Diversidad, estructura y servicios ecosistémicos del arbolado en cuatro parques de Texcoco mediante i-Tree Eco

Diversity, structure and ecosystem services of trees in four parks in Texcoco using i-Tree Eco

Tomás Martínez-Trinidad¹*, Pablo Hernández López¹, Stephanie Fabiola López-López² y Leopoldo Mohedano Caballero³

Abstract

The purpose of this work was to know the structure and diversity, and ecosystem services provided by the trees at four parks in the city of Texcoco de Mora. A census and analysis of the tree composition in the green areas was carried out. A tree population composed of 391 individuals belonging to 19 families and 34 species was determined. The most common species were Ficus benjamina (23 %), Schinus molle (13.8 %), Hesperocyparis lusitanica (10.2 %), and Ligustrum lucidum (10 %). Simpson’s index (1-D) had a value of 0.73, and the Shannon-Wiener index (H') equaled 3.89, which indicates a high diversity. The three most abundant species recorded do not comply with the 10-20-30 rule. The i-Tree Eco v6 software was used to estimate that the trees store 28.85 Mg C ha⁻¹, capture 2.56 Mg C yr⁻¹, produce a total of 6 Mg O yr⁻¹, remove a total of 0.06 Mg yr⁻¹ of pollutants, and contributes to reduce runoff by 107.9 m³ yr⁻¹. This information is useful for the management and tree conservation, as well as in the valuation of trees in the city of Texcoco.

Key words: Urban forest, carbon sequestration, tree inventory, environmental services, tree valuation, pollution removal.

Resumen

El objetivo fue conocer la estructura, diversidad y los servicios ecosistémicos del arbolado en cuatro parques de la ciudad de Texcoco de Mora, Estado de México. Se realizó un censo y análisis de los árboles existentes en las áreas verdes seleccionadas. Se determinó una población arbórea compuesta por 391 individuos, pertenecientes a 19 familias y 34 especies. Los taxones más comunes fueron Ficus benjamina (23 %), Schinus molle (13.8 %), Hesperocyparis lusitanica (10.2 %) y Ligustrum lucidum (10 %). El índice de Simpson (1-D) presentó un valor de 0.73 y el índice de Shannon-Wiener $H' = 3.89$, lo que indica una alta diversidad. Las tres especies más abundantes sobrepasan la regla de diversidad 10-20-30 de Santamour. Se estimaron tres servicios ecosistémicos principales a través del software i-Tree Eco v6: almacen de C, captura de C y producción de O₂. El arbolado evaluado almacenó 28.85 Mg C ha⁻¹, capturó 2.56 Mg C año⁻¹ y produjo un total de 6 Mg O₂ año⁻¹. Además de lo anterior, se calculó que los árboles removieron un total de 0.06 Mg año⁻¹ de contaminantes y contribuyeron a reducir la escorrentía del agua de lluvia en 107.9 m³ año⁻¹. La información generada es útil para la administración y conservación del recurso arbóreo, así como en la valoración del arbolado de la ciudad de Texcoco.

Palabras clave: Bosque urbano, captura de Carbono, inventario arbóreo, servicios ambientales, valoración del arbolado, remoción de contaminantes.
Introducción

La estructura, diversidad y condición de salud del arbolado influyen directa e indirectamente en la calidad ambiental y bienestar humano (Nowak et al., 2007; Benavides y Fernández, 2012; Pérez et al., 2018). De hecho, la diversidad, estructura y distribución son las características de mayor relevancia para la evaluación de la condición de las áreas verdes urbanas (Savard et al., 2000).

La diversidad de especies se reconoce como un atributo importante en la estabilidad, ya que proporciona a las masas arboladas resistencia a enfermedades, plagas y variaciones medioambientales (Bourne y Conway, 2014). Conocer la composición, diversidad y estructura de las especies arbóreas contribuye a entender la dinámica del bosque urbano y facilita la definición de estrategias para su manejo (Islas-Rodríguez et al., 2012; Sánchez-Gutiérrez et al., 2017). Por ejemplo, los indicadores diversidad y estructura arbórea forman parte del diagnóstico sobre el estado de salud del arbolado (Saavedra-Romero et al., 2019), además apoyan la definición de zonas para reforestación y la gestión del arbolado público (Leal et al., 2018). Sin embargo, la información sobre las áreas verdes urbanas en México aún es escasa (Leal et al., 2018).

Los habitantes en las ciudades prestan cada vez mayor importancia a las áreas verdes como componentes esenciales del paisaje e infraestructura urbana (Alanís et al., 2014). Entre ellas, los parques públicos constituyen una categoría con fines de convivencia y esparcimiento (Flores-Xolocotzi y González-Guillén, 2010). En este sentido, los parques urbanos proporcionan diversos servicios ecosistémicos, tales como la remoción de contaminantes, el almacén y captura de carbono, la reducción de escorrentías, entre otros (López–López et al., 2018). Cabe indicar que la cantidad de beneficios que los árboles aportan están directamente relacionados con su condición de salud (Saavedra-Romero et al., 2016).

