Combined effects of water temperature, grazing snails and terrestrial herbivores on leaf decomposition in urban streams

Hongyong Xiang 1, 2, Yixin Zhang Correspond., 1, 3, 4, David Atkinson 2, Raju Sekar 5

1 Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
2 Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
3 Xi’an Jiaotong-Liverpool University Huai’an Research Institute of New-Type Urbanization, Huai’an, China
4 Xi’an Jiaotong-Liverpool University Suzhou Urban and Environmental Research Institute, Suzhou, Jiangsu, China
5 Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China

Corresponding Author: Yixin Zhang
Email address: Yixin.Zhang@xjtlu.edu.cn

The decomposition of organic matter in freshwaters, such as leaf litter, can affect global nutrient (e.g. carbon) cycling. This process can be influenced by fast urbanization through increased water temperature, reduced aquatic diversity and changed leaf litter quality traits. In this study, we performed a mesocosm experiment to explore the individual and combined effects of warming (8 °C higher and ambient), the presence versus absence of grazing snails (Parafossarulus striatulus), and intraspecific difference of leaf litter quality (intact versus > 40 % area of Liriodendron chinense leaves grazed by terrestrial insects) on litter decomposition in urban streams. Litter decomposition rates ranged from 0.019 d⁻¹ to 0.058 d⁻¹ with an average decomposition rate of 0.032 ± 0.002 d⁻¹. All the three factors had significant effects on litter decomposition rate. Warming and the presence of snails accelerated litter decomposition rates by 60 % and 35 % respectively. Litter decomposition rates of leaves damaged by terrestrial insects were 5 % slower than that of intact leaves, because litter quality of terrestrial insect-damaged leaves was lower (i.e. higher specific leaf weight) than intact leaves. For treatments with snails, warming stimulated microbial and snail mediated litter decomposition rates by 35 % and 167 %, respectively. All combinations of treatments showed additive effects on litter decomposition except for the interaction between warming and snails which showed positive synergistic effects. In addition, neither temperature nor litter quality affected snail growth rate. These results imply that higher water temperature and the presence of abundant snails in urban streams greatly enhanced litter decomposition. Moreover, the effect of pest outbreaks, which resulted in lower litter quality, can cascade to aquatic ecosystems by retarding microbe-mediated litter decomposition. When these factors co-occurred, warming could
synergistically interact with snails to speed up the depletion of organic matter, while the effect of leaf quality on litter decomposition may be diminished at high water temperature. These effects could further influence stream food webs and nutrient cycling.
Combined effects of water temperature, grazing snails and terrestrial herbivores on leaf decomposition in urban streams

Hongyong Xiang¹,², Yixin Zhang¹,³,⁴, David Atkinson², Raju Sekar⁵

¹Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
²Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
³Xi’an Jiaotong-Liverpool University Huai’an Research Institute of New-Type Urbanization, Huai’an, China
⁴Xi’an Jiaotong-Liverpool University Suzhou Urban and Environmental Research Institute, Suzhou, China
⁵Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China

Corresponding Author:

Yixin Zhang, Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, China.

E-mail: Yixin.Zhang@xjtlu.edu.cn
Abstract: The decomposition of organic matter in freshwaters, such as leaf litter, can affect global nutrient (e.g. carbon) cycling. This process can be influenced by fast urbanization through increased water temperature, reduced aquatic diversity and changed leaf litter quality traits. In this study, we performed a mesocosm experiment to explore the individual and combined effects of warming (8 °C higher and ambient), the presence versus absence of grazing snails (Parafossarulus striatulus), and intraspecific difference of leaf litter quality (intact versus > 40 % area of Liriodendron chinense leaves grazed by terrestrial insects) on litter decomposition in urban streams. Litter decomposition rates ranged from 0.019 d\(^{-1}\) to 0.058 d\(^{-1}\) with an average decomposition rate of 0.032 ± 0.002 d\(^{-1}\). All the three factors had significant effects on litter decomposition rate. Warming and the presence of snails accelerated litter decomposition rates by 60 % and 35 % respectively. Litter decomposition rates of leaves damaged by terrestrial insects were 5 % slower than that of intact leaves, because litter quality of terrestrial insect-damaged leaves was lower (i.e. higher specific leaf weight) than intact leaves. For treatments with snails, warming stimulated microbial and snail mediated litter decomposition rates by 35 % and 167 %, respectively. All combinations of treatments showed additive effects on litter decomposition except for the interaction between warming and snails which showed positive synergistic effects. In addition, neither temperature nor litter quality affected snail growth rate. These results imply that higher water temperature and the presence of abundant snails in urban streams greatly enhanced litter decomposition. Moreover, the effect of pest outbreaks, which resulted in lower litter quality, can cascade to aquatic ecosystems by retarding microbe-mediated litter decomposition. When these factors co-occurred, warming could synergistically interact with snails to speed up the depletion of organic matter, while the effect of leaf quality on litter
decomposition may be diminished at high water temperature. These effects could further
influence stream food webs and nutrient cycling.

Introduction

Global temperature is projected to increase 2.0 – 4.9 °C by the end of this century (Raftery et al. 2017), and the change in thermal conditions can influence almost all levels of stream ecosystems (Daufresne et al. 2009, Woodward et al. 2010). Numerous studies have indicated that warmer water can accelerate leaf litter (hereafter litter) decomposition in streams (Ferreira and Chauvet 2011, Ferreira and Canhoto 2015, Griffiths and Tiegs 2016, Martins et al. 2017). For example, from a synthesis of 1,025 records of litter decomposition, Follstad Shah et al. (2017) found that litter decomposition rates in freshwater ecosystems are expected to accelerate by 5–21 % when water temperature increases 1 – 4 °C. By contrast, in a global spatial field experiment, Boyero et al. (2011) found that warmer conditions stimulated microbe-mediated litter decomposition whereas invertebrate-mediated litter decomposition was decreased. Consequently, overall litter decomposition rate was unchanged. However, these results may not be suitable for the projection of warming effects on litter decomposition in urban streams, because data from these two global-scale studies were collected from streams with low human-impact intensity. Differences in invertebrate and microbial communities, physical conditions, and other factors were associated with different responses of litter decomposition to water temperature between urban and non-urban (e.g. forest) streams (Imberger et al. 2008, Iñiguez-Armijos et al. 2016, Wenisch et al. 2017). For instance, dominant invertebrates in urban streams have broader thermal breadth than invertebrates in mountain forest streams (Giersch et al. 2017). Consequently, warming results in reduced abundance and richness of warming-sensitive invertebrates in forest streams – which are mainly responsible for macroinvertebrate-mediated litter decomposition (Winterbourn et al.
2008, Griffiths and Tieg 2016). By contrast, warming-induced reduction of abundance and
richness of temperature-sensitive invertebrates in urban streams can benefit thermally tolerant
invertebrates such as snails – the dominant contributor of macroinvertebrate-mediated litter
decomposition (Yule et al. 2015). Therefore, results from most studies that have investigated
warming effects on litter decomposition in non-urban streams may not be suitable for urban
streams. Urban stream water temperature can be increased through various ways such as
deforestation, water intake, discharging warmer effluent from domestic, industrial, and sewage-
treatment sources (Lepori et al. 2015), runoff from hot impervious surfaces and stormwater
(Somers et al. 2013). Furthermore, as natural stressors usually interact with each other, the
effects of warming on litter decomposition are also subjected to seasonal change (Dossena et al.
2012, Ferreira and Canhoto 2014), nutrient concentration (Ferreira and Chauvet 2011), and the
presence of shredders (Domingos et al. 2015, Moghadam and Zimmer 2016). Thus, predicting
the consequences of warming on litter decomposition in urban streams needs to take account of
other environmental stressors affecting consumer communities and litter quality.

