FUNCTIONS OF CLASSES \mathcal{N}_κ^+

ALEXANDER DYACHENKO

ABSTRACT. In the present note we give an elementary proof of the necessary and sufficient condition for a univariate function to belong the class \mathcal{N}_κ^+. Although this class was introduced mainly to deal with the indefinite version of the Stieltjes moment problem (and corresponding π-Hermitian operators), it can be useful far beyond the original scope. Our result elaborates the criterion given by Krein and Langer in their joint paper of 1977; they overlooked one attainable case. The correct condition was stated by Langer and Winkler in 1998, although they provided no proper reasoning.

1. INTRODUCTION

The function classes \mathcal{N}_κ with $\kappa = 0, 1, \ldots$ were introduced in the prominent paper [3] of M. Krein and H. Langer. They serve as a natural generalisation of the Nevanlinna class $\mathcal{N} := \mathcal{N}_0$ of all holomorphic mappings $\mathbb{C}_+ \to \mathbb{C}_+$, which are also known as \mathcal{R}-functions (here $\mathbb{C}_+ := \{ z \in \mathbb{C} : \Re z > 0 \}$ is the upper half of the complex plane). A function $\varphi(z)$ belongs to \mathcal{N}_κ whenever it is meromorphic in \mathbb{C}_+, for any set of non-real points z_1, z_2, \ldots, z_k the Hermitian form

$$ h_\varphi(\xi_1, \ldots, \xi_k | z_1, \ldots, z_k) := \sum_{n,m=0}^{k} \frac{\varphi(z_m) - \varphi(z_n)}{z_m - z_n} \xi_n \xi_n $$

has at most κ negative squares and for some set of points there are exactly κ negative squares. It is convenient (and generally accepted) to define \mathcal{N}_κ-functions in the lower half of the complex plane by complex conjugation, i.e. $\overline{\varphi(z)} = \varphi(\overline{z})$. A significant particular case is presented by the classes \mathcal{N}_0^+, which are considered here. They contain all \mathcal{N}_κ-functions $\varphi(z)$ such that $z\varphi(z)$ belongs to \mathcal{N}. Among various applications, \mathcal{N}^+, \mathcal{N}_κ^+ and \mathcal{N}_κ^{++} appear in the moment problems and have connections to the spectral theory of operators. However, the classes \mathcal{N}_κ^+ can find even more applications as a foremost generalisation of the Stieltjes functions \mathcal{N}_0^+.

This short note aims at proving the necessary and sufficient condition for a function to be in the class \mathcal{N}_κ^+ by methods of complex analysis. Our approach rests on the asymptotic analysis of the corresponding Hermitian forms. As a main tool, we use the basic Nevanlinna-Pick theory for the halfplane within the framework presented, for example, in [1] Chapter 3 or [2] Chapters II–III. We show that, roughly speaking, \mathcal{N}_κ^+ differs from the Stieltjes class \mathcal{N}_0^+ in having κ simple negative poles, one of which can reach the origin and merge there into another singularity. More precisely, a function $\varphi(z)$ belongs to the class \mathcal{N}_κ^+ if and only if it has one the forms

$$ \varphi(z) = s_0 + \sum_{j=1}^{\kappa} \frac{\gamma_j}{\alpha_j - z} + \int_0^{\infty} \frac{d\nu(t)}{t-z}; \quad (A) $$

$$ \varphi(z) = s_0 + s_1 z^{-1} - \frac{s_2}{z^2} + \sum_{j=1}^{\kappa-1} \frac{\gamma_j}{\alpha_j - z} + \int_0^{\infty} \frac{d\nu(t)}{t-z}, \quad \text{where } \max\{s_1, s_2\} > 0, \nu(+0) = 0; \quad (B) $$

$$ \varphi(z) = s_0 + s_1 z^{-1} - \frac{s_2}{z^2} + \sum_{j=1}^{\kappa-1} \frac{\gamma_j}{\alpha_j - z} + \frac{1}{z} \int_0^{\infty} \left(\frac{1}{t-z} - \frac{t}{1+t^2} \right) d\sigma(t), $$

$$ \text{where } \int_0^{1} \frac{d\sigma(t)}{t} = \infty, \sigma(+0) = 0, \int_0^{\infty} \frac{d\sigma(t)}{1+t^2} < \infty. \quad (C) $$

2010 Mathematics Subject Classification. 30E05, 46C20.

Key words and phrases. Nevanlinna-Pick interpolation, Indefinite metric, Pontryagin spaces, Moment problem.

This work was financially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 259173.
Here $s_0, s_2 \geq 0$, $s_1 \in \mathbb{R}$, $\gamma_j, \alpha_j < 0$ for $j = 1, 2, \ldots, \infty$ and $\nu(t)$, $\sigma(t)$ are nondecreasing left-continuous functions such that $\nu(0) = \sigma(0) = 0$ and $\int_0^\infty \frac{d\nu(t)}{t + \varepsilon^2} < \infty$. The function $\sigma(t)$ is intentionally denoted by a distinct letter to emphasize that its constraints at infinity are weaker. For our purposes, it is more convenient to formulate this criterion as Theorem 2 with respect to $z\varphi(z)$, to include poles at the origin into the Stieltjes integrals and to merge the cases (A) and (C) together.

