Effects of nasal continuous positive airway pressure on cerebral hemodynamics in preterm infants

CURRENT STATUS: POSTED

Han ZHOU
nanjing medical university

Youyan ZHAO
nanjing medical university

Rui CHENG
nanjing medical university

Xuwen HOU
nanjing medical university

Jie Qiu
Nanjing University Medical School
qiujie@njmu.edu.cn Corresponding Author
ORCiD: https://orcid.org/0000-0002-9680-135X

DOI:
10.21203/rs.2.14960/v1

SUBJECT AREAS
Pediatrics

KEYWORDS
cerebral hemodynamics, nasal continuous positive airway pressure, near-infrared spectroscopy, positive end-expiratory pressure, preterm infant
Abstract
Background To evaluate effects of different positive end-expiratory pressure (PEEP) levels on cerebral hemodynamics of premature infants when using nasal continuous positive airway pressure (nCPAP) during the first 3 days of life.

Methods Forty-four preterm infants treated with nCPAP were divided into very preterm infant group (gestational age 1 (GA1) group, GA<32 weeks, n=24) and moderate and late preterm group (GA2 group, GA 32-37 weeks, n=20). During the monitoring process, the PEEP was set at 4→6→8→4 cmH 2 O and cerebral hemodynamics was assessed by near-infrared spectroscopy (NIRS). Life signs, peripheral oxygen saturation (SpO 2) and transcutaneous carbon dioxide pressure (TcPCO 2) were recorded at the same time.

Results Tissue oxygenation index (TOI), cerebral blood volume (△CBV) and the difference between oxygenated hemoglobin (△HbO 2) and deoxygenated hemoglobin (△HHb) (△HbD) were all significantly positive correlated with gestational and postnatal age and the fluctuation of GA1 group was greater. △CBV and △HbD were also significantly positive correlated with TcPCO 2 . PEEP of 4-8 cmH 2 O had no significant influence on cerebral hemodynamics, life signs, SpO 2 or TcPCO 2 .

Conclusions No significant differences were observed in cerebral hemodynamics when the PEEP was set from 4 to 8 cmH 2 O. These findings confirmed the safety and reliability of nCPAP at regular pressure levels to the nervous system of preterm infants.

Introduction
Neonatal respiratory distress syndrome (NRDS) is one of common respiratory diseases in premature infants. Noninvasive respiratory support is the optimal respiratory support method for NRDS. Nasal continuous positive airway pressure (nCPAP), one of the most common noninvasive assisted ventilation methods, is widely used in neonatal intensive care unit (NICU). Although managements of NRDS are improving, nCPAP is still a crucial therapeutic measure of NRDS [1].

In recent years, more and more researchers pay attention to the effects of nCPAP on cerebral hemodynamics [2–4]. Some researchers considered that the positive end-expiratory pressure (PEEP)
of nCPAP increases intra-thoracic pressure, decreases venous return and cardiac output (CO), which may decrease cerebral perfusion finally. Moreover, decreased cerebral blood flow (CBF) which result in insufficient cerebral perfusion may increase the occurrence of hypoxic-ischemic brain damage (HIBD). NCPAP also raises central venous and intracranial pressure and even leads to intraventricular hemorrhage (IVH) and other brain damage.

NCPAP should be started from birth in all babies at risk of NRDS with a starting pressure of 6–8 cmH\(_2\)O via mask or nasal prongs. Then, the PEEP should be individualized depending on clinical condition, oxygenation and perfusion. Until now, there is no agreement on the optimal PEEP pressure for preterm NRDS and 4–6 cmH\(_2\)O is a common range applied in NICU. However, some researchers prefer to use 8 cmH\(_2\)O or even higher pressure. Some studies found that infants with a pressure of 8 cmH\(_2\)O have larger end-expiratory volume and tidal volume, as well as lower respiratory rate and thoracoabdominal asynchrony than using 2–6 cmH\(_2\)O. However, over pressures such as 10 cmH\(_2\)O and even more in premature infants may restrict pulmonary blood flow and CO, cause hypercapnia and the fluctuation of CBF. Therefore, in premature infants, how to choose an appropriate PEEP to reduce brain injury is still needed to explore.

Although it has been demonstrated that the nCPAP using decreases cerebral perfusion in healthy adult volunteers, the results of studies about preterm infants are different. Dani et al found that PEEP of 2–6 cmH\(_2\)O didn’t affect cerebral oxygenation or cerebral blood volume in preterm infants with NRDS during the first 10 days of life. Bembich S et al also did not find obvious fluctuation of CBF in preterm newborns using nCPAP with PEEP 3–8 cmH\(_2\)O during the first 7 days of life.

