ARTICLE OPEN

Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity

Qianfan Nie1,2,9, Caifang Gao1,9, Feng-Shou Yang3,4, Ko-Chun Lee5, Che-Yi Lin5, Xiang Wang1, Ching-Hwa Ho6,7, Chen-Hsin Lien4, Shu-Ping Lin4, Mengjiao Li3,4, Yen-Fu Lin3,7,8, Wenwu Li1,2,11, Zhigao Hu1,2 and Junhao Chu1,2

Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (ΔWn) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.

npj 2D Materials and Applications (2021) 5:60 ; https://doi.org/10.1038/s41699-021-00241-0

INTRODUCTION

The brain is the main intelligent organ. It has exclusive architecture that facilitates and executes highly energy efficient short-term computation, long-term learning, and memorization using the network of synapses in the neural system for data processing. The development of the next generation of humanoid robots and electronics is inseparably connected to the innovative concept of emulation and reproduction of biological systems and artificial synapse1,2,9. Recently, atomically thin van der Waals materials with characteristic internal and interfacial structures, large area development, and good charge transport behavior have attracted substantial interest in the field of neuromorphic engineering. The materials have enabled the development of synaptic devices, including resistive memory, sensors, and field-effect transistors (FETs) with various operating mechanisms such as ferroelectric or charge-trapping layer, electrochemical memory, and optoelectronic memory14–16. However, there is a common but inevitable problem in silicon substrate-based 2D electronic devices, numerous defects on the surface of SiO2 originating from Si–O dangling bonds, which normally degrade either the electrical or optical performance of the device21–23. Therefore, modulating the external applied electric field to effectively control the carrier capture mechanism would be a major breakthrough in the development of artificial synaptic system3,4,11,32.

Synapses with functions of short-term plasticity (STP) and long-term plasticity (LTP), as the basic units of the human brain, and work in each brain circuit such as the reward pathway, which is the core pathway affected by drugs14–21. Synaptic plasticity is defined as the change in weight of the connections between neurons (ΔWn): the ratio between the postsynaptic responses triggered by the nth and 1st input spikes22, and is analogous to long lasting of drug reward learning evoked by repeated drug stimulus. It represents three types of excitatory, flat, and inhibitory states through transmission of chemical media between the pre and post synapse. Likewise, in the drug reward pathway of the human brain, the ΔWn index, which is increasing, flattening, and decreasing, can be used to characterize the three effects24,25,26 that is, effective, stable, and ineffective, when the neuronal networks are triggered by adequate, low and ultralow drug doses, respectively. At present, there is a great deal of research into the development of solid-state neuromorphic electronics that can simulate synaptic plasticity behaviors. However, the reported result about the ΔWn index only exhibits a monotonic increase as either the stimuli frequency or pulse number increases27–29. This cannot fully conform with the tunable increasing/flattening/decreasing synaptic responses correlated with the “same” frequency or presynaptic spike number under different amplitude repeated stimulations in the neural circuits of the human brain. Different trends in the ΔWn index have also been done but necessarily under “different” electrostatic pulses or optical pulses with different wavelength16,30–32. Based on the aforementioned mechanism, to effectively mimic the biological synapses at device level, the device needs to strongly depend on the polarity of the applied electric fields and possess the advantage of low power consumption. Advance of optically and electrically stimulated synaptic devices based on two-dimensional van der Waals layered materials30,31,33 has been regarded as a thrilling progress in neuromorphic applications.

