INEQUALITIES FOR CONVEX AND s–CONVEX FUNCTIONS
ON $\Delta = [a, b] \times [c, d]$

M. EMIN ÖZDEMİR♦, HAVVA KAVURMACI♦♦, AHMET OCAK AKDEMİR♦, AND MERVE AVCİ♦

Abstract. In this paper, two new lemmas are proved and inequalities are established for co-ordinated convex functions and co-ordinated s–convex functions.

1. INTRODUCTION

Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function defined on the interval I of real numbers and $a < b$. The following double inequality:

$$f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}$$

is well known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction if f is concave.

In [8], Orlicz defined s–convex functions as following:

Definition 1. A function $f : \mathbb{R}^{+} \to \mathbb{R}$, where $\mathbb{R}^{+} = [0, \infty)$, is said to be s–convex in the first sense if

$$f(\alpha x + \beta y) \leq \alpha^{s}f(x) + \beta^{s}f(y)$$

for all $x, y \in [0, \infty)$, $\alpha, \beta \geq 0$ with $\alpha^{s} + \beta^{s} = 1$ and for some fixed $s \in (0, 1]$. We denote by K_{1}^{s} the class of all s–convex functions.

Definition 2. A function $f : \mathbb{R}^{+} \to \mathbb{R}$, where $\mathbb{R}^{+} = [0, \infty)$, is said to be s–convex in the second sense if

$$f(\alpha x + \beta y) \leq \alpha^{s}f(x) + \beta^{s}f(y)$$

for all $x, y \in [0, \infty)$, $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$ and for some fixed $s \in (0, 1]$. We denote by K_{2}^{s} the class of all s–convex functions.

Obviously, one can see that if we choose $s = 1$, both definitions reduced to ordinary concept of convexity.

For several results related to above definitions we refer readers to [6], [9], [13].

In [2], Dragomir defined convex functions on the co-ordinates as following:
Definition 3. Let us consider the bidimensional interval \(\Delta = [a, b] \times [c, d] \) in \(\mathbb{R}^2 \) with \(a < b \), \(c < d \). A function \(f : \Delta \rightarrow \mathbb{R} \) will be called convex on the co-ordinates if the partial mappings \(f_y : [a, b] \rightarrow \mathbb{R}, f_y(u) = f(u, y) \) and \(f_x : [c, d] \rightarrow \mathbb{R}, f_x(v) = f(x, v) \) are convex where defined for all \(y \in [c, d] \) and \(x \in [a, b] \). Recall that the mapping \(f : \Delta \rightarrow \mathbb{R} \) is convex on \(\Delta \) if the following inequality holds,

\[
f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \leq \lambda f(x, y) + (1 - \lambda)f(z, w)
\]

for all \((x, y), (z, w) \in \Delta\) and \(\lambda \in [0, 1] \).

In [2], Dragomir established the following inequalities of Hadamard’s type for co-ordinated convex functions on a rectangle from the plane \(\mathbb{R}^2 \).

Theorem 1. Suppose that \(f : \Delta = [a, b] \times [c, d] \rightarrow \mathbb{R} \) is convex on the co-ordinates on \(\Delta \). Then one has the inequalities;

\[
(1.1) \quad f\left(\frac{a + b}{2}, \frac{c + d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b - a} \int_a^b f(x, \frac{c + d}{2}) dx + \frac{1}{d - c} \int_c^d f\left(\frac{a + b}{2}, y\right) dy \right]
\]

\[
\leq \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y) dx dy
\]

\[
\leq \frac{1}{4} \left[\frac{1}{b - a} \int_a^b f(x, c) dx + \frac{1}{(b - a)} \int_a^b f(x, d) dx
\]

\[
+ \frac{1}{(d - c)} \int_c^d f(a, y) dy + \frac{1}{(d - c)} \int_c^d f(b, y) dy \right]\n\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4}.
\]

The above inequalities are sharp.

Similar results can be found in [5], [7], [10] and [11].

In [10], Alomari and Darus defined co-ordinated \(s \)-convex functions and proved some inequalities based on this definition.

Definition 4. Consider the bidimensional interval \(\Delta = [a, b] \times [c, d] \) in \([0, \infty)^2\) with \(a < b \) and \(c < d \). The mapping \(f : \Delta \rightarrow \mathbb{R} \) is \(s \)-convex on \(\Delta \) if

\[
f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \leq \lambda^s f(x, y) + (1 - \lambda)^s f(z, w)
\]

holds for all \((x, y), (z, w) \in \Delta\) with \(\lambda \in [0, 1] \) and for some fixed \(s \in (0, 1] \).

In [12], Sarkanay et al. proved some Hadamard’s type inequalities for co-ordinated convex functions as followings:

Theorem 2. Let \(f : \Delta \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) be a partial differentiable mapping on \(\Delta := [a, b] \times [c, d] \) in \(\mathbb{R}^2 \) with \(a < b \) and \(c < d \). If \(f(x, y) \in C^2 \) is a convex function on the
co-ordinates on Δ, then one has the inequalities:

\[
\begin{align*}
(1.2) & \quad \left| \frac{1}{4} f(a, c) + f(a, d) + f(b, c) + f(b, d) \right| \\
& \leq \frac{(b - a)(d - c)}{16} \left(\frac{\partial^2 f}{\partial t \partial s} \left| a, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| a, d \right| + \frac{\partial^2 f}{\partial t \partial s} \left| b, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| b, d \right| \right)
\end{align*}
\]

where

\[
A = \frac{1}{2} \left[\frac{1}{(b - a)} \int_a^b [f(x, c) + f(x, d)] dx + \frac{1}{(d - c)} \int_c^d \left[f(a, y) dy + f(b, y) \right] dy \right].
\]

Theorem 3. Let $f: \Delta \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with $a < b$ and $c < d$. If $\frac{\partial^2 f}{\partial t \partial s} \left| q \right|$, $q > 1$, is a convex function on the co-ordinates on Δ, then one has the inequalities:

\[
\begin{align*}
(1.3) & \quad \left| \frac{1}{4} f(a, c) + f(a, d) + f(b, c) + f(b, d) \right| \\
& \leq \frac{(b - a)(d - c)}{4 (p + 1)^{\frac{q}{2}}} \left(\frac{\partial^2 f}{\partial t \partial s} \left| q \right| a, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| a, d \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| b, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| b, d \right| \right)^{\frac{1}{q} - \frac{1}{p}}
\end{align*}
\]

where

\[
A = \frac{1}{2} \left[\frac{1}{(b - a)} \int_a^b [f(x, c) + f(x, d)] dx + \frac{1}{(d - c)} \int_c^d \left[f(a, y) dy + f(b, y) \right] dy \right]
\]

and $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 4. Let $f: \Delta \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with $a < b$ and $c < d$. If $\frac{\partial^2 f}{\partial t \partial s} \left| q \right|$, $q \geq 1$, is a convex function on the co-ordinates on Δ, then one has the inequalities:

\[
\begin{align*}
(1.4) & \quad \left| \frac{1}{4} f(a, c) + f(a, d) + f(b, c) + f(b, d) \right| \\
& \leq \frac{(b - a)(d - c)}{16} \left(\frac{\partial^2 f}{\partial t \partial s} \left| q \right| a, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| a, d \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| b, c \right| + \frac{\partial^2 f}{\partial t \partial s} \left| q \right| b, d \right| \right)\frac{1}{q}
\end{align*}
\]

where

\[
A = \frac{1}{2} \left[\frac{1}{(b - a)} \int_a^b [f(x, c) + f(x, d)] dx + \frac{1}{(d - c)} \int_c^d \left[f(a, y) dy + f(b, y) \right] dy \right].
\]
In [1], Barnett and Dragomir proved an Ostrowski-type inequality for double integrals as following:

