Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\text{Ge}\) with GERDA

The GERDA Collaboration

Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double-\(\beta\) decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double-\(\beta\) decay of \(^{76}\text{Ge}\) by operating bare detectors, made of germanium with an enriched \(^{76}\text{Ge}\) fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately \(10^{-3}\) counts keV\(^{-1}\) kg\(^{-1}\) yr\(^{-1}\). This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double-\(\beta\) decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of \(5.3 \times 10^{25}\) years at the 90 per cent confidence level. Our half-life sensitivity of \(4.0 \times 10^{25}\) years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double-\(\beta\) decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.

One of the most puzzling aspects of cosmology is the unknown reason for the dominance of matter over antimatter in our Universe. Within the Standard Model of particle physics there is no explanation for this observation and hence a new mechanism has to be responsible. A favoured model called leptogenesis\(^5\) links matter dominance to the nature of neutrinos and to the violation of lepton number—that is, the total number of electrons, muons, taus and neutrinos minus the number of their antiparticles.

In most extensions of the Standard Model\(^2\)–\(^4\), neutrinos are assumed to be their own antiparticles (that is, they are Majorana particles). This might lead to lepton-number-violating processes at the TeV energy scale observable at the LHC (Large Hadron Collider)\(^6\) and would result in neutrinoless double-\(\beta\) (0\(\nu\)\(\beta\beta\)) decay where a nucleus of mass number \(A\) and charge \(Z\) decays as \((A, Z) \rightarrow (A, Z + 2) + 2 e^-\). Lepton number violation has not been unambiguously observed so far; indeed, its observation would motivate fundamental modifications of the Standard Model. There are several current experimental 0\(\nu\)\(\beta\beta\) decay programmes, using, for example, \(^{76}\text{Ge}\) (refs 5, 6), \(^{130}\text{Te}\) (refs 7, 8) or \(^{136}\text{Xe}\) (refs 9–11). They all measure the sum of the electron energies released in the decay, which corresponds to the mass difference \(Q_{\beta\beta}\) of the two nuclei. The 0\(\nu\)\(\beta\beta\) decay half-life (\(T_{1/2}^{\beta\beta}\)) is at least 15 orders of magnitude longer than the age of the Universe. Its observation therefore requires the best suppression of backgrounds.

In the GERmanium Detector Array (GERDA) experiment, bare germanium detectors are operated in liquid argon (LAr). The detectors are made from germanium with the fraction of the \(^{76}\text{Ge}\) isotope enriched from 7.8\% to about 87\%. Since the source and the detector of 0\(\nu\)\(\beta\beta\) decay are identical in this calorimetric approach, the detection efficiency is high.

This Article presents the first results from GERDA Phase II. In the first phase of data taking (Phase I), a limit of \(T_{1/2}^{\beta\beta} > 2.1 \times 10^{25}\) yr (90\% confidence level, CL) was found\(^3\) for an exposure of 21.6 kg yr and a background rate of 0.01 counts keV\(^{-1}\) kg\(^{-1}\) yr\(^{-1}\) at \(Q_{\beta\beta} = 2.039.061 \pm 0.007\) keV, called background index (BI) (ref. 12). At that time, the result was based on data from 10 detectors (17.6 kg total mass). In December 2015, Phase II started with 37 detectors (35.6 kg) from enriched material. The mass is hence doubled relative to Phase I. The goal is an improvement of the half-life sensitivity to \(>10^{25}\) yr for about 100 kg yr exposure by reducing the background index by an order of magnitude. The latter is achieved by vetoing background events through the detection of their energy deposition in the LAr and the characteristic time profile of their current signals in the germanium detectors.

Up to the design exposure, the average expected background contribution is less than 1.0 in the energy region of interest (\(Q_{\beta\beta} \pm 0.5\) full-width at half-maximum, FWHM), defined according to the FWHM energy resolution. This implies that GERDA is the first ‘background-free’ experiment in the field.

We will demonstrate here that GERDA has reached this target background level, which—if weighted by our superior energy resolution—is the best available at present. GERDA is therefore best suited to not only quote limits for a 0\(\nu\)\(\beta\beta\) decay but to identify such a signal with high confidence.

