Effect of Grafting Technique on Productivity and Quality of Cantaloupe under Saline Irrigation Water

Zaki ME1, Nadia S Shashak1, FA Abo Sedera1, AA Glala2, SA Saleh2* and AS Mohamed2

1Horticulture Department, Benha University, Egypt
2Horticultural Crops Technology Department, National Research Centre, Egypt

Received: April 03, 2018; Published: April 13, 2018

*Corresponding author: SA Saleh, Horticultural Crops Technology Department, National Research Centre, Egypt

Abstract

The high salinity of the irrigation water is the biggest challenge facing horizontal expansion of vegetable cultivation especially in the new reclaimed land. The high salinity of the irrigation water is of a deleterious effect on the cantaloupe production. Thus, this experiment was carried out under greenhouse conditions during 2015 and 2016 autumn seasons in Moshtohor, Kalyobiya Governorate, Egypt to investigate the possibility of using grafting technique to ameliorate the negative effects of high salinity of irrigation water on cantaloupe productivity and its quality. Two commercial cultivars “Ideal and Veleta” were used as scion while Cobalt and Strong-Tosa were used as rootstocks. A modified tongue approach grafting method was used, and then seedlings were exposed to four salinity levels [0.8 (non-saline control), 3.9, 7.1 and 10 dSm⁻¹]. The results showed that all investigated factors “salinity levels, cultivars and rootstocks” significantly affected cantaloupe productivity and quality. Where, the medium salinity level (3.9 dSm/m) resulted in the highest early yield, fruits number and total yield compared to all other salinity levels while the total yield decreased by 39.7% with increasing salinity levels up to 10dSm/m. Whereas, graft combination of Ideal/Strong-Tosa increased the total yield by 53.1, 85.5, 43.8 and 1.4% at different salinity levels: control, 3.9, 7 and 10dSm/m, respectively compared to the non-grafted plants of Ideal at non-saline control. This percentage was 38.4, 41.5, 19.3 and decline 13.1% with Veleta/Cobalt compared to the non-grafted plants of Veleta at non-saline control. Generally, when cantaloupe plants have to be irrigated with high salinity of irrigation water, it is recommended to cultivate grafted seedling resulted of Veleta/Cobalt and Ideal/Strong-Tosa where these plants resulted the highest benefit and income compared with those on its own roots (non-grafted plants) under saline conditions.

Keywords: Cucumis melo; Cantaloupe; Grafting; Rootstock; Scion; Irrigation water and salinity

Introduction

Cantaloupe (Cucumis melo L.) is a high economic vegetable crop in many countries including Egypt. It is grown in practically every country in the world under outdoor fields or greenhouses. The cultivated area of cantaloupe in Egypt is 66,434 feddan (4200m²) with total production of 846,936 tons and an average of 12.749 ton/fed. Ministry of Agric, Egypt, 2015. The most important problems facing horizontal expansion of cantaloupe in greenhouses or in open fields are the high salinity of the irrigation water or soil especially in the new reclaimed lands. As well as the recurrence of agriculture in greenhouses increases the soil salinity and thus reduces the vertical production of cantaloupe. In addition, cantaloupe is moderately salt tolerant, it has been determined that salinity causes several kinds of damage such as growth inhibition [1-3], yield and quality losses [4-6]. This leads us to use some newly trends to mitigate these negative impacts. The grafting technique is one of the most modern trends used to improve the productivity of vegetable plants, especially under adverse environmental conditions. Grafted vegetables onto resistant rootstocks offers numerous advantages on growth and yield, i.e., tolerance to salinity stress [7-10], increase yield and fruit quality in many crops such as melon [11] and watermelon [12,13]. Accordingly, the present study was conducted to investigate the possibility of using the grafting as a new promising technique for ameliorate the negative effects of the high salinity of the irrigation water on cantaloupe productivity and its quality.
Materials and Methods

This investigation was carried out in a private farm in Moshtohor village, Kalyobiya Governorate, Egypt during 2015 and 2016 seasons to study the response of yield productivity and fruits quality of grafted and non-grafted cantaloupe plants to different irrigation water salinity levels. The soil was clay with pH of 8.0 and EC of 1.3dS/m. Two commercial cultivars Veleta RZ and Ideal (MG739) were grafted on the Cobalt RZ and Strong-Tosa rootstocks using modified tongue approach grafting method. The grafted and non-grafted seedlings were transplanted under net house condition, on the 21st of July in both investigation seasons. The plants were transplanted on one side of ridges 1.5m width, at 50cm apart. Four irrigation water salinity levels were applied [0.8, 3.9, 7.1 and 10 dSm⁻¹] by adding NaCl to the used underground water. A split split-plot designed was adopted, with three replicates of two seasons, the results of total yield were used to calculate the costs, benefits and saving of using grafted and non-grafted cantaloupe plants which grown under salinity irrigation water.

