Synthesis, characterization and biological evaluation of Bis-benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes

Rana Yasir Nadeem1,2 · Munazzah Yaqoob1,2 · WanSinn Yam3 · Rosenani A. Haque3 · Muhammad Adnan Iqbal1,2

Received: 23 January 2022 / Accepted: 28 July 2022 / Published online: 8 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Azolium salts are stable sources of N-heterocyclic carbenes (NHCs), an emerging class of ligands. Due to prominent properties, they have versatile applications. In the current study, new bis-benzimidazolium salts and their silver complexes were synthesized and confirmed through spectroscopic analysis. Compounds were characterized using FT-IR, 1H NMR, and 13C NMR spectroscopies. Biological potentials of these compounds were investigated for antibacterial activity against both the gram-positive (Staphylococcus Aureus) and gram-negative (Escherichia Coli) strains. The salts L1 and L2 showed zone inhibition of 17 ± 1 and 13.33 ± 0.58 mm for S. Aureus and 8.83 ± 0.76 and 8.83 ± 0.58 mm for E. Coli, respectively. The respective silver complexes C1 and C2 showed better zone of inhibitions for both the strains, i.e., 18.67 ± 0.58 and 19.83 ± 0.29 mm for S. Aureus and 12.5 ± 0.5 and 14.33 ± 0.58 mm for E. Coli, respectively. The salts showed a good trend in scavenging concerning the increasing concentration and presented the IC50 values in the range of 3.51 and 15.36 μg/mL, respectively, which showed that these compounds are good antioxidant agents. The Hemolytic potential of compounds were checked and L2 was found least toxic with 7.37 ± 0.11 value.

Graphical abstract

Keywords Synthesis · NHC · Bis-benzimidazolium salts · Silver(I)-NHC complexes · Biological

Introduction
Since the synthesis of first N-heterocyclic carbene by Öfele and Wanzlick in 1968 [1, 2] and the isolation of first stable NHC by Arduengo in 1991 [3], the synthesis of new N-heterocyclic carbenes and their complexes gained a great research interest. It is an attractive research field where a range of new metal-NHC complexes involving main group elements and transition metals have been synthesized and applied in different areas of interest [4–7]. NHCs are similar to phosphine ligands in how they coordinate with metals. Still, these carbenes are more attractive toward the metals than the phosphines, perhaps due to their more accessible synthetic methods [8, 9].
In the past decade, benzimidazole derived synthesis and applications have been considered more repeatedly due to their activities as pharmacological agents such as antibacterial, antifungal, antiulcer, and anticancer properties [10–12]. Today, benzimidazole and its derivatives are being used in the treatment of different fungal and bacterial infections as potent antimicrobial drugs [13]. Due to the broad range of pharmacological applications of benzimidazole derivatives, a lot of research is currently in progress to develop more effective and less harmful drugs of these types of N-heterocyclic compounds for their clinical uses [14, 15].

Among all the transition metals, coinage metals (silver, copper, and gold) are widely studied due to their unique structural and diverse applications [16–21]. Silver is not found in human body by birth, but it has potentially fatal behaviour against microbes and at the same time it shows less toxicity to humans. Some of these silver salts also exhibit antimicrobial as well as in vitro antitumor activity. The challenge with these silver-based drugs is that they quickly release their activity by losing Ag+ ions. This limitation can be overcomed by using NHCs as ligands with silver as they bind the silver ions strongly due to a good sigma donating and week pi-accepting properties [22, 23]. Finally, a sustained release of silver ions at the target sit has been observed [24].

Silver-NHC complexes have become very attractive in organometallic chemistry because of their ease in synthesis by a single-step reaction of benzimidazolium salts with Ag2O [13, 25, 26]. The other reason of interest in Ag-NHC complexes is that they can be used as a reagent in carbene transfer reactions to synthesize other transition metal complexes like Ni, Pt, Au, Cu, Ir, Rh, and Ru NHC complexes, an easier route for the synthesis of these metal carbene complexes [27, 28, 29]. With the first report of silver-NHCs as an antimicrobial agent by Youngs et al. in 2004, the silver carbene complexes have interestingly shown biologically active both as anticancer and antimicrobial drugs [30]. The bis-benzimidazolium salts have shown the attractive enhanced anticancer potential when attached with silver to form Ag-NHC complexes [31]. So, in the present work, we have synthesized two aryl-substituted bis-benzimidazolium salts and their Ag(I) complexes and reported their antibacterial, antioxidant and hemolytic studies [32].

Results and discussion

Synthesis

The synthesis of bis-benzimidazolium salts was carried out in two steps following the literature methods [33–36]. In the first step, N-alkylated benzimidazole was synthesized by reacting 2 equivalents of benzimidazole with 1 equivalent of 1,4-dibromobutane in the presence of 1.5 equivalence of potassium hydroxide. This reaction was performed in DMSO. The white-colored powdered solid product was obtained. This reaction proceeds by the removal of acidic hydrogen present on nitrogen and then the nucleophile attack on alkyl halide, removing bromide ions. In the second step, 1 equivalent of N-alkylated benzimidazolium preligand was dissolved in 1,4-Dioxane and refluxed with 2 equivalents of second alkyl halide. At a high temperature around 100 °C, the lone pair of nitrogen attacked the electrophilic center of alkyl halide and bound with it forming benzimidazolium salts L1 and L2. Salt L1 was obtained in solid white amorphous form. Salts L2 was obtained as a viscous fluid that was then converted into solid by reaction with KPF6 through metathesis reaction. Melting points, solubility, and complete spectral characterization of synthesized salts were performed.

