Evaluation of the Molecular Landscape of Pediatric Thyroid Nodules and Use of a Multigene Genomic Classifier in Children

Jean-Nicolas Gallant, MD, PhD; Sheau-Chiann Chen, PhD; Carlos A. Ortega, BS; Sarah L. Rohde, MD; Ryan H. Belcher, MD; James L. Nettervile, MD; Naira Baregamian, MD; Huiying Wang, MD; Jiancong Liang, MD, PhD; Fei Ye, PhD; Yuri E. Nikiforov, MD, PhD; Marina N. Nikiforova, MD; Vivian L. Weiss, MD, PhD

IMPORTANCE Definitive diagnosis of a thyroid nodule in a child is obtained through diagnostic surgery. This is problematic because pediatric thyroid surgery is associated with higher rates of complications. In adults, preoperative molecular testing improves the management of thyroid nodules, but this has not been validated in children.

OBJECTIVE To determine whether the molecular landscape of pediatric thyroid nodules is amenable to detection by a multigene genomic classifier (GC) test (ThyroSeq v3; Sonic Healthcare USA).

DESIGN, SETTING, AND PARTICIPANTS This was a retrospective consecutive case series and GC testing of fine-needle aspiration (FNA) and formalin-fixed paraffin-embedded (FFPE) tissues from sequential pediatric thyroidectomies performed between January 2003 and December 2019 at a single tertiary academic medical center. The study included 95 patients (median [range] age, 16.3 [4.8 to 21.1] years; 75 [79%] female) who underwent surgery for a thyroid nodule.

INTERVENTIONS A total of 118 thyroid nodule samples (95 FFPE, 23 companion FNAs) yielded informative next-generation sequencing data and multigene GC.

MAIN OUTCOMES AND MEASURES The primary outcome was the determination of the pediatric thyroid molecular landscape. The secondary outcome was the diagnostic accuracy of the GC test for pediatric thyroid nodules.

RESULTS Of the 95 patients, 75 (79%) were female, and the median (IQR) age was 16.3 (14.0-17.3) years. Next-generation sequencing confirmed the unique molecular landscape of malignant pediatric thyroid nodules (compared with adults), which is dominated by gene fusions (most commonly RET and NTRK), rare BRAF/RAS alterations, and no TP53 or TERT promoter pathogenic variants. Several poorly differentiated thyroid cancers harbored DICER1 variants. Benign nodules appeared to be almost exclusively associated with TSHR and DICER1 alterations. The test demonstrated a 96% sensitivity (95% CI, 87%-99%) and 78% specificity (95% CI, 64%-88%). The negative predictive value was 95% (95% CI, 88%-98%) and the positive predictive value was 83% (95% CI, 74–89%). The concordance of GC between 23 pairs of matched FFPE and FNA tissues was 96%.

CONCLUSIONS AND RELEVANCE The study results of this retrospective consecutive case series suggest that the molecular landscape of pediatric nodules is unique but remains amenable to molecular classification. The multigene GC test, with high sensitivity and reasonably high specificity, represents a potential addition to the diagnostic workup of children with thyroid nodules and may decrease the use of diagnostic surgery.
The incidence of pediatric thyroid cancer is increasing, and it is now the second-most common adolescent malignant neoplasm. Thyroid nodules are less prevalent in children than in adults (approximately 2% vs 30%); however, they carry a greater risk of malignancy (approximately 25% vs 5%). Fine-needle aspiration (FNA) cytology is the most common diagnostic test for thyroid nodules, but results are often indeterminate, with subsequent malignancy rates of 20% to 50%. Because of the substantial probability of cancer, current recommendations encourage diagnostic surgery following indeterminate FNAs in children. Thyroidectomy, which has higher rates of complications in children than in adults, allows for histologic assessment, which is the reference standard for diagnosing a thyroid nodule.

