Assessment of the risk of exposure to cadmium and lead as a result of the consumption of coffee infusions

Anna Winiarska-Mieczan1 · Katarzyna Kwiatkowska1 · Małgorzata Kwiecien1 · Ewa Zaricka2

Received: 8 July 2020 / Accepted: 5 August 2020 / Published online: 13 August 2020
© The Author(s) 2020

Abstract
The paper aimed to analyse the safety of drinking coffee by adult Poles in terms of Pb and Cd content. The degree to which Cd and Pb passed from coffee grounds into the coffee infusion was also examined. Twenty-three samples of natural coffee were examined. The content of metals was determined using the ICP method. On average, dry coffee contained ca. 0.004 μg Cd and 0.05 μg Pb per 1 g, and 95.5% Cd and 94% Pb passed into the infusion. Drinking coffee supplies these metals in the amount of less than 2% TWI (tolerable weekly intake) for Cd and BMDL (benchmark dose lower confidence limit) for Pb. In the presented studies, the values of CDI (chronic daily intake), THQ (target hazard quotient) and HI (hazard index) indicators were lower than 1, which means that the risk of developing diseases connected with chronic exposure to Cd and Pb consumed with coffee must be evaluated as very low. The content of Cd and Pb in the analysed coffee infusions was very low, so drinking coffee does not pose a risk for consumers in terms of the content of these metals. However, it must be remembered that no threshold limits for toxic metal consumption exist because these metals accumulate in the body for a long time. The studies presented here also showed a low ($r = 0.26$) but still a positive correlation between the content of Pb in coffee and the degree (%) to which Pb passed into the infusion. This problem should be thoroughly investigated.

Keywords Coffee infusions · Cadmium · Lead · Risk assessment

Introduction
Coffee, next to tea, is one of the most popular drinks in the world [1]. It is a source of antioxidants including caffeine, phenolic compounds and diterpenes. Results of studies suggest that drinking coffee can increase the level of glutathione and improve the protection of the body against DNA damage, in particular, if consumed regularly [1]. It was demonstrated that drinking coffee decreased the risk of developing breast cancer, prostate and colorectal cancer, which is attributed to the presence of antioxidants [2, 3]. It is also suggested that drinking coffee decreases the risk of developing chronic diseases such as type 2 diabetes and Parkinson’s [4, 5]. According to surveys, 95.2% of adult Poles drink coffee compared with 61% of Italians and about 40% of Spaniards [6, 7]. Statistically, in 2017 in Poland, the consumption of coffee amounted to 2.16 kg per person [8]. In Poland, the most popular type of coffee is non-instant coffee (ground and ground). This is a choice of more than 50% of consumers, preceding instant coffee and coffee mixes [6]. Most often, Poles drink 1–3 cups of coffee a day [9, 10]. However, one should not drink more than 5 cups (1 cup = 150 ml = 80 mg caffeine) a day due to its possible negative effect on the cardiovascular system (increased LDL-chol and total cholesterol levels due to diterpenoid alcohols), problems falling asleep (caffeine), pregnancy (caffeine intake of > 300 mg per day proved negative effect on the duration of pregnancy and weight at birth) and increased secretion of gastric acid and bile, which exacerbates peptic ulcer disease and hyperacidity [1, 11–13].

Apart from antioxidants and other bioactive compounds, coffee contains carbohydrates, lipids, nitrogen compounds, vitamins and minerals, including toxic elements such as cadmium (Cd) and lead (Pb) [12, 14, 15]. The presence of toxic metals in food is a global problem. Their primary source for humans is the food of plant origin [16, 17]. Although, according to available literature and own studies, the content of Cd...
and Pb in food products normally does not exceed acceptable standard levels, due to the fact that these metals are capable of accumulating in tissues and have a long half-life: 5–30 years for Cd and from 30 days (in soft tissue) to 10 years (in bones) for Pb [18], their regular supply, even in small amounts, is dangerous. These metals display mutagenic, teratogenic, carcinogenic and embryotoxic effects [19]. In 2012, EFSA reduced the tolerable intake level for Cd and Pb. The TWI (tolerable weekly intake) for Cd was determined at the level of 2.5 \(\mu \text{g kg}^{-1} \) of body weight per week [16], whereas the BMDL (benchmark dose lower confidence limit) for Pb was BMDL\(_{0.1}\)—10.5 \(\mu \text{g kg}^{-1} \) of body weight per week—and BMDL\(_{1.0}\)—4.4 \(\mu \text{g kg}^{-1} \) of body weight per week [17]. The paper aimed at analysing the safety of drinking coffee by adult Poles in terms of Pb and Cd content. The degree to which Cd and Pb passed from coffee grounds into the coffee infusion was also examined. The presented results are a part of the project aiming to estimate the intake of minerals (toxic and essential) in the Polish population.

