DIS AT LOW X, SATURATION SCALE, GLUON STRUCTURE FUNCTION AND VECTOR-MESON PRODUCTION

D. SCHILDKNECHT
Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany
and
Max-Planck Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München, Germany

Deep inelastic scattering at low x can be described by essentially only two fitted parameters. The interpretation of J/ψ photoproduction in terms of the gluon structure function is elaborated upon.

I will concentrate on the intimate connection between the x-dependence and the Q^2 dependence of the structure function $F_2(x,Q^2)$, and subsequently I will turn to vector-meson production, to J/ψ production in particular.

In deep inelastic scattering (DIS) at low $x \simeq Q^2/W^2 \ll 0.1$, the photon fluctuates into a $q\bar{q}$ color-dipole state that in the virtual forward-Compton-scattering amplitude interacts via the generic structure of two-gluon exchange with the proton. The QCD gauge-theory structure implies diagonal and off-diagonal transitions in the masses of the color-dipole vector states, and accordingly it implies a dependence on the transverse three-momentum of the gluon, \vec{l}_\perp, that couples to the color dipole. The effective value of \vec{l}_\perp introduces a novel scale, the saturation scale, relevant in low-x DIS. In our approach, the saturation scale, $\Lambda_{sat}^2(W^2)$, depends on the energy, W, and

$$\Lambda_{sat}^2(W^2) = \frac{1}{6} \langle \vec{l}_\perp^2 \rangle \cong \frac{1}{6} \text{const} \left(\frac{W^2}{1 GeV^2} \right)^{c_2}.$$

(1)

A fit to the total photoabsorption cross section by the power law (1) in the HERA energy range gave

$$2 GeV^2 \lesssim \Lambda_{sat}^2(W^2) \lesssim 7 GeV^2,$$

(2)

Presented at 41st Rencontres de Moriond, March 2006
where

\[\text{const} = 0.340 \pm 0.063 \text{GeV}^2, \]
\[C_2 = C_2^{\text{exp}} = 0.27 \pm 0.01. \] (3)

In addition to \(\Lambda_{\text{sat}}^2(W^2) \), the total (virtual) photoabsorption cross section depends on the cross section \(\sigma^{(\infty)} \) of hadronic size,

\[\sigma^{(\infty)} = 48 \text{GeV}^{-2} = 18.7 \text{mb}, \] (4)

(for \(R_{e^+e^-} = 10/3, \) four flavours),

and is approximately given by

\[\sigma_{\gamma^*p}(W^2, Q^2) \approx \frac{\alpha}{3\pi} R_{e^+e^-} \sigma^{(\infty)} \left\{ \begin{array}{ll}
\ln \eta^{-1}, & (\eta \ll 1), \\
\frac{1}{2} \eta^{-1}, & (\eta \geq 1),
\end{array} \right. \] (5)

with the scaling variable

\[\eta(W^2, Q^2) = \frac{Q^2 + m_0^2}{\Lambda_{\text{sat}}^2(W^2)} \] (6)

and \(m_0^2 \approx 0.15 \text{GeV}^2 \). Apart from this threshold mass, the cross section (5), or equivalently \(F_2(W^2, Q^2) \), contains three adjusted parameters, the two parameters (3) determining the saturation scale and the cross section (4).

Application of DGLAP evolution in the region of \(Q^2 \gg \Lambda_{\text{sat}}^2(W^2) \), where appropriate, actually reduces the number of three to only two adjusted parameters, since evolution allows one to determine the exponent \(C_2 \) in (1). This will be pointed out next.

The representation (5) of the experimental data contains the assumption that the scattering amplitude for longitudinal, \((q\bar{q})^J_L=1 \), (vector) states and for transverse ones, \((q\bar{q})^J_T=1 \), be proportional to each other. In terms of the sea-quark, \(x\Sigma(x, Q^2) \), and the gluon distribution, \(xg(x, Q^2) \), and the proportionality constant \(r \), this proportionality reads

\[x\Sigma(x, Q^2) = \frac{12}{R_{e^+e^-}} F_2(x, Q^2) = \frac{8}{3\pi} \left(r + \frac{1}{2} \right) \alpha_s(Q^2) xg(x, Q^2)|_{x=Q^2/W^2} \] (7)

The constant \(r \) also determines the ratio of the longitudinal to the transverse photoabsorption cross section,

\[\frac{\sigma_{\gamma^*p}(W^2, Q^2)}{\sigma_{\gamma^*p}(W^2, Q^2)} = \frac{1}{2r}. \] (8)

The (successful) representation \(r=1 \) of the experimental data was based on \(r=1 \). With (5) and (7), the evolution equation (at low \(x \))

\[\frac{\partial F_2(x, Q^2)}{\partial \ln Q^2} = \frac{R_{e^+e^-}}{9\pi} \alpha_s(Q^2) xg(x, Q^2) \] (9)

turns into an equation for \(\Lambda_{\text{sat}}^2(W^2) \). Inserting the power law (1), one finds a constraint on \(C_2 \) that is given by

\[(2r + 1)2^{C_2}C_2 = 1. \] (10)

In Table 1, we show the relation between \(r \) and \(C_2 \) resulting from (10). The constant \(r \), according to (7), determines the relative magnitude of gluon to sea distribution. The dependence of the structure function \(F_2(W^2) = F_2(Q^2/x) \) for \(Q^2 \gg \Lambda_{\text{sat}}^2(W^2) \) follows from (5).
Table 1: Results for $C_2^{\text{theor.}}$ for different values of r according to (10).

