Incidence of Wound Infection in Abdominal Surgeries- A Clinical Study

Authors
Sanjeev M Patil¹, Ambika Patil²
¹Assistant Professor, Department of General Surgery, MRMC, Gulbarga, Karnataka
²Assistant Professor, Department of Ophthalmology, MRMC, Gulbarga, Karnataka

Abstract
Objectives: To study the incidence, type of infective organisms, possible risk factor and sources of infectious in relation to emergency and elective abdominal surgery.

Methodology: During two years study period of postoperative wound infection admitted in Basaveshwar Teaching & General Hospital attached to Mahadevappa Rampure Medical College, Gulbarga, 80 operations including elective and emergency surgical procedures, done in major OT were studied. As a routine patients were investigated to rule out preexisting comorbidities.

Results: A total number of 80 cases during 2 years period were studied. The various factors responsible for wound infection and their response to antibiotics were studied, the results were analyzed and discussed. The post operative wound infection in relation to age (highest incidence in above 60 years age group – 62.5%), sex (male sex), nutritional status (poor status of the patient – 36.36%), anaemia (severe-33.33%).

Conclusion: Thus from the above findings the incidence of wound infection, simple attention to technical details.

Introduction
Wound infections in abdominal surgeries, also known as surgical site infections (SSIs) complicate the recovery of many patients. Microbes have come to occupy a very important place with day to day service of surgeon. Bacterial infection at a surgical incision may have results that ranges from inconvenience to disaster, from small stitch abscess to massive destruction, septicaemia, and death. Between these extremes there are many forms of sepsis that cause patient discomfort, delay the return to health or leave permanent disability.

Surgical site infection is defined as wound infection which occurs at an incision site within 30 days after operation & involves skin or subcutaneous tissue above the fascial layer¹. Bacteria can gain entrance to the wound from endogenous or exogenous sources. Surgical infection is an infection which requires surgical treatment and has developed before or a complication of surgical treatment. Thus, post operative wound infection is also a specific nosocomial infection.

Although the majority of SSIs are uncomplicated, others may be severe and more challenging to manage. Microbes are as old as man. There is no satisfactory explanation as to their origin. Whatever may be the origin they are causing
problems. Since the discovery and demonstration of microbes in the early part of 19th century which plunged the mankind to expose the mysterious new world at the same time inviting man into the war with the microbes, later favoured man to gain an upper hand over the microbes, especially over a group of bacteria with the help of antibiotics and chemotherapeutics.

Aims
1. To study the incidence of wound infection, following major abdominal surgeries.
2. To study the incidence in emergency and elective surgeries.

Methodology
This study is undertaken in surgical units of Basaveshwar Teaching & General Hospital and Government General Hospital, attached to Mahadevappa Rampure Medical College, Gulbarga over the period of February 2010 to February 2012 that is two years. A total number of 80 patients, operations including elective and emergency surgical procedures done in major Operation Theatres were studied. Out of 80 patients 54 were emergency cases and 26 were elective cases. Patients were admitted 2-3 days earlier to surgery, excepting some of them admitted week earlier, those required special investigations and preparation (pre-operative). As a routine, patients were investigated to rule out pre-existing infection.

Results
Majority of operations, include Cholecystectomy, Appendicectomies and Gastrojejunostomy with Vagotomy in elective cases and also include Malignancy of large Bowel etc., In emergency group, Hollow viscus perforation, Appendicitis, Intestinal obstruction and also Abdominal Trauma etc.,

Type of Surgery
A total number of 80 cases were studied in this series, 54 emergency and 26 elective cases among which infected cases were 18 and 2 respectively.

Table-1: Cases Studied

Cases Studied	No. of Cases	No. of Cases Infected	Percentage
Total No. of cases studied	80	20	25%
No. of emergency cases	54	18	33.33%
No. of elective cases	26	2	7.69%

Sex Incidence
Sex incidence in this series is 12(24.48%) and 8 (25.80%) in 49 male and 31 females respectively.

Table-2: Sex Wise Distribution of Cases

Sex	No. of Cases	Percentage
Male	12	24.48%
Females	8	25.80%

Age Incidence
In 0-20 years groups only one (5.26%) case was infected on the contrary in the above 60 years group 5(62.5%) out of 8 cases were infected.

Table-3: Age Incidence

Age of Patient (Years)	No. of Cases	No. of Cases Infected	Percentage
0 – 20 years	19	1	5.26%
21 – 40 years	33	5	15.15%
41 – 60 years	20	9	45%
Above 60 years	8	5	62.5%

Nutritional Status
Among poor nutritional status group 4 (36.36%) out of 11 were infected.
Table-4: Nutritional Status

Nutritional Status	No. of Cases	No. of Cases Infected	Percentage
Well	13	2	15.38%
Moderate	56	14	25%
Poor	11	4	36.36%

Anaemia
Among 6 patients of severe anaemia group below the level of 7 gm% 2 (33.3%) developed post operative wound infection, where as 3 (15%) patients out of 20 were infected in no anaemia group.

