A hybrid approach for stain normalisation in digital histopathological images

Faiza Bukenya

Received: 29 November 2018 / Revised: 25 June 2019 / Accepted: 16 September 2019 / Published online: 19 November 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Stain in-homogeneity adversely affects segmentation and quantification of tissues in histology images. Stain normalisation techniques have been used to standardise the appearance of images. However, most the available stain normalisation techniques only work on a particular kind of stain images. In addition, some of these techniques fail to utilise both the spatial and textural information in histology images, leading to image tissue distortion. In this paper, a hybrid approach has been developed, based on an octree colour quantisation algorithm combined with the Beer-Lambert law, a modified blind source separation algorithm, and a modified colour transfer approach. The hybrid method consists of two stages the stain separation stage and colour transfer stage. An octree colour quantisation algorithm combined with Beer-Lambert law, and a modified blind source separation algorithm are used during the stain separation stage to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response. A modified colour transfer algorithm is used during the colour transfer stage to minimise the effect of varying staining and illumination. The hybrid method addresses the colour variation problem in both H&DAB (Haematoxylin and Diaminobenzidine) and H&E (Haematoxylin and Eosin) stain images. The stain normalisation method is validated against ground truth data. It is widely known that the Beer-Lambert law applies to only stains (such as haematoxylin, eosin) that absorb light. We demonstrate that the Beer-Lambert law applies is applicable to images containing a DAB stain. Better stain normalisation results are obtained in both H&E and H&DAB images.

Keywords Histopathology images · Stain normalisation · Image processing

1 Introduction

In histopathology, tissue samples are examined for disease diagnosis. Image staining is performed to increase the contrast of the image. In-homogeneity in histology images is
still a major problem that impairs visual inspection as well as image analysis by computer systems [40, 65, 85, 86]. Figure 1 demonstrates the colour variation problem.

Stain normalisation is performed to standardise the appearance of the images so as to improve image analysis during image segmentation and quantification[14]. However, serious tissue distortion may occur if stain normalisation is poorly performed leading to poor image interpretation [8, 54, 85, 86]. For example, several objects may appear to be linked as a single object after segmentation [28, 69]. For more accurate diagnosis, an automated stain normalisation method should preserve both tissue structure and texture in the image. Different stain normalisation approaches have been proposed. However, most of these stain normalisation techniques are based on histogram specification [26, 33], grey world normalisation [88], comprehensive colour normalisation [18], and histogram equalisation [45, 58]. These colour normalisation techniques work on natural images rather than histology images [40, 85, 86].

Stain normalisation techniques employ non-negative matrix factorisation (NMF) [40, 85, 86], singular value decomposition (SVD) [57], principal component analysis (PCA) [44], [32], independent component analysis (ICA) [84], statistical based algorithm.

Fig. 1 a and b are the same H&E histology images captured using an Aperio scanner and Hamamatsu scanner respectively. c and d are different H&DAB histology images from the same batch stained at different times.
ICA [1, 51], and machine learning [34, 79, 97, 98]. However, these methods are only applicable to certain histology images. In addition, some of these methods produce undesirable image tissue distortions and also introduce considerable visual artefacts in histology images [40, 86]. Further more, some of these methods require expertise and are computationally expensive. For accurate stain normalisation, a precise estimation of each applied stain in both source image and target image is necessary to modify stain colour to match that of the target image [57, 85, 86]. For example in H&E stained image slides, purple and pink stains are estimated respectively based on the Beer-Lambert law. It is widely known that the Beer-Lambert law applies to only stains (such as haematoxylin, eosin) that absorb light [89]. We demonstrate that Beer-Lambert law is applicable to DAB images. In this paper, a hybrid approach has been developed, based on an octree colour quantisation algorithm combined with Beer-Lambert law, a modified blind source separation algorithm, and a modified colour transfer approach. Stain normalisation is carried out in similar way as existing approaches [57, 86]. However, our method utilises blind source separation in [63] rather than NMF during stain separation. Note: we modified the blind source separation in [63] for a better stain normalisation.

The rest of the paper is structured as follows: Section 2 briefly reviews some stain normalisation algorithms, Section 3 presents the proposed methodology, Section 4 presents experimental results and the discussion of results, Section 5 concludes the paper.

2 Related work

This section briefly reviews existing stain normalisation algorithms addressing the stain in-homogeneity problem in histology images. The commonly used stain normalisation methods include NMF, SVD, PCA, ICA. All of these methods are based on matrix factorisation(also known as matrix decomposition). Matrix decomposition methods reduce a complex matrix into constituent parts so as to make it easier to calculate. Although these methods are based on matrix factorisation, they use various kinds of assumptions translated into different constraints and/or objective functions during stain normalisation [87]. For example, NMF aims at considering the physical constraint that each stain has a non-negative response, SVD aims at evaluating the decomposition that best approximates a data matrix, given some rank restriction [68], PCA aim at accounting for as much of the data variability while enforcing orthogonality between their components, and ICA is based on the assumption that each stain, stains the tissue independently from all the other stains [66, 87]. In imaging, besides stain normalisation, matrix factorisation has been used to recover human pose [29], to extract muscle synergy [17], to segment objects [61, 81], to classify images [101], to monitor human motion [90], to reduce image dimension [4, 80], to extract features [83], and to retrieve images from the large database of images [96]. This is because of its effectiveness and efficiency. The four stain normalisation methods are described below.

2.1 Non-negative Matrix Factorisation (NMF)

NMF was proposed by Paatero and Tapper in 1994 [62]. Non-negative matrix factorization (NMF) factors a data matrix into low-rank latent factor matrices with non-negativity constraints. Given a data matrix X and a target rank R, NMF seeks a factorization model [19].

$$X \approx WH^T, \quad X \in R^{M \times N}, \quad H \in R^M$$

where $W \geq 0, H \geq 0$, and $R \leq \min\{M, N\}$.
Compared to other matrix factorisation methods, NMF is capable of learning parts of objects [19, 46]. In addition, NMF is able to identify the ground-truth-generative factors \(W \) and \(H \) up to certain trivial ambiguities, which results into a strong interpretability. NMF can be combined with other methods such as non negative least squares to normalise stain in FAST images as the FAST images consist of more objects than it had spectral dimensions [11]. The effectiveness of NMF in analyzing real-life non-negative data has sparked a substantial amount of research in image analysis. In image analysis, NMF and related techniques have been applied to different kinds of imaging(such as remote sensed images, medical images(such as histology images, CT images, MRI images), and natural images) during feature extraction [47, 49, 53, 55, 92], image classification [5, 24, 76, 99], image ranking [13, 82], image reconstruction [7, 15, 16], and image enhancement [20, 40, 41, 42, 73, 78, 85–87, 100]. However, NMF, is less utilised during image enhancement of medical images, in particular histology imaging, which is affected by colour variation problem. This study focus on stain normalisation methods.

