Unidirectional Transport in Electronic and Photonic Weyl Materials by Dirac Mass Engineering

Ren Bi1 and Zhong Wang1,2
1 Institute for Advanced Study, Tsinghua University, Beijing, China, 100084
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

(Dated: December 16, 2015)

Unidirectional transports have been observed in two-dimensional systems, however, so far they have not been experimentally observed in three-dimensional bulk materials. In this theoretical work we show that the recently discovered Weyl materials provide a platform for unidirectional transports inside bulk materials. With high experimental feasibility, a complex Dirac mass can be generated and manipulated in the photonic Weyl crystals, creating unidirectionally propagating modes observable in transmission experiments. Possible realization in (electronic) Weyl semimetals is also studied. We show in a lattice model that, with a short-range interaction, the desired form of the Dirac mass can be spontaneously generated in a first-order transition.

PACS numbers: 73.43.-f, 78.67.Pt

Introduction. Recently, novel materials described by the Weyl equation are among the research focuses in physics1-4. For instance, the phenomenon of chiral anomaly5-7 has been extensively investigated in Weyl semimetals8-10. The recent experimental discoveries of the photonic Weyl crystals20-22 and the TaAs class Weyl semimetals23-25 have generated intense interests in Weyl materials.

A Dirac mass can couple two Weyl points together to form a massive Dirac fermion (Fig.1).26 The Dirac mass is generally complex-valued, and it is known in continuous field theory that the vortex lines of mass carry unidirectionally propagating modes26-28. Since the unidirectional modes are completely immune to backscattering, they are capable of supporting dissipationless transport. Such unidirectional modes were found at the edge of quantum Hall systems and their photonic analogues29-30, however, so far they have not been experimentally observed inside three-dimensional (3D) bulk materials29. Therefore, it is highly desirable to seek experimental realization of the vortex line of Dirac mass, which is nevertheless challenging. In particular, designing a material with the phase of mass continuously tunable from 0 to 2\pi is a difficult task26.

The results of this paper are threefold. First, we study the unidirectional modes in 3D lattice Weyl materials, and construct a discrete version of the vortex line of mass. This study is complementary to the continuous theories mentioned previously. New features absent in the continuous theories are analyzed.

Second, we propose to realize the vortex line of mass and the associated unidirectional modes in photonic Weyl crystals. This can be achieved by a simple modulation of the photonic Weyl crystals, which naturally generates a complex Dirac mass, whose phase can be manipulated by lattice translations. This proposal is most feasible after the recent experimental realization20 of the gyroid photonic Weyl crystals. This is our central proposal.

Third, we point out that the spontaneous mass generation in Weyl semimetals can be first-order due to the lattice effect. This first-order nature is absent in continuous approximations with a momentum cutoff (e.g. Ref31).

Lattice model and Dirac mass engineering. Let us begin with a simplest lattice model, which captures the key low-energy physics of Weyl semimetals and photonic Weyl materials with a single pair of Weyl points. The lattice Hamiltonian32 is given as

\[H_0(\mathbf{k}) = 2t_z \sin k_x \sigma_y + 2t_z \sin k_y \sigma_x + [2t_z(\cos k_x - \cos k_0) + B(2 - \cos k_x - \cos k_0)]\tau_z, \]

For simplicity, the lattice constants \(a \) has been scaled to 1, therefore \(k \) has periodicity \(2\pi/a = 2\pi \). We take the interpretation that each unit cell contains a single site, and the Pauli matrix \(\tau_i \) refers to the spin (or pseudospin) degree of freedom. This lattice model possesses two Weyl points at \(\mathbf{K}_\pm = (0, 0, \mp k_0) \), with difference \(Q = \mathbf{K}_+ - \mathbf{K}_- = (0, 0, 2k_0) \). Near the Weyl points, we have the low-energy Hamiltonian

\[H_\text{W}(\mathbf{q}) = v_x \tau_y q_x + v_y \tau_x q_y + v_z \tau_z q_z, \]

where \(v_x(y) = 2t_z \sin k_0, \) \(v_z = 2t_z \sin k_0 \), the Pauli matrix \(\tau_z \) is the chirality operator, namely, the eigenvalue of \(\tau_z \) is \(\pm 1 \) for Bloch states near \(\mathbf{K}_\pm \), and \(\mathbf{k} - \mathbf{K}_+ = (q_x, q_y, q_z) \) is the momentum measured relative to the Weyl points. Hereafter we shall take \(k_0 = \pi/4, t_x = t_y = 0.5, t_z = 1, B = 2.5 \), thus \(Q = (0, 0, \pi/2) \).

