MR Measures of Small Bowel Wall T2 Are Associated With Increased Permeability

Robert A. Scott, PhD,1,2† Hannah G. Williams, PhD,1,3† Caroline L. Hoad, PhD,1,3 Ali Alyami, PhD,1 Catherine A. Ortori, PhD,4 Jane I. Grove, PhD,1,2 Luca Marciani, PhD,1,2‡ Gordon W. Moran, PhD,1,2 Robin C. Spiller, PhD,1,2 Alex Menys, PhD,5 Guruprasad P. Aithal, PhD,1,2† and Penny A. Gowland, PhD1,3‡

Background: Increased small bowel permeability leads to bacterial translocation, associated with significant morbidity and mortality. Biomarkers are needed to evaluate these changes in vivo, stratify an individual’s risk, and evaluate the efficacy of interventions. MRI is an established biomarker of small bowel inflammation.

Purpose: To characterize changes in the small bowel with quantitative MRI measures associated with increased permeability induced by indomethacin.

Study Type: Prospective single-center, double-blind, two-way crossover provocation study.

Subjects: A provocation cohort (22 healthy volunteers) and intrasubject reproducibility cohort (8 healthy volunteers).

Field Strength/Sequence: 2D balanced turbo field echo sequences to measure small bowel wall thickness, T2, and motility acquired at 3T.

Assessment: Participants were randomized to receive indomethacin or placebo prior to assessment. After a minimum 2-week washout, measures were repeated with the alternative allocation. MR measures (wall thickness, T2, motility) at each study visit were compared to the reference standard 2-hour lactulose/mannitol urinary excretion ratio (LMR) test performed by a lab technician. All analyses were performed blind.

Statistical Tests: Normality was tested (Shapiro–Wilk’s test). Paired testing (Student’s t-test or Wilcoxon) determined the significance of paired differences with indomethacin provocation. Pearson’s correlation coefficient compared significant measures with indomethacin provocation to LMR. Intrasubject (intraclass correlation) and interrater variability (Bland–Altman) were assessed.

Results: Indomethacin provocation induced a significant increase in LMR compared to placebo (P < 0.05) and a significant increase in small bowel T2 (0.12 seconds compared to placebo 0.07 seconds, P < 0.05). Small bowel wall thickness (P = 0.17) and motility (P = 0.149) showed no significant change. T2 and LMR were positively correlated (r = 0.68, P < 0.05). T2 measurements were robust to interobserver (intraclass correlation 0.89) and intrasubject variability (Bland–Altman bias of 0.005 seconds, 95% confidence interval [CI] –0.04 to +0.05 seconds, and 0.0006 seconds, 95% CI –0.05 to +0.06 seconds).

Data Conclusion: MR measures of small bowel wall T2 were significantly increased following indomethacin provocation and correlated with 2-hour LMR test results.

Level of Evidence: 1
Technical Efficacy Stage: 2

THE BOWEL WALL is a dynamic, porous barrier between the host organism and the environment.1 Gut wall permeability is a general term that refers to the phenomenon of material passing through the wall via paracellular...
transport and transcellular permeability. Increased gut permeability is implicated in the pathophysiology of a number of gastrointestinal diseases characterized by gut wall inflammation such as celiac disease and inflammatory bowel disease, but also in disorders without overt gut inflammation such as liver cirrhosis, irritable bowel syndrome, obesity, diabetes, HIV, and those who go on to develop or have inflammatory bowel disease in remission.\(^2\),\(^5\)

Passage of nutrients through the gut wall is a normal physiological process, but an increase in gut wall permeability can result in bacterial translocation (BT),\(^4\) which is defined as passage of bacteria and/or bacterial products across the apparently intact gut wall\(^5\) either via the mesenteric lymph nodes or directly through the portal circulation. There is evidence that the small bowel is the principle focus of pathological BT.\(^5\),\(^6\)\(^7\) BT is common in cirrhosis\(^8\),\(^9\) and leads to a systemic inflammatory response that exacerbates the hyperdynamic circulation, resulting in increased portal pressure.\(^4\),\(^10\),\(^11\) BT is also implicated in complications of cirrhosis including variceal bleeding, spontaneous bacterial peritonitis, and hepatic encephalopathy.\(^10\) In Crohn’s disease, increased bowel permeability has been reported before macro-and microscopic manifestation of the disease\(^12\),\(^13\) and is reversible with biological therapy.\(^14\) It has been suggested that ankylosing spondylitis and multiple sclerosis can be triggered by BT.\(^15\),\(^16\)