La estimación de los servicios ecosistémicos del arbolado es compleja; no obstante, en la actualidad existen programas de cómputo especializados en ese rubro; por
ejemplo, las herramientas de *i-Tree* (Cowett, 2014), desarrolladas por el Servicio Forestal de los Estados Unidos de América (EE. UU.) y otros socios (USDA, 2018). En particular, el programa *i-Tree Eco* recientemente fue adaptado para su uso en México (USDA, 2018); y es de utilidad para determinar la estructura del bosque urbano, cuantificar el reservorio y captura de carbono, la remoción de contaminantes atmosféricos y la reducción de escorrentías del agua de lluvia, así como para determinar el valor monetario atribuido a dichos servicios (Martin et al., 2011).

El objetivo principal de este estudio fue conocer la estructura y la diversidad, así como los servicios ecosistémicos del arbolado en cuatro parques de la ciudad de Texcoco de Mora, para contribuir en su gestión, conservación y valoración.

Materiales y Métodos

Área de estudio

El estudio se realizó en cuatro de los parques más conocidos y más concurridos por los visitantes de la ciudad de Texcoco de Mora, Estado de México: a) Jardín Central con una superficie de 8 700 m² (19°30′51″ N y 98°52′58″ O); b) Parque de la Tercera Edad con superficie de 9 000 m² (19°30′35″ N y 98°53′08″ O); c) Jardín Niños Héroes con 1 655 m² (19°30′32″ N y 98°52′32″ O); y d) Parque del Deportivo Silverio Pérez con una superficie de 4 027 m² (19°31′12″ N y 98°53′06″ O) (Figura 1).
Figura 1. Ubicación de los cuatro parques seleccionados en la ciudad de Texcoco de Mora, Estado de México.

Inventario arbóreo

Se realizó un censo del arbolado presente en las cuatro áreas verdes bajo estudio; las mediciones se hicieron de acuerdo al manual de toma de datos de i-Tree ECO v6 (USDA, 2018). Se registró la especie de cada uno de los árboles en campo y se numeraron en un croquis; en el caso de alguna duda, se llevaron muestras botánicas al herbario del Colegio de Postgraduados para su identificación por especialistas. Se les midió su diámetro normal (DN) con una cinta diamétrica de 10 m (Forestry Suppliers® Modelo 283D/10M); el diámetro de copa con una cinta métrica de 50 m (Truper® Modelo TFC-50ME Código 12647), a partir de la longitud en dos direcciones: norte-sur y este-oeste. Asimismo, se obtuvo la altura total de cada ejemplar, la altura
de la copa viva y de la base de la copa, con un altímetro (Haga GmbH + Co KG® Modelo Haga Altimeter). Se estimó el porcentaje de copa faltante, el porcentaje de muerte regresiva y la exposición a la luz de la copa. El levantamiento de la información se llevó a cabo de noviembre del 2018 a febrero del 2019.

Diversidad

La diversidad alfa se calculó mediante el índice de Simpson (1-D) que proporciona una buena estimación de la diversidad en muestras relativamente pequeñas (Magurran, 2004), como las evaluadas en este trabajo. Un segundo índice utilizado fue el de Shannon-Wiener (H'), el cual es no paramétrico que considera tanto la riqueza, como la abundancia y la uniformidad de las especies (Bourne y Conway, 2014). Por último, se usó como referencia la regla de diversidad 10-20-30 de Santamour (1990) como un indicador de la diversidad arbórea para evitar plagas y enfermedades en el bosque urbano (Canizales et al., 2020).

El índice de Simpson se determinó mediante la siguiente ecuación (Bouza y Cobarrubias, 2005):

\[
D = \sum_{i=1}^{S} p_i^2
\]

Donde:

- \(D \) = Índice de Simpson
- \(S \) = Número de especies presentes
- \(p_i \) = Proporción de individuos en la \(i \)-ésima especie
A medida que D aumenta, la diversidad disminuye; por tanto, el índice de *Simpson* se expresa, generalmente, como $1-D$ y así será consignado en esta investigación. Respecto al índice de *Shannon* (H'), le corresponde un número positivo el cual tiene un valor normal entre 2 y 3, los superiores a 3 se refieren a una alta diversidad (Mora-Donjuán *et al.*, 2017); se calculó a partir de la siguiente ecuación (Magurran, 2004):

$$H' = -\sum_{i=1}^{S} p_i \cdot \ln (p_i)$$ \hspace{1cm} (2)

Donde:

H' = Índice de *Shannon*

S = Número de especies presentes

P_i = Proporción de individuos registrados en la i-ésima especie

De acuerdo con la información obtenida en el inventario arbóreo y en los resultados del software *i-Tree ECO* v6, se realizó un análisis descriptivo sobre el número de árboles por especie, género y familias existentes en los cuatro parques evaluados con el propósito de relacionarlo y determinar, si se cumple con la regla de diversidad de Santamour (1990); la cual indica que los individuos de un mismo taxón no deben exceder 10 %, los ejemplares de un género no superar 20 %, y los árboles de una familia no ser mayor a 30 % de la población arbórea total.
Análisis de la información

Los datos del censo se registraron en una hoja de cálculo del programa Microsoft Excel® 2016 y, posteriormente, se exportaron al software i-Tree ECO v6; además, en virtud de su reciente adaptación para México, se cuantificaron: el almacén y captura de carbono (C), producción de oxígeno (O2), remoción de contaminantes atmosféricos (O3, CO, NO2, SO2 y PM2.5) y reducción de la escorrentía superficial.

