Abstract: We generalise a result of R. Thomas to establish the non-vanishing of the first ℓ^2 Betti number for a class of finitely generated groups.

2010 Mathematics Subject Classification: 20J06.

Key words: finitely generated groups, orbifolds, cohomology, Euler characteristic.

In this note we give the following generalisation of a result of Richard Thomas [8].

Theorem 1. Let G be a finitely generated group given by the presentation

$$\langle x_1, \ldots, x_d : u_1^{m_1}, \ldots, u_r^{m_r} \rangle$$

such that each relator u_i has order m_i in G.

1. If G is finite then $1 - d + \sum_{i=1}^{r} \frac{1}{m_i} > 0$ and $|G| \geq \frac{1}{1 - d + \sum_{i=1}^{r} \frac{1}{m_i}}$.

2. If the first ℓ^2 Betti number $\beta_1^2(G)$ of G is zero, then

$$1 - d + \sum_{i=1}^{r} \frac{1}{m_i} \geq 0.$$

In particular, the case when all the exponents m_i in the presentation are equal to 1 yields the well known observation that when the first ℓ^2 Betti number is zero the deficiency of the presentation $d - r$ must be at most 1. The vanishing of the first ℓ^2 Betti number of a group G holds for example if G is finite, if it satisfies Kazhdan’s property (T) or if it admits an infinite normal amenable subgroup (in particular if it is infinite amenable). We refer to [4] for other interesting examples. We obtain as a corollary:

Corollary 2. Let G be a finitely generated group given by the presentation

$$\langle x_1, \ldots, x_d : u_1^{m_1}, \ldots, u_r^{m_r} \rangle$$

Research partially supported by EPSRC grant EP/F031947/1.
such that each relator u_i has order m_i in G. If $d > 1 + \sum_{i=1}^{\infty} \frac{1}{m_i}$, then G is infinite, does not satisfy Kazhdan’s property (T) and has no amenable infinite normal subgroups.

Thomas established the inequality in (1) above by providing a simple but elegant computation of the dimension of the \mathbb{F}_2-vector space of 1-cycles of the cellular chain complex of the Cayley graph of G (Thomas refers to this space as the cycle space of Γ.) If Γ has d edges and v vertices then the dimension of this vector space is $d - v + 1$. An alternative approach, yielding information about the classical first Betti number of G and its finite index subgroups is explored by Allcock in [1].

We generalise this idea to give the additional inequality in (2) above by using elementary observations about the ℓ^2 Betti numbers β_i^2 of the orbihedral presentation 2-complex of G. For an introduction to ℓ^2 Betti numbers, we refer the reader to [3]. The first ℓ^2 Betti number vanishes for all finite groups. Cheeger and Gromov have shown that if a group G is amenable then $\beta_1^2(G) = 0$ [2, Theorem 0.2]. More generally, $\beta_1^2(G)$ is zero for any group G which contains an infinite normal amenable subgroup.

Remark 3. Theorem 1 can be derived from deeper results of Peterson and Thom; in particular, Equation (3) yields the inequality $\beta_1^2(G) \geq \frac{1}{|G|} + d - 1 - \sum_{i \in I} \frac{1}{m_i}$ from [7]. Here, $|G|$ denotes the size of G and $\frac{1}{|G|}$ is understood to be zero when G is infinite.

Finitely generated but not finitely presented groups. Lück has defined ℓ^2 Betti numbers for any countable discrete group. The notion agrees with the cellular ℓ^2 Betti numbers for finitely presented groups and the basic properties including a generalised Euler-Poincaré formula for G-CW complexes may be found in Chapter 6 of [6]. Working in this context and arguing as in the proof of Theorem 1, we obtain the following generalisation.

