Integrating Gricean and Attentional Constraints

Rebecca J. Passonneau∗
Bellcore
445 South Street
Morristown, NJ 07960
beck@bellcore.com

Abstract

This paper concerns how to generate and understand discourse anaphoric noun phrases. I present the results of an analysis of all discourse anaphoric noun phrases (N=1,233) in a corpus of ten narrative monologues, where the choice between a definite pronoun or phrasal NP conforms largely to Gricean constraints on informativeness. I discuss Dale & Reiter's [Dale and Reiter, To Appear] recent model and show how it can be augmented for understanding as well as generating the range of data presented here. I argue that integrating centering [Grosz et al., 1983] [Kameyama, 1985] with this model can be applied uniformly to discourse anaphoric pronouns and phrasal NPs. I conclude with a hypothesis for addressing the interaction between local and global discourse processing.

1 Introduction

This paper concerns how to generate and understand discourse anaphoric noun phrases, or noun phrases (NPs) that evoke a discourse entity already in the discourse model (Webber [1978]). Dale [1989] [1992] implements Gricean constraints on informativeness for generating discourse anaphoric NPs. However, his model follows the tradition of assuming that distinct constraints govern pronouns versus phrasal NPs (cf. Reichman [1983] [Grosz and Sidner, 1986]). Centering [1983] [1985], a model of local attentional state [1979], has been applied primarily to definite pronouns. I argue that Gricean constraints should be applied equally to discourse anaphoric pronouns and phrasal NPs, and that integrating centering and informational constraints covers a broader range of cases. In §2 I present an analysis of all discourse anaphoric NPs (N=1,233) in a corpus of ten narratives showing that semantic explicitness depends largely on informational constraints. Discourse anaphoric NPs almost never provide new information, and are rarely more informative than necessary. In §3 I show how Dale & Reiter’s [To Appear] generation model can be augmented to apply uniformly to pronouns and phrasal NPs for both generation and understanding. While centering has been used to account for informationally under-specified pronouns, I argue that centering also accounts for certain over-specified phrasal NPs. In §4 I integrate centering with the augmented Gricean model and discuss the extended coverage. Results in §2 include a one-way correlation of overly informative discourse anaphoric NPs with shifts in global discourse structure. In the conclusion, I discuss directions for extending the integrated model in ways that might indirectly account for this correlation.

2 Analysis of a Coded Corpus

In this section, I present the results of an analysis of all discourse anaphoric NPs in a corpus of spoken narratives directed at the question of how informative NPs are, relative to their contexts of occurrence. The first subsection describes the corpus and coding features. The next subsection presents results showing that discourse anaphoric NPs in the corpus, whether pronominal or phrasal, are rarely more informative than necessary, and if so, tend to occur at shifts in global discourse structure.

Fig. 1 identifies four possibilities regarding the semantic informativeness of an NP relative to its context of occurrence. Three of them pertain to the following Gricean principles, referred to by Dale [1983] as informational adequacy and efficiency: the speaker should be sufficiently informative to unambiguously identify the intended referent (adequacy), and the speaker should be no more informative than necessary (efficiency). The boxed pronouns in (2a) of Fig. 1 are both adequate and efficient (well-specified): it is clear what the pronouns refer to; less informative forms (zero pronouns) would be grammatical. The phrasal NPs in (2b) are adequate but not efficient (over-specified). The pronominal NP in (2c) is inadequate (under-specified; efficiency does not apply to inadequate NPs): “it” could refer either to the ladder or the tree. A fourth possibility is that an NP may perform two functions, to identify the referent and to add information about it, as in (2d) (over-determined). In

∗The work reported here was not supported by Bellcore.
Fig. 1: Relative Informativeness

2.1 Data Coding

The corpus consists of ten narrations from Chafe’s Pear stories [1980]. Chafe recorded and transcribed subjects who had been asked to view the same movie and describe it to a second person. The movie contained seven sequential episodes about a man picking pears. It had a vivid sound track, but no language. As part of a long term study of the relationship between linguistic features and discourse structure [Passonneau and Litman, 1993; Litman and Passonneau, 1995b; Litman and Passonneau, 1995a], discourse anaphoric NPs in the corpus had already been coded for coreference relations and location. Location of an NP is represented here in terms of the containing sentential utterance and discourse segment, as described below. Fig. 2 illustrates an excerpt.

