Min-Cost 2-Connected Subgraphs With k Terminals

Chandra Chekuri∗ Nitish Korula†

Abstract

In the k-2VC problem, we are given an undirected graph G with edge costs and an integer k; the goal is to find a minimum-cost 2-vertex-connected subgraph of G containing at least k vertices. A slightly more general version is obtained if the input also specifies a subset $S \subseteq V$ of terminals and the goal is to find a subgraph containing at least k terminals. Closely related to the k-2VC problem, and in fact a special case of it, is the k-2EC problem, in which the goal is to find a minimum-cost 2-edge-connected subgraph containing k vertices. The k-2EC problem was introduced by Lau et al. [22], who also gave a poly-logarithmic approximation for it. No previous approximation algorithm was known for the more general k-2VC problem. We describe an $O(\log n \cdot \log k)$ approximation for the k-2VC problem.

1 Introduction

Connectivity and network design problems play an important role in combinatorial optimization and algorithms both for their theoretical appeal and their many real-world applications. An interesting and large class of problems are of the following type: given a graph $G(V, E)$ with edge or node costs, find a minimum-cost subgraph H of G that satisfies certain connectivity properties. For example, given an integer $\lambda > 0$, one can ask for the minimum-cost spanning subgraph that is λ-edge or λ-vertex connected. If $\lambda = 1$ then this is the classical minimum spanning tree (MST) problem. For $\lambda > 1$ the problem is NP-hard and also APX-hard to approximate. More general versions of connectivity problems are obtained if one seeks a subgraph in which a subset of the nodes $S \subseteq V$ referred to as terminals are λ-connected. The well-known Steiner tree problem is to find a minimum-cost subgraph that (1)-connects a given set S. Many of these problems are special cases of the survivable network design problem (SNDP). In SNDP, each pair of nodes $u, v \in V$ specifies a connectivity requirement $r(u, v)$ and the goal is to find a minimum-cost subgraph that has $r(u, v)$ disjoint paths for each pair u, v. Given the intractability of these connectivity problems, there has been a large amount of work on approximation algorithms. A number of elegant and powerful techniques and results have been developed over the years (see [19, 25]). In particular, the primal-dual method [11, 17] and iterated rounding [20] have led to some remarkable results including a 2-approximation for edge-connectivity SNDP [20].

An interesting class of problems, related to some of the connectivity problems described above, is obtained by requiring that only k of the given terminals be connected. These problems are partly motivated by applications in which one seeks to maximize profit given a upper bound (budget) on the cost. For example, a useful problem in vehicle routing applications is to find a path that maximizes the number of vertices in it subject to a budget B on the length of the path. In the exact optimization setting, the profit maximization problem is equivalent to the problem of minimizing the cost/length of a path subject to the constraint that at least k vertices are included. Of course the two versions need not be approximation equivalent, nevertheless, understanding one

∗Dept. of Computer Science, University of Illinois, Urbana, IL 61801. Partially supported by NSF grants CCF 07-28782 and CNS-0721899, and a US-Israeli BSF grant 2002276. chekuri@cs.uiuc.edu

†Dept. of Computer Science, University of Illinois, Urbana, IL 61801. Partially supported by NSF grant CCF 07-28782. nkorula2@uiuc.edu
is often fruitful or necessary to understand the other. The most well-studied of these problems is the \(k \)-MST problem; the goal here is to find a minimum-cost subgraph of the given graph \(G \) that contains at least \(k \) vertices (or terminals). This problem has attracted considerable attention in the approximation algorithms literature and its study has led to several new algorithmic ideas and applications \([3,15,14,6,4]\). We note that the Steiner tree problem can be relatively easily reduced in an approximation preserving fashion to the \(k \)-MST problem. More recently, Lau et al. \([22]\) considered the natural generalization of \(k \)-MST to higher connectivity. In particular they defined the \((k, \lambda)\)-subgraph problem to be the following: find a minimum-cost subgraph of the given graph \(G \) that contains at least \(k \) vertices and is \(\lambda \)-edge connected. We use the notation \(k\text{-}\lambda\text{EC} \) to refer to this problem. In \([22]\) an \(O(\log^3 k) \) approximation was claimed for the \(k\text{-}2\text{EC} \) problem. However, the algorithm and proof in \([22]\) are incorrect. More recently, and in independent work from ours, the authors of \([22]\) obtained a different algorithm for \(k\text{-}2\text{EC} \) that yields an \(O(\log n \log k) \) approximation. We give later a more detailed comparison between their approach and ours. It is also shown in \([22]\) that a good approximation for \(k\text{-}\lambda\text{EC} \) when \(\lambda \) is large would yield an improved algorithm for the \(k \)-densest subgraph problem \([12]\); in this problem one seeks a \(k \)-vertex subgraph of a given graph \(G \) that has the maximum number of edges. The \(k \)-densest subgraph problem admits an \(O(n^\delta) \) approximation for some fixed constant \(\delta < 1/3 \) \([12]\), but has resisted attempts at an improved approximation for a number of years now.

In this paper we consider the vertex-connectivity generalization of the \(k \)-MST problem. We define the \(k\text{-}\lambda\text{VC} \) problem as follows: Given an integer \(k \) and a graph \(G \) with edge costs, find the minimum-cost \(\lambda \)-vertex-connected subgraph of \(G \) that contains at least \(k \) vertices. We also consider the terminal version of the problem where the subgraph has to contain \(k \) terminals from a given terminal set \(S \subseteq V \). It can be easily shown that the \(k\text{-}\lambda\text{EC} \) problem reduces to the \(k\text{-}\lambda\text{VC} \) problem for any \(k \geq 1 \). We also observe that the \(k\text{-}\lambda\text{EC} \) problem with terminals can be easily reduced, as follows, to the uniform problem where every vertex is a terminal: For each terminal \(v \in S \), create \(n \) dummy vertices \(v_1, v_2, \ldots, v_n \) and attach \(v_i \) to \(v \) with \(\lambda \) parallel edges of zero cost. Now set \(k' = k \ell n \) in the new graph. One can avoid using parallel edges by creating a clique on \(v_1, v_2, \ldots, v_n \) using zero-cost edges and connecting \(\lambda \) of these vertices to \(v \). Note, however, that this reduction only works for edge-connectivity. We are not aware of a reduction that reduces the \(k\text{-}\lambda\text{VC} \) problem with a given set of terminals to the \(k\text{-}\lambda\text{VC} \) problem, even when \(\lambda = 2 \). In this paper we consider the \(k\text{-}2\text{VC} \) problem; our main result is the following.

Theorem 1.1. There is an \(O(\log \ell \cdot \log k) \) approximation for the \(k\text{-}2\text{VC} \) problem where \(\ell \) is the number of terminals.

Corollary 1.2. There is an \(O(\log \ell \cdot \log k) \) approximation for the \(k\text{-}2\text{EC} \) problem where \(\ell \) is the number of terminals.

One of the technical ingredients that we develop is the theorem below which may be of independent interest. Given a graph \(G \) with edge costs and weights on terminals \(S \subseteq V \), we define \textit{density}(\(H \)) for a subgraph \(H \) to be the ratio of the cost of edges in \(H \) to the total weight of terminals in \(H \).

Theorem 1.3. Let \(G \) be an \(2 \)-vertex-connected graph with edge costs and let \(S \subseteq V \) be a set of terminals. Then, there is a simple cycle \(C \) containing at least 2 terminals (a non-trivial cycle) such that the density of \(C \) is at most the density of \(G \). Moreover, such a cycle can be found in polynomial time.

Using the above theorem and an LP approach we obtain the following.

Corollary 1.4. Given a graph \(G(V, E) \) with edge costs and \(\ell \) terminals \(S \subseteq V \), there is an \(O(\log \ell) \) approximation for the problem of finding a minimum-density non-trivial cycle.

Note that Theorem 1.3 and Corollary 1.4 are of interest because we seek a cycle with at least two terminals. A minimum-density cycle containing only one terminal can be found by using the well-known min-mean cycle
algorithm in directed graphs \[2\]. We remark, however, that although we suspect that the problem of finding a minimum-density non-trivial cycle is NP-hard, we currently do not have a proof. Theorem \[1.3\] shows that the problem is equivalent to the dens-2VC problem, defined in the next section.

