Hunting Inflaton at FASER

Nobuchika Okada1 and Digesh Raut2

1Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
2Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

We explore a possibility that an inflaton, which drives the cosmological inflation in the early Universe, can be detected by the recently approved FASER at the High-Luminosity LHC (HL-LHC). We consider nonminimal quartic inflation scenario in the minimal $U(1)_X$ extension of the Standard Model (SM) with the classical conformal invariance, where the inflaton is identified with the $U(1)_X$ Higgs field (ϕ). By virtue of the classical conformal invariance and the radiative $U(1)_X$ symmetry breaking via the Coleman-Weinberg mechanism, the inflationary predictions (in particular, the tensor-to-scalar ratio (r)), the $(1)_X$ coupling (g_X) and the $(1)_X$ gauge boson mass ($m_{Z'}$), are all determined by only two free parameters, the inflaton mass (m_ϕ) and its mixing angle (θ) with the SM Higgs field. The FASER can search for the inflaton for the parameter ranges of $0.1 \lesssim m_\phi [\text{GeV}] \lesssim 4$ and $10^{-5} \lesssim \theta \lesssim 10^{-3}$. Because of the direct connection among r, g_X and $m_{Z'}$, the Z' boson resonance search at the HL-LHC and the future measurement of the primordial gravitational wave are complementary to the inflaton search at the FASER.

Very recently, the ForwArd Search Experiment (FASER) \cite{FASER} has been approved to search for light, weakly interacting, electrically neutral long-lived particles at the Large Hadron Collider (LHC). Such long-lived particles are included in a variety of new physics models beyond the Standard Model (SM). In the experiment, a detector will be located along the beam trajectory 480 meters downstream from the interaction point within the ATLAS detector at the LHC. This setup is specialized to search for light, long-lived particles with the following advantages: (i) the High-Luminosity upgrade of the LHC (HL-LHC) can produce a huge number of hadrons in the forward region, which could decay into light long-lived particles. Even if such a decay process is extremely rare, the huge number of produced hadrons provides us with a sizable number of events for the long-lived particle production; (ii) such light particles are highly boosted in the beam direction and mostly produced in the forward region; (iii) Because of very weak interactions, such particles can have a decay length of $O(100 \text{ m})$. The displaced vertex signature from such long-lived particles is almost free from the SM backgrounds. In Refs. \cite{Belyaev:2018cvi, Belyaev:2018mpt}, the authors have explored a possibility of detecting a SM singlet scalar (ϕ) at the FASER and other proposed experiments for the displaced vertex search. The production rate and the lifetime of the particle ϕ are controlled by only two parameters, its mass (m_ϕ) and mixing angle (θ) with the SM Higgs field. Impressively, these experiments are capable of probing extremely small mixing angles, $10^{-7} \lesssim \theta \lesssim 10^{-3}$, for $0.1 \lesssim m_\phi [\text{GeV}] \lesssim 10 \text{ GeV}$.\cite{Belyaev:2018mpt, Belyaev:2018cvi}

In their pioneering work \cite{Belyaev:2018mpt}, the authors have pointed out that the long-lived light scalar can be identified with a light inflaton in the chaotic inflation scenario. Once observed, its mass and mixing with the SM Higgs field can be measured. This measurement provides us with the information of the inflaton lifetime, which is interpreted into the information about the reheating temperature after inflation. However, in the chaotic inflation scenario, there is no direct connection between the light inflaton observation and the inflationary predictions.

