Fate of Adsorbed U(VI) during Sulfdization of Lepidocrocite and Hematite

Vasso G. Alexandratos,*†‡ Thilo Behrends,† and Philippe Van Cappellen‡

†Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
‡Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences University of Waterloo, 200 University Avenue West, Waterloo Ontario Canada

1. INTRODUCTION

Uranium-contaminated sites, a legacy of uranium (U) mining and processing,1–4 are an environmental concern because U poses health risks as a heavy metal and a source of radioactive radiation.5–8 The fate of U in the environment is often linked to the biogeochemistry of iron (Fe) via sorption and redox processes. For example, the mobility of U can be determined by a variety of interactions with iron oxides (here collectively referring to iron oxides, iron hydroxides, and iron oxy-hydroxides), including (a) Adsorption of hexavalent uranium (U(VI)), the most oxidized and soluble form of U, which hydroxides), including (a) Adsorption of hexavalent uranium (U(VI)), the most oxidized and soluble form of U, which iron (Fe) via sorption and redox processes. For example, the mobility of U can be determined by a variety of interactions with iron oxides (here collectively referring to iron oxides, iron hydroxides, and iron oxy-hydroxides), including (a) Adsorption of hexavalent uranium (U(VI)), the most oxidized and soluble form of U, which occurs at the surfaces of iron oxides at fast rates and may lead to the formation of strong inner-sphere complexes;9,10 (b) Incorporation of U(VI) into iron oxides via coprecipitation14 or recrystallization of ferrihydrite;15,16 (c) Reduction of U(VI) to U(IV), either mediated by iron oxides as catalytic surfaces where adsorbed Fe^{2+} acts as the reductant;17,18 or through direct reduction by structural Fe(II) in mixed redox state iron oxides (e.g., green rust, magnetite);19,20 and (d) Reoxidation of U(IV) to U(VI) by iron oxides.21 In the latter case, the capability of oxidizing U(IV) depends on the Gibbs energies of formation of the iron oxide and the U(IV) bearing phase.22–24

In subsurface environments, redox conditions may shift from oxic to anoxic and trigger microbial sulfate reduction.25–27 Production of S(-II) causes changes in iron mineralogy, with Fe(III)-bearing minerals transforming into iron sulfdies.28–35 Sulfdization of iron oxides can affect the partitioning of previously adsorbed toxic constituents, as in the case of arsenic,36,37 as well as their oxidation state, as in the case of reduction of arsenate by sulfdide.38 Sulfdization of U(VI)-bearing iron oxides raises the question of whether or not the released U will remain mobile.39 In addition to producing new phases, such as FeS or pyrite (FeS_{2});32,33 free sulfdide is capable of reducing U(VI) to U(IV). When reduction to U(IV) is followed by uraninite (UO_{2}) precipitation, the overall effect would be U immobilization.

The addition of aqueous sulfdide (S(-II)_{aq}) to a suspension containing lepidocrocite (γ-FeOOH) with adsorbed U(VI) was investigated in a previous study.45 The observed immediate release of U to solution upon S(-II)_{aq} addition was interpreted as a result of S(-II) adsorption onto lepidocrocite, out-competing U(VI) for available surface sites. However, the fraction of U(VI) reduced to U(IV) only reached 50% of the total U, after 24 h of reaction. This was the case even when S(-II)_{aq} was added in excess. The incomplete extent of U(VI) reduction was attributed to the rapid oxidation of S(-II)_{aq} by lepidocrocite and the kinetic hindrance of reduction of U(VI) sorbed to the solids. Thus, partial U mobilization may be a...
possible outcome in environments containing U-bearing iron oxyhydroxides exposed to sulfide production.

Building on the results of Alexandratos et al., the aim of this present study was to compare the fate of U(VI) preadsorbed to lepidocrocite and hematite upon the introduction of aqueous sulfide. The two mineral phases were selected because of the markedly lower reactivity of hematite toward sulfide than lepidocrocite. Thus, we hypothesized that the prolonged presence of dissolved S(-II) in hematite suspensions could enhance the initial desorption of U due to competition of S(-II) with U(VI) for surface sites. However, we further considered that increased desorption of U(VI) into a S(-II)-rich solution may facilitate the reduction of U(VI) by sulfide. Reaction with dissolved S(-II) was previously shown to be the most effective pathway for U(VI) reduction in experiments with lepidocrocite. In the experiments presented here, suspensions of synthetic lepidocrocite and hematite with adsorbed U(VI) were exposed to different amounts of S(-II)aq. Phase distribution of U was monitored as a function of time and X-ray absorption spectroscopy (XAS) was used to determine the redox state and speciation of solid-bound U. The goal was to assess the role of iron oxide reactivity toward sulfide in U desorption and reduction.

2. MATERIALS AND METHODS

2.1. Experimental Conditions and Reagents. With the exception of the reoxidation experiments, all experiments, sample collection and preparation of samples for X-ray absorption spectroscopy (XAS) were performed in a glovebox under a N2 (95%) and H2 (5%) atmosphere. The glovebox was equipped with a Pd catalyst and an O2 monitor in order to maintain oxygen levels below 10 ppm. The temperature in the glovebox was kept constant at 25 °C. The possibility of uranium uptake by the glassware used (DURAN ISO laboratory bottles) was investigated in advance by performing repeated blank adsorption experiments: it turned out to be insignificant. Stock solutions of U(VI) and S(-II) were prepared from uranyl acetate and anhydrous Na2S, respectively. All chemicals used were of reagent grade and no further purification was performed.

2.2. Mineral and Suspension Preparation. Synthetic lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) were synthesized following the procedures described in Schwertmann and Cornell. Lepidocrocite was produced by oxidation of a FeCl3 solution in a reactor connected to a pH-stat unit that maintained pH at 6.8 by adding 1 M NaOH. Hematite was synthesized by forced hydrolysis of Fe(III) by slowly adding 1 M Fe(NO3)3 solution to boiling water. After synthesis, the suspensions were dialyzed against deionized water and stored as aqueous stock suspensions. Powder X-ray diffraction (XRD) did not show any mineral phases present other than lepidocrocite and hematite in the corresponding suspensions. For lepidocrocite, the N2-BET surface area was determined as 78 m2 g−1. For hematite, the peak width in XRD measurements corresponded to a particle diameter of 15 nm based on the Scherrer equation. This particle size corresponds to a specific surface area of about 80 m2 g−1 when assuming spherical particles.