However, there is no data available about the effects of nCPAP pressure on the cerebral hemodynamics in premature infants during the first 3 days of life.

It is suggested that nCPAP should be started in the delivery room. Fifty percent of premature infants who were given nCPAP early could avoid mechanical ventilation (MV) or pulmonary surfactant (PS), which may decrease the risk of lung injury. It is well known that the the first 3 days after birth is important for NRDS treatment, and the application of nCPAP in this period is vital for the cure
of premature infants with NRDS. However, in this period, the CBF of premature infants is very unstable which may cause IVH, HIBD and other brain damages. It is important to understand the adaptive change of the cerebral circulation of premature infants during the first 3 days of life would reduce the incidence of cerebral injury [10-11]. In this study, therefore, we investigated effects of nCPAP pressure on the cerebral hemodynamics in premature infants during the first 3 days of life.

Near-infrared spectroscopy (NIRS) is a noninvasive device applied in NICU which could continue monitoring regional cerebral oxygenation and hemodynamics. It helps to discover and prevent cerebral hypoxic and ischemic in neonates especially premature infants [12]. Therefore, we applied NIRS to observe effects of nCPAP pressure on cerebral hemodynamics in preterm infants during the first 3 days of life.

In this study, the preterm infants using nCPAP within the first 3 days of life were selected to detect the cerebral hemodynamics using NIRS when PEEP varies from 4 to 8 cmH₂O. To our knowledge, this is the first study assessing the safety and stability of nCPAP on cerebral hemodynamics in premature infants during the first 3 days of life. The purpose of this study is to provide the theoretical basis for selecting a safe and effective nCPAP pressure level in premature infants with NRDS early after birth.

Materials And Methods

Participants

This study was conducted in the NICU of Children’s Hospital of Nanjing Medical University from April 2018 to October 2018. The inclusion criteria were as follows: (1) preterm infants with gestational age (GA) less than 37 weeks; (2) preterm infants diagnosed with NRDS and using nCPAP within 3 days after birth; (3) Apgar score>7. The exclusion criteria were one or any combination of the following: (1) Peripheral oxygen saturation (SpO₂), was unable to maintain in the normal range during the monitoring process; (2) infants can’t keep quiet during the monitoring process; (3) serious brain injuries caused by asphyxia, birth injury, intrauterine infection or others; (4) genetic metabolic diseases; (5) congenital heart disease, nervous system malformation and other congenital diseases or serious complications. This study was approved by the ethics committee of Children’s Hospital of Nanjing Medical University and achieved agreements from infants’ parents.
All enrolled infants were divided into 2 groups according to the GA: (1) very preterm infant group (GA1 group, GA<32weeks, n = 24): ① One day group: monitoring within 24 hours after birth (n = 7); ② Two days group: monitoring between 24 to 48 hours after birth (n = 9); ③ Three days group: monitoring between 48 to 72 hours after birth (n = 8); (2) moderate to late preterm infant group (GA2 group, GA 32–37weeks, n = 20): ① One day group: monitoring within 24 hours after birth (n = 6); ② Two days group: monitoring between 24 to 48 hours after birth (n = 7); ③ Three days group: monitoring between 48 to 72 hours after birth (n = 7).

Procedure

NCPAP was provided by the Stephan CPAP system (Stephan; Bocholt, Nordrhein-Westfalen, Germany). The pressure was initially set at 4 cmH$_2$O (T_0) and the data was recorded for 30 min. Subsequently, the pressure was raised to 6 cmH$_2$O (T_1) and 8 cmH$_2$O (T_2) for additional 30 min recording respectively. Lastly, the pressure was returned to 4 cmH$_2$O (T_3) for further 30 min. The nCPAP pressure was keeping constant in each time period. All infants were supine position with mouth closed using pacifiers and were quiet or sleeping during the monitoring process.

From the beginning of T_0 to the end of T_3 period, CBF and oxygenation were continuously monitored by NIRS (EGOS–600A, EnginMed; Suzhou, Jiangsu, China). The trans-cutaneous carbon dioxide tension (TcPCO$_2$) was measured by TCM4 Combim (Radiometer; Brea, California, United States). SpO$_2$, heart rate (HR), respiratory rate (RR), and noninvasive mean systemic arterial blood pressure (MABP) were measured by a pulse oximeter (N–300®, Nellcor; Minneapolis, Minnesota, United States) placed on the right hand. Arterial hemoglobin (Hb) was detected within 12 hours before beginning the study.

