The vasodilatory effects of medicinal herbs on the cardiovascular system: A systematic review

Nasrollah Moradifar1, Ali Asghar Kiani2, Navid Bakhtiari3, Morteza Amraei4, Arash Amin1*

1Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
2Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
3Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
4Department of Health Information Technology, School of Paramedical Sciences, Lorestan University of Medical Sciences, Lorestan, Khorramabad, Iran

*Corresponding author: Arash Amin, MD, Email: a.amin@lums.ac.ir

Implication for health policy/practice/research/medical education:
This review presents a detailed insight into the effective medicinal herbs on vasodilation and presents a list of medicinal plants for the treatment of hypertension, congestive heart failure, and angina, which might be used to prepare new agents.

Please cite this paper as: Moradifar N, Kiani AA, Bakhtiari N, Amraei M, Amin A. The vasodilatory effects of medicinal herbs on the cardiovascular system: A systematic review. J Herbmed Pharmacol. 2021;10(4):367-374. doi: 10.34172/jhp.2021.43.

Introduction
Vasodilation is well-known as one of the main therapeutic strategies to treat some cardiovascular diseases with high blood pressure (1,2). Vasodilators are drugs that induce or start the widening of blood vessels, which are commonly applied to treat disorders with irregularly high blood pressure, including hypertension, congestive heart failure, and angina (3-5).

At present, there are many agents that have been shown to have vasodilation effects by various mechanisms, such as inhibiting angiotensin-converting enzyme (ACE), blocking calcium channels, opening potassium channel, or inhibiting cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) (6,7). However, despite the potential effects of the existing vasodilators, recent studies have indicated some limitations of these drugs, including drug resistance, drug dependence, reducing the systemic vascular resistance through renal retention of sodium and water, orthostatic
hypotension and syncope upon standing, increasing the heart rate and inotropy (8,9). Therefore, the development and discovery of novel agents as blood vessel dilators are promising among researchers.

Medicinal plants have always been used by humans throughout history. The use of plants, plant materials, plant compounds has been introduced as herbal medicine all over the world (10,11). On the other hand, the return to nature and the reuse of drugs of plant and natural origin takes place in a situation where today’s man has faced the side effects of these drugs. Scientific research has proven the effectiveness and safety of some complementary medicine methods, including herbs, in the treatment of some diseases (12,13). The present study aims to systematically review the studies on the vasodilation effects of some medicinal herbs.

Methods

Search strategy

This study was done according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines (14) and registered in the CAMARADES-NC3Rs Preclinical SyRF database. Various English databases, such as Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, were used to find publications about the vasodilation effects of medicinal herbs up to 2020. The searched words and terms were: “medicinal herbs”, “medicinal plants”, “vasodilator”, “vasorelaxant”, “hypertension”, “high blood pressure”, “vasodilation”, “extract”, “essential oil” (Figure 1).

Quality assessment and article selection

Initially, the publications were imported to the EndNote X9 software based on the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE); whereas the duplicate papers were omitted. Then, three independent authors tested the titles and abstracts of the papers, and the relevant publications were included for further analysis. The same authors carefully analyzed the publications, and the suitable papers with acceptable inclusion criteria were selected. Any disagreement between the authors were resolved through the corresponding author.

Inclusion and exclusion criteria

All papers evaluating the vasodilation effects of medicinal plants were included, whereas the studies with only abstract, inadequate information, failure to match methods with results, and inappropriate interpretation of the results were excluded (Figure 1).

Data extraction

The independent researchers extracted data, including the name of plant, plant family, the part used, type of extraction, concentration, and important results.

