The role of genetic variants in FCGR2A on the risk of rheumatoid arthritis in the Han Chinese population

Yonghui Yang
Clinical laboratory,Xi’an 630 hospital

Linna Peng
Xizang Minzu University

Chunjuan He
Xizang Minzu University

Shishi Xing
Xizang Minzu University

Dandan Li
Xizang Minzu University

Tianbo Jin
Xizang Minzu University

Li Wang (✉ wangli_xzmd361@163.com)
Xizang Minzu University

Research

Keywords: Rheumatoid arthritis (RA), single nucleotide polymorphisms (SNPs), FCGR2A

DOI: https://doi.org/10.21203/rs.3.rs-63617/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Rheumatoid arthritis (RA) is the most common inflammatory arthritis and is characterized by irreversible joint damage and deformities, which is largely caused by genetic factors. The aim of this study was to explore the role of FCGR2A polymorphisms with the susceptibility to RA in the Han Chinese cohort.

Methods: We enrolled 506 RA patients and 509 healthy controls, with four single nucleotide polymorphisms (SNPs) successfully genotyped using Agena MassARRAY. Genetic models, haplotype analyses were applied to assess the association between FCGR2A polymorphisms and RA. And we evaluated the relative risk by odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression analysis.

Results: The results revealed that FCGR2A rs6668534 was significantly related to an increased risk of RA in the overall (OR = 1.24, 95%CI = 1.04 – 1.48, p = 0.014). There was no any association found between the polymorphisms and RA risk at age ≥ 54 years, while the two (rs6671847 and rs1801274) of the four SNPs possibly contributed to the susceptibility to RA at age ≤ 54 years. And the rs6668534 polymorphism conferred the increased susceptibility to RA in the male population. The haplotypes in the FCGR2A gene was significantly associated with the RA risk.

Conclusions: Our research have demonstrated that the FCGR2A gene polymorphisms (rs6671847, rs1801274 and rs6668534) were implicated in RA susceptibility in the Han Chinese population.

Introduction

Rheumatoid arthritis (RA), considered as an autoimmune disease, is characterized by multiple joints, symmetry and invasive inflammation of hand and foot facet joints. Furthermore, the involvement of extra-articular organs may occur, including vasculitis, pericarditis or interstitial lung disease. These symptoms are the consequences of long-term activation of the immune system. It affects approximately 1% of the population worldwide and 5–50 per 100 000 new cases annually. The occurrence rate is 2 to 3 times more frequently in women than in men. The pathogenic autoimmune process associated with RA is very complicated, involving several different stages that ultimately lead to the onset of RA. Unfortunately, until today, there is no preventive treatment or cure for RA. The disability associated with RA has a significant impact on the quality of life and socio-economic status of patients, families and society as a whole.

To date, the precise mechanism of RA which genetic factors has not been fully explained. It is believed that the development of RA is triggered by complex interactions between genetic and environmental factors. The common environmental factors include smoking, female, and oral contraceptive use. Moreover, previous studies have suggested that genetic factors may account for approximately one-half to two-thirds of the risk of RA. Genome-wide association analysis studies have identified ~ 100 gene loci that are linked with the disease. And the strongest association to RA is human leukocyte antigen (HLA), which is contribute to about 30% of genetic factors. In addition, the non-HLA also have been proved to be significantly related to RA.

Previous studies have reported that human FC-gamma receptors (FcγRs), a family of cell-surface receptors, have a pivotal role in many immunological process. Based on their affinity for IgG, they can be divided into two types, low- and high-affinity receptors. In human, five low-affinity FcγRs (including FcγRI, FcγRIIb, FcγRIIc, FcγRIIIa, and FcγRIIIb) are encoded by the Fc receptors for IgG immunoglobulins (FCγRs) genes (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B). Among them, FCGR2A is located on chromosome 1q23 and consists of 7 exons mapping to approximately 18.58 kb of genomic DNA. It encodes a member of a family of Fcγ receptors for immunoglobulin G. And it is also widely used to explore the correlation with the response to anti-TNF therapy in RA management, but there are few researches on association between FCGR2A variants and risk of RA.

In our study, the results showed that the FCGR2A polymorphisms were also related to the risk of RA in overall. In addition, we conducted stratified association analysis about the influence of FCGR2A variants on age and gender. We aimed to analyze the genetic association of FCGR2A and RA among the Chinese population of Shaanxi Han.

Methods And Materials

Study subjects

This case-control study was conducted in accordance with the Declaration of Helsinki. And the protocol was approved by the Ethics Committee of the Affiliated Hospital of Xizang Minzu University. Briefly, 506 RA patients and 509 unrelated healthy controls in a large cohort of Han Chinese population were enrolled to explore whether the FCGR2A variants had influence on the development of RA. All cases were recruited from the October 2016 to January 2019 from the Affiliated Hospital of Xizang Minzu University. And they were diagnosed as RA based on the American College of Rheumatology 1987 classification criteria and routine biochemical blood analysis (including C-reactive protein [CRP], erythrocyte sedimentation rate [ESR], rheumatoid factor [RF], anti-cyclic citrulline antibody [CCP]). Patients with any other immune and tumor diseases were excluded from this
study. At the same period, the 509 healthy controls, without any immune disease or other diseases were also selected from the same hospital. Written informed consents were obtained from all individuals.

SNP selection and genotyping

Four variants (rs6671847, rs1801274, rs17400517, and rs6668534) in *FCGR2A* gene were selected for the study to evaluate the effect on RA risk in the 1000 Genomes Project (http://www.1000genomes.org/) with minor allele frequency (MAF) > 5%. Strictly following the manufacturer's guidelines, we extracted genomic DNA from the blood samples using the GoldMag-Mini Whole Blood Genomic DNA Purification Kit (GoldMag. Co. Ltd., Xi’an, China). And the DNA concentration and purity were measured by spectrophotometer (NanoDrop 2000; Thermo Fisher Scientific, Waltham, MA, USA)

The Agena Bioscience Assay Design Suite V2.0 software (https://agenacx.com/online-tools/) was performed to design amplification and extension primers (Supplementary Table 1). The Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA) and Agena Bioscience TYPER version 4.0 were used for the SNPs genotyping and data analysis, respectively.

Statistical analysis

We used the SPSS 19.0 (SPSS, Chicago, IL, USA) software for statistical analysis in this study. The Pearson's Chi-square test and independent sample Student's t-test were applied to evaluate the differences in the distribution of age and gender between cases and controls, respectively. The genotype frequencies among the controls were calculated to evaluate departure from Hardy-Weinberg Equilibrium (HWE) using the Chi-square test. And based on the four genetic model (codominant, dominant, recessive, and log-additive), the correlation between SNPs and RA risk was estimated with the values of odd ratios (ORs) and 95% confidence intervals (CIs) using the logistic regression analysis on PLINK software (version 1.07). In addition, Haploview software (version 4.2) was used to assess linkage disequilibrium (LD), haplotype construction and genetic association of polymorphism loci. All p values were two-sided, and p < 0.05 was considered to be statistically significant.

Results

Characteristics of cases and controls

We recruited 506 RA patients consisting of 135 males and 371 females (mean age 54.35 ± 11.69 years). And 509 unrelated healthy individuals consisting of 134 males and 375 females were used as the controls (mean age 54.39 ± 12.02 years). There was no statistically significant difference on distribution of gender between the case and control group (p > 0.958). However, the distribution of age was significant difference (p = 0.038). In addition, we analyzed the clinical parameters in the cases. The mean ± SD of CRP and RF among 506 cases were 31.05 ± 40.25 mg/L and 164.09 ± 147.21 KIU/L, respectively. And the mean ± SD of ESR and CCP in the cases were 44.28 ± 30.86 mm/h and 75.11 ± 60.78 RU/ml. The detailed characteristics of cases and controls were showed in Table 1.

