On the spectral coexistence of GSO and NGSO FSS systems: power control mechanisms and a methodology for inter-site distance determination

A. Pourmoghadas*,†, S. K. Sharma, S. Chatzinotas and B. Ottersten

Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, L-2721 Luxembourg

SUMMARY

The coexistence of geostationary satellite orbit (GSO) and non-GSO (NGSO) fixed satellite service systems within the same spectrum to enhance the spectrum efficiency in Ka band has attracted many interests lately. However, the coexistence of GSO-NGSO satellite systems with limited shared spectrum can cause in-line interference from a satellite to other satellite’s earth terminals. In this context, this contribution investigates three possible power control approaches to mitigate the in-line interference caused by an NGSO satellite to the GSO earth terminal, while the NGSO satellite is crossing the GSO satellite’s illumination zone. Moreover, three types of interference mitigation techniques, namely, range-based, traffic-aware, and cognitive power control techniques are investigated. Furthermore, to increase the spectrum efficiency of the GSO-NGSO fixed satellite service terrestrial network, we formulate and solve an optimization problem with the objective of minimizing the inter-site distance between earth user-terminals. More specifically, we find the minimum distance from a GSO earth terminal, where an NGSO earth terminal can be implemented subject to minimizing received interference level at the victim system. Finally, our comparative results show that the cognitive power control technique performs the best in protecting the victim receiver from the in-line interference. Copyright © 2016 John Wiley & Sons, Ltd.

Received 14 February 2016; Revised 28 July 2016; Accepted 28 September 2016

KEY WORDS: cognitive power control; range-based power control; traffic-aware power control; inter-site distance; interference mitigation; GSO; NGSO

1. INTRODUCTION

The expected traffic volume increase in wireless communications, the need for ubiquitous coverage and high quality services with the limited available resources are putting strain on the existing infrastructure of communication systems across the globe. Satellite communications offers many possibilities and opportunities in achieving such efficiency in quality of service and extending backhaul services to anywhere and anytime. However, because of growing rate on the number of operating satellites, satellite systems are also facing the limitation on orbits and frequency bands. Studies on efficient usage of satellite resources and their coexistence with either terrestrial systems and other satellite networks exist in the literature [1, 2]. The coexistence of satellite systems with either other satellite systems or terrestrial networks can be made possible by employing suitable resource allocation and interference mitigation techniques [3, 4]. The traditional resource allocation techniques are no longer efficient because a significant amount of the licensed spectrum remains underutilized, as reported by Federal Communication Commission [5].

* Correspondence to: A. Pourmoghadas, Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg L-2721, Luxembourg.
† E-mail: ameneh.pourmoghaddaslangroudi@uni.lu
Apart from the requirement of finding intelligent (or cognitive) resource allocation, it is important to ensure that the coexistence of the multi-satellite systems does not cause interference to other co-channel systems such as fixed satellite services, mobile satellite services, or terrestrial network. For instance, consider the coexistence of many geostationary satellite orbit (GSO) satellite systems operating over Europe and North America at the Ka/Ku band, which are located 3° apart from each other to avoid the potential interference from an adjacent satellite to the earth terminal in the downlink communication. However, the interference mitigation is more complicated considering a practical dual satellite system scenario, where two satellites (e.g., GSO-non-GSO (NGSO) satellites) operate simultaneously over a coverage area while sharing the spectrum bands [6].

In the coexistence scenarios of GSO-NGSO networks, ‘in-line’ interference arises whenever an NGSO satellite passes through a line of sight path between an earth station and a GSO satellite [7]. It occurs because an NGSO satellite may create/receive interference through its sidelobe or mainlobe to the GSO system (Figure 1). To understand this scenario better, we can consider the coexistence of O3b satellites within ±5° latitude from the equator and GSO Eutelsat KA-SAT satellite (orbit: 9.0, incl: 0.04) as a good example. O3b satellite, which uses the medium Earth orbit (MEO) constellation and shares the frequency 18.8–19.3 GHz in downlink communication with the GSO system, has a high potential to cause interference to the GSO FSS system. In this context, one of the key challenges that has been identified in ITU Radio Regulations and European Space Agency is the need to explore efficient techniques to mitigate the in-line interference for the spectral coexistence of GSO-NGSO satellite networks.

1.1. Related literature

Studies on interference mitigation techniques have been conducted, and various schemes to reduce the interference from other radio systems have been recommended in ITU-R reports and in the literature [1]–[10]. In general, techniques that are commonly used to facilitate the spectrum sharing between GSO and NGSO satellites can be divided into two categories as follows.

1) **Coordinated techniques:** In this category of techniques, a coordinator takes care of the synchronization between systems and sends the operating orders to the satellite stations. Some of these techniques are briefly described in the following.

Footnote:

1 Orbit position is the longitude position around the geostationary orbit. The inclination angle shows that the geostationary satellite orbit (GSO) moves north–south across the equatorial plane on a daily basis (http://www.satellite-calculations.com/Satellite/Catalog/catalogID.php?37258).
(i) Frequency allocation: This technique is associated with a command center located either on the earth or on-board, which coordinates the frequency allocation for GSO-NGSO satellite systems during the interference [9].

(ii) Frequency channelization (or band planning): In this scheme, each frequency band is divided into authorized small sub-bands. Each sub-band is assigned to a separate beam, that is, spatially separated from its nearest co-frequency beam. This division can improve the interference level by decreasing the probability of overlap between frequency bands [10].

(iii) Radio frequency monitoring and interference detection: Another technique to mitigate against the disruptive effects of satellite interference is rapid detection and characterization through effective monitoring, which leads to extracting the interruption frequency band whenever available [11].

(iv) Satellite diversity: This scheme is in accordance with a handover process due to selection of another satellite to avoid the interference. This technique tries to avoid main beam to main beam interference by switching traffic to an alternative satellite in view whenever such in-line events occur [12].

(2) **Uncoordinated (cognitive) techniques**: This category of techniques deals with techniques that do not require prior coordination in order to enable coexistence of FSS systems. Some of these approaches are

(i) Satellite selection strategies: In general, earth stations communicate with satellite stations in the highest elevation angle. A different tracking technique, such as selecting the satellite that has the largest angular discrimination with respect to the satellites of other NGSO FSS systems, may improve the system capacity [13].

