Novel Carbapenem-Resistant *Klebsiella pneumoniae* ST147 Coharboring *bla*_{NDM-1}, *bla*_{OXA-48} and Extended-Spectrum β-Lactamases from Pakistan

Aamir Jamal Gondal 1,2, Sidrah Saleem1, Shah Jahan3, Nakhshab Choudhry4, Nighat Yasmin2

1Department of Microbiology, University of Health Sciences, Lahore, Pakistan; 2Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan; 3Department of Immunology, University of Health Sciences, Lahore, Pakistan; 4Department of Biochemistry, King Edward Medical University, Lahore, Pakistan

Purpose: The emergence of multidrug-resistant *Klebsiella pneumoniae* (*K. pneumoniae*) is associated with the acquisition of multiple carbapenemases. Their clonal spread is a worldwide concern due to their critical role in nosocomial infections. Therefore, the identification of high-risk clones with antibiotic resistance genes is very crucial for controlling its global spread.

Materials and Methods: A total of 227 *K. pneumoniae* strains collected during April 2018 to November 2019 were confirmed by PCR. Carbapenemases and extended-spectrum β-lactamases (ESBL) were detected phenotypically. Confirmation of carbapenemases was carried out by PCR and Sanger sequencing. The clonal lineages were assigned to selected isolates by multilocus sequence typing (MLST), and the plasmid analysis was done by PCR-based detection of the plasmid replicon typing.

Results: Of the total *K. pneumoniae*, 117 (51.5%) were carbapenem resistant (CRKP) and 140 (61.7%) were identified as ESBL producers. Intermediate to high resistance was detected in the tested β-lactam drugs while polymyxin-B and tigecycline were found to be susceptible. Among CRKP, 91 (77.8%) isolates were detected as carbapenemase producing, while 55 (47%) were positive for *bla*_{NDM-1}, 23.9% (n=28), *bla*_{OXA-48} 22.2% (n=26) and *bla*_{VIM} 0.85% (n=1) while 12.7% (n=7) carried both *bla*_{NDM-1} and *bla*_{OXA-48} genes. The CRKP cohaboring *bla*_{NDM-1} and *bla*_{OXA-48} genes (n=7) were positive for *bla*_{CTX-M}, *bla*_{SHV} (n=3), *bla*_{SHV} (n=1) and *bla*_{CTX-M} (n=3). The novel CRKP with the coexistence of *bla*_{NDM-1}, *bla*_{OXA-48}, *bla*_{CTX-M} and *bla*_{SHV} genes were associated with the high-risk clone ST147 (n=5) and ST11 (n=2). The assigned replicon types were IncL/M, IncFII, IncA/C and IncH1.

Conclusion: This is the first report of the coexistence of *bla*_{NDM-1}, *bla*_{OXA-48}, *bla*_{CTX-M} and *bla*_{SHV} genes on a high-risk lineage ST147 from Pakistan. This study highlights the successful dissemination of carbapenemase resistance genes in the high-risk clones that emphasizes the importance of monitoring and controlling the spread of these diverse clones globally.

Keywords: high-risk clone, New Delhi metallo-β-lactamase, MLST, *K. pneumoniae*, carbapenem resistance

Introduction

Accelerated emergence and effective propagation of carbapenem-resistant *Klebsiella pneumoniae* (CRKP) across the world have become a prominent public health challenge due to high mortality rate in healthcare-associated nosocomial
infections. The CRKP has a unique ability to acquire multiple resistance encoding genes through horizontal gene transfer interceded by broad-host-range plasmids, transposons and insertion sequences thereby turning out as one of the most successful nosocomial pathogen. Lack of stewardship and irrational use of carbapenems for the infections of ESBL producing K. pneumoniae has led to the evolution of transmissible plasmid-encoding resistance genes that supported the selection of high-risk clones of CRKP involving diverse geographic regions and populations.

During 2014, the World Health Organization declared CRKP as the third most critical nosocomial pathogen for future concern. As carbapenemases and ESBL/AmpC β-lactamases are critical in the acquisition of multidrug resistance, the identification of such broad-spectrum resistance genes is required for the development of new intervention strategies.

Clinically important carbapenemase genes encompass blakPC-2, blavIM, blavIMP, blavNDM-1 and blavOXA-48. Global dissemination of such plasmid-encoded carbapenemases has increased alarmingly yet their geographic prevalence varies significantly. Clinical literature remains expressive about the linkage of NDM-1, most common MBL-type carbapenemase and its transmission to other parts of the world from the endemic areas of Indian subcontinent since the first isolation of blavNDM-1 producing K. pneumoniae ST14 and Escherichia coli (E. coli) in a patient treated in India and later shifted to Sweden in 2009. Frequent reports of NDM-1, KPC-2 and OXA-48 type carbapenemase are available from Pakistan during the past decade. Similarly, the OXA-48 is endemic in several countries since its first identification from Turkey in 2001. CRKP co-harboring at least two carbapenemases were reported globally such as KPC-3 and VIM-2 in Italy, NDM-1 and KPC-2 from Brazil and Pakistan, NDM-1 and OXA-48 in Morocco, Switzerland, China and Sultanate of Oman. However, the understanding of molecular and genetic context of the carbapenemases is scarce especially in the developing countries.

Carbapenemases have spread worldwide through evolution of high-risk clones by acquiring, retaining and efficiently transmitting resistance genes. Such globally identified high-risk K. pneumoniae clones for the dissemination of carbapenemases include ST258, ST11 and ST147 co-harboring broad range of plasmids. Several STs were found to be associated with blavNDM-1 producing K. pneumoniae such as ST258, ST340, ST512 and ST147 along with different plasmids IncF, IncA/C and IncL/M. Therefore, careful detection and treatment strategies are required especially in developing countries where carbapenemase-producing strains have diverse opportunities.