Figure 2: Narrative Excerpt Illustrating Informativeness

Chafe [1980] identified three types of prosodic phrase from graphic displays of intonation contours. A period indicates a phrase terminated by a pitch fall, a question mark indicates final level or rising pitch, and a comma indicates phrase final—not sentence-final—intonation. The transcriptions here show all repeated and incomplete words and phrases, non-lexical articulations such as “uh, um, tsk”, and vowel lengthening as indicated by ‘_’. Pause locations are shown as “[ps]”.

Sentential utterances are defined as a non-overlapping sequence of units that completely covers the discourse. Briefly, a new sentential utterance begins with a functionally independent clause (FIC) if it is immediately adjacent to the preceding FIC. Otherwise it begins at the onset of the prosodic phrase where the next FIC begins. An FIC is a tensed clause that is not a verb argument, a restrictive relative clause, or one of a set of formulaic “interjection” clauses (e.g., “You know” with no clausal argument; for full details cf. [Passonneau, 1994a]). Material between clauses includes sentence or word fragments, and non-lexical articulations (e.g., “um”). Locations and sequence numbers of the seven sentential utterances in Fig. 2 are shown in column 2.

The global context is structured into sequential segments, multi-utterance units whose utterances are presumed to be more related to one another semantically and pragmatically than to other utterances. The segments numbered 6-8 (col. 1 of Fig. 2) were derived from an empirical study described in [Passonneau and Litman, 1993]. Each narrative was segmented by 7 new, untrained subjects. Subjects were instructed to place segment boundaries in transcripts whenever the narrator had finished one communicative task and begun a new one. They were restricted to placing boundaries between prosodic phrases. To focus their attention on the criterion, subjects’ were also instructed to label segments with a brief description of the speaker’s intention.

The size and number of segments per subject per narrative varied widely, from a rate of 5.5% to 41.3% (Avg.=16%), with segment widths ranging from 1 to 49 phrases (Avg.=5.9). Despite this variation, the number of times 4 to 7 subjects assigned boundaries in the same place was extremely significant (using Cochran’s Q [1950]; cf. [Passonneau and Litman, 1993]). We took agreement among at least 4 subjects as the threshold for empirically validated boundaries.

A surface constituent is considered to be a discourse anaphoric NP if it occurs in free variation with syntactically prototypical NPs, and co-references with a preceding NP (cf. [Passonneau, 1994a]). One type of empty category is also included, namely zero pronoun subjects of FICs conjoined by “,”, “and”, etc. In Fig. 2, the sequence of coreferential NPs used to refer to the little boy are conjoined. Segments 7 and 8 in Fig. 2 both begin with an utterance containing an NP referring to the boy. At the onset of segment 7, a phrasal NP is used to refer to him (U30) whereas at the onset of segment 8 (U33), a definite pronoun is used. But a pronoun could have replaced the phrasal NP in U30 with no loss of information. So the phrasal NP is over-specified but not over-determined; the attributes “boy” and “little” were already mentioned in U28. The pronoun subject in U33 is locally well-specified because the boy is the only animate entity mentioned in U32; it is globally well-specified because the boy is the only entity in the discourse with a bicycle.

2.2 Analysis of Informational Constraints

The goal of the analysis is to determine whether relative informativeness of NPs correlates with global discourse structure (cf. [Reichman, 1985] Grosz and Sidner, 1984). Any phrasal NP that is discourse anaphoric
is potentially over-specified, whereas a definite pronoun will only be over-specified if a zero pronoun could have been used. I first sorted the discourse anaphoric NPs in the corpus (N=1,233) into the three categories of phrasal NPs (PhrNPs; N=563), explicit pronouns (PROs: definite, indefinite, demonstrative; N=544), and zero pronouns (ZPs; N=126). Then I identified all pairs of coindexed NPs where NP

1

and zero pronominals (ZPs; N=126). Then I identified all pairs of coindexed NPs where NP

2

was more explicit than NP

1

. This procedure identified 128 discourse anaphoric NPs in the corpus that were potentially over-specified or over-determined. The sole over-determined NP, illustrated in Fig. 3 occurs relatively late in the narrative (U

5

); it seems mainly to provide contrast (cf. “that old man” vs. those little boys”).

