Abstract

Binary logistic regression with a sparsity constraint on the solution plays a vital role in many high dimensional machine learning applications. In some cases, the features can be grouped together, so that entire subsets of features can be selected or zeroed out. In many applications, however, this can be very restrictive. In this paper, we are interested in a less restrictive form of structured sparse feature selection: we assume that while features can be grouped according to some notion of similarity, not all features in a group need be selected for the task at hand. This is sometimes referred to as a “sparse group” lasso procedure, and it allows for more flexibility than traditional group lasso methods. Our framework generalizes conventional sparse group lasso further by allowing for overlapping groups, an additional flexibility that presents further challenges. The main contribution of this paper is a new procedure called Sparse Overlapping Sets (SOS) lasso, a convex optimization program that automatically selects similar features for learning in high dimensions. We establish consistency results for the SOSlasso for classification problems using the logistic regression setting, which specializes to results for the lasso and the group lasso, some known and some new. In particular, SOSlasso is motivated by multi-subject fMRI studies in which functional activity is classified using brain voxels as features, source localization problems in Magnetoencephalography (MEG), and analyzing gene activation patterns in microarray data analysis. Experiments with real and synthetic data demonstrate the advantages of SOSlasso compared to the lasso and group lasso.

1. Introduction

Binary logistic regression plays a major role in many machine learning and signal processing applications. In modern applications where the number of features far exceeds the number of observations, one typically enforces the solution to contain only a few non zeros. The lasso (Tibshirani, 1996) is a commonly used method to constrain the solution (henceforth also referred to as the coefficients) to be sparse. The notion of sparsity leads to more interpretable solutions in high dimensional machine learning applications, and has been extensively studied in (Bach, 2010; Plan and Vershynin, 2012; Negahban et al., 2012; Bunea, 2008), among others.
In many applications, we wish to impose structure on the sparsity pattern of the coefficients recovered. In particular, often it is known a priori that the optimal sparsity pattern will tend to involve clusters or groups of coefficients, corresponding to pre-existing groups of features. The form of the groups is known, but the subset of groups that is relevant to the classification task at hand is unknown. This prior knowledge reduces the space of possible sparse coefficients thereby potentially leading to better results than simple lasso methods. In such cases, the group lasso, with or without overlapping groups [Yuan and Lin, 2006] is used to recover the coefficients. The group lasso forces all the coefficients in a group to be active at once: if a coefficient is selected for the task at hand, then all the coefficients in that group are selected. When the groups overlap, a modification of the penalty allows one to recover coefficients that can be expressed as a union of groups [Jacob et al., 2009; Obozinski et al.] [2011].

(a) Grouping features based on similarity. Vertices denote coefficients and edges indicate the similarity of the corresponding features. Each group (indicated by dashed colored lines) corresponds to a particular vertex (highlighted by the same color), and its neighbors. The groups overlap, and if a vertex is selected, it should encourage selection its neighbors.

(b) Decomposition of coefficient vector into overlapping sparse groups. The vector can be decomposed as a sum of two vectors, each corresponding to a single group (green and red). The lighter shaded regions in the right hand side correspond to zeros in the active groups, and the darker regions correspond to non-zero coefficients. The vertical bars in the LHS indicate various overlapping groups.

Figure 1: (Best seen in color) Grouping features based on similarity (a) and its decomposition in terms of sparse overlapping sets (b). The sparse vector that determines what features are selected takes into account the groups formed due to the graph in (a).

While the group lasso has enjoyed tremendous success in high dimensional feature selection applications, we are interested in a much less restrictive form of structured feature selection for classification. Suppose that the features can be arranged into overlapping groups based on some notion of similarity, depending on the application. For example, in Figure 1(a), the features can be organized into a graph (similar features being connected), and each feature forms a group with its neighbors. The notion of similarity can be loosely defined, and only suggests that if a feature is relevant for the learning task at hand, then features similar to it may also be relevant. It is known that while many features may be
similar to each other, not all similar features are relevant for the specific learning problem. Figure 1(b) illustrates the pattern we are interested in. In such a setting, we want to select similar features (i.e., groups), but only a (sparse) subset of the features in the (selected) groups may themselves be selected. We propose a new procedure called Sparse Overlapping Sets (SOS) lasso to reflect this situation in the coefficients recovered.

As an example, consider the task of identifying relevant genes that play a role in predicting a disease. Genes are organized into pathways (Subramanian et al., 2005), but not every gene in a pathway might be relevant for prediction. At the same time, it is reasonable to assume that if a gene from a particular pathway is relevant, then other genes from the same pathway may also be relevant. In such applications, the group lasso may be too constraining while the lasso may be too under-constrained.

A major motivating factor for our approach comes from multitask learning. Multitask learning can be effective when features useful in one task are also useful for other tasks, and the group lasso is a standard method for selecting a common subset of features (Lounici et al., 2009). In this paper, we consider the case where (1) the available features can be organized into groups according to a notion of similarity and (2) features useful in one task are similar, but not necessarily identical, to the features best suited for other tasks. Later in the paper, we apply this idea to multi-subject fMRI prediction problems.

1.1 Past Work

When the groups of features do not overlap, (Simon et al., 2012) proposed the Sparse Group Lasso (SGL) to recover coefficients that are both within- and across- group sparse. SGL and its variants for multitask learning have found applications in character recognition (Sprechmann et al., 2011, 2010), climate and oceanology applications (Chatterjee et al., 2011), and in gene selection in computational biology (Simon et al., 2012). In (Jenatton et al., 2010), the authors extended the method to handle tree structured sparsity patterns, and showed that the resulting optimization problem admits an efficient implementation in terms of proximal point operators. Along related lines, the exclusive lasso (Zhou et al., 2010) can be used when it is explicitly known that features in certain groups are negatively correlated. When the groups overlap, (Jacob et al., 2009; Obozinski et al., 2011) proposed a modification of the group lasso penalty so that the resulting coefficients can be expressed as a union of groups. They proposed a replication-based strategy for solving the problem, which has since found application in computational biology (Jacob et al., 2009) and image processing (Rao et al., 2011), among others. The authors in (Mosci et al., 2010) proposed a method to solve the same problem in a primal-dual framework, that does not require coefficient replication. Risk bounds for problems with structured sparsity inducing penalties (including the lasso and group lasso) were obtained by (Maurer and Pontil, 2012) using Rademacher complexities. Sample complexity bounds for model selection in linear regression using the group lasso (with possibly overlapping groups) also exist (Rao et al., 2012). The results naturally hold for the standard group lasso (Yuan and Lin, 2006), since non overlapping groups are a special case.

For logistic regression, (Bach, 2010; Bunea, 2008; Negahban et al., 2012; Plan and Vershynin, 2012) and references therein have extensively characterized the sample complexity

1. A feature or group of features is “selected” if its corresponding regression coefficient(s) is non zero.
of identifying the correct model using ℓ_1 regularized optimization. In [Plan and Vershynin 2012], the authors introduced a new optimization framework to solve the logistic regression problem: minimize 2 a linear cost function subject to a constraint on the ℓ_1 norm of the solution.

1.2 Our Contributions

In this paper, we consider an optimization problem of the form in [Plan and Vershynin 2012], but for coefficients that can be expressed as a union of overlapping groups. Not only are only a few groups selected, but the selected groups themselves are also sparse. In this sense, our constraint can be seen as an extension of SGL [Simon et al. 2012] for overlapping groups where the sparsity pattern lies in a union of groups. We are mainly interested in classification problems, but the method can also be applied to regression settings, by making an appropriate change in the loss function of course. We consider a union-of-groups formulation as in [Jacob et al. 2009], but with an additional sparsity constraint on the selected groups. To this end, we analyze the Sparse Overlapping Sets (SOS) lasso, where the overlapping sets might correspond to coefficients of features arbitrarily grouped according to the notion of similarity.

We introduce a function that when used to constrain the solutions, helps us in recovering sparsity patterns that can be expressed as a union of sparsely activated groups. The main contribution of this paper is a theoretical analysis of the consistency of the SOSlasso estimator, under a logistic regression setting. Based on certain parameter settings, our method reduces to other known cases of penalization for sparse high dimensional recovery. Specifically, our method generalizes the group lasso for logistic regression [Meier et al. 2008, Jacob et al. 2009], and also extends to handle groups that can arbitrarily overlap with each other. We also recover results for the lasso for logistic regression [Bunea 2008, Negahban et al. 2012, Plan and Vershynin 2012, Bach 2010]. In this sense, our work unifies the lasso, the group lasso as well as the sparse group lasso for logistic regression to handle overlapping groups. To the best of our knowledge, this is the first paper that provides such a unified theory and sample complexity bounds for all these methods.

