Weeds Diversity in Rubber Plant (*Hevea Brasiliensis*) at Perkebunan Nusantara Company, Ciamis, Indonesia

Hexa Apriliana Hidayah¹*, Ilham Fahmi Noorhakim², Dwi Nugroho Wibowo³, Rosyid Ridlo Al Hakim⁴

¹,²,³Universitas Jenderal Soedirman
⁴IPB University

ABSTRACT: This research aims to analyze the diversity of weeds species in rubber plants at Perkebunan Nusantara Company, Ciamis, Indonesia. We used the survey method with line transects sampling. Weed diversity in rubber plantations was analyzed using Shannon-Wiener Index (H'), while the evenness of plants was analyzed using the Evenness Index (E'). The research results showed that 38 species from 18 weed families were found. The weed species with the highest number is *Ischaemum timorense* (IVI = 36.71%) as a dominant species, while the weed species with the lowest number of individuals was *Cyrtococcum patens* (IVI = 0.48%). Weed diversity in rubber plants has an H' = 4.66; its higher diversity value indicates a more stable community in this area.

Keywords: Botany, Dominant Plant, Evenness, Plant Diversity

Submitted: 02-07-2022; Revised: 11-07-2022; Accepted: 22-07-2022

*Corresponding Author: hexa.apriliana6@gmail.com

https://journal.formosapublisher.org/index.php/ijaea/index
INTRODUCTION

Weeds grow around cultivated plants, and their presence is undesirable because they can harm the cultivated plants (Prayogo et al., 2017). The presence of weeds in a plantation area generally harms staple crops because weeds have a high competitive power that allows competition for light, CO$_2$, water, nutrients, and growing space to be used simultaneously (Ramlan et al., 2019). Weeds, known as nuisance plants, have harmful and positive or beneficial properties. When viewed from these characteristics, weed management always considers two terms: control or eradication (Nugraha & Zaman, 2019).

The rubber plant (*Hevea brasiliensis*) is one of the agricultural commodities in Indonesia as a source of foreign exchange and absorbs much labor. As a latex-producing commodity, the rubber plant is widely used both on an industrial scale and for the benefit of the community (Sari & Rahayu, 2013). Rubber plants originate from the tropical region of the Brazilian Amazon basin with rainfall of 2,000-3,000 mm/year and rainy days between 120-170 days/year. One of the problems with rubber plants is weeds which significantly affect latex yields. Although rubber plants grow tightly, there are still weeds that grow around rubber plants and overcome, and it is necessary to know the weed species that interfere with the growth of rubber plants so that ways to overcome them can be determined (Subrata & Setiawan, 2018).

The Batulawang Plantation is located in the eastern and southern parts of Ciamis Regency, West Java, Indonesia, which is spread over six sub-districts, which is in the area of Perkebunan Nusantara VII Company (Batulawang Plantation Research Team, 2014). One of the most dominant plants in this area is the rubber plant, but no relevant study was conducted to estimate the weeds in those plants. This research aims to determine the diversity of weeds in rubber and the dominant weeds species in rubber plants in this area.

METHODOLOGY

Study Site and Design

The study site was conducted in Perkebunan Nusantara VII Company, Ciamis, West Java, Indonesia, with a specific geographical location in the Batulawang Plantation. The coordinates are between 108.37° and 108.44° East Longitude and between 7.23° and 7.45° South Latitude. The plantation area is about 5,192.00 hectares. The topography of Batulawang Plantation is generally hilly with a slope of about 0-30%. Several areal areas have basins, including the Batugajah and Putrapinggan areas, so Batulawang Plantation has an average altitude of 126 m asl (Batulawang Plantation Research Team, 2014).

The study was conducted using a survey method with a line transect sampling technique (Burnham et al., 1980). Each line transect is divided into three sub-transect points with an interval of 50 m, and each sub-transect is placed five squared. Data collection (weeds sample) was carried out on five different squares.
Variables and Parameters

The variables observed in this study were weeds diversity as the dependent variable, while environmental factors were the independent variables. The main parameters observed consisted of the value of diversity and the number of individuals of each weeds species growing on rubber plants—the supporting parameters such as air temperature, humidity, soil pH, and light intensity.