Lepidocrocite and hematite suspensions were prepared inside the glovebox by diluting the aforementioned stock suspensions in deoxygenated distilled water. Loadings were approximately 1 g/L, corresponding to concentrations of 9.3 mM Fetot for lepidocrocite and 12.2 mM Fe574 tot for hematite. To remove dissolved CO2, suspensions were purged with Ar prior to use. Ionic strength was adjusted to 0.1 M by adding the required amount of NaCl. In order to keep the pH constant during the reaction, TAPS buffer (0.04 M C18H35NO6S) was added and the pH adjusted to 8.0 with HCl or NaOH as necessary. A pH value of 8.0 is representative of subsurface environments in which alkalinity is produced by microbial sulfate reduction. Furthermore, as the pKₐ of H2S is about one unit below pH 8.0, only about 10% of S²⁻ was in the form of H2S and outgassing did not significantly influence the amount of dissolved sulfide on the time scale of hours. Suspensions were left overnight to stabilize while stirring to maintain suspension homogeneity. Following this, U(VI) solution was added to both iron oxide suspensions, giving total U concentrations of about 12 μM with lepidocrocite and 13.5 μM with hematite suspensions, and then were left to equilibrate for 24 h.

2.3. Reduction Experiments and Sample Collection. Abiotic reduction was initiated by adding aqueous sodium sulfide (Na2S) to the equilibrated U(VI)-bearing lepidocrocite and hematite suspensions. Suspensions were divided in three identical portions, labeled L1, L2, L3 for lepidocrocite and H1, H2, H3 for hematite, to which aqueous sulfide was added at concentrations of 10, 5, and 1 mM, respectively (Table 1). All suspensions were in closed vessels and stirred using magnetic stir bars throughout the experimental duration (72 h). To avoid sudden pH changes in the suspensions due to sulfide addition, the pH of each Na2S injection was individually adjusted to pH 8.0 by adding the required amount of Na2S. In order to keep the pH constant during the reaction, TAPS buffer (0.04 M C18H35NO6S) was added and the pH adjusted to 8.0 with HCl or NaOH as necessary. A pH value of 8.0 is representative of subsurface environments in which alkalinity is produced by microbial sulfate reduction. Furthermore, as the pKₐ of H2S is about one unit below pH 8.0, only about 10% of S²⁻ was in the form of H2S and outgassing did not significantly influence the amount of dissolved sulfide on the time scale of hours. Suspensions were left overnight to stabilize while stirring to maintain suspension homogeneity. Following this, U(VI) solution was added to both iron oxide suspensions, giving total U concentrations of about 12 μM with lepidocrocite and 13.5 μM with hematite suspensions, and then were left to equilibrate for 24 h.

Table 1. Sulfide and Uranium That Was Added to Lepidocrocite and Hematite Suspensions

suspension	[U(VI)]tot (μM)	[S(−II)]addition (mM)	Fe(III)tot (μM)
L1	12	10	9.3
L2	12	5	9.3
L3	12	1	9.3
H1	13.5	10	12.2
H2	13.5	5	12.2
H3	13.5	1	12.2

In order to monitor the progress of the reaction, aliquots were periodically collected by syringe starting about 2 min before sulfide addition. After filtration through 0.2 μm pore-size nylon filters, dissolved Fe(II) was measured by spectrophotometry using the ferrozine method. Dissolved S(−II) was trapped in zinc acetate solution and S(−II) concentration was determined by spectrophotometry using the methylene blue method, and dissolved U concentrations were determined on an Agilent 4500C inductively coupled plasma mass spectrometer (ICP-MS). Prior to U measurements, the filtered solutions were diluted about 100 times with 1 M suprapure HNO3. Additionally, at each sampling moment, an aliquot of 2 mL of the experimental suspension was taken and added to 2 mL of 12 M HCl for dissolving all solids and determining total Fe and U concentrations. The coefficients of variation of the measured total U concentrations for the different series was between 3.3% and 7.0%. Hence, 7.0% was taken as an upper limit for the uncertainty of U measurements.
2.4. X-ray Absorption Spectroscopy. Solid material for XAS analysis was recovered from 100 to 150 mL of the reacting lepidocrocite and hematite suspensions. Sampling took place after 0 (just prior to sulfide addition), 2, 6, 24, 48, and 72 h of reaction with sulfide. Pore-size filters of 0.2 μm (polycarbonate, Millipore) were used to collect the solids. The wet pastes obtained from the filters were placed into the cavities of custom-made sample holders (PTFE). Each cavity was closed with Kapton tape and the sample holder was then heat-sealed in an LDPE bag. Samples were kept at −80 °C and transferred to the beamline in dry ice. X-ray absorption spectra were collected at the DUBBLE beamline (BM26a) of the ESRF in Grenoble, France. A description of the beamline and its optics is provided by Borsboom et al.52 and Nikitenko et al.53 Samples were installed in a cryostat (30 K) during measurement. Spectra were collected in fluorescence mode at the uranium LIII edge around 17.17 keV. Energy calibration was performed by adjusting the first maximum of the first derivative of the yttrium foil spectrum to 17.038 keV.

X-ray spectra were processed with the Athena software.54 ITFA software55 was used for the eigenanalysis of the spectra and the iterative target test (ITT). Eigenanalysis assisted in determining the number of factors that are necessary to explain the variability between the spectra. In the analysis of X-ray absorption near edge structure (XANES), the energy range for the normalized X-ray spectra was between 17.10 and 17.25 keV. For the eigenanalysis of the extended X-ray absorption fine structure (EXAFS), the k³-weighted spectra were used in a k-range between 2 and 10 Å⁻¹. The ITT analysis was applied to extract real end-member spectra from the data set and to calculate the relative concentrations of the different components in the various samples. The advantage of using ITT analysis in comparison to linear combination fitting is that the endmember spectra do not have to be defined a priori but are extracted from the data set. However, after sulfide addition, the suspension most likely contained uranium in different oxidation states and none of the spectra represents a pure endmember spectrum of uranium in the form of U(IV). For this reason, the set of XANES spectra was complemented with the spectrum of a U(IV) standard. By this, the component, extracted in the ITT analysis for the reduced uranium species, will integrate features of the spectra from the experimental sample as well as of the U(IV) standard. As a consequence, the extracted spectrum will be similar to the U(IV) standard but not necessarily identical. The idea is that the component used to calculate the relative concentration of U(IV) in the samples approximates the average spectrum of U(IV) in the samples; this provides a more robust estimation of the extent of U(VI) reduction than that obtained by linear combination fitting in the case that the correct endmember spectra are not fully identical with those of analyzed reference materials. The U(IV) standard was produced by reducing U(VI) with Ti(III) in acidic solution and precipitating the solid in the presence of silica gel by adding NaOH. In this standard, U(IV) occurs predominately as a coprecipitate with titanium oxide. In the ITT of the XANES spectra, the relative concentration of the second component...
was constrained to one for the U(IV) standard. The concentration of the first component was set to one for the spectrum of U(VI) adsorbed onto hematite. The fitting of the EXAFS spectra was done with the program Artemis. Fourier transformation was performed on the EXAFS spectrum over the k-range between 2 and 11.5 Å with a Hanning window with a sill width of 1.0 Å. The optimization of the fitting parameters took place by simultaneously fitting EXAFS spectra with k-weights of 1, 2, and 3. Details about the fitting strategy can be found in the Supporting Information (SI).

