Weak B Decays into Orbitally Excited Charmed Mesons

C. Albertus, J. Segovia, D.R. Entem, F. Fernández, E. Hernández and M.A. Pérez-García

The XIV International Conference on Hadron Spectroscopy (Hadron 2011)
München, 13-17th of June 2011

Universidad de Salamanca
Spain
Weak B Decays into Orbitally Excited Charmed Mesons

1 Introduction

2 Theoretical framework
 - Constituent quark model
 - Weak decays
 - Strong decays

3 Results
 - Semileptonic $B \to D^*_2 l \nu$ decay
 - Semileptonic $B \to D_1 l \nu$ decay
 - Comparison with experiment

4 Summary and conclusions
1.- Introduction
1.1.- Overview

- Accuracy on the knowledge of $|V_{cb}|$ and $|V_{ub}|$ demands detailed measurements of b-hadron decays

- A substantial contribution to the semileptonic decay width of b-hadrons is provided by decays including orbitally excited charmed mesons in their final state.

- Additionally, the analysis of signals and backgrounds of inclusive and exclusive measurements of b-hadron decays calls for an improved understanding of these processes.

- In this scenario, data reported by Belle and BaBar offer new theoretical possibilities to test meson models as far as they include both weak and strong decays.
1.- Introduction

1.2.- Belle and BaBar measurements

	Belle [1] ($\times 10^{-3}$)	BaBar [2] ($\times 10^{-3}$)
$D_2^*(2460)$		
$\mathcal{B}(B^+ \rightarrow D_2^{*0} l^+ \nu_l) \mathcal{B}(D_2^{*0} \rightarrow D^+ \pi^-)$	$2.2 \pm 0.3 \pm 0.4$	$1.4 \pm 0.2 \pm 0.2(*)$
$\mathcal{B}(B^+ \rightarrow D_2^{*0} l^+ \nu_l) \mathcal{B}(D_2^{*0} \rightarrow D^{*+} \pi^-)$	$1.8 \pm 0.6 \pm 0.3$	$0.9 \pm 0.2 \pm 0.2(*)$
$\mathcal{B}(B^0 \rightarrow D_2^{*-} l^+ \nu_l) \mathcal{B}(D_2^{*-} \rightarrow D^0 \pi^-)$	$2.2 \pm 0.4 \pm 0.4$	$1.1 \pm 0.2 \pm 0.1(*)$
$\mathcal{B}(B^0 \rightarrow D_2^{*-} l^+ \nu_l) \mathcal{B}(D_2^{*-} \rightarrow D^{*0} \pi^-)$	< 3	$0.7 \pm 0.2 \pm 0.1(*)$
\mathcal{B}_{D/D^*}	0.55 ± 0.03	0.62 ± 0.03
$D_1(2420)$		
$\mathcal{B}(B^+ \rightarrow D_1^{0} l^+ \nu_l) \mathcal{B}(D_1^{0} \rightarrow D^{*+} \pi^-)$	$4.2 \pm 0.7 \pm 0.7$	$2.97 \pm 0.17 \pm 0.17$
$\mathcal{B}(B^0 \rightarrow D_1^{-} l^+ \nu_l) \mathcal{B}(D_1^{-} \rightarrow D^{*0} \pi^-)$	$5.4 \pm 1.9 \pm 0.9$	$2.78 \pm 0.24 \pm 0.25$

1. D. Liventsev et al. (Belle Collaboration), *Phys. Rev. D* **77**, 091503 (2008)
2. B. Aubert et al. (BaBar Collaboration), *Phys. Rev. Lett.* **103**, 051803 (2009)
2.- Theoretical framework

2.1.- Constituent quark model. Main features

- Spontaneous chiral symmetry breaking (Goldstone-Boson exchange):
 \[L = \bar{\psi} \left(i \gamma^\mu \partial_\mu - MU^\gamma_5 \right) \psi \rightarrow U^\gamma_5 = 1 + \frac{i}{f_\pi} \gamma^5 \lambda^a \pi^a - \frac{1}{2f_\pi^2} \pi^a \pi^a + \ldots \]
 \[M(q^2) = m_q F(q^2) = m_q \left[\frac{\Lambda^2}{\Lambda^2 + q^2} \right]^{1/2} \]

