Abstract. This paper transfers a randomized algorithm originally used in geometric optimization to computational commutative algebra. We show that Clarkson’s sampling algorithm can be applied to two separate problems in computational algebra: solving large-scale polynomial systems, for which we utilize a Helly-type result for algebraic varieties, and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of Gärtner et al. applies to these polynomial ideal problems. The resulting algorithms have expected runtime linear in the number of input polynomials, making the method particularly interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables is constant).

1. Introduction

Many computer algebra systems offer excellent algorithms for manipulation of polynomials. But despite great success in the field, many algebraic problems have bad worst-case complexity. For example, Buchberger’s groundbreaking algorithm, key to computational algebra today, computes a Gröbner basis of any ideal, but it has a worst-case runtime that is doubly exponential in the number of variables [18]. This presents the following problem: what should one do about computations whose input is a very large, overdetermined system of polynomials? In this paper, we propose to use randomized sampling algorithms to ease the computational cost in such cases.

One can argue that all success in computation with polynomials (of non-trivial size) relies heavily on finding specialized structures. Examples include Faugère’s et al. computation of Gröbner bases of zero-dimensional ideals [21, 22, 23, 25, 31], specialized software for computing generating sets of toric ideals [11], several packages in [28] built specifically to handle monomial ideals, and the study of sparse systems of polynomials (i.e., systems with fixed support sets of monomials) with better bounds than the general Bezout’s bound and the associated homotopy methods [40]. More recently, in [12], Cifuentes and Parrilo began exploiting chordal graph structure in computational commutative algebra, and in particular, for solving polynomial systems. Here we will exploit more combinatorial structure, but this time akin to Helly-type results from discrete geometry [32].

At the same time, it is widely recognized that deterministic algorithms have serious limitations and that their complexity is worse than those algorithms that involve randomization; or that pathological examples occur only rarely, implying an obvious advantage of considering average behavior analysis of many algorithms. For example, some forms of the simplex method for solving linear programming problems have worst-case complexity that is exponential, yet [39] has recently shown that in the smoothed analysis of algorithms sense, the simplex method is a rather robust and fast algorithm. Smoothed analysis combines the worst-case and average-case algorithmic analyses by measuring the expected performance of algorithms under slight random perturbations of worst-case inputs. Of course probabilistic analysis, and smoothed analysis in particular, has been used in computational algebraic geometry for some time now, see e.g., the elegant work in [7, 8, 11]. In this paper, we investigate a different kind of probabilistic method and demonstrate its usefulness in at least two problems.
Our contributions. We apply the theory of violator spaces [27] to polynomial ideals and adapt Clarkson’s sampling algorithms [13] to provide efficient randomized algorithms for two concrete problems:

1. solving large (overdetermined) systems of multivariate polynomials equations,
2. finding small, possibly minimal, generating sets of homogeneous ideals.

Our method is based on the notion of a violator space introduced in 2008 by B. Gärtner, J. Matoušek, L. Rüst, L. and P. Škovroň [27]. Our approach gives an adaptation of Clarkson’s sampling techniques [13] to computation with polynomials. To our knowledge, this is the first time such sampling algorithms are being used in computational algebraic geometry. The algorithms rely on computing with small-size subsystems, embedded in an iterative sampling scheme. In the end, the local information is used to make a global decision about the entire system. The expected runtime is linear in the number of input polynomials. A way to do biased sampling, due to Clarkson [13], is embedded within the framework. The same ideas are applicable to problems that have a natural linearization and a sampling size given by a combinatorial Helly number of the problem.

Before stating the main results, let us fix the notation used throughout the paper. Denote by \(K \) an (algebraically closed) field and let \((f_1,\ldots,f_m) \subset \mathfrak{I} = K[x_0,\ldots,x_n] = K[x] \) be an ideal generated by \(m \) polynomials in \(n+1 \) variables. (We usually assume that \(m \gg n \).) For a system \(\mathcal{F} = \{f_1,\ldots,f_m\} \), we denote by \((\mathcal{F}) \) the ideal the system generates. Note that the ideals we consider need not be homogeneous; if they are, that will be explicitly stated. Additionally, in the graded case, the set of all homogeneous polynomials of total degree \(d \) will be denoted by \([\mathfrak{I}]_d \). Finally, denote by \(\mathcal{V}(\mathcal{S}) \) the (affine) variety defined by the set of polynomials \(\mathcal{S} \subset \mathfrak{I} \), that is, the Zariski closure of the set of common zeros of the polynomials in the system \(\mathcal{S} \).

Solving large polynomial systems. Suppose we would like to solve a system of \(m \) polynomials in \(n+1 \) variables over the field \(K \), and suppose that \(m \) is large. We are interested in the coefficients of the polynomials as a way to linearize the system. To that end, recall first that the \(d \)-th Veronese embedding of \(\mathbb{P}^n \) is the following map \(\nu_d : \mathbb{P}^n \to \mathbb{P}^{(n+d+1)} \):

\[
(x_0 : \cdots : x_n) \mapsto (x_0^d : x_0^{d-1} \cdots x_0 : x_1^d) .
\]

The map \(\nu_d \) induces a coefficient-gathering map for homogeneous polynomials in fixed degree \(d \):

\[
\text{coeff}_d : [\mathfrak{I}]_d \to K^{\binom{n+d}{d}},
\]

\[
\sum_{\alpha : |\alpha|=d} c_{\alpha} x^\alpha \mapsto \begin{bmatrix} c_{\alpha_1}, \ldots, c_{\alpha_{\binom{n+d}{d}}} \end{bmatrix},
\]

where \(x^\alpha \) corresponds to the \(i \)-th coordinate of the \(d \)-th Veronese embedding. We follow the usual notation \(|\alpha|=\sum_i \alpha_i \). Therefore, if \(f \) is a homogeneous polynomial of \(\deg(f) = d \), \(\text{coeff}(f) \) is a vector in the \(K \)-vector space \(K^{\binom{n+d}{d}} \). This construction can be extended to non-homogeneous polynomials in the following natural way. Consider all distinct total degrees \(d_1,\ldots,d_s \) of monomials that appear in a non-homogenous polynomial \(f \). For each \(d_i \), compute the image under \(\text{coeff}_d \) of all monomials of \(f \) of degree \(d_i \). Finally, concatenate all these vectors into the total coefficient vector of \(f \), which we will call \(\text{coeff}(f) \) and which is of size \(\binom{n+d+1}{n+1} \), the number of monomials in \(n+1 \) variables of (total) degree ranging from 0 to \(d \). In this way, a system \(f_1,\ldots,f_m \) of polynomials in \(n \) variables of degree at most \(d \) can be represented by a coefficient matrix of size \(\binom{n+d+1}{n+1} \times m \). This map allows us to think of polynomials as points in a linear affine space, where Helly’s theorem applies.