In adults with indeterminate FNAs, recommendations are for patients to undergo a second FNA or molecular testing instead of proceeding with surgery. Smaller-scale studies have examined the genetics of thyroid tumors in children, but comprehensive next-generation sequencing (NGS) studies are lacking. This knowledge gap prevents the use of molecular diagnostics in children with thyroid nodules. In this large retrospective study, we sought to assess the performance of a DNA/RNA NGS genomic classification (GC) test (ThyroSeq v3; Sonic Healthcare USA) in pediatric thyroid nodules. The goals were to (1) elucidate the molecular landscape of pediatric thyroid nodules and (2) determine whether they were amenable to malignant neoplasm detection by GC.

Methods

Study Population

Consecutive patients 21 years or younger who underwent thyroid surgery at Vanderbilt University Medical Center (VUMC) between January 2003 and December 2019 were included if they had available specimens for analysis.

Study Design

This was a retrospective cross-sectional study in which VUMC surgical formalin-fixed paraffin-embedded (FFPE) tissues and companion FNAs underwent GC testing at the University of Pittsburgh Medical Center. Before sequencing, all cases were rereviewed by 2 pediatric thyroid pathologists (H.W. and J.L.) and 2 cytopathologists (V.W. and H.W.). Equivocal cases were reviewed by a third pathologist with thyroid expertise. The VUMC institutional review board approval included a waiver of informed consent owing to the retrospective and masked nature of this analysis. This study adheres to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) and Standards for Reporting of Diagnostic Accuracy (STARD) reporting guidelines.

All statistical analyses were conducted with R, version 4.1.1 (R Foundation), and statistical significance was assessed at a 2-sided 5% level. Race and ethnicity, self-reported in clinic intake forms, were gathered from the medical record. Additional information about variables, molecular testing, study outcomes, and statistical analyses can be found in the eMethods in the Supplement.

Key Points

Question Are pediatric thyroid nodules amenable to cancer prediction by genomic classification?

Findings In this retrospective study of 95 pediatric patients with thyroid nodules, surgical samples underwent next-generation sequencing and genomic classification. Testing defined the unique molecular landscape of pediatric thyroid nodules (which, as opposed to adults, comprised more frequent gene fusions and DICER1 variants) and identified a sensitivity of 96% and specificity of 78% regarding cancer detection.

Meaning The study results suggest that although the molecular landscape of pediatric thyroid nodules is different than in adults, it remains amenable to multigene genomic classification, which may help prevent potentially unnecessary diagnostic surgeries.

Results

Patients

Nodules from 95 patients, 75 (79%) of whom were female (median age, 16.3; range, 4.8–21.1 years; Table 1), successfully underwent NGS. Fifty nodules (53%) were malignant according to final pathology results (eTable 1 in the Supplement). Patients with benign or malignant pathology results did not differ significantly regarding preoperative parameters except for body mass index z score, thyroid stimulating hormone (TSH), and Bethesda category.

Molecular Landscape of Pediatric Thyroid Nodules

Comprehensive NGS enabled us to define the molecular landscape of pediatric thyroid nodules (eFigure 1 and eTable 2 in the Supplement). As opposed to adult thyroid cancer, we identified few BRAF/RAS pathogenic variants and many gene fusions in malignant pediatric nodules: 11 (22%) malignant nodules harbored BRAF/RAS pathogenic variants while 29 (58%) harbored a gene fusion. Fusions largely (26 of 29 [90%]) involved RET and NTRK1/3 but were also found in ALK, BRAF, and PPARG (eFigure 2 in the Supplement). No alterations associated with high-risk adult thyroid cancer (eg, TP53) were identified.

