A systematic review and meta-analysis evaluating the survival, the failure, and the complication rates of veneered and monolithic all-ceramic implant-supported single crowns

Bjarni Elvar Pjetursson1,2 | Irena Sailer2 | Andrey Latyshev2,3 | Kerstin Rabel4 | Ralf-Joachim Kohal4 | Duygu Karasan2

Abstract

Objective: To assess the survival, failure, and complication rates of veneered and monolithic all-ceramic implant-supported single crowns (SCs).

Methods: Literature search was conducted in Medline (PubMed), Embase, and Cochrane Central Register of Controlled Trials until September 2020 for randomized, prospective, and retrospective clinical trials with follow-up time of at least 1 year, evaluating the outcome of veneered and/or monolithic all-ceramic SCs supported by titanium dental implants. Survival and complication rates were analyzed using robust Poisson's regression models.

Results: Forty-nine RCTs and prospective studies reporting on 57 material cohorts were included. Meta-analysis of the included studies indicated an estimated 3-year survival rate of veneered-reinforced glass-ceramic implant-supported SCs of 97.6% (95% CI: 87.0%–99.6%). The estimated 3-year survival rates were 97.0% (95% CI: 94.0%–98.5%) for monolithic-reinforced glass-ceramic implant SCs, 96.9% (95% CI: 93.4%–98.6%) for veneered densely sintered alumina SCs, 96.3% (95% CI: 93.9%–97.7%) for veneered zirconia SCs, 96.1% (95% CI: 93.4%–97.8%) for monolithic zirconia SCs and only 36.3% (95% CI: 0.04%–87.7%) for resin-matrix-ceramic (RMC) SCs. With the exception of RMC SCs (p < 0.0001), the differences in survival rates between the materials did not reach statistical significance. Veneered SCs showed significantly (p = 0.017) higher annual ceramic chipping rates (1.65%) compared with monolithic SCs (0.39%). The location of the SCs, anterior vs. posterior, did not influence survival and chipping rates.

Conclusions: With the exception of RMC SCs, veneered and monolithic implant-supported ceramic SCs showed favorable short-term survival and complication rates. Significantly higher rates for ceramic chipping, however, were reported for veneered compared with monolithic ceramic SCs.

KEYWORDS
biological, complications, fixed dental prostheses, implant crown, meta-analysis, monolithic, success, survival, systematic review, technical, veneered, zirconia framework
1 | INTRODUCTION

Implant-supported single crowns (SC) are a valid treatment option for the replacement of missing teeth with 5-year survival rates of more than 90%, as reported in previous systematic reviews (Abou-Ayash et al., 2017; Jung et al., 2012; Larsson & Wennberg, 2014; Pjetursson et al., 2018; Rabel et al., 2018). These positive clinical results have resulted in the frequent use of implant-supported SCs as an alternative to a tooth-supported multiple-unit fixed dental prostheses, an approach in line with today's pursuit of tooth conserving procedures.

A more recent factor that could influence the outcomes of the implant-supported SCs is the material that the crowns are made out of. While in the past metal-ceramics was predominantly used for the fabrication of the crowns, nowadays, a myriad of all-ceramic or hybrid-ceramic materials are available. Metal-ceramic restorations have dominated the clinical applications and are well documented with high 5-year SC survival rates of 95.8% (Jung et al., 2012). A systematic review by Jung and co-workers (Jung et al., 2012) on the clinical outcomes of implant-supported SCs reported a high 5-year SC survival rate of 96.3%. From the included 46 studies, only 4 studies investigated all-ceramic SCs, corresponding to only 10% of the reviewed patients. The studies reported satisfactory clinical outcomes for metal-ceramic crowns and high mechanical stability.

The first introduced all-ceramic materials (i.e., feldspathic ceramic, pressed leucite, and alumina-reinforced glass-ceramics) could not compete with the mechanical stability of metal-ceramics in the high load bearing sites in the dental arch. Their indication was, therefore, limited to the esthetically high-demanding areas in the beginning. The improvements in digital dental technologies offered alternative pathways to the conventional manufacturing processes, which facilitated the use of larger range of ceramic materials namely high-strength oxide ceramic (zirconia [ZrO\textsubscript{2}] and alumina [Al\textsubscript{2}O\textsubscript{3}]), reinforced glass-ceramics (lithium disilicate [LSD] and zirconia-reinforced lithium silicate [LSi]), and resin-matrix-ceramics (RMC) (resin-based composites and polymer-infiltrated ceramic network [PICNi]) (Spitznagel et al., 2018). As the digital workflows get more efficient and effective (Mühlemann et al., 2018), the indications for the all-ceramic restorations were more and more widened.

High strength zirconia frameworks, veneered with ceramics for esthetic purposes (i.e., veneered zirconia), are a well-documented all-ceramic alternative to metal-ceramics for implant-supported restorations today (Pjetursson et al., 2018; Rabel et al., 2018). The systematic review by Pjetursson et al. (2018), comparing veneered zirconia and metal-ceramic implant-supported SCs, reported a 97.6% (95% confidence interval (CI): 94.3–99.0) and 98.3% (95% CI: 96.8–99.1) 5-year survival rates, respectively, for the two types of SCs. Both, the biological and the technical complication rates of the veneered zirconia and the metal-ceramic SCs were similar. However, fracture of the veneering layer was the predominant technical problem of both veneered types of restorations (Pjetursson et al., 2018).

Another systematic review compared the outcomes of oxide-ceramic and glass-ceramic implant-supported SCs (Rabel et al., 2018). The authors reported good overall estimated 5-year survival rates of the all-ceramic implant-supported SCs (93% (95% CI: 86.6–96.4%)), yet again, high rates of veneering ceramic chipping reaching 9.0% (95% CI: 5.4–14.8%) over a period of 5 years (Rabel et al., 2018).

In order to overcome the technical problems experienced with all types of veneered restorations, more recently, monolithic, that is, un-veneered, micro-veneered, or partially veneered, types of restorations were presented (Caramés et al., 2019; Cheng et al., 2019; Rammelsberg et al., 2020). However, a clear distinction between the definitions of monolithic, micro-veneered, and conventionally veneered designs is lacking. In the present systematic review, micro-veneered all-ceramic restorations were defined as minimally veneered (≤0.5 mm) solely in the non-functional areas, whereas monolithic restorations were considered without any ceramic layer. These monolithic types of restorations may offer two main advantages. Firstly, the increase in the efficiency of the laboratory procedures by enabling a faster fabrication of the restorations (Joda & Brägger, 2014, 2015, 2016). Secondly, improvement in clinical outcomes by reducing the number of ceramic fractures which persist as one of the predominant problems observed with veneered restorations (Pjetursson et al., 2018; Rabel et al., 2018). Still, one should keep in mind that the clinical importance of chipping may vary depending on the location and characteristics of the ceramic fractures.

Yet, systematic reviews analyzing the influence of the crown design (monolithic/ micro-veneered/ veneered) on the survival rates and the technical complication rates of implant-supported SCs were not able to indicate significant results due to lack of reports on monolithic and micro-veneered restorations (Pjetursson et al., 2018; Rabel et al., 2018). Hence, the clinical longevity of those restorations remained to be elucidated. In the meantime, a pronounced amount of short-term clinical studies on monolithic, micro-veneered, and veneered all-ceramic implant restorations has been published.

The aim of the present systematic review, therefore, was to analyses the survival, failure, and the complication rates of monolithic/micro-veneered, and conventionally veneered of all-ceramic implant-supported SCs.

2 | MATERIALS AND METHODS

2.1 | Study design

This systematic review was designed as an update of two previous systematic reviews (Pjetursson et al., 2018; Rabel et al., 2018).

The study protocol of this systematic review followed the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009). This report is in compliance with the appropriate EQUATOR (http://www.equator-network.org) guidelines. Furthermore, to improve searching databases for clinical questions, the PICO framework was applied (Schardt et al., 2007). PICO stands for patient/population (P), intervention (I), comparison (C), and outcome (O). For this systematic review, the “PICO” question was defined as follows:
Population: Partially edentulous patients who received implant-supported SCs in the anterior and posterior regions.

Intervention: Titanium dental implants restored with monolithic or micro-veneered all-ceramic SCs.

Comparison: Titanium dental implants restored with veneered all-ceramic SCs.

Outcome: Survival, failure, and complication rates of the restorations.

The focus question was "In partially edentulous patients do monolithic all-ceramic implant-supported SCs exhibit differences in survival, failure, and complication rates when compared to veneered all-ceramic implant-supported SCs?"

Ethical approval was not required for this systematic review.

2.2 Search strategy

As this systematic review was an update of previous reviews, the search strategies for the present review were adopted from the two respective previous systematic reviews (Pjetursson et al., 2018; Rabel et al., 2018). Two independent searches were conducted in three databases, MEDLINE via PubMed (http://www.ncbi.nlm.nih.gov/pubmed), EMBASE (https://www.embase.com), and the Cochrane Central Register of Controlled Trials (CENTRAL) (http://www.thecochranelibrary.com) by the authors of the corresponding reviews duplicating the same strategy. The search strategies are explained in detail in the previous publications (Pjetursson et al., 2018; Rabel et al., 2018). The electronic search dates are summarized in Figure 1.

2.3 Search terms

The search terms and the combinations can be seen in Figure 1. Some free-text terms were additionally tagged with an asterisk as truncation symbol to improve the search sensitivity.

The publications found through the searches were imported into a reference management software (EndNote X9, Thomson Reuter, New York, USA).

2.4 Eligibility criteria

The inclusion criteria for the clinical investigations were as follow:

1. Randomized controlled clinical trials (RCTs) or prospective clinical trials published in the English language.
2. At least 10 patients included in the study.
3. A follow-up time of at least 1 year after inserting the restoration.
4. Detailed information on the restoration material used.
5. Restoration type clearly described and data from SCs reported separately from other types of included restorations.
6. If there are multiple publications on the same patient cohort, only the publication with the longest follow-up time was included.
7. SCs, made of ceramic materials, monolithic or veneered, namely zirconia, glass-ceramics (lithium disilicate and leucite-reinforced glass-ceramics), and resin-matrix ceramics (RMC)
8. All brands, kinds of titanium dental implants
9. Sufficient reporting on the detailed clinical outcomes (survival, technical) of SCs.

The clinical studies with following characteristics were excluded.

1. Not meeting all inclusion criteria
2. Retrospective studies, retrospective case series, technical reports, and case reports
3. Studies that pool outcomes of different restoration types and materials
4. Studies reporting on metal-ceramic, metal-resin, polyether ether ketone (PEEK) implant restorations
5. Studies reporting on ceramic implants
6. Poor reporting on drop-outs and number of patients at follow-up.
2.5 | Selection of studies

The records of the two electronic searches were imported to the reference management software, and subsequently, the duplicates were removed. Two reviewers (DK and AL) screened independently the titles, thereafter the abstracts. Disagreements were resolved by discussion, and the articles were then obtained in full text for full-text screening. In addition, the full texts of the included studies from the Rabel et al., 2018 and Pjetursson et al., 2018 systematic reviews were screened for their eligibility by the reviewers DK and BEP. Furthermore, the excluded studies list and the complete reference lists of those systematic reviews were screened. Full-text articles were evaluated by two reviewers (DK and BEP) independently, and the selection of the eligible studies was done based on the inclusion/exclusion criteria. The included studies were double checked in terms of study centers, ethical committee approval number, and full author lists by the third reviewer (AL) in order to detect multiple publications that might be reporting on the same patient cohort.

2.6 | Data extraction

Two reviewers (DK and BEP) independently extracted the data of the included articles. Authors were calibrated prior to the data extraction in order to establish consistency in the process.

The data extraction tables were created based on the focus question of the systematic review and included both qualitative and quantitative data. The study characteristics as author, year, study setting, study design, mean follow-up time, total exposure time, total number of included patients, number of patients at the end of the follow-up period, number of patients dropped-out, number of implants, abutments, and SCs at the baseline and at the end of the follow-up period, the number of drop-outs were recorded. The restoration characteristics and the number of SCs based on retention type (screw retention/cement) and region (anterior/posterior) were extracted. The material characteristics namely the restoration design (veneered/micro-veneered/monolithic) and abutment, framework, veneering ceramic materials/brands/fabrication methods were recorded.

2.7 | Outcome Measures

Crown survival was defined as the SCs remaining in situ, with or without modification, for the entire observation period. The failure therefore in the present systematic review was considered when the SC was reported to be lost, removed, and/or remade. Accordingly, the overall failure rate of SCs includes the number of SCs that were lost and/or needed to be remade due to reasons such as implant loss, ceramic fracture, repeated loss of retention, repeated screw loosening, esthetic, and biological complications. The failures that happened due to ceramic fractures (overall failure rates due to ceramic fracture) were further extracted and then subcategorized as “failure due to core fractures,” “failure due to catastrophic veneer fractures,” and “failure due to abutment fractures” when the data was available. By doing this, the chippings that are repairable and/or polishable were considered as a technical complication and the data were extracted accordingly, as ceramic chippings. Screw loosening and retention loss were other technical complications. Screw-loosening data were extracted when the loss of torque of the implant abutment screw and/or prosthetic screw reported. Meanwhile, loss of retention was considered in the present systematic review as the technical complications that was due to the cement layer problems either with the intraoral or the extraoral cementation.

Biological outcomes namely significant bone loss as reported >2 mm and soft tissue complications such as peri-implantitis, peri-implant mucositis, gingival hyperplasia, fistula, and mucosal recession were extracted.

Following the independent data extraction, the extraction sheets were reviewed for any disagreement, and revision was repeated until all disagreements were resolved. The authors of the articles that were lacking some information yet as judged to be noteworthy were contacted by e-mail or telephone for additional data.

2.8 | Quality assessment of the included studies

DK and AL made the quality assessment of the included studies. The quality assessment for RCTs and non-randomized studies were performed with the Newcastle–Ottawa Scale (NOS). According to the NOS, studies with scores <5 were considered as low quality, whereas scores with 5–7 were considered as moderate quality and >7 as high quality.

2.9 | Statistics

In the present systematic review, failure, and complication rates were calculated by dividing the number of events (failures or complications) in the numerator by the total SC exposure time in the denominator.

The numerator could usually be extracted directly from the publication. The total exposure time was calculated by taking the sum of:

1. Exposure time of SCs that could be followed for the whole observation time.
2. Exposure time up to a failure of the SCs that were lost during the observation time.
3. Exposure time up to the end of observation time for SCs in patients that were lost to follow-up due to reasons such as death, change in address, refusal to participate, non-response, chronic illnesses, missed appointments, and work commitments.