Potentially over-specified NPs were sorted into four mutually exclusive categories—well-specified, segment onset, attentional shift, and reiterative. A potentially over-specified NP is well-specified if a less explicit form would have been ambiguous or unclear. The containing utterance is included in the context since the proposition expressed in an utterance can disambiguate a referring expression. A potentially over-specified NP that is not well-specified, but which occurs in the first utterance of a new segment, is classified as a segment onset. The segments in the coded Pear corpus arguably contain intra-segmental shifts of attention associated with changes in temporal aspect, or shifts in discourse reference time (for definitions assumed here, cf. Kameyama et al., 1993). The third category, attentional shift, consists of these cases. A fourth catch-all category includes, e.g., repetitions, repairs, contrastive NPs and unexplained cases.

Table 1 indicates that most potentially over-specified NPs (N=127) were either well-specified (46%) or occur at an empirically verified segment onset (16%) or a hypothesized attentional shift (23%). Of the 69 NPs whose nearest antecedent was in a distinct segment, 29% occurred at a segment onset. Over a third (36%) of the NPs whose antecedent was in the same segment, and 12% of those whose antecedent was in a distinct segment occurred at an intra-segmental attentional shift. In sum, in the coded Pear corpus, NPs that re- evoke existing entities seem to be rarely over-specified (68/1233, or 5.5%) or over-determined (1/1233). Of the 68 over-specified cases (columns 2-5), 20 (30%) correlate with segment onsets independently identified by naive subjects, and 29 (42%) appear to correlate with intra-segmental attentional shifts. Thus, an over-specified NP is more likely than not to correlate with an attentional shift (72%). Note however, that the reverse implication does not hold, that is, it is not the case that a segment shift is likely to be signalled by an over-specified NP.

2.3 Focused Attribute Sets

To account for the choice of modifiers in phrasal discourse anaphoric NPs, it is necessary to determine how attributes are selected from the information known about a discourse entity. According to Grice’s 1973 maxim of quality, speakers should be relevant. With respect to discourse anaphoric NPs in the Pear stories, NP modifiers are derived from what I refer to as focussed attribute sets, independent of whether the NP is over-specified. Focussed attribute sets comprise the following three categories of relevance. First, an attribute set can be in focus because it was mentioned in the most recent phrasal NP. For example, in Fig. 2 the boy is referred to in U

39

as “the little boy,” repeating attributes mentioned in the last phrasal NP referring to the boy (in U

28

).

Second, the focussed attribute set may specify the most recently mentioned location of an entity. The subject NP in U

17

of Fig. 3 refers to one man as “the man up in the tree” to distinguish him from the second man who came by with a goat. The tree is the last mutually known location of the former. Finally, an attribute set can be in focus because it pertains to a key narrative event that the entity has been an agent of. Intuitively, an event is more central to a narrative the more difficult it is to describe the narrative without mentioning that event. Operationally, key events occur more frequently than others both within and across narratives. For example, the main adult character is often described as “the pear picker,” or as “the man who was picking pears” (see U

108

of Fig. 3) and so on; the other main character is often described as “the thief,” “the boy who stole the pears,” “the boy with the pears,” and so on.

How to order the focussed attribute sets for a given discourse entity is a topic for further investigation. Here, I simply assume that the three types of attribute sets mentioned above—where applicable—are in focus. I also assume that the focussed attribute sets of an entity (FAV

e

) are updated as the discourse progresses.

3 Modelling Informativeness of NPs

The data reported above indicates that in the Pear corpus, definite pronouns and phrasal NPs are rarely over-specified or over-determined. In this section, I describe a

Table 1: Potentially Over-Specified NPs

Antecedent	Segment Specified	Segment Onset	Atten. Shift	Other	Total
Same	22	-	21	15	58
%	38%	-	36%	6%	100%
Prev	37	20	10	4	69
%	53%	29%	12%	6%	100%
Totals	59	20	29	19	127
%	46%	16%	23%	15%	100%
processing model to account for this observation. In the next section, I discuss how centering can be integrated with this model to account for under-specified pronouns, and certain over-specified phrasal NPs. First, I briefly review Dale's \cite{dale89} model, including his more recent work with Reiter \cite{reiter90}. Then I modify this model to apply to understanding as well as generation; to include the current utterance in the context of evaluation; to apply informational constraints uniformly to pronouns and phrasal NPs; and to select modifiers on the basis of focused attribute-value pairs.

