Fruit quality: updated definition and modern methods of assessment

Abstract. The fruit appearance, the size and some organoleptic quality parameters have a strong influence on consumer acceptance. The most appreciated parameters are certainly the size, the sweetness and the color of the fruit skin. Other parameters are important as related to the processing destination of the fruit. Some of these parameters as the size and the skin color can be improved with the cultural management and are here reported some examples (i.e. PGRs application and protected cultivation). Finally the main standard and innovative devices for characterizing the main quality parameters are listed.

Keywords: fruit quality traits, methods to enhance fruit quality and ripening homogeneity, innovative methods of determination, protected orchard, PBRs.

Introduzione

Il termine qualità implica il grado di eccellenza di un prodotto o la sua compatibilità per un uso particolare. La qualità è un concetto umano che comprende molte proprietà e caratteristiche che la frutta dovrebbe avere per soddisfare i requisiti e le necessità della catena produttiva. Tuttavia, la definizione di qualità della frutta è complicata dato che la filiera produttiva è formata da molti attori: frutticoltori, confezionatori, distributori, grossisti, acquirenti e dai consumatori finali, i quali possono avere aspettative diverse; di conseguenza, la definizione di qualità della frutta, non può essere univoca.

Quello che determina una ciliegia di “buona qualità” è ancora un argomento aperto, ma la dimensione, la durezza della polpa e la dolcezza del frutto sono da sempre considerati dei caratteri fondamentali. La qualità della frutta delle varietà coltivate oggi giorno soddisfa le aspettative del mercato e dei consumatori? Il miglioramento genetico del ciliegio è sempre stato attivo sia a livello nazionale che internazionale (Sansavini e Lugli, 2008; Kappel et al., 2012; Bujdosó e Hrotkó, 2017; Dondini et al., 2018) sebbene alcuni degli obiettivi ancora da raggiungere sono riportati con dettaglio da molto tempo (Bargioni, 1964).

In ogni caso, importanti traguardi sono stati ottenuti dal miglioramento genetico, sia nel passato che al giorno d’oggi, perseguendo diverse caratteristiche specifiche quali “l’habitum vegetativo e produttivo”, “le caratteristiche del fiore”, “la tolleranza a stress biotici ed abiotici”, “l’estensione del periodo di raccolta”, per coprire un maggiore spazio commerciale nel mercato, “l’idoneità alla raccolta meccanica” (Quero-Garcia et al., 2017). Inoltre, anche altri obiettivi che riguardano maggiormente la qualità della frutta nello specifico sono stati presi in considerazione come la dimensione dei frutti, la loro durezza, il colore della buccia e della polpa, il contenuto in zuccheri e l’aroma. A questo proposito, è importante sottolineare come oggi siano stati ottenuti risultati significativi riguardo le dimensioni e la durezza dei frutti e la resistenza al cracking, ma il miglioramento delle caratteristiche organolettiche, sebbene parzialmente considerato, rappresenta al momento un obiettivo primario.

Principali parametri di valutazione della qualità della frutta

I principali parametri di qualità studiati si riferiscono a: “dimensione dei frutti”, “durezza della polpa”, “colore della buccia e della polpa del frutto”, “contento in solidi solubili” e “aroma”, sebbene altri parametri morfologici e fisiologici siano comunque considerati importanti. Prendendo in considerazione i “parametri di qualità” che caratterizzano veramente la “ciliegia ideale” e che sono in grado di influenzare la richiesta dei consumatori, possono essere fatte le seguenti considerazioni.

Dimensione dei frutti: crescita e sviluppo

Il ciliegio appartiene alla famiglia delle Rosacee e la crescita del frutto segue una curva a doppia-sigmoide, come in altre specie di Prunus spp. (Coome, 1976). La crescita del frutto viene suddivisa in tre fasi
La crescita del frutto è caratterizzata da diversi stadi. Il primo stadio è il periodo di crescita rapida dovuto alla divisione cellulare; nel secondo stadio, il frutto diminuisce considerevolmente dato che le risorse sono indirizzate verso lo sviluppo dell’embrione e per la lignificazione dell’endocarpo. Nel terzo stadio, la crescita torna a crescere esponenzialmente e si conclude con la maturazione e la raccolta (Olmstead et al., 2007). Dato che le dimensioni dei frutti hanno un chiaro impatto economico sul valore della produzione, numerose ricerche sono state condotte per studiare l’influenza di alcune tecniche di gestione colturale e dei fattori ambientali sulle dimensioni e sulla qualità dei frutti (Whiting e Lang, 2004; Lenahan et al., 2006). In ogni caso, il miglioramento genetico è certamente determinante per l’ottenimento di frutti di dimensioni maggiori ed, a questo proposito, è opportuno ricordare un recente programma portato avanti dall’Università di Bologna chiamato “30 cum laude” che mira ad aumentare il diametro dei frutti fino a 30-32 mm (tab. 1).

