Problems in the Derivations of the Renormalization Group Equation for the Low Momentum Nucleon Interactions

Koji Harada

Department of Physics, Kyushu University, Fukuoka 810-8560, Japan

(Received April 3, 2008; Revised August 20, 2008)

We carefully examine one of the derivations of the renormalization group equation (RGE) for the so-called $V_{\text{low } k}$ potential, given by Bogner et al. [nucl-th/0111042]. The derivation, based on the completeness relation of the model space, must be modified if there are bound states. It is however shown that the RGE is unchanged if the bound state wavefunctions in the reduced theory are required to have the same low-momentum components as those in the original theory. Several aspects of the $V_{\text{low } k}$ approach are also discussed.

§1. Introduction

Recently there has been great interest in studying nucleon-nucleon (NN) interactions by using Effective Field Theory (EFT). EFT is based on the very simple idea that the effects of short-distance physics can be simulated by local (contact) interactions, so that a typical (nuclear) EFT-based potential consists of a series of local interactions (delta function potentials and their derivatives) and a long-distance part (Yukawa potential due to one-pion exchange). EFT is valid only below a certain scale, the cutoff, and the coupling constants of the local interactions are determined as functions of the cutoff so that the physical observables are independent of the cutoff. Lowering the cutoff amounts to the “integrating” the short-distance fluctuations, leading to the change of the coupling constants of the local interactions. This is nothing but Wilsonian renormalization group (RG) idea. EFT together with the RG idea is a promising alternative to the conventional approach based on phenomenological NN potentials. It is a model independent, systematically improvable approach, and is related to QCD through chiral symmetry. See Refs. 4)–7) for reviews.

One might however think that the use of the “realistic” potentials, which describe thousands of data with $E_{\text{lab}} \lesssim 350$ MeV very accurately, together with the RG idea, would be more effective, though such an approach is inevitably phenomenological. The so-called $V_{\text{low } k}$ approach (in its original form) exactly goes along this strategy.

The $V_{\text{low } k}$ approach originally emerged as an application of the model space reduction methods developed in shell-model theory. The model space reduction methods apparently resemble RG transformations; the effects of the higher-energy states are taken into account as effective interactions. It has been shown that “realistic” potentials evolve to a universal low-energy potential by the model space

* E-mail: harada@phys.kyushu-u.ac.jp
It appears to conform to the general idea of “universality” in the RG theory. On the other hand, the universal potential may be useful also in a practical sense, because it is much smoother than the “realistic” potentials so that one may avoid calculating the Brueckner G-matrix, \(^{18)-21}\) which is energy and nucleus dependent.

A relatively simple RG equation (RGE), which is claimed to be satisfied by the \(V^\text{low}_k\), has been known:

\[
\frac{d}{dA} V^A_{\text{low} k}(k', k) = \frac{2}{\pi} \frac{V^A_{\text{low} k}(k', A) T^A(A, k; A^2)}{1 - (k/A)^2},
\]

where \(A\) is the (floating) cutoff, \(k\) and \(k'\) are the relative momentum of incoming and outgoing nucleons respectively, and \(T\) is the T-matrix. The superscript \(A\) indicates that the quantity is cutoff dependent. Note that we put the superscript \(A\) on the left-on-shell T-matrix to indicate explicitly that it is, unlike the right-on-shell T-matrix, a \(A\)-dependent quantity. It is important to note that “the RG equation lies at the heart of the approach\(^{13}\)”. There are several model space techniques and, according to Refs. 12), 14)–16), 22), they all satisfy the same RG equation. In this sense, it is considered that they are all equivalent and the universal low-energy potential is unique. Because this is a very nontrivial assertion, it is important to examine the derivations of the RG equation carefully.

To our best knowledge, however, the four derivations of the RG equations presented in Ref. 14) do not seem to have been scrutinized, though there are many applications. In this paper, we show that the first derivation based on the completeness relation presented in Ref. 14) contains a serious defect. Our arguments are not technically intricate nor too mathematical so that those who are familiar with the derivation can easily follow them.

