Pteridophytic diversity in human-inhabited buffer zone of Murlen National Park, Mizoram, India

Sachin Sharma¹, Bhupendra S. Kholia¹,4, Ramesh Kumar² & Amit Kumar³

¹Botanical Survey of India, Northern Regional Centre, Dehradun 248 195, Uttarakhand, India
²Botanical Survey of India, Arid Zone Regional Centre, Jodhpur 342 008, Rajasthan, India
³Wildlife Institute of India, P.O. Box #18, Chandrabani, Dehradun 248 001, Uttarakhand, India
⁴Corresponding author. E-mail: bskholia_bsi@yahoo.co.in

Abstract: A taxonomic inventorization of pteridophytes occurring in a human inhabited buffer zone of Murlen National Park, India, was conducted in 2012 and 2013. This survey revealed 35 species belonging to 27 genera and 15 families. Polypodiaceae was recorded as dominant family, represented by six genera and eight species, followed by Pteridaceae (three genera and six species) and Lycopodiaceae (three genera and four species). Of the recorded species, 23 species were terrestrial, 11 (epiphytic) and two (lithophytic) in their habit forms. The species richness was highest in Tualpui village, with 11 species, followed by Rabung (7) and Ngur (6). The site preference of species among the villages is discussed. These data will provide baseline for future research and monitoring of pteridophytic vegetation in this protected area, as well as in similar habitats in the adjacent areas.

Key words: Indo-Burma biodiversity hotspot; Jhum cultivation; Pteridophytes

INTRODUCTION

Pteridophytes are the second largest group of vascular plants with about 13,600 species (MORAN 2008) distributed throughout the world except in Arctic, Antarctic zones and oceans. They are an important seral stage in the biological successional process of the earth. The majority of pteridophyte species are concentrated in tropical rain forests and, in general, their richness decreases poleward from the equator (MORAN 2008). However, in the Himalaya and southeastern China this rule of latitudinal fern diversity gradient deviates (KHOLIA 2011a). Gigantic tree-like pteridophytes were the dominant vegetation during the Mesozoic era. In the Holocene, flowering plants replaced pteridophytes, but the latter are still the major vegetation in many forests where their diversity is manifold higher than the other group of plants. In other forests, they forms understory vegetation (KHOLIA 2010a). They are sometimes considered to be indicators of forest health (KHOLIA 2014). Generally, it is believed that modern ferns and their allies are much older than flowering plants, and often considered as living fossils, but except for a few families, most of the modern ferns evolved and flourished under the shadow of angiosperms (SMITH et al. 2006). In India, pteridophytes are mainly distributed in Himalayan region, as well as North-Eastern and Southern India, where climates are humid and more conducive for growth. Approximately 1,267 species of pteridophytes (ca. 9% of global species) are recorded from the country (SINGH & DASH 2014). The highest number (ca. 700 species) of pteridophytes occurs in the Eastern Himalaya and adjoining states, making this region a biodiversity hotspot for pteridophytes (DIXIT 2000).

The North-Eastern Region of India, which is comprised of seven sister states, is part of the Indo-Burma biodiversity hot spot (MEYERS 2000; CONSERVATION INTERNATIONAL 2011). Well known for its rich biological diversity, the region has been extensively explored in terms of pteridophytic flora by several workers. BAISHYA & RAO (1982) recorded 256 species of fern and fern allies in Meghalaya; JAMIR & RAO (1988) reported 280 species from Nagaland; BORTHAKUR et al. (2000) confirmed the presence of 221 species in Assam; and KHOLIA (2010a, 2011b, 2014) reported 480 species from Sikkim.

Mizoram, a hilly state having an area of ca. 21,000 km² and part of the North-East Region, is within the biogeographic province 9B (RODGERS et al. 2000). Jhum cultivation, also known as shifting cultivation, is the main system of agriculture in Mizoram, covering an area of ca. 300 km². Due its biogeography, physiognomy, climate, and vegetation, this state has ideal habitats for both mesophytic and epiphytic pteridophytes. However, pteridophytic diversity is poorly explored in the state, except with few efforts (BARBHUIYA & SINGH 2014; BENNIAMIN 2012; SHARMA et al. 2013; VANLALPEKA & LAHA 2014, 2015; VERMA et al. 2013, 2014.