Increased gut permeability has also been associated with hyperglycemia, which in mouse models has been shown to drive intestinal barrier permeability by altering tight and adherence junction integrity.\(^3\) The concept that increased permeability is directly associated with leakage through the gap-junctions of the mucosal barrier has been demonstrated using direct visualization of bowel wall function in vivo using confocal endomicroscopy and a peripherally injected contrast agent.\(^17\) However, visualization is limited to small regions of the bowel, and the cost and sedation required limit this technology to highly selected patients in specialist centers. Alternatively, measurement of intestinal permeability involves monitoring differential urinary excretion of sugars or sugar alcohols that are absorbed in the bowel and poorly metabolized (eg, lactulose, mannitol, rhamnose, sucrose).\(^18\) The lactulose to mannitol excretion ratio (LMR) is the most widely used and validated marker,\(^3\),\(^19\) as evidenced by its inclusion as a treatment efficacy endpoint in clinical trials.\(^20\),\(^21\) The LMR test has the benefit of using the ratio of two molecules rather than the measured amount of a single molecule, which is thought to correct for interindividual differences in processing of the molecules (eg, bowel transit, renal function, and tissue distribution) that are unrelated to permeability.\(^18\) Administration of oral indomethacin is a well-validated, safe provocation that increases small bowel permeability,\(^22\) with a 2-week washout period being demonstrated to be adequate in preventing cross-contamination.\(^19\) Animal models have also demonstrated that indomethacin causes an acute stimulation of gut motility.\(^23\),\(^24\)

There is a pressing need for standardized, widely available, noninvasive markers of gut wall changes related to increased permeability and BT. Such measures would allow study of the underlying mechanisms of altered gut permeability and the effects of interventions and could improve management of therapies in key patient groups in a personalized-medicine approach. Various aspects of bowel structure and function can be measured with magnetic resonance imaging (MRI).

Several publications have identified subjective \(T_2\)-weighted measures as being important in the MR assessment of the bowel wall, particularly in relation to Crohn’s disease.\(^25\) Aside from gut wall enhancement with contrast, a meta-analysis of MR enterography showed the parameters with consistently highest sensitivity and specificity for bowel wall inflammation were wall thickness and motility.\(^25\) The terminal ileal motility score showed good agreement with endoscopic and histopathologic activity in Crohn’s disease, suggesting that it is sensitive to gut inflammation.\(^26\)

We hypothesized that quantitative MRI measures of small bowel wall thickness, \(T_2\), and motility would relate to increased small bowel permeability in healthy volunteers exposed to an indomethacin challenge.\(^22\) Our aim was to undertake a single-institution validation of these quantitative MR small bowel measures as a test of intestinal permeability compared to LMR as a reference standard in an indomethacin-challenged healthy volunteer model of increased intestinal permeability. Due to the semiautomated analysis of the quantitative MR measures, we hypothesized that there would be an excellent intraclass correlation with minimal intrasubject variability.

Materials and Methods

The study protocol was approved by the University of Nottingham School of Medicine Ethics Board (Ref. B10112015) and ran from April 2016 until December 2016. An additional study cohort was performed without the use of indomethacin to test the interobserver reproducibility and intrasubject test–retest variability of \(T_2\) measurements in healthy volunteers (approved by the University of Nottingham School of Medicine Ethics Board Ref. J/3/2007). Written informed consent was taken for all subjects as specified by Good Clinical Practice.

Design

This was a single-center study with two healthy volunteer cohorts. The provocation cohort underwent a double-blind, two-way crossover provocation study administering two doses of 75 mg slow-release indomethacin or placebo. Participants returned after a minimum 2-week washout period for a repeat study day on the alternative allocation. The order of indomethacin or placebo administration was randomized and blinded, with both pills manufactured to appear identical. The second cohort underwent exactly the same
study visits, again a minimum of 2 weeks apart, but without the indomethacin/placebo administration. The study ran from April 2016 until December 2016. The second cohort was performed without the use of indomethacin to test the interobserver agreement and intra-subject test–retest variability of T2 measurements.

Participants

Participants in the provocation cohort were screened for eligibility and consented prior to randomization. To be eligible, participants had to have no exclusion factors known to increase small bowel permeability. Exclusion criteria included: pregnancy, chronic gastrointestinal disorders or symptoms, diabetes mellitus (type 1 or 2), smoking, psychiatric disease, celiac disease, food allergy, history of atopy, allergy or intolerance to nonsteroidal antiinflammatory drugs (NSAIDs), first-degree relative with inflammatory bowel disease, celiac disease or type 1 diabetes mellitus, alcohol dependency, estimated glomerular filtration rate <45 mL/min, or any contraindications to MRI. For 2 weeks prior to a study visit, volunteers were instructed not to take any regular medications other than oral contraceptives. Participants were informed not to smoke, drink alcohol, or ingest any artificial sweeteners for 72 hours prior to either study visit. In addition, all NSAIDs were prohibited throughout the study. Participants were informed not to smoke, drink alcohol, or ingest any artificial sweeteners for 72 hours prior to either study visit. Height and weight were recorded at the screening visit to calculate the body mass index (BMI) of each participant prior to both study visits.

Randomization and Blinding

All participants in the provocation cohort were randomized to receive either indomethacin or placebo administration first. After a minimum 2-week washout period they returned for a second study visit for repeat measures on the alternative treatment arm to act as their own controls. The indomethacin and placebo tablets were manufactured to appear identical. All analyses were performed blind to the treatment allocation and other biomarker results.