(ii) Spot turnoff method: In this method, one of the two spots is turned off whenever two spots overlap too much [14] or turning off the transmitters whenever the antenna axis of NGSO satellites moves within a given angular distance of the GSO [15].

(iii) Power control technique: In this scheme, a cognitive transmission power technique is used to provide the required signal-to-noise ratio (SNR) at the receiver and maintain the interference level on the victim receiver, in the coexistence of the GSO-NGSO networks [7].

1.2. Motivation and contributions

Power control techniques have been utilized on the current operating satellites. For instance, Intelsat designs a transmission plan that optimizes the amount of power and bandwidth based on the antenna size and bandwidth of the wanted receiver on the earth [16]. However, cognitive transmission and techniques for interference mitigation in such multi/dual satellite communication systems have not been deployed yet and need further investigation [3].

Although enormous number of literature have addressed dynamic power control techniques for terrestrial cellular and cognitive radio networks [17–21], the applications of these techniques in the GSO-NGSO coexistence scenario is relatively new. The earlier research on power adaptation belongs to 19th century. For instance, [18, 19] mainly focus on adaptive transmission power for the base stations (BSs) to compensate the channel fading and controlling interference.

Wherein, [20] initiated the trend of energy-efficient power control for cellular networks by applying a dynamic power control in downlink transmission. Authors in [20], propose a tardy scheduling, which schedules packet transmissions as slowly as possible to minimize power consumption subject to maintain the packet delay constraints.

Most of the studies on dynamic transmission power controls on satellite stations involves on-board energy saving, regardless of investigations on controlling the imposed interferences on the victim receiver. For example, [22, 23] focus on energy saving of the batteries on the satellite boards as a single unit. Whereas, [24] considers the energy consumption reduction of eclipsed satellites constellations as a whole system. In [24], authors provide a heuristic algorithm for an intelligent low Earth orbit (LEO) constellations satellites to save energy in whole LEO constellation system based on the traffic demands from the earth. Besides, most of the research works in the literature have been carried out on operating...
individual satellite systems. Wherein, the integration between different satellite constellations plays a key role in moving towards the next generation of the satellite networks. In this regard, [25] and [26] provide a study on the coexistence of hierarchical multilayered satellite network. Authors in [27] studied the effect of the attenuation/fading on the received interference level of the victim earth terminal from an adjacent satellite. In addition to [27, 28] investigates a dynamic power control technique on a satellite to combat the rain attenuation such that the quality of service for the wanted earth receiver is satisfied.

A more related article to the objective of current paper can be found in [7, 8, 29]. The authors in [29] find the minimum separation distance for frequency sharing between fixed service earth terminal and terrestrial BS. In [29], the interference from satellite to the earth terminals is omitted and the paper concentrates on the interference caused from the terrestrial BS to the fixed service earth terminal. Wherein, [8] studies a dynamic joint power and carrier allocation technique for the cognitive satellite communications with terrestrial networks. The dynamic power on the satellite system is associated with the user rate demand to avoid the harmful interference on the terrestrial networks.

According to the ITU-R S.1325-3 recommendation, adaptive power control on range in the downlink is one of the useful interference mitigation techniques in facilitating spectrum sharing between GSO and NGSO networks. This technique is left for further investigation in ITU-R S.1325-3. Also, to the best of our knowledge, an investigation on the traffic-aware power control (TA-PC) technique as an interference mitigation method for the GSO-NGSO systems has not been carried out. Besides, studies on earth terminal deployment strategies is one of the possible approaches for the efficient use of limited spectrum bands and network’s capacity improvement [29].

In this context, the main contributions of this paper are as follows:

(i) We apply the range-based power control (R-PC) technique in the GSO-NGSO spectral coexistence scenario.
(ii) We utilize the cognitive power control in [7] based on the range (C-PC) in the coexistence scenario of GSO and NGSO FSS systems.
(iii) We analyze the feasibility of the C-PC method in terms of GSO-NGSO geometry.
(iv) We formulate and solve the TA-PC problem based on ITU-R S.1325-3.
(v) We develop a model for minimum possible inter-site distance (ISD) between the GSO and NGSO FSS earth terminals through analysis.

The rest of the paper is as follows: Section 2 provides the system model and the in-line interference scenario. The R-PC, C-PC, and TA-PC methods are defined in Section 3. In Section 4, we propose a method for determining the minimum distance between GSO and NGSO earth terminals by relocating the NGSO earth terminal. Section 5 provides the analysis and simulation results. Finally, we draw the conclusion in Section 6.

2. SYSTEM MODEL AND INTERFERENCE SCENARIO

Unlike the NGSO satellites, whose position varies by time with respect to a certain geographical point on the earth surface, the position of the GSO satellites remains fixed. Therefore, the propagation distance from the earth surface to the GSO satellite and vice versa can be considered constant. Whereas, the propagation distance between the satellite to the earth surface on the LEO or MEO orbit varies by time; for instance, O3b satellite orbit period on the MEO constellation is about 4 h. Following the spectrum sharing in Ka band in the coexistence of GSO-NGSO networks, ITU’s 1995 World Radio-communication Conference (WRC-95) has allocated the frequency bands 18.8–19.3 GHz (in downlink from space to Earth) and 28.6–29.1 GHz (in uplink from Earth to space) to the GSO-NGSO FSS networks, which we will be using in this work. In accordance with the coexistence of GSO-NGSO FSS system while sharing spectrum on downlink and uplink, the following in-line interference scenarios are probable to occur (Figure 1).

8Throughout the article, range is the distance between non-geostationary satellite orbit (NGSO) and an NGSO earth terminal.
9Throughout this article, the interference in downlink refers to the user-link interference.
(i) Interference from the NGSO satellite to the GSO earth terminal in the downlink.
(ii) Interference from the GSO earth terminal to the NGSO satellite in the uplink.
(iii) Interference from the GSO satellite to the NGSO earth terminal in the downlink.
(iv) Interference from the NGSO earth terminal to the GSO satellite in the uplink.

