Automated, cassette-based isolation and formulation of high-purity $[^{61}\text{Cu}]\text{CuCl}_2$ from solid Ni targets

Author list

Pettersson, Johan1, Kutyreff, Christopher J.2, Engle, Jonathan W.2,3 and Gagnon, Katherine1

1Cyclotrons and TRACERcenter, GE Healthcare, GEMS PET Systems AB, Uppsala, Sweden

2University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medical Physics

3University of Wisconsin-Madison, School of Medicine and Public Health, Department of Radiology

Corresponding author: Katherine Gagnon (katherine.gagnon@ge.com)

Abstract

Background: A need for improved, cassette-based automation of 61Cu separation from irradiated Ni targets was identified given the growing interest in theranostics and generally lengthy separation chemistries for 64Cu/64Ni, upon which 61Cu chemistry is often based.

Methods: A method for separating 61Cu from irradiated natNi targets was therefore developed, with provision for target recycling. Following deuteron irradiation, electroplated natNi targets were remotely transferred from the cyclotron and dissolved in acid. The dissolved target solution was then transferred to an automated FASTlab chemistry module, where sequential TBP and TK201 (Triskem) resins isolated the $[^{61}\text{Cu}]\text{CuCl}_2$, removed Ni, Co, and Fe, and concentrated the product into a formulation suitable for anticipated radiolabelling reactions.

Results: 61Cu saturation yields of 190 ± 33 MBq/µA from energetically thick natNi targets were measured. The average, decay-corrected, activity-based dissolution efficiency was 97.5 ± 1.4 % with an average radiochemical yield of 90.4 ± 3.2 % (N = 5). The isolated activity was collected approximately 65 minutes post end of bombardment in ~2 mL of 0.06 M HCl (HCl concentration was...
verified by titration). Quality control of the isolated $[^{61}\text{Cu}]\text{CuCl}_2$ (N = 5) measured ^{58}Co content of (8.3 ± 0.6) × 10$^{-5}$ % vs. ^{61}Cu by activity, Ni separation factors ≥ (2.2 ± 1.8) × 106, EoB molar activities 85 ± 23 GBq/µmol and NOTA-based EoB apparent molar activities of 31 ± 8 MBq/nmol and 201 MBq/nmol for the 30 min and 3.3 h (N = 1) irradiations, respectively.

Conclusion: High purity ^{61}Cu was produced with the developed automated method using a single-use, cassette-based approach. It was also applicable for ^{64}Cu, as demonstrated with a single proof-of-concept ^{64}Ni target production run.

1. Introduction

Within the field of positron emission tomography (PET), radiometals research has increased during the past decade (e.g. publications per year with the keyword ^{68}Ga have increased from 69 to 506 between 2009-2019, Scopus). These radiometals complement the traditional PET nuclide ^{18}F thanks to differences in their chemical and radioactive decay properties. This opens a path toward more personalised medicine as an array of biomolecules and biodistribution mechanisms can be used to adapt a treatment to a specific disease case. Radiometals are widely-used for radiopharmaceuticals, in part due to available chelation chemistry and labelling with biomolecules (1–6). Among the radiometals, following Ga, Cu is one of the most extensively investigated for PET radiopharmaceutical purposes (7–10). One reason for this is the well-understood coordination chemistry and biodistribution of Cu (9,11–14), which has resulted in a multitude of chelators and biomolecule options being available for Cu isotopes.

While ^{64}Cu has been suggested for theranostic applications, including pairing with ^{177}Lu (15), several Cu radioisotopes are suitable for both imaging and therapy. This creates an opportunity for Cu to be used as a “true” (i.e. identical element) theranostic pair: ^{64}Cu (t$_{1/2}$ = 3.34 h, 61 % β, E_{Max} = 1216 keV) is
suitable for PET imaging; only 5.9% and 2.1% of its two major gammas (282.956 KeV, $I_{\gamma} = 12.2\%$; 656.008 keV, $I_{\gamma} = 10.8\%$), respectively, are coincident with β^+ decay (16). 64Cu ($t_{1/2} = 12.7$ h) is more commonly used in PET imaging (18% β^+, $E_{\text{Max}} = 653$ keV) (17,18) with negligible gamma emissions (1345.77 keV, $I_{\gamma} = 0.475\%$), however, applications in β^- and Auger emission therapy have been reported (39% β^-, $E_{\text{Max}} = 580$ keV) (19–22), and 67Cu ($t_{1/2} = 61.83$ h, 100% β^-, $E_{\text{Max}} = 562$ keV) is a therapeutic radionuclide suitable for SPECT imaging ($E_{\gamma} = 184.577$ keV, $I_{\gamma} = 48.7\%$).

