Quality of camelina oil cultivated in Black Sea region

E L Turina¹, V S Pashtetsky¹, S G Efimenko², T Ya Prakhova³, A Yu Kornev⁴ and A P Liksutina⁴

¹Federal State Budget Scientific Institution «Research Institute of Agriculture», 150 Kievskaya str., Simferopol, 295493, Russia
²Pustovoit All-Russian Research Institute of Oil crops (VNIIMK) 17, Filatova str., Krasnodar, 350038, Russia
³Federal State Budget Research Institution «Federal Research Center for Bast Fiber Crops» 17/56 Komsomolsky ave., Tver’, 170041, Russia
⁴All-Russian Research Institute for the Use of Machinery and Petroleum Products in Agriculture 28, Novo-Rubezhny Lane, Tambov, 392022, Russia

E-mail: turina_e@niishk.ru

Abstract. Camelina is an oil-bearing crop that is increasingly gaining popularity in the world due to its high oil content and wide applicability. Since 2019, this crop has been cultivated in Black Sea region on an industrial scale. The study of the quality of Camelina oil showed the dependence of seed oil content on the Selyaninov’s hydrothermal coefficient (HTC). The highest oil content – 44.02% – was observed in the most favorable year in terms of water availability (HTC=1.11), while the lowest – 33.9% – in dry year (HTC=0.23). The comparison of fatty acid composition of Camelina oilseeds showed that the oleic acid content in varieties ranges from 14.46 to 16.57%, erucic – from 3.07 to 3.25%, linolic – from 17.89 to 19.66%, linolenic – from 33.02 to 37.06%. The consumer properties of Camelina oil include a relatively high total tocopherol content. In terms of its composition and properties the oil of Camelina seeds grown in Black Sea region is suitable for the synthesis of biodiesel fuel. Thus, in Black Sea region Camelina is a unique natural-biological resource that makes it possible to use oil in various areas of the national economy.

1. Introduction
Among industrial crops of Black Sea region Camelina is a new crop, which has been cultivated on production areas only since 2019 [1]. The interest in Camelina is caused by the fact that its winter form (Camelina sylvestris) gives satisfactory yields on the peninsula in a wide calendar range. The average yield of winter Camelina over 5 years of study made 1.35 t/ha. Spring Camelina is less harvested in the conditions of Black Sea region – when sown in the early season (in February) its yield of oilseed crops makes up to 0.8-0.9 t/ha.

Black Sea region belongs to the sunniest regions. The annual duration of sunshine here varies within 2180-2470 hours, and the natural conditions of the peninsula are particularly favorable for the formation of high-quality oil raw materials [2].

According to literary data, Camelina is not consumed much, especially as a dietary product, because it contains essential fatty acids omega-3 and omega-6, as well as other related substances – phospholipids, carotenoids, tocopherols, thioglycosides, vitamins [3-4]. Besides, oil is used for
technical purposes in various fields of industry – for the preparation of paint oil, paints, synthetic lipids [5-6], in medicine and cosmetics [7].

Camelina is becoming increasingly popular as a source for the production of biodiesel and bioaviokerosene. In modern studies Hoseini S.S. et al., it was found that biodiesel fuel obtained from Camelina has better physical and chemical characteristics and operational parameters than biodiesel fuel obtained from the oilseeds of *Oenothera lamarkiana* and *Ailanthus altissima* [8].

It was shown that compared to conventional fuels, the mixing of biofuels derived from Camelina raw materials reduces the number of particles and massive emissions of adverse substances into the atmosphere directly behind an aircraft make from 40 to 70%, which, according to scientists, is one of the main strategic vectors to mitigate the climate change [9-10].

Similar to the rest of the world, Russia’s agriculture is characterized by a consistent trend towards the exponential growth of irreparable energy costs for each additional unit of production. The increased requirements for environmental indicators of motor fuels, the focus on “green” production and cultivation of “healthy” food make the study on the search for alternative energy sources that combine environmental friendliness and economy, ever more relevant.

The purpose of the study was to assess the quality of the obtained oil from Camelina cultivated in Black Sea region.

2. Methods and conditions of study
The experimental work on the study of winter Camelina oil was conducted during 2015-2019 in the Department of Field Crops of the Research Institute of Agriculture, which is located in the central steppe zone of Black Sea region. The hydrothermal regime (Selyaninov’s HTC) of vegetative periods of winter Camelina during the years of study was quite contrasting: in 2015 – 1.11; 2016 – 0.82; 2017 – 0.61, 2018 – 0.23; 2019 – 0.60. The study of Spring Camelina was carried out in 2019, the HTC of the vegetation period made 0.62.