1Engineering Research Center for Nanophotonics & Advanced Instrument (MOE), Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), School of Physics and Electronic Science, East China Normal University, Shanghai, China. 2Institute for Optoelectronics, Shanghai Institute of Intelligent Electronics and Systems, Fudan University, Shanghai, China. 3Department of Physics, National Chung Hsing University, Taichung, Taiwan. 4Department of Electrical Engineering & Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, Taiwan. 5Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan. 6Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan. 7i-Center for Advanced Science and Technology (i-CAST), National Chung Hsing University, Taichung, Taiwan. 8Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan. 9These authors contributed equally: Qianfan Nie, Caifang Gao. *email: mengjiaoli@email.nchu.edu.tw; yenfulin@nchu.edu.tw; wwli@ee.ecnu.edu.cn

Published in partnership with FCT NOVA with the support of E-MRS
The present study demonstrated carrier capture-assisted optoelectronics, based on a two-dimensional van der Waals material indium selenide (InSe), comprising Si/SiO₂/InSe/In layers and Au source-drain electrodes. It is proven that our layered InSe devices can imitate medicine-acting metamaterial with three types of responses (effective/stable/ineffective) under various drug dosages. InSe, a III–VI group material with a low effective electron mass, excellent intrinsic charge transport characteristics, and ultrasensitive optical absorption, exhibits high on/off current ratio, carrier mobility, and excellent photoresponse compared with the pioneering works on other van der Waals semiconductor-based electronic devices.6,34–38. The traps on the SiO₂ surface that degrade device performances provide an opportunity to exploring carrier capture/release events between the InSe semiconductor and the SiO₂ substrate by controlling electric field and applying optical pulse.39–41 Therefore, we achieved a strong gate-dependent persistent photocurrent and an increasing/flattening/decreasing ΔWₘ index, to successfully mimic the significant synaptic plasticity and drug response by positive/zero/negative correlations with “same” frequency and number of drug stimuli. Finally, the underlying mechanisms in terms of carrier capturing/releasing characteristics were comprehensively illustrated and proved in detail by energy band and low-frequency noise (LFN) analysis.34,42,43. In our work, we developed a drug dosage modulator utilizing InSe optoelectronics, which represents a significant step toward achieving the next generation of nanoelectronic devices based on artificial intelligence.

RESULTS AND DISCUSSION

Device characterization and electrical/optical performances

Since InSe possesses innate ultrahigh mobility and hypersensitivity to light, we fabricated optoelectronic devices based on layered InSe flakes to perform electrical measurements and probe exotic applications. Furthermore, the band gap of layered InSe transforms from direct to indirect as the material changes from bulk to a monolayer, which covers an extensive wavelength range from near-infrared to visible light.34 Such advantages make InSe a desirable candidate for optoelectronic devices. What is more, as a two-dimensional material, InSe has the characteristic of low power consumption, which is further conducive to its application in the neuromorphic system. Figure 1a illustrates a schematic sketch of the back-gate InSe-based FET, and the optical image is shown in Fig. 1b. For stability and charge transport enhancement, an In layer was deposited on the top surface of the layered InSe semiconductor.27 The thickness of the as-exfoliated and selected InSe flake, which was crudely determined by optical microscopy with the help of color contrast and precisely measured by atomic force microscopy (AFM), was ~11.6 nm (see Fig. 1c and Supplementary Fig. 1) for a better channel performance. To obtain a better understanding of the photoelectrical properties of InSe devices, we examined the performances under various gate voltages, V:bg. As shown in Fig. 2a, we plotted the temporal responses of an InSe-based phototransistor under the following conditions: 405-nm wavelength and 0.245-W cm⁻² power density, and V:bg values of −80, −40, 0, 40, and 80 V. Notably, the current decayed slower at lower V:bg values after the light was turned off and generated a persistent current at negative gate bias and a very fast decay time at positive V:bg. Hypothetically, strong gate-modulated photoresponses benefit from significant carrier capture/release events at the interface between the InSe semiconductor and the SiO₂ substrate. Further proof of this was provided by inserting another layered material comprising hexagonal boron nitride (h-BN) with free-dangling bonds into the InSe/SiO₂ interface (see Supplementary Fig. 3). Obviously, InSe phototransistors based on an h-BN/SiO₂ substrate have markedly a shorter relaxation time than phototransistors with SiO₂ alone as the substrate.50,51. It is noted that the dangling Si–O bonds at the substrate surface play a crucial role in our carrier capture-assisted process. The dangling Si–O bonds allow gate electric field to regulate the Fermi level on the surface of the InSe semiconductor, which facilitate carriers to be captured from the InSe channel to the SiO₂ surface under positive V:bg and be released back under negative V:bg. The phenomenon of channel conductance change caused by carrier release/capture processes, in line with the threshold voltage (V:th) owing to an increase in the concentration of photon-generated carriers.36 Note that the photoelectrical characterizations were conducted in the dark to reduce fluctuations triggered by environmental disturbance. To quantitatively analyze the dependence of the photoresponse on the illumination intensity, the photocurrent (I:ph = I:light − I:dark) was obtained at different values of V:bg, with a drain-source voltage of 0.5 V, as a function of the illumination power density (see Supplementary Fig. 2a). Figure 1g illustrates the power law of I:ph ∝ P², where P and α represent the laser power density and the exponent factor, respectively. The correlation between I:ph and P was super linear (α > 1) at negative V:bg value and sublinear (α < 1) at positive V:bg value. The results strongly hinted that there were trap states at the interface between the semiconductor and the dielectric layer, which can capture and release carriers and thereby influence charge transport.40,47 Responsivity and detectivity are two other critical characteristics of the performance of optoelectronic InSe devices. Responsivity (R) is defined as the photocurrent (I:ph) divided by the laser power (P) and the illumination area of the device,48