Material and methods

Study material

Twenty-three samples of natural coffee were examined (Table 1). The products were purchased in August 2017 from local groceries, still within their shelf life. Before the analyses, the coffee was stored in original, tightly sealed packages at room temperature.

Preparation of samples for analyses

Grained coffee was ground in a laboratory grinder with plastic blades. Ground coffee was mixed by hand. Coffee infusions were prepared as follows: 6 g of ground coffee was poured with 100 ml of drinking water with a temperature of 95–100 °C; after 10 min, the solutions were drained through the Whatman drain. The resulting coffee grounds were dried in a drier at a temperature of 65 °C for 24 h. Afterwards, they

Table 1 Characteristic of the analysed products

Coffee form	Coffee varieties	Trademark	Size of package, g	Annotation	Origin	Made in
1 Beans	Arabica + Robusta	A	1000	Bio, Fair Trade	South America, Asia, Africa	Poland
2 Beans	No data	B-1	1000	No data	No data	Poland
3 Ground	No data	B-2	250	No data	No data	Poland
4 Ground	Robusta	C	400	Brazil	Poland	
5 Beans	Arabica	D-1	500	Brazil	Holland	
6 Beans	Arabica + Robusta	D-2	1000	No data	No data	Holland
7 Ground	Arabica	D-1	500	Columbia	Holland	
8 Ground	Arabica	D-3	500	Brazil	Holland	
9 Ground	Arabica	G-1	250	Bio, Fair Trade	Papua New Guinea, Peru, Mexico	Italy
10 Ground	Arabica	G-2	250	Brazil	Italy	
11 Beans	Arabica + Robusta	G-3	1000	South America, Indonesia	Italy	
12 Ground	Arabica + Robusta	I	250	South America, Indonesia	Germany	
13 Ground	Robusta	J-1	500	Vietnam	Germany	
14 Ground	Robusta	J-2	250	India	Germany	
15 Ground	Robusta	J-2	100	India	Germany	
16 Ground	Arabica	J-2	500	Brazil	Germany	
17 Beans	Arabica	J-3	1000	Fair Trade	Bolivia, Peru, Ecuador, Nicaragua	Germany
18 Ground	Arabica	K-1	500	Brazil	Germany	
19 Ground	Arabica	K-2	500	South America	Germany	
20 Beans	Arabica	K-3	500	South America	Germany	
21 Beans	Arabica + Robusta	K-4	500	South America, Indonesia	Germany	
22 Ground	Arabica	L	500	Brazil	Germany	
23 Ground	Arabica	M	227	Fair Trade	Peru, Nicaragua	England
were pulverised in a laboratory grinder with plastic blades. The analyses covered both fresh ground coffee and coffee grounds remaining after coffee brewing.

Chemical analyses

The analysed material was manually mixed. Samples weighing ca. 3 g were weighed in 3 replications into previously heat sterilised china crucibles and then subjected to dry mineralisation in a muffle furnace at a temperature of 450 °C. The oxidant was hydrogen peroxide. The mineralisate was dissolved in 10 ml of 1 M HNO₃ [20, 21]. The content of cadmium and lead was determined using ICP (inductively coupled plasma mass spectrometry) in a Varian 820 MS spectrometer (Varian, Melbourne, Australia). The parameters for determination and control of correct analyses were included in Table 2. The calibration curve was drawn using the models:

Cd: standard characterised by 99.999% purity used to prepare solutions with the concentration of 0.2; 0.4; 1; 2; 4; 10 μg of Cd L⁻¹; the solutions were prepared in 1% ultra-pure nitric acid (V).

