Root traits explain rhizosphere fungal community composition among temperate grassland plant species

Sweeney, C.J.; de Vries, F.T.; van Dongen, B.E.; Bardgett, R.D.

DOI
10.1111/nph.16976

Publication date
2021

Document Version
Final published version

Published in
New Phytologist

License
CC BY

Citation for published version (APA):
Sweeney, C. J., de Vries, F. T., van Dongen, B. E., & Bardgett, R. D. (2021). Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 229(3), 1492-1507. https://doi.org/10.1111/nph.16976

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Root traits explain rhizosphere fungal community composition among temperate grassland plant species

Christopher J. Sweeney1, Franciska T. de Vries1,2, Bart E. van Dongen1 and Richard D. Bardgett2

Introduction

Soil fungi are highly diverse and drive many critical ecosystem functions (Blackwell, 2011; Frac et al., 2018), including nutrient cycling (Gui et al., 2017) and the decomposition (Zak et al., 2019) and stabilisation of soil organic matter (Clemmensen et al., 2013). Moreover, through their many complex interactions with plant roots, fungi aid plant nutrient acquisition (Averill et al., 2019), pathogen (Marx, 1972) and drought resistance (Jayne & Quigley, 2014), and play a key role in shaping plant productivity and community dynamics (Mommer et al., 2018; Liang et al., 2020). Given this, understanding the key determinants of the diversity and composition of rhizosphere fungal communities is recognised as an important goal in terrestrial ecology (Singh et al., 2004; Francioli et al., 2020).

Many factors influence the composition of rhizosphere fungal communities, both biotic and abiotic. Among them, plant species identity (Burns et al., 2015), plant phylogeny (Barberán et al., 2015) and plant functional traits (Leff et al., 2018) have been proposed as important determinants of rhizosphere fungal communities, although debate remains as to their relative importance. Patterns of plant host preferences (Dickie, 2007) and host specificity (Zhou & Hyde, 2001) have been reported for rhizosphere fungi, suggesting that plant species identity may be an important factor explaining variation in rhizosphere fungal community composition. Indeed, plant species identity at a local scale (Leff et al., 2018), and plant community composition at larger scales (de Vries et al., 2012; Prober et al., 2015), have been shown to be major drivers of soil fungal community composition. However, disagreement remains as to the importance of plant species identity as a driver of fungal community composition (Lekberg & Waller, 2016), with the suggestion that the effects of a given species on fungi are context dependent and driven by environmental or edaphic conditions (Tedersoo et al., 2016). Alternatively, should fungal preferences for plant hosts be conserved between related plant species, plant phylogenetic relatedness may determine rhizosphere fungal community composition. This might be due to the phenotypic and functional similarity that results from the phylogenetic signals found within many plant traits (Flores et al., 2014; Valverde-Barrantes et al., 2015) driving the observed fungal preferences for phylogenetically similar plants (Gilbert & Webb, 2007; Schroeder et al., 2019). However, significant uncertainty remains around the importance of plant phylogeny in explaining rhizosphere fungal community composition, with studies both providing support (Barberán et al., 2015; Schroeder et al., 2019) or not (Leff et al., 2018) for its role.

Summary

- While it is known that interactions between plants and soil fungi drive many essential ecosystem functions, considerable uncertainty exists over the drivers of fungal community composition in the rhizosphere. Here, we examined the roles of plant species identity, phylogeny and functional traits in shaping rhizosphere fungal communities and tested the robustness of these relationships to environmental change.

- We conducted a glasshouse experiment consisting of 21 temperate grassland species grown under three different environmental treatments and characterised the fungal communities within the rhizosphere of these plants.

- We found that plant species identity, plant phylogenetic relatedness and plant traits all affected rhizosphere fungal community composition. Trait relationships with fungal communities were primarily driven by interactions with arbuscular mycorrhizal fungi, and root traits were stronger predictors of fungal communities than leaf traits. These patterns were independent of the environmental treatments the plants were grown under.

- Our results showcase the key role of plant root traits, especially root diameter, root nitrogen and specific root length, in driving rhizosphere fungal community composition, demonstrating the potential for root traits to be used within predictive frameworks of plant–fungal relationships. Furthermore, we highlight how key limitations in our understanding of fungal function may obscure previously unmeasured plant–fungal interactions.
While plant species identity and phylogeny appear to contribute to patterns of plant–fungal relations, plant functional traits are also likely to mediate these interactions. While the abundance of different groups of fungi, such as saprotrophs, pathotrophs and arbuscular mycorrhizal fungi (AMF), have been shown to be related to plant traits (Eisenstat et al., 2015; Semchenko et al., 2018; Francioli et al., 2020), others have failed to find relationships between plant traits and fungal community composition (Barberán et al., 2015; Leff et al., 2018). This is despite many known interactions between plants and fungi, such as the ‘collaboration gradient’ (Bergmann et al., 2020), which defines how plant tissue construction strategies influence nutrient foraging via associations with fungal symbionts (Eisenstat et al., 2015; Chen et al., 2018; Zhang et al., 2019), and the growing understanding of the importance of root exudates in shaping fungal communities (Hu et al., 2018). Evidence from studies of soil microbial functioning also suggests that root traits are more important predictors of rhizosphere fungal community composition than aboveground leaf traits (Orwin et al., 2010; Cantaré & Pommier, 2015). However, despite both aboveground (de Vries et al., 2012; Semchenko et al., 2018; Boeddinghaus et al., 2019) and belowground plant traits (Legay et al., 2014; Steinauer et al., 2017; Semchenko et al., 2018) having been linked to measures of rhizosphere fungal community composition, it remains unknown whether easier to measure aboveground traits can be used as proxies for belowground trait–fungal relationships.

While plant traits may help us to understand patterns of rhizosphere fungal community composition, trait values can be highly variable due to intraspecific variability induced by both biotic and abiotic factors (Callaway et al., 2003; Berg & Ellers, 2010; Matesanz et al., 2010). Trait plasticity is an important mechanism by which plant species can both coexist in diverse communities (Abakumova et al., 2016; Pérez-Ramos et al., 2019) and persist under environmental change (Henn et al., 2018). It is well known that leaf and root traits display considerable plasticity in response to environmental change (Bardgett et al., 2014; Brunner et al., 2019) such as variation in light (Keenan & Niinemets, 2016) or water availability (Fry et al., 2018). There is also growing awareness that intraspecific trait variation, including that caused by plasticity, can be similar and, in some cases stronger, than trait variation across species, with potential ecological impacts (Albert et al., 2010; Des Roches et al., 2018). Interactions between plant traits and soil fungal communities may therefore be mediated by trait plasticity in response to environmental change (Li et al., 2017; Defrenne et al., 2019; Zhang et al., 2019), however our understanding of the importance of trait plasticity for fungal communities is limited.

Here, we assessed the role of plant traits, plant species identity and plant phylogenetic relatedness in driving the rhizosphere fungal community composition across 21 species of common British grassland plants. We also aimed to quantify how these relationships are modified by changes in environmental conditions and resulting intraspecific trait plasticity. We hypothesised that root traits, rather than leaf traits, are primary determinants of rhizosphere fungal communities. We also hypothesised that trait plasticity in response to changes in environmental conditions will lead to significant shifts in rhizosphere fungal community composition. Finally, we hypothesised that the ‘collaboration gradient’ of root resource acquisition explains a significant portion of variation in rhizosphere fungal community structure, particularly driven by relationships between plant roots and AMF.