Interventions and Procedures

PROVOCATION COHORT. The order of the procedures for each study day (2 study days in total for each participant) is shown in Supplementary Figs. S1 and S2. Participants fasted on the day of the study. They took time-stamped digital photographs of themselves consuming the treatment tablet (placebo or indomethacin) 16 and 4 hours before the planned midway point of a 2-hour lactulose/mannitol urinary excretion test (usually at 10:30 am). Upon arrival at the test center, a cannula was inserted, and blood samples were taken prior to the test. Subjects emptied their bladders and within 5 minutes ingested 5 g of lactulose and 2 g of mannitol dissolved in 100 mL of water, in a 1-minute time window in the presence of an investigator. Thirty minutes after sugar administration, 500 mL of water was given to aid in the collection of urine. Water was allowed ad libitum thereafter. The LMR in the urine collected in the first 2 hours after ingestion was used to quantify the small bowel permeability.

Prior to the MRI scan, participants were given an oral contrast solution (consisting 1 L of water, 25 g 2.5% mannitol, and 2.0 g/0.2% locust bean gum). Forty-five minutes prior to the start of the MRI scan 0.5 L of the solution was given. The remaining 0.5 L was ingested equally over the 15 minutes prior to the start of the MRI data acquisition to obtain optimal distension of the small bowel and terminal ileum.

MRI ACQUISITION. All images were acquired using a whole-body Philips (Best, Netherlands) 3T Achieva (N = 46) with a 16-channel XL Torso coil or Philips 3T Ingenia (N = 2) with a 32 channel dStream Torso coil (Philips Healthcare). Participants lay in the prone position with their arms by their head scanned feet first. After acquisition of the anatomical scans to locate the regions of interest (ROIs), small bowel motility scans were acquired. Subjects were then given two doses of 20 mg intravenous Buscopan (hyoscine N-butylinbromide) separated by a minimum of 10 minutes followed by the T2 and bowel wall thickness scans.

To provide images to measure bowel wall thickness, a 2D balanced turbo field echo (bTFE) sequence was acquired covering the entire small bowel in two 16-second breath-holds. Twenty coronal slices were acquired at resolution 1.2 × 1.2 × 3 mm³ with an in-plane reconstruction of 0.78 × 0.78 mm². Additional parameters included the following: echo time (TE)/repetition time (TR) of 1.79/3.59 msec, flip angle of 50°, half Fourier acquisition (0.7), sensitivity encoding (SENSE) factor of 1.5, field of view (FOV) of 340 × 352 mm², and 2 acquisitions were averaged.

For the T2 measurement, a single-slice, spin echo-prepared, 2D bTFE (TE/TR = 1.68/3.4 msec; flip angle = 50°, half Fourier acquisition (0.625)) was acquired at echo times of 20, 50, 80, 120, 180, and 300 msec. Each spin echo was acquired in a separate breath-hold with a minimum wait time of 15 seconds between scans to ensure full recovery of the magnetization before the next acquisition. Therefore, the number of echo times was limited by the time that Buscopan remains effective (~7 minutes). The images were acquired at 1.3 × 1.5 mm² in-plane resolution and reconstructed to 1 × 1 mm² over an FOV of 340 × 350 mm². A 5-mm thick coronal imaging slice was placed in the plane where the terminal ileum enters the cecum. This limited the amount of small bowel in the imaging plane but ensured consistency across the 2 study days.

We used a slightly altered version of a previously published protocol for measuring small bowel wall thickness.** MRI ANALYSIS: SMALL BOWEL WALL THICKNESS.** Software developed in-house with IDL (Research Systems, Boulder, CO) was used to calculate the mean small bowel wall thickness on the higher-resolution bTFE images. ROIs were manually selected as freeform shapes in the right lower quadrant around the terminal ileum at sites where loops of small bowel lay adjacent to each other (red line in Fig. 1). R.S. (3 years of experience) performed the manual ROI segmentation and saved electronic copies of all the drawn profiles, which were then reviewed by H.W. (2 years of experience). Both readers were supervised and ROIs checked by C.H. (>10 years of experience). The right lower quadrant of the abdomen was chosen...
to ensure that similar regions of the wall were being sampled at both visits. The program then automatically measured the small bowel wall thickness by generating a profile of the intensity values perpendicular to the wall at adjacent points along the ROI. As profiles were drawn across adjacent loops of bowel, the thickness measured was twice the wall thickness. A minimum of 200 profiles were used to calculate the mean small bowel wall thickness for each individual at each study visit.

MRI Analysis: Small Bowel T2

The single-slice spin-echo prepared bTFE images were used to measure T2 of the small bowel wall. We developed in-house software using MatLab (MathWorks, Natick, MA) to identify the bowel wall from T2-weighted images. A semiautomated analysis pipeline was set up to isolate the bowel wall and extract the signal from it (UK patent application 2002582.1).