Gene fusions were almost exclusively (28 of 29 [97%]) found in papillary carcinomas, with 1 poorly differentiated carcinoma harboring a PAX8-PPARG fusion. Patients harboring malignant nodules with fusions were significantly younger (median [IQR] age, 14.4 [11.2–16.5] years) than those with pathogenic variants (median [IQR] age, 16.8 [15.9–17.6] years; eTable 3 in the Supplement). Nodules with gene fusions also portended a higher tumor stage, more extensive lymph node disease, and aggressive pathologic features, such as lymphovascular invasion. Despite these differences, nodules with fusions and those with pathogenic variants had similar survival (eFigure 3 in the Supplement).

Benign nodules were mainly associated with functional TSHR variants (19 [42%]) as evidenced by increased nodular sodium-iodide symporter expression and lower preoperative serum TSH levels (eFigure 4 in the Supplement). Hotspot...
DICER1 variants were identified in benign (6 [13%]) and malignant (4 [8%]) nodules, including follicular and poorly differentiated carcinomas (eFigure 5 in the Supplement).

Test Performance

Ultimately, 127 samples (82%) from 95 patients yielded informative molecular data (eFigure 6 in the Supplement). Final test characteristics included a 96% sensitivity (95% CI, 87%-99%) and 78% specificity (95% CI, 64%-88%). The negative predictive value was 95% (95% CI, 88%-98%) and the positive predictive value was 83% (95% CI, 74%-89%) (Table 2). The GC correctly identified 4 malignant nodules (8%) that were benign on cytology (eFigure 7 in the Supplement). The ability of the GC test to predict a malignant neoplasm was better than any combination of tested clinical factors (eTable 4 in the Supplement) and effective across various pathologies (eFigure 8 in the Supplement). Importantly, the 23 pairs of matching FNA/FFPE samples were highly concordant, and FNA GC sensitivity was 94% (95% CI, 73%-100%; eTable 5 in the Supplement).

Of the 37 test-negative samples, 2 (4%) were false negative (malignant on histopathology); both were low-risk differentiated cancers (eTable 6 in the Supplement). Among the 58 test-positive samples, 10 (22%) were benign (false positive) on final pathology; these nodules harbored an NRAS or DICER1 pathogenic variant, gene fusion, or high copy number alteration (CNA) (eTable 7 in the Supplement).

Discussion

This study reports the molecular landscape of pediatric thyroid nodules at its highest resolution to date. The study results suggest that gene fusions represent a dominant mechanism of pediatric thyroid cancer and that pathogenic variants (including BRAF/RAS and high-risk TP53/TERT) are rare in this age group.6,7 DICER1 variants were identified in malignant (8%) and benign (13%) nodules. The precise role of DICER1 in thyroid oncogenesis is not fully understood. We hypothesize that additional hits, such as CNAs, are required for transformation of these nodules.14

Although molecular testing is used to treat adult patients with thyroid nodules, to our knowledge, its performance and

Table 1. Patient Characteristics

Characteristic	All patients	Nodulesa	No. (%)	Age at surgery, median (IQR), y	Sex	Race	Dominant nodule volume, median (IQR), cm³	Personal history of thyroid disease	Preoperative TSH level, median (IQR)	BMI z score, median (IQR)
127 samples (82%) from 95 patients yielded informative molecular data (eFigure 6 in the Supplement). Final test characteristics included a 96% sensitivity (95% CI, 87%-99%) and 78% specificity (95% CI, 64%-88%). The negative predictive value was 95% (95% CI, 88%-98%) and the positive predictive value was 83% (95% CI, 74%-89%) (Table 2). The GC correctly identified 4 malignant nodules (8%) that were benign on cytology (eFigure 7 in the Supplement). The ability of the GC test to predict a malignant neoplasm was better than any combination of tested clinical factors (eTable 4 in the Supplement) and effective across various pathologies (eFigure 8 in the Supplement). Importantly, the 23 pairs of matching FNA/FFPE samples were highly concordant, and FNA GC sensitivity was 94% (95% CI, 73%-100%; eTable 5 in the Supplement).										

