-AUTONOMOUS CATEGORIES IN QUANTUM THEORY

BRIAN DAY

Abstract.
*-Autonomous categories were initially defined by M. Barr to describe a type of duality carried by many monoidal closed categories. Later they were generalised by the current author to include *-autonomous promonoidal categories. Together, these structures under “convolution” product give a clear indication of the usefulness of *-autonomy in quantum mathematics and related areas.

1. Introduction

So-called “*-autonomous”, or “Frobenius”, category structures occur widely in mathematical quantum theory. This trend was observed in [4], mainly in relation to Hopf algebroids, and continued in [9] with a general account of Frobenius monoids.

Below we list some of the *-autonomous partially ordered sets \(\mathcal{A} = (\mathcal{A}, p, j, S) \) that appear in the literature, an abstract definition of *-autonomous promonoidal structure being made in [4, §7]. Without going into much detail, we also note some features of the convolution \([\mathcal{A}, \mathcal{V}]\) (defined in [2]) of a given such \(\mathcal{A} \) with a complete *-autonomous monoidal category \(\mathcal{V} \). A monoidal functor category of this type is a completion of \(\mathcal{A} \), with an appropriate universal property; it is always again *-autonomous (as seen in [4] for example).

The basic descriptions of promonoidal (equals premonoidal) structure and the resulting convolution product are given in [2] and [4]. We shall more-or-less regard the less complete promonoidal structures as the microscopic versions of their convolution counterparts.

The examples discussed below are mostly based in the extended positive real numbers \(\mathbb{R}_{\geq 0}^{\infty} \) with the *-autonomous monoidal structure of multiplication and identity 1 (we simply define \(\infty \otimes 0 = 0, \) and \(\infty \otimes r = \infty \) for \(r \neq 0 \)).

Remark. The process of adding \(\infty \) to \(\mathbb{R}_{\geq 0} \) is quite general. For example, one can add 0 (initial) and \(\infty \) (terminal) to any partially ordered group \(G \) and obtain \(G_{0}^{\infty} \) which is a *-autonomous monoidal category. Furthermore, the group \(G \) can be replaced by any rigid closed category, etc.

The category \(\mathbb{R}_{\geq 0}^{\infty} \) is isomorphic, under exponentiation, to the *-autonomous category

\[\mathbb{R}_{-\infty}^{\infty} = \{ -\infty \} \cup \mathbb{R} \cup \{ \infty \} \]

with the monoidal structure of addition and identity 0. In the following, each poset \(\mathcal{A} \) is viewed as a category under

\[\mathcal{A}(a, b) = \begin{cases} 1 & \text{iff } a \leq b \\ 0 & \text{else}, \end{cases} \]

Date: November 5, 2011.
and the base category is \(\mathcal{V} = \mathbb{R}_{\geq 0}^\infty \) unless otherwise mentioned.

2. Examples

Example 1 (Submodular functions [8]). Let \(E \) be a set and \(\mathcal{A} = \mathcal{P}(E) \) (discrete). For \(\mathcal{V} = \mathbb{R}_{\geq 0}^\infty \), let

\[
p(a, b, c) = \begin{cases} 1 & \text{iff } (a \cup b = c \text{ and } a \cap b = \emptyset) \text{ iff } a + b = c \\ 0 & \text{else,} \end{cases}
\]

and

\[
j(a) = \begin{cases} 1 & \text{iff } a = \emptyset \\ 0 & \text{else.} \end{cases}
\]

Then \((\mathcal{A}, p, j, S)\) becomes an \(*\)-autonomous promonoidal \(\mathcal{V} \)-category if we take

\[Sa = E - a,\]

since \(p(a, b, Sc) = 1\) iff \(a + b = E - c\), i.e., \(a + b + c = E\).

