Atrial tachycardia related to local abnormal atrial activity

Yasuharu Matsunaga-Lee MD | Sen Matsumoto MD | Nobutaka Masunaga MD | Yuzuru Takano MD

Abstract
A 42-year-old woman without a history of catheter ablation or cardiac surgery was referred to our institution for a paroxysmal atrial tachycardia (AT). Programed stimulation could not induce any AT. The AT spontaneously initiated during a continuous isoproterenol infusion. The earliest activation during the AT was recorded at the cavo-tricuspid isthmus, and local abnormal atrial activity (LAATA) was recorded during sinus rhythm at that same site. When rapid atrial activity was recorded at the cavo-tricuspid isthmus where the LAATA was recorded, an AT was induced. Radiofrequency ablation was performed over the entire area where the LAATA was recorded during sinus rhythm, rendering the AT non-inducible.

KEYWORDS
atrial tachycardia, local abnormal atrial activity, mid-diastolic period, radiofrequency ablation, rapid atrial activity

1 | INTRODUCTION

Catheter ablation is an effective therapeutic strategy for atrial tachycardia (AT). Precise mapping of the earliest activation site is critical to eliminate focal ATs. The focal AT origin is identified using a three-dimensional electro-anatomical mapping system. Substrate-based ablation has been used for ventricular tachycardia, and late potentials (LPs) and local abnormal ventricular activity (LAVA) should be eliminated during those substrate-based strategies.1,2 However, LPs and local abnormal activity have not been described in the field of AT. Here, we reported a patient with an AT, in whom the initiation was related to local abnormal atrial activity (LAATA). The AT was initiated when rapid atrial activity was recorded at a site where the LAATA was recorded during sinus rhythm.

2 | CASE REPORT

A 42-year-old woman was referred to our institution for paroxysmal AT. She had no history of catheter ablation or cardiac surgery. Echocardiography revealed a normal left ventricular ejection fraction (58%) and no structural heart disease. Two 10 polar electrode catheters were placed on the lateral right atrium (RA) and inside the coronary sinus (CS). Programed stimulation could not induce any AT. The AT was spontaneously initiated during a continuous isoproterenol infusion. The earliest activation during the AT was recorded at the cavo-tricuspid isthmus, and local abnormal atrial activity (LAATA) was recorded during sinus rhythm at that same site. When rapid atrial activity was recorded at the cavo-tricuspid isthmus where the LAATA was recorded, an AT was induced. Radiofrequency ablation was performed over the entire area where the LAATA was recorded during sinus rhythm, rendering the AT non-inducible.
LAVA has been described as exhibiting sharp high-frequency ventricular potentials, and the elimination of that LAVA is associated with a superior ventricular tachycardia (VT)-free survival. The interval between the local systolic electrogram and LAATA increased (Figure 1A), and the delay was associated with the induction of rapid atrial activity. This phenomenon has been described with the LAVA during right ventricular pacing. The cycle length of the rapid atrial activity and AT varied from 100 to 190 and 360 to 500 ms, respectively. The decremental conduction of the pathway between the LAATA and surrounding atrial muscle resulted in three to one conduction of the rapid atrial activity of this AT.

The rapid atrial activity, recorded by the PentaRay NAV catheter, was not recorded by the 3.5 mm tip ablation catheter. Mapping using the PentaRay NAV catheter, with a 1 mm tip and 2 mm spaced electrodes, has been described to improve the mapping resolution within areas of low voltage. The small and narrow spaced electrode catheters allowed for recording the fine potentials that were missed with the larger electrodes.

There were some limitations to utilizing the LAATA and rapid atrial activity. We could not perform burst or extra pacing to assess the properties of the LAATA. The AT induced by isoproterenol was not continuous, but was of an incessant form. Sinus rhythm activation, when the LAATA was recorded, continued for only several beats. It was not possible to perform pacing maneuvers to assess the properties of the LAATA. Also, the cycle length of the rapid atrial

FIGURE 1 A. The intracardiac electrograms during sinus rhythm. LAATA (arrowheads) was recorded from PEN 3–4, 7–8, and 11–12. The interval between the local systolic electrogram and LAATA increased. The delay was associated with the induction of rapid atrial activity. B. The AT was initiated by rapid atrial activity (arrows) at PEN 7–8. AT, atrial tachycardia; RA, right atrium; CS, coronary sinus; LAATAs, local abnormal atrial activities; PEN, PentaRay.

3 | DISCUSSION
activity and AT varied from 100 to 190 and 360 to 500 ms, respectively. It was not possible to assess the properties of the rapid atrial activity.

To the best of our knowledge, this report is the first report to document an AT related to LAATA. The AT was initiated when rapid atrial activity was recorded at the site where the LAATA was recorded during sinus rhythm. Radiofrequency applications were delivered to cover the entire area where the LAATA was recorded during sinus rhythm. This strategy has been reported as homogenization in the field of VT ablation. Further studies are needed to determine the true prevalence of LAATA as well as the relationship between the LAATA and AT.

CONFLICT OF INTEREST

The authors declare no conflict of interest for this article.

ORCID

Yasuharu Matsunaga-Lee http://orcid.org/0000-0002-4775-8914

REFERENCES

1. Jais P, Maury P, Khairy P, et al. Elimination of local abnormal ventricular activities. A new end point for substrate modification in patients
with scar-related ventricular tachycardia. Circulation. 2012;125:2184–96.

2. Briceno DF, Romero J, Gianni C, et al. Substrate ablation of ventricular tachycardia: late potentials, scar dechanneling, local abnormal ventricular activities, core isolation, and homogenization. Card Electrophysiol Clin. 2017;9:81–91.

3. Tschabrunn CM, Roujol S, Dorman NC, et al. High-resolution mapping of ventricular scar: comparison between single and multielectrode catheters. Circ Arrhythm Electrophysiol. 2016;9:e003841.