FUZZY COSETS AND QUOTIENT FUZZY AG-SUBGROUPS

AMANULLAH¹, I. AHMAD¹∗, AND M. SHAH²

Abstract. In this paper we extend the concept of fuzzy AG-subgroups. We introduce some results in normal fuzzy AG-subgroups. We define fuzzy cosets and quotient fuzzy AG-subgroups, and prove that the sets of their collection form an AG-subgroup and fuzzy AG-subgroup respectively. We also introduce the fuzzy Lagrange’s Theorem of AG-subgroup. It is known that the condition \(\mu(xy) = \mu(yx) \) holds for all \(x, y \) in fuzzy subgroups if \(\mu \) is normal, but in fuzzy AG-subgroup we show that it holds without normality.

1. Introduction

The concept of fuzzy sets along with various operations has been introduced by Lofti A. Zadeh in 1965 [1]. Due to the diverse applications ranging from engineering, computer science and social behavior studies, the researchers have taken keen interest in the subject in its related fields. The study of fuzzy algebraic structures was started by introducing the concept of fuzzy subgroups by A. Rosenfeld [2]. He formulated the concept of fuzzy subgroup and extend the main idea of group theory to develop the theory of fuzzy groups. Anthony and Sherwood further redefined fuzzy groups [3]. Many other papers on fuzzy subgroups have also appeared which generalize various concepts of group theory such as normal subgroups, quotient groups and cosets [4, 5, 6].

In the forty years history of AG-groupoids, though it was explored slowly, yet in the last couple of years abundant research was carried out in this area which attracted the attention of many new researchers. An AG-groupoid is a generalization of commutative semigroup. It is

Key words and phrases. AG-group; Fuzzy AG-subgroup; Normal fuzzy AG-subgroup; Fuzzy cosets and fuzzy quotient AG-subgroups.

*Corresponding author.
a nonassociative groupoid in general, in which the left invertive law
\[(ab)c = (cb)a\] holds. In general, an AG-group is a nonassociative structure
in which commutativity and associativity imply each other, and
thus it becomes abelian group if any one of them is allowed. An AG-
groupoid \((G, \cdot)\) is called an AG-group or left almost group (LA-group),
if there exists a unique left identity \(e \in G\) (that is \(ea = a\) for all \(a \in G\))
and for all \(a \in G\) there exists \(a^{-1} \in G\) such that \(a^{-1}a = aa^{-1} = e\). M.
Kamran extended the notion of AG-groupoid to an AG-group and de-
defined cosets of an AG-subgroup \(H\) of an AG-group \(G\) and proved that
quotient \(G/H\) is defined for every AG-subgroup \(H\). He also proved
that Lagrange’s Theorem holds for AG-group [7]. The third author
of this article has discussed various basic properties of AG-groups and
explored new results such as: complexes and cosets decomposition, con-
jugacy relations in AG-groups, normality, normalizers and many more [8] [13]. For the first time in 2003, Q. Mushtaq and M. Khan introduced
ideals in AG-groupoid and fuzzified these concepts [9]. This attracted
the attention of various other researchers to the field of AG-groupoids
and AG-groups, as a result since then we can see lots of papers in
this area. It is also worth mentioning that various new classes of AG-
groupoids have been recently introduced [12, 14, 15, 16, 17, 18] and
some are just have been arXived [19, 20] and their fuzzification is sug-
gested as an interesting future work.

In this paper we extend the concepts of normal fuzzy AG-subgroup
[10] [11]. We further define fuzzy cosets, quotient AG-subgroups and
quotient fuzzy AG-subgroups, which will provide new direction to the
researchers in this area. We also introduce a fuzzy version of the famous
Lagrange’s Theorem for finite AG-groups.

2. Preliminaries

In this section we list some basic definitions that will frequently be
used in the subsequent sections of the paper.

A fuzzy subset \(\mu\) is a mapping \(\mu : X \to [0, 1]\). The set of all fuzzy
subsets of \(X\) is called the fuzzy power set of \(X\) and is denoted by
\(FP(X)\). Let \(\mu \in FP(X)\), then the the image of \(\mu\) is a set \(\{\mu(x) : x \in X\}\)
and is denoted by \(\mu(X)\) or \(Im(\mu)\).
In the rest of this paper G will denote an AG-group otherwise stated and e will denote the left identity of G.

Definition 1. [10] Let $\mu \in FP(G)$, then μ is called a fuzzy AG-subgroup of G if for all $x, y \in G$;

(i) $\mu(xy) \geq \mu(x) \land \mu(y)$;
(ii) $\mu(x^{-1}) \geq \mu(x)$.

