Individual expression of hepatitis A virus 3C protease induces ferroptosis in human cells

in vitro

Running title:
Hepatitis A virus 3C protease induces ferroptosis

Alexey A. Komissarov*, Maria A. Karaseva, Marina P. Roschina, Andrey V. Shubin#, Nataliya A. Lunina, Sergey V. Kostrov, and Ilya V. Demidyuk*

Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow, Russia, 123182
Current address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
* corresponding authors: Alexey A. Komissarov, komissarova@yandex.ru; Ilya V. Demidyuk, duk@img.ras.ru

Abstract
Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis. In contrast, the human hepatitis A virus 3C protease (3Cpro) has recently been shown to cause caspase-independent cell death accompanied by previously undescribed features. Here, we describe the 3Cpro effect on human cells in vitro and demonstrate that the enzyme induces ferroptosis which is mediated by iron ions and cause oxidative stress in the cells. This is the first demonstration that proteolytic enzyme can induce ferroptosis, the recently discovered and actively studied type of RCD.

Introduction
Regulated cell death (RCD) is a fundamental physiological process common to nearly all living beings [1]. In animals and humans, RCD is crucial for the development and tissue homeostasis, while abnormal RCD causes a wide range of diseases [2]. The mechanisms of cell death have been studied
for more than 50 years and today more than ten RCD types are discriminated which differ in the inducers, key meditators, and cell morphology during and after death [3].

A wide range of molecules can induce RCD including certain viral proteolytic enzymes. Similar to other virus proteins, viral proteases are multifunctional. In addition to the main function of processing viral proteins, they can cleave cellular proteins. This can inhibit the transcription of cellular genes and cellular mRNA translation, block nuclear transport, and suppress the antiviral immune response [4, 5]. Acting on cellular proteins, viral proteases can trigger RCD.

To date, numerous data indicate the ability of picornaviral 3C proteases to induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis [6-8]. In contrast, the rhinovirus 3C protease induces caspase-independent cell death; however, the underlying mechanism remains unclear [9]. Previously, we demonstrated that hepatitis A virus 3C protease (3Cpro) induces cell death, which is also independent of caspase activity and features a unique cell morphology, specifically, the accumulation of cytoplasmic vacuoles with previously undocumented features. This suggested that the 3Cpro-induced cell death proceeds by an unknown pathway or is a new variant of a known RCD type [10-12].

Here, we have analyzed the effect of 3Cpro on human cells in more detail and have demonstrated that the enzyme induces ferroptosis. Thus, this is the first demonstration that proteolytic enzyme can induce this recently discovered and actively studied RCD pathway.

Materials and methods

Plasmid expression constructs

For pCI-3C construction, a DNA fragment containing the hepatitis A virus 3C protease (3Cpro) gene with EcoRI and KpnI sites was generated by PCR using the primers GACTGAATTCGCCACCATGTCAACTCTAGAAATAGCAGG and CAACGGTACCTTACTGACTTTTCTTATCAATG (Evrogen, Russia), and pBI-EGFP-3C [11] as the template. The fragment was purified using a Cleanup Standard kit (Evrogen, Russia), digested with EcoRI and KpnI enzymes (SibEnzyme, Russia), and cloned into pCI (Promega, USA) digested with the same enzymes. Plasmid pCI-3Cmut was constructed in the same way except that pBI-EGFP-3Cmut [11] was the source of the 3Cmut gene encoding inactivated 3Cpro with the Cys172-Ala
substitution; pCI-EGFP was constructed previously [13]. All plasmids were amplified in *E. coli* TG1 cells and purified using a Plasmid Miniprep kit (Evrogen, Russia).

