STRING TOPOLOGY FOR SPHERES.

LUC MENICHI*

WITH AN APPENDIX BY GERALD GAUDENS AND LUC MENICHI

Abstract. Let M be a compact oriented d-dimensional smooth manifold. Chas and Sullivan have defined a structure of Batalin-Vilkovisky algebra on $\mathbb{H}_\ast(LM)$. Extending work of Cohen, Jones and Yan, we compute this Batalin-Vilkovisky algebra structure when M is a sphere S^d, $d \geq 1$. In particular, we show that $\mathbb{H}_\ast(LS^2; \mathbb{F}_2)$ and the Hochschild cohomology $HH^\ast(H^\ast(S^2); H^\ast(S^2))$ are surprisingly not isomorphic as Batalin-Vilkovisky algebras, although we prove that, as expected, the underlying Gerstenhaber algebras are isomorphic. The proof requires the knowledge of the Batalin-Vilkovisky algebra $H_\ast(\Omega^2 S^3; \mathbb{F}_2)$ that we compute in the Appendix.

Dedicated to Jean-Claude Thomas, on the occasion of his 60th birthday

1. Introduction

Let M be a compact oriented d-dimensional smooth manifold. Denote by $LM := \text{map}(S^1, M)$ the free loop space on M. In 1999, Chas and Sullivan [2] have shown that the shifted free loop homology $\mathbb{H}_\ast(LM) := H_{\ast+d}(LM)$ has a structure of Batalin-Vilkovisky algebra (Definition 5). In particular, they showed that $\mathbb{H}_\ast(LM)$ is a Gerstenhaber algebra (Definition 8). This Batalin-Vilkovisky algebra has been computed when M is a complex Stiefel manifold [25] and very recently over \mathbb{Q} when M is a $K(\pi, 1)$ [28]. In this paper, we compute the Batalin-Vilkovisky algebra $\mathbb{H}_\ast(LM; k)$ when M is a sphere S^n, $n \geq 1$ over any commutative ring k (Theorems 10, 16, 17, 24 and 25).

In fact, few calculations of this Batalin-Vilkovisky algebra structure or even of the underlying Gerstenhaber algebra structure have been done because the following conjecture has not yet been proved.

Conjecture 1. (due to [2, “dictionary” p. 5] or [7 ?])

Key words and phrases. String Topology, Batalin-Vilkovisky algebra, Gerstenhaber algebra, Hochschild cohomology, free loop space.

*The author was partially supported by the Mathematics Research Center of Stanford University.
If M is simply connected then there is an isomorphism of Gerstenhaber algebras $\mathbb{H}_*(LM) \cong HH^*(S^*(M); S^*(M))$ between the free loop space homology and the Hochschild cohomology of the algebra of singular cochains on M.

In [7, 5], Cohen and Jones proved that there is an isomorphism of graded algebras over any field

$$\mathbb{H}_*(LM) \cong HH^*(S^*(M); S^*(M)).$$

Over the reals or over the rationals, two proofs of this isomorphism of graded algebras have been given by Merkulov [23] and Félix, Thomas, Vigué-Poirrier [11]. Motivated by this conjecture, Westerland [30] has computed the Gerstenhaber algebra $HH^*(S^*(M; \mathbb{F}_2); S^*(M; \mathbb{F}_2))$ when M is a sphere or a projective space.

What about the Batalin-Vilkovisky algebra structure?

Suppose that M is formal over a field, then since the Gerstenhaber algebra structure on Hochschild cohomology is preserved by quasi-isomorphism of algebras [10, Theorem 3], we obtain an isomorphism of Gerstenhaber algebras

$$HH^*(S^*(M); S^*(M)) \cong HH^*(H^*(M); H^*(M)).$$

Poincaré duality induces an isomorphism of $H^*(M)$-modules

$$\Theta : H^*(M) \to H^*(M)^\vee.$$

Therefore, we obtain the isomorphism

$$HH^*(H^*(M); H^*(M)) \cong HH^*(H^*(M); H^*(M)^\vee)$$

and the Gerstenhaber algebra structure on $HH^*(H^*(M); H^*(M))$ extends to a Batalin-Vilkovisky algebra [26, 22, 19] (See above Proposition [20] for details). This Batalin-Vilkovisky algebra structure is further extended in [27, 9, 20, 21] to a richer algebraic structure. It is natural to conjecture that this Batalin-Vilkovisky algebra on $HH^*(H^*(M); H^*(M))$ is isomorphic to the Batalin-Vilkovisky algebra $\mathbb{H}_*(LM)$. We show (Corollary [30]) that this is not the case over \mathbb{F}_2 when M is the sphere S^2. See [6, Comments 2. Chap. 1] or the papers of Tradler and Zeinalian [26, 27] for related conjecture when M is not assumed to be necessarily formal. On the contrary, we prove (Corollary [23]) that Conjecture [1] is satisfied for $M = S^2$ over \mathbb{F}_2.

Acknowledgment: We wish to thank Ralph Cohen and Stanford Mathematics department for providing a friendly atmosphere during my six months of "delegation CNRS". We would like also to thank Yves Félix for a discussion simplifying the proof of Theorem [10].
2. The Batalin-Vilkovisky algebra structure on $H_*(LM)$.

In this section, we recall the definition of the Batalin-Vilkovisky algebra on $H_*(LM; k)$ given by Chas and Sullivan [2] over any commutative ring k and deduce that this Batalin-Vilkovisky algebra $H_*(LM; k)$ behaves well with respect to change of rings.

We first recall the definition of the loop product following Cohen and Jones [7, 6]. Let M be a closed oriented smooth manifold of dimension d. The inclusion $e : map(S^1 \vee S^1, M) \hookrightarrow LM \times LM$ can be viewed as a codimension d embedding between infinite dimension manifolds [24, Proposition 5.3]. Denote by ν its normal bundle. Let $\tau_e : LM \times LM \mapsto map(S^1 \vee S^1, M)$ its Thom-Pontryagin collapse map. Recall the umkehr (Gysin) map $e!$ is the composite of τ_e and the Thom isomorphism:

$$H_*(LM \times LM; k) \xrightarrow{H_*(\tau_e; k)} H_*(map(S^1 \vee S^1, M); k) \xrightarrow{(u_k)} H_{*-d}(map(S^1 \vee S^1, M); k)$$

The Thom isomorphism is given by taking a relative cap product \cap with a Thom class for ν, $u_k \in H^d(map(S^1 \vee S^1, M); k)$. A Thom class with coefficients in \mathbb{Z}, $u_\mathbb{Z}$, gives rise a Thom class u_k with coefficients in k, under the morphism

$$H^d(map(S^1 \vee S^1, M); \mathbb{Z}) \rightarrow H^d(map(S^1 \vee S^1, M); k)$$

induced by the ring homomorphism $\mathbb{Z} \rightarrow k$ [16, p. 441-2]. So we have the commutative diagram

$$\begin{array}{ccc}
H_*(LM \times LM; \mathbb{Z}) & \xrightarrow{\tau_e} & H_*(map(S^1 \vee S^1, M); \mathbb{Z}) \\
\downarrow & & \downarrow \\
H_*(LM \times LM; k) & \xrightarrow{\tau_e} & H_{*-d}(map(S^1 \vee S^1, M); k)
\end{array}$$

Let $\gamma : map(S^1 \vee S^1, M) \rightarrow LM$ be the map obtained by composing loops. The loop product is the composite

$$H_*(LM; k) \otimes H_*(LM; k) \rightarrow H_*(LM \times LM; k) \xrightarrow{\gamma} H_{*-d}(LM; k)$$

So clearly, we have proved

Lemma 3. The morphism of abelian groups $H_*(LM; \mathbb{Z}) \rightarrow H_*(LM; k)$ induced by $\mathbb{Z} \rightarrow k$ is a morphism of graded rings.
Suppose that the circle S^1 acts on a topological space X. Then we have an action of the algebra $H_*(S^1)$ on $H_*(X)$,

$$H_*(S^1) \otimes H_*(X) \to H_*(X).$$

Denote by $[S^1]$ the fundamental class of the circle. Then we define an operator of degree 1, $\Delta : H_*(X; k) \to H_{*+1}(X; k)$ which sends x to the image of $[S^1] \otimes x$ under the action. Since $[S^1]^2 = 0$, $\Delta \circ \Delta = 0$. The following lemma is obvious.

Lemma 4. Let X be a S^1-space. We have the commutative diagram

$$
\begin{array}{ccc}
H_*(X; \mathbb{Z}) & \xrightarrow{\Delta} & H_{*+1}(X; \mathbb{Z}) \\
\downarrow & & \downarrow \\
H_*(X; \mathbb{k}) & \xrightarrow{\Delta} & H_{*+1}(X; \mathbb{k})
\end{array}
$$

where the vertical maps are induced by the ring homomorphism $\mathbb{Z} \to \mathbb{k}$.

The circle S^1 acts on the free loop space on M by rotating the loops. Therefore we have a operator Δ on $\mathbb{H}_*(LM)$. Chas and Sullivan \[2\] have showed that $\mathbb{H}_*(LM)$ equipped with the loop product and the Δ operator, is a Batalin-Vilkovisky algebra.