The Dirac mass terms can be formally included as

\[H_M = m \sigma_z \tau_+ + m' \sigma_z \tau_, \]
where $\tau_\pm \equiv (\tau_+ \pm i\tau_\times)/2$, and both $\sigma_z\tau_+$ and $\sigma_z\tau_-$ anticommute with the three terms in H_W. At low energy, the eigenvalues of the full Hamiltonian $H_W + H_M$ are $\pm \sqrt{\sum_{i=x,y,z} \sigma_i^2 q_i^2 + |m|^2}$, with a gap $2|m|).

Now we would like to introduce a Dirac mass in the lattice model in Eq. (1). Because the momentum difference between the two Weyl points is $Q = (0, 0, \pi/2)$, a Dirac mass must break the translational symmetry, enlarging the size of unit cell by a factor of four in the z direction. The four adjacent sites in each enlarged unit cell are sequentially denoted as A, B, C, D, namely, “A” for $z = 4n$, “B” for $z = 4n + 1$, “C” for $z = 4n + 2$, and “D” for $z = 4n + 3$ (n being integers), where z refers to the z coordinate. To generate a Dirac mass, we add a translational-symmetry-breaking term into the Hamiltonian:

$$H' = \sum_j m_j \sigma_z(j),$$

where j runs through all sites, and $m_j = m_A, m_B, m_C, m_D$ for A, B, C, D site, respectively. The inclusion of σ_z in H' is suggested by the form of H_M.

After enlargement of the unit cell, the lattice Hamiltonians H_0 and H' (Supplemental Material), meanwhile, the Brillouin zone of the enlarged unit cell is $[0, 2\pi] \times [0, 2\pi] \times [0, \pi/2]$. We find that the energy eigenvalues of H_0 have fourfold degeneracies at zero energy at $k = (0, 0, \pi/4)$. For these four low-energy bands we obtain (Supplemental Material) the following effective Hamiltonian of $H_0 + H'$:

$$\tilde{H}_{\text{eff}}(q) = v_x \sigma_x q_x + v_y \sigma_y q_y + v_z \sigma_z q_z + m \sigma_z \tau_+ + m' \sigma_z \tau_- + \Delta \sigma_z,$$

where $(q_x, q_y, q_z) \equiv (k_x, k_y, k_z) - (0, 0, \pi/4)$, $v_{x(y)} = 2t_{x(y)}$, $v_z = 2t_z$, and $\Delta = \Delta(q_x, q_y, q_z)$.

We shall study the Δ term later; at this stage we just omit it and focus on the Dirac mass m.

Now we can construct a vortex line of the Dirac mass. We observe that for the four cases, (I) $(m_A, m_B, m_C, m_D) = (m_1, m_2, m_3, m_4)$; (II) $(m_A, m_B, m_C, m_D) = (m_4, m_1, m_2, m_3)$; (III) $(m_A, m_B, m_C, m_D) = (m_3, m_2, m_1, m_4)$; (IV) $(m_A, m_B, m_C, m_D) = (m_2, m_4, m_3, m_1)$, the Dirac mass is given by $m_I = (m_1 + i m_2 - m_3 - i m_4)/4, m_{II} = (m_4 + i m_1 - m_2 - i m_3)/4 = -i m_1, m_{III} = (m_3 - m_4 - m_1 + i m_2)/4 = -m_1, m_{IV} = (m_2 + i m_3 - m_4 - i m_1)/4 = -i m_3$, respectively. We can see that m is multiplied by a factor i each time $I \rightarrow II \rightarrow III \rightarrow IV \rightarrow I$. It is worth noting that configurations I, II, III, and IV are related by translations along the z direction. There is no difference in physical properties to distinguish them, unless they are adjacent to each other. Nevertheless, we can design a vortex line (an “axion string”), such that along a circle enclosing this dislocation, the path $I \rightarrow II \rightarrow III \rightarrow IV \rightarrow I$ is followed (see Fig. 2). This is a discrete version of the vortex line of Dirac mass (see Fig. 1b).

Hereafter we shall take $(m_1, m_2, m_3, m_4) = (m_0, m_0, -m_0, -m_0)$, which leads to $\Delta = 0$. The Dirac mass for the four configurations is $m_I = m_0 \exp(i\pi/4), m_{II} = i m_1, m_{III} = -m_1, m_{IV} = -i m_3$, respectively.

