Bi-pair Neutrino Mixing

Teruyuki Kitabayashi and Masaki Yasue

Department of Physics, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

(Dated: January, 2011)

A new type of neutrino mixing named bi-pair neutrino mixing is proposed to describe the current neutrino mixing pattern with a vanishing reactor mixing angle and is determined by a mixing matrix with two pairs of identical magnitudes of matrix elements. As a result, we predict \(\sin^2 \theta_{12} = 1 - 1/\sqrt{2} (\approx 0.293) \) for the solar neutrino mixing and either \(\sin^2 \theta_{23} = \tan^2 \theta_{12} \) or \(\cos^2 \theta_{23} = \tan^2 \theta_{12} \) for the atmospheric neutrino mixing. We determine flavor structure of a mass matrix \(M \), leading to diagonal masses of \(m_{1,2,3} \), and find that

\[
|M_{\mu\mu} - M_{ee}/\sqrt{2}| : |M_{\mu\tau}| : |M_{\tau\tau} - M_{ee}/2|^2 = \ell_{23} : |\ell_{23}| : 1 \text{ for the normal mass hierarchy if } m_1 = 0, \text{ where } \ell_{ij} = \tan \theta_{ij} (i,j=1,2,3) \text{ and } M_{ij} (i,j=\mu,\tau) \text{ stand for flavor neutrino masses. For the inverted mass hierarchy, the bi-pair mixing scheme turns out to satisfy the strong scaling ansatz requiring that } |M_{\mu\mu}| : |M_{\mu\tau}| : |M_{\tau\tau}| = 1 : |\ell_{23}| : \ell_{23}^2 \text{ if } m_3 = 0.
\]

These predictions are consistent with the 2\(\sigma \) data although \(\sin^2 \theta_{12} \) slightly exceeds the allowed range of the 1\(\sigma \) data.

In this short note, we would like to find new mixing schemes [10], which may well describe the solar neutrino mixing. To do so, we demand that at least two of the mixing angles \(\theta_{12}, \theta_{23}, \theta_{13} \) can account for the neutrino oscillations if neutrinos are massive and are characterized by three mixing angles \(\theta_{12,23,13} \) associated with the mixings of \(\nu_e, \nu_{\mu}, \nu_{\tau} \) and \(\nu_\tau, \nu_\mu, \nu_e \), respectively. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [7] parameterized by these mixing angles is used to convert mass eigenstates of neutrinos into the flavor neutrinos.

The observed results of the mixing angles are summarized as [8]:

\[
\begin{align*}
\sin^2 \theta_{12} &= 0.304^{+0.022}_{-0.016} (0.27 - 0.35), \\
\sin^2 \theta_{23} &= 0.50^{+0.07}_{-0.06} (0.39 - 0.63), \\
\sin^2 \theta_{13} &= 0.01^{+0.016}_{-0.011} (\leq 0.04),
\end{align*}
\]

(1)

for the 1\(\sigma \) range, where the values in the parentheses denote the 2\(\sigma \) range. There is a theoretical prediction of these mixing angles based on the tri-bimaximal mixing scheme [6], which yields

\[
\sin^2 \theta_{12} = \frac{1}{3}, \quad \sin^2 \theta_{23} = \frac{1}{2}, \quad \sin^2 \theta_{13} = 0. \tag{2}
\]

These predictions are consistent with the 2\(\sigma \) data although \(\sin^2 \theta_{12} \) slightly exceeds the allowed range of the 1\(\sigma \) data.

More than ten years have passed since the first confirmation of the neutrino oscillations by the Super-Kamiokande collaboration, who observed the oscillation of atmospheric neutrinos [1]. Subsequent experimental observations have also confirmed the solar neutrino oscillations really occur in terrestrial observations [2, 3]. These oscillations confirm the neutrino oscillations by the Super-Kamiokande collaboration, who observed the oscillation of atmospheric neutrinos [1].

\[K^0 = \text{ diag}(1, e^{i\phi_2/2}, e^{i\phi_3/2}), \tag{4}\]

where \(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij} (i,j=1,2,3) \) and \(\phi_{2,3} \) are CP-violating Majorana phases.