During stain normalisation, NMF-based algorithms attempt to factor the optical density (OD) matrix into \(W \) and \(H \) with the constraint that all elements must be non-negative, since stains cannot absorb a negative amount of light. It also forces all columns of the stain vectors to be unit length to keep it from having an infinite number of solutions that differ only by a constant. These methods work well on multispectral images, however they tend to inconsistently converge when only three spectral components are available [57]. The standard NMF is subject to local minimisation that is initialisation-dependent and thus requires a good approximation of the colour vectors to initialise the factorization process [87]. In addition, standard NMF is not capable of preserving structural and textual information during stain normalisation. Further more, NMF is not suitable for estimating the stain vector extraction [87, 93].

Following NMF, various analysis have been studied. For example, to help circumvent problems that can be found with NMF, Xu et al. [93] proposed the use SNMF in place of NMF to extract the colour vectors. In SNMF, regularisation and sparsity terms are introduced in the NMF objective function. However, Xu et al. [93] does not provide information about the initialisation they use for the SNMF algorithm. In 2017, Van et al. [87] tested SNMF using the parameter in [52]. According to Van et al. [87], SNMF requires good initialisation to be efficient, which is not always an easy task. Vahadane et al. [86] developed a stain normalisation approach based on SNMF to preserve the structural information of the source image after color normalization. In this approach, sparsity constraints are added on to stain channels during stain separation. Parameters for stain normalization are calculated based on the pseudo maximum of the separated stains. Sparsity constraints are able to enhance the recognition ability of the model for separating independent stains. However, the weighting of stains is processed independently after stain separation, which limits the capacity for color normalization. Furthermore, the overall intensity and proportion of the separated stains are not considered in the model of stain separation. It risks a bias in stain separation, for which most of the pixels would be normalized to share the appearance of a single stain [102].

Amit et al. [78], developed a stain normalisation method based on graph regularised sparse NMF to preserve the textural information in the image. Like the method in [86], this method also add sparsity constraints on to stain channels during stain separation. This method also does not consider intensity and proportion of the separated stains in the model of stain separation. In [102], an adaptive color deconvolution (ACD) model for stain separation and color normalization of histological images is presented. In this method, the stain color appearance matrix is utilised as variables, the ACD model is solved through an inte-
grated optimization. The normalization is achieved by a unified transformation for the pixels in the image. Unlike in [78, 86], This method considers both intensity and proportion of the stains. Both intensity and proportion are embedded in the ACD model to effectively reduce the failure of stain separation and also to avoid color artifacts in the normalized images.

Recently Li et al. [50] proposed a majorisation-minimisation principle to develop a convergence-guaranteed algorithm NMF. However, the method was applied during communication analysis of signals.

2.2 Singular Value Decomposition (SVD)

The singular value decomposition of a matrix A is an attractive algebraic transform that factorises a matrix A into the product of three matrices (U, D, V): Let A be a $m \times n$ matrix. The Singular Value Decomposition of A is as follows:

$$A = UDV^T \quad (2)$$

Where U and V are orthogonal matrices with singular values. V^T is the conjugate transpose of V. D is a diagonal matrix with singular elements[38]. The process of SVD depends on the task at hand.

During stain normalisation, SVD is used for automated stain matrix estimation to address colour variation problems [57]. The SVD method works by calculating the plane from the two vectors corresponding to the two largest singular values of the SVD decomposition of the OD(optical density) transformed pixels and then later projecting OD transformed pixels onto the plane [1, 57, 84]. SVD easily adapts to variations in the local statistics of an image [3, 25, 37, 56, 95]. SVD is also stable and robust to noise [2, 6, 36, 38, 43, 43, 60, 71, 91, 94]. However, although SVD can effectively determine independent components, it changes the colour distribution of both source and reference images, which is not necessary [78]. Compared to NMF, SVD is fast. However, it tends to produce unrealistic colours in the normalised source image [85, 86].

2.3 Principal component analysis

Principal component analysis was first introduced by Karl Pearson in 1901 [64], and developed independently by Hotelling in 1933 [31]. Principal component analysis uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables known as principal components.

During stain normalisation, in PCA [39], a plane is constructed that optimally approximates variability between image pixels. The plane is spanned by the two first principal component vectors of the image pixel colour data. The deconvolution error is minimised, by making sure that the optimal colour deconvolution vectors of the two stains in the original image are part of the plane. Although PCA can identify an appropriate plane for describing the clouds of bi-coloured pixels for H&E staining, it is not good at representing variability in stain colours as it assumes fixed stain vectors for H and E images [1, 66, 87]. In comparison to PCA and NMF algorithms, ICA gives a superior projection of the data with respect to each stain [84].

2.4 Independent Component Analysis (ICA)

Independent Component Analysis is blind source separation method that obtains non-Gaussian signals from a Gaussian source. Independent Component Analysis is quite similar
to PCA [84]. The only difference lies in the way PCA and ICA deal with data. PCA dispense the data in a way that best separates variance while ICA dispense the data along the axes in such a way that each independent component directly corresponds to a given stain[84]. ICA may not achieve an orthogonal distribution if the two stains in the image are of the same color. Although Trahearn et al. [84] introduced a correction step to estimate the true stain vector from within the ICA space, the correction step involves two steps that include (a) the true stain vectors are a minor adjustment from the unit vectors in ICA space, (b) Most of the data in ICA space is close to one of the true stain vectors. However ICA is applicable to only images with more than two stains. Rabinovic et al.[66] compared two stain deconvolution approaches, NMF and ICA. They showed that while NMF performed better however neither of the methods was sufficient to fully deconvolve the images [1], [12]. The study was performed on hyper-spectral images, rather than light microscopy images. Hyper-spectral imaging are different from microscopy image in such a way that they have higher number of input channels as compared to the three-channel RGB microscopy images, which may limit the comparison that can be made between methods for the two modalities.

