A Co-conformationally “Topologically” Chiral Catenane

Arnau Rodríguez-Rubio, Andrea Savoini, Florian Modicom, Patrick Butler, and Stephen M. Goldup*

ABSTRACT: Catenanes composed of two achiral rings that are oriented (C_{nh} symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked “co-conformationally ‘topologically’ chiral” stereogenic unit, which arises when a bilaterally symmetric C_{nv} ring is desymmetrized by the position of an oriented macrocycle.

Topology is the study of the properties of objects and networks that are preserved under deformations that do not break connections/surfaces or require surfaces/edges to pass through one another. Chemical topology applies these ideas to molecules. At the simplest level, constitutional isomers are topologically distinct, as they differ in the network of atoms. More interesting topological isomerism arises when structures contain identical atomic connections, the most famous examples of which are Möbius ladders (isomers of the untwisted macrocycle), molecular knots (isomers of the unknotted ring), and [2]catenanes (isomers of two non-interlocked rings). These structures have nonplanar graphs in that there is no two-dimensional projection of their structures in which bonds do not cross over one another and this property is topologically invariant in three-dimensional space — no matter how the structure is distorted, even drastically altering the geometry around atoms, a planar graph cannot be achieved.

Such topologically nontrivial structures can display chirality in the absence of covalent stereogenic units. Depending on their topology, Möbius ladders and molecular knots can be chiral as a result of the pattern of bond crossing points. Although [2]catenanes do not display unconditional topological stereochemistry, as recognized by Wasserman and Frisch, they can be chiral as a result of the constitutional symmetry of the rings; rings that are “oriented” (C_{nh} symmetry) due to the sequence of atoms in the cycle give rise to topologically chiral catenanes (Figure 1a). The absolute stereochemistry of topologically chiral objects is invariant under all topologically allowed deformations in three-dimensional space.

We recently identified “missing” stereogenic units that arise in interlocked molecules and give rise to classes of chiral rotaxanes and catenanes that had yet to be discussed or synthesized. An example that presents particular linguistic problems are [2]catenanes in which one ring is oriented (C_{nh}) and the other is bilaterally symmetric (e.g., C_{2v}) (Figure 1b). The time averaged structure of such catenanes is achiral, but any co-conformation in which the oriented ring does not lie on the internal mirror plane of the C_{2v} ring is chiral. If the structure is designed such that the oriented ring is permanently prevented from occupying said mirror plane, the molecule will display kinetically fixed molecular chirality (Figure 1c).

As with related co-conformational-covalent and co-conformational mechanical planar stereochemistry in rotaxanes, this stereogenic unit can be considered to appear due to the oriented ring acting as a substituent of the region of C_{2v} ring that it encircles, effectively reducing its symmetry to C_{1h}. Thus, this stereogenic unit arises because one ring is oriented due to its constitution and the other by the molecular co-conformation and so we have previously provisionally termed such molecules “co-conformationally “topologically” chiral” to clearly make the link with the established stereogenic unit of topologically chiral catenanes while also highlighting that the stereochemistry of the system is clearly not topologically invariant.

Semantic arguments aside, we set out to synthesize an enantioenriched co-conformationally “topologically” chiral
The majority of enantioenriched topologically chiral catenanes, which was then extended to a co-conformationally chiral target.

The stereoselective synthesis of a co-conformationally chiral catenane requires (i) the oriented ring to be incorporated at a defined position around the C2v macrocycle and (ii) the oriented ring to be installed stereoselectively. The first requirement can be met by forming the mechanical bond such that the oriented ring is trapped between bulky groups. The second is the same problem as encountered in the synthesis of any topologically chiral [2]catenane. Although the majority of enantioenriched topologically chiral catenanes in which the mechanical bond is the sole source of stereochemistry have been accessed by chiral stationary phase HPLC (CSP-HPLC) separation, recently developed an auxiliary approach in which a chiral covalent auxiliary directs the stereoselective formation of the mechanical bond. However, in this proof-of-concept synthesis, the stereoselectivity of the mechanical bond formation was low (dr ∼ 2:1), which required the mechanical epimers to be separated prior to removal of the auxiliary, limiting the utility of this methodology for more complicated targets. To overcome this challenge, we set out to extend a phenylalanine-based auxiliary, developed for the synthesis of mechanically planar chiral rotaxanes, to the synthesis of topologically chiral [2]-catenanes.