Association between *FCGR2A* variations and RA risk

The basic information of four *FCGR2A* polymorphisms is shown in Table 2. The genotype distribution of all SNPs in the control group was in accordance with HWE (p > 0.05). The minor allele "A" of rs6668534 was significantly related to an increased risk of RA in the Han Chinese population (OR = 1.24, 95% CI = 1.04 – 1.48, p = 0.014). Genetic models (including the codominant, the dominant, the recessive, and the log-additive model) were applied for further exploration of the relationship between *FCGR2A* variations and RA risk in this study (Table 3). Our result showed that the rs6668534 was associated with a 1.51-fold increased risk of RA in the codominant model (adjusted, 95% CI = 1.07 – 2.12, p = 0.018 for the "A/A" genotype), 1.35-fold increased risk of RA in the recessive model (adjusted, 95% CI = 1.02 – 1.78, p = 0.034 for the "A/A" genotype), and 1.23-fold increased risk of RA in the log-additive model (adjusted, 95% CI = 1.04 – 1.46, p = 0.018), respectively. However, we had not found that any correlation between other three SNPs and RA risk with or without adjustment by age and gender.

Stratification analysis by gender and age

The basic information of four *FCGR2A* polymorphisms is shown in Table 2. The genotype distribution of all SNPs in the control group was in accordance with HWE (p > 0.05). The minor allele "A" of rs6668534 was significantly related to an increased risk of RA in the Han Chinese population (OR = 1.24, 95% CI = 1.04 – 1.48, p = 0.014). Genetic models (including the codominant, the dominant, the recessive, and the log-additive model) were applied for further exploration of the relationship between *FCGR2A* variations and RA risk in this study (Table 3). Our result showed that the rs6668534 was associated with a 1.51-fold increased risk of RA in the codominant model (adjusted, 95% CI = 1.07 – 2.12, p = 0.018 for the "A/A" genotype), 1.35-fold increased risk of RA in the recessive model (adjusted, 95% CI = 1.02 – 1.78, p = 0.034 for the "A/A" genotype), and 1.23-fold increased risk of RA in the log-additive model (adjusted, 95% CI = 1.04 – 1.46, p = 0.018), respectively. However, we had not found that any correlation between other three SNPs and RA risk with or without adjustment by age and gender.

The stratification analysis by gender and age between the four SNPs and RA risk were displayed in Table 4. After the stratification analysis by gender adjusted for age, we found only rs6668534 was correlated with improved risk of RA in males in the allele model (OR = 1.50, 95% CI = 1.07 – 2.10, p = 0.020), the codominant model (adjusted, OR = 2.33, 95% CI = 1.29 – 4.22, p = 0.005 for the "G/A" genotype; OR = 2.16, 95% CI = 1.10 – 4.24, p = 0.026 for the "A/A" genotype), the dominant model (adjusted, OR = 2.27, 95% CI = 1.30 – 3.95, p = 0.004), and the log-additive model (adjusted, OR = 1.47, 95% CI = 1.05 – 2.06, p = 0.023). However, there was no significant differences between the female subgroup in any genetic model.

Then, we conducted stratification analysis by age of 54 years old adjusted for age and gender. There was no significant association between SNPs and RA risk at age > 54 years old. But two SNPs (rs6671847 and rs1801274) were observed to be associated with the risk of RA at age ≤54 years old based on the results of the allele model (rs6671847, OR = 0.72, 95% CI = 0.55 – 0.94, p = 0.014; rs1801274, OR = 0.73, 95% CI = 0.56 – 0.94, p = 0.017), the codominant model (rs6671847, OR = 0.50, 95% CI = 0.27 – 0.90, p = 0.020; rs1801274, OR = 0.50, 95% CI = 0.28 – 0.90, p = 0.022), and the log-additive model (rs6671847, OR = 0.72, 95% CI = 0.55 – 0.94, p = 0.016; rs1801274, OR = 0.73, 95% CI = 0.56 – 0.95, p = 0.019).
Furthermore, the relationship between genotypes at different loci and clinical parameters among patients were analyzed, as listed in Table 5. Our results showed that RA patients with different genotype of rs6671847 and rs1801274 had significantly different RF and CCP level (rs6671847, \(p = 0.003 \), \(p = 0.015 \); rs1801274, \(p = 0.002 \), \(p = 0.014 \), respectively). Similarly, the genotypes of rs6668534 in the RA patients showed significantly different CRP and CCP level (\(p = 0.029 \), \(p = 0.028 \), respectively).

LD and Haplotype analysis

We further performed the LD analysis among the four SNPs (rs6671847, rs1801274, rs17400517, and rs6668534) in FCGR2A. A strong linkage in block 1 between rs6671847 and rs1801274 was found (Figure 1). Unfortunately, there was no statistically difference between the cases and controls among the FCGR2A haplotypes (Table 6).

Discussion

Rheumatoid arthritis, one of the most typical autoimmune disease, is determined by various genetic and environmental interactions. It is widely recognized that genetic factors can lead prominently to the susceptibility to the RA and multiple genes and SNPs have been identified to be related to the RA. However, the contribution of the SNPs in FCGR2A gene to RA still remains unclear. Take these into account, we designed a case-control study to clarify the correlation between FCGR2A polymorphisms and RA susceptibility in the Han Chinese population. Our results revealed that three (rs6671847, rs1801274, and rs6668534) of four candidate SNPs were significantly associated with RA risk. And when stratified analysis by clinical parameters, the three mentioned above were also found to be related with RA.

FcγRs, as a kind of glycoproteins, bind the Fc region of immunoglobulin G (IgG) and are expressed by various immune cell types. It provides a pivotal link between the humoral and the cellular compartments of the immune system. Three FcγRs types (FcγRI, FcγRII, and FcγRIII) have been acknowledged in humans and mice. And the mice arthritis model suggested FcγRI is essential in autoantibody dependent arthritis. And the dysregulation of FcγRs is important in many different inflammatory diseases, including rheumatoid arthritis. The FcγRs proteins encoded by FCGR genes are involved in the process of phagocytosis and the clearing of immune complexes. Several studies demonstrated various genetic polymorphisms of these receptors were related to many autoimmune disease, one of which is the variants in FCGR2A. FCGR2A protein plays an important and protective role by removing antigen-antibody complexes in the circulation and transduces activated signals to cells via immune receptors when ligated with immune complexes. Upon binding of antibodies and autoantibodies, FCGR2A activates immune cell function and the release of inflammatory mediators, which is related to the pathogenic consequences caused by autoantibodies or immune complexes in a variety of immune diseases.

For FCGR2A gene, rs1801274 was a missense variant resulting in an amino-acid substitution of histidine by arginine at position 131. This variant, proved to interact differently with certain IgG subclasses, and related to the development of multiple autoimmune diseases. And rs1801274 (A > G) could bind to and mediate phagocytosis with IgG2, which result in altered immune response and the activation of B cells and overproduction of cytokines. In addition, several studies have proved that it was significantly related to the risk of many autoimmune diseases, including systemic lupus erythematosus (SLE), diabetes mellitus type 1 (T1D), and RA. MDC et al genotyped the FCGR2A (A > G) (rs1801274) genetic variant and evaluated the clinical response at 24 weeks with the use of the 28-joint disease activity score criteria (DAS28). They confirmed that FCGR2A (A > G) (rs1801274) variants could be used for genetic marker of tocilizumab efficacy in RA patients. Chatzikyriakidou et al found that absence of association of FCGR2A gene polymorphism rs1801274 with Kawasaki disease in Greek patients. Meziani R et al indicated that FCGR2A was identified as a candidate common risk factor in Japanese and European populations. However, we found few reports on the relationship between the other three loci (rs6671847, rs17400517 and rs6668534) and susceptibility to RA. In a word, there were few evidence for the role of heredity between FCGR2A polymorphisms and risk of RA, especially in a Han Chinese population.

