Iterative MapReduce for Large Scale Machine Learning

Joshua Rosen, Neoklis Polyzotis
University of California, Santa Cruz

Vinayak Borkar, Yingyi Bu, Michael J. Carey
University of California, Irvine

Markus Weimer, Tyson Condie, Raghu Ramakrishnan
Yahoo! Research

ABSTRACT
Large datasets (“Big Data”) are becoming ubiquitous because the potential value in deriving insights from data, across a wide range of business and scientific applications, is increasingly recognized. The data growth has been accompanied by rapid adoption of large, elastic, multi-tenant computing clusters (“compute clouds”), leading to a virtuous cycle: the scalability of cloud computing makes it possible to analyze ever larger datasets, and the proliferation of Big Data leads to further adoption of cloud computing. In particular, machine learning—one of the foundational disciplines for data analysis, summarization and inference—on Big Data has become routine at most organizations that operate large clouds, usually based on systems such as Hadoop that support the MapReduce programming paradigm. It is now widely recognized that while MapReduce is highly scalable, it suffers from a critical weakness for machine learning: it does not support iteration. Consequently, one has to program around this limitation, leading to fragile, inefficient code. Further, reliance on the programmer is inherently flawed in a multi-tenant cloud environment, since the programmer does not have visibility into the state of the system when his or her program executes. Prior work has sought to address this problem by either developing specialized systems aimed at stylized applications, or by augmenting MapReduce with ad hoc support for saving state across iterations (driven by an external loop). In this paper, we advocate support for looping as a first-class programming abstraction, and propose an extension of the MapReduce programming paradigm called Iterative MapReduce. We then develop an optimizer for a class of Iterative MapReduce programs that cover most machine learning techniques, provide theoretical justifications for the key optimization steps, and empirically demonstrate that system-optimized programs for significant machine learning tasks are competitive with state-of-the-art specialized solutions.

General Terms
Systems, Machine Learning

1. INTRODUCTION
The volume of data is skyrocketing as organizations recognize the potential value of data-driven approaches to optimizing every aspect of their operation, and scientific disciplines ranging from astronomy to zoology become increasingly data-centric in everything from hypothesis formulation to theory validation. Large scale analytics are a key to deriving insight from this deluge of data, and machine learning (ML) is now established as a foundational discipline that is ever more valuable as datasets grow larger [1]. For example, by analyzing billions of transactions, credit-card companies are able to quickly identify stolen credit card; insurance companies derive can flag claims for possible fraud. Supermarkets derive promotions based on consumer purchases. The sheer size of today’s data sets far exceeds the capacity of a single machine. Big Data analytics platforms based on the MapReduce paradigm, such as Hadoop, have enabled statistical queries over large data, and many ML algorithms can be cast in terms of these queries [9, 7]. However, MapReduce fails to recognize the iterative nature of most ML algorithms, and due to this unfortunate omission, while ML computations can be expressed using MapReduce, execution overheads are significantly higher than in Message Passing Interface or algorithm-specific implementations (e.g. [14, 13]).

Failing to recognize iteration as a first class programming abstraction is a step backwards, as it forces the programmer to make systems-level decisions. For example, in Spark [15] the programmer has to decide what data to cache in distributed main memory. This approach is ill-suited for large, multi-tenant clusters such as public clouds where important performance-related parameters change constantly and in a way that is hard for a programmer to track. In addressing this challenge, we draw our inspiration from database systems, where the level of abstraction introduced by the relational model freed users from low-level systems considerations, and opened the door to DBMS-driven optimization.

In this paper, we present extend the MapReduce paradigm with support for iteration, and present a principled framework for optimizing the runtime of systems such as Hadoop to efficiently support Iterative MapReduce programs. To this end, we make the following contributions:

1. Iterative MapReduce: We formalize the Iterative MapReduce programming model, and describe how many recent proposals to support ML over Big Data
can be expressed readily in this model. (Section 2)

2. Runtime: We present a new runtime for Iterative MapReduce. (Section 4)

3. Optimizer: We develop an optimizer that picks a good runtime plan when given data, program and cluster parameters. In particular, we consider two key choices: the partitioning strategy for the training data, and the structure of the aggregation that is applied to the intermediate statistics produced by the computation. We argue that these are the only tunable knobs since the computation itself (the logic of the Map and Reduce steps) is opaque, and present a theoretical foundation for our optimizer. (Section 6)

4. Empirical study: We empirically validate both our optimizer and our runtime, the latter by demonstrating that it can outperform a state of the art system, VW [1]. (Section 6)

2. ITERATIVE MAPREDUCE

2.1 Background: MapReduce

MapReduce is a functional programming model that splits the traditional group-by-aggregation computation into two steps: map and reduce [6]. The (user-specified, opaque) map step is responsible for transforming the input into key-value record pairs. The key identifies the group to which the value belongs; all values associated with the same key are grouped together. The (also user-specified and opaque) reduce step is then used to process each group and produce the final result. The computation associated with the reduce step is commonly an aggregate function (e.g., sum, max, mean, etc.), which produces a scalar value for each group.