NIRS measurements

During the recording time, each stage recorded 30 minutes. Tissue oxygenation index (TOI), deoxygenated hemoglobin (\triangleHHb), oxygenated hemoglobin (\triangleHbO$_2$) and total hemoglobin (\triangletHb) were recorded by NIRS. Then the cerebral blood volume (\triangleCBV) and the difference between \triangleHbO$_2$ and \triangleHHb (\triangleHbD) were calculated according to the reported formula: \triangleCBV = \triangletHb×0.89/Hb and \triangleHbD = \triangleHbO$_2$-\triangleHHb [3].
Statistical analysis

SPSS 22.0 was used for statistical analysis. The measurement data which is subject to normal distribution were presented as mean value ± standard deviation (x±s) and t test was used for comparison between two groups. F test was used for comparison among multiple groups and if the difference was statistically significant, the q test was used for further comparison. Counting data was presented as number of cases or percentages (%) and ² was used for comparison between two groups. Pearson Correlation was conducted to analyze the correlation of data and P<0.05 was considered statistically significant.

Results

Demographic variables

From April 2018 to October 2018, 44 preterm infants using nCPAP were enrolled into this study. The clinical and demographic data are presented in Table 1. Except GA and birth weight (P = 0.00), there were no significant differences in sex composition, multiple birth, mode of production, Apgar scores, prenatal use of glucocorticoids and premature rupture of fetal membranes between the two groups (P>0.05). Between two subgroups in each group, there were also no significant differences in GA and birth weight (P>0.05).

Table 1

Related factors analysis of cerebral hemodynamics

TOI was significantly positive correlated with GA (r = 0.749, P<0.05) and postnatal age (r = 0.799, P<0.05) (Fig. 1 A). △HbD was significantly positive correlated with GA (r = 0.546, P<0.05), postnatal age (r = 0.844, P<0.05) and TcPCO₂ (r = 0.826, P<0.05) (Fig. 1 B). Similarly, △CBV was significantly positive correlated with GA (r = 0.905, P<0.05), postnatal age (r = 0.821, P<0.05) and TcPCO₂ (r = 0.887, P<0.05) (Fig. 1 C).

Figure 1

Effects of GA and postnatal age on cerebral hemodynamics

As shown in Figure 2, TOI, △HbD and △CBV of GA2 group were all significant higher than that of GA1
group at the same postnatal age ($P<0.05$). TOI, \triangleHbD and \triangleCBV of GA1 group were gradually increased during the first 3 days of life and differences between three groups are significant ($P<0.05$).

In GA2 group, compared with one day group, TOI and \triangleCBV obviously increased in two days group and three days group ($P<0.05$). However, TOI and \triangleCBV did not show significant difference between two days group and three days group ($P>0.05$), while \triangleHbD between three groups showed significant difference ($P<0.05$).

Figure 2

Effects of different nCPAP pressure levels on the life signs, SpO_2, TcPCO_2 and cerebral hemodynamics

In the very preterm infant group (Fig. 3A) and the moderate to late preterm infant group (Fig. 3B), PEEP of 4–8 cmH$_2$O had no significant influence on the life signs, SpO_2 or TcPCO_2 ($P>0.05$). Also, PEEP which was set from 4 to 8 cmH$_2$O had no significant influence on cerebral hemodynamics neither in very preterm infants (Fig. 4A) nor in moderate to late preterm infants (Fig. 4B). Though the \triangleHbD and \triangleCBV tended to decline at 8 cmH$_2$O, the difference was not significant ($P>0.05$).

Figure 3

Figure 4

Discussion

NRDS is a clinical syndrome caused by PS deficiency and is one of the main causes of neonatal death, especially in premature infants. Even though therapeutic methods of NRDS keep constantly improving, PS and PEEP are still the most important methods of NRDS. NCPAP, the most common respiratory support used in NICU, delivers continuous positive pressure air into the airway through the nasal catheter. NCPAP could improve oxygenation through maintaining lung volume, obtaining larger pulmonary functional residual capacity and reducing airway resistance.

Hansen et al. [13] followed up 252 premature infants who used nCPAP during the neonatal period for 5 years and found 49% of these kids had moderate to severe mental deficiency. Aly et al. [14] carried out another study on very low birth weight infants who using nCPAP during the early days of life and the results showed 35 of 340 infants had severe IVH. Hence, it is worthy notice that the use of nCPAP
may increase the incidence of brain injury in preterm infants.