\[
R = \frac{I_{ph}}{P \cdot S}.
\]

(1)

And is highly dependent on the V:bg value, as shown in Fig. 1h. As the V:bg increased from −80 V to 80 V, the variation in the responsivity with power density changed from ascent to descent. Supplementary Fig. 2b presents the extracted I:ph and R values at a fixed V:bg = 0 V, which exhibits an inverse trend with an incremental illumination intensity, in good agreement with recent research.40,48 In Supplementary Fig. 2c, detectivity (D'), reflecting the sensitivity of a phototransistor, was estimated as

\[
D' = R \cdot \sqrt{S/2qI_{dark}}.
\]

(2)

where q is the elementary charge, and revealed great uniformity with previous reports on InSe phototransistors.40,49. It should be noted that these estimated optoelectronic parameters at a higher V:bg were relatively smaller, which was attributed to the small photocurrent variation under the device-saturation regime. However, all of these I:ph, R, and D' values indicated the tunability of photoresponses, suggesting rooting in carrier-assisted InSe optoelectronics by adjusting the gate electric field.

Mechanism of gate-modulated synaptic response

To obtain a better understanding of the photoelectrical properties of InSe devices, we examined the performances under various gate voltages, V:bg. As shown in Fig. 2a, we plotted the temporal responses of an InSe-based phototransistor under the following conditions: 405-nm wavelength and 0.245-W cm⁻² power density, and V:bg values of −80, −40, 0, 40, and 80 V. Notably, the current decayed slower at lower V:bg values after the light was turned off and generated a persistent current at negative gate bias and a very fast decay time at positive V:bg. Hypothetically, strong gate-modulated photoresponses benefit from significant carrier capture/release events at the interface between the InSe semiconductor and the SiO₂ substrate. Further proof of this was provided by inserting another layered material comprising hexagonal boron nitride (h-BN) with free-dangling bonds into the InSe/SiO₂ interface (see Supplementary Fig. 3). Obviously, InSe phototransistors based on an h-BN/SiO₂ substrate have markedly a shorter relaxation time than phototransistors with SiO₂ alone as the substrate.50,51. It is noted that the dangling Si–O bonds at the substrate surface play a crucial role in our carrier capture-assisted process. The dangling Si–O bonds allow gate electric field to regulate the Fermi level on the surface of the InSe semiconductor, which facilitate carriers to be captured from the InSe channel to the SiO₂ surface under positive V:bg and be released back under negative V:bg. The phenomenon of channel conductance change caused by carrier release/capture processes, in line with the threshold voltage (V:th) owing to an increase in the concentration of photon-generated carriers.36 Note that the photoelectrical characterizations were conducted in the dark to reduce fluctuations triggered by environmental disturbance. To quantitatively analyze the dependence of the photoresponse on the illumination intensity, the photocurrent (I:ph = I:light − I:dark) was obtained at different values of V:bg, with a drain-source voltage of 0.5 V, as a function of the illumination power density (see Supplementary Fig. 2a). Figure 1g illustrates the power law of I:ph ∝ P², where P and α represent the laser power density and the exponent factor, respectively. The correlation between I:ph and P was super linear (α > 1) at negative V:bg value and sublinear (α < 1) at positive V:bg value. The results strongly hinted that there were trap states at the interface between the semiconductor and the dielectric layer, which can capture and release carriers and thereby influence charge transport.40,47 Responsivity and detectivity are two other critical characteristics of the performance of optoelectronic InSe devices. Responsivity (R) is defined as the photocurrent (I:ph) divided by the laser power (P) and the illumination area of the device,48