However, insufficient data are available from Pakistan that describes molecular versatility of resistance genes in relation to genetic analysis and prevalence of high-risk clones. Hence, it is imperative to promptly detect and examine these successful clones to get insights into the global spread of antimicrobial drug resistance. Therefore, the current study aimed to ascertain the prevalence of carbapenemases and to analyze their clonal relatedness.

Materials and Methods

Bacterial Collection and Identification

Clinical strains were collected during the course of routine diagnostic bacterial cultures from tertiary care hospitals of Lahore, Pakistan. A total of 227 clinical strains of K. pneumoniae were included from different sample types from April 2018 to November 2019. The isolates were characterized phenotypically by colony morphology, Gram’s staining and biochemical characteristics by using API-20E according to the manufacturer’s instructions (BioMerieux, France). The study was sanctioned by institutional review board of the University of Health Sciences, Lahore, Pakistan.

Antimicrobial Susceptibility Testing (AST)

AST was carried out by standard disc diffusion method according to the CLSI guidelines using the following antibiotic discs: imipenem (IPM), meropenem (MEM), ertapenem (ETP), ceftazidime (CAZ), ampicillin (AMP), amoxicillin-clavulanic acid (AMC), cefepime (FEP), cefotaroline (CTP), aztreonam (ATM), gentamicin (CN), amikacin (AK), ciprofloxacin (CIP), doxycycline (DO), polymyxin-B (PB), tigecycline (TGC), cefotaxime (CTX), trimethoprim-sulfamethoxazole (SXT) and piperacillin-tazobactam (TZP) (Oxoid, UK). E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as quality control strains.

Minimal Inhibitory Concentrations (MICs)

MIC of antibiotics was determined by standard broth microdilution method using cation-adjusted Mueller-Hinton broth in accordance with CLSI guidelines with antibiotic concentrations ranging from 0.5 to 1024 μg/mL.
Phenotypic Characterization
Carbapenemases were identified phenotypically by carbapenem inactivation method (CIM) while the detection of ESBLs was carried out by double-disc synergy test (DDST) using amoxicillin-clavulanic acid alone and in combination with ceftazidime as per the guidelines of CLSI.18

DNA Isolation from Bacterial Strains
Genomic DNA was prepared from pure bacterial culture plates by heat lysis method as reported previously and stored at −20°C for onward processing.19

Molecular Profile Analysis by Polymerase Chain Reaction (PCR)
Klebsiella species, carbapenemase resistance genes (blaNDM-1, blaVIM, blaTEM and blaOXA-48) and ESBL encoding genes (blaTEM, blaCTX-M and blaSHV) were detected through PCR using specific primers as given in Table 1. PCR reaction mixture of 50 μL consisting of 25 μL of 2x PCR Master Mix, 1 μL of each primer, 2 μL of DNA and dH2O up to 50 μL. Amplification was carried out in thermal cycler (Proflex, ABI) with different annealing temperatures given in Table 1. Agarose gel (1–1.5%) was used to resolve and analyze the PCR products. blaNDM-1 genes were further analyzed for allelic discrimination by Sanger’s sequencing method. K. pneumoniae ATCC BAA-2146 was used as NDM positive control.

Multilocus Sequence Typing (MLST) of Klebsiella Species
MLST of CRKP strains coharboring blaNDM-1 and blaOXA-48 were further analyzed for the presence of plasmids. Plasmid DNA was extracted from single colony of CRKP by using the plasmid isolation kit (ThermoFisher Scientific) and DNA was stored at −20°C. The samples were run on 0.8% agarose gel for the detection of plasmids. Plasmids were classified according to their incompatibility groups by using the PCR-based replicon typing method as described before.21

Results
During the 19-month study period, 227 clinical strains of Klebsiella were identified by phenotypic and genotypic methods. Of the total, 129 (56.8%) were isolated from males while remaining 98 (43.2%) were from females. These isolates were collected from wound 29.5% (n=67), pus 17.6% (n=40), blood 15.5% (n=35), tracheal secretion 13.2% (n=30), sputum 11% (n=25), urine 7.04% (n=16) and tissue 6.16% (n=14). Isolates originated from different sections of the hospital such as general surgery 26.4% (n=60), ICU 18.5% (n=42), general medicine 15.8% (n=36), dermatology 5.72% (n=13), nephrology 4.40% (n=10), chest medicine 8.37% (n=19), cardiology 3.96% (n=9), pediatric medicine 7.04% (n=16), oncology 5.28% (n=12) and orthopedic surgery 4.40% (n=10).

