Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines

Jeong A. Han¹, Ji-Yeon Kim², Jong-Il Kim³,⁴,⁵*

¹Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 200-701, Korea, ²Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea, ³Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Korea, ⁴Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea, ⁵Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea

Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2 are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31 are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.

Keywords: cell proliferation, cyclooxygenase 2, invasion, osteosarcoma, overexpression, migration

Introduction

Osteosarcoma is the most common primary bone tumor, representing over 56% of all bone tumors. It generally affects young people with the age of 15 to 19 and usually occurs in long bones near the metaphyseal growth plates. It has a high tendency to metastasize, and about 10%-20% of patients have macroscopic evidence of metastasis at the time of diagnosis, while 80%-90% of patients are assumed to have micrometastasis. Although it has been postulated that rapid bone growth, exposure to radiation, and genetic predispositions, such as RB or p53 mutations, are thought to be risk factors for developing osteosarcoma, the etiology has not been fully understood [1-3].

Prostaglandin endoperoxide synthase 2 (PTGS2), also called as cyclooxygenase-2 (COX-2), catalyzes the conversion of arachidonic acid to prostaglandin H2, from which various prostanoids, including prostaglandin E2, are produced [4].

Accumulating evidence indicates that COX-2 is involved in osteosarcoma development and progression. Several studies have reported that high levels of COX-2 expression is associated with advanced clinical stage and metastasis [5, 6], as well as with lower overall survival rates and disease-free survival rates [7-9]. In addition, COX-2 inhibition by using RNAi or antisense oligonucleotide inhibits cell proliferation and invasion in human osteosarcoma cells [10, 11]. Also, selective COX-2 inhibitors reduce not only osteosarcoma cell proliferation and invasion in vitro but also tumor growth and metastasis in vivo [12, 13]. Moreover, we have previously reported that COX-2 overexpression promotes cell...
proliferation, migration, and invasion in U2OS human osteosarcoma cells [14]. These studies strongly suggest that COX-2 might be a causal factor for the development and progression of osteosarcoma. However, the exact mechanisms of action of COX-2 in osteosarcoma are largely unknown.

In an attempt to figure out the mechanism of action of COX-2 in osteosarcoma, we analyzed the gene expression profiles in three COX-2-overexpressed U2OS stable cell lines and three control stable cell lines.

Methods

Establishment and maintenance of stable cell lines

Human COX-2 cDNA was subcloned into the pcDNA3 vector containing neo. U2OS cells were transfected with COX-2 or pcDNA3 DNA using Lipofectamine2000 (Life Technologies, Grand Island, NY, USA). Transfectants were selected in the presence of geneticin, and individual clones were maintained in Dulbecco’s modified Eagle’s medium, containing fetal bovine serum (10%), penicillin (100 units/mL), streptomycin (100 units/mL), and geneticin (700 μg/mL), as reported previously [14].

RNA isolation

Total RNA was extracted from cells with Trizol (Life Technologies), purified with the addition of chloroform, and precipitated with the addition of isopropanol. The RNA concentration was determined by a spectrophotometer, and the quality of RNA was evaluated by the OD 260/280 ratio and gel electrophoresis.

Hybridization to expression arrays

The following procedures were carried out by Macrogen Co. (Seoul, Korea). First, total RNA was amplified and purified using the Ambion Illumina RNA amplification kit to yield biotinylated cRNA (Ambion, Austin, TX, USA). Briefly, 550 ng of total RNA was reverse-transcribed to cDNA using a T7 oligo(dT) primer. Second-strand cDNA was synthesized, in vitro-transcribed, and labeled with biotin-NTP. After purification, 750 ng of labeled cRNA was hybridized to the humanHT-12 expression v.4 bead array (Illumina, San Diego, CA, USA) for 16-18 h at 58°C. The array signal was detected using Amersham fluorolink streptavidin-Cy3 (GE Healthcare Bio-Sciences, Little Chalfont, UK). Arrays were scanned with an Illumina bead array reader/confocal scanner. Array data were filtered by a detection p-value < 0.05 (similar to signal to noise). Selected gene signal values were log-transformed and normalized by the quantile method.