Definition 5. A **Batalin-Vilkovisky algebra** is a commutative graded algebra A equipped with an operator $\Delta : A \to A$ of degree 1 such that $\Delta \circ \Delta = 0$ and

\begin{enumerate}
 \item $\Delta(abc) = \Delta(ab)c + (-1)^{|a|}a\Delta(bc) + (-1)^{|a|-1}|b|b\Delta(ac) - (\Delta a)bc - (-1)^{|a|}a(\Delta b)c - (-1)^{|a|+|b|}ab(\Delta c)$.
\end{enumerate}

Consider the bracket $\{ , \}$ of degree $+1$ defined by

$$\{a, b\} = (-1)^{|a|} (\Delta(ab) - (\Delta a)b - (-1)^{|a|}a(\Delta b))$$

for any $a, b \in A$. \[6\] is equivalent to the following relation called the **Poisson relation**:

\begin{enumerate}
 \item $\{a, bc\} = \{a, b\}c + (-1)^{|a|+1}|b|b\{a, c\}$.
\end{enumerate}

Getzler \[14, Proposition 1.2\] has shown that the $\{ , \}$ is a Lie bracket and therefore that a Batalin-Vilkovisky algebra is a Gerstenhaber algebra.

Definition 8. A **Gerstenhaber algebra** is a commutative graded algebra A equipped with a linear map $\{-, -\} : A \otimes A \to A$ of degree 1 such that:

a) the bracket $\{-, -\}$ gives A a structure of graded Lie algebra of degree 1. This means that for each a, b and $c \in A$
STRING TOPOLOGY FOR SPHERES.

\[\{a, b\} = -(-1)^{|a|+1}|b|+1 \{b, a\} \quad \text{and} \]
\[\{a, \{b, c\}\} = \{\{a, b\}, c\} + (-1)^{|a|+1}|b|+1 \{b, \{a, c\}\}. \]

b) the product and the Lie bracket satisfy the Poisson relation (\(\mathbb{Z} \)).

Using Lemma 3 and Lemma 4 we deduce

Proposition 9. The \(k \)-linear map

\[H^*_a(LM; \mathbb{Z}) \otimes \mathbb{Z} k \hookrightarrow H^*_a(LM; k) \]

is an inclusion of Batalin-Vilkovisky algebras.

In particular, by the universal coefficient theorem,

\[H^*_a(LM; \mathbb{Z}) \otimes \mathbb{Z} \mathbb{Q} \cong H^*_a(LM; \mathbb{Q}). \]

More generally, this Proposition tell us that if \(\text{Tor}^\mathbb{Z}_n(H^*_a(LM; \mathbb{Z}), k) = 0 \) then the Batalin-Vilkovisky algebra \(H^*_a(LM; \mathbb{Z}) \) determines the Batalin-Vilkovisky algebra \(H^*_a(LM; k) \).

3. THE CIRCLE AND AN USEFUL LEMMA.

In this section, we compute the structure of the Batalin-Vilkovisky algebra on the homology of the free loop space on the circle \(S^1 \) using a Lemma which gives information on the image of \(\Delta \) on elements of lower degree in \(H_*(LM) \).

Theorem 10. As Batalin-Vilkovisky algebras, the homology of the free loop space on the circle is given by

\[H^*_a(LS^1; \mathbb{Z}) \cong \mathbb{Z} [Z] \otimes \Lambda a_{-1}. \]

Denote by \(x \) a generator of \(\mathbb{Z} \). The operator \(\Delta \) is

\[\Delta(x^i \otimes a_{-1}) = i(x^i \otimes 1), \quad \Delta(x^i \otimes 1) = 0 \]

for all \(i \in \mathbb{Z} \).

Let \(X \) be a pointed topological space. Consider the free loop fibration \(\Omega X \hookrightarrow LX \xrightarrow{ev} X \). Denote by \(hur_X : \pi_n(X) \to H_n(X) \) the Hurewicz map.

Lemma 11. Let \(n \in \mathbb{N} \). Let \(f \in \pi_{n+1}(X) \). Denote by \(\tilde{f} \in \pi_n(\Omega X) \) the adjoint of \(f \). Then

\[(H_a(ev) \circ \Delta \circ H_a(j) \circ hur_{\Omega X}) (\tilde{f}) = hur_X(f). \]
Proof. Take in homology the image of $[S^1] \otimes [S^n]$ in the following commutative diagram

$$
\begin{array}{ccc}
S^1 \times \Omega X & \xrightarrow{S^1 \times j} & S^1 \times LX \\
& \downarrow \quad \text{act}_{LX} \quad \downarrow ev & \quad \downarrow \quad \text{ev} \\
S^1 \times S^n & \xrightarrow{f} & S^1 \wedge S^n \\
\end{array}
$$

where $\text{act}_{LX} : S^1 \times LX \to LX$ is the action of the circle on LX. □

Proof of Theorem \[10\]. More generally, let G be a compact Lie group. Consider the homeomorphism $\Theta_G : \Omega G \times G \xrightarrow{\sim} LG$ which sends the couple (w, g) to the free loop $t \mapsto w(t)g$. In fact, Θ_G is an isomorphism of fiberwise monoids. Therefore by \[15, \text{part 2) of Theorem 8.2}\],

$$
\mathbb{H}^*_\ast(\Theta_G) : H^*_\ast(\Omega G) \otimes \mathbb{H}^*_\ast(G) \to \mathbb{H}^*_\ast(LG)
$$

is a morphism of graded algebras. Since $H^*_\ast(S^1)$ has no torsion,

$$
\mathbb{H}^*_\ast(\Theta_{S^1}) : H^*_\ast(\Omega S^1) \otimes \mathbb{H}^*_\ast(S^1) \cong \mathbb{H}^*_\ast(LS^1)
$$

is an isomorphism of algebras. Since Δ preserve path-connected components,

$$
\Delta(x^i \otimes a_{-1}) = \alpha(x^i \otimes 1)
$$

where $\alpha \in k$. Denote by $\varepsilon_{k[Z]}$ is the canonical augmentation of the group ring $k[Z]$. Since $H^*_\ast(\Theta_{S^1}) = \varepsilon_{k[Z]} \otimes H^*_\ast(S^1),$

$$
(H^*_\ast(ev) \circ \Delta)(x^i \otimes a_{-1}) = \alpha 1.
$$

On the other hand, applying Lemma \[11\] to the degree i map $S^1 \to S^1$, we obtain that $(H^*_\ast(ev) \circ \Delta \circ H^*_\ast(j))(x^i) = i 1$. Therefore $\alpha = i$. □

4. Computations using Hochschild homology.

In this section, we compute the Batalin-Vilkovisky algebra $\mathbb{H}^*_\ast(LS^n)$, $n \geq 2$, using the following elementary technique:

The algebra structure has been computed by Cohen, Jones and Yan using the Serre spectral sequence \[8\]. On the other hand, the action of $H^*_\ast(S^1)$ on $H^*_\ast(LS^n)$ can be computed using Hochschild homology. Using the compatibility between the product and Δ, we determine the Batalin-Vilkovisky algebra $\mathbb{H}^*_\ast(LS^n)$ up to isomorphisms. This elementary technique will fail for $\mathbb{H}^*_\ast(LS^2)$.

Let A be an augmented differential graded algebra. Denote by sA the suspension of the augmentation ideal A, $(sA)_i = A_{i-1}$. Let d_1 be the differential on the tensor product of complexes $A \otimes T(sA)$. The
Here of the Hochschild chain complex, denoted $C_*(A; A)$, is the complex $(A \otimes T(sA), d_1 + d_2)$ where
\[
d_2a[sa_1] \cdots [sa_k] = (-1)^{|a|} aa_1[sa_2] \cdots [sa_k]
\]
\[
+ \sum_{i=1}^{k-1} (-1)^{\varepsilon_i} a[sa_1] \cdots [sa_ia_{i+1}] \cdots [sa_k]
\]
\[- (-1)^{|sak|\varepsilon_{k-1}} a_k [sa_1] \cdots [sa_{k-1}];
\]
Here $\varepsilon_i = |a| + |sa_1| + \cdots + |sa_i|.$
Connes boundary map B is the map of degree +1
\[
B : A \otimes (sA)^{\otimes p} \to A \otimes (sA)^{\otimes p+1}
\]
defined by
\[
B(a_0[sa_1] \cdots [sa_p]) = \sum_{i=0}^{p} (-1)^{|s_{a_0} \cdots s_{a_{i-1}}| + |s_{a_i} \cdots s_{a_p}|} [sa_i] \cdots [sa_p] [sa_0] \cdots [sa_{p-1}].
\]
Up to the isomorphism $s^p(A^{\otimes (p+1)}) \to A^{\otimes (sA)^{\otimes p}}$, $s^p(a_0[sa_1] \cdots [ap]) \mapsto (-1)^{|a_0|+|p-1||a_1|+\cdots+|a_{p-1}|} a_0[sa_1] \cdots [sa_p]$, our signs coincides with those of [29].

The Hochschild homology of A (with coefficient in A) is the homology of the Hochschild chain complex:
\[
HH_*(A; A) := H_*(C_*(A; A)).
\]
The Hochschild cohomology of A (with coefficient in A^\vee) is the homology of the dual of the Hochschild chain complex:
\[
HH^*(A; A^\vee) := H_*(C_*(A; A)^\vee).
\]
Consider the dual of Connes boundary map, $B^\vee(\varphi) = (-1)^{|\varphi|} \varphi \circ B$. On $HH^*(A; A^\vee)$, B^\vee defines an action of $H_*(S^1)$.