Tyrosine-derived pre-macrocycle (S)-1a was synthesized (96% ee, Figure S40) and reacted under pseudo high-dilution active template Cu-mediated alkene−azide cycloaddition (AT-CuAAC) conditions with bipyridine macrocycle 2. Catenane 3a was produced with reasonable stereoselectivity (Table 1, entry 1), based on 1H NMR analysis of the crude reaction product; proton Hα of the diastereomers of 3a resonate at 8.98 (major) and 9.07 (minor) ppm, respectively (Figure S111). 1H NMR analysis also suggested the presence of several other interlocked species, characterized by higher ppm (9.51−9.61; Figure S286) triazole resonances. LCMS analysis indicated that these signals were due to [3]catenane 4 (Scheme 1), which can be formed as three diastereomers, and the corresponding [2]catenane (not shown, two diastereomers) containing a single bipyridine ring (Supporting Information (SI) section S10). We were unable to obtain pure samples of these compounds.

Longer addition times (entry 2) resulted in diminished diastereoselectivity, perhaps due to epimerization of the covalent stereogenic center, and lower conversion of macrocycle 2. Lowering the reaction temperature resulted in enhanced diastereoselectivity (74% de) and reduced quantities of oligomeric species, allowing catenane 3b to be isolated in 39% yield and 74% de (entry 3). Although increasing the equivalents of 1a resulted in higher conversion of 2, lower yields of 3a were obtained as the non-interlocked triazole-containing macrocycle was challenging to remove. Varying the solvent did not improve diastereoselectivity or conversion of 2 (SI section S8). Applying the same conditions to (S)-1b, which features a bulkier Pr ester, gave catenane 3b in 82% de, albeit the conversion of macrocycle 2 was diminished and the formation of oligomeric biproducts was increased, resulting in a low isolated yield (26%, 82% de, entry 4). Surprisingly, (S)-1c gave poor stereoselectivity (68% de, entry 5) and low conversion of 2 (~25%). Pleasingly, single crystal X-ray diffraction (SCXRD) analysis of a racemic sample of catenane 3b produced using rac-1b allowed the relative stereochemistry of the major diastereomer to be tentatively assigned as (S*). Thus, the major product of (S)-1b and macrocycle 2 is assigned as (S,S*,S*)-3b (Figure 2a).

We then turned to methods to remove the covalent stereogenic unit from the mixture of catenane 3b diastereomers (Scheme 2). Attempts to ablate the covalent stereocenter of a model compound by radical decarboxylation met with failure due to scission of the triazole N1−C substituent bond (SI section S9). Ultimately, we found that reduction of ester 3b to give alcohol catenane 5 followed by tandem Oppenauer-type oxidation/RhI-mediated decarbonylation gave rise to catenane 6 in reasonable isolated yield.

Table 1. Effect of Reaction Conditions and Structure of 1 on the AT-CuAAC Synthesis of Topologically Chiral Catenanes

entry	R	T (°C)	t (h)	2:3:oligos	de	yield
1	Et	60	4	34:44:22	70%	n.d.
2	Et	60	8	47:37:16	62%	n.d.
3	Et	60	25	15:44:41	74%	39%
4	Pr	60	25	14:30:56	82%	26%
5	Bu	60	25	77:11:12	68%	n.d.

