Brewster angle of shock-compressed xenon plasmas

To cite this article: G E Norman and I M Saitov 2015 J. Phys.: Conf. Ser. 653 012111

View the article online for updates and enhancements.

Related content
- High-power YAG:Nd laser emitting linearly polarized light
 Vladislav G Mikhailievich and G P Shipulo
- Method for altering the Q factor of a laser by a glass plate
 Nikolai N Il'ichev and A A Malyutin
- Polarized reflectivity properties of shock-compressed plasma with strong interaction of particles
 Yu B Zaporozhets, V B Mintsev, V K Gryaznov et al.

Recent citations
- Polarized reflectivity properties of shock-compressed plasma with strong interaction of particles
 Yu B Zaporozhets et al
- Influence of optical non-uniformity on the reflectance of dense plasmas
 G E Norman and I M Saitov
- The interaction of laser radiation with explosively driven shock wave compressed Xe plasmas
 Yu B Zaporozhets et al
Brewster angle of shock-compressed xenon plasmas

G E Norman1,2 and I M Saitov1

1 Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13
Bldg 2, Moscow 125412, Russia
2 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow
Region 141700, Russia
E-mail: saitovilnur@gmail.com

Abstract. Experimental results for Brewster angle measurements are used to estimate the
width of the shock front in xenon. The possible influence of the shock front width on the dense
xenon reflectivity is discussed. The calculated values of the Brewster angle are shifted with
respect to the experimental values. It may be partially related to the nonzero width of the wave
front. The estimated values of the widths are 161, 154, and 145 nm for the wavelengths 1064,
694, and 532 nm respectively. These values are obtained within the framework of the Drude
theory of reflection in the optically nonuniform media. The density functional theory (DFT) is
applied to calculate values of the dielectric function and refraction. The effect is discussed if
the widths found could influence the normal reflectivity obtained in the framework of the DFT.

1. Introduction
The analysis of the response to the electromagnetic radiation is a conventional method for the
diagnostics of the dense plasmas. The polarized reflectivity measurements can be used for the
determination of the free-charge carrier density. The dependencies of reflectivities of s- and p-
polarized components (R_s and R_p) of laser radiation on the incidence angle are measured for the
plasma densities 2.7 and 2.8 g/cm3 for the wavelengths $\lambda= 1064$ nm, 694 nm and 532 nm [1–5].
The minimum value (at the Brewster angle) of R_p is a nonzero one because the considered
medium is absorptive.

2. Calculation method
The Fresnel formulas are used for the calculation of the s- and p- polarized reflectivities

$$ R_s = \left| \frac{\cos \varphi - \sqrt{\varepsilon - \sin^2 \varphi}}{\cos \varphi + \sqrt{\varepsilon - \sin^2 \varphi}} \right|^2, \quad R_p = \left| \frac{\varepsilon \cos \varphi - \sqrt{\varepsilon - \sin^2 \varphi}}{\varepsilon \cos \varphi + \sqrt{\varepsilon - \sin^2 \varphi}} \right|^2. $$

(1)

The dielectric function (DF), which is included in (1) is a complex function and can be expressed
as $\varepsilon = \varepsilon^{(1)} + i\varepsilon^{(2)}$. The dependence on frequency ω of the imaginary part of the DF is defined
by the longitudinal expression in the long-wavelength limit [6–8]:

$$
\varepsilon^{(2)}_{L}(\omega, R_1) = \frac{4\pi^2 e^2}{3} \lim_{|q| \to 0} \frac{1}{|q|^2} \sum_{n,n',\alpha,k} 2w_k \left[f(T,E_{n',k+q}) - f(T,E_{n,k}) \right] \left| \langle u_{n',k+q+e_\alpha} | u_{n,k} \rangle \right|^2 \times \delta(E_{n',k+q} - E_{n,k} - \hbar \omega)
$$

(2)
at a given ion configuration R_I, where e is the elementary charge, Ω is a system volume, q is a wave vector of the incident radiation. The summation is carried out over all electron states n, n'. The contribution of the sum terms with $n = n'$ (intraband transitions) are taken into account as well as contribution of terms with $n \neq n'$ (interband transitions). The summation over index α multiplied by $1/3$ is averaging over three spatial coordinates. The unit vector e_α determines a direction of the cartesian axis, corresponding to the coordinate α. The summation is also carried out over all k-points in the Brillouin zone with taking into account of weight w_k of a k-point. The factor 2 before the weights takes into account spin-degeneracy of the system considered. $f(T, E_{n,k})$ is the Fermi-Dirac distribution function, which defines the occupation of state n, at temperature T. $E_{n,k}$ is the eigenvalue (energy level) corresponding to the wave function $\psi_{n,k}$. $u_{n,k}$ is the cell periodic part of the Bloch function $\psi_{n,k} = e^{ikr}u_{n,k}$, which is a solution of the Schrödinger equation. \hbar is the Plank constant.

