Abstract. Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMT/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information.

We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.

1 Introduction

It is well-known that mathematical practices – conjecturing, formalization, proving, etc. – combine (among others) axiomatic reasoning with computation. Nevertheless, assistant systems for the semantics-aware automation of mathematics can be roughly divided into two groups: those that use logical languages to express the semantics and focus on deduction (commonly called proof assistants), and those that use programming languages to express the semantics and focus on computation (commonly called computer algebra systems). Combining their strengths is an important objective in mechanized mathematics.

Our work is motivated by two central observations. Firstly, combination approaches often take a deduction or computation system and try to embed the respective other mode into its operations, e.g., [HT98,DM05] and [HPRR10], respectively. Secondly, most of these systems are usually based on the homogeneous method, which fixes one foundation (computational or deductive) with all primitive notions (e.g., types, axioms, or programming primitives) and uses only conservative extensions (e.g., definitions, theorems, or procedures) to model domain objects.
In this paper, we want to employ the heterogeneous method, which focuses on encapsulating primitive notions in theories and considers truth relative to a theory. It optimizes reusability by stating every result in the weakest possible theory and using theory morphisms to move results between theories in a truth-preserving way. This is often called the little theories approach [FGT92]. In computational systems this is mirrored by using programming languages that relegate much of the functionality to an extensible library infrastructure.

In homogeneous approaches, we usually fix a specification language SL and a programming language PL and one implementation for each. In program synthesis, a specification Spec is extended (hooked arrows) to a refined specification Ref, from which a program can be extracted (snaked arrow). Both can be visualized by the diagram on the right where dotted arrows denote the written-in relation. In both cases, the proofs are carried out in a theory of SL, and a non-trivial generation step crosses the border between the SL-based deduction system (the gray area) and the PL-based computation system, e.g., [HN10] generates programs from Isabelle/HOL proofs.

Dually, we find approaches that emphasize PL over SL. SML-style module systems and object-orientation can be seen as languages that transform parts of SL (namely the type system but not the entailment system) into PL. An example is the transformation of SL=UML diagrams into PL=Java stubs, which are then refined to a Java program. Advanced approaches can transform the whole specification into PL by enriching the programming language as in [KST97] or the programming environment as in [ABB+05].

A third approach is to develop a language SPL that is strong enough to combine the features of specification and programming. Several implementations of λ calculi have been extended with features of programming languages, e.g., Coq [The11] and Isabelle/HOL [NPW02]. The FoCaLiZe language [H+12] systematically combines a functional and object-oriented programming language with a logic, and a compilation process separates the two aspects by producing OCaml and Coq files, respectively. The source files may also contain raw Coq snippets that are not verified by FoCaLiZe but passed on to Coq. In Dedukti [BCH12], rewriting rules are used to enhance a specification language with computational behavior, and the computational aspect can be compiled into a Lua program.

We want to create a heterogeneous framework in which we can represent such homogeneous approaches. We use the MMT language [RK13], which extends the heterogeneous method with language-independence inspired by logical frameworks. The key advantage is that this permit flexibly combining arbitrary specification and programming languages. In MMT, we represent both PL and SL as MMT theories SL and PL (see diagram below), which declare the primitive concepts of the respective language. The dotted lines are represented explicitly using the meta-theory relation, and relatively simple mappings (dashed snaked
lines) transform between specifications Spec and implementations Impl and the corresponding MMT theories Spec and Impl.

Typically SL and PL share some language features, e.g., the type system, which SL enriches with deductive primitives and PL with computational primitives. MMT can represent this by giving a (possibly partial) morphism $\text{bifound} : \text{SL} \rightarrow \text{PL}$ that embeds SL features into PL. Via bifound, Impl can access both SL and PL features, and the fact that Impl implements Spec is represented as an MMT theory morphism (dashed line).

Our framework is inspired by the biform theories of [Far07], which extend axiomatic theories with transformers: named algorithms that implement axiomatically specified function symbols. We follow the intuition of heterogeneous biform theories but interpret them in MMT. Most importantly, this permits SL and PL to be arbitrary languages represented in MMT.

We leverage this by using types and examples in Spec to generate method stubs and test cases in Impl. Our interest is not (yet) the corresponding treatment of axioms, which would add formal deduction about the correctness of programs. In particular, we do not provide a formal definition of the meaning of the computational knowledge other than linking symbols to algorithms via theory morphisms.

As a computational backend, we develop what we call the universal machine. It extends MMT with a component that collects the individual implementation snippets occurring in a biform MMT theory graph and integrates them into a rule-based rewriting engine. The universal machine keeps track of these and performs computations by applying the available rules.