In our results, the results showed that FCGR2A gene was involved in the progress of the RA. Our current study subjects were enrolled from hospital with small number of samples, which may limit the statistical power. And the overall information about association between FCGR2A and RA is few. Despite the limitations mentioned above, our current study shed novel light on FCGR2A as potential contributors for RA development in the Han Chinese population, which provides new insights into the pathogenesis of this disease. Further research is needed to explore the potential mechanism by which the above-mentioned polymorphisms affect RA.

Declarations

Acknowledgements

We also appreciate the Affiliated Hospital of Xizang Minzu University, which provided the samples used in this study.

Declaration of interest

The authors declared no conflicts of interest. The authors alone are responsible for the content of this manuscript.
Funding
Not applicable.

Data Availability
All relevant data are within the manuscript.

Ethical Approval and Consent to participate
This study was performed in accordance with the World Medical Association Declaration of Helsinki and was approved by the Ethics Committee of Xi'an 630 Hospital. Written informed consent was obtained from all of the subjects before participating.

Consent for publication
Not applicable

Authors' contributions
YH Y and LN P completed genotyping and performed the manuscript. CJ H, SS X, DD L and TB J participated in the statistical analysis of the data and modified the manuscript. LW designed the study, co-supervised the work and modified the manuscript. All the authors have read and approved the final manuscript.

Authors' information
1 Clinical Laboratory, Xi'an 630 Hospital, Yanliang, Xi'an, Shaanxi 710000, China.

2 School of basic medical Sciences, Xizang Minzu University, Xianyang, Shaanxi 712082, China.

References
1. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373(9664):659–72.
2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38.
3. Holmdahl R, Malmstrom V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation - the three stages of rheumatoid arthritis. European journal of immunology 2014, 44 (6), 1593–9.
4. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. The New England journal of medicine 2011, 365 (23), 2205–19.
5. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best practice & research. Clinical rheumatology 2017, 31 (1), 3–18.
6. Yau AC, Holmdahl R. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models. Dis Models Mech. 2016;9(10):1111–23.
7. Jacob N, Jacob CO. Genetics of rheumatoid arthritis: an impressionist perspective. Rheumatic diseases clinics of North America 2012, 38 (2), 243–57.
8. Sode J, Vogel U, Bank S, Andersen PS, Hetland ML, Locht H, Heegaard NH, Andersen V. Genetic Variations in Pattern Recognition Receptor Loci Are Associated with Anti-TNF Response in Patients with Rheumatoid Arthritis. PloS one. 2015;10(10):e0139781.
9. Dijstelbloem HM, van de Winkel JG, Kallenberg CG. Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol. 2001;22(9):510–6.
10. Fanciulli M, Vyse TJ, Aitman TJ. Copy number variation of Fc gamma receptor genes and disease predisposition. Cytogenetic and genome research 2008, 123 (1–4), 161–8.
11. (a) von Bubnoff D, Novak N, Kraft S, Bieber T. The central role of FcepsilonRI in allergy. Clinical and experimental dermatology 2003, 28 (2), 184-7; (b) Franke L, el Bannoudi H, Jansen DT, Kok K, Trynka G, Diogo D, Swertz M, Fransen K, Knevel R, Gutierrez-Achury J, Arlestig L, Greenberg JD, Kremer J, Pappas DA, Kanterakis A, Weersma RK, van der Helm-van Mil, Guryev AH, Rantapaa-Dahlqvist V, Gregersen S, Plenge PK, Wijmenga RM, Huizinga C, Ioan-Facsinay TW, Toes A, Zhemakova RE. A., Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes. European journal of human genetics: EJHG 2016, 24 (2), 263 – 70; (c) Davila-Fajardo, C. L.; van der Straaten, T.; Baak-Pablo, R.; Medarde Caballero, C.; Cabeza Barrera, J.; Huizinga, T. W.; Guchelaar, H. J.; Swen, J. J., FcGR genetic polymorphisms and the response to adalimumab in patients with rheumatoid arthritis. Pharmacogenomics 2015, 16 (4), 373 – 81.
12. Amett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis rheumatism. 1988;31(3):315–24.
13. Geng TT, Xun XJ, Li S, Feng T, Wang LP, Jin TB, Hou P. Association of colorectal cancer susceptibility variants with esophageal cancer in a Chinese population. World journal of gastroenterology. 2015;21(22):6898–904.

14. Wang T, Chen T, Thakur A, Liang Y, Gao L, Zhang S, Tian Y, Jin T, Liu JJ, Chen M. Association of PSMA4 polymorphisms with lung cancer susceptibility and response to cisplatin-based chemotherapy in a Chinese Han population. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2015, 17(7), 564–9.

15. Hu QY, Jin TB, Wang L, Zhang L, Geng T, Liang G, Kang LL. Genetic variation in the TP63 gene is associated with lung cancer risk in the Han population. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2014, 35(3), 1863–6.

16. (a) Huang CY, Xun XJ, Wang AJ, Gao Y, Ma JY, Chen YT, Jin TB, Hou P, Gu SZ, CHRNA5 polymorphisms and risk of lung cancer in Chinese Han smokers. American journal of cancer research 2015, 5(10), 3241-8; (b) Zhang T, Li X, Du Q, Gong S, Wu M, Mao Z, Gao Z, Long Y, Jin T, Geng T, Wang J, Chen C. DUSP10 gene polymorphism and risk of colorectal cancer in the Han Chinese population. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 2014, 23 (3), 173-6.

17. Jin X, Zhang KJ, Guo X, Myers R, Ye Z, Zhang ZP, Li XF, Yang HS, Xing JL. Fatty acid synthesis pathway genetic variants and clinical outcome of non-small cell lung cancer patients after surgery. Asian Pacific journal of cancer prevention: APJCP. 2014;15(17):7097–103.

18. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47.

19. Diaz de Stahl T, Andren M, Martinsson P, Verbeek JS, Kleinau S. Expression of FcgammaRIII is required for development of collagen-induced arthritis. Eur J Immunol. 2002;32(10):2915–22.

20. Niederer HA, Wilcockcs LC, Rayner TF, Yang W, Lau YL, Williams TN, Scott JA, Urban BC, Peshu N, Dunstan SJ, Hien TT, Phu NH, Padyukov L, Gunnarsson I, Svenungsson E, Savage CO, Watts RA, Lyons PA, Clayton DG, Smith KG. Copy number, linkage disequilibrium and disease association in the FcGR locus. Human molecular genetics. 2010;19(16):3282–94.

21. (a) Dijstelbloem HM, Scheckers RH, Oost WW, Stegeman CA, van der Pol WL, Sluijer WJ, Kallenberg CG, van de Winkel JG, Tervaert JW. Fcgamma receptor polymorphisms in Wegener’s granulomatosis: risk factors for disease relapse. Arthritis and rheumatism 1999, 42 (9), 1823-7; (b) Myhr KM, Raknes G, Nyland H.; Vedeler. C.,. Immunoglobulin G Fc-receptor (FcgammaR) IIA and IIIB polymorphisms related to disability in MS. Neurology 1999, 52 (9), 1771–1776.

22. Gonzálezmedina M, Dávilañajrado CO, Sotopino MJ, Díazvillamarín X, Gómezmartín A, Martínezgonzález L.J, Núñez M, Casashidalgo I, Cabezabarrera J, PKP-024 The FcgammaR2A (A > G) (RS1801274) genetic variant and the efficacy of tocilizumab in rheumatoid arthritis patients. European Journal of Hospital Pharmacy 2016, 23 (Suppl 1), A189.1-A189.

23. FALCINI; TRAPANI; TURCHINI; ERMINI. Immunological findings in Kawasaki disease: An evaluation in a cohort of Italian children. Clinical Experimental Rheumatology 1997, 15 (6), 685–9.

