Embedding linear codes into self-orthogonal codes and their optimal minimum distances

Jon-Lark Kim, Young-Hun Kim, and Nari Lee

Abstract—We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method to embed a given binary k-dimensional linear code C ($k = 2, 3, 4$) into a self-orthogonal code of the shortest length which has the same dimension k and minimum distance $d' \geq d(C)$. For $k > 4$, we suggest a recursive method to embed a k-dimensional linear code to a self-orthogonal code. We also give new explicit formulas for the minimum distances of optimal self-orthogonal codes for any length n with dimension 4 and any length $n \neq 6, 13, 14, 21, 22, 28, 29 \pmod{31}$ with dimension 5. We determine the exact optimal minimum distances of $[n, 4]$ self-orthogonal codes which were left open by Li-Xu-Zhao (2008) when $n \equiv 0, 3, 4, 5, 10, 11, 12 \pmod{15}$. Then, using MAGMA, we observe that our embedding sends an optimal linear code to an optimal self-orthogonal code.

Index Terms—Binary linear code, self-orthogonal code, optimal code.

I. INTRODUCTION

SELF-orthogonal codes have been extensively studied for their interesting structures and applications. In particular, self-dual codes, a special class of self-orthogonal codes, have attracted much attention because of their connections to other fields of mathematics such as unimodular lattices, secret sharing schemes, and designs ([1], [2], [3], [4], [5], [6]).

Since the 1970s, a lot of researchers have studied self-orthogonal codes. For instance, constructions and classifications of self-orthogonal codes were steadily studied ([7], [8], [9], [10], [11]). Self-orthogonal codes were also studied due to their connections to quantum codes ([12], [13], [14], [15], [16]) and their applications to side-channel attacks ([17], [18]). However, several questions for self-orthogonal codes remain. To mention a few, the classification of self-orthogonal codes and the explicit formulas for the minimum distances of optimal self-orthogonal codes are partially computed.

From now on, we will only consider binary linear codes. Pless [7] classified certain self-orthogonal codes. Since then people have gotten more results for the classification of self-orthogonal codes. In [19, Section 3], Bouyukliev et al. introduced a noteworthy characterization for self-orthogonality of three-dimensional codes in terms of the number of column vectors in a generator matrix. As a consequence, they gave the complete classification of three-dimensional optimal self-orthogonal codes. In [11, 10], Li, Xu, and Zhao characterized four-dimensional optimal self-orthogonal codes by systems of linear equations. They also obtained the complete classification of optimal $[n, 4]$ self-orthogonal codes for $n \equiv 1, 2, 6, 7, 8, 9, 13, 14 \pmod{15}$ and left the other cases open.

In this paper, we generalize the characterization in [11, 10] Section 3] for arbitrary dimensions. In particular, we give an explicit characterization for $[n, k]$ self-orthogonal codes for $k = 2, 4$ and reprove the characterization for $[n, 3]$ self-orthogonal codes, which was introduced in [19].

As a consequence of our characterizations, we construct an algorithm that embeds (or extends) an $[n, k]$ linear code to a self-orthogonal code for $k = 2, 3, 4$ in Section [V]. Precisely, if we input a generator matrix G of a linear code C, then the algorithm will give a matrix \tilde{G} by adding more columns to G which generates a self-orthogonal code \tilde{C} and produces a minimum distance greater than or equal to the minimum distance of C. Moreover, we prove that \tilde{C} is a shortest (length) self-orthogonal embedding. In [20], Kobayashi and Takada introduced a similar embedding with a critical error. We point out their error (see Remark [IV.6]. For $k > 4$, we suggest a recursive method to embed a k-dimensional linear code to a self-orthogonal code.

It is a quite natural question whether an optimal linear code results in an optimal self-orthogonal code when it is embedded by our algorithm in Section [V]. Therefore, we will also discuss the explicit formulas for the minimum distances of optimal linear codes and optimal SO codes in Section [V].

There have been a number of studies on bounds about the minimum distances of linear codes. In particular, Griesmer [21] introduced a remarkable bound, called the Griesmer bound. Due to this bound, researchers obtained a lot of minimum distances of optimal linear codes. For the details, readers can refer to [22].

Manipulating the Griesmer bound, we calculate an explicit formula for an upper bound of the minimum distance $d(n, k)$ of optimal linear codes of length n for $k = 1, 2, 3, 4, 5$. More precisely, we obtain new explicit formulas for the minimum distances $d_{\text{opt}}(n, k)$ of optimal self-orthogonal codes for any length n with $k = 4$ and for any length $n \neq 6, 13, 14, 21, 22, 28, 29 \pmod{31}$ with $k = 5$. We determine the exact optimal minimum distances of $[n, 4]$ self-orthogonal codes which were left open by Li-Xu-Zhao in [10] when
Let $GF(q)$ be a finite field with q elements. We consider the case of $q = 2$ only. A subspace C of $GF(q)^n$ is called a linear code of length n. For $n, k \in \mathbb{Z}^+$, a k-dimensional linear code $C \subseteq GF(q)^n$ is called an $[n, k]$ code. The elements of C are called codewords. A generator matrix for C is a $k \times n$ matrix G whose rows form a basis for C.

For $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in GF(q)^n$, the ordinary inner product $\langle x, y \rangle \equiv \sum_{i=1}^{n} x_i y_i$. For
a linear code \(C \), the code

\[
C^\perp := \{ x \in GF(q)^n \mid x \cdot y = 0 \text{ for all } y \in C \}
\]

is called the dual of \(C \). A linear code \(C \) satisfying \(C \subseteq C^\perp \) (resp. \(C = C^\perp \)) is called self-orthogonal (abbr. SO) (resp. self-dual).

The \((\text{Hamming})\) weight \(\text{wt}(x) \) of a vector \(x \in GF(q)^n \) is the total number of nonzero coordinates in \(x \). For \(x, y \in GF(q)^n \), we define the \((\text{Hamming})\) distance \(d(x, y) \) between \(x \) and \(y \) by the number of coordinates in which \(x \) and \(y \) differ. The minimum distance of a code \(C \) is the smallest nonzero distance between any two distinct codewords. For \(n, k, d \in \mathbb{Z}_+ \), an \([n, k, d]\) code \(C \) is an \([n, k]\) code whose minimum distance is \(d \). We call an \([n, k, d]\) code \(C \) optimal if its minimum distance \(d \) is the highest among all \([n, k]\) linear codes. We denote by \(d(n, k) \) the minimum distance of an optimal \([n, k]\) code. An \([n, k, d]\) SO code \(C \) is called by \(d(n, k) \) if its minimum distance \(d \) is the highest among all \([n, k]\) SO codes. We denote by \(d_{\text{SO}}(n, k) \) the minimum distance of an optimal \([n, k]\) SO code.

For \(k, d \in \mathbb{Z}_+ \), let \(n(k, d) \) be the smallest value of \(n \) for which an \([n, k, d]\) code exists. A notable lower bound on \(n(k, d) \) was obtained by Griesmer as follows.

Theorem II.1. ([21], [24]) Let \(C \) be an \([n, k, d]\) code over \(GF(2) \) with \(k \geq 1 \). Then

\[
n(k, d) \geq g(k, d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{2^i} \right\rceil.
\]

Let us collect some required notations. For any \([n, k]\) code \(C \) generated by \(G \), we denote by \(r_i(G) \) the \(i \)-th row of \(G \) from the top for \(1 \leq i \leq k \) and \(c_j(G) \) the \(j \)-th column of \(G \) from the left for \(1 \leq j \leq n \). If there is no danger of confusion to the matrix \(G \), we obtain the following characterization of \([n, k]\) SO codes.

Theorem III.2. Let \(C \) be an \([n, k]\) code generated by \(G \). Then, \(C \) is SO if and only if for all \(0 < j \leq n \), \(|\{ i \mid c_j(G) = h_i \} | \equiv 1 \) (mod 2).

Example III.1. Let \(C_{10,3} \) be a \([10, 3]\) code generated by

\[
G_{10,3} = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}.
\]

Then we have

\[
\ell_1 = \ell_2 = \ell_4 = \ell_5 = \ell_7 = 1, \quad \ell_3 = 2, \quad \text{and} \quad \ell_6 = 3.
\]

For instance, for nonnegative integers \(m_1, m_2, \ldots, m_t \) and \(a, n \in \mathbb{Z}_+ \),

\[
\delta(n \equiv_a m_1, m_2, \ldots, m_t) = \begin{cases} 1 & \text{if } n \equiv_a m_1, m_2, \ldots, m_t, \\ 0 & \text{otherwise}. \end{cases}
\]

III. CHARACTERIZATIONS FOR SELF-ORTHOGONALITY

In this section, we obtain characterizations for self-orthogonality by reading column vectors of a generator matrix.

For a \(k \times n \) matrix \(G \) and \(i = 1, 2, \ldots, 2^k - 1 \), we define \(\ell_i(G) := \text{the number of } h_i \text{ among the columns of } G \).

If there is no danger of confusion to the matrix \(G \), then we will write \(\ell_i \) for \(\ell_i(G) \).

For a \(k \times n \) matrix \(G \) and \(0 < j \leq k \), we define a multiset \(I(j) := \{ c_j(G) \mid (i) \ 0 < i \leq n, \quad (ii) \ c_j(G) = h_i \ for \ 1 \leq t \leq 2^k - 1 \} \) satisfying \(|I(j)| \equiv 1 \) (mod 2).
Example III.3.
(1) Let $C_{10,3}$ be the $[10, 3]$ code generated by $G_{10,3}$ appeared in Example III.1. From Equation (III.1), we see that
\[|I(1) \cap I(1)| = |\{c_1, c_3, c_4, c_6, c_{10}\}| = 5 \]
is odd. Thus, by Theorem III.2, $C_{10,3}$ is not SO.

(2) Let $\tilde{C}_{10,3}$ be an $[11, 3]$ code generated by
\[
\tilde{G}_{10,3} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]
It is easy to obtain $I(j)$ as follows:
\[
I(1) = \{c_1, c_3, c_4, c_6, c_{10}, c_{11}\}, \\
I(2) = \{c_2, c_3, c_4, c_7, c_8, c_9, c_{10}, c_{11}\}, \\
I(3) = \{c_5, c_6, c_7, c_8, c_9, c_{10}\}.
\]
Therefore, we have
\[
I(1) \cap I(2) = \{c_3, c_4, c_{10}, c_{11}\}, \\
I(1) \cap I(3) = \{c_6, c_{10}\}, \\
I(2) \cap I(3) = \{c_7, c_8, c_9, c_{10}\}.
\]
Since $|I(j) \cap I(j')|$ is even for all $0 < j \leq j' \leq 3$, by Theorem III.2, $\tilde{C}_{10,3}$ is SO.

A. Self-orthogonality for dimension 2 and 3

In this subsection, we characterize self-orthogonality for $[n, 2]$ codes in terms of ℓ_i using Theorem III.2. For $[n, 3]$ codes, we introduce the result in [19] which gives a characterization for self-orthogonality and we reprove it using Theorem III.2.

For $[n, 2]$ codes, we obtain the following characterization for self-orthogonality.

Lemma III.4. Let C be an $[n, 2]$ code. The code C is SO if and only if C is generated by a matrix G satisfying
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \ell_3 \equiv_2 0. \tag{III.2}
\]

Proof. Let G be a generator matrix of C. By Theorem III.2, it suffices to show that Equation (III.2) holds if and only if for all $0 < j \leq j' \leq 2$, $|I(j) \cap I(j')|$ is even. By definition of $I(j)$, we obtain that
\[
|I(1)| = \ell_1 + \ell_3, \quad |I(2)| = \ell_2 + \ell_3, \quad \text{and} \quad |I(1) \cap I(2)| = \ell_3.
\]
This shows that for all $0 < j \leq j' \leq 2$, $|I(j) \cap I(j')|$ is even if and only if
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \ell_3 \equiv_2 0.
\]

For $[n, 3]$ codes, a characterization for the self-orthogonality was introduced in [19]. We reprove this characterization using Theorem III.2.

Lemma III.5. [19, Lemma 3] Let C be an $[n, 3]$ code. The code C is SO if and only if C is generated by a matrix G satisfying
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \cdots \equiv_2 \ell_7. \tag{III.3}
\]

Proof. Let G be a generator matrix of C. By Theorem III.2, it suffices to show that Equation (III.3) holds if and only if for all $0 < j \leq j' \leq 3$, $|I(j) \cap I(j')|$ is even. By definition of $I(j)$, we obtain that
\[
|I(1)| = \ell_1 + \ell_3 + \ell_7, \quad |I(1) \cap I(2)| = \ell_3 + \ell_7, \\
|I(2)| = \ell_2 + \ell_3 + \ell_6 + \ell_7, \quad |I(1) \cap I(3)| = \ell_5 + \ell_7, \\
|I(3)| = \ell_4 + \ell_5 + \ell_6 + \ell_7, \quad |I(2) \cap I(3)| = \ell_6 + \ell_7.
\]
This shows that for all $0 < j \leq j' \leq 3$, $|I(j) \cap I(j')|$ is even if and only if
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \cdots \equiv_2 \ell_7.
\]

B. Self-orthogonal codes of dim 4

In this subsection, we provide a characterization for self-orthogonality for $[n, 4]$ codes in terms of congruence equations on ℓ_i's.