NIRS is a noninvasive device extensively applied in NICU for monitoring cerebral hemodynamics of newborn infants. Due to the low thickening scalp and calvarium in premature, NIRS has the capability to continuously and noninvasively monitor cerebral oxygenation and CBF of preterm infants. Previous findings even indicated that cerebral hemodynamics reflected by NIRS are similar to the results indicated by electroencephalography (EEG) evidence [15]. Therefore, NIRS can provide valuable information for the pathogenesis, therapeutic method evaluation and prognosis judgment of nervous system injury during perinatal stage [16].

We have made several novel and interesting findings in this work: 1) TOI, ΔHbD and ΔCBV were all significantly positive correlated with GA and postnatal age. TOI, ΔHbD and ΔCBV of GA2 group were significant higher than that of GA1 group at different postnatal ages. TOI, ΔHbD and ΔCBV of GA1 and GA2 groups were all gradually increased during the first 3 days of life and the fluctuation of GA1 group was even greater; 2) ΔHbD and ΔCBV were also significantly positive correlated with TcPCO$_2$; 3) PEEP of 4–8 cmH$_2$O had no significant influence on the life signs, SpO$_2$, TcPCO$_2$ or cerebral hemodynamics of preterm infants.

TOI is a parameter measured directly by NIRS and could simply reflect the oxygen content in local brain tissue. ΔHbD is reported to be a powerful target which could sensitively reflect CBF [17–18]. ΔCBV reflects the cerebral blood volume and is also correlated with CBF. Our results showed that TOI, ΔHbD and ΔCBV were all significantly positive correlated with GA and postnatal age, which is consistent with other reports [17, 19]. TOI, ΔHbD and ΔCBV of GA2 group were significant higher than that of GA1 group at different postnatal ages. Through using Doppler color ultrasonography, Pezzati et al. found that with increased GA, resistance index (RI) decreased and then cerebral blood flow velocity (CBFV) significantly increased both in the anterior cerebral artery and in the right and left middle cerebral arteries [20]. Therefore, we believe that the cerebral oxygenation and CBF improve with increased GA through declining the RI of cerebral vessel and increasing CBFV. Consisted with previous findings [21], we also demonstrated that cerebral oxygenation and CBF were significantly
correlated with postnatal age in preterm infants during the early days of life. The reasons may include
the increased CO, arterial ductal closure and the decreased intracranial pressure after birth [22]. It is
noticeable that although cerebral hemodynamics of two groups was both gradually increased during
the first 3 days of life, the fluctuation of GA1 group was greater than the GA2 group. It could be
speculated that premature infants of smaller GA have weaker autoregulation of cerebral
hemodynamic, which lead to the bigger blood flow fluctuation and the greater possibility of brain
injury at last. So, clinicians need to avoid the blood flow fluctuation of premature infants especially
extremely preterm infants during the first days of life in order to reduce brain injuries.
TcPCO$_2$ is another related factor of cerebral hemodynamics. Our results monitored by TCM showed
that TcPCO$_2$ has a certain correlation with CBF indexes including \triangleHbD and \triangleCBV. In recent years,
more and more researchers began to realize the close relationship between carbon dioxide pressure
(PaCO$_2$) and brain injury in preterm infants. It has been demonstrated that either over-high or over-
low PaCO$_2$ both could damage cerebral autoregulation and increase the fluctuation of CBF, which
cause brain injuries such as IVH [23–24]. Greisen et al. reported significant neurological abnormality
at 18 months of very low birth weight infants who endured severely hypocapnia within 24 hours of life
[25]. While Dix et al. [23] showed that acute increase in PaCO$_2$ diminished brain activity, which may
lead to adverse neurologic outcomes in preterm. Therefore, clinicians also should keep the level of
PaCO$_2$ in a reasonable range and avoid its fluctuation during the first days of life in order to reduce
brain injuries. Dix et al. [23] also found that an acute increase in PaCO$_2$ is associated with an increase
in cerebral oxygenation. However, Naulaers et al. [19] found TOI was independent of PaCO$_2$, which
consistent with our results. The exact relationship between PaCO$_2$ and cerebral oxygenation remains
further studies.
SpO$_2$ is one of the most common and intuitive indicators used in NICU. Some studies found higher
SpO$_2$ could prevent brain damage through decreasing the incidence of intermittent apnea, hypoxemia
and bradycardia [26–27]. However, our results did not reveal the correlation between SpO$_2$ and
cerebral hemodynamics. The reasons may be as follows: 1) it is reported that there is the correlation between SpO₂ and cerebral oxygenation when the SpO₂ is severe low [28]. However, the values of SpO₂ were high (91–98%) in our study and the exact relationship between SpO₂ with cerebral oxygenation was hidden; 2) the high peripheral oxygenation does not necessarily transform to the high cerebral oxygenation in preterm infants [4]. Thus, SpO₂ may not represent the cerebral oxygenation and CBF precisely in preterm infants.