None of the other derivations are worked out with enough mathematical rigor in the original paper\(^{14}\) so that in this paper we do not discuss the other derivations.

We do not claim that their RGE (1.1) is wrong; we only claim that the derivation is insufficient if there are bound states. It is however shown that extra terms arising from the existence of the bound states cancel, keeping Eq. (1.1) unmodified,\(^{23}\) if the bound state wavefunctions in the reduced theory are required to have the same low-momentum components as those in the original theory.

We notice that most of the numerical results given in the literature are not derived directly from the RGE, but from one of the model-space reduction methods such as Lee-Suzuki (LS) method\(^{24}\) or Kuo-Lee-Ratcliff (KLR) method.\(^{25}\) We emphasize that numerical results obtained with these methods are not affected by the present work. The procedure is independent of the actual form of the RGE, and the effective interactions obtained by these methods in fact satisfy the condition mentioned above, and hence Eq. (1.1).

We assume that the reader is familiar with Ref. 14), though we recapitulate the main points. We follow their notations as closely as possible. In §2, we show that their completeness relation in the “model space” is wrong when bound states are present, invalidating the first derivation. It is however shown that, if the bound state wavefunctions in the reduced theory have the same low-momentum components
as those in the original theory, the extra terms cancel each other, and the RGE is not affected by the presence of bound states. In §3, we summarize our results and discuss several related issues.

§2. Completeness in the model space

$V_{\text{low } k}$ potential may be defined by the half-on-shell T-matrix,

$$T(k', k; k^2) = V^A_{\text{low } k}(k', k) + \frac{2}{\pi} P \int_0^A V^A_{\text{low } k}(k', p) \frac{p^2 dp}{k^2 - p^2} T(p, k; k^2),$$

(2.1)

where we use the partial-wave notation. (In this paper, we use units with $\hbar = c = M_N = 1$.) The authors of Ref. 14) tried to derive the RGE for $V_{\text{low } k}$ by demanding the Λ-independence of $T(k', k; k^2)$.

In the case of V_{WRG}, the RGE can be easily derived from the Λ-independence of the fully off-shell T-matrix,

$$\frac{d}{d\Lambda} V^A_{\text{WRG}}(k', k; \omega) = \frac{2}{\pi} \frac{V^A_{\text{WRG}}(k', \Lambda; \omega) V^A_{\text{WRG}}(\Lambda, k; \omega)}{1 - \omega/\Lambda^2},$$

(2.2)

as done by Birse et al.26 (See Refs. 27)–29) for the field theoretical formulation. See also Ref. 30) for the comparison of V_{WRG} with $V_{\text{low } k}$.) On the other hand, one cannot follow the similar simple manipulation to derive the RGE for $V_{\text{low } k}$, and the authors of Ref. 14) invoked information on the cutoff state vectors. But, as we will show, the relation they used is wrong when bound states are present.

We introduce the projection operators, P and Q, satisfying $P + Q = 1$, $PQ = QP = 0$, and $Q^2 = Q$. The operator P, which projects states to the low-momentum space, may be written as

$$P = \frac{2}{\pi} \int_0^A |k\rangle k^2 dk |k\rangle,$$

(2.3)

where $|k\rangle$ stands for the plane wave in the partial-wave notation with the normalization,

$$\langle k' | k \rangle = \frac{\pi}{2} \frac{\delta(k' - k)}{k'k}.$$

(2.4)

Consider the “bare” Schrödinger equation,

$$(H_0 + V_{NN}) |\Psi_k\rangle = k^2 |\Psi_k\rangle,$$

(2.5)

for a scattering state with energy $0 \leq k^2 < \Lambda^2$, and the corresponding reduced one,

$$(H_0 + V^A_{\text{low } k}) |\chi^A_k\rangle = k^2 |\chi^A_k\rangle.$$

(2.6)