Durezza della polpa

La durezza e la consistenza della polpa sono attributi importanti per l’accettazione del frutto da parte del consumatore. Si è visto che i valori di durezza possono andare da 2.52 a 4.75 N (Hampson et al., 2014). La durezza non solo influenza la qualità intrinseca del frutto ma influenza anche sulla sua conservabilità e sulla shelf-life. La durezza è correlata alla suscettibilità ai danni meccanici che possono avvenire in campo e nello stabilimento di lavorazione durante la movimentazione e calibrazione della frutta, a causa dell’elevata velocità delle linee di lavorazione, evitando l’apparizione tardiva di danni nei frutti una volta sul mercato. La durezza è stata inoltre associata a numerosi fattori collegate alla tessitura, quali la resistenza della parete cellulare, l’adesione fra le cellule ed è influenzata da enzimi coinvolti nella formazione della parete cellulare, dalla presenza di pectine, dal turgore cellulare e dalle condizioni ambientali durante la maturazione.

Contenuto in solidi solubili

I solidi solubili sono un fattore determinante importante nella determinazione dell’apprezzamento da parte del consumatore. Nelle ciliegie, questi valori possono raggiungere fino a 24.5 g/100 g di peso fresco (Crisosto et al., 2003; Valero e Serrano, 2010) a seconda delle condizioni microclimatiche, del portino, del sistema di impianto e del periodo di raccolta (González-Gómez et al., 2010; Goulas et al., 2015). E’ anche interessante notare come il grado zuccherino delle ciliegie prodotte nel recente passato non differisca significativamente da quello delle varietà allevate oggi. Tuttavia esistono eccezioni che meritano di essere sottolineate, ad esempio la serie delle varietà “Sweet” dell’Università di Bologna, che raggiungono valori (°Brix) più alti delle varietà già presenti sul mercato, nonostante le maggiori dimensioni raggiunte dai frutti (tab. 1) (Lugli, com. pers.).

Questo specifico programma di miglioramento genetico è giustificato dal fatto che il grado zuccherino deve essere sopra la soglia di 14.0-16.0 g/100g di peso fresco perché il frutto sia pienamente accettato dal mercato (Crisosto et al., 2003). Nei frutti di ciliegio dolce, la dolcezza è determinata dal contenuto in glucosio e fruttosio e la somma dei principali zuccheri (glucosio, fruttosio, saccarosio e sorbitolo) può variare tra 125 fino a 265 g/kg di peso fresco.

Tabella 1

Cultivar	Dimensione	Peso	IAD	Durofel	Durezza polpa	Brix	Acidità	L	Croma
Burlat	25.3	9.4	0.83	57	0.28	14.8	7.6	28.9	20
Sweet Lorenz	28.8	10.7	1.73	58	0.67	19.7	7.7	26.8	15.1
Sweet Aryana	28.6	11.0	1.30	58	0.6	18.1	7.3	27.6	18
Marysa	29.2	11.9	1.4	52	0.3	14.7	9.6	28.5	23.7
Sweet Valina	30.7	14.0	1.40	61	0.29	17.5	8.7	28.6	20.4
Sweet Gabriel	30.4	13.3	2.41	64	0.42	19.2	11.2	28.1	13.6
Grace Star	32	15.9	1.51	63	0.43	19.2	9.5	28.8	18.9
Lapins	26.6	9.8	0.82	58	0.51	17.3	10.8	32.7	31.3
Sweet Saretta	31.2	14.5	2.48	57	0.42	20.8	12.3	28.9	13
Sweet Stephany	29.4	12.4	1.89	59	0.44	21	14	29.7	18.7

Tab. 1 - Caratteristiche qualitative dei frutti di ciliegio della serie “Sweet”, ottenute nell’ambito del programma di miglioramento genetico dell’Università di Bologna a confronto con le cv. “Burlat” e “Lapins” assunte come riferimento. (Lugli com. pers. Dati relativi al periodo 2016-2018).

Tab. 1 - Quality traits of the “Sweet” cherry series belonging to the breeding program of Bologna University compared with Burlat and Lapins as reference cultivars. (Lugli pers. comm. Data from 2016-2018).
Acidità

L’acidità titolabile è considerata un altro importante parametro qualitativo del ciliegio, in quanto direttamente legata all’accettabilità da parte del consumatore. L’acidità dipende fortemente dal tipo di varietà ed è determinata principalmente dall’acido malico che è il principale acido organico presente nelle ciliegie. L’acido malico rappresenta il 98% dell’acidità totale (Valero e Serrano, 2010), sebbene anche altri acidi (acido citrico, succinico, scimichico, fumarico ed ossalico) siano presenti (Usenik et al., 2008) ed il quantitativo totale vari tra 3.67 e 8.66 g/kg in peso fresco. Il frutto di ciliegio dolce presenta valori di pH da 3.7 ai 4.2, mentre le ciliegie acide variano in un range di pH tra 3.1 e 3.6 (Ballistreri et al., 2013; Serradilla et al., 2016).

