Programmable icosahedral shell system for virus trapping

Christian Sigl1, Elena M. Willner1, Wouter Engelen1, Jessica A. Kretzmann1, Ken Sachenbacher1, Anna Liedl1, Fenna Kolbe2,3, Florian Wilsch2,3, S. Ali Aghvami4, Ulrike Protzer2,3, Michael F. Hagan4, Seth Fraden4 and Hendrik Dietz1

Broad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties. Programmable triangular building blocks constructed from DNA assemble with high yield into various shell objects with user-defined geometries and apertures. We have created shells with molecular masses ranging from 43 to 925 MDa (8 to 180 subunits) and with internal cavity diameters of up to 280 nm. The shell interior can be functionalized with virus-specific moieties in a modular fashion. We demonstrate this virus-trapping concept by engulfing hepatitis B virus core particles and adeno-associated viruses. We demonstrate the inhibition of hepatitis B virus core interactions with surfaces in vitro and the neutralization of infectious adeno-associated viruses exposed to human cells.

For the majority of viral diseases, no effective treatment is available. Broadly applicable antiviral platform technologies do not exist. Here, we propose a platform technology that considers trapping entire virus particles within de novo designed macromolecular shells to inhibit molecular interactions between viruses and host cells (Fig. 1a). We envision shells that can augment and work synergistically with a variety of virus-binding moieties, whether by themselves neutralizing or not, to create an effective antiviral agent.

To accomplish this function, the shells must on the one hand be large enough to accommodate entire viruses, while also be chemically addressable to allow the inclusion of virus-specificity conferring moieties on the shell’s interior surface. The extended surface of the shells enables functionalization in a multivalent fashion. Multivalency can support tight binding of a target virus even for individually weakly virus-binding molecules, as exemplified in previous experiments with phage nanoparticles engineered to trivalently bind influenza A hemagglutinin, and with star-shaped DNA aptamer clusters that simultaneously target multiple dengue virus envelope proteins. With shells that fully cover viruses, an even larger degree of multivalency, and thus stronger binding, can be envisioned. Modular functionalization of the shells with virus binders will enable use of the same type of shell platform to target a variety of viruses. Candidate virus binders could be, for example, antibodies, designed proteins, nucleic acid aptamers or other polymers. In our concept, the shell material, rather than the moieties directly contacting the virus, will mainly prevent access to the viral surface. Therefore, in principle, any virus-binding molecule could potentially be used to convert the shells into an effective virus-neutralizing trap.

Our shell concept requires the construction of massive molecular complexes that are adaptable to cover the dimensions of viral pathogens (~20–500 nm; ref. 1), which poses a fundamental nanotechnology challenge. Protein designers have previously succeeded in creating artificial macromolecular cages8–9. However, the designed protein cages are much smaller than the vast majority of natural viruses. DNA nanotechnology10–15 can create discrete objects with structurally well-defined three-dimensional (3D) shapes16–17, including higher-order objects20–21 with molecular masses exceeding 1 GDa (ref. 22). However, these previous designs and the underlying concepts yield objects that are either too small, assemble with insufficient yields, do not match the shapes of viruses or are too flexible or skeletal to be suitable for effectively trapping and occluding entire virus particles.

To build the envisioned virus trap, we created a programmable icosahedral shell ‘canvas’ by adapting the symmetry principles found in natural viral capsids23. Caspar and Klug elucidated the geometric principles that govern the structure of natural viral capsids in 1962 (ref. 24). According to Caspar and Klug’s theory, which has been expanded recently25, the number of distinct environments occupied by proteins within an icosahedral capsid is described by its triangulation number \(T \) (number), which can be computed on the basis of the arrangement of pentamers and hexamers within an icosahedral capsid \(T = h^2 + h + k^2 \), with \(h \) and \(k \) denoting integer coordinates of pentamers in the hexagonal lattice, Fig. 1b). The total number of proteins required to build a natural capsid is \(T \times 60 \). This is because natural protein subunits are, by default, asymmetric and homotrimerization is minimally required to construct a three-fold symmetric subunit that can assemble into an icosahedral shell with 20 triangular faces. To build larger capsids, viruses use more than one capsid protein or capsid proteins that can adopt different conformations. The structure of natural virus capsids forms the basis for our synthetic programmable icosahedral shell canvases, which we analogously classify using \(T \) numbers.

Shell canvas design principles

To implement the icosahedral canvas concept, we designed pseudosymmetric triangular subunits (Fig. 1c) based on multilayer
Three different edges for a built with a single triangle, with three identical edges for an equivalent of one protein subunit of a natural viral capsid. The overall number of unique triangular edges required to build a particular shell (Fig. 1c,d, left). A T=9 shell requires two separate triangular subunits, for example, one triangle with three unique edges and another with three identical edges (Fig. 1c,d, middle). A T=9 shell requires three different triangles, each having three unique edges (Fig. 1c,d, right). The greater the T number, the greater the overall number of triangles per target shell, given by 20T. We used design solutions in which all triangle bevel angles have been displaced (see b) to help show the polyhedral symmetry. O, octahedral; T, T number; α, the bevel angle of the sides of the triangles; N, the number of DNA origami triangles building the shell.

The triangle variants self-assembled (see Methods) successfully into the designed icosahedral shells, as confirmed by direct imaging by cryo-EM (Fig. 2a and Supplementary Figs. 12–16). Inspection of individual particles (Fig. 2a) and two-dimensional (2D) class averages (Fig. 2b–f) revealed particles displaying the designed symmetries. For example, the three symmetry axes of the octahedron (four-, three- and two-fold, Fig. 2b) and T=1 (five-, three- and two-fold, Fig. 2c) shells can be clearly seen. For the higher-T-number shells, the underlying triangular net predicted from the Caspar and Klug representation became clearly visible (Fig. 2d–g). We determined 3D EM maps from the image data by imposing the respective symmetry (Fig. 2b–e). The resulting

DNA origami concepts11,12. Each side of a triangular subunit is the equivalent of one protein subunit of a natural viral capsid. The overall canvas scale and type are controlled by geometric instructions provided by the triangular subunits. These instructions are given by the choice of length, the topological binding pattern27 and the bevel angle of each triangular edge. Because in our system each triangular edge represents one protein, Caspar and Klug's T number gives the number of unique triangular edges required to build a particular icosahedral canvas shell. Hence, T=1 and T=3 shells may both be built with a single triangle, with three identical edges for T=1 and three different edges for a T=3 shell (Fig. 1c,d, left). A T=4 shell requires two separate triangular subunits, for example, one triangle with three unique edges and another with three identical edges (Fig. 1c,d, middle). A T=9 shell requires three different triangles, each having three unique edges (Fig. 1c,d, right). The greater the T number, the greater the overall number of triangles per target shell, given by 20T. We used design solutions in which all triangle bevel angles for a particular target shell were the same. While T=9 was the largest canvas we set out to build, we also designed triangular subunits for a smaller octahedral container (O, Fig. 1c,d, left).

