The Cost of Two-dimensional Rearrangement

Hailun Zhou

Department of Mathematics, Fudan University,
Shanghai, 200433, China

INTRODUCTION Consider a two dimensional torus $T^2 = \mathbb{R}^2 / \mathbb{Z}^2$, with coordinates $x = (x_1, x_2) \in [0, 1) \times [0, 1)$. Let $A = \{(x_1, x_2) | 0 \leq x_2 < 1/2\} \subset T^2$ be a subset, an diffeomorphism $\Phi : T^2 \to T^2$ is called a rearrangement of A.

We say that Φ mixes the set A up to scale ε if the following holds: there is a fixed real number $\kappa \in (0, 1/2)$, for any ball $B_\varepsilon(x)$ centered at a point $x \in T^2$ with radius ε, we have

$$\kappa \text{Area}(B_\varepsilon(x)) \leq \text{Area}(B_\varepsilon(x) \cap \Phi(A)) \leq (1 - \kappa)\text{Area}(B_\varepsilon(x)) \quad (1)$$

For the rearrangement Φ, let

$$e(\Phi) = \frac{1}{2}[(\Phi_{x_1})^2 + (\Phi_{x_2})^2 + (\Phi_{x_1})^2 + (\Phi_{x_2})^2]$$
be the energy density, and we define the cost of the rearrangement as the energy of Φ:

$$E(\Phi) = \int_{\mathbb{T}^2} e(\Phi) d\sigma.$$

The main result in this paper is the following theorem.

Theorem. Let $\Phi(x) : \mathbb{T}^2 \rightarrow \mathbb{T}^2$ is a diffeomorphism and it mixes the set A up to scale ε. If Φ satisfies

$$0 < \kappa' \leq |\text{det}[\nabla_x \Phi]|$$

Then there exists a constant C which depends on κ, κ' only, such that

$$E(\Phi) \geq \frac{C}{\varepsilon^2}.$$

If $F : [0, 1] \times \mathbb{T}^2 \rightarrow \mathbb{R}^2$ is a time dependent smooth vector field on \mathbb{T}^2, and $\Phi_t : \mathbb{T}^2 \rightarrow \mathbb{T}^2$ the flow associated with the vector field F, i.e., Φ_t is the solution of the following initial value problem

$$\begin{cases}
\dot{\Phi}_t(x) = F(t, \Phi_t(x)) \\
\Phi_0(x) = x
\end{cases}$$

Let $\Phi_1(\cdot) = \Phi(\cdot)$ be the value of the flow at time $t = 1$.

In [Br], Bressan made the following conjecture:

Conjecture. If the flow Φ_t generated by smooth vector field F is nearly incompressible, i.e., for some constant $\kappa' > 0$, we have

$$\kappa' \text{Area}(\Omega) \leq \text{Area}(\Phi_t(\Omega)) \leq \frac{1}{\kappa'} \text{Area}(\Omega),$$

for any measurable set $\Omega \subset \mathbb{T}^2$ and $t \in [0, 1]$, and Φ mixes the set A up to scale ε, then there is a constant C depends on κ and κ' only, such that

$$\int_0^1 \int_{\mathbb{T}^2} |\nabla_x F| d\sigma dt \geq C |\log \varepsilon|.$$

As a corollary, we will prove the following corollary which is in the same manner as Bressan’s conjecture.

Corollary. Let $F = F(t, x)$ be a smooth vector field on \mathbb{T}^2, and assume that the associated flow $\Phi_t(x)$ satisfies

$$0 < \kappa' \leq |\text{det}[\nabla_x \Phi_t]|,$$

and $\Phi = \Phi_1$ mixes the set A up to scale ε. Then there exists constant C depends on κ, κ' only, such that

$$\frac{C}{\varepsilon^2} \leq \int_0^1 \int_{\mathbb{T}^2} e^{\sqrt{\text{Area}(\Omega)}} |\nabla_x F| d\sigma dt$$
Proof of the Main Theorem and Corollary

We first prove the theorem.