Rapporto grado zuccherino-acidità

Tuttavia, il gradimento del consumatore non si basa soltanto sulla dolcezza del frutto ma anche sul l’acidità totale, ed è quindi corretto considerare questi due parametri nel loro insieme. Alcuni Autori (Guyer et al., 1993; Dever et al., 1996) hanno dimostrato come il rapporto tra grado zuccherino ed acidità sia fondamentale e per alcune cultivar, hanno proposto determinati standard qualitativi in grado di ottenere l’accettabilità da parte dei consumatori. Gli studi che hanno valutato la relazione tra contenuto in solidi solubili e acidità totale, indicano una riduzione del gradimento da parte dei consumatori quando i valori del grado zuccherino raggiungono almeno il 16% (Crisosto et al., 2003).

Composti volatili

L’aroma ed il sapore sono attributi qualitativi sensoriali. Sebbene essi siano determinati da solo lo 0.001-0.1% del peso fresco del frutto, possono essere considerati fattori chiave nel determinare il gradimento del consumatore (Valero e Serrano, 2010). Questi composti non vengono usati, di routine, per determinare gli attributi qualitativi della frutta in quanto la loro determinazione è complicata e necessita di un laboratorio attrezzato e di personale qualificato; per questa ragione la determinazione in tempo reale di queste caratteristiche non è fattibile. Tuttavia, la mancanza di un tipico aroma di ciliegia è una delle maggiori lamentelle dei consumatori (Turner et al., 2008). L’aroma del frutto è il risultato di una complessa miscela di esteri, alcoli, aldeidi, chetoni e composti terpenici (Valero e Serrano, 2010) e le ricerche condotte su ciliegio mostrano che l’aroma è determinato da composti volatili (Serradilla et al., 2012; Wen et al., 2014). Tra questi, i principali ad essere stati identificati sono ad esempio esanali, (E)-2 esanale e benzaldeide (Poll et al., 2003; Serradilla et al., 2016). Gli alcoli sono invece la seconda classe di aromi più numerosa, nel ciliegio dolce, ed includono composti quali come alcol benzil 1-esanolo e (E)-2-esen-1-olo.

Composti fenolici

I composti fenolici contribuiscono sotto diversi aspetti alla determinazione della qualità della frutta. La disposizione e la concentrazione di questi composti è influenzata da diversi fattori come il periodo della raccolta, la varietà, le condizioni climatiche e la stagione vegetativa. I polifenoli del ciliegio includono acidi fenolici (acidi idrossicinnammico e idrossibenzico) e flavonoidi (antociani, flavonoli e flavan-3-oli). Questi metaboliti secondari sono conosciuti per essere coinvolti nella difesa anti-ossidativa contro stress biotici ed abiotici come alte e basse temperature, siccità, alcalinità, salinità, stress da raggi UV e attacchi patogeni (Viljevac et al., 2012). L’epicarpo delle ciliegie contiene i più alti livelli di composti fenolici totali. Oltre ad influenzare positivamente l’aspetto del frutto, il colore ed il sapore, questi composti hanno la potenzialità di prevenire malattie degenerative causate da stress ossidativo, quali malattie cardiovascolari e cancro (Tomás-Barberán et al., 2013).

Flavonoidi

I flavonoidi o bioflavonoidi sono una classe di metaboliti secondari delle piante che include antoxantine (flavoni e flavonoli), flavonoli, flavanoli, flavan e antocianine. Essi proteggono dalla radiazione UV, dagli inibitori di enzimi e dai precursori di sostanze tossiche. Rappresentano componenti importanti dell’aroma, sono antiossidanti e forniscono inoltre resistenza ai patogeni (Piccolella et al., 2008). Le antocianine sono pigmenti naturali, responsabili del colore attrattivo delle ciliegie (Valero e Serrano, 2010). La loro funzionalità nella salute umana è stata testata in numerosi studi, suggerendo effetti protettivi contro le malattie cardiovascolari, il cancro ed altre patologie legate all’età. Questi aspetti hanno recentemente attirato molta attenzione da parte dei media e ora queste sostanze sono spesso vendute, in alcuni casi anche eccessivamente, come una panacea o come potenziali agenti di controllo di alcune malattie. Ciò può essere anche usato nel mondo agricolo come strumento per campagne di marketing mirate.

Metodi di valutazione della qualità della frutta

I criteri utilizzati per valutare la qualità della frutta vengono distinti in base al grado di complessità e
sono principalmente rappresentati da metodi visivi che permettono di valutare le dimensioni, la forma ed il colore del frutto. Per una maggiore precisione e caratterizzazione, i metodi analitici sono normalmente utilizzati per determinare il contenuto in solidi solubili, la durezza della polpa e l’acidità titolabile. Questi metodi sono pratici, necessitano di strumenti di facile impiego utilizzati su larga scala e sono in grado di fornire informazioni in tempo reale. La qualità può essere determinata in maniera ancora più precisa attraverso la definizione della composizione e del contenuto del singolo zucchero o acido, delle sostanze volatile e la loro identificazione. Tuttavia, queste analisi hanno bisogno di laboratori attrezzati e personale qualificato e non sono in grado di fornire informazioni in tempo reale. Inoltre, la maggior parte delle analisi analitiche, nonostante il loro grado di precisione, è di tipo distruttivo. Per evitare questo problema, sono stati recentemente sviluppati strumenti che non richiedono la distruzione del campione di frutti considerato e inoltre possono essere usati lungo tutta la filiera, dal campo, allo stabilimento di lavorazione, fino al punto vendita.