Table-5: Anaemia

Anaemia	No. of Cases	No. of Cases Infected	Percentage
No	20	3	15
Mild	35	9	25.71
Moderate	19	6	31.57
Severe	6	2	33.33

Operator: (Sr. Consultant/Jr. Consultant/P.G.)
Three (15%) out of 20 cases operated by Sr. Consultants got infected where as the percentage of infected cases in Jr. Consultant and P.G. group are 23.52% and 55.55% respectively.

Table-6: Operator

Operator	No. of Cases	No. of Cases Infected	Percentage
Senior surgeon	20	3	15
Assistant Surgeon	51	12	23.52
Post graduate	09	5	55.55

Risk Factors: (Involvement of more than two Organ Systems)
6 (40%) out of 15 cases infected in diabetes group.

Table-7: Risk Factors

Risk factors	No. of Cases	No. of Cases Infected	Percentage
R.T.I.	6	1	16.66
U.T.I.	9	3	33.33
Obesity	13	7	53.85
Diabetes	15	6	40

Wound Class
In this series, in clean wound group 4 (14.81%) out of 27 were infected in contrast to contaminated wound group in which 10 out of 23 were infected with a percentage of 43.47.

Table-8: Traditional Wound Class

Wound Class	No. of Cases	No. of Cases Infected	Percentage
Clean	27	4	14.81
Clean contaminated	30	6	20
Contaminated	23	10	43.47

Organisms Involved
Among 20 infected cases, in 10 E. Coli was found to be the causative organism with a percentage of 50%, pseudomonas 11.54% and coagulase positive staphylococci.
Duration of Surgery

The time taken 1 hour or less 17 cases were included in which no case was infected, where as 24 cases with 2-3 hours duration 9 (37.5%) were infected.

Table-9: Duration of Surgery

Time taken for surgery	No. of Cases	No. of Cases Infected	Percentage
1 hour or less	17	-	-
1 – 2 hours	59	17	28.81
2 – 3 hours	24	9	37.50

Post Operative Complications

10 cases developed post operative respiratory track infection, 6 U.T.I., 8 post op hypotension. Mortality was 3%.

Table-10: Postoperative Complications

Postoperative complications	No. of Cases
RTI	10
UTI	6
Hypotension	8
Septicemia and death	3

Discussion

A total number of 80 cases studied in this series, 54 emergency and 26 elective cases. Bacteriological studies were done in 42 cases out of 80 cases. There were 20 cases of postoperative wound infection. In general the incidence of infection was 25%.

Results of other Workers

Name of workers	Year	% of infection rate
Meleny	1835	4.80
Agarwal	1972	20.0
Rao & Harsha	1975	25.00
Venkatraman et al	1978	22.3
Shaw et al	1973	16.90
Srivastava	1962	10.19
Cruse and Ford	1980	48.00
Kowli et al	1985	17.40
Anvikar et al	1959	5.00
Barner	1961	10.15
Present study	2012	25

The incidence of wound infection in present study is comparable with previous studies. Considering the incidence of wound infection reported in the world literature the present incidence 25% is quite acceptable.

The high infection rate in emergency case may be due to more G.I. perforation cases included in this study, these patients present late to the hospital where in they fall in contaminated wound class and also subsequent lengthy incisions and use of drains predispose to wound infection.

Incidence in Relation to Sex

This report is almost in the same range. The incidence of wound infection in relation to sex, where males show almost twice the numbers of cases compared to the females. The risk infection is more in males (Subramanian et al 1973).

It is evident from the present study that, there is a gradual increase in the incidence of the infection as the age advances. Above 60 years the incidence of wound infection is very high. This is almost confirmed by other workers.

The infection rate increased with increasing age, being maximum in the 51-70 years group. The infection rate in male and female was almost similar, male 19.1% in the former and 17.64% later.

Age and Sex Incidence

Author	Age group	Percentage
Sharma S	> 60 years	16.16%
Agarwal SL	51 – 70 years	35.02%
Present study	>60years	62.5%
Incidence in Relation to Nutritional Status

It’s known that the nutritional status and anaemia have a direct bearing on the incidence of wound infection. Wound infection is directly proportional to the nutritional status of the patient. In present study infection rate of 36.36% was observed in patients poor nutritional status. And as shown above there is high incidence of infection 33.33% in patients with severe anaemia and 31.57% in moderate anaemia.

Poor nutritional status and anaemia are strong predisposing factors for increase in incidence of wound infection. Cruse and Foord found overall rate of 17% among patients considered malnourished versus 4.8% for all patients combined. Shukla et al (1985) formed a poor nutritional status was associated with a wound infection rate of 17% versus 8.3% with good nutritional state. This discrepancy from present series may be because of more no of patients studied in the referred series.