Binuclear silver NHC complexes were synthesized adopting the reported methods [34, 37–39]. The complexes were formed by in vivo generation of carbenes by removal of acidic hydrogen on carbene carbon by reacting it with silver oxide at room temperature. The synthesis was carried out in the dark as the silver-NHC complex with bromide counter ion broke down in light, so the complexes were converted in hexafluorophosphate counter ion by metathesis mechanism. Homo equivalent bis-benzimidazolium salts dissolved in methanol were stirred with Ag2O in the dark at room temperature. KPF6 was reacted with silver complexes and replaced the counter ion through the metathesis reaction pathway. All the complexes were obtained as white solid material. The solubility, melting points, and complete spectral analysis were performed for all complexes prior to their biological applications.

U.V./visible spectral analysis

The synthesized bis-benzimidazolium salts and Ag-NHC complexes were characterized using absorption spectroscopy (U.V./Vis spectroscopy). A prominent alteration in absorption band was observed in metal-NHC complexes due to the tri-pidation of silver center to form Ag-NHC complexes. This absorption shift is linked with metal center bands and metal-ligand charge-transfer electronic transitions [40]. The silver(I)-NHC complexes C1 and C2 have shown intense absorption bands in the 270–300 nm range (290 nm for C1 and 285 nm for C2), but their corresponding salts L1 and L2 showed absorption at 271 nm and 257 nm respectively in the range of 240–280 nm as shown in figure S1. Clear difference in the peaks of absorption spectra from salts to the complexes show that there is any chemical change in the structure and this is the initial indication of synthesis of complexes from salts.

FT-IR spectral analysis

Spectral features of synthesized benzimidazolium salts and metal complexes can describe the successful synthesis of
compounds by changing the characteristic peaks of salts and complexes [41]. FT-IR spectroscopy of synthesized salts and silver complexes was observed and manipulated for the confirmation of the successful synthesis. Synthesized N-alkylated precursors have an intense characteristic peak pattern between 1500–800 cm\(^{-1}\) which diminished in bis-benzimidazolium salts. For ligands (L1 & L2), sharp and strong stretching vibrations appear at 3402–3424 cm\(^{-1}\) due to the benzimidazolium ring’s tertiary nitrogen atom (benzimidazolium ring, \(CN_{\text{alip}}-N_{\text{benz}}\)). An intense pattern of peaks was observed in the fingerprint region, i.e., (750 to 650 cm\(^{-1}\)) in the spectra of all the benzimidazolium salts and silver complexes due to \(-C-H\) bending vibrations [36]. The appearance of powerful peaks at 2950–2800 cm\(^{-1}\) in spectra of bis-benzimidazolium salts and the absence of these peaks in silver complexes were key to the successful metalation of the salts. The four-finger pattern [13, 34, 39] for the synthesized silver complexes and characteristic peaks of \(C=\text{N}\) stretching of N-alkylated and benzimidazolium salts in the range of 1600–1300 cm\(^{-1}\) which weekend in complexes C1 & C2 provides a strong indication for the synthesis of Ag-NHCs as shown in figure S2 [42].

NMR spectroscopy

\(^{1}\)H and \(^{13}\)C spectra of L1, L2, C1, and C2 shown in figure S3 were recorded in the DMSO as a solvent. Salts/ligands (L1 and L2) have clear peaks of an acidic proton (\(NC=HN\)) in the 8.0–10.4 δ ppm range. Although, in the silver complexes (C1 and C2), this acidic proton is replaced by silver metal [39, 43]. This is a clear indication of the successful synthesis of silver complexes. \(^{13}\)C NMR spectra of salts (L1 and L2) showed the peaks of acidic proton in the range of 138.3 δ ppm [44, 45]. This information gives us a clear confirmation of the successful synthesis of silver complexes and their respective salts. The carbine carbon peak in Ag(I)-NHC complexes (C1 and C2) was absent in \(^{13}\)C NMR Spectra as shown in Fig. S3. It is cited from the literature that many times the resonance of carbine carbon is not detected exactly in the complexes. However, the \(NC=HN\) peak around 143 δ ppm in ligand disappeared in complexes as compared to their respective salts L1 and L2 which indicated the bonding of carbine carbon with metal center. These shifts and the absence of carbene carbon peak are in agreement with the cited data for similar Ag(I)-NHC complexes [46–48].

