Contagious caprine pleuropneumonia (CCPP) is a highly contagious disease caused by *Mycoplasma capricolum* subsp. *capripneumoniae* that affects goats in Africa and Asia. Current available methods for the diagnosis of Mycoplasma infection, including cultivation, serological assays, and PCR, are time-consuming and require fully equipped stationary laboratories, which make them incompatible with testing in the resource-poor settings that are most relevant to this disease. We report a rapid, specific, and sensitive assay employing isothermal DNA amplification using recombinase polymerase amplification (RPA) for the detection of *M. capricolum* subsp. *capripneumoniae*. We developed the assay using a specific target sequence in *M. capricolum* subsp. *capripneumoniae*, as found in the genome sequence of the field strain ILRI181 and the type strain F38 and that was further evidenced in 10 field strains from different geographical regions. Detection limits corresponding to 5×10^3 and 5×10^4 cells/ml were obtained using genomic DNA and bacterial culture from *M. capricolum* subsp. *capripneumoniae* strain ILRI181, while no amplification was obtained from 71 related *Mycoplasma* isolates or from the *Acholeplasma* or the *Pasteurella* isolates, demonstrating a high degree of specificity. The assay produces a fluorescent signal within 15 to 20 min and worked well using pleural fluid obtained directly from CCPP-positive animals without prior DNA extraction. We demonstrate that the diagnosis of CCPP can be achieved, with a short sample preparation time and a simple read-out device that can be powered by a car battery, in <45 min in a simulated field setting.
such as these require a well-equipped laboratory, expensive equipment, and trained personnel. A loop-mediated isothermal amplification (LAMP) assay for the detection of *M. capricolum* subs. *capripneumoniae* has been reported recently (13). This assay transcends the limitations associated with thermocyclers; however, it still requires DNA extraction protocols and gel electrophoresis to separate DNA products on horizontal agarose gels, which limits the applicability of this method as a field test. Recombinase polymerase amplification (RPA) is another isothermal technique for detecting DNA (14). RPA employs recombinase-driven oligonucleotide binding to a template sequence followed by DNA polymerase-facilitated strand extension. DNA amplification can be monitored in real time using a sequence specific fluorescent probe that fluoroscences upon binding to an amplicon. This technique offers high sensitivity comparable to traditional PCR with the advantage that double-stranded DNA is exponentially amplified at constant and low temperatures (optimal temperature range, 37°C to 42°C). RPA-based diagnostic assays have been described for pathogen detection direct from biological samples, including urine samples (15). Here, we describe the development of a specific and sensitive assay using RPA for the rapid diagnosis of CCPP directly from clinical caprine specimens (i.e., pleural fluid and lung tissue samples). We demonstrate that this assay is suitable for field testing using lyophilized test reagents, a car battery for power, and a portable fluorescent illuminator to read the assay output.

MATERIALS AND METHODS

RPA primer and probe design. The full genome sequence of *Mycoplasma capricolum* subs. *capripneumoniae* strain ILR181, isolated during a recent outbreak in Kenya (EMBL accession no. L515399) (16), was used for primer and probe design. Oligonucleotides were designed according to the TwistDx guidelines (TwistDx, United Kingdom). The in silico specificities of the primers and probe were investigated using the pattern-searching tool fuznuc from the EMBOSS package (17) against selected bacterial genomes: *Mycoplasma capricolum* subs. *capripneumoniae*, *Mycoplasma mycoides* subs. *mycoides*, *Mycoplasma mycoides* subs. *capri*, *Mycoplasma capricolum* subs. *capricolum*, *Mycoplasma leachii*, *Mycoplasma parvifaciens*, *Mycoplasma bovis*, *Mycoplasma bovigenitalium*, *Mycoplasma arginini*, *Mycoplasma californicum*, *Mycoplasma alakeenses*, *Mycoplasma camis*, *Acholeplasma laidlawii*, *Pasteurella multocida*, and *Mannheimia haemolytica*. Parameters were set to check for both the strand and the complementary strand on a circular molecule allowing 1, 5, and 10 mismatches (fuznuc -complement -iscircular -pmismatch 1, 5 or 10).