Para estimar el precio del almacén y captura de C se consideró un precio $10 USD por tonelada de CO2e, valor promedio estimado en el mercado informal de carbono en México (USDA, 2018). En la valoración de la escorrentía evitada y la remoción de contaminantes, se consideraron los precios empleados en los Estados Unidos de América estandarizados a México que se proponen en i-Tree Eco v6: 2.14 USD por m³ de escorrentía evitada, $1 532.80 por Mg de CO, $24 961.90 por Mg de O3, 1 358.4 USD por Mg de SO2, $3 728.40 por Mg de NO2 y $866.00, 474.7 USD por Mg de PM2.5.

Resultados y Discusión

Composición

En los cuatro parques estudiados de la ciudad de Texcoco se registró un total de 391 árboles, pertenecientes a 19 familias y 34 especies (Cuadro 1). La densidad promedio fue de 167 árboles ha⁻¹, este valor es inferior al de la ciudad de Montemorelos, Nuevo León de 194.6 árboles ha⁻¹ (Canizales et al., 2020); sin embargo, es superior al documentado para el arbolado urbano de la ciudad de Linares (75.43 árboles ha⁻¹) (Leal at al., 2018) y al de las ciudades de Mérida y Playa del Carmen con 96 árboles ha⁻¹ y 104 árboles ha⁻¹, respectivamente (de la Concha et al., 2017).
Cuadro 1. Especies arbóreas y variables dasométricas promedio del arbolado presente en cuatro parques de la ciudad de Texcoco de Mora.

Familia	Especie	Origen	Variables			
			Dn (cm)	At (m)	Dc (m)	
Altingiaceae	Liquidambar styraciflua L.	Nativa	14.88	8.31	3.71	
Anacardiaceae	Schinus molle L.	Introducida	29.17	9.55	4.75	
Arecales	Phoenix canariensis L.	Introducida	60.11	13.39	6.86	
	Roystonea regia Kunth.	Introducida	24.50	6.65	1.08	
	Washingtonia robusta H. Wendl.	Nativa	96.00	12.00	5.13	
Bignoniaceae	Jacaranda mimosifolia D. Don.	Introducida	49.68	11.23	7.38	
Casuarinaceae	Casuarina equisetifolia L.	Introducida	22.46	9.50	3.40	
Cupressaceae	Cupressus macrocarpa Hartw.	Introducida	48.00	18.00	13.50	
	Cupressus sempervirens L.	Introducida	11.78	4.92	2.35	
	Hesperocyparis lusitanica (Mill) Bartel	Nativa	23.22	9.68	3.24	
	Taxodium macronatum Ten.	Nativa	31.42	9.96	4.29	
Euphorbiaceae	Euphorbia cotinifolia L.	Nativa	14.00	4.00	3.85	
Fabaceae	Bauhinia variegata L.	Introducida	13.50	7.00	6.23	
Lauraceae	Persea americana Mill.	Nativa	33.00	5.20	2.10	
Lythraceae	Punica granatum L.	Introducida	20.00	1.40	3.15	
Magnoliaceae	Magnolia grandiflora L.	Introducida	22.75	8.25	3.54	
Moraceae	Ficus benjamina L.	Introducida	22.61	5.79	2.76	
	Ficus microcarpa Lf.	Introducida	21.93	4.01	2.39	
Myrtaceae	Eucalyptus camaldulensis Dehnh.	Introducida	68.00	21.00	10.00	
	Eucalyptus sp.	Introducida	42.83	13.47	4.71	
Oleaceae	Fraxinus uhdei (Wenz.) Lingelsh.	Nativa	18.70	7.73	2.80	
	Ligustrum lucidum WT Aiton.	Introducida	19.60	7.48	2.91	
	Olea europaea L.	Introducida	35.00	7.50	6.75	
Pinaceae	Pinus chiapensis Martinez.	Nativa	36.00	5.00	6.00	
	Pinus greggii Englem.	Nativa	40.00	15.50	8.48	
	Pinus maximinoi H.E. Moore.	Nativa	32.50	14.00	4.25	
	Pinus sp.	Nativa	35.50	16.00	4.95	
Rosaceae	Eriobotrya japonica Lindl.	Introducida	11.00	4.40	3.50	
	Prunus persica L.	Introducida	12.38	5.45	4.14	
	Prunus serotina Ehrh.	Nativa	10.00	5.90	4.70	
Rutaceae	Citrus x sinensis Osbeck.	Introducida	15.50	5.10	3.20	
Salicaceae	Populus alba L.	Introducida	21.75	8.00	3.15	
	Populus nigra L.	Introducida	29.00	8.67	3.55	
Ulmaceae	Ulmus mexicana (Liebm.) Planch.	Nativa	12.00	9.00	2.00	
	Promedio general		25.33	8.04	3.67	

Dn = Diámetro normal; At = Altura total; Dc = Diámetro de copa.
A nivel de parque, el Jardín Central presentó una densidad de 181.6 árboles ha\(^{-1}\); mientras que, el parque con mayor riqueza fue el de la Tercera Edad con 14 especies. Los taxones más comunes fueron *Ficus benjamina* L. (23 %), *Schinus molle* L. (13.8 %), *Hesperocyparis lusitanica* Mill. (10.2 %) y *Ligustrum lucidum* Ait. (10 %); que representaron 57 % de la población arbórea total. Al respecto, Dolan (2015) señala que a pesar de la reducción significativa de las áreas verdes urbanas, estas poseen una gran diversidad de especies; aunque, las exóticas son muy frecuentes en esos ambientes, tal es el caso de los géneros *Ficus*, *Jacaranda*, *Casuarina* y *Ligustrum* (Velasco *et al.*, 2013).

