PLASTID GENOMES OF THE HEMIPARASITIC GENUS KRAMERIA (ZYGOPHYLLALES) ARE INTACT AND EXHIBIT LITTLE RELAXATION IN SELECTION

Arjan Banerjee,1,*+ Adam C. Schneider,2,*‡ and Saša Stefanović*

*Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; †Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 2Z9, Canada; and ‡Department of Biology and Health Sciences, Hendrix College, Conway, Arkansas 72032, USA

Editor: Susan J. Mazer

Premise of research. Parasitic plants are characterized by a reduced or absent ability to conduct photosynthesis and accompanying morphological, physiological, and genomic changes. The plastid genome (or plastome) houses many key photosynthetic genes and is consequently highly conserved in autotrophic plants. This molecule is thus a useful model for documenting the genomic effects of a loss of autotrophy, which is typically associated with some reduction in plastome size and coding content. Twelve lineages of angiosperms have seen independently evolved haustorial parasitism. One of these lineages, Krameria, is a genus of obligate hemiparasites that appears to subvert the expectation of plastome reduction and instead has a substantially longer plastid genome than its nearest photosynthetic relatives.

Methodology. Two plastid genomes have been reported from this genus but have not yet been analyzed in depth. This study adds a third assembled Krameria plastome and then investigates their structure and sequence composition in comparison with that of the autotrophic Tribulus terrestris from the group’s sister clade.

Pivotal results. We find that Krameria plastomes have essentially intact coding sequences and that the unexpected increase in their sizes is due to the accumulation of elevated numbers of tandem repeats in the intergenic spaces of the large and small single-copy regions. Photosynthetic genes are maintained under purifying selection with \(\text{dN/dS} \) values commensurate with those observed in lineages of autotrophic plants.

Conclusions. Krameria contains both the largest and the most intact plastid genomes reported to date from parasitic angiosperms. Our results suggest that these plants are still reliant on photosynthesis as an important part of their nutrient acquisition strategy and that plastid genomes of Krameria remain evolutionarily stable.

Keywords: hemiparasites, heterotrophs, Krameria, Krameriaceae, parasite, plastid, plastome.

Online enhancements: supplemental tables.

Introduction

One of the most remarkable examples of convergent evolution is the repeated origin of heterotrophy in plants accompanied by a suite of morphological, genomic, ecological, and life history shifts, often referred to as the “parasite reduction syndrome” (Colwell 1994). Plants achieve heterotrophy by one of two modes: parasitizing mycorrhizal fungi (mycoheterotrophy) or forming direct vascular connections with the roots or stems of other spermatophytes using a specialized organ called a haustorium. Both modes have evolved many times—there have been more than 40 origins of mycoheterotrophy (Merckx 2013; Jacquemyn and Merckx 2019) and 12 origins of direct parasitism (Nickrent 2020; fig. 1)—in aggregate providing the statistical power to develop and test more generalized models for the evolution of parasitic plants.

Among these models of evolution, recent interest (Shin and Lee 2018; Su et al. 2019; Banerjee and Stefanović 2020) has focused on the parasitic plant plastid genome (plastome), which contains many genes involved in key portions of the photosynthetic apparatus in addition to so-called housekeeping genes responsible for the ongoing functionality of the plastome itself (Wicke et al. 2011). A model developed by Wicke et al. (2016) predicts relaxation of purifying selection followed by gene pseudogenization and loss in five distinct consecutive categories of plastid genes that are increasingly central to plastome function.
Fig. 1 Summary of the 12 angiosperm lineages that have seen the independent evolution of parasitism. The smallest reported plastid genomes are described for each lineage except for Rafflesiacaeae, where the plastid genome is deemed absent. The largest known plastid genomes are also described for lineages for which multiple plastomes have been published. References for each plastome are listed. Holoparasitic lineages are highlighted in orange, hemiparasitic lineages in green, and mixed lineages in blue. Phylogenetic relationships between the different lineages are shown.

