ABSTRACT
The present study investigates the performance and emission characteristics of single cylinder VCR diesel engine fuelled with nano additive blended diesel emulsion and the results are compared with neat diesel. The nano additives used for present investigation is Al₂O₃ and CeO₂ nanoparticles. The base fuels taken for the experimental work is diesel, water and surfactants (span 80 and Tween 80). The test fuels were prepared by using an ultrasonicator with emulsion technique. The nano additives added for the test fuel is in the ratio of 50 ppm (25ppm Al₂O₃ and 25ppm CeO₂) and 100 ppm (50ppm Al₂O₃ and 50 ppm CeO₂). The entire investigation is conducted under constant speed and different load conditions. A substantial improvement in performance and a reduction in the exhaust emissions for the nano additive blended fuels compared to neat diesel were observed from the experimental results. For D88S2W10CA100 blend, optimum performance (BTH and BSFC) and emission (CO, NOₓ, UBHC and CO₂) improvement were achieved as compared to other test fuels.

KEYWORDS: Nano Additives, Diesel-Emulsion, Performance & Emission

NOMENCLATURE

Ceo₂ : Cerium Oxide
Al₂O₃ : Alumina Oxide
Bth : Brake Thermal Efficiency
Bsfc : Brake Specific Fuel Consumption
Nox : Nitrogen Oxides
Co : Carbon Monoxide
Ubhc : Unburnt Hydro Carbon
Co₂ : Carbon Dioxide
D88S2W10 : 88% Diesel, 2% Surfactant And 10% Water
D88S2W10ca50 : 88% Diesel, 2% Surfactant And 10% Water, 50ppm (25ppm Ceo₂ And 25ppm Al₂O₃)
D88S2W10ca100 : 88% Diesel, 2% Surfactant And 10% Water, 100ppm (50ppm Ceo₂ And 50ppm Al₂O₃)
1. INTRODUCTION

The diesel engine is one of the main sources of air pollutant due to its combustion products. There is a significant focus going on for reducing exhaust emissions and better combustion characteristics of the diesel engine. Studies from the existing works revealed that there were two effective methods used for reducing the exhaust emissions released from the diesel engine [1]. The first method is using exhaust gas after-treatment techniques and the second method is using fuel additives [2-4]. The first method reduces the exhaust emission but unaffected the improvement in the performance of a diesel engine whereas the later one decreases the exhaust emission by simultaneously improving the performance of a diesel engine [5-7]. Nowadays there is extensive research focused on the development of water diesel emulsion as an alternative fuel due to their enormous advantages of adding water to diesel fuel [8]. By adding water into diesel, it reduces NOx emissions because of lower combustion temperature which is due to the high latent heat of vaporisation of water, and also increases the brake thermal efficiency due to the increased ignition delay by addition of the lower amount of water to diesel [9]. The addition of water to diesel causes improved atomization and better mixing of air and fuel, as it enhances the combustion and lowers the formation of particulate matter (PM) [10]. It was also observed that by the addition of the higher amount of water to diesel causes a further increment in ignition delay and it lowers the brake thermal efficiency, as water carries no energy that increases the specific fuel consumption per unit power output [11-13]. These things are controlled by the addition of additives to water-diesel emulsion[14]. Use of nano-additives is a new technology that improves the ignition delay period, calorific value and emission characteristics of the diesel engine[15]. An inclusion of nanoparticles, especially nano metal oxides acts as a catalyst in the combustion process which helps in enhancing the combustion characteristics that improves the performance and emission characteristics of the engine[16]. Nanoparticles have high surface area to volume ratio that improves the contact between fuel and oxidizer, furthermore nanoparticles are high energy density additives that causes an increase in the calorific value of the fuel. However, the stability of diesel emulsion is difficult to maintain long period for this instance surfactants are used to improve the stability of diesel emulsion by reducing interfacial tension between the oil and water phases. The selection of appropriate surfactant is based on the hydrophilic-lipophilic balance (HLB) value. The HLB value is varied from 1 to 20 depending on the emulsion type.

