Measuring frame relatedness

Michael Wirth

Department of Computational Linguistics
Saarland University
miwirth@coli.uni-sb.de

(joint work with Marco Pennachiotti)

FEAST meeting
January 7th, 2009
Outline

- Introduction
 - Motivation
 - Related work
- Frame relatedness
 - FrameNet
 - Manually ranking Frames
- Frame relatedness measures
- Conclusions
What it's all about?

Defining and proving a notion of frame relatedness

Developing frame relatedness measures
Motivation

● Ontologies and taxonomies provide precise information about the relationship of words and concepts.

● Semantic similarity / relatedness is a important component in knowledge-driven applications.

● Support of advanced knowledge-driven NLP tasks

● Resources available
Related Work

Semantic relationships between words are intensively researched

- structure-based approaches
- information-based approaches

Word Similarity

Two words are *related* if any type of relation stands between them.

Two words are *similar* if they are connected through an “is-a” like relation.

Budanitsky and Hirst 2006
Frame relatedness

Definition:

1) Two frames are *similar* if they are linked via „is-a“ like relations.

2) Two frames are *related* if any relation stands between them.
Frame

Frame name	Definition
Frame: STATEMENT	This frame contains verbs and nouns that communicate the act of a **SPEAKER** to address a **MESSAGE** to some **ADDRESSEE** using language. A number of the words can be used performatively, such as *declare* and *insist*.

Semantic roles	Frame Elements
SPEAKER	Evelyn said she wanted to leave.
MESSAGE	Evelyn announced **that she wanted to leave**.
ADDRESSEE	Evelyn spoke **to me** about her past.
TOPIC	Evelyn’s **statement** **about her past**
MEDIUM	Evelyn **preached** to me **over the phone**.

Words associated with the frame	Lexical Units
LUS	acknowledge.v, acknowledgment.n, add.v, address.v, admission.n, admit.v, affirm.v, affirmation.n, allegation.n, allege.v, announce.v, ...
FrameNet
(Ruppenhofer et al. 2005)

- Frames are concepts describing situations / events
- Frames are the basic units of FrameNet
- Structured semantic lexicon
- Words (lexical units) associated with frames
- ~ 10 000 lexical units
- ~ 800 Frames
- ~ 135 000 annotated sentences (BNC corpus)
Frame-to-Frame-Relations

- hierarchical
 - Inheritance
 - Using
 - Subframe
- non-hierarchical
 - Perspective_on
 - Causative_of
 - Inchoative_of
 - Precedes
 - See_also
FrameNet Hierarchy
(Release 1.3)

- Number of frames : 795
- Number of roots : 86
- Number of isolated nodes : 7
- Number of independent sub-graphs : 26
FrameNet Hierarchy
(Release 1.3)

- Number of frames reachable from more than 1 root: 559
- Number of incoming edges: 1136
- Average number of edges per frame: 2.86
- Maximum path length: 15
Manually ranking frames

Experiment

• 15 subjects -> 155 frame pairs
 – 15 frame pairs
 • 10 judged only by this subject
 • 5 judged by all subjects

• sort the pairs according to their similarity

• rate every pair on a scale from 0 to 4
Manually ranking frames
Experiment

• Data

– A set of controlled frame pairs
 → Controlled Set (155 pairs)

– A set of randomly selected frame pairs
 → Simple Set (155 pairs)
Manually ranking frames

Results

• high significant correlation among the annotators
 – Simple Set $\tau = 0.600 \quad \alpha < 0.005$
 – Controlled Set $\tau = 0.547 \quad \alpha < 0.005$

\rightarrow The notion of “frame relatedness” is intuitive and principled for humans.
Manually ranking frames

Results

• significant correlation on the gold standard ranking
 - Simple Set gold standard
 \[\tau = 0.530 \quad \text{StdDev} = 0.146 \quad \alpha < 0.01 \]
 - Controlled Set gold standard
 \[\tau = 0.566 \quad \text{StdDev} = 0.173 \quad \alpha < 0.01 \]

 gold standard ranking is reliable
Manually ranking frames
Gold Standards

SIMPLE SET	CONTROLLED SET
Measure volume - Measure mass (1)	Knot creation - Rope manipulation (1,5)
Communication manner - Statement (2)	Shoot projectiles - Use firearm (1,5)
Giving - Sent items (3)	Scouring - Scrutiny (3)
Abundance - Measure linear extent (4)	Ambient temperature - Temperature (4)
Remembering information - Reporting (5)	Fleeing - Escaping (5)
...	...
Research - Immobilization (126)	Reason - Taking time (142)
Resurrection - Strictness (126)	Rejuvenation - Physical artworks (142)
Social event - Word relations (126)	Revenge - Bungling (142)
Social event - Rope manipulation (126)	Security - Likelihood (142)
Sole instance - Chatting (126)	Sidereal appearance - Aggregate (142)

Human gold standard ranking: first and last 5 pairs (in brackets ranks allowing ties)
Frame relatedness measures

Measure	
wn_jcn	
wn_hso	WordNet-based measures
cr_occ_sent	
cr_wgt_sent	corpus-based measures
cr_occ_doc	
cr_wgt_doc	distributional measure
cr_dist_doc	
hr_wu	FrameNet-based measures
hr_hso	
hr_fe	
`def overlap baseline`	
`LU overlap baseline`	
`human upper bound`	
Frame relatedness measures

- **WordNet-based measures**
 - map lexical units to WordNet senses
 - calculate the sense similarity using two different WordNet similarity measures:
 - *wn_jcn*: Jiang and Conrath (1997)
 - *wn_hso*: Hirst and St.Onge (1998)
Frame relatedness measures