Table 1: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on fruit shape index of cantaloupe plants during 2015 and 2016 seasons.

Cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Veleta	Cobalt	0.98 A-E	0.95 DEF	0.98 A-E	0.97 B-E	0.97 b	0.97 A-D	0.95 A-E	0.96 A-D	0.96 A-E	0.96 a
	Strong-Tosa	1.0 A-D	0.99 A-E	1.0 A-D	1.04 A	1.0 a	0.96 a-D	0.97 A-D	0.96 a-E	1.00 A	0.97 a
	Non-grafted	1.01 A-D	0.97 B-E	1.02 ABC	1.03 AB	1.0 a	0.97 A-D	0.98 ABC	0.99 AB	1.00 A	0.99 a
	Mean	0.99 ab	0.97 bc	1.0 ab	1.0 a	0.97 a	0.96 a	0.97 a	0.99 a		
Mean Veleta		0.99 A	0.99 A								
Ideal	Cobalt	0.94 DEF	0.94 DEF	0.93 EF	0.90 F	0.93 c	0.92 B-F	0.92 B-F	0.93 A-E	0.89 EF	0.92 bc
	Strong-Tosa	0.92 EF	0.90 F	0.90 F	0.90 F	0.90 c	0.93 A-E	0.89 EF	0.90 DEF	0.85 F	0.89 c
	Non-grafted	0.95 C-F	0.90 F	0.93 EF	0.92 EF	0.93 c	0.94 A-E	0.94 A-E	0.91 C-F	0.93 A-E	0.93 b
	Mean	0.94 cd	0.91 d	0.92 d	0.91 d	0.93 b	0.91 cb	0.91 cb	0.89 c		
Mean Ideal		0.92 B	0.91 B								

Results and Discussion

Effect of grafting technique (cultivars “scions” and rootstocks) under salinity levels of irrigation water on quality of cantaloupe fruits

Data presented in Tables 1-5 indicate the effect of salinity levels of irrigation water, cultivars, rootstocks and their interaction on fruit shape index, average fruit weight, flesh thickness of fruit, seed cavity diameter and T.S.S, respectively. Fruits quality expressed as average fruit weight, flesh thickness of fruit and seed cavity diameter were positively affected by salinity levels of irrigation water but fruit shape index was not affected in both seasons of study. Where, average fruit weight and flesh thickness of fruit were decreased by increasing salinity levels [15,16] and the opposite trend was observed with T.S.S which increased by increasing salinity levels [16,17]. Concerning the effect of cultivars on these traits of fruits quality, all fruit traits except T.S.S. were significantly affected by the used cultivars (Veleta and Ideal). In general, Ideal cultivar fruits were bigger and heavier than those of cv. Veleta. While Veleta fruits were the longer little than those of Ideal and the opposite trend at the fruit diameter all over the growing season, this reflected on the fruit shape index where cv. Veleta recorded the highest value compared with cv. Ideal. Moreover, results indicate that average fruit weight, flesh thickness and seed cavity diameter were positively affected by Cobalt rootstock while no significant effect could be detected regarding to fruit shape.
The obtained results agreed with those stated by Colla [9] working on watermelon, [18] and Colla [8] working on cucumber who noticed that grafted plants produced fruits with highest average weight compared with of non-grafted plants.

Table 2: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on average fruit weight (g) of cantaloupe plants during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Veleta	Cobalt	1255 CDE	1314 BC	1249 CDE	1044 HI	1215 ab	1255 CDE	1294 B	1261 B	973 FG	1202 b
Strong-Tosa		1167 EFG	997 IJ	895 J	621 L	920 c	1032 EFG	1074 DEF	943 G	707 H	939 c
Non-grafted		1200 DEF	1020 I	901 J	606 L	932 c	1131 CDE	1131 CDE	1003 FG	702 H	992 c
Mean		1207 ab	1109 bc	1015 cd	757 e	1147 c	1166 bc	1069 c	794 d		
Mean Veleta		1022 B	1044 B								
Ideal	Cobalt	1299 BCD	1312 BC	1263 CDE	1004 I	1220 ab	1296 B	1149 CD	1299 B	1004 I	1173 b
Strong-Tosa		1421 A	1463 A	1392 AB	1094 GHI	1342 a	1496 A	1523 A	1478 B	950 G	1381 a
Non-grafted		1254 CDE	1272 CDE	1131 FGH	768 K	1106 b	1215 BC CDE	1218 BC	1143 CDE	774 H	1087 bc
Mean		1234 a	1349 a	1262 a	955 d	1335 a	1296 ab	1306 ab	917 d		
Mean Ideal		1223 A	1214 A								