Some recent studies have been conducted on diesel fuel modification with the addition of nano additives. Rakhi N. Mehta et al. examined the effect of nanoparticles addition to diesel fuel on the combustion characteristics. The outcomes showed shortened ignition delay, longer flame sustenance, fast oxidation and reduction in peak cylinder pressure compared to the diesel fuel [15]. Mina Mehregan et al. numerically investigated on combustion characteristics of ethanol and n-decane liquid fuels blended with nano aluminium. It has been observed that the reduction in flame temperature, droplet evaporation rate and improved radiation by adding nano aluminium compared to pure ethanol and n-decane [16]. J. Sadhik Basha et al. carried out an investigation on the effect of alumina nanoparticles blended with biodiesel water emulsion on the performance, combustion and emission characteristics of a diesel engine. It was observed that there is an improvement in evaporation rate of fuel blended with nanoparticles and the experiment was carried out by hot plate ignition setup. It was also observed that reduced peak pressure, ignition delay, NOx, soot emissions and increased brake thermal efficiency by adding nanoparticles to biodiesel water emulsion [17]. Harish Venu et al. used titanium, zirconium oxides nano particles and Diethyl ether as additives to biodiesel-ethanol blends and concluded that titanium oxides mixed biodiesel-ethanol blends shown better combustion, performance and emission characteristics compared to other blends [18]. Soner Gumus et al. used aluminum oxide and copper oxide nanoparticles to diesel fuels and results were reported that lower emissions of CO, HC and NOx produces up to 11%, 13% and 6%, with the addition of Al2O3 and up to
The Effects of Nano Additives on Performance and Emission Characteristics of A VCR Diesel Engine Fuelled with Diesel-Water Emulsion

5%, 8% and 2% while addition of CuO nanoparticles to diesel fuel. The BSFC reduction for CuO and Al$_2$O$_3$ nano additives is up to 0.5 % and 1.2% [19]. A. Prabu employed combined Alumina (Al$_2$O$_3$) and Cerium oxide (CeO$_2$) nanoparticles of each 30 ppm blended with biodiesel on the performance, combustion and emission characteristics of a single cylinder direct injection (DI) diesel engine. The results revealed that 12% increase in brake thermal efficiency and 30%, 60%, 44% and 38% reduction in NO$_x$, CO, HC and smoke emissions [20]. The above literature is shown that nano additives were used successfully to improve the performance and emission characteristics of a diesel engine. Although, very few studies have been conducted on the effect of incorporation of two mixed nanoparticles as additives for diesel-water emulsion fuel. In view of this, an attempt has been made to study the effect of mixed nanoparticles as additives to diesel-water emulsion on the performance and emission characteristics of diesel engine and compared with neat diesel fuel.

2. MATERIALS AND METHODS

A stationary single cylinder water cooled variable compression ratio (VCR) diesel engine is used for this experimental investigation. The experimental setup and engine specifications are shown in Figure 1. and Table 1. The hydraulic dynamometer was used to apply load to the engine. The fuel tank is placed over the cantilever type load cell, which measures the fuel flow rate by measuring the loss of weight of fuel in the fuel tank. Air consumption is measured by using an orifice manometer. The proximity sensor has been used to measure the speed of the engine. A water-cooled Piezoelectric pressure sensor and rotary encoders are provided to measure the combustion chamber pressure and correlated crank angle. The exhaust gas temperature is measured with a K-type thermocouple, which is mounted on the exhaust pipe. The engine's exhaust emissions were measured using a Pantron multi-gas analyser made by Pantron Automation Pvt. Ltd. The gas analyser measures the CO, NO$_x$, HC and CO$_2$ emissions. The computerized engine analysis software (TECH-ED) has been used to collect the test parameters and analyses the performance parameters. The Al$_2$O$_3$ and CeO$_2$ nanoparticles are purchased by Nano research lab, India, and their average particle size is 30 – 50nm and 20-30nm. The nanoparticles dispersion is done by using an ultrasonicator. The fuel blends are prepared by using the emulsion technique and the percentage of fuel contains is 88% of diesel, 10% of water and 2% of surfactant (span80 and Tween 80). The prepared blends were added by 50ppm (25ppm Al$_2$O$_3$ and 25ppm CeO$_2$) and 100ppm (50ppm Al$_2$O$_3$ and 50 ppm CeO$_2$) of nanoparticles. The properties of the test fuel blend shown in Table 2. The engine experiments were carried out under different loads at a constant speed of 1500rpm. The engine was fuelled with neat diesel, water-diesel emulsion and nanoparticle blended diesel water emulsion blend. The test results were taken under steady-state conditions by running the engine 30 min for each fuel. For each fuel blend, more than three test runs are conducted under steady conditions to check the reliability of the measurements and the test results obtained by the repeatability of the test run are found to be good.