Subunit and shell canvas assembly

We used iterative design with caDNAno (ref. 28) paired with elastic network-guided molecular dynamics simulations29 to produce candidate designs. To approximate the target bevel angles, we tuned the helical connectivity of the triangle edges at the vertices (Supplementary Fig. 1). These candidate designs were encoded in DNA sequences using the methods of DNA origami11,12 and self-assembled in one-pot reaction mixtures30. Gel-electrophoretic folding quality analysis demanded some design iterations to improve triangular subunit assembly yields (Supplementary Fig. 2). To validate the 3D structures of the designed triangles, we studied all triangle subunits using cryo-electron microscopy (cryo-EM) single particle analysis (Fig. 2). The resulting 3D electron maps had resolutions ranging from 13 to 22 Å (Supplementary Figs. 3–10), which allowed us to evaluate the overall 3D shapes, the observed versus desired bevel angles (Supplementary Table 1, deviations within 5°), the correct formation of the binding patterns and the occurrence of systematic folding defects. For instance, one triangle variant (T\textsubscript{hex1}) had a defective vertex, which decreased its ability to form lateral edge-to-edge interactions (Supplementary Fig. 11). Based on the cryo-EM data, we refined the design and eliminated the defect.

The triangle variants self-assembled (see Methods) successfully into the designed icosahedral shells, as confirmed by direct imaging by cryo-EM (Fig. 2a and Supplementary Figs. 12–16). Inspection of individual particles (Fig. 2a) and two-dimensional (2D) class averages (Fig. 2b–f) revealed particles displaying the designed symmetries. For example, the three symmetry axes of the octahedron (four-, three- and two-fold, Fig. 2b) and T=1 (five-, three- and two-fold, Fig. 2c) shells can be clearly seen. For the higher-T-number shells, the underlying triangular net predicted from the Caspar and Klug representation became clearly visible (Fig. 2d–g). We determined 3D EM maps from the image data by imposing the respective symmetry (Fig. 2b–e). The resulting

\[\begin{align}
\text{Supplementary Figs. 37–40.} \\
\text{For each shell design, one of the polyhedral faces has been displaced (see b) to help show the polyhedral symmetry. O, octahedral; T, T number; α, the bevel angle of the sides of the triangles; N, the number of DNA origami triangles building the shell.}
\end{align}\]
maps had resolutions ranging from 20 to 40 Å. For the octahedron and \(T = 1 \) shells, the 3D maps reconstructed without imposing any a priori symmetry superimposed well the sibling maps reconstructed with imposed symmetry (Supplementary Figs. 12 and 13). We classified and treated the cryo-EM maps of shells that lacked one or multiple triangles separately from complete shells to

Fig. 2 | Structures of shells and shell subunits. a, Cryo-EM micrographs of assembled shells in free-standing ice (O, \(T = 1 \)) and on lacy carbon grids with carbon support (\(T = 3 \), \(T = 4 \)). Scale bars, 100 nm. b–e, Cryo-EM reconstructions of shell subunits and fully assembled shells for O (b), \(T = 1 \) (c), \(T = 3 \) (d) and \(T = 4 \) (e) shells. The 2D class averages show assembled shells from different orientations. Scale bars, 50 nm. See also Supplementary Videos 1–4. f, Cryo-EM reconstructions of the three triangles assembling into a \(T = 9 \) shell and a negative-stained EM micrograph of the assembled shells. g, Comparison of slices through a model \(T = 9 \) shell with the slices of a tomogram calculated from a negative stain EM tilt series. The arrows indicate the positions of pentamers within the \(T = 9 \) shell (Supplementary Video 5). h, Cryo-EM reconstruction of a \(T = 1 \) shell with a DNA ‘spacer’ module blocking the central cavity (Supplementary Video 8).
assess quality and yield (Supplementary Figs. 12 and 13). The largest $T=9$ shells were imaged using negative stain EM tomography (Fig. 2f and Supplementary Fig. 17). Sections through the tomograms of assembled $T=9$ shells revealed fully closed shells as well as the correct arrangement of pentamers according to the designed T number (arrows in Fig. 2g and Supplementary Fig. 17).

To elucidate the effects of the orientational specificity of subunit–subunit interactions, we varied the bevel angle of the $T=1$ subunits from the ideal geometry ($\alpha = 20.9^\circ$). We designed two additional variants of the $T=1$ triangle in which the bevel angles deviated by +5° or −5° from the icosahedral ideal. The decrease or increase in the bevel angle caused the appearance of larger or smaller, often defective, assemblies in addition to $T=1$ shells, respectively (Supplementary Fig. 18). Based on these data, we conclude that the correct target bevel angle in a $T=1$ triangle subunit must be matched within a range of ±5°.

To demonstrate a route for sealing the remaining cavities in the shells, we built DNA bricks with a triangular cross-section roughly corresponding to the dimensions of the triangular cavities in the shell subunits. We anchored the bricks through multiple attachment points to the outer surface of $T=1$ shell triangles (see Supplementary Fig. 19 for design details and Supplementary Fig. 20 for a cryo-EM map). We solved the structure of the spiky $T=1$ shell using cryo-EM single particle analysis (Fig. 2h and Supplementary Fig. 21). The resulting map overlaps well with those of the unmodified $T=1$ shell, but the central cavities of the triangle subunits are now blocked by the added brick modules (Supplementary Fig. 21).

Shell yield and stability

We evaluated practical aspects such as assembly yield and stability in physiological conditions in which the system is ultimately expected to be applied. Low-density gel-electrophoretic mobility analysis (Fig. 3a and Supplementary Fig. 22) revealed shell assembly proceeded by the disappearance of the triangular monomers, the appearance of a smear indicating the presence of oligomeric species, followed by the emergence of a dominant high-intensity band corresponding to the fully formed shells. The octahedral and $T=1$ shells formed within 15 and 60 min, respectively, which is sufficiently fast to enable the self-assembly of these shells directly during the one-pot triangle-folding reaction (Supplementary Fig. 23). They formed with a final complete shell yield of ~95 and ~70%, respectively. The $T=3$ and $T=4$ shells formed with a yield of about 40% (Fig. 3a). Subunit-exchange experiments with fluorescently labelled subunits revealed that under shell-favouring conditions triangles that are incorporated into closed shells do not exchange with solution (Fig. 3b and Supplementary Fig. 24). Under equilibrium conditions, triangles do exchange (Fig. 3b and Supplementary Fig. 24).