Statistical analysis

Basic statistical analyses were performed using Microsoft Excel. Hierarchical cluster analysis was conducted with normalized log2-gene expression values using Cluster 3.0, and the results were visualized using Java Treeview [15, 16]. An unrooted tree was drawn with R package. Biological function analysis was performed with official gene names using DAVID (http://david.abcc.ncifcrf.gov/).

Results

Stable cell lines

We have previously established stable cell lines over-expressing human COX-2 in U2OS human osteosarcoma cells. To avoid clonal variations, we established three stable COX-2-overexpressing cell lines (U2OS-COX-2 #1, #2, and #3) and three control cell lines (U2OS-pcDNA3 #1, #2, and #3). High levels of COX-2 expression were observed by western blot analysis in U2OS-COX-2 cells, whereas the expression was barely detectable in U2OS-pcDNA3 cells. When we cultured the stable cell lines, we observed that cell proliferation, migration, and invasion rates were increased significantly in U2OS-COX-2 cells as compared with U2OS-pcDNA3 cells [14] (Table 1).

Gene expression

We first performed unsupervised cluster analysis comparing COX-2-overexpressing cell lines and control cell lines. Among 24,371 probe sets, we selected and analyzed 567

Cell line	Expression level of COX-2	Proliferation rate	Migration rate (trans-well)	Invasion rate (Matrigel)
U2OS-COX-2 #1	+++	+++	+++	+++
U2OS-COX-2 #2	+++	+++	+++	+++
U2OS-COX-2 #3	+++	+++	+++	+++
U2OS-pcDNA3 #1	±	+	+	+
U2OS-pcDNA3 #2	±	+	+	+
U2OS-pcDNA3 #3	±	+	+	+

COX-2, cyclooxygenase-2.
Table 2. Upregulated DEGs in COX-2-overexpressed cell lines

Symbol	Description	Fold change	Accession No.
PTGS2	Prostaglandin-endoperoxide synthase 2	10.41	NM_000963
PAG2B	P antigen family, member 2B	4.61	NM_001015038
COL1A1	Collagen, type I, alpha 1	3.21	NM_000888
FAP	Fibroblast activation protein, alpha	2.76	NM_004460
COL5A2	Collagen, type V, alpha 2	2.35	NM_000393
UNC00312	Long intergenic non-protein coding RNA 312	2.34	NR_024065
RAC2	Ras-related C3 botulinum toxin substrate 2 (rho family, small GTP-binding protein Rac2)	2.33	NM_002872
HOXD10	Homeobox D10	2.32	NM_002148
RCN3	Reticulocalbin 3, EF-hand calcium-binding domain	2.07	NM_020650
FBN1	Fibronectin 1	2.02	NM_000138
CREB3L1	cAMP responsive element-binding protein 3-like 1	2.02	NM_052854
CioH85	Chromosome 1 open reading frame 85	2.01	NM_144580
TSPAN31	Tetraspanin 31	2.01	NM_005981
DYSF	Dihydropyrimidinase-like 5	1.96	NM_020134
PSMB9	Proteasome (prosome, macropain) subunit, beta type 9, transcript variant 1	1.89	NM_002800
PSMB9	Proteasome (prosome, macropain) subunit, beta type 9, transcript variant 2	1.89	NM_148954
GPAM	Glycerol-3-phosphate acyltransferase, mitochondrial	1.89	NM_020918
NLRP1	NLR family, pyrin domain-containing 1, transcript variant 1	1.83	NM_033004
LTBP1	Latent transforming growth factor beta-binding protein 1, transcript variant 1	1.82	NM_206943
UNC13A	Unc-13 homolog A (Caenorhabditis elegans)	1.79	NM_001080421
VAT1L	Vesicle amine transport 1-like	1.78	NM_020927
MEIS1	Meis homeobox 1	1.77	NM_002398
DDR2	Discoidin domain receptor family, member 2, transcript variant 1	1.74	NM_001014796
DYSF	Dystrophin, limb girdle muscular dystrophy 2B (autosomal recessive)	1.74	NM_003494
ACBD7	Acyl-coenzyme A-binding domain-containing 7	1.69	NM_001039844
FMI1	Formin 1	1.68	NM_00103184
SCN3A	Sodium channel, voltage-gated, type III, alpha subunit, transcript variant 1	1.68	NM_006922
NLRP11	NLR family, pyrin domain-containing 11	1.68	NM_145007
MBOAT2	Membrane bound O-acyltransferase domain-containing 2	1.68	NM_138799