In this paper, we consider the geostationary orbit (GEO) and MEO constellations, where O3b satellite in MEO orbit, and Eutelsat in GEO orbit are chosen as the use case scenario causing harmful in-line interference to the GSO earth terminal. Earth terminals are the user terminals operating in Ka band in the FSS system such as VSAT. The results in ITU-R S.1325-3 indicate that the number and duration of interference events from NGSO system on GSO network in downlink is almost 90% of the caused interferences on the uplink feeder links. Therefore, in this work, we focus on the downlink in-line interference from NGSO satellite to the GSO earth terminal (item (1) from the earlier listed bullets, Figure 1), and we leave the rest of the scenarios for our future work. Throughout this paper, we have assumed that the transmitter of the NGSO satellite communicates with their wanted receivers (NGSO earth terminal) along the boresight direction (i.e., off-axis angle θ_0); which means that the antenna gain of the NGSO satellite and the NGSO earth terminal remains fixed in the downlink communication. In the system model, we have assumed free space loss (FSL) on the direct or interference channels, and fading phenomena such as diffraction or tropospheric propagation effects, are not taken into account.

3. RANGE-BASED, COGNITIVE, AND TRAFFIC-AWARE POWER CONTROL ALGORITHMS

The power control method recommended by ITU-R S.1325-3 indicates that the NGSO satellite system can decrease or increase the transmission power (in downlink communication) based on the range, while providing the SNR level to the NGSO earth terminal. We call it as an R-PC method. This method does not apply any further rules for protecting the GSO earth terminal from the created in-line interference. To enhance this method, we propose a C-PC algorithm at the NGSO satellite. In the proposed algorithm, the NGSO satellite will decrease or increase its transmission power while its distance to the NGSO earth terminal is becoming shorter or longer accordingly. We have considered two threshold values for optimizing the transmission power of the NGSO satellite. The minimum SNR level at the wanted receiver, SNR_{min}, and the maximum interference (with respect to the noise floor) tolerance at the victim receiver, I_{th}. Apart from the distance-aware power control methods described earlier, the time-varying nature of the traffic demand from the NGSO earth terminal is taken into account. Considering the user terminals (not gateways), the traffic demand from NGSO earth terminals is not expected to be constant [30]. Following the normalized traffic model for the user terminals provided in ITU-R S.1325-3 and [31] (Figure 2), we study the impact of the traffic-aware power allocation on the performance metrics of the FSS system (e.g., interference, SNR, and power consumption). Herein, we have assumed that the traffic model is already known to the network operator, which means the unpredictable traffic patterns are not considered. As depicted in Figure 2, the CDF of the traffic load for a typical NGSO earth terminal varies over time. Therefore, the power of the NGSO satellite can be varied as a function of the traffic load. We call this technique a TA-PC method. We define the three power control methods in the following subsections.

In the rest of this work, the following subscripts are used: e for the earth terminal, s for the satellite, n for the NGSO system, and g for the GSO system.

3.1. Range-based power control method

To compute the transmission power on the NGSO satellite as a function of range, $d_{ne,ns}$ (Figure 1), we first need to find the SNR level at the NGSO earth terminal. Using the FSL model in ITU-R S.1325-3, the received power at the NGSO earth terminal from the NGSO satellite can be computed as

$$Pr_{xe,ne} = Ptx_{ns}(d_{ne,ns})G_{tx,ns}(0)Gr_{xe,ne}(0)FSL(\lambda, d_{ne,ns}),$$

where $Pr_{xe,ne}[W]$ is the desired receive power at the input to the NGSO earth terminal antenna, $Ptx_{ns}[W]$ is the transmit power of the NGSO satellite station, and function $FSL(\lambda, d) = \left(\frac{d}{\lambda^4}\right)^2$,
in which λ is the wavelength. $G_{txns}(0), G_{rxne}(0)$ are the transmit and receive antenna gains of the NGSO satellite and earth terminal along with the boresight direction, respectively. The received SNR at the NGSO earth terminal is defined as

$$SNR = \frac{P_{txn}(d_{ne,ns})G_{txns}(0)G_{rxne}(0)}{N_0} \left(\frac{\lambda}{4\pi d_{ne,ns}} \right)^2,$$ (2)

where $N_0[W]$ is the thermal noise power at the receiver and can be expressed as

$$N_0 = K \times T_{ne} \times BW_{tx},$$ (3)

where K is the Boltzmann’s constant ($1.38 \times 10^{-23}[J/K]$), and $T_{ne}[K]$ is the noise temperature at the NGSO earth terminal, and $BW_{tx}[Hz]$ is the transmit bandwidth. In order to guarantee SNR_{min} at the NGSO earth terminal the transmit power on the NGSO satellite as a function of range can be computed as follows:

$$P_{txn}(d_{ne,ns}) = \frac{SNR_{min} \times N_0}{G_{rxne}(0) \times G_{txns}(0)} \left(\frac{4\pi d_{ne,ns}}{\lambda} \right)^2.$$ (4)

3.2. Cognitive range-based power control method

The R-PC technique in Equation (4) satisfies the required SNR_{min} at the NGSO earth terminal receiver to close the link. To apply the R-PC in the considered coexistence scenario, we rewrite this technique by taking into account the interference threshold level (I_{th}) of the GSO earth terminal in the following optimization problem.

$$\text{minimize } P_{tx}(d_{ne,ns})$$

C.1. $SNR \geq SNR_{min}$

C.2. $I \leq I_{th}$

C.3. $P_{tx}(d_{ne,ns}) \leq P_{tx_{max}}$.$$

where $P_{tx_{max}}$ is the available maximum transmission power on NGSO satellite board. In Equation (5), conditions C.1 is to take care of the NGSO FSS QoS requirement, C.2 is to avoid harmful interference on the GSO earth terminal, and C.3 is to make sure the range-based transmission power allocation does not exceed $P_{tx_{max}}$. I is the interference power at the GSO earth terminal, computed by Equation (6).
where \(Ptx(d_{ne,ns}) \) is the available transmit power at the NGSO satellite computed in Equation (4), \(d_{ge,ns} \) is the distance between the GSO earth terminal and NGSO satellite, and \(Gtx_{ns}(\theta_{ns}) \) and \(Grx_{ge}(\theta_{ge}) \) are the transmit and receive antenna gains at the off-axis angle of the NGSO satellite and GSO earth terminal, respectively. The value of the parameters are given in the Table I.

