Changes in ocular surface after withdrawal of anti-glaucoma medications following non-penetrating deep sclerectomy

Carlota Fuente-García1,2, Francisco José Muñoz-Negrete1,2,3, Elisabet de Domplablo1,3, Javier Moreno-Montañés1, Gema Rebolleda1,2

Purpose: To analyze the ocular surface changes in eyes after the withdrawal of anti-glaucomatous drugs when non-penetrating deep sclerectomy (NPDS) is performed. Methods: Thirty-one patients (33 eyes) diagnosed with glaucoma that underwent NPDS were included in this prospective study. The control group included 33 eyes. Four variables were studied using Keratograph 5M (K5M): ocular hyperemia (OH), non-invasive tear film break-up time (NI-BUT), lower tear meniscus height (LTMH), and meibography. LTMH was also measured using the anterior segment module of a Spectralis Fourier-domain optical coherence tomography (FD-OCT) instrument. Moreover, an evaluation of corneal and conjunctival staining was performed. In the glaucoma group, five visits were carried out: pre-surgery, 1 week after surgery, and 1 month, 3 months, and 6 months after surgery. In control groups, examinations were performed in only one visit. In addition, patients were asked to answer two questionnaires: Ocular Surface Disease Index (OSDI) and National Eye Institute Visual Functioning Questionnaire (NEI VFQ-25) before and 6 months after surgery. Results: Before NPDS, eyes showed worse subjective data than healthy control subjects (P = 0.049). In this group, a significant improvement was observed in questionnaire responses (P < 0.001), LTMH-FD-OCT (P = 0.037), LTMH-KSM (P = 0.025), KSM-OH (P = 0.003), NI-BUT (P = 0.022), and conjunctival and corneal staining (P < 0.001). No significant differences were observed between groups in FD-OCT and KSM LTMH, NI-BUT, corneal-conjunctival staining, nor in the most OH sector values at 6 months (P ≥ 0.62). Conclusion: A significant improvement in the ocular surface was observed 6 months after NPDS, suggesting that the withdrawal of the topical anti-glaucomatous treatment had a beneficial effect on the subjects.

Key words: Glaucoma, Keratograph, non-penetrating deep sclerectomy, ocular hyperemia, ocular surface disease

Primary open-angle glaucoma (POAG) is a chronic, progressive, and irreversible multifactorial optic neuropathy. Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of glaucoma.[9] In most cases, the initial therapy consists of treatment using topical hypotensive drugs over long periods of time. Surgical treatment continues to play an important role when drugs fail and the target pressure cannot be achieved or glaucoma progression is detected.[4,5]

In terms of surgical treatments, trabeculectomy and non-penetrating deep sclerectomy (NPDS) procedures reduce IOP and allow for aqueous humor drainage into the subconjunctival space. Among the advantages of NPDS, it is worth mentioning that the progressive filtration of aqueous humor from the anterior chamber to the subconjunctival space reduces the risk of hypotony and other postoperative complications.[9] The term “ocular surface disease” (OSD) includes a wide spectrum of conditions such as dry eye syndrome (DES), anterior blepharitis, meibomian gland dysfunction (MGD), conjunctivitis, and keratitis.[7]

A higher prevalence of OSD has been described in glaucoma patients and has multifactorial etiology. As comorbidity of glaucoma, OSD is influenced by the age, ethnicity, and sex of the patient, and chronic use of topical anti-glaucomatous drugs.[8,9] Furthermore, OSD has been responsible for poor adherence to treatment and inferior quality of life in patients with glaucoma.[10,11]

Glaucoma treatments and OSD are correlated with the number of anti-glaucoma medications used, daily preservative concentration, the existence of PSO before glaucoma treatment, aging, and hormonal imbalances.[12] Although several...
publications describe changes in the ocular surface in patients with IOP-lowering eye drops.[12,18,20] Few studies have evaluated these changes after trabeculectomy;[21,22] to our knowledge, there are no current studies evaluating the changes observed in the ocular surface after NPDS.

Therefore, the purpose of this study is to evaluate the changes in OSD in patients with glaucoma after NPDS and the impact of the withdrawal of anti-glaucomatous drugs. The OSD was also compared with healthy subjects (the control group).

