Can Endoscopic Ultrasound-Guided Fine Needle Aspiration Offer Clinical Benefit for Tumors of the Ampulla of Vater? - An Initial Study

Takeshi Ogura1,6, Kazuo Hara1, Susumu Hijioka1, Nobumasa Mizuno1, Hiroshi Imaoka1, Yasumasa Niwa2, Masahiro Tajika3, Shinya Kondo2, Tsutomu Tanaka2, Yasuhiro Shimizu1, Waki Hosoda4, Yasushi Yatabe4, Vikram Bhatia5, Kazuhide Higuchi6, Kenji Yamao1*

1Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan; 2Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan; 3Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan; 4Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan; 5Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), Delhi, India; 62nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan

Abstract:
Objective: No previous studies have described endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) only for intra-ampullary lesions of the papilla of Vater. We aimed to examine whether EUS-FNA can be used to diagnose such lesions.

Methods: This study included a subset of 10 consecutive patients in whom EUS-FNA targeted the ampulla of Vater. All the patients underwent biopsy and/or brushing cytology under endoscopic retrograde cholangiopancreatography (ERCP) prior to EUS-FNA. The final diagnosis was based on pathological examinations of specimens obtained by surgical resection or clinical follow-up more than 1 year in case of evidence of benign lesions.

Results: Tissues from the ampulla of Vater could be obtained by EUS-FNA for all 10 patients. The final diagnosis was papillitis (n = 7) and intra-ampullary carcinoma (n = 3). Carcinoma of the ampulla of Vater showed neither exposure on the duodenal mucosal surface nor invasion to the pancreas. The diagnostic accuracy of surface biopsy with duodenoscopy, and intra-ampullary biopsy and/or brush cytology with ERCP and/or intra-ampullary biopsy after endoscopic sphincterotomy (EST) in distinguishing between benign and malignancy was 70%. The diagnostic accuracy of EUS-FNA was 100%. No complications associated with EUS-FNA were encountered in this study.

Conclusion: EUS-FNA for ampulla of Vater may be safely and accurately performed, and should be considered as a diagnostic modality before EST.

Keywords: ampulla of Vater; endoscopic ultrasound; fine needle aspiration, intra-ampullary carcinoma; carcinoma of ampulla of Vater; papillitis

INTRODUCTION

The widespread use of cross-sectional imaging and esophagogastroduodenoscopy has contributed to increasing detection of abnormalities at the ampulla of Vater, in minimally symptomatic or asymptomatic patients. Various mass lesions including both benign and malignant, may be present at the ampulla of Vater, such as papillitis, carcinoma, and carcinoid tumors.1-3 Endoscopic findings suggesting carcinoma of the ampulla of Vater include spontaneous bleeding, erosion, ulceration, surface friability, or induration of the enlarged ampulla.4 However, the endoscopic abnormality seen in both benign lesion such as papillitis and intra-ampullary-type carcinoma, particularly non-exposed type and early stage T1 or T2 lesions,5 is often only swelling of the ampulla of Vater. The differential diagnosis in such cases with an enlarged ampulla, but without any other visible abnormality is challenging.

In addition the accuracy rates for identifying carcinoma of the ampulla of Vater by endoscopic biopsy are not particularly high.6,7 The accuracy rates are even lower for
intra-ampullary-type carcinoma because of the normal
overlying mucosa. To improve the diagnostic yield several
reports have suggested that endoscopic biopsies be done
after an endoscopic sphincterotomy (EST). When
differentiating between benign and malignant tumors of
the ampulla of Vater is difficult, endoscopic snare papillectomy
may also be considered. However, the complication rates
associated with this technique are high.

Endoscopic ultrasound-guided fine needle aspiration
(EUS-FNA) is an established diagnostic method for obtaining
submucosal tissue samples from diverse types of lesions.
However, only a few reports have described EUS-FNA for
tumors of the ampulla of Vater. And no previous studies
have described EUS-FNA only for intra-ampullary lesions of
the papilla of Vater.

The present study therefore examined whether EUS-FNA
could be useful as a diagnostic modality for lesions at the
ampulla of Vater, particularly in identifying intra-ampullary-
type carcinoma of the ampulla of Vater.