Materials and Methods

Field soil collection

Field soil was collected from Selside Meadows in the UK Ingleborough National Nature Reserve, Yorkshire Dales (54°10′47.9″ N, 2°20′11.1″ W) in June 2017. The soil at this site has been well characterised in previous studies (Leff et al., 2018; De Long et al., 2019b), and is a brown earth (60% clay, 39% sand, <1% silt, pH c. 5.7, 4.9% carbon (C), 0.46% nitrogen (N); De Long et al., 2019b) of the Malham series (Eutric Endoleptic Cambisols) (Cranfield University, 2020). The plant community is typical of northern UK meadow grasslands (UK National Vegetation Classification, MG3b – Anthoxanthum odoratum–Geranium sylvaticum grassland, Rodwell, 1992). Sheep graze the site throughout the year; aside from April to July when a hay cut is taken. The site is located at 303 m asl with an approximate average annual precipitation of 1550 mm and average annual minimum and maximum temperatures of 4.3°C and 10.5°C, respectively (De Long et al., 2019b). Soil was passed through a 4-mm sieve and homogenised after roots and large debris were removed, and soil water holding capacity (WHC) of sieved soil was determined gravimetrically.

Plant species selection and experimental establishment

In total, 21 plant species were selected for this experiment, consisting of seven species each of forbs, grasses and legumes (Supporting Information Table S1) and representative of the communities occurring in the area from which the soil was harvested. These species exhibit a range of nutrient acquisition strategies, from fast growing, resource acquisitive species to slow growing, resource conservative species (Grime et al., 2014). Therefore, they span a wide range of root and leaf trait values and syndromes that can be present within common UK grassland species (Table S1). Seeds were sourced from Emorsgate Seeds (Norfolk, UK), and germination took place in seed trays under glasshouse conditions. Based on a preliminary trial (data not shown) seed sowing was staggered over a 10-d period so germination occurred approximately at the same time. Seedlings were transplanted into 21 pots (10 cm diameter × c. 25 cm height) once the first true leaves emerged. One seedling was present per pot and those that died within the first week were replaced. Seedlings were grown for 12-wk in total under three environmental treatments.

Based on past trait plasticity studies (Semchenko et al., 2012; Geange et al., 2017), we designed three environmental treatments of varying light intensity and water availability to induce trait variation and plasticity, without inducing plant stress. Semchenko et al. (2012) detected increased plant growth under 50%
daylight and Geange et al. (2017) found that reductions in water addition of c. 25% are sufficient to induce plant trait plasticity. Therefore, the three treatments were as follows: control; 60% WHC with no shade cover, shaded; 60% WHC with 55% shade cover, and water limited; 45% WHC with no shade. Plants were watered every other day by weight, to the desired soil water content. The shade covers were measured to reduce light intensity by c. 52%. On average, our water limited treatments received c. 23% less water than the control treatment. Five replicates were established per species, per treatment, totalling 315 pots.

Plant and soil harvest

At the end of the 12-wk growth period, plants and soil were harvested. In total, 305 plants were harvested, but at least four samples were present per species per treatment. We collected rhizosphere soil, defined as the soil directly adhering to the root system, once the loose soil was gently shaken away from the plant. Rhizosphere soil was immediately frozen at −20°C before it was transferred to −80°C within 8 h for DNA analysis. The remaining soil was passed through a 2-mm sieve and stored at 4°C before analysis. Leaves were sampled, wrapped in tissue paper saturated with Milli-Q water, and stored in 50-ml Falcon tubes at 4°C to encourage maximum leaf hydration before weighing. Leaf traits requiring fresh biomass were measured within 48 h. Aboveground and belowground plant biomass was weighing. Leaf fresh weights were recorded and trait measurements followed methodology described in Pérez-Harguindeguy et al. (2013). Leaf thickness was measured using digital callipers by taking an average of three measurements across the leaf. Leaves were pressed gently under a clear Perspex sheet, photographed alongside a ruler and ImageJ software (Schindelin et al. 2013). Leaf area measurements. Leaves were subsequently dried for 72 h at 60°C and the dry weights were recorded. Specific leaf area was calculated as leaf area per unit dry mass, and leaf dry matter content was calculated as the leaf dry mass per unit leaf fresh mass. Dry leaves were ground in a ball mill (MM400 Mixer Mill; Retsch, Haan, Germany) for 40 s and analysed for total leaf C and N concentration using a Vario EL Cube (Elementar UK Ltd, Stockport, UK). Roots were washed of soil and other debris within 2 wk of harvest and stored for up to 4 wk in a 20% (v/v) ethanol solution. Fresh root mass was recorded. Roots were scanned on a flatbed scanner (Epson 11000 XL) at a resolution of 800 dpi and WinRHIZO software (Regent Instruments, Quebec City, Canada) was used to analyse the images for root diameter, root length, root volume and root surface area, before roots were dried for 72 h at 60°C and dry weights recorded. Specific root length was calculated as root length per unit dry mass, and root dry matter content was calculated as root dry mass per unit root fresh mass. Specific root area was calculated as root surface area per unit dry mass and root tissue density was expressed as root dry mass per unit volume. Dried root samples were analysed for total root C and N concentration as above.

Soil chemical and biological properties

Plant available N was measured by extracting 2.5 g fresh soil in 12.5 ml of 1 M KCl, shaking for 1 h at 200 rpm and filtering through Whatman 42 filter paper (De Long et al., 2019a). Water extractable C and N were measured by extracting 4 g of fresh soil in 28 ml of Milli-Q water, shaking for 1 h at 200 rpm and then filtering through Whatman 42 filter paper (Jones & Willett, 2006). Water extractable N was measured as total N, nitrate and ammonia, but levels of ammonia in the soil were below the limit of detection. An c. 20 g soil sample was dried at 105°C and soil moisture content was determined as percentage of fresh soil weight. Soil total C and N was measured via elemental analysis using a Vario EL Cube (as above), following grinding of the dry soil for 40 s in a ball mill. All N analyses were performed on a Continuous Segmented Flow Analyser (AA3, Seal Analytical, Southampton, UK), while C measures were conducted on a total organic carbon analyser (TOC-L; Shimadzu, Buckinghamshire, UK).

Microbial biomass C was measured using the chloroform extraction method (Brookes et al., 1985). Briefly, 5 g fresh soil was fumigated in chloroform for 24 h before extraction in 25 ml of 0.5 M K2SO4, shaken for 1 h at 200 rpm and then filtered through Whatman 42 filter paper. Microbial biomass C was calculated by subtracting the C in unfumigated K2SO4 extracts from those that were fumigated. Values were corrected with a kEC value of 0.45 to account for extraction efficiency (Vance et al., 1987).

Rhizosphere fungal community

DNA was extracted from rhizosphere soil using DNeasy PowerSoil Kits (Qiagen, Hilden, Germany) and DNA extracts were sequenced commercially (Macrogen, Seoul, South Korea) using an Illumina MiSeq system (2 × 300 bp). The ITS2 region was amplified using the ITS3F (5'–GCATCGATGAGAGACGCAGC-3') and ITS4R (5'–TCCTCCGCTTATTGATGC-3') universal primers (White et al., 1990) with further information available in Methods S1.

Demultiplexed raw sequence data were processed using the DADA2 pipeline (Callahan et al., 2016). Cutadapt (Martin, 2011) was used to remove primers in all orientations from the dataset while maintaining amplicon length variation. We imposed a minimum length of 50 bp to remove any small fragments at the filtering stage, at which, the error in the maxEE argument was 2.5 as this optimised the retention of reads throughout the pipeline. Error rates were calculated by the DADA2 algorithm before dereplication and merging of paired end sequences. Chimeras were subsequently removed and taxonomy was assigned using the UNITE database (Nilsson et al., 2019). The ‘even’ mock community from Bakker (2018) used to optimise the pipeline. Data were held within a Phyloseq (McMurdie & Holmes, 2013) object and filtered to exclude any nonfungal associated sequences variants (ASVs). Identified ASVs were filtered such that the mean relative abundance of an ASV had to be greater than 1 × 10⁻³. Sequence data were not rarefied,
as rarefaction curves indicated that all samples had reached the asymptotes of the species accumulation curves.