Theorem. Let \(\Phi(x) : T^2 \to T^2 \) is a diffeomorphism and it mixes the set \(A \) up to scale \(\varepsilon \). If \(\Phi \) satisfies

\[
0 < \kappa' \leq |\det[\nabla_x \Phi]|
\]

Then there exists a constant \(C \) which depends on \(\kappa, \kappa' \) only, such that

\[
E(\Phi) \geq \frac{C}{\varepsilon^2}.
\]

Proof. On the set \(A \subset T^2 \), we have

\[
\int_A e(\Phi)d\sigma \geq \frac{1}{2} \int_0^{1/2} \left(\int_0^1 [(\Phi^1_{x_1})^2 + (\Phi^2_{x_1})^2]dx_1 \right) dx_2,
\]

and by Hölder inequality we have

\[
\int_0^1 [(\Phi^1_{x_1})^2 + (\Phi^2_{x_1})^2]dx_1 \geq \left(\int_0^1 [(\Phi^1_{x_1})^2 + (\Phi^2_{x_1})^2]^{1/2} dx_1 \right)^2
\]

If we fix \(x_2 = s \), then we can view \(\Phi(x_1, s) \) as a curve \(C_s \subset T^2 \). Thus,

\[
l(s) = \int_0^1 [(\Phi^1_{x_1}(x_1, s))^2 + (\Phi^2_{x_1}(x_1, s))^2]^{1/2} dx_1
\]

is the length of the curve \(C_s \). Then

\[
\int_A e(\Phi) \geq \frac{1}{2} \int_0^{1/2} l^2(s)ds = \frac{1}{2} \int_0^{1/4} \left[l^2 + l^2 \left(\frac{1}{2} - s \right) \right] ds
\]

\[
\geq \frac{1}{4} \int_0^{1/4} \left[l(s) + l \left(\frac{1}{2} - s \right) \right]^2 ds.
\]

Let \(A_s = \{(x_1, x_2) | s < x_2 < 1/2 - s \} \subset T^2 \), and \(l(s) + l(1/2 - s) \) is just the length of boundary \(\partial(\Phi(A_s)) \). Now we will estimate the length of \(\partial(\Phi(A_s)) \) in terms of \(\varepsilon \).

For a given point \(y \in \Phi(A_s) \), let \(B_\varepsilon(y) \) be the ball centered at \(y \) with radius \(\varepsilon \), if \(\kappa \pi \varepsilon^2 > \text{Aera}(\Phi(A_s) \cap B_\varepsilon(y)) \), then for any \(r > \varepsilon/\sqrt{2} \), \(\partial B_r(y) \) has at least two points intersects with \(\partial(\Phi(A_s)) \), and this will imply that

\[
\text{length}(\partial(\Phi(A_s)) \cap B_\varepsilon(y)) \geq 2(\varepsilon - \varepsilon/\sqrt{2}) = (2 - \sqrt{2})\varepsilon.
\]

Otherwise, \(\partial(B_r(y)) \cap \partial(\Phi(A_s)) = \emptyset \). Two curves in \(\partial(\Phi(A_s)) \) are both homologically non-trivial, and \(y \in B_r(y) \cap \Phi(A_s) \), so we must have \(B_r(y) \subset \Phi(A_s) \). This contradicts to the assumption \(\kappa \pi \varepsilon^2 > \text{Aera}(\Phi(A_s) \cap B_\varepsilon(y)) \).
If $\kappa \pi \varepsilon^2 \leq \text{Area}(\Phi(A_s) \cap B_\varepsilon(y))$, by highly mixing condition on Φ, we have

$$\kappa \pi \varepsilon^2 \leq \text{Area}(\Phi(A_s) \cap B_\varepsilon(y)) \leq \text{Area}(\Phi(A) \cap B_\varepsilon(y)) \leq (1 - \kappa)\pi \varepsilon^2.$$

The minimal curve which separates two regions of areas $\text{Area}(\Phi(A_s) \cap B_\varepsilon(y))$ and $\pi \varepsilon^2 - \text{Area}(\Phi(A_s) \cap B_\varepsilon(y))$ is a circular arc perpendicular to $\partial B_\varepsilon(y)$, so there is a constant m'_κ depends on κ only, such that

$$\text{length}(\partial(\Phi(A_s)) \cap B_\varepsilon(y)) \geq m'_\kappa \varepsilon.$$

Combine these two cases together, let $m_\kappa = \min\{m'_\kappa, (2 - \sqrt{2})\}$, we get a low bound estimation for the length of $\partial(\Phi(A_s)) \cap B_\varepsilon(y)$:

$$\text{length}(\partial(\Phi(A_s)) \cap B_\varepsilon(y)) \geq m_\kappa \varepsilon.$$