Methods

For this prospective study, a total of 31 POAG patients (33 eyes) who underwent NPDS for uncontrolled IOP and notwithstanding medical treatment were consecutively recruited from the Glaucoma Unit for this study. Thirty-three eyes of 33 healthy volunteers, age- and sex-matched to the POAG group, were included as part of the control group.

The study was approved by the Clinical Research Ethics Committee and conducted in accordance with the principles of the Declaration of Helsinki. Before recruitment, written informed consent was obtained from each participant.

The inclusion criteria for the POAG group stated that the participants must: be over 18 years of age, had been treated for a minimum of 6 months with topical hypotensive agents, had a clinical indication of NPDS, and a best-corrected visual acuity (BCVA) of >0.3 on the Snellen scale. Subjects were excluded from both groups if they had undergone ocular surgery within the last 6 months, used contact lenses, were diagnosed with ocular surface abnormalities, or had been diagnosed with dry eye disease (according to the diagnostic criteria established in the Dry Eye Workshop II (DEWS II)), or with any known systemic diseases associated with dry eye or secondary glaucoma.

All participants underwent a standard examination, including a general anamnesis, as well as treatment duration (time since the onset of the disease), total daily eye drops administered, total daily eye drops with preservatives, type of active principles as well as the type of preservative (polyquaternium or benzalkonium chloride), daily preservative concentration (DPC), and cumulative preservative concentration (CPC). Daily preservative concentration was calculated according to the preservative concentration of each medication provided on the product data sheet (μg/μL). The latter was then multiplied by 7 because the average tear volume that remains in the eye following the instillation of a single drop is 7 μL.[23] Finally, we multiplied the DPC by the number of daily eyedrops of each drug. In the case of patients with polytherapy, the following DPCs for each drug were added. Cumulative preservative concentration was determined as the product of DPC plus treatment duration (in days).

Anti-glaucoma eyedrops were immediately discontinued after surgery, and patients were started on a combined treatment of tobramycin + dexamethasone (Tobradex®@, Alcon Cusi, Barcelona, Spain) five times a day in a descending pattern every week and ketorolac (Acular®, Allergan Pharmaceuticals Ireland, Westport, Ireland) twice a day for 2 months. All sutures were removed a month after surgery. No artificial tears or anti-glaucomatous drugs were prescribed within 6 months after NPDS.

In the glaucoma group, five visits were carried out: pre-surgery, 1 week after surgery, 1 month, 3 months, 6 six months after the surgical procedure. In the control group, examinations were performed in only one visit, and the same data was compared with the glaucoma group before and after surgery.

OSD indicators were recorded in the following order by the same examiner: Ocular Surface Disease Index (OSDI) and National Eye Institute Visual Functioning Questionnaire (NEI VFQ-25); K5M and FD- OCT using the anterior segment module. In addition, a slit-lamp (SL) examination was performed.

Ocular surface disease index (OSDI) and National Eye Institute Visual Functioning Questionnaire (NEI VFQ-25)

The OSDI has been reported to be reliable and effective in discriminating among stages of dry eye severity.[20] It is composed of a 12-item questionnaire, divided into three subscales: the first one is related to visual function, the second one is associated with ocular symptoms, and the third one concerns environmental triggers.[21]

Patients also answered the NEI VFQ-25 questionnaire. It measures the dimensions of self-reported vision-targeted health status, which concerns above all persons who have chronic eye diseases. We used the version that consists of 12 subscales that included questions on general health and general vision.

The algorithm has a scale ranging from 0 to 100, with higher scores representing a better visual function.[22]

Questionnaires were administered to all subjects at the beginning of the session. In the POAG group, we repeated the questionnaires 6 months after surgery.

Oculus Keratograph 5M (KSM)

Oculus Keratograph 5M (KSM) (Oculus Optikgeräte GmbH, Wetzlar, Germany) is a device that consists of a keratometer and an optimized color camera. The TF-Scan module was used to record non-invasive tear film break-up time (NI-BUT) and to measure low tear meniscus height (LTHM).

The R-Scan system allowed us to perform automatic classification of conjunctival redness. After generating a keratograph image, five redness score (RS) areas were displayed on the computer screen.

