Study on the effect of tunicate cellulose nanocrystals in the preparation of sodium alginate-based enteric capsule

Dezhong Xu · Yanan Cheng · Shuai Wu · Qiuixia Zou · Ajoy Kanti Mondal · Dengwen Ning · Fang Huang

Received: 28 September 2021 / Accepted: 18 January 2022 / Published online: 31 January 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract In this work, tunicate cellulose nanocrystals (tCNCs) were extracted from the tunicate by bleaching and acid hydrolysis. They were used as filler in the preparation of sodium alginate-based enteric capsules. The addition of tCNCs with a high aspect ratio (65) rendered the enteric capsule excellent physical properties. Compared with the control sample, when the addition of tCNCs were 10% (wt), the water contact angle of the capsule was enhanced by 46.0%, the opacity was increased by 356.8%, the maximum tensile stress was increased by 142.6%, the modulus of elasticity was increased by 240.3%, and the elongation at break was increased by 133.8%. In the in vitro degradation experiments, the capsule hardly degraded in the gastric environment (pH 1.2), while in the intestinal environment (pH 6.8), the degradation became slower with the increase of tCNC content, which was consistent with the properties of the enteric capsule. This research developed a new direction for the application of tCNCs in the pharmaceutical material productions.
Keywords Tunicate cellulose nanocrystal · Sodium alginate · Enteric-soluble · Capsule

Introduction

In the food and pharmaceutical industries, encapsulation (Samakradhamrongthai et al. 2019) technology has been widely used. The capsules are less likely to be broken down by saliva in the mouth than tablets (Fathi et al. 2018; Grill et al. 2020; Yan et al. 2020), providing good protection from damage and protecting the digestive and respiratory organs. Generally, according to the dissolution location, the capsules can be divided into two categories, the gastric capsule and the enteric capsule. Unlike the gastric capsule, the enteric capsule does not disintegrate in the lower pH environment, i.e., the acidic stomach. Upon reaching the small intestine, the enteric capsule starts to disintegrate and releases the drug in the neutral pH environment. This could protect the stomach from drug-induced irritation (Al-Gousous and Langguth 2015).

Materials with good physical properties and biocompatibility are used to produce enteric capsules to maintain the stability of the medicine during the storage (Kathpalia et al. 2014). Currently in the market, the raw material for capsule manufacturing is mainly gelatin (derived from the skin and bone of animals such as pigs and cows). In addition, gelatin is prone to cross-linking (Digenis et al. 1994) and the high moisture content of the capsules leads to instability of the filled hygroscopic drugs (Duconseille et al. 2015). Recently, some non-gelatin-based capsules attracted interest in the pharmaceutical material industry. The most common alternatives are hydroxypropyl methylcellulose (HPMC) (Fu et al. 2020), pullulan (Ding et al. 2020) and starch-based capsules (Chen et al. 2020; Ji et al. 2017). They serve as good substitutes for gelatin, but have some limitations since they are not pH-dependent and unstable in the enteral therapy. Sodium alginate (SA) is widely used in food, pharmaceutical, and bioengineering fields owing to its non-toxicity, stability, biocompatibility, and biodegradability (Abbasiliasi et al. 2019; Fayaz et al. 2009). Thus, SA has the potential to be used in the capsule production and could be an alternative of the traditional gelatin capsules. However, the mechanical
The properties of SA are weak, which makes it difficult to form capsule in the molding process.

The tunicates cellulose nanocrystals (tCNCs) are extracted from the mantle of tunicate (a kind of marine animal). Tunicate cellulose is a linear polymer with many D-glucopyranose rings linked by β-(1,4) glycosidic bonds. Recently, our research group has found that the crystallinity index (CrI) and aspect ratio of tCNCs is 93.9% and 65.0, respectively. However, the CrI and aspect ratio of the softwood nanocellulose are 70.9% and 10.5, respectively. These high CrI and aspect ratio render tCNCs excellent physical strength (Cheng et al. 2020). Therefore, from this point of view, tCNCs might be used as an enforcement agent in the SA capsule formation to increase the physical strength (Liu et al. 2021b, 2021c).

In this work, we applied tCNCs in the SA-based capsule using glycerol as a plasticizer. The prepared capsules were analyzed by mechanical characterizations, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM). The results showed that tCNCs were uniformly embedded into the SA matrix to form a rigid capsule. With the addition of tCNCs, the hydrophobic property, opacity and tensile properties were significantly improved in the resulted capsule. In addition, the capsule was relatively stable in an acidic medium but degraded well in neutral medium. Therefore, the tCNC-SA capsule is expected to load gastric irritant drugs as enteric capsules. As far as we know, this is the first research on the effect of tCNCs in the enteric capsule formation. This research would provide potential use of tCNCs in the pharmaceutical material industry.

Materials and methods

Materials

Tunicates were purchased from Weihai Sea Food Market in Shandong, China. Treasure blue edible pigment (99%) was purchased from Wilton Industries, Inc. Dialysis bag (MW 20,000) was purchased from MYM biological technology Co., Ltd. Phenyl isocyanate (98%) was purchased from Xiya Reagent Co., Ltd. KBr (99%), KOH (99%), phosphate buffered solution (PBS), NaClO₂ (99%), H₂SO₄ (98%), acetic acid (99.8%), glycerol (99%), tetrahydrofuran (99%), pyridine and sodium alginate (SA) (98%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All the chemicals were used in this study without further purification.