![Flowchart describing the study design process.](http://www.herbmedpharmacol.com)
Results
Out of 1820 papers, 48 papers were assessed for eligibility. While 17 papers (9 in vivo and 8 in vitro studies) were excluded from the study, 31 papers, which met the inclusion criteria were selected for discussion. Thirty-one plant species belonging to 33 genera and 27 families had vasodilation/vasorelaxant activity (Table 1) with various mechanisms (Figure 2). Among 31 selected papers, 16 papers (51.6%) were evaluated the vasodilation/vasorelaxant activity of medicinal herbs in vivo, whereas 15 papers (48.4%) were assessed the vasodilation/vasorelaxant activity of medicinal herbs in vitro. The most widely used medicinal plants with vasodilation/vasorelaxant activity belonged to the family Asteraceae (19.4%) followed by Zingiberaceae (9.7%). Aerial parts (85.8%) such as leaves (30.5%), followed by ground parts (14.2%) such as root (11.1%) were the most common parts used in the studies. The findings of the present review showed that ethanolic extract (33.3%), followed by aqueous extract (22.2%) and methanolic extract (19.4%) were considered as the desired approaches of herbal extraction, whereas the essential oil (13.9%) and hydroalcoholic extract (8.3%) were the second most used herbal extractions.

Discussion
According to the WHO reports, herbal medicines and their derivatives because of low or no industrial handling and toxicity have been extensively used to treat various diseases such as diabetes, cancer, cardiovascular, and gastrointestinal problems, by local or regional healing methods in developed and developing countries (10,11). Reviews have previously demonstrated that the biological activities and treating properties of medicinal plants are due to the secondary metabolites existing in plants making them a reliable source for providing of new agents (12,13).

Flavonoids are considered one of the key secondary metabolites of plants, which have numerous pharmacological and therapeutics properties in the cardiovascular system, including vasodilation, antiatherogenic, antihypertensive, antioxidant, and antiplatelet properties (46,47). These compounds show their vasodilation and antihypertensive effects through inhibiting tyrosine kinase Pyk2 as the main enzyme to regulate calcium channels, activation of the cAMP/protein kinase A cascade, modulating the renin-angiotensin-aldosterone system, adapting the contraction of vessels of smooth muscles, activating the potassium channels, and decreasing calcium ions in cells by delaying voltage-gated calcium channels, etc (48).

Other important compounds in plants, which have exhibited considerable vasodilation and antihypertensive effects, are phenolic compounds (49, 50). Studies have reported that polyphenols display their effects through some mechanisms such as increasing endothelium-derived nitric oxide bioactivity, suppression of smooth muscle activation, regulating calcium channels, etc (51,52).

Terpenes are well-known as the key herbal compounds with a broad spectrum of pharmacological and therapeutic activities, including antihypertensive and vasodilation properties (53). Reviews demonstrated that these secondary metabolites act through a direct effect on vascular smooth muscle, an effect on the peripheral vascular resistance, no release of NO, activating the NO-cGMP pathway, and inhibition of Ca\(^{2+}\) influx, etc (54).

The present review showed that aerial parts, especially the leaves, were the most common parts of medicinal plants used for their vasodilatory activities. Reviews have demonstrated that leaves are well-known as the favored part of plants for therapeutics aims due to having a high percentage of bioactive composites; and convenience in harvesting without any damage to the herb (55-58).

We found that ethanolic extract, aqueous extract, and methanolic extract were the most used plant formulations. A previous study revealed that the general use of these extracts represents the role of solvents in the extraction of potential bioactive components from different plants and various parts of these herbs (59). The adverse side effects of herbal medicines are linked to a number of factors, including the toxicity of main constituents, lack of suitable manufacturing techniques, and consequently, heavy metals or microbes contaminations, and side effects on consumers, which are dependent on age, genetic and the underlying diseases of them (60-62). Today, exposure of a plant extracts in humans can be evaluated by detecting the increasing effects and doses that cause toxicity, such as carcinogenic, mutagenic, and teratogenic problems (63). A number of toxicity tests are necessary to assess the level of damages triggered by herbal extracts and their derivatives (63). In all in vivo studies, including in the present review, the used doses of medicinal herbs for evaluation of their vasodilation/vasorelaxation activities were based on the reliable toxicity tests such as acute toxicity, sub-chronic toxicity, the fixed-dose procedure indicating that these medicinal herbs in used doses have no significant toxicity in tested animals.

Limitations
The main limitations of the present study are the lack of phytochemical analysis on most plants to identify the main components of the plant, the lack of basic vasodilation mechanisms of some plants, and the lack of clinical studies.