In the past, a major practical limitation of frameworks like ours has been the development of large libraries of biform theories. Here a central contribution of our work is that the MMT API [Rab13b] (providing, e.g., notations, module system, and build processes) makes it easy to write biform theories in practice. Moreover, the API is designed to make integration with other applications easy so that the universal machine can be easily reused by other systems.

We evaluate this infrastructure in an extensive case study: We represent a collection of OpenMath content dictionaries in MMT (i.e., $\text{SL} = \text{OpenMath}$) and provide implementations for the symbols declared in them using the programming language Scala (i.e., $\text{PL} = \text{Scala}$). The resulting biform theory graph integrates OpenMath CDs with the Scala code snippets implementing the symbols.

2 Representing Languages in MMT

In this section we introduce the MMT language and directly apply it to modeling the pieces of our running example by representing OpenMath and Scala in MMT.
2.1 The MMT Language and System

MMT [RK13] is a knowledge representation format focusing on modularity and logic-independence. It is accompanied by the MMT API, which implements the language focusing on scalable knowledge management and system interoperability. For our purposes, the simplified fragment of MMT (which in particular omits named imports and sharing between imports) given in Figure 1 suffices.

```
Module ::= theory T : ModuleName Statement* |
          view V : ModuleName → ModuleName Statement*
Statement ::= constant c : Term | Term | #Notation |
              include ModuleName
Term ::= c | x | number | OMA(Term+) | OMBIND(Term; x; Term)
Notation ::= (number[string..] | string)^
```

Fig. 1. A Fragment of the MMT Grammar

We will briefly explain the intuitions behind the concepts and then exemplify them in the later sections, where we represent OpenMath CDs and Scala classes as MMT theories.

An MMT theory theory \(T : M \Sigma \) defines a theory \(T \) with meta-theory \(M \) consisting of the statements in \(\Sigma \). The meta-theory relation between theories is crucial to obtain logic-independence: The meta-theory gives the language, in which the theory is written. For example, the meta-theory of a specification is the specification logic, and the meta-theory of a program is the programming language – and the logic and the programming language are represented as MMT theories themselves (possibly with further meta-theories). Thus, MMT achieves a uniform representation of logics and programming languages as well as their theories and programs.

MMT theories form a category, and an MMT view \(V : T_1 \rightarrow T_2 \Sigma \) defines a theory morphism \(V \) from \(T_1 \) to \(T_2 \) consisting of the statements in \(\Sigma \). In such a view, \(\Sigma \) may use the constants declared in \(T_2 \) and must declare one definition for every definition-less constant declared in \(T_1 \). Views uniformly capture the relations “\(T_2 \) interprets/implements/models \(T_1 \)”. For example, if \(T_1 \) represents a specification and \(T_2 \) a programming language, then views \(T_1 \rightarrow T_2 \) represent implementations of \(T_1 \) in terms of \(T_2 \) (via the definitions in \(\Sigma \)).

Theories and views are subject to the MMT module system. Here we will restrict attention to the simplest possible case of unnamed inclusions between modules: If a module \(T \) contains a statement include \(S \), then all declarations of \(S \) are included into \(T \).

Within modules, MMT uses constants to represent atomic named declarations. A constant’s optional type and definiens are arbitrary terms. Due to the freedom of using special constants declared in the meta-theory, a type and a definiens are sufficient to uniformly represent diverse statements of formal languages such as function symbols, examples, axioms, inference rules. Moreover,
constants have an optional notation which is used by MMT to parse and render objects. We will not go into details and instead explain notations by example, when we use them later on.

MMT terms are essentially the OPENMATH objects \([BCC^+04]\) formed from the constants included into the theory under consideration. This is expressive enough to subsume the abstract syntax of a wide variety of formal systems. We will only consider the fragment of MMT terms formed from constants \(c\), variables \(x\), numbers literals, applications \(\text{OMA}(f, t_1, \ldots, t_n)\) of \(f\) to the \(t_i\), and bindings \(\text{OMBIND}(b; x_1, \ldots, x_n; t)\) where a binder \(b\) binds the variables \(x_i\) in the scope \(t\).

2.2 Content Dictionaries as MMT Theories

OPENMATH declares symbols in named content dictionaries that have global scope (unlike MMT theories where symbols must be imported explicitly). Consequently, references to symbols must reference the CD and the symbol name within that CD. The official OPENMATH CDs [OMC] are a collection of content dictionaries for basic mathematics. For example, the content dictionary arith1 declares among others the symbols \textit{plus}, \textit{minus}, \textit{times}, and \textit{divide} for arithmetic in any mathematical structure – e.g., a commutative group or a field – that supports it.