Lineage	Parasitic Status	Number of Species	Plastome Size Range (kb)	Largest Plastome	Smallest Plastome
Orobancheaceae	Mix	2500	46-181	Campanula americana 45,673 21/18/4 a	Swertiabium americanum 190,511 74/90/4 a
Cucurbitaceae	Mix	200	61-125	Cucurbita pepo 60,959 33/25/4 b	Cucurbita pepo 125,173 67/29/4 c
Lenoaceae	Hol	4	81-84	Phlox annua 81,198 27/29/4 d	P. annua 83,675 27/29/4 d
Mitrastemonaceae	Hol	2	26	Mitrastemon amoenus 25,740* 17/4/2 e	Mitrastemon amoenus 15,167 4/2/2 e
Santalales	Mix	2377	17-158	Balanophora laxiflora* 15,565* 15/4/4 f	Molonio ciliata 158,363 62/80/4 g
Cytaceae	Hol	12	19	Cytisus hispanicus 19,490 14/6/4 h	Cytisus maritimus 15,167 4/2/2 i
Apodanthaceae	Hol	10	11-15	P. lentiscus 11,348 3/2/1 i	P. lentiscus 15,167 4/2/2 i
Rafflesiales	Hol	30	1	Rafflesia arnoldii 171,851 78/30/4 j	Rafflesia arnoldii 171,866 78/30/4 j
Krameria	Hol	23	172-173	Krameria lanceolata 45,319 28/4/4 k	Krameria lanceolata 28,191* 15/5/4 m
Cynomoraceae	Hol	2	46	Cynomorium coccineum 114,622 67/30/4 n	C. coccineum 115,351 67/30/4 o
Hydrocoraceae	Hol	12	27-28	Hydrocotyle vivipara 45,319 28/4/4 k	Hydrocotyle vivipara 28,191* 15/5/4 m
Cazethaceae	Hol	20	115	Cazetta filipendula 114,622 67/30/4 n	C. filipendula 115,351 67/30/4 o

(refer to the original text for detailed information on each lineage and its parasitic status.)
of the parasitic syndrome, with an incidental increase in genome size instead of a reduction? To answer these questions, we compared the gene content and selection of plastomes of three Krameria species (one newly sequenced) with those of closely related autotrophs in the Zygophyllaceae.

Methods

Taxon Sampling, DNA Extraction, and Sequencing

Total genomic DNA was isolated from silica-dried tissue of Krameria erecta Willd. (collection: Stefanović SS-16-22, deposited in the TRTE herbarium) using the modified cetyltrimethylammonium bromide method (Doyle and Doyle 1987) and was checked for quality and quantity using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific). This extraction was sequenced on an Illumina HiSeq 2500 platform (2 × 126-bp paired-end reads; Centre for Applied Genomics, SickKids Hospital, Toronto, ON). Demultiplexing of raw reads and the removal of indexing barcodes were performed by the sequencing facility.

Plastome Assembly, Annotation, and Computational Methods

Krameria erecta reads were trimmed using Sickle version 1.33 (Joshi and Fass 2011) with minimum read lengths set at 99 bp and the threshold for quality set at a minimum Phred score of 27 at each site. A total of 52,328,346 reads were recovered after the trim. Several separate assemblies were conducted de novo using distinct subsamples of reads in both Geneious R10 (Biomatters, Auckland, New Zealand; produce scaffolds and don’t merge variants boxes unchecked) and GetOrganelle version 1.7.5 (Jin et al. 2020; -R set to 15, -w to 110, -k to 65, 115 and Tribulus terrestris plastome used as the seed file). Initial annotation was conducted in Geneious R10 and then refined and confirmed manually using BLASTn (Altschul et al. 1990), BLASTx (Altschul et al. 1990), and rRNAscan-SE 2.0 (Lowe and Chan 2016) to confirm rRNA gene sequences, establish open reading frames, and determine the boundaries of tRNA genes. Trimmed reads were mapped back to whole plastomes assembled to confirm the boundaries of annotated regions.

The annotated plastome of K. erecta was aligned with those of three other close relatives obtained from GenBank (K. lanceolata, K. bicolor, and T. terrestris; accessions MK726016, MK726015, and MN164624, respectively) using progressiveMauve (Darling et al. 2010) to identify any structural differences. The Phobos version 3.3.12 tandem repeat search tool (http://www.rub.de/eco Evo/cm/cm_phobos.htm) was used to identify tandem repeats, with 2–7-bp motifs defined as short tandem repeats and 8–20-bp motifs defined as medium-length tandem repeats. Selection analyses were conducted for all 78 protein-coding genes in the plastome. Gene sequences extracted from each of the three Krameria species were aligned pairwise with the corresponding genes of T. terrestris using MUSCLE (Madeira et al. 2019) in the multiple sequence alignment package version 1.18 (Bodenhofer et al. 2015) of R version 3.6.3 (R Core Team 2000). The ratio of substitution rates (dN/dS) for each gene was generated using the analysis of phylogenetic evolution package version 5.3 (Paradis et al. 2004; Popescu et al. 2012).

Results

A 177,797-bp-long closed plastid genome was assembled for Krameria erecta in a single contig using GetOrganelle version 1.7.5 (table 1). An identical plastome was generated in three separate contigs using the Geneious R10 native de novo assembler, and gaps were manually closed using bridging contigs from additional assemblies. Since plastomes using both methods were consistent with each another in all respects, the version produced by GetOrganelle is used hereafter and was submitted to GenBank (accession no. OL889926).