61Cu and 64Cu share several physical properties; they are imageable with PET, have half-lives that allow for regional distribution and can both be made from Ni starting material. However, several production paths exist for these isotopes, and depending on the enrichment of the starting material, the production cost will vary significantly. Several 61Cu production routes start from Ni target materials, including the 60Ni(d,x)61Cu, 60Ni(d,n)61Cu, and 61Ni(p,n)61Cu reactions, as seen in
Table 1 alongside typical production routes for 64Cu and 67Cu. Each of these Ni-based 61Cu production routes, e.g. from natNi to 60Ni to 61Ni, increases in theoretical thick target yields, but is met with increased cost of target material (estimated ~$1-2 USD/mg for 60Ni [nat ab. 26.223 %], and ~$30-40 USD/mg for 61Ni [nat ab. 1.1399 %]). Enriched Ni options for producing 64Cu are limited to 64Ni (~$30-40 USD/mg for 64Ni [nat ab. 0.9255 %]) through 64Ni(p,n)64Cu. This results in a possible lower production cost for 61Cu, compared with 64Cu, by using less expensive enriched options, at the cost of lower theoretical thick target yields.

The relatively long, but different, half-lives of $^{61/64}$Cu provide an opportunity to study biodistributions of larger molecules with slower kinetics, such as peptides or antibodies (with 62Cu perhaps better suited for same-day imaging and 64Cu allowing for later time-point imaging). However, their application in PET imaging will depend on the purpose of the study, as 61Cu has a higher sensitivity, i.e. 3.43 vs 0.98 cps/Bq/mL (23), but somewhat lower tangential and radial spatial resolutions, i.e. 5.1 vs 4.7 mm and 5.4 vs 5.0 mm respectively (23) compared with 64Cu. Their physical decay properties deliver a relatively larger effective dose for 64Cu-labeled agents compared to 61Cu, e.g., dose from $[^{64}$Cu]Cu-PTSM as a perfusion imaging agent compared with $[^{61}$Cu]Cu-PTSM is 3.8 vs 2.5 mSv per 100 MBq, respectively (23). 61Cu and 64Cu are both valuable diagnostic radionuclides whose application should be tailored to their physical decay characteristics. Surprisingly, relatively more papers are published on 64Cu than on 61Cu; 1288 vs 113 between 2009-2019 for the keywords 64Cu and 61Cu respectively (Scopus) – a fact we hypothesize results from simplified, distribution-friendly 64Cu logistics. Nevertheless, the increased availability of cyclotron production facilities, increasing solid target infrastructure, and automated radiochemistry systems compel reconsideration of the utility of 61Cu.

Additionally, regardless of the production route, several Co radioisotopic contaminants will be produced, with 55Co, 57Co and 58Co being of greatest interest due to their relatively long half-lives (55Co $t_{\frac{1}{2}} = 17.5$ h, 57Co $t_{\frac{1}{2}} = 272$ d, 58Co $t_{\frac{1}{2}} = 71$ d). Their quantities will depend on the selected reaction,
irradiation conditions, target thickness, and isotopic abundance of Ni in the target material. Consequently, in addition to separating Cu from the stable Ni target material, efficient separation of Co is also necessary. As enriched Ni may be cost-prohibitive to implement as single-use, especially ^{63}Ni, target recycling is imperative. Efficient (>96%) recovery and re-plating processes have been described (24). For this reason, though ^{61}Ni targets were not employed in this study, target recovery/recycling was also investigated, including a preliminary production using ^{64}Ni.
Table 1. Common production paths and decay properties of 61Cu, 64Cu and 67Cu. All nuclear data was acquired from NuDat (25) and Qcalc (26).

Isotope	Half-life	Decay mode	Nuclear reaction (MeV)	Nat. Ab. (%)
61Cu	3.34 h	β^+ (61%)	62Ni(d,x)62Cu	N/A
		β^+, mean = 500 keV	60Ni(d,n)62Cu ($E_{th} = 0$)	26.223
		β^+, max = 1216 keV	61Ni(p,n)62Cu ($E_{th} = 3.070$)	1.1399
		β^+, mean = 191 keV	64Ni(α,p)62Cu ($E_{th} = 0$)	49.17
		β^+, max = 580 keV	64Ni(p,n)64Cu ($E_{th} = 2.495$)	0.9255
		β^+, mean = 278 keV	68Zn(α,α)64Cu ($E_{th} = 7.905$)	18.45
64Cu	12.70 h	β^+ (38.5 %)	70Zn(p,α)67Cu ($E_{th} = 0$)	0.61
		β^+, mean = 191 keV	64Ni(α,p)67Cu ($E_{th} = 4.934$)	0.9255
		β^+, max = 580 keV	68Zn(γ,p)67Cu ($E_{th} = 9.977$)	18.45

This paper focuses on obtaining high-quality 61Cu via a cassette-based automated separation method using a two-column approach implemented on the FASTlab chemistry platform. A proof-of-concept 64Cu production (N = 1) was performed to demonstrate applicability of this method to the 64Ni(p,n)64Cu reaction. This is interesting as $[^{64}$Cu$]$Cu-DOTA-TATE has recently been granted FastTrack review by the US FDA and has been determined to produce more true-positive lesion detections for neuroendocrine tumours than $[^{68}$Ga$]$Ga-DOTA-TOC (27). Regardless of radioisotope, the Cu product must consistently be of high radionuclidic purity with a high apparent molar activity (AMA). Thus, it is important to have a robust separation chemistry and rigorous quality control (QC) process to ensure the high quality of the product.
2. Materials and methods

