Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review

Sabeena Mustafaa, Hanan Balkhyb, Musa N. Gaberea,∗

a Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh 11426, Saudi Arabia

b Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh 11426, Saudi Arabia

\textbf{A R T I C L E I N F O}

Article history:
Received 23 March 2017
Received in revised form 7 August 2017
Accepted 11 August 2017

Keywords:
MERS-CoV
Ribavirin
Interferon
Peptide therapeutics
Convalescent plasma
Intravenous immunoglobulin
Antimicrobial peptides

\textbf{A B S T R A C T}

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with mechanisms that may be driven by innate immune responses. Despite the effort of scientific studies related to this virus, Middle East Respiratory Syndrome (MERS) is still a public health concern. MERS-CoV infection has a high mortality rate, and to date, no therapeutic or vaccine has been discovered, that is effective in treating or preventing the disease. In this review, we summarize our understanding of the molecular and biological events of compounds acting as MERS-CoV inhibitors, the outcomes of existing therapeutic options and the various drugs undergoing clinical trials. Currently, several therapeutic options have been employed, such as convalescent plasma (CP), intravenous immunoglobulin (IVIG), monoclonal antibodies and repurposing of existing clinically approved drugs. However, these therapeutic options have drawbacks, thus the need for an alternative approach. The requirement for effective therapeutic treatment has brought the necessity for additional MERS treatments. We suggest that antimicrobial peptides (AMPs) may be used as alternative therapeutic agents against MERS-CoV infection. In addition, we propose the feasibility of developing effective agents by repurposing the existing and clinically approved anti-coronavirus and anti-viral peptide drugs.

© 2017 The Authors. Published by Elsevier Limited on behalf of King Saud Bin Abdulaziz University for Health Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\textbf{Contents}

Section	Page
Introduction	9
MERS-CoV structural and non-structural proteins as drug targets	10
Various therapeutic agents against MERS-CoV infection	10
Repurposing of existing clinically approved drugs	10
Convalescent plasma and whole blood therapy	10
Intravenous immunoglobulin	12
Monoclonal and polyclonal antibodies	12
Other therapeutics	12
Role of peptides as potential anti-viral/anti-coronavirus components	12
Mechanism of action of peptides with antiviral activity against various coronaviruses	14
Peptides inhibiting fusion	14
Peptides inhibiting viral entry and replication	14

\textbf{Abbreviations:} MERS-CoV, Middle East Respiratory Syndrome Coronavirus; CP, convalescent plasma; IVIG, intravenous immunoglobulin.

∗ Corresponding author.

\textit{E-mail address: mgabere@gmail.com} (M.N. Gabere).

https://doi.org/10.1016/j.jiph.2017.08.009

1876-0341© 2017 The Authors. Published by Elsevier Limited on behalf of King Saud Bin Abdulaziz University for Health Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Middle East Respiratory Syndrome (MERS) is a respiratory disease caused by the MERS coronavirus (MERS-CoV) [1,2]. MERS-CoV was first reported in 2012 in Saudi Arabia and has spread to other countries, mostly in the Arabian Peninsula (United Arab Emirates, Qatar, Oman, Jordan, Kuwait, Yemen, and Lebanon). As of March 2017, the World Health Organization (WHO) reported 1905 confirmed MERS cases, including 677 deaths in 27 countries. MERS spreads among people causing more severe complications, which leads to death; hence, the need for the development of effective therapeutic and prophylactic agents for its prevention and treatment.

It has been shown that a hospital outbreak of MERS was due to human-to-human transmission [3]. Currently, there is no registered treatment or vaccine for the disease, but the MERS-CoV infection is rather managed by a drug treatment regime, in addition to some preventive measures for infection and re-infection [4]. Several studies have demonstrated that a variety of therapeutics can inhibit MERS-CoV replication in cell culture [5,6].

In this review, (i) summarize the important MERS-CoV drug targets, (ii) present therapeutic options available for MERS and describe their efficacies and (iii) discuss the role of peptide research in virology and the importance of antimicrobial peptides (AMPs) as potential therapeutic options for MERS. With the rapid development of computational biology approaches, it is envisaged that novel and effective MERS therapy could be developed using AMPs.

MERS-CoV structural and non-structural proteins as drug targets

Human coronaviruses are broadly classified as either alphacoronavirus or betacoronavirus. MERS-CoV belongs to the betacoronavirus family [7]. The causal transmission pathway of MERS-CoV has not been demonstrated [8] but it may have originated from bats with dromedary camels serving as intermediate hosts for human infection [9]. MERS-CoV has been shown to modulate the innate immune response, antigen presentation, mitogen-activated protein kinase (MAPK), and apoptotic pathways [10].