Situated in Mizoram, adjacent to the Indo-Myanmar...
border, Murlen National Park (MNP) is significant for its proximity to the Chin Hills (Myanmar). It is an important area for floristic diversity, but has not had adequate attention by researchers. Apart from habitat degradation by *Jhum* cultivation, cane extraction, and occasional tree cutting, the hunting of larger vertebrates and birds are threats to this park (Kaul et al. 1996). A preliminary list of pteridophytes of MNP by Benniamin (2012) was based on a single visit and did not include human-inhabited areas. Despite the efforts to study the pteridophytic diversity in the region, few studies included the equally important peripheral and buffer areas having high human interference. Therefore, this study focuses on documenting the pteridophytes in and around human inhabitations within the buffer zone of Murlen National Park, Mizoram, India.

MATERIALS AND METHODS

Study site

Located in Champhai district, Mizoram (21°57’N to 24°30’N, 092°15’E to 093°29’E), MNP is characterized by dense tropical to subtropical evergreen mixed forests (Figure 1). Spreading over an area of ca. 200 km² with an elevation range between 600–1,800 m, the park has several small seasonal and perennial streams. Physiographically, the park is characterized by undulating topography and rugged mountains. It receives an annual rainfall of 2,000–2,500 mm. The temperature ranges between 5°C winter to 35°C in summer.

In this study six villages within the buffer area of MNP were surveyed: Rabung, Tualpui, Ngur, Vapar, North Khawbung, and Murlen. The trail which connects these villages to the surrounding park makes vegetation vulnerable due to anthropogenic disturbances. These villages harbour deciduous or evergreen mixed secondary forest with enormous human pressure. Most of the forests in these villages are under *Jhum* cultivation (slash and burn). This practice has affected the structure and function of natural vegetation in these villages as well as in the National Park.

Data collection

A systematic survey of pteridophytes was made in 2012 and 2013 by traversing on foot all the pteridophytic habitats in and around peripheral village forests, nearby *Jhum* fields, water channels, ridges and various habitats in and around the forests. The inventory was also carried out along existing trails near human habitations.

To facilitate identification, elevation and important taxonomic characters, including life form and habitat of the species, were also gathered. Identifications of specimens were based on field characters with the aid of existing literature (Baishya & Rao 1982; Jamir & Rao 1988; Kholia 2010a, 2014; Benniamin 2012; Table 1) and checked against authentic specimens housed in the herbarium of Botanical Survey of India, Eastern Regional Centre, Siliguri (ASSAM). Voucher specimens were dried, pressed, and mounted on herbarium sheets following Jain & Rao (1976) and deposited in the ASSAM herbarium.

Data analysis

The taxonomy of recorded species follows Fraser-Jenkins (2009). Species are listed in Table 1, along with spore producing period (fertile period), voucher specimens, and general distribution. Species richness was determined as the total number of species in an area. The general distributions of species is based on Dixit (1984) and Kholia (2010a, 2014).

RESULTS

In this survey, 35 species belonging to 27 genera and 15 families were found (Table 1). Polypodiaceae was found to be the dominant family, represented by six genera and eight species, followed by Pteridaceae (3 genera and 6 species) and Lycopodiaceae (3 genera and 4 species; Figure 2). The dominant genus was *Pteris* L. with four species (*Pteris biaurita* L. (Linnaeus 1753: 1076), *Pteris cretica* L. (Linnaeus 1767: 130), *Pteris pellucida* C.Presl (Presl 1825: 55), and *Pteris vittata* L. (Linnaeus 1753: 1074) followed by *Huperzia* Bernh., *Microsorum* Link, *Pyrrosia* Mirb., *Lygodium* Sw., and *Tectaria* Cav. with two species each. Of the recorded species, 23 species were terrestrial, 11 epiphytes, and two lithophytes, viz., *Microsorum membranaceum* (D.Don) Ching (DON 1825: 2; CHING 1933: 309)
Table 1. Pteridophytes of Murlen National Park, Mizoram, northeast India with their family, habit form, fertile time, village of collection, exsiccate and nativity.