MIC value

All the compounds were tested against gram-positive strain *Staphylococcus aureus* and gram-negative bacterial strain *Escherichia coli*. The standard solutions of compounds were made of concentration 10 mg/mL in DMSO. DMSO has already been reported as inactive against all the gram-positive and gram-negative bacterial strains [49–51]. Ciprofloxacin was used and a standard drug against bacterial strains at the same concentration. All the compounds were found active against test strains, and the results of zone inhibition were presented as Mean ± S.D. in mm. Benzimidazolium salts have already been investigated much for their biological applications, but the insertion of silver metal enhanced the antibacterial potential of complexes [52]. Standard drug ciprofloxacin showed 34.67 ± 1.15 mm for *S. Aureus* and 35 ± 1 mm for *E. Coli*. The test compounds L1 and L2 showed zone inhibition of 17 ± 1 and 13.33 ± 0.58 mm for *S. Aureus* and 8.83 ± 0.76 and 8.83 ± 0.58 mm for *E. Coli* which is good activity against applied strains. The respective silver complexes C1 and C2 showed better zone inhibition for both the strains, i.e., 18.67 ± 0.58 and 19.83 ± 0.29 mm for *S. Aureus* and 12.5 ± 0.5 and 14.33 ± 0.58 mm for *E. Coli* that revealed that silver center contributed to the inhibition of growth of bacteria much better. The overall results showed the good potential of silver complexes C1 and C2 compared to their bis-benzimidazolium salts L1 and L2. They suggested that the bi-silver metal center played a vital role in the biological activity azonium salts [36]. The investigation to find the significant antibacterial sustainability of silver NHC complexes C1 and C2 in terms of MIC (minimum inhibitory concentration of drug). The MIC value for salts L1 and L2 against *S. aureus* is 12.5 μg/mL, and for *E. Coli* is 12.5 and 25 μg/mL for bath salts. The respective Ag(I)-NHC complexes C1 and C2 have much better susceptibility to inhibit the growth of bacteria at low concentration i.e., 0.765 and 0.382 μg/mL for *S. Aureus* and 3.06 and 1.53 μg/mL for *E. Coli* which revealed the activity of metal center to inhibit the growth of bacteria even at low concentration as shown in Fig. 1a, b. There are many similar compounds which have been synthesized by us already and their high antibacterial potential is recorded. It is good gesture to validate the new study [53–55].

Hemolytic assay

Hemolytic activity of newly synthesized bis-benzimidazolium salts L1 and L2 and silver complexes C1 and C2 (see S4) were evaluated by a spectroscopic method in terms of destruction in human RBCs Triton X was castoff as a positive control, and the sample % hemolysis was compared with the hemolytic ability of standard positive control taken as 100%. All the salts and respective silver complexes were found less toxic to RBCs in the range of 6.73–20.46%. Bis-benzimidazolium salt L1 was found least toxic with 6.73 ± 0.36% hemolysis, and it’s the Ag(I) complex C1 was revealed as most toxic in series with % hemolysis of 20.46 ± 0.23%. The toxicity of silver complexes C1 and C2 was comparatively greater than the benzimidazolium salts, which showed the toxic nature of
silver ions to human RBCs but had much lesser value as compared to Triton X, which concluded that the synthesized drugs are safer to humans and better to proceed for clinical trials as shown in Fig. 2 [56, 57].

Antioxidant potential

There is a continuous release of free radicals in biological systems due to different chemical or physical reactions, which may cause drastic toxic action on a normal system using physiological actions. The effect of these free radicals can be overcome by trapping them through an antioxidant agent present in the biological system [58]. Synthesized benzimidazolium salts L1 and L2 and their silver complexes C1 and C2 (see S5) were investigated to find their scavenging ability of DPPH free radicals. DPPH assay of the synthesized drugs was performed at different values of concentrations, and the results were presented as % SCV for each concentration of the sample used. All the test compounds have antioxidant potential. The salts showed a good trend in scavenging concerning the increasing concentration and presented the IC_{50} values in the range of 3.51 and 15.36 μg/mL, respectively, which showed that these compounds are good antioxidant agents. The respective silver NHC complexes C1 and C2 have a bad trend in scavenging effect when the drug concentration is increased. The IC_{50} of complexes was found in the range of 6.92 and 6.13 μg/mL, respectively. The salts showed better results due to the presence of highly acidic proton at the carbene center, which facilitates reducing the free radicals, as shown in Fig. 3 [59].

Materials and method

Chemicals and instruments

The required chemical like benzimidazole, alkyl halides (1,4-dibromobutane, bromomethyl benzene, and (2-bromoethyl) benzene), and potassium hexafluorophosphate (KPF_6) were obtained from Alfa Aesar (Massachusetts, USA). Silver oxide, KOH, DMSO, 1,4-dioxane, methanol, n-hexane, chloroform, etc., were purchased from Sigma Aldrich (Germany). For the sake of biological activities, gram-positive bacterial strains *S. aureus* and gram-negative bacterial strains E. coli were collected from American type culture collection 10,231. Standard drug Ciprofloxicin was purchased from Sigma Aldrich, and chemicals like nutrient agar, tryptone glucose, and plate count agar were purchased from Sigma Aldrich.

The melting points of solid products were taken using Stuart scientific instrument (SMP-1 UK). To evaporate volatile solvents, EYELA1L Rotary evaporator N-1001V-WD was utilized. UV-Visible spectra of synthesized compounds were performed using UV-spectrometer, Shimadzu, Japan. The FT-IR spectral analysis of salts and complexes was performed using FTIR Spectrometer-4000 (Shimadzu, Japan). \(^1\)H and \(^{13}\)C Nuclear magnetic resonance spectral analyses were performed through Bruker Advance spectrometer. MIC values of bioactive complexes and salts were measured through an ELISA plate reader, Biobase.

![Fig. 1](image1.jpg) **Fig. 1** a Antibacterial susceptibility of synthesized compounds at a concentration. b Antimicrobial Estimation of synthesized salts and complexes against *S. aureus* and E. Coli. All the test sample are applied in the concentration of 10 mg/mL. Ciprofloxicin has been used as positive control.

![Fig. 2](image2.jpg) **Fig. 2** Hemolytic activity of salts and silver-NHC complexes.
The 96 well microtiter plate method was used to check the hemolytic activity of copounds. The ELISA, plate reader was used and measurement of absorption was taken at 570 nm. Antioxidant potential of compounds was measured through DPPH method.