The structure of MERS-CoV consists of four structural proteins as shown in Fig. 1A, including spike (S) protein, envelope (E) protein, membrane (M) protein, and nucleocapsid (N) protein. The S protein is a type I transmembrane glycoprotein, which is located at the viral envelope surface in a trimer state. It consists of S1 and S2 subunits and plays a role in viral entry, binding, and fusion. The S1 subunit has a receptor-binding domain (RBD) (Fig. 1B). The RBD is responsible for binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The S2 subunit involves two regions, namely heptad repeats 1 and 2 (HR1 and HR2) (Fig. 1C and D), which assemble into a complex called the fusion core, and represents a key membrane fusion architecture [7,11]. The E protein presents mainly in the intracellular membranes of the virus [12] and plays a major role in viral assembly, budding, and intracellular trafficking [12]. In 2013, Surya et al. reported that coronavirus E proteins are 76–109 amino acids long and are predicted to have at least one α-helical transmembrane [13]. It was later found that the E protein has a total length of 82 amino acid residues [12]. The M protein is a component of the viral envelope, which plays a role in virus morphogenesis and assembly via its interactions with other viral proteins [14]. The S, M, and E proteins are inserted into the membrane of the rough endoplasmic reticulum and get transported into the vicinity of the endoplasmic reticulum–golgi area in which they interact with the N proteins to form particles [15]. This interaction will eventually interfere with the fusion of cellular and viral membranes. Thus, developing fusion peptides can be of great importance in peptide-based therapeutic options.

In addition, MERS-CoV is comprised of two large polyproteins, namely pp1a and pp1ab. These polyproteins are further cleaved into 16 non-structural proteins (nsp) [16]. Two proteases, papain-like protease (PLpro or nsp3) and 3C-like protease (3CLpro or nsp5), are responsible for processing all 16 nsp, which are required for replication and transcription [17]. PLpro is responsible for the cleavage at position 1–3 to develop three nsp, whereas 3CLpro cleaves the remaining positions 4–16. These nsp are responsible for viral RNA-dependent RNA polymerase activity (nsp12), primase activity (nsp8), RNA helicase activity (nsp13), exoribonuclease activity (nsp14), endoribonuclease activity (nsp15), and 2′-O-methyltransferase activity (nsp16) [18]. The 2′-O-methyltransferase activity is stimulated by nsp10, which acts as an allosteric activator of nsp16 [19]. Studies reveal that coronavirus nsp5 could be used as drug targets for developing new therapies [20–22]. Fig. 1E shows the nsp5 (3CLpro) protease bound with a designed inhibitor. Both the structural and non-structural proteins can act as therapeutic targets, in which various therapeutic options have been implemented and will be discussed in Sections Various therapeutic agents against MERS-CoV infection and Mechanism of action of peptides with antiviral activity against various coronaviruses.

Various therapeutic agents against MERS-CoV infection

There are several ways to inhibit the spread of MERS-CoV by (i) repurposing of clinically developed drugs, (ii) using convalescent plasma (CP) and whole blood therapy, (iii) intravenous immunoglobulin (IVIG), (iv) monoclonal antibodies, and (v) other therapeutics, which will be discussed in the following subsections.

Repurposing of existing clinically approved drugs

Repurposing is the method of targeting existing drug molecules to treat new diseases. During repurposing, a viable target profile is developed for the drug or receptor molecule, and the screening of compounds from different molecule libraries can occur. Repurposing has become possible at a faster pace with the latest developments in computational biology, rational design, and development of novel and approved agents with potent antiviral activity. Repurposing of existing clinically FDA approved drugs can be used to target viral entry. High throughput screening of compounds and small molecules has helped researchers to evaluate large libraries of drugs for the in vivo antiviral activity against novel targets [24,25]. The advantages of the repurposing method are i) that it saves time and ii) lowers the cost of developing a new drug [26]. Repurposed drugs may have potential antiviral effects against MERS-CoV. Examples of repurposed drugs that have shown anti-
Various studies have repurposed drugs by employing a hybrid of two or more drugs. For example, Wilde et al. employed alisporivir which inhibits the replication of MERS-CoV and SARS-CoV. However, they found that alisporivir in combination with ribavirin, further enhanced the antiviral efficacy of alisporivir. This was done using cell-culture based screening. Another study showed that the combination of lopinavir/ritonavir and interferon-β1b was found to have an effect on marmosets infected with MERS-CoV [33].