Research Method

Research on weeds was carried out using a survey method with a line transect sampling technique referring to the research of Burnham et al. (1980), namely:

a) The Line Transect line is made 100 m long and made as many as 25 squares in different places;

b) Each Line Transect is divided into three sampling points with an interval of 50 m;

c) Each sampling point made a square plot measuring 1 x 1 m with five squares as replication with a distance of 1 meter;

d) The total squares used for this study amounted to 75 units;

e) Obtained samples were calculated for the number of species and individuals of each species in each square;

f) The identified weeds species using literature from Fadilah (2018), Fang & Staples (1995), Heyne (1987), Megawati et al. (2017), Mugnisiah (1994), Nasution (1986), Pebriani (2013), Plantamor (2012), Rismunandar (1986), Rukmana (2014), Sasmita et al. (2014), Sirait (2017), Steenis (1987, 2005, 2006, 2013), Sudewo (2004), Susanto et al. (2018), Sutedi et al. (2005), Syarif (2009), Tambaru et al. (2019), Tikupair & Lantang (2014), Tjitrosoedirdjo et al. (1984), Tjitrosopomo (2001, 2007, 2014), Umiyati & Widayat (2017), USDA (2012), and Widyastini (2012).

Environmental factor data collection refers to the research of Wijayanti et al. (2015), such as air temperature and humidity, soil pH, and light intensity. Air temperature and humidity measurements were carried out using a Thermo-Hygrometer. Place the tool in the Batulawang rubber plantation area by measuring the temperature and humidity, then wait for ± 3 minutes to read the scale. The soil pH was measured using a soil tester by plugging the tool's tip into the ground as deep as ± 5 cm, pressing the button, and then recording the scale value. Measurement of light intensity was carried out using a lux meter. Activating the tool directs the light sensor by hand on the surface where the light intensity is measured, then viewing and recording the measurements on the screen.

Data Analysis

Data analysis included diversity index (Shannon-Wiener and Evenness), important value index (IVI), and environmental results. Weed diversity is calculated using the diversity index of Shannon-Wiener (1963) in Fachrul (2007) as follows (1).
\[H = -(\pi \ln \pi); \pi = \frac{n_i}{N} \] ...(1)

As well as \(H' \) = diversity index, \(p_i = \frac{n_i}{N} \), \(n_i \) = number of individuals of the first species, and \(N \) = number of individuals of all species.

The species' evenness index indicates the evenness level. The evenness index shows the distribution of individual species to be calculated by the formula (2) (Magurran, 1988).

\[E = \frac{H'}{H_{\text{max}}} \] ...(2)

As well as \(E \) = evenness index, \(H' \) = diversity index, \(H_{\text{max}} \) = \(\log 2 \) \(S = 3.3219 \log S \), \(S \) = number of species. According to Magurran (1988), an evenness value close to one indicates that a community is more evenly distributed, whereas if the value is close to zero, it is increasingly uneven. Weed community criteria based on evenness index: \(0.00 < E < 0.50 \) depressed community; \(0.05 < E < 0.75 \) unstable community; \(0.75 < E < 1.00 \) stable community.

An important value index is an index that is calculated based on the sum of all values of relative density and relative frequency. The important value index is calculated by the formula (3) (Fachrul, 2007).

Important Value Index (IVI) = RD + RF ...(3)

While the density calculation as shown in (5) and frequency calculation can be seen in (7).

\[D = \frac{\sum \text{sample species}}{\text{The area of the entire created plot}} \] ...(4)

\[\%\text{Relative Density (RD)} = \frac{\text{Species density}}{\sum \text{all species density}} \times 100\%...\text{(5)} \]

\[\text{Frequency (F)} = \frac{\sum \text{plot of the species}}{\sum \text{all plots}} \] ...(6)

\[\%\text{Relative Frequency (RF)} = \frac{\text{Species freq.}}{\sum \text{all species freq.}} \times 100\%...\text{(7)} \]

The data analysis of environmental factors obtained from the field measurement was analyzed descriptively.

