Long-term effects of proglumide on resection of cardiac adenocarcinoma

Yu-Ping Chen, Jie-Sheng Yang, Di-Tian Liu, Wei-Ping Yang

Aim: Patients with advanced stage cardiac adenocarcinoma have a very poor prognosis. Surgery is the first choice of treatment for this kind of patients. Peptide hormone gastrin is a recognized growth factor for gastric cancer, and gastrin receptor antagonist proglumide can block the effects of gastrin. The aim of this study was to investigate the actions of proglumide as an adjuvant treatment to improve the postoperative long-term survival rate of patients with cardiac adenocarcinoma.

Methods: We performed a randomized, controlled study of gastrin receptor antagonist proglumide in 301 patients with cardiac adenocarcinoma after proximal subtotal gastrectomy. The oral dose of 0.4 g proglumide thrice daily preprandially was maintained for more than 5 years in 153 cases (proglumide treatment group). In the control group, 148 patients underwent operation only. In clinicopathologic features, there was no significant difference between the two groups (P>0.05). All patients were followed up during their lifetime, and the survival rates were analyzed combined with clinicopathologic factors by SPSS 11.5 statistical software.

Results: The 1, 3, 5 and 10-year survival rate of the patients was 88.4%, 48.8%, 22.6% and 13.4%, respectively. The 1, 3, 5 and 10-year survival rate of the proglumide treatment group was 90.2%, 49.7%, 26.8% and 17.6% compared to 86.5%, 48.0%, 18.2% and 8.9% of the control group. There was a significant difference between the two groups (P = 0.0460). The patients in proglumide treatment group had no obvious side effects after administration of the drug, and no definite hepatic and renal function damage was found. According to single factor log-rank analysis, the long-term survival rate was correlated with the primary tumor position (P = 0.0205), length of the tumor (P = 0.0000), property of the operation (P = 0.0000), histopathologic grading (P = 0.0003), infiltrating degree of the tumor (P = 0.0000), influence of lymph node metastasis (P = 0.0000), clinicopathologic staging (P = 0.0000) and administration of proglumide (P = 0.0460). Cox regression analysis demonstrated the infiltrating degree of tumor (P = 0.000), influence of lymph node metastasis (P = 0.039) and the clinicopathologic staging (P = 0.003) were independent prognostic factors. Administration of proglumide (P=0.081), length of the tumor (P = 0.304), radical status of the resection (P = 0.224) and histopathologic types (P = 0.072) were not the independent prognostic factors.

Conclusion: Proglumide is convenient to use with no obvious toxic side effects, and prolonged postoperative administration of proglumide as a postoperative adjuvant treatment can increase the survival rate of patients after resection of cardiac adenocarcinoma. Proglumide may provide a new effective approach of endocrinotherapy for patients with gastric cardiac cancer.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Proglumide; Cardiac adenocarcinoma

INTRODUCTION

The optimal treatment for cardiac adenocarcinoma is surgery, but its long-term effect is still unsatisfactory[1-5]. In order to improve postoperative long-term survival rate of patients with cardiac carcinoma, from March 1990, a randomized prospective study of proglumide as adjuvant treatment for patients with cardiac adenocarcinoma after resection was conducted[6]. We observed its long-term efficacy.

MATERIALS AND METHODS

Clinical data

From March 1990 to December 1995, 457 patients with cardiac carcinoma received surgical management in the Department of Thoracic Surgery, Tumor Hospital of Shantou University Medical College. Through left thoracotomy, 395 cases had their tumor resected and then underwent subtotal gastrectomy and esophagogastric anastomosis below aortic arch, with an 86.4% resectable rate. The remaining 62 cases were only explored. Among the patients receiving resection of tumor, one case died of myocardiac infarction, 82 underwent postoperative adjuvant chemotherapy, and 11 received postoperative radiotherapy. They were all excluded from our study. Three hundred and one cases were enrolled in this study and divided into proglumide treatment group and...
control group (only surgery group). The clinicopathologic features are presented in Table 1. The radical status of resection was classified by criteria of diagnosis and management, and the staging used in the study was based on UICC1988 PTNM stage for gastric cancer.

The patients in proglumide treatment group continuously took 0.4 g of proglumide, thrice daily, 15 min preprandially, for 5 years or more. All patients in the two studied groups took compound vitamin B<sub>n</sub> and vitamin E as well. The patients received no additional chemotherapy, radiotherapy, immunotherapy, or traditional Chinese medicine in our study.

