Research Letter

Dephosphorylation of Centrins by Protein Phosphatase 2C α and β

Marie-Christin Thissen, Josef Krieglstein, Uwe Wolfrum, and Susanne Klumpp

1 Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Hittorfstr. 58-62, D-48149 Münster, Germany
2 Institut für Zoologie, Johannes Gutenberg-Universität Mainz, Johannes-von-Müllerweg 6, D-55099 Mainz, Germany

Correspondence should be addressed to Susanne Klumpp, klumpp@uni-muenster.de

Received 26 March 2009; Accepted 26 May 2009

In the present study, we identified protein phosphatases dephosphorylating centrins previously phosphorylated by protein kinase CK2. The following phosphatases known to be present in the retina were tested: PP1, PP2A, PP2B, PP2C, PP5, and alkaline phosphatase. PP2C α and β were capable of dephosphorylating P-Thr138-centrin1 most efficiently. PP2C δ was inactive and the other retinal phosphatases also had much less or no effect. Similar results were observed for centrins 2 and 4. Centrin3 was not a substrate for CK2. The results suggest PP2C α and β to play a significant role in regulating the phosphorylation status of centrins in vivo.

Copyright © 2009 Marie-Christin Thissen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the highly specialized vertebrate photoreceptor cells, centrins are components of the ciliary apparatus localized in the connecting cilium and their basal bodies [1–3]. In fully differentiated photoreceptor cells, CK2 phosphorylates centrin1 and 2 during dark adaptation. Since the phosphorylation of the ciliary centrins drastically reduces the binding to the G-protein transducin, it is suggested that the light-dependent translocation of transducin through the cilium is further regulated by CK2 phosphorylation and by the phosphatase involved.

The present study was designed to identify protein phosphatases that serve as counterparts for the CK2-mediated light-dependent phosphorylation of centrins in mammalian photoreceptor cells.

2. Materials and Methods

2.1. Phosphorylation of Centrins and BAD. GST-centrins (0.2 μg) or GST-BAD (0.6 μg) were incubated in 30 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 5 mM β-glycerophosphate, 0.2 μg CK2, 0.06% 2-mercaptoethanol, 1 mM EGTA, and 100 μM ATP including 1 μCi [γ−32P]ATP in a volume of 10 μL for 15 minutes at 37°C. Then unincorporated ATP was removed by centri-SEP spin columns.

2.2. Dephosphorylation of P-Centrins and P-BAD. Phosphorylated proteins were incubated with 0.16 μg PP1 or 0.05 μg PP2A or 1.3 μg PP2B or 0.08–0.8 μg PP2Cα or 0.08–1.5 μg PP2Cβ or 0.08–0.8 μg PP2Cδ or 0.8 μg PP5 or 1.5 μg alkaline phosphatase in a total volume of 15 μL, respectively. Incubations contained a 10 μL aliquot of the completed phosphorylation reaction plus 5 μL 50 mM Tris-HCl, pH 7.5, 1% glycerol, 0.1% 2-mercaptoethanol, and an additional 5 mM MnCl2 for PP1, PP2A, and PP2Cδ; or 1 mM MgCl2, 0.1 mM CaCl2, and 2 μg calmodulin for PP2B; or 1 mM MgCl2 for PP2C α and β; or 100 μM oleic acid for PP5. Alkaline phosphatase assays contained 50 mM Tris-HCl, pH 7.9 and 1 mM MgCl2. Reactions were stopped after 30 minutes at 37°C by adding 5 μL sample buffer (130 mM Tris-HCl, pH 6.8, 10% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.06% bromphenol blue).
3. Results

3.1. Phosphorylation of Centrins by CK2. Purified recombinant centrin1 could be phosphorylated in vitro by CK2 using ATP as phosphate source within a few minutes only (Figure 1(a)). Phosphorylation of centrin1 by CK2 was not detectable in the presence of 100 μM of the CK2-inhibitor TBB (Figure 1(b), left). Guanine nucleotides are playing a uniquely important role in the retina and for vision [3]. Indeed, phosphorylation of centrin1 by CK2 worked equally well using GTP as phosphate source instead of ATP (Figure 1(c)).

Thr138 of centrin1 is conserved in centrin2 (Thr137) and centrin4 (Thr134) whereas centrin3 (Ser135) carries a serine residue instead (Figure 1(f)). As expected from the amino acid sequence identity, centrins 2 and 4 also could be phosphorylated by CK2 (Figure 1(d)). A variety of proteins are phosphorylated by CK2 at serine residues (for review see [4]). Centrin3, however, was not a substrate of CK2 (Figure 1(d)). Coomassie staining was used in parallel to verify equal protein loading (Figure 1(e)).