Theorem 5. Let \(f: [a, b] \times [c, d] \to \mathbb{R} \) be continuous on \([a, b] \times [c, d]\), \(f''_{xy} = \frac{\partial^2 f}{\partial x \partial y} \) exists on \((a, b) \times (c, d)\) and is bounded, that is

\[
\|f''_{xy}\|_\infty = \sup_{(x, y) \in (a, b) \times (c, d)} \left| \frac{\partial^2 f(x, y)}{\partial x \partial y} \right| < \infty,
\]

then we have the inequality:

\[
\left(1.5 \right) \quad \left| \int_a^b \int_c^d f(s, t) dt ds - (b - a) \int_c^d f(x, t) dt \right|
\]

\[
- (d - c) \left| \int_a^b f(s, y) ds - (b - a)(d - c) f(x, y) \right|
\]

\[
\leq \left[\frac{(b - a)^2}{4} + \left(x - \frac{a + b}{2} \right)^2 \right] \left(\frac{(d - c)^2}{4} + \left(y - \frac{c + d}{2} \right)^2 \right) \|f''_{xy}\|_\infty
\]

for all \((x, y) \in [a, b] \times [c, d]\).

In [1], Sarıkaya proved an Ostrowski-type inequality for double integrals and gave a corollary as following:

Theorem 6. Let \(f: [a, b] \times [c, d] \to \mathbb{R} \) be an absolutely continuous functions such that the partial derivative of order 2 exist and is bounded, i.e.,

\[
\left| \frac{\partial^2 f(t, s)}{\partial t \partial s} \right| = \sup_{(x, y) \in (a, b) \times (c, d)} \left| \frac{\partial^2 f(t, s)}{\partial t \partial s} \right| < \infty
\]

for all \((t, s) \in [a, b] \times [c, d]\). Then we have,

\[
(1.6) - \int_a^b [(\alpha_2 - c) f(t, c) + (d - \beta_2) f(t, d)] dt
\]

\[
- \int_c^d [((\alpha_1 - a) f(a, s) + (b - \beta_1) f(b, s))] ds + \int_a^b \int_c^d f(t, s) ds dt
\]

\[
\leq \left[\frac{(\alpha_1 - a)^2 + (b - \beta_1)^2}{2} + \frac{(a + b - 2\alpha_1)^2 + (a + b - 2\beta_1)^2}{2} \right]
\]

\[
\times \left[\frac{(\alpha_2 - c)^2 + (d - \beta_2)^2}{2} + \frac{(c + d - 2\alpha_2)^2 + (c + d - 2\beta_2)^2}{2} \right] \left| \frac{\partial^2 f(t, s)}{\partial t \partial s} \right|_\infty
\]

for all \((\alpha_1, \alpha_2), (\beta_1, \beta_2) \in [a, b] \times [c, d]\) with \(\alpha_1 < \beta_1, \alpha_2 < \beta_2\) where

\[
H(\alpha_1, \alpha_2, \beta_1, \beta_2) = (\alpha_1 - a) [(\alpha_2 - c) f(a, c) + (d - \beta_2) f(a, d)]
\]

\[
+ (b - \beta_1) [(\alpha_2 - c) f(b, c) + (d - \beta_2) f(b, d)]
\]
and
\[
G (\alpha_1, \alpha_2, \beta_1, \beta_2) = \begin{pmatrix}
(\beta_1 - \alpha_1) \left[(\alpha_2 - c) f \left(\frac{a + b}{2}, c \right) + (d - \beta_2) f \left(\frac{a + b}{2}, d \right) \right] \\
+ (\beta_2 - \alpha_2) \left[(\alpha_1 - a) f \left(a, \frac{c + d}{2} \right) + (b - \beta_1) f \left(b, \frac{c + d}{2} \right) \right].
\end{pmatrix}
\]

Corollary 1. Under the assumptions of Theorem 6, we have
\[
\left| (b - a) (d - c) f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) + \int_a^b \int_c^d f(t, s) ds dt - (d - c) \int_a^b f \left(t, \frac{c + d}{2} \right) dt - (b - a) \int_c^d f \left(\frac{a + b}{2}, s \right) ds \right| \leq \frac{1}{16} \left\| \frac{\partial^2 f(t, s)}{\partial t \partial s} \right\|_{\infty} (b - a)^2 (d - c)^2.
\]

In [3], Pachpatte established a new Ostrowski type inequality similar to inequality (1.5) by using elementary analysis.

The main purpose of this paper is to establish inequalities of Ostrowski-type for co-ordinated convex functions by using Lemma 2 and to establish some new Hadamard’s type inequalities for co-ordinated s–convex functions.

2. INEQUALITIES FOR CO-ORDINATED CONVEX FUNCTIONS

To prove our main result, we need the following lemma which contains kernels similar to Barnett and Dragomir’s kernels in [1], [see the paper [1], proof of Theorem 2.1].