2.5. Reoxidation Experiments. After the 72 h of reaction with sulfide, lepidocrocite suspensions L1, L2, and L3 were brought outside the glovebox, in sealed vessels. Reoxidation was initiated by bubbling air into the vigorously stirred suspensions using air pumps. Although the air was conveyed through gas washing bottles filled with demineralized water, some evaporation was noticed after ~100 h of bubbling. The pH was monitored throughout the two-week duration of the reoxidation experiments and was always around pH 8.0. This implies that dissolution of atmospheric CO2 did not change the pH considerably in the buffered solution. At pH 8, equilibrium with atmospheric CO2 pressure corresponds to a dissolved inorganic carbon concentration of about 0.8 mM. The same sample collection procedure was followed as described in section 2.3. Solid samples for XAS analysis were collected after 2 weeks of reoxidation time. XAS samples were prepared and analyzed as described in section 2.4. Reoxidation experiments were not performed for hematite suspensions H1, H2 & H3, due to the limited amount of available material, which was dedicated to the preparation of XAS samples.

3. RESULTS AND DISCUSSION

3.1. Sulfide Reaction with Lepidocrocite and Hemitite. Trends of S(-II)aq consumption as a function of time are consistent with those observed in past studies with lepidocrocite31,33,45,56 and hematite.32,33 In experiments with lepidocrocite (L1, L2, L3), the decrease in concentrations of S(-II)aq was very rapid, with ~98% of added S(-II)aq consumed within the first 30 min of reaction (Figure 1a), beyond which the S(-II)aq concentrations gradually dropped to less than 0.1 mM after 1 h and were undetectable from 6 h to the end of the experiments (72 h in total). Upon addition of S(-II)aq to hematite suspensions (H1, H2, H3), about 50% of S(-II)aq was removed from solution within the first 30 min (Figure 1b). In experiments where S(-II)aq was added in concentrations of 1 mM (H3) and 5 mM (H2), S(-II)aq values dropped to ~0.5 mM after 3 h but remained above 0.1 mM even after 24 h. In the 10 mM S(-II)aq experiment with hematite (H1), S(-II)aq concentrations decreased to ~3 mM within the first 3 h and remained constant at about 2.5 mM until 24 h (data not shown).

The initial amounts S(-II)aq were insufficient to cause complete consumption of hematite according to the idealized stoichiometry of FeS(s) formation by hematite sulfidization:33

\[0.5 \text{Fe}_2\text{O}_3 + 1.5 \text{SH}^- + 1.5 \text{H}^+ \rightleftharpoons \text{FeS}(s) + \frac{1}{16} S_8^{0} + 1.5 \text{SH}_2\text{O} \tag{1} \]

Hence, in all three hematite suspensions, the significantly higher S(-II)aq observed after 24 h of reaction time reflects slower reaction kinetics with hematite compared to lepidocrocite. Given that the interfacial areas of the two iron minerals are about the same, the notable difference in S(-II)aq consumption kinetics is due to the intrinsically lower reactivity of hematite. This is in agreement with previous studies on sulfide reaction with iron oxides.32,33,46,58 For instance, Poulton et al.33 report surface-normalized rate constants for S(-II) consumption that are about eight times lower for hematite than for lepidocrocite. The observed difference in reaction progress after 30 min is in the same order of magnitude range. The slowdown of reaction kinetics in the hematite suspensions is presumably due to the passivation of the surface layer of the hematite grains similar to that observed during the sulfidization of lepidocrocite.35

3.2. Uranium Mobilization by Sulfide. In all the suspensions of sulfide and hematite, the introduction of S(-II)aq was followed by an instantaneous release of adsorbed U into solution (Figure 1c and d). Prior to sulfide addition, aqueous uranium concentrations (Uaq) in the lepidocrocite suspensions (L1, L2, L3) were about 1–2 nM, as observed in our previous study.45 After addition of S(-II)aq, Uaq concentrations rose to maximum values of about 0.3, 0.2, and 0.09 μM in suspensions L1, L2 and L3, respectively (Figure 1c). That is, the release of Uaq correlated with the amounts of S(-II)aq added. The instantaneous release of uranium can be explained by the replacement of Fe–OH groups at the hematite surface by Fe–SH groups:45

\[\text{UO}_2^2+ + \text{SH}^- + 2\text{H}^+ = \text{U}^{4+} + \text{H}_2\text{O} \]

The formation of Fe–SH surface groups through ligand exchange between surface bound OH− and dissolved SH− represents the first step in the reaction mechanism of sulfidization of iron oxides.31,32 Hence, adsorption of S(-II)aq removes Fe–OH groups that act as binding sites for U(VI). The observed desorption of U(VI) is a consequence of the lower affinity of U(VI) for Fe–SH sites than for Fe–OH sites, because U(VI), as a hard acid, more strongly binds to O(II) than S(-II).39

After reaching their maxima within the first 10–15 min, the Uaq concentrations in the two lepidocrocite suspensions with the highest S(-II)aq additions, L1 and L2, decreased again (Figure 1c). The largest drop in Uaq occurred within the first 30 min, that is, at the same time that most S(-II)aq was consumed (Figure 1a). While the removal of Uaq may in part be ascribed to the diminishing competition of U(VI)aq by S(-II)aq for Fe–OH sites,45 a more important process was likely the reduction of U(VI) into U(IV) (see next section). Beyond the first hour of reaction, and until the end of the experiment (72 h), Uaq concentrations stabilized at levels between 0.05 and ~0.1 μM (Figure 1c). These concentrations were higher than the initial levels of Uaq in solution, implying that the release of uranium upon S(-II)aq addition was not completely reversible, which is expected as oxygen surface sites are depleted during the sulfidization of lepidocrocite into iron sulfide.35

In the hematite suspensions, Uaq concentrations were about 1–5 nM prior to S(-II)aq addition. Similar to the experiments with lepidocrocite, instant release of adsorbed U was observed when sulfide was added, but the response was much more pronounced. In the first minutes of reaction, Uaq reached levels of about 4 μM in all three suspensions (H1, H2, H3), irrespective of the amount of S(-II)aq added (Figure 1d). The maximum Uaq concentration were equivalent to ~30% of the total uranium in the suspensions, and surpassed the
corresponding maximum concentrations in the lepidocrocite suspensions by more than a factor of 10.

The enhanced release of adsorbed U(VI) from hematite is most likely caused by slower S(−II) oxidation kinetics. With lepidocrocite, adsorption of S(−II) is quickly followed by electron transfer and, subsequently, the creation of new surface sites. These surface sites become available for readsorption of U(VI) once S(−II)aq is depleted. With hematite, sulfide oxidation proceeds at a slower pace, which implies that the regeneration of surface sites is also slower. Consequently, sulfide occupies surface sites for a longer period, formation of FeS at the surface is facilitated, and S(−II)aq is longer available in solution to compete with U(VI) for adsorption sites. Together, these factors explain why S(−II)aq addition released much more adsorbed U(VI) from hematite than lepidocrocite.