The experiment

The GERDA experiment\(^{13}\) is located at the underground Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. A rock overburden of about 3,500 m water equivalent removes the hadronic components of cosmic ray showers and reduces the muon flux at the experiment by six orders of magnitude, to 1.2 muons m\(^{-2}\) h\(^{-1}\).

The pioneering feature of GERDA is the operation of bare germanium detectors in a radiopure cryogenic liquid (LAr), which both cools the detectors to their operating temperature of about 90 K and shields them from external radiation originating from the walls (see Extended Data Fig. 1 for a sketch of the set-up\(^{14}\)). The 64 m\(^3\) LAr cryostat is inside a 590 m\(^3\) water tank, and the clean water completes the passive shield. Above the water tank is a clean room with a glove box and lock, used for the assembly of germanium detectors into strings and the integration of the LAr veto system (see below).
GERDA deploys 7 coaxial detectors from the former Heidelberg-Moscow12 and IGEX16 experiments, and also 30 Broad Energy germanium (BEGe) detectors17. All are produced from p-type material (see Extended Data Fig. 2). Electron–hole pairs created in the 1–2-mm-thick n+ electrode mostly recombine such that the active volume is reduced. The BEGe detectors provide a better identification of the event topology and hence background rejection (see below). The enriched detectors are assembled into six strings, which surround the central string; the central string consists of three coaxial detectors made from germanium of natural isotopic composition. Each string is placed inside a nylon cylinder (see Extended Data Fig. 3) to limit the LAr volume from which radioactive ions like 42K can be collected on the outer detector surfaces18,19.

All detectors are connected to custom-made low radioactivity charge sensitive amplifiers20 (30 MHz bandwidth, 0.8 keV FWHM resolution) located in the LAr about 35 cm above the detectors. The charge signal traces are digitized with a 100 MHz sampling rate and stored on disk for offline analysis.

In background events, some energy is often also deposited in the argon. The resulting scintillation light21 can be detected to veto these events, that is, to remove them from the analysis. In Phase II, a cylindrical volume of 0.5 m diameter and 2.2 m height around the detector strings (see Extended Data Figs 1 and 4) is instrumented with light sensors. The central 0.9 m of the cylinders is defined by a curtain of wavelength-shifting fibres which surround the 0.4-m-high detector array. The fibres are read out at both ends with 90 silicon photomultipliers (SiPMs)22. Groups of six 3 x 3 mm2 SiPMs are connected together to a charge sensitive amplifier. Sixteen 3-inch low-background photomultipliers (PMTs) designed for cryogenic operation are mounted at the top and bottom surfaces of the cylindrical volume. Their distance to any germanium detector is at least 0.7 m to limit the PMT background contribution from their intrinsic Th/U radioactivity. All LAr veto channels are digitized and read out together with the germanium channels if at least one detector has an energy deposition above 100 keV.

The nylon cylinders, the fibres, the PMTs and all surfaces of the instrumented LAr cylindrical volume are covered with a wavelength shifter to shift the LAr scintillation light from 128 nm to about 400 nm. The water tank is instrumented with 66 PMTs to detect Cherenkov light from muons passing through the experiment. On top of the clean room are three layers of plastic scintillator panels covering the central 4 x 3 m2 to complete the muon veto23.

Data analysis

The data analysis flow is very similar to that of Phase I. The offline analysis of the digitized germanium signals is described elsewhere24,25. A data blinding procedure is again applied; events with a reconstructed energy in the interval $Q_{ββ}$ at 25 keV are not analysed but only stored on disk. After the entire analysis procedures and parameters have been frozen, these blinded events are processed.

The gain stability of each germanium detector is continuously monitored by injecting charge pulses (test pulses) into the front-end electronics at a rate of 0.05 Hz. The test pulses are also used to monitor leakage current and noise. Only data recorded during stable operating conditions (for example, with a gain stability better than 0.1%) are used for the physics analysis. This corresponds to about 85% of the total data written on disk.