**Follow-up and statistical analysis**

All the patients were followed up during their lifetime, and the follow-up rate was 95.3%. The patients who failed to receive follow-up were assumed to have died as they could not be contacted before the deadline. The patients followed up as outpatients received hepatic and renal function test regularly. Statistical analysis was performed using SPSS 11.5 software, and survival rate was calculated by Kaplan-Meier method. Single factor analysis was carried out using log-rank time sequence test, and multiple factors analysis was made using Cox proportional hazard model.

**RESULTS**

The overall 1-, 3-, 5- and 10-year survival rate was 88.4%, 48.8%, 22.6%, 13.4%, respectively. The patients in proglumide treatment group had no obvious side effects after administration of the drug, and no definite hepatic and renal function damage was found in followed patients. The 1-, 3-, 5- and 10-year survival rate in proglumide treatment group was 90.2%, 49.7%, 26.8% and 17.6% compared to 86.5%, 48.0%, 18.2% and 8.9% in the control group (P = 0.0460).

According to single factor log-rank analysis, the location of the disease (P = 0.0205), the length of tumor (P = 0.0000), radical status of resection (P = 0.0000), histopathological types (P = 0.0003), infiltrating depth (P = 0.0000), clinicopathologic staging (P = 0.0000) were all significant prognostic factors. However, the age, gender and residual end carcinoma were not associated with prognosis.

Cox regress multiple factor analysis also showed that infiltrating depth (P = 0.0000), lymph node involved status (P = 0.039) and clinicopathologic staging (P = 0.003) were independent prognostic factors. The length of tumor (P = 0.304), radical status of resection (P = 0.224), histopathological types (P = 0.072) and administration of proglumide (P = 0.081) were regarded as independent prognostic factors.

**DISCUSSION**

Cardiac carcinoma is a common tumor in our country. Its main treatment is still surgical resection by far, the 5-year survival rate of surgical resection was just 17.6% to 25.1%[15]. The 5-year survival rate of palliative resection was 8.0%[16]. Moreover, because of the physical and anatomical characteristics of cardia, it is difficult to make early diagnosis of the disease, resulting in the limited efficacy of radical treatment.

When cardiac tumor infiltrated less than one-third of lesser curvature, proximal gastrectomy was mainly performed for cardiac carcinoma[6]. The acidic function of residual stomach apparently decreased after operation, leading to a massive secretion of gastrin from G-cells in mucosa of gastric antrum. The sustained increase of circulating gastrin was found after truncal vagotomy and removal of vagus nerve around proximal stomach, resulting in elevation of gastrin in baseline and postprandial level about twice higher than that before operation[10]. Serum gastrin concentration in empty stomach after resection of cardiac carcinoma was 2.9 times as high as that before operation, and the postprandial peak value was 2.3 times as high as that before operation[11]. At the same time, it was reported that some gastric cancer cells secreted gastrin[12,13]. It has been confirmed that there are gastrin receptors upon the membranes of gastric carcinoma cells[2,3,14]. Furthermore, the positive rate of high-affinity and high-content gastrin receptors in cancer of gastric body and fungus was higher than that in cancer of gastric antrum[15,16], and advanced gastric carcinoma was easier to express high-affinity and high-content gastrin receptors than early and moderate gastric cancer[17].