Example 12. Let $n \geq 2$. Let k be any commutative ring. Let $A := H^*(S^n) = \Lambda x_{-n}$ be the exterior algebra on a generator of lower degree $-n$. Denote by $[sx]^k := 1[sx] \cdots [sx]$ and $x[sx]^k := x[sx] \cdots [sx]$ the elements of $C_*(A; A)$ where the term sx appears k times. These elements form a basis of $C_*(A; A)$. Denote by $[sx]^{k^\vee}$, $x[sx]^{k^\vee}$, $k \geq 0$, the dual basis. The differential d^\vee on $C_*(A; A)^\vee$ is given by $d^\vee([sx]^{k^\vee}) = 0$ and $d^\vee(x[sx]^{k^\vee}) = \pm (1 - (-1)^{k(n+1)}) [sx]^{(k+1)^\vee}$. The dual of Connes boundary map B^\vee is given by
\[
B^\vee([sx]^{k^\vee}) = \begin{cases}
(-1)^{n+1} k x[sx]^{(k-1)^\vee} & \text{if } (k+1)(n+1) \text{ is even,} \\
0 & \text{if } (k+1)(n+1) \text{ is odd}
\end{cases}
\]
Theorem 17. \(B' x [sx]^{k' v} = 0 \). We remark that \([sx]^{k' v}\) is of (lower) degree \(k(n - 1) \) and \(x [sx]^{k' v}\) of degree \(n + k(n - 1) \).

Theorem 13. \(\text{Let } X \text{ be a simply connected space such that } H_*(X; k) \) is of finite type in each degree. Then there is a natural isomorphism of \(H_*(S^1)\)-modules between the homology of the free loop space on \(X \) and the Hochschild cohomology of the algebra of singular cochain \(S^*(X; k) \): \((14) \quad H_*(LX) \cong HH^*(S^*(X; k); S^*(X; k)^{\vee}) \).

In this paper, when we will apply this theorem, \(H_*(X; k) \) is assumed to be \(k\)-free of finite type in each degree and \(X \) will be always \(k\)-formal: the algebra \(S^*(X; k) \) will be linked by quasi-isomorphisms of cochain algebras to \(H_*(X; k) \). Therefore \((15) \quad HH^*(S^*(X; k); S^*(X; k)^{\vee}) \cong HH^*(H^*(X; k); H^*(X; k)^{\vee}) \).

Theorem 16. For \(n > 1 \) odd, as Batalin-Vilkovisky algebras,
\[
\mathbb{H}_*(LS^n; \mathbb{Z}) = \mathbb{k}[u_{n-1}] \otimes \Lambda a_{-n},
\]
\[
\Delta(u_{n-1} \otimes a_{-n}) = i(u_{n-1}^{i-1} \otimes 1),
\]
\[
\Delta(u_{n-1}^{i-1} \otimes 1) = 0.
\]

Proof. As algebras, Cohen, Jones and Yan [8] proved that \(\mathbb{H}_*(LS^n; \mathbb{Z}) = \mathbb{k}[u_{n-1}] \otimes \Lambda a_{-n} \) when \(k = \mathbb{Z} \). Their proof works over any \(k \) (alternatively, using Proposition 9 we could assume that \(k = \mathbb{Z} \)). Computing Connes boundary map on \(HH^*(H^*(S^n); H_*(S^n)) \) (Example 12), we see that \(\Delta \) on \(\mathbb{H}_*(LS^n; \mathbb{k}) \) is null in even degree and in degree \(-n\), and is an isomorphism in degree \(-1\). Therefore \(\Delta(u_{n-1}^{i-1} \otimes 1) = 0, \Delta(1 \otimes a_{-n}) = 0 \) and \(\Delta(u_{n-1} \otimes a_{-n}) = a_1 \) where \(a \) is invertible in \(\mathbb{k} \). Replacing \(a_{-n} \) by \(\frac{1}{a} a_{-n} \) or \(u_{n-1} \) by \(\frac{1}{a} u_{n-1} \), we can assume up to isomorphisms that \(\Delta(u_{n-1} \otimes a_{-n}) = 1 \). Therefore \(\{u_{n-1}, a_{-n}\} = 1 \). Using the Poisson relation (7), \(\{u_{n-1}^{i-1}, a_{-n}\} = i u_{n-1}^{i-1} \). Therefore \(\Delta(u_{n-1}^{i-1} \otimes a_{-n}) = i (u_{n-1}^{i-1} \otimes 1) \).

Theorem 17. For \(n \geq 2 \) even, there exists a constant \(\varepsilon_0 \in \mathbb{F}_2 \) such that as Batalin-Vilkovisky algebra,
\[
\mathbb{H}_*(LS^n; \mathbb{Z}) = \Lambda b \otimes \frac{\mathbb{Z}[a, v]}{(a^2, ab, 2av)}
\]
\[
= \bigoplus_{k=0}^{+\infty} \mathbb{Z} v_{2(n-1)}^{k} \oplus \bigoplus_{k=0}^{+\infty} \mathbb{Z} b_{-1} v^{k} \oplus \mathbb{Z} a_{-n} \oplus \bigoplus_{k=1}^{+\infty} \mathbb{Z} 2^{n} a^{k}
\]
with \(\forall k \geq 0, \Delta(v^k) = 0, \Delta(ab^k) = 0 \) and
\[
\Delta(bv^k) = \begin{cases}
(2k + 1)v^k + \varepsilon_0 av^{k+1} & \text{if } n = 2 \\
(2k + 1)v^k & \text{if } n \geq 4.
\end{cases}
\]
Proof. As algebras, Cohen, Jones and Yan [8] proved the equality. Computing Connes boundary map on $HH^*(H^*(S^n); H^*(S^n))$ (Example 12), we see that Δ on $H^*(LS^n; k)$ is null in even degree and is injective in odd degree.

Case $n \neq 2$: this case is simple, since all the generators of $H^*(LS^n)$, v^k, bv^k and av^k, $k \geq 0$, have different degrees. Using Example 12 we also see that for all $k \geq 0$,

$$\Delta : H_{−1+2k(n−1)} = \mathbb{Z}b_{−1}v^k \hookrightarrow H_{2k(n−1)} = \mathbb{Z}v^k$$

has cokernel isomorphic to $\mathbb{Z}/(2k+1)\mathbb{Z}$. Therefore $\Delta(bv^k) = \pm(2k+1)v^k$. By replacing $b_{−1}$ by $−b_{−1}$, we can assume up to isomorphims that $\Delta(b) = 1$. Let $k \geq 1$. Let $\alpha_k \in \{-2k−1, 2k+1\}$ such that $\Delta(bv^k) = \alpha_kv^k$. Using formula (6), we obtain that $\Delta(bv^k,v^l) = (2\alpha_k−1)v^k$. We know that $\Delta(bv^{2k}) = \pm(4k+1)v^{2k}$. Therefore α_k must be equal to $2k+1$.

Case $n = 2$: this case is complicated, since for $k \geq 0$, v^k and av^{k+1} have the same degree. Using Example 12, we also see that

$$\Delta : H_{−1+2k} = \mathbb{Z}b_{−1}v^k \hookrightarrow H_{2k} = \mathbb{Z}v^k \oplus \mathbb{Z}/2\mathbb{Z}av^{k+1}$$

has cokernel, denoted CokerΔ, isomorphic to $\mathbb{Z}/(2k+1)\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. There exists unique $\alpha_k \in \mathbb{Z}^*$ and $\varepsilon_k \in \mathbb{Z}/2\mathbb{Z}$ such that $\Delta(bv^k) = \alpha_kv^k + \varepsilon_kav^{k+1}$. The injective map Δ fits into the commutative diagram of short exact sequences (Noether’s Lemma)

$$
\begin{array}{cccccc}
0 & \rightarrow & H_{−1+2k} & \overset{id}{\rightarrow} & H_{−1+2k} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & H_{−1+2k} & \overset{\times 2}{\rightarrow} & H_{−1+2k} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & H_{−1+2k} & \overset{\Delta}{\rightarrow} & H_{2k} & \rightarrow & \text{Coker}\Delta \\
\downarrow & & \downarrow & & \downarrow & \cong & \downarrow \\
0 & \rightarrow & \mathbb{Z}/2\mathbb{Z} & \overset{\Delta}{\rightarrow} & \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \rightarrow & \text{Coker}\Delta \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0
\end{array}
$$

The cokernel of Δ, denoted CokerΔ is of cardinal $2|\alpha_k|$. So $|\alpha_k| = 2k+1$. Therefore $\Delta(bv^k) = \pm(2k+1)v^k + \varepsilon_kav^{k+1}$.