Signals originating from electrical discharges in the high voltage line or bursts of noise are rejected during the offline event reconstruction by a set of multi-parametric cuts based on the flatness of the baseline, polarity and time structure of the pulse. Physical events at $Q_{ββ}$ are accepted with an efficiency greater than 99.9%, estimated from γ lines in calibration data, test pulse events and template signals injected in the data set. Conversely, a visual inspection of all events above 1.6 MeV shows that no unphysical event survives the cuts.

The energy deposited in a germanium detector is reconstructed offline with an improved digital filter26, whose parameters are optimized for each detector and for several periods. The energy scale and resolution are determined with weekly calibration runs with 228Th sources. The long-term stability of the scale is assessed by monitoring the shift of the position of the 2.615 keV peak between consecutive calibrations. It is typically smaller than 1 keV for BEGe detectors and somewhat worse for some coaxial ones. The FWHM resolution at 2.6 MeV is 2.6–4.0 keV (mean 3.2 keV, r.m.s. 0.4 keV) for the BEGe detectors and 3.4–4.4 keV (mean 3.8 keV, r.m.s. 0.3 keV) for the coaxial detectors. The width of the strongest γ lines in the physics data (1,460 keV from 40K and 1,525 keV from 44K) is found to be 0.5 keV larger than expected for the coaxial detectors (see Fig. 1), probably owing to gain instabilities in the corresponding readout channels between calibrations. In order to conservatively estimate the expected energy resolution at $Q_{ββ}$, an additional noise term is added to take this into account.

For 0νββ decays in the active part of a detector volume, the total energy of $Q_{ββ}$ is detected in that detector in 92% of the cases. Multiple detector coincidences are therefore discarded as background events. Two consecutive candidate events within 1 ms are also rejected (dead time $\sim 10^{-4}$) to discriminate time-correlated decays from primordial radioisotopes, such as the radon progenies 214Bi and 214Po. Candidate events are also rejected if a muon trigger occurred within 10 μs before a germanium detector trigger. More than 99% of the muons that deposit energy in a germanium detector are rejected this way. The induced dead time is <0.1%.

The traces from PMTs and SiPMs are analysed offline to search for LAr scintillation signals in coincidence with a germanium detector trigger. An event is rejected if any of the light detectors record a signal of amplitude above 50% of the expectation for a single photo-electron within 5 μs from the germanium trigger. About 99% of the photons occur in this window. Accidental coincidences between the LAr veto system and germanium detectors create a dead time of (2.3 ± 0.1)% which is measured with test pulse events and cross-checked with the counts in the 40K peak. As the 1,460 keV γ is produced by electron capture of 40K, there is no residual energy that can be released in the LAr volume.

Figure 2 shows the energy spectra for BEGe and coaxial detectors of Phase II with and without the LAr veto cut. Below about 500 keV the spectra are dominated by 39Ar/β decays, up to 1.7 MeV they are dominated by events from double-β decay with two neutrino emission (2νββ), above 2.6 MeV they are dominated by β decays on the detector surface, and around $Q_{ββ}$ they are largely a mixture of α events, 42K β decays and events from the decays of the 238U and 232Th chains. The two spectra (Fig. 2a and b) are similar except for the number of α events, which is on average higher for coaxial detectors. The number of α counts shows a large variation between the detectors. The power of the LAr veto is best demonstrated by the 42K line at 1,525 keV, which is suppressed by a factor ~ 5 (Fig. 2b inset) owing to the β particle depositing energy up to 2 MeV in the LAr. Figure 2a and b also shows the predicted 2νββ spectrum from 76Ge using our Phase I result for the half-life, $T_{1/2}^{2νββ} = (1.926 ± 0.094) \times 10^{25}$ yr (ref. 27).

The time profile of the germanium detector current signal is used to discriminate 0νββ decays from background events. While the former have point-like energy deposition in the germanium (single site events, SEEs), the latter have often multiple depositions (multi–site events, MSes) or depositions on the detector surface. The same pulse shape discrimination (PSD) techniques of Phase I are applied26. Events in the double escape peak (DEP) and at the Compton edge of 2.615 keV photons in calibration data have a similar time profile to 0νββ decays and are hence proxies for SEEs. These samples are used to define the PSD cuts and the related detection efficiencies. The latter are cross-checked with 2νββ decays.