Recall that for an $[n, 4]$ code C generated by G,
\[
I(1) = \{c_i \mid c_i = h_t \text{ for } t \in \{1, 3, 5, 7, 9, 11, 13, 15\}\}, \\
I(2) = \{c_i \mid c_i = h_t \text{ for } t \in \{2, 3, 6, 7, 10, 11, 14, 15\}\}, \\
I(3) = \{c_i \mid c_i = h_t \text{ for } t \in \{4, 5, 6, 7, 12, 13, 14, 15\}\}, \\
I(4) = \{c_i \mid c_i = h_t \text{ for } t \in \{8, 9, 10, 11, 12, 13, 14, 15\}\}.
\]

Therefore, we have
\[
I(1) = \ell_1 + \ell_3 + \ell_5 + \ell_7 + \ell_9 + \ell_{11} + \ell_{13} + \ell_{15}, \\
I(2) = \ell_2 + \ell_3 + \ell_5 + \ell_8 + \ell_{11} + \ell_{14} + \ell_{15}, \\
I(3) = \ell_4 + \ell_5 + \ell_7 + \ell_{12} + \ell_{13} + \ell_{14} + \ell_{15}, \\
I(4) = \ell_4 + \ell_9 + \ell_{10} + \ell_{11} + \ell_{13} + \ell_{14} + \ell_{15}, \\
|I(1) \cap I(2)| = \ell_3 + \ell_7 + \ell_{11} + \ell_{15}, \\
|I(1) \cap I(3)| = \ell_5 + \ell_7 + \ell_{13} + \ell_{15}, \\
|I(1) \cap I(4)| = \ell_9 + \ell_{11} + \ell_{13} + \ell_{15}, \\
|I(2) \cap I(3)| = \ell_6 + \ell_7 + \ell_{14} + \ell_{15}, \\
|I(2) \cap I(4)| = \ell_{10} + \ell_{11} + \ell_{14} + \ell_{15}, \\
|I(3) \cap I(4)| = \ell_{12} + \ell_{14} + \ell_{15}.
\]

Lemma III.6. Let C be an $[n, 4]$ code. If C is SO, then any generator matrix G of C satisfies that
\[
\ell_{i_1} + \ell_{i_2} \equiv_2 \ell_{j_1} + \ell_{j_2} \tag{III.5}
\]
for $s = 1, 2, \ldots, 15$ and all $(i_1, i_2), (j_1, j_2) \in P_s^{(1)} \cup P_s^{(2)}$.

Here, $P_s^{(1)}$ and $P_s^{(2)}$ are sets of integer pairs given in Table III.7 and for any $i, j \in \mathbb{Z}^+$ we consider (i, j) and (j, i) the same.

Proof. Since C is SO, for all $0 < j \leq j' \leq 4$, $|I(j) \cap I(j')| \equiv_2 0$ by Theorem III.2. Thus, by Equation (III.4), we obtain the following:

- Since $\ell_2 + \ell_3 + \ell_6 + \ell_7 \equiv_2 |I(2)| + |I(2) \cap I(4)| \equiv_2 0$, we have $\ell_2 + \ell_3 \equiv_2 \ell_6 + \ell_7$.
- Since $\ell_4 + \ell_5 + \ell_6 + \ell_7 \equiv_2 |I(3)| + |I(3) \cap I(4)| \equiv_2 0$, we have $\ell_4 + \ell_5 \equiv_2 \ell_6 + \ell_7$.
- Since $\ell_6 + \ell_7 + \ell_{14} + \ell_{15} \equiv_2 |I(2) \cap I(3)| \equiv_2 0$, we have $\ell_6 + \ell_7 \equiv_2 \ell_{14} + \ell_{15}$.
- Since $\ell_{10} + \ell_{11} + \ell_{14} + \ell_{15} \equiv_2 |I(2) \cap I(4)| \equiv_2 0$, we have $\ell_{10} + \ell_{11} \equiv_2 \ell_{14} + \ell_{15}$.
- Since $\ell_{12} + \ell_{13} + \ell_{14} + \ell_{15} \equiv_2 |I(3) \cap I(4)| \equiv_2 0$, we have $\ell_{12} + \ell_{13} \equiv_2 \ell_{14} + \ell_{15}$.
Theorem III.8. for an \([n, k]\) code, simply written as C code. Now we are ready to introduce our characterization for self-orthogonality.

\[
\begin{align*}
\ell_2 + \ell_3 & \equiv 2, \\
\ell_4 + \ell_5 & \equiv 2, \\
\ell_6 + \ell_7 & \equiv 2, \\
\ell_8 + \ell_9 & \equiv 2,
\end{align*}
\]

The rest cases can be shown in the same manner. \(\square\)

Remark III.7.
1. For \(s \in \{1, 2, \ldots, 7\}\),
\[
\{i \in \mathbb{Z} \mid i \text{ appears in } P_s^{(1)}\} = \{1, 2, \ldots, 7\} \setminus \{s\}.
\]
2. For any \(i \neq j \in \{8, 9, \ldots, 15\}\), there exists \(s \in \{1, 2, \ldots, 7\}\) such that \((i, j) \in P_s^{(2)}\).

Now we are ready to introduce our characterization for self-orthogonality.

Theorem III.8. Let \(C\) be an \([n, 4]\) code generated by \(G\). The code \(C\) is SO if and only if there is \(s \in \{1, 2, \ldots, 15\}\) such that for each \(t = 1, 2\),
\[
\ell_i \equiv 2 \ell_j \text{ for } i, j \in T_s^{(t)}.
\]

Here, \(T_s^{(t)}\)'s are sets given in Table III.2

Proof. It will be proved in Appendix A. \(\square\)

IV. ALGORITHMS TO CONSTRUCT SHORTEST SO EMBEDDINGS

In this section, considering Lemmas III.4, III.5 and Theorem III.8, we introduce an algorithm which extends an \([n, k]\) code to an SO code by adding the smallest number of columns for \(k = 2, 3, 4\). We also introduce an algorithm which extends an \([n, 5]\) code to an SO code.

Definition IV.1. Let \(C\) be an \([n, k]\) code generated by \(G\).
1. An SO embedding of \(C\) is an SO code whose generator matrix \(\tilde{G}\) is obtained by adding a set \(S\) of column vectors to \(G\), that is,
\[
\tilde{G} := \begin{bmatrix} G \ | \ S \end{bmatrix}.
\]
2. An SO embedding of \(C\) is called a shortest SO embedding of \(C\) if its length is shortest among all SO embeddings of \(C\).

In Example III.3, \(\tilde{C}_{10,3}\) is a shortest SO embedding of \(C_{10,3}\).

A. Algorithms for dimension 2 and 3

We begin with the following algorithm for two-dimensional linear codes.

Algorithm IV.2.
- Input: A generator matrix \(G\) of an \([n, 2]\) code.
- Output: A generator matrix \(\tilde{G}\) for a shortest SO embedding.

(A1) Put \(\tilde{G} \leftarrow G\) and \(i \leftarrow 1\).
(A2) Let
\[
\tilde{G} \leftarrow \begin{bmatrix} \tilde{G} \ | \ h_i \end{bmatrix}
\]
where \(\begin{bmatrix} \tilde{G} \ | \ h_i \end{bmatrix}\) is the juxtaposition of \(\tilde{G}\) and \(h_i\).
(A3) If \(i < 3\), then put \(i \leftarrow i + 1\) and go to (A2). Otherwise, terminate the algorithm.

With the resulting matrix \(\tilde{G}\) of Algorithm IV.2, we let
\[
\tilde{C} := \text{the linear code generated by } \tilde{G}.
\]

Remark IV.3. We can obtain an SO code from an \([n, 2]\) code by adding at most 3 columns.

More precisely, we have the following.
Theorem IV.4. Let \mathcal{C} be an $[n, 2]$ code generated by G. Then $\tilde{\mathcal{C}}$ is a shortest SO embedding of \mathcal{C}.

Proof. By Lemma [III.4] it is obvious. \hfill \Box

Example IV.5. Let $\mathcal{C}_{7,2}$ be an optimal $[7, 2, 4]$ code generated by

$$G_{7,2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}. $$

We can construct an SO code from $\mathcal{C}_{7,2}$ using Algorithm [IV.2]. In Step (A1), we put $\tilde{G}_{7,2} \leftarrow G_{7,2}$. Note that $\ell_1(G_{7,2}) = 3$, $\ell_2(G_{7,2}) = 3$, and $\ell_3(G_{7,2}) = 1$. Therefore, when we apply Step (A2) and (A3), we put the juxtaposition of $\tilde{G}_{7,2}$, h_1, h_2, and h_3 to new $\tilde{G}_{7,2}$. Thus, we obtain

$$\tilde{G}_{7,2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}. $$

It is easy to check that the $[10, 2, 6]$ code $\tilde{\mathcal{C}}_{7,2}$ generated by $\tilde{G}_{7,2}$ satisfies the condition in Lemma [III.3] and thus it is a shortest SO embedding of $\mathcal{C}_{7,2}$. Moreover, $\tilde{\mathcal{C}}_{7,2}$ is optimal SO.

Remark IV.6. Using Theorem [IV.4], we can controvert Kobayashi and Takada’s assertion in [20, Section 2] saying that any linear code \mathcal{C} can be embedded to a self-orthogonal code by juxtaposing as many column vectors as the dimension of \mathcal{C}. Example [IV.5] is a counterexample to their assertion.

Now, let us consider the three-dimensional case. First, for a $3 \times n$ matrix G and $j = 0, 1$, we set

$$J_j(G) := \{ i \in \{1, 2, \ldots, 7\} \mid \ell_i \equiv 2 \ j \}. $$

The basic idea of the following algorithm is that we keep adding the smallest number of columns to G so that all $\ell_i’s$ have the same parity.

Algorithm IV.7.

- Input: A generator matrix G of an $[n, 3]$ code.
- Output: A generator matrix \tilde{G} for a shortest SO embedding.

(B1) Put $\tilde{G} \leftarrow G$.

(B2) If $J_0(\tilde{G}) = \emptyset$ (i.e., $\ell_i \equiv 2$ for all $i = 1, 2, \ldots, 7$) or $J_1(\tilde{G}) = \emptyset$ (i.e., $\ell_i \equiv 0$ for all $i = 1, 2, \ldots, 7$), then terminate the algorithm. Otherwise, go to (B3).

(B3) If $|J_0(\tilde{G})| < |J_1(\tilde{G})|$, then let i_0 be the smallest integer in $J_0(\tilde{G})$. Otherwise, let i_0 be the smallest integer in $J_1(\tilde{G})$.

(B4) Let

$$\tilde{G} \leftarrow [\tilde{G} \ | \ h_{i_0}].$$

Go to (B2).

Remark IV.8. Note that when we apply Algorithm [IV.7] to a generator matrix G of an $[n, 3]$ code, we add $|J_0(G)|$ columns to G if $|J_0(G)| < |J_1(G)|$ and $|J_1(G)|$ columns to G otherwise. Thus, we can obtain an SO code from an $[n, 3]$ code by adding at most 3 columns because $\min\{|J_0(G)|, |J_1(G)|\} \leq [7/2].$

With the resulting matrix \tilde{G} of Algorithm [IV.7], let

$\tilde{\mathcal{C}} :=$ the linear code generated by \tilde{G}.

Then we have the following theorem.

Theorem IV.9. Let \mathcal{C} be an $[n, 3]$ code generated by G. Then $\tilde{\mathcal{C}}$ is a shortest SO embedding of \mathcal{C}.

Proof. Note that if \mathcal{C} is SO, then $J_0(\tilde{G}) = \emptyset$ or $J_1(\tilde{G}) = \emptyset$ by Lemma [III.5]. Thus, we have $\tilde{\mathcal{C}} = \mathcal{C}$. Therefore, we may assume that \mathcal{C} is not SO. Then we have $|J_j(\tilde{G})| < |J_{j'}(\tilde{G})|$ for some $j \neq j' \in \{0, 1\}$.

From Step (B2) to Step (B4), one can see that Algorithm [IV.7] will stop only when $J_j(\tilde{G}) = \emptyset$. Therefore, \tilde{G} satisfies Equation (III.3) and thus $\tilde{\mathcal{C}}$ is SO by Lemma [III.5].

To prove $\tilde{\mathcal{C}}$ is a shortest SO embedding of \mathcal{C}, we let

$$\tilde{G} := \begin{bmatrix} G \ | \ M \end{bmatrix},$$

where M is a $3 \times l$ matrix for some $0 < l < |J_j(\tilde{G})|$ and \tilde{G} is a linear code generated by G. Since $0 < l < |J_j(\tilde{G})|$ and $|J_j(\tilde{G})| + |J_{j'}(\tilde{G})| = 7$, the inequality

$$0 < |J_j(\tilde{G})| - l \leq |J_{j'}(\tilde{G})| \leq |J_j(\tilde{G})| + l < 7$$

holds for $r = 0, 1$. Thus, by Lemma [III.5], $\tilde{\mathcal{C}}$ is not SO. \hfill \Box

Example IV.10. Let $\mathcal{C}_{10,3}$ be an optimal $[10, 3, 5]$ code generated by

$$G_{10,3} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}. $$

It is feasible to construct an SO code from $\mathcal{C}_{10,3}$ using Algorithm [IV.7] as follows.