Dimensione dei frutti

La dimensione dei frutti è solitamente determinata dal calibro, misurabile da un’asta (costituita solitamente da una serie di 8 diametri tra 18 e 32 mm), oppure da un calibro manuale o digitale, che può essere collegato via Bluetooth ai telefoni cellulari o computer permettendo il passaggio automatico dei dati raccolti in campo su fogli excel senza doverli prima trascrivere per compiere l’analisi statistica (fig.1). Una menzione particolare spetta allo sviluppo delle macchine calibratrici di alcune aziende produttrici, che hanno studiato e creato strumenti automatici per il ciliegio, forniti di un sistema chiamato “Cherry vision” capace di analizzare la qualità interna ed esterna dei frutti (dimensione, colore, difetti interni), intenerimento, mancanza o parziale presenza del picciolo, °Brix, ecc. (fig. 2).

Durezza della polpa

Per la determinazione della durezza della ciliegia vengono utilizzati penetrometri equipaggiati con una sonda di 6 mm di diametro che misura la durezza della polpa attraverso la misura della resistenza opposta alla penetrazione, esprimendo il valore in kg/cm². Per la determinazione della durezza, esistono diversi strumenti, prodotti da varie aziende americane ed europee.
Strumenti non distruttivi

- Durofel: misura l’elasticità dell’epidermide del frutto, esprimendola con un’unità arbitraria, l’indice Durofel. Il pistone dello strumento è posto sulla superficie del frutto e viene esercitata una pressione finché il pistone non scompare.
- Durometer TR: è uno strumento non distruttivo che permette di valutare il grado di maturazione del frutto. Lo strumento è semplice da usare: lo stantuffo viene posto contro il frutto e una progressiva forza viene applicata finché il frutto non è completamente contro al basamento grigio dello stantuffo. Il valore è espresso in gradi Shore, intervallo di riferimento per la durezza dei materiali (fig. 2).
- Fruit firmer TR: sviluppato in Nuova Zelanda per identificare velocemente la durezza attraverso la misurazione della decelerazione di un piccolo martello che colpisce la superficie del frutto attraverso una punta non penetrante. Un processore integrato registra la collisione, analizza la forma d’onda generata e mostra i dati su un display digitale che può essere collegato ad un programma per registrare, scaricare ed analizzare i dati (fig. 2).

Colore dei frutti

- Carte colorimetriche: sviluppate dal CTIFL (Francia) per stabilire il momento della raccolta, permettono di seguire la progressione del colore dell’epidermide dal rosa (1) al rosso (7). Gli strumenti colorimetrici misurano il colore dell’epidermide attraverso tre indici colorimetrici, L (luminosità), i parametri a* e b* che permettono di calcolare C (croma) e h° (hue). I valori di L* e h° diminuiscono all’aumentare del grado di maturazione; Il parametro L* misura l’intensità del colore della superficie misurata da 0 (nero) a 100 (bianco) mentre a* e b* rappresentano le coordinate cromatiche che variano rispettivamente da - 60 a + 60, descrivendo le variazioni di colore dal verde (- 60) al rosso (+60) e dal blu (- 60) al giallo (+ 60) (Crisosto et al., 2003).
- Cherry meter: è uno strumento non distruttivo che può essere usato in campo, su frutti ancora sull’albero, ma anche durante la lavorazione o in conservazione. Questo strumento misura la radiazione della banda NIR, più precisamente, l’assorbilanza dei primi strati della polpa del frutto (fig. 2) fornendo un indice chiamato Indice di Differenza di Assorbanza (IDA), ottenuto dalla lettura della quantità di luce emessa dallo strumento da tre fonti di luce e riflessa dal frutto: 800 nm come riferimento, 560 nm e 640 nm. Il valore di IDA correla perfettamente con i principali parametri di qualità come il grado zuccherino, la durezza della polpa e la colorazione dell’epidermide del frutto (Nagpala et al., 2017a). Il cherry-meter, oltre ad analizzare il grado di maturazione dei frutti, permette anche di determinare l’omogeneità dei frutti rappresentando un potenziale Sistema di Supporto Decisionale (DSS) per valutare l’efficacia delle diverse tecniche colturali.

Contenuto in solidi solubili ed acidità titolabile

Il contenuto in solidi solubili è normalmente determinato con rifrattometri portatili che possono essere anche digitali. Questi strumenti misurano l’angolo critico di rifrazione attraverso un campione ed esprimono il valore del contenuto zuccherino in una soluzione acquosa, in °Brix.

L’acidità titolabile è determinata con strumenti che neutralizzano chimicamente gli acidi organici con una soluzione di idrossido di sodio (NaOH). Alcuni di questi strumenti sono semi-automatici e quindi consentono di effettuare le letture su molti campioni. Esistono inoltre strumenti portatili che consentono di leggere contemporaneamente sia il contenuto in solidi solubili (°Brix) che il livello di acidità.