As long as \(\theta_{13} = 0 \) is maintained, it is not difficult to search for alternative relations to Eq. (4) for the given values of Eq. (1). There are only two possibilities, which shows

\[
\begin{align*}
|U_{12}| &= |U_{22}| = |U_{32}|, \\
|U_{12}| &= |U_{23}|, \\
|U_{12}| &= |U_{22}|, \\
|U_{32}| &= |U_{33}|,
\end{align*}
\]

(5) as the case (1), and

\[
\begin{align*}
|U_{12}| &= |U_{22}|, \\
|U_{32}| &= |U_{33}|,
\end{align*}
\]

(6) as the case (2). These equations in turn provide useful relationship among the mixing angles:

\[
\frac{\sin \theta_{12}}{\cos \theta_{12}} = \frac{\cos \theta_{12}}{\sqrt{1 + \cos^2 \theta_{12}}}. \tag{7}
\]
as well as
\[
\sin^2 \theta_{23} = \tan^2 \theta_{12}, \tag{8}
\]
for the case (1), and
\[
\cos^2 \theta_{23} = \tan^2 \theta_{12}, \tag{9}
\]
for the case (2). Numerically, these relations predict
\[
\sin^2 \theta_{12} = 1 - \frac{1}{\sqrt{2}} \approx 0.293,
\]
\[
\sin^2 \theta_{23} = \begin{cases}
\sqrt{2} - \frac{1}{2} & \text{the case (1)} \\
2 - \sqrt{2} & \text{the case (2)}
\end{cases}, \tag{10}
\]
which are consistent with the 2σ data.

Our prediction on sin^2 θ_{23} is slightly inconsistent with the 1σ data as in the similar situation to that of sin^2 θ_{12} in the tri-bimaximal mixing. However, it is well known that the corresponding 2-3 mixing in charged leptons (labeled by θ'_{23}) can produce additional contribution to θ_{23} without affecting θ_{12} and θ_{13}. Namely, we obtain that
\[
\theta_{23} = \theta'_{23} - \theta_{23}^a,
\]
where θ_{23}^a is given by θ_{23} in Eq. (11). Therefore, if charged leptons have a mass matrix M_{ℓ} described by
\[
M_{ℓ} = \begin{pmatrix}
m_ε & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{pmatrix}, \tag{12}
\]
appropriate correction automatically comes in θ_{23} so that θ_{23} can be shifted to the 1σ region. Other corrections may arise from the renormalization effect if the bi-pair mixing is generated at a higher scale such as the seesaw scale, where the seesaw mechanism gets active.

Having understood that the bi-pair mixing is another candidate predicting the reasonable values of θ_{12} and θ_{23}, we discuss its implication of flavor structure of the neutrino masses. It has been discussed that any models with neutrino mass matrix labeled by U defined in Eq. (10), to take care of general phase structure of M_{ν} [14 15]. For U^{PDG} as the standard parameterization of U adopted by the Particle Data Group (PDG) [16], M_{ν} is shifted to a modified mass matrix M_{ν} after ρ and γ present in U are transferred to M_{ν}.

Owing to the rephasing ambiguity in the charged lepton sector, one can choose three flavor masses to be real numbers, where d can be taken to be positive without loss of generality. As a result, we obtain
\[
M_{ν} = \begin{pmatrix}
κ_α |a| & e^{iα} |b| - t_{23} e^{iβ} |b| \\
d & f
\end{pmatrix} \tag{16}
\]
\[
f = e^{4iγ}d + e^{2iγ} \frac{1 - t_{23}^2}{t_{23}} e^\gamma,
\]
where κ_α, ε take care of the sign of a and ε. The mixing angles θ_{12} is given by
\[
\tan 2θ_{12} = \frac{2e^{iε}}{c_{23} e^{2iγ}|d| - t_{23} κ_ε |e| - κ_α e^{2iρ} |a|}, \tag{17}
\]
which determines the phase ρ expressed in terms of flavor neutrino masses for a given value of θ_{12}.