The set of all fuzzy AG-subgroups of G is denoted by $F(G)$.

If $\mu \in F(G)$, then
\[(2.1) \quad \mu_* = \{x \in G \mid \mu(x) = \mu(e)\}.
\]

Lemma 1. [10] Let μ be any fuzzy AG-subgroup of G i.e $\mu \in F(G)$, then for all $x \in G$,

(i) $\mu(e) \geq \mu(x)$;
(ii) $\mu(x) = \mu(x^{-1})$.

Definition 2. [10] Let $\mu \in F(G)$. Then μ is called a normal fuzzy AG-subgroup of G if

$\mu(xy \cdot x^{-1}) = \mu(y) \forall x, y \in G$.

The set of all normal fuzzy AG-subgroups of G is denoted by $NF(G)$.

Example 1. Consider an AG-group of order 4:

\[
\begin{array}{c|cccc}
 & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 3 & 0 & 1 & 2 \\
2 & 2 & 3 & 0 & 1 \\
3 & 1 & 2 & 3 & 0 \\
\end{array}
\]

define fuzzy subset μ by $\mu(0) = t_0$ and $\mu(x) = t_1$ otherwise; where $t_0, t_1 \in [0, 1]$ and $t_0 > t_1$. Then μ is fuzzy AG-subgroup. However, μ is not normal fuzzy AG-subgroup. Here $\mu_* = \{0\}$ which is normal fuzzy AG-subgroup.
Example 2. Consider an AG-group $G = \langle a, b : a^2 = b^2 = (ab)^2 = e \rangle$, define fuzzy subset $\mu : G \to [0, 1]$ by $\mu(e) = t_0, \mu(a) = t_1$ and $\mu(x) = t_2$ otherwise, where $t_0, t_1, t_2 \in [0, 1]$ and $t_0 > t_1 > t_2$. Then μ is normal fuzzy AG-subgroup of G.

3. Main Results

Proposition 1. Let $\mu \in F(G)$. Then $\mu(xy) = \mu(yx) \forall x, y \in G$.

Proof. Let $\mu \in F(G)$, then

$$
\mu(xy) = \mu(ex \cdot y) = \mu(yx \cdot e) \quad \text{[using left invertive law]}
$$

$$
\geq \mu(yx) \land \mu(e) = \mu(yx) \quad [\mu(e) \geq \mu(yx) \forall x, y \in G]
$$

$$
\Rightarrow \mu(xy) \geq \mu(yx) \forall x, y \in G.
$$

Similarly, we can show that $\mu(yx) \geq \mu(xy) \forall x, y \in G$. Thus $\mu(xy) \geq \mu(yx) \geq \mu(xy) \forall x, y \in G$. Hence $\mu(xy) = \mu(yx)$. □

Lemma 2. \cite{[10]} Lemma 17 Let μ be a fuzzy AG-subgroup of G. Let $x \in G$ then $\mu(xy) = \mu(y) \forall y \in G$ if and only if $\mu(x) = \mu(e)$.

Theorem 1. Let f be a homomorphism on AG-group G and μ is any normal fuzzy AG-subgroup of $f(G)$. Then $\mu \circ f \in NF(G)$.

Proof. First we show that $\mu \circ f \in F(G)$. Since

$$
\mu \circ f(xy) = \mu(f(xy))
$$

$$
= \mu(f(x) \cdot f(y))
$$

$$
\geq \mu(f(x)) \land \mu(f(y))
$$

$$
= \mu \circ f(x) \land \mu \circ f(y)
$$

$\forall x, y \in G$, and

$$
\mu \circ f(x^{-1}) = \mu(f(x^{-1}))
$$

$$
= \mu((f(x))^{-1})
$$

$$
= \mu(f(x))
$$

$$
= \mu \circ f(x).
$$

$\forall x \in G$. Hence $\mu \circ f \in F(G)$.
Next we show that $\mu \circ f \in NF(G)$, since

$$
\begin{align*}
\mu \circ f(xy \cdot x^{-1}) &= \mu(f(xy \cdot x^{-1})) \\
&= \mu(f(xy) \cdot f(x^{-1})) \\
&= \mu(f(xy) \cdot (f(x))^{-1}) \\
&= \mu(f(y)) [\mu \in NF(f(G))] \\
&= \mu \circ f(y).
\end{align*}
$$

$\forall x, y \in G$. Hence $\mu \circ f \in NF(G)$. ■

Definition 3. Let $\mu \in F(G)$, for any $x \in G$ define a mapping

$$
\mu_x : G \to [0, 1], \text{ by }
$$

(3.1)

$$
\mu_x(g) = \mu(gx^{-1}) \forall g \in G.
$$

Then μ_x is called fuzzy coset of G determined by x and μ, and the collection of all fuzzy cosets of μ is represented by \mathcal{F}.

