Exploring the connection of weak winds and magnetic fields

Miriam Garcia1,2, Francisco Najarro3 and Artemio Herrero1,2

1 Instituto de Astrofísica de Canarias, La Laguna, Spain
2 Universidad de La Laguna, La Laguna, Spain
3 Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain

Abstract: The theory of radiatively driven winds successfully explains the key points of the stellar winds of hot massive stars. However, there is an apparent break-down of this paradigm at $\log \frac{L}{L_\odot} < 5.2$: the stellar wind momentum is smaller than predicted for low luminosity early-type stars from metal poor environments, and there are also some Galactic examples. We present a preliminary analysis of a small sample of stars of this luminosity regime in the Orion Nebula region and evaluate whether magnetic fields may play some role in the weak wind problem.

1 Introduction

There is an apparent breakdown of the theory of radiation driven winds at $\log \frac{L}{L_\odot} < 5.2$ and spectral type \simO9 V, where the wind-momentum derived from the observations is smaller (beyond error bars) than predicted by theory. This was first thought a metallicity effect since it was detected in stars from metal-poor environments like the SMC (Bouret et al. 2003, Martins et al. 2004). However, there are also some Galactic cases (Martins et al. 2005, Marcolino et al. 2009).

We still lack an explanation but current hypothesis include a metallicity-dependent threshold luminosity to start the wind, an early evolutionary state previous to wind onset, decoupling of the driving ions from the plasma or magnetic fields.

We study a sample of O9-B0 young dwarfs in the Orion star forming region, together with τ Sco, a known magnetic star. Our first analysis of ultraviolet (UV) spectra (1150-1800Å) with WM-basic models revealed that all targets have smaller wind momentum than predicted by the theory (Garcia & Herrero 2010), although τ Sco’s was larger and closer to the theoretical relation. However, this analysis was not conclusive, as the photospheric properties (T_{eff} and $\log g$) were adopted from optical studies. We present here first results from an improved multiwavelength analysis (from UV to the optical range) for the same sample of stars, using CMFGEN synthetic spectra to fit the observations, where stellar and wind parameters are determined consistently. We also discuss qualitatively that magnetic fields may provide a solution for the weak wind problem.
2 Previous work: analysis with WM-basic models

We derived the wind properties of a sample of O9-B0.5V stars from their UV spectra. The sample includes four O9-B0 stars in the Orion Nebula, 10 Lac and τ Sco (Garcia & Herrero 2010).

The UV spectra were observed with the International Ultraviolet Explorer (IUE) and downloaded from the INES archive (Wamsteker et al. 2000). The spectra did not display any wind features in the IUE range with the exception of C IV 1550 (and perhaps N V 1240) in some stars in the sample.

To analyze the UV data, we built for each star a grid of spherical hydrodynamical line-blanketed non-LTE synthetic spectra calculated with the WM-Basic code (Pauldrach, Hoffmann, & Lennon 2001). WM-Basic provides a very detailed treatment of the spectral lines in the UV range, however, it lacks an appropriate treatment of the Stark broadening and is not suitable for analysis of photospheric lines in the optical range.

Consequently, the grid was run with photospheric (T$_{\text{eff}}$, log g) parameters derived for these stars by Simón-Díaz et al. (2006) from detailed quantitative analysis of optical spectra using FASTWIND (Puls et al. 2005). The observed Hα line did not exhibit a wind profile, indicating a low mass loss rate. The Hα profiles of the synthetic spectra calculated with the derived photospheric parameters were in fact insensitive to variations of the wind parameters. Therefore, Simón-Díaz et al. could only set upper limits for the wind-strength Q-parameter ($Q = \dot{M}/(v_\infty R_\star)^{1.5}$, \dot{M} being the mass loss rate, v_∞ the terminal velocity and R_\star the stellar radius).

Each object’s customized grid has the following varying parameters:

- Mass loss rate. Starting from Simón-Díaz et al. upper limit of Q as first value, \dot{M} was decreased until it reproduced the observed weak UV features.

- Terminal velocity. The traditional method to derive this parameter could not be used, as the UV stellar spectra did not display any saturated lines. The values of v_∞ considered in the grid were estimated from the escape velocity (see Lamers, Snow, & Lindholm 1995). Additional models with $v_\infty \pm 500$ km s$^{-1}$ were also calculated.

- Shocks in the wind, parametrized by the X-ray luminosity released in the shock cooling zone. This parameter could not be constrained since observations of the O VI 1033 doublet in the Far-UV were not available for all stars. The adopted values for this parameter were: log $L_X/L_{\text{bol}} = -6.5$, -7.0, -7.5, -8.0 and shocks off.