In brief, the images were first registered to the first echo time image via nonlinear registration using MatLab’s image registration function imregister, an intensity-based image registration process. A second motion correction step was applied using MatLab’s function for estimating displacement fields aimed at correcting local image distortions. The motion correction was run as a bulk process for all datasets, taking ~3–4 minutes for each dataset. Three freeform ROIs from different locations were then manually drawn in the content of the bowel to measure the signal intensity of the content at each echo time, which was used in subsequent thresholding and partial volume correction. This was performed by H.W. (with 2 years of experience) under the supervision of P.G. (with >10 years of experience) with saved copies of the electronic masks reviewed by C.H. (with >10 years of experience).

Following this, a series of automated steps isolated the bowel wall. A single mask of the area containing the bowel was created using thresholding to remove subcutaneous fat, muscle, and visceral fat (determined by histogram analysis of the different tissues). Only the areas inside this mask were used for further analysis (Fig. 2b). Images were normalized to allow consistent threshold values to be used throughout the analysis. Next, a binary mask of the bowel wall was created using edge detection and thresholding for each echo time. These masks were then combined to produce a mask that only contained voxels that were identified as wall at every echo time (Fig. 2c).

Following this, a manual quality control step was used to ensure that only small bowel wall was included in the final mask (performed by H.W., under supervision by P.G. and C.H.). The removal process was done by visually inspecting the mask overlaid on all six images and then drawing around areas that did not cover the bowel wall, including the wall of the colon, stomach, uterus, and bladder (Fig. 2d). These areas were removed from the mask.

The final mask was automatically split into smaller sub-ROIs to allow for the heterogeneity along the bowel wall to be investigated. The signal for each sub-ROI at each echo time was extracted. Datasets that contained three or less sub-ROIs were excluded from analysis, as these either had a lack of bowel in the imaging plane or through-plane motion that could not be corrected for in the image registration step. After the initial batched image registration, the analysis for each dataset took ~1–2 minutes, including the two manual steps (ie, drawing three ROIs in the content and the manual removal of misidentified sections of bowel).

The T2 fit took the full bTFE readout into account. To overcome partial volume effects, the signal from each ROI was fit to a two-compartment model (small bowel and content). The T2 of the content was taken as the average T2 measured from three ROIs located within the lumen of the bowel. Any ROI that produced an R-squared value of less than 0.9 for the T2 fit was removed from further analysis. The median and interquartile range of T2 across all sub-ROIs were calculated and used as the data values for subsequent statistical analysis.

MRI Analysis: Small Bowel Motility

Analysis of the MR measurement of the small bowel motility has been described previously in detail. In brief, initially robust data decomposition registration (RRDR) was used to remove the effects of respiratory motion. The global motility index was determined using GI-Quant (Motilent, London, UK) applied to an ROI (performed by R.S. with 3 years of experience, saved maps reviewed by C.H. with >10 years of experience) encompassing the entire visible

FIGURE 1: Overview of method used to measure the mean small bowel wall thickness, on the high resolution balanced turbo field echo (bTFE) images. The yellow box indicates the region where the data were analyzed (left). The red line (middle) indicates a section of wall where perpendicular profiles (pink lines, right) have been drawn across loops of the small bowel wall. Multiple sections were selected so that >200 profiles were used to provide a final average estimate.
small bowel region across all slices acquired according to published protocols. This index was generated from nonlinear registration parameters generated over the entire image dataset.

Analysis of LMR Data for Small Bowel Permeability

The in vivo permeability test is a standard differential urinary sugar excretion test using hydrophilic interactions liquid chromatography (HILIC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). After collection, the total urine volume was noted and 1.5 mL sample aliquots were filtered with 450 nm filters (Merck Millipore, Billerica, MA) and stored at −20°C until batch analysis was performed. All the samples were coded without reference to the test condition. The measurements were performed by a lab technician (C.O.) blinded to the test condition.

To precipitate any excess salt, 20-μL aliquots were diluted with 980 μL 90% acetonitrile to which internal standards xylitol and raffinose were premixed at 0.5 μg/mL final concentration. These were vortexed, incubated at −20°C overnight, and centrifuged, and the supernatant was decanted into amber high-performance liquid chromatography (HPLC) vials. Calibration standards were made as a dilution series from 2.5–500 μg/mL of mannitol and lactulose from stocks made in water. The method was validated by creating six independently prepared dilutions of 5, 50, and 500 μg/mL. To accurately identify lactulose, sucrose standards were also prepared.

For convenience, two liquid chromatography columns, a Sequant ZIC-pHILIC (5 μm) 100 × 2.1 mm and a ZIC-HILIC (5 μm) 150 × 2.1 mm from Merck KgaA (Darmstadt, Germany), were used in series and kept at 15°C. The mobile phase was acetonitrile and 5 mM ammonium acetate adjusted dropwise to pH 6.85 with 0.05% ammonium hydroxide solution. The flow rate was 0.3 mL/min. The detector was a Sciex 4000 QTrap (Framingham MA) operating in −ve ion electrospray mode with the source at 350°C with curtain, nebulizer, and auxiliary gases were set to 10, 40, and 20, respectively. The ion-spray voltage was −4200 V. As the two analytes had very different ranges of concentrations, samples were quantified against the appropriate region of the line. A minimum of 5 points were used for each analyte.

