REGULAR AND SINGULAR STEADY STATES OF THE 2D INCOMPRESSIBLE EULER EQUATIONS NEAR THE BAHOURI-CHEMIN PATCH

TAREK M. ELGINDI, YUPEI HUANG

ABSTRACT. We consider steady states of the two-dimensional incompressible Euler equations on \mathbb{T}^2 and construct smooth and singular steady states around a particular singular steady state. More precisely, we construct families of smooth and singular steady solutions that converge to the Bahouri-Chemin patch.

1. INTRODUCTIONS AND NOTATIONS

1.1. Introduction. We study spatially periodic solutions to the 2d incompressible Euler equations. The equations are expressed in vorticity form as:

$$\partial_t \omega + u \cdot \nabla \omega = 0,$$

(1.1)

$$u = \nabla^\perp \Delta^{-1}\omega,$$

where $\nabla^\perp = (-\partial_y, \partial_x)$.

It is well-known by the Beale-Kato-Madja criterion \cite{2} that when the vorticity is initially smooth, the solution to (1.1) stays smooth for all time. Moreover, there is a double exponential upper bound for the vorticity gradient \cite{19, 21}. An important open question is whether the double exponential upper bound of vorticity gradient is sharp. There are no known improvements on the upper bound in general, and most recent works in this direction concern specific geometric scenarios.

In the direction of improving the upper bounds, the authors of \cite{14} demonstrated that the vorticity gradient can only increase exponentially for a limited (and possibly empty) set of solutions. In \cite{3}, the authors demonstrate the presence of an open set of solutions with high regularity on $\mathbb{T} \times \mathbb{R}$ that increase at most linearly and provide a comprehensive account of the long-term behavior. For further information on the topic,
one can refer to [11, 13, 15], which provides evidence that double exponential merging of particles at the origin is not possible under certain symmetry conditions and in different domains.

In the direction of seeking solutions to the incompressible Euler equations that admit vorticity gradient growth, the authors generally study solutions near steady states. The author of [10] proved superlinear growth of the vorticity gradient for certain solutions near the steady state \(\omega^*(x, y) = \sin x \sin y \) in \(\mathbb{T}^2 \). A key feature of this steady state is that the associated velocity field induces exponential expansion and contraction near the fixed point \((0, 0)\). In the follow-up work [9], the author constructed solutions on the \(\mathbb{T}^2 \) that admit double exponential growth for the vorticity gradient for a fixed time interval by perturbing a different steady state: the Bahouri-Chemin patch, which satisfies the following equation:

\[
\Delta \psi_0(x, y) = -\text{sgn}(x)\text{sgn}(y), \quad \forall (x, y) \in \mathbb{T}^2 := \left[-\frac{1}{2}, \frac{1}{2}\right]^2 / \sim.
\]

In the important work [17], the authors proved that smooth solutions for the incompressible Euler equations in the disk can indeed experience double exponential growth of the gradient of vorticity, again by perturbing a version of the Bahouri-Chemin patch. In that work, the presence of a physical boundary is essential to get information on the long time dynamics of the flow field near the origin and it remained open whether double exponential growth could happen on \(\mathbb{T}^2 \). The author of [22] extended some of the ideas of [17] to give exponential growth for \(C^{1, \alpha} \) solutions on \(\mathbb{T}^2 \) and exponential growth of the second derivative of vorticity for smooth solutions. Later, the methods introduced in [17] were further developed to establish double exponential growth in other settings in the presence of a physical boundary (see [16] and [20]). See also [5, 12] for more recent results in the direction of long-time growth.

The purpose of this work is to investigate smooth and singular steady states near the Bahouri-Chemin patch on \(\mathbb{T}^2 \). The existence of such smooth solutions shows that constructing smooth solutions that grow double exponentially may be significantly more subtle on \(\mathbb{T}^2 \) than on domains with a boundary. Our starting point is to consider the equation for steady states of the 2d incompressible Euler equations:

\[
(1.2) \quad \nabla^\perp \psi \cdot \nabla \Delta \psi = 0,
\]
where \(\psi \) is the stream function, \(u = \nabla \perp \psi \) is the velocity, and \(\omega = \Delta \psi \) is the vorticity. It is clear that if there exists \(F \in C^1(\mathbb{R}) \) such that \(\Delta \psi = F(\psi) \), then (1.2) holds automatically. The above fact provides a way to find steady states of the 2d incompressible Euler equations. More specifically, if we can find a smooth function \(F \) and a \(\psi \) satisfying \(\psi = \Delta^{-1} F(\psi) \), \(\psi \) would correspond to the stream function for a steady state of incompressible Euler equations.

In [4], a 1-to-1 correspondence between \(\psi \) and \(F \) is established near arbitrary steady states \((\psi^*, F_0) \) satisfying certain non-degeneracy conditions. See also [6, 18, 7] for other related results in this direction. A key consideration in all of the above works is the mapping properties of the linear operator:

\[
L_s := \Delta - F_s'(\psi_s),
\]

since most of these works rely on arguments related to the implicit function theorem. In particular, in the works mentioned above, it is assumed that \(\psi_s \) and the perturbations thereof are regular enough so that it is possible to use the linearized operator \(L_s \). In cases where \(F_s \) is not differentiable, it is not clear how to replace the use of \(L_s \). In particular, in the case of Bahouri-Chemin patch, which satisfies the following semi-linear elliptic equation:

\[
\Delta \psi_0(x, y) = -\text{sgn}(\psi_0)(x, y), \quad \forall (x, y) \in \mathbb{T}^2,
\]

the jump discontinuity in \(-\text{sgn}\) makes it unclear how to proceed. Despite this difficulty, we are able to construct both smooth and singular steady states near \(\psi_0 \).

1.2. Main results. We now state the main results of our paper. The first theorem concerns smooth steady states near the Bahouri-Chemin patch.

Theorem 1.1. There exists a fixed constant \(\epsilon_0 > 0 \), such that for any \(\epsilon \in (0, \epsilon_0) \), we can find a family of odd smooth functions \(F_\epsilon \), together with a family of smooth and odd-odd functions \(\psi_\epsilon \) such that the following relation holds:

\[
\psi_\epsilon(x, y) = \Delta^{-1} F_\epsilon(\psi_\epsilon(x, y)), \quad (x, y) \in \mathbb{T}^2 = \left[\frac{-1}{2}, \frac{1}{2} \right]^2 / \sim .
\]

In addition, we have the following properties:

\(^1\)This means that \(\psi_\epsilon(-x, y) = -\psi_\epsilon(x, y) = \psi_\epsilon(x, -y) \), for all \(\epsilon, x, y \).
• The L^∞-norm of $\Delta \psi_\epsilon$ is bounded by 1, i.e., $||\Delta \psi_\epsilon||_{L^\infty(T^2)} \leq 1$.
• For any $\epsilon \in (0, \epsilon_0)$, the function $\psi_\epsilon(x,y)$ is jointly smooth in all its variables: $\psi_\epsilon(\cdot, \cdot) \in C^\infty((0, \epsilon_0) \times T^2)$.
• When the parameter ϵ approaches 0, the sequence of the stream functions ψ_ϵ converges to the Bahouri-Chemin patch ψ_0 in $C^{1,\alpha}(T^2)$:
\[\lim_{\epsilon \to 0} ||\psi_\epsilon - \psi_0||_{C^{1,\alpha}(T^2)} = 0, \]
for any $\alpha \in [0, 1)$.

Remark 1.1. Since $\Delta \psi_0$ itself is discontinuous, the convergence of ψ_ϵ to ψ_0 cannot happen in C^2 or uniformly in the vorticity. The argument to construct smooth steady states near ψ_0 can be easily extended to construct smooth steady states near corresponding Bahouri-Chemin patches on the disk whose vorticity vanishes on the boundary. Note that a consequence of [17] is that any odd smooth solution on the disk close to the Bahouri-Chemin patch, with non-constant vorticity on the boundary, must experience infinite gradient growth.

Our second theorem deals with singular steady states near the Bahouri-Chemin patch.

Theorem 1.2. There exists a fixed constant $\epsilon_0 > 0$, such that for any fixed $\epsilon \in (0, \epsilon_0)$, there is a steady state ϕ_ϵ whose vorticity has algebraic singularities on the separatrices $\{x = k/2\}_{k \in \mathbb{Z}} \cup \{y = k/2\}_{k \in \mathbb{Z}} \subseteq T^2 = [-1/2, 1/2]^2 \setminus \{0\}$. Moreover, these singular steady states approach the Bahouri-Chemin patch ψ_0 as ϵ goes to 0, i.e.,
\[\lim_{\epsilon \to 0} ||\phi_\epsilon - \psi_0||_{C^1(T^2)} = 0. \]
Furthermore, particles transported by the velocity field of these singular steady states may hit the origin in finite time.

Remark 1.2. We recall that the particles transported by the flow generated by the Bahouri-Chemin patch can only approach the origin at most double-exponentially. This is in strong contrast to our result in Theorem 1.2.

1.3. **Main ideas of the paper.** To find smooth steady states near the Bahouri-Chemin patch, we study the fixed points of the operator $T_\epsilon := \Delta^{-1}(F_\epsilon)$ in a certain subset of
$C^1(\mathbb{T}^2)$. While previous results in this direction usually invoked versions of the Banach fixed-point theorem, we rely here on the Schauder fixed-point theorem, which seems to be more well-adapted to singular situations. In particular, we do not need to directly analyze any linearized operator. Toward applying the Schauder fixed point theorem, the goal will be to find a closed, convex, and bounded set that is invariant under the mapping T_ϵ.