Synthesis

Synthesis of 1,4-bis (1H-benzo[d]imidazol-1-yl) butane (N-alkylated)

3.0 g of benzimidazole (0.0253 mol) and 2.1 g of KOH (0.3809 mol) powder were taken in the round bottom flask. 40.0 ml of DMSO was added and stirred the solution for 0.5 h at room temperature (R.T.). Then 1.5 ml of 1,4-dibromobutane (0.0126 mol) was added dropwise with constant stirring. The reaction mixture was stirred for 3.5 h at R.T. Removed the flask. Took 200 ml of ice-cold water in a beaker, poured the reaction mixture, and mixed the filtered solution with constant stirring, and then filtered the solution. The mixture was allowed to stay for one hour and then filtered the product. The product was washed with distilled water twice and dried. White fluffy solid. Yield: 95.1%. M.P: 167.1 °C. FTIR (ATR, v, cm⁻¹): 3437, 3424, 3366 (C=C=Nbenz), 3037, 3021, 2944 (C=C-H str), 1560 (C=Nbenz str), 1386 (C=Nbenz str), 766 (C=Nbenz str). UV-Vis: (λ, nm): 255, 269. ¹H NMR (400 MHz, DMSO, δppm): 2.04 (m, 4H, bridging-alkyl), 2.54 (m, 4H, bridging-alkyl), 4.6 (s, 4H, 2 × 2 CH₂-N), 5.80 (s, 4H, alkyl), 7.3–7.6 (m, 8H, 2 × 2 Ar-H) 7.6 (q, 4H, Ar-H) 7.9 (d, 1H, Ar-H, J = 4.0) 8.15 (d, J = 6.4 Hz, 1H, 4Ar-H) 10.14 (s, 1H, NCHN). ¹³C NMR (100 MHz, DMSO, δppm): 25.9 (C-C), 46.7 (N-C-C), 50.3 (N-C-N), 60.58; H, 5.40; N, 8.83. Found: C, 60.3; H, 6.10; N, 7.13.

Synthesis of 1,4-bis (3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-1-yl) butane, bromide salt (L1)

0.5 g of L1 (0.000788 mol) was dissolved in 100.0 ml of methanol by stirring at room temperature. Covered the flask with aluminum foil to ensure the reaction mixture was still in the dark. Then 0.7 g of Ag₂O (0.0031 mol) was added to the reaction mixture with constant stirring and completely covered the flask. The reaction mixture was stirred for 48 h at room temperature until the silver mirror formed around the flask walls. Flask was removed and filtered solution through a layer of celite in the dark. Separately, mixed 0.1 g of KPF₆ (0.000788 mol) in 50 ml of methanol, and the filtered solution was added and filtered again using a syringe filter. I stirred the solution for 3 h at R.T., and then some drops of water were added. Filtered the product as white precipitates and dried at ambient temperature [60]. Yield: 47.25%. M.P: 298 °C. FTIR (ATR, v, cm⁻¹): 3086, 3049 (C-H str), 1495, 1383, 1374 (C-N str), 1284 (C-H bend), 1250 (C=Nbenz str), 939, 877 (C=C=Nbenz str). Anal. Calc. for C₁₈H₁₁N₄: C, 74.46; H, 6.25; N, 19.30. Found: C, 74.9; H, 7.13; N, 18.90.

Synthesis of 1,4-bis (3-phenethyl-2,3-dihydro-1H-benzo[d]imidazol-1-yl) butane, fluorophosphate salt (L2)

1.0 g N-alkylated benzimidazole (0.0034 mol) and 0.9 ml of (2-bromoethyl) benzene (0.0068 mol) was refluxed in 1,4-dioxane with the same workup for L1 and obtained mixture was allowed to stay for half an hour and filtered the product. Washed with n-hexane twice and dried the product in the oven [60]. Yield: 94.77%. M.P: 152 °C. FTIR (ATR, v, cm⁻¹): 3437, 3424, 3366 (C=C=Nbenz), 3037, 3021, 2944 (C=C-H str), 1560 (C=Nbenz str), 1386 (C=Nbenz str), 766 (C=Nbenz str). UV-Vis: (λ, nm): 255, 269. ¹H NMR (400 MHz, DMSO, δppm): 5.68 (s, 8H, alkyl), 7.06 (m, 16H, 4 × 2 Ar-H) 7.46 (m, 8H, Ar-H) 7.6 (q, 4H, Ar-H) 7.74 (m, 1H, Ar-H, J = 4.0) 8.15 (d, J = 6.4 Hz, 1H, 4Ar-H) 10.14 (s, 1H, NCHN). ¹³C NMR (100 MHz, DMSO, δppm): 25.9 (C-C), 46.7 (N-C-C), 50.3 (N-C-N), 60.58; H, 5.40; N, 8.83. Found: C, 60.3; H, 6.10; N, 7.13.
brownish sticky, which further reacted with PF$_6$ in methanol at R.T. for 3 h. The precipitates were filtered and washed with methanol and water twice. The product was dried at ambient temperature. Yield: 49%. M.P: 118 °C. FTIR (ATR, v, cm$^{-1}$) 3437, 3424, 3161 (Caliph-Nbenzimi), 2937, 2879 (Caliph-H str), 1600 (C$_{=}$Nbenzimi str), 1215 (Carom-Nbenzimi), 825 (Carom-H). UV-Vis: (λ, nm): 255, 269. 1H NMR (400 MHz, DMSO, δ ppm): 1.86 (m, 4H, CH$_2$-N), 3.24 (m, 2H, CH$_2$-Ar), 4.48 (t, 2H, 4xCH$_2$-N) 4.75 (q, 4H, -CH$_2$-), 7.57–7.69 (m, 8H, 2 × 4 Ar-H), 8.0 (d, 1H, 4Ar-H), 8.2 (d, 1H, 4Ar-H, J = 8.0), 9.60 (s, 1H, NCH$_2$N). 13C NMR (100 MHz DMSO, δ ppm) 28.5 (C$_{-}$C), 48.5 (N-C$_{-}$C) 48.8 (N-C$_{-}$C), 112.56, 112.7, 112.8, 124.6, 126.9, 128.0, 128.9, 129.2, 133.4, 133.7, 138.5 (Ar-C), no peak (C$_{aryl}$-Ag): Anal. Calc. for C$_{68}$H$_{72}$Ag$_2$F$_{12}$N$_8$P$_2$: C, 54.19; H, 4.82; N, 7.44. Found: C, 54.31; H, 4.88; N, 6.89.

