A rare case of pure-type embryonal carcinoma mimicking epithelial ovarian carcinoma in a 75-year-old woman

Hyun Been Jo¹, Eun Taeg Kim¹, Nam Kyung Lee², Kyung Un Choi³, Eon Jin Kim⁴, Yun Joo Shin⁴, Ki Hyung Kim¹, Ki Hyung Kim¹, Dong Soo Suh¹,²

¹Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan, Korea  
²Department of Radiology, Pusan National University Hospital, Busan, Korea  
³Department of Pathology, Pusan National University Hospital, Busan, Korea  
⁴Department of Obstetrics and Gynecology, Kosin University Gospel Hospital, Busan, Korea  
⁵Biomedical Research Institute, Pusan National University School of Medicine, Busan, Korea

Embryonal carcinoma, a very rare ovarian germ cell tumor, has pure and mixed phenotypes. Pure-type embryonal carcinoma has never been reported in postmenopausal women. The current case was, thus, misdiagnosed as an epithelial ovarian carcinoma based on radiological findings. Herein, we describe the case of ovarian embryonal carcinoma in a 75-year-old woman along with a literature review. Magnetic resonance imaging findings were suggestive of an epithelial ovarian malignancy associated with endometrioma, including ureteral invasion. The patient underwent complete surgical staging. A pathological diagnosis of pure-type embryonal carcinoma was made. The patient’s postoperative course was uneventful, and adjuvant chemotherapy was administered. Embryonal carcinoma in postmenopausal women is a clinical challenge owing to the possibility of its misdiagnosis as epithelial ovarian carcinoma. To the best of our knowledge, this is the first report on pure-type ovarian embryonal carcinoma in a postmenopausal woman, with a description of the clinicopathological characteristics and review of the relevant literature.

Keywords: Case reports; Embryonal carcinoma; Germ cell tumor; Postmenopause

Introduction

Ovarian germ cell tumors (OGCTs) are considered to be derived from primitive germ cells of the embryonic gonad, making them the most common malignancy of the ovary (1%–2% of all cases) in young women and adolescents [1]. Embryonal carcinoma, a very rare OGCT, most commonly appears as one or more other germ cell tumor types. Cases of pure-type ovarian embryonal carcinoma are very rare [2]. Unilateral oophorectomy is the most common fertility-sparing treatment, followed by combination BEP (bleomycin, etoposide, and cisplatin) chemotherapy [1].

Ovarian embryonal carcinoma in postmenopausal women has been reported, and occurs more commonly as mixed germ cell tumor and rarely as pure tumor [3]. The knowledge concerning the development, treatment, and outcomes of postmenopausal embryonal carcinoma is scarce, and the characteristics and prognosis might differ between postmenopausal and premenopausal patients. Herein, we describe the first case of pure-type ovarian embryonal car-
cinoma in a postmenopausal woman and review the relevant literature.

Case

A 75-year-old postmenopausal woman presented with a 1-month history of a palpable mass in the lower abdomen. Magnetic resonance imaging (MRI) revealed an 11-cm solid cystic mass with heterogeneous signal intensity in the left adnexa, and left hydronephroureterosis showing abrupt narrowing at the ovarian mass level, suggestive of ureteral invasion and epithelial ovarian cancer (Ovarian-Adnexal Reporting and Data System [O-RADS] score 5) associated with an endometrioma, such as clear cell or endometrioid carcinoma (Fig. 1). No enlarged lymph nodes or distant metastases were noted in the upper abdomen.

Laboratory findings included elevated levels of serum lactate dehydrogenase (LDH; 372 IU/L [range, 135–225 IU/L]), cancer antigen 125 (17.6 U/mL [range, 0–35 U/mL]), and C-reactive protein (0.68 mg/dL [range, 0–0.5 mg/dL]).

Fig. 1. Magnetic resonance images. Axial T1-weighted (A) and T2-weighted (B) images showing a septated, hemorrhagic cystic mass with papillary projections (arrow) of the left ovary (O-RADS score 5). High T1 signal intensity with a T2 dark spot sign suggestive of epithelial ovarian cancer associated with endometrioma, such as clear cell carcinoma or endometrioid carcinoma. (C) Contrast-enhanced axial T-weighted image shows enhancement (arrow) of the papillary projections in the left ovarian tumor. (D) Axial T2-weighted imaging revealed left hydronephrosis (arrow), showing abrupt narrowing at the ovarian mass level suggestive of ureteral invasion. O-RADS, Ovarian-Adnexal Reporting and Data System.
An exploratory laparotomy was performed for staging given the patient’s age. A 12- to 15-cm cystic and solid mass showed an infiltrative growth pattern with adhesions to the adjacent tissue and organs including the bowel, mesentery, ureter, and retroperitoneum. The retroperitoneal mass from the left adnexa was subjected to frozen section biopsy, which revealed malignancy. To confirm oncologic certainty, further dissection of the ureter, extra-fascial total abdominal hysterectomy with bilateral salpingo-oophorectomy, omentectomy, appendectomy, pelvic adhesiolysis, and multiple resections of the mesenteric mass, pelvic wall mass, and lymph nodes was performed. The permanent biopsy of the left adnexa and the mass revealed a malignant tumor consistent with embryonal carcinoma confined to the ovary with an intact capsule and no extraovarian spread. The uterus, right ovary, omentum, appendix, mesentery, and pelvic lymph nodes were free of tumor cells. Peritoneal washings were also negative for malignant cells, confirming stage IA disease.