2.1 Bench-top pre-studies

Prior to irradiating electroplated Ni, target dissolution and chemical separation processes were investigated at the bench using a heater block and FASTlab. Dissolution studies, initially on Ni foil, probed the effects of acid concentration, H₂O₂ to HCl ratio, and temperature on dissolution efficiency, speed, and compatibility with downstream separation chemistry. Separation studies focused on minimizing Ni, Co, and Fe in the final product. These separation studies were performed by spiking dissolved stable Ni with ppm Cu, Co, and Fe, and analysing samples via semi-quantitative colorimetric tests (such as Merck’s Mquant® colorimetric Ni kit, part number 1.14420, which allow for sub-ppm analysis), or, with low activity (kBq) spikes of ⁶¹Cu and ⁵⁵Co, produced by proton (≤ 5 µAmin) and deuteron (≤ 5 µAmin) irradiations of natNi foil. During the benchtop tests, the relative distribution of ⁶¹Cu (and similarly ⁵⁵Co) were determined for the collected fractions with an Ortec LaBr (digibase, brilliance 380) gamma spectrometer.

2.2 Target preparation and recycling

Electroplated targets ranging from 70-120 mg were prepared by first dissolving natural Ni powder (Alfa Aesar, 99.8 %, 325 mesh) in 2 mL of concentrated HNO₃ (Optima Grade, Fisher Chemical) and drying down under N₂ gas flow at 85 °C. Next, the dried Ni was prepared into an electroplating solution following the method of Piel et al. (28) to electrodeposit Ni onto gold plating substrates. We adapted this method to electrodeposit onto 99.9 % silver plating substrates (10 mm deposited diameter). Briefly, the dried Ni was reconstituted in 2.3 mL of 2.4 M H₂SO₄ (made from concentrated, Optima Grade H₂SO₄, Fisher Scientific, and 18 MΩ-cm milli-Q water) and the pH of the solution was brought to ~9.1 using ~2.5 mL concentrated NH₄OH (28 %, Optima Grade, Fisher Scientific). To the pH-adjusted solution 250-300 mg of (NH₄)₂SO₄ (99.9999 %, Puratronic, Alfa Aesar) was added, and the solution was
quantitatively transferred to an electrolytic cell. With a platinum wire cathode and laboratory DC power supply, constant currents of 40-90 mA were tested for optimization purposes, with a voltage of 6-7.5 V applied through the static electrochemical cell for 1-4 days.

A similar setup was used for re-plating of targets following irradiation. Namely, the Ni collection fraction following purification was then dried down under N₂ gas flow. As above with the fresh target material, 2 mL of concentrated HNO₃ was added and the solution dried again. The dried, recycled Ni was then electroplated on a silver substrate as above for subsequent irradiation. The 64Ni (84.8 mg) was electroplated on a gold plating substrate, according to the method of Piel et al. (28) directly.

2.3 Target irradiation

Electroplated, natNi targets were irradiated with 8.4 MeV deuterons on a PETtrace 800 cyclotron (GE Healthcare) equipped with a QIS (ARTMS) automated target handling system with typical beam currents of 20-30 µA, and typical irradiation times being either ≤ 30 min for initial tests (N = 3), or, up to 3.3 hours (i.e. one half-life) for scaled-up demonstration (N = 1). To enable recycling comparison, both 1× recycled targets (N = 3) and 2× recycled targets (N = 2) were evaluated. For the preliminary enriched target production, the 64Ni was irradiated with nominally 13.1 MeV protons at 20 µA for one hour. These experiments are summarized in Table 2.

N	Target prepared from recycled Ni	Irradiation time	Current (µA)	Purpose
3	Yes, once	10-25 min	10-20	Optimization
1	No	3.3 h	30	Scaled up demonstration
3	Yes, twice	30 min	30	Recycling evaluation
2	Yes, many*	30 min	30	Recycling evaluation
1	Yes, many*	60 min	20	Enriched material evaluation

* Based on previous implemented chemistry, not used multiple times for this study.
For optimisation purposes, natNi targets were additionally irradiated for approximately 1 minute with 1 µA of protons to produce a radiocobalt tracer via the natNi(p,x)\(^{55}\)Co reaction. However, for quantitative analysis, \(^{58}\)Co was used due to its longer half-life compared to \(^{55}\)Co (\(^{58}\)Co \(t_{1/2}\) = 71 d, \(^{55}\)Co \(t_{1/2}\) = 17.5 h), as \(^{58}\)Co will be predominantly formed through the \(^{60}\)Ni(d,\(\alpha\))\(^{58}\)Co reaction.