Meibography was used to assess upper and lower eyelid version by using the meibography tool to generate IR images of tarsal conjunctiva. Manual grading of these images was performed using a meiboscore scale: graded from 0 to 3.[23]

Spectralis Fourier-domain optical coherence tomography (FD-OCT)

The anterior segment module of Spectralis Fourier-domain optical coherence tomography (Heidelberg Engineering GmbH, Heidelberg, Germany) was used to measure LTHM by using the method described by Arriola-Villalobos et al.[24] In brief, the lower meniscus was imaged using the anterior segment lens and image capture software in the high-speed sclera mode by using a single vertical scan. For measurements, we used the caliper tool integrated into the device.
Slit-lamp examination and corneal-conjunctival staining
All subjects underwent a standard SL examination at A16 magnification. The cornea and the conjunctiva were stained using one drop of fluorescein to detect corneal and conjunctiva injury. Both were graded from 0 to 5 by using the Oxford scale.\(^{(24)}\)

Statistical analysis
All statistical tests were performed using IBM SPSS version 15.0 (SPAA Inc., Chicago, IL.)

The qualitative variables were described as percentages, and quantitative variables were described as means and standard deviations or median, maximum, and minimum depending on their distributional characteristics in both groups. Kolmogorov–Smirnov test was used to assess the normal distribution of data.

A paired-sample \(t \) test was used for the comparative analysis of the repeated measurements taken from the POAG group; its corresponding non-parametric Wilcoxon test was used for non-normal datasets. All contrasts were bilateral with a significance level of 0.05.

For the comparative analysis of the different measurements between the POAG group and control group, the student’s \(t \) test for independent samples or its corresponding non-parametric \(U \) of Mann–Whitney test was used. All contrasts were bilateral with a significance level of 0.05.

Results
The data analysis was concluded from results taken from 33 eyes with POAG and 33 healthy control eyes. The mean age of the subjects was 75.33 ± 7.5 years in the POAG group and 72.91 ± 7.3 years in the control group \((P = 0.188) \).

The mean duration of treatment from the start date was 108 ± 309 months.

Further, 87.87% of our patients received three or more drops per day, while 66.67% received three or more preservative drops per day; 100% of our patients used at least one drop of preservative eyedrops, benzalkonium chloride (BAK) being the most frequently used.

In the POAG group, 84.85% of patients were receiving prostaglandins. In the same line, 84.85% received \(\beta \)-blocker, 72.72% received carbonic anhydrase inhibitor, and 48.48% received \(\alpha \) adrenergic agonist. The mean of DPC and CPC

Table 1: Clinical, demographic, and treatment data

Parameters	POAG Group	Control group	\(P \)
Sex N (%)			
Female	18/33 (54.54%)	17/33 (51.51%)	0.624**
Male	15/33 (45.45%)	16/33 (48.48%)	
Age (years±SD)	75.33±7.5	72.91±7.3	0.188*
Treatment duration (months)	Median±SD	108±309	
Minimum	2		
Maximum	1792		
Daily eyedrops n (%)			
1	3 (9.09%)		
2	1 (3.03%)		
≥3	29 (87.87%)		
Daily eyedrops with preservatives n (%)			
1	4 (12.12%)		
2	7 (21.21%)		
≥3	22 (66.67%)		
Preservative n (%)			
Preservative-free	0		
BAK	28 (84.85%)		
PQ + BAK	5 (15.15%)		
Active ingredient n (%)			
Prostaglandin	28 (84.85%)		
\(\beta \)-blocker	28 (84.85%)		
CAI	24 (72.72%)		
AAA	16 (48.48%)		
DPC, µg/d	Mean±SD	1.89±0.88	
Minimum	0.35		
Maximum	3.5		
CPC, µg/d x treatment duration (days)	Mean±SD	1670.15±1973.48	
Minimum	53.20		
Maximum	10482		

SD: Standard deviation, *Student test; **Mann–Whitney test. AAA=\(\alpha \) adrenergic agonist; CAI=Carbonic anhydrase inhibitor; DPC=Daily preservative concentration; CPC=Cumulative preservative concentration
was 1.89 ± 0.88 and 1670.15 ± 1973.48, respectively. Table 1 summarizes the clinical, demographic, and therapy data.