We found that the grid models predicted strong P Cygni profiles of C III 1176, C IV 1550, N V 1240 and Si IV 1398 not seen in the observations, unless mass loss rate was extremely small. Moreover, the models could not reproduce the observed strength of all these lines simultaneously. Only upper limits for \dot{M} could be set.

The subsequent upper-limits for the Wind momentum-Luminosity Relation (WLR) are systematically smaller than the theoretical prediction. Only τ Sco and HD 37020 are close to Vink, de Koter, & Lamers (2000)’s relation (see Fig. 1). τ Sco is a known magnetic star and HD 37020 has been recently reported a candidate based on its X-ray behaviour (Stelzer et al. 2005) and its non-thermal radio-emission (Petr-Gotzens & Massi 2007), hinting that magnetic fields may be somehow related to the weak wind problem.

How this connection works is not clear yet. The recently discovered magnetic star HD 57682 has very small mass loss rate (Grunhut et al. 2009) although the authors find that the profile of Hα varies with time and \dot{M} determinations should therefore be monitored. Conversely, recent observations (to be confirmed) have yielded a possible magnetic field detection for 10 Lac (Schnerr et al. 2008) whose wind momentum we find under the theoretical expectations.
3 The interplay of magnetic fields and X-ray luminosity

Magnetically confined wind shocks, colliding loops and reconnection events may produce strong, hard X-ray emission in the lower wind (see for instance Puls et al. 2009). This leads to increased ionization; since ions have less lines, the radiative line-acceleration is weaker. To reproduce the observed wind features, models with enhanced \dot{M} are required. This could explain why τ Sco and HD 37020 are closer to the theoretical WLR.

3.1 A word of caution

Schulz et al. (2006) found that the X-ray emission of HD 37041 may be produced as close as less than 1 stellar radius from the photosphere (see also Cohen 2011).

X-rays in the expanding atmospheres of O stars alter the ionization balance of elements, shifting it towards higher values, thus mimicking the effects of higher temperature (Garcia 2005). This effect should not affect photospheric line diagnostics, nor the effective temperature derived from photospheric lines, as shocks were thought to be produced further out in the atmosphere. However, if produced close enough to the photosphere, X-rays may impact the T_{eff} determinations (Najarro et al. 2011, in prep.). The derived \dot{M} would also change, as wind indicators are also sensitive to T_{eff}.

4 Panchromatic analysis with CMFGEN models

The complexity of this problem requires that all stellar (photospheric+wind) parameters must be derived jointly and consistently, to properly take into account the interplay of the different contributing factors. We have embarked on a project to re-analyze the same sample of stars, using better observations and a more suitable model atmosphere code. The analysis will be subsequently extended to about a dozen O9-B0 dwarfs observed for the IACOB database (see S. Simón-Díaz et al. 2011).

We will use the IUE UV spectra, combined with high resolution echelle spectra from the IACOB database. By fitting simultaneously the UV and optical lines, tighter constraints are set on the temperature and velocity structure of the atmosphere, leading to a better characterization of the ion-stratification and the wind.

We used the CMFGEN code (Hillier & Miller 1998) to calculate synthetic spectra covering from

![Figure 1: Wind-momentum Luminosity Relation (WLR) for the stars analyzed in Garcia & Herrero (2010). We include the theoretical relation of Vink et al. (2000) as reference.](image)
Figure 2: CMFGEN fit (red,dashed) to the IUE flux-calibrated spectrum (black, solid) of HD 37020. The CMFGEN model has $\dot{M} = 1 \times 10^{-10} M_{\odot} \, \text{yr}^{-1}$ and $\log L_X/L_{bol} = -9.0$ (lower than detected for the star, but needed to reproduce the Si IV 1400 lines). The observed wind signatures are very weak. The synthetic spectrum reproduces well the C III 1176 and C IV 1550 lines, and the iron-nickel continuum.

Figure 3: Same as Fig. 2, normalized spectra in the optical range. The CMFGEN model reproduces well the photospheric features observed in these wavelengths. This indicates a correct consistent determination of photospheric and wind parameters. Hα (bottom panel) exhibits no clear wind feature.

the UV to the optical range. CMFGEN solves the spherically expanding non-LTE atmosphere in the co-moving frame, providing a consistent solution for the processes in the photosphere and the wind. In addition, the code includes a simulation of shocks, allowing the user to set up the temperature of the shock region and the wind-depth where they form.