* Determined by 3H NMR analysis of the crude reaction product (SI section S10).
* Not isolated due to low conversion of 2.
a mixture of diastereomers (88% ee). The product, topologically chiral [2]catenane, was subjected to the AT-CuAAC reaction with macrocycle 2b.

Crystals of a rac-6 suitable for SCXRD analysis were obtained, allowing the structure of the product to be confirmed (Figure 2b).

Finally, we turned to the synthesis of a co-conformationally “topologically” chiral target (Scheme 3). Pre-macrocycle (S)-7 was subjected to the AT-CuAAC reaction with macrocycle 2. The product, topologically chiral [2]catenane 8, was isolated as a mixture of diastereomers (88% ee), as judged by 1H NMR (Figure 3a). By analogy with catenane 3b, which seems reasonable given the similarities of the functional groups reacting and the similar stereoselectivity obtained, the major isomer is tentatively assigned as (S,S_{mt}-8).

Auxiliary removal from (S,S_{mt}-8) (88% ee) yielded [2]-catenane 9, which contains no previously described stereogenic units—it lacks covalent stereogenic units, and the triazole containing ring is not oriented and so the system does not conform to the definition of a topologically chiral catenane. Nevertheless, whereas the compounds produced from 3b and (S,S_{mt}-8) produce identical 1H NMR spectra (Figure 3a and 3ai respectively), the latter is clearly highly enantioenriched, whereas the former is racemic as judged by CSP-HPLC analysis (Figure 3b). The major stereoisomer of 8 was assigned as (S_{mt}-8) based on the assigned stereochemistry of the major diastereomer of 3b. Crystals of a rac-6 suitable for SCXRD analysis were obtained, allowing the structure of the product to be confirmed (Figure 2b).

In conclusion, we have developed an auxiliary for the synthesis of topologically chiral catenanes in high enantiopurity and applied it to the synthesis of catenane (S,S_{mt}-9), a molecule containing a previously unreported co-conformationally “topologically” chiral stereogenic unit, unambiguously demonstrating the chiral nature of this overlooked form of mechanical stereochemistry. However, it poses a problem of nomenclature—how can the topological stereochemistry of a molecule depend on its co-conformation? In short, it cannot, but once the fixed co-conformation is considered, the covalent subcomponents of catenane 9 display the same symmetry properties as those that comprise the established stereogenic unit of topologically chiral catenanes, which leads to our linguistic conundrum. One solution to this would be to rename “topologically chiral” catenanes as “mechanically planar chiral”, to bring them in line with the analogous rotaxanes to which they are strongly related, but this would require further discussion in the field. Linguistic issues aside, chiral interlocked molecules are attracting increasing attention for applications in catalysis, sensing, and as chiroptical or stereodynamic switches. By highlighting their potential to display molecular chirality due to unexplored stereogenic units, we hope to inspire further investigation of their rich stereochemistry.
(b) HPLC analysis of catenane

Figure 3. (a) Partial 1H NMR (CDCl$_3$, 298 K) of i. catenane 8, ii. catenane rac-9, and iii. enantioenriched catenane (S_{enanti}^9)-9. Atom labels and colors as in Scheme 3, except macrocycle signals (blue). (b) HPLC analysis of catenane rac-9 and (S_{enanti}^9)-9. (c) Circular dichroism spectra of catenane rac-9 and (S_{enanti}^9)-9. (d) Solid state structure of rac-9 showing a pair of enantiomeric structures related by a point of inversion (orange). Colors as in Scheme 3 except O (gray), N (dark blue), H (white). Majority H atoms omitted for clarity.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c02029.

Procedures and full characterization data (NMR, MS, CD, SCXRD, HPLC as appropriate) for all novel compounds and supplementary discussion. (PDF)

Accession Codes

CCDC 2125552, 2129422, and 2129424 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Stephen M. Goldup — Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom;

orcid.org/0000-0003-3781-0464; Email: s.goldup@soton.ac.uk

Notes

The authors declare no competing financial interest.