24. Hosgood HD 3rd; Purdue MP, Wang SS, Zheng T, Morton LM, Lan Q, Menashe I, Zhang Y, Cerhan JR, Grulich A, Cozen W, Yeager M, Holford TR, Vajdic CM, Davis S, Leaderer B, Kricker A, Schenk M, Zahm SH, Chatterjee N, Chanock SJ, Rothman N, Hartge P, Armstrong B. A pooled analysis of three studies evaluating genetic variation in innate immunity genes and non-Hodgkin lymphoma risk. British journal of haematology 2011, 152 (6), 721–6.

25. (a) Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernandez M, Zigovetzki R, Gaffney PM, Edberg JC, Riouw JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Díaz de Stahl T, Andren M, Martinsson P, Verbeek JS, Kleinau S. Expression of FcγIIA (A > G) (RS1801274) genetic variant and the efficacy of tocilizumab in rheumatoid arthritis patients. European Journal of Hospital Pharmacy 2016, 23 (Suppl 1), A189.1-A189.

26. Chatzikiakidou A, Aidinidou L, Giannopoulou A, Papadopoulou-Legelou K, Kalinderi K, Fidani L. Absence of association of FcγR2A gene polymorphism rs1801274 with Kawasaki disease in Greek patients. Cardiol Young. 2015;25(4):681–3.

27. Roubila M, Ryo Y, Meiko T, Kenel O, Akio M, Chikashi T, Hitomi H, Koichiro O, Masao Y, Takashi N. A trans-ethnic genetic study of rheumatoid arthritis identified FcγR2A as a candidate common risk factor in Japanese and European populations. Mod Rheumatol. 2012;22(1):52–8.

Tables

Table 1 Basic characteristics of both cases and controls
Variables	Case (n = 508)	Controls (n = 494)	p-value
Gender | | | > 0.05
Male | 134 (26%) | 124 (25%) | |
Female | 374 (74%) | 370 (75%) | |
Age, years (Mean ± SD) | 54.34 ± 12.01 | 54.03 ± 8.83 | < 0.001
> 54 | 261 (51%) | 253 (51%) | |
≤ 54 | 247 (49%) | 241 (49%) | |

*p-value was calculated by Student’s t-test. p < 0.05 indicates statistical significance.

Table 2 The distribution of allele frequencies of IL1R1/IL1R2 SNPs in case and control

Gene	SNP-ID	Chromosome position	Alleles	MAF	O (HET)	E (HET)	p-HWE	OR (95%CI)	p*	
IL1R2	rs11674595	Chr2:101994530	C/T	0.204	0.227	0.311	0.325	0.333	1.14 (0.92-1.42)	0.223
IL1R2	rs4851527	Chr2:102005914	A/G	0.326	0.297	0.453	0.439	0.539	0.87 (0.72-1.06)	0.166
IL1R2	rs719250	Chr2:102007256	A/G	0.296	0.258	0.397	0.416	0.282	0.83 (0.68-1.01)	0.064
IL1R2	rs3218896	Chr2:102015190	C/T	0.137	0.123	0.229	0.236	0.451	0.88 (0.68-1.15)	0.356
IL1R2	rs3218977	Chr2:102024739	A/G	0.234	0.257	0.358	0.358	1.000	1.13 (0.92-1.39)	0.230
IL1R2	rs2072472	Chr2:102026557	C/T	0.197	0.230	0.298	0.317	0.200	1.22 (0.98-1.51)	0.072
IL1R1	rs10490571	Chr2:102100877	A/G	0.178	0.204	0.292	0.293	0.879	1.18 (0.94-1.48)	0.145
IL1R1	rs956730	Chr2:102141656	A/G	0.242	0.231	0.370	0.367	0.903	0.94 (0.77-1.16)	0.574
IL1R1	rs3917225	Chr2:102152842	A/G	0.359	0.363	0.472	0.460	0.626	1.02 (0.85-1.22)	0.877
IL1R1	rs3917318	Chr2:102176300	A/G	0.490	0.475	0.469	0.500	0.176	0.94 (0.79-1.12)	0.516

95% CI: 95% confidence interval, HWE: Hardy-Weinberg equilibrium, MAF: Minor allele frequency, OR: Odds ratio, SNP: Single-nucleotide polymorphism, p*: Calculated by Pearson X² test

Table 3 Association between IL1R1/IL1R2 genetic variants and rheumatoid arthritis risk
Gene	SNP	Model	Genotype	Case N (%)	Control N (%)	OR (95% CI)	p
IL1R2	rs11674595	Codominant	T/T	298 (59.01)	315 (64.02)	1	
			T/C	185 (36.63)	153 (31.10)	1.28 (0.98-1.67)	0.072
			C/C	22 (4.36)	24 (4.88)	0.97 (0.53-1.77)	0.921
		Dominant	T/T	298 (59.01)	315 (64.02)	1	
			T/C-C/C	207 (40.99)	177 (35.98)	1.24 (0.96-1.60)	0.105
		Recessive	T/T-C/T	483 (95.64)	468 (95.12)	1	
			C/C	22 (4.36)	24 (4.88)	0.89 (0.49-1.61)	0.699
		Log-additive	-	-	-	1.14 (0.92-1.42)	0.224
	rs4851527	Codominant	G/G	244 (48.03)	221 (44.74)	1	
			A/G	226 (44.49)	224 (45.34)	0.91 (0.70-1.18)	0.481
			A/A	38 (7.48)	49 (9.92)	0.70 (0.44-1.12)	0.136
		Dominant	G/G	244 (48.03)	221 (44.74)	1	
			A/G-A/A	264 (51.97)	273 (55.26)	0.87 (0.68-1.12)	0.288
		Recessive	A/G-G/G	470 (92.52)	445 (90.08)	1	
			A/A	38 (7.48)	49 (9.92)	0.74 (0.47-1.15)	0.177
		Log-additive	-	-	-	0.87 (0.71-1.06)	0.154
	rs719250	Codominant	C/C	279 (55.25)	250 (50.61)	1	
			C/T	191 (37.82)	196 (39.68)	0.87 (0.67-1.13)	0.307
			T/T	35 (6.93)	48 (9.72)	0.66 (0.41-1.05)	0.078
		Dominant	C/C	279 (55.25)	250 (50.61)	1	
			C/T-T/T	226 (44.75)	244 (49.39)	0.83 (0.65-1.06)	0.142
		Recessive	C/T-C/T	470 (93.07)	446 (90.28)	1	
			T/T	35 (6.93)	48 (9.72)	0.70 (0.44-1.10)	0.118
		Log-additive	-	-	-	0.84 (0.69-1.02)	0.070
	rs3218896	Codominant	T/T	396 (77.95)	369 (74.85)	1	
			T/C	99 (19.49)	113 (22.92)	0.81 (0.60-1.10)	0.183
			C/C	13 (2.56)	11 (2.23)	1.12 (0.49-2.53)	0.792
		Dominant	T/T	396 (77.95)	369 (74.85)	1	
			T/C-C/C	112 (22.05)	124 (25.15)	0.84 (0.63-1.13)	0.241
		Recessive	T/T-C/T	495 (97.44)	482 (97.77)	1	
			C/C	13 (2.56)	11 (2.23)	1.17 (0.52-2.63)	0.712
		Log-additive	-	-	-	0.89 (0.69-1.15)	0.368
Genotype	rs2072472	Codominant	271 (53.35)	290 (58.70)	1		
----------	-----------	------------	-------------	-------------	---		
	A/G	213 (41.93)	177 (35.83)	1.29 (0.99-1.67)	0.056		
	G/G	24 (4.72)	27 (5.47)	0.94 (0.53-1.68)	0.842		
Dominant	A/A	271 (53.35)	290 (58.70)	1			
	A/G-G/G	237 (46.65)	204 (41.30)	1.24 (0.97-1.60)	0.090		
Recessive	A/G-A/A	484 (95.28)	467 (94.53)	1			
	G/G	24 (4.72)	27 (5.47)	0.85 (0.48-1.68)	0.574		
Log-additive	-	-	-	1.14 (0.92-1.40)	0.225		