In addition to abiotic factors (e.g. warming), biotic factors such as the presence of aquatic
invertebrates (detritivores) can also affect litter decomposition (Jonsson et al. 2001, Gonçalves et
al. 2006). Shredders are usually recognized as the dominant contributor to invertebrate-
associated litter decomposition in streams (Bruder et al. 2014, Taylor and Andrushchenko 2014).
In many tropical and urban streams where shredders were scarce, litter decomposition rates did
not differ between coarse and fine mesh bags (i.e. when invertebrates excluded (Pascoal et al.
2005). However, these studies may underestimate the role of scrapers in litter decomposition,
which shear off food, especially periphyton adhered to leaf surfaces (Cummins and Klug 1979).
Specifically, many researchers have found a positive relationship between snail abundance and
litter decomposition rate in streams where diversity and abundance of shredders are low (Suren and McMurtrie 2005, Chadwick et al. 2006, Yule et al. 2015). Snails can colonize litter rapidly even before microbes (e.g. fungi) can develop sufficient biomass or partially degrade the leaf tissues (Casas et al. 2011). Snails can completely eat the soft part of the leaves (Tanaka et al. 2006). The presence of snails is likely to affect the microbe-mediated litter decomposition through: 1) changing competition in microbial communities via direct consumption of some microbes such as bacteria; 2) altering microenvironments on the leaf surface due to feeding activities; and 3) stimulating fungal growth by excreting nutrients (e.g. higher ammonia) and labile carbon (Moghadam and Zimmer 2016) or decreasing turbidity which may influence the periphyton biomass (Hann et al. 2001, Li et al. 2008). Snails are abundant in urban streams due to their capability of tolerating high water temperatures and decreased water quality (Gray 2004, Ramírez et al. 2009). In addition, dams can transform upstream reaches from lotic to lentic habitats in rural streams, thereby altering water depth, flow velocity, sediment and water temperature regime (Stanley et al. 2002, Yan et al. 2011, Claeson and Coffin 2016). Although these changes may adversely affect sensitive invertebrates, other organisms including snails could benefit from these modified habitats (Cross et al. 2010, Gangloff et al. 2011). Therefore, snails may be an important factor influencing litter decomposition in these ecosystems and compensate for the loss of sensitive shredders (Chadwick et al. 2006, Casas et al. 2011).

Leaf quality has long been acknowledged as an important biotic factor influencing litter decomposition in streams (Leroy and Marks 2006, Hladyz et al. 2009). Generally, high quality leaves (e.g. high nitrogen concentration) are more preferred by invertebrates and microbes, thus making them decompose faster than low quality leaves (Schindler and Gessner 2009). Although numerous studies have investigated the effects of litter quality on its decomposition in
freshwaters, most of them focused on interspecific differences in litter quality (Leroy and Marks 2006, Kominoski et al. 2007, Hladyz et al. 2009) rather than intraspecific differences (LeRoy et al. 2007, Jackrel et al. 2016). Environmental and anthropogenic stressors (e.g. insect herbivores, CO₂ concentrations, salt, and land use change) can decrease litter quality through various ways such as increasing concentrations of secondary chemicals (e.g. condensed tannins) (Frost et al. 2012, Rothman et al. 2015, Jackrel and Morton 2018). For example, plants in warmer urban areas are likely to suffer more serious insect pest outbreaks than in cooler areas (Meineke et al. 2013), and insect herbivores may continue to increase in the future due to global climate warming (Meineke et al. 2018). According to the nutrient acceleration hypothesis, insect damage enhances litter decomposition due to accelerated senescence, increased nutrient cycling, and improved litter quality (Chapman et al. 2003). By contrast, as per the nutrient deceleration hypothesis, insect attack can induce higher proportion of secondary defensive compounds which result in decreased nutrient cycling rates (Schweitzer et al. 2005), and thereby reduce litter decomposition rates. The changes in litter quality induced by insect herbivory can cascade to aquatic ecosystems (Jackrel and Wootton 2015, Jackrel and Morton 2018). Therefore, the effects of warming and other stressors associated with urbanization should be coupled with the effects of intraspecific litter quality to accurately estimate their individual and combined effects on ecosystem functioning and organism community structures (LeRoy et al. 2007, Lecerf and Chauvet 2008, Jackrel and Morton 2018). Such combinations of stressors are especially pertinent in urban and mountain areas (high elevation) where terrestrial insects are estimated to cause greater damage to plants, which could result in larger differences in intraspecific litter quality (Chen et al. 2009, Meineke et al. 2013, Ramsfield et al. 2016).
In this study, we used a mesocosm manipulative experiment to explore the effects of increased water temperature (~ 8 °C) on the decomposition of intact and insect-damaged (> 40% leaf area were grazed by insects) tulip poplar (*Liriodendron chinense*), in the presence and absence of snails (*Parafossarulus striatulus*). Specifically, we aimed to test whether: 1) increasing water temperature would accelerate both microbe- and snail-mediated litter decomposition; 2) leaf damage caused by terrestrial herbivorous insects would reduce litter quality and result in retarded litter decomposition rate; and 3) the presence of snails would increase litter decomposition rate and partly compensate for the loss of shredders.

Materials & Methods

Leaf litter collection Freshly fallen *L. chinense* leaves were collected during the period 15th September to 1st October 2016 from a riparian forest in Jiulongfeng Nature Reserve (mean annual precipitation and air temperature are 1500 – 1600 mm and 15.4 °C, respectively), Anhui Province, China (30°6′39″ N, 118°1′21″ E). This ca 30-year-old *L. chinense* woodland had suffered from pests (mainly Lepidoptera: moths, Fig. S1A-B) since 2009. Terrestrial pest outbreak occur twice (June and September) every year. Consequently, the leaf-fall pattern had changed from once at the end of October to twice every year. In the laboratory, leaves were visually grouped into two categories (Fig. S1) according to the ratio of leaf area grazed by insects, i.e. intact-lightly damaged (0-5%) and heavily damaged (> 40%). Then, leaves were oven dried (60 °C, 48 h) and weighed prior to use.

Experimental design Using ~60 L aquaria (50 × 30 × 40 cm), factorial combinations of manipulated water temperature (ambient versus 8 °C above ambient), intraspecific leaf quality (intact versus insect-damaged) and scraper (snail) presence versus absence were each replicated
five times ($2 \times 2 \times 2 \times 5 = 40$ mesocosms). The experiment lasted for 25 days from 20th December 2016 to 14th January 2017. Mesocosms (Fig. S2) were installed on the riparian zone of a stream next to Xi’an-Jiaotong Liverpool University ($31^\circ 16’ 30”$ N, $120^\circ 43’ 59”$ E), Suzhou, China. Water was pumped from the stream and circulated within the mesocosms to emulate the natural water quality, flow, and microbial supply. There was no substrate (e.g., rocks, gravel, sand) in the mesocosms. In each mesocosm, 10.01 ± 0.01 g of unconditioned litter (i.e. dry leaves) were added at the beginning of the experiment. One heating rod (LRB-210, 220 – 240 V, 100 W, SunSun Co. Ltd) was used to heat up the water in the warming treatment. The working temperature for the heating rod is 18 – 34 $^\circ$C, as average annual air temperature in the study area (Suzhou, China) is 15 – 17 $^\circ$C. We set the working temperature as 18 $^\circ$C for each heater. In addition, warming usually induced a change of diel temperature oscillation, which can affect litter decomposition (Dang et al. 2009, Vyšná et al. 2014). Therefore, the diel temperature oscillation was also calculated. The average increased water temperature was 8 $^\circ$C (Fig. 1 and Fig. S4), which is higher than the projected range of temperature increases by the end of this century globally (2.0 – 4.9 $^\circ$C) (Raftery et al. 2017) and for China (3.9 – 6.0 $^\circ$C) (Ding et al. 2006). This extreme high temperature may still be possible in urban areas where air temperature could be 1-3 $^\circ$C warmer than rural areas, and the difference in air temperature between urban and rural areas can be as large as 10 $^\circ$C under certain conditions (e.g. calm, cloudless nights in winter) (Grimmond 2007). In addition, for big cities such as Shanghai, China, the projected increase of mean temperature is estimated to be 2.5 times of that for global mean temperature (Chu et al. 2016). As water temperature in most streams would increase 0.6-0.8 $^\circ$C for every 1 $^\circ$C increase in air temperature (Morrill Jean et al. 2005), an 8 $^\circ$C increase in water temperature would be realistic for streams in big cities. Moreover, an increase of 8 $^\circ$C is not rare for
laboratory microcosm studies (Ferreira and Chauvet 2011, Fernandes et al. 2012, Geraldes et al. 2012). Nine temperature loggers (ONSET, Stow Away TidbiT Temp Logger) were randomly placed into nine mesocosms (five warmed; four at ambient water temperature) to record water temperature once every hour during the experimental period (Dataset S1 and Fig. S3). Dissolved oxygen (DO), conductivity, and ammonia were measured using a YSI (Pro Plus), and pH and turbidity were measured using pH (CLEAN, PH30) and turbidity (HACH, 2100Q) meter, respectively, before conducting the experiment, and then on days 5, 14, and 24. On day 25, the litter (Fig. S5) was collected using a hand-held net, oven dried (60 °C, 48 h), and then weighed to calculate litter decomposition rate.