The MapReduce programming model has been used to implement many higher-level programming abstractions. Pig Latin [11] and Hive [6] both provide a SQL layer with some notable extensions (e.g., correlated sub-queries) on top of the Hadoop MapReduce runtime. Such higher-level abstractions allow programmers to express their computations in a form that is closer to an intended target domain (e.g., data analytics). In our work, we have built a higher-level abstraction for machine learning using MapReduce called ScalOps [12], which is a Scala domain-specific language (DSL) that uses Pig Latin like syntax.

2.2 Iterative MapReduce

Many machine learning algorithms can be expressed as iterative procedures refining the model, given training data. More to the point, the body of these iterations can be expressed solely in terms of statistical queries [9] over the training data such as min, max, mean and sum; these queries can be naturally computed in MapReduce. This insight was used by Chu et al. [7] to express effective parallel versions of several machine learning algorithms (e.g., backpropagation in neural networks, EM, logistic regression, linear SVMs, PCA) relying only on sums over functions applied to the data.

Inspired by these earlier results and building on our own work towards a more general programming interface for cloud-based Big Data analysis [13, 12], we introduce an extension of the MapReduce programming paradigm, called Iterative MapReduce, that supports iteration as a fundamental construct. Iterative MapReduce is defined in terms of a collection of operators that can be composed to create dataflow programs. Each Operator accepts an input and produces an output. Chaining operators therefore is the main composition method in Iterative MapReduce. The computation itself is expressed in these three key operators:

MapReduce: This operator has two inputs: the data set and side information that it makes available to the user defined map and reduce functions it hosts. The map function is applied to all records in the immutable input data and the reduce function is applied to aggregate the outputs of that process. We define reduce in the sense typically found in functional programming languages: It is a associative and cumulative function that accepts two inputs and reduces them to a single output. Section 4 looks at how we can parallelize this step over a cluster of machines.

Sequential: This operator accepts a single input, and produces a single output using the user defined function it hosts. Separating such code from the MapReduce operator allows us to ensure an associative and commutative reduce function.

Loop: This is a fundamental extension to the basic MapReduce paradigm. As in most programming languages, our Loop operator accepts three inputs: a body, a condition and an initializer. The body contains a chain of MapReduce and Sequential operators. The output of one forms the input of the next operator in this chain. We require that the output of the last operator is valid input to both the loop condition (see below) and the first operator of the chain. The condition accepts the loop body’s output as input and returns a boolean value indicating whether the loop should terminate, while the initializer is used to provide an initial input for the loop body.

Many programs can be expressed using these three operators. Trivially, they facilitate the construction of loops over sequential code. More importantly, they allow us to write iterative ML algorithms without recourse to external mechanisms (in particular, without using a top-level driver that invokes MapReduce within a loop, but is not visible to the MapReduce system). To express most iterative ML algorithms, the loop body would consist of a single MapReduce operator that computes the relevant statistics, using the current model state as an input. This would be followed by a Sequential operator that updates the model.

While we discuss this special case extensively due to its importance in the machine learning domain, we note that the Iterative MapReduce programming model is in fact more general, and supports loops over multiple MapReduce operators as well as loops over any sequence of MapReduce and Sequential operators. This, for example, allows facilitates the native expression of optimization algorithms that probe multiple possible gradient step sizes.
The situation for the important special case is depicted in Figure 1 from a data-flow perspective. The arrows indicate control flow, which carry data from one step to the next. The Loop operator drives each iteration, until some stopping condition is met. It is also responsible for producing the initial model. In a single iteration, the MapReduce operator accepts the current model and uses it to process the training data, and produce an aggregate statistic. The Sequential step uses the aggregate statistic to update the model, before returning control to the Loop for a (possible) subsequent iteration.

While we are not the first to recognize the need for supporting iteration in MapReduce, we are the first to explore the consequences of adding iteration as a fundamental construct in the MapReduce system, and in particular to demonstrate the opportunities for system-driven program optimization. Prior work is focused on assembling ML algorithms within a specialized runtime targeted at specific applications, or invoking a general purpose MapReduce engine. In contrast, we have developed the Iterative MapReduce programming model with ML-style programs in mind (the Loop operator is especially noteworthy), and (in Section 3) develop an optimizer that can translate a broad class of programs in this model (covering most ML programs) to an efficient runtime execution plan for an arbitrary cluster environment. The systems-driven optimization enabled by our approach is especially valuable in multi-tenanted and elastic cloud systems, whose rapidly changing resource availability makes it difficult if not impossible for programmers to manually configure their programs effectively.