The eigenvalues and the wave functions are calculated within the framework of the Kohn-Sham DFT approach. VASP (Vienna Ab initio Simulation Package) [9–12] plane-wave code is used in this work for DFT modeling. The type of the exchange-correlational functional is PBE [13]. It is shown in [14, 15] that the longitudinal expression (2) gives more correct result in comparison with the widely used Kubo-Greenwood formula [16, 17] within the framework of the projector augmented wave (PAW) approach. The correctness of the expression (2) is confirmed in [18, 19] where it is shown that using of (2) provides better explanation of the experimental dependence [20–23] of the shocked xenon reflectivity for normal incidence on density in comparison with the Kubo-Greenwood formalism used in [24].

The real part of the DF is obtained by the Kramers-Kronig transformation

$$\varepsilon^{(1)}(\omega, R_I) = 1 + \frac{2}{\pi} P \int_0^\infty d\omega' \frac{\omega' \varepsilon^{(2)}(\omega', R_I)}{(\omega')^2 - (\omega - i\eta)^2},$$

(3)

where P denotes the principle value (in the limit $\eta \to 0$).

3. Width of the wave front

The measured and calculated values of the R_s and R_p reflectivity dependence on incident angle φ are shown in figure 1 for the wavelengths of laser radiation 1064, 694 and 532 nm and densities 2.7 and 2.8 g/cm3. The experimental data [1–5] are depicted by squares (R_s) and circles (R_p). The solid lines correspond to the calculated results obtained in this work within framework of the DFT with the longitudinal expression (2) for the imaginary DF and without introduction of the broadening of the wave front. Dashed lines correspond to the results calculated with introduction of the wave front broadening. The upper lines (solid and dashed) correspond to R_s and lower ones to R_p. The calculated minimum of the dependence $R_p(\varphi)$ is shifted relatively the experimental one. It can be considered as notification of existence of the transitive region with finite width, where the plasma density increases smoothly to a final value.

The assumption that the broadening of the shock front width could improve the agreement of the Drude formula with static collisional frequency with the experimental data is introduced in [23, 25–27] for the normal incidence of laser radiation. The wave front width depends on the xenon ionization rate and its magnitude, estimated in [20], is $\hbar \approx 100$ nm. However, the suggested width of the wave front [23, 25–27] is approximately 800 nm, which considerably exceeds theoretical estimation. The satisfactory agreement of theoretical results with the experiment for the dependence of polarized reflectivity on the incident angle is obtained for the wave front width 220 nm in the framework of Drude model [5] with the electron density profile suggested in [28].
3.1. Helmholtz equations.

For the normal incidence of the radiation in [23, 25–27], the method of estimation of the wave front width is based on the solution of the Helmholtz equation for the of complex amplitude of the electric field $E(z)$ with wavelength λ, which propagates along the axis z in the medium with nonuniform DF $\varepsilon_\lambda(z)$

$$\frac{d^2E(z)}{dz^2} + \frac{4\pi^2}{\lambda^2} \varepsilon_\lambda(z)E(z) = 0.$$ (4)

The reflectivity is found from the corresponding boundary conditions. The magnitude of the width obtained using this method is 95 nm at $\rho = 2.8 \text{ g/cm}^3$ for DF calculated within the framework of the DFT [18, 19]. It is much closer to the theoretical estimation [20].

For the calculation of the dependence of the s-polarized wave amplitude on incident angle φ, the expression $\varepsilon_\lambda(z) - \sin^2 \varphi$ has to be substituted in (4) instead of $\varepsilon_\lambda(z)$. The amplitude of p-polarized wave is determined by the following expression for the magnetic field $H(z)$

$$\varepsilon_\lambda(z) \frac{\partial}{\partial z} \left(\frac{1}{\varepsilon(\lambda, z)} \frac{\partial H(z)}{\partial z} \right) + (\varepsilon(\lambda, z) - \sin^2 \varphi) H(z) = 0.$$ (5)

3.2. Drude approach

The depth of the wave front h can be also estimated within the framework of the Drude theory [29–31] for the polarized reflection of the electromagnetic wave using the experimental dependence of R_s and R_p on the incident angle φ. For this approach, the magnitude of h can evaluated from following equation

$$\frac{R_p}{R_s} = \frac{\pi^2 h^2}{\lambda^2} \frac{n^2 + 1}{(n^2 - 1)^2 \eta^2},$$ (6)

where $\eta = \sqrt{N^2 + n^2 (1/N^2)} - 1 - n^2$, $N = N(z) = \sqrt{\varepsilon_\lambda(z)}$ is a nonuniform refraction coefficient, overline is a symbol of averaging over the width of the transitive layer (wave front), n is a refraction coefficient of the plasma. The ratio R_s/R_p is found at the value of angle φ where R_p reaches the minimum (Brewster angle). For the linear dependence of $N(z)$ the expression (6)
gives the following result for h:

$$h = \lambda \left[\left(\frac{3}{2\pi} \right) \left(\frac{R_p}{R_s} \right)^{1/2} \left(R |n|^2 + 1 \right)^{-1/2} \right]$$

where R is a reflection coefficient for the normal incidence. The refraction coefficient $n = \sqrt{\varepsilon}$ is calculated in the framework of the DFT.