Antimicrobial Susceptibility Testing and Phenotypic Confirmatory Tests
As high as 51.5% (n=117) clinical strains of K. pneumoniae were carbapenem resistant (CRKP) while remaining 48.5% (n=110) were susceptible (CS). Out of 117 CRKP, 77.7% (n=91) were detected as carbapenemase-producing strains (CPKP). Most of the CRKP exhibited resistant to intermediate resistant profile for the β-lactam combination agents, carbapenems, fluoroquinolones, aminoglycosides and trimethoprim/sulfamethoxazole. Antimicrobial resistance pattern of CRKP strains was as follows: meropenem (96.9%), imipenem (98%), ertapenem (90%), amoxicillin/clavulanic acid (93.5%), ceftazidime (91.2%), ceftriaxone (96%), cefotaxime (95%), aztreonam (90.3%), ciprofloxacin (87%), amikacin (37.1%), tigecycline (21.1%) and polymyxin-B (13.7%). The MIC values of the tested β-lactam antibiotics were as follows: 4 to >1024 mg/L for ertapenem, 8 to >1024 mg/L for meropenem, 8 to >1024 mg/L for imipenem in all tested strains. All of the isolates were recognized as MDR (72%) or XDR (28%). The MIC results of the selected strains are given in Table 2.
Gene	Primer Sequence (5’–3’)	Annealing (°C)	Amplicon Size (bp)	Reference
rpoB (K. pneumoniae)	F: CAA CGG TGT GGT TAC TGA CG R: TCT ACG AAG TGG CCG TTT TC	55	108	53
pehX (K. oxytoca)	F: GAT ACG GAG TAT GCC TTT ACG GTG R: TAG CCT TTA TCA AGC GGA TAC TGG	55	343	53
gyrA (Klebsiella genus)	F: CGC GTA CTA TAC GCC ATG AAC GTA R: ACC GTT GAT CAC TTC GGT CAG G	55	441	53
blaSHV	F: CTT TAT CCG CCC TCA CTC AA R: AGG TGC TCA TCA TGG GAA AG	55	237	54
blaTEM	F: CGC CGC ATA CAC TAT TCT CAG AAT GA R: ACG CTC ACC GGC TCC AGA TTT AT	55	445	54
blaCTX-M	F: ATG TGC AGY ACC AGT AAR GTK ATG GC R: TGG GTR AAR TAR GTS ACC AGA AYC AGC GG	55	593	54
blaNDM-1	F: ATG GAA TTG CCC AAT ATT ATG CAC R: TCA GCG CAG CTT GTC GGC	52	813	55
blaVIM	F: GAT GTG GTT TGG TCG CAT A R: CGA ATG CGC AGC ACC AG	52	390	56
blaOXA-48	F: GCG TGG TTA AGG ATG AAC AC R: CAT CAA GTT CAA CCC AAC CG	52	438	56
blaIMP	F: GGA ATA GAG TGG TGT AAY TCT C R: GGT TTA AYA AAA CAA CCA CC	52	232	56
blaNDM-1	F: TGGCTTTTGAATCGTGCACC R: CTGTCACATCGAAATCGCGCGA	60	1000	57
gapA	F: TGA AGT ATG ACT CCA CTC ACG G R: AAC GCC TTT CAT TGC GCC TCC GGA A	60	662	20
infB	F: CTC TCT GCT GGA CTA CAT TCG R: CGC TTT CAG CTC CAG AAC TTC	52	462	20
mdh	F: CCC AAC TGC CTT CAG GTT CAG R: CCT TCC ACG TAG GCG CAT TCC	52	756	20
pgi	F: GAG AAA AAC CTG CCG GTG CTG CTG R: CGG TTA ATC AGG CCG TTA GTG GAG C	52	566	20
phoE	F: ACC TGG CGC AAC ACC GAT TTC TTC R: TTC AGC TGG TTT ATG TAA TTC AC	52	602	20
rpoB	F: GGC GAA ATG GCC GAA AAC CA R: GAG TCT TCG AAG TTA CAC	52	1075	20
tonB	F: CTC TAT ACT TCG GTA CAT CAG GTT R: CCT GCT TGG CCG CCA GAC CCT GGT	48	539	20

Abbreviations: rpoB, RNA polymerase beta-subunit gene; pehX, polygalacturonase gene; gyrA, DNA gyrase subunit A gene; blaSHV, beta-lactamase sulfhydryl reagent variable gene; blaNDM, New Delhi metallo-beta-lactamase gene; blaVIM, metallo-beta-lactamase verona integron gene; blaTEM, beta-lactamase temoneira gene; blaOXA-48, beta-lactamase oxacillinase 48 gene; blaCTX-M, beta-lactamase ceftoxime munich gene; blaIMP, beta-lactamase imipenemase gene; gapA, glyceraldehyde-3-phosphate dehydrogenase A gene; infB, translation initiation factor IF-2 gene; mdh, malate dehydrogenase gene; pgi, phosphoglucone isomerase gene; phoE, phosphoporin E gene; tonB, periplasmic energy transducer gene; rpoB, beta-subunit of RNA polymerase gene.
Significantly higher frequency of CPKP was observed in wound samples 49.4% (n=45; p=0.002), pus samples 27.4% (n=25; p=0.026) and tracheal secretion samples 23.2% (n=21; p=0.029). Clinical strains of CRKP from wound and pus samples were significantly associated with the general surgery (p<0.001) while those from tracheal secretion samples were significantly associated with the SICU (p=0.008) as compared to the other samples obtained from the general surgery and SICU. Out of 227 K. pneumoniae strains, 61.6% (n=140) were ESBL producers and 38.3% (n=87) were non-ESBL producers. Among the 140 strains of ESBL producing K. pneumoniae, 9.28% (n=13) isolates were resistant to one of the third-generation cephalosporins (3GCs), 28.5% (n=40) were resistant against 2 of the 3GCs and 62.1% (n=87) were resistant to all the 3GCs. Association analysis demonstrated that 80% (n=112) ESBL producers were collected from the samples of wound, pus and tracheal secretions (p=0.003).

Antibiotic Resistance Genes

Out of 117 CRKP, 47% (n=55) were positive for the carbapenemase resistance genes by PCR including blaNDM-1 23.9% (n=28), blaOXA-48 22.2% (n=26) and blaVIM 0.85% (n=1); blaIMP was not detected. However, 12.7% (n=7) of CPKP coharbored blaNDM-1 and blaOXA-48 genes. blaNDM-1 positive strains were further confirmed by DNA sequencing.