Synthesis of bis (1,4-bis (3-phenethyl-2,3-dihydro-1H-benzo[d]imidazol-1-yl) butane) silver hexafluorophosphate (C2)

0.5 g of salt L2 (0.000754 mol) and 0.6 g of Ag$_2$O (0.00301 mol) reacted in dark with the same procedure as for C1 following by reaction with 0.139 g of KPF$_6$ (0.0015 mol). The precipitates were filtered and then washed with distilled water and methanol. The product was dried at ambient temperature. Synthesis of Ag(I)-NHC complexes C1 and C2 using A$_2$O was shown in Scheme 1. Yield: 62.32%. M.P. 124.8 °C. FTIR (ATR, v, cm$^{-1}$): 2950 (C$_{aryl}$-N$_{benzimi}$), 1520, 1482, 1454, 1402 (C$_{=}$Nbenzimi str), 1358 (C-N str), 837 (C$_{aro}$m-H bend). UV-Vis: (λ, nm): 284, 275. 1H NMR (400 MHz, DMSO, δ ppm): 1.77 (m, 3H, alkyl), 3.12 (m, 2H, CH$_2$-Ar) 4.35 (t, 2H, N-CH$_2$), 4.74 (t, 2H, CH$_2$-N) 6.9 (q, 4H), 6.90–7.76 (m, 8H, Ar-H), 8.04 (d, 1H, 4Ar-H, J = 4.0), 8.28 (d, 1H, Ar-H, J = 5.0). 13C NMR (100 MHz DMSO, δ ppm) 28.2 (C-C), 48.5 (N-C-C) 50.8 (N-C-C), 112.5, 112.7, 112.8, 124.6, 126.9, 128.7, 128.8, 129.0, 129.2, 133.4, 133.7, 138.5 (Ar-C), no peak (C$_{aryl}$Ag): Anal. Calc. for C$_{68}$H$_{72}$Ag$_2$F$_{12}$N$_8$P$_2$: C, 54.19; H, 4.82; N, 7.44. Found: C, 54.31; H, 4.88; N, 6.89.

Antibacterial activity

Well pour method

Well pour method was used for the susceptibility measurement of the newly synthesized benzimidazolium salts and complexes by using the following reported method with minute changes [61]. *Staphylococcus aureus* and *Escherichia coli* gram-positive and negative strains were screened. The antimicrobial potential of newly synthesized complexes is described in the mean zone area vacant by the studied complexes [62]. Nutrient agar culture was used for bacterial growth. All the test solutions were made in DMSO with a concentration of 10 mg/mL. Ciprofloxacin was used as positive control and DMSO as a negative control. 80 μL of each test sample was poured in wells and incubated for 18 h at 37 °C. After that, clear zoon was measured using a vernier caliper in mm.

Minimum inhibitory concentrations (MIC of drugs)

The minimum inhibitory concentrations of silver-NHC complexes and benzimidazolium salts were measured using the process described in the literature using the resazurin micro titer-plate method [63]. A series of dilutions of samples were prepared by dissolving the samples into the DMSO in the 50–0.1 μL range. 100 μL volume from each sample dilution was shifted into the 96 well plates in the triplicate. The sample was filled into the wells by leaving the empty wells blank. Into the remaining wells, 50 μL Mueller Hinton broth solution was filled. Solution of
resazurin indicator was prepared by dissolving 3.7 g resazurin tablet into the 40 ml of distilled water. 10 μL resazurin indicator solution was also added to the same well in which the sample was poured. More 10 μL of bacterial suspension was also added into the same wells. Again added 30 μL of Mueller Hinton broth solution in each well of the plate. Further, every plate was wrapped roughly by a cling film to avoid dehydration of bacteria. Every plate had two control sets: negative control (Mueller Hinton broth solution) & as positive control (ciprofloxacin). Triplicates of every sample were prepared and shifted for incubation at 37 °C for 24 h. The absorbance was measured at 500 nm, and for measuring MIC value, a color transformation from purple to light pink was observed [36].

Hemolytic assay

Hemolytic activity of newly synthesized benzimidazolium salts and silver complexes was usually measured to examine the effect of cytotoxicity. The cytotoxic assay was performed through well-known protocols [64]. 3 ml of fresh human blood was taken into the falcon tube and centrifuge to remove the plasma and obtain RBCs. Then washed the human blood was taken into the falcon tube and centrifuge solution with 200 μL was prepared in methanol. Mix 4 ml of 4% (w/v) DPPH concentration of 10 mg/mL in DMSO. DPPH solution 4% (w/v) formed through well-known protocols [64]. 3 ml of fresh sample was poured. More 10 μL of bacterial suspension was taken into the falcon tube and centrifuge mixture in an Eppendorf tube. Incubate for half an hour at 37 °C. After that, centrifuge the suspensions at 5000 rpm for 5 min. Mixed 900 μL sterile chilled PBS and 100 μL of supernatant from above suspension in a separate Eppendorf and delivered them to 96 well microtiter plate in triplicate. Tritome-x was used as a positive control and PBS as the negative control. On the plate reader of ELISA, measurement of absorption was taken at 570 nm [65].