The existence of an invariant set for T_ϵ is largely based on the analysis of the geometry of the near-zero level sets of ψ_0. It is known from [1] that

$$C|xy| \ln \frac{1}{x^2 + y^2} < |\psi_0(x, y)|,$$

in a neighborhood of $(0, 0)$, for some fixed constant $C > 0$. Due to the super quadratic growth of $|\psi_0|$ near the origin, we prove that the region where $|\psi_0| < \epsilon$ has an area approximately $\epsilon \ln \frac{1}{\epsilon}$ as $\epsilon \to 0$. This observation is key in determining the right bounds for the sought invariant set of T_ϵ. A proper choice of F_ϵ combined with potential theory estimates guarantees that a suitably chosen small neighborhood of ψ_0 in C^1 is invariant under the map $\Delta^{-1} F_\epsilon$.

In the direction of finding singular steady states near the Bahouri-Chemin patch, we seek solutions for $\Delta \psi_\epsilon = F_\epsilon(\psi_\epsilon)$, where the forcing term F_ϵ has an algebraic singularity. More specifically, when $F_\epsilon(x)$ is an odd function such that

$$F_\epsilon(x) = \begin{cases}
-\epsilon^s x^s, & 0 < x < \epsilon, \\
-1, & x \geq \epsilon.
\end{cases}$$

It is not difficult to extend the proof of Theorem 1.1 to show that corresponding solutions ψ_ϵ exist and converge to ψ_0 when $\epsilon \to 0$ in the case where $0 < s < \frac{1}{2}$. We are also able to do this in the case $\frac{1}{2} \leq s < 1$, but the proof requires more work. In contrast to the proof of Theorem 1.1 and case $s < \frac{1}{2}$, we cannot simply rely on lower bounds of $|\psi_0|$ when $s \geq \frac{1}{2}$. Here, we have to use a barrier argument (inspired by [8]) to establish s-dependent a-priori lower bounds on ψ_ϵ that can be used to close the fixed point scheme.

1.4. Organization of the paper. The rest of the paper will be organized as follows. In Section 2, we will prove Theorem 1.1. We will start by giving some technical lemmas and then prove the results concerning existence in Theorem 1.1. Then we will discuss smooth
dependence on ϵ when $\epsilon > 0$ and finish the proof of the Theorem 1.1. In Section 3, we will prove Theorem 1.2. In Appendix A, we collect a few technical facts that we need in the proofs.

1.5. Notation. Throughout this paper, we will reserve some characters for certain quantities according to the following rules:

- \mathbb{T}^2: $[-\frac{1}{2}, \frac{1}{2}]^2/\sim$, where $(x_1, y_1) \sim (x_2, y_2)$ if there is a pair $(m, n) \in \mathbb{Z}^2, (x_1, y_1) = (x_2 + m, y_2 + n)$.
- \mathcal{T}: the triangle region $\{0 < y < x < \frac{1}{4}\}$.
- \mathbb{T}^2^+: the first quadrant of flat torus $\{0 < x < \frac{1}{2}, 0 < y < \frac{1}{2}\}$
- \mathbb{R}^2^+: the first quadrant in $\mathbb{R}^2 \{x > 0, y > 0\}$
- $B_\delta(x)$: the ball centered at x with radius δ. When $x = 0$, we simply write B_δ.
- K_δ: an approximation of the identity. $K_\delta(x) = \frac{1}{\delta}K\left(\frac{x}{\delta}\right)$, where $K(x)$ is a smooth non-negative even function with support in $(-1, 1)$, and $\int_{\mathbb{R}} K(x)dx = 1$.
- ϵ : the continuation parameter.
- ϵ_0: the positive constant given in Theorem 1.1.
- C: Generic positive constant that can change from line to line, which is independent of ϵ_0.
- C_1: A positive constant used to define the invariant set for T_ϵ.
- C_2: Generic positive constant depending on ϵ.
- $\chi_A(x)$: the characteristic function of a set A.
- $\text{sgn}(x)$:

$$\text{sgn}(x) = \begin{cases} -1, & x < 0, \\ 1, & x \geq 0. \end{cases}$$

- G: the Green’s function of the Laplacian on the torus. See Lemma A.1
- Δ^{-1}: $\Delta^{-1} f = f * G$.
- ψ_0 :

$$\psi_0 = \Delta^{-1}[-\text{sgn}(x)\text{sgn}(y)],$$

the stream function of the Bahouri-Chemin patch.
2. **The smooth steady states near ψ_0**

The purpose of this section is to give a proof of Theorem 1.1. We will firstly give the definition of F_ϵ, and then divide the proof of Theorem 1.1 into two parts:

- The existence of smooth steady states near ψ_0 associated to F_ϵ,
- The smooth dependence of ψ_ϵ on ϵ.

The definition and basic properties of F_ϵ. We choose $F_\epsilon(x) = -\text{sgn}(\cdot) * K_\epsilon(x)$. It is not difficult to show the following Lemma, whose proof relies only on the definition of convolution.

Lemma 2.1. We have that $F_\epsilon \in C^\infty$ is odd and non-increasing. Moreover, we have that

$$|F_\epsilon|_{L^\infty} \leq 1, \quad |F_\epsilon'|_{L^\infty} \leq \frac{C}{\epsilon}.$$

If $x < -2\epsilon$, $F_\epsilon(x) = 1$. For $\epsilon > 0$, F_ϵ is smooth in $C^k(\mathbb{R})$ for every k. If ψ_ϵ is odd-odd, then $\Delta^{-1}(F_\epsilon(\psi_\epsilon))$ is also odd-odd.

2.1. **On the existence of smooth steady states near ψ_0.** In this section, our main purpose is to prove the theorem below, which shows we can approximate ψ_0 by a sequence of smooth steady states in $C^{1,\alpha}(\mathbb{T}^2)$, for $\alpha \in [0, 1)$:

Theorem 2.1. There is a constant $\epsilon_0 > 0$, such that for any $\epsilon \in (0, \epsilon_0)$, we can find a smooth function ψ_ϵ satisfying

$$(2.1) \quad \psi_\epsilon = \Delta^{-1}(F_\epsilon(\psi_\epsilon)).$$

Moreover, we have the following properties:

- $\|\psi_\epsilon - \psi_0\|_{C^1(\mathbb{T}^2)} \leq C \sqrt{\epsilon \ln \frac{1}{\epsilon}}$,
- $|\Delta \psi_\epsilon| < 1$,
- For $\alpha \in [0, 1)$, we have
 $$\lim_{\epsilon \to 0} \|\psi_\epsilon - \psi_0\|_{C^{1,\alpha}(\mathbb{T}^2)} = 0.$$
As discussed in the introduction, our goal is to prove that the following non-linear map $T_{\varepsilon}\psi = \Delta^{-1}(F_{\varepsilon}(\psi))$ has a fixed point. In the proof of Theorem 1.1, we will use the Schauder fixed point theorem:

Theorem 2.2 (Schauder 1930). Let M be a closed, convex and bounded set in a Banach space X, if $T : M \rightarrow M$ is compact, then T has a fixed point.

We notice the fact that $\|F_{\varepsilon}\|_{L^\infty} \leq 1$ as in Lemma 2.1, then by the properties of the Green function in Lemma A.1, T_{ε} is certainly a compact map from the space of C^1 odd-odd functions to itself. The key now to prove Theorem 2.1 is to find a bounded invariant subset. This is the content of the following Lemma.

Lemma 2.2. There is a $\varepsilon_0 > 0$ and a constant C_1, such that for any $\varepsilon \in (0, \varepsilon_0)$, we have that the set

$$K_{\varepsilon} := \left\{ \psi \in C^1 \mid \|\psi - \psi_0\|_{C^1(T^2)} \leq C_1 \sqrt{\epsilon \ln \frac{1}{\varepsilon}} \right\} \cap \left\{ \psi \mid \psi(x, y) = \psi(-x, -y) = -\psi(x, y) = -\psi(x, -y) = \psi(y, x) \right\}$$

is invariant under the mapping T_{ε}.

To prove that $T_{\varepsilon} : K_{\varepsilon} \rightarrow K_{\varepsilon}$, we need to estimate $\|T_{\varepsilon}\psi - \psi_0\|_{C^1}$. To do this, we write:

$$\|T_{\varepsilon}\psi - \psi_0\|_{C^1} = \|\Delta^{-1}(F_{\varepsilon}(\psi) + \text{sgn}(\psi))\|_{C^1} = \|\Delta^{-1}(F_{\varepsilon}(\psi) + \text{sgn}(\psi))\chi_{|\psi|<2\varepsilon}\|_{C^1}.$$

In the last equality, we use that $F_{\varepsilon}(x) = -\text{sgn}(x)$, when $|x| > 2\varepsilon$. It then becomes clear that we need to study the size of the set $\{|\psi| < 2\varepsilon\}$ for any element $\psi \in K_{\varepsilon}$. To do this, we start by studying the size of $\{|\psi_0| < 2\varepsilon\}$. Application of a Steiner-type estimate and a judicious choice of C_1 then allows us to conclude the invariance of K_{ε}.

2.2. Properties of the Bahouri-Chemin patch and some technical lemmas.

We have the following Lemma.

Lemma 2.3. $\psi_0 \in C^1(T^2)$ is odd-odd and positive on $T^2_+ := (0, \frac{1}{2})^2$. ψ_0 is also symmetric with respect to the diagonal line $y = x$ and the lines $x = \frac{1}{4}$ and $y = \frac{1}{4}$. Moreover, for
\((x, y) \in \mathcal{T} := \{0 < y < x < \frac{1}{4}\}\), we have that

\begin{equation}
\frac{1}{C} xy \ln \frac{1}{x} < \psi_0(x, y) < C xy \ln \frac{1}{x}.
\end{equation}

![Figure 2.1. Illustrative figure for \(\psi_0\)]

We will give the proof of these properties in the Appendix. As we have mentioned, a key step in our argument is to estimate the area of the set \(\{|\psi| < 2\epsilon\}\) for \(\psi \in \mathcal{K}_\epsilon\). We start with the following key Lemma about \(\psi_0\).