In this letter, we consider the nonminimal quartic inflation in a classically conformal $U(1)_X$ extended SM, which the authors of the present paper have proposed with their collaborators \cite{Okada:2017zqz} (see also Ref. \cite{Okada:2016rwa}). By imposing the conformal invariance at the classical level on the minimal $U(1)_X$ extended SM \cite{Okada:2017zqz}, all the mass terms in the Higgs potential is forbidden. As a result, the $(1)_X$ gauge symmetry is radiatively broken by the Coleman-Weinberg (CW) mechanism \cite{Buryakovsky:2017lkl}, which subsequently drives the electroweak symmetry breaking through a mixing quartic coupling between the $(1)_X$ Higgs and the SM Higgs fields \cite{Buryakovsky:2017lkl}. As first pointed out in Ref. \cite{Okada:2017zqz}, the classical conformal invariance could be a clue to solve the gauge hierarchy problem of the SM. In our paper \cite{Okada:2017zqz}, we have identified the $(1)_X$ Higgs field with a nonminimal gravitational coupling as inflaton. Because of the classical conformal invariance, this scenario not only leads to the inflationary predictions consistent with the Planck 2018 results \cite{Ade:2015lrj}, but also provides a direct connection between the inflationary predictions and the LHC search for the $(1)_X$ gauge boson (Z') resonance. The main purpose of this letter is to show that if the inflaton mass and its mixing angle with the SM Higgs field lie in a suitable range, the inflaton can be searched by the FASER with a direct connection to the inflationary predictions.\cite{FASER} Therefore, three independent experiments, namely, the inflaton search at the FASER, the Z' boson resonance search at the HL-LHC and the precision measurement of the inflationary predictions, are complementary to test our inflation scenario.

Classically conformal $U(1)_X$ model: We first define our model with the particle content listed in Table \ref{tb:particle_content} where the $(1)_X$ charge of a particle is defined as a linear combination of its SM hypercharge and its $B - L$ (Baryon minus Lepton) number. The $(1)_X$ charges are determined by a real parameter, x_H, and the well-known minimal $U(1)_{B-L}$ model \cite{Goldberg:1983nd} is realized as the limit of $x_H \to 0$. Produces In the presence of the three right-hand neutrinos (RNHs), $\nu_R^{1,2,3}$, this model is free from all the gauge and the mixed gauge-gravitational

\begin{table}[h]
\centering
\caption{Particle content of our model. The $(1)_X$ charge is defined as a linear combination of its SM hypercharge and its $B - L$ (Baryon minus Lepton) number. The $(1)_X$ charges are determined by a real parameter, x_H.}
\begin{tabular}{|c|c|c|c|c|}
\hline
Particle & \text{SM Hypercharge} & $B - L$ & $(1)_X$ Charge \hline
Q & 1 & 0 & $(1)_X$ \hline
e^+ & 0 & 0 & $-\frac{x_H}{2}$ \hline
e^- & 0 & 0 & $\frac{x_H}{2}$ \hline
ν_L & -1 & 0 & $-\frac{x_H}{2}$ \hline
$\nu_R^{1,2,3}$ & 0 & 0 & $\frac{x_H}{2}$ \hline
H^+ & 0 & 1 & $\frac{x_H}{2}$ \hline
H^- & 0 & -1 & $\frac{x_H}{2}$ \hline
H_u & $+1$ & 0 & $\frac{x_H}{2}$ \hline
H_d & -1 & 0 & $\frac{x_H}{2}$ \hline
h & 0 & 0 & 0 \hline
H' & 0 & 0 & 0 \hline
\hline
\end{tabular}
\end{table}
TABLE I. The particle content of the minimal $U(1)_X$ model. $i = 1, 2, 3$ is the generation index.

SU(3)$_c$, SU(2)$_L$, U(1)$_Y$	U(1)$_X$
q^i_L	3
u^i_R	3
d^i_R	3
ℓ^i_L	1
e^i_R	1
H	1
N^i_R	1

The stationary condition, $dV/d\phi|_{\phi=v_X} = 0$, leads to

$$\bar{\lambda}_X = \frac{11}{6} \beta_X,$$

where the barred quantities are evaluated at $\langle \phi \rangle = v_X$. The mass of ϕ is given by

$$m_\phi^2 = \frac{d^2V}{d\phi^2} \bigg|_{\phi=v_X} = -\beta_X v_X^2,$$

$$= \frac{6}{\pi} m_{Z'}^2 \left(1 - 2 \left(\frac{m_N}{m_{Z'}} \right)^4 \right),$$

where $\alpha_X = g_X^2/(4\pi)$. The condition for the stability of $U(1)_X$ vacuum, $m_{Z'}^2 > 0$, requires $m_{Z'} > 2^{1/4}m_N$.

