Mitogenome characterization and phylogeny of Huzhu white yak (*Bos grunniens*) in China

Jing Luo,a,b Guangzhen Lia,b,c Ruizhe Lia,b,c Yongqing Yangc, Decang Hed, Wenxian Liue, Mohammed Yosrif, Zhijie Maa,b

aQinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China; bPlateau Livestock Genetic Resources Protection and Innovative UtilizationKey Laboratory of Qinghai Province, Xining, China; cHuangzhong Station of Animal Science and Veterinary Medicine in Qinghai Province, Xining, China; dStation of Animal Science and Veterinary Medicine of Huzhu County in Qinghai Province, Haidong, China; eAnimal Disease Prevention and Control Center of Menyuan County in Qinghai Province, Haibei, China; fThe Regional center for Mycology and Biotechnology, Al Azhar University, Cairo, Egypt

ABSTRACT

White yak is a unique and precious economic livestock animal in the world. In this study, the mitogenome of Huzhu white yak was firstly sequenced using Illumina high-throughput sequencing technique and then the assembly was annotated. We also explored mitogenome characterization and phylogeny of Huzhu white yak. Our results showed that the mitogenome of Huzhu white yak is a circular molecule with 16,323bp length including a non-coding control region (D-loop), two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes and 13 protein-coding genes. The contents of four nucleotides (A, G, C and T) were 33.71%, 13.21%, 25.80%, and 27.28%, respectively, yielding a lower GC content (39.01%) than AT (60.99%). Phylogenetic analysis suggested that Huzhu white yak possessed the closest relationships with Huanhu, Jiu Long, Datong, Jinchuan, Sibu, Ashdan and Pali yak breeds, and closer to wild yak and Bazhou breed.

Yaks (*Bos grunniens*) live in the Qinghai-Tibet Plateau (QTP) and adjacent alpine and subalpine areas (Linnaeus 1766). It has strong adaptability to harsh environments such as high altitude, strong ultraviolet and intense cold and provides local herdsmen with daily necessities such as meat, milk and fur (Wiener et al. 2003). White yak, a unique and precious economic livestock animal in the world, mainly lives in Tianzhu County of Gansu Province and Menyuan, Huzhu and Ledu Counties of Qinghai Province in China (Compilation Committee of animal and poultry records and maps of Qinghai Province 1983). Presently, China own 22 domestic yak breeds including 20 indigenous breeds (Qinghai-Plateau, Huanhu, Xueduo, Yushu, Nangya, Sibu, Pali, Leiwuqi, Tibetan High Mountain, Chawula, Tianzhu, Gannan, Bazhou, Pamier, Zhongdian, Jiu Long, Mau, Changtai, Jinchuan and Muli) and two improved breeds (Datong and Ashdan) (National Committee of animal genetic resources. 2021). However, except that Tianzhu white yak breed is white, other yak breeds are black. Huzhu white yak (*Bos grunniens*) was firstly described by Li et al (Li et al. 2021), which resides in Tu Autonomous County of Huzhu, Qinghai, China (101°58′N, 36°50′E). The voucher specimen (Sample No: HZ13-20201023; zhijiem326.com) is stored in the Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Province, Academy of Animal Science and Veterinary Medicine, Qinghai University (Xining, Qinghai, China). The Illumina NovaSeq 6000 platform was used to sequence the whole genome of Huzhu yak with a sequencing depth of 22.63×.

The mitogenome sequence of Huzhu white yak was submitted to Genbank (Accession No: OK271108). Our results showed that the length of circular mitogenome of Huzhu white yak was 16,323 bp with nucleotides contents as follows: A 33.71%, G 13.21%, C 25.80% and T 27.28%, which yielded a higher AT content (60.99%) than GC content (39.01%). The gene composition, structure and arrangement of mitogenome for Huzhu white yak are similar to that of most
Figure 1. Mitogenome pattern map of Huzhu white yak.

Table 1. Mitogenome characterization of Huzhu white yak.