Plant phylogeny construction

We constructed a phylogeny of our 21 plant species to test for plant phylogenetic signals within rhizosphere fungal communities. We used the ribulose-bisphosphate carboxylase (rbcL) and maturase K (matK) genes, as published by De Vere et al. (2012). One accession was selected for each gene for each species (Table S1), genes were aligned using MUSCLE (Edgar, 2004) in MEGA X (Kumar et al., 2018), using default parameters and gene alignments were concatenated. A maximum likelihood and general time reversible phylogeny with a discrete gamma distribution. The rate variation model allowed for some sites to be evolutionarily invariable (GTR+G+I). A well resolved phylogeny (Fig. 3, see later) resulted that was selected on the basis of the highest log likelihood score. Pairwise distances between species were calculated by estimating the number of substitutions per site between sequences using a maximum composite likelihood model with the same parameters as above. The tree and distances were used for downstream phylogenetic analysis.

Statistical analysis

All analyses were conducted in R v.3.5.1 (R Core Team, 2018). Data were log transformed when necessary before analysis to improve the distribution of residuals within our models. We constructed a Bray–Curtis dissimilarity matrix of fungal ASV relative abundances to represent fungal community dissimilarity in our analyses below.

Trait plasticity

We assessed whether our environmental treatments (control, shaded, water limited) successfully induced root trait plasticity. We built linear mixed effects models using the ‘lmer’ function within the lme4 package (Bates et al., 2015) with a trait as the response variable and total plant biomass and the environmental conditions as explanatory variables, including the interaction. Species and experimental block were random effects. If the treatment or the interaction term were significant, we inferred that the trait had a ‘plastic’ response to the environmental conditions, not just differing due to plant biomass or ontogeny (de Vries et al., 2016).

Plant species identity

To assess the effects of plant species identity, the environmental treatments and any interaction between them in determining rhizosphere fungal community dissimilarity, we used permutational multivariate analysis of variance (PERMANOVA) with 1000 permutations, using the ‘adonis’ function within the VEGAN package (Dixon, 2003). We used the ‘strata’ argument to restrict the permutations within experimental blocks. We tested whether the effect of plant species identity on fungal community composition was mediated via plant functional groups. We used PERMANOVA to test how much variation in fungal community composition was explained by plant species identity after accounting for the effects of plant functional groups in a sequential model. Data were checked by factor for homogeneity of multivariate dispersions and all data satisfied this requirement.

Plant traits

We generated a nonmetric multidimensional scaling (NMDS) ordination of fungal communities based on the Bray–Curtis dissimilarity matrix. We used the ‘ordisurf’ function within the VEGAN package (Dixon, 2003) to fit trait data to the fungal community ordination using generalised additive models (GAMs). These models fitted the trait data as a smooth response surface over the fungal community ordination accounting for both NMDS axes. We used GAMs for two reasons: first, they allow for both a linear or nonlinear fit of the traits to fungal community composition; and second, they enabled us to map the raw trait data over the ordination of fungal community composition. This greatly increases the interpretability of the resultant trait–fungal correlations by contrast with methods such as Mantel tests, which first transform trait data into distance matrices. However, this analysis does not handle interaction terms, so to test for any interactions between traits and environmental treatments on fungal community dissimilarity we used PERMANOVAs, as above.

Where we identified significant relationships between traits and fungal community dissimilarity, we further tested whether relationships between plant traits and fungal communities were driven by specific trophic guilds of fungi. We used FUNGuild (Nguyen et al., 2016) to annotate ASVs as either pathotrophs or saprotrophs, at the lowest taxonomic group available, with an upper limit of family. We considered sequences classified within the Glomeromycota as AMF (Schüßler et al., 2001; Lekberg et al., 2018). All remaining ASVs were left unassigned. Any ASVs that had multiple trophic assignments were not included. We calculated the relative abundance of pathotrophs, saprotrophs and AMF as the proportion of reads identified as belonging to a trophic guild relative to the total number of reads identified in the sample. Trophic guild richness was calculated as the number ASVs assigned to a given guild. We used linear mixed effects models with experimental block as a random effect to assess whether the relative abundance or richness of pathotrophs, saprotrophs and AMF was driven by plant traits, environmental treatments and the interaction between them. We used the ‘r.squaredGLMM’ function in the MUMIN package (Bartón, 2014) to derive the conditional and marginal r^2 values. Finally, to identify specific ASVs that were driving trait–fungal correlations, we built random forest regression models using the ‘RANDOMFOREST’ (Breiman & Cutler, 2012) package. Model performance was tested by randomly permuting the trait data 1000 times and comparing the permitted and observed fit using the ‘RFUTILITIES’ package (Murphy et al., 2010). We cross validated the models using leave-one-out cross-validation, implemented in the ‘CARET’ package (Kuhn, 2019). We considered an ASV to be
important if it was assigned an increase in mean squared error of greater than 2% percent (%MSE). Larger %MSE values indicated increasing importance of an ASV to the model as it means that there is a greater increase in error of the model should the abundance of that ASV be randomly permuted across the dataset. For each ASV identified as important we built a linear model of the abundance of that ASV, when present in the samples, and regressed it against the variable in question. We used this model coefficient sign and value as the indicator of the directionality and strength of the relationship between the ASV and measured variable.

Edaphic conditions
We tested whether the relationships between plant traits and soil fungi we found were a function of edaphic conditions, as soil fungal communities are known to vary with soil variables (Větrovský et al., 2019), particularly nutrient availability (Lauber et al., 2008). We conducted a PCA on scaled (z-score) soil variables (plant available N, water extractable nitrate and water extractable total N, total soil C and N, dissolved organic C and microbial biomass C). We extracted the loadings of the axes from this PCA and used them as continuous variables. Using GAMs within the ‘ordisurf’ function in the vegan package (Dixon, 2003), as with the trait data, we assessed the fit of the soil PCs to the NMDS ordination of fungal community dissimilarities. We tested whether any significant relationships between traits and fungal guilds were a function of the soil principal components that were significantly related to soil fungal community dissimilarity.

Plant phylogenetic relatedness
To test for correlations between plant phylogenetic relatedness and fungal community dissimilarity we used Mantel tests with 1000 permutations using the ‘mantel’ function within the vegan package (Dixon, 2003). To test whether fungal trophic guild abundances were structured by plant phylogeny we checked for phylogenetic signal (Münkemüller et al., 2012) using the ‘phyloSignal’ function within the ‘PHYLOSIGNAL’ package (Keck et al., 2016) to calculate Blomberg’s K value (Blomberg et al., 2003) and Pagel’s λ value (Pagel, 1999).

Results
Plant trait variation and plasticity
The species used in this study represented a range of trait syndromes across the root economics space (Fig. 1; Table S1). The growth of plants under either shaded or water limited conditions resulted in significant plant trait plasticity when compared with the control (Fig. 2; Table S2). The direction and magnitude of changes in these trait values compared with the control varied, with shading inducing stronger plastic trait responses than the water limited treatment (Fig. 2). We observed significant phylogenetic signal within the trait data, although plant trait plasticity was not structured by plant phylogenetic relatedness (Table S3).

Fungal communities
In total, 7528 fungal ASVs were identified in our analysis, which were primarily composed of Ascomycota, Basidiomycota and Mortierellomycota, with an average relative abundance of 37%, 30% and 20%, respectively, across all samples (Fig. S1). Fungal community composition was comparable with that found in similar studies on soils from the same field site (Leff et al., 2018). In total, 14.6% of ASVs were annotated with a functional guild with 361, 98 and 643 ASVs identified as saprotrophs, pathotrophs or AMF, respectively, with an average relative abundance of 4.06%, 0.96% and 4.70%. Despite inducing significant trait plasticity, the imposed environmental treatments explained little (1.2%) variation in rhizosphere fungal community dissimilarity (Table 1; Fig. S2). By contrast, plant species identity explained c. 12% of variation in rhizosphere fungal community dissimilarity and captured variation above and beyond that explained by plant functional groups (Table 1). Given the low amount of variation in fungal community dissimilarity explained by the environmental treatments, and the absence of interactive effects (Table 1) with species identity and plant traits (aside from leaf nitrogen, although in no further analyses was leaf nitrogen identified as correlating with fungal community structure) (Table S4), we pooled data across the environmental treatments for the phylogenetic and trait analyses.