2.4 Dissolution

Following automated transportation of the irradiated target from the cyclotron to the hot cell docking station, the target capsule was transferred to the QIS dissolution unit with tongs. Based on preliminary bench experiments, dissolution was in 3 mL 1:1 7 M HCl (Ultrapur, Merck): 30 % H\(_2\)O\(_2\) (ultratrice analysis, Merck) whereby H\(_2\)O\(_2\) was added both to improve the dissolution and to oxidize Fe ions to Fe\(^{3+}\). These two reagents were mixed on-line and circulated over the target surface at 2 mL/min for ~23 minutes at an estimated solution temperature of ~60 °C (based on a heater sleeve set point of 111°C and probing of the heated capsule exterior with a thermocouple). Finally, 3 mL 11.1 M HCl was automatically added to the dissolution solution, with 90 seconds bubbling with air to mix. Prior to transferring the solution to the FASTlab at 1 mL/min, the sequence was momentarily paused (N = 5), and ~200 µL of the nominal 6 mL solution was removed for pre-purification analysis. The irradiated \(^{64}\)Ni target was manually dissolved in a benchtop dissolution block and transferred to the FASTlab using a peristaltic pump at 1 mL/min, as with the automated target handling.

2.5 \([^{61}\text{Cu}]\text{CuCl}_2\) Separation

Separation was implemented on a cassette-based FASTlab platform using a 1 mL TBP column (a tributyl-phosphate-based resin, particle size 50-100 µm, pre-packed, Triskem, Brittany, Fr) and 2 mL TK201 column (a tertiary-amine-based weak ionic exchange resin containing a small amount of a long-chained alcohol, particle size 50-100 µm, pre-packed, Triskem, Brittany, Fr) automatically conditioned
in series with 7 mL H₂O and 6 mL 11.1 M HCl. The cassette reagent vials were prepared using concentrated HCl (Optima Grade, Fischer Scientific), NaCl (ACS, Fischer Scientific) and milli-Q water (Millipore system, 18 MΩ-cm resistivity).

A general schematic of the resin loading, washing, and elution steps is given in Figure 1, with detailed process steps described below:

1) The acid-adjusted dissolution solution (approx. 6 mL) was loaded over both columns in series and directed into a “Ni collection vial”. The TBP resin acted as a guard column as it quantitatively retained Fe³⁺ ions, while the Cu and Co chloride complexes were quantitatively retained on the TK201 resin.

2) Both columns were washed with 4 mL 6 M HCl to maximize Ni recovery for future recycling.

3) The TK201 column was washed with 5.5 mL 4.5 M HCl to elute the majority of Co (Waste #1)

4) The TK201 column was washed with 4 mL of 5 M NaCl in 0.05 M HCl to decrease residual acid on the resin and further remove any Co (Waste #2). In the longer term, Waste 1 and Waste 2 will be combined, but were separated for this study for analytical/optimization purposes.

5) The TK201 column was washed with 2 mL of 0.05 M HCl to quantitatively elute the [⁶¹Cu]CuCl₂
2.6 Analysis

2.6.1 Gamma ray spectrometry

For the electroplated target irradiations, 61Cu and 58Co activities were quantified by high purity germanium (HPGe) gamma spectrometry with an Al-windowed Canberra Model GC1519 (15 % relative efficiency, full-width at half-maximum at 1173 keV = 1.8 keV) and used to determine the distribution in the samples and fractions. The gammas used for analysis were: 58Co (810.759 keV, $I_\gamma = 99.45$ %) and 61Cu (primarily 282.956 keV, $I_\gamma = 12.2$ % and 656.008 keV, $I_\gamma = 10.8$ %). Samples were counted at a range of distances to the front face of the cylindrical detector body and were selected to maintain the dead time to ≤ 15 %. The energy and efficiency calibration of the detector were performed using a 5-source method: 241Am, 133Ba, 137Cs, 152Eu, and 60Co.

2.6.2 Microwave plasma atomic emission spectrometry

Trace metal standards for Co, Cu, Fe, Ni, and Zn (1000 mg/L) were purchased from Sigma Aldrich. Trace metal analysis was conducted on aliquots of the collected sample fractions using an Agilent Technologies Model 4200 Microwave Plasma Atomic Emission Spectrometer (MP-AES). The concentration of HCl in each analysed sample aliquot was adjusted to 0.5 M. Calibration standards of 10, 50, 100, and 500 ppb and 1, 5, 10, and 50 ppm concentrations containing Co, Cu, Fe, Ni, and Zn were prepared in 0.5 M HCl and quantified using two atomic emission wavelengths for analysis of each element. The optimum wavelengths, depending on signal intensities, limits of detection, standard deviations and obvious interferants, were determined for the different elements post analysis.

The molar activity (MA) and separation factors (SF) of for the $[^{61}\text{Cu}]\text{CuCl}_2$ product can be calculated from MP-AES quantified stable Cu and Ni. However, when assessing the separation factors, some
samples contained Ni in concentrations below the method detection limit (MDL). When this was the case, our calculations assumed the MDL of 10 ppb as a conservative estimate of the Ni quantity.