Conclusion
Recently, numerous studies have been carried out on the antihypertensive and vasodilation effects of herbal extracts and essential oils alone or in combination with existing drugs. The results revealed that the herbal vasodilatory agents might be used as an alternative and complementary
Plant	Family	Part of used	Extraction	Concentration	Rout of administration	Results	
Acorus calamus	Acoraceae	Rhizomes	Aqueous-methanolic extract	0.01–10 mg/mL	-	Extract showed the coronary vasodilator effect primarily through endothelial-derived hyperpolarizing factor	
Alpinia purpurata	Zingiberaceae	Leaves	Hydroalcoholic extract	1, 3, 6, 10, 30, 60, and 90 μg	-	The hydroalcoholic extract showed the vasodilator effects in vitro	
Alpinia zerumbet	Zingiberaceae	Leaves	Hydroalcoholic extract	1, 3, 6, 10, 30, 60, and 90 μg	-	The hydroalcoholic extract showed the vasodilator effects in vitro	
Artemisia annua	Asteraceae	Aerial parts	Aqueous extract	100 mg/kg	Oral	Extract showed the vasodilator effect through inhibition of prostaglandin generation both indirectly and directly	
Artemisia campestris	Asteraceae	Aerial part	Essential oil	0.5, 1, 1.5, and 2 mg/kg	Oral	The essential oil showed vasorelaxation via inhibition of L-type Ca$^{2+}$ channels and the activation of SERCA pumps of reticulum plasma	
Borago officinalis	Boraginaceae	Leaves	Aqueous extract	0.5-10 mg/kg	-	Through Ca$^{2+}$ antagonist mechanism showed vasodilator and antihypertensive effects	
Colea glomerata	Compositae	Aerial parts	Ethanolic extracts	5, 10, 20, 50, and 100 mg/kg	Oral	Extract showed the vasodilator effect through blocking properties on Ca$^{2+}$ influx through voltage-dependent calcium channels	
Calicotome villosa	Fabaceae	Flowers	Methanol extract	2.5 mg/kg	Oral	Showed the vascular relaxation mediated partially through nitric oxide release	
Citrus aurantium	Rutaceae	Aerial parts	Essential oil	0.05-02%	-	Results showed the endothelial component of neroli-induced vasodilatation is partly mediated by the NO-sGC pathway	
Cocos nucifera	Arecaceae	Fruit	Ethanolic extract	0.25–2 mg/mL	-	Through nitric oxide production in a concentration and endothelium-dependent manner demonstrated the vasorelaxant and antihypertensive effects of CNE	
Coscinium fenestratum	Menispermaceae	Leaves	Aqueous extract	0.2 mL/100 g	-	Reduced nitric oxide synthase, and subsequently decreased the vasorelaxant action	
Croton schiedeanus	Euphorbiaceae	Aerial parts	Ethanolic extracts	5, 10, 20, 50, and 100 mg/kg	Oral	Extract showed the vasodilator effect through blocking properties on Ca$^{2+}$ influx through voltage-dependent calcium channels	
Curatella Americana	Dilleniaceae	Aerial parts	Ethanolic extracts	5, 10, 20, 50, and 100 mg/kg	Oral	Extract showed the vasodilator effect through blocking properties on Ca$^{2+}$ influx through voltage-dependent calcium channels	
Fructus Alpiniae Zerumbet	Zingiberaceae	Leaves	Essential oil	1.14–72.96 μg/mL	-	Showed the vasodilatation effect through the endothelium and concentration, and the mechanism involvement of NOS-cGMP system.	
Geum japonicum	Rosaceae	Leaves	Ethanolic extract	1–100 μg/mL	-	Findings suggested the vasorelaxant and hypotensive effects of G. japonicum, mediated via endogenous NO and subsequent cGMP formation.	
Guazuma ulmifolia	Malvaceae	Bark	Hexan extract	10 mg/kg	-	Reduced the contraction induced by norepinephrine through vascular endothelium removal or L-NAME pretreatment	
Jasminum sambac	Oleaceae	Flowers	Ethanolic extract	0.5 mL/mouse	Oral	Showed the vasodilator effect through vessel muscarinic receptors or by causing the release of nitric oxide	
Jatropha gossypiiifolia	Euphorbiaceae	Leaves	Ethanolic extract	125 or 250 mg/kg	Oral	Extract showed the vasorelaxant effect on rat mesenteric rings precontracted with norepinephrine or Ca$^{2+}$	
Plant	Family	Part of used	Extraction	Concentration	Rout of administration	Results	Ref.