For each study, event rates for the SCs were calculated by dividing the total number of events by the total SC exposure time in years. For further analysis, the total number of events was considered to
be Poisson distributed for a given sum of SC exposure and Poisson regression were used with a logarithmic link-function and total exposure time per study as an offset variable (Kirkwood & Sterne 2003a). To assess heterogeneity of the study-specific event rates, the Spearman goodness-of-fit statistics and associated p-value were calculated. To reduce the effect of heterogeneity, robust standard errors were calculated to obtain 95% confidence intervals of the summary estimates of the event rates (White 1980, 1982).

The three-year survival proportions were calculated via the relationship between event rate and survival function S, $S(T) = \exp(-T \cdot \text{event rate})$, by assuming constant event rates (Kirkwood & Sterne 2003a). The 95% confidence intervals for the survival proportions were calculated by using the 95% confidence limits of the event rates. Multivariable Poisson regression was used to investigate formally whether event rates varied by material utilized, the design of the restoration (monolithic/veneered), and the position of the crowns in the dental arch (anterior/posterior). All analyses were performed using Stata®, version 15.0 (Stata Corp., College Station, TX, USA).

3 | RESULTS

3.1 | Screening process

The searches resulted in a total of 1633 records (Figure 2). After the duplicate removal, 1194 references were screened by title. Out of these, 243 studies were further screened by abstract, and 163 excluded at the abstract level. Eighty full-text articles were assessed for eligibility and subsequently 25 studies were identified as eligible for inclusion based on the electronic search. Additional 44 full-text articles, included in the systematic reviews by Rabel et al. (2018) and Pjetursson et al. (2018), were screened based on the present systematic review’s eligibility criteria. Seven additional studies were identified for full-text assessment after the hand search on the excluded study tables of the aforementioned systematic reviews. Accordingly, from the 51 evaluated full-text articles, 24 were found to be eligible for inclusion (Figure 2). These articles were added to the 25 previously included full-text articles. Hence, a total number of 49 studies were included for the qualitative and quantitative analysis in this review (Figure 2).

The detailed reasons for exclusion of the full-text articles were given in a supplementary table (Table S1).

3.2 | Included studies

The included 49 studies were reporting on 57 material cohorts (Table 1). Four of the included studies (Heierle et al., 2019; Kraus et al., 2019; Paolantoni et al., 2016; Wittneben et al., 2020) reported on SCs made of two different material combinations, and one study included patients restored with implant-supported SCs made out of five different material combinations (Rammelsberg et al., 2020). Twenty-four of the included cohorts reported on veneered zirconia abutments or on zirconia SCs supported by titanium or ceramic abutments ($n=969$), eight cohorts on monolithic or micro-veneered zirconia implant-supported SCs ($n=394$), five cohorts on veneered lithium disilicate or leucite-reinforced glass-ceramic implant-supported SCs ($n=110$), 14 cohorts on monolithic or micro-veneered lithium disilicate or leucite-reinforced glass-ceramic implant-supported SCs ($n=484$), four cohorts on veneered densely sintered alumina implant-supported SCs ($n=128$), and two on RMC implant-supported SCs ($n=75$) (Table 1). Twenty of the included studies were RCTs (Table 2; Table S2) comparing directly veneered zirconia customized and stock...
zirconia abutments with cemented ceramic SCs (Wittneben et al., 2020), esthetic outcomes for screw-retained SCs with or without using provisional crowns for tissue conditioning (Furze et al., 2019), metal-ceramic and resin-matrix ceramic SCs (Agustín-Panadero et al., 2020), monolithic zirconia and porcelain-fused-to-metal (PFM) implant-supported SCs (Mühlemann et al., 2020), cemented and screw-retained SCs on customized zirconia abutments (Heierle et al., 2019), 11 mm implants used in combination with sinus floor elevation and 8 mm implants without bone augmentation (Güljé et al., 2019b), screw-retained monolithic zirconia and cemented PFM SCs (Weigl, Saarepera, et al., 2019), submucosal veneered zirconia abutments and non-veneered zirconia abutments (Laass et al., 2019), immediate, non-detached glass-ceramic individualized abutments and dis-/reconnections (Erhan Çömlekoğlu et al., 2018), monolithic zirconia SCs and short-span FDPs (Cheng et al., 2019), cemented and screw-retained zirconia-based implant-supported SCs (Kraus et al., 2019), tooth- and implant-supported veneered zirconia single SCs (Cantner et al., 2019), cemented and screw-retained CAD/CAM zirconia abutments for esthetically located implant-supported SCs (Amorfini et al., 2018), digital and analog procedures for manufacturing of implant-supported SCs (Mangano & Veronesi, 2018), customized zirconia and titanium abutments (Bösch et al., 2018), immediately loaded one- and two-piece implants (Bomicke et al., 2017), two-piece and one-piece zirconia abutments (Paolantoni et al., 2016), bonding of a RMC restorative material to zirconia stock abutments and zirconia customized abutments (Schepe et al., 2016), zirconia and titanium abutments (Zembic et al., 2013), and zirconia and metal-ceramic implant-supported SCs (Hosseini et al., 2011) (Table S2). The remaining 29 studies were prospective cohort studies (Andersson et al., 1998; Cantner et al., 2019; Canullo, 2007; Cheng et al., 2019; Cooper et al., 2016; Fener et al., 2016; Gierthmuehlen et al., 2020; Guarnieri et al., 2015; Güljé et al., 2019a; Guncu et al., 2016; Henriksson & Jent, 2003; Hosseini et al., 2011; Hosseini et al., 2013; Joda et al., 2017; Kolgeci et al., 2014; Koller et al., 2020; Linkevicius et al., 2018; Lops et al., 2013; Ma et al., 2019; Meijendert et al., 2020; Noothdurft et al., 2014; Ormianer & Schilder, 2006; Peron & Romanos, 2020; Pieri et al., 2013; Pol et al., 2020; Rammelsberg et al., 2020; Teichmann et al., 2017; Vandeweghe et al., 2012; Vanlioglu et al., 2012; Weigl, Trimpou, et al., 2019; Zembic et al., 2013; Zembic et al., 2015). As none of the included RCTs addressed the focused question of the present systematic review, they were addressed as prospective studies and analyzed as such.

The studies reporting on veneered zirconia implant-supported SCs were published between 2011 and 2020 (median 2018), for monolithic zirconia implant-supported SCs the studies were published between 2018 and 2020 (median 2019), for veneered-reinforced glass-ceramic implant-supported SCs were published between 2015 and 2019 (median 2019), for monolithic-reinforced glass-ceramic implant-supported SCs were published between 2007 and 2020 (median 2017.5), for densely sintered alumina implant-supported SCs were published between 1998 and 2016 (median 2004.5) and the two studies reporting on RMC implant-supported SCs were published in 2016 and 2020.

The average age of the patients included in the different studies ranged from 27.9 to 62.5 years. The proportion of patients who could not be followed for the entire study period was available for all included studies and ranged from 0% to 41% (median 4%), and only two of the included studies had a drop-out proportion of more than 25% (Table 2).

From the 969 included veneered zirconia implant-supported SCs, 55.4% were cement-retained and 44.6% screw-retained. The respected percentages of the 394 included monolithic zirconia implant-supported SCs were 27% for cemented and 73% for screw-retained. From the 110 included veneered-reinforced glass-ceramic implant-supported SCs, 70.5% were cemented and 29.5% were screw-retained, from the 484 included monolithic-reinforced glass-ceramic implant-supported SCs, 61.5% were cemented and 38.5% were screw-retained, from the 128 included densely sintered alumina implant-supported SCs, 90.1% were cemented and 9.9% were screw-retained, and all the included RMC SCs were cemented (Table 2).

Evaluating the overall distribution of the implant-supported SCs in the oral cavity, 37% of the included SCs were located in the anterior area and 63% in the posterior area. For the veneered zirconia SCs, this distribution was 34% anterior and 66% posterior, for monolithic zirconia SCs, it was 22% anterior and 78% posterior, for veneered-reinforced glass-ceramic SCs, it was 62% anterior and 38% posterior, and for monolithic-reinforced glass-ceramic SCs, it was 49% anterior and 51% posterior. Finally, for densely sintered alumina implant-supported SCs, the distribution of the restorations was 83% anterior and 17% posterior, and all of the included RMC SCs were inserted in the posterior area (Table 2).

Thirty-four of the included studies were conducted in an institutional environment, such as university or specialized implant clinics, 10 in private practice setting, and the remaining five studies were a cooperation between universities and private practices (Table 2).

3.3 Survival and failure rates

Twenty-three studies reporting on 952 SCs with a mean follow-up time of 3.8 years provided data on the survival of veneered zirconia implant-supported SCs, 8 studies including 394 SCs with a mean follow-up time of 1.6 years provided data on monolithic zirconia implant-supported SCs, 4 studies reporting on 93 SCs with a mean follow-up time of 8.1 years provided data on veneered-reinforced glass-ceramic implant-supported SCs, 13 studies including 452 SCs with a mean follow-up time of 2.6 years provided data on monolithic-reinforced glass-ceramic implant-supported SCs, 4 studies reporting on 128 crowns with a mean follow-up time of 3.7 years provided data on densely sintered alumina implant-supported SCs, and 2 studies including 75 crowns with a mean follow-up time of 1.8 years provided data on RMC SCs (Table 3).

The meta-analysis revealed an estimated annual failure rate of 0.80% (95% CI: 0.14%–4.64%) (Figure 3), translating into a 3-year survival rate of 97.6% (95% CI: 87.0%–99.6%) (Table 3) for
Study	Author Year	Veneered Zr SC	Abutment Material	Ceramic-core Material	Brand	Manufacturing method	Veneering Material	Brand	
	Meijndert et al. 2020	v	Ab & f Zr	nr	nr	Fluorapatite GC	IPS e.max Ceram, Ivoclar		
	Rammelsberg et al. Group A 2020	v	f Zr	nr	nr	nr	nr		
	Wittneben et al. Group B 2020	v	Ab Zr	CARES, Straumann	CAD/CAM	Fluorapatite GC	IPS e.max Ceram, Ivoclar		
	Cantner et al. 2019	v	f Zr	IPS e.max ZirCAD, Ivoclar	CAD/CAM	LdS	IPS e.max Press, Ivoclar		
	Furze et al. 2019	v	Ab Zr	CARES, Straumann	CAD/CAM	nr	nr		
	Guljé et al. 2019a	v	f Zr	nr	nr	nr	nr		
	Guljé et al. 2019b	v	f Zr	nr	nr	nr	nr		
	Heierle et al. Group A 2019	v	Ab Zr	CARES, Straumann	CAD/CAM	nr	nr		
	Ma et al. 2019	v	Ab Zr	CER-ZR, Southern Implants	nr	GC	Zirox, Wieland Dental		
	Kraus et al. Group A 2019	v	Ab Zr	Atlantis, Dentsply Sirona	centCAD/CAM	feldspathic	Creation ZI-F, Willi Geller		
	Weigl et al. 2019b	v	f Zr	n.r.	CAD/CAM	GC	nr		
	Amorfini et al. 2018	v	Ab & f Zr	CARES, Straumann	centCAD/CAM	nr	nr		
	Bösch et al. 2018	v	f Zr	CARES, Straumann	centCAD/CAM	GC	nr		
	Bömcke et al. 2017	v	f Zr	Procera, Nobel	centCAD/CAM	silicate ceramic	NobelRondo Zirconia, Nobel		
	Güncü et al. 2016	v	f Zr	Lava, 3 M ESPE	CAD/CAM	leucite-reinforced feldspathic	VM9 (VITA Zahnfabrik)		
	Paolantoni Group B 2016	v	f Zr	ART Anchorage, Thommen	nr	nr	nr		
	Kolgeci et al. 2014	v	f Zr	Procera, Nobel	centCAD/CAM	nr	NobelRondo & Creation & Cerabien		
Processing Method	Abutment Material	Brand	Manufacturing Method	Retention Screw-retained [s] Cemented (c)	Cement Type	Cement Brand	Material Brand	Implant Brand	
-------------------	-------------------	-------	----------------------	--	-------------	--------------	----------------	----------------	
nr	Zr	nr	nr	s & c	GIC	Fuji Plus, GC Europe	Ti	Straumann	
nr	Zr & Ti & LDS & Au	nr	Stock & customized	nr	nr	Ti	Straumann & Nobel Biocare		
hand-layered	Zr	CARES, Straumann	centCAD/CAM	s	na	na	Ti	Straumann	
press	Zr	IPS e.max ZirCAD, Ivoclar	CAD/CAM	s & c	Resin & GIC	Multilink Implant & Fuji Plus & Ketac Cem	Ti	Camlog	
nr	Zr	CARES, Straumann	centCAD/CAM	s	na	na	Ti	Straumann	
nr	Ti	Atlantis, Dentsply Sirona	centCAD/CAM	c	nr	nr	Ti	Astra Tech	
nr	Ti	Atlantis, Dentsply Sirona	centCAD/CAM	c	nr	nr	Ti	Astra Tech	
Hand-layered	Zr	CARES, Straumann	centCAD/CAM	s	na	na	Ti	Straumann	
	Zr	CER-ZR, Southern Implants	CAD/CAM	s	na	na	Ti	Southern Implants	
nr	Zr	Atlantis, Dentsply Sirona	centCAD/CAM	s	na	na	Ti	Astra Tech	
nr	Zr	Ankylos CERCON Balance	CAD/CAM	c	Provisional RelyX Temp NE, 3 M ESPE	Ti	Ankylos		
nr	Zr & Ti	CARES & synOcta, Straumann	centCAD/CAM & stock	s & c	GIC	RelyX Luting, 3 M ESPE	Ti	Straumann	
nr	Zr & Ti	CARES & synOcta, Straumann	centCAD/CAM & stock	s	na	na	Ti	Straumann	
Hand-layered	Ti	Nobel Replace, Nobel	Stock	c	GIC	Ketac Cem, 3 M ESPE	Ti	Nobel Biocare	
Hand-layered	Ti	TiDesign, Astra Tech AB	nr	c	Resin-modGIC	Fuji Plus, GC Europe	Ti	Astra Tech®	
nr	Zr	ART Anchorage, Thommen	CAD/CAM	s	nr	nr	Ti	Thommen Medical	
nr	Zr & Ti	nr	nr	s & c	Resin	Panavia F, Kuraray Noritake	Ti	Nobel Biocare	
Study	Author	Year	Restoration	Abutment (Ab)	Ceramic-core framework (f)	Brand	Manufacturing method	Veneering Material	Brand
-------	--------	------	-------------	--------------	----------------------------	--------	----------------------	-------------------	-------
	Nothdurft et al.	2014	micro- veneered (v)	f Zr	CERCON base, DeguDent	CAD/CAM	Silicate ceramic	Ceramkiss, Degudent	
	Hosseini et al.	2013	micro- veneered (v)	f Zr	Procera, Nobel	CAD/CAM	Leucite GC & fluorapatite & IPS Empress 2 & IPS e.max Ceram		
	Lops et al.	2013	micro- veneered (v)	f Zr	Lava, 3 M ESPE	CAD/CAM	nr	nr	
	Pieri et al.	2013	micro- veneered (v)	f Zr	nr	CAD/CAM	nr	nr	
	Zembic et al.	2013	micro- veneered (v)	Ab & f Zr	Procera, Nobel	centCAD/CAM	nr	nr	
	Vandeweghe et al.	2012	micro- veneered (v)	Ab Zr	CER-ZR45, Southern Implants	CAD/CAM	nr	nr	
	Hosseini et al.	2011	micro- veneered (v)	f Zr	Procera, Nobel & KaVo, Kavo	CAD/CAM	feldspathic & fluorapatite GC	HeraCeram & IPS e.max Ceram	