Water temperature Water temperature was successfully increased in mesocosms with the warming treatment (mean ± SE, 18.5 ± 0.54 °C) by an average of 8 °C above that in ambient treatment mesocosms (mean ± SE, 10.5 ± 0.14 °C) during the experimental period ($t = 14.537$, df = 4.502, $P<0.001$, Figure 1a and S1 in supporting information). However, diel temperature oscillation did not differ between warming (2.83 ± 0.24 °C) and ambient (2.86 ± 0.10 °C) treatments ($t = -0.124$, df = 5.274, $P=0.906$, Fig. 1b). Water quality measures (Table 1 and Table S1 and Dataset S2 in supporting information, Fig. 2) were also significantly affected by the treatments (for more details, see the supplementary methods).

Specific leaf weight Specific leaf weight (SLW, leaf dry weight per unit leaf area) can be regarded as an indicator of leaf toughness - an important litter quality trait (Steinbauer 2001). SLW was measured to test the potential physical structural quality differences between insect damaged and intact litter, because plants tend to have higher SLW when attacked by insects (Nabeshima et al. 2001, Sudderth and Bazzaz 2008). Thirty intact and insect-damaged leaves were randomly selected from the leaves collected for this study. For each focal leaf, one leaf disc...
(6 mm in diameter, avoiding leaf vein) was randomly cut out using a core borer. All leaf discs were oven dried (60 °C) to constant weight, which was recorded to the nearest 0.0001 g (Dataset S3). Then, SLW was calculated by dividing the dry leaf mass to leaf disc area (Jackrel et al. 2016).

Snail Specimens of a common snail *P. striatulus* were collected from a stream to the north of Renmin University of China, Suzhou (31° 16’ 54″ N, 120° 44’ 30″ E). This stream is straight, ~ 15 m wide, with muddy sediment and concrete bank. Snails were kept in mesocosms for at least one week to acclimate to the new environment and were starved for three days before conducting the experiment. Before starting the experiment, each snail was blotted dry and weighed to the nearest 0.0001 g (mean ± S.E, 1.0744 ± 0.0322 g, n = 400, Dataset S4). Twenty randomly selected snails were placed in each scraper treatment, giving a density of 133 ind/m², which was higher than the mean natural density (41-80 ind./m²) but still within the natural range of population density (0-280 ind./m²) in this area (Wang and Hong 2010, Hu et al. 2013). At the end of the experiment, snails were blotted dry and weighed again to determine the growth rate. Then, all snails were released to the stream where they were collected. Snail growth rates were calculated as $\mu = \frac{\ln(W_t) - \ln(W_0)}{t}$, where W_t and W_0 were blotted mean wet mass per treatment at the end of the experiment (day t) and before the experiment, respectively (Hill et al. 2010). In addition, snail tissue dry mass (TDM) and ash free dry mass (AFDM) were calculated using empirical equations in the study area (i.e. Suzhou, China), TDM=0.067W, and AFDM=0.286W, where W was blotted dry mass (Zhao et al. 2009).

Litter decomposition Litter decomposition rates (Dataset S5) were calculated assuming an exponential decay (k, d⁻¹), $W_t = W_i \times e^{-kt}$ (Eq. 1), where W_t represents the remaining leaf mass at the incubation time t (day) and W_i is the initial mass of leaf material (Ferreira and Chauvet
In addition, we calculated the sensitivities of litter decomposition rates to temperature:

$$Q_{10-q} = (t_A/t_W)^{10/(T_w-T_a)}$$ (Eq. 2) (Conant et al. 2008), where t_A and t_W are the time (days) to decompose 50% of initial dry leaf mass at the ambient and warming temperature respectively, T_a and T_w are the mean temperature during the experimental period in the ambient and warming mesocosms respectively. Litter decomposition rates in the presence and absence of snails was total (k_{total}) and microbe-mediated ($k_{microbial}$) litter decomposition rates respectively. The contribution of snail-mediated litter decomposition rate was estimated by the difference in dry leaf mass remains between mesocosms in the presence and absence of snails, and then calculating a new k value (k_{snail}) (Magali et al. 2016, Mosele Tonin et al. 2018).

Data analysis Three-way ANOVA was used to test for differences in litter decomposition rates among treatments (warming, snail grazing, litter quality). In treatments with the presence of snails, two-way ANOVA was used to test the effects of warming and litter quality on litter decomposition rates, i.e., k_{total}, $k_{microbial}$, and k_{snail}.

T-tests were used to test for differences in water temperature (daily mean water temperature and diel temperature oscillation) between warming and ambient treatments (Domingos et al. 2015, Ferreira et al. 2015). For each measured water quality variable, we used three-way ANOVA (analysis of variance) with repeated measures (RM ANOVA) to explore the effects of experimental treatments on water quality. A t-test was used to check for SLW differences between intact and insect-damaged leaves. One-way ANOVA was used to detect whether initial blotted dry mass differed among the four treatments with snails. If they differed among treatments, then, initial blotted dry mass was set as a co-variable when doing the two-way ANCOVA to test the potential effect of body size on snail growth rate and litter decomposition rate. As both TDM and AFDM are correlated with blotted dry mass, we only analyzed two-way
ANOVA results of net blotted dry mass growth rates. To determine the interaction type of two-way interactions, we followed the methods proposed by (Piggott et al. 2015). After conducting normality tests for all data, the data were transformed (e.g. log) to improve the normality of data. All data were analyzed using SPSS 22.0.

Results

Leaf litter decomposition Litter decomposition rates varied between 0.019 d\(^{-1}\) and 0.058 d\(^{-1}\) (mean ± S.E, 0.032 ± 0.002 d\(^{-1}\), Fig. 3, Fig. S3). Warming accelerated litter decomposition rates by 60 % (data were log-transformed, \(F_{1,32} = 259.93, P<0.001\), Table 2). The presence of snails (0.037 ± 0.001 d\(^{-1}\)) also significantly increased litter decomposition rates by 35 % (\(F_{1,32} = 90.21, P<0.001\), Table 2). However, litter decomposition rates of terrestrial insect-damaged leaves (0.031 ± 0.001 d\(^{-1}\)) were 5 % slower than those of intact leaves (\(F_{1,32} = 4.687, P=0.038\), Table 2).

The interaction of temperature and snail presence had positive synergistic effects on litter decomposition, i.e. warming increased the litter decomposition rates more in the presence of snails than in their absence. However, neither the rest of the two-way interactions nor the three-way interactions had significant effects on litter decomposition rates, i.e. the rest of the interactions all showed additive effects.

The overall sensitivity of litter decomposition rates to temperature (\(Q_{10-\varphi}\)) was low according to a classification system reported previously (Conant et al. 2008). When mean temperature increased from 10.5 °C to 18.5 °C, the litter decomposition was stimulated more in the presence of snails than in their absence for both intact leaves (\(Q_{10-\varphi} = 2.38\) vs. 1.66) and insect damaged leaves (\(Q_{10-\varphi} = 2.37\) vs. 1.61). However, the thermal sensitivity of litter decomposition rates showed no
difference between the intact and insect-damaged leaves in the presence ($Q_{10-q} = 2.38$ vs. 2.37) and absence ($Q_{10-q} = 1.66$ vs. 1.61) of snails.