Depending on the geometry of the earth stations and satellite systems, it is obvious that the optimization problem in Equation (5) may not have a feasible solution when NGSO satellite is closer to the GSO earth station and far from the NGSO earth station. In this case, although the NGSO satellite can use the maximum power in transmission to close the link with the NGSO earth station receiver, it may not satisfy the interference threshold level at the GSO earth station. This is because the threshold constraints in Equation (5), \(SNR_{\text{min}} \) and \(I_{th} \) are a function of \(d_{ne,ns} \) and \(d_{ge,ns} \), respectively. When the NGSO satellite is farther from the NGSO earth terminal, it should increase the transmission power to close the link and provide the \(SNR_{\text{min}} \). At the same time, if it is closer to the GSO earth terminal, this high transmission power may impose \(I > I_{th} \) on the GSO earth terminal. Eventually, it may not satisfy both threshold constraints simultaneously. Therefore, it is better to handover the transmission to the next NGSO satellite that has better link conditions.

3.3. Traffic-aware power control method

The transmission power on the NGSO satellite, \(Ptx_{sn} \), can vary based on the traffic model, which means:

\[
Ptx_{sn} = C_{\text{traffic}} \times P_{\text{max}},
\]

where \(C_{\text{traffic}} \) is the traffic coefficient dependent on the local time and \(P_{\text{max}} \) is the maximum transmission power of the NGSO satellite. It is assumed that the traffic demand on the NGSO earth terminal regardless of its geometry, varies over time as Figure 2. By substituting Equation (7) in Equation (6), the interference power at the GSO earth terminal can be computed.

Table I. System parameters.

Parameter	Value
Downlink frequency channel	18.8 GHz
\(BW_{tx} \)	125 MHz
\(Grx_{en}(\theta) \), \(Grx_{eg}(\theta) \)	ITU-R S.1428
\(Gtx_{sn}(\theta) \)	ITU-R S.1528
\(Gtx_{sg}(\theta) \)	ITU-R S.672-4
\(h_1', h_2' \)	7 m, 12 m
GSO earth antenna diameter	1.75 m[33]
NGSO earth antenna diameter	0.75 m[34]
NGSO satellite antenna diameter	0.361 m
\(T_{ne}, T_{ge} \)	275 K
GSO (Eutelsat) satellite [lat, lon, alt]	\([-0.1^\circ, 9^\circ E \pm 0.1^\circ, 35,794 km]\)
NGSO (O3b) satellite [lat, lon, alt]	\([-1.55^\circ S, 31.1^\circ E, 8,062 km]\)
GSO terminal [lat, lon]	\([-7.79^\circ S, 24.25^\circ E]\)
NGSO satellite EIRP in the direction of the NGSO receiver earth station	10 dBW
\(I_{th} \)	-10 dB
\(SNR_{\text{min}} \)	10–15 dB

EIRP, effective isotropically radiated power; GSO, geostationary satellite orbit; NGSO, non-geostationary satellite orbit.
In following, we first discuss the geometry determination of ISD between earth stations; then we follow the optimization problem for computing the minimum distance, \(ISD_{\text{min}} \), between GSO and NGSO earth terminals.

4. PROPOSED INTER-SITE DISTANCE DETERMINATION METHOD

In this section, we develop an analytical method for finding the minimum ISD between the GSO and NGSO earth terminals by deploying an optimization problem. Our optimization problem will take into account the interference level from NGSO satellite to the GSO earth terminal in downlink communication. We have assumed that the position of GSO earth terminal is fixed, and we can only control the repositioning of the NGSO earth terminal. Please note that in our ISD model, we have not considered terrain information such as buildings or mountains. And we have assumed that the earth terminals are at the same height above sea level.

First, let us find a relation between the ISD and the wanted range between NGSO satellite and earth terminal, \(d_{ne,ns} \) (Figure (3)). Having the altitude, longitude, and latitude of each earth terminal and satellite, we can compute the distance between any earth terminal to any given satellite \(d_{ETX} \) as follows [32]:

\[
d_{ETX} = \sqrt{r_{sat}^2 + \left(R_E \right)^2 - 2 \left(r_{sat} \right) \cos \omega \cos \Gamma},
\]

where \(r_{sat} \) is the satellite radius, \(R_E \) is the earth radius, \(\omega \) is the difference in longitude, in degrees, between the earth station and the satellite, and \(\Gamma \) is the earth station latitude in degrees. Let us denote local heights of the GSO and NGSO earth terminals as \(h_1 \) and \(h_2 \), respectively. Then, we have

\[
L = \frac{h_2}{\tan(\varepsilon_2)}, \quad h_2 = d_{ne,ns} \times \sin(\varepsilon_2') + H, \quad H = |h_1' - h_2'|,
\]

where \(L \) is the horizontal distance of the NGSO satellite from the GSO earth terminal, \(h_1 \) and \(h_2 \) are the altitudes of the GSO and NGSO satellites from the horizontal plane of the GSO terminal. \(\varepsilon_2 \) is the elevation angle of the NGSO satellite from the GSO earth terminal, and \(\varepsilon_2' \) is the elevation angle of the NGSO satellite from the GSO earth terminal. From Equation (9), we can compute \(L \) as...
Because L is known, we can compute the horizontal distance between NGSO and GSO earth terminals, D, as follows:

$$
D = d_{ne,ns} \times \sin (\varepsilon_2') + H \tan (\varepsilon_2).
$$

where ϕ is the azimuth angle of the NGSO earth terminal from the GSO earth horizon in degrees. ISD can be computed as

$$
ISD(\varepsilon_2, \varepsilon_2', \phi, d_{ne,ns}) = \sqrt{D^2 + a^2}.
$$

By replacing SNR with SNR_{\min} in Equation (4) and from Equation (6), the conditions C.1 and C.2 in Equation (13) give us the following restriction on the distance between the NGSO satellite and earth terminal systems.

$$
d_{ne,ns} \leq \sqrt{\frac{I_{th}}{SNR_{\min}}} \times \left(\frac{F (d_{ge,ns}, \theta_{ns}, \theta_{ge})}{C} \right).
$$

By assuming the off-axis angles and $d_{ge,ns}$ are not changing, F can be considered as a constant term. The constant term C contains the antenna gain of the NGSO systems on boresight angle ($\theta = 0$). Therefore, by substituting $d_{ne,ns}$ from Equation (14) into Equation (12), the minimum value for ISD can be computed.