Remark: The reader may wonder whether \(k\)-2EC or \(k\)-2VC admit a constant factor approximation, since the \(k\)-MST problem admits one. We note that the main technical tool which underlies \(O(1)\) approximations for \(k\)-MST problem \[5, 15, 11\] is a special property that holds for a LP relaxation of the prize-collection Steiner tree problem \[17\] which is a Lagrangian relaxation of the Steiner tree problem. Such a property is not known to hold for generalizations of \(k\)-MST including \(k\)-2EC and \(k\)-2VC and the \(k\)-Steiner forest problem \[18\]. Thus, one is forced to rely on alternative and problem-specific techniques.

1.1 Overview of Technical Ideas

We consider the rooted version of \(k\)-2VC : the goal is to find a min-cost subgraph that 2-connects at least \(k\) terminals to a specified root vertex \(r\). It is relatively straightforward to reduce \(k\)-2VC to its rooted version (see section \[2\] for details.) We draw inspiration from algorithmic ideas that led to poly-logarithmic approximations for the \(k\)-MST problem.

To describe our approach to the rooted \(k\)-2VC problem, we define a closely related problem. For a subgraph \(H\) that contains \(r\), let \(k(H)\) be the number of terminals that are 2-connected to \(r\) in \(H\). Then the *density* of \(H\) is simply the ratio of the cost of \(H\) to \(k(H)\). The dens-2VC problem is to find a 2-connected subgraph of minimum density. An \(O(\log \ell)\) approximation for the dens-2VC problem (where \(\ell\) is the number of terminals) can be derived in a somewhat standard way by using a bucketing and scaling trick on a linear programming relaxation for the problem. We exploit the known bound of \(2\) on the integrality gap of a natural LP for the SNPD problem with vertex connectivity requirements in \{0, 1, 2\} \[13\]. The bucketing and scaling trick has seen several uses in the past and has recently been highlighted in several applications \[8,9,7\].

Our algorithm for \(k\)-2VC uses a greedy approach at the high level. We start with an empty subgraph \(G'\) and use the approximation algorithm for dens-2VC in an iterative fashion to greedily add terminals to \(G'\) until at least \(k' \geq k\) terminals are in \(G'\). This approach would yield an \(O(\log \ell \log k)\) approximation if \(k' = O(k)\). However, the last iteration of the dens-2VC algorithm may add many more terminals than desired with the result that \(k' \gg k\). In this case we cannot bound the quality of the solution obtained by the algorithm. To overcome this problem, one can try to prune the subgraph \(H\) added in the last iteration to only have the desired number of terminals. For the \(k\)-MST problem, \(H\) is a tree and pruning is quite easy. We remark that this yields a rather straightforward \(O(\log n \log k)\) approximation for \(k\)-MST and could have been discovered much before a more clever analysis given in \[3\].

One of our technical contributions is to give a pruning step for the \(k\)-2VC problem. To accomplish this, we use two algorithmic ideas. The first is encapsulated in the cycle finding algorithm of Theorem \[1.3\] Second, we use this cycle finding algorithm to repeatedly merge subgraphs until we get the desired number of terminals in one subgraph. This latter step requires care. The cycle merging scheme is inspired by a similar approach from the work of Lau et al. \[22\] on the \(k\)-2EC problem and in \[10\] on the directed orienteering problem. These ideas yield an \(O(\log \ell \cdot \log^2 k)\) approximation. We give a slightly modified cycle-merging algorithm with a more sophisticated and non-trivial analysis to obtain an improved \(O(\log \ell \cdot \log k)\) approximation.

Some remarks are in order to compare our work to that of \[22\] on the \(k\)-2EC problem. The combinatorial algorithm in \[22\] is based on finding a low-density cycle or a related structure called a bi-cycle. The algorithm in \[22\] to find such a structure is incorrect. Further, the cycles are contracted along the way which limits the approach to the \(k\)-2EC problem (contracting a cycle in 2-node-connected graph may make the resulting graph not 2-node-connected). In our algorithm we do not contract cycles and instead introduce dummy terminals with weights to capture the number of terminals in an already formed component. This requires us to now address the minimum-density non-trivial simple cycle problem which we do via Theorem \[1.4\] and Corollary \[1.4\] in
independent work, Lau et al. [23] obtain a new and correct \(O(\log n \log k) \)-approximation for \(k\)-2EC. They also follow the same approach that we do in using the LP for finding dense subgraphs followed by the pruning step. However, in the pruning step they use a completely different approach; they use the sophisticated idea of no-where zero 6-flows [24]. Although the use of this idea is elegant, the approach works only for the \(k\)-2EC problem, while our approach is less complex and leads to an algorithm for the more general \(k\)-2VC problem.

2 The Algorithm for the \(k\)-2VC Problem

We work with graphs in which some vertices are designated as terminals. Given a graph \(G \) with edge costs and terminal weights, we define the density of a subgraph \(H \) to be sum of the costs of edges in \(H \) divided by the sum of the weights of terminals in \(H \). Henceforth, we use 2-connected graph to mean a 2-vertex-connected graph.

The goal of the \(k\)-2VC problem is to find a minimum-cost 2-connected subgraph on at least \(k \) terminals.\(^1\) Recall that in the rooted \(k\)-2VC problem, the goal is to find a min-cost subgraph on at least \(k \) terminals in which every terminal is 2-connected to the specified root \(r \). The (unrooted) \(k\)-2VC problem can be reduced to the rooted version by guessing 2 vertices \(u, v \) that are in an optimal solution, creating a new root vertex \(r \), and connecting it with 0-cost edges to \(u \) and \(v \). It is not hard to show that any solution to the rooted problem in the modified graph can be converted to a solution to the unrooted problem by adding 2 minimum-cost vertex-disjoint paths between \(u \) and \(v \). (Since \(u \) and \(v \) are in the optimal solution, the cost of these added paths cannot be more than \(OPT \).) We omit further details from this extended abstract.

In the dens-2VC problem, the goal is to find a subgraph \(H \) of minimum density in which all terminals of \(H \) are 2-connected to the root. The following lemma is proved in Section 2.1 below. It relies on a 2-approximation, via a natural LP, for the min-cost 2-connectivity problem due to Fleischer, Jain and Williamson [13], and some standard techniques.

Lemma 2.1. There is an \(O(\log \ell) \)-approximation algorithm for the dens-2VC problem, where \(\ell \) is the number of terminals in the given instance.

Let \(OPT \) be the cost of an optimal solution to the \(k\)-2VC problem. We assume knowledge of \(OPT \); this can be dispensed with using standard methods. We pre-process the graph by deleting any terminal that does not have 2 vertex-disjoint paths to the root \(r \) of total cost at most \(OPT \). The high-level description of the algorithm for the rooted \(k\)-2VC problem is given below.

\[
\begin{align*}
k' & \leftarrow k, \quad G' \text{ is the empty graph.} \\
\text{While } (k' > 0): \\
& \quad \text{Use the approximation algorithm for dens-2VC to find a subgraph } H \text{ in } G. \\
& \quad \text{If } (k(H) \leq k'): \\
& \qquad G' \leftarrow G' \cup H, \quad k' \leftarrow k' - k(H) \\
& \qquad \text{Mark all terminals in } H \text{ as non-terminals.} \\
& \quad \text{Else: } \\
& \qquad \text{Prune } H \text{ to obtain } H' \text{ that contains } k' \text{ terminals.} \\
& \qquad G' = G' \cup H', \quad k' \leftarrow 0 \\
\text{Output } G'
\end{align*}
\]

\(^1\)In fact, our algorithm solves the harder problem in which terminals have weights, and the goal is to find a minimum-cost 2-connected subgraph in which the sum of terminal weights is at least \(k \). For simplicity of exposition, however, we stick to the more restricted version.
At the beginning of any iteration of the while loop, the graph contains a solution to the dens-2VC problem of density at most $\frac{OPT}{\ell}$. Therefore, the graph H returned always has density at most $O(\log \ell)\frac{OPT}{k}$. If $k(H) \leq k'$, we add H to G' and decrement k'; we refer to this as the augmentation step. Otherwise, we have a graph H of good density, but with too many terminals. In this case, we prune H to find a graph with the required number of terminals; this is the pruning step. A simple set-cover type argument shows the following lemma:

Lemma 2.2. If, at every augmentation step, we add a graph of density at most $O(\log \ell)\frac{OPT}{k}$ (where k' is the number of additional terminals that must be selected), the total cost of all the augmentation steps is at most $O(\log \ell \cdot \log k)OPT$.

