Chinese Herbal Medicine Usage Reduces Overall Mortality in HIV-Infected Patients With Osteoporosis or Fractures

Mao-Wang Ho1,2†, Te-Mao Li3†, Ju-Pi Li4,5†, Jian-Shiun Chiou5, Mu-Lin Chiu3, Chao-Jung Chen7,8, Chi-Fung Cheng6,8, Fuu-Jen Tsai3,8,9, Yang-Chang Wu3, Ting-Hsu Lin8, Chiu-Chu Liao8, Shao-Mei Huang8, Yu-Ning Lin8, Chen-Hsing Chou6, Wen-Miin Liang6* and Ying-Ju Lin3,8*

1Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, 2Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan, 3School of Chinese Medicine, China Medical University, Taichung, Taiwan, 4School of Chinese Medicine, Chung Shan Medical University, Taichung, Taiwan, 5Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan, 6Department of Health Services Administration, China Medical University, Taichung, Taiwan, 7Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, 8Proteomics Core Laboratory, Department of Medical Research, Genetic Center, China Medical University Hospital, Taichung, Taiwan, 9Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan

The survival of patients with HIV has greatly improved, due to Anti-Retroviral Therapy (ART). However, long-term HIV survivors often develop serious bone abnormalities, possibly due to the interplay of osteoblasts, osteoclasts, HIV ad ART. We evaluated in a nation-wide study in Taiwan the effect of Chinese herbal medicine (CHM) on overall mortality in HIV patients with osteoporosis or fractures. Enrollment period was between 1998 and 2011. Patients with osteoporosis or fractures before the HIV infection, and those with less than 14 days CHM use, were excluded. This left 498 patients, 160 CHM users, 338 without CHM. Univariate Kaplan-Meier and multivariate Cox regression analysis were used to compare the overall mortality in these 2 groups. Due to the nature of Chinese medicine, CHMs inevitably varied. We therefore also used rule mining and network analysis to determine which major CHM clusters were prescribed to the patients. CHM users had a much Lower mortality (hazard ratio (HR) = 0.43, 95% confidence interval (CI): 0.24–0.77, \(p < 0.005 \)) and higher survival (\(p = 0.004 \), log-rank test). Although the CHMs greatly varied, network analysis identified one main cluster of strongly related CHM combinations (Chuan-Xiong-Cha-Tiao-San (CXCTS), Gan-Cao (GC; Glycyrrhiza uralensis Fisch.), Liu-He-Tang (LHT), Huang-Qin-Tang (HQT), Jia-Wei-Ping-Wei-San (JWPWS), and Dang-Gui-Long-Hui-Wan (DGLHuiW)). CHM as an additional treatment strongly improves overall survival in HIV-infected patients with osteoporosis and fractures.

Keywords: HIV, osteoporosis, fracture, overall mortality, Chinese herbal medicine, network analysis
INTRODUCTION

With antiretroviral therapy (ART), HIV-positive and negative patients have similar lifespans (Pham and Mesplede, 2018; Zhang et al., 2019). Patients with HIV/AIDS who receive ART demonstrate delayed AIDS progression, improved quality of life, and lower all-cause mortality (Antiretroviral Therapy Cohort Collaboration, 2017; Lu et al., 2018). ART suppresses viral replication; it does not eliminate the virus. Discontinuation of ART results in drug resistance of HIV, viral reactivation, and disease progression (Meintjes et al., 2017; Dubrocq and Rakhmanina, 2018). Long-term living with HIV and ART use in HIV-infected patients are associated with adverse effects. These adverse effects include hyperlipidemia, cardiovascular disease, bone related abnormalities, diabetes, and renal disease (Kwong et al., 2006; De Wit et al., 2008; Capeau et al., 2012; Achhra et al., 2016; Grant et al., 2016; Hoy and Young, 2016; Ahmad et al., 2017; Dorjee et al., 2017; Hoy et al., 2017; Tsai et al., 2017; Nan et al., 2018).

Bone related abnormalities including low bone density, osteomalacia, osteonecrosis, osteopenia, osteoporosis, and fracture (Hoy and Young, 2016; Ahmad et al., 2017). Osteoporosis is a multifactorial systemic skeletal disease with low bone density, degeneration of bone architecture, bone fragility, and consequent increased risk of fracture (Ji and Yu, 2015; Sozen et al., 2017). A number of studies report that lower bone density was observed in HIV-infected patients when compared with non-infected individuals (Bruera et al., 2003; Amiel et al., 2004; Arnsten et al., 2007). The pathological mechanism between HIV and/or ART and bone related abnormalities remain to be elucidated, but are probably due to HIV and ART affecting the interactions between osteoclasts and osteoblasts. Furthermore, the loss of bone mineral density is frequently observed in HIV-infected patients with ART (Duvivier et al., 2009; van Vonderen et al., 2009; Grant et al., 2016; Hoy et al., 2017; Chisati et al., 2020b). HIV-infected patients placed on protease inhibitor (PI) regimens demonstrate bone loss in the spine, while the nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) regimen is associated with bone loss at the hip (Hoy et al., 2017).

Chinese herbal medicines (CHMs) are often used to treat bone related diseases, as they show anti-inflammatory, anti-osteopenia, anti-osteoporotic, and promote fracture healing activities (Chow et al., 1982; Chen et al., 2005; Li et al., 2011; Ma et al., 2011; Xiang et al., 2011; Shih et al., 2012; Wong et al., 2013; He and Shen, 2014; Mukwaya et al., 2014; Lin et al., 2015; Zhang et al., 2016; Hsiao et al., 2017; Wang et al., 2018b; Xi et al., 2018; Cheng et al., 2019a; Cheng et al., 2019b). However, none of these studies have been carried out in prospective randomized clinical trials in humans. These results encourage to analyze if CHM as additional therapy to improve osteoporosis and fractures management and survival among HIV-infected patients. We therefore analyzed in a population-based nationwide database from Taiwan, what the effect was of CHM treatment-or-not on the overall mortality in HIV-infected patients with osteoporosis or fractures.