By replacing $b_{−1}$ by $−b_{−1}$, we can assume up to isomorphims that $\Delta(b) = 1 + \varepsilon_0av$. Using formula (6), we obtain that

$$\Delta(bv^k,v^l) = (\alpha_k + \alpha_l − 1)v^{k+l} + (\varepsilon_k + \varepsilon_l − \varepsilon_0)av^{k+l+1}.$$
Therefore
\[\Delta(bv^kv^l) = (2\alpha_k - 1)v^{2k} + \varepsilon_0av^{2k+1} = \pm(4k + 1)v^{2k} + \varepsilon_{2k}av^{2k+1}. \]
So \(\alpha_k = 2k + 1, \varepsilon_{2k} = \varepsilon_0 \) and \(\varepsilon_{2k+1} = \varepsilon_{2k} + \varepsilon_1 - \varepsilon_0 = \varepsilon_1. \)

The map \(\Theta : \mathbb{H}_*(LS^2) \to \mathbb{H}_*(LS^2) \) given by \(\Theta(b_{-1}v^k) = b_{-1}v^k, \Theta(v^k) = v^k + kav^{k+1}, \Theta(av^k) = av^k, k \geq 0 \) is an involutive isomorphism of algebras. Therefore, by replacing \(v \) by \(v + av^2 \), we can assume that \(\varepsilon_1 = \varepsilon_0 \).

So we have proved
\[\Delta(bv^k) = (2k + 1)v^k + \varepsilon_0av^{k+1}, \quad k \geq 0. \]

These two cases \(\varepsilon_0 = 0 \) and \(\varepsilon_0 = 1 \) correspond to two non-isomorphic Batalin-Vilkovisky algebras whose underlying Gerstenhaber algebras are the same. Therefore even if we have not yet computed the Batalin-Vilkovisky algebra \(\mathbb{H}_*(LS^2; \mathbb{Z}) \), we have computed its underlying Gerstenhaber algebra. Using the definition of the bracket, straightforward computations give the following corollary.

Corollary 18. For \(n \geq 2 \) even, as Gerstenhaber algebra
\[\mathbb{H}_*(LS^n; \mathbb{Z}) = \Lambda b_{-1} \otimes \mathbb{Z}[a_{-n}, v_{2(n-1)}] / \langle a^2, ab, 2av \rangle \]
with \(\{ v^k, v^l \} = 0, \{ bv^k, v^l \} = -2lv^{k+l}, \{ bv^k, bv^l \} = 2(k - l)bv^{k+l}, \{ a, v^l \} = 0, \{ av^k, bv^l \} = -(2l + 1)av^{k+l} \) and \(\{ av^k, av^l \} = 0 \) for all \(k, l \geq 0 \).

5. When Hochschild cohomology is a Batalin-Vilkovisky algebra

In this section, we recall the structure of Gerstenhaber algebra on the Hochschild cohomology of an algebra whose degrees are bounded. We recall from [26, 22, 27, 19] the Batalin-Vilkovisky algebra on the Hochschild cohomology of the cohomology \(H^*(M) \) of a closed oriented manifold \(M \). We compute this Batalin-Vilkovisky algebra \(HH^*(H^*(M); H^*(M)) \) when \(M \) is a sphere.

Through this section, we will work over the prime field \(\mathbb{F}_2 \). Let \(A \) be an augmented graded algebra such that the augmentation ideal \(\overline{A} \) is concentrated in degree \(\leq -2 \) and bounded below (or concentrated in degree \(\geq 0 \) and bounded above). Then the (normalized) Hochschild cochain complex, denoted \(C^*(A, A) \), is the complex
\[\text{Hom}(Ts\overline{A}, A) \cong \oplus_{p \geq 0} \text{Hom}((s\overline{A})^p, A) \]
with a differential d_2. For $f \in \text{Hom}((sA)^{\otimes p}, A)$, the differential $d_2 f \in \text{Hom}((sA)^{\otimes p+1}, A)$ is given by

$$(d_2 f)([sa_1|\cdots|sa_{p+1}]) := a_1 f([sa_2|\cdots|sa_{p+1}])$$

$$+ \sum_{i=1}^{p} f([sa_1|\cdots|s(a_i a_{i+1})|\cdots|sa_{p+1}]) + f([sa_1|\cdots|sa_p])a_p$$

The Hochschild cohomology of A with coefficient in A is the homology of the Hochschild cochain complex:

$$HH^\ast(A; A) := H_\ast(C^\ast(A; A))$$

We remark that $HH^\ast(A; A)$ is bigraded. Our degree is sometimes called the total degree: sum of the external degree and the internal degree. The Hochschild cochain complex $C^\ast(A, A)$ is a differential graded algebra. For $f \in \text{Hom}((sA)^{\otimes p}, A)$ and $g \in \text{Hom}((sA)^{\otimes q}, A)$, the (cup) product of f and g, $f \cup g \in \text{Hom}((sA)^{\otimes p+q}, A)$ is defined by

$$(f \cup g)([sa_1|\cdots|sa_{p+q}]) := f([sa_1|\cdots|sa_p])g([sa_{p+1}|\cdots|sa_{p+q}]).$$

The Hochschild cochain complex $C^\ast(A, A)$ has also a Lie bracket of (lower) degree $+1$.

$$(f \circ g)([sa_1|\cdots|sa_{p+q-1}]) :=$$

$$\sum_{i=1}^{p} f([sa_1|\cdots|sa_{i-1}|sg([sa_{i}|\cdots|sa_{i+q-1}])sa_{i+q}|\cdots|sa_{p+q-1}]).$$

{f, g} = f \circ g - g \circ f. Our formulas are the same as in the non graded case [13]. We remark that if A is not assumed to be bounded, the formulas are more complicated. Gerstenhaber has showed that $HH^\ast(A; A)$ equipped with the cup product and the Lie bracket is a Gerstenhaber algebra.

Let M be a closed d-dimensional smooth manifold. Poincaré duality induces an isomorphism of $H^\ast(M; \mathbb{F}_2)$-modules of (lower) degree d.

$$(19) \quad \Theta : H^\ast(M; \mathbb{F}_2) \cong [M]^\vee \rightarrow H_\ast(M; \mathbb{F}_2) \cong H^\ast(M; \mathbb{F}_2)^\vee.$$

More generally, let A be a graded algebra equipped with an isomorphism of A-bimodules of degree d, $\Theta : A \cong [A] \rightarrow A^\vee$. Then we have the isomorphism

$$HH^\ast(A, \Theta) : HH^\ast(A, A) \cong [A] \rightarrow HH^\ast(A, A^\vee).$$

Therefore on $HH^\ast(A, A)$, we have both a Gerstenhaber algebra structure and an operator Δ given by the dual of Connes boundary map B.
Motivated by the Batalin-Vilkovisky algebra structure of Chas-Sullivan on $\mathbb{H}_*(LM)$, Thomas Tradler [26] proved that $HH^*(A,A)$ is a Batalin-Vilkovisky algebra. See [22] Theorem 1.6 for an explicit proof. In [19] or [27] Corollary 3.4] or [9] Section 1.4] or [20] Theorem B] or [21] Section 11.6], this Batalin-Vilkovisky algebra structure on $HH^*(A,A)$ extends to a structure of algebra on the Hochschild cochain complex $C^*(A,A)$ over various operads or PROPs: the so-called cyclic Deligne conjecture. Let us compute this Batalin-Vilkovisky algebra structure when M is a sphere.

Proposition 20. ([30] and [31] Corollary 4.2) Let $d \geq 2$. As Batalin-Vilkovisky algebra, the Hochschild cohomology of $H^*(S^d;F_2) = \Lambda x_{-d}$,

$$HH^*(H^*(S^d;F_2); H^*(S^d;F_2)) \cong \Lambda g_{-d} \otimes F_2[f_{d-1}]$$

with $\Delta(g_{-d} \otimes f_{d-1}^k) = k(1 \otimes f_{d-1}^{k-1})$ and $\Delta(1 \otimes f_{d-1}^k) = 0, k \geq 0$. In particular, the underlying Gerstenhaber algebra is given by $\{f^k, f^l\} = 0$, $\{gf^k, g^l\} = (k-l)gf^{k+l-1}$ for $k, l \geq 0$.

Proof. Denote by $A := H^*(S^d;F_2)$. The differential on $C^*(A;A)$ is null. Let $f \in \text{Hom}(sA, A) \subset C^*(A;A)$ such that $f([sx]) = 1$. Let $g \in \text{Hom}(F_2, A) = \text{Hom}((sA)^{\otimes 0}, A) \subset C^*(A;A)$ such that $g([]) = x$. The k-th power of f is the map $f^k \in \text{Hom}((sA)^{\otimes k}, A)$ such that $f^k([sx] \cdots [sx]) = 1$. The cup product $g \cup f^k \in \text{Hom}((sA)^{\otimes k}, A)$ sends $[sx] \cdots [sx]$ to x. So we have proved that $C^*(A;A)$ is isomorphic to the tensor product of graded algebras $\Lambda g_{-d} \otimes F_2[f_{d-1}]$.