This result corrects Theorem 3.8 of [3]: the authors put the condition $\int_0^\infty \frac{d\sigma(t)}{t + \varepsilon^2} < +\infty$ in the case (C), which is excessively strict. As a result, Theorem 3.8 fails to address \mathcal{N}_{∞}-functions like
\[
\psi(z) = \frac{1}{\sqrt{z}} \cot \frac{1}{\sqrt{z}} = \sqrt{z} \cot \sqrt{z}
\]
with $\varepsilon = 1$. More than likely, this mistake is just an oversight: for proving the representations (A)–(B) authors use, in fact, the measure $d\nu(t)$; then they put $\nu(t)$ instead of $\sigma(t)$ in (C). Furthermore, their proof involves operator theory, which makes it less transparent.

Lemma 5.3 from [4, p. 421] (see Theorem 2 herein) has a proper statement, and the function $\psi(z)$ given above is allowed as an entry of \mathcal{N}_{∞}^{-}. At the same time, the proof in [3] relies on the aforementioned Theorem 3.8 from [3], and the relevant piece of the proof is omitted as “similar” to another part. Our approach does not depend on the results of the works [3][4].

2. PRELIMINARIES

Each \mathcal{N}-function Φ has the following integral representation (see e.g. [11, p. 92], [2, p. 20]):
\[
\Phi(z) = bz + a + \int_{-\infty}^\infty \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\sigma(t)
\]
where a is real, $b \geq 0$ and $\sigma(t)$ is a real non-decreasing function satisfying $\int_{-\infty}^\infty \frac{d\sigma(t)}{1 + t^2} < \infty$. The converse is also true: all functions of the form $\Phi(z)$ belong \mathcal{N}.

To be definite, we assume that the function $\sigma(t)$ is left-continuous, that is $\sigma(t) = \sigma(t - 0)$ for all $t \in \mathbb{R}$. Accordingly, the notation for integrals with respect to $d\sigma(t)$ is as in the formula $\int_0^\infty f(t) d\sigma(t) := \int_{(a, b)} f(t) d\sigma(t)$ for arbitrarily taken real numbers a, b and function $f(t)$.

Remark 1. A function Φ given by the formula (2) is holomorphic outside the real line. Furthermore, it has an analytic continuation through the intervals outside the support of $d\sigma$. The function $\varphi(z) := \Phi(z)/z$ has the same singularities with the exception of the origin (generally speaking). We can additionally note that,

if $z_1 < z_2 < t$ or $t < z_1 < z_2$, then $1 \frac{z_2 - z_1}{t - z_2} + \frac{1}{t - z_1} = \frac{z_2 - z_1}{(t - z_1)(t - z_2)} > 0$.

Consequently, given a real interval (α, β) that has no common points with the support of $d\sigma$, the condition $\alpha < z_1 < z_2 < \beta$ implies $\Phi(z_1) < \Phi(z_2)$ unless $\Phi(z) \equiv a$, which is seen from the representation (2). (This fact is also seen immediately from the definition of \mathcal{N}: see [2, p. 18]). Put in other words, the function $\Phi(z)$ increases in the interval (α, β) unless it is identically constant.

Theorem 2 (Coincides with Lemma 5.3 from [4, p. 421]). Let a function $\Phi \in \mathcal{N}$. The function $\varphi(z) := \Phi(z)/z$ belongs to \mathcal{N}_{∞} if and only if the representation (2) of $\Phi(z)$ is either of the form
\[
\Phi(z) = bz + a + \sum_{n=1}^{\infty} \frac{\sigma_n}{\lambda_n - z} + \int_0^{\infty} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\sigma(t)
\]
where $\lambda_n < 0$, $n = 1, 2, \ldots, \infty - 1$ and
\[
0 < \Phi(-0) = a + \sum_{n=1}^{\infty} \frac{\sigma_n}{\lambda_n} + \int_0^{\infty} \frac{d\sigma(t)}{t + \varepsilon^2} \leq \infty,
\]
or of the form
\[
\Phi(z) = bz + a + \sum_{n=1}^{\infty} \frac{\sigma_n}{\lambda_n - z} + \int_0^{\infty} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\sigma(t),
\]
where \(\lambda_n < 0, \ n = 1, 2, \ldots, \kappa \) and

\[
\Phi(-\varepsilon) = a + \sum_{n=1}^{\kappa} \frac{\sigma_n}{\lambda_n} + \int_{0}^{\infty} \frac{d\sigma(t)}{t + t^3} \leq 0.
\] (4b)

Note that \(\mathcal{N} \)-functions of the forms (3a) and (4a) have the corresponding limit \(\Phi(-\varepsilon) \) defined, because (when non-constant) they grow monotonically (see Remark 1) outside the support of corresponding measure \(d\sigma(t) \). Moreover, all numbers \(\sigma_n \) in (3)–(4) are positive due to the condition \(\Phi \in \mathcal{N} \).