MATERIALS AND METHODS

Study Participants

This is a longitudinal study spanning 1995 through 2012 using the database of National Health Insurance Research Database in Taiwan (NHIRD; http://nhird.nhri.org.tw/). From the database, 3450 anonymized HIV-infected patients with osteoporosis or fractures were further identified during the period between 1998 and 2011 (Figures 1,2) (the International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) codes for HIV infection: 042-044, V08; ICD-9-CM codes for osteoporosis: 7330; ICD-9-CM codes for fractures: 8050, 8052, 8054, 8056, 8058, 8060, 8062, 8064, 8068, 8070, 8072, 8074, 8075, 8080, 8082, 8084, 8088, 8090, 8100, 8110, 8120, 8122, 8124, 8130, 8132, 8134, 8138, 8140, 8200, 8202, 8208, 8210, 8212, 8220, 8230, 8232, 8238, 8240, 8242, 8244, 8246, and 8248). Of these, 2952 excluded for: 1) osteoporosis or fractures diagnosed before the diagnosis of HIV infection (n = 2,221); 2) less than 14 CHM cumulative prescription days within 1 year after osteoporosis or fractures (n = 731).

The flowchart for the selection for HIV-infected patients with osteoporosis or fractures is shown in Figures 1,2. Patients were initially diagnosed with HIV infection followed by osteoporosis or fractures (Figure 2). Between January 01, 1998 and December 31, 2011, 3450 HIV-infected patients with osteoporosis or fractures were identified (Figure 1). After exclusion, there were 498 patients with osteoporosis or fractures, including 160 CHM and 338 non-CHM users (Figure 1). The CHM users were defined as the patients who received CHMs for at least 14 days in the 12 months after osteoporosis or fractures (Figures 1,2).

Patients were classified as CHM users when they received more than 14 CHM cumulative prescription days among the first year after osteoporosis or fractures (n = 160, Figures 1,2). The index date started after the 14 cumulative CHM prescription days were accomplished (Figure 2). The CHM users received CHM therapies during the study period (Supplementary Table S2). On the other hand, the controls were classified as non-CHM users when they did not receive any CHMs for the study period (n = 338). To reduce potential confounding factors, these two groups were matched for age, gender, and index duration using the propensity score matching method (1:1 ratio) (Table 1). This resulted in 149 CHM and 149 non-CHM users (Figures 1,2, Table 1).

Among these patients, the characteristics included age, gender, index duration (from the HIV infection diagnosed date to the diagnosed date of osteoporosis or fractures), Charlson comorbidity index (CCI), and comorbidities (Table 1). In this study, comorbidities were defined before HIV infection (Table 1). The ART usage was defined before the diagnosed date of osteoporosis or fractures (Table 1). The study was approved by the Institutional Review Board of the China Medical University Hospital (The ethics approval number: CMUH107-REC3-074(CR1)).

Chinese Herbal Medicine, Association Rule Mining, and Network Analysis

These CHMs are prescribed by licensed and experienced traditional Chinese medicine doctors in Taiwan, and they are served as traditional Chinese medicine in health care systems in
Taiwan. CHMs include single herbs and herbal formulae. A single herb is made from the flower, root, stem, or leaf of a given plant. It is also made from an organ of an animal, insect, or mineral source. The herbal formulae are mixtures of a minimum of two single herbs. The CHM composition, frequency, and usage patterns are shown in Supplementary Table S1. CHMs are produced by pharmaceutical Good Manufacturing Practice companies with in Taiwan.

Association rule mining was performed, as previously described, using SAS software (version 9.4; SAS Institute, Cary, NC, United States). This association rule mining has been applied to discover studies in the relationships of these CHM prescriptions (Chen et al., 2014; Cheng et al., 2019b; Tsai et al., 2019). Chinese herbal medicine (CHM) product X (CHM_X) and CHM product Y (CHM_Y) were shown as the “items,” respectively. The CHM prescriptions were used as the “transactions,” with co-occurrences of CHM_X and CHM_Y (Table 3). This expression shows the relationship between the occurrences of CHM_X and CHM_Y. The strength of the association using this technique was expressed as support, confidence, and lift. Support is a measure of whether an association between CHM_X and CHM_Y happened by chance. The support (X) (%) value is the calculated joint probability of having both of CHM_X and CHM_Y, which is (the frequency of CHM_X and CHM_Y/total number of prescription) × 100%. Confidence is an indicator of how often
TABLE 1 | Demographic characteristics of HIV-infected patients with osteoporosis or fractures according to Chinese herbal medicine usage in Taiwan.