En los parques evaluados, *Ficus benjamina* fue la más frecuente en el Jardín Central; en el Jardín Niños Héroes, *Cupressus sempervirens* L. tuvo la mayor abundancia, incluso las especies exóticas representaron más de 60 % de la población registrada. Valores similares han sido citados en diversos estudios; por ejemplo, el arbolado urbano de la ciudad de Linares está compuesto en 63 % por taxones introducidos (Leal *et al.*, 2018); el mismo porcentaje se consigna en 21 camellones y seis parques de la ciudad de Montemorelos (Canizales *et al.*, 2020), y en los árboles de la Zona Metropolitana de Monterrey constituyen 53 % (Alanís, 2005).

Los parques de las ciudades a menudo están compuestos de una mezcla de especies de diferente origen (Dolan, 2015; Saavedra-Romero *et al.*, 2019). Por ello, tienen una diversidad superior de árboles en comparación con otro tipo de paisajes. Aunque, la mayoría de sus taxones son de origen exótico, debido posiblemente a la dificultad para conseguir ejemplares nativos en los viveros locales. Además, la carente información sobre propagación, manejo e incluso los altos costos de producción de las plantas nativas son algunos motivos por los cuales se prefiere el uso de especies introducidas (Velasco *et al.*, 2013); a pesar de que pueden presentarse problemas a largo plazo y requieren de un manejo intensivo (Muller y Bornstein, 2010). En este aspecto, los cuatro parques analizados tienen un número de especies muy similar entre ellos, lo cual resulta útil en la planificación de programas de manejo del arbolado urbano (Maco y McPherson, 2003; Benavides y Fernández, 2012; López-López *et al.*, 2018).
Diversidad

El índice de *Simpson* (1-D) presentó un valor de 0.73 para los cuatro parques; este índice mide tanto la diversidad como la dominancia de especies; por tanto, se considera que el arbolado de los parques es relativamente diverso, pero existe cierta dominancia de las especies abundantes (Morales-Salazar *et al.*, 2012). Por otra parte, el valor del índice de *Shannon-Wiener* (*H’* = 3.89), el cual es una medida razonable de la complejidad biológica (Lou y González-Oreja, 2012), indica una alta diversidad (Mora-Donjuán *et al.*, 2017) en el área de estudio (2.33 ha); y es similar al calculado para el arbolado urbano de una facultad universitaria en Nuevo León, con *H’* = 3.05, en una superficie de 0.8 ha (Alanís *et al.*, 2014). Cabe mencionar que fue superior al citado para bosques templados naturales, *H’* = 1.37 a 1.74 (Graciano-Ávila *et al.*, 2017; López-Hernández *et al.*, 2017); lo anterior corrobora que hay mayor diversidad en los bosques urbanos que en los templados naturales.

Con respecto a la regla de *Santamour*, las tres especies más abundantes (*Ficus benjamina, Schinus molle* y *Hesperocyparis lusitanica*) no la cumplieron, debido a que mostraron una frecuencia mayor a 10 %. Además, el género *Ficus* rebasó 20 % de la población arbórea; aunque ninguna familia fue superior a 30 %. Por ello, dichos taxones pueden ser susceptibles al ataque de plagas y enfermedades (Santamour, 1990).

Patrones similares se han determinado para diferentes áreas urbanas; por ejemplo, en el Bosque de San Juan de Aragón cuatro especies arbóreas registraron una frecuencia mayor a 10 %, y el género *Casuarina* tuvo más de 20 % (Saavedra-Romero *et al.*, 2019). De igual manera las tres especies arbóreas más frecuentes en el campus Montecillo del Colegio de Postgraduados no satisfacen la regla de *Santamour* (Islas-Rodríguez *et al.*, 2012).
Estructura

La altura promedio de los individuos inventariados fue de $8\pm4.4\,\text{m}$, con un diámetro promedio de proyección de copa de $3.6\pm2.3\,\text{m}$; por lo que se considera que la mayoría del arbolado fue de talla pequeña; sin embargo, se registraron algunos ejemplares con alturas superiores a $20\,\text{m}$, pertenecientes a *Fraxinus uhdei*, *Eucalyptus* sp. y *Schinus molle*.

Referente al diámetro normal, solo $15.3\,\%$ del total de los árboles presentaron un diámetro de $38\,\text{cm}$ y $71.1\,\%$ registró un diámetro de 7.5 a $30\,\text{cm}$. Tal distribución diamétrica indica que una gran parte de los individuos arbóreos ubicados en los parques evaluados son juveniles, aunque hubo algunos de grandes tallas: $3.8\,\%$ con un $DN>68.6\,\text{cm}$ (Figura 2).

