I.M.; Abokhalil, A.G.; Osman, M.; Lund, L.A.; Ayed, M.B.; Belmabrouk, H.; Tili, I. MHD Flow and Heat Transfer over Vertical Stretching Sheet with Heat Sink or Source Effect. *Symmetry* 2019, 11, 297. [CrossRef]
42. Alarifi, I.M.; Abokhalil, A.G.; Osman, M.; Lund, L.A.; Ayed, M.B.; Belmabrouk, H.; Tili, I. MHD Flow and Heat Transfer over Vertical Stretching Sheet with Heat Sink or Source Effect. *Symmetry* 2019, 11, 297. [CrossRef]
43. Khan, M.; Karim, I.; Rahman, M.; Arifuzzaman, S.M.; Biswas, P.; Karim, I. Williamson Fluid Flow Behaviour of MHD Convective-Radiative Cattaneo–Christov Heat Flux Type over a Linearly Stretched-Surface with Heat Generation and Thermal-Diffusion. *Front. Heat Mass Transf.* 2017, 9, 15. [CrossRef]
44. Vittal, C.; Reddy, M.C.K.; Vijayalaxmi, T. MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium. *Glob. J. Pure Appl. Math.* 2017, 13, 2033–2056.
45. M Megahed, A. Williamson Fluid Flow Due to a Nonlinearly Stretching Sheet with Viscous Dissipation and Thermal Radiation. *J. Egypt. Math. Soc.* 2019, 27, 12. [CrossRef]
46. Mukhopadhyay, S. MHD Boundary Layer Flow and Heat Transfer over an Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium. *Alexandria Eng. J.* 2013, 52, 259–265. [CrossRef]
47. Bidin, B.; Nazar, R. Numerical Solution of the Boundary Layer Flow over an Exponentially Stretching Sheet with Thermal Radiation. *Eur. J. Sci. Res.* 2009, 33, 710–717.
48. Hayat, T.; Abbasi, F.M.; Ahmad, B.; Alsaeed, A. MHD Mixed Convection Peristaltic Flow with Variable Viscosity and Thermal Conductivity. *Sains Malaya* 2014, 43, 1583–1590.
49. Gangaiah, T.; Saidulu, N.; Lakshmi, A.V. The Influence of Thermal Radiation on MHD Tangent Hyperbolic Fluid Flow with Zero Normal Flux of Nanoparticles over an Exponential Stretching Sheet. *Appl. Appl. Math. Int. J.* 2019, 14, 2.