The potential $V^A_{\text{low } k}$ is a P-to-P operator, which may be constructed by the KLR folded diagram theory or the LS similarity transformation. In the both cases, the state $|\chi^A_k\rangle$ is related to the original state by the projection,

$$|\chi^A_k\rangle = P |\Psi_k\rangle.$$

(2.7)
This condition is nothing but the A-independence of the half-on-shell T-matrix in the reduced theory. Actually, by applying $\langle k'|$ with $k' < A$ to Eqs. (2.5) and (2.6), we get
\begin{equation}
\langle k'|V_{NN}|\Psi_k \rangle = (k^2 - k'^2)\langle k'|\Psi_k \rangle \quad \text{and} \quad \langle k'|V_{\text{low }k}|\chi^A_k \rangle = (k^2 - k'^2)\langle k'|\chi^A_k \rangle,
\end{equation}
but the left-hand sides of these equations are by assumption equal to the half-on-shell T-matrix $T(k', k; k^2)$. Therefore the right-hand sides are also equal, and taking into account that k' is arbitrary, we see that Eq. (2.7) is valid. On the other hand, the preservation of the half-on-shell T-matrix follows Eq. (2.7).

Their first derivation goes as follows: From the cutoff Schrödinger equation (2.6), one gets the corresponding Lippmann-Schwinger equation,
\begin{equation}
|\chi^A_k \rangle = |k \rangle + \frac{2}{\pi} \int_0^A dp |p \rangle \frac{p^2}{k^2 - p^2} T(p, k; k^2),
\end{equation}
where k is assumed to be small, $k < A$. Note that the upper limit of the integral is A to be consistent with Eq. (2.7). Requiring that the half-on-shell T-matrix is A-independent,
\begin{equation}
\frac{d}{dA} T(k', k; k^2) = \frac{d}{dA} (k'|V^A_{\text{low }k}|\chi^A_k) = 0,
\end{equation}
for $k' < A$ and using
\begin{equation}
\frac{d}{dA} |\chi^A_k \rangle = \frac{2}{\pi} |A \rangle \frac{A^2}{k^2 - A^2} T(A, k; k^2),
\end{equation}
one gets
\begin{equation}
0 = \langle k'| \frac{dV^A_{\text{low }k}}{dA} |\chi^A_k \rangle + \frac{2}{\pi} \langle k'| V^A_{\text{low }k} |A \rangle \frac{A^2}{k^2 - A^2} T(A, k; k^2).
\end{equation}
The last term may be rewritten by using
\begin{equation}
\frac{A^2}{k^2 - A^2} T(A, k; k^2) = \langle A| V^A_{\text{low }k} H_0 + V^A_{\text{low }k} - A^2 |\chi^A_k \rangle.
\end{equation}

Let us introduce the operator,
\begin{equation}
J \equiv \frac{2}{\pi} \int_0^A |\chi^A_k \rangle k^2 dk \langle \tilde{\chi}^A_k|,
\end{equation}
where we introduced a bi-orthogonal basis $\langle \tilde{\chi}^A_k| \rangle$ for each state $|\chi^A_k \rangle$,
\begin{equation}
\langle \tilde{\chi}^A_k| \chi^A_k \rangle = \frac{\pi \delta(k' - k)}{k'k},
\end{equation}
because $V^A_{\text{low }k}$ is not Hermitian. Note that J is a projection operator, $J^2 = J$. One thus obtains
\begin{equation}
\langle k'| \frac{dV^A_{\text{low }k}}{dA} J |k \rangle = -\frac{2}{\pi} \langle k'| V^A_{\text{low }k} |A \rangle \langle A| V^A_{\text{low }k} H_0 + V^A_{\text{low }k} - A^2 J |k \rangle.
\end{equation}
If J were the identity operator in the P-space, as the authors of Ref. 14) claimed, then the identity,

$$
\langle \Lambda | V^A_{\text{low } k} \frac{A^2}{H_0 + V^A_{\text{low } k} - A^2} | k \rangle = T^A(A, k; \Lambda^2) \frac{A^2}{k^2 - A^2},
$$

would lead us to

$$
\frac{d}{d\Lambda} V^A_{\text{low } k}(k', k) = -\frac{2}{\pi} V^A_{\text{low } k}(k', \Lambda) T^A(\Lambda, k; \Lambda^2) \frac{A^2}{k^2 - A^2},
$$

which is nothing but Eq. (1.1).