We utilize this construction to import Clarkson’s method [13] for solving linear problems to algebraic geometry and, in particular, we make use of Helly-type theorems for varieties. Helly-type theorems allow one to reduce the problem of solving the system to repeated solution of smaller
subsystems, whose size is a Helly number of intersecting linear spaces. As a result, our algorithms achieve \textit{expected linear runtime} in the number of input equations.

\textbf{Theorem 1.1.} Let \(F = \{ f_1, \ldots, f_m \} \subset \mathbb{R} \) be a system of polynomials, and let \(\delta \) be the dimension of the vector subspace generated by the coefficient vectors of the \(f_i \)'s, as described above.

Then there exists a sampling algorithm that outputs \(F' = \{ f_{i_1}, \ldots, f_{i_k} \} \subset F \) such that \(\mathcal{V}(F) = \mathcal{V}(F') \) in an expected number \(\mathcal{O}(\delta m + \delta^\mathcal{O}(1)) \) of calls to the primitive query that solves a small radical ideal membership problem. \(F \) and \(F' \) generate the same ideal up to radicals.

It is important to point out that our sampling algorithm will find a small subsystem of size \(\delta \) from the polynomial system input, which, when solved with whatever tools one has at their disposal, will give the same solution set as the original system. Here by small we mean that \(\delta \) is polynomially bounded or constant when the number of variables is constant or when the degree is small.

There are several interesting special cases of this result. For example, we obtain [17, Corollary 2] as a corollary of Theorem 1.1 if \(f_1, \ldots, f_m \in K[x_0, \ldots, x_n] \) are homogeneous and of degree at most \(d \) each, then the dimension \(\delta \) of the vector subspace they generate is at most \(\binom{n+d}{d} \) (see Lemma 4.6).

Of course, in many situations in practice, this bound is not sharp, as many systems are of low rank. For example, this situation can arise if the monomial support of the system is much smaller than the total number of monomials of degree \(d \). In light of this, Theorem 1.1 gives a better bound for low-rank systems. Note that we measure system complexity by its rank, that is, the vector space dimension \(\delta \), and not the usual sparsity considerations such as the structure of the monomial support of the system. Further, our result applies to non-homogeneous systems as well.

Its proof is presented in Section 4 along with the proof of Theorem 1.1.

\textbf{Computing small generating sets of ideals.} The problem of finding “nice” generating sets of ideals has numerous applications in statistics, optimization, and other fields of science and engineering. Current methods of calculating minimal generating sets of ideals with an a priori large number of generators are inefficient and rely mostly on Gröbner bases computations, since they usually involve ideal membership tests. Of course there are exceptional special cases, such as ideals of points in projective space [36] or binomial systems [1]. Our second main result shows how to efficiently generate a small or close to minimal generating set for any ideal from a given large generating set and a bound on the size of a minimal generating set.

\textbf{Theorem 1.2.} Let \(I = (H) \) be an ideal generated by a (large) finite set of homogeneous polynomials \(H \), and suppose that \(\gamma \) is a known upper bound for the 0-th total Betti number \(\beta(R/I) \).

Then there exists a randomized algorithm that computes a generating set of \(I \) of size \(\gamma \) in expected number of \(\mathcal{O}(\gamma|H| + \gamma^\gamma) \) calls to the primitive query that solves a small ideal membership problem.

In particular, if \(\gamma = \beta(R/I) \), the algorithm computes a minimal generating set of \(I \).

The proof is presented in Section 5.

2. A Warm-Up: Algebraic Helly-type theorems and the size of a meaningful sample

A Helly-type theorem has the following form: Given a family of objects \(F \), a property \(P \), and a Helly number \(\delta \) such that every subfamily of \(F \) with \(\delta \) elements has property \(P \), then the entire family has property \(P \). (See [13, 19, 22].) In the original theorem of E. Helly, \(F \) is a finite family of convex sets in \(\mathbb{R}^n \), the constant \(\delta \) is \(n + 1 \), and the property \(P \) is to have a non-empty intersection [30]. Here we are looking for non-linear algebraic versions of the same concept, where the objects in \(F \) are algebraic varieties (hypersurfaces) or polynomials; the property desired is to have a common point, or to generate the same ideal; and the Helly constant \(\delta \) will be determined from the structure of the problem at hand. To better understand the algorithms that we present, it is instructive to
consider two intuitive easy examples that highlight the fundamental combinatorial framework. The first one is an obvious reformulation of Helly’s theorem for algebraic geometors.

Example 2.1. Let $H = \{L_1, L_2, \ldots, L_s\}$ be a family of affine linear subspaces in \mathbb{R}^n. Consider the case when s is much larger than n. One would like to answer the following question: when do all of the linear varieties have a nonempty intersection? It is enough to check whether each subfamily of H with $n+1$ elements has a non-empty intersection, as that would imply, by Helly’s Theorem, that H also has a non-empty intersection. Thus, in practice, one can reduce the task of deciding whether $\bigcap_{i=1}^s L_i \neq \emptyset$ to the collection of smaller queries $\bigcap_{j=1}^{n+1} L_{ij}$. However, instead of going over all possible $\binom{s}{n+1}$ many $(n+1)$-tuples, we may choose to randomly sample $(n+1)$-tuples multiple times. Each time we sample, we either verify that one more $(n+1)$-tuple has a non-empty intersection thus increasing the certainty that the property holds for all $(n+1)$-tuples, or else find a counterexample, a subfamily without a common point, the existence of which trivially implies that $\bigcap_{i=1}^s L_i = \emptyset$. This simple idea is the foundation of a randomized approach. For now we ask the reader to observe that $n + 1$ is the dimension of the vector space of (non-homogeneous) linear polynomials in n variables.