In this study, MABP didn’t obviously affect cerebral oxygenation or CBF. It is reported that MABP may change CBF when MABP is below 30 mmHg [29], but infants have autoregulation ability to remain CBF stable when MABP is in a certain range such as above 30 mmHg [30–31]. Therefore, some neonatologists recommended that maintaining the MABP above 30 mmHg may reduce the incidence of cerebral white matter lesions and IVH [32–33]. Besides, Michelet et al. found that MABP would not remarkably influence cerebral oxygenation and CBF unless it has a huge fluctuation³⁴. In this study, MABPs of infants were all above 30 mmHg and without big fluctuations, which may be the reason why no correlation between MABP and cerebral hemodynamics was discovered.

Some researchers considered that nCPAP might decrease cerebral perfusion via increasing intrathoracic pressure, declining CO, rising central venous pressure and intracranial pressure [5, 35–36]. However, Beker et al. [37] found that the CO and MABP were not changed at PEEP levels of 4, 6, and 8 cmH₂O in preterm infants. Moritz et al. [38] also demonstrated that nCPAP with a mean level of 4 cmH₂O (up to 7 cmH₂O) does not influence CO in preterm infants. Our results also showed that PEEP which was set from 4 to 8 cmH₂O had no significant influence on cerebral hemodynamics. We speculated that infants may be able to quickly compensate for increased intrathoracic pressure caused by PEEP because of the highly compliant chest wall, which finally reduces the effect of PEEP on cerebral hemodynamics [10–11]. Two studies respectively found that nCPAP at the pressure level of 10 and 12 cmH₂O could decrease CBF in adults [8, 39]. Hsu et al. [40] also observed that nCPAP would affect the neonatal CO when PEEP was 10 cmH₂O. These findings suggested that extra high PEEP would affect cerebral hemodynamics. However, our results showed that PEEP at a level of 8
cmH₂O had no significant effect on cerebral hemodynamics of preterm infants. Hence, cerebral hemodynamics of premature could stay relatively stable when PEEP is set within the range of 4–8 cmH₂O. Therefore, nCPAP used in a proper range is safe and reliable for brain in premature.

In conclusion, the cerebral hemodynamics of preterm infants with smaller GA or postnatal age is more unstable. Maintaining the stability of TcPCO₂ is crucial to reduce the fluctuation of CBF. NCPAP used at 4–8 cmH₂O pressure levels does not affect cerebral hemodynamics and is safe for preterm infants. A limitation of this study is that it was a pilot study with a small sample size; it would be advantageous to enlarge the sample size. Furthermore, this study only recorded short-term effects and long-term follow-up is needed. We hope the results of this study could help clinicians to choose optimal pressure level of nCPAP and reduce brain damage caused by nCPAP in preterm infants.

Declarations

Ethics approval and consent to participate All applicable institutional and national guidelines for preterm infants were followed. The agreements also achieved from infants’ parents.

Consent for publication Not applicable.

Availability of data and materials The datasets generated and analyzed during the current study are not publicly available due to privacy protection but are available from the corresponding author on reasonable request.

Conflict of Interest The authors declare that they have no competing interests.

Funding This project was supported by the National Natural Science Foundation of China (No. 81671500), Jiangsu Provincial Six Talent Peaks (WSN–157), 333 project of Jiangsu Province, Nanjing Sanitation Engineering of Young Talents during the 13th Five-Year Plan Period (QRX17076), and Jiangsu Provincial Special Program of Medical Science (BL2012018).

Author Contributions

Jie Qiu conceptualized and designed the study, coordinated and supervised the experiments, provided research materials/reagents, reviewed and revised the manuscript.

Han Zhou conducted the experiments and collected data.

Youyan Zhao analyzed data and drafted the initial manuscript.
Rui Cheng and Xuewen Hou were involved in data interpretation and manuscript preparation.