Lemma 2.4 (Level set estimate for \(\psi_0\)). *If \(A\) is sufficiently small, we have that*

\[|\{|\psi| < A\}| \leq CA \ln \ln \frac{1}{A}.\]

Proof. By the symmetries in Lemma 2.3, we may consider the points of \(\{(x, y) : |\psi_0(x, y)| < A\}\) in \(\mathcal{T}\). In this region, again by Lemma 2.3, we have that

\[0 < y < L_A(x) := \min \left\{ C \cdot \frac{A}{x \ln \frac{1}{x}}, x \right\}.\]

It follows that the area of the region in question is bounded by

\[C \int_0^\frac{1}{4} L_A(x) \leq CA \ln \ln \frac{1}{A}.\]

The result follows. \(\square\)
Next, we will do a similar level-set estimate for $\psi \in \mathcal{K}_\epsilon$.

Lemma 2.5 (Key Estimate for $\psi \in \mathcal{K}_\epsilon$). For any $\psi \in \mathcal{K}_\epsilon$, we have

$$\left| \{ (x,y) : |\psi(x,y)| < 2\epsilon \} \right| \leq C \left(\epsilon \ln \ln \frac{1}{\epsilon} + C_1 \frac{\epsilon}{\ln \frac{1}{\epsilon}} \right),$$

where C_1 is as in the definition of \mathcal{K}_ϵ.

Restricting to \mathcal{T}, to prove Lemma 2.5 we split the region $\{|\psi| < 2\epsilon\}$ into the region $\{\psi < \frac{1}{2} \psi_0\}$ and the region $\{\psi > \frac{1}{2} \psi_0\}$. The first region is considered in the following Lemma.

Lemma 2.6 (Small error estimate). Let ψ be a fixed C^1 function with $\|\psi - \psi_0\|_{C^1(T^2)} = B$ sufficiently small, then

$$\Omega_B := \left\{ (x,y) \in \mathcal{T} : (\psi_0 - \psi)(x,y) > \frac{1}{2} \psi_0(x,y) \right\} \subseteq \left\{ 0 < y < x < \frac{CB}{\ln \frac{1}{B}} \right\}.$$

Proof. The set Ω_B in question is contained in $\{(x,y) : 0 < y < x, \psi_0(x,y) < 2By\}$, since $\psi_0 - \psi$ vanishes on $y = 0$ and its derivative is bounded by B. By Lemma 2.3 it follows that

$$x \ln \frac{1}{x} < CB.$$

The result follows. \qed

We now give the proof of Lemma 2.5.
Proof of Lemma 2.5. By the various symmetry assumptions of $\psi \in K_\epsilon$, it suffices to restrict the study on the domain

$$\Omega = \{(x, y) \in T : |\psi(x, y)| < 2\epsilon\}.$$

We divide the domain Ω into two parts:

$$\Omega_1 = \{\psi_0(x, y) > 2\psi(x, y)\} \cap \Omega,$$
$$\Omega_2 = \{\psi_0(x, y) < 2\psi(x, y)\} \cap \Omega.$$

It is obvious that

$$\Omega_1 \subseteq \left\{(x, y) \in T : (\psi_0 - \psi)(x, y) > \frac{1}{2}\psi_0(x, y)\right\}.$$

By applying Lemma 2.6 with $B = C_1 \sqrt{\frac{\epsilon \ln \frac{1}{\epsilon}}{1}}$, we have

$$|\Omega_1| \leq CC_1\frac{\epsilon \ln \frac{1}{\epsilon}}{(\ln \frac{1}{c_1} + \ln \frac{1}{\epsilon \ln \frac{1}{\epsilon}})^2} \leq CC_1\frac{\epsilon}{\ln \frac{1}{\epsilon}}.$$

Moreover, we have $\Omega_2 \subseteq \{(x, y) \in T : \psi_0 < 4\epsilon\}$, apply Lemma 2.5 we have the following estimate of Ω_2:

$$|\Omega_2| \leq C\epsilon \ln \frac{1}{\epsilon}.$$

We thus close the proof of Lemma 2.5 by combining (2.3) and (2.4). □
Steiner type estimate below will be used in the proof of Lemma 2.2:

Lemma 2.7 (Steiner type estimate). \[\int_{\Omega} \frac{1}{||\mathbf{x} - (x_1, y_1)||} dx_1 dy_1 \leq C \sqrt{|\Omega|}. \]

The proof of Lemma 2.7 simply follows from writing the integral in polar coordinates with respect to \((x, y)\).

2.2.1. **Proof of Lemma 2.2** We now establish Lemma 2.2. By the symmetries enjoyed by elements of \(\mathcal{K}_\epsilon\), it suffices to prove that for all \((x, y) \in T\), we have:

\[|\nabla (T_\epsilon \psi - \psi_0)(x, y)| \leq C_1 \sqrt{\frac{1}{\epsilon}}. \]

Using the various symmetry assumptions on \(\psi\) and Lemmas A.1 and 2.1, we have:

\[
\begin{align*}
|\nabla (T_\epsilon \psi - \psi_0)(x, y)| & = \left| \int_{T^2} \left(F_\epsilon(\psi(x_1, y_1)) + \text{sgn}(x_1)\text{sgn}(y_1) \right) \nabla_{x,y} G((x, y), (x_1, y_1)) dx_1 dy_1 \right| \\
& \leq C \int_{T^2} \left(1 + \frac{1}{||x - x_1, y - y_1||} \right) |F_\epsilon(\psi(x_1, y_1)) + 1| dx_1 dy_1 \\
& \leq \int_{T^2 \cap \{ \psi(x,y) < 2\epsilon \}} \frac{C}{||x - x_1, y - y_1||} dx_1 dy_1.
\end{align*}
\]

Note that in the second equality above, we used that \(F_\epsilon(z) = -1\) when \(z > 2\epsilon\). Furthermore, using Lemma 2.7, Lemma 2.5 we have

\[
\begin{align*}
|\nabla (T_\epsilon \psi - \psi_0)(x, y)| & \leq \sqrt{\left\{ \psi(x, y) < 2\epsilon \right\}} \\
& \leq C \sqrt{\epsilon \ln \ln \frac{1}{\epsilon}} + C C_1 \sqrt{\frac{\epsilon}{\ln \frac{1}{\epsilon}}} \\
& \leq \frac{C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon}}}{4}.
\end{align*}
\]

This concludes the proof of Lemma 2.2.
2.2.2. **Return to the proof of Theorem 2.1**. Now that we have Lemma 2.2, by the Schauder fixed point theorem, we can find \(\psi_\epsilon \) such that
\[
\| \psi_\epsilon - \psi_0 \|_{C^1(T^2)} \leq C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon}},
\]
\[
\psi_\epsilon = \Delta^{-1}F_\epsilon(\psi_\epsilon).
\]
Moreover, since \(F_\epsilon \) is smooth, \(\psi_\epsilon \) is also smooth for any \(\epsilon > 0 \) with the \(\epsilon \)-independent bound:
\[
(2.5) \quad \| \Delta \psi_\epsilon \|_{L^\infty} = \| F_\epsilon(\psi_\epsilon) \|_{L^\infty} \leq 1.
\]
From (2.5), we have for \(\beta \in (\alpha, 1) \), there is a constant \(C_\beta \), such that
\[
\| \psi_\epsilon \|_{C^{1,\beta}(T^2)} \leq C_\beta.
\]
Using interpolation, it is not difficult to show then that
\[
\lim_{\epsilon \to 0} \| \psi_\epsilon - \psi_0 \|_{C^{1,\alpha}(T^2)} = 0.
\]
This concludes the proof of Theorem 2.1, which gives the existence of a family of smooth steady states \(\psi_\epsilon \) near \(\psi_0 \). The proof does not give any information on the dependence of \(\psi_\epsilon \) on \(\epsilon \). We will consider this in the next subsection and thus complete the proof of Theorem 1.1.

2.3. **The smooth dependence of \(\psi_\epsilon \) with respect to \(\epsilon \)**. In this section, we will first recall a version of the inverse function theorem:

Theorem 2.3 (Inverse function theorem for steady state). Let \(F(t,x) \in \mathcal{C}^\infty(\mathbb{R}^2) \), we assume
\[
\Delta \psi^*_0 = F(0, \psi^*_0),
\]
\[
\psi^*_0 \in \mathcal{H}^2 := H^2(T^2) \cap \{ \psi \mid \psi(x,y) = \psi(-x,-y) = -\psi(-x,y) = -\psi(x,-y) = \psi(y,x) \}.
\]
Furthermore, we assume the following:
\[
(H_1) \quad \Delta - D_xF(0, \psi^*) \text{ be an isomorphism from } \mathcal{H}^2 \to \mathcal{L}^2 := L^2(T^2) \cap \{ \psi \mid \psi(x,y) = \psi(-x,-y) = -\psi(-x,y) = -\psi(x,-y) = \psi(y,x) \}.
\]
Then there are positive constants \(a \) and \(b \), such that
• for $|t| < a$, there is uniquely a function ψ_i^* such that
 \[\|\psi_i^* - \psi_0^*\|_{H^2} < b, \]
• ψ_i^* is a smooth map from $(-a, a)$ to H^2.

We will prove the steady states we constructed in Theorem 2.1 satisfy the assumption H_1 of Theorem 2.3:

Theorem 2.4. Let ψ_ϵ belong to
\[C_\epsilon := \left\{ \psi \mid \psi(x, y) = \psi(y, x) = -\psi(-x, y), \|\psi - \psi_0\|_{C^1(T^2)} \leq C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon \ln \ln \frac{1}{\epsilon}}} \right\} \]
and satisfy the semi-linear elliptic equation (2.1). There is a positive constant ϵ_0, such that for $0 < \epsilon < \epsilon_0$, $\Delta - F'_\epsilon(\psi_\epsilon)$ is an isomorphism from H^2 to L^2.