Interobserver and Intrasubject Reproducibility

The second cohort of 10 healthy volunteers was scanned twice a minimum of 2 weeks apart to look at the intrasubject reproducibility of T2 in the small bowel wall in healthy volunteers. The only difference to the provocation protocol cohort was that no indomethacin or placebo was given. Furthermore, the T2 measurement slice was not constrained to be over the terminal ileum but was chosen to
maximize the amount of small bowel imaged. The analysis was performed by two observers to allow interobserver agreement to be tested (performed by H.W. with 2 years of experience and A.A. with 2 years of experience, supervised by C.H. and P.G., both with >10 years of experience).

Statistical Analysis

A previous study measured mean, healthy, small bowel thickness to be 1.5 mm with a standard deviation (SD) of 0.5 mm. Assuming a 66% increase in bowel thickness as a result of indomethacin provocation would be comparable to active Crohn’s disease. We anticipated that 24 participants in the provocation cohort would give us more than 90% power to reject the null hypothesis with alpha of 0.05 and between group correlation of 0.5.

The data were tested for normality using the Shapiro–Wilk’s test. Paired testing was then carried out to determine whether paired differences between measures with placebo and indomethacin provocation were significant. Data found to be normally distributed were tested using a paired t-test; otherwise, data were compared using a Wilcoxon signed rank test. The relationship between T2 and LMR was investigated using the Pearson’s correlation coefficient. In this exploratory study a covariate of interest was to describe the variability of T2 data across ROIs between subjects (interquartile range across sub-ROIs for each participant).

*Interater variability between two independent observers for the second cohort of healthy volunteers who had repeat measures on 2 study days a minimum of 2 weeks apart was reported by Bland–Altman.

The interobserver variability was assessed by calculating the intraclass correlation with a two-way random model of absolute agreement and interpreted as follows: 0.81–1: almost perfect correlation; 0.61–0.8: good correlation; 0.4–0.6: moderate correlation; 0.21–0.4: fair correlation; 0.0–0.2: poor correlation.

The repeatability was defined as poor when the coefficient of variation (CoV) was >30%, acceptable when CoV was between 20% and 30%, good when CoV was between 10–20%, and excellent when CoV ≤10%.

Statistical analyses were performed using SPSS v. 22 (IBM, Armonk, NY) or GraphPad Prism v. 8.0 for Windows (GraphPad Software, La Jolla, CA).

Results

Provocation Cohort

Twenty-four healthy volunteers consented to the provocation study (Supplementary Fig. S3). All participants attended both study days with placebo and indomethacin administration, the order of which was randomly and blindly allocated. Two participants were excluded (one male, one female) from the per-protocol final analyses, as one was noncompliant with the study protocol and one had an incidental finding of an asymptomatic thickened terminal ileum prior to the intervention on review of the MRI data (Supplementary Fig. S3). This participant was subsequently diagnosed with inflammatory terminal ileal Crohn’s disease on colonoscopy, confirmed by histology. No participants suffered any adverse events caused by administration of indomethacin. Fifteen of the volunteers were female (63.6%). The median age was 23 years (interquartile range [IQR] 22–25), and median BMI was 23.9 (IQR 21.6–28.0) kg/m². The median interval between study visits was 21 (IQR 18–27) days.

MRI Measures Associated With Indomethacin Provocation

SMALL BOWEL WALL THICKNESS. There was no significant measurable difference (P = 0.17) between small bowel wall thickness around the terminal ileum between placebo (1.28 mm, IQR 1.21–1.36 mm) and provocation with indomethacin (1.29 mm, IQR 1.25–1.36 mm).

SMALL BOWEL WALL T2. For the T2 measurements, six datasets were not used because the number of final sub-ROIs was too small (three or fewer) due to significant respiratory or bowel motion that could not be corrected. Figure 3 shows that indomethacin provocation induced a statistically significant increase in small bowel wall T2 compared to placebo (mean T2 ± SD: 0.115 ± 0.063 seconds vs. 0.070 ± 0.036 seconds, respectively, P < 0.05). There was also a nonsignificant trend toward increased variation in T2 along the bowel wall after administration of indomethacin compared to placebo (0.16 vs. 0.10 seconds, P = 0.065, Fig. 3c).

Motility

Global small bowel (SB) motility showed no change 0.30 (0.25–0.35) a.u. with placebo compared to 0.27 (0.25–0.31) a.u. with indomethacin provocation (P = 0.149).

LMR Test Quantification of Bowel Permeability

Indomethacin induced significantly increased LMR from 0.019 (IQR 0.016–0.026) on placebo to 0.025 (IQR 0.021–0.039) on indomethacin provocation (P < 0.05). There was a significant positive correlation (r = 0.68, P < 0.05) between LMR and SB wall T2 (Fig. 3b). There was also a significant positive correlation (r = 0.63, P < 0.05) between the change in LMR and the change in T2 induced by the indomethacin challenge for each subject (Fig. 3c).