PATIENTS AND METHODS

Patients
Between January 1998 and April 2011, a total of 2332
EUS-FNA procedures were carried out at Aichi Cancer
Center Hospital, Nagoya, Japan. Among these procedures,
the present study retrospectively included a subset of 10
consecutive patients (7 men, 3 women; mean age
66.9 ± 3.0 years; mean follow-up: 802.25 ± 145.3 days) who underwent
EUS-FNA for tumor-like lesions detected as low-echoic
areas at the ampulla of Vater on EUS. The enlarged ampulla
of Vater was found alone in all 10 patients endoscopically.
The size of the ampulla of Vater, common bile duct (CBD),
and main pancreatic duct (MPD) were measured on EUS.

We firstly performed surface biopsy with duodenoscopy,
and then, intra-ampullary biopsy and brushing cytology with
endoscopic retrograde cholangiopancreatography (ERCP)
and/or EUS-FNA. If these results were not malignant, then
we would proceed to intra-ampullary biopsy after EST.

The final diagnosis was based on pathological examination
of specimens obtained by surgical resection and clinical
follow-up. If the signs of malignancy were absent at the end
of follow-up (disease regression or no evidence of disease
progression), carcinoma of the ampulla of Vater was ruled
out.

All the patients were provided with written informed
consents to all procedures associated with the study.

EUS–FNA technique
We used standard EUS-FNA technique, as previously
described. The ampulla was imaged at a frequency of
7.5 MHz using a convex linear-array echoendoscope (GF-
UGT240; Olympus Optical, Tokyo, Japan) connected to
an ultrasound device (Aloka Prosound a-5 and -10; Aloka,
Tokyo, Japan), and a 22-G needle (NA-10J or NA-11J-KB;
Olympus Optical) or 25-G needle (EchoTip-Ultra Needle;
Cook Medical, Limerick, Ireland) was used for the aspiration.
The aspirated material was separated into one part each for
cytopathological evaluation and cell-block preparation. The
material aspirated from all the 10 patients was immediately
evaluated (Diff Quick Staining) by a cytopathologist and/or
cytotechnologist for rapid diagnosis.

Statistical analysis
Continuous variables are expressed as mean and range.
The Chi-square analysis and Mann-Whitney U test for
independence were used to compare the incidences and
concordance of both groups. A P-value less than 0.05 was
considered statistically significant.

RESULTS

Patient characteristics (Tab. 1)
The chief complaint of all the patients was asymptomatic
and they were detected of abnormality of the ampulla of
Vater by esophagogastroduodenoscopy at health check.
Between carcinoma and benign lesions, there were no
significant differences of the diameter of CBD (P = 0.07),
the diameter of MPD (P = 0.68), the size of mass lesions (P = 0.61), the number of biopsies (P = 0.17), and the number
of FNA passes (P = 0.05). Finally, 3 patients were diagnosed
with carcinoma of the ampulla of Vater, and 7 patients were
diagnosed with papillitis. T stage of all the patients with
carcinoma of the ampulla of Vater was T2 according to
TNM classification, but carcinoma was not exposed on the
duodenal mucosal surface.

Results of diagnosis by biopsy and/or brush cytology and
EUS–FNA (Fig. 1)
Based on surface biopsy and/or brush cytology and/or intra-
ampullary biopsy with ERCP, only 1 patient was suspected
to have malignancy; however, EUS-FNA and intra-ampullary
biopsy after EST found no malignancy in this patient, and
the final diagnosis was papillitis. Among the remaining 9 patients
diagnosed with no malignancies based on surface biopsy
and/or intra-ampullary biopsy and/or brush cytology, 6
patients were diagnosed without malignancies by EUS-FNA.
Among these 6 patients, 5 patients were also diagnosed
to have no malignancies after intra-ampullary biopsy after EST.
In 1 patient, ERCP could not be performed. All of these
6 patients were finally diagnosed with papillitis on clinical
follow-up and surgical resection. The remaining 3 patients, in
whom malignancies could not be diagnosed based on surface
biopsy and/or intra-ampullary biopsy with ERCP and/or
brush cytology, were finally diagnosed with adenocarcinoma
by EUS-FNA followed by surgical resection (Fig. 2, 3).