In AG-groups we can define quotient AG-group by any AG-subgroup without normality. Therefore, make use of this we can define quotient AG-groups or factor AG-group as follows:

Theorem 2. Let $\mu \in NF(G)$ and $G/\mu = \{\mu_x : x \in G\}$. Then G/μ form an AG-group under the usual composition of mappings define by $\mu_x \circ \mu_y = \mu_{xy} \forall x, y \in G$.

Proof. First we show that the composition of cosets is well defined. Let $x, y, x_0, y_0 \in G$ such that $\mu_x = \mu_{x_0}$ and $\mu_y = \mu_{y_0}$.

We show that $\mu_x \circ \mu_y = \mu_{x_0} \circ \mu_{y_0}$, i.e. $\mu_{xy} = \mu_{x_0y_0}$. Thus by (3.1)

$$
\begin{align*}
\mu_{xy}(g) &= \mu(g(xy)^{-1}) = \mu(g \cdot x^{-1}y^{-1}) \forall g \in G; \text{ and } \\
\mu_{x_0y_0}(g) &= \mu(g(x_0y_0)^{-1}) = \mu(g \cdot x^{-1}_0y^{-1}_0) \forall g \in G.
\end{align*}
$$
Now $\forall x, y \in G$,

\[
\mu(g \cdot x^{-1}y^{-1}) = \mu[e(g \cdot x^{-1}y^{-1})] \\
= \mu[(x_o y_o)^{-1}(x_o y_o)(g \cdot x^{-1}y^{-1})] \\
= \mu[(x_o^{-1} y_o^{-1})(x_o y_o)(g \cdot x^{-1}y^{-1})] \\
= \mu[g(((x_o^{-1} y_o^{-1})(x_o y_o))(x^{-1}y^{-1}))] \quad \text{[in } G; \ a(bc) = b(ac) [8]\text{]} \\
= \mu[g(((x^{-1} y^{-1})(x_o y_o))(x_o^{-1}y_o^{-1}))] \quad \text{[using left invertive law]} \\
\geq \mu((x^{-1} y^{-1})(x_o y_o)) \land \mu(g(x_o^{-1}y_o^{-1})) \\
\text{(3.2) } \Rightarrow \mu(g \cdot x^{-1}y^{-1}) \geq \mu((x^{-1} y^{-1})(x_o y_o)) \land \mu(g(x_o^{-1}y_o^{-1}))
\]

Now we show that $\mu((x^{-1} y^{-1})(x_o y_o)) = \mu(e)$ in (3.2). Let $\mu_x = \mu_{x_o} \Rightarrow \mu_x(g) = \mu_{x_o}(g) \forall g \in G,$

\[
\text{(3.3) } \Rightarrow \mu(gx^{-1}) = \mu(gx_o^{-1}). \quad \text{[by (3.1)]}
\]

Similarly, since $\mu_y = \mu_{y_o} \Rightarrow \mu_y(g) = \mu_{y_o}(g) \forall g \in G,$

\[
\text{(3.4) } \Rightarrow \mu(gy^{-1}) = \mu(gy_o^{-1}). \quad \text{[by (3.1)]}
\]

Now,

\[
\mu((x^{-1} y^{-1})(x_o y_o)) = \mu((x_o y_o \cdot y^{-1}) x^{-1}) \quad \text{[using left invertive law]} \\
= \mu((x_o y_o \cdot y^{-1}) x_o^{-1}) \\
= \mu(x_o (y_o y^{-1} \cdot x_o^{-1})) \quad \text{[in } G; \ (ab \cdot c)d = a(bc \cdot d) [8]\text{]} \\
= \mu((y_o y^{-1})(x_o x_o^{-1})) \quad \text{[in } G; \ a(bc) = b(ac) [8]\text{]} \\
= \mu(y_o y^{-1} \cdot e) = \mu(e y^{-1} \cdot y_o) \quad \text{[using left invertive law]} \\
= \mu(y_o^{-1} y_o) \\
= \mu(y_o^{-1}) \quad \text{[by Proposition [1]} \\
= \mu(y_o y_o^{-1}) \quad \text{[substituting } g \text{ by } y_o \text{ in (3.1)]} \\
= \mu(e).
\]