The assembled plastome of K. erecta is ca. 6 kb longer than the shortest Krameria plastome of K. lanceolata (table 1) and ca. 20 kb longer than the Tribulus terrestris plastome. However, the total coding region sizes of all four plastid genomes are within ca. 400 bp of each other (between 90.3 and 90.7 kb; table 1). All three Krameria plastomes maintain the standard quadripartite structure, with the size and composition of the inverted repeat regions remaining consistent (table 1). There are no structural differences or changes in synteny among the three species (fig. 2) or in comparison with T. terrestris. Each of the three Krameria plastomes retain the full complement of protein-coding and rRNA genes (table 1). Krameria lanceolata and K. bicolor also retain all plastome tRNA genes. The tramK-UUU is present only in a fragmented, presumably nonfunctional form in K. erecta, although the gene matK, which encodes the intron maturase and is usually present in the tramK-UUU intron, remains.

All plastid gene families with a bioenergetic function exhibit low values for the ratio of substitution rates (dN/dS or ω, calculated as the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site for a given sequence) in all three Krameria species, except for cemA, which shows a moderate ω value of 0.52 (fig. 3). The average value of ω among the three plastomes is 0.23 for

Species	GenBank accession	Plastome size (bp)	Genes (protein/rRNA/rRNA)	GC (%)	IR (bp)	IR (bp %)	Total coding regions (bp)	Coding regions (% of total)
K. bicolor	MK726015	172,606	78/30/4	33.6	26,947	15.61	90,627	53
K. lanceolata	MK726016	171,851	78/30/4	33.7	26,852	15.63	90,690	53
K. erecta	OL889926	177,797	78/29/4	32.3	26,919	15.14	90,261	51
T. terrestris	MN164624	158,184	78/30/4	35.8	25,842	16.37	90,627	57

Note. IR = inverted repeat.

* Newly assembled.
Fig. 2 Annotated plastid genomes from the three Krameria species. The plastome for *K. erecta* was assembled as part of this project (indicated by an asterisk), and those for *K. lanceolata* (MK726016) and *K. bicolor* (MK726015) were taken from GenBank. Labeling errors from the previously published plastomes have been corrected for trnK-UUU (which was mislabeled FNM##.pg002) and trnF-CAU (which was mislabeled trnM-CAU). This figure was created using OGDRAW (Greiner et al. 2019), and the cladogram follows Simpson et al. (2004).
Fig. 2 (Continued)
Fig. 3 Bar charts showing the substitution ratio (\(dN/dS\)) values for all genes present in Krameria bicolor (red), K. erecta (green), and K. lanceolata (blue). The outgroup used for the pairwise analyses was the photosynthetic Tribulus terrestris. Values below 1.0 indicate that the genes are under purifying selection, values greater than 1.0 indicate that the genes are under positive/diversifying selection, and values of approximately 1.0 indicate that selection is neutral. The following genes have been omitted because their \(dN/dS\) values equal 0: \(psbE\), \(psbF\), \(psbI\), \(psbJ\), \(psbL\), and \(psbN\).
Both Krameria plastomes previously reported (Gonçalves et al. 2019) and the K. erecta plastome assembled in this study retain all the plastid genes present in their autotrophic relative Tribulus terrestris, with the exception of trnK-UUU in K. erecta (fig. 2). The second exon of the gene is present in a divergent form, but the first exon cannot be identified, so it is presumed that trnK-UUU is nonfunctional. The trnK-UUU is often missing in parasitic plastomes (Graham et al. 2017; Li et al. 2017; Banerjee and Stefanović 2019, 2020) and almost always leaves behind a functional copy of matK (Hausner et al. 2006; Graham et al. 2017), which is usually encoded by its intron (i.e., matK is usually present within the trnK-UUU intron). This is the case for K. erecta as well. Outside parasitic lineages, trnK-UUU is generally conserved across seed plants, although it is absent in chlorophyte algae, moniliphyte ferns (Kwon et al. 2020), and certain lycophytes (Pereira et al. 2021). This is the only instance of the gene content of Krameria plastomes diverging from that of their autotrophic neighbors. Such holistic retention of plastome genes is unprecedented among parasitic angiosperms (fig. 1). Previously, the most intact plastome reported was the ca. 161-kb molecule from the obligate hemiparasite Schwablkea americana (Wicke et al. 2013), which has five genes pseudogenized, including four ndb genes with a photosynthetic function.