Interferons have been shown to be potent inhibitors of MERS-CoV replication [33]. However, the combination of interferon-alpha 2b and ribavirin (drugs routinely used to treat hepatitis C) reduced MERS-CoV replication when administered to rhesus macaques [34]. In addition, ribavirin and interferon-α2a were administered to patients with severe MERS-CoV infection and their survival

Fig. 1. A Schematic representation of the MERS-CoV structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N). B shows spike (S) protein and its subunits S1 and S2 form a fusion core, where SP is signal peptide, FP is fusion peptide, HR1 and HR2 are the heptad repeats 1 and 2, TM is transmembrane domain, and CP is cytoplasmic domain. C shows HR1 and HR2 with the linker. D shows the MERS-CoV structure complexed with human DPP4 with PDB ID: 4L72 visualised in Biovia DS Visualizer [23], and E shows structure of MERS-CoV nsp5 protease bound with a designed inhibitor, PDB ID: 4RSP visualised in Biovia DS Visualizer [23].

coronavirus validated activity include ribavirin, hexachloropene, nitazoxanide and homoharringtonine [27]. Ribavirin has been reported to have anti-MERS-CoV activity [28], but has adverse side effects with the occurrence of hemolysis [29]. Nitazoxanide has shown in vitro activity against MERS-CoV and other coronavirus infections by inhibiting expression of the viral nucleocapsid protein [30]. In vitro studies show that cyclosporine inhibits MERS-CoV in human and monkey cell lines. A recent study by Shih-Chao et al. tested the antiviral activities of resveratrol, a phyto compound in grape seeds and red wine, and showed that resveratrol could significantly inhibit MERS-CoV nucleocapsid expression [31]. Other examples of the use of small molecules as therapeutic options for MERS-CoV are given in Table 1.
improved [35]. In another case report, the lopinavir/ritonavir-based combination antiviral therapy was used for MERS-CoV infection in South Korea [36]. Tawalah et al. evaluated the virological and clinical progresses in response to lopinavir/ritonavir, by administering different treatment options in MERS patients. This study suggested that the most effective therapeutic regimen was a low dose ribavirin/pegylated interferon α combination [37]. Several studies have shown the effectiveness of ribavirin coupled with interferons [38–40]. Mycophenolic acid, which is an immunosuppressant drug, together with interferon-β1b was found to have a strong inhibitory action against MERS-CoV. The combination of mycophenolic acid and interferon-β1b lowered the EC\textsubscript{50} [26,41].

Convalescent plasma and whole blood therapy

The use of convalescent plasma (CP) and whole blood therapy has been suggested to be a potential treatment for infectious diseases such as MERS, Ebola and SARS. CP is the use of whole blood or plasma collected from patients that have recovered from viral diseases and has been used as a treatment during outbreaks [42]. CP is therapeutically administered when there are no specific vaccines or drugs available for treating the diseases [43].

Arabi et al. analysed the feasibility of CP therapy as well as its safety, clinical and laboratory effects in critically ill patients with MERS-CoV infection. They suggested that CP and other neutralizing antibodies have immunotherapeutic (hyperimmune immunoglobulins and monoclonal antibodies) potential for treatment of MERS-CoV infection. However, the study noted that large-scale screening would be required because of the limited availability of eligible potential donors with sufficient levels of antibodies [42]. One drawback of CP is that it is unavailable and there is lack of evidence to prove its safety and efficacy [44].

Monoclonal and polyclonal antibodies

Monoclonal antibodies (mAbs) have been used to clinically diagnose various diseases for several years, and are considered as a potential method of intervention. Monoclonal and polyclonal antibodies against DPP4 have been reported to inhibit MERS-CoV infection in primary human bronchial epithelia cells and Huh-7 cells [48]. The LCA60 antibody which was developed using cell clone technology from the immortalized B cells of a human donor recovering from MERS, is considered to be a treatment option for severe MERS-CoV infections [49,50]. A recent study has identified and characterized a set of seven human neutralizing Abs (nAbs) [51] and two monoclonal antibodies (mAbs) namely MERS-4 and MERS-27 [52]. These agents are RBD specific potent inhibitors, and they show strong neutralizing activity against MERS-CoV. Another study succeeded in developing two potential antibodies, REGN3051 and REGN3048, which have proven effective in animal models for MERS-CoV infection [53]. Other mAbs that have shown activity against MERS-CoV include (i) 1F9, 1F8, 3A1, 3B12, 3C12, 3B11 and M14D3 [54], (ii) 3B11-N [55], (iii) m336, m337 and m338 [56–58], (iv) hMs-1 [59] and (v) 4C2 h [60]. Despite the utility, the production of monoclonal antibodies are time consuming and difficult [61].

Other therapeutics

Other therapeutics that block MERS-CoV S-mediated cell entry and virus cell membrane fusion include cathepsin inhibitors [62], TMRPSS2 inhibitors [63], furin inhibitors [64], kinase inhibitors [65] and IFITM proteins [66]. A study in China used high flow nasal cannula (HFNC) for treating a patient with MERS [67].