3.2. Identification of the Phosphatases Hydrolyzing P-Centrins. Phosphatases acting on P-centrin1 included PP1, PP2A, PP2B, PP2Cβ, and PP5. Unspecific alkaline phosphatase was also tested. The CK2-inhibitor TBB used to prevent ongoing phosphorylation upon incubation with the phosphatases had no effect on the phosphatase activities as exemplified for PP2Cβ (Figure 1(b), right).

Among the 6 phosphatases tested here PP2Cβ was most efficiently dephosphorylating P-centrin1 (Figure 2(a)). All the other phosphatases tested had no or much less effect (Figure 2(a)). This unexpected selectivity prompted us to run the dephosphorylation of P-BAD as an extra control. For that purpose BAD was phosphorylated at Thr117 by CK2 [5]. Dephosphorylation of P-BAD was run in parallel and identical to the experiments dealing with the putative dephosphorylation of P-centrin1. In analogy to what is known for the majority of phosphorylation sites in any protein, our in vitro studies revealed that P-Thr117-BAD more or less could be hydrolyzed by all the phosphatases tested (Figure 2(b)). This was in sharp contrast to the results obtained with phosphatases acting on P-centrin1 (Figure 2(a) versus 2(b)). This unexpected result—strongest dephosphorylation of P-centrin1 by PP2Cβ (Figure 2(a))—was also observed for P-centrins2 and 4 (data not shown).

3.3. Characterization of Dephosphorylation of P-Centrin1 by PP2Cβ. An increasing amount of PP2Cβ protein resulted in
enhanced dephosphorylation (Figure 3(a)). PP2C enzymes are characterized by their requirement for Mg\(^{2+}\) or Mn\(^{2+}\) cations for activity [6]. In line with that, dephosphorylation of P-centrin1 by PP2C\(\beta\) increased upon addition of Mg\(^{2+}\)-ions (Figure 3(b)). Increasing the Ca\(^{2+}\)-ion concentration reduced dephosphorylation of P-centrin1 by PP2C\(\beta\) (Figure 3(c)). Unsaturated long-chain fatty acids are inhibiting PP2C activity from plants [7] but activate PP2C\(\alpha\) and PP2C\(\beta\) in vertebrates [8]. Oleic acid (18 : 1) was capable of stimulating dephosphorylation of P-centrin1 by PP2C\(\beta\) (Figure 3(d)).

Dephosphorylation of P-centrin1 was detectable not only with PP2C\(\beta\) as shown before but also with PP2C\(\alpha\) (Figure 3(e)). In contrast, P-Thr\(^{138}\)-centrin1 could not be hydrolyzed by PP2C\(\delta\) (Figure 3(e)).

4. Discussion

Phosphorylation of centrins by CK2 occurs during dark adaptation in photoreceptor cells of the mammalian retina. It reciprocally regulates the Ca\(^{2+}\)-mediated binding of centrins to the \(\beta\gamma\)-subunit of the visual heterotrimeric G-protein transducin [1, 9, 10]. If CK2 is constantly active in photoreceptor cilia, as seen in most systems studied so far, the identity and regulation of a phosphatase responsible for dephosphorylation of CK2-mediated centrin phosphorylation might be crucial for the biological effect of centrins.

Accordingly, in the present study, we addressed the question which phosphatase is capable of dephosphorylating P-Thr\(^{138}\)-centrin1. All the most abundant retinal phosphatases were tested, that is, PP1, PP2A, PP2B, PP2C\(\alpha\) and \(\beta\), PPS, and alkaline phosphatase [11–14]. Our results were most striking: PP2C\(\alpha\) and \(\beta\) most efficiently hydrolyzed P-centrin1; all other phosphatases tested had no or much less effect. This unexpected finding was verified using P-Thr\(^{177}\)-BAD, phosphorylated by CK2, for control [5]. As expected, P-BAD was dephosphorylated by all those phosphatases which is in sharp contrast to the dephosphorylation of P-centrin1 by PP2C\(\alpha\) and PP2C\(\beta\).