In the case of linear regression and multitask learning, our work generalizes the work of [Sprechmann et al. 2010, 2011], where the authors consider a similar situation with non-overlapping subsets of features. We assume that the features can arbitrarily overlap. When the groups overlap, the methods mentioned above suffer from a drawback: entire groups are set to zero, in effect zeroing out many coefficients that might be relevant to the tasks at hand. This has undesirable effects in many applications of interest, and the authors in [Jacob et al. 2009] propose a version of the group lasso to circumvent this issue.

We also test our regularizer on both toy and real datasets. Our experiments reinforce our theoretical results, and demonstrate the advantages of the SOSlasso over standard lasso and group lasso methods, when the features can indeed be grouped according to some notion of similarity. We show that the SOSlasso is especially useful in multitask Functional Magnetic Resonance Imaging (fMRI) applications, and gene selection applications in computational biology.

2. The authors in [Plan and Vershynin 2012] write the problem as a maximization. We minimize the negative of the same function.
To summarize, the main contributions of this paper are the following:

1. **New regularizers for structured sparsity:** We propose the Sparse Overlapping Sets (SOS) lasso, a convex optimization problem that encourages the selection of coefficients that are both within- and across-group sparse. The groups can arbitrarily overlap, and the pattern obtained can be represented as a union of a small number of groups. This generalizes other known methods, and provides a common regularizer that can be used for any structured sparse problem with two levels of hierarchy: groups at a higher level, and singletons at the lower level.

2. **New theory for logistic regression with structured sparsity:** We provide a theoretical analysis for the consistency of the SOSlasso estimator, under the logistic observation model. The general results we obtain specialize to the lasso, the group lasso (with or without overlapping groups) and the sparse group lasso. We obtain a bound on the sample complexity of the SOSlasso under both independent and correlated Gaussian measurement designs, and this in turn also translates to corresponding results for the lasso and the group lasso. In this sense, we obtain a unified theory for performing structured variable selection in high dimensions.

3. **Applications:** A major motivating application for this work is the analysis of multi-subject fMRI data (explained in more detail in Section 5.1). We apply the SOSlasso to fMRI data, and show that the results we obtain not only yield lower errors on hold-out test sets compared to previous methods, but also lead to more interpretable results. To show its applicability to other domains, we also apply the method to breast cancer data to detect genes that are relevant in the prediction of metastasis in breast cancer tumors.

An initial draft of this work with an emphasis on a motivating application fMRI was published in (Rao et al., 2013). This paper develops theoretical results for the classification settings discussed in (Rao et al., 2013), and also presents some novel applications in computational biology where similar notions can be applied to achieve significant gains over existing methods. Our work here presents novel results for the group lasso with potentially overlapping groups as well as the sparse group lasso for classification settings, as special cases of the theory we develop.

1.3 Organization

The rest of the paper is organized as follows: in Section 2 we formally state our structured sparse logistic regression problem and the main results of this paper. Then in Section 3 we argue that the regularizer we propose does indeed help in recovering coefficient sparsity patterns that are both within- and across group sparse, even when the groups overlap. In Section 4 we leverage ideas from (Plan and Vershynin, 2012) and derive measurement bounds and consistency results for the SOSlasso under a logistic regression setting. We also extend these results to handle data with correlations in their entries. We perform experiments on real and toy data in Section 5 before concluding the paper and mentioning avenues for future research in Section 6.

3. Further levels can also be added as in (Jenatton et al., 2010), but that is beyond the scope of this paper.
2. Main Results: Logistic Regression with Structured Sparsity

In this section, we formalize our problem. We first describe the notations that we use in the sequel. Uppercase and lowercase bold letters indicate matrices and vectors respectively. We assume a sparse learning framework, with a feature matrix \(\Phi \in \mathbb{R}^{n \times p} \). We assume each element of \(\Phi \) to be distributed as a standard Gaussian random variable. Assuming the data to arise from a Gaussian distribution simplifies analysis, and allows us to leverage tools from existing literature. Later in the paper, we will allow for correlations in the features as well, reflecting a more realistic setting.

We focus on classification, and assume the following logistic regression model. Each observation \(y_i \in \{-1, +1\}, \ i = 1, 2, \ldots, n \) is randomly distributed according to the logistic model

\[
\mathbb{P}(y_i = 1) = f(\langle \phi_i, x^* \rangle) \tag{1}
\]

where \(\phi_i \) is the \(i \)th row of \(\Phi \), and \(x^* \in \mathbb{R}^p \) is the (unknown) coefficient vector of interest in our setting.

\[
f(z) = \frac{\exp(z)}{1 + \exp(z)}
\]

where \(z \) is a scalar.

The coefficient vector of interest is assumed to have a special structure. Specifically, we assume that \(x \in C \subset B_{\mathbb{R}}^2 \), where \(B_{\mathbb{R}}^2 \) is the unit ball in \(\mathbb{R}^p \). This motivates the following optimization problem [Plan and Vershynin, 2012]:

\[
\hat{x} = \arg \min_x n \sum_{i=1}^n -y_i \langle \phi_i, x \rangle \quad \text{s.t.} \quad x \in C \tag{2}
\]

The statistical accuracy of \(\hat{x} \) can be characterized in terms of the \textit{mean width} of \(C \), which is defined as follows

Definition 1 Let \(g \in \mathcal{N}(0, I) \). The mean width of a set \(C \) is defined as

\[
\omega(C) = \mathbb{E}_g \left[\sup_{x \in C - C} \langle x, g \rangle \right]
\]

where \(C - C \) denotes the Minkowski set difference.

The next result follows immediately from Theorem 1.1, Corollary 1.2, and Corollary 3.3 of [Plan and Vershynin, 2012].

Theorem 2 Let \(\Phi \in \mathbb{R}^{n \times p} \) be a matrix with i.i.d. standard Gaussian entries, and let \(C \subset B_{\mathbb{R}}^2 \). Assume \(\frac{x^*}{\|x^*\|_2} \in C \), and the observations follow the model (1) above. Let \(\delta > 0 \), and suppose

\[
n \geq C\delta^{-2}\omega(C)^2
\]

Then, with probability at least \(1 - 8 \exp(-c\delta^2 n) \), the solution \(\hat{x} \) to the problem (2) satisfies

\[
\left\| \hat{x} - \frac{x^*}{\|x^*\|_2} \right\|_2^2 \leq \delta \max(\|x^*\|^{-1}, 1)
\]

where \(C, c \) are positive constants.
In this paper, we construct a new penalty that produces a convex set C that encourages structured sparsity in the solution of (2). We show that the resulting optimization can be efficiently solved. We bound the mean width of the set, which yields new bounds for logistic regression with structured sparsity, via Theorem 2.

2.1 A New Penalty for Structured Sparsity

We are interested in the following form of structured sparsity. Assume that the features can be organized into overlapping groups based on a user-defined measure of similarity, depending on the application. Moreover, assume that if a certain feature is relevant for the learning task at hand, then features similar to it may also be relevant. These assumptions suggest a structured pattern of sparsity in the coefficients wherein a subset of the groups are relevant to the learning task, and within the relevant groups a subset of the features are selected. In other words, $x^* \in \mathbb{R}^p$ has the following structure:

- its support is localized to a union of a subset of the groups, and
- its support is localized to a sparse subset within each such group

Assume that the features can be grouped according to similarity into M (possibly overlapping) groups $G = \{G_1, G_2, \ldots, G_M\}$ and consider the following definition of structured sparsity.

Definition 3 We say that a vector x is (k, α)-group sparse if x is supported on at most $k \leq M$ groups and at most a fraction $\alpha \in (0, 1]$ of the features within each group.

Note that $\alpha = 0$ corresponds to $x = 0$.

To encourage such sparsity patterns we define the following penalty. Given a group $G \in G$, we define the set

$$W_G = \{w \in \mathbb{R}^p : w_i = 0 \text{ if } i \notin G\}$$

We can then define

$$W(x) = \left\{w_{G_1} \in W_{G_1}, w_{G_2} \in W_{G_2}, \ldots, w_{G_M} \in W_{G_M} : \sum_{G \in G} w_G = x\right\}$$

That is, each element of $W(x)$ is a set of vectors, one from each W_G, such that the vectors sum to x. As shorthand, in the sequel we write $\{w_G\} \in W(x)$ to mean a set of vectors that form an element in $W(x)$.

For any $x \in \mathbb{R}^p$, define

$$h(x) := \inf_{\{w_G\} \in W(x)} \sum_{G \in G} (\alpha_G \|w_G\|_2 + \beta_G \|w_G\|_1)$$

where the $\alpha_G, \beta_G > 0$ are constants that tradeoff the contributions of the ℓ_2 and the ℓ_1 norm terms per group, respectively. The logistic **SOSlasso** is the optimization in (2) with $h(x)$ as defined in (3) determining the structure of the constraint set C, and hence the form of the solution \hat{x}. The ℓ_2 penalty promotes the selection of only a subset of the groups, and the ℓ_1 penalty promotes the selection of only a subset of the features within a group.
Definition 4 We say the set of vectors \(\{w_G \} \in \mathcal{W}(x) \) is an optimal representation of \(x \) if they achieve the inf in (3).