Methods

Preparation of tCNCs

The tunicate specimens were slit with a knife to remove the internal organs. The residual tunicate mantles were washed thoroughly with deionized water (DI water). After that, the mantles were soaked in a 5% (w/v) KOH solution for 10 h. Then, 300 mL 2% sodium chlorite solution and 5 mL of anhydrous acetic acid were mixed properly to make bleaching solution. The mantles were washed 3 times with DI water to neutral, and bleached with 300 mL bleaching solution at 70 °C for 6 h, and the bleach solution was changed every 2 h. At last, they were washed thoroughly and cut into small pieces, which were designated as tunicate cellulose.

The tunicate cellulose was further hydrolyzed by sulfuric acid following a literature method (Tang et al. 2014). The tunicate cellulose was weighed 3 g in 105 mL 64% (v/v) sulfuric acid solution and stirred continuously for 2 h at 45 °C. The reaction was terminated by adding excess (10 times) DI water, and the precipitate was collected by centrifugation at 8000 r/min for 30 min. The precipitate was dialyzed in a dialysis bag with a cut-off molecular weight of 12,000–14,000 until the pH of the solution became neutral. After dialysis, the suspension was sonicated for 30 min and designated as tCNCs.

β-D-mannuronic(M)/α-L-guluronic analysis(G) analysis of SA

The M/G ratio of SA was determined by infrared spectroscopy through a literature method (Filippov and Kohn 1974). Briefly, the SA and KBr were pressed in the ratio of 1:200 and placed on a Fourier infrared spectrometer (VERTEX 70, Germany Bruker Technology Co., Ltd, Germany) to determine the infrared spectrum. The resolution was set to 4 cm⁻¹ and the samples were scanned 32 times in the range of 4000 to 400 cm⁻¹. The absorbance ratio of wave numbers 1290/1320 is designated as M/G ratio, which is 1.02 in this study.
Gel permeation chromatography (GPC) analysis of tCNCs and SA

Weighted average molecular weight (Mw) and number-average molecular weight (Mn) of tCNCs and SA, and the degree of polymerization of tCNCs were determined by GPC. Prior to the GPC analysis, tCNCs were firstly derivatized by phenyl isocyanate in the anhydrous pyridine following a literature method (Hubbell and Ragauskas 2010). The derivatized tCNCs were then dissolved in THF for GPC analysis containing ultraviolet (UV) detector (Agilent 1200 series, Agilent Technologies, Santa Clara, USA). The sample was filtered through a 0.45 μm membrane filter prior to injection. 20 μL of the sample was automatically injected. GPC analyses were carried out using a UV detector on a 4-column sequence of Styragel columns (HR0.5, HR2, HR4 and HR6, Waters Corporation, Milford, USA) at 1.00 mL/min flow rate. Polystyrene standards were used for calibration. WinGPC Unity software (Version 7.2.1, Polymer Standards Service USA, Inc.) was used to collect data and determine number average molecular weight (Mn) and weight average molecular weight (Mw) of the tricarbanilated tCNCs. The weight-average degree of polymerization (DPw) for the tCNCs was obtained by dividing Mw by 519 g/mol, the molecular weight of the tricarbanilated cellulose repeat unit.

The Mn and Mw determination of SA was carried out in a GPC system equipped with a refractive index (RI) detector (Agilent 1200 series, Agilent Technologies, Santa Clara, USA) on a 3-column sequence of Ultrahydrogel columns (120, 250 and 500, Waters Corporation, Milford, USA). The RI detector was set at 35°C. The mobile phase was an alkaline sodium hydroxide/acetate solution (0.2 M sodium hydroxide and 0.1 M sodium acetate, pH 12–13) and the flow rate was 0.5 mL/min. The SA dissolved in mobile phase (1 mg/mL) and the solution was then filtered with a 0.2 μm filter. The filtered sample (25 μL) was injected into the GPC column system for analysis. The pullulan standard samples were used as narrow calibration standards. The WinGPC Unity software was also applied to determine the Mn and Mw of SA.

Transmission electron microscopy (TEM) analysis of tCNCs

The morphology of tCNCs were studied by TEM (TECNAI G2 F20, FEI Co., USA). One drop of tCNCs suspension (1 wt%) was deposited on the surface of a copper grid covered with a porous carbon film. The grids were then allowed to float in a 2 wt% uranyl acetate solution for 3 min to stain the samples. Finally, the samples were dried at room temperature for 24 h and then tested by TEM with a resolution of 0.2 nm at an accelerating voltage of 100 kV.