Fig. 3 | Shell yield and stability. a, Laser-scanned fluorescent images of 0.5% agarose gels showing the assembly of octahedra, $T=1$, $T=3$ and $T=4$ shells at 40°C with a monomer concentration of 5 nM at different time points. The MgCl$_2$ concentrations of the gels are specified at the bottom right. The solid black line shows the cross-sectional lane intensity profiles of the 1 day (O, $T=1$) and 14 day samples ($T=3$, $T=4$). M represents the free triangle monomers, sc indicates the M13-8064 scaffold strand as reference. b, Triangle exchange experiments. Förster-resonance-energy-transfer (FRET)-pair labelled $T=1$ shells are shown in cyan; unlabelled shells are shown in orange. The graph plots the FRET signals measured at different incubation times in the presence of the indicated concentrations of Mg$^{2+}$ for $n=2$ independent measurements (for design details, see Supplementary Fig. 44). Insets show a high FRET signal if both neighbouring triangles are modified with fluorescent dyes, and a low FRET signal if only one triangle is modified. c, Negative staining TEM images of octahedral shells coated with a 1:1 mixture of oligolysine and PEG–oligolysine and incubated for 1 and 24 h in 55% mouse serum at 37°C. The scale bar in c refers to all panels in c.
To stabilize the shells for application in physiological fluids, we first assembled the shells and then applied ultraviolet (UV) point welding to create additional internal covalent bonds across the stacking contacts in the triangle subunits. We then coated the shells with a mixture of oligolysine and poly(ethylene glycol) (PEG)–oligolysine. This two-step treatment allowed us to successfully transfer the shells into mouse serum, in which the shells remained intact for up to 24 h (Fig. 3c).

Sculpting on the icosahedral canvas

By changing the geometry of the shape-complementary topographic features, the triangular subunits can be programmed to cover only user-defined areas on the icosahedral canvas. To create full shells, only the minimum number of different topographic interaction patterns (‘symmetries’) is implemented, as discussed above. Introducing additional types of topographic edge-to-edge interactions per triangular subunit allows a reduction of the symmetry in which the subunit may be integrated into the canvas. Furthermore, the stacking interactions can be modularly activated and deactivated, for example, by shortening a strand terminus involved in a stacking contact or by adding unpaired thymidine terminal strand extensions. Together, these features enable the sculpting of a variety of objects on the icosahedral canvas in a programmable fashion, including full shells, pentagonal vertices, (spherical) half shells and shells with virus-sized openings, using rational design decisions.

To design such objects, we used the triangular net projection of the chosen icosahedral canvas type as a drawing board (Fig. 4a–e). For example, to prepare half instead of full octahedra, complementary lock-and-key interactions of two edges of the triangular subunit are needed and one edge interaction must be deactivated (Fig. 4a). A pentagonal dome can be analogously created based on the $T=1$ icosahedral canvas (Fig. 4b). Building an icosahedral half shell requires two different triangular subunits, one that forms the pentagonal dome, and another that specifically docks onto the edges of the pentamer (Fig. 4c). A ring-like ‘sheath’ may also be built by two triangles (Fig. 4d). To build a $T=1$ shell variant with one missing pentagon vertex, three triangular subunit variants with a specific interaction pattern are needed (Fig. 4e). We practically implemented the above discussed design variants using appropriately modified triangular building blocks (Fig. 4f–h and
The building blocks self-assembled successfully into the desired higher-order objects based on their icosahedral canvas, which we validated experimentally by determining their cryo-EM solution structures (Fig. 4i–k and Supplementary Figs. 26–28) and negative stain transmission electron microscopy (TEM) images (Supplementary Fig. 29).
Virus trapping

Viruses can be trapped in, or coordinated by, pre-assembled icosahedral shell segments featuring sufficiently large apertures (Fig. 5a,b and Supplementary Fig. 30). Alternatively, protective shells can be formed directly on the surface of virus particles (Fig. 5c). Both approaches are illustrated in experiments we performed with hepatitis B virus (HBV) core particles (Fig. 5a–c, insets, red). To confer specificity to HBV, we conjugated antibody anti-HBc17H7 (isotype IgG-2b) to the DNA shells through the hybridization of single-stranded DNA (ssDNA)-labelled antibodies to a set of anchor points on the triangle subunits (Fig. 5a–c, insets, cyan). We did not observe any HBV binding in the absence of the HBV antibodies (Supplementary Fig. 31), nor in the presence of antibodies specific to other targets (Supplementary Fig. 31).

We recorded 3D cryo-EM maps of octahedral and $T=1$ half shells with trapped HBV core particles (Fig. 5d,e and Supplementary Figs. 32 and 33). For the half-octahedral variant, the majority of particles consisted of two opposing half octahedra coordinating a single HBV core particle in their middle (Fig. 5d and Supplementary Fig. 32). The micrographs and cryo-EM map also reveal signatures reflecting the antibodies that link the DNA shell to the trapped HBV core particle (Fig. 5d, right). Similar antibody signatures may be found in the image data for the half-$T=1$ shell–HBV complex (Fig. 5e, right). We also trapped HBV core particles in larger $T=1$...
shell variants with a missing pentagon vertex (Fig. 5f), which can accommodate multiple HBV particles in their interior cavities (Fig. 5f and Supplementary Fig. 30).

To test the capacity of our shells to prevent a trapped virus from undergoing interactions with surfaces, we performed in vitro virus-blocking assays with HBV-binding antibodies immobilized on a solid surface (Fig. 5g and Supplementary Fig. 34). We quantified the extent of HBV core binding to the surface through the binding of orthogonal HBV core-specific reporter antibodies coupled to horseradish peroxidase (HRP). Residual HBV core particles that are bound to the surface are detected by HRP-catalysed production of a colourimetric signal. In the presence of our virus-engulfing shells (half T=1 shells), up to 99% of virus interactions with the surface were blocked (Fig. 5h), thus confirming the interaction-inhibiting capacity of our shells. Control experiments with shells lacking HBV-trapping antibodies resulted in minimal virus blocking compared with the signal generated by naked HBV core particles, which represents baseline 0% virus blocking.