After redundant phases are removed from U, U becomes U^{PDG} and, accordingly, M_{ν} is shifted to
\[
M_{ν} = \begin{pmatrix}
é^{2iρκ_α} |a| & e^{iε} |b| - t_{23} e^{iε} |b| \\
e^{2iγ} |d| & κ_ε |e| \\
e^{-2iγ} f
\end{pmatrix} \tag{18}
\]
We finally reach M_{ν} given by
\[
M = e^{-i(α - β)} |d| I + κ_ε |e| \begin{pmatrix}
t_{23} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 - t_{23}^2
\end{pmatrix} + e^{i(α + β)} |b| \begin{pmatrix}
A & 1 & t_{23} \\
1 & 0 & 0 \\
t_{23} & 0 & 0
\end{pmatrix}, \tag{19}
\]
where t_{12} = tan θ_{12} and I is the unit matrix and |a| in Eq. (18) is eliminated by Eq. (16) to yield Eq. (19). This mass matrix certainly gives M_{ν} for the tri-bimaximal neutrino mixing if t_{23}^2 = 1 and t_{12} = 1/2 giving A = -1. The bi-pair neutrino mixing gives A = -1/|t_{12}| with t_{23}^2 = 1/\sqrt{2} and sin θ_{23} = σ tan θ_{12} for the case (1), where σ(±1) takes care of the sign of sin θ_{23} and A = -t_{23}^2 with t_{23}^2 = \sqrt{2} and cos θ_{23} = tan θ_{12} for the case (2). More transparent flavor structure for the bi-pair neutrino mixing can be found if neutrino mass hierarchies are taken into account.
Neutrino masses are calculated to be

\begin{align*}
m_{1}e^{-i\varphi_{1}} & = \kappa_{a}e^{2i\rho}|a| - \tan\theta_{12}e^{i\xi}|b|,\\
m_{2}e^{-i\varphi_{2}} & = \kappa_{a}e^{2i\rho}|a| + \frac{1}{\tan\theta_{12}}e^{i\xi}|b|,\\
m_{3}e^{-i\varphi_{3}} & = e^{-i(\alpha-\beta)}|d| + \frac{1}{t_{23}}\kappa_{e}|c|,
\end{align*}

(21)

where the CP-violating Majorana phases \(\varphi_{2,3}\) are given by \(\varphi_{2} = \varphi_{2} - \varphi_{1}\) and \(\varphi_{3} = \varphi_{3} - \varphi_{1}\). Let us consider that neutrinos exhibit either \(m_{1}=0\) leading to the normal mass hierarchy or \(m_{3}=0\) leading to the inverted mass hierarchy as in the minimal seesaw model \([17]\), where \(\det(M)=0\) is satisfied. We, then, find that, for the normal mass hierarchy,

\[
M = \begin{pmatrix}
Be^{i(\alpha+\beta)}|b| & e^{i(\alpha+\beta)}|b| & -t_{23}e^{i(\alpha+\beta)}|b| \\
\frac{t_{12}^{2}}{t_{23}}e^{i(\alpha+\beta)}|b| & \kappa_{e}|e| & t_{23}e^{i(\alpha+\beta)}|b| \\
\frac{t_{12}^{2}}{t_{23}}e^{i(\alpha+\beta)}|b| & \kappa_{e}|e| & \frac{1}{t_{23}}e^{i(\alpha+\beta)}|b|
\end{pmatrix},
\]

\[
B = \frac{\tan\theta_{12}}{c_{23}} = \begin{pmatrix}
|t_{23}| \cdots (\sin \theta_{23} = \sigma \tan \theta_{12}) \\
1 \cdots (\cos \theta_{23} = \tan \theta_{12})
\end{pmatrix},
\]

(22)

where \(\rho = (\alpha + \beta)/2 \mod \pi\) from \(m_{1} = 0\) and, for the inverted mass hierarchy,

\[
M = \begin{pmatrix}
\kappa_{a}e^{2i\rho}|a| & e^{i\xi}|b| & -t_{23}e^{i\xi}|b| \\
\frac{1}{t_{23}}\kappa_{e}|e| & \kappa_{e}|e| & -t_{23}\kappa_{e}|e|
\end{pmatrix},
\]

(23)

where \(e^{-i(\alpha-\beta)}|d| = -\kappa_{e}/t_{23}|e|\) from \(m_{3}=0\), thus, leading to \(\alpha=\beta \mod \pi\) and \(\rho\) is determined so as to satisfy Eq.\([16]\), which is used to express this mass matrix in terms of \(|b|\) and \(|e|\).