Each symbol has a type using the STS type system [Dav00]. The types describe what kinds of application (rarely: binding) objects can be formed using the symbol. For example, its type licenses the application of \textit{plus} to any sequence of arguments, which should come from a commutative semigroup. Moreover, each symbol comes with a textual description of the meaning of the thus-constructed application, and sometimes axioms about it, e.g., commutativity in the case of \textit{plus}.

We represent every OPENMATH CD as an MMT theory, whose meta-theory is a special MMT theory \textit{OpenMath}. Moreover, every OPENMATH symbol is represented as an MMT constant. All constants are definition-less, and it remains to describe their types and notations. Mathematical properties that are given as formulas are also represented as MMT constants using a special type.

\textit{Meta-Theory and Type System} \textit{OpenMath} must declare all those symbols that are used to form the types of OPENMATH symbols. This amounts to a formalization of the STS type system [Dav00] employed in the OPENMATH CDs. However, because the details STS are not obvious and not fully specified, we identify the strongest type system that we know how to formalize and of which STS is a weakening. Here strong/weak means that the typing relation holds rarely/often, i.e., every STS typing relation also holds in our weakened version. The types in this system are: i) \textit{Object} ii) \textit{OMA(mapsto, Object, \ldots, Object, A, Object)} where \(A\) is either \textit{Object} or \textit{naryObject} iii) \textit{binder}. Here \textit{binder} is the type of symbols that
take a context C and an Object in context C and return an Object. This type system ends up being relatively simple and is essentially an arity-system.\footnote{In fact, we are skeptical whether any fully formal type system for all of OpenMath can be more than an arity system.}

Moreover, we add a special symbol FMP to represent mathematical properties as follows:

A property asserting F is represented as a constant with definiens $\text{OMA}(\text{FMP}, F)$.\footnote{We do not use a propositions-as-types representation here because it would make it harder to translate OpenMath to other languages.} Intuitively, we can think of FMP as a partial function that can only be applied to true formulas. We do not need symbols for the formation of formulas F because they are treated as normal symbols that are introduced in CDs such as logic1.

This results in the following MMT theory OpenMath in Figure 2. There, the notation of \mapsto means that it takes first a sequence or arguments with separator \times followed by the separator \to and one more argument.

\begin{figure}[h]
\centering
\begin{minipage}[t]{0.45\textwidth}
\begin{verbatim}
theory arith1 : OpenMath
 plus : naryObject \to Object
 # 1+...
 minus : Object \times Object \to Object
 # 1 \smash{-} 2
 plus : naryObject \to Object
 # 1*...

...
\end{verbatim}
\end{minipage}
\begin{minipage}[t]{0.45\textwidth}
\begin{verbatim}
theory NumbersTest : OpenMath
 include arith1
 include fns1
 include set1
 include relations1

 mptest = FMP \{0,1,2\} map (x \mapsto -x*x+2*x+3) = \{3,4\}
\end{verbatim}
\end{minipage}
\caption{MMT Theory OpenMath}
\end{figure}

\textbf{Example 1.} We will use a small fragment of our case study (see Section 5) as a running example. The left listing in Fig. 3 gives a fragment of the MMT theory representing the CD arith1. Here the notation of plus means that it takes a sequence or arguments with separator \times, and the one of minus that it takes two arguments separated by $\smash{-}$.
The right listing uses the module system to import some CDs and then give an example of a true computation as an axiom. It uses the symbols \(\text{set1?set}, \ fns1?\lambda \text{lambda}, \) and \(\text{relation1?eq} \) and the notations we declare for them.

2.3 Scala Classes as MMT Theories

Scala [OSV07] combines features of object-oriented and functional programming languages. At the module and statement level, it follows the object-oriented paradigm and is similar to Java. At the expression level, it supplements Java-style imperative features with simple function types and inductive types.

A class is given by its list of member declarations, and we will only make use of 3 kinds of members: types, immutable typed values, and methods, which are essentially values of functional type.

Values have an optional definiens, and a class is concrete if all members have one, otherwise abstract. Scala introduces special concepts that can be used instead of classes without constructor arguments: trait in the abstract and object in the concrete case. Traits permit multiple inheritance, i.e., every class can inherit from multiple traits. Objects are singleton classes, i.e., they are at the same time a class and the only instance of this class. An object and a trait may have the same name, in which case their members correspond to the static and the non-static members, respectively, of a single Java class.

The representation of Scala classes proceeds very similarly to that of OpenMath CDs above (see Figure 4). In particular, we use a special meta-theory Scala that declares the primitive concepts needed for our Scala expressions. Then we represent Scala classes as MMT theories and members as constants. While OpenMath CDs always have the flavor of specifications, Scala classes can have the flavor of specifications (abstract classes/traits) or implementations (concrete classes/objects).