The geometry of the BEGe detectors allows the application of a simple mono-parametric PSD based on the maximum of the detector current pulse A normalized to the total energy E (refs 29, 30). The
energy dependence of the mean and the resolution σ_{ae} of A/E are measured for every detector with calibration events. After correcting for these dependences and normalizing the mean A/E of DEP events to 1, the acceptance range is determined for each detector individually: the lower cut is set to keep 90% of DEP events and the upper position is twice the low-side separation from 1. Figure 3a shows a scatter plot of the PSD parameter $\zeta = (A/E - 1)/\sigma_{ae}$ versus energy. Accepted SSE-like events around $\zeta = 0$ are marked in red. Figure 3b displays the energy spectrum before and after PSD selection. A survival fraction of 85.1% is determined for $2\nu\beta\beta$ events which dominate the low energy part of the spectrum. The two potassium peaks and Compton scattered photons are reconstructed at $\zeta > 0$ and are easily removed. The average $0\nu\beta\beta$ survival fraction is $31^{+10}_{-8}\%$. The uncertainty takes into account the systematic difference between the A/E centroids of DEP and $2\nu\beta\beta$ events, and the different fractions of MSEs in DEP and $0\nu\beta\beta$ events.

Figure 1 | Energy scale and resolution. Average energy resolution (FWHM) for γ lines of the calibration spectrum (filled symbols) and for the average of ^{40}K and ^{42}K lines from physics data (open symbols) for BEGe (symbols and solid line in blue) and coaxial (symbols and dashed line in red) detectors; error bars (\pm 1 s.d.) are derived from the fit. Insets show the spectrum of physics data in the energy region around the potassium lines (left) and the spectrum of the 2.615 keV calibration peak (right).

Figure 2 | Energy spectra for the two detector types. Energy spectra of Phase II data sets before (open histogram) and after (filled histogram) the argon veto cut, for a, the enriched coaxial detectors (exposure 5.0 kg yr), and b, the enriched BEGe detectors (exposure 5.8 kg yr). The blue lines are the expected $2\nu\beta\beta$ spectra from our recent half-life measurement. Inset, the BEGe spectrum in the energy region around the two potassium lines. We note that the ^{40}K line is not suppressed since no energy is deposited in the LAr. Various background contributions are labelled in b.
Results

This analysis includes the data sets used in the previous publication5,34, an additional coaxial detector period from 2013 (‘PI extra’ in Table 1) and the Phase II data from December 2015 until June 2016 (‘PIIa coaxial’ and ‘PIIa BEGe’ in Table 1). Table 1 lists the relevant parameters for all data sets. The exposures in the active volumes of the detectors for 76Ge are 234 mol yr and 109 mol yr for Phases I and II, respectively. The efficiency ϵ is the product of the 76Ge isotope fraction (87%), the active volume fraction (87%–90%), the $0\nu\beta\beta$ event fraction reconstructed at full energy in a single crystal (92%), pulse shape selection (79%–92%) and the live time fraction (97.7%). For the Phase I data sets the event selection including the PSD classification is unchanged. An improved energy reconstruction26 is applied to the data as well as an updated value for the coaxial detector PSD efficiency of the neural network analysis of (83 ± 3)% (ref. 32).

Discussion

GERDA Phase II has been taking data since December 2015 in stable conditions with all channels working. The background index at Q_{33} for the BEGe detectors is

$$B_I = (0.7\pm 0.1) \times 10^{-3} \text{ counts keV}^{-1} \text{ kg}^{-1} \text{ yr}^{-1}.$$

This is a substantial achievement, as the value is consistent with our design goal. We find no hint of a $0\nu\beta\beta$ decay signal in our combined data, and place a limit of $T_{1/2}^{0\nu} > 3.5 \times 10^{25} \text{ yr}$ (90% CL). The sensitivity assuming no signal is $4.0 \times 10^{25} \text{ yr}$.