It has been observed that the intensity of selection, in both positive and purifying directions, tends to be elevated in heterotrophic plastomes (Barrett et al. 2019). However, it appears that Krameria plastomes are exceptions to this trend. The ratios of substitution rates shown in figure 3 are consistent with trends reported in other lineages of photosynthetic plants: gene families with a photosynthetic function (atp, ndh, pet, psa, psb, rbcL, ccsA, ycf3, and ycf4 in fig. 3) have lower dN/dS values, indicating stronger purifying selection, while housekeeping genes (rpo, rpl, and rps) and genes with other nonbioenergetic functions (accD, clpP, ycf1, and ycf2) tend to exhibit weaker degrees of purifying selection (Guisinger et al. 2010; Wicke et al. 2011; Li et al. 2013; Barnard-Kubow et al. 2014; Logacheva et al. 2016; Barrett et al. 2019).

Within this broad narrative, there are a few outliers (fig. 3). Alone among photosynthetic genes, atpF and cemA exhibit ω values that exceed 0.5. atpF with 42 variable sites of 555 (7.6%) and an average ω value of 0.80 and cemA with 76 variable sites of 690 (11.0%) and an average ω value of 0.52. The atpF gene is one of three atp genes involved in encoding the F0 domain of the plastid ATP synthase (Wicke et al. 2011), which is involved in proton translocation across the thylakoid membrane but is interestingly the most commonly lost atp gene from the plastid genome (Mohanta et al. 2020). The gene cemA encodes a protein localized in the inner envelope membrane that is thought to assist with CO2 uptake (Wicke et al. 2011) but has been shown not to be essential for photosynthetic reactions (Rolland et al. 1997). Consequently, it has been lost repeatedly in heterotrophic and parasitic lineages (Wolfe et al. 1992; Wicke et al. 2013; Banerjee and Stefanović 2019; Do et al. 2020; Li et al. 2021b) as well as in some autotrophic plants (Do et al. 2020). Four ribosomal protein genes with a housekeeping function also exhibit unusually elevated ω values: rpl2 (3.5% variable sites, average ω of 1.35), rpl22 (10.6% variable sites, average ω of 0.93), rps7 (1.1% variable sites, average ω of 1.80), and rps15 (12.5% variable sites, average ω of 0.99). Although ribosomal protein genes are generally maintained in plastomes, some are often found under positive selection (Wicke et al. 2014; Li et al. 2021a; Zeb et al. 2022) or lost entirely (Ni et al. 2016) in photosynthetic plants and certainly in heterotrophic plants (Wicke
et al. 2013; Samigullin et al. 2016; Graham et al. 2017; Banerjee and Stefanović 2019).

On the other hand, the ndb family of genes, which are primarily responsible for mitigating the effects of photooxidative stress, all appear to remain under strong purifying selection in *Krameria* plastomes (fig. 3). This is unexpected given that *ndb* genes are usually the first family of genes to be lost after the transition from autotrophy to heterotrophy (Wicke et al. 2011; Barrett and Davis 2012; Graham et al. 2017) or even before. Several autotrophic orchids (Kim et al. 2015; Lin et al. 2017), carnivorous plants (Silva et al. 2016, 2018; Nevill et al. 2019), aquatic plants (Peredo et al. 2013; Folk et al. 2020), cacti (Sanderson et al. 2015; Köhler et al. 2020), and other lineages (Ruhlman et al. 2015; Sabater 2021) have been found to have lost some or all *ndb* genes as well. The persistence of *ndb* genes, along with the presence of almost all other photosynthetic plastome genes under apparent strong purifying selection, implies that photosynthesis still plays an important role in the biology of *Krameria* species, perhaps because it allows continued productivity after hosts go dormant in the summer (Simpson 1989).

The increase in plastid genome size in the genus can be attributed to the accumulation of sequence length in intergenic regions. Expanded noncoding regions also account for the differences in length between the longer *K. erecta* plastome and the shorter *K. lanceolata* and *K. bicolor* plastomes. Coding regions make up only 51% of the total plastome size of *K. erecta*, compared with 53% for the other two species (and 57% for the much smaller *T. terrestris*). Accumulation of tandem repeats appears to completely explain the intrageneric differences in plastome length and for a large part the bloat relative to *T. terrestris* (fig. 4; results provided in full in table S1). *Krameria lanceolata* has the shortest of the three *Krameria* plastid genomes at 171.9 kb, 6 kb smaller than those of *K. erecta*, at 177.8 kb. This disparity appears to be associated with the difference in sequence length contributed by short- and medium-length tandem repeats: 12.9 kb for *K. lanceolata* and 20.2 kb for *K. erecta*, a difference of 7.2 kb. *Krameria bicolor*, with an intermediate plastome size of 172.6 kb, has a commensurately intermediate sequence length contribution because of tandem repeats: 14.4 kb, 5.8 kb less than that of *K. erecta*. *Krameria erecta* has a plastome 19.6 kb larger than that of *T. terrestris* (plastome size, 158.2 kb) and has accumulated 11.4 kb more in tandem repeat sequence length. As has been observed for other large plastomes, these repeat regions are AT rich (Massouh et al. 2016; Li et al. 2019) and have resulted in the depression of GC% values of *Krameria* plastomes (tables 1, S1).