\[
R = \frac{I_{ph}}{P \cdot S}.
\]

(1)

And is highly dependent on the V:bg value, as shown in Fig. 1h. As the V:bg increased from −80 V to 80 V, the variation in the responsivity with power density changed from ascent to descent. Supplementary Fig. 2b presents the extracted I:ph and R values at a fixed V:bg = 0 V, which exhibits an inverse trend with an incremental illumination intensity, in good agreement with recent research.40,48 In Supplementary Fig. 2c, detectivity (D'), reflecting the sensitivity of a phototransistor, was estimated as

\[
D' = R \cdot \sqrt{S/2qI_{dark}}.
\]

(2)

where q is the elementary charge, and revealed great uniformity with previous reports on InSe phototransistors.40,49. It should be noted that these estimated optoelectronic parameters at a higher V:bg were relatively smaller, which was attributed to the small photocurrent variation under the device-saturation regime. However, all of these I:ph, R, and D' values indicated the tunability of photoresponses, suggesting rooting in carrier-assisted InSe optoelectronics by adjusting the gate electric field.
release/transport of neurotransmitters in the synapse, provides the support for imitating essential synaptic plasticity behaviors including drug dosage reward-related metaplasticity. As presented in Fig. 2a, we applied a series of light pulses with the same laser wavelength, power density, and pulse width to mimic the action of a patient taking the same kind of drug, wherein the various gate electric fields served as different drug dosages. That is to say that positive/zero/negative bias represented ultralow/low/adequate drug dosages, respectively. In addition, the increasing optical spike frequency/pulse numbers are analogous to the frequency/number of the drug taking, and the output device current can be taken as both a reward-related postsynaptic current (PSC) and a reward pathway response after drug stimulations or therapy. In the human brain, the reward pathway is an indispensable neural circuit, in which drugs mainly act through controlling the transmission of dopamine and other neurotransmitters. When a drug stimulates and activates the reward pathway in patient's brain, the appropriate neurotransmitters are released from the presynaptic membrane to the synaptic space. They work by binding to receptors on the postsynaptic membrane, and are transported back to the pre-neurons with the aid of special transporters, after which the reward pathway provides positive feedback such as a feeling of wellbeing to patients. Namely, a beneficial medicine-acting reaction can be achieved and the health of the patient will get better and eventually reach saturation to recovery after repeated medication in adequate dosage. Whereas, a low or ultralow drug dosage stimulates the release of low levels of neurotransmitters and few changes in the postsynaptic membrane response. The consequence for the human brain is that different drug doses (adequate/low/ultralow) give rise to three kinds of medicine-acting metaplasticity: effective, stable, and ineffective drug reactions. The results suggest that our proposed InSe optoelectronics have the potential to imitate medicine-acting metaplasticity by virtue of the operating gate electric field, as discussed in detail later.

