Research Article

Interactive Algorithms in Complex Image Processing Systems Based on Big Data

Yuanjin Xu¹ and Xiaojun Liu ²

¹Institute of Mathematical Geology and Remote Sensing Geology, School of Earth Resources, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
²School of Electromechanical and Automobile Engineering, Huanggang Normal University, Huanggang 438000, Hubei, China

Correspondence should be addressed to Xiaojun Liu; liuxiaojun@hgnu.edu.cn

Received 8 January 2020; Revised 28 February 2020; Accepted 10 March 2020; Published 5 May 2020

Guest Editor: Xuyun Zhang

Copyright © 2020 Yuanjin Xu and Xiaojun Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the era of big data, images and videos are one of the main means of information dissemination. In recent years, research on the problem of image and video reorganization and integration has become a hot topic in digital image processing technology. Using a computer for image processing, complicated programming is unavoidable. Therefore, it is necessary to optimize the interactive algorithms for image processing. In this paper, the content of image processing experiment is screened and integrated, and an image processing experiment system based on Matlab GUI platform is established for different levels of image processing knowledge modules. In order to verify the effectiveness and practicability of the optimization algorithm proposed in this paper, experimental simulations were performed on complex natural images and complex human eye images. The speed of the USB camera is generally between 15 frames/second and 25 frames/second, and in a 240×320 picture, the interactive algorithm in this article only needs about 59 ms, which is enough to complete the automatic interaction in the video in real time, which is convenient for subsequent image extraction. The experimental results show that the interactive algorithm in the complex image processing system in this paper optimizes the image extraction rate and improves the antinoise performance of the segmentation and the segmentation effect of the deep depression region.

1. Introduction

Big data is a type of technology widely used in the field of computer networks. It is a technological revolution after computers and the Internet of Things, and it can efficiently process massive amounts of data. Big data is mainly characterized by large amounts of data, diversification, and high transmission efficiency. In the use of big data technology, a large amount of data can be processed, the data processing speed is high, real-time data processing can be achieved, and the types of data are also very large. It can process pictures, text, audio, and video, and in many forms.

In the twenty-first century, with the full popularization of computers and the continuous breakthrough development of related computer theories, mankind has entered the era of a rapidly developing information society. Images and videos are used as the main preservation form of visual information. Computer vision and digital image processing technology have obtained the rapid development [1, 2]. Video is composed of image sequences, which is a three-dimensional image, which is more vivid than the image. Video foreground automatic extraction technology, as an important method of video analysis and processing, has extensive application prospects and great research significance in many fields such as film production, video conference, and virtual reality [3]. In the film manufacturing industry, video or image foreground extraction technology plays an important role in stunt production, detecting a specified foreground area in a video or image, replacing its background, and under the premise of ensuring image quality, it can greatly reduce film production cost and improve the visualization of the movie [4]. In some movies, a
large number of foreground extraction techniques are used to obtain supervisual effects and special effects, which make the movie get rid of the constraints of time and space and obtain the effect of imagination. Based on this, this paper is of great significance to the algorithm research of image processing.