The output gff file was converted to an Excel sheet by a custom script. The *M. capricolum* subs. *capripneumoniae*-specific oligonucleotides were synthesized by Integrated DNA Technologies (USA), while the probes containing the fluorophore 6-carboxyfluorescein (6-FAM) (thymidine nucleotide carrying fluorescein [dT-FAM]), a tetrahydrofuran spacer (THF), a quencher (thymidine nucleotide carrying black hole quencher 1 [dT-BHQ1]), and a 3’ block (C3-spacer) were synthesized by Biosearch Technologies, Inc. (USA).

Mycoplasma strains and growth conditions. For the optimization and evaluation of the RPA, *M. capricolum* subs. *capripneumoniae* strain ILR181 was used. Eighty-five additional strains representing 25 species and subspecies were included to investigate the specificity of the RPA (see Table S1 in the supplemental material). All strains were cultured in mycoplasma liquid medium (Mycoplasma Experience, Ltd., United Kingdom) at 37°C for 24 h to 72 h until a color change from red to orange was observed. Aliquots of *M. capricolum* subs. *capripneumoniae* ILR181 cells were stored at −80°C until further use in spiking experiments. Color change units per milliliter (CCU/ml) (18) were determined in duplicates for strain *M. capricolum* subs. *capripneumoniae* ILR181 by making 10-fold dilutions of the culture in mycoplasma liquid medium. The dilutions were grown at 37°C for 1 week prior to determining the CCU/ml.

Isolation of genomic DNA. Bacterial strains were grown in mycoplasma liquid medium, as described above. Cultures (10 ml) were centrifuged, the supernatants were discarded, and the cell pellets were resuspended in 500 µl of TNE buffer (10 mM Tris-HCl; pH of 8.5; 10 mM NaCl; 10 mM EDTA). Afterward, 10 µl SDS 10% and 10 µl proteinase K (20 mg/ml) was added, and the cell suspensions were incubated at 37°C for 2 h. Thereafter, 52 µl phenylmethylsulfonyl fluoride (PMSF) (100 mM in ethyl alcohol [EtOH], stored at −20°C) was added, followed by an additional incubation at room temperature for 15 min. Following the addition of 50 µl RNase A (10 mg/ml), the suspensions were incubated at 37°C for 1 h. Then 50 µl sodium acetate (1.5 M, pH of 5.2) and 550 µl buffered phenol were added; the solutions were mixed using a vortex mixer and centrifuged at 14,000 × g for 10 min (Centrifuge 5425, Eppendorf, Germany). The top phase was transferred to a new reaction tube; 550 µl phenol–chloroform–isoamylalcohol (25:24:1) solution was added, and the suspensions were vortexed for 20 s. Following an additional centrifugation step (14,000 × g for 10 min), the top phase was transferred to a new reaction tube, and the DNA was precipitated using isopropanol, washed with 70% EtOH (19), air dried, and resuspended in 100 µl Tris-HCl (10 mM, pH of 8.5). DNA concentrations (ng/ml) were determined using Nanodrop and Qubit instruments (both Thermo Fisher Scientific, Inc.).

Clinical specimens and optimization of sample preparation. The RPA was evaluated using a panel of pleural fluid samples (*n* = 5) and lung tissue specimens (*n* = 2) collected from goats during a recent outbreak of CCPP in Kenya in 2012 (Table 1).