In treatments with snails, warming significantly increased total, microbial-, and snail-mediated litter decomposition rates by 81%, 35%, and 167%, respectively ($P<0.001$, Table 3, Fig. 4). Microbe-mediated litter decomposition rates were also 7% lower for damaged leaves than intact leaves ($F_{1,15} = 5.417$, $P=0.034$, Table 3). By contrast, neither total nor snail-mediated litter decomposition rates were affected by litter quality. Water temperature and litter quality showed additive effects on each of the three measures of litter decomposition rate (Table 3). In addition, in the presence of snails, even though initial blotted dry mass differed among the four treatments ($F_{3,16} = 3.893$, $P=0.029$, Fig. 5c), none of the litter decomposition rates were affected by initial dry mass of snails (Table 3).

Specific leaf weight Mean (\pm S.E.) SLW of terrestrial insect-grazed leaves ($7.9 \pm 0.4 \text{ mg/cm}^2$) were 47% higher than that of intact leaves ($5.4 \pm 0.4 \text{ mg/cm}^2$; $t = -4.872$, df = 58, $P<0.001$, see Dataset S3 in supporting information).

Snail growth There were no significant differences among treatments for snail growth rates (Table 4, Fig. 5A). Snail growth rates were negligible (close to 0, almost ceased growth) and net blotted dry biomass kept constant during the experiment (no significant difference was shown between initial and final blotted dry biomass).

Discussion

Warming enhanced litter decomposition

Litter decomposition rates were significantly increased in warming treatments, which agrees with previous findings (Martínez et al. 2014, Ferreira et al. 2015), increasing by 7.5% per $^\circ\text{C}$
warming (mean $Q_{10-q} = 1.79$). This acceleration is nearer to the estimated 10% acceleration of litter decomposition rate per °C in the tropics rather than the 2.5% in temperate biomes (Follstad Shah et al. 2017). Correa-Araneda et al. (2015) indicated that warmer conditions can depress abundance and species richness of macroinvertebrates with narrow thermal tolerance thereby reducing litter decomposition rate (). However, if the depressed macroinvertebrate-mediated litter decomposition was compensated by stimulated microbe-mediated litter decomposition, then overall litter decomposition would be unchanged (Boyero et al. 2011) or even higher than under ambient conditions (Dossena et al. 2012). Our results indicated that warming can not only enhance microbe-mediated litter decomposition (Fernandes et al. 2012, Ferreira and Canhoto 2015), but also can accelerate snail-mediated litter decomposition (Friberg et al. 2009). Previous studies also found that microbe-mediated litter decomposition in urban streams was enhanced by the increased water temperature (Imberger et al. 2008, Yule et al. 2015). However, in urban streams with poor water quality (e.g. low DO and high ammonia), microbe-mediated litter decomposition would decrease, countering any increase with warmer water temperature (Martins et al. 2015, Iñiguez-Armijos et al. 2016). Therefore, it is important to take physicochemical factors into consideration when assessing the impact of increasing water temperature on litter decomposition in urban streams. For invertebrate-mediated litter decomposition, our result differs from that of Domingos et al. (2015) in which ~ 3 °C higher water temperature depressed the activity of *Allogamus laureatus* (Trichoptera, Limnephilidae), leading to a lack of thermal stimulation of litter decomposition in the presence of *A. laureatus*. Thus, we suggest that differences in the invertebrate community can influence the effects of warming on invertebrate-mediated litter decomposition.
In addition, along with increased mean water temperature, higher diel temperature oscillation, which is usually associated with climate warming, can also contribute to accelerated litter decomposition rate (Dang et al. 2009, Vyšná et al. 2014, Gonçalves et al. 2015). However, this was unlikely in this study, as diel temperature oscillation did not differ between warming and ambient treatments. Moreover, the effects of litter quality on both microbe- and snail-mediated litter decomposition rates diminished at higher water temperature, which accords with the suggestion of Fernandes et al. (2012) that warming (from 18 to 24 °C in their microcosms) could weaken the effects of litter quality on microbe-mediated (fungal) litter decomposition. Therefore, even though warming and other factors (e.g. increasing concentration of CO₂) associated with urbanization can alter litter quality (Tuchman et al. 2002, Meineke et al. 2013), these effects may be overridden by the effects of warming on litter decomposition in freshwaters.

The presence of snails accelerated litter decomposition

The presence of scrapers (snails) accelerated litter decomposition rates by 35%. Our results suggest that the presence of snails in urban streams, where shredders are often scarce or absent, play an important role in litter decomposition, as also found by Chadwick et al. (2006). We found that leaf morphology in treatments with snails differed from treatments without snails, indicating likely effects of grazing on the leaf surface. However, we could not ascertain whether leaf morphological changes arose from direct consumption of leaves by snails or from the indirect effects of grazing on algae attached to the leaf surface. The snails almost ceased growth in this study which was probably due to the overall low activities of snails in winter (Eleutheriadis and Lazaridou-Dimitriadou 2001), or because we used unconditioned leaves and 25 days may not be long enough for sufficient colonization by microbes (Wallace et al. 1970). Collectively, the presence of snails in urban streams can significantly accelerate litter
decomposition in winter, even though snail growth rates were almost zero. Additionally, warming can synergistically enhance the effects of snails on litter decomposition. Due to the global increase of urban areas, we can anticipate that shredder-mediated litter decomposition would decrease while snail-mediated litter decomposition would be enhanced. In addition, water temperature would also likely increase as rural streams are transformed into urban streams, resulting in exaggerated snail-mediated litter decomposition.

Terrestrial insect herbivores retarded litter decomposition

Decomposition rates of terrestrial insect-grazed leaves were 5% slower than those of intact leaves. The retarded litter decomposition was caused by lower litter quality, as indicated by (1) higher SLW of terrestrial insect-grazed litter (> 40% leaf area) than intact leaves (< 5% leaf area grazed), because a higher SLW has been associated with lower leaf N, P and N:P ratio (Wu et al. 2012), and (2) even though snail-mediated litter decomposition rates did not differ between intact and insect-damaged leaves, higher litter decomposition rates were found for insect-damaged leaves than for intact leaves under ambient conditions, because snails need to consume more insect-damaged leaves to compensate for the lower quality to meet their metabolic requirements (Flores et al. 2014). These results suggest that insect herbivores decreased litter quality (Peschiutta et al. 2018), thereby supporting the nutrient deceleration hypothesis. Another possible mechanism is that insect herbivory resulted in higher concentrations of secondary compounds in deciduous trees (Chapman et al. 2006). The lower litter quality had different effects on snails and microbes, with significantly slower microbe-mediated decomposition but faster (but not significant) snail-mediated decomposition in ambient conditions. This result is similar to that of LeRoy et al. (2007) in which aquatic fungi could discriminate intraspecific litter quality differences, whereas macroinvertebrates could not. LeRoy et al. (2007) suggested that
aquatic fungi may respond to quality differences in litter. Snail-mediated litter decomposition showed a weak relationship to intraspecific litter quality difference, possibly because: (1) the effects of litter quality diffused through trophic levels, and (2) large body size of snails enable them to tolerate many toxicant secondary compounds (Yule et al. 2009). In addition, the differences in litter decomposition rates between insect-damaged and intact *L. chinensis* leaves in this study (5 %) was much smaller than that of Jackrel and Wootton (2015) who observed 42 % faster decomposition of intact *Alnus rubra* leaves than of herbivory-treated leaves (Jackrel and Wootton 2015). The reason for this difference may be that litter quality of *L. chinensis* may be poorer than *Alnus rubra*: C:N stoichiometry of *L. tulipifera* (C:N, 36.69-56.3) (Kominoski et al. 2007, Ardón et al. 2009, Griffiths and Tiegs 2016), may reflect that of the congeneric *L. chinensis*, and is higher (i.e. suggesting poorer quality) than that of *A. rubra* (C:N were 21.11 and 18.73 for herbivory treated and control respectively). Therefore, a further herbivore-induced decline in the already less palatable *Liriodendron* might not make a big difference for consumers. Although we only found increased pH in treatments with damaged leaves, other water quality characters may also have been potentially influenced by the difference of intraspecific litter quality (Adams et al. 2003), and consequently affect litter decomposition. Our findings imply that when considering the importance of litter quality on decomposition in streams, we should consider not only interspecific differences but also intraspecific differences in litter, especially considering that future climate change, land use change, and other stressors can change intraspecific litter quality (Graça and Poquet 2014, Fey et al. 2015, Pincebourde et al. 2017).