Therefore, we now only have to bound the cost of the graph H' added in the pruning step; we prove the following theorem in Section 4.

Theorem 2.3. Let (G, k) be an instance of the rooted k-2VC problem with root r, such that every vertex of G has 2 vertex-disjoint paths to r of total cost at most L, and such that density$(G) \leq \rho$. There is a polynomial-time algorithm to find a solution to this instance of cost at most $O(\log k)\rho k + 2L$.

We can now prove our main result for the k-2VC problem, Theorem 1.1.

Proof of Theorem 1.1: Let OPT be the cost of an optimal solution to the (rooted) k-2VC problem. By Lemma 2.2, the total cost of the augmentation steps of our greedy algorithm is $O(\log \ell \cdot \log k)OPT$. To bound the cost of the pruning step, let k' be the number of additional terminals that must be covered just prior to this step. The algorithm for the dens-2VC problem returns a graph H with $k(H) > k'$ terminals, and density at most $O(\log \ell)\frac{OPT}{k}$. As a result of our pre-processing step, every vertex has 2 vertex-disjoint paths to r of total cost at most OPT. Now, we use Theorem 2.3 to prune H and find a graph H' with k' terminals and cost at most $O(\log k)\text{density}(H)k' + 2OPT \leq O(\log \ell \cdot \log k)OPT + 2OPT$. Therefore, the total cost of our solution is $O(\log \ell \cdot \log k)OPT$.

It remains only to prove Lemma 2.1 that there is an $O(\log \ell)$-approximation for the dens-2VC problem, and Theorem 2.3 bounding the cost of the pruning step. We prove the former in Section 2.1 below. Before the latter is proved in Section 3 we develop some tools in Section 3. Chief among these tools is Theorem 1.3.

2.1 An $O(\log \ell)$-approximation for the dens-2VC problem

Recall that the dens-2VC problem was defined as follows: Given a graph $G(V, E)$ with edge-costs, a set $T \subseteq V$ of terminals, and a root $r \in V(G)$, find a subgraph H of minimum density, in which every terminal of H is 2-connected to r. (Here, the density of H is defined as the cost of H divided by the number of terminals it contains, not including r.) We describe an algorithm for dens-2VC that gives an $O(\log \ell)$-approximation, and sketch its proof. We use an LP based approach and a bucketing and scaling trick (see [7, 8, 9] for applications of this idea), and a constant-factor bound on the integrality gap of an LP for SNDP with vertex-connectivity requirements in $\{0, 1, 2\}$ [13].

We define LP-dens as the following LP relaxation of dens-2VC. For each terminal t, the variable y_t indicates whether or not v is chosen in the solution. (By normalizing $\sum_t y_t$ to 1, and minimizing the sum of edge costs, we minimize the density.) C_t is the set of all simple cycles containing t and the root r; for any $C \in C_t$, f_C indicates how much ‘flow’ is sent from v to r through C. (Note that a pair of vertex-disjoint paths is a cycle; the flow along a cycle is 1 if we can 2-connect t to r using the edges of the cycle.) The variable x_e indicates whether the edge e is used by the solution.
\[
\begin{align*}
\min & \sum_{e \in E} c(e) x_e \\
\sum_{t \in T} y_t &= 1 \\
\sum_{C \in C_t} f_C &\geq y_t \quad (\forall t \in T) \\
\sum_{C \in C_t | e \in C} f_C &\leq x_e \quad (\forall t \in T, e \in E) \\
x_e, f_C, y_t &\geq 0
\end{align*}
\]

It is not hard to see that an optimal solution to \textbf{LP-dens} has cost at most the density of an optimal solution to \textbf{dens-2VC}. We now show how to obtain an integral solution of density at most \(O(\log \ell)\)\(\OPT_{LP}\), where \(\OPT_{LP}\) is the cost of an optimal solution to \textbf{LP-dens}. The linear program \textbf{LP-dens} has an exponential number of variables but a polynomial number of non-trivial constraints; it can, however, be solved in polynomial time.

Fix an optimal solution to \textbf{LP-dens} of cost \(\OPT_{LP}\), and for each \(0 \leq i < 2 \log \ell\) (for ease of notation, assume \(\log \ell\) is an integer), let \(Y_i\) be the set of terminals \(t\) such that \(2^{-(i+1)} < y_t \leq 2^{-i}\). Since \(\sum_{t \in T} y_t = 1\), there is some index \(i\) such that \(\sum_{t \in Y_i} y_t \geq \frac{1}{2 \log \ell}\). Since every terminal \(t \in Y_i\) has \(y_t \leq 2^{-i}\), the number of terminals in \(Y_i\) is at least \(2^i - 1\). We claim that there is a subgraph \(H\) of \(G\) with cost at most \(O(2^{i+2}\OPT_{LP})\), in which every terminal of \(Y_i\) is 2-connected to the root. If this is true, the density of \(H\) is at most \(O(\log \ell \cdot \OPT_{LP})\), and hence we have an \(O(\log \ell)\)-approximation for the \textbf{dens-2VC} problem.

To prove our claim about the cost of the subgraph \(H\) in which every terminal of \(Y_i\) is 2-connected to \(r\), consider scaling up the given optimum solution of \textbf{LP-dens} by a factor of \(2^{i+1}\). For each terminal \(t \in Y_i\), the flow from \(t\) to \(r\) in this scaled solution is at least 1, and the cost of the scaled solution is \(2^{i+1}\OPT_{LP}\).

In [13], the authors describe a linear program \(LP_1\) to find a minimum-cost subgraph in which a given set of terminals is 2-connected to the root, and show that this linear program has an integrality gap of 2. The variables \(x_e\) in the ‘scaled solution’ to \textbf{LP-dens} correspond to a feasible solution of \(LP_1\) with \(Y_i\) as the set of terminals; the integrality gap of 2 implies that there is a subgraph \(H\) in which every terminal of \(Y_i\) is 2-connected to the root, with cost at most \(2^{i+2}\OPT_{LP}\).

Therefore, the algorithm for \textbf{dens-2VC} is:

1. Find an optimal fractional solution to \textbf{LP-dens}.
2. Find a set of terminals \(Y_i\) such that \(\sum_{t \in Y_i} y_t \geq \frac{1}{2 \log \ell}\).
3. Find a min-cost subgraph \(H\) in which every terminal in \(Y_i\) is 2-connected to \(r\) using the algorithm of [13]. \(H\) has density at most \(O(\log \ell)\) times the optimal solution to \textbf{dens-2VC}.

3 Finding Low-density Non-trivial Cycles

A cycle \(C \subseteq G\) is non-trivial if it contains at least 2 terminals. We define the min-density non-trivial cycle problem: Given a graph \(G(V, E)\), with \(S \subseteq V\) marked as terminals, edge costs and terminal weights, find a minimum-density cycle that contains at least 2 terminals. Note that if we remove the requirement that the cycle be non-trivial (that is, it contains at least 2 terminals), the problem reduces to the min-mean cycle problem in

\(^2\)This is an abuse of the term ‘solution’, since after scaling, \(\sum_{t \in T} y_t = 2^{i+1}\)
directed graphs, and can be solved exactly in polynomial time (see [2]). Algorithms for the min-density nontrivial cycle problem are a useful tool for solving the \(k\)-2VC and \(k\)-2EC problems. In this section, we give an \(O(\log \ell)\)-approximation algorithm for the minimum-density non-trivial cycle problem.

First, we prove Theorem 1.3 that a 2-connected graph with edge costs and terminal weights contains a simple non-trivial cycle, with density no more than the average density of the graph. We give two algorithms to find such a cycle; the first, described in Section 3.1, is simpler, but the running time is not polynomial. A more technical proof that leads to a strongly polynomial-time algorithm is described in Section 3.2; we recommend this proof be skipped on a first reading.

3.1 An Algorithm to Find Cycles of Average Density

To find a non-trivial cycle of density at most that of the 2-connected input graph \(G\), we will start with an arbitrary non-trivial cycle, and successively find cycles of better density until we obtain a cycle with density at most \(\text{density}(G)\). The following lemma shows that if a cycle \(C\) has an ear with density less than \(\text{density}(C)\), we can use this ear to find a cycle of lower density.