Another difference with the lepidocrocite experiments is that the maximum value of Uaq in the hematite suspensions was independent of the amount of S(−II)aq added (Figure 1b). Possibly, the released 4 μM of U(VI) reflect the fraction of adsorbed U(VI) more weakly bound to the hematite surface. The existence of weak and strong binding sites for U(VI) adsorption onto hematite has been invoked in surface complexation models. However, to our knowledge, there is no direct spectroscopic evidence for the coexistence of U(VI) complexes with distinct coordination at iron oxide surfaces. In most EXAFS studies only one type of uranium coordination (inner sphere complex) is considered in the structural model for U(VI) adsorbed onto iron oxides in the absence of carbonate.

Competition for Fe−OH sites by S(−II)aq alone does not explain the time evolution of Uaq concentrations in the hematite suspensions. Although Uaq trends (Figure 1d) resemble those of S(−II)aq (Figure 1b), they are not directly correlated. For example, in the case of H1, Uaq concentrations reached ∼0.5 μM after 24 h of reaction. At this time, the S(−II)aq concentration was about 2.5 mM, that is, more than twice the S(−II)aq concentration added to experiment H3 which also caused a maximum Uaq release of 4 μM. Thus, other processes contribute to the postmaximum reassociation of U to the solid phase, in particular the reduction of U(VI) to U(IV). By the end of the experiments (72 h), Uaq concentrations in all three hematite suspensions had decreased to values of 0.1−0.2 μM, similar to the levels detected at the end of the experiments with lepidocrocite. However, as discussed in the next section, the relative contributions of U(VI) reassociation and U(VI) reduction differed between the lepidocrocite and hematite suspensions.

3.3. Uranium Reduction. 3.3.1. XANES Analyses. The XANES spectra collected at the U LIII edge showed changes upon addition of S(−II)aq that are characteristic of U(VI) reduction to U(IV): (a) a shift of the edge position to lower
Table 2. Optimized Values for the Different Path Parameters Obtained from EXAFS Modeling for U(VI) Adsorbed onto Lepidocrocite and Hematite

sample	H1 0h	L3 0h				
	N	R_0 [Å]	σ^2 [Å2]	N	R_0 [Å]	σ^2 [Å2]
U→O$_{aw}$	2b	1.79 ± 0.02	0.003 ± 0.001	2b	1.79 ± 0.01	0.002 ± 0.001
U→O$_{aw}$,1	2.79 ± 0.37	2.27 ± 0.05	0.004b	3.18 ± 0.36	2.28 ± 0.02	0.004b
U→O$_{aw}$,2	2.21 ± 0.37	2.45 ± 0.07	0.004b	1.82 ± 0.36	2.47 ± 0.05	0.004b
U→O$_3$	0.49 ± 0.75	2.81 ± 0.11	0.004b	1.29 ± 0.88	2.84 ± 0.04	0.004b
U→Fe	1b	3.38 ± 0.06	0.010 ± 0.006	3.33 ± 0.09	0.015 ± 0.013	

"The model included the multiscattering paths: U→O$_{aw}$,1→U→O$_{aw}$,1 with $\sigma^2 = 4\sigma^2$ (U→O$_{aw}$) and $R = 2R(U\rightarrow O_{aw})$; U→O$_{aw}$,1→U→O$_{aw}$,2 with $\sigma^2 = 2\sigma^2$ (U→O$_{aw}$) and $R = 2R(U\rightarrow O_{aw})$; U→O$_{aw}$,1→O$_{aw}$,2→U with $\sigma^2 = 2\sigma^2$ (U→O$_{aw}$) and $R = 2R(U\rightarrow O_{aw})$. bFixed values.

Figure 4. (a−d): k3-weighted EXAFS spectra (c,d) and their Fourier transformation of samples from experiments with (a,c) lepidocrocite (L1 and L3) and (b,d) hematite (H1 and H3), at 0 (prior to S(-II) addition), 24 and 72 h of reaction time with S(-II). The gray lines are data and the smooth lines are the fitting results.

energies, (b) an increase of the white line intensity, and (c) the disappearance of the characteristic "shoulder" of the U(VI) spectra at the high energy side of the main peak (Figure 2). Eigenanalysis revealed that more than 98% of the variance among all XANES spectra can be explained by the use of two factors. The samples’ scores for the two components can be interpreted as an indicator for the extent of U(IV) reduction into U(VI) in the samples. The relative concentrations of U(IV) and U(VI) in the solids was determined by IIT-analysis after expanding the data set with the spectrum of the U(IV) reference material.

Addition of S(-II)$_{aq}$ caused reduction of U(VI) into U(IV) in all iron oxide suspensions (Figure 3). The reduction from U(VI) to U(IV) occurred during the early stages of reaction with S(-II)$_{aq}$. No further reduction of U(VI) took place beyond 24 h. In the case of lepidocrocite, U(IV) reached a maximum equivalent to about 25% of U_{tot} by the second hour of reaction with S(-II)$_{aq}$ with very little increase over the next 3 days (Figure 3a). This was observed in all three lepidocrocite suspensions despite the different added concentrations of S(-II)$_{aq}$. Variable amounts of S(-II)$_{aq}$ also had little effect on the maximum levels of U(IV) produced in the hematite suspensions (Figure 3b). However, for the same added S(-II)$_{aq}$..."
II)_{aq} concentrations and the same experimental time frame, the suspensions with hematite yielded much higher percentages of U(IV) than those with lepidocrocite: ~70% in H1 and ~60% in H3.

Comparison of U(IV) production in the experiments with hematite and lepidocrocite supports the conclusion of our previous study that reduction of U(VI) is most efficient when S(-II)_{aq} was above the detection limit and U(VI)_{aq} concentrations were elevated. Dissolved sulfide has been shown to reduce U(VI)_{aq} in homogeneous solutions in a matter of hours. However, the measured U(VI)_{aq} concentrations only represent less than 2.5% or 30% of the total uranium in the experiments with lepidocrocite and hematite, respectively. These percentages are smaller than those of formed U(IV), implying that homogeneous reduction of dissolved U(VI) by S(-II) cannot account for U(VI) reduction alone. Reduction of U(VI) by S(-II) can be surface catalyzed but it is also possible that the S\(^{2-}\) radical, which forms immediately upon an one electron transfer from S(-II) to Fe(III), is the most potent reductant for U(VI) during iron oxide sulfidization. However, upon reaction with S(-II), the suspensions may contain also a variety of potential reductants of U(VI) in addition to S(-II)_{aq} including amorphous FeS\(_2\), FeS\(_3\), FeS\(_4\), FeS\(_6\), and mixed valence iron oxides, such as magnetite. Elemental sulfur is the main product of S(-II) oxidation by Fe oxides but formation of surface polysulfides has also been reported. Polysulfides can form complexes with uranyl and therefore, reduction of U(VI) might become inhibited due the formation of uranyl-polysulfide complexes.

