Boolean algebras and Lubell functions

Travis Johnston * Linyuan Lu † Kevin G. Milans ‡

June 7, 2015

Abstract

Let $2^{[n]}$ denote the power set of $[n]$, where $[n] = \{1, 2, \ldots, n\}$. A collection $\mathcal{B} \subseteq 2^{[n]}$ forms a d-dimensional Boolean algebra if there exist pairwise disjoint sets $X_0, X_1, \ldots, X_d \subseteq [n]$, all non-empty with perhaps the exception of X_0, so that $\mathcal{B} = \left\{ X_0 \cup \bigcup_{i \in I} X_i : I \subseteq [d] \right\}$. Let $b(n, d)$ be the maximum cardinality of a family $\mathcal{F} \subseteq 2^{[n]}$ that does not contain a d-dimensional Boolean algebra. Gunderson, Rödl, and Sidorenko proved that $b(n, d) \leq c_d n^{1 - 1/2^d} \cdot 2^n$ where $c_d = 10^{d^2 - 2^d - d}$.

In this paper, we use the Lubell function as a new measurement for large families instead of cardinality. The Lubell value of a family of sets \mathcal{F} with $\mathcal{F} \subseteq 2^{[n]}$ is defined by $h_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} 1/\binom{n}{|F|}$. We prove the following Turán type theorem. If $\mathcal{F} \subseteq 2^{[n]}$ contains no d-dimensional Boolean algebra, then $h_n(\mathcal{F}) \leq 2(n + 1)^{1 - 2^{1-d}}$ for sufficiently large n. This result implies $b(n, d) \leq C n^{-1/2^d} \cdot 2^n$, where C is an absolute constant independent of n and d. With some modification, the ideas in Gunderson, Rödl, and Sidorenko’s proof can be used to obtain this result. We apply the new bound on $b(n, d)$ to improve several Ramsey-type bounds on Boolean algebras. We also prove a canonical Ramsey theorem for Boolean algebras.

1 History

Given a ground set $[n]$ with $[n] = \{1, 2, \ldots, n\}$, let $2^{[n]}$ denote the power set of $[n]$.

Definition 1. A collection $\mathcal{B} \subseteq 2^{[n]}$ forms a d-dimensional Boolean algebra if there exist pairwise disjoint sets $X_0, X_1, \ldots, X_d \subseteq [n]$, all non-empty with perhaps the exception of X_0, so that

$$\mathcal{B} = \left\{ X_0 \cup \bigcup_{i \in I} X_i : I \subseteq [d] \right\}.$$

*University of South Carolina, Columbia, SC 29208, (johnstjt@mailbox.sc.edu).
†University of South Carolina, Columbia, SC 29208, (lu@math.sc.edu). This author was supported in part by NSF grant DMS 1300547 and ONR grant N00014-13-1-0717.
‡West Virginia University, Morgantown, WV 26506, (milans@math.wvu.edu).

© 2015. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/
We view all d-dimensional Boolean algebras as copies of a single structure B_d. Thus, a d-dimensional Boolean algebra forms a copy of B_d, and a family $F \subseteq 2^{[n]}$ is B_d-free if it does not contain a copy of B_d.

The starting point of this paper is to explore the question of how large a family of sets can be if it does not contain a d-dimensional Boolean algebra. The first result in this area is due to Sperner. The simplest example of a non-trivial Boolean algebra, B_1, is a pair of sets, one properly contained in the other. Sperner’s theorem can be restated as follows. If $F \subseteq 2^{[n]}$ is B_1-free, then $|F| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Erdős and Kleitman [4] considered the problem of determining the maximum size of a B_2-free family in $2^{[n]}$. General extremal problems on Boolean algebras of sets were most recently studied by Gunderson, Rödl, and Sidorenko in [12].