In next section, we represent the results for the R-PC, C-PC, and TA-PC mechanisms in the coexistence of GSO-NGSO FSS systems. We also compare the results for ISD_{\min}, using the analytical model in Equation (12), and the simulation results.

5. NUMERICAL AND SIMULATION RESULTS

In this section, first, we show the antenna gain pattern of the NGSO satellite system and earth terminal in Figure 4. The antenna gain patterns for FSS system in Ka band are recommended by ITU-R radio regulations as provided in Table I. Then, we compare the results of the R-PC with C-PC algorithm by assuming there is no available precise traffic demand for NGSO earth terminal. After that, we consider the traffic model given in Figure 2 for the NGSO earth terminal. We have assumed that the traffic statistics does not vary with geographic location or service type and it is identical everywhere on the Earth. We show the results for the interference to the noise ratio at the victim receiver by deploying a traffic-aware version of R-PC and C-PC in comparison with TA-PC. Finally, we explain a Monte Carlo technique, which is conducted for computing the ISD_{\min} in our simulation, and we compare this results with the analytical model provided in Section 4.

Throughout our numerical results, it is assumed that the earth terminal is in association with the constellation and tracks the corresponding NGSO space station once a communication link is established.
We increased the range, \(d_{nse,ns} \), by moving the NGSO satellite on its longitude. The range between NGSO satellite and the NGSO earth terminal is in associate with the elevation angle on the NGSO earth terminal, \(\epsilon_{n} \). Once the elevation angle of the NGSO earth terminal is lesser than the minimum elevation angle, the NGSO earth terminal communicate with the next available NGSO satellite with highest elevation angle (90°). The minimum elevation angle is considered to be 5° for NGSO earth terminal. To compute the off-axis angle with respect to a station, we have assigned a vector in a spherical coordinate system from that station to the other stations. For instance, to find \(\theta_{n} \) in Figure 3, we connect a vector between the NGSO satellite and its desired earth receiver (in which, off-axis angle = 0°), let us call it as V1. Then we connect V2 as the interfering vector between the NGSO satellite to the GSO earth terminal. The angle between the two vectors, V1 and V2, give us the observed off-axis angle (\(\theta_{n,s} \)) with respect to the NGSO satellite.

5.1. **Results with uniform traffic demand from non-geostationary satellite orbit earth terminal**

In this subsection, we have assumed that the traffic demand from the NGSO earth terminal does not vary with the time.

![Figure 4. Antenna gain pattern of non-geostationary satellite orbit (NGSO) fixed satellite service (FSS) system in downlink.](wileyonlinelibrary.com)

![Figure 5. Comparison effective isotropically radiated power (EIRP) for the non-geostationary satellite orbit (NGSO) satellite system using the range-based power control, EIRP\(_{max}\) = 10 dBW, SNR\(_{min}\) = 15 dB.](wileyonlinelibrary.com)
Figure 6. Comparison of received signal-to-noise ratio (SNR) at the non-geostationary satellite orbit (NGSO) earth terminal using the range-based power control, $P_{tx_{max}} = 10$ dBW, $SNR_{min} = 15$ dB. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 7. Interference level comparison at geostationary satellite orbit (GSO) earth terminal, using range-based and cognitive power control, $I_{th} = -10$ dB, $SNR_{min} = 13$ dB, $EIRP = 10$ dBW. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5 compares the transmission power of the NGSO satellite operating with the R-PC algorithm, which represented in Section 3 in comparison with when the NGSO satellite does not utilize any power control mechanism. As it is depicted in Figure 5, the NGSO satellite without any dynamic power control, operates with the maximum transmission power ($EIRP_{max} = 10$ dBW)\(^1\) constantly. Whereas, with the R-PC, the transmission power of the NGSO satellite gradually increases with respect to the distance range, $d_{he,ns}$. As it is depicted in Figure 5, when the distance between the NGSO FSS system is lower than 14,000 km, the R-PC mechanism can approximately save 50% of the power on-board. The result of SNR level at the NGSO earth terminal using the R-PC algorithm is shown in Figure 6, where $SNR_{min} = 15$ dB. As it is illustrated in this figure, the received SNR level maintains on the minimum threshold (SNR_{min}) with respect to the range. Whereas the received SNR at the NGSO earth terminal is higher than the required SNR_{min} when the NGSO satellite operates with the maximum power transmission.

\(^1\)Note that in our numerical calculation, we have used the effective isotropically radiated power (EIRP) of the NGSO satellite, which is calculated as $EIRP[dBW] = 10 \times \log_{10} P_{tx_{max}}[W] + \log_{10} G_{tx_{ch}}(0))$, also we have used equivalent decibel amount of the variables.
In earlier examples, we did not implement the C-PC method. To evaluate the effect of the C-PC on the interference level of the GSO earth terminal (Figure 7). As it is depicted in the Figure 7, the I level decreases when the range between NGSO satellite station and GSO earth terminal, \(d_{ge,ns} \), increases. However, the R-PC has no limit on the interference level of the GSO, and it can reach above the \(I_{th} \), in smaller \(d_{ge,ns} \). Whereas, with the C-PC method, the GSO does not receive a harmful in-line interference above the threshold level.

5.2. Results with time-dependent traffic demand from non-geostationary satellite orbit earth terminal

In this subsection, by considering the traffic model in Figure 2, we compare the results of the interference level on the GSO earth terminal using R-PC, C-PC, and TA-PC dynamic power control methods on the NGSO satellite system.

