Measurement of parity-violating spin asymmetries in W production at midrapidity in longitudinally polarized p+p collisions

Title	Physical review D
Volume	93
Number	5
Page Range	051103
Year	2016-03
URL	http://hdl.handle.net/2241/00141829
doi	10.1103/PhysRevD.93.051103

著者別名 | 中條 達也 ▪ 江角 晋一 ▪ 三明 康郎

権利 | 本資料は著作権者により保護されている
PHYSICAL REVIEW D 93, 051103(R) (2016)

Measurement of parity-violating spin asymmetries in W^\pm production at midrapidity in longitudinally polarized $p+p$ collisions

A. Adare,13 C. Aidala,39,44 N. N. Ajitanand,61 Y. Akiba,57,58 R. Akimoto,12 J. Alexander,63 M. Alfred 23 K. Aoki,32,57 N. Apadula,28,64 Y. Aramaki,12,57 H. Asano,35,57 E. Aschenauer,7. E. T. Atoma,64 T. C. Awes,58 B. Azmoun,7 V. Babintsev,24 M. Bai,11 N. S. Bandara,43 B. Banner,15 K. N. Barish,4 B. Bassalleck,15 S. Bathe,7,59 V. Baublis,7,58 C. Baumann,7 S. Baumgart,57 A. Bazilevsky,57 M. Beaumier,7 S. Beckman,13,44 R. Belmont,13,44,68 A. Berdnikov,60 Y. Berdnikov,60 D. Black,6,57 J. S. Bok,50,51 K. Boyle,58 M. L. Brooks,57 J. Bryslavskaia,7, H. Buesching,7 V. Bumazhnov,24 S. Buts,7 K. Campbell,14,28 C.-H. Chen,8,46 Y. C. Chi,14 M. Chiu,5 I. J. Choi,7 J. B. Choi,52 S. Choi,62,75 R. K. Choudhury,57 P. Christiansen,24 T. Chiujo,67 O. Chvala,57,68 V. Cianciolo,53 Z. Citron,64,69 B. A. Cole,64 M. Connors,4,67 N. Cronin,45,64 N. Crossley,57 T. Csörgő,70 S. Dairaku,35,57 T. W. Danley,52 A. Datta,43,50 M. S. Daugherity,5 G. David,5 K. DeBlasio,7 K. Demhref,56 A. Denisov,7 A. Deshpande,75 M. Derenkov,16,75 E. J. Desmond,7 O. Dietzsch,61 L. Ding,52 A. Dion,28,64 P. B. Doss,42 J. H. Do,7,51 Donadelli,61 L. D’Orazio,42 O. Drapier,56 A. Drees,64 K. A. Drees,6 J. M. Durham,39,64 A. Durum,24 S. Edwards,57,58 V. Y. Efremenko,175 T. Engelmore,7 A. Enokizono,75 H. En’yo,57,58 S. Esumi,57 K. O. Eyer,57 B. Fadem,46 N. Feege,64 D. E. Fields,57,50 M. Finger,5,75 M. Finger,5,75 F. Fleuret,36 S. L. Fokin,34 T. Maruyama,29 M. McCumber,13,39 P. L. McGaughey,39 D. McGlinchey,13,19 C. McKinney,25 A. Meles,51 M. Mendoza,8 E.-J. Kim,10 G. W. Kim,18 H.-J. Kim,71 Y.-J. Kim,25 Y. K. Kim,21 B. Kimelman,45 E. Kinney,13 E. Kistenev,7 T. Ichihara,57,58 H. Iinuma,32 Y. Ikeda,57,67 K. Imai,29 Y. Imazu,57 J. Imrek,16 M. Inaba,62 Y. Inaba,52 Y. Ina...
A. ADARE et al.