In the POAG group, we found a significant improvement in OSDI and NEI-VFQ25 scores from pre-surgery time to 6 months after NPDS (24.33 ± 7.7 vs. 15.06 ± 6.93, P < 0.001 and 61.78 ± 13.20 vs. 74.42 ± 11.97, P < 0.001; respectively).

Treated subjects demonstrated a significant increase in the mean K5M-LTMH. This improvement is significant from the third postoperative month when compared with baseline values (P ≤ 0.025). When comparing the LTMH by FD-OCT, the improvement was observed 6 months after NPDS (P = 0.037). Before surgery, mean FD-OCT-LTMH measurements in POAG eyes were significantly lower than control eyes (P = 0.043); however, no significant differences were observed after 6 months (P = 0.062). Measurements of the K5M-LHTM were not different between groups before and after NPDS (P ≥ 0.15).

Before NPDS, the total and sector K5M-OH values in treated patients were significantly higher than in the control group (P ≤ 0.048). These differences disappeared in temporal sectors and the nasal-limbal sector (P ≥ 0.062) during the sixth-month postoperative visit. We observed a significant increase in total and sector values K5M-OH in the first week post-NPDS compared to the preoperative visit (P < 0.001); however, after 6 months, the total OH decreased significantly (P = 0.003). Fig. 1 shows an example of the evolution of OH.

In the POAG group, we detected a significant improvement in NI-BUT 3 months after NPDS (P ≤ 0.022); nevertheless, the average NI-BUT (NI-BUTav) was significantly higher than baseline values during the first week (P ≤ 0.048). Before surgery, NI-BUT measurements in glaucoma eyes were significantly lower than the control group (P ≤ 0.016); however, no substantial differences were observed in the sixth-month visit (P ≥ 0.104). Fig. 1 shows an example of the evolution of NI-BUT. Table 2 summarizes the results of questionnaires and ocular surface parameters measured.

Overall, the meibography image study showed no significant changes in the POAG group (P > 0.999). Significantly higher scores were found in treated subjects when compared to the control group before and after surgery (P ≤ 0.006). Table 3 shows the evolution of meibography.

We observed a significant decrease in corneal and conjunctival staining scores (Oxford) 6 months after NPDS (P < 0.001) in treated eyes. The percentages of eyes staining at different time intervals are shown in Table 4. Before surgery, 94% of POAG eyes were classified as Oxford ≥1; however, in the sixth-month visit, only 18% of the treated eyes had fluorescein corneal staining (P < 0.001). Similar findings were found in the conjunctival test. We observed that 97% of glaucoma eyes had positive conjunctival staining (Oxford ≥1) before surgery, but this percentage significantly decreased to 42% on the final visit (P < 0.001).

A significantly greater proportion of POAG patients showed at least some fluorescein staining before surgery compared to healthy control eyes (P < 0.001); however, no significant differences were observed during the last visit (P ≥ 0.254) [Table 4].
Discussion

The present study found that patients with glaucoma displayed significant improvement in OSD after NPDS. New non-invasive technologies such as K5M and FD-OCT can be useful tools in evaluating OSD in glaucomatous eyes.

POAG patients have already been participating in combined hypotensive drug treatment with preservatives. Corneal neurotoxicity and tear film disorder are examples of side effects that have been already described in patients. Therefore, the main idea of this study was to investigate the ocular surface changes after NPDS once anti-glaucoma eye drops were discontinued.

Portela et al. and Ling et al. have already described the worst scores in OSDI and NEI-VFQ25 questionnaires in glaucoma patients undergoing hypotensive treatment. Similarly, before surgery, our study showed significant differences in the median OSDI and NEI-VFQ25 scores between the POAG group and the healthy control group. However, to our knowledge, there is no previous information about such questionnaires after NPDS. In this current study, we observed a significant improvement in both tests during the sixth month after NPDS. Nevertheless, after surgery, we also discovered noteworthy differences between the two groups. This may be because 51.52% of patients had undergone anti-glaucomatous treatment in the contralateral eye (bilateral POAG).