In the continuous field theory (for instance, see Ref. 26), the vortex line of m carries a unidirectional mode. It is conceivable that our discrete version of vortex line of m also carries unidirectional mode. To be conclusive, we do a numerical calculation on a system with periodic boundary condition in the x and y directions. The energy spectrum (of the full Hamiltonian $\tilde{H} \equiv \tilde{H}_0 + \tilde{H}'$ as a function of k_z is plotted in Fig. 3 from which we can see four unidirectional modes, two $+z$ propagating and two $-z$ propagating.

To show that the unidirectional modes are indeed localized around the dislocation lines, we plot their density distributions

FIG. 2: Lattice system with dislocation lines. Each small cube represents a unit cell. Different colors represent different values of m_i (namely, m_1, m_2, m_3, m_4, see text). (a) A vortex line of the complex Dirac mass (axion string). (b) A system with four vortex lines. Periodic boundary condition is taken in the x and y direction, while k_z is kept as a good quantum number. The arrows indicate the propagating directions of the unidirectional modes.

FIG. 3: The spectrum of the system illustrated in Fig. 2. The system size is 28×28 unit cell in the xy plane, and $m_0 = 0.5$. Four dislocation modes inside the bulk energy gap can be clearly seen. (The tiny energy gap at $4k_z = \pi$ is due to finite-size effect.) Energy bands far from zero-energy are not shown here.
the Dirac mass can be readily generated and controlled. In the
unidirectional modes in photonic Weyl materials, for which
sired form of mass. More feasibly, we propose to realize the
time-reversal symmetry breaking, such as magnetic Weyl
then replaced by
\[
\Delta
\]
which become gapless when $|\Delta| \geq |m|$. As long as $|\Delta| < |m|$, the bulk material is gapped, and the topologically robust uni-
directional modes persist.

What if $2\pi/|Q|$ is incommensurate with the lattice constant? Let us take $k_0 = \pi/4 + \delta$, with δ being small. This changes Δ in Eq. (5) to $\Delta - 2t_c \cos(\pi/4 + \delta) + 2t_c \cos(\pi/4) \approx \Delta + v_c \delta$. Thus Δ is then replaced by $|\Delta + v_c \delta| < |m|$. Therefore, a small δ does not qualitatively change our result.

The above study is relevant to Weyl semimetals with
time-reversal symmetry breaking, such as magnetic Weyl
semimetals. In the next section we will study electron-
electron interaction that may spontaneously generate the de-
sired form of mass. More feasibly, we propose to realize the
unidirectional modes in photonic Weyl materials, for which
the Dirac mass can be readily generated and controlled. In
the gyroid photonic crystals studied in Ref. (Supplemental
Material), one can tune Q to be close to $(0,0,\pi/2)$, and produce
a modulation with a period of four unit cells (by making the
A, B unit cells slightly different from the C, D unit cells). From
symmetry consideration, this will generate the H' term at low
energy, which leads to a Dirac mass. Then one can fabricate
vortex lines (see Fig. 2) and observe unidirectional propaga-
tion of light (or microwave) in transmission experiments. The
discrete version of vortex line studied here is convenient to
fabricate in experiments.

Spontaneously generated mass. In this section we study an
interacting electron model, whose free Hamiltonian is
\[
H_0 = \sum_k \varepsilon_k c_k^\dagger H_0 k c_k,
\]
where c_k is the electron operator, and
\[
H_0(k) = 2t_x \sin k_x \sigma_x + 2t_y \sin k_y \sigma_y + [2t_z (\cos k_z - \cos k_0)]

in Fig. 4 We only plot one mode for each direction of prop-
gagation ($+z$ and $-z$). Each mode is evenly distributed around
two dislocation lines because of the tunneling effect (like in
the double-well quantum mechanical system).

Previously we have omitted the Δ term in Eq. (5). With this
term included, the energy eigenvalues are
\[
E_{1,2,3,4} (q) = \pm \sqrt{v_z^2 q_z^2 + v_y^2 q_y^2 + (\Delta \pm \sqrt{v_z^2 q_z^2 + |m|^2})^2},
\]
which become gapless when $|\Delta| \geq |m|$. As long as $|\Delta| < |m|$, the bulk material is gapped, and the topologically robust uni-
directional modes persist.