The presence of the ß-lactamase-encoding genes blaCTX-M, blaTEM and blaSHV was detected in the ESBL-producing K. pneumoniae strains (n=140). Single ESBL gene was detected in 38.5% (n=54): blaCTX-M 10.7% (n=15), blaSHV 22.8% (n=32), blaTEM 5% (n=7) and double ESBL genes were detected in 61.4% (n=86): blaCTX-M, blaSHV 32.1% (n=45), blaTEM, blaSHV 12.1% (n=17), blaTEM, blaCTX-M

Strain ID	Resistance Profile	MIC (µg/mL)												
MEM	CAZ	SXT	AMP	AMC	CPT	CIP	ATM	AK	PB	DO	CTX			
KP-17	MDR	4	8	2/38	64	32/16	0.5	1	16	16	2	4	1	
KP-97	XDR	512	32	8/152	8	8/4	16	8	32	8	8	16	8	
KP-104	MDR	64	32	2/38	8	16/8	0.5	1	4	64	2	4	8	
KP-188	MDR	32	64	2/38	16	32/16	0.5	1	4	16	2	4	32	
KP-191	MDR	16	4	16/304	8	32/16	0.5	1	8	16	2	16		
KP-194	MDR	16	4	4/6	16	8/4	0.5	1	4	32	2	2	8	
KP-199	XDR	>1024	128	32/608	512	256/128	0.5	64	128	128	8	32	256	
KP-222	MDR	256	128	2/38	64	32/16	0.5	1	4	8	2	4	32	
KP-246	XDR	128	256	8/152	32	64/32	16	1	16	64	16	64	64	
KP-268	MDR	512	256	16/304	128	16/8	16	64	64	1024	4	128	256	
KP-272	MDR	256	64	2/38	8	8/4	0.5	1	32	64	2	4	32	
KP-284	MDR	64	32	2/38	32	8/4	0.5	1	16	4	16	2	4	32
KP-289	XDR	64	16	8/152	32	256	128	32	128	512	8	512	8	
KP-315	XDR	>1024	256	8/152	64	128/64	16	4	512	512	8	256	4	
KP-326	MDR	128	64	2/38	16	8/4	0.5	0.5	32	16	2	4	16	
KP-333	MDR	32	16	8/152	8	8/4	0.5	0.5	16	16	2	4	2	
KP-426	MDR	8	4	2/38	16	16/8	0.5	1	16	32	2	4	0.5	
KP-443	MDR	64	32	4/76	8	128/64	0.5	1	16	8	2	4	0.5	
KP-465	MDR	128	128	2/38	16	8/4	0.5	1	128	16	32	4	0.5	
KP-494	MDR	64	128	2/38	8	8/4	4	32	64	16	2	4	0.5	
KP-544	MDR	32	64	32/608	32	128/64	0.5	1	256	512	16	128	256	
KP-562	MDR	64	256	2/38	64	8/4	0.5	1	32	128	2	4	0.5	
KP-611	XDR	256	64	64/1216	64	128/64	0.5	16	64	2	4	64		
KP-663	MDR	128	512	32/608	64	8/4	0.5	1	64	8	2	4	0.5	
KP-675	MDR	32	32	2/38	256	8/4	0.5	1	64	8	8	4	0.5	
KP-668	MDR	64	32	2/38	8	64/32	2	1	128	16	1	4	0.5	
KP-687	MDR	32	64	2/38	128	8/4	8	1	32	16	1	4	0.5	
KP-704	XDR	512	128	64/1216	128	256/128	0.5	256	1024	16	512	32		

Abbreviations: MDR, multidrug resistant; XDR, extensively drug resistant.

Table 2 MIC Values of Selected Carbapenem-Resistant K. pneumoniae Strains
Table 3 Resistance Profile of Carbapenem-Resistant *K. pneumoniae*

Strain ID	Ward	Sample Type	MIC (μg/mL)	Resistance Profile	Profile of Resistance Genes	Replicon and Sequence Type
KP-17	SICU	Wound	256	MDR	bla_{NDM-1} (MT312213)¹, bla_{OXA-48}, bla_{CTX-M}, bla_{SHV}	ST147, IncL/M, IncFll, IncA/C, IncFHI
KP-97	SICU	Pus	64	XDR	bla_{NDM-1} (MT320894)¹, bla_{CTX-M}, bla_{SHV}	-
KP-104	OPD	Wound	32	MDR	bla_{NDM-1} (MT320895)¹, bla_{CTX-M}, bla_{SHV}	-
KP-188	SICU	Tracheal secretion	64	MDR	bla_{NDM-1} (MT320896)¹, bla_{SHV}	-
KP-191	GS	Wound	16	MDR	bla_{NDM-1} (MT320897)¹, bla_{CTX-M}	-
KP-194	GS	Wound	MDR		bla_{NDM-1} (MT320898)¹, bla_{SHV}	-
KP-199	OPD	Pus	>1024	XDR	bla_{NDM-1} (MT320899)¹, bla_{OXA-48}, bla_{CTX-M}, bla_{SHV}	ST147, IncL/M, IncFll, IncA/C, IncFHI
KP-222	GS	Sputum	128	MDR	bla_{NDM-1} (MT320900)¹, bla_{OXA-48}, bla_{CTX-M}, bla_{SHV}	ST147, IncL/M, IncFll, IncA/C, IncFHI
KP-246	GS	Wound	32	XDR	bla_{NDM-1} (MT320901)¹, bla_{CTX-M}	-
KP-268	SICU	Tip cells	64	XDR	bla_{NDM-1} (MT320902)¹, bla_{TEM}, bla_{CTX-M}, bla_{SHV}	-
KP-272	GS	Wound	32	MDR	bla_{NDM-1} (MT320903)¹, bla_{CTX-M}, bla_{SHV}	-
KP-284	GS	Wound	8	MDR	bla_{NDM-1} (MT320904)¹, bla_{CTX-M}, bla_{SHV}	-
KP-289	GS	Wound	16	XDR	bla_{NDM-1} (MT320905)¹, bla_{TEM}	-
KP-315	SICU	Tracheal secretion	32	XDR	bla_{NDM-1} (MT320906)¹, bla_{SHV}	-
KP-326	OPD	Blood	128	MDR	bla_{NDM-1} (MT320907)¹, bla_{OXA-48}, bla_{CTX-M}	ST147, IncL/M, IncFll, IncA/C, IncFHI
KP-333	GS	Pus	32	MDR	bla_{NDM-1} (MT320908)¹, bla_{SHV}	-
KP-426	BURN	Tracheal secretion	64	MDR	bla_{NDM-1} (MT320909)¹, bla_{CTX-M}	-
KP-443	GS	Wound	64	MDR	bla_{NDM-1} (MT320910)¹	-
KP-465	WSW	Wound	128	MDR	bla_{NDM-1} (MT320911)¹, bla_{OXA-48}, bla_{CTX-M}, bla_{SHV}	ST11, IncL/M, IncFll, IncA/C, IncFHI
KP-494	SICU	Tracheal secretion	64	MDR	bla_{NDM-1} (MT320912)¹, bla_{OXA-48}, bla_{CTX-M}, bla_{SHV}	ST147, IncL/M, IncFll, IncA/C
KP-544	GS	Blood	32	XDR	bla_{NDM-1} (MT320913)¹	-
KP-562	SICU	Tracheal secretion	64	MDR	bla_{NDM-1} (MT320914)¹, bla_{CTX-M}	-
KP-611	PS	Pus	128	XDR	bla_{NDM-1} (MT320915)¹, bla_{CTX-M}	-
KP-663	GS	Wound	64	MDR	bla_{NDM-1} (MT320916)¹, bla_{SHV}, bl_{CTX-M}	-
KP-675	SICU	Tracheal secretion	128	MDR	bla_{NDM-1} (MT320917)¹, bla_{OXA-48}, bl_{CTX-M}	ST11, IncL/M, IncFll, IncA/C