3. Proofs

Definition 3. A real point \(\lambda \) is called a point of increase of a function \(\sigma(t) \) if \(\sigma(\lambda + \varepsilon) > \sigma(\lambda - \varepsilon) \) for every \(\varepsilon > 0 \). In particular, the set of all points of increase of a non-decreasing function \(\sigma(t) \) is the support of \(d\sigma(t) \).

In each punctured neighbourhood of the point of increase \(\lambda \) exists \(\lambda' \) such that the limit

\[
\sigma'((\lambda') = \lim_{\varepsilon \to 0} \frac{\sigma((\lambda') + \varepsilon) - \sigma((\lambda') - \varepsilon)}{2\varepsilon}
\]

is positive or nonexistent. Indeed, otherwise \(\sigma'(t) \leq 0 \) in the closed interval \(-\varepsilon \leq t \leq \varepsilon\) for some \(\varepsilon \) small enough, thus integrating \(\sigma'(t) \) over this interval leads us to a contradiction. Consequently, if we know that the function \(\sigma(t) \) has at least \(\kappa \) negative points of increase, then we always can select \(\kappa \) points of increase \(\lambda_1 < \lambda_{\kappa-1} < \cdots < \lambda_1 < 0 \), in which the derivative \(\sigma' \) is nonexistent or positive. Given such a set of points denote

\[
\delta := \frac{1}{3} \min\left\{ -\lambda_1, \min_{1 \leq n \leq \kappa-1} \left(\lambda_n - \lambda_{n+1} \right) \right\},
\]

put \(U_n := (\lambda_n - \delta, \lambda_n + \delta) \), where \(n = 1, \ldots, \kappa, \) and \(U_0 := \mathbb{R} \setminus \left(\bigcup_{n=1}^{\kappa} U_n \right) \).

Proposition 4. Consider a function \(\Phi(z) = z\varphi(z) \) of the form (2). Let the function \(\sigma(t) \) have at least \(\kappa \) negative points of increase \(\lambda_\kappa < \cdots < \lambda_1 \) in which the derivative \(\sigma' \) is nonexistent or positive. Then the Hermitian form \(h_\eta(\xi_1, \xi_\kappa | \lambda_1 + \iota \eta, \cdots, \lambda_\kappa + \iota \eta) \) defined in (1) has \(\kappa \) negative squares for some small values of \(\eta > 0 \).

Proof. Since

\[
\frac{1}{t - z} = \frac{z + t - z}{t(t - z)} = \frac{z}{t(t - z)} + \frac{1}{t} \quad \text{and} \quad \frac{1}{t} - \frac{t}{1 + t^2} = \frac{1 + t^2 - t^2}{1(t + t^2)} = \frac{1}{t(t + t^2)},
\] (5)

from the expression (2) we obtain

\[
\varphi(z) = b + \frac{a}{z} + \frac{1}{z} \int_{-\infty}^{\infty} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\sigma(t) = b + \frac{a}{z} + \int_{-\infty}^{\infty} \left(\frac{1}{t - z} + \frac{1}{z(1 + t^2)} \right) \frac{d\sigma(t)}{t},
\] (6)

where

\[
\varphi_n(z) = \int_{U_n} \frac{1}{t - z} \frac{d\sigma(t)}{t}, \quad n = 1, \ldots, \kappa,
\]

are the terms principal on the intervals \(U_n \), and

\[
\varphi_0(z) := b + \frac{\tilde{a}}{z} + \frac{1}{z} \int_{U_0} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) d\sigma(t) \quad \text{with} \quad \tilde{a} := a + \sum_{n=1}^{\kappa} \int_{U_n} \frac{d\sigma(t)}{t + t^3}
\]

contains the remainder term. Hereinafter we additionally assume \(z_n := \lambda_n + \iota \eta \).

Each function \(\varphi_n \) is holomorphic outside \(U_n \), therefore when \(m, k \neq n \) we have that the limits