3.1 Distinguishing Descriptions

Dale \cite{dale89} generates anaphoric pronouns and phrasal NPs by distinct means. In EPICURE \cite{epicure}, a system for generating recipes, a definite pronoun is always generated to refer to the 'discourse center', which is analogous to the backward-looking center of \cite{groszetal86}. Dale \cite{dale89} \cite{kameyama85} defines a distinguishing description of an entity \(e \) in \(U \) to be a set of attribute-value pairs that are true of \(e \), and of no other members of \(U \). This enforces adequacy. He defines a minimal distinguishing description to be one where the cardinality of the attribute-value pairs cannot be reduced. This addresses efficiency.\footnote{Cf. Reiter \cite{reiter90} for a discussion of problems in generating maximally efficient NPs using Dale's framework, and Dale & Reiter \cite{dale90} for an argument that maximal efficiency is psychologically implausible.}

Dale \cite{dale89} defines the discriminatory power (\(F \)) of an attribute-value pair \(\langle A, V \rangle \) that is true of a discourse entity \(e \) in a universe of entities \(U \) in terms of the cardinality \(N \) of \(U \), and the total number \(n \) of entities in \(U \) that \(\langle A, V \rangle \) is true of:

\[F(\langle A, V \rangle, U) = \frac{N - n}{N - 1} \]

\(F \) ranges in value from 0 to 1. If \(\langle A, V \rangle \) is true of only one of the entities in the set \(U \), then \(F_{\langle A, V \rangle} \) is 1, and \(\langle A, V \rangle \) is a distinguishing description of the entity. Dale's \cite{dale89} algorithm for constructing a distinguishing description of \(e \) in \(U \), given a set \(P \) of attribute-value pairs that are true of \(e \), briefly works as follows. First compute \(F \) for each member of \(P \). If all values of \(F \) are 0, no unique description can be constructed. Otherwise, select the attribute-value pair with the highest value to add to the description, and reset \(U \) to be only those entities in the initial \(U \) that the selected attribute-value pair is true of. Repeat this process, terminating when an attribute-value pair with a discriminatory power of 1 has been selected. The selected attribute-value pairs constitute the input description for a surface NP.

In recent work, Dale & Reiter \cite{dale90} \cite{reiter90} enforce a range of Gricean constraints using an algorithm based on human behavior that is simpler and faster than their previous algorithms \cite{dale89} \cite{reiter90}. It performs less length-oriented optimization, thus balancing brevity against lexical preference. The output NPs are not guaranteed to be maximally short because humans occasionally use unnecessary modifiers. The 5.5\% rate of over-specified discourse anaphoric NPs in the Pear data also supports the relaxation of brevity, but is partly conditioned by attentional factors (cf.\cite{groszetal86}).

3.2 C\textsubscript{describe}

In this section I illustrate the role of \(\epsilon\text{describe} \) in processing definite pronouns and phrasal NPs. \(\epsilon\text{describe} \) is a 4-place relation among a discourse entity \(E \), a surface NP, the current utterance context \(\lambda U \), and the discourse context \(C \) that requires \(\lambda NP_{A}U \) to be a distinguishing description of \(E \) relative to \(C \). For generation, NP is solved for given an instantiation of the remaining three arguments, whereas \(E \) is solved for during understanding (assuming Prolog’s control structure).

A definite pronoun that is a distinguishing description is also a minimal distinguishing description because its length is 1. In generation, \(\epsilon\text{describe} \) attempts first to find a definite pronoun to satisfy the uninstantiated NP argument, succeeding if the pronoun is a distinguishing description. For generating the pronoun “he” in \(U_{4} \) of Fig. 4, the arguments of \(\epsilon\text{describe} \) are:

\begin{equation}
\epsilon\text{describe}(e_{1}, NP, \\
\lambda X \text{ fills}'(X, \text{"his thing"}, \text{"pears"}), FS_{1})
\end{equation}

The utterance context is assumed to be a feature structure co-indexed with any relevant discourse entities other than the uninstantiated variable \(E \). By using the utterance as part of the input in solving for NP, given information that appears anywhere in the current utterance can filter entities from the discourse context, following Dale's \cite{dale89} algorithm. New information about an entity in the utterance is not mutually known, and has no discriminatory power \cite{dale89}.