The objective function in (3) is convex and coercive. Hence, \(\forall x \), an optimal representation always exists.

The function \(h(x) \) yields a convex relaxation for \((k, \alpha)\)-group sparsity. Define the constraint set

\[
C = \{ x : h(x) \leq \sqrt{k} \max_{G \in \mathcal{G}} \left(\alpha_G + \beta_G \sqrt{\alpha B} \right), \|x\|_2 = 1 \} .
\]

We show that \(C \) is convex and contains all \((k, \alpha)\)-group sparse vectors. We compute the mean width of \(C \) in (4), and subsequently obtain the following result:

Theorem 5 Suppose there exists a coefficient vector \(x^\star \) that is \((k, \alpha)\)-group sparse. Suppose the data matrix \(\Phi \in \mathbb{R}^{n \times p} \) and observation model follow the setting in Theorem 2. Suppose we solve (2) for the constraint set given by (4). For \(\delta > 0 \), if the number of measurements satisfies

\[
n \geq C \delta^{-2} k \max_{G \in \mathcal{G}} (\alpha_G + \beta_G \sqrt{\alpha B})^2 \frac{\min_{G \in \mathcal{G}} (\alpha_G + \beta_G)^2}{(\sqrt{2 \log(M)} + \sqrt{B})^2}
\]

then the solution of the logistic SOSPlasso satisfies

\[
\left\| \hat{x} - \frac{x^\star}{\|x^\star\|_2} \right\|_2^2 \leq \delta \max(\|x^\star\|^{-1}, 1)
\]

Remarks

From here on, we set \(\alpha_G = 1 \) and \(\beta_G = \mu \ \forall G \in \mathcal{G} \). We do this to reduce clutter in the notations and the subsequent results we obtain. All the results we obtain can easily be extended to incorporate \(\alpha_G \) and \(\beta_G \). Setting these values of \(\alpha_G, \beta_G \) yields the following sample complexity bound in Theorem 5

\[
n \geq C \delta^{-2} k \left(1 + \mu \sqrt{\alpha B} \right)^2 \frac{1 + \mu}{(1 + \mu)^2} \left(\sqrt{2 \log(M)} + \sqrt{B} \right)^2
\]

The \(\ell_2 \) norm of the coefficients \(x^\star \) affects the Signal to Noise Ratio (SNR) of the measurements obtained, and subsequently the quality of the recovered signal. Specifically, if \(\|x^\star\|_2 \) is large, then from (1), then depending on \(\phi, u \), will be +1 or −1 with high probability. This corresponds to a high SNR regime, and the error in Theorem 5 is upper bounded by \(\delta \). Conversely, if \(\|x^\star\|_2 \) is small, then again from (4) we see that the measurements obtained will be ±1 with probability \(\approx 0.5 \). This corresponds to a low SNR regime, and the recovery error will be bounded by \(\|x^\star\|^{-1}, \) a large quantity.

We see that our result in Theorem 5 generalizes well known results in standard sparse and group sparse regression. Specifically, we note the following:

- When \(\mu = 0 \), we get the same results as those for the group lasso. The result remains the same whether or not the groups overlap. The bound is given by

\[
n \geq C \delta^{-2} k \left(\sqrt{2 \log(M)} + \sqrt{B} \right)^2
\]

Note that this result is similar to that obtained for the linear regression case by the authors in [Rao et al., 2012].
• When all the groups are singletons, \((B = \alpha = 1)\) and \(\mu = 0\), the bound reduces to that for the standard lasso, with \(M\) being the ambient dimension. In this case, we have \(M = p\), the ambient dimension, and

\[
n \geq C \delta^{-2} k \log(p)
\]

In this light, we see that the penalty proposed in (3) generalizes the lasso and the group lasso, and allows one to recover signals that are sparse, group sparse, or a combination of the two structures. Moreover, to the best of our knowledge, these are the first known sample complexity bounds for the group lasso for logistic regression with overlapping groups, and the sparse group lasso, both of which arise as special cases of the SOSlasso.

Problem (2) admits an efficient solution. Specifically, we can use the variable replication strategy as in (Jacob et al., 2009) to reduce the problem to a sparse group lasso, and use proximal point methods to recover the coefficient vector. We elaborate this in more detail later in the paper.

3. Analysis of the SOSlasso Penalty

Recall the definition of \(h(x)\), from (3), and set \(\alpha_G = 1\), and \(\beta_G = \mu\):

\[
h(x) = \inf_{\{w_G\} \in \co(W(x))} \sum_{G \in G} \|w_G\|_2 + \mu \|w_G\|_1
\]

For the remainder of the paper we work with these settings of \(\alpha_G\) and \(\beta_G\). All of the results can be generalized to handle other choices. For example, it is sometimes desirable to choose \(\alpha_G\) to be a function of the size of \(G\). In the applications we consider later, the groups are all roughly the same size, so this flexibility isn’t required.

Note that the sum of the terms \(\mu \|w_G\|_1\) does not yield the standard \(\ell_1\) norm of the vector \(x\), but instead an \(\ell_1\)-like term that is made up of a weighted sum of the absolute value of the coefficients in the vector. The weight is proportional to the number of groups to which a coordinate belongs.

Remarks:

The SOSlasso penalty can be seen as a generalization of different penalty functions previously explored in the context of sparse linear and/or logistic regression:

• If each group in \(G\) is a singleton, then the SOSlasso penalty reduces to the standard \(\ell_1\) norm, and the problem reduces to the lasso for logistic regression (Tibshirani, 1996; Bunea, 2008).

• If \(\mu = 0\) in (3), then we are left with the latent group lasso (Jacob et al., 2009; Obozinski et al., 2011; Rao et al., 2012). This allows us to recover sparsity patterns that can be expressed as lying in a union of groups. If a group is selected, then all the coefficients in the group are selected.

• If the groups \(G \in \mathcal{G}\) are non overlapping, then (3) reduces to the sparse group lasso (Simon et al., 2012). Of course, for non overlapping groups, if \(\mu = 0\), then we get the standard group lasso (Yuan and Lin, 2006).
Figure 2 shows the effect that the parameter μ has on the shape of the “ball” $\|w_G\| + \mu \|w_G\|_1 \leq \delta$, for a single two dimensional group G.

Figure 2: Effect of μ on the shape of the set $\|w_G\| + \mu \|w_G\|_1 \leq \delta$, for a two dimensional group G. $\mu = 0$ (a) yields the ℓ_2 norm ball. As the value of μ is increased, the effect of the ℓ_1 norm term increases (b) (c). Finally as μ gets very large, the set resembles the ℓ_1 ball (d).

3.1 Properties of SOSlasso Penalty

The example in Table 1 gives an insight into the kind of sparsity patterns preferred by the function $h(x)$. We will tend to prefer solutions that have a small value of $h(\cdot)$. Consider 3 instances of $x \in \mathbb{R}^{10}$, and the corresponding group lasso, ℓ_1 norm, and $h(x)$ function values. The vector is assumed to be made up of two groups, $G_1 = \{1, 2, 3, 4, 5\}$ and $G_2 = \{6, 7, 8, 9, 10\}$. $h(x)$ is smallest when the support set is sparse within groups, and also when only one of the two groups is selected (column 5). The ℓ_1 norm does not take into account sparsity across groups (column 4), while the group lasso norm does not take into account sparsity within groups (column 3). Since the groups do not overlap, the latent group lasso penalty reduces to the group lasso penalty and $h(x)$ reduces to the sparse group lasso penalty.

Support	Values	$\sum_G \|x_G\|$	$\|x\|_1$	$\sum_G (\|x_G\| + \|x_G\|_1)$
$\{1, 4, 9\}$	$\{3, 4, 7\}$	12	14	26
$\{1, 2, 3, 4, 5\}$	$\{2, 5, 2, 4, 5\}$	8.602	18	26.602
$\{1, 3, 4\}$	$\{3, 4, 7\}$	8.602	14	22.602

Table 1: Different instances of a 10-d vector and their corresponding norms.