We shall take $t_x = t_y = 0.2, t_z = 1, B = 1.48$, and
$k_0 = \pi/4$. The Brillouin zone contains four Weyl points,
$K_+ = (0,0, \pi k_0)$ and $K'_+ = (\pi, \pi, \pi k_0)$. The low energy elec-
trons near K_+ can be described by Eq. (7), while those near K'_+
can be described by
\[
H'_W(q) = -v_x \sigma_x q_x - v_y \sigma_y q_y + v_z \sigma_z q_z.
\]
In the continuous theory, it is well known that sponta-
eous mass generation can be induced by a four-fermion inter-
action\cite{45}, which suggests us to consider a Hubbard-like in-
teraction $H_f = -U \sum_j (c_j^\dagger \sigma_i c_j)^2$ in our model. It can be decoupled as $-2U \sum_j (c_j^\dagger \sigma_i c_j + U M_j^2)$ at the mean-field level\cite{46}, where we have introduced $M_j \equiv (c_j^\dagger \sigma_i c_j)$. The mean-field Hamiltonian is therefore
\[
\tilde{H}_{MF} = \tilde{H}_0 - 2U \sum_j M_j^2 c_j^\dagger \sigma_i c_j.
\]
Our mean-field calculation shall be quite standard, except that
we shall enlarge the unit cell to $L_x \times L_y \times L_z$ to accommodate
possible symmetry-breaking phases ($L_x \times L_y \times L_z = 1 \times 1 \times 4,$
$2 \times 2 \times 4, 1 \times 1 \times 8, \text{ and } 2 \times 2 \times 8$ are calculated). Since
\tilde{H}_{MF} is quadratic, it can be diagonalized in the k space, with
eigenvalues $\epsilon_i(k)$, and the mean-field energy per unit cell is
\[
E_{MF} = \sum_{i=1}^{20} \epsilon_i(k) + U \sum_{i=1}^{20} M_i^2,
\]
where the summation \sum_i is over all negative energies $\epsilon_i(k) < 0$, i.e. the energies of the occupied Bloch states. The mean-field ground-state can be obtained by minimizing E_{MF} with respect to M, leading to standard integral equations\cite{22} for M_i ($i = 1, 2, \cdots, L_x L_y L_z$), which can be solved iteratively in numerical calculations\cite{22}.

For the $1 \times 1 \times 4$ unit cell, the obtained values of
(M_1, M_2, M_3, M_4) are plotted in Fig. 5. All M_i's are zero for
small U. At $U_c \approx 1.12$, there is a first-order transi-
tion to a symmetry-breaking phase with $M_1 \neq 0$. The
same phase is reproduced in calculations on larger unit cells.
For instance, we find that the values of (M_i) are
$(M_1, M_2, M_3, M_4, M_1, M_2, M_3, M_4)$ for the $1 \times 1 \times 8 \times 8$ unit cell,
with the same values of $M_{1,2,3,4}$ as obtained from the $1 \times 1 \times 4 \times 4$ unit cell. A first-order transition is understandable here be-
cause $E_{MF}(M_i) \neq E_{MF}(\pm M_i)$, so that E_{MF} contains odd-
order terms when expanded in powers of M_i's (similar to the
Ginzburg-Landau theory of first-order nematic-to-isotropic
transition in liquid crystals).

Comparing Eq. (10) with Eq. (4), we can see that the physics of
the previous section applies here if we identify $m_i =$
FIG. 5: The ground-state M_i's as functions of the interaction parameter U. The Dirac mass is nonzero when $U > U_c$ (see text).

$-2UM_i$; in particular, the Dirac mass is $m = -\frac{U}{2}(M_A + iM_B - M_C - iM_D)$. Dislocation lines can be constructed in similar way to the previous section. The spectrum and the density distribution of one of the eight unidirectional modes is shown in Fig[5](Due to the presence of two copies of Dirac fermions, the number of unidirectional modes is twice that of the previous model).

Finally, we remark that dynamical mass generation is not the only approach to create a Dirac mass. In the Weyl semimetals based on layered structures, we suggest to introduce an additional superlattice structure with period near $2\pi/|Q|$ (say a modulation of the magnetization with period near $2\pi/(Q)$), which will generate a Dirac mass. Then vortex lines of the Dirac mass can be constructed (similar to Fig[2]).

Final remarks. We have shown how to create unidirectional modes in the bulk materials of electronic and photonic Weyl materials. Compared to the helical dislocation modes in weak topological insulators\cite{47–49}, our unidirectional modes are completely immune to any kind of backscattering. In this respect our proposal will be of significant practical use.

We have proposed the photonic Weyl materials as the most experimentally feasible systems, because the Dirac mass can be readily designed and controlled therein. The recent experimental observation of photonic Weyl points\cite{20} is most propitious to this proposal. Finally, we remark that our proposal may be generalized to other topological materials (e.g. topological phononic or acoustic materials\cite{50–57}).