Family and species	Life form	Fertile time	Village of collection	Voucher specimen (with date)	General distribution	Identification reference	
Lycodiaceae							
Huperzia serrata (Thunb.) Trevis.	Terrestrial	Nov.–July	Murlen	Sachin Sharma; 128150; 25.01.2013	Southeast Asia; Tropical America	BAISHYA & RAO 1982	
Huperzia squarrosa (G.Forst.) Trevis.	Epiphytic	June–Sep.	Tualpui	Sachin Sharma; 127274; 25.09.2012	Southeast Asia; French Polynesia	KHOlia 2010a	
Lycopodiaceae							
Lycopodiella cernua (L.) Pic.Serm.	Terrestrial	Sept.–Nov.	Rabung	Sachin Sharma; 128807; 21.09.2012	Tropical-subtropical world	KHOlia 2010a	
Lycopodium japonicum Thunb.	Terrestrial	Sept.–Feb.	Vapar	Sachin Sharma; 128500; 15.04.2013	Indo-China; Japan	KHOlia 2010a	
Marattiaceae							
Anigozanthus indica Desv.	Terrestrial	July–Nov.	Tualpui	Sachin Sharma; 129862; 25.09.2014	Indo-China; Polynesia	KHOlia 2010a	
Equisetaceae							
Equisetum arvense subsp. debl (Roxb. ex Vaucher) Hauke	Terrestrial	Sept.–Nov.	Ngur	Sachin Sharma; 128244; 19.01.2013	Southeast Asia	KHOlia 2014	
Selaginellaceae							
Selaginella pentagona Spring	Terrestrial	Sept.–Nov.	Tualpui	Sachin Sharma; 129225; 20.09.2012	Indo-China	BAISHYA & RAO 1982	
Gleicheniaceae							
Dicranopteris lanigera (D.Don) Fraser-Jenk.	Terrestrial	Oct.–Feb.	Vapar	Sachin Sharma; 129825; 06.03.2014	Tropical Asia; Africa; Madagascar	KHOlia 2010a	
Polypodiaceae							
Drynaria propinqua (Wall. ex Mett.) S.Sm.	Epiphyte	May–Oct.	Rabung	Sachin Sharma; 127249; 21.09.2012	Southeast Asia	KHOlia 2010a	
Lepisorus nudus Ching	Lithophyte	Oct.–Feb.	Rabung	Sachin Sharma; 127235; 21.09.2012	Southeast Asia; Central and Southern Africa; Madagascar	BAISHYA & RAO 1982	
Leptochilus pteropus (Blume) Fraser-Jenk.	Terrestrial	Dec.–Feb.	Murlen	Sachin Sharma; 128136; 15.01.2013	Tropical Asia	KHOlia 2014	
Microsorum membranaceum (D.Don) Ching	Lithophyte	Sept.–Feb.	Vapar	Sachin Sharma; 127375; 26.09.2012	Indo-China; Sri Lanka	KHOlia 2010a	
Microsorum punctatum (L.) Copel.	Epiphyte	Nov.–Feb.	Ngur	Sachin Sharma; 128046; 13.01.2013	Tropical Asia; Africa	KHOlia 2010a	
Pseudodrynaria coronans (Wall. ex Mett.) J.Sm.	Epiphyte	July–Feb.	Tualpui	Sachin Sharma; 127222; 20.09.2012	Southeast Asia; Formosa	KHOlia 2010a	
Pyrosia flocculosa (D.Don) Ching	Epiphyte	Feb.–Apr.	Vapar	Sachin Sharma; 129956; 28.02.2014	Southeast Asia	KHOlia 2010a	
Pyrosia mannii (Giesenh.) Ching	Epiphyte	May–July	Murlen	Sachin Sharma; 128151; 15.01.2013	Southeast Asia	KHOlia 2010a	
Lygodiaceae							
Lygodium flexuosum (L.) Sw.	Terrestrial	May–Oct.	Ngur	Sachin Sharma; 129816; 05.03.2014	Southeast Asia; Australia; Pacific islands	KHOlia 2010a	