Cell cultures and transfection

Human embryonic kidney HEK293, human cervical cancer HeLa (M-HeLa clone 11), and human adenocarcinomic alveolar basal epithelial A549 cell lines were obtained from the Russian Cell Culture Collection (St. Petersburg, Russia). The cells were cultured in DMEM/F-12 supplemented with 10% fetal bovine serum (ThermoFisher Scientific, USA) and 0.3 mg/ml glutamine (Paneco, Russia) at 37°C in a humidified atmosphere with 5% CO₂ in 96- or 6-well plates (Corning, USA) for 20-24 h until 60-80% confluence. For transfection, plasmid DNA-TurboFect and plasmid DNA-Lipofectamine 2000 (ThermoFisher Scientific, USA) complexes were prepared following the manufacturer’s protocol in serum-free OptiMEM (ThermoFisher Scientific, USA) and added to the wells; 4 h later the medium was replaced with the fresh one or with the medium containing necrostatin-1 (5000, 500, 50, 5, or 0.5 μM), PJ34 (50, 5, 0.5, 0.05, or 0.005 μM), cyclosporin A (1000, 100, 10, 1, or 0.1 μM), ferrostatin-1 (200, 20, 2, 0.2, or 0.02 μM), or desferrioxamine (10000, 1000, 100, 10, or 1 μM). For apoptosis and ferroptosis induction, non-transfected cells were incubated in the growth medium supplemented with 1 μM staurosporine (Sigma-Aldrich, USA) or 50 μM erastin (Sigma-Aldrich, USA), correspondingly, for 24 h prior to analysis.

Western blotting

Whole-cell extracts obtained from 2·10⁵ cells for HEK293 and 5·10⁵ cells for Hela and A549 at 15 h post-transfection (p.t.) were separated by SDS-PAGE in 12% TGX Stain-Free gel (Bio-Rad, USA). After electrophoresis, the proteins were transferred to a nitrocellulose membrane (Bio-Rad, USA). The membranes were imaged using the stain-free system with a ChemiDoc MP imager (Bio-Rad, USA). Then the membranes were blocked overnight with 5% nonfat dry milk (Bio-Rad, USA) in PBS (Paneco, Russia) containing 0.1% Tween 20 (Sigma-Aldrich, USA) and exposed to rabbit 3Cmut antiserum [14] diluted 1:300 overnight at room temperature. The membrane was routinely washed and incubated with the sheep anti-rabbit secondary antibodies (1 mg/ml) conjugated with horseradish peroxidase (Jackson ImmunoResearch Laboratories, USA) for 2 h at room temperature. Immunoreactive bands were visualized with the Clarity Western ECL substrate (Bio-Rad, USA) following the manufacturer’s recommendations. The chemiluminescent signal was detected using a ChemiDoc MP imager.
The image analysis was carried out using the Image Lab software (Bio-Rad, USA). Total protein amount per track was evaluated following the manufacturer’s protocol for stain-free gels [15]. For each gel, a track with 1 ng of recombinant 3Cmut [14] served as a control.

Cell viability assay

Cells were transfected as described above in 96-well plates and the viability of cells in transfected and non-transfected cultures was determined at the indicated time p.t. using a CellTiter 96 AQueous One Solution Cell Proliferation Assay kit (Promega, USA). Briefly, the medium in 96-well plates was replaced with 100 μl of PBS, and 20 μl aliquots of the CellTiter 96 reagent were added per well. The absorbance was recorded at 490 nm with an Infinite M200 PRO microplate reader (Tecan, Switzerland) immediately after the CellTiter 96 reagent was added and after 1 h of incubation at 37 °C in a humidified atmosphere with 5% CO₂.

Flow cytometry

The medium in 96-well plate was replaced at the indicated time points with 100 μl of PBS supplemented with 0.2 g/l EDTA and 50 μM FITC-VAD-fmk (Promega, USA) or 50 μM 1,1’,3,3,3’,3’-hexamethylindodicarbo-cyanine iodide (DiIC1(5), ThermoFisher Scientific, USA), and the plate was incubated at 37°C in a humidified atmosphere with 5% CO₂ for 20 min. Then the cells were stained with 0.3 μM propidium iodide (PI, Sigma-Aldrich, USA) for 5 min and analyzed using an Accuri C6 flow cytometer (BD, USA). For each sample, at least 10 000 events corresponding to single cells by forward and side light scatter were acquired. The DiIC1(5) fluorescence was detected using 640-nm excitation and a 660-685 nm emission filter; PI, 488 and 600-620 nm; FITC-VAD-fmk, 488-nm and 518-548 nm. The raw data were acquired using the Accuri C6 Software (BD, USA) and analyzed using the FlowJo software (BD, USA). The compensation matrix was calculated automatically by FlowJo using single-stained cells.