Scala	MMT
trait \(T \)	theory \(T \)
type member	constant of type type
value member	constant
method member	constant of functional type
object \(O \) of type \(T \)	theory morphism \(T \rightarrow \text{Scala} \)
members of \(O \)	assignment to the corresponding \(T \)-constant
extension between classes	inclusion between theories

Fig. 4. Scala Classes as MMT Theories

Meta-Theory and Type System Our meta-theory Scala could declare symbols for every primitive concept used in Scala expressions. However, most of the complexity of Scala expressions stems from the richness of the term language. While the representation of terms would be very useful for verification systems, it does not
contribute much to our goals of computation and biform development. Therefore, we focus on the simpler type language. Moreover, we omit many theoretically important technicalities (e.g., singleton and existential types) that have little practical bearing. Indeed, many practically relevant types (e.g., function and collection types) are derived notions defined in the Scala library.

Therefore, we represent only the relevant fragment of Scala in Scala. Adding further features later is easy using the MMT module system. For all inessential (sub-)expressions, we simply make use MMT escaping: MMT expressions can seamlessly escape into arbitrary non-MMT formats.

Thus, we use the MMT theory Scala in Figure 5, which gives mainly the important type operators and their introductory forms. Where applicable, we use MMT notations that mimic Scala’s concrete syntax. This has the added benefit that the resulting theory is hardly Scala-specific and thus can be reused easily for other programming languages. It would be straightforward to add typing rules to this theory by using a logical framework as the metatheory of Scala, but this is not essential here.

Representing Classes It is now straightforward to represent a Scala trait T containing only
1. type members, 2. value members whose types only use symbols from Scala,
3. method members whose argument and return types only use symbols from Scala as an MMT theory T with meta-theory Scala.

1. type n yields constant n: type
2. val n: A yields constant n: A
3. def $n(x_1:A_1,...,x_r:A_r)$: A yields constant n: $(A_1,...,A_r)$=A

Here A is the structural translation of the Scala type A into an MMT expression, which replaces every Scala primitive with the corresponding symbol in Scala.

Similarly, we represent every object O defining (exactly) the members of T as an MMT view $O: T \rightarrow$ Scala. The member definitions in O give rise to assignments in O as follows:

1. type $n = t$ yields constant $n = t$
2. val $n: A = a$ yields constant $n = "a"
3. def $n(x_1:A_1,...,x_r:A_r)$: $A = a$ yields constant $n = (x_1:A_1,...,x_r:A_r)$: $A = "a"

Here "E" represents the escaped representation of the literal Scala expression E. Note that we do not escape the λ-abstraction in the implementation of comp. The resulting partially escaped term is partially parsed and analyzed by MMT. This has the advantage that the back-translation from MMT to Scala can reuse the same variable names that the Scala programmer had chosen.

Example 2. A Scala class for monoids (with universe, unit, and composition) and an implementation in terms of the integers are given as the top two code fragments in Figure 6, their MMT representations in the lower two.
trait Monoid {
 type U
 val unit: U
 def comp(x1: U, x2: U): U
}

object Integers extends Monoid {
 type U = BigInt
 val unit = 0
 def comp(x1: U, x2: U) = x1 + x2
}

theory Monoid : Scala
 constant U : type
 constant unit : U
 constant comp : (U,U) => U

view Integers : Monoid -> Scala
 constant U = BigInt
 constant unit = "0"
 constant comp = (x1:U, x2:U) => "x1 + x2"

Fig. 6. Scala and Mmt representations of Monoids and Integers

Representing the Module Systems The correspondence between MMT theory
inclusions and Scala class extensions is not exact due to what we call the import
name clash in [RK13]: It arises when modules \(M_1 \) and \(M_2 \) both declare a symbol
\(c \) and \(M \) imports both \(M_1 \) and \(M_2 \). OPENMATH and MMT use qualified names
for scoped declarations (e.g., \(M_1?c \) and \(M_2?c \)) so that the duplicate use of \(c \) is
inconsequential. But Scala – typical for programming languages – identifies the
two constants if they have the same type.

There are a few ways to work around this problem, and the least awkward
of them is to qualify all field names when exporting MMT theories to Scala.
Therefore, the first declaration in the trait Monoid is actually type Monoid_U
and similar for all other declarations. Vice versa, when importing Scala classes,
we assume that all names are qualified in this way.

It remains future work to align larger fragments of the module systems, which
would also include named imports and sharing.