In Step (B1), put $\tilde{G}_{10,3} \leftarrow G_{10,3}$. In Step (B2), considering the number of the columns of $G_{10,3}$, we let

$$J_0(\tilde{G}_{10,3}) = \{1, 2, 4, 6, 7\} \quad \text{and} \quad J_1(\tilde{G}_{10,3}) = \{3, 5\}. $$

Since both are nonempty sets, proceed to Step (B3). In Step (B3), let $i_0 = 3$ since $|J_1(\tilde{G}_{10,3})| < |J_0(\tilde{G}_{10,3})|$. In Step (B4), put

$$\tilde{G}_{10,3} \leftarrow [\tilde{G}_{10,3} \ | \ h_3] = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}. $$

Next, go to Step (B2) and repeat the steps. Now

$$J_0(\tilde{G}_{10,3}) = \{1, 2, 3, 4, 6, 7\} \quad \text{and} \quad J_1(\tilde{G}_{10,3}) = \{5\}. $$

Since neither $J_0(\tilde{G}_{10,3})$ nor $J_1(\tilde{G}_{10,3})$ is an empty set, go to Step (B3). In Step (B3), we let $i_0 = 5$ since $|J_1(\tilde{G}_{10,3})| < |J_0(\tilde{G}_{10,3})|$. Applying Step (B4), we put

$$\tilde{G}_{10,3} \leftarrow [\tilde{G}_{10,3} \ | \ h_5] = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}. $$

Go to Step (B2) again. Since $J_1(\tilde{G}_{10,3}) = \emptyset$, the algorithm is terminated and we obtain the desired $\tilde{G}_{10,3}$. The code $\tilde{\mathcal{C}}_{10,3}$ generated by $\tilde{G}_{10,3}$ is the $[12, 3, 6]$ SO code, which is a shortest SO embedding of $\mathcal{C}_{10,3}$. Moreover, $\tilde{\mathcal{C}}_{10,3}$ is optimal SO.
B. Algorithm for dimension 4

In this subsection, we introduce an algorithm that embeds an \([n,4]\) code to an SO code by Theorem \[\text{[III.8]}\] We let
\[J_1(G) := \{i \in \{1,2,\ldots,15\} \mid \ell_i \equiv 2 \mod 3\}\]
for a \(4 \times n\) matrix \(G\).

The basic idea of the following algorithm is that we keep adding the smallest number of columns to \(G\) so that seven and eight \(\ell_i\)’s each have the same parity.

Algorithm IV.11.

- Input: A generator matrix \(G\) of an \([n,4]\) code.
- Output: A generator matrix \(\tilde{G}\) for a shortest SO embedding.

(1) For \(s = 1,2,\ldots,15\), if \(|I_s \cap J_1(G)| < 4\) (resp. \(|I_s \cap J_1(\tilde{G})| \geq 4\)), then let
\[n_s^{(1)} := |I_s \cap J_1(G)| \quad \text{(resp. } n_s^{(1)} := |I_s \cap J_1(G)|\).

(2) For \(s = 1,2,\ldots,15\), if \(|I_s \cap J_1(G)| \leq 4\) (resp. \(|I_s \cap J_1(\tilde{G})| > 4\)), then let
\[n_s^{(2)} := |I_s \cap J_1(G)| \quad \text{(resp. } n_s^{(2)} := |I_s \cap J_1(\tilde{G})|\).

(3) Find the smallest \(s_0 \in \{1,2,\ldots,15\}\) such that
\[n_s^{(1)} + n_s^{(2)} = \min\{|n_s^{(1)} + n_s^{(2)}| : 1 \leq s \leq 15\}.

(4) Let \(\tilde{G} := G\).

(5) If \(|I_s \cap J_1(G)| < 4\) (resp. \(|I_s \cap J_1(\tilde{G})| \geq 4\)), then let
\[\tau^{(1)}(G) := |I_s \cap J_1(\tilde{G})| \quad \text{(resp. } \tau^{(1)} := |I_s \cap J_1(\tilde{G})|\).

(6) If \(\tau^{(1)}(G) \neq 0\), then take the smallest \(t_0 \in \tau^{(1)}(G)\) and put
\[G := \left[G \mid h_{t_0} \right].

Go to (C5). Otherwise, go to (C7).

(7) If \(|I_s \cap J_1(G)| \leq 4\) (resp. \(|I_s \cap J_1(\tilde{G})| > 4\)), then let
\[\tau^{(2)}(G) := |I_s \cap J_1(\tilde{G})| \quad \text{(resp. } \tau^{(2)} := |I_s \cap J_1(\tilde{G})|\).

(8) If \(\tau^{(2)}(G) \neq 0\), then take the smallest \(t_0 \in \tau^{(2)}(G)\) and put
\[G := \left[G \mid h_{t_0} \right].

Go to (C7). Otherwise, terminate the algorithm.

For readers’ convenience, we give Algorithm IV.11 written in MAGMA in Appendix C. With the resulting matrix \(\tilde{G}\) of Algorithm IV.11 we let
\[\tilde{C} := \text{the linear code generated by } \tilde{G}.

Then we have the following theorem.

Theorem IV.12. Let \(C\) be an \([n,4]\) code generated by \(G\). Then \(\tilde{C}\) is a shortest SO embedding of \(C\).

Proof. It will be proved in Appendix B.

Remark IV.13. In Algorithm IV.11 \(\tilde{G}\) is obtained by juxtaposing \(G\) and \(h_i\)’s for \(i \in \tau^{(1)}(G) \cup \tau^{(2)}(G)\), where
\[
\tau^{(1)}(G) := \begin{cases} I_{s_0}^{(1)} \cap J_1(G) & \text{if } |I_{s_0}^{(1)} \cap J_1(G)| < 4, \\
I_{s_0}^{(1)} \setminus J_1(G) & \text{if } |I_{s_0}^{(1)} \cap J_1(G)| \geq 4,
\end{cases}
\]
\[
\tau^{(2)}(G) := \begin{cases} I_{s_0}^{(2)} \cap J_1(G) & \text{if } |I_{s_0}^{(2)} \cap J_1(G)| \leq 4, \\
I_{s_0}^{(2)} \setminus J_1(G) & \text{if } |I_{s_0}^{(2)} \cap J_1(G)| > 4,
\end{cases}
\]

Proposition IV.14. A shortest SO embedding of an \([n,4]\) code can be obtained by adding at most 5 columns.

Proof. For each \(s \in \{1,2,\ldots,15\}\), denote the sets \(\tau^{(1)}_s\) and \(\tau^{(2)}_s\) given in Table III.2 by
\[
\{a_s,1 < a_s,2 < \cdots < a_s,7\} \quad \text{and} \quad \{b_s,1 < b_s,2 < \cdots < b_s,8\},
\]
respectively. Let
\[v_s = (v_{s,1}, v_{s,2}, \ldots, v_{s,15}) := (a_{s,1}, a_{s,2}, \ldots, a_{s,7}, b_{s,1}, b_{s,2}, \ldots, b_{s,8}) \in (\mathbb{Z}^+)_{15}.
\]

By the definition of \(v_s\), one can see that \(v_{s,1}, v_{s,2}, \ldots, v_{s,15} = \{1,2,\ldots,15\}\) for each \(s \in \{1,2,\ldots,15\}\). Therefore, for each \(s \in \{1,2,\ldots,15\}\), there is a permutation \(\sigma_s \) of \(\{1,2,\ldots,15\}\) such that
\[
\sigma_s(v_s) := (\sigma_s(v_{s,1}), \sigma_s(v_{s,2}), \ldots, \sigma_s(v_{s,15})) = (1,2,\ldots,15) = v_1.
\]

It is checked by MAGMA that for each \(s, i \in \{1,2,\ldots,15\}\), there exists \(j(s,i) \in \{1,2,\ldots,15\}\) such that
\[
\sigma_s(\tau^{(1)}_s) = \{\sigma_s(a_{s,1}), \ldots, \sigma_s(a_{s,7})\} = \tau^{(1)}_{j(s,i)},
\]
\[
\sigma_s(\tau^{(2)}_s) = \{\sigma_s(b_{s,1}), \ldots, \sigma_s(b_{s,8})\} = \tau^{(2)}_{j(s,i)}.
\]

Assume that Algorithm IV.11 is applied to a generator matrix \(G\) of an \([n,4]\) code. Note that \(s_0 \in \{1,2,\ldots,15\}\) is obtained in Step (C3). For each \(i \in \{1,2,\ldots,15\}\), Equation IV.2 gives that
\[
\tau^{(t)}_i \cap J_1(G) = \sigma_s^{-1}
\]
\[
\tau^{(t)}_{j(s_0,i)} \cap J_1(G),
\]
\[
\tau^{(t)}_i \setminus J_1(G) = \sigma_s^{-1}
\]
\[
\tau^{(t)}_{j(s_0,i)} \setminus J_1(G)\]
for \(t = 1,2\). Note that \(\sigma_s^{-1}\) is a bijection. Then, by Equation IV.3, for \(t = 1,2\),
\[
|\tau^{(t)}_i \cap J_1(G)| = |\tau^{(t)}_{j(s_0,i)} \cap \sigma_s(J_1(G))|,
\]
\[
|\tau^{(t)}_i \setminus J_1(G)| = |\tau^{(t)}_{j(s_0,i)} \setminus \sigma_s(J_1(G))|.
\]

Let us consider a new algorithm obtained by replacing
\[
\tau^{(t)}_i \cap J_1(G) \text{ by } \tau^{(t)}_{j(s_0,i)} \cap \sigma_s(J_1(G)),
\]
\[
\tau^{(t)}_i \setminus J_1(G) \text{ by } \tau^{(t)}_{j(s_0,i)} \setminus \sigma_s(J_1(G)),
\]
and
\[
h_{t_0} \text{ by } h_{\sigma_s^{-1}(t_0)}
\]
in Algorithm IV.11. To emphasize the difference between this new algorithm and Algorithm IV.11 we denote the integer \(n_s^{(1)}\) (resp. \(n_s^{(2)}\)) obtained in Step (C1) (resp. (C2)) of the new algorithm by \(\tilde{n}_s^{(1)}\) (resp. \(\tilde{n}_s^{(2)}\)), \(s_0\) in Step (C3) by \(\tilde{s}_0\), and \(G\) by \(\tilde{G}\). Then, by Equation IV.4, we have
\[
\tilde{n}_s^{(1)} = \tilde{n}_s^{(1)} \quad \text{and} \quad \tilde{n}_s^{(2)} = \tilde{n}_s^{(2)}\].
Therefore, the facts that \(j(s_0, s_0) = 1 \) and
\[
n^{(1)}_{s_0} + n^{(2)}_{s_0} = \min\{n^{(1)}_s + n^{(2)}_s \mid 1 \leq s \leq 15 \}
\]
 imply \(\hat{s}_0 = 1 \).

Note that Remark [V.13] can be modified as follows: \(\hat{G} \) is obtained by juxtaposing \(G \) and \(h_{\sigma^{-1}_s(i)} \)'s for \(i \in \hat{I}^{(1)}(G) \cup \hat{I}^{(2)}(G) \), where
\[
\hat{I}^{(1)}(G) := \begin{cases} \{ \hat{I}^{(1)} \cap \sigma_s(J_1(G)) \} & \text{if } |\hat{I}^{(1)} \cap \sigma_s(J_1(G))| < 4, \\ \emptyset & \text{else} \end{cases}
\]
\[
\hat{I}^{(2)}(G) := \begin{cases} \{ \hat{I}^{(2)} \cap \sigma_s(J_1(G)) \} & \text{if } |\hat{I}^{(2)} \cap \sigma_s(J_1(G))| \leq 4, \\ \emptyset & \text{else} \end{cases}
\]

One can see that
\[
\{h_i \mid i \in I^{(t)}(G)\} = \{h_{\sigma^{-1}_s(i)} \mid i \in \hat{I}^{(t)}(G)\}.
\]

Thus, \(s_0 \) is set to be 15 in Step (C3). Recall that
\[
\hat{I}^{(1)}_{15} = \{3, 5, 6, 9, 10, 12, 15\}
\]
and
\[
\hat{I}^{(2)}_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}.
\]

In Step (C4), we put \(\tilde{G}_{7,4} \leftarrow G_{7,4} \) and in Step (C5), we let
\[
\tilde{I}^{(1)} \leftarrow \hat{I}^{(1)}_{15} \cap J_1(\tilde{G}_{7,4}) = \emptyset.
\]

Thus, we pass Step (C6) and go to Step (C7). In Step (C7), let
\[
\tilde{I}^{(2)} \leftarrow \hat{I}^{(2)}_{15} \setminus J_1(\tilde{G}_{7,4}) = \{14\}.
\]

Applying Step (C8), we put
\[
\tilde{G}_{7,4} \leftarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}.
\]

To Step (C7) and repeat the steps. Since \(J_1(\tilde{G}_{7,4}) = \emptyset \),
\[
\tilde{I}^{(2)} \leftarrow \hat{I}^{(2)}_{15} \cap J_1(\tilde{G}_{7,4}) = \emptyset
\]
and thus, the algorithm is terminated.

The code \(\tilde{C}_{7,4} \) generated by \(G_{7,4} \) is a shortest SO embedding of \(\tilde{C}_{7,4} \), which is optimal as well. Notice that \(\tilde{C}_{7,4} \) is the [8, 4] extended Hamming code.