(Continued)
Due to the presence of \(\text{C}\text{P}\text{K} \) and \(\text{C}\text{P}\text{K} \) in \(\text{K}\text{. pneumoniae} \) have become alarming especially among one of the high-risk clones \(\text{ST11} \) coharboring \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) were reported previously.

Sequence Type Analysis and Plasmid Detection of NDM-1 Producing Isolates

CRKP coharboring \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) were further analyzed for sequence typing. High-risk \(\text{K}\text{. pneumoniae} \) clones \(\text{ST147} \) coharbored \(\text{bla}_{\text{NDM-1}} \), \(\text{bla}_{\text{OXA-48}} \), \(\text{bla}_{\text{CTX-M}} \), \(\text{bla}_{\text{SHV}} \) (n=3), \(\text{bla}_{\text{NDM-1}} \), \(\text{bla}_{\text{OXA-48}} \) \(\text{bla}_{\text{CTX-M}} \) (n=2), while \(\text{ST11} \) coharbored \(\text{bla}_{\text{NDM-1}} \), \(\text{bla}_{\text{OXA-48}} \), \(\text{bla}_{\text{SHV}} \) (n=1) and \(\text{bla}_{\text{NDM-1}} \), \(\text{bla}_{\text{OXA-48}} \), \(\text{bla}_{\text{CTX-M}} \) (n=1). Plasmid analysis of CRKP coharboring \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) identified the following replicon types: \(\text{IncL/M} \), \(\text{IncFII} \), \(\text{IncA/C} \) and \(\text{IncH1} \).

Discussion

The emergence of CRKP has resulted in limited effective treatment strategies thus posing a major healthcare threat worldwide. Global dissemination of transmissible carbapenemases by virtue of horizontal gene transfer involving certain high-risk clones has become alarming especially in developing countries in the backdrop of inconsistent antibiotic policies. \(\text{K}\text{. pneumoniae} \) is among one of the most commonly detected multidrug-resistant member of the Enterobacteriaceae family.

In the present study, we identified 51.1% CRKP strains that consisted of 77.7% carbapenemase producers. A large-scale study conducted in Turkey has detected only 3.1% (n=45/1452) CRKP isolates, while from the European cohort study, 55% (n=944/1717) isolates were carbapenem resistant and 39.84% (n=684/1717) were carbapenemase producers. Similarly, 10.69% (n=247/2310) CRKP strains were reported previously. However, the highest percentages of carbapenem resistant and carbapenemase producers are reported from Pakistan such as another study identified 88% carbapenemase producers. Due to the presence of high carbapenem resistance among \(\text{K}\text{. pneumoniae} \) in Pakistan, it is tempting to speculate that \(\text{K}\text{. pneumoniae} \) strains have the ability to retain diverse resistance determinants especially in a situation of uncontrolled use of high amounts of antibiotics. Wound samples (49.4%) were the major source of the CRKP infection that were significantly associated with the general surgery ward. In line with our study, 40% of wound samples with carbapenemase production were reported recently in association with the emergency department. However, blood, urine, sputum, tracheal secretion and pus were the major source of CRKP in other studies. The identification of CRKP strains from different anatomical sites highlights the importance of diverse set of sampling sites for the surveillance studies.

In consistent with the previous studies, the most effective antibiotics against the isolates were polymyxin-B (13.7%) and tigecycline (21.1%). However, intermediate to high resistance levels were observed against carbapenemases (meropenem, imipenem and ertapenem) 90% to 98%, cephalosporins 86% to 92%, aztreonam 90.3%, ciprofloxacin 87% and amikacin 37.1% that counts for 72% MDR and 28% XDR isolates. Sattar et al have reported 45% MDR \(\text{K}\text{. pneumoniae} \) strains with 85% to 90% resistance to cephalosporins and 30% resistance to imipenem. Another study from Pakistan reported 22.5% MDR \(\text{K}\text{. pneumoniae} \) strains among the study population in 2013. The detailed analysis of antibiotic resistance among the \(\text{K}\text{. pneumoniae} \) from Pakistan suggested that the resistance has been increasing.