Given an n-element set X and a positive integer d, define $b(n,d)$ to be the maximum cardinality of a B_d-free family contained in $2^{[n]}$. In [12], the following bounds on $b(n,d)$ are proved:

$$n^{-\frac{1+o(1)}{d+1}} \cdot 2^n \leq b(n,d) \leq 10^d 2^{-2^{1-d}} d^{d-2^d} n^{-1/2^d} \cdot 2^n. \tag{1}$$

In the lower bound of (1), the $o(1)$ term represents a function that tends to 0 as n grows for each fixed d. A rough overview of the proof of the upper bound on $b(n,d)$ in [12] follows. Given $F \subseteq 2^{[n]}$, the set $[n]$ is partitioned into d parts X_1, \ldots, X_d whose sizes differ by at most 1. Next, probabilistic techniques are used to select a family of chains C_1, \ldots, C_d, where each C_i is a chain in 2^{X_i} of length at least $2^{\lfloor \sqrt{n/d} \rfloor}$. Let F_0 be the set of all $A \in F$ such that $A \cap X_i \in C_i$ for each i. The chains C_1, \ldots, C_d are chosen so that F_0 is large. Let H be the d-partite d-uniform hypergraph with parts C_1, \ldots, C_d where $E(H) = \{\{A \cap X_1, \ldots, A \cap X_d\}: A \in F_0\}$. If H contains a copy of the complete d-partite d-uniform hypergraph with 2 vertices in each part (denoted by $K^{(d)}(2,\ldots,2)$), then F_0 contains a d-dimensional Boolean algebra. A result of Erdős [3] implies that for n sufficiently large in terms of d, each n-vertex d-uniform hypergraph with at least $n^{d-2^{1-d}}$ edges contains a copy of $K^{(d)}(2,\ldots,2)$. Since $|E(H)| = |F_0|$ and $|F_0|$ is large enough that Erdős’s result applies, it follows that F contains a d-dimensional Boolean algebra.

With some work, the argument in [12] can be modified to eliminate the large multiplicative factor in inequality (1) that is asymptotic to $(10d)^d$. The most important modification is to exploit that H is d-partite, and in this case fewer edges force a copy of $K^{(d)}(2,\ldots,2)$. A second, more technical modification is also necessary: the chains should be chosen to have length at least $2^{\lfloor \sqrt{n/d} \rfloor}$. In this paper, we obtain this improvement directly, by extending a well-known result on affine cubes to Boolean algebras.

Definition 2. A set H of integers is called a d-dimensional affine cube or an affine d-cube if there exist $d+1$ integers $x_0 \geq 0$, and $x_1, \ldots, x_d \geq 1$, such that

$$H = \left\{ x_0 + \sum_{i \in I} x_i : I \subseteq [d] \right\}.$$
A set of non-negative integers is B_d-free if it contains no affine d-cube.

In one of the first Ramsey-type results, Hilbert [13] showed that for all d and k, there exists an integer n such that every k-coloring of $[n]$ contains a monochromatic d-dimensional affine cube. Nearly 80 years later, Szemerédi [18] strengthened Hilbert’s result by proving a density version: for each positive ε and for each integer d, there exists an integer n such that every ε-coloring of $[n]$ contains a monochromatic d-dimensional affine cube. Nearly 80 years later, Szemerédi [18] strengthened Hilbert's result by proving a density version: for each positive ε and for each integer d, there exists an integer n such that every ε-coloring of $[n]$ contains a monochromatic d-dimensional affine cube. Nearly 80 years later, Szemerédi [18] strengthened Hilbert's result by proving a density version: for each positive ε and for each integer d, there exists an integer n such that every ε-coloring of $[n]$ contains a monochromatic d-dimensional affine cube. Nearly 80 years later, Szemerédi [18] strengthened Hilbert's result by proving a density version: for each positive ε and for each integer d, there exists an integer n such that every ε-coloring of $[n]$ contains a monochromatic d-dimensional affine cube.

Graham [6] strengthened Szemerédi’s cube lemma by reducing the bound on $|A|$ which suffices to force a d-dimensional affine cube (see also [7]). Let $b'(n,d)$ be the maximum size of a B_d-free subset of $\{0,\ldots,n\}$. Using similar methods as in [6] and [7], problem 14.12 in [15] contains a proof that $b'(n,d) < (4(n+1))^{1-2^{-d}}$ when n is sufficiently large in terms of d. Gunderson and Rödl [11] improved the coefficient, showing that the following holds for sufficiently large n:

$$b'(n,d) \leq 2(n+1)^{1-2^{-d}}. \quad (2)$$

If $F \subseteq \{0,\ldots,n\}$ and $F = \{ A \in 2^{[n]} : |A| \in F \}$, then F contains an affine d-cube if and only if F contains a d-dimensional Boolean algebra. Hence, constructions that yield lower bounds on $b'(n,d)$ also yield lower bounds on $b(n,d)$. Similarly, upper bounds on $b(d,n)$ translate to upper bounds on $b'(d,n)$. The connection between large B_d-free families in $2^{[n]}$ and large B_d-free families in $\{0,\ldots,n\}$ is simplified by using the Lubell function.