3 Biform Theory Development in MMT

We can now combine the representations of OPENMATH and Scala in MMT into
a biform theory graph. In fact, we will obtain this combination as an example
of a general principle of combining a logic and a programming language.

Bifoundations Consider a logic represented as an MMT theory \(L \) and a pro-
gramming language represented (possibly partially as in our case with Scala) as
an MMT theory \(P \). Moreover, consider an MMT theory morphism \(s : L \to P \).
Intuitively, \(s \) describes the meaning of \(L \)-specifications in terms of \(P \).

Definition 1. A bifoundation is a triple \((L, P, s : L \to P)\).

Now consider a logical theory \(T \) represented as an MMT the-
ory with meta-theory \(L \). This yields the diagram in the category
of MMT theories, which is given on the right. Then, inspired
by [Rab13a], we introduce the following definition of what it means to implement T in P:

Definition 2. A realization of T over a bifoundation (L, P, s) is a morphism $r : T \to P$ such that the resulting triangle commutes.

Note that in MMT, there is a canonical pushout $s(T)$ of T along s. Thus, using the canonical property of the pushout, realizations r are in a canonical bijection with morphisms $r' : s(T) \to P$ that are the identity on P.

A Bifoundation for OpenMath CDs and Scala We obtain a bifoundation by giving an MMT morphism $s : \text{OpenMath} \to \text{Scala}$. This morphism hinges upon the choice for the Scala type that interprets the universal type Object. There are two canonical choices for this type, and the resulting morphisms are given in Figure 7. Firstly, we can choose the universal Scala type Any. This leads to a semantic bifoundation where we interpret every OpenMath object by its Scala counterpart, i.e., integers as integers, lists as lists, etc. Secondly, we can choose a syntactic bifoundation where every object is interpreted as itself. This requires using a conservative extension ScalaOM of Scala that defines inductive types Term of OpenMath objects and Context of OpenMath contexts. Such an extension is readily available because it is part of the MMT API.

![Fig. 7. Two Bifoundations From Scala to OpenMath](image)

In both cases, n-ary arguments are easily interpreted in terms of lists and functions as functions. The case for binders is subtle: In both cases, we must interpret binders as Scala functions that take a syntactic object in context. Therefore, even the semantic foundation requires ScalaOM as the codomain.

Finally, we map mathematical properties to certain Scala function calls, e.g., assertions. In the semantic case, we assert the formula to be true. In the syntactic case, we assert it to be equal to the symbol true from the OpenMath CD logic1. Here, OMS is part of the MMT API.

Of course, in practice, only the simplest of FMPs actually hold in the sense that a simple Scala computation could prove them. However, our interpretation of FMPs is still valuable: It naturally translates examples given in the OpenMath CDs to Scala test cases that can be run systematically and automatically.
Moreover, in the syntactic case, we have the additional option to collect the asserted formulas and to maintain them as input for verification tools.

4 Mechanizing Biform Theory Graphs

We are particularly interested in the syntactic bifoundation given above. It corresponds to the well-understood notion of a syntactic model of a logic. Thus, it has the advantage of completeness in the sense that the algorithms given in T-realizations can be used to describe deductive statements about T. In this section, we make this more precise and generalize it to arbitrary logics.

Abstract Rewrite Rules

First we introduce an abstract definition of rule that serves as the interface between the computational and the deductive realm. We need one auxiliary definition:

Definition 3. An arity is an element of \(\{n, n_* : n \in \mathbb{N}\} \cup \{\text{binder}\} \).

We use \(n \) (\(n_* \)) for symbols that can be applied to \(n \) arguments (and a sequence argument), and we use binder for symbols that form binding object. For example, 2 is the arity of binary symbols and 0* the arity of symbols with an arbitrary sequence of arguments. This is a simplification of the arities we give in [KR12] and use in Mmt, which permit sequences anywhere in the argument list and gives binders different arities as well.

Now let us fix an arbitrary set of Mmt theories and write \(C \) for the set of constants declared in them. We write \(T \) for the set of closed Mmt terms using only constants from \(C \), and \(T(x_1, \ldots, x_n) \) for the set of terms that may additionally use the variables \(x_1, \ldots, x_n \). Then we define:

Definition 4. A rule \(r \) for a constant \(c \) with arity \(n \in \mathbb{N} \) is a mapping \(T^n \to T \). Such a rule is applicable to any \(t \in T \) of the form \(\text{OMA}(c, t_1, \ldots, t_n) \). In that case, its intended meaning is the formula \(t = r(t_1, \ldots, t_n) \).