Description	Specifications
Type	4 stroke single cylinder water cooled VCR Direct injection diesel engine
Bore × Stroke	80 × 110 mm
Connecting rod length	234 mm
Swept volume	552cc
Compression ratio	17:1
Rated power	up to 5 HP(3.7 KW)
Rated Speed	1500 rpm

Table 1: Specifications of Diesel Engine
Table 2: Properties of Test Fuel Blend

Properties	Diesel	D88S2W10	D88S2W10CA50	D88S2W10CA100
Density at 15°C (kg/m³)	837.8	858.32	859.17	860.21
Kinematic Viscosity at 40°C (cst)	2.65	4.92	5.06	5.11
Flash point °C	52	60	63	65
Calorific Value (kJ/kg)	44893	42087	42430	42862

Figure 1: Experimental Test Setup

3. RESULTS AND DISCUSSIONS

The following section shows the results of the performance and emission characteristics of the diesel engine fuelled with different fuel blends. The variation of the performance parameters (BTH and BSFC) and the emission characteristics (NOx, CO, UBHC and CO₂) were plotted against the load.

3.1. Brake Thermal Efficiency (BTH)

The variation of BTE with respect to load for neat diesel, D88S2W10, D88S2W10CA50 and D88S2W10CA100 blends is shown in Figure 2. It was observed from the experimental results the BTH increases with increased load on the engine for all test blends. This is due to the increased cylinder temperature at higher loads. It can be seen from Figure 2 the addition of water to diesel fuel resulting in a reduction in BTH and addition of nano additives improves the brake thermal efficiency with respect to the concentration level of nanoparticles. High catalytic activity, high surface-to-volume ratio of nanoparticles and combined effect of micro-explosion and secondary atomization are the possible reasons. The micro explosion is caused by the difference in latent heat of absorption of water and diesel. It has been observed that the maximum BTH is obtained for D88S2W10CA100 blend is 28.12% at full load and the percentage of increment compared to neat diesel is 7.49%.

3.2. Brake Specific Fuel Consumption (BSFC)

The variation of BSFC with respect to different loads for all test blends is shown in Figure 3. It was observed that the BSFC decreases with increasing the load on the engine for all test fuels, this might be due to improved combustion at higher loads. Adding water to diesel fuel results in an increase in BSFC due to lower calorific value of diesel water mixture. The results showed that adding nano additives to test fuel blends leads to an improvement in BSFC. This could be attributed due to the enhanced surface area to volume ratio, improved fuel air mixing and shortened ignition delay. It was observed that for D88S2W10CA100 blend, the lowest BSFC is 0.313 kg/kw-hr at full load and the percentage of reduction is 2.19% compared with neat diesel.
3.3. Nitrogen Oxides (NO\textsubscript{x}) Emissions

NO\textsubscript{x} emission Variation with load for all test blends is presented in Figure 4. NO\textsubscript{x} emissions are increases as the load on the engine increases because of the increased combustion temperature at higher loads. For all fuel blends the lowest NO\textsubscript{x} is 318, 291, 297 and 274 ppm at 25% load on the engine for neat diesel, D88S2W10, D88S2W10CA50 and D88S2W10CA100. It was observed that there is a significant reduction in NO\textsubscript{x} emissions due to the addition of water and nano particles. It was also observed that at full load the lowest NO\textsubscript{x} emission is obtained for D88S2W10CA100 blend is 550 ppm and the percentage of reduction in NO\textsubscript{x} emission is 30.03% when compared to neat diesel fuel.

