HERMITE’S THEOREM VIA GALOIS COHOMOLOGY

MATTHEW BRASSIL AND ZINOVY REICHSTEIN

Abstract. An 1861 theorem of Hermite asserts that for every field extension E/F of degree 5 there exists an element of E whose minimal polynomial over F is of the form $f(x) = x^5 + c_2 x^3 + c_4 x + c_5$ for some $c_2, c_4, c_5 \in F$. We give a new proof of this theorem using techniques of Galois cohomology, under a mild assumption on F.

1. Introduction

An 1861 theorem of Hermite asserts that for every field extension E/F of degree 5 there exists an element of E whose minimal polynomial over F is of the form $f(x) = x^5 + c_2 x^3 + c_4 x + c_5$ for some $c_2, c_4, c_5 \in F$.

Modern proofs of this result have been given by Coray [8] and Kraft [12]. Coray’s proof relies on techniques of arithmetic geometry, whereas Kraft’s is based on representation theory, in the spirit of Hermite’s original paper [9]. The purpose of this note is to give yet another proof of the following variant of Hermite’s theorem using techniques of Galois cohomology.

Theorem 1. Let E/F be a field extension of degree 5. Assume F contains an algebraically closed field k. Then there exists an element $a \in E$ whose minimal polynomial is of the form $f(x) = x^5 + c_2 x^3 + c_4 x + c_5$ for some $c_2, c_4, c_5 \in F$.

2. A geometric restatement of the problem

Clearly every $z \in E \setminus F$ is a primitive element for E/F. Choose one such z and set $a = x_0 + x_1 z + \cdots + x_4 z^4 \in E$, where $x_0, \ldots, x_4 \in F$ are to be specified later. The characteristic polynomial of a over F is $f(t) = \det(t \cdot 1_F - a) = t^5 + c_1 t^4 + \cdots + c_4 t + c_5$, where t is a commuting variable, and \det denotes the norm in the field extension $E(t)/F(t)$. Each c_i is a homogeneous polynomial of degree i in x_0, \ldots, x_4 with coefficients in F. We are interested in non-trivial solutions of the system

$$c_1(x_0, \ldots, x_4) = c_3(x_0, \ldots, x_4) = 0$$

in $\mathbb{P}^4(F)$. Note that c_1 cuts out a linear subvariety $\mathbb{P}^3 \subset \mathbb{P}^4$, and c_3 cuts out a cubic surface in this \mathbb{P}^3 defined over F. We will denote this cubic surface by X. Any solution $(x_0 : \ldots : x_4) \in \mathbb{P}^4(F)$ to (1) (or equivalently, any F-point of X) gives rise to an element $a = x_0 + x_1 z + \cdots + x_4 z^4 \in E$ whose characteristic polynomial is of the desired form. Moreover, if $(x_0 : \ldots : x_4) \neq (1 : 0 : \ldots : 0)$, then a is a primitive element of E, so its minimal polynomial is the same as its characteristic polynomial.

2010 Mathematics Subject Classification. 12G05, 14G05.

Key words and phrases. Hermite's theorem, quintic polynomial, Galois cohomology, Tsen-Lang theorem, essential dimension.

Zinovy Reichstein was partially supported by National Sciences and Engineering Research Council of Canada Discovery grant 253424-2017.
Lemma 2. (a) $(1 : 0 : 0 : 0 : 0)$ is a solution to (1) if and only if $\text{char}(F) = 5$.

(b) In the course of proving Theorem 1, we may assume without loss of generality that $\text{char}(F) \neq 5$. In particular, we may assume that E/F is separable.

(c) In order to prove Theorem 1, it suffices to show that the system (1) has a non-trivial solution in F (or equivalently, X has an F-point).

Proof. (a) If $x_0 = 1$ and $x_1 = \cdots = x_4 = 0$, then $a = 1$, and
\[
\det(t \cdot 1_F - a) = (t - 1)^5 = t^5 - 5t^4 + 10t^3 - 10t^2 + 5t - 1,
\]
so $c_1 = -5$ and $c_3 = -10$. Thus $c_1 = c_3 = 0$ if and only if $\text{char}(F) = 5$.