Now we pack the set $\Phi(A_s)$ by a maximal set of balls $\{B_\varepsilon(y_i) | y_i \in \Phi(A_s)\}$ and any two balls in the set are disjoint. Let n be the number of balls in this maximal set. We have

$$l(s) + l\left(\frac{1}{2} - s\right) \geq m_\kappa n \varepsilon.$$

On the other hand, we notice that balls $\{B_{2\varepsilon}(y_i)\}$ will cover $\Phi(A_s)$. If not, suppose $y_0 \in \Phi(A_s)$ cannot be covered by $\{B_{2\varepsilon}(y_i)\}$, that means the distance between y_0 and all the $B_\varepsilon(y_i)$ is larger than ε. It contradict the maximality of $\{B_\varepsilon(y_i) | y_i \in \Phi(A_s)\}$. Thus we have

$$4\pi \varepsilon^2 n \geq \text{Area}(\Phi(A_s)).$$

By condition that $\kappa' < |\det(\nabla_x \Phi)|$, we have

$$\text{Area}(\Phi(A_s)) \geq \kappa' \text{Area}(A_s) = \kappa'(1/2 - 2s).$$
Then

$$4\pi \varepsilon^2 n \geq \kappa'(1/2 - 2s).$$

Hence

$$l(s) + l\left(\frac{1}{2} - s\right) \geq \frac{\kappa'm_\kappa}{4\pi \varepsilon} \left(\frac{1}{2} - 2s\right),$$

and then

$$\int_A e(\Phi)d\sigma \geq \frac{1}{4} \int_0^\frac{1}{4} \left[\frac{\kappa'm_\kappa}{4\pi \varepsilon} \left(\frac{1}{2} - 2s\right)\right]^2 ds = \frac{1}{48} \left(\frac{\kappa'm_\kappa}{8\pi \varepsilon}\right)^2.$$

When \(\Phi\) mixes set \(A\) up to scale \(\varepsilon\), it mixes \(\mathbb{T}^2 - A\) as well. Similarly, we have

$$\int_{\mathbb{T}^2 - A} e(\Phi) \geq \frac{1}{48} \left(\frac{M_\kappa \kappa'}{8\pi \varepsilon}\right)^2.$$

Thus

$$\int_{\mathbb{T}^2} e(\Phi) \geq \frac{1}{24} \left(\frac{M_\kappa \kappa'}{8\pi \varepsilon}\right)^2 = \frac{C}{\varepsilon^2}$$

(11)

where \(C\) depends on \(\kappa, \kappa'\) only, and we complete the proof of the theorem.

Now we turn to the proof of the corollary.

Proof of the Corollary. We take differentiation with respect to \(x\) on both sides of the ordinary differential equation \(\dot{\Phi}_t(x) = F(t, \Phi_t(x))\). According to chain rule, we get

$$\partial_t(\nabla_x \Phi_t(x)) = \nabla_x F(t, \Phi_t(x)) \nabla_x \Phi_t(x).$$

Let

$$|\nabla_x F| = \left(\sum_{i,j=1}^2 (\partial_{x_i} F^j)^2\right)^{1/2}$$
be the variation of the vector field \(F\). Then we have

$$\partial_t e(\Phi_t) = \sum_{i,j=1}^2 (\partial_{x_i} \Phi^j_t)(\partial_t (\partial_{x_i} \Phi^j_t)) \leq \sqrt{6} |\nabla_x F(t, \Phi_t(x))| e(\Phi_t).$$

Then

$$\partial_t \log e(\Phi_t) = \frac{\partial_t e(\Phi_t)}{e(\Phi_t)} \leq \sqrt{6} |\nabla_x F(t, \Phi_t(x))|.$$

Integrating over 0 to 1 from both side we obtain

$$\log e(\Phi) \leq \sqrt{6} \int_0^1 |\nabla_x F(t, \Phi_t(x))| dt.$$

By Jensen’s inequality

$$e(\Phi) \leq \exp \left[\sqrt{6} \int_0^1 |\nabla_x F(t, \Phi_t(x))| dt \right] \leq \int_0^1 e^{\sqrt{6} |\nabla_x F(t, \Phi_t(x))|} dt.$$
Integrating over \mathbb{T}^2 we have

\[
\int_{\mathbb{T}^2} e(\Phi) d\sigma \leq \int_0^1 \int_{\mathbb{T}^2} e^{\sqrt{6}\|\nabla_x F(t, \Phi_t(x))\|} d\sigma dt \\
\leq \int_0^1 \int_{\mathbb{T}^2} e^{\sqrt{6}\|\nabla_x F(t, \Phi_t(x))\|} |\det(\nabla_x \Phi_t)|^{-1} d\sigma dt \\
\leq \frac{1}{\kappa'} \int_0^1 \int_{\mathbb{T}^2} e^{\sqrt{6}\|\nabla_x F(t, x)\|} d\sigma dt. \tag{12}
\]

This completes the proof of the corollary. \qed

Reference

[Br] A. Bressan, A lemma and a conjecture on the cost of rearrangements, *Rend. Sem. Mat. Univ. Padova*, **110**(2003), 97-102.