The most frequently detected carbapenemases among \(\text{K}\text{. pneumoniae} \) are \(\text{bla}_{\text{KPC}} \) enzymes followed by \(\text{bla}_{\text{NDM-1}} \), \(\text{bla}_{\text{OXA-48-like}} \) and \(\text{bla}_{\text{VIM}} \) in \(\text{K}\text{. pneumoniae} \). In our study, the detailed resistome analysis revealed the presence of carbapenemase resistance genes in 55 out of 117 CRKP strains. The most commonly detected carbapenemase

Table 3 (Continued).

Strain ID	Ward	Sample Type	MIC (μg/mL)	Resistance Profile	Profile of Resistance Genes	Replicon and Sequence Type
KP-668	GS	Pus	64	MDR	\(\text{bla}_{\text{NDM-1}} \) (MT320918), \(\text{bla}_{\text{VIM}} \), \(\text{bla}_{\text{SHV}} \)	-
KP-687	SICU	Tracheal secretion	32	MDR	\(\text{bla}_{\text{NDM-1}} \) (MT320919), \(\text{bla}_{\text{SHV}} \)	-
KP-704	CM	Sputum	32	XDR	\(\text{bla}_{\text{NDM-1}} \) (MT320920), \(\text{bla}_{\text{CTX-M}} \)	-

Note: *GenBank Accession Number.

Abbreviations: GS, general surgery; PS, plastic surgery; SICU, surgical ICU; CM, chest medicine.
genes were \(\text{bla}_{\text{NDM-1}} \) (23.9%; \(n=28/55 \)) and \(\text{bla}_{\text{OXA-48}} \) (22.2%; \(n=26/55 \)) while \(\text{bla}_{\text{IMP}} \) was identified in only 1 isolate and \(\text{bla}_{\text{IMP}} \) was not detected. In consistent with our results, several studies from Pakistan reported that the most prevalent carbapenemase genes in Enterobacteriaceae/\(K. \) pneumoniae are \(\text{bla}_{\text{NDM-1}} \) 83.3\% (\(n=30/37 \)),\(^{25} \) 70\% (\(n=10 \)),\(^{28} \) 14.6\% (\(n=13/82 \))\(^{34} \) followed by \(\text{bla}_{\text{OXA-48}} \) 86\% (\(n=49/57 \)),\(^{35} \) 50\% (\(n=5/10 \))\(^{28} \) and \(\text{bla}_{\text{VIM}} \) 13.4\% (\(n=11/82 \))\(^ {34} \) 3.5\% (\(n=2/57 \)).\(^ {35} \) The results of our study are also in line with the observations that India, Bangladesh and Pakistan are the major reservoir countries for the widespread dissemination of carbapenemase genes such as \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \).\(^ {36} \) Since the first report of \(\text{bla}_{\text{NDM-1}} \) detection in Pakistan in 2010,\(^ {37} \) carbapenemase genes have spread significantly. Moreover, in the present study, the \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) coproduction was detected in 7 out of 55 CRKP. The co-occurrence of \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) has been reported previously in Asian and European countries.\(^ {16,24,38–40} \) However, in Pakistan the coexistence of carbapenem-resistant genes is not commonly detected in \(K. \) pneumoniae. In clinical isolates of \(K. \) pneumoniae, \(\text{bla}_{\text{KPC-2}}, \text{bla}_{\text{NDM-1}} \) (\(n=2/20 \)),\(^ {12} \) \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}} \) (\(n=2/10 \))\(^ {28} \) and \(\text{bla}_{\text{VIM}}, \text{bla}_{\text{NDM-1}} \) (\(n=4/28 \)) encoding genes in community-based \(E. \) coli isolates\(^ {41} \) have been identified.

The CRKP strains cohaboring \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) examined in our study belonged to either ST11; single locus variant of ST258\(^ {42} \) or emerging ST147 high-risk CRKP clone with resistance genes located on different plasmids.\(^ {9} \) NDM-type carbapenemases have been described associated with ST11, ST14, ST147, ST340, ST149 and ST231.\(^ {2} \) The ST11 is typically associated with the acquisition of multidrug resistance due to its ability to capture multiple plasmids\(^ {42} \) and \(K. \) pneumoniae strains with multiple resistance genes have been reported previously.\(^ {43} \) In concurrence with this study, our data also revealed that different antimicrobial resistance and replicon type exist within the identified ST11 isolates. One of the ST11 isolate was polymyxin-B resistant while other was susceptible. Our results are in line with the previously reported study from Pakistan where out of 3 ST11 strains, 2 strains were colistin resistant and 1 strain was colistin susceptible.\(^ {28} \) The ST11 isolates identified in our study cohabored \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \) genes, whereas ST11 isolates positive for \(\text{bla}_{\text{NDM-1}} \) (\(n=7 \)), \(\text{bla}_{\text{NDM-7}} \) (\(n=2 \)) and \(\text{bla}_{\text{NDM-5}} \) (\(n=1 \)) were recently reported from Pakistan.\(^ {25} \)

Previously, the pandemic lineage ST147 in \(K. \) pneumoniae has been correlated with the spread of carbapenemase resistant genes such as \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{VIM}}, \text{bla}_{\text{OXA-48}}, \text{bla}_{\text{KPC}} \) and \(\text{bla}_{\text{NDM-1}} \).\(^ {44,45} \) ST147 has also been associated with \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{CMY-4}}, \text{bla}_{\text{OXA-48}} \).\(^ {46} \) \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}}, \text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{OXA-48}} \).\(^ {47} \) Antecedently, two studies are available from Pakistan that reported the existence of ST147 \(K. \) pneumoniae with \(\text{bla}_{\text{OXA-181}} \) resistant gene\(^ {11} \) and ST147 \(K. \) pneumoniae isolate with \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{NDM-5}} \).\(^ {25} \) The coexistence of \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}} \) has also been detected in ST307 from China\(^ {46} \) and \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-232}} \) in ST231 from Pakistan.\(^ {27} \) However, in our study we have identified the co-emergence of \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}} \) among ST147 (\(n=5 \)), a globally spread high-risk clone. The identification of ST147 with \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}} \) is alarming as it indicates that strong selection has occurred towards the resistance in these clinical isolates from Pakistan.