Monolithic Zr SCs

Study	Author	Year	Restoration	Abutment (Ab)	Ceramic-core framework (f)	Brand	Manufacturing method	Veneering Material	Brand
	Mühlemann et al.	2020	micro- veneered (v)	f Zr	CARES, Straumann	centCAD/CAM	na	na	
	Rammelsberg et al. Group B	2020	micro- veneered (v)	f Zr	nr	CAD/CAM	nr	nr	
	Rammelsberg et al. Group C	2020	micro- veneered (v)	f Zr	nr	CAD/CAM	na	na	
	Cheng et al.	2019	micro- veneered (v)	f Zr	Ceramil Zi & Zolid, Amann Girrbach	CAD/CAM	nr	nr	
	Koenig et al.	2019	micro- veneered (v)	f Zr	Lava Plus, 3 M ESPE	CAD/CAM	na	na	
	Pol et al.	2019	micro- veneered (v)	f Zr	Procera, Nobel	centCAD/CAM	na	na	
	Weigl et al.	2019	micro- veneered (v)	f Zr	nr	CAD/CAM	na	na	
	Mangano & Veronesi	2018	micro- veneered (v)	f Zr	Katana, Kuraray Noritake	CAD/CAM	na	na	

Veneered LiSiZ and Leucite SCs
Processing method	Abutment Material	Brand	Manufacturing Method	Retention Screw-retained(s)	Cement type	Cement Brand	Material	Implant Brand	
nr	Zr	CERCON, DENTSPLY	Stock & CAD/CAM	c	Resin-modGIC	GC FujiCEM	Ti	XiVE (Dentsply Friadent)	
nr	Zr & Ti	nr	nr	c	Resin	Panavia, Kuraray Noritake	Ti	Astra Tech, Dentsply Implants	
nr	Zr	ZirDesign, Astra	Stock	c	nr	TempBond Clear, Kerr Dental	Ti	Astra Tech, Dentsply Implants	
nr	Zr & Ti	nr	Stock & customized	c	nr	Resin & Resin-modGIC	Panavia & RelyX Unicem & Ketac Cem	Ti	Branemark RP, Nobel
nr	Zr	Procera, Nobel	centCAD/CAM	s & c	Resin & Resin-modGIC	Panavia & RelyX Unicem & Ketac Cem	Ti	Astra Tech (Dentsply Implants)	
nr	Zr	CER-ZR45, Southern Implants	CAD/CAM	s	na	na	Ti	nr	
nr	Zr	ZirDesign, Astra	Stock & CAD/CAM	c	Resin & ZP	Panavia & DeTrey Zinc	Ti	Astra Tech (Dentsply Implants)	
na	Ti	Variobase, Straumann	Stock	s	Resin	Multilink Hybrid Abutment, Ivoclar	Roxolid	Straumann	
na	Zr & Ti & LDS & Au	nr	nr	nr	nr	Ti	Straumann & Nobel Biocare		
na	Zr & Ti & LDS & Au	nr	nr	nr	nr	Ti	Straumann & Nobel Biocare		
nr	Ti	synOcta & Variobase, Straumann	Stock	s & c	Resin	Premier Implant & RelyX Unicem	Ti	Straumann	
na	Ti	Medentika	nr	s & c	Resin	RelyX Ultimate & Multilink Hybrid	Ti	Nobel Biocare & Straumann	
na	Ti & Zr	Procera Hybrid, Nobel	nr	s	nr	nr	Ti	Nobel Biocare	
na	Ti	Titanium base, Ankylos	Stock	s	ZP	RelyX Temp NE, 3 M Espe	Ti	Ankylos (Dentsply Implants)	
na	Zr	Leone	Stock	c	nr	nr	Ti	Exacone	

(Continues)
Study	Author	Year	Restoration veneered (v)	Ceramic-core Abutment (Ab) framework (f)	Brand	Manufacturing method	Veneering Material	Brand		
			micro-v (micro-v) monolithic (m)	Material	IPS e.max Press, Ivoclar	Press	nr	nr	nr	
	Heierle et al. Group B	2019	v	f	LdS	IPS e.max Press, Ivoclar	Press	nr	nr	nr
	Laass et al.	2019	v	f	LdS	IPS e.max Press, Ivoclar	Press	nr	nr	nr
	Kraus et al. Group B	2019	v	f	LdS	E.max, Ivoclar	nr	Fluorapatite GC	IPS e.max Ceram, Ivoclar	
	Teichmann et al.	2017	v	f	LdS	IPS e.max Press, Ivoclar	Press	Fluorapatite GC	IPS Eris, Ivoclar	
	Zembic et al.	2015	v	f	Leucite	Empress I, Ivoclar	Press	nr	nr	nr

Monolithic LiSi₂ and Leucite SCs

Study	Author	Year	Restoration veneered (v)	Ceramic-core Abutment (Ab) framework (f)	Brand	Manufacturing method	Veneering Material	Brand		
	Gierthmuehlen et al.	2020	m	f	LdS	IPS e.max Press, Ivoclar	Press	na	na	na
	Koller et al.	2020	m	f	LdS	IPS e.max CAD, Ivoclar	CAD/CAM	na	na	na
	Rammelsberg et al. Group D	2020	micro-v	f	LdS	nr	nr	na	na	na
	Rammelsberg et al. Group E	2020	m	f	LdS	nr	nr	na	na	na
	Wittneben et al. Group A	2020	micro-v	f	Fluorapatite	IPS e.max ZirPress, Ivoclar	Press	Fluorapatite GC	IPS e.max Ceram, Ivoclar	
	Cömlekoglu et al.	2018	m	f	Leucite	Empress CAD, Ivoclar	CAD/CAM	na	na	na
	Linkevicius et al.	2018	m	f	LdS	IPS e.max, Ivoclar	CAD/CAM	na	na	na
	Joda et al.	2017	m	f	LdS	IPS e.max CAD, Ivoclar	centCAD/CAM	na	na	na
	Cooper et al.	2016	m & micro-v	f	LdS	E.max, Ivoclar	Press	nr	nr	nr
	Paolantoni et al. Group A	2016	m	f	LdS	Empress II, Ivoclar	Press	na	na	na
	Peron & Romanos	2016	m	f	LdS	nr	nr	na	na	na
	Guarnieri	2015	m	f	Leucite	IPS Empress, Ivoclar	Press	na	na	na
	Vanlioglu et al.	2012	m	f	Leucite	Empress II, Ivoclar	Press	na	na	na
	Canullo et al.	2007	m	f	LiSi₂	Generic Pentrol	Press	na	na	na
Processing method	Abutment Material	Brand	Manufacturing Method	Retention Screw-retained (s) Cemented (c)	Cement type	Cement Brand	Material	Implant Brand		
-------------------	-------------------	-------	----------------------	--	-------------	-------------	----------	----------------		
nr	Zr	CARES, Straumann	centCAD/CAM	c	Resin	Rely Unicem, 3 M Espe	Ti	Straumann		
nr	Zr	Atlantis, Dentsply Sirona	centCAD/CAM	c	Resin	Panavia 21, Kuraray Noritake	Ti	Astra Tech (Dentsply Implants)		
nr	Zr	Atlantis, Dentsply Sirona	centCAD/CAM	c	Resin	Panavia 21, Kuraray Noritake	Ti	Astra Tech (Dentsply Implants)		
hand-layered	Al2O3 & Ti & Zr	Alumina & Titanium, Nobel	stock	c	GIC & Resin	Ketac-Cem & Variolink II	Ti	Nobel Biocare & Steri-Oss		
nr	Zr	Metoxit, Thayngen	stock	c	Resin	Panavia TC, Kuraray Noritake	Ti	Nobel Biocare		
na	Ti	nr	nr	s	Resin	MultiLink Implant, Ivoclar	Ti	Nobel Biocare & Xive (Dentsply Sirona)		
na	Ti	Ziterion	nr	s	Resin	MultiLink, Ivoclar	Ti & Y-TZP	Ziterion		
na	Zr & Ti & LDS & Au	nr	nr	nr	nr	nr	Ti	Straumann & Nobel Biocare		
na	Zr & Ti & LDS & Au	nr	nr	nr	nr	nr	Ti	Straumann & Nobel Biocare		
hand-layered	Zr	IPS e.max, Ivoclar	stock	s	nr	nr	Ti	Straumann		
na	Ti & LiSi2	E.max CAD, Ivoclar	CAD/CAM	c	Resin	Variolink II, Ivoclar	Ti	Camlog		
na	Ti	nr	nr	s	Resin	LinkAce.GC	Ti	MIS Implant		
na	Ti	Variobase, Straumann	Stock	s	Resin	MultiLink Implant, Ivoclar	Ti	Straumann		
nr	Zr	Atlantis, Dentsply	centCAD/CAM	c	Resin	RelyX Unicem, 3 M ESPE	Ti	Astra Tech (Dentsply Sirona) & Nobel Biocare & BIOMET 3i		
na	Zr	ART, Thommen	nr	c	Resin	Relyx Unicem 2, 3 M ESPE	Ti	Thommen Medical		
na	Ti	nr	nr	s & c	nr	nr	Ti	Zimmer Dental		
na	Zr	nr	nr	nr	nr	nr	Ti	BioHorizons		
nr	Zr	Zirkohznzahn, Steger	nr	c	Resin	Variolink II, Ivoclar	Ti	Astra Tech, Dentsply Sirona & Straumann		
nr	Ti & Zr	ProUnic, Impladent	nr	c	nr	Nimetic-Cem, 3 M ESPE	Ti	TSA implants, Impladent		
bi-layered Al₂O₃, Al₂O₃ Procera, Nobel centCAD/CAM nr nr

Ormianer et al. 2006 v f Al₂O₃ PureForm, Zimmer Dental stock & customized nr Vitadur Alpha, Vident

Henriksson & Jemt 2003 v Ab & f Al₂O₃ Proceras Nobel centCAD/CAM nr nr

Andersson et al. 1998 v f Al₂O₃ CeraOne, Nobel nr nr nr

RNC Augustin-Pandero et al. 2020 m f RMC Lava Ultimate, 3 M ESPE CAD/CAM na na

Schepke et al. 2016 m f RMC Lava Ultimate, 3 M ESPE CAD/CAM na na

Abbreviations: Al₂O₃, alumina; Au, gold; GC, glass-ceramics; GIC, glass-ionomer cement; LdS, lithium disilicate; nr, not reported; na, not applicable; RMC, resinmatrix ceramic; Ti, titanium; Zr, zirconia; ZP, zinc–phosphate cement.

veneered-reinforced glass-ceramic implant-supported SCs, annual failure rate of 1.02% (95% CI: 0.51%–2.05%) (Figure 4) and 3-year survival rate of 97.0% (95% CI: 94.0%–98.5%) for monolithic-reinforced glass-ceramic implant-supported SCs, annual failure rate of 1.05% (95% CI: 0.49%–2.29%) (Figure 5) and 3-year survival rate of 96.9% (95% CI: 93.4%–98.6%) for densely sintered alumina implant-supported SCs, annual failure rate of 1.27% (95% CI: 0.77%–2.10%) (Figure 6) and 3-year survival rate of 96.3% (95% CI: 93.9%–97.7%) for veneered zirconia implant-supported SCs, annual failure rate of 1.31% (95% CI: 0.76%–2.27%) (Figure 7) and 3-year survival rate of 96.1% (95% CI: 93.4%–97.8%) for monolithic zirconia implant-supported SCs, and annual failure rate of 33.8% (95% CI: 4.36%–261.6%) (Figure 8) and 3-year survival rate of 36.3% (95% CI: 0.04%–87.7%) for RMC implant-supported SCs (Table 3). Investigating formally the relative failure rates of different types of implant-supported SCs, when the monolithic zirconia SCs were taken as reference, there was no statistically significant difference between the SC materials with the exception of the RMC SCs with an annual failure rate of 33.8% (Table 4).

Investigating the number of implant-supported SCs that failed due to ceramic fractures such as catastrophic fracture of the veneering material, fracture of the core or fracture of the ceramic abutment, and the lowest fracture rate was reported for densely sintered alumina implant-supported SCs. None of the 128 included SCs were lost due to fractures over an average observation period of 3.7 years. The annual fracture rate for monolithic zirconia SCs was 0.58%, for monolithic-reinforced glass-ceramic SCs was 0.60%, for veneered-reinforced glass-ceramic SCs was 0.62%, and for veneered zirconia SCs was 0.98%. RMC SCs, however, showed statistically significantly higher (p < 0.0001) annual fracture rate or 6.08% (Table 5).

Meta-analysis, comparing the overall failure rates and fracture rates of monolithic and veneered implant-supported SCs (Table 6), monolithic and veneered zirconia implant-supported SCs (Table 7), monolithic and veneered-reinforced glass-ceramic implant-supported SCs (Table 8), veneered zirconia and veneered-reinforced glass-ceramic implant-supported SCs (Table 9), and monolithic zirconia and monolithic-reinforced glass-ceramic implant-supported SCs (Table 10), did not reveal any statistical significant differences between the materials compared. Furthermore, the overall failure rates and number of failures due to ceramic fractures were analyzed in relation to the position of the implant-supported SCs in the mouth (anterior vs. posterior) for monolithic and veneered zirconia ceramic SCs and for monolithic and veneered-reinforced glass-ceramic implant-supported SCs (Table 11). With the exception of monolithic-reinforced glass-ceramic reporting no failure due to ceramic fractures in the posterior area, the location of the SCs in the dental arch did not significantly influence the failure or fracture rates for any of the crown materials evaluated (Table 11). Meta-analysis evaluating the number of SCs that failed due to fracture of the core material concluded with low annual failure rates ranging from 0% to 0.25% with the exception of RMC with an annual failure rate of 6.08% (Table 12). The same applied for SCs that were lost due to fracture of implant abutment with an annual failure rate ranging between 0% and 0.5% (Table 12).
3.4 | Overall complication rate

Twenty-six of the included studies, reporting on 888 implant-supported SCs, evaluated the total number of complications or the number of restorations free of all complications. The overall annual complication rate for the 888 SCs was 4.2%, ranging from 1.7% to 15.5% (Table 12). The annual complication rate of 1.7% was reported for monolithic-reinforced glass-ceramic SCs, 2.6% for veneered-reinforced glass-ceramics SCs, 3.6% for monolithic zirconia SCs, 4.5% for veneered zirconia SCs, and 14.1% for densely sintered alumina SCs. The highest annual complication rate (15.5%) was reported for RMC implant-supported SCs (Table 12). The annual complication rate of 1.7% was reported for monolithic-reinforced glass-ceramic SCs, 2.6% for veneered-reinforced glass-ceramics SCs, 3.6% for monolithic zirconia SCs, 4.5% for veneered zirconia SCs, and 14.1% for densely sintered alumina SCs. The highest annual complication rate (15.5%) was reported for RMC implant-supported SCs (Table 12). Meta-analysis comparing the overall complication rate of monolithic and veneered-reinforced glass-ceramic SCs and monolithic and veneered zirconia ceramic SCs did not reveal any statistically significant difference (Tables 6-10). However, the overall annual complication rate of 3.9% for the veneered SCs was tendentially higher than the annual complication rate of 1.8% for monolithic SCs (p = 0.061) (Table 6).