Acknowledgements. It is our pleasure to thank Ling Lu for helpful discussions about the experimental feasibility. This work is supported by NSFC under Grant No. 11304175 and Tsinghua University Initiative Scientific Research Program.

* Corresponding author. wangzhongemail@tsinghua.edu.cn

1. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
2. H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).
3. H. B. Nielsen and M. Ninomiya, Physics Letters B 130, 389 (1983).
4. G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, USA, 2003).
5. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.127205
6. S. L. Adler, Phys. Rev. 177, 2426 (1969), URL http://link.aps.org/doi/10.1103/PhysRev.177.2426
7. J. S. Bell and R. Jackiw, Il Nuovo Cimento A 60, 47 (1969).
8. D. T. Son and B. Z. Spivak, ArXiv e-prints (2012), 1206.1627.
9. C.-X. Liu, P. Ye, and X.-L. Qi, ArXiv e-prints (2012), 1204.6551.
10. V. Aji, Phys. Rev. B 85, 241101 (2012), URL http://link.aps.org/doi/10.1103/PhysRevB.85.241101
11. Z. Wang and S.-C. Zhang, Phys. Rev. B 87, 161107 (2013), URL http://link.aps.org/doi/10.1103/PhysRevB.87.161107
12. A. A. Zyuzin and A. A. Burkov, ArXiv e-prints (2012), 1206.1868.
Supplemental Material

I. DIRAC HAMILTONIAN AND DIRAC MASS IN THE ENLARGED UNIT CELL

In the paper, we have seen that the translational-symmetry-breaking term $H' = \sum_j m_j \sigma_z(j)$ enlarges the size of the unit cell by a factor of four in the z direction [Note: $\sigma_z(j)$ is the Pauli matrix σ_z defined at the j site]. In the enlarged unit cell, we have $2 \times 4 = 8$ bands. Now we derive the low-energy Dirac Hamiltonian and the Dirac mass.

For the enlarged unit cell, the first Brillouin zone is $[0, 2\pi] \times [0, 2\pi] \times [0, \pi/2]$ (the lattice constant a of the original unit cell is taken to be 1). According to the standard band theory, within the description of the enlarged unit cell, the lattice Hamiltonian \hat{H}_0 becomes

$$\hat{H}_0(k) = \begin{pmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{pmatrix},$$

(11)

where H_{ij}'s are 2×2 matrices:

\begin{align*}
H_{11} &= H_{22} = H_{33} = H_{44} = 2t_z \sin k_z \sigma_z + 2t_x \sin k_x \sigma_x \\
&\quad + [2t_z \cos k_y + B(2 - \cos k_x - \cos k_y)] \sigma_z, \\
H_{12} &= H_{31} = H_{23} = H_{32} = H_{43} = H_{42} = 0. \\
H_{13} &= H_{41} = t_x \exp(-4ik_z) \sigma_z, \\
H_{14} &= H_{44} = t_z, \\
H_{21} &= H_{41} \exp(-4ik_z) \sigma_z, \\
H_{22} &= H_{42} = t_z, \\
H_{23} &= H_{44} = t_z. \\
\end{align*}

The eight components of the state vectors have been ordered as $(A \uparrow, A \downarrow, B \uparrow, B \downarrow, C \uparrow, C \downarrow, D \uparrow, D \downarrow)$, \uparrow and \downarrow referring to the two eigenstates of σ_z. As specified in the paper, we take $k_0 = \pi/4$, $t_x = t_y = 0.5$, $t_z = 1$, $B = 2.5$. The only gapless point in the Brillouin zone is $(0, 0, \pi/4)$ [Note that $(0, 0, -\pi/4)$ is the same point because k_z has periodicity $\pi/2$]. We can find that \hat{H}_0 have four zero eigenvalues at $(0, 0, \pi/4)$, the corresponding eigenvectors are

$$\begin{pmatrix} |\psi_1 \rangle \cr |\psi_2 \rangle \cr |\psi_3 \rangle \cr |\psi_4 \rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

(13)

The existence of four-fold degeneracy at zero energy is understandable because the two Weyl points in the original small unit cell are folded to the same point in the Brillouin zone of the enlarged unit cell. Here, $|\psi_1 \rangle$ and $|\psi_2 \rangle$ have $\sigma_z = +1$ and -1, respectively, and similarly for $|\psi_3 \rangle$ and $|\psi_4 \rangle$. For later convenience, we also introduce a quantum number τ, which is $+1$ for $|\psi_1 \rangle$ and $|\psi_2 \rangle$, -1 for $|\psi_3 \rangle$ and $|\psi_4 \rangle$. We shall not be concerned with the other four eigenvectors with energies of order of t_z.