r	$C_2^{\text{theor.}}$	$\alpha_s \cdot \text{glue}$	σ_g^*/σ_T^*	$F_2\left(\frac{Q^2}{x}\right)$
$\rightarrow \infty$	0	$< \text{sea}$	0	$(Q^2/x)^0 = \text{const.}$
1	0.276	$\approx \text{sea}$	$\sim \frac{1}{2}$	$(Q^2/x)^{0.276}$
0	0.65	$> \text{sea}$	∞	$(Q^2/x)^{0.65}$

We summarize:

i) The theoretical value of C_2 in Table 1 from (9) and (10) for $r = 1$ coincides with the experimental one (3) obtained for $r = 1$,

$$C_2^{\text{theor.}} \approx C_2^{\text{exp.}},$$

and thus the underlying ansatz for the dipole cross section is consistent with the evolution equations from QCD. A (strong) violation of (10) would have ruled out this ansatz, and in particular the underlying assumption of W being the relevant variable to describe diffractive processes at low x.

ii) Essentially two parameters, the normalization of the saturation scale $\Lambda_{\text{sat}}^2(W^2)$ in (3) and the cross section of hadronic magnitude (4) are sufficient to determine the low-x proton structure function including the photoproduction limit.

iii) The Q^2 and the x dependence of $F_2(x,Q^2)$ are strongly correlated with each other and correlated with the relative magnitude of the gluon and sea contributions, compare Table 1.

iv) A sufficiently large gluon contribution implies a strong rise of $F_2(x,Q^2)$ with increasing Q^2 for constant x, and an equally strong rise with decreasing x at fixed Q^2 (compare lines 2 and 3 in Table 1). This qualitative feature is experimentally realized, and theoretically it is a natural consequence of W as the relevant variable that describes the scattering cross section of a color dipole on the proton (rather than x).

v) Since the relative magnitude of the gluon and the sea is correlated with σ_g^*/σ_{T^*}, direct measurements of this ratio are urgently needed. This allows one to investigate the limits of validity of the underlying assumed proportionality of sea and gluon distributions.

Turning to J/ψ production, in figs. 1 and 2, I show our result of an absolute prediction based on the description of the inclusive DIS data I told you about. For details, I have to refer to the original publications.

I wish to mention one important point, however, related to the interpretation of J/ψ photoproduction ($Q^2 = 0$) in terms of the gluon structure function. From (7), valid for sufficiently large $Q^2 \gg \Lambda_{\text{sat}}^2(W^2)$, we have

$$\alpha_s(Q^2)xg(x,Q^2)|_{x=Q^2/W^2} = \frac{1}{8\pi^2}\sigma^{(\infty)}\Lambda_{\text{sat}}^2(W^2 = Q^2/x).$$

(11)

According to (11), a determination of the energy dependence of $\Lambda_{\text{sat}}^2(W^2)$ at any Q^2, e.g. at $Q^2 = 0$ in J/ψ photoproduction, yields the dependence of the gluon structure function on the left-hand side as a function of x at $Q^2 \gg \Lambda_{\text{sat}}^2(W^2)$, where relation (11) becomes valid. Clearly, the measurement of J/ψ photoproduction does not provide a measurement of the structure function for $Q^2 \lesssim m_c^2$, $\Lambda_{\text{sat}}^2(W^2)$, where (11) breaks down.
More generally, independent of our representation of the data on DIS, any unique prediction of J/ψ photoproduction necessarily requires the left-hand side of (11) to only depend on W^2. Otherwise no unique prediction of J/ψ photoproduction will emerge. This should be kept in mind, when predicting the energy dependence of vector meson photoabsorption, i.e. for any specific fit of the gluon structure function the left-hand side in (11) should be examined on whether it only depends on W^2 in good approximation at large Q^2.

Acknowledgements

Thanks to Masaaki Kuroda for a fruitful collaboration.
This work was supported by Deutsche Forschungsgemeinschaft under grant SCHI 189/6-2.

References

1. e.g. N.N. Nikolaev and B.G. Zakharov, *Z. Phys. C* 49, 607 (1991).
2. G. Cvetic, D. Schildknecht, A. Shoshi, *Eur. Phys. J. C* 13, 301 (2000).
3. D. Schildknecht, B. Surrow, M. Tentyukov, *Phys. Lett. B* 499, 116 (2001); G. Cvet, D. Schildknecht, B. Surrow, M. Tentyukov, *Eur. Phys. J. C* 77, 2001 (2001); D. Schildknecht, B. Surrow, M. Tentyukov, *Mod. Phys. Lett. A* 16, 1829 (2001).
4. M. Kuroda and D. Schildknecht, [hep-ph/0507098](http://arxiv.org/abs/hep-ph/0507098), *Phys. Lett. B* in print.
5. D. Schildknecht in *Diffraction 2000, Nucl. Phys. B Proc. Suppl.* 99, 121 (2001); D. Schildknecht in *The 9th International Workshop on Deep Inelastic Scattering, DIS 2001, Bologna, Italy*, ed. G. Bruni et al. (World Scientific, Singapore, 2002).
6. M. Kuroda and D. Schildknecht, *Phys. Lett. B* 618, 84 (2005); *Acta Phys. Polon. B* 37, 835 (2006).
7. K. Prytz, *Phys. Lett. B* 311, 286 (1993).
8. M. Kuroda and D. Schildknecht, *Eur. Phys. J. C* 37, 205 (2004).