Data (characterization data for reported compounds) is available from the University of Southampton data repository (https://doi.org/10.5258/SOTON/D2279).

ACKNOWLEDGMENTS

S.M.G. thanks the ERC (Agreement No. 724987) for funding and the Royal Society for a Wolfson Research Fellowship (R5WF/FT/180010). P.B. thanks the University of Southampton for a Presidential Scholarship. F.M. thanks the EPSRC for a Doctoral Prize Scholarship (EP/R513325/1).

REFERENCES

(1) Flapan, E. When Topology Meets Chemistry; Cambridge University Press: 2012.
(2) Walba, D. M. Topological stereochemistry. Tetrahedron 1985, 41, 3161–3212.
(3) Selected examples and reviews: (a) Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 1982, 104, 3219–3221. (b) Herges, R. Topology in chemistry: designing Mobius molecules. Chem. Rev. 2006, 106, 4820–42. (c) Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Kosino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. Synthesis of Belt- and Mobius-Shaped Cycloparaphenylenes by Rhodium-Catalyzed Alkyn Cyclotrimerization. J. Am. Chem. Soc. 2019, 141, 14955–14960. (d) Yuan, J.; Song, Y.; Li, X.; Xie, J.; Dong, S.; Zhu, K. A Tubular Belt and a Mobius Strip with Dynamic Joints: Synthesis, Structure, and Host-Guest Chemistry. Org. Lett. 2021, 23, 9554–9558.
(4) Molecules can also adopt conformations with a Mobius conjugated electronic structure. Selected reviews (and ref 3b): (a) Rzepa, H. S. Mobius aromaticity and delocalization. Chem. Rev. 2005, 105, 3697–3715. (b) Yoon, Z. S.; Osuka, A.; Kim, D. Mobius aromaticity and antiaromaticity in expanded porphyrins. Nat. Chem. 2009, 1, 113–122. (c) Stepien, M.; Sprutta, N.; Latos-Grażyński, L. Figure eights, Mobius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem., Int. Ed. 2011, 50, 4288–4304.
(5) Selected reviews: (a) Forgan, R. S.; Sauvage, J. P.; Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 2011, 111, 5434–5464. (b) Fielden, S. D. P.; Leigh, D. A.; Woltering, S. L. Molecular Knots. Angew. Chem., Int. Ed. 2017, 56, 11166–11194. (c) Evans, N. H. Lanthanide-Containing Rotaxanes, Catenanes, and Knots. ChemPlusChem. 2020, 85, 783–792. (d) Gao, W. X.; Feng, H. J.; Guo, B. B.; Lu, Y.; Jin, G. X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288–6325.
Catalysis.
Catenanes and Molecular Knots in Stereoselective Chemosensing and Mechanically Interlocked Molecules - Applications of Rotaxanes, shape and chirality of an eight-crossing molecular knot.

Segard, J. Tying different knots in a molecular strand.

Rotaxanes: Fundamentals and Emerging Applications.

Synthesis of a Topologically Chiral Solomon Link.

(b) Cui, Z.; Lu, Y.; Gao, X.; Feng, H. J.; Jin, G. X. Stereoselective unconditional topological chirality: (a) Ponnuswamy, N.; Cougnon, A. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness and Asymmetric Analysis of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle.

16. Catenanes have been shown to display a co-conformational helicoidal stereochemical unit. Selected examples: (a) Horii, A.; Akasaka, A.; Biradha, K.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chirality Induction through the Reversible Catenation of Coordination Rings. Angew. Chem., Int. Ed. 2002, 41, 3269–3272. (b) Vignon, S. A.; Wong, J.; Tseng, H. R.; Stoddart, J. F. Helical chirality in donor-acceptor catenanes. Org. Lett. 2004, 6, 1095–1098. (c) Hutin, M.; Schalley, C. A.; Bernardinelli, G.; Nitschke, J. B. Helicate, macrocycle, or catenate: Dynamic topological control over subcomponent self-assembly. Chemistry 2006, 12, 4069–4076. (d) Nakatani, Y.; Furusho, Y.; Yashima, E. Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2]catenane and control of its structure. Angew. Chem., Int. Ed. 2010, 49, 5463–5467. (e) Caprice, K.; Pal, D.; Bensard, C.; Galmes, B.; Brottera; A.; Cougnon, F. B. L. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J. Am. Chem. Soc. 2021, 143, 11957–11962.