Sherwood et al. believes that digital image processing systems are complex. Algorithm implementation cannot be directly combined with algorithms developed using other computer vision libraries. This is an efficient computing technique for processing various image processing algorithms. In order to promote the reusability and adaptability of software packages to adapt to new types of analysis, sustainability characteristics were established. His framework has been integrated and tested on medical imaging applications. Future work involves the introduction of better performance capabilities to connect to another processing service instance [5]. In recent decades, the modeling of anatomical structures in space and time has been widely studied. Zhang et al. proposed a method using a machine vision method, which mainly uses different algorithms to process medical heart images through four stages. First, a smoothing algorithm is used to reduce noise. Second, the image analysis filtering algorithm is used to identify the target area. Third, the target area of the image feature is further enhanced to find the basic contour of the image. Finally, the original heart image is constructed as a color model using a recovery algorithm. His experimental results show that medical image processing algorithms based on machine vision can accurately extract relevant data and achieve good results with limited time complexity. Then, rendering on a 2D screen of a computer monitor and user-defined input hardware for position control would limit the visualization capabilities and inhibit functional control of the model. Therefore, we have developed an LCD device capable of displaying a computational model on five lines of sight orthogonal to each other. The variability of model positions can be achieved through better ergonomics. Such a device would be used by medical experts who need to evaluate and perceive multiple parts of the anatomy with a medical expert who needs high speed and easier control during surgery. In this study, we outlined the development of an instrument capable of displaying 3D anatomical models that outperform existing methods. He used heart modeling as an example to illustrate how our device works and the important functions related to it [6]. Kagadis et al. propose a cloud-based application dedicated to MRI brain image processing, which provides end users with flexible permissions to manage approach: (a) application data manager, a tool that enables a user to manage the image data he/she uploads, and (b) “data processing tasks,” with the result that the proposed implementation has been tested on multiple end-user devices that have implemented pipelines for brain tumor detection in subsequent scans. After implementation, the user uploads two scans of the patient (before and after treatment), scans, normalizes, and calculates the difference map to quantitatively evaluate the growth or shrinkage of the tumor. His research was funded by the European Union and Greece with national funding through the National Strategic Reference Framework (NSRF) research funding program, Taylors’ Education, and Lifelong Learning business plan [7]. Kagadis et al. believe that the curvature of the sphere limits the approximate resolution of the Fourier component of the image to correspond to the projection of the object. Because the radius of the sphere is inversely proportional to the wavelength of the imaging electron, the sample thickness is usually limited, so the image can be interpreted simply as a specific resolution. Here, we propose a method to correct the curvature of Ewald sphere by using out-of-focus images. By using two different complex transformations to separately correct each sideband that is approximately related to Friedel symmetry, the Fourier components of the displacement can be effectively moved back to their position in the structure, and the amplitude and phase can be determined. This illustrates exactly the effect of the Ewald spherical curvature on the bandwidth defined by the defocus and the size of the particles to be imaged. He demonstrated the processing algorithm using simulated images of particles with only a single high-resolution Fourier component and experimental images of gold nanoparticles embedded in ice. The algorithm allows higher resolution imaging of thicker specimens at lower energies without degradation and blurring due to the flat soft sphere hypothesis. This program is best suited for recording images with higher focus settings than usual. Finally, because the Ewald spherical curvature is parallel to the line of sight in a three-dimensional known direction, the algorithm automatically determines the shape of the absolute hand. Samples of paired images with known skew differences are not required [8].

Aiming at the current processing defects of complex images, this paper proposes an improved interactive algorithm. First, the mean shift algorithm is used to preprocess the image, divide the image into some homogeneous regions, and use the homogeneous regions as nodes for random walks. This reduces the number of nodes while suppressing the impact of noise on the segmentation. Second, using polynomials, the Mahalanobis distance is used to define the weight between regions, not only considering the grayscale features and spatial features of the image but also taking into account the user’s input data so that the similarity between regions can be well expressed; again, for seeds, the points have been improved, and auxiliary seed points have been added. The auxiliary seed points and the user-labeled seed points are used for random walks to merge homogeneous regions. Finally, the user-labeled seed points are used for further walks and corrections to achieve images. Lastly, in this paper, experimental simulations are performed on natural images and human eye images, and the results show that the improved algorithm has good complex image processing capabilities.

2. Proposed Method

2.1. Big Data

2.1.1. Big Data Concept. Big data is a type of technology widely used in the field of computer networks. It is a technological revolution after computers and the Internet of Things, and it can efficiently process massive amounts of
data. Big data is mainly characterized by large data volumes, diversification, and high transmission efficiency [9]. In the use of big data technology, a large amount of data can be processed, the data processing speed is high, real-time data processing can be achieved, and the types of data are also very large. It can process pictures, text, audio, and video, and in many forms.

2.1.2. Application Advantages of Big Data in Image Processing. First, data technology can realize the reproduction of images, improve the sharpness of images, and not reduce the sharpness of images due to image copying and transmission. Second, in the application of big data technology, the accuracy of image processing can be guaranteed, and the image can be simulated in the form of two-bit data transmission. Second, in the application of big data technology, images have different sources and the scope of application of image processing is wide. With the support of big data technology, the accuracy of image processing can be guaranteed, and the pixels of an image to be guaranteed. Third, the flexibility of image processing is very large. In the application of big data technology, images can process pictures, text, audio, and video, and the relationship between pixels is very close. The grayscale similarity between image pixels is large, which promotes image compression.