Many proteins are phosphorylated at several distinct sites. Knowledge on the reversible phosphorylation of centrins currently comprises PKA at Ser\(^{167}\) [15–17], PKC [15], Cdc2 [15], and CK2 [18]. This report is the first focusing on phosphatases acting on P-centrins. Because of the unexpected potency of PP2C\(\alpha\) and \(\beta\) to dephosphorylate CK2-mediated P-centrin1, we briefly checked whether PP2C\(\alpha\) and \(\beta\) might also dephosphorylate P-centrin1 after phosphorylation by PKA. This was not the case (data not shown). Therefore, we conclude that if there is crosstalk and hierarchy among the two phosphorylation sites identified in centrin proteins, PP2C\(\alpha\) and \(\beta\) are playing a most decisive role. Overall, dephosphorylation of P-centrins by PP2C\(\alpha\) and \(\beta\) should increase the affinity of centrins to G\(\beta\gamma\) and finally reduce transport of the G-protein transducin through the connecting cilium.
References

[1] A. Giessl, A. Pulvermüller, P. Trojan, et al., “Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells,” The Journal of Biological Chemistry, vol. 279, no. 49, pp. 51472–51481, 2004.

[2] T. F. Giessl, A. Pulvermüller, and U. Wolfrum, “Centrins, potential regulators of transducin translocation in photoreceptor cells,” in Cell Biology and Related Disease of the Outer Retina, D. S. Williams, Ed., pp. 122–195, 2004.

[3] U. Wolfrum, “Centrin in the photoreceptor cells of mammalian retinae,” Cell Motility and the Cytoskeleton, vol. 32, no. 1, pp. 55–64, 1995.

[4] L. A. Pinna, “The raison d’être of constitutively active protein kinases: the lesson of CK2,” Accounts of Chemical Research, vol. 36, no. 6, pp. 376–384, 2003.

[5] S. Klumpp, A. Mäurer, Y. Zhu, D. Aichele, L. A. Pinna, and J. Kriegstein, “Protein kinase CK2 phosphorylates BAD at threonine-117,” Neurochemistry International, vol. 45, no. 5, pp. 747–752, 2004.

[6] S. Klumpp, D. Selke, and J. Hermesmeier, “Protein phosphatase type 2C active at physiological Mg2+: stimulation by unsaturated fatty acids,” FEBS Letters, vol. 437, no. 3, pp. 229–232, 1998.

[7] E. Baudouin, I. Meskiene, and H. Hirt, “Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation,” The Plant Journal, vol. 20, no. 3, pp. 343–348, 1999.

[8] B. Hufnagel, M. Dworak, M. Soufi, et al., “Unsaturated fatty acids isolated from human lipoproteins activate protein phosphatase type 2Cβ and induce apoptosis in endothelial cells,” Atherosclerosis, vol. 180, no. 2, pp. 245–254, 2005.

[9] A. Pulvermüller, A. Giessl, M. Heck, et al., “Calcium-dependent assembly of centrin-G-protein complex in photoreceptor cells,” Molecular and Cellular Biology, vol. 22, no. 7, pp. 2194–2203, 2002.

[10] P. Trojan, S. Rausch, A. Giebetal, et al., “Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein,” Biochimica et Biophysica Acta, vol. 1783, no. 6, pp. 1248–1260, 2008.

[11] S. Klumpp, D. Selke, D. Fischer, A. Baumann, F. Müller, and S. Thanos, “Protein phosphatase type 2C isozymes present in vertebrate retinai: purification, characterization, and localization in photoreceptors,” Journal of Neuroscience Research, vol. 51, no. 3, pp. 328–338, 1998.

[12] J. L. Reis, “Histochemical localization of alkaline phosphatase in the retina,” British Journal of Ophthalmology, vol. 38, no. 1, pp. 35–38, 1954.

[13] D. Selke, H. Anton, and S. Klumpp, “Serine/threonine protein phosphatases type 1, 2A and 2C in vertebrate retinae,” Acta Anatomica, vol. 162, no. 2-3, pp. 151–156, 1998.

[14] S. Zhao and A. Sancar, “Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity,” Photochemistry and Photobiology, vol. 66, no. 5, pp. 727–731, 1997.

[15] W. Lutz, W. H. Lutz, D. McCormick, T. M. Greenwood, and J. L. Salisbury, “Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication,” The Journal of Biological Chemistry, vol. 276, no. 23, pp. 20774–20780, 2001.

[16] S. M. Meyn, C. Seda, M. Campbell, et al., “The biochemical effect of Ser167 phosphorylation on Chlamydomonas reinhardtii centrin,” Biochemical and Biophysical Research Communications, vol. 342, no. 1, pp. 342–348, 2006.

[17] W. L. Lingle, W. H. Lutz, J. N. Ingle, N. J. Maihle, and J.L. Salisbury, “Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 2950–2955, 1998.

[18] A. Giessl, P. Trojan, S. Rausch, A. Pulvermüller, and U. Wolfrum, “Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium,” Vision Research, vol. 46, no. 27, pp. 4502–4509, 2006.