Definition 3. Given a family $F \subseteq 2^{[n]}$, we define the Lubell function $h_n(F)$ as follows:

$$h_n(F) = \sum_{F \subseteq [n]} \frac{1}{\binom{n}{|F|}}.$$

With this definition in mind, we see that

$$b'(n,d) \leq \max \{ h_n(F) : F \text{ is } B_d\text{-free} \}. \quad (3)$$

The Lubell function has been widely used in the study of extremal families of sets forbidding given subposets (see [1, 8, 9, 10, 14, 17]) and in Turán problems on Non-uniform hypergraphs [16]. The advantage of using the Lubell function is its convenient probabilistic interpretation. Suppose that C is full-chain in $2^{[n]}$ chosen uniformly at random, i.e. $C = \{ \emptyset, \{ i_1 \}, \{ i_1, i_2 \}, \ldots, [n] \}$. Let X be the random variable $X = |C \cap F|$. Then we have that $E(X) = h_n(F)$. This interpretation allows us to use tools from the probability theory (such as conditional expectation and convexity) and simplify many counting arguments.

Theorem 1. There is a positive constant C, independent of d, such that for every d and all sufficiently large n, the following is true.

$$b(n,d) \leq Cn^{-1/2^d} \cdot 2^n. \quad (4)$$

Our next theorem extends well-known ideas in Graham’s proof of Szemerédi’s cube lemma from integers to set families. The Lubell function plays a critical role and replaces cardinality as our metric for the size of a set family.
Theorem 2. For \(d \geq 1 \), define \(\alpha_d(n) \) recursively as follows. Let \(\alpha_1(n) = 1 \) and \(\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{3}{4}} \) for \(d \geq 2 \). For \(n \geq d \geq 1 \) if a family \(\mathcal{F} \subseteq 2^{[n]} \) satisfies \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a \(d \)-dimensional Boolean algebra.

The rest of the paper is organized as follows. In section 2, we prove Theorem 1 and Theorem 2. In section 3, we prove several Ramsey-type results.

2 Proofs of Theorems 1 and 2

Note that the sequence \(\{\alpha_d(n)\}_{d \geq 1} \) satisfies

\[
\left(\frac{\alpha_{d+1}(n)}{2} \right) = n\alpha_d(n) \quad \text{for} \quad d \geq 1.
\] (5)

The function \(\alpha_d(n) \) is used in [11] implicitly. Note that for any fixed \(d \geq 2 \), \(\alpha_d(n) \) is an increasing function of \(n \). We have \(\alpha_1(n) = 1 \), \(\alpha_2(n) = \frac{1}{2} + \sqrt{2n + \frac{3}{4}} \). For \(d \geq 3 \), it was implicitly shown in [11] that

\[\alpha_d(n) \leq 2^{1-2^{-d}} \left(\sqrt{n+1} + 1 \right) 2^{-2^{-d}} \quad \text{for} \quad n + 1 \geq 2^{d^2-1}/(2^{d-1}-1) \]

and

\[\alpha_d(n) \leq 2(n+1)^{1-2^{-d}} \quad \text{for} \quad n + 1 \geq (2^d - 2/\ln 2)^2. \]

Proof of Theorem 2:

The proof is by induction on \(d \). For the initial case \(d = 1 \), we have \(h_n(\mathcal{F}) > \alpha_1(n) = 1 \). Let \(X \) be the number of sets in both \(\mathcal{F} \) and a random full chain. Then \(E(X) = h_n(\mathcal{F}) > 1 \). There is an instance of \(X \) satisfying \(X \geq 2 \). Let \(A \) and \(B \) be two sets in both \(\mathcal{F} \) and a full chain. Clearly, the pair \(\{A, B\} \) forms a copy of \(B_1 \).