The mean expected background is 0.8 in the energy region of interest at the design exposure of 100 kg yr: that is, a background of

Table 1 | Parameters of data sets

Data set	E (kg yr)	FWHM (keV)	ϵ (10$^{-3}$ counts keV$^{-1}$ kg$^{-1}$ yr$^{-1}$)
PI golden	17.9	4.3(1)	0.57(3)
PI silver	1.3	4.3(1)	0.57(3)
PI BEGe	2.4	2.7(2)	0.66(2)
PI extra	1.9	4.2(2)	0.58(4)
PIIa coaxial	5.0	4.0(2)	0.53(5)
PII BEGe	5.8	3.0(2)	0.60(2)

List of data sets, exposures E (for total mass), energy resolutions in FWHM, efficiencies ϵ including enrichment, active mass, selection efficiencies and dead times and background indices B_I in the analysis window excluding $Q_{33} > 5$ keV. The numbers in parenthesis give the uncertainty of the respective values in the least significant digit.
After all cuts

Article Research

Limit (90% CL)

Figure 4 | Energy spectra in the analysis window around $Q_{\beta\beta}$. Shown are combined Phase I data (a), Phase II coaxial detector spectra (b) and Phase II BEGe detector spectra (c) in the analysis window. The binning is 2 keV; the exposures are given in the panels at top right. The open histogram is the spectrum before the PSD and LAr veto cut, the filled grey one shows the exposure is the final spectrum after LAr veto and PSD. The blue line represents the fitted spectrum together with a hypothetical signal corresponding to the 90% CL limit of $T_{1/2}^{\beta\beta} = 5.3 \times 10^{23}$ yr.

less than one. GERDA is hence the first ‘background-free’ experiment in the field. The sensitivity of such a background-free experiment grows approximately linearly with exposure, unlike the sensitivity of competing experiments that grows with the square root of exposure. GERDA will reach a sensitivity of the order of 10^{25} yr for the half-life within 3 years of continuous operation. With the same exposure we have a 50% chance of detecting a signal with 3σ significance if the half-life is almost 10^{26} yr.

Phase II has demonstrated that the concept of background suppression by exploiting the good pulse shape performance of BEGe detectors and by detecting the argon scintillation light works. The background at $Q_{\beta\beta}$ is the best available at present: it is lower by a factor of typically 10 compared to experiments using other isotopes after normalization by the energy resolution and total efficiency, that is, our value of (1/1.4xFWHM) is superior. This is why the GERDA half-life sensitivity of 4.0×10^{25} yr for an exposure of 343 mol yr is similar to that of the KamLAND-Zen experiment obtained using 136Xe, that is, 5.6×10^{25} yr based on a more than tenfold exposure of 3,700 mol yr (ref. 9).

A discovery of $0\nu\beta\beta$ decay would have far-reaching consequences for our understanding of particle physics and cosmology. Key features of a convincing discovery would include an ultra-low background with a simple flat distribution, excellent energy resolution and the possibility of identifying the events with high confidence as signal-like as opposed to being an unknown γ line from a nuclear transition. The last is achieved by detector pulse shape analysis and possibly by a signature in the argon. Bare germanium detectors in liquid argon, as used in GERDA, give the best chance of a discovery, which has motivated future extensions of the programme. The GERDA cryostat can hold 200 kg of detectors; such an experiment will remain ‘background-free’ until an exposure of 1,000 kg yr, provided that the background can be further reduced by a factor of five. The discovery sensitivity would then improve by an order of magnitude to a half-life of 10^{27} yr. The 200 kg set-up is conceived as a first extension towards a more ambitious 1 ton experiment, which would ultimately boost the sensitivity to 10^{28} yr corresponding to the $m_{\beta\beta} < 10–20$ meV range. Both extensions are being pursued by the newly formed LEGEND Collaboration (http://www.legend-exp.org).

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 22 November 2016; accepted 19 February 2017.
Acknowledgements The GERDA experiment is supported by the German Federal Ministry for Education and Research (BMBF), the German Research Foundation (DFG) via the Excellence Cluster Universe, the Italian Istituto Nazionale di Fisica Nucleare (INFN), the Max Planck Society (MPG), the Polish National Science Centre (NCN), the Russian Foundation for Basic Research (RFBR) and the Swiss National Science Foundation (SNF). These research institutions acknowledge internal financial support. GERDA was constructed and commissioned by the authors of refs 13 and 19. The GERDA Collaboration (https://www.mpi-hd.mpg.de/gerda/) thanks the directors and the staff of the LNGS for their support of the GERDA experiment.