2.6.3 Apparent molar activity

The apparent molar activity (AMA) was determined by titration with NOTA and adapted from the process described by McCarthy et al. (29). Namely, 500 µL of [65Cu]CuCl₂ was added to 0.6 mL 0.25 M Sodium acetate (anhydrous, 99 % pure, Fisher Scientific), a solution pH of 4-5 was verified using Whatman pH strips, and the solution was vortexed. Next, 100 µL of this activity mixture was added to each of ten vials pre-loaded with both 40 µL 0.25 M sodium acetate (pH 4-5) and 100 µL of NOTA (~0.001-10 nmol). Samples were vortexed, individually assayed for activity, and incubated at room temperature for 15 min. Thin-layer chromatography (TLC) was performed by spotting each sample onto an aluminium-backed silica plate, developing in 1:1 MeOH:(10 % w/v) NH₄OAc and scanning on an OptiQuant autoradiography system (Perkin Elmer Cyclone Plus Storage Phosphor System). In plotting the sigmoidal curve of percent binding vs. NOTA concentration, the NOTA concentration required for 50 % binding was identified. The AMA was then calculated as the average sample activity (decay corrected to EoB) and divided by 2× the NOTA concentration required for 50 % binding.

2.6.4 Product HCl titration

To evaluate the suitability of the product formulation, and ensure residual HCl was minimized, titrations were performed to determine the HCl concentration of the product fraction. To this end, 0.5 mL of product fraction (N = 5) was added to approximately 10 mL milli-Q water with 100 µL of phenolphthalein in an Erlenmeyer flask with magnetic stir bar, and 5.8 mM NaOH was added dropwise from a burette until a faint pink colour visually persisted in the solution.
3. Results and discussion

Yields: 61Cu and [61Cu]CuCl$_2$

The overall 61Cu yield was assessed by assaying the activity of the isolated product, waste vials, Ni recovery vial, resins, and target plate post dissolution. This resulted in a saturation yield (\pm SD) of 207 \pm 26 MBq/µA ($N = 3$) for the initial low current optimization runs and 190 \pm 33 MBq/µA ($N = 5$) for the subsequent 1x/2x-recycled material. No significant difference was noted in saturation yield of the 61Cu between initial low current and recycled target irradiations. These saturation yields are also a conservative estimate due to the likely presence of unquantified residual activity in the lines and manifold, and possible fractional intercept of the 10 mm diameter Ni plating by the deuteron beam.

Nevertheless these saturation yields are considered to be in reasonable agreement with the reported saturation yield (30) of 248 MBq/µA for 8.4 MeV deuterons on natNi. With regards to chemical processing, the average activity-based dissolution efficiency was 97.5 ± 1.4 % with an average radiochemical yield of 90.4 ± 3.2 % from the separation and an average dissolution + separation processing time of 65 ± 3 minutes.

Formulation

Select recent examples of [61Cu]CuCl$_2$ purification methods are given in Table 3. Many suffer from lack of automation or have final formulations in large volumes or high acid concentrations. A product with a large volume or high acid concentration needs large buffer quantities or potentially time consuming and lossy reformulation steps. The motivation of this work was to address these concerns by developing a fast, efficient, automated process with attractive final formulation qualities.

When stating formulation, one must not assume that the acid concentration of the product is identical to that used for elution. As such, we titrated the HCl concentration of the [61Cu]CuCl$_2$ product to assess the formulation directly. The HCl concentration of the product fraction was assessed on a subset ($N =$...
5) of the product Cu vials (i.e. from the recycled productions) and determined to be 0.057 ± 0.002 M. This low product HCl concentration may circumvent the need for further product processing, such as roto-evaporation and reconstitution. This, in combination with the small product volume (2 mL), facilitates downstream radiolabelling by reducing the need for buffering. As a result, we are able to plan radiolabelling chemistries on the same single-use cassette using the FASTlab radiochemistry system.

Compared with the works cited in Table 3, our separation method is relatively fast – surpassed only by that of Matarrese et al. (31). However, to achieve adequate labelling conditions, the method of Matarresse et al. would require ~40× the buffer than what was used in this work. Our method and the method presented by Ohya et al. (32,33) have similar radiochemical yields. However, their method requires evaporation and has a considerably longer preparation and processing time. Overall, compared with the other methods in Table 3, our automated cassette-based purification method generally has a shorter preparation and process time, lower reagent consumption and more suitable product formulation.

Table 3. Comparison of requirements for [61Cu]CuCl2 separation vs. other recent literature [reagents for target preparation and recycling not considered].

Product isotope	This study	(32,33)	(31)	(34)	(35)	(36)
Starting material	natNi	64Ni	60/64Ni	68Zn	68Ni	64Ni
Automated	Yes	Yes	Yes	No b	Partial	Partial
Disposable	Yes	No	No	No	No	No
cassette-based						
purification						
Prep. Time	< 1 h	1 day	- a	- a	- a	- a
Process time	65 ± 3	~ 150	≥ 42 b	105	90 - 120	~ 200
(min)						
Total process	160 mmol	> 200 mmol	460 mmol	> 1000 mmol	- a	> 85 b
acid consumption						
Organics	No	Acetone	No	No	No	No
Radiochemical	90.3 ±	88 ± 3	95	95	25-48	> 90
yield (%)	3.2					
Formulation as	2 mL, <	10 mL, 0.5 M	50 mL, 2 M	- a	Evaporated then reconstituted in 0.4 mL, 0.01 M HCl	
stated	0.1 M HCl	HCl	HCl			
	0.01 M HCl					

a could not be determined from article, b not explicitly stated, assumed from context.
Competing radiocobalt production