Tenfold dilutions in liquid medium, as described above, were used to determine the CCU/ml titer in the pleural fluid samples. Tissue samples were also cultured in liquid media for 1 week, as described above, to determine the presence of *Mycoplasma* isolates. As needed, the initial tissue culture was filtered through a 0.22-µm filter (Carl Roth, Germany) before diluting the filtered material 1:10 in fresh medium prior to continued growth. We evaluated different methods for sample preparation (i.e., bacterial lysis, sample dilution, and template volume) for the RPA in duplicate on a subset of the pleural fluid samples (*n* = 2) and on available lung tissue samples (*n* = 2). Pleural fluid samples were diluted 1:20 or 1:50 in either 10 mM Tris-HCl (pH of 8.0) or nuclease-free water for subsequent heat lysis (60°C for 10 min) or in 0.2 M potassium hydroxide (KOH) or nuclease-free water for direct lysis. Five lung tissue samples from each animal were cut into small pieces (≤125 mm³) using a scalpel. The tissues were homogenized manually using a tissue grinder (Rotlabo; Carl Roth, Germany) in 500 µl of 10 mM Tris-HCl, 0.2 M KOH, or nuclease-free water. Samples in nuclease-free water and 0.2 M KOH were not heated, while 10 mM Tris samples were heated at 60°C for 10 min. Then, 1 or 5 µl of the different lysates (pleural fluid/lung tissue homogenate) was used as a template in a final reaction volume of 50 µl for the RPA. After the sample preparation conditions had been optimized, the remainders of the specimens were tested in duplicate using the most suitable method. In addition to the *M. capricolum* subs. *capripneumoniae*-positive samples described above, a panel of well-characterized *M. capri-

Sample source	Pleural fluid	Lung tissue		
Goat 092	10⁷–10⁸	Pos³	Pos	Pos
Goat 181	10⁷	Pos	Pos	Pos
Goat DOD 7-8/10	10⁷–10⁸	Pos	ND²	ND
Goat F	10⁷–10⁸	Pos	ND	ND
Goat Y	10⁷	Pos	ND	ND

³ Pos, positive.

² ND, not determined.
coli subsp. capripneumoniae-negative archived caprine specimens, i.e., 16 lung tissue specimens and one pleural fluid sample as well as pleural fluid samples from cattle (n = 2) experimentally infected with Mycoplasma mycoides subsp. mycoides (20), were included as negative clinical controls (see Data Set S2 in the supplemental material). These samples were processed using the most suitable method for sample preparation.

Optimization of laboratory-based RPAs. The RPA reactions were performed using the reagents and protocols from the TwistAmp exo kit (TwistDx, United Kingdom). Each 50-µl reaction mixture contained the following: 29.5 µl rehydration buffer, 12.2 or 8.2 µl nuclelease-free water, 2.1 µl each of a forward primer/reverse primer (10 mM), 0.6 µl probe (10 mM), and 1.0 or 5.0 µl of template. The reagents were vortexed briefly prior to dissolving the reaction pellet. To start the reaction, 2.5 µl magnesium acetate (MgOAc, 280 mM) was added to the cap of the tube followed by a brief centrifugation (mini G; IKA, Germany), another vortex, and a final brief centrifugation. Fluorescence was measured in an ESEQuant tube scanner (Qiagen, Germany) every 2–3 min after 30 s for 30 min in the FAM channel and was monitored using a DC-to-DC converter (120-W laptop car power supply [L40BB]) connected to a 12-V plug.

Optimization of field-applicable RPAs. RPA reaction pellets (TwistAmp exo kit) were dissolved in buffer, primer, and probe, and water, as described above but excluding template (5.0 µl) and MgOAc. Then, the RPA reactions were frozen at −80°C prior to lyophilisation in Lysol (Telstar life science solutions) at a temperature of −55°C and a pressure of 0.400 mBar. Aliquots of MgOAc (2.5 µl) were also lyophilized in separate tubes. Aliquots of lyophilized RPA reactions and MgOAc were either used directly or stored at 4°C and 37°C for 5 days prior to use. In addition, a subset of the lyophilized reactions was stored at 4°C for 3 months before use. To set up the reactions, 5 µl template and 45 µl of nuclease-free water was added to the lyophilized MgOAc, and this mixture was used to dissolve the lyophilized RPA reaction pellets. Immediately after dissolving (i.e., t = 0 min), we performed a fluorescence measurement using the tube scanner. The sensitivities of the lyophilized reactions were determined, as described below, using cultured M. capricolum subsp. capripneumoniae ILRI181 in spiking experiments. The read-out system (ESEQuant tube scanner) was tested for field applicability by running the reactions in a car (electric car, BMW). The read-out system (ESEQuant tube scanner) was tested for field applicability by running the reactions in a car (electric car, BMW).