(2) Let \(C_{5,4} \) be an optimal \([5, 4, 2]\) code generated by
\[
G_{5,4} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}.
\]

Note that \(\ell_1 = \ell_2 = \ell_4 = \ell_8 = \ell_{15} \). Therefore,
\[
J_1(G_{5,4}) = \{i \in \{1, 2, \ldots, 15\} \mid \ell_i \equiv 2 \}
\]
\[
= \{1, 2, 4, 8, 15\}.
\]

Applying Step (C1) and Step (C2), we have
\[
s | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15
\]
\[
n^{(1)}_s | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3
\]
\[
n^{(2)}_s | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4
\]
Thus, s_0 is set to be 1 in Step (C3). Recall that
\[I_1^{(1)} = \{1, 2, 3, 4, 5, 6, 7\} \]
and
\[I_1^{(2)} = \{8, 9, 10, 11, 12, 13, 14, 15\} \].
In Step (C4), we put $\tilde{G}_{5,4} \leftarrow G_{5,4}$ and in Step (C5), we let
\[I_1^{(1)} \leftarrow I_1^{(1)} \cap J_1(\tilde{G}_{5,4}) = \{1, 2, 4\} \].
Applying Step (C6), we put
\[
\tilde{G}_{5,4} \leftarrow \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}.
\]
Go to Step (C5) and repeat the steps. Then, we have
\[
\tilde{G}_{5,4} \leftarrow \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
\]
and $J_1(\tilde{G}_{5,4}) = \{8, 15\}$. Therefore, we have
\[I_1^{(1)} = I_1^{(1)} \cap J_1(\tilde{G}_{5,4}) = \emptyset \]
and thus, go to Step (C7). In Step (C7), let
\[I_1^{(2)} \leftarrow I_1^{(2)} \cap J_1(\tilde{G}_{5,4}) = \{8, 15\} \].
Applying Step (C8), we put
\[
\tilde{G}_{5,4} \leftarrow \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix},
\]
Go to Step (C7) and repeat the steps. Then we have
\[
\tilde{G}_{5,4} \leftarrow \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
\]
and $J_1(\tilde{G}_{5,4}) = \emptyset$. Therefore,
\[I_1^{(2)} \leftarrow I_1^{(2)} \cap J_1(\tilde{G}_{5,4}) = \emptyset \]
and thus, we terminate the algorithm in Step (C8).
The code $\tilde{C}_{5,4}$ generated by $\tilde{G}_{5,4}$ is an $[10, 4, 4]$ SO code, which is a shortest SO embedding of $C_{5,4}$. Moreover, $\tilde{C}_{5,4}$ is optimal SO.

Remark IV.16.

1. For simplicity of the algorithm, we chose s_0 to be the smallest among $1 \leq s \leq 15$ satisfying the condition
\[n_{s_0}^{(1)} + n_{s_0}^{(2)} = \min\{n_{s_0}^{(1)} + n_{s_0}^{(2)} | 1 \leq s \leq 15\} \]
in Step (C3) of Algorithm [IV.1]. Notice that even if we choose any element $1 \leq s_0' \leq 15$ satisfying
\[n_{s_0'}^{(1)} + n_{s_0'}^{(2)} = \min\{n_{s_0}^{(1)} + n_{s_0}^{(2)} | 1 \leq s \leq 15\}, \]
Algorithm [IV.1] still gives a shortest SO embedding.

2. For simplicity of the algorithm, when $|I_{s_0}^{(2)} \cap J_1(\tilde{G})| = 4$, we let
\[I_1^{(2)} \leftarrow I_1^{(2)} \cap J_1(\tilde{G}) \]
in Step (C7) of Algorithm [IV.1]. However, even if we let
\[I_1^{(2)} \leftarrow I_1^{(2)} \setminus J_1(\tilde{G}), \]
Algorithm [IV.1] still gives a shortest SO embedding.

C. Algorithm for dimension 5

In this subsection, we introduce an algorithm that embeds an $[n, 5]$ code to an SO code using Algorithm [IV.1]. Recall that for a matrix G, we denote by $r_i(G)$ the ith row of G.

The basic idea of the following algorithm is as follows.

- We add at most two columns to G to obtain a matrix G_1 satisfying $r_{j_0}(G_1) \cdot r_i(G_1) \equiv 2 \pmod{5}$ for $j_0 \in \{1, 2, \ldots, 5\}$ and all $1 \leq i \leq 5$.
- For the submatrix G_2 which consists of the rows of G_1 except $r_{j_0}(G_1)$, apply Algorithm [IV.1] (let \tilde{G}_2 be the resulting matrix).
- Juxtapose $r_{j_0}(G_1)$ and a zero vector horizontally so that the resulting vector $\tilde{r}_{j_0}(G_1)$ has the same number of coordinates to the number of columns of \tilde{G}_2.
- Attach $\tilde{r}_{j_0}(G_1)$ and \tilde{G}_2 vertically to obtain the matrix \tilde{G}.

Algorithm IV.17.

- **Input:** A generator matrix G of an $[n, 5]$ code.
- **Output:** A generator matrix \tilde{G} for an SO embedding.

(D1) If there is $j_0 \in \{1, 2, 3, 4, 5\}$ such that $r_{j_0}(G) \cdot r_i(G) \equiv 2 \pmod{5}$ for all $1 \leq i \leq 5$, then put
$G_1 \leftarrow G$, let G_2 be the matrix obtained by deleting the j_0th row of G_1, and go to Step (D3). Otherwise, go to Step (D2).

(D2) Do Step (D2-1) or Step (D2-2).

(D2-1) Suppose $r_{j_0}(G) \cdot r_{j_0}(G) \equiv 2 \pmod{5}$ for some $1 \leq j_0 \leq 5$. Then put
\[
G_1 \leftarrow \begin{bmatrix}
I & \vdots \\
\vdots & & \vdots \\
1 & \vdots & 1 \\
0 & \vdots & 0 \\
\end{bmatrix}
\]
where $y_i = r_i(G) \cdot r_{j_0}(G)$. Let G_2 be the matrix obtained by deleting the j_0th row of G_1. Go to Step (D3).

(D2-2) Otherwise, that is, if $r_{j_0}(G) \cdot r_{j_0}(G) \equiv 2 \pmod{5}$ for all $1 \leq j \leq 5$, then let $j_0 = 1$ so that $r_{j_0}(G) = r_1(G)$ and put
\[
G_1 \leftarrow \begin{bmatrix}
1 & \vdots \\
\vdots & & \vdots \\
1 & \vdots & 1 \\
0 & \vdots & 0 \\
\end{bmatrix}
\]
where $y_i = r_i(G) \cdot r_1(G)$. Let G_2 be the matrix obtained by deleting the first row of G_1. Go to Step (D3).
(D3) Let \tilde{G}_2 be the resulting matrix when we input G_2 into Algorithm [IV.11] and let l be the difference between the number of columns of \tilde{G}_2 and G_2. Go to Step (D4).

(D4) Let $\tilde{r}_{j_0}(G_1)$ be the vector obtained by juxtaposing $r_{j_0}(G_1)$ and the zero vector $\mathbf{0}$ of length l. Go to Step (D5).

(D5) Let \tilde{G} be the matrix obtained by putting together \tilde{G}_2 and $\tilde{r}_{j_0}(G_1)$. Terminate the algorithm.

Remark IV.18. We can obtain an SO code from an $[n, 5]$ code by adding at most 2 columns using Algorithm [IV.17] and adding at most 5 columns using Algorithm [IV.11]. Therefore, we need at most 7 columns to get an SO code from an $[n, 5]$ code.

With the resulting matrix \tilde{G} of Algorithm [IV.17] we let $\tilde{C} :=$ the linear code generated by \tilde{G}.

Then we have the following theorem.

Theorem IV.19. Let C be an $[n, 5]$ code generated by G. Then \tilde{C} is an SO embedding of C.

Proof. By following the procedure of Algorithm [IV.17] we easily see that the code \tilde{C} is an SO embedding. \square

Example IV.20. Let $C_{9,5}$ be an optimal $[9, 5, 3]$ code generated by

$$G_{9,5} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Since there are no $i_0 \in \{1, 2, 3, 4, 5\}$ such that $r_{i_0}(G) \cdot r_i(G) \equiv_2 0$ for all $1 \leq i \leq 5$, we pass Step (D1). In Step (D2), since $r_1(G) \cdot r_1(G) \equiv_2 1$, we apply Step (D2-1). In Step (D2-1), we put

$$G_1 \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

and by deleting $r_1(G)$, let

$$G_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

In Step (D3), we let

$$\tilde{G}_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

and $l = 1$. In Step (D4), we let

$$\tilde{r}_1(G_1) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

In Step (D5), let

$$\tilde{G}_{9,5} = \begin{bmatrix} \tilde{r}_1(G_1) \\ \tilde{G}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

The code $\tilde{C}_{9,5}$ generated by $\tilde{G}_{9,5}$ is an $[11, 5, 4]$ SO code, which is an SO embedding of $C_{9,5}$. Moreover, $\tilde{G}_{9,5}$ is optimal SO.

Remark IV.21. One can embed an $[n, 6]$ code to an SO code in the same manner as Algorithm [IV.17]. In fact, Algorithm [IV.17] can be generalized recursively to construct an SO embedding for higher-dimensional linear codes. We leave this generalized SO embedding algorithm written in MAGMA in Appendix D.

V. THE MINIMUM DISTANCES OF OPTIMAL LINEAR CODES AND OPTIMAL SO CODES

In this section, for $k = 1, 2, 3, 4, 5$, we give an upper bound on $d(n, k)$ by manipulating the Griesmer bound. Furthermore, we calculate explicit formulas of $d(n, k)$ when $k = 1, 2, 3, 4, 5$, $d_{SO}(n, k)$ when $k = 1, 2, 3, 4$, and $d_{SO}(n, 5)$ when $n \neq 31$, $6, 13, 14, 21, 22, 28, 29$.

First, let us consider the one-dimensional case. It is clear that for each $n \in \mathbb{Z}^+$, the only optimal $[n, 1]$ code is the repetition code. On the other hand, it is also trivial that an optimal $[n, 1]$ SO code for an even integer n is the $[n, 1, n]$ repetition code and that for an odd n is the $[n, 1, n - 1]$ code which is obtained from $[n - 1, 1, n - 1]$ repetition code by attaching a zero coordinate. Thus, we have

$$d(n, 1) = n \quad \text{and} \quad d_{SO}(n, 1) = \begin{cases} n & \text{if } n \equiv 2 \ 0, \\ n - 1 & \text{if } n \equiv 2 \ 1. \end{cases}$$

Next, let us consider the two-dimensional case. The optimal $[n, 2]$ codes are introduced in [25]. On the other hand, in [19], Section 3], the authors explained that optimal $[n, 2]$ codes are SO only for $n = 6m, 6m + 1, 6m + 4$ and constructed all optimal $[n, 2]$ SO codes. Summing it up, we immediately have the following theorem.

Theorem V.1 ([19], [25]). We obtain the following explicit formulas:

1. For $n \geq 2$, we have

$$d(n, 2) = \left\lceil \frac{2n}{3} \right\rceil.$$

2. For $n \geq 4$,

$$d_{SO}(n, 2) = \begin{cases} \left\lceil \frac{2n}{3} \right\rceil & \text{if } n \equiv 0, 1, 4, \\ \left\lceil \frac{2n}{3} \right\rceil - 1 & \text{if } n \equiv 2, 5, \\ \left\lceil \frac{2n}{3} \right\rceil - 2 & \text{if } n \equiv 3. \end{cases}$$

Theorem V.1 implies the following corollary.

Corollary V.2. For $n \geq 4$, $d(n, 2) = d_{SO}(n, 2)$ if and only if $n \equiv 0, 1, 4$.
Now, let us consider the three-dimensional case. The Griesmer bound says that all \([n, 3, d]\) codes satisfy that
\[
n \geq d + \left\lceil \frac{d}{2} \right\rceil + \left\lceil \frac{d}{4} \right\rceil = \begin{cases} 7d/4 & \text{if } d \equiv 4 \ 0, \\
(7d + 5)/4 & \text{if } d \equiv 4 \ 1, \\
(7d + 2)/4 & \text{if } d \equiv 4 \ 2, \\
(7d + 3)/4 & \text{if } d \equiv 4 \ 3. \end{cases} \tag{V.1}
\]
Manipulating this bound, we obtain the following upper bound on \(d(n, 3)\).