3.3. Results

The estimated values of the widths are presented in Table 1. The upper values (h_1) correspond to the values of the shock wave width calculated as parameters of the equations (4) and (5), which give the experimental Brewster angles. The polarized reflectivities with the wavefront widths h_1 are also shown in Figure 1 by dashed lines.

The lower values h_2 are obtained within the framework of the Drude theory of reflection. As one can see, Helmholtz and Drude approaches give estimations of the width, which are less than the estimations of [5] and closer to the theoretical value.

Table 1. The width of the wave front. The values are obtained as parameter of solution of Helmholtz equations (h_1) and from the Drude theory (h_2).

λ, nm	ρ, g/cm3	h_1, nm	h_2, nm
1064	2.7	80	161
694	2.8	100	154
532	2.8	100	145

4. Conclusions

In this paper, we have suggested two methods of estimation of the width of the wave front based on the calculation of the dielectric function using density functional theory approach. The first method is based on the evaluation of the wave front width as a parameter of the solution of the Helmholtz equation. The second method allows estimating the wave front width from the experimental ratio of s- and p-polarized reflectivities within the framework of the Drude theory of refraction from optically nonuniform medium. Both values of the wave front width are close to the physically justified width of the nonstationary ionization [20], in comparison with the results of [1–5, 23, 25–27].

Acknowledgments

Authors would like to thank V B Mintsev and Yu B Zaporozhets for the information about the results of measurements. The calculations were carried out on the computing clusters MVS-100K of the Joint Supercomputer Center RAS and K-100 of the Keldysh Institute of Applied Mathematics RAS. The work is supported by the grant 14-19-01295 of the Russian Science Foundation.

References

[1] Zaporozhets Y, Mintsev V, Gryaznov V, Fortov V, Reinholz H and Röpke G 2009 J. Phys. A: Math. Gen. 42 214063
[2] Zaporozhets Y B, Mintsev V B, Gryaznov V K, Fortov V E, Reinholz H and Röpke G 2009 Physics of Extreme States of Matter—2009 ed Fortov V E et al. (Chernogolovka: IPCP RAS) pp 194–197
[3] Zaporozhets Y B, Mintsev V, Gryaznov V, Fortov V E, Reinholz H and Röpke G 2010 Contrib. Plasma Phys. 50 60–63

[4] Zaporozhets Y B, Mintsev V B, Gryaznov V K, Fortov V E, Winkel M, Reinholz H and Röpke G 2010 Physics of Extreme States of Matter—2010 ed Fortov V E et al. (Chernogolovka: IPCP RAS) pp 176–78

[5] Zaporozhets Y B, Mintsev V B, Gryaznov V K, Reinholz H, Röpke G and Fortov V E 2013 Physics of Extreme States of Matter—2013 ed Fortov V E et al. (Moscow: JIHT RAS) pp 194–197

[6] Ehrenreich H and Cohen M H 1959 Phys. Rev. 115(4) 786–790

[7] Adler S L 1962 Phys. Rev. 126(2) 413–420

[8] Wiser N 1963 Phys. Rev. 129(1) 62–69

[9] Kresse G and Hafner J 1993 Phys. Rev. B 47(1) 558–561

[10] Kresse G and Hafner J 1994 Phys. Rev. B 49(20) 14251–14269

[11] Kresse G and Furthmüller J 1996 Phys. Rev. B 54(16) 11169–11186

[12] Kresse G and Joubert D 1999 Phys. Rev. B 59(3) 1758–1775

[13] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100(13) 136406

[14] Desjarlais M P 2005 Contrib. Plasma Phys. 45 300–304

[15] Reinholz H, Röpke G, Wierling A, Mintsev V and Gryaznov V 2003 Contrib. Plasma Phys. 43 3–10

[16] Reinholz H, Röpke G, Morozov I, Mintsev V, Zaporozhets Y, Fortov V and Wierling A 2003 J. Phys. A: Math. Gen. 36 5991–5997

[17] Reinholz H, Zaporozhets Y, Mintsev V, Fortov V, Morozov I and Röpke G 2003 Phys. Rev. E 68(3) 036403

[18] Winkel M, Reinholz H, Wierling A, Röpke G, Zaporozhets Y and Mintsev V 2009 Contrib. Plasma Phys. 49 687–691

[19] Drude P 1900 Ann. Phys. 306 566–613

[20] Drude P 1900 Ann. Phys. 308 369–402

[21] Gadomski O N and Sukhov S V 2000 Optics and Spectroscopy 89 261–267