Dopamine-Modified TiO2 Monolith-Assisted LDI MS Imaging for Simultaneous Localization of Small Metabolites and Lipids in Mouse Brain Tissue with Enhanced Detection Selectivity and Sensitivity

Qian Wu1,3, James L. Chu2, Stanislav S. Rubakhin1,3, Martha U. Gillette2,3, Jonathan V. Sweedler1,3

1 Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

2 Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

3 Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

Supplementary Information

Contents

Additional experimental details ... S-2
Figures S1–S12 .. S-4
Tables S1–S5. .. S-18
References. ... S-31
Additional experimental details

Tissue preparation and sectioning

In all cases, the rodent brains were surgically dissected, frozen in liquid nitrogen, and stored at −80 °C until use. Coronal tissue sections, 14-µm thick, were prepared from frozen mouse cerebrum using a cryostat (3050S, Leica Biosystems Inc., Buffalo Grove, IL) at −19 °C and thaw-mounted onto conductive indium-tin oxide (ITO)-coated glass slides (Delta Technologies, Loveland, CO).

While most samples were analyzed immediately following preparation, some sections were stored at −80 °C for later use. Optical images of the tissues were taken using a flatbed scanner (Epson Perfection V300, Epson America, Inc., Long Beach, CA) with a resolution of 2400 dpi before MSI. The optical images shown in Figure 3 were adjusted to aid in visualization of hippocampal structures using Adobe Photoshop 2014.

Materials characterization

UV-vis absorption spectra detection was performed on an EPOCH T M microplate spectrophotometer (Biotek Instruments, Inc., Winooski, VT) with a scanning range of 200–700 nm. TiO₂ nanoparticle sol solution at the concentration of 0.05 M was measured directly by adding 200 µL solutions into a standard 96-well plate.

Diffuse reflectance UV-vis spectrometry was performed on a Cary 5000 UV-Vis spectrophotometer (Agilent, Santa Clara, CA) with a wavelength scanning range of 200–700 nm. The same amounts of different TiO₂ materials were first coated on quartz slides (1" × 1", Ted Pella, Inc., Redding, CA) with an airbrush (Paasche Airbrush Company, Chicago, IL), and then the slides were used for detection, with bare quartz slides evaluated as blanks.

An environmental scanning electron microscope (ESEM) (Philips XL30 ESEM-FEG, FEI, Hillsboro, OR) was used to investigate the micro-morphology of the TiO₂ materials coated on tissue slices. Before ESEM detection, the samples were coated with gold for 1 min with a sputter coater (Desk-1 TSC, Denton Vacuum, Moorestown, NJ).

Laboratory-constructed system for MALDI matrix sublimation

Sublimation was carried out using a laboratory-constructed system, similar to one previously described, with some modifications. Briefly, an aluminum foil boat was affixed with double-sided conductive copper tape to the inner base of a sublimation chamber. Samples were attached to a copper plate affixed to the bottom face of an ice-filled cold finger. The MALDI matrix-to-sample distance was ~20 mm. For each sublimation deposition, 350 mg of powdered DHB was distributed evenly in the boat. The sublimation chamber and cold finger were assembled together per manufacturer’s instructions, pumped to intermediate vacuum (~10 mTorr), and placed in a heating mantle (Glas-Col LLC, Terre Haute, IN) to equilibrate the vacuum and cool the sample plate. The optimized deposition conditions for derivatized samples included supplying 120 V to the heating mantle for 12 min. After matrix deposition, the chamber was removed from the mantle, vented with room temperature air (25 °C), and the sample promptly removed from the cold finger.

Data analysis

The molecular ion distribution images of the tissue sections were visualized using flexImaging software 4.1 (Bruker Daltonics, Billerica, MA). MALDI MSI data acquired from triplicate or duplicate brain slices from the same mouse, thaw-mounted on three or two separate slides, were used in the statistical analysis.
For method development, samples from the same mouse were used with different sample preparation conditions on different slides.