Fluorescent microscopy

Cells were grown and co-transfected with pCI-3C/pCI-3Cmut and pCI-EGFP in a black 96-well plate with a transparent bottom (PerkinElmer, USA) and analyzed using an Axiovert 100 LSM510 META confocal microscope (Carl Zeiss, Germany) 18 h p.t. For morphological analysis, the cells were transfected and 18 h later washed with PBS and fixed with methanol (Sigma-Aldrich, USA) for 30 min on ice. The cells were washed twice with PBS, incubated for 30 min in blocking buffer (PBS, 5% fetal
bovine serum, and 0.25% Triton X-100), and incubated for 20 h at 4 °C in the blocking buffer with goat IgG antibodies specific for the human AIF protein (Santa Cruz Biotechnology, USA) diluted 1:200. Next, the cells were washed twice with PBS and incubated in the blocking buffer containing donkey anti-goat IgG antibodies conjugated with Alexa Fluor 568 (ThermoFisher Scientific, USA) diluted 1:400 for 2 h at room temperature. The cells were washed twice with PBS, stained with 2 µg/ml Hoechst 33342 for 5 min, and analyzed under an Axiovert 100 LSM510 META confocal microscope.

Statistical analysis
Comparison between unrelated groups was carried out using nonparametric two-tailed Mann-Whitney U test. Differences were considered significant if the p-value was less than 0.05. Statistical analysis was performed using RStudio version 1.0.136 (RStudio, USA) software.

Results

Ectopic expression of 3Cpro and its inactive form 3Cmut in human cells

Two genetic constructs were derived from the pCI vector: pCI-3C for constitutive expression of active hepatitis A virus 3C protease (3Cpro) and pCI-3Cmut expressing the mutant enzyme with no proteolytic activity due to the Cys172-Ala substitution in the active site (3Cmut) (Fig. 1A). HEK293, HeLa, and A549 cells were transfected with these genetic constructs and 15 h post transfection (p.t.) the expression of the corresponding genes was confirmed by immunoblotting with antibodies against 3Cmut (Fig. 1B). The 3Cpro production in HEK293 cells was higher compared to other cell lines since the 3Cpro level detected by immunoblotting in the lysate of a smaller number of cells was comparable to that in HeLa and A549 cells.

3Cpro expression induces caspase-independent cell death with cytoplasmic vacuolization

The cytotoxic effect after the transfection with pCI-3C/pCI-3Cmut was analyzed. The expression of mutant protease 3Cmut induced no cytotoxic effect (Fig. 2A; solid lines). At the same time, the proportion of living cells in cultures expressing active 3Cpro decreased 15 h p.t. to reach the minimum 18 h p.t. (about 25% for HEK293 and less than 5% for HeLa and A549) and remained stable up to the end of the observation period (24 h p.t.) (Fig. 2A; dashed lines).
Figure 1. Expression of 3Cpro and its inactive form 3Cmut in human cells. (A) Expression cassettes in pCI-3C and pCI-3Cmut. CMV enh/prom, cytomegalovirus immediate-early enhancer/promoter; Int, chimeric human β-globin/IgG intron; 3Cpro/3Cmut, human hepatitis A virus 3C protease (intact or mutant, respectively) gene; SV40 p(A), late mRNA polyadenylation signal of SV40. (B) Analysis of 3Cpro and 3Cmut expression in HEK293, HeLa, and A549 cells by immunoblotting 15 h p.t.; 3C/Mut, lysate of cells transfected with pCI-3C/pCI-3Cmut; K–, lysate of non-transfected cells; K+, recombinant 3Cmut (1 ng). The lysates were prepared from 200,000 HEK293 or 500,000 HeLa/A549 cells. “Loading” shows the relative total protein per track estimated for each cell line using the stain-free technology.

The involvement of caspases in the 3Cpro-induced cell death was evaluated using the fluorescent caspase inhibitor FITC-VAD-fmk (Fig. 2B). The proportion of cells with active caspases was about 15% after the transfection with either pCI-3C or pCI-3Cmut as demonstrated by flow cytometry (Fig. 2C). At the same time, a considerable fraction of control cells treated with staurosporine (STS) showed the activation of caspases, which demonstrates that all cell lines used are prone to caspase-dependent apoptosis. Thus, the data obtained confirm that the cytotoxic effect of 3Cpro depends on the proteolytic activity and the cell death is not accompanied by the activation of caspases.