Interobserver Agreement and Intrasubject Reproducibility

Two subjects’ data were excluded from the analysis due to having less than three sub-regions due to significant peristaltic movements during the acquisition. Figure 4 shows the results obtained from the remaining eight healthy volunteers with two study visits per participant, separated by a minimum of 2 weeks (16 study days in total). Interobserver agreement was excellent for T2 measurements (N = 16, intraclass correlation = 0.89, P < 0.05). Bland–Altman estimated bias was 0.005 seconds for observer A (95% confidence interval [CI] limit of agreement −0.04 to +0.05 seconds) and 0.0006 for observer B (95% CI limit of agreement −0.05 to

May 2021 1427

Scott et al.: Quantitative MR Measures of SB Permeability
+0.06 seconds). The coefficient of variation was 19% for observer A and 21% for observer B. The results are summarized in Figure 4.

Discussion
We have shown that small bowel wall T2 increased following indomethacin provocation and correlated with increased permeability, as demonstrated by a 2-hour lactulose/mannitol urinary excretion ratio (LMR) test. MRI measures of small bowel wall thickness and motility were unchanged by indomethacin provocation. We also showed that the test–retest repeatability of small bowel wall T2 measurement was acceptable, with the variation in values lower than the difference seen from the indomethacin provocation. In addition, the interobserver reproducibility was excellent.

The prospective double-blind crossover study design minimizes confounding factors and increases the power of the study. All the participants included in the per protocol analysis were well-phenotyped, healthy volunteers. All analysis was performed blind to treatment allocation and compared to small bowel permeability as defined by 2-hour LMR, the current standard measure of small bowel permeability. The MRI measures obtained are quantitative, in contrast to qualitative MRI measures that are commonly used to assess the small bowel, which may improve the power of studies involving repeated measurement within and between subjects. These MRI techniques do not require administration of intravenous contrast and are, therefore, safe and appropriate for repeated measurements. The protocols are based on widely available scan sequences and, as such, can be rapidly adopted into clinical and research protocols. In order for quantitative

![Figure 3: T2 and LMR values. (a) Median T2 for each participant. (b) Median and IQR T2 for each participant and the corresponding LMR. (c) Change in LMR for each participant on indomethacin compared to placebo vs. the corresponding change in T2.](image1)

![Figure 4: Median and interquartile range of T2, intraobserver and intrasubject reproducibility.](image2)

T₂ to become a viable clinical measure, the analysis must be as fast and automated as possible. The T₂ analysis method developed here can be applied to any images in which the small bowel content and wall have a different signal intensity, not just for T₂ mapping.

While two doses of 75 mg indomethacin is a known positive control and increased small bowel permeability as expected,¹-nine, the dose was relatively low and the intervention was only transient. Nonetheless, it was sufficient to induce a change in small bowel wall T₂. Larger or more frequent doses of oral NSAIDs are known to cause variable patchy small bowel erosions,³⁷,³⁸ which may explain the heterogeneity and increased intrasubject range of the small bowel wall T₂ measurements calculated here. NSAID enteropathy increases permeability by direct injury to the intestinal mucosa with inflammation and edema, but also disrupts the tight junctions between cells, which permits the passage of ions and water.²,³ The changes in small bowel wall T₂ could reflect direct inflammation and/or shifts in water through the tight junction defects associated with increased permeability.

Although indomethacin is known to induce an acute stimulation of motility in animal models, a feature thought to be important in the secondary bacterial penetration of the mucosal barrier,²³ the longer-term effect is more dominated by the inhibitory effect of mucosal inflammation, as is seen in humans with Crohn’s disease.²⁶ At the doses used here the mucosal changes would be predicted to be much less severe than is seen in the animal models, where hemorrhage and marked ulceration is common.²⁴ This may account for the lack of any effect of indomethacin on small bowel motility (increase or decrease) observed in this study. It is intriguing to note that motility is a sensitive marker of inflammation when compared to endoscopy or histology.²⁶ Indomethacin provocation did not cause a change in motility but did cause a significant change in bowel wall T₂. Hence, bowel wall T₂ may either be a more sensitive marker of mucosal inflammation than motility or measuring more subtle change within the bowel wall (e.g., edema) that correlates with gut permeability.

Bowel gas is mainly located in the large intestine. With the subjects lying prone, gas was pushed away from the small bowel region (as it lies at the posterior edges of the large colon) minimizing its influence on the images. bTFE sequences are prone to artifacts from poor shimming due to field distortions and these would have been eliminated using the thresholding techniques.

The wall thickness measurements may not be sensitive enough to detect the subtle changes caused by this indomethacin intervention. Changes to these measurements are seen in Crohn’s disease, where the damage to the bowel wall due to inflammation is much more extensive and prolonged.²⁵

The interobserver reproducibility of the T₂ measurement was found to be robust. Intrasubject variability was high in some cases, which was probably due to the fact that the imaging slice was placed to cover a large area of bowel rather than being restricted to the plane containing the terminal ilium, as was a requirement in the initial study. Defining the imaging plane based on a fixed anatomical location would be likely to reduce the intrasubject variability. This could be overcome by using multislice imaging.³⁹ Two out of the 10 subjects were removed due to the presence of peristalsis during the imaging, which prevented the T₂ of the bowel wall from being measured.