Lemma V.3. For \(n \geq 3\), we have
\[
d(n, 3) \leq \left\lceil \frac{4n}{7} \right\rceil - \delta(n \equiv 7 2)
\]
\[
= \begin{cases} \left\lceil \frac{4n}{7} \right\rceil & \text{if } n \not\equiv 7 2, \\
\left\lceil \frac{4n}{7} \right\rceil - 1 & \text{if } n \equiv 7 2. \end{cases}
\]

Proof. From Equation (V.1), we have
\[
d(n, 3) \leq \max \left\{ \begin{aligned}
d_1 \in \mathbb{Z}_{\geq 0} & \quad | d_1 \equiv 4 0 \text{ and } \frac{7d_1}{4} \leq n \\
d_2 \in \mathbb{Z}_{\geq 0} & \quad | d_2 \equiv 4 1 \text{ and } \frac{7d_2 + 5}{4} \leq n \\
d_3 \in \mathbb{Z}_{\geq 0} & \quad | d_3 \equiv 4 2 \text{ and } \frac{7d_3 + 2}{4} \leq n \\
d_4 \in \mathbb{Z}_{\geq 0} & \quad | d_4 \equiv 4 3 \text{ and } \frac{7d_4 + 3}{4} \leq n
\end{aligned} \right. \]
\[
= \max \left\{ \begin{aligned}
\left\lceil \frac{4t_1}{7} \right\rceil & \quad | t_1 \equiv 7 0 \text{ and } 0 \leq t_1 \leq n \\
\left\lceil \frac{4t_2 - 5}{7} \right\rceil & \quad | t_2 \equiv 7 3 \text{ and } 0 \leq t_2 \leq n \\
\left\lceil \frac{4t_3 - 2}{7} \right\rceil & \quad | t_3 \equiv 7 4 \text{ and } 0 \leq t_3 \leq n \\
\left\lceil \frac{4t_4 - 3}{7} \right\rceil & \quad | t_4 \equiv 7 6 \text{ and } 0 \leq t_4 \leq n
\end{aligned} \right. \}
\]
by substituting
\[
t_1 = \frac{7d_1}{4}, \quad t_2 = \frac{7d_2 + 5}{4}, \quad t_3 = \frac{7d_3 + 2}{4}, \quad \text{and } t_4 = \frac{7d_4 + 3}{4}.
\]
This gives us that
\[
d(n, 3) \leq \begin{cases} 4m & \text{if } 7m \leq n \leq 7m + 2, \\
4m + 1 & \text{if } n = 7m + 3, \\
4m + 2 & \text{if } n = 7m + 4, 7m + 5, \\
4m + 3 & \text{if } n = 7m + 6,
\end{cases}
\]
\[
= \left\lceil \frac{4n}{7} \right\rceil - \delta(n \equiv 7 2).
\]

In \([19]\), the authors classified all optimal \([n, 3]\) SO codes. It gives the minimum distances of optimal \([n, 3]\) SO codes. Based on their results, we obtain the following theorem.

Theorem V.4. We obtain the following explicit formulas:

1. For \(n \geq 3\),
\[
d(n, 3) = \left\lceil \frac{4n}{7} \right\rceil - \delta(n \equiv 7 2)
\]
\[
= \begin{cases} \left\lceil \frac{4n}{7} \right\rceil & \text{if } n \not\equiv 7 2, \\
\left\lceil \frac{4n}{7} \right\rceil - 1 & \text{if } n \equiv 7 2. \end{cases}
\]

2. For \(n \geq 6\),
\[
d_{so}(n, 3) = \begin{cases} \left\lceil \frac{4n}{7} \right\rceil & \text{if } n \equiv 7 0, 1, 5, \\
\left\lceil \frac{4n}{7} \right\rceil - 1 & \text{if } n \equiv 7 2, 3, 6, \\
\left\lceil \frac{4n}{7} \right\rceil - 2 & \text{if } n \equiv 7 4.
\end{cases}
\]

Proof. (1), by Lemma V.3 it suffices to find an \([n, 3]\) code whose minimum distance is \(\left\lceil \frac{4n}{7} \right\rceil - \delta(n \equiv 7 2)\).

For \(3 \leq t \leq 9\), such codes are known in [22]. For \(3 \leq t \leq 9\), let \(C_t\) be an \([t, 3, [4t/7] - \delta(t \equiv 7 2)]\) code and \(G_t\) be a generator matrix of \(C_t\). For any \(n \geq 10\), we define
\[
G_n := \left[sH_3 \mid \{ G_t \} \right],
\]
where \(n = 7s + t\) for \(3 \leq t \leq 9\). Since the minimum distance of the simplex code \(S_3\) is 4, \(G_n\) generates the \([n, 3]\) code whose minimum distance is
\[
4s + (\left\lceil \frac{4t}{7} \right\rceil - \delta(n \equiv 7 2)) = \left\lceil \frac{4n}{7} \right\rceil - \delta(n \equiv 7 2).
\]

For (2), reorganizing the results in [19, Section 3], we have that for \(n \geq 6\),
\[
d_{so}(n, 3) = \begin{cases} \left\lceil \frac{4n}{7} \right\rceil & \text{if } n \equiv 7 0, 1, 5 \text{ and } n \not\equiv 5, \\
\left\lceil \frac{4n}{7} \right\rceil - 1 & \text{if } n \equiv 7 2, 3, 6, \\
\left\lceil \frac{4n}{7} \right\rceil - 2 & \text{if } n \equiv 7 4 \text{ or } n = 5.
\end{cases}
\]

\(\square\)

From Theorem V.4 we immediately obtain the following corollary.

Corollary V.5. For \(n \geq 6\), \(d(n, 3) = d_{so}(n, 3)\) if and only if \(n \equiv 7 0, 1, 2, 5\).

Let us consider the four-dimensional case. The Griesmer bound says that all \([n, 4, d]\) codes satisfy that
\[
n \geq d + \left\lceil \frac{d}{2} \right\rceil + \left\lceil \frac{d}{4} \right\rceil + \left\lceil \frac{d}{8} \right\rceil = \begin{cases} 15d/8 & \text{if } d \equiv 0, \\
(15d + 17)/8 & \text{if } d \equiv 8 1, \\
(15d + 10)/8 & \text{if } d \equiv 8 2, \\
(15d + 11)/8 & \text{if } d \equiv 8 3, \\
(15d + 4)/8 & \text{if } d \equiv 8 4, \\
(15d + 13)/8 & \text{if } d \equiv 8 5, \\
(15d + 6)/8 & \text{if } d \equiv 8 6, \\
(15d + 7)/8 & \text{if } d \equiv 8 7.
\end{cases}
\]

As we did in the previous cases, we obtain the following upper bound on \(d(n, 4)\).

Lemma V.6. For \(n \geq 4\), we have
\[
d(n, 4) \leq \left\lceil \frac{8n}{15} \right\rceil - \delta(n \equiv_{15} 2, 3, 4, 6, 10)
\]
\[
= \begin{cases} \left\lceil \frac{8n}{15} \right\rceil & \text{if } n \not\equiv_{15} 2, 3, 4, 6, 10, \\
\left\lceil \frac{8n}{15} \right\rceil - 1 & \text{if } n \equiv_{15} 2, 3, 4, 6, 10.
\end{cases}
\]

Proof. It can be proved in the same manner as the proof of Lemma V.3. \(\square\)
Theorem V.7. For $n \geq 4$, we have
$$d(n, 4) = \left[8n/15\right] - \delta(n \equiv_{15} 2, 3, 4, 6, 10)$$
$$= \begin{cases} \left[8n/15\right] & \text{if } n \equiv_{15} 2, 3, 4, 6, 10, \\ \left[8n/15\right] - 1 & \text{if } n \equiv_{15} 2, 3, 4, 6, 10. \end{cases}$$

Proof. By Lemma V.6, it suffices to find an $[n, 4]$ code whose minimum distance is $\left[8n/15\right] - \delta(n \equiv_{15} 2, 3, 4, 6, 10)$.

For $4 \leq t \leq 18$, such codes are known in [22]. For $4 \leq t \leq 18$, let G_t be a generator matrix of an optimal $[t, 4]$ code. For any $n \geq 19$, we define
$$G_n := \left[sH_4 \mid G_t \right],$$
where $n = 15s + t$ for $4 \leq t \leq 18$. Since the minimum distance of the simplex code S_4 is 8, G_n generates the $[n, 4]$ code whose minimum distance is
$$8s + (\left[8t/15\right] - \delta(n \equiv_{15} 2, 3, 4, 6, 10))$$
$$= \left[8n/15\right] - \delta(n \equiv_{15} 2, 3, 4, 6, 10).$$

Lemma V.8. For $n \geq 4$ such that $n \equiv_{15} 4$, there are no $[n, 4, \left[8n/15\right] - 1]$ SO codes.

Proof. Let $n = 15t + 4$ for some $t \in \mathbb{Z}_{\geq 0}$. Then we have
$$\left[8n/15\right] - 1 = 8t + 1 \equiv_2 1.$$ Since the minimum distances of SO codes should be even, our assertion follows.

In [10], the authors classified all optimal $[n, 4]$ SO codes for $n \equiv_{15} 1, 2, 6, 7, 8, 9, 13, 14$ and proved that $d_{\infty}(n, 4) < \left[8n/15\right]$ for each $n \equiv_{15} 5, 12$. Combining the results in [10], Lemma V.6 and Lemma V.8 we derive the following theorem.

Theorem V.9. For $4 \leq n \leq 7$, there are no $[n, 4]$ SO codes and for $n \geq 8$,
$$d_{\infty}(n, 4) = \begin{cases} \left[8n/15\right] & \text{if } n \equiv_{15} 0, 1, 8, 9, 13 \text{ and } n \neq 13, \\ \left[8n/15\right] - 1 & \text{if } n \equiv_{15} 2, 3, 6, 7, 10, 11, 14, \\ \left[8n/15\right] - 2 & \text{if } n \equiv_{15} 4, 5, 12 \text{ or } n = 13. \end{cases}$$

Proof. By Lemma V.6 and the results in [10], it suffices to find an $[n, 4]$ SO code whose minimum distance is equal to the right-hand side of Equation (V.2) for $n \equiv_{15} 0, 3, 4, 5, 10, 11, 12$.

For $4 \leq t \leq 18$, optimal SO codes are given in [19]. Their minimum distances are equal to the right-hand side of Equation (V.2). For $4 \leq t \leq 18$, let G^SO_t be a generator matrix of an optimal $[t, 4]$ SO code. For any $n = 15s + t$ for $s \geq 1$ and $t \in \{4, 5, 10, 11, 12, 15, 18\}$, we define
$$G^SO_n := \left[sH_4 \mid G^SO_t \right].$$

Since the minimum distance of the simplex code S_4 is 8, G^SO_n generates the $[n, 4]$ SO code whose minimum distance is
$$8s + (\left[8t/15\right] - \delta(n \equiv_{15} 3, 10, 11) - 2\delta(n \equiv_{15} 4, 5, 12))$$
$$= \left[8n/15\right] - \delta(n \equiv_{15} 3, 10, 11) - 2\delta(n \equiv_{15} 4, 5, 12).$$

From Theorem V.7 and V.9 we immediately obtain the following corollary.

Corollary V.10. For $n \geq 8$, $d(n, 4) = d_{\infty}(n, 4)$ if and only if $n \equiv_{15} 0, 1, 2, 3, 6, 8, 9, 10, 13$ and $n \neq 13$.

Remark V.11.

(1) We have checked that any optimal linear code denoted by $BKLC(GF(2), n, k)$ for $k = 2, 3$ and $4 \leq n \leq 256$ in MAGMA database is embedded to an optimal self-orthogonal code using Algorithms IV.2 and IV.7.

(2) We have also checked that any optimal linear code denoted by $BKLC(GF(2), n, 4)$ for $4 \leq n \leq 256$ in MAGMA database is embedded to an optimal self-orthogonal code using the modified version of Algorithm IV.11 in the sense of Remark IV.16.

Example V.12. Let $C_{4, 4}$ be an optimal $[4, 4, 1]$ code generated by
$$G_{4, 4} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$ When we apply Algorithm IV.11 to $G_{4, 4}$, we choose $s_0 = 1$ in Step (C3) and obtain
$$\tilde{G}_{4, 4} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$ Thus, the linear code $\tilde{G}_{4, 4}$ generated by $G_{4, 4}$ is an $[8, 4, 2]$ code. By Theorem V.9 one can see that $d_{\infty}(8, 4) = 4$ and thus $\tilde{G}_{4, 4}$ is not an optimal SO code.

On the other hand, if we modify Algorithm IV.11 by taking $s_0 = 15$ in Step (C3) and letting $I_2 = \mathcal{I}_4^{(2)} \backslash J_1(\tilde{G})$ in Step (C7), then we obtain the new matrix
$$\hat{G}_{4, 4} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$ The code $\hat{G}_{4, 4}$ generated by $\hat{G}_{4, 4}$ is the well-known optimal SO code that is the extended Hamming $[8, 4, 4]$ code.

Observing Remark V.11 and Example V.12, we conjecture the following.

Conjecture V.13. Any optimal $[n, 4]$ code can be embedded to an optimal SO.

Finally, let us consider the five-dimensional case. The
Griesmer bound says that all \([n, 5, d]\) codes satisfy that

\[
n \geq d + \left[\frac{d}{2} \right] + d \left[\frac{d}{3} \right] + \left[\frac{d}{16} \right]
\]

where \(\left[\frac{d}{2} \right] \) is the greatest integer less than or equal to \(\frac{d}{2}\).

For \(n \geq 5\), we have

\[
d(n, 5) \leq [16n/31] - \delta(n \in E_1) - 2\delta(n \in E_2)
\]

where

\[
E_1 := \{ i \mid i \equiv_{31} 2, 3, 5, 6, 7, 8, 10, 11, 12, \}
\]

\[
E_2 := \{ i \mid i \equiv_{31} 4 \}.
\]

Proof. It can be proved in the same manner as the proof of Lemma V.3. \(\square\)

From the above lemma, we derive an explicit formula for \(d(n, 5)\) as the following theorem.

Theorem V.15. For \(n \geq 5\), we have

\[
d(n, 5) = [16n/31] - \delta(n \in E_1) - 2\delta(n \in E_2)
\]

where \(E_1 := E_1 \cup \{9, 13\} \setminus \{8, 12\}\) and \(E_2 := E_2 \cup \{8, 12\}\).