Plant phylogenetic relatedness and fungal communities
We detected a positive correlation between fungal community dissimilarity and phylogenetic distance between plant species (Mantel’s r = 0.383, P < 0.001; Table S5). The correlation between plant phylogenetic relatedness and fungal community dissimilarity was stronger across plant functional groups than within them (Table S5). The proportion of fungal pathotrophs in the rhizosphere was weakly correlated with plant phylogeny (K = 0.269, P = 0.082). This was due to a greater relative abundance of pathotrophs in the rhizosphere of grasses compared with both forbs and legumes (Fig. 3). Strong phylogenetic signals were also found for the relative abundance of rhizosphere AMF (K = 0.571, P < 0.001), which were attributed to a lower relative abundance of AMF in the rhizosphere of grasses and higher relative abundance of AMF in the rhizosphere of legumes compared to forbs (Fig. 3).

Plant traits and fungal communities
Root diameter, root N, specific root length, specific root area and leaf C were predictive of rhizosphere fungal community composition, represented by the NMDS ordination of these communities (Fig. 4; Table 2). Root traits were stronger determinants of rhizosphere community structure, with leaf C explaining a lower amount of deviance within our models (Fig. 4; Table 2).

We sought to identify which fungal guilds were driving the observed relationships between plant traits and rhizosphere fungal community composition. Root traits, but not leaf traits, were
determinants of the relative abundance and richness of AMF and fungal pathotrophs and saprotrophs (Fig. 5; Table S6). We observed a positive relationship between root diameter ($r^2 = 0.339, P<0.001$) and root N ($r^2 = 0.211, P<0.001$) with AMF relative abundance, while specific root length was negatively related to AMF relative abundance ($r^2 = 0.111, P<0.001$). Increased saprotroph abundance was explained by increased root diameter ($r^2 = 0.020, P=0.007$), increased root N ($r^2 = 0.015, P=0.015$) and decreased specific root length ($r^2 = 0.011, P=0.040$). Root N ($r^2 = 0.025, P=0.003$) was negatively related to fungal pathotroph abundance. We did not observe any relationships between the proportion of AMF, pathotrophs or saprotrophs and specific root area and leaf C. Increased AMF richness was explained by increased root diameter ($r^2 = 0.239, P<0.001$) and root N ($r^2 = 0.087, P<0.001$), and decreased specific root length ($r^2 = 0.084, P<0.001$). Less variation in AMF richness was explained by traits compared with AMF relative abundance, however the opposite was true for pathotrophs. Root diameter ($r^2 = 0.031, P=0.001$) and root N ($r^2 = 0.079, P<0.001$) were both negatively, and specific root length ($r^2 = 0.019, P=0.016$) positively, related to pathotroph richness (Fig. 5). There were no interactions detected between the environmental treatments and the trait–fungal relationships described (Table S7), although pathotroph relative abundance was increased in the water limited treatment and the proportion and richness of AMF were reduced in the shaded treatment (Table S8).

We identified which ASVs were driving the observed trait–fungal relationships (referred to as ‘important ASVs’ – see Materials and Methods). Random forest regression models were built for the traits that best predicted rhizosphere fungal communities, namely root diameter, root N, specific root length, specific root area and leaf C. We identified strong, significant relationships between root diameter, root N, specific root length, specific root area and specific fungal ASVs (Tables 3, S9; Datasets S1–S4), but not leaf C (Table S9). Here, c. 50% of important ASVs were identified to family level or below, and only 47% could be assigned to trophic guilds (Table S10), making functional assessments of these results challenging.

The important ASVs within the root diameter models were predominately Glomeromycota. Within the respective models, important Glomeromycota ASVs were always positively correlated with root diameter and root N, and negatively correlated with specific root length (Table 3). Patterns amongst other phyla were less clear, with ASVs belonging to the Ascomycota being both positively and negatively correlated with all four traits. Despite representing c. 30% and 20% of ASVs respectively, the Basidiomycota and Mortierellomycota were poorly represented amongst the top 20 most important ASVs driving the trait–fungal models (Table 3).

The ASVs identified as important were not ubiquitous across all samples. Across the four traits – root diameter, root N, specific root length, specific root area – important ASVs were present on average in 140 out of 305 samples. We found that the majority
of the top 20 most important ASVs was different for each trait (Table S11). Only nine ASVs were found to be important across all four traits, but these ASVs were not well taxonomically or functionally characterised (Table S12). All of these ASVs exhibited the same pattern: if they were positively correlated with root diameter and root N, they were negatively correlated with specific root length and specific root area and vice versa.

Soil variables as predictors of fungal community dissimilarity

The PCA of soil variables revealed two main PC axes (Fig. S3) explaining c. 60% of variation in the soil data. Soil pH and moisture loaded positively and plant available N, water extractable nitrate and water extractable total N, loaded negatively on PC1. Total soil C and N, dissolved organic C and microbial biomass C loaded positively on PC2. PC1 was influenced by both plant species identity and environmental treatment, but not plant functional group (Table S13). PC2 was unaffected by plant species identity, functional group or environmental treatment (Table S13). As measured with GAMs, PC1 (deviance explained = 6.39%, $P = 0.004$), but not PC2, was associated with fungal community dissimilarity. The effect of root diameter on the proportion and richness of AMF, and of specific root length on the proportion of AMF, was affected by PC1 (Fig. S4;
Methods S2; Tables S14, S15), although by comparison of marginal r^2 values, the interaction explained little extra (<3.5%) variation in the models (Tables S6, S14, S15).

Discussion

Our results showed that plant phylogeny and species identity were important determinants of rhizosphere fungal community composition, which is consistent with previous studies (Barberán et al., 2015; Schroeder et al., 2019). Our data also indicated that plant traits, especially root traits, are strong determinants of rhizosphere fungal community composition. We found that rhizosphere fungal community composition was driven by root diameter, root N, specific root length, specific root area and leaf C. However, we did not find leaf C to be predictive of the relative abundance or richness of any fungal trophic guilds, suggesting that root traits, rather than the leaf traits we measured, are the primary determinants of rhizosphere fungal communities among grassland plants species. Although our environmental manipulations induced significant plant trait plasticity, we found that the effect of plant traits on fungal community composition was independent of the environmental conditions. We observed that fungal communities were driven by traits that had both plastic (root diameter, specific root length/area) and nonplastic (root N) responses to environmental treatments. Importantly, this suggests that intraspecific variation in trait values was not sufficient to overwhelm interspecific relationships between plant traits and rhizosphere fungal communities. Our findings provide evidence that intraspecific trait plasticity in response to benign environmental change has negligible impacts on the rhizosphere fungal communities of grassland plants, and that interspecific trait variation is of greater importance. The robustness of these relationships to trait plasticity induced by environmental stress remains to be evaluated.