2.2. Wavelet Algorithm for Digital Images. Using orthogonal multiresolution analysis and the coefficients of scale equations and wavelet equations, it is possible to construct a recursive algorithm of discrete digital signals and digital image wavelet transforms in the form of a matrix, that is, a matrix pyramid algorithm or a matrix Mallat algorithm, providing a kind of application programming for wavelet transforms. The structure is programed in algebraic form. For simplicity, introduce the notation: $D_j^{(i)} = d_{j,m,n}^{(i)}, l = 0,1,2,3$ can be obtained according to the necessary and sufficient conditions for constructing orthogonal wavelets:

$$
H = \begin{pmatrix}
\ldots & \tilde{h}_{-2} & \tilde{h}_{-1} & \tilde{h}_0 & \tilde{h}_1 & \tilde{h}_2 & \ldots \\
\ldots & \tilde{h}_{-2} & \tilde{h}_{-1} & \tilde{h}_0 & \tilde{h}_1 & \tilde{h}_2 & \ldots \\
\ldots & \tilde{h}_{-2} & \tilde{h}_{-1} & \tilde{h}_0 & \tilde{h}_1 & \tilde{h}_2 & \ldots \\
\end{pmatrix},
$$

$$
G = \begin{pmatrix}
\ldots & \tilde{g}_{-2} & \tilde{g}_{-1} & \tilde{g}_0 & \tilde{g}_1 & \tilde{g}_2 & \ldots \\
\ldots & \tilde{g}_{-2} & \tilde{g}_{-1} & \tilde{g}_0 & \tilde{g}_1 & \tilde{g}_2 & \ldots \\
\ldots & \tilde{g}_{-2} & \tilde{g}_{-1} & \tilde{g}_0 & \tilde{g}_1 & \tilde{g}_2 & \ldots \\
\end{pmatrix}.
$$

Under these symbols, the tower decomposition algorithm of the digital image is as follows:

$$
d_{j+1,m,n}^{(i)} = \sum_{(m,n)\in\mathbb{Z}^2} \tilde{h}_{j,m,n}^{(i)} (m - 2M, n - 2N) d^{(i)}_{j+1,m,n}, \quad p = 0, 1, 2, 3, \ldots
$$

It becomes the following matrix transformation form:

$$
\begin{pmatrix} D_j^{(0)} & D_j^{(1)} \\ D_j^{(2)} & D_j^{(3)} \end{pmatrix} = \begin{pmatrix} HD_j^{(0)} & HD_j^{(0)} \tau \\ GD_j^{(0)} & GD_j^{(0)} \tau \end{pmatrix},
$$

$$
\begin{pmatrix} \tilde{H} \\ \tilde{G} \end{pmatrix} = \begin{pmatrix} H & G \\ \tilde{H} & \tilde{G} \end{pmatrix} D_j^{(0)}.
$$

At the same time, the formula of the tower formation algorithm of the digital image is

$$
d_{j+1,m,n}^{(i)} = \sum_{l=0}^{3} h(l)(m - 2M, n - 2N) d^{(i)}_{j,m,n}.
$$

It becomes the following matrix transformation form:

$$
D_j^{(0)} = (H^* G^*) \begin{pmatrix} D_j^{(0)} & D_j^{(1)} \\ D_j^{(2)} & D_j^{(3)} \end{pmatrix} \begin{pmatrix} \tilde{H} \\ \tilde{G} \end{pmatrix} = H^* D_j^{(0)} \tilde{H} + G^* D_j^{(0)} \tilde{G}.
$$