17. Maynard, J. R. J.; Goldup, S. M. Strategies for the Synthesis of Enantiopure Mechanically Chiral Molecules. Chem. 2020, 6, 1914–1932.

18. Selected examples that contain both covalent and topological stereochemical units: (a) Armspach, D.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Godi, A.; Moore, C. P.; Prodi, L.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Wear, T. J.; Williams, D. J.; Stoddart, J. F. Catenated Cyclodextrins. Chem.—Eur. J. 1995, 1, 33–55. (b) Lam, R. T.; Belenger, A.; Roberts, S. L.; Naumann, C.; Jarrosson, T.; Otto, S.; Sanders, J. K. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 2005, 308, 667–669. (c) Prakasam, T.; Lusi, M.; Nauha, E.; Olsen, J. C.; Sy, M.; Platas-Iglesias, C.; Charbonniere, L. J.; Trabolsi, A. Dynamic stereo-isomerization in inherently chiral bimetallic [2]catenanes. Chem. Commun. 2015, 51, 5840–5843. (d) Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M. Peptide [4]Catenane by Folding and Assembly. Angew. Chem., Int. Ed. 2016, 55, 4519–4522. (e) Inomata, Y.; Sawada, T.; Fujita, M. Metal-Peptide Torus Knots from Flexible Short Peptides. Chem 2020, 6, 294–303. (f) Denis, M.; Lewis, J. E. M.; Modicom, F.; Goldup, S. M. An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes. Chem 2019, 5, 1512–1520.

(21) Selected examples of stereoselective rotaxane synthesis: (a) Tian, C.; Fielden, S. D. P.; Perez-Saavedra, B.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy. J. Am. Chem. Soc. 2020, 142, 9803–9808. (b) Imaoyoshi, A.; Lakshmi, B. V.; Ueda, Y.; Yoshimura, T.; Matayoshi, A.; Furuta, T.; Kawabata, T. Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nat. Chem. 2021, 12, 404–410. (c) Pairault, N.; Bessagué, A.; Barat, R.; Frederic, L.; Pieters, G.; Crassous, J.; Opalsinski, I.; Papot, S.; Lebrasseur, N.; Leigh, D. A.; Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 2012, 134, 8321–8323. (15) Selected examples: (a) Mochizuki, Y.; Ikeyatsu, K.; Mutoh, Y.; Hosoya, S.; Saito, S. Synthesis of Mechanically Planar Chiral rac-2Rotaxanes by Partitioning of an Achiral [2]Rotaxane: Stereo-inversion Induced by Shuttling. Org. Lett. 2017, 19, 4347–4350. (b) Corra, S.; de Vet, C.; Groppi, J.; La Rosa, M.; Silvi, S.; Baroncini, M.; Credi, A. Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle. J. Am. Chem. Soc. 2019, 141, 9129–9133.
Diastereoselective synthesis of [1]rotaxanes via an active metal template strategy. *Chem. Sci.* 2021, 12, 2521–2526.

(22) (a) Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. *Chem. Soc. Rev.* 2009, 38, 1530–1541. (b) Denis, M.; Goldup, S. M. The active template approach to interlocked molecules. *Nat. Rev. Chem.* 2017, 1, 0061.

(23) Aucagne, V.; Hanni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. *J. Am. Chem. Soc.* 2006, 128, 2186–2187.