Diagnostic yield of biopsy and/or brush cytology and
EUS–FNA: benign vs. malignant (Tab. 2)
Brush cytology led to a false-positive result for 1 patient
and false-negative results for 3 patients. On the other hand, results of EUS-FNA showed no false-positives or false-

Table 1. Patients characteristics

No	Age/Gender	Final diagnosis	Brushing cytology	EST	Number of biopsies	Number of FNA passes	Size (mm)	CBD (mm)	MPD (mm)	Repeat FNA/Biopsy (number)	Follow-up period (d)
1	74/M	Carcinoma (operation)	+	-	4	3	10.0	13.2	7.0	-	616
2	68/M	Carcinoma (operation)	+	-	4	3	13.3	18.0	2.0	-	1164
3	67/M	Carcinoma (operation)	+	-	5	5	9.0	12.0	3.0	-	462
4	61/F	Papillitis (follow-up)	+	+	4	2	12.3	7.0	3.0	3 / 3	789
5	56/M	Papillitis (follow-up)	-	-	6	2	13.0	6.0	3.0	1 / 1	547
6	71/M	Papillitis (follow-up)	-	+	5	2	10.0	8.2	5.1	4 / 5	1978
7	77/M	Papillitis (follow-up)	+	+	8	3	16.0	12.4	4.2	3 / 4	624
8	81/M	Papillitis (operation)	+	+	10	2	12.0	18.0	3.0	-	744
9	50/F	Papillitis (follow-up)	+	+	4	3	10.0	5.0	2.0	1 / 2	489
10	64/M	Papillitis (follow-up)	+	+	6	2	11.0	8.0	4.2	3 / 4	609

EST: endoscopic sphincterotomy; FNA: fine needle aspiration; CBD: common bile duct; MPD: main pancreatic duct.

Figure 1. Figure 1 shows results of diagnosis by biopsy and/or endoscopic ultrasound-guided fine needle aspiration following identification of swelling of the ampulla of Vater.
The overall accuracy of intra-ampullary biopsies and/or brush cytology with ERCP and after EST was 70%, with a sensitivity of 0%, a specificity of 86%, a positive predictive value (PPV) of 0%, and a negative predictive value (NPV) of 67%. However, the overall accuracy of EUS-FNA was 100%, with a sensitivity, specificity, PPV, and NPV of 100%.

Complications

No complications were associated with EUS-FNA and intra-ampullary biopsy and/or brush cytology with ERCP and EST. However, groups undergoing intra-ampullary biopsy and/or brush cytology under ERCP and EST showed hyperamylasemia (365.8 ± 163.9 IU/L) as compared with the group receiving EUS-FNA (85.1 ± 13.8 IU/L) \((P = 0.041)\).

DISCUSSION

The accuracy rates for endoscopic biopsies of carcinoma of the ampulla of Vater are 62%-85%. Even for endoscopic biopsies obtained after EST, the accuracy rates only reach 80%. One reason for this is the various histological grades of cellular atypia, which might increase in deeper tissues. Therefore, when biopsies are performed, it is important to...
obtain samples from tissue deeper than the mucosa.

On the other hand, overall, EUS-FNA samples can be obtained from submucosal tissues with a sensitivity of 64%-94%, a specificity of 93%-100%, and an accuracy of 76%-95% for pancreatic lesions.15-17 Only two reports of EUS-FNA for the ampulla of Vater have been published. Chang \textit{et al},18 in an abstract for an invited paper from the University of California, reported an accuracy of 35% (7/20). On the other hand, Defrain \textit{et al}19 investigated 35 patients with suspected primary ampullary lesions, reporting a sensitivity of 82.4%, a specificity of 100%, and an accuracy of 88.8%. However, the precise endoscopic findings for the ampulla of Vater and T factor were not described in those reports. We considered that EUS-FNA should be evaluated for intra-ampullary lesions that seem difficult to diagnose using standard methods. The present study was thus planned to clarify the benefits for patients who could not be diagnosed by intra-ampullary biopsy and/or brush cytology with ERCP in addition to conventional endoscopic biopsy. No previous studies have described EUS-FNA only for intra-ampullary lesions of the papilla of Vater, and this study revealed the benefits of EUS-FNA for such lesions. To our knowledge, the present study might be the first.

In the present study, adequate tissue samples were obtained by EUS-FNA for all the 10 patients with intra-ampullary lesions of the papilla of Vater. Furthermore, no complications were observed in either the EUS-FNA group or the biopsy and/or brush cytology group, although

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{This patient underwent EUS-FNA (Fig. 3A). Endoscopic ultrasound-guided fine needle aspiration indicated malignancy (Fig. 3B, C). At a later date, this patient underwent surgical operation. Final diagnosis was intra-ampullary-type carcinoma of ampullary of Vater (Fig. 3D, E, F).}
\end{figure}
hyperamylasemia was significantly seen among biopsy and/or brush cytology group and EST group as compared with the EUS-FNA group.