2.5 Statistical blind source separation algorithm ICA

Alsubaie N et al. [1] chose to recover the original source signals blindly by using the statistical blind source separation algorithm ICA. In this method, independent component analysis is used in the wavelet domain where each colour channel of the input image is decomposed into a series of narrow sub-band images using a decimated wavelet transform. Then later each sub-band is statistically analysed in order to find the least Gaussian sub-bands. Finally, ICA is applied to the selected sub bands to estimate the stain matrix. The method cannot estimate weaker stains such as eosin.

3 Methods and material

This section presents the proposed methodology for automated stain normalisation of H&E and H&DAB stain histology images. The proposed methodology (Fig. 2) involves two stages: (a) stain separation, and (b) colour transfer.

3.1 Proposed automated stain normalisation

The hybrid method consist of two stages: the stain separation stage and colour transfer stage. An octree colour quantisation algorithm combined with the Beer-Lambert law, and a modified blind source separation algorithm are used during stain separation stage to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response. A modified colour transfer algorithm is used during the colour transfer stage to minimise the effect of varying staining and illumination.

3.1.1 Stain separation

Stain separation is performed to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response [21, 22, 66, 70]. Octree colour quantisation algorithm is combined with Beer-Lambert law and a modified blind source separation algorithm are used during stain separation stage. Note: We modified the blind source separation [63]. As compared to blind source separation method in [63], our blind
source separation method uses spatial-spectral Schrodinger-Eigen vectors and Eigen values during pre-whitening process to determine the set of stain vectors and stain matrix (3 X 3). By making use of Schrodinger-Eigen vectors, we are able to incorporate texture and spatial information [10]. Our Stain separation algorithm involves three steps that comprise, (a) Esti-
mate stain, (b) Obtain the stain vectors, (c) Perform colour deconvolution. The three steps are described in the section below:-

(a) Estimate stain

(i) Colour quantisation

Colour quantisation is the process of choosing M colours from I to construct a quantised colour space, \tilde{I}, where $\tilde{I} = \tilde{I}_j$, $j = \{1, 2, ..., M\}$ [77]. Colour quantisation is introduced due its ability to enhance the image [8, 27, 35, 59, 77]. Quantisation algorithms can be categorised into two classes: uniform quantisation and non-uniform quantisation algorithm. The difference between the two lies in the way they handle colour space. For example, in uniform colour quantisation, the colour space is broken into equal sized regions where the number of regions is less than or equal to M. Non-uniform colour quantisation breaks the colour space depending on distribution of colours in the image. In terms of performance, non-uniform algorithms outperforms uniform quantisation algorithms. Non-uniform algorithms are easy to implement and offer consistent results [48, 77]. We choose Octree algorithm that is highly non-uniform to extract the classes [72]. The colour classes are then labelled and the labelled image is converted into optical density. The octree quantisation algorithm quantises the colour following the steps below: given an image I, every colour in the image is stored in an octree of depth 8 (every leaf at depth 8 represents a distinct colour). A limit of M (in this case M = 256) leaves are placed on the tree. The colours are filtered based on the limit of M leaves set. For example colour in the tree can result in two outcomes: (a) if there are less than M leaves the colour is filtered down the tree until either it reaches some leaf node that has an associated representative colour or it reaches the leaf node representing its unique colour, and (b) If there are greater than M leaves in the tree some set of leaves in the tree must be merged (their representative colours averaged) together and a new representative colour stored in their parent.

Leaves are selected and merged following two criteria: (a) Reducible nodes that have the largest depth in the tree should be chosen first. They represent colours that lie closest together, (b) If there is more than one group of leaves at the maximum depth the algorithm either merges leaves that represent the fewest number of pixels to keep the error small or reduce leaves that represent the most pixels. In this case large areas will be uniformly filled in a slightly wrong colour while maintaining detailed shading.

Once the entire image has been processed, the colour in the image is quantised by simply filtering each colour down the tree until a leaf is hit.

(ii) Convert the colour quantised image to optical density space

$Z = \log(I_0) - \log(I + 1)$

where I_0 is the illuminating light associated with the quantised RGB Image I.

(b) Obtain stain vector

The stain vector is obtained following the steps below

(i) Pre-whiten data following the steps below [31].

Compute the correlation matrix using (4):

$R = R_s \times \frac{R'_s}{L_s}$

(4)
where R_s is the received sigma. R_s^\prime is the conjugate transpose of R_s. L_s is the length of the sigma.

Obtain Eigen values U and Eigen vectors V using Schroedinger Potential in [9, 10], rather than the common Eigen values and vector. Note: As compared to blind source separation method in [63], our blind source separation method uses spatial-spectral Schroedinger-Eigen vectors and Eigen values during pre-whitening process to determine the set of stain vectors and stain matrix (3 X 3).

Perform Eigen values decomposition using shur decomposition method in (5). Shur decomposition method is expressed as [23, 30, 63, 75]:

$$\tilde{A}_{YY}^{(d)} = QUQ^{-1}$$

(5)

where Q is a unitary matrix, Q^{-1} is a conjugate transpose of Q. U is the diagonal matrix with real entries. Denoising the estimate \tilde{A}_{YY} of $A_{YY} = E(YY^{-1})$ is performed by estimating the noise variance. The noise variance is estimated by obtaining the average of the smallest Eigen values. The denoised image is obtained using equation below:-

$$\tilde{A}_{YY}^{(d)} = \tilde{A}_{YY} - \sigma_n^2 I_q$$

(6)

Given that ideally $\tilde{A}_{YY}^{(d)} = HH^{-1}$, the non-zero part of the matrix $LD^\frac{1}{2}$ equals H up to a unitary ambiguity matrix:

$$\tilde{L} = HU$$

(7)

where U is a unitary matrix. \tilde{L} is constructed as a matrix containing p large norm. Column in $LD^\frac{1}{2}$. Then, the received signal is pre-filtered using:

$$\tilde{Y} = \tilde{L}\#Y$$

(8)

where # denote matrix pseudo-inverse.

(ii) Perform multi-kurtosis maximisation

Multi user kurtosis (MUK) can be defined by $M_{q \times p}$ the following set of $q \times p$ complex matrices:

$M_{q \times p} = \{D \in C^{q \times p} \text{ such that } D^H D = I_p\}$

We perform MUK following the steps below:-

Compute the gradient of $F(G)$ using the formula in (9) with respect to W. Then later obtain an adaptive stochastic-gradient algorithm.