Based on Theorem 2.3 and Theorem 2.4, for every fixed ψ_ϵ we constructed in Theorem 2.1, there is a smooth curve consisting of steady states satisfying (2.1) passing through ψ_ϵ. We can then prove the $\{\psi_\epsilon\}$ we construct in Theorem 2.1 is a smooth curve consisting of smooth steady states close to ψ_0 based on the following uniqueness result concerning the solutions of (2.1):

Theorem 2.5. There is a positive constant ϵ_0, such that for any fixed $\epsilon \in (0, \epsilon_0)$, the following statement holds. Assume that ψ_1 and ψ_2 are two solutions to the semi-linear elliptic equation (2.1) in the function space C_ϵ, then
\[\psi_1 = \psi_2. \]

2.3.1. *On the proof of Theorem 2.4.* In this section, we will discuss the proof of Theorem 2.4 to verify that the steady states we construct in Theorem 2.1 satisfy the assumption of Theorem 2.3. Firstly, we need the lemma below which estimates the thickness of the sublevel set of $\psi \in C_\epsilon$:

Lemma 2.8. For any $\psi \in C_\epsilon$, we have the estimate
\[\Omega = \{(x, y) \in T : |\psi| < 2\epsilon\} \subseteq \Omega_{level} \cup \Omega_{error}, \]
where Ω_{level} and Ω_{error} is defined as

\begin{equation}
\Omega_{\text{level}} := \left\{(x, y) : y \leq \frac{C \sqrt{\epsilon}}{\ln \frac{1}{\epsilon}} \right\},
\end{equation}

(2.6)

\begin{equation}
\Omega_{\text{error}} := \left\{(x, y) : 0 < y < x < CC_1 \frac{\sqrt{\epsilon}}{(\ln \frac{1}{\epsilon})^{\frac{1}{4}}} \right\}.
\end{equation}

(2.7)

We now give the proof of Lemma 2.8

Proof of Lemma 2.8 Let Ω_1, Ω_2 be the ones defined as below:

\begin{align*}
\Omega_1 &= \{\psi_0(x, y) > 2\psi(x, y)\} \cap \Omega, \\
\Omega_2 &= \{\psi_0(x, y) < 2\psi(x, y)\} \cap \Omega.
\end{align*}

we have

$$\Omega \subseteq \Omega_1 \cup \Omega_2.$$

By Lemma 2.6 with $B = C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon} \ln \frac{1}{\epsilon}}$, we have $\Omega_1 \subseteq \Omega_{\text{error}}$. In Ω_2, we use the bound

$$y < C\min(x, \frac{2\epsilon}{x \ln x}),$$

and we have $\Omega_2 \subseteq \Omega_{\text{level}}$.

The proof is now completed. \hfill \square

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{figure2_4.png}
\caption{Graph of Ω_1}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{figure2_5.png}
\caption{Graph of Ω_2}
\end{figure}

We now apply Lemma 2.8 to prove Theorem 2.4
Proof of Theorem 2.4. Since \triangle is an isomorphism from H^2 to L^2, and F'_ϵ is relative compact to Δ, by the Fredholm alternative, $\triangle - F'_\epsilon$ is isomorphism if and only if it is injective. Per absurdum, if $\triangle - F'_\epsilon$ is not isomorphism, there is non-zero $\psi \in H^2$ such that

\begin{equation}
\triangle \psi = F'_\epsilon(\psi_\epsilon)\psi.
\end{equation}

Multiply (2.8) by ψ and use integration by parts, from various symmetry assumptions on F_ϵ, ψ and ψ_ϵ we have:

\[
\int_{\mathbb{T}} |\nabla \psi|^2 \, dx \, dy = 16 \int_{\mathbb{T}} F'_\epsilon(\psi_\epsilon)|\psi|^2 \, dx \, dy
\]

From Lemma 2.1 and Lemma 2.8, we have

\begin{equation}
\int_{\mathbb{T}} |\nabla \psi|^2 \, dx \, dy \leq \frac{C}{\epsilon} \int_{\{\psi < 2\epsilon \cap \Omega\}} |\psi|^2 \, dx \, dy \\
\leq \frac{C}{\epsilon} \int_{\Omega_{level}} |\psi|^2 \, dx \, dy + \frac{C}{\epsilon} \int_{\Omega_{error}} |\psi|^2 \, dx \, dy := J_1 + J_1^2.
\end{equation}

Estimate of J_1^1:

From Hölder’s inequality, we have

\begin{equation}
|\psi(x, y)|^2 = |\psi(x, 0) + \psi(x, y) - \psi(x, 0)|^2 \leq \left(\int_0^y |\psi_y|(x, s) \, ds \right)^2 \\
\leq y \int_0^y |\psi_y|^2(x, s) \, ds \leq y \int_0^y |\psi_y|^2(x, s) \, ds.
\end{equation}

By (2.10) and (2.6), we have

\begin{equation}
J_1^1 \leq \frac{C}{\ln^2(\epsilon)} \int_{\Omega} |\psi_y|^2 \, dx \, ds \\
\leq \frac{1}{16} \int_{\mathbb{T}} |\nabla \psi|^2 \, dx \, dy.
\end{equation}
Estimate on J_1^2:
By (2.10) and (2.7), we have

\[
J_1^2 \leq \frac{C}{\sqrt{\ln \frac{1}{\epsilon}}} \int_T |\nabla \psi|^2 dxdy \\
\leq \frac{1}{16} \int_{T^2} |\nabla \psi|^2 dxdy.
\]

(2.12)

By (2.9), (2.11) and (2.12), we would have

\[
\int_{T^2} |\nabla \psi|^2 dxdy \leq \frac{1}{2} \int_{T^2} |\nabla \psi|^2 dxdy,
\]

which implies

\[
\nabla \psi = 0.
\]

The result follows. \(\square\)

2.3.2. The sketch of proof of Theorem 2.5
The proof of Theorem 2.5 is similar to the proof of Theorem 2.4 and we will sketch here.

Sketch of the proof of Theorem 2.5
Since $\Delta(\psi^1 - \psi^2) = F_\epsilon(\psi^1) - F_\epsilon(\psi^2)$, by various symmetry assumptions on F_ϵ, ψ^1 and ψ^2, we have

\[
\int_{T^2} |\nabla (\psi^1 - \psi^2)|^2 dxdy = 16 \int_{T} (\psi_1 - \psi_2)(F_\epsilon(\psi^2) - F_\epsilon(\psi^1))dxdy \\
\leq \frac{C}{\epsilon} \int_{T \cap \{\psi^1(x,y) < 4\epsilon\}} |\psi^1 - \psi^2|^2 dxdy + \frac{C}{\epsilon} \int_{T \cap \{\psi^2(x,y) < 4\epsilon\}} |\psi^1 - \psi^2|^2 dxdy.
\]

(2.13)

Since $\psi^1, \psi^2 \in C_\epsilon$ from Lemma 2.8, we have

\[
T \cap \{\psi^i(x,y) < 4\epsilon\} \subseteq \Omega_{\text{level}} \cup \Omega_{\text{error}}, \text{ for } i = 1, 2,
\]
where Ω_{level} is defined in (2.6) and Ω_{error} is defined in (2.7). Again by (2.10), from (2.13) we have:

$$
\int_{\mathbb{T}^2} |\nabla (\psi^1 - \psi^2)|^2 dxdy \\
\leq \frac{C}{\sqrt{\ln \frac{1}{\epsilon}}} \int_{\mathbb{T}^2} |\nabla (\psi^1 - \psi^2)|^2 dxdy \\
\leq \frac{1}{2} \int_{\mathbb{T}^2} |\nabla (\psi^1 - \psi^2)|^2 dxdy,
$$

which implies $\psi^1 = \psi^2$, and we get a contradiction. \[\square\]

2.3.3. Concluding the proof of Theorem 1.1. Given the setup of Theorem 1.1, by Theorem 2.4 and Theorem 2.3 we have: \[\forall \epsilon^*, 0 < \epsilon^* < \epsilon_0,\] we can find constant $a(\epsilon^*)$ and a family of functions $\{\psi_{\epsilon^*}\}$, such that

$$
\psi_{\epsilon^*}(\ldots) \in C^\infty((\epsilon^* - a, \epsilon^* + a) \times \mathbb{T}^2),
$$

and

$$
\psi_{\epsilon^*} = \psi_{\epsilon^*},
$$

$$
\psi_{\epsilon^*} = \Delta^{-1} F_{\epsilon}(\psi_{\epsilon^*}),
$$

$$
\|\psi_{\epsilon^*} - \psi_0\|_{C^1(\mathbb{T}^2)} < C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon} \ln \ln \frac{1}{\epsilon}}.
$$

While in the Theorem 2.1, the steady states we construct satisfy the following equation:

$$
\psi_{\epsilon} = \Delta^{-1} F_{\epsilon}(\psi_{\epsilon}),
$$

$$
\|\psi_{\epsilon} - \psi_0\|_{C^1(\mathbb{T}^2)} < C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon} \ln \ln \frac{1}{\epsilon} < C_1 \sqrt{\epsilon \ln \frac{1}{\epsilon} \ln \ln \frac{1}{\epsilon}.}
$$

By Theorem 2.5 and (2.14), we proved

$$
\psi_{\epsilon^*} = \psi_{\epsilon}.
$$

The equation (2.15) in particular implies that the steady states $\{\psi_{\epsilon}\}$ we constructed in Theorem 2.1 is a smooth curve consisting of smooth steady states that converges to ψ_0 as ϵ tends to 0.
3. Singular steady states near ψ_0

In this section, we will discuss solutions of

\[(3.1) \quad \Delta \phi_{\epsilon} = P_{\epsilon}(\phi_{\epsilon})\]

in \mathbb{T}^2, where $P_{\epsilon}(x)$ is an odd function such that

\[P_{\epsilon}(x) = \begin{cases} -\frac{\epsilon^s}{x^s}, & 0 < x < \epsilon, \\ -1, & x \geq \epsilon. \end{cases}\]

We will prove the following statement:

Theorem 3.1. Let $0 < s < 1$, there is a constant $\epsilon_0 > 0$, if $0 < \epsilon < \epsilon_0$, (3.1) has a unique $C^1(\mathbb{T}^2)$ solution ϕ_{ϵ} in the class

\[\mathcal{D} := \{ \phi | \phi(x, y) = -\phi(-x, y) = -\phi(x, -y) = \phi(y, x) \} \]

\[\cap \{ \phi | \phi(x, y) \geq \psi_0(x, y), \text{for } (x, y) \in \mathcal{T} \}.\]

Moreover, we have the following property

- \[\lim_{\epsilon \to 0} \| \phi_{\epsilon} - \psi_0 \|_{C^1(\mathbb{T}^2)} = 0,\]
- The Lagrangian flow generated by ϕ_{ϵ} becomes immediately discontinuous as multiple trajectories can emanate from or arrive at the origin in finite time.