Lemma 1. Let \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) be a partial differentiable mapping on \(\Delta = [a, b] \times [c, d] \). If \(\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta) \), then the following equality holds:
\[
f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) - \frac{1}{(d - c)} \int_c^d f \left(\frac{a + b}{2}, y \right) dy - \frac{1}{(b - a)} \int_a^b f \left(x, \frac{c + d}{2} \right) dx + \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y) dy dx =\]
\[
\int_a^b \int_c^d p(x, t) q(y, s) \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b - t}{b - a} + \frac{t - a}{b - a} \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) ds dt
\]
where
\[
p(x, t) = \begin{cases}
(t - a), & t \in \left[a, \frac{a + b}{2} \right] \\
(t - b), & t \in \left(\frac{a + b}{2}, b \right)
\end{cases}
\]
and
\[
q(y, s) = \begin{cases}
(s - c), & s \in \left[c, \frac{c + d}{2} \right] \\
(s - d), & s \in \left(\frac{c + d}{2}, d \right)
\end{cases}.
\]
for each \(x \in [a, b] \) and \(y \in [c, d] \).
Proof. Integration by parts, we can write

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d p(x,t) q(y,s) \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dsdt
\]

\[
= \int_c^d q(y,s) \left[\int_a^b \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dt \right. \\
\left. + \int_a^b \frac{\partial^2 f}{\partial s^2} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dt \right] ds \\
\]

\[
= \int_c^d q(y,s) \left\{ \left[(t-a) \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) \right]_a^b \\
- \int_a^b \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dt \right. \\
\left. + \left[(t-b) \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) \right]_a^b \\
- \int_a^b \frac{\partial^2 f}{\partial s^2} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dt \right\} ds.
\]

We obtain

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d p(x,t) q(y,s) \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dsdt
\]

\[
= (b-a) \int_c^d q(y,s) \left\{ \frac{\partial f}{\partial s} \left(a+b, \frac{d-s}{2}, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \\
- \int_a^b \frac{\partial f}{\partial s} \left(\frac{a+b}{2}, \frac{d-s}{2}, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) dt \right\} ds.
\]

By integrating again, we get

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d p(x,t) q(y,s) \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dsdt
\]

\[
= (b-a) \left\{ \int_c^d (s-c) \frac{\partial f}{\partial s} \left(a+b, \frac{d-s}{2}, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) ds \\
+ \int_a^b (s-d) \frac{\partial f}{\partial s} \left(a+b, \frac{d-s}{2}, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) ds \\
- \int_a^b (s-c) \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) ds \\
+ \int_a^b (s-d) \frac{\partial f}{\partial s} \left(b-t \frac{b-a}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{b-a} c + \frac{s-c}{d-c} d \right) dt \right\}.
\]
By calculating the above integrals, we have

\[
\frac{1}{(b-a)(d-c)} \int_a^b \int_c^d p(x,t) q(y,s) \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} a + \frac{t-a}{b-a} b, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \, ds \, dt
\]

\[
= (b-a)(d-c) f \left(\frac{a+b}{2}, \frac{c+d}{2} \right)
- (b-a) \int_c^d f \left(\frac{a+b}{2}, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \, ds
- (d-c) \int_a^b f \left(\frac{b-t}{b-a} b + \frac{t-a}{b-a} a, \frac{c+d}{2} \right) \, dt
\]

\[
\int_a^b \int_c^d f \left(\frac{b-t}{b-a} b + \frac{t-a}{b-a} a, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \, ds \, dt.
\]

Using the change of the variable \(x = \frac{b-a}{b-a} a + \frac{d-c}{d-c} b \) and \(y = \frac{b-a}{b-a} c + \frac{b-a}{b-a} d \), then dividing both sides with \((b-a) \times (d-c) \), this completes the proof. \(\square \)

Theorem 7. Let \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) be a partial differentiable mapping on \(\Delta = [a, b] \times [c, d] \). If \(\left| \frac{\partial^2 f}{\partial t \partial s} \right| \) is a convex function on the co-ordinates on \(\Delta \), then the following inequality holds:

\[
(2.1) \quad \left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \right|
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy
- \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx
+ \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) \, dy \, dx
\]

\[
\leq \frac{(b-a)(d-c)}{64} \left[\left| \frac{\partial^2 f}{\partial t \partial s} (a,c) \right| + \left| \frac{\partial^2 f}{\partial t \partial s} (b,c) \right| + \left| \frac{\partial^2 f}{\partial t \partial s} (a,d) \right| + \left| \frac{\partial^2 f}{\partial t \partial s} (b,d) \right| \right].
\]

Proof. From Lemma 2 and using the property of modulus, we have

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \right|
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy
- \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx
+ \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) \, dy \, dx
\]

\[
\leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d |p(x,t) q(y,s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} a + \frac{t-a}{b-a} b, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \right| \, ds \, dt
\]
Since $|\frac{\partial^2 f}{\partial t \partial s}|$ is co-ordinated convex, we can write

$$
\begin{align*}
&\left| f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) \\
&- \frac{1}{(d - c)} \int_c^d f \left(\frac{a + b}{2}, y \right) dy - \frac{1}{(b - a)} \int_a^b f \left(x, \frac{c + d}{2} \right) dx \\
&+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f (x, y) dy dx \\
&\leq \frac{1}{(b - a)(d - c)} \\
&\times \int_c^d |q(y, s)| \left\{ \int_a^{\frac{a + b}{2}} (t - a) \left[\frac{b - t}{b - a} \frac{\partial^2 f}{\partial t \partial s} \left(a, \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right] dt \\
&+ \int_a^{\frac{b}{2}} (b - t) \left[\frac{t - a}{b - a} \frac{\partial^2 f}{\partial t \partial s} \left(a, \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right] dt \\
&+ \int_{\frac{b}{2}}^{\frac{b - t}{b - a}} \left[\frac{b - t}{b - a} \frac{\partial^2 f}{\partial t \partial s} \left(b, \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right] dt \} ds.
\end{align*}
$$

By computing these integrals, we obtain

$$
\begin{align*}
&\left| f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) \\
&- \frac{1}{(d - c)} \int_c^d f \left(\frac{a + b}{2}, y \right) dy - \frac{1}{(b - a)} \int_a^b f \left(x, \frac{c + d}{2} \right) dx \\
&+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f (x, y) dy dx \\
&\leq \frac{(b - a)}{8(d - c)} \left\{ \int_c^d |q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(a, \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right| \right. \\
&\left. + \int_c^d |q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(b, \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right| \right\} ds.
\end{align*}
$$
Using co-ordinated convexity of \(\frac{\partial^2 f}{\partial t \partial s} \), again, we get

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) - \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy - \frac{1}{b-a} \int_a^b f \left(x, \frac{c+d}{2} \right) dx \right|
\]

\[
+ \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) dydx \leq \frac{(b-a)}{8(d-c)} \left\{ \int_c^d (s-c) \left[\frac{d-s}{d-c} \frac{\partial^2 f}{\partial t \partial s}(a,c) \right] ds + \int_c^d (d-s) \left[\frac{s-c}{d-c} \frac{\partial^2 f}{\partial t \partial s}(a,d) \right] ds \right. \\
+ \left. \int_c^{c+d} (s-c) \left[\frac{d-s}{d-c} \frac{\partial^2 f}{\partial t \partial s}(b,c) \right] ds + \int_c^{c+d} (d-s) \left[\frac{s-c}{d-c} \frac{\partial^2 f}{\partial t \partial s}(b,d) \right] ds \right\}.
\]

By a simple computation, we get the required result.

\[
\square
\]

Remark 1. Suppose that all the assumptions of Theorem 7 are satisfied. If we choose \(\frac{\partial^2 f}{\partial t \partial s} \) is bounded, i.e.,

\[
\left\| \frac{\partial^2 f(t,s)}{\partial t \partial s} \right\|_\infty = \sup_{(t,s) \in (a,b) \times (c,d)} \left| \frac{\partial^2 f(t,s)}{\partial t \partial s} \right| < \infty,
\]

we get

\[
(2.2)
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) - \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy - \frac{1}{b-a} \int_a^b f \left(x, \frac{c+d}{2} \right) dx \right|
\]

\[
+ \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) dydx \leq \frac{(b-a)}{16} \left\| \frac{\partial^2 f(t,s)}{\partial t \partial s} \right\|_\infty
\]

which is the inequality \((1.7)\).