Metodi per influenzare la qualità della frutta

Molte ricerche hanno dimostrato come alcune scelte fatte al momento dell’impianto del frutteto, come anche diverse pratiche colturali attuate in seguito, siano in grado di influenzare l’aspetto e la qualità dei frutti. Di seguito vengono riportati alcuni effetti che possono essere ottenuti attraverso l’applicazione di fitoregolatori in pre-raccolta o con la copertura del frutteto con reti o film di plastica.

Trattamenti in pre-raccolta con fitoregolatori di crescita

- Gibberelline: le gibberelline vengono impiegate durante la transizione tra l’indurimento dell’endocarpo e la fase di espansione cellulare del frutto. Questa applicazione è diventata una pratica standard in diverse aree produttive al fine di influenzare positivamente le dimensioni dei frutti, mentre se applicate più avanti nella stagione (all’inizio del III stadio di crescita), le gibberelline possono determinare anche un aumento della durezza oltre che della dimensione del frutto (Kappel e MacDonald, 2007; Lenahan et al., 2006). Tuttavia è importante sottolineare come per la maggior parte dei fitoregolatori, l’applicazione di gibberelline ha alcuni effetti collaterali tra cui un
possibile ritardo nella maturazione, una riduzione dell’accumulo in solidi solubili, un aumento dell’acidità (Cline e Trought, 2007; Zhang e Whiting, 2011) ed un effetto negativo sulla differenziazione fiorale. Quest’ultimo effetto, chiaramente indesiderato, potrebbe diventare interessante, in quanto riducendo il carico di frutti sull’albero si potrebbe conseguenziale aumentare le dimensioni del frutto, un aspetto sempre più apprezzato dal mercato. Tuttavia, il tentativo di ottenere una riduzione del carico di frutti per aumentare le dimensioni degli stessi attraverso l’impiego di diradanti fiorali non ha portato a risultati sufficientemente affidabili per essere traddotti nella pratica.

- **Etephon:** questo composto, che rilascia etilene, è stato usato su ciliegio con diversi scopi. Nel 1980/1990 l’Etephon è stato utilizzato per incrementare la performance della raccolta meccanica sebbene l’effetto sul frutto e sulla pianta (gommosi in certi casi) (Olien e Bukovac, 1982) destasse diverse preoccupazioni. Inoltre, l’utilizzo di Etephon può ridurre significativamente il contenuto in solidi solubili ed in antociani, così come la durezza della polpa. L’Etephon viene anche usato in combinazione con i ritardanti di crescita per controllare la crescita vegetativa dell’anno ed influenzare positivamente la differenziazione delle gemme a fiore.

- **Ritardanti di crescita:** il paclobutrazolo (nome commerciale: Cultar) è stato ampiamente sperimentato negli anni ’80/’90 ed il suo impiego registrato solo in pochi paesi europei. L’uso di Cultar risultava interessante in mancanza di portinnesti ed in presenza di basse densità di impianto, in cui si riscontrasse un eccesso di vegetazione. Il Cultar è in grado di controllare efficacemente la crescita dei germogli e di determinare alcuni effetti interessanti su alcuni aspetti riproduttivi (differenziazione fiorale ed aumento di produzione) sia usato singolarmente che in combinazione con Ethephon (Cline et al., 2005).

- **Prohexadione-Ca (P-Ca, Regalis® in Europa e Apogee® in USA):** è un altro ritardante di crescita, che agisce come inibitore della biosintesi di giberelline. Questo formulato viene usato singolarmente o in combinazione con Ethephon per controllare l’eccesso di vigoria, per aumentare il peso dei frutti e migliorare alcuni caratteri qualitativi. I risultati, sebbene promettenti, sono però dipendenti dalla cultivar, dal dosaggio di applicazione del fitoregolatore, dal periodo e dal numero di applicazioni (Elfving et al., 2003, 2005; Guak et al., 2005, Cline, 2017).

Anche altri fitoregolatori sono stati testati, come l’acido salicilico (AS) ed il metil-jasmonate (MJ), sostanze endogene che stimolano la crescita della pianta, inducendo una concentrazione più alta di fenoli totali e antocianine (Giménez et al., 2014).

Più recentemente, fitoregolatori quali l’acido abscissico e l’acido 1-aminociclopropan1-carbossilico (ACC) sono stati testati sperimentalmente nelle nostre aree cerasicole. Sebbene le ricerche preliminari abbiano mostrato che questi formulati inducono un aumento nelle dimensioni del frutto, nel contenuto in antocianine,determinando anche un rapido incremento della crescita (Nagpala et al., 2017b) (tab. 2 e 3) confermando quanto precedentemente ottenuto da altri ricercatori (Tijero et al., 2018), questi risultati sono ancora da considerarsi preliminari e necessitano di ulteriori studi.