The unit 1 and x_{-d} form a linear basis of $H^*(S^d)$. Denote by 1^\vee and x^\vee the dual basis of $A^\vee = H^*(S^d)^\vee$. Poincaré duality induces the isomorphism $\Theta : H^*(S^d) \xrightarrow{\cong} H^*(S^d)^\vee$, $1 \mapsto x^\vee$ and $x \mapsto 1^\vee$. The two families of elements of the form $1[sx] \cdots [sx]$ and of the form $x[sx] \cdots [sx]$ form a basis of $C_*(A;A)$. Denote by $1[sx] \cdots [sx]^\vee$ and $x[sx] \cdots [sx]^\vee$ the dual basis in $C_*(A;A)^\vee$. The isomorphism Θ induces an isomorphism of complexes of degree d, $\widehat{\Theta} : C^*(A;A) \xrightarrow{\cong} C^*(A;A)^\vee$. Explicitly [22] Section 4] this isomorphism sends $f \in \text{Hom}((sA)^{\otimes p}, A)$ to the linear map $\widehat{\Theta}(f) \in (A \otimes (sA)^{\otimes p})^\vee \subset C_*(A;A)^\vee$ defined by

$$\widehat{\Theta}(f)(a_0 [sa_1] \cdots [sa_p]) = ((\Theta \circ f)[sa_1] \cdots [sa_p])(a_0).$$

Here with $A = \Lambda x, \widehat{\Theta}(f^k) = x[x] \cdots [sx]^\vee$ and $\widehat{\Theta}(g \cup f^k) = 1[sx] \cdots [sx]^\vee$. Computing Connes boundary map B^\vee on $C_*(A;A)^\vee$ (Example [12]) and using that by definition of Δ, $\widehat{\Theta} \circ \Delta = B^\vee \circ \widehat{\Theta}$, we obtain the desired formula for Δ. \qed
6. The Gerstenhaber Algebra $\mathbb{H}_*(LS^2; \mathbb{F}_2)$

Using the same Hochschild homology technique as in section 4, we compute up to an indeterminacy, the Batalin-Vilkovisky algebra $\mathbb{H}_*(LS^2; \mathbb{F}_2)$. Nevertheless, this will give the complete description of the underlying Gerstenhaber algebra on $\mathbb{H}_*(LS^2; \mathbb{F}_2)$.

Lemma 21. There exist a constant $\varepsilon \in \{0, 1\}$ such that as Batalin-Vilkovisky algebra, the homology of the free loop on the sphere S^2 is

$$\mathbb{H}_*(LS^2; \mathbb{F}_2) = \Lambda a_{-2} \otimes \mathbb{F}_2[u_1],$$

$$\Delta(a_{-2} \otimes u_1^k) = k(1 \otimes u_1^{k-1} + \varepsilon a_{-2} \otimes u_1^{k+1}) \quad \text{and} \quad \Delta(1 \otimes u_1^k) = 0, \quad k \geq 0.$$

Proof. In [8], Cohen, Jones and Yan proved that the Serre spectral sequence for the free loop fibration $\Omega M \xrightarrow{\iota} LM \xrightarrow{ev} M$ is a spectral sequence of algebras converging toward the algebra $\mathbb{H}_*(LM)$. Using Hochschild homology, we see that there is an isomorphism of vector spaces $\mathbb{H}_*(LS^2; \mathbb{F}_2) \cong \mathbb{H}_*(S^2; \mathbb{F}_2) \otimes H_*(\Omega S^2; \mathbb{F}_2)$. Therefore the Serre spectral sequence collapses. Since there is no extension problem, we have the isomorphism of algebras

$$\mathbb{H}_*(LS^2; \mathbb{F}_2) \cong \mathbb{H}_*(S^2; \mathbb{F}_2) \otimes H_*(\Omega S^2; \mathbb{F}_2) = \Lambda(a_{-2}) \otimes \mathbb{F}_2[u_1].$$

Computing Connes boundary map on $HH^*(H^*(S^2; \mathbb{F}_2); H_*(S^2; \mathbb{F}_2))$ (Example 12), we see that Δ on $\mathbb{H}_*(LS^2; \mathbb{F}_2)$ is null in even degree and that $\Delta : \mathbb{H}_{2k-1} \to \mathbb{H}_{2k}$ is a linear map of rank 1, $k \geq 0$. In particular Δ is injective in degree -1.

Applying Lemma 11 to the identity map $id : S^2 \to S^2$, we see that the composite

$$H_1(\Omega S^2; \mathbb{F}_2) \xrightarrow{H_1(id; \mathbb{F}_2)} H_1(LS^2; \mathbb{F}_2) \xrightarrow{\Delta} H_2(LS^2; \mathbb{F}_2) \xrightarrow{H_2(ev; \mathbb{F}_2)} H_2(S^2; \mathbb{F}_2)$$

is non zero. Since $\mathbb{H}_*(ev)$ is a morphism of algebras, $\mathbb{H}_0(ev)(a_{-2} u_1^2) = 0$. And so $\Delta(a_{-2} u_1) = 1 + \varepsilon a_{-2} u_1^2$ with $\varepsilon \in \mathbb{F}_2$.

We remark that when $b = c$, formula (6) takes the simple form

$$(22) \quad \Delta(ab^2) = \Delta(a)b^2 + a\Delta(b^2).$$

Using this formula, we obtain that

$$\Delta(a_{-2} u_1^{2k+1}) = \Delta((a_{-2} u_1) u_1^{k+2}) = u_1^{2k} + \varepsilon a_{-2} u_1^{2k+2} \quad k \geq 0.$$

Since $\Delta : \mathbb{F}_2 a_{-2} u_1^2 \otimes \mathbb{F}_2 u_1 \to \mathbb{H}_2$ is of rank 1 and $\Delta(a_{-2} u_1^2) \neq 0$, $\Delta(u_1) = \lambda \Delta(a_{-2} u_1^2)$ with $\lambda = 0$ or $\lambda = 1$. Using again formula (22), we have that

$$\Delta(u_1^{2k+1}) = \Delta(u_1 u_1^{k+2}) = \lambda \Delta(a_{-2} u_1^3) u_1^{2k} = \Delta(a_{-2} u_1^{2k+3}), \quad k \geq 0.$$
So finally
\[\Delta(a_{-2}u_1^k) = ku_1^{k-1} + \varepsilon k a_{-2}u_1^{k+1} \quad \text{and} \quad \Delta(u_1^k) = \lambda \Delta(a_{-2}u_1^{k+2}), \quad k \geq 0.\]
The cases \(\lambda = 0\) and \(\lambda = 1\) correspond to isomorphic Batalin-Vilkovisky algebras: Let \(\Theta : \mathbb{H}_*(LS^2; \mathbb{F}_2) \to \mathbb{H}_*(LS^2; \mathbb{F}_2)\) be an automorphism of algebras which is not the identity. Since \(\Theta(a_{-2}) \neq 0\) and \(\Theta(a_{-2}) = a_{-2}\). Since \(\Theta(a_{-2}) \) and \(\Theta(u_1)\) must generate the algebra \(\Lambda a_{-2} \otimes \mathbb{F}_2[u_1]\), \(\Theta(u_1) \neq a_{-2}u_1^3\). Therefore there is an unique automorphism of algebras \(\Theta : \mathbb{H}_*(LS^2; \mathbb{F}_2) \to \mathbb{H}_*(LS^2; \mathbb{F}_2)\) which is not the identity. Explicitly, \(\Theta\) is given by \(\Theta(u_1^k) = u_1^k + k a_{-2}u_1^{k+2}\), \(\Theta(a_{-2}u_1^k) = a_{-2}u_1^k\), \(k \geq 0\). One can check that \(\Theta\) is an involutive isomorphism of Batalin-Vilkovisky algebras who transforms the cases \(\lambda = 0\) into the cases \(\lambda = 1\) without changing \(\varepsilon\). Therefore, by replacing \(u_1\) by \(u_1 + a_{-2}u_1^3\), we can assume that \(\lambda = 0\).

Consider the four Batalin-Vilkovisky algebras \(\Lambda a_{-2} \otimes \mathbb{F}_2[u_1]\) with \(\Delta(a_{-2} \otimes u_1^k) = k(1 \otimes u_1^{k-1} + \varepsilon a_{-2} \otimes u_1^{k+1})\), \(\Delta(1 \otimes u_1^k) = \lambda \Delta(a_{-2}u_1^{k+2}),\) \(k \geq 0\), given the different values of \(\varepsilon, \lambda \in \{0, 1\}\). These four Batalin-Vilkovisky algebras have only two underlying Gerstenhaber algebras given by \(\{u_1^k \} = 0\), \(\{a_{-2}u_1^k, u_1^l\} = l u_1^{k+l-1} + \lambda(\varepsilon - \lambda) a_{-2}u_1^{k+l+1}\) and \(\{a_{-2}u_1^k, a_{-2}u_1^l\} = (k - l)a_{-2}u_1^{k+l-1}\) for \(k, l \geq 0\). Via the above isomorphism \(\Theta\), these two Gerstenhaber algebras are isomorphic.

Corollary 23. The free loop space modulo 2 homology \(\mathbb{H}_*(LS^2; \mathbb{F}_2)\) is isomorphic as Gerstenhaber algebra to the Hochschild cohomology of \(H^*(S^2; \mathbb{F}_2), HH^*(H^*(S^2; \mathbb{F}_2); H^*(S^2; \mathbb{F}_2))\).

7. **The Batalin-Vilkovisky algebra \(\mathbb{H}_*(LS^2)\)**

In this section, we complete the calculations of the Batalin-Vilkovisky algebras \(\mathbb{H}_*(LS^2; \mathbb{F}_2)\) and \(\mathbb{H}_*(LS^2; \mathbb{Z})\) started respectively in sections 6 and 7 using a purely homotopic method.

