Interzeolite conversion of micronsized FAU to nanosized CHA zeolite free of organic structure directing agent with high a CO₂ capacity

Kristoffer H. Møller¹,², Maxime Debost³, Louwanda Lakiss², Søren Kegnæs¹*, Svetlana Mintova²*

¹Technical University of Denmark, Department of Chemistry, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
²ENSICAEN, Laboratoire Catalyse & Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4, France

Supporting information
Table S1: List of conditions for selected synthesis samples

Entry #	Name	FAU source	H$_2$O/Si	K/Si	Na/Si	Time / h	Phase	Yielda
1	CHA(1.9)	CBV400	40	0.76	0.25	96	CHA*	113%
2		CBV400	40	0.51	0.51	96	CHA + minor FAU	
3		CBV720	30	0.5	-	168	Amorphous	
4	CHA(2.3)	CBV720	30	1	-	168	CHA**	24%

aYield calculated by (mass product)/(mass starting zeolite) *Minor impurity of LTA or GME
**Minor impurity of LTL

ICP analysis

Table S2: ICP results for CHA zeolite samples

Sample	Si/Al	Na/Al	K/Al
CHA(1.9)	1.9	0.06	0.93
CHA(2.3)	2.3	0.01	0.97
Figure S1: SEM images of (A) FAU(15), (B) CHA(2.3), (C) FAU(2.6), and (D) CHA(1.9) zeolite samples
Figure S2: SEM image of CHA(2.3) zeolite

Figure S3: SEM image of CHA(1.9) zeolite
TEM images

Figure S4: TEM image of CHA(1.9)

Figure S5: TEM image of CHA(2.3)

Nitrogen physisorption of FAU(2.6), FAU(15), CHA(1.9), and CHA(2.3) zeolite samples
Figure S6: Nitrogen physisorption isotherm of FAU(2.6) zeolite at 77K

Figure S7: Nitrogen physisorption isotherm of FAU(15) zeolite at 77K
Figure 8: Nitrogen physisorption of CHA(1.9) at 77 K

Figure S9: Nitrogen physisorption of CHA(2.3) at 77 K
Table S3. Calculated porosity of FAU and CHA samples by N₂ physisorption at 77 K

Sample	\(V_{\text{total}} \)(cm\(^3\)/g)\(^a\)	\(V_{\text{micropore}} \)(cm\(^3\)/g)\(^b\)	\(S_{\text{BET}} \)(m\(^2\)/g)\(^c\)	\(S_{\text{ext}} \)(m\(^2\)/g)\(^b,c\)
FAU(2.6)	0.49	0.280	695	140
FAU(15)	0.36	0.280	606	62
CHA(1.9)	0.07	0.004	43	33
CHA(2.3)	0.39	0.045	251	162

\(^a\) Single point adsorption \(^b\) Determined by the t-plot method \(^c\) Determined by the Brunauer-Emmett-Teller method

CO₂ FTIR spectroscopic study

![CO₂ FTIR spectroscopic study](image)

Figure S10. IR spectra of CO₂ adsorbed on CHA(2.3) in the region of 3820-3510 cm\(^{-1}\)
Figure S11. IR spectra of pulsed CO$_2$ adsorbed on CHA(1.9) in the region of 2000-1250 cm$^{-1}$
Figure S12. IR spectra of pulsed CO₂ adsorbed on CHA(1.9) in the region of 2500-2200 cm⁻¹
Figure S13. IR spectra of pulsed CO$_2$ adsorbed on CHA(1.9) in the region of 3800-3500 cm$^{-1}$
Figure S14: IR spectra of pulsed CO$_2$ adsorbed on CHA(2.3) and after desorption at 10^{-5} torr
CO FTIR spectroscopic study

Figure S15. IR spectra of CO adsorbed on CHA(1.9) at 77 K.