DEG, differentially expressed gene; COX-2, cyclooxygenase-2.
Table 2. Continued

Symbol	Description	Fold change	Accession No.
MIR196A1	MicroRNA 196a-1	1.67	NR_029582
ASTN1	Astrotactin 1, transcript variant 1	1.65	NM_004319
TSHZ2	Teashirt family zinc finger 2	1.64	NM_173485
MFAP2	Microfibrillar-associated protein 2, transcript variant 2	1.64	NM_002403
SH3PXD2A	SH3 and PX domains 2A	1.62	NM_014631
SNORD116-22	Small nucleolar RNA, C/D box 116-22	1.60	NR_003336
TSHZ2	Teashirt zinc finger homeobox 2	1.59	NM_001193421
EHD3	EH domain-containing 3	1.59	NM_014600
LBH	Limb bud and heart development homolog (mouse)	1.59	NM_030915
PTNP20B	Protein tyrosine phosphatase, non-receptor type 2B	1.59	NM_001042357
C10orf11	Chromosome 10 open reading frame 11	1.59	NM_032024
SNORD116-2	Small nucleolar RNA, C/D box 116-2 on chromosome 15	1.59	NR_003317
EEFEMP1	EGF-containing fibulin-like extracellular matrix protein 1, transcript variant 1	1.59	NM_004105
NAG	Neuroblastoma-amplified protein	1.58	NM_015909
HIST4H4	Histone cluster 4, H4	1.58	NM_175054
RIF5A	Kinesin family member 5A	1.57	NM_004984
TMEPAI	Transmembrane, prostate androgen-induced RNA, transcript variant 1	1.56	NM_020182
UACA	Vveal autoantigen with coiled-coil domains and ankyrin repeats, transcript variant 1	1.55	NM_018003
RASSF2	Ras association (RalGDS/AF-6) domain family 2, transcript variant 1	1.54	NM_014737
GPATCH1	G patch domain containing 1	1.54	NM_018025
LPAR1	Lyrophosphatidic acid receptor	1.54	NM_057159
ARSI	Arylsulfatase family, member 1	1.53	NM_001012301
TRAPPCC2	Trafficking protein particle complex 2, transcript variant 1	1.53	NM_001011658
CDR1	Cerebellar degeneration-related protein 1, 34 kDa	1.53	NM_004065
WDP4CP	WD repeat-containing and planar cell polarity effector	1.53	NM_015910
CCDC186	Coiled-coil domain-containing protein 186	1.52	NM_018017
RUNX2	Runt-related transcription factor 2, transcript variant 1	1.51	NM_001024630