In summary, the above therapeutic options, namely repurposing of clinically developed drugs, CP and whole blood therapy, IVIG and use of monoclonal antibodies have advantages and disadvantages in terms of generation, cost and overall applications. This has led to interest in peptides as an alternative therapeutic option, which will be discussed in the coming sections.

Role of peptides as potential anti-viral/anti-coronavirus components

There is an interest in peptide therapeutics and their mimetics as potential antagonists for various pathogens. Peptide research is an important aspect in pharmaceutical research and approximately 140 peptide therapeutics are currently being evaluated in clinical trials [72].

The reasons for using peptides are (i) that they inhibit protein-protein interactions (ii) they can be used as an alternative for diseases that are difficult to target, (iii) there are advance tech-

Table 1	List of anti-MERS-CoV therapeutics using small molecules.			
Example	Toxicity TC\textsubscript{50}/CC\textsubscript{50}/SI	EC\textsubscript{50}/IC\textsubscript{50}	Cell line/animal model	References
K22	CC50 ≥ 40 μM	–	Human airway epithelia (HAE)	[68]
Acyclovir	CC50 > 1000	EC50 > 1000	Huh7	[69]
Acyclovir	CC50 > 1000	EC50 > 1000	Vero	
Analogues of acyclovir 2	CC50 = 149 ± 6.8	EC50 = 27 ± 0.0	Huh7	[26]
Analogues of acyclovir 2	CC50 = 71 ± 14	EC50 = 23 ± 0.6	Vero	
SSSY10-001	SI > 20	EC50 = 25 μM	Vero E6	[70]
Chloropromazine hydrochloride	Low cytotoxicity (<30%)	EC50 = 9.514	Vero	[26]
Trifluoromazine hydrochloride	Low cytotoxicity (<30%)	EC50 = 5.758	E6	
Imatinib mesylate	Low cytotoxicity (<30%)	EC50 = 17.689		
Dasatinib	Low cytotoxicity (<30%)	EC50 = 5.468		
Gemcitabine hydrochloride	Low cytotoxicity (<30%)	EC50 = 1.216		
Toremifene citrate	Low cytotoxicity (<30%)	EC50 = 12.915		
Chloroquine, chlorpromazine,	Viability > 75%	EC50 = 3 to 8 μM	Vero E6	[71]
loperamide, and lopinavir				
Table 2
List of anti-coronavirus peptides (* calculated by APD3 [106]: antimicrobial peptide calculator)

Peptide	Sequence	Peptide source	Virus	Net charge	Hydrophobic residues (%)	Toxicity (TC50) selectivity index (SI)	IC50	Cell line/animal model	References	
SARS0011	GYHMSFQPQAPHVQNIHVTW	S2 subunit of SARS-CoV	SARS-CoV	0	50	No difference in absorbance as compared to untreated cells	~2 μM	Vero E6 and L2 cells	[96]	
SARS0011	GYFVPNGSTSWITQRENNFS	S2 subunit of SARS-CoV	SARS-CoV	1	47	No difference in absorbance as compared to untreated cells	~2 μM	Vero E6 and L2 cells	[96]	
MIP0011	GYFQVQDDGEWKFQGSSYYY	S2 subunit of MIP	MHV	–2	21	Not cytotoxic at a concentration of 30 μM on L2 cells	4 μM	Vero E6 and L2 cells	[96]	
P1	LTQINTTLDYEMYLSIQVK	HR2 region of MERS-CoV	MERS-CoV	–3	42	–	~3.013 μM	293T	[104]	
HR2L	SFDQGFTQNTTTLDYEMYLSIQVKALEIDYIDKELGNY	HR2 region of MERS-CoV	MERS-CoV	–3	37	–	0.5 μM	293T/EGFP + Huh-7 cells	[94]	
HR2P	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–3	41	SI = CC50/IC50 > 1667	0.97 ± 0.15 μM	293T/EGFP + Huh-7 cells	[94]	
HR2P-M1	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–3	38	–	0.85 ± 0.08 μM	293T/EGFP + Huh-7 cells	[94]	
HR2P-M2	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–4	36	–	0.55 ± 0.04 μM	293T cells and Huh-7 cells	[105]	
P9	NGACWGPQCTAPRQICGCHFKRSCXIR	Mouse β-defensin-4	SARS-CoV	MERS-CoV	5	46	Low toxicity in vivo	5 μg/ml	Mice	[99]

(C) The peptides inhibiting virus entry (Kc: peptide’s dissociation constant)