Subsequently, four replicon types IncL/M, IncFII, IncA/C and IncH1 were detected in the present study. Previous studies have shown that IncL/M-type plasmid was related to the OXA-48-type carbapenemases and responsible for the \(\text{bla}_{\text{OXA-48}} \) gene dissemination.\(^ {48} \) The molecular studies have reported that the most frequent replicon type identified in \(K. \) pneumoniae species is IncFII replicon\(^ {9} \) while IncA/C type replicons are responsible for the horizontal spread of NDM-type carbapenemase along with IncFIIK, IncL/M and IncH1.\(^ {49} \) Moreover, among the typed resistant plasmids, IncL/M and IncFII plasmids may be regarded as epidemic as they have been detected in different countries with different origins and sources.\(^ {50} \) On the other hand, IncR, IncFIIK-type and IncA/C type replicons have been identified in OXA-48-type carbapenemases and IncR type replicons in NDM-type carbapenemases.\(^ {51} \) Previously reported replicon types among the NDM-producing \(K. \) pneumoniae from Pakistan include IncN, IncA/C\(^ {52} \) and IncFII, IncR.\(^ {11} \) In our study, the identified replicon types (IncL/M, IncFII, IncA/C and IncH1) are reported to be responsible for OXA-48-type and NDM-type carbapenemases dissemination.

Conclusion

We reported the first identification of high-risk CRKP clone ST147 cohaboring several carbapenem resistance genes \(\text{bla}_{\text{NDM-1}}, \text{bla}_{\text{OXA-48}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}} \) from Pakistan. Taken into account the presence of highest genetic diversity among \(K. \) pneumoniae worldwide, the identification of high-risk clone with multidrug resistance and coexistence of different classes of \(\beta \)-lactamases in the same strain highlight the severity of health challenges.
posed by *K. pneumoniae* worldwide. Our findings suggested that the high antimicrobial resistance existed among study isolates that can also be associated with the presence of several β-lactams genes in a high-risk clone. Therefore, the continuous monitoring of carbapenemases is necessary to prevent the national and transnational spread of these powerful isolates especially in case when the healthcare facilities are inadequate.

Acknowledgments

We are thankful to the University of Health Sciences, Lahore, and King Edward Medical University, Lahore for the provision of samples and research facilities.