Theorem 8. Let \(f : \Delta = [a,b] \times [c,d] \to \mathbb{R} \) be a partial differentiable mapping on \(\Delta = [a,b] \times [c,d] \). If \(\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q \), \(q > 1 \), is a convex function on the co-ordinates on \(\Delta \),
then the following inequality holds:

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a) (d-c)} \int_a^b \int_c^d f(x,y) \, dy \, dx \right| \\
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx \leq \frac{1}{(b-a) (d-c)} \int_a^b \int_c^d |p(x,t) q(y,s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{a-b}{d-c} + \frac{d-s}{d-c} + \frac{s-c}{d-c} \right) \right|^q \, ds \, dt
\]

By applying the well-known Hölder inequality for double integrals, then one has

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a) (d-c)} \int_a^b \int_c^d f(x,y) \, dy \, dx \right| \\
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx \leq \frac{1}{(b-a) (d-c)} \int_a^b \int_c^d |p(x,t) q(y,s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{a-b}{d-c} + \frac{d-s}{d-c} + \frac{s-c}{d-c} \right) \right|^q \, ds \, dt
\]

Since \(|\frac{\partial^2 f}{\partial t \partial s}|^q \) is a co-ordinated convex function on \(\Delta \), we can write for all \((t, s) \in [a, b] \times [c, d]\)

\[
\left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{a-b}{d-c} + \frac{d-s}{d-c} + \frac{s-c}{d-c} \right) \right|^q \leq \frac{b-t}{b-a} \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{a}{d-c} + \frac{s-c}{d-c} \right) \right|^q \\
+ \frac{t-a}{b-a} \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b}{d-c} + \frac{s-c}{d-c} \right) \right|^q
\]
Using inequality of (2.5) in (2.4), we get

\[
\left(\frac{\partial^2 f}{\partial t \partial s} \left(\frac{b - t}{b - a} + \frac{t - a}{b - a} + \frac{d - s}{d - c} + \frac{s - c}{d - c} \right) \right)^q \leq \left(\frac{b - t}{b - a} \right) \left(\frac{d - s}{d - c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, c) \right|^q + \left(\frac{b - t}{b - a} \right) \left(\frac{s - c}{d - c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, d) \right|^q + \left(\frac{a - t}{b - a} \right) \left(\frac{d - s}{d - c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, c) \right|^q + \left(\frac{a - t}{b - a} \right) \left(\frac{s - c}{d - c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, d) \right|^q.
\]

Using inequality of (2.5) in (2.4), we get

\[
\left| f \left(\frac{a + b}{2}, \frac{c + d}{2} \right) + \frac{1}{b - a} \int_a^b f (x, y) \, dy \right| - \frac{1}{(b - a)(d - c)} \int_c^d f \left(\frac{a + b}{2}, y \right) \, dy - \frac{1}{(b - a)} \int_a^b f \left(x, \frac{c + d}{2} \right) \, dx \leq \frac{(b - a)(d - c)}{4 (p + 1)^q} \left(\left| \frac{\partial^2 f}{\partial t \partial s} (a, c) \right|^q + \left| \frac{\partial^2 f}{\partial t \partial s} (b, c) \right|^q + \left| \frac{\partial^2 f}{\partial t \partial s} (a, d) \right|^q + \left| \frac{\partial^2 f}{\partial t \partial s} (b, d) \right|^q \right)^{\frac{1}{q}}.
\]

where we have used the fact that

\[
\left(\int_a^b \left| p(x, t) q(y, s) \right|^p \, dt \, ds \right)^{\frac{1}{p}} = \frac{[(b - a)(d - c)]^{1 + \frac{1}{p}}}{4 (p + 1)^{\frac{q}{p}}}.
\]

This completes the proof. \(\square\)

Remark 2. Suppose that all the assumptions of Theorem 8 are satisfied. If we choose \(\frac{\partial^2 f}{\partial t \partial s}\) is bounded, i.e.,

\[
\left\| \frac{\partial^2 f (t, s)}{\partial t \partial s} \right\|_{\infty} = \sup_{(t, s) \in (a, b) \times (c, d)} \left| \frac{\partial^2 f (t, s)}{\partial t \partial s} \right| < \infty,
\]

we get

\[
\left(\frac{a + b}{2}, \frac{c + d}{2} \right) - \frac{1}{(b - a)} \int_a^b f \left(\frac{a + b}{2}, y \right) \, dy - \frac{1}{(b - a)} \int_a^b f \left(x, \frac{c + d}{2} \right) \, dx + \frac{1}{(b - a)(d - c)} \int_c^d f \left(x, \frac{c + d}{2} \right) \, dx \leq \frac{(b - a)(d - c)}{4 (p + 1)^{\frac{q}{p}}} \left\| \frac{\partial^2 f (t, s)}{\partial t \partial s} \right\|_{\infty}.
\]
Theorem 9. Let \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) be a partial differentiable mapping on \(\Delta = [a, b] \times [c, d] \). If \(\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q, q \geq 1 \), is a convex function on the co-ordinates on \(\Delta \), then the following inequality holds:

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) \, dy \, dx \right. \\
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx \leq \frac{1}{16} \\
\times \left(\int_a^b \int_c^d |p(x, t) q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \right| \, ds \, dt \right)^{\frac{q}{4}}.
\]

Proof. From Lemma 2, we have

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) \, dy \, dx \\
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx \right| \leq \frac{1}{(b-a)(d-c)} \\
\int_a^b \int_c^d |p(x, t) q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \right| \, ds \, dt
\]