3. RELATED WORK
In translating programs from our programming model to efficient runtime plans, we seek to exploit optimizations discovered in prior work, which we review in this section.

Hadoop [3] is the dominant Open Source Software implementation that supports the MapReduce programming model [8]. A Hadoop job executes a single MapReduce iteration. The input and output of the job is stored in a distributed filesystem (HDFS). A job consists of a map and reduce step, which are parallelized over many tasks. Hadoop tries to schedule map tasks on machines that host the input data, so the number of map tasks is data dependent. The number of reduce tasks is a job parameter, set by the programmer. The intermediate data produced by the map tasks and consumed by the reduce tasks is managed by the Hadoop runtime, which uses a sort-based implementation to perform the group-by operation. The Hadoop API also exposes a “combiner” function that supports pre-aggregation of this intermediate data. Hadoop does not have support for a loop step. Instead, an external driver must implement such a step by repeatedly submitting jobs to the Hadoop runtime. Each job executes in isolation and any information produced by the previous job is fed to the new job through back channels (i.e., the HDFS file system). Lastly, the training data must be re-read from its source (i.e., HDFS), forgoing the benefits of caching.

HaLoop [6] exposes an application programming interface that supports iterations in Hadoop MapReduce. The extension adds a loop control module to the Hadoop master node that repeatedly spawns new jobs based on a loop body, until some stopping condition is met. HaLoop also adds cache aware scheduler to Hadoop that colocates map tasks with the reduce task that produces its input.

MPI Launchers (e.g., [14]) address the need for an explicit loop step, and by doing so, avoid the scheduling overheads observed in Hadoop. Pregel [10] and Giraph [2] are two recent runtimes that support a message passing interface (MPI) programming model. Both systems expose an API for loading and caching input data. The map step is automatically fed the output of the prior iteration, usually in the form of messages. The reduce step is supported by global “aggregators.”

Worker-Aggregator [13] defined by Weimer et al., is a distributed main memory implementation that uses a flat aggregation hierarchy with a single aggregator task with direct network connections. The system outperforms Hadoop by an order of magnitude on a stochastic gradient descent (SGD) algorithm. This speedup is in line with earlier MPI results [14]. The authors point to a rather unorthodox handling of failures: As the algorithm evaluated (SGD) is inherently stochastic in its data access, machine failures can simply be ignored, as long as they occur independently of the data stored on those machines.

Vowpal Wabbit (VW) [1] is a scalable machine learning system that integrates the machine learning algorithm(s) into the runtime. The system includes a Hadoop-aware version of the allreduce function found in MPI. The system is highly optimized for fast iterations. A cache aware data format is used to speed up the map step, and a binary aggregation tree is a key optimization used to speed up the reduce step. Task re-scheduling is avoided between iterations and communication happens via direct network connections. The authors observe an order of magnitude speedup when comparing with stock Hadoop.

Spark [15] is a runtime built on a data abstraction called resilient distributed datasets (RDDS) that reference immutable data collections. Spark also provides a domain-specific language (DSL) that consists of standard relational algebra transformations (select, project, join) and actions that perform global aggregation. Spark supports iterative algorithms that explicitly cache RDDS in-memory. Indeed, the Spark runtime is optimized for in-memory computation only. Spark has published speed-ups of $30\times$ over stock Hadoop.
3.1 Discussion

Many of the approaches described above claim order of magnitude speedups over stock Hadoop when performing Iterative MapReduce. These runtimes share several characteristics in order to accomplish this goal. They avoid rescheduling of machines between iterations, cache partitioned data between iterations, and use more powerful forms of aggregation between map and reduce steps. However, these improvements have not been cast in a form that can be exploited on an arbitrary cluster environment. To do so requires us to capture all significant aspects of the computation including iteration in the programming model; develop a formalization of the plan space, including a definition of runtime operations and key parameters such as partition width and aggregation tree fan-in, in order to reason about alternative equivalent execution plans; and to build an optimizer that can evaluate the cost of these alternative plans and choose a good plan. We have already introduced the Iterative MapReduce programming model, which captures iteration; next, we will build on this to formalize the space of equivalent runtime plans for a given program. After that, we describe the optimizer in Section 5.

