Parabolic equations with the second-order Cauchy conditions on the boundary

Nikolai Dokuchaev

Department of Mathematics, Trent University, Ontario, Canada

Received 5 July 2007, in final form 6 August 2007
Published 25 September 2007
Online at stacks.iop.org/JPhysA/40/12409

Abstract
The paper studies some ill-posed boundary value problems on semi-plane for parabolic equations with the homogenous Cauchy condition at initial time and with the second-order Cauchy condition on the boundary of the semi-plane. A class of inputs that allows some regularity is suggested and described explicitly in the frequency domain. This class is everywhere dense in the space of square integrable functions.

PACS numbers: 02.60.Lj, 02.30.Jr, 02.30.Fn, 02.30.Tb
Mathematics Subject Classification: 35K20, 35Q99, 32A35

Parabolic equations such as heat equations have fundamental significance for natural sciences, and various boundary value problems for them were widely studied including well-posed problems as well as the so-called ill-posed problems that are often significant for applications. The present paper introduces and investigates a special boundary value problem on semi-plane for parabolic equations with the homogenous Cauchy condition at initial time and with the second-order Cauchy condition on the boundary of the semi-plane. The problem is ill posed. A set of solvability or a class of inputs that allows some regularity in the form of prior energy-type estimates is suggested and described explicitly in the frequency domain. This class is everywhere dense in the class of L^2-integrable functions. This result looks counterintuitive, since these boundary conditions are unusual; solvability of this boundary value problem for a wider class of inputs is inconsistent with basic theory.

1. The problem setting
Let us consider the following boundary value problem:

\[
\frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) + b \frac{\partial u}{\partial x}(x, t) + cu(x, t) + f(x, t),
\]

\[
u(x, 0) \equiv 0,
\]

\[
u(0, t) \equiv g_0(t), \quad \frac{\partial u}{\partial x}(0, t) \equiv g_1(t).
\]

\[12409\]
Here, \(x > 0, t > 0 \) and \(a > 0; b, c \in \mathbb{R} \) are constants; \(g_k \in L_2(0, +\infty) \), \(k = 1, 2 \); and \(f \) is a measurable function such that \(\int_0^\infty \int_0^\infty |f(x, t)|^2 \, dt < +\infty \) for all \(y > 0 \).

This problem is ill posed (see Tikhonov and Arsenin (1977)).

Let \(\mu \doteq b^2/4 - c \). We assume that \(\mu > 0 \). Note that this assumption does not reduce generality for the cases when we are interested in a solution on a finite time interval, since we can rewrite the parabolic equation as that with \(c \) replaced by \(c - M \) for any \(M > 0 \) and \(g_k(t) \) replaced by \(e^{-Mt}g_k(t) \); the solution \(u_M \) of the new equation is related to the solution \(u \) of the old one as \(u_M(x, t) = e^{-Mt}u(x, t) \).

Definitions and special functions

Let \(R^* \doteq [0, +\infty) \), \(C^* \doteq \{ z \in C : \text{Re} z > 0 \} \). For \(v \in L_2(\mathbb{R}) \), we denote by \(\mathcal{F}v \) and \(\mathcal{L}v \) the Fourier and the Laplace transforms, respectively:

\[
V(i\omega) = (\mathcal{F}v)(i\omega) \doteq \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\omega t} v(t) \, dt, \quad \omega \in \mathbb{R},
\]

\[
V(p) = (\mathcal{L}v)(p) \doteq \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-pt} v(t) \, dt, \quad p \in C^*.
\]

Let \(H^r \) be the Hardy space of holomorphic on \(C^* \) functions \(h(p) \) with finite norm \(\|h\|_{H^r} = \sup_{s>0} \|h(k+i\omega)\|_{L_2(\mathbb{R})} \), \(r \in [1, +\infty] \) (see, e.g., Duren (1970)).

For \(y > 0 \), let \(\mathcal{W}(y) \) be the Banach space of the functions \(u : (0, y) \times \mathbb{R}^* \to \mathbb{R} \) with the finite norm

\[
\|u\|_{\mathcal{W}(y)} \doteq \sup_{x \in (0, y)} \left(\|u(x, \cdot)\|_{L_2(\mathbb{R}^*)} + \left\| \frac{\partial u}{\partial x} (x, \cdot) \right\|_{L_2(\mathbb{R}^*)} + \left\| \frac{\partial^2 u}{\partial x^2} (x, \cdot) \right\|_{L_2(\mathbb{R}^*)} + \left\| \frac{\partial u}{\partial t} (x, \cdot) \right\|_{L_2(\mathbb{R}^*)} \right).
\]