-----------------------	--------------	--------------	------------------	---------------	------------------------	--	------
Laelia anceps	Orchidaceae	Root	Methanolic extract	100 mg/kg	Oral	Induced vasorelaxant and antihypertensive effects by blockade of Ca\(^{2+}\) channels	17
Laelia autumnalis	Orchidaceae	Root	Methanolic extract	15, 46, 150, 300, and 1500 µg/mL	-	Induced relaxation in rat aortic rings through an endothelium-independent pathway, involving blockade of Ca\(^{2+}\) channels and a possible cGMP enhanced concentrations and also caused an antihypertensive effect	15
Lippia alba	Verbenaceae	Aerial parts	Ethanolic extracts	5, 10, 20, 50, and 100 mg/kg	Oral	Extract showed the vasodilator effect through blocking properties on Ca\(^{2+}\) influx through voltage-dependent calcium channels	44
Loranthus ferrugineus	Loranthaceae	Leaves	Methanol extract	0.01 µM	-	Demonstrated its vascular effect by reversible noncompetitive antagonism of norepinephrine-induced vasoconstriction	22
Lupinus amandus	Fabaceae	Aerial parts	Ethanolic extracts	5, 10, 20, 50, and 100 mg/kg	Oral	Extract showed the vasodilator effect through blocking properties on Ca\(^{2+}\) influx through voltage-dependent calcium channels	44
Mammea atricana	Calophyllaceae	Stem bark	Methanol /methylene chloride extract	200 mg/(kg)	Oral	Had a beneficial effect in patients with NO deficiency by improving their endothelium-dependent vasorelaxation	29
Myrtus communis	Myrtaceae	Aerial parts	Methanol extract	0.01-5 mg/ml	-	Revealed the vasodilator effects through a possible calcium channel blocking activity	37
Nigella sativa	Ranunculaceae	Seed	Essential Oil	10-100 µg/mL	-	Essential oil showed the vasodilatory effects through blockade of both voltage-sensitive and receptor-operated calcium channels	40
Ocimum basilicum	Lamiaceae	Aerial parts	Aqueous- methanolic extract	3.0-10.0 mg/mL	-	Showed the vasodilation effect through Ca\(^{2+}\) channel blocking activities	35
Passiflora Edulis	Passifloraceae	Leaves	Methanol extract	10 and 50 mg/kg	Oral	The antihypertensive effect of the extract in SHRs might be due mostly to the GABA-induced antihypertensive effect and partially to the vasodilatory effect of polyphenols including luteolin	27
Pectis brevipedunculata	Asteraceae	Aerial parts	Essential oil	1-10 mM	-	Showed the vasorelaxation of thoracic aorta by affecting the NO/cyclic GMP pathway and reduced the calcium influx by the blockade of voltage-dependent L-type Ca\(^{2+}\) channels	36
Raphanus sativus	Brassicaceae	Seed	Aqueous extract	0.03–3.0 mg/mL	Oral	Showed the antihypertensive and vasodilation effects mediated through activation of muscarinic receptors	32
Saururus chinensis	Saururaceae	Root	Ethanolic extract	10, 30, and 100 mg/kg	Oral	Showed the antihypertensive effect through its direct vasorelaxant properties and negative inotropic actions	28
Sclerocarya birrea	Anacardiaceae	Stem-bark	Ethanolic extract	60, 120, and 240 mg/kg	Oral	Extract had renno- and cardio-protective effects in diabetes mellitus	24
Senecio nutans	Asteraceae	Branches, leaves	Hydroalcoholic extract	1-4 µg/mL	-	Extract showed the vasodilator effect through endothelium-dependent (NO) and or independent, and may involve a modulation of the calcium channels.	42
Tanacetum vulgare	Asteraceae	Leaves	Aqueous extract	800 µg/mL	-	The aqueous extract of Tanacetum possesses NO-mediated and NO-independent vasorelaxing properties in vitro	20
Tribulus terrestris	Zygophyllaceae	Fruits	Aqueous extract	A single daily dose of 10 mg/kg	Oral	Significantly reduced the systolic blood pressure; whereas reduced the ACE activity significantly lower than that of hypertensive rats	16
Ulmus macrocarpa	Ulmaceae	Root bark	Ethanolic extract	100 mg/kg	Oral	Showed the vasorelaxant and antioxidant properties probably through to reduce elevated blood pressure	26
source to treat hypertension as had lower important toxicities. Nevertheless, more investigations, especially clinical trials, are needed to clear this suggestion.