Figura 2. Distribución porcentual por clase diamétrica del arbolado inventariado en cuatro parques de la ciudad de Texcoco de Mora.

Servicios ecosistémicos

El reservorio de C que se cuantificó en el área de estudio con el programa *i-Tree Eco* fue de 67.24 Mg, lo que equivale a 246.55 Mg de CO$_2$ capturado. Asimismo, se estimó que el arbolado almacena un promedio de 28.85 Mg C ha$^{-1}$ (Cuadro 1), cuyo valor es alto en comparación con el señalado para la ciudad de Mérida, en donde se calcularon 7.55 Mg ha$^{-1}$ de C en el arbolado urbano (de la Concha *et al.*, 2017). No obstante, el almacén de C por hectárea en los cuatro parques de la ciudad de Texcoco de Mora fue menor a los valores documentados por Santoyo-Gómez *et al.* (2014) en la alcaldía Miguel Hidalgo (64 Mg C ha$^{-1}$) y por López-López *et al.* (2018) en la primera sección del Bosque de Chapultepec (61.68 Mg C ha$^{-1}$), zona considerada un importante reservorio de C.

El Jardín Central tuvo el valor más alto de C almacenado, por ser el más grande; no obstante, el Deportivo Silverio Pérez registró la mayor cantidad de C por hectárea (41.9 Mg). El parque Jardín de Niños Héroes, pese a tener la densidad arbórea más alta presenta el menor valor de almacén de carbono; esto se debe a que es el área evaluada más pequeña, con 0.16 ha y la densidad se expresa en arboles ha$^{-1}$. De tal manera que solo en 43 individuos se almacena C, el cual representa el número de árboles evaluados más bajo en los cuatro parques.

Referente a la captura de C, la estimación total para los cuatro parques fue de 2.56 Mg año$^{-1}$, que representa 9.39 Mg de CO$_2$. La captura por unidad de área estimada (1.06 Mg ha$^{-1}$ año$^{-1}$) fue superior a la calculada en la ciudad de Mérida (0.69 Mg C ha$^{-1}$ año$^{-1}$) por de la Concha *et al.* (2017). Cabe señalar que el Jardín Central destacó por su captura de este gas de efecto invernadero, tanto por su superficie arbolada como por la presencia de numerosos individuos juveniles, los cuales están en un periodo activo de crecimiento (Cuadro 2).
Cuadro 2. Cuantificación del almacén y captura de C del arbolado inventariado en cuatro parques de la ciudad de Texcoco de Mora.

Parque	Densidad (árboles ha⁻¹)	Almacén de Carbono (Mg)	Captura de Carbono (Mg año⁻¹)	Almacén de Carbono (Mg ha⁻¹)	Captura de Carbono (Mg ha⁻¹ año⁻¹)
Jardín Central	182	30	1.33	34.48	1.53
Parque de la Tercera Edad	109	17.13	0.63	19.03	0.70
Jardín Niños Héroes	259	3.35	0.16	20.94	1.00
Deportivo Silverio Pérez	229	16.76	0.43	41.90	1.08
Total	**167**	**67.24**	**2.56**	**28.86**	**1.10**

La producción de oxígeno de los árboles es directamente proporcional a la cantidad de carbono capturado, que a su vez está vinculada con la acumulación de biomasa del árbol (Nowak et al., 2002). De acuerdo con i-Tree Eco, los árboles del área de estudio producen un total de 6 Mg O₂ año⁻¹ y por unidad de área 2.5 Mg O ha⁻¹ año⁻¹ (Cuadro 3). Además, el arbolado evaluado remueve un total de 0.06 Mg año⁻¹ de contaminantes atmosféricos (O₃, CO, NO₂, SO₂ y PM₂.₅) y por unidad de área representa una remoción de contaminantes de 25 kg ha⁻¹ año⁻¹. Los valores anteriores son superiores a los registrados en otras áreas verdes urbanas; por ejemplo, en la ciudad de Mérida se estimó una producción de oxígeno de 1.36 Mg ha⁻¹ año⁻¹ y una remoción de contaminantes de 7.3 kg ha⁻¹ año⁻¹ (de la Concha et al., 2017).
Cuadro 3. Cuantificación de la remoción de contaminantes y escorrentía evitada por el arbolado en cuatro parques de la ciudad de Texcoco de Mora.

Parque	Densidad (árboles ha⁻¹)	Remoción de contaminantes (Mg año⁻¹)	Escorrentía evitada (m³ año⁻¹)	Remoción de contaminantes (Mg ha⁻¹ año⁻¹)	Escorrentía evitada (m³ ha⁻¹ año⁻¹)
Jardín Central	182	0.02	41.52	0.02	47.72
Parque de la Tercera Edad	109	0.02	34.05	0.02	37.83
Jardín Niños Héroes	259	0.01	8.37	0.06	52.31
Deportivo Silverio Pérez	229	0.01	24	0.03	60.00
Total	**167**	**0.06**	**107.94**	**0.03**	**46.33**

El arbolado del Jardín Niños Héroes fue el que más contribuyó a la eliminación de contaminantes atmosféricos (0.06 Mg ha⁻¹), además presentó la mayor densidad de individuos arbóreos (259 árboles ha⁻¹). En contraste, el Parque de la Tercera Edad obtuvo los menores valores de generación de servicios por unidad de superficie debido a que posee una baja densidad de arbolado (109 árboles ha⁻¹) (cuadros 2 y 3).