Our findings support the literature evidence that POAG eyes had a higher prevalence of OSD. Before NPDS, treated eyes demonstrated worse objective data regarding OH, K5M-LTMH, NIBUT, meibography, FD-OCT-LTMH, and higher Oxford scores than controls. We documented a significant improvement in most of these parameters throughout the follow-up period. No significant differences were observed between groups in the following parameters: FD-OCT-LTMH, K5M-LTMH, NIBUT, corneal-conjunctival grading scale, and in most OH sectors values after 6 months. These findings demonstrate an improvement in OSD after NPDS due to discontinuing the treatment of anti-glaucomatous drops.

FD-OCT-LTMH measurements have been proposed as a good diagnostic method for OSD; showing low variability, good repeatability, and better reproducibility than the K5M-LTMH. This can explain the difference in LTMH measurements when using different devices. Therefore, these methods are not considered to be interchangeable.

Conjunctival hyperemia is a common side effect described after the use of most topical anti-glaucoma medications. Besides being a cosmetic problem, OH may lead to poor treatment adherence. Our results are consistent with previous studies, in that higher K5M-OH in the glaucoma group was observed. A significant increase in OH was detected in the first week after surgery. This may be due to the surgical procedure itself and/or to the postoperative treatment.

The OH-sector scores were gradually restored to the baseline level, with a significant improvement in most of the OH-sector values during the sixth month. Important group differences disappeared by the sixth month in all the sectors except for the nasal bulbar one. Pérez-Bartolomé et al. detected a greater impact of treatment burden on nasal hyperemia than on the temporal quadrant ones. This can be explained by a longer contact time of the tear film in the nasal area due to the normal spreading of the tear film across the ocular surface until it reaches the lacrimal punctum.
Table 4: Corneal and conjunctival stain (Oxford scale) results

Parameters	Control Group	POAG Group	POAG group pre-NPDS	NPDS and next visits***
Corneal staining oxford	OXFORD 0	72.72%	72.72%	<0.001
	OXFORD ≥1	21.21%	21.21%	<0.001
Nasal conjunctival staining	OXFORD 0	97%	93.9%	<0.001
	OXFORD ≥1	3%	3%	<0.001
Temporal conjunctival staining	OXFORD 0	6.6%	3%	<0.001
	OXFORD ≥1	93.9%	93.9%	<0.001

Previous studies have suggested that the mucin 5AC secreted by the goblet cell plays an important role in tear film stability and have reported toxic side effects of anti-glaucoma drugs on the conjunctiva, especially if preservatives are used.[12,37]

Moreover, the reduction in goblet cell density and mucin 5AC can be due to several glaucoma surgery factors such as the toxicity of MMC used during the surgery, damage of the conjunctival nerves and the limbus stem cells, inflammation or mechanical trauma produced by the surgery, and postoperative topical medication,[39] as recently investigated by Zhong et al.[35] in their studies concerning the influence of trabeculectomy and phaco trabeculectomy on the ocular surface. According to previous reports, goblet cell density did not return to preoperative level after 3 months of cataract surgery,[39] the same occurred with mucin 5AC after phaco trabeculectomy.[36]

In line with these findings, we also found an improvement in NIBUTf and average values in the third month after NPDS; however, no significant differences were observed in the sixth month compared to healthy eyes.

Recent studies have suggested that trabeculectomy filtering bleb is a determining factor in the state of the ocular surface for at least half a year. It may be a cause of dry eye by inducing meibomian gland loss, particularly when the bleb is avascular or contains numerous intraepithelial microcysts.[39]

In the present study, no significant changes were observed in the meibomian gland.

Furthermore, we documented a significant reduction in the percentage of glaucoma eyes with Oxford ≥1 in the third month postoperatively, and no differences were recorded between groups in the final follow-up visit. The different bleb morphology in NPDS and trabeculectomy can explain our results. Oh et al.[40] also found that eyes that underwent trabeculectomy had significantly higher, broader, and lesser vascular blebs and more microcysts than eyes treated with NPDS.

Despite these significant findings, our study was subject to several limitations.

First, we were limited by our small sample size; despite this, we have been able to distinguish significant differences as it is the first study of its kind that uses non-invasive technologies to investigate OSD in glaucoma patients after NPDS.

Second, the clinical ophthalmological examinations were subjective, though they were performed by just one ophthalmologist to avoid possible bias, and the comparison of keratitis was done based on the already-published Oxford scale, thus yielding more reliable values.