Proof. It can be proved in the same manner as the proof of Theorem V.7. \(\square\)

To obtain an explicit formula for \(d_{so}(n, 5)\), we prove the following lemma.

Lemma V.16. For \(n \geq 5\), if

1. \(n = 13\),
2. \(n \equiv_{31} 12\) and \(n \neq 12\), or
3. \(n \equiv_{31} 5, 8, 15, 20, 23, 27, 30\),

then there are no \([n, 5, d(n, 5)]\) SO codes.

Proof. By Theorem V.15, \(d(n, 5)\) is odd if \(n\) satisfies either (1), (2), or (3) for \(n \geq 5\). Since the minimum distances of SO codes should be even, our assertion follows. \(\square\)

Now, we obtain the following theorem.

Theorem V.17. For \(n \geq 10\), if \(n = 13\) or \(n \equiv_{31} 6, 13, 14, 21, 22, 28, 29\), then

\[
d_{so}(n, 5) = [16n/31] - \delta(n \in E_1^{SO}) - 2\delta(n \in E_2^{SO})
\]

where

\[
E_1^{SO} := \{ i \mid i \equiv_{31} 2, 3, 5, 7, 10, 11, 15, 18, 19, 23, 26, 27, 30 \},
\]

\[
E_2^{SO} := \{ i \mid i \equiv_{31} 4, 5, 8, 12, 20 \} \cup \{13\}.
\]

Proof. By Theorem V.15 and Lemma V.16, it suffices to find an \([n, 5]SO\) code whose minimum distance is equal to the right-hand side of Equation (V.4).

There is a \([10, 5, 4]\) SO code generated by

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

For \(11 \leq t \leq 40\), optimal SO codes are given in [19]. Their minimum distances are equal to the right-hand side of Equation (V.4). For \(10 \leq t \leq 40\), let \(G_{so}^{i}\) be a generator matrix of an optimal \([t, 5]\) SO code.

For any \(n = 31s + t\) when \(s \geq 1\) and \(t \in \{i \in \{0, 1, \ldots, 31\} \mid i \neq 6, 13, 14, 21, 22, 28, 29\}\), we define

\[
G_{so}^{i} := \left[sH_{5} \right] - G_{so}^{i}.
\]

Since the minimum distance of the simplex code \(S_{5}\) is 15, \(G_{so}^{i}\) generates the \([n, 5]\) SO code whose minimum distance is

\[
15s + ([16t/31] - \delta(n \in E_1^{SO}) - 2\delta(n \in E_2^{SO}))
\]

\[
= [16n/31] - \delta(n \in E_1^{SO}) - 2\delta(n \in E_2^{SO}).
\]

Remark V.18.

1. Combining Theorems V.15 and V.17, one can see that there are \([n - 1, 5, d(n, 5) - 2]\) SO codes if \(n \equiv_{31} 6, 13, 14, 21, 22, 28, 29\) for \(n \geq 10\). Therefore, one can obtain an \([n, 5, d(n, 5) - 2]\) SO code by attaching a zero coordinate to an \([n - 1, 5, d(n, 5) - 2]\) SO code.

2. For \(10 \leq n \leq 100\), \(n \equiv_{31} 6, 13, 14, 21, 22, 28, 29\), and \(n \neq 13\), we choose \(2^{16}\) random \([n, 5]\) SO codes and calculate their minimum distances using MAGMA [23]. In our calculation, there was no SO code whose minimum distance is equal to \(d(n, 5)\).
Based on Table 1 in [19] and Remark V.18, we leave the following conjecture.

Conjecture V.19. For \(n \geq 10 \), if \(n \neq 13 \) and \(n \equiv_{31} 6, 13, 14, 21, 22, 28, 29 \), then
\[
d_{\sigma}(n, 5) = d(n, 5) - 2,
\]
that is, there are no \([n, 5, d(n, 5)]\) SO codes.

VI. Conclusion

We have introduced a characterization on self-orthogonality for given binary linear codes in terms of the number of column vectors in its generator matrix. In particular, we have described the characterization explicitly for each \(k = 2, 3, 4 \).

As a consequence of our characterizations, for \(k = 2, 3, 4 \), we have proposed algorithms that embed an \([n, k]\) code to a self-orthogonal code by minimum lengthening. We have also suggested an algorithm that embeds an \([n, k]\) code to a self-orthogonal code for \(k > 4 \).

We have also given new explicit formulas for the minimum distances of optimal linear codes for dimensions 4 and 5 and those of optimal self-orthogonal codes for any length \(n \) with dimension 4 and any length \(n \neq 6, 13, 14, 21, 22, 28, 29 \) (mod 31) with dimension 5.

Using our explicit formulas and MAGMA, we have obtained that the above algorithms embed optimal linear codes into optimal self-orthogonal codes for \(n \leq 256 \) and \(k = 2, 3, 4 \).

Finally, we have suggested two conjectures in Conjecture V.13 and Conjecture V.19.

APPENDIX

A. Proof of Theorem III.8

Proof. (\(\Leftarrow \)) We prove the case of \(s = 1 \) since the other cases can be easily shown in the same manner. By the hypothesis, for each \(t = 1, 2, \ell_i \equiv_2 \ell_j \) for \(i, j \in \mathcal{I}_1^{(t)} \), that is,
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \ell_3 \equiv_2 \ell_4 \equiv_2 \ell_5 \equiv_2 \ell_6 \equiv_2 \ell_7.
\]
Combining Equations (III.4) and (A.1), we have
\[
\begin{align*}
|I(1)| &= \ell_1 + \ell_3 + \ell_5 + \ell_7 + \ell_9 + \ell_{11} + \ell_{13} + \ell_{15} \equiv_2 0, \\
|I(2)| &= \ell_2 + \ell_3 + \ell_6 + \ell_7 + \ell_{10} + \ell_{11} + \ell_{14} + \ell_{15} \equiv_2 0, \\
|I(3)| &= \ell_4 + \ell_5 + \ell_6 + \ell_7 + \ell_{12} + \ell_{13} + \ell_{14} + \ell_{15} \equiv_2 0, \\
|I(4)| &= \ell_8 + \ell_9 + \ell_{10} + \ell_{11} + \ell_{12} + \ell_{13} + \ell_{14} + \ell_{15} \equiv_2 0, \\
|I(1) \cap I(2)| &= \ell_3 + \ell_7 + \ell_{11} + \ell_{15} \equiv_2 0, \\
|I(1) \cap I(3)| &= \ell_5 + \ell_7 + \ell_{13} + \ell_{15} \equiv_2 0, \\
|I(1) \cap I(4)| &= \ell_9 + \ell_{11} + \ell_{13} + \ell_{15} \equiv_2 0, \\
|I(2) \cap I(3)| &= \ell_6 + \ell_7 + \ell_{14} + \ell_{15} \equiv_2 0, \\
|I(2) \cap I(4)| &= \ell_{10} + \ell_{11} + \ell_{14} + \ell_{15} \equiv_2 0, \\
|I(3) \cap I(4)| &= \ell_{12} + \ell_{13} + \ell_{14} + \ell_{15} \equiv_2 0.
\end{align*}
\]
Therefore, \(|I(j) \cap I(j')|\) is even for all \(0 < j < j' \leq 4 \) and hence \(C \) is SO by Theorem III.2.

\(\Rightarrow \) For \(j = 0, 1 \), let
\[
J_j(G) := \{ i \in \{1, 2, \ldots, 15\} \mid \ell_i \equiv_2 j \}.
\]
Note that one of \(|J_0(G)|\) and \(|J_1(G)|\) is larger than or equal to 8. Thus, we can choose \(I := \{ i_1 < i_2 < \cdots < i_8 \} \subset \{1, 2, \ldots, 15\} \) so that
\[
\ell_{i_k} \equiv_2 \ell_{i_{k'}} \quad \text{for } k, k' = 1, 2, \ldots, 8. \quad (A.2)
\]
Note that there exists a subset \(S := \{ j_1, j_2, j_3, j_4 \} \) of \(\{i_1, i_2, \ldots, i_8\} \) such that
\[
S \subset \{1, 2, \ldots, 7\} \quad \text{or} \quad S \subset \{8, 9, \ldots, 15\}.
\]
Suppose that \(S \subset \{1, 2, \ldots, 7\} \).

Claim A.1. If there is \(s \in \{1, 2, \ldots, 7\} \) such that
\[
\mathcal{P}_s^{(1)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, j), (j_{\sigma(4)}, i')\}
\]
for a permutation \(\sigma \) of \(\{1, 2, 3, 4\} \) and \(i, i' \in \{1, 2, \ldots, 7\} \), then
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \ell_3 \equiv_2 \ell_4 \equiv_2 \ell_5 \equiv_2 \ell_6 \equiv_2 \ell_7.
\]
Note that we consider \((i, j) \) and \((j, i) \) the same.

Claim A.2. If there are no \(s \in \{1, 2, \ldots, 7\} \) such that
\[
\mathcal{P}_s^{(1)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, i), (j_{\sigma(4)}, i')\}
\]
for any permutation \(\sigma \) of \(\{1, 2, 3, 4\} \) and \(i, i' \in \{1, 2, \ldots, 7\} \), then \(S \) should be one of the following sets:
\[
\{1, 2, 4, 7\}, \quad \{1, 2, 5, 6\}, \quad \{1, 3, 4, 6\}, \quad \{1, 3, 5, 7\}, \quad \{2, 3, 4, 5\}, \quad \{2, 3, 6, 7\}, \quad \{4, 5, 6, 7\}.
\]
For Claim A.1 suppose that there is \(s \in \{1, 2, \ldots, 7\} \) such that
\[
\mathcal{P}_s^{(1)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, i), (j_{\sigma(4)}, i')\}
\]
for a permutation \(\sigma \) of \(\{1, 2, 3, 4\} \) and \(i, i' \in \{1, 2, \ldots, 7\} \). Since \(C \) is SO, we have the following by Lemma III.6
\[
\ell_{j_{\sigma(1)}} + \ell_{j_{\sigma(2)}} \equiv_2 \ell_{j_{\sigma(3)}} + \ell_i \equiv_2 \ell_{j_{\sigma(4)}} + \ell_{i'}.
\]
The following equivalence is obtained by the condition (A.2) since \(S \subset \{i_1, i_2, \ldots, i_8\} \).
\[
\ell_{j_1} \equiv_2 \ell_{j_2} \equiv_2 \ell_{j_3} \equiv_2 \ell_{j_4} \equiv_2 \ell_i \equiv_2 \ell_{i'}.
\]
Since \(j_1 \in \{1, 2, \ldots, 7\} \), we attain the following by Remark III.7 (1).
\[
\{ i \in \mathbb{Z} \mid i \text{ appears in } \mathcal{P}_j^{(1)} \} = \{1, 2, \ldots, 7\} \setminus \{j_1\} = \{s, j_2, j_3, j_4, i, i'\}.
\]
Thus, by Lemma III.6 and Equation (A.3), we have
\[
\ell_1 \equiv_2 \ell_2 \equiv_2 \ell_3 \equiv_2 \ell_4 \equiv_2 \ell_5 \equiv_2 \ell_6 \equiv_2 \ell_7.
\]
For Claim A.2, suppose that there are no \(s \in \{1, 2, \ldots, 7\} \) such that
\[
\mathcal{P}_s^{(1)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, i), (j_{\sigma(4)}, i')\}
\]
for any permutation \(\sigma \) of \(\{1, 2, 3, 4\} \) and \(i, i' \in \{1, 2, \ldots, 7\} \). Then for all \(s \in \{1, 2, \ldots, 7\} \), \(S \),
\[
\mathcal{P}_s^{(1)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, j_{\sigma(4)}), (i, i')\},
\]
for a permutation σ of $\{1, 2, 3, 4\}$ and $i, i' \in \{1, 2, \ldots, 7\} \setminus S$. Considering Table III.1 one can see that S should be one of the following sets:
\begin{equation}
\{2, 3, 4, 5\}, \{2, 3, 6, 7\}, \{4, 5, 6, 7\}.
\end{equation}

For the case of $S \subset \{8, 9, \ldots, 15\}$, we have similar claims as follows.

Claim A.3. If there is $s \in \{1, 2, \ldots, 7\}$ such that
\[P_s^{(2)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, i), (j_{\sigma(4)}, i'), (\alpha, \beta)\} \]
for a permutation σ of $\{1, 2, 3, 4\}$ and $i, i', \alpha, \beta \in \{8, 9, \ldots, 15\}$, then
\[\ell_8 \equiv \ell_9 \equiv \ell_{10} \equiv \ell_{11} \equiv \ell_{12} \equiv \ell_{13} \equiv \ell_{14} \equiv \ell_{15}. \]

Claim A.4. If there are no $s \in \{1, 2, \ldots, 7\}$ such that
\[P_s^{(2)} = \{(j_{\sigma(1)}, j_{\sigma(2)}), (j_{\sigma(3)}, i), (j_{\sigma(4)}, i'), (\alpha, \beta)\} \]
for any permutation σ of $\{1, 2, 3, 4\}$ and $i, i', \alpha, \beta \in \{8, 9, \ldots, 15\}$, then S should be one of the following sets:
\begin{equation}
\{8, 9, 10, 11\}, \{8, 9, 12, 13\}, \{8, 9, 14, 15\},
\{8, 10, 12, 14\}, \{8, 10, 13, 15\}, \{8, 11, 12, 15\},
\{8, 11, 13, 14\}, \{9, 10, 12, 15\}, \{9, 10, 13, 14\},
\{9, 11, 12, 14\}, \{9, 11, 13, 15\}, \{9, 12, 13, 14\},
\{10, 11, 12, 13\}, \{10, 11, 14, 15\}, \{12, 13, 14, 15\}.
\end{equation}

Claims A.3 and A.4 can be proved in the same manner as the proof of Claims A.1 and A.2. Therefore, we omit their proofs.