All authors approved the final manuscript for the submission and agreed to be accountable for all aspects of the work.

Acknowledgements None.

References

[1] Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 Update. *Neonatology* 2019;115:432–51.

[2] Milan A, Freato F, Vanzo V, Chiandetti L, Zaramella P. Influence of ventilation mode on neonatal cerebral blood flow and volume. *Early Hum Dev* 2009;85:415–9.

[3] Dani C, Bertini G, Cecchi A, Corsini I, Pratesi S, Rubalteelli FF.. Brain haemodynamic effects of nasal continuous airway pressure in preterm infants of less than 30 weeks' gestation. *Acta Paediatr* 2007;96:1421–5.

[4] Bembich S, Travan L, Cont G, Bua J, Strajn T, Demarini S. Cerebral oxygenation with different nasal continuous positive airway pressure levels in preterm infants. *Arch Dis Child Fetal Neonatal Ed* 2015;100:F165–8.

[5] Feldman Z, Robertson CS, Contant CF, Gopinath SP, Grossman RG. Positive end expiratory pressure reduces intracranial compliance in the rabbit. *J Neurosurg Anesthesiol* 1997;9:175–9.

[6] SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, et al. Early CPAP versus surfactant in extremely preterm infants. *N Engl J Med* 2010;362:1970–9.

[7] Elgellab A, Riou Y, Abbazine A, Truffert P, Matran R, Lequien P, et al. Effects of nasal continuous positive airway pressure (NCPAP) on breathing pattern in spontaneously breathing premature newborn infants. *Intens Care Med* 2001;27:1782–7.

[8] Keller E, Nadler A, Alkadhi H, Kollias SS, Yonekawa Y, Niederer P. Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution. *Neuroimage* 2003;20:828–39.
[9] Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. *Cochrane Database Syst Rev* 2012;14:CD000510.

[10] Noori S, Wlodaver A, Gottipati V, McCoy M, Schultz D, Escobedo M. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. *J Pediatr* 2012;160:943–8.

[11] Thorburn RJ, Lipscomb AP, Stewart AL, Reynolds EOR, Hope PL. Timing and antecedents of periventricular haemorrhage and of cerebral atrophy in very preterm infants. *Early Hum Dev* 1982;7:221–38.

[12] Yoxall CW, Weindling AM, Dawani NH, Peart I. Measurement of cerebral venous oxyhemoglobin saturation in children by near-infrared spectroscopy and partial jugular venous occlusion. *Pediatr Res* 1995;38:319–23.

[13] Hansen BM, Hoff B, Greisen G, Mortensen EL, Danish ETFOL Study Group. Early nasal continuous positive airway pressure in a cohort of the smallest infants in Denmark: neurodevelopmental outcome at five years of age. *Acta Paediatr* 2004;93:190–5.

[14] Aly H, Hammad TA, Essers J, Wung JT. Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants? *Brain Dev* 2012;34:201–5.

[15] Levy WJ, Levin S, Chance B. Near-infrared measurement of cerebral oxygenation. Correlation with electroencephalographic ischemia during ventricular fibrillation. *Anesthesiology* 1995;83:738–46.

[16] Hou X, Ding H, Teng Y, Zhou C, Zhang D. NIRS study of cerebral oxygenation and hemodynamics in neonate at birth. *Conf Proc IEEE Eng Med Biol Soc* 2011;2011:1229–32.

[17] Tsuji M, duPlessis A, Taylor G, Crocker R, Volpe JJ. Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets. *Pediatr Res* 1998;44:591–5.

[18] Noone MA, Sellwood M, Meek JH, Wyatt JS. Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. *Acta Paediatr* 2003;92:1079–84.

[19] Naulaers G, Morren G, Van Huffel S, Casaer P, Devlieger H. Cerebral tissue oxygenation index in very premature infants. *Arch Dis Child Fetal Neonatal Ed* 2002;87:F189–92.

[20] Pezzati M, Dani C, Biadaioli R, Filippi L, Biagiotti R, Giani T, et al. Early postnatal doppler
assessment of cerebral blood flow velocity in healthy preterm and term infants. *Dev Med Child Neurol* 2002;44:745–52.

[21] Meek JH, Tyszczuk L, Elwell CE, Wyatt JS. Cerebral blood flow increases over the first three days of life in extremely preterm neonates. *Arch Dis Child Fetal Neonatal Ed* 1998;78:F33–7.