Near the gapless point $(0, 0, \pi/4)$, for the four low-energy bands, we can use the standard $\mathbf{k} \cdot \mathbf{p}$ perturbation theory to obtain a low-energy effective Hamiltonian $\hat{H}_{0, eff}$, whose entries are

$$\langle \hat{H}_{0, eff}(q) \rangle_{\alpha\beta} = \sum_{i=x,y,z} q_i \langle \phi_\alpha | \frac{\partial \hat{H}_0}{\partial k_i} | \phi_\beta \rangle + \cdots$$

(14)

where $(q_x, q_y, q_z) \equiv (k_x, k_y, k_z) - (0, 0, \pi/4)$, $\alpha, \beta = 1, 2, 3, 4$, the partial derivatives are taken at $(0, 0, \pi/4)$, and “\cdots” refers to higher order terms, which are omitted in the low-energy linear approximation. These matrix elements can be calculated explicitly. For instance,

$$\frac{\partial \hat{H}_0}{\partial k_z} = \begin{pmatrix} 0 & 0 & 0 & 4it_z \sigma_z \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -4it_z \sigma_z & 0 & 0 & 0 \end{pmatrix}$$

(15)

therefore we have

$$\langle \psi_1 | \frac{\partial \hat{H}_0}{\partial k_z} | \psi_1 \rangle = -\langle \psi_2 | \frac{\partial \hat{H}_0}{\partial k_z} | \psi_2 \rangle = \langle \psi_3 | \frac{\partial \hat{H}_0}{\partial k_z} | \psi_3 \rangle = -\langle \psi_4 | \frac{\partial \hat{H}_0}{\partial k_z} | \psi_4 \rangle = 2t_z \sin(\pi/4),$$

(16)
where $\langle \psi_1 | H' | \psi_3 \rangle = \langle \psi_2 | H' | \psi_4 \rangle = \langle \psi_4 | H' | \psi_2 \rangle = \langle \psi_4 | H' | \psi_3 \rangle^*$. All other matrix elements of $\langle \psi_\alpha | H' | \psi_\beta \rangle$ vanish. Therefore, at low-energy the Dirac mass term H' takes the form

$$H'_{\text{eff}} = \begin{pmatrix} \Delta & 0 & m & 0 \\ 0 & -\Delta & 0 & -m \\ m^* & 0 & 0 & -\Delta \\ 0 & -m^* & 0 & -\Delta \end{pmatrix}.$$ \hspace{1cm} (22)

where

$$m = \frac{1}{4}(m_A + im_B - m_C - im_D)$$

$$= \frac{1}{4}(m_A + e^{i\phi}m_B + e^{i\tau}m_C + e^{i\theta}m_D),$$ \hspace{1cm} (23)

and

$$\Delta = \frac{1}{4}(m_A + m_B + m_C + m_D).$$ \hspace{1cm} (24)

All terms anticommute with each other except the last term Δ. The physical effect of a nonzero Δ is to shift the location of the Weyl points, which does not significantly modify our results as long as $|\Delta| < |m|$ (see the paper for discussions on the effects of Δ and a derivation of the condition $|\Delta| < |m|$).

As discussed in the paper, the Dirac mass for the four cases (I) $(m_A, m_B, m_C, m_D) = (m_1, m_2, m_3, m_4)$; (II) $(m_A, m_B, m_C, m_D) = (m_3, m_4, m_2, m_1)$; (III) $(m_A, m_B, m_C, m_D) = (m_1, m_3, m_4, m_2)$; (IV) $(m_A, m_B, m_C, m_D) = (m_2, m_3, m_4, m_1)$, is given by $m_1 = (m_1 + i m_2 - m_3 - i m_4)/4$, $m_{II} = (m_4 + i m_3 - m_2 - i m_1)/4 = i m_1$, $m_{III} = (m_3 + i m_4 - m_1 - i m_2)/4 = -m_1$, and $m_{IV} = (m_2 + i m_1 - m_4 - i m_3)/4 = -i m_1$. Translating the system by one site along the z direction generates a phase factor $e^{i\theta}$ for the Dirac mass, namely, $m \rightarrow im$.