Characteristics	CHM users (N = 160)	Non-CHM users (N = 338)	p-value	CHM users (N = 149)	Non-CHM users (N = 149)	p-value
Age (years old; Mean ± SD)	44.81 ± 15.2	39.53 ± 13.44	<0.001	44.3 ± 15.06	42.62 ± 15.17	0.339
0≤ Age <30	24 (15.00%)	60 (17.75%)	0.007	24 (16.11%)	27 (18.12%)	0.308
30≤ Age <40	45 (28.13%)	136 (40.24%)		41 (27.52%)	51 (34.23%)	
40≤ Age	91 (56.88%)	142 (42.01%)		84 (56.38%)	71 (47.65%)	
Gender						
Male	105 (65.63%)	280 (82.84%)		99 (66.44%)	98 (65.77%)	
Female	55 (34.38%)	58 (17.16%)		50 (33.56%)	51 (34.23%)	
Index duration (day; Mean ± SD)	1307.02 ± 1046.84	1087.01 ± 923.88	0.018	1283.97 ± 1041.17	1321.81 ± 1131.97	0.764
ART use	154 (96.25%)	334 (98.82%)	0.057	143 (95.97%)	146 (97.99%)	0.310
Non-ART use	6 (3.75%)	4 (1.18%)		6 (4.03%)	3 (2.01%)	
Charlson comorbidity index (CCI)			0.331			0.931
0	38 (23.75%)	78 (23.08%)		37 (24.83%)	36 (24.16%)	
1	92 (57.5%)	213 (63.02%)		85 (57.05%)	88 (59.06%)	
≥2	30 (18.75%)	47 (13.91%)		27 (18.12%)	25 (16.78%)	
Comorbidities						
Myocardial infarction	1 (0.63%)	1 (0.3%)	0.588	1 (0.67%)	0 (0.00%)	0.316
Congestive heart failure	5 (3.13%)	4 (1.88%)	0.129	4 (2.68%)	4 (2.68%)	1.000
Peripheral vascular disease	4 (2.5%)	5 (1.48%)	0.425	4 (2.68%)	4 (2.68%)	1.000
Cerebrovascular disease	12 (7.5%)	10 (2.96%)	0.021	9 (0.64%)	5 (3.26%)	0.273
Dementia	2 (1.25%)	2 (0.59%)	0.442	1 (0.67%)	2 (1.34%)	0.562
Chronic pulmonary disease	34 (21.25%)	33 (9.76%)	<0.001	30 (20.13%)	22 (14.77%)	0.222
Rheumatic disease	4 (2.5%)	4 (1.18%)	0.275	3 (2.01%)	3 (2.01%)	1.000
Peptic ulcer disease	38 (23.75%)	43 (12.72%)	0.002	36 (24.16%)	24 (16.11%)	0.083
Mild liver disease	41 (25.63%)	79 (23.37%)	0.583	38 (25.5%)	34 (22.82%)	0.588
Diabetes without chronic complication	19 (11.86%)	20 (9.92%)	0.201	17 (11.41%)	9 (6.04%)	0.101
Diabetes with chronic complication	4 (2.5%)	6 (1.78%)	0.590	4 (2.68%)	4 (2.68%)	1.000
Renal disease	6 (3.75%)	2 (0.59%)	0.009	6 (4.03%)	1 (0.67%)	0.056
Moderate or severe liver disease	2 (1.25%)	0 (0.00%)	0.039	2 (1.34%)	0 (0.00%)	0.196

ART, antiretroviral therapies; CCI, Charlson comorbidity index; CHM, Chinese herbal medicine; N, number; SD, standard deviation.
p-values were obtained by the chi-square test; p-values for age and duration were obtained by the un-paired Student t test.
Significant p-values (p < 0.05) are highlighted in bold italic font.

CHM_Y appeared in transactions that contained CHM_X. The confidence value (CHM_X → CHM_Y; %) is the calculated conditional probability of having a prescription of CHM_Y among those who already have the prescription of CHM_X, which is given as (frequency of CHM_X and CHM_Y/ frequency of CHM_X) x 100%. Lift is the ratio of observed support to expected support when X and Y are independent. The lift value is the confidence (CHM_X → CHM_Y) %/P (Y) % or confidence (CHM_Y → CHM_X) %/P (X) %. A lift value greater than 1 indicates that the occurrences between the two CHM products are dependent and suggests a strong co-occurrence relationship between CHM_X and CHM_Y.

Network analysis was performed as previously described (Cheng et al., 2019a; Cheng et al., 2019b) (Figure 3). The single herb is expressed as a green circle, and the herbal formula is shown as a red circle. The prescription frequency of the single herb or herbal formula is shown (Supplementary Table S2) and is denoted as the circle size. The support value (%) (between CHM_X and CHM_Y) is shown in Table 3 and is expressed as the line size. The lift value is also shown in Table 3 and is represented as the line color. The connection strength between the paired CHM products is shown as the line size and line color. All data were employed using Cytoscape software (https://cytoscape.org/, version 3.7.0).

Statistical Analysis
Age was expressed as continuous data (years, mean ± SD) and categorical data (numbers (percentages)) (Table 1). Index duration was expressed as continuous data (from the diagnosed date of HIV infection to the diagnosed date of osteoporosis or fractures) (day; Mean ± SD) (Table 1). Gender, antiretroviral therapies (ART) usage, Charlson comorbidity index (CCI) and comorbid conditions were expressed as categorical data (numbers (percentages))
Data and statistical analyses were employed using SAS software. Adjusted factors: age, gender, CHM use, and Charlson comorbidity index. Multivariate Cox proportional hazard models were employed to evaluate the risk of overall mortality (Table 2). For survival analysis, Kaplan-Meier method and the log-rank test were performed (Figures 1, 2; Table 1). The un-paired Student t-test was applied in continuous data (Supplementary Table S2). The Chi-squared test was used in categorical data. Univariate (crude) and multivariate (adjusted) Cox proportional hazard models were employed to evaluate the risk of overall mortality (Table 2). Multivariate-adjustments include age, gender, CHM use, ART use, and CCI (Table 2).

For univariate (crude) Cox proportional hazard model, there were differences in age, gender, CHM use, and comorbidities (p < 0.05). The univariate (crude) Cox proportional hazard model showed that patients showed a higher risk of overall mortality per year increase in age (Table 2; hazard ratio (HR): 1.021, 95% confidence interval (CI): 1.00–1.04, p = 0.0299). Female patients had a lower risk of overall mortality than male patients (HR: 0.51, 95% CI: 0.26–0.99, p = 0.0465). The CHM users had a lower risk of overall mortality than non-CHM users (HR: 0.39, 95% CI: 0.21–0.70, p = 0.0018). Patients with Charlson comorbidity index (CCI) ≥ 2 showed a higher risk of overall mortality than those who did not have any comorbidities (HR: 2.95, 95% CI: 1.26–6.88, p = 0.0125).