Let

$$F(G) = \sum_{j=1}^{p} \text{sign}(K(z_j)) K(z_j)$$

$$= \text{sign}(K_a) \sum_{j=1}^{p} \left(E|z_j|^4 - 2E^2|z_j|^2 - \left| E(z_j^2) \right|^2 \right)$$

And by invoking C2 with the assumption that symmetrical inputs ($E(a^2(K) = 0)$), the gradient of $F(G)$ with respect to W is given by:

$$\nabla(F(G)) = 4\text{sign}(K_a) \sum_{j=1}^{p} \left(E|z_j(k)|^2 z_j(k)Y^*(k) \right)$$

(9)
Update $W(k)$ in the direction of the instantaneous gradient using (10).
\[
W'(k + 1) = W(k) + \mu \text{sign}(K_a)Y^*(k)Z(k)
\] (10)
where $\mu = 4$. μ is a constant.

\[
Z(k) = \begin{bmatrix} |z_1(k)|^2 & z_1(k) & \ldots & |z_p(k)|^2 & z_p(k) \end{bmatrix}
\]
Satisfy the orthogonality constraint at the next iteration of the algorithm by utilising the unitary constraint using Gram-Schmidt orthogonalisation in (11).

\[
G \in M_p \times p \leftrightarrow G^H(k + 1)G(k + 1) = I_p
\] (11)

Undo the remaining unitary mixture which makes the equaliser W of size $p \times p$, hence saving computational cost. Then, to satisfy the constraint in (11), it suffices to satisfy $W(k + 1) \in M_p \times p$, i.e.

\[
W^H(k + 1)W(k + 1) = I_p
\] (12)

Since there is no guarantee that $W'(k + 1)$ will satisfy the constraint in (12), we have to transform $W'(k + 1)$ into a unitary

\[
W(k + 1) = f(W'(k + 1))
\] (13)

By treating $W(k + 1)$ as a $p \times p$ matrix satisfying (12) that is as close as possible to $W'(k + 1)$ in the Euclidean sense using the iterative procedure that satisfies the following criterion successfully for $j = 1, \ldots, p$:

\[
\begin{cases}
\min_{W_j} \nabla(W_j) = (W_j - W'_j)^H(W_j - W'_j) \\
\text{subject to: } W_l^H W_j = \sigma_{ij}, l = 1, \ldots, j
\end{cases}
\] (14)

where $\|X\|^2 = X^HX$ is squared Euclidean norm of vector X, σ_{ij} is kronecker delta, W_j' is obtained from

\[
W' = \begin{bmatrix} W'_1, \ldots, W'_p \end{bmatrix}
\] (15)

To solve (14), we first construct the Lagrangian of $\nabla(W_j)$ using (16)

\[
L_{\nabla}(W_j, \lambda_j, \mu, \nu) = \nabla(W_j) - \lambda_j(W_j^H W_j - 1) - \sum_{l=1}^{j-1} \mu_{lj} \text{Re}(W_l^H W_j) - \sum_{l=1}^{j-1} \nu_{lj} \text{Im}(W_l^H W_j)
\] (16)

Where λ_j, μ_{lj}, and ν_{lj} are real scalar parameters. Setting the gradient of $L_{\nabla}(W_j, \lambda_j, \mu, \nu)$ with respect to W_j to zero $\frac{\partial L_{\nabla}}{\partial W_j} = 0$, we obtain the following equations for each j:

\[
W_j - W'_j - \lambda_j W_j - \sum_{l=1}^{j-1} B_{lj} W_j = 0
\] (17)

Where $B_{lj} = \frac{1}{2}(\mu_{lj} + i \nu_{lj})$. From (17), we obtain

\[
\begin{cases}
\lambda_j = 1 - W_j^H W'_j \\
B_{lj} = -W_l^H W'_j
\end{cases}
\]
which gives

\[(1 - \lambda_j)W_j = W'_j - \sum_{l=1}^{j-1} \left(W_l^H W'_j \right) W_l \]

(18)

According to (18)

\[W_j \propto \left(W'_j - \sum_{l=1}^{j-1} \left(W_l^H W'_j \right) W_l \right) \]

(c) Perform colour deconvolution

Colour deconvolution scheme is used to transform quantised RGB channels of a histology image into a density map for each stain.

(i) Determine the stain concentration of individual stains:

\[C = W \times Z \]

(19)

where \(Z\) is the optical density map obtained in (3), \(W\) is the stain matrix obtained in (18).

The optical density maps of each stain are obtained by taking the columns of stain matrix \(W\) and taking rows of the stain concentration matrix using the equation below:

\[Y = WC \]

(20)

3.1.2 Colour transfer

Colour transfer is performed to minimise the effect of varying staining and illumination [74]. We modified the colour transfer method in [57, 78, 86] to achieve better stain normalisation results. We also introduce a weighting factor in the colour to easily adjust the contrast and brightness of the image. Our colour transfer involves 6 steps as follows:

(a) Let \(W\) be the stain matrix and \(C\) be the coefficient matrix from (20)

\[Y_{\text{source}} = W_{\text{source}}C_{\text{source}}, \quad Y_{\text{target}} = W_{\text{target}}C_{\text{target}} \]

(21)

(b) Adjust the dynamic range of \(C_{\text{source}}\) so as it matches that of \(C_{\text{target}}\) to obtain a normalized source stains \(C_{\text{snorm}}\), by Calculating the 95 percentile of each row of the \(C_{\text{source}}\) and \(C_{\text{target}}\) as \(C_{s-extreme}(i)\) and \(C_{t-extreme}(i)\) to obtain a scale matrix. The dynamic range is estimated with a pseudo maximum (95%) as it is robust. We used (22) instead of (23).

\[D_{\text{scale}}(i,1) = \frac{C_{s-extreme}(i)}{C_{t-extreme}(i)} \]

(22)

Instead of

\[D_{\text{scale}}(i,1) = \frac{C_{t-extreme}(i)}{C_{s-extreme}(i)} \]

(23)

where \(i = 1, \ldots, r\) which is the row number in a coefficient matrix \(C\).