- QCD perturbative effects (One-Gluon Exchange):
 \[L = i \sqrt{4\pi \alpha_s} \bar{\psi} \gamma_\mu G^\mu \lambda^c \psi \]

- Confinement (screened potential):
 \[V^C_{CON}(\vec{r}_{ij}) = \left[-a_c (1 - e^{-\mu_c r_{ij}}) + \Delta \right] (\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c) \]

\[
\begin{align*}
V^C_{CON}(\vec{r}_{ij}) &= \left(-a_c \mu_c r_{ij} + \Delta \right) (\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c) \quad r_{ij} \rightarrow 0 \\
V^C_{CON}(\vec{r}_{ij}) &= \left(-a_c + \Delta \right) (\vec{\lambda}_i^c \cdot \vec{\lambda}_j^c) \quad r_{ij} \rightarrow \infty
\end{align*}
\]
2.- Theoretical framework

2.1.- Constituent quark model. Some applications

- **N-N interaction**
 - D.R. Entem, F. Fernández and A. Valcarce, Phys. Rev. C 62, 034002 (2000)
 - B. Julia-Diaz, J. Haidenbauer, A. Valcarce and F. Fernández, Phys. Rev. C 65, 034001 (2002)

- **Baryon spectrum**
 - H. Garcilazo, A. Valcarce and F. Fernández, Phys. Rev. C 63, 035207 (2001)
 - H. Garcilazo, A. Valcarce and F. Fernández, Phys. Rev. C 64, 058201 (2001)

- **Meson spectrum**
 - J. Vijande, A. Valcarce and F. Fernández, J. Phys. G 31, 481 (2005)
 - J. Segovia, D.R. Entem and F. Fernández, Phys. Rev. D 78 114033 (2008)
 - J. Segovia, D.R. Entem and F. Fernández, accepted by Phys. Rev. D

- **Molecular states**
 - P. G. Ortega, J. Segovia, D. R. Entem and F. Fernández, Phys. Rev. D 81, 054023 (2010)
2.- Theoretical framework

2.1.- Constituent quark model. Some applications (Continuation)

Deuteron				
CQM	NijmII	Born B	Exp.	
ϵ_d (MeV)	-2.2242	-2.2246	-2.2246	-2.22475
P_D (%)	4.85	5.64	4.99	
Q_d (fm2)	0.276	0.271	0.278	0.2859±0.0003
A_S (fm$^{-1/2}$)	0.891	0.8845	0.8860	0.8846±0.0009
A_D/A_S	0.0257	0.0252	0.0264	0.0256±0.0004

Light mesons

Charmonium reactions

X(3872)

J. Segovia et al. segonza@usal.es
2.- Theoretical framework

2.1.- Constituent quark model. Mass predictions involved in the reactions

Quark masses	\(m_n \) (MeV)	313
	\(m_c \) (MeV)	1763
	\(m_b \) (MeV)	5110
Confinement	\(a_c \) (MeV)	507.4
	\(\mu_c \) (fm\(^{-1}\))	0.576
	\(\Delta \) (MeV)	184.432
	\(a_s \)	0.81
One-gluon exchange	\(\alpha_0 \)	2.118
	\(\Lambda_0 \) (fm\(^{-1}\))	0.113
	\(\mu_0 \) (MeV)	36.976
	\(\hat{r}_0 \) (fm)	0.181
	\(\hat{r}_g \) (fm)	0.259

GBE taken from Ref. [1]

Meson	\(J^{PC} \)	CQM (MeV)	EXP (MeV)
\(B \)	0\(^-\)	5275	5279.34 ± 0.21
\(D \)	0\(^-\)	1896	1867.22 ± 0.11
\(D^* \)	1\(^-\)	2017	2008.60 ± 0.11
\(D_1(2420) \)	1\(^+\)	2466	2422.15 ± 1.6
\(D_2^*(2460) \)	2\(^+\)	2513	2461.4 ± 2.3
\(\pi \)	0\(^{-+}\)	138	137.27339 ± 0.00035

[1] J. Vijande, F. Fernández and A. Valcarce J. Phys. G 31 481 (2005)
2.- Theoretical framework
2.2.- Weak decays. Total decay width