The $U(1)_X$ gauge symmetry breaking by $\langle \Phi \rangle = v_X/\sqrt{2}$ induces a negative mass squared for the SM Higgs doublet $(-\lambda_{mix}|\Phi|^2)$ in Eq. (2) and triggers the electroweak symmetry breaking [19]. The SM(-like) Higgs boson mass ($m_h = 125$ GeV) is described as

$$m_h^2 = \lambda_{mix} v_X^2 = 2\lambda_H v_h^2,$$

where $v_h = 246$ GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of $\lambda_{mix} \ll 1$ by considering the LEP constraint on $v_X \gtrsim 10$ TeV [15–18].

The mass matrix for the Higgs bosons, ϕ and h, is given by

$$\mathcal{L} \supset -\frac{1}{2} \left(h \phi \right) \begin{bmatrix} m_h^2 & \lambda_{mix} v_h \sqrt{2} & m_h^2 \\ \lambda_{mix} v_h \sqrt{2} & m_{\phi}^2 & m_h^2 \\ m_h^2 & m_h^2 & m_{\phi}^2 \end{bmatrix} \begin{bmatrix} h \\ \phi \\ h \end{bmatrix},$$

where h and ϕ are the mass eigenstates, and the mixing angle θ is determined by

$$2v_X v_h \lambda_{mix} = (m_h^2 - m_{\phi}^2) \tan 2\theta.$$

Since we are interested in the case with $m_{\phi}^2 \ll m_h^2$ and $\lambda_{mix} \ll 1$, we find

$$\theta \simeq \frac{v_h}{v_X} = \sqrt{\frac{16\pi^2 \beta_X}{m_{Z'}}} \ll 1.$$

The mass eigenvalues are given by

$$m_{\phi}^2 = m_h^2 + (m_{\phi}^2 - m_h^2) \frac{\sin^2 \theta}{1 - 2\sin^2 \theta} \simeq m_{\phi}^2 - m_h^2 \theta^2,$$

$$m_h^2 = m_h^2 - (m_{\phi}^2 - m_h^2) \frac{\sin^2 \theta}{1 - 2\sin^2 \theta} \simeq m_h^2.$$

For the parameter region which will be searched by the FASER, we find $m_{\phi,h} \simeq m_{\phi,h}$ and $\phi, h \simeq \phi, h$. For notational simplicity, we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of $m_N/m_{Z'}$, the inflaton mass (m_{ϕ}) and its mixing angle with the Higgs field (θ) are uniquely determined by α_X and $m_{Z'}$ with Eqs. (6) and (11).

Nonminimal quartic inflation: We here give a brief review on nonminimal quartic inflation with the action in the Jordan frame:

$$S_J = \int d^4 x \sqrt{-g} \left[-\frac{1}{2} f(\phi) \Box \phi + \frac{1}{2} g_{\mu\nu} \left(\partial_\mu \phi \right) \left(\partial_\nu \phi \right) - V_f(\phi) \right],$$

where

$$f(\phi) = \frac{1}{2} \left(1 - \frac{1}{2} \beta_X v_X^2 \right) + \frac{1}{2} \beta_X v_X^2 \phi \phi + \frac{1}{2} \beta_X v_X^2 \phi^2 + \frac{1}{2} \beta_X v_X^2 \phi^3,$$

with $g_{\mu\nu}$ the metric and $V_f(\phi)$ the quartic potential.
where ϕ is a real scalar field (inflaton), $f(\phi) = (1 + \xi \phi^2)$ with a real parameter $\xi > 0$, $V_{ij}(\phi) = \lambda \phi^4 / 4$ is the inflaton quartic potential, and the reduced Planck mass of $M_P = 2.44 \times 10^{18}$ GeV is set to be 1 (Planck unit). Using the transformation of $f(\phi)g_{\mu\nu} = g_{E\mu\nu}$, the action in the Einstein frame is described as

$$S_E = \int d^4x \sqrt{-g_E} \left[-\frac{1}{2} R_E + \frac{1}{2} g_E^{\mu\nu}(\partial_\mu \sigma)(\partial_\nu \sigma) - V_E(\phi(\sigma))\right], \quad (14)$$

where $V_E(\phi(\sigma)) = \sqrt{g_{E\mu\nu}}(\partial_\mu \sigma)(\partial_\nu \sigma)$, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field ϕ by

$$\left(\frac{d\sigma}{d\phi}\right)^2 = 1 + \xi(6\xi + 1)\phi^2 \left(1 + \xi\phi^2\right)^2. \quad (15)$$