Assume that the statement is true for \(d \). For \(d+1 \), suppose \(\mathcal{F} \subseteq 2^{[n]} \) satisfies \(h_n(\mathcal{F}) > \alpha_{d+1}(n) \). Let \(X \) be the number of sets in both \(\mathcal{F} \) and a random full chain. By the convex inequality, we have

\[
E \left(\frac{X}{2} \right) \geq \left(\frac{EX}{2} \right) > \left(\frac{\alpha_{d+1}(n)}{2} \right) = n\alpha_d(n).
\]

For each subset \(S \) of \([n]\), let \(\mathcal{F}_S = \{A \in \mathcal{F}: A \cap S = \emptyset \text{ and } A \cup S \in \mathcal{F}\} \). We show that for some non-empty set \(S \), the Lubell function of \(\mathcal{F}_S \) in \(2^{[n]} \setminus S \) exceeds \(\alpha_d(n - |S|) \). It follows by induction that \(\mathcal{F}_S \) contains a copy of \(B_d \) generated by some sets \(S_0, S_1, \ldots, S_d \), and with \(S \) these sets generate a copy of \(B_{d+1} \) in \(\mathcal{F} \). Let \(Z = \{ (A, B) \in \mathcal{F} \times \mathcal{F}: A \subseteq B \} \). For each \((A, B) \in Z \), the probability that...
a random full-chain in 2^n contains both A and B is $1/(|A|,|B|−|A|,n−|B|)$. We compute

$$E\left(\binom{X}{2}\right) = \sum_{(A,B)\in Z} \frac{1}{\binom{|A|,|B|−|A|,n−|B|}}$$

$$= \sum_{0\leq S\subseteq [n]} \sum_{A\in\mathcal{F}_S} \frac{1}{\binom{|A|,|S|,n−|A|−|S|}}$$

$$= \sum_{0\leq S\subseteq [n]} \frac{1}{\binom{|S|}} \sum_{A\in\mathcal{F}_S} \binom{n−|S|}{|A|}$$

$$= \sum_{0\leq S\subseteq [n]} \frac{1}{\binom{|S|}} h_{n−|S|}(\mathcal{F}_S)$$

$$= \sum_{k=1}^{n} \frac{1}{\binom{k}} \sum_{S\in\binom{[n]}{k}} h_{n−k}(\mathcal{F}_S).$$

Since $E\left(\binom{X}{2}\right) > n\alpha_d(n)$, it follows that $\frac{1}{\binom{k}} \sum_{S\in\binom{[n]}{k}} h_{n−k}(\mathcal{F}_S) > \alpha_d(n)$ holds for some k. In turn, $h_{n−k}(\mathcal{F}_S) > \alpha_d(n) \geq \alpha_d(n−k)$ for some set S of size k. □

The following is a corollary which can be viewed as the generalization of inequality (2) and (3).

Corollary 1. For $d \geq 3$ and $n \geq \left(2^d−2/\ln 2\right)^2$, every family $\mathcal{F} \subseteq 2^n$ containing no d-dimensional Boolean algebra satisfies $h_n(\mathcal{F}) \leq 2(n+1)^{1−2^{−d}}$.

Before proving Theorem 1, we need bounds on ratios of binomial coefficients.

Lemma 1. If $k \leq n$, then $\frac{\binom{2n}{k}}{\binom{n}{k}} \leq e^{-\frac{k}{2}(n−k)}$.

Proof. Note that $\frac{\binom{2n}{k}}{\binom{n}{k}} = \frac{\prod_{i=k+1}^{2n} i}{\prod_{i=0}^{n-k} i} \leq \prod_{j=0}^{n-k-1} \frac{n−j}{n+j+1} \leq e^{-2x}$ for $x \geq 0$ with $x = j/n$ to find $\frac{\binom{2n}{k}}{\binom{n}{k}} \leq e^{-\frac{k}{2}(n−k)}$. □

Proof of Theorem 1: Let $\mathcal{F} \subseteq 2^n$ be a \mathcal{B}_d-free family. For $0 \leq a \leq b \leq n$, let $\mathcal{F}(a,b) = \{A \in \mathcal{F} : a \leq |A| \leq b\}$. For two sets A and B with $A \subseteq B$, the interval $[A,B]$ is the set $\{X \in 2^n : A \subseteq X \subseteq B\}$. Let $Z = \{(A,B) : A \subseteq B, |A| = a, |B| = b\}$. Since \mathcal{F} is \mathcal{B}_d-free and $[A,B]$ is a copy of the $(b−a)$-dimensional Boolean algebra, Theorem 2 implies that $h_{b−a}(\mathcal{F} \cap [A,B]) \leq \alpha_d(b−a)$ for each $(A,B) \in Z$. Since a random chain is equally likely to intersect levels a and b at all pairs in Z, it follows that $h_n(\mathcal{F}(a,b))$ is the average, over all $(A,B) \in Z$, of $h_{b−a}(\mathcal{F} \cap [A,B])$. Therefore $h_n(\mathcal{F}(a,b)) \leq \alpha_d(b−a)$.