Fig. 1 Characterization, electrical and optical properties of multilayered InSe device. a Schematic sketch of the back-gate InSe-based device. b Optical image of the multilayered InSe device. Scale bar: 10 μm. c Height profile of the layered InSe channel. d Raman spectrum of the InSe flake with an excitation wavelength of 532 nm. e Output characteristics of the InSe device tested in the dark at various V_{bg}. f Transfer characteristics at different illumination intensities of a 405-nm laser at $V_{ds} = 0.5$ V. g The extracted $α$ value as a function of V_{bg}. h Responsivity (R) of the InSe device as a function of the laser power density under diverse V_{bg} with $V_{ds} = 0.5$ V.
Medicine-acting synaptic plasticity emulation

In view of the aforementioned research and the discussion of the gate voltage regulation of the photosresponse and the neuron-regulatory mechanism of drug dose in patients, we further verified that the artificial InSe-based devices are capable of imitating synaptic behavior. Synapses, as a bridge between neurons, transmit information by releasing and receiving neurotransmitters, which stimulates postsynaptic neurons to generate action potentials, leading to metaplasticity. Synaptic plasticity (i.e., STP and LTP) characterizes changes in the strength of synaptic weight aroused by memorization events and is manifested in the ability of the brain to learn and memorize the drug efficacy. To emulate experimentally STP and LTP behaviors in the InSe device, we adopted a 405-nm-wavelength laser and measured under a fixed stimulation duration of 500 ms, as shown in Fig. 3a. Therefore, the amplitude of persistent I_{ph} is able to be effectively tuned by varying the width and power of the laser pulse because of various channel conductance in InSe optoelectronics, which can mimic the synaptic plasticity events that occur during treatment with different types of medication.

Paired-pulse facilitation (PPF) is another crucial manifestation of STP. It relates to the recognition and decoding of temporal information about the drug stimulus and represents the synaptic responses which can be strengthened by the effects of two successive presynaptic spikes. PPF was emulated in the InSe device to explore dynamic synaptic plasticity as well. Two identical laser pulses (power intensity 0.245 W cm$^{-2}$, exposure duration 500 ms, V_{bg} 40 V) were applied, and the pulse interval (Δt) ranged from 0.7 to 3.5 s. The PPF-like behavior was remarkably observed, as shown in Fig. 3d, where the PPF ratio (ΔW_{t}, ΔW_{1}) represents the percentage of the postsynaptic responses triggered by the nth to 1st input spikes, where n is greater than 1) grew to saturation as Δt increased. Moreover, a similar phenomenon occurred when ten sequential presynaptic spikes impinged on the artificial InSe synapse, at the same light power density, spike duration, and V_{bg} condition. As the frequency increased, the PSC gain (ΔW_{10}) faded in Fig. 3f. Such observations differ from those reported in most studies on PPF, but have been validated in the human brain and attributed to the release of the captured carriers at the InSe/SiO$ _{2}$ interface under the negative V_{bg}. Therefore, the increased pulse interval facilitated the charges in the InSe channel, which resulted in higher values for the PSC, which were more than 1.5 times the initial value, the PPF ratio, and the PSC gain. The results corresponded to an improvement of the medicine-acting effect with a relative ascent in the interval following the administration of the adequate dose of a
medication. Conversely, the frequent use drugs reduced the treatment efficacy.

To systematically investigate the dependency of synaptic activity on the modulation of the gate voltage as well as to realize the medicine-acting effect, we further measured the metaplasticity in the InSe optoelectronic devices by varying \(V_{bg} \) from \(-80\) to \(80\) V. Combining Fig. 4a and Supplementary Figs. 5–8, it can be appreciated that the amplitude of PSC obviously increased at a negative \(V_{bg} \) and dropped off at a positive \(V_{bg} \) that corresponded to the two reactions (i.e., effective and ineffective drug use) under adequate and ultralow drug doses. These opposite variations caused by the reversed electric field polarities in the PSC are also highlighted in Supplementary Fig. 4. Furthermore, the presynaptic pulses of various frequencies with illumination cycles of 20 s were applied at each gate voltage, serving as the dosage of the drug, can be appreciated that the amplitude of PSC obviously increased at a negative \(V_{bg} \) and dropped off at a positive \(V_{bg} \) which corresponded to the two reactions (i.e., effective and ineffective drug use) under adequate and ultralow drug doses. These opposite variations caused by the reversed electric field polarities in the PSC are also highlighted in Supplementary Fig. 4. Furthermore, the presynaptic pulses of various frequencies with illumination cycles of 20 s were applied at each gate voltage, serving as the dosage of the drug, can dynamically imitate the effective/stable/ineffective drug responses in a patient (in Fig. 2b), meanwhile a higher drug stimulus was gradually increased at negative \(V_{bg} \) and decreased at positive \(V_{bg} \) respectively. Apart from varying pulse frequencies, the number of pulses can also be used to modify the updating of synaptic weight as shown in Fig. 4d and Supplementary Fig. 9. The InSe-based synapse was triggered by identical presynaptic spikes (power intensity of 0.245 W cm\(^{-2}\), exposure duration of 500 ms) and PPF ratio as a function of pulse interval (\(\Delta t\)).