Peptide	Sequence	Peptide source	Virus	Net charge	Hydrophobic residues (%)	Toxicity (TC50) selectivity index (SI)	IC50	Cell line/animal model	Reference	
K29	KAGSCLYRCIDHPNPGFCDLKGY	nep10 of SARS-CoV	SARS-CoV	2	37	–	–	160 μM	E. coli	[102]
K12	GGASCLYCRCH	nep10 of SARS-CoV	SARS-CoV	1	50	–	–	160 μM	E. coli	[102]
HR2P	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–3	41	SI > 1667	~0.6 μM	Vero cells	[94]	
HR2P	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–3	41	SI > 1667	0.8 μM	Calu-3 cells	[94]	
HR2P	SLTQINTTLDYEMYLSIQVKALEIDYIDKEL	HR2 region of MERS-CoV	MERS-CoV	–3	41	–	13.9 Mm	HFL cells	[94]	
Mutant mucroporin-M1	LRLQKSKRLVSV4FK	Mucroporin AMP	SARS-CoV	5	58	TC50 = 70.46 SI = 9.85	7.15 μg/ml	MDCK	[101]	

Peptide	Sequence	Peptide source	Virus	Net charge	Hydrophobic residues (%)	Toxicity (TC50) selectivity index (SI)	IC50	Cell line/animal model	Reference
H	HVTTHTHHPPPR	Porcine aminopeptidase N (pAPN) of TGEV	TGEV	1	25	0.55 (490 nm)	11 μg/ml	ST	[107]
S	SVVSQTATWGA	Pap of TGEV	TGEV	1	50	0.5 (490 nm)	15 μg/ml	ST	[107]
RBD-11b	YKRYRL	RBD of SARS-CoV	SARS-CoV	2	16	No evidence for toxicity	Kc > 46 μM	Vero E6	[108]
P8	PKIKFQFSQGCQIDQIDFT	5 protein of SARS-CoV	SARS-CoV	1	25	–	–	HEK293T	[109]
P9	CANLLOQGSPCTQLNRALSIA	5 protein of SARS-CoV	SARS-CoV	1	52	–	–	HEK293T	[109]
niques to improve peptide half-life and (iv) they have a shorter market time [73].

Peptide drugs have little side effects and little drug tolerance compared with chemical drugs. Meanwhile, the specificity of treatment is high. Peptide drugs need special storage conditions otherwise the protein function becomes inactive causing low oral bioavailability and the propensity to be rapidly metabolized [74].

Many peptide inhibitors have shown activity against viruses [75–77]. For instance, the RVFV-6 peptide, which is derived from the membrane proximal stem region of the RVFV glycoprotein Gc, prevents the viral fusion in Rift Valley fever virus [78]. The RVFV-6 peptide is not only specific to the Rift Valley fever virus (and closely related variants), but also shows activity against unrelated viruses such as EBOV and VSV [78,79]. Scorpion venom peptide derivative Kn2-7 was identified as a potential anti-HIV-1 peptide which shows very low cytotoxic effects in biological assays [80].

The lack of effective treatment has encouraged the development of additional therapeutic agents with increased efficacy to overcome adverse side effects that occur with the current MERS treatment. There has been a growing interest in the field of peptide therapeutics over the last decade due to numerous adverse effects of chemical based drugs [81].

AMPS are excellent candidates as novel therapeutic agents since they have been reported to possess anti-coronavirus activity [82]. AMPS are components of the first line of defence of the immune system produced by both eukaryotic and prokaryotic species. They are small, positively charged, gene encoded peptides, which have selective toxicity towards gram-positive and gram-negative bacteria, protozoa, fungi and viruses [83–86]. Their selective toxicity is due to the fact that the microbes membrane bilayer is rich in lipopolysaccharides (LPS) and lipoteichoic acid (LPA), thus is negatively charged in contrast to the positive charge of the AMPs [85].

Antiviral AMPs have several modes of actions, including blocking of viral entry by heparan sulphate interaction, inhibition of viral entry by fusing with specific cellular receptors, and stopping viral fusion by interacting with glycoproteins, membrane and envelope of the virus [87].

Mechanism of action of peptides with antiviral activity against various coronaviruses

There are various antiviral mechanisms of action by antimicrobial peptides, which include (i) direct interaction (“virolysis”), (ii) blockage of host cell surface receptors, (iii) inhibition of viral fusion to host cells, (iv) inhibition of viral replication and (v) activation of adaptive immune response [88]. The life cycle of the coronavirus begins by (i) fusing its spike protein into the host receptor, (ii) viral entry into the host cell, (iii) intracellular viral replication and transcription, (iv) protein production, assembly, and release of new virus particles [79]. Therefore, therapeutic strategies should focus on these four important processes. The main mechanism of action of antiviral peptides can be categorized generally into three major groups: (1) peptides that inhibit fusion (2) peptides that inhibit virus entry and (3) peptides that inhibit replication and (4) peptides that inhibit assembly and release of virus.