Un’ulteriore ed interessante effetto indotto da questi due fitoregolatori è rappresentato dalla possibilità di migliorare l’omogeneità di maturazione dei frutti all’interno della pianta. In figura 3 sono riportati alcuni esempi di questo effetto indotti dall’applicazione di acido abscissico (ABA) sullo stadio di maturazione, determinato tramite la strumentazione Cherry-meter. Alcuni biostimolanti sono inoltre in grado di influenzare l’omogeneità di maturazione dei frutti. Per

Parametri qualitativi	Parte superiore dell’albero	Parte basale dell’albero						
	Controllo	Pre-invaiatura	Inviainatura	Post-invaiatura	Controllo	Pre-invaiatura	Inviainatura	Post-invaiatura
\(I_{AD} (A_{640} \rightarrow A_{750}) \)	1.27c	1.29c	1.50b	1.63a	1.28b	1.36b	1.66a	1.57a
Grado Zuccherino (°Brix)	117.2ab	17.12ab	17.36a	17.18b	15.82c	16.02bc	18.04a	16.59b
Croma	20.42a	18.81a	15.71b	15.82b	20.05a	18.66a	14.01c	16.75b
Contenuto in antocianine (mg/100g PF)								
Polpa	40.35c	44.08c	66.90b	61.31a	43.04b	48.05b	57.31a	67.82a
Epicarpo	68.16c	72-02c	81.50b	86.42a	71.36b	74.81b	88.52a	84.55a
esempio, prove condotte su cv. Giorgia e Ferrovia con un biostimolante contenente estratti di piante, metionina, fenilalanina e monosaccaridi (Sunred) hanno mostrato un aumento della produttività e della qualità dei frutti, inducendo anche una migliore omogeneità di maturazione rispetto al controllo (tab. 4 e fig. 4).

Deve essere sottolineato che i risultati ottenuti con i bioregolatori e con i biostimolanti sono preliminari e necessitano di ulteriori studi per essere confermati, sebbene l’effetto ottenuto nell’anticipare la maturazione dei frutti e l’omogeneità siano interessanti.

Coltivazione protetta

Attualmente, gli eventi estremi legati al cambiamento climatico rendono necessaria l’adozione di...
protezioni fisiche del frutteto. Una grande evoluzione in questo tipo di applicazioni tecniche è avvenuta negli scorsi anni, in quanto le reti, originariamente create per proteggere i frutteti dalla grandine sono adesso reti multi-uso, grazie a film plastici di nuova generazione che filtrano specifiche lunghezze d’onda, proteggendo dal calore e permettendo non solo una protezione dalla grandine e dalla pioggia, ma anche un ritardo o un accelerazione della maturazione, al fine di aumentare la qualità della frutta e in certi casi di contrastare alcune malattie. Sono qui riportati alcuni risultati ottenuti nel Nord Italia. Questi film plastici permettono il controllo della spaccatura del frutto causato dalla pioggia e dalla grandine e permettono anche di aumentare il grado zuccherino e di indurre una maturazione precoce (in particolare i film plastici Oroplus impiegato sia da solo che in combinazione con un telo riflettente- Extenday) che si è manifestata chiaramente sin dall’inizio della stagione (tab. 5 e figg. 5 e 6).

Le coperture con film plastici influenzano positivamente la maturazione del frutto riducendo le differenze tra i frutti posti nella parte superiore e quelli nella parte inferiore della chioma (tab. 2).

Tab. 5 - Effetto della copertura con film plastici o reti sul contenuto in solidi solubili e sul grado di maturazione (espresso in I_{AD}) (Costa et al., 2015) di frutti di ciliegio. Per ogni parametro qualitativo i valori seguiti dalla stessa lettera non variano significativamente (p=0.05, DMRT).

Trattamento	Grado Zuccherino (Brix°)	I_{AD}		
	Parte superiore della chioma	Parte inferiore della chioma	Parte superiore della chioma	Parte inferiore della chioma
Reti anti-grandine	16.96 cA	15.64 bB	0.53 cA	0.41 bB
Oroplus	18.53 bA	16.36 bB	0.71 abA	0.53 bB
Oroplus + telo riflettente	19.84 aA	17.44 aB	0.81 aA	0.80 aA
Controllo non coperto	18.22 bA	15.79 bB	0.63 bcA	0.43 bB

Fig. 5 - “Film plastici diffusi Oroplus” per la protezione del frutteto, associati a pacciamatura riflettente per riflettere la luce nelle parti basali della chioma (Fonte: Costa et al., 2015).

Fig. 5 - “Oroplus diffused plastic film” to protect the orchard and below “reflecting mulch” to reflect the light in the lower part of the canopy (Source: Costa et al., 2015).

Fig. 6 - “Film plastici diffusi Oroplus” per la protezione del frutteto, associati a pacciamatura riflettente per riflettere la luce nelle parti basali della chioma (Fonte: Costa et al., 2015).

Fig. 6 - Fruit ripening evolution during the season as affected by plastic film and hail net protection (Costa et al., 2015).
Ringraziamenti

Si ringrazia Stefano Lugli per la critica lettura del testo e per i risultati forniti, e al progetto INNOCER - Regione Veneto: Innovazioni di prodotto e di processo per una cerasicoltura di qualità.