Authors’ contributions
AA, AK, NB, MA and NM reviewed and contributed to data collection and preparation of the manuscript. The first draft was prepared by AA, and NM. All authors read the final version and confirmed it for publication.

Conflict of interests
The authors declared no competing interests.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication and etc.) have been completely observed by the authors.

Funding/Support
This study received no funding or grant.

References
1. Lind L, Granstam SO, Millgård J. Endothelin-dependent vasodilation in hypertension: a review. Blood Press. 2000;9(1):4-15.
2. Møller S, Bendtsen F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018;38(4):570-80. doi: 10.1111/liv.13589.
3. Lind L. Lipids and endothelium-dependent vasodilation—a review. Lipids. 2002;37(1):1-15. doi: 10.1007/s11745-002-0858-6.
4. Tang F, Yan HL, Wang LX, Xu JF, Peng C, Ao H, et al. Review of natural resources with vasodilation: traditional medicinal plants, natural products, and their mechanism and clinical efficacy. Front Pharmacol. 2021;12:627458. doi: 10.3389/fphar.2021.627458.
5. Swensson ER. New insights into carbonic anhydrase inhibition, vasodilation, and treatment of hypertensive-related diseases. Curr Hypertens Rep. 2014;16(9):467. doi: 10.1007/s11906-014-0467-3.
6. Kincaid-Smith P. Vasodilators in the treatment of hypertension. Med J Aust. 1975;1(5):7:9. doi: 10.5694/j.1326-5377.1975.tb140363.x.
7. Osterziel KJ, Julius S. Vasodilators in the treatment of hypertension. Compr Ther. 1982;8(11):43-52.
8. Pettinger WA, Mitchell HC. Side effects of vasodilator therapy. Hypertension. 1988;11(3 Pt 2):II34-6. doi: 10.1161/01.hyp.11.3_pt_2.ii34.
9. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314(24):1547-52. doi: 10.1056/nejm19860123142404.
10. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacog Rev. 2012;6(11):1-5. doi: 10.4103/0973-7847.95849.
11. Ahmad Dar A, Shaahnawaz M, Qazi PH. General overview of medicinal plants: a review. J Phytopharmacol. 2017;6(6):349-51.
12. Silva NC, Fernandes Júnior AJ. Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis. 2010;16(3):402-13. doi: 10.1590/s1678-91992010000300006.
13. Rouhi-Boroujeni H, Heidarian E, Rouhi-Boroujeni H, Deris F, Rafieian-Kopaei M. Medicinal plants with multiple effects on cardiovascular diseases: a systematic review. Curr Pharm Des. 2017;23(7):999-1015. doi: 10.2174/1381612822666161021160524.
14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
15. Vergara-Galicó J, Ortiz-Andrade R, Castillo-España P, Ibarra-Barajas M, Gallardo-Ortiz I, Villalobos-Molina R, et al. Antihypertensive and vasorelaxant activities of *Laelia autumnalis* are mainly through calcium channel blockade. Vascul Pharmacol. 2008;49(1):26-31. doi: 10.1016/j.vph.2008.04.002.
16. Sharifi AM, Darabi R, Akbarloo N. Study of antihypertensive mechanism of *Tribulus terrestris* in 2K1C hypertensive rats: role of tissue ACE activity. Life Sci. 2003;73(23):2963-71. doi: 10.1016/j.lfs.2003.04.002.
17. Vergara-Galicó J, Ortiz-Andrade R, Rivera-Leyva J, Castillo-España P, Villalobos-Molina R, Ibarra-Barajas M, et al. Vasorelaxant and antihypertensive effects of methanolic extract from roots of *Laelia anceps* are mediated by calcium-channel antagonism. Fitoterapia. 2010;81(5):350-7. doi: 10.1016/j.fitote.2009.10.009.
18. Bankar GR, Nayak PG, Bansal P, Paul P, Pai KS, Singla RK, et al. Vasorelaxant and antihypertensive effect of *Cocos nucifera* Linn. endocarp on isolated rat thoracic aorta and DOCA salt-induced hypertensive rats. J Ethnopharmacol. 2011;134(1):50-4. doi: 10.1016/j.jep.2010.11.047.
19. Magos GA, Mateos JC, Paez E, Fernández G, Lobato C, Márquez C, et al. Hypotensive and vasorelaxant effects of the procyanidin fraction from *Guzmania ulmifolia* bark in normotensive and hypertensive rats. J Ethnopharmacol.
The vasodilatory effects of medicinal herbs