For present purposes, the last argument of \(\epsilon\text{describe} \) is first instantiated to the most recent focus space, and in turn to other focus spaces until a solution is found. Dale \cite{dale89} takes the universe of discourse to be partitioned into focus spaces (cf. \cite{groszsidner89}), with the most recent focus space being the most accessible, and making no assumptions regarding relative accessibility of earlier focus spaces. Similar assumptions are made here. I assume that segment boundaries in the Pear corpus correspond to focus spaces, and that some...
focus spaces may be composed of others. I assume the existence of an inference mechanism that constrains how focus spaces are signalled during generation, and how focus spaces are inferred during understanding. In recent work, for example, Litman and I report on algorithmic methods for identifying segment boundaries in the Pear corpus using features of prosody, cue words and referential NPs [Litman and Passonneau, 1995a]. Given such a mechanism, a new focus space would be added to the discourse model after a segment onset has been processed.

In (1), FS1 appears as the initial context argument of c.describe. The only animate entity in FS1 is e1, previously described as a man picking pears in a pear tree who looks like a farmer, is plump, has a mustache, and is wearing a white apron (utterances 1-3, not shown here). The feature structures corresponding to all but one of the definite pronouns “he, she, it” or “they” will be rejected as a description of e1 because e1 is neither plural, non-animate or female.3 The pronoun “he”, represented as the attribute-value pair <entity: human>, <gender: male>, <cardinality: 1>, not only describes e1, it is also a minimal distinguishing description.

An analogous process applies to understanding the same pronoun in U4, with the entity variable E uninstantiated, NP instantiated to “he”, and the utterance and discourse context instantiated as above. Given a distinguishing description, there is guaranteed to be exactly one solution to E. However, the search problem increases with the size of the context. Partitioning the search space into focus spaces controls the search through the discourse model to some degree. (Integrating centering with c.describe as described below guides the search even further.) For present purposes, c.describe returns E instantiated to e1 after searching through the entities in FS1. The remaining NPs exemplified here are understood in a similar fashion.

Given a context where there is no definite pronoun solution to NP, c.describe will attempt to construct a phrasal NP, preferably with no modifiers. In Fig. 4, a new, singular, male, human entity is added to the context at U5: a boy who comes by on a bicycle (e2). Subsequent references to the boy or the man must discriminate between them. The utterance context for the subject NP of U9—A X in’(X, “the tree”)—does not identify e1 because U9—“he comes down”—leads to the inference that the man is no longer in the tree. However, e1 is a male adult and e1 is a male child, a distinction encoded by the common nouns “man” versus “boy”. Since “man” is what Dale & Reiter [To Appear] refer to as a basic attribute, “man” will be selected as the head noun. The determiner will be definite because the entity is already in the context (but cf. [Passonneau, 1994b]). The resulting NP the man is a minimal distinguishing description because no pronoun is a distinguishing description.

Fig. 5 illustrates a context where a phrasal NP without modifiers could not both have a head noun that specifies a basic attribute, and be a distinguishing description. It also illustrates the problematic nature of relations among distinct focus spaces. In generating the subject NP in U17, the last argument of c.describe is first instantiated to FS4. The pears referred to in U15 of segment 4 are some pears that e1 picked, so in order to interpret U15, e1 must be brought into focus. This side-effect of resolving the reference to the pears could be implemented by adding e1 to FS4, or by resetting the current focus space to a more encompassing focus structure that includes FS3 and FS4. I believe further empirical work is needed to resolve such issues. In any case, I assume that the context for generating U17 includes both e1 and e2. Because these two entities are the same type, a distinguishing description of e1 must contain discriminatory modifiers. Features for generating the modifiers are selected from FAV_e1, which here contains only two sets of salient attributes. Since e1’s location is the most recently evoked, it is used in generating the NP.

Above, I noted that centering can add structure to the search space for understanding discourse anaphoric NPs. Fig. 6 illustrates another reason to integrate centering with c.describe. In U10 of Fig. 6, the subject NP (“the boy”) is not a pronoun even though the utterance context is a distinguishing description of e2. The boy (e2) is mutually known to have been on a bicycle at the time of the event mentioned in utterance U8. Temporal processing (cf. [Kameyama et al., 1993]) would lead to the inference that the boy is still on the bicycle after U8. Thus a definite pronoun is presumably well-specified, and the model presented so far would generate “he”. However, a pronoun would produce a garden path effect in this context; i.e., it would be interpreted as referring to the man until “bicycle” has been processed.