Accumulation of tandem repeats has been associated before with drastically increased plastome size (Guo et al. 2021) and has been implicated in accelerated plastome evolution leading to greater intraspecific variation (Massouh et al. 2016; Li et al. 2019). In addition, high tandem repeat content has been found to have a strong positive correlation with extensive plastome rearrangements in *Medicago* (Wu et al. 2021). However, there are several large plastid genomes in the rosids whose increased sizes do not coincide with the sequence length contributed by tandem repeats (table S2). For example, the largest published rosid plastome, that of *Vitis romanetti* (Xu and Xu 2021), is 232,020 bp long but contains only 804 short tandem repeats and 75 medium-length tandem repeats, which, in total, contribute 11,374 bp in sequence length (table S2). Instead, the relatively massive size of the *V. romanetti* plastome is almost entirely due to an increase in the size of the inverted repeat region and, consequently, several genes that are usually single copy being present twice (Xu and Xu 2021). In *Krameria*, there is an elevated accretion of repeats (fig. 4; table S2), but no rearrangements are apparent, and we do not have sampling to explore intraspecific variations at this point. Some tandem repeats are common to all three *Krameria* plastomes but absent in the Zygophyllaceae outgroup species (e.g., the pentanucleotide AAAAG repeat followed by the nine-nucleotide AATAGATAT repeat downstream of atpH and upstream of atpF or the pentanucleotide AAAAG repeat followed by the hexanucleotide AATAGT repeat downstream of rpoC2 and upstream of rps2), while many others appear to be tip specific. Further research of the plastid genomics of this genus is needed to encompass additional species and to investigate whether there is a phylogenetic signal in the accumulation of these repeats, as well as to sample multiple individuals/populations from those species to explore intraspecific variation.

Plastomes of other autotrophs in the Zygophyllales are shorter than those of both *Krameria* and *Tribulus*. Notably, that of *Larrea tridentata* is 135,988 bp in length, largely because the pseudogenization and truncation of the nonbioenergetic ycf2 gene (Gonçalves et al. 2019) cause significantly smaller inverted repeat regions (19.4 kb vs. 25.8 kb). Plastid genomes of other rosids range from potentially absent altogether (*Rafflesia* [Molina et al. 2014] and *Sapria* [Cai et al. 2021] in Rafflesiaceae, Malpighiales, Fabidae) to the abovementioned 232,020-bp-long example in *V. romanetti* (Vitaceae, Vitales, Rosidae; Xu and Xu 2021). The average rosid plastome is between 155 and 165 kb long, but several longer examples can be found (table S2), including within the fabids (Wang et al. 2017; Zhang et al. 2020; Lee et al. 2021). Given that Rafflesiaceae and Zygophyllaceae are the only families in Zygophyllales (which is sister to the rest of Fabidae), it is difficult to determine whether the larger plastome in *Krameria* is ancestral or derived. Thus, the plastome lengths of *Krameria* appear to be unremarkable for a rosid genus.

When it comes to tandem repeat accumulation, *Krameria* shares similarities with closely related taxa as well. Table S2 lists the numbers of short- and medium-length tandem repeats (along with total sequence length contributions) for a selection of rosid species. *Krameria lanceolata* and *K. bicolor* have repeat numbers akin to those of some species of Fabales and Malpighiales, orders that are part of the group sister to Zygophyllales, and those of *K. erecta* are slightly further elevated. On the other hand, some groups in Rosidae show tandem repeat accumulations similar to those of *T. terrestris* and *L. tridentata* (table S2). The order Rosales, also part of the group sister to Zygophyllales, contains plastomes with lower numbers of tandem repeat regions, similar to Zygophyllaceae. Altogether, this makes it difficult to conclude which is the ancestral state—the many tandem repeats of *Krameria* or the fewer tandem repeats of *Tribulus* and *Larrea*.