By applying the well-known Power mean inequality for double integrals, then one has

\[
\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) \, dy \, dx \\
- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) \, dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) \, dx \right| \leq \frac{1}{(b-a)(d-c)} \\
\times \left(\int_a^b \int_c^d |p(x, t) q(y, s)| \, ds \, dt \right)^{1-\frac{q}{4}} \\
\left(\int_a^b \int_c^d |p(x, t) q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\frac{b-t}{b-a} + \frac{t-a}{b-a} b, \frac{d-s}{d-c} c + \frac{s-c}{d-c} d \right) \right| ^q \, ds \, dt \right)^{\frac{1}{q}}.
\]
Since $|\frac{\partial^2 f}{\partial t \partial s}|^q$ is a co-ordinated convex function on Δ, we can write for all $(t, s) \in [a, b] \times [c, d]$

\begin{equation}
\frac{\partial^2 f}{\partial t \partial s} \left(\begin{array}{c}
\frac{b-t}{b-a} + \frac{t-a}{b-a} + \frac{d-s}{d-c} + \frac{s-c}{d-c}
\end{array} \right)^q
\end{equation}

\begin{align}
&\leq \left(\frac{b-t}{b-a} \left(\frac{d-s}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, c) \right|^q \\
&+ \left(\frac{b-t}{b-a} \left(\frac{s-c}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, d) \right|^q \\
&+ \left(\frac{t-a}{b-a} \left(\frac{d-s}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, c) \right|^q \\
&+ \left(\frac{t-a}{b-a} \left(\frac{s-c}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, d) \right|^q \right) .
\end{align}

If we use (2.9) in (2.8), we get

\begin{align}
&\left| f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dy dx \\
&- \frac{1}{(d-c)} \int_c^d f \left(\frac{a+b}{2}, y \right) dy - \frac{1}{(b-a)} \int_a^b f \left(x, \frac{c+d}{2} \right) dx \right|
\end{align}

\begin{align}
&\leq \frac{1}{(b-a)(d-c)} \left\{ \left(\int_a^b \int_c^d |p(x, t) q(y, s)| ds dt \right)^{1-\frac{1}{q}} \\
&\times \left(\int_a^b \int_c^d |p(x, t) q(y, s)| \left| \frac{\partial^2 f}{\partial t \partial s} \left(\begin{array}{c}
\frac{b-t}{b-a} a + \frac{t-a}{b-a} b + \frac{d-s}{d-c} c + \frac{s-c}{d-c} d
\end{array} \right) \right|^q ds dt \right)^{\frac{1}{q}} \\
&\leq \left(\int_a^b \int_c^d |p(x, t) q(y, s)| ds dt \right)^{1-\frac{1}{q}} \\
&\times \left(\int_a^b \int_c^d |p(x, t) q(y, s)| \left[\left(\frac{b-t}{b-a} \left(\frac{d-s}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, c) \right|^q + \left(\frac{b-t}{b-a} \left(\frac{s-c}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (a, d) \right|^q \\
&+ \left(\frac{t-a}{b-a} \left(\frac{d-s}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, c) \right|^q + \left(\frac{t-a}{b-a} \left(\frac{s-c}{d-c} \right) \left| \frac{\partial^2 f}{\partial t \partial s} (b, d) \right|^q \right) \right]^{1-\frac{1}{q}}.
\end{align}

Computing the above integrals and using the fact that

\begin{align}
\left(\int_a^b \int_c^d |p(x, t) q(y, s)| ds dt \right)^{1-\frac{1}{q}} = \left(\frac{(b-a)^2 (d-c)^2}{16} \right)^{1-\frac{1}{q}}.
\end{align}
This completes the proof. □

3. INEQUALITIES FOR CO-ORDINATED s–CONVEX FUNCTIONS

To prove our main results we need the following lemma:

Lemma 2. Let \(f : \Delta \subset \mathbb{R}^2 \to \mathbb{R} \) be an absolutely continuous function on \(\Delta \) where \(a < b, \ c < d \) and \(t, \lambda \in [0, 1] \), if \(\frac{\partial^2 f}{\partial t \partial \lambda} \in L(\Delta) \), then the following equality holds:

\[
\frac{f(a,c) + r_2 f(a,d) + r_1 f(b,c) + r_1 r_2 f(b,d)}{(r_1 + 1)(r_2 + 1)} + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) dx dy \\
- \left(\frac{r_2}{r_2+1} \right) \frac{1}{d-c} \int_c^d f(b,y) dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d-c} \int_c^d f(a,y) dy \\
- \left(\frac{r_2}{r_2+1} \right) \frac{1}{b-a} \int_a^b f(x,d) dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x,c) dx \\
= \frac{(b-a)(d-c)}{(r_1 + 1)(r_2 + 1)} \\
\times \int_0^1 \int_0^1 ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda
\]

for some fixed \(r_1, r_2 \in [0, 1] \).

Proof. Integration by parts, we get

\[
\int_0^1 \int_0^1 ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda \\
= \int_0^1 ((r_2 + 1) \lambda - 1) \left[\int_0^1 ((r_1 + 1) t - 1) \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda \right] \\
= \int_0^1 ((r_2 + 1) \lambda - 1) \left[\frac{((r_1 + 1) t - 1) \frac{\partial f}{\partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c)}{b-a} \right]_0^1 \\
- \frac{r_1 + 1}{b-a} \int_0^1 \frac{\partial f}{\partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda
\]

\[
= \int_0^1 \int_0^1 ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda \\
= \int_0^1 ((r_2 + 1) \lambda - 1) \left[\frac{r_1}{b-a} \frac{\partial f}{\partial \lambda} (b, \lambda d + (1-\lambda) c) + \frac{1}{b-a} \frac{\partial f}{\partial \lambda} (a, \lambda d + (1-\lambda) c) \\
- \frac{r_1 + 1}{b-a} \int_0^1 \frac{\partial f}{\partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) dt d\lambda
\]
Again by integration by parts, we have

\[
\int_0^1 ((r_2 + 1) \lambda - 1) \left[\frac{r_1}{b-a} \frac{\partial f}{\partial \lambda}(b, \lambda d + (1 - \lambda) c) + \frac{1}{b-a} \frac{\partial f}{\partial \lambda}(a, \lambda d + (1 - \lambda) c) \right] \, d\lambda \\
- \frac{r_1 + 1}{b-a} \int_0^1 \frac{\partial f}{\partial \lambda} (tb + (1-t) a, \lambda d + (1 - \lambda) c) \, dt \, d\lambda \\
= \frac{r_1}{b-a} \frac{(r_2 + 1) \lambda - 1}{d-c} f(b, \lambda d + (1 - \lambda) c) \bigg|_0^1 - \frac{r_1 (r_2 + 1)}{(b-a)(d-c)} \int_0^1 f(b, \lambda d + (1 - \lambda) c) \, d\lambda \\
+ \frac{1}{b-a} \frac{(r_2 + 1) \lambda - 1}{d-c} f(a, \lambda d + (1 - \lambda) c) \bigg|_0^1 - \frac{r_2 (r_2 + 1)}{(b-a)(d-c)} \int_0^1 f(a, \lambda d + (1 - \lambda) c) \, d\lambda \\
- \frac{r_1 + 1}{b-a} \int_0^1 ((r_2 + 1) \lambda - 1) \frac{\partial f}{\partial \lambda} (tb + (1-t) a, \lambda d + (1 - \lambda) c) \, d\lambda \bigg|_0^1 dt.
\]