(b) An easy application of the Jacobian criterion, shows that the surface X is smooth whenever $\text{char}(k) \neq 3$; see [8, Lemma 1.2].

Assume $\text{char}(F) = 5$. By part (a), $(1 : 0 : \cdots : 0)$ is an F-point of X. Consequently, by [11, Theorem 1.1], X is unirational over F. Since F is an infinite field (recall that we are assuming that F contains an algebraically closed field), this tells us that F-points are dense in X. In particular, there is an F-point on X, other than $(1 : 0 : 0 : 0 : 0)$, as desired.

(c) By part (b), we may assume that $\text{char}(k) \neq 5$. By part (a), $(1 : 0 : 0 : 0 : 0)$ is not a solution to (1). Thus any solution gives rise to $a = x_0 + x_1z + \ldots + x_4z^4 \in E$ whose minimal polynomial has the desired form. \square

3. Preliminaries on Galois cohomology and essential dimension

In this section we give a brief summary of the background material on Galois cohomology and essential dimension, which will be used in the sequel. For details we refer the reader to [17, 18, Chapter I], [5], and [15].

- Let G be a smooth algebraic group over k and F be a field. The Galois cohomology set $H^1(F, G)$ is in a natural bijective correspondence with isomorphism classes of G-torsors $T \to \text{Spec}(F)$. The class of the split torsor $G \times_{\text{Spec}(k)} \text{Spec}(F) \to \text{Spec}(F)$ is usually denoted by $1 \in H^1(F, G)$.

- In the case where G is the symmetric group S_n (viewed as a constant finite group over k), the Galois cohomology set $H^1(F, S_n)$ is also in a natural bijective correspondence with isomorphism classes of n-dimensional étale algebras E/F. Recall that an étale algebra E is, by definition, is a direct product of the form $E = E_1 \times \ldots \times E_r$, where each E_i/F is a finite separable field extension.

- In particular, a separable field extension E/F of degree n gives rise to a class in $H^1(F, S_n)$. This class lies in the image of the natural map $H^1(F, G) \to H^1(F, S_n)$, for a subgroup G of S_n if and only if the Galois group of E/F is contained in G.

- Let E/F be a finite field extension, and $k \subset F$ be a subfield. We say that E/F descends to an intermediate extension $k \subset F_0 \subset F$ if $E = E_0 \otimes_{F_0} F$ for some field extension E_0/F_0. The essential dimension $\text{ed}(E/F)$ is the minimal transcendence degree $\text{trdeg}_k(F_0)$ such that E/F descends to F_0. This number depends on the base field k, which we assume to be fixed throughout.

- If G is an algebraic group over k, then the essential dimension $\text{ed}(\tau)$ of a G-torsor $\tau : T \to \text{Spec}(F)$ is defined in a similar manner. We say that τ descends to a subfield $F_0 \subset F$ if it lies in the image of the natural map $H^1(F_0, G) \to H^1(F, G)$. The essential dimension $\text{ed}(\tau)$ is the minimal transcendence degree of
structible extension

non-trivial finite field extension E/F

both parts of Lemma 3 and in Proposition 5.

Remark 6

Proof. (a) By [8, Proposition 2.2], our cubic surface X follows from (a).

towers of quadratic field extensions appear naturally; see, e.g., [1, Section 13.4].

Let $\text{Lemma 4}.$

has an E/F separable field extension E/F

apply (a) recursively. However, in view of Lemma 4, it suffices to prove the following.

Proposition 5.

For every separable field extension E/F of degree 5, there exists a constructible extension F'/F such that $\text{ed}(E'/F') \leq 1$. Here $E' = E \otimes_F F'$.