The multivariate Cox proportional hazard model showed that patients had a higher risk of overall mortality per year increase in age after adjusting for gender, CHM use, and Charlson comorbidity index (Table 2; adjusted hazard ratio (aHR): 1.02, 95% CI: 1.00–1.04, p = 0.0173). The CHM users had a lower risk of overall mortality than non-CHM users after adjusting for age, gender, and Charlson comorbidity index (aHR: 0.43, 95% CI: 0.24–0.77, p = 0.0047). Patients with Charlson comorbidity index (CCI) ≥ 2 showed a higher risk of overall mortality than those who did not have any comorbidities after adjusting for age, gender, CHM use, and Charlson comorbidity index.

RESULTS

Basic Characteristics

The 160 CHM users received CHM therapies during the study period (Supplementary Table S3). The other 338 patients did not use any CHM at all. The demographic characteristics of total subjects are shown in Table 1. When compared with the 338 non-CHM users, the 160 CHM users were slightly older, more often females, had a longer index duration between HIV diagnosis date and the osteoporosis or fractures date, and had more often comorbidities (p < 0.05). To prevent the effects of these confounding factors, propensity score matching (1:1 ratio) was applied to match the two groups for age, gender, and index duration. After matching, each group had 149 HIV-infected patients with osteoporosis or fractures (Figures 1, 2; Table 1).

Risk of Overall Mortality

The risk of overall mortality in patients with osteoporosis or fractures was evaluated by Cox proportional hazard models (Table 2). For univariate (crude) Cox proportional hazard model, there were differences in age, gender, CHM use, and comorbidities (p < 0.05). The univariate (crude) Cox proportional hazard model showed that patients showed a higher risk of overall mortality per year increase in age (Table 2; hazard ratio (HR): 1.021, 95% confidence interval (CI): 1.00–1.04, p = 0.0299). Female patients had a lower risk of overall mortality than male patients (HR: 0.51, 95% CI: 0.26–0.99, p = 0.0465). The CHM users had a lower risk of overall mortality than non-CHM users (HR: 0.39, 95% CI: 0.21–0.70, p = 0.0018). Patients with Charlson comorbidity index (CCI) ≥ 2 showed a higher risk of overall mortality than those who did not have any comorbidities (HR: 2.95, 95% CI: 1.26–6.88, p = 0.0125).

The multivariate Cox proportional hazard model showed that patients had a higher risk of overall mortality per year increase in age after adjusting for gender, CHM use, and Charlson comorbidity index (Table 2; adjusted hazard ratio (aHR): 1.02, 95% CI: 1.00–1.04, p = 0.0173). The CHM users had a lower risk of overall mortality than non-CHM users after adjusting for age, gender, and Charlson comorbidity index (aHR: 0.43, 95% CI: 0.24–0.77, p = 0.0047). Patients with Charlson comorbidity index (CCI) ≥ 2 showed a higher risk of overall mortality than those who did not have any comorbidities after adjusting for age, gender, CHM use, and Charlson comorbidity index.

Table 2: Cox proportional hazard models for overall mortality in HIV-infected patients with osteoporosis or fractures.

Variable	Crude	Adjusted				
	HR	95% CI	p-value	aHR	95% CI	p-value
Age, per year	1.02	(1.00–1.04)	0.0299	1.02	(1.00–1.04)	0.0173
Female (vs. Male)	0.51	(0.26–0.99)	0.0465	0.79	(0.44–1.24)	0.4279
CHM use (vs. Non-CHM use)	0.39	(0.21–0.70)	0.0018	0.43	(0.24–0.77)	0.0047
ART use (vs. Non-ART use)	1.21	(0.36–4.14)	0.7882	1.25	(0.38–4.09)	0.7087
Charlson comorbidity index (CCI) ≥ 1 (vs. 0)	1.32	(0.61–2.88)	0.4777	1.39	(0.65–2.99)	0.3982
Charlson comorbidity index (CCI) ≥ 2 (vs. 0)	2.95	(1.26–6.88)	0.0125	3.79	(1.69–8.51)	0.0012

ART, antiretroviral therapies; aHR, adjusted hazard ratio; CI, confidence interval; CCI, Charlson comorbidity index; CHM, Chinese herbal medicine; HR, hazard ratio.

p-value (p < 0.05) was shown in bold italic font.

Adjusted factors: age, gender, CHM use, and Charlson comorbidity index.
gender, and CHM use (aHR: 3.79, 95% CI: 1.69–8.51, \(p = 0.0012 \)). Kaplan-Meier survival plots exhibited that there was a difference in the cumulative incidences of overall survival between the CHM and non-users (Figure 4; \(p = 0.0036 \), log-rank test). The cumulative incidence of overall survival was significantly higher in CHM users.

CHM Prescription Pattern and Network Analysis

The commonly prescribed CHM products and compositions are listed for the HIV-infected patients with osteoporosis or fractures in Supplementary Table S1. LC-MS/MS analysis of active component standards and these 6 herbal extracts are also shown in Supplementary Figures S1–S6. According to the frequency of prescriptions (Supplementary Table S1), Chuan-Xiong-Cha-Tiao-San (CXCTS) was the most commonly herbal formula. The second and third formulas were Liu-He-Tang (LHT) and Jia-Wei-Ping-Wei-San (JWPWS), respectively. Gan-Cao (GC; *Glycyrrhiza uralensis Fisch.*) was the most commonly single herb.

Association rule analysis showed the 10 most commonly co-prescriptions of CHM products for HIV-infected patients with osteoporosis or fractures (Table 3). Higher levels of support, confidence, and lift values suggested stronger associations between the paired CHM products. According to the frequency of prescriptions, support, confidence, and lift values (Table 3), the most commonly used paired CHM products were Chuan-Xiong-Cha-Tiao-San (CXCTS) \(\rightarrow \) Gan-Cao (GC; *Glycyrrhiza uralensis Fisch.*) (first co-prescription frequency: 172, support: 4.59%, confidence: 55.31%, lift: 5.75), followed by Liu-He-Tang (LHT) \(\rightarrow \) CXCTS (second co-prescription frequency: 171, support: 4.57%, confidence: 97.71%, lift: 11.77), and LHT \(\rightarrow \) GC (third co-prescription frequency: 169, support: 4.51%, confidence: 96.57%, lift: 10.05).