To compute a traffic-aware range-based power for the NGSO satellite, we first compute the \(P_{tx}(d_{ne,ns}) \) from Equation (4) to close the link between NGSO FSS system. Then, we can compute the transmit power based on the CDF of the traffic demand corresponding to the time from the following equation:

\[
P_{tx_{sn}}(t, d_{ne,ns}) = C_{traffic} \times P_{tx}(d_{ne,ns}).
\]

where \(C_{traffic} \) is the equivalent coefficient of the traffic demand in Figure 2. For instance, \(C_{traffic} = 0.1 \), for time interval [1:00–7:00] AM. We name this method as traffic-aware R-PC method (TA-RPC). We followed the same for the C-PC method. Except that the initial transmit power for the NGSO satellite with C-PC method is calculated from Equation (5). We name this method as traffic-aware cognitive power control (TA-CPC) method. SNR level at the NGSO earth terminal versus time is shown in Figure 8. Where the percentage of the time in which \(SNR \) is below the threshold level is compared with different power control mechanisms. A reasonable check point is to compare the maximum interference level (\(I \geq I_{th} \)) at the GSO earth terminal. Figure 9 shows the percentage of time that level occurs. As it comes from Figure 9, the proposed TA-CPC method can protect the victim receiver from the harmful in-line interference. We executed the simulation for 24 h to see a better picture of received \(I \) level at the GSO earth terminal. The CDF of the interference at the GSO earth terminal is depicted in Figure 10, when \(I_{th} = -10 \) dB.

5.3. Monte Carlo method for choosing \(ISD_{min} \) between earth terminals and their associated geostationary satellite orbit and non-geostationary satellite orbit satellite coverage

Herein, we are interested in finding the \(ISD_{min} \) through simulations. To do so, while the positions of the GSO and NGSO satellites are fixed, for \(N \) number of times, we execute the following steps: (i) a
Figure 9. Interference level comparison at geostationary satellite orbit (GSO) earth terminal caused by non-
geostationary satellite orbit (NGSO) satellite system, $I_{th} = -10$ dB, $EIRP = 5$ dBW. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. CDF of the interference at geostationary satellite orbit (GSO) earth terminal, using traffic-aware range-based power control (TA-RPC), traffic-aware cognitive power control (TA-CPC), and traffic-aware power control (TA-PC) algorithms. $I_{th} = -10$ dB, $SNR_{min} = 13$ dB, $EIRP = 5$ dBW. [Colour figure can be viewed at wileyonlinelibrary.com]

GSO earth terminal location randomly distributed and (ii) we localize the NGSO earth terminal (which is associated with an NGSO satellite) with respect to azimuth angle of the GSO earth terminal, and ISD_{min}. In the following, we describe the simulation we used in each iteration:

(i) The GSO earth terminal location is computed by choosing a random latitude from -45° to 45° and a random longitude within 0° to 45°, which is the coverage of the earth from an O3b satellite, that can be interfered with Eutelsat (GSO) satellite coverage. The longitude of the GSO earth terminal is a uniform probability distribution within $[0, 45^\circ]$. Whereas, to take care of the spherical shape of the earth, the latitude distribution is chosen from the following equation.

$$F(x, 45^\circ) = (180/\pi) \arcsin(\sin(45 \times \pi/180)(2x - 1)).$$

Equation (16), returns a latitude value between -45° to 45°, where x is a uniformly distributed random variable between $[0,1]$. Once the GSO earth terminal location is chosen, it is tested to see if the elevation angle, ε_1, is within the minimum operating elevation angle of the
GSO network or not. The minimum elevation angle at the GSO earth terminal location should be greater than or equal to 10° (ITU-R S.1325 3). If not, this location is not included as one of the locations simulated.

(ii) After determining the GSO earth terminal location, we localize the NGSO earth terminal with respect to the azimuth angle of the GSO terminal, 0° ≤ φ ≤ 360°, and ISD_{min}. To do so, for each azimuth angle, to find the ISD_{min}, we increase its distance from the GSO earth terminal such that its elevation angle with the associated NGSO satellite is 5°, and the threshold values SNR_{min} and I_{th} are satisfied. We have assumed that the computed ISD_{min} in this worst case scenario, in which ε_2 = 5°, is always greater than the minimum required distance between the two earth terminals.

We have compared the result of this simulation with the results of the analysis formula for ISD, using Equations (12) and (14) in Figure 11. When the azimuth angle of the NGSO earth terminal with respect to the GSO earth terminal, φ, increases to 180°, the off-axis angle between GSO earth terminal
and NGSO satellite becomes smaller; therefore, the ISD_{min} increases. This result is compared with when the NGSO satellite operates with the maximum transmission power in Figure 11. As it comes from this figure, the C-PC method can significantly reduce the ISD_{min} between FSS earth terminals. The relation between ISD_{min}, $d_{\text{en},s}$, and ϕ is shown in Figure 12.

6. CONCLUSION AND DISCUSSION

In this work, we examined three possible dynamic power control approaches and evaluated them as in-line interference mitigation techniques in the coexistence of GSO and NGSO FSS systems. We proposed to employ a C-PC mechanism for an NGSO satellite system operating in the downlink mode. We have compared the proposed power control method with a R-PC method (recommended by ITU-R S.1325) and a TA-PC mechanism. The results verify that the cognitive power control method avoids the harmful in-line interference at the victim receiver. We also formulated and solved an optimization problem for finding the minimum inter-site distance between the FSS earth stations. We have shown that the numerical results from the proposed minimum inter-site distance model for GSO-NGSO earth terminals verifies the simulation results. The proposed ISD optimization technique can play a critical role in optimizing the network planning strategies. We consider this investigation as our future work.

ACKNOWLEDGEMENT

This work was supported by the National Research Fund, Luxembourg under the core project HSBNet: Advanced Resource Allocation and Interference Management Strategies for Hybrid Satellite-Terrestrial Backhaul Networks.