In the presence of bound states, however, the operator J cannot be the identity operator,

$$
J + \sum_i | \chi^A_{B_i} \rangle \langle \tilde{\chi}^A_{B_i} | = P,
$$

where $| \chi^A_{B_i} \rangle$ are state vectors for the bound states in the reduced theory,

$$
(H_0 + V^A_{\text{low } k}) | \chi^A_{B_i} \rangle = -k^2_{B_i} | \chi^A_{B_i} \rangle,
$$

and $\langle \tilde{\chi}^A_{B_i} |$ is its conjugate bi-orthogonal state,

$$
\langle \tilde{\chi}^A_{B_i} | \chi^A_{B_j} \rangle = \delta_{ij}.
$$

Since the first derivation in Ref. 14) uses the claim that J is the identity operator in the P-space in an essential way, it contains a serious defect in the presence of bound states.

The point is that completeness of the eigenstates of an operator concerns the whole spectrum, including the bound states.

In the original applications of the KLR folded diagram theory or LS similarity transformation theory to the shell model problems, the spectrum of the Hamiltonian is discrete and the model space is finite dimensional. Everything looks trivial about the completeness. In the scattering problem, however, even though one is interested in continuous states, bound states must be included if one talks about completeness.

One might claim that the reduced theory is designed to reproduce the scattering amplitudes, so that it does not need to include the bound states in the spectrum. It is however not correct because the scattering amplitudes in general reflect some information about the bound states. A good example is provided by the well known Levinson’s theorem, which states that the low-energy scattering data (the phase shift at zero momentum) for a well-behaved potential knows the number of the bound states. If the reduced potential $V^A_{\text{low } k}$ reproduces the half-on-shell, hence the on-shell T-matrix, it must support the bound states because the existence of which is encoded in the scattering phase shift.

If one takes into account the correct completeness relation, Eq. (2.19), one finds the modified RGE given by

$$
\frac{d}{d\Lambda} V^A_{\text{low } k}(k', k) = \frac{2}{\pi} \frac{V^A_{\text{low } k}(k', \Lambda) T^A(\Lambda, k; \Lambda^2)}{1 - (k/\Lambda)^2}.
$$
\[+ \sum_i \int_l \left(\frac{d}{d \Lambda} V_{\text{low } k}(k', l) - \frac{2}{\pi} \frac{V_{\text{low } k}(k', A)V_{\text{low } k}(A, l)}{1 + (k_B/\Lambda)^2} \right) \chi_{B_i}^A(l) \left(\tilde{\chi}_{B_i}^A(k) \right)^*, \tag{2.22} \]

where \(\int_l \equiv \frac{2}{\pi} \mathcal{P} \int_0^A t^2 dt \) is introduced. \(\chi_{B_i}^A(k) = \langle k | \chi_{B_i}^A \rangle \) is the wave function in momentum space for the bound state, and \(\tilde{\chi}_{B_i}^A(k) \) is its bi-orthogonal conjugate.

Interestingly, however, the extra terms are shown to cancel each other, if we assume that the state \(|\chi_{B_i}^A\rangle \) is related to the state vector \(|\Psi_{B_i}\rangle \) in the original theory,

\[(H_0 + V_{NN})|\Psi_{B_i}\rangle = -k_{B_i}^2 |\Psi_{B_i}\rangle, \tag{2.23} \]

through the projection,

\[|\chi_{B_i}^A\rangle = P|\Psi_{B_i}\rangle, \tag{2.24} \]

in conjunction with Eq. (2.7). Note that the conditions Eqs. (2.24) and (2.7) are independent.