In the method application experiments, optimized sample preparation conditions were used in the analysis of specimen from 8-month-old (young, n = 3) and 24-month-old (old, n = 4) mice. Slices from different animals were thaw-mounted on the same ITO slide. Statistical comparisons of peak intensities, areas, or S/Ns acquired from different brain regions of different animals, or samples from the same animal but prepared with different sample preparation conditions, were performed by exporting data from manually-defined regions of interest (ROIs). Mass spectra from each ROI were imported into ClinProTools software 3.0 (Bruker Daltonics) with automatic baseline subtraction and total ion count normalization, except for the data presented in Figure 3 and Figure S5. Peaks were picked with an S/N threshold greater than 3 on average spectra. Picked peak parameters were exported as m/z value-peak area tables. To analyze changes in the levels of molecular signals in different subregions of mouse brain, ROIs were chosen. ROIs were outlined using ion maps and optic images aligned to the appropriate Mouse Brain Atlas schematics (http://mouse.brain-map.org/static/atlas). Four ROIs were selected: the CA1, CA3, and dentate gyrus of the hippocampus region, and corpus callosum (shown in Figure 6A). The mass spectra acquired at chosen regions were imported into ClinProTools, set to pick the peaks with an S/N >3. Peak areas were calculated and exported creating a single data set. For the multivariate analysis (principal component analysis, (PCA)) presented in Figure 6, the dataset was imported into OriginPro 8.5 (OriginLab Corporation, Northampton, MA). The mean values of peak areas for signals acquired in selected ROIs were calculated, and the values of technical triplicates or duplicates were used to calculate the relative standard deviation of the replicate measurements. For comparison of the averaged peak areas acquired from different animal groups (old vs. young) described in Figure 5, two way analysis of variance (ANOVA) was performed with OriginPro 8.5 to determine the significance of age effect on compound intensity.
Figure S1. Dependence of TiO$_2$ particle morphology on (A) reaction time for further hydrolysis/condensation (A-1, 0 min; A-2, 10 min; A-3, 3 h; A-4, 12 h). (B) Relation between TiO$_2$ condensation time and relative peak area of intact lipid signals (red lines) and lipid fragment signals (blue lines) acquired from brain tissue. (C) Fragmentation of PE and structures of its fragments. n = 2; the p values of a Tukey test for all conditions are presented in Table S5; m/z 806.5 and m/z 852.6 were identified as [PE (38:4)+K]$^+$ and [PE(42:9)+K]$^+$, respectively, according to FTICR and TOF/TOF MS/MS spectra.
Figure S2. Representative mass spectra acquired from mouse brain tissues using different amounts of TiO\textsubscript{2} nanoparticles. No lipid signals were observed when using the TiO\textsubscript{2} nanoparticles. (top) 100 µg/cm2; (middle) 500 µg/cm2; (bottom) 2000 µg/cm2. The inset shows the enlarged spectra for m/z 300–800.