As mentioned above, various Co radioisotopes will be produced during irradiations of Ni. McCarthy et al. (10) notes, for example, 0.05%, 0.04%, and 0.04% of produced 58Co activity relative to 61Cu for the 58Ni(d,x)61Cu, enriched 60Ni(d,n)61Cu, and 61Ni(p,n)61Cu reactions, respectively, whereas Strangis et al. (35) notes 0.11% and 0.27% of produced 58Co and 56Co, respectively, relative to 61Cu, for the 58Ni(d,x)61Cu reaction. The production of different Co isotopes, and relative production vs. 61Cu will depend on various parameters, including the nuclear reaction, the particle irradiation energy and time, target thickness, and isotopic composition. For the 200 μL pre-processed aliquots of dissolved target solution assayed in this study, a pre-purified 58Co to 61Cu activity ratio of 0.0465 ± 0.0046% at EoB, when irradiating for 30 min at 30 μA was determined. This is in line with previous reports (10,35).

A radionuclidic impurity of 0.1% by activity at time of injection is currently noted in the European Pharmacopoeia for FDG (37), and (aside for $^{66/67}$Ga), for direct accelerator-produced 68Ga (38). Assuming a similar limit of ≤ 0.1% at time of injection for 61Cu, radiocobalt must be isolated from the 61Cu product to provide [61Cu]CuCl$_2$ with a reasonable shelf-life. Measured 58Co and 61Cu content in the five recycled target separations is presented in Figure 2 (N = 5) for the collected Ni/waste/production fractions, and resins. The distribution of each nuclide in Figure 2 has been normalized individually. In this figure, we see that the majority of the 58Co (97.9 ± 0.9 %) and 61Cu (90.4 ± 3.2 %) are found in the waste and product vials, respectively. From an absolute perspective, the 58Co activity content in the purified [61Cu]CuCl$_2$ product at EoB is (8.3 ± 0.6) × 10$^{-5}$%, resulting in a reduction of the 58Co to 61Cu ratio by more than a factor of 500 following purification.
Figure 2. Bar diagram presenting the normalized activity distribution of ^{58}Co and ^{61}Cu on a log scale. Note that the ^{58}Co and ^{61}Cu have been normalized individually.

MAs, AMAs, and SFs

For the selected optimum wavelengths (Co 350 nm, Cu 324 nm, Fe 260 nm, Ni 352 nm and Zn 213 nm), the results of the MP-AES analysis largely generated concentrations below the method detection limit (MDL). For the analysed $[^{61}\text{Cu}]\text{CuCl}_2$ samples, only Cu produced consistent signals above the MDL, and the average final solution’s Cu concentration was determined to be 176 ± 37 ng/mL ($N = 5$). Co, Zn and Fe all produced signals < MDL (i.e. 100, 100, and 500 ppb respectively).

To assess the chemical purity and applicability of the product, MAs, AMAs, and Ni separation factors were determined and compiled, as reported in Table 4.
Table 4. Compilation of product MAs, AMAs and Ni separation factors for short and long irradiations.

	61Cu Short irradiations (30 min)	61Cu Long irradiation (3.3 h)	64Cu Test irradiation (60 min)
	N = 5	N = 1	N = 1
MA (GBq/µmol) [Ci/ µmol]	85 ± 23 [2.31 ± 0.62]a	Not measured	Not measured
NOTA AMA (GBq/µmol) [Ci/ µmol]	31.3 ± 8.2 [0.85 ± 0.22]a	201 [5.43]a	179 [4.8]a
Ni separation factors	≥ (2.2 ± 1.8) × 10^6	-	-

For longer irradiations, the MA is anticipated to increase proportionally with the produced activity, as the amount of stable Cu would not be expected to change significantly. Although not explicitly measured, if similar stable Cu (to the 30 min irradiations) is assumed for the 3.3 h irradiation, an estimated MA of 479 GBq/µmol [12.9 Ci/µmol] (N = 1) is calculated from the measured activity of that run at EoB. Additionally, assuming similar starting Ni quality, the MA would be expected to increase nearly 4-fold for enriched 60Ni targets. Therefore, MAs approaching 2 GBq/nmol [50 Ci/µmol] are not unrealistic for enriched 60Ni targets, and even higher MAs maybe possible for enriched 61Ni irradiation.

With this in mind, the results in Table 4 are promising, particularly when considering that the theoretical maximum MA for 61Cu is 35 GBq/nmol [939 Ci/µmol].

While a high MA is certainly desirable, it does not guarantee a chemically pure product capable of labelling, as other contaminants could be present and compete with the 61Cu for the chelator. A potentially more informative value is the AMA, which considers not only stable Cu, but also competing stable contaminants other than Cu. However, the AMA will depend on the chelator and labelling conditions, so comparing AMAs between different experimental setups is not straightforward.

Proof of concept – 64Cu

To demonstrate applicability to 64Cu, a single test irradiation on enriched 64Ni was additionally performed. We report herein a NOTA-based AMA at EoB of 179 GBq/µmol [4.8 Ci/ µmol], and
radiochemical yield of 93 %, with an overall processing time of 65 minutes. Additionally, the
recovered ^{64}Ni was recovered and re-plated with a 95 % efficiency.