The symbols H^* and G^* are the conjugate transposed matrices of the infinite matrices H^* and G^*, respectively. It is assumed that the digital image is a matrix $D_j^{(0)} = d_{j,m,n}^{(0)}, l \leq 2N$, and both the horizontal and vertical directions are understood as an endless continuation of a periodic cycle in a manner of a period of 2N [12]. The previous mark is modified to
in the vertical direction. The data stream formed by it has the prominent characteristics of the data stream in the row direction [13, 14]. The correlation of image data is reflected in the correlation between frames and frames. Sexuality is determined by the image content itself and the way video images are scanned [15]. Faced with such distinctive characteristics of image data, how to take corresponding image processing is a problem that the image industry has been trying to explore. For example, in the initial stage of image processing, the problem to be solved is the digitization of the image. In the early days due to the limitations of the computer level, the image system structure we use for image frame storage, and with the development of the computer bus, the image system structure for computer memory has become the new mainstream form of image system structure [16, 17]. At the same time, with the development of image compression technology, a real-time image transmission system has emerged: with the improvement of hardware level and the widespread application of large-scale logic array devices (DSP), the image processing speed is getting faster and faster. The development of image processing systems has undoubtedly shown us the importance of speed [18, 19].

2.3.3. Characteristics of Image Processing. Image processing algorithms are complex and diverse. Image processing has 6 important characteristics:

(1) Consistency. The consistency of image processing means that every point in the image area is processed according to the same rules.

(2) Layering. The layered nature of image processing means that, for many problems, it is often not an algorithm that can solve them, but a variety of different algorithms that must be used in sequence. These algorithms are sequential, and the results of the previous step will really affect the results.

(3) Territoriality. In the processing of image data layer, the difference of the pixel area involved in the image processing algorithm can be divided into point processing, domain processing, and set transformation processing on the human body. Domain processing is to process a single pixel, which requires the neighboring pixels of the pixel to participate in the operation to complete or the algorithm requires a data block to participate in the operation together [20].

(4) Row Order. Line order is caused by the law of digitization of images. Video data stream has line order, and many data formats of images also have line order. This line order is the starting point of pipeline processing.

(5) Parallelism. The various algorithms of the image data layer are highly parallel. For the parallel processing of one-dimensional data, different parallel structures can be used, which can either perform parallel processing on pixels in the neighborhood or parallel point processing in a larger area [21].

\[
D_j^{(l)} = (T_{i,j,m}^{(l)})_{N \times N}, \quad l = 0, 1, 2, 3,
\]

\[
H = \begin{pmatrix}
T_{0} & T_{1} & \cdots & T_{M-2} & T_{M-1} & 0 & \cdots & 0 \\
0 & T_{0} & \cdots & T_{M-2} & T_{M-1} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
T_{2} & \cdots & T_{M} & 0 & \cdots & 0 & \cdots & T_{0}
\end{pmatrix}_{N \times 2N},
\]

\[
G = \begin{pmatrix}
\bar{g}_{0} & \bar{g}_{1} & \cdots & \bar{g}_{2-M} & \bar{g}_{1-M} & 0 & \cdots & 0 \\
\bar{g}_{2} & \cdots & \bar{g}_{M} & 0 & \cdots & 0 & \cdots & \bar{g}_{0} \\
0 & \cdots & 0 & \cdots & 0 & \cdots & \bar{g}_{3-M} & \cdots & \bar{g}_{0} \bar{g}_{1}
\end{pmatrix}_{N \times 2N}.
\]

\[
T = \begin{pmatrix}
H \\
G
\end{pmatrix}_{2N \times 2N}.
\]

In this way, we can get a very compact form of the digital image pyramid algorithm. The decomposition algorithm is

\[
\begin{pmatrix}
D_j^{(0)} \\
D_j^{(1)}
\end{pmatrix} = \begin{pmatrix}
H D_j^{(0)} + H^* D_j^{(1)} \\
G D_j^{(0)} + G^* D_j^{(1)}
\end{pmatrix}
\]

(8)

The synthesis algorithm is

\[
D_{j+1}^{(0)} = \begin{pmatrix}
H^* G^*
\end{pmatrix}\begin{pmatrix}
D_j^{(0)} \\
D_j^{(1)}
\end{pmatrix} \begin{pmatrix}
H \\
G
\end{pmatrix}
\]

\[
= H^* D_j^{(0)} H + H^* D_j^{(1)} G + G^* D_j^{(0)} H + G^* D_j^{(1)} G.
\]

(9)

This is the matrix algorithm form of wavelet carboxylation of digital images.