HBV core particles directly incubated with antibodies, but without any shells present, were negligibly blocked from binding to the surface. This finding indicates that the antibodies by themselves do not fully passivate the HBV capsid surface even though they were added at 400-fold excess over the HBV particles. In contrast, when using shells functionalized with, on average, as few as five antibodies, we achieved a virus-blocking efficiency of greater than 80%. The blocking was nearly complete (up to 99%) when using more than five antibodies in the shells. The data thus show that the shell-trapping method can be highly effective even when only a handful of physical interactions are formed between the virus surface and surrounding shell. Our data indicate that the shells, and not the antibodies used for holding the virus inside the shell, shield the virus from its exterior by steric occlusion.

Virus neutralization in human cells

We investigated the neutralization capacity of the DNA origami half octahedron shells using adenov-associated virus serotype 2 (AAV2)34 virions carrying an enhanced green fluorescent protein (eGFP) expression cassette by both microscopy and flow cytometry (Fig. 6a). We stabilized DNA shells using UV point welding and PEG–oligosine/oligosine as described above. AAV2 particles were successfully trapped in DNA half shells functionalized with anti-AAV2 antibody in the shell interior, in serum in the presence of bovine serum albumin (BSA), as seen by direct imaging by negative stain TEM (Fig. 6b). The data also establish the modularity of the shell: by changing the virus-binding moieties one can trap different types of viruses.

We quantified the efficacy of virus neutralization by determining the dose–response curves for DNA half shells functionalized with on average 36 anti-AAV2 antibodies per half shell and free anti-AAV2 antibodies as reference (Supplementary Fig. 35). The number of eGFP positive cells, measured by flow cytometry analysis, served as a read-out for infection efficacy. The DNA half shells neutralized AAV2 with an estimated half maximal inhibitory concentration (IC50) of ~0.3 nM (Supplementary Fig. 35). Under our conditions, the IC50 corresponded to approximately 2.5 half shells per infectious virus particle. The DNA half shells had increased neutralization capacity compared with the activity of the free anti-AAV2 (Fig. 6c,d and Supplementary Fig. 35). This enhanced neutralization is best appreciated in the fluorescence microscopy images (Fig. 6d), in which few eGFP positive cells remain in the samples with AAV2-trapping DNA half shells, whereas many eGFP positive cells appear in samples exposed to an identical dose of anti-AAV2 antibodies free in solution. This experiment demonstrates that the shells function in physiological conditions with live cells. It also shows that the shells can augment the already quite potent neutralization capabilities of the anti-AAV2 antibodies. As discussed above for the in vitro HBV blocking experiments in Fig. 4, the enhanced neutralization suggests that the shells trap viruses in a multivalent fashion and that the shell material additionally contributes as a viral-surface occluding agent.

We also investigated whether the DNA origami half shells without any conjugated antibody had an effect, and we found a low but non-negligible neutralization activity at the highest origami concentration tested (Supplementary Fig. 35). We suggest this activity arises from electrostatic interactions between the PEG–oligosine/oligosine-coated DNA shells and the AAV2 particles. Finally, we explored whether exposure to the DNA half shells had any effect on cell viability and found no effect across any of the concentrations used in this study (Supplementary Fig. 35).

Outlook

We envision that trapping viruses in shells can decrease the viral load in acute viral infections by preventing viruses from interacting with host cells. We tested the virus-trapping concept successfully with HBV core and AAV2 virus particles. We achieved near complete inactivation by engulfing HBV core particles in a surrounding shell in vitro and could also effectively block AAV from infecting live cells. Owing to the modularity of the DNA shells, other virus binders could be used. For example, host receptor domains or peptides known to be targeted by a viral pathogen and DNA/RNA aptamers could be conjugated to the shells. One of our design solutions, the half T=1 shell, features 90 sites for anchoring virus-binding moieties in the interior cavity. This high level of multivalency will be particularly useful for trapping pathogens for which only low-affinity binders are available. Multiple different antibodies could also be combined to achieve higher specificity against a single target or against a plurality of targets.

Our icosahedral shells consist of DNA, which is durable, commercially available and easily functionalized and modified. The components needed for our shells can be mass-produced biotechnologically. The use of DNA-based agents can potentially circumvent neutralization, phagocytosis and degradation by pathways of the innate and adaptive immune system targeting protein structures. We expect our shells to be largely non-toxic because they do not target any enzymes of the host metabolism as many current antivirals do. However, we cannot exclude that nucleic acid-specific reactions, such as the activation of pattern-recognition receptors recognizing DNA27,28 or the induction of DNA-binding antibodies, may occur once the shells are applied in vivo. Testing our concept and assessing potentially adverse effects in organisms are important challenges for the future. Beyond the proposed application as virus traps, our programmable icosahedral canvas system also offers opportunities to create multivalent antigen carriers for vaccination, DNA or RNA carriers for gene therapy or gene modification, drug delivery vehicles and protective storage containers (for cargo loading examples, see Supplementary Fig. 36).

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41563-021-01020-4.

Received: 13 April 2020; Accepted: 26 April 2021; Published online: 14 June 2021

References

1. Lauster, D. et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat. Nanotechnol. 15, 373–379 (2020).
2. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. *Nat. Chem.* **12**, 26–35 (2020).
3. Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. *Science* **370**, 426–431 (2020).
4. Cagno, V., Tseligka, E. D., Jones, S. T. & Tapparel, C. Heparan sulfate proteoglycans and viral attachment: true receptors or adaptation bias? *Viruses* **11**, 596 (2019).
5. Legende, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. *Proc. Natl Acad. Sci. USA* **111**, 4274–4279 (2014).
6. Bale, J. B. et al. Accurate design of megaladon-scale two-component icosahedral protein complexes. *Science* **353**, 389–394 (2016).
7. King, N. P. et al. Accurate design of co-assembling multi-component protein nanomaterials. *Nature* **510**, 103–108 (2014).
8. Lai, Y. T. et al. Structure of a designed protein cage that self-assembles into a highly porous cube. *Nat. Chem.* **6**, 1065–1071 (2014).
9. Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own RNA genome. *Nature* **552**, 415–420 (2017).
10. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. *Nature* **440**, 297–302 (2006).
11. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **459**, 414–418 (2009).
12. Castro, C. E. et al. A primer to scaffolded DNA origami. *Nat. Methods* **8**, 221–229 (2011).
13. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. *Science* **345**, 1534 (2016).
14. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. *Nature* **523**, 441–444 (2015).
15. Dunn, K. E. et al. Guiding the folding pathway of DNA origami. *Nature* **525**, 82–86 (2015).
16. Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. *Nat. Nanotechnol.* **13**, 1535 (2016).
17. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. *Nat. Nanotechnol.* **11**, 47–52 (2016).
18. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. *Science* **344**, 65–69 (2014).
19. Jungmann, R. et al. DNA origami-based nanoribbons: assembly, length distribution, and twist. *Nanotechnology* **22**, 275301 (2011).
20. Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. *Angew. Chem. Int. Ed.* **50**, 264–267 (2011).
21. Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. *Nat. Commun.* **6**, 8052 (2015).
Methods
Self-assembly of shell subunits. All self-assembly experiments were performed in standardized 'folding buffers' containing 1 mM MgCl2 in addition to 5 mM Tris base, 1 mM EDTA and 5 mM NaCl at pH 8 (FoB5). Single-scaffold-chain DNA origami objects were assembled in one-pot folding reactions containing 50 nM scaffold DNA and 200 nM of each staple strand. The individual scaffolds were produced as described previously15 (for sequences, see Supplementary Note). Folding buffer (FoB20) was used with x = 20 mM MgCl2. All reaction mixtures were subjected to thermal annealing ramps in Tetrad (Bio-Rad) thermal cycling devices, as detailed in Supplementary Table 2. Staple strands were purchased from Integrated DNA Technologies.