Study of the weak process based on
- E. Hernández, J. Nieves and J.M. Verde-Velasco, Phys. Rev. D 74, 074008 (2006)
- M.A. Ivanov, J.G. Körner and P. Santorelli, Phys. Rev. D 73, 054024 (2006)
2.- Theoretical framework

2.2.- Weak decays. Case \(0^− \rightarrow 2^+\)

\[
\langle D(2^+), \lambda \vec{P}_D \mid J^{cb}_\mu(0) \mid B(0^-) \vec{P}_B \rangle = \epsilon_{\mu \nu \alpha \beta} \epsilon^{\nu \delta^*}_{(\lambda)} (\vec{P}_D) P_\delta P^\alpha q^\beta T_4(q^2)
\]

\[
- i \left\{ \epsilon^{*}_{(\lambda) \mu \delta}(\vec{P}_D) P^\delta T_1(q^2) + P^{\nu} P^{\delta} \epsilon^{*}_{(\lambda) \nu \delta}(\vec{P}_D) \left[P_\mu T_2(q^2) + q_\mu T_3(q^2) \right] \right\}
\]

\[
T_1(q^2) = - i \frac{2m_D}{m_B |\vec{q}|} A^1_{T \lambda = +1}(|\vec{q}|),
\]

\[
T_2(q^2) = i \frac{1}{2m_B^3} \left\{ - \sqrt{\frac{3}{2}} \frac{m^2_D}{|\vec{q}|^2} A^0_{T \lambda = 0}(|\vec{q}|) - \sqrt{\frac{3}{2}} \frac{m^2_D}{|\vec{q}|^3} \left(E_D(-\vec{q}) - m_B \right) A^3_{T \lambda = 0}(|\vec{q}|) \right. \\
+ \left. \frac{2m_D}{|\vec{q}|} \left(1 - \frac{E_D(-\vec{q}) E_D(-\vec{q}) - m_B}{|\vec{q}|^2} \right) A^1_{T \lambda = +1}(|\vec{q}|) \right\}
\]

\[
T_3(q^2) = i \frac{1}{2m_B^3} \left\{ - \sqrt{\frac{3}{2}} \frac{m^2_D}{|\vec{q}|^2} A^0_{T \lambda = 0}(|\vec{q}|) - \sqrt{\frac{3}{2}} \frac{m^2_D}{|\vec{q}|^3} \left(E_D(-\vec{q}) + m_B \right) A^3_{T \lambda = 0}(|\vec{q}|) \right. \\
+ \left. \frac{2m_D}{|\vec{q}|} \left(1 - \frac{E_D(-\vec{q}) E_D(-\vec{q}) + m_B}{|\vec{q}|^2} \right) A^1_{T \lambda = +1}(|\vec{q}|) \right\}
\]

\[
T_4(q^2) = i \frac{m_D}{m_B^2 |\vec{q}|^2} V^1_{T \lambda = +1}(|\vec{q}|)
\]

J. Segovia et al. segonza@usal.es

Weak B Decays into Orbitally Excited Charmed Mesons
2.- Theoretical framework
2.2.- Weak decays. Case $0^- \rightarrow 1^+$

\[
\langle D(1^+), \lambda \vec{P}_D | J^{cb}_\mu (0) | B(0^-), \vec{P}_B \rangle = \frac{-1}{m_B + m_D} \epsilon_{\mu \nu \alpha \beta} \epsilon^{(\lambda)}(\vec{P}_D) P^\alpha q^\beta A(q^2) \\
- i \left\{ (m_B - m_D) \epsilon_{(\lambda)\mu}^*(\vec{P}_D) V_0(q^2) - \frac{P \cdot \epsilon_{(\lambda)}^*(\vec{P}_D)}{m_B + m_D} \left[P_\mu V_+(q^2) + q_\mu V_-(q^2) \right] \right\}
\]

\[
A(q^2) = - \frac{i}{\sqrt{2}} \frac{m_B + m_D}{m_B |\vec{q}|} A^1_{\lambda=-1}(|\vec{q}|)
\]

\[
V_+(q^2) = + i \frac{m_B + m_D}{2m_B} \frac{m_D}{|\vec{q}| m_B} \left\{ V^0_{\lambda=0}(|\vec{q}|) - \frac{m_B - E_D(-\vec{q})}{|\vec{q}|} V^3_{\lambda=0}(|\vec{q}|) \right\} \\
+ \sqrt{2} \frac{m_B E_D(-\vec{q}) - m_D^2}{|\vec{q}| m_D} V^1_{\lambda=-1}(|\vec{q}|)
\]