4. PHYSICAL PLAN

This section presents the physical plans that execute our Iterative MapReduce programming model on a cluster of machines. For concreteness, we consider the Iterative MapReduce dataflow shown in Figure 1 and discuss a plan template for it: the space of equivalent plans is realized by instantiating this template with different plan parameter values. Our implementation uses the Hyracks runtime [5], and a plan consists of dataflow processing elements, or Hyracks operators, that execute in the Hyracks runtime. Hyracks splits each Hyracks operator into multiple tasks that execute in parallel on a distributed set of machines. Similar to Hadoop, each task operates on a single partition of the input data. In Section 4.1, we describe the structure of the physical plan template and discuss its tunable parameters. Section 4.2 then explores the space of choices that can be made when executing this physical plan on an arbitrary cluster with given resources and input data.

4.1 Iterative MapReduce Physical Plan

Figure 2 depicts the physical plan template for the Iterative MapReduce dataflow in Figure 1 as two data-flows. The top dataflow loads the input data from HDFS, parses it into an internal representation (e.g., binary formatted features), and partitions it over N cluster machines. The bottom dataflow executes the computation associated with a Loop operator. The Driver of the loop (observe that this is now controlled by the system, which is now aware of the entire program including the iteration!) is responsible for seeding the initial global model stored in HDFS. The Driver detects this update, and applies the loop condition to the new model to determine if another iteration should be performed.

This description of the plan template highlights two choices to be determined by the optimizer—the number of nodes allocated for the map phase of the computation, and the fan-in of the aggregation tree for the reduce phase. The structure of the plan template comes from consideration of the structure of the dataflow in Figure 1 and the justification for the focus on these two optimizer choices will be presented next.

4.2 The Plan Space

There are several considerations that must be taken into account when mapping the physical plan in Figure 2 to an actual cluster of machines. Many of these considerations are well-established techniques for executing data-parallel operators on a cluster of machines, and are largely independent of the resources available and the program/dataset to be optimized. We begin by discussing these “universal” optimizations for arriving at an execution plan. Next, we examine those choices that are dependent on the cluster configuration (i.e., amount of resources) and computation parameters (i.e., input data and aggregate value sizes). These are the choices an optimizer must make for a given program and input dataset in the context of a given cluster and current workload.

4.2.1 Universal Optimizations

Data-local scheduling is generally considered an optimal choice for executing a dataflow of operators in a cluster environment: a map task is therefore scheduled on the machine that hosts its input data. Loop-aware scheduling ensures that the task state is preserved across iterations. Note that this is not the same as blocking machines, as is done in VW [1]. Rather, we want to avoid costly re-optimization per-iteration, taking advantage of the similarity between iterations. Caching of immutable data can offer significant speed-ups between iterations. However, careful considera-
tion is required when the available resources do not allow for such caching. For example, it is assumed in \cite{15} that sufficient main memory is always available to cache the data to be saved across iterations, and performance degrades rapidly when this assumption does not hold. Efficient data serialization can offer significant performance improvements. We use a binary formatted file, which has substantial benefits in terms of space and time over simple Java objects, to store our cached records.

4.2.2 Per-Program Optimizer Decisions
The optimizations discussed in Section 4.2.1 apply equally to all jobs and can be considered best practices inspired by the best-performing systems in the literature. This leaves us with two optimization decisions that are dependent on the cluster and computation parameters; we discuss them below. In the next section, we develop a theoretical foundation for an optimizer that can make these choices effectively.

Data partitioning determines the number of map tasks in an Iterative MapReduce physical plan. For a given job and a maximum number of machines available to it, the optimizer needs to decide which number of machines to request for the job. The decision is trivial, even ignoring the multi-job nature of today’s clusters: More machines reduce the time in the map phase but increase the cost of the reduce phase, since more objects need to be aggregated. The goal of data partitioning is to find the right trade-off between map and reduce costs.

Aggregation tree structure involves finding the optimal fan-in of a single reduce node in a balanced aggregation tree. Aggregation trees are commonly used to parallelize the reduce function. For example, Hadoop uses a combiner interface to perform a single level aggregation tree; and Vowpal Wabbit uses a binary aggregation tree. In the next section, we develop an optimizer to decide an optimal tree structure for a given job based on the fan-in of the aggregation nodes in the tree.

5. Runtime Optimization
After factoring out optimizations that are universal in nature, the optimizer needs to answer two crucial questions for a given job in a given shared cluster environment: (a) How many machines should we devote to the task? (b) What fan-in should we use for the aggregation tree phase? In answering these questions an optimizer can consider two different objectives: (a) Minimize the response time (wall-clock time) for the program. (b) Minimize the cost of the job. Here, we consider machine time as a proxy for cost. While many other metrics are conceivable in principle, public clouds such as Amazon EC2 have opted for machine time, which makes it the prime candidate for minimization.