A rule for a constant \(c \) with arity \(n_* \) is a mapping \(T^n \times (\bigcup_{i=0}^{\infty} T^i) \to T \). Such a rule is applicable to any \(t \in T \) of the form \(\text{OMA}(c, t_1, \ldots, t_k) \) for \(k \geq n \). In that case, its intended meaning is the formula \(t = r(t_1, \ldots, t_k) \).

A rule for a constant \(c \) with arity binder is a mapping \(\{(G, t) | G = x_1, \ldots, x_n \land t \in T(G)\} \to T \). Such a rule is applicable to any \(t \in T \) of the form \(\text{OMBIND}(c; G; t') \). In that case, its intended meaning is the formula \(t = r(G, t') \).

A rule base \(R \) is a set of rules for some constants in \(C \). We write \(R(c, a) \) for the set of rules in \(R \) for the constant \(c \) with arity \(a \).

Our rules are different from typical rewrite rules [BN99] of the form \(t_1 \Rightarrow t_2 \) in two ways. Firstly, the left hand side is more limited: A rule for \(c \) is applicable exactly to the terms \(t_1 \) whose head is \(c \). This corresponds to the intuition of a rule implementing the constant \(c \). It also makes it easy to find the applicable rules within a large rule base. Secondly, the right hand side is not limited at all: Instead of a term \(t_2 \), we use an arbitrary function that returns \(t_2 \). This corresponds to
our open-world assumption: Constants are implemented by arbitrary programs (written in any programming language) provided by arbitrary sources.

In the special case without binding, our rules are essentially the same as those used in [Far07], where the word transformer is used for the function \(r(-) \).

It is now routine to obtain a rewrite system from a rule base:

Definition 5. Given a rule base \(R \), \(R \)-rewriting is the reflexive-transitive closure of the relation \(\leadsto \subseteq T \times T \) given by:

\[
\begin{align*}
& r \in R(c, 0) \\
& c \mapsto r() \\
& t_i \leadsto t'_i \text{ for } i = 0, \ldots, n \\
& \text{OMA}(t_0, \ldots, t_n) \leadsto \text{OMA}(t'_0, \ldots, t'_n) \\
& t_i \leadsto t'_i \text{ for } i = 1, 2 \\
& \text{OMBIND}(t_1; G; t_2) \leadsto \text{OMBIND}(t'_1; G; t'_2) \\
& r \in R(c, n) \text{ or } r \in R(c, i^*) \text{ for } i \leq n \\
& \text{OMA}(c, t_1, \ldots, t_n) \leadsto r(t_1, \ldots, t_n) \\
& \text{OMBIND}(c; G; t) \leadsto r(G, t)
\end{align*}
\]

\(R \)-rewriting is not guaranteed to be confluent or terminating. This is unavoidable due to our abstract definition of rules where not only the set of constants and rules are unrestricted but even the choice of programming language. However, this is usually no problem in practice if each rule has evaluative flavor, i.e., if it transforms a more complex term into a simpler one.

Realizations as Rewriting Rules Consider a realization \(r \) of \(T \) over the bifoundation (OpenMath, ScalaOM, Syntactic), and let \(\rho \) be the corresponding Scala object. Then for every constant \(c \) with type \(\text{OMA}(\mapsto, \text{Object}, \ldots, \text{Object}) \) declared in \(T \), we obtain a rule \(r_c \) by putting \(r_c(t_1, \ldots, t_n) \) to be the result of evaluating the Scala expression \(\rho.c(t_1, \ldots, t_n) \)\(^3\). We obtain rules for constants with other types accordingly. More generally, we define:

Definition 6. Given a theory \(T \), an arity assignment maps every \(T \)-constant to an arity.

Given an arity assignment, a realization \(T \rightarrow \text{ScalaOM} \) is called syntactic if the type of every \(T \)-constant with arity \(a \) is mapped to the following Scala type: \((\text{Term}, \ldots, \text{Term}) \Rightarrow \text{Term}\) if \(a = n \); \((\text{Term}, \ldots, \text{Term}, \text{List}[\text{Term}]) \Rightarrow \text{Term}\) if \(a = n^* \); and \((\text{Context}, \text{Term}) \Rightarrow \text{Term}\) if \(a = \text{binder} \).

A syntactic realization \(r : T \rightarrow \text{ScalaOM} \) induces for every constant \(c \) of \(T \) a rule \(r_c \) in a straightforward way. If \(c \) has arity \(n \), the rule \(r_c \) maps \((t_1, \ldots, t_n)\) to the result of evaluating the Scala expression \(r(c)(t_1, \ldots, t_n) \), where \(r(c) \) is the Scala function that \(r \) assigns to \(c \). Technically, \(r_c \) is only a partial function because evaluation might fail or not terminate; in that case, we put \(r_c(t_1, \ldots, t_n) = \text{OMA}(c, t_1, \ldots, t_n) \). For other arities, \(r_c \) is defined accordingly.