Example 2.2. Consider next $H = \{f_1(x_1, x_2), f_2(x_1, x_2), \ldots, f_s(x_1, x_2)\}$, a large family of affine real plane curves of degree at most d. Imagine that H is huge, with millions of constraints, but the curves are of small degree, say $d = 2$. Nevertheless, suppose that we are in charge of deciding whether all curves have a common real point of intersection, or, if not, to exhibit an infeasible subsystem. Clearly, if the pair of polynomials $f, g \in H$ have common solution, they intersect in finitely many points, and, of course, Bezout’s theorem guarantees that no more than d^2 intersections occur. One can observe that if the system H has a solution, it must pass through some of the (at most d^2) points defined by the pair f, g alone. In fact, if we take triples $f, g, h \in H$, the same bound of d^2 holds, as well as the fact that the solutions for the entire H must be also be part of the solutions for the triplet f, g, h. Same conclusions hold for quadruples, quintuples, and in general δ-tuples. But how large does an integer δ have to be in order to function as a Helly number? We seek a number δ such that if all δ-tuples of plane curves in H intersect, then all of the curves in H must intersect. E.g., the reader can easily find examples where $\delta = d$ does not work when $d \geq 2$.

To answer the question posed in Example 2.2 we refer to Theorem 4.11 in Section 4. Without re-stating the theorem here, we observe that the fact that there are only $\binom{d+2}{2}$ monomials in two variables of degree $\leq d$ (which says they span a linear subspace of that dimension inside the vector space of all polynomials) and Theorem 4.11 imply the following corollary, which gives a nice bound on δ.

Corollary 2.3. Let $H = \{f_1(x, y), f_2(x, y), \ldots, f_s(x, y)\}$ be a family of affine real plane curves of degree at most d. If every $\delta = (d+2)(d+1)/2$ of the curves have a real intersection point, then all the curves in H have a real intersection point. If we consider the same problem over the complex numbers, then the same bound holds.

Thus, it suffices to check all $(d+2)(d+1)/2$-tuples of curves for a common real point of intersection, and if all of those instances do intersect, then we are sure all the million polynomials must have a common root too. The result suggests a brute-force process to verify real feasibility of the system, by checking all subsets of size $\delta = (d+2)(d+1)/2$ for intersection, but to check all the possible δ-tuples of a million constraints set is not a pretty proposition. Instead, we explain a way to sample from the set of δ-tuples in order to have a better chance to find a solution for the problem. Notice that it is important to find a small Helly number δ, as a way to find the smallest sampling size necessary to detect common intersections. In this example, if f_i are homogeneous, the Helly number is best possible 24.
3. Violator spaces and Clarkson’s sampling algorithms

The key observation in the previous section was that the existence of Helly-type theorems indicates that there is a natural notion of sampling size to test for a property of varieties. Our goal is to import to computational algebra an efficient randomized sampling algorithm by Clarkson. To import this algorithm, we use the notion of violator spaces which we outline in the remainder of this section. We illustrate the definitions using Example 2.2 as a running example in this section.

The story began in 1992, when Sharir and Welzl [37] identified special kinds of geometric optimization problems that lend themselves to solution via repeated sampling of smaller subproblems: they called these LP-type problems. Over the years, many other problems were identified as LP-type problems and several abstractions and methods were proposed [2, 3, 9, 29, 33]. A powerful sampling scheme was devised by Clarkson [13] and it works particularly well for geometric optimization problems in small number of variables. Examples of applications include convex and linear programming, integer linear programming, the problem of computing the minimum-volume ball or ellipsoid enclosing a given point set in \mathbb{R}^n, and the problem of finding the distance of two convex polytopes in \mathbb{R}^n. In 2008, Gärtner, Matoušek, Rüst and Škovroň [27] invented violator spaces and showed they give a much more general framework to work with LP-type problems. In fact, violator spaces include all prior abstractions and were proven in [38] to be the most general framework in which Clarkson’s sampling converges to a solution. Let us begin with the key definition of a violator space.

Definition 3.1 ([27]). A violator space is a pair (H, V), where H is a finite set and V a mapping $2^H \rightarrow 2^H$, such that the following two axioms hold:

- **Consistency**: $G \cap V(G) = \emptyset$ holds for all $G \subseteq H$, and
- **Locality**: $V(G) = V(F)$ holds for all $F \subseteq G \subseteq H$ such that $G \cap V(F) = \emptyset$.

Example 3.2 (Example 2.2 continued). To illustrate this definition, consider Example 2.2 of s real plane curves $\{f_1, \ldots, f_s\} = H$. Note that for any two sets $S_1 \subseteq S_2$, the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.

The violator operator for testing the existence of a real point of intersection of a subset $F \subset H$ of the curves should capture the real intersection property correctly (see Example 3.6), and the set of real intersection points of the curves of S_1 always contains the set of real intersection points of the curves of S_2.
There are three important ingredients of every violator space: a basis, the combinatorial dimension, and the primitive test. These are defined next.

Definition 3.3. A basis of a violator space is defined in analogy to a basis of a linear programming problem: a minimal set of constraints that defines a solution space. Specifically, [27 Definition 7] defines \(B \subseteq H \) to be a basis if \(B \cap V(F) \neq \emptyset \) holds for all proper subsets \(F \subset B \). For \(G \subseteq H \), a basis of \(G \) is a minimal subset \(B \) of \(G \) with \(V(B) = V(G) \).

It is very important to note that fixing the definition of a violator space fixes also the definition of a basis. It is in this sense that a violator operator can capture algebraic problems of interest, as long as the basis for that violator corresponds to a basis of the algebraic object we study. Violator space bases come with a natural combinatorial invariant, related to Helly numbers we discussed earlier.

Definition 3.4 ([27 Definition 19]). The size of a largest basis of a violator space \((H, V)\) is called the **combinatorial dimension** of the violator space and denoted by \(\delta = \delta(H, V) \).

A crucial property was proved in [27]: knowing the violations \(V(G) \) for all \(G \subseteq H \) is enough to compute the largest bases. To do so, one can utilize Clarkson’s randomized algorithm to compute a basis of some violator space \((H, V)\) with \(m = |H| \). The results about the runtime and the size of the sets involved are summarized below. The primitive operation, used as black box in all stages of the algorithm, is the so-called **violation test primitive**.

Definition 3.5. Given a violator space \((H, V)\), some set \(G \subseteq H \), and some element \(h \in H \setminus G \), the **primitive** test decides whether \(h \in V(G) \).

The following example illustrates these three key ingredients.