Lemma 3.1. Let \(C\) be a non-trivial cycle, and \(H\) an ear incident to \(C\) at \(u\) and \(v\), such that \(\frac{\text{cost}(H)}{\text{weight}(H - \{u, v\})} < \text{density}(C)\). Let \(S_1\) and \(S_2\) be the two internally disjoint paths between \(u\) and \(v\) in \(C\). Then \(H \cup S_1\) and \(H \cup S_2\) are both simple cycles and one of these is non-trivial and has density less than \(\text{density}(C)\).

Proof. \(C\) has at least 2 terminals, so it has finite density; \(H\) must then have at least 1 terminal. Let \(c_1\), \(c_2\) and \(c_H\) be, respectively, the sum of the costs of the edges in \(S_1\), \(S_2\) and \(H\), and let \(w_1\), \(w_2\) and \(w_H\) be the sum of the weights of the terminals in \(S_1\), \(S_2\) and \(H - \{u, v\}\).

Assume w.l.o.g. that \(S_1\) has density at most that of \(S_2\). (That is, \(c_1/w_1 \leq c_2/w_2\). \(^3\) \(S_1\) must contain at least one terminal, and so \(H \cup S_1\) is a simple non-trivial cycle. The statement \(\text{density}(H \cup S_1) < \text{density}(C)\) is equivalent to \((c_H + c_1)(w_1 + w_2) < (c_1 + c_2)(w_H + w_1)\).

\[
\begin{align*}
(c_H + c_1)(w_1 + w_2) &= c_1w_1 + c_1w_2 + c_H(w_1 + w_2) \\
&\leq c_1w_1 + c_2w_1 + c_H(w_1 + w_2) & \text{(density}(S_1) \leq \text{density}(S_2)) \\
&< c_1w_1 + c_2w_1 + (c_1 + c_2)w_H & \text{density}(H/w_H < \text{density}(C)) \\
&= (c_1 + c_2)(w_H + w_1)
\end{align*}
\]

Therefore, \(H \cup S_1\) is a simple cycle containing at least 2 terminals of density less than \(\text{density}(C)\). \(\Box\)

Lemma 3.2. Given a cycle \(C\) in a 2-connected graph \(G\), let \(G'\) be the graph formed from \(G\) by contracting \(C\) to a single vertex \(v\). If \(H\) is a connected component of \(G' - v\), \(H \cup \{v\}\) is 2-connected in \(G'\).

Proof. Let \(H\) be an arbitrary connected component of \(G' - v\), and let \(H' = H \cup \{v\}\). To prove that \(H'\) is 2-connected, we first observe that \(v\) is 2-connected to any vertex \(x \in H\). (Any set that separates \(x\) from \(v\) in \(H'\) separates \(x\) from the cycle \(C\) in \(G\).)

It now follows that for all vertices \(x, y \in V(H), x\) and \(y\) are 2-connected in \(H'\). Suppose deleting some vertex \(u\) separates \(x\) from \(y\). The vertex \(u\) cannot be \(v\), since \(H\) is a connected component of \(G' - v\). But if \(u \neq v\), \(v\) and \(x\) are in the same component of \(H' - u\), since \(v\) is 2-connected to \(x\) in \(H'\). Similarly, \(v\) and \(y\) are in the same component of \(H' - u\), and so deleting \(u\) does not separate \(x\) from \(y\). \(\Box\)

We now show that given any 2-connected graph \(G\), we can find a non-trivial cycle of density no more than that of \(G\).

\(^3\)It is possible that one of \(S_1\) and \(S_2\) has cost 0 and weight 0. In this case, let \(S_1\) be the component with non-zero weight.
Theorem 3.3. Let G be a 2-connected graph with at least 2 terminals. G contains a simple non-trivial cycle X such that $\text{density}(X) \leq \text{density}(G)$.

Proof. Let C be an arbitrary non-trivial simple cycle; such a cycle always exists since G is 2-connected and has at least 2 terminals. If $\text{density}(C) > \text{density}(G)$, we give an algorithm that finds a new non-trivial cycle C' such that $\text{density}(C') < \text{density}(C)$. Repeating this process, we obtain cycles of successively better densities until eventually finding a non-trivial cycle X of density at most $\text{density}(G)$.

Let G' be the graph formed by contracting the given cycle C to a single vertex v. In G', v is not a terminal, and so has weight 0. Consider the 2-connected components of G' (from Lemma 3.2, each such component is formed by adding v to a connected component of $G' - v$), and pick the one of minimum density. If H is this component, $\text{density}(H) < \text{density}(G)$ by an averaging argument.

H contains at least 1 terminal. If it contains 2 or more terminals, recursively find a non-trivial cycle C' in H such that $\text{density}(C') \leq \text{density}(H) < \text{density}(C)$. If C' exists in the given graph G, it has the desired properties, and we are done. Otherwise, C' contains v, and the edges of C' form a ear of C in the original graph G. The density of this ear is less than the density of C, so we can apply Lemma 3.1 to obtain a non-trivial cycle in G that has density less than $\text{density}(C)$.

Finally, if H has exactly 1 terminal u, find any 2 vertex-disjoint paths using edges of H from u to distinct vertices in the cycle C. (Since G is 2-connected, there always exist such paths.) The cost of these paths is at most $\text{cost}(H)$, and concatenating these 2 paths corresponds to a ear of C in G. The density of this ear is less than $\text{density}(C)$; again, we use Lemma 3.1 to obtain a cycle in G with the desired properties.

We remark again that the algorithm of Theorem 3.3 does not lead to a polynomial-time algorithm, even if all edge costs and terminal weights are polynomially bounded. In Section 3.2, we describe a strongly polynomial-time algorithm that, given a graph G, finds a non-trivial cycle of density at most that of G. Note that neither of these algorithms may directly give a good approximation to the min-density non-trivial cycle problem, because the optimal non-trivial cycle may have density much less than that of G. However, we can use Theorem 3.3 to prove the following theorem:

Theorem 3.4. There is an α-approximation to the (unrooted) dens-2VC problem if and only if there is an α-approximation to the problem of finding a minimum-density non-trivial cycle.

Proof. Assume we have a $\gamma(\ell)$-approximation for the dens-2VC problem; we use it to find a low-density non-trivial cycle. Solve the dens-2VC problem on the given graph; since the optimal cycle is a 2-connected graph, our solution H to the dens-2VC problem has density at most $\gamma(\ell)$ times the density of this cycle. Find a non-trivial cycle in H of density at most that of H; it has density at most $\gamma(\ell)$ times that of an optimal non-trivial cycle.

Note that any instance of the (unrooted) dens-2VC problem has an optimal solution that is a non-trivial cycle. (Consider any optimal solution H of density ρ; by Theorem 1.3, H contains a non-trivial cycle of density at most ρ. This cycle is a valid solution to the dens-2VC problem.) Therefore, a $\beta(\ell)$-approximation for the min-density non-trivial cycle problem gives a $\beta(\ell)$-approximation for the dens-2VC problem.

Theorem 3.4 and Lemma 2.1 imply an $O(\log \ell)$-approximation for the minimum-density non-trivial cycle problem; this proves Corollary 1.4.

We say that a graph $G(V, E)$ is minimally 2-connected on its terminals if for every edge $e \in E$, some pair of terminals is not 2-connected in the graph $G - e$. Section 3.2 shows that in any graph which is minimally 2-connected on its terminals, every cycle is non-trivial. Therefore, the problem of finding a minimum-density non-trivial cycle in such graphs is just that of finding a minimum-density cycle, which can be solved exactly
Figure 1: H is an earring of G, with clasps c₄, c₆, c₉; c₄ is its first clasp, and c₉ its last clasp. The arrow indicates the arc of H.

in polynomial time. However, as we explain at the end of the section, this does not directly lead to an efficient algorithm for arbitrary graphs.

3.2 A Strongly Polynomial-time Algorithm to Find Cycles of Average Density

In this section, we describe a strongly polynomial-time algorithm which, given a 2-connected graph G(V, E) with edge costs and terminal weights, finds a non-trivial cycle of density at most that of G.

We begin with several definitions: Let C be a cycle in a graph G, and G′ be the graph formed by deleting C from G. Let H₁, H₂, . . . , Hₘ be the connected components of G′; we refer to these as earrings of C. For each Hᵢ, let the vertices of C incident to it be called its clasps. From the definition of an earring, for any pair of clasps of Hᵢ, there is a path between them whose internal vertices are all in Hᵢ.