Figure S3. Effects of (A) nitric acid and (B) phosphate acid concentrations in TiO\textsubscript{2}-sub-micron particle-containing deposition solutions on intact lipid (red lines) and their fragment (blue and black lines) signals acquired with TiO\textsubscript{2}-assisted LDI (n = 2). The p values of a Tukey’s test for all conditions are listed in Table S3; m/z 806.5 and m/z 852.6 were identified as [PE(38:4)+K]+ and [PE(42:9)+K]+, respectively, according to FTICR and TOF/TOF MS/MS spectra.
Figure S4. UV-vis spectra of solutions of different bidentate binding ligands, TiO$_2$ nanoparticles, and bidentate binding ligand-modified TiO$_2$ nanoparticles.
Figure S5. Performance of different chemical modifications of TiO$_2$ sub-micron particles in LDI MS measurements of region I of the hippocampus proper area of the mouse brain. (A) Mass spectra acquired from modified TiO$_2$ sub-micron particle blank samples. (B) Relative peak area ratios of the intact lipid (m/z 844.5) compared to its fragments (m/z 141.0 and m/z 162.9) using the different modified particles. AL, alizarin; SA, salicylic acid; AA, ascorbic acid; DA, dopamine.
Figure S6. Time dependence of UV-vis absorption of TiO₂-DA particle suspensions. UV-vis absorption spectra of DA-modified TiO₂ with (A) different incubation times and (B) its UV absorbance kinetic curve at a wavelength of 355 nm.
Figure S7. Comparison of mass spectra from mouse brain tissue obtained using (blue) TiO$_2$ sub-micron particle-, (yellow) TiO$_2$-DA sub-micron particle-, and (light blue) TiO$_2$-DA monolith-assisted LDI, and mass spectra of blank samples with (dark blue) TiO$_2$ sub-micron particle- and (orange) TiO$_2$-DA monolith-assisted LDI.
Figure S8. Effect of water content in reaction solutions for further hydrolysis/condensation on TiO$_2$-DA structure morphology and TiO$_2$-DA materials-assisted LDI MSI measurements. (Left) Representative mass spectra acquired from mouse brain hemisphere sections coated with TiO2-DA materials generated in the presence of (A) 1%, (B) 2.5%, (C) 5%, and (D) 10% water in ethanol solution (reaction time is 60 min each). (Insets) SEM images of corresponding samples coated with TiO2-DA materials. (Right) Ion maps of representative lipid (m/z 844.5) distributions in the sections. Acquisitions were performed in the low spatial resolution mode with a 100-µm raster step size using settings producing a laser footprint ~100-µm in diameter.
Figure S9. Ratios of an intact lipid to its fragment peak areas as determined using different TiO$_2$-based LDI MS methods. The intact lipid (m/z 844.5) to fragment (m/z 141.0) ratios were calculated using data acquired from different subregions of mouse brain using LDI MS assisted with TiO$_2$ sub-micron particles (DA0), TiO$_2$-DA sub-micron particles (DA1), and TiO$_2$-DA monoliths (DA4). CA1, region I of hippocampus proper; CA3, region III of hippocampus proper; CC, corpus callosum.
Figure S10. Scanning electron microscopy image of the TiO2-DA monolith surface with low magnification (×5000).
Figure S11. Repeatability of the unmodified TiO$_2$ sub-micron particle (DA0)-, TiO$_2$-DA sub-micron particle (DA1)-, and TiO$_2$-DA monolith (DA4)-assisted LDI MS measurements. Histograms depict average peak S/Ns of different molecular signals: (A) m/z 100–500, (B) m/z 500–700, and (C) m/z 700–900, acquired from region I of hippocampus (CA1), region III of hippocampus (CA3), and corpus callosum (CC) of different animals prepared and analyzed in different weeks. Average peak S/Ns with standard deviation error bars calculated using data obtained from measurements of adjacent brain slice triplicates collected from the same animals. The slices were deposited on different ITO glass slides and coated with the TiO$_2$ materials. The relative standard deviations of the triplicate data acquired using TiO$_2$-DA monoliths are labeled on the corresponding bar graphs. Columns are positioned and boxed according to the week when samples were collected and analyzed.
Figure S12. MS/MS spectra of different endogenous compounds detected in mouse brain tissues during TiO2-DA monolith-assisted LDI MSI experiments. (A) PE, phosphatidylethanolamine; (B) PC, phosphatidylcholine; (C) M(IP)2C, mannose-(inositol-P)2-ceramide; (D) DAG, diacylglycerol; (E) Cer, ceramide; (F) docosahexaenoic acid; (G) proline-glutamate; (H) glutamate; (I) creatinine; (J) arecaidine.
Figure S13. Results of PCA and ANOVA statistical analyses of data acquired from old and young mice samples. (A) PCA score plots of the TiO$_2$-DA monolith-assisted LDI MSI dataset acquired from different cerebrum regions of young and old mice. (B) Statistical comparison of average peak areas of different identified molecules detected in brain samples of old and young mice. p values were calculated using two-way ANOVA for data sets representing different age groups (see details in Table S4). DG, dentate gyrus; CC, corpus callosum. ***, p value<0.001, **, p value<0.01, *, p value<0.05.
Figure S14. Loading plots of (top) PC1 and (bottom) PC2 of data collected from young and old mice samples using the optimized TiO$_2$-DA-assisted LDI method.
Table S1. Tukey test results for all of the data sets presented in Figure S1 and Figure S3.