2.3. Image Processing

2.3.1. Features of Image Processing. Understanding image data and mastering the characteristics of image processing are of great significance for designing image parallel processing systems: this significance lies in (1) clarifying the real-time requirements for the system, (2) choosing the specific form of parallelism implementation, and (3) enhancing the hardware processing ability to adapt to different algorithms.

2.3.2. Characteristics of Image Data. The image data have the characteristics of large amount of data, strong regularity, strong correlation, and high data transmission rate of visual cheek torsion. When processing image data, it will inevitably encounter a series of problems such as large storage capacity, large amount of calculation, and difficult implementation. The regularity of image data is determined by the way the image is formed, and the video image is continuous in the horizontal direction. The data stream formed by it is discrete
3. Experiments

3.1. Data Complexity Principle Extraction. Image data have the characteristics of large data volume, strong regularity, strong correlation, and high transmission rate of video image data. When processing image data, it will inevitably encounter a series of problems such as large storage capacity, maximum calculation, and difficult implementation. The regularity of image data is determined by the way the image is formed, and the video image is continuous in the horizontal direction. It is discrete in the vertical direction, and the data stream formed by it has the outstanding characteristics of the data stream in the row direction; the correlation of image data is reflected in the correlation between frames and between frames, and this correlation is caused by the image content itself, and the video image scanning method is determined.

In this paper, the microcomputer of the developed beer product detection system is used as the host, and the TMS320C32 chip is used as the slave to jointly develop. The detection process is segmented detection. The digital signal is sent to the DSP chip through the image acquisition card and D/A equipment to complete image processing, wavelet edge detection, and other algorithmic processing, and then the processing result is sent to the microcomputer system for identification, control and eliminate unqualified beer ingredients. In order to improve the processing speed, we use a large number of parallel technologies in hardware and software to improve the real-time performance of the system. The detection speed can eventually reach 120 frames/min.

As shown in Figure 1, when the solution mixed with dregs passes through the detection channel, we can obtain a mixed image of beer solution and dregs through image picking, where the drunk is the object we want to detect and remove. After the image preprocessing module, the noise in the industrial environment is eliminated, and the detection object and the background are separated: then, the edge detection module is used to binarize the edges of the detection object. The surface area of the object to be measured is calculated according to the recognition algorithm. When the surface area of the object is greater than this threshold, we define it as slag bay, this part of the solution is a substandard product. It is rejected (shunted) by the control system. In order to improve the accuracy and reduce the errors caused by artificial Zizhou, photoelectric sensors have been used in China for measurement. The principle is to install infrared emitting devices and receiving devices on both sides of the tube so that when the pure beer is liquid, the receiving device can receive infrared light. When the dross passes the scale, because the optical properties of the dross are different from that of beer, infrared rays are deflected, so the infrared receiving device cannot receive infrared rays, and its output level will change at this time. Because the electronic device is used for timing, the calculation of beer purity can also be completed automatically by the electronic device to achieve automatic measurement. Although the infrared method is simple in technology and accurate in measuring results, because the infrared device must be very accurate when the device is assembled, the electronic device is easily damaged under severe interference and corrosive conditions, and it is aging. The device needs to be connected with electronic wires. There are many cattle, and if electric sparks appear in the mountains, it will also cause accidents. Using image recognition to measure can eliminate similar problems.

4. Discussion

4.1. Image Training Processing. As shown in Table 1 and Figure 2, in the experiment, 1000 positive samples were trained, and the final detector obtained through nesting structure cascade had 34 layers of classifiers, which contained 3599 features. The experiment uses a cascade classifier constructed by mixing EOH features and Haar features. The odd-numbered layers are classifiers constructed by Haar features. The even-numbered layers correspond to the classifiers constructed by EOH features. The first layer has 4 Haar features. The second layer has 4 EOH features, the third and fourth layers have 8 Haar features and 8 EOH features, and the fifth, seventh, ninth, eleven, and thirteen layers each have 20 Haar features. The sixth, eighth, tenth, twelfth, and fourteenth layers have 15 EOH features, except for the last four layers. All the remaining Haar feature layers have 100 Haar features, and the EOH feature layer has corresponding 80 EOH characteristics. The penultimate layer and the fourth layer classifier are composed of 500 Haar features, while the penultimate layer and the third layer are composed of 400 EOH features.