Below, we present our theoretical findings for these questions for two cases. First, we show that the optimal fan-in of the aggregation tree is independent of both the cluster and the job. We use this result to design the optimal partitioning for two cases: (a) The per-record processing time is independent of the number of machines used; this is the case for systems where either all records are read from disk (e.g., Hadoop) or all records are held in distributed main memory (e.g., Spark). (b) Caching influences the time to access/process a record, which is at the heart of Iterative MapReduce optimization.

As before, we consider the following simple program expressible in our programming model: A Loop containing a single MapReduce operator followed by a Sequential operator. The time spent in the Sequential operator and the iteration control are small relative to the time spent on MapReduce, hence the optimizer needs only to consider the time spent inside MapReduce operator.

We assume that both our network and computation behave linearly: If we invoke a UDF twice as often, we assume that it will take twice as long. We assume that data transmission to/from a machine behaves linearly. When a machine sends or receives data it does so sequentially. Both of these assumptions can be violated in real world clusters under extreme load. However, they represent the behavior within the optimal load region of the cluster.

These assumptions allow us to use the notation found in Table 1 to express our model for both the iteration time and cost. M, P and D can be measured for a given cluster and job and R is known for a job.

Lastly, we assume both the cost and the computational time of the MapReduce operator to be comprised additively of the cost (time) of the map phase and the cost (time) of the reduce phase. Hence, we state:

\[
T(N, f) = T_A(N, f) + T_M(N)
\]
\[
C(N, f) = C_A(N, f) + C_M(N)
\]

As already stated in the equation, we assume the aggregation time T_A and cost C_A to depend on both the fan-in f and the number of machines used. The time T_M and cost C_M to map, on the other hand, solely depend on the number of machines used. Intuitively, more machines introduce greater parallelism but at the same time incur additional aggregation time and cost.

In the remainder of this section, we present theoretically optimal choices for the fan-in f and the number of machines N to be used, starting with the fan-in.

5.1 Optimal Aggregation Tree Fan-In

Theorem 1. The fan-in of the fastest aggregation tree is:

\[
f^* = e
\]

Proof. The time it takes to aggregate N inputs in an aggregation tree of fan-in f can be phrased as:

\[
T_A(N, f) = Afh(N, f)
\]
where \(h(N, f) \) is the number of levels in the tree. Aggregation happens in parallel at each level. Hence, the time per level is the time spent in a single aggregation node, \(A_f \). The height of a tree with \(N \) leaf nodes and arity \(f \) is \(h(N, f) = \log f n = \ln N / \ln f \). Hence, we arrive at:

\[
\hat{f} = \arg\min_f \left(A \ln(N) \frac{f}{\ln f} \right) = e
\]

\[\square\]

Corollary 1. The minimal time process \(N \) inputs in a balanced aggregation tree is:

\[
\hat{T}_A(N) = A e \ln(N)
\]

Intuition: The independence of the number of inputs is easy to see: the difference between the optimal aggregation tree for a small vs. large number of leaf nodes is sheer scaling, a process for which the arity of the tree does not change. The independence of the transfer and aggregation time \(A \) is similarly intuitive, as the time spent per aggregation tree level and the number of levels balance each other out.

Now we consider cost-optimal aggregation trees. First, we discuss the static case where the MapReduce operator is not part of a Loop.

Theorem 2. The cost-optimal fan-in for the reduce phase of a MapReduce operator is \(N \).

Proof. Decreasing the fan-in below \(N \) introduces additional aggregation work and doing so does not decrease the computational cost of the reduce operation. \(\square \)

Consider the case where the MapReduce operator is part of a Loop: All machines used need to wait while the aggregation is running, as it is a blocking operation.

Theorem 3. The cost-optimal fan-in for the reduce phase of a MapReduce operator inside of a Loop is \(e \).