If reactions between U(VI) and S(-II) are the primary pathway generating U(IV), this implies that consumption of S(-II) should inhibit U(VI) reduction. Therefore, the conditions favoring U(VI) reduction were only present during the first 2 h in the experiments with lepidocrocite, while they lasted for more than 24 h in the hematite suspensions. The greater extent of U(VI) reduction in the experiments with hematite, can thus be explained by two reasons: (a) addition of S(-II)_{aq} leads to a more extensive release of adsorbed U(VI) to solution, and (b) consumption of S(-II)_{aq} proceeds over a longer period of time due to the slower sulfidization kinetics of hematite. In other words: hematite is a weaker oxidant of S(-II) than lepidocrocite and, consequently, U(VI) initially adsorbed onto hematite is preferentially reduced over U(VI) initially adsorbed onto lepidocrocite.

3.3.2. EXAFS Analyses. The EXAFS spectra of the starting materials, with U(VI) adsorbed onto lepidocrocite and hematite, can be reproduced by a model of an uranyl ion forming a mononuclear bidentate complex with Fe. In this complex, U is bound to two axial (O\(_{ax}\)) and five equatorial (O\(_{eq}\)) oxygen atoms. The binding distance of U with two of the O\(_{eq}\) that connect the uranyl ion to the Fe center is longer than that with the other O\(_{eq}\). The optimized values for the parameters of the model (Table 2 and SI Table 1), are in agreement to those reported in other studies on surface complexes of U(VI) with Fe oxides. The quality of the fitting was improved by adding a fourth O-shell with an optimized distance of 2.81 and 2.84 Å for hematite and lepidocrocite, respectively. In earlier studies, additional oxygen atoms with a comparable distance of 2.87 Å from U have been included when fitting EXAFS spectra of U(VI) adsorbed onto Fe oxides; they have been interpreted as oxygen atoms belonging to the coordinating FeO\(_6\) octahedron.

Changes in U redox state and speciation following the addition of sulfide to the suspensions of lepidocrocite and hematite are also reflected in the k\(^3\)-weighted EXAFS spectra and their corresponding Fourier transformation (Figure 4a–d). The indicator function, which is obtained from the eigenanalysis of all k\(^3\)-weighted EXAFS spectra, has a minimum for two factors, implying that only two primary factors account for the variation between all spectra, while the remaining variance is primarily caused by experimental noise. The two components extracted by ITT analysis resemble the EXAFS spectra of U(VI) adsorbed onto Fe oxides and the average of all EXAFS spectra from the hematite suspensions after sulfide addition. This suggests that the quality of the EXAFS spectra only allows us to interpret the most pronounced features, which are related to the closest neighboring atoms. For this reason, U–O paths from the optimized model for adsorbed U(VI) were utilized as the starting point in the applied model; an additional O-shell was then added to account for the U–O coordination of reduced uranium. Several attempts were made to exchange O for S in the model but these did not lead to satisfactory fitting results, implying that U is not directly coordinated with S in the samples.

The results obtained from optimizing the model reflect, in the first instance, the reduction of U(VI) to U(IV). The decrease in the amplitude of oscillations between 4 and 10 Å\(^{-1}\) in the EXAFS spectra (Figure 4c and d) can be attributed to the decreased contribution of the U–O\(_{ax}\) scattering path, which is characteristic for the uranyl ion. Taking the number of atom pairs of U and axial oxygen atoms (O\(_{ax}\)) as an indicator for the extent of U(VI) reduction, the EXAFS results confirm the general trend of more extensive U reduction in the experiments with hematite. The EXAFS spectra similarly did not indicate further U(IV) reduction after 24 h of reaction time. However, the fractions of U(VI) calculated from the optimized O\(_{ax}\) coordination number (CN) tend to be smaller than the corresponding fractions obtained from XANES. This difference could be explained by the incorporation of U(VI) or U(V) into the iron oxide lattice, which is reflected in an U–O shell with optimized U–O distances between those for U–O\(_{ax}\) and U–O\(_{eq}\) of adsorbed U(VI). Exposure of iron oxides to reducing conditions can induce recrystallization of iron oxides and the incorporation of previously adsorbed U(VI) and its subsequent reduction to U(V).

Reduction of U(VI) to U(IV) is generally expected to result in the precipitation of UO\(_2\). Nonetheless, nonuraninite U(IV) has been identified as a product of microbial and abiotic reduction of U(VI). In microbial experiments, the preferential formation of nonuraninite U(IV) has been attributed to biological factors, differences in U reduction mechanisms between different bacterial species, and the presence of phosphorus (P) in the form of phosphate or P-bearing ligands that appear to inhibit UO\(_2\) formation. The latter implies that complexation of U(IV) might interfere with UO\(_2\) precipitation. Our previous study with lepidocrocite showed that repeated additions of S(-II)_{aq} enhance the extent of U(VI) reduction, ultimately leading to the formation of UO\(_2\), but only when S(-II) is added in sufficient excess. Here, the EXAFS spectra of the lepidocrocite and hematite suspensions did not reveal any U–U scattering peaks, which are characteristic of UO\(_2\) formation (see SI for details). Furthermore, with only a single, initial addition of S(-II)_{aq} incomplete U(VI) reduction was achieved and the produced U(IV) remained in a monomeric state. Even in the case of...
U(IV) becomes strongly bound into the Fe mineral trans-
formation products, hence protecting the reduced U from
remobilization. This U(IV) enrichment can be attributed to the
preferential desorption of U(VI), which is enhanced by the
reaction between hematite and S(-II)aq, where more of the U(VI) was reduced to U(IV)
because of the prolonged presence of S(-II)aq there were no indications for UO2 formation.

3.4. Reoxidation. After 72 h of reaction with S(-II), the
depolarization of U release to solution proceeded rapidly
within the first 10 h of aeration and then continued at a slower,
but sustained, pace for the entire 350 h of aeration (Figure 5a).
The highest U release was observed for suspension L3, which
had been exposed to the lowest level of S(-II)aq (1 mM). In L3,
almost all U that had been initially added to the depolarization
was recovered in solution after 3 days of reoxidation; this included not only the adsorbed U(VI) but
also U(IV), which had formed during depolarization but was then reoxidized and desorbed.