We found that the relative abundance of AMF was strongly driven by root traits, and we propose that this underpins all of the trait-fungal correlations we detected. We found that AMF abundance was positively related with root diameter, and negatively related with specific root length. Increases in root diameter (and therefore decreases in specific root length) offer increased opportunity for mycorrhizal colonisation due to the associated increase in root cortical tissue (Reinhardt & Miller, 1990) and the positive correlation between root diameter and mycorrhizal colonisation rate is well documented (Kong et al., 2014; Ma et al., 2018; McCormack & Iversen, 2019). Given that AMF hyphae are rich in N, compared with plant roots (Hodge & Fitzter, 2010), it is likely that the increased relative abundance of AMF with increasing root diameter results in increased root N, possibly causing the positive association between root N and AMF relative abundance that we observed. These results

![Fig. 3](image-url)
suggested that the ‘collaboration gradient’ within the root economics space (Bergmann et al., 2020) is a significant driver of rhizosphere fungal communities at the local level and further highlights the importance of constructing higher diameter roots to accommodate AMF partnerships (Eissenstat et al., 2015; Li et al., 2017). This likely explains why we did not find the leaf traits we measured to be of importance for rhizosphere fungal communities, as the ‘collaboration gradient’ of root resource acquisition is independent of ‘fast’-vs-‘slow’ economics as captured by leaf traits in this study primarily by specific leaf area and leaf N (Wright et al., 2004; Bergmann et al., 2020).

We further suggest that the positive correlation between root diameter and AMF relative abundance can explain the observed correlations between plant traits and fungal pathotroph and

![Fig. 4](image-url) Results from the generalised additive models fitting measured trait data across the nonmetric multidimensional scaling (NMDS) ordination of measured fungal communities. (a) Root diameter, (b) Root nitrogen, (c) Specific root length, (d) Specific root area, (e) Leaf carbon, (f) NMDS ordination of fungal communities, without trait overlay. Points are coloured by plant functional group. Green splines show the fit of the trait data from high values (dark green) to low values (light green) over the ordination. The trait overlay indicates that communities, as represented by the points on the NMDS, are associated with higher or lower trait values in line with the coloured trait gradient. Note, the gradient splines would be parallel if the relationship between the trait and the community was linear. Nonlinear relationships between traits and fungal community composition are represented by curved splines. ‘de’ shows the deviance explained by the respective model.
saprotoph relative abundance and richness. The richness of fungal pathotrophs was negatively correlated with root diameter, and both the relative abundance and richness of pathotrophs were negatively correlated with root N. AMF are known to increase plant resistance to fungal pathogens (Cameron et al., 2013; Berdeni et al., 2018). Thus, an increased abundance of AMF within the rhizosphere could lead to a reduced abundance of fungal pathotrophs. These results are supported by our phylogenetic analysis, which revealed that increased pathotroph and reduced AMF relative abundance was associated with the functional group of grasses that typically have high specific root length and low root diameter. This finding is also in line with Semchenko et al. (2018), who found root systems of high specific root length were associated with an increased diversity of fungal pathogens. Furthermore, we found that both root diameter and root N were positively correlated with the relative abundance and richness of fungal saprotrophs, respectively. While AMF have no saprotrophic ability (Frey, 2019), they do promote faster plant litter decomposition rates (Guì et al., 2017), although the precise mechanisms involved are not yet known (Frey, 2019). Thus, the increased abundance of AMF due to increased root diameter, may explain the positive correlations between root diameter and root N with fungal saprotrophs. The negative correlation between specific root length with both AMF and saprotroph relative abundance we found further supports this hypothesis.

Overall, these results suggested that a plant’s strategy to partner with AMF plays a fundamental role in determining rhizosphere fungal communities (Bergmann et al., 2020). It is of note that we used universal fungal primers to characterise the entire fungal community, which inevitably leads to a low relative abundance of AMF taxa (Lekberg et al., 2018). Given the importance of AMF to trait–fungal relationships, methods using AMF-specific primers should be used to establish whether the patterns reported here are consistent across AMF clades. Furthermore, as studies are increasingly using molecular data to infer fungal functional data (Semchenko et al., 2018; Che et al., 2019; Phillips et al., 2019), future studies are needed to assess how well molecular-derived relative abundances and richness estimates relate to functional data, such as percentage root colonisation by AMF.

Our finding that rhizosphere fungal communities can be explained by plant traits contrasts with previous studies of temperate grassland plants where relationships have not been detected (Leff et al., 2018). This may be due to differences in the timescale of studies, in that Leff et al. (2018) examined trait–microbial relationships formed over several growing seasons, whereas the plants in this study were comparatively young. Fungal communities are known to vary both temporally (Hannula et al., 2019; Kivlin & Hawkes, 2020) and with ontogeny (Gosney et al., 2014). Therefore, further study is required to monitor how seasonal, temporal and ontogenic variation affects the trait–fungal relationships detected here. However, methodological differences between studies may also have contributed. Here, we used GAMs to fit the trait data to the ordination of our fungal communities. Importantly, these allow for a nonlinear fit of the traits to the fungal community data (see trait splines in Fig. 2). While we can pull out important and significant linear interactions between plant traits and specific components of the fungal communities (Fig. 3), these interactions are complex and vary in both direction and magnitude. The additive effect of this is that across the complex and multivariate nature of fungal community structure, the influence of a trait over a given community may not be linear. Allowing for this within our attempts to model trait–microbial interactions may allow us to uncover key plant–soil relationships.

Using random forest modelling we found that important Glomeromycota ASVs were strongly and positively correlated with root diameter and root N, and negatively correlated with specific root length. These results reinforce the findings of our correlative analyses in revealing a significant link between these root traits and AMF. However, across the traits modelled we could only assign 47% of the ASVs identified as important to a trophic guild. This means 53% of the ASVs identified as important for trait–fungal relationships were not represented in our correlative analyses. For example, ASV_1028 was found to have the highest %MSE within the root N model and was identified to the order Sordariomycetes (Phylum: Ascomycota). Sordariomycetes consists of several thousand species, which may be pathotrophic, saprotrophic or endophytic (Zhang et al., 2006). Consequently, this ASV remains functionally uncharacterisable and not represented within models of trait–fungal trophic guild relationships. Attempts to understand plant–fungal relationships are clearly limited by the scarcity of functional data available for soil fungal communities. Furthermore, most of the ASVs identified as important within our random forest analyses were not ubiquitous and were present on average in c. 45% of samples. In support of the findings of Leff et al. (2018), this suggests that less generalist, more specialist, taxa are driving relationships between plants and rhizosphere fungi. However, it remains unknown whether these more specialist taxa are performing plant host-specific functions, displaying strong plant host preferences, or simply stochastically selected from a functionally redundant population of fungi originating from the diverse initial field soil community.

Table 2 The role of plant traits in determining rhizosphere fungal community composition as measured with generalised additive models (GAMs).

Trait	Deviance explained (%)	n	Significance
Root diameter	12.10	305	<0.001
Specific root length	10.90	305	<0.001
Root nitrogen	10.30	297	<0.001
Specific root area	5.69	305	0.003
Leaf carbon	3.69	299	0.013
Leaf nitrogen	1.15	299	0.111
Root tissue density	0.90	305	0.151
Root volume	0.87	305	0.157
Root carbon	0.15	297	0.331
Root dry matter content	<0.01	305	0.503
Specific leaf area	<0.01	305	0.999
Leaf thickness	<0.01	305	0.797
Leaf dry matter content	<0.01	305	0.902
With the increasing availability of plant trait data through global databases (Iversen et al., 2017; Guerrero-Ramirez et al., 2020; Kattge et al., 2020) combined with the ever-growing literature on the global diversity and biogeography of soil fungi (Tedersoo et al., 2014; Egidi et al., 2019; Delgado-Baquerizo et al., 2020), we move closer to the development of predictive frameworks of how plant phylogenetic and functional diversity shape global plant–fungal interactions. While much variation in rhizosphere fungal community composition remained unexplained by plant traits, our results demonstrate the potential for root traits in particular to be incorporated into a predictive trait-based framework of rhizosphere fungal communities. Moreover, given the ecological importance of soil fungi in terrestrial ecosystems, our findings provide new insights into the role of plant trait–fungal community relationships as key drivers of ecosystem functioning and plant community dynamics.