RESULTS

The results of weeds diversity (Shannon-Wiener and Evenness), important value index (IVI), most abundant (dominant) weeds, and environmental factors can be seen in Tables 1, 2, 3, 4, and 5.

Table 1. Weeds diversity result based on Shannon-Wiener Index.

No.	Species	Family	\(H' \)
1	Acmella paniculata	Asteraceae	-0.0438809
Aegeratum conyzoides -0.2062403
Emilia sonchifolia -0.0219405
Mikania cordata -0.1667475
Mikania micrantha -0.1645534
Commelina diffusa -0.1645534
Lepistemon binectariferum -0.0285226
Cyperus kyllingia -0.0263286
Cyperus rotundus -0.1162844
Scleria sumatrensis -0.1360308
Cibotium barometz -0.0702095
Homalanthus populneus -0.0307166
Phyllanthus urinaria -0.1316428
Centrosema pubescens -0.1097023
Gleichenia linearis -0.0372988
Hyiptis capitata -0.0548511
Sida rhombifolia -0.0197464
Clidemia hirta -0.0438809
Melastoma malabathricum -0.0285226
Oxalis barrelleri -0.0351047
Peperomia pellucida -0.0351047
Centotheca lappaceae -0.0658214
Cynodon dactylon -0.0153583
Cyrtococcum patens -0.0109702
Digitaria ischaemum -0.2172105
Ischaemum timorense -1.0970229
Paspalum scrobiculatum -0.0680154
Paspalum conjugatum -0.1162844
Pennisetum purpureum -0.0504631
Setaria palmifolia -0.0702095
Pityrogramma calomelanos -0.1667475
Pteris ensiformis -0.0614333
Oldenlandia corymbosa -0.0131643
Spermacoce Alata -0.3313009
Cyclosorus aridus -0.0438809
Lantana camara -0.1097023
Stachytarpheta jamaicensis -0.1996582

Total Diversity Index (H') 4.66

Table 2. Weeds diversity results based on the Evenness Index.

No.	Species	Family	E				
1	Acmella paniculata		0.02194				
2	Ageratum conyzoides	Asteraceae	0.10312				
3	Emilia sonchifolia		0.01097				
4	Mikania cordata		0.083374				
No.	Species	Family	Density	RD (%)	Freq.	RF (%)	IVI (%)
-----	--------------------------------	--------------	---------	--------	-------	--------	---------
5	*Mikania micrantha*	*Commelinaceae*	0.082277				
6	*Commelina diffuse*	*Commelinaceae*	0.082277				
7	*Lepistemon binectariferum*	*Convolvulaceae*	0.014261				
8	*Cyperus kyllingia*	*Cyperaceae*	0.013164				
9	*Cyperus rotundus*	*Cyperaceae*	0.058142				
10	*Scleria sumatrensis*	*Gnetaceae*	0.068015				
11	*Cibotium barometz*	*Lycopodiumaceae*	0.35105				
12	*Homalanthus populneus*	*Euphorbiaceae*	0.015358				
13	*Phyllanthus urinaria*	*Euphorbiaceae*	0.065821				
14	*Centrosera pubescens*	*Fabaceae*	0.054851				
15	*Gleichenia linearis*	*Gleicheniaceae*	0.018649				
16	*Hyptis capitata*	*Lamiaceae*	0.027426				
17	*Sida rhombifolia*	*Malvaceae*	0.009873				
18	*Clidemia hirta*	*Melastomataceae*	0.02194				
19	*Melastoma malabathricum*	*Melastomataceae*	0.014261				
20	*Oxalis barrelieri*	*Oxalidaceae*	0.017552				
21	*Oxalis corniculata*	*Oxalidaceae*	0.017552				
22	*Peperomia pellucida*	*Piperaceae*	0.178815				
23	*Centrosera lappaceae*	*Piperaceae*	0.032911				
24	*Cynodon dactylon*	*Poaceae*	0.007679				
25	*Cyrtococcosum patens*	*Poaceae*	0.005485				
26	*Digitaria ischaemum*	*Poaceae*	0.108605				
27	*Ischaemum timorense*	*Poaceae*	0.548511				
28	*Paspalum scrobiculatum*	*Poaceae*	0.034088				
29	*Paspalum conjugatum*	*Poaceae*	0.058142				
30	*Pennisetum purpureum*	*Poaceae*	0.025232				
31	*Setaria palmifolia*	*Poaceae*	0.035105				
32	*Pityrogramma calomelanos*	*Pteridaceae*	0.083374				
33	*Pteris ensiformis*	*Pteridaceae*	0.030717				
34	*Oldenlandia corymbosa*	*Rubiaceae*	0.006582				
35	*Spermacoce Alata*	*Rubiaceae*	0.16565				
36	*Cyclosorus aridus*	*Thelipteridaceae*	0.02194				
37	*Lantana camara*	*Verbenaceae*	0.054851				
38	*Stachyuruspheta jamaicensis*	*Verbenaceae*	0.099829				