Proof. While the aggregation tree is running, the \(N \) map machines are idle. The number of inner nodes in the tree is \(\frac{N - 1}{f - 1} \), which means that the cost of the idling machines always trumps the cost of the aggregation machines. Hence, the fastest aggregation tree is also cost-optimal. \(\square \)

The above establishes that neither the time nor the cost of an iteration depend on the fan-in \(f \), as we can replace it with its respective optimal choice of \(e \) or \(N \). Hence, we can refine our cost and time model to be solely dependent on the number of machines used \(N \):

\[
\begin{align*}
T(N) &= T_A(N) + T_M(N) \\
C(N) &= C_A(N) + C_M(N)
\end{align*}
\]

5.2. **Optimal Partitioning**

We use this model to study the optimal choice for \(N \). In Iterative MapReduce, this choice is complicated by caching effects when compared to MapReduce: Our physical plan makes sure that as much of the training data stays available in main memory of the machines as possible, which speeds up all but the first iteration. However, it is neither guaranteed that all data can fit into the aggregate main memory of a cluster, nor that that solution is optimal in terms of response time or cost. Thus, an optimizer must consider these two distinct possibilities: (a) the optimal \(N \) is the one where all data fits into the collective main memory, that is \(R \leq MN \). (b) Some of the data is spilled to disk, \(R > MN \).

5.2.1 Response Time Minimization

Theorem 4. Let \(R \leq MN \). The time-optimal number of machines for the map phase of a MapReduce operator is:

\[
\hat{N} = \frac{RP}{Ae}
\]

Proof. The map phase is perfectly parallel. Hence, the total processing time is given by:

\[
T(n) = \frac{R}{N} P + Ae \ln(N)
\]

This is minimized for

\[
\hat{N} = \arg\min_N \left(\frac{R}{N} P + Ae \ln(N) \right) = \arg\min_N \left(\frac{W}{N} + \ln(N) \right)
\]

where \(W = \frac{RP}{Ae} \). This is minimized when its first derivative \(\frac{N - W}{N^2} = 0 \), which the case for \(\hat{N} = W = \frac{RP}{Ae} \). \(\square \)

Theorem 5. For \(R > MN \), the time-optimal number of machines to be used for a MapReduce operator is:

\[
\hat{N} = \frac{RD + RP}{Ae}
\]

Proof. Processing all \(R \) input records takes \(RP \) time. \(R - MN \) records need to be fetched from disk, which incurs an additional delay of \((R - MN)D \). The total time for one iteration is thus given by:

\[
T_2(N) = eA \ln(N) + \frac{RD + RP}{N} - MD
\]

The constant \(MD \) does not affect the minimizer \(\hat{N}_2 \) which is given, similarly to the analysis above for the case with no spilling, for \(\hat{N}_2 = \frac{RD + RP}{Ae} \). \(\square \)

Our optimizer evaluates both \(T_1 \hat{N}_1 \) and \(T_2 \hat{N}_2 \) and chooses the lower one for the runtime plan.

The number of available machines in a cloud is essentially unbounded. At the very least, we can assume that the number of machines available exceeds the number of machines needed to cache all records of a given job. Hence, the legitimate question arises whether such an in-memory solution can ever be slower than a solution using secondary memory. Below, we study this question.
Hence, Equation 5.2.1 indicates that when an aggregator in receiving all its input aggregate objects, one machine must be cheaper than the time spent by Intuitively, this means that processing all in-memory records distributed main memory separately.

Also for spilling to be necessary we know $R > M\bar{N}_2$:

$$R > M \frac{R(D + P)}{Ae}$$

$$MD < Ae - MP$$

$$Ae \ln \frac{D + P}{P} < Ae - MP$$

Hence, we arrive at:

$$\ln \frac{D + P}{P} < 1 - \frac{MP}{Ae}$$

The above inequality has solutions only when $\frac{MP}{Ae} \in (0, 1)$. Intuitively, this means that processing all in-memory records in, one machine must be cheaper than the time spent by an aggregator in receiving all its input aggregate objects. Hence, Equation 5.2.1 indicates that when

$$\frac{D}{P} \in (0, e^{1 - \frac{MP}{Ae}} - 1)$$

allowing some I/O is better than using more machines to facilitate a completely in-memory map task. \(\square\)

5.2.2 Cost Minimization

As before, we define cost as the time the iteration takes times the number of machines used. Again, we need to consider the two cases for whether or not all data can be held in distributed main memory separately.

Theorem 7. With $R \leq MN$ the cost-minimizing number of machines to use in a MapReduce operator is:

$$\bar{N}_1 = \frac{R}{M}$$

Proof. Following the discussion above, the iteration cost is given by:

$$C_1(N) = eAN \ln(N) + RP$$

Where $eAN \ln(N)$ is the cost of the optimal aggregation tree in the Iterative MapReduce setting. This is minimized for $N = 0$. However, we know that $R \leq MN$. Hence $\bar{N}_1 = \frac{R}{M}$ is the minimizer within the domain of N. \(\square\)

Theorem 8. For $R < MN$ the cost-minimizing number of machines to use in a MapReduce operator is

$$\bar{N}_2 = e^{\frac{MD}{MP}}$$

Proof. The cost is given by the cost of the fastest aggregation tree plus the cost of the map phase:

$$C_2(N) = eAN \ln(N) - NMD + R(P + D)$$

This cost is minimized for:

$$\arg\min_N C_2(N) = \arg\min_N eAN \ln(N) = NMD$$

The first derivative of which is zero for $\bar{N}_2 = e^{\frac{MD}{MP}}$. The second derivative is positive, so we indeed have an optimum. \(\square\)

Our optimizer evaluates both $C_1\bar{N}_1$ and $C_2\bar{N}_2$ and chooses the lower one for the runtime plan.

