Fault Detection in the Wind Farm Turbine Using Machine Learning Based On SVM Algorithm

S Muthukrishnan1*, Arun Kumar Pallekonda2, R Saravanan3, B Meenakshi4
1Department of Electrical and Electronics Engineering, Shree Sathyam College of Engineering and Technology, Sankari Manjakkalpatty, Salem, Tamil Nadu, India
2Department of Electrical and Computer Engineering, Bule Hora University, Bule Hora, Ethiopia
3Department of Electrical and Electronics Engineering, Balaji Institute of Technology and Science, Warangal, Telangana, India
4Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Chennai, Tamil Nadu, India
Email: 1mutudt04@gmail.com, 2qc.arun@gmail.com, 3rsharankiruthiga@gmail.com, 4meenakshi.eee@sairam.edu.in

Abstract. In this paper, for failure identification and insulation in a horizontal axis variable speed turbine made up of three sheets and one total converter, the vector support machines (SVM) is used. Data is based on the SVM method and so know-how is robust. It is also focused on the reduction of systemic risk this increases generalization and encourages method non-linearity accounting for the use of modular kernels. A radial function as a kernel has been used in this work. Various parts of the process, including actuators, sensors and process failures, have been investigated.

Keywords: fault detection, wind energy, SVM

1. Introduction
Wind power is one of the non-polluting and clean sources of electricity. It is becoming well recognized, replacing existing sources of electricity, such as nuclear power and carbon. In order to transform wind power to electricity, wind turbines have been used. [1] With the higher wind speeds offshore wind farms can produce greater wind power for producing power than offshore wind farms with a wide installation of wind turbines [2]. The benefits of offshore wind turbines are that they do not depend on the atmosphere and the landscape.

Offshore wind turbine surveillance and defect diagnosis analysis plays an important role in reducing operational and maintenance costs. [3] Indeed, failures of the main elements, such like core rooms, gearboxes and turbines, cause wind turbine errors. Offshore wind turbines are however hard to access and due to wind turbine failures, have high maintenance costs. [4] Thus, wind turbine failures are detected and diagnosed by condition control systems and fault detecting systems to ensure adequate output and to deter disastrous disasters [5].

Wind turbine failure detection is proposed that is detected in a multi-fault scenario with maximum device control. If a fault is located, the forms and location for quick repairs are known. [6] Because of high gearbox rpm, generator loading and failures in different sections, failure in wind turbines is caused [7]. The tracking of the state of wind turbines is used in wind farms to minimize
maintenance costs and also to increase precision. In general, sensor tracking of wind turbine gearboxes is a helpful way to track the efficiency and faults of wind turbines. [8] The wind around wind turbines on the flow structure has characteristics of a rapid deficit, low frequency ambling, irregular border and turbulence produced by shear layers. The dimensional less wake speed deficit profiles approach limit at various distances behind the wind turbine [9]. A wake velocity deficit is symmetrical with axis in relation to the hub across the center.

2. Methods
Machine learning focuses on developing algorithms that allow computers to evolve empirical information driven behaviors as shown in Figure 1. The computer is trained in the machine. An person should use examples to imprison important characteristics of his unfamiliar simple distribution of probabilities. "Expert" interference is required for methods. The learning data contains a collection of examples of preparation. [10] Each pattern is controlled teaching a pair which contains a desired final output and an input object. The supervised learning is responsible for evaluating the data processing and implied feature generation.

![Figure 1: Machine learning flow diagram](image-url)

3. Support Vector Machines Algorithm
The SVM support vector machines are based on a theory of inductive structural risk minimization (SRM) to reduce the top limit to the error generalizing the total amount of training errors and the trust level. It is the deviation from the commonly accepted ERM theory, which reduces just the training error. [11] SVM typically performs more broadly than conventional neural networks that apply the ERM theory to solve many machine learning issues, depending on this kind of induction theory as shown in Figure 2.

The important step in learning a new SVM fault detection model is to describe the vector x for classification. This vector should have the most important details about the system's behavior. [12] The measurement quality should not be reduced. It can contain the details, the set-points, mixture of the outputs and the time. To construct a useful vector, the process effects of each error should be carefully observed and a mixture should be proposed that guarantees a sufficiently high effect on the error in x. Any mathematical analysis may be useful for pretreatment, for example, principal analysis or the partly smallest square. [13]

In comparison to many other network programming, which involves non-linear optimization and is in threat of staying in the local minima, the SVM's solution is often special and generally efficient. SVM relies on a subset of training points called supportive vectors to solve the issue. SVMs are highly robust frameworks for non-linear resolution issues and applications for regression in science and
industry and for the purposes of classification. [14] As SVMs are ready to practice only several particles of data could be correct alternatives no historical documented modelling of cases for study Data. SVMs are also focused on the systemic risk Concept of minimization (SRM) to minimize upper bound of the total generalization error the level of training mistake and confidence. [15] Another SVM character is solve the problem of the quadratic programming that linearly constrained. The same approach as all training data sets can be done using only help vectors. [16] One downside of the SVM is that the training is between quadratic and cubic when it comes to the number of observations of instruction. Therefore, a significant amount of computing time is needed to overcome significant issues when SVM is used. [17]