Table 3. Weeds diversity results based on the Important Value Index (IVI).
	Species	Family	1	2	3	4	5
6	*micrantha* Commelina	Commelinaceae	1.00	3.54	0.26	3.55	7.09
7	*diffuse* Lepistemon binectariferum	Convolvulaceae	0.17	0.60	0.09	1.23	1.83
8	*kyllingia* Cyperus	Cyperaceae	0.16	0.57	0.10	1.36	1.93
9	*rotundus* Scleria sumatrensis		0.70	2.48	0.16	2.18	4.66
10	*barometz* Cibotium	Citodiaceae	0.82	2.91	0.26	3.55	6.46
11	*populneus* Homalanthus	Euphorbiaceae	0.42	1.49	0.2	2.73	4.22
12	*urinaria* Phyllanthus		0.18	0.64	0.05	0.68	1.32
13	*pubescens* Centrosema		0.8	2.84	0.4	5.46	8.30
14	*linearis* Gleichienia		0.66	2.34	0.26	3.55	5.89
15	*lappaceae* Poaceae		0.22	0.78	0.05	0.68	1.46
16	*capitata* Hyptis	Lamiaceae	0.33	1.17	0.13	1.77	2.94
17	*rhombifolia* Sida	Malvaceae	0.12	0.43	0.05	0.68	1.11
18	*hirta* Clidemia		0.26	0.92	0.16	2.18	3.10
19	*malabathricum* Melastoma		0.17	0.60	0.09	1.23	1.83
20	*barrelieri* Oxalis	Oxalidaceae	0.21	0.74	0.16	2.18	2.92
21	*corniculata* Oxalis		0.21	0.74	0.13	1.77	2.51
22	*pellucida* Peperomia	Piperaceae	2.17	7.70	0.45	6.14	13.84
23	*lappaceae* Centotheca		0.4	1.42	0.12	1.64	3.06
24	*dactylon* Cynodon		0.09	0.32	0.04	0.55	0.87
25	*patens* Cyrtococcum	Poaceae	0.06	0.21	0.02	0.27	0.48
26	*ischaemum* Digitaria		1.32	4.68	0.37	5.05	9.73
27	*timorense* Ischaemum		6.66	23.61	0.96	13.10	36.71
28	*scrobiculatum* Paspalum		0.41	1.45	0.06	0.82	2.27
29	*conjugatum* Paspalum		0.70	2.48	0.21	2.86	5.34
30	*purpureum* Pennisetum		0.30	1.07	0.08	1.10	2.17
No.	Local Name	Species	Family	Number of Individuals			
-----	--------------	--------------------------	-----------------	-----------------------			
1	Jotang	Acmella paniculata	Asteraceae	20			
2	Bandotan	Ageratum conyzoides	Asteraceae	94			
3	Jonghe	Emilia sonchifolia	Asteraceae	10			
4	Mikania	Mikania cordata	Rubiaceae	76			
5	vines	Mikania micrantha	Rubiaceae	75			
6	Gewor lalakina	Commelina diffusa	Commelinaceae	75			
7	Areuy fur	Lepistemon binecarferum	Convolvulaceae	13			
8	Wudelan	Cyperus kyllingia	Cyperaceae	12			
9	Lading	Cyperus rotundus	Cyperaceae	53			
10	keris	Scleria sumatrensis	Euphorbiaceae	62			
11	Nail hoop	Cibotium barometz	Citodiaceae	32			
12	Kareumbi	Homalanthus populneus	Euphorbiaceae	14			
13	Meniran	Phyllanthus urinaria	Euphorbiaceae	60			
14	Nuts	Centrosema pubescens	Fabaceae	50			
15	Resam	Gleichenia linearis	Gleicheniaceae	17			
16	Knob grass	Hyptis capitata	Lamiaceae	25			
17	Sadagori	Sida rhombifolia	Malvaceae	9			
18	Harendong fur	Clidemia hirta	Melastomataceae	20			
19	lonely	Melastoma malabathricum	Melastomataceae	13			
20	guide	Oxalis barcelleri	Oxalidaceae	16			
21	Calincing	Oxalis corniculata	Oxalidaceae	16			
22	Cecer Kemps	Peperomia pellucida	Piperaceae	163			
23	Kidang Jukut	Centotheca lappaceae	Poaceae	30			