We say that a vertex of C is an anchor if it is the clasp of some earring. (An anchor may be a clasp of multiple earrings.) A segment S of C is a path contained in C, such that the endpoints of S are both anchors, and no internal vertex of S is an anchor. (Note that the endpoints of S might be clasps of the same earring, or of distinct earrings.) It is easy to see that the segments partition the edge set of C. By deleting a segment, we refer to deleting its edges and internal vertices. Observe that if S is deleted from G, the only vertices of G − S that lose an edge are the endpoints of S. A segment is safe if the graph G − S is 2-connected.

Arbitrarily pick a vertex o of C as the origin, and consecutively number the vertices of C clockwise around the cycle as o = c₀, c₁, c₂, . . . , cᵣ = o. The first clasp of an earring H is its lowest numbered clasp, and the last clasp is its highest numbered clasp. (If the origin is a clasp of H, it is considered the first clasp, not the last.) The arc of an earring is the subgraph of C found by traversing clockwise from its first clasp cₚ to its last clasp cᵣ; the length of this arc is q − p. (That is, the length of an arc is the number of edges it contains.) Note that if an arc contains the origin, it must be the first vertex of the arc. Figure 1 illustrates several of these definitions.

Theorem 3.5. Let H be an earring of minimum arc length. Every segment contained in the arc of H is safe.

Proof. Let ℋ be the set of earrings with arc identical to that of H. Since they have the same arc, we refer to this as the arc of ℋ, or the critical arc. Let the first clasp of every earring in ℋ be cₐ, and the last clasp of each earring in ℋ be cₖ. Because the earrings in ℋ have arcs of minimum length, any earring H′ ∉ ℋ has a clasp cₓ that is not in the critical arc. (That is, cₓ < cₐ or cₓ > cₖ.)

We must show that every segment contained in the critical arc is safe; recall that a segment S is safe if the graph G − S is 2-connected. Given an arbitrary segment S in the critical arc, let cₚ and cₗ (p < q) be the

4If Hᵢ were simply a path, it would be an ear of C, but Hᵢ may be more complex.
anchors that are its endpoints. We prove that there are always 2 internally vertex-disjoint paths between \(c_p \) and \(c_q \) in \(G - S \); this suffices to show 2-connectivity.

We consider several cases, depending on the earrings that contain \(c_p \) and \(c_q \). Figure 2 illustrates these cases. If \(c_p \) and \(c_q \) are contained in the same earring \(H' \), it is easy to find two vertex-disjoint paths between them in \(G - S \). The first path is clockwise from \(q \) to \(p \) in the cycle \(C \). The second path is entirely contained in the earring \(H' \) (an earring is connected in \(G - C \), so we can always find such a path.)

Otherwise, \(c_p \) and \(c_q \) are clasps of distinct earrings. We consider three cases: Both \(c_p \) and \(c_q \) are clasps of earrings in \(\mathcal{H} \), one is (but not both), or neither is.

1. We first consider that both \(c_p \) and \(c_q \) are clasps of earrings in \(\mathcal{H} \). Let \(c_p \) be a clasp of \(H_1 \), and \(c_q \) a clasp of \(H_2 \). The first path is from \(c_q \) to \(c_a \) through \(H_2 \), and then clockwise along the critical arc from \(c_a \) to \(c_p \). The second path is from \(c_q \) to \(c_b \) clockwise along the critical path, and then \(c_b \) to \(c_p \) through \(H_1 \). It is easy to see that these paths are internally vertex-disjoint.

2. Now, suppose neither \(c_p \) nor \(c_q \) is a clasp of an earring in \(\mathcal{H} \). Let \(c_p \) be a clasp of \(H_1 \), and \(c_q \) a clasp of \(H_2 \). The first path we find follows the critical arc clockwise from \(c_q \) to \(c_b \) (the last clasp of the critical arc), from \(c_b \) to \(c_a \) through \(H \in \mathcal{H} \), and again clockwise through the critical arc from \(c_a \) to \(c_p \). Internal vertices of this path are all in \(H \) or on the critical arc. Let \(c_{p'} \) be a clasp of \(H_1 \) not on the critical arc, and \(c_{q'} \) be a last clasp of \(H_2 \) not on the critical arc. The second path goes from \(c_q \) to \(c_{p'} \) through \(H_1 \), from \(p' \) to \(q' \) through the cycle \(C \) outside the critical arc, and from \(c_{q'} \) to \(c_q \) through \(H_2 \). Internal vertices of this path are in \(H_1, H_2 \), or in \(C \), but not part of the critical arc (since each of \(c_{p'} \) and \(c_{q'} \) are outside the critical arc). Therefore, we have 2 vertex-disjoint paths from \(c_p \) to \(c_q \).
3. Finally, we consider the case that exactly one of \(c_p, c_q\) is a clasp of an earring in \(H\). Suppose \(c_p\) is a clasp of \(H_1 \in H\), and \(c_q\) is a clasp of \(H_2 \notin H\); the other case (where \(H_1 \notin H\) and \(H_2 \in H\) is symmetric, and omitted, though figure 2 illustrates the paths.) Let \(q'\) be the index of a clasp of \(H_2\) outside the critical arc. The first path is from \(c_q\) to \(c_b\) through the critical arc, and then from \(c_b\) to \(c_p\) through \(H_1\). The second path is from \(c_q\) to \(c_{q'}\) through \(H_2\), and from \(c_{q'}\) to \(c_p\) clockwise through \(C\). Note that the last part of this path enters the critical arc at \(c_a\), and continues through the arc until \(c_p\). Internal vertices of the first path that are in \(C\) are on the critical arc, but have index greater than \(q\). Internal vertices of the second path that belong to \(C\) are either not in the critical arc, or have index between \(c_a\) and \(c_p\). Therefore, the two paths are internally vertex-disjoint.

We now describe our algorithm to find a non-trivial cycle of good density, proving Theorem 1.3. Let \(G\) be a 2-connected graph with edge-costs and terminal weights, and at least 2 terminals. There is a polynomial-time algorithm to find a non-trivial cycle \(X\) in \(G\) such that \(\text{density}(X) \leq \text{density}(G)\).

Proof of Theorem 1.3. Let \(G\) be a graph with \(\ell\) terminals and density \(\rho\); we describe a polynomial-time algorithm that either finds a cycle in \(G\) of density less than \(\rho\), or a proper subgraph \(G'\) of \(G\) that contains all \(\ell\) terminals. In the latter case, we can recurse on \(G'\) until we eventually find a cycle of density at most \(\rho\).

We first find, in \(O(n^3)\) time, a minimum-density cycle \(C\) in \(G\). By Theorem 3.3, \(C\) has density at most \(\rho\), because the minimum-density non-trivial cycle has at most this density. If \(C\) contains at least 2 terminals, we are done. Otherwise, \(C\) contains exactly one terminal \(v\). Since \(G\) contains at least 2 terminals, there must exist at least one earring of \(C\).

Let \(v\) be the origin of this cycle \(C\), and \(H\) an earring of minimum arc length. By Theorem 3.5, every segment in the arc of \(H\) is safe. Let \(S\) be such a segment; since \(v\) was selected as the origin, \(v\) is not an internal vertex of \(S\). As \(v\) is the only terminal of \(C\), \(S\) contains no terminals, and therefore, the graph \(G' = G - S\) is 2-connected, and contains all \(\ell\) terminals of \(G\).

The proof above also shows that if \(G\) is minimally 2-connected on its terminals (that is, \(G\) has no 2-connected proper subgraph containing all its terminals), every cycle of \(G\) is non-trivial. (If a cycle contains 0 or 1 terminals, it has a safe segment containing no terminals, which can be deleted; this gives a contradiction.) Therefore, given a graph that is minimally 2-connected on its terminals, finding a minimum-density non-trivial cycle is equivalent to finding a minimum-density cycle, and so can be solved exactly in polynomial time. This suggests a natural algorithm for the problem: Given a graph that is not minimally 2-connected on its terminals, delete edges and vertices until the graph is minimally 2-connected on the terminals, and then find a minimum-density cycle. As shown above, this gives a cycle of density no more than that of the input graph, but this may not be the minimum-density cycle of the original graph. For instance, there exist instances where the minimum-density cycle uses edges of a safe segment \(S\) that might be deleted by this algorithm.