Peptides inhibiting fusion

Coronaviruses enter target cells by inducing fusion between the viral and cellular membranes, a process mediated by the viral spike (S) glycoprotein [89]. The S1 subunit of the S protein facilitates receptor binding [90], whereas the S2 subunit is responsible for driving viral and target cell membrane fusion [91].

There are various approaches in creating peptide-based therapeutics, including peptides that interrupt RBD interaction, peptides that block the HR1 and HR2 interaction from forming a fusion-active core, and peptides that interfere with the cleavage of the S protein [92]. Strategies have been employed to inhibit fusion of the S protein by either deriving peptides from HR1 and HR2 regions of the S, or by deriving peptides from an antimicrobial peptide. Note that peptides derived from either S protein or antimicrobial peptides, are both antiviral compounds. The only difference is that peptides derived from antimicrobial peptides can be broad spectrum, may have other roles such as immunomodulatory activity [93] and is derived from other organism other than virus. These are described as follows:

(a) Peptides derived from HR1, HR2 and RBD subunits of the spike protein

Fusion inhibiting peptides derived from the S protein are shown in Table 2 (A). For example, Lu et al. designed two synthetic peptides, HR1P and HR2P that have amino acid residues spanning 998–1038 in HR1 and 1251–1286 in HR2 domains, which form a stable six-helical bundle (6-HB) fusion core structure [94]. This 6-HB structure ensures the fusion of the viral envelope and the host cell membrane [95]. Of the two peptides, HR2P inhibits both MERS-CoV replication and its spike protein–mediated cell–cell fusion [94]. A previous study showed the derivation of five regions that span the length of the S2 subunits of SARS-CoV and murine hepatitis virus (MHV). In this study, three peptides, SARSsWV-I, SARSsWV-II and MHVsWV-IV exhibited antiviral activity greater than the other peptides studied, with inhibitory concentration (IC50) values ranging from 2–4 μM [96].

(b) Peptides derived from antimicrobial peptides

Peptides can be derived from antimicrobial peptides by either truncating the fragments of the original peptide or replacing a certain residue of an AMP with another residue, for instance replacement of lysine with arginine. These derived peptides have shown activities against various micro-organisms [97,98]. For instance, the antiviral activity of 11 peptides derived from mouse β-defensin-4 was tested and one of them, P9, exhibited potent and broad spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV [99].

Peptides inhibiting viral entry and replication

The entry and replication process of coronaviruses in the infected host commences by the S glycoprotein located on the surface of the coronavirus virion fusing with receptor ACE2 or DPP4 to facilitate viral entry into the host. A chain of events leads to the release of viral genomic RNA into the host cytoplasm, replication of the viral RNA, and final release of viral particles [18,100]. Several studies have been employed to inhibit viral entry and replication, which are shown in Table 2 (B) and (C). These peptides can be classified into major subgroups:

(a) Peptides derived from HR1 and HR2 subunits of the spike protein

The HR2P peptide, was derived from the HR2 domain. HR2P has shown activity against MERS-CoV by inhibiting viral replication in calu-3 and HFL cells [94].

(b) Peptides derived from antimicrobial peptides

Mutant mucropin-M1 is a peptide derived from mucropin AMP. The glycine and proline residues of mucropin were substituted with
lysine and arginine respectively. Mutant mucropin-M1 has shown activity against SARS-CoV, by inhibiting viral replication [101].

(c) Peptides derived from non-structural protein (nsP)

Two peptides (K12 and K29) were derived from the non-structural protein nsP10 of SARS-CoV. These two peptides inhibit the replication of SARS-CoV with an inhibitory concentration of 160 μM [102].

Peptides inhibiting assembly and release of virus

Though much is not known about the assembly and release process or enzymes involved in assembly or release process, inhibition of assembly and release of virus, could be a good future target [103].

Other examples of anti-coronavirus peptides against SARS-CoV, TGEV and MHV are provided in an antiviral peptide database (AVPdb) [82]. This database consists of various anti-coronavirus peptides with numerous mechanisms of action against SARS-CoV, TGEV and MHV and can be employed as potential therapeutic options for MERS-CoV because coronaviruses share a similar structure and mechanism of action [39].

Our understanding of peptide research suggests that peptides may have the capacity to be lead molecules as potential drugs against MERS. The advantage of peptide repurposing is that, it will lead to the identification of peptide-based therapeutics for the treatment of MERS, with potentially wider utility of therapeutics use for the treatment of infections caused by the different human coronaviruses. Furthermore, this can help to maintain the quality and reduce the cost of new medicine development.