To see the cancellation, let us first note that the condition

\[\frac{d}{d \Lambda} \langle k' | V_{\text{low } k}^A | \chi_{B_i}^A \rangle = 0, \quad (0 \leq k' < A) \tag{2.25} \]

and Eq. (2.24) are equivalent, as Eqs. (2.10) and (2.7) are. Then, from the bound-state Lippmann-Schwinger equation,

\[|\chi_{B_i}^A\rangle = \int_p |p\rangle \frac{-1}{p^2 + k_{B_i}^2} \langle p | V_{\text{low } k}^A | \chi_{B_i}^A \rangle, \tag{2.26} \]

we have

\[\frac{d}{d \Lambda} |\chi_{B_i}^A\rangle = -\frac{2}{\pi} |A\rangle \frac{A^2}{A^2 + k_{B_i}^2} \langle A | V_{\text{low } k}^A | \chi_{B_i}^A \rangle, \tag{2.27} \]

which corresponds to Eq. (2.11). From these equations, we have

\[0 = \langle k' | \frac{d}{d \Lambda} V_{\text{low } k}^A | \chi_{B_i}^A \rangle - \frac{2}{\pi} \frac{\langle k' | V_{\text{low } k}^A \rangle \langle A | V_{\text{low } k}^A | \chi_{B_i}^A \rangle}{1 + (k_{B_i}/A)^2} \]

\[= \frac{2}{\pi} \int_l \left(\frac{d}{d \Lambda} V_{\text{low } k}^A(k', l) - \frac{2}{\pi} \frac{V_{\text{low } k}^A(k', A)V_{\text{low } k}^A(A, l)}{1 + (k_{B_i}/A)^2} \right) \chi_{B_i}^A(l), \tag{2.28} \]

thus, the extra terms in Eq. (2.22) vanish identically.

In conclusion, though the first derivation in Ref. 14) does not take into account the existence of bound states at all, and the completeness relation is wrong when there are bound states, the RGE (1-1) is shown to be unmodified irrespective of the existence of bound states, if we assume Eq. (2.24).

* The demonstration below is essentially due to Bogner, Furnstahl, and Schwenk, and appeared in Ref. 42).
§3. Summary and discussions

In this paper, we have shown that one of the derivations of the RGE, Eq. (1.1), has a serious defect, putting aside the other derivations which are not worked out with enough mathematical rigor in the original paper. The derivations based on the completeness must be modified when bound states are present but the resulting RGE is shown to be unmodified. After all, the present work shows that, even though the derivation given in Ref. 14) does not take into account the effects of bound states, Eq. (1.1) is correct irrespective of the existence of bound states, if we assume Eq. (2.24) or, equivalently, Eq. (2.25).

It is important to note that, in order to derive Eq. (1.1), one actually needs to require not only that the half-on-shell T-matrix is preserved, but also that the matrix elements \(\langle p|V_{\text{low } k}|\chi_{B}^{A}\rangle (0 \leq p < \Lambda) \) is invariant under the change of the cutoff, \(\Lambda \). This latter requirement does not immediately follow the former. In this sense, the derivation rests on the stronger (and consistent) requirements, Eqs. (2.7) and (2.24), than just requiring the preservation of the half-on-shell T-matrix.

It is interesting to note that the RGE for \(V_{WRG} \) is much simpler and more easily derived than that for \(V_{\text{low } k} \). Furthermore, since the \(V_{\text{low } k} \) RGE is too complicated to get a simple picture about the action under the RG transformations, the usual concepts such as relevant and irrelevant operators do not seem to be useful, while they are actually important in the Wilsonian RG approach. To our best knowledge, no one has ever found the nontrivial fixed point of the RGE for \(V_{\text{low } k} \), which plays an essential role for \(V_{WRG} \). We thus suspect that the convergence of “realistic potentials” to a universal one is not a (direct) consequence of “universality” of the RG action.

We conjecture that the convergence is best understood in the light of the inverse scattering problem. (See Chapter 20 of Ref. 32) or Chapter 12 of Ref. 33) for reviews.) Note that all of the “realistic” potentials contain the information about the phase shifts below \(E_{\text{lab}} \lesssim 350 \) MeV, and that the LS reduction preserves the half-on-shell T-matrix elements (hence the phase shifts), as we will show below. Since the reduced theory does not contain high energy scattering by construction, the information about the phase shifts contained in the reduced potential provides more complete information about the phase shifts “at all energies” as the cutoff is lowered. On the other hand, a result of the inverse problem, in its simplest case, is that the potential is uniquely determined by the phase shifts at all energies. Even though careful analysis is needed to establish the connection between the convergence and the uniqueness of the potential in the inverse problem, it seems to provide a more natural way of understanding the convergence than the RG “universality.”