In the paper, we have described the construction of a vortex line of mass. For the case $(m_1, m_2, m_3, m_4) = (m_0, m_0, -m_0, -m_0)$, the evolution of the phase θ is similar to a Dirac fermion, the Dirac mass being equal to m. Translating the system by one lattice site generates a phase $e^{i\theta}$ for the Dirac mass, namely, $m \rightarrow im$.
phase factor π for the Dirac mass, namely, $m \rightarrow -m$, therefore, there is no difference in the bulk properties to distinguish the $m > 0$ and the $m < 0$ configurations. Despite of this, if we create a domain wall between these two configurations, there will be zero modes living on it. In two-spatial dimensions, a related model on the honeycomb lattice has been studied.\footnote{12}

II. EFFECT OF INCOMMERESURATE k_0 AND Q

Now we discuss the effect of shifting k_0 away from $\pi/4$, say $k_0 = \pi/4 + \delta$, δ being small. The basic idea is not difficult to explain. Suppose that $k_0 = \pi/4 + \delta$, δ being small, and the full Hamiltonian of this system is denoted as $H_0 + H'$ (namely, H_0 is replaced by H_0). We split the Hamiltonian as

$$H_0 + H' = H_0 + H' + (H_0 - H_0),$$

and treat the $H_0 - H_0$ term as perturbation. Let us first ignore the $H_0 - H_0$ term, then the problem is just the case we have studied, and the explanation of the dislocation line as discrete vortex line is valid. As we have shown, there are unidirectional modes in this case. Then we take the $H_0 - H_0$ term as a perturbation to this Hamiltonian. Since the Hamiltonian $H_0 + H'$ has already an energy gap $\sim 2|m|$ in the bulk samples, the effects of perturbation is insignificant as long as δ is not too big. In accordance with this insignificance of perturbation in the bulk sample, we can not expect the topologically robust unidirectional modes to suddenly disappear when the perturbation is small. Moreover, according to Callan and Harvey, the existence of unidirectional modes is consistent with the anomaly inflow in the bulk material; since an insignificant perturbation in the bulk material should not eliminate the anomaly inflow, it should not eliminate the unidirectional modes either.

Now we give a more quantitative criterion. In the enlarged unit cell, nonzero δ amounts to replacing H_0 in H_0 by

$$H_{\text{eff}} = [-2t_2 \cos(\pi/4 + \delta) + 2t_2 \cos(\pi/4)] \sigma_z,$$

in other words,

$$H_0 \rightarrow H_0 + \begin{pmatrix} \bar{F} \sigma_z & 0 & 0 & 0 \\ 0 & \bar{F} \sigma_z & 0 & 0 \\ 0 & 0 & \bar{F} \sigma_z & 0 \\ 0 & 0 & 0 & \bar{F} \sigma_z \end{pmatrix},$$

where $\bar{F} \equiv -2t_2 \cos(\pi/4 + \delta) + 2t_2 \cos(\pi/4) \approx v_c \delta$. With this term included, we can repeat the previous derivation of H_{eff} and obtain the new low-energy Dirac Hamiltonian for $k_0 = \pi/4 + \delta$:

$$H_{\text{eff}} = (v_c q_x \sigma_x + v_c q_y \sigma_y + v_c q_z \sigma_z) + (m \sigma_x \tau_m + m' \sigma_y \tau_m) + (\Delta + v_c \delta) \sigma_z.$$}

The energy eigenvalues are

$$E_{1,2,3,4}(q) = \pm \sqrt{v_c^2 q_x^2 + v_c^2 q_y^2 + (\Delta + v_c \delta \pm \sqrt{v_c^2 q_z^2 + |m|^2})^2}.$$

which become gapless when $|\Delta + v_c \delta| \geq |m|$. As long as $|\Delta + v_c \delta| < |m|$, the bulk sample remains gapped, and the topologically robust unidirectional dislocation modes are expected to persist.

III. TWO-BAND LOW-ENERGY MODEL FOR THE GYROID PHOTONIC WEYL CRYSTALS

In the paper we have studied a simplified two-band model and show that vortex lines of Dirac mass carry unidirectional modes. Since our central proposal is to realize unidirectional modes in photonic Weyl materials, we would like to show that this model is indeed relevant to the experimentally feasible materials, the gyroid photonic crystals. Gyroid photonic Weyl materials have been proposed in Ref.\cite{21} and observed in Ref.\cite{20}. The low energy physics of these photonic Weyl materials can be described by a three-band model (see the supplemental material of Ref.\cite{24}). Here, we would like to reduce the three-band model to a two-band model resembling the one studied in our paper.