To sum up, *Krameria* plastid genomes, in structure at least, seem quite unremarkable, especially in the context of its taxonomic position. However, this finding itself appears quite remarkable given that this is a genus of obligate parasites that cannot survive without their hosts (Simpson 1989) and given the reductions in size and sequence composition observed in all other lineages of parasitic angiosperms (fig. 1). In particular, the continued retention of all *ndb* genes serves to underline the
unique nature of Krameria. As far as is currently known, Krameria is the only lineage of parasitic plants to retain their full complement of ndh genes as open reading frames. Their plastomes also maintain every other gene that their autotrophic neighbors do, and in some instances, they are even more complete in terms of coding content (e.g., in comparison with L. tridentata).

Unlike those of every other parasitic plant lineage, Krameria plastomes do not appear to have been impacted by the genomic effects of the parasitic reduction syndrome (Colwell 1994). This may be because of the hot and arid environments in which they grow, where their hosts seasonally go dormant; hence, they often must continue to sustain themselves longer than other heterotrophs tend to have to (Simpson 1989). It is also probable that because Krameria species establish haustorial connections solely for the acquisition of water and dissolved nutrients (Brokamp et al. 2012), they therefore still require the full complement of photosynthetic genes in order to produce their own photosynthates. Despite its low extant species diversity, Krameria is thought to represent a relatively old lineage (stem age of 34–90 Myr; Magalón et al. 2015), and therefore it cannot be concluded that plastomes in this group are unaffected simply because they are in an “early” stage of reduction. Our results thus suggest that Krameria plastomes are evolutionarily stable and continue to be central to the functioning and survival of these plants.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (grant 326439), the Canada Foundation for Innovation (grant 12810), and Ontario Research Funds. We thank Craig Barrett and one anonymous reviewer for their constructive feedback. Open access publishing funded by Hendrix College.

Literature Cited

Altschul SF, W Gish, W Miller, EW Myers, DJ Lipman 1990 Basic local alignment search tool. J Mol Biol 215:403–410

Angiosperm Phylogeny Group, MW Chase, MJM Christenhusz, MF Fay, JW Byng, WS Judd, DE Soltis, et al. 2016 An update of the classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.

Banerjee A, S Stefanovic 2019 Caught in action: fine-scale plastome evolution in the parasitic plants of Cuscuta section Ceratophorae (Convolvulaceae). Plant Mol Biol 100:621–634.

2020 Reconstructing plastome evolution across the phylogenic backbone of the parasitic plant genus Cuscuta (Convolvulaceae). Bot J Linn Soc 194:423–438.

Barnard-Kubow KB, DB Sloan, LF Galloway 2014 Correlation between sequence divergence and polymorphism reveals similar evolutionary mechanisms acting across multiple timescales in a rapidly evolving plastid genome. BMC Evol Biol 14:268.

Barrett CF, JI Davis 2012 The plastid genome of the mycoheterotrophic Corallorrhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am J Bot 99:1513–1523.

Barrett CF, JV Freudenstein, J Li, DR Mayfield-Jones, L Perez, JC Pires, C Santos 2014 Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol 31:3095–3112.

Barrett CF, BT Sinn, AH Kennedy 2019 Unprecedented parallel photosynthetic losses in a heterotrophic orchid genus. Monocot Biol Evol 36:1884–1901.

Bellot S, N Cusimano, S Luo, G Sun, S Zarre, A Gröger, E Temsch, SS Renner 2016 Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasitic family Cynomoriaceae in the Saxifragales. Genome Biol Evol 8:2214–2230.

Bellot S, SS Renner 2015 The plastomes of two species in the endoparasite genus Pilostyles (Pilopodaceae) each retain five or six possibly functional genes. Genome Biol Evol 8:189–201.

Bodenhofer U, E Bonatesta, C Horejší-Kainrath, S Hochreiter 2015 msa: an R package for multiple sequence alignment. Bioinformatics 31:3997–3999.

Brokamp G, N Dostert, F Cáceres-H, M Weigend 2012 Parasitism and haustorium anatomy of Krameria lappacea (Dombey) Burdet & R.B. Simpson (Krameriaceae), an endangered medicinal plant from the Andean deserts. J Arid Environ 83:94–100.

Cai L, BJ Arnold, Z Xi, DE Khost, N Patel, CB Hartmann, S Manickam 2021 Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Curr Biol 31:1002–1011.

Catalogue of Life Partnership 2017 APG IV: Angiosperm Phylogeny Group classification for the orders and families of flowering plants. https://doi.org/10.15468/ttauam.

Chen X, D Fang, C Wu, B Liu, Y Liu, SK Sahu, B Song 2020 Comparative plastome analysis of root- and stem-feeding parasites of Santalales untangle the footprints of feeding mode and lifestyle transitions. Genome Biol Evol 12:3663–3676.