In the course of the development and growth of gastric cancer, gastrin played a role in promoting proliferation of tumor cells[19,20]. After the combination of gastrin and its receptors, the flow of intracellular Ca<sup>2+</sup> was triggered, activating cyclic-AMP and cyclic-AMP-dependent protein kinase system, regulating the expression of early genes, such as c-fos and
proglumide as an adjuvant therapy after operation and achieved
treated patients with advanced stage gastric carcinoma by
Animal experimental studies
proglumide could block the growth of xeno-transplanted gastric
proglumide restrained the growth of gastric cancer
direly, proglumide restrained the growth of gastric cancer
c-Jun
the growth of gastric tumor cells, inhibit cell apoptosis and
Weichangyouzai Zazhi 2001; 4: 50-52
HuaN GJ, Le ZQ, Zhang YL, Yu F, Deng SZ. The expression of
gastrin receptor in gastric cancer and its prognostic value.
Zhonghua Putongwai Zazhi 1999; 14: 193-196
Ishizuka J, Martinez J, Townsend CM Jr, Thompson JC. The
effect of gastrin on growth of human stomach cancer cells.
Ann Surg 1992; 215: 528-534
Watson S, Durrant L, Morris D. Gastrin: growth enhancing
effects on human gastric and colonic tumour cells. Br J Cancer 1989; 59: 554-558
Miyaji M, Ogoshi K, Tajima T, Mitomi T. Association be-
tween serum gastrin levels, gastric acid secretion and age in
early gastric cancer. Tumour Biol 1997; 18: 311-320
Todisco A, Takeuchi Y, Seva C, Dickinson CJ, Yamada T. Gastrin and glycine-extended progastrin processing intermediates induce different programs of early gene activation. J Biol Chem 1985; 260: 28337-28341
Iwase K, Evers BM, Hellmich MR, Guo YS, Higashide S, Kim HJ, Townsend CM. Regulation of growth of human gastric cancer by gastrin and glycine-extended progastrin. Gastroenterology 1997; 113: 782-790
Wang HM, Zhang TZ, Zhang QH, Zhang YL, Huang SQ, Ding H, Li YS, Yuan AH. Effect of external gastrin on proliferation and apoptosis in gastric cancer cells. Zhonghua Shiyanwaike Zazhi 2001; 18: 184
Huang GJ, Wang HM, Zhang YL. The feasible study of gas-
trin receptor antagonist to inhibit the growth of gastric cancer. Zhongguo Weichangwaike Zazhi 1999; 2: 228-231
Li ZF, Wang DC, Le ZQ, Yu F. The study of inhibition effect of gastrin receptor antegria on gastric carcinoma cell MKN-28. Zhonghua Shiyanwaike Zazhi 1995; 12: 81-82
Piontek MK, Hengels KJ. Differential mode of action of high-
and low-affinity CCK/gastrin receptor antagonists in growth inhibition of gastrin–responsive human gastric adenocarci-
oma cells in vitro. Anticancer Res 1993; 13: 715-720
Huang GJ, Zhang YL, Le ZQ, Yu F. The Competition of proglumide and sandostatin can regulate the growth of xenotransplanted human gastric cancer cell line MKN45 in nude mice. Zhonghua Shiyanwaike Zazhi 1999; 16: 142-143
Wang H, Ni Q, Zhang Y, Yue Z, Zhang Q, Hou L. The action of proglumide blocking gastrin on gastric cancer cells. Zhonghua Waike Zazhi 1999; 37: 341-343
Beauchamp RD, Townsend CM, Singh P, Glass EJ, Thompson JC. Proglumide, a gastrin receptor antagonist, inhibits growth of colon cancer and enhances survival in mice. Ann Surg 1985; 202: 303-309
REFERENCES
1 de Manzon G, Pedrazzani C, Pasini F, Di Leo A, Durante E, Castaldini G, Cordiano C. Results of surgical treatment of adenocarcinoma of the gastric cardia. Ann Thorac Surg 2002; 73: 1035-1040
2 Mariette C, Castel B, Tourrel H, Fabre S, Balon JM, Triboulet JP. Surgical management of and long-term survival after adenocarcinoma of the cardia. Br J Surg 2002; 89: 1156-1163
3 Liu JF, Wang QZ, Hou J. Surgical treatment for cancer of the esophagus and gastric cardia in Hebei, China. Br J Surg 2004; 91: 90-98
4 Shao LF, Gao ZR, Wei QG, Xu JL, Chen MY, Cheng JH. Surgical treatment of carcinoma of the esophagus and gastric cardia in Hebei, China. Br J Surg 2004; 91: 90-98
5 Zhang R, Fang D, Zhang D. Surgical treatment results for carcinoma of the gastric cardia in 1832 cases. Zhonghua Zhongguo Zazhi 1998; 20: 140-142
6 Yang JS, Yang WP, Chen YP, Chen YQ, Yang XH, Lu SJ. Clinical observation of application of proglumide after resec-
tion of cardiac carcinoma. Zhonghua Xiongxinxueguan Zazhi 1996; 12: 214-216
7 Xu GW. The new guideline of diagnosis and treatment of common malignancy tumor: gastric cancer section. 1st ed. Beijing: Beijing and Xiehe Medical University Press 1999; 5-9