RESULTS

In silico specificities of primers and probe for RPA. The primers were designed to amplify a 245-bp region within a single-copy gene in the genome of M. capricolum subsp. capripneumoniae strain ILRI181 (locus tag MCCPILRI181_00726) (16) (Table 2). To ensure that the target sequences were unique to M. capricolum subsp. capripneumoniae, we screened the selected primers and probe in silico against the genomes of 14 bacteria causing infections in ruminants (see Data Set S1 in the supplemental material). We were unable to find complementary regions when allowing 1 or 5 sequence mismatches for the primer sequences. Permitting 10 mismatches did give rise to sequence matches for one of the two primers. According to this in silico analysis, the primers fulfilled the requirements to ensure specificity of the RPA technology (21).

Sample preparation optimization. We evaluated various methods for sample preparation for the RPAs. Direct lysis of pleural fluid specimens (n = 2) in nuclease-free water was sufficient for release of nucleic acids from mycoplasma. We did not find a significant difference in signal intensity and onset of the RPA reaction between samples lysed in a 1:20 or 1:50 dilution in H2O, Tris-HCl, or KOH. Heat lysis of bacteria at 60°C for 10 min in nuclease-free water or Tris-HCl buffer (10 mM, pH of 8.5) and alkaline lysis in 0.2 M KOH reduced fluorescent signal intensities (mV) and delayed the onset of the reaction (data not shown). Subsequently, RPA reactions with pleural fluid samples were performed using direct lysis in nuclease-free water in a dilution of 1:50. Similar methods of bacterial lysis were also evaluated for lung tissue samples (n = 2). We tested five lung tissue specimens from each animal and found considerable variability in detecting Mycoplasma isolates in the tissue specimens used. All five specimens produced a positive M. capricolum subsp. capripneumoniae result; however, there were differences in signal intensity. Positive results were obtained within 10 to 14 min when bacterial lysis was performed using 0.2 M KOH and 1 µl lysate (see Fig. S1 in the supplemental material). Similar results were obtained when 5 µl of sample was used; the concentration of KOH had a negative impact on the appearance of fluorescence in the assay (data not shown). Direct lysis of bacteria in nuclease-free water and heat lysis in Tris-HCl buffer did not improve the signal intensity.

Specificity of the RPA reaction. To assess the specificity of the M. capricolum subsp. capripneumoniae RPA reaction, genomic

TABLE 2 Oligonucleotide primers and probe used in this study
Oligonucleotide^a
Mccp_F
Mccp_R
Mccp_P
^a

Assessment of RPA performance using pleural fluid and lung tissue specimens. Pleural fluid samples (n = 6) were diluted 1:50 in nuclease-free water, and 5 µl of this dilution was used as the template for the RPA amplification. Lung tissue specimens (n = 18) were homogenized manually in 500 µl of 0.2 M KOH. One µl of the tissue homogenate was used as a template in a final reaction volume of 50 µl for the RPAs. These reactions were performed in duplicate.
Molecular sensitivity of the RPA reaction. The detection limit of the RPA reaction was assessed using 10-fold dilutions of genomic DNA extracted from *M. capricolum* subsp. *capripneumoniae* ILRI181. Eight reactions were performed for each DNA dilution. An example of the output is shown in Fig. 1A. We detected high DNA concentrations (5 × 10⁶ to 5 × 10⁷ genome copies/reaction) within 7 min of amplification and reproducibly detected 50 to 500 genome copies/reaction within 15 min. We determined the overall assay sensitivity by assaying 10-fold dilutions of cultured *M. capricolum* subsp. *capripneumoniae* strain ILRI181 diluted in goat plasma. Figure 1B depicts a representative example of the assay output. At high bacterial concentrations (i.e., 500 CCU/reaction), we detected an increase in the fluorescent signals (mV) within 10 min of amplification, while concentrations of 50 CCU/reaction were detected within 15 min. Bacterial concentrations of 5 CCU/reaction were consistently detected, albeit at low signal intensities. An additional mixing of the reaction by including a short vortexing step after 4 to 6 min did not improve the sensitivity or signal intensity (data not shown).