In the presence of a magnetic field B, the low-energy Hamiltonian is given as

$$H(k) = \sigma_z |k|^2 - \sigma_2 (k \cdot L)^2 + \beta (B \cdot L),$$

(32)

where $L = (L_x, L_y, L_z)$ with

$$L_x = -i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$

$$L_y = -i \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$L_z = -i \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

This low-energy Hamiltonian harbors a pair of Weyl points at $k = (0, 0, \pm k_0)$, as we now show. Hereafter, we take $B = (0, 0, B)$ with $\beta B > 0$. By an explicit calculation, we have

$$H((0, 0, k)) = \begin{pmatrix} (\alpha_1 - \alpha_2)k_z^2 & -iB & 0 \\ iB & (\alpha_1 - \alpha_2)k_z^2 & 0 \\ 0 & 0 & \alpha_1 k_z^2 \end{pmatrix},$$

(33)

along the line $k = (0, 0, k_z)$. The three eigenvectors are $|1\rangle = (0, 0, 1)^T$, $|2\rangle = (1, i, 0)^T / \sqrt{2}$, and $|3\rangle = (1, -i, 0)^T / \sqrt{2}$, with energies

$$E_1 = \alpha_1 k_z^2,$$

$$E_2 = (\alpha_1 - \alpha_2)k_z^2 + \beta B,$$

$$E_3 = (\alpha_1 - \alpha_2)k_z^2 - \beta B.$$
Hamiltonian $H(k)$ to the subspace spanned by $|1\rangle$ and $|2\rangle$. Let us introduce three Pauli matrices $\sigma_x, \sigma_y, \sigma_z$ in this two-dimensional space. Near $K_{\pm} = (0, 0, \pm k_0)$, we find that the effective two-band Hamiltonian reads

$$H_{\text{eff}} = \pm k_0 \frac{1}{\sqrt{2}} \sigma_z (q_x \sigma_x - q_y \sigma_y - \sigma_2 q_z \sigma_z + (2 \alpha_1 - \alpha_2) q_z) \] + \cdots$$

where $q_i \equiv k_i - (K_{\pm})_i$, and “…” denotes higher order terms. Omitting the last term, which is proportional to the unity matrix, we have

$$H_W = \tau_z \sum_i v_i \sigma_i q_i,$$

where $\tau_z = \pm 1$ refers to K_{\pm}, $v_x = -v_y = \frac{1}{\sqrt{2}} \sigma_2 k_0$, and $v_z = -\sigma_2 k_0$. Here, Eq.(35) takes almost the same form as Eq.(2) in the paper, except for the inessential difference that τ_z appears in all the three terms (instead of appearing only in one of these three terms). The Dirac mass term for Eq.(36) is

$$H_M = m \tau_+ + m^* \tau_-,$$

where $\tau_\pm = (\tau_x \pm i \tau_y)/2$. Compared to the H_M given in the paper, there is no σ_z factor here. This is due to the slight difference in the form of H_W. In each case, the Dirac mass term anticommutes with all terms in H_W. To generate such a Dirac mass, we only need to add the following term:

$$H' = \sum_j m_j \sigma_0(j),$$

where σ_0 is the 2×2 unit matrix. Repeating the calculation in Sec. III of this Supplemental Material, we can obtain the Dirac mass

$$m = \frac{1}{4} (m_A + i m_B - m_C - i m_D) = \frac{1}{4} (m_A + e^{iQ} m_B + e^{2iQ} m_C + e^{3iQ} m_D).$$

The simplest choice is $(m_A, m_B, m_C, m_D) = (m_0, m_0, -m_0, -m_0)$, which leads to $m = m_0 \exp(i\pi/4)/\sqrt{2}$.

In the low-energy theory, the presence and absence of each term can be determined by symmetries. From symmetry consideration, any modulation of the photonic lattice with the A, B unit cells different from the C, D unit cells will produce the H' term in the low-energy effective theory, thus it will generate a Dirac mass, though the precise form of the band structure and the precise value of m can be determined only by photonic band structure calculations, which is beyond the scope of the present work. The existence of unidirectional modes along the vortex line of mass is nevertheless a topologically robust phenomenon.

In conclusion, in this last section of the Supplemental Material, we have shown that the two-band model we have studied in the paper (and its slight modification) captures the low-energy physics of the gyroid photonic Weyl materials, therefore, our prediction of unidirectional modes along the vortex line of mass should be observable in these materials.