We may assume without loss of generality that n is an even integer $2m$, and let $\ell = \lfloor \sqrt{m} \rfloor$. We first bound the number of sets in \mathcal{F} whose size is at most m; to do this, we partition $\{A \in \mathcal{F} : |A| \leq m\}$ into subsets of the form $\mathcal{F}(a,b)$ where
$b-a$ is at most ℓ. Let t be the largest integer such that $m-t\ell-1 \geq 0$. We define x_0, \ldots, x_{t+1} by setting $x_0 = m$, $x_j = m - j\ell - 1$ for $1 \leq j \leq t$, and $x_{t+1} = -1$. For $0 \leq j \leq t$, we define $F_j = F(x_{j+1} + 1, x_j)$, and note that $x_j - (x_{j+1} + 1) \leq \ell$ for all j. Hence $h_n(F_j) \leq \alpha_d(\ell)$ for all j. Since $h_n(F_j) \geq |F_j|/(2m)$, it follows that $|F_j| \leq \alpha_d(\ell)(2m)$.

We compute

$$
\sum_{j=0}^{t} |F_j| \leq \alpha_d(\ell) \sum_{j=0}^{t} \binom{2m}{x_j} \\
\leq \alpha_d(\ell) \binom{2m}{m} \sum_{j=0}^{t} e^{-\frac{2}{m}(m-x_j)} \\
\leq \alpha_d(\ell) \binom{2m}{m} \sum_{j=0}^{t} e^{-\frac{j}{m}(\ell)^2} \\
\leq \alpha_d(\ell) \binom{2m}{m} \sum_{j \geq 0} e^{-\frac{e^2}{m}j} \\
\leq \alpha_d(\ell) \binom{2m}{m} \frac{1}{1 - e^{-\ell^2/m}},
$$

where we have applied Lemma 1. Since $\ell \geq \sqrt{m}$, the series is bounded by the absolute constant $1/(1 - e^{-1})$. Using that $(2m/m) \leq \sqrt{\frac{2e}{\pi}} \sqrt{\frac{22m}{m}}$ for all m and applying our bound $\alpha_d(\ell) \leq (4\ell)^{1-2^{-d}} \leq (4(\sqrt{m} + 1))^{1-2^{-d}} \leq 8(\sqrt{m})^{1-2^{-d}}$ yields

$$
\sum_{j=0}^{t} |F_j| \leq 8\sqrt{\frac{2e^2}{\pi(e-1)}} \cdot m^{-1/2^d} \cdot 2^{2m}.
$$

Doubling this, we have that $|F| \leq \frac{8\sqrt{2e^2}}{\pi(e-1)} \cdot m^{-1/2^d} \cdot 2^{2m}$, and substituting $m = n/2$ gives $|F| \leq \frac{16e^2}{\pi(e-1)} \cdot n^{-1/2^d} \cdot 2^{2n} < 2^{n-1/2^d} 2^{n}$. \(\square\)

We note that our constant 22 can be reduced by sharpening the analysis in the proof of Theorem 1 in several places; we make no attempt to further reduce the constant.