Carrier fluctuations mechanism of InSe-based synapse

For a more intuitive comprehension of the mechanism underlying the carrier fluctuations in InSe optoelectronics, we carried out systematic dynamic characteristic measurements under various conditions. Figure 5a indicates the power spectral map of the current fluctuations (\(S_i\)) at various \(V_{bg} \) as a function of frequency. As the measurement frequency increased from 10 to \(10^4\) Hz and gate voltage came to the more positive value, \(S_i\) was gradually aggrandized. Besides, the variations of \(S_i\) with increasing frequency at \(V_{bg} = -40\), 0, 40 V and with increasing \(V_{bg} \) at a fixed frequency of 20 Hz were highlighted in the inset at the bottom.
and right of Fig. 5a, respectively. Among which, the S_I curves under each gate voltage were consistent with the representative ideal $1/f$ signal, revealing that carrier capture or scattering was uniformly distributed both in terms of space and energy. The S_I was further normalized by the square of the I_{ds} at various V_{ds} values, as shown in Fig. 5b. What is noteworthy is that the normalized S_I independent of V_{ds} suggested that the LFN originated from the InSe/SiO$_2$ interface, rather than from the contact barriers between the source/drain electrodes and the InSe channel. This corroborated by the highly linear output characteristics in Fig. 1e, which exhibits good Ohmic contact behavior. Moreover, it is remarkable that effective trap density (N_{it}) at a fixed frequency can be characterized using the formula $N_{it} \propto \frac{S_I}{g_m^2}$, where g_m is the transconductance. And the formula is determined by the carrier number (CNF) model based on carrier capturing and releasing events near the dielectric/semiconductor interface. Hence, the N_{it} depends heavily on the gate electric field owing to gate bias-modulated g_m. Combining with Fig. 5a and Supplementary Fig. 3, we can conclude that the gate voltage-modulated metaplasticity and the ΔW_n characteristics with opposite trends are derived from carrier capturing/releasing events near the dielectric/semiconductor interface. Hence, the N_{it} depends heavily on the gate electric field owing to gate bias-modulated g_m. Combining with Fig. 5a and Supplementary Fig. 3, we can conclude that the gate voltage-modulated metaplasticity and the ΔW_n characteristics with opposite trends are derived from carrier capturing/releasing events near the dielectric/semiconductor interface.

When we applied a positive V_{bg} to the InSe optoelectronics, the energy band of the InSe surface bent downward, which caused more carriers to travel from the channel to the InSe/SiO$_2$ interface where they were captured by the interface trap states. It is a remarkable fact that the traps multiplied sharply with more positive V_{bg} on account of a higher position of the Fermi level in the InSe. Furthermore, with increasing amounts of light stimulation, a greater number of the carriers were trapped, shielding the effect of the effective gate electric field, and then leading to a more obvious reduction of I_{ds} in the InSe channel, as exhibited in Supplementary Fig. 10. On the contrary, the captured carriers were released from the SiO$_2$ surface with a negative V_{bg} implementing an increase synaptic weight change (ΔW_n), which profited from an ever-larger PSC triggered by a series of light stimuli training. Above this all, our InSe-based optoelectronics with gate-modulated photoresponses could successfully imitate effective/stable/ineffective features triggered by repeated drug stimuli with adequate/low/ultralow