Definition 7. We write Rules(\(r \)) for the rule base containing for each constant \(c \) declared in \(T \) the rule \(r_c \).

\(^3\) Technically, in practice, we need to catch exceptions and set a time-out to make \(r_c \) a total function, but that is straightforward.
A general way of obtaining arity assignments for all theories T with a fixed meta-theory L is to give an MMT morphism $e : L \to \text{OpenMath}$. e can be understood as a type-erasure translation that forgets all type information and merges all types into one universal type. Then the arities of the T-constants are determined by the OPENMATH types in the pushout $e(T)$. Therefore, we can often give bifoundations for which all realizations are guaranteed to be syntactic, the bifoundation $(\text{OpenMath}, \text{ScalaOM}, \text{Syntactic})$ being the trivial example.

Def. 7 applies only to realizations in terms of Scala. However, it is straightforward to extend it to arbitrary programming languages. Of course, MMT – being written in Scala – can directly execute Scala-based realizations whereas for any other codomain it needs a plugin that supplies an interpreter.

The Universal Machine We use the name universal machine for the new MMT component that maintains the rule base arising as the union of all sets $\text{Rules}(r)$ for all syntactic realizations r with domain ScalaOM in MMT’s knowledge base. Here “universal” refers to the open-world perspective that permits the extension with new logics and theories as well as programming languages and implementations.

The universal machine implements the rewrite system from Def. 5 by exhaustively applying rules (which are assumed to be confluent) and exposes it as a single API function, called simplification. The MMT system does not perform simplification at any specific point.

Instead, it is left to other components like plugins and applications to decide if and when simplification should be performed. In the MMT API, any term may carry metadata, and this is used to mark each subterm that has already been simplified. Thus, different components may call simplification independently without causing multiple traversals of the same subterm.

Additionally, the API function is exposed in two ways. Firstly, MMT accepts simplification requests via HTTP post, where input and output are given as strings using MMT notations or as OPENMATH XML elements. Secondly, simplification is integrated with the Scala interactive interpreter, where users can type objects using MMT notations and simplification is performed automatically. It is straightforward to connect further frontends.

5 Building a Biform Library

We evaluate the new MMT concepts by building a biform MMT theory graph based on the bifoundation $(\text{OpenMath}, \text{Scala}, \text{Syntactic})$, which represents > 30 of the official OpenMath CDs in MMT and provides Scala implementations and test cases for > 80 symbols. This development is available as an MMT project and described in more detail at https://tntbase.mathweb.org/repos/oaff/openmath.

MMT projects [HIJ+11] already support different dimensions of knowledge, such as source, content, and presentation, as well as build processes that transform developments between dimensions. We add one new dimension for generated programs and workflows for generating it.
Firstly, we write MMT theories representing the OpenMath CDs such as the one given on the left of Fig. 3. Specifically, we represent the arith, complex, fns, integer, interval, linalg, list, logic, minmax, nums, relation, rounding, set, setname, and units CDs along with appropriate notations.

Secondly, we write views from these CDs to ScalaOM. Then a new MMT build process generates all corresponding Scala classes. Typically, users write view stubs in MMT and then fill out the generated Scala stubs using an IDE of their choice. Afterwards MMT imports the Scala stubs and merges the user’s changes into the MMT views. This is exemplified in Fig. 8. Here the left side gives a fragment of an MMT view out of arith1, which implements arithmetic on numbers. (We also give other views out of arith1, e.g., for operations on matrices.) The implementation for plus is still missing whereas the one for minus is present. The right side shows the generated Scala code with the editable parts marked by comments.

```
view NumberArith : arith1 -> ScalaOM =
  plus = (args: List[Term]) 
  minus = (a: Term, b: Term) (a,b) match {
    case (OMI(x), OMI(y)) = OMI(x - y)
  }
```

```
object NumberArith extends arith1 {
  def arith1_plus(args: List[Term]) : Term = {
    // start NumberArith?plus
    // end NumberArith?plus
  }
  def arith1_minus(a: Term, b: Term) : Term = {
    // start NumberArith?minus
    (a,b) match {
      case (OMI(x), OMI(y)) = OMI(x - y)
    }
    // end NumberArith?minus
  }
}
```

Fig. 8. Partial Realization in MMT and Generated Scala Code

Finally, we write MMT theories for extensions of the OpenMath CDs with examples as on the right in Fig. 3. We also give realizations for them, which import the realizations of the extended CDs. Here MMT generates assertions for each FMP.