3 Ramsey-type results

3.1 Multi-color Ramsey results

Given positive integers n and d, define $r(d, n)$ to be the largest integer r so that every r-coloring of $2^{[n]}$ contains a monochromatic copy of B_d. Gunderson, Rödl, and Sidorenko [12] proved for $d > 2$,

$$
cn^{1/2^d} \leq r(d, n) \leq n^{\frac{d}{2^d-2}}(1+o(1)).
$$

Using Theorem 2, we improve the lower bound.
Theorem 3. For $d > 2$, we have

$$r(d, n) \geq \left\lfloor \frac{1}{2} n^{2/2^d} \right\rfloor.$$

Proof of Theorem 3: Let $r = \left\lfloor \frac{1}{2} n^{2/2^d} \right\rfloor$. For every r-coloring of 2^n and $1 \leq i \leq r$, let \mathcal{F}_i be the family of sets in color i. By linearity, we have

$$\sum_{i=1}^{r} h_n(\mathcal{F}_i) = h_n(2^n) = n + 1.$$

By the pigeonhole principle, there is a color i with $h_n(\mathcal{F}_i) \geq \frac{n+1}{r} > 2(n + 1)^{1-2^{1-d}}$. For all $r, d \geq 2$, we have $n + 1 \geq (2^d - 2/\ln 2)^2$. Thus,

$$h_n(\mathcal{F}_i) \geq \frac{n+1}{r} > 2(n+1)^{1-2^{1-d}} \geq \alpha_d(n).$$

By Theorem 2, \mathcal{F}_i contains a copy of \mathcal{B}_d.

For positive integers t_1, t_2, \ldots, t_r, let $R(\mathcal{B}_{t_1}, \ldots, \mathcal{B}_{t_r})$ be the least integer N such that for any $n \geq N$ and any r-coloring of 2^n there exists an i such that \mathcal{B}_n contains a monochromatic copy of \mathcal{B}_{t_i} in color i. In this language, Theorem 3 states that

$$R(\mathcal{B}_{t_1}, \ldots, \mathcal{B}_{t_r}) \leq (2r)^{2^{t-1}} - 1.$$

Next, we establish an exact result for $R(\mathcal{B}_s, \mathcal{B}_1)$. Our lower bound on $R(\mathcal{B}_s, \mathcal{B}_1)$ requires a numerical result. A sequence of positive integers is complete if every positive integer is the sum of a subsequence. In 1961, Brown [2] showed that a non-decreasing sequence x_1, x_2, \ldots of positive integers with $x_1 = 1$ is complete if and only if $\sum_{i=1}^{k} x_i \leq 1 + x_{k+1}$ for each k. We adapt Brown’s argument to obtain a sufficient condition for a finite variant; we include the proof for completeness.

Lemma 2 (Brown [2]). Let x_1, \ldots, x_s be a list of positive integers with sum at most $2s - 1$. For each k with $0 \leq k \leq s$, there is a sublist with sum k.

Proof. We use induction on s. Since the empty list of numbers has sum 0 which is larger than $2 \cdot 0 - 1$, the lemma holds vacuously when $s = 0$. For $s \geq 1$, index the integers so that $1 \leq x_1 \leq \cdots \leq x_s$. If $x_s = 1$, then $x_j = 1$ for each j and the lemma holds. Otherwise, $x_s \geq 2$ and x_1, \ldots, x_{s-1} has sum at most $2(s - 1) - 1$. By induction, for each k with $0 \leq k \leq s - 1$, some sublist of x_1, \ldots, x_{s-1} has sum k. Note that $x_s \leq s$, or else $x_s \geq s + 1$ and $x_j \geq 1$ for $1 \leq j \leq s - 1$ would contradict that the list x_1, \ldots, x_s has sum at most $2s - 1$. Since $s - x_s$ is in the range $\{0, \ldots, s - 1\}$, we obtain a sublist with sum s by adding x_s to a sublist of x_1, \ldots, x_{s-1} with sum $s - x_s$.

Theorem 4. For all $s \geq 1$, we have $R(\mathcal{B}_s, \mathcal{B}_1) = 2s$.
Proof: First we show \(R(B_s, B_1) \leq 2s \). Let \(n = 2s \), let \(c \) be a red-blue coloring of \(2^{[n]} \), and suppose for a contradiction that \(c \) contains neither a red copy of \(B_s \) nor a blue copy of \(B_1 \). We claim that every blue set has size \(s \). If \(A \) is blue, then all points in the up-set of \(A \) and all points in the down-set of \(A \) are red, or else the coloring has a blue copy of \(B_1 \). If \(|A| < s \), then the up-set of \(A \) contains red copies of \(B_s \), and if \(|A| > s \), then the down-set of \(A \) contains red copies of \(B_s \). Therefore \(|A| = s \) as claimed. Consider the copy of \(B_s \) generated via setting \(X_0 = \emptyset \), \(X_j = \{ j \} \) for \(1 \leq j \leq s - 1 \), and \(X_s = \{ s, s + 1, \ldots, 2s \} \). None of the sets in this copy of \(B_s \) have size \(s \), and therefore this is a red copy of \(B_s \), a contradiction.