PHYSICAL REVIEW D 93, 051103(R) (2016)

M. Virius,15 B. Voas,28 V. Vrba,15,27 E. Vznuzdaev,56 X. R. Wang,51,58 D. Watanabe,22 K. Watanabe,57,59 Y. Watanabe,57,58 Y. S. Watanabe,12,32 F. Wei,51 S. Whitaker,28 A. S. White,44 S. N. White,1 D. Winter,14 S. Wolin,25 C. L. Woody,1 M. Wysocki,13,53 B. Xia,52 L. Xue,20 S. Yalcin,64 Y. L. Yamaguchi,12,64 A. Yanovich,24 J. Ying,20 S. Yokkaichi,57,58 J. H. Yoo,33 I. Yoon,62 Z. You,39 I. Younus,37,50 H. Yu,53 I. E. Yushmanov,34 W. A. Zaje,14 A. Zelenski,6 S. Zhou,11 and L. Zou8

(PHENIX Collaboration)

1Abilene Christian University, Abilene, Texas 79699, USA
2Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3Department of Physics, Banaras Hindu University, Varanasi 221005, India
4Bhabha Atomic Research Centre, Bombay 400 085, India
5Baruch College, City University of New York, New York, New York, 10010, USA
6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
8University of California-Riverside, Riverside, California 92521, USA
9Charles University, Ovocný trh 5, Praha 1, 116 36 Prague, Czech Republic
10Chonbuk National University, Jeonju 561-756, Korea
11Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China
12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
13University of Colorado, Boulder, Colorado 80309, USA
14Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
16Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
17ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary
18Ewha Womans University, Seoul 120-750, Korea
19Florida State University, Tallahassee, Florida 32306, USA
20Georgia State University, Atlanta, Georgia 30303, USA
21Hanyang University, Seoul 133-792, Korea
22Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
23Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA
24HEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino 142281, Russia
25University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
26Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktabrya 7a, Moscow 117312, Russia
27Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
28Iowa State University, Ames, Iowa 50011, USA
29Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan
30Helsinki Institute of Physics and University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
31Károly Róbert University College, H-3200 Gyöngyös, Mátrai út 36, Hungary
32KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
33Korea University, Seoul 136-701, Korea
34National Research Center “Kurchatov Institute,” Moscow, 123098 Russia
35Kyoto University, Kyoto 606-8502, Japan
36Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128 Palaiseau, France
37Physics Department, Lahore University of Management Sciences, Lahore 54792, Pakistan
38Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
40LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
41Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
42University of Maryland, College Park, Maryland 20742, USA
43Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
44Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from $W/\gamma_\gamma = Z$ decays, produced in longitudinally polarized $p^- p$ collisions at center of mass energies of $\sqrt{s} = 500$ and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb^{-1}, which exceeds previous PHENIX published results by a factor of more than 27. These high Q^2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly $M_W/\sqrt{s} = 0.16$.

DOI: 10.1103/PhysRevD.93.051103

The determination of the contributions of partons to the spin of the proton has inspired significant theoretical and experimental effort for several decades [1–13]. The quark contribution to the nucleon spin has been deduced through measurements in polarized inclusive deep-inelastic scattering (DIS) and semi-inclusive deep-inelastic scattering (SIDIS) experiments [6,12–15]. Although the overall quark contribution ($\Delta \Sigma = \Delta q + \Delta \bar{q}$) has been well determined through DIS experiments (in the range $10^{-3} < x < 1$), the contributions from sea quarks separated by flavor (determined through SIDIS experiments) are comparatively poorly known. Data from HERMES and COMPASS [6,16] provide constraints on the contribution from the sea quarks, however, uncertainties in fragmentation functions and the low energy scales of fixed target experiments limit the accuracy with which these measurements can quantitatively determine the sea quark contribution [17].

*Deceased.
†morrison@bnl.gov
‡jamie.nagle@colorado.edu
such, an independent measurement using a different technique [18] to determine the contribution from different flavors of sea quarks is desirable.