4 Pruning 2-connected Graphs of Good Density

In this section, we prove Theorem 2.3. We are given a graph \(G\) and \(S \subseteq V\), a set of at least \(k\) terminals. Further, every terminal in \(G\) has 2 vertex-disjoint paths to the root \(r\) of total cost at most \(L\). Let \(\ell\) be the number of terminals in \(G\), and \(\text{cost}(G)\) its total cost; \(\rho = \frac{\text{cost}(G)}{\ell}\) is the density of \(G\). We describe an algorithm that finds a subgraph \(H\) of \(G\) that contains at least \(k\) terminals, each of which is 2-connected to the root, and of total edge cost \(O(\log k)\rho k + 2L\).

We can assume \(\ell > (8 \log k) \cdot k\), or the trivial solution of taking the entire graph \(G\) suffices. The main phase of our algorithm proceeds by maintaining a set of 2-connected subgraphs that we call clusters, and repeatedly finding low-density cycles that merge clusters of similar weight to form larger clusters. (The weight of a cluster \(X\), denoted by \(w_X\), is (roughly) the number of terminals it contains.) Clusters are grouped into tiers by weight;
tier i contains clusters with weight at least 2^i and less than 2^{i+1}. Initially, each terminal is a separate cluster in tier 0. We say a cluster is large if it has weight at least k, and small otherwise. The algorithm stops when most terminals are in large clusters.

We now describe the algorithm MERGECLUSTERS (see next page). To simplify notation, let α be the quantity $2^\lceil \log_2 k \rceil \rho$. We say that a cycle is good if it has density at most α; that is, good cycles have density at most $O(\log k)$ times the density of the input graph.

MERGECLUSTERS:

For (each i in $\{0, 1, \ldots, (\lfloor \log_2 k \rfloor - 1)\}$) do:

If ($i = 0$):
 Every terminal has weight 1
Else:
 Mark all vertices as non-terminals
 For (each small 2-connected cluster X in tier i) do:
 Add a (dummy) terminal v_X to G of weight w_X
 Add (dummy) edges of cost 0 from v_X to two (arbitrary) distinct vertices of X
 While (G has a non-trivial cycle C of density at most α in G):
 Let $X_1, X_2, \ldots X_q$ be the small clusters that contain a terminal or an edge of C.
 (Note that the terminals in C belong to a subset of $\{X_1, \ldots X_q\}$.)
 Form a new cluster Y (of a higher tier) by merging the clusters $X_1, \ldots X_q$
 $w_Y \leftarrow \sum_{j=1}^q w_{X_j}$
 If ($i = 0$):
 Mark all terminals in Y as non-terminals
 Else:
 Delete all (dummy) terminals in Y and the associated (dummy) edges.

We briefly remark on some salient features of this algorithm and our analysis before presenting the details of the proofs.

1. In iteration i, the terminals correspond to tier i clusters. Clusters are 2-connected subgraphs of G, and by using cycles to merge clusters, we preserve 2-connectivity as the clusters become larger.

2. When a cycle C is used to merge clusters, all small clusters that contain an edge of C (regardless of their tier) are merged to form the new cluster. Therefore, at any stage of the algorithm, all currently small clusters are edge-disjoint. Large clusters, on the other hand, are frozen; even if they intersect a good cycle C, they are not merged with other clusters on C. Thus, at any time, an edge may be in multiple large clusters and up to one small cluster.

3. In iteration i of MERGECLUSTERS, the density of a cycle C is only determined by its cost and the weight of terminals in C corresponding to tier i clusters. Though small clusters of other (lower or higher) tiers might be merged using C, we do not use their weight to pay for the edges of C.

4. The ith iteration terminates when no good cycles can be found using the remaining tier i clusters. At this point, there may be some terminals remaining that correspond to clusters which are not merged to form clusters of higher tiers. However, our choice of α (which defines the density of good cycles) is such that we can bound the number of terminals that are “left behind” in this fashion. Therefore, when the algorithm terminates, most terminals are in large clusters.

By bounding the density of large clusters, we can find a solution to the rooted k-2VC problem of bounded density. Because we always use cycles of low density to merge clusters, an analysis similar to that of [22] and
Lemma 4.4 shows that every large cluster has density at most $O(\log^2 k)\rho$. We first present this analysis, though it does not suffice to prove Theorem 2.3. A more careful analysis shows that there is at least one large cluster of density at most $O(\log k)\rho$; this allows us to prove the desired theorem.

We now formally prove that MERGECLUSTERS has the desired behavior. First, we present a series of claims which, together, show that when the algorithm terminates, most terminals are in large clusters, and all clusters are 2-connected.

Remark 4.1. Throughout the algorithm, the graph G is always 2-connected. The weight of a cluster is at most the number of terminals it contains.

Proof. The only structural changes to G are when new vertices are added as terminals; they are added with edges to two distinct vertices of G. This preserves 2-connectivity, as does deleting these terminals with the associated edges.

To see that the second claim is true, observe that if a terminal contributes weight to a cluster, it is contained in that cluster. A terminal can be in multiple clusters, but it contributes to the weight of exactly one cluster.

We use the following simple proposition in proofs of 2-connectivity; the proof is straightforward, and hence omitted.

Proposition 4.2. Let $H_1 = (V_1, E_1)$ and $H_2 = (V_2, E_2)$ be 2-connected subgraphs of a graph $G(V, E)$ such that $|V_1 \cap V_2| \geq 2$. Then the graph $H_1 \cup H_2 = (V_1 \cup V_2, E_1 \cup E_2)$ is 2-connected.

Lemma 4.3. The clusters formed by MERGECLUSTERS are all 2-connected.

Proof. Let Y be a cluster formed by using a cycle C to merge clusters $X_1, X_2, \ldots X_q$. The edges of the cycle C form a 2-connected subgraph of G, and we assume that each X_j is 2-connected by induction. Further, C contains at least 2 vertices of each X_j\(^5\), so we can use induction and Proposition 4.2 above: We assume $C \cup \{X_i\}_{i=1}^j$ is 2-connected by induction, and C contains 2 vertices of X_{j+1}, so $C \cup \{X_i\}_{i=1}^{j+1}$ is 2-connected.

Note that we have shown $Y = C \cup \{X_i\}_{i=1}^q$ is 2-connected, but C (and hence Y) might contain dummy terminals and the corresponding dummy edges. However, each such terminal with the 2 associated edges is a ear of Y; deleting them leaves Y 2-connected.

Lemma 4.4. The total weight of small clusters in tier i that are not merged to form clusters of higher tiers is at most $\frac{\ell}{2 \lfloor \log k \rfloor}$.

Proof. Assume this were not true; this means that MERGECLUSTERS could find no more cycles of density at most α using the remaining small tier i clusters. But the total cost of all the edges is at most $\text{cost}(G)$, and the sum of terminal weights is at least $\frac{\ell}{2 \lfloor \log k \rfloor}$; this implies that the density of the graph (using the remaining terminals) is at most $2 \lceil \log k \rceil \cdot \frac{\text{cost}(G)}{\ell} = \alpha$. But by Theorem 3.3, the graph must then contain a good non-trivial cycle, and so the while loop would not have terminated.

Corollary 4.5. When the algorithm MERGECLUSTERS terminates, the total weight of large clusters is at least $\ell/2 > (4 \log k) \cdot k$.

Proof. Each terminal not in a large cluster contributes to the weight of a cluster that was not merged with others to form a cluster of a higher tier. The previous lemma shows that the total weight of such clusters in any tier is at most $\frac{\ell}{2 \lceil \log k \rceil}$; since there are $\lceil \log k \rceil$ tiers, the total number of terminals not in large clusters is less than $\lceil \log k \rceil \cdot \frac{\ell}{2 \lceil \log k \rceil} = \ell/2$.

\(^5\)A cluster X_j may be a singleton vertex (for instance, if we are in tier 0), but such a vertex does not affect 2-connectivity.
So far, we have shown that most terminals reach large clusters, all of which are 2-connected, but we have not argued about the density of these clusters. The next lemma says that if we can find a large cluster of good density, we can find a solution to the k-2VC problem of good density.

Lemma 4.6. Let Y be a large cluster formed by MERGECLUSTERS. If Y has density at most δ, we can find a graph Y' with at least k terminals, each of which is 2-connected to r, of total cost at most $2\delta k + 2L$.