Using Eq. (15), we can express the slow-roll inflation parameters in the Einstein frame as

$$\epsilon(\phi) = \frac{1}{2} \left(\frac{V_E'}{V_E}\right)^2,$$
$$\eta(\phi) = \frac{V_E''}{V_E} \left(\frac{V_E'}{V_E}\right)^2,$$
$$\zeta(\phi) = \left(\frac{V_E'}{V_E}\right)^3 - 3 \frac{V_E''}{V_E} \left(\frac{V_E'}{V_E}\right)^2,$$

$$+3 \frac{V_E'''}{V_E} \left(\frac{V_E'}{V_E}\right)^2 - \frac{V_E'''}{V_E} \left(\frac{V_E'}{V_E}\right)^4,$$ \quad (16)

where a prime denotes a derivative with respect to ϕ. The slow-roll inflation takes place when $\epsilon, |\eta|, \zeta < 1$. The amplitude of the curvature perturbation,

$$\Delta_R^2 = \frac{V_E(\phi)}{24\pi^2 \epsilon(\phi)} \bigg|_{k_0}, \quad (17)$$

should satisfy $\Delta_R^2 = 2.099 \times 10^{-9}$ from the Planck 2018 result [11] for the pivot scale $k_0 = 0.05$ Mpc$^{-1}$. The number of e-folds is evaluated by

$$N_0 = \frac{1}{\sqrt{2}} \int_{\phi_0}^{\phi} d\phi \frac{\sigma'}{\sqrt{\epsilon(\phi)}},$$ \quad (18)

where ϕ_0 is the inflaton value at the horizon exit of the scale corresponding to k_0, and ϕ_e is the inflaton value at the end of inflation, which is defined by $\epsilon(\phi_e) = 1$. In our analysis, we fix $N_0 = 60$ to solve the horizon and flatness problems.

The inflationary predictions for the scalar spectral index (n_s), the tensor-to-scalar ratio (r), and the running of the spectral index ($\alpha = \frac{dn_s}{d\ln k}$), are given by

$$n_s = 1 - 6\epsilon + 2\eta, \quad r = 16\epsilon, \quad \alpha = 16\epsilon\eta - 24\epsilon^2 - 2\zeta,$$ \quad (19)

which are evaluated at $\phi = \phi_0$. Using $\Delta_R^2 = 2.099 \times 10^{-9}$ and $N_0 = 60$, the inflationary predictions, λ, ϕ_0, and ϕ_e are determined as a function of the nonminimal gravitational coupling ξ. Based on unitarity arguments [19], we only consider $\xi < 10$. Our results are summarized in Table II.

Table II. Inflationary predictions for various ξ values and $N_0 = 60$. The region $\xi < 0.00642$ ($r > 0.064$) is excluded by the Planck 2018 result.

ξ	ϕ_0/M_P	ϕ_e/M_P	n_s	r	$\alpha(10^{-4})$	λ
0	22.1	2.83	0.951	0.262	-8.06	1.23 × 10^{-13}
0.00333	22.00	2.79	0.961	0.1	-7.03	3.79 × 10^{-13}
0.00642	21.85	2.76	0.963	0.064	-7.50	3.79 × 10^{-13}
0.0689	18.9	2.30	0.967	0.01	-5.44	6.69 × 10^{-12}
1	8.52	1.00	0.968	0.00346	-5.25	4.62 × 10^{-10}
10	2.89	0.337	0.968	0.00301	-5.24	4.01 × 10^{-8}

Nonminimal U(1)$_X$ Higgs inflaton

By introducing the nonminimal gravitational coupling of $-\xi(\Phi^4)$, we identify the U(1)$_X$ Higgs field with the inflaton field in Eq. (13). Since $\phi > v_X$ during inflation, we approximate the Higgs potential by its quartic potential in the following inflationary analysis.