We observe that flavor structure of \(M\) for the bi-pair neutrino mixing shows

\[
|M_{ep}| : |M_{e\tau}| = 1 : |t_{23}|,
\]

(24)

\[
\arg(M_{e\mu}) = \arg(M_{e\tau}) \mod \pi,
\]

(25)

and

- for the normal mass hierarchy,

\[
|M_{ee}| = \begin{pmatrix}
|M_{e\tau}| \cdots (\sin \theta_{23} = \sigma \tan \theta_{12}) \\
|M_{e\mu}| \cdots (\cos \theta_{23} = \tan \theta_{12})
\end{pmatrix},
\]

(26) \hspace{1cm}

\[
|M_{\mu\mu}| - \frac{M_{ee}}{t_{12}^{2}} : |M_{\mu\tau}| : |M_{e\tau}| - \frac{M_{ee}}{t_{12}^{2}} = t_{23}^{2} : |t_{23}| : 1,
\]

(27)

\[
\arg(M_{ee}) = \arg(M_{e\mu}) \mod \pi,
\]

(28)

- for the inverted mass hierarchy,

\[
|M_{\mu\mu}| : |M_{\mu\tau}| : |M_{e\tau}| = 1 : |t_{23}| : t_{23}^{2},
\]

(29)

It is noted that Eq.\((23)\) may satisfy the strong scaling ansatz \([18]\) since \(\sin \theta_{13} = 0\) and \(m_{3} = 0\). It is evident that the resulting mass matrix does satisfy the strong scaling ansatz requiring the relation of Eq.\((29)\) (as well as Eq.\((24)\)). Therefore, when \(m_{3} \neq 0\), the bi-pair neutrino mixing provides an example of the approximate strong scaling ansatz, where Eq.\((23)\) is approximately satisfied. If \(m_{1} = 0\) for the normal mass hierarchy, the relation Eq.\((27)\) including \(M_{ee}\) can be predicted. \(^1\)

In summary, we have found that the bi-pair mixing well reproduces the current neutrino mixings and is described by \(U_{BP}\):

\[
U_{BP} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-t_{12} & t_{12} & t_{12} \\
s_{12}t_{12} & -s_{12} & t_{12}/c_{12}
\end{pmatrix},
\]

(30)

for the case (1), and

\[
U_{BP} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12}t_{12} & s_{12} & t_{12}/c_{12} \\
t_{12} & -t_{12} & t_{12}/c_{12}
\end{pmatrix},
\]

(31)

for the case (2), where \(s_{12}^{2}\) is predicted to be: \(s_{12}^{2} = 1 - 1/\sqrt{2}\). The bi-pair mixing scheme turns out to be complementary to the tri-bimaximal mixing scheme in a sense that

- the bi-pair mixing predicts \(\sin^{2}\theta_{12} = 0.293\), which well describes the solar neutrino mixing while it predicts \(\sin^{2}\theta_{23} = 0.414/0.586\), which gives slight deviation of the atmospheric neutrino mixing angle from the \(1\sigma\) region, and

- the tri-bimaximal mixing predicts \(\sin^{2}\theta_{23} = 0.5\), which well describes the atmospheric neutrino mixing while it predicts \(\sin^{2}\theta_{12} = 0.333\), which gives slight deviation of the solar neutrino mixing angle from the \(1\sigma\) region.

We have clarified the flavor structure of the neutrino mass matrix giving \(\sin \theta_{13} = 0\), which is described by Eq.\([19]\) as long as the parameterization of \(U_{PDG}\) is adopted. For the bi-pair mixing, in the simplest cases with \(m_{1} = 0\) for the normal mass hierarchy and \(m_{3} = 0\) for the inverted mass hierarchy, the phase structure is subject to Eqs.\([25]\) and \([28]\). We have also predicted Eq.\([27]\) for the normal mass hierarchy, which should be compared with Eq.\([29]\) for the strong scaling ansatz valid in the inverted mass hierarchy.