Riassunto

L’aspetto, la dimensione ed alcuni caratteri organolettici della frutta hanno una forte influenza sull’accettazione del prodotto da parte del consumatore. I parametri qualitativi più apprezzati sono sicuramente la dimensione, la dolcezza ed il colore della buccia dei frutti. Altri parametri possono essere più o meno importanti a seconda del tipo di trasformazione a cui la frutta è soggetta. Alcuni di questi parametri, come le dimensioni dei frutti ed il colore della buccia, possono essere migliorati attraverso la tecnica colturale, per la quale riportiamo alcuni esempi (es. l’applicazione di regolatori di crescita e la realizzazione di coperture fisiche degli impianti). Infine, sono elencati i principali metodi standard e innovativi per la valutazione dei principali parametri qualitativi.

Parole chiave: caratteristiche qualitative della frutta, metod per migliorare la qualità della frutta e l’omogeneità di maturazione, frutteto protetto, fitoregolatori.

Bibliografia

Ballistreri, G., Continella, A., Gentile, A., Amenta, M., Fabroni, S. Rapisarda, P. 2013. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry 140, 630–638.

Bargoni G., 1964. Stato attuale, prospettive e problemi della cerasicoltura italiana. Atti del 1° convegno nazionale “La coltura del ciliegio”, Verona, 13 giugno 2014: 21-48

Budosó, G. and Hrotkó, K. 2017. Cherry production in Cherry, Botany, Production and uses Edited by Quero Garcia J., Iezzoni A., Pulawska A. and Lang G. CAB International 2017 pp1-14.

Cline, J.A. Trought, M. 2007. Effect of gibberellic acid on fruit cracking and quality of Bing and Sam sweet cherries. Canadian Journal of Plant Science 87, 545–550.

Coombes, B.G. 1976. The development of fleshy fruits. Annual Review of Plant Physiology 27, 507–528.

Crisóstomo, C.H., Crisóstomo, G.M. Metheny, P. 2003. Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology 28, 159–167

Dever, M.C., Macdonald, R.A., Cliff, M.A. Lane, W.D. 1996. Sensory evaluation of sweet cherry cultivars. HortScience 31, 150–153.

Dondini, L., Lugli, S. and Sansavini, S. 2018. Cherry Breeding: Sweet Cherry (Prunus avium L.) and Sour Cherry (Prunus cerasus L.). In Advances in Plant Breeding Strategies: Fruits Editors: Jameel M. Al-KhayriShri Mohan Jain Dennis V. Johnson, 2018. Pages 31-88

Elfving DC, Lang GA, Visser DB. 2003. Prohexadione-Ca and ethephon reduce shoot growth and increase flowering in young, vigorous sweet cherry trees. HortScience 38: 293-298

Elfving DC, Visser DB, Lang GA. 2005. Effects of prohexadione-calcium and ethephon on growth and flowering of ‘Bing’ sweet cherry. Acta Hort. 667: 439-446

González-Gómez, D., Lozano, M., Fernández-León, M.F., Bernalte, M.J., Ayuso, M.C. and Rodríguez, A.B. 2010. Sweet cherry phytochemicals: identification and characterization by HPLC-DAD/ESI-MS in six sweet cherry cultivars grown in Valle del Jerte (Spain). Journal of Food Composition Analysis 23, 533–539.

Goulas, V., Minas, I.S., Koundoulis, P.M., Lazaridou, A., Molassiotis, A.N., Geranathakis, I. and Manganaris, G.A. 2015. 1H NMR metabolic fingerprinting to probe temporal postharvest changes on qualitative attributes and phytochemical profile of sweet cherry fruit. Frontiers in Plant Science 6, 959.

Guak, S., Beulah M., Looney NE. 2005. Controlling growth of sweet cherry trees with prohexadione-calcium: Its effect on cropping and fruit quality. Acta Hortit. 667: 433-438

Guyer, D.E., Sinha, N.K., Chang, T.S. Cash, J.N. 1993. Physicochemical and sensory characteristics of selected Michigan sweet cherry (Prunus avium L.) cultivars. Journal of Food Quality 16, 355–370.

Hampson, C.R., Stanich, K., McKenzie, D.L., Herbert, L., Lu, R., Li, J. and Cliff, M.A. 2014. Determining the optimum firmness for sweet cherries using Just-About-Right sensory methodology. Postharvest Biology and Technology 91, 104–111.

Herrero, M., Rodrigo, J. and Wünsch, A. 2017. Flowering, Fruit Set and Development in Cherry Botany, Production and uses. Edited By Quero-Garcia J., Iezzoni A., Pulawska A. and Lang G. CAB International 2017, pp 14-35.

Kappel, F. MacDonald, R.A. 2007. Early gibberellic acid sprays increase firmness and fruit size of ‘Sweet-heart’ sweet cherry. Journal of the American Pomological Society 61, 38-43.

Kappel, F., Granger, A., Hrotkó, K., Schuster, M. 2012. Cherry. In: Badenes, M.L. and Byrne, D.H. (eds) Fruit Breeding, Handbook of Plant and Breeding 8. Springer Science + Business Media, New York, pp. 459–504.

Lenahean, O.M., Whiting, M.D., Elfving, D.C. 2006. Gibberellic acid inhibits floral bud induction and improves ‘Bing’ sweet cherry fruit quality. HortScience 41, 654–659.