Otro de los beneficios que proveen los árboles es la reducción de escorrentías, ya que interceptan la precipitación, aunado a que sus sistemas de raíces promueven la infiltración y el almacenamiento del agua en el suelo (McPherson, 2007). El análisis de la reducción de escorrimento superficial indicó que la masa arbórea evaluada contribuyó a reducir la escorrentía en 107.9 m³ año⁻¹ y representa una disminución por unidad de área de 46.3 m³ ha⁻¹ año⁻¹ (Cuadro 3). Nuevamente, este valor es superior a los estimados en la ciudad Mérida (19.04 m³ ha⁻¹ año⁻¹) y en Playa del Carmen (36.98 19.04 m³ ha⁻¹ año⁻¹) (de la Concha et al., 2017).

Al igual que el almacén de C, el Deportivo Silverio Pérez registró el valor más alto de escorrentía evitada por unidad de superficie, en virtud de que presentó una densidad alta (229 árboles ha⁻¹) y una proporción importante de individuos de grandes tallas.

Los árboles de porte grande, generalmente, proveen mayores beneficios ecosistémicos (más remoción de contaminantes, altos valores de almacén de carbono) (Saavedra-Romero et al., 2019). Ejemplo de ello, es el estudio de López-
López et al. (2018), en el cual se observó que los depósitos de carbono eran superiores en sitios donde los árboles eran de grandes dimensiones, con diámetro normal de hasta 148 cm, en comparación con los lugares cuyos ejemplares tenían diámetros menores a 82 cm y densidad baja. Además, el arbolado de porte grande genera mayor producción de oxígeno; así, en promedio para compensar el consumo anual de oxígeno de un adulto se requieren 30 árboles. Sin embargo, en Nueva Jersey el número fue de 81 árboles y en Frehold de 17 árboles; esta variación fue un reflejo de los diferentes tamaños de los árboles (Nowak et al., 2007).

Valoración económica

La valoración de los beneficios cuantificados con el programa *i-Tree Eco* equivale a $244 427.8 MXN, de los cuales $192 639.17 MXN se generan anualmente por los individuos arbóreos de los cuatro parques evaluados. Es importante señalar que el arbolado tiene una mayor importancia económica en la remoción de contaminantes, ya que tiene un valor superior a $ 180 000.00 MNX al año (Figura 3). Con base en lo anterior, una hectárea de área verde produce $82 677.8 MXN de beneficios por año.
Figura 3. Valor económico de los servicios ecosistémicos generados por el arbolado en cuatro parques de la ciudad de Texcoco de Mora.

Conclusiones

La dominancia y frecuencia de especies en los cuatro parques evaluados corresponde, en su mayoría, a especies exóticas, y presentan una alta diversidad H'. El almacén de C representa 67.24 Mg, la captura de C corresponde a 2.56 Mg año$^{-1}$, el arbolado produce 6 Mg O$_2$ año$^{-1}$, reduce la escorrentía en 107.9 m3 ha$^{-1}$ y contribuye en la remoción de 0.06 Mg año$^{-1}$ de contaminantes. La herramienta *i-Tree Eco* es útil y de fácil aplicación para el análisis de la estructura, composición y servicios ecosistémicos de las especies arbóreas en cuatro parques de la ciudad de Texcoco de Mora. La información generada es de utilidad para los gestores de los bosques urbanos, ya que contribuye a la valoración del arbolado urbano.
Agradecimientos

Los autores agradecen a la Ing. Rosalía Montero García por la ayuda en la toma de datos del proyecto.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Contribuciones por autor

Tomás Martínez Trinidad: dirección, planeación y seguimiento del proyecto, análisis de datos y revisión del manuscrito; Pablo Hernández López: revisión de datos en campo y redacción del manuscrito; Stephanie Fabiola López-López: revisión de datos y del manuscrito; Leopoldo Mohedano Caballero: seguimiento del proyecto y revisión del manuscrito.

Referencias

Alanís F., G. J. 2005. El arbolado urbano en el área metropolitana de Monterrey. Ciencias UANL 8 (1):20-32. http://www.isahispana.com/portals/0/docs/treecare/monterrey.pdf (11 marzo de 2020).

Alanís, E., J. Jiménez, A. Mora-Olivo, P. Canizalez y L. Rocha. 2014. Estructura y composición del arbolado urbano de un campus universitario del noreste de México. Revista Iberoamericana de Ciencias 1 (7): 93-101. http://reibci.org/publicados/2014/diciembre/0700111.pdf (20 de enero de 2020).

Benavides M., H. M. y D. Y. Fernández G. 2012. Estructura del arbolado y caracterización dasométrica de la segunda sección del Bosque de Chapultepec. Madera y Bosques 18 (2): 51-71. Doi: 10.21829/myb.2012.182352.
Bourne, K. S and T. M. Conway. 2014. The influence of land use type and municipal context on urban tree species diversity. Urban Ecosystems 17: 329-348. Doi:10.1007/s11252-013-0317-0.