Colwell AE 1994 Genome evolution in a non-photosynthetic plant, Conopholis americana. PhD diss. Washington University, St Louis.

Cronquist A 1981 An integrated system of classification of flowering plants. Columbia University Press, New York.

Darling AE, B Mau, NT Perna 2010 progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147.

Do HDK, C Kim, MW Chase, JH Kim 2020 Implications of plastome evolution in the true lilies (monocot order Liliales). Mol Phylogenet Evol 148:106818.

Doyle JJ, JL Doyle 1987 A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15.

Folk RA, N Sewnath, C-L Xiang, BT Sinn, RP Guralnick 2020 Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC Plant Biol 20:324.

Gonçalves DJP, BB Simpson, EM Ortiz, GH Shimizu, RK Jansen 2019 Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenet Evol 138:219–232.

Graham SW, VK Lam, VS Merckx 2017 Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol 214:48–55.

Greiner S, P Lehward, R Bock 2019 OrganelarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organelar genomes. Nucleic Acids Res 47:W59–W64.

Guisinger MM, TW Chumley, JV Kuehl, JL Boore, RK Jansen 2010 Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70:149–166.

Guo YY, JX Yang, HK Li, HS Zhao 2021 Chloroplast genomes of two species of Cypripedium: expanded genome size and proliferation of AT-biased repeat sequences. Front Plant Sci 12:609729.
Hausner G, R Olson, D Simon, J Johnson, ER Sanders, KG Karol, RM McCourt, S Zimmerly 2006 Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391.

Heide-Jorgensen H 2008 Parasitic flowering plants. Brill, Leiden.

Jacquemyn H, V Merckx 2019 Mycorrhizal symbioses and the evolution of trophic modes in plants. J Ecol 107:1567–1581.

Jin JJ, WB Yu, JB Yang, Y Song, CW de Pamphilis, T-S Li, D-Z Li 2020 GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21:241.

Joshi NA, JN Fass 2011 Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle.

Jost M, J Naumann, N Rocamundi, AA Cocucci, S Wanke 2020 The first plastid genome of the holoparasitic genus Prospansancheae (Hydnoraceae). Plants 9:306.

Kim HT, JS Kim, MJ Moore, KM Neubig, NH Williams, WM Whitten, J-H Kim 2015 Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries. PLoS ONE 10:e0142215.

Köhler M, M Regnato, TT Souza-Chies, LC Majure 2020 Insights into chloroplast genome evolution across Opuntioidaeae (Cactaceae) reveals yet today sometimes conflicting phylogenetic topologies. Front Plant Sci 11:729.

Kwon E-C, J-H Kim, N-S Kim 2020 Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 42:553–570.

Lee C, IS Choi, D Cardoso, HC de Lima, LP de Queiroz, MF Wojciechowski, RK Jansen, TA Ruhlman 2021 The chicken or the egg? plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. Plant J 107:861–875.

Li X, Y Li, SP Sylvester, M Zang, YA El-Kassaby, Y Fang 2021a Evolutionary patterns of nucleotide substitution rates in plastid genomes of Quercus. Ecol Evol 11:13401–13414.

Li X, J-B Yang, H Wang, Y Song, RT Corlett, X Yao, D-Z Li, W-B Yu 2021b Plastid NDH pseuodogenization and gene loss in a recently derived lineage from the largest hemiparasitic plant genus Pedicellaris (Orobanchaceae). Plant Cell Physiol 62:971–984.

Li X, TC Zhang, Q Qiao, Z Ren, J Zhao, T Yonezawa, RD Jansen, J Naumann, N Rocamundi, AA Cocucci, S Wanke 2021b Plastid NDH pseudogenization and gene loss in a recently derived lineage from the largest hemiparasitic plant genus Pedicellaris (Orobanchaceae). Plant Cell Physiol 62:971–984.

Logacheva MD, MI Schelkunov, VY Shratnikova, MV Matveeva, AA Penin 2016 Comparative analysis of plastid genomes of non-photosynthetic Eriocereae and their photosynthetic relatives. Sci Rep 6:30042.

Lowe TM, PP Chan 2016 trnK-scanning: on-line: integrating search for and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W54):W57.
plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biol 15:100.

Sabater B 2021 On the edge of dispensability, the chloroplast ndh genes. Int J Mol Sci 22:12505.

Samigullin TH, MD Logacheva, AA Penin, CM Vallejo-Roman 2016 Complete plastid genome of the recent holoparasite Latruea squama-reia reveals earliest stages of plastome reduction in Orobanch-aceae. PLoS ONE 11:e0150718.

