1. Introduction

Herbaspirillum seropedicae are Gram-negative oxidase-positive nonfermenting rods of Betaproteobacteria class, commonly found in the rhizosphere of maize and rice, which promote plant growth via biological nitrogen fixation and phytohormone production [1, 2]. More recently, some Herbaspirillum species have transitioned from environment to human hosts, mostly as opportunistic (pathogenic) bacteria. Cases of human colonization and infection have mostly been noted in cystic fibrosis and immunocompromised cancer patients [3–8] and also in some patients without an apparent immunosuppressed state [9–11].

1.1. Case History. A 58-year-old woman with a medical history of non-small-cell lung cancer (NSCLC) with malignant left pleural effusion (with RET mutation under phase 1 trial with pralsetinib), nonbacterial thrombotic endocarditis, and pulmonary embolism presented to the hospital with fevers, chills, and rigors for 2 days. At presentation, she was febrile with a temperature of 101°F and tachycardic at 114 beats/minute. Physical examination revealed a Port-A-catheter on the right upper chest. Coarse breath sounds were auscultated on the right upper lung field. Labs revealed anemia with the hemoglobin level of 6.4 (ref: 12.0–16.0 g/dl), leukopenia with the white blood cell (WBC) count of 1.7 (ref: 4.8–10.8 10E3/ul), mild neutropenia with the absolute neutrophil count (ANC) of 1353 cells per microliter, an elevated C-reactive protein (CRP) level of 22.52 (ref range 0–10 mg/dl), and an elevated D-dimer of 1920 ng/ml (ref range 0–500 ng/ml).
<1.00) mg/dl, and an elevated creatinine level of 1.56 mg/dl (baseline creatinine of 1 mg/dl). CT chest revealed right upper lobe pneumonia, scattered small pulmonary nodules consistent with metastatic disease, and stable bony metastatic disease of the anterior left 6th rib. She was admitted for sepsis secondary to pneumonia and placed on broad-spectrum antibiotics with intravenous piperacillin/tazobactam and vancomycin. She received 2 units of packed red cell transfusion with stable hemoglobin thereafter. Urine analysis was unremarkable. Urine legionella and streptococcus pneumonia antigens were negative.

The patient continued to have fever 2 days after admission (max: 102.8°F). Preliminary blood cultures done at our hospital at Day 2 of hospitalization revealed Gram-negative rods. CT abdomen and pelvis revealed small volume of ascites and jejunal wall thickening with mild adjacent mesenteric edema, suggestive of enteritis. CT chest revealed persistent right upper lobe pneumonia. The patient continued to have temperature spikes on the 3rd day of antibiotics (T_{max} 101.5°F). Blood cultures revealed oxidase-positive nonfermenting rods. The organism was not clearly identified in our lab, and the specimen was sent to Central Pennsylvania Alliance Laboratory for identification by DNA sequencing using MALDI (matrix-assisted laser desorption/ionization) technique. The patient’s antibiotic was changed to IV meropenem on the 4th day of hospitalization. Port was removed and catheter tip culture was sent, which came out to be negative.

Ultimately, on the seventh day of hospitalization, the blood culture was identified from outside lab as *Herbaspirillum seropedicae* (which was susceptible to all tested antibiotics including amikacin, cefepime, ceftaizidime, ciprofloxacin, aztreonam, levofloxacin, meropenem, piperacillin/tazobactam, and ticarcillin/clavulanate). The patient started feeling better and defervesced after about 24 hours of being on meropenem. The patient was discharged with a midline catheter to continue IV meropenem for a total of 14 days and follow-up for outpatient monitoring. The WBC count at discharge was 5.1 × 10^9/L, ANC was 3978 cells/µmoliter, and CRP was 6.36 mg/dl. On further questioning to assess for risk factors, the patient reported taking care of her pond and regularly cleaning weeds.