Preparation of tCNC-SA film

In order to perform physical and mechanical property tests on tCNC-SA capsules, tCNC-SA film was firstly formed since it was convenient for testing. The tCNC-SA film was formed as following: SA (3 g) was firstly dissolved in DI water (100 mL) at 70°C in the water shaking bath (SY-2230, Crystal Instruments, USA). The glycerol (0.72 mL) was dropwisely added in the SA solution as plasticizer. During the formation of tCNC-SA film, the intercalation of glycerol could significantly decrease the interactions of the polymers of tCNCs and SA (Sothornvit and Krochta 2001). Thus, it can be used as plasticizer in tCNC-SA film. According to the study of Shimokawa et al. (2018), the optimal percentage of plasticizer addition is 30%, which is equivalent to 0.72 mL glycerol in this study. In addition, when the amount of tCNCs exceeded 10% in the tCNC-SA mixture, the agglomeration of tCNCs rendered tCNC-SA film inhomogeneous and decreased its physical strength. Similar observation was also reported in the previous literature (Merayo et al. 2017). Thus, in tCNC-SA film formations, the addition amounts of tCNCs in tCNC-SA mixture varied in different weight proportions, i.e. 0%, 1%, 3%, 5%, and 10%, which were marked as samples F0, F1, F2, F3 and F4, respectively. The tCNCs were dispersed evenly in the SA solution by ultrasound and the tCNC-SA gel was formed. After that, the resulted gel was degased by water vacuum pump for 30 min prior to the viscosity measurement. Rotor No. 4 was selected and the viscosity of tCNC-SA gel was measured at 12 rpm/min with a viscometer (NDJ-5S, Lichenkeyi Co., Ltd.) at 25 °C. In the meanwhile, the resulted gel was poured into a 90 mm diameter Petri
dish and dried at 45 °C for 24 h to form the tCNC-SA film. The preparation process is shown in Fig. 1.

Mechanical properties measurement

The mechanical properties (tensile strength, modulus of elasticity, elongation) of tCNC-SA film were measured by a universal material testing machine (Instron 3365, Instron Corporation, USA). The tCNC-SA film was cut into long strips of 62 mm × 20 mm and the film thickness was measured by vernier calipers (Baigong 0–150 mm, Shanghai Shenhan Measuring Tools Co., Ltd, China). The clamping distance was 25 mm and the stretching speed was 10 mm/min. Three parallel samples were measured and the average value was adopted. In addition, the tCNC-SA films (F0 and F3) were bent and twisted to visually observe their flexibility.

Opacity measurement

The opacity of tCNC-SA film was determined by its UV absorbance based on a literature method (Abbasiliasi et al. 2019). Briefly, tCNC-SA film was cut into squares with the size of 20 mm × 20 mm. The UV absorbances of these samples were recorded at 600 nm by UV spectrophotometer (Agilent 8453, Agilent Technologies Co. Ltd, USA) to calculate the opacity with the following Eq. (1) (Siripatrawan and Harte 2010):

\[
\text{Opacity} = \frac{A}{t}
\]

where A is the UV absorbance of the film at 600 nm, t is the film thickness, mm.

FT-IR analysis

The glycerol, tCNCs, and tCNC-SA film samples were placed on a Fourier infrared spectrometer to determine the infrared spectrum. The resolution was set to 4 cm⁻¹ and the samples were scanned 32 times in the range of 4000 to 400 cm⁻¹.

X-ray diffraction analysis

The X-ray diffraction (XRD) was used to analyze the crystallinity of tCNCs and tCNC-SA film samples. The scanning speed was set to 2°/min and scanned in the range of 20 = 5° ~ 45° with a voltage of 40 kV and a current of 40 mA.

Fig. 1 Preparation of tCNC-SA film
According to the study of French (French 2014), the tCNCs were judged to be cellulose I. The crystallinity index (CrI) was calculated according to Segal’s Eq. (2) (Segal et al. 1959; Yousefhashemi et al. 2019):

$$CrI = \frac{I_{200} - I_{am}}{I_{200}} \times 100$$ \hspace{1cm} (2)

where I_{200} is the diffraction intensity ($2\theta = 22.5^\circ$) of the (200) lattice plane in type I cellulose, and I_{am} is the diffraction intensity of the non-crystalline region at the minimum in the intensity near 18°.

Preparation of tCNC-SA capsule

The tCNC-SA capsules were prepared to observe the morphological changes in the in vitro degradation experiments. Basically, tCNC-SA capsule and tCNC-SA film shared the same chemical compositions. Their differences were in the formation process: the tCNC-SA capsule was dried in a mold while tCNC-SA film was dried in a Petri dish.

The capsules were prepared following a reference method (Abbasiliasi et al. 2019). The stainless-steel capsule mold was preheated in a 70 °C oven. The experimental step of preparation of tCNC-SA film was repeated to prepare tCNC-SA gel with different tCNCs ratios. In the meanwhile, the treasure blue edible pigment (1 wt%) was also added to the mixture. The formed gel was stirred well and was poured into the preheated mold. Finally, the molds were dried in a 45 °C oven for 4 h. The amounts of 100 capsules were prepared by adding different proportions of tCNC film (F0-F4). The following Eq. (3) is used to calculate the capsule formation rate (C). Finally, the dried capsules were removed from the mold for subsequent characterization.

$$C = \frac{N1}{N2} \times 100$$ \hspace{1cm} (3)

where $N1$ is the number of capsules formed, and $N2$ is the number of capsules made.

Characterization of the tCNC-SA capsule

The capsule characterization includes the appearance, the dry loss and water contact angle (WCA) testing. The appearance of tCNC-SA capsule was characterized by visual observation, and the dry loss was tested according to US Pharmacopoeia (USP) (Pharmacopeial 2017) method. The cap and body of the capsule were separated and weighed. After that, they were dried at 105 °C ovens for 6 h and weighed the dry weight. The following Eq. (4) was used to calculate the dry loss.

$$L = \frac{m1}{m2} \times 100$$ \hspace{1cm} (4)

where $m1$ is the mass of the sample before drying, and $m2$ is the mass of the sample after drying.