Therefore, (3.2) implies that $\mu(g \cdot x^{-1}y^{-1}) \geq \mu(g \cdot x_o^{-1}y_o^{-1})$. Similarly one can prove that $\mu(g \cdot x_o^{-1}y_o^{-1}) \geq \mu(g \cdot x^{-1}y^{-1})$. Consequently,

\[
\mu(g \cdot x^{-1}y^{-1}) = \mu(g \cdot x_o^{-1}y_o^{-1}) \\
\Rightarrow \mu(g \cdot (xy)^{-1}) = \mu(g \cdot (x_o y_o)^{-1}) \\
\Rightarrow \mu_{xy}(g) = \mu_{x_o y_o}(g) \forall g \in G \\
\Rightarrow \mu_{xy} = \mu_{x_o y_o}.
\]
Hence the product of cosets is well-defined. Now we show that G/μ form an AG-group under the operation \circ.

G/μ is closed under the operation \circ. Also G/μ satisfies left inveritive law under \circ; since $(\mu_x \circ \mu_y) \circ \mu_z = \mu_{xy} \circ \mu_z = \mu_{xyz} = \mu_{zyx} = \mu_{zy} \circ \mu_x = (\mu_z \circ \mu_y) \circ \mu_x \forall x, y, z \in G$. Now for any $x \in G$, $(\mu_e \circ \mu_x)(g) = (\mu_{ex})(g) = (\mu_x)(g) \Rightarrow (\mu_e \circ \mu_x) = \mu_x \forall g \in G$, but $(\mu_x \circ \mu_e)(g) = (\mu_{xe})(g) \neq (\mu_x)(g) \Rightarrow (\mu_x \circ \mu_e) \neq \mu_e \forall g \in G$. This implies that μ_e is the left identity of G/μ. As an AG-group G is non associative therefore, $(\mu_x \circ \mu_y) \circ \mu_z \neq \mu_x \circ (\mu_y \circ \mu_z)$. Finally, $\forall x \in G$, once $(\mu_x \circ \mu_{x^{-1}})(g) = (\mu_{xx^{-1}})(g) = (\mu_e)(g) \Rightarrow \mu_x \circ \mu_{x^{-1}} = \mu_e \forall g \in G$, and $(\mu_{x^{-1}} \circ \mu_x)(g) = (\mu_{x^{-1}x})(g) = (\mu_e)(g) \Rightarrow \mu_{x^{-1}} \circ \mu_x = \mu_e \forall g \in G$ the inverse of each μ_x exists and is $\mu_{x^{-1}}$. Hence it follows that G/μ is an AG-subgroup.

Remark 1. The AG-group G/μ defined in Theorem 2 is called quotient AG-group of G relative to the normal fuzzy AG-subgroup μ.

Theorem 3. Let $\nu \in F(G)$ and H be any AG-subgroup of G. Define $\xi \in FP(G/H)$ as follows:

$$\xi(Hx) = \vee \{\nu(z) : z \in Hx\} \forall x \in G.$$

Then $\xi \in F(G/H)$.

Proof. Since $\forall x, y \in G$,

$$\xi(HxHy) = \xi(H(xy)) = \vee \{\nu(z) : z \in H(xy)\}$$

$$= \vee \{\nu(uv) : u \in Hx, v \in Hy\}$$

$$\geq \vee \{\nu(u) \wedge \nu(v) : u \in Hx, v \in Hy\}$$

$$= (\vee \{\nu(u) : u \in Hx\}) \wedge (\vee \{\nu(v) : v \in Hy\})$$

$$= \xi(Hx) \wedge \xi(Hy)$$

and $\forall x \in G$,

$$\xi(Hx)^{-1} = \xi(Hx^{-1}) = \vee \{\nu(z) : z \in Hx^{-1}\}$$

$$= \vee \{\nu(w^{-1}) : w^{-1} \in Hx^{-1}\}$$

$$\geq \vee \{\nu(w) : w \in Hx\}$$

$$= \xi(Hx).$$

Hence $\xi \in F(G/H)$.

\[\square \]
Remark 2. The fuzzy AG-subgroup defined in Theorem 3 is called Quotient fuzzy AG-subgroup or factor fuzzy AG-subgroup of G, and is denoted by ν/H.

Theorem 4. Let $\mu \in \mathcal{F}(G)$. Then $\mu_x = \mu_y$ \iff $\mu_\ast = \mu_\ast \forall x, y \in G$.