Our study suggests noncontrast-enhanced quantitative MR measurement of the small bowel wall T₂ could provide a sensitive biomarker of permeability. This has far-reaching implications if validated in a wider range of patient groups where increased small bowel permeability and bacterial translocation contribute significantly to the pathogenic process and are associated with clinical manifestations or outcomes. This method may have impact in non-GI diseases where increased permeability of the gastrointestinal tract has been considered a putative pathogenic mechanism; for example, in ankylosing spondylitis, diabetes, and multiple sclerosis. Arguably, the lack of robust, accessible, and affordable biomarkers of these potentially pathophysiological changes has hampered research in this area. A widely available, noninvasive, in vivo measure of small bowel structure and integrity would be an important tool for long-term, noninvasive mechanistic studies, and to evaluate the efficacy of specific interventions.

Limitations
The associated T₂ analysis tool requires manual inspection of bowel wall maps and removal of misidentified regions of wall, which is inherently subjective and only partly addressed by averaging several ROIs in each subject. This is an inherent weakness; however, the interobserver reproducibility suggests that this has minimal impact on the measurement of T₂.

Although LMR is the most validated measure of small bowel permeability, it does have known shortcomings.³⁴⁰ First, up to 30% of participants have detectable urinary mannitol at baseline (prior to administration of test sugars) or disproportionate excretion relative to the mass of mannitol administered for the test. This is hypothesized to be a result of inadvertent ingestion of mannitol in diet or medications.⁴⁰ Second, the measurement made at 0–2 hours mostly reflects small bowel permeability but may also reflect colonic permeability.

In this pilot exploratory study, six out of the 22 subjects were removed from analysis due to motion in the T₂ measurement images. This is likely to have statistically underpowered our study based upon the original sample size calculation informed by Crohn’s data, but suggests quantitative T₂ is a sensitive imaging biomarker. This motion was largely due to respiratory motion resulting in the imaging slice moving between acquisitions. This is a weakness of single-slice
imaging, which could be overcome by using simultaneous multislice methods. A further shortcoming of the test–retest of the T2 measurements was the small sample size.

Conclusion
We implemented a noncontrast MRI technique to measure T2 of the bowel wall in vivo and showed that changes in bowel wall T2 are related to changes in small bowel wall permeability following indomethacin provocation. Sensitive MR measures of bowel structure and function, including quantitatively T2, could be used to characterize relevant patient populations where increased gut permeability is thought to be a key event in the pathophysiology towards clinical outcomes and measure the effect of interventions.

Acknowledgments
This is a summary of independent research partly funded by the National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Unit and the NIHR Biomedical Research Centre (BRC-1215-20003) at the Nottingham University Hospitals NHS Trust and University of Nottingham. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. The study received funding support from the Nottingham Hospitals Charity Research Pump Priming Competition and Jazan University, Ministry of Education, Saudi Arabia.

Author Contributions
R.S. (study concept, acquisition, analysis and interpretation of data, statistical analysis, drafting of the article); H.W. (acquisition, analysis and interpretation of data, statistical analysis, drafting of the article); C.H. (study concept, acquisition, analysis and interpretation, critical revision of article), AA (Acquisition and analysis of data), C.O., J.G. (acquisition and analysis of data), G.M., L.M., R.S., G.P.A., P.G. (study concept and design, interpretation of data, drafting and critical revision of the article). Competing interests: The analysis methods presented in this article relating to the T2 measurements of the bowel wall are included in a patent application which was filed in the UK on 24/02/2020 (2002582.1). All authors revised the manuscript critically for important intellectual content and approved the final submitted version.