Of the 37 test-negative samples, 2 (4%) were false negative (malignant on histopathology); both were low-risk differentiated cancers (eTable 6 in the Supplement). Among the 58 test-positive samples, 10 (22%) were benign (false positive) on final pathology; these nodules harbored an NRAS or DICER1 pathogenic variant, gene fusion, or high copy number alteration (CNA) (eTable 7 in the Supplement).

Table 2. Performance of the Genomic Classifier Test in Pediatric Thyroid Nodules

Characteristic	Estimation, % (95% CI)
Sensitivity	96.0 (86.5-98.9)
Specificity	77.8 (63.7-87.5)
PPV	82.8 (73.9-89.0)
NPV	94.6 (88.1-97.6)
AUC	95.9 (90.9-100.0)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); TSH, thyroid-stimulating hormone. *Benign nodules included follicular adenoma and multinodular goiter; malignant nodules included papillary thyroid carcinoma (and variants), follicular thyroid carcinoma, poorly differentiated carcinoma, and noninvasive follicular thyroid neoplasm with papillary-like nuclear features. ** Wilcoxon rank sum test. *** Pearson χ² test. **** Other race or ethnicity includes Arabic, Black, East Asian, Hispanic, and Latino. ** Fisher exact test.
clinical use in children has not been determined.\(^5\)\(^,\)\(^6\)\(^,\)\(^8\)\(^,\)\(^11\) This study used a large cohort of pediatric thyroid nodules and found that the multigene GC test had high sensitivity (96%) and good specificity (78%) for discriminating benign from malignant nodules. The test yielded a negative predictive value of 95% and a residual cancer risk of 4% in test-negative nodules, which is similar to the cancer risk in benign FNAs.\(^3\)\(^1\) All false-negative cases were low-risk cancers by multiple criteria. The GC correctly identified several cancers that would have been missed by FNA.

This study’s findings have several implications. First, the comprehensive testing methods of the GC were able to detect the unique alterations characteristic of pediatric thyroid tumors, including gene fusions and DICER1 alterations. While targets may be refined, as it stands, the GC offers a potential addition to the workup of children with thyroid nodules, which may allow practitioners to safely decrease diagnostic surgeries. Second, robust detection of targetable fusions (NTRK, RET) could help with targeted therapy in the case of poor outcomes (eg, progression following treatment with radioactive iodine) or in the neoadjuvant setting.\(^1\) Finally, the genomic information in this study could help expand understanding of pediatric thyroid (cancer) biology.

Limitations
First, there could be a sampling bias in this retrospective study, which may have affected the proposed test characteristics. Second, this study was performed at a high-volume center with established thyroid expertise; thus, the results may not be generalizable to different settings. Additionally, the small number of patients of racial or ethnic minority groups included in this study limited generalizability to these underserved groups.

Conclusions
The results of this retrospective case series suggest that the performance of GC for pediatric thyroid nodules may prevent diagnostic surgeries in a pediatric patient population. Key genomic and clinico-pathologic findings, such as the association of gene fusions with more aggressive disease, and the finding of recurrent DICER1 variants should help inform individualized treatment for patients and expand the understanding of the genetic mechanisms of thyroid tumors in children.

ARTICLE INFORMATION
Accepted for Publication: March 3, 2022.
Published Online: June 9, 2022.
doi:10.1001/jamaoncol.2022.1655
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Gallant JN et al. JAMA Oncology.

Author Affiliations: Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (Gallant, Rohde, Belcher, Netterville); Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee (Ortega); Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee (Baregamian); Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Wang, Liang, Weiss); Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Nikiforov, Nikiforova).

Author Contributions: Dr Weiss had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Gallant, Nikiforova, Weiss.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Gallant, Ortega, Weiss.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Gallant, Chen, Ortega, Ye.

Obtained funding: Weiss.

Administrative, technical, or material support: Ortega, Baregamian, Wang, Liang.

Supervision: Rohde, Belcher, Netterville, Nikiforov, Weiss.