RPA performance using clinical specimens from a recent Kenyan CCPP outbreak. We evaluated the RPA using pleural fluid samples (*n* = 5) and lung tissue samples (*n* = 2) collected during a CCPP outbreak in Kenya in 2012. All clinical specimens were cultured to determine presence of *Mycoplasma* isolates and/or CCU/ml titers. All but one replicate of the tissue cultures contained detectable *Mycoplasma* isolates. Bacterial titers ranging between 10⁷ to 10⁹ CCU/ml were obtained from pleural fluid samples cultured in duplicate (Table 1). We found that all pleural fluid samples produced positive assay results within 10 to 13 min after initiating the RPA reaction. An example of a sample curve from a pleural fluid sample is depicted in Fig. 2. (See Fig. S1 in the supplemental material for examples of the data from the lung tissues.) All included archived *M. capricolum* subsp. *capripneumoniae*-negative clinical specimens were negative in the RPA (see Data Set S2 in the supplemental material).

RPA performance in a simulated field setting. To test the storage conditions for the RPA reagents for field use, we lyophilized the RPA reaction components and MgOAc and stored them at 4°C and 37°C. Immediately prior to performing the RPAs, we dissolved lyophilized MgOAc pellets (2.5 μl) in a solution consisting of 5 μl template (cultured *M. capricolum* subsp. *capripneumoniae*) in 45 μl of nuclease-free water, and we added this solution to the lyophilized RPA reactions. The results indicated that 37°C is not a suitable temperature for storing lyophilized RPA reactions and MgOAc. We were not able to detect fluorescence signals using lyophilized RPA reagents stored at 37°C for 5 days, even when using fresh solutions of MgOAc. We were also unable to detect positive assays when we used freshly prepared solutions of RPA reagents and lyophilized MgOAc stored at 37°C. We found that lyophilized RPA reactions and MgOAc can be stored at 4°C for 5 days with acceptable compromise of the reaction signals compared with fresh RPA reactions. We determined the reaction sensitivity for lyophilized RPA and MgOAc stored at 4°C by culturing *M. capricolum* subsp. *capripneumoniae* ILRI181 and spiking the
bacterium into experiments. We found a detection limit of 50 CCU/reaction in triplicate runs, which is ~10-fold less than that in assays using fresh RPA reactions. The same results were obtained after storing lyophilized RPA and MgOAc pellets at 4°C for 3 months. A detection system based on an ESEQuant tube scanner powered using a 120-W laptop car power supply (L40BB) connected to a car cigarette lighter worked well for measuring the assay output (see Fig. S2 in the supplemental material).

DISCUSSION
Successful surveillance and control of livestock diseases requires specific, sensitive, and rapid diagnosis of pathogens. In developed countries, laboratory-based tests, such as ELISA and real-time PCR, are useful for making rapid diagnoses, in part due to widespread clinical labs, networks of diagnostic laboratories, and courier systems that guarantee rapid transport of specimens to the laboratory. The low prevalence of such laboratories and the absence of a similar network in many regions of sub-Saharan Africa limit the feasibility of these clinical tests. Furthermore, infrastructure limitations (e.g., lack of reliable power and refrigeration) complicate the development of field-adapted assays. In this study, we developed a new diagnostic assay based on RPA and assessed its applicability to rapidly and robustly diagnose CCPP, one of the major diseases affecting small ruminants in developing countries in Africa and Asia.