6. EXPERIMENTAL EVALUATION

In this section, we present our experiments that evaluate the optimizer described in Section 5. We compare our approach to Vowpal Wabbit (VW) \[1\]: a state of the art machine learning system. Our goal here is to verify the theoretical foundation of our optimizer as it is encoded in Hyracks.\[2\]

We show that the time-optimal fan-in is indeed a constant, and independent of the aggregation time A or the number of CPUs N. We present empirical evidence showing that our static optimizer accurately predicts the optimal strategy.

6.1 Task

Before presenting the results, we first introduce the chosen task: computing gradients for the training of a large scale linear model. The goal of training a linear model can be formalized as:

$$\hat{w} = \arg\min_{\vec{w}} \sum_{(x,y) \in D} l((\vec{x}, \vec{w}), y)$$

where D is the set of tuples of data point x and label y. The loss function l measures the empirical loss (divergence) between the prediction (\hat{w}, \vec{x}) using the model \vec{w} and the true label y. In many cases, it is convex and differentiable in the prediction, and therefore in the model \vec{w}. Hence, the objective function \[1\] is amenable to convex optimization. More precisely, the objective function can be minimized using gradient descent methods. Such methods, at their core, perform iterative steps of the following form:

$$\hat{w}_{t+1} = \hat{w}_t - \eta \sum_{(x,y) \in D} \delta_{\text{all}} ((\vec{x}, \vec{w}_t), y)$$

Here, δ_{all} denotes the gradient with respect to the model \vec{w} and η the step size. The dominant cost in this is computing the gradients, which decomposes per tuple (\vec{x}, y). Hence, this task is amenable to MapReduce and the overall procedure to Iterative MapReduce.

Data Set: All experiments reported here were performed on a real-world dataset drawn from the advertisement domain. The data consists of 2,319,592,301 records whose feature vectors y are sparse, containing a total of 37,113,474,662 non-zero features. A textual representation of the data set in the format used by VW (see below) is 492 GB in size.

\[2\]Hyracks is available as Open Source Software: \[https://code.google.com/p/hyracks/\]
nodes N

An aggregation tree is independent of both the number of leaf nodes and the transfer and processing time per object A. To evaluate this claim, we constructed trees with varying fan-in over different numbers of leaf nodes aggregating different vector sizes. In Table 3, we report the minimum-time fan-in found for each combination. The results show the minimum fan-in is constant at either 4 or 5 in the vast majority of cases. Thus, the theoretical prediction that the fan-in is a constant, which we have empirically verified. However, the empirically found optimum differs from the theoretical prediction e. We attribute this deviation to effects not modeled in our theory. To be precise, the addition of an aggregation node adds a one-time (setup) cost to the system, which is amortized via the higher fan-in empirically.

6.4 Optimal Partitioning

We now evaluate the other theoretical result presented earlier: a prescription for the optimal number of machines to use for a given job. To create this scenario, we use only 1/5 of our total dataset, containing 463,925,403 records. This amount of data (roughly 100GB in text form) can fit into the main memory of a subset of our 120 CPUs. For the characteristics of our cluster as reported in Table 2, our optimizer picks N = N_{max} = 120 to minimize response time and N = 24 to minimize cost.

Figure 3 shows the average iteration times and costs over this dataset for different numbers of CPUs. All experiments use a fan-in of 4, as determined by the prior experiment. The results show that the response time is indeed minimized for N = 120, as predicted by our optimizer. Furthermore, N = 24 is the cost minimizing configuration for this job, again as predicted.

Table 2: Characteristics of the evaluated environment

Cluster: All experiments were conducted on a single rack of 30 machines in a Yahoo! Research Cluster. Each machine has 2 quad-core Intel Xeon E5420 processors, 16GB RAM, 1Gbps network interface card, and four 750GB drives configured as a JBOD, and runs RHEL 5.6. Thus, each machine can support 4 map tasks, leaving us with N_{max} = 120. The machines are connected to a top of rack Cisco 4948E switch. The connectivity between any pair of nodes in the cluster is 1Gbps. Table 2 shows the statistics of the dataset and task characteristics of our cluster as reported in Table 2, our optimizer picks N = N_{max} = 120 to minimize response time and N = 24 to minimize cost.