REFERENCES

1. Dae-Sub O, Bon-Jun K, Kim S. Compatibility study on terrestrial radio system operated in the coverage of multi-beam satellite system, 2011 17th Asia-Pacific Conference on Communications (APCC): Malaysia, 2011; 698–702.
2. Koletta M, Milas V, Constantinou P. Determination of the coordination area for mobile earth stations operating with geostationary space stations in the frequency bands shared with the terrestrial services, 2005 Vehicular Technology Conference, VTC 2005-Spring. 2005 IEEE 61st, Vol. 4: Stockholm, Sweden, 2005; 2707–2710.
3. Chatzinotas S, Ottersten B, De Gaudenzi R. Cooperative and Cognitive Satellite Systems, Academic Press, 2015.
4. Sharma SK, Chatzinotas S, Chatzinotas S, Ottersten B. Satellite cognitive communications: interference modeling and techniques selection, 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC): IEEE: Baiona vigo, Spain, 2012; 111–118.
5. Kolodzy P. Spectrum policy task force, Federal Communications Commission: Washington, DC, 2002. Rep. ET Docket, (02-135).
6. Chatzinotas S, Sharma SK, Ottersten B. Frequency packing for interference alignment-based cognitive dual satellite systems, 2013 IEEE 78th Vehicular Technology Conference (VTC Fall): IEEE: Las Vegas, USA, 2013; 1–7.
7. Sharma SK, Chatzinotas S, Ottersten B. In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites, International Journal of Satellite Communications and Networking 2016; 34(1):11–39.
8. Lagunas E, Sharma S, Maleki S, Chatzinotas S, Ottersten B. Resource allocation for cognitive satellite communications with incumbent terrestrial networks, IEEE Transactions on Cognitive Communications and Networking 2015; PP(99):1–1.
9. Miller MJ, Tchorz JC. Non-interfering utilization of non-geostationary satellite frequency band for geostationary satellite communication, 2014. US Patent 8,897,769.
10. ECC/DEC/(05)08. The availability of frequency bands for high density applications in the fixed-satellite service (space-to-earth and earth-to-space), 2005.
11. Rideou R. Technologies to identify and/or mitigate harmful interference, June 2013. http://groups.itu.int/br-ssd/Forums/tabid/410/aff/374/aft/803/afv/topic/Default.aspx.
12. Vazquez-Castro M, Perez-Fontan F, Saunders SR. Shadowing correlation assessment and modeling for satellite diversity in urban environments, International Journal of Satellite Communications 2002; 20(2):151–166.
13. Wang AW. Method and apparatus for providing wideband services using medium and low earth orbit satellites, 2004. US Patent 6,678,520.
14. Vatalaro F, Corazza GE, Cai ni C, Ferrarelli C. Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading, IEEE Journal on Selected Areas in Communications 1995; 13(2):291–300.
15. Reed AG, Posen MCJ. Interference in the fixed satellite service bands between the feeder-links of networks using non-geostationary satellites and network using geostationary satellites, 3rd European Conference on Satellite Communications- ECS C-3, 1993: IET: Manchester, 1993; 251–256.
16. Intelsat. A practical introductory guide on using satellite technology for communications, 2010. report, http://www.intelsat.com/wp-content/uploads/2013/01/5941-SatellitePrimer-2010.pdf.
17. Sharma SK, Chatzinotas S, Ottersten B. Transmit beamforming for spectral coexistence of satellite and terrestrial networks, 2013 8th International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM). IEEE: Washington DC, USA, 2013; 275–281.

18. Foschini GI, Miljanic Z. A simple distributed autonomous power control algorithm and its convergence, IEEE Transactions on Vehicular Technology 1993; 42(4):641–646.

19. Yates RD. Yates. A framework for uplink power control in cellular radio systems, IEEE Journal on Selected Areas in Communications 1995; 13(7):1341–1347.

20. Uysal-Biyikoglu E, Prabhakar B, Gamal AE. Energy-efficient packet transmission over a wireless link, IEEE/ACM Transactions on Networking (TON) 2002; 10(4):487–499.

21. Zheng Y, Sun S, Bo R, Kadoch M, Yamao Y. Traffic aware power allocation and frequency reuse for green LTE-A heterogeneous networks, 2015 IEEE International Conference on Communications (ICC). IEEE: London, UK, 2015; 3167–3172.

22. Alvin CF, Modiano E, Tsitsiklis JN. Optimal energy allocation and admission control for communications satellites, IEEE/ACM Transactions on Networking 2003; 11(3):488–500.

23. Ganhão F, Bernardo L, Dinis R, Barros G, Santos E, Furtado A, Oliveira R, Pinto P. Energy-efficient QOS provisioning in demand assigned satellite NDMA schemes, 2012 21st International Conference on Computer Communications and Networks (ICCCN). IEEE: Munich, Germany, 2012; 1–8.

24. Hussein M, Jalklari G, Paillassa B. Network pruning for extending satellite service life in LEO satellite constellations, 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS). Sydney, Australia, 2015; 240–246.

25. Alagoz F, Korcak O, Jamalipour A. Exploring the routing strategies in next-generation satellite networks, IEEE Wireless Communications 2007; 14(3):79–88.

26. Di W, Li Q. A new routing algorithm of two-tier LEO/MEO mobile satellite communication systems, 2005 Asia-Pacific Conference on Communications. IEEE: 2005; 111–115.

27. Kourogiorgas CI, Arapoglou PD, Panagopoulos AD. Statistical characterization of adjacent satellite interference for earth stations on mobile platforms operating at Ku and Ka bands, IEEE Wireless Communications Letters 2015; 4(1):82–85.

28. Panagopoulos AD, Kritikos TD, Livieratos SN, Kalenopoulos JD. Interference studies between adjacent satellite communications systems operating above 10 GHz and using power control as fade mitigation technique, Wireless Personal Communications 2014; 77(2):1311–1327.

29. Dae-Sub O, Lee SM, Ahn DS, Kim S. A study on the separation distance for frequency sharing between GSO network and terrestrial network in Ka band. IEEE Vehicular Technology Conference, 2008. VTC Spring 2008: IEEE: 2008; 2967–2971.