Proof. Let $\mu_x = \mu_y$, then

\[(3.5) \quad \mu_x(g) = \mu_y(g) \forall g \in G \]

$\Rightarrow \mu(gx^{-1}) = \mu(gy^{-1}) \forall g \in G$ [using (3.1)]

put $g = y$, in (3.5) we get $\mu(yx^{-1}) = \mu(e) \Rightarrow yx^{-1} \in \mu_\ast$. [by (2.1)]

$\Rightarrow (yx^{-1})x \in \mu_x \Rightarrow (xx^{-1})y \in \mu_\ast$ (using left invertive law) $\Rightarrow y \in \mu_\ast$, but $y \in \mu_\ast$, therefore, $\mu_\ast \subseteq \mu_\ast$.

Again put $g = x$, in (3.5) we get $\mu(xx^{-1}) = \mu(xy^{-1}) \Rightarrow \mu(xy^{-1}) = \mu(e) \Rightarrow xy^{-1} \in \mu_\ast$. [by (2.1)]

$\Rightarrow (xy^{-1})y \in \mu_\ast \Rightarrow x \in \mu_\ast$, but $x \in \mu_\ast$.

This implies that, $\mu_\ast \subseteq \mu_\ast$. Thus $\mu_\ast \subseteq \mu_\ast \subseteq \mu_\ast$. Hence $\mu_\ast = \mu_\ast$.

Conversely; let $\mu_\ast = \mu_\ast \Rightarrow \mu_\ast \circ \mu_\ast = \mu_\ast \circ \mu_\ast \Rightarrow \mu_\ast = \mu_\ast \Rightarrow xy^{-1} \in \mu_\ast$. Now for any $x, y \in G$ it follows that

\[\mu(gx^{-1}) = \mu((y^{-1}y)x^{-1}) \]
\[= \mu(g((y^{-1})y))^{-1}) \quad \text{[using left invertive law]} \]
\[= \mu((x^{-1}y)(gg^{-1})) \quad \text{[in } G; a(bc) = b(ac) \text{]} \]
\[\geq \mu(x^{-1}y) \land \mu(gg^{-1}) \quad [\mu \in \mathcal{F}(G)] \]
\[= \mu((xy^{-1})^{-1}) \land \mu(gg^{-1}) \]
\[= \mu(xy^{-1}) \land \mu(gg^{-1}) \quad \text{[by Lemma 1-(ii)]} \]
\[= \mu(e) \land \mu(gg^{-1}) \quad \text{[by (2.1); as } xy^{-1} \in \mu_\ast] \]
\[= \mu(gg^{-1}) \quad \text{[by Lemma 1-(i)]} \]

This implies that $\mu(gx^{-1}) \geq \mu(gg^{-1})$.

By similar arrangements we can show that, $\mu(gg^{-1}) \geq \mu(gx^{-1})$. Consequently $\mu(gx^{-1}) = \mu(gg^{-1}) \Rightarrow \mu_\ast(g) = \mu_\ast(g) \forall g \in G$ by (3.1). Hence $\mu_x = \mu_y$. ■
Theorem 5. Let $\mu \in NF(G)$ and $\mu_x = \mu_y$, then $\mu(x) = \mu(y) \forall x, y \in G$.

Proof. Let $x, y \in G$, then $\mu_x = \mu_y \Leftrightarrow \mu_x = \mu_y \Rightarrow \mu_x \circ \mu_x = \mu_y \circ \mu_y \Rightarrow \mu_{xy} = \mu_{xy} \Rightarrow \mu_{xy} = \mu_x \Rightarrow \mu_{xy} \epsilon \mu_{xy}$ (using Theorem 4 and the definition of fuzzy cosets). Therefore,

$$
\begin{align*}
\mu(y) &= \mu(y^{-1}) = \mu(x^{-1}y^{-1} \cdot (x^{-1})^{-1}) \quad [\mu \in NF(G)] \\
&= \mu(x^{-1}y^{-1} \cdot x) \\
&= \mu(xy^{-1} \cdot x^{-1}) \quad [\text{using left invertive law}] \\
&\geq \mu(xy^{-1}) \land \mu(x^{-1}) \\
&= \mu(e) \land \mu(x) \quad [\text{by (2.1), as } xy^{-1} \epsilon \mu_{xy}] \\
&= \mu(x) \quad [\text{by Lemma 1(i)}] \\
\Rightarrow \mu(y) &\geq \mu(x).
\end{align*}
$$

Similarly, we can show that $\mu(x) \geq \mu(y)$. This implies that $\mu(x) \geq \mu(y) \geq \mu(x)$. Hence $\mu(x) = \mu(y)$.