5. Conclusion

An automated method capable of producing high purity ^{61}Cu from recycled ^{nat}Ni targets has been
developed. In summary, the product formulation is 2 mL of < 0.06 M HCl and the entire process can
be achieved in ~65 min from EoB to EoS, with average radiochemical yields of 90.4 ± 3.2 %, and AMAs
> 5 Ci/µmol for NOTA when irradiating with 30 µA for 3.3 hrs. The $[^{61}\text{Cu}]\text{CuCl}_2$ isolation radiochemistry
reported here has a measured separation factor ≥ (2.2 ± 1.8)×106 for Ni and ^{58}Co radionuclidic impurity
of < 0.0001 % relative to ^{61}Cu activity. Our process is also directly applicable to the production of ^{64}Cu
via the $^{64}\text{Ni}(p,n)^{64}\text{Cu}$ reaction, as was demonstrated in a preliminary, enriched ^{64}Ni target irradiation
and purification test. Additionally, the repeatable, single-use, cassette-based method is facile to
introduce into GMP environments; its final ^{61}Cu radiochemical yield and HCl concentration have
relative standard deviations of 3.2 % and 3.6 %, respectively (N = 5). Finally, the method and FASTlab
platform offer the possibility to perform radiolabelling on the same cassette as the separation.

Highlight statements

- A rapid, automated, and highly reproducible procedure for isolating $[^{61}\text{Cu}]\text{CuCl}_2$ from
cyclotron-irradiated Ni targets was developed.
- The suitable formulation of the product facilitates labelling experiments.
- Enables routine production of ^{61}Cu with NOTA-based AMAs of 200 MBq/nmol [5 Ci/µmol]
from ^{nat}Ni solid targets.
Key words

- 61Cu (radiocopper)
- Automation/automated
- PET
- Solid target
- Dissolution
- Recycling

List of Abbreviations

AMA – Apparent Molar Activity
MA – Molar Activity
MDL – Method Detection Limit
MP-AES – Microwave Plasma Atomic Emission Spectrometer
PET – Positron Emission Tomography
QC – Quality Control
SF – Separation Factor
TLC – Thin-layer Chromatography

Acknowledgements

We gratefully acknowledge the support of Swiss Nuclides, and in particular, Leila Jaafar, for constructive feedback during the development process and providing valuable insight regarding
drafting of the manuscript. Provision of samples and constructive input from Steffen Happel, Triskem is also acknowledged.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not Applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
JP and KG are employees of GE Healthcare. CJK and JWE declare no conflict of interest.

Funding
Grant funding not applicable.
Authors' contributions

JP/KG implemented and optimized the 61Cu purification scheme; CK performed the target preparation, including high activity 61Cu irradiations and extensive and detailed quality control testing and analysis; JWE evaluated the results/provided critical feedback to optimization. All four authors were significant contributors to writing and editing of the manuscript and have read and approved the final manuscript.

References

1. Krasikova RN, Aliev RA, Kalmykov SN. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. Mendeleev Commun [Internet]. 2016;26(2):85–94. Available from: http://dx.doi.org/10.1016/j.mencom.2016.03.001

2. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90.

3. Aluicio-Sarduy E, Ellison PA, Barnhart TE, Cai W, Nickles RJ, Engle JW. PET radiometals for antibody labeling. J Label Compd Radiopharm. 2018;61(9):636–51.

4. Vivier D, Sharma SK, Zeglis BM. Understanding the in vivo fate of radioimmunoconjugates for nuclear imaging. J Label Compd Radiopharm. 2018;61(9):672–92.

5. Tsai WTK, Wu AM. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J Label Compd Radiopharm. 2018;61(9):693–714.

6. Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev. 2008;60(12):1347–70.

7. Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production, and future perspectives. J Label Compd Radiopharm [Internet]. 2019 Aug;62(10):615–34. Available from: http://doi.wiley.com/10.1002/jlcr.3770

8. Brandt M, Cardinale J, Aulsebrook ML, Gasser G, Mindt TL. An overview of PET radiochemistry, part 2: Radiometals. J Nucl Med. 2018;59(10):1500–6.

9. Wadas T, Wong E, Weisman G, Anderson C. Copper Chelation Chemistry and its Role in Copper Radiopharmaceuticals. Curr Pharm Des. 2006;13(1):3–16.

10. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, et al. High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol. 1999;26(4):351–8.

11. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev.
12. Wallhaus TR, Lacy J, Whang J, Green MA, Nickles RJ, Stone CK. Human biodistribution and dosimetry of the PET perfusion agent copper-62-PTSM. J Nucl Med. 1998;39(11):1958–64.

13. Jalilian AR, Yousefnia H, Faghihi R, Akhlaghi M, Zandi H. Preparation, quality control and biodistribution of [61Cu]-doxorubicin for PET imaging. Nucl Sci Tech. 2009;20(3):157–62.