Sanderson MJ, D Copetti, A Búrquez, A Búrquez, E Bustamante, JLM Charbo-neau, LE Equiarte, S Kumar, et al 2015 Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): loss of the ndb gene suite and inverted repeat. Am J Bot 102:1115–1127.

Schneider AC, T Braukmann, A Banerjee, S Stefanovic 2018 Convergent plastome evolution and gene loss in holoparasitic Lennaceae. Genome Biol Evol 10:2663–2670.

Sheahan MC, MW Chase 1996 A phylogenetic analysis of Zygophyllaceae R.Br. based on morphological, anatomical and rbcL DNA sequence data. Bot J Linn Soc 122:279–300.

Shin HW, NS Lee 2018 Understanding plastome evolution in hemi-parasitic Santalales: complete chloroplast genomes of three species, Dendrotrophe varians, Helxanthera parasitica, and Macrosolen cochinchinensis. PLoS ONE 13:e0200293.

Silva SR, YCA Diaz, HA Penha, DG Pinheiro, CC Fernandes, VFO Miranda, TP Michael, AM Varani 2016 The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndb gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS ONE 11:e0150321.

Silva SR, TP Michael, DJ Meier, DG Pinheiro, AM Varani, VFO Miranda 2018 Comparative genomic analysis of Gentilsea (corkscrew plants–Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndb genes. PLoS ONE 13:e0190321.

Simpson BB 1989 Krameriaceae. Flora Neotrop 49:1–108.

Simpson BB, A Weeks, DM Helfgott, LL Larkin 2004 Species relationships in Kramera (Krameriaceae) based on ITS sequences and morphology: implications for character utility and biogeography. Syst Bot 29:97–108.

Soltis DE, PS Soltis, MW Chase, ME Mort, DC Albach, M Zanis, VSavolainen, et al 2000 Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 113:381–461.

Su H-J, TJ Barkman, W Hao, SS Jones, J Naumann, E Skippington, EK Wafula, J-M Hu, JD Palmer, CW de Pamphilis 2019 Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci USA 116:934–943.

Wang H, MJ Moore, PS Soltis, CD Bell, SF Brockington, R Alexandre, CC Davis, M Latvis, SR Manchester, DE Soltis 2009 Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858.

Wang Y-H, X-J Qu, S-Y Chen, D-Z Li, T-S Yi 2017 Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication. Tree Genet Genomes 13:41.

Wick S, KF Müller, CW de Pamphilis, D Quadnt, S Bellot, GM Schneeewees 2016 Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc Natl Acad Sci USA 113:9045–9050.

Wick S, KF Müller, CW de Pamphilis, D Quadnt, NJ Wickett, Y Zhang, SS Remer, GM Schneeewees 2013 Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the Broomrape family. Plant Cell 25:3711–3725.

Wick S, J Naumann 2018 Molecular evolution of plastid genomes in parasitic flowering plants. Adv Bot Res 85:313–347.

Wick S, B Schäferhoff, CW de Pamphilis, KF Müller 2014 Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Mol Biol Evol 31:529–545.

Wick S, GM Schneeewees, CW de Pamphilis, KF Müller, D Quadnt 2011 The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297.

Wolfe KH, CW Morden, SC Ems, JD Palmer 1992 Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of rRNA and ribosomal protein genes. J Mol Evol 35:304–317.

Wu CS, TJ Wang, CW Wu, YN Wang, SM Chaw 2017 Plastome evolution in the sole hemiparasitic genus laurel dodder (Cassytha) and insights into the plastid phylogenomics of Lauraceae. Genome Biol Evol 9:2604–2614.

Wu S, J Chen, Y Li, A Liu, A Li, M Yin, N Shrestha, J Liu, G Ren 2021 Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol 21:421.

Xu G, W Xu 2021 Complete chloroplast genomes of Chinese wild-growing Vitis species: molecular structures and comparative and adaptive radiation analysis. Protoplasma 258:559–571.

Yan J, N Zhang, Y Duan 2019 The complete chloroplast genome sequence of Tribulus terrestris, an important traditional Chinese medicine. Mitochondrial DNA B Resour 4:3108–3109.

Yang Y, SL He 2019 The complete chloroplast genome of Malania oleifera (Olacaceae), an endangered species in China. Mitochondrial DNA B Resour 4:1867–1868.

Zeb U, X Wang, A Azizullah, S Fiaz, H Khan, S Ullah, H Ali, K Shahzad 2022 Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pipus species. Saudi J Biol Sci 29:1618–1627.

Zhang R, Y-H Wang, J-J Jin, GW Stull, A Bruneau, D Cardoso, I. Paguanucci De Queiroz, et al 2020 Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae. Syst Biol 69:613–622.