(c) Obtain the scale row of \(C_{\text{source}}\) using (24) instead of (25).

\[C_{s-scaled}(i,:) = C_{\text{target}}(i,:) D_{\text{scale}}(i,1) \]

(24)

Instead of

\[C_{s-scaled}(i,:) = C_{\text{source}}(i,:) D_{\text{scale}}(i,1) \]

(25)
(d) Colour transfer image in optical density space.

\[Y_{\text{transferred}} = W_{\text{target}} C_{\text{s-scaled}} \]

(26)

(e) Apply a weighting factor to a colour transferred image

\[\text{New}Y_{\text{transferred}} = T \times Y_{\text{transferred}} \]

(27)

where \(T \geq 1 \), \(T \) can be adjusted to improve the brightness and contrast of the normalised image. The default values of \(T \) for both H&DAB and H&E stain images is 1.

(f) Convert the normalised image from optical density space to RGB space

\[I_{\text{normalised}} = I_0 \exp(-\text{New}Y_{\text{transferred}}) \]

(28)

where \(I_0 = 255 \)

4 Experiments

We tested the proposed method using 48 H&DAB image slides with dimensions of 1920 x 1080 pixels from the mouse cortex, and 100 H&E stain images with dimensions of 1539 x 1376 pixels provided by Dr Abhishek Vahadane. We also used 22 H&E histology images with the dimension of 2000 x 2000 pixels of different datasets (i.e. breast dataset,
colon dataset and lung dataset) provided by Alsubaie N et al. [1] under the support information section. H&E images came with ground truth. Please refer to [1] for more information about the ground truth. H&DAB images were stained on different dates. H&E images are from different scanners (Hamamatsu scanner and Aperio scanner). To increase reliability, more than one sample of slides were extracted from each mouse. 48 H&DAB image slides were extracted from different mice. As compared to other colour transfer methods, a weighting factor is introduced in the colour transfer stage. The weighting factor improves the brightness and contrast of the image as shown in Fig. 3.

4.1 Validation and evaluation of stain normalisation

We evaluated results from stain separation stage and the colour transfer stage both qualitatively and quantitatively. The accuracy of stain separation is evaluated using both estimated stain matrix and density maps. This is because stain matrix represents the principal colour of each stain and each vector in the stain matrix represents RGB values within an optical density space for each stain colour [1, 86]. An accurate stain matrix leads to better stain estimation. In this paper, ground truth data is used during the evaluation of the estimated stain matrix. During this stage, the root mean square error between the estimated stain vector and the ground truth is used. Bar charts are used during the comparison of our method with existing methods. The density maps represent the amount of stain absorbed at each pixel. A similarity quality metric between the results obtained using the proposed method and the ground truth is used to evaluate the accuracy of the proposed method. Box plots and a bar graph are used to compare stain separation obtained using our methods with that of other methods (Fig. 4). We used the median for easy comparison. The quantitative results shown in Figs. 5 and 4, show the superior performance of the proposed method over others.

Fig. 4 Root mean square error between the estimated stain matrices and the ground truth data for all methods on all datasets. (1) breast dataset, (2) Colon dataset, and (3) Lungs dataset.
Fig. 5 Correlation between the density maps and the ground truth with associated SSIM Index for each method with respect to H(Left) and E (right) stains in all three datasets a proposed method, b Alsubaie N et al. [1] and c Macenko et al. [57]

The accuracy of colour transfer is evaluated both qualitatively as shown in Figs. 6f, 7f. Our stain normalisation method produces better results compared to other methods.

4.2 Discussion

The qualitative and the overall quantitative results of stain separation in Figs. 8, 5 and 4, show that the proposed method outperforms all the other methods. The similarity metric in
Fig. 7 Comparison of different stain normalisation methods on H&DAB stain images. a target image, d source image, b Reinhard et al. [67], c Khan et al. [40], e Macenko et al. [57], f Proposed Method.

Fig. 8 Stain separation after application of SVD, statistical blind source separation ICA and proposed method on H&E images. a statistical blind source separation ICA H&E images, b SVD H&E stains, c Proposed method.
Table 1. SSIM Index between the stain matrices and the ground truth. The last two columns show the median of SSIM index for all methods.

Method	Breast Dataset	Lung Dataset	Colon Dataset	Median					
	H	E	H	E	H	E	H	E	
Alsubaie N et al. [1]	0.697	0.879	0.722	0.797	0.714	0.758	0.705	0.811	
Macenko et al. [57]	0.803	0.830	0.719	0.847	0.759	0.787	0.759	0.814	
Proposed Method	0.827	0.878	0.764	0.825	0.763	0.829	0.770	0.838	

Fig. 5 and Table 1 above shows that the proposed method outperforms Alsubaie et al. [1] by 4-13% for H for breast dataset, colon dataset, and the lung dataset. However Alsubaie’s method [1] outperforms the proposed method by 0.1% for E in breast datasets. The proposed method still outperforms Alsubaie’s method [1] by 3-7% for E in colon and lung dataset. In comparison to Macenko’s method [57], the proposed method outperforms Macenko’s method [57] by 2-4% and 4-5% for H&E in all three datasets (breast and colon dataset). Like Alsubaie’s method [1], Macenko’s method [57] also outperforms the proposed method in estimating Eosin stain. Macenko’s method [57] outperforms the proposed method in estimating Eosin stain.

Fig. 9. Different image slides normalized at different factors. First row are original image slides from cortex, second row are images normalized at factor 4, and third row are images normalized at factor 5.
method by 2.2% for E in the lung dataset. This is due to usage of low weighting factor. Figure 4 shows that proposed method outperforms Alsubaie’s method [1] for estimated stain matrix in both the breast dataset and lung dataset. The proposed method also outperforms Macenko’s method [57] for estimated stain matrix in the colon dataset but achieves the same result for estimated matrix as Macenko’s method [57] in the lung dataset. Macenko’s method [57] achieves better results for estimated stain matrix in breast datasets as compared to all methods.

The colour transfer stage is the final stage of stain normalisation process. The qualitative results of the color transfer stage show that the proposed method can be applied to both H&E stain images and H&DAB images (Figs. 6 and 7). Khan’s NMF method [40] and Macenko’s SVD method [57] produces unrealistic stains when applied to H&DAB images. Khan’s NMF method [40] and Macenko’s SVD method [57] also introduce artefacts when applied to H&DAB images. Reinhard’s method produces slightly better results when applied on H&DAB but still not better than the proposed method. Compared to all methods, our method

![Fig. 10](image-url) Different image slides normalized at different factors. First row are original image slides from cortex, second row are images normalized at factor 2, and third row are images normalized at factor 3
produces satisfactory results when applied on both H&DAB and H&E images (Figs. 9, 10, 11 and 12). With the introduction of a weighting factor in the colour transfer stage, the contrast and brightness of the image can be adjusted. An increase in the weighting factor

Fig. 11 System interface with normalised H&DAB source image

Fig. 12 System interface with normalised H&E source image
results into increase in brightness of the image (Fig. 3). Further work is needed to evaluate the proposed method at different weighting factors.