4.2. Image Analysis

4.2.1. Image Test Extraction. After the calculation of the above general process, the processing speed of each frame can reach about 255 ms. With the further optimization of the
program, such as the use of image downsampling, there is a lot of room for improvement. As shown in Figure 3, the video segmentation results (a) are the video foreground extraction results in a simple background and (b) are the relatively static video segmentation results in a natural background. It can be seen that the algorithm proposed in this paper can not only automatically. The function of video foreground extraction is completed, and it is suitable for videos with unchanged or changed background. It has good adaptability, the algorithm can get better foreground extraction results, and it will have a wider range of application prospects and spaces.

We mainly talk about video foreground extraction and extraction technology and use the integral map in the calculation of KDE probability density, which simplifies the program complexity and speeds up the program running speed. Then, the principle of continuous consistency is combined with the geodesic distance to get the foreground extraction result of the current frame of the video. This method can automatically extract the foreground and is simple and effective. It runs faster, and the experimental results are good.

The reconstruction effect of the ZNCC method used in this method is better than the SAB method, and the reconstruction error is nearly 5% lower than the SAB method. Specifically, the SAB method uses a logical correlation method to reconstruct speckle images, which is prone to incomplete reconstruction or scene details cannot be reconstructed, and the contrast of speckle brightness is not obvious due to the absorption of black objects, and reconstruction is performed after binarization. The effect is particularly bad. The ZNCC correlation operator used in this paper eliminates the effect of uneven brightness of the speckle image by removing the average value of pixels in each window and, on the other hand, can retain the complete and effective information of the speckle image, so it is highly adaptive to changes in lighting and more robust depth recovery results can be obtained.

4.2.2. The Image Processed by the Algorithm. As shown in Figure 4, it can be seen from the figure that the distribution of gray histograms on the right is significantly more uniform than that on the left, which also shows that the contrast of the right image in Figure 4 is higher than that on the left and is easier to observe. The above image was captured with the camera in the external trigger mode. In this mode, the camera is triggered with a 30 Hz external trigger signal. After receiving the trigger signal, the camera outputs images at a frame rate of 30 Hz. For VGA output, the image is output at a frame rate of 60 Hz. In this way, image processing and display are performed, while the image is being collected, which meets the system’s requirements for real-time performance.

4.3. Automatic Interaction Analysis. The traditional interaction is manual interaction, which is to manually determine the foreground and background. Automatic interaction is based on the position of the human eye and then uses some prior knowledge of the frontal image of the relevant human

Table 1: Picture classifier detection results.
Experimental results

Haar features
Percentage (%)
EOH characteristics
Percentage (%)
Haar feature combined with EOH feature
Percentage (%)
body to automatically obtain the foreground and background and complete the automatic interactive process so that the foreground extraction process of the first image in the video is converted based on interactive image cutout process for lines. The process of its automatic interaction is firstly through the human eye detection process, the lines that target the two eyes and then take the downward vertical line to get the lines of the lower body of the human body, so that the determined foreground area of a single image can be obtained, and on this basis, the lines of the background area are determined to expand the foreground extraction problem into a single natural image foreground extraction process. As shown in Figure 5, for the human eye detection result, two human eye targets are connected to get the inner line of the target, its length \(d \) is calculated, its corresponding midvertical line is drawn, and only the length \(d \) above the human eye line exceeded the lower end. When the distance is 2 times, the horizontal downward shift line of the human eye line with a length of \(1.2 \times d \) is obtained, and at the 3 times length, the horizontal downward shift line with twice the length of the human eye line is obtained to obtain the final foreground interaction line, as shown in Figure 5(c); it is indicated by a blue line. The interactive background in Figure 5(c) is represented by a green line, which is the two horizontal translation lines of the midperpendicular line connected by the human eye. The distance from the midperpendicular line is \(3xd \).