The interactions of water temperature, snail, and litter quality on litter decomposition
Among all the two-way combinations, only that between snails and water temperature showed positive synergistic effects on litter decomposition rates, whereas all other combinations showed additive effects (i.e. no significant interaction). The macroinvertebrate-warming synergistic effects on litter decomposition rates, also observed by Moghadam and Zimmer (2016), could be explained by enhanced consumption rates of litter by snails at higher temperature conditions because of higher metabolic demands of snails at these high temperatures (Seuffert et al. 2010, Gordon et al. 2018). Warming can increase the community-level energy demand with consequences for ecosystem functioning (Nelson et al. 2017). At higher water temperatures, snails often feed more selectively on higher quality food (Gordon et al. 2018). This could be the reason why snail-mediated litter decomposition was more sensitive to temperature for intact leaves than for insect-damaged leaves. In addition, litter quality would be increased (e.g. reduced toughness, fewer phenols and lower C:N ratios) when incubated at higher water temperature (Esther et al. 2015). Interactive effects of litter quality and water temperature on litter decomposition are difficult to predict because of conflicting types of interaction including warming either reinforcing poor litter-quality effects on decomposition (Correa-Araneda et al. 2015, Esther et al. 2015), dampening the effects of lignin-rich (i.e. poor quality) litter on decomposition (Fernandes et al. 2012), or additively interacting with litter quality to affect litter decomposition (Correa-Araneda et al. 2017). Our results supported a disappearance of the effects of litter quality on litter decomposition at high water temperatures. These results imply that even though the presence of snails can increase litter decomposition in urban streams, most of the carbon stored in litter is released by microbes and transformed into CO$_2$. Decomposition of lower quality litter is expected to be more stimulated by microbes than is higher quality litter at high water temperature condition. By contrast, snail-mediated litter decomposition may be more
sensitive to the change of water temperature for high rather than low quality litter. Therefore, the
effect of warming on nutrient cycling in urban streams depends on litter quality.

Implications for urban stream management and conservation

Our results indicate that reducing the impacts of warming should be the most important way to
alter organic matter decomposition in urban streams, rather than the other two factors
(intraspecific litter quality difference and the presence of snails). Warming can also induce a
change of DO concentration, terrestrial subsidy input (quality, quantity, and input time of litter),
and macroinvertebrate and microbial communities, which are among the 26 key research
questions in urban stream ecology (Wenger et al. 2009), and consequently affect nutrient cycling
(e.g. carbon) in these waterbodies. The effects of warming on nutrient (e.g. carbon) cycling
through litter decomposition in streams depend on how much of this carbon goes into
invertebrates (invertebrates converted litter to particulate and dissolved forms of carbon) or
microbes (microbes released the carbon stored in litter to gaseous form) (Boyero et al. 2011,
Follstad Shah et al. 2017). This implies that CO$_2$ production via litter decomposition in urban
streams might increase with warming, as well as the generation of particulate or dissolved
carbon. However, this projection would be improved if we were able to know how future climate
change would affect the quantity and quality of litter, and macroinvertebrate communities in
freshwaters. Considering that urban streams are expected to suffer more serious stress from
warming than rural streams, it is urgent to take actions to alleviate their negative effects on
freshwaters. In particular, given the predicted increase in urban land cover of 1.2 million km2 by
2030, which is three times the global urban land area in 2000 (Seto et al. 2012), more streams
will clearly be affected by this land-use change. Conservation actions to mitigate the effects of
climate warming on urban ecosystems include: (1) increasing urban forest cover by sequestering
CO$_2$ (Bowler et al. 2010, Blum 2016) and reducing storm water runoff (McPherson et al. 1997); (2) enhancing hyporheic exchange and adopting different wastewater treatment strategies through accelerated heat exchange with other media such as atmosphere and subsurface groundwater (Kaushal et al. 2010); (3) decreasing the quantity of water withdrawals by reducing the warming effects induced by impoundments (Webb and Nobilis 1995) and (4) increasing the reuse of treated wastewater (Kinouchi 2007).

Conclusions

In summary, we found that (1) litter decomposition rates were stimulated by increasing water temperature (~ 8 °C higher than ambient) through increased activities of microbes and invertebrates (snails); (2) the presence of grazing snails (scrapers) accelerated litter decomposition rate through their direct consumption of leaf material or indirectly by scraping microbes attached to leaf surfaces, and these effects were stronger at raised water temperature than at ambient water temperature; and (3) terrestrial herbivorous insects retarded microbe-mediated litter decomposition by inducing higher SLW of litter (i.e. poorer litter quality), and the effects of litter quality on both microbial and snail mediated litter decomposition diminished at higher water temperature. Thus, although the increasing terrestrial insect herbivory could lead to lower litter quality that can retard litter decomposition (Adams et al. 2003, Meineke et al. 2018), warming is expected to stimulate both microbe- and snail-mediated litter decomposition in urban streams.

Acknowledgments
We thank Ting Zhang and Ying Hua for their help in collecting snails and setting up the mesocosm experiment. We also thank for the valuable comments given by Dr. Alan Tonin and other anonymous reviewers which are very helpful in improving the quality of this manuscript.

References

Adams, J. A., N. C. Tuchman, and P. A. Moore. 2003. Atmospheric CO$_2$ enrichment alters leaf detritus: impacts on foraging decisions of crayfish (Orconectes virilis). Journal of the North American Benthological Society 22:410-422.

Ardón, M., C. M. Pringle, and S. L. Eggert. 2009. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. Journal of the North American Benthological Society 28:440-453.

Blum, J. 2016. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain. Pages 21-54 Urban Forests. Apple Academic Press.

Bowler, D. E., L. Buyung-Ali, T. M. Knight, and A. S. Pullin. 2010. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning 97:147-155.

Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, and E. Chauvet. 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14:289-294.
Bruder, A., M. H. Schindler, M. S. Moretti, and M. O. Gessner. 2014. Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshwater Biology 59:438-449.

Casas, J. J., M. O. Gessner, D. López, and E. Descals. 2011. Leaf-litter colonisation and breakdown in relation to stream typology: insights from Mediterranean low-order streams. Freshwater Biology 56:2594-2608.

Chadwick, M. A., D. R. Dobberfuhl, A. C. Benke, A. D. Huryn, K. Suberkropp, and J. E. Thiele. 2006. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecological Applications 16:1796-1807.

Chapman, S. K., S. C. Hart, N. S. Cobb, T. G. Whitham, and G. W. Koch. 2003. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867-2876.

Chapman, S. K., T. G. Whitham, and M. Powell. 2006. Herbivory differentially alters plant litter dynamics of evergreen and deciduous trees. Oikos 114:566-574.

Chen, I. C., H.-J. Shiu, S. Benedick, J. D. Holloway, V. K. Cheye, H. S. Barlow, J. K. Hill, and C. D. Thomas. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences of the United States of America 106:1479-1483.

Chu, W., S. Qiu, and J. Xu. 2016. Temperature change of Shanghai and its response to global warming and urbanization. Atmosphere 7.

Claeson, S. M., and B. Coffin. 2016. Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA. River Research and Applications 32:1143-1152.
Conant, R. T., R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six, and J. M. Steinweg. 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology 14:868-877.

Correa-Araneda, F., L. Boyero, R. Figueroa, C. Sánchez, R. Abdala, A. Ruiz-García, and M. A. S. Graça. 2015. Joint effects of climate warming and exotic litter (Eucalyptus globulus Labill.) on stream detritivore fitness and litter breakdown. Aquatic Sciences 77:197-205.

Correa-Araneda, F., A. Basaguren, A. D. R. T., T. A. Mosele, and B. Luz. 2017. Resource-allocation tradeoffs in caddisflies facing multiple stressors. Ecology and Evolution 7:5103-5110.