Genotype	rs2072472	Codominant	296 (58.27)	323 (65.38)	1
	A/G	190 (37.40)	147 (29.76)	1.41 (1.08-1.84)	0.011
	G/G	22 (4.33)	24 (4.86)	1.00 (0.55-1.82)	1.000
Dominant	A/A	296 (58.27)	323 (65.38)	1	
	A/G-G/G	212 (41.73)	171 (34.62)	1.35 (1.05-1.75)	0.021
Recessive	A/G-A/A	486 (95.67)	470 (95.14)	1	
	G/G	22 (4.33)	24 (4.86)	0.89 (0.49-1.60)	0.688
Log-additive	-	-	-	1.22 (0.98-1.51)	0.073

Genotype	rs10490571	Codominant	318 (62.60)	334 (67.61)	1
	C/T	173 (34.06)	144 (29.15)	1.26 (0.96-1.65)	0.096
	T/T	17 (3.35)	16 (3.24)	1.11 (0.55-2.24)	0.773
Dominant	C/C	318 (62.60)	334 (67.61)	1	
	C/T-T/T	190 (37.40)	160 (32.39)	1.24 (0.96-1.61)	0.103
Recessive	C/T-C/C	491 (96.65)	478 (96.76)	1	
	T/T	17 (3.35)	16 (3.24)	1.03 (0.51-2.07)	0.934
Log-additive	-	-	-	1.18 (0.94-1.48)	0.149

Genotype	rs956730	Codominant	292 (57.71)	283 (57.29)	1
	A/G	194 (38.34)	183 (37.04)	1.02 (0.79-1.33)	0.863
	A/A	20 (3.95)	28 (5.67)	0.69 (0.38-1.25)	0.224
Dominant	G/G	292 (57.71)	283 (57.29)	1	
	A/G-A/A	214 (42.29)	211 (42.71)	0.98 (0.76-1.26)	0.868
Recessive	A/G-G/G	486 (96.05)	466 (94.33)	1	
	A/A	20 (3.95)	28 (5.67)	0.68 (0.38-1.23)	0.206
Log-additive	-	-	-	0.94 (0.76-1.16)	0.547

Genotype	rs3917225	Codominant	201 (39.72)	200 (40.49)	1
	A/G	243 (48.02)	233 (47.17)	1.04 (0.80-1.36)	0.772
	G/G	62 (12.25)	61 (12.35)	1.02 (0.68-1.52)	0.943
Dominant	A/A	201 (39.72)	200 (40.49)	1	

Page 9/21
	A/G-G/G	A/G-A/A	G/G	Log-additive	95% CI	p-value
Recessive	305 (60.28)	294 (59.51)	1.04 (0.80-1.33)	0.790		
	A/G-A/A	444 (87.75)	433 (87.65)	1		
G/G	62 (12.25)	61 (12.35)	0.99 (0.68-1.45)	0.972		
Log-additive	-	-	-	1.02 (0.84-1.22)	0.859	
rs3917318						
Codominant	A/A	140 (27.61)	136 (27.59)	1		
	A/G	252 (49.70)	231 (46.86)	1.06 (0.79-1.43)	0.682	
G/G	115 (22.68)	126 (25.56)	0.89 (0.63-1.26)	0.501		
Dominant	A/A	140 (27.61)	136 (27.59)	1		
	A/G-G/G	367 (72.39)	357 (72.41)	1.00 (0.76-1.32)	0.991	
Recessive	A/G-A/A	392 (77.32)	367 (74.44)	1		
G/G	115 (22.68)	126 (25.56)	0.85 (0.64-1.14)	0.286		
Log-additive	-	-	-	0.95 (0.80-1.12)	0.529	

95% CI: 95% confidence interval, HWE: Hardy-Weinberg equilibrium, MAF: Minor allele frequency, OR: Odds ratio, SNP: Single-nucleotide polymorphism, p-value was calculated by unconditional logistic regression adjusted by age and gender, p < 0.05 indicates statistical significance.

Table 4 Association between IL1R1/IL1R2 genetic variants and rheumatoid arthritis risk based on the gender stratification
Gene/SNP-ID	Model	Genotype	males	females						
			Case	control	OR (95% CI)	p	Case	control	OR (95% CI)	p
IL1R2/rs11674595	Allele	T	203 (75.75%)	199 (80.24%)	1.30 (0.86-1.98)	0.219	578 (77.90%)	584 (79.35%)	1.09 (0.85-1.40)	0.497
		C	65 (24.25%)	49 (19.76%)	1.14 (0.74-1.74)	0.295	164 (22.10%)	152 (20.65%)	1.23 (0.85-1.77)	0.236
	Codominant	T/T	75 (55.97%)	80 (64.52%)	1.07 (0.69-1.66)	0.784	223 (60.11%)	235 (63.86%)	1.09 (0.85-1.40)	0.501
		C/T	53 (39.55%)	39 (31.45%)	1.46 (0.87-2.46)	0.156	132 (35.58%)	114 (30.98%)	1.11 (0.87-1.46)	0.211
		C/C	6 (4.48%)	5 (4.03%)	1.30 (0.86-1.98)	0.219	16 (4.31%)	19 (5.16%)	0.89 (0.45-1.77)	0.736
	Dominant	T/T	75 (55.97%)	80 (64.52%)	1.23 (0.51-3.00)	0.621	223 (60.11%)	235 (63.86%)	1.13 (0.85-1.51)	0.296
		C/T-C/C	59 (44.03%)	44 (35.48%)	1.22 (0.87-1.70)	0.222	133 (36.14%)	148 (39.89%)	1.09 (0.85-1.40)	0.501
	Recessive	T/T-T/C	128 (95.52%)	119 (95.97%)	1.07 (0.87-1.35)	0.581	349 (94.84%)	355 (95.69%)	1.14 (0.87-1.51)	0.296
		C/C	6 (4.48%)	5 (4.03%)	1.22 (0.87-1.70)	0.222	133 (36.14%)	148 (39.89%)	1.09 (0.85-1.40)	0.501
	Log-additive	–	–	–	0.96 (0.65-1.44)	0.853	–	–	0.96 (0.65-1.44)	0.853
IL1R2/rs4851527	Allele	G	191 (71.27%)	175 (70.56%)	1.07 (0.87-1.35)	0.581	523 (69.92%)	491 (66.35%)	1.14 (0.87-1.51)	0.296
		A	77 (28.73%)	73 (29.44%)	0.86 (0.66-1.14)	0.353	225 (30.08%)	249 (33.65%)	0.85 (0.68-1.06)	0.140
	Codominant	G/G	65 (48.51%)	60 (48.39%)	1.04 (0.80-1.36)	0.732	179 (47.86%)	161 (43.51%)	1.05 (0.81-1.35)	0.591
		G/A	61 (45.52%)	55 (44.35%)	1.00 (0.80-1.25)	0.977	165 (44.12%)	169 (45.68%)	1.04 (0.80-1.35)	0.591
		A/A	8 (5.97%)	9 (7.26%)	0.94 (0.60-1.44)	0.853	30 (8.02%)	40 (10.81%)	1.07 (0.62-1.70)	0.366
	Dominant	G/G	65 (48.51%)	60 (48.39%)	1.04 (0.80-1.36)	0.732	179 (47.86%)	161 (43.51%)	1.05 (0.81-1.35)	0.591
		G/A-A/A	69 (51.49%)	64 (51.61%)	0.99 (0.61-1.62)	0.978	195 (52.14%)	209 (56.49%)	0.97 (0.61-1.62)	0.501
	Recessive	G/G-A/A	126 (94.03%)	115 (92.74%)	1.00 (0.80-1.25)	0.977	344 (91.98%)	330 (89.19%)	1.04 (0.80-1.35)	0.591
		A/A	8 (5.97%)	9 (7.26%)	0.94 (0.60-1.44)	0.853	30 (8.02%)	40 (10.81%)	1.07 (0.62-1.70)	0.366
	Log-additive	–	–	–	0.96 (0.65-1.44)	0.853	–	–	0.96 (0.65-1.44)	0.853
IL1R2/rs719250	Allele	C	204 (76.12%)	168 (67.74%)	1.04 (0.80-1.36)	0.732	545 (73.45%)	528 (71.35%)	1.05 (0.81-1.35)	0.591
		T	64 (23.88%)	80 (32.26%)	1.04 (0.80-1.36)	0.732	197 (26.55%)	212 (28.65%)	1.05 (0.81-1.35)	0.591
IL1R2/rs3218896