The use of W-boson production provides just such a solution. Parity is maximally violated in the W couplings to quarks and leptons, so W\(^+\) production in p + p collisions proceeds only by coupling to left-handed quarks and right-handed antiquarks (\(u_L \bar{d}_R \rightarrow W^+\) and \(d_L \bar{u}_R \rightarrow W^-\)). By measuring decay leptons in the final state, the flavor and helicity state of the colliding quarks can be determined [18–21]. Asymmetries measured in W\(^\pm\) by reversing the helicity of a colliding proton are sensitive to the individual quark/antiquark helicity parton distribution functions (PDFs) (\(\Delta u, \Delta d, \Delta \bar{u}\) and \(\Delta \bar{d}\)). Moreover, the energy scale for these events, of the order of the W-boson mass, allows for small and precisely calculable higher-order corrections.

We present results for the parity-violating single-spin asymmetry \(A_x\) for p + p \(\rightarrow W^\pm/Z + X \rightarrow e^\pm + X\) at mid-rapidity from 2011–2013 PHENIX data at the Relativistic Heavy Ion Collider (RHIC). These results relate to an intermediate Bjorken x value of roughly \(M_W/\sqrt{s} = 0.16\). Initial measurements at RHIC in 2009 accumulated 8.6 pb\(^{-1}\) by PHENIX [9] and 12 pb\(^{-1}\) by STAR [10,11]. Here, the total integrated luminosity is 240 pb\(^{-1}\) at \(\sqrt{s} = 500\) GeV in 2011, and at 510 GeV in 2012 and 2013 [22]. Proton-beam polarizations were also considerably improved from ~0.39 in 2009 to 0.50–0.56 in 2011–2013.

The measurements are performed with the two PHENIX central arm spectrometers. Each arm covers \(|\Delta \phi| = \pi/2\) in azimuth and \(|\eta| < 0.35\) in pseudorapidity. A comprehensive description of the PHENIX detector at RHIC can be found in [23]. The major detector subsystems used for this analysis are the electromagnetic calorimeter (EMCal) and the drift chamber/pad chamber tracking system. Two beam-beam counters located at \(\pm 144\) cm from the collision point along the beam line and covering \(3.1 < |\eta| < 3.9\) were used to define the minimum bias trigger and to measure the relative luminosity between different colliding bunch pairs.

The data were collected with an EMCal-based trigger [24] with nominal energy threshold of 5.6 GeV, which was fully efficient for \(e^\pm\) with transverse momentum \(p_T > 10\) GeV/c. The \(p_T^\pm\) was determined from the energy deposited in the EMCal with energy resolution \(\sigma_E/E = 8.1\%/\sqrt{E(\text{GeV})} \oplus 4\%\). The energy resolution was determined from the \(p_T\) dependence of the widths of reconstructed \(\pi^0\) and \(\eta\) meson mass peaks. The same \(\pi^0\) and \(\eta\) meson mass peaks were used in the energy calibration of the EMCal, and were continuously monitored. Similar to our previous analysis [9] and test beam data results [24], the EMCal energy scale was confirmed to within 2.5%, for the energy range analyzed with this data. A loose time-of-flight cut was applied in the analysis to remove noncollision background.

The tracking system was used for collision vertex reconstruction, track charge sign determination, and background suppression. The main tracking detector, the drift chamber (DC), spanning the radial distance 2.02–2.46 m from the beam line, measured the charged track bending in the axial magnetic field of the PHENIX central magnet, with a field integral of 1.15 Tm. The \(z\) coordinate for the tracks was obtained from the pad chambers situated behind the DC. Reconstructed tracks were matched with high energy clusters in the EMCal within a cone angle of 0.02, retaining > 99% of real \(e^\pm\) tracks, as determined from simulations. The coordinate information from both the calorimeter and the tracking system was used to determine the \(z\) vertex of the event, and only events with \(|z| > 30\) cm were used in the analysis.