The next table shows that $h(x)$ indeed favors solutions that are not only group sparse, but also exhibit sparsity within groups when the groups overlap. Consider again a 10-dimensional vector x with three overlapping groups $\{1, 2, 3, 4\}$, $\{3, 4, 5, 6, 7\}$ and $\{7, 8, 9, 10\}$. Suppose the vector $x = [0 0 1 0 1 0 1 0 0 0]^T$. From the form of the function in (3), we see that the vector can be seen as a sum of three vectors w_i, $i = 1, 2, 3$, corresponding to the three groups listed above. Consider the following instances of the w_i vectors, which are all feasible solutions for the optimization problem in (5):

1. $w_1 = [0 0 -1 0 0 0 0 0 0 0]^T$, $w_2 = [0 0 1 1 1 0 1 0 0 0]^T$, $w_3 = [0 0 0 0 0 0 0 0 0 0]^T$
2. \(w_1 = [0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T, \ w_2 = [0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T, \ w_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]^T \)

3. \(w_1 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T, \ w_2 = [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]^T, \ w_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0]^T \)

4. \(w_1 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T, \ w_2 = [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0]^T, \ w_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T \)

In the above list, the first instance corresponds to the case where the support is localized to two groups, and one of these groups (group 2) has only one zero. The second case corresponds to the case where all 3 groups have non zeros in them. The third case has support localized to two groups, and both groups are sparse. Finally, the fourth case has only the second group having non zero coefficients, and this group is also sparse. Table 2 shows that the smallest value of the sum of the terms is achieved by the fourth decomposition, and hence that will correspond to the optimal representation.

\(A = \|w_1\| + \mu \|w_1\|_1 \)	\(B = \|w_2\| + \mu \|w_2\|_1 \)	\(C = \|w_3\| + \mu \|w_3\|_1 \)	\(A + B + C \)
\(1 + \mu \)	\(1 + \mu \)	\(0 \)	\(3 + 5\mu \)
\(2 + 4\mu \)	\(1 + \mu \)	\(1 + \mu \)	\(3 + 3\mu \)
\(\sqrt{2} + 2\mu \)	\(\sqrt{3} + 3\mu \)	\(\sqrt{3} + 3\mu \)	

Table 2: Values of the sum of the \(\ell_1 \) and \(\ell_2 \) norms corresponding to the decompositions listed above. Note that the optimal representation corresponds to the case \(w_1 = w_3 = 0, \) and \(w_2 \) being a sparse vector.

Lastly, we can show that \(h(x) \) is a norm. This will allow us to derive consistency results for the optimization problems we are interested in in this paper.

Lemma 6 The function

\[
h(x) = \inf_{\{w_G\} \in \mathcal{W}(x)} \sum_{G \in G} (\|w_G\|_2 + \mu \|w_G\|_1)
\]

is a norm

Proof It is trivial to show that \(h(x) \geq 0 \) with equality iff \(x = 0 \). We now show positive homogeneity. Suppose \(\{w_G\} \in \mathcal{W}(x) \) is an optimal representation (Definition 4) of \(x \), and let \(\gamma \in \mathbb{R} \setminus \{0\} \). Then, \(\sum_{G \in G} w_G = x \Rightarrow \sum_{G \in G} \gamma w_G = \gamma x \). This leads to the following set of inequalities:

\[
h(x) = \sum_{G \in G} (\|w_G\|_2 + \mu \|w_G\|_1) = \frac{1}{|\gamma|} \sum_{G \in G} (\|\gamma w_G\|_2 + \mu \|\gamma w_G\|_1) \geq \frac{1}{|\gamma|} h(\gamma x) \quad (6)
\]

Now, assuming \(\{v_G\} \in \mathcal{W}(\gamma x) \) is an optimal representation of \(\gamma x \), we have that \(\sum_{G \in G} \frac{v_G}{\gamma} = x \), and we get

\[
h(\gamma x) = \sum_{G \in G} (\|v_G\|_2 + \mu \|v_G\|_1) = |\gamma| \sum_{G \in G} \left(\frac{\|v_G\|}{\gamma} + \mu \left\| \frac{v_G}{\gamma} \right\|_1 \right) \geq |\gamma| h(x) \quad (7)
\]
Positive homogeneity follows from (6) and (7). The inequalities are a result of the possibility of the vectors not corresponding to the respective optimal representations.

For the triangle inequality, again let \(\{w_G\} \in \mathcal{W}(x), \{v_G\} \in \mathcal{W}(y) \) correspond to the optimal representation for \(x, y \) respectively. Then by definition,

\[
\begin{align*}
 h(x + y) &\leq \sum_{G \in \mathcal{G}} (\|w_G + v_G\|_2 + \mu \|w_G + v_G\|_1) \\
 &\leq \sum_{G \in \mathcal{G}} (\|w_G\|_2 + \|v_G\|_2 + \mu \|w_G\|_1 + \mu \|v_G\|_1) \\
 &= h(x) + h(y)
\end{align*}
\]

The first and second inequalities follow by definition and the triangle inequality respectively.

3.2 Solving the SOSCasso Problem

To solve the logistic regression problem, we make use of the MALSAR package (Zhou et al., 2012), modified to handle the loss function in (2), with the constraint given by (4). We solve the Lagrangian version of the problem:

\[
\hat{x} = \arg\min_x \left(\sum_{i=1}^{n} -y_i \langle \phi_i, x \rangle + \lambda_1 h(x) + \lambda_2 \|x\|^2 \right)
\]

where \(\lambda_1 > 0 \) controls the amount by which we regularize the coefficients to have structured sparsity pattern, and \(\lambda_2 > 0 \) prevents the coefficients from taking very large values. We use the “covariate duplication” method of (Jacob et al., 2009) to first reduce the problem to the non overlapping sparse group lasso in an expanded space. One can then use proximal methods to recover the coefficients.

Proximal point methods progress by taking a step in the direction of the negative gradient, and applying a shrinkage/proximal point mapping to the iterate. This mapping can be computed efficiently for the non overlapping sparse group lasso, as it is a special case of general hierarchical structured penalties (Jenatton et al., 2010). The proximal point mapping can be seen as the composition of the standard soft thresholding and the group soft thresholding operators:

\[
\begin{align*}
 \tilde{w} &= \text{sign}(w) \left[|w| - \lambda \mu \right]^+ \\
 (w_{t+1})_G &= \frac{(\tilde{w})_G}{\|w_G\|} \left[||w_G|| - \lambda \right]^+ \quad \text{if} \quad ||w_G|| \neq 0 \\
 (w_{t+1})_G &= 0 \quad \text{otherwise}
\end{align*}
\]

where \(w \) corresponds to the iterate after a gradient step and \([\cdot]^+ = \max (0, \cdot)\). Once the solution is obtained in the duplicated space, we then recombine the duplicates to obtain the solution in the original space. Finally, we perform a debiasing step to obtain the final solution.
4. Proof of Theorem 5 and Extensions to Correlated Data

In this section, we compute the mean width of the constraint set C in (4), which will be used to prove Theorem 5. First we define the following norm:

Definition 7 Given a set of M groups G, for any vector x and its optimal representation $\{w_G\} \in W(x)$, nothing that $x = \sum_{G \in G} w_G$, define

$$\|x\|_{G,0} = \sum_{G \in G} \mathbb{1}_{\{|w_G| \neq 0\}}$$

In the above definition, $\mathbb{1}_{\{\cdot\}}$ is the indicator function. Define the set

$$C_{\text{ideal}}(k, \alpha) = \left\{ x : x = \sum_{G \in G} w_G, \quad \|x\|_{G,0} \leq k, \quad \|w_G\|_0 \leq \alpha |G| \quad \forall G \in G \right\}$$

We see that $C_{\text{ideal}}(k, \alpha)$ contains (k, α)-group sparse signals (Definition 3). From the above definitions and our problem setup, our aim is to ideally solve the following optimization problem

$$\hat{x} = \arg\min_x \sum_{i=1}^n -y_{ti} \langle \phi_{ti}, x_i \rangle \quad \text{s.t.} \quad x \in C_{\text{ideal}}(k, \alpha) \quad (9)$$

However, the set C_{ideal} is not convex, and hence solving (9) will be hard in general. We instead consider a convex relaxation of the above problem. The convex relaxation of the (overlapping) group ℓ_0 pseudo-norm is the (overlapping) group ℓ_1/ℓ_2 norm. This leads to the following result:

Lemma 8 The SOSlasso penalty (5) admits a convex relaxation of $C_{\text{ideal}}(k, \alpha)$. Specifically, we can consider the set

$$\mathcal{C}(k, \alpha) = \{ x : h(x) \leq \sqrt{k}(1 + \mu \sqrt{\alpha B}) \|x\|_2 \}$$

as a convex relaxation containing the set $C_{\text{ideal}}(k, \alpha)$.