Fig. 4 Metaplasticity in the InSe synaptic devices under various frequencies and numbers of presynaptic spikes. a PSC generated by presynaptic illumination with a 405-nm laser (0.245 W cm$^{-2}$, 500 ms) with diverse frequencies of 0.2, 0.25, 0.4, 0.5, 1, and 1.25 Hz, at $V_{bg} = -40$ V. b Diagram showing different gate voltages represented by elements of the matrix. c Maps for weight change of the PSC (ΔW_n) under various V_{bg} at the aforementioned frequencies. d PSC responses triggered by a train of 100 presynaptic spikes and the corresponding ΔW_n under different V_{bg} ranging from -80 to 60 V.
dosages at the device level, corresponding to ascending/flattening/descending ΔW_n indexes under negative/zero/positive bias, respectively. In addition, the LFN measurements further illustrated that the tunable metaplasticity and ΔW_n variation trend originated from carrier capturing/releasing. Therefore, the proposed synaptic optoelectronics could pave the way for a connection between electronics and neurology.

METHODS

Device fabrication

Atomically layered InSe flakes were mechanically exfoliated from the bulk crystal using the conventional Scotch tape method and transferred to a p$^+$ silicon substrate capped with a 300 nm oxide dielectric SiO$_2$ layer. The p$^+$ silicon substrate served as a back-gate. Subsequently, an In layer with a thickness of 30 nm was intentionally deposited on the top surface of a multilayered InSe film as a doping/packed layer. It should be emphasized that the surface morphology of the deposited In doping/packed layer shows inconsecutive film, displaying ignorable contributions to conducting paths for charge transport. Drain-source electrodes (Au) were fabricated by thermal evaporation using a shadow mask. The detail of the device fabrication was given elsewhere.

Characterizations

The layer thickness was determined through AFM system (Dimension Icon, Bruker), and the morphology of the InSe FET was identified via optical microscopy (Olympus, BX51M). Raman spectra were measured by Raman microscope (Jobin Yvon LabRAM HR Evolution, Horiba) with an excitation laser of 532 nm.

Electrical properties

The electrical characterizations of optoelectronic devices based on multilayer InSe were performed by using a semiconductor parameter analyzer (Keithley, 4200-SCS) under a high vacuum condition to avoid channel oxidation. Note that all the electrical behaviors of the InSe devices were determined in darkness to reduce fluctuations due to the environmental perturbations. The photoresponses of the devices were carried out using an adjustable laser driver system (Thorlabs, ITC4001). All the measurements were obtained at room temperature.

DATA AVAILABILITY

Data are available on request from the authors.
REFERENCES

1. John, R. A. et al. Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13, 1701193 (2017).

2. Seo, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11, 3936 (2020).

3. Li, J. et al. Symmetric ultrastiff writing and erasing speeds in quasi-nonvolatile memory via van der Waals heterostructures. Adv. Mater. 31, 1808035 (2019).

4. Mukherjee, B. et al. Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-Res2/h-BN/graphene heterostructures. Adv. Funct. Mater. 30, 2001688 (2020).

5. Hong, S. et al. Complementary type ferroelectric memory transistor circuits with P- and N-channel MoTe2. Adv. Electron. Mater. 6, 2000479 (2020).

6. Yang, F. S. et al. Oxidation-induced charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat. Commun. 11, 2972 (2020).

7. Clement, N., Nishiguchi, K., Fujiwara, A. & Vuillaume, D. One-by-one trap activation in silicon nanowire transistors. Nat. Commun. 1, 92 (2020).

8. Pak, J. et al. Trapped charge modulation at the MoS2/SiO2 interface by a lateral electric field in MoS2 field-effect transistors. Nano Futures 3, 011002 (2019).

9. Guo, Y. et al. Charge trapping at the MoS2–SiO2 interface and its effects on the characteristics of MoS2 metal–oxide–semiconductor field effect transistors. Appl. Phys. Lett. 106, 103109 (2015).