Example 3.6 (Example 3.2 continued). In the example of \(s \) real plane curves and the violator that detects whether they have a real point of intersection, a basis would be a (minimal) set of curves \(B = \{ f_{i_1}, \ldots, f_{i_d} \} \), for some \(\delta < s \), such that either the curves in \(B \) have no real point of intersection, or the real points of intersection of the curves in \(B \) capture the real intersection of all of \(H = \{ f_1, \ldots, f_s \} \). We can now see how the operator \(V_{\text{real}} \) captures exactly this property: if the set \(F \) has no real intersection point, then \(V_{\text{real}}(F) = \emptyset \) by definition, so that set \(F \) could be a basis in the sense that it is a certificate of infeasibility for this real-intersection problem. If, on the other hand, \(F \) does have a real intersection point, and \(V_{\text{real}}(F) = \emptyset \), then this means that \(F \) is a basis in the sense that the curves in \(F \) capture the intersections of all of \(H \). The combinatorial dimension is provided by Corollary 2.3 and it equals \(\delta = \binom{d+2}{2} \).

The primitive query simply checks, given \(f_i \in H \) and a candidate subset \(G \subseteq H \), whether the set of real points of intersection of \(G \cup \{ f_i \} \) is empty. The role of the primitive query is therefore not to find a basis directly, but to check, instead, whether a given candidate subset \(G \) can be a basis of \(H \). This can be done by checking whether \(f_i \in V_{\text{real}}(G) \) for all \(f_i \in H \setminus G \). Clearly, given the primitive test, a basis for \(H \) can be found by simply testing all sets of size at most \(\delta \), but that would be a waste because the number of times one would need to call the primitive would be \(O(|H|^{\delta + 1}) \).

As we will see, this brute-force approach can be avoided. Namely, in our current example, the randomized algorithm from Theorem 3.7 below will sample subsets of \(\delta = \binom{d+2}{2} \) curves from the set \(\{ f_1, \ldots, f_s \} \), and find a basis of the violator of size \(\delta \) in the sense explained above.

Clarkson [13] presented his sampling method, which avoids a full brute-force approach, in two stages referred to as Clarkson’s first and Clarkson’s second algorithm. We outline these below.

Clarkson’s first algorithm, in the first iteration, draws a small random sample \(R \subset G \), calls the second stage to calculate the basis \(C \) of \(R \), and returns \(C \) if it is already a basis for the larger subset \(G \). If \(C \) is not already a basis, but the elements of \(G \setminus C \) violating \(R \) are few, it adds those elements to a growing set of violators \(W \), and repeats the process with \(C \) being calculated as the basis of the
set \(W \cup R \) for a new randomly chosen small \(R \subset G \setminus W \). The crucial point here is that \(|R|\) is much smaller than \(|G|\), and consequently, a Helly number of sorts.

Algorithm 1: Clarkson’s first algorithm

input: \(G \subseteq H \), \(\delta \): combinatorial complexity of \(H \)

output: \(B \), a basis for \(G \)

1. if \(|G| \leq 9\delta^2\) then
 2. return Basis2(\(G \))
3. else
 4. \(W \leftarrow \emptyset \)
 5. repeat
 6. \(R \leftarrow \) random subset of \(G \setminus W \) with \(\lfloor \delta \sqrt{|G|} \rfloor \) elements.
 7. \(C \leftarrow \) Basis2(\(W \cup R \))
 8. \(V \leftarrow \{ h \in G \setminus C \text{ s.t. } h \in V(C) \} \)
 9. if \(|V| \leq 2\sqrt{|G|} \) then
 10. \(W \leftarrow W \cup V \)
 11. until \(V = \emptyset \)
12. end
13. return \(C \).

Clarkson’s second algorithm (Basis2) iteratively picks a random small (\(6\delta^2 \) elements) subset \(R \) of \(G \), finds a basis \(C \) for \(R \) by exhaustively testing each possible subset (BruteForce;) taking advantage of the fact that the sample \(R \) is very small, and then calculates the violators of \(G \setminus C \). At each iteration, elements that appear in bases with small violator sets get a higher probability of being selected. This idea is very important: we are biasing the sampling process, so that some constraints will be more likely to be chosen. This is accomplished by considering every element \(h \) of the set \(G \) as having a multiplicity \(m(h) \); the multiplicity of a set is the sum of the multiplicities of its elements. The process is repeated until a basis of \(G \) is found, i.e. until \(V(G \setminus C) \) is empty.

Algorithm 2: Clarkson’s second algorithm: Basis2(\(G \))

input: \(G \subseteq H \); \(\delta \): combinatorial complexity of \(H \).

output: \(B \): a basis of \(G \)

1. if \(|G| \leq 6\delta^2\) then
 2. return BruteForce(\(G \))
3. else
 4. repeat
 5. \(R \leftarrow \) random subset of \(G \) with \(6\delta^2 \) elements.
 6. \(C \leftarrow \) BruteForce(\(R \))
 7. \(V \leftarrow \{ h \in G \setminus C \text{ s.t. } h \in V(C) \} \)
 8. if \(m(V) \leq m(G)/3\delta \) then
 9. for \(h \in V \) do
 10. \(m(h) \leftarrow 2m(h) \)
 11. end
12. until \(V = \emptyset \)
13. end
14. return \(C \).
Again, as described above, all one needs is to be able to answer the **Primitive query:** Given
\(G \subseteq H \) and \(h \in H \setminus G \), decide whether \(h \in V(G) \). The runtime is given in terms of the combinatorial dimension \(\delta(H,V) \) and the size of \(H \). The key result we will use in the rest of the paper concerns the complexity of finding a basis:

Theorem 3.7. \([27, \text{Theorem 27}]\) Using Clarkson’s algorithms, a basis of \(H \) in a violator space \((H,V)\) can be found by answering the primitive query an expected \(O(\delta |H| + \delta^{O(\delta)}) \) times.

It is very important to note that, in both stages of Clarkson’s method, the query \(h \in V(C) \) is answered via calls to the primitive as a black box. In our algebraic applications, the primitive computation requires solving a small-size subsystem (e.g., via Gröbner bases or numerical algebraic geometry methods), or an ideal membership query applied to the ideal generated by a small subset of the given polynomials. On the other hand, the combinatorial dimension relates to the Helly number of the problem which is usually a number that is problem-dependent and requires non-trivial mathematical results.

In the two sections that follow we show how violator spaces naturally arise in non-linear algebra of polynomials.

4. A Violator for Solving Overdetermined Systems

We propose a random sampling approach to solve large-size (non-linear) polynomial systems by applying Clarkson’s algorithm. In particular, we prove **Theorem 4.1** as a corollary of **Theorem 4.11**. This result is motivated by, and extends, Helly-type theorems for varieties from \([17]\) and \([24]\), which we use to show that Clarkson’s algorithms apply to large dense homogeneous systems as well (Corollary \([17]\)).