The charge sign of a track was determined from the bending angle \(\alpha_{\text{DC}}\), which is inversely proportional to the track transverse momentum \(\alpha_{\text{DC}}(\text{mrad}) = 92/p_T\) GeV/c. A region corresponding to \(|\alpha_{\text{DC}}| > 1\) mrad was removed in order to minimize the possibility of charge misidentification. This led to < 3% loss of \(e^\pm\) from W-boson decays. To further eliminate the charge sign ambiguity in the DC track reconstruction, the regions in the vicinity of anode wires were removed from the analysis, reducing the DC acceptance by ~15%. The remaining opposite charge contribution to the W\(^-\) (W\(^+\)) signal was 2% (0.4%), as determined using the DC resolution of 1.4 mrad and \(\alpha_{\text{DC}}\) convoluted over the W decay \(e^\pm\) \(p_T\) distribution. The result is consistent with a full detector simulation.

Accurate momentum reconstruction in the tracking system requires the precise determination of the beam position in the plane orthogonal to the beam line. This was measured and monitored using straight tracks from special runs with the magnetic field off throughout the data taking period.

An isolation cut was very efficient at suppressing background events with a high degree of activity around a candidate electron (as would happen for jet events). The cut parameter \(r_{\text{iso}}\) was defined as \(r_{\text{iso}} = (2E_i)/E_e\), where \(E_i\) is the \(i\)th EMCal cluster energy and track \(p_T\) around the electron candidate in a cone with a radius in \(\eta\) and \(\phi\) of 0.4, and \(E_e\) is the energy of electron candidate. A candidate was kept for the analysis if \(r_{\text{iso}} < 0.1\).

Figure 1 shows the resulting yield of electron and positron candidates for the 2013 data set. A Jacobian peak around \(p_T^e = 40\) GeV/c corresponds to \(e^\pm\) from W\(^-\) and Z boson decays. The isolation cut removed about 90% of the background (as was evaluated from the background-dominated region between 10 and 20 GeV/c) and left more than 90% of the signal in the Jacobian peak region untouched (as evaluated from simulations explained below). Similar results were obtained for the 2011 and 2012 data sets. Above 30 GeV/c the remaining candidate events after the isolation cut are dominated by W and Z decay to electrons/positrons, and by background events below 25 GeV/c. This background consists mainly of high momentum electrons/positrons from conversion of \(\pi^0/\eta\)
decay photons, charged pions/kaons, $\beta, c \rightarrow e$ decays and accidental matching between high energy EMCal clusters and tracks in the DC. The Z boson contribution in the signal region above 30 GeV/c was estimated to be 7% (25%) for the positrons (electrons) after all analysis cuts were applied, as determined from simulations. The asymmetry of the Z has been estimated theoretically using the DSSV08 PDF sets and measured by the STAR Collaboration [11] to be -0.07 ± 0.14.

Experimentally, the longitudinal single-spin asymmetry is defined as

$$A_L = \frac{1}{P} \frac{N^+ - RN^-}{N^+ + RN^-}.$$

where P is the beam polarization, N^+ (N^-) is the number of events in the signal region for the positive (negative) beam helicity and R is the luminosity ratio (relative luminosity) between positive and negative helicity bunches measured using the minimum bias trigger defined by a coincidence of the two beam-beam counters. The relative luminosity between different helicity combinations did not differ from unity by more than 2%. The asymmetry calculation was performed for events in the p_T range from 30 to 50 GeV/c, which defined the signal region in this analysis. This range was selected to optimize the signal to background. Less than 1% of the signal is expected above 50 GeV/c. Asymmetries obtained in this fashion must be corrected for background events, which are parity conserving, in the signal region. This dilution factor can be defined as $(A - B)/A$, where A (B) is the number of all (background) events in the signal region $30 < p_T < 50$ GeV/c. The final asymmetry values can be obtained by dividing the result by the dilution factor.

The background in the signal region was estimated using the Gaussian process regression (GPR) technique [25–28] to extrapolate the background shape from the background-dominated region to the signal-dominated region. The major advantage of this method is that it does not require an a priori known functional form to test against data. At its core, this method allows for the determination of the shape of a set of data points with statistical uncertainties using only the data themselves. Furthermore, the predictions made using this method have a mathematically well-defined Gaussian uncertainty.