Finally, post-surgical steroids could have improved the ocular surface, masking our results; nonetheless, the measurements of the third and sixth-month should not be influenced by the treatment because it should have already been completed at that stage.

In conclusion, although the association between anti-glaucoma eye drops and OSD has been extensively explored, to the best of our knowledge, this is the first study to compare different ocular surface parameters before and after NPDS. In addition, based on the objective parameters measured.
by K5M and FD-OCT, we report a significant improvement of different variables such as OH-sectors, NI-BUT, and LHTM after NPDS, as well as lower corneal-conjunctival fluorescein staining and better total scores on the questionnaires than before the participant had the surgery.

Conclusion

The current study demonstrates that the withdrawal of anti-glaucomatous topical treatment can improve the ocular surface 6 months after NPDS; however, further studies should be performed to corroborate our results.

Financial support and sponsorship

Supported in part by Instituto de Salud Carlos III, “Red temática de Investigación Cooperativa, Proyecto RD16/0008. OftaRed: Prevención, detección precoz, tratamiento y rehabilitación de las patologías oculares”.

Conflicts of interest

There are no conflicts of interest.

References

1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014;311:1901-11.

2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-7.

3. Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res Prog Retin Eye Res. 2005;24:39-73.

4. Tuulonen A, Airaksinen PJ, Erola E, Forsman E, Friberg K, Kaila M, et al. The Finnish evidence-based guideline for open-angle glaucoma. Acta Ophthalmol Scand 2003;81:1-18.

5. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268-79.

6. Chiselita D. Non-penetrating deep sclerectomy versus trabeculectomy in primary open-angle glaucoma surgery. Eye (Lond) 2001;15:197-201.

7. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 2007;5:75-92.

8. Mathews PM, Ramulu PY, Friedman DS, Utine CA, Akpek EK. Evaluation of ocular surface disease in patients with glaucoma. Ophthalmology 2013;120:2241-8.

9. Pisella P, Poulidou P, Baudouin C. Prevalence of ocular symptoms and signs with preserved and preservative-free glaucoma medication. Br J Ophthalmol 2002;86:418-23.

10. Chawla A, McGalli JN, Batterbury M. Use of eye drops in glaucoma: How can we help to reduce non-compliance? Acta Ophthalmol Scand 2007;85:464.

11. Miljanović B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol 2007;143:409-15.

12. Pérez-Bartolomé F, Martínez-de-la-Casa J, Arriola-Villalobos P, Fernández-Pérez C, Polo V, García-Feijoó J. Ocular surface disease in patients under topical treatment for glaucoma. Eur J Ophthalmol 2017;27:694-704.

13. Ram J, Gupta A, Brar GS, Kaushik S, Gupta A. Outcomes of phacoemulsification in patients with dry eye. J Cataract Refract Surg 2002;28:1386-9.

14. Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma 2008;17:350-5.

15. Skalicky SE, Goldberg J, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol 2012;153:1-9.e2.

16. Valente C, Iester M, Corsi E, Rolando M. Symptoms and signs of tear film dysfunction in glaucomatous patients. J Ocul Pharmacol Ther 2011;27:281-1.

17. Lee S, Wong T, Chua J, Boo C, Soh Y, Tong L. Effect of chronic anti-glaucoma medications and trabeculectomy on tear osmolarity. Eye (Lond) 2013;27:1142-50.

18. Lam J, Wong TT, Tong L. Ocular surface disease in post trabeculectomy/mitomycin C patients. Clin Ophthalmol 2015;9:187-91.

19. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II definition and classification Report. Ocul Surf 2017;15:276-83.

20. Barber L, Khodai O, Crole T, Lievens C, Montaques S, Ziemanski J, et al. Dry eye symptoms and impact on vision-related function across International Task Force guidelines severity levels in the United States. BMC Ophthalmol 2018;18:260.

21. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol 2000;118:615-21.

22. Simao LM, Lapa‑Feixoto MA, Araujo CR, Moreira MA, Teixeira AL. The Brazilian version of the 25‑Item national eye institute visual function questionnaire: Translation, reliability, and validity. Arq Bras Oftalmol 2008;71:540–6.

23. Arita R, Itoh K, Inoue K, Amano S. Noncontact infrared meibography to document age‑related changes of the meibomian glands in a normal population. Ophthalmology 2008;115:911-5.