The assay detected the pathogen Mycoplasma capricolum subsp. capripneumoniae specifically and sensitively from laboratory samples (purified genomic DNA), cultured bacteria, and field samples (pleural fluid from a CCPP outbreak). We demonstrated the ability to correctly differentiate between M. capricolum subsp. capripneumoniae and other closely related mycoplasmas and bacterial pathogens causing CCPP-like symptoms, which is a critical step for this type of diagnostic assay. We achieved assay specificity by engineering the RPA to reduce off-target binding and cross-reactivity with other closely related Mycoplasma strains. No amplification was obtained from a large panel of DNA samples from closely related Mycoplasma strains and other bacteria causing infections in ruminants. In contrast, we were able to correctly identify DNA samples from 14 M. capricolum subsp. capripneumoniae strains using the assay, thereby demonstrating a high degree of specificity. Amplification was detected within several minutes when using DNA extracted by conventional methods, and with as few as 50 genome copies. These results highlight RPA for diagnostic detection of M. capricolum subsp. capripneumoniae in extracted DNA. To circumvent the need for nucleic acid purification under field conditions, we evaluated several simple methods for sample preparation, including direct bacterial lysis with nuclelease-free water, heat lysis, and alkaline lysis (0.2 M KOH). The heat and alkaline lyses alternatives did not result in sufficient recovery of DNA from cultured material and pleural fluid samples, as demonstrated by a delay and a low level of fluorescence produced (data not shown). We found that direct bacterial lysis with nuclelease-free water worked well. Similar sensitivities were obtained from plasma samples spiked with cultured M. capricolum subsp. capripneumoniae compared to extracted DNA (Fig. 1B).

CCPP is known for its very high morbidity and high mortality and for creating pathomorphologic lesions exhibiting effusions with high concentrations of Mycoplasma isolates (in this case, we evaluated 10^6 to 10^9 CCU/ml). Direct isolation and cultivation of the causative bacteria from infected lung tissue samples or pleural fluid samples taken postmortem are still the gold standard for the diagnosis of CCPP. However, cultivation has limitations that are exacerbated in resource-limited areas: it requires specialized nutrient media, takes several days, and is often unsuccessful due to the fastidious nature of the organism. Currently available molecular diagnostic tools employing PCR and LAMP require either a well-equipped laboratory or extensive sample preparation, thus limiting their application in the field. We have transcended the limits of these assays and tests using an RPA-based field applicable assay to detect M. capricolum subsp. capripneumoniae directly from pleural fluid samples collected from infected animals. After diluting the sample in nuclease-free water, we were able to detect bacteria within 15 min (Fig. 2). Using this approach, a definitive diagnosis of CCPP presence in a herd can be achieved in <45 min.

In addition, we tested suitability for field applications of the method by lyophilizing the RPA reactions and MgOAc and storing them at 4°C and 37°C. The fresh in-house lyophilized RPA reagents had similar sensitivity as the fresh RPA reactions. However, after storage at 37°C for a few days, the in-house lyophilized reagents lost activity completely. The lyophilized RPA reagents can be stored at 4°C for 3 months and still maintain a detection limit of 50 CCU/reaction. The pleural fluid from CCPP-positive animals has a range of 10^7 to 10^9 CCU/ml; therefore, the lyophilized RPA reactions should be able to detect M. capricolum subsp. capripneumoniae from pleural fluid. The ESEQuant tube scanner is portable and can be powered by a car battery. This equipment has been distributed to 35 African countries and has been tested in their respective laboratories (22). Thus, the method described is suitable for rapid CCPP diagnosis in the field. The RPA reagents can be lyophilized in the lab and transported to the field on an ice pack, the reaction can be performed in a car, and the assay produces definitive results in <45 min. Our results indicate that RPA are robust, rapid, specific, sensitive, and suitable for field applications. The use of other goat specimens, such as broncholavage and nasal swabs, remains to be evaluated and optimized.

The assay we describe is based on a single-copy target region in M. capricolum subsp. capripneumoniae. Ruminant Mycoplasma strains have been reported to have minimal genomes that are able to exchange DNA (23) through a conjugation-like process driven by integrative conjugative elements (24). Therefore, it would be advisable to have multiple target regions to increase the specificity of the assay. Additionally, the use of multiplex targets, if present, should be considered in the future to increase the sensitivity.