Cross, W. F., E. J. Rosi-Marshall, K. E. Behn, T. A. Kennedy, R. O. Hall, Jr., A. E. Fuller, and C. V. Baxter. 2010. Invasion and production of New Zealand mud snails in the Colorado River, Glen Canyon. Biological Invasions 12:3033-3043.

Cummins, K. W., and M. J. Klug. 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10:147-172.

Dang, C. K., M. Schindler, E. Chauvet, and M. O. Gessner. 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90:122-131.

Daufresne, M., K. Lengfellner, and U. Sommer. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106:12788-12793.

Ding, Y., G. Ren, G. Shi, P. Gong, X. Zheng, P. Zhai, D. Zhang, Z. Zhao, S. Wang, and H. Wang. 2006. National assessment report of climate change (I): climate change in China and its future trend. Advances in Climate Change Research 2:3-8.
Domingos, C., V. Ferreira, C. Canhoto, and C. Swan. 2015. Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream. Aquatic Sciences 77:129-140.

Dossena, M., G. Yvon-Durocher, J. Grey, J. M. Montoya, D. M. Perkins, M. Trimmer, and G. Woodward. 2012. Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B-Biological Sciences 279:3011-3019.

Eleutheriadis, N., and M. Lazaridou-Dimitriadou. 2001. The life cycle, population dynamics, growth and secondary production of *Bithynia graeca* (Westerlund, 1879) (Gastropoda) in Lake Kerkini, Northern Greece. Journal of Molluscan Studies 67:319-328.

Esther, M. M., M. Isabel, O. Francesc, and C. Cristina. 2015. Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment. Freshwater Biology 60:184-197.

Fernandes, I., C. Pascoal, H. Guimarães, R. Pinto, I. Sousa, and F. Cássio. 2012. Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology 57:2306-2317.

Ferreira, V., and C. Canhoto. 2014. Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences 76:155-163.

Ferreira, V., and C. Canhoto. 2015. Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshwater Biology 60:881-892.

Ferreira, V., and E. Chauvet. 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17:551-564.
Ferreira, V., E. Chauvet, and C. Canhoto. 2015. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 72:206-216.

Fey, S. B., A. N. Mertens, L. J. Beversdorf, K. D. McMahon, and K. L. Cottingham. 2015. Recognizing cross-ecosystem responses to changing temperatures: soil warming impacts pelagic food webs. Oikos 124:1473-1481.

Flores, L., A. Larrañaga, and A. Elosegi. 2014. Compensatory feeding of a stream detritivore alleviates the effects of poor food quality when enough food is supplied. Freshwater Science 33:134-141.

Follstad Shah, J. J., J. S. Kominoski, M. Ardon, W. K. Dodds, M. O. Gessner, N. A. Griffiths, C. P. Hawkins, S. L. Johnson, A. Lecerf, C. J. LeRoy, D. W. P. Manning, A. D. Rosemond, R. L. Sinsabaugh, C. M. Swan, J. R. Webster, and L. H. Zeglin. 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23:3064-3075.

Friberg, N., J. B. Dybkjær, J. S. Olafsson, G. M. Gislason, S. E. Larsen, and T. L. Lauridsen. 2009. Relationships between structure and function in streams contrasting in temperature. Freshwater Biology 54:2051-2068.

Frost, C. J., J. M. Dean, E. C. Smyers, M. C. Mescher, J. E. Carlson, C. M. De Moraes, and J. F. Tooker. 2012. A petiole-galling insect herbivore decelerates leaf lamina litter decomposition rates. Functional Ecology 26:628-636.
Gangloff, M. M., E. E. Hartfield, D. C. Werneke, and J. W. Feminella. 2011. Associations between small dams and mollusk assemblages in Alabama streams. Journal of the North American Benthological Society 30:1107-1116.

Geraldes, P., C. Pascoal, and F. Cássio. 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5:734-740.

Giersch, J. J., S. Hotaling, R. P. Kovach, L. A. Jones, and C. C. Muhlfeld. 2017. Climate-induced glacier and snow loss imperils alpine stream insects. Global Change Biology 23:2577-2589.

Gonçalves, A. L., M. A. S. Graça, and C. Canhoto. 2015. Is diversity a buffer against environmental temperature fluctuations? – A decomposition experiment with aquatic fungi. Fungal Ecology 17:96-102.

Gonçalves, J. F., M. A. S. Graça, and M. Callisto. 2006. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25:344-355.

Gordon, T. A. C., J. Neto-Cerejeira, P. C. Furey, and E. J. O’Gorman. 2018. Changes in feeding selectivity of freshwater invertebrates across a natural thermal gradient. Current Zoology 64:231-242.

Graça, M. A. S., and J. M. Poquet. 2014. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021-1032.

Gray, L. 2004. Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, U.S.A. Hydrobiologia 518:33-46.

Griffiths, N. A., and S. D. Tiegs. 2016. Organic-matter decomposition along a temperature gradient in a forested headwater stream. Freshwater Science 35:518-533.
Grimmond, S. 2007. Urbanization and global environmental change: local effects of urban warming. The Geographical Journal 173:83-88.

Hann, B. J., C. J. Mundy, and L. G. Goldsborough. 2001. Snail-periphyton interactions in a prairie lacustrine wetland. Hydrobiologia 457:167-175.

Hill, W. R., J. G. Smith, and A. J. Stewart. 2010. Light, nutrients, and herbivore growth in oligotrophic streams. Ecology 91:518-527.

Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo, and G. Woodward. 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54:957-970.

Hu, Z., S. Wang, Y. Zhang, Y. Zhang, Q. Liu, and Y. Zha. 2013. Community characteristics of macrozoobenthos in Backshore Wetland of Expo Garden, Shanghai, China and their application on bio-assessment of water quality. Acta Scientiae Circumstantiae 33:1080-1088.

Iñiguez-Armijos, C., S. Rausche, A. Cueva, A. Sánchez-Rodríguez, C. Espinosa, and L. Breuer. 2016. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. Ecology and Evolution 6:4849-4865.

Imberger, S. J., C. J. Walsh, and M. R. Grace. 2008. More microbial activity, not abrasive flow or shredder abundance, accelerates breakdown of labile leaf litter in urban streams. Journal of the North American Benthological Society 27:549-561.

Jackrel, S. L., and T. C. Morton. 2018. Inducible phenotypic plasticity in plants regulates aquatic ecosystem functioning. Oecologia 186:895-906.
Jackrel, S. L., T. C. Morton, and J. T. Wootton. 2016. Intraspecific leaf chemistry drives locally accelerated ecosystem function in aquatic and terrestrial communities. Ecology 97:2125-2135.

Jackrel, S. L., and J. T. Wootton. 2015. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function. Proceedings of the Royal Society B-Biological Sciences 282.

Jonsson, M., B. Malmqvist, and P. O. Hoffsten. 2001. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshwater Biology 46:161-171.

Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekell, K. T. Belt, D. H. Secor, and R. L. Wingate. 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8:461-466.

Kinouchi, T. 2007. Impact of long-term water and energy consumption in Tokyo on wastewater effluent: implications for the thermal degradation of urban streams. Hydrological Processes 21:1207-1216.

Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford, D. C. Coleman, D. B. Hall, and M. D. Hunter. 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88:1167-1176.

Lecerf, A., and E. Chauvet. 2008. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology 9:598-605.

Lepori, F., M. Pozzoni, and S. Pera. 2015. What drives warming trends in streams? A case study from the Alpine foothills. River Research and Applications 31:663-675.

Leroy, C. J., and J. C. Marks. 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51:605-617.
LeRoy, C. J., T. G. Whitham, S. C. Wooley, and J. C. Marks. 2007. Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society 26:426-438.

Li, K. Y., Z. W. Liu, and B. H. Gu. 2008. Persistence of clear water in a nutrient-impacted region of Lake Taihu: The role of periphyton grazing by snails. Fundamental and Applied Limnology 173:15-20.

Magali, B., L. Sylvain, and C. Eric. 2016. Litter breakdown for ecosystem integrity assessment also applies to streams affected by pesticides. Hydrobiologia 773:87-102.