The class \(\mathcal{W}(y) \) is such that all the equations presented in problem (1) are well defined for any \(u \in \mathcal{W}(y) \) and in the domain \((0, y) \times \mathbb{R}^* \). For instance, if \(v \in \mathcal{W}(y) \), then, for any \(t_* > 0 \), we have that \(v|_{(0, y)\times[0,t_*]} \in C([0, t_*], L_2(0, y)) \) as a function of \(t \in [0, t_*] \). Hence, the initial condition at time \(t = 0 \) is well defined as an equality in \(L_2([0, y]) \). Further, we have that \(v|_{(0, y)\times\mathbb{R}^*} \in C([0, y], L_2(\mathbb{R}^*)) \) and \(\frac{\partial u}{\partial t} |_{(0, y)\times\mathbb{R}^*} \in C([0, y], L_2(\mathbb{R}^*)) \) as functions of \(x \in [0, y] \). Hence the functions \(v(0, t), \frac{\partial u}{\partial t}(x, t)|_{t=0} \) are well defined as elements of \(L_2(\mathbb{R}^*) \), and the boundary value conditions at \(x = 0 \) are well defined as equalities in \(L_2(\mathbb{R}^*) \).

Special smoothing kernel

Let us introduce the set of the following special function:

\[
K(p) = K_{\alpha, \beta, q}(p) \doteq e^{-\alpha(p+\beta)^q}, \quad p \in C^*.
\]

Here \(\alpha > 0, \beta > 0 \) are reals and \(q \in \left(\frac{1}{2}, 1 \right) \) is a rational number. We mean the branch of \((p+\beta)^q \) such that its argument is \(q \text{ Arg}(p+\beta) \), where \(\text{Arg} z \in (-\pi, \pi] \) denotes the principal value of the argument of \(z \in \mathbb{C} \).

The functions \(K_{\alpha, \beta, q}(p) \) are holomorphic in \(C^* \), and

\[
\ln |K(p)| = -\text{Re} \left(\alpha(p+\beta)^q \right) = -\alpha |p + \beta|^q \cos[q \text{ Arg}(p+\beta)].
\]

In addition, there exists \(M = M(\beta, q) > 0 \) such that \(\cos[q \text{ Arg}(p+\beta)] > M \) for all \(p \in C^* \).

It follows that

\[
|K(p)| \leq e^{-aM|p+\beta|^q} < 1, \quad p \in C^*.
\]

Hence, \(K \in H^r \) for all \(r \in [1, +\infty] \).
Parabolic equations with the second-order Cauchy conditions on the boundary

Proposition 1. Let \(\beta > 0 \) and a rational number \(q \in \left(\frac{1}{2}, 1 \right) \) be given. Let \(v \in L_2(\mathbb{R}^*) \), \(V = \mathcal{L} v \in H^2 \). For \(\alpha > 0 \), set \(v_a = K_{\alpha, \beta, q} V \), \(v_a = \mathcal{F}^{-1} V_a(\omega) \). Then \(V_a \in H^2 \) and \(v_a \to v \) in \(L_2(\mathbb{R}^*) \) as \(\alpha \to 0, \alpha > 0 \).

Proof. Clearly, \(V_a(\omega) \to V(\omega) \) as \(\alpha \to 0 \) for a.e. \(\omega \in \mathbb{R} \). By (4), \(V_a \in H^2 \). In addition, \(|K_{\alpha, \beta, q}(\omega)| \leq 1 \). Hence, \(|V_a(\omega) - V(\omega)| \leq 2|V(\omega)| \). We have that \(\|V(\omega)\|_{L_2(\mathbb{R})} = \|v\|_{L_2(\mathbb{R}^*)} < +\infty \). By the Lebesgue dominance theorem, it follows that

\[
\|V_a(\omega) - V(\omega)\|_{L_2(\mathbb{R})} \to 0 \quad \text{as} \quad \alpha \to 0.
\]

Hence, \(v_a \to v \) in \(L_2(\mathbb{R}^*) \) as \(\alpha \to 0 \). Then the proof follows.

The inverse Fourier transform \(k(t) = \mathcal{F}^{-1}K_{\alpha, \beta, q}(\omega) \) can be viewed as a smoothing kernel; \(k(t) = 0 \) for \(t < 0 \). It can be seen that \(k \) has derivatives of any order.