The uniqueness of the solution can be derived from the maximum principle. (see for example, [8].) For the existence of solutions and the C^1 convergence, when $0 < s < \frac{1}{2}$, we could use similar arguments as what we did in the proof of Theorem 1.1. For the case $\frac{1}{2} \leq s < 1$, we need better control on ϕ_{ϵ} near the origin.

3.1. **On the proof of Theorem 3.1.** We will first state and prove a uniform estimate for $P_{\epsilon}(\phi_{\epsilon})$.

Lemma 3.1. Let $1 \leq p < \frac{1}{s}$, for any $\phi_{\epsilon} \in \mathcal{D}$, there is a positive constant $C(p) < \infty$, such that if $\epsilon < \epsilon_0$ we have

\[\| P_{\epsilon}(\phi_{\epsilon}) \|_{L^p(\mathbb{T}^2)} \leq C(p).\]
In particular, by Hölder inequality,

\[P_\epsilon(\phi_\epsilon) \in L^1. \]

Proof of Lemma 3.1. By the construction of \(P_\epsilon \), we have

\[|P_\epsilon(\phi_\epsilon)| \leq 1 + \frac{\epsilon^s}{|\phi_\epsilon|} \chi_{|\psi_0|<\epsilon}. \]

Since \(|\phi_\epsilon| > |\psi_0| \), we have

\[|P_\epsilon(\phi_\epsilon)| \leq 1 + \frac{\epsilon^s}{|\psi_0|} \chi_{|\psi_0|<\epsilon}. \]

Then by Lemma 2.3 we have

\[(3.2) \quad |P_\epsilon(\phi_\epsilon)(x,y)| \leq C(1 + \frac{1}{|xy\ln (x^2 + y^2)|^{ps}}). \]

(3.2) finishes the proof of Lemma 3.1. \(\square \)

We now divide the proof of Theorem 3.1 into three parts:

- 1 The existence of the solution in the Theorem 3.1 when \(0 < s < \frac{1}{2} \).
- 2 The existence of the solution in the Theorem 3.1 when \(\frac{1}{2} \leq s < 1 \).
- 3 Existence of Lagrangian trajectories emanating from the origin.

3.1.1. On the existence of the solution in Theorem 3.1 when \(0 < s < \frac{1}{2} \). In this section, we prove the existence of solutions to (3.1) when \(0 < s < \frac{1}{2} \). We have the following result:

Lemma 3.2. Let \(0 < s < \frac{1}{2} \). Define \(T_\epsilon \) by

\[T_\epsilon(\phi) = \Delta^{-1} P_\epsilon(\phi). \]

Then, there exists \(\epsilon_0 > 0 \), \(C(s) > 0 \), so that for all \(0 < \epsilon < \epsilon_0 \), the set

\[\left\{ \psi \mid \| \phi - \psi \|_{C^1(T^2)} \leq C(s) \sqrt{-\epsilon \ln \epsilon} \right\} \cap D \]

is invariant under the mapping \(T_\epsilon \).

Proof of Lemma 3.2. By the explicit form of \(T_\epsilon \), we can prove the various symmetries given in the definition of \(D \) are persevered under \(T_\epsilon \). Then from maximum principle,
we get $\phi \geq \psi_0$ in T is also preserved. Moreover, by Lemma A.1 and using the various symmetry assumption on $P_\epsilon \phi$ and ψ_0, similar to the proof of Theorem 1.1, we have

$$\left| \nabla (T_\epsilon \phi - \psi_0)(x, y) \right|$$

(3.3)

$$= \left| \int_{T^2} \nabla_{x,y} G((x, y), (x_1, y_1)) (P_\epsilon(\phi) - \Delta \psi_0)(x_1, y_1) dx_1 dy_1 \right|$$

$$\leq C \int_{T^{2+}} \frac{C}{|x_1 - x, y - y_1|} |P_\epsilon(\phi)(x_1, y_1) + 1| dx_1 dy_1$$

By Lemma 2.3 Lemma 2.4 and (3.3) we have

$$\left| \nabla (T_\epsilon \phi - \psi_0)(x, y) \right|$$

$$= \sum_{k=1}^{\infty} \int_{T^{2+} \cap \{ \frac{s}{2k-1} > \phi(x_1, y_1) > \frac{s}{2k} \}} \frac{C}{|x_1 - x, y - y_1|} |P_\epsilon(\phi)(x_1, y_1) + 1| dx_1 dy_1$$

$$\leq \sum_{k=1}^{\infty} \int_{T^{2+} \cap \{ \frac{s}{2k-1} > \phi(x_1, y_1) \}} \frac{C}{|x_1 - x, y - y_1|} \times [2^{ks} + 1] dx_1 dy_1$$

$$\leq C \sum_{k=1}^{\infty} \frac{2^{ks} + 1}{2^{\frac{s}{2}}} \sqrt{\epsilon \ln \frac{2^k}{\epsilon}}$$

$$\leq C \sqrt{\frac{\epsilon \ln \frac{1}{\epsilon}}{\epsilon}}.$$

The proof of Lemma 3.2 is now finished.

Remark 3.1. By Interpolation theorem in Hölder space, it is not difficult to show as $\epsilon \to 0$, for $0 < \alpha < 1 - 2s$

$$\| \phi_\epsilon - \psi_0 \|_{C^{1,\alpha}(T^2)} \to 0.$$

In the above we finish the proof of Theorem 3.1 in the case where $0 < s < \frac{1}{2}$. In the following section, we will discuss the proof of Theorem 3.1 when the degree of algebraic singularity s satisfies $\frac{1}{2} \leq s < 1$.

3.2. On the proof of Theorem 3.1 when $\frac{1}{2} \leq s < 1$. In this section, we will use an argument similar to the previous section to construct a solution to (3.1) in low regularity. We will then prove bounds on the solution in a neighborhood of the origin in the first quadrant. Based on this fact, we can use the method of [8] to prove the solution is C^1
and that it converges to ϕ_0 in $C^1(\mathbb{T}^2)$ as $\epsilon \to 0$.

3.2.1. **On the existence of solutions to** (3.1) **in low regularity.** The lemma below proves the existence of a solution to (3.1) in low regularity.

Lemma 3.3. For $\frac{1}{2} \leq s < 1$, and $q < \frac{1}{s}$, we have an solution $\phi_\epsilon \in W^{2,q} \cap \mathcal{D}$ for (3.1).

The proof of Lemma 3.3 is similar as what we did in the previous section and we will sketch here.

Sketch of the proof of Lemma 3.3. Define P_n be an odd function such that

$$P_n(x) = \begin{cases}
-2^n s, & 0 < x < \frac{\epsilon}{2n}, \\
-\frac{\epsilon^s}{x}, & \frac{\epsilon}{2n} < x < \epsilon, \\
-1, & x \geq \epsilon.
\end{cases}$$

We define the operator $T_n(\phi) = \Delta^{-1} P_n(\phi)$, similarly as what we did in Lemma 3.2, for any n, we can show there is a $\phi^n_\epsilon \in \mathcal{D}$ such that

$$\phi^n_\epsilon = \Delta^{-1} [P^n_\epsilon(\phi^n_\epsilon)].$$

Moreover, similarly, as what we did in the proof of Lemma 3.1, we have

$$|P^n_\epsilon(\phi_\epsilon)(x, y)| \leq C(1 + \frac{1}{|xy|^{ps}}).$$

As a consequence,

$$\|\phi^n_\epsilon\|_{W^{2,p_0}} \leq C, \text{for } q < p_0 < \frac{1}{s}.$$

From the Soblev embedding theorem, there is a subsequence $\{\phi_{n_k}^\epsilon\}$ of $\{\phi^n_\epsilon\}$ converges to ϕ_ϵ almost everywhere. Moreover, by (3.4), and dominated convergence Theorem, we have $\{P^n_{\epsilon_k}(\phi_{n_k}^\epsilon)(x, y)\}$ converges to $P_\epsilon(\phi_\epsilon)$ in L^q. As a consequence, we have $\phi_{n_k}^\epsilon = \Delta^{-1} P_{\epsilon_k}^{n_k}(\phi_{n_k}^\epsilon)$ converges to ϕ_ϵ in $W^{2,q}$, and ϕ_ϵ is a solution of (3.1) in $\mathcal{D} \cap W^{2,q}$. □
3.2.2. *On the C^1 regularity of ϕ_ϵ.* In this section, our goal is to prove:

Theorem 3.2. $\phi_\epsilon \in C^1(\mathbb{T}^2)$.