We have also confirmed that 3Cpro-induced cell death is accompanied by cytoplasmic vacuolization as it has been demonstrated previously [11]. Thus, a considerable fraction of HEK293 cells co-transfected with pCI-3C/pCI-3Cmut and pCI-EGFP (expressing the enhanced green fluorescent protein) demonstrated green fluorescence 24 h p.t. as well as cytoplasmic vacuolization (Fig. 2D; right). Nearly no cells were demonstrating green fluorescence 48 h p.t. At the same time, no cytoplasmic vacuolization was observed after co-transfection with pCI-3Cmut and pCI-EGFP, and cells remained attached to the substrate and emitted green fluorescence up to the end of the observation period (72 h p.t.) (Fig. 2D; left). In the case of HeLa and A549, the majority of cells transfected with pCI-3C/pCI-EGFP died 24 h p.t., and individual survived cells only demonstrated green fluorescence but no cytoplasmic vacuolization. The data obtained likely indicate a higher susceptibility of HeLa and A549...
Figure 2. Effects of ectopic 3Cpro expression in HEK293, HeLa, and A549 cells. (A) Cytotoxic effect induced by 3Cpro expression. Results are expressed as the percentage of viable cells relative to non-transfected cells. (B) Representative flow cytometry images of non-transfected HeLa cells (Ctrl) and those transfected with pCI-3C and pCI-3Cmut, or incubated with 1 μM staurosporine (STS) and stained with FITC-conjugated caspase inhibitor (FITC-VAD-fmk). (C) Caspase activation analysis using FITC-VAD-fmk in non-transfected cells (Ctrl) and those transfected with pCI-3C/pCI-3Cmut or incubated with STS. (D) Vacuolization of cells expressing 3Cpro. HEK293 cells were co-transfected with pCI-3Cmut (left) or pCI-3C (right) together with pCI-EGFP (1:1 by weight) and analyzed by fluorescence microscopy 24 h p.t. Yellow arrows indicate cells with vacuoles. All values are represented as mean ± SD of two independent experiments with triplicates (n = 6).

Cells to 3Cpro-induced cell death compared to HEK293. However, these data do not allow to conclude about the cytoplasmic vacuolization in HeLa and A549 cells since the vacuoles can be visualized only in EGFP-contrasted cytoplasm, while cells seem to die before they accumulate sufficient EGFP quantities.

Thus, the effect of 3Cpro on human cells in the pCI-based expression system in vitro is similar to that previously reported by us [10, 11].
Figure 3. Flow cytometry analysis of morphology of 3Cpro expressing cells. (A) Representative dot plots of A549 cells stained with DiIC1(5) and PI 12 (left), 15 (middle), and 18 (right) h p.t. with pCI-3C. (B) Morphological changes in cells expressing 3Cmut and 3Cpro. All values are represented as mean ± SD of two independent experiments with triplicates (n = 6).

Cells expressing 3Cpro acquire necrotic morphology and are characterized by nuclei and mitochondria swelling

The morphology of HEK293, HeLa, and A549 cells transfected with pCI-3C or pCI-3Cmut was analyzed by staining with 1,1’,3,3’,3’-hexamethylindodicarbo-cyanine iodide (DiIC1(5)) and propidium iodide (PI) at different times p.t. to evaluate the mitochondrial metabolic activity and the plasma membrane integrity, respectively (Fig. 3A). The vast majority of the cells expressing inactive 3Cmut at all time points had active mitochondria and intact plasma membrane, which are indicative of living cells (Fig. 3B; 3Cmut). As active 3Cpro was expressed in culture, the proportion of living cells gradually decreased and the proportion of cells with functionally inactive mitochondria and disrupted...
plasma membrane (i.e., with necrotic morphology) proportionally increased; at the same time, the proportions of other cell populations remained largely unaltered (Fig. 3B; 3Cpro).

The morphology of nuclei and mitochondria of 3Cpro-expressing cells was analyzed by staining DNA with Hoechst 33342 and the AIF protein with specific and fluorescent labeled antibodies, respectively (representative pictures are presented for HeLa cells in Fig. 4). Cells expressing inactive 3Cmut demonstrated normal nuclear and mitochondrial morphology (Fig. 4; 3Cmut), while those expressing 3Cpro demonstrated partial chromatin condensation and their nuclei and mitochondria became hypertrophied and rounded, which indicates their swelling (Fig. 4; 3Cpro).