Conclusion

There is an urgent need for developing the most effective MERS therapy and developing protocols to be used in randomized-controlled trials. Studies have shown that peptides have evolved as highly potent signal transduction agents for viral diseases. We suggest that AMPs can be a successful therapeutic option for emerging MERS pathogen. Computational biology coupled with virology, can accelerate the most advanced design by developing peptide therapeutics against MERS-CoV with greater efficacy. In addition, our study suggests that the repurposing of existing and clinically approved anti-coronavirus and anti-viral peptide drugs may be used as promising leads for the development of new anti-MERS-CoV agents.

Funding

This work was supported by King Abdullah International Medical Research Center grant #RC16/089.

Conflict of interest

None declared.

Ethical approval

Not required.

References

[1] Petersen E, Hui DS, Perlman S, Zumla A. Middle East Respiratory Syndrome – advancing the public health and research agenda on MERS – lessons from the South Korea outbreak. Int J Infect Dis 2015;36:54–5.
[2] Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814–20.
[3] Assiri A, McGregor A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital outbreak of Middle East Respiratory Syndrome Coronavirus. N Engl J Med 2013;369(5):407–16.
[4] Liu Q, Xia S, Sun Z, Wang Q, Du L, Lu L, et al. Testing of Middle East Respiratory Syndrome Coronavirus replication inhibitors for the ability to block viral entry. Antimicrob Agents Chemother 2015;59(1):24–4.
[5] Chan RWY, Chan M CW, Aghinloth S, Chan LLY, Kuok DT, Fong JHM, et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 2013;87(12):6604–14.
[6] Jossel L, Menachery VD, Galininski LE, Aghinloth S, Sova P, Carter VS, et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio 2014;3(4):e00165–13.
[7] Zumla A, Hui DS, Perlman S. Middle East Respiratory Syndrome. Lancet 2015;386(9997):995–1007.
[8] Chowell G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of the MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics 2014;0:0.40–51.
[9] Ge-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503(7477):535–8.
[10] Coleman CM, Frieman MB. Emergence of the Middle East Respiratory Syndrome coronavirus. PLoS Pathog 2013;9(9):e1003595.
[11] Xia S, Liu Q, Wang Q, Sun Z, Shi S, Du L, et al. Middle East Respiratory Syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014;194:200–10.
[12] Surya W, Li Y, Verdú-Buguena C, Aguilella VM, Torres J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res 2015;201:61–6.
[13] Surya W, Samso M, Torres J. Structural and functional aspects of viroporins in human respiratory viruses: respiratory syncytial virus and coronaviruses; 2013.
[14] Liu J, Sun Q, JI Ch, Chu F, Wu H, Gao F, et al. The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T lymphocyte epitopes. J Infect Dis 2010;202(8):1171–80.
[15] de Haan CAM, Rottier PJM. Molecular interactions in the assembly of coronaviruses. In: Advances in virus research. Academic Press; 2005. p. 165–230.
[16] Cho C-C, Lin M-H, Chuang C-Y, Hsu C-H. Macro domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: crystak structure and biochemical studies. J Biol Chem 2016;291(10):8894–902.
[17] Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuan Y-K. Coronaviruses drug discovery and therapeutic options. Nat Rev Drug Discov 2016;15(3):327–47.
[18] Durai P, Batool M, Shah M, Choi S. Middle East Respiratory Syndrome Coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med 2015;47:e181.
[19] Aouadi W, Blanjoie A, Vasseur J-D, Debart F, Canard B, Decroly E. Binding of the methyl donor SAM to MERS-CoV 2-0-hydroxysteroid dehydrogenase nsp16 promotes the recruitment of the allostERIC activator nsp10. J Virol 2016.
[20] St John SE, Mesacar AD, Design, synthesis, and development of broad spectrum coronaval 3C-like protease inhibitors to target emerging human pathogen SARS-CoV-2: a phylogenetic approach. FASEB J 2016;30(1) Suppl, 842.4.
[21] Tomar S, Johnston ML, St John SE, Osswald HL, Nyalapata PR, Paul LN, et al. Ligand-induced dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus 3CL(pro) enzymes: implications for nsp5 regulation and the development of antivirals. J Biol Chem 2015;290(32):194 591–194 597.
[22] Wang F, Chen C, Tan W, Yang K, Yang H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design, 6; 2016. p. 22677.
[23] Dassault Systèmes BIOVIA. Discovery studio modeling environment. 2016 (Release 2017, San Diego: Dassault Systèmes, 2016).
[24] Adedayo AO, Sarafanios SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014;0:45–53.
[25] de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East Respiratory Syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014;58(8):4875–84.
[26] Dyal J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East Respiratory Syndrome Coronavirus infection. Antimicrob Agents Chemother 2014;58(8):4885–93.
[27] Cao J, Forrest JC, Zhang X. A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res 2015;114:1–10.
[28] Falzarano D, De Wilt E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α/β and ribavirin. Sci Rep 2013;3:1686.
[29] Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with sars in the greater toronto area. JAMA 2003;289(21):2801–10.
[30] Rossignol J-F. Nitzoxanide a new drug candidate for the treatment of Middle East Respiratory Syndrome Coronavirus. J Infect Public Health 2016;9(3):227–30.
mice against lethal Middle East Respiratory Syndrome Coronavirus infection. Sci Transl Med 2015;7(301):1–14.