Through our use of the radial basis function (RBF) kernel [25,26], we assume a smooth (infinitely differentiable) shape for the background. The background shape was constrained from data points in the p_T ranges $10–22$ GeV/c and $60–65$ GeV/c, where the signal contribution is expected to be negligible. Although bins in the range $60–65$ GeV/c don’t contain any events, they still improve the precision of the background evaluation. These empty bins were assigned a statistical uncertainty of 1 count. The background in the signal region is assumed to vary on p_T scales equal or larger than those in the background-dominated regions.

The RBF kernel contains a characteristic length parameter that is an indicator of how far away from data the background extrapolations can be made. For obtained characteristic lengths larger than 30 GeV/c, we concluded that our background estimation (based on data between 10 to 22 GeV/c and 60 to 65 GeV/c) in the signal region (30 to 50 GeV/c) has an appropriate statistical uncertainty.

Table I summarizes the background contributions with statistical uncertainties obtained using the GPR approach along with the counts in the signal region for each data set. The GPR analysis was performed for different p_T ranges for the background estimation and including/excluding the constraint between 60 and 65 GeV/c. The results were within the statistical uncertainty of the full GPR analysis so no additional systematic was added.

In Fig. 1, the background and signal shapes were used to describe the data points. The only fit parameter was the normalization for the signal shape. The signal shape was obtained from a PYTHIA simulation [29] of W^\pm and Z boson decays to electrons/positrons, followed by a full GEANT3-based [30] detector response simulation. The simulated events were analyzed using the analysis package used for the data. The fit quality of the data-driven background shape plus the simulated signal shape is reasonable for both e^- and e^+ spectra.

As a cross check of the background determination, a fit to the data using a phenomenologically motivated modified power law function as the background shape was also
TABLE I. Number of events recorded for e^+ and e^- for $30 < p_T < 50$ GeV/c and the background contributions, dilution factors, and two-beam polarizations for each analyzed data set.

Lepton	Year	Counts	Background contribution	Dilution factor	Polarization
e^+	2011	70	2.3 ± 2.3 (stat) ± 0.6 (syst)	0.97 ± 0.03 (stat) ± 0.01 (syst)	0.51 ± 0.02
	2012	105	2.5 ± 2.5 (stat) ± 0.7 (syst)	0.98 ± 0.02 (stat) ± 0.02 (syst)	0.55 ± 0.02
	2013	669	18.6 ± 7.3 (stat) ± 14.9 (syst)	0.97 ± 0.01 (stat) ± 0.02 (syst)	0.55 ± 0.02
e^-	2011	27	1.7 ± 1.6 (stat) ± 0.7 (syst)	0.94 ± 0.06 (stat) ± 0.02 (syst)	0.51 ± 0.02
	2012	47	5.5 ± 4.7 (stat) ± 2.2 (syst)	0.88 ± 0.10 (stat) ± 0.05 (syst)	0.55 ± 0.02
	2013	233	13.9 ± 5.6 (stat) ± 13.9 (syst)	0.94 ± 0.02 (stat) ± 0.09 (syst)	0.55 ± 0.02

where N_{yb} is the spin sorted yield. To calculate the 2013 positive and negative η bin asymmetries a generalized form for these equations was used.

Table II summarizes the A_L results. Both of the asymmetry calculation methods employed gave consistent results for all the data sets. The systematic uncertainties were obtained by propagating the systematic uncertainties of the dilution factors to the final asymmetry values. A scale uncertainty of 3.5% from the RHIC beam polarization measurements is not included in Table I. The asymmetry in the background region was also measured and for all cases the asymmetry was consistent with zero, within uncertainties.