We present in Figs. 2 and 3 our first fits to the spectrum of HD 37020. Results are preliminary, but CMFGEN model reproduces simultaneously the photospheric and [weak] wind features, and produces a good fit to the optical and UV spectra.

5 Conclusions

Our first results indicate that τ Sco and HD 37020, both in the weak-wind luminosity and spectral type regime, have a wind momentum close to the theoretical prediction. Since HD 37020 may have some magnetic activity, and τ Sco is a confirmed magnetic star, this hints that stars with magnetic fields may not experience weak winds. The enhanced X-ray activity due to magnetic fields would change the ionization of elements, and stronger mass loss rates are needed to reproduce the observed wind profiles. Systematic studies of magnetic and non-magnetic stars, including several shock diagnostics (X-ray observations and Far-UV spectra of the O VI 1033 doublet) and mass loss indicators (mostly UV lines) are needed to establish a connection between stellar wind momentum and magnetic activity. The use of CMFGEN models will also be determinant for the problem of weak winds.

Starting from the stars in Orion, we will model the UV and optical spectra of the O9-B0 dwarfs included in the high-resolution, high-S/N IACOB spectroscopic database. New results in the X-ray
domain from Chandra (see for instance Stelzer et al. 2005) will be essential. Results on this relatively large sample, which includes young stars, known magnetic rotators and X-ray emitters will help us disentangle the role played by each of these factors in the weak wind problem.

Acknowledgements

Funded by Spanish MICINN under CONSOLIDER-INGENIO 2010, program grant CSD2006-00070, and grants AYA2007-67456-C02-01 and AYA2008-06166-C03-01.

References

Bouret J.-C., Lanz, T., Hillier, D. J., Heap, S. R., Hubeny, I., Lennon, D. J., Smith, L. J., & Evans, C. J., 2003, ApJ, 595, 1182
Cohen, D., 2011, in IAU Symposium 272: Active OB stars
Garcia, M., 2005, PhD Thesis
García, M., & Herrero, A., 2010, in VIII Scientific Meeting of the Spanish Astronomical Society, Highlights of Spanish Astrophysics V, 407
Grunhut, J. H., Wade, G. A., Marcelino, W. L. F., et al., 2009, MNRAS, 400, L94
Hillier, D. J., & Miller, D. L., 1998, ApJ, 496, 407
Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M., 1995, ApJ, 455, 269
Marcolino, W.L.F, Bouret, J.-C., Martins, F., Hillier, D. J., Lanz, T., & Escolano, C., 2009, A&A, 498, 837
Martins, F., Schaerer, D., Hillier, D. J., & Heydari-Malayeri, M., 2004, A&A, 420, 1087
Martins, F., Schaerer, D., Hillier, D. J., Meynadier, F., Heydari-Malayeri, M., & Walborn, N. R., 2005, A&A, 441, 735
Pauldrach, A.W.A., Hoffmann, T. L., & Lennon, M., 2001, A&A, 375, 161
Petr-Gotzens, M. G., & Massi, M., 2007, MmSAI, 78, 362
Puls, J., Urbanke, M. A., Venero, R., Repolust, T., Springmann, U., Jokothy, A., & Mokiem, M. R., 2005, A&A, 435, 669
Puls, J., Sundqvist, J. O., Najarro, F., & Hanson, M. M., 2009, AIPC, 1171, 123
Simón-Díaz, S., Herrero, A., Esteban, C., & Najarro, F., 2006, A&A, 448, 351
Simón-Díaz, S., Castro, N., Garcia, M., Herrero, A., & Markova, N. 2011, in Proceedings of the 39th Liège Astrophysical Colloquium, eds. G. Rauw, M. De Becker, Y. Nazé, J.-M. Vreux & P. Williams, BSRSL, 80, 514
Schnerr, R. S., Henrichs, H. F., Neiner, C., et al., 2008, A&A, 483, 857
Stelzer, B., Flaccomio, E., Montmerle, T., Micela, G., Sciortino, S., Favata, F., Preibisch, T., & Feigelson, E. D., 2005, ApJSS, 160, 557
Schulz, N. S., Testa, P., Huenemoerder, D. P., Ishibashi, K., & Canizares, C. R., 2006, ApJ, 656, 636
Vink, J., de Koter, A., & Lamers, H. J. G. L. M., 2000, A&A, 362, 295
Wamsteker, W., Skillen, I., Ponz, J. D., de la Fuente, A., Barylak, M., & Yurrita, I., 2000, Ap&SS, 273, 155