3.5 | Technical complications

Forty-five studies, reporting on 1725 implant-supported SCs, analyzed the incidence of ceramic chipping of the ceramic surface. The estimated average annual chipping rate was 1.25%, ranging from 0% to 1.82%. No surface chippings were reported for RMC SCs, but they showed the annual core fracture rate of 5.90% (Table 12). Veneered SCs generally showed higher annual ceramic chipping rates than monolithic SCs (Tables 6-8), and meta-analysis formally comparing the annual chipping rates for veneered SCs (1.65%), and monolithic SCs (0.39%) concluded a statistically significant difference (p = 0.017) between the two crown designs (Table 6). The location of the implant-supported SC in the dental arch, anterior vs. posterior, did not significantly influence the annual chipping rate (Table 11).

Thirty-two studies with 1153 implant-supported SCs reported an annual rate of 0.44% for loosening of the abutment or prosthetic screws (Table 12). The highest screw-loosening rate (2.25%) was reported for monolithic zirconia SCs. The difference between the screw-loosening rates of monolithic zirconia SCs and all the other SCs types reached statistically significant difference (p < 0.02) (Tables 7, 10, 12).

Twenty-five studies with 829 cemented implant-supported SCs reported an annual complication rate of 1.97% for loss of retention (Table 12). The highest annual rate of retention loss (28.19%) was reported for RMC SCs. This problem was mainly related to one study (Schepke et al., 2016), in which majority of the resin-matrix ceramic SCs were remade out of different restorative material due to cementation failures. The second-highest rate of loss of retention, 4.44%, was reported for monolithic zirconia implant-supported SCs. This result was also related to one study...
Study	Author	Year	Design	Setting	Patient	Veneered Zr SCs			
					Initial (n)	End of follow-up (n)	Drop-out (n)	Drop-out (%)	Mean age (y)
					60	50	10	17	36.9
					404	nr	nr	23	57.8
					20	20	0	0	nr
					118	105	13	11	nr
					19	19	0	0	53.4
					38	36	2	5	49
					21	21	0	0	57.3
					34	27	7	21	nr
					27	16	9	33	47.1
					21	21	0	0	44
					40	30	10	25	48
					29	29	0	0	43.7
					38	35	3	8	52.9
					24	24	0	0	44.1
					65	65	0	0	53
					137	127	10	7	62.5
					24	23	1	4	nr
					59	57	2	3	27.9
					85	81	4	5	54
					29	29	0	0	45.3
					22	18	4	18	41.3
					14	14	0	0	55
					36	36	0	0	28.1
					39	33	0	6	57.7
					404	nr	nr	23	57.8
					404	nr	nr	23	57.8
					20	20	0	0	48.1
					47	44	3	0	54.3
					30	30	0	0	53
					22	22	0	0	43
					25	25	0	0	51.6

Study	Author	Year	Design	Setting	Patient	Monoithic Zr SCs			
					Initial (n)	End of follow-up (n)	Drop-out (n)	Drop-out (%)	Mean age (y)
					39	33	0	6	57.7
					404	nr	nr	23	57.8
					404	nr	nr	23	57.8
					20	20	0	0	48.1
					47	44	3	0	54.3
					30	30	0	0	53
					22	22	0	0	43
					25	25	0	0	51.6

Study	Author	Year	Design	Setting	Patient	Veneered LiSi₂ and Leucite SCs			
					Initial (n)	End of follow-up (n)	Drop-out (n)	Drop-out (%)	Mean age (y)
					34	27	7	21	nr
Implants	SCs	SCs	End of	Screw-	Cemented				
----------	-----	-----	--------	--------	----------				
Initial (n)	Failed (n)	Initial (n)	SCs anterior (n)	SCs posterior (n)	follow-up (n)	Retained (n)			
60	0	60	54	6	10	33	27		
92	3	92	nr	nr	nr	nr	nr		
20	0	20	nr	nr	nr	nr	nr		
114	0	114	nr	nr	nr	53	61		
19	0	19	19	0	19	0	19		
41	1AF	41	0	41	39	nr	0	41	
31	0	31	0	31	31	0	0	31	
17	nr	17	17	0	13	nr	17	0	
24	0	24	7	17	20	2	24	0	
28	2BF	26	nr	nr	nr	9	26	0	
21	0	21	0	21	21	nr	0	21	
32	0	32	17	15	30	2	16	16	
13	0	13	3	9	12	0	13	0	
38	1BF	38	0	38	nr	3	0	38	
23	0	24	0	24	24	0	0	24	
45	0	45	45	0	45	0	45	29	
289	2	120	nr	nr	115	nr	108	12	
39	0	39	0	39	37	2	0	39	
61	0	61	49	12	nr	2	0	61	
38	0	38	na	37	37	2	0	38	
29	0	29	29	0	29	0	0	29	
12	1AF	12	2	10	nr	nr	0	2	10
15	0	15	5	10	15	0	15	0	
38	0	38	0	38	38	0	15	0	
39	1AF	39	0	39	38	0	39	0	
42	1	42	nr	nr	nr	nr	nr	nr	
152	0	152	nr	nr	nr	nr	nr	nr	
36	1	36	nr	nr	36	0	11	25	
48	2	48	0	48	nr	nr	44	4	
30	0	30	0	30	30	0	30	0	
22	0	22	0	22	22	0	22	0	
25	0	25	0	25	24	0	0	25	

| 17 | nr | 17 | 17 | 0 | 14 | nr | 0 | 17 |
(Koenig et al., 2019) where 7 out of 48 SCs lost retention and the authors reported changing the cementation protocol during the study period due to this problem.

3.6 Biological complications

Peri-implant mucosal lesions or soft tissue complications were reported in various ways by different authors. Twenty-one of the included studies with 822 implant-supported SCs reported a mean overall annual rate for soft tissue complication of 2.58%, ranging from 1.1% to 11.8% (Table 12). The lowest annual soft tissue complication rate of 1.1% was reported for monolithic-reinforced glass-ceramic SCs, followed by veneered-reinforced glass-ceramics SCs (1.57%), veneered zirconia SCs (2.73%), and monolithic zirconia SCs (3.9%). Significantly ($p < 0.0001$) higher soft tissue complication rates, 6.9% and 11.8% respectively, were reported for RMC and densely sintered alumina SCs (Table 12).

Twenty of the included studies reported on the number of implants with significant (> 2 mm) bone loss. The way bone loss is
evaluated on radiographs and reported seems to be more standardized than the soft tissue evaluation. The reported incidence of annual rate of bone loss ranged only from 0.31% to 2% with an average annual complication rate of 0.52% (Table 12).

3.7 Quality assessment of the included studies

The quality assessment of the included RCTs and prospective studies was conducted with the Newcastle–Ottawa Scale (NOS) for cohort investigations (Table 13). Most of the studies were judged to have moderate-to-high methodological quality (NOS Score 6, 7, or 8 points from 8). Two studies lacked reporting on conflict of interest (Cooper et al., 2016; Vanlioglu et al., 2012). Therefore, methodological quality was judged to be moderate in some of the studies (NOS Score 6–7/9). A maximum score of eight stars (NOS) could be assigned to the investigations that were succeed by 8 criteria as follows: (1) representativeness of cases, (2) ascertainment of exposure, (3) demonstration outcome of interest not present at start of study, (4–5) comparability in age of the patients and implants location, (6)...

Implants	SCs							
Initial (n)	Failed (n)	Initial (n)	SCs anterior (n)	SCs posterior (n)	End of follow-up (n)	Drop-out (n)	Screw-Retained (n)	Cemented (n)
20	1AF	20	4	16	16	2	0	20
20	0	20	10	10	16	nr	0	20
32	0	22	10	7	17	15	0	17
54	0	54	24	7	31	23	31	0
45	0	45	0	45	44	1	45	0
15	1AF	15	2	13	14	0	0	15
3	2	3	nr	nr	nr	nr	nr	nr
7	0	7	nr	nr	nr	nr	nr	nr
20	0	20	nr	nr	18	nr	0	20
32	0	32	32	0	nr	nr	0	32
56	0	56	0	55	55	1	56	0
50	0	50	0	50	50	0	50	0
128	2	128	95	33	128	0	0	128
29	0	29	29	0	29	0	0	29
26	0	26	5	21	26	0	24	2
21	1BF	20	20	0	20	0	nr	nr
23	0	23	23	0	23	0	0	23
30	0	30	16	14	30	0	0	30
13	nr	17	nr	nr	13	4	nr	nr
22	0	22	14	8	22	0	0	22
24	0	24	24	0	23	1	11	13
55	0	65	nr	nr	55	5	0	62
25	1	25	0	25	nr	0	25	0
50	0	50	0	50	7	0	0	50

Abbreviations: AF, failed implant after loading; BF, failed implant before loading; nr, not reported; na, not applicable; Pro, prospective clinical study; PP, private practice setting; RCT, randomized controlled trial; U, university setting.
TABLE 3 Annual failure rates and 3-year survival of all-ceramic implant-supported single crowns (SCs).

Study	Year of publication	Total no. of crowns	Mean follow-up time	No. of failures	Total crown exposure time	Estimated annual failure rate (per 100 SC years)	Estimated survival after 3 years (in percent)
Veneered zirconia SCs							
Wittneben et al. Group B	2020	20	3	2	60	3.3%	90.5%
Meijndert et al.	2020	60	4.5	1	271	0.4%	98.9%
Rammelsberg et al. Group A	2020	92	5.3	10	488	2.0%	94.0%
Furze et al.	2019	19	3	0	57	0%	100%
Weigl et al.	2019b	21	1	0	21	0%	100%
Ma et al.	2019	26	4	2	105	1.9%	94.4%
Guljé et al.	2019a	41	4.6	3	188	1.6%	95.3%
Guljé et al.	2019b	31	5	0	155	0%	100%
Kraus et al. Group A	2019	24	2.5	4	61	6.3%	82.1%
Canter et al.	2019	114	3.5	0	399	0%	100%
Amorfini et al.	2018	32	9.9	1	316	0.3%	99.1%
Bösch et al.	2018	13	1.5	1	19	5.1%	85.4%
Bömnicke et al.	2017	38	2.2	8	85	9.0%	75.4%
Güncü et al.	2016	24	3.9	2	94	2.1%	93.8%
Paolantoni et al. Group B	2016	45	4	2	180	1.1%	96.7%
Kolgeci L et al.	2014	120	3.2	5	385	1.3%	96.2%
Nothdurft et al.	2014	39	2.9	1	116	1.7%	95.0%
Hosseini et al.	2013	61	3.1	1	189	0.5%	98.4%
Lops et al.	2013	38	4.9	0	185	0%	100%
Pieri et al.	2013	29	5	0	145	0%	100%
Zembic et al.	2013	12	4.7	1	56	1.8%	94.8%
Vandewege et al.	2012	15	1	1	15	6.4%	81.9%
Hosseini et al.	2011	38	1.1	0	43	0%	100%
Total		952	3.8	46	3633		
Summary estimate (95% CI)						1.27% (0.77%−2.10%)	96.3% (93.9%−97.7%)

Monolithic zirconia SCs							
Rammelsberg et al. Group B	2020	42	2.2	1	92	1.1%	96.8%
Rammelsberg et al. Group C	2020	152	1.8	2	274	0.7%	97.8%
Mühlemann et al.	2020	39	1.0	1	39	2.5%	92.6%
Koenig et al.	2019	48	1.9	2	93	2.1%	93.8%
Weigl et al.	2019a	22	1.0	0	22	0%	100%
Pol et al.	2019	30	1.0	0	30	0%	100%
Cheng et al.	2019	36	1.0	1	36	2.7%	92.0%
Mangano & Veronesi	2018	25	1.0	1	25	3.9%	88.7%
Total		394	1.6	8	611		
Summary estimate (95% CI)						1.31% (0.76%−2.27%)	96.1% (93.4%−97.8%)

Veneered-reinforced glass-ceramic SCs							
Laass et al.	2019	20	4.5	1	89	1.1%	96.7%
Kraus et al. Group B	2019	20	2.7	4	53	7.3%	79.7%
Teichmann et al.	2017	22	11.9	1	262	0.4%	98.9%
Zembic et al.	2015	31	11.3	0	350	0%	100%
Total		93	8.1	6	754		

Summary estimate (95% CI) †
4 | DISCUSSION

The present systematic review and meta-analysis showed that the implant-supported SCs made of different all-ceramic materials with veneered or monolithic designs have similar 3-year survival rates and low annual failure rates with the exception of RMC SCs. The main technical problem leading to failure of the SCs was identified as ceramic fractures, that is, catastrophic veneer fracture, core fracture and ceramic abutment fracture for the veneered and monolithic-reinforced glass-ceramic, and zirconia restorations, whereas RMC SCs predominantly failed due to core fractures and repeated loss of retention.