Table 3: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on flesh thickness (cm) of cantaloupe fruit during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Veleta	Cobalt	4.0 CD	4.1 C	3.7 EFG	2.9 JK	3.7 ab	3.9 CD	4.1 CD	3.7 E	2.9 JK	3.6 ab
Strong-Tosa		2.9 JK	3.3 HI	2.8 JK	2.5 L	2.9 d	3.3 GHI	3.3 GH	3.8 DE	2.6 L	3.1 c
Non-grafted		3.5 FGH	3.6 FGH	3.0 J	2.5 L	3.1 d	3.3 FG	3.6 EF	3.0 IJ	2.5 L	3.1 c
Mean		3.5 cd	3.6 bc	3.1 de	2.7 f	3.5 cd	3.6 bc	3.2 d	2.7 e		
Mean Veleta		3.2 B	3.1 B								
Ideal	Cobalt	3.9 CDE	4.2 BC	3.4 GH	2.9 JK	3.5 bc	3.9 CD	4.1 BC	3.0 IJ	2.7 KL	3.5 bc
Strong-Tosa		4.4 AB	4.6 A	3.9 CDE	3.1 IJ	4.0 a	4.3 B	4.5 A	3.8 DE	2.9 JK	3.9 a
Non-grafted		3.6 FGH	3.8 DEF	3.0 J	2.7 KL	3.3 cd	3.4 FG	3.6 EF	3.1 GH	2.7 KL	3.2 c
Mean		3.9 ab	4.2 a	3.4 cd	2.9 f	3.9 ab	4.1 a	3.3 cd	2.8 e		
Mean Ideal		3.6 A	3.5 A								

Citation: Zaki ME, Nadia S S, FA Abo S, AA Glala, SA Saleh, AS Mohamed. Effect of Grafting Technique on Productivity and Quality of Cantaloupe under Saline Irrigation Water: Curr Inves Agri Curr Res 2(1) - 2018. CIACR.MS.ID.000128. DOI: 10.32474/CIACR.2018.02.000128.
Table 4: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on diameter of seed cavity (cm) of cantaloupe fruit during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control	3.9 dS/m	7 dS/m	10 dS/m	Mean	Control	3.9 dS/m	7 dS/m	10 dS/m	Mean
Veleta	Cobalt	3.8 DEF	4.8 ABC	4.9 ABC	5.1 ABC	4.7 a	4.7 A-E	5.2 ABC	5.6 A	5.5 A	5.2 a
Strong-Tosa	4.9 ABC	3.7 DEF	3.4 FG	3.0 FG	3.8 b	5.2 BC	5.2 BC	3.5 E-H	3.1 H	4.3 bc	
Non-grafted	3.6 EF	3.4 FG	2.7 GH	2.1 H	3.0 c	5.0 A-D	3.8 E-H	4.2 B-H	3.5 E-H	4.1 c	
Mean	4.1 b	4.0 b	3.7 b	3.4 b	3.0	5.0 ab	4.7 ab	4.4 ab	4.0 b		
Mean Veleta	3.8 B	4.5 A									
Ideal	Cobalt	4.5 BCD	3.9 DEF	5.4 AB	4.4 CDE	4.5 a	5.2 ABC	3.3 GH	5.5 A	4.0 C-H	4.5 abc
Strong-Tosa	3.6 EF	3.8 DEF	4.6 BCD	4.9 ABC	4.2 ab	4.2 B-H	3.8 E-H	4.4 A-G	4.7 A-F	4.3 bc	
Non-grafted	4.4 CDE	5.1 ABC	5.7 A	3.1 FG	4.6 a	5.7 A	5.3 AB	5.6 A	3.4 FGH	5.0 ab	
Mean	4.2 b	4.3 b	5.2 a	4.2 b	5.0 ab	4.1 b					
Mean Ideal	4.5 A	4.6 A									