2. Discussion

The first described species of the genus *Herbaspirillum* was the bacterium *Herbaspirillum seropedicae*, which was found colonizing the roots and aerial parts of important crops [1]. More recently, *Herbaspirillum spp.* have been recovered from the blood and sputum/bronchoalveolar lavage of patients with cystic fibrosis and pneumonia [4, 6, 11] and from blood in patients with leukemia [6, 7, 12], aplastic anemia [7], multiple myeloma [13], and cellulitis [8]. Our patient is a 58-year-old woman with NSCLC on RET-inhibitor pralentinib who presented with right upper lobe pneumonia and had blood culture positive for oxidase-positive nonfermenting Gram-negative rod, which was confirmed as *Herbaspirillum* only on Day 7 of hospitalization by which time the patient was already improving with meropenem therapy. On retrospect, our patient had been regularly cleaning her pond and weeding her garden with possible exposure to this environmental proteobacterium, supporting this change in dynamics from environmental bacterium to opportunistic pathogen. However, it is not entirely clear why the patient only defervesced and improved after 24 hours of switching piperacillin/tazobactam to meropenem, even though her culture report suggested sensitivity to piperacillin/tazobactam. New genomic data findings suggest that the transition from environmental to pathogenic led to the loss and acquisition of specific genes to allow colonization and survival in new environments. The strains that have been infectious to humans have lost the genes for nitrogen fixation and acquired genes for lipopolysaccharide biosynthesis with the addition of sialic acids to evade the immune system [1].

We reviewed the literature for available *Herbaspirillum* cases and identified 9 published studies from 2005 to 2019 (Table 1), with *Herbaspirillum* bacteremia, cellulitis or pneumonia. Tan and Oehler reported *Herbaspirillum* bacteremia and cellulitis in a patient with aquatic exposure [8]. Ziga et al. reported *Herbaspirillum* bacteremia in a 2-year-old girl with a history of acute lymphoblastic leukemia (ALL) after induction chemotherapy and stem cell transplant [6]. Chen et al. reported *Herbaspirillum* bacteremia in an ALL patient on chemotherapy after taking sugarcane juice [12]. Regunath et al. described a case of bacteremia caused by gentamicin-resistant *Herbaspirillum* in an immunocompetent adult male farmer [11]. Suwantarat et al. reported the first fatal case-related *H. seropedicae* bacteremia secondary to pneumonia in an immunocompromised 65-year-old man with end-stage renal disease and multiple myeloma [13]. Abreu-Di Berardino et al. described *Herbaspirillum huttiense* pneumonia in a patient with essential thrombocytosis [9]. Liu et al. reported *Herbaspirillum huttiense* bacteremia in an elderly patient with no obvious immune suppression, who later went on to develop a pneumonia, where despite adequate treatment, microbiological eradication was not easily achieved, and septicemia lasted for several days along with sputum culture positivity for *Herbaspirillum huttiense* 2 months later [10].

Chemaly et al. investigated a potential cluster of hospital-based *Herbaspirillum* infections in cancer patients at the University of Texas MD Anderson Cancer Center, initially identified as *Burkholderia cepacia* complex and subsequently reidentified as *Herbaspirillum* species by the Cystic Fibrosis Foundation *Burkholderia cepacia* Research Laboratory and Repository (BcRLR) at the University of Michigan. The authors identified a total of 8 patients with bacteremia and pneumonia with cultures positive for *Herbaspirillum* species between July 2011 and August 2012 (including 5 clusters and 3 additional cases identified prospectively). 5 of the 8 patients were females and the median age was 53 years (2–67 years) [7].

Spilker et al. reported a 26-year-old male with moderate to severe lung disease with Gram-negative rod bacteremia at hospital day 23. The patient was admitted for methicillin-resistant *staphylococcus aureus* (MRSA) and *Pseudomonas* pneumonia, and cultures were initially misidentified as *Burkholderia cepacia* complex [4]. The authors analyzed
Table 1: Summary table of published cases of *Herbaspirillum* infection in humans.