To apply these workflows to large libraries, we have added three build processes to MMT that can be integrated easily with make files or MMT IDEs. **extract** walks over an MMT project and translates realizations into Scala source files containing the corresponding objects. This permits editing realizations using Scala IDEs. **integrate** walks over the Scala source files and merges all changes made to the realizations back into the MMT files. **load** walks over the Scala source files, compiles them, loads the class files, and registers the rule bases Rules(r) with the universal machine. Optionally, it runs all test cases and generates a report.
6 Conclusion

We described a formal framework and a practical infrastructure for biform theory development, i.e., the integration of deductive theories and computational definitions of the functions specified in them. The integration is generic and permits arbitrary logics and programming languages; moreover, the same module system is used for specifications and implementations.

We have instantiated our design with a biform development of the OpenMath content dictionaries in Scala. Future work will focus on the development of larger biform libraries and the use of further logics and programming languages. In particular, we want to explore how to treat richer type systems and to preserve their information in the generated Scala code.

Regarding the integration of deduction and computation we focused only on “soft verification”, i.e., linking function symbols with unverified implementations. We only extracted the computational content of examples (which results in test cases) and omitted the more difficult problem of axioms. We believe that future work can extend our approach to generate computation rules by spotting axioms of certain shapes such as those in inductive definitions or rewrite rules. Moreover, given a verifier for the used programming language, it will be possible to generate the verification obligations along with the generated programs.

Acknowledgements The work reported here was prompted by discussions with William Farmer and Jacques Carette. An initial version of the universal machine was developed in collaboration with Vladimir Zamdzhiev.

References

ABB+05. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. Schmitt. The KeY Tool. Software and System Modeling, 4:32–54, 2005.

BCC+04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The Open Math Society, 2004. See http://www.openmath.org/standard/om20.

BCH12. M. Boespflug, Q. Carbonneaux, and O. Hermant. The λH-calculus modulo as a universal proof language. In D. Pichardie and T. Weber, editors, Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pages 28–43, 2012.

BN99. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.

Dav00. James Davenport. A small OpenMath type system. Bulletin of the ACM Special Interest Group on Symbolic and Automated Mathematics (SIGSAM), 34(2):16–21, 2000.

DM05. D. Delahaye and M. Mayero. Dealing with Algebraic Expressions over a Field in Coq using Maple. Journal of Symbolic Computation, 39(5):569–592, 2005.
Far07. William M. Farmer. Biform theories in chiron. In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mechanized Mathematical Assistants. MKM/Calculemus, number 4573 in LNAI, pages 66–79. Springer Verlag, 2007.

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor, Conference on Automated Deduction, pages 467–581, 1992.

H+12. T. Hardin et al. The focalize essential, 2012. http://focalize.inria.fr/.

HIJ+11. F. Horozal, A. Iacob, C. Jucovschi, M. Kohlhase, and F. Rabe. Combining Source, Content, Presentation, Narration, and Relational Representation. In J. Davenport, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics, pages 212–227. Springer, 2011.

HN10. F. Haftmann and T. Nipkow. Code Generation via Higher-Order Rewrite Systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming, pages 103–117. Springer, 2010.

HPRR10. J. Heras, V. Pascual, A. Romero, and J. Rubio. Integrating Multiple Sources to Answer Questions in Algebraic Topology. In S. Antexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, Intelligent Computer Mathematics, pages 331–335. Springer, 2010.

HT98. J. Harrison and L. Théry. A Skeptic’s Approach to Combining HOL and Maple. Journal of Automated Reasoning, 21:279–294, 1998.

KR12. M. Kohlhase and F. Rabe. Semantics of OpenMath and MathML3. Mathematics in Computer Science, 6(3):235–260, 2012.

KST97. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of extended ML: A gentle introduction. Theoretical Computer Science, 173(2):445–484, 1997.

NPW02. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer, 2002.

OMC. OpenMath Content Dictionaries. http://www.openmath.org/cd/.

OSV07. M. Odersky, L. Spoon, and B. Venners. Programming in Scala. artima, 2007.

Rab13a. F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathematical Structures in Computer Science, 2013. to appear; see http://kwarc.info/frabe/Research/rabe_combining_10.pdf.

Rab13b. F. Rabe. The MMT API: A Generic MKM System. In D. Aspinall, J. Carette, C. Lange, and W. Windsteiger, editors, Intelligent Computer Mathematics. Springer, 2013.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and Computation, 2013. conditionally accepted; see http://arxiv.org/abs/1105.0548.

The11. The Coq Development Team. The coq proof assistant: Reference manual. Technical report, INRIA, 2011.