3.4. Carbon Monoxide (CO) Emission

Figure 5 shows the variation of CO emission with load for all test fuels. By increasing the load the magnitude of CO emission is increased. Compared to neat diesel and D88S2W10 blend the addition of nano additives reduces the CO emissions in all loads. This is attributed due to the improved air fuel mixing causes rapid evaporation, secondary atomization and the catalytic activity of nanoparticle in the combustion chamber causes enhanced burning rate. The lowest CO emission is found for D88S2W10CA100 blend at 25% of load and the maximum percentage of reduction is 19.96% obtained at full load compared with neat diesel fuel.
3.5. Unburned Hydrocarbon (UBHC) Emissions

Figure 6 shows the variation of UBHC emissions for all test fuels with respect to load. It was observed that the magnitude of UBHC emissions were increasing with increased load. The reason for this is that air fuel mixture supplied to the engine at higher loads is rich mixture which causes incomplete combustion due to the lack of oxygen in the combustion chamber. For all test blends, the lowest UBHC was obtained at 25% load. It was also observed that at full load the lowest UBHC is obtained for D88S2W10CA100 and the percentage of reduction is 20.93 when compared to neat diesel fuel.

3.6. Carbon Dioxide (CO₂) Emissions

Figure 7 shows the variation of CO₂ emissions for all fuel blends with respect to the load. It was seen that the percentage of CO₂ increased with increasing load for all fuel blend, it clearly indicates that the efficiency of combustion is improved at higher loads. It has been observed that with the addition of water to diesel fuel CO₂ emission is decreasing and increases with the addition of nano additives. Nano particles have high surface to volume ratio which increases the fuel and oxidizer contact so that it enhances the oxidation and causes complete combustion. The lower CO₂ emissions were obtained at 25 % load for all test fuel blends. It was seen that at full load the CO₂ emissions are 7.95, 7.86, 7.92 and 8.1 for neat diesel, D88S2W10, D88S2W10CA50 and D88S2W10CA100.
4. CONCLUSIONS

- Nano particles incorporated test fuel performance and emission characteristics were investigated and compared with neat diesel fuel. The following conclusions can be drawn on the basis of experimental results:

- The addition of nanoparticles to diesel water emulsion significantly enhances the performance parameters of BTH and BSFC. The maximum BTH and minimum BSFC is 28.12% and 0.313 for D88S2W10CA100 blend at full load.

- The NO\textsubscript{x} and CO emissions were decreased significantly by the addition of nano additives to diesel water emulsion blends compared to neat diesel. The lowest NO\textsubscript{x} and CO emissions are 550ppm and 0.0782% obtained for D88S2W10CA100 blend.

- Significant improvement is found in UBHC emissions with the addition of nano additives. D88S2W10CA100 blend shows the minimum UBHC at all cases and the minimum UBHC at full load is 34ppm. Furthermore, it is also observed that CO\textsubscript{2} emissions were increased by addition of nano additive to diesel water emulsion blend.

- As a whole, the addition of nano additives improves the performance and emission characteristics of test fuel compared with neat diesel.

REFERENCES

1. A. Maiboom, X. Tauzia, Nox And Pm Emissions Reduction On An Automotive Hsdi Diesel Engine With Water-In-Diesel Emulsion And Egr: An Experimental Study, Fuel. 90 (2011) 3179–3192.
2. P. Brijesh, A. Chowdhury, S. Sreedhara, The Simultaneous Reduction Of Nox and Pm Using Ultra-Cooled Egr And Retarded Injection Timing In A Diesel Engine, Int. J. Green Energy. 12 (2015) 347–358.

3. G. S. Hebbar, Nox From Diesel Engine Emission And Control Strategies - A Review, Int. J. Mech. Eng. Robot. Res. 3 (2014) 471–482.

4. A. Lif, K. Holmberg, Water-In-Diesel Emulsions And Related Systems, Adv. Colloid Interface Sci. 123–126 (2006) 231–239. Doi:10.1016/j.cis.2006.05.004.

5. H. S. Sorethia, P. P. Rahab, A. S. Sorethiaya, M. Engineering, G. E. College, B. Kutch, Effect Of Exhaust Gas Recirculation (Egr) On Nox Emission C. I. Engine - A Review Study, Ijaers. 1 (2012) 223–227.

6. S. Barwe, Y. R. Suple, Ijaer Effect Of Exhaust Gas Recirculation (Egr) On The Performance And Emission Characteristics Of Diesel Engine. Pdf, (2014) 30–37.

7. M. R. Seifi, S. R. Hassan-Beygi, B. Ghobadian, U. Desideri, M. Antonelli, Experimental Investigation Of A Diesel Engine Power, Torque And Noise Emission Using Water-Diesel Emulsions, Fuel. 166 (2016) 392–399.