Rootstocks and Salinity levels

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control	3.9 dS/m	7 dS/m	10 dS/m	Mean	Control	3.9 dS/m	7 dS/m	10 dS/m	Mean
Veleta	Cobalt	9.3 FGH	10.5 DEF	10.8 CDE	12.0 ABC	10.7 a	8.7 HI	9.9 FG	11.1 DE	12.3 ABC	10.5 a
Strong-Tosa	9.3 FGH	9.9 E-H	10.8 CDE	12.3AB	10.6 a	8.4 I	9.6 FGH	11.4 CD	12.3 ABC	10.4 a	
Non-grafted	8.7 H	9.0 GH	9.9 E-H	12.0 ABC	10.9 a	8.3 HI	9.6 FGH	11.1 DE	12.6 AB	10.5 a	
Mean	9.1 d	9.8 cd	10.5 bc	12.1 a	8.6 e	9.7 d	11.2 c	12.4 b			
Mean Veleta	10.4 A										
Ideal	Cobalt	9.0 GH	9.9 E-H	10.8 CDE	12.3 AB	10.5 a	8.7 HI	9.9 FG	11.7 BCD	13.2 A	10.9 a
Strong-Tosa	9.6 E-H	10.2 D-G	11.4 CDE	13.2A	11.1 a	9.0 GH	10.2 EF	11.4 CD	13.2 A	11.0 a	
Non-grafted	8.7 H	9.6 E-H	10.2 D-G	12.3AB	10.2 a	8.4 I	10.2 EF	11.1 DE	12.6 AB	10.6 a	
Mean	9.1 d	9.9 c	10.8 b	12.6 a	8.7 e	10.1 d	11.4 c	13.0 a			
Mean Ideal	10.6 A										

Table 5: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on fruit T.S.S. of cantaloupe plants during 2015 and 2016 seasons.

Most fruit quality parameters, i.e., fruit shape index, average fruit weight and T.S.S. were not significantly affected by various trials of the interaction between cultivars and salinity levels and the opposite trend was found with flesh thickness and seed cavity diameter in 2015 and 2016 seasons. However, average fruit weight, flesh thickness and seed cavity diameter as well as T.S.S were significantly affected by the interaction between rootstocks and salinity levels treatments where the highest values were represented in Cobalt rootstock when irrigated by salinity levels 3.9 and 7dS/m but increasing salinity up to 10 dS/m improved T.S.S. Meanwhile fruit shape index was not affected by this interaction. In connection with the interaction treatments between cultivars “scions” and rootstocks, the average fruit weight, flesh thickness and seed cavity diameter were positively significant affected by the grafting combinations of Veleta/Cobalt, Ideal/Cobalt and Ideal/Strong-Tosa compared with non-grafted plants (control) but T.S.S and fruit shape index were not affected by various trials of grafted plants in two seasons. Regarding to the effect of the

Citation: Zaki ME, Nadia S S, FA Abo S, AA Glala, SA Saleh, AS Mohamed. Effect of Grafting Technique on Productivity and Quality of Cantaloupe under Saline Irrigation Water. Curr Inves Agri Curr Res 2(1) - 2018. CIACR.MS.ID.000128. DOI: 10.32474/CIACR.2018.02.000128.
interaction treatments among salinity levels of irrigation water, cultivars and rootstocks, there were significant interaction effects on all fruits quality parameters except fruit shape index. Under all studied factors, the best interaction effects were found in the combination of the cvs. Veleta or Ideal grafted on Cobalt rootstock under all salinity levels except the highest one (10dS/m). Where, grafted plants of Ideal/Strong-Tosa, Veleta/Cobalt and Ideal/Cobalt produced the biggest and heaviest fruits with the biggest flesh thickness in a suitable contained of T.S.S when irrigated by 3.9dS/m level of salinity levels in both seasons.

Table 6: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on fruit number/plant of cantaloupe plants during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Vlete	Cobalt	4.0 AB	4.0 AB	3.3 BC	3.3 BC	3.7 a	4.0 AB	4.0 AB	3.7 ABC	3.0 CD	3.7 ab
Strong-Tosa	1.3 D	1.3 D	1.0 D	1.0 D	1.2 c	1.3 E	1.0 E	1.0 E	1.0 E	1.1 d	
Non-grafted	3.0 BC	3.3 BC	2.7 C	2.7 C	2.9 b	3.3 BCD	3.3 BCD	3.0 CD	2.7 D	3.1 c	
Mean	2.7 ab	2.9 ab	2.3 b	2.3 b	2.8 abc	2.7 abc	2.5 bc	2.2 c			
Mean Vlete	2.6 B	2.6 B									
Ideal	Cobalt	3.0 BC	3.3 BC	3.7 ABC	233.33 CEF	3.2 b	3.3 BCD	3.7 ABC	3.3 BCD	3.0 CD	3.3 bc
Strong-Tosa	3.7 ABC	4.3 A	3.7 ABC	3.3 BC	3.7 a	4.0 A	4.3 A	3.3 BCD	3.7 a		
Non-grafted	2.7 C	2.7 C	2.7 C	190 GH	2.8 b	3.0 CD	3.3 BCD	2.7 D	2.7 D	2.9 c	
Mean	3.1 ab	3.5 a	3.4 a	2.9 ab	3.4 ab	3.7 a	3.1 abc	3.0 abc			
Mean Ideal	3.2 A	3.3 A									