\[
\lim_{\eta \to 0} \frac{\varphi_n(z_m) - \varphi_n(z_k)}{z_m - z_k} = \begin{cases} \frac{\varphi_n(\lambda_m) - \varphi_n(\lambda_k)}{\lambda_m - \lambda_k}, & \text{if } k \neq m, \\ \varphi_n'(\lambda_m), & \text{if } k = m \end{cases}
\] (7)
are finite as $n = 0, \ldots, \infty$. In opposite, for $n \neq 0$ with the notation $\sigma(t) = -\int_{-\lambda_n - \delta}^t s^{-1} \, ds$ we have
\begin{equation}
\rho_n^2(\eta) := -\frac{\varphi_n(z_n) - \varphi_n(\overline{z}_n)}{z_n - \overline{z}_n} = \int_{U_n} \frac{t - z_n - t + z_n}{(t - z_n)(t - \overline{z}_n)} \, d\sigma(t) = \int_{U_n} \frac{d\sigma(t)}{(t - z_n)^2},
\end{equation}
consequently $\limsup_{\eta \to +0} (\eta \cdot \rho_n^2(\eta))$ is positive or $+\infty$ because λ_n is a point of increase of $\sigma(t)$. Moreover, we fix $\rho_n(\eta) > 0$ for definiteness. In terms of big O notation, there exists a sequence of positive numbers η_1, η_2, \ldots tending to zero such that
\begin{equation}
\frac{1}{\rho_n(\eta_k)} \leq O\left(\sqrt{\eta_k}\right) \quad \text{as} \quad k \to +\infty \quad \text{and} \quad n = 1, \ldots, \infty.
\end{equation}
This fact compliments that, according to [7],
\begin{equation}
-\frac{\varphi(z_n) - \varphi(\overline{z}_n)}{z_n - \overline{z}_n} = -\frac{\varphi_n(z_n) - \varphi_n(\overline{z}_n)}{z_n - \overline{z}_n} - \sum_{m \neq n} \frac{\varphi_m(z_n) - \varphi_m(\overline{z}_n)}{z_n - \overline{z}_n} = \rho_n^2(\eta) + O(1)
\end{equation}
when η is considered as small. Furthermore,
\begin{equation}
-\frac{\varphi_n(z_n) - \varphi_n(\overline{z}_n)}{z_n - \overline{z}_n} = \int_{U_n} \frac{t - z_n - t + z_n}{(t - z_n)(t - \overline{z}_n)} \, d\sigma(t) = \int_{U_n} \frac{d\sigma(t)}{(t - z_n)^2},
\end{equation}
which implies (with the help of the elementary inequality $2\alpha\beta \leq \frac{\alpha^2}{c} + c\beta^2$ valid for any positive numbers)
\begin{equation}
\left|\frac{\varphi_n(z_n) - \varphi_n(\overline{z}_n)}{z_n - \overline{z}_n}\right| \leq \int_{U_n} \frac{d\sigma(t)}{|t - z_n||t - \overline{z}_n|} \leq \int_{U_n} \frac{d\sigma(t)}{2|t - z_n|} \leq \int_{U_n} \frac{d\sigma(t)}{2|t - z_m|} = \frac{1}{2} \rho_n(\eta) + \frac{\rho_n(\eta)}{2} \int_{U_n} \frac{d\sigma(t)}{|t - z_m|} \leq C(n, m, \delta) \rho_n(\eta)
\end{equation}
provided that the distance between U_n and z_m is more than δ. The factor $C(n, m, \delta) > 0$ in [10] is independent of η. The finiteness of [7] gives
\begin{equation}
\frac{\varphi(z_n) - \varphi(\overline{z}_n)}{z_n - \overline{z}_n} = \frac{\varphi_n(z_n) - \varphi_n(\overline{z}_n)}{z_n - \overline{z}_n} + O(1) \quad \text{as} \quad \eta \to +0.
\end{equation}
This can be combined with the estimate [10] thus giving us for small η
\begin{equation}
\left\|\frac{\varphi(z_n) - \varphi(\overline{z}_n)}{(z_n - \overline{z}_n)\rho_n(\eta)\rho_n(\eta)}\right\| \leq \frac{C(n, m, \delta)}{\rho_n(\eta)} + \frac{C(m, n, \delta)}{\rho_n(\eta)} + O\left(\frac{1}{\rho_n(\eta)\rho_n(\eta)}\right).
\end{equation}
The relations [9] and [11] allow us to make the final step in the proof. The substitution $z_n \mapsto \zeta_n/\rho_n(\eta)$ gives us
\begin{equation}
h_\varphi\left(\frac{\zeta_1}{\rho_n(\eta)}, \ldots, \frac{\zeta_\kappa}{\rho_n(\eta)}\right) z_1, \ldots, z_\kappa = \sum_{n,m=1}^\infty \frac{\varphi(z_n) - \varphi(\overline{z}_n)}{z_n - \overline{z}_n} \frac{\zeta_n\zeta_m}{\rho_n(\eta)\rho_n(\eta)} = R(\eta) - \sum_{n=1}^\kappa |\zeta_n|^2,
\end{equation}
where \(|R(\eta)| \leq \sum_{n=1}^\kappa |\zeta_n|^2 O\left(\frac{1}{\rho_n(\eta)}\right) + \sum_{m \neq n} \zeta_n\zeta_m O\left(\frac{1}{\rho_n(\eta)} + \frac{1}{\rho_m(\eta)}\right)\).
According to [9], there exist arbitrarily small values of $\eta \in \{\eta_k\}_{k=1}^\infty$ for which the last inequality implies $|R(\eta)| \leq M\sqrt{\eta} \cdot \sum_{n=1}^\kappa |\zeta_n|^2$ with a fixed constant M. Thus, if we fix such η small enough, the sign of the Hermitian form [12] will be determined by the last term $-\sum_{n=1}^\kappa |\zeta_n|^2$ alone for every set of complex numbers $\{\zeta_1, \ldots, \zeta_\kappa\}$.