Martínez, A., A. Larrañaga, J. Pérez, E. Descals, and J. Pozo. 2014. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. Fems Microbiology Ecology 87:257-267.

Martins, R. T., A. S. Melo, J. F. Gonçalves, C. M. Campos, and N. Hamada. 2017. Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia 789:31-44.

Martins, R. T., A. S. Melo, J. F. Gonçalves Jr, and N. Hamada. 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science 34:716-726.

McPherson, E. G., D. Nowak, G. Heisler, S. Grimmond, C. Souch, R. Grant, and R. Rowntree. 1997. Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosystems 1:49-61.

Meineke, E. K., A. T. Classen, N. J. Sanders, and T. Jonathan Davies. 2018. Herbarium specimens reveal increasing herbivory over the past century. Journal of Ecology 0:1-13.
Meineke, E. K., R. R. Dunn, J. O. Sexton, and S. D. Frank. 2013. Urban warming drives insect pest abundance on street trees. Plos One 8:e59687.

Moghadam, F. S., and M. Zimmer. 2016. Effects of warming, nutrient enrichment and detritivore presence on litter breakdown and associated microbial decomposers in a simulated temperate woodland creek. Hydrobiologia 770:243-256.

Morrill, C. Bales, and H. Conklin, M. 2005. Estimating Stream Temperature from Air Temperature: Implications for Future Water Quality. Journal of Environmental Engineering 131:139-146.

Mosele Tonin, A., L. Ubiratan Hepp, and J. F. Gonçalves. 2018. Spatial variability of plant litter decomposition in stream networks: from litter bags to watersheds. Ecosystems 21:567-581.

Nabeshima, E., M. Murakami, and T. Hiura. 2001. Effects of Herbivory and Light Conditions on Induced Defense in *Quercus crispula*. Journal of Plant Research 114:403-409.

Nelson, D., J. P. Benstead, A. D. Huryn, W. F. Cross, J. M. Hood, P. W. Johnson, J. R. Junker, G. M. Gíslason, and J. S. Ólafsson. 2017. Experimental whole-stream warming alters community size structure. Global Change Biology 23:2618-2628.

Pascoal, C., F. Cássio, A. Marcotegui, B. Sanz, and P. Gomes. 2005. Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. Journal of the North American Benthological Society 24:784-797.

Peschiutta, M. L., F. G. Scholz, G. Goldstein, and S. J. Bucci. 2018. Oviposition by herbivorous insects induces changes in optical and mechanical properties of *Prunus avium* leaves. Arthropod-Plant Interactions 12:613-622.

Piggott, J. J., C. R. Townsend, and C. D. Matthaei. 2015. Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution 5:1538-1547.
Pincebourde, S., J. van Baaren, S. Rasmann, P. Rasmont, G. Rodet, B. Martinet, and P. A. Calatayud. 2017. Chapter Nine - Plant–Insect Interactions in a Changing World. Pages 289-332 in N. Sauvion, D. Thiéry, and P.-A. Calatayud, editors. Advances in Botanical Research. Academic Press.

Raftery, A. E., A. Zimmer, D. M. W. Frierson, R. Startz, and P. Liu. 2017. Less than 2 °C warming by 2100 unlikely. Nature Climate Change 7:637.

Ramírez, A., R. De Jesús-Crespo, D. M. Martinó-Cardona, N. Martínez-Rivera, and S. Burgos-Carabalло. 2009. Urban streams in Puerto Rico: what can we learn from the tropics? Journal of the North American Benthological Society 28:1070-1079.

Ramsfield, T. D., B. J. Bentz, M. Faccoli, H. Jactel, and E. G. Brockerhoff. 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry: An International Journal of Forest Research 89:245-252.

Rothman, J. M., C. A. Chapman, T. T. Struhsaker, D. Raubenheimer, D. Twinomugisha, and P. G. Waterman. 2015. Long-term declines in nutritional quality of tropical leaves. Ecology 96:873-878.

Schindler, M. H., and M. O. Gessner. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641-1649.

Schweitzer, J. A., J. K. Bailey, S. C. Hart, G. M. Wimp, S. K. Chapman, and T. G. Whitham. 2005. The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133-145.

Seto, K. C., B. Güneralp, and L. R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109:16083-16088.
Seuffert, M. E., S. Burela, and P. R. Martín. 2010. Influence of water temperature on the activity of the freshwater snail *Pomacea canaliculata* (Caenogastropoda: Ampullariidae) at its southernmost limit (Southern Pampas, Argentina). Journal of Thermal Biology 35:77-84.

Somers, K. A., E. S. Bernhardt, J. B. Grace, B. A. Hassett, E. B. Sudduth, S. Wang, and D. L. Urban. 2013. Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science 32:309-326.

Stanley, E. H., M. A. Luebke, M. W. Doyle, and D. W. Marshall. 2002. Short-term changes in channel form and macro invertebrate communities following low-head dam removal. Journal of the North American Benthological Society 21:172-187.

Steinbauer, M. J. 2001. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (*Eucalyptus globulus* ssp. *globulus*): implications for insect defoliation. Australian Forestry 64:32-37.

Sudderth, E. A., and F. A. Bazzaz. 2008. N availability does not modify plant-mediated responses of *Trichoplusia ni* to elevated CO2. Journal of Plant Ecology 1:187-195.

Suren, A. M., and S. McMurtrie. 2005. Assessing the effectiveness of enhancement activities in urban streams: II. Responses of invertebrate communities. River Research and Applications 21:439-453.

Tanaka, M. O., A. C. A. Ribas, and A. L. T. de Souza. 2006. Macroinvertebrate succession during leaf litter breakdown in a perennial karstic river in Western Brazil. Hydrobiologia 568:493-498.

Taylor, B. R., and I. V. Andrushchenko. 2014. Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway. Hydrobiologia 721:77-88.
Tuchman, N. C., R. G. Wetzel, S. T. Rier, K. A. Wahtera, and J. A. Teeri. 2002. Elevated atmospheric CO$_2$ lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology 8:163-170.

Vyšná, V., F. Dyer, W. Maher, and R. Norris. 2014. Cotton-strip decomposition rate as a river condition indicator – Diel temperature range and deployment season and length also matter. Ecological Indicators 45:508-521.

Wallace, J. B., W. R. Woodall, and F. F. Sherberger. 1970. Breakdown of leaves by feeding of Peltoperla-Maria nymphs (Plecoptera-Peltoperlidae). Annals of the Entomological Society of America 63:562-+.

Wang, Y., and D. Hong. 2010. The effects of desilting on ecological environment in reservoir area of the Taihu Lake. Page 8 in The second session of the national river management and ecological restoration technology seminar, Hangzhou, China.

Webb, B. W., and F. Nobilis. 1995. Long-term water temperature trends in Austrian rivers. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 40:83-96.

Wenger, S. J., A. H. Roy, C. R. Jackson, E. S. Bernhardt, T. L. Carter, S. Filoso, C. A. Gibson, W. C. Hession, S. S. Kaushal, E. Martí, J. L. Meyer, M. A. Palmer, M. J. Paul, A. H. Purcell, A. Ramírez, A. D. Rosemond, K. A. Schofield, E. B. Sudduth, and C. J. Walsh. 2009. Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society 28:1080-1098.

Wenisch, B., D. G. Fernández, E. Szöcs, B. G. Mckie, and R. B. Schäfer. 2017. Does the loss of climate sensitive detritivore species alter leaf decomposition? Aquatic Sciences 79:869-879.
Winterbourn, M. J., S. Cadbury, C. Ilg, and A. M. Milner. 2008. Mayfly production in a New Zealand glacial stream and the potential effect of climate change. Hydrobiologia 603:211-219.

Woodward, G., D. M. Perkins, and L. E. Brown. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B-Biological Sciences 365:2093-2106.

Wu, T.-G., M.-K. Yu, G. Geoff Wang, Y. Dong, and X.-R. Cheng. 2012. Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China. Biochemical Systematics and Ecology 44:255-263.

Yan, Y., X. Xiang, L. Chu, Y. Zhan, and C. Fu. 2011. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China. Ecology of Freshwater Fish 20:199-208.