For the inflation analysis, we employ the renormalization group (RG) improved effective potential of the form [20],

$$V(\phi) = \frac{1}{4} \lambda_\phi(\phi)\phi^4,$$ \quad (20)

where $\lambda_\phi(\phi)$ is the solution to the following RG equations at the 1-loop level:

$$\frac{d\lambda_\phi}{d\ln \phi} = \beta_\lambda \approx 96\alpha_X^2 - 3\alpha_Y^2,$$
$$\frac{d\alpha_X}{d\ln \phi} = \beta_\alpha = \frac{72 + 64x_H + 41x_H^2}{12\pi} \alpha_X,$$
$$\frac{d\alpha_Y}{d\ln \phi} = \beta_Y = \frac{1}{2\pi} \alpha_Y \left(\frac{5}{2} \alpha_Y - 6\alpha_X\right).$$ \quad (21)

Here, $\alpha_Y = Y^2_{/M} (4\pi)$ and we have identified ϕ with the renormalization scale along the inflation trajectory.

Since $\lambda_\phi \ll 1$, the stationary condition in Eq. (5) implies that $g_X, Y_M \ll 1$. Hence, the RG evolutions of α_X and α_Y can be approximated as

$$\alpha_X, Y(\phi) \approx \alpha_X, Y(0) + \beta_{\alpha_X, Y} \ln \left[\frac{\phi}{v_X}\right],$$ \quad (22)

and accordingly,

$$\beta_\lambda(\phi) \approx \beta_{\lambda} + 2 \left(96 \alpha_X^2 \beta_y - 3 \alpha_Y^2 \beta_Y\right) \ln \left[\frac{\phi}{v_X}\right].$$ \quad (23)

We now approximate the evolution of the quartic coupling by

$$\lambda_{\phi}(\phi) \approx \left(\frac{11}{6} + \ln \left[\frac{\phi}{v_X}\right]\right) \beta_\lambda$$

$$+ \left(96 \alpha_X^2 \beta_y - 3 \alpha_Y^2 \beta_Y\right) \left(\ln \left[\frac{\phi}{v_X}\right]\right)^2.$$ \quad (24)

In the following analysis, we fix $m_N = m_{ZZ}/3$ (or equivalently, $\alpha_Y = 62\alpha_X/9$) to satisfy the vacuum stability condition. Using Eq. (24), the quartic coupling is determined.
as a function of ϕ, α_X, $m_{Z'}$, and x_H. On the other hand, in the inflation analysis, the inflationary predictions are controlled by only one parameter ξ. Once we fix a ξ value, ϕ_0 and $\lambda_{\phi}(\phi_0)$ are completely fixed as listed in Table I. Hence, by using Eq. (24) we can express α_X as a function of $m_{Z'}$ and x_H for a fixed value of ξ. In fact, for $\xi \gtrapprox 10$, we find that α_X is almost independent of x_H, so that the x_H dependence for inflationary predictions effectively drops off. Therefore, the inflationary predictions, α_X, $m_{Z'}$, m_ϕ and θ are directly related with each other through Eqs. (6), (11) and (24).

![FIG. 1. The upper bounds on g_X from the ATLAS result for $x_H = -0.8$, 0 and 10 (the diagonal lines from top to bottom), respectively.](image)

The ATLAS and the CMS collaborations have been searching for a narrow resonance at the LHC, and the most severe constraint on the Z' boson of our model has been obtained by the search with dilepton final states. The ATLAS collaboration has recently reported their final result of the LHC Run-2 with a 139 fb^{-1} integrated luminosity [21]. Following the analysis in Ref. [22], we interpret the ATLAS result into an upper bound on g_X as a function of $m_{Z'}$ for a fixed x_H value. In Fig. 1 we show our results for $x_H = -0.8$, 0, and 10 (the solid diagonal lines from top to bottom). The upper bounds depend on x_H values and roughly scale as $g_X/|x_H|$ for $|x_H| \gtrapprox 3$, while we find the LHC bound becomes weak for $x_H \sim -1$ [23]. In the figure, we also plot the contours for fixed ξ values. For $x_H = 0$, the horizontal solid lines from top to bottom correspond to $\xi = 10$, 1.0, 6.9×10^{-2}, and 6.4×10^{-3} or equivalently, $r = 0.1$, 0.01, 3.4×10^{-3}, and 3.0×10^{-3}, respectively. The cyan shaded region is excluded by the Planck 2018 measurement $r > 0.064$. As discussed above, the inflationary predictions are almost independent of x_H for $|x_H| < 10$ and the horizontal lines represent the results for any values of x_H for $|x_H| < 10$. Fig. 1 indicates a complementarity between the LHC search for the Z' boson resonance and the inflationary predictions.