Pb: standard characterised by 99.999% purity used to prepare solutions with the concentration of 0.1; 0.2; 0.5; 1; 2; 5 μg of Pb L⁻¹; the solutions were prepared in 1% ultra-pure nitric acid (V).

Each chemical analyses was repeated 3 times. The accuracy of determination was verified using a blind test (1 M HNO₃) and two certified reference materials (CRM): INCT-TL-1 Tea leaves (containing 0.030 mg Cd and 1.78 mg Pb per 1 kg) and INCT-MPH-2 Mixed Polish herbs (containing 0.199 mg Cd and 2.16 mg Pb per 1 kg).

Reagents and reference materials

Hydrogen peroxide H₂O₂ (30% pure) and nitric acid HNO₃ (65% ultra-pure) were purchased from POCH S.A. (Poland). Deionised water used for dilution was made in our laboratory (Hydrolab Poland, Gdańsk). The Cd and Pb standards were purchased from Merck (Germany). Certified reference materials INCT-TL-1 and INCT-MPH-2 were obtained from the Institute of Nuclear Chemistry and Technology (Warsaw, Poland).

Table 2	Measurement parameters and validation data for the determination of Cd and Pb levels by ICP-MS	
	Cd	Pb
Mass monitored	114	206; 207; 208
Plasma gas	Argon	Argon
Plasma gas flow, L min⁻¹	18	18
Nebulizer gas flow, L min⁻¹	1	1
Auxiliary gas flow, L min⁻¹	1.70	1.70
Sampling depth, mm	5	5
RF power, kW	1.37	1.37
Limit of detection LOD, μg kg⁻¹	0.004	0.005
Limit of quantification LOQ, μg kg⁻¹	0.010	0.030
Quality control		
Blank sample	1 M HNO₃	1 M HNO₃
Certified reference material (1)	INCT-TL-1 Tea leaves	INCT-TL-1 Tea leaves
Certified reference material (2)	INCT-MPH-2 Mixed Polish herbs	INCT-MPH-2 Mixed Polish herbs
Certified element concentration in CRM 1		
Certified, mg kg⁻¹	0.030	1.78
Observed, mg kg⁻¹	0.029	1.76
Recovery rate, %	98	99
Certified element concentration in CRM 2		
Certified, mg kg⁻¹	0.199	2.16
Observed, mg kg⁻¹	0.189	2.22
Recovery rate, %	95	103
Precision, %	6.04	6.07
Replicates	3	3
Calculations

Based on the difference in the content of Cd and Pb in coffee grounds, the degree (%) to which those metals passed into the infusion was calculated prior to after coffee brewing.

The safety of drinking coffee for adult Poles was estimated on the grounds of (1) calculation of the percentage of Cd and Pb intake in comparison with the acceptable level proposed by EFSA [16, 17], (2) calculation of parameters describing the risk of development of cancer and (3) calculation of parameters describing the risk of development of non-carcinogenic diseases. Three consumption patterns were taken into account in the calculations: 1 cup, 2 cups or 3 cups a day for 365 days in a year because such amounts of coffee in Poland are drunk by ca. 80% of coffee drinkers [9, 10].

(1) Percent of tolerable dose:

Estimated weekly intake (EWI) of Cd and Pb was calculated according to the formula [22]:

\[
EWI = \frac{MWC \times \text{metal level}}{100}
\]

where MWC is the mean weekly consumption of coffee (one, two or three cups).

Tolerable weekly intake % (TWI) was calculated according to the formula [22]:

\[
\%\text{TWI} = \frac{EWI_{Cd} \times 100}{TWI}
\]

The value adopted for TWI was 2.5 µg Cd kg\(^{-1}\) per week [16].

Benchmark dose lower confidence limit % (BMDL) was calculated according to the formula [22]:

\[
\%\text{BMDL} = \frac{EWI_{Pb} \times 100}{BMDL}
\]

The value adopted for BMDL: two values suggested by the European Food Safety Authority (EFSA) were calculated per 1 week: BMDL\(_{01}\) = 10.5 µg Pb kg\(^{-1}\) of body weight per week—and BMDL\(_{10}\) = 4.4 µg Pb kg\(^{-1}\) of body weight per week [17].

The mean body weight was assumed as 70 kg.