Network analysis showed the CHM prescription network for patients with osteoporosis or fractures (Figure 3; Supplementary Figure S7). There were 149 patients who used 3,745 prescriptions by traditional Chinese medicine doctors (Table 3). Network analysis showed one main CHM cluster, including CXCTS, GC, LHT, HQT, JWPWS, and DGLHuiW. Our results show that these 6 CHMs are important for HIV-infected patients with osteoporosis or fractures.

DISCUSSION

Long-term living with HIV and ART use in HIV-infected patients are associated with adverse effects including bone related abnormalities. In this study, we investigated the effect of CHMs on the overall mortality in HIV-infected patients with osteoporosis or fractures in Taiwan. We found that CHM usage reduced the overall mortality for these patients. We also described their CHM prescription network; these included CXCTS, GC, LHT, HQT, JWPWS, and DGLHuiW. CHM treatment exhibited lower risks of overall mortality for HIV-infected patients with osteoporosis or fractures in Taiwan.

Reduced bone mineral density is observed in HIV-infected patients on ART therapy (Duvivier et al., 2009; van Vonderen et al., 2009; Grant et al., 2016; Hoy et al., 2017; Chisati et al., 2020b). Furthermore, Chisati et al., reported that low bone mineral density was also associated with low levels of physical activity among these patients (Chisati et al., 2020b). Maximal strength training for physical activity improves bone mineral density for people living with HIV and receiving ART (Chisati et al., 2020a). In this study, we observed that among HIV-infected
TABLE 3 | Ten most commonly used co-prescriptions of CHM products for HIV-infected patients with osteoporosis or fractures in Taiwan.

CHM products (LHS, X)	Chinese name	Frequency of prescriptions of X product	Dosage of X product	CHM products (RHS, Y)	Chinese name	Frequency of prescriptions of Y product	Dosage of Y product	Frequency of prescriptions of X and Y products	Support (X) (%)	Confidence (X → Y) (%)	Lift	
Chuan-Xiong-Cha-Tiao-San (CXCTS)	川芎茶调散	311	12,032.59	→	Gan-Cao (GC)	甘草	360	2556	172	4.59	55.31	5.75
Liu-He-Tang (LHT)	六和湯	175	6020	→	Chuan-Xiong-Cha-Tiao-san (CXCTS)	川芎茶调散	311	12,032.59	171	4.57	97.71	11.77
Liu-He-Tang (LHT)	六和湯	175	6020	→	Gan-Cao (GC)	甘草	360	2556	169	4.51	96.57	10.05
Huang-Qin-Tang (HQT)	黃芩湯	124	3162	→	Chuan-Xiong-Cha-Tiao-san (CXCTS)	川芎茶调散	311	12,032.59	124	3.31	100.00	12.04
Huang-Qin-Tang (HQT)	黃芩湯	124	3162	→	Gan-Cao (GC)	甘草	360	2556	124	3.31	100.00	10.40
Jia-Wei-Ping-Wei-San (JWPWS)	加味平胃散	131	1591.65	→	Liu-He-Tang (LHT)	六和湯	175	6020	124	3.31	94.66	20.26
Jia-Wei-Ping-Wei-San (JWPWS)	加味平胃散	131	1591.65	→	Chuan-Xiong-Cha-Tiao-san (CXCTS)	川芎茶调散	311	12,032.59	124	3.31	94.66	11.40
Huang-Qin-Tang (HQT)	黃芩湯	124	3162	→	Liu-He-Tang (LHT)	六和湯	175	6020	122	3.26	98.39	21.05
Jia-Wei-Ping-Wei-San (JWPWS)	加味平胃散	131	1591.65	→	Gan-Cao (GC)	甘草	360	2556	121	3.23	92.37	9.61
Dang-Gui-Long-Hui-Wan (DGLHuiW)	当归龙荟丸	105	1755.6	→	Chuan-Xiong-Cha-Tiao-san (CXCTS)	川芎茶调散	311	12,032.59	105	2.80	100.00	12.04

CHM, Chinese herbal medicine; LHS, left-hand-side; RHS, right-hand-side.
Total prescriptions = 3745.
Dosage of X or Y products = Average drug dose per day (g) \times Average duration for prescription (days) \times Frequency of prescriptions (Supplementary Table S1).
Support (X) (%) = Frequency of prescriptions of X and Y products/total prescriptions \times 100%.
Confidence (X → Y) (%) = Frequency of prescriptions of X and Y products/Frequency of prescriptions of X product \times 100%.
P (Y) (%) = Frequency of prescriptions of Y product/total prescriptions \times 100%.
Lift = Confidence (X → Y) (%)\text{P (Y)} (%)\text{.}
patients with osteoporosis or fractures, CHM users showed a lower risk of overall mortality after adjusting for age, gender, ART use, and CCI. The cumulative incidence of overall survival was higher in CHM users, especially different between 4 and 8 years. These CHM users received CHM therapies during the study period (Supplementary Table S3); the non-CHM users did not receive any CHMs for the study period. CHMs may exhibit bone protection effect after long-term treatment. Studies have also suggested that CHM may be beneficial for bone metabolism through osteopenia prevention, anti-osteoporotic activities, promotion of fracture healing, and inhibition of inflammation (Chow et al., 1982; Chen et al., 2005; Li et al., 2011; Ma et al., 2011; Xiang et al., 2011; Wong et al., 2013; He and Shen, 2014; Zhang et al., 2016; Hsiao et al., 2017; Wang et al., 2018b; Xi et al., 2018; Lee et al., 2019). Among these studies, there were two review studies reported in human beings. Zhang et al., reported that there were 33 Traditional Chinese medicine (TCM) formulas commonly used to treat osteoporosis, exhibiting anti-osteoporotic effects in humans and animals (Zhang et al., 2016). Wang et al., reported that a natural compound from the traditional Chinese medicinal herb was effective in preventing postmenopausal osteoporosis observed from a 24-months randomized double-blind placebo-controlled clinical trial in humans (Wang et al., 2018b). Our study identified one main CHM cluster, which includes CXCTS, GC, LHT, HQT, JWPWS, and DGLHuiW.