Finally, we point out that the results of Eqs.\([23]\) and \([24]\) for both normal and inverted mass hierarchies and of Eq.\([27]\) for the normal mass hierarchy and Eq.\([29]\) for the inverted mass hierarchy are not only valid in the bi-pair mixing scheme and but also valid for any models

\(^1\) If \(m_{3}^{2} \gg m_{2}^{2}\) is further imposed, the condition of \(b \approx 0\) leading to \(M_{ee} \approx 0\) should be satisfied and Eq.\([27]\) becomes \(|M_{e\mu}| : |M_{\mu\tau}| : |M_{e\tau}| \approx t_{23}^{2} : |t_{23}| : 1\).
We will discuss the detailed feature of our flavor neutrino parameters. The bi-pair mixing scheme provides a good example of these properties of the flavor neutrino masses. We will discuss the detailed feature of our flavor neutrino mass matrix as well as phenomenological implication of the bi-pair mixing scheme based on Majorana CP violation from Eq. (21) and on leptogenesis in a future publication.

[1] Y. Fukuda et al., [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562; Phys. Rev. Lett. 82 (1999) 2430; T. Kajita, Nucl. Phys. Proc. Suppl. 77 (1999) 123. See also, T. Kajita and Y. Totsuka, Rev. Mod. Phys. 73 (2001) 85.

[2] J.N. Bahcall, W.A. Fowler, I. Iben and R.L. Sears, Astrophys. J. 137 (1963) 344; J. Bahcall, Phys. Rev. Lett. 12 (1964) 300; R. Davis, Jr., Phys. Rev. Lett. 12 (1964) 303; R. Davis, Jr., D.S. Harmer and K.C. Hoffman, Phys. Rev. Lett. 20 (1968) 1205; J.N. Bahcall, N.A. Bahcall and G. Shaviv, Phys. Rev. Lett. 20 (1968) 1209; J.N. Bahcall and R. Davis, Jr., Science 191 (1976) 264.

[3] Y. Fukuda et al., [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1158; [Erratum-ibid 81 (1998) 4279]; B.T. Cleveld et al., [Super-Kamiokande Collaboration], Astrophys. J. 496 (1998) 505; W. Hampel et al., [GNO Collaboration], Phys. Lett. B 447 (1999) 127; Q.A. Ahmed et al., [SNO Collaboration], Phys. Rev. Lett. 87 (2001) 071301; Phys. Rev. Lett. 89 (2002) 011301.

[4] S.H. Ahn et al., [K2K Collaboration], Phys. Lett. B 511 (2001) 178; Phys. Rev. Lett. 90 (2003) 041801.

[5] K. Eguchi et al., [KAMLAND collaboration], Phys. Rev. Lett. 90 (2003) 021802; K. Inoue, New J. Phys. 6 (2004) 147; S. Abe et al., [KAMLAND collaboration], Phys. Rev. 100 (2008) 221803.

[6] M. Apollonio et al., [CHOOZ Collaboration], Euro. Phys. J. C 27 (2003) 331; X. Guo et al., [Daya-Bay Collaboration], “A precision measurement of the neutrino mixing angle θ_{13} using reactor antineutrinos at Daya Bay”, arXiv:hep-ex/0701029; F. Ardellier et al., [Double Chooz Collaboration], “Double Chooz: A search for the neutrino mixing angle θ_{13}”, arXiv:hep-ex/0606025; C. Palomares, “Double-Chooz Neutrino Experiment”, arXiv:0911.3227 [hep-ex]; J. K. Ahn et al., [RENO Collaboration], “RENO: An Experiment for Neutrino Oscillation Parameter θ_{13} Using Reactor Neutrinos at Yonggwang”, arXiv:1003.1391 [hep-ex].

[7] B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1958) 247]; Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

[8] T. Schwetz, M. Tortola and J.W.F. Valle, New J. Phys. 10 (2008) 113011.

[9] P.F. Harrison, D.H. Perkins, and W.G. Scott, Phys. Lett. B 530 (2002) 167; Z.Z. Xing, Phys. Lett. B 533 (2002) 85; P.F. Harrison and W.G. Scott, Phys. Lett. B 535 (2002) 163.