[22] Arri SJ, Muehlemann T, Biallas M, Bucher HU, Wolf M. Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy. *J Biomed Opt* 2011;16:047005.

[23] Dix LML, Weeke LC, de Vries LS, Groenendaal F, Baerts W, van Bel F. Carbon dioxide fluctuations are associated with changes in cerebral oxygenation and electrical activity in infants born preterm. *J Pediatr* 2017;187:66–72.

[24] Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. *Pediatrics* 2000;106:625–32.

[25] Greisen G, Munck H, Lou H. Severe hypocarbia in preterm infants and neurodevelopmental deficit. *Acta Paediatr Scand* 1987;76:401–4.

[26] Upton CJ, Milner AD, Stokes GM. Apnoea, bradycardia, and oxygen saturation in preterm infants. *Arch Dis Child* 1991;66:381–5.

[27] Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed, and central apnea in the neonate: physiologic correlates. *J Pediatr* 1992;121:943–50.

[28] Olbrecht VA, Skowno J, Marchesini V, Ding L, Jiang Y, Ward CG, et al. An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. *Anesthesiology* 2018;128:85–96.

[29] Greisen G, Børch K. White matter injury in the preterm neonate: the role of perfusion. *Dev Neurosci* 2001;23:209–12.

[30] Wyatt JS, Edwards AD, Cope M, Delpy DT, McCormick DC, Potter A, et al. Responses of cerebral blood volume to changes in arterial carbon dioxide tension in term and preterm infants. *Pediatr Res* 1991;29:553–7.
Munro MJ, Walker AM, Barfield CP. Hypotensive extremely low birth weight infants have reduced cerebral blood flow. *Pediatrics* 2004;114:1591-6.

Miall-Allen VM, de Vries LS, Whitelaw AG. Mean arterial blood pressure and neonatal cerebral lesions. *Arch Dis Child* 1987;62:1068-9.

Watkins AM, West CR, Cooke RW. Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. *Early Hum Dev* 1989;19:103-10.

Michelet D, Arslan O, Hilly J, Mangalsuren N, Brasher C, Grace R, et al. Intraoperative changes in blood pressure associated with cerebral desaturation in infants. *Paediatr Anaesth* 2015;25:681-8.

Duncan AW, Oh TE, Hillman DR. PEEP and CPAP. *Anaesth Intensive Care* 1986;14:236-50.

Clough JB, Duncan AW, Sly PD. The effect of sustained positive airway pressure on derived cardiac output in children. *Anaesth Intensive Care* 1994;22:30-4.

Beker F, Rogerson SR, Hooper SB, Wong C, Davis PG. The effects of nasal continuous positive airway pressure on cardiac function in premature infants with minimal lung disease: a crossover randomized trial. *J Pediatr* 2014;164:726-9.

Moritz B, Fritz M, Mann C, Simma B. Nasal continuous positive airway pressure (n-CPAP) does not change cardiac output in preterm infants. *Am J Perinatol* 2008;25:105-9.

Kolbitsch C, Lorenz IH, Hörmann C, Schocke M, Kremser C, Zschiegner F, et al. The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers. *Hum Brain Mapp* 2000;11:214-22.

Hsu HS, Chen W, Wang NK. Effect of continuous positive airway pressure on cardiac output in neonates. *Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi* 1996;37:353-6.

Tables

Table 1. Clinical and Demographic Characteristics of Neonates
Very preterm infant group (n=24)

Sex (Male/Female)	One day group (n=7)	Two day group (n=9)	Three day group (n=8)	Moderate One day group (n=6)
3/4	5/4	4/4	3/3	
Multiple births [n (%)]	1 (14.3)	3 (33.3)	2 (25.0)	1 (16.7)
Gestational age (\(\bar{x} \pm s\), weeks)	28.6±1.8	29.0±1.5	28.8±1.5	34.4±0.8*
Birth weight (\(\bar{x} \pm s\), g)	1174±170	1314±281	1161±209	2151±125*
Cesarean [n (%)]	3 (42.9)	6 (66.7)	6 (75.0)	4 (66.7)
1 min Apgar (\(\bar{x} \pm s\))	8.0±1.0	7.7±1.8	7.6±2.1	8.3±1.0
5 min Apgar (\(\bar{x} \pm s\))	8.9±0.7	7.7±0.6	8.8±0.5	9.3±1.0
Prenatal use of glucocorticoids [n (%)]	4 (57.1)	6 (66.7)	5 (62.5)	3 (50.0)
Premature rupture of fetal membranes >24 h [n (%)]	4 (57.1)	4 (44.4)	3 (37.5)	2 (33.3)