The capsule appearance includes surface smoothness, color uniformity, shape deformation and odor. The water contact angle testing of the capsules was described as follows: at ambient temperature, a certain size of the capsule (20 mm × 20 mm) was cut and fixed on a carrier table, and the water of 5 μL was dropped onto the capsule surface. The WCA was measured by goniometer (DSA 30, Kruss, Germany) to characterize the film hydrophobicity. Five points were tested for each sample and the average value was adopted.

Scanning electron microscopy (SEM) analysis

The morphology of tCNC-SA capsule was measured by SEM (Nova Nano SEM 230, FEI Co., USA). The treated sample was gold sprayed (100 s) by vacuum ion sputter (JFC-1600, JEOL Ltd, Japan), and the morphology of the sample was observed.

In vitro degradation experiments of tCNC-SA capsule

In order to protect the gastric mucosa from the irritation caused by the drug components, the capsules should not disintegrate and release drugs under acidic conditions. Therefore, in this research, the degradation study of tCNC-SA was divided into two steps. The influences of tCNC loading and pH of PBS buffer solution on the capsule degradation were studied in the first and second steps, respectively.

The first step focused on the effect of tCNC loading on capsule degradation time in a simulated human intestinal fluid of pH 6.8 and temperature (37 °C). The optimized tCNC loading was based on the degradation time (60 min). In practice, each tCNC-SA capsule (F0, F1, F2, F3, F4) was weighed into glass test tubes, and 7 mL of pH 6.8 PBS was added separately and dissolved in a 37 °C water shaking bath. The undissolved solid samples were collected through filtration.
at different time intervals (0 min, 15 min, 30 min and 60 min). The sample weight loss during the dissolution was calculated by the ratio of the initial sample weight (o.d. weight) and the o.d. weight of the sample in a certain time interval.

In the second step, the optimized tCNC loading was applied in tCNC-SA capsule formation. These capsules were used to study the pH effect on their degradation. Two pHs, 1.2 and 6.8 were chosen to simulate the human gastric and intestinal fluid environment, respectively (Ilgin et al. 2020). In this step, the capsules were dissolved in two PBS (pH 1.2 and pH 6.8) at 37 °C. During this process, the undissolved capsules were collected and the weight losses were also calculated, as described in the first step.

Results and discussion

GPC analysis of SA and tCNCs

The Mw and Mn of tricarbanilated tCNCs and SA, and the weight-average degree of polymerization (DPw) of tCNCs are listed in Table 1. The Mw and Mn of tricarbanilated tCNCs are 2.49×10^6 g/mol and 1.28×10^6 g/mol, respectively. The DPw of tCNCs is 4798. The Mw of SA is 1.32×10^5 g/mol and Mn of SA is 7.89×10^4 g/mol.

TEM analysis of tCNCs

As shown in the TEM image (Fig. 2), the length and width of tCNCs were measured as 1300 nm and 20 nm, respectively. Then the aspect ratio was calculated as 65, which is in the range of previous report (Peng et al. 2011).

Table 1	The molecular weight analysis of tCNCs and SA		
Sample	Mw (g/mol)	Mn (g/mol)	DPw
tCNCs	2.49×10^6	1.28×10^6	4798
SA	1.32×10^5	7.89×10^4	–

* The value refers to the tricarbanilated tCNCs

Formation of tCNC-SA film/capsule

During tCNC-SA film/capsule formation, the hydrogen bonding is formed between the hydroxyl groups in SA and the hydroxyl groups in tCNCs, which forms a network structure (Fig. 3a). The glycerol is inserted between the molecular chains of SA and tCNCs as a plasticizer. The intermolecular forces between the cellulose and SA molecular chains can be weakened by the glycerol, and the distance between them is increased (Xu et al. 2012). As a result, the possibility of movement between SA and tCNCs are increased, and the entanglement between molecular chains is reduced, resulting in increased plasticity of the composites.

The viscosity of tCNC-SA gel is demonstrated in Fig. 3b. As tCNC content increases, the viscosity of tCNC-SA film gradually increases from 1.28 Pa s to 1.69 Pa s, which is 31.32% higher than that of blank sample F0. This phenomenon is attributed to the hydrogen bonding between tCNCs and SA (Salas et al. 2014).

Mechanical property analysis of tCNC-SA film

Five stress–strain curves of tCNC-SA films are shown in Fig. 4a. There is basically no residual strain after the fracture, and the section is perpendicular to the direction of stress, indicating the film has a certain degree of rigidity and toughness (Liu et al. 2021a; Revin et al. 2019). As the content of tCNCs increases
from 0 wt% to 10 wt%, the tensile stress of tCNC-SA film increases from 12.64 MPa to 30.67 MPa, with a maximum increase of 142.6%. Figure 4b shows the elastic modulus of different tCNC-SA films. With the addition of tCNCS, compared with the control F0 sample, the elastic modulus of the film increases up to
240.3% when it contains 10% of tCNCs (sample F4). Generally, the higher the modulus of elasticity, the more rigid the sample is and the less likely to be deformed. The improvements of the tensile stress and elastic modulus of tCNC-SA film are due to the inherent advantages of high aspect ratio and high elastic modulus of tCNCs, which shows excellent reinforcement in the polymer matrix (Iwamoto et al. 2009; Xu et al. 2021). When tCNCs were applied in the capsule formation, it has a certain degree of resistance to compression, which is conducive to alleviating the extrusion of the capsule during production, handling and storage.