Rootstocks and Salinity levels

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Vlete	Cobalt	1149 JK	1299 EFG	1644 A	1394 BCD	1371 a	1281 B	1283 B	1274 B	1016 FG	1213 ab
Strong-Tosa	1144 JK	307 O	1200 PM	1200 PM	363 c	323 L	0 M	0 M	0 M	81 d	
Non-grafted	1176 J	1333 D-G	1185 IJ	650 N	1086 b	1135 DF	1148 DF	665 K	718 JK	916 c	
Mean	1156 a	980 ab	943 ab	681 b	913 abc	810 bc	646 bc	578 c			
Mean Vlete	940 B	737 B									
Ideal	Cobalt	1273 GH	1300 EFG	1259 GH	994 L	1207ab	856 HI	1161 CD	1263 BC	942 GH	1055bc
Strong-Tosa	1361 C-F	1449 B	1377 B-E	1426 BC	1430a	1007 FG	1517 A	1493 A	1047 EF	1266 a	
Non-grafted	1205 IJ	1286 FGH	1093 K	760 M	1086 b	1203 BCD	1230 BCD	1154 D	802 IJ	1097 b	
Mean	1280 a	1345 a	1243 a	1060 ab	913 abc	1302 a	1304 a	931 abc			
Mean Ideal	1232 A	1140 A									

Table 7: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on early yield (g /plant) of cantaloupe plants during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Vlete	Cobalt	1149 JK	1299 EFG	1644 A	1394 BCD	1371 a	1281 B	1283 B	1274 B	1016 FG	1213 ab
Strong-Tosa	1144 JK	307 O	1200 PM	1200 PM	363 c	323 L	0 M	0 M	0 M	81 d	
Non-grafted	1176 J	1333 D-G	1185 IJ	650 N	1086 b	1135 DF	1148 DF	665 K	718 JK	916 c	
Mean	1156 a	980 ab	943 ab	681 b	913 abc	810 bc	646 bc	578 c			
Mean Vlete	940 B	737 B									
Ideal	Cobalt	1273 GH	1300 EFG	1259 GH	994 L	1207ab	856 HI	1161 CD	1263 BC	942 GH	1055bc
Strong-Tosa	1361 C-F	1449 B	1377 B-E	1426 BC	1430a	1007 FG	1517 A	1493 A	1047 EF	1266 a	
Non-grafted	1205 IJ	1286 FGH	1093 K	760 M	1086 b	1203 BCD	1230 BCD	1154 D	802 IJ	1097 b	
Mean	1280 a	1345 a	1243 a	1060 ab	913 abc	1302 a	1304 a	931 abc			
Mean Ideal	1232 A	1140 A									

Rootstocks and Salinity levels

cv.	Rootstock	First season (2015)	Second season (2016)								
		Control 3.9 dS/m	7 dS/m	10 dS/m	Mean	Control 3.9 dS/m	7 dS/m	10 dS/m	Mean		
Vlete	Cobalt	1121 ab	1210 ab	1452 a	1194 ab	1289 A	1069 abc	1222 a	1269 a	979 abc	1134 A
Strong-Tosa	1252 ab	878 bc	689 d	713 cd	883 C	665 bc	758 abc	746 abc	524 c	673 C	
Non-grafted	1191 abc	1309 ab	1139 ad	705 cd	1086 b	1169 ab	1189 ab	910 abc	760 abc	1007 B	
Mean salinity	1218 A	1162 B	1093 C	871 D	967 B	1056 A	975 B	754 C			

Citation: Zaki ME, Nadia S S, FA Abo S, AA Glala, SA Saleh, AS Mohamed. Effect of Grafting Technique on Productivity and Quality of Cantaloupe under Saline Irrigation Water. Curr Inves Agri Curr Res 2(1)- 2018. CIACR.MS.ID.000128. DOI: 10.32474/CIACR.2018.02.000128.
Effect of grafting technique (cultivars "scions" and rootstocks) under salinity levels of irrigation water on fruit yield and its components of cantaloupe plants.