Lygodium japonicum (Thunb.) Sw.	Terrestrial	May–Oct.	Tualpui	Sachin Sharma; 129820; 25.09.2014	Southeast Asia; Japan; Tropical/subtropical America	KHOlia 2010a	
Pteridaceae							
Adiantum philippense L.	Terrestrial	July–Oct.	Rabung	Sachin Sharma; 127233; 21.09.2013	Pan-tropical	KHOlia 2010a	
Onychium siliculosum (Desv.) C.Chr.	Terrestrial	May–Oct.	Ngur	Sachin Sharma; 129975; 04.03.2014	Southeast Asia; Polynesia	KHOlia 2010a	
Pteris biunata L.	Terrestrial	May–Oct.	Tualpui	Sachin Sharma; 128807; 21.09.2014	Tropical/subtropical world	KHOlia 2010a	
Pteris cretica L.	Terrestrial	May–Oct.	Tualpui	Sachin Sharma; 128160; 15.01.2013	Tropical/temperate world	KHOlia 2010a	
Pteris pellucida C.Presl	Terrestrial	July–Oct.	Vapar	Sachin Sharma; 129953; 28.02.2014	India; Burma; Malay island	JAMIR & RAO 1988	
Pteris vittata L.	Terrestrial	July–Oct.	Murlen	Sachin Sharma; 127429; 27.09.2012	Tropical/subtropical world	KHOlia 2010a	
Dennstaedtiaceae	Microlepia puberula Alderw.	Terrestrial	Oct.–Dec.	Tualpui	Sachin Sharma; 129838; 07.03.2014	Indo-China; Java	BAISHYA & RAO 1982
Pteridium aquilinum (L.) Kuhn	Terrestrial	July–Nov.	Rabung	Sachin Sharma; 127243; 21.09.2013	Tropical/subtropical world	KHOlia 2010a	
Sphenomeris chinensis (L.) Maxon	Terrestrial	July–Dec.	Rabung	Sachin Sharma; 129823; 06.03.2014	Southeast Asia, East Africa	KHOlia 2010a	
Thelypteridaceae	Thelypteris xylodes (Kunze) Ching	Terrestrial	July–Dec.	Rabung	Sachin Sharma; 127244; 21.09.2013	Southeast Asia	KHOlia 2014
and *Lepisorus nudus* Ching (Ching 1933: 83; Figure 3). The species richness was highest in Tualpui village (11 species) followed by Rabung village (7 species) and Ngur village (6 species). *Lycopodiella cernua* (L.) Pic. Serm. (Linnaeus 1753: 1103; Pichi Sermolli 1968: 166), *Dicranopteris lani­gera* (D.Don) Fraser-Jenk. (Don 1825: 17; Fraser-Jenkins 2008: 35), *Lepisorus nudus*, *Pseudodrynaria coronans* (Wall. ex Mett.) Ching (Mettenius 1856: 121; Ching 1940: 262), *Pyrrosia flocculosa* (D.Don) Ching (Don 1825: 1−2; Ching 1935: 66), *Lygodium flexuosum* (L.) Sw. (Linnaeus 1753: 1063; Swartz 1801: 106), *Onychium siliculosum* (Desv.) C.Chr. (Desvaux 1811: 324; Christensen 1905: 469), *Pte­ris biurita, Pteris vittata*, and *Pteridium aquilinum* (L.) Kuhn (Linnaeus 1753: 1075; Kuhn 1879: 11) occurred in xeric, open places. *Diplazium esculentum* (Retz.) Sw. (Retzius 1791: 38; Swartz 1803: 312) was used by local inhabitants as a vegetable. An overview of the study area with some species and specific habitats are shown in Figures 4 and 5.