Table 3. Downregulated DEGs in COX-2-overexpressed cell lines

Symbol	Description	Fold change	Accession No.
HIST1H4C	Histone cluster 1, H4c	4.63	NM_003542
HIST1H3H	Histone cluster 1, H3h	2.05	NM_003536
HIST1H2A1	Histone cluster 1, H2ai	1.94	NM_003509
CABYR	Calcium binding tyrosine-(Y)-phosphorylation regulated, transcript variant 1	1.91	NM_012189
FLJ16171	FLJ16171 protein	1.90	NR_046113
AKR1C2	Aldo-keto reductase family 1, member C2, transcript variant 2	1.89	NM_205845
AURKC	Aurora kinase C, transcript variant 1	1.77	NM_001015878
HIST1H1D	Histone cluster 1, H1d	1.72	NM_005320
CRLF2	Cytokine receptor-like factor 2, transcript variant 1	1.70	NM_001012288
CTAG2	Cancer/testis antigen 2, transcript variant 2	1.69	NM_020994
SERPINB5	Serpin peptidase inhibitor, clade B (ovalbumin), member 5	1.65	NM_002639
RARB	Retinoic acid receptor, beta, transcript variant 1	1.65	NM_000965
FAT4	FAT tumor suppressor homolog 4 (Drosophila)	1.64	NM_024582
TNRFSF11B	Tumor necrosis factor receptor superfamily, member 11b	1.57	NM_002546
NOTUM	Notum pectinacetylesterase homolog (Drosophila)	1.57	NM_178493
FGFR2	Fibroblast growth factor 2 (bancic)	1.56	NM_002006
STX11	Syntaxin 11	1.53	NM_003764
VEPH1	Ventricular zone-expressed PH domain homolog 1 (zebrafish)	1.53	NM_024621
SPATA31C1	SPATA31 subfamily C, member 1	1.53	NM_001145124
ADAM21	ADAM metallopeptidase domain 21	1.52	NM_003813

DEG, differentially expressed gene; COX-2, cyclooxygenase-2.
validated (Table 2).

Functional analysis

The DEGs were concentrated in several important biological functions
The functions that were most significantly upregulated by COX-2 overexpression in U2OS cells were skeletal system development and morphogenesis, bone development and morphogenesis, ossification, and positive regulation of cell proliferation ($p < 0.05$) (Table 4). The genes of $COL1A1$, $COL5A2$, $FBN1$, $HOXD10$, $RUNX2$, and TRAPP2 are involved in skeletal system development and morphogenesis. The genes of $COL1A1$, $COL5A2$, and $RUNX2$ are involved in bone development, morphogenesis and ossification. The genes of $DDR2$, $RAC2$, $RUNX2$, and $TSPAN31$ are involved in the positive regulation of cell proliferation (Table 4).

The functions that were most significantly downregulated by COX-2 overexpression in U2OS cells were nucleosome assembly, chromatin assembly, and DNA packaging ($p < 0.05$). The genes of $HIST1H1D$, $HIST1H2AI$, $HIST1H3H$, and $HIST1H4C$ are involved in these processes (Table 5).

Discussion

COX-2 has been reported to promote cell proliferation, migration, and invasion in osteosarcoma cells. COX-2 gene knockdown by RNAi significantly reduced the cell proliferation, migration, and invasion in SaOS2 cells [11], whereas stable expression of COX-2 increased the ability in U2OS cells [14] (Table 1). These studies demonstrated that abnormal COX-2 overexpression is an important determinant for the malignant phenotype of osteosarcoma cells. By using bioinformatics tools, we here provided useful information to understand the underlying mechanism by which COX-2 promotes the malignant phenotype in osteosarcoma cells.

According to our data, the genes encoding extracellular matrix proteins are highly upregulated by COX-2 (Tables 2 and 4). The genes $COL1A1$, $COL5A2$, and $FBN1$ encode $\alpha1$ chain of type I collagen, $\alpha2$ chain of type V collagen, and fibrillin 1, respectively. It has been known that the type I and type V collagens are major extracellular matrix proteins in

Functional category	Genes	p-value
GO: Biological process		
Skeletal system development	$PTGS2$, $FBN1$, $COL1A1$, $COL5A2$, $RUNX2$, $HOXD10$, TRAPP2	0.000009
Ossification	$PTGS2$, $COL1A1$, $COL5A2$, $RUNX2$	0.00248
Bone development	$PTGS2$, $COL1A1$, $COL5A2$, $RUNX2$	0.00300
Positive regulation of cell proliferation	$PTGS2$, $RAC2$, $TSPAN31$, $DDR2$, $RUNX2$	0.01579
Endochondral ossification	$COL1A1$, $RUNX2$	0.02803
Skeletal system morphogenesis	$COL1A1$, $RUNX2$, $HOXD10$	0.02867
Endochondral bone morphogenesis	$COL1A1$, $RUNX2$	0.03720
Bone morphogenesis	$COL1A1$, $RUNX2$	0.04629
GO: Molecular function		
Extracellular matrix structural constituent	$FBN1$, $COL1A1$, $COL5A2$	0.01891