Proposition 5. Under the conditions of Proposition 4, assume that $\Phi(\zeta)$ is regular in the interval $(-\varepsilon, 0)$ and $0 < \Phi(-0) \leq \infty$. Then the Hermitian form $h_\varphi(\zeta_1, \ldots, \zeta_\kappa) z_0, \ldots, z_\kappa$, where $z_m = \lambda_m + i\eta_m$ for $m = 1, \ldots, \kappa$ and $z_0 = -\sqrt{\eta} + i\mu$, is negative definite when the numbers $\eta > 0$ and $\mu > 0$ are chosen appropriately.
Proof. Split the function \(\varphi(z) \) into two parts \(\psi_0(z) \) and \(\psi_1(z) \) such that \(\varphi(z) = \psi_0(z) + \psi_1(z) \) and

\[
\psi_1(z) := b + \frac{1}{z} \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} - \frac{1}{t + t^3} \right) \, d\sigma(t).
\]

The integral here is analytic for \(|z| < \varepsilon \) and vanishes at the origin (see (5)). The function \(\psi_1(z) \) is also analytic for \(|z| < \varepsilon \). The part \(\psi_0(z) \) has the form

\[
\psi_0(z) := \frac{a}{z} + \frac{1}{z} \int_{(-\varepsilon, \varepsilon)} \left(\frac{1}{t - z} - \frac{t}{1 + t^2} \right) \, d\sigma(t) + \frac{1}{z} \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \frac{d\sigma(t)}{t + t^3}
\]

\[
= A + \frac{1}{z} \int_0^\varepsilon \frac{d\sigma(t)}{t - z}, \quad \text{where we put} \quad A := a + \int_{\mathbb{R} \setminus (-\varepsilon, \varepsilon)} \frac{d\sigma(t)}{t + t^3} - \int_0^\varepsilon \frac{d\sigma(t)}{1 + t^2},
\]

i.e. \(A \) is a finite real constant. The integral over \((-\varepsilon, 0)\) is zero in the representation of \(\psi_0 \), because the function \(\Phi(z) \) is regular in this interval, and thus \(\sigma(t) \) is constant for \(-\varepsilon < t < 0\).

First assume that \(x \) varies on \((-\varepsilon, 0)\) close enough to 0, so that \(\Phi(x) > 3M > 0 \). On the one hand, one of the Cauchy-Riemann equations and the condition \(\Phi(x) \geq 0 \) (see Remark [1]) imply

\[
\frac{\partial^2 \varphi(x + iy)}{\partial y^2} \bigg|_{y=0} - \frac{\varphi(x + i\mu) - \varphi(x - i\mu)}{2i\mu} \leq \frac{M}{x^2},
\]

(13)

relying on the fact that \(\varphi(x + iy) \) is smooth for real \(y \). The last two inequalities together imply that

\[
\frac{\varphi(z_0) - \varphi(z_0)}{z_0 - z_0} = \frac{\varphi(x + i\mu) - \varphi(x - i\mu)}{(x + i\mu) - (x - i\mu)} < -\frac{3M}{x^2} + \frac{M}{x^2} = -\frac{2M}{x^2}
\]

for \(z_0 = x + i\mu \). Therefore,

\[
\rho_0^2(x^2) := -\frac{\psi_0(z_0) - \psi_0(z_0)}{z_0 - z_0} + \frac{\psi_1(z_0) - \psi_1(z_0)}{z_0 - z_0} \geq \frac{M}{x^2}
\]

(14)

for small enough \(|x| \) on account of the smoothness of \(\psi_1(z) \). We assume \(\rho_0(x^2) > 0 \) for definiteness.

On the other hand,

\[
\frac{\psi_0(z_0) - \psi_0(z_m)}{z_0 - z_m} = \frac{A}{z_0 - z_m} + \frac{1}{z_0 - z_m} \int_0^\mu \left(\frac{z_m}{t - z_0} - \frac{z_0}{t - z_m} \right) \, d\sigma(t)
\]

\[
= \frac{1}{z_0 - z_m} \left(-A + \int_0^\mu \frac{t - z_m}{t - z_0} \, d\sigma(t) \right)
\]

\[
= -\frac{1}{z_0 - z_m} \left(A + \int_0^\mu \frac{t - z_0}{t - z_m} \, d\sigma(t) \right), \quad m = 0, \ldots, x.
\]

Therefore, with the help of the inequality \(\frac{|z_m|}{|t - z_0|} \leq 1 \) valid for \(t \geq 0 \) we obtain

\[
\left| \frac{\psi_0(z_0) - \psi_0(z_m)}{z_0 - z_m} \right| \leq \frac{1}{|z_0 - z_m|} \left(|A| + \int_0^\mu \frac{-z_0}{t - z_0} + \frac{1}{|t - z_0|} \, d\sigma(t) \right)
\]

\[
\leq \frac{|A|}{|z_0 - z_m|} + \frac{1}{|z_0 - z_m|} \int_0^\mu \frac{d\sigma(t)}{|t - z_0|}.
\]

