Synovial Chondromatosis of the Temporomandibular Joint Misdiagnosed as Avulsion Fracture of Condylar Process of the Mandible: A Case Report

Giulio Gambaracci1, Andrea Fiacca2, Valentina Montigelli1, Marta Elia1 and Lucio Bellantonio2

1Radiology Department, Usl Umbria, Assisi Hospital, Italy
2Neuroradiology Department, Hospital of Perugia, Italy

Abstract

Synovial chondromatosis (SC) is a benign nodular cartilaginous proliferation that mainly occurs in large joints. The temporomandibular joint (TMJ) is rarely affected. We present a case of a woman with concerns of swelling and post-traumatic pain in her right pre-aural region. She presented an ultrasound exam performed in another institution that showed a suspected mandibular avulsion fracture. After clinical examination and computed tomography analyses, she was diagnosed with SC of the TMJ misdiagnosed as an avulsion fracture of the condylar process of the mandible.

Keywords

Synovial chondromatosis, Temporomandibular joint, Ultrasound misdiagnosis, Computed tomography, Case report

Abbreviations

SC: Synovial Chondromatosis; TMJ: Temporomandibular Joint; CT: Computed Tomography; MRI: Magnetic Resonance Imaging; US: Ultrasound

Introduction

Synovial chondromatosis (SC) is an uncommon articular disorder characterised by synovial metaplasia with intra-articular proliferation of cartilaginous nodules originating from the synovial membrane or tendon sheath [1, 2]. These nodules can vary in shape and form, may be pedunculated, present as single or multiple instances, and may be free or attached to the joint space [3]. The etiology is still unknown, but various theories have been considered. Primary chondromatosis is due to the permanence of multipotent, undifferentiated cells which undergo a metaplastic process; the secondary form occurs after preexisting joint diseases such as arthritis, trauma, infection, or articular disease [4]. SC usually affects large diarthrodial joints predominantly of the axial skeleton, typically the knee (35%), elbow (22%), wrist (11%), and hip (4%), and is very rarely observed in the temporomandibular joint (TMJ) [5]. Typical signs and symptoms of SC are preauricular swelling, pain, crepitation, clicking, and limited mandibular movement [5]. SC is easily confused with other diseases in the TMJ region. Therefore, radiological examinations play an important role in the diagnosis of SC. To our knowledge, the majority of cases were evaluated based on magnetic resonance imaging (MRI) or computed tomography (CT)-few studies have reported findings from all imaging modalities [3, 6].
We report a case of a post-traumatic exacerbation of preauricular swelling in a highly probable synovial chondromatosis of the TMJ, misdiagnosed by ultrasound examination (US) as avulsion fracture of the condylar process of the mandible. To our knowledge, this case represents the first such misdiagnosis.

Case Report

A 54-year-old woman with no prior relevant medical history presented to our hospital with swelling and mild pain on the right TMJ region that was exacerbated for 2 months following a traumatic event. She presented to our team with a previous US exam showing a suspected diagnosis of a mandibular avulsion fracture (Figure 1). On extra-oral examination, we noted mild facial asymmetry on the right aspect of the face with a swelling in the preauricular region. The surface over the swelling appeared normal, and palpation revealed a hard, non-tender mass. The patient showed mild limitation of mouth opening.

Suspecting a fracture, we conducted a CT scan which showed erosion of the right glenoid fossa and temporal bone associated with sclerotic changes and minimal scalloping of the mandibular condyle (Figure 2). The images also showed abundant loose irregularly shaped calcified bodies within the joint together associated with effusion and widening of the TMJ space. Given these findings, the diagnosis of SC was made (Figure 3).

The patient, given her mild symptoms, refused treatment. A clinical follow-up 2 years later showed slight improvement in her mouth opening ability.

Discussion

The knee, the shoulder and wider joints in general, are more likely to be affected by SC. Otherwise, globally, there is a very low prevalence of TMJ SC and accurate diagnosis is difficult to be assessed by clinicians due to lack of reports in scientific literature. In most of the cases SC of the TMJ is a unilateral disorder and women between 39 and 55 years of age are mainly affected [7, 8], a confirmed trend in our patient.

There are some clinical symptoms that are present both on SC and degenerative joint disease of the TMJ: malocclusion, joint sounds, discomfort and masticatory muscle pain [7, 8]. Consequently, radiological imaging is the key to differentiate between these two different conditions. SC more often occurs in superior articulation cavity, generally involves rounder loose bodies and usually shows regular configuration of mandibular condyle associated with expansion and effusion of the joint cavity [9]. Degenerative joint disease, instead, usually occurs in inferior articulation cavity, involves angular loose bodies and generally presents evident degenerative modifications of the mandibular condyle, frequently associated with osteophytes [9].