![Parameters of the SVM](image.png)

Figure 2: Parameters of the SVM

4. **Features of SVM For Regression Estimation**
Several characteristics of SVM are described below according to the theoretical statement of SVM. Firstly, SVM determines regression by means of a collection of linear functions specified in a broad feature space, whilst inputs do not work in linear. The kernel functions are named. Second, SVM carried out the regression evaluation on the basis of the concept of data mining, when using e-insensitive lower bound of Vapnik, depending on the risk evaluation. Eventually, SVM applies the SRM theory, which reduces the risk function of an analytical error and the trust-level benefit.

5. **Results**
The results are shown in below, in Figure 3 the rotor speed during the fault is shown and the Figure 4 shows the generator speed during fault.
Figure 3: Rotor speed

Figure 4: Generator speed
6. Conclusion
The infrastructure of the wind is profitable turbines have been optimized and tracked online. A good mathematical approach should be used in consideration of the vast number of components in the system with a high regular yet noisy calculation in addition to system disturbances. Detecting and insulating defects. The SVM is a good way to detect trends. Sensors, actuators and system errors are detected by a “model.” To detect and isolate the defects, it is essential to set the input model vector as well as the parameter tuning. It is necessary to establish a compromise between noise sensitivity and faults.

References
[1] Liu, Z., Xiao, C., Zhang, T., & Zhang, X. (2020). Research on fault detection for three types of wind turbine subsystems using machine learning. *Energies, 13*(2), 460.
[2] Agasthian, A., Pamula, R., & Kumaraswamidhas, L. A. (2019). Fault classification and detection in wind turbine using Cuckoo-optimized support vector machine. *Neural Computing and Applications, 31*(5), 1503-1511.
[3] Yin, Z., & Hou, J. (2016). Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. *Neurocomputing, 174*, 643-650.
[4] Santos, P., Villa, L. F., Reñones, A., Bustillo, A., & Maudes, J. (2015). An SVM-based solution for fault detection in wind turbines. *Sensors, 15*(3), 5627-5648.
[5] Cheng, F., Wang, J., Qu, L., & Qiao, W. (2017). Rotor-current-based fault diagnosis for DFIG wind turbine drivetrain gearboxes using frequency analysis and a deep classifier. *IEEE transactions on industry applications, 54*(2), 1062-1071.
[6] Kumar, P., & Hati, A. S. (2020). Review on machine learning algorithm based fault detection in induction motors. *Archives of Computational Methods in Engineering, 1-12.*
[7] Wang, S., Janabi, A., & Wang, B. (2020, October). Generalized Optimal SVPWM for the Switched-Capacitor Voltage Boost Converter. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 2708-2711). IEEE.
[8] Gibbons M. S., Gilbert C. L., Deshpande M. S. (2019, May 2). inventors; Lear Corp, assignee. Methodology of maximizing power transfer for electric vehicle when ac voltage sags. *United States patent application US 15/801,772.*
[9] Anitha, S., Keerthana, A., Kaviya, S. and JayaRajan, R., 2017. QUADRIPLEGIC AMBULATING ADDENDUM. *International Journal of MC Square Scientific Research, 9*(2), pp.15-23.
[10] Anjana, R. (2019, Feb). Fuzzy and PI Based Speed Control of BLDC Motor using Bidirectional Converter for Electric Vehicle Application. *Trends in Electrical Engineering, 8*(3), 35-45.
[11] Yadav, D., Parekh, U., Patel, K., Parmar, R., & Prakash, M. (2019). Application of Modified Three Phase Conduction Method to Minimize Torque Ripple in BLDC Motor. *IJRAR, vol. 6*(1), 155-156.
[12] Rajkumar, S., Sundaram, C. S., Sedhuraman, K., & Muruganandhan, D. (2019, March). Performance Analysis of Hub BLDC Motor Using Finite Element Analysis. In 2019 *ICSCAN, (pp. 1-5).* IEEE.
[13] Gibbons, M. S., Gilbert, C. L., & Deshpande, M. S. (2019). *U.S. Patent Application No. 15/801,772.*
[14] Nasiriani, K., & Pasandi, M. (2020). Dynamic Voltage Restorer (DVR) For Protecting Hybrid Grids. arXiv preprint arXiv:2006.16452.
[15] Gupta, G., & Kumar, D. (2020). Power Quality Mitigation using DSTATCOM and DVR.
[16] Macinnis, A.G. and Walls, F.G., Avago Technologies General IP Singapore Pte Ltd, 2018.
[17] Bounded rate near-lossless and lossless image compression. U.S. Patent 9,883,180.