Note. In fact Narayanan uses \(\mathcal{V} = (\mathbb{R}_{\infty}^\infty, +, 0) \) instead of \(\mathbb{R}_{\geq 0}^\infty \), and discusses the upper convolution on \([\mathcal{A}, \mathcal{V}]\) given by

\[
f \triangleright g(c) = \sup_{ab} f(a) + g(b) + p(a, b, c) = \sup_{a \leq c} f(a) + g(c - a).
\]

(since \(\mathcal{A} = \mathcal{P}(E)\) is discrete, \([\mathcal{A}, \mathcal{V}]\) equals all functions from \(\mathcal{P}(E)\) to \(\mathbb{R}_{\infty}^\infty\)), and also the lower convolution

\[
f \triangleright g(c) = (\sup_{ab} f(a)^* + g(b)^* + p(a, b, c))^* = - (\sup_{ab} - f(a) - g(b) + p(a, b, c)) = \inf_{a \leq c} f(a) + g(c - a).
\]

Of course in both cases we use the fact that

\[
p(a, b, c) = \begin{cases} 0 & \text{iff } a + b = c \\ -\infty & \text{else} \end{cases}
\]

in \(\mathbb{R}_{\infty}^\infty\).

Note also that \(f \in [\mathcal{A}, \mathcal{V}]\) is an upper convolution monoid iff

\(f(a + b) \geq f(a) + f(b)\) and \(f(0) \geq 0\),

while \(f\) is a lower convolution monoid iff

\(f(a + b) \leq f(a) + f(b)\) and \(f(0) \leq 0\).

Example 2. Let \(\mathcal{A} = (\mathcal{A}, \vee, \wedge, 0, 1, S)\) be an orthomodular lattice (see Kalmbach [6] for example). Then the definitions

\[
p(a, b, c) = \begin{cases} 1 & \text{iff } a \vee b \leq c \\ 0 & \text{else,} \end{cases}
\]

and

\[
\mathcal{A}(a, b) = \begin{cases} 1 & \text{iff } a \leq b \\ 0 & \text{else,} \end{cases}
\]
and

\[j(a) = \begin{cases}
1 & \text{iff } a = 0 \\
0 & \text{else,}
\end{cases} \]

yield a \(\ast\)-autonomous promonoidal poset \((\mathcal{A}, p, j, S)\) where \(S a\) is the orthocomplement of \(a\) in \(\mathcal{A}\). The orthomodularity law on \(\mathcal{A}\) is equivalent to either of the cyclic relations

\[p(a, b, Sc) = p(b, c, Sa) = p(c, a, Sb). \]

Example 3 (Browerian logics (Lawvere)). Let \((\mathcal{A}, \leq, \rightarrow, \land, 0, 1)\) be a Browerian logic. Define an \(\mathbb{R}^\infty_{\geq 0}\)-category by

\[\mathcal{A}(a, b) = \begin{cases}
1 & \text{iff } a \leq b \\
0 & \text{else},
\end{cases} \]

and let

\[p(a, b, c) = \begin{cases}
1 & \text{iff } a \land b \leq c \\
0 & \text{else},
\end{cases} \]

and

\[j(a) = \begin{cases}
1 & \text{iff } a = 1 \\
0 & \text{else}.
\end{cases} \]

If we put \(S a = (a \rightarrow 0)\), then

\[p(a, b, Sc) = 1 \text{ iff } a \land b \land c = 0, \]

hence \((\mathcal{A}, p, j, S)\) is a \(\ast\)-autonomous promonoidal category.

Example 4 (Groupoids). Let \(\mathcal{G}\) be a groupoid and let \(\mathcal{A}\) denote the set of arrows of \(\mathcal{G}\). Define

\[p(a, b, c) = \begin{cases}
1 & \text{iff } ab = c \\
0 & \text{else},
\end{cases} \]

\[j(a) = \begin{cases}
1 & \text{iff } a \text{ is an identity} \\
0 & \text{else},
\end{cases} \]

and \(S a = a^{-1}\). Then \(p(a, b, Sc) = 1 \text{ iff } abc = 1\), so \((\mathcal{A}, p, j, S)\) is \(\ast\)-autonomous.