Searching for the inflaton at the FASER: We are now ready to discuss the inflaton search at the FASER and its complementarity to the cosmological constraints on the inflationary predictions. For a fixed ξ value, the inflationary predictions are fixed and α_X is determined as a function of $m_{Z'}$, independently of x_H for $|x_H| < 10$. As a result, both the mass of inflaton (m_ϕ) and its mixing angle with the SM Higgs field (θ) are uniquely determined by the CW relations in Eqs. (6) and (11), respectively.

In Fig. 2 we show our results in (m_ϕ, θ)-plane, together with the FASER search reach, the search reach of other planned/proposed experiments (contours with the names of experiments indicated), and the current excluded region (gray shaded) from CHARM [24], Belle [25] and LHCb [26] experiments, as shown in Ref. [3]. The diagonal dashed lines correspond to $\xi = 0.00642$ ($r = 0.064$) and $\xi = 0.00689$ ($r = 0.01$), respectively, from left to right. The cyan shaded region ($r > 0.064$) is excluded by the Planck 2018 results. We find that the parameter region corresponding to the inflationary prediction $r \sim 0.01$ can be searched by the FASER 2 in the future, a part of which is already excluded the Planck 2018 result. For a fixed $m_{Z'}$, we can obtain a relation between m_ϕ and θ through α_X (recall, again, that this relation is almost independent of x_H for $|x_H| < 10$). In Fig. 2, the diagonal solid lines correspond to $m_{Z'}[\text{TeV}] = 0.7$, 1.0, 1.3, 2.6, 5.0, and 10, from top to bottom. A point on a solid line corresponds to a fixed value of ξ, or equivalently, r. Along each line, the ξ (r) value increases (decreases) from left to right. In Table I for various $m_{Z'}$ values, we have listed the range of the predicted tensor-to-scalar ratio (r) which will be covered by the FASER. The blue shaded region (labeled ATLAS) is excluded by the ATLAS result of the Z' boson search for $x_H = 10$, corresponding to the bottom solid line in Fig. 1. The excluded regions for $x_H = -0.8$ and $x_H = 0$ (the $B-L$ model limit) correspond to $\theta > 10^{-3}$, and thus they are cov-
The range covered by FASER is rendered by the gray shaded region.

\(m_\phi \) [GeV]	The range covered by FASER
0.7	\(5.7 \times 10^{-3} \leq r \leq 6.0 \times 10^{-2} \)
1.0	\(5.3 \times 10^{-3} \leq r \leq 1.0 \times 10^{-2} \)
1.3	\(6.1 \times 10^{-3} \leq r \leq 1.4 \times 10^{-2} \)
2.6	\(7.7 \times 10^{-3} \leq r \leq 6.4 \times 10^{-2} \)
5.0	\(4.7 \times 10^{-3} \leq r \leq 6.4 \times 10^{-2} \)
10	\(7.0 \times 10^{-3} \leq r \leq 6.4 \times 10^{-2} \)

TABLE III. The ranges of \(r \) which will be covered by the FASER.

In conclusion, we have considered the nonminimal quartic inflation scenario in the minimal \(U(1)_X \) model with classical conformal invariance, where the inflaton is identified with the \(U(1)_X \) Higgs field. The FASER can search for the inflaton when its mass and mixing angle with the SM Higgs field are in the range of \(0.1 \lesssim m_\phi [\text{GeV}] \lesssim 4 \) and \(10^{-5} \lesssim \theta \lesssim 10^{-3} \). By virtue of the classical conformal invariance and the radiative \(U(1)_X \) symmetry breaking via the Coleman-Weinberg mechanism, the inflaton search by the FASER, the \(Z' \) boson resonance search at the LHC, and the future measurement of \(r \) are complementary to test our inflationary scenario.

Acknowledgements: This work is supported in part by the United States Department of Energy grant (de-sc0012447) (N.O), de-sc0013880 (D.R) and Bartol Research Grant BART-462114 (D.R).