(2) Cancer risks parameters

Chronic daily intake (CDI) of Cd or Pb was calculated according to the formula [23, 24]:

\[
\text{CDI} = \frac{\text{EDI} \times \text{EFr} \times \text{ED}_{\text{tot}}}{\text{body weight} \times \text{AT}}
\]

where EDI is the estimated daily intake of Cd and Pb, calculated on the basis of the mean weekly consumption of coffee (one, two or three cups) and mean level of Cd and Pb; EFr is the days of exposure frequency (365 per year); \(\text{ED}_{\text{tot}}\) is the exposure duration (years)—since in Poland regular coffee drinkers are adults only, it was assumed that the time of exposure was calculated from 18 to 74 years of age (74 years—average life span in Poland), which is 56 years; AT is the period of exposure (365 per year).

CSF is a cancer slope factor which is the risk produced by a lifetime average dose of 1 mg kg\(^{-1}\) BW per day and is contaminant specific.

(3) Non-carcinogenic risks parameters

Target hazard quotient (THQ) was calculated according to the formula [23]:

\[
\text{THQ} = \text{CDI}/\text{RfD}
\]

where CDI is the chronic daily intake of Cd or Pb.

RfD (reference dose) for Cd is 1 µg kg\(^{-1}\) of body weight per day, whereas, for Pb, it is 3.5 µg kg\(^{-1}\) of body weight per day [25].

When THQ is higher than 1, it is assumed that there is a significant risk of developing negative effects on health resulting from chronic exposure to Cd and/or Pb [26].

Hazard index (HI) was calculated according to the formula [23]:

\[
\text{HI} = \text{THQ}_{\text{Cd}} + \text{THQ}_{\text{Pb}}
\]

Statistical analysis

The mean content of Cd and Pb was calculated for each sample (three weighing replications × 3 replications of chemical analysis). A statistical analysis of the results (average value, minimum and maximum value, standard deviation, median, 75 and 25 percentile) was carried out using Statistica 13.1 software. Statistically significant differences (\(P < 0.05\)) were computed by single factor analysis of variance (ANOVA), using the Duncan test. The correlation between the content of Cd and Pb in coffee and the degree (%) to which they passed into the infusion was calculated using Pearson’s method (Statistica 6.0 software).

Results

Content of Cd and Pb in coffee

Dry coffee prior to brewing contained from 1.204 to 10.33 µg Cd per 1 kg (Tables 3 and 4). The mean content of Cd in the analysed samples was 3.784 µg (± 2.464) per 1 kg. Coffee
grounds contained from < LOQ to 0.698 μg per kg; in 35% of samples, the level of Cd was lower than determinable with the applied method (LOQ = 0.01 μg kg⁻¹). About 79 to 100% (on average 95.5%) of Cd present in the output material passed into the infusion; the infusion contained, on average, 3.613 μg kg⁻¹ (range 1.2–10.33 μg). A very low positive correlation \(r = 0.15 \) was identified between the content of Cd in coffee and the degree (%) to which Cd passed into the infusion (Fig. 1a). On average, dry coffee prior to brewing contained ca. 49.6 μg kg⁻¹ Pb (range 21.22–80.06 μg kg⁻¹), whereas coffee grounds < LOQ — 10.2 μg kg⁻¹. In 17% of coffee ground samples, the level of Pb was lower than determinable using the analytical method applied (LOQ = 0.03 μg kg⁻¹). From nearly 79 to 100% (on average 94%) of Pb passed into the infusion, the infusion contained, on average, 46.86 μg kg⁻¹ (range 16.66–80.06 μg). A low positive correlation \(r = 0.26 \) was identified between the content of Pb in coffee and the degree (%) to which Pb passed into the infusion (Fig. 1b).

Coffee drinking safety

Data concerning the estimated safety of drinking coffee infusions, taking into account three consumption patterns (1, 2 or 3 cups of coffee a day), is presented in Table 5.

Pattern 1: 1 cup of coffee a day

The estimated weekly intake (EWI) of Cd with coffee infusion is 0.156 μg, which accounts for about 0.09% TWI. The value of CDICd and THQCd indicators is identical and it amounts to 0.022. The estimated weekly intake of Pb is 1.968 μg, which corresponds to ca. 0.27% BMDL₀₁ and ca. 0.64% BMDL₁₀. The value of CDIPb = 0.281, whereas that of THQpb = 0.08. The HI risk factor (Cd + Pb) is 0.103.