Allele	Codominant	T/T	C/T	T/C	C/C
C/C	76 (56.72%)	58 (46.77%)	58 (41.94%)	52 (38.81%)	0.97
	203 (54.72%)	192 (51.89%)	139 (37.47%)	144 (38.92%)	1.13
	1.00	1.00	0.81	0.90	

Log-additive

Allele	Codominant	T/T	C/T	T/C	C/C
C/C	76 (56.72%)	58 (46.77%)	58 (41.94%)	52 (38.81%)	0.97
	203 (54.72%)	192 (51.89%)	139 (37.47%)	144 (38.92%)	1.13
	1.00	1.00	0.81	0.90	

IL1R2/rs3218977

Allele	Codominant	T/T	C/T	T/C	C/C
A/A	67 (50.00%)	71 (57.26%)	67 (50.00%)	57 (47.06%)	0.97
	204 (54.55%)	196 (59.19%)	153 (40.91%)	153 (40.91%)	0.97
	1.00	1.00	1.14	1.00	

Log-additive

Allele	Codominant	T/T	C/T	T/C	C/C			
A/A	67 (50.00%)	71 (57.26%)	67 (50.00%)	57 (47.06%)	0.97			
	204 (54.55%)	196 (59.19%)	153 (40.91%)	153 (40.91%)	0.97			
	1.00	1.00	1.14	1.00				
Dominant	A/A	67 (50.00%)	71 (57.26%)	1	204 (54.55%)	219 (59.19%)	1	
A/G-G/G	67 (50.00%)	53 (42.74%)	1.17 (0.82-1.68)	0.383	170 (45.45%)	151 (40.81%)	1.38 (0.96-1.98)	
Recessive	A/G-A/A	127 (94.78%)	114 (91.94%)	1	357 (95.45%)	353 (95.41%)	1	
G/G	7 (5.22%)	10 (8.06%)	0.40 (0.18-0.88)	**0.023**	17 (4.55%)	17 (4.59%)	2.18 (0.81-5.84)	
Log-additive	–	–	–	0.97 (0.73-1.30)	0.843	–	–	1.39 (1.01-1.90)

IL1R2/rs2072472	Allele	A	206 (76.87%)	201 (81.05%)	1	576 (77.01%)	592 (80.00%)	1
G	62 (23.13%)	47 (18.95%)	1.29 (0.84-1.97)	0.245	172 (22.99%)	148 (20.00%)	1.19 (0.93-1.53)	
Codominant	A/A	78 (58.21%)	82 (66.13%)	1	218 (58.29%)	241 (65.14%)	1	
A/G	50 (37.31%)	37 (29.84%)	1.43 (0.84-2.42)	0.184	140 (37.43%)	110 (29.73%)	1.41 (1.03-1.92)	
G/G	6 (4.48%)	5 (4.03%)	1.26 (0.37-4.30)	0.712	16 (4.28%)	19 (5.14%)	0.93 (0.47-1.85)	
Dominant	A/A	78 (58.21%)	82 (66.13%)	1	218 (58.29%)	241 (65.14%)	1	
A/G-G/G	56 (41.79%)	2 (33.87%)	1.41 (0.85-2.34)	0.185	156 (41.71%)	129 (34.86%)	1.34 (0.99-1.80)	
Recessive	A/G-A/A	128 (95.52%)	119 (95.97%)	1	358 (95.72%)	351 (94.86%)	1	
G/G	6 (4.48%)	5 (4.03%)	1.11 (0.33-3.75)	0.862	16 (4.28%)	19 (5.14%)	0.82 (0.42-1.63)	
Log-additive	–	–	–	1.30 (0.84-1.99)	0.238	–	–	1.19 (0.93-1.53)

IL1R1/rs10490571	Allele	C	203 (75.75%)	120 (82.66%)	1	606 (81.02%)	607 (82.03%)	1
T	65 (24.25%)	43 (17.34%)	1.53 (0.99-2.35)	0.065	142 (18.98%)	133 (17.97%)	1.07 (0.82-1.39)	
Codominant	C/C	77 (57.46%)	86 (69.35%)	1	241 (64.44%)	248 (67.03%)	1	
C/T	49 (36.57%)	33 (26.61%)	1.66 (0.97-2.84)	0.065	124 (33.16%)	111 (30.00%)	1.14 (0.84-1.57)	
T/T	8 (5.97%)	5 (4.03%)	1.84 (0.57-5.97)	0.307	9 (2.41%)	11 (2.97%)	0.84 (0.34-2.06)	
Dominant	C/C	77 (57.46%)	86 (69.35%)	1	241 (64.44%)	248 (67.03%)	1	
C/T-T/T	57 (42.54%)	38 (30.65%)	1.68 (1.01-2.81)	**0.047**	133 (35.56%)	122 (32.97%)	1.12 (0.82-1.51)	
Recessive	C/T-C/C	126 (94.03%)	119 (95.97%)	1	365 (97.59%)	359 (97.03%)	1	
Allele	T/T	Log-additive	IL1R1/rs396730						
	8 (5.97%)	5 (4.03%)	1.56 (0.49-4.97)	0.454	9 (2.41%)	11 (2.97%)	0.80 (0.33-1.96)	0.624	
	57 (14.3)	14 (3.23%)	1.52 (0.99-2.33)	0.056	5 (1.73)	10 (2.97%)	1.07 (0.82-1.40)	0.630	
A	66 (24.81%)	64 (25.81%)	0.95 (0.64-1.41)	0.796	168 (22.52%)	175 (23.65%)	0.94 (0.74-1.20)	0.606	
A/A	50 (37.59%)	56 (45.16%)	0.76 (0.46-1.26)	0.288	144 (38.61%)	127 (34.32%)	1.14 (0.84-1.55)	0.388	
A	1 (0.95)	217 (58.18%)	2 (2.69)	0.50 (0.24-1.03)	0.061				
G	200 (75.19%)	184 (74.19%)	1	578 (77.48%)	565 (76.35%)	1	127 (48.39%)	40 (15.62%)	0.042
G/A	21 (8.42)	21 (8.42)	0.94 (0.62-1.43)	0.777	365 (97.59%)	359 (97.03%)	0.94 (0.73-1.2)	0.596	
A/A	166 (66.94%)	166 (66.94%)	1	478 (64.08%)	467 (63.11%)	1	117 (45.52%)	23 (8.78%)	0.042
A	99 (37.22)	82 (33.06)	1.20 (0.83-1.73)	0.325	268 (35.92)	273 (36.89)	0.96 (0.78-1.19)	0.699	
G	57 (45.97)	52 (41.94)	1.33 (0.79-2.25)	0.285	180 (48.00)	181 (48.92)	0.95 (0.70-1.30)	0.766	
A/G	63 (47.37)	52 (41.94)	1.34 (0.61-2.94)	0.471	46 (12.27)	46 (12.43)	0.92 (0.57-1.47)	0.724	
A/A	149 (39.95)	143 (38.65)	1	149 (39.95)	143 (38.65)	1	66 (25.81)	12 (4.44)	0.042
A	81 (60.9%)	67 (54.03)	1.33 (0.81-2.19)	0.258	224 (60.05)	227 (61.35)	0.95 (0.71-1.27)	0.717	
A/G/A/G/G	115 (86.47)	109 (87.90)	1	361 (96.78)	346 (93.51)	1	66 (25.81)	12 (4.44)	0.042
A/G	18 (13.53)	15 (12.10)	1.15 (0.55-2.41)	0.708	12 (3.22)	24 (6.49)	0.94 (0.61-1.47)	0.792	
G	113 (42.16)	127 (51.21)	1	377 (50.54)	382 (51.76)	1	66 (25.81)	12 (4.44)	0.042
	A	155 (57.84%)	121 (48.79%)	1.44 (1.02-2.04)	0.040	369 (49.46%)	356 (48.24%)	1.05 (0.86-1.29)	0.637
------------------	----	--------------	--------------	------------------	-------	--------------	--------------	------------------	-------
Codominant	G/G	26 (19.40%)	38 (30.65%)	1		93 (24.93%)	101 (27.37%)	1	
	G/A	61 (45.52%)	51 (41.13%)	1.97 (1.01-3.83)	0.045	191 (51.21%)	180 (48.78%)	1.15 (0.81-1.63)	0.427
	A/A	47 (35.07%)	35 (28.23%)	1.76 (0.94-3.27)	0.077	89 (23.86%)	88 (23.85%)	1.10 (0.73-1.65)	0.651
Dominant	G/G	26 (19.40%)	38 (30.65%)	1		93 (24.93%)	101 (27.37%)	1	
	G/A-A/A	108 (80.60%)	86 (69.35%)	1.84 (1.04-3.27)	0.037	280 (75.07%)	268 (72.63%)	1.13 (0.81-1.57)	0.452
Recessive	G/A-G/G	87 (64.93%)	89 (71.77%)	1		329 (88.20%)	324 (87.57%)	1	
	A/A	47 (35.07%)	35 (28.23%)	1.38 (0.81-2.33)	0.237	44 (11.80%)	46 (12.43%)	1.00 (0.71-1.40)	0.992
Log-additive	-	-	-	1.39 (1.00-1.93)	0.053	-	-	1.00 (0.86-1.29)	0.636