However, it has the possibility that carcinoma could be missed by both techniques. Although the gold standard treatment may be surgery, it is also an undeniable fact that this procedure is greatly invasive for patients. Therefore, if results of EUS-FNA or intra-ampullary biopsy after EST were not malignant, it may be an option to carefully perform clinical follow-up with repeated EUS-FNA and intra-ampullary biopsy.

Several limitations must be considered when the results of this investigation are interpreted. First, since the intra-ampullary carcinoma is a relatively rare tumor, the study included a small number of cases. Second, the design was retrospective with information only from a single tertiary center. A large-scale study is thus needed to confirm the clinical impact of EUS-FNA for lesions of the ampulla of Vater, particularly in terms of intra-ampullary lesions.

In conclusion, EUS-FNA for the ampulla of Vater may be safely and accurately performed. If the diagnosis is inconclusive for tumor of the ampulla of Vater with conventional biopsy and/or brush cytology, EUS-FNA should be considered before biopsy after EST. That is because tumor confirmation on EUS may become difficult after EST.

REFERENCES

1. Moody FG, Calabuig R, Vecchio R, et al. Stenosis of the sphincter of Oddi. Surg Clin North Am 1990; 70: 1341-54.
2. De Palma GD, Masone S, Siciliano S, et al. Endocrine carcinoma of the major papilla: report of two cases and review of the literature. Surg Oncol 2010; 19: 235-42.
3. Kimura W, Futakawa N, Zhao B. Neoplastic diseases of the papilla of Vater. J Hepatobol Pancreat Surg 2004; 11: 223-31.
4. Elek G, Gyori S, Toth B, et al. Histological evaluation of preoperative biopsies from ampulla vateri. Pathol Oncol Res 2003; 9: 32-41.
5. International Union Against Cancer (UICC) (2002) TNM classification of malignant tumors, 6th ed. Wiley-Liss, New York.
6. DeOliveira ML, Trivino T, de Jesus Lopes Filho G. Carcinoma of the papilla of Vater: are endoscopic appearance and endoscopic biopsy discordant? J Gastrointest Surg 2006; 10: 1140-1143
7. Menzel J, Poremba C, Dietl KH, et al. Tumors of the papilla of Vater-inadequate diagnostic impact of endoscopie forceps biopsies taken prior to and following sphincterotomy. Ann Oncol 1999; 10: 1227-31.
8. Lee Sy, Jang KT, Lee KT, et al. Can endoscopic resection be applied for early stage ampulla of Vater cancer? Gastrointest Endosc 2006; 63: 783-8.
9. Ponchon T, Berger F, Chavaillon A, et al. Contribution of endoscopy to diagnosis and treatment of tumors of the ampulla of Vater. Cancer 1989; 64: 161-7.
10. Huibergtse K, Tygat G. Carcinoma of the ampulla of Vater: the endoscopic approach. Endoscopy 1988; 20: 223-6.
11. Bohnacker S, Soehendra N, Maguchi H, et al. Endoscopic resection of benign tumors of the papilla of Vater. Endoscopy 2006; 38: 521-5.
12. Norton ID, Gostout CJ, Baron TH, et al. Safety and outcome of endoscopic snare excision of the papilla of Vater and its problems. Gastrointest Endosc 2002; 56: 239-43.
13. Vogt M, Jakobs R, Benz C, et al. Endoscopic therapy of adenomas of the papilla of Vater. A retrospective analysis with long-term follow-up. Dig Liver Dis 2000; 32: 339-45.
14. Zadorova Z, Dvofak M, Hajer J. Endoscopic therapy of benign tumors of the papilla of Vater. Endoscopy 2001; 33: 345-47.
15. Buscail L, Faure P, Bournet B, et al. Interventional endoscopic ultrasound in pancreatic diseases. Pancreatology 2006; 6: 7-16.
16. Chang KJ, Nguyen P, Erickson RA, et al. The clinical utility of endoscopic ultrasound-guided fine needle aspiration in the diagnosis and staging of pancreatic carcinoma. Gastrointest Endosc 1997; 45: 387-93.
17. Yamao K, Sawaki A, Mizuno N, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNAB): Past, present, and future. J Gastroenterol 2005; 40: 1013-23.
18. Chang K. State of the art lecture: endoscopic ultrasound (EUS) and FNA in pancreatic-biliary tumors. Endoscopy 2006; 38: 56.
19. Defrain C, Chang CY, Srikureja W, et al. Cytologic features and diagnostic pitfalls of primary tumors by endoscopic ultrasound fine-needle aspiration biopsy. Cancer 2005; 105: 289-97.