8. M. Yahaya Khan, Z. A. Abdul Karim, F. Y. Hagos, A. R. A. Aziz, J. M. Tan, Current Trends In Water-In-Diesel Emulsion As A Fuel, Sci. World J. 2014 (2014).

9. Saraf, N., Devarajan, A., & Mokashi, S. S. Molten Salt Reactors And Their Development Over The Years-A Review.

10. J. Y. Syu, Y. Y. Chang, C. H. Tseng, Y. L. Yan, Y. M. Chang, C. C. Chen, W. Y. Lin, Effects Of Water-Emulsified Fuel On A Diesel Engine Generator’s Thermal Efficiency And Exhaust, J. Air Waste Manag. Assoc, 64 (2014) 970–978.

11. R. Ochoterena, A. Lif, M. Nydén, S. Andersson, I. Denbratt, Optical Studies Of Spray Development And Combustion Of Water-In-Diesel Emulsion And Microemulsion Fuels, Fuel. 89 (2010) 122–132.

12. A. Chiosa, D. Scarpete, R. Butarca, An Overview On Combustion And Performance Characteristics Of Diesel Engine Using Diesel-Water Emulsion, Di (2013).

13. K. Ryu, Y. Oh, Effect Of Water Induction On The Performance And Exhaust Emissions In A Diesel Engine (Ii), Ksme Int. J. 18 (2004) 1640–1647.

14. Hariram Venkatesan; Seralathan Sivamani, A Comprehensive Review On The Effect Of Nano Metallic Additives On Fuel Properties, Engine Performance And Emission Characteristics Hariram, Int. J. Renew. Energy Res. 7 (2017) 80–89.

15. Oleiwi, J. K., Anaee, R. A., & Radhi, S. H. (2018). Roughness Wear And Thermal Analysis Of Uhmwpe Nanocomposites As Acetabular Cup In Hip Joint Replacement. International Journal Of Mechanical And Production Engineering Research And Development, 8(6), 855-864.

16. T. Shaafi, R. Velraj, Influence Of Alumina Nanoparticles, Ethanol And Isopropanol Blend As Additive With Diesel-Soybean Biodiesel Blend Fuel: Combustion, Engine Performance And Emissions, Renew. Energy, 80 (2015) 655–663.

17. R. N. Mehta, M. Chakraborty, P. A. Parikh, Nanofuels: Combustion, Engine Performance And Emissions, Fuel. 120 (2014) 91–97. Doi:10.1016/j.fuel.2013.12.008.

18. M. Mehrregan, M. Moghiman, Effect Of Aluminum Nanoparticles On Combustion Characteristics And Pollutants Emission Of Liquid Fuels - A Numerical Study, Fuel. 119 (2014) 57–61.

19. J. S. Basha, R. B. Anand, Effects Of Nanoparticle Additive In The Water-Diesel Emulsion Fuel On The Performance, Emission And Combustion Characteristics Of A Diesel Engine, Int. J. Veh. Des. 59 (2012) 164. Doi:10.1504/Ijvd.2012.048692.
20. Srikanth, D., Krishna, M. M., Ushasri, P., & Murthy, P. K. (2013). Performance Exhaust Emissions, And Combustion Characteristics Of Cotton Seed Oil Based Biodiesel In Ceramic Coated Diesel Engine. International Journal Of Mechanical Engineering, 2(5), 67-82.

21. H. Venu, V. Madhavan, Effect Of Nano Additives (Titanium And Zirconium Oxides) And Diethyl Ether On Biodiesel-Ethanol Fuelled Ci Engine †, 30 (2016) 2361–2368. Doi:10.1007/S12206-016-0446-5.

22. S. Gumus, H. Ozcan, M. Ozbey, B. Topaloglu, Aluminum Oxide And Copper Oxide Nanodiesel Fuel Properties And Usage In A Compression Ignition Engine, Fuel. 163 (2016) 80–87. Doi:10.1016/J.Fuel.2015.09.048.

23. A. Prabu, Nanoparticles As Additive In Biodiesel On The Working Characteristics Of A Di Diesel Engine, Ain Shams Eng. J. (2017). Doi:10.1016/J.Asej.2017.04.004.