Remark 6. Since k is algebraically closed, it is easy to see that $\text{ed}(E/F) \geq 1$ for every non-trivial finite field extension E/F (with $E \neq F$). Thus ≤ 1 can be replaced by $= 1$ in both parts of Lemma 3 and in Proposition 5.

The term “constructible” is related to the classical theory of ruler and compass constructions, where towers of quadratic field extensions appear naturally; see, e.g., [1] Section 13.4.
5. Conclusion of the proof of the main theorem

In this section we will complete the proof of Theorem 1 by establishing Proposition 5. Let \(\alpha \) denote the class of the field extension \(E/F \) in \(H^1(F, S_5) \). Consider the exact sequence

\[
1 \rightarrow A_5 \rightarrow S_5 \xrightarrow{\text{sign}} \mathbb{Z}/2\mathbb{Z} \rightarrow 1,
\]
and the associated sequence

\[
H^1(F, A_5) \rightarrow H^1(F, S_5) \xrightarrow{D} H^1(F, \mathbb{Z}/2\mathbb{Z})
\]

of Galois cohomology sets; cf. [17, Section 5.5]. Here, as usual, \(A_5 \) denotes the alternating subgroup of \(S_5 \). (If \(\text{char}(F) \neq 2 \), \(D(\alpha) \) is just the discriminant of \(E/F \), viewed as an element of \(H^1(F, \mathbb{Z}/2\mathbb{Z}) \).)

Note that this reduction does not, by itself, allow us to conclude that \(\text{ed}(E/F) \leq 1 \). Indeed, \(\text{ed}(A_5) = 2 \), assuming \(\text{char}(k) \neq 2 \); see [2, Theorem 6.7]. We will need to pass to a further constructible extension \(F'/F \) in order to ensure that \(\text{ed}(E/F) \leq 1 \).

For notational simplicity, we will continue to denote the class of \(E/F \) in \(H^1(F, A_5) \) by \(\alpha \). Since \(k \) is algebraically closed, \(A_5 \) can be embedded in \(\text{PGL}_2(k) \); see [16, p.19-04].

Let us now consider the commutative diagram

\[
\begin{array}{cccccc}
1 & \rightarrow & G_m & \rightarrow & \text{GL}_2 & \rightarrow & \text{PGL}_2 & \rightarrow & 1 \\
1 & \rightarrow & G_m & \rightarrow & G & \rightarrow & A_5 & \rightarrow & 1 \\
\end{array}
\]

of algebraic groups over \(k \), where \(G \) is the preimage of \(A_5 \) in \(\text{GL}_2 \). This diagram induces a commutative diagram

\[
\begin{array}{ccc}
H^1(F, \text{PGL}_2) & \xrightarrow{\delta} & H^2(F, G_m) \\
\downarrow & & \downarrow \\
H^1(F, G) & \xrightarrow{\pi_F} & H^1(F, A_5) & \xrightarrow{\delta} & H^2(F, G_m) \\
\end{array}
\]

of Galois cohomology sets, where the bottom row is exact; cf. [17, Section 5.5]. Here \(\delta \) denotes the connecting map. The class of \(\delta(\alpha) \) is represented by a quaternion algebra over \(F \). This algebra can be split by a quadratic extension \(F'/F \). After replacing \(F \) by \(F' \), we may assume that \(\delta(\alpha) = 0 \). Equivalently, \(\alpha = \pi_F(\beta) \) for some \(\beta \in H^1(F, G) \).

Since \(\dim(G) = 1 \) and the natural 2-dimensional representation of \(G \) is generically free (i.e., the stabilizer of a general point in trivial), one readily concludes that \(\text{ed}(G) = 1 \); see [6, Proposition 2.4]. Consequently, \(\text{ed}(\beta) \leq 1 \) and thus \(\text{ed}(\alpha) \leq 1 \). This completes the proof of Proposition 5 and thus of Theorem 1. \(\square \)

Remark 7. The condition on \(F \) in Theorem 1 can be weakened slightly: our argument goes through, with only minor changes, under the assumption that \(F \) is a \(p \)-field for some

\(^2\)In the case where \(\text{char}(k) \neq 2, 3 \) or 5, see also [4, Proposition 1.1(3)].
prime $p \neq 3$ (not necessarily algebraically closed). Recall that a field k is called a p-field if $[l : k]$ is a power of p for every finite field extension l/k; see [14, Definition 4.1.11].