The monolithic design of the implant-supported SCs was revealed to influence significantly the annual ceramic chipping rates ($p = 0.017$), monolithic zirconia, and monolithic-reinforced glass-ceramic SCs showed lower annual ceramic chipping rate than veneered ones. The monolithic zirconia implant-supported SCs, however, demonstrated more frequently the loss of retention (fracture of the luting cement) and screw loosening compared with veneered zirconia SCs. Moreover, the anterior/posterior position of the

TABLE 3 (Continued)

Study	Year of publication	Total no. of crowns	Mean follow-up time	No. of failures	Total crown exposure time	Estimated annual failure rate* (per 100 SC years)	Estimated survival after 3 years* (in percent)
Monolithic-reinforced glass-ceramic SCs							
Koller et al.	2020	15	6.7	1	101	1.0%	97.1%
Gierthmuehlen et al.	2020	45	1.1	0	49	0%	100%
Wittneben et al. Group A	2020	20	2.8	1	56	1.8%	94.8%
Rammelsberg et al. Group D	2020	3	4.3	2	13	14.3%	63.0%
Rammelsberg et al. Group E	2020	7	4.5	1	32	3.1%	91.1%
Linkevicius et al.	2018	56	1.0	0	56	0%	100%
Joda et al.	2017	50	2.0	0	100	0%	100%
Cooper et al.	2016	128	2.4	2	307	0.6%	98.1%
Paolantoni et al. Group A	2016	29	4.0	3	116	2.6%	92.5%
Peron & Romanos	2016	26	1.1	2	29	6.7%	81.3%
Guarnieri et al.	2015	20	5.0	0	100	0%	100%
Vanlioglu et al.	2012	23	5.0	0	115	0%	100%
Canullo	2007	30	3.3	0	100	0%	100%
Total		452	2.6	12	1174		
Summary estimate (95% CI)						0.80% (0.14%−4.64%)	97.6% (87.0%−99.6%)

| **Monolithic-reinforced glass-ceramic SCs** | | | | | | 1.02% (0.51%−2.05%) | 97.0% (94.0%−98.5%) |

| **Veneered densely sintered alumina SCs** | | | | | | 1.05% (0.49%−2.29%) | 96.9% (93.4%−98.6%) |

| **Resin-matrix ceramic SCs** | | | | | | 33.8% (4.36%−261.6%) | 36.3% (0.04%−87.7%) |

Note: C.I. stands for "confidence interval."

*Based on robust Poisson regression.
FIGURE 3 Forrest plot for the annual failure rate of veneered-reinforced glass-ceramic implant-supported SCs

FIGURE 4 Forrest plot for the annual failure rate of monolithic-reinforced glass-ceramic implant-supported SCs

FIGURE 5 Forrest plot for the annual failure rate of veneered densely sintered alumina implant-supported SCs

FIGURE 6 Forrest plot for the annual failure rate of veneered zirconia implant-supported SCs

FIGURE 7 Forrest plot for the annual failure rate of monolithic zirconia implant-supported SCs

FIGURE 8 Funnel plot for the annual failure rate of resin-matrix ceramic implant-supported SCs
TABLE 4
Summary of annual failure rates, relative failure rates, and survival estimates for SCs with implant-supported monolithic zirconia crowns as reference

Type of SCs	Total number of SCs	Total SCs exposure time	Mean SCs follow-up time	Estimated annual failure rate (95% CI)	3-year survival summary estimate (95% CI)	Relative failure rate (95% CI)	p-value**
Monolithic zirconia SCs	394	611	1.6	1.31% (0.76%–2.27%)	96.1% (93.4%–97.8%)	1.00 (Ref.)	
Monolithic-reinforced glass-ceramic SCs	452	1174	2.6	1.02% (0.51%–2.05%)	97.0% (94.0%–98.5%)	0.78 (0.33–1.83)	p = 0.568
Veneered zirconia SCs	952	3633	3.8	1.27% (0.77%–2.1%)	96.3% (93.9%–97.7%)	0.97 (0.47–1.98)	p = 0.927
Veneered-reinforced glass-ceramic SCs	93	754	8.1	0.80% (0.14%–4.64%)	97.6% (87.0%–99.6%)	0.61 (0.12–3.09)	p = 0.548
Veneered densely sintered alumina SCs	128	474	3.7	1.05% (0.49%–0.22%)	96.9% (93.4%–98.6%)	0.81 (0.34–1.89)	p = 0.619
Resin Nano Ceramic SCs	75	133	1.8	33.8% (4.36%–261.6%)	36.3% (0.04%–87.7%)	25.8 (5.48–121.56)	p < 0.0001

Note: C.I. stands for “confidence interval.” *Based on robust Poisson regression.; **Based on multivariable robust Poisson regression including all types of SCs.

TABLE 5
Summary of annual failure rates due to ceramic fractures, relative failure rates and failure estimate for SCs with implant-supported monolithic zirconia crowns as reference.

Type of SCs	Total number of SCs	Total SCs exposure time	Mean SCs follow-up time	Estimated annual failure rate (95% CI)	3-year failure summary estimate (95% CI)	Relative failure rate (95% CI)	p-value**
Monolithic zirconia SCs	346	518	1.5	0.58% (0.26%–1.31%)	1.72% (0.77%–3.84%)	1.00 (Ref.)	
Monolithic-reinforced glass-ceramic SCs	449	1161	2.6	0.60% (0.19%–1.89%)	1.79% (0.57%–5.52%)	1.04 (0.27–3.98)	p = 0.953
Veneered zirconia SCs	892	3362	3.8	0.98% (0.55%–1.76%)	2.90% (1.63%–5.14%)	1.69 (0.65–4.40)	p = 0.278
Veneered-reinforced glass-ceramic SCs	110	801	7.3	0.62% (0.17%–2.27%)	1.86% (0.51%–6.58%)	1.08 (0.27–4.33)	p = 0.916
Veneered densely sintered alumina SCs	128	474	3.7	0% (0%–9.27%)	0% (0%–22.57%)	1.67–7 (3.34–8.40–7)	p < 0.0001
Resin Nano Ceramic SCs	75	133	1.8	6.08% (5.97%–6.19%)	16.68% (16.41%–16.95%)	25.8 (5.48–121.56)	p < 0.0001

Note: C.I. stands for “confidence interval.” *Based on robust Poisson regression.; **Based on multivariable robust Poisson regression including all types of SCs.

TABLE 6
Comparison of annual failure and complication rates for veneered and monolithic implant-supported SCs

Failures/Complications	n studies	Veneered Estimated annual failure rate* (95% CI)	Monolithic Estimated annual failure rate* (95% CI)	p-value
Overall failure rate	27	1.18* (0.72–1.94)	1.12* (0.70–1.78)	p = 0.869
Overall failure rate due to ceramic fractures	27	0.91* (0.53–1.56)	0.60* (0.26–1.35)	p = 0.386
Failures due to core fractures	26	0.14* (0.04–0.42)	0.22* (0.03–1.54)	p = 0.662
Failures due to catastrophic veneer fractures	27	0.60* (0.28–1.29)	0.32* (0.10–1.02)	p = 0.371
Failures due to abutment fractures	28	0.28* (0.11–0.69)	0.13* (0.02–0.72)	p = 0.426
Overall complication rate	14	3.92* (2.34–6.52)	1.83* (0.97–3.45)	p = 0.061
Ceramic chippings	24	1.65* (0.90–3.01)	0.39* (0.14–1.10)	p = 0.017
Screw loosening	16	0.51* (0.23–1.17)	0.27* (0.08–0.94)	p = 0.394
Loss of retention	13	0.15* (0.05–0.43)	0.94* (0.21–4.22)	p = 0.045
Soft tissue complications	15	2.58* (1.25–5.27)	1.24* (0.60–2.56)	p = 0.138
Bone loss >2 mm	12	0.39* (0.17–0.89)	0.62* (0.17–2.22)	p = 0.530

Note: C.I. stands for “confidence interval.” *Based on robust Poisson regression.
SC showed no influence on the survival and complication rates for any prosthetic material and crown design.

The previously reported high short-term (3 to 5 years) survival rates for zirconia, reinforced glass-ceramic, and alumina implant-supported SCs (Pjetursson et al., 2018; Rabel et al., 2018) is affirmed by the present systematic review. Moreover, the result by Rabel et al. (2018) reporting no statistical difference in terms of survival rates between the oxide ceramics and the glass-ceramics is in accordance with the present systematic review’s findings. RMC SCs on the contrary showed unfavorable 3-year estimated survival rate of 36.3%, and the difference was statistically significant (p<0.00001). This result thought to be due to the fact that only two of the included studies investigated RMC SCs in which one reported repeated loss of retention concerning the majority of the SCs (43 out of 50 SCs) in a short follow-up period (Schepke et al., 2016). Eventually, the investigators replaced all initially included SCs with lithium disilicate SCs (Schepke et al., 2016). In the second study, Augustin-Pandero and co-workers (Augustin-Panadero et al., 2020) reported an annual failure rate of 6.9%, and the main reason for failures was crown material fractures.

Since the first introduction of dental implants, clinical outcomes of implant-supported restorations improved significantly thanks to the positive learning curve in implant dentistry (Pjetursson et al., 2014), improvements and innovations in biomaterials and

TABLE 7 Comparison of annual failure and complication rates for veneered and monolithic zirconia implant-supported SCs

Failures/Complications	n studies	Veneered Estimated annual failure rate* (95% CI)	n studies	Monolithic Estimated annual failure rate* (95% CI)	p-value
Overall failure rate	23	1.27* (0.77–2.10)	8	1.31* (0.76–2.27)	p = 0.928
Overall failure rate due to ceramic fractures	22	0.98* (0.55–1.76)	7	0.57* (0.26–1.31)	p = 0.282
Failures due to core fractures	21	0.17* (0.06–0.53)	5	0* (0–11.90)	p < 0.0001
Failures due to catastrophic veneer fractures	22	0.71* (0.33–1.55)	7	0.19* (0.02–2.03)	p = 0.275
Failures due to abutment fractures	23	0.23* (0.07–0.76)	7	0.39* (0.13–1.16)	p = 0.517
Overall complication rate	11	4.63* (2.67–8.02)	2	3.64* (0.43–30.85)	p = 0.777
Ceramic chippings	19	1.84* (0.93–3.64)	7	0.39* (0.07–2.00)	p = 0.071
Screw loosening	14	0.53* (0.20–1.43)	3	2.27* (0.80–6.42)	p = 0.030
Loss of retention	10	0.20* (0.08–0.54)	3	4.55* (1.41–14.66)	p < 0.0001
Soft tissue complications	13	2.77* (1.26–6.07)	1	4.00* (0.10–20.35)	p = 0.356
Bone loss >2 mm	11	0.31* (0.10–0.95)	3	1.00* (0.16–6.07)	p = 0.530

Note: C.I. stands for “confidence interval.”
*Based on robust Poisson regression.

TABLE 8 Comparison of annual failure and complication rates for veneered and monolithic-reinforced glass-ceramic implant-supported SCs.

Failures/Complications	n studies	Veneered Estimated annual failure rate* (95% CI)	n studies	Monolithic Estimated annual failure rate* (95% CI)	p-value
Overall failure rate	4	0.80* (0.14–4.64)	13	1.02* (0.51–2.05)	p = 0.775
Overall failure rate due to ceramic fractures	5	0.62* (0.17–2.26)	12	0.60* (0.19–1.89)	p = 0.967
Failures due to core fractures	5	0* (0–4.16)	12	0.25* (0.03–1.81)	p < 0.0001
Failures due to catastrophic veneer fractures	5	0.13* (0.01–1.38)	12	0.38* (0.10–1.49)	p = 0.402
Failures due to abutment fractures	5	0.50* (0.12–2.02)	12	0* (0–7.52)	p < 0.0001
Overall complication rate	3	2.64* (0.94–7.44)	7	1.72* (0.83–3.54)	p = 0.459
Ceramic chippings	5	1.00* (0.66–1.51)	11	0.40* (0.10–1.55)	p = 0.196
Screw loosening	2	0.46* (0.21–1.01)	9	0.10* (0.01–0.74)	p = 0.149
Loss of retention	3	0* (0–3.94)	6	0.25* (0.06–1.07)	p < 0.0001
Soft tissue complications	2	1.59* (0.64–3.94)	3	1.10* (0.41–2.92)	p = 0.527
Bone loss >2 mm	1	0.76* (0.09–2.73)	4	0.53* (0.08–3.31)	p = 0.682

Note: C.I. stands for “confidence interval”
*Based on robust Poisson regression.
Ceramic SCs were notably lower than reported by Rabel et al. (2018). Interestingly, the chipping rates for all-in the present meta-analysis, 3-year estimation for the survival and period of monolithic zirconia restorations (mean follow-up: 1.6 year), which reported 5-year chipping rates of 11.8% for veneered zirconia, 3.5% for veneered-reinforced glass-ceramic, and 6% for monolithic-reinforced glass-ceramic. No significant difference was detected among the material groups in the same systematic review, whereas the 3-year estimated chipping rates based on present meta-analysis were 5.4% for veneered zirconia SCs, 3% for veneered-reinforced glass-ceramic and 1.2% for monolithic-reinforced glass-ceramic, with no statistically significant difference. The chipping rate differences between the two meta-analysis can be explained by the quality of the included studies, as the retrospective studies were excluded in the present meta-analysis and the improved handling of the restorative materials namely zirconia over the years. Moreover, in the present systematic review, the failure due to ceramic fractures was separately reported while the ceramic chipping that was considered as technical complication was solely the ceramic fractures that.

TABLE 9 Comparison of annual failure and complication rates for veneered-reinforced glass-ceramic and veneered zirconia implant-supported SCs

Failures/Complications	n studies	Veneered Zir Estimated annual failure rate* (95% CI)	n studies	Veneered LDS Estimated annual failure rate* (95% CI)	p-value
Overall failure rate	23	1.27* (0.77–2.10)	4	0.80* (0.14–4.64)	0.577
Overall failure rate due to ceramic fractures	22	0.98* (0.55–1.76)	5	0.62* (0.17–2.26)	0.449
Failures due to core fractures	21	0.17* (0.06–0.53)	5	0* (0–4.16)	<0.0001
Failures due to catastrophic veneer fractures	22	0.71* (0.33–1.55)	5	0.13* (0.01–1.38)	0.141
Failures due to abutment fractures	23	0.23* (0.07–0.76)	5	0.50* (0.12–2.02)	0.382
Overall complication rate	11	4.63* (2.67–8.02)	3	2.64* (0.94–7.44)	0.287
Ceramic chippings	19	1.84* (0.93–3.64)	5	1.00* (0.66–1.51)	0.123
Screw loosening	14	0.53* (0.20–1.43)	2	0.46* (0.21–1.01)	0.797
Loss of retention	10	0.20* (0.08–0.54)	3	0* (0–3.94)	<0.0001
Soft tissue complications	13	2.77* (1.26–6.07)	2	1.59* (0.64–3.94)	0.289
Bone loss >2 mm	11	0.31* (0.10–0.95)	1	0.76* (0.09–2.73)	0.114

Note: C.I. stands for “confidence interval”.
*Based on robust Poisson regression.

TABLE 10 Comparison of annual failure and complication rates for monolithic-reinforced glass-ceramic or monolithic zirconia implant-supported SCs.