These results are shown in Fig. 2 with two theoretical calculations: collisions at high energies (CHE) [21] for the NNPDFpol1.1 [14] and a recent calculation [31] using the DSSV 14 PDF sets [32]. While the DSSV 14 curve was obtained from a global fit of DIS and SIDIS data (including recent COMPASS results [15,16]), the NNPDFpol1.1 uncertainty band contains the 2012 STAR [11] result for flavor separation in addition to DIS data. The theoretical asymmetry calculations agree with the data within 1.5σ uncertainty of the data points. These results will be used to further constrain the quark and antiquark polarized parton distributions functions at an intermediate Bjorken x value of roughly $M_W/\sqrt{s} = 0.16$.

Figure 3 shows the combined asymmetry for all of the PHENIX data sets and published data from STAR [11]. The

TABLE II. Longitudinal single-spin asymmetries, A_L, for the 2011 and 2012 data sets (combined) spanning the entire η range of PHENIX ($|\eta| < 0.35$), for the 2013 data set separated into two η bins, and for the combined 2011-2013 data sets.

Lepton	Data set	$\langle \eta \rangle$	A_L
e^+	2011+2012	0	-0.27 ± 0.10 (stat) ± 0.01 (syst)
	2013 $\eta > 0$	0.17	-0.38 ± 0.07 (stat) ± 0.01 (syst)
	2013 $\eta < 0$	-0.17	-0.35 ± 0.07 (stat) ± 0.01 (syst)
	2011–2013 all	0	-0.35 ± 0.04 (stat) ± 0.01 (syst)
e^-	2011+2012	0	0.28 ± 0.16 (stat) ± 0.02 (syst)
	2013 $\eta > 0$	0.17	0.10 ± 0.13 (stat) ± 0.02 (syst)
	2013 $\eta < 0$	-0.17	0.17 ± 0.12 (stat) ± 0.02 (syst)
	2011–2013 all	0	0.17 ± 0.08 (stat) ± 0.02 (syst)
two data sets cannot be compared directly, because PHENIX measures the asymmetry from $W^{\pm} + Z$ decays, while the STAR result is solely from W^{\pm} decays. The comparison can be made through the curves, which account for the specifics of each measurement. Qualitatively, both data sets show the same trend with data points below (above) the central value of the theoretical prediction for W^+ (W^-), for $|\eta| < 0.5$. The W^- difference a larger Δu contribution in the covered $x \sim 0.16$ range, when compared with the central value of the DSSV 14 PDF fit calculation.

In summary, for high p_T e^- and e^+ from W^\pm and Z boson decays, PHENIX measured the single-spin asymmetries with more than 27 times higher statistics and better polarization compared to 2009 [9]. These new results and the STAR data [11] will help constrain the antiquark PDFs in a global analysis. Asymmetries calculated from global fits based on previous measurements, such as DSSV14 and NNPDFpol1.1, are consistent with our data. The use of the electroweak interaction provides an independent tool to extract quark and antiquark helicity contribution. The data presented here are complementary to previous SIDIS measurements and bring the field one step closer to elucidation of the proton-spin puzzle [1].

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), National Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), National Science Foundation, OTKA, Károly Róbert University College, and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation.
A. ADARE et al.

[1] J. Ashman et al. (European Muon Collaboration), A measurement of the spin asymmetry and determination of the structure function $g_1(x)$ in deep inelastic muon-proton scattering, Phys. Lett. B 206, 364 (1988).

[2] R. L. Jaffe and A. Manohar, The $G(1)$ problem: Fact and fantasy on the spin of the proton, Nucl. Phys. B337, 509 (1990).

[3] B. Adeva et al. (Spin Muon Collaboration), Spin asymmetries $A(1)$ and structure functions g_1 of the proton and the deuteron from polarized high-energy muon scattering, Phys. Rev. D 58, 112001 (1998).

[4] P. L. Anthony et al. (E155 Collaboration), Measurement of the deuteron spin structure function $g_1^d(x)$ for $1 \text{GeV}/c^2 < Q^2 < 40 \text{GeV}/c^2$, Phys. Lett. B 463, 339 (1999).

[5] M. Alekseev et al. (COMPASS Collaboration), The polarised valence quark distribution from semi-inclusive DIS, Phys. Lett. B 660, 458 (2008).