Author Contributions All authors contributed to the publication, being differently involved in the design and construction of the detector system, in its operation, and in the acquisition and analysis of data. All authors approved the final version of the manuscript. In line with collaboration policy, the authors are listed here alphabetically.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the version of the paper.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to the GERDA Collaboration (gerda-eb@mpi-hd.mpg.de).

The GERDA Collaboration

M. Agostini1, M. Allardt2, A. M. Bakalyarov3, M. Balata1, I. Barabánov4, L. Baudis5, C. Bauer6, E. Bellotti7,8, S. Belogurov9,10, S. T. Belyaev11,12, G. Benato13, A. Bettini11,12, L. Bezrukov14, T. Bode12,15, D. Borowicz12,16,17, V. Brudner13,14, R. Brugnera16,17, A. Caldwell19, C. Cattadori18, A. Chernogorov18, V. D’Andrea18, E. V. Demidova9, N. Di Marco18, A. di Vacri18, A. Domoulas18, E. Doroshkevich9, V. Egorov14, R. Falkenstein16, O. Fedorova9, K. Freund16, N. Frodyma12, A. Gangapahay12,4,14, A. Garfagnini10,11,17, C. Gooch15, P. Grabmayr13,14, V. Gurentsov9, K. Gusev18,4,14, J. Hakenmüller6, A. Hagi16,17, M. Heisel10,11,12, W. Hofmann16, M. Huit17, L. V. Irzhichik14, J. JanicskóCsehay12, J. Jochum16,17, M. Junker2, V. Kazalov5, T. Kihm18, I. V. Kirpichnikov3, A. Kirsch6, A. Kish17, A. Klimentko11,14, R. Knebl15, K. T. Knöpfle6, O. Kochtsov6,4,14, V. Kornoukhov16,17, V. V. Kuzminov5, M. Laubenstein19, A. Lazzaro12, V. I. Lebedev18, B. Lehmann18, H. Y. Li6,17, M. Lindner6, L. Lipp18, A. Lubashevskiy6,14,15, B. Lubsan21, G. Lutter21, C. Macolino18, B. Majorovits18, W. Maneschg22, E. Medinaceli10,11,17, M. Miloradovic23, R. Mingazheva14, M. Misiaszek12,13, P. Moseev14, I. Nemchenok14,15, D. Palioselitis15,17, K. Panas12, L. Pandolfo18, K. Pelc13, A. Pullia19, S. Riboldi19, N. Rumyantceva14, C. Sadi10,11, F. Salamida18, M. Salathé18, C. Schmitt24, B. Schneider12, S. Schönert12, J. Schreiner9, O. Schulz15, A.-K. Schütz26, K. Schweginger27, O. Selivanenko18, E. Shevchenko14, M. Shirchenko14, H. Simon19, A. Smolnikov14,15, L. Stancio19, L. Vanhoefer18, A. A. Vasenko18, A. Veresnikova18, K. von Sturm11,17, V. Wagner6, M. Walter18, A. Wegmann6, T. Wester2, C. Wiesinger18,2, M. Wojcik13, E. Yanovich4, I. Zhitnikov14, S.V. Zhukov3, D. Zinatulina14, K. Zuber18 & G. Zuze13

1INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy. 2Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany. 3National Research Centre “Kurchatov Institute”, Moscow, Russia. 4Institute of Nuclear Research of the Russian Academy of Sciences, Moscow, Russia. 5Physik Institut der Universität Zürich, Zurich, Switzerland. 6Max-Planck-Institut für Kernphysik, Heidelberg, Germany. 7Instituto de Física e Astronomia dell’Università di Padova, Padua, Italy. 8INFN Padova, Padua, Italy. 9Max-Planck-Institut für Physik, Munich, Germany. 10Institut für Physik, Jagiellonian University, Cracow, Poland. 11Joint Institute for Nuclear Research, Dubna, Russia. 12Max-Planck-Institut für Physik, Munich, Germany. 13Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany. 14European Commission, JRC-Geel, Geel, Belgium. 15INFN Laboratori Nazionali del Sud, Catania, Italy. 16Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy. 17Deceased.
METHODS

Statistical analysis. This section discusses the statistical analysis of the GERDA data. In particular, the procedures to derive the limit on $T_{1/2}^{\nu\beta\beta}$, the median sensitivity of the experiment and the treatment of systematic uncertainties are described.