\[
V_-(q^2) = - i \frac{m_B + m_D}{2m_B} \frac{m_D}{|\vec{q}| m_B} \left\{ - V^0_{\lambda=0}(|\vec{q}|) - \frac{m_B + E_D(-\vec{q})}{|\vec{q}|} V^3_{\lambda=0}(|\vec{q}|) \right\} \\
+ \sqrt{2} \frac{m_B E_D(-\vec{q}) + m_D^2}{|\vec{q}| m_D} V^1_{\lambda=-1}(|\vec{q}|)
\]

\[
V_0(q^2) = + i \sqrt{2} \frac{1}{m_B - m_D} V^1_{\lambda=-1}(|\vec{q}|)
\]

J. Segovia et al. segonza@usal.es

Weak B Decays into Orbitally Excited Charmed Mesons
2.- Theoretical framework

2.3.- Strong decays. 3P_0 and microscopic models

- 3P_0 decay model

\[
H_I = g \int d^3\bar{\psi}(\vec{x}) \psi(\vec{x})
\]

- Microscopic decay model

\[
H_I = \frac{1}{2} \int d^3x d^3y J^a(\vec{x}) K(|\vec{x} - \vec{y}|) J^a(\vec{y})
\]
2. Theoretical framework

2.3. Strong decays. 3P_0 and microscopic models (Continuation)

3P_0 decay model

- L. Micu, Nucl. Phys. B 10, 521 (1969)
- A. Le Yaouanc, L. Olivier, O. Pène, and J.C. Raynal, Phys. Rev. D 8, 2223 (1973)
- R. Bonnaz, and B. Silvestre-Brac, Few-Body Syst. 27, 163 (1999)

Microscopic decay model

- E. Eichten et al. Phys. Rev. D 17 3090 (1978); 21 203 (1980)
 → update: Phys. Rev. D 73 014014 (2006)
- E.S. Ackleh et al. Phys. Rev. D 54, 6811 (1996)
- Yu.A. Simonov arXiv:1103.4028v1 [hep-ph] 21 Mar 2011
- Bao-Fei Li et al. arXiv:1105.1620v1 [hep-ph] 9 May 2011

\[
\Gamma_{A\rightarrow BC} = 2\pi \frac{E_B E_C}{M_A k_0} \sum_{J_{BC}, I} |\mathcal{M}_{A\rightarrow BC}(k_0; J_{BC}, I)|^2
\]

\[
\mathcal{M}_{A\rightarrow BC} = \mathcal{M}_{A\rightarrow BC} + (-1)^{I_B + I_C - I_A + J_B + J_C - J_{BC} + I} \mathcal{M}_{A\rightarrow CB}
\]

\[
\mathcal{M}_{A\rightarrow BC} = \mathcal{I}_{color} \mathcal{I}_{flavor} (\mathcal{I}_{signature} \mathcal{I}_{spin-space})
\]
2.- Theoretical framework

2.3.- Strong decays. Factors for the 3P_0 model

- Color term \Rightarrow

$$I_{\text{color}} = \frac{1}{\sqrt{3}}$$

- Flavor term \Rightarrow

$$I_{\text{flavor}} = (-1)^{t_\alpha + t_\beta + l_A} \delta_{f_\alpha f_\delta} \delta_{f_\beta f_\rho} \delta_{f_\mu f_\lambda} \delta_{f_\nu f_\epsilon} \sqrt{(2l_B + 1)(2l_C + 1)(2t_\mu + 1)} \begin{pmatrix} t_\beta \\ l_C \\ t_\alpha \\ l_A \end{pmatrix}$$