Example 5 ((Non-commutative) probabilistic geometry (of \(\mathbb{R}\))). Let \(\mathcal{A}\) be a poset with an associative promultiplication

\[p : \mathcal{A}^{\mathrm{op}} \times \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \rightarrow [0, 1] \subset \mathbb{R}^\infty_{\geq 0}, \]

where we interpret the value \(p(a, b, c)\) as the probability that the point \(c\) lies in the line joining \(a\) and \(b\). The convolution of poset maps \(f\) and \(g\) from \(\mathcal{A}\) to \([0, 1]\) is then the join of \(f\) to \(g\):

\[f * g = \sup_{ab} f(a)g(b)p(a, b, -), \]

while \(f\) is convex \(iff\) \(f * f \leq f\); i.e., \(f\) is a convolution semigroup.

In particular, note that if \(\mathcal{A}\) is discrete, this \((\mathcal{A}, p, j)\) is \(\ast\)-autonomous with respect to \(S a = a\) \(iff\)

\[p(a, b, c) = p(b, c, a) = p(c, a, b), \]

and these simultaneously take the value 1 \(iff\) the points \(a, b,\) and \(c\) coincide.
Example 6 (Generalized effect and difference algebras (cf. Kalmbach [6], Chapter 21; see also [3])). Suppose the poset \mathcal{A} has the structure of a (non-commutative, say) generalized effect algebra $(\mathcal{A}, \oplus, 0, \leq)$. Let

$$p(a, b, c) = \begin{cases} 1 & \text{iff } a \oplus b \leq c \\ 0 & \text{else,} \end{cases}$$

and

$$\mathcal{A}(a, b) = \begin{cases} 1 & \text{iff } a \leq b \\ 0 & \text{else,} \end{cases}$$

and

$$j(a) = \begin{cases} 1 & \text{iff } 0 \leq a \\ 0 & \text{else,} \end{cases}$$

then (\mathcal{A}, p, j) is an (associative and unital) promonoidal category with some extra properties (e.g., cancellation).

Similarly, if the poset \mathcal{A} is a generalized commutative difference algebra $(\mathcal{A}, \ominus, 0, \leq)$ then

$$p(a, b, c) = \begin{cases} 1 & \text{iff } a \leq c \ominus b \\ 0 & \text{else,} \end{cases}$$

and

$$j(a) = \begin{cases} 1 & \text{iff } 0 \leq a \\ 0 & \text{else,} \end{cases}$$

yield an (associative and unital) promonoidal category (\mathcal{A}, p, j). Note that a commutative generalized effect algebra is related to a (commutative) generalized difference algebra by

$$a \oplus b \leq c \text{ iff } a \leq c \ominus b.$$

The key feature regarding [6] (Riecanová) is that the promonoidal category $\mathcal{P} = \mathcal{A} + \mathcal{A}^{\text{op}}$ constructed in the embedding theorem [6, Proposition 21.2.4] (due to Hedliková and Pulmannová) is in fact $*$-autonomous under the switch map $S : (\mathcal{A} + \mathcal{A}^{\text{op}})^{\text{op}} = \mathcal{A}^{\text{op}} + \mathcal{A} \cong \mathcal{A} + \mathcal{A}^{\text{op}}$.

Again the convolution

$$[\mathcal{P}, \mathcal{V}] = [\mathcal{A} + \mathcal{A}^{\text{op}}, \mathcal{V}] = [\mathcal{A}, \mathcal{V}] \times [\mathcal{A}^{\text{op}}, \mathcal{V}]$$

is $*$-autonomous monoidal and complete.

Remark. The construction of this \mathcal{P} is closely related to (but seems not the same as) that of the free $*$-autonomous promonoidal category on a given promonoidal category due to Luigi Santocanale (unpublished!), the latter giving the “Chu construction” upon convolution with \mathcal{V}.