5 Conclusion

Stain normalisation is an essential step to remove inherent in-homogeneity in histopathological images for diagnosing disease and its progression. A potential drawback of such a technique is that tissue structures and texture in the original image could be distorted after stain normalisation. In this paper, a hybrid approach for stain normalisation has been developed, based on an octree colour quantisation algorithm combined with Beer-Lambert law, a modified blind source separation algorithm, and a modified colour transfer approach. The hybrid method consists of two stages: the stain separation stage and colour transfer stage. An octree colour quantisation algorithm combined with Beer-Lambert law, and a modified blind source separation algorithm are used during stain separation stage to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response. A modified colour transfer algorithm is used during the colour transfer stage to minimise the effect of varying staining and illumination. The method is capable of addressing colour variation in both H&DAB (Haemotoxylin and Diaminobenzidine) and H&E (Haemotoxylin and Eosin) stain image. Unlike other colour transfer, our normalisation algorithm introduces weighting factor which allows one to adjust the brightness and contrast of the normalised image. Both qualitative and quantitative validation demonstrate the superior performance of the proposed stain separation and colour normalisation technique.

Acknowledgements Faiza Bukenya acknowledges the Islamic Development Bank (IDB) Merit scholarship scheme and University of Nottingham for their generous support. My sincere thanks goes out to Dr. Marie-Christine Pardon and Culi Nerissa (School of Life Science, University of Nottingham) for providing H&DAB stained image slides. My warm thanks goes out to Dr. Abhishek Vahadane for providing H&E stained image slides.

Compliance with Ethical Standards

Conflict of interests There is no competing interests or exclusive licenses used in preparing this manuscript.

References

1. Alsubaie N, Trahearn N, Raza SEA, Snead D, Rajpoot NM (2017) Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLOS ONE 12(1):1–15
2. Andrews H, Patterson C (1976) Singular value decompositions and digital image processing. IEEE Transactions on Acoustics Speech, and Signal Processing 24(1):26–53
3. Asiedu L, Adebanji A, Oduro FT, Mettle FO (2016) Statistical assessment of pca/svd and fft-pca/svd on variable facial expressions
4. Babaee M, Tsoukalas S, Babaee M, Rigoll G, Datcu M (2016) Discriminative nonnegative matrix factorization for dimensionality reduction. Neurocomputing 173:212–223
5. Berry MW, Gillis N, Glineur F (2009) Document classification using nonnegative matrix factorization and underapproximation. In: 2009 IEEE International symposium on circuits and systems. IEEE, pp 2782–2785
6. Bogaardt L, Goncalves R, Zurita-Milla R, Izquierdo-Verdiguier E (2019) Dataset reduction techniques to speed up svd analyses on big geo-datasets. ISPRS International Journal of Geo-Information 8(2):55
7. Bougacha A, Njeeh I, Bougariou J, Kammoun O, Mahfoudh KB, Dammak M, Mhiri C, Hamida AB (2018) Rank-two nmf clustering for glioblastoma characterization. Journal of Healthcare Engineering, 2018
8. Burns PD, Berns RS (1999) Quantization in multispectral color image acquisition. In: Color and imaging conference, vol 1999, pp 32–35. Society for Imaging Science and Technology
9. Cahill ND, Chew SE, Wenger PS (2015) Spatial-spectral dimensionality reduction of hyperspectral imagery with partial knowledge of class labels. In: Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XXI, vol 9472, pp 94720S. International Society for Optics and Photonics
10. Cahill ND, Czaia W, Messinger DW (2014) Schroedinger Eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery
11. Carey Ds, Wijayathunga VN, Bulppit AJ, Treanor D (2015) A novel approach for the colour deconvolution of multiple histological stains. In: Proceedings of the 19th conference of medical image understanding and analysis, pp 156–162. BMVA
12. Celis R, Romo D, Romero E (2015) Blind colour separation of h&e stained histological images by linearly transforming the colour space. J Microsc 260(3):377–388
13. Charles RM, Taylor KM, Curry JH (2015) Nonnegative matrix factorization applied to reordered pixels of single images based on patches to achieve structured nonnegative dictionaries. arXiv preprint arXiv:1506.08110
14. Ciompi F, Geessink O, Bejnordi BE, de Souza GS, Baidoshvili A, Litjens G, van Ginneken B, Nagtegaal I, van der Laak J (2017) The importance of stain normalization in colorectal tissue classification with convolutional networks. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). IEEE, pp 160–163
15. Dera D, Bouaynaya N, Fatallah-Shaykh HM (2016) Automated robust image segmentation: level set method using nonnegative matrix factorization with application to brain mri. Bull Math Biol 78(7):1450–1476
16. Duong V-H, Lee Y-S, Pham B-T, Bao PT, Wang J-C (2016) Nmf-based image segmentation. In: 2016 IEEE International conference on consumer electronics-taiwan (ICCE-TW). IEEE, pp 1–2
17. Ebied A, Kinney-Lang E, Spyrou L, Escudero J (2018) Evaluation of matrix factorisation approaches for muscle synergy extraction. Med Eng Phys 57:51–60
18. Finlayson GD, Schiele B, Crowley JL (1998) Comprehensive colour image normalization. In: European conference on computer vision. Springer, pp 475–490
19. Fu X, Huang K, Sidiropoulos ND, Ma W-K (2018) Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications. arXiv preprint arXiv:1803.01257
20. Garcia-Torres L, Caballero-Novella JJ, Gomez-Candon D, De-Castro AI (2014) Semi-automatic normalization of multitemporal remote images based on vegetative pseudo-invariant features. PloS one 9(3):e91275
21. Gavrilovic M, Azar JC, Lindblad J, Wählby C, Bengtsson E, Busch C, Carlbom IB (2013) Blind color decomposition of histological images
22. Ghosh B, Karri SPK, Sheet D, Garud H, Ghosh A, Ray AK, Chatterjee J (2016) A generalized framework for stain separation in digital pathology applications. In: 2016 IEEE annual India conference (INDICON). IEEE, pp 1–4
23. Golub GH, Van Loan CF (2013) Matrix computations. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore
24. Guillamet D, Schiele B, Vitria J (2002) Analyzing non-negative matrix factorization for image classification. In: Object recognition supported by user interaction for service robots, vol 2. IEEE, pp 116–119
25. Guo L, Xu D, Qiang Z (2016) Background subtraction using local svd binary pattern. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 86–94
26. Hamidineko A, Zwiggelaar R (2017) Deep learning in medical image analysis and multimodal learning for clinical decision support. In: Cardoso MJ, Arbél T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, Bradley A, Greenspan H, Papa JP, Madabhushi A, Nascimento JC, Cardoso JS, Belagiannis V, Lu Z (eds). Springer International Publishing, Cham, pp 213–221
27. Hauta-Kasuri M, Parkkinen M, Jääskeläinen T, Lenz R (1999) Multi-spectral texture segmentation based on the spectral cooccurrence matrix. Pattern Anal Appl 2:275–284
28. Hoffman RA, Kothari S, Wang MD (2014) Comparison of normalization algorithms for cross-batch color segmentation of histopathological images. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, pp 194–197
29. Hong C, Yu J, Tao D, Wang M (2014) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751
Multimedia Tools and Applications