Ferroptosis inhibitors block 3Cpro-induced cell death

The necrotic morphology acquired by 3Cpro-expressing cells is typical of several RCD types: necroptosis, parthanatos, MPT-associated death, and ferroptosis. We examined the effect of their
inhibitors on the cytotoxic effect of 3Cpro. The presence of necrostatin-1 (Nec1, necroptosis inhibitor [16]), PJ34 (parthanatos inhibitor [17]), and cyclosporin A (CsA, inhibitor of MPT-associated death [18]) had no effect on the survival of 3Cpro-expressing cells (Figs. 5A,B,C; Nec1, PJ34, and CsA). At the same time, ferrostatin-1 (Fer1) and desferrioxamine (DFO) [19-21] blocked the death of cells transfected with pCI-3C (Figs. 5A,B,C; Fer1 and DFO) as well as those exposed to 50 µM erastin (Fig. 5D) – the well-known ferroptosis inducer [22, 23]. The data obtained indicate that 3Cpro-induced cell death results from oxidative stress and Fe^{2+} ions contribute to its progression. This allows us to conclude that the 3Cpro-induced cell death represents a variant of ferroptosis.

Discussion

Recently we demonstrated that human hepatitis A virus 3C protease (3Cpro) induces cell death with previously undescribed morphological features. The aim of this study was to find out whether the 3Cpro-induced cell death is a variant of one of the known RCD types. Thus, 3Cpro and its inactive variant 3Cmut were expressed in several model cell lines. Fully compliant with the previous data [10, 11], here we showed that the observed cytotoxic effect of 3Cpro expression depends on the protease activity, and cell death is accompanied by cytoplasmic vacuolization without caspase activation.

![Figure 5. Effect of RCD inhibitors on 3Cpro-induced cell death. HEK293 (A), HeLa (B), and A549 (C) cells were transfected with pCI-3Cmut, or pCI-3C, or transfected with pCI-3C and exposed to different concentrations of necrostatin-1 (Nec1, 5000-0.5 µM), PJ34 (50-0.005 µM), cyclosporin A (CsA, 1000-0.1 µM), ferrostatin-1 (Fer1, 200-0.02 µM), and desferrioxamine (DFO, 10000-1 µM). The viability of cells was analyzed 18 h p.t. and the results were presented as the percentage of viable cells relative to non-transfected cells. (D) Ferroptosis induction in the cell lines used. Cells were exposed to erastin (Era) alone or together with Fer1 (Era+Fer1) or DFO (Era+DFO). All values are represented as mean ± SD of two independent experiments with triplicates. Statistically significant differences between cells treated with indicated inhibitors and untreated cells (A, B, C), or between cells treated with Era alone and with Fer1/DFO (D) are marked with asterisks (Mann-Whitney U test, n = 6, * p < 0.01, ** p < 0.05).](https://doi.org/10.1101/2021.05.28.446108)
We found that cells dying due to 3Cpro action demonstrate a necrotic morphology manifested as simultaneous plasma membrane disruption and loss of mitochondrial metabolic activity as well as nuclei and mitochondria swelling. This pattern is typical of several RCD types. We used characterized inhibitors of necroptosis, parthanatos, MPT-associated death, and ferroptosis to clarify whether the 3Cpro induced cell death represents a variant of these RCDs. Only ferroptosis inhibitors proved to effectively suppress cell death. Essentially, these inhibitors have different mechanisms of action. Desferrioxamine (DFO) is a Fe$^{2+}$ chelator, while ferrostatin-1 (Fer1) is a lipophilic antioxidant [19-21]. Thus, the data obtained suggest that 3Cpro induces ferroptosis mediated by Fe$^{2+}$ ions and oxidative stress.

Ferroptosis is a recently discovered RCD type which hallmark is an active membrane lipid oxidation [24]. The lipid oxidation is known to nonspecifically destabilize and disrupt the plasma membrane as well as mitochondrial, lysosomal, and EPR membranes (reviewed in detail in [25-27]). This could explain the observed consequent plasma membrane disruption and loss of mitochondrial activity during 3Cpro-induced cell death.