Now we consider the following four cases.

Case 1: $|I \cap \{1, 2, \ldots, 7\}| > 4$.

In this case, there should be $\{j_1, j_2, j_3, j_4\} \subset I$ and $s \in \{1, 2, \ldots, 7\}$ such that
\[P_s^{(1)} = \{(j_1, j_2), (j_3, i), (j_4, i')\} \]
for some $i, i' \in \{1, 2, \ldots, 7\}$. Thus, we have the following by Claim A.1
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_7. \]
\[\text{(A.6)} \]

For any $j \in \{8, 9, \ldots, 15\}$, there exists $s \in \{1, 2, \ldots, 7\}$ such that $(i, j) \in P_s^{(2)}$ by Remark III.7 (2) since i_8 should be in $\{8, 9, \ldots, 15\}$. Therefore, by Lemma III.6 and Equation (A.6), we have
\[\ell_i + \ell_j \equiv \ell_{h_1} + \ell_{h_2} \equiv 0 \]
for any $(h_1, h_2) \in P_s^{(1)}$. Thus, we have
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_5 \equiv \ell_6 \equiv \ell_7 \equiv \ell_8 \equiv \ell_{10} \equiv \ell_{11} \equiv \ell_{12} \equiv \ell_15. \]

Case 2: $0 < |I \cap \{1, 2, \ldots, 7\}| < 4$.

In this case, one can show
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_5 \equiv \ell_6 \equiv \ell_7 \equiv \ell_8 \equiv \ell_{10} \equiv \ell_{11} \equiv \ell_{12} \equiv \ell_{14} \equiv \ell_{15}. \]

in the same manner as Case 1.

Case 3: $|I \cap \{1, 2, \ldots, 7\}| = 0$, that is, $I = \{8, 9, \ldots, 15\}$.

Suppose that there is $i \in \{1, 2, \ldots, 7\}$ such that $\ell_i \equiv \ell_{i1}$. Let
\[I' := \{i, i_2, i_3, \ldots, i_8\}. \]

We obtain the following by Case 2 since $0 < |I' \cap \{1, 2, \ldots, 7\}| = 1 < 4$.
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_{15}. \]

If $\ell_i \not\equiv \ell_{i1}$ for all $i \in \{1, 2, \ldots, 7\}$, then for $t = 1, 2,$ we have
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_4 \equiv \ell_5 \equiv \ell_6 \equiv \ell_7 \quad \text{and} \quad \ell_8 \equiv \ell_9 \equiv \ell_{10} \equiv \ell_{11} \equiv \ell_{12} \equiv \ell_{13} \equiv \ell_{14} \equiv \ell_{15}. \]

that is,
\[\ell_i \equiv \ell_j \quad \text{for } i, j \in \mathcal{I}_s^{(1)} \]

Case 4: $|I \cap \{1, 2, \ldots, 7\}| = 4$, that is
\[\{i_1, i_2, i_3, i_4\} \subset \{1, 2, \ldots, 7\} \quad \text{and} \quad \{i_5, i_6, i_7, i_8\} \subset \{8, 9, \ldots, 15\}. \]

If there is $i \in \{1, 2, \ldots, 15\} \setminus I$ such that $\ell_i \equiv \ell_{i1}$, then by letting $I' = \{i, i_2, i_3, i_8\}$, we obtain
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_{15}. \]

Assume that
\[\ell_i \not\equiv \ell_{i1} \quad \text{for all } i \in \{1, 2, \ldots, 15\} \setminus I. \]
\[\text{(A.7)} \]

Suppose that there is $s \in \{1, 2, \ldots, 7\}$ such that
\[P_s^{(1)} = \{(i_{\sigma(1)}, i_{\sigma(2)}), (i_{\sigma(3)}, j), (i_{\sigma(4)}, j')\} \quad \text{or} \quad P_s^{(2)} = \{(i_{\sigma(1)}, i_{\sigma(2)}), (i_{\sigma(3)}, h), (i_{\sigma(4)}, h'), (\alpha, \beta)\} \]
for a permutation σ of $\{1, 2, 3, 4\}$, $j, j' \in \{1, 2, \ldots, 7\}$, and $h, h', \alpha, \beta \in \{8, 9, \ldots, 15\}$. Then, by Claims A.1 and A.3 we have
\[\ell_1 \equiv \ell_2 \equiv \ell_3 \equiv \ell_7 \quad \text{or} \quad \ell_8 \equiv \ell_9 \equiv \ell_{10} \equiv \ell_{15}, \]

which contradicts to the assumption (A.7). Thus, by Claims A.2 and A.4 $\{i_1, i_2, i_3, i_4\}$ is one of the sets in (A.4) and $\{i_5, i_6, i_7, i_8\}$ is one of the sets in (A.5).

Now, we need to calculate all these cases. For instance, suppose that
\[\{i_1, i_2, i_3, i_4\} = \{1, 2, 4, 7\} \quad \text{and} \quad \{i_5, i_6, i_7, i_8\} = \{8, 9, 10, 11\}. \]

By Lemma III.6 we have $\ell_5 \equiv \ell_7$ for all $i \in I$ since $P_s^{(1)} = \{(1, 9), (2, 10), (3, 11)\}$. Moreover, since
\[P_s^{(1)} = \{(1, 13), (2, 14), (3, 15)\} \quad \text{and} \quad P_s^{(2)} = \{(4, 8), (5, 9), (6, 10), (7, 11)\} \]
for any $i \in I \cup \{3\}$, we have
\[\ell_5 \equiv \ell_6 \equiv \ell_7 \equiv \ell_{14} \equiv \ell_{15} \equiv \ell_i. \]
\[\text{(A.8)} \]

Since $P_s^{(2)} = \{(4, 12), (5, 13), (6, 14), (7, 15)\}$, we have
\[\ell_1 \equiv \ell_2 \equiv \ell_{15}. \]

by Lemma III.6 and Equation (A.8).
In the same manner, one can show that the other cases induce $\ell_1 \equiv 2 \ell_2 \equiv 2 \cdots \equiv 2 \ell_{15}$ except for the following cases:

$\{i_1, i_2, i_3, i_4\}$	$\{i_5, i_6, i_7, i_8\}$
$\{4, 5, 6, 7\}$	$\{12, 13, 14, 15\}$
$\{4, 5, 6, 7\}$	$\{8, 9, 10, 11\}$
$\{2, 3, 6, 7\}$	$\{10, 11, 14, 15\}$
$\{2, 3, 6, 7\}$	$\{8, 9, 12, 13\}$
$\{2, 3, 4, 5\}$	$\{10, 11, 12, 13\}$
$\{2, 3, 4, 5\}$	$\{8, 9, 14, 15\}$
$\{1, 3, 5, 7\}$	$\{9, 11, 13, 15\}$
$\{1, 3, 5, 7\}$	$\{8, 10, 12, 14\}$
$\{1, 3, 4, 6\}$	$\{9, 10, 12, 14\}$
$\{1, 3, 4, 6\}$	$\{8, 10, 13, 15\}$
$\{1, 2, 5, 6\}$	$\{9, 10, 13, 14\}$
$\{1, 2, 5, 6\}$	$\{8, 11, 12, 14\}$
$\{1, 2, 4, 7\}$	$\{8, 11, 13, 14\}$

Thus, we have

$\ell_i \equiv 2 \ell_j$ for $(i, j) \in I$ or $(i, j) \in \{2, 3, \ldots, 15\}$.

Note that for each exceptional case, there is $s \in \{2, 3, \ldots, 15\}$ such that

$\mathcal{I}_s^{(1)} = \{1, 2, \ldots, 15\} \setminus I$ and $\mathcal{I}_s^{(2)} = I$.

Hence, our assertion holds.

B. Proof of Theorem IV.2

Proof. One can easily see that if \hat{C} is SO, we have $n_{s_0}^{(1)} + n_{s_0}^{(2)} = 0$ by Theorem III.3. This implies that $\hat{G} = \hat{G}$ and thus $\hat{C} = \hat{C}$. Therefore, we may assume that \hat{C} is not SO.

Suppose that s_0 is chosen in Step (C3). One can see that Steps (C5) and (C6) (resp. Steps (C7) and (C8)) will run repeatedly until $\mathcal{I}_s^{(1)} \cap J_1(\hat{G}) = \emptyset$ or $\mathcal{I}_s^{(1)} \subset J_1(\hat{G})$ for $t = 1$ (resp. $t = 2$). Therefore, s_0 and \hat{G} satisfy Equation (IV.6) and thus \hat{C} is SO by Theorem III.8.

Let n be the difference between the length of \hat{C} and C,

$$\hat{G} := [G \parallel M],$$

where M is a $4 \times l$ matrix for some $0 < l < n$ and \hat{C} is a linear code generated by \hat{G}.

Note that, by Theorem III.8, \hat{C} is SO if and only if there is $s \in \{1, 2, \ldots, 15\}$ such that

$$\mathcal{I}_s^{(1)} \cap J_1(\hat{G}) = \emptyset \quad \text{or} \quad \mathcal{I}_s^{(1)} \cap J_1(\hat{G}) = \mathcal{I}_s^{(1)} \quad (A.9)$$

for all $t = 1, 2$.

For $s \in \{1, 2, \ldots, 15\}$, let $M_{s}^{(1)}$ and $M_{s}^{(2)}$ be submatrices of M such that $M_{s}^{(1)}$ (resp. $M_{s}^{(2)}$) consists of column vectors h_i’s where $i \in \mathcal{I}_s^{(1)}$ (resp. $i \in \mathcal{I}_s^{(2)}$). There is an $n \times n$ permutation matrix P such that

$$MP = \begin{bmatrix} M_{s}^{(1)} & M_{s}^{(2)} \end{bmatrix},$$

that is, $\begin{bmatrix} M_{s}^{(1)} & M_{s}^{(2)} \end{bmatrix}$ is M with the columns interchanged.

For $t = 1, 2$, let

$$l_s^{(t)} := \left(\text{the number of columns of } M_{s}^{(t)}\right).$$

We also let

$$n_{s,0}^{(1)} := |\mathcal{I}_s^{(1)} \setminus J_1(G)| \quad \text{and} \quad n_{s,1}^{(1)} := |\mathcal{I}_s^{(1)} \cap J_1(G)| \quad (A.10)$$

and

$$n_{s,0}^{(2)} := |\mathcal{I}_s^{(2)} \setminus J_1(G)| \quad \text{and} \quad n_{s,1}^{(2)} := |\mathcal{I}_s^{(2)} \cap J_1(G)|. \quad (A.11)$$

For $t = 1, 2$, take $j(t) \neq j'(|t|) \in \{0, 1\}$ so that $n_{s,t}^{(1)} = n_{s,j(t)}^{(1)}$, where $n_{s,t}^{(1)}$ and $n_{s,t}^{(2)}$ are the integers defined in Steps (C1) and (C2), respectively.

Since $l_s^{(1)} + l_s^{(2)} = l < n = \min\{n_{s,0}^{(1)} + n_{s,1}^{(2)} | 1 \leq s \leq 15\}$, there is $t_0 \in \{1, 2\}$ such that

$$l_s^{(t_0)} < n_{s,t_0}^{(t_0)} \left(= n_{s,j(t_0)}^{(t_0)}\right).$$

In case where $t_0 = 1$, since $l_s^{(1)} < n_{s,j(1)}^{(1)}$ and $n_{s,j(1)}^{(1)} + n_{s,j(1)}^{(1)} = 7$, we have

$$0 < n_{s,j(1)}^{(1)} - l_s^{(1)} \leq |\mathcal{I}_s^{(1)} \cap J_1(\hat{G})| \leq n_{s,j(1)}^{(1)} + l_s^{(1)} < 7,$$

by Equation (A.10). Since $|\mathcal{I}_s^{(1)}| = 7$, \hat{C} is not SO by Equation (A.9).

Similarly, in case where $t_0 = 2$, since $l_s^{(2)} < n_{s,j(2)}^{(2)}$ and $n_{s,j(2)}^{(2)} + n_{s,j(2)}^{(2)} = 8$, we have

$$0 < n_{s,j(2)}^{(2)} - l_s^{(2)} \leq |\mathcal{I}_s^{(2)} \cap J_1(\hat{G})| \leq n_{s,j(2)}^{(2)} + l_s^{(2)} < 8,$$

by Equation (A.11). Since $|\mathcal{I}_s^{(2)}| = 8$, \hat{C} is not SO by Equation (A.9).

C. Algorithm IV.11 in MAGMA: Construction of a shortest SO embedding for dimension four

/*

h_vector(i) gives the ith column of the generator matrix H_k of the $2^k - 1, k$ simplex code.