Proposition 2. Let $\mu \in NF(G)$. Then $\mu_x(xg) = \mu_x(gx) = \mu(g) \forall g \in G$.

Proof. Using definition of cosets of fuzzy AG-subgroup, it follows that for $g \in G$, $\mu_x(xg) = \mu(xg \cdot x^{-1}) = \mu(g)$. And $\mu_x(gx) = \mu(gx \cdot x^{-1}) = \mu(x^{-1}x \cdot g) = \mu(eg) = \mu(g)$. Hence $\mu_x(xg) = \mu_x(gx) = \mu(g) \forall g \in G$.

Theorem 6. Let $\mu \in NF(G)$. Then the following assertions hold:

(i) $G/\mu \cong G/\mu_*$;
(ii) If $\nu \in FP(G/\mu)$; defined by $\nu(\mu_x) = \mu(x) \forall x \in G$. Then $\nu \in NF(G/\mu)$.
Proof. As both G/μ and G/μ_* are AG-groups by Theorem 2 and $\phi : G/\mu \to G/\mu_*$ given by $\phi(\mu_x) = \mu_\ast x \forall x \in G$ is an isomorphism by Theorem 4 and the fact that $\mu_x \circ \mu_y = \mu_{xy}$ and $\mu_\ast x \circ \mu_\ast y = \mu_{\ast xy}$.

(ii) Let $\nu \in FP(G/\mu)$, be defined by $\nu(\mu_x) = \mu(x) \forall x \in G$. We show that $\nu \in NF(G/\mu)$. Since $\nu((\mu_x) - 1) = \nu((\mu_x)^{-1}) = \nu(\mu_{x^{-1}}) = \mu(x^{-1}) \geq \mu(x) = \nu(\mu_x)$

$\forall x, y \in G$, and

$\nu(\mu_y \circ (\mu_x)^{-1}) = \nu(\mu_{xy} \circ \mu_{x^{-1}}) \geq \nu(\mu_{xy} \cdot \mu_{x^{-1}}) \geq \nu(\mu_{xy}) \geq \nu(\mu_y)$

$\forall x, y \in G$. Hence $\nu \in F(G/\mu)$. Further, since $\nu(\mu_x \circ \mu_{xy} \circ (\mu_x)^{-1}) = \nu(\mu_{xy} \circ \mu_{x^{-1}}) = \nu(\mu_{xy} \cdot x^{-1}) = \nu(\mu_y) \geq \nu(\mu_{xy} \cdot x^{-1}) = \nu(\mu_{xy} \cdot x^{-1}) = \nu(\mu_{xy} \cdot x^{-1}) = \nu(\mu_y) \geq \nu(\mu_{xy} \cdot x^{-1}) = \nu(\mu_y)$

$\forall x, y \in G$. Hence $\nu \in NF(G/\mu)$. □

Theorem 7. Let $\mu \in NF(G)$. Define a mapping $\theta : G \to G/\mu$ as follows:

$(3.6) \quad \theta(x) = \mu_x \forall x \in G.$

Then θ is homomorphism with kernel μ_\ast.

Proof. Since $\theta(xy) = \mu_{xy} = \mu_x \circ \mu_y = \theta(x) \theta(y) \forall x, y \in G$.

Hence θ is homomorphism. Further, the kernel of θ consists of all $x \in G$ for which $\mu_x = \mu_\ast x \Leftrightarrow \mu(x) = \mu(\ast)$. (by Theorem 5) $\Leftrightarrow x \in \mu_\ast$. Thus $Ker \theta = \mu_\ast$. □

Theorem 8. Let $\mu \in NF(G)$, and G/μ is an AG-group. Then each $\zeta \in NF(G/\mu)$ corresponds in a natural way to $\nu \in NF(G)$.
Proof. Let $\zeta \in NF(G/\mu)$. Define a mapping $\nu : G \to [0, 1]$ as follows:

$$\nu(x) = \zeta(\mu_x) \quad \forall x \in G.$$

First we show that $\nu \in F(G)$. Since $\forall x, y \in G$,

$$\nu(xy) = \zeta(\mu_{xy}) = \zeta(\mu_x \circ \mu_y) \geq \zeta(\mu_x) \land \zeta(\mu_y) \quad [\zeta \in NF(G/\mu)]$$

and $\forall x \in G$,

$$\nu(x^{-1}) = \zeta(\mu_{x^{-1}}) = \zeta(\mu_x)^{-1} \geq \zeta(\mu_x) = \nu(x)$$

Thus $\nu \in F(G)$.