14. Woo SK, Jang SJ, Seo MJ, Park JH, Kim BS, Kim EJ, et al. Development of 64 Cu-NOTA-trastuzumab for HER2 targeting: A radiopharmaceutical with improved pharmacokinetics for human studies. J Nucl Med. 2019;60(1):26–33.

15. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, et al. Immuno-PET imaging and radioimmunotherapy of 64Cu/177Lu-Labeled Anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med. 2016;57(7):1105–11.

16. IAEA. IAEA Nuclear Data Section, accessed 2020-05-18 [Internet]. 2020 [cited 2020 May 18]. Available from: https://nds.iaea.org/relnsd/vcharthtml/VChartHTML.html#lastnuc=61Cu

17. Singh A, Kulkarni HR, Baum RP. Imaging of Prostate Cancer Using 64Cu-Labeled Prostate-Specific Membrane Antigen Ligand. PET Clin [Internet]. 2017;12(2):193–203. Available from: http://dx.doi.org/10.1016/j.cpet.2016.12.001

18. Follacchio GA, De Feo MS, De Vincentis G, Monteleone F, Liberatore M. Radiopharmaceuticals Labelled with Copper Radionuclides: Clinical Results in Human Beings. Curr Radiopharm. 2017;11(1):22–33.

19. Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, et al. Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol. 2005;32(1):21–8.

20. Lewis JS, Laforest R, Buettner TL, Song SK, Fujibayashi Y, Connett JM, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proc Natl Acad Sci U S A. 2001;98(3):1206–11.

21. Lewis JS, Lewis MR, Cutler PD, Srinivasan A, Schmidt MA, Schwarz SW, et al. Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin Cancer Res. 1999;5(11):3608–16.

22. Gutfilen B, Souza SAL, Valentini G. Copper-64: A real theranostic agent. Drug Des Devel Ther. 2018;12:3235–45.

23. Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med Mol Imaging. 2005;32(12):1473–80.

24. Avila-Rodriguez MA, Nye JA, Nickles RJ. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. Appl Radiat Isot. 2007;65(10):1115–20.

25. Brookhaven National Laboratory. NuDat [Internet]. 2020 [cited 2020 Jun 5]. Available from: https://www.nndc.bnl.gov/nudat2/

26. Brookhaven National Laboratory. QCalc [Internet]. 2020 [cited 2020 Jun 5]. Available from: https://www.nndc.bnl.gov/qcalc/

27. Johnbeck CB, Knigge U, Loft A, Berthelsen AK, Mortensen J, Oturai P, et al. Head-to-Head Comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: A prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–7.
28. Piel H, Qain SM, Stücklin G. Excitation Functions of (p,xn)-Reactions on natNi and Highly Enriched 62Ni: Possibility of Production of Medically Important Radioisotope 62Cu at a Small Cyclotron. Radiochim Acta. 1992;57(1):1–6.

29. McCarthy DW, Shefer RE, Klinkowstien RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997;24(1):35–43.

30. IAEA. IAEA Nuclear Data Section, Medical Isotope Browser, accessed 2020-05-18 [Internet]. 2020 [cited 2020 May 18]. Available from: https://www-nds.iaea.org/rdns/isotopia/isotopia.html

31. Matarrese M, Bedeschi P, Scardaoni R, Sudati F, Savi A, Pepe A, et al. Automated production of copper radioisotopes and preparation of high specific activity [64Cu]Cu-ATSM for PET studies. Appl Radiat Isot [Internet]. 2010;68(1):5–13. Available from: http://dx.doi.org/10.1016/j.apradiso.2009.08.010

32. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, et al. Efficient preparation of high-quality 64Cu for routine use. Nucl Med Biol. 2016;43(11):685–91.

33. Ohya T, Minegishi K, Suzuki H, Nagatsu K, Fukada M, Hanyu M, et al. Development of a remote purification apparatus with disposable evaporator for the routine production of high-quality 64Cu for clinical use. Appl Radiat Isot [Internet]. 2019;146(October 2018):127–32. Available from: https://doi.org/10.1016/j.apradiso.2019.01.024

34. Jalilian AR, Rowshanfarzad P, Kamrani YY, Shafaii K, Mirzaii M. Production and tumour uptake of [64Cu]pyruvaldehyde-bis (N 4-methylthiosemicarbazone) for PET and/or therapeutic purposes. Nucl Med Rev. 2007;10(1):6–11.

35. Strangis R, Lepera CG. Production of 61Cu by deuteron irradiation of natural Ni. Proc 18th Int Conf Cyclotrons Their Appl 2007, CYCLOTRONS 2007. 2007;246–7.

36. Thieme S, Walther M, Pietzsch HJ, Henniger J, Preusche S, Mäding P, et al. Module-assisted preparation of 64Cu with high specific activity. Appl Radiat Isot. 2012;70(4):602–8.

37. European Pharmacopoeia. Fludeoxglucose (18F) injection. 2014. p. 1190–2.

38. European Pharmacopoeia. Monograph 01/2021:3109 GALLIUM (68Ga) CHLORIDE (ACCELERATOR-PRODUCED) SOLUTION FOR RADIOLABELLING. 2020.