Failures/Complications	n studies	Monolithic Zir Estimated annual failure rate* (95% CI)	n studies	Monolithic LDS Estimated annual failure rate* (95% CI)	p-value
Overall failure rate	8	1.31* (0.76–2.27)	13	1.02* (0.51–2.05)	0.574
Overall failure rate due to ceramic fractures	7	0.57* (0.26–1.31)	12	0.60* (0.19–1.89)	0.954
Failures due to core fractures	5	0* (0–11.90)	12	0.25* (0.03–1.81)	<0.0001
Failures due to catastrophic veneer fractures	7	0.19* (0.02–2.03)	12	0.38* (0.10–1.49)	0.614
Failures due to abutment fractures	7	0.39* (0.13–1.16)	12	0* (0–7.52)	<0.0001
Overall complication rate	2	3.64* (0.43–30.85)	7	1.72* (0.83–3.54)	0.403
Ceramic chippings	7	0.39* (0.07–2.00)	11	0.40* (0.10–1.55)	0.975
Screw loosening	3	2.27* (0.80–6.42)	9	0.10* (0.01–0.74)	0.005
Loss of retention	3	4.55* (1.41–14.66)	6	0.25* (0.06–1.07)	0.001
Soft tissue complications	1	4.00* (0.10–20.35)	3	1.10* (0.41–2.92)	0.006
Bone loss >2 mm	3	1.00* (0.16–6.07)	4	0.53* (0.08–3.31)	0.591

Note: C.I. stands for “confidence interval.”
*Based on robust Poisson regression.

Even though chipping of the veneering ceramic still remains as one of the important concerns for implant-supported SCs, reported to be observed less and less in the more recent publications (Larsson & Wennenberg, 2014). Due to the short follow-up period of monolithic zirconia restorations (mean follow-up: 1.6 year), in the present meta-analysis, 3-year estimation for the survival and complications rates was done. Interestingly, the chipping rates for all-ceramic SCs were notably lower than reported by Rabel et al. (2018) which reported 5-year chipping rates of 11.8% for veneered zirconia, 3.5% for veneered-reinforced glass-ceramic, and 6% for monolithic-reinforced glass-ceramic. No significant difference was detected better handling/processing of the restorative materials (Larsson & Wennenberg, 2014).
Table 11 Annual overall failure rates, annual ceramic fracture rates and ceramic chipping rates according to the position in the dental arch (anterior and posterior)

Failures complications	Number of studies	Anterior	Number of studies	Posterior	p-value
Overall failure rate	14	1.08* (0.45–2.62)	24	1.45* (0.69–3.09)	p = 0.610
Overall failure rate due to ceramic fractures	14	0.46* (0.15–1.47)	24	0.65* (0.20–2.10)	p = 0.678
Ceramic chippings	8	0.77* (0.37–1.58)	20	1.28* (0.52–3.17)	p = 0.371
Monolithic zirconia					
Overall failure rate	0	n.r.	4	1.72* (0.61–4.87)	n.a.
Overall failure rate due to ceramic fractures	0	n.r.	4	0.86* (0.11–6.79)	n.a.
Ceramic chippings	0	n.r.	4	0.86* (0.11–6.79)	n.a.
Veneered zirconia					
Overall failure rate	6	1.93* (0.49–7.61)	12	1.51* (0.55–4.17)	p = 0.770
Overall failure rate due to ceramic fractures	6	0.72* (0.22–2.35)	12	0.87* (0.23–3.22)	p = 0.838
Ceramic chippings	3	1.19* (0.45–3.12)	10	1.70* (0.64–4.52)	p = 0.583
Monolithic LDS					
Overall failure rate	5	1.04* (0.33–3.34)	5	0.70* (0.08–6.28)	p = 0.739
Overall failure rate due to ceramic fractures	5	0.63* (0.10–4.06)	5	0* (0–7.08)	p < 0.0001
Ceramic chippings	3	0*	4	0*	n.a.
Veneered LDS					
Overall failure rate	3	0.25* (0.01–4.67)	3	1.96* (0.38–10.18)	p = 0.179
Overall failure rate due to ceramic fractures	3	0*	3	0*	n.a.
Ceramic chippings	2	1.28* (0.88–1.86)	2	0* (0–4.46)	p < 0.0001

Note: n.r. stands for "not reported"; C.I. stands for "confidence interval."

*Based on robust Poisson regression.

Table 12 Overview of biological and technical complications of different types of implant-supported SCs

Complications Failures	Number of abutments or SCs	Estimated annual failure/ complication rates (95% CI)	Number of abutments or SCs	Estimated annual failure/ complication rates (95% CI)	Monolithic-zirconia SCs	Monolithic-reinforced glass-ceramic SCs
Overall complication rate	888	4.21* (2.65–6.60)	55	3.57* (0.43–26.55)	348	1.70* (0.83–3.48)
Overall failures due to ceramic fractures	1783	0.75* (0.43–1.28)	194	0.41* (0.05–3.51)	449	0.60* (0.19–1.87)
Failure due to core fractures	1674	0.32* (0.13–0.79)	152	0* (0–11.2)	474	0.25* (0.03–1.79)
Failure due to abutment fractures	1941	0.23* (0.10–0.50)	346	0.39* (0.13–1.16)	423	0* (0–5.96)
Ceramic chippings	1725	1.25* (0.69–2.26)	346	0.39* (0.07–1.98)	373	0.40* (0.10–1.54)
Screw loosening	1153	0.44* (0.23–0.82)	88	2.25* (0.80–6.22)	413	0.10* (0.01–0.73)
Loss of retention	829	1.97* (0.49–7.87)	54	4.44* (1.40–13.63)	195	0.25* (0.06–1.07)
Soft tissue complications	822	2.58* (1.43–4.65)	25	3.9* (0.18–14.8)	192	1.1* (0.4–2.9)
Bone loss >2 mm	614	0.52* (0.28–0.98)	100	1.00* (0.16–5.89)	117	0.52* (0.08–3.26)

Note: n.a. stands for "not available"; n.r. stands for "not reported"; C.I. stands for "confidence interval."

*Based on robust Poisson regression.
are repairable and/or polishable. However, a distinction as major chipping/minor chipping/surface roughness when it comes to chipping as a technical complication was not made due to lack of uniformity throughout the included studies regarding the definitions. This approach shows a difference when compared to the previous systematic review by Rabel et al. (2018).

In the present systematic review, the data obtained through included clinical studies allowed to make a direct comparison between the prosthetic materials, that is, zirconia and reinforced-glass-ceramic that are available both monolithic/micro-veneered and veneered crown designs. The statistical analysis comparing directly the monolithic and veneered implant-supported SCs was done based on material groups that have both monolithic and veneered designs, hence the alumina and RMC SCs were excluded from this analysis (Table 6.11).

Based on the present meta-analysis, the loss of retention was observed as an important technical complication. Loss of retention was significantly higher for overall analysis of monolithic compared veneered SCs, which can be due to a single study reporting 7 loss of retention events by Koenig et al on 48 monolithic zirconia SCs while the other studies remained eventless in this aspect. Furthermore, according to an in vitro study by Pitta et al. (2020) the cementation protocol and cement preference plays an important role on the mechanical stability of the SCs supported by titanium bases (Pitta et al., 2020).

Monolithic zirconia and monolithic-reinforced glass-ceramics, as they enable the complete digital workflow, are becoming more and more widely used for implant-supported SCs. Accordingly, identifying the predominant reasons for their failure and complication is important. The failure due to core fracture was significantly higher for the monolithic-reinforced glass-ceramics ($p < 0.0001$), whereas monolithic zirconia SCs failed more due to abutment fracture ($p < 0.0001$), which can be explained by the mechanical properties as higher stiffness of zirconia which resulted of the transfer of the forces to less strong components of implant-crown assembly. Loss of retention was similarly higher for monolithic zirconia SCs, which can be explained with the same mechanism.

The influence of anterior-posterior position of the SCs was analyzed in terms of annual failure rate, annual failure rate due to ceramic fracture, and ceramic chipping. The difference between anterior SCs and posterior SCs did not reach statistical significance for either overall prosthetic materials or any specific prosthetic material except for reinforced glass-ceramic SCs. Posterior monolithic-reinforced glass-ceramics showed significantly less annual overall failure rate due to ceramic fracture than anterior ones, 0% and 0.63% ($p < 0.0001$), respectively. As none of the monolithic zirconia studies included anterior SCs, this analysis was not possible for monolithic zirconia material. This finding is not in accordance with the systematic review by Rabel et al. (2018), in which the posterior all-ceramic implant-supported SCs demonstrated significantly higher 5-year chipping rate than anterior SCs. This difference can be explained by the difference in statistical analysis approaches. In the meta-analysis by Rabel et al. (2018), the comparison between anterior and posterior SCs was done based on pooled data from all

Number of abutments or SCs	Estimated annual failure/complication rates (95% CI)	Number of abutments or SCs	Estimated annual failure/complication rates (95% CI)	Number of abutments or SCs	Estimated annual failure/complication rates (95% CI)	Number of abutments or SCs	Estimated annual failure/complication rates (95% CI)		
Veneered zirconia SCs	Estimated annual failure rate* (95% CI)	Veneered-reinforced glass-ceramic SCs	Estimated annual failure rate* (95% CI)	Veneered densely sintered alumina SCs	Estimated annual failure rate* (95% CI)	Resin-matrix ceramic SCs	Estimated annual failure rate* (95% CI)		
317	4.52* (2.63–7.71)	71	2.61* (0.93–7.17)	22	14.1* (5.0–27.3)	75	15.54* (12.6–19.1)		
892	0.77* (0.39–1.53)	110	0.12* (0.01–1.37)	63	0* (0–5.60)	75	6.08* (5.97–6.19)		
800	0.17* (0.06–0.53)	110	0* (0–4.0)	63	0* (0–5.60)	75	5.90* (5.80–6.01)		
924	0.23* (0.07–0.76)	110	0.50* (0.12–2.00)	63	0* (0–5.60)	75	0* (0–5.25)		
743	1.82* (0.93–3.57)	110	1.00* (0.66–1.50)	128	0.64* (0.28–1.48)	25	0* (0–3.6)		
473	0.53* (0.20–1.42)	51	0.45* (0.21–1.00)	128	0.42* (0.13–1.36)	0	n.a.		
443	0.20* (0.08–0.54)	40	0* (0–3.8)	22	0* (0–10)	75	28.19* (4.95–88.47)		
513	2.73* (1.25–5.89)	42	1.57* (0.64–3.86)	24	11.8* (2.6–27.6)	25	6.9* (2.9–13.2)		
350	0.31* (0.10–0.94)	22	0.8* (0.1–2.7)	0	n.r.	25	2.0* (0.2–6.9)		
Study	Author	Year	Selection	Comparator	Outcome	Score			
-------	--------	------	-----------	------------	---------	-------			
	Wittneben et al. Group B	2020	*	*	*	7			
	Meijndert et al.	2020	*	*	*	8			
	Rammelsberg et al. Group A	2020	*	*	*	8			
	Furze et al.	2019	*	*	*	7			
	Weigl et al.	2019	*	*	*	6			
	Helerle et al. Group A	2019	*	*	*	6			
	Ma et al.	2019	*	*	*	8			
	Guljé et al. (RCT)	2019	*	*	*	8			
	Guljé et al. (PRO)	2019	*	*	*	8			
	Kraus et al. Group A	2019	*	*	*	7			
	Canter et al.	2019	*	*	*	8			
	Amorfini et al.	2018	*	*	*	8			
	Bösch et al.	2018	*	*	*	8			
	Bömicke et al.	2017	*	*	*	8			
	Güncü et al.	2016	*	*	*	8			
	Paolantoni et al. Gruppe B	2016	*	*	*	8			
	Kolgeci et al.	2014	*	*	*	8			
	Nothdurft et al.	2014	*	*	*	7			
	Hosseini et al.	2013	*	*	*	8			
	Lops et al.	2013	*	*	*	8			
	Pieri et al.	2013	*	*	*	7			
	Zembic et al.	2013	*	*	*	8			
	Vandeweghe et al.	2012	*	*	*	7			
	Hosseini et al.	2011	*	*	*	7			
	Rammelsberg et al. Group B	2020	*	*	*	7			
	Rammelsberg et al. Group C	2020	*	*	*	7			
	Mühlemann et al.	2020	*	*	*	7			
	Koenig et al.	2019	*	*	*	7			
Study	Author Year	Selection	Representativeness of cases	Selection of controls (RCT - control group of exposure from the same cohort)	Ascertainment of exposure	Demonstration outcome of interest not present at start of study	Comparability	Outcome	Score
-------	-------------	-----------	----------------------------	---	---------------------------	---	--------------	---------	-------
	Weigl et al. 2019	*	*	*	*	*	*	*	7
	Pol et al. 2019	*	*	*	*	*	*	*	7
	Cheng et al. 2019	*	*	*	*	*	*	*	7
	Mangano & Veronesi 2018	*	*	*	*	*	*	*	7
	Laass et al. 2019	*	*	*	*	*	*	*	8
	Heierle et al. Group B 2019	*	*	*	*	*	*	*	6
	Kraus et al. Group B 2019	*	*	*	*	*	*	*	7
	Teichmann et al. 2017	*	*	*	*	*	*	*	8
	Zembic et al. 2015	*	*	*	*	*	*	*	8
	Koller et al. 2020	*	*	*	*	*	*	*	7
	Giehrmuehlen et al. 2020	*	*	*	*	*	*	*	8
	Wittneben et al. Group A 2020	*	*	*	*	*	*	*	7
	Rammelsberg et al. Group D 2020	*	*	*	*	*	*	*	8
	Rammelsberg et al. Group E 2020	*	*	*	*	*	*	*	8
	Coimleoglu et al. 2019	*	*	*	*	*	*	*	7
	Linkevicius et al. 2018	*	*	*	*	*	*	*	6
	Joda et al. 2017	*	*	*	*	*	*	*	6
	Cooper et al. 2016	*	*	*	*	*	*	*	7
	Paolantoni Gruppe A et al. 2016	*	*	*	*	*	*	*	8
	Peron & Romanos et al. 2016	*	*	*	*	*	*	*	8
	Guarneri 2015	*	*	*	*	*	*	*	7
	Vaniloglu et al. 2012	*	*	*	*	*	*	*	6
	Canullo et al. 2007	*	*	*	*	*	*	*	8
	Fenner et al. 2016	*	*	*	*	*	*	*	7
	Ormaner et al. 2006	*	*	*	*	*	*	*	7
	Henrikson & Jamt 2003	*	*	*	*	*	*	*	7
	Andersson et al. 1998	*	*	*	*	*	*	*	8
	Augustin-Pandero et al. 2020	*	*	*	*	*	*	*	8
	Schepke et al. 2016	*	*	*	*	*	*	*	6

Note: Asterisk (*) means criteria is fulfilled and every asterisk stands for one score.
included prosthetic all-ceramic materials, whereas in the present systematic review, the analysis was done both separately for each material that has both a veneered and monolithic design as well as for the overall materials namely monolithic and veneered zirconia and reinforced glass-ceramics.

In the present systematic review, only the studies investigated SCs supported by titanium dental implants were included. SCs supported by zirconia implants reported by Rabel et al. (2018) to be more prone to technical complications namely chipping rate. Accordingly, the rationale behind the exclusion of the studies that investigated zirconia implant-supported SCs was to avoid any confounding factor that might influence the clinical behavior of different prosthetic materials.