20. Lahlou S, Tangi KC, Lyoussi B, Morel N. Vascular effects of Tanacetum vulgare L. leaf extract: in vitro pharmacological study. J Ethnopharmacol. 2008;120(1):98-102. doi: 10.1016/j.jep.2008.07.041.

21. Ghayur MN, Gilani AH. Radish seed extract mediates its cardiovascular inhibitory effects via muscarinic receptor activation. Fundam Clin Pharmacol. 2006;20(1):57-63. doi: 10.1111/j.1472-8206.2005.00382.x.

22. Ameer OZ, Salman IM, Najim HS, Abdullahi GZ, Abdulkarim MF, Yam MF, et al. In vitro pharmacodynamic profile of Loranthus farrugineus: evidence for noncompetitive antagonism of norepinephrine-induced vascular contraction. J Acupunct Meridian Stud. 2010;3(4):272-82. doi: 10.1007/s12906-005-0048-9.

23. Xie YW, Xu HX, Dong H, Fiscus RR. Role of nitric oxide in the vasorelaxant and hypotensive effects of extracts and purified tannins from Geum japonicum. J Ethnopharmacol. 2007;109(1):128-33. doi: 10.1016/j.jep.2006.07.015.

24. Gondwe M, Kamadyaapa DR, Tufts M, Chuturgoon AA, Musabayane CT. Scleroarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] stem-bark ethanolic extract (SBE) modulates blood glucose, glomerular filtration rate (GFR) and mean arterial blood pressure (MAP) of STZ-induced diabetic rats. Phytomedicine. 2008;15(9):699-709. doi: 10.1016/j.phymed.2008.02.004.

25. Abreu IC, Marino AS, Paes AM, Freire SM, Olea RS, Borges MO, et al. Hypotensive and vasorelaxant effects of ethanolic extract from Iatropha goyssypiiolia L. in rats. Fitoterapia. 2003;74(7-8):650-7. doi: 10.1016/j.fitote.2003.07.002.

26. Oh KS, Ryu SY, Oh BK, Seo HW, Kim YS, Lee BH. Antihypertensive, vasorelaxant, and antioxidant effect of root bark of Ulmus macrocarpa. Biol Pharm Bull. 2008;31(11):2090-6. doi: 10.1248/bpb.31.2090.

27. Ichimura T, Yamanaka A, Ichiba T, Toyokawa T, Kamada Y, Tamamura T, et al. Antihypertensive effect of an extract of Passiflora edulis in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2006;70(3):718-21. doi: 10.1271/bbb.70.718.

28. Ryu SY, Oh KS, Kim YS, Lee BH. Antihypertensive, vasorelaxant and inotropic effects of an ethanolic extract of the roots of Saururus chinensis. J Ethnopharmacol. 2008;118(2):284-9. doi: 10.1016/j.jep.2008.04.011.