- Spin-space term \Rightarrow

$$I_{\text{spin-space}} = \frac{1}{\sqrt{1 + \delta_{BC}}} \int d^3K_B d^3K_C d^3p_\alpha d^3p_\beta d^3p_\mu d^3p_\nu \delta^{(3)}(\vec{K} - \vec{K}_0)$$

$$\delta^{(3)}(\vec{K}_B - \vec{P}_B)\delta^{(3)}(\vec{K}_C - \vec{P}_C)\delta^{(3)}(\vec{p}_\mu + \vec{p}_\nu)\delta^{(3)}(\vec{P}_A) \frac{\delta(k - k_0)}{k}$$

$$\langle \{ [\phi_B(\vec{p}_B)(s_\alpha s_\nu)S_B] J_B [\phi_C(\vec{p}_C)(s_\mu s_\beta)S_C] J_C] J_{BC} Y_l(\hat{k}) \} J_A |$$

$$\{ [\phi_A(\vec{p}_A)(s_\alpha s_\beta)S_A] J_A [\gamma_{\mu + (1)} \left(\frac{\vec{p}_\mu - \vec{p}_\nu}{2} \right) (s_\mu s_\nu) 1 \} 0 \} J_A \rangle$$
2.- Theoretical framework
2.3.- Strong decays. Factors for the microscopic model

- Color term ⇒
 \[I_{color} = \frac{2^2}{3^2} \]

- Flavor term ⇒
 \[I_{flavor} = (-1)^{t_{\alpha}+t_{\beta}+I_{A}} \delta_{f_{\alpha}f_{\delta}} \delta_{f_{\beta}f_{\rho}} \delta_{f_{\mu}f_{\lambda}} \delta_{f_{\nu}f_{\epsilon}} \sqrt{(2l_{B} + 1)(2l_{C} + 1)(2t_{\mu} + 1)} \left\{ \begin{array}{ccc} t_{\beta} & l_{C} & t_{\mu} \\ l_{B} & t_{\alpha} & l_{A} \end{array} \right\} \]

- Spin-space term ⇒
 \[I_{spin-space} = \frac{-2}{\sqrt{1 + \delta_{BC}}} \int d^{3}K_{B}d^{3}K_{C} \sum_{m, M_{BC}} \langle J_{BC} M_{BC} | \text{Im} | J_{A} M_{A} \rangle \delta^{(3)}(\vec{K} - \vec{K}_{0}) \delta(k - k_{0}) \]
 \[\frac{Y_{Im}(\hat{k})}{k} \sum_{M_{B}, M_{C}} \langle J_{B} M_{B} J_{C} M_{C} | J_{BC} M_{BC} \rangle \int d^{3}p_{\delta} d^{3}p_{\epsilon} d^{3}p_{\lambda} d^{3}p_{\rho} \delta^{(3)}(\vec{K}_{B} - \vec{P}_{B}) \]
 \[\delta^{(3)}(\vec{K}_{C} - \vec{P}_{C}) \phi_{B}(\vec{p}_{B}) \phi_{C}(\vec{p}_{C}) \delta_{\rho \beta} \delta^{(3)}(\vec{p}_{\rho} - \vec{p}_{\beta}) \delta^{(3)}(\vec{p}_{\lambda} + \vec{p}_{\epsilon} + \vec{p}_{\delta} - \vec{p}_{\alpha}) \]
 \[K(|\vec{p}_{\lambda} + \vec{p}_{\epsilon}|) \lim_{v/c \rightarrow 0} [\bar{u}_{\alpha}(\vec{p}_{\lambda}) \Gamma v_{\epsilon}(\vec{p}_{\epsilon})] \lim_{v/c \rightarrow 0} [\bar{u}_{\delta}(\vec{p}_{\delta}) \Gamma u_{\alpha}(\vec{p}_{\alpha})] \]
 \[\int d^{3}p_{\alpha} d^{3}p_{\beta} \delta^{(3)}(\vec{P}_{A}) \phi_{A}(\vec{p}_{A}) \]
3.- Results

3.1.- Semileptonic $B \rightarrow D_2^* l \nu_l$ decay

Semileptonic decay widths

$\Gamma(B^+ \rightarrow \bar{D}_2^{0*} l^+ \nu_l) = 1.3388 \times 10^{-15}$ GeV $\Rightarrow B(B^+ \rightarrow \bar{D}_2^{0*} l^+ \nu_l) = 3.3320 \times 10^{-3}$

$\Gamma(B^0 \rightarrow D_2^{*-} l^+ \nu_l) = 1.3454 \times 10^{-15}$ GeV $\Rightarrow B(B^0 \rightarrow D_2^{*-} l^+ \nu_l) = 3.1172 \times 10^{-3}$