Table 4. Weeds dominancy species found.
Based on the data in Table 1, it can be seen that the weed community's diversity index (H') in the overall square plot has a value of 4.66. The higher the diversity value, the more stable the community in an area is. Ecosystem stability means that the system will return to its original state after a disturbance occurs.
that causes the shock not to exist. A community is stable if the number of species present is relatively constant over time (Fitriany et al., 2015).

Based on the data in Table 2, it can be seen that the weed community’s evenness index (E') is 0.89. Hilwan et al. (2012) stated that the value of E < 0.3 indicates low species evenness, E = 0.3-0.6 indicates medium evenness, and E > 0.6 means high evenness. Based on these criteria, the evenness index value obtained on rubber plantations at the Batulawang Plantation is classified as having the highest because it is > 0.6.

Table 3 shows that the highest important value index (IVI) is in the weeds species *Ischaemum timorense*, with an IVI of 36.71%. According to Tjitrosoedirdjo (1984), *Ischaemum timorense* is a tough weeds in the lowlands and is abundant in preferred crops. Species *Ischaemum timorense* is used as feed for animals. It also provides material suitable for composting. These weeds propagate by seed and will not germinate temporarily, even if submerged. After the emergence of sprouts, this weed can proliferate in flood conditions. Species *Ischaemum timorense* can be found in wet conditions, especially in rice fields at the time of direct seed planting, and grows in the open or somewhat sheltered with a height of up to 1600 m above sea level.

The second dominant weeds was *Spermacoce alata*, with an IVI of 14.36%. This weed is classified as a broad-leaved weed with fast growth properties with quite a lot of branching and produces many seeds so that the biomass is high. This weeds is shade-tolerant, has a high density, and is evenly distributed, making it one of the dominant weeds. This high community of *Spermacoce alata* weeds are high absolute density and even distribution with dense vegetation conditions and a weed canopy that covers the soil surface, which can stimulate the growth of this weed to become dominant. Reproduce by seeds and stem segments that come out of the roots. Grows in the open or sheltered up to 1,700 m above sea level (Oksari, 2014).

The third weed that dominates is *Peperomia pellucida*, with an IVI of 13.84%. According to Rosa et al. (2020), the flattened plant (*Peperomia pellucida* L.) is a wild plant widely found in tropical and humid areas. This plant can be found on the edges of ditches, between rocks, cracked walls, fields, and yards. Various studies have shown that the plant has analgesic, antipyretic, anti-inflammatory, hypoglycemic, antibacterial, antifungal, antimicrobial, anticancer, antioxidant, and anti-diabetic activities. The advantages of messenger plants cannot be separated from the content of secondary metabolites. This plant is known to contain alkaloid compounds, cardenolides, saponins, and tannins.

Weeds that had the highest IVI were due to their high density and good distribution and were found in every place. It is also supported by the habitat of weeds that generally live in protected areas-under Steenis's (2005) opinion, a weed family can adapt and is suitable for any environment and is found in large or dominant quantities.