Purification of shell subunits and self-assembly of shells. All shell subunits were purified by gel purification and, if necessary, concentrated by ultrafiltration (Amicon Ultra 500 µl with 100kDa molecular weight cut-off) before self-assembling the subunits into shells. Both procedures were performed as previously described15 with the following alterations. For gel purification, we used 1.5% agarose gels containing 0.5X TBE buffer (22.25 mM Tris base, 22.25 mM boric acid and 0.5 mM EDTA) and 5.5 mM MgCl2. For ultrafiltration, the same filter was filled with the gel-purified sample multiple times (~2–5 times, ~400 µl each time) to increase the concentration of objects recovered from the filter. Before placing the filter upside down in a new filter tube, we performed two washing steps with 1X FoB8 (~400 µl) to achieve well-defined buffer conditions for the shell assembly. To assemble the purified (and concentrated) shell subunits into shells we adjusted the subunit and MgCl2 concentrations by adding 1X FoB5 and 1.735 M MgCl2. Typical subunit concentrations were in the range of 5–100 nM (for cryo-EM measurements, see Supplementary Table 3). Typical MgCl2 concentrations for shell self-assembly were in the range of 10–40 mM. Shell self-assembly was performed at 40 °C. Reaction times were varied depending on the shell type (Fig. 3a). All the shell subunits and assembled shells can be stored at room temperature for several months.

\[T = 1 \] shell exterior modification. The \(T = 1 \) triangle and triangular brick (Fig. 2b) were dimerized using the ssDNA sticky ends protruding from the \(T = 1 \) triangles. The protruding sequences contained three thymines for flexibility and seven-base-long sequence motifs that were directly complementary to the single-stranded scaffold domains of the brick (Supplementary Fig. 43b). Dimerization reactions were performed at room temperature overnight using a monomer concentration of 40 nM in the presence of 11 mM MgCl2.

Cargo encapsulation in \(T = 1 \) shells. Nine staples of the \(T = 1 \) shell subunits were modified by adding 16 bases onto the 5′ ends. These nine modified staples and unmodified \(T = 1 \) staples were folded with the p8064 scaffold to produce \(T = 1 \) triangles with nine ssDNA ‘handles’ (Supplementary Fig. 36a, left). The 16-base ssDNA handles were located on the shell-inward facing surface of the monomers. Eight of those nine strands were oriented facing towards the interior of the monomer and consequently may not have been accessible to the cargo. The ssDNA cargo was prepared by attaching staple strands to the p8064 ssDNA circular scaffold with a 16-base-long overhang that was complementary to the handles on the shell subunits. An oligonucleotide containing a CY5 dye was also hybridized to the scaffold to enable fluorescence read-out on laser scanning the agaro gels (Supplementary Fig. 36a, middle, and Supplementary Fig. 43c). To avoid having the unbound staples in the cargo solution, which would passivate the monomers, 20 different staples were mixed with the scaffolds in a 1:2 ratio. To anneal the staple to the circular ssDNA, FoB15 buffer was used with a temperature ramp of 65 °C for 15 min, followed by 60 to 44 °C at 1 °C s⁻¹. For proof-of-principle, we encapsulated gold nanoparticles by attaching complementary handles of the monomer’s handles were attached to gold nanoparticles with a diameter of 30 nm (Cytodiagnostika, OligoGold, DY Gold Nanoparticle Conjugation Kit). A schematic and negative stain TEM tomogram slice are shown in Supplementary Fig. 36b. To increase the visibility of the encapsulated circular ssDNA in negative stain TEM images, gold nanoparticles with a diameter of 20 nm (Cytodiagnostika, OligoREADY Gold Nanoparticle Conjugation Kit) were attached to the circular ssDNA scaffold (scheme and negative TEM are shown in Supplementary Fig. 36b, last images in the right). \(T = 1 \) shells with and without cargo were assembled in 1X FoB20 buffer at 40 °C for 3 days. Shell subunits were gel-purified prior to assembly. The concentration of the triangles was 16 nM, and the concentration of the cargo (of any type) was 0.8 nM.

Half shells and HBV core binding. Nine staples on the inside of the staple were modified with handles with 26 single-stranded bases at the 5′ ends (sequence: 5′-GCAGTAGATAGTAGAGTAGATAGGCA-3′ oligonucleotide; for design details, see Supplementary Figs. 41 and 42). The triangles were purified and assembled as described above. Oligonucleotides complementary to the handle sequence were modified with a 20 nM staple (coupled to the antibody anti-HBc 1H7F (100 µg) using a sulfoSuccimidyl-4- (N-maleimidomethyl)cyclohexane-1-carboxylate crosslinker. The product was subsequently purified using proFIRE (Dynamic Biosensors). The DNA-modified antibodies were added to the assembled shells and incubated overnight at 25 °C. HBV core particles were incubated with the modified shells for 1–4 h at 25 °C. To assemble \(T = 1 \) triangles around HBV core particles, the modified antibodies were added to single triangles. These triangles were then incubated with HBV core particles at a MgCl2 concentration of 19 mM for 1 day.

Shell oligosaccharide stabilization. The complete octahedral shells were assembled with 35 mM MgCl2 and UV-crosslinked as described previously23 for 1 h using UV light with a wavelength of 310 nm from an Asahi Spectra Xenon Light source (300 W, MAX-303). The shells were incubated in a 0.61 ratio of N/P with a mixture of \(K_0 \)-oligosacryl and \(K_0 \)-PEGac-oligosacryl (1:1) for 1 h at room temperature as similarly described previously24. The octahedra were incubated in 55 mM mouse serum for 1 or 24 h at 37 °C. To allow imaging with negative stain, the samples were diluted with PBS to a final mouse serum concentration of 5% immediately before application to the negative stain grids.