By combining EOH features and Haar features, and applying them to the improved real Adaboost algorithm to detect human eyes, the Adaboost algorithm is a fast detection method. The rate of USB cameras is generally 15 frames/second to 25 frames/S, and in a 240 \(\times \) 320 picture, the method in this paper only takes about 59 ms, which is enough to complete the automatic interactive in the video in real time, so as to facilitate subsequent image foreground extraction.

5. Conclusions

Image segmentation is one of the difficulties in computer vision and image processing. Traditional automatic segmentation is difficult to segment the target of interest from complex backgrounds, so interactive image segmentation by user-added guidance information has become a hot spot of current research. Based on the full understanding of the interactive image segmentation algorithm, this paper analyzes the basic principles and solutions of existing random walk models in detail. Based on the region growth and
MeanShiR theory, a new method based on MeanShift and random walk is proposed named interactive image segmentation algorithm. The main work of this article is summarized as follows:

1. The segmentation principle of the traditional random walk algorithm is introduced, the image segmentation problem is transformed into a Dirichlet problem with boundary conditions, and the solution process of the Dirichlet problem is briefly introduced and then points out the problems of the traditional random walk algorithm: computation time problem, noise interference problem, interactive operation problem, and deep sag problem.

2. MeanShift is used to presegment, the image to be divided is divided into some homogeneous regions, homogeneous regions are used as nodes, and then random walk segmentation is performed. The calculation of random walk is reduced, and the antinoise performance of the algorithm is improved.

3. The seed point is improved. The auxiliary seed point is determined based on the size of the small area presegmented by MeanShift. The auxiliary seed point and the original seed point are used to randomly walk, thereby simplifying the user’s interactive operation. At the same time, the segmentation accuracy of the random walk algorithm is improved.

4. The correction link of the segmentation result is increased. If the segmentation result is not ideal, the user can increase the seed points in the nonideal area to resegment, which improves the utilization rate of user information.

5. In order to verify the effectiveness and practicability of the improved algorithm, the improved algorithm is applied to the segmentation of natural images and medical images. Experimental results show that the improved algorithm can accurately segment the target with less guidance information. At the same time, the paper also analyzes the antinoise performance of the improved algorithm. Experimental results show that the improved algorithm can effectively suppress the impact of noise. Finally, this paper uses four commonly used performance evaluation indicators: MAD, HD, AOM, and ME to prove from the data that the proposed algorithm is superior to the other two algorithms.

Based on the research in this article, the following aspects will be further studied: (1) the choice of interaction mode. The interaction mode selected in this paper is to mark the target and background seed points on the image to be segmented. When the image to be segmented is more complex, a large number of seed points are needed, which increases the user’s difficulty in operation. Therefore, new interaction methods need to be researched to further simplify user operations. (2) Utilization of edge information.

The random walk algorithm in this paper is a region-based method, which makes less use of the edge information of the image, so the segmentation effect of narrow and long regions is not ideal. Therefore, we can consider combining regions and edges in the future. (3) The most important feature of the interactive image segmentation algorithm for user interface development is human–computer interaction. By developing the user interface, the user’s operation is simpler and the application range of the algorithm is increased.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 41872252), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (no. CUGQY1911), and Computer Subject Team Building Project, Huanggang Normal University.

References

[1] J. Andreu-Perez, C. C. Y. Poon, R. D. Merrifield, S. T. C. Wong, and G.-Z. Yang, “Big data for health,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 4, pp. 1193–1208, 2015.

[2] Z. D. Stephens, S. Y. Lee, F. Faghri et al., “Big data: astronomical or genomical?” PLoS Biology, vol. 13, no. 7, Article ID e1002195, 2015.

[3] I. A. T. Hashem, V. Chang, N. B. Anuar et al., “The role of big data in smart city,” International Journal of Information Management, vol. 36, no. 5, pp. 748–758, 2016.

[4] M. Zaharia, R. S. Xin, P. Wendell et al., “Apache spark: a unified engine for big data processing,” Communications of the Acm, vol. 59, no. 11, pp. 56–65, 2016.