Proof Consider a (k, α)-group sparse vector $x \in C_{\text{ideal}}(k, \alpha)$. For any such vector, there exist vectors $\{v_G\} \in W(x)$ such that the supports of v_G do not overlap. We then have the
following set of inequalities

\[
\begin{align*}
 h(x) &= \inf_{\{w_G\} \in \mathcal{W}(x)} \sum_{G \in \mathcal{G}} \|w_G\|_2 + \mu \|w_G\|_1 \\
 \text{(i)} &\leq \sum_{G \in \mathcal{G}} \|v_G\|_2 + \mu \sum_{G \in \mathcal{G}} \|v_G\|_1 \\
 \text{(ii)} &\leq \sum_{G \in \mathcal{G}} \|v_G\|_2 + \mu \sqrt{\alpha B} \sum_{G \in \mathcal{G}} \|v_G\|_2 \\
 \text{(iii)} &\leq \sqrt{k} \left(1 + \mu \sqrt{\alpha B}\right) \left(\sum_{G \in \mathcal{G}} \|v_G\|_2^2\right)^{\frac{1}{2}} \\
 &= \sqrt{k} \left(1 + \mu \sqrt{\alpha B}\right) \|x\|_2
\end{align*}
\]

where (i) follows from the definition of the function \(h(x)\) in (3), and (ii) and (iii) follow from the fact that for any vector \(v \in \mathbb{R}^d\) we have \(\|v\|_1 \leq \sqrt{d} \|v\|_2\). Hence, we see that we can use (4) with \(\alpha_G = 1\), \(\beta_G = \mu\), which is the set in Lemma 8 intersected with the unit Euclidean ball as a convex relaxation of \(C_{\text{ideal}}\) to solve the SOSlasso problem.

4.1 Mean Width for the SOSlasso for Logistic Regression

We see that, the mean width of the constraint set plays a crucial role in determining the consistency of the solution of the logistic regression problem. We now aim to find the mean width of the constraint set in (4). Before we do so, we restate Lemma 3.2 in (Rao et al., 2012) for the sake of completeness:

Lemma 9 Let \(q_1, \ldots, q_L\) be \(L\), \(\chi\)-squared random variables with \(d\)-degrees of freedom. Then

\[
\mathbb{E}\left[\max_{1 \leq i \leq L} q_i\right] \leq (\sqrt{2 \log(L)} + \sqrt{d})^2.
\]

Lemma 10 Consider the set

\[
\mathcal{C}(k, \alpha) = \{x : h(x) \leq \sqrt{k} \left(1 + \mu \sqrt{\alpha B}\right), \|x\|_2 = 1\}
\]

The mean width of this set is bounded as

\[
\omega(\mathcal{C})^2 \leq \frac{1}{(1+\mu)^2} k(1 + \mu \sqrt{B\alpha})^2 (\sqrt{\log(M)} + \sqrt{B})^2
\]

Proof Let \(g \sim \mathcal{N}(0, I)\), and for a given \(x\), let \(\{w_G\} \in \mathcal{W}(x)\) be its optimal representation (Definition 4). Since \(x = \sum_{G \in \mathcal{G}} w_G\), we have

14
\[
\max_{x \in C} g^T x = \max_{x \in C} g^T \sum_{G \in \mathcal{G}} w_G \\
= \max_{x \in C} \sum_{G \in \mathcal{G}} g^T w_G \quad \text{s.t.} \quad x = \sum_{G \in \mathcal{G}} w_G \\
= \max_{\{w_G\} \in \mathcal{W}(x)} \sum_{G \in \mathcal{G}} g^T w_G \quad \text{s.t.} \quad \sum_{G \in \mathcal{G}} (1 + \mu) \|w_G\|_2 \leq \sqrt{k}(1 + \mu \sqrt{B \alpha}) \\
\leq \max_{\{w_G\} \in \mathcal{W}(x)} \sum_{G \in \mathcal{G}} g^T w_G \quad \text{s.t.} \quad \sum_{G \in \mathcal{G}} \|w_G\|_2 \leq \sqrt{k}(1 + \mu \sqrt{B \alpha}) \\
= \max_{\{w_G\} \in \mathcal{W}(x)} \sum_{G \in \mathcal{G}} g^T w_G \quad \text{s.t.} \quad \sum_{G \in \mathcal{G}} \|w_G\|_2 \leq \frac{\sqrt{k}(1 + \mu \sqrt{B \alpha})}{1 + \mu}
\]

where we define \(g_G \) to be the sub vector of \(g \) indexed by group \(G \). (i) follows since the constraint set is a superset of the constraint in the expression above it, from the fact that \(\|a\|_2 \leq \|a\|_1 \quad \forall a \), and (ii) is a result of simple convex analysis.

The mean width is then bounded as

\[
\omega(C) \leq \sqrt{k}(1 + \mu \sqrt{B \alpha}) \frac{1}{1 + \mu} \mathbb{E} \left[\max_{G \in \mathcal{G}} \|g_G\|_2 \right]
\]

(Squaring both sides of (11), we get

\[
\omega(C)^2 \leq k(1 + \mu \sqrt{B \alpha})^2 \frac{1}{(1 + \mu)^2} \left[\mathbb{E} \left[\max_{G \in \mathcal{G}} \|g_G\|_2 \right] \right]^2 \\
\leq k(1 + \mu \sqrt{B \alpha})^2 \frac{1}{(1 + \mu)^2} \mathbb{E} \left[\left(\max_{G \in \mathcal{G}} \|g_G\|_2 \right)^2 \right] \\
= k(1 + \mu \sqrt{B \alpha})^2 \frac{1}{(1 + \mu)^2} \mathbb{E} \left[\max_{G \in \mathcal{G}} \|g_G\|_2^2 \right]
\]

where (iii) follows from Jensen’s inequality and (iv) follows from the fact that the square of the maximum of non-negative numbers is the same as the maximum of the squares. Now, note that since \(g \) is Gaussian, \(\|g_G\|^2 \) is a \(\chi^2 \) random variable with at most \(B \) degrees of freedom. From Lemma [9] we have

\[
\omega(C)^2 \leq \frac{1}{(1 + \mu)^2} k(1 + \mu \sqrt{B \alpha})^2 (\sqrt{2 \log(M)} + \sqrt{B})^2
\]

Lemma [10] and Theorem [2] lead directly to Theorem [5].
4.2 Extensions to Data with Correlated Entries

The results we proved above can be extended to data Φ with correlated Gaussian entries as well (see [Raskutti et al., 2010] for results in linear regression settings). Indeed, in most practical applications we are interested in, the features are expected to contain correlations. For example, in the fMRI application that is one of the major motivating applications of our work, it is reasonable to assume that voxels in the brain will exhibit correlation amongst themselves at a given time instant. This entails scaling the number of measurements by the condition number of the covariance matrix Σ, where we assume that each row if the measurement matrix Φ is sampled from a Gaussian $(0, \Sigma)$ distribution. Specifically, we obtain the following generalization of the result in (Plan and Vershynin, 2012) for the SOSlasso with a correlated Gaussian design. We now consider the following constraint set:

$$C_{corr} = \{ x : h(x) \leq \frac{1}{\sigma_{\min}(\Sigma^{\frac{1}{2}})} \sqrt{k(1 + \mu \sqrt{B})}, \| \Sigma^{\frac{1}{2}} x \| \leq 1 \} \quad (13)$$

We consider the set C_{corr} and not C in (4), since we require the constraint set to be a subset of the unit Euclidean ball. In the proof of Corollary 11 below, we will reduce the problem to an optimization over variables of the form $z = \Sigma^{\frac{1}{2}} x$, and hence we require $\| \Sigma^{\frac{1}{2}} x \|_2 \leq 1$. Enforcing this constraint leads to the corresponding upper bound on $h(x)$.

Corollary 11 Let the entries of the data matrix Φ be sampled from a $N(0, \Sigma)$ distribution. Suppose the measurements follow the model in (1). Suppose we wish to recover a (k, α)−group sparse vector from the set C_{corr} in (13). Suppose the true coefficient vector x^* satisfies $\| \Sigma^{\frac{1}{2}} x^* \| = 1$. Then, so long as the number of measurements n satisfies

$$n \geq C \delta^{-2} \frac{k}{(1 + \mu)^2} (1 + \mu \sqrt{B\alpha})^2 \left(\sqrt{2 \log(M)} + \sqrt{B} \right)^2 \kappa(\Sigma)$$

the solution to (2) satisfies

$$\| \hat{x} - x^* \|^2 \leq \frac{\delta}{\sigma_{\min}(\Sigma)}$$

where $\sigma_{\min}(\cdot)$, $\sigma_{\max}(\cdot)$ and $\kappa(\cdot)$ denote the minimum and maximum singular values and the condition number of the corresponding matrices respectively.

Before we prove this result, we make note of the following lemma

Lemma 12 Suppose $A \in \mathbb{R}^{s \times t}$, and let $A_G \in \mathbb{R}^{G \times t}$ be the sub matrix of A formed by retaining the rows indexed by group $G \in \mathcal{G}$. Suppose $\sigma_{\max}(A)$ is the maximum singular value of A, and similarly for A_G. Then

$$\sigma_{\max}(A) \geq \sigma_{\max}(A_G) \quad \forall G \in \mathcal{G}$$

Proof Consider an arbitrary vector $x \in \mathbb{R}^p$, and let \bar{G} be the indices that are to be indexed by G. We then have the following:

$$\|Ax\|^2 = \left\| \begin{bmatrix} A_G x \\ \bar{A}_G x \end{bmatrix} \right\|^2 = \|A_G x\|^2 + \|\bar{A}_G x\|^2$$

$$\Rightarrow \|Ax\|^2 \geq \|A_G x\|^2 \quad (14)$$
We therefore have

\[
\sigma_{\text{max}}(A) = \sup_{\|x\| = 1} \|Ax\| \\
\geq \sup_{\|x\| = 1} \|A_Gx\| \\
= \sigma_{\text{max}}(A_G)
\]

where the inequality follows from (14).