The partial shells used for cryo-electron visualization experiments in vivo were assembled with 60 mM MgCl2 and UV-crosslinked as described previously25 with UV light with a wavelength of 310 nm for 30 min using the Asahi Spectra Xenon Light source (300 W, MAX-303). We introduced three-base-long sticky overhangs at every stacking contact and added one thymidine at the ends of both oligonucleotides (Supplementary Fig. 45) to covalently crosslink the triangular subunits. The sticky overhangs were necessary to compensate for the decrease in blunt-end stacking induced by the addition of the thyminides for UV point welding. The shells were incubated in a 0.61 ratio of N/P with a mixture of \(K_0 \)-oligosacryl and \(K_0 \)-PEGac-oligosacryl (1:1) for 1 h at room temperature as similarly described previously25. The DNA-modified antibodies were added to the assembled shells and incubated overnight at room temperature.

Gel electrophoresis. The size distribution in the folding reactions or shell assemblies was investigated by agarose gel electrophoresis. For solutions including only shell subunits, we used 1.5% agarose gels containing 0.5X TBE buffer (22.25 mM Tris base, 22.25 mM boric acid, 0.5 mM EDTA) and 5.5 mM MgCl2. For solutions including oligomeric assemblies such as shells, an agarose concentration of 0.5% was used. Gel electrophoresis was performed in 0.5X TBE buffers supplemented with the same MgCl2 concentration as the solutions in which the shells were incubated. For MgCl2 concentrations greater than 15 mM, a surrounding ice–water bath was used to cool the gel. Gel electrophoresis was performed for 1.5–2 h at a bias voltage of 90 V. For gels with MgCl2 concentrations higher than 15 mM, we exchanged the buffer after 45 min. The agarose gels were then scanned with a Typhoon FLA 9500 laser scanner (GE Healthcare) with a pixel size of 50 µm per pixel.

Negative staining TEM. Samples were incubated on glow-discharged collodion-supported carbon-coated Cu400 TEM grids (in-house production) for 30–120 s depending on the structure and MgCl2 concentration. The grids were stained with 2% aqueous uranyl formate solution containing 25 mM sodium hydroxide. Imaging was performed with magnifications between x10,000 and x42,000. T = 3 triangles were imaged with a Phillips CM10 transmission electron microscope equipped with an AMT 4Mpx CCD camera. All other negative staining data were acquired with SerialEM with a FEI Tecnai T12 microscope operated at 120 kV with a Tietz TEMCAM-F416 camera. TEM micrographs were high-pass filtered to remove long-range staining gradients, and the contrast was auto-levelled (Adobe Photoshop CS6). To obtain detailed information on individual particles and their orientation, successful negative stain EM tomography was used as a visualization technique. The grids were prepared as described above, and tilt series were acquired with magnifications between x15,000 and x30,000 using a FEI Tecnai 120 microscope. The stage was tilted from ~50° to 50° and micrographs were acquired in 2° increments.

All tilt series were subsequently processed with Etomo (IMOD)26 to acquire tomograms. The micrographs were aligned to each other by calculating a cross-correlation of the consecutive tilt series images. The tomogram was subsequently generated by filtered back projection. The Gaussian filter used a cut-off of between 0.25 and 0.5 and a fall-off of 0.035.

Cryo-electron microscopy. The DNA origami concentrations used for preparing the cryo-EM grids are summarized in Supplementary Table 3. Samples with concentrations higher than 100 nM were applied to glow-discharged C-flat 1.2/1.3 or 2/1 thick grids (Protochip). Samples containing shells with less than 30 nM monomer concentration were incubated on glow-discharged grids with an ultrathin carbon film supported by a lacey carbon film on a 400-mesh copper grid (Ted Pella). The concentration of all single triangles increased to above 500 nM with PEG precipitation23. To prepare samples, 1 ml of the folding reaction (~50 nM monomer concentration) was mixed with 1 ml PEG, and the mixture was centrifuged at 21k relative centrifugal force (rcf) for 25 min and resuspended in 50–100 µl 1X FoB5. The DNA origami triangles used for assembling the spheres were all gel-purified and modified with a 20 nM staple (coupled to the antibody anti-HBc 1H7F (100 µg) using a sulfoSuccimidyl-4- (N-maleimidomethyl)cyclohexane-1-carboxylate crosslinker. The product was subsequently purified using proFIRE (Dynamic Biosensors). The DNA-modified antibodies were added to the assembled shells and incubated overnight at 25 °C.
the support layer for 60–90 s before blotting. All cryo-EM images were acquired with a spherical-aberration (Cs)-corrected Titan Krios G2 electron microscope (Thermo Fisher) operated at 300 kV and equipped with a Falcon III 4k direct electron detector (Thermo Fisher). We used defocus settings of −1.2 to 2.6 μm to gather a total of 10% heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich, cat. no. F9665) in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, cat. no. 31966-047) with 1% penicillin/streptomycin (P/S). All cell culture experiments were performed in the dark.

A conventional PBS (137 mM NaCl, 10 mM phosphate, 2.7 mM KCl, pH 7.4) at 4 °C was used for washing and diluting of samples. A A/G column and concentrated to 0.8 mg ml⁻¹ (5.33 μM) of protein and kept in −80 °C for further processing. A subset of these particles was used to calculate an initial model. After one to two rounds of 3D classification, the classes showing the most features or completely assembled shells were selected for 3D auto-refinement and post-processing. The resulting 3D maps were then used for the corresponding cryo-EM analysis in the last two steps. All post-processed maps are deposited in the Electron Microscopy Data Bank (Supplementary Table 3).

In vitro virus-blocking ELISA assay. Various concentrations of assembled half T = 1 shells were allowed to settle at room temperature with 2 μM oligonucleotide-conjugated capture antibody (anti-HBC 177, isotype IgG-2b) in FoB30-T (FoB30 + 0.05% Tween-20). The next day the pre-incubated mixtures were added to 5 pM HBV core particles and incubated overnight at room temperature, yielding 1 nM capture antibody, 2.5 pM HBV core particles and 0.1 μg ml⁻¹ of NLEDPASRDLVV (NLEDPASRDLVV). A Biotinylated secondary antibody (CTFIDN41, ref.) for contrast-transfer-function (CTF) estimation. After reference-free 2D classification, the best 2D class averages, as judged by visual inspection, were selected for further processing. A subset of these particles was used to calculate an initial model. After one to two rounds of 3D classification, the classes showing the most features or completely assembled shells were selected for 3D auto-refinement and post-processing. The resulting 3D maps were then used for the corresponding cryo-EM analysis in the last two steps. All post-processed maps are deposited in the Electron Microscopy Data Bank (Supplementary Table 3).