Figure 4: Excerpt from Narrative 9

Figure 5: Phrasal NP to Avoid Ambiguity
4 Centering and Informativeness

The c_describe relation has three limitations that centering can compensate for. First, c_describe constrains the semantic content of a discourse anaphoric NP, but not its grammatical role. Second, as noted below, centering predicts that a pronoun can be under-specified. Third, an explanation is needed for the over-specified NP the boy in U_{10} of Fig. 3. In this section, I indicate how centering is interleaved with c_describe. Centering is a more local process so it applies first.

4.1 Centering

Centering is a model of local focus of attention that constrains the use of definite pronouns [Grosz et al., 1983; Kameyama, 1985]. One of the discourse entities evoked by an NP in an utterance U_{i} may be the backward-looking center (CB) [Grosz et al., 1983] of U_{i}, the current local focus of attention. Alternatively, the CB of U_{i} (CB_{U_{i}}) might not be explicitly mentioned (realized) in the utterance [Grosz et al., 1983]. The discourse entities mentioned in U_{i} comprise the forward looking centers (CFs), ordered by increasing obliqueness of grammatical role [Kameyama, 1985; Passonneau, 1989] to represent the likelihood that they will be mentioned in the subsequent utterance. The centering principle [Grosz et al., 1983] predicts that if CB_{U_{i}} and CB_{U_{i-1}} are the same entity, then the NP evoking CB_{U_{i}} will be a third person, definite pronoun.

Example (4) illustrates that where the semantics of the utterance and commonsense reasoning do not discriminate among possible referents for an ambiguous pronoun, there is an independent effect of local attentional constraints. Centering predicts that the preferred interpretation of the pronoun in (4a) is Carmella. But in this context, neither the pronoun alone nor the utterance is a distinguishing description of anyone, so the pronoun is under-specified.

(2) a. Carmella_{j} went to the bookstore.
b. Afterwards, she_{j} gave Rachel_{k} a new book.
c. She_{j}’s a true bibliophile.

Example (4) illustrates that where the semantics of the utterance and commonsense reasoning do not discriminate among possible referents for an ambiguous pronoun, there is an independent effect of local attentional constraints. Centering predicts that the preferred interpretation of the pronoun in (4a) is Carmella. But in this context, neither the pronoun alone nor the utterance is a distinguishing description of anyone, so the pronoun is under-specified.

(3) a. Carmella_{j} went to the bookstore.
b. On her way home, she_{j} saw Rachel_{k}.
c. She_{k} looked pale.

Kameyama [1985] used examples like (3) to illustrate how commonsense reasoning and lexical semantics can override the default centering predictions for pronoun interpretation. Centering would predict that ‘Carmella’ is the backward-looking center of (3b), and that the default interpretation of the pronoun in (3a) would thus be ‘Carmella’. Instead, (3b) is interpreted as a continuation of the description of the perceptual event in (3b). Kameyama [1986] posits property sharing of features of adjacent utterances as a constraint on CB, where the shared property can be subject (or non-subject) grammatical role (cf. [Passonneau, 1989]), as in (3), or what she refers to as empathy, as in (4). Note that because ‘Rachel’ is already known to be the object of the perceptual event in (3b), the utterance context in (3a) is a distinguishing description of ‘Rachel.’

4.2 Integrated Model

Fig. 6 shows all of one segment and part of another one where the subject pronouns of all the utterances are coreferential. On the one hand, the CB of the segment initial utterance U_{108} is the same as the CB of U_{107}, conflicting with the idea expressed in [Grosz et al., 1986] that centering transitions reflect global discourse coherence (cf. [Passonneau, To appear]). On the other hand, integrating centering and c describe can account for both NPs in U_{108} and support inferences consistent with a global focus shift.

Earlier in the narrative excerpted in Fig. 3, three boys helped the pear thief after he had fallen off of his bicycle, and were rewarded with three pears. Segment 21 describes their adventures after the pear thief leaves. In generating utterance U_{108}, the input to the generator will be a representation of an event in which the boys eat their pears. The set of three boys is designated as the new CB. Because CB_{U_{108}} is the same as CB_{U_{107}}, it should be realized as a pronoun [Grosz et al., 1983] and by property sharing [Kameyama, 1985; Passonneau, 1989], it should be realized as the subject of the current utterance. Centering and Gricean constraints coincide here in that the definite pronoun “they” is also a minimal distinguishing description.