Bouza C., N. y D. Covarrubias. 2005. Estimación del índice de diversidad de Simpson en m sitios de muestreo. Revista investigación operacional 26 (2): 187-197. https://www.researchgate.net/publication/236611307_ESTIMACION_DEL_INDICE_DE_DIVERSIDAD_DE_SIMPSON_EN_m_SITIOS_DE_MUESTREO (12 de diciembre de 2019).

Canizales V., P., E. Alanís R., V. A. Holguín E., S. García G. y A. C. Chávez A. 2020. Caracterización del arbolado urbano de la ciudad de Montemorelos, Nuevo León. Revista Mexicana de Ciencias Forestales 11(62): 111-135. Doi:10.29298/rmcf.v11i62.768.

Cowett, F. D. 2014. Methodology for spatial analysis of municipal street tree benefits. Arboriculture & Urban Forestry 40(2): 112-118. http://www.hort.cornell.edu/uhi/research/articles/cowett-auf-2014.pdf (12 de diciembre del 2019).

de la Concha, H., L. Roche C. y A. García B. 2017. Inventario del arbolado urbano de la Ciudad de Mérida. Ayuntamiento de Mérida 2018-2021. Mérida, Yuc., México. 58 p. http://www.merida.gob.mx/sustentable/contenidos/doc/inventario_arbolado_merida.pdf (15 de junio de 2020).

Dolan, R. W. 2015. Two hundred years of forest change effects of urbanization on tree species composition and structure. Arboriculture & Urban Forestry 41 (3): 136-145. http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=3359&Type=2 (12 de noviembre de 2019).

Flores-Xolocotzi, R. y M. J. Gonzáles-Guillén. 2010. Planificación de sistemas de áreas verdes y parques públicos. Revista Mexicana de Ciencias Forestales 1 (1): 17-24. Doi: 10.29298/rmcf.v1i1.649.
Graciano-Ávila, G., O. A. Aguirre-Calderón, E. Alanís-Rodríguez y J. E. Lujan-Soto. 2017. Composición, estructura y diversidad de especies arbóreas en un bosque templado del Noroeste de México. Ecosistemas y recursos agropecuarios 4(12): 535-542. Doi: 10.19136/era.a4n12.1114.

Islas-Rodríguez, L., T. Martínez-Trinidad y M. Hernández-Martínez. 2012. Principales especies arbóreas en el campus Montecillo del Colegio de Postgraduados. Ciencias Agrícolas Informa 21(2): 97-105.
https://www.researchgate.net/publication/305681116_Principales_especies_arboreas_en_el_campus_Montecillo_del_Colegio_de_Postgraduados (12 de febrero de 2020).

Leal E., C. E., N. Leal E., E. Alanís R., M. A. Pequeño L., A. Mora O. y E. Buendía R. 2018. Estructura, composición y diversidad del arbolado urbano de Linares, Nuevo León. Revista Mexicana de Ciencias Forestales 9(48): 252-270. Doi:10.29298/rmcf.v8i48.129.

López-Hernández, J. A., O. A. Aguirre-Calderón, E. Alanís-Rodríguez, J. C. Monarrez-González, M. A. González-Tagle y J. Jiménez-Pérez. 2017. Composición y diversidad de especies forestales en bosques templados de Puebla, México. Madera y Bosques 23(1): 39-51. Doi:10.21829/myb.2017.2311518.

López-López, S. F., T. Martínez-Trinidad, H. M. Benavides-Meza, M. García-Nieto y G. Ángeles-Pérez. 2018. Reservorios de biomasa y carbono en el arbolado de la primera sección del Bosque de Chapultepec, Ciudad de México. Madera y Bosques 24(3): 1-14. Doi:10.21829/myb.2018.2431620.

Lou, J. y J. A. González-Oreja. 2012. Midiendo la diversidad biológica: más allá del índice de Shannon. Acta zoológica lilloana 56(1-2): 3-14.
https://www.researchgate.net/publication/230634099_Midiendo_la_diversidad_biologica_mas_alla_del_indice_de_Shannon (26 de marzo del 2021).
Maco, S. E. and E. G. McPherson. 2003. A practical approach to assessing structure, function, and value of Street tree populations in small communities. Journal of Arboriculture 29(2): 84-97. https://www.fs.fed.us/psw/publications/mcpherson/psw_2003_mcpherson003_maco.pdf (12 de octubre de 2019).

Magurran, A. E. 2004. Measuring biological diversity. Blackwell, Oxford, UK. 256 p.

Martin, N. A., A. H. Chappelka, G. J. Keever and E. F. Loewenstein. 2011. A 100% tree inventory using i-Tree Eco protocol: a case study at Auburn University, Alabama, U.S. Arboriculture & urban Forestry 37(5): 207-212. http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=3206&Type=2 (23 de marzo de 2020).

McPherson, E. G. 2007. Benefit-based tree valuation. Arboriculture & Urban Forestry 33(1): 1-11. https://www.fs.fed.us/psw/publications/mcpherson/psw_2007_mcpherson002.pdf (20 de septiembre de 2019).