Remark 8. Proposition 5 fails for separable field extensions of degree $n \geq 6$. In fact, if E/F is a general extension of degree n, then for any constructible extension F'/F,

$$\operatorname{ed}(E'/F') \geq \operatorname{ed}(S_n; 3) = \left\lfloor \frac{n}{3} \right\rfloor.$$

Here $\operatorname{ed}(S_n; 3)$ denotes the essential dimension of S_n at 3, $\left\lfloor \frac{n}{3} \right\rfloor$ denotes the integer part of $\frac{n}{3}$, and we are assuming that $\operatorname{char}(k) \neq 3$; see [13, Corollary 4.2].

Remark 9. Generalizing Hermite’s theorem to field extensions of degree $n \geq 6$ is an interesting and largely open problem. The only known positive result in this direction is the classical theorem of Joubert [10] for $n = 6$. There are also negative results for some n. For an overview, see [3].

REFERENCES

[1] M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. MR1129886
[2] J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159–179. MR1457337
[3] M. Brassil and Z. Reichstein, The Hermite-Joubert problem over p-closed fields, in Algebraic groups: structure and actions, 31–51, Proc. Sympos. Pure Math., 94, Amer. Math. Soc., Providence, RI, 2017. MR3645067
[4] A. Beauville, Finite subgroups of $\operatorname{PGL}_2(K)$, in Vector bundles and complex geometry, 23–29, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010. MR2681719
[5] G. Berhuy and G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330. MR2029168
[6] G. Berhuy and G. Favi, Essential dimension of cubics, J. Algebra 278 (2004), no. 1, 199–216. MR2068074
[7] D. F. Coray, Algebraic points on cubic hypersurfaces, Acta Arith. 30 (1976), 267–296. MR0429731
[8] D. F. Coray, Cubic hypersurfaces and a result of Hermite, Duke Math. J. 54 (1987), 657–670. MR0899410
[9] C. Hermite, Sur l’invariant du dix-huitième ordre des formes du cinquième degré, J. Crelle 59 (1861), 304-305.
[10] P. Joubert, Sur l’équation du sixième degré, C.-R. Acad. Sc. Paris 64 (1867), 1025-1029.
[11] J. Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), no. 3, 467–476. MR1956057
[12] H. Kraft, A result of Hermite and equations of degree 5 and 6, J. Algebra 297 (2006), 234–253. MR2206857
[13] A. Meyer and Z. Reichstein, The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra Number Theory 3, no. 4 (2009), 467–487.
[14] A. Päster, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, 217, Cambridge Univ. Press, Cambridge, 1995. MR1366652 (97c:11046)
[15] Z. Reichstein, Essential dimension, in Proceedings of the International Congress of Mathematicians. Volume II, 162–188, Hindustan Book Agency, New Delhi. MR2827790
[16] J.-P. Serre, Extensions icosahédriques, in Seminar on Number Theory, 1979–1980 (French), Exp. 19, 7 pp, Univ. Bordeaux I, Talence. MR0604216
[17] J.-P. Serre, Galois cohomology, translated from the French by Patrick Ion and revised by the author, Springer, Berlin, 1997. MR1466966

3Some authors use the terms “p-closed field” or ”p-special field” in place of ”p-field”.

[18] J.-P. Serre, Cohomological invariants, Witt invariants, and trace forms, notes by Skip Garibaldi, in *Cohomological invariants in Galois cohomology*, 1–100, Univ. Lecture Ser., 28, Amer. Math. Soc., Providence, RI. MR1999384

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

E-mail address: mbrassil@math.ubc.ca, reichst@math.ubc.ca