30. Horn RA, Johnson CR (1987) Matrix analysis. Cambridge etc., Cambridge University Press 1985. xiii, 561 s., £ 35.00. isbn 0-521-30586-1. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 67(3):212–212
31. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417
32. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4-5):411–430
33. Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, Englewood Cliffs
34. Janowczyk A, Basavanahally A, Madabhushi A (2017) Stain normalization using sparse autoencoders (stanosa): application to digital pathology, vol 57, pp 50–61. Recent developments in machine learning for medical imaging applications
35. Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using imagej. Anat Rec 296(6):378–381
36. Jia Z, Yang Y (2018) Modified truncated randomized singular value decomposition (mtrsvd) algorithms for large scale discrete ill-posed problems with general-form regularization. Inverse Probl 34(5):055013
37. Kalatehjari E, Yaghmaee F (2018) A new reduced-reference image quality assessment based on the svd signal projection. Multimed Tools Appl 77(19):25053–25076
38. Karsh RK, Laskar RH et al (2017) Robust image hashing through dwt-svd and spectral residual method. EURASIP Journal on Image and Video Processing 2017(1):31
39. Kather JN, Weiss C-A, Marx A, Schuster AK, Schad LR, Zöllner FG (2015) New colors for histology: optimized bivariate color maps increase perceptual contrast in histological images. Plos one 10(12):e0145572
40. Khan AM, Rajpoot N, Treanor D, Magee D (2014) A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 61(6):1729–1738
41. Khan H, Mihoubi S, Mathon B, Thomas J-B, Hardeberg J (2018) Hytexila: high resolution visible and near infrared hyperspectral texture images. Sensors 18(7):2045
42. Kim HH, Elman GC (1990) Normalization of satellite imagery. Int J Remote Sens 11(8):1331–1347
43. Konstantinides K, Natarajan B, Yovanof GS (1997) Noise estimation and filtering using block-based singular value decomposition. IEEE Trans Image Process 6(3):479–483
44. Kothari S, Phan JH, Moffitt RA, Stokes TH, Hassberger SE, Chaudry Q, Young AN, Wang MD (2011) Automatic batch-invariant color segmentation of histological cancer images. In: 2011 IEEE International symposium on biomedical imaging: from nano to macro. IEEE, pp 657–660
45. Krutsch R, Tenorio D (2011) Histogram equalization
46. Lee DD, Seung SH (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788
47. Leuschner J, Schmidt M, Femsel P, Lachmund D, Boskamp T, Maass P (2018) Supervised non-negative matrix factorization methods for MALDI imaging applications. Bioinformatics 11:1940–1947
48. Li K (2004) Advanced image processing homework 1 color quantization : a median cut approach
49. Li S, Zhou Y, Chen J, Huai W-J (2012) Nature image feature extraction using several sparse variants of non-negative matrix factorization algorithm. In: International symposium on neural networks. Springer, pp 274–281
50. Li X, Plataniotis KN (2015) A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans Biomed Eng 62(7):1862–1873
51. Li X, Plataniotis KN (2015) A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans Biomed Eng 62(7):1862–1873
52. Liang L, Shan L, Liu F, Niu B, Xu G (2019) Sparse envelope spectra for feature extraction of bearing faults based on nmf. Appl Sci 9(4):755
53. Lijtens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–80
54. Liu W, Peng F, Feng S, You J, Chen Z, Wu J, Yuan K, Ye D (2008) Semantic feature extraction for brain ct image clustering using nonnegative matrix factorization. In: International conference on medical biometrics. Springer, pp 41–48
55. Local Binary Pattern. Content based image retrieval using gray
56. Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, Schmitt C, Thomas NE (2009) A method for normalizing histology slides for quantitative analysis. In: ISBI’09. IEEE International symposium on biomedical imaging: from nano to macro, 2009. IEEE, pp 1107–1110
58. Muhimmah I, Wijaya DP, Indrayanti (2017) Color swapping to enhance breast cancer digital images qualities using stain normalization. IOP Conf Ser Mater Sci Eng 185(1):012029
59. Naylor P, Lae M, Reyal F, Walter T (2017) Nuclei segmentation in histopathology images using deep neural networks. In: 2017 IEEE international symposium on biomedical imaging (ISBI 2017), pp 933–936
60. Ødegård J, Indahl U, Strandén I, Meuwissen THE (2018) Large-scale genomic prediction using singular value decomposition of the genotype matrix. Genet Sel Evol 50(1):6
61. Ortega-Martorell S, Lisboa PJG, Vellido A, Simões RV, Pumarola M, Julià-Sapé M, Arús C (2012) Convex non-negative matrix factorization for brain tumor delimitation from mri data. PLoS One 7(10):e47824
62. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126
63. Papadias CB (2000) Globally convergent blind source separation based on a multiuser kurtosis maximization criterion. In: Advances in neural information processing systems, pp 667–674
64. Pearson K (1901) Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11):559–572
65. Peter L, Mateus D, Chatelain P, Schworm N, Navab N (2014) Leveraging random forests for interactive exploration of large histological images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 1–8
66. Rabinovich A, Agarwal S, Laris C, Price JH, Belongie SJ (2004) Unsupervised color decomposition of histologically stained tissue samples. In: Advances in neural information processing systems, pp 667–674
67. Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41
68. Rey W (2007) Total singular value decomposition. robust svd, regression and location-scale. arXiv preprint arXiv:0706.0096
69. Reyes-Aldasoro CC, Williams LJ, Ackerman S, Kanthou C, Tozer GM (2010) An automatic algorithm for the segmentation and morphological analysis of microvessels in immunostained histological tumour sections. J Microsc 242(3):262–278
70. Ruifrok AC, Johnston DA et al (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299