First, we define a violator space that captures (in the sense explained in the previous section) solvability of a polynomial system.

Definition 4.1. [Violator Space for solvability of polynomial systems] Let \(S \subseteq H \) be finite subsets of \(\mathcal{R} \). Define the violator operator \(V_{\text{solve}} : 2^H \to 2^H \) to record the set of polynomials in \(H \) which do not vanish on the variety \(V(S) \). Formally,

\[
V_{\text{solve}}(S) = \{ f \in H : V(S) \text{ is not contained in } V(f) \}.
\]

Lemma 4.2. The pair \((H,V_{\text{solve}})\) is a violator space.

Proof. Note that \(V_{\text{solve}}(S) \cap S = \emptyset \) by definition of \(V_{\text{solve}}(S) \), and thus the operator satisfies the consistency axiom. To show locality, suppose that \(F \subseteq G \subseteq H \) and \(G \cap V_{\text{solve}}(F) = \emptyset \). Since \(F \subseteq G \) we know that \(V(G) \subseteq V(F) \). This means that for every \(h \in V_{\text{solve}}(G) \), \(V(h) \) does not contain \(V(G) \), and so it cannot contain \(V(F) \) either. Thus \(h \in V_{\text{solve}}(F) \) and \(V_{\text{solve}}(G) \subseteq V_{\text{solve}}(F) \). On the other hand \(G \cap V_{\text{solve}}(F) = \emptyset \) implies that \(V(F) \subseteq V(g) \) for all \(g \in G \), thus \(V(F) \) is contained in \(V(G) \). But then the two varieties are equal. Thus if \(h \in V_{\text{solve}}(F) \) then \(V(h) \) cannot contain \(V(F) = V(G) \), thus \(h \in V(G) \) too. Hence \(V_{\text{solve}}(F) = V_{\text{solve}}(G) \).

It follows from the definition that the operator \(V_{\text{solve}} \) gives rise to a violator space for which a basis \(B \) of \(G \subseteq H \) is a set of polynomials such that \(V(B) = V(G) \). Therefore, a basis \(B \subseteq G \) will either be a subset of polynomials that has no solution and as such be a certificate of infeasibility of the whole system \(G \), or it will provide a set of polynomials that are sufficient to find all common solutions of \(G \).

Next, we need a violation primitive test that decides whether \(h \in V_{\text{solve}}(F) \), as in **Definition 3.5**. By the definition above, this is equivalent to asking whether \(h \) vanishes on all irreducible components of the algebraic variety \(V(F) \). As is well known, the points of \(V(F) \) where the polynomial \(h \) does not vanish correspond to the variety associated with the saturation ideal \((F : h^{\infty}) \). Thus, we may
use ideal saturations for the violation primitive. For completeness, we recall the following standard definitions. The saturation of the ideal \((F)\) with respect to \(f\), denoted by \((F) : f^\infty\), is defined to be the ideal of polynomials \(g \in R\) with \(f^mg \in I\) for some \(m > 0\). This operation removes from the variety \(\mathcal{V}(F)\) the irreducible components on which the polynomial \(h\) vanishes. Recall that every variety can be decomposed into irreducibles (cf. [14, Section 4.6] for example). The corresponding algebraic operation is primary decomposition of the ideal defining this variety.

Lemma 4.3 (e.g. [4, Chapter 4]). Let \(\cap_{i=1}^m Q_i\) be a minimal primary decomposition for the ideal \(I\), where \(Q_i\) is a \(P_i\)-primary ideal. The saturation ideal \((I : f^\infty)\) equals \(\cap_{f \notin P} Q_i\).

Proof. It is known that \(\cap_{i=1}^m (Q_i : f^\infty) = \cap_{i=1}^m (Q_i : f^\infty)\). We observe further that \((Q_i : f^\infty) = Q_i\) if \(f\) does not belong to \(P_i\) and \((Q_i : f^\infty) = (1)\) otherwise.

This allows us to set up the primitive query for \(V_{\text{solve}}\). However we do not need to calculate the decomposition explicitly, but can instead carry it out using elimination ideals via Gröbner bases, as explained for example in [14, Exercise 4.4.9].

Observation 4.4. The primitive query for \(V_{\text{solve}}\) is simply the saturation test explained above.

Remark 4.5. There is an obvious reformulation of these two ingredients that is worth stating explicitly. Namely, since a basis \(B\) for the violator space \((H, V_{\text{solve}})\) is a set of polynomials such that \(\mathcal{V}(B) = \mathcal{V}(H)\), the strong Nullstellensatz implies that \(\sqrt{(B)} = \sqrt{(H)}\). Thus a basis determines the ideal of the input system up to radicals, and we could have named the violator operator \(V_{\text{solve}}\) \(V_{\text{radical}}\) instead. Furthermore, a polynomial \(h\) vanishing on all irreducible components of the algebraic variety \(\mathcal{V}(F)\) is equivalent to \(h \in \sqrt{(F)}\), i.e., \(h\) belonging to the radical of the ideal \((F)\). In particular, the primitive query for \(V_{\text{solve}}\) can also be stated as the radical ideal membership test. This test can be implemented using Gröbner bases, as explained for example in [14, Proposition 4.2.8]: \(h \in \sqrt{(F)}\) if and only if \(1 \in (F, 1 - yh) \subseteq K[x_0, \ldots, x_n, y]\). Therefore, computation of one Gröbner basis of the ideal \((F, 1 - yh)\) suffices to carry out this test.

Finally, we solve the problem of finding a combinatorial dimension for \(V_{\text{solve}}\). For this, consider, as a warm up, the simple situation where we have a Helly-type theorem for hypersurfaces defined by homogeneous polynomials. This was proved by Motzkin [35] and later reproved by Deza and Frankl [17], and it provides us with a combinatorial dimension for guaranteeing that a large-scale homogeneous system has a solution. Its proof relies on thinking of the polynomial ring \(R\) as a \(K\)-vector space (see also the discussion before Definition 4.9).

Lemma 4.6 ([17], Corollary 2). Let \(f_1, \ldots, f_m \subseteq R\) be a system of homogeneous polynomials, that is, \(f_i \subseteq [R]_{d_i}\), and define \(d = \max\{d_i\}\). Suppose that every subset of \(p = \binom{n+d}{d}\) polynomials \(\{f_{i_1}, \ldots, f_{i_p}\} \subseteq \{f_1, \ldots, f_m\}\) has a solution. Then the entire system \(\{f_1, \ldots, f_m\}\) does as well.