Mora-Donjuán, C. A., O. N. Burbano-Vargas, C. Méndez-Osorio y D. F. Castro-Rojas. 2017. Evaluación de la biodiversidad y caracterización estructural de un Bosque de Encino (Quercus L.) en la Sierra Madre del Sur, México. Revista Forestal Mesoamericana Kurú 14(35): 68-75. Doi:10.18845/rfmk.v14i35.3154.

Morales-Salazar, M., B. Vílchez-Alvarado, L. Chazdon, M. Ortega-Gutiérrez, E. Ortiz-Malavasi y M. Guevara-Bonilla. 2012. Diversidad y estructura horizontal en los bosques tropicales del Corredor Biológico de Osa, Costa Rica. Revista Forestal Mesoamericana Kurú 9(23): 19-28. Doi:10.18845/rfmk.v9i23.487.

Muller, R. N. and C. Bornstein. 2010. Maintaining the diversity of California’s Municipal Forests. Arboriculture & Urban Forestry 36(1): 18-27. http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=3127&Type=2 (25 de enero de 2020).
Nowak, D. J., J. C. Stevens, S. M. Sisinni and C. J. Luley. 2002. Effects of urban tree management and species selection on atmospheric carbon dioxide. Journal of Arboriculture 28(3): 113-122. https://www.nrs.fs.fed.us/pubs/jrnl/2002/ne_2002_nowak_004.pdf (20 de enero de 2020).

Nowak, D. J., R. Hoehn and D. E. Crane. 2007. Oxygen production by urban trees in the United States. Arboriculture & Urban Forestry 33(3): 220-226. https://www.nrs.fs.fed.us/pubs/jrnl/2007/nrs_2007_nowak_001.pdf (12 de abril de 2020).

Pérez M., R., A. Santillán F., F. Narváez Á., B. Galeote L. y N. Vásquez B. 2018. Riesgo del arbolado urbano: estudio de caso en el Instituto Tecnológico Superior de Venustiano Carranza, Puebla. Revista Mexicana de Ciencias Forestales 9(45): 208-228. Doi:10.29298/rmcf.v9i45.143.

Saavedra-Romero, L. de L., D. Alvarado-Rosales, P. Hernández-de La Rosa, T. Martínez-Trinidad, G. Mora-Aguilera y J. Villa-Castillo. 2016. Condición de copa, indicador de salud en árboles urbanos del Bosque San Juan de Aragón, Ciudad de México. Madera y Bosques 22(2): 15-27. Doi:10.21829/myb.2016.2221321.

Saavedra-Romero, L. de L., P. Hernández-de la Rosa, D. Alvarado-Rosales, T. Martínez-Trinidad y J. Villa-Castillo. 2019. Diversidad, estructura arbórea e índice de valor de importancia en un bosque urbano de la Ciudad de México. Polibotánica 47: 25-37. Doi:10.18387/polibotanica.47.3.

Sánchez-Gutiérrez, F., A. Valenzuela-Gómez, J. I. Valdez-Hernández y C. A. González-González. 2017. Estructura y diversidad de especies arbóreas en el sitio arqueológico “El mirador selva lacandona, Chiapas”. Polibotánica 44: 79-94. Doi:10.18387/polibotanica.44.6.

Santamour, F. S. 1990. Trees for urban planning: Diversity, uniformity, and common sense. Proceedings of the seventh conference of The Metropolitan Tree Improvement Alliance (METRIA 7). The Morton Arboretum, Lisle, IL, USA. 57-76 p. https://www.semanticscholar.org/paper/TREES-FOR-URBAN-PLANTING-%3A-DIVERSITY-UNIFORMITY-%2C-Santamour/26a24c5361ce6d6e618a9fa307c4a34a3169e309?p2df (25 de enero de 2021).
Santoyo-Gómez, G. H., F. Rojas-García y H. M. Benavidez-Meza. 2014. Contenido de Carbono en el bosque urbano de la Ciudad de México: Delegación Miguel Hidalgo. In: Paz P. F. y J. Wong G. (eds.). 2014. Estado actual del conocimiento del ciclo del Carbono y sus interacciones en México: síntesis a 2014. Programa Mexicano del Carbono. México. pp. 176-182. http://bibliotecasibe.ecosur.mx/sibe/book/000057582 (24 febrero de 2021).

Savard, J. P. L., P. Clergeau and G. Mennechez. 2000. Biodiversity concepts and urban ecosystems. Landscape and Urban Planning 48: 131-142. Doi:10.1016/S0169-2046(00)00037-2.

United State Department of Agriculture-Forest Service (USDA). 2018. i-Tree Eco Field guide V6.0. https://www.itreetools.org/documents/274/EcoV6.FieldManual.2020.07.23.pdf (28 de diciembre 2019).

Velasco B., E., E. N. Cortes B., A. Hernández G., F. Sánchez M. y H. M. Benavides M. 2013. Diagnóstico y caracterización del bosque de San Juan Aragón. Revista Mexicana de Ciencias Forestales 4(19): 102-111. Doi:10.29298/rmcf.v4i19.382.

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.