Theorem 24. As Batalin-Vilkovisky algebra, the homology of the free loop space on the sphere \(S^2\) with mod 2 coefficients is
\[
\mathbb{H}_*(LS^2; \mathbb{F}_2) = \Lambda a_{-2} \otimes \mathbb{F}_2[u_1],
\]
\(\Delta(a_{-2} \otimes u_1^k) = k(1 \otimes u_1^{k-1} + a_{-2} \otimes u_1^{k+1})\) and \(\Delta(1 \otimes u_1^k) = 0, k \geq 0.\)

Theorem 25. With integer coefficients, as Batalin-Vilkovisky algebra,
\[
\mathbb{H}_*(LS^2; \mathbb{Z}) = \Lambda b \otimes \frac{\mathbb{Z}[a, v]}{(a^2, ab, 2av)}
\]
\[= \bigoplus_{k=0}^{+\infty} \mathbb{Z}v_2^k \oplus \bigoplus_{k=0}^{+\infty} \mathbb{Z}b_{-1}v^k \oplus \mathbb{Z}a_{-2} \oplus \bigoplus_{k=1}^{+\infty} \mathbb{Z}2av^k\]
with \(\forall k \geq 0, \Delta(v^k) = 0, \Delta(av^k) = 0 \) and \(\Delta(bv^k) = (2k + 1)v^k + av^{k+1} \).

Denote by \(s : X \hookrightarrow LX \) the trivial section of the evaluation map \(ev : LX \twoheadrightarrow X \).

Lemma 26. The image of \(\Delta : H_1(LS^2; \mathbb{F}_2) \to H_2(LS^2; \mathbb{F}_2) \) is not contained in the image of \(H_2(s; \mathbb{F}_2) : H_2(S^2; \mathbb{F}_2) \hookrightarrow H_2(LS^2; \mathbb{F}_2) \).

Lemma 27. The image of \(\Delta : H_1(LS^2; \mathbb{Z}) \to H_2(LS^2; \mathbb{Z}) \) is not contained in the image of \(H_2(s; \mathbb{Z}) : H_2(S^2; \mathbb{Z}) \hookrightarrow H_2(LS^2; \mathbb{Z}) \).

Proof of Lemma 27 assuming Lemma 26. Consider the commutative diagram

\[
\begin{array}{ccc}
H_1(LS^2; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_2 & \cong & H_1(LS^2; \mathbb{F}_2) \\
\Delta \otimes_{\mathbb{Z}} \mathbb{F}_2 & \cong & \Delta \\
H_2(LS^2; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_2 & \cong & H_2(LS^2; \mathbb{F}_2) \\
H_2(s; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_2 & \cong & H_2(s; \mathbb{F}_2) \\
H_2(S^2; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_2 & \cong & H_2(S^2; \mathbb{F}_2)
\end{array}
\]

Since \(H_1(LS^2; \mathbb{Z}) \cong H_0(LS^2; \mathbb{Z}) \cong \mathbb{Z} \), the horizontal arrows are isomorphisms by the universal coefficient theorem. The top rectangle commutes according Lemma 4.

Suppose that the image of \(\Delta : H_1(LS^2; \mathbb{Z}) \to H_2(LS^2; \mathbb{Z}) \) is included in the image of \(H_2(s; \mathbb{Z}) \). Then the image of \(\Delta \otimes_{\mathbb{Z}} \mathbb{F}_2 \) is included in the image of \(H_2(s; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_2 \). Using the above diagram, the image of \(\Delta : H_1(LS^2; \mathbb{F}_2) \to H_2(LS^2; \mathbb{F}_2) \) is included in the image of \(H_2(s; \mathbb{F}_2) \). This contradicts Lemma 26. \(\square \)

Proof of Theorem 25 assuming Lemma 27. It suffices to show that the constant \(\varepsilon \) in Lemma 21 is not zero. Suppose that \(\varepsilon = 0 \). Then by Lemma 21 \(\Delta(a_{-2} \otimes u_1) = 1 \).

It is well known that \(H_*(s) : H_*(M) \to H_*(LM) \) is a morphism of algebras. In particular, let \([S^2] \) be the fundamental class of \(S^2 \), \(H_2(s)([S^2]) \) is the unit of \(H_*(LS^2) \). So \(\Delta(a_{-2} \otimes u_1) = H_2(s)([S^2]) \). This contradicts Lemma 26. \(\square \)

The proof of Theorem 25 assuming Lemma 27 is the same. To complete the computation of this Batalin-Vilkovisky algebra on the homology of the free loop space of a manifold, we will relate it to another structure of Batalin-Vilkovisky algebra that arises in algebraic topology: the homology of the double loop space.

Let \(X \) be a pointed topological space. The circle \(S^1 \) acts on the sphere \(S^2 \) by “rotating the earth”. Therefore the circle also acts on...
We view $\Omega^2 X = \text{map}((S^2, \text{North pole}), (X, *))$. So we have an induced operator $\Delta : H_*(\Omega^2 X) \to H_{*-1}(\Omega^2 X)$. With Theorem 32 and the following Proposition, we will able to prove Lemma 26.

Proposition 28. Let X be a pointed topological space. There is a natural morphism $r : L\Omega X \to \text{map}_*(S^2, X)$ of S^1-spaces between the free loop on the pointed loop of X and the double pointed loop space of X such that:

- If we identify S^2 and $S^1 \wedge S^1$, r is a retract up to homotopy of the inclusion $j : \Omega(\Omega X) \hookrightarrow L(\Omega X)$,
- The composite $r \circ s : \Omega X \leftrightarrow L(\Omega X) \to \text{map}_*(S^2, X)$ is homotopically trivial.

Proof. Let $\sigma : S^2 \to \frac{S^1 \times S^1}{S^1 \times \ast} = S^1 \wedge S^1$ be the quotient map that identifies the North pole and the South pole on the earth S^2. The circle S^1 acts without moving the based point on $S^1 \wedge S^1$ by multiplication on the first factor. On the torus $S^1 \times S^1$, the circle can act by multiplication on both factors. But when you pinch a circle to a point in the torus, the circle can act only on one factor. If we make a picture, we easily see that $\sigma : S^2 \to S^1 \wedge S^1$ is compatible with the actions of S^1. Therefore $r := \text{map}_*(\sigma, X) : L\Omega X \to \text{map}_*(S^2, X)$ is a morphism of S^1-spaces.

- Let $\pi : S^1_+ \wedge S^1 \to S^1 \wedge S^1 = \frac{S^1 \wedge S^1}{S^1 \times \ast}$ be the quotient map. The inclusion map $j : \Omega(\Omega X) \to L(\Omega X)$ is $\text{map}_*(\pi, X)$. The composite $\pi \circ \sigma : S^2 \to S^1 \wedge S^1$ is the quotient map obtained by identifying a meridian to a point in the sphere S^2. The composite $\pi \circ \sigma$ can also be viewed as the quotient map from the non reduced suspension of S^1 to the reduced suspension of S^1. So the composite $\pi \circ \sigma : S^2 \to S^1 \wedge S^1$ is a homotopy equivalence. Let $\Theta : S^1 \wedge S^1 \xrightarrow{\sim} S^2$ be any given homeomorphism. The composite $\Theta \circ \pi \circ \sigma : S^2 \to S^2$ is of degree ± 1. The reflection through the equatorial plane is a morphism of S^1-spaces. By replacing eventually σ by its composite with the previous reflection, we can suppose that $\Theta \circ \pi \circ \sigma : S^2 \to S^2$ is homotopic to the identity map of S^2, i.e. $\sigma \circ \Theta$ is a section of π up to homotopy. Therefore $\text{map}_*(\sigma \circ \Theta, X) = \text{map}_*(\Theta, X) \circ r$ is a retract of j up to homotopy.

- Let $\rho : S^1_+ \wedge S^1 \xrightarrow{S^1 \times \ast} S^1$ be the map induced by the projection on the second factor. Since $\pi_2(S^1) = \ast$, the composite $\rho \circ \sigma$ is homotopically trivial. Therefore $r \circ s$, the composite of $r = \text{map}_*(\sigma, X)$ and $s = \text{map}_*(\rho, X) : \Omega X \to L(\Omega X)$ is also homotopically trivial. \square

Proof of Lemma 26. Denote by $ad_{S^n} : S^n \to \Omega S^{n+1}$ the adjoint of the identity map $id : S^{n+1} \to S^{n+1}$. The map $L(ad_{S^2}) : LS^2 \to L\Omega S^3$ is obviously a morphism of S^1-spaces. Therefore using Proposition 28...
the composite \(r \circ L(ad_{S^2}) : LS^2 \rightarrow L\Omega S^3 \rightarrow \Omega^2 S^3 \) is also a morphism of \(S^1 \)-spaces. Therefore \(H_*(r \circ L(ad_{S^2})) \) commutes with the corresponding operators \(\Delta \) in \(H_*(LS^2) \) and \(H_*(\Omega^2 S^3) \).

Consider the commutative diagram up to homotopy

\[
\begin{array}{ccc}
\Omega S^2 & \xrightarrow{j} & LS^2 \\
\Omega(ad_{S^2}) & \xrightarrow{L(ad_{S^2})} & S^2 \\
\Omega^2 S^3 & \xrightarrow{j} & L\Omega S^3 \\
\Omega^2 S^3 & \xrightarrow{id} & \Omega^2 S^3 \\
\end{array}
\]

Using the left part of this diagram, we see that \(\pi_1(r \circ L(ad)) \) maps the generator of \(\pi_1(LS^2) = \mathbb{Z}(j \circ ad_{S^1}) \) to the composite \(\Omega(ad_{S^2}) \circ ad_{S^1} : S^1 \rightarrow \Omega S^2 \rightarrow \Omega^2 S^3 \) which is the generator of \(\pi_1(\Omega^2 S^3) \cong \mathbb{Z} \). Therefore \(\pi_1(r \circ L(ad)) \) is an isomorphism.