Microscopically, the tumor had a predominantly solid pattern of highly anaplastic cells and numerous mitotic figures. The excised mass showed immunoreactivity for CD30, p53, and WT1, and focal positivity for pan-CK (Fig. 2).

Postoperative laboratory tests for alpha-fetoprotein (AFP) and beta-human chorionic gonadotropin (β-hCG) showed normal serum levels: 2.1 IU/mL (range, 0–10.0 IU/mL) and

---

**Fig. 2.** Pathologic findings. (A) Tumor showing a predominantly solid pattern of highly anaplastic tumor cells and numerous mitotic figures (H&E, x200). (B) The tumor cells tested positive for CD30, a specific marker of embryonal carcinoma (CD30, x200). (C) Gross findings. A 12- to 15-cm cystic and solid mass was confined to the ovary with an intact capsule. (D) Cutting sections of the tumor.
1.08 mIU/mL (range, 0–5 mIU/mL), respectively. The LDH level decreased to 200 IU/L (range, 135–225 IU/L). The patient’s postoperative care was uneventful. Subsequently, the patient underwent four courses of BEP. She has been recurrence free for 12 months.

**Discussion**

Embryonal carcinoma was first described in 1976 by Kurman and Norris [4]. Patients with ovarian embryonal carcinoma may present with abdominal pain, a palpable mass, and abdominal distension; irregular heavy bleeding may occur due to abnormal hormonal secretion. Our patient had no symptoms other than a palpable mass. Most of these tumors are stage I and confined to one ovary [4]. The overall 5-year survival rates for embryonal carcinoma in the first reported series of 15 patients were reportedly 39% and 50% for all stages and stage I, respectively [4]. However, BEP chemotherapy for adjuvant therapy improved mean survival rates exceeding 90% [5].

Immunohistochemistry is important to the diagnosis of embryonal carcinoma. CD30 is consistently positive in most embryonal carcinoma cases. The tumor cells can produce AFP and β-hCG and contain giant or syncytiotrophoblastic cells with necrosis and hemorrhage that stain positive for cytokeratin and hyaline bodies in premenopausal patients [2]. In the current case, the excised mass tested positive for CD30, p53, and WT1 and focal positivity for pan-CK. The tumor showed a predominantly solid pattern of highly anaplastic tumor cells and numerous mitotic figures without necrosis and hemorrhage and other histological types could not be seen from pathological findings; thus, it could be diagnosed as pure-type.

The treatment of embryonal carcinoma in younger women is unilateral oophorectomy and combination chemotherapy with BEP. In the case of embryonal carcinoma in young women, similar to other germ cell tumors, the tumor did not show an infiltrative growth pattern or form

| Variable                  | Postmenopausal woman | Premenopausal woman |
|---------------------------|----------------------|---------------------|
| Age (yr)                  | 53                   | 75                  | 13                  |
| Type                      | Mixed type (EST with EC) | Pure type           | Pure type           |
| Figo stage                | 1A                   | 1A                  | 1A                  |
| Tumor marker              |                       |                     |                     |
| AFP                       | +                    | NA                  | –                   |
| β-hCG                     | +                    | NA                  | –                   |
| CA-125                    | –                    | –                   | –                   |
| LDH                       | –                    | +                   | +                   |
| Radiologic findings       | 26x25x15-cm multicystic pelvic/abdominal mass appearing to arise from the left adnexa (USG) | 11-cm, cystic, solid mass with a mural nodule-highly suspicious of epithelial type ovarian carcinoma (O-RADS score 5) (MRI) | 8.3x16x16-cm, multicystic septated solid abdominopelvic mass with maintained fat planes (USG, CT) |
| Operative field           | Infiltrative growth and adhesion to the adjacent organs and tissues were noted intraoperatively. Co-operation with other general surgery and urology teams would have been prudent | Adhered to the cul-de-sac and sigmoid colon serosal surface | No adhesion and no infiltrative growth |
| Pathologic findings       | No necrosis and hemorrhage | NA                  | Necrosis and hemorrhage |
| Treatment                 | Complete surgical staging (3 courses of BEP) | Complete surgical staging (4 courses of BEP) | Fertility-sparing surgery |