When tCNCs were added at 1% (sample F1), the elongation of the film before fracture is increased by 100% compared to F0, as shown in the Fig. 4c. In a previous study by our group, it was found that tCNCs had significant high aspect ratio of 65, which renders it forming mesh-like structure in the composite. The high aspect ratio of tCNCs could enhance the binding sites between tCNCs and SA (Boufi et al. 2016; Ming et al. 2021), forming interweaving network in the film. That might be the reason that the increase tCNCs content in the film could improve the elongation, as shown in Fig. 4c. It should be noted that, when the adding amounts increased from the 1% (sample F1) to 10% (sample F4), the film elongation rate was increased from 100 to 144% when compared with the contrast F0 sample. The results indicate the small quantity of tCNCs could significantly increase the mechanical strength of tCNC-SA. Further addition of tCNCs have limit strength enhancement for the film. Furthermore, the addition of tCNCs could also improve the film flexibility, as shown in Fig. 4 (d, e, f, g, h and i). The film made from the pure SA (sample F0) was rigid. Upon the bending and twisting force, it recovered to the original form rapidly. In contrast, tCNCs enhanced film (sample F3) is soft and flexible. The flexibility and softness is important for the capsules since these properties could reduce the irritation to the mucosa during the deglutition (Kathpalia et al. 2014).

The elastic modulus and elongation rate of the enteric capsule are compared with the previous report, as shown in Table 2. In current work, the elasticity modulus is much higher than that of HPMC/ Fatty acids (Jimenez et al. 2010) and the elongation at break is slightly higher than that of highly carboxymethylated starch HCMS/Glycerol (Jimenez et al. 2010; Kim et al. 2002). This indicates the mechanical properties of the capsule prepared in this study are superior or comparable to the reported data.

Physical properties of tCNC-SA capsules

Physical properties of the capsule mainly include appearance, opacity, testing of WCA and the SEM observations. Table 3 summarizes the appearance, dry loss and formation rate data of capsules with different addition of tCNCs. Without the addition of tCNCs, the capsule formation rate was 0 (sample F0) since there is no complete tCNC-SA capsule formed in the mold. From the visual observation, the formed capsules (F1 to F4) have smooth surface with no cracks, no air bubbles and no odor.

As the amount of tCNCs increases, the capsule formation rate gradually increases. The capsule formation rate reaches 92% when the amount of tCNCs increases to 10%. TCNCs have a high aspect ratio and could form hydrogen bonds with the SA, resulting in improved physical strength and flexibility of tCNC-SA film, eventually leading to an increase of capsule formation rate. The dry loss of F0 was only 8.61% and reached a maximum of 15.45% (sample F4) with the 10 wt% of tCNCs added. This is due to the hydrogen bonding between tCNCs and SA, which results in the absorption of water (Gilormini and

Table 2 The comparisons of the elasticity modulus and elongation rate of different enteric capsules

Filler/main ingredient	Ratios	Elasticity modulus (MPa)	Elongation at break (%)	Reference
tCNCs/SA	1:0.01/0.03/0.05/0.1	607.7–1789.7	4.6–10.9	This work
HCMS /glycerol	1:0.1/0.2/0.3	–	2.6–7.7%	Kim et al. (2002)
HPMC/fatty acids	1:0.15	138–255	2–14	Jimenez et al. (2010)
Verdu (2018) in the prepared film and therefore the dry loss increases.

It can be visually observed in Fig. 5a, c that the opacity of tCNC-SA capsule increases with the increase of tCNC content. The F0 is a SA film with an opacity of 0.44 and high transparency. When 1% tCNCs and 10% tCNCs were added (Sample F1 and F4), the increases of opacity are 15.9% and 356.8%, respectively. This is because the tCNCs are partially agglomerated in the film and forms a self-assembled network, which hinders the passage of light through the film (Qian et al. 2010). Since all the film thickness are similar as discussed in the sample preparation, the film opacity is directly related to the film UV absorbance, as indicated in Eq. 1. According to the opacity data in Table 3, tCNC-SA film opacities increase with the increase of tCNCs content, which means that the film material has the potential to act as a UV absorber, giving it light sheltering abilities. Therefore, the adding of tCNCs in the capsule could reduce the amount of shading agent added during the preparation of capsules.

The WCA is used to determine the resistance of tCNC-SA capsule surface to liquid water, which can reflect the hydrophobicity/hydrophilicity of the sample surface (Rhim 2011). The pure SA film (sample F0) has poor water resistance, and the addition of tCNCs can improve this hydrophobicity, as shown in Fig. 5b. There is no tCNCs in the F0 sample, which has a WCA of 36.5°, and the water diffuses randomly in all directions. As tCNC content increases, the WCA of the film becomes enlarged, which also leads to a more circular water permeation shape. This indicates that the addition of tCNCs make the propagation of water resistance more uniform. When the addition of tCNCs was 10%, the water contact angle of the film surface was 53.3°, which increased by 46.0% compared with 0% tCNC addition sample. A strong hydrogen bonding can occur between the hydroxyl group on tunicate nanocellulose and the hydroxyl groups in SA. Thus, improving the bonding of these two substrates and inhibiting the water absorption of the sample. After wetting, water molecules cannot break through these strong hydrogen bonds, so it plays

Table 3 Physical properties of tCNC-SA capsules
Testing items
Appearance
Dry loss (%)
Capsule formation rate (%)

Fig. 5 a Opacity pictures of tCNC-SA films, b water contact angle of tCNC-SA films c Opacity data of tCNC-SA films
a role in improving the hydrophobic property of the film (Abdollahi et al. 2013).