95%CI: 95% confidence interval, HWE: Hardy-Weinberg equilibrium MAF: Minor allele frequency, OR: Odds ratio, SNP: Single-nucleotide polymorphism, \(p\)-value was calculated by unconditional logistic regression adjusted by age and gender, \(p < 0.05\) indicates statistical significance.

Table 5 Association between IL1R1/IL1R2 genetic variants and rheumatoid arthritis risk.
Gene/SNP-ID	Model	Genotype	age>54 years	age ≤54 years																
			Case	Control	OR (95% CI)	p	Case	Control	OR (95% CI)	p										
IL1R2/rs11674595	Allele	T	402 (77.91%)	399 (79.17%)	1	0.624	379 (76.72%)	384 (80.00%)	1.21 (0.89-1.65)	0.214										
		C	114 (22.09%)	105 (20.83%)	1.08 (0.80-1.45)	0.624	115 (23.28%)	96 (20.00%)	1.21 (0.89-1.65)	0.214										
	Codominant	T/T	151 (58.53%)	161 (63.89%)	1	147 (59.51%)	154 (64.17%)	1												
		C/T	100 (38.76%)	77 (30.56%)	1.43 (0.98-2.10)	0.624	85 (34.41%)	76 (31.67%)	1.16 (0.79-1.70)	0.461										
		C/C	7 (2.71%)	14 (5.56%)	0.48 (0.19-1.25)	0.624	15 (6.07%)	10 (4.17%)	1.21 (0.69-3.71)	0.271										
	Dominant	T/T	151 (58.53%)	161 (63.89%)	1	147 (59.51%)	154 (64.17%)	1												
		C/T-C/C	107 (41.47%)	91 (36.11%)	1.28 (0.89-1.84)	0.624	100 (40.49%)	86 (35.83%)	1.21 (0.83-1.75)	0.317										
		C/C	251 (97.29%)	238 (94.44%)	1	232 (93.93%)	230 (95.83%)	1												
	Recessive	T/T-T/C	113 (43.30%)	119 (47.04%)	1	131 (53.04%)	102 (42.32%)	1												
		C/C	134 (51.34%)	106 (41.90%)	1.32 (0.91-1.91)	0.624	92 (37.25%)	118 (48.96%)	1.21 (0.89-1.64)	0.231										
	Log-additive	–	–	–	1.08 (0.79-1.47)	0.624	–	–	1.21 (0.89-1.64)	0.231										
IL1R2/rs4851527	Allele	G	360 (68.97%)	344 (67.98%)	1	354 (71.66%)	322 (66.80%)	1												
		A	162 (31.03%)	162 (32.02%)	0.96 (0.73-1.24)	0.624	140 (28.34%)	160 (33.20%)	0.80 (0.61-1.05)	0.100										
	Codominant	G/G	113 (43.30%)	119 (47.04%)	1	131 (53.04%)	102 (42.32%)	1												
		G/A	134 (51.34%)	106 (41.90%)	1.32 (0.91-1.91)	0.624	92 (37.25%)	118 (48.96%)	0.63 (0.43-0.93)	0.019										
		A/A	14 (5.36%)	28 (11.07%)	0.47 (0.23-0.96)	0.624	24 (9.72%)	21 (8.71%)	0.93 (0.49-1.78)	0.831										
	Dominant	G/G	113 (43.30%)	119 (47.04%)	1	131 (53.04%)	102 (42.32%)	1												
		G/A-A/A	148 (56.70%)	134 (52.96%)	1.13 (0.79-1.62)	0.624	116 (46.96%)	139 (57.68%)	0.68 (0.47-0.97)	0.035										
	Recessive	G/G-G/A	247 (94.64%)	225 (88.93%)	1	223 (90.28%)	220 (91.29%)	1												
		A/A	14 (5.36%)	28 (11.07%)	0.41 (0.21-0.82)	0.624	24 (9.72%)	21 (8.71%)	1.16 (0.62-2.17)	0.641										
	Log-additive	–	–	–	0.92 (0.69-1.22)	0.624	–	–	0.82 (0.62-1.08)	0.156										
IL1R2/rs719250	Allele	C	373 (72.29%)	359 (70.95%)	1	376 (76.11%)	337 (69.92%)	1												
		T	143 (27.71%)	147 (29.05%)	0.94 (0.71-1.23)	0.624	118 (23.89%)	145 (30.08%)	0.73 (0.55-0.97)	0.029										
Allele	Codominant	C/C	C/T	T/T	Dominant	C/C	C/T-T/T	Recessive	C/T-C/C	T/T	Log-additive	IL1R2/rs3218896	Allele	T	C	1	147	121	1	1
----------------	------------	--------------	--------------	--------------	-----------	--------------	---------------	------------	---------------	--------------	--------------	----------------	---------	--------------	--------------	---	-----	-----	---	---
							1.07 (0.75-1.53)													
Allele	Codominant	C/T-T/T					1.00 (0.67-1.49)													
Allele	Recessive	C/T-C/C					1.00 (0.67-1.49)													
Allele	Log-additive						1.00 (0.67-1.49)													
IL1R2/rs3218896	Allele	T/A					0.927 (0.76-1.34)													
Allele	Codominant	C/T-T/T					1.00 (0.76-1.34)													
Allele	Recessive	C/T-C/C					1.00 (0.76-1.34)													
Allele	Log-additive						1.00 (0.76-1.34)													
IL1R2/rs3218977	Allele	A/G					0.927 (0.76-1.34)													
Allele	Codominant	A/A					1.00 (0.76-1.34)													
Allele	Recessive	A/G					1.00 (0.76-1.34)													
Allele	Log-additive						1.00 (0.76-1.34)													
Allele	Codominant	G/G					1.00 (0.76-1.34)													
Allele	Recessive	G/G					1.00 (0.76-1.34)													
Allele	Log-additive						1.00 (0.76-1.34)													
Allele	Codominant	G/G					1.00 (0.76-1.34)													
Allele	Recessive	G/G					1.00 (0.76-1.34)													
Allele	Log-additive						1.00 (0.76-1.34)													
Allele	Codominant	C/T-T/T					1.00 (0.76-1.34)													
Allele	Recessive	C/T-C/C					1.00 (0.76-1.34)													
Allele	Log-additive						1.00 (0.76-1.34)													
Allele	Genotype	Dominant	Recessive	Log-additive																
------------------------	----------	----------	-----------	--------------																
		A/A	A/G-G/G	G/G	A/G	G														
IL1R2/rs2072472		145 (55.56%)	116 (44.44%)	10 (3.83%)	118 (22.61%)	118 (22.61%)														
		150 (59.29%)	103 (40.71%)	21 (8.30%)	99 (19.57%)	99 (19.57%)														
		1	1.17 (0.82-1.68)	0.40 (0.18-0.88)	1.20 (0.89-1.62)	1.67 (1.14-2.45)														
		126 (51.01%)	121 (48.99%)	14 (5.67%)	116 (23.48%)	86 (34.82%)														
		140 (58.09%)	101 (41.91%)	6 (2.49%)	96 (19.92%)	76 (31.54%)														
		1	0.383 (0.16-2.12)	0.023 (0.01-1.91)	0.232 (0.16-2.32)	0.023 (0.15-1.91)														
		1	0.156 (0.04-1.07)	0.039 (0.01-1.91)	0.163 (0.12-2.32)	0.075 (0.04-1.07)														
		1	1.84 (0.88-1.63)	0.026 (0.01-1.91)	1.20 (0.88-1.63)	1.20 (0.88-1.63)														
		1	1.23 (0.91-1.66)	0.185 (0.09-1.45)	1.77 (0.76-4.09)	1.77 (0.76-4.09)														
		1	0.177 (0.08-1.74)	0.391 (0.19-2.14)	1.18 (0.80-1.74)	1.18 (0.80-1.74)														
		1	0.238 (0.09-1.81)	0.228 (0.09-1.81)	1.25 (0.86-1.81)	1.25 (0.86-1.81)														
IL1R1/rs10490571		150 (57.47%)	150 (57.47%)	7 (2.68%)	150 (57.47%)	150 (57.47%)														
		168 (66.40%)	168 (66.40%)	14 (5.53%)	168 (66.40%)	168 (66.40%)														
		1	1.47 (1.02-2.12)	0.163 (0.12-2.32)	1.67 (1.14-2.45)	1.67 (1.14-2.45)														
		1	0.89 (0.52-1.54)	0.075 (0.05-1.54)	1.47 (1.02-2.12)	1.47 (1.02-2.12)														
		1	1.84 (0.88-1.63)	0.262 (0.15-1.84)	1.20 (0.88-1.63)	1.20 (0.88-1.63)														
		1	1.25 (0.92-1.69)	0.155 (0.08-1.58)	1.25 (0.92-1.69)	1.25 (0.92-1.69)														
		1	1.457 (0.82-2.58)	0.457 (0.25-2.68)	1.457 (0.82-2.58)	1.457 (0.82-2.58)														
		1	0.962 (0.37-2.57)	0.319 (0.18-0.58)	0.962 (0.37-2.57)	0.962 (0.37-2.57)														
		1	0.457 (0.25-2.68)	0.319 (0.18-0.58)	0.457 (0.25-2.68)	0.457 (0.25-2.68)														
		1	0.319 (0.18-0.58)	0.319 (0.18-0.58)	0.319 (0.18-0.58)	0.319 (0.18-0.58)														
		1	0.319 (0.18-0.58)	0.319 (0.18-0.58)	0.319 (0.18-0.58)	0.319 (0.18-0.58)														
Log-additive