Various associated factors detected preoperatively were diabetes present in 15 cases, obesity in 13 cases, Respiratory tract infection was present in 6 cases.

All these factors have increased in incidence, especially with diabetes where in half of the patient were found to have post operative wound infection. This proves that a vigorous control of diabetes status and respiratory tract infection are essential in bringing down the incidence of wound infection. Obesity is also essential factor in causing post operative wound infection as evident from study.

The cases in whom respiratory tract infection and urinary tract infection was detected, were given antibiotics like Ciprofloxacin 500mg, 12th hourly and mainly on empirical basis.

Incidence in Relation to Duration of Surgery

60 minutes and below, surgery have lowest incidence that in absolutely no case was infected and which is directly proportional to the duration of surgery. Probably this is a point in favour of quick surgery reduces the chances of infection. This is confirmed by other authors.

Sharma’s Series (1972)

This increased incidence with long in duration of surgery in the present series is probably due to several factors, which increases the changes of contamination of the tissues. The source is mainly from the surgical team, other factors include laxity in aseptic technique and sterilization methods, while operation is in progress.

Conclusion

A prospective study of wound infection in 80 operated cases were undertaken in this study. It has been noted that the risk factors for wound infection are mainly the type of surgery namely the emergency surgery. The incidence of wound infection remained low in elective cases. The reason for wound infection in emergency cases could be multifactorial, this could be advanced
age poor nutritional status, delay in reporting the associated comorbid conditions. Those who report late for consultation in this hospital might have already waste precious time when the disease could have been tackled with less morbidity, most of this group of patients might have been suffering from systemic inflammatory response syndrome with impending organ failure also with all their attendant ill effects. Hence, a plea is made for early referral of cases from the peripheral centres, which it is hoped could effective change the scenario of wound infection in emergency cases. The incidence of wound infection could be improved by simple attention to technical details.

Bibliography
1. Richard J Howard. Surgical Infections. Principles of Surgery, Schwartz. 7th Edition, P. 123-154.
2. Meleny FL. Infection in clear operative wounds. Surg Gynecol Obstet. 1935; 60: 264-276.
3. Agarwal SL. Study of postoperative wound infection. Indian Journal of Surgery. 1972; 34: 314.
4. Rao AS and Harsha M. Postoperative wound infection. J. Ind Med Asso. 1975; 64: 90-93.
5. Venkatraman MS, Bhaskaran KS and Sunderaman S. Personal factors in wound sepsis. Ind J Surg. 1978; 40: 618-623.
6. Wongesteen OH, Wargeskin SD, Kriger CF. Some pre-cisterian and post-cisterian antiseptic wound, Practice and Emergence of Asepsis. Surg Gynecol Obstet. 1973; 137: 677.
7. Nicholas RL, Smith JW. Intragastric bacterial colonization in common disease states of the stomach and duodenum. Ann Surg. 1975; 182(5): 557-61.
8. Shaw D, Doig CM and Douglas D. As airborne infection in the operating theatre an important cause of wound infection in general surgery. The Lancet. 1973; 1: 17-21.
9. Shrivastava SP, Atal PR and Singh RP. Studies on hospital infection. Ind J Surg. 1969; 31: 612-621.
10. Cruse PJE and Foord R. Epidemiology of wound infection. Surg. Clin of North America. 1980; Vol. 601: 27-40.
11. Kowli SS, Nayak MH, Mehta AP, Bhalerao KA. Hospital infection. Indian J Surgery. 1985; 48: 475-86.
12. Anvikar Ar, Deshmukh AB, Karyakarte RP, Damle AS, Patwardhan NS, Malik AK. A one year prospective study of 3280 surgical wound. Ind J Med Microbiol. 1999; 17: 129-32.
13. Barner BJ and Others. Ann Surg. 1961; 154: 583.
14. Sharma. Dissertation submitted to mysore university.1972.
15. Cerise EJ. Abdominal drains: Their role as a source of infection following splenectomy. Ann Surg. 1970; 171: 764.
16. Subramanian CA, Prakash A, Srinivas and Bhujawala. Indian Journal of Surgery. 1973; 35(2): 57.
17. Windsor JA, Hill GL. Weight loss with physiological impairment. A basic for surgical risk. Ann Surg. 1988; 290-296.
18. Forse RA, Karan B, Maclean LD. Antibiotic prophylaxis for surgery in morbidity obese patients. Surgery. 1989; 106: 750-757.
19. Nystrom PO, Jonstans A, Hojer H. Incisional infection after colorectal surgery in obese patients. Acta Chir Scand. 1987; 106: 750-757.
20. Codon RE. Effectiveness of a surgical wound surveillance program. Arch Surg. 1983; 118: 303-307.