Symbol	Meaning	Value
R	total # records	2,319,592,901
N_{max}	Max # map tasks	120
M	# records cached per task	19,329,936
P	Map time per record	3.895 \times 10^{-6} s
D	Load time per record	W \times 10^{-6} s
A	Aggregation time per object	2.1 s

Table 3: Optimal fan-in for combinations of vector size and number of leaf nodes.

Size/N 2 4 8 16 32
------ -- -- -- -- --
1MB 8 5 4 5 4
2MB 5 3 5 5 5
4MB 5 4 4 4 4
8MB 5 4 5 5 3
16MB 5 4 5 5 3
32MB 5 5 5 5 3
64MB 4 4 5 5 5
128MB 8 3 5 5 5

Figure 3: Iteration time and cost using different numbers of CPUs

fan-in found for each combination. The results show the minimum fan-in is constant at either 4 or 5 in the vast majority of cases. Thus, the theoretical prediction that the fan-in is a constant, which we have empirically verified. However, the empirically found optimum differs from the theoretical prediction e. We attribute this deviation to effects not modeled in our theory. To be precise, the addition of an aggregation node adds a one-time (setup) cost to the system, which is amortized via the higher fan-in empirically.

6.4 Optimal Partitioning

We now evaluate the other theoretical result presented earlier: a prescription for the optimal number of machines to use for a given job. To create this scenario, we use only 1/5 of our total dataset, containing 463,925,403 records. This amount of data (roughly 100GB in text form) can fit into the main memory of a subset of our 120 CPUs. For the characteristics of our cluster as reported in Table 2, our optimizer picks N = N_{max} = 120 to minimize response time and N = 24 to minimize cost.

Figure 3 shows the average iteration times and costs over this dataset for different numbers of CPUs. All experiments use a fan-in of 4, as determined by the prior experiment. The results show that the response time is indeed minimized for N = 120, as predicted by our optimizer. Furthermore, N = 24 is the cost minimizing configuration for this job, again as predicted.
6.5 Discussion

Our runtime and optimizer is competitive with the current state of the art in large scale machine learning systems. This is especially noteworthy as it makes fewer assumptions than competing systems: It neither assumes enough resources to cache all data (like Spark), nor does it default to read all data from disk (like Hadoop). Additionally, all experimental findings were consistent with the theoretical findings presented above. In summary, our static optimizer was able to pick a good plan in all combinations we tested.

7. CONCLUSIONS

MapReduce does not support iteration, which is important for machine learning tasks that are being increasingly carried out on Big Data in large-scale “cloud” cluster environments. In this paper, we argued that the right way to support iteration is to fundamentally extend the MapReduce model with a looping construct, thereby allowing the system to reason about the entire program execution. We presented such an extension, called Iterative MapReduce. To illustrate the power of automatic database-style optimization, we considered a class of Iterative MapReduce programs that can readily express many ML tasks, and developed an optimizer that automatically instantiates an efficient execution plan, taking into account a broad range of optimizations including data-local and loop-aware scheduling, data caching, serialization costs, intelligent data partitioning and resource allocation, and auto-configuration of the aggregation-tree for the reduce phase. We presented theoretical justifications for the two key decisions made by the optimizer on a per-program basis, namely data partitioning/resource allocation and aggregation-tree configuration, and presented empirical results that demonstrate our plans to be competitive with a specialized state-of-the-art implementation.

Much remains to be done. The optimizer must be extended to cover the full range of Iterative MapReduce programs, and to take into account the likelihood of different kinds of failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. This is especially significant given failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. This is especially significant given failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. Much remains to be done. The optimizer must be extended to cover the full range of Iterative MapReduce programs, and to take into account the likelihood of different kinds of failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. This is especially significant given failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. Much remains to be done. The optimizer must be extended to cover the full range of Iterative MapReduce programs, and to take into account the likelihood of different kinds of failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs. This is especially significant given failures in a cost-based manner. A more comprehensive evaluation must be carried out to establish that optimizers can indeed be competitive with specialized state-of-the-art implementations for diverse ML problems. Nonetheless, our results are extremely encouraging in that they offer the promise of efficient system-driven optimization for a broad class of ML programs.

8. REFERENCES

[1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A reliable effective terascale linear learning system. CoRR, abs/1110.4198, 2011.
[2] Giraph: Open-source implementation of Pregel. http://incubator.apache.org/giraph/
[3] Hadoop: Open-source implementation of MapReduce. http://hadoop.apache.org/