Proof. Let X_1, X_2, \ldots, X_q be the clusters merged to form Y in order around the cycle C that merged them; each X_j was a small cluster, of weight at most k. A simple averaging argument shows that there is a consecutive segment of X_js with total weight between k and $2k$, such that the cost of the edges of C connecting these clusters, together with the costs of the clusters themselves, is at most $2\delta k$. Let X_a be the “first” cluster of this segment, and X_b the “last”. Let v and w be arbitrary terminals of X_a and X_b respectively. Connect each of v and w to the root r using 2 vertex-disjoint paths; the cost of this step is at most $2L$. (We assumed that every terminal could be 2-connected to r using disjoint paths of cost at most L.) The graph Y' thus constructed has at least k terminals, and total cost at most $2\delta k + 2L$.

We show that every vertex z of Y' is 2-connected to r; this completes our proof. Let z be an arbitrary vertex of Y'; suppose there is a cut-vertex x which, when deleted, separates z from r. Both v and w are 2-connected to r, and therefore neither is in the same component as z in $Y' - x$. However, we describe 2 vertex-disjoint paths P_v and P_w in Y' from z to v and w respectively; deleting x cannot separate z from both v and w, which gives a contradiction. The paths P_v and P_w are easy to find; let X_j be the cluster containing z. The cycle C contains a path from vertex $z_1 \in X_j$ to $v' \in X_a$, and another (vertex-disjoint) path from $z_2 \in X_j$ to $w' \in X_b$. Concatenating these paths with paths from v' to v in X_a and w' to w in X_b gives us vertex-disjoint paths P_1 from z_1 to v and P_2 from z_2 to w. Since X_j is 2-connected, we can find vertex-disjoint paths from z to z_1 and z_2, which gives us the desired paths P_v and P_w. \hfill \square

We now present the two analyses of density referred to earlier. The key difference between the weaker and tighter analysis is in the way we bound edge costs. In the former, each large cluster pays for its edges separately, using the fact that all cycles used have density at most $\alpha = O(\log k)\rho$. In the latter, we crucially use the fact that small clusters which share edges are merged. Roughly speaking, because small clusters are edge-disjoint, the average density of small clusters must be comparable to the density of the input graph G. Once an edge is in a large cluster, we can no longer use the edge-disjointness argument. We must pay for these edges separately, but we can bound this cost.

First, the following lemma allows us to show that every large cluster has density at most $O(\log^2 k)\rho$.

Lemma 4.7. For any cluster Y formed by MERGECLUSTERS during iteration i, the total cost of edges in Y is at most $(i + 1) \cdot \alpha w_Y$.

Proof. We prove this lemma by induction on the number of vertices in a cluster. Let S be the set of clusters merged using a cycle C to form Y. Let S_1 be the set of clusters in S of tier i, and S_2 be $S - S_1$. (S_2 contains clusters of tiers less or greater than i that contained an edge of C.)

The cost of edges in Y is at most the sum of: the cost of C, the cost of S_1, and the cost of S_2. Since all clusters in S_2 have been formed during iteration i or earlier, and are smaller than Y, we can use induction to show that the cost of edges in S_2 is at most $(i + 1)^2 \alpha \sum_{X \in S_2} w_X$. All clusters in S_1 are of tier i, and so must have been formed before iteration i (any cluster formed during iteration i is of a strictly greater tier), so we use induction to bound the cost of edges in S_1 by $i^2 \alpha \sum_{X \in S_1} w_X$.

6The vertex z may not be in any cluster X_j. In this case, P_v is formed by using edges of C from z to $v' \in X_a$, and then a path from v' to v; P_w is formed similarly.
Finally, because C was a good-density cycle, and only clusters of tier i contribute to calculating the density of C, the cost of C is at most $\alpha \sum_{X \in S_i} w_X$. Therefore, the total cost of edges in Y is at most $(i+1)\alpha \sum_{X \in S_i} w_X = (i+1)\alpha w_Y$.

Let Y be an arbitrary large cluster; since we have only $\lceil \log k \rceil$ tiers, the previous lemma implies that the cost of Y is at most $\lceil \log k \rceil \cdot \alpha w_Y = O(\log^2 k) \rho w_Y$. That is, the density of Y is at most $O(\log^2 k) \rho$, and we can use this fact together with Lemma 4.6 to find a solution to the rooted k-VC problem of cost at most $O(\log^2 k) \rho k + 2L$. This completes the ‘weaker’ analysis, but this does not suffice to prove Theorem 2.3. To prove the theorem, we would need to use a large cluster Y of density $O(\log k) \rho$, instead of $O(\log^2 k) \rho$.

For the purpose of the more careful analysis, implicitly construct a forest F on the clusters formed by MERGECLUSTERS. Initially, the vertex set of F is just S, the set of terminals, and F has no edges. Every time a cluster Y is formed by merging X_1, X_2, \ldots, X_q, we add a corresponding vertex Y to the forest F, and add edges from Y to each of X_1, \ldots, X_q; Y is the parent of X_1, \ldots, X_q. We also associate a cost with each vertex in F; the cost of the vertex Y is the cost of the cycle used to form Y from X_1, \ldots, X_q. We thus build up trees as the algorithm proceeds; the root of any tree corresponds to a cluster that has not yet become part of a bigger cluster. The leaves of the trees correspond to vertices of G; they all have cost 0. Also, any large cluster Y formed by the algorithm is at the root of its tree; we refer to this tree as T_Y.

For each large cluster Y after MERGECLUSTERS terminates, say that Y is of type i if Y was formed during iteration i of MergeClusters. We now define the final-stage clusters of Y: They are the clusters formed during iteration i that became part of Y. (We include Y itself in the list of final-stage clusters; even though Y was formed in iteration i of MERGECLUSTERS, it may contain other final-stage clusters. For instance, during iteration i, we may merge several tier i clusters to form a cluster X of tier $j > i$. Then, if we find a good-density cycle C that contains an edge of X, X will merge with the other clusters of C.) The penultimate clusters of Y are those clusters that exist just before the beginning of iteration i and become a part of Y. Equivalently, the penultimate clusters are those formed before iteration i that are the immediate children in T_Y of final-stage clusters. Figure 1 illustrates the definitions of final-stage and penultimate clusters. Such a tree could be formed if, in iteration $i-1$, 4 clusters of this tier merged to form D, a cluster of tier $i+1$. Subsequently, in iteration i, clusters H and J merge to form F. We next find a good cycle containing E and G; F contains an edge of this cycle, so these three clusters are merged to form B. Note that the cost of this cycle is paid for by the by the weights of E and G only; F is a tier $i+1$ cluster, and so its weight is not included in the density calculation. Finally, we find a good cycle paid for by A and C; since B and D share edges with this cycle, they all merge to form the large cluster Y.

An edge of a large cluster Y is said to be a final edge if it is used in a cycle C that produces a final-stage
cluster of \(Y \). All other edges of \(Y \) are called \textit{penultimate edges}; note that any penultimate edge is in some penultimate cluster of \(Y \). We define the \textit{final cost} of \(Y \) to be the sum of the costs of its final edges, and its \textit{penultimate cost} to be the sum of the costs of its penultimate edges; clearly, the cost of \(Y \) is the sum of its final and penultimate costs. We bound the final costs and penultimate costs separately.

Recall that an edge is a final edge of a large cluster \(Y \) if it is used by \textsc{MergeClusters} to form a cycle \(C \) in the final iteration during which \(Y \) is formed. The reason we can bound the cost of final edges is that the cost of any such cycle is at most \(\alpha \) times the weight of clusters contained in the cycle, and a cluster does not contribute to the weight of more than one cycle in an iteration. (This is also the essence of Lemma 4.7.) We formalize this intuition in the next lemma.

Lemma 4.8. The final cost of any large cluster \(Y \) is at most \(\alpha w_Y \), where \(w_Y \) is the weight of \(Y \).

Proof. Let \(Y \) be an arbitrary large cluster. In the construction of the tree \(T_Y \), we associated with each vertex of \(T_Y \) the cost of the cycle used to form the corresponding cluster. To bound the total final cost of \(Y \), we must bound the sum of the costs of vertices of \(T_Y \) associated with final-stage clusters. The weight of \(Y \), \(w_Y \) is at least the sum of the weights of the penultimate tier \(i \) clusters that become a part of \(Y \). Therefore, it suffices to show that the sum of the costs of vertices of \(T_Y \) associated with final-stage clusters is at most \(\alpha \) times the sum of the weights of \(Y \)’s penultimate tier \(i \) clusters. (Note that a tier \(i \) cluster must have been formed prior to iteration \(i \), and hence it cannot itself be a final-stage cluster.)