To generate the phrasal NP object in U_{108}, the process is analogous to that discussed above for generating “the man up in the tree” in Fig. 3. The context argument of c_describe is first set to C_{U_{107}}. Since neither C_{U_{107}} nor the most accessible focus space (FS_{21}) contains a representation of e_{2}, the context argument will be reset until e_{2} is in a focus space on the focus stack. Focussed attribute sets are then used to generate the relative clause.

For understanding the subject NP in U_{108}, recall that centering applies before c_describe. The subject pronoun will be assumed to realize the CB of the utterance, and will be assigned the default interpretation of e_{1}. Application of c_describe leads to the recognition that “they” is also a distinguishing description of e_{1} relative to C_{U_{107}}. In this fashion, centering prunes the search space to the single entity satisfying the informational constraints im-

Figure 6: Excerpt from Narrative 1
posed by c-describe. In understanding the object NP, the context argument must be instantiated to a more inclusive focus space, since neither the previous utterance nor the previous segment contains any entities described by this NP.

The integrated model also accounts for the problematic phrasal NP in Fig. 4, discussed above. We saw that for U9 and U10, repeated below, the phrasal subject of U9 was well-specified, but the phrasal subject of U10 was over-specified, and a pronoun would be generated instead. But as noted above, a pronoun subject would have a garden path effect.

U9: the man (e1) is in the tree (e3),
U10: and the boy (e2) gets off the bicycle (e4),

Kameyama’s version of centering [1980] differs from [Grosz et al., 1983] in allowing an utterance to have a null CB. U10 would have a null CB because there is no definite pronoun constrained by property sharing that corefers with an NP in the previous utterance; in fact no NPs in U10 refer to entities mentioned in U9. A definite pronoun subject in U10 would be assumed to be CBU5 and would be inferred to refer to e1. This accounts for the garden path effect. Consequently, a pronoun must be blocked. Because no entity in U9 is referred to in U10, the input for generating U10 will be annotated as having a NULL CB. This imposes output constraints requiring the subject and object NPs to be other than definite pronouns. As a consequence, c-describe will not try to find a pronoun solution to the uninstantiated NP argument. In the first phrasal NP solution, the head would denote a basic category and the NP would have no modifiers, thus generating the existing phrase “the boy”. In sum, centering relaxes the constraint otherwise imposed by c-describe that an NP cannot be over-specified.

5 Conclusion

I have presented an analysis of discourse anaphoric phrasal NPs in a corpus of narrative monologues showing that pronouns and phrasal NPs are rarely over-specified. Future research should indicate to what degree this generalization applies to other genres and modalities. Centering predicts conditions under which an under-specified pronoun can be used, but says little about the interpretation of phrasal NPs. I have outlined a processing model that integrates the attentional constraints of centering with aspects of Grice’s maxims of quantity and quality. For enforcing the maxim of quantity, I rely on Dale’s algorithm for constructing distinguishing descriptions [1983, 1992], which I apply uniformly to pronouns and phrasal NPs for both generation and understanding. For enforcing the maxim of quality, I combine aspects of Dale & Reiter’s [To Appear] preferred attributes with the construct of focussed attribute sets derived from the corpus analysis. In contrast to Dale & Reiter [To Ap pen], distinguishing descriptions are evaluated using the current utterance context as a filter, and by instantiating the discourse context successively to the Ci list of the preceding utterance, then the current focus space, then other focus spaces, until a solution is found.

Centering provides one mechanism for relaxing the requirement that an NP (either pronominal or phrasal) should be a distinguishing description. Another mechanism would be needed to relax informational constraints at shifts in focus structure, so as to account for the one-way implication of over-specified NPs with global shifts of attention (Table 2). However, further investigation is needed to determine how to integrate local and global discourse processing. When neither the Ci list nor the current focus space is the appropriate context for understanding or generating a discourse anaphoric NP, I have assumed that either an earlier focus space or a more inclusive one must be accessed. Some of the examples presented here suggest that the contextual dependencies captured by the use of focused attributes might constrain the relation of each new utterance to the global discourse model. For example, the segment onset in Fig. 9 (U108) contains two NPs, one of which is the same as the CB of the preceding utterance. Maintaining the same CB relates U108 and its focus space (FS22) to the most recent focus space FS21. But the object NP expresses attributes last mentioned in segment 17, thus relating U108 to the earlier focus space FS17. If the global structure is a tree, the relation of U107 to both segments 21 and 17 might indicate how high up in the tree to locate the new focus space. Alternatively, an investigation of such relations might provide evidence about the nature of global structure, such as whether it is a tree or a lattice.