29. Ngulefack-Mbuyo PE, Nguelefack TB, Dongmo AB, Afkir A, Achebe AG, Dimo T, et al. Anti-hypertensive effects of the methanol/methylene chloride stem bark extract of Mammee africana in 1-NAME-induced hypertensive rats. J Ethnopharmacol. 2008;117(3):446-50. doi: 10.1016/j.jep.2008.02.028.

30. Cherkaoui-Tangi K, Lertprasertsuke N. Hypotensive and vasodilator activities of chrysin glucoside from Calycotome villosa in rats. Phytother Res. 2008;22(3):356-61. doi: 10.1002/ptr.2322.

31. Wongome T, Panthong A, Jayadanont S, Kanjanapothi D, Teosotikul T, Lertprasertsuke N. Hypotensive effect and toxicity of the extract from Coscinium fenestratum (Gaertn.) Colebr. J Ethnopharmacol. 2007;111(3):468-75. doi: 10.1016/j.jep.2006.12.019.
Moradifar et al

L, Román LS. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J Ethnopharmacol. 2002;80(1):37-42. doi: 10.1016/s0378-8741(01)00420-2.

Sadeghimahalli F, Khaleghzadeh-Ahangar H, Baluchnejadmojarad T. Role of prostaglandins in the vasodilator effect of the aqueous extract from *Artemisia annua* plant in streptozotocin-induced diabetic rats. Annu Rev Biol. 2019;36(1):1-10. doi: 10.9734/arrb/2019/v31i630069.

Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res. 2008;7(3):1089-99. doi: 10.4314/tjpr.v7i3.14693.

Ryan D, Robards K. Phenolic compounds in olives. Analyst. 1998;123(5):31R-44R. doi: 10.1039/a708920a.

Jiang F, Dusting GJ. Natural phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Curr Vasc Pharmacol. 2003;1(2):135-56. doi: 10.2174/157016103476736.

Duffy SJ, Vita JA. Effects of phenolics on vascular endothelial function. Curr Opin Lipidol. 2003;14(1):21-7. doi: 10.1097/00006433-200302000-00005.

Guimarães AG, Serafim MR, Quintans-Júnior LJ. Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin Ther Pat. 2014;24(3):243-65. doi: 10.1517/15534776.2014.870154.

Santos MR, Moreira FY, Fraga BP, de Souza DP, Bonjardim LR, Quintans-Júnior LJ. Cardiovascular effects of monoterpenes: a review. Rev Bras Farmacogn. 2011;21(4):764-71. doi: 10.1590/s0102-695x2011005000119.

Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res. 2017;31(2):202-64. doi: 10.1002/ptr.5751.

Eseyin OA, Sattar MA, Rathore HA. A review of the pharmacological and biological activities of the aerial parts of *Telphairia occidentalis* Hook. f. (Cucurbitaceae). Trop J Pharm Res. 2014;13(10):1761-9. doi: 10.4314/tjpr.v13i10.28.

Moshi MJ, Otieno DF, Weisheit A. Ethnomedicine of the Kagera region, north western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba district. J Ethnobiol Ethnomed. 2012;8:14. doi: 10.1186/1746-4269-8-14.

Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobiol Ethnomed. 2013;9:1. doi: 10.1186/1746-4269-9-1.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017;6(4):42. doi: 10.3390/plants6040042.

Woo CS, Lau JS, El-Nezami H. Herbal medicine: toxicity and recent trends in assessing their potential toxic effects. In: Shyur LF, Lau ASY, eds. Advances in Botanical Research. Vol 62. Academic Press; 2012. p. 365-84. doi: 10.1016/b978-0-12-394591-4.00009-x.

Bateman J, Chapman RD, Simpson D. Possible toxicity of herbal remedies. Scott Med J. 1998;43(1):7-15. doi: 10.1177/00369330980430104.

Mensah ML, Komlaga G, Forkuo AD, Firempong C, Anning AK, Dickson RA. Toxicity and safety implications of herbal medicines used in Africa. In: Herbal Medicine. IntechOpen; 2019. doi: 10.5772/intechopen.72437.

Parasuraman S. Toxicological screening. J Pharmacol Pharmacother. 2011;2(2):74-9. doi: 10.4103/0976-500x.81895.