DISCUSSION

In general, most of ferns and fern allies prefer shady, humid places because prolonged water availability is necessary for reproduction and growth. The relatively high species richness in Tualpui and Rabung villages is likely attributed to position of these villages along rivers. In contrast, Ngur and Vapar villages are on hill tops with exposed conditions where strong winds affect atmospheric humidity and conditions remain relatively dry. Moreover, spores would be washed downstream and bare slopes under *Jhum* cultivation have little water holding capacity. Hence, the spore germination is expected to be poor in these villages.

Most of the species found were fertile during May to October, as ferns need moisture for germination of their spores and to grow. However, *Brainea insignis* (Hook.) J.Sm. (Hooker 1853: 237–238; Smith 1856: 5) is fertile from November to March. This pre-monsoon fertility may be an adaptation to avoid competition. This species gets water from north-east monsoon (winter rains) or stored moisture in its caudex. Also, *Vittaria elongata* Sw. (Swartz 1806: 109, 302) is fertile from February to December, which includes a few pre-monsoon months.

Species such as *Lycopodiella cernua, Dicranopteris lani­gera, Drynaria propinqua* (Wall. ex Mett.) J.Sm. ex Bedd. (Mettienius 1856: 120; Beddome 1866: 160), *Pyroso
Figure 4. A. Shifting cultivation in study area. B. Invasion of obnoxious weedy fern *Pteridium aquilinum* in old Jhum fields. C. *Tectaria polymorpha* growing in open grass fields along road cuttings. D. *Dicranopteris lanigera* growing in disturbed land. E. *Lygodium flexuosum* climbing in bushes in old Jhum area. F. *Tectaria fuscipes* growing on slopes near stream.
floculosa, Lygodium japonicum (Thunb.) Sw. (Thunberg 1784: 926; Swartz 1801: 106), Adiantum philippense L. (Linnaeus 1753: 1094), Pteris biaurita, and Pteris vittata were common along roadsides and paths in the villages. Huperzia serrata (Thunb.) Trevis. (Thunberg 1784: 944; Trevisan de Saint-Léon 1874: 248), Angiopteris indica Desv. (Desvaux 1811: 307), Equisetum ramosissimum subsp. debile (Roxb. ex Vaucher) Hauke (Vaucher 1822: 387; Hauke 1962: 33), Microsorum membranaceum, Tectaria fuscipes (Wall. ex Bedd.) C.Chr. (Beddome 1876: 15; Christensen 1931: 290) and Tectaria polymorpha (Wall. ex Hook.) Copel. (Hooker 1862: 54–55; Copeland 1907: 413) were observed along the water channels, while Diplazium esculentum, Brainea insignis, and Asplenium phyllitidis D.Don (DON 1825: 7) were reported in and around kitchen gardens. Angiopteris indica, Equisetum ramosissimum subsp.
deble, Selaginella pentagona Spring (Spring 1850: 150), Leptochilus pteropus (Blume) Fraser-Jenk. (Blume 1828: 125; Fraser-Jenkins 2008: 62), Pteris pellucida, Microlepia puberula Alderw. (Alderw. et van Rosenburgh 1913: 17), Thelypteris xyloides (Kunze) Ching (Kunze 1851: 281; Ching 1936: 296–298), Asplenium phyllitidis, Tectaria fuscipes, T. polymorpha, Blechnum orientale L. (Linnaeus 1753: 1077), and Diplazium esculentum were found growing in moist, humid places.

Due to these specific habits and characteristic habitats, ferns and their allied plants are often considered as indicator species for climate change. Additionally, anthropological pressures, especially shifting cultivation, burning, frequent pruning, grazing, and tree cutting could lead to the depletion of pteridophytic diversity in MNP. Therefore, management authorities should take steps to protect the pteridophytic wealth of the park. The information presented here can serve as a baseline for the future research and monitoring of pteridophytes in MNP as well as in similar habitats in the adjoining areas.

ACKNOWLEDGEMENTS

The authors are grateful to the Director, Botanical Survey of India (BSI), Kolkata, Dr. A.A. Mao and Dr. S.K. Srivas-tava H.O.O., BSI, Eastern Regional Centre, Shillong and Northern Regional Centre (NRC), Dehradun, respectively, for providing facilities and encouragement. Mr. Joseph, range officer at Murlen National Park provided logistic support. Thanks are also due to Dr. Brijesh Kumar, BSI, NRC, Dehradun, and the editor, Gustavo Hassemer, for improving the manuscript.

LITERATURE CITED

Alderw. et van Rosenburgh, C.R.W.K. van. 1913. New or interesting Malayan ferns 5. Bulletin du Jardin Botanique de Buitenzorg (2e série) 11: 1–38. http://biodiversitylibrary.org/page/5039087

Baishya, A.K. & R.R. Rao. 1982. Ferns and fern-allies of Meghalaya state, India. Jodhpur: Scientific Publishers. 161 pp.

Barbhuiya, H.A. & S.K. Singh. 2014. Pteridophytes of Tharangtlang Wildlife Sanctuary, Mizoram, India. Journal of Threatened Taxa 6(9): 6249–6268. doi: 10.11609/Jot.T.0331.6249-68

Beddome, R.H. 1866. Ferns of British India: being figures and descriptions of ferns from all parts of British India (exclusive of those figured in "The Ferns of Southern India and Ceylon") 2: 181–345, i–vi, pl. 181–345. Chennai: Gantz Brothers. doi: 10.5962/bhl.title.63505

Beddome, R.H. 1876. A supplement to the handbook of the ferns of southern India and British India: containing a revised list of all the ferns of India, Ceylon, Burma, and the Malay peninsula and 45 plates of hitherto unfigured species. Chennai: Gantz Brothers. 28 pp. doi: 10.5962/bhl.title.62831

Benjamin, A. 2012. The diversity of ferns and fern allies of Murlen National Park, Mizoram, North-East India. Indian Fern Journal 29: 1–12.

Blume, C.L. 1828. Enumeratio plantarum Javae et insularum adjacentium: minus cogniturar vel novarum ex herbaris Reinwardtii, Kuhlii, Hasseltii et Blumii curavit Carol. Ludov. Blume. 2: 1–274. Leiden: J.W. van Leeuwen. doi: 10.5962/bhl.title.44901

Borthakur, S.K., P. Deka & K.K. Nath. 2000. Illustrated manual of ferns of Assam. Dehadrur: Bishen Singh Mahendra Pal Singh. 468 pp.