[5] T. Sherwood, M. H. E. Ahmad, and M. H. Yap, “Formulating efficient software solution for digital image processing system,” Software: Practice and Experience, vol. 46, no. 7, pp. 931–954, 2016.
[6] Z. Zhang, L. Zhang, X. Deng, and G. Hu, “Machine vision-based medical heart image processing instrument for visualization of 3D cardiac structure: a visual display device,” *Journal of Medical Imaging and Health Informatics*, vol. 6, no. 6, pp. 1399–1408, 2016.

[7] G. Kagadis, C. Alexakos, P. Mihailidis et al., “SU-E-I-69: a cloud based application for mri brain image processing,” *Medical Physics*, vol. 42, no. 6, pp. 3257-3258, 2015.

[8] C. J. Russo and R. Henderson, “Ewald sphere correction using a single side-band image processing algorithm,” *Ultramicroscopy*, vol. 187, pp. 26–33, 2018.

[9] Y. Lv, X. Zhang, W. Kang, and Y. Duan, “Traffic flow prediction with big data: a deep learning approach.” *IEEE Transactions on Intelligent Transportation Systems*, vol. 16, no. 2, pp. 865–873, 2015.

[10] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang, “Big data-driven optimization for mobile networks toward 5G,” *IEEE Network*, vol. 30, no. 1, pp. 44–51, 2016.

[11] A. De Mauro, M. Greco, and M. Grimaldi, “A formal definition of big data based on its essential features,” *Library Review*, vol. 65, no. 3, pp. 122–135, 2016.

[12] D. Jiang, S. Wu, and G. Chen, “epiC: an extensible and scalable system for processing big data,” *Proceedings of the VLDB Endowment*, vol. 7, no. 7, pp. 541–552, 2015.

[13] X. Peng, D. Deng, and S. Cheng, “Key technologies of electric power big data and its application prospects in smart grid,” *Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering*, vol. 35, no. 3, pp. 503–511, 2015.

[14] Z. Xu, G. L. Frankwick, and E. Ramirez, “Effects of big data analytics and traditional marketing analytics on new product success: a knowledge fusion perspective,” *Journal of Business Research*, vol. 69, no. 5, pp. 1562–1566, 2016.

[15] P. E. Bourne, J. R. Lorsch, and E. D. Green, “Perspective: sustaining the big-data ecosystem,” *Nature*, vol. 527, no. 7576, pp. S16–S17, 2015.

[16] D. Berberidis, V. Kekatos, and G. B. Giannakis, “Online censoring for large-scale regressions with application to streaming big data,” *IEEE Transactions on Signal Processing*, vol. 64, no. 15, pp. 3854–3867, 2016.

[17] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data storage systems in cloud computing: perspectives and challenges,” *IEEE Internet of Things Journal*, vol. 4, no. 1, pp. 75–87, 2017.

[18] D. C. Angus, “Fusing randomized trials with big data: the key to self-learning health care systems?” *JAMA: Journal of the American Medical Association*, vol. 314, no. 8, pp. 767-768, 2015.

[19] S. I. Mooney, D. J. Westreich, and A. M. El-Sayed, “Epidemiology in the era of big data,” *Epidemiology*, vol. 26, no. 3, pp. 390–394, 2015.

[20] N. Kshetri, “Big data’s role in expanding access to financial services in China,” *International Journal of Information Management*, vol. 36, no. 3, pp. 297–308, 2016.

[21] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication on encrypted big data in cloud,” *IEEE Transactions on Big Data*, vol. 2, no. 2, pp. 138–150, 2016.

[22] Z. M. Zhang, M. A. Ma, and X. M. Wang, “Processing of earth observation big data: challenges and countermeasures,” *Chinese Science Bulletin*, vol. 60, no. 5-6, p. 470, 2015.

[23] X. Wang, Y. Zhang, V. C. M. Leung, N. Guizani, and T. Jiang, “D2D big data: content deliveries over wireless device-to-device sharing in large-scale mobile networks,” *IEEE Wireless Communications*, vol. 25, no. 1, pp. 32–38, 2018.

[24] W. van der Aalst and E. Damiani, “Processes meet big data: connecting data,” *IEEE Transactions on Services Computing*, vol. 8, no. 6, p. 1, 2015.