RELATO DE CASO

Pneumonia due to *Toxoplasma gondii* is an uncommon and undiagnosed condition. It is usually a result of reactivation of a latent chronic infection (1). Immunosuppressed patients are particularly susceptible to the disseminated disease (2). Most cases occur in patients who have undergone bone marrow (3) or heart transplantation, and less often, in those with acquired immunodeficiency syndrome (AIDS) (4-6). Pulmonary toxoplasmosis can present as isolated pneumonitis or as part of a disseminated disease. It is difficult to diagnose and is frequently discovered only at autopsy (4,7). Screening for the infection can be done by serology, but this strategy lacks specificity. The radiographic patterns of toxoplasmosis are nonspecific (1). Lung biopsy or fiber-optic bronchoscopy (FOB) with bronchoalveolar lavage (BAL) are essential, since direct identification of the organism is the gold standard for diagnosis. The amplification of the *T. gondii* DNA by polymerase chain reaction (PCR) is a promising technique for diagnosis. PCR was shown to be sensitive and highly specific for detecting toxoplasmic disease (8-10).

We report a case of disseminated toxoplasmosis in an AIDS patient diagnosed by PCR in BAL.

CASE REPORT

A 63-year-old, white, female patient was referred to a tertiary hospital because of a 2-week history of dry cough and fever. Her medical records disclosed a history of an infiltrating ductal carcinoma of the breast, stage IIIA (pT2pN2M0), resected 7 months earlier and treated with three cycles of adjuvant chemotherapy with cyclophosphamide, doxorubicin and fluorouracil (CAF). After the third cycle, 2 months earlier, she developed febrile neutropenia, which resolved after treatment with cefepime. Despite resolution of fever, incomplete hematological recovery was observed (persistent leukopenia), and chemotherapy was withheld. On admission, the patient was febrile, in breathing distress and oral thrush was noted. She had pancytopenia, hypoxemia with an elevated alveolar-arterial gradient and...
lactate dehydrogenase (LDH) of 1,590 mg/dL. Thoracic radiograph showed bilateral diffuse infiltrates. Antibiotics for coverage of community acquired pneumonia and *Pneumocystis jirovecii* infection were started. The patient developed mental confusion and underwent brain computed tomography (CT) that showed a left frontal hypodensity with discrete contrast impregnation and another hypodensity on the right thalamic region that did not enhanced on contrast imaging. Lumbar puncture showed the following results: opening pressure = 180 cmH₂O, leucocytes = 1/mm³, protein = 30 mg/dL, glucose = 40 mg/dL (serum = 74 mg/dL), adenosine deaminase (ADA) = 3 U/L. Non-reactants venereal disease research laboratory (VDRL) and fluorescent treponemal antibody absorbed (Ifi-FTABs) tests, direct examination and culture for bacteria, fungus and mycobacteria where negative. PCR for mycobacteria, toxoplasmosis, herpes zoster (HZV) and John Cunningham fungus and mycobacteria where negative. PCR for cytomegalovirus (CMV) and *Herpes simplex* virus (HSV) were negative. Despite the intensive management, respiratory compromise evolved rapidly, with the need for ventilatory support. Acute respiratory distress syndrome developed, and the patient died of multiple organ failure.

DISCUSSION

Most patients with pulmonary toxoplasmosis present with dry cough, dyspnea, and fever (1). Due to the infrequency of this clinical entity, diagnosis of pulmonary toxoplasmosis can be easily overlooked. Clinical and radiologic findings are nonspecific and cannot be distinguished from other more common opportunistic infections (6). In spite of morbidity, thoracoscopic or open lung biopsy remain the gold standards for diagnosis. Direct visualization of tachyzoites on Giemsa staining has low sensitivity and depends on the pathologists’ skills. In this context, less invasive and more reliable diagnostic techniques are necessary. Although rarely requested in BAL, PCR for *T. gondii* can be a fast and effective diagnostic tool (8-14). A correct diagnosis made in a timely fashion, followed by the administration of pyrimethamine and sulfonamides, assures an excellent survival rate for immunocompetent patients and a 60% survival rate for immunosuppressed patients (1,6).

In the case reported, pulmonary toxoplasmosis was diagnosed by a positive PCR in BAL. The lung is the second most common organ affected in extracerebral toxoplasmosis (4,7). Previous studies of AIDS patients who underwent FOB with BAL found 2-14% of *T. gondii* PCR positivity (9,10,12,13). Despite reports of isolated extracerebral toxoplasmosis in AIDS patients, the most common form of the disease is with central nervous system involvement (7). Our patient’s brain CT showed a highly suggestive pattern for neurotoxoplasmosis. However, a negative PCR for *T. gondii* was found on the cerebrospinal fluid (CSF). This could be explained by previous administration of SMT-TMP. Foudrinier et al. found a substantial reduction of *T. gondii* CSF PCR sensitivity, from 60 to 16%, in patients under anti-toxoplasmic treatment or *P. jirovecii* prophylaxis (14).