References
1. DeMeo MT, Mutlu EA, Keshavarzian A, Tobin MC. Intestinal permeation and gastrointestinal disease. J Clin Gastroenterol 2002;34(4):385-396.
2. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability — A new target for disease prevention and therapy. BMC Gastroenterol 2014;14:189.
3. Camilleri M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019;68(8):1516-1526.
4. Thalheimer U, De Iorio F, Capra F, et al. Altered intestinal function precedes the appearance of bacterial DNA in serum and ascites in patients with cirrhosis: A pilot study. Eur J Gastroenterol Hepatol 2010;22(10):1228-1234.
5. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 1979;23(2):403-411.
6. Koh IH, Guatelli R, Montero EF, et al. Where is the site of bacterial translocation—Small or large bowel? Transplant Proc 1996;28(5):2661.
7. MacFie J, O’Boyle C, Mitchell CJ, Buckley PM, Johnstone D, Sudworth P. Gut origin of sepsis: A prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 1999;45(2):223-228.
8. Cirera I, Bauer TM, Navasa M, et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 2001;34(1):32-37.
9. Albillos A, de la Hera A, González M, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003;37(1):208-217.
10. Goulios J, Armonis A, Patch D, Sabin C, Greenslade L, Burroughs AK. Bacterial infection is independently associated with failure to control bleeding in cirrhotic patients with gastrointestinal hemorrhage. Hepatology 1998;27(5):1207-1212.
11. Senzolo M, Fries W, Buda A, et al. Oral propranolol decreases intestinal permeability in patients with cirrhosis: Another protective mechanism against bleeding? J Hepatol 2009;104(12):3115-3116.
12. Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut 2012;61(1):78-85.
13. Turpin W, Lee SH, Raygoza Garay JA, et al. Increased intestinal permeability is associated with later development of Crohn’s disease. Gastroenterology 2020;10:5001-5085(20):35021-35026.
14. Suenaert P, Bultheel V, Lennoms L, et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn’s disease. Am J Gastroenterol 2002;97(8):2000-2004.
15. Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 2017;76(6):1123-1132.
16. Fasano A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020;6:403-411.
17. Rasmussen DN, Karstensen JG, Riis LB, Brynskov J, Vilmann P. Confocal laser endomicroscopy in inflammatory bowel disease. Am J Gastroenterol 2005;100(1):650-655.
18. Smith HE, Ryan KN, Stephenson KB, et al. Multiple micronutrient supplementation transiently ameliorates environmental enteropathy in Malawian children aged 12-35 months in a randomized controlled trial. Gastroenterology 2010;138(5):650-655.
19. Kelly CP, Green PH, Murray JA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: A randomized placebo-controlled study. Aliment Pharmacol Ther 2013;37(2):252-262.
20. Smith HE, Ryan KN, Stephenson KB, et al. Multiple micronutrient supplementation transiently ameliorates environmental enteropathy in Malawian children aged 12-35 months in a randomized controlled clinical trial. J Nutr 2014;144(12):2059-2065.
21. Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014;63(8):1293-1299.
22. Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014;63(8):1293-1299.
23. Takeuchi K, Miyazawa T, Tanaka A, Kato S, Kunikata T. Pathogenic importance of intestinal hypermotility in NSAID-induced small intestinal damage in rats. Digestion 2002;66(1):30-41.
24. Tanaka A, Matsumoto M, Hayashi Y, Takeuchi K. Functional mechanism underlying cyclooxygenase-2 expression in rat small intestine following administration of indomethacin: Relation to intestinal hypermotility. J Gastroenterol Hepatol 2005;20(1):38-45.

25. Church PC, Turner D, Feldman BM, et al. Systematic review with meta-analysis: Magnetic resonance enterography signs for the detection of inflammation and intestinal damage in Crohn’s disease. Aliment Pharmacol Ther 2015;41:153-166.

26. Menys A, Puylaert C, Tutein Nolthenius CE, et al. Quantified terminal ileal motility during MR enterography as a biomarker of Crohn disease activity: Prospective multi-institution study. Radiology 2018;289(2):428-435.

27. Menys A, Taylor SA, Emmanuel A, et al. Global small bowel motility: Assessment with dynamic MR imaging. Radiology 2013;269(2):443-450.

28. Plumb AA, Menys A, Russo E, et al. Magnetic resonance imaging-quantified small bowel motility is a sensitive marker of response to medical therapy in Crohn’s disease. Aliment Pharmacol Ther 2015;42(3):343-355.

29. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012;24(5):503-512.

30. Kubiczka P, Kot-Wasik A, Wasik A, Namiesnik J, Landowski P. Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability. J Chromatogr B Analyt Technol Biomed Sci 2012;907:34-40.

31. Cronin CG, Delappe E, Lohan DG, Roche C, Murphy JM. Normal small bowel wall characteristics on MR enterography. Eur J Radiol 2010;75:207-211.

32. Hordonneau C, Buisson A, Scanzi J, et al. Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn’s disease: Validation of quantitative index of activity. Am J Gastroenterol 2014;109:89-98.

33. Buisson A, Joubert A, Montoriol PF, et al. Diffusion-weighted magnetic resonance imaging for detecting and assessing ileal inflammation in Crohn’s disease. Aliment Pharmacol Ther 2013;37(5):537-545.

34. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307-310.

35. Barnhart HX, Barboriak DP. Applications of the repeatability of quantitative imaging biomarkers: A review of statistical analysis of repeat data sets. Transl Oncol 2009;2(4):231-235.

36. Administration TUSFaD. FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). In: FDA, editor. 2015.

37. Biamason I, Scarpiogato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from non-steroidal anti-inflammatory drugs. Gastroenterology 2018;154(3):500-514.

38. Hawkey CJ, Ell C, Simon B, et al. Less small-bowel injury with lumiracoxib compared with naproxen plus omeprazole. Clin Gastroenterol Hepatol 2008;6(5):536-544.

39. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016;75(1):63-81.

40. Grover M, Camilleri M, Hines J, et al. (13)C mannitol as a novel biomarker for measurement of intestinal permeability. Neurogastroenterol Motil 2016;28(7):1114-1119.