Data presented in Tables 6-8 shows the effect of salinity levels of irrigation water, cultivars, rootstocks, and their interaction on fruits number, early and total yield (g/plant), respectively. Yield production in terms of fruits number, early yield and total yield per plant were significantly affected by salinity levels during both seasons. Where, the medium salinity level (3.9 dS/m) resulted in significantly the highest of early yield, fruits number and total yield per all other salinity levels while the total yield decreased by 39.7% (as average between two seasons) with increasing salinity levels up to 10dS/m. The obtained results are in the same line with those reported by [3,5,17,19-21] who showed that increasing salinity levels badly affected total melon yield. Also, early yield, fruits number and total yield per plant were affected by the used cultivars (Veleta and Ideal) where cv Ideal was higher than those of cv. Veleta. The effect of rootstocks was very clear where Cobalt rootstock produced significantly higher yield components than all other used rootstock and non-grafted plants, increased the total yield by 37.4% compare non-grafted plants, as average between two seasons. In the same context, [8] on melon as well as [22-26] on watermelon who noticed that grafted plants gave the highest fruit yields compared with non-grafted plants.

Table 8: Effect of salinity levels (dS/m), cultivars and rootstocks as well as their interaction on total fruit yield (g / plant) of cantaloupe plants during 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)	Second season (2016)								
	Control	3.9 dS/m	7 dS/m	10 dS/m	Mean	Control	3.9 dS/m	7 dS/m	10 dS/m	Mean	
Veleta											
	Cobalt	5021 BC	5249 B	4165 DEF	3482 G	4479ab	5177 BC	5177 BC	4625 CD	2918 IJ	4495 b
	Strong-Tosa	1556 JK	1329 KL	894 LM	621 M	1100 c	1367 L	1074 LM	943 LM	708 M	1025 e
	Non- grafted	3600 G	3435 G	2409 HI	1636 J	2770 c	3767 FGH	3782 GH	3007 IJ	1882 K	3110 d
	Mean	3392 bc	3337 bc	2489 cd	1913 d	3420 b	3344 b	2858 bc	1836 c		
	Mean Veleta	2783 B				2865 B					
Ideal											
	Cobalt	3896 EFG	4379 DE	4630 CD	2678 H	3896 b	4319 DE	4213 DEF	4329 DE	2851 J	3928 bc
	Strong-Tosa	5212 B	6341 A	5102 BC	3647 FG	5075 a	5470 A	6600 A	4928 BC	3427 HI	5106 a
	Non- grafted	3331 G	3815 EFG	3393 G	2038 B J	3144 c	3645 GH	4060 EFG	3048 IJ	2063 K	3204 cd
	Mean	4150 ab	4845 a	4375 ab	2787 cd	4334 a	4958 a	4102 ab	2780 bc		
	Mean Ideal	4039 A				4043 A					

Yield components except fruits number were significantly affected by the interaction treatments between cultivars and salinity levels, where the highest values were recorded when cv. Ideal was irrigated by salinity level 3.9dS/m compared with cv. Veleta which recorded the lowest values at 10dS/m level. Early yield and total yield per plant were significantly affected by the interaction treatments between rootstocks and salinity levels while fruits number was not significantly affected by this interaction. As for the early yield, the highest values were recorded by Cobalt rootstock when irrigated by salinity level 7 dS/m followed by 3.9 dS/m. Meanwhile, the same rootstock resulted in the highest values of fruits number and total yield when irrigated by salinity level 3.9 dS/m followed by control level. Yield components were positively affected by graft combinations of Ideal/Strong-Tosa and Veleta/ Cobalt, where the total yield was increased by 60.4 and 52.6%, respectively by these combinations compared with non-grafted of the same cultivar. Meanwhile, non-grafted plants especially Veleta cv. (control) recorded the lowest values of yield components.