We now proceed to prove Corollary 11.

Proof Since the entries of the data matrices are correlated Gaussians, the inner products in the objective function of the optimization problem (2) can be written as

\[
\langle \Phi_i, x \rangle = \langle \Sigma^{1/2} \Phi_i, x \rangle = \langle \Phi_i', \Sigma^{1/2} x \rangle
\]

where \(\Phi_i' \sim \mathcal{N}(0, I) \). Hence, we can replace \(x \) in our result in Theorem 5 by \(\Sigma^{1/2} x \), and make appropriate changes to the constraint set.

We then see that the optimization problem we need to solve is

\[
\hat{x} = \arg \min_{x} - \sum_{i=1}^{n} y_i \langle \Phi_i', \Sigma^{1/2} x \rangle \quad \text{s.t. } x \in C
\]

Defining \(z = \Sigma^{1/2} x \), we can equivalently write the above optimization as

\[
\hat{z} = \arg \min_{z} - \sum_{i=1}^{n} y_i \langle \Phi_i', z \rangle \quad \text{s.t. } z \in \Sigma^{1/2} C
\]

where we define \(\Sigma^{1/2} C \) to be the set \(C \), with each element multiplied by \(\Sigma^{1/2} \). We see that (15) is of the same form as (2), with the constraint set “scaled” by the matrix \(\Sigma^{1/2} \). We now need to bound the mean width of the set \(\Sigma^{1/2} C \). We thus obtain the following set of inequalities

\[
\max_{z \in \Sigma^{1/2} C} g^T z = \max_{x \in C} g^T \Sigma^{1/2} x
\]

\[
= \max_{x \in C} (\Sigma^{1/2} g)^T x
\]

\[
\leq \max_{\{w_G\} \in W(x)} \sum_{G \in \mathcal{G}} (\Sigma^{1/2} g)^T w_G \quad \text{s.t. } \sum_{G \in \mathcal{G}} \|w_G\|_2 \leq \frac{\sqrt{k}(1 + \mu \sqrt{B\alpha})}{\sigma_{\text{min}}(\Sigma^{1/2})(1 + \mu)}
\]

\[
= \frac{\sqrt{k}(1 + \mu \sqrt{B\alpha})}{\sigma_{\text{min}}(\Sigma^{1/2})(1 + \mu)} \max_{G \in \mathcal{G}} \|\Sigma^{1/2} g\|_G
\]

\[
= \frac{\sqrt{k}(1 + \mu \sqrt{B\alpha})}{\sigma_{\text{min}}(\Sigma^{1/2})(1 + \mu)} \max_{G \in \mathcal{G}} \|\Sigma^{1/2} G g\|
\]

where (i) follows from the same arguments used to obtain (10). By \(\Sigma^{1/2}_G \), we mean the \(|G| \times p\) sub matrix of \(\Sigma^{1/2} \) obtained by retaining rows indexed by group \(G \).
To compute the mean width, we need to find $\mathbb{E}[\max_{G \in G} \| \Sigma_G^\frac{1}{2} g \|^2]$. Now, since $g \sim \mathcal{N}(0, I)$, $\Sigma_G^\frac{1}{2} g \sim \mathcal{N}(0, \Sigma_G^\frac{1}{2} (\Sigma_G^\frac{1}{2})^T)$. Hence, $\| \Sigma_G^\frac{1}{2} g \|^2 \leq \sigma_{\max}(\Sigma_G^\frac{1}{2}) \| c \|^2$ where $c \sim \mathcal{N}(0, I_{|G|})$. \|c\|^2 \sim \chi^2_{|G|}$, and we can again use Lemma 9 to obtain the following bound for the mean width:

$$\omega(\Sigma^\frac{1}{2} C)^2 \leq \frac{k(1 + \mu \sqrt{B \alpha})^2}{\sigma_{\min}(\Sigma)(1 + \mu)^2} \left(\sqrt{2 \log(M)} + \sqrt{B} \right)^2 \left[\max_{G \in G} \sigma_{\max}(\Sigma_G) \right]$$

where the last inequality follows from Lemma 12.

We then have that so long as the number of measurements n is larger than $C\delta^{-2}$ times the quantity in (16),

$$\| \hat{z} - z^* \|^2 = \left\| \Sigma^\frac{1}{2} \hat{x} - \Sigma^\frac{1}{2} x^* \right\|^2 \leq \delta$$

However, note that

$$\sigma_{\min}(\Sigma) \| \hat{x} - x^* \|^2 \leq \left\| \Sigma^\frac{1}{2} \hat{x} - \Sigma^\frac{1}{2} x^* \right\|^2$$

(16) and (17) combine to give the final result. Note that for the sake of keeping the exposition simple, we have used Lemma 12 and bounded the number of measurements needed as a function of the maximum singular value of Σ. However, the number of measurements actually needed only depends on $\max_{G \in G} \sigma_{\max}(\Sigma_G)$, which is typically much lesser.

5. Applications and Experiments

In this section, we perform experiments on both real and toy data, and show that the function proposed in (3) indeed recovers the kind of sparsity patterns we are interested in this paper. First, we experiment with some toy data to understand the properties of the function $h(x)$ and in turn, the solutions that are yielded from the optimization problem (2). Here, we take the opportunity to report results on linear regression problems as well. We then present results using two datasets from cognitive neuroscience and computational biology.

5.1 The SOSlasso for Multitask Learning

The SOS lasso is motivated in part by multitask learning applications. The group lasso is a commonly used tool in multitask learning, and it encourages the same set of features to be selected across all tasks. As mentioned before, we wish to focus on a less restrictive version of multitask learning, where the main idea is to encourage sparsity patterns that are similar, but not identical, across tasks. Such a restriction corresponds to a scenario where the different tasks are related to each other, in that they use similar features, but are not
exactly identical. This is accomplished by defining subsets of similar features and searching for solutions that select only a few subsets (common across tasks) and a sparse number of features within each subset (possibly different across tasks). Figure 3 shows an example of the patterns that typically arise in sparse multitask learning applications, along with the one we are interested in. We see that the SOSlasso, with its ability to select a few groups and only a few non-zero coefficients within those groups lends itself well to the scenario we are interested in.

Figure 3: A comparison of different sparsity patterns in the multitask learning setting. Figure (a) shows a standard sparsity pattern. An example of group sparse patterns promoted by Glasso (Yuan and Lin, 2006) is shown in Figure (b). In Figure (c), we show the patterns considered in (Jalali et al., 2010). Finally, in Figure (d) we show the patterns we are interested in this paper. The groups are sets of rows of the matrix, and can overlap with each other.

A major application that we are motivated by is the analysis of multi-subject fMRI data, where the goal is to predict a cognitive state from measured neural activity using voxels as features. Because brains vary in size and shape, neural structures can be aligned only crudely. Moreover, neural codes can vary somewhat across individuals (Feredoes et al., 2007). Thus, neuroanatomy provides only an approximate guide as to where relevant information is located across individuals: a voxel useful for prediction in one participant suggests the general anatomical neighborhood where useful voxels may be found, but not the precise voxel. Past work in inferring sparsity patterns across subjects has involved the use of groupwise regularization (van Gerven et al., 2009), using the logistic lasso to infer sparsity patterns without taking into account the relationships across different subjects (Ryali et al., 2010), or using the elastic net penalty to account for groupings among coefficients (Rish et al., 2012). These methods do not exclusively take into account both the common macrostructure and the differences in microstructure across brains, and the SOSlasso allows one to model both the commonalities and the differences across brains. Figure 4 sheds light on the motivation, and the grouping of voxels across brains into overlapping sets.

In the multitask learning setting, suppose the features are given by Φ_t, for tasks $t = \{1, 2, \ldots, T\}$, and corresponding sparse vectors $x^{\star}_t \in \mathbb{R}^p$. These vectors can be arranged as columns of a matrix X^{\star}. Suppose we are now given M groups $\tilde{G} = \{\tilde{G}_1, \tilde{G}_2, \ldots\}$ with maximum size \tilde{B}. Note that the groups will now correspond to sets of rows of X^{\star}.
Figure 4: SOSlasso for fMRI inference. The figure shows three brains, and voxels in a particular anatomical region are grouped together, across all individuals (red and green ellipses). For example, the green ellipse in the brains represents a single group. The groups denote anatomically similar regions in the brain that may be co-activated. However, within activated regions, the exact location and number of voxels may differ, as seen from the green spots.