Theorem 4. Suppose a group G is given by the presentation

$$G = \langle x_1, \ldots, x_d : u_i^{m_i}, i \in I \rangle$$

where I is a countable set and each relator u_i has order m_i in G. If $\sum_{i \in I} \frac{1}{m_i}$ converges then $\beta_1^2(G) \geq \frac{1}{|G|} + d - 1 - \sum_{i \in I} \frac{1}{m_i}$. In particular if $\beta_1^2(G) = 0$ then $\sum_{i \in I} \frac{1}{m_i} - d + 1 \geq 0$.

Before we embark on the proof of Theorem 1, we need a short lemma which says that the orbihedral Euler characteristic of a G-CW complex Y may be computed from its ℓ^2 Betti numbers. The lemma is well known and may be found in [6].
Lemma 5 ([6, Theorem 6.80]). If G acts on a connected CW complex \tilde{Y} with finite quotient Y such that stabilisers of cells are finite, then the ℓ^2-Euler characteristic of Y is equal to the orbihedral Euler characteristic of Y. More precisely, if for each i, Σ_i is a choice of representatives for the orbits of i-cells in \tilde{Y} and the stabiliser of a cell σ in G is written G_σ, then

$$
\sum_i (-1)^i \beta_i^2(Y) = \sum_i (-1)^i \sum_{\sigma \in \Sigma_i} \frac{1}{|G_\sigma|}.
$$

We now proceed with the proof of Theorem 1.

Proof of Theorem 1: Let G be a group given by the presentation $\langle x_1, \ldots, x_d : u_{1}^{m_{1}}, \ldots, u_{r}^{m_{r}} \rangle$ where each relator u_i has order m_i in G. The orbihedral presentation 2-complex of G, which we will denote by \mathcal{P}, has one vertex and d edges forming a bouquet of d circles. Identifying each of the circles with one of the generators x_i we identify the fundamental group of this bouquet with the free group on $\{x_1, \ldots, x_d\}$. Attached to this are r discs, D_1, \ldots, D_r. For each $i = 1, \ldots, r$, the disc D_i is endowed with a cone point of cone angle $\frac{2\pi}{m_i}$ and its boundary is attached by a degree 1 map along the loop in the bouquet of circles corresponding to the element u_i.

Attaching the corresponding stabilisers to cells we obtain, in the language of Haefliger [5], a developable complex of groups, meaning that the orbihedral universal cover X of \mathcal{P} exists. In fact, X has a simple description in terms of the Cayley graph \mathcal{C} of G. The 1-skeleton of the orbihedral universal cover is the Cayley graph of G with respect to the generating set $\{x_1, \ldots, x_d\}$, while the 2-skeleton is obtained from the 2-skeleton of the topological universal cover of the presentation 2-complex by collapsing stacks of relator discs having common boundaries. Specifically, the relator $u_{i}^{m_{i}}$ corresponds to a loop γ_i in \mathcal{P} bounding a disc and there is a unique lift $\tilde{\gamma}_i$ of γ_i based at the identity vertex in \mathcal{C}. In the topological universal cover of the presentation 2-complex there are additional copies of this disc (glued along the same loop) based at the elements $u_i, \ldots, u_i^{m_i-1}$ and the action of the subgroup $\langle u_i \rangle$ permutes these discs so that each has trivial stabiliser. In contrast, these copies are identified in the orbihedral cover to give a single disc and it is preserved by the element u_i. The hypothesis that u_i has order m_i controls the order of the cell stabiliser.

We now apply the identity in (1) to our complex X. The action of G on the vertices and the edges of X is both free and transitive. On the other hand, by hypothesis, the stabiliser of a lift of a 2-cell D_i has
order \(m_i \). Hence,
\[\beta_0^2(\mathcal{P}) - \beta_1^2(\mathcal{P}) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}. \]
We also know that
\[\beta_0^2(\mathcal{P}) = \frac{1}{|\mathcal{G}|} \]
where \(\frac{1}{|\mathcal{G}|} \) is understood to be zero when \(\mathcal{G} \) is infinite. Therefore,

\[\frac{1}{|\mathcal{G}|} - \beta_1^2(\mathcal{P}) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}. \]