Measurement of hemolytic activity was determined by a formula.

\[\% \text{Hemolytic} = \frac{\text{Abs of sample} - \text{Abs of negative control}}{\text{Abs of positive control}} \times 100 \]

Antioxidant activity

Antioxidant potentials of newly synthesized salts and complexes were studied by the DPPH method [65] with slight alterations. Test solutions were made with a concentration of 10 mg/mL in DMSO. DPPH solution 4% (w/v) was prepared in methanol. Mix 4 ml of 4% (w/v) DPPH solution with 200 μL, 150 μL, 100 μL and 50 μL of test samples separately and incubated for at 37 °C. Absorbance at 517 nm was measured spectrophotometrically along with the absorbance of DPPH solution as a control. The % inhibition was measured by using the equation described below. IC₅₀ values were calculated through the equation of a straight line for each sample.

\[\% \text{Inhibition} = \frac{\text{Abs of control} - \text{Abs of sample}}{\text{Abs of control}} \times 100 \]

Conclusion

Two bis-benzimidazolium salts, L1, L2, and their respective binuclear Ag(I)-NHC complexes, were synthesized and characterized through preliminary techniques. U.V./Visible, FT-IR spectroscopical analyses were performed, which indicated the successful synthesis of compounds. All the synthesized compounds were investigated for their antibacterial activity against gram-positive S. Aureus and gram-negative E. Coli bacterial strains and found sustainability of these salts and complexes against bacteriostatic potential. The cytotoxicity of these bis salts and their complexes was screened in vitro hemolytic assay against HRBCs, and the result was found satisfactory. Bis-benzimidazolium salt L1 was found least toxic with 6.73 ± 0.36% hemolysis, and it’s the Ag(I) complex C1 was revealed as most toxic in series with % hemolysis of 20.46 ± 0.23%. The antioxidant potentials of these compounds were investigated using a DPPH scavenging assay. The salts showed a good trend in scavenging concerning the increasing concentration. They presented the IC₅₀ values in the range of 3.51 and 15.36 μg/mL, respectively, which showed that these compounds are good antioxidants agents.

Funding This work was supported by Higher Education Comission of Pakistan (HEC-Pak) through research grant NRPU-8396.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

1. Öfele K. 1, 3-Dimethyl-4-imidazolinyldien-(2)-pentacarbonyl-chrom ein neuer Übergangsmetallicarben-komplex. J Organomet Chem. 1968;12:42–3.
2. Wanzlick HW, Schönherr HJ. Direct synthesis of a mercury salt-carbene complex. Angew Chem Int Ed Engl. 1968;7:141–2.
3. Arduengo AJ III, Harlow RL, Kline M. A stable crystalline carbene. J Am Chem Soc. 1991;113:361–3.
4. Kühl O. The chemistry of functionalised N-heterocyclic carbenes. Chem Soc Rev. 2007;36:592–607.
5. van Vuuren E, Malan FP, Landman M. Multidentate NHC complexes of group IX metals featuring carbon-based tethers: synthesis and applications. Coord Chem Rev. 2021;430:213731.

6. Romain C, Bellemín-Laponnaz S, Dagorne S. Recent progress on NHC-stabilized early transition metal (group 3–7) complexes: synthesis and applications. Coord Chem Rev. 2020;422:213411.

7. Reshi NUD, Bera JK. Recent advances in annellated NHCs and their metal complexes. Coordination Chem. Rev. 2020;213334:1–69.

8. Herrmann WA. N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed. 2002;41:1290–309.

9. Gopalakrishnan AK, Angamaly SA, Velayudhan MP. An Insight into the Biological Properties of Imidazol-Based Schiff Bases: A Review. ChemistrySelect. 2021;6:10918–47.

10. Ansari K, Lal C. Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents. Eur J Medicinal Chem. 2009;44:2294–9.

11. Galal SA, Hegab KH, Kassab AS, Rodriguez ML, Kerwin SM, El-Khamy AMA, et al. New transition metal ion complexes of benzimidazole-5-carboxylic acid hydrazides with antitumor activity. Eur J Medicinal Chem. 2009;44:1500–8.

12. Tacke M. Benzyl-substituted carbene–metal complexes: Potential for novel antibiotics and anticancer drugs? J Organomet Chem. 2015;782:17–21.

13. Habib A, Iqbal MA, Bhatti HN, Kamal A, Kamal S. Synthesis of alkyl/aryl linked binuclear silver (l)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg Chem Commun. 2020;111:107670.

14. Yılmaz Ü, Küçükbaş H, Şüreci N, Akkurt M, Günl G, Durmaz R, et al. Synthesis, microwave-promoted catalytic activity in Suzuki–Miyaura cross-coupling reactions and antimicrobial properties of novel benzimidazole salts bearing trimethylsilyl group. Appl Organomet Chem. 2011;25:366–73.

15. Oehninger L, Rubbiani R, Ott I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans. 2013;42:3269–84.

16. Lin JC, Huang RT, Lee CS, Bhattacharyya A, Hwang WS, Lin JJ. Coinage Metal–N-Heterocyclic Carbene Complexes. Chem Rev. 2009;109:3561–98.