The fatty acid composition of oil was determined by gas chromatography on Chromatek-Crystal 5000 gas chromatograph with DAZh-2M automatic batcher on SolGelWax capillary column (30m×0.25mm×0.5µm) in carrier gas current – helium with a speed of 22 cm/s, with temperature programming within 178-230 °C. The production of methyl esters and their chromatography were carried out according to standard methods (GOST 31665-2012 Vegetable oils and animal fats. Preparation of fatty acid methyl esters).

The content of biologically active substances (tocopherol) in Camelina oil was studied using thin layer chromatography and spectroscopy.

Vegetable oils of Camelina, sunflower and rapeseed were used to synthesize the biofuel. After the qualitative and quantitative composition of fatty acid compounds was established in the studied oils, their molecular composition was identified using molecular spectroscopy in the field of infrared radiation, using Infralum FT-801 IR-Fourier spectrometer. The spectra were registered according to the license program ZaIR3.5 stored in the computer memory of the device, the number of scans – 16, resolution – 4cm⁻¹, amplification – 1.

3. Results
The analysis of oil accumulation dynamics in winter Camelina seeds in different weather conditions shows that under sufficient moisture supply (HTC 1.11) the Camelina realizes the potential for oil formation and accumulates the most optimal fat content, which indicates the absence of limiting factors (Figure 1). Thus, in 2015, the oil content of Penzyak variety was the largest and was above 44%. The oil content also decreased with the reduction of HTC. In extremely dry year (HTC 0.23) the level of oil accumulation was reduced to 33.9%.
Winter and spring Camelina oils are characterized by high content of polyunsaturated fatty acids (linolic and linolenoic) and low content of erucic acid (Table 1).

Table 1. Fatty acid composition of spring and winter Camelina oils

n/n	Component	Spring Camelina variety	Winter variety	Camelina variety			
		Penzyak	Omich	Veles	Yubilyar	Penzyak	Baron
1	Myristic acid	0.05	0.05	0.04	0.05	0.05	0.05
2	Palmitic acid	5.10	4.80	4.86	4.86	5.31	5.17
3	Palmitoleic acid	0.09	0.09	0.08	0.09	0.08	0.09
4	Stearic acid	2.05	1.91	1.97	1.92	2.21	2.15
5	Oleic acid	16.57	15.68	14.57	14.46	15.50	15.70
6	Linoleic acid	19.66	18.36	17.89	18.41	18.08	17.98
7	Linolenic acid	33.02	35.20	37.06	36.98	33.56	33.79
8	Arachic acid	1.52	1.35	1.61	1.52	1.60	1.57
9	Eicosenic acid	14.47	15.03	14.46	14.18	15.96	15.84
10	Eicosadienoic acid	1.82	1.91	1.77	1.90	2.00	1.97
11	Eicosatrienoic acid	1.10	1.25	1.25	1.30	1.33	1.35
12	Behenic acid	0.36	0.32	0.36	0.34	0.36	0.38
13	Erucic acid	3.12	3.07	3.25	3.20	3.17	3.15
14	Lignoceric acid	0.22	0.20	0.20	0.21	0.16	0.19
15	Selacholeic acid	0.83	0.78	0.64	0.58	0.62	0.62

The comparison of fatty-acid composition of oilseed Camelina varieties grown in Black Sea region showed that the content of oleic acid in Camelina varieties ranges from 14.46 to 16.57%, erucic – from 3.07 to 3.25%, linoleic – from 17.89 to 19.66%, linolenic – from 33.02 to 37.06%.

The consumer properties of Camelina oil include a relatively high total tocopherol content compared to sunflower and rapeseed (Table 2). The structure of Camelina oil tocopherols is mainly presented by γ-tocopherol, which causes the high level of oxidizing stability of oil in the course of storage despite the considerable content of polyunsaturated fatty acids, such as linoleic and eicosatrienoic.

Consumer properties of Camelina cake are characterized by low content of erucic acid in oil and glucosinolates in seeds, which corresponds to the safety index of this raw material.
Table 2. Content of tocopherols and glucosinolates, 2019

Parameter	Spring Camelina variety	Kristall	Omich	Veles	Yubilyar
Total content of tocopherols, mg per 100 g of oil		92.3	88.7	91.2	90.6
Tocopherol content, %:					
alpha α		11.8	7.5	9.3	10.4
gamma γ		88.2	92.5	90.7	89.6
Total content of glucosinolates, µmol/g		13.2	12.8	12.3	13.2

The physical and chemical properties of obtained samples of biofuel synthesized from Camelina, rapeseed and sunflower oils are given in Table 3. The data show that the values of synthesized esters comply with the EN 14214-2003 requirements and can be used in the preparation of mixed motor fuel.