Helium ion microscopy. Imaging was performed with negative-stained TEM grids coated with a 5-nm layer of Au/Pd using a Quorum Q150T sputter coater in an ORION Nanofab microscope (Zeiss). We used an acceleration voltage of 30 kV and a beam current of 0.3–0.4 pA. The images were acquired in scanning mode with an Everhart–Thornley 2K detector.

Production of HBV core particles. HBV core particles of genotype D (subtype ayw2) were produced recombinantly in Escherichia coli K802 and BL21 cells (purchased from the Latvian Biomedical Research and Study Centre). Briefly, particles were obtained by sonication and clarification from bacterial protein extracts and purified by ammonium sulfate precipitation and subsequent anion-exchange and size-exclusion chromatography as described previously. Final preparations were kept at a constant 4 °C in the dark in conventional PBS (including 0.05% Na2SO4, 1 mM diithiothreitol).

Production of anti-HBC. Anti-HBV core antibody (anti-HBC) 177 (isotype IgG-2b) was produced by the Monoclonal Antibody Core Facility at the Helmholtz Zentrum München in Munich. Briefly, mouse HBC-recognizing B cells were generated by common hybridoma technology. The mice were challenged with the peptide NLEDPSRDLLV (aa 75–86 of the HBV core). Mouse hybridoma antibodies were selected and secreted by immunostaining and precipitation of HBCAg, by the ELISA assay for native antigen recognition and by western blot analysis for the detection of denatured antigen. The final 177 preparations were purified by standard affinity chromatography using a peptide A/G column and concentrated to 0.8 mg ml⁻¹ (5.33 μM) of protein and kept in conventional PBS (137 mM NaCl, 10 mM phosphate, 2.7 mM KCl, pH 7.4) at 4 °C in the dark.

Cell culture and neutralization assays. HEK293T cells (DSMZ) were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, cat. no. 31966047) with 10% heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich, cat. no. F9645). Cells were infected with a luciferase reporter construct in a humidiﬁed 5% CO2 incubator at 37 °C. EMD-12000, EMD-12001, EMD-12002, EMD-12003, EMD-12014, EMD-12015, EMD-12016, EMD-12019, EMD-12020, EMD-12021, EMD-12022, EMD-12023, EMD-12024, EMD-12044, EMD-12045, EMD-12046 and EMD-12049.

Viability assay. Cytotoxicity was quantified by the cell viability following the incubation of cells with half-shell mixtures for 24 or 48 h. HEK293T cells were seeded in poly-l-lysine-treated 96-well plates at 80,000 cells ml⁻¹. The cells were allowed to settle overnight, the medium was removed and the cells exposed to half-shell mixtures in an identical procedure to the neutralization assays. The cells were then incubated with half-shell mixtures for a further 24 h, the medium was removed, the cells were washed with 1× PBS and 250 μl DMEM with 10% FBS and 1× antibiotic/antimycotic was added. The cells were incubated for a further 22 h, the medium was removed, the cells were washed with 1× PBS and 250 μl DMEM with 10% FBS and 1× antibiotic/antimycotic was added. At 48 h post-transduction, the cells were trypsinized and counted. HRP activity was quantified by flow cytometry as described above; representative gates are given in Supplementary Fig. 46. Statistical analyses were performed with Graphpad Prism (GraphPad Software).

For epifluorescence imaging, the procedure was identical to above, with the exception that the cells were seeded in eight-chambered well slides (Nunc Lab-Tek, Thermo Fisher). After the total 48 h timepoint, the cells were washed with 1× PBS and then fixed with 2% paraformaldehyde. The cells were then washed again (1× PBS), and the nuclei were stained (Hoescht 3342, diluted in PBS, 5 min, room temperature). The cells were washed with PBS, and the samples were mounted using Fluormount-G aqueous mounting medium. The samples were imaged using a Tikon Eclipse Tii-T e inverted microscope with a ×10 objective. Images were collected using NIS-Elements AR software Version 5.2.0.1 (Nikon) and processed using Image] version 2.1.0.

Statistics and reproducibility. All cryo-EM micrographs, negative stain TEM images and epifluorescent microscopy images presented in the manuscript and the Supplementary Information are exemplary micrographs and show representative images of many acquired micrographs. All negative stain TEM images, epifluorescent microscopy images and agarose gel electrophoresis experiments were repeated independently multiple times and reliably reproduced the same results.

Data availability
Source data are provided with this paper. The remaining data supporting the findings of this study are available within the paper and its Supplementary Information files, and are available from the corresponding author upon reasonable request. The cryo-EM data from this study have been deposited in the Electron Microscopy Data Bank with the following accession codes: EMD-12007, EMD-12006, EMD-12005, EMD-12004, EMD-12003, EMD-12002, EMD-12001, EMD-12014, EMD-12015, EMD-12016, EMD-12019, EMD-12020, EMD-12021, EMD-12022, EMD-12023, EMD-12024, EMD-12044, EMD-12045, EMD-12046 and EMD-12049.
References
39. Engelhardt, F. A. S. et al. Custom-size, functional, and durable DNA origami with design-specific scaffolds. ACS Nano 13, 5015–5027 (2019).
40. Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient production of single-stranded phage DNA as scaffolds for DNA origami. Nano Lett. 15, 4672–4676 (2015).
41. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
42. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).
43. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
44. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
45. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
46. Sominskaya, I. et al. A VLP library of C-terminally truncated hepatitis B core proteins: correlation of RNA encapsidation with a Th1/Th2 switch in the immune responses of mice. PLoS ONE 8, e75938 (2013).