10. Li, Q., Zhou, Q., Shi, L., Chen, Q. & Wang, J. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019).

11. Kang, K. et al. Graphene-assisted oxidation of tungsten disulfide monolayers: substrate and electric-field effect. Adv. Mater. 29, 1603898 (2017).

12. Yoon, J. H. et al. An artificial nociceptor based on a diffusible memristor. Nat. Commun. 9, 417 (2018).

13. Feng, G. et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv. Mater. 32, 1906171 (2020).

14. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

15. Lauri, S. E. et al. Presynaptic mechanisms involved in the expression of STP and UP at CA1 synapses in the hippocampus. Neuropharmacology 52, 1–11 (2007).

16. Wang, Y. et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).

17. Di Chiara, G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 375, 13–30 (1999).

18. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

19. Saghizadeh, V. K. et al. Multi-terminal memristors from polycrystalline mono-layer molybdenum disulfide. Nature 554, 500–504 (2018).

20. Costenla, A. R., Cunha, R. A. & Mendoza, A. Caffeine, adenosine receptors, and synaptic plasticity. J. Alzheimer’s Dis. 20, 525–534 (2010).

21. Fagen, Z. M., Mansvelder, H. D., Keath, J. R. & McGhee, D. S. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann. N. Y. Acad. Sci. 1003, 185–195 (2003).

22. Kwatra, M. D., Harris-Warrick, R. M. & Johnson, B. R. Neuromodulator-evoked synaptic plasticity within a central pattern generator network. J. Neurophysiol. 108, 2846–2856 (2012).

23. Martins, D., Mehta, M. A. & Prata, D. The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neurosci. Biobehav. Rev. 80, 351–371 (2017).

24. Wise, R. A. A Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).

25. Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated electronics and sensors for human motion detection. Nano Energy 76, 105020 (2020).

26. Chen, L. et al. Ultra-sensitive and robust two-dimensional indium selenide flexible electronics and sensors for human motion detection. Nano Energy 76, 105258 (2020).

27. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

28. Wise, R. A. Drug-activation of brain reward pathways. Sci. Rep. 5, 11472 (2015).

29. Lei, S. D. et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263–1272 (2014).

30. Yin, L. et al. Ultrafast and ultra-sensitive phototransistors based on few-layered HSe2. Appl. Phys. Lett. 109, 213105 (2016).

31. Liao, F. et al. A dual-gate MoS2 photodetector based on interface coupling effect. Small 16, 1904369 (2020).

32. Peiry, N. et al. Artificial photo-sensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 11, 17590–17599 (2019).

33. Wang, J. H. & Kelly, P. T. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J. Neurophysiol. 78, 2707–2716 (1997).

ACKNOWLEDGEMENTS

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0501604), the National Natural Science Foundation of China (Grant Nos 61774061 and 61504043), the NSAF Foundation of China (Grant No. U1830130), the National Natural Science Foundation of Shanghai (Grant No. 19ZR1473000), and the Taiwan Ministry of Science and Technology (Grant Nos MOST 109-2221-E-005-101- and 109-2112-M-005-013-MY3). The authors wish to acknowledge Dr. Wen-Jui Lee, attending physician of Neurological Institute, Taichung Veterans General Hospital, Taiwan, for his generous help in interpreting the significance of the results of this study.

AUTHOR CONTRIBUTIONS

W.L. and Y.F.L. conceived and designed the experiments. M.L. contributed to the device fabrication and LFN measurements. C.G. and Q.N. fabricated the device and contributed to the electrical and optical measurements and data analysis. F.S.Y. and X.W. contributed to the Schematic sketch and AFM measurement. K.-C.L. and C.Y.L. helped with the data analysis. The paper was written by Q.N. and C.G. with contributions from all the co-authors. W.L. and Y.F.L. supervised the research. C.H.H. provided InSe materials. C.-H.L. and S.-P.L. helped design the experiments. Z.H. and J. C. provided the some experimental equipments. All the authors discussed the results and commented on the manuscript.
COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41699-021-00241-0.

Correspondence and requests for materials should be addressed to M.L., Y.-F.L. or W.L.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021