Pattern 2: 2 cups of coffee a day

EWI of Cd with coffee is 0.312 μg, which accounts for 0.18% of TWI. The value of CDICd and THQCd indicators is 0.045 each. EWI of Pb is ca. 0.312 μg, which accounts for 0.18% of TWI. The value of CDIPb = 0.281, whereas that of THQpb = 0.08. The HI risk factor (Cd + Pb) is 0.103.

Pattern 3: 3 cups of coffee a day

EWI of Cd with coffee is 0.468 μg, which accounts for 0.27% TWI. The value of CDICd and THQCd indicators is 0.066 each. EWI of Pb is 0.312 μg, which accounts for 0.18% of TWI. The value of CDIPb = 0.281, whereas that of THQpb = 0.08. The HI risk factor (Cd + Pb) is 0.103.

Table 3: Content of Cd and Pb in dry ground coffee (before brewing), dregs and infusions (n = 23), μg kg⁻¹

	Dry coffee	Dregs	Infusions	Leaching percentages of Cd and Pb
Cd				
1	5.041E	73.37E	0.600F	4.443D
2	10.33I	74.37F	< LOQA	6.280H
3	1.204A	34.84B	< LOQA	5.134G
4	3.991D	38.04B	< LOQA	2.143C
5	8.883H	43.47C	< LOQA	1.087B
6	3.289C	80.06G	0.702G	< LOQA
7	1.502A	44.21C	< LOQA	1.120B
8	2.106B	33.87B	< LOQA	1.060B
9	3.413C	58.13C	< LOQA	3.100C
10	2.204B	61.35E	0.122B	1.223B
11	1.273A	55.41D	< LOQA	3.206F
12	2.106B	61.35E	< LOQA	4.581F
13	3.122C	54.36D	0.189C	1.250B
14	7.703F	33.35B	0.133B	< LOQA
15	6.111F	44.36C	< LOQA	3.561D
16	1.489A	55.36D	0.100B	2.105D
17	2.110B	21.36A	1.122B	3.210D
18	3.311C	65.12E	0.191C	3.220D
19	4.089D	21.22A	0.210F	5.458E
20	2.210B	35.48F	< LOQA	< LOQA
21	3.401C	48.22C	0.103B	2.010F
22	5.824F	63.22E	0.223C	2.011C
23	4.350D	38.95B	0.484E	4.123F

Average values for 3 replications

A, B Means with different superscripts in the same column differs significantly at \(P < 0.05 \) by Duncan’s test; LOQ Cd = 0.010 μg kg⁻¹; LOQ Pb = 0.030 μg kg⁻¹
3.94, which corresponds to 0.54% BMDL₁₀ and nearly 1.3% BMDL₁₀. The value of CDIₚb = 0.56, whereas THQₚb = 0.16. The HI risk factor equals 0.205.

Pattern 3: 3 cups of coffee a day EWI of Cd with infusion is less than 0.5 μg, which accounts for about 0.27% TWI. The values of CDIₖd and THQₖd indicators are 0.067 each. EWI of Pb was equal to 5.715 μg, which corresponds to about 0.78% BMDL₁₀ and about 1.86% BMDL₁₀. The value of CDIₚb = 816, whereas THQₚb = 233. The HI risk factor equals 0.3.

Discussion

In the presented studies of this author, dry coffee contained on average nearly 3.8 μg Cd and ca. 50 μg Pb per 1 kg of the natural product, which accounts for ca. 0.004 μg Cd and 0.003 μg Pb per 1 kg of the natural product.
Table 5 Safety of coffee for consumption

Pattern 1: drinking 1 cup of coffee a day	Cd	Pb
EWI, μg	0.156	1.964
% TWI	0.089	
% BMDL₀₁	0.268	
% BMDL₁₀	0.726	
CD₂	0.222	0.281
THQ³	0.222	0.080
HI⁴	0.103	

Pattern 2: drinking 2 cups of coffee a day	Cd	Pb
EWI, μg	0.312	3.936
% TWI	0.178	
% BMDL₀₁	0.541	
% BMDL₁₀	1.278	
CD₂	0.045	0.562
THQ³	0.045	0.161
HI⁴	0.205	