Author year, country	Age/sex	Past history/predisposing conditions/cancer/HCST	Immune suppression	Likely risk factor/inciting event	Reason for admission/Clinical presentation	Initial antibiotics	Response to initial antibiotics/subsequent antibiotics	Specimen source positive for *Herbaspirillum*
Liu 2019, Korea	93/F	Hypertension Advanced age	N/A	(i) Fever, seizure (ii) After a few days, hypoxia and chest X-ray with pneumonia	Empiric vancomycin + ceftriaxone for encephalitis	—	Changed to meropenem and colistin at 10 days and changed to ceftazidime, minocycline, and trimethoprim/sulfamethoxazole thereafter	Blood: *Herbaspirillum huttiense* 2 months later, sputum: *Herbaspirillum huttiense*
Abreu-di berardino 2019, Spain	59/F	Aortic wall thrombosis, visceral and cerebral ischemic lesions, JAK2 + essential thrombocytopenia, new DM	N/A	(i) Generalized deconditioning (ii) Dyspnea 10 days after admission, nosocomial pneumonia	Piperacillin-tazobactam	—	Recovered completely after antibiotics	Sputum: *Herbaspirillum huttiense*
Chen 2010, China	48/F	Acute lymphoblastic leukemia	On chemotherapy and G-CSF	Drank sugarcane juice before fever started	Fever, chills	Cefmetazole and gatifloxacin	Improved	Blood: *Herbaspirillum huttiense*
Spilker 2008, USA	26/m	Moderate to severe lung disease, pancreatic insufficiency, diabetes, and liver disease	Recent multiple admissions for exacerbation of respiratory symptoms	—	FEVER x 20 days Antibiotic discontinued at 20 days, after FEV1 started to improve	Vancomycin, piperacillin-tazobactam, and tobramycin	Blood: (GNR, initially identified as *burkholderia cepacia* complex) Later, identified as *Herbaspirillum species*	
Author, year, country	Age/sex	Past history/predisposing conditions/cancer/HCST	Immune suppression	Likely risk factor/inciting event	Reason for admission/Clinical presentation	Initial antibiotics	Response to initial antibiotics/subsequent antibiotics	Specimen source positive for *Herbaspirillum*
-----------------------	---------	---	-------------------	----------------------------------	--	-------------------	---	---
Tan 2005, USA	49/m	Probable hepatic cirrhosis	—	Homeless jumped from a bridge into a freshwater canal in central Florida	Increasing erythema and warmth to the left leg (cellulitis)	Ampicillin/sulbactam	Antibiotics switched to cefepime and levofloxacin after initial blood culture results	Blood: (oxidase-positive nonlactose-fermenting GNR, submitted to an outside reference laboratory) positive for *Herbaspirillum seropedicae*
Regunath 2014, USA	46/M	Childhood asthma, atypical pneumonia as a teenager, tonsillectomy	N/A	Farming in rural Missouri, close contact with cattle and turkeys, mold and possible rat excreta Drenched in rain during a fishing trip	Fever, fatigue, SOB, night sweats, anorexia, myalgia, and headache Dry cough, right-sided pleuritic chest pain, and worsening dyspnea Hypoxia (multilobar pneumonia)	Vancomycin, ceftriaxone, and azithromycin	Ceftriaxone switched to piperacillin-tazobactam Azithromycin switched to Doxycycline After 12 days of treatment, the patient improved and was extubated	Blood (Day 1) (from referring facility) identified as *Burkholderia cepacia* complex (BCC), later as *Herbaspirillum aquaticum* or *Herbaspirillum huttiense* BAL (Day 3): GNR as *Herbaspirillum aquaticum* or *Herbaspirillum huttiense*
Chemaly 2015, USA	48/F	Ovarian adenocarcinoma	Chemotherapy	Source and mechanism of the cluster unknown	Pseudomonas BSI, sepsis-CRBSI	Cefepime (5 patients), ceftazidine (1 patient), moxifloxacin (1 patient), meropenem (1 patient) initially Followed by ceftriaxone or fluoroquinolone	All patients improved with antibiotic and had negative repeat blood cultures 1 patient had recurrence, which resolved once the port was removed	Blood, Infusaport tip
Hospital-based cluster of *Herbaspirillum* sp infections initially misidentified as *B. cepacia*	67/F	Leukemia	Chemotherapy	MRSA pneumonia, sepsis-BSI, GI bleed GVHD, BSI	GI GVHD, BSI *Herbaspirillum* Sepsis-BSI			Blood
	58/M	Leukemia/HSCT		High-dose steroid	GI GVHD, BSI *Herbaspirillum* Sepsis-BSI			Blood
	55/F	Leukemia/HSCT		High-dose steroid				Blood
	2/M	Ependymoma		High-dose steroid				Blood
Table 1: Continued.