Let $\mathbf{x}^* = [\mathbf{x}_1^T \mathbf{x}_2^T \ldots \mathbf{x}_T^T]^T \in \mathbb{R}^{Tp}$, and $\mathbf{y} = [\mathbf{y}_1^T \mathbf{y}_2^T \ldots \mathbf{y}_T^T]^T \in \mathbb{R}^{Tn}$. We also define $\mathcal{G} = \{G_1, G_2, \ldots, G_M\}$ to be the set of groups defined on \mathbb{R}^{Tp} formed by aggregating the rows of \mathbf{X} that were originally in $\tilde{\mathcal{G}}$, so that \mathbf{x} is composed of groups $G \in \mathcal{G}$, and let the corresponding maximum group size be $B = \tilde{T}\tilde{B}$. By organizing the coefficients in this fashion, we can reduce the multitask learning problem into the standard form as considered in [2]. Hence, all the results we obtain in this paper can be extended to the multitask learning setting as well.

5.1.1 Results on fMRI dataset

In this experiment, we compared SOSlasso, lasso, standard multitask Glasso (with each feature grouped across tasks), the overlapping group lasso (Jacob et al., 2009) (with the same groups as in SOSlasso) and the Elastic Net (Zou and Hastie, 2005) in analysis of the star-plus dataset (Wang et al., 2003). 6 subjects made judgements that involved processing 40 sentences and 40 pictures while their brains were scanned in half second intervals using fMRI. We retained the 16 time points following each stimulus, yielding 1280 measurements at each voxel. The task is to distinguish, at each point in time, which kind of stimulus a subject was processing. (Wang et al., 2003) showed that there exists cross-subject consistency in the cortical regions useful for prediction in this task. Specifically, experts partitioned each dataset into 24 non overlapping regions of interest (ROIs), then reduced the data by discarding all but 7 ROIs and, for each subject, averaging the BOLD response across voxels within each ROI. With the resulting data, the authors showed that a classifier trained on data from 5 participants generalized above chance when applied to data from a 6th–thus proving some degree of consistency across subjects in how the different kinds of information were encoded.

We assessed whether SOSlasso could leverage this cross-individual consistency to aid in the discovery of predictive voxels without requiring expert pre-selection of ROIs, or data reduction, or any alignment of voxels beyond that existing in the raw data. Note that, unlike

4. Data and documentation available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
(Wang et al., 2003), we do not aim to learn a solution that generalizes to a withheld subject. Rather, we aim to discover a group sparsity pattern that suggests a similar set of voxels in all subjects, before optimizing a separate solution for each individual. If SOSlasso can exploit cross-individual anatomical similarity from this raw, coarsely-aligned data, it should show reduced cross-validation error relative to the lasso applied separately to each individual. If the solution is sparse within groups and highly variable across individuals, SOSlasso should show reduced cross-validation error relative to Glasso. Finally, if SOSlasso is finding useful cross-individual structure, the features it selects should align at least somewhat with the expert-identified ROIs shown by (Wang et al., 2003) to carry consistent information.

We trained the 5 classifiers using 4-fold cross validation to select the regularization parameters, considering all available voxels without preselection. We group regions of $5 \times 5 \times 1$ voxels and considered overlapping groups “shifted” by 2 voxels in the first 2 dimensions.

Figure 5 shows the prediction error (misclassification rate) of each classifier for every individual subject. SOSlasso shows the smallest error. The substantial gains over lasso indicate that the algorithm is successfully leveraging cross-subject consistency in the location of the informative features, allowing the model to avoid over-fitting individual subject data. We also note that the SOSlasso classifier, despite being trained without any voxel pre-selection, averaging, or alignment, performed comparably to the best-performing classifier reported by Wang et al. (2003), which was trained on features average over 7 expert pre-selected ROIs (mean classification error = XX for SOS LASSO, 0.30 for support vector machine in Wang et al.).

To assess how well the clusters selected by SOSlasso align with the anatomical regions thought a-priori to be involved in sentence and picture representation, we calculated the proportion of selected voxels falling within the 7 ROIs identified by (Wang et al., 2003) as relevant to the classification task (Table 3). For SOSlasso an average of 61.9% of identified voxels fell within these ROIs, significantly more than for lasso, group lasso (with or without overlap) and the elastic net. The overlapping group lasso, despite returning a very large number of predictors, hardly overlaps with the regions of interest to cognitive neuroscientists. The lasso and the elastic net make use of the fact that a separate classifier can be trained for each subject, but even in this case, the overlap with the regions of interest is low. The group lasso also fares badly in this regard, since the same voxels are forced to be selected across individuals, and this means that the regions of interest which will be mis-aligned across subjects will not in general be selected for each subject. All these drawbacks are circumvented by the SOSlasso. This shows that even without expert knowledge about the relevant regions of interest, our method partially succeeds in isolating the voxels that play a part in the classification task.

We make the following observations from Figure 5 and Figure 6.

- The overlapping group lasso (Jacob et al., 2009) is ill suited for this problem. This is natural, since the premise is that the brains of different subjects can only be crudely aligned, and the overlapping group lasso will force the same voxel to be selected across all individuals. It will also force all the voxels in a group to be selected, which is again

5. The irregular group size compensates for voxels being larger and scanner coverage being smaller in the z-dimension (only 8 slices relative to 64 in the x- and y-dimensions).
| Method | Avg. Overlap with ROI % |
|----------|-------------------------|
| OGlasso | 27.18 |
| ENet | 43.46 |
| Lasso | 41.51 |
| Glasso | 47.43 |
| SOSlasso | 61.90 |

Table 3: Mean Sparsity levels of the methods considered, and the average overlap with the precomputed ROIs in (Wang et al. 2003)

Figure 5: Misclassification error on a hold out set for different methods, on a per subject basis. Each solid line connects the different errors obtained for a particular subject in the dataset.

undesirable from our perspective. This leads to a high number of voxels selected, and a high error.

- The elastic net (Zou and Hastie 2005) treats each subject independently, and hence does not leverage the inter-subject similarity that we know exists across brains. The fact that all correlated voxels are also picked, coupled with a highly noisy signal means that a large number of voxels are selected, and this not only makes the result hard to interpret, but also leads to a large generalization error.

- The lasso (Tibshirani 1996) is similar to the elastic net in that it does not leverage the inter subject similarities. At the same time, it enforces sparsity in the solutions, and hence a fewer number of voxels are selected across individuals. It allows any task correlated voxel to be selected, regardless of its spatial location, and that leads to a highly distributed sparsity pattern (Figure 6(a)). It leads to a higher cross-validation error, indicating that the ungrouped voxels are inferior predictors. Like the elastic net, this leads to a poor generalization error (Figure 5). The distributed sparsity pattern, low overlap with predetermined Regions of Interest, and the high error on the hold out set is what we believe makes the lasso a suboptimal procedure to use.

- The group lasso (Lounici et al. 2009) groups a single voxel across individuals. This allows for taking into account the similarities between subjects, but not the minor
differences across subjects. Like the overlapping group lasso, if a voxel is selected for one person, the same voxel is forced to be selected for all people. This means, if a voxel encodes picture or sentence in a particular subject, then the same voxel is forced to be selected across subjects, and can arbitrarily encode picture or sentence. This gives rise to a purple haze in Figure 6(b) and makes the result hard to interpret. The purple haze manifests itself due to the large number of ambiguous voxels in Figure 6(d).

Finally, the SOSlasso as we have argued helps in accounting for both the similarities and the differences across subjects. This leads to the learning of a code that is at the same time very sparse and hence interpretable, and leads to an error on the test set that is the best among the different methods considered. The SOSlasso (Figure 6(c)) overcomes the drawbacks of lasso and Glasso by allowing different voxels to be selected per group. This gives rise to a spatially clustered sparsity pattern, while at the same time selecting a negligible amount of voxels that encode both picture and sentences (Figure 6(d)). Also, the resulting sparsity pattern has a larger overlap with the ROI’s than other methods considered.

5.2 Toy Data, Linear Regression

Although not the primary focus of this paper, we show that the method we propose can also be applied to the linear regression setting. To this end, we consider simulated data and a multitask linear regression setting, and look to recover the coefficient matrix. We also use the simulated data to study the properties of the function we propose in (3).

The toy data is generated as follows: we consider $T = 20$ tasks, and consider overlapping groups of size $B = 6$. The groups are defined so that neighboring groups overlap ($G_1 = \{1, 2, \ldots, 6\}$, $G_2 = \{5, 6, \ldots, 10\}$, $G_3 = \{9, 10, \ldots, 14\}$, \ldots). We consider a case with $M = 100$ groups, We set $k = 10$ groups to be active. We vary the sparsity level of the active groups α and obtain $m = 100$ Gaussian linear measurements corrupted with Additive White Gaussian Noise of standard deviation $\sigma = 0.1$. We repeat this procedure 100 times and average the results. To generate the coefficient matrices X^*, we select k groups at random, and within the active groups, only retain fraction α of the coefficients, again at random. The retained locations are then populated with uniform $[-1, 1]$ random variables.