The ITT analysis of the XANES spectra (Figure 5b)
demonstrates that the fraction of solid-phase U(VI) in L1 and L2
increased from about 25% at the start of aeration to 37% and
34%, respectively, by the end of the reoxidation experiments.
That is, the solids became relatively enriched in U(IV) during
reoxidation. This U(IV) enrichment can be attributed to the
preferential desorption of U(VI), which is enhanced by the
formation of aqueous U(VI)-carbonate complexes that form
due to the introduction of atmospheric CO2. When accounting
for the loss to solution of solid-bound uranium during
reoxidation, about 75% (L1) and 87% (L2) of solid-bound
U(IV) produced by the end of the sulfidization experiment was
still present after 2 weeks exposure to atmospheric oxygen.
Thus, it would appear that during sulfidization part of the
U(IV) became strongly bound into the Fe mineral trans-
formation products, hence protecting the reduced U from
oxidation and remobilization.

Additionally, U(VI) adsorption seems not to be completely
reversible in suspensions L1 and L2; part of the solid-bound
U(VI) does not undergo desorption and might also become
incorporated into iron oxides that may form upon iron sulfide
oxidation in a similar way as reported during iron oxide precipitation
or induced recrystallization. In this case, iron mineral transformations induced by a cycle of sulfidization
and reoxidation of iron oxides might be accompanied by U
incorporation similarly as reported by microbially driven redox cycling of iron. In suspension L3 the extent of sulfidization
was less due to the smaller amounts of sulfide used; this lead
to a larger fraction of depolarization still remaining unaltered
in suspension. Thus, the effects of mineral transformation in L3
were minimum compared to those in suspensions L1 and L2,
leading to an almost complete recovery of U(VI).

4. ENVIRONMENTAL IMPLICATIONS

This study has focused on a parameter that connects
sulfidization kinetics with iron oxide mineralogy but which
may have gone unnoticed with respect to U behavior: the
reactivity of iron oxide minerals toward sulfide. Specifically,
competition by S(-II)aq for sites on the iron oxide surfaces
mobilized U to solution and the amounts of U released differed
greatly between depolarization and hematite. In addition to that,
the slower kinetics of reaction between hematite and S(-II)
resulted in a much larger conversion of U(VI) into U(IV)
than for depolarization. Thus, the resulting iron mineral
transformation greatly influences U mobility.

Our findings are of interest when investigating the behavior
of uranium and iron mineralogy in sulfur-rich reducing
environments, such as coastal marine sediments or flooded
acid sulfate soils where available sulfide is often present and
sulfidization of iron oxides occurs. Sulfdization of iron
oxides is also a common process in many terrestrial subsurface
environments with high electron donor supply, for example,
within landfill plumes. In natural systems, however, the
presence of carbonate must be considered as the formation
of carbonate complexes with U(VI) may hinder the adsorption of
U(VI) onto iron oxide surfaces as well as the potential of
U(VI) reduction.

Results from this study also have strong implications for U-
contaminated sites where remediation strategies use biostimulation
to achieve immobilization of U(VI) by reduction to
U(IV) For example, in a U-contaminated region in Colorado the Fe(III) reduction and U immobilization that was
promoted by a first addition of acetate was overturned by a
second acetate addition, which enhanced sulfate reduction and

Figure 5. (a,b): (a) Concentrations of Uaq from sulfide-reduced suspensions of U-bearing depolarization (L1, L2 & L3) during their exposure to
atmospheric air. Error bars present a 7% coefficient of variation. Inlet graph was added to provide a clearer view of the first 5 h of the reoxidation
process; (b) shows the relative concentrations of U(VI) and U(IV) obtained from ITT analysis of XANES spectra collected from solids retrieved
after 14 days of exposure to atmospheric oxygen.
remobilized U.88 Despite sulfide accumulation, it is possible that S(-II) production rates did not exceed S(-II) consumption rates by Fe(III) reduction so that desorption of U(VI) was enabled; desorption, however, might have also been generated by an increase in alkalinity associated with the stimulated anaerobic respiration.82 At this point, our experiments showed that reduction of released U(VI) is possible when dissolved S(-II) is present in the system. When iron oxides with low reactivity dominate the pool of iron oxides, fast increase and prolonging sulfide production rates might be desired in order to facilitate direct reduction of released U(VI). That is, sulfide consumption rates by iron oxides might be relatively low, which promotes desorption of U(VI) but also allows the built up of dissolved S(-II) that may be available for reduction of U(VI). In this case, remediation strategies have to rely on maintaining reducing conditions for long time scales in order to stabilize the formed U(IV). In contrast, for soils that are dominated by iron oxides with a high reactivity toward sulfide, effective reduction of U(VI), during the onset of sulfide production, might be unattainable. That is, consumption rates of sulfide by reactions with these iron oxides might be too high to allow the establishment of sufficient high levels of dissolved sulfide that would remain available for the purposes of U(VI) reduction. In such cases, incorporation of U into iron minerals might be an alternative strategy for U immobilization. Our results suggest that alternating betweenoxic and sulfidic conditions can result in the incorporation of U, in either or both oxidation states (U(VI), U(IV)), by the transformation products of the initially present Fe oxides. However, further research is required to delineate conditions that would optimize U incorporation of U(VI) and monomeric U(IV) within iron phases that form during alternations between oxic and sulfidic conditions.

ACKNOWLEDGMENTS

We thank the team of the DUBBLE beamline at the ESRF, in particular Dr. S. Nikitenko, for their support during the collection of the XAS spectra. The research leading to these results has received funding from the European Union’s European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007-2011 under grant agreement n° 212287 (RECOsy project).