So we have the commutative diagram

\[
\begin{array}{ccc}
\pi_1(LS^2) \otimes \mathbb{F}_2 & \xrightarrow{hur} & H_1(LS^2; \mathbb{F}_2) \\
\pi_1(r \circ L(ad_{S^2}) \otimes \mathbb{F}_2) & \cong & H_1(r \circ L(ad_{S^2}); \mathbb{F}_2) \\
\pi_1(\Omega^2 S^3) \otimes \mathbb{F}_2 & \xrightarrow{hur} & H_1(\Omega^2 S^3; \mathbb{F}_2) \\
\end{array}
\]

By Theorem 32 \(\Delta : H_1(\Omega^2 S^3; \mathbb{F}_2) \rightarrow H_2(\Omega^2 S^3; \mathbb{F}_2) \) is non zero. Therefore using the above diagram, the composite \(H_2(r \circ L(ad_{S^2}) \circ \Delta \) is also non zero. On the other hand, using the right part of diagram (29), we have that the composite \(H_2(r \circ L(ad_{S^2})) \circ H_2(s) \) is null. \(\square \)

Corollary 30. The free loop space modulo 2 homology \(\mathbb{H}_*(LS^2; \mathbb{F}_2) \) is not isomorphic as Batalin-Vilkovisky algebras to the Hochschild cohomology of \(H^*(S^2; \mathbb{F}_2) \), \(HH^*(H^*(S^2; \mathbb{F}_2); H^*(S^2; \mathbb{F}_2)) \).

This means exactly that there exists no isomorphism between \(\mathbb{H}_*(LS^2; \mathbb{F}_2) \) and \(HH^*(H^*(S^2; \mathbb{F}_2); H^*(S^2; \mathbb{F}_2)) \) which at the same time,

- is an isomorphism of algebras and
- commutes with the \(\Delta \) operators,

although separately

- there exists an isomorphism of algebras between \(\mathbb{H}_*(LS^2; \mathbb{F}_2) \) and \(HH^*(H^*(S^2; \mathbb{F}_2); H^*(S^2; \mathbb{F}_2)) \) (Corollary 23) and
- there exists also an isomorphism commuting with the \(\Delta \) operators between them.

Proof. By Proposition 20 \(HH^*(H^*(S^2); H^*(S^2)) \) is the Batalin-Vilkovisky algebra given by \(\varepsilon = 0 \) in Lemma 21. On the contrary, by Theorem 24...

\[
\begin{array}{ccc}
\Omega S^2 & \xrightarrow{j} & LS^2 \\
\Omega(ad_{S^2}) & \xrightarrow{L(ad_{S^2})} & S^2 \\
\Omega^2 S^3 & \xrightarrow{j} & L\Omega S^3 \\
\Omega^2 S^3 & \xrightarrow{id} & \Omega^2 S^3 \\
\end{array}
\]
$H_*(LS^2; \mathbb{F}_2)$ is the Batalin-Vilkovisky algebra given by $\varepsilon = 1$. At the end of the proof of Lemma 21, we saw that the two cases $\varepsilon = 0$ and $\varepsilon = 1$ correspond to two non isomorphic Batalin-Vilkovisky algebras. □

More generally, we believe that for any prime p, the free loop space modulo p of the complex projective space $H_*(\mathbb{C}P^{n-1}; \mathbb{F}_p)$ is not isomorphic as Batalin-Vilkovisky algebras to the Hochschild cohomology $HH^*(H^*(\mathbb{C}P^{n-1}; \mathbb{F}_p); H^*(\mathbb{C}P^{n-1}; \mathbb{F}_p))$. Such phenomena for formal Manifolds should not appear over a field of characteristic 0.

Recall that by Poincaré duality, we have the isomorphism
\[\Theta : H^*(S^2) \xrightarrow{\cong} H^*(S^2)^\vee. \]
Therefore we have the isomorphism
\[HH^*(H^*(S^2); \Theta) : HH^*(H^*(S^2); H^*(S^2)) \xrightarrow{\cong} HH^*(H^*(S^2); H^*(S^2)^\vee). \]
Consider any isomorphism of graded algebras
\[H_*(LS^2) \cong HH^*(S^*(S^2); S^*(S^2)). \]
By Corollary 23 such isomorphism exists. Cohen and Jones ([7, Theorem 3] and [5]) proved that such isomorphism exists for any manifold M. Since S^2 is formal, we have the isomorphism of algebras
\[HH^*(S^*(S^2); S^*(S^2)) \xrightarrow{\cong} HH^*(H^*(S^2); H^*(S^2)). \]
By [17], we have the isomorphisms of $H_*(S^1)$-modules
\[H_*(LS^2) \xrightarrow{\cong} HH^*(S^*(S^2); S^*(S^2)^\vee) \xrightarrow{\cong} HH^*(H^*(S^2); H^*(S^2)^\vee). \]
Corollary 30 implies that the following diagram does not commute over \mathbb{F}_2:
\[HH^*(S^*(S^2); S^*(S^2)^\vee) \xrightarrow{\cong} HH^*(H^*(S^2); H^*(S^2)^\vee) \]
\[H_*(LS^2) \xrightarrow{\cong} HH^*(S^*(S^2); S^*(S^2)) \xrightarrow{2} HH^*(H^*(S^2); H^*(S^2)). \]
This is surprising because as explained by Cohen and Jones [7, p. 792], the composite of the isomorphism \(14\) given by Jones in [17] and an isomorphism induced by Poincaré duality should give an isomorphism of algebras between $H_*(LS^2)$ and $HH^*(S^*(S^2); S^*(S^2))$.

\[^1\text{Bökstedt and Ottosen [1] have recently announced the computation of Batalin-Vilkovisky algebra } H_*(\mathbb{C}P^n; \mathbb{F}_p). \]
8. Appendix by Gerald Gaudens and Luc Menichi.

Let \(X \) be a pointed topological space. Recall that the circle \(S^1 \) acts on the double loop space \(\Omega^2 X \). Consider the induced operator \(\Delta : H_*(\Omega^2 X) \to H_{*+1}(\Omega^2 X) \). Getzler [13] has showed that \(H_*(\Omega^2 X) \) equipped with the Pontryagin product and this operator \(\Delta \) forms a Batalin-Vilkovisky algebra. In [12], Gerald Gaudens and the author have determined this Batalin-Vilkovisky algebra \(H_*(\Omega^2 S^3; \mathbb{F}_2) \). The key was the following Theorem. In [18, Proposition 7.46], answering to a question of Gerald Gaudens, Sadok Kallel and Paolo Salvatore give another proof of this Theorem.

Theorem 32. [12] The operator \(\Delta : H_1(\Omega^2 S^3; \mathbb{F}_2) \to H_2(\Omega^2 S^3; \mathbb{F}_2) \) is non trivial.

Both proofs [12] and [18] Proposition 7.46] are unpublished and publicly unavailable yet. So the goal of this section is to give a proof of this theorem which is as simple as possible.

Denote by \(* \) the Pontryagin product in \(H_*(\Omega^2 X) \) and by \(\circ \) the map induced in homology by the composition map \(\Omega^2 X \times \Omega^2 S^2 \to \Omega^2 X \). Denote by \(\Omega^2_n S^2 \), the path-connected component of the degree \(n \) maps. Denote by \(v_1 \) the generator of \(H_1(\Omega^2_0 S^2; \mathbb{F}_2) \) and by [1] the generator of \(H_0(\Omega^2_0 S^2; \mathbb{F}_2) \).

Lemma 33. For \(x \in H_*(\Omega^2 X; \mathbb{F}_2) \), \(\Delta x = x \circ (v_1 \ast [1]) \).

Proof. The circle \(S^1 \) acts on the sphere \(S^2 \). Therefore we have a morphism of topological monoids \(\Theta : (S^1, 1) \to (\Omega^2 S^2, id_{\Omega^2 S^2}) \). The action of \(S^1 \) on \(\Omega^2 X \) is the composite \(S^1 \times \Omega^2 X \xrightarrow{\Theta \times \Omega^2 X} \Omega^2_1 S^2 \times \Omega^2 X \xrightarrow{\circ} \Omega^2 X \).

Therefore for \(x \in H_*(\Omega^2 X; \mathbb{F}_2) \), \(\Delta x = x \circ (H_1(\Theta)[S^1]) \).

Suppose that \(H_1(\Theta)[S^1] = 0 \). Then for any topological space \(X \), the operator \(\Delta \) on \(H_*(\Omega^2 X; \mathbb{F}_2) \) is null. Therefore, for any \(x \) and \(y \) in \(H_*(\Omega^2 X; \mathbb{F}_2) \), \(\{ x, y \} = \Delta(xy) - (\Delta x)y - x(\Delta y) = 0 \). That is the modulo 2 Browder brackets on any double loop space are null. This is obviously false. For example, Cohen in [3] explains that the Gerstenhaber algebra \(H_*(\Omega^2 \Sigma^2 Y) \) has in general many non trivial Browder brackets. So the assumption \(H_1(\Theta)[S^1] = 0 \) is false.