In Ref. 34) it is reported that the conventional way of calculating \(V_{\text{low } k} \) shows a slow convergence and a new method based on \(V_{WRG} \) is proposed. It seems, however, difficult to transform \(V_{WRG} \) to an energy-independent potential analytically, even though there may be no difficulty in doing so numerically. In Ref. 27), such a transformation was considered for a very simple potential as a field redefinition in the path integral formulation. We found that there is a nontrivial Jacobian, which cannot be calculated easily.
Recently, there emerges a new approach\textsuperscript{35)–38) based on the Wegner-Glazek-Wilson (WGW) similarity RG transformation.\textsuperscript{39)–41) (The similarity transformation itself has been known for some time in a different context.) In this formulation, the RGE is given from the outset so that there is no problem with the derivation of the RGE. It is however unclear to us if the WGW similarity transformation preserves the half-on-shell T-matrix. Note that the LS similarity transformation preserves the half-on-shell T-matrix because of the particular property of the “wave operator” ω, $P\omega = 0$, which leads to

$$V_{LS} \equiv P(1 - \omega)(H_0 + V_{NN})(1 + \omega)P - PH_0P = PV_{NN}(1 + \omega)P,$$

so that

$$\langle k|V_{LS}|\chi^A \rangle = \langle k|PV_{NN}(1 + \omega)P|\chi^A \rangle = \langle k|V_{NN}|\Psi \rangle,$$

since $Q|\Psi \rangle = Q\omega P|\Psi \rangle = Q\omega P|\chi^A \rangle$. On the other hand, WGW similarity transformed potential V_s is defined as

$$V_s \equiv U(s)(T_{rel} + V)U(s)^\dagger - T_{rel},$$

where the operator $U(s)$ is chosen in most papers as

$$\frac{dU(s)}{ds}U(s)^\dagger = [T_{rel}, V_s].$$

One would be interested in the T-matrix of the transformed theory defined as $\langle k|V_s|\chi_s \rangle$, where $|\chi_s \rangle \equiv U(s)|\Psi \rangle$ is the eigenstate of the transformed Hamiltonian. Unlike the LS transformation, the T-matrix does not seem to be invariant under the change of s.

A comment on the previous version of the present paper was recently posted in the arXiv,\textsuperscript{42) which emphasizes that none of the calculations in the literature involving $V_{low\ k}$ are affected by the discussion of the present paper. We fully agree on this point, as we emphasized in the introduction. They however do not seem to consider that the conditions Eq. (2.24) (or, Eq. (2.25)) and Eq. (2.7) are independent. They also claim that it is not a problem that the Similarity Renormalization Group approach does not preserve the half-on-shell T-matrix. But we think that invariance of the half-on-shell T-matrix is important in any many-body calculations. For example, Faddeev equation is written in terms of half-on-shell (two-body) T-matrix elements.

Acknowledgements

The author would like to thank NCTS for the financial support (grant number: NSC96-2119-M-007-001) for his stay at Taipei, during which the initial stage of the present work is done. He is grateful to C.-W. Kao and S.-N. Yang for the discussions and for the kind hospitality extended to him. He thanks S. X. Nakamura for the discussions via e-mails, and R. Okamoto for the discussions about the model-space reduction methods. Discussions with H. Kubo are also acknowledged. Finally, the author would like to thank S. Bogner, D. Furnstahl and A. Schwenk for pointing out the cancellation of the extra terms.
References