The ratios of tCNCs are different, and the surface structure of the tCNC-SA capsule is also different. The surface and cross-section of the tCNC-SA films were characterized using SEM to investigate the morphology of tCNCs in the SA substrate film, as shown in Fig. 6. From the surface diagram (a-e), it can be observed that tCNCs with high aspect ratio exists in the film in the form of thin strips. From F0 to F4, tCNCs are added more and more, the surface of the film becomes rougher and even some agglomeration occurs. In the cross-sectional view (Fig. 6h-j), it is observed that tCNCs are uniformly distributed in the film in the form of network, which could enhance the physical properties of the film. This is the reason why the mechanical properties of tCNC-SA films become stronger as the amount of tCNCs increases.

Chemical characterization of tCNC-SA film

Figure 7a represents the FT-IR spectra of tCNCs, glycerol, SA, F0, F1, F2, F3 and F4. No chemical reaction occurred during the preparation of tCNC-SA film, so no new characteristic peaks appear in F0, F1, F2, F3 and F4. And the transmittance of F0, F1, F2, F3 and F4 in the IR spectrum increases with the increase of tCNC content. The absorption peaks at 3415 cm\(^{-1}\), 3342 cm\(^{-1}\), 1638 cm\(^{-1}\) and 1413 cm\(^{-1}\) are attributed to the O–H stretching vibration. The absorption peaks at 2920 cm\(^{-1}\) and 2904 cm\(^{-1}\) are attributed to the C–H stretching vibration. The absorption peak at 1620 cm\(^{-1}\) is attributed to C = C stretching vibration. The two absorption peaks at 1299 cm\(^{-1}\) and 1089 cm\(^{-1}\) are caused by C-O stretching vibration, and the absorption peak at 817 cm\(^{-1}\) is attributed to the C = C bending vibration (Saravanakumar et al. 2020). Two characteristic peaks of glycerol at 2937 cm\(^{-1}\) and 2879 cm\(^{-1}\) belong to CH\(_2\) asymmetric and symmetric stretching vibration, respectively. The characteristic peaks of tCNCs, SA, and glycerol interact with each other, which results in peak overlaps in two large ranges (3778 cm\(^{-1}\)–2437 cm\(^{-1}\) and 1856 cm\(^{-1}\)–1016 cm\(^{-1}\)) (Zhao et al. 2020).

Figure 7b shows the XRD spectrum of the crystal structure of tCNCs and tCNC-SA films (samples F0 to F4). It can be seen that the diffraction characteristics of the films (F1, F2, F3 and F4) are essentially the same as those of tCNCs, which is a typical cellulose I-type structure with three typical lattice surfaces with intensities of 20 = 14.66\(^{\circ}\) (1–10), 16.58\(^{\circ}\) (110) and 22.76\(^{\circ}\) (200), respectively (Cheng et al. 2020; Narita et al. 2005). The calculated CrI values of F1, F2, F3, F4 and tCNCs are 32.4\%, 57.3\%, 68.8\%, 82.1\% and 96.1\%, respectively. The F0 results show that SA had no obvious crystalline features, indicating the amorphous structure of alginate. In the film samples (F0 to F4), the intensity of the characteristic peaks gradually increases with the increase of tCNCs.

Degradation of tCNC-SA capsule

Degradation of tCNC-SA capsule with different tCNC ratios

The addition of tCNCs inhibited the degradation of the capsule as analyzed in Fig. 8a, b. F1, F2, F3 and F4 disintegrate at 15 min without affecting the release of the drug, which is in accordance with the US Pharmacopeia requirements on disintegration time of hard capsules (Pharmacopoeial 2017). F1 degrades completely within 60 min, F2, F3 and F4 cannot be
completely degraded within 60 min, especially F4, where the mass loss value is about 50% at 60 min. This is due to the fact that tCNCs and SA are cross-linked by hydrogen bonds and form a mesh structure, which hinder the disintegration of the capsules. Therefore, with the increase of tCNC content, the mass loss is smaller.

Fig. 7 a FT-IR spectrum of different tCNC-SA film, SA and glycerol, b XRD graphs of different tCNC-SA films and tCNCs

Fig. 8 a Picture of degradation of tCNC-SA capsules (F1-F4) in 0 min, 15 min, 30 min, 60 min b weight loss of tCNC-SA capsules (F1-F4) in pH 6.8 at 37 °C

In vitro degradation of tCNC-SA capsule in different pH environments

Figure 9a shows the in vitro degradation mass loss and degradation photos of F2 at different pH environments (pH 1.2 and pH 6.8). The mass loss of the tCNC-SA capsule in pH 6.8 increases continuously with time and
finally reached 67.3% at 60 min. In contrast, in the solution with pH = 1.2, the mass loss of the tCNC-SA capsule is 8.2% after 30 min, and then the mass is stabilized (Fig. 9b). The SA contains a large amount of -COO\(^-\). Under acidic conditions, it is turned into -COOH. Thus, the ionization and the hydrophilicity of SA decrease, leading to the contraction of molecular chains (Hua et al. 2010). Therefore, the prepared tCNC-SA capsule hardly degrades in acidic conditions. The capsule in pH 6.8 is softened at 15 min and cannot maintain their original shape, and most of them degrade at 60 min. Based on these observations, the tCNC-SA capsule can be applied as enteric-soluble capsule, which is loaded with drugs that are irritating to the stomach. As a result, the tCNC-SA capsule can be digested and absorbed in the intestine.