Gene/Region	Position	Nucleotide composition (%)								
	From	To	Size (bp)	A (%)	G (%)	C (%)	T (%)	Start codon	Stop codon	Strand
D-loop	1	893	893	29.35	17.39	23.91	29.35			H
tRNA^{His}	894	960	67	34.33	19.40	22.39	23.88			H
12S rRNA	961	1917	957	38.81	11.94	19.40	29.85			H
tRNA^{Val}	1918	1984	67	38.09	17.01	20.70	24.20			H
16S rRNA	1985	3554	1570	60.45	15.94	10.14	33.33			H
tRNA^{Leu}	3556	3630	75	32.00	17.33	22.67	28.00			H
ND1	3633	4589	957	32.39	12.23	29.05	26.33	ATG	TAA	H
tRNA^{Ile}	4589	4657	69	27.54	15.94	10.14	33.33			H
tRNA^{Gln}	4655	4726	72	26.39	27.78	9.72	36.11			L
tRNA^{Met}	4729	4797	69	27.54	18.44	10.14	33.33			L
ND2	4798	5841	1044	37.26	8.14	27.20	27.39	ATA	TAG	H
tRNA^{Gp}	5840	5906	67	37.31	16.42	20.90	25.37			H
tRNA^{Asp}	5908	5976	69	37.31	16.42	20.90	25.37			L
tRNA^{Ala}	5978	6051	74	25.68	28.38	14.86	31.08			L
tRNA^{Asn}	6054	6084	31	38.71	29.03	25.81	6.45			L
tRNA^{Cys}	6084	6150	67	23.88	26.87	19.40	29.85			L
tRNA^{Tyr}	6151	6218	68	33.82	20.59	16.18	29.41			H
COX1	6220	7764	1545	32.48	16.31	25.44	29.51	ATG	TAA	H
tRNA^{Ser}	7762	7830	68	24.64	28.99	14.49	31.88			L
tRNA^{Tyr}	7838	7905	67	36.76	17.65	16.18	29.41			H
COX2	7907	8590	684	34.36	14.47	22.66	28.51	ATG	TAA	H
tRNA^{Tyr}	8594	8660	67	31.34	20.90	17.91	29.85			H
ATP8	8662	8862	201	41.79	5.97	22.89	29.35	ATG	TAA	H
ATP6	8823	9503	681	33.33	11.31	26.73	28.63	ATG	TAA	H
COX3	9503	10,287	785	26.61	15.16	29.55	29.17	ATG	TA-	H
tRNA^{Lys}	10,287	10,355	69	31.88	15.94	20.29	31.88			H
ND3	10,365	10,712	348	30.17	12.93	28.74	28.16	ATA	TAG	H
tRNA^{Pro}	10,703	10,771	69	39.13	11.59	10.14	39.13			H
ND4L	10,772	11,068	297	31.99	11.78	23.23	33.00	ATG	TAA	H
ND4	11,062	12,439	1378	33.38	10.01	27.00	29.61	ATG	T--	H
tRNA^{Glu}	12,440	12,509	70	41.43	8.57	15.71	34.29			H
tRNA^{Ser}	12,510	12,569	60	31.67	16.67	18.33	33.33			H
tRNA^{His}	12,571	12,640	70	37.14	20.00	15.71	27.14			H
ND5	12,632	14,461	1830	33.06	10.66	28.85	27.43	ATG	TAA	H
ND6	14,445	14,972	528	20.83	29.36	7.58	42.23	ATG	TAA	L
tRNA^{Lys}	14,973	15,041	69	27.54	21.74	11.59	39.13			L
Cytb	15,046	16,185	1140	31.75	13.07	28.86	26.32	ATG	AGA	H
tRNA^{Ile}	16,189	16,258	70	35.71	15.71	24.29	24.29			H
tRNA^{Pio}	16,258	16,323	66	24.24	28.79	13.64	33.33			L
mammals (Clayton 2000; Xu et al. 2015; Hao et al. 2016; Hu and Gao, 2016; Niu et al. 2016; Kamalakkannan et al. 2020; Wang et al. 2021). The mitogenome composed of noncoding control region (D-loop), two rRNA subunit genes (12S rRNA and 16S rRNA), 22 tRNA genes and 13 protein coding genes with lengths of 893 bp, 2527 bp, 1511 bp and 11418 bp, respectively (Figure 1, Table 1). The length of the two rRNA genes are 957 bp (12S rRNA) and 1570 bp (16S rRNA) respectively, which were separated by tRNAPhe. 22 tRNA genes ranged from 60 bp (tRNAser) to 75 bp (tRNALeu) and 13 protein coding genes ranged from 201 bp (ATP8) to 1830 bp (ND5). Among the 13 protein coding genes, ATA is the starting codon of ND2, ND3 and ND5, and ATG is the starting codon of others. Three complete stop codons were annotated, i.e. TAA (ND1, COX1, COX2, ATP8, ATP6, ND4L, ND5 and ND6), TAG (ND2 and ND3), AGA (Cytb), and two incomplete stop codons were identified, i.e., TA- (COX3) and T- (ND4) (Table 1). There are four overlaps in the protein-coding genes, including ATP6 overlaps with ATP8 for 40 bp, COX3 overlaps with ATP6 for 1 bp, ND4 overlaps with ND4L for 7 bp and ND6 overlaps with ND5 for 17 bp. Except for 8 tRNA (Gln, Ala, Asn, Cys, Tyr, Ser, Glu and Pro) and ND6 genes in light strand, other mitochondrial genes of Huzhu white yak were encoded in heavy strand (Table 1).