We firstly get a lower bound for ϕ_ϵ in a small neighborhood near the origin in the first quadrant:

Lemma 3.4. There is a constant $C(s)$ so that for all ϵ sufficiently small and $(x,y) \in \Omega_3 := \mathbb{T}^2+ \cap B_{C(s)\epsilon^{\frac{1}{2}}}$, we have

$$\phi_\epsilon(x,y) \geq C\epsilon^{s+1}r^{\frac{2}{s+1}}\sin(2\theta),$$

where we write $(x,y) = (r\cos(\theta), r\sin(\theta))$.

To prove Lemma 3.4, we construct a barrier function:

Lemma 3.5. There is a solution $\tilde{\psi}$ to

$$\Delta \tilde{\psi} = -\frac{\epsilon^s}{\tilde{\psi}^s}, \text{ for } (x,y) \in \mathbb{R}^2+ := \mathbb{R}^+ \times \mathbb{R}^+,$$

$$\tilde{\psi}(x,y) = 0, \text{ for } (x,y) \in \partial\mathbb{R}^2+,$$

such that

$$C\epsilon^{s+1}r^{\frac{2}{s+1}}\sin(2\theta) > \tilde{\psi} > \frac{1}{C}\epsilon^{s+1}r^{\frac{2}{s+1}}\sin(2\theta), \text{ when } \theta \in [0, \frac{\pi}{2}].$$

We will give the proof of Lemma 3.5 in the Appendix. Now we will present the proof for Lemma 3.4 with the aid of Lemma 3.5

Proof of Lemma 3.4. By (3.6), we can choose $C(s)$ such that in $\Omega_3 := B_{C(s)\epsilon^{\frac{1}{2}}} \cap \mathbb{T}^2+$, we have

$$\tilde{\psi} < \epsilon.$$

Moreover in $\partial\Omega_3$, we have

$$\phi_\epsilon > \psi_0 \geq \frac{1}{C}\epsilon\ln\frac{1}{\epsilon}\sin(2\theta).$$

While from (3.6),

$$\tilde{\psi} \leq C\epsilon\sin(2\theta).$$
As a result, we have on $\partial \Omega_3 \cap T^2+$,
\begin{equation}
\phi_\epsilon \geq \tilde{\psi}.
\end{equation}

Now if $\tilde{\psi} - \phi_\epsilon$ achieves the positive maximum at (x_0, y_0) in Ω_3, by (3.7),
\begin{equation}
(x_0, y_0) \in \text{Int}(\Omega_3),
\end{equation}
and
\begin{equation}
\Delta(\tilde{\psi} - \phi_\epsilon)(x_0, y_0) \leq 0.
\end{equation}
However, we have $0 < \phi_\epsilon(x_0, y_0) < \tilde{\psi}(x_0, y_0) < \epsilon$, then
\begin{equation}
\Delta \phi_\epsilon(x_0, y_0) = \frac{\epsilon^s}{(-\phi_\epsilon)^s}(x_0, y_0) < \frac{\epsilon^s}{(-\tilde{\psi})^s}(x_0, y_0) = \Delta \tilde{\psi}(x_0, y_0),
\end{equation}
which leads to contradiction to (3.8).
We now see that in Ω_3 we have
\begin{equation}
\phi_\epsilon \geq \tilde{\psi},
\end{equation}
which completes the proof in view of (3.6).
\[\square\]

Now we are ready to prove Lemma 3.2. We will use a version of Lemma 3.3 in [8]:

Corollary 3.1. Let $0 < R < 2$, assume that $f \in L^p(-R, R)$, for some $p > 1$. Let
\begin{equation}
g(x, y) = \int_{B_R} \frac{1}{||(x, y) - (x_1, y_1)||} f(y_1) dx_1 dy_1,
\end{equation}
then there is a constant $c(p)$ so that
\begin{equation}
|g(x, y)| \leq c(p) R \int_{-1}^1 |f(Ry_1)|^p dy_1^{\frac{1}{p}}.
\end{equation}

Proof of Theorem 3.2. From the trivial lower bound $\phi_\epsilon \geq \psi_0$ (in the first quadrant), we see that
\begin{equation}
|\Delta \phi_\epsilon| \leq \min \left\{ \frac{\epsilon^s}{\psi_0^s}, 1 \right\}.
\end{equation}
Now using Corollary 3.1 as well as the Green's function representation of ϕ_ϵ, we see that
\begin{equation}
\phi_\epsilon \in C^1(T^2 - \{(0, 0)\}).
\end{equation}
Next, we will establish the C^1 regularity on the whole of \mathbb{T}^2 using the more precise lower bound in Lemma 3.4. Let $r_0 < C(s)\epsilon^{1/2}$, then for all points $(x, y) \in B_{r_0}$, we have that

$$\nabla(\phi_\epsilon - \psi_0)(x, y) = \int_{B_{r_0}} \frac{(x - x_1, y - y_1)}{|(x - x_1, y - y_1)|^2} \left(P_\epsilon(\phi_\epsilon(x_1, y_1)) + \text{sgn}(x_1)\text{sgn}(y_1) \right) dx_1 dy_1$$

$$+ \int_{B_{r_0} \cap \mathbb{T}^2} \frac{(x - x_1, y - y_1)}{|(x - x_1, y - y_1)|^2} \left(-x_1, y_1 \right) \left(P_\epsilon(\phi_\epsilon)(x_1, y_1) + \text{sgn}(x_1)\text{sgn}(y_1) \right) dx_1 dy_1$$

$$+ \int_{\mathbb{T}^2} \nabla G_{x,y}((x, y), (x_1, y_1)) \left(\frac{(x - x_1, y - y_1)}{|(x - x_1, y - y_1)|^2} - \left(-x_1, y_1 \right) \left(P_\epsilon(\phi_\epsilon)(x_1, y_1) + \text{sgn}(x_1)\text{sgn}(y_1) \right) \right) dx_1 dy_1.$$

As a consequence, we have

$$|\nabla(\phi_\epsilon - \psi_0)(x, y)|$$

$$\leq \int_{B_{r_0}} C \left(1 + |P_\epsilon(\phi_\epsilon)| \right) dx_1 dy_1$$

$$+ \frac{1000|\varphi(x, y)|}{r_0^2} \int_{\mathbb{T}^2} |P_\epsilon(\phi_\epsilon)(x_1, y_1)| + \text{sgn}(x_1)\text{sgn}(y_1)| \right) dx_1 dy_1$$

$$:= I_1 + I_2.$$

Estimate of I_1:

By the various symmetry properties of ϕ_ϵ, we have that

$$I_1(r_0, x, y) \leq \int_{B_{r_0} \cap \mathbb{T}^2} \frac{C}{|(x - x_1, y - y_1)|} \left(1 + |P_\epsilon(\phi_\epsilon)| \right)(x_1, y_1) dx_1 dy_1.$$

Since in $B_{r_0} \cap \mathbb{T}^2$, by Lemma 3.4, we would have

$$|P(\phi_\epsilon(x, y))| \leq \frac{\epsilon^{\frac{s}{2}}}{|\phi_\epsilon(x, y)|} \leq \epsilon^{\frac{s}{2}} \frac{1}{\psi^s(x, y)} \leq C\epsilon^{\frac{s}{2}} \frac{1}{y^{s+1}}.$$

By (3.11), symmetry of ϕ_ϵ, and apply Corollary 3.1 we have:

$$|I_1(x, y, r_0)| \leq \int_{B_{r_0}} C \left(1 + \epsilon^{\frac{s}{2}} \frac{1}{|y_1|^{s+1}} \right) dx_1 dy_1.$$
We now choose a constant p_0 satisfying $1 < p_0 < \frac{s+1}{2s}$ and apply Corollary 3.11 then we have

$$
|I_1(x, y, r_0)| \leq CC(p_0)r_0\left(\int_{-1}^{1} \left(1 + \epsilon^{\frac{s}{s+1}} \frac{1}{|r_0y_1|^{\frac{s}{s+1}}}\right)^{p_0} dy_1 \right)^{\frac{1}{p_0}}
$$

(3.12)

$$
\leq C(\epsilon, p_0)(r_0 + r_0^{\frac{1-s}{s+1}})
$$

In particular, (3.12) implies

$$
\lim_{r_0 \to 0} \|I_1(r, \cdot, \cdot)\|_{L^\infty} = 0.
$$

Estimate for I_2:

We can use the bound $|\phi_\epsilon| > |\psi_0|$ and get that

$$
I_2(x, y, r_0) \leq C\frac{|(x, y)|}{r_0} \int_{\mathbb{T}^2} \frac{1}{|x_1y_1|^s} dx_1dy_1 \leq C \frac{|(x, y)|}{r_0}.
$$

Thus, for a fixed r_0,

$$
\lim_{(x, y) \to 0} I_2(r_0, x, y) = 0.
$$

(3.14)

By (3.9), (3.10), (3.13) and (3.14), we get

$$
\lim_{(x, y) \to 0} \nabla(\phi_\epsilon - \psi_0)(x, y) = 0,
$$

and it follows that

$$
\phi_\epsilon \in C^1(\mathbb{T}^2).
$$

3.2.3. On the C^1 convergence of ϕ_ϵ to ψ_0. In the previous section, we proved that $\phi_\epsilon \in C^1$. In this section, we will prove the following statement:

Theorem 3.3. $\lim_{\epsilon \to 0} \|\phi_\epsilon - \psi_0\|_{C^1(\mathbb{T}^2)} = 0.$

By the symmetry of Biot-Savart law and the symmetry of ϕ_ϵ and ψ_0, it suffices to prove the lemma below:
Lemma 3.6. we have

\[I = \int_T \frac{|P_\epsilon(\phi) + 1|((x_1, y_1))}{|(x-x_1, y-y_1)|} dx_1 dy_1 \leq C \epsilon^{2\alpha}. \]