Ching, R.C. 1933. Studies on Chinese ferns IX. Bulletin of the Fan Memorial Institute of Biology 4(3): 47–116.

Ching, R.C. 1933. Studies on Chinese ferns X. Bulletin of the Fan Memorial Institute of Biology 4(10): 293–312.

Ching, R.C. 1935. On the genus Pyrossia Mirbel from the mainland of Asia including Japan and Formosa. Bulletin of the Chinese Botanical Society 1: 36–72.

Ching, R.C. 1936. A revision of the Chinese and Sikkim-Himalayan Dryopteris with reference to some species of neighbouring region. Bulletin of the Fan Memorial Institute of Biology 6(5): 275–334.

Ching, R.C. 1940. On the natural classification of the family Polypodiaceae. Sylntnsenia 5: 201–268.

Christensen, C.F.A. 1905. Index filicum 8: 1–742. Copenhagen: H. Hagerup. http://bibdigital.nbj.cic.es/ing/Archivo.php?Libro=3969

Christensen, C.F.A. 1931. Asiatic Pteridophyta collected by J.F. Rock 1920–1924. Contributions from the United States National Herbarium 26(6): 265–337. https://repository.si.edu/handle/10088/27044

Conservation International. 2011. Hotspots. Arlington, VA: Conservation International. Accessed at http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_main.aspx, 8 June 2016.

Copeland, E.B. 1907. A revision of Tectaria with special regard to the Philippine species. Philippine Journal of Science, Part C 2(6): 409–418. http://biodiversitylibrary.org/page/668573

Desvaux, N.A. 1811. Observations sur quelques nouveaux generes de fougères et sur plusieurs especes nouvelles de la meme famille. Berlinisches Magazin 5: 297–330.

Dixit, R.D. 1984. A census of the Indian pteridophytes. New Delhi: Deep Printers. 177 pp.

Dixit, R.D. 2000. Conspectus of pteridophytic diversity in India. Indian Fern Journal 17: 77–91.

Don, D. 1825. Promordium florae Nepalesis: sive Enumeratio vegetabil quae in itinere per Nepaliam propriam dictam et regiones conterminas, ann. 1802-1803. Detexit atque legit d. d. Franciscus Hamilton, (olim Buchanan) Accedunt plantae a. d. Wallichuperius missae. London: J. Gale. xii + 256 pp. doi: 10.5962/bhl.title.86

Fraser-Jenkins, C.R. 2008. Taxonomic revision of three hundred Indian subcontinental pteridophytes with a revised census-list. Dehadrur: Bishen Singh Mahendra Pal Singh. 685 pp.

Fraser-Jenkins, C.R. 2009. A brief comparison of modern pteridophyte classifications (families and genera in India). Indian Fern Journal 26: 107–126.

Hauke, R.L. 1962. A resume of taxonomic reorganization of Equi­usetum. American Fern Journal 52(1): 29–35. http://biodiversity library.org/page/31879922

Hooker, W.J. 1853. Notice of two new ferns from China. Hooker’s Journal of Botany and Kew Garden Miscellany 5: 236–238. http://biodiversitylibrary.org/page/784217

Hooker, W.J. 1862. Species filicum 4: 1–292. London: William Pamplin.

Jamir, N.S. & R.R. Rao. 1988. The ferns of Nagaland. Dehadrur: Bishen Singh Mahendra Pal Singh. 426 pp.

Kholia, B.S. 2010a. Ferns and fern-allies of Sikkim, a pictorial handbook 1: 1–207. Gangtok: Department of Forest, Environment and Wildlife Management, Government of Sikkim and Botanical Survey of India.

Kholia, B.S. 2010b. Prakrati ki adbhut den—rajat parnag (Silver ferns—a unique gift of nature). Vanaspati Vani 19: 75–77.

Kholia, B.S. 2011a. Pteridophytic wealth of Sikkim Himalaya; pp.
Authors’ contributions: SS contributed to the collection of species, photography, review of literature, data analysis, and writing of the manuscript; RK helped in field data collection; BSK guided the fieldwork and interpretation of data, and helped in identification; AK helped with literature review, data analysis, and the writing the manuscript.

Received: 17 August 2015
Accepted: 31 January 2017
Academic editor: Gustavo Hassemmer