Finally we remark that the first \(\ell^2 \) Betti number of the group \(\mathcal{G} \) may be computed as the first \(\ell^2 \) Betti number of the orbihedral presentation complex used above. By definition, \(\beta_1^2(\mathcal{G}) \) is the von Neumann dimension of the first \(\ell^2 \) homology group of \(Y \) with coefficients in the von-Neumann algebra of \(\mathcal{G} \), where \(Y \) is the universal cover of the (topological) presentation 2 complex for \(\mathcal{G} \). Since both \(X \) and \(Y \) are simply connected we deduce from Theorem 6.54(3) of [6] that \(\beta_1^2(\mathcal{G}) = \beta_1^2(\mathcal{P}) \). Therefore, Equation (2) becomes

\[\frac{1}{|\mathcal{G}|} - \beta_1^2(\mathcal{G}) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}. \]

Now assume that \(\beta_1^2(\mathcal{G}) = 0 \). Since \(\beta_2^2(\mathcal{P}) \geq 0 \), we get the identity we are looking for, namely

\[1 - d + \sum_{i=1}^{r} \frac{1}{m_i} \geq \frac{1}{|\mathcal{G}|}. \]

In particular, if \(\mathcal{G} \) is finite, then the \(\ell^2 \) cohomology of \(\mathcal{G} \) is just the group cohomology with real coefficients, and this vanishes so we obtain Thomas’s result that \(1 - d + \sum_{i=1}^{r} \frac{1}{m_i} > 0 \) and \(|\mathcal{G}| \geq \frac{1}{1-d+\sum_{i=1}^{r} \frac{1}{m_i}} \).

On the other hand, if \(\mathcal{G} \) is infinite and its first \(\ell^2 \) Betti number is zero, in particular if \(\mathcal{G} \) is an infinite amenable group, then we obtain the inequality \(1 - d + \sum_{i=1}^{r} \frac{1}{m_i} \geq 0 \), as required. \(\square\)

References

[1] D. ALLCOCK, Spotting infinite groups, Math. Proc. Cambridge Philos. Soc. 125(1) (1999), 39–42. DOI: 10.1017/S0305004198002758.

[2] J. CHEEGER and M. GROMOV, \(L_2 \)-cohomology and group cohomology, Topology 25(2) (1986), 189–215. DOI: 10.1016/0040-9383 (86)90039-X.

[3] B. ECKMANN, Introduction to \(\ell_2 \)-methods in topology: reduced \(\ell_2 \)-homology, harmonic chains, \(\ell_2 \)-Betti numbers, Notes prepared by Guido Mislin, Israel J. Math. 117 (2000), 183–219. DOI: 10.1007/BF02773570.
[4] T. Fernós, Relative property (T) and the vanishing of the first ℓ^2-Betti number, *Bull. Belg. Math. Soc. Simon Stevin* **17**(5) (2010), 851–857.

[5] A. Haefliger, Complexes of groups and orbihedra, in: “*Group theory from a geometrical viewpoint*” (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 504–540.

[6] W. Lück, “L^2-invariants: theory and applications to geometry and K-theory”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics **44**, Springer-Verlag, Berlin, 2002.

[7] J. Peterson and A. Thom, Group cocycles and the ring of affiliated operators, *Invent. Math.* **185**(3) (2011), 561–592. DOI: 10.1007/s00222-011-0310-2.

[8] R. M. Thomas, Cayley graphs and group presentations, *Math. Proc. Cambridge Philos. Soc.* **103**(3) (1988), 385–387. DOI: 10.1017/S0305004100064999.

School of Mathematics
University of Southampton
Southampton, SO17 1BJ
UK

E-mail address: A.Kar@soton.ac.uk
E-mail address: G.A.Niblo@soton.ac.uk

Primera versió rebuda el 28 de març de 2011,
darrera versió rebuda el 9 de novembre de 2011.