Lemma 4.6 provides the combinatorial dimension that, along with the variety membership primitive from Observation 4.4, allows us to apply Clarkson’s algorithms to the violator \(V_{\text{solve}}\).

Corollary 4.7. Let \((f_1, \ldots, f_m) \subseteq R\) be an ideal generated by \(m\) homogeneous polynomials in \(n+1\) variables of degree at most \(d\); \(f_i \subseteq [R]_{d_i}\) and \(d = \max\{d_i\}\). Let \(\delta = \binom{n+d}{d}\). Then there is an adaptation of Clarkson’s sampling algorithm that, in an expected \(O(\delta m + \delta^O(\delta))\) number of calls to the primitive query \([4, 12]\) computes \(\{f_{i_1}, \ldots, f_{i_\delta}\}\) such that \(\mathcal{V}(f_1, \ldots, f_m) = \mathcal{V}(f_{i_1}, \ldots, f_{i_\delta})\).

In particular, this algorithm is linear in the number of input equations \(m\), and a randomized polynomial time algorithm when the number of variables \(n+1\) and the largest degree \(d\) are fixed. Furthermore, we can extend it to actually \textit{solve} a large system: once a basis \(B = \{f_{i_1}, \ldots, f_{i_\delta}\}\) for the space \((\{f_1, \ldots, f_m\}, V_{\text{solve}})\) is found, then we can use any computer algebra software (e.g. [3, 28, 11]) to solve \(f_{i_1} = \cdots = f_{i_\delta} = 0\).
Note that Lemma 4.6 can be thought of as a statement about the complexity of Hilbert’s Nullstellensatz. If \((f_1, \ldots, f_m) = \emptyset\) (i.e., \(V(f_1, \ldots, f_m) = \emptyset\)), then there exists a subset of size \(\delta = \binom{n+d}{d}\) polynomials \(f_{i_1}, \ldots, f_{i_p}\) such that \(V(f_{i_1}, \ldots, f_{i_p}) \neq \emptyset\) as well. In particular, there is a Nullstellensatz certificate with that many elements. The dimension \(\binom{n+d}{d}\) is, in fact, only an upper bound, attainable only by dense systems. However, in practice, many systems are very large but sparse, and possibly non-homogeneous. Let us highlight again that the notion of ‘sparsity’ we consider is captured by a low-rank property of the system. To define it precisely, let us revisit the extension of the Veronese embedding to non-homogeneous polynomials explained in the Introduction. Here we focus on the related vector spaces, as illustrated in the following example.

Example 4.8. Consider the following system consisting of two types of polynomials: polynomials of the form \(x_i^2 - 1\) for \(i = 1, \ldots, n\), and polynomials of the form \(x_i + x_j\) for the pairs \(\{i, j : i \neq j \mod 2\}\) along with the additional pair \(i = 1, j = 3\). This system has \(m = n^2 + n + 1\) equations, and the interesting situation is when the number of variables is a large even number, that is, \(n = 2k\) for any large integer \(k\). This system of polynomials generates the 2-coloring ideal of a particular \(n\)-vertex non-chordal graph. (See [16] and references therein for our motivation to consider this particular system.) The graph is an \(n\)-cycle with all possible even chords, and one extra edge \(\{1, 3\}\). Notice that the pairs \(\{i, j\}\) are indexed by edges of the graph \(G\) on \(n\) nodes where all odd-numbered vertices are connected to all even-numbered vertices, and with one additional edge \(\{1, 3\}\).

We wish to decide if the system has a solution, but since there are \(n^2 + n + 1\) many polynomials, we would like to try to avoid computing a Gröbner basis of this ideal. Instead, we search for a subsystem of some specific size that determines the same variety. It turns out that the system actually has no solution. Indeed, a certificate for infeasibility is a random subsystem consisting of the first \(n\) quadratic equations, \(n - 1\) of the edge equations \(x_i + x_j\) with \(\{i, j : i \neq j \mod 2\}\), and the additional equation \(x_1 + x_3\). For example, the first \(n - 1\) edge polynomials will do to construct a \(2n\)-sized certificate of this form. Why is the number \(n + (n - 1) + 1 = 2n\) so special?

To answer this question, let us linearize the problem: to each of the polynomials \(f\) associate a coefficient (column) vector \(\text{coeff}(f) \in \mathbb{C}^{2n+1}\) whose coordinates are indexed by the monomials appearing in the system \(x_1^2, \ldots, x_n^2, 1, x_1, \ldots, x_n\). Putting all these column vectors in one matrix produces the coefficient matrix of the system of the form

\[
\begin{bmatrix}
I_n & 0 \\
-1 & 0 \\
0 & E
\end{bmatrix},
\]

where \(I_n\) is the \(n \times n\) identity, \(-1\) is the row vector with all entries \(-1\), and \(E\) is the vertex-edge incidence matrix of the graph \(G\). Since it is known that the rank of an edge-incidence matrix of an \(n\)-vertex connected graph is \(n - 1\), the rank of this matrix is \(\delta = n + (n - 1) + 1 = 2n\).

Remarkably, the magic size of the infeasibility certificate equals the rank of this coefficient matrix.

This motivating example suggests that the desired Helly-type number of this problem is captured by a natural low-rank property of the system. To define it precisely, let us revisit the extension of the Veronese embedding to non-homogeneous polynomials explained in the Introduction. Here we adopt the notation from [8] Section 2] and consider polynomials in \(\mathcal{R}\) of degree up to \(d\) as a \(K\)-vector space denoted by \(C_d^{n+1}\). The vector space \(C_d^{n+1}\) has dimension \(\binom{d+n+1}{n+1}\), which, of course, equals the number of monomials in \(n + 1\) variables of (total) degree from 0 to \(d\). In this way, any polynomial \(f \in \mathcal{R}\) is represented by a (column) vector, \(\text{coeff}(f) \in C_d^{n+1}\), whose entries are the coefficients of \(f\). Thus, any system \(S \subset \mathcal{R}\) defines a matrix with \(|S|\) columns, each of which is an element of \(C_d^{n+1}\).

Definition 4.9. A system \(S \subset \mathcal{R}\) is said to have rank \(D\) if \(\dim_{K}\langle S \rangle = D\), where \(\langle S \rangle\) is the vector subspace of \(C_d^{n+1}\) generated by the coefficients of the polynomials in \(S\).
We need to also make the notion of Helly-type theorems more precise in the setting of varieties.