Computing these integrals and by using the results, we obtain

\[
\int_0^1 \int_0^1 ((r_2 + 1) t - 1) ((r_2 + 1) \lambda - 1) \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1 - \lambda) c) \, dt \, d\lambda \\
= \frac{1}{(b-a)(d-c)} \left[f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d) \\
- r_1 (r_2 + 1) \int_0^1 f(b, \lambda d + (1 - \lambda) c) \, d\lambda - (r_2 + 1) \int_0^1 f(a, \lambda d + (1 - \lambda) c) \, d\lambda \\
- r_2 (r_1 + 1) \int_0^1 f(tb + (1-t) a, d) \, dt - (r_2 + 1) \int_0^1 f(tb + (1-t) a, c) \, dt \\
+ (r_1 + 1) (r_2 + 1) \int_0^1 \int_0^1 f(tb + (1-t) a, \lambda d + (1 - \lambda) c) \, dtd\lambda \right].
\]

Using the change of the variable \(x = tb + (1-t) a \) and \(y = \lambda d + (1 - \lambda) c \) for \(t, \lambda \in [0,1] \) and multiplying the both sides by \(\frac{(b-a)(d-c)}{(r_1+1)(r_2+1)} \), we get the required result. \(\square \)

Theorem 10. Let \(f : \Delta = [a, b] \times [c, d] \subset [0, \infty)^2 \to \mathbb{R} \) be an absolutely continuous function on \(\Delta \). If \(\left| \frac{\partial^2 f}{\partial t \partial \lambda} \right| \) is \(s \)-convex function on the co-ordinates on
Proof. From Lemma 3, we can write:

\[
\Delta, \text{ then one has the inequality:}
\]

\[
\frac{f(a,c) + r_2f(a,d) + r_1f(b,c) + r_1r_2f(b,d)}{(r_1 + 1)(r_2 + 1)} - \frac{1}{d - c} \left[\left(\frac{r_2}{r_2 + 1} \right) \int_c^d f(b,y)dy + \left(\frac{1}{r_1 + 1} \right) \int_c^d f(a,y)dy \right] + \frac{1}{b - a} \left[\left(\frac{r_2}{r_2 + 1} \right) \int_a^b f(x,d)dx + \left(\frac{1}{r_2 + 1} \right) \int_a^b f(x,c)dx \right] + \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x,y)dxdy \leq \frac{1}{(r_1 + 1)(r_2 + 1)(s + 1)^2(s + 2)^2} \times \left(MN \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right| (a,c) + LN \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right| (a,d) + KM \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right| (b,c) + KL \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right| (b,d) \right)
\]

where

\[
M = \left(s + 1 + 2(r_1 + 1) \left(\frac{r_1}{r_1 + 1} \right)^{s+2} - r_1 \right)
\]

\[
N = \left(s + 1 + 2(r_2 + 1) \left(\frac{r_2}{r_2 + 1} \right)^{s+2} - r_2 \right)
\]

\[
L = \left(r_2(s + 1) + 2 \left(\frac{1}{r_2 + 1} \right)^{s+1} - 1 \right)
\]

\[
K = \left(r_1(s + 1) + 2 \left(\frac{1}{r_1 + 1} \right)^{s+1} - 1 \right)
\]
By using co-ordinated $s-$convexity of f, we have

\[
\left. \frac{f(a,c) + r_2 f(a,d) + r_1 f(b,c) + r_1 r_2 f(b,d)}{(r_1 + 1)(r_2 + 1)} \right| \\
\left. - \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d-c} \int_c^d f(b,y)dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d-c} \int_c^d f(a,y)dy \right| \\
\left. - \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x,d)dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x,c)dx \right| \\
\left. + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y)dxdy \right| \\
= \frac{(b-a)(d-c)}{(r_1 + 1)(r_2 + 1)} \\
\times \int_0^1 \int_0^1 \left| ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \right| \\
\left\{ t^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right| + (1-t)^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right| \right\} dt \ d\lambda.
\]

By calculating the above integrals, we get

\[
(3.2) \quad \int_0^1 \left| ((r_1 + 1) t - 1) \right| \left\{ t^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right| \\
+ (1-t)^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right| \right\} dt \\
= \int_0^{1/r_1+1} \left((1 - (r_1 + 1) t) \right) \left\{ t^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right| \\
+ (1-t)^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right| \right\} dt \\
+ \int_{1/r_1+1}^1 ((r_1 + 1) t - 1) \left\{ t^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right| \\
+ (1-t)^s \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right| \right\} dt \\
= \frac{1}{(s+1)(s+2)} \left[\left(r_1 \left(s + 1 \right) + 2 \left(\frac{1}{r_1 + 1} \right)^{s+1} - 1 \right) \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right| \\
+ \left(s + 1 + 2 (r_1 + 1) \left(\frac{1}{r_1 + 1} \right)^{s+2} - r_1 \right) \left| \frac{\partial^2 f}{\partial \lambda \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right| \right].
\]
By a similar argument for other integrals, by using co-ordinated s–convexity of f, we get

$$
\int_0^1 \left[(r_2 + 1) t - 1\right] \left\{ \frac{\partial^2 f}{\partial t \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right\} d\lambda = \\
\int_0^{r_2 + 1} \left(1 - (r_2 + 1) t\right) \left\{ \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right| + (1 - \lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) \right| \right\} d\lambda \\
+ \int_0^1 \left((r_2 + 1) t - 1\right) \left\{ \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) \right| + (1 - \lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) \right| \right\} d\lambda \\
= \frac{1}{(s + 1)(s + 2)} \left[r_2 (s + 1) + 2 \left(\frac{1}{r_2 + 1} \right)^{s+1} - 1 \right] \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right| \\
+ \frac{1}{(s + 1)(s + 2)} \left[r_2 (s + 1) + 2 \left(\frac{1}{r_2 + 1} \right)^{s+1} - 1 \right] \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) \right| \\
+ \frac{1}{(s + 1)(s + 2)} \left[s + 1 + 2 (r_2 + 1) \left(\frac{r_2}{r_2 + 1} \right)^{s+2} - r_1 \right] \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) \right| \\
+ \frac{1}{(s + 1)(s + 2)} \left[s + 1 + 2 (r_2 + 1) \left(\frac{r_2}{r_2 + 1} \right)^{s+2} - r_1 \right] \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) \right|.
$$

By using these in (3.2), we obtain the inequality (3.1). \hfill \square

Corollary 2. (1) If we choose $r_1 = r_2 = 1$ in (3.1), we have

$$
\left| f(a, c) + f(a, d) + f(b, c) + f(b, d) \right| \leq \frac{1}{(s + 1)^2 (s + 2)^2} \left(\left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) \right| + \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) \right| + \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) \right| + \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right| \right)
$$

(2) If we choose $r_1 = r_2 = 0$ in (3.1), we have

$$
\left| f(a, c) - \frac{1}{d - c} \int_c^d f(a, y) dy - \frac{1}{b - a} \int_a^b f(x, c) dx \right| \\
+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y) dxdy \leq \frac{(b - a)(d - c)}{(s + 1)^2 (s + 2)^2} \left(\left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) + (s + 1) \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) + (s + 1) \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) + \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right| \right| \right)$$
Remark 3. If we choose $s = 1$ in \([3,3]\), we get an improvement for the inequality \([1,2]\).