DEG, differentially expressed gene.
Table 5. Biological functions of downregulated DEGs

Functional category	Genes	p-value
GO_Biological process		
Nucleosome assembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00005
Chromatin assembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00006
Protein-DNA complex assembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00007
Nucleosome organization	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00013
DNA packaging	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00017
Chromatin assembly or disassembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00242
Cellular macromolecular complex assembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00336
Chromatin organization	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00395
Chromosome organization	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.00791
Macromolecular complex assembly	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.01865
Macromolecular complex subunit organization	HIST1H1D, HIST1H2AI, HIST1H4C, HIST1H3H	0.02219
KEGG_Pathway		
Systemic lupus erythematosus	HIST1H2AI, HIST1H4C, HIST1H3H	0.01236

DEG, differentially expressed gene.

bone [17]. Although there is a report that type I collagen promotes cell proliferation and migration in gastric cancer cells [18], the causal relationship between the overexpression of those genes and osteosarcoma has not been investigated well. Therefore, further studies are necessary to elucidate whether overexpression of these genes might be involved in the COX-2-mediated malignant phenotype in osteosarcoma.

Extracellular matrix proteins not only are structural components of the connective tissue in the body but also regulate cell fates through their receptors on the cell surface. DDR2 is one of the receptors for collagen, the expression of which was highly upregulated by COX-2 (Tables 2 and 4). DDR2 is a receptor tyrosine kinase, and its overexpression promotes the migration and invasion of cancer cells derived from breast, head and neck, and prostate [19-21]. Therefore, COX-2 might promote cell proliferation and motility through upregulation of DDR2. Further studies are necessary to elucidate this possibility.

RAC2, a highly upregulated gene by COX-2, is a member of the Rho family of GTPases (Tables 2 and 4). Although there is no report on Rac2 function in osteosarcoma, there is a report that Rac2 GTPase is required for B cell proliferation and survival [22]. Therefore, COX-2 might promote cell proliferation through upregulation of Rac2 function.

Among the highly upregulated genes, RUNX2 encodes a transcription factor governing osteoblast differentiation and skeletal morphogenesis. Recent studies on Runx2 function in cancer are controversial. Runx2 overexpression reduces cell proliferation in osteosarcoma cell lines [23] but promotes cell motility or invasion in MCF-7 breast cancer cells and PC prostate cancer cells [24, 25]. Therefore, further studies are required to elucidate the function of Runx2 in osteosarcoma and the relation between COX-2 and Runx2.

Intriguingly, the genes encoding histone proteins are highly downregulated by COX-2 (Tables 3 and 5). The genes HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C encode histone H1H1, histone H2A1, histone H3A1, and histone H4I, respectively. As is well known, the nucleosome is the basic unit of DNA packaging, consisting of a core particle and linker DNA. A core particle comprises 147 base pairs of DNA wrapped around a histone octamer (2 copies each of histone H2A, H2B, H3, and H4). The core particles are connected by 10–90 bp of linker DNA, which could be naked or bound to histone H1 [26]. The nucleosome itself has been known to be a general gene repressor [27, 28]. In addition, RNAi-mediated knockdown of H2A.Z reduced cell proliferation in bladder cancer cells [29]. These results are compatible with our finding that COX-2 downregulates the expression of histone genes. Therefore, it is worth studying the mechanism of action of histones in osteosarcoma and the mechanism by which COX-2 downregulates histone genes.

Osteosarcoma is a highly malignant tumor, and the 5-year survival rate is only 20%–30% in patients with macroscopic evidence of metastasis at diagnosis [3]. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that COX-2 plays a critical role in osteosarcoma development and progression. In this regard, we believe that our study will provide useful information to understand the mechanism of action of COX-2 in osteosarcoma.

Acknowledgments

This study was supported by 2014 Research Grant from...
Kangwon National University (No. 120141490).

References

1. He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Guo FJ, et al. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev 2014;15:5967-5976.

2. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev 2014;40:523-532.

3. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 2006;32:423-436.

4. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996;271:33157-33160.

5. El-Badawi ZH, Muhammad EM, Noaman HH. Role of immunohistochemical cyclooxygenase-2 (COX-2) and osteocalcin in differentiating between osteoblastomas and osteosarcomas. Malays J Pathol 2012;34:15-23.

6. Jiao G, Ren T, Lu Q, Sun Y, Lou Z, Peng X, et al. Prognostic significance of cyclooxygenase-2 in osteosarcoma: a meta-analysis. Tumour Biol 2013;34:2489-2495.

7. Boulytcheva IV, Soloviev YN, Kushlianski IE, Mahson AN. Expression of molecular markers in the tumor and survival prognosis in osteosarcoma. Bull Exp Biol Med 2010;150:237-242.

8. Urakawa H, Nishida Y, Naruse T, Nakashima H, Ishiguro N. Cyclooxygenase-2 overexpression predicts poor survival in patients with high-grade extremity osteosarcoma: a pilot study. Clin Orthop Relat Res 2009;467:2932-2938.

9. Wang Z, He M, Xiao Z, Wu H, Wu Y. Quantitative assessment of the association of COX-2 (cyclooxygenase-2) immunexpression with prognosis in human osteosarcoma: a meta-analysis. PLoS One 2013;8:e82907.

10. Wu X, Cai M, Ji E, Lou LM. The impact of COX-2 on invasion of osteosarcoma cell and its mechanism of regulation. Cancer Cell Int 2014;14:27.

11. Zhao Q, Wang C, Zhu J, Wang L, Dong S, Zhang G, et al. RNAi-mediated knockdown of cyclooxygenase2 inhibits the growth, invasion and migration of SaOS2 human osteosarcoma cells: a case control study. J Exp Clin Cancer Res 2011;30:26.

12. Sabino MA, Ghilardi JR, Jongen JL, Keyser CP, Lugur NM, Mach DB, et al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res 2002;62:7343-7349.

13. Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis 2006;27:584-592.

14. Lee EJ, Choi EM, Kim SR, Park JH, Kim H, Ha KS, et al. Cyclooxygenase-2 promotes cell proliferation, migration and invasion in U2OS human osteosarcoma cells. Exp Mol Med 2007;39:469-476.

15. de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics 2004;20:1453-1454.

16. Saldanha AJ. Java Treeview: extensible visualization of microarray data. Bioinformatics 2004;20:3246-3248.

17. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem 2009;78:929-958.

18. Li A, Zhou T, Guo L, Si J. Collagen type I regulates beta-catenin tyrosine phosphorylation and nuclear translocation to promote migration and proliferation of gastric carcinoma cells. Oncol Rep 2010;23:1247-1255.

19. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol 2013;15:677-687.

20. Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, et al. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta 2014;1842:1350-1363.

21. Xu Z, Choudhary S, Voznesensky O, Mehrotra M, Woodard M, Hansen M, et al. Overexpression of COX-2 in human osteosarcoma cells decreases proliferation and increases apoptosis. Cancer Res 2006;66:6657-6664.

22. Walsmsley MJ, Ooi SK, Reynolds LE, Smith SH, Ruf S, Mathiot A, et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 2003;302:459-462.

23. Lucero CM, Vega OA, Osorio MM, Tapia JC, Antonelli M, Stein GS, et al. The cancer-related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines. J Cell Physiol 2013;228:714-723.

24. Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mov D, et al. Runx2 transcriptional program of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 2010;9:258.

25. Leong DT, Lim J, Goh X, Pratap J, Pereira BP, Kwok HS, et al. Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Res 2010;12:R89.

26. Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature 2003;423:145-150.

27. Han M, Grunstein M. Nucleosome loss activates yeast down-stream promoters in vivo. Cell 1988;55:1137-1145.

28. Lorch Y, LaPointe JW, Kornberg RD. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 1987;49:203-210.

29. Kim K, Purj V, Choi J, Heo K, Kim JM, Laird PW, et al. Gene dysregulation by histone variant H2A.Z in bladder cancer. Epigenetics Chromatin 2013;6:34.