16. Ying T, Du L, Ju TW, Prabakaran P, Lau CCY, Lu L, et al. Exceptionally potent neutralization of Middle East Respiratory Syndrome Coronavirus by human monoclonal antibodies. J Virol 2014;88(14):7796–805.

17. Ying T, Prabakaran P, Wu D, Yu T, et al. Preclinical efficacy and safety of FC001, a monoclonal antibody against MERS-CoV. Molec Ther Nucleic Acids 2016;6:1147–53.

18. Agrawal AS, Ying T, Tao X, Garnett T, Albaghi A, Wang Y, et al. Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East Respiratory Syndrome Coronavirus infection. Sci Transl Med 2015;7(301):1–14.

19. Sun X, Xiao H, Feng G, Guo Y, Tai W, et al. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East Respiratory Syndrome Coronavirus infection. Antivir Res 2016;132:141–8.

20. Lu J, Gong Y, Liu P, Zhao L, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res 2015;25(11):1237–49.

21. Nelson PN, Reynolds CM, Waldron EE, Ward E, Giannopoulos K, Murray PG, et al. Passive neutralization of MERS-CoV by a diversified monoclonal antibody. J Virol 2013;87(10):5052–11.

22. Miller JK, Whitaker GR. Host cell entry of Middle East Respiratory Syndrome Coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 2014;111(42):15214–9.

23. Colman JM, Sisk JM, Moore RC Jr, Shinn P, Emini JM, Frieburg MB. Absence of neutralizing potencies against a diverse collection of acute respiratory syndrome coronavirus and Middle East Respiratory Syndrome Coronavirus. J Virol 2016;90(19):8924–33.

24. Wensing F, Winkel M, Pohmann S. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms. Viruses 2014;6(9):3683–98.

25. Li SY, Ou R, Ling Y, Qin T, et al. The unique effect of high flow nasal cannula oxygen therapy for the first imported case of Middle East Respiratory Syndrome to China. Chin Crit Care Med 2015;10:841–4.

26. Lundin A, Dijkman R, Bergström T, Kann N, Adamaki M, Hannoun C, et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East Respiratory Syndrome Coronavirus. PLoS Pathog 2014;10(5):e1004166.

27. Peters HL, Jochmans D, de Wilde AH, Posthuma CC, Snojder EJ, Neys J, et al. Design, synthesis, and evaluation of a series of acyclic imidazole nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett 2015;25(2):2925–32.

28. Adeyoye AO, Singh K, Kassim A, Coleman CM, Elliot R, Weiss SR, et al. Evaluation of SYSA100-011 as a replication inhibitor of severe acute respiratory syndrome coronavirus, mouse hepatitis virus, and Middle East Respiratory Syndrome Coronavirus. Antivir Agents Chemother 2014;58(4):4894–8.

29. de Freitas J, Vella S, Wright D, Long F, Shukla D. A 3-O-sulfated heparan sulfate binding peptide preferentially targets herpes virus 2 infected cells. J Virol 2012;86(12):6434–43.

30. Tincho MB, Gabere MN, Pretorius A. In silico identification and molecular validation of putative antimicrobial peptides for HIV therapy. J AIDS Clin Res 2016;7(6):2006.
CoV: 2014;5.
Exp (SARS-CoV) Middle
Res 2007;13(2):143–62.
Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001;279(2):371–4.
Taguchi F. The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J Virol 1995;69(11):7260–3.
Taguchi F, Shimazaki YK. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J Gen Virol 2000;81(12):2867–71.
Dü I, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV: a target for vaccine and therapeutic development. Nat Rev Microbiol 2009;7(3):226–36.
Hilchey AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 2013;9(12):761–8.
Lu L, Liu Q, Zhu Y, Chan K-H, Qin L, Li Y, et al. Structure-based discovery of Middle East Respiratory Syndrome Coronavirus fusion inhibitor. Nat Commun 2014;5.
Shuwen L, Shuguang W, Shibo J. HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. Curr Pharm Des 2007;13(2):143–62.
Sainz B, Mossel EC, Gallaher WR, Wimley WC, Peters CJ, Wilson RB, et al. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006;120(1-2):146–55.
Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cationic nonapeptide on enteropathogenic clostridium perfringens. Exp Parasitol 2013;133(3):300–6.
Wang G. Natural antimicrobial peptides as promising anti-HIV candidates. Curr Topics Pept Protein Res 2012;13:93–110.