Pattern 3: drinking 3 cups of coffee a day	Cd	Pb
EWI, μg	0.468	5.715
% TWI	0.267	
% BMDL₀₁	0.777	
% BMDL₁₀	1.856	
CD₂	0.067	0.816
THQ³	0.067	0.233
HI⁴	0.300	

¹ EWI, estimated weekly intake calculated on the basis of the mean weekly consumption of coffee infusions and mean level of Cd and Pb
² Chronic daily intake calculated on the basis of the mean weekly consumption of coffee, mean level of Cd and Pb and exposure duration
³ Target hazard quotient calculated on the basis of the chronic daily intake of Cd or Pb
⁴ Hazard index is the sum of THQ for Cd and Pb

0.05 μg Pb per 1 g. As 95.5% Cd and 94% Pb passed into the infusion, the infusion contained on average 0.0037 μg Cd and ca. 0.047 μg Pb per 1 g. Considering the consumption of coffee infusion (1, 2 or 3 cups a day), an adult Pole consumes less than 0.5 μg Cd and nearly 6 μg Pb per day. Based on the content of coffee grains, the grains of coffee from Brazil contained 0.006 μg Cd g^{−1} and 0.12 μg Pb g^{−1}. According to other authors, the content of Cd and Pb in the ground coffee was lower than LOD, which means that the risk of developing diseases connected with chronic exposure to Cd and Pb consumed with coffee must be evaluated as very low. Coffee drinking safety is also confirmed by the degree of coverage of the tolerable intake level of Cd and Pb recommended by EFSA [16, 17]. According to the studies of the present author, drinking 3 cups of coffee a day contributes to supplying these metals in the amount of less than 0.3% TWI (Cd) and less than 2% BMDL.
(Pb). According to Šemen et al. [34], drinking 2 cups of coffee a day contributes to Cd intake amounting to 0.01–0.06% PTWI and Pb intake amounting to 0.03–0.38% PTWI, depending on the type of coffee and content of toxic metals. Suseela et al. [31] found that drinking instant coffee contributes to intake of Cd amounting to 1.1% and that of Pb amounting to 0.7% of the acceptable limit in India. Pigozzi et al. [15] recount that 1 cup (50 ml) of Brazilian ground coffee infusion contains maximum 2.835 μg Pb, which accounts for 0.21 to 4.54% of the acceptable limit (that is 25 μg kg⁻¹ of body weight), while the content of Cd in those coffees was lower than LOD.

To sum up, the content of Cd and Pb in the analysed coffee infusions was very low. However, it must be remembered that no threshold limits for toxic metal consumption exist because these metals accumulate in the body for a long time; in the case of Cd and Pb, it is even 30 years [18], whereas their largest amounts accumulate in organs in charge of detoxicating processes (liver and kidneys) and in the brain [19, 36], leading to their damage and dysfunction. Nędzarek et al. [14] mention the level of Pb in coffee; despite it was low in their studies, those authors suggest that the content of Pb in coffee should be monitored regularly because it is higher than the content of Cd and can accumulate in tissues. Studies involving rats showed that during complex exposure (Cd + Pb), Pb accumulates in the organs to a higher degree than Cd (0.6% vs 0.48% in adults and 0.5% vs 0.7% in a younger population) [19, 36]. Lead is absorbed to a higher extent by the gastrointestinal tract than Cd after oral intake (10–50%, 1–8%) [37, 38]. In the presented study of this authors, an alarming signal is CDIₚb close to 1. It must be taken into account that some authors found that the Pb level was higher than acceptable in 75% of the analysed samples [15, 30]. The studies presented here also showed a low (r = 0.26) but still, a positive correlation between the content of Pb in coffee and the degree (%) to which Pb passed into the infusion. This problem should be thoroughly investigated.