Further, since $\forall x, y \in G$,

$$\nu(xy \cdot x^{-1}) = \zeta(\mu_{xy} \cdot x^{-1}) = \zeta(\mu_y) \quad [\mu \in NF(G)]$$

$$= \nu(y).$$

Hence $\nu \in NF(G)$. $

In the following we introduce fuzzy Lagrange’s Theorem for AG-group of finite order. We start with the following definition.

Definition 4. Let G be a finite AG-group, $\mu \in F(G)$ and G/μ is an AG-group. Then the cardinality of G/μ is called the index of fuzzy AG-subgroup of μ in G written as $[G : \mu]$.

Theorem 9. (Fuzzy Lagrange’s Theorem for AG-subgroup). Let G be a finite AG-group, $\mu \in F(G)$. Then the index of fuzzy AG-subgroup of μ divides the order of G.

Proof. It follows from Theorem 7 that there is homomorphism θ from G into G/μ, the set of all fuzzy cosets of μ, defined in (3.6). Let H be an AG-subgroup of G defined by $H = \{h \in G : \mu_h = \mu_e\}$. Let $h \in H$, then $\mu_h = \mu_e \Leftrightarrow \mu_{he} = \mu_e$ using Theorem 4. Therefore, $H = \{h \in G : \mu_{he} = \mu_e\}$. Now decomposing G as a disjoint union of the cosets of G with respect to H i.e.

$$G = (H = Hx_1) \cup Hx_2 \cup \cdots \cup Hx_k,$$
where \(x_1 \in H \) and \(x_i \in G; 1 \leq i \leq k \). Now, we show that corresponding to each coset \(Hx_i \); \(1 \leq i \leq k \), given in (3.7) there is a fuzzy coset belonging to \(G/\mu \), and further this correspondence is one-one. To see this, consider any coset \(Hx_i \) for any \(h \in H \), we have that; \(\theta(hx_i) = \mu_{hx_i} = \mu_h \circ \mu_{x_i} = \mu_{x_i} = \mu_{ex_i} = \mu_{e} \). Thus \(\theta \) maps each element of \(Hx_i \) into the fuzzy cosets \(\mu_{x_i} \).

Now we show that \(\theta \) is well-defined. Let \(Hx_i = Hx_j \), for each \(i, j : 1 \leq i \leq k \) and \(1 \leq j \leq k \). Then

\[
x_j^{-1}x_i \in H \quad \text{[cosets in AG-groups]}
\]

\[
\Rightarrow \mu_{x_j^{-1}x_i} = \mu_e \quad \text{[by Theorem 4]}
\]

\[
\Rightarrow \mu_\ast_{(x_j^{-1}x_i)} = \mu_\ast \quad \text{by Theorem 4}
\]

\[
\Rightarrow \mu_\ast \circ \mu_\ast_{(x_j^{-1}x_i)} = \mu_\ast \circ \mu_\ast_{x_i} \quad \text{[cosets in AG-groups]}
\]

\[
\Rightarrow \mu_{(x_j^{-1}x_i)x_i^{-1}} = \mu_{ex_i^{-1}}
\]

\[
\Rightarrow \mu_\ast_{(x_j^{-1}x_i)x_i^{-1}} = \mu_\ast_{ex_i^{-1}} \quad \text{[using left invertive law]}
\]

\[
\Rightarrow \mu_{(x_j^{-1}x_i)x_i^{-1}} = \mu_{x_j} \quad \text{[by Theorem 4]}
\]

\[
\Rightarrow \theta(Hx_i) = \theta(Hx_j).
\]

Thus \(\theta \) is well-defined.

Further, we show that \(\theta \) is one-one; for each \(i, j \) where \(1 \leq i \leq k \) and \(1 \leq j \leq k \); assume that

\[
\theta(Hx_i) = \theta(Hx_j)
\]

\[
\Rightarrow \mu_{x_i} = \mu_{x_j} \quad \text{[Theorem 4]}
\]

\[
\Rightarrow \mu_\ast_{x_i} = \mu_\ast_{x_j} \quad \text{[cosets in AG-groups]}
\]

\[
\Rightarrow \mu_\ast \circ \mu_\ast_{x_i} = \mu_\ast \circ \mu_\ast_{x_j} \quad \text{[cosets in AG-groups]}
\]