Acknowledgements

Many thanks to Colin Newlands at Natural England, for arranging permissions and access to the field site. Thank you to Sarah Yates and Cristina Heredia Acuna for help with soil collection and to Alex Williams for helpful discussions about data analysis. Thanks to Deborah Ashworth for help and advice in the
Finally, many thanks to the four anonymous reviewers and the editor whose comments significantly improved the manuscript. This research was supported by a studentship from the UK Biotechnology and Biological Sciences Research Council (BBSRC), project reference: 1788217.

Table 3 Correlations between plant traits and the top 20 ASVs identified as ‘important’ for the respective random forest models regressing plant traits against fungal ASVs.

ASV Code	% MSE increase	Phylum	Coefficient	Samples present
ASV_1085	18.61	Glomeromycota	1.43	201
ASV_1235	3.39	Glomeromycota	1.08	91
ASV_1133	5.07	Mucoromycota	1.01	177
ASV_1122	4.97	Basidiomycota	0.28	209
ASV_1172	4.83	Ascomycota	0.47	143
ASV_1195	4.67	Glomeromycota	0.76	25
ASV_1025	4.26	Ascomycota	0.10	305
ASV_1017	4.22	Basidiomycota	0.07	272
ASV_1501	3.89	Glomeromycota	1.31	36
ASV_1288	3.86	Glomeromycota	0.90	60
ASV_1093	3.80	Basidiomycota	−0.40	163
ASV_1028	3.67	Ascomycota	−0.54	295
ASV_1082	8.09	Ascomycota	−0.84	199
ASV_1187	7.87	Glomeromycota	1.57	150
ASV_1032	8.16	Glomeromycota	1.28	148
ASV_1028	8.09	Ascomycota	−0.84	199
ASV_1250	7.90	Glomeromycota	1.25	86
ASV_1082	8.09	Ascomycota	−0.84	199
ASV_1235	5.39	Glomeromycota	1.08	91
ASV_1133	5.07	Mucoromycota	1.01	177
ASV_1122	4.97	Basidiomycota	0.28	209
ASV_1172	4.83	Ascomycota	0.47	143
ASV_1195	4.67	Glomeromycota	0.76	25
ASV_1025	4.26	Ascomycota	0.10	305
ASV_1017	4.22	Basidiomycota	0.07	272
ASV_1501	3.89	Glomeromycota	1.31	36
ASV_1288	3.86	Glomeromycota	0.90	60
ASV_1093	3.80	Basidiomycota	−0.40	163
ASV_1028	3.67	Ascomycota	−0.54	295

ASV Code	% MSE increase	Phylum	Coefficient	Samples present
ASV_1085	12.92	Glomeromycota	−0.51	201
ASV_1257	12.28	Ascomycota	−1.37	25
ASV_1280	10.53	Glomeromycota	−0.43	90
ASV_1003	8.43	Basidiomycota	0.18	305
ASV_1082	7.82	Ascomycota	0.26	199
ASV_1187	7.45	Glomeromycota	−0.42	89
ASV_1019	6.85	Mortierellomycota	−0.12	298
ASV_1914	6.74	NA	−0.73	16
ASV_1299	6.41	Chytridiomycota	0.59	26
ASV_1119	5.55	Chytridiomycota	0.35	26
ASV_1250	4.75	Glomeromycota	−0.51	86
ASV_1807	4.35	Ascomycota	1.26	10
ASV_1095	4.19	Glomeromycota	−0.35	150
ASV_1028	4.15	Ascomycota	0.16	295
ASV_1065	3.98	Basidiomycota	0.16	155
ASV_1147	3.82	Glomeromycota	−0.33	154
ASV_1032	3.76	Glomeromycota	−0.55	148
ASV_1030	3.45	Ascomycota	−0.16	305
ASV_1017	3.42	Basidiomycota	0.21	272
ASV_1385	3.37	Basidiomycota	0.08	47

ASV Code	% MSE increase	Phylum	Coefficient	Samples present
ASV_1085	12.92	Glomeromycota	−0.51	201
ASV_1257	24.13	Ascomycota	−1.48	25
ASV_1257	24.13	Ascomycota	−1.48	25
ASV_1914	14.11	NA	−0.84	16
ASV_1187	7.35	Glomeromycota	−0.39	89
ASV_1280	7.22	Glomeromycota	−0.44	90
ASV_1001	6.70	Mortierellomycota	−0.11	305
ASV_1019	6.05	Mortierellomycota	−0.14	298
ASV_1085	5.70	Glomeromycota	−0.38	201
ASV_1032	5.40	Glomeromycota	−0.59	148
ASV_1299	4.16	Basidiomycota	0.13	305
ASV_2819	4.09	Basidiomycota	0.75	5
ASV_1349	3.96	Chytridiomycota	0.47	79
ASV_1179	3.94	Ascomycota	0.08	190
ASV_1133	3.91	Mucoromycota	−0.65	177
ASV_1065	3.68	Basidiomycota	0.18	155
ASV_1002	3.24	Basidiomycota	0.07	285
ASV_1248	2.95	Ascomycota	0.05	86
ASV_1900	2.94	Ascomycota	0.18	21
ASV_1158	2.77	Ascomycota	−0.31	71
ASV_1082	2.77	Ascomycota	0.21	199
ASV_1807	2.74	Ascomycota	1.81	10

ASV code is consistent across traits for comparison. ‘% MSE increase’ assesses importance of a given ASV to the model, higher values indicate higher importance. ‘Coefficient’ is the result of a linear model regressing the relative abundance of the ASV, when it was present in the sample, against the trait, to indicate the direction of the relationship. ‘Samples present’ indicates the number of samples a given ASV was present in, with a potential maximum of 305.

Author contributions

All authors contributed to the design of the study. CJS conducted the experimental work and the data analysis. CJS wrote the manuscript with FTdV, BEvD and RDB.
ORCID
Richard D. Bardgett https://orcid.org/0000-0002-5131-0127
Franciska T. de Vries https://orcid.org/0000-0002-6822-8883
Christopher J. Sweeney https://orcid.org/0000-0002-3170-8728
Bart E. van Dongen https://orcid.org/0000-0003-1189-142X

Data availability
Sequence data are available in the NCBI Sequence Read Archive (Bioproject: PRJNA641575, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA641575), further data are available in a FigShare repository at https://doi.org/10.6084/m9.figshare.12888575.

References
Abakumova M, Zobel K, Lepik A, Semchenko M. 2016. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist 211: 455–463.

Albert CH, Thullier W, Yoccoz NG, Douret R, Aubert S, Lavorel S. 2010. A multi-treat approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24: 1192–1201.

Averill C, Bhattacharjee JM, Dietze MC, Pearse WD, Kivlin SN. 2019. Enabling soil microbial communities. Earth Letters 18: 1597–1405.

Bakker MG. 2018. A fungal mock community control for amplicon sequencing experiments. Molecular Ecology Resources 18: 541–556.

Barber A, Mcguire KL, Wolf JA, Mcguire KL, Wolf JA, Jones FA, Fierer N. 2015. Molecular Ecology Resources 18: 541–556.

Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI, Cameron DD, Evans KL. 2018. Shifts in ectomycorrhizal fungal communities and exploration types differ between monocultures and mixed communities in temperate grassland. Ecology Letters 107: 1704–1719.

Bartlett RD, Mormer L, De Vries F. 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution 29: 692–699.

Barton K. 2014. MuMIn: Multi-model inference. R package v.1.43.17. [WWW document] URL https://cran.r-project.org/web/packages/MuMIn/index.html.

Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI, Cameron DD, Evans KL. 2018. Effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). Frontiers in Microbiology 9: 1461.

Berg MP, Ellers J. 2010. Trait plasticity in species interactions: a driving force of community dynamics. Evolutionary Ecology 24: 617–629.