Conclusions

In this study, tCNCs enhanced SA-based capsules were prepared. Due to the formation of hydrogen bonds between tCNCs and SA, the mechanical properties, water contact angle, opacity of tCNC-SA capsules are significantly improved. When tCNCs loading was 10% (w/w), the water contact angle of the capsules increased by 46.0%, opacity increased by 356.8%, tensile stress increased by 142.6%, elastic modulus increased by 240.3%, and elongation increased by 137.0%, respectively.

During the in vitro disintegration experiment, the conversion of -COO\(^-\) in SA to -COOH under acidic conditions leads to decrease of capsule ionization. As a result, tCNC-SA capsules barely disintegrated under acidic conditions (pH 1.2), while they could disintegrate at a pH of 6.8 in 15 min, which indicates the excellent pH responsibilities.

Therefore, the prepared tCNC-SA composite is expected to be used as enteric capsules, which lays the foundation for the application of tCNCs in pharmaceutical material production.

Acknowledgments This work was supported by National Natural Science Foundation of China (22078061), National Key Research and Development Program of China (2017YFB0307900), the guide project from Department of Science and Technology of Fujian Province (2018H0006), and the Foundation (KF201922) of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences.

Author contribution DX: Conceptualization, methodology, validation, formal analysis, investigation. YC: Conceptualization, methodology, validation, formal analysis, investigation. SW: Resources, data curation, writing—original draft. QZ and AKM: Methodology, validation, formal analysis, investigation. DN: Writing—review and editing, visualization. FH: Supervision, writing—review and editing, project administration, funding acquisition.

Fig. 9 a Degradation of F2 tCNC-SA capsules at pH 1.2 and pH 6.8, b weight loss of F2 tCNC-SA capsules at pH 1.2 and pH 6.8
Declarations The authors report no declarations of interest.

References

Abbasiliasi S, Tan JS, Ibrahim T, Ismail N, Ariff AB, Mokhtar NK, Mustafa S (2019) Use of sodium alginate in the preparation of gelatin-based hard capsule shells and their evaluation in vitro. RSC Adv 9:16147–16157. https://doi.org/10.1039/C9RA01791G

Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate boxynylated starch-based edible films using cellulose nanoparticles. Int J Biol Macromol 54:166–173. https://doi.org/10.1016/j.ijbiomac.2012.12.016

Al-Gousous J, Langguth P (2015) European versus United States pharmacopoeia disintegration testing methods for enteric-coated soft gelatin capsules. Dissolut Technol; 22:6–8. https://doi.org/10.14227/DDT220315P6

Boufi S, Gonzalez I, Delgado-Aguilar M, Tarres Q, Angels Pelach M, Mutje P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohyd Polym 154:151–166. https://doi.org/10.1016/j.carbpol.2016.07.117

Cheng Y, Zong Z, Gao X, Zhao Y, Wang J (2020) Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals. Int J Biol Macromol 167:1241–1247. https://doi.org/10.1016/j.ijbiomac.2020.11.078

Chen Q, Zong Z, Gao X, Zhao Y, Wang J (2020) Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals. Int J Biol Macromol 167:1241–1247. https://doi.org/10.1016/j.ijbiomac.2020.11.078

Cheng Y, Mondal AK, Wu S, Xu D, Ning D, Ni Y, Huang F (2020) Study on the anti-biodegradation property of tunicate cellulose. Polymers 12:3071. https://doi.org/10.3390/polym12123071

Digenis GA, Gold TB, Shah VP (1994) Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci 83:915–921. https://doi.org/10.1002/jps.2600830702

Ding Y, Jiang F, Chen L, Lyu W, Chi Z, Liu C, Chi Z (2020) An alternative hard capsule prepared with the high molecular weight pullulan and gelan: processing, characterization, and in vitro drug release. Carbohyd Polym 237:116172. https://doi.org/10.1016/j.carbpol.2020.116172

Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhouetlier V (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocolloid 43:360–376. https://doi.org/10.1016/j.foodhyd.2014.06.006

Fathi M, Kazemi S, Zahedi F, Shiran MR, Moghadamnia AA (2018) Comparison of oral bioavailability of acetaminophen tablets, capsules and effervescent dosage forms in healthy volunteers. Curr Iss Pharm Med S 31:5–9. https://doi.org/10.1515/cips-2018-0001

Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252. https://doi.org/10.1021/jf900337h

Filippov M, Kohn R (1974) Determination of composition of alginites by infrared spectroscopic method. Chem Zvesti 28:817–819

French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

Fu M, Blechar JA, Sauer A, Al-Gousous J, Langguth P (2020) In vitro evaluation of enteric-coated HPMC capsules-effect of formulation factors on product performance. Pharmaceutics 12:696. https://doi.org/10.3390/pharmaceutics12080696

Gilormini P, Verdu J (2018) On the role of hydrogen bonding on water absorption in polymers. Polymer 142:164–169. https://doi.org/10.1016/j.polymer.2018.03.033