Denote by \(C \) the set of functions \(v : \mathbb{R}^* \to \mathbb{R} \) such that there exist \(\alpha > 0, \beta > 0 \), and a rational number \(q \in \left(\frac{1}{2}, 1 \right) \), such that \(V \in H^2 \), where \(V(p) = K_{\alpha, \beta, q}(p)^{-1}V(p), \mathcal{L}v \).

The set \(C \) includes outputs of the convolution integral operators with the kernels \(k(t) \). By proposition 1, it follows that the set \(C \) is everywhere dense in \(L_2(\mathbb{R}^*) \).

2. The main result

Set \(F(x, \cdot) \equiv \mathcal{L} f(x, \cdot), \) where \(x > 0 \) is given, and \(G_k \equiv \mathcal{L} g_k, k = 0, 1 \).

Theorem 1. Let the functions \(f \) and \(g_k \) are such that there exist \(y > 0, \alpha > 0, \beta > 0, \) a rational number \(q \in \left(\frac{1}{2}, 1 \right) \), such that \(G_k \in H^2, \hat{F}(x, \cdot) \in H^2 \) for a.e. \(x > 0 \) and

\[
\int_0^\infty \|\hat{F}(s, \cdot)\|_{H^2} ds < +\infty, \text{where}
\]

\[
\hat{F}(x, p) = \frac{F(x, p)}{K(p)}, \quad \hat{G}_k(p) = \frac{G_k(p)}{K(p)},
\]

and where the function \(K = K_{\alpha, \beta, q} \) is defined by (4) (in particular, this means that \(g_k \in C \) and \(f(x, \cdot) \in C \) for a.e. \(x \in [0, y] \)). Then there exists an unique solution \(u(x, t) \) of problem (1) in the domain \((0, y) \times \mathbb{R}^* \) in the class \(\mathcal{W}(y) \). Moreover, there exists a constant \(C(y) = C(a, b, c, \alpha, \beta, q, \gamma) \) such that

\[
\|u\|_{\mathcal{W}(y)} \leq C(y) \left(\|\hat{G}_1\|_{H^2} + \|\hat{G}_2\|_{H^2} + \int_0^y \|\hat{F}(s, \cdot)\|_{H^2} ds \right).
\]

Remark 1. Theorem 1 requires that functions \(f \) and \(g_k \) are smooth in \(t \); in particular, they belong to \(C^\infty \) in \(t \). However, it is not required that \(f(x, t) \) is smooth in \(x \).

Proof of theorem 1. Instead of (1), consider the following problems for \(p \in \mathbb{C}^+ \):

\[
ap U(x, p) = \frac{\partial^2 U}{\partial x^2}(x, p) + b \frac{\partial U}{\partial x}(x, p) + c U(x, p) + F(x, p), \quad x > 0,
\]

\[
U(0, p) = G_0(p), \quad \frac{\partial U}{\partial x}(0, p) = G_1(p).
\]

Let \(\lambda_k = \lambda_k(p) \) be the roots of the equation \(\lambda^2 + b \lambda + (c - ap) = 0 \). Clearly, \(\lambda_{1,2} \equiv \frac{-b/2 \pm \sqrt{b^2 - 4ac}}{2} \). Recall that \(\mu > 0 \). It follows that the functions \((\lambda_1(p) - \lambda_2(p))^{-1} \) and \(\lambda_k(p)(\lambda_1(p) - \lambda_2(p))^{-1}, k = 1, 2 \), belong to \(H^\infty \).
For $x \in (0, y]$, the solution of (7) is

$$U(x, p) = \frac{1}{\lambda_1 - \lambda_2} \left((G_1(p) - \lambda_2 G_0(p)) e^{\lambda_1 x} - (G_1(p) - \lambda_1 G_0(p)) e^{\lambda_2 x} - \int_0^x e^{\lambda_1 (x-s)} F(s, p) \, ds + \int_0^x e^{\lambda_2 (x-s)} F(s, p) \, ds \right).$$

This can be derived, for instance, using the Laplace transform method applied to the linear ordinary differential equation (7), and having in mind that

$$\frac{1}{\lambda^2 + b \lambda + c - ap} = \frac{1}{(\lambda - \lambda_1)(\lambda - \lambda_2)} = \frac{1}{\lambda_1 - \lambda_2} \frac{1}{\lambda - \lambda_1} - \frac{1}{\lambda - \lambda_2}.$$