Bergmann J, Wei gelt A, van der Pas F, Laughlin DC, Kuyper TW, Guererro-Ramirez N, Valverde-Barrantes OJ, Brulheide H, Freschet GT, Iversen CM et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: eaba3756.

Blackwell M. 2011. The fungi: 1, 2, 3 . . . 5.1 million species? American Journal of Botany 98: 426–438.

Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745.

Boeddinghaus RS, Marhan S, Berner D, Boch S, Fischer M, Holzel N, Katge J, Klaus VH, Kleinebecker T, Oelmann Y et al. 2019. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology 107: 2197–2210.

Breiman L, Cutler A. 2012. Breiman and Cutler’s Random Forests for Classification and Regression. R package v.4.6-14. [WWW document] URL https://cran.r-project.org/web/packages/randomForest/index.html.

Brookes PC, Landman A, Pruden G, Jenkins DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837–842.

Brunner I, Herzog C, Galiano L, Gessler A. 2019. Plasticity of fine-root traits under long-term irrigation of a water-limited Scots pine forest. Frontiers in Plant Science 10: 1–10.

Burns JH, Anacker BL, Strauss SY, Burke DJ. 2015. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. New Phytologist 207: pv030.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nature Methods 13: 581–583.

Callaway RM, Pennings SC, Richards CL. 2003. Phenotypic plasticity and interactions among plants. Ecology 84: 1115–1128.

Cameron DD, Neal AL, van Wees SCM, Ton J. 2013. Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science 18: 539–545.

Cantarel AAM, Pommier T. 2015. Using plant traits to explain plant – microbe relationships involved in nitrogen acquisition. Ecological Society of America 96: 788–799.

Che R, Wang S, Wang Y, Xu Z, Wang W, Rui Y, Wang F, Hu J, Tao J, Cui X. 2019. Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry 139: 107611.

Chen W, Eissenstat DM, Koide RT. 2018. Root diameter predicts the extramatrical myphal exploration distance of the ectomycorrhizal fungal community. New Phytologist 220: 3–22.

Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Eklad A, Wallander H, Stendel J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi: drivers of plant biomass and carbon sequestration in boreal forest. Science 339: 1615–1618.

Cranfield University. 2020. The soils guide. [WWW document] URL https://www.land.is/uk [accessed 22 September 2020].

De Long JR, Jackson BG, Wilkinson A, Pritchard WJ, Oakley S, Mason KE, Stephenson JG, Ostle NJ, Johnson D, Baggs EM et al. 2019a. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. New Phytologist 107: 1704–1719.

De Long JR, Semchenko M, Pritchard WJ, Cordero I, Fry EL, Jackson BG, Kurnosova K, Ostle NJ, Johnson D, Baggs EM et al. 2019b. Drought soil legacy overrides maternal effects on plant growth. Functional Ecology 33: 1400–1410.

de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite € olzel N, Kattge J, Birmingham D, Yang Y, Hu J, Tao J, Cui X. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: 550.e1–554.e1.

de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite € olzel N, Kattge J, Birmingham D, Yang Y, Hu J, Tao J, Cui X. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: 550.e1–554.e1.

de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite € olzel N, Kattge J, Birmingham D, Yang Y, Hu J, Tao J, Cui X. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: 550.e1–554.e1.

de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite € olzel N, Kattge J, Birmingham D, Yang Y, Hu J, Tao J, Cui X. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: 550.e1–554.e1.
Egid E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK. 2019. A few Ascomycota taxa dominate soil fungal communities worldwide. *Nature Communications* 10: 2369.

Eisenstat DM, Kucharski JM, Madzorny M, Adams TS, Koide RT. 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. *New Phytologist* 208: 114–124.

Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Díaz S, Pakeman RJ, Rusch GM, Bernard-Verdier M, Testi B et al. 2014. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. *Ecology and Evolution* 4: 2799–2811.

Frac M, Hannula SE, Belka M, Jędrzycza M. 2018. Fungal biodiversity and their role in soil health. *Frontiers in Microbiology* 9: 707.

Francioli D, van Rijssel SQ, van Ruijven J, Termorshuizen AJ, Cotton TEA, Dumbrell AJ, Raaijmakers JM, Weigelt A, Moomer L. 2020. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. *Plant and Soil*. doi: 10.1007/s11104-020-04454-y.

Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. *Annual Review of Ecology, Evolution, and Systematics* 50: 257–279.

Frey EL, Evans AL, Sturrock CJ, Bullock JM, Bardgett RD. 2018. Root architecture governs plasticity in response to drought. *Plant and Soil* 433: 189–200.

Geange SR, Briceno VF, Atiken NC, Ramirez-Valiente JA, Holloway-Phillips M-M, Nicotra AB. 2017. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. *Climate Change Responses* 4: 5.

Gilbert GS, Webb CO. 2007. Phylogenetic signal in plant pathogen-host range. *Proceedings of the National Academy of Sciences, USA* 104: 4979–4983.

Gosney BJ, O’Reilly-Wapstra JM, Forster LG, Barbour RC, Iason GR, Potts BM. 2014. Genetic and ontogenetic variation in an endangered tree species dependent arthropod and fungal communities. *PLoS ONE* 9: e114122.

Grime JP, Hodgson JG, Hunt R. 2014. Comparative plant ecology: a functional approach to common British species. New York, NY, USA: Springer.

Guererro-Ramirez N, Moomer L, Freschet GT, Iversen CM, McCormack ML, Katteg J, Poorter H, van der Pas F, Bergmann J, Kuyper TW et al. 2020. Global root traits (GROOT) database. *Global Ecology and Biogeography*. doi: 10.1111/gebi.13179.

Gui H, Hyde K, Xu J, Mortimer P. 2017. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. *Scientific Reports* 7: 42184.

Hannula SE, Kielak AM, Steinauer K, Huberty M, Jongen R, De Long JR, Heiner M, Bezemer TM. 2019. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. *mBio* 10: 19.

Henn JJ, Buzaard V, Enquist BJ, Halbritter AH, Klanderud K, Maitner BS, Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Hodge A, Fitter AH. 2010. Effects of grass and forb species on soil bacterial and fungal communities. *Annual Review of Ecology, Evolution, and Systematics* 35: 743–764.

Keck F, Richet F, Bouchez A, Franc A. 2016. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. *Ecology and Evolution* 6: 2774–2780.

Keenan TF, Niinemets Ü. 2016. Global leaf trait estimates biased due to plasticity in the shade. *Nature Plants* 3: 201.

Kirk LA, Hawk CW. 2020. Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. *Ecology* 101: 2983.

Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. *New Phytologist* 203: 863–872.

Kuhn M. 2019. caret: Classification and Regression Training. R package v6.6-80. [WWW document] URL https://cran.r-project.org/web/packages/caret/index.html.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* 35: 1547–1549.

Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. *Soil Biology and Biochemistry* 40: 2407–2415.

Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Fritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D et al. 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. *ISME Journal* 12: 1795–1805.

Legay N, Baxendale C, Grigulis K, Kraurer U, Karlst E, Schloter M, Bardgett RD, Arnoldi C, Bahn M, Dumont M et al. 2014. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. *Annals of Botany* 114: 1011–1021.

Lekberg Y, Nasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, Larkin BG, Øpik M. 2018. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? *New Phytologist* 220: 971–976.

Lekberg Y, Waller LP. 2016. What drives differences in arbuscular mycorrhizal fungal communities among plant species? *Fungal Ecology* 24: 135–138.

Li H, Liu B, McCormack ML, Ma Z, Guo D. 2017. Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. *New Phytologist* 216: 1140–1150.

Limang M, Johnson D, Burslem DFRP, Yu S, Fang M, Taylor JD, Taylor AF, Helgason T, Liu X. 2020. Soil fungal networks maintain local dominance of ectomycorrhizal trees. *Nature Communications* 11: 1–7.

Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eisenstat DM, McCormack ML, Hedin LO. 2018. Evolutionary history resolves global organization of root functional traits. *Nature* 555: 94–97.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBO reports* 17: 10.

Marx DH. 1972. Ectomycorrhizae as biological deterrents to pathogenic root infections. *Annual Review of Phytopathology* 10: 429–454.

Matesanz S, Gianoli E, Valladares F. 2010. Global change and the evolution of phenotypic plasticity in plants. *Annals of the New York Academy of Sciences* 7: 35–55.

McCormack ML, Iversen CM. 2019. Physical and functional constraints on viable belowground acquisition strategies. *Frontiers in Plant Science* 10: 1215.

McMurtrie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS ONE* 8: e62117.

Moomer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van de Pauw JW, Schijen EGWM et al. 2018. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. *New Phytologist* 218: 542–553.

Minkemüller T, Lavergne S, Beznick B, Dray S, Jombart T, Schiffer’s K, Thuiller W. 2012. How to measure and test phylogenetic signal. *Methods in Ecology and Evolution* 3: 743–756.

Murphy MA, Evans JS, Storfer A. 2010. Quantifying Buo boreas connectivity in Yellowstone National Park with landscape genetics. *Ecology* 91: 252–261.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Ecology* 20: 241–248.

Nilsson RH, Larsson KH, Taylor AF, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glickner FO, Tedersoo L et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. *Nucleic Acids Research* 47: D259–D264.

Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. *Journal of Ecology* 98: 1074–1083.

Pagel M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401: 877–884.

Pérez-Harguindeguy N, Díaz S, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MSS, Cornell WKK, Craine JM, Guervich D, Urcelay C et al. 2013. New Handbook for standardized measurement of plant functional traits worldwide. *Australian Journal of Botany* 61: 167–234.

Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy O. 2019. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. *Nature Communications* 10: 2555.

Phillips ML, Weber SE, Andrews LV, Aronson EL, Allen MF, Allen EB. 2019. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. *Fungal Ecology* 40: 107–117.

Prober SM, Left JW, Bate ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PE, Bakker JD et al. 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. *Ecology Letters* 18: 85–95.

R Core Team. 2018. *R: a language and environment for statistical computing*. v. 3.5.1. [WWW document] URL http://www.R-project.org/.

Reinhardt DR, Miller RM. 1990. Size classes of root diameter and mycorrhizal fungal colonization in two temperate grassland communities. *New Phytologist* 116: 129–136.

Rodwell JS. 1992. British plant communities, Volume 3: Grasslands & Montane Communities. Cambridge, UK: Cambridge University Press.

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. 2015. ImageJ: an open platform for biomedical image analysis. *Molecular Reproduction and Development* 82: 518–529.

Schröder JW, Martin JT, Angulo DF, Arias-Del Razo I, Barbosa JM, Pereira R, Sebastián-González E, Dirzo R. 2019. Host plant phylogeny and abundance predict root-associated fungal community composition and diversity of mutualists and pathogens. *Journal of Ecology* 107: 1557–1566.

Schüßler A, Schwarten D, Walker C. 2001. A new fungal phyllum, the Glomeromycota: phylogeny and evolution. *Mycological Research* 105: 1413–1421.

Semchenko M, Left JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S et al. 2018. Fungal diversity regulates plant-soil feedbacks in temperate grassland. *Science Advances* 4: eaau4578.

Semchenko M, Lepik M, Götzemberger L, Zobel K. 2012. Positive effect of shade on plant growth: amelioration of stress or active regulation of growth rate? *Journal of Ecology* 100: 459–466.

Singh BK, Millard P, Whiteley AS, Murrell JC. 2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. *Trends in Microbiology* 12: 386–393.

Steinauer K, Fischer FM, Roscher C, Schaeu S, Eisenhauer N. 2017. Spatial plant resource acquisition traits explain plant community effects on soil microbial properties. *Pedobiologia* 65: 50–57.

Tedersoo L, Bahram M, Cjghaimi T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J et al. 2016. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. *ISME Journal* 10: 346–362.

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A et al. 2014. Global diversity and geography of soil fungi. *Science* 346: 125688.

Valverde-Barrantes OJ, Smemo KA, Blackwood CB. 2015. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. *Functional Ecology* 29: 796–807.

Vance ED, Brookes PC, Jenkinson DS. 1987. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. *Soil Biology and Biochemistry* 19: 697–702.

Vetrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Mexázarová L, Human ZR et al. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. *Nature Communications* 10: 1–9.

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. *PCR - protocols and applications - a laboratory manual*. New York, NY, USA: Academic Press, 315–322.

Wright IJ, Westoby M, Reich PB, Oleksyn J, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellissen JHC et al. 2004. The worldwide leaf economics spectrum. *Nature* 428: 821–827.

Zak DR, Pelliti PT, Arigoiff WA, Castillo B, James TY, Nave LE, Averill C, Beidler KV, Blatnag J, Blesh J et al. 2019. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. *New Phytologist* 229: 33–39.

Zhang J, Wang P, Xue K, Hao Y, Wang Y, Cui X. 2019. Trait complementarity between fine roots of Stipa purpurea and their associated arbuscular mycorrhizal fungi along a precipitation gradient in Tibetan alpine steppe. *Journal of Mountain Science* 16: 542–547.

Zhang N, Castlebury LA, Miller AN, Huldsorf SM, Schoch CL, Seifert KA, Ross TW, Rogers JD, Kohlmeyer J, Volkman-Kohlmeyer B et al. 2006. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. *Mycologia* 98: 1076–1087.

Zhou D, Hyde KD. 2001. Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. *Mycological Research* 105: 1449–1457.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Dataset S1 Important ASVs from random forest models regressing root diameter against ASV abundance.

Dataset S2 Important ASVs from random forest models regressing root nitrogen concentration against ASV abundance.

Dataset S3 Important ASVs from random forest models regressing specific root length against ASV abundance.

Dataset S4 Important ASVs from random forest models regressing specific root area against ASV abundance.

Fig. S1 Mean relative abundance of the identified fungal phyla.

Fig. S2 NMDS ordination of the fungal communities coloured by environmental treatment.

Fig. S3 PCA of soil chemical and biological variables, coloured by environmental treatment.

Fig. S4 Path analysis showing the influence of plant traits and soil principal component axes on the relative abundance and richness of fungal guilds.

Methods S1 Commercial DNA sequencing methods.

Methods S2 Supplementary path analysis.
Table S1 Species selection with average measured trait values and GenBank accessions used to create the phylogeny.

Table S2 Results from linear mixed effects models assessing environmental treatment effects on plant trait plasticity.

Table S3 Phylogenetic structuring of plant functional traits and the calculated trait plasticity index.

Table S4 Results from PERMANOVA showing the effect of traits, the environmental treatments and their interactions on the whole fungal community.

Table S5 Mantel tests testing the correlation between plant phylogenetic relatedness and rhizosphere fungal community composition.

Table S6 Correlations between traits and the trophic guilds identified within the fungal community.

Table S7 Results from models explaining the proportion and richness of fungal trophic guilds by plant traits and the environmental conditions the plants were grown under.

Table S8 The effect of the environmental treatments upon the identified functional guilds of fungi.

Table S9 Summary of the performance of random forest modelling and the model validation procedure.

Table S10 Summary of the taxonomic and functional depth to which the ASVs identified as important within our random forest modelling were identified.

Table S11 Matrix showing the number of shared ASVs between traits with significant correlations to fungal community structure as determined by random forest regression models.

Table S12 Summary of the nine ASVs that were found to be important across the four significant random forest analyses.

Table S13 Drivers of variation in principal components derived from soil chemical and biological variables.

Table S14 Fungal guild abundance and richness explained by plant traits and first principal component of soil variables.

Table S15 Fungal guild abundance and richness explained by plant traits and second principal component of soil variables.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.