* okadan@ua.edu
† draut@udel.edu

[1] A. Ariga et al. [FASER Collaboration], “FASER: ForwArd Search ExpeRiment at the LHC,” [arXiv:1901.04468 [hep-ex]].

[2] J. L. Feng, I. Galon, F. Kling and S. Trojanowski, “Dark Higgs bosons at the ForwArd Search ExpeRiment,” Phys. Rev. D 97, no. 5, 055034 (2018) [arXiv:1710.03284 [hep-ph]].

[3] A. Ariga et al. [FASER Collaboration], “FASERs for the LHC,” Phys. Rev. D 99, no. 9, 095011 (2019) [arXiv:1811.12522 [hep-ph]].

[4] F. Bezrukov and D. Gorbunov, “Light inflaton Hunter’s Guide,” JHEP 1005, 010 (2010) [arXiv:0912.0390 [hep-ph]].

[5] S. Oda, N. Okada, D. Raut and D. Takahashi, Phys. Rev. D 97, no. 5, 055001 (2018) [arXiv:1711.09850 [hep-ph]].

[6] L. Marzlova and A. Racioppi, JCAP 1610, 010 (2016) [arXiv:1606.06887 [hep-ph]].

[7] S. Oda, N. Okada and D. Takahashi, Phys. Rev. D 92, no. 1, 015026 (2015) [arXiv:1504.06291 [hep-ph]]; A. Das, S. Oda, N. Okada and D. Takahashi, Phys. Rev. D 93, no. 11, 115038 (2016) [arXiv:1605.01157 [hep-ph]].

[8] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D 7, 1888 (1973).

[9] S. Iso, N. Okada and Y. Orikasa, “Classically conformal \(B-L \) extended Standard Model,” Phys. Lett. B 676, 81 (2009) [arXiv:0902.4050 [hep-ph]]; S. Iso, N. Okada and Y. Orikasa, “The minimal \(B-L \) model naturally realized at TeV scale,” Phys. Rev. D 80, 115007 (2009) [arXiv:0909.0128 [hep-ph]].

[10] W. A. Bardeen, “On naturalness in the standard model,” FERMILAB-CONF-95-391-T.

[11] Y. Akrami et al. [Planck Collaboration], “Planck 2018 results. X. Constraints on inflation,” arXiv:1807.06211 [astro-ph.CO].

[12] R. Daido, F. Takahashi and W. Yin, JCAP 1705, 044 (2017) [arXiv:1702.03284 [hep-ph]]; R. Daido, F. Takahashi and W. Yin, JHEP 1802, 104 (2018) [arXiv:1710.11107 [hep-ph]]; F. Takahashi and W. Yin, JHEP 1907, 095 (2019) [arXiv:1903.00462 [hep-ph]].

[13] A. Davidson, “\(B \) as the Fourth Color, Quark - Lepton Correspondence, and Natural Masslessness of Neutrinos Within a Generalized WS Model,” Phys. Rev. D 20, 776 (1979); R. N. Mohapatra and R. E. Marshak, “Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations,” Phys. Rev. Lett. 44, 1316 (1980) Erratum: [Phys. Rev. Lett. 44, 1643 (1980)]; “Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group,” Phys. Lett. B 91, 222 (1980); C. Wetterich, “Neutrino Masses and the Scale of B-L Violation,” Nucl. Phys. B 187, 343 (1981); A. Masiero, J. F. Nieves and T. Yanagida, “\(B \) '1 Violating Proton Decay and Late Cosmological Baryon Production,” Phys. Lett. 116B, 11 (1982); R. N. Mohapatra and G. Senjanovic, “Spontaneous Breaking of Global B-L Symmetry and Matter-Antimatter Oscillations in Grand Unified Theories,” Phys. Rev. D 27, 254 (1983); W. Buchmüller, C. Greub and F. Minkowski, “Neutrino masses, neutral vector bosons and the scale of B-L breaking,” Phys. Lett. B 267, 395 (1991).