Conclusions

The content of Cd and Pb in the analysed coffee infusions was very low, so drinking coffee does not pose a risk for consumers in terms of the content of these metals. However, it must be remembered that no threshold limits for toxic metal consumption exist because these metals accumulate in the body for a long time; in the case of Cd and Pb, it is even 30 years.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

References

1. Martini D, Del Bo’ C, Tassotti M, Riso P, Del Rio D, Brighenti F, Porrini M (2016) Coffee consumption and oxidative stress: a review of human intervention studies. Molecules 21:979. https://doi.org/10.3390/molecules21080979
2. Nkondjoock A (2009) Coffee consumption and the risk of cancer: an overview. Cancer Lett 277:121–125. https://doi.org/10.1016/j.canlet.2008.08.022
3. Cao S, Liu L, Yin X, Wang Y, Liu J, Lu Z (2014) Coffee consumption and risk of prostate cancer: a meta-analysis of prospective cohort studies. Carcinogenesis 35:256–261. https://doi.org/10.1038/carcin.2014.482
4. Huxley R, Lee CM, Barzi F, Tanner MA, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169:2053–2063. https://doi.org/10.1001/archinternmed.2009.439
5. Sääksjärvi K, Nekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915. https://doi.org/10.1038/sj.ejcn.1602788
6. Chudy S (2014) Development of coffee market and changes in coffee consumption among Poles. J Agribus Rural Dev 34:41–51
7. Özen AE, Bibiloni Mdl M, Pons A, Tur JA (2014) Consumption of functional foods in Europe; a systematic review. Nutr Hosp 29:470–478. https://doi.org/10.3305/nh.2014.29.3.7148
8. Statistical Yearbook of the Republic of Poland (2018) Statistical Publishing Establishment, Warsaw, Poland.
9. Bartkowicz J (2015) The selected behaviours of consumers in the market for natural coffee. Handel Wewn 355:45–57
10. Kwiatkowska K, Winiarska-Mieczan A, Kwieciew M, Klebaniuk R, Krusiński R, Rusinek-Prystupa E, Sembrotowicz I, Kamińska E, Dąbrowska A, Cholewińska E (2017) Analysis of coffee consumption among primary school teachers. Probl Hig Epidemiol 98:285–289
11. EFSA (2015) Scientific opinion on the safety of caffeine. EFSA J 13(5):4102. https://doi.org/10.2903/j.efsa.2015.4102
12. Göcken BB, Sanlier N (2017) Coffee consumption and disease correlations. Crit Rev Food Sci Nutr 59:336–348. https://doi.org/10.1080/10408398.2017.1369391
13. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359:j5024. https://doi.org/10.1136/bmj.j5024
14. Nędzarek A, Tórz A, Karakiewicz B, Clark JS, Laszczyska M, Kaleta A, Adler G (2013) Concentrations of heavy metals (Mn, Cu, Pb, Zn) in Brazilian instant coffee. Arch Intern Med 169:2053–2063. https://doi.org/10.1001/archinternmed.2009.439