Input: The dimension k and a column index $1 \leq i \leq 2^k - 1$

Output: the ith column vector of H_k

*/

function h_vector(k,i)

H_k := ZeroMatrix(IntegerRing(),k,2^k-1);
for i in [1..2^k-1] do
 for j in [0..k-1] do
 if Floor(i/2^j) mod 2 eq 1 then
 H_k[k-j,i] := 1;
 end if;
 end for;
end for;
return ColumnSubmatrix(H_k,i,1);
end function;

/*

Num_cols(G) gives the list of $\ell_i(G)$.

Input: a generator matrix G of $[n,k]$ code

Output: the list of $\ell_i(G)$'s

*/

function Num_cols(G)

k := Nrows(G); col_mult_set := {**}; ell_s := {};
for j in [1..Ncols(G)] do
 ind := 0;
end for;
end function;
for i in $[1..k]$ do
 ind := ind + $G[i][j]2^{(k-i)}$;
end for;
Include(~col_mult_set,ind);
end for;
for s in $[1..2^k - 1]$ do
 Append(~ell_s,Multiplicity(col_mult_set,s))
end for;
return ell_s;
end function;

Sets in Table II.2.

I1 := {@
 {1,2,3,4,5,6,7}, {1,2,3,8,9,10,11},
 {1,2,3,12,13,14,15}, {1,4,5,8,9,12,13},
 {1,4,5,10,11,14,15}, {1,6,7,8,9,14,15},
 {1,6,7,10,11,12,13}, {2,4,6,8,10,12,14},
 {2,4,6,9,11,13,15}, {2,5,7,8,10,13,15},
 {2,5,7,9,11,12,14}, {3,4,7,8,11,12,15},
 {3,4,7,9,10,13,14}, {3,5,6,8,10,13,14},
 {3,5,6,9,10,12,15} @};
I2 := {@
 {8,9,10,11,12,13,14,15}, {4,5,6,7,12,13,14,15},
 {4,5,6,7,8,9,10,11}, {2,3,6,7,10,11,14,15},
 {2,3,6,7,8,9,12,13}, {2,3,4,5,10,11,12,13},
 {2,3,4,5,8,9,14,15}, {1,3,4,5,7,9,11,13,15},
 {1,3,4,5,7,8,10,12,14}, {1,3,4,6,9,11,12,14},
 {1,3,4,6,8,10,13,15}, {1,2,5,6,9,10,13,14},
 {1,2,5,6,8,11,12,15}, {1,2,4,7,9,10,12,15},
 {1,2,4,7,8,11,13,14} @};

/*
J1(G) gives the set J1(G) defined in Subsection 4.B.
*/
function J1(G)
 ell_i_set := Num_cols(G); J_1 := {@@};
 for k in $[1..15]$ do
 if IsEven(ell_i_set[k]) eq false then
 Include(~J_1,k);
 end if;
 end for;
 return J_1;
end function;

SOconst_matrix_dim4(G) gives a generator matrix for a shortest SO embedding of an $[n,4]$ linear code (Algorithm LV.11).
Input: A generator matrix G of an $[n,4]$ code.
Output: A generator matrix \tilde{G} for a shortest SO embedding

function SOconst_matrix_dim4(G)
 BR := BaseRing(G); G := Matrix(IntegerRing(),G);
 //(C1) and (C2)
 n1 := []; n2 := []; J_1 := J1(G);
 for s in $[1..15]$ do
 if #(I1[s] meet J1_G) lt 4 then
 Append(-n1,#(I1[s] meet J_1));
 else
 Append(-n1,#(I1[s] diff J_1));
 end if;
 if #(I2[s] meet J_1) le 4 then
 Append(-n2,#(I2[s] meet J_1));
 else
 Append(-n2,#(I2[s] diff J_1));
 end if;
 end for;
 // (C3)
 Min := Minimum({Integers()| n1[s]+n2[s]: s in $[1..15]$});
 for i in $[1..15]$ do
 if (n1[i] + n2[i]) eq Min then
 s_0 := i; break;
 end if;
 end for;
 // (C4)
 tilde_G := G;
 // (C5) and (C6)
 repeat
 if #(I1[s_0] meet J1(tilde_G)) lt 4 then
 calI1 := I1[s_0] meet J1(tilde_G);
 else
 calI1 := I1[s_0] diff J1(tilde_G);
 end if;
 if (IsEmpty(calI1) eq false) then
 i_0 := Minimum(calI1);
 tilde_G := HorizontalJoin(tilde_G,h_vector(4,i_0));
 end if;
 until IsEmpty(calI1) eq true;
 // (C7) and (C8)
 repeat
 if #(I2[s_0] meet J1(tilde_G)) le 4 then
 calI2 := I2[s_0] meet J1(tilde_G);
 else
 calI2 := I2[s_0] diff J1(tilde_G);
 end if;
 if (IsEmpty(calI2) eq false) then
 i_0 := Minimum(calI2);
 tilde_G := HorizontalJoin(tilde_G,h_vector(4,i_0));
 end if;
 until IsEmpty(calI2) eq true;
 tilde_G := Matrix(BR, tilde_G);
 return tilde_G;
end function;

SOconst_code_dim4(C) gives a shortest SO embedding of an $[n,4]$ linear code.
Input: An $[n,4]$ code C
Output: A shortest SO embedding of C

function SOconst_code_dim4(C)
 G := GeneratorMatrix(C);
 tilde_G := SOconst_matrix_dim4(G);
 tilde_C := LinearCode(tilde_G);
 return tilde_C;
end function;
D. Algorithm IV.17 in MAGMA: Construction of an SO embedding for higher dimensions

```plaintext
/*
SOconst_matrix_dim_ge5(G) gives a generator matrix for an SO embedding of an \([n,k]\) linear code for \(k \geq 5\).
Input: A generator matrix \(G\) of an \([n,5]\) code for \(k \geq 5\)
Output: A generator matrix \(\tilde{G}\) for an SO embedding
*/
function SOconst_matrix_dim_ge5(G)
    T := [**];
    I_0 := [**];
    repeat
        n := Ncols(G);
        k := Nrows(G);
        R := [**];
        Ind := [1..k];
        One := Matrix(GF(2), [[1]]);
        Zero := Matrix(GF(2), [[0]]);
        OOne := Matrix(GF(2), [[1,1]]);
        ZOne := Matrix(GF(2), [[0,1]]);
        ZZero := Matrix(GF(2), [[0,0]]);
        for i in [1..k] do
            Append(~R, RowSubmatrix(G, i, 1));
        end for;
        i_0 := 0;
        for i in [1..k] do
            discriminant := 0;
            for j in [1..k] do
                if InnerProduct(R[i], R[j]) eq 1 then
                    discriminant := discriminant + 1;
                end if;
            end for;
            if discriminant eq 0 then
                i_0 := i;
                break;
            end if;
        end for;
        if i_0 ne 0 then
            Exclude(~Ind, i_0);
            G := R[Ind[1]];
            Remove(~Ind, 1);
            for i in Ind do
                G := VerticalJoin(G, R[i]);
            end for;
            Append(~T, R[i_0]);
            Append(~I_0, i_0);
        end if;
    until k eq 5;
    pre_G := SOconst_matrix_dim4(G);
    NC := Ncols(pre_G);
    for i in [1..#T] do
        for j in [1..NC-Ncols(T[i]) do
            T[i] := HorizontalJoin(T[i], Zero);
        end for;
    end for;
    for i in [#I_0..1 by -1] do
        NR := Nrows(pre_G);
        tG := ZeroMatrix(GF(2), 1, NC);
        for j in [1..#T] do
            tG := VerticalJoin(tG, pre_G[j]);
        end for;
        for j in [1..NR-Ncols(T[i]) do
            T[i] := HorizontalJoin(T[i], Zero);
        end for;
        end for;
        for i in [1..1 by -1 do
            NR := Nrows(pre_G);
            tG := ZeroMatrix(GF(2), 1, NC);
            for j in [1..#T] do
                tG := VerticalJoin(tG, pre_G[j]);
            end for;
            for j in [1..NR-Ncols(T[i]) do
                tG := VerticalJoin(tG, pre_G[j]);
            end for;
            RemoveRow(~tG, 1);
            pre_G := tG;
        end for;
        end for;
        return tG;
    end function;

/*
SOconst_code_dim_ge5(C) gives an SO embedding of an \([n,k]\) linear code for \(k \geq 5\).
Input: An \([n,k]\) code \(C\) for \(k \geq 5\)
Output: An SO embedding of \(C\)
*/
function SOconst_code_dim_ge5(C)
    G := GeneratorMatrix(C);
    tilde_G := SOconst_matrix_dim_ge5(G);
```
\texttt{tilde_C := LinearCode(tilde_G);}

\texttt{return tilde_C;}

\texttt{end function;}

\section*{References}

[1] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan, “Secure computation from random error correcting codes,” in \textit{Advances in cryptology—EUROCRYPT 2007}, ser. Lecture Notes in Comput. Sci. Springer, Berlin, 2007, vol. 4515, pp. 291–310.

[2] S. T. Dougherty, S. Mesnager, and P. Solé, “Secret-sharing schemes based on self-dual codes,” in \textit{2008 IEEE Information Theory Workshop}. IEEE, 2008, pp. 338–342.

[3] M. Harada, “On the existence of frames of the Niemeier lattices and self-dual codes over \mathbb{F}_p,” \textit{J. Algebra}, vol. 321, no. 8, pp. 2345–2352, 2009.

[4] S. Bouyuklieva, I. Bouyukliev, and M. Harada, “Some extremal self-dual codes and unimodular lattices in dimension 40,” \textit{Finite Fields Appl.}, vol. 21, pp. 67–83, 2013.

[5] C. Bachoc and P. Gaborit, “Designs and self-dual codes with long shadows,” \textit{J. Combin. Theory Ser. A}, vol. 105, no. 1, pp. 15–34, 2004.

[6] M. Harada, M. Kitazume, and A. Munemasa, “On a 5-design related to an extremal doubly even self-dual code of length 72,” \textit{J. Combin. Theory Ser. A}, vol. 107, no. 1, pp. 143–146, 2004.

[7] V. Pless, “A classification of self-orthogonal codes over GF(2),” \textit{Discrete Math.}, vol. 3, pp. 209–246, 1972.

[8] V. Pless and N. J. A. Sloane, “On the classification and enumeration of self-dual codes,” \textit{J. Combinatorial Theory Ser. A}, vol. 18, pp. 313–335, 1975.

[9] S. Bouyuklieva, “Some optimal self-orthogonal and self-dual codes,” \textit{Discrete Math.}, vol. 287, no. 1-3, pp. 1–10, 2004.

[10] R. Li, Z. Xu, and X. Zhao, “On the classification of binary optimal self-orthogonal codes,” \textit{IEEE Trans. Inform. Theory}, vol. 54, no. 8, pp. 3778–3782, 2008.

[11] D. Crnković, R. Egan, and A. Švob, “Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices,” \textit{Finite Fields Appl.}, vol. 55, pp. 64–77, 2019.

[12] J.-L. Kim, “New quantum error-correcting codes from Hermitian self-orthogonal codes over GF(4),” in \textit{Finite fields with applications to coding theory, cryptography and related areas (Oaxaca, 2001)}. Springer, Berlin, 2002, pp. 209–213.

[13] L. Jin, S. Ling, J. Luo, and C. C. Xing, “Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes,” \textit{IEEE Trans. Inform. Theory}, vol. 56, no. 9, pp. 4735–4740, 2010.

[14] L. Jin and C. Xing, “Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes,” \textit{IEEE Trans. Inform. Theory}, vol. 58, no. 8, pp. 5484–5489, 2012.

[15] P. Lisoněk and V. Singh, “Quantum codes from nearly self-orthogonal quaternary linear codes,” \textit{Des. Codes Cryptogr.}, vol. 73, no. 2, pp. 417–424, 2014.

[16] L. Jin, H. Kan, and J. Wen, “Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes,” \textit{Des. Codes Cryptogr.}, vol. 84, no. 3, pp. 463–471, 2017.

[17] C. Carlet and S. Guilley, “Side-channel indistinguishability,” in \textit{Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy}. ACM, 2013, p. 9.

[18] G. Castagnos, S. Renner, and G. Zémor, “High-order masking by using coding theory and its application to AES,” in \textit{IMA International Conference on Cryptography and Coding}. Springer, 2013, pp. 193–212.

[19] I. Bouyukliev, S. Bouyuklieva, T. A. Gulliver, and P. R. J. Ostergard, “Classification of optimal binary self-orthogonal codes,” \textit{Journal of Combinatorial Mathematics and Combinatorial Computing}, vol. 59, p. 33, 2006.

[20] S. Kobayashi and I. Takada, “The submanifold of self-dual codes in a Grassmann manifold,” \textit{Osaka J. Math.}, vol. 32, no. 4, pp. 1001–1012, 1995.

[21] J. H. Griesmer, “A bound for error-correcting codes,” \textit{IBM J. Res. Develop.}, vol. 4, pp. 532–542, 1960.

[22] M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes,” Online available at [http://www.codetables.de] 2007, accessed on 2019-10-09.

[23] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,” \textit{J. Symbolic Comput.}, vol. 24, no. 3-4, pp. 235–265, 1997.

[24] W. C. Huffman and V. Pless, \textit{Fundamentals of error-correcting codes}. Cambridge University Press, Cambridge, 2003.

[25] D. B. Jaffe, “Optimal binary linear codes of length ≤ 30,” \textit{Discrete Math.}, vol. 223, no. 1-3, pp. 135–155, 2000.