Let $x \in (0, y), s \in [0, x]$. The functions $e^{(x-s)\lambda_k(p)}, k = 1, 2$, are holomorphic in \mathbb{C}^*. We have

$$\ln |e^{(x-s)\lambda_k(p)}| = \Re ((x-s)\lambda_k(p)) = (x-s) \left(-\frac{b}{2} \pm |ap + \mu|^{|1/2|} \cos \frac{\text{Arg}(ap + \mu)}{2} \right),$$

where $k = 1, 2, p \in \mathbb{C}^*$. It follows that

$$|K(p)e^{(x-s)\lambda_k(p)}| \leq e^{(x-s)|-b/2+|ap+\mu|^{1/2}|} - a M |p + \beta|^{|1/2|},$$

$k = 1, 2, p \in \mathbb{C}^*$. Similarly,

$$|K(p)e^{\lambda x}| \leq e^{(x-s)|-b/2+|ap+\mu|^{1/2}|} - a M |p + \beta|^{|1/2|}.$$
It follows that the corresponding inverse Fourier transforms \(u(x, \cdot) = F^{-1}[U(x, i\omega)]_{\omega \in \mathbb{R}} \) are well defined and are vanishing for \(t < 0 \). In addition, we have that \(\tilde{U}(x, i\omega) = U(x, -i\omega) \) (for instance, \(\tilde{K}(i\omega) = K(-i\omega), e^{(x-x')i\lambda_k(\omega)} = e^{(x-x')i\lambda_k(-i\omega)} \), etc). It follows that the inverse of the Fourier transform \(u(x, \cdot) = F^{-1}U(x, \cdot) \) is real.

Further, we have that

\[
\frac{\partial U}{\partial x}(x, p) = \frac{1}{\lambda_1 - \lambda_2} \left((G_1(p) - \lambda_2 G_0(p))\lambda_1 e^{\lambda_1 x} - (G_1(p) - \lambda_1 G_0(p))\lambda_2 e^{\lambda_2 x} - \lambda_1 \int_0^x e^{\lambda_1 (x-s)} F(s, p) \mathrm{d}s + \lambda_2 \int_0^x e^{\lambda_2 (x-s)} F(s, p) \mathrm{d}s \right).
\]

Since \(\lambda_1(p)\lambda_2(p) = c - ap \), we again obtain that

\[
\left\| \frac{\partial U}{\partial x}(x, p) \right\|_{H^2} \leq C_3(y) \left(\sum_{k=1,2} \left\| \hat{G}_k \right\|_{H^2} + \int_0^x \left\| \hat{F}(s, p) \right\|_{H^2} \mathrm{d}s \right). \tag{11}
\]

By (7), \(\partial^2 U/\partial x^2 \) can be expressed as a linear combination of \(F, G_k, U, pU, \partial U/\partial x \). By (9)–(11),

\[
\left\| \frac{\partial^2 U}{\partial x^2}(x, p) \right\|_{H^2} \leq C_4(y) \left(\left\| \frac{\partial U}{\partial x}(x, p) \right\|_{H^2} + \sum_{m=0,1} \left\| p^m U(x, p) \right\|_{H^2} + \left\| F(x, p) \right\|_{H^2} \right). \tag{12}
\]

We have that \(|K(p)| < 1 \) on \(C^+ \) and \(\|F(s, p)\|_{H^2} \leq \|\hat{F}(s, p)\|_{H^2} \). It follows that

\[
\left\| \frac{\partial^2 U}{\partial x^2}(x, p) \right\|_{H^2} \leq C_5(y) \left(\sum_{k=1,2} \left\| \hat{G}_k \right\|_{H^2} + \int_0^x \left\| \hat{F}(s, p) \right\|_{H^2} \mathrm{d}s \right). \tag{12}
\]

Here \(C_5(y) \) are constants that depend on \(a, b, c, \alpha, \beta, q, y \). By (9)–(12), estimate (6) holds.

Therefore, \(u(x, \cdot) = F^{-1}[U(x, i\omega)]_{\omega \in \mathbb{R}} \) is the solution of (1) in \(\mathbb{V}(y) \). The uniqueness is ensured by the linearity of the problem, by estimate (6), and by the fact that \(\mathcal{L}u(x, \cdot), \mathcal{L}(\partial^k u(x, \cdot)/\partial x^k) \) and \(\mathcal{L}(\partial u(x, \cdot)/\partial t) \) are well defined on \(C^+ \) for any \(u \in \mathbb{V}(y) \). This completes the proof of theorem 1.

\[\square\]

Remark 2. It can be seen from the proof that it is crucial that \(u(x, 0) \equiv 0 \). Non-zero initial conditions cannot be included.

References

Duren P 1970 Theory of \(H^p \)-Spaces (New York: Academic)
Tikhonov A N and Arsenin V Y 1977 Solutions of Ill-Posed Problems (Washington, DC: Winston)