30. Er-Rahmadi B, Ksentini A, Meddour D-E. A traffic-driven analysis for small cells backhaul planning. Small 2(X2):S1.

31. Penttinen JTJ. The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems. John Wiley & Sons, 2015.

32. FestoLab. Satellite orbits, coverage, and antenna alignment. 2011. https://www.labvolt.com/downloads/87768_f0.pdf.

33. Eutelsat. Antenna and VSAT type approval/characterization. March 1, 2016. http://www.eutelsat.com/files/contributed/satellites/pdf/esog120.pdf.

34. ITU. Working party 4a workshop on earth stations on mobile platforms (esomps). 2013. http://www.itu.int/en/ITU-R/study-groups/workshops/RWP4A-2013-ESOMP/Presentations/Addressing.

AUTHORS’ BIOGRAPHIES

Ameneh Pourmoghadas (S’14) received her BS degree in physics engineering (solid state) from Azad University, Tehran, Iran, in 2006, first Master’s degree in photonics (telecommunication) from Graduate University of Advance Technology, Kerman, Iran, in 2008. After her graduation, she joined the biggest GSM Telecom Company in Iran, MTNI, as core and interconnect engineer. Ameneh later on received her second Master’s degree in information and communication technology (ICT) from IITT-Bangalore, India, in 2014. In 2015, she received an AFR PhD grant from the National Research Fund (FNR) of Luxembourg. Her research interests are focused on wireless communications that include the design, modelling, and implementation of energy-efficient protocols for wireless networks, cooperative networks, and machine-to-machine communications.

Shree Krishna Sharma (S’12-M’15) received his MS degree in information and communication engineering from the Institute of Engineering, Pulchowk, Nepal, in 2010; the MA degree in economics from Tribhuvan University, Nepal; the MRes degree in computing science from Staffordshire University, Staffordshire, UK, in 2011; and the PhD degree in wireless communications from University of Luxembourg, Luxembourg, in 2014. Since November 2014, he has been working as a research associate in Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg. In the past, Dr. Sharma was also involved with Kathmandu University, Dhulikhel, Nepal, as a teaching assistant, and he worked as a part-time lecturer for eight engineering colleges in Nepal. He was with Nepal Telecom for more than 4 years as a Telecom Engineer in the field of information technology and telecommunications. He is the author of more than 50 technical papers.
in refereed international journals, scientific books, and conferences. He received an Indian Embassy Scholarship for his BE study, an Erasmus Mundus Scholarship for his MRes study, and an AFR PhD grant from the National Research Fund (FNR) of Luxembourg. He received Best Paper Award in CROWNCOM 2015 conference held in Doha, Qatar, and for his PhD thesis, he received FNR Award for outstanding PhD Thesis 2015 from FNR, Luxembourg. He has been involved in EU FP7 CoRaSat project, EU H2020 project SANSA, ESA project ASPIM, and Luxembourgish national projects Co2Sat and SeMiGod. He has been serving as a reviewer for several international journals and conferences and also as a TPC member for a number of conferences. His research interests include cognitive wireless communications, satellite communications, and signal processing techniques for 5G and beyond wireless.

Symeon Chatzinotas (S’06-M’09-SM’13) is currently the deputy head of the SIGCOM Research Group, Interdisciplinary Centre for Security, Reliability, and Trust, University of Luxembourg, Luxembourg. He has received the MEng degree in telecommunication from Aristotle University of Thessaloniki, Thessaloniki, Greece, and the MS and PhD degrees in electronic engineering from the University of Surrey, Surrey, UK, in 2003, 2006, and 2009, respectively. In the past, he has worked on numerous RD projects for the Institute of Informatics Telecommunications, National Center for Scientific Research Demokritos, Institute of Telematics and Informatics, Center of Research and Technology Hellas, and Mobile Communications Research Group, Center of Communication Systems Research, University of Surrey, Surrey, UK. Dr. Chatzinotas has more than 200 publications, 1300 citations and an H-Index of 19 according to Google Scholar. He is the corecipient of the 2014 Distinguished Contributions to Satellite Communications Award, and Satellite and Space Communications Technical Committee, IEEE Communications Society, and CROWNCOM 2015 Best Paper Award. His research interests include multiuser information theory, cooperative/cognitive communications, and wireless networks optimization.

Bjorn Ottersten (S’87-M’89-SM’99-F’04) was born in Stockholm, Sweden, in 1961. He received the MS degree in electrical engineering and applied physics from Linköping University, Linköping, Sweden, in 1986, and the PhD degree in electrical engineering from Stanford University, Stanford, CA, USA, in 1989. He has held research positions at the Department of Electrical Engineering, Linköping University, the Information Systems Laboratory, Stanford University, the Katholieke Universiteit Leuven, Leuven, Belgium, and the University of Luxembourg, Luxembourg. From 1996 to 1997, he was the director of research at ArrayComm Inc, a start-up in San Jose, CA, based on his patented technology. In 1991, he was appointed a professor of signal processing with the Royal Institute of Technology (KTH), Stockholm, Sweden. From 1992 to 2004, he was the Head of the Department for Signals, Sensors, and Systems, KTH, and from 2004 to 2008, he was the Dean of the School of Electrical Engineering, KTH. Currently, he is the director for the Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg. As digital champion of Luxembourg, he acts as an adviser to the European Commission. His research interests include security and trust, reliable wireless communications, and statistical signal processing. He is a fellow of the EURASIP and a member of the IEEE Signal Processing Society Board of Governors. He has served as an associate editor for the IEEE Transactions on Signal Processing and on the Editorial Board of IEEE Signal Processing Magazine. He is currently the editor-in-chief of EURASIP Signal Processing Journal and a member of the editorial boards of EURASIP Journal of Applied Signal Processing and Foundations and Trends in Signal Processing. He has coauthored journal papers that received the IEEE Signal Processing Society Best Paper Award in 1993, 2001, 2006, and 2013 and three IEEE conference papers receiving Best Paper Awards. He was the recipient of the IEEE Signal Processing Society Technical Achievement Award in 2011. He was the first recipient of the European Research Council Advanced Research Grant.