Therapeutic approaches for treating osteoporosis or fracture inhibit further loss of bone density and strength (Kling et al., 2014). The bisphosphonates (Lewiecki, 2010), which are anti-bone resorption medications, are among the major clinical pharmacological treatments. Bisphosphonates, including alendronate, risedronate, ibandronate, and zoledronate have strong affinities for hydroxyapatite in bone and a long skeletal half-life; therefore, they inhibit bone resorption (Pazianas et al., 2014). Inhibition of osteoclast differentiation resulting in the suppression of bone resorption is one of the potential therapy targets for anti-osteoporotic and anti-fracture activities (Weivoda et al., 2020). Chinese herbs and their related natural compounds are required.

The studies involving human participants were reviewed and approved by The study was approved by the Institutional Review Board of the China Medical University Hospital (The ethics approval number: CMUH107-REC3-074(CR1)). Written consent was made available by the authors, without undue reservation.

In this study, the limitations were the lacks of laboratory tests, education, occupation, and lifestyle in the database. However, we found that CHM may reduce risk of overall mortality in patients with osteoporosis or fractures, and may be useful for future investigations in randomized controlled trials (RCT) and functional studies in bone protection. Large-scale RCTs for these CHMs in HIV-infected patients should be performed to determine their relative effectiveness and safety, and to evaluate their potential interactions during regular treatments in these patients.

CHM in HIV-infected Patients

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by The study was approved by the Institutional Review Board of the China Medical University Hospital (The ethics approval number: CMUH107-REC3-074(CR1)). Written consent was made available by the authors, without undue reservation.
informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

Y-JL, M-WH, and J-PL wrote the manuscript and interpreted the data. C-JC, J-SC, M-CL, C-F, T-ML, Y-CW, T-HL, C-CL, S-MH, Y-NL, and C-HC collected, assembled, and analyzed the data. F-JT and Y-JL provided study materials. W-ML and Y-JL designed, conceived the study, and amended the manuscript.

FUNDING

This study was supported by grants from China Medical University [CMU109-S-18, CMU109-S-27, CMU109-MF-41, and CMU109-MF-126], China Medical University Hospital [DMR-110-134 and DMR-110-152], and the Ministry of Science and Technology, Taiwan [MOST 108-2314-B-039-044-MY3, MOST 109-2320-B-039-035-MY3, and MOST 109-2410-H-039-002].

ACKNOWLEDGMENTS

We are grateful to the Health Data Science Center at the China Medical University Hospital for providing administrative, technical, and funding support. The funding entities for this study had no roles in the study design, data collection, data analysis, interpretation, or authorship of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.593434/full#supplementary-material.

REFERENCES

Ahchra, A. C., Nugent, M., Mocroft, A., Ryom, L., and Wyatt, C. M. (2016). Chronic kidney disease and antiretroviral therapy in HIV-positive individuals: recent developments. *Carr. Hivaidas Rep.* 13, 149–157. doi:10.1007/s11904-016-0315-y

Ahmad, A. N., Ahmad, S. N., and Ahmad, N. (2017). HIV infection and bone abnormalities. *Toothj.* 11, 777–784. doi:10.2174/1874352017711010777

Amiel, C., Ostertag, A., Slama, L., Baudoin, C., N’guyen, T., Lajeunie, E., et al. (2004). BMD is reduced in HIV-infected men irrespective of treatment. *J. Bone Miner Res.* 19, 402–409. doi:10.1359/JBMR.0301246

Antiretroviral Therapy Cohort Collaboration (2017). Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. *Lancet HIV.* 4, e349–e356. doi:10.1016/S2352-3018(17)30066-8

Arnsten, J. H., Freeman, R., Howard, A. A., Floris-Moore, M., Lo, Y., and Klein, R. S. (2017). Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. *AIDS*. 21, 617–623. doi:10.1097/qad.0b013e328004e876

Becker, L. C., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., et al. (2015). Safety assessment of Panax spp root-derived ingredients as used in cosmetics. *Int. J. Toxicol.* 34, 55–42S. doi:10.1177/1091581815610508

Bhati, G., Poudel, S. B., Kook, S.-H., and Lee, J.-C. (2017). Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. *J. Biomed. Mater. Res.* 105, 2510–2521. doi:10.1002/jbm.a.36109

Bruera, D., Luna, N., David, D. O., Bergoglio, L. M., and Zamudio, J. (2003). Anti-osteoclastic and antioxidant activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. *Molecules*. 19, 17400–17421. doi:10.3390/molecules191117400

Bruzzi, D., Lauer, C., de L, N., and Zamudio, J. (2003). Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. *AIDS*. 17, 1917–1923. doi:10.1097/0002030-200309050-00010

Capeau, J., Bouteloup, V., Katlama, C., Bastard, J.-P., Guiedy, V., Salmon-Ceron, D., et al. (2012). Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. *AIDS*. 26, 303–314. doi:10.1097/qad.0b013e32834a8776

Chen, H.-Y., Lin, Y.-H., Su, I.-H., Chen, Y.-C., Yang, S.-h., and Chen, J.-L. (2014). Investigation on Chinese herbal medicine for primary dysmenorrhea: implication from a nationwide prescription database in Taiwan. *Complement. Therapies Med.* 22, 116–125. doi:10.1016/j.ctm.2013.11.012

Clement, K. M., Ge, B. F., Ma, H. P., Liu, X. Y., Bai, M. H., and Wang, Y. (2005). Icariin, a flavonoid from the herb Epimedium enhances the osteogenetic differentiation of rat primary bone marrow stromal cells. *Pharmacaz.* 60, 939–942.