In immunosuppressed AIDS patients, concomitant opportunistic infections are not uncommon. Cases of pulmonary coinfection of *Pneumocystis jirovecii* and *T. gondii* have been previously reported (15-17). In this case, clinical deterioration with acute respiratory distress syndrome and multiple organ dysfunction syndrome could be explained by either infection (18).

This case illustrates that a high index of suspicion is necessary for diagnosis of pulmonary toxoplasmosis, a potentially fatal condition. Due to high diagnostic performance, PCR in BAL should be included in the evaluation of immunosuppressed patients with nonspecific pulmonary diseases.

REFERENCES

1. Pomeroy C, Filice GA. Pulmonary toxoplasmosis: a review. Clin Infect Dis. 1992;14(4):863-70.
2. Gleason TH, Hamlin WB. Disseminated toxoplasmosis in the compromised host. A report of five cases. Arch Intern Med. 1974;134(6);1059-62.
3. Sing A, Leitritz L, Roggenkamp A, Kolb HJ, Sza-bados A, Fingerle V, et al. Pulmonary toxoplasmosis in bone marrow transplant recipients: report of two cases. Rev Pathol. 1999;29(2):429-33.
4. Hofman P, Bernard E, Michiels JF, Thyss A, Le Fichoux Y, Loubière R. Extracerebral toxoplasmosis in the acquired immunodeficiency syndrome (AIDS). Pathol Res Pract. 1993;189(6):894-901.
5. Tschirhart D, Klatt EC. Disseminated toxoplasmosis in the acquired immunodeficiency syndrome. Arch Pathol Lab Med. 1988;112(12):1237-41.
6. Schnapp LM, Geaghan SM, Campagna A, Fahy J, Steiger D, Ng V, et al. Toxoplasma gondii pneumonitis in patients infected with the human immunoodeficiency virus. Arch Intern Med. 1992;152(5):1073-7.
7. Jautzke G, Sell M, Thalmann U, Janitschke K, Gottschalk J, Schürmann D, et al. Extracerebral
Diagnosis of disseminated toxoplasmosis

Diagnosis of disseminated toxoplasmosis in AIDS. Histological and immunohistological findings based on 80 autopsy cases. Pathol Res Pract. 1993;189(4):428-36.

8. Khalifa K el-S, Roth A, Roth B, Arasteh KN, Janitschke K. Value of PCR for evaluating occurrence of parasitemia in immunocompromised patients with cerebral and extracerebral toxoplasmosis. J Clin Microbiol, 1994;32(11):2813-9.

9. Bretagne S, Costa JM, Vidaud M, Tran J, Nhieu V, Fleury-Feith J. Detection of Toxoplasma gondii by competitive DNA amplification of bronchoalveolar lavage samples. J Infect Dis. 1993;168(6):1585-8.

10. Bretagne S, Costa JM, Fleury-Feith J, Poron F, Dubreuil-Lemaire ML, Vidaud M. Quantitative competitive PCR with bronchoalveolar lavage fluid for diagnosis of toxoplasmosis in AIDS patients. J Clin Microbiol. 1995;33(6):1662-4.

11. Ostergaard L, Nielsen AK, Black FT. DNA amplification on cerebrospinal fluid for diagnosis of cerebral toxoplasmosis among HIV-positive patients with signs or symptoms of neurological disease. Scand J Infect Dis. 1993;25(2):227-37.

12. Petersen E, Edvinsson B, Lundgren B, Benfield T, Evengård B. Diagnosis of pulmonary infection with Toxoplasma gondii in immunocompromised HIV-positive patients by real-time PCR. Eur J Clin Microbiol Infect Dis. 2006;25(6):401-4.

13. Roth A, Roth B, Höftken G, Steuber S, Khalifa KI, Janitschke K. Application of the polymerase chain reaction in the diagnosis of pulmonary toxoplasmosis in immunocompromised patients. Eur J Clin Microbiol Infect Dis. 1992;11(12):1177-81.

14. Foudrinier F, Aubert D, Puygauch-Toubas D, Rouger C, Beguinot I, Halbout P, et al. Detection of Toxoplasma gondii in immunodeficient subjects by gene amplification: influence of therapeutics. Scand J Infect Dis. 1996;28(4):383-6.

15. Gransden WR, Brown PM. Pneumocystis pneumonia and disseminated toxoplasmosis in a male homosexual. Br Med J (Clin Res Ed). 1983;286(6378):1614.

16. Roux P, Delou AM, Denis M, Bachoux I, Benlakah N, Mayaud C, et al. The association of pneumocystosis and pulmonary toxoplasmosis in a female patient with HIV infection. Rev Pneumol Clin. 1989;45(1):42.

17. Levy PY, Brouqui P, Dumon H, Gallais H. [Pneumonia in AIDS: a case of co-infection caused by Toxoplasma gondii and Pneumocystis carinii]. Presse Med. 1990;19(14):673.

18. Gandhi S, Lyubsky S, Jimenez-Lucho V. Adult respiratory distress syndrome associated with disseminated toxoplasmosis. Clin Infect Dis. 1994;19(1):169-71.

Received: 21/11/2008
Accepted: 20/07/2009