Author year, country	Age/sex	Past history/predisposing conditions/cancer/HSCT	Immune suppression	Likely risk factor/inciting event	Reason for admission/Clinical presentation	Initial antibiotics	Response to initial antibiotics/subsequent antibiotics	Specimen source positive for Herbaspirillum
3 additional Herbaspirillium sp after continued surveillance (sporadic)	66/F	History of recurrent pneumonia, lung cancer	Radiation therapy	Herbaspirillum Sepsis-pneumonia	Blood	Blood	Sputum	
18/M			chemotherapy					
51/F	Lymphoma	Chemotherapy		Herbaspirillum Sepsis-BSI				
51/F	Aplastic anemia/HSCT	Tacrolimus		Herbaspirillum Sepsis-CRBSI				
Suwantarat 2015, USA	65/M	Multiple myeloma ESRD on hemodialysis	Steroids and lenalidomide	Acute respiratory failure and septic shock Right lower lobe pneumonia	Vancomycin, cefepime, ciprofloxacin, and micafungin		Changed to vancomycin, meropenem, and gentamicin within 12 hours However, the patient remained clinically unstable and died after 4 days	Blood: Herbaspirillum sp
Ziga 2010, USA	2/F	Acute lymphoblastic leukemia	Chemotherapy, HSCT	Uncertain Lives with her parents and grandparents on a large farm	Fever and diarrhea	Cefepime	Gentamicin added after oxidase-positive, weakly catalase-positive, Gram-negative bacillus Later, switched to meropenem	Blood: Burkholderia cepacia complex As susceptibility pattern was not consistent, further identification was pursued: Herbaspirillum sp

G-CSF: granulocyte-colony stimulating factor; BAL: bronchoalveolar lavage; GI GVHD: gastrointestinal graft versus host disease; BSI: blood stream infection; CRBSI: catheter-related blood stream infection; HSCT: hematopoietic stem cell infection; GNR: gram-negative rod.
isolates from sputum from over 1,100 cystic fibrosis patients across 8 years (January 2000 to December 2007) and found *Herbaspirillum* in only 28 patients (<3%) with ages ranging from 20 months to 5 years, of which 3 isolates were *Herbaspirillum huttense*, 3 were *Herbaspirillum frisingense*, 2 were *Herbaspirillum seropedicae*, and 2 were *Herbaspirillum putei*, and the remaining eighteen isolates could not be speciated [4]. Prior to the correct identification of *Herbaspirillum* at the BcRLR for the above 28 specimen, they had been identified as *Burkholderia cepacia* complex in 19 (68%) and *Ralstonia* in 4 (14%). Most patients appeared to have had transient respiratory tract colonization with *Herbaspirillum* except for bacteremia in one patient and a chronic respiratory tract infection in another [4].

Tetz and Tetz, for the first time, identified *Herbaspirillum frisingense* from the bladder of a human patient with urinary tract infection (UTI). Furthermore, genome analysis revealed numerous factors such as adhesins, urease, hemolysin D, and pilin that contribute to the bacterium’s virulence in UTIs. The authors suggested that further research of this *Herbaspirillum* spp would aid in better understanding of its implication in UTI [14]. Similarly, Wu et al. performed a comprehensive analysis of urinary microenvironment of bladder cancer and identified *Herbaspirillum* as one of the species associated with an increased risk of progression, suggesting its potential role in risk stratifying bladder cancer [15].

As evidenced by the above studies, *Herbaspirillum* is an emerging pathogen and may be more prevalent than earlier thought owing to misidentification for organisms like *Burkholderia cepacia* complex due to phylogenetic and phenotypic resemblance [4, 6, 7, 13]. Antimicrobial susceptibilities may serve as a means for differentiating *Herbaspirillum* species from *Burkholderia cepacia* complex because the latter are usually multidrug resistant, whereas *Herbaspirillum* is not. With the institution of appropriate antimicrobial therapy, the outcomes seem mostly favorable and the bacteria appear to be easily eradicated, except in 1 case reported by Liu et al. Misidentification as *Burkholderia* complex can have serious implications for clinical care, and distinction between these is important due to different resistance profiles and different therapeutic implications. The increased availability of newer molecular methods (e.g., MALDI-TOF MS) should allow laboratories to correctly identify this organism and reduce misidentification by established microbial identification systems.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. Faoro, W. K. Oliveira, V. A. Weiss et al., “Genome comparison between clinical and environmental strains of *Herbaspirillum seropedicae* reveals a potential new emerging bacterium adapted to human hosts,” *BMC Genomics*, vol. 20, no. 1, p. 630, 2019.