Phylogenetic analysis showed that Huzhu white yak possessed the closest relationships with Huanhu, Jiulong, Datong, Jinchuan, Sibu, Ashdan and Pali yak breeds, and was closer to wild yak and Bazhou breed. However, distant genetic relationships were found between Huzhu white yak and the rest of domestic yak breeds (i.e. Maiwa, Xueduo, Zhongdian, Nangya, Qinghai-Plateau, Yushu, Gannan and Tianzhu) (Figure 2). A further extensive survey of yak whole genome in China is warranted to completely clarify the genetic difference and classification between Huzhu white yak and other yak breeds/populations.

Ethical approval
This study was conducted with the guidelines of the Council of China and animal welfare requirements. Based on the recommendations of the Regulations for the Administration of Affairs Concerning Experimental Animals of China, the Institutional Animal Care and Use Committee of Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University approved all animal experiments.

Author contributions
Zhijie Ma conceived and designed the project. Sample collection personnel include Jing Luo, Guangzhen Li, Ruizhe Li, Zhijie Ma, Decang He, Wenxian Liu and Yongqing Yang. Jing Luo and Zhijie Ma performed the experiment and data analyses. Jing Luo wrote the original manuscript, Zhijie Ma and Mohammed Yosri revised the manuscript. All authors
reviewed and approved the final manuscript, submitted the voucher is Jing Luo and Zhijie Ma.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This study was supported by the National Natural Science Foundation of China [31960656] and CAS ‘Light of West China’ Program (3-1).

ORCID
Jing Luo http://orcid.org/0000-0002-9077-1807
Guangzhen Li http://orcid.org/0000-0002-8812-5558
Zhijie Ma http://orcid.org/0000-0001-7544-3533

Data availability statement
The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession no. OK271108. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA791839, SRR17319815, and SAMN24365600 respectively.

References
Clayton DA. 2000. Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res. 255(1):901–9.

Compilation Committee of Animal and Poultry Records and Maps of Qinghai Province. 1983. Animal and poultry breeds of Qinghai Province. Qinghai People’s Publishing House (in Chinese with English abstract). Issue No. 52–54.

Hao Z, Zhang Q, Qu B. 2016. The complete mitochondrial genome of the Chinese indigenous dog. Mitochondrial DNA A DNA Mapp Seq Anal. 27(1):88–89.

Hu XD, Gao LZ. 2016. The complete mitochondrial genome of domestic sheep, Ovis aries. Mitochondrial DNA A DNA Mapp Seq Anal. 27(2):1425–1427.

Kamalakkannan R, Bhavana K, Prabhu VR, Sureshgopi D, Singha HS, Nagarajan M. 2020. The complete mitochondrial genome of Indian gaur, Bos gaurus and its phylogenetic implications. Sci Rep. 10(1):11936.

Li GZ, Luo J, Chen SM, Hanif Q, He DC, Ma ZJ. 2021. Maternal genetic diversity, differentiation and phylogeny of three white yak breeds/populations in China. Anim Biotechnol. 1–6. doi:10.1080/10495398.2021.1973018.

Linnaeus C. 1766. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis synonymis, locis. Vol 1, Regnum Animale, pt. 1:1–532.

National Committee of Animal Genetic Resources. 2021. National list of livestock and poultry genetic resources in China. Beijing, China: National Committee of Animal Genetic Resources.

Niu L, Hu JT, Zhang H, Li HJ, Duan XY, Wang LJ, Li L, Zhang HP, Zhong T. 2016. The complete mitochondrial genome of Boer goat (Bovidae; Caprinae). Mitochondrial DNA A DNA Mapp Seq Anal. 27(2):1523–1524.

Wang XD, Pei J, Bao PJ, Cao ML, Guo SK, Song RD, Song WR, Liang C, Yan P, Guo X. 2021. Mitogenomic diversity and phylogeny analysis of yak (Bos grunniens). BMC Genomics. 22(1):325.

Wiener G, Han JL, Long RJ. 2003. The yak. 2nd Bangkok: Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations.

Xu D, Li QH, He CQ, Chai YL, Ma HM. 2015. The complete mitochondrial genome of the Ningxiang pig. Mitochondrial DNA A DNA Mapp Seq Anal. 26(4):623–624.