The scientific evidence procured by this systematic review is based on studies that were assessed as moderate-to-high quality based on Newcastle–Ottawa scale. All included studies were either RCTs (n = 20) or prospective studies (n = 29) therefore at lower risk of bias compared with retrospective studies (Papageorgiou et al., 2015). As none of the included RCTs were directly addressing the focus question of the present SR, they were considered as prospective cohort studies rather than RCTs and therefore assessed by the Newcastle–Ottawa scale for quality assessment and not with the Cochrane Risk of Bias Tool that is designed for RCTs. However, the included studies were predominantly small and this might introduce small-study effects (Cappelleri et al., 1996).

5 | CONCLUSIONS

Based on the data identified by this systematic review, veneered and monolithic implant-supported ceramic SCs showed high short-term survival rates and low complication rates. Significantly higher rates of ceramic chipping were reported for veneered SCs when compared to monolithic SCs, with the exception of RMC SCs. The location of the implant-supported ceramic SCs, anterior vs. posterior, did not influence survival and chipping rates. However, conclusions on the long-term clinical performance of the presently evaluated type of restorations should not be drawn based on short-to-medium term clinical studies included in the present systematic review.

ACKNOWLEDGMENTS

This systematic review was performed in the context of the EAO Consensus Conference 2021 held in ... The authors are grateful to Professor Marcel Zwahlen, Institute of Social and Preventive Medicine, University of Bern, Switzerland, for his help to prepare the statistical analysis. Open Access funding provided by Universite de Geneve.

CONFLICT OF INTEREST

The authors have no specific conflict of interest related to the present systematic review.
phase on the esthetic final outcome of implant-supported crowns: 3-year results of a randomized controlled clinical trial. *Clinical Implant Dentistry and Related Research*, 21(4), 649–655. https://doi.org/10.1111/cid.12796.

Gierthmuehlen, P. C., Berger, L., & Spitznagel, F. A. (2020). Monolithic screw-retained lithium disilicate implant crowns: Preliminary data of a prospective cohort study. *International Journal of Prosthodontics*, 33(3), 272–276. https://doi.org/10.11607/ijp.6684.

Guarnieri, R., Ceccherini, A., & Grande, M. (2015). Single-tooth replacement in the anterior maxilla by means of immediate implantation and early loading: clinical and aesthetic results at 5 years. *Clin Implant Dent Relat Res*, 17(2), 314–326. https://doi.org/10.1111/cid.12111.

Guljé, F. L., Raghoebar, G. M., Vissink, A., & Meijer, H. J. A. (2019a). Single crown restorations supported by 6-mm implants in the resorbed posterior mandible: A five-year prospective case series. *Clin Implant Dent Relat Res*, 21(5), 1017–1022. https://doi.org/10.1111/cid.12825.

Guljé, F. L., Raghoebar, G. M., Vissink, A., & Meijer, H. J. A. (2019b). Single crowns in the resorbed posterior maxilla supported by either 11-mm implants combined with sinus floor elevation or 6-mm implants: a 5-year randomised controlled trial. *International Journal of Oral Implantology*, 12(3), 315–326. https://doi.org/10.1002/centr.al-CN-01988813.full.

Guncu, M. B., Cakan, U., Aktas, G., Guncu, G. N., & Canay, S. (2016). Comparison of implant versus cemented-supported zirconia-based single crowns in a split-mouth design: a 4-year clinical follow-up study. *Clinical Oral Investigations*, 20(9), 2467–2473. https://doi.org/10.1007/s00784-016-1763-x.

Heierle, L., Wolleb, K., Hämmerle, C. H., Wiedemeier, D. B., Sailer, I., & Thoma, D. S. (2019). Randomized controlled clinical trial comparing cemented versus screw-retained single crowns on customized zirconia abutments: 3-year results. *International Journal of Prosthodontics*, 32(2), 174–176. https://doi.org/10.11607/ijp.6080.

Henriksson, K., & Jent, T. (2003). Evaluation of custom-made procera ceramic abutments for single-implant tooth replacement: a prospective 1-year follow-up study. *International Journal of Prosthodontics*, 16(6), 626–630.

Hosseini, M., Worsaae, N., Schiodt, M., & Gotfredsen, K. (2011). A 1-year randomised controlled trial comparing zirconia versus metal-ceramic implant supported single-tooth restorations. *European Journal of Oral Implantology*, 4(4), 347–361.

Hosseini, M., Worsaae, N., Schiodt, M., & Gotfredsen, K. (2013). A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis. *Clinical Oral Implants Research*, 24(10), 1078–1087. https://doi.org/10.1111/j.1600-0501.2012.02514.x.

Joda, T., Ferrari, M., & Bragger, U. (2017). Monolithic implant-supported lithium disilicate (LS2) crowns in a complete digital workflow: A prospective clinical trial with a 2-year follow-up. *Clinical Implant Dentistry and Related Research*, 19(3), 505–511. https://doi.org/10.1111/cid.12472.

Koenig, V., Wulfman, C., Bekaat, S., Dupont, N., Le Goff, S., Eldarawy, M., Vanheusden, A., & Mainjot, A. (2019). Clinical behavior of second-generation zirconia monolithic posterior restorations: Two-year results of a prospective study with ex vivo analyses including patients with clinical signs of bruxism. *Journal of Dentistry*, 49, https://doi.org/10.1016/j.jdent.2019.103229.

Kolgeci, L., Mericske, E., Worni, A., Walker, P., Katsoulis, J., & Mericske-Stern, R. (2014). Technical complications and failures of zirconia-based prostheses supported by implants followed up to 7 years: a case series. *International Journal of Prosthodontics*, 27(6), 544–552. https://doi.org/10.11607/ijp.3807.

Koller, M., Steyer, E., Theisen, K., Stagnell, S., Jakse, N., & Payer, M. (2020). Two-piece zirconia versus titanium implants after 80 months: Clinical outcomes from a prospective randomized pilot trial. *Clinical Oral Implants Research*, 31(4), 388–396. https://doi.org/10.1111/clr.13576.

Kraus, R. D., Epprecht, A., Hämmerle, C. H. F., Sailer, I., & Thoma, D. S. (2019). Cemented vs screw-retained zirconia-based single implant reconstructions: A 3-year prospective randomized controlled clinical trial. *Clinical Implant Dentistry and Related Research*, 21(4), 578–585. https://doi.org/10.1111/cid.12735.

Laass, A., Sailer, I., Hüsler, J., Hämmerle, C. H., & Thoma, D. S. (2019). Randomized controlled clinical trial of all-ceramic single-tooth implant reconstructions using modified zirconia abutments: Results at 5 years after loading. *International Journal of Periodontics & Restorative Dentistry*, 39(1), 17–27. https://doi.org/10.11607/prd.3792.

Linkevicius, T., Linkevicius, R., Alkimavicius, J., Linkeviceiene, L., Andrijauskas, P., & Puisys, A. (2018). Influence of titanium base, lithium disilicate restoration and vertical soft tissue thickness on bone stability around triangular-shaped implants: A prospective clinical trial. *Clinical Oral Implants Research*, 29(7), 716–724. https://doi.org/10.1111/clr.13263.

Lops, D., Bressan, E., Chiapasco, M., Rossi, A., & Romeo, E. (2013). Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. *International Journal of Oral and Maxillofacial Implants*, 28(1), 281–287. https://doi.org/10.11607/jomi.2668.

Ma, S., Tawse-Smith, A., Brown, S. D. K., & Duncan, W. (2019). Immediately restored single implants in the aesthetic zone of the maxilla using a novel design: 5-year results from a prospective single-arm clinical trial. *Clinical Implant Dentistry and Related Research*, 21(2), 344–351. https://doi.org/10.1111/cid.12733.

Mangano, F., & Veronesi, G. (2018). Digital versus analog procedures for the prosthetic restoration of single implants: a randomized controlled trial with 1 year of follow-up. *Biomed Research International*, 2018, 5325032. https://doi.org/10.1155/2018/5325032.

Meijndert, C. M., Raghoebar, G. M., Santing, H. J., Vissink, A., & Meijer, H. J. A. (2020). Performance of bone-level implants with conical connections in the anterior maxilla: A 5-year prospective cohort study. *Clinical Oral Implants Research*, 31(2), 173–180. https://doi.org/10.1111/cr.13553.

Mühlmann, S., Lakha, T., Jung, R. E., Hämmerle, C. H. F., & Benic, G. I. (2020). Prosthetic outcomes and clinical performance of CAD-CAM monolithic zirconia versus porcelain-fused-to-metal implant crowns in the molar region: 1-year results of aRCT. *Clinical Implant Dentistry and Related Research*, 31(9), 856–864. https://doi.org/10.1111/clr.13631.

Nothdurft, F. P., Nonhoff, J., & Pospiech, P. R. (2014). Pre-fabricated zirconium dioxide implant abutments for single-tooth replacement in the posterior region: success and failure after 3 years of function. *Acta Odontologica Scandinavica*, 72(5), 392–400. https://doi.org/10.3109/00016357.2013.863970.

Ormianer, Z., & Schiroli, G. (2006). Maxillary single-tooth replacement utilizing a novel ceramic restorative system: results to 30 months. *Journal of Oral Implantology*, 32(4), 190–199. https://doi.org/10.1563/805.1.

Paolontoni, G., Marenzi, G., Blasi, A., Mignonja, J., & Sammartino, G. (2016). Findings of a four-year randomized controlled clinical trial comparing two-piece and one-piece zirconia abutments supporting single prosthesis restorations in maxillary anterior region. *BioMed Research International*, 2016, 8767845. https://doi.org/10.1155/2016/8767845.

Peron, C., & Romanos, G. (2020). Immediate provisionalization of single narrow implants in fresh extraction sockets and healed sites: clinical and radiographic outcomes of 2 years follow-up. *International Journal of Periodontics & Restorative Dentistry*, 40(3), 417–424. https://doi.org/10.11607/prd.4622.

Pieri, F., Aldini, N. N., Marchetti, C., & Corinaldesi, G. (2013). Esthetic outcome and tissue stability of maxillary anterior single-tooth implants
following reconstruction with mandibular block grafts: A 5-year prospective study. *International Journal of Oral and Maxillofacial Implants, 28*(1), 270–280. https://doi.org/10.11607/jomi.2560.

Pol, C. W. P., Raghoebear, G. M., Maragkou, Z., Cune, M. S., & Meijer, H. J. A. (2020). Full-zirconia single-tooth molar implant-supported restorations with angulated screw channel abutments: A 1-year prospective case series study. *Clinical Implant Dentistry and Related Research, 22*(1), 138–144. https://doi.org/10.1111/cid.12872.

Rammelsberg, P., Lorenzo Bermejo, J., Kappel, S., Meyer, A., & Zenthofer, A. (2020). Long-term performance of implant-supported metal-ceramic and all-ceramic single crowns. *Journal of Prosthodontic Research, 64*(3), 332–339. https://doi.org/10.1016/j.jpor.2019.09.006.

Schepke, U., Meijer, H. J. V., Vermeulen, K. M., Raghoebear, G. M., & Cune, M. S. (2016). Clinical bonding of resin nano ceramic restorations to zirconia abutments: A case series within a randomized clinical trial. *Clinical Implant Dentistry and Related Research, 18*(5), 984–992. https://doi.org/10.1111/cid.12382.

Teichmann, M., Gockler, F., Weber, V., Yildirim, M., Wolfart, S., & Edelhoff, D. (2017). Ten-year survival and complication rates of lithium-dissilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses. *Journal of Dentistry, 56*, 65–77. https://doi.org/10.1016/j.jdent.2016.10.017.

Vandeweghe, S., Cosyn, J., Thevissen, E., Van den Bergh, L., & De Bruyn, H. (2012). A 1-year prospective study on Co-Axis implants immediately loaded with a full ceramic crown. *Clinical Implant Dentistry and Related Research, 14*(Suppl 1), e126–138. https://doi.org/10.1111/j.1708-8208.2011.00391.x.

Vanlioglu, B. A., Evren, B., Yildiz, C., Uludamar, A., & Ozkan, Y. K. (2012). Internal and marginal adaptation of pressable and computer-aided design/computer-assisted manufacture onlay restorations. *International Journal of Prosthodontics, 25*(3), 262–264.

Weigl, P., Saarepera, K., Hinrikus, K., Wu, Y., Trimou, G., & Lorenz, J. (2019). Screw-retained monolithic zirconia vs. cemented porcelain-fused-to-metal implant crowns: a prospective randomized clinical trial in split-mouth design. *Clinical Oral Investigations, 23*(3), 1067–1075. https://doi.org/10.1007/s00784-018-2531-x.

Weigl, P., Trimou, G., Grizas, E., Hess, P., Nentwig, G. H., Lauer, H. C., & Lorenz, J. (2019). All-ceramic versus titanium-based implant supported restorations: Preliminary 12-months results from a randomized controlled trial. *Journal of Advanced Prosthodontics, 11*(1), 48–54. https://doi.org/10.4047/jap.2019.11.1.48.

Wittneben, J. G., Gavric, J., Sailer, I., Buser, D., & Wismeijer, D. (2020). Clinical and esthetic outcomes of two different prosthetic workflows for implant-supported all-ceramic single crowns—year results of a randomized multicenter clinical trial. *Clinical Oral Implants Research, 31*(5), 495–505. https://doi.org/10.11607/cior.13586.

Zembic, A., Bösch, A., Jung, R. E., Hämmerle, C. H., & Sailer, I. (2013). Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. *Clinical Oral Implants Research, 24*(4), 384–390. https://doi.org/10.1111/ci.12044.

Zembic, A., Philipp, A. O., Hammerle, C. H., Wohlwend, A., & Sailer, I. (2015). Eleven-year follow-up of a prospective study of zirconia implant abutments supporting single all-ceramic crowns in anterior and premolar regions. *Clinical Implant Dentistry and Related Research, 17*(Supplement 2), e417–e426. https://doi.org/10.1111/cid.12263.
REFERENCES OF EXCLUDED STUDIES

Abduo, J., Lee, C. L., Sarfarazi, G., Xue, B., Judge, R., & Darby, I. (2020). Encode protocol versus conventional protocol for single implant restoration: a prospective 2-year follow-up randomized controlled trial. Journal of Oral Implantology. https://doi.org/10.1563/aaid-joi-D-19-00150.

Alayan, J., & Ivanovski, S. (2019). Biological and technical outcomes of restored implants after maxillary sinus augmentation-Results at 1-year loading. Clinical Oral Implants Research, 30(9), 849–860. https://doi.org/10.1111/clr.13489.

Anitua, E., Saracho, J., Almeida, G. Z., Duran-Cantolla, J., & Alkhrasat, M. H. (2017). Frequency of prosthetic complications related to implant-borne prosthesis in a sleep disorder unit. Journal of Oral Implantology, 43(1), 19–23. https://doi.org/10.1563/aaid-joi-D-16-00100.