Definition 4.10 (Adapted from Definition 1.1. in [24]). A set $S \subset \mathcal{R}$ is said to have the D-Helly property if for every nonempty subset $S_0 \subseteq S$, one can find $p_1, \ldots, p_D \in S_0$ with $\mathcal{V}(S_0) = \mathcal{V}(p_1, \ldots, p_D)$.

The following result, which implies Theorem 1.11 is an extension of [24] to non-homogeneous systems. It also implies Lemma 4.6 when restricted to homogeneous systems. The proof follows that of [24], although we remove the homogeneity assumption. We include it here for completeness.

Theorem 4.11. Any polynomial system $S \subset \mathcal{R}$ of rank D has the D-Helly property.

In other words, for all subsets $\mathcal{P} \subset S$, there exist $p_1, \ldots, p_D \in \mathcal{P}$ such that $\mathcal{V}(\mathcal{P}) = \mathcal{V}(p_1, \ldots, p_D)$.

Proof. Let $\mathcal{P} \subset S$ be an arbitrary subset of polynomials, and denote by $(\mathcal{P}) \subset \mathbb{C}_d^{n+1}$ the vector subspace it generates. Let $d_0 = \dim_K(\mathcal{P})$. We need to find polynomials p_1, \ldots, p_D such that $\mathcal{V}(p_1, \ldots, p_D) = \mathcal{V}(\mathcal{P})$. Note that $d_0 \leq D$, of course, so it is sufficient to consider the case $\mathcal{P} = S$.

Choose a vector space basis $(p_1, \ldots, p_D) = (\mathcal{P}) = (S)$. It suffices to show $\mathcal{V}(p_1, \ldots, p_D) \subseteq \mathcal{V}(S)$; indeed, the inclusions $\mathcal{V}(S) \subseteq \mathcal{V}(\mathcal{P}) \subseteq \mathcal{V}(p_1, \ldots, p_D)$ already hold.

Suppose, on the contrary, there exists $x = (x_0, \ldots, x_n) \in \mathbb{C}^{n+1}$ and $p \in S$ such that $p(x) \neq 0$ but $p_i(x) = 0$ for all $i = 1, \ldots, D$. Since p_i's generate S as a vector space, there exist constants $\gamma_i \in K$ with $p = \sum_i \gamma_i p_i$, implying that $p(x) = 0$, a contradiction.

Proof of Theorem 4.11 From Lemma 4.2, we know that $(\{f_1, \ldots, f_m\}, \mathcal{V}_{\text{solve}})$ is a violator space. Theorem 4.11 shows that it has a combinatorial dimension, and Observation 4.3 shows that there exists a way to answer the primitive test. Having these ingredients, Theorem 3.7 holds and it is possible for us to apply Clarkson’s Algorithm again.

Remark 4.5 provides the following interpretation of Theorem 4.11.

Corollary 4.12. Let $I = (f_1, \ldots, f_m) \subset \mathcal{R}$ and let $D = \dim_K(f_1, \ldots, f_m)$. Then, for all subsets \mathcal{P} of the generators f_1, \ldots, f_m, there exist $p_1, \ldots, p_D \in \mathcal{P}$ such that $\sqrt{\mathcal{P}} = \sqrt{(p_1, \ldots, p_D)}$.

5. A Violator for Finding Generating Sets of Small Cardinality

In this section, we apply the violator space approach to obtain a version of Clarkson’s algorithm for calculating small generating sets of general ideals. As in Section 4 this task rests upon three ingredients: the appropriate violator operator, understanding the combinatorial dimension for this problem, and a suitable primitive query which we will use as a black box. As before, fixing the definition of the violator operator induces the meaning of the word ‘basis’, as well as the construction of the black-box primitive.

To determine the natural violator space for the ideal generation problem, let $I \subset \mathcal{R}$ be a homogeneous ideal, H some initial generating set of I, and define the operator $\mathcal{V}_{\text{SmallGen}}$ as follows.

Definition 5.1. [Violator Space for Homogeneous Ideal Generators] Let $S \subset H$ be finite subsets of \mathcal{R}. We define the operator $\mathcal{V}_{\text{SmallGen}} : 2^H \rightarrow 2^H$ to record the set of polynomials in H that are not in the ideal generated by the polynomials in S. Formally,

$$\mathcal{V}_{\text{SmallGen}}(S) = \{f \in H : (S, f) \supseteq (S)\}.$$

Equivalently, the operator can be viewed as $\mathcal{V}_{\text{SmallGen}}(S) = \{f \in H : f \notin (S)\}$.

Lemma 5.2. The pair $(H, \mathcal{V}_{\text{SmallGen}})$ is a violator space.

Proof. Note that $\mathcal{V}_{\text{SmallGen}}(S) \cap S = \emptyset$ by definition of $\mathcal{V}_{\text{SmallGen}}(S)$, and thus the operator satisfies the consistency axiom. To show locality, suppose that $F \subseteq G \subseteq H$ and $G \cap \mathcal{V}_{\text{SmallGen}}(F) = \emptyset$. Since $F \subseteq G$, $(F) \subseteq (G)$. On the other hand $G \cap \mathcal{V}_{\text{SmallGen}}(F) = \emptyset$ implies that $G \subseteq (F)$ which in turn implies that $(G) \subseteq (F)$. Then the ideals are equal and $\mathcal{V}_{\text{SmallGen}}(F) = \mathcal{V}_{\text{SmallGen}}(G)$. \qed
It is clear from the definition that V_{SmallGen} is a violator space for which the basis of $G \subset H$ is a minimal generating set of the ideal (G).

The next ingredient in this problem is the combinatorial dimension: the size of the largest basis. For this recall the definition of Betti numbers as the ranks $\beta_{i,j}$ of modules in the minimal (graded) free resolution of the ring R/I; see, for example, [20, Section 1B (pages 5-9)]. In particular, the number $\beta_{0,j}$ is the number of elements of degree j required among the minimal generators of I. The total 0-th Betti number of R/I, which we will denote by $\beta(R/I)$, simply equals $\sum_j \beta_{0,j}$, and is then the total number of minimal generators of the ideal I. It is well known that while I has many generating sets, every minimal generating set has the same cardinality $\beta(R/I)$.

Observation 5.3. The combinatorial dimension for (H, V_{SmallGen}) is the (0-th) total Betti number of the ideal $I = (H)$; in symbols, $\beta(R/I) = \delta(H, V_{\text{SmallGen}})$.