(24) Lewis, J. E. M.; Modicom, F.; Goldup, S. M. Efficient Multicomponent Active Template Synthesis of Catenanes. *J. Am. Chem. Soc.* 2018, 140, 4787–4791.

(25) Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. High yielding synthesis of 2,2’-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. *Chem. Sci.* 2016, 7, 3154–3161.

(26) The high chemical shift of the triazole protons is attributed to a C–H···N H-bonding interaction with the bipyridine lone pairs as typically observed in such structures: Lahlali, H.; Jobe, K.; Watkinson, M.; Goldup, S. M. Macrocycle size matters: “small” functionalized rotaxanes in excellent yield using the CuAAC active template approach. *Angew. Chem., Int. Ed.* 2011, 50, 4151–4155.

(27) Catenanes of the form of 4 contain two covalent stereogenic units and two topological stereogenic units as both the central and peripheral rings are oriented. See SI section S6 for a more detailed discussion.

(28) Although the solid-state structure of 3b and the high ppm chemical shift of H, are consistent with the bipyridine macrocycle encircling the triazole unit, over time changes were observed in the 1H NMR spectra of isolated samples of catenanes 3 that suggest this is a metastable co-conformation (SI section S11).

(29) Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes. *Adv. Synth. Catal.* 2006, 348, 2148–2154.

(30) That catenane 9 is formed from 8 at high temperature, but the stereopurity of the starting material matches closely with the product is consistent with co-conformational motion being completely blocked. In keeping with this, heating a purified sample of 9 in mesitylene at 170 °C for 24 h did not result in any loss of stereopurity (Figure S260).

(31) We note that that SCXRD data for rac-9 are poor due to it crystallizing as very thin needles (see SI section S7). However, it is sufficient to confirm the connectivity of the product and the lack of any covalent stereogenic unit in the structure.

(32) (a) Kwamen, C.; Niemeyer, J. Functional Rotaxanes in Catalysis. *Eur. J. 2021, 27, 175–186. (b) Martinez-Cuezva, A.; Saura-Sanmartin, A.; Alajarín, M.; Berna, J. Mechanically Interlocked Catalysts for Asymmetric Synthesis. *ACS Catal.* 2020, 10, 7719–7733. (c) Heard, R. W.; Suarez, J. M.; Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. *Nature Reviews Chemistry* 2022, 6, 182–196.

(33) (a) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane. *J. Am. Chem. Soc.* 2016, 138, 1749–51. (b) Heard, A. W.; Goldup, S. M. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis. *Chem 2020,* 6, 994–1006.

(34) Selected examples: (a) Lim, J. Y. C.; Marques, I.; Felix, V.; Beer, P. D. Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. *J. Am. Chem. Soc.* 2017, 139, 12228–12239. (b) Hirose, K.; Ukimi, M.; Ueda, S.; Onoda, C.; Kano, R.; Tsuda, K.; Hino, Y.; Toye, Y. The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components -Syntheses and Properties of Optically Pure [2]Rotaxanes-. *Symmetry* 2018, 10, 20. (c) Lim, J. Y. C.; Marques, I.; Felix, V.; Beer, P. D. A Chiral Halogen-Bonding [3]Rotaxane for the Recognition and Sensing of Biologically Relevant Dicarboxylate Anions. *Angew. Chem., Int. Ed.* 2018, 57, 584–588.

(35) Gaedke, M.; Witte, F.; Anhauser, J.; Hupatz, H.; Schroder, H. V.; Valkonen, A.; Rissanen, K.; Lutzen, A.; Paulus, B.; Schalley, C. A. Chiroptical inversion of a planar chiral redox-switchable rotaxane. *Chem. Sci.* 2019, 10, 10003–10009.

(36) Maynard, J.; Gallagher, P.; Lozano, D.; Butler, P.; Goldup, S. Mechanically axial chiral catenanes and noncanonical chiral rotaxanes. *Nat. Chem.* 2022, DOI: 10.1038/s41557-022-00973-6.