A Sm-MOF/GO Nanocomposite Membrane for Efficient Organic Dyes Removal from Wastewater

Guohai Yang*, Daqing Zhang#, Gen Zhu, Tingrong Zhou, Manting Song, Lulu Qu, Kecai Xiong*, Haitao Li*

School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China

*To whom correspondence should be addressed:
E-mail: yangguohai@jsnu.edu.cn; kcxiong@jsnu.edu.cn; haitao@jsnu.edu.cn

These authors contributed equally to this work
Figure S1. The water contact angles of (A) GO membrane, (B) M-0.18, (C) M-0.31, and (D) M-0.61, respectively.

Table S1. Theoretical and experimental values of Sm-MOF on GO.

Material	M-0.18	M-0.31	M-0.41	M-0.58	M-0.61
Theoretical value	0.18	0.31	0.41	0.58	0.61
Experimental value	0.15	0.20	0.24	0.36	0.59

Table S2. The pristine and after water cleaning-pure water permeance of the M-0.31 for BSA treatment.

Filtrating parameters	M-0.31
Pristine pure water permeance (L m⁻²·h⁻¹·bar⁻¹)	100.14
Pure water permeance after water cleaning (L m⁻²·h⁻¹·bar⁻¹)	65.63
Pure water permeance recovery rate (%)	65.54