IL1R1/rs956730	Allele	G	391 (75.48%)	375 (74.11%)	1	Log-additive	2.58 (0.91-1.73)	0.174	1	1.13 (0.81-1.57)	0.477
A		127 (24.52%)	131 (25.89%)	0.93 (0.70-1.23)	0.613	107 (21.66%)	2.40 (11.66%)	0.174	1	1.13 (0.81-1.57)	0.477

Codominant

G/G		138 (53.28%)	138 (54.55%)	1	G/A	115 (44.40%)	99 (39.13%)	1.19 (0.83-1.72)	0.342	79 (31.98%)	45 (34.85%)	0.86 (0.58-1.26)	0.434
A/G		121 (46.72%)	115 (45.45%)	1.08 (0.76-1.55)	0.660	93 (37.65%)	96 (39.83%)	0.91 (0.63-1.31)	0.601				

Recessive

G/A/G		253 (97.68%)	237 (93.68%)	1	A/A	6 (2.32%)	16 (6.32%)	0.40 (0.15-1.06)	0.065	14 (5.67%)	12 (4.98%)	1.28 (0.57-2.89)	0.549
G/G		28 (10.77%)	26 (10.28%)	1.21 (0.66-2.24)	0.533	34 (13.82%)	35 (14.52%)	0.93 (0.53-1.63)	0.806				

Log-additive

IL1R1/rs3917225	Allele	A	336 (64.62%)	337 (66.60%)	1	Log-additive	0.95 (0.70-1.28)	0.720	1	1.35 (0.61-3.02)	0.462
G		184 (35.38%)	169 (33.40%)	1.09 (0.84-1.41)	0.503	183 (37.20%)	186 (38.59%)	0.94 (0.73-1.22)	0.654		

Codominant

A/A		104 (40.00%)	110 (43.48%)	1	A/G	128 (49.23%)	117 (46.25%)	1.17 (0.81-1.71)	0.406	115 (46.75%)	116 (48.13%)	0.93 (0.63-1.31)	0.721
G/G		28 (10.77%)	26 (10.28%)	1.21 (0.66-2.24)	0.533	34 (13.82%)	35 (14.52%)	0.93 (0.53-1.63)	0.806				

Recessive

| A/G/G | | 156 (60.00%) | 143 (56.52%) | 1.18 (0.82-1.69) | 0.367 | 149 (60.57%) | 151 (62.66%) | 0.93 (0.64-1.35) | 0.707 |
|----------------|--------|--------------|--------------|---|--------------|--------------|-------------|------------------|-------|-----------|-------------|------------------|------|
| G/G | | 28 (10.77%) | 26 (10.28%) | 1.12 (0.63-1.99) | 0.711 | 34 (13.82%) | 35 (14.52%) | 0.97 (0.58-1.62) | 0.908 |

Log-additive

IL1R1/rs3917318	Allele	G	241 (46.17%)	253 (50.20%)	1	Log-additive	1.13 (0.86-1.48)	0.391	1	0.96 (0.74-1.25)	0.744
A		281	251	1.18	0.197	241	230	1.05	0.693		
Gene	SNP	Haplotype	Frequency	Without adjusted	Adjusted						
------	------------	-----------	-----------	------------------	----------						
			Case	Control							
IL1R2	rs3218977	AG	0.77	0.80	0.82						
	rs2072472	GA	0.26	0.23	1.14						
		AA	0.51	0.57	0.79						

p-value was calculated by Wald test with and without adjusted by age and gender.

95%CI: 95% confidence interval, HWE: Hardy-Weinberg equilibrium, MAF: Minor allele frequency,
OR: Odds ratio, SNP: Single-nucleotide polymorphism, *p*-value was calculated by unconditional logistic regression adjusted by age and gender.
p < 0.05 indicates statistical significance.

Table 6 The haplotype frequencies of IL1R1/IL1R2 polymorphisms and their associations with rheumatoid arthritis risk

Figures
Figure 1

The linkage disequilibrium (LD) of four SNPs in the FCGR2A gene.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable1.docx