The low temperature required for RPA makes this CCPP assay an excellent foundation for the development of a novel field-applicable diagnostic tool in which the assays are integrated into a microfluidics platform and combined with a mobile phone-powered device which provides the temperature control for the assay and measures assay florescence. We are currently working on a related diagnostic platform. Importantly, this class of mobile assays that integrate mechanisms of data transmission can form the backbone of a national early warning system for disease, in which test data are disseminated through mobile phone apps.

In summary, this is the first description of an RPA-based field applicable diagnostic assay for a disease caused by Mycoplasma spp. Although this assay in moderately expensive, this technology offers significant advantages regarding speed and the potential for conversion into a next-generation diagnostic assay that is connected to mobile phone technology in resource-poor settings, such as sub-Saharan Africa and Asia.
ACKNOWLEDGMENTS

This work was funded by the Germany Ministry of Economic Cooperation and Development (project 09.7860.1-001.00, contract 81170269) and the Bill and Melinda Gates Foundation (OPP1099522). Additional support was received from the CGILAR research program on livestock and fish. Anne Liljander was supported by the Centrum for International Migration (CIM). Julia F. Nepper and Douglas B. Weibel were additionally supported by the American Chemical Society (ACS) through the Global Research Experiences, Exchanges, and Training (GREET) program.

We thank Qiagen (Germany) for providing the ESEQuantity tube scanner and Francesca Stomeo for assistance. We thank Matthew Forrest at TwistDx, Ltd., for valuable comments.

Douglas B. Weibel is Chief Scientific Officer of Rapid Diagnostics, LLC, a company that is commercializing diagnostic assays for agricultural applications (outside the area of caprine health).