Post-traumatic fracture could be another differential diagnosis of SC and degenerative joint disease, as in our case, but should be associated with a stronger clinical link. In this report, the first imaging examination was via US, which is not the best investigation choice after a traumatic event [10]. The overall advantages of US consist in the rapid imaging examination procedure, with a relatively modest cost and does not require usage of ionizing radiation. This diagnostic approach is notably helpful in trauma patients, patients too...
which, in turn, allows for adequate treatment. Various imaging modalities to choose the optimal diagnostic should acknowledge the capacities and appropriateness of fracture of the condylar process of the mandible. Clinicians described SC of the TMJ misdiagnosed on US as an avulsion have not been reported. However, to our knowledge, no reports have been overlooked condition. Many imaging features of SC have been reported. However, to our knowledge, no reports have described SC of the TMJ misdiagnosed on US as an avulsion fracture of the condylar process of the mandible. Clinicians should acknowledge the capacities and appropriateness of various imaging modalities to choose the optimal diagnostic tool in every clinical scenario to provide an accurate diagnosis, which, in turn, allows for adequate treatment.

Funding

There is no funding/financial support before and during the submission process.

Consent for Publication

Informed consent for publication was obtained from the patient.

References

1. Wang P, Tian Z, Yang J, Yu Q. 2012. Synovial chondromatosis of the temporomandibular joint: MRI findings with pathological comparison. Dentomaxillofac Radiol 41(2): 110-116. https://doi.org/10.1259/dmfr/36144602

2. Martin-Granizo R, Sánchez JJ, Jorquera M, Ortega L. 2005. Synovial chondromatosis of the temporomandibular joint: a clinical, radiological and histological study. Med Oral Patol Oral Cir Bucal 10(3): 272-276.

3. Mathew P, Tiwari RVC, Govindan NO. 2019. Temporomandibular joint synovial chondromatosis posing as diagnostic dilemma: a case report. J Maxillofac Oral Surg 18(4): 543-546. https://doi.org/10.1007/s12663-019-01186-0

4. Lieger O, Zix J, Stauffer-Brauch EJ, Iizuka T. 2007. Synovial chondromatosis of the temporomandibular joint with cranial extension: a case report and literature review. J Oral Maxillofac Surg 65(10): 2073-2080. https://doi.org/10.1016/j.joms.2006.04.039

5. Balasundaram A, Geist JR, Gordon SC, Klasser GD. 2009. Radiographic diagnosis of synovial chondromatosis of the temporomandibular joint: a case report. J Can Dent Assoc 75(10): 711-714.

6. Hohweg-Majert B, Metzger MC, Bohm J, Muecke T, Schulze D. 2008. Advanced imaging findings and computer-assisted surgery of suspected synovial chondromatosis in the temporomandibular joint. J Magn Reson Imaging 28(5): 1251-1257. https://doi.org/10.1002/jmri.21581

7. Ida M, Yoshitake H, Okoch K, Tetsumura A, Ohbayashi N, et al. 2008. An investigation of magnetic resonance imaging features in 14 patients with synovial chondromatosis of the temporomandibular joint. Dentomaxillofac Radiol 37(4): 213-219. https://doi.org/10.1259/dmfr/95185114

8. Von Lindern JJ, Theuerkauf I, Niederhagen B, Bergé S, Appel T, et al. 2002. Synovial chondromatosis of the temporomandibular joint: clinical, diagnostic, and histomorphologic findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(1): 31-38. https://doi.org/10.1067/moe.2002.123498

9. Kim HS, Lee W, Choi JW, Han WJ, Kim KE. 2018. Temporomandibular joint synovial chondromatosis accompanying temporal bone proliferation: A case report. Imaging Sci Dent 48(2): 147-152. https://doi.org/10.5624/isd.2018.48.2.147

10. Naeem A, Gemal H, Reed D. 2017. Imaging in traumatic mandibular fractures. Quant Imaging Med Surg 7(4): 469-479. doi:10.21037/qims.2017.08.06

11. Yu Q, Yang J, Wang P, Shi H, Luo J. 2004. CT features of synovial chondromatosis in the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(4): 524-528. https://doi.org/10.1016/j.tripleo.2003.10.027

Conclusion

SC of the TMJ is rarely reported worldwide and is likely an overlooked condition. Many imaging features of SC have been reported. However, to our knowledge, no reports have described SC of the TMJ misdiagnosed on US as an avulsion fracture of the condylar process of the mandible. Clinicians should acknowledge the capacities and appropriateness of various imaging modalities to choose the optimal diagnostic tool in every clinical scenario to provide an accurate diagnosis, which, in turn, allows for adequate treatment.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgement

None declared.