Balmer, M., Spies, B. C., Kohal, R. J., Hämmerle, C. H., Vach, K., & Jung, R. E. (2020). Zirconia implants restored with single crowns or fixed dental prostheses: 5-year results of a prospective cohort investigation. Clinical Oral Implants Research, 31(5), 452–462. https://doi.org/10.1111/clr.13581.

Balmer, M., Spies, B. C., Vach, K., Kohal, R. J., Hämmerle, C. H. F., & Jung, R. E. (2018). Three-year analysis of zirconia implants used for single-tooth replacement and three-unit fixed dental prostheses: A prospective multicenter study. Clinical Oral Implants Research, 29(3), 290–299. https://doi.org/10.1111/clr.13115.

Barwacz, C. A., Stanford, C. M., Diehl, U. A., Cooper, L. F., Feine, J., McGuire, M., & Scheyer, E. T. (2018). Pink esthetic score outcomes around three implant-abutment configurations: 3-year results. International Journal of Oral & Maxillofacial Implants, 33(5), 1126–1135. https://doi.org/10.11607/jomi.6659.

Becker, J., John, G., Becker, K., Mainusch, S., Diedrichs, G., & Schwarz, F. (2017). Clinical performance of two-piece zirconia implants in the posterior mandible and maxilla: a prospective cohort study over 2 years. Clinical Oral Implants Research, 28(1), 29–35. https://doi.org/10.1111/clr.12610.

Beekmans, D. G., Beekmans, B. R., & Cune, M. S. (2017). Pink and white esthetics of a new zirconia implant: a 6-month to 8-year follow-up. International Journal of Periodontics & Restorative Dentistry, 37(4), 511–518. https://doi.org/10.11607/prd.2705.

Bergenblock, S., Andersson, B., Fürst, B., & Jemt, T. (2012). Long-term follow-up of ceramo single-implant restorations: An 18-year follow-up study based on a prospective patient cohort. Clinical Implants Dentistry and Related Research, 14, 471–479. https://doi.org/10.1016/j.clendir.2010.00290.x.

Branzen, M., Eliasson, A., Arrup, K., & Bazargani, F. (2015). Implant-supported single crowns replacing congenitally missing maxillary lateral incisors: A 5-year follow-up. Clinical Implant Dentistry and Related Research, 17, 1134–1140. https://doi.org/10.1111/cid.12233.

Bonde, M. J., Stokholm, R., Isidor, F., & Schou, S. (2010). Outcome of implant-supported single-tooth replacements performed by dental students. A 10-year clinical and radiographic retrospective study. European Journal of Oral Implantology, 3, 37–46.

Caccia, C., Cantner, F., Mücke, T., Randelzhofer, P., Hajtó, J., & Beuer, F. (2017). Clinical performance of screw-retained and cemented implant-supported zirconia single crowns: 36-month results. Clinical Oral Investigations, 21(6), 1953–1959. https://doi.org/10.1007/s00784-016-1982-1.

Cannizzaro, G., Felice, P., Tulleneque-Eriksson, A., Lazzarini, M., Velasco-Ortega, E., & Esposito, M. (2018). Immediate vs early loading of 6.6 mm flapless-placed single implants: 9 years after-loading report of a split-mouth randomised controlled trial. European Journal of Oral Implantology, 11(2), 163–173. https://doi.org/10.1002 central/CN-01655781/full.

Chrcanovic, B. R., Kisch, J., & Larsson, C. (2019). Retrospective clinical evaluation of implant-supported single crowns: Mean follow-up of 15 years. Clinical Oral Implants Research, 30(7), 691–701. https://doi.org/10.1111/clr.13454.

Chu, S. J., Ostman, P. O., Nicolopoulos, C., Yuvanoglu, P., Chow, J., Nevins, M., & Tarnow, D. P. (2018). Prospective multicenter clinical cohort study of a novel macro hybrid implant in maxillary anterior postextraction sockets: 1-year results. International Journal of Periodontics & Restorative Dentistry, 38(Supplement), s17-s27. https://doi.org/10.11607/prd.3987.

Cionca, N., Müller, N., & Mombelli, A. (2015). Two-piece zirconia implants supporting all-ceramic crowns: A prospective clinical study. Clinical Oral Implants Research, 26, 413–418. https://doi.org/10.1111/clr.12370.

De Angelis, P., Passarelli, P. C., Gasparini, G., Bonielli, R., D’Amato, G., & De Angelis, S. (2020). Monolithic CAD-CAM lithium disilicate versus monolithic CAD-CAM zirconia for single implant-supported posterior crowns using a digital workflow: A 3-year cross-sectional retrospective study. Journal of Prosthetic Dentistry, 123(2), 252–256. https://doi.org/10.1016/j.jpdent.2018.11.016.

Degidi, M., Nardi, D., Gianluca, S., & Piattelli, A. (2018). The conomeric concept: a 5-year follow-up of fixed partial monolithic zirconia restorations supported by cone-in-cone abutments. International Journal of Periodontics & Restorative Dentistry, 38(3), 363–371. https://doi.org/10.11607/prd.3130.

Dierens, M., De Bruyn, H., Kisch, J., Nilner, K., Cosyn, J., & Vandeweghe, S. (2016). Prosthetic survival and complication rate of single implant treatment in the periodontally healthy patient after 16 to 22 years of follow-up. Clinical Implants Dentistry and Related Research, 18, 117–128. https://doi.org/10.1111/cid.12266.

Eisner, B., Naenni, N., Hüsler, J., Hämmerle, C., Thoma, D., & Sailer, I. (2018). Three-year results of a randomized controlled clinical trial using submucosally veneered and unveneered zirconia abutments supporting all-ceramic single-implant crowns. International Journal of Periodontics & Restorative Dentistry, 38(5), 645–652. https://doi.org/10.11607/prd.3669.

Ekfeldt, A., Fürst, B., & Carlsson, G. E. (2017). Zirconia abutments for single-tooth implant restorations: a 10- to 11-year follow-up study. Clinical Oral Implants Research, 28(10), 1303–1308. https://doi.org/10.1111/clr.12975.

Fürhauser, R., Mailath-Pokorny, G., Haas, R., Busenlechner, D., Watzek, G., & Pommer, B. (2017). Immediate restoration of immediate implants in the esthetic zone of the maxilla via the copy-abutment technique: 5-year follow-up of pink esthetic scores. Clinical Implant Dentistry and Related Research, 19(1), 28–37. https://doi.org/10.1111/cid.12423.

Gallicci, G. O., Grutter, L., Nedin, R., Bischof, M., & Belser, U. C. (2011). Esthetic outcomes with porcelain-fused-to-ceramic and all-ceramic single-implant crowns: A randomized clinical trial. Clinical Oral Implants Research, 22, 62–69. https://doi.org/10.1111/j.1600-0501.2010.01997.x.
Glauser, R., Sailer, I., Wohlwend, A., Studer, S., Schibli, M., & Schärer, P. 2019. Retrospective study. Journal of Prosthetic Dentistry, 117(3), 363–366. https://doi.org/10.1016/j.jpodent.2016.07.023.

Hsu, K. W., Wei, P. C., Chen, Y. L., & Liou, E. J. 2019. A retrospective case series. Journal of Prosthetic Dentistry, 117(3), 1553–1559. https://doi.org/10.10111/clr.13025.

Hsu, K. W., Shen, Y. F., & Wei, P. C. 2017. A prospective clinical study. Journal of Prosthetic Dentistry, 117(3), 353–359. https://doi.org/10.1016/j.jpodent.2016.07.023.

Hsu, K. W., Wei, P. C., Chen, Y. L., & Liou, E. J. 2019. Retrospective and clinical evaluation of aftermarket CAD/CAM titanium abutments supporting posterior splinted prostheses and single crowns. International Journal of Oral & Maxillofacial Implants, 34(5), 1161–1168. https://doi.org/10.11167/jomi.7365.

Kniha, K., Bock, A., Peters, F., Heitzer, M., Modabber, A., Kniha, H., Hörlze, F., & Möhlinrich, S. C. 2020. Aesthetic aspects of adjacent maxillary single-crown implants-influence of zirconia and titanium as implant materials. International Journal of Oral and Maxillofacial Surgery, 49(11), 1489–1496. https://doi.org/10.1016/j.ijoms.2020.04.003.

Kniha, K., Schlegel, K. A., Kniha, H., Modabber, A., Hörlze, F., & Kniha, K. 2018. Evaluation of peri-implant bone levels and soft tissue dimensions around zirconia implants-a three-year follow-up study. International Journal of Oral and Maxillofacial Surgery, 47(4), 492–498. https://doi.org/10.1016/j.ijoms.2017.10.013.

Kohal, R. J., Spies, B. C., Bauer, A., & Butz, F. 2018. One-piece zirconia implant for single-tooth replacement: Three-year results from a long-term prospective cohort study. Journal of Clinical Periodontology, 45(1), 114–124. https://doi.org/10.1111/jcpe.12815.

Kohal, R. J., Spies, B. C., Vach, K., Balmer, M., & Pieralli, S. 2020. A prospective clinical cohort investigation on zirconia implants: 5-year results. Journal of Clinical Medicine, 9(8), 2585. https://doi.org/10.3390/jcm9082585.

Konstantinidis, I., Trikka, D., Gasparatos, S., & Mitsias, M. 2018. Clinical outcomes of monolithic zirconia crowns with CAD/CAM technology. A 1-year follow-up prospective clinical study of 65 patients. International Journal of Environmental Research and Public Health, 15(11), 2523. https://doi.org/10.3390/ijerph15112523.

Lerner, H., Mouhyi, J., Admakin, O., & Mangano, F. 2020. Artificial intelligence in fixed implant prosthodontics: a retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC Oral Health, 20(1), 80. https://doi.org/10.1186/s12903-020-1062-4.

Lorenz, J., Giulinii, N., Holscher, W., Schwietz, A., Schwarz, F., & Sader, R. 2019. Zirconia and titanium implant abutments for single-tooth implant prostheses after 5 years of function in posterior regions. International Journal of Oral and Maxillofacial Implants, 28, 281–287. https://doi.org/10.11167/jomi.2668.

Malo, P., de Araujo Nobre, M., Lopes, A., Ferro, A., & Gravito, I. 2015. Single-tooth rehabilitations supported by dental implants used in an immediate-provisionalization protocol: Report on long-term outcome with retrospective follow-up. Clinical Implants Dentistry and Related Research, 17(Suppl 2), e511–e519. https://doi.org/10.1111/cid.12278.

Mangano, F., Margiani, B., & Admakin, O. 2019. A novel full-digital protocol (SCAN-PLAN-MAKE-DONE®) for the design and fabrication of implant-supported monolithic translucent zirconia crowns cemented on customized hybrid abutments: A retrospective clinical study on 25 patients. International Journal of Environmental Research and Public Health, 16(3), https://doi.org/10.3390/ijerph16030317.

Meloni, S. M., Baldoni, E., Duvina, M., Pisano, M., De Riu, G., & Tallarico, M. 2018. Immediate non-occlusal versus delayed loading of mandibular first molar. Five-year results from a randomised controlled trial. European Journal of Oral Implantology, 11(4), 409–418. https://doi.org/10.1002/central/CN-02084164.full.

Meloni, S. M., Baldoni, E., Pisano, M., Tullio, A., De Riu, G., & Tallarico, M. 2018. 1-year results from a split-mouth randomised controlled pilot trial comparing implants with 0.75 mm of machined collar placed at bone level or supracrestally. European Journal of Oral Implantology, 11(3), 353–359. https://doi.org/10.1002/central/CN-02084235/full.

Monaco, C., Caldari, M., & Scotti, R. 2015. Clinical evaluation of zirconia-based restorations on implants: A retrospective cohort study from the AIOP clinical research group. International Journal of Prosthodontics, 28, 239–242.

Montemezzi, P., Ferrini, F., Panteleao, G., Gherlone, E., & Capparè, P. 2020. Dental implants with different neck design: A prospective clinical comparative study with 2-year follow-up. Materials (Basel), 13(5), 1029. https://doi.org/10.3390/ma13051029.

Nedir, R., Nurdin, N., Huynh-Ba, G., & Bischof, M. 2019. Change in crown-to-implant ratio of implants placed in grafted and non-grafted posterior maxillary sites: A 5-year prospective randomized study. International Journal of Oral and Maxillofacial Implants, 34(5), 1231–1236. https://doi.org/10.11167/jomi.6766.

Nejetidanesh, F., Moradpoor, H., & Savabi, O. 2016. Clinical outcomes of zirconia-based implant and tooth-supported single crowns. Clinical Oral Investigation, 20, 169–178. https://doi.org/10.1007/s00784-015-1479-3.

Nilsson, A., Johansson, L., Lindh, C., & Ekfeldt, A. 2017. One-piece internal zirconia abutments for single-tooth restorations on narrow and regular diameter implants: A 5-year prospective follow-up study. Clinical Implant Dentistry and Related Research, 19(5), 916–925. https://doi.org/10.1111/cid.12515.

Noelken, R., Moergel, M., Kunkel, M., & Wagner, W. 2018. Immediate and flapless implant insertion and provisionalization using autogenous bone grafts in the esthetic zone: 5-year results. Clinical Implants Research, 29(3), 320–327. https://doi.org/10.1111/clr.13119.

Payer, M., Arnetzl, V., Kirmeyer, R., Koller, M., Arnetzl, G., & Jakse, N. 2013. Immediate provisional restoration of single-piece zirconia implants: A prospective case series -results after 24 months of clinical function. Clinical Implants Research, 24, 569–575. https://doi.org/10.1111/j.1600-0501.2012.02425.x.

Payer, M., Heschl, A., Koller, M., Arnetzl, G., Lorenzenzi, M., & Jakse, N. 2015. All-ceramic restoration of zirconia two-piece implants-a randomized controlled clinical trial. Clinical Oral Implants Research, 26, 371–376. https://doi.org/10.1111/clr.12342.

Prati, C., Zamparini, F., Pirani, C., Montebugnoli, L., Canullo, L., & Gandolfi, M. G. 2020. A multilevel analysis of platform-switching flapless implants placed at tissue level: 4-year prospective cohort study. International Journal of Oral & Maxillofacial Implants, 35(2), 330–341. https://doi.org/10.1111/jomi.7541.

Raes, F., Cosyn, J., Crommelinck, E., Coessens, P., & De Bruyn, H. 2011. Immediate and conventional single implant treatment in the
SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Pjetursson, B. E., Sailer, I., Latyshev, A., Rabel, K., Kohal, R.-J., & Karasan, D. (2021). A systematic review and meta-analysis evaluating the survival, the failure, and the complication rates of veneered and monolithic all-ceramic implant-supported single crowns. *Clinical Oral Implants Research*, 32, 254–288. https://doi.org/10.1111/clr.13863