[14] P. Minkowski, “\(\mu \rightarrow e \gamma \) at a Rate of One Out of \(10^{9} \) Muon Decays?,” Phys. Lett. 67B, 421 (1977); T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe (O. Sawada and A. Sugamoto, eds.), KEK, Tsukuba, Japan, 1979, p. 95; M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity (P. van Nieuwenhuizen et al. eds.), North Holland, Amsterdam, 1979, p. 315; S. L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons (M. Lévy et al. eds.), Plenum Press, New York, 1980, p. 687; R. N. Mohapatra and G. Senjanović, “Neutrino Mass and Spontaneous Parity Violation,” Phys. Rev. Lett. 44, 912 (1980); J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) \times U(1) Theories,” Phys. Rev. D 22, 2227 (1980).

[15] LEP and ALEPH and DELPHI and L3 and OPAL Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavor Group, “A Combination of preliminary electroweak measurements and constraints on the standard model,” [hep-ex/0312023].

[16] M. Carena, A. Daleo, B. A. Dobrescu and T. M. P. Tait, “\(Z' \) gauge bosons at the Tevatron,” Phys. Rev. D 70, 093009 (2004) [hep-ph/0408098].

[17] S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations], “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532, 119 (2013) [arXiv:1302.3415 [hep-ex]].

[18] J. Heeck, “Unbroken \(B-L \) symmetry,” Phys. Lett. B 739, 256 (2014) [arXiv:1408.6845 [hep-ph]].

[19] C. P. Burgess, H. M. Lee and M. Trott, “Power-counting and the Validity of the Classical Approximation During Inflation,” JHEP 0909, 103 (2009) [arXiv:0902.4465 [hep-ph]]; C. P. Burgess, H. M. Lee and M. Trott, “Comment on Higgs Inflation and Naturalness,” JHEP 1007, 007 (2010) [arXiv:1002.2730 [hep-ph]]; J. L. F. Barbon and J. R. Espinosa, “On the Naturalness of Higgs Inflation,” Phys. Rev. D 79, 081302 (2009) [arXiv:0903.0355 [hep-ph]]; M. P. Hertzberg,
“On Inflation with Non-minimal Coupling,” JHEP 1011, 023 (2010) [arXiv:1002.2995 [hep-ph]].

[20] For a review, see M. Sher, “Electroweak Higgs Potentials and Vacuum Stability,” Phys. Rept. 179, 273 (1989).

[21] G. Aad et al. [ATLAS Collaboration], “Search for high-mass dilepton resonances using 139 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Lett. B 796, 68 (2019) [arXiv:1903.06248 [hep-ex]].

[22] A. Das, P. S. B. Dev and N. Okada, “Long-Lived TeV-Scale Right-Handed Neutrino Production at the LHC in Gauged $U(1)_X$ Model,” [arXiv:1906.04132 [hep-ph]].

[23] N. Okada and S. Okada, “Z'-portal right-handed neutrino dark matter in the minimal $U(1)_X$ extended Standard Model,” Phys. Rev. D 95, no. 3, 035025 (2017) [arXiv:1611.02672 [hep-ph]].

[24] F. Bergsma et al. [CHARM Collaboration], “Search for Axion Like Particle Production in 400-GeV Proton - Copper Interactions,” Phys. Lett. B 157, 458 (1985); M. W. Winkler, “Decay and detection of a light scalar boson mixing with the Higgs boson,” Phys. Rev. D 99, no. 1, 015018 (2019) [arXiv:1809.01876 [hep-ph]].

[25] J.-T. Wei et al. [Belle Collaboration], “Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for $B \to K^{(*)} \ell^+ \ell^-$,” Phys. Rev. Lett. 103, 171801 (2009) [arXiv:0904.0770 [hep-ex]].

[26] R. Aaij et al. [LHCb Collaboration], “Search for hidden-sector bosons in $B^0 \to K^{(*)} \mu^+ \mu^-$ decays,” Phys. Rev. Lett. 115, no. 16, 161802 (2015) [arXiv:1508.04094 [hep-ex]]; R. Aaij et al. [LHCb Collaboration], “Search for long-lived scalar particles in $B^+ \to K^+ \chi (\mu^+ \mu^-)$ decays,” Phys. Rev. D 95, no. 7, 071101 (2017) [arXiv:1612.07818 [hep-ex]].