REFERENCES

1. Abdelouas, A. Uranium mill tailings: geochemistry, mineralogy, and environmental impact. \textit{Elements} \textbf{2006}, \textit{2} (6), 335–341.
2. Hu, Q. H.; Weng, J. Q.; Wang, J. S. Sources of anthropogenic radionuclides in the environment: a review. \textit{J. Environ. Radioact.} \textbf{2010}, \textit{101} (6), 426–437.
3. Vodyanitskii, Y. N. Chemical aspects of uranium behavior in soils: A review. \textit{Eurasian Soil Sci.} \textbf{2011}, \textit{44} (8), 862–873.
4. Wang, Y.; Frutschi, M.; Suvarova, E.; Phrommavanh, V.; Decoates, M.; Osman, A. A. A.; Geipel, G.; Bernier-Latmani, R. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. \textit{Nat. Commun.} \textbf{2013}, \textit{4}, 2942–2930.
5. Aïeta, E. M.; Singley, J. E.; Trussell, A. R.; Thorbjarnarson, K. W.; McGuire, M. J. Radionuclides in Drinking Water: An Overview. \textit{J. Am. Water Works Assoc.} \textbf{1987}, \textit{79} (4), 144–152.
6. Orloff, K. G.; Mistry, K.; Charp, P.; Metcalf, S.; Marino, R.; Shelly, T.; Melaro, E.; Donohoe, A. M.; Jones, R. L. Human exposure to uranium in groundwater. \textit{Environ. Res.} \textbf{2004}, \textit{94} (3), 319–326.
7. Brugg, D.; deLemos, J. L.; Oldmixon, B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. \textit{Rev. Environ. Health} \textbf{2005}, \textit{20} (3), 177–194.
8. Schott, A.; Brand, R. A.; Kaiser, J.; Schmidt, D. Depleted Uranium (DU) — Chemo- and Radiotoxicity. In \textit{Uranium in the Environment: Mining Impact and Consequences}; Merkel, B. J., Hasche-Berger, A., Eds.; Springer: Berlin Heidelberg, 2006; pp 165–174.
9. Ho, C. H.; Miller, N. H. Adsorption of uranyl species from bicarbonate solution onto hematite particles. \textit{J. Colloid Interface Sci.} \textbf{1986}, \textit{110} (1), 165–171.
10. Waite, T. D.; Davis, J. A.; Payne, T. E.; Waychunas, G. A.; Xu, N. Uranium(VI) Adsorption to Ferrihydrite — Application of a surface complexation model. \textit{Geochim. Cosmochim. Acta} \textbf{1994}, \textit{58} (24), 5465–5478.
11. Bargar, J. R.; Reitmeyer, R.; Lenhart, J. J.; Davis, J. A. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrochemical mobility measurements. \textit{Geochim. Cosmochim. Acta} \textbf{2000}, \textit{64} (16), 2737–2749.
12. Giammar, D. E.; Hering, J. G. Time scales for sorption-desorption and surface precipitation of uranyl on goethite. \textit{Environ. Sci. Technol.} \textbf{2001}, \textit{35} (16), 3332–3337.
13. Sherman, D. M.; Peacock, C. L.; Hubbard, C. G. Surface complexation of U(VI) on goethite (α-FeOOH). \textit{Geochim. Cosmochim. Acta} \textbf{2008}, \textit{72} (2), 296–310.
14. Duff, M. C.; Coughlin, J. U.; Hunter, D. B. Uranium co-precipitation with iron oxide minerals. \textit{Geochim. Cosmochim. Acta} \textbf{2002}, \textit{66} (20), 3533–3547.
15. Nico, P. S.; Stewart, B. D.; Fendorf, S. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. \textit{Environ. Sci. Technol.} \textbf{2009}, \textit{43} (19), 7391–7396.
16. Stewart, B. D.; Nico, P. S.; Fendorf, S. Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions. \textit{Environ. Sci. Technol.} \textbf{2009}, \textit{43} (13), 4922–4927.
17. Liger, E.; Charlet, L.; Van Cappellen, P. Surface catalysis of uranium(VI) reduction by iron(II). \textit{Geochim. Cosmochim. Acta} \textbf{1999}, \textit{63} (19–20), 2939–2955.
18. Charlet, L.; Silvester, E.; Liger, E. N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface Fe2+OFe3+OH− species, as major reductant. \textit{Chem. Geol.} \textbf{1998}, \textit{151}, 85–93.
(19) Latta, D. E.; Boyanov, M. I.; Kemner, K. M.; O’Loughlin, E. J.; Scherer, M. M. Abiotic reduction of uranium by Fe(II) in soil. Appl. Geochim. 2012, 27 (8), 1512–1524.

(20) O’Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csoncits, R.; Kemner, K. M. Reduction of Uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): Formation of UO(2) nanoparticles. Environ. Sci. Technol. 2003, 37 (4), 721–727.

(21) Wan, J.; Tokunaga, T. K.; Brodie, E.; Wang, Z.; Zheng, Z.; Herman, D.; Hazen, T. C.; Firestone, M. K.; Sutton, S. R. Reoxidation of bioreduced uranium under reducing conditions. Environ. Sci. Technol. 2005, 39 (16), 6162–6169.

(22) Spycher, N. F.; Issarangkun, M.; Stewart, B. D.; Sengoer, S. S.; Belding, E.; Ginn, T. R.; Peyton, B. M.; Sani, R. K. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach. Geochim. Cosmochim. Acta 2011, 75 (16), 4426–4440.

(23) Ginder-Vogel, M.; Criddle, C. S.; Fendorf, S. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ. Sci. Technol. 2006, 40 (11), 3544–3550.

(24) Ginder-Vogel, M.; Fendorf, S. Chapter 11: Biogeochemical uranium redox transformations: Potential oxidants of uraninite. In Developments in Earth and Environmental Sciences; Mark, O. B.; Douglas, B. K., Eds. Elsevier: Amsterdam, Netherlands, 2007, Vol. 7, pp 293–319.

(25) Berner, R. A. Early Diagenesis: A Theoretical Approach; Princeton University Press: Prinston, NJ, 1980.

(26) Morse, J. W.; Millero, F. J.; Cornwell, J. C.; Rickard, D. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci. Rev. 1987, 24 (1), 1–42.

(27) Widdel, F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. Biol. Anaerobic Microorganisms 1988, 469–585.

(28) Jørgensen, B. B. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 1977, 22 (5), 814–832.

(29) Raiswell, R.; Berner, R. A. Pyrite formation in euxinic and semi- euxinic sediments. Am. J. Sci. 1985, 285 (8), 710–724.

(30) Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 1989, 53 (3), 619–632.

(31) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(32) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(33) Peiffer, S.; Gade, W. Reactivity of ferric oxides toward H2S at low pH. Environ. Sci. Technol. 2007, 41 (9), 3159–3164.

(34) Reimers, C. E.; Ruttenberg, K. C.; Canfield, D. E.; Christiansen, M. B.; Martin, J. B. Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochim. Cosmochim. Acta 1996, 60 (21), 4037–4057.

(35) Scherrer, P. Bestimmung der Große und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische 1918, 98–100.

(36) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(37) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(38) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(39) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(40) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.

(41) Peiffer, S.; Afonso, M. D.; Wehrli, B.; Gachter, R. Kinetics and mechanism of the reaction of H2S with lepidocrocite. Geochim. Cosmochim. Acta 2004, 68 (18), 3703–3715.
spectroscopy studies of reactions of technetium, uranium and D. J.; Pattrick, R. A. D.; Reed, W. A.; Moyes, L. N. X-ray absorption Kovarik, L.; Engelhard, M. H.; Felmy, A. R. Reduction of U(VI) Environmental Science & Technology reducing bacterium. Gorby, Y. A.; Li, S. M. W.; Krupka, K. M. Reduction of U(VI) in oxyhydroxides: Application of the surface complexation site-binding 46 (17), 9428 Elsevier, 2010; Vol. 3085–3098. Zhao, L.-D.; Wang, S.; Sun, G.; Yang, X.; Kanatzidis, M. G. Efficient into magnetite during dissimilatory iron reduction – Conditions and between ferric (hydr) oxides and aqueous sulfide. Environ. Sci. Technol. 2011, 39, 6510. O

−

Livens, F. R.; Jones, M. J.; Hynes, A. J.; Charnock, J. M.; Mosselmans, J. F. W.; Hennig, C.; Steele, H.; Collison, D.; Vaughan, D. J.; Patrictt, R. A. D.; Reed, W. A.; Moyes, L. N. X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J. Environ. Radioact. 2004, 74 (1–3), 211–219. Scott, T. B.; Riba Tort, O.; Allen, G. C. Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material. Geochim. Cosmochim. Acta 2007, 71 (21), 5044–5053.