Since the loop multiplication by \(id_{\Omega^2 S^2} \) in the \(H \)-group \(\Omega^2 S^2 \), is a homotopy equivalence, the Pontryagin product by [1], \(\ast[1] : H_*(\Omega^2_0 S^2) \xrightarrow{\cong} H_*(\Omega^2_1 S^2) \) is an isomorphism. Therefore \(v_1 \ast [1] \) is a generator of \(H_1(\Omega^2_1 S^2) \). So \(H_1(\Theta)[S^1] = v_1 \ast [1] \). So finally

\[
\Delta x = x \circ (H_1(\Theta)[S^1]) = x \circ (v_1 \ast [1]).
\]

\[\square\]
Recall that v_1 denote the generator of $H_1(\Omega^2_0 S^2; \mathbb{F}_2)$.

Lemma 34. In the Batalin-Vilkovisky algebra $H_*(\Omega^2 S^2; \mathbb{F}_2)$, $\Delta(v_1) = v_1 \ast v_1$.

Proof. Recall that $[1]$ is the generator of $H_0(\Omega^2_1 S^2)$. By Lemma 33,

$$\Delta[1] = [1] \circ (v_1 \ast [1]) = (v_1 \ast [1]).$$

Denote by $Q : H_q(\Omega^2_0 S^2) \to H_{2q+1}(\Omega^2_2, S^2)$ the Dyer-Lashof operation. It is well known that $Q[1] = v_1 \ast [2]$. So by [4, Theorem 1.3 (4) p. 218]

$$\{v_1 \ast [2], [1]\} = \{Q[1], [1]\} = \{(1), \{1, [1]\}\}.$$

By [4] Theorem 1.2 (3) p. 215, $\{[1], [1]\} = 0$. Therefore on one hand, $\{v_1 \ast [2], [1]\}$ is null. And on the other hand, using the Poisson relation (7), since $\{2, [1]\} = \{[1] \ast [1, [1]\} = 2\{[1], [1]\} \ast [1] = 0,$

$$\{v_1 \ast [2], [1]\} = \{v_1, [1]\} \ast [2] + v_1 \ast \{[2], [1]\} = \{v_1, [1]\} \ast [2].$$

Since $*\{1\} : H_*(\Omega^2 S^2) \xrightarrow{\cong} H_*(\Omega^2 S^2)$ is an isomorphism, we obtain that Browder bracket $\{v_1, [1]\}$ is null. Therefore,

$$\Delta(v_1 \ast [1]) = (\Delta v_1) \ast [1] + v_1 \ast (\Delta [1]) = ((\Delta v_1) - v_1 \ast v_1) \ast [1].$$

But $\Delta(v_1 \ast [1]) = (\Delta \circ \Delta)([1]) = 0$. Therefore $\Delta(v_1)$ must be equal to $v_1 \ast v_1$. \hfill \square

Proof of Theorem 32. We remark that since Δ preserves path-connected components and since the loop multiplication of two homotopically trivial loops is a homotopically trivial loop, $H_*(\Omega^2 S^2)$ is a sub Batalin-Vilkovisky algebra of $H_*(\Omega^2 S^2)$.

Let $S^1 \hookrightarrow S^3 \xrightarrow{\eta} S^2$ be the Hopf fibration. After double loop ing, the Hopf fibration gives the fibration $\Omega^2 S^1 \hookrightarrow \Omega^2 S^3 \xrightarrow{\Omega^2 \eta} \Omega^2_0 S^2$ with contractile fiber $\Omega^2 S^1$ and path-connected base $\Omega^2_0 S^2$. Therefore $\Omega^2 \eta : \Omega^2 S^3 \xrightarrow{\cong} \Omega^2_0 S^2$ is a homotopy equivalence. And so $H_*(\Omega^2 \eta) : H_*(\Omega^2 S^3) \xrightarrow{\cong} H_*(\Omega^2_0 S^2)$ is an isomorphism of Batalin-Vilkovisky algebras.

Let u_1 be the generator of $H_1(\Omega^2 S^3)$. Lemma 34 implies that $\Delta(u_1) = u_1 \ast u_1$. Since $u_1 \ast u_1$ is non zero in $H_*(\Omega^2 S^3; \mathbb{F}_2)$, $\Delta(u_1)$ is non trivial. \hfill \square

References

[1] M. Bökstedt and I. Ottosen, *The homology of the free loop space on a projective space*, talk at the first Copenhagen Topology Conference, Sept 1-3, http://www.math.ku.dk/conf/CTC2006, 2006.

[2] M. Chas and D. Sullivan, *String topology*, preprint: math.GT/991159, 1999.
STRING TOPOLOGY FOR SPHERES.

[3] F. Cohen, *On configuration spaces, their homology, and lie algebras*, J. Pure Appl. Algebra 100 (1995), no. 1-3, 19–42.

[4] F. Cohen, T. Lada, and J. May, *The homology of iterated loop spaces*, Lecture Notes in Mathematics, vol. 533, Springer-Verlag, 1976.

[5] R. Cohen, *Multiplicative properties of Atiyah duality*, Homology Homotopy Appl. 6 (2004), no. 1, 269–281.

[6] R. Cohen, K. Hess, and A. Voronov, *String topology and cyclic homology*, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 2006, Summer School in Almeria, 2003.

[7] R. Cohen and J. Jones, *A homotopic theoretic realization of string topology*, Math. Ann. 324 (2002), no. 4, 773–798.

[8] R. Cohen, J. Jones, and J. Yan, *The loop homology algebra of spheres and projective spaces*, Categorical decomposition techniques in algebraic topology, (Isle of Skye 2001), Prog. Math., vol. 215, Birkhäuser, Basel, 2004, pp. 77–92.

[9] K. Costello, *Topological conformal field theories and Calabi-Yau categories*, Adv. Math. 210 (2007), no. 1, 165–214.

[10] Y. Félix, L. Menichi, and J.-C. Thomas, *Gerstenhaber duality in Hochschild cohomology*, J. Pure Appl. Algebra 199 (2005), no. 1-3, 43–59.

[11] Y. Félix, J.-C. Thomas, and M. Vigué-Poirier, *Rational string topology*, J. Eur. Math. Soc. (JEMS) 9 (2005), no. 1, 123–156.

[12] G. Gaudens and L. Menichi, *Batalin-Vilkovisky algebras and the J-homomorphism*, preprint: arXiv:0707.3103, 2007.

[13] M. Gerstenhaber, *The cohomology structure of an associative ring*, Ann. of Math. 78 (1963), no. 2, 267–288.

[14] E. Getzler, *Batalin-Vilkovisky algebras and two-dimensional topological field theories*, Comm. Math. Phys. 159 (1994), no. 2, 265–285.

[15] K. Gruher and P. Salvatore, *Generalized string topology operations*, preprint: math.AT/0602210, 2006.

[16] A. Hatcher, *Algebraic topology*, Cambridge University Press, 2002.

[17] J. D. S. Jones, *Cyclic homology and equivariant homology*, Invent. Math. 87 (1987), no. 2, 403–423.

[18] S. Kallel, *Book in progress*, previously available at http://math.univ-lille1.fr/~kallel.

[19] R. Kaufmann, *A proof of a cyclic version of Deligne’s conjecture via Cacti*, preprint: math.QA/0403340, 2004.

[20] ______, *Moduli space actions on the Hochschild co-chains of a Frobenius algebra I: Cells operads*, J. Noncommut. Geom. 1 (2007), no. 3, 333–384.

[21] M. Kontsevich and Y. Soibelman, *Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I*, preprint: math.RA/0606241, 2006.

[22] L. Menichi, *Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras*, K-Theory 32 (2004), no. 3, 231–251.

[23] S. Merkulov, *De Rham model for string topology*, Int. Math. Res. Not. (2004), no. 55, 2955–2981.

[24] A. Stacey, *The differential topology of loop spaces*, preprint: math.DG/0510097, 2005.

[25] H. Tamanoi, *Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds*, Int. Math. Res. Not. (2006), 1–23.
[26] T. Tradler, *The BV algebra on Hochschild cohomology induced by infinity inner products*, preprint: math.QA/0210150v1, 2002.

[27] T. Tradler and M. Zeinalian, *On the cyclic Deligne conjecture*, J. Pure Appl. Algebra 204 (2006), no. 2, 280–299.

[28] D. Vaintrob, *The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces*, preprint: math.AT/07022859, 2007.

[29] M. Vigué-Poirrier, *Décomposition de l’homologie cyclique des algèbres différentielles graduées commutatives*, K-Theory 4 (1991), no. 5, 399–410.

[30] C. Westerland, *Dyer-Lashof operations in the string topology of spheres and projective spaces*, Math. Z. 250 (2005), no. 3, 711–727.

[31] ———, *String homology of spheres and projective spaces*, Algebr. Geom. Topol. 7 (2007), 309–325.

UMR 6093 associée au CNRS, Université d’Angers, Faculté des Sciences, 2 Boulevard Lavoisier, 49045 Angers, FRANCE

E-mail address: firstname.lastname at univ-angers.fr