Author Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing *Klebsiella pneumoniae*, a key pathogen set for global nosocomial dominance. *Antimicrob Agents Chemother*. 2015;59(10):5873–5884. doi:10.1128/AAC.01019-15
2. Davarci İ, Şenbayrak S, Aksaray S, Koçoğlu ME, Kuşkucu MA, Samasti M. Molecular epidemiology of carbapenem-resistant *Klebsiella pneumoniae* isolates. *Anatol Clin*. 2019;24(1):1–7.
3. Ye Y, Xu L, Han Y, Chen Z, Liu C, Ming L. Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. *Exp Ther Med*. 2018;15(1):1143–1149. doi:10.3892/etm.2017.5485
4. Durdu B, Hakyemez IN, Bolukcu S, Okay G, Gultepe B, Aslan T. Mortality markers in nosocomial *Klebsiella pneumoniae* bloodstream infection. *Springerplus*. 2016;5(1):1892. doi:10.1186/s40064-016-3580-8
5. Organization WH. *Antimicrobial Resistance: Global Report on Surveillance*. World Health Organization; 2014.
6. Jia X, Dai W, Ma W, et al. Carbapenem-resistant E. cloacae in Southwest China: molecular analysis of resistance and risk factors for infections caused by NDM-1-producers. *Front Microbiol*. 2018;9:658. doi:10.3389/fmicb.2018.00658
7. Aguirre-Quilónoro A, Martínez-Martínez L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. *J Infect Chemother*. 2017;23(1):1–11. doi:10.1016/j.jiac.2016.09.008
8. van Duin D, Doi Y. The global epidemiology of carbapenem-producing Enterobacteriaceae. *Virulence*. 2017;8(4):460–469. doi:10.1080/21505594.2016.1222343
9. Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing *Klebsiella pneumoniae*: epidemiology, genetic context, treatment options, and detection methods. *Front Microbiol*. 2016;7:895.
10. Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. *Clin Infect Dis*. 2018;66(8):1290–1297. doi:10.1093/cid/cix893
11. Nahid F, Zahr A, Sandegren L. A blaOXA-181-harbouring multi-resistant ST147 *Klebsiella pneumoniae* isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. *PLoS One*. 2017;12(12):e0189438. doi:10.1371/journal.pone.0189438
12. Sattar H, Toleman M, Nahid F, Zahr A. Co-existence of blaNDM-1 and blakPC-2 in clinical isolates of *Klebsiella pneumoniae* from Pakistan. *J Infect Chemother*. 2016;22(4):346–349. doi:10.1179/1973947814Y.00000000223
13. Willemens I, van Esser J, Klyumtans–van den Bergh M, Klyumtans–van den Bergh M, et al. Retrospective identification of a previously undetected clinical case of OXA-48-producing *K. pneumoniae* and E. coli: the importance of adequate detection guidelines. *Infection*. 2016;44(1):107–110. doi:10.1007/s15101-015-0805-7
14. Duman Y, Ersoy Y, Gursoy N, Altunisik Toplu S, Otlu B. A silent outbreak due to *Klebsiella pneumoniae* that co-produced NDM-1 and OXA-48 carbapenemases, and infection control measures. *Iran J Basic Med Sci*. 2020;23(1):46–50. doi:10.22038/IJBMS.2019.35269.8400
15. Seiffert SN, Marschall J, Perreten V, Carattoli A, Furrer H, Endimiani A. Emergence of *Klebsiella pneumoniae* co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QuA and ArmA in Switzerland. *Int J Antimicrob Agents*. 2014;44(3):260–262. doi:10.1016/j.ijantimicag.2014.05.008
16. Xie L, Dou Y, Zhou K, et al. Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a *Klebsiella pneumoniae* isolate in China. *Front Microbiol*. 2017;8:133. doi:10.3389/fmicb.2017.00133
17. Dortet L, Poirel L, Al Yaqoubi F, Nordmann P, et al. OXA-48 and OXA-181 carbapenemase-producing enterobacteriaceae in sultanate of Oman. *Clin Microbiol Infect*. 2012;18(5):E144–E148. doi:10.1111/j.1469-0691.2012.03796.x
18. Wayne P. CLSI. *Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100*. Clinical and Laboratory Standards Institute; 2018.
19. Martzy R, Bica-Schörd K, Pálvölgyi ÁM, et al. Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilec ionic liquids. *Sci Rep*. 2019;9(1):1–10. doi:10.1038/s41598-019-50246-5
20. Brolund A, Rajer F, Giske CG, Meleforos O, Titelman E, Sandegren L. Dynamics of resistance plasmids in extended-spectrum-β-lactamase-producing Enterobacteriaceae during postinfection colonization. *Antimicrob Agents Chemother*. 2019;63(4):e02218–e02218. doi:10.1128/AAC.02201-18
21. Carloni E, Andreoni F, Omiccioli E, Villa L, Magnani M, Carattoli A. Comparative analysis of the standard PCR-Based Replicon Typing (PBRT) with the commercial PBRT-KIT. *Plasmid*. 2017;90:10–14. doi:10.1016/j.plasmid.2017.01.005
22. Grundmann H, Glaser C, Albigser B, et al. Occurrence of carbapenemase-producing *Klebsiella pneumoniae* and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. *Lancet Infect Dis*. 2017;17(2):153–163. doi:10.1016/S1473-3099(16)30257-2
23. David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by nosocomial spread. *Nat Microbiol*. 2019;4(11):1919–1929. doi:10.1038/s41564-019-0492-8
24. Guo L, An J, Ma Y, et al. Nosocomial outbreak of OXA-48-producing *Klebsiella pneumoniae* in a Chinese hospital: clonal transmission of ST147 and ST383. *PLoS One*. 2016;11(8).
25. Qamar MU, Walsh TR, Toleman MA, et al. Dissemination of genetically diverse NDM-1,–5,–7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. *Future Microbiol*. 2019;14(8):691–704. doi:10.2217/fmb-2019-0012
26. Tekeli A, Dolapci I, Even E, Oguzman E, Karahan ZC. Characterization of *Klebsiella pneumoniae* Coproducing KPC and NDM-1 Carbapenemases from Turkey. *Microb Drug Resist*. 2019;26:118–125.
32. Samonis G, Maraki S, Karageorgopoulos D, Vouloumanou E, Falagas M. 2013. Antimicrobial resistance of carbapenem-resistant Klebsiella pneumoniae in an ICU in Greece: Analysis of blaNDM-1 on IncR plasmids and its association with rmf. J Antimicrob Chemother. 2014;69(1):20–27. doi:10.1093/acin/aht176

33. Sabir R, Alvi SFD, Fawwad A. Antimicrobial susceptibility pattern of aerobic microbial isolates in a clinical laboratory in Karachi-Pakistan. Pak J Med Sci. 2013;29(3):851. doi:10.2669/pjms.293.3187

34. Nahid F, Khan AA, Rehman S, Zahra R. Prevalence of metallo-

35. Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-Neyestanaki D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S RNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist. 2019;12:45. doi:10.2147/IDR.S186994

36. Wang X, Xu X, Li Z, et al. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb Drug Resis. 2014;20(2):137–144. doi:10.1098/rmdr.2013.0100

37. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of ARMechromecmalcom Asme, K. pneumoniae strains harboring blaNDM and its association with rmtF. Antimicrob Agents Chemother. 2015;59(1):91–101. doi:10.1128/AAC.02425-14

38. Samonis G, Maraki S, Karageorgopoulos D, Vouloumanou E, Falagas M. 2013. Antimicrobial resistance of carbapenem-resistant Klebsiella pneumoniae in an ICU in Greece: Analysis of blaNDM-1 on IncR plasmids and its association with rmf. J Antimicrob Chemother. 2014;69(1):20–27. doi:10.1093/acin/aht176

39. Nahid F, Khan AA, Rehman S, Zahra R. Prevalence of metallo-

40. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56(1):559–562. doi:10.1128/AAC.05289-11

41. Bonnin RA, Poirel L, Carattoli A, Nordmann P. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PlasOne. 2012;7(4):e34752. doi:10.1371/journal.pone.0034752

42. Navon-Venezia S, Kondrateyva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–275. doi:10.1093/femsre/fux013

43. Souza RD, Pinto NA, Hwang I, et al. Molecular Epidemiology and Resistome Analysis of Multidrug-Resistant ST11 Klebsiella Pneumoniae Strain Containing Multiple Copies of Extended-Spectrum β-Lactamase Genes Using Whole-Genome Sequencing. 2017.