24. Arriola‑Villalobos P, Fernández‑Vigo J, Díaz‑Valle D, Peraza‑Nieves JE, Fernández‑Pérez C, Benítez‑del‑Castillo JM. Assessment of lower tear meniscus measurements obtained with Keratograph and agreement with Fourier‑domain optical‑coherence tomography. Br J Ophthalmol 2015;99:1120‑5.

25. Lemp MA, Bron AJ, Baudouin C, del Castillo JMB, Ceffen D, Tauber J, et al. Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol 2011;151:792-8.

26. Clouzeau C, Godefroy D, Bianco L, Rostène W, Baudouin C, Brignole-Baudouin F. Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro. Mol Vis 2012;18:851-63.

27. Pellinen P, Huhtala A, Tolonen A, Lokkila J, Mäenpää J, Uusitalo H. The cytotoxic effects of preserved and preservative‑free prostaglandin analogs on human corneal and conjunctival epithelium in vitro and the distribution of benzalkonium chloride homologs in ocular surface tissues in vivo. Curr Eye Res 2012;37:145-54.

28. Paimela T, Ryhänen T, Kauppinen A, Marttila L, Salminen A, Kaarniranta K. The preservative polyquaternium 1 increases cytotoxicity and NF kappaB linked inflammation in human corneal epithelial cells. Mol Vis 2012;18:1189-96.

29. Portela RC, Fares NT, Machado LF, São Leão AF, de Freitas D, Paranhos AJr, et al. Evaluation of ocular surface disease in patients with glaucoma: Clinical parameters, self-report assessment, and keratograph analysis. J Glaucoma 2018;27:794-801.

30. Ling TE, Othman K, Yan OP, Rashid RA, Tet CM, Yaakob A, et al. Evaluation of ocular surface disease in Asian patients with primary angle closure. Open Ophthalmol J 2017;11:31-9.

31. Pérez Bartolomé F, Martínez de la Casa JM, Arriola Villalobos P, Fernández Pérez C, Polo V, Sánchez Jean R, et al. Ocular redness measured with the Keratograph 5M in patients using anti-glaucoma eye drops. Semin Ophthalmol 2018;33:643-50.
32. Feldman RM. Conjunctival hyperemia and the use of topical prostaglandins in glaucoma and ocular hypertension. J Ocul Pharmacol Ther 2003;19:23-35.

33. Baffa Ldo P, Ricardo JR, Dias AC, Médulo CM, Braz AM, Paula JS, et al. Tear film and ocular surface alterations in chronic users of antiglaucoma medications. Arq Bras Oftalmol 2008;71:18-21.

34. Bitton E, Keech A, Simpson T, Jones L. Variability of the analysis of the tear meniscus height by optical coherence tomography. Optom Vis Sci 2007;84:903-8.

35. Zhong S, Zhou H, Chen X, Zhang W, Yi L. Influence of glaucoma surgery on the ocular surface using oculus keratograph. Int Ophthal mol 2019;39:745-52.

36. Tittler EH, Bujak MC, Nguyen P, Zhang X, Li Y, Yiu SC, et al. Between-grader repeatability of tear meniscus measurements using Fourier-domain OCT in patients with dry eye. Ophthalmic Surg Lasers Imaging 2011;42:423-7.

37. de Jong C, Stolwijk T, Kuppers E, de Keizer R, van Best J. Topical timolol with and without benzalkonium chloride: Epithelial permeability and autofluorescence of the cornea in glaucoma. Graefes Arch Clin Exp Ophthalmol 1994;232:221-4.

38. Pflugfelder SC, Liu Z, Monroy D, Li DQ, Carvajal ME, Price-Schiavi SA, et al. Detection of sialomucin complex (MUC4) in the human ocular surface epithelium and tear fluid. Invest Ophthalmol Vis Sci 2000;41:1316-26.

39. Sagara H, Sekiryu T, Noji H, Ogasawara M, Sugano Y, Horikiri H. Meibomian gland loss due to trabeculectomy. Jpn J Ophthalmol 2014;58:334-41.

40. Oh T, Jung Y, Chang D, Kim J, Kim H. Changes in the tear film and ocular surface after cataract surgery. Jpn J Ophthalmol 2012;56:113-8.