A cycle was used to construct a final-stage cluster \(X \) only if its cost was at most \(\alpha \) times the sum of weights of the penultimate tier \(i \) clusters that become a part of \(X \). (Larger clusters may become a part of \(X \), but they do not contribute weight to the density calculation.) Therefore, if \(X \) is a vertex of \(T_Y \) corresponding to a final-stage cluster, the cost of \(X \) is at most \(\alpha \) times the sum of the weights of its tier \(i \) immediate children in \(T_Y \). But \(T_Y \) is a tree, and so no vertex corresponding to an penultimate tier \(i \) cluster has more than \(\alpha \) immediate children. That is, the weight of a penultimate cluster pays for only one final-stage cluster. Therefore, the sum of the costs of vertices associated with final-stage clusters is at most \(\alpha \) times the sum of the weights of \(Y \)’s penultimate tier \(i \) clusters, and so the final cost of \(Y \) is at most \(\alpha w_Y \). \(\square \)

Lemma 4.9. If \(Y_1 \) and \(Y_2 \) are distinct large clusters of the same type, no edge is a penultimate edge of both \(Y_1 \) and \(Y_2 \).

Proof. Suppose, by way of contradiction, that some edge \(e \) is a penultimate edge of both \(Y_1 \) and \(Y_2 \), which are large clusters of type \(i \). Let \(X_1 \) (respectively \(X_2 \)) be a penultimate cluster of \(Y_1 \) (resp. \(Y_2 \)) containing \(e \). As penultimate clusters, both \(X_1 \) and \(X_2 \) are formed before iteration \(i \). But until iteration \(i \), neither is part of a large cluster, and two small clusters cannot share an edge without being merged. Therefore, \(X_1 \) and \(X_2 \) must have been merged, so they cannot belong to distinct large clusters, giving the desired contradiction. \(\square \)

Theorem 4.10. After \textsc{MergeClusters} terminates, at least one large cluster has density at most \(O(\log k) \rho \).

Proof. We define the \textit{penultimate density} of a large cluster to be the ratio of its penultimate cost to its weight.

Consider the total penultimate costs of all large clusters: For any \(i \), each edge \(e \in E(G) \) can be a penultimate edge of at most 1 large cluster of type \(i \). This implies that each edge can be a penultimate edge of at most \(\lceil \log k \rceil \) clusters. Therefore, the sum of penultimate costs of all large clusters is at most \(\lceil \log k \rceil \cdot \text{cost}(G) \). Further, the total weight of all large clusters is at least \(\ell / 2 \). Therefore, the (weighted) average penultimate density of large clusters is at most \(2 \lceil \log k \rceil \cdot \frac{\text{cost}(G)}{\ell} = 2 \lceil \log k \rceil \rho \), and hence there exists a large cluster \(Y \) of penultimate density at most \(2 \lceil \log k \rceil \rho \).

The penultimate cost of \(Y \) is, therefore, at most \(2 \lceil \log k \rceil \rho w_Y \), and from Lemma 4.8, the final cost of \(Y \) is at most \(\alpha w_Y \). Therefore, the density of \(Y \) is at most \(\alpha + 2 \lceil \log k \rceil \rho = O(\log k) \rho \). \(\square \)
Theorem 4.10 and Lemma 4.6 together imply that we can find a solution to the rooted \(k \)-2VC problem of cost at most \(O(\log k) \rho k + 2L \). This completes our proof of Theorem 2.3.

5 Conclusions

We list the following open problems:

- Can the approximation ratio for the \(k \)-2VC problem be improved from the current \(O(\log \ell \log k) \) to \(O(\log n) \) or better? Removing the dependence on \(\ell \) to obtain even \(O(\log^2 k) \) could be interesting. If not, can one improve the approximation ratio for the easier \(k \)-2EC problem?

- Can we obtain approximation algorithms for the \(k \)-\(\lambda \)VC or \(k \)-\(\lambda \)EC problems for \(\lambda > 2 \)? In general, few results are known for problems where vertex-connectivity is required to be greater than 2, but there has been more progress with higher edge-connectivity requirements.

- Given a 2-connected graph of density \(\rho \) with some vertices marked as terminals, we show that it contains a non-trivial cycle with density at most \(\rho \), and give an algorithm to find such a cycle. We have also found an \(O(\log \ell) \)-approximation for the problem of finding a minimum-density non-trivial cycle. Is there a constant-factor approximation for this problem? Can it be solved exactly in polynomial time?

Acknowledgments: We thank Mohammad Salavatipour for helpful discussions on \(k \)-2EC and related problems. We thank Erin Wolf Chambers for useful suggestions on notation.

References

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks. SIAM J. on Computing, 24(3):440–456, 1995.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ, 1993

[3] B. Awerbuch, Y. Azar, A. Blum and S. Vempala. New Approximation Guarantees for Minimum Weight \(k \)-Trees and Prize-Collecting Salesmen. SIAM J. on Computing, 28(1):254–262, 1999. Preliminary version in Proc. of ACM STOC, 1995.

[4] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation Algorithms for Orienteering and Discounted-Reward TSP. SIAM J. on Computing, 37(2):653–670, 2007.

[5] A. Blum, R. Ravi and S. Vempala. A Constant-factor Approximation Algorithm for the \(k \)-MST Problem. JCSS, 58:101–108, 1999. Preliminary version in Proc. of ACM STOC, 1996.

[6] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. Proc. of IEEE FOCS, 36–45, 2003.

[7] C. Chekuri, G. Even, A. Gupta, and D. Segev. Set Connectivity Problems in Undirected Graphs and the Directed Steiner Network Problem. Proc. of ACM-SIAM SODA, 532–541, 2008.

[8] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. Approximation algorithms for Non-uniform Buy-at-bulk Network Design. Proc. of IEEE FOCS, 677–686, 2006.
[9] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. Approximation Algorithms for Node-weighted Buy-at-bulk Network Design. Proc. of ACM-SIAM SODA, 1265–1274, 2007.

[10] C. Chekuri, N. Korula, and M. Pál. Improved Algorithms for Orienteering and Related Problems. Proc. of ACM-SIAM SODA, 661–670, 2008.

[11] F. A. Chudak, T. Roughgarden, and D. P. Williamson. Approximate k-MSTs and k-Steiner Trees via the Primal-Dual Method and Lagrangean Relaxation. Proc. of IPCO, 60–70, 2001.

[12] U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem. Algorithmica, 29(3):410–421, 2001. Preliminary version in Proc. of IEEE FOCS, 1993.

[13] L. Fleischer, K. Jain, D. P. Williamson. Iterative Rounding 2-approximation Algorithms for Minimum-cost Vertex Connectivity Problems. J. of Computer and System Sciences, 72(5):838–867, 2006.

[14] N. Garg. Saving an ε: A 2-approximation for the k-MST Problem in Graphs. Proc. of ACM STOC, 396–402, 2005.

[15] N. Garg. A 3-approximation for the Minimum Tree Spanning k Vertices. Proc. of IEEE FOCS, 302–309, 1996.

[16] M. X. Goemans and D. P. Williamson. A General Approximation Technique for Constrained Forest Problems. SIAM J. on Computing, 24(2):296–317, 1995.

[17] M. X. Goemans and D. P. Williamson. The Primal-Dual method for Approximation Algorithms and its Application to Network Design Problems. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

[18] M. T. Hajiaghayi and K. Jain. The Prize-Collecting Generalized Steiner Tree Problem via a New Approach of Primal-Dual Schema. Proc of ACM-SIAM SODA, 631–640, 2006.

[19] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

[20] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem Combinatorica, 21(1):39–60, 2001. Preliminary version in Proc. of IEEE FOCS, 448–457, 1998.

[21] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. of Computer and System Sciences, 9(3):256–278, 1974.

[22] L.C. Lau, J. Naor, M. Salavatipour and M. Singh. Survivable Network Design with Degree or Order Constraints. Proc of ACM STOC, 2007.

[23] L.C. Lau, J. Naor, M. Salavatipour and M. Singh. Survivable Network Design with Degree or Order Constraints. Manuscript, 2007.

[24] P. D. Seymour. Nowhere-zero 6-flows J. Comb. Theory B, 30: 130–135, 1981.

[25] V. V. Vazirani. Approximation Algorithms. Springer, 2001.