The best interaction effects between the three studied factors were found in the combination of Ideal/Strong-Tosa and Veleta/ Cobalt with the lowest (3.9dS/m) and control (non-saline) of salinity levels. While non-grafted plants of both cultivars (control) which irrigated by highest salinity level (10dS/m) recorded the lowest values. Generally all types of treatments interactions among the three studied factors were significantly higher compared to the control treatment. The interaction between cv. Ideal grafted on Strong-Tosa rootstock as well as Veleta on Cobalt with the non-saline level (control) and the lowest level (3.9dS/m) of salinity levels resulted in the best cantaloupe growth El-Zaki 2018 and the yield. Whereas graft combination of Ideal/Strong-Tosa increased the total yield by 53.1, 85.5, 43.8 and 1.4% at salinity levels control, 3.9, 7 and 10dS/m, respectively compared to the general control (non-grafted plants of Ideal at control water). This percentage was 38.4, 41.5, 19.3 and decline 13.1% with Veleta/Cobalt compared to the general control (non-grafted plants of Veleta at control water). Generally, when cantaloupe plants have to be irrigated with high...
salinity of irrigation water, it is recommended to cultivate grafted seedling resulted of Veleta/Cobalt and Ideal/Strong-Tosa where these plants resulted the highest benefit and income compared with those on its own roots (non-grafted plants) under each salinity level of irrigation water. Economically, it can be recommended under similar circumstances to use the water with moderate salinity (3.9 and 7dS/m) when combined with grafting seedling (Veleta/ Cobalt and Ideal/Strong-Tosa) in order to get optimum yield with using somewhat saline water.

Calculation of Costs and Benefits of Applied Treatments

This parameter is illustrative and is not reliable in order to differentiate between the costs of using grafted and non-grafted plants under salinity of irrigation water. Assuming that, the remaining costs such as rental costs, workers, fertilizers, etc., agree on all factors of the study. Costs and benefits of grafted and non-grafted plants which grown under salinity levels of irrigation water were calculated as average between both seasons. Where, the price of non-grafted seedlings is close to the price of the grafted seedlings because it required additional costs "the costs of controlling soil diseases (1.25L.E) according to Hasan (2015)". The presented results in Table 9 show the costs (L.E) of the irrigation water was invariable with all salinity levels with average 2.22 L.E. /Plant. Where the highest benefits (10.30 and 9.56 L.E./Plant) and income (8.08 and 7.34 L.E./Plant) were obtained with irrigation by 3.9dS/m and non-saline level, respectively. While, the lowest benefits (5.82L.E./ Plant) and income (3.60L.E./Plant) were obtained with cantaloupe plants which irrigated by highest salinity level (10dS/m). It is due to increasing the plants yield which irrigated by 3.9dS/m (4.121kg/Plant). Using of cv. Ideal obtained the highest benefit (10.10L.E./ Plant) and income (4.89L.E./Plant). It is due to increasing the yield of Ideal cv. (4.042kg/Plant) compare with those of Veleta plant which recorded the lowest benefit (7.06L.E./Plant) and income (4.89L.E./Plant). Also, the highest benefit (10.41L.E./Plant) and income (8.11L.E./Plant) were represented when both cantaloupe cultivars were grafted on rootstock Cobalt although grafted plants recorded the higher costs (2.30L.E/plant) compared with non-grafted plants (2.05 L.E/plant). It is due to increasing the yield of grafted plants on Cobalt rootstock (4.164kg/Plant) compare with those of non-grafted plants (3.058kg/plant).

Table 9: Effect of cultivars and rootstocks under salinity levels on costs and benefits of cantaloupe plants as average between 2015 and 2016 seasons.

cv.	Rootstock	First season (2015)		Second season (2016)	
	Control	3.9 dS/m	7 dS/m	10 dS/m	Mean
Veleta	5021 BC	5249 B	4165 DEF	3482 G	4479ab
Strong-Tosa	1556 JK	1329 KL	894 LM	621 M	1100c
Non-grafted	3600 G	3435 G	2409 HI	1636 J	2770c
Mean	3392 bc	3337 bc	2489 cd	1913 d	3420 b
Mean Veleta	2783 B				2865 B
Ideal	3896 EFG	4379 DE	4630 CD	2678 H	3896 b
Strong-Tosa	5212 B	6341 A	5102 BC	3647 FG	5075a
Non-grafted	3331 G	3815 EFG	3393 G	2038 IJ	3144 c
Mean	4150 ab	4845 a	4375 ab	2787 cd	4334 a
Mean Ideal	4039 A				4043 A

Rooftocks and Salinity levels

cv.	Rootstock	Salinity	First season (2015)		Second season (2016)	
	Cobalt	4459 ab	4814 a	4397 ab	3080 a-d	4187 A
	Strong-Tosa	3384 a-d	3835 abc	2998 a-d	2134 cd	3088 B
Non-grafted	3465 a-d	3625 a-d	2901 bcd	1837 d	2958 B	3076 ab
Mean	3772 B	4091 A	3432 C	2350 D	3878 B	4151 A