Concerning cytoplasmic vacuolization observed in 3Cpro-expressing cells, no such morphology has been described previously for ferroptosis. However, a similar morphology is observed in autophagic cells, and excessive autophagy and lysosome activity can sometimes promote ferroptosis [28, 29]. Indeed, we have previously shown that vacuoles in the cytoplasm of the 3Cpro-expressing cells share several features with autophagosomes; but at the same time, these vacuoles are distinct from autophagosomes and have unique properties [11, 30]. In addition, using common inhibitors of autophagy and vacuolar type H(+)−ATPase [31, 32] we showed that 3Cpro-induced cell death depends neither on cytoplasmic vacuolization nor on autophagy induction [11]. Taken together, these data indicate that ferroptosis induction in 3Cpro-expressing cells is not promoted by autophagy.

It is worth noting another phenomenon revealed in the described 3Cpro-induced cell death. The proportion of cells expressing the target transgene post transfection is commonly used to evaluate the transfection agent efficiency; this parameter is often referred to as “transfection efficiency”. Our experiments with EGFP as a reporter indicated that the transfection efficiency of the used transfection agents does not usually exceed 40-50% for HEK293 cells and is much lower, ~10-20%, for HeLa and A549 cells [13]. However, here we have found out that the proportion of dead cells is much higher than the mean transfection efficiency after transient transfection (about 80% for HEK293 and over 95% for HeLa and A549). A similar effect was observed previously when 3Cpro was expressed in other genetic
constructs [14]. The revealed distinctions can be attributed to the death of cells both expressing 3Cpro and neighboring ones. Such effect was demonstrated for cells dying through ferroptosis since ferroptosis occurring in one cell can reportedly spread to adjacent cells in a fast-propagating wave [33, 34].

To date, numerous data indicate that different proteases can induce RCD; however, 3Cpro is the first reported proteolytic enzyme inducing ferroptosis. Moreover, all currently known specific ferroptosis inducers are synthetic low-molecular-weight compounds [27]. The found 3Cpro ability suggests this protease as a promising genetic ferroptosis-inducing agent, e.g., in cancer gene therapy. A wide range of cancer cells proved sensitive to ferroptosis; in particular, prostate, liver, lung, mammary gland, pancreas cancer as well as glioblastoma, acute myeloid leukemia, and diffuse B-cell lymphoma (reviewed in detail in [35, 36]). Here, we have also found that tumor HeLa and A549 cells are more susceptible to 3Cpro-induced ferroptosis than nominally normal HEK293 cells. This is confirmed by both higher intracellular 3Cpro levels and higher proportion of living HEK293 cells compared to HeLa and A549. However, the data obtained are insufficient to conclude about the selective effect of 3Cpro on tumor cells. This requires further in vitro experiments with more cell lines and the subsequent confirmation in in vivo system.

It is obvious that the data obtained are not enough to establish the biological role of 3Cpro as a ferroptosis inducer. It is common knowledge that human hepatitis A virus has no direct cytopathic effect on hepatocytes, although the liver is the primary locus of virus replication. In vivo the main factor that damages the liver is the death of infected hepatocytes mainly caused by the activity of cytotoxic T cells and natural killer cells [37, 38]. Moreover, the intracellular level of 3Cpro is apparently much lower during infection compared to that in our experimental system. In this context, it is likely that 3Cpro affects certain cell substrates to maintain viral replication in vivo, while ferroptosis induction is a side effect of 3Cpro action. Apparently, low cellular levels of 3Cpro have no such side effect, while higher protease levels in our experimental system can induce it. A detailed analysis of the molecular mechanism of 3Cpro-induced cell death is needed to reveal the relationship between the ability of 3Cpro to induce ferroptosis and the viral life cycle. In the first place, the cellular targets of 3Cpro should be identified. This information can also extend our knowledge about the mechanism and biological role of ferroptosis.
Acknowledgements:
The work was carried out using the equipment of the Center of Cellular and Gene Technology of the Institute of Molecular Genetics of the National Research Centre “Kurchatov Institute”. This work was supported in part by the Kurchatov Genomic Center Development Program (agreement no. 075-15-2019-1664) and by the Russian Foundation for Basic Research (project no. 19-04-00756).

Conflict of interest:
The authors declare that they have no conflict of interest.