In particular, putting \(m = 0 \) in (14) gives us

\[
\rho_0^2(x^2) = \left| \frac{\psi_0(z_0) - \psi_0(z_0)}{z_0 - z_0} \right| \leq \frac{2 |A|}{|z_0 - z_0|} \int_0^\varepsilon d\sigma(t) + \frac{|A|}{|z_0 - z_0|} \leq \frac{2 \sigma(e - 0) - \sigma(0)}{|x|} + \frac{|A|}{|x|^3}
\]

(17)

which complements

\[
\left| \frac{\varphi(z_0) - \varphi(z_0)}{z_0 - z_0} + \rho_0^2(x^2) \right| = \left| \frac{\psi_1(z_0) - \psi_1(z_0)}{z_0 - z_0} \right| \leq O(1) \quad \text{as} \quad x \to 0,
\]

(18)
where $O(1)$ in the right-hand side does not depend on $\mu \in (0, \varepsilon)$. Now recall that $\Re z_\kappa = \lambda_\kappa < \cdots < \Re z_1 = \lambda_1 < -\varepsilon$. Since $|t - z_0| = t - x + \mu < t - 2\varepsilon$ provided that $t \geq 0$ and $\mu < |x|$, from (16) we obtain

$$\left| \frac{\psi_0(z_0) - \psi_0(\pi_m)}{z_0 - \pi_m} \right| \leq \frac{1}{|z_0 - \pi_m|^2} \int_0^\varepsilon \frac{d\sigma(t)}{|z_0 - \pi_m|^2} + \frac{1}{|z_0 - \pi_m|^2} \int_0^\varepsilon \frac{\frac{t - z_0}{2} - \frac{t - z_0}{2}|^2 d\sigma(t)}{|z_0 - \pi_m|^2} \leq 1 \left(\frac{A}{|z_0 - \pi_m|^2} + \frac{|z_0|}{|z_0 - \pi_m|^2} \int_0^\varepsilon \frac{t - 2\varepsilon}{|t - z_0|^2} d\sigma(t) \right)$$

(19)

where x is tending to zero and $m = 1, \ldots, \infty$.

To implement the same technique as in the proof of Proposition 4 it is enough to put $x := -\sqrt{\eta}$ and to study the order of summands in the form $\Phi_h(\xi_0, \ldots, \xi_\kappa | z_0, \ldots, z_\kappa)$. Our supposition $x > -\varepsilon$ we supplement with $x > -\delta$, which automatically induces $\eta < \min\{\varepsilon^2, \delta^2\}$. We regard η as tending to zero, so the conditions (14) and (17)–(18) imply that

$$M \leq \rho_0(\eta) \leq O \left(\frac{1}{\sqrt{\eta}} \right)$$

and

$$\left| \frac{\varphi(z_0) - \varphi(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta)} + 1 \right| \leq O(\eta). \quad (20)$$

Now we make use of the same notation as in the proof of Proposition 4. If $m, n \neq 0$ and $m \neq n$, then the estimates (9) and (11) concerning $\varphi(z_1), \ldots, \varphi(z_\kappa)$ are valid. Since the distance between \mathcal{U}_n and z_0 is more than δ, the inequality (10) is satisfied on condition that $m = 0 \neq n$. Then (10) and (19) give us the following:

$$\left| \frac{\varphi(z_0) - \varphi(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta)} \right| = \left| \frac{\varphi(z_0) - \varphi(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta) \rho_0(\eta)} \right| + \left| \frac{\psi_0(z_0) - \psi_0(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta) \rho_0(\eta)} \right| \leq C(m, n, \delta)$$

(22)

Assume that η is taken from the sequence $\left\{ \eta_k \right\}_{k=1}^\infty$ corresponding to $\left(\delta_0 \right)$ and that the choice of $\mu \in (0, \sqrt{\eta})$ satisfies the condition (13). Then (20) implies

$$\left| \frac{\varphi(z_0) - \varphi(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta) \rho_0(\eta)} \right| = \left| \frac{\varphi(z_0) - \varphi(\pi_0)}{(z_0 - \pi_0)^2 \rho_0(\eta) \rho_0(\eta)} \right| \leq O(\sqrt{\eta}) + O \left(\eta^{-\frac{1}{2} + \frac{1}{4} + \frac{1}{2}} \right) + O \left(\eta^{-\frac{1}{2} + \frac{1}{4} + \frac{1}{2}} \right) + O \left(\eta^{-\frac{1}{2} + \frac{1}{4} + \frac{1}{2}} \right) = O \left(\sqrt{\eta} \right).$$

This estimate together with (20), (9), (11) and (8) yields that

$$h \left(\frac{\xi_0}{\rho_0(\eta)}, \ldots, \frac{\xi_\kappa}{\rho_\kappa(\eta)} | z_0, \ldots, z_\kappa \right) = - \sum_{m=0}^\kappa |c_m|^2 + O \left(\sqrt{\eta} \right) \sum_{n,m=0}^\kappa \zeta_m \zeta_n,$$

where $O \left(\sqrt{\eta} \right)$ does not depend on $\zeta_0, \ldots, \zeta_\kappa$. That is, this Hermitian form is negative definite provided that the value of $\eta \in \left\{ \eta_k \right\}_{k=1}^\infty$ is small enough.