A combined analysis of data from Phase I and II is performed by fitting simultaneously the six data sets of Table 1. The parameter of interest for this analysis is the strength of a possible $0\nu\beta\beta$ decay signal $S = 1/T_{1/2}^{\nu\beta\beta}$. The number of expected $0\nu\beta\beta$ events in the ith data set D_i as a function of S is given by:

$$\mu_i^S = \ln(2N_\Delta/m_\nu e^p S)$$

(2)

where N_Δ is Avogadro’s number, e_γ the global signal efficiency of the ith data set, ϵ the exposure and m_ν the molar mass. The exposure quoted is the total detector mass multiplied by the data-taking time. The global signal efficiency accounts for the fraction of 76Ge in the detector material, the fraction of the detector active volume, the efficiency of the analysis cuts, the fractional live time of the experiment and the probability that $0\nu\beta\beta$ decay events in the active detector volume have a reconstructed energy at $Q_{\beta\beta}$. The total number of expected background events as a function of the background index B_i is:

$$\mu_i^B = \epsilon_i B_i \Delta E$$

(3)

where $\Delta E = 240\,\text{keV}$ is the width of the energy region around $Q_{\beta\beta}$ used for the fit.

Each data set D_i is fitted with an unbinned likelihood function assuming a Gaussian distribution for the signal and a flat distribution for the background:

$$L(D|S, B_i, \theta) = \prod_{j=1}^{N_i^{\text{obs}}} \left[\frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(E_j - Q_{\beta\beta} - \delta_i)^2}{2\sigma_i^2}\right) \right]$$

(4)

where E_j are the individual event energies, N_i^{obs} is the total number of events observed in the ith data set, σ_i is the energy resolution and δ_i is a possible systematic energy offset. The parameters with systematic uncertainties are indicated with $\theta = \{\{e_\gamma, \epsilon_i, \delta_i\}\}$. The parameters S and B_i are bound to positive values. The total likelihood is constructed as the product of all L_i, weighted with the Poisson terms $42,$

$$L(D|S, B_i, \theta) = \prod_{i} \frac{e^{-(\mu_i^S + \mu_i^B)}(\mu_i^S + \mu_i^B)^{N_i^{\text{obs}}}}{N_i^{\text{obs}}!} \times L(D|S, B_i, \theta)$$

where $D = \{D_1, \ldots, D_i, \ldots, D_n\}, B = \{B_1, \ldots, B_i, \ldots, B_n\}$ and $\theta = \{\theta_1, \ldots, \theta_i, \ldots, \theta_n\}$. A frequentist analysis is performed using a two-sided test statistics 43 based on the profile likelihood $L(S)$.

$$\delta_i = -2\ln(L(S)) = -2\ln\left(\frac{L(S, \hat{B}_i, \hat{\theta})}{L(S, \hat{B}_i, \hat{\theta})}\right)$$

(6)

where \hat{B}_i and $\hat{\theta}_i$ in the numerator denote the value of the parameters that maximizes L for a fixed S. In the denominator, \hat{B}_i and $\hat{\theta}_i$ are the values corresponding to the absolute maximum likelihood.