Based on Table 4, it can be seen that weed species in Batulawang Plantation, Perkebunan Nusantara Company, contained 38 species from 18 families with a total number of 2,127 individuals. The most abundant species obtained from all observation plots were *Ischaemum timorense*, with a total of 500 individuals. The
species found the least was *Cyrtococcum patens*, with five individuals. The dominant weeds were *Ischaemum timorense*, *Peperomia pellucida*, and *Spermacoce alata* (Fig. 1).

![Figure 1. Left to right: Ischaemum timorense, Peperomia pellucida, Spermacoce Alata.](image)

The physical condition of the soil strongly influences the weed species that grow on the plantation, under the theory that air humidity, soil moisture, air temperature, and soil temperature and their elements are climate components that significantly affect the growth of plant species, mainly seasonal plants. The competition between the existing plants can also influence the existence of the dominant plant species. If the environmental conditions are under the plant, such as completeness and the abundance of nutrients in the soil, the number of individual species will increase because the environmental conditions are supportive under the plant (Noorhadi & Utomo, 2002).

In the plantation area, data analysis from five research stations shows an average value for an air temperature of 28°C, an intensity value of light of 825 lux, the value of moisture is 76.5%, and the pH value of the soil is seven which has acidic properties. Based on the data above, it can be seen that the air temperature in the study area is high because it is located in the lowlands. In addition to the air temperature, the light intensity in this rubber plantation is relatively high, making it suitable as a breeding ground for weeds that are so fast. In conditions with environmental factors like this, weed species are more dominant than other plant species. Sastroutomo (1990) explained that weed communities vary from place to place, both on the same plantation or different plantations. In general, weeds will adapt to conditions suitable environment for growth. In addition, abiotic environmental factors such as temperature, humidity, and edaphic factors also affect this.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of research conducted at PT Perkebunan Nusantara VIII (Persero) Kebun Batulawang, it can be concluded that weeds diversity in rubber plantations consists of 38 species with a diversity index (H') = 4.66. The species with the highest IVI is *Ischaemum timorense*. The dominant weeds found in rubber plantations were *Ischaemum timorense*, *Spermacoce alata*, and *Peperomia pellucida*.

The weed diversity data from this study should be used as a basis for weed management to obtain appropriate and efficient weeds management methods. These results can also be used for weeds management and plant ecological situations.
FURTHER STUDY

Based on this research, can propose subsequent studies such as long-term monitoring and weeds ecological study as well as plant biodiversity in the study site.

ACKNOWLEDGEMENT

The authors acknowledged Perkebunan Nusantara VII Company (Persero) for agreeing with the study. The authors also thank the Faculty of Biology Universitas Jenderal Soedirman for the support, all technical staff, all PUNS herbarium staff, Mr. Joko, Mr. Agus, and Mr. Safin Santarwi. We also thank all anonymous reviewers who provide good feedback for this manuscript.

REFERENCES

Burnham, K. P., Anderson, D. R., & Laake, J. L. (1980). Estimation of density from line transect sampling of biological populations. *Wildlife Monographs*, (72): pp.12-202.

Fachrul, M. F. (2007). *Metode Sampling Bioteknologi*. Jakarta: Bumi Aksara.

Fadilah, N. N. (2018). Review Artikel: Aktivitas, Mekanisme Aksi, dan Toksisitas Sidaguri (*Sida rhombifolia* L.) sebagai Antihiperurisemia. *Farnaka*, 15(2), pp. 23-32.

Fang, R. C., & G. Staples, S. (1995). *Convolvulaceae in P. Raven & C.Y. Wu (eds.) Flora of China* 16, pp.271–325.

Fitriany, R. A. M., Suhadi, S., & Sunarmi, S. (2015). Studi Keanekaragaman Tumbuhan Herba pada Area Tidak Bertajuk Blok Curah Jarak di Hutan Musim Taman Nasional Baluran. *Jurnal FMIPA Biologi*, 7(2), pp. 1-2.