Some results about strong decays

B	Exp.	3P_0	Microscopic
$\frac{\Gamma(D_2^{*+} \rightarrow D^0 \pi^+)}{\Gamma(D_2^{*+} \rightarrow D^{*0} \pi^+)}$	$1.9 \pm 1.1 \pm 0.3$	1.80	1.97
$\frac{\Gamma(D_2^{*0} \rightarrow D^+ \pi^-)}{\Gamma(D_2^{*0} \rightarrow D^{*+} \pi^-)}$	1.56 ± 0.16	1.82	1.97
$\frac{\Gamma(D_2^{*0} \rightarrow D^+ \pi^-)}{\Gamma(D_2^{*0} \rightarrow D^{(*)+} \pi^-)}$	$0.62 \pm 0.03 \pm 0.02$	0.64	0.66
3.- Results

3.2.- Semileptonic $B \rightarrow D_1 l \nu_l$ decay

- Semileptonic decay widths

$$\Gamma(B^+ \rightarrow \bar{D}^0_1 l^+ \nu_l) = 1.5490 \times 10^{-15} \text{ GeV} \Rightarrow B(B^+ \rightarrow \bar{D}^0_1 l^+ \nu_l) = 3.8552 \times 10^{-3}$$

$$\Gamma(B^0 \rightarrow D^- l^+ \nu_l) = 1.5445 \times 10^{-15} \text{ GeV} \Rightarrow B(B^0 \rightarrow D^- l^+ \nu_l) = 3.5785 \times 10^{-3}$$

Only one open-charm decay $\Rightarrow B(D^0_1 \rightarrow D^{*+} \pi^-) = B(D^-_1 \rightarrow D^{*0} \pi^-) = 2/3$
Results

3.3.- Comparison with experiment

	Belle ($\times 10^{-3}$)	BaBar ($\times 10^{-3}$)	3P_0 ($\times 10^{-3}$)	Mic. ($\times 10^{-3}$)
D_2^* (2460)				
$B(B^+ \to D_2^{*0} l^+ \nu_l)B(D_2^{*0} \to D^+ \pi^-)$	2.2 ± 0.5	1.42 ± 0.21	1.43	1.47
$B(B^+ \to D_2^{*0} l^+ \nu_l)B(D_2^{*0} \to D^{*+} \pi^-)$	1.8 ± 0.7	0.87 ± 0.21	0.79	0.75
$B(B^+ \to D_2^{*0} l^+ \nu_l)B(D_2^{*0} \to D^{(*)+} \pi^-)$	4.0 ± 0.9	2.29 ± 0.31	2.22	2.22
$B(B^0 \to D_2^{*-} l^+ \nu_l)B(D_2^{*-} \to D^0 \pi^-)$	2.2 ± 0.6	1.10 ± 0.19	1.34	1.38
$B(B^0 \to D_2^{*-} l^+ \nu_l)B(D_2^{*-} \to D^{*0} \pi^-)$	< 3	0.67 ± 0.19	0.74	0.70
$B(B^0 \to D_2^{*-} l^+ \nu_l)B(D_2^{*-} \to D^{(*)0} \pi^-)$	< 5.2	1.77 ± 0.28	2.08	2.08
$B_{D/D^{(*)}}$	0.55 ± 0.03	0.62 ± 0.04	0.64	0.66
D_1 (2420)				
$B(B^+ \to D_1^{0} l^+ \nu_l)B(D_1^{0} \to D^{*+} \pi^-)$	4.2 ± 1.0	2.97 ± 0.24	2.57	2.57
$B(B^0 \to D_1^{-} l^+ \nu_l)B(D_1^{-} \to D^{*0} \pi^-)$	5.4 ± 2.1	2.78 ± 0.35	2.39	2.39
4.- Summary and conclusions

- We have studied semileptonic B decays into orbitally excited charmed mesons

- These data offer new theoretical possibilities to test meson models as far as they include weak and strong processes

- Weak decays: Studied within spectator approximation and in the helicity formalism.

- Strong decays: We study these processes within the context of the 3P_0 and microscopic models

- Predictions for $B \rightarrow D_2^* l\nu_l$ and $B \rightarrow D_1 l\nu_l$: very good agreement with BaBar data which are the latest measurements. All theoretical results within the error bars

- In both cases the theoretical predictions are smaller than the Belle data