Abbreviations

nCPAP: nasal continuous positive airway pressure
PEEP: positive end-expiratory pressure
NICU: neonatal intensive care unit
GA: gestational age
NRDS: neonatal respiratory distress syndrome
SpO\(_2\): peripheral oxygen saturation
NIRS: near infrared spectroscopy
TOI: tissue oxygenation index
\(\Delta HbO_2\): oxygenated hemoglobin
\(\Delta HHb\): deoxygenated hemoglobin
\(\Delta tHb\): total hemoglobin
\(\Delta CBV\): cerebral blood volume

And birth weight of GA2 group were all significant higher than that of GA1 group at the same postnatal age.
\(\triangle \text{HbD} \) difference between \(\triangle \text{HbO}_2 \) and \(\triangle \text{HHb} \)

Hb hemoglobin

HR heart rate

RR respiratory rate

MABP mean systemic arterial blood pressure

TcPCO\(_2\) trans-cutaneous carbon dioxide pressure

HIBD hypoxic-ischemic brain damage

IVH Intraventricular hemorrhage

MV mechanical ventilation

PS pulmonary surfactant

EEG electroencephalography

CBF cerebral blood flow

CBFV cerebral blood flow velocity

RI resistance index

CO cardiac output

Figures
Figure 1

Related factors analysis of cerebral hemodynamics (A) TOI was significantly positive correlated with GA (r=0.749, P<0.05) and postnatal age (r=0.799, P<0.05); there were no significant correlation between TOI with SpO2 (r=0.211, P>0.05), MABP (r=0.136, P>0.05) and TcPCO2 (r=0.031, P>0.05). (B) △HbD was significantly positive correlated with GA (r=0.546, P<0.05), postnatal age (r=0.844, P<0.05) and TcPCO2 (r=0.826, P<0.05); there were no significant correlation between △HbD with SpO2 (r=0.133, P>0.05) and MABP (r=0.304, P>0.05). (C) △CBV was significantly positive correlated with GA (r=0.905, P<0.05), postnatal age (r=0.821, P<0.05) and TcPCO2 (r=0.887, P<0.05); there were no significant correlation between △CBV with SpO2 (r=0.081, P>0.05) and MABP (r=0.097, P>0.05).
Effects of GA and postnatal age on cerebral hemodynamics (A) TOI of GA2 group were all significant higher than that of GA1 group at the same postnatal age (*P<0.05). In GA1
group, TOI of two days group and three days group were both significant higher than one day group (aP<0.05); TOI of three days group was significant higher than two days group (bP<0.05). In GA2 group, TOI of two days group and three days group were both significant higher than one day group (aP<0.05). (B) △HbD of GA2 group were all significant higher than that of GA1 group at the same postnatal age (*P<0.05). In GA1 group and GA2 group, △HbD of two days group and three days group were both significant higher than one day group (aP<0.05); △HbD of three days group was significant higher than two days group (bP<0.05). (C) △CBV of GA2 group were all significant higher than that of GA1 group at the same postnatal age (*P<0.05). In GA1 group, △CBV of two days group and three days group were both significant higher than one day group (aP<0.05); △CBV of three days group was significant higher than two days group (bP<0.05). In GA2 group, △CBV of two days group and three days group were both significant higher than one day group (aP<0.05).

Effects of different nCPAP pressure levels on the life signs, SpO2 and TcPCO2 (A) In GA1 group, PEEP of 4-8 cmH2O had no significant influence on the HR, RR, MABP, SpO2, and TcPCO2 (P>0.05). (B) In GA2 group, PEEP of 4-8 cmH2O had no significant influence on the HR, RR, MABP, SpO2, and TcPCO2 (P>0.05). T0: PEEP is 4 cmH2O; T1: PEEP is 6 cmH2O; T2: PEEP is 8 cmH2O; T3: PEEP is 4 cmH2O.
Effects of different nCPAP pressure levels on the cerebral hemodynamics (A) In GA1 group, PEEP of 4-8 cmH2O had no significant influence on the TOI, ΔHbD and ΔCBV (P>0.05). (B) In GA2 group, PEEP of 4-8 cmH2O had no significant influence on the TOI, ΔHbD and ΔCBV (P>0.05). T0: PEEP is 4 cmH2O; T1: PEEP is 6 cmH2O; T2: PEEP is 8 cmH2O; T3: PEEP is 4 cmH2O.