\[
\Rightarrow \mu_\ast \circ \mu_\ast_{x_i} = \mu_\ast \circ \mu_\ast_{x_j} \quad \text{[cosets in AG-groups]}
\]
\[\Rightarrow \mu_*^{e_i^{-1}} = \mu_*^{e_j^{-1}} \]
\[\Rightarrow \mu_*^{e_i^{-1}} = \mu_*^{(x_i^{-1} x_i x_j^{-1})} \]
\[\Rightarrow \mu_*^{e_i^{-1}} = \mu_*^{(x_j^{-1} x_i x_i^{-1})} \]
\[\Rightarrow \mu_* \circ \mu_*^{(x_j^{-1} x_i)} = \mu_* \circ \mu_*^{e x_i^{-1}} \]
\[\Rightarrow \mu_*^{x_j^{-1} x_i} = \mu_*^{e x_i^{-1}} \] [by Theorem 4]
\[\Rightarrow x_j^{-1} x_i \in H \]

\[\Leftrightarrow H x_i = H x_j \quad \text{[for each } i \text{ and } j \text{ where } 1 \leq i \leq k \text{ and } 1 \leq j \leq k. \]

From above discussion it is now clear that the number of distinct cosets of \(H \) (index) in \(G \) equals the number of fuzzy cosets of \(\mu \), which is a divisor of the order of \(G \). Hence we conclude that the index of \(\mu \) also divides the order of \(G \). \(\blacksquare \)

References

[1] L. A. Zadeh, Fuzzy Sets. Information and Control, 8(3), 338-353, (1965).
[2] A. Rosenfeld, Fuzzy group, J. Math. Anal. Appl. 35, 512-517, (1971).
[3] J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. 69 (1979) 124-130.
[4] M. Daoji, Fuzzy groups, Fuzzy Math. 2 (2) (1982) 49-60.
[5] Wangming Wu, Fuzzy congruences and normal fuzzy subgroups, Fuzzy Math. 3 (1988) 9-20.
[6] Wangming Wu, Normal fuzzy subgroups, Fuzzy Math 1, 21-30, (1981).
[7] M. Kamran. Conditions for LA-semigroups to resemble associative structures. PhD Thesis, Quaid-i-Azam University, Islamabad, Pakistan, (1993).
[8] M. Shah, A Theoretical and Computational Investigation of AG-groups, PhD Thesis, Quaid-i-Azam University, Islamabad, Pakistan.
[9] Q. Mushtaq, Madad Khan, Ideals in the left almost semigroups, Proceedings of 4th International Pure Mathematics Conference, 65-77 (2003).
[10] I. Ahmad, Amanullah, M. Shah, Fuzzy AG-Subgroups, Life Sciences Journal 9(4), 3931-3936, (2012).
[11] Amanullah, I. Ahmad, M. Shah, On the Equal-height Elements of Fuzzy AG-subgroups. Life Science Journal, 10(4): 3143-3146 (2013).
[12] M. Shah, I. Ahmad and A. Ali “Discovery of new classes of AG-groupoids” Research Journal of Recent Sciences, 1(11), 47, 2012.
[13] M. Shah and A. Ali “ Some structural properties of AG-groups” Int. Math. Forum, 7, 1661-1667, 2011.
[14] M. Rashad, I. Ahmad, and M. Shah, Left Transitive AG-groupoids, www.arxiv.org, 1402.5296
[15] M. Shah, I. Ahmad and A. Ali “On Introduction of New Classes of AG-
groupoids” Research Journal of Recent Sciences, 2(1), 67-70, 2013
[16] M. Rashad, I. Ahmad, Amanullah and M. Shah, On relations between right
alternative and nuclear square AG-groupoids, Int. Mathematical Forum, Vol.
8(5), 237-243, 2013.
[17] I. Ahmad, M. Rashad and M. Shah, Some Properties of AG*-groupoid, Res.
J. Recent Sci.,Vol. 2(4), 91-93, April (2013).
[18] I. Ahmad, M. Rashad and M. Shah, Some new result on T^1, T^2 and T^4 AG-
groupoids, Research Journal of Recent Sciences, Vol. 2(3), 64-66, (2013).
[19] Amanullah, M. Rashad, I. Ahmad, M. Shah, On Modulo AG-groupoids, arXiv:
1403.2564
[20] Amanullah, M. Rashad, I. Ahmad, M. Shah, M. Yousaf, Modulo Matrix AG-
groupoids and Modulo AG-groups [arXiv:1403.2304]

E-mail address: amanswt@gmail.com

E-mail address: iahmaad@hotmail.com

1. Department of Mathematics University of Malakand, Chakdara
Dir Lower, Khyber Pakhtunkhwa, Pakistan.

E-mail address: shahmaths_problem@hotmail.com

2. Department of Mathematics, Government Post Graduate College Mardan, Khyber Pakhtunkhwa, Pakistan.