17. Ielo I, Iacopetta D, Saturnino C, Longo P, Galletta M, Drommi D, et al. Gold Derivatives Development as Prospective Anticancer Drugs for Breast Cancer Treatment. Appl Sci. 2021;11:2089.

18. Haziz UFM, Haque RA, Amirul AA, Razali MR. Synthesis, Structural Analysis and Antibacterial Studies of Bis- and Open Chain Tetra-N-Heterocyclic Carbene Dinuclear Silver(I) Complexes. J Mol Struct. 2021;1236:130301.

19. Hussaini SY, Haque RA, Haziz UFM, Amirul AA, Razali MR. Dinuclear silver(I)- and gold(I)-N-heterocyclic carbene complexes of N-alkyl substituted bis-benzimidazol-2-yldenes with aliphatic spacer: Synthesis, characterizations and antibacterial studies. J Mol Struct. 2021;1246:131187.

20. Fatima T, Haque RA, Ahmad A, Hassan LEA, Ahamed MBK, Majid AA, et al. Tri N-Heterocyclic Carbene Trinuclear Silver(I) complexes: Synthesis and In Vitro cytotoxicity studies. J Mol Struct. 2020;1222:128890.

21. Mohamed Haziz UF, Haque RA, Al-Ashraf Abdullah A, Razali MR. Mononuclear silver(I)-N-heterocyclic carbene complexes with benzimidazole-2-yldene ligands: synthesis, crystal structure analyses and comparative antibacterial studies. J Coord Chem. 2020;73:2698–717.

22. Budagumpi S, Haque RA, Endul S, Rehman GU, Salman AW. Biologically Relevant Silver (I)-N-Heterocyclic Carbene Complexes: Synthesis, Structure, Intramolecular Interactions, and Applications. Eur J Inorg Chem. 2013;2013:4367–88.

23. Liang J, et al. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med. Chem. 2021;113696:1–14.

24. Fatima T, Haque RA, Ahmad A, Hassan LEA, Ahamed MBK, Majid AA, et al. Tri N-Heterocyclic Carbene Trinuclear Silver(I) complexes: Synthesis and In Vitro cytotoxicity studies. J Mol Struct. 2020;1222:128890.

25. Syed HK, Iqbal MA, Haque RA, Peh KK. Synthesis, characterization and antibacterial activity of a curcumin–silver (I) complex. J Coord Chem. 2015;68:1088–100.

26. Haque RA, Iqbal MA, Mohamad F, Razali MR. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver (I) and selenium compounds. J Mol Struct. 2018;1155:362–70.

27. Iqbal MA, et al. Synthesis and cytotoxicity of dinuclear silver (I)-N-heterocyclic carbene complexes. Biochim Anal Biochem. 2014;3:1.

28. Liu S-T, Hsieh TY, Lee GH, Peng SM. Carbene transfer between transition-metal ions. Organometallics. 1998;17:993–5.

29. Neetha M, Saranya PV, Philip RM, Anilkumar G. An Overview of Silver-Catalyzed Mannich Reactions. ChemistrySelect. 2021;6:11162–76.

30. Youngs WJ, Knapp AR, Wagers PO, Tessier CA. Nanoparticle encapsulated silver carbene complexes and their antimicrobial and anticancer properties: a perspective. Dalton Trans. 2012;41:327–36.

31. Iqbal MA, Haque RA, Nasri SF, Majid AA, Ahamed MB, Farsi E, et al. Potential of silver against human colon cancer: (synthesis, characterization and crystal structures of xylyl (Ortho, meta, & Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies). Chem Cent J. 2013;7:27.

32. Haziz UFM, Haque RA, Amirul AA, Aidda ON, Razali MR. New class of non-symmetrical homo-dibenimidazolium salts and their dinuclear Silver (I) di-NHC complexes. J Organomet Chem. 2019;899:120914.

33. Çetinkaya B, Ozdemir I, Binbasişoğlu B, Durmaz R, Günl S. Antibacterial and antifungal activities of complexes of ruthenium (II). Arzneimittelforschung. 1999;49:538–40, p

34. Iqbal MA, Haque RA, Nasri SF, Majid AA, Ahamed MB, Farsi E, et al. Potential of silver against human colon cancer: (synthesis, characterization and crystal structures of xylyl (Ortho, meta, & Para) linked bis-benzimidazolium salts and Ag (I)-NHC complexes: In vitro anticancer studies). Chem Cent J. 2013;7:27.

35. Iqbal MA, Umar MI, Haque RA, Khadeer Ahamed MB, Asmawi MZ, Majid AM. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. J Inorg Biochem. 2015;146:1–13.

36. Ashraf R, Bhatti HN, Iqbal MA, Jamil Y. Synthesis of aryl linked binuclear silver N-heterocyclic carbene complexes, DNA interaction study and biological potentials. Inorg Chem Commun. 2020;119:108077.

37. Haque RA, Gdhayeh MZ, Budagumpi S, Salman AW, Ahamed MBK, Majid AMSA. Non-symmetrically substituted N-heterocyclic carbene–Ag(I) complexes of benzimidazol-2-yldenes: Synthesis, crystal structures, anticancer activity and transmetallation studies. Inorg Chim Acta. 2013;394:519–25.

38. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur J Medicinal Chem. 2015;90:82–92.

39. Atif M, Bhatti HN, Haque RA, Iqbal MA, Khadeer MB, Majid A. Synthesis, structure, and anticancer activity of symmetrical and non-symmetrical silver (I)-N-heterocyclic carbene complexes. Appl Biochem Biotechnol. 2020;191:1171–89.