(64) Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Duff, M. C.; Gorby, Y. A.; Li, S. M. W.; Krupka, K. M. Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 2000, 64 (18), 3085–3098.

(65) Behrends, T.; Van Cappellen, P. Transformation of hematite into magnetite during dissimilatory iron reduction - Conditions and mechanisms. Geomicrobiol. J. 2007, 24 (5), 403–416.

(66) Tan, M.; Shchukarev, A.; Lohmayer, R.; Planer-Friedrich, B.; Poller, S. Occurrence of surface polysulphides during the interaction between ferric (hydr) oxides and aqueous sulphide. Environ. Sci. Technol. 2014, 48 (9), 5076–5084.

(67) Manos, E.; Kanatisidis, M. G.; Ibers, J. A. Actinide Chalcogenide Compounds. In The Chemistry of the Actinide and Transactinide Elements; Morris, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer Netherlands: Dordrecht, 2011; pp 4005–4077.

(68) Manos, M. J.; Kanatisidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134 (39), 16441–16446.

(71) Ulrich, K.-U.; Rossberg, A.; Foerstendorf, H.; Zaaenker, H.; Scheinost, A. C. Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids. Geochim. Cosmochim. Acta 2006, 70 (22), 5469–5487.

(72) Ilton, E. S.; Pacheco, J. S. L.; Bargar, J. R.; Shi, Z.; Liu, J.; Kovarik, L.; Engelhard, M. H.; Felmy, A. R. Reduction of U(VI) incorporated in the structure of hematite. Environ. Sci. Technol. 2012, 46 (17), 9428–9436.

(73) Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q.; Kemner, K. M.; Löffler, F. E. U(VI) Reduction to mononuclear U(IV) by Desulfitobacterium Species. Environ. Sci. Technol. 2010, 44 (12), 4705–4709.

(74) Bernier-Latmani, R.; Veeramani, H.; Vecchia, E. D.; Junier, P.; Lezama-Pacheco, J. S.; Suvorova, E. I.; Sharp, J. O.; Dippon, U.; Kappeler, A.; Bargar, J. R.; Bernier-Latmani, R. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochim. Cosmochim. Acta 2011, 75 (9), 2512–2528.

(75) Alessi, D. S.; Uster, B.; Veeramani, H.; Suvorova, E. I.; Lezama-Pacheco, J. S.; Stubs, J. E.; Bargar, J. R.; Bernier-Latmani, R. Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction. Environ. Sci. Technol. 2012, 46 (11), 6150–6157.

(80) Bi, Y.; Stylo, M.; Bernier-Latmani, R.; Hayes, K. F. Rapid mobilization of noncrystalline U(IV) coupled with FeS oxidation. Environ. Sci. Technol. 2016, 50 (3), 1403–1411.

(81) Van Breemen, N. Genesis, Morphology, and Classification of Acid Sulfate Soils in Coastal Plains. In Acid Sulfate Weathering; Kittrick, J. A.; Fanning, D. S.; Hossner, L. R., Eds.; Soil Science Society of America: Madison, WI, 1982; pp 95–108.

(82) Anderson, B. D.; Reaction iron in marine sediments. Geochim. Cosmochim. Acta 1989, 53 (3), 619–632.

(83) Chalouli, G.; Anschutz, P.; Lavaux, G.; Schifer, J.; Blanc, G. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Mar. Chem. 2002, 80 (1), 41–59.

(84) Powell, B.; Martens, M. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Mar. Pollut. Bull. 2005, 51, 149–164.

(85) Burton, E. D.; Bush, R. T.; Sullivan, L. A.; Johnston, S. G.;Hong, R. K. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil. Chem. Geol. 2008, 253, 64–73.

(86) Christensen, T. H.; Kjeldsen, P.; Bjerg, P. L.; Jensen, D. L.; Christensen, J. B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochim. 2001, 16, 659–718.

(87) Wazne, M.; Korfias, G. P.; Meng, X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol. 2003, 37 (16), 3619–3624.

(88) Anderson, B. D.; Vrionis, H. A.; Ortiz-Bernad, I.; Resch, C. T.; Long, P. E.; Dayvault, R.; Karp, K.; Marutzky, S.; Metzler, D. R.; Peacock, A.; White, D. C.; Lowe, M.; Lovley, D. R. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. J. Appl. Environ. Microbiol. 2003, 69 (10), 5884–5891.

(89) Dong, W. M.; Xie, G. B.; Miller, T. R.; Franklin, M. P.; Osenberg, T. P.; Bouwer, E. J.; Ball, W. P.; Halden, R. U. Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay. Environ. Pollut. 2006, 142 (1), 132–142.

(90) Wu, W.-M.; Carley, J.; Gentry, T.; Ginder-Vogel, M. A.; Fienen, M., Melhorn, T.; Yan, H.; Caroll, S.; Pace, M. N.; Nyman, J.; Luo, J.; Gentile, M. E.; Fields, M. W.; Hickey, R. F.; Gu, B.; Watson, D.; Cirpka, O. A.; Zhou, J.; Fendorf, S.; Kitidis, P. K.; Jardine, P. M.; Criddle, C. S. Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 2006, 40 (12), 3986–3995.

(91) Wu, W.-M.; Carley, J.; Luo, J.; Ginder-Vogel, M. A.; Cardenas, E.; Leig, M. B.; Hwang, C.; Kelly, S. D.; Ruan, C.; Wu, L.; Van Nostrand, J.; Gentry, T.; Lowe, K.; Mehlhorn, T.; Caroll, S.; Pace, M. N.; Nyman, J.; Luo, J.; Gentile, M. E.; Fields, M. W.; Hickey, R. F.; Gu, B.; Watson, D.; Cirpka, O. A.; Zhou, J.; Fendorf, S.; Kitidis, P. K.; Jardine, P. M.; Criddle, C. S. Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 2006, 40 (12), 3986–3995.

(92) Long, P. E.; Williams, K. H.; Davis, J. A.; Fox, P. M.; Wilkins, M. J.; Yabusaki, S. B.; Fang, Y.; Waichler, S. R.; Berman, E. S. F.; Gupta, M.; Chandler, D. P.; Murray, C.; Peacock, A. D.; Gilloteaux, L.; Handle, K. M.; Lovley, D. R.; Banfield, J. F. Biocarbonite impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochim. Cosmochim. Acta 2015, 150, 106–124.