Cheng, C.-F., Lin, J. C.-F., Tsai, F.-J., Chen, C.-J., Chiou, J.-S., Chou, C.-H., et al. (2019a). Protective effects and network analysis of natural compounds obtained from Radix dipaci, Eucommiae cortex, and Rhizoma drynariae against RANKL-induced osteoclastogenesis in vitro. *J. Ethnopharmacology*. 244, 112074. doi:10.1016/j.jep.2019.112074

Cheng, C. P., Lin, Y. J., Tsai, F. J., Li, T. M., Lin, T. H., Liao, C. C., et al. (2019b). Effects of Chinese herbal medicines on the risk of overall mortality, readmission, and reoperation in hip fracture patients. *Front. Pharmacol.* 10, 629. doi:10.3389/fphar.2019.00629

Chiari, E. M., Constantinou, D., and Lampiao, F. (2020a). Effects of maximal strength training on bone mineral density in people living with HIV and receiving anti-retroviral therapy: a pilot study. *BMC Sports Sci. Med. Rehabil.* 12, 67. doi:10.1186/s13102-020-00216-6

Chiari, E. M., Constantinou, D., and Lampiao, F. (2020b). Reduced bone mineral density among HIV infected patients on anti-retroviral therapy in Blantyre, Malawi: prevalence and associated factors. *PLoS One.* 15, e0227893. doi:10.1371/journal.pone.0227893

Chow, S. P., Yeung, H. W., Law, L. K., Chan, T. M., and Lau, C. (1982). The effect of davalliaorientalis on bone healing—a preliminary report. *Am. J. Chin. Med.* 10, 101–106. doi:10.1142/s012905310000116

Chung, I.-M., Lim, J.-J., Ahn, M.-S., Jeong, H.-N., An, T.-J., and Kim, S.-H. (2016). Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. *J. Ginseng Res.* 40, 68–75. doi:10.1016/j.jgr.2015.05.006

Conidi, C., Fuca, L., Dirolli, E., and Cassano, A. (2019). A membrane-based process for the recovery of glycyrrhizin and phenolic compounds from licorice wastewaters. *Molecules*. 24, 2279. doi:10.3390/molecules24122279

De Wit, S., Sabin, C. A., Weber, R., Worm, S. W., Reiss, P., Cazanave, C., et al. (2008). Data collection on adverse events of Antiflavonoids and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D4A5) study. *Diabetes Care*. 31, 1224–1229. doi:10.2337/diacare-07-2037

Dorjee, K., Baxi, S. M., Reingold, A. L., and Hubbard, A. (2017). Risk of cardiovascular events from current, recent, and cumulative exposure to abacavir among persons living with HIV who were receiving antiretroviral therapy. *Am. J. Epidemiol.* 185, 582–590. doi:10.1093/aje/kwx239
therapy in the United States: a cohort study. *BMC Infect. Dis.* 17, 708. doi:10.1186/s12879-017-2808-8

Doss, H. M., Samarpita, S., Ganesan, R., and Rasool, M. (2018). Ferulic acid, a dietary polyphenol suppresses osteoclast differentiation and bone erosion via the inhibition of RANKL dependent NF-κB signalling pathway. *Life Sci. 207*, 284–295. doi:10.1016/j.lfs.2018.06.013

Dubrocq, G., and Rakhmanina, N. (2018). Antiretroviral therapy interruptions: impact on HIV treatment and transmission. *HIV AIDS (Auckl)*. Vol. 10, 91–101. doi:10.2147/hiv.a141965

Duviucier, C., Kolta, S., Assoumou, L., Ghosn, J., Rozenberg, S., Murphy, R. L., et al. (2009). Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. *AIDS. 23*, 817–824. doi:10.1097/QAD.0b013e3283287889

Giacomelli, N., Yongping, Y., Huber, F. K., Ankli, A., and Weckerle, C. S. (2017). Apigenin isolated from the leaves of *Glycyrrhiza flav* inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. *Cytotherapy. 67*, 357–365. doi:10.1016/j.jcyt.2016.04-9094

Grant, P. M., Kitch, D., Mccomsey, G. A., Collier, A. C., Koletar, S. L., Erlanson, K. M., et al. (2016). Long-term bone mineral density changes in antiretroviral-treated HIV-infected individuals. *J. Infect. Dis. 214*, 607–611. doi:10.1093/infdis/jiw204

Li, X.-d., Liu, Y.-z., Chang, B., Liu, D.-x., Chen, B., Guo, C., et al. (2011). Panax notoginseng saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK and P38 MAPK signaling pathways. *Cell Physiol Biochem. 28*, 367–376. doi:10.1159/000331375

Lee, J., Yu, O., Huang, L. (2009). Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). *Molecules. 14*, 5349–5361. doi:10.3390/molecules14125349

Li, Y. J., Ho, T. J., Yeh, Y. C., Cheng, C. F., Shiao, Y. T., Wang, C. B., et al. (2015). Chinese herbal medicine treatment improves the overall survival rate of individuals with hypertension among type 2 diabetes patients and modulates in vitro smooth muscle cell contraction. *PLoS One. 10*, e0145109. doi:10.1371/journal.pone.0145109

Liu, J., Chen, L., Fan, C. R., Li, H., Huang, M. Q., Xiang, Q., et al. (2015). Qualitative and quantitative analysis of major constituents of Paoniea radix Alba and Paoniea radix rubra by HPLC-DAD-TOF-MS/MS. *Zhongguo Zhong Yao Za Zhi. 40*, 1762–1770.