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Co, Ni, Cr, Ag, Pb) in coffee. Acta Biochim Pol 60:623–627. https://doi.org/10.1383/abp.2013.2031
15. Pigozzi MT, Passos FR, Mendes FQ (2018) Quality of commercial coffees: heavy metal and ash contents. J Food Qual 2018;5908463–5908467. https://doi.org/10.1155/2018/5908463
16. EFSA (2012) Cadmium dietary exposure in the European population. EFSA J 10(1):2551. https://doi.org/10.2903/j.efsa.2012.2551
17. EFSA (2012) Lead dietary exposure in the European population. EFSA J 10(7):2831. https://doi.org/10.2903/j.efsa.2012.2831
18. Winiarska-Mieczan A, Grela ER (2017) Content of cadmium and lead in raw, fried and baked commercial frozen fishery products consumed in Poland. J Sci Food Agric 97:2969–2974. https://doi.org/10.1002/jsfa.8136
19. Winiarska-Mieczan A, Kwiecien M (2016) The effect of exposure to Cd and Pb in the form of a drinking water or feed on the accumulation and distribution of these metals in the organs of growing Wistar rats. Biol Trace Elem Res 169:230–236. https://doi.org/10.1007/s12011-015-0414-4
20. Winiarska-Mieczan A (2014) Cadmium, lead, copper and zinc in breast milk in Poland. Biol Trace Elem Res 157:36–44. https://doi.org/10.1007/s12011-013-9870-x
21. Winiarska-Mieczan A, Kwiatkowska K, Kwiecien M, Baranowska-Wójcik E, Wójcik G, Kruśinski R (2019) Analysis of the intake of sodium with cereal products by the population of Poland. Food Addit Contam Part A 36:884–892. https://doi.org/10.1080/10582460.2019.1605209
22. Winiarska-Mieczan A, Florek M, Kwiecien M, Kwiatkowska K, Kruśinski R (2015) Cadmium and lead content in chosen commercial fishery products consumed in Poland and risk estimations on fish consumption. Biol Trace Elem Res 182:371–380. https://doi.org/10.1007/s12011-017-1104-1
23. Sultana MS, Rana S, Yamazaki S, Aono T, Yoshida S (2017) Health risk assessment for carcinogenic and noncarcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cog Environ Sci 3:1291107. https://doi.org/10.1080/23311843.2017.1291107
24. Issa AB, Yasin K, Loutfy N, Ahmed MT (2018) Risk assessment of heavy metals associated with food consumption in Egypt: a pilot study. J Clin Exp Toxicol 2:15–24
25. Song D, Zhuang D, Jiang D, Fu J, Wang Q (2015) Integrated health risk assessment of heavy metals in Suxian County, South China. Int J Environ Res Public Health 12:7100–7117. https://doi.org/10.3390/ijerph1207100
26. IRIS, Integrated Risk Information System (2015) U.S. Environmental Protection Agency. Chemical Assessment Summary. National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/substr/0141_summary.pdf (26.04.2019)
27. Grenbeeka M, Malinowska E, Szefer P (2007) Differentiation of market coffee and its infusions in view of their mineral composition. Sci Total Environ 383:59–69. https://doi.org/10.1016/j.scitotenv.2007.04.031
28. Gebretsadik TA, Berhanu T, Kefarge B (2015) Levels of selected essential and nonessential metals in roasted coffee beans of Yirgachefe and Sidama, Ethiopia. Am J Environ Prot 4:188–192. https://doi.org/10.11648/ajep.20150404.13
29. Ashu R, Chandravanshi BS (2011) Concentration levels of metals in commercially available Ethiopian roasted coffee powders and their infusions. Bull Chem Soc Ethiop 25:11–24. https://doi.org/10.4314/bcse.v25i1.63356
30. da Silva SA, Mendes FQ, Reis MR, Passos FR, de Carvalho AMX, de Oliveira Rocha KR, Pinto FG (2017) Determination of heavy metals in the roasted and ground coffee beans and brew. Afr J Agric Res 12:221–228. https://doi.org/10.5897/AJAR2016.11832
31. Suseela B, Bhalke S, Kumar AV, Tripathi RM, Sastry VN (2001) Daily intake of trace metals through coffee consumption in India. Food Addit Contam 18:115–120. https://doi.org/10.1080/02652030010008814
32. Al Olhman ZA (2010) Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules 15:7482–7497. https://doi.org/10.3390/molecules15107482
33. Santos WPC, Hatje V, Lima LN, Trignano SV, Barros F, Castro JT, Korn MGA (2008) Evaluation of sample preparation (grinding and sieving) of bivalves, coffee and cowpea beans for multi-element analysis. Microchem J 89:123–130. https://doi.org/10.1016/j.microc.2008.01.003
34. Şemen S, Mercan S, Yayla M, Açıkkol M (2017) Elemental composition of green coffee and its contribution to dietary intake. Food Chem 215:92–100. https://doi.org/10.1016/j.foodchem.2016.07.176
35. Anderson GL, Garnick L, Fung MS, Gaffney SH (2017) A pilot study to assess lead exposure from routine consumption of coffee and tea from ceramic mugs: comparison to California Safe Harbor Levels. Int J Food Contam 4:4. https://doi.org/10.1186/s40550-017-0049-7
36. Winiarska-Mieczan A (2014) Cumulative rate and distribution of Cd and Pb in the organs of adult male Wistar rats during oral exposure. Environ Toxicol Pharmacol 38:751–760. https://doi.org/10.1016/j.etap.2014.08.016
37. Ohta H, Yamauchi Y, Nakakita M, Tanaka H, Asami S, Seki Y, Yoshikawa H (2003) Relationship between renal dysfunction and bone metabolism disorder in male rats after long-term oral quantitative cadmium administration. Ind Health 38:339–355
38. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.