Acknowledgements

This work was partly supported by NSF grant IRI-91-13064. Thanks to Robert Dale, Ehud Reiter, and Megumi Kameyama for valuable comments on ideas presented here.

References

[Chafe, 1980] W. L. Chafe. The Pear Stories. Ablex Publishing Corporation, Norwood, NJ, 1980.

[Cochran, 1950] W. G. Cochran. The comparison of percentages in matched samples. Biometrika, 37:256–266, 1950.

[Dale and Reiter, To Appear] R. Dale and E. Reiter. Computational interpretations of the Gricean maxims in the generation of referring expressions. To appear in Cognitive Science.

[Dale, 1989] R. Dale. Cooking up references. In Proceedings of the 27th Annual ACL, 1989.

[Dale, 1992] R. Dale. Generating Referring Expressions. MIT Press, Cambridge, MA, 1992.

[Grice, 1975] H. P. Grice. Logic and conversation. In Syntax and Semantics, Vol. 3: Speech Acts, pages 41–58. Academic Press, New York, 1975.
[Grosz and Sidner, 1986] B. J. Grosz and C. L. Sidner. Attention, intentions and the structure of discourse. *Computational Linguistics*, 12:175–204, 1986.

[Grosz et al., 1983] B. J. Grosz, A. K. Joshi, and S. Weinstein. Providing a unified account of definite noun phrases in discourse. In *Proceedings of the 21st ACL*, 1983.

[Grosz et al., 1986] Barbara J. Grosz, A. K. Joshi, and S. Weinstein. Towards a computational theory of discourse interpretation, 1986. Ms.

[Kameyama et al., 1993] M. Kameyama, R. J. Passonneau, and M. Poesio. Temporal centering. In *Proceedings of the 31st ACL*, 1993.

[Kameyama, 1985] M. Kameyama. *Zero Anaphora: The Case of Japanese*. PhD thesis, Stanford University, 1985.

[Kameyama, 1986] M. Kameyama. A property-sharing constraint in centering. In *Proceedings of the 24th ACL*, 1986.

[Litman and Passonneau, 1995a] D. Litman and R. Passonneau. Combining multiple knowledge sources for discourse segmentation. In *Proceedings of the 33rd ACL*, 1995.

[Litman and Passonneau, 1995b] D. Litman and R. Passonneau. Developing algorithms for discourse segmentation. In *Working Notes of AAAI Spring Symposium Series on Empirical Methods in Discourse Interpretation and Generation*, 1995.

[Passonneau and Litman, 1993] R. J. Passonneau and D. Litman. Intention-based segmentation: Reliability and correlation with linguistic cues. In *Proceedings of the 31st ACL*, 1993.

[Passonneau and Litman, To appear] R. J. Passonneau and D. Litman. Empirical Analysis of Three Dimensions of Spoken Discourse: Segmentation, Coherence and Linguistic Devices. In E. Hovy and D. Scott, eds., *Burning Issues in Discourse*. Springer Verlag, To appear.

[Passonneau, 1989] Rebecca J. Passonneau. Getting at discourse referents. In *Proceedings of the 27th ACL*, 1989.

[Passonneau, 1994a] R. J. Passonneau. Protocol for coding discourse referential noun phrases and their antecedents. Technical report, Columbia University, 1994.

[Passonneau, 1994b] R. J. Passonneau. Frame shifts: Perlocutionary meaning and discourse reference. In *Conference on Focus and Natural Language Processing*, Kassel, Germany, 1994.

[Passonneau, To appear] R. J. Passonneau. Interaction of the segmental structure of discourse with explicitness of discourse anaphora. In E. Prince, A. Joshi, and M. Walker, eds., *Proceedings of the Workshop on Centering Theory in Naturally Occurring Discourse*. Oxford University Press, To appear.

[Reichman, 1985] R. Reichman. *Getting Computers to Talk Like You and Me*. MIT Press, Cambridge, Massachusetts, 1985.

[Reiter, 1990] E. Reiter. *Generating appropriate natural language object descriptions*. PhD thesis, Harvard University, 1990.

[Reiter, 1979] C. L. Sidner. Towards a computational theory of definite anaphora comprehension in English discourse. Technical report, MIT AI Lab, 1979.

[Webber, 1978] B. Webber. A formal approach to discourse anaphora. Technical Report 3761, Bolt Beranek and Newman Inc., 1978.