Proof. Denoting \(\Omega_4 = B_{C(s)^{\frac{s}{2}}} \cap T \) where \(C(s) \) is given in Lemma 3.4, we have:

\[
I = \int_{\Omega_4} \frac{|P_\epsilon(\phi) + 1|((x_1, y_1))}{|(x-x_1, y-y_1)|} dx_1 dy_1 \\
+ \int_{T-\Omega_4} \frac{|P_\epsilon(\phi) + 1|((x_1, y_1))}{|(x-x_1, y-y_1)|} dx_1 dy_1 \\
:= I_1 + I_2.
\]

Estimate for \(I_1 \):

In \(\Omega_4 \), if \(\phi_\epsilon > \epsilon \), we have

\[(3.15) \quad P_\epsilon(\phi_\epsilon) = -1, \]

if \(\phi_\epsilon < \epsilon \), then by Lemma 3.4 we have

\[(3.16) \quad P_\epsilon(x, y) \leq C \epsilon^{\frac{s}{2s+1}} \frac{1}{|x-y|^{\frac{s}{2s+1}} \sin^s(2\theta)} \leq C \epsilon^{\frac{s}{2s+1}} \frac{1}{y^{\frac{s}{2s+1}}}. \]

By (3.15) and (3.16), we have in \(\Omega_4 \),

\[(3.17) \quad |P_\epsilon(\phi_\epsilon) + 1|((x, y)) \leq C(\epsilon^{\frac{s}{2s+1}} \frac{1}{y^{\frac{s}{2s+1}}} + 1). \]

By the explicit form of \(I_1 \), Lemma 2.7 and (3.17) implies that

\[
I_1 \leq C \sqrt{|\Omega_4|} + C \int_{\Omega_4} \frac{1}{|x-x_1, y-y_1|} \epsilon^{\frac{s}{2s+1}} \frac{1}{y^{\frac{s}{2s+1}}} dx_1 dy_1 \\
\leq C \sqrt{\epsilon} + C \epsilon^{\frac{s}{2s+1}} \int_{B_{C(s)^{\frac{s}{2}}}} \frac{1}{|(x-x_1, y-y_1)|} \frac{1}{y^{\frac{s}{2s+1}}} dx_1 dy_1.
\]
Let p_0 be a fixed number such that $1 < p_0 < \frac{1+s}{2}$, we may apply Corollary 3.1 with $p = p_0$ and we get

$$e^{\frac{1}{4s}} \int_{B_{C(s)\epsilon^{\frac{1}{2}}}} \frac{1}{|(x-x_1, y-y_1)|} \frac{1}{y_1^{1+\frac{s}{2}}} dx_1 dy_1$$

$$\leq C(s) \epsilon^{\frac{1}{4s}} \epsilon^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{1}{C(s)\epsilon^{\frac{1}{2}}} |y| \right)^{\frac{2s}{4s+1}} dy \right)^{\frac{1}{2}}$$

$$\leq A(s) \epsilon^{\frac{1}{2}}.$$

Then by (3.18), we have

(3.19) $I_1 \leq C(s) \epsilon^{\frac{1}{2}}.$

Estimate for I_2:

Note in $T - \Omega_4$, by Lemma 2.4 and Lemma 3.4, define $D = \left\{ (x, y) : C(s) \epsilon^{\frac{1}{2}} < x < \frac{1}{2}, 0 < y < \frac{C\epsilon}{x} \right\}$, we have that

$$\int_{T - \Omega_4} \frac{1}{|(x-x_1, y-y_1)|} |P_\epsilon(\phi_\epsilon) + 1|(x_1, y_1) dx_1 dy_1$$

$$= \int_{D} \frac{1}{|(x-x_1, y-y_1)|} |P_\epsilon(\phi_\epsilon) + 1|(x_1, y_1) dx_1 dy_1$$

$$\leq C \int_{D} \frac{1}{|(x-x_1, y-y_1)|} \epsilon^{s} x_1^{s} y_1^{s} dx_1 dy_1$$

Define $D_i = B_{C\epsilon \frac{s}{2}} (i\epsilon^{\frac{1}{2}}, 0), \text{ fix a large integer } N = \lfloor \frac{10}{\epsilon^{\frac{1}{2}}} \rfloor, \text{ and we have}$

(3.20) $D \subseteq \bigcup_{i=1}^{N} D_i.$

By (3.20), we have

$$\int_{T - \Omega_4} \frac{1}{|(x-x_1, y-y_1)|} |P_\epsilon(\phi_\epsilon) + 1|(x_1, y_1) dx_1 dy_1$$

$$\leq C \int_{D_i} \frac{1}{|(x-x_1, y-y_1)|} \epsilon^{s} x_1^{s} y_1^{s} dx_1 dy_1$$

$$\leq \epsilon^{s} \sum_{i=1}^{N} C \int_{D_i} \frac{1}{|(x-x_1, y-y_1)|} \frac{1}{(C\epsilon^{\frac{s}{2}})^{s} y_1^{s}} dx_1 dy_1$$

$$= \epsilon^{s} \sum_{i=1}^{N} C \int_{D_i} \frac{1}{28} \frac{1}{i^{s} y_1^{s}} dx_1 dy_1.$$
Then we apply Corollary 3.1 to D_i for $1 \leq i \leq N$, and we get

$$
\int_{\mathcal{T} - \Omega_4} \frac{1}{|x - x_1, y - y_1|} |P_\epsilon(x) + 1|(x_1, y_1) dx_1 dy_1
\leq C\epsilon^{\frac{p}{2}} \sum_{i=1}^{N} \frac{1}{i^s} \epsilon^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{1}{C\epsilon^{\frac{1}{2}}|y|} \right)^{p_0} dy \right)^{\frac{1}{2}}
= C \sum_{i=1}^{N} \frac{1}{i^s} \epsilon^{\frac{1}{2}}
\leq C(s) \epsilon^{\frac{s}{2}},
$$

for some $1 < p < \frac{1}{s}$. Then we have

$$
(3.21) \quad I_2 \leq C(s) \epsilon^{\frac{s}{2}}.
$$

By (3.19) and (3.21), we finish the proof of Lemma 3.6. □

Lemma 3.3 follows from Lemma 3.6, and we now finish the existence and uniqueness part of the proof of Theorem 3.1 in the case $\frac{1}{2} \leq s < 1$.

3.2.4. Lagrangian trajectories. In the previous sections, we have shown the C^1 convergence of ϕ_ϵ to ψ_0 as $\epsilon \to 0$ when $0 < s < 1$. In this section, we will finish the proof of Theorem 3.1 by proving there are multiple particle trajectories that cross the origin in our singular steady state. We give the statement below:

Theorem 3.4. For ϵ sufficiently small we have the following estimate for the vertical velocity associated to ϕ_ϵ:

$$
u_\epsilon^2(0, y_1) = \frac{\partial \phi_\epsilon}{\partial x}(0, y_1) \geq C_2 y_1^{1-s}, \text{ for small and positive } y_1.
$$

As a direct consequence, non-trivial trajectories can arrive at and leave the origin in finite time.

Proof of Theorem 3.4. We choose a small constant δ_1 such that

$$
0 < 2\delta_1 < \epsilon.
$$
Since δ_1 is so small, for $(x,y) \in B_{\delta_1} \cap T$, we have (since $\phi_\epsilon(0,0) = \nabla \phi_\epsilon(0,0) = 0$):

(3.22) \[\phi_\epsilon(x,y) \leq 2(x^2 + y^2)^{\frac{1}{2}} \]

and

(3.23) \[\phi_\epsilon(x,y) > \psi_0(x,y) > 0, \]

by the maximum principle. By the symmetry of ϕ_ϵ and (3.22), we have on $B_{\delta_1}(0) \cap \mathbb{T}^2+$,

\[0 < \phi_\epsilon < \epsilon. \]

As a result, from (3.22)-(3.23), we have on $B_{\delta_1}(0) \cap \mathbb{T}^2+$ that

(3.24) \[P_\epsilon(\phi_\epsilon(x,y)) \leq \frac{-\epsilon^s}{(x^2 + y^2)^{\frac{s}{2}}}. \]

From the symmetry assumptions on $P_\epsilon(\phi_\epsilon)$ and ψ_ϵ, using Lemma A.1 and Lemma 3.1, we have

\[u_\epsilon^2(0, y_1) \]

\[= \int_{\mathbb{T}^2} \frac{\partial G}{\partial x_1}((0, y_1), (x,y)) P_\epsilon(\phi_\epsilon(x,y)) dxdy \]

\[= O(y_1) + \int_{\mathbb{T}^2} -\frac{x}{2\pi x^2 + (y - y_1)^2} P_\epsilon(\phi_\epsilon(x,y)) dxdy \]

\[= O(y_1) + \frac{1}{2\pi} \int_{\mathbb{T}^2+} \frac{-8xyy_1}{(x^2 + y^2 + y_1^2)^2 - 4y_1^2x^2} P_\epsilon(\phi_\epsilon(x,y)) dxdy. \]

As a result,

\[u_\epsilon^2(0, y_1) \]

\[= O(y_1) + \frac{1}{2\pi} \int_{\mathbb{T}^2+ \cap B_{\delta_1}(0)} \frac{-8xyy_1}{(x^2 + y^2 + y_1^2)^2 - 4y_1^2x^2} P_\epsilon(\phi_\epsilon(x,y)) dxdy \]

\[+ \frac{1}{2\pi} \int_{\mathbb{T}^2+ \cap B_{\delta_1}^c(0)} \frac{-8xyy_1}{(x^2 + y^2 + y_1^2)^2 - 4y_1^2x^2} P_\epsilon(\phi_\epsilon(x,y)) dxdy \]

\[= O(y_1) + L_1 + L_2. \]
Estimate on L_1:
Let $y_1 < \frac{\delta_1}{10}$, by (3.24), we have
\begin{align}
L_1 &> \frac{4\epsilon y_1}{\pi} \int_{T^2 \cap B_{\delta_1}(0)} \frac{xy}{(x^2 + y^2 + y_1^2)^2} \frac{1}{(x^2 + y^2)^s} dxdy \\
&= \frac{4\epsilon y_1}{\pi} \int_{\{y_1^2 < x^2 + y^2 < 100y_1^2\}} \frac{xy}{(x^2 + y^2 + y_1^2)^2} \frac{1}{(x^2 + y^2)^s} dxdy \\
&\geq C_2 y_1 \int_{y_1}^{10y_1} \frac{1}{r^{1+s}} dr \geq C_2 y_1^{-s}.
\end{align}

Estimate on L_2:
By Lemma 3.1,
\begin{align}
|L_2| &\leq \frac{2y_1}{\pi} \int_{T^2 \cap B_{\delta_1}(0)} \frac{1}{x^2 + y^2} |P_\epsilon(\phi_\epsilon(x, y))| dxdy \\
&< \frac{2y_1}{\pi \delta_1^2} \int_{T^2} |P_\epsilon(\phi_\epsilon)(x, y)| dxdy \leq C_2 y_1.
\end{align}

Combine (3.25), (3.26) and (3.27), we finish the proof of Theorem 3.4.