Theorem 11. Let $f : \Delta = [a, b] \times [c, d] \subset [0, \infty)^2 \rightarrow [0, \infty)$ be an absolutely continuous function on Δ. If $\frac{\partial^2 f}{\partial \sigma \lambda}$ is s-convex function on the co-ordinates on Δ, for some fixed $s \in (0, 1]$ and $p > 1$, then one has the inequality:

\[
\begin{align*}
&f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d) \\
&- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d - c} \int_c^d f(b, y)dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d - c} \int_c^d f(a, y)dy \\
&- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b - a} \int_a^b f(x, d)dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b - a} \int_a^b f(x, c)dx \\
&+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y)dydx \\
&= \left(\frac{(b-a)(d-c)}{(r_1+1)(r_2+1)} \right) \left(\frac{1 + r_1^{\frac{s}{p} - 1}}{(r_1+1)^{\frac{s}{p}} (r_2+1)^{\frac{s}{p}} (p+1)^{\frac{s}{p}}} \right) \\
&\times \left(\frac{\partial^2 f}{\partial \sigma \lambda} \right)^q (a, c) + \frac{\partial^2 f}{\partial \sigma \lambda} \right|^q (a, d) + \frac{\partial^2 f}{\partial \sigma \lambda} \right|^q (b, c) + \frac{\partial^2 f}{\partial \sigma \lambda} \right|^q (b, d) \right)^{\frac{1}{q}}
\end{align*}
\]

for some fixed $r_1, r_2 \in [0, 1]$, where $q = \frac{p}{p - 1}$.

Proof. Let $p > 1$. From Lemma 3 and using the Hölder inequality for double integrals, we can write

\[
\begin{align*}
&f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d) \\
&- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d - c} \int_c^d f(b, y)dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d - c} \int_c^d f(a, y)dy \\
&- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b - a} \int_a^b f(x, d)dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b - a} \int_a^b f(x, c)dx \\
&+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y)dydx \\
&= \left(\frac{(b-a)(d-c)}{(r_1+1)(r_2+1)} \right) \left(\int_0^1 \int_0^1 \left| ((r_1+1)t - 1)((r_2+1)\lambda - 1)^p dt d\lambda \right| \right)^{\frac{1}{p}} \\
&\times \left(\int_0^1 \int_0^1 \left| \frac{\partial^2 f}{\partial \sigma \lambda} (tb + (1-t)a, \lambda d + (1-\lambda)c) \right|^q dt d\lambda \right)^{\frac{1}{q}}.
\end{align*}
\]
Since \(\left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q \) is \(s \)-convex function on the co-ordinates on \(\Delta \), we can write for \(t, \lambda \in [0, 1] \)

\[
\left| \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1 - t) a, \lambda d + (1 - \lambda) c) \right|^q \leq t^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right|^q + (1 - t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right|^q
\]

and

\[
\left| \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1 - t) a, \lambda d + (1 - \lambda) c) \right|^q \leq t^s \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right|^q + t^s (1 - \lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) \right|^q + \lambda^s (1 - t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) \right|^q + (1 - \lambda)^s (1 - t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) \right|^q
\]

thus, we obtain

\[
\left| f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d) \right| \frac{1}{(r_1 + 1) (r_2 + 1)} + \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y) dxdy \]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d - c} \int_c^d f(b, y) dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d - c} \int_c^d f(a, y) dy \]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b - a} \int_a^b f(x, d) dx - \left(\frac{1}{r_1 + 1} \right) \frac{1}{b - a} \int_a^b f(x, c) dx
\]

\[
= \frac{(b - a)(d - c)}{(r_1 + 1) (r_2 + 1)} \left(\frac{1 + r_1^s}{r_1 + 1} \right) \left(\frac{1 + r_2^s}{r_2 + 1} \right) (s + 1) \frac{\partial^2 f}{\partial t \partial \lambda} (a, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, d)
\]

Which completes the proof of the inequality (3.4). \(\square \)
Corollary 3. (1) Under the assumptions of Theorem 12, if we choose $r_1 = r_2 = 1$ in (3.4), we have

\begin{equation}
\left| f(a, c) + f(a, d) + f(b, c) + f(b, d) \right| \leq \frac{1}{4} \left[\frac{1}{d-c} \int_c^d [f(b, y) + f(a, y)] dy + \frac{1}{b-a} \int_a^b [f(x, d) + f(x, c)] dx \right] \\
+ \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)dxdy \right| = \frac{(b-a)(d-c)}{4 (p+1)^{\frac{s}{2}}}
\times \left(\frac{\frac{\partial^2 f}{\partial t \partial \lambda}}{q} (a, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right)^{\frac{1}{s}}.
\end{equation}

(2) Under the assumptions of Theorem 12, if we choose $r_1 = r_2 = 0$ in (3.4), we have

\begin{equation}
\left| f(a, c) - \frac{1}{d-c} \int_c^d f(a, y)dy - \frac{1}{b-a} \int_a^b f(x, c)dx \right| + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)dxdy \right| = \frac{(b-a)(d-c)}{4 (p+1)^{\frac{s}{2}}}
\times \left(\frac{\frac{\partial^2 f}{\partial t \partial \lambda}}{q} (a, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (a, d) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, c) + \frac{\partial^2 f}{\partial t \partial \lambda} (b, d) \right)^{\frac{1}{s}}.
\end{equation}

Remark 4. If we choose $s = 1$ in (3.5), we obtain an improvement for the inequality (3.6).

Theorem 12. Let $f : \Delta = [a, b] \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$ be an absolutely continuous function on Δ. If $\left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q$ is s-convex function on the co-ordinates on
for some fixed \(s \in (0, 1) \) and \(q \geq 1 \), then one has the inequality:

\[
\left| \frac{f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d)}{(r_1 + 1)(r_2 + 1)} + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dxdy \right|
\]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d-c} \int_c^d f(b, y) dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d-c} \int_c^d f(a, y) dy
\]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x, d) dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x, c) dx
\]

\[
\leq \frac{(b-a)(d-c)}{(r_1 + 1)(r_2 + 1)} \left(\frac{1 + r_1^2}{4 (r_1 + 1)(r_2 + 1)} \right)^{1 - \frac{1}{q}} MN \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, c) + LN \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, d) + KM \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, c) + KL \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, d) \right)^{\frac{1}{q}}
\]

for some fixed \(r_1, r_2 \in [0, 1] \).