71. Sadek RA (2012) Svd based image processing applications: state of the art, contributions and research challenges. arXiv preprint arXiv:1211.7102
72. Sampath R, Biros G (2010) A parallel geometric multigrid method for finite elements on octree meshes. SIAM J Sci Comput 32(3):1361–1392
73. Saraswat M, Arya KV (2013) Colour normalisation of histopathological images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 1(4):185–197
74. Saraswat M, Arya KV (2014) Automated microscopic image analysis for leukocytes identification: a survey. Micron 65:20–33
75. Schott JR (2016) Matrix analysis for statistics. Wiley, Hoboken
76. Selim I, Keshtk AE, El Shourbugy BM (2016) Galaxy image classification using non-negative matrix factorization. Int J Comput Appl 137(5):4–8
77. Sertel O, Kong J, Lozanski G, Shana’ah A, Catalyurek U, Saltz J, Gurcan M (2008) Texture classification using nonlinear color quantization: application to histopathological image analysis. In: ICASSP 2008. IEEE International conference on acoustics, speech and signal processing, 2008. IEEE, pp 597–600
78. Sha ASL, Schonfeld D (2017) Color normalization of histology slides using graph regularized sparse nmf
79. Shaban MT, Baur C, Navab N, Albarqouni S (2018) Staingan: stain style transfer for digital histological images. arXiv preprint arXiv:1804.01601
80. Shan D, Xu X, Liang T, Ding S (2018) Rank-adaptive non-negative matrix factorization. Cogn Comput 10(3):506–515
81. Soelter J, Schumacher J, Spors H, Schmuker M (2014) Automatic segmentation of odor maps in the mouse olfactory bulb using regularized non-negative matrix factorization. NeuroImage 98:279–288
82. Squires S, Prügel-Bennett A, Niranjan M (2017) Rank selection in nonnegative matrix factorization using minimum description length. Neural Comput 29(8):2164–2176
83. Sun W, Yang G, Du B, Zhang L, Zhang L (2017) A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 55(7):4032–4046
84. Trahearn N, Snead D, Cree I, Rajpoot N (2015) Multi-class stain separation using independent component analysis. In: Medical imaging 2015: digital pathology, vol 9420, pp 94200J. International Society for Optics and Photonics
85. Vahadane A, Peng T, Albarqouni S, Baust M, Steiger K, Schlitter AM, Sethi A, Esposito I, Navab N (2015) Structure-preserved color normalization for histological images. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, pp 1012–1015
86. Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, Steiger K, Schlitter AM, Esposito I, Navab N (2016) Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imaging 35(8):1962–1971
87. Van Eycke Y-R, Allard J, Salmon I, Debeir O, Decaestecker C (2017) Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining. Sci Rep 7:42964
88. Vanrell M, Lumbrares F, Pujol A, Baldrich R, Llados J, Villanueva JJ (2001) Colour normalisation based on background information. In: Proceedings. 2001 International conference on image processing, 2001, vol 1. IEEE, pp 874–877
89. Vicory J, Couture HD, Thomas NE, Borland D, Marron JS, Woosley J, Niethammer M (2015) Appearance normalization of histology slides. Comput Med Imaging Graph 43:89–98
90. Vollmer C, Hellbach S, Eggert J, Gross H-M (2014) Sparse coding of human motion trajectories with non-negative matrix factorization. Neurocomputing 124:22–32
91. Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value decomposition and principal component analysis. In: A practical approach to microarray data analysis. Springer, pp 91–109
92. Wang Z, Kong X, Fu H, Li M, Zhang Y (2015) Feature extraction via multi-view non-negative matrix factorization with local graph regularization. In: 2015 IEEE International conference on image processing (ICIP), pp 3500–3504
93. Xu J, Xiang L, Wang G, Ganesan S, Feldman M, Shih NNC, Gilmore H, Madabhushi A (2015) Sparse non-negative matrix factorization (snmf) based color unmixing for breast histopathological image analysis. Comput Med Imaging Graph 46:20–29
94. Xu X, Dexter SD, Eskicioglu AM (2004) A hybrid scheme for encryption and watermarking. In: Security, steganography, and watermarking of multimedia contents VI, vol 5306, pp 725–737. International Society for Optics and Photonics
95. Yang J-F, Lu C-L (1995) Combined techniques of singular value decomposition and vector quantization for image coding. IEEE Trans Image Process 4(8):1141–1146
96. Yu J, Tao D, Wang M, Rui Y (2014) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybernetics 45(4):767–779
97. Zanjani FG, Zinger S, Bejnordi BE, van der Laak JAWM, de With PHN (2018) Stain normalization of histopathology images using generative adversarial networks. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), pp 573–577
98. Zanjani FG, Zinger S, Bejnordi BE, van der Laak JAWM, de With PHN (2018) Stain normalization of histopathology images using generative adversarial networks. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018). IEEE, pp 573–577
99. Zdunek R, Phan AH, Cichocki A (2015) Image classification with nonnegative matrix factorization based on spectral projected gradient. IEEE Signal Processing Letters 22(1):153–156
100. Zhang J, Dai T, He Z, Zhang J (2019) Exploring weighted dual graph regularized non-negative matrix.tri-factorization based collaborative filtering framework for multi-label annotation of remote sensing images. Remote Sens 11(8):922
101. Zhang Y, Xu T, Ma J (2017) Image categorization using non-negative kernel sparse representation. Neurocomputing 269:21–28
102. Zheng Y, Jiang Z, Zhang H, Xie F, Shi J, Xue C (2019) Adaptive color deconvolution for histological wsi normalization. Comput Meth Prog Biomed 170:107–120

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Faiza Bukenya is a PhD research student at the University of Nottingham, United Kingdom. She received her BSC from Makerere University in 2009, Uganda and her MSC from University of Technology in Malaysia in 2012. She is currently a member of N2women network.