[6] A. Airapetian et al. (HERMES Collaboration), Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D 71, 012003 (2005).

[7] A. Adare et al. (PHENIX Collaboration), Inclusive double-helicity asymmetries in neutral-pion and eta-meson production in $p + \bar{p}$ collisions at $\sqrt{s} = 200$ GeV, Phys. Rev. D 90, 012007 (2014).

[8] L. Adamczyk et al. (STAR Collaboration), Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s} = 200$ GeV, Phys. Rev. Lett. 115, 092002 (2015).

[9] A. Adare et al. (PHENIX Collaboration), Cross Section and Parity Violating Spin Asymmetries of W^\pm Boson Production in Polarized $p + \bar{p}$ Collisions at $\sqrt{s} = 500$ GeV, Phys. Rev. Lett. 106, 062001 (2011).

[10] M. M. Aggarwal et al. (STAR Collaboration), Measurement of the Parity-Violating Longitudinal Single-Spin Asymmetry for W^\pm Boson Production in Polarized Proton-Proton Collisions at $\sqrt{s} = 500$ GeV, Phys. Rev. Lett. 106, 062002 (2011).

[11] L. Adamczyk et al. (STAR Collaboration), Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC, Phys. Rev. Lett. 113, 072301 (2014).

[12] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Extraction of spin-dependent parton densities and their uncertainties, Phys. Rev. D 80, 034030 (2009).

[13] E. Leader, A. V. Sidorov, and D. B. Stamenov, Determination of polarized PDFs from a QCD analysis of inclusive and semi-inclusive deep inelastic scattering data, Phys. Rev. D 82, 114018 (2010).

[14] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo (The NNPDF Collaboration), A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B887, 276 (2014).

[15] M. G. Alekseev et al. (COMPASS Collaboration), The spin-dependent structure function of the proton g_1^p and a test of the Bjorken sum rule, Phys. Lett. B 690, 466 (2010).

[16] M. G. Alekseev et al. (COMPASS Collaboration), Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering, Phys. Lett. B 693, 227 (2010).

[17] E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of CLAS and COMPASS data on polarized parton densities and higher twist, Phys. Rev. D 75, 074027 (2007).

[18] C. Bourrely and J. Soffer, Parton distributions and parity violating asymmetries in W^\pm and Z production at RHIC, Phys. Lett. B 314, 132 (1993).

[19] G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, Prospects for spin physics at RHIC, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).

[20] P. M. Nadolsky and C. P. Yuan, Single spin asymmetries with weak bosons at RHIC, Nucl. Phys. B666, 31 (2003).

[21] D. de Florian and W. Vogelsang, Helicity parton distributions from spin asymmetries in W-boson Production at RHIC, Phys. Rev. D 81, 094020 (2010).

[22] V. Schoefer et al., in Proceedings of IPAC 2012 (unpublished).

[23] K. Adcox et al. (PHENIX Collaboration), PHENIX detector overview, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 469 (2003).

[24] L. Aphecetche et al. (PHENIX Collaboration), PHENIX calorimeter, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 521 (2003).

[25] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, New York, 2003).

[26] C. E. Rasmussen and K. I. Williams, Gaussian Processes for Machine Learning (MIT Press, Boston, 2006).

[27] S. L. Lauritzen, Graphical Models (Oxford University Press, New York, 1996).

[28] D. Barber, Bayesian Reasoning and Machine Learning (Cambridge University Press, Cambridge, 2012).

[29] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, J. High Energy Phys. 05 (2006) 026.

[30] S. S. Adler et al. (PHENIX Collaboration), PHENIX on-line and off-line computing, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 593 (2003).

[31] F. Ringer and W. Vogelsang, Single-spin asymmetries in W boson production at next-to-leading order, Phys. Rev. D 91, 094033 (2015).

[32] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for Polarization of Gluons in the Proton, Phys. Rev. Lett. 113, 012001 (2014).