1) S. Weinberg, Phys. Lett. B 251 (1990), 288.
2) S. Weinberg, Nucl. Phys. B 363 (1991), 3.
3) K. G. Wilson and J. B. Kogut, Phys. Rep. 12 (1974), 75.
4) S. R. Beane, P. F. Bedaque, W. C. Haxton, D. R. Phillips and M. J. Savage, At the Frontier of Particle Physics, Handbook of QCD, ed. M. Shifman (World Scientific, 2000), vol. 1, chap. 3; nucl-th/0008064.
5) P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52 (2002), 339; nucl-th/0203055.
6) E. Epelbaum, Prog. Part. Nucl. Phys. 57 (2006), 654; nucl-th/0509032.
7) R. Machleidt, arXiv:0704.0807.
8) V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, Phys. Rev. C 49 (1994), 2950; nucl-th/9406039.
9) R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51 (1995), 38; nucl-th/9408016.
10) R. Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C 53 (1996), 1483; nucl-th/9510023.
11) R. Machleidt, Phys. Rev. C 63 (2001), 024001; nucl-th/0006014.
12) S. K. Bogner and T. T. S. Kuo, Phys. Lett. B 500 (2001), 279; nucl-th/0009077.
13) S. K. Bogner, T. T. S. Kuo, A. Schwenk, D. R. Entem and R. Machleidt, Phys. Lett. B 576 (2003), 265; nucl-th/0108041.
14) S. K. Bogner, A. Schwenk, T. T. S. Kuo and G. E. Brown, nucl-th/0111042.
15) S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello and N. Itaco, Phys. Rev. C 65 (2002), 051301.
16) S. K. Bogner, T. T. S. Kuo and A. Schwenk, Phys. Rep. 386 (2003), 1; nucl-th/0305035.
17) A. Nogga, S. K. Bogner and A. Schwenk, Phys. Rev. C 70 (2004), 061002; nucl-th/0405016.
18) K. A. Brueckner, Phys. Rev. 100 (1955), 36.
19) H. A. Bethe, Prog. Phys. 103 (1956), 1353.
20) H. A. Bethe and J. Goldstone, Proc. R. Soc. London A 238 (1957), 551.
21) J. Goldstone, Proc. R. Soc. London A 239 (1957), 267.
22) F. Andreozzi, Phys. Rev. C 54 (1996), 684.
23) S. Bogner, D. Furnstahl and A. Schwenk, private communication.
24) K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64 (1980), 2091.
25) T. T. S. Kuo, S. Y. Lee and K. F. Ratcliff, Nucl. Phys. A 176 (1971), 65.
26) M. C. Birse, J. A. McGovern and K. G. Richardson, Phys. Lett. B 464 (1999), 169; hep-ph/9807302.
27) K. Harada, K. Inoue and H. Kubo, Phys. Lett. B 636 (2006), 305; nucl-th/0511020.
28) K. Harada and H. Kubo, Nucl. Phys. B 588 (2006), 304; nucl-th/0605004.
29) K. Harada, H. Kubo and A. Ninomiya, nucl-th/0702074.
30) S. X. Nakamura, Prog. Theor. Phys. 114 (2005), 77.
31) N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 25 (1949), 1.
32) R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Springer-Verlag, New York, Heidelberg, Berlin, 1982).
33) V. De Alfaro and T. Regge, Potential Scattering (North-Holland Pub. Amsterdam, 1965).
34) S. K. Bogner, R. J. Furnstahl, S. Ramanan and A. Schwenk, Nucl. Phys. A 784 (2007), 79; nucl-th/0609003.
35) S. K. Bogner, R. J. Furnstahl and R. J. Perry, Phys. Rev. C 75 (2007), 061001; nucl-th/0611045.
36) S. K. Bogner, R. J. Furnstahl, R. J. Perry and A. Schwenk, Phys. Lett. B 649 (2007), 488; nucl-th/0701013.
37) E. D. Jurgenson, S. K. Bogner, R. J. Furnstahl and R. J. Perry, arXiv:0711.4252.
38) E. Anderson et al., arXiv:0801.1098.
39) F. Wegner, Ann. der Phys. 506 (1994), 77.
40) S. D. Glazek and K. G. Wilson, Phys. Rev. D 48 (1993), 5863.
41) S. D. Glazek and K. G. Wilson, Phys. Rev. D 49 (1994), 4214.
42) S. K. Bogner, R. J. Furnstahl and A. Schwenk, arXiv:0806.1365.