Grill S, Bruderer S, Sidharta PN, Antonova M, Globig S, Carlson J, Csonka D (2020) Bioequivalence of macitentan and tadalafil given as fixed-dose combination or single-component tablets in healthy subjects. Brit J Clin Pharmac 86:2424–2434. https://doi.org/10.1111/bcp.14347

Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-sensitive sodium alginate/poly (vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523. https://doi.org/10.1016/j.ijbiomac.2010.03.004

Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresearch Technol 101:7410–7415. https://doi.org/10.1016/j.biotech.2010.04.029

Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive based hydrogels as oral drug delivery carrier. J Polym Res 27:251. https://doi.org/10.1007/s10965-020-02231-0

Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576. https://doi.org/10.1021/bm900520n

Ji Z, Bao X, Liu H, Wang Y, Chen L, Yu L (2017) Engineering starch-based capsules for controlled delivery. J Control Release 259:e88. https://doi.org/10.1016/j.jconrel.2017.03.191

Jimenez A, Fabra MJ, Talens P, Chiralt A (2010) Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohyd Polym 82:585–593. https://doi.org/10.1016/j.carbpol.2010.05.014

Kathpalia H, Komal S, Doshi G (2014) Recent trends in Hard Gelatin capsule delivery System. J Adv Pharm Edu Res; 4:165–177. https://doi.org/10.13140/2.1.2731.4884

Kim KW, Ko CJ, Park HJ (2002) Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films containing fatty acids. Carbohydr Polym 43:305–315. https://doi.org/10.1016/S0144-8617(01)00083-7

Liu H, Du H, Zheng T, Xu T, Liu K, Ji X, Zhang X, Si C (2021a) Recent progress in cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2021b) Cellulose nanomaterials for oil exploration applications. Polym Rev. https://doi.org/10.1080/15583724.2021.2007121

Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021c) Lignin-containing cellulose nanomaterials:
preparation and applications. Green Chem 23:9723–9746. https://doi.org/10.1039/d1gc02841c
Merayo N, Bala A, de la Fuente E, Blanco A, Negro C (2017) Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose 24:2987–3000. https://doi.org/10.1007/s10570-017-1302-1
Ming X, Li Q, Feng J, Jiang W (2021) Analysis and optimization of process parameters of the degradable fiber mulch paper made from pineapple leaf and rice straw by response surface method. Bioresources; 16:3454–3468. https://doi.org/10.15376/biores.16.2.3454-3468
Narita T, Hébraud P, Lequeux F (2005) Effects of the rate of evaporation and film thickness on nonuniform drying of film-forming concentrated colloidal suspensions. Eur Phys J E 17:69–76. https://doi.org/10.1140/epje/i2004-10109-x
Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can J Chem Eng 89:1191–1206. https://doi.org/10.1002/cjce.20554
United States Pharmacopeia Convention (2017) U.S. Pharma-ceopia National Formulary 2017: USP 40 NF 35. United States Pharmacopoeia, Rockville
Qian L, Zhou J, Zhang L (2010) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Pol Phys 47:1069–1077. https://doi.org/10.1002/polb.21711
Revvin VV, Pestov NA, Shchankin MV, Mishkin VP, Platonov VI, Uglanov DA (2019) A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose. Biomacromol 20:1401–1411. https://doi.org/10.1021/acs.biomac.8b01816
Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:691–699. https://doi.org/10.1016/j.carbpol.2011.05.010
Salas C, Nypele O, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003
Samakradhamrongthai RS, Angeli PT, Kopermusub P, Utama-nong N (2019) Optimization of gelatin and gum arabic capsule infused with pandan flavor for multi-core flavor powder encapsulation. Carbohydr Polym 226:115262. https://doi.org/10.1016/j.carbpol.2019.115262
Saravanakumar K, Sathiyaseelan A, Mariadoss A, Hu X, Wang MH (2020) Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Macrom 153:207–214. https://doi.org/10.1016/j.ijbiomac.2020.02.250
Segal L, Creely JJ, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/00451755902901003
Shimokawa Y, Hayakawa E, Takahashi K, Okai K, Hattori Y, Otsuka M (2018) Pharmaceutical formulation analysis of gelatin-based soft capsule film sheets using near-infrared spectroscopy. J Drug Deliv Sci Technol 48:174–182. https://doi.org/10.1016/j.jddst.2019.101126
Siripatrawan U, Harte BR (2010) Physical properties and antioxidiant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid 24:770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003
Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50:149–155. https://doi.org/10.1016/S0260-8774(00)00237-5
Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-in-tensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346. https://doi.org/10.1007/s10570-013-0158-2
Xu H, Chai Y, Zhang G (2012) Synergistic effect of oleic acid and glycerol on zein film plasticization. J Agr Food Chem 60:10075–10081. https://doi.org/10.1021/jf302940j
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368
Yan X, Zhang K, Yang Y, Deng D, Lyu C, Xu H, Du Y (2020) Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion. Tissue Eng Part C-Me 26:263–275. https://doi.org/10.1089/ten.tec.2020.0039
Yousefhashemi SM, Khosravani A, Yousefi H (2019) Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard. Cellulose 26:7207–7221. https://doi.org/10.1007/s10570-019-02562-2
Zha J, Li S, Zhao Y, Peng Z (2020) Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polym Bull 77:4401–4416. https://doi.org/10.1007/s00289-019-02972-z

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.