Proof of Theorem 2 Suppose that $\Phi(z) = z\varphi(z)$ can be represented as in (4). Then for specially chosen numbers $z_1, \ldots, z_\kappa \not\in \Re$ the Hermitian form $h_\varphi(\xi_1, \ldots, \xi_\kappa | z_1, \ldots, z_\kappa)$ has κ negative squares by Proposition 4. Let us show that this is the greatest possible number of negative squares in the form $h_\varphi(\xi_1, \ldots, \xi_\kappa | z_1, \ldots, z_\kappa)$.

Denote $\tilde{\sigma}(t) = - \int_0^t s^{-1} d\sigma(s)$. Since the integral
\[
0 \leq \int_0^\infty \frac{d\tilde{\sigma}(t)}{t(1 + t^2)} = \int_0^\infty \frac{d\tilde{\sigma}(t)}{t + 1} \leq a - \sum_{i=1}^\infty \frac{\sigma_i}{\lambda_i} < \infty
\]
is finite, we can split the last term of (4b) divided by z into two parts to obtain (cf. (6))
\[
\varphi(z) = b + \frac{a}{z} + \sum_{i=1}^\infty \left(\frac{\sigma_i/\lambda_i}{\lambda_i - z} + \frac{\sigma_i/\lambda_i}{z} \right) + \int_0^\infty \frac{d\sigma(t)}{t(t - z)} + \frac{1}{z} \int_0^\infty \frac{d\sigma(t)}{t(1 + t^2)} = \tilde{\varphi}(z) + \varphi_0(z),
\]
where $\tilde{\varphi}(z) := \sum_{i=1}^\infty \frac{\sigma_i/\lambda_i}{\lambda_i - z}$ and $\varphi_0(z) := b + \frac{\Phi(-0)}{z} + \int_0^\infty \frac{d\tilde{\sigma}(t)}{t - z}$.

The functions $\varphi_0(z)$ and $-\tilde{\varphi}(z)$ have the form (2), i.e. belong to the class \mathcal{N}. For \mathcal{N}-functions and any set of numbers $\{z_1, \ldots, z_k\}$ the Hermitian form as in (1) is nonnegative definite. That is, the conditions
\[
h[\varphi] := h\varphi(\xi_1, \ldots, \xi_k|z_1, \ldots, z_k) \geq 0 \quad \text{and} \quad h[\tilde{\varphi}] := h\tilde{\varphi}(\xi_1, \ldots, \xi_k|z_1, \ldots, z_k) \leq 0
\]
holds true. Moreover, since $\tilde{\varphi}(z)$ is a rational function with \varkappa poles, which is bounded at infinity, the rank of $h[\tilde{\varphi}]$ can be at most \varkappa (see Theorem 3.3.3 and its proof in [1] pp. 105–108) or Theorem 1 in [2] p. 34). Consequently, the form $h[\varphi] = h\varphi(\xi_1, \ldots, \xi_k|z_1, \ldots, z_k)$ has at most \varkappa negative squares as a sum of $h[\varphi_0]$ and $h[\tilde{\varphi}]$. (This become evident after the reduction of the Hermitian form $h[\varphi]$ to principal axes since $h[\varphi_0]$ is nonnegative definite irrespectively of coordinates.)

Suppose that $\Phi(z)$ can be expressed as in (3), and let $\varepsilon_0 > 0$ be such that $\Phi(-\varepsilon) > 0$ provided that $0 < \varepsilon < \varepsilon_0$. In particular, it implies $\max \lambda_i, \varkappa < -\varepsilon_0$ since Φ changes the sign near its poles. Proposition [5] provides a set of points $\{z_0, \ldots, z_{\varepsilon-1}\}$ such that the corresponding Hermitian form $h[\varphi]$ has \varkappa negative squares. Let us prove that $h[\varphi]$ has at most \varkappa squares negative. Consider the function
\[
\varphi_\varepsilon(z) := \frac{\Phi(z) - \Phi(-\varepsilon)}{z + \varepsilon} + \frac{\Phi(-\varepsilon)}{z + \varepsilon} = b + \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i - z} + \int_0^\infty \frac{1}{t - z} \cdot \frac{d\sigma(t)}{t + \varepsilon} + \frac{\Phi(-\varepsilon)}{z + \varepsilon}.
\]