Yule, C. M., J. Y. Gan, T. Jinggut, and K. V. Lee. 2015. Urbanization affects food webs and leaf-litter decomposition in a tropical stream in Malaysia. Freshwater Science 34:702-715.

Yule, C. M., M. Y. Leong, K. C. Liew, L. Ratnarajah, K. Schmidt, H. M. Wong, R. G. Pearson, and L. Boyero. 2009. Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. Journal of the North American Benthological Society 28:404-415.

Zhao, W., H. Wang, H. Wang, and X. Liu. 2009. Conversion methods of freshwater snail tissue dry mass and ash-free dry mass. Chinese Journal of Applied Ecology 20:1452-1458.
Figure 1

Averages of water temperature in ambient and warming treatments.

(A) water temperature. (B) diel temperature oscillation. Values are mean ± SE. The symbol * above the bar indicates a significant difference between the treatments.
Figure 2

Averages of water quality across the experimental treatments (water temperature: ambient and warming, snails: presence/absence, litter quality: intact and insect damaged).

Values are mean ± SE (data of three sampling dates are combined). Text in rectangles indicates significant directional main effects and two-way interaction effects (water temperature: T, Snails: S, litter quality: Q), with effect classifications (for abbreviations see Table 1) in parentheses.
Figure 3

Averages of litter decomposition rates.

Litter decomposition rate \((k, \text{d}^{-1}) \) for intact (< 5%) and damaged leaves (> 40% leaf area were grazed by terrestrial insects) incubated in the absence (blank bar) and presence of snails (light grey bar), at ambient and warming mesocosms for 25 days. Text in rectangles indicate significant directional main effects and two-way interaction effects (water temperature: T, Snails: S, litter quality: Q), with effect classifications (for abbreviations see Table 1) in parentheses. Values are mean ± SE.
Figure 4

Averages of litter decomposition rates of (A) total, (B) microbes, and (C) snails for intact and insect-damaged leaf litter at ambient and warming (\(\sim 8^\circ\text{C}\) higher) conditions.

Different lowercase letters above each bar indicate significant differences after one-way ANOVA and *post hoc* Tukey (parameters with same letter are not significantly different between treatments). Text in rectangles indicate significant directional main effects and two-way interaction effects (water temperature: T, litter quality: Q), with effect classifications (for abbreviations see Table 1) in parentheses. Values are mean ± SE.
Figure 5

Averages of snail (A) growth rate, (B) initial blotted dry biomass in treatments of intact and insect-damaged litter at ambient and warming condition.

Values are mean ± SE. Different lowercase letters above each bar indicate significant differences after one-way ANOVA and *post hoc* Tukey (parameters with same letter are not significantly different between treatments).
Table 1 (on next page)

Summary results of three-way ANOVA with repeated measures for the effects of water temperature (T), snail (S), and litter quality (Q) on water quality in experimental mesocosms.

Significant main effects are classified directionally as positive (+) or negative (-). Combined (C) two-way interaction effects are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et. al. (2015). P-values < 0.05 are in bold print. Effect sizes (partial eta squared values; range 0-1) are shown in parentheses for all cases where P < 0.1.
Table 1 Summary results of three-way ANOVA with repeated measures for the effects of water temperature (T), snail (S), and litter quality (Q) on water quality in experimental mesocosms. Significant main effects are classified directionally as positive (+) or negative (-). Combined (C) two-way interaction effects are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et al. (2015). P-values < 0.05 are in bold print. Effect sizes (partial eta squared values; range 0-1) are shown in parentheses for all cases where $P < 0.1$.

Dependent variables	Litter quality	Q Temperature	T Snails	S	Q × T	C	Q × S	C	T × S	C	Q × T × S		
pH	**0.003** (0.248)	+	<0.001 (0.686)	+	<0.001 (0.344)	-	0.149	AD	<0.001 (0.402)	-S	0.2	AD	0.215
Turbidity (NTU)	0.313	<0.001 (0.93)	-	<0.001 (0.615)	-	0.394	AD	0.383	AD	**0.001** (0.318)	-A	**0.003** (0.244)	
Conductivity (μs/cm)	0.422	<0.001 (0.904)	+	0.356	0.315	AD	0.475	O	0.476	AD	0.996		
DO (%)	0.163	<0.001 (0.891)	-	0.027 (0.143)	-	0.928	AD	0.227	AD	0.403	AD	0.092 (0.086)	
DO (mg/L)	0.684	<0.001 (0.941)	-	0.445	0.454	AD	0.383	O	0.827	AD	0.228		
Ammonia (mg/L)	0.325	<0.001 (0.887)	-	<0.001 (0.492)	+	0.252	AD	**0.03** (0.14)	+S	**0.007** (0.206)	+A	0.7	
Table 2 (on next page)

Summary (P-values and effect sizes) of three-way ANOVA comparing litter decomposition rates among experimental treatments (Litter quality: Q, water temperature: T, snails: S).

Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et al. (2015). P < 0.05 are in bold print. Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where P < 0.1.
Table 2 Summary (P-values and effect sizes) of three-way ANOVA comparing litter decomposition rates (exponential model) among experimental treatments (Litter quality: Q, water temperature: T, snails: S). Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et al. (2015). $P < 0.05$ are in bold print.

Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where $P < 0.1$.

Treatments	df	Decomposition rate (k, d$^{-1}$)	F	P	M/C
Q	1	4.687	**0.038**	(0.128)	-
T	1	259.930	<0.001	(0.890)	+
S	1	90.210	<0.001	(0.738)	+
Q × T	1	1.595	0.216	AD	
Q × S	1	0.588	0.449	AD	
T × S	1	25.503	<0.001	(0.444)	+S
Q × T × S	1	1.808	0.188		
Error	32				

Note: Data of litter decomposition rates were log transformed to improve normality before conducting the analysis.
Summary of two-way ANCOVA comparing the effects of snail initial blotted dry mass (S), water temperature (T) and litter quality (Q) on total, microbe, and snail mediated litter decomposition rates.

Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et al. (2015). P < 0.05 are in bold print. Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where P < 0.1.
Table 3 Summary (P-values and effect sizes) of two-way ANCOVA comparing the individual and combined effects of snail initial blotted dry mass (S), water temperature (T) and litter quality (Q) on total (k_{total}), microbe (k_{microbe}), and snail (k_{snail}) mediated litter decomposition rates. Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et al. (2015). $P < 0.05$ are in bold print. Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where $P < 0.1$.

Treatment	df	F_{total}	P_{total}	M/C	F_{microbe}	P_{microbe}	M/C	F_{snail}	P_{snail}	M/C
T	1	113.558	<0.001	+	85.408	<0.001	+	30.008	<0.001	+
		(0.883)			(0.851)			(0.667)		
Q	1	0.714	0.411		5.417	0.034	-	1.170	0.296	
S	1	0.179	0.678		0.650	0.433		0.016	0.902	
T \times Q	1	0.001	0.982	AD	4.194	0.058	AD	2.499	0.135	AD
Error	16									

PeerJ reviewing PDF | (2019:03:36291:2:0:NEW 13 Jul 2019)
Table 4 (on next page)

Summary (P-values and effect sizes) of two-way ANOVA comparing snail growth rates for the individual and combined effects of litter quality (Q) and water temperature (T).

Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et. al. (2015). P < 0.05 are in bold print. Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where P < 0.1.
Table 4 Summary (P-values and effect sizes) of two-way ANOVA comparing snail growth rates for the individual and combined effects of litter quality (Q) and water temperature (T). Main effects (M) are classified as positive (+) or negative (-). Combined two-way interaction effects (C) are classified directionally (+ or -) as antagonistic (A), synergistic (S), additive (AD; no interaction) or no significant effect of either stressor (O) according to the conceptual model proposed by Piggott et. al. (2015). $P < 0.05$ are in bold print. Effect sizes (partial eta squared values; range 0–1) are shown in parentheses for all cases where $P < 0.1$.

Treatments	df	Snail growth rate		
		F	P	M/C
T	1	0.881	0.363	
Q	1	0.187	0.671	
Initial biomass	1	0.201	0.66	
T × Q	1	0.434	0.52	O
Error	15			