8 Zhang XF, Huang CM, Lu HS, Wu XY, Zhang JF, Zheng CH, Guan GX, Wang C, Zhou YJ, Song CG. Clinical observation of surgical treatment and prognosis in gastric cancer. Zhonghua Yixue Zazhi 2002; 82: 1142-1143
9 Kobayashi T, Sugimura H, Kimura T. Total gastrectomy is not always necessary for advanced gastric cancer of the cardia. Dig Surg 2002; 19: 15-21
10 Mulholland MW, Bonsack M, Delaney JP. Proliferation of gastric endocrine cells after vagotomy in the rat. Endocrinology 1985; 117: 1578-1584
11 Jing H, Liu K, Zhang GC. Changes in gastric secretion and serum gastrin concentration after partial esophagectomy and esophagogastrostomy: preliminary study. Zhonghua Waike Zazhi 1985; 23: 450-452, 508
12 Henwood M, Clarke PA, Smith AM, Watson SA. Expression of gastrin in developing gastric adenocarcinoma. Br J Surg 2001, 88: 564-568
13 McWilliams DP, Watson SA, Crossbree DM, Michaeli D, Seth R. Coexpression of gastrin and gastrin receptors (CCK-B and delta CCK-B) in gastrointestinal tumor cell lines. Gut 1998; 42: 795-798
14 Okada N, Kubota A, Imamura T, Suwa H, Kawaguchi Y, Ohshio G, Seino Y, Imamura M. Evaluation of cholecystokinin, gastrin, CCK-A receptor, and CCK-B/gastrin receptor gene expressions in gastric cancer. Cancer Lett 1996; 106: 257-262
15 Matsushima Y, Kinoshita Y, Nakata H, Inomoto-Narihayashi Y, Asahara M, Kawatsuki C, Nakamura A, Ito M, Matsu M, Fujiwara T. Gastrin receptor gene expression in several human carcinomas. Ipn J Cancer Res 1994; 85: 819-824
16 Smith JP, Shih AH, Wotring MG, McLaughlin PJ, Zagon IS. Characterization of CCK-B/gastrin-like receptors in human gastric carcinoma. Int J Oncol 1998; 12: 411-419
17 Li MJ, Huang GJ, Le ZQ, Zhang YL. The difference of gastrin receptor between gastric cancer and neighbouring mucosa and its significance. Zhonghua Weichangyouzai Zazhi 2001; 4: 50-52
18 Huang GJ, Le ZQ, Zhang YL, Yu F, Deng SZ. The expression of gastrin receptor in gastric cancer and its prognostic value. Zhonghua Putongwai Zazhi 1999; 14: 193-196
19 Chang Y, Asahara M, Kawanami C, Nakamura A, Ito M, Matsu M, Fujiwara T. Gastrin receptor gene expression in several human carcinomas. Ipn J Cancer Res 1994; 85: 819-824
20 Watson S, Durrant L, Morris D. Gastrin: growth enhancing effects on human gastric and colonic tumour cells. Br J Cancer 1989; 59: 554-558
21 Miyaji M, Ogoshi K, Tajima T, Mitomi T. Association between serum gastrin levels, gastric acid secretion and age in early gastric cancer. Tumour Biol 1997; 18: 311-320
22 Todisco A, Takeuchi Y, Seva C, Dickinson CJ, Yamada T. Gastrin and glycine-extended progastrin processing intermediates induce different programs of early gene activation. J Biol Chem 1985; 270: 28337-28341
23 Iwase K, Evers BM, Hellmich MR, Guo YS, Higashide S, Kim HJ, Townsend CM. Regulation of growth of human gastric cancer by gastrin and glycine-extended progastrin. Gastroenterology 1997; 113: 782-790
24 Wang HM, Zhang TZ, Zhang QH, Zhang YL, Huang SQ, Ding H, Li YS, Yuan AH. Effect of external gastrin on proliferation and apoptosis in gastric cancer cells. Zhonghua Shiyanwaike Zazhi 2001; 18: 184
25 Huang GJ, Wang HM, Zhang YL. The feasible study of gastrin receptor antagonist to inhibit the growth of gastric cancer. Zhongguo Weichangwaike Zazhi 1999; 2: 228-231
26 Li ZF, Wang DC, Le ZQ, Yu F. The study of inhibition effect of gastrin receptor antegria on gastric carcinoma cell MKN-28. Zhonghua Shiyanwaike Zazhi 1995; 12: 81-82
27 Piontek MK, Hengels KJ. Differential mode of action of high- and low-affinity CCK/gastrin receptor antagonists in growth inhibition of gastrin–responsive human gastric adenocarcinoma cells in vitro. Anticancer Res 1993; 13: 715-720
28 Huang GJ, Zhang YL, Le ZQ, Yu F. The Competition of proglumide and sandostatin can regulate the growth of xenotransplanted human gastric cancer cell line MKN45 in nude mice. Zhonghua Shiyanwaike Zazhi 1999; 16: 142-143
29 Wang H, Ni Q, Zhang Y, Yue Z, Zhang Q, Hou L. The action of proglumide blocking gastrin on gastric cancer cells. Zhonghua Waike Zazhi 1999; 37: 341-343
30 Beauchamp RD, Townsend CM, Singh P, Glass EJ, Thompson JC. Proglumide, a gastrin receptor antagonist, inhibits growth of colon cancer and enhances survival in mice. Ann Surg 1985; 202: 303-309