REFERENCES

1. Nicholas R, Churchward C. 2012. Contagious caprine pleuropneumonia: new aspects of an old disease. Transbound Emerg Dis 59:189–196. http://dx.doi.org/10.1111/j.1865-1682.2011.01262.x
2. Fischer A, Shapiro B, Muriuki C, Heller M, Schnee C, Bongcam-Rudloff E, Vilém EM, Frey J, Jores J. 2012. The origin of the Mycoplasma mycoides cluster coincides with domestication of ruminants. PLoS One 7:e36150. http://dx.doi.org/10.1371/journal.pone.0036150
3. Manso-Silván L, Vilém EM, Sachse K, Djordjevic SP, Thiaucourt F, Frey J. 2009. Mycoplasma leachii sp. nov. as a new species designation for Mycoplasma sp. bovine group 7 of leach, and reclassification of Mycoplasma mycoides subsp. mycoides LC as a serovar of Mycoplasma mycoides subsp. capri. Int J Syst Evol Microbiol 59:1333–1358. http://dx.doi.org/10.1099/ijs.0.005546-0
4. Bett B, Jost C, Allport R, Mariner J. 2009. Using participatory epidemiological techniques to estimate the relative incidence and impact on livelihoods of livestock diseases amongst nomadic pastoralists in Turkana South District, Kenya. Prev Vet Med 90:194–203. http://dx.doi.org/10.1016/j.prevetmed.2009.05.001
5. Caswell JL, Williams KJ. 2007. Respiratory system, p 625–626. In Maxie MG (ed), Pathology of domestic animals, 5th ed, vol 2. Elsevier Saunders, New York, NY.
6. Rurangirwa FR, McGuire TC, Kibor A, Chema S. 2007. Purification of immunoreactive antigens of Mycoplasma mycoides subsp. capri. Vet Res 38:397–400. http://dx.doi.org/10.1051/vetres:201117397
7. Peyraud A, Poumarat F, Tardy F, Manso-Silvan L, Hamroev K, Tilioev T, Amirbekov M, Tounkara K, Bodjo C, Wesonga H, Nkando IG, Rurangirwa FR, McGuire TC, Kibor A, Chema S. 2007. Development of an identification system based on PCR. J Bacteriol 189:2577–2586.
8. Woubit S, Lorenzon S, Peyraud A, Manso-Silvan L, Thiaucourt F. 2004. A specific PCR for the identification of Mycoplasma capricolum subsp. capri, the causative agent of contagious caprine pleuropneumonia (CCPP). Vet Microbiol 104:125–132. http://dx.doi.org/10.1016/j.vetmic.2004.08.006.
9. Lorenzon S, Manso-Silvan L, Thiaucourt F. 2008. Specific real-time PCR assays for the detection and quantification of Mycoplasma mycoides subsp. mycoides SC and Mycoplasma capricolum subsp. capri. J Clin Microbiol 46:324–328. http://dx.doi.org/10.1128/jcm.2008.07.003
10. Rurangirwa FR, McGuire TC, Magnuson NS, Kibor A, Chemsa S. 1987. Composition of a polysaccharide from mycoplasma (F-38) recognized by antibodies from goats with contagious pleuropneumonia. Res Vet Sci 42:175–178.
11. Bertin C, Pau-Roblot C, Courtois J, Manso-Silvan L, Tardy F, Poumarat F, Citti C, Sirand-Pugnet P, Gaurivaud P, Thiaucourt F. 2015. Development of an identification system based on phylogenetic and reclassification of Mycoplasma mycoides cluster coincides with domestication of ruminants. PLoS One 7:e36150. http://dx.doi.org/10.1371/journal.pone.0036150
12. He Y, Zhang N-Z, Zhao P, Chu Y-F, Gao P-C, Zhang J-J, Liu X-T, Lu Z-X. 2014. Sensitive and rapid detection of Mycoplasma capricolum subsp. capri by Loop-mediated isothermal amplification. Afr J Biotechnol 13:2113–2118. http://dx.doi.org/10.5897/AJB12.2960.
13. Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombinase polymerase proteins. PLoS Biol 4:e204. http://dx.doi.org/10.1371/journal.pbio.0040204
14. Frolova J, Frolova J, Tardy F, Lehto T, Sibul H, Mager I, Laanpere M, Tulp I, Langel U. 2014. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn 16:127–135. http://dx.doi.org/10.1016/j.jmoldx.2013.08.003.
15. Falquet L, Lallande A, Schieck E, Glueckes I, Frey J, Jores J. 2014. Complete genome sequences of virulent Mycoplasma capricolum subsp. capri by recombinase polymerase amplification directly from urine samples. J Mol Diagn 16:127–135. http://dx.doi.org/10.1016/j.jmoldx.2013.08.003.
16. Lonergan S, Manso-Silvan L, Thiaucourt F. 2008. Specific real-time PCR assays for the detection and quantification of Mycoplasma mycoides subsp. mycoides SC and Mycoplasma capricolum subsp. capri. J Clin Microbiol 46:324–328. http://dx.doi.org/10.1128/jcm.2008.07.003
17. Stempke GW, Robertson JA. 1982. Comparison of two methods for enumeration of mycoplasm. J Clin Microbiol 16:959–961, http://dx.doi.org/10.1128/jcm.16.5.959-961
18. Green MR, Sambrook J. 2012. Molecular cloning: a laboratory manual, 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
19. Lacasse S, Paquet J, Dussault S, Rocher J, Audo MD, Nadeau O, Jarque M, Yerly S. 2011. A minor role of CD4 T lymphocytes in the control of a primary infection of cattle with Mycoplasma mycoides subsp. mycoides. Vet Res 42:77. http://dx.doi.org/10.1186/1297-9167-42-77.
20. Daher RK, Stewart G, Boissinot M, Boudreau DK, Bergeron MG. 2015. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol Cell Probes 29:116–121. http://dx.doi.org/10.1016/j.molcp.2014.11.005
21. Pletcher D, Frisoni E, Sagne E, Baranowski E, Breton M, Nouvel LX, Blanchard A, Chemsa S, Tardy F, Sirand-Pugnet P, Citti C. 2014. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile. MBio 5:e001958. http://dx.doi.org/10.1128/mBio.001958-14.