EST, endodermal sinus tumor; EC, embryonal carcinoma; AFP, alpha-fetoprotein; β-hCG, beta-human chorionic gonadotropin; CA-125, cancer antigen-125; LDH, lactate dehydrogenase; NA, not available; USG, ultrasonography; O-RADS, Ovarian-Adnexal Reporting and Data System; MRI, magnetic resonance imaging; CT, computed tomography; BEP, bleomycin, etoposide, and cisplatin; USO, unilateral salpingo-oophorectomy.
adhesions with adjacent organs, making it less difficult to perform debulking surgery and sensitive to chemothera-
pathy [7,8]. In contrast, it showed a more infiltrative growth pattern in postmenopausal patients; therefore, the survival rate of germ cell tumors in postmenopausal women is reportedly lower than that of women of reproductive age or adolescents [9]. Therefore, ovarian preservation is not recommended for postmenopausal OGCT patients and a thorough staging operation is necessary [10]. On radiologic imaging, in younger patients, malignant germ cell tumors are generally large and nonspecific with a complex but predominantly solid form and ascites with hemorrhage and necrosis on imaging, while the invasion of other pelvic organs is more likely to occur in postmenopausal patients [11]. On MRI, an incorrect initial diagnosis was made of epithelial ovarian malignancy (O-RADS score 5) associated with endometrioma such as clear cell or endometrioid carcinoma. Moreover, other findings included hydronephrosis showing abrupt narrowing at the ovarian mass level suggestive of ureteral invasion. This is the first report of the MRI findings of pure-type embryonal carcinoma in a postmeno-
pausal woman.

Laboratory tests for AFP, β-hCG, LDH, and other tumor markers may contribute to the preoperative diagnosis and choice of therapeutic effects. The disease may be associated with high AFP and hCG levels, but such a pattern is not absolute and different associations could be observed, especially when the embryonal carcinoma is pure-type (Table 1) [6].

The present case is the first of pure-type embryonal carcinoma of the ovary. Table 1 compares the current case versus the previously published postmenopausal embryonal carcinoma patient and the most recent case of pure-type in a premenopausal woman. As OGCTs including ovarian embryonal carcinoma in postmenopausal women might have different characteristics and prognoses from those of premenopausal women, more research and case reports are needed to better understand this rare entity.

Article information

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Funding

This work was supported by a 2-Year Research Grant of Pusan National University.

Author contributions

Conceptualization: DSS. Data curation: ETK, NKL, KUC. Formal analysis: EJK, YJS. Funding acquisition: HBJ. Methodology: HBJ. Project administration: HBJ. Visualization: HBJ. Writing - original draft: HBJ. Writing - review & editing: KHK. Approval of final manuscript: all authors.

ORCID

Hyun Been Jo, https://orcid.org/0000-0002-3480-5064
Eun Taeg Kim, https://orcid.org/0000-0002-2754-2657
Nam Kyung Lee, https://orcid.org/0000-0003-1972-2719
Kyung Un Choi, https://orcid.org/0000-0002-3848-1781
Eon Jin Kim, https://orcid.org/0000-0002-0468-7175
Yun Joo Shin, https://orcid.org/0000-0001-5470-9398
Kì Hyung Kim, https://orcid.org/0000-0003-2364-5875
Dong Soo Suh, https://orcid.org/0000-0001-5785-4355

References

1. Pectasides D, Pectasides E, Kassanos D. Germ cell tumors of the ovary. Cancer Treat Rev 2008;34:427–41.
2. Euscher ED. Germ cell tumors of the female genital tract. Surg Pathol Clin 2019;12:621–49.
3. Kammerer-Doak D, Baurick K, Black W, Barbo DM, Smith HO. Endodermal sinus tumor and embryonal carcinoma of the ovary in a 53-year-old woman. Gynecol Oncol 1996;63:133–7.
4. Kurman RJ, Norris HJ. Embryonal carcinoma of the ovary: a clinicopathologic entity distinct from endodermal sinus tumor resembling embryonal carcinoma of the adult testis. Cancer 1976;38:2420–33.
5. Hogg R, Friedlander M. Management of embryonal carcinoma of the ovary. CME J Gynecol Oncol 2002;7:234–7.
6. Singh S, Gomathy E, Singh S, Kalyani R. Huge ovarian embryonal cell carcinoma in an adolescent girl: a case report. Indian J Obstet Gynecol Res 2020;7:133–5.
7. Nasioudis D, Mastroyannis SA, Latif NA, Ko EM. Trends in the surgical management of malignant ovarian germ cell tumors. Gynecol Oncol 2020;157:89–93.
8. Turkmen O, Karalok A, Basaran D, Kimyon GC, Tasci T, Ureyen I, et al. Fertility-sparing surgery should be the standard treatment in patients with malignant ovarian germ cell tumors. J Adolesc

www.kosinmedj.org
9. Smith HO, Berwick M, Verschraegen CF, Wiggins C, Lansing L, Muller CY, et al. Incidence and survival rates for female malignant germ cell tumors. Obstet Gynecol 2006;107:1075–85.

10. Li J, Wu X. Current strategy for the treatment of ovarian germ cell tumors: role of extensive surgery. Curr Treat Options Oncol 2016;17:44.

11. Brammer HM 3rd, Buck JL, Hayes WS, Sheth S, Tavassoli FA. From the archives of the AFIP: malignant germ cell tumors of the ovary: radiologic-pathologic correlation. Radiographics 1990;10:715–24.