40. Zhong R, Pöthig A, Mayer DC, Jandl C, Altmann PJ, Herrmann WA, et al. Spectroscopic and structural properties of bridge-functionalized dinuclear coinage-metal (Cu, Ag, and Au) NHC complexes: a comparative study. Organometallics. 2015;34:2573–9.

41. Haziz UFM, Haque RA, Amirul AA, Shaheeda N, Razali MR. Synthesis, structures and antibacterial studies of non
functionalized and nitrile-functionalized bis-benzimidazolium salts and respective dinuclear silver(I)-N-heterocyclic carbene complexes. Polyhedron. 2016;117:628–36.

Gümrüksu A, Güney ME, Özdemir N, Çetinkaya B. Bicyclic N-heterocyclic carbene (NHC) ligand precursors and their palladium complexes. J Coord Chem. 2016;69:1463–72.

Kamal A, Iqbal MA, Bhatti HN. Therapeutic applications of selenium-derived compounds. Rev Inorg Chem. 2018;38:49–76.

Habib A, Iqbal MA, Bhatti HN. Polynuclear Ag(I)-N-heterocyclic carbene complexes: synthesis, electrochemical and in vitro anticancer activity of new silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg Medicinal Chem. 2016;24:643–50.

Şahin N, Şahin-Bölükbaşı S, Marşan H. Synthesis and antitumor activity of new silver(I)-N-heterocyclic carbene complexes. J Coord Chem. 2019;72:3602–13.

Liu B, Chen W, Jin S. Synthesis, structural characterization, and luminescence of new silver aggregates containing short Ag–Ag contacts stabilized by functionalized bis(N-heterocyclic carbene) ligands. Organometallics. 2007;26:3660–7.

Şahin-Bölükbaşı S, Şahin N. Novel Silver-NHC complexes: Synthesis and anticancer properties. J Organomet Chem. 2019;891:78–84.

Streciwilk W, Cassidy J, Hackenberg F, Müller-Bunz H, Paradisi F, Tacke M. Synthesis, cytotoxic and antimicrobial studies of p-benzyl-substituted NHC–silver(I) acetate compounds derived from 4,5-di-p-diisopropylphenyl- or 4,5-di-p-chlorophenyl-1H-imidazole. J Organomet Chem. 2014;749:88–99.

Şenkardes Ş, et al. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers. Med Chem Res. 2022;31:368–79.

Han ML, et al. Synthesis and Anticancer Activity of Novel Hydrazono Linkage-Based Aryl Sulfonate Derivatives as Apoptosis Inducers. 2021.

O’Beirne C, Alhamad NF, Ma Q, Müller-Bunz H, Kavanagh K, Butler G, et al. Synthesis, structures and antimicrobial activity of novel NHC- and Ph3P-Ag(I) Benzoate derivatives. Inorg Chim Acta. 2019;486:294–303.

Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Atrash Abdullah A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur J medicinal Chem. 2015;90:82–92.

Iqbal MA, Umar MI, Haque RA, Khadeer Ahamed MB, Asmawi MZ, Majid AM. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. J Inorg Biochem. 2015;146:1–13.

Iqbal MA, Haque RA, Nasri SF, Majid AA, Ahamed MB, Farsi E, et al. Potential of silver against human colon cancer (synthesis, characterization and crystal structures of xyllyl (Ortho, meta, & Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies). Chem Centr J. 2013;7:1–17.

Gül S, Aziz-ur-Rehman, Abbasi MA, Khan KM, Nafeesa K, Siddiq A, et al. Synthesis, antimicrobial evaluation and hemolytic activity of 2-[[5-alkyl/aralkyl substituted-1, 3, 4-oxadiazol-2-yl]thio]-N-[4-(4-morpholinyl) phenyl] acetamide derivatives. J Saudi Chem Society. 2017;21:S425–33.

Blass BE, et al. Synthesis and evaluation of novel, selective, functionalized y-butyrolactones as sigma-2 ligands. Med Chem Res. 2022;31:337–49.

Ramoutar RR, Brumaghim JL. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem Biophysics. 2010;58:1–23.

Haque RA, Iqbal MA, Asekunowo P, Majid AMSA, Khadeer Ahamed MB, Umar MI, et al. Synthesis, structure, anticancer, and antioxidant activity of para-xyllyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbene complexes (Part-II). Medicinal Chem Res. 2013;22:4663–76.

Loh YL, Haziz UFM, Haque RA, Amirul AA, Aidda ON, Razali MR. The effect of short alkane bridges in stability of bisbenzimidazol-2-ylidene silver(I) complexes: synthesis, crystal structure and antibacterial activity. J Coord Chem. 2019;72:894–907.

Demirel R, Suvaci E, Şahin İ, Daş S, Kılıç V. Antimicrobial activity of designed undoped and doped MicNo-ZnO particles. J Drug Deliv Sci Technol. 2018;47:309–21.

Baskaran C, bai VR, Velu S, Kumaran K. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac J Tropical Dis. 2012;2:S658–62.

Sarker SD, Nahar L, Kumarsamy Y. Microtirte plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–4.

Sharma P, Sharma JD. In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J Ethnopharmacol. 2001;74:239–43.

Ashraf R, Iqbal MA, Bhatti HN, Janjua MRSA, El-Naggar M. Bioactivity and DNA/BSA Interactions of Selenium N-Heterocyclic Carbene Adducts. ChemistrySelect. 2020;5:10970–81.