Acknowledgements
We thank B. Kick for help with the antibody–DNA conjugation and for scaffold preparation. We also thank the Monoclonal Antibody Facility of Helmholtz Zentrum München (Head: R. Feederle) for help with generating and providing anti-HBc 17H7. This work was supported by a European Research Council Consolidator Grant to H.D. (grant no. 724261), the Deutsche Forschungsgemeinschaft through grants provided within the Gottfried-Wilhelm-Leibniz Program and the SFB863 TPA9 (to H.D.), the TRR179 (TP14 to U.P.), the German Ministry for Education and Research (BMBF) through StabVacB and DZIF (project 05.806/907 to U.P.), the European Commission FET Open Grant VIBROFIGHT (grant no. 899619 to H.D. and U.P.), the Netherlands Organization for Scientific Research (NWO, Rubicon programme, project no. 019.182EN.037 to W.E.), the USA National Science Foundation through the Brandeis University Materials Research Science and Engineering Center (NSF DMR-1420382 and NSF DMR-2015486 to S.F. and M.F.H.), the National Institute of General Medical Sciences (award no. R01GM108021 to M.F.H.) and the Alexander von Humboldt Foundation (Humboldt Research Fellowship to J.A.K.). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 899619. The views expressed here are the responsibility of the authors only. The EU Commission takes no responsibility for any use made of the information set out.

Author contributions
H.D. designed the research. S.F. co-designed the icosahedral shell self-assembly studies (Figs. 1 and 2). C.S. performed shell subunit design, shell assembly and all structural studies (Figs. 1–6). E.M.W. performed shell modification and stabilization, and HBV virus-binding inhibition experiments (Figs. 4–6), supported by A.L. W.E. performed subunit exchange and HBV virus-binding inhibition experiments (Figs. 4 and 5), J.A.K. performed the cell culture AAV neutralization experiments (Fig. 6), K.S. performed auxiliary shell subunit geometry alteration experiments (Supplementary Fig. 18), F.K., F.W. and U.P. contributed HBV samples, and generated and provided anti-HBC (Fig. 5). S.A.A. performed cargo encapsulation (Supplementary Fig. 36). M.F.H. contributed to shell design choices.

Competing interests
A provisional patent has been filed by the TUM (PCT/EP2021/054307).

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41563-021-01020-4.
Correspondence and requests for materials should be addressed to H.D.
Peer review information Nature Materials thanks Xing Wang, Andrew Ward, Hao Yan and Todd Yeates for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a Confirmed
- □ □ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- □ □ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- □ □ The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- □ □ A description of all covariates tested
- □ □ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- □ □ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- □ □ For null hypothesis testing, the test statistic (e.g. f, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- □ □ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- □ □ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- □ □ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

| Data collection | EPU 1.2 up to 2.6 (Thermo Fisher Scientific), SerialEM 3.5.6, Attune Nxt Software v3.1, NIS-Elements AR Ver5.02.01 |
| Data analysis | RELION-2, RELION-3, CYOLO v1, MotionCor 2, CIFTIND 4.1, UCSF Chimera 1.11.2, UCSF ChimeraX v0.1, Etemo 4.9.0 [mod], Graphpad Prism v6.01, Attune Nxt Software v3.1, ImageJ v2.1.0/1.53c, caDNAno 2 |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data supporting the findings of this study are available within the paper and its supplementary information files and are available from the corresponding author upon reasonable request. Cryo-FM data of this study have been deposited in the Electron Microscopy Data Bank (EMDB) with accession codes: EMDB-12007, EMDB-12008, EMDB-12009, EMDB-12010, EMDB-12011, EMDB-12012, EMDB-12013, EMDB-12014, EMDB-12015, EMDB-12016, EMDB-12019, EMDB-12020, EMDB-12021, EMDB-12022, EMDB-12023, EMDB-12024, EMDB-12044, EMDB-12045, EMDB-12046, EMDB-12049
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
A sample size of 3 biological replicates was used to detect a significant difference (p<0.05) between groups with a signal-to-noise ratio of 3.0 with 80% power.
For cryo-EM reconstructions, the sample size is dependent on the particle density per micrograph and the number of acquired micrographs which is limited by beam time. The number of particles was sufficient to reconstruct all acquired DNA origami structures.

Data exclusions
No data was excluded. For cryo-EM reconstructions we manually sorted out damaged particles by 2D and 3D classification for the final refinement.

Replication
Experiments were performed multiple times to confirm the observations, the number of biological replicates is provided in the caption of the relevant figures. All attempts at replication were successful.

Randomization
Cells used for test experiments were randomly assigned to experimental groups in the process of sample preparation. For cryo-EM reconstructions all particles are randomly assigned to two groups which are reconstructed separately and merged after convergence in the final refinement.

Blinding
This is not relevant for the underlying study. Blinding was not used for cell experiments due to the use of automated collection and analysis systems, where the entire set of cytometry data was acquired and analyzed using identical parameters. Blinding was not performed for EM-micrographs and fluorescent microscopy experiments as they were not used for direct measurements or statistical analysis to justify blinding. The ELISA assay was essentially blinded as the samples were prepared and measured by different individuals.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
Antibodies	
Eukaryotic cell lines	
Palaeontology and archaeology	
Animals and other organisms	
Human research participants	
Clinical data	
Dual use research of concern	
Involved in the study	Involved in the study
	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging

Antibodies

Antibodies used

1. Anti-HBc, 17H7 Isotype IgG-2b, produced by MAB Monoclonal Antibody Core Facility of the Helmholtz Zentrum München - German Research Center for Environmental Health
2. Anti-IFA-HepBcore provided by Centro De Ingenieria Genetica y Biotecnologia de sancti spiritus in Cuba, Lot 161
3. Anti-HepBcore-HRP provided by Centro De Ingenieria Genetica y Biotecnologia de sancti spiritus in Cuba, Lot 171
4. Anti-AAV2 mouse recombinant, Progen Cat. No.: 610298, A20R, Lot: 810021-03

Validation

1. Anti-HBc (17H7 Isotype IgG-2b): Validated with immunostaining, precipitation reactions, ELISA experiments and Western Blot analysis [see Methods: Production of anti-HBc]
2. Anti-IFA-HepBcore: Validated with ELISA
3. Anti-HepBcore-HRP: Validated with ELISA
4. Anti-AAV2: “Validation: application confirmed” as provided by the supplier Progen (https://www.progen.com/anti-aav2-intact-particle-mouse-recombinant-a20r-lyophilized-purified.html)
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293T cells were purchased from Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH.

Authentication Cell lines were kept at low passage and were not further authenticated.

Mycoplasma contamination Cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines (See ICLAC register) No commonly misidentified cell lines were used.

Flow Cytometry

Plots

Confirm that:
- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation HEK293T cells were washed with PBS and trypsinized. Cells were then collected and fixed with 2% formaldehyde before being run on the flow cytometer.

Instrument Attune NKT Flow Cytometer

Software Attune NKT Flow Cytometer Software

Cell population abundance 20,000 single cells were analyzed for each condition.

Gating strategy Cells were gated first by FSC/SSC, and then single cells were gated on SSC-A/SSC-H. Untreated cells were used as a negative control.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.