Nagpala, E.G.L., Noferini, M., Farneti, B., Piccinini, L. and Costa, G. 2017a. Cherry-Meter: an innovative non-destructive (vis/NIR) device for cherry fruit ripening and quality assessment. Acta Hortic. 1161, 491-496

Nagpala, E.G.L., Noferini, M., Piccinini, L., Fiori, G., Vidoni, S., Bonora, E. and Costa, G. 2017b. Exogenous application of plant growth regulators enhances color and anthocyanin content of cherry fruits. Acta Hortic. 1161, 621-626

Oljen WC, Bukovich MJ. 1982. Ethephon-induced gummosis in sour cherry (Prunus cerasus L.). I. Effect on xylem function and shoot water status. Plant Physiol. 70: 547-555

Olmstead, J.W., Iezzoni, A.F. and Whiting, M.D. 2007. Genotypic differences in sweet cherry fruit size are primarily a function of cell number. Journal of the American Society for Horticultural Science 132, 697–703.

Piccolella, S., Fiorentino, A., Pacifico, S., D’Abrusco, B., Uzzo, P. and Monaco, P. 2008. Antioxidant properties of sour cherries (Prunus cerasus L.): role of colorless phytochemicals from the methanol extract of ripe fruits. Journal of Agricultural and Food Chemistry 56, 1928–1935.

Poll, L., Petersen, M.B. Nielsen, G.S. 2003. Influence of harvest year and harvest time on soluble solids, titratable acid, anthocyanin content and aroma components in sour cherry
(Prunus cerasus L. cv. ‘Stevns-bær’). European Food Research and Technology 216, 212–216.

Quero-García, J., M. Schuster, G. López-Ortega G. Charlot, 2017. Sweet Cherry Varieties and Improvement in Cherry Botany, Production and uses. Edited By Quero-García J., Iezzoni A., Pulawska A. and Lang G. CAB International 2017, pp 60-95.

Sansavini, S., Lugli, S. 2008. Sweet cherry breeding programmes in Europe and Asia. Acta Horticulturae 795, 41–58.

Serradilla, M.J., Fotirić Akić, M., Manganaris, G.A., Ercisli, S., González-Gómez, D. Valero, D., 2017. Fruit Chemistry, Nutritional Benefits and Social Aspects of Cherries in Cherry, Botany, Production and uses Edited by Quero Garcia J., Iezzoni A., Pulawska, J, and Lang G. CAB International 2017 pp pp:420-441

Serradilla, M.J., Hernandez, A., Lopez-Corrales, M., Ruiz-Moyano, S., Cordoba, M.G. and Martin, A. 2016. Composition of the cherry (Prunus avium L. and Prunus cerasus L.; Rosaceae). In: Simmonds, M.S.I. and Preedy, V.R. (eds) Nutritional Composition of Fruit Cultivars. Academic Press, London, pp. 127–147.

Serradilla, M.J., Martin, A., Ruiz-Moyano, S., Hernandez, A., Lopez-Corrales, M. Cordoba, M.G. 2012. Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chemistry 133, 1551–1559.

Tijero, V., Teriba, N., Munoz, P., Munne-Bosch, S. 2016. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest. Frontiers in plant science, 7, 602.

Tomás-Barberán, F.A., Ruiz, D., Valero, D., Rivera, D., Obón, C., Sánchez-Roca, C. Gil, M. 2013. Health benefits from pomegranates and stone fruit, including plums, peaches, apricots and cherries. In: Skinner, M. and Hunter, D. (eds) Bioactives in Fruit: Health Benefits and Functional Foods. Wiley, Hoboken, New Jersey, pp. 125–167.

Turner, J., Seavert, C., Colonna, A. Long, L.E. 2008. Consumer sensory evaluation of sweet cherry cultivars in Oregon, USA. Acta Horticulturae 795, 781–786.

Ušenik, V., Fabčič, J. Štampar, F. 2008. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry 107, 185–192.

Valero, D., Serrano, M. 2010. Postharvest Biology and Technology for Preserving Fruit Quality. CRC Press, Boca Raton, Florida.

Viljevac, M., Dugalic, K., Jurkovic, V., Mihaljevic, I., Tomas, V., Puskar, B., Lebedus, H., Sudar, R. Jurkovic, Z. 2012. Relation between polyphenols content and skin colour in sour cherry fruits. Journal of Agricultural Science 57, 57–67.

Wen, Y.-Q., He, F., Zhu, B.-Q., Lan, Y.-B., Pan, Q.-H., Li, C.-Y., Reeves, M.J. Wang, J. 2014. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chemistry 152, 29–36.

Whiting, M.D. Lang, G.A. 2004. ‘Bing’ sweet cherry on the dwarfing rootstock ‘Gisela 5’: crop load affects fruit quality and vegetative growth but not net CO2 exchange. Journal of the American Society for Horticultural Science 129, 407–415.

Zhang, C. Whiting, M.D. 2011. Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae 127, 341–346.

Zoffoli, J.P., Toivonen, P. and Wang Y. 2017. Postharvest Biology and Handling for Fresh Markets in Cherry, Botany, Production and uses Edited by Quero Garcia J., Iezzoni A., Pulawska, J, and Lang G. CAB International 2017 pp pp:460-484.