Proof. From Lemma 3 and using the well-known Power-mean inequality, we can write

\[
\left| \frac{f(a, c) + r_2 f(a, d) + r_1 f(b, c) + r_1 r_2 f(b, d)}{(r_1 + 1)(r_2 + 1)} + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dxdy \right|
\]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{d-c} \int_c^d f(b, y) dy - \left(\frac{1}{r_1 + 1} \right) \frac{1}{d-c} \int_c^d f(a, y) dy
\]

\[
- \left(\frac{r_2}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x, d) dx - \left(\frac{1}{r_2 + 1} \right) \frac{1}{b-a} \int_a^b f(x, c) dx
\]

\[
= \frac{(b-a)(d-c)}{(r_1 + 1)(r_2 + 1)} \left(\int_0^1 \int_0^1 \left| ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \right| dtd\lambda \right)^{1 - \frac{1}{q}}
\]

\[
\times \left(\int_0^1 \int_0^1 \left| ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \right| \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (tb + (1-t) a, \lambda d + (1 - \lambda) c) dtd\lambda \right)^{\frac{1}{q}}
\]

Since \(\left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q \) is \(s \)-convex function on the co-ordinates on \(\Delta \), we can write for \(t, \lambda \in [0, 1] \)

\[
\left| \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1 - \lambda) c) \right|^q
\]

\[
\leq t^q \left| \frac{\partial^2 f}{\partial t \partial \lambda} (b, \lambda d + (1 - \lambda) c) \right|^q + (1-t)^q \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a, \lambda d + (1 - \lambda) c) \right|^q
\]
and

\[
\left| \frac{\partial^2 f}{\partial t \partial \lambda} (tb + (1-t) a, \lambda d + (1-\lambda) c) \right|^q \leq t^s \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, d) + t^s (1-\lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, c) + \lambda^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, d) + (1-\lambda)^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, c)
\]

hence, it follows that

\[
\left| \frac{f(a, c) + r_2 f(a, d)}{(r_1 + 1) (r_2 + 1)} \right|^q - \left(\frac{r_2}{r_2 + 1} \right)^\frac{1}{4} \int_a^b f(x, d) dx - \left(\frac{1}{r_1 + 1} \right)^\frac{1}{4} \int_a^d f(x, y) dy \leq \frac{(b-a)(d-c)}{(r_1 + 1) (r_2 + 1)} \left[\frac{1}{4} \right]^\frac{1}{4} \times \left(\int_0^1 \int_0^1 \left| ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \right| \left\{ t^s \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, d) + t^s (1-\lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, c) + \lambda^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, d) + (1-\lambda)^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, c) \right\} dtd\lambda \right]^\frac{1}{q}
\]

By a simple computation, one can see that

\[
\left(\int_0^1 \int_0^1 \left| ((r_1 + 1) t - 1) ((r_2 + 1) \lambda - 1) \right| \left\{ t^s \lambda^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, d) + t^s (1-\lambda)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, c) + \lambda^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, d) + (1-\lambda)^s (1-t)^s \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, c) \right\} dtd\lambda \right]^\frac{1}{q} \leq \left(M N \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, c) + LN \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (a, d) + KM \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, c) + KL \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q (b, d) \right)^\frac{1}{q}
\]

where \(K, L, M \) and \(N \) as in Theorem 11. By substituting these in (3.6) and simplifying we obtain the required result. \(\square \)
Corollary 4. (1) Under the assumptions of Theorem 13, if we choose \(r_1 = r_2 = 1 \), we have
\[
\left| f(a, c) + f(a, d) + f(b, c) + f(b, d) - \frac{1}{4} \left[\frac{1}{d-c} \int_c^d [f(b, y) + f(a, y)] dy + \frac{1}{b-a} \int_a^b [f(x, d) + f(x, c)] dx \right] \right|
\approx \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dy dx
\leq \frac{(b-a)(d-c)}{4} \left(\frac{1}{4} \right)^{1 - \frac{q}{4}}
\times \left(MN \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (a, c) + LN \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (a, d) + KM \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (b, c) + KL \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (b, d) \right) \frac{1}{(s+1)^2 (s+2)^2}
\]

(2) Under the assumptions of Theorem 13, if we choose \(r_1 = r_2 = 0 \), we have
\[
\left| f(a, c) + \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y) dy dx - \frac{1}{d-c} \int_c^d f(a, y) dy - \frac{1}{b-a} \int_a^b f(x, c) dx \right|
\leq \frac{(b-a)(d-c)}{4} \left(\frac{1}{4} \right)^{1 - \frac{q}{4}}
\times \left(MN \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (a, c) + LN \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (a, d) + KM \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (b, c) + KL \left| \frac{\partial^2 f}{\partial x \partial y} \right|^q (b, d) \right) \frac{1}{(s+1)^2 (s+2)^2}
\]

Remark 5. Under the assumptions of Theorem 13, if we choose \(r_1 = r_2 = 1 \) and \(s = 1 \), we have an improvement for the inequality (1.4).

References

[1] N.S. Barnett and S.S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math., 27 (1) (2001), 1-10.
[2] S.S. Dragomir, On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2001, 775-788.
[3] B.G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math., 32 (2) (2006), 317-322.
[4] M. Z. Sarikaya, On the Ostrowski type integral inequality for double integral, http://arxiv.org/abs/1005.0454v1
[5] M. Alomari and M. Darus, On the Hadamard’s inequality for log – convex functions on the co-ordinates, Journal of Inequalities and Appl., 2009, article ID 283147.
[6] H. Hudzik and L. Maligranda, Some remarks on \(s \)-convex functions, Aequationes Math., 48 (1994), 100-111.
[7] M.K. Bakula and J. Pečarić, On the Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292.
[8] W. Orlicz, A note on modular spaces , I, Bull. Acad. Polon. Sci. Math. Astronom. Phys., 9 (1961), 157-162.
[9] S.S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s–convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687-696.
[10] M. Alomari and M. Darus, The Hadamard’s inequality for s–convex functions of 2-variables, Int. Journal of Math. Analysis, 2(13), 2008, 629-638.
[11] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard’s type inequalities for co-ordinated m–convex and (α, m)–convex functions, Accepted.
[12] M.Z. Sarıkaya, E. Set, M. Emin Özdemir and S.S. Dragomir, New some Hadamard’s type inequalities for co-ordinated convex functions, Accepted.
[13] U.S. Kirmaci, M.K. Bakula, M.E. Özdemir and J. Pečarić, Hadamard-type inequalities for s–convex functions, Applied Mathematics and Computation, 193 (2007), 26-35.

*Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Erzurum, Turkey
E-mail address: emos@atauni.edu.tr
E-mail address: hkavurmaci@atauni.edu.tr

♣ Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey
E-mail address: ahmetakdemir@agri.edu.tr
E-mail address: merveavci@gmail.com