Example 7 (Conformal field theory). An example of a different nature ($\mathcal{V} = \text{Vect}$) arises in RCFT [7, 4.17] as a Vect promonoidal structure on a (discrete) finite set \mathcal{A} with a distinguished base point 0.

The promultiplication

$$p : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \longrightarrow \text{Vect}_{\text{id}}$$
is given by
\[p(i, j, k) = V^{k}_{ij} = N^{k}_{ij} \cdot K, \quad \mathcal{A}(i, j) = \delta_{ij} \cdot K, \text{ and } j(i) = \delta_{0i} \cdot K. \]

Braidings are described by appropriate sets of (coherent) isomorphisms
\[p(i, j, k) \cong p(j, i, k), \]
associativity by isomorphisms
\[\bigoplus_{x} p(i, j, x) \otimes p(x, k, l) \cong \bigoplus_{x} p(i, x, l) \otimes p(j, k, x), \]
and \(\ast\)-autonomy by the cyclic condition
\[p(i, j, Sk) = p(j, k, Si) = p(k, i, Sj) \]
where
\[S : \mathcal{A} \rightarrow \mathcal{A}, S^2 = 1 \]
is the involution of the RCFT.

Here we insist also that
\[p(Si, Sj, Sk) = p(i, j, k)^\ast, \]
where \(p(i, j, k)^\ast\) is the dual space of \(p(i, j, k)\).

A useful way of abstracting this situation, especially for the purposes of constructing rigid convolutions of the form \([\mathcal{A}, \text{Vect}_{fd}]\), is to replace the finite set \(\mathcal{A}\) above by any promonoidal \(\text{Vect}_{fd}\)-category \((\mathcal{A}, p, j)\) with \(\text{ob}\mathcal{A}\) finite; then this \(\mathcal{A}\) has a distinguished base object if \(\mathcal{A}\) has an identity object representing \(j\).

Remark.

(i) \(\ast\)-autonomous monoidal categories (under that name) were introduced by M. Barr [1], and then studied extensively by many authors. Their relationship to classical Frobenius structures was recognized in [4] and in [9].

(ii) The \(\ast\)-autonomous structure on the extended real numbers was noted (by the author) in the context of a lecture entitled “\(\ast\)-autonomous convolution” (Australian Category Seminar, March 5, 1999), and recently introduced anew by M. Grandis for other purposes.

(iii) The examples above admit generalization to more elaborate promonoidal settings. Are there corresponding physical interpretations?

Acknowledgements. I wish to thank Craig Pastro and Ross Street for general assistance with typesetting and the Australian Research Council for some financial support.

References

[1] M. Barr, \(\ast\)-Autonomous categories, Lecture Notes in Mathematics 752, Springer-Verlag (1979).
[2] B. Day, On closed categories of functors, Lecture Notes in Mathematics 133 (Springer-Berlin 1970), pp. 1–38.
[3] B. Day, Locale geometry, Pacific Journal of Mathematics 83 (1979), pp. 333–339.
[4] B. Day and R. Street, Quantum categories, star autonomy, and quantum groupoids, in “Galois Theory, Hopf Algebras, and Semiabelian Categories”, Fields Institute Communications 43 (2004), pp. 187–226. pp. 333–339.
[5] D. Foulis and M. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), pp. 1331–1352.
[6] S. Kalmbach, Quantum measures and spaces (monograph), MIA, Kluwer Academic Publications 453 (1998).
[7] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Communications Math. Phys. 123 (1989), pp. 177–254.

[8] H. Narayanan, Submodular functions and electrical networks (monograph), ADM, North Holland (Elsevier Science B.V.) 54 (1997).

[9] R. Street, Frobenius monads and pseudomonoids, Journal Math. Phys. 45 (2004), pp. 3930–3948.

Centre of Australian Category Theory, Macquarie University, NSW, 2109, Australia