Now we show that \(R(B_s, B_1) > 2s - 1 \). Let \(n = 2s - 1 \). We construct a 2-coloring of \(2^{[n]} \) that contains no red copy of \(B_s \) and no blue copy of \(B_1 \) as follows. Color all sets of size \(s \) blue and all other sets red. The blue sets form an antichain, so the coloring avoids blue copies of \(B_1 \). It suffices to show that there is no red copy of \(B_s \). Suppose for a contradiction that a red copy of \(B_s \) is generated by sets \(X_0, X_1, \ldots, X_s \), and let \(x_j = |X_j| \). Since \(X_1, \ldots, X_s \) are disjoint in \([2s - 1] \) and non-empty, it follows that \(x_1, \ldots, x_s \) is a list of positive integers with sum at most \(2s - 1 \). Since \(0 \leq x_0 \leq s - 1 \), we apply Lemma 2 to obtain \(I \subseteq [s] \) such that \(\sum_{i \in I} x_i = s - x_0 \). It follows that \(X_0 \cup \bigcup_{i \in I} X_i \) has size \(s \), contradicting that the coloring contains a red copy of \(B_s \). \(\square \)

In 1950, Erdős and Rado \([5]\) proved the Canonical Ramsey Theorem, which lists structures that arise in every edge-coloring of the complete graph on countably many vertices. It states that each edge-coloring of the complete graph on the natural numbers contains an infinite subgraph \(H \) such that either all edges in \(H \) have the same color, or the edges in \(H \) have distinct colors, or the edges in \(H \) are colored lexicographically by their minimum or maximum endpoint. By a standard compactness argument, the Canonical Ramsey Theorem implies a finite version, stating that for each \(r \), there is a sufficiently large \(n \) such that every edge-coloring of the complete graph on vertex set \([n]\) contains a subgraph on \(r \) vertices that is colored as in the infinitary version.

An analogous result holds for colorings of \(2^{[n]} \). A coloring of \(2^{[n]} \) is **rainbow** if all sets receive distinct colors. Let \(\text{CR}(r, s) \) be the minimum \(n \) such that every coloring of \(2^{[n]} \) contains a rainbow copy of \(B_r \) or a monochromatic copy of \(B_s \). Although it is not immediately obvious that \(\text{CR}(r, s) \) is finite, our next theorem provides an upper bound.

Theorem 5. \(\text{CR}(r, s) \leq r2^{(2r+1)2^{r-1}-2} \) for positive \(r \) and \(s \).

Proof. Set \(t = 2^{(2r+1)2^{r-1}-2} \) and \(n = tr \), and consider a coloring of \(2^{[n]} \) that does not contain a monochromatic copy of \(B_s \). We obtain a rainbow copy of \(B_s \) with the probabilistic method. Partition the ground set \([n]\) into \(r \) sets \(U_1, \ldots, U_r \) each of size \(t \). Independently for each \(i \) in \([r]\), choose a subset \(X_i \) from \(U_i \) so that sets are chosen proportionally to their Lubell mass in the Boolean algebra on \(U_i \). That is, each \(k \)-set in \(U_i \) has probability \(\frac{1}{t+1} \binom{t}{k}^{-1} \) of being selected for \(X_i \). For each pair \(\{ I, J \} \) with \(I, J \subseteq [r] \), let \(A_{I,J} \) be the event that both \(\bigcup_{i \in I} X_i \) and \(\bigcup_{j \in J} X_j \) receive the same color.
We obtain an upper bound on the probability that $A_{I,J}$ occurs. Since I and J are distinct sets, we may assume without loss of generality that there exists $m \in I - J$. Fix the selection of all sets X_1, \ldots, X_r except X_m. This determines the color c of $\bigcup_{j \in J} X_j$, and the probability that $A_{I,J}$ occurs is at most the probability that $\bigcup_{i \in I} X_i$ has color c. Let L be the t-dimensional Boolean sublattice with ground set U_m, and color $B \in L$ with the same color as $B \cup \bigcup_{i \in I - \{m\}} X_i$. Let F be the elements in L with color c. Since F does not contain a monochromatic copy of B_s, Theorem 2 implies that $h_t(F) \leq (4t)^{1-2^{1-s}}$. Since $h_t(F) = \sum_{B \in F} \left(\frac{t}{|B|} \right)^{-1} = (t+1) \sum_{B \in F} \Pr[X_m = B] \geq (t+1) \Pr[A_{I,J}]$, we have that $\Pr[A_{I,J}] \leq (4t)^{1-2^{1-s}}/(t+1) < 4/(4t)^{2^{1-s}}$. Using the union bound, we have that the probability that at least one of the events $A_{I,J}$ occurs is less than $\left(\frac{t}{3} \right) \cdot 4/(4t)^{2^{1-s}}$, which is at most 1. It follows that for some selection of the sets X_1, \ldots, X_r, none of the events $A_{I,J}$ occur. These sets generate a rainbow copy of B_r.