Denote $\Phi_\varepsilon(z) := z\varphi(z)$ and $A_i := \frac{\sigma_i/\lambda_i}{\lambda_i + \varepsilon}$. Then, on account of the identities (5),
\[
\Phi_\varepsilon(z) = bz + \Phi(-\varepsilon) - \frac{z\Phi(-\varepsilon)}{z + \varepsilon} + \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i - z} - \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i} + \int_0^\infty \frac{1}{t - z} \cdot \frac{d\sigma(t)}{t + \varepsilon}
\]
\[
= bz + \Phi(-\varepsilon) - \frac{z\Phi(-\varepsilon)}{z + \varepsilon} + \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i - z} - \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i} + \int_0^\infty \frac{1}{t - z} \cdot \frac{d\sigma(t)}{t + \varepsilon}
\]
\[
= bz + \left[\Phi(-\varepsilon) - \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i} \right] - \int_0^\infty \frac{d\sigma(t)}{t(\varepsilon + 1)}
\]
\[
= -\frac{z\Phi(-\varepsilon)}{z + \varepsilon} + \sum_{i=1}^{\varkappa-1} \frac{A_i}{\lambda_i - z} + \int_0^\infty \frac{1}{t - z} \cdot \frac{d\sigma(t)}{t + \varepsilon},
\]
i.e. $\Phi_\varepsilon(z) \in \mathcal{N}$. Moreover, $\Phi_\varepsilon(z)$ is an increasing function when $-\varepsilon < z < 0$ (see Remark [1] which implies
\[
\Phi_\varepsilon(-0) = \lim_{z \to -0} \int_0^\infty \frac{z}{t - z} \cdot \frac{d\sigma(t)}{t + \varepsilon} \leq 0,
\]
since the integrand is negative. That is, the function $\Phi_\varepsilon(z)$ has the form (4). As it is shown above, we have $\varphi_\varepsilon \in \mathcal{N}_\varepsilon$ for each ε between 0 and ε_0.

There exists some positive $\varepsilon_1 < \varepsilon_0$ such that the form $h[\varphi_{\varepsilon}] := h\varphi_{\varepsilon}(\xi_1, \ldots, \xi_k|z_1, \ldots, z_k)$ for $0 < \varepsilon < \varepsilon_1$ and a fixed set of points $\{z_1, \ldots, z_k\}$ has at least the same number of negative squares as the form $h[\varphi]$ does. (Indeed: the characteristic numbers of $h[\varphi]$ depend continuously on its coefficients.) Suppose that the Hermitian form $h[\varphi]$ has more than \varkappa negative squares. Then $h[\varphi_{\varepsilon}]$ must have more than \varkappa negative squares as well, which is impossible. Thus, the form $h[\varphi]$ has at most \varkappa negative squares.
Suppose that $\varphi \in \mathcal{N}_\kappa^+$. Then the function $\Phi(z) = z^\varphi(z)$ can be represented as in (2) and the form $\Phi(z)$ for any set of numbers $\{z_1, \ldots, z_k\}$ has at most κ negative squares (as stated in the definition of \mathcal{N}_κ^+). By Proposition 4, the function $\sigma(t)$ appearing in (3) can have at most κ negative points of increase. These points are isolated, and therefore (see Definition 3) for negative t the function $\sigma(t)$ is a step function with at most κ steps. That is, all negative singular points of $\Phi(z)$ are simple poles; they have negative residues since $\Phi \in \mathcal{N}$, i.e. $\sigma_i > 0$ for all i. Here we have two mutually exclusive options: $\Phi(0) \leq 0$, then $\Phi(z)$ has the form (4) corresponding to some $\kappa_0 \leq \kappa$, and $0 < \Phi(0) \leq \infty$, i.e. $\Phi(z)$ has the form (3) corresponding to $\kappa_0 \leq \kappa + 1$. The sufficiency (first) part of the current proof shows that $\varphi \in \mathcal{N}_{\kappa_0}^+$ in both cases. Since the classes $\mathcal{N}_{\kappa_0}^+$ and $\mathcal{N}_{\kappa_0}^+$ are disjoint by definition, we necessarily have $\kappa_0 = \kappa$. □

ACKNOWLEDGMENTS

This work appeared, inter alia, by virtue of my collaboration visits to Shanghai in 2014 (although they were devoted to other mathematical problems). I am grateful to Mikhail Tyaglov for organizing these visits, to Technische Universität Berlin and Shanghai Jiao Tong University for the financial support. I also thank Olga Holtz for her encouragement and Victor Katsnelson for his attention.

REFERENCES

[1] N.I. Akhiezer, The classical moment problem and some related questions in analysis, (Oliver & Boyd, Edinburgh-London, 1965).
[2] W.F. Donoghue, Monotone matrix functions and analytic continuation, (Springer-Verlag, Berlin-Heidelberg-New York, 1974).
[3] M.G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_κ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), pp. 187–236 (German). http://dx.doi.org/10.1002/mana.19770770116
[4] H. Langer and H. Winkler, Direct and inverse spectral problems for generalized strings, Integr. Equ. Oper. Theory 30 (1998) No. 4, pp. 409–431. http://dx.doi.org/10.1007/BF01257875

E-mail address: dyachenk@math.tu-berlin.de
E-mail address: diachenko@sfedu.ru

TU-BERLIN, MA 4-2, STRASSE DES 17. JUNI 136, 10623 BERLIN, GERMANY