[10] For earlier references, H. Fritzsch and Z.-Z. Xing, Phys. Lett. B 372 (1996) 265; V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Phys. Lett. B 437 (1998) 107; Y. Kajiyama, M. Raidal, A. Strumia, Phys. Rev. D 76 ,Phys. Rev. D 76 (2007) 117301; W. Rodejohann, Phys. Lett. B 671 (2009) 267; C.H. Albright, A. Dueck and W. Rodejohann, Euro. Phys. J. C 70 (2010) 1099. See also, I. de Medeiros Varzielas, R. González Felipe and H. Serôdio, “Leptonic mixing, family symmetries and neutrino phenomenology”, arXiv:1101.0602 [hep-ph].

[11] See for example, S. Antusch, J. Kersten, M. Lindner and M. Ratz, Nucl. Phys. B 674 (2003) 401; S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, JHEP 0503 (2005) 024; R.N. Mohapatra, M.K. Parida and G. Rajasekaran, Phys. Rev. D 71 (2005) 057301; J.W. Mei and Z.Z. Xing, Phys. Rev. D 69 (2004) 073003; J.W. Mei, Phys. Rev. D 71 (2005) 073012; S. Luo, J.W. Mei and Z.Z. Xing, Phys. Rev. D 72 (2005) 053014; S. Luo and Z.Z. Xing, Phys. Lett. B 632 (2006) 341.

[12] P. Minkowski, Phys. Lett. B67 (1977) 421; T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe edited by A. Sawada and A. Sugamoto (KEK Report No.79-18, Tsukuba, 1979), p.95; Prog. Theor. Phys. 64 (1980) 1103; M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity edited by P. van Nieuwenhuizen and D.Z. Freedmann (North-Holland, Amsterdam 1979), p.315; R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44 (1980) 912. See also, P. Minkowski, in Proceedings of XI International Workshop on Neutrino Telescopes in Venice edited by M. Baldotto Cecolin (Papergraf S.p.A., Italy, 2005), p.7, “Neutrino oscillations, a historical overview and its projection”, arXiv:hep-ph/0505049.

[13] K. Yuda and M. Yasue, Phys. Rev. D 693 (2010) 571.

[14] T. Baba and M. Yasue, Phys. Rev. D 75 (2007) 055001; Phys. Rev. D 77 (2008) 075008; Prog. Theor. Phys. 123 (2010) 659.

[15] Z.Z. Xing and Y.-L. Zhou, Phys. Lett. B 693 (2010) 584.

[16] S. Edelman et al. (Particle Data Group), Phys. Lett. B 592 (2004) 149. See also, L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53 (1984) 1802.

[17] L. Lavoura and W. Grimus, JHEP 09 (2007) 207; T. Endoh, S.Kaneko, S.K. Kang, T. Morozumi, and T.Tanimoto, Phys. Rev. D 71 (2005) 073014; S. Luo and B.M. Nobre, Phys. Rev. D 70 (2004) 085009, For a review, see, for example, W.L. Guo, Z.Z. Xing, and S. Zhou, Int. J. Mod. Phys. E 16 (2007) 1.

[18] R. N. Mohapatra and W. Rodejohann, Phys. Lett. B 644 (2007) 59; A. Blum, R. N. Mohapatra, and W. Rodejohann, Phys. Rev. D 76 (2007) 053003.

[19] S.M. Bilenky, J. Hosek and S.T. Petcov, Phys. Lett. B 94 (1980) 495; J. Schechter and J.W.F. Valle, Phys. Rev. D 22 (1980) 2227; M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Phys. Lett. B 548 (2002) 119; M. Raidal and A. Strumia, Phys. Lett. B 553 (2003) 72; V. Barger, D.A. Dicus, H-J. He, and T. Li Phys. Lett. B 583 (2004) 173; R.G. Felipe, F.R. Joaquim, and B.M. Nobre, Phys. Rev. D 70 (2004) 085009. For a review, see, for example, W.L. Guo, Z.Z. Xing, and S. Zhou, Int. J. Mod. Phys. E 16 (2007) 1.

[20] T. Kitabayashi and M. Yasue, work in progress.