The regularization parameters were clairvoyantly picked to minimize the Mean Squared Error (MSE) over a range of parameter values. The results of applying lasso, standard latent group lasso (Jacob et al., 2009), Group lasso where each group corresponds to a row of the sparse matrix, (Lounici et al., 2009) and our SOSlasso to these data are plotted in Figures 7(a), varying α.

Figure 7(a) shows that, as the sparsity within the active group reduces (i.e. the active groups become more dense), the overlapping group lasso performs progressively better. This is because the overlapping group lasso does not account for sparsity within groups, and hence the resulting solutions are far from the true solutions for small values of α. The SOSlasso however does take this into account, and hence has a lower error when the active groups are sparse. Note that as $\alpha \to 1$, the SOSlasso approaches O-Glasso (Jacob et al., 2009). The Lasso (Tibshirani, 1996) does not account for group structure at all and
Figure 6: [Best seen in color]. Aggregated sparsity patterns across subjects per brain slice. All the voxels selected across subjects in each slice are colored in red, blue or purple. Red indicates voxels that exhibit a picture response in at least one subject and never exhibit a sentence response. Blue indicates the opposite. Purple indicates voxel that exhibited a picture response in at least one subject and a sentence response in at least one more subject. (d) shows the percentage of selected voxels that encode picture, sentence or both.
Figure 7: Figure (a) shows the result of varying α. The SOSlasso accounts for both inter and intra group sparsity, and hence performs the best. The Glasso achieves good performance only when the active groups are non sparse. Figure (b) shows a toy sparsity pattern, with different colors and brackets denoting different overlapping groups performs poorly when α is large, whereas the Group lasso (Lounici et al., 2009) does not account for overlapping groups, and hence performs worse than O-Glasso and SOSlasso.

5.3 SOSlasso for Gene Selection

As explained in the introduction, another motivating application for the SOSlasso arises in computational biology, where one needs to predict whether a particular breast cancer tumor will lead to metastasis or not, from gene expression profiles. We used the breast cancer dataset compiled by (Van De Vijver et al., 2002) and grouped the genes into pathways as in (Subramanian et al., 2005). To make the dataset balanced, we perform a 3-way replication of one of the classes as in (Jacob et al., 2009), and also restrict our analysis to genes that are atleast in one pathway. Again as in (Jacob et al., 2009), we ensure that all the replicates are in the same fold for cross validation. We do not perform any preprocessing of the data, other than the replication to balance the dataset. We compared our method to the standard lasso, and the overlapping group lasso. The standard group lasso (Yuan and Lin, 2006) is ill-suited for this experiment, since the groups overlap and the sparsity pattern we expect is a union of groups, and it has been shown that the group lasso method will not recover the signal in such cases.

Method	Misclassification Rate
lasso	0.42
OGlasso (Jacob et al., 2009)	0.39
SOSlasso	0.33

Table 4: Misclassification Rate on the test set for the different methods considered. The SOSlasso obtained better error rates as compared to the other methods.
We trained a model using 4-fold cross validation on 80% of the data, and used the remaining 20% as a final test set. Table 4 shows the results obtained. We see that the SOSlasso penalty leads to lower classification errors as compared to the lasso or the latent group lasso. The errors reported are the ones obtained on the final (held out) test set.

6. Conclusions

In this paper, we introduced a function that can be used to constrain solutions of high dimensional variable selection problems so that they display both within and across group sparsity. We generalized the sparse group lasso to cases with arbitrary overlap, and proved consistency results for logistic regression settings. Our results unify the results between the lasso and the group lasso (with or without overlap), and reduce to those cases as special cases. We also outlined the use of the function in multitask fMRI and computational biology problems.

From an algorithmic standpoint, when the groups overlap a lot, the replication procedure used in this paper might not be memory efficient. Future work involves designing algorithms that preclude replication, while at the same time allowing for the SOS- sparsity patterns to be generated.

From a cognitive neuroscience point of view, future work involves grouping the voxels in more intelligent ways. Our method to group spatially co-located voxels yields results that are significantly better than traditional lasso-based methods, but it remains to be seen whether there are better motivated ways to group them. For example, one might consider grouping voxels based on functional connectivities, or take into account the geodesic distance on the brain surface.

References

Francis Bach. Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384–414, 2010.

Florentina Bunea. Honest variable selection in linear and logistic regression models via ℓ_1 and $\ell_1+\ell_2$ penalization. *Electronic Journal of Statistics*, 2:1153–1194, 2008.

S. Chatterjee, A. Banerjee, and A. Ganguly. Sparse group lasso for regression on land climate variables. In *Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on*, pages 1–8. IEEE, 2011.

Eva Feredoes, Giulio Tononi, and Bradley R Postle. The neural bases of the short-term storage of verbal information are anatomically variable across individuals. *The Journal of Neuroscience*, 27(41):11003–11008, 2007.

L. Jacob, G. Obozinski, and J. P. Vert. Group lasso with overlap and graph lasso. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 433–440. ACM, 2009.

A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. *Advances in Neural Information Processing Systems*, 23:964–972, 2010.
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. arXiv preprint arXiv:1009.2139, 2010.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of sparsity in multi-task learning. arXiv preprint arXiv:0903.1468, 2009.

Andreas Maurer and Massimiliano Pontil. Structured sparsity and generalization. The Journal of Machine Learning Research, 13:671–690, 2012.

Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Sofia Mosci, Silvia Villa, Alessandro Verri, and Lorenzo Rosasco. A primal-dual algorithm for group sparse regularization with overlapping groups. In Advances in Neural Information Processing Systems, pages 2604–2612, 2010.

S. N. Negahban, P. Ravikumar, M. J Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science, 27(4):538–557, 2012.

G. Obozinski, L. Jacob, and J.P. Vert. Group lasso with overlaps: The latent group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach. 2012.

N. Rao, B. Recht, and R. Nowak. Universal measurement bounds for structured sparse signal recovery. In Proceedings of AISTATS, volume 2102, 2012.

Nikhil Rao, Christopher Cox, Robert Nowak, and Timothy Rogers. Sparse overlapping sets lasso for multitask learning and fmri data analysis. Neural Information Processing Systems, 2013.

Nikhil S Rao, Robert D Nowak, Stephen J Wright, and Nick G Kingsbury. Convex approaches to model wavelet sparsity patterns. In Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 1917–1920. IEEE, 2011.

G. Raskutti, M. Wainwright, and B. Yu. Restricted eigenvalue properties for correlated gaussian designs. Journal of Machine Learning Research, 11:2241–2259, 2010.

Irina Rish, Guillermo A Cecchia, Kyle Heutonb, Marwan N Balikic, and A Vania Apkarian. Sparse regression analysis of task-relevant information distribution in the brain. In Proceedings of SPIE, volume 8314, page 831412, 2012.

Srikanth Ryali, Kaustubh Supekar, Daniel A Abrams, and Vinod Menon. Sparse logistic regression for whole brain classification of fmri data. NeuroImage, 51(2):752, 2010.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Computational and Graphical Statistics, (just-accepted), 2012.
P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. Collaborative hierarchical sparse modeling. In *Information Sciences and Systems (CISS), 2010 44th Annual Conference on*, pages 1–6. IEEE, 2010.

Pablo Sprechmann, Ignacio Ramirez, Guillermo Sapiro, and Yonina C Eldar. C-hilasso: A collaborative hierarchical sparse modeling framework. *Signal Processing, IEEE Transactions on*, 59(9):4183–4198, 2011.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences of the United States of America*, 102(43):15545–15550, 2005.

Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288, 1996.

Marc J Van De Vijver, Yudong D He, Laura J van’t Veer, Hongyue Dai, Augustinus AM Hart, Dorien W Voskuil, George J Schreiber, Johannes L Peterse, Chris Roberts, Matthew J Marton, et al. A gene-expression signature as a predictor of survival in breast cancer. *New England Journal of Medicine*, 347(25):1999–2009, 2002.

Marcel van Gerven, Christian Hesse, Ole Jensen, and Tom Heskes. Interpreting single trial data using groupwise regularisation. *NeuroImage*, 46(3):665–676, 2009.

X. Wang, T. M Mitchell, and R. Hutchinson. Using machine learning to detect cognitive states across multiple subjects. *CALD KDD project paper*, 2003.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):49–67, 2006.

J. Zhou, J. Chen, and J. Ye. Malsar: Multi-task learning via structural regularization, 2012.

Y. Zhou, R. Jin, and S. C. Hoi. Exclusive lasso for multi-task feature selection. In *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2010.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 67(2):301–320, 2005.