Table 3. Physical and chemical properties of biofuels synthesized from different types of oils

Parameter	EN 14214-2003 requirements	Obtained biodiesel fuel from oil	Obtained biodiesel fuel from Camellina	Obtained biodiesel fuel from sunflower	Obtained biodiesel fuel from rapeseed oil
Density, kg/m³	860-900	880	900	900	
Viscosity, 40 °C, mm²/s	3.5-5.0	4.0	4.8	4.8	
Freezing point, ºC	not above –20	–19	–19	–19	
Smoking point, ºC	not below 120	161	150	155	
Sulfur content, mg/kg	not more than 10	less than 10	less than 10	less than 10	
Liquid-water content, mg/kg	not more than 500	100	105	95	
BS&W, mg/kg	not more than 24	N/A	N/A	N/A	
Acid number, mgKOH/g	not more than 0.5	0.5	0.35	0.45	
Monoacylglycerol content, %	not more than 0.8	0.5	0.5	0.6	
Diacylglycerol content, %	not more than 0.2	0.105	0.1	0.1	
Triacylglycerol content, %	not more than 0.2	0.002	0.002	0.002	
Iodine index, g I₂/100g	not more than 120	111	100	95	
Ash content, %	not more than 0.01	0.01	0.01	0.01	

Hence it appears that the seed oil from Camelina grown in Black Sea region is suitable in its composition and properties for the synthesis of biodiesel fuel through the reaction of methanolysis using a homogeneous alkaline catalyst. In terms of physical and chemical properties the obtained biodiesel is similar to that of sunflower or rapeseed oils.
4. Conclusion
Thus, the unique natural conditions of Black Sea region allow producing Camelina seeds with oil content of up to 44.02% with high content of tocopherols. Oils of winter and spring Camelina are characterized by high content of polyunsaturated fatty acids (linoleic and linolenic) and low content of erucic acid. The above advantages of Camelina oil allow using it as a biologically valuable additive, in the food industry and for the production of environmentally friendly renewable fuel.

References
[1] Turina E L, Prakhova T Ya and Prakhov V A 2019 Assessment of productivity and adaptability of Camelina Sativa varieties IOP Conf. Series: Earth and Environmental Science 341 012085 DOI:10.1088/1755-1315/341/1/012085
[2] Kulinich R A and Turina E L 2017 Efficiency and fat and acid structure of oilseeds of nonconventional oil crops Scientific and practical ways of improving ecological sustainability and social and economic stability of agricultural production: Materials of the international scientific and practical conference devoted to the Year of Ecology in Russia (Zaymishche, May 18-19, 2017) pp 539-543
[3] Renzyaeva T V, Reznickenko I Y, Novoselov S V and Dmitrieva E V 2018 Phospholipids of Camelina oil in the production of cookies Polzunovsky Bulletin 1 33-42 DOI: 10.25712/ASTU.2072-8921.2018.01.008
[4] Gamayunova V, Honenko L, Gerla L, Kovalenko O, Glushko T, Sidyakina Y and Pilipenko T 2019 Ecological assessment of spring oilseed crops and prospects for the production of superior quality oils In Ukraine Research Journal of pharmaceutical biological and chemical Sciences 10 (1) 519-528
[5] Faure J-D and Tepfer M 2015 Camelina, a Swiss knife for plant lipid biotechnology Oilseeds and fats, Crops and Lipids 23 (5) D503 DOI: 10.1051/ocl/2016023
[6] Buyankin V I and Prakhova T Ya 2016 Camelina oil (Camelina sp. L) Monograph. (Volgograd: LLC Sfera)
[7] Craciun L M, Dumitriu B G, Olaru L, Jurcoane S, Cristea S, Adil A, Rosoiu N and Papacocea R 2019 Regenerative and scare healing potential of active compounds from Camelina sativa oil and grape pomace Romanian Biotechnological Letters 24 (6) 1075–1082 DOI: 10.25083/rbl/24.6/1075.1082
[8] Hoseini S S, Najafi G, Ghobadian B, Ebadi M T, Mamat R and Yusaf T 2020 Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel Renewable Energy 145 190–201 DOI: 10.1016/j.renene.2019.06.020
[9] Sainger Manis, Jaiwal Anjali, Sainger Poonam Ahlawat, Chaudhary Darshna, Jaiwal Ranjana and Jaiwal Pawan K 2017 Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products Renewable and sustainable energy reviews 68 (P1) 623-637 DOI: 10.1016/j.rser.2016.10.023.
[10] Balsam T Mohammad, Mohammad Al-Shannag, Mohammad Alnaief, Lakhveer Singh, Eric Singsaas and Malek Alkasrawi 2018 Production of multiple biofuels from whole Camelina material: a renewable energy crop BioResources 13 (3) 4870–4883 DOI: 10.15376/biores.13.3.4870-4883