Although it may be difficult to compute $\beta(R/I)$ in general, a natural upper bound for $\beta(R/I)$ is the Betti number for any of its initial ideals (the standard inequality holds by upper-semicontinuity; see e.g. [34]). In particular, if H is known to contain a Gröbner basis with respect to some monomial order, then the combinatorial dimension can be estimated by computing the minimal generators of an initial ideal of (H), which is a monomial ideal problem and therefore easy. In general, however, we only need $\beta(R/I) < |H|$ for the proposed algorithms to be efficient.

The last necessary ingredient is the primitive query for V_{SmallGen}.

Observation 5.4. The primitive query for V_{SmallGen}, deciding if $h \in V_{\text{SmallGen}}(G)$ given $h \in H$ and $G \subset H$, is an ideal membership test.

Of course, the answer to the query is usually Gröbner-based, but, as before, the size of the subsystems G on which we call the primitive query is small: $O(\delta^2)$. In fact, it is easy to see that many small Gröbner computations for ideal membership cost less than the state-of-the-art, which includes at least one large Gröbner computation.

Proof of Theorem 1.2. From Lemma 5.2 we know (H, V_{SmallGen}) is a violator space and we have shown it has a combinatorial dimension and a way to answer the primitive test. Having these ingredients, Theorem 3.7 holds and it is possible for us to apply Clarkson’s Algorithm. □

Remark 5.5. We expect better performance of this randomized method versus the traditional deterministic techniques. Intuitively, the standard algorithm for finding minimal generators needs to at least compute a Gröbner basis for an ideal generated by $|H|$ polynomials, and in fact it is much worse than that. One can simplify this by skipping the computation of useless S-pairs (e.g. as in [20]), but improvement is not by an order of magnitude, overall. The algorithm remains doubly exponential in the size of H for general input. In contrast, our randomized algorithm distributes the computation into many small Gröbner basis calculations, where “many” means no more than $O(\beta |H| + \beta^2)$, and “small” means the ideal is generated by only $O(\beta^2)$ polynomials.

To conclude, in a forthcoming paper we will study further the structure of our violator spaces, show that they are acyclic and discuss the use of more LP-type methods for the same algorithmic problems. We also hope to present some experimental results for the sampling techniques we discussed here.

Acknowledgements

We are grateful to Nina Amenta, Diane Maclagan, Pablo Soberón, and Cynthia Vinzant, for several useful comments and references. The first author is grateful to IMA, the Institute of Mathematics and its Applications of the Univ. of Minnesota for the support received when this paper was being written. He was also supported by a UC MEXUS grant.
References

[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces combinatorial problems on linear spaces. Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.

[2] N. Amenta. Helly theorems and generalized linear programming. *Discrete and Computational Geometry*, 12:241—261, 1994.

[3] M. F. Atiyah and I. G. Macdonald. *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[4] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini: Software for numerical algebraic geometry. Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.

[5] K. Batselier, P. Dreesen, and B. De Moor. The geometry of multivariate polynomial division and elimination. *SIAM Journal on Matrix Analysis and Applications*, 34(1):102—125, 2013.

[6] C. Beltrán and L. Pardo. Smale’s 17th problem: average polynomial time to compute affine and projective solutions. *J. Amer. Math. Soc.*, 22(2):363—385, 2009.

[7] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm for parity games. *Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS)*, pages 663—674. Springer-Verlag, 2003.

[8] J. A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, and J. Swenson. Gröbner bases and Nullstellensätze for graph-coloring ideals. In *International Symposium on Symbolic and Algebraic Computation (ISSAC)*, 2015. To appear. Preprint available at arXiv:1411.1745v1 [cs.SC].

[9] M. Deza and P. Frankl. A Helly type theorem for hypersurfaces. *J. Combin. Theory Ser. A*, 45(1):27—30, 1987.

[10] D. Eisenbud. *The geometry of syzygies*, volume 229 of *Graduate Texts in Mathematics*. Springer, 2005. A second course in commutative algebra and algebraic geometry.

[11] P. Frankl. Helly-type theorems for varieties. *European J. Combin.*, 10(3):243—245, 1989.

[12] S. Gao. *Counting Zeros over Finite Fields Using Gröbner Bases*. PhD thesis, MS Thesis in Logic and Computation, 2009.

[13] J.-C. Faugère, P. Giannini, D. Lazard, and T. Mora. Efficient computation of zero dimensional Gröbner bases by change of ordering. *Journal of Symbolic Computation*, 16(4):329—344, 1993.

[14] J.-C. Faugère, P.-J. Spaenlehauer, and J. Swartz. Sparse Gröbner bases: the unmixed case. *arXiv preprint arXiv:1402.7205*, 2014.

[15] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero dimensional Gröbner bases by change of ordering. *Journal of Symbolic Computation*, 16(4):329—344, 1993.

[16] J.-C. Faugère, P.-J. Spaenlehauer, and J. Swartz. Sparse Gröbner bases: the unmixed case. *arXiv preprint arXiv:1402.7205*, 2014.

[17] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero dimensional Gröbner bases by change of ordering. *Journal of Symbolic Computation*, 16(4):329—344, 1993.
[30] E. Helly. Über mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32(175–176), 1923.

[31] Y. N. Lakshman. On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal. In Proceedings of the twenty-second annual ACM Symposium on Theory of Computing, pages 555—563. ACM, 1990.

[32] J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.

[33] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 16(4–5):498–516, 1996.

[34] E. Miller and B. Sturmfels. Combinatorial commutative algebra. Graduate Texts in Mathematics. Springer, 2005.

[35] T. S. Motzkin. A proof of Hilbert’s Nullstellensatz. Math. Z., 63:341–344, 1955.

[36] I. Ramella. Algoritmi di Computer Algebra relativi agli ideali di punti dello spazio proiettivo. PhD thesis, Universita degli studi di Napoli “Federico II”, 1990.

[37] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. In Proc. 9th Symposium on Theoretical Aspects of Computer Science (STACS), volume 577 of Lecture Notes in Computer Science, pages 569–579. Springer-Verlag, 1992.

[38] P. Škovroň. Abstract models of optimization problems. PhD thesis, Charles University, Prague, 2007.

[39] D.A. Spielman and S.H. Teng. Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.

[40] B. Sturmfels. Sparse elimination theory. Mathematical Sciences Institute, Cornell University, 1991.

[41] J. Verschelde. PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. Available at http://homepages.math.uic.edu/~jan/download.html.

[42] R. Wenger. Helly-type theorems and geometric transversals. In Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., pages 63–82. CRC, Boca Raton, FL, 1997.