Conflict of Interest Disclosures: Dr Nikiforova reported personal fees from Sonic Healthcare USA outside the submitted work as well as a patent for ThyroSeq licensed to the University of Pittsburgh Medical Center (UPMC)/Sonic Healthcare USA. Dr Nikiforova reported personal fees from Sonic Healthcare USA outside the submitted work as well as a patent licensed to UPMC/Sonic Healthcare USA. No other disclosures were reported.

Funding/Sponsor: This work was funded by the American Society of Cytopathology (Young Investigator Award to Dr Weiss), American Thyroid Association (2019-0000000090 to Dr Weiss), National Cancer Institute (V01RC2P K12CA090625 and K08CA249091-01A1 to Dr Weiss), V Foundation for Cancer Research (Scholar Award to Dr Weiss), Children’s Cancer Research Fund (Research Award to Dr Weiss), and American Cancer Society (133934-5-CSDG-19-216-01-TBG to Dr Weiss).

Role of the Funder/Sponsor: No role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Additional Contributions: We thank James Lewis, MD, Vanderbilt University Medical Center, for his expert uncompensated consultation and review of challenging/equivocal thyroid surgical pathology cases.

REFERENCES
1. Vaccarella S, Lortet-Tieulent J, Colombet M, et al. IICC-3 Contributors. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: a population-based study. Lancet Diabetes Endocrinol. 2021;9(3):144-152. doi:10.1016/S2213-8584(20)30431-0
2. Reiners C, Wegscheider K, Schicha H, et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid. 2004;14(11):926-932. doi:10.1089/thy.2004.14.926
3. Wang H, Mehrad M, Ely KA, et al. Incidence and malignancy rates of indeterminate pediatric thyroid nodules. Cancer Cytopathol. 2019;127(4):231-239. doi:10.1002/cncy.22104
4. Francis GL, Waguespack SG, Bauer AJ, et al; American Thyroid Association Guidelines Task Force. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716-759. doi:10.1089/thy.2014.0460
5. Haugen BR, Alexander EE, Bible KC, et al; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi:10.1089/thy.2015.0020
6. Pekova B, Sykorova V, Dvorakova S, et al. RET, NTRK, ALK, BRAF, and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. Thyroid. 2020;30(12):1771-1780. doi:10.1089/thy.2019.0802
7. Lee YA, Lee H, Im SW, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radiiodine uptake. J Clin Invest. 2021;131(18):4484-47. doi:10.1172/JCI114484
8. Steward DL, Carty SE, Sippel RS, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 2019;5(2):204-212. doi:10.1001/jamaoncol.2018.4616
9. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806-808. doi:10.1136/bmj.39335.541782.AD
10. Bossuzy PM, Reitsma JB, Bruns DE, et al; STARD Group. STARD 2015: an updated list of
11. Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid. 2017; 27(11):1341-1346. doi:10.1089/thy.2017.0500

12. Ortega CA, Gallant JN, Chen SC, et al. Evaluation of thyroid nodule malignant neoplasms and obesity among children and young adults. JAMA Netw Open. 2021;4(7):e2116369. doi:10.1001/jamanetworkopen.2021.16369

13. Network TCGAR, Agrawal N, Akbani R, et al; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–690. doi:10.1016/j.cell.2014.09.050

14. Chernock RD, Rivera B, Borrelli N, et al. Poorly differentiated thyroid carcinoma of childhood and adolescence: a distinct entity characterized by DICER1 mutations. Mod Pathol. 2020;33(7):1264-1274. doi:10.1038/s41379-020-0458-7

15. Kazahaya K, Prickett KK, Paulson VA, et al. Targeted oncogene therapy before surgery in pediatric patients with advanced invasive thyroid cancer at initial presentation: is it time for a paradigm shift? JAMA Otolaryngol Head Neck Surg. 2020;146(8):748-753. doi:10.1001/jamaoto.2020.1340