APPENDIX A.

We now proceed to prove some technical results that we used in the course of proving the main theorems. First, let us recall the following standard fact (see [9]).

Lemma A.1. The Green’s function for the Laplacian on \mathbb{T}^2 can be written as
\[G(x, y) = \frac{1}{2\pi} \ln |x - y| + f(x - y), \]
where f is smooth, and $|.|$ is the distance in \mathbb{T}^2.

A.1. **Proof of the property of ψ_0.**
We begin with establishing the Properties from Section 2. The symmetry follows from the explicit form of
\[\Delta^{-1}[\text{sgn}(x)\text{sgn}(y)]. \]
Since we have
\[\Delta \psi_0(x, y) = -1, \text{ for } (x, y) \in \mathbb{T}^2+. \]
\[\psi_0(x, y) = 0, \text{ for } (x, y) \in \partial \mathbb{T}^2+. \]

By maximum principle, \(\psi_0 \) is positive on \(\mathbb{T}^2+ \).
\((2.2) \) follows from explicit calculation and was given in [9].

A.2. Proof of Lemma 3.5

Proof of Lemma 3.5 By the scaling and symmetry of (3.5), it behooves us to take the ansatz
\[(A.1) \quad \tilde{\psi} = \epsilon^{s/2 + 1} F(r, \theta)K(\theta), \text{ with } K(\theta) = K(\frac{\pi}{2} - \theta). \]
(3.5) then gives the non-linear ODE
\[(A.2) \quad \frac{4}{(1+s)^2} K + K'' = -\frac{1}{K^s}. \]
\[K(0) = 0, K\left(\frac{\pi}{4}\right) = 0. \]

Multiplying (A.2) by \(K' \), we find a first integral of (A.2):
\[\left(\frac{K'^2}{2} + \frac{2}{(1+s)^2} K^2 + \frac{2}{1-s} K^{1-s} \right)' = 0. \]

By setting
\[K'(0) = \sqrt{\frac{4}{(1+s)^2} B^2 + \frac{2}{1-s} B^{1-s}}, \]

it now suffices to find a solution \((K, B)\) to
\[(A.3) \quad \frac{4}{(1+s)^2} K + K'' = -\frac{1}{K^s}, \]
\[K(0) = 0, K\left(\frac{\pi}{4}\right) = B, \]
\[K'(0) = \sqrt{\frac{4}{(1+s)^2} B^2 + \frac{2}{1-s} B^{1-s}}. \]
While the existence of solution to \((A.3)\) is equivalent to

\[
I(B) = \int_0^B \frac{dk}{\sqrt{\frac{4}{(1+s)^2}(B^2 - k^2) + \frac{2}{1-s}(B^{1-s} - k^{1-s})}} = \frac{\pi}{4}.
\]

Letting \(k = B\tilde{k}\), we have

\[
I(B) = \int_0^1 \frac{d\tilde{k}}{\sqrt{\frac{4}{(1+s)^2}(1 - \tilde{k}^2) + B^{-1-s}\left(\frac{2}{1-s} - \frac{2k^{1-s}}{1-s}\right)}}.
\]

We have

\[
I(0) = 0, I(\infty) = \frac{(1 + s)\pi}{4} > \frac{\pi}{4}.
\]

Moreover, by the dominated convergence theorem, \(I(B) \in C(\mathbb{R}^+)\). Thus by continuity, we can find \(B_0 > 0\) such that \(I(B_0) = \frac{\pi}{4}\). Consequently, we have constructed a solution to \((A.3)\). Based on our construction, we have \(K\) is a \(C^1\) function even symmetric to \(\frac{\pi}{4}\) with

\[
K'(\theta) > 0, \text{ for } \theta \in [0, \frac{\pi}{4}),
\]

as a result

\[
\frac{1}{C} \sin(2\theta) < K(\theta) < C \sin(2\theta).
\]

We then finish the proof of \((3.6)\) by \((A.1)\). \(\square\)

ACKNOWLEDGEMENT

The authors thank Siming He for providing various suggestions in writing the paper. Both authors were partially supported by the NSF grants DMS 2043024 and DMS 2124748. T.M.E. was partially supported by an Alfred P. Sloan Fellowship.

DATA AVAILABILITY

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
References

[1] Hajer Bahouri and J. Y. Chemin. Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides. *Archive for Rational Mechanics and Analysis*, 127:159–181, 1994.

[2] J. Thomas Beale, Tosio Kato, and Andrew J. Majda. Remarks on the breakdown of smooth solutions for the 3-d euler equations. *Communications in Mathematical Physics*, 94:61–66, 1984.

[3] Jacob Bedrossian and Nader Masmoudi. Inviscid damping and the asymptotic stability of planar shear flows in the 2d euler equations. *Publications mathématiques de l'IHÉS*, 122:195–300, 2013.

[4] Antoine Choffrut and Vladimír Sverák. Local structure of the set of steady-state solutions to the 2d incompressible euler equations. *Geometric and Functional Analysis*, 22:136–201, 2012.

[5] Kyudong Choi and In-Jee Jeong. Infinite growth in vorticity gradient of compactly supported planar vorticity near lamb dipole. *Nonlinear Analysis: Real World Applications*, 65:103470, 2022.

[6] Peter Constantin, Theodore D Drivas, and Daniel Ginsberg. Flexibility and rigidity in steady fluid motion. *Communications in Mathematical Physics*, 385(1):521–563, 2021.

[7] Michele Coti Zelati, Tarek M Elgindi, and Klaus Widmayer. Stationary structures near the kolmogorov and poiseuille flows in the 2d euler equations. *Archive for Rational Mechanics and Analysis*, 247(1):12, 2023.

[8] Manuel del Pino. A global estimate for the gradient in a singular elliptic boundary value problem. *Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences*, 122:341–352, 1992.

[9] Sergey Denisov. Double exponential growth of the vorticity gradient for the two-dimensional euler equation. *Proceedings of the American Mathematical Society*, 143(3):1199–1210, 2015.

[10] Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional euler equation. *Discrete and Continuous Dynamical Systems*, 23:755–764, 2008.

[11] Tam Do. On vorticity gradient growth for the axisymmetric 3d euler equations without swirl. *Archive for Rational Mechanics and Analysis*, 234(1):181–209, 2019.

[12] Theodore D Drivas and Tarek M Elgindi. Singularity formation in the incompressible euler equation in finite and infinite time. *arXiv preprint arXiv:2203.17221*, 2022.

[13] Tarek M Elgindi and In-Jee Jeong. Symmetries and critical phenomena in fluids. *Communications on Pure and Applied Mathematics*, 73(2):257–316, 2020.

[14] Vu Hoang and Maria Radosz. No local double exponential gradient growth in hyperbolic flow for the euler equation. *Transactions of the American Mathematical Society*, 369:7169–7211, 2014.

[15] Tsubasa Itoh, Hideyuki Miura, and Tsuyoshi Yoneda. The growth of the vorticity gradient for the two-dimensional euler flows on domains with corners. *arXiv preprint arXiv:1602.00815*, 2016.

[16] Alexander Kiselev and Chao Li. Global regularity and fast small-scale formation for euler patch equation in a smooth domain. *Communications in Partial Differential Equations*, 44:1–30, 01 2019.

[17] Alexander Kiselev and Vladimir Šverák. Small scale creation for solutions of the incompressible two-dimensional euler equation. *Annals of mathematics*, 180(3):1205–1220, 2014.
[18] D Wirosotisno and J Vanneste. Persistence of steady flows of a two-dimensional perfect fluid in deformed domains. *Nonlinearity*, 18(6):2657, 2005.

[19] Witold Wolibner. Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. *Mathematische Zeitschrift*, 37(1):698–726, 1933.

[20] Xiaqian Xu. Fast growth of the vorticity gradient in symmetric smooth domains for 2d incompressible ideal flow. *Journal of Mathematical Analysis and Applications*, 439, 11 2014.

[21] V.I. Yudovich. Non-stationary flow of an ideal incompressible liquid. *USSR Computational Mathematics and Mathematical Physics*, 3(6):1407–1456, 1963.

[22] Andrej Zlatoš. Exponential growth of the vorticity gradient for the euler equation on the torus. *Advances in Mathematics*, 268:396–403, 2015.

- Department of mathematics, Duke University, Durham, NC
 E-mail address: tarek.elgindi@duke.edu
- Department of mathematics, Duke University, Durham, NC
 Email address: yh298@duke.edu