The confidence intervals are constructed for a discrete set of values $S \in \{S_i\}$. For each S_i, possible realizations of the experiments are generated via Monte Carlo according to the parameters of Table 1 and the expected number of counts from equations (2) and (3). For each realization t_S, is evaluated. From the entire set the probability distribution $f(t_S|S_i)$ is calculated. The P value of the data for a specific S_i is computed as:

$$p_{S_i} = \int_{t_{S_i}}^{\infty} f(t_S|S_i)dt_S$$

(7)

where t_{S_i} is the value of the test statistics of the GERDA data for S_i. The values of p_{S_i} are shown by the solid line in Extended Data Fig. 5. The 90% CI interval is given by all S_i values with $p_{S_i} > 0.1$. Such an interval has the correct coverage by construction. The current analysis yields a one-sided interval, that is, a limit of $T_{1/2}^{\nu\beta\beta} > 5.3 \times 10^{27}$ yr. The expectation for the frequentist limit (that is, the experimental sensitivity) was evaluated from the distribution of p_{S_i}, built from Monte Carlo generated data sets with no injected signal ($S = 0$). The distribution of p_{S_i} is shown in Extended Data Fig. 5: the dashed line is the median of the distribution and the colour bands indicate the 68% and 90% probability central intervals. The experimental sensitivity corresponds to the S value at which the median cross the P-value threshold of $0.1: T_{1/2}^{\nu\beta\beta} > 4.9 \times 10^{27}$ yr (90% CL).
Extended Data Figure 1 | GERDA Phase II experimental set-up.

a, Overview. 1, water tank with muon veto system PMTs (590 m3, diameter 10 m); 2, LAr cryostat (64 m3, diameter 4 m); 3, floor and roof of clean room; 4, lock; 5, glove box; 6, plastic muon veto system. b, LAr veto system: 1, bottom plate (diameter 49 cm) with 7 3-inch PMTs (R11065-10/20 MOD) with low radioactivity of U and Th (<2 mBq per PMT); 2, fibre curtain (height 100 cm) coated with wavelength shifter; 3, optical couplers and SiPMs; 4, thin-walled (0.1 mm) Cu cylinders (height 60 cm) covered with a Tyvek reflector on the inside; 5, top plate with properties as bottom plate 1 except for 9 3-inch PMTs; 6, calibration source entering slot in top plate; 7, slot for second of three calibration sources. c, Detector array. 1, Ge detectors arranged in 7 strings; 2, flexible bias and readout cables; 3, amplifiers. d, Detector module, view from bottom. 1, BEGe diode; 2, signal cable; 3, high voltage cable. 2 and 3 are attached by 4, bronze clamps to 5, silicon support plate; 6, bond wire connections from diode to signal and high voltage cable; 7, Cu support rods.
Extended Data Figure 2 | Detector types. Cross-section through the germanium detector types (left) and the corresponding photographs of them (right). The p^+ electrode is made by a \sim0.3 μm thin boron implantation. The n^+ electrode is a 1 to 2 mm thick lithium diffusion layer and is biased with up to $+4,500$ V. The electric field drops to zero in the n^+ layer, and hence energy depositions in this fraction of the volume do not create a readout signal. The p^+ electrode is connected to a charge sensitive amplifier.
Extended Data Figure 3 | Germanium detector array. Photograph of the assembled detector array, with a string of coaxial detectors on the left, and strings of BEGe detectors at middle and right. Each string is enclosed by a cylindrical nylon shroud covered with a wavelength shifter.
Extended Data Figure 4 | Liquid argon veto set-up. Photographs of the LAr veto system: left, fibre curtain with SiPM readout at the top; right, top and bottom arrangement of PMTs.
Extended Data Figure 5 | Frequentist hypothesis test. *P* value for the hypothesis test as a function of the inverse half-life $1/T_{1/2}^{0
u}$ according to equation (7). The colour bands indicate the spread of the *P* value distributions for many Monte Carlo realizations according to the GERDA parameters (with no signal): green and yellow show the central 68% and 90% probability intervals, respectively. The dashed black line represents the median of the distribution; the *P* value for the GERDA data is shown as a solid black line. The red arrows indicate the results at 90% confidence level, that is, a *P* value of 0.1: the limit for $T_{1/2}^{0
u}$(76Ge) > 5.3×10^{25} yr (full red arrow), and the median sensitivity for $T_{1/2}^{0
u}$(76Ge) > 4.0×10^{25} yr (dashed red arrow). For a detailed discussion of their computation, see Methods.