Luo, D.-y., Wu, H.-y., Yarla, N. S., Xu, B., Ding, J., and Lu, T.-r. (2018). HAART in HIV/AIDS treatments: future trends. *Infect Disord Drug Targets. 18*, 15–22. doi:10.2174/1871526517666170505122800

Lv, G., Cheng, S., Chan, K., Leung, K. S., and Zhao, Z. (2010). [Determination of free ferulic acid and total ferulic acid in Chuxiangzuo high-performance liquid chromatography for quality assessment]. *Zhongguo Zhong Yao Za Zhi. 35*, 194–198. doi:10.4286/cjcm201000217

Ma, C., Zhang, J., Fu, J., Cheng, L., Zhao, G., and Gu, Y. (2011). [Determination of free ferulic acid and total ferulic acid in Chuxiangzuo high-performance liquid chromatography for quality assessment]. *Zhongguo Zhong Yao Za Zhi. 35*, 194–198. doi:10.4286/cjcm201000217

Murakawa, E., Xu, F., Wang, M.-s., and Zhang, Y. (2014). Chinese herbal medicine for bone health. *Pharm. Biol. 52*, 1223–1228. doi:10.3109/13880209.2014.848606

Nan, C., Sahaev, M., Urbaitevy, R., Oyee, J., Hopking, J., Ragone, L., et al. (2013). Abacavir use and risk for myocardial infarction and cardiovascular events: pooled analysis of data from clinical trials. *Open Forum Infect. Dis.*, 5, ofy086. doi:10.1093/ofid/ofy086

Pang, J. L., Ricupero, D. A., Huang, S., Fatma, N., Singh, D. P., Romero, J. R., et al. (2018). The latest evidence for possible HIV-1 antiretroviral treatments: future trends. *Bonekey Rep.* 3, 529. doi:10.1038/bonekey.2014.24

Meintjes, G., Moonhouse, M. A., Carmona, S., Davies, N., Dalmini, S., Van Vuuren, C., et al. (2017). Adult antiretroviral therapy guidelines 2017. *South. Afr. J. HIV Med. 18*, 776. doi:10.4102/sajhmed.v18i1.776

Mukw娅wa, E., Xu, F., Wang, M.-s., and Zhang, Y. (2014). Chinese herbal medicine for bone health. *Pharm. Biol. 52*, 1223–1228. doi:10.3109/13880209.2014.848606

Nan, C., Sahaev, M., Urbaitevy, R., Oyee, J., Hopking, J., Ragone, L., et al. (2013). Abacavir use and risk for myocardial infarction and cardiovascular events: pooled analysis of data from clinical trials. *Open Forum Infect. Dis.*, 5, ofy086. doi:10.1093/ofid/ofy086

Shih, W. T., Yang, Y. H., and Chen, P. C. (2012). Prescription patterns of Chinese herbal products for osteoporosis in taiwan: a population-based study. *Evid. Based Complement. Alternat Med. 2012*, 752837. doi:10.1155/2012/752837

Shim, K.-s., Kim, T., Ha, H., Lee, C.-j., Lee, B., Kim, H. S., et al. (2015). Water extract of Magnolia officinalis cortex inhibits osteoclastogenesis and bone
resorption by downregulation of nuclear factor of activated T cells cytoplasmic 1. *Integr. Med. Res.* 4, 102–111. doi:10.1016/j.imr.2015.02.002

Sozen, T., Oxisik, L., and Calik Basaran, N. (2017). An overview and management of osteoporosis. *Eur. J. Rheumatol.* 4, 46–56. doi:10.5152/eurjrheum.2016.048

Tang, Q. Y., Kukita, T., Ushijima, Y., Kukita, A., Nagata, K., Sandra, F., et al. (2006). Regulation of osteoclastogenesis by Simon extracts composed of caffeic acid and related compounds: successful suppression of bone destruction accompanied with adjuvant-induced arthritis in rats. *Histochem. Cel Biol.* 125, 215–225. doi:10.1007/s00418-005-0062-4

Tsai, F.-J., Cheng, C.-F., Cheng, C.-J., Lin, C.-Y., Wu, Y.-C., Ho, M.-W., Wang, J.-H., et al. (2019). Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. *J. Bone Miner Metab.* 27, 673–681. doi:10.1007/s00774-009-0088-0

Uddin, R., Saha, M. R., Subhan, N., Hossain, H., Jahan, I. A., Akter, R., et al. (2014). HPLC-analysis of polyphenolic compounds in Gardenia jasminoides and determination of antioxidant activity by using free radical scavenging assays. *Adv. Pharm. Bull.* 4, 273–281. doi:10.5681/abpr.2014.040

Van Vonderen, M. G., Lips, P., Van Agtmael, M. A., Hassink, E. A., Brinkman, K., Geerlings, S. E., et al. (2009). First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. *AIDS*. 23, 1367–1376. doi:10.1097/qad.0b013e32835c4947

Wang, X., Wang, G. C., Rong, J., Wang, S. W., Ng, T. B., Zhang, Y. B., et al. (2018a). Identification of steroidogenic components derived from Gardenia jasminoides ells potentially useful for treating postmenopausal syndrome. *Front. Pharmacol.* 9, 390. doi:10.3389/fphar.2018.00390

Wang, Z.-L., Wang, S., Kuang, Y., Hu, Z.-M., Qiao, X., and Ye, M. (2018c). A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. *Pharm. Biol.* 56, 465–484. doi:10.1080/13880290.2018.1492620

Wang, Z., Wang, D., Yang, D., Zhen, W., Zhang, J., and Peng, S. (2018b). The effect of icariin on bone metabolism and its potential clinical application. *Osteoporos.* Int. 29, 535–544. doi:10.1007/s00198-017-4235-1

Wei, Voda, M. M., Chew, C. K., Monroe, D. G., Farr, J. N., Atkinson, E. J., Geske, J. R., et al. (2020). Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. *Nat. Commun.* 11, 87. doi:10.1038/s41467-019-14033-6

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ho, Li, Chou, Chiu, Chen, Cheng, Tsai, Wu, Lin, Liao, Huang, Lin, Chou, Liang and Lin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.