Heyne, K. (1987). Tumbuhan Berguna Jilid II. Jakarta: Yayasan Sarana Wana Jaya.

Hilwan, I., Mulyana, D. & Pananjung, W. G. (2012). Keanekaraaman Jenis Tumbuhan Bawah pada Tegakan Sengon Buto (*Enterolobium cyclocarpum* Griseb.) dan Trembesi (*Samanea saman* Merr.) di Lahan Pasca Tambang Batubara PT Kitadin, Embalut, Kutai Kartanagara, Kalimantan Timur. *Jurnal Silvikultur Tropika*, 4(01), pp.6-10.

Khan, A., Rahman, M., & Islam, M. S. (2010). Isolation and Bioactivity of a Xanthoglycoside from *Peperomia pelluci*. *Life Sci and Med Res*, pp.1-10.

Mugnisiah, W. (1994). *Tanaman Gulma*. Jakarta: Rajawali Pers.

Nasution, U. (1986). Gulma dan Pengendaliannya di Perkebunan Karet Sumatera dan Aceh. Pusat Penelitian dan Pengembangan Perkebunan Tanjung Morawa (P4TM), Tanjung Morawa.

Noorhadi, N., & Utomo, S. (2002). Kajian Volume dan Frekueni Pemberian Air Terhadap Iklim Mikro pada Tanaman Jagung Bayi di Tanah Entisol. *Jurnal Sains Tanah*, 2(1), pp. 41.
Novalinda, R., Syam, Z., & Solfiyeni, S. (2014). Analisis Vegetasi Gulma pada Perkebunan Karet (Hevea brasiliensis Mull.Arg.) di Kecamatan Batang Kapas, Kabupaten Pesisir Selatan. Jurnal Biologi Universitas Andalas, 3(2), pp. 129-134.

Nugraha, P. R., & Zaman, S. (2019). Pengendalian Gulma pada Perkebunan Karet (Hevea brasiliensis Muell Arg.) di Gurach Batu Estate, Asahan, Sumatera Utara. Bul. Agrohorti, 7(2), pp.215-223.

Oksari, A. A. (2014). Analisis Vegetasi Gulma pada Pertanaman Jagung dan Hubungannya Dengan Pengendalian Gulma di Lombung Bukit, Padang, Sumatera Barat. Jurnal Sains Natural Universitas Nusa Bangsa, 4(2), pp.135-142.

Pebriani, P. (2013). Potensi Ekstrak Daun Sembung Rambat (Mikania micrantha H.B.K) sebagai Bioherbisida Terhadap Gulma Maman Ungu (Cleome rutidosperma D.C) dan Rumput Bahia (Paspalum conjugatum Flugge). Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Tanjungpura Pontianak.

Plantamor (2012). Situs Dunia Tumbuhan, Informasi Spesies Gulma. http://www.plantamor.com. Accessed 15 August 2020.

Prayogo, D. P., Sebayang, H. T., & Nugroho, A. (2017). Pengaruh pengendalian gulma pada pertumbuhan dan hasil tanaman kedelai (Glycine max L.Merril) pada berbagai sistem olah tanah. Jurnal Produksi Tanaman, 5(1), pp.24-32.

Ramlan, D. N., Riry, J., & Tanasale, V. L. (2019). Inventarisasi Jenis Gulma di Areal Perkebunan Karet (Hevea brasiliensis) Pada Ketinggian Tempat Yang Berbeda di Negeri Liang Kecamatan Teluk Kabupaten Maluku Tengah. Jurnal Budidaya Pertanian, 15(2), pp.80-91.

Rosa, L. P., Wahyuni, D., & Murdiyah, S. (2020). Isolasi dan Identifikasi Fungi Endofit Tanaman Suruhan (Peperomia pellucida L. Kunth). Bioma, 22(1), pp.26-45.

Sari, H. F. M., & Rahayu, S. S. B. (2013). Jenis-Jenis Gulma Yang Ditemukan di Perkebunan Karet (Hevea brasiliensis Roxb.) Desa Rimbo Datar Kabupaten 50 Kota Sumatera Barat. Biogenesis, 1(1), pp.28-32.