[2] A. C. Q. Marques, K. S. Paludo, C. B. Dallagassa et al., “Biochemical characteristics, adhesion, and cytotoxicity of *environmental and clinical isolates of Herbaspirillum spp*,” *Journal of Clinical Microbiology*, vol. 53, no. 1, pp. 302–308, 2015.

[3] T. Coenye, J. Goris, T. Spilker, P. Vandamme, and J. J. LiPuma, “Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of *Inquilinus limosus* gen. Nov., sp. Nov.,” *Journal of Clinical Microbiology*, vol. 40, no. 6, pp. 2062–2069, 2002.

[4] T. Spilker, A. Z. Uluer, F. M. Marty et al., “Recovery of *Herbaspirillum* species from persons with cystic fibrosis,” *Journal of Clinical Microbiology*, vol. 46, no. 8, pp. 2774–2777, 2008.

[5] W. Chen, Y.-Y. Chen, C.-F Tsai et al., “Incidence and outcomes of acute respiratory distress syndrome,” *Medicine*, vol. 94, no. 43, p. e1849, 2015.

[6] E. D. Ziga, T. Druley, and C.-A. D. Burnham, “*Herbaspirillum* species bacteremia in a pediatric oncology patient,” *Journal of Clinical Microbiology*, vol. 48, no. 11, pp. 4320–4321, 2010.

[7] R. F. Chemaly, R. Dantes, D. P. Shah et al., “Cluster and sporadic cases of *Herbaspirillum* species infections in patients with cancer,” *Clinical Infectious Diseases*, vol. 60, no. 1, pp. 48–54, 2015.

[8] M. J. Tan and R. L. Oehler, “Lower extremity cellulitis and bacteremia with *Herbaspirillum* seropedicae associated with aquatic exposure in a patient with cirrhosis,” *Infectious Diseases in Clinical Practice*, vol. 13, no. 5, pp. 277–279, 2005.

[9] M. Abreu-Di Berardino, E. Rodriguez-Zaplicki, and V. Sánchez-Hellín, “*Herbaspirillum huttense* pneumonia in a patient with essential thrombocythaemia,” *Revista Española De Quimioterapia: Publicación Oficial de la Sociedad Española de Quimioterapia*, vol. 32, no. 1, pp. 83–84, 2019.

[10] C. Liu, M. J. Kwon, M. Kim, J.-H. Byun, D. Yong, and K. Lee, “Septicemia caused by *Herbaspirillum huttense* secondary to pneumonia,” *Annals of Laboratory Medicine*, vol. 39, no. 3, pp. 340–342, 2019.

[11] H. Regunath, J. Kimball, L. P. Smith, and W. Salzer, “Severe community-acquired pneumonia with bacteremia caused by *Herbaspirillum aquaticum* or *Herbaspirillum huttense* in an immune-compotent adult,” *Journal of Clinical Microbiology*, vol. 53, no. 9, pp. 3086–3088, 2015.

[12] J. Chen, Z. Su, Y. Liu et al., “*Herbaspirillum* species: a potential pathogenic bacteria isolated from acute lymphoblastic leukaemia patient,” *Current Microbiology*, vol. 62, no. 1, pp. 331–333, 2011.

[13] N. Suwantarat, L. T. L. Adams, M. Romagnoli, and K. C. Carroll, “Fatal case of *Herbaspirillum seropedicae* bacteremia secondary to pneumonia in an end-stage renal disease patient with multiple myeloma,” *Diagnostic Microbiology and Infectious Disease*, vol. 82, no. 4, pp. 331–333, 2015.

[14] V. Tetz and G. Tetz, “Draft genome sequence of the uropathogenic *Herbaspirillum frisingense* strain uroelyoticus VT-16-41,” *Genome Announcements*, vol. 5, no. 17, pp. e00279–17, 2017.

[15] P. Wu, G. Zhang, J. Zhao et al., “Profiling the urinary microbiota in male patients with bladder cancer in China,” *Frontiers in Cellular and Infection Microbiology*, vol. 8, p. 167, 2018.