- corpus-based measures
 - using the SemCor corpus
 - calculate the point wise mutual information of two frames
 - simple point wise mutual information
 - cr_{occ}
 - weighted point wise mutual information
 - cr_{wgt}
 - using two different types of context
 - sentences $\rightarrow cr_{occ_sent}, cr_{wgt_sent}$
 - documents $\rightarrow cr_{occ_doc}, cr_{wgt_doc}$
Frame relatedness measures

- distributional measure
 - using the TREC-2002 Vol.2 corpus
 - each frame is modelled by a distributional vector
 - documents are dimensions
 - the value of a dimension expresses the association between the document and the frame
 - relatedness computed by using cosine similarity
Frame relatedness measures

Results

Measure	Simple Set	Controlled Set
wn_jcn	0.114	0.141
wn_hso	0.106	0.141
cr_occ_sent	0.239	0.340
cr_wgt_sent	**0.281**	**0.349**
cr_occ_doc	0.143	0.227
cr_wgt_doc	0.173	0.240
cr_dist_doc	0.152	0.240
hr_wu	0.139	0.286
hr_hso	0.134	0.296
hr_fe	0.252	0.326
def overlap baseline	0.056	0.210
LU overlap baseline	0.080	0.253
human upper bound	0.530	0.566

Correlation measure with gold standard using Kendall's Tau
Frame relatedness measures
Evaluation

- WordNet-based measures

Measure	Simple Set	Controlled Set
wn_jcn	0.114	0.141
wn_hso	0.106	0.141
def overlap baseline	0.056	0.210
LU overlap baseline	0.080	0.253
human upper bound	0.530	0.566

- fail to predict relatedness for many pairs
 - wn_hso assigns zero to 137 (Simple Set) pairs and 119 (Controlled Set) pairs
- WordNet misses situational relations
- 18% of FrameNet LUs are adjectives or adverbs
- 7% of verbal FrameNet LUs don't have a WordNet mapping
Frame relatedness measures

Evaluation

- corpus-based measures

Measure	Value 1	Value 2
cr_occ_sent	0.239	0.340
cr_wgt_sent	0.281	0.349
cr_occ_doc	0.143	0.227
cr_wgt_doc	0.173	0.240
cr_dist_doc	0.152	0.240
def overlap baseline	0.056	0.210
LU overlap baseline	0.080	0.253
human upper bound	0.530	0.566

- correlation decreases using documents as context
- corpus-based measures promote frame pairs in non-hierarchical relations
- the distributional measure promotes frame pairs in hierarchical relations
Frame relatedness measures

Evaluation

- FrameNet hierarchy is a good indicator for frame relatedness
- hierarchy-based measures promote pairs related by diverse relations
- measures slightly penalized by low coverage
Conclusions

- the notion of frame relatedness is cognitively principled
- introduce a variety of measures for automatically estimating frame relatedness
- measures offer good performance (significant at the 99% level)
Bibliography

• Marco Pennachiotti and Michael Wirth. 2009. Measuring frame relatedness. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009). Athens, Greece. to appear.
Frame relatedness measure

WordNet-based measures

\[
wn(F_1, F_2) = \sum_{s_1 \in S_{F_1}} \sum_{s_2 \in S_{F_2}} wn_rel(s_1, s_2)
\]

\[
S_F : \text{the set of WordNet senses mapping to lexical units of frame } F
\]

\[
wn_rel(s_1, s_2) : \text{a function estimating the relatedness of two WordNet senses}
\]

used functions: Jiang and Conrath (1997) wn_jcn
Hirst and St.Onge (1998) wn_hso
Frame relatedness measure

corpus-based measures

\[cr_{occ}(F_1, F_2) = \log_2 \frac{|C_{F_1,F_2}|}{|C_{F_1}||C_{F_2}|} \]

\[C_{F_i} = \{c \in C : \exists l_{F_i} \text{ in } c\} \]

\[C_{F_1,F_2} = \{c \in C : \exists l_{F_1} \text{ and } \exists l_{F_2} \text{ in } c\} \]

\(C \) : the corpus
\(c \) : context in Corpus \(C \)
\(l_{F_i} \) : a lexical unit of frame \(F \)
Frame relatedness measure

corpus-based measures

$$cr_{wgt}(F_1, F_2) = \log_2 \frac{\sum_{c \in C_{F_1,F_2}} w_{F_1}(c) \cdot w_{F_2}(c)}{\sum_{c \in C_{F_1}} w_{F_1}(c) \cdot \sum_{c \in C_{F_2}} w_{F_2}(c)}$$

$$w_F(c) = \arg \max_{l_F \in L_F} P(S_{l_F} | l_F)$$

$$P(S_{l_F} | l_F) = \frac{|S_{l_F}|}{|S_l|}$$

L_F: the set of LUs of frame F
Frame relatedness measure

FrameNet-based measures

\[hr _wu(F_1, F_2) = \frac{2 \cdot dp(LCS)}{ln(F_1, LCS) + ln(F_2, LCS) + 2 \cdot dp(LCS)} \]

\(dp(F) \) : the depth of frame \(F \) in the FrameNet hierarchy

\(ln(F_1,F_2) \): the path length between the frames \(F_1 \) and \(F_2 \)

\(LCS \) : least common subsumer
Frame relatedness measure

FrameNet-based measures

\[hr_{hso}(F_1, F_2) = M - \text{path length} - k \cdot d \]

\(M, k : \text{constants} \)
\(d : \text{number of changes of direction} \)
Frame relatedness measure

FrameNet-based measures

\[hr_{fe}(F_1, F_2) = \frac{|FE_1 \cap FE_2|}{\max(|FE_1|, |FE_2|)} \]

FE : the set of frame elements