When irrigated the plants by different salinity levels, the Ideal plants recorded the highest benefits (12.25L.E./Plant) and income (9.98L.E./Plant) at 3.9dS/m level, meanwhile the lower benefit (4.69L.E./Plant) and income (2.52L.E./Plant) were resulted with cv. Veleta at the highest salinity level (10dS/m). Also under different salinity levels, the highest benefits (11.20, 11.89 and 11.09L.E./Plant) and income (8.90, 9.59 and 8.79L.E./Plant) were represented in rootstock Cobalt and irrigated by non-saline level, 3.9dS/m and 7dS/m of salinity levels, respectively as compared with non-grafted plants which recorded the lowest benefits (8.97, 9.43 and 7.41L.E./Plant) and income (6.92, 7.38 and 5.36 L.E./Plant) at the same salinity levels. This is due to increasing the yield of grafting plants on Cobalt rootstock (4.481, 4.755 and 4.437kg/Plant) as well as lower the yield of non-grafted plants (3.590, 3.773 and 2.965kg/Plant). The grafting combinations Ideal/Strong-Tosa followed by Veleta/Cobalt then Ideal/Cobalt obtained the highest benefits (12.73, 11.17and 9.65 L.E./Plant) and income (10.38, 8.92 and 7.30 L.E./Plant) while the lowest benefits (2.66, 7.35 and 7.94 L.E./Plant) and income (0.44, 5.35 and 5.84 L.E./Plant) were obtained by Veleta /Strong-Tosa followed by Veleta and Ideal.
plants on its own roots, respectively. Under all studied factors, the grafting combination Ideal/Strong-Tosa resulted the highest benefit (13.35, 16.18, 12.54 and 8.84 L.E./Plant) and income (11.00, 13.83, 10.19 and 6.49 L.E./Plant) at non-saline level, 3.9 dS/m, 7 dS/m and 10 dS/m of salinity, respectively compared with the same cv. on its roots also the graft combination Veleta/Cobalt showed the highest benefit (12.67, 13.03, 10.99 and 8.00 L.E./Plant) and income (10.42, 10.78, 8.74 and 5.75 L.E./Plant) at the same salinity levels respectively compared with the same cv. on its roots. This is due to increasing the yield of these grafting plants compared with non-grafted plants of the same cv.

References

1. Carvalho BL, de IB do Nascimento, JF de Medeiros, SS de Andrade, JL Dombroski (2011) Stomatal conductance and leaf area of melon under saline stress in different soils. Green Magazine of Agriculture Sustainable Development 6(2): 1-6.

2. Pereira A de M, RCF de Queiroga, GD da Silva, M das G R do Nascimento, SED de Andrade (2012) Germination and initial growth of melon seed submitted to the osmopriming with NaCl and salinity levels of water. Green Magazine on Agriculture and Sustainable Development 7(3): 205-211.

3. Dias N da S, VS Palacio, KKC de F Moura, ON Sousa Neto (2015) Growth of melon plants in coconut saline nutrient solution. IRRIGA 20(1): 1-12.

4. Dias N da S, AM de Oliveira, ON de Sousa Neto, FF Blanco, JRL Rebecacas (2011) Salt concentration and phases of exposure to salinity of melon grown in coconut fiber substrate. Brazilian Journal of Fruitulture 33(3): 915-921.

5. Huang CH, L Zong, M Buonanno, X Xue, TW Wang, et al. (2012) Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. European J Agron 43: 68-76.

6. Duarte TS, RM Peli, S Bacchi (2012) Effect of saline concentrations on growth of melon cultivated under protected environment. Acta Hort 952: 673-678.

7. Estab MT, MM Martinez Rodriguez, F Perez Alfocca, TF Flowers, MC Bolarin (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Experimental Botany 56(412): 703-712.

8. Cola G, Y Rouphael, M Cardarelli, D Massa, A Salerno, et al. (2006) Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J Hort Sci and Biotech 81(1): 146-152.

9. Cola GY, Rouphael M, Cardarelli, E Rea (2006) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hort Sci 41(3): 622-627.

10. Rouphael Y, M Cardarelli, E Rea, G Colla (2012) Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50(2): 180-188.

11. Liu YF, HY Qi, CM Bai, MF Qi, CQ Xu, et al. (2011) Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon. Inter J Bio Sci 7(8): 1161.
Citation: Zaki ME, Nadia S S, FA Abo S, AA Glala, SA Saleh, AS Mohamed. Effect of Grafting Technique on Productivity and Quality of Cantaloupe under Saline Irrigation Water. Curr Inves Agri Curr Res 2(1)- 2018. CIACR.MS.ID.000128. DOI: 10.32474/CIACR.2018.02.000128.