References
1. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 2015;6:e1609.
2. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742-58.
3. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486-541.
4. Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytonen VP, Flodstrom-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol. 2016;26:251-67.
5. Sun D, Chen S, Cheng A, Wang M. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses. 2016;8:82.
6. Calandria C, Irurzun A, Barco A, Carrasco L. Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res. 2004;104:39-49.
7. Li ML, Hsu TA, Chen TC, Chang SC, Lee JC, Chen CC, et al. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology. 2002;293:386-95.
8. Chau DH, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, et al. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4G1 but not DAP5/p97/NAT1. Apoptosis. 2007;12:513-24.
9. Lotzerich M, Roulin PS, Boucke K, Witte R, Georgiev O, Greber UF. Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death Dis. 2018;9:272.
10. Shubin AV, Lunina NA, Shedova EN, Roshina MP, Demidyuk IV, Vinogradova TV, et al. Evaluation of the toxic effects evoked by the transient expression of protease genes from human pathogens in HEK293 cells. Appl Biochem Microbiol. 2013;49:750-5.
11. Shubin AV, Demidyuk IV, Lunina NA, Komissarov AA, Roschina MP, Leonova OG, et al. Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biol. 2015;16:4.

12. Shubin AV, Komissarov AA, Karaseva MA, Padman BS, Kostrov SV, Demidyuk IV. Human hepatitis A virus 3C protease exerts a cytostatic effect on Saccharomyces cerevisiae and affects the vacuolar compartment. Biologia. 2021;76:321-7.

13. Komissarov AA, Karaseva MA, Safina DR, Roschina MP, Bednova OP, Kazakov AA, et al. Comparative evaluation of the transgene expression efficiency provided by the model genetic constructs of different structure. Mol. Genet. Microbiol. Virol. 2016;31:156-62.

14. Komissarov A, Demidyuk I, Safina D, Roschina M, Shubin A, Lunina N, et al. Cytotoxic effect of co-expression of human hepatitis A virus 3C protease and bifunctional suicide protein FCU1 genes in a bicistronic vector. Mol Biol Rep. 2017;44:323-32.

15. Western blot normalization using Image Lab software, quick start guide. Bio-Rad bulletin 6434.2015.

16. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112-9.

17. Jagtap P, Soriano FG, Virag L, Liaudet L, Mabley J, Szabo E, et al. Novel phenanthridinone inhibitors of poly (adenosine 5'-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit Care Med. 2002;30:1071-82.

18. Kajitani K, Fujihashi M, Kobayashi Y, Shimizu S, Tsujimoto Y, Miki K. Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporin A at 0.96-A resolution. Proteins. 2008;70:1635-9.

19. Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent Sci. 2017;3:232-43.

20. Angeli JPF, Shah R, Pratt DA, Conrad M. Ferroptosis Inhibition: Mechanisms and Opportunities. Trends Pharmacol Sci. 2017;38:489-98.

21. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060-72.

22. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3:285-96.
23. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234-45.

24. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171:273-85.

25. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107-25.

26. Doll S, Conrad M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 2017;69:423-34.

27. Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16:e2006203.

28. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89-100.

29. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chem Biol. 2020;27:420-35.

30. Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016;7:55863-89.

31. Li XZ, Sui CY, Chen Q, Chen XP, Zhang H, Zhou XP. Promotion of autophagy at the maturation step by IL-6 is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Mol Cell Biochem. 2013;380:219-27.

32. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J. 2010;277:2-21.

33. Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol. 2020;22:1042-8.

34. Katikaneni A, Jelicic M, Gerlach GF, Ma Y, Overholtzer M, Niethammer P. Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish. Nat Cell Biol. 2020;22:1049-55.

35. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front Pharmacol. 2017;8:992.

36. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging Strategies of Cancer Therapy Based on Ferroptosis. Adv Mater. 2018;30:e1704007.

37. Fleischer B, Fleischer S, Maier K, Wiedmann KH, Sacher M, Thaler H, et al. Clonal analysis of infiltrating T lymphocytes in liver tissue in viral hepatitis A. Immunology. 1990;69:14-9.
38. Baba M, Hasegawa H, Nakayabu M, Fukai K, Suzuki S. Cytolytic activity of natural killer cells and lymphokine activated killer cells against hepatitis A virus infected fibroblasts. J Clin Lab Immunol. 1993;40:47-60.