Note that Equation (6) implies that if $k > n^{\frac{s}{2}}(1+o(1))$, then there is a k-coloring of $2^{[n]}$ that does not contain a monochromatic copy of B_s. Of course, with $k = 2^r - 1$, there is also no rainbow copy of B_r. It follows that $2^r - 1 > n^{\frac{s}{2}}(1+o(1))$ implies that $CR(r,s) > n$, and hence $CR(r,s) \geq 2^{\frac{r^s}{2} - 1}(1-o(1))$ where the $o(1)$ term tends to 0 as r increases.

Acknowledgment

The authors thank the referees for helpful corrections and suggestions.

References

[1] M. Axenovich, J. Manske, and R. R. Martin, Q_2-free families in the Boolean lattice, *Order* 29 (1) (2012), 177–191.

[2] J. L. Brown, Jr., Note on complete sequences of integers, *Amer. Math. Monthly* 68 (1961), 557–560.

[3] P. Erdős, On extremal problems of graphs and generalized graphs, *Israel J. Math.* 2 (1964), 183–190.

[4] P. Erdős and D. Kleitman, On collections of subsets containing no 4-member Boolean algebra, *Proc. Amer. Math. Soc.* 28 (1971), 87–90.
[5] P. Erdős and R. Rado, A combinatorial theorem, *J. London Math. Soc.* **25** (1950), 249–255.

[6] R. L. Graham, *Rudiments of Ramsey theory*, CBMS Regional conference series in math., No. 45, AMS, 1981 (reprinted with corrections, 1983).

[7] R. L. Graham, B. L. Rothschild, and J. H. Spencer, *Ramsey Theory*, Wiley-Interscience Ser. in Discrete Math., New York, 1990.

[8] J. R. Griggs and W.-T. Li, The partition method for poset-free families, *J. Combin. Optim.*, **25**, Issue 4, (2013), 587–596.

[9] J. Griggs, W.-T. Li, and L. Lu, Diamond-free Families, *J. Combin. Th. Ser. A*, **119** (2012) 310–322.

[10] J. Griggs and L. Lu, On families of subsets with a forbidden subposet, *Combin. Probab. Comput.*, **18** (2009) 731–748.

[11] D. S. Gunderson and V. Rödl, Extremal problems for affine cubes of integers, *Combin. Probab. and Comput.*, **7**, (1998), 65–79.

[12] D. S. Gunderson, V. Rödl, and A. Sidorenko, Extremal problems for sets forming Boolean algebras and complete partite hypergraphs, *J. Combin. Theory Ser. A*, **88**, Issue 2, (1999), 342–367.

[13] D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, *J. Reine Angew. Math.* **110** (1892), 104–209.

[14] L. Kramer, R. Martin, M. Young, On diamond-free subposets of the Boolean lattice, *J. Combin. Th. Ser. A*, **120**, Issue 3, (2013), 545–560.

[15] L. Lovász, *Combinatorial problems and exercises*, North-Holland Publishing Company, New York, 1979.

[16] Travis Johnston and Linyuan Lu, Turan Problems on Non-uniform Hypergraphs, *Electron. J. Combin.*, **21** (4), (2014), P22.

[17] Linyuan Lu, On crown-free families of subsets, *J. Combin. Th. Ser. A.*, **126**, (2014) 216–231.

[18] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, *Acta Math. Acad. Sci. Hungar.* **20** (1969), 199–245.