Sasmita, N., Suhanjo, S., & Wardhana, W. (2014). Uji Spesies Tumbuhan Asli Kalimantan pada Lahan Bekas Tambang Batu Bara di PT Kaltim Prima Coal. Jurnal Pertanian Terpadu, 2(1), pp.144-164.

Sastroutomo, S. (1990). Ekologi Gulma. Jakarta: Gramedia Pustaka Utama.

Sirait, J. (2017). Rumput Gajah Mini (Pennisetum purpureum cv. Mott) sebagai Hijauan Pakan untuk Ruminansia. Wartazoa, 27(4), pp. 167-176.

Steenis, C. G. G. J. V. (2005). Flora Untuk Sekolah di Indonesia, Jakarta: PT Pradnya Paramita

Steenis, C. G. G. J. V. (2006). Flora Peganungan Jawa. Jakarta: PT. Pradnya Paramita.

Steenis, C. G. G. J. V. (2013). Flora Untuk Sekolah Indonesia. Jakarta: PT. Balai Pustaka (Persero).

Subrata, B. A. G., & Setiawan, B. A. (2018). Keragaman Vegetasi Gulma di Bawah Tegakan Pohon Karet (Hevea brasiliensis) pada Umur dan Arah
Lereng Yang Berbeda di PTPN IX Banyumas. *Jurnal Ilmiah Pertanian*, 14(2), pp.1-13.

Sudewo, B. (2004). Tanaman obat Populer Penggempur Aneka Penyakit. Jakarta: Agromedia Pustaka.

Susanto, E., Santosa, T. N. B., & Soejono, A. T. (2018). Komposisi Gulma di Kebun Kelapa Sawit TM pada Lahan mineral dan Lahan Gambut di PT Medco Agro. *Jurnal Agromast*, 3(2), pp.1-18.

Sutedi, E., Sajimin, S., & Prawiradiputra, B. R. (2005). Agronomi dan Pemanfaatan *Centrosema pubescens*. Lokakarya Nasional Tanaman Pakan Ternak. Bogor: Balai Penelitian Ternak.

Syarif, F. (2009). Serapan Sianida (CN) Pada *Mikania cordata* (Burm.f) B.L. Robinson, *Centrosema pubescens* Bth dan *Leersia hexandra* Swartz Yang Ditanam Pada Media Limbah Tailing Terkontaminasi CN. *J. Tek. Ling.*, 10(1), pp. 69-76.

Tambaru, E., Masniawati, A., & Tummuk, R. (2019). Jenis Tumbuhan Liar Familia Lamiaceae Berkhasiat Obat di Hutan Kota Universitas Hasanuddin Tamalanrea Makassar. *J. Biologi Makassar*, 4(1), pp. 77-87.

The Plant List (2020). www.theplanlist.org. Accessed 04 November 2020.

Tikupasang, A., & Lantang, D. (2014). Respon Daya Hambat Ekstrak *Lantana camara* terhadap Fungi *Trichophyton concentricum*. *Jurnal Biologi Papua*, 6(1), pp.1-18.

Tim Peneliti Perkebunan Batulawang (2014). *Selayang Pandang Perkebunan Batulawang: Sejarah Perkembangan PTP Nusantara VIII dan Perkebunan Batulawang*. Bandung: PTPN VIII.

Tjitrosoedirdjo, S., Utomo I. H., & Wiroatmodjo, J. (1984). Pengelolaan Gulma di Perkebunan. Jakarta: Gramedia.

Tjitrosoepomo, G. (2007). Morfologi Tumbuhan. Yogyakarta: Gadjah Mada press.

Tjitrosoepomo, G. (2014). Taksonomi Tumbuhan (*Scizophyta, Thallophyta, Bryophyta, Pterydophyta*). Yogyakarta: UGM Press.

Umiyati, U., & Widayat, D. (2017). *Gulma dan Pengendaliannya*. Yogyakarta: Deepublish.

Wijayanti, F., Hidayah, K., & Mardiyansah, M. (2015). Modul Praktikum Ekologi Dasar. Jakarta: Universitas Islam Negeri.