Figure	X axis of two datasets	P values of two data sets determined by Tukey test					
		m/z 162.9	m/z 140.9	m/z 136.1	m/z 868.5	m/z 852.5	m/z 806.5
S1B	10 min–0 min	0.06076	0.0074	0.00674	0.5422	0.0285	0.99981
	3 h–0 min	0.05081	0.00253	0.00719	0.34371	0.15104	0.99797
	3 h–10 min	0.99961	0.50564	0.99997	0.98635	0.48654	0.99991
	12 h–0 min	0.19164	0.0024	0.00686	0.00151	1.62E-04	0.05736
	12 h–10 min	0.78256	0.46468	1	0.00378	0.00106	0.06669
	12 h–3 h	0.689	0.99998	0.99999	0.00511	4.82E-04	0.0757
	24 h–0 min	0.09771	0.00319	0.00637	0.0021	1.43E-04	0.0574
	24 h–10 min	0.98556	0.70089	0.99999	0.00559	8.84E-04	0.06674
	24 h–3 h	0.95422	0.99314	0.99969	0.00773	4.15E-04	0.07576
	24 h–12 h	0.95818	0.98526	0.99996	0.96667	0.99456	1
S3A	0.0025–0	0.99775	0.01929	0.81613	0.00272	0.12439	0.0153
	(concentration of HNO₃, M)						
	0.005–0	0.81737	0.02544	0.95645	5.36E-04	0.02467	0.00343
	0.005–0.0025	0.73214	0.97331	0.57233	0.02932	0.31235	0.13918
	0.01–0	0.47693	0.0052	0.6885	1.55E-04	0.01501	0.00131
	0.01–0.0025	0.40543	0.23175	0.31588	0.00199	0.15026	0.0201
	0.01–0.005	0.89054	0.15635	0.91174	0.02238	0.86676	0.20685
S3B	0.005–0	0.95288	0.18956	0.29412	0.33198	0.38204	0.27629
	(concentration of H₃PO₄, M)						
	0.01–0	0.08448	0.0992	0.09113	0.03231	0.05654	0.07972
	0.01–0.005	0.10514	0.7225	0.43322	0.09655	0.18038	0.38979
Table S2. Peak list collected from averaged mass spectra acquired from mouse brain tissues and corresponding blanks using TiO₂ sub-micron particle-, TiO₂-DA sub-micron particle-, and TiO₂-DA monolith-assisted LDI MS.

m/z	TiO₂ sub-micron particles	TiO₂-DA sub-micron particles	TiO₂-DA monolith	Analyte identity	Molecular mass error (Δppm)	TiO₂ sub-micron particles	TiO₂-DA sub-micron particles/monolith
104.26	1.135	1.642	1.668				
109.08	3.944	4.231	7.517				
111.15	1.954	0.742	0.325				
113.02	5.818	20.998	51.533				
115.01	1.905	8.061	22.988	*	*		
117.01	0.358	0.899	2.216				
121.07	1.362	0.928	1.525				
123.12	-	-	-				
125.01	11.659	10.706	20.918	*			
126.92	-	-	-				
127.01	0.735	0.577	0.912				
136.11	0.365	0.689	1.799				
137.102	-	-	-				
138.96	0.502	0.382	0.668				
140.95	12.574	15.461	35.571				
142.08	0.345	0.216	0.339				
142.94	1.615	1.809	3.709				
143.895	-	-	-	*	*		
145.07	-	3.781	4.521	*	*		
147.03	2.099	2.692	4.223				
152.05	0.327	0.820	2.905				
154.05	0.245	0.191	0.332				
154.9	0.434	0.614	1.362				
156.9	6.866	9.316	26.446				
158.9	1.531	1.700	3.949				
161.01	0.521	1.300	1.356				
162.97	0.744	0.978	1.854				
164.01	0.766	0.736	0.773	*			
167.02	0.203	0.083	0.029				
167.98	0.270	0.435	0.622				
168.95	0.312	0.330	0.522				
169.98	0.241	0.508	0.947	*			
170.84	0.469	0.873	2.294				
172.02	0.166	0.360	0.557				
-------	-------	-------	-------	---------------------------------	---	---	
172.84	0.504	0.882	2.202				
174.053	0.504	0.668	1.272	Dopamine quinone+Na	3	*	
176.0686	0.504	2.225	2.756	Dopamine +Na	2	*	
179.97	0.587	0.812	0.844				
184.04	7.996	6.440	5.110				
184.928				*			
185.94	0.294	0.920	2.150	*			
186.8	0.342	0.573	1.246				
188.0	0.310	0.451	1.027				
189.98	0.270	0.735	1.122	*			
192		0.342	0.573	1.246			
195.95		0.112	0.143				
198.03		0.710	0.843	1.250			
201.89		0.851	2.969	2-Thiothiazolidine-4-carboxylic acid+K	24		
202.99	1.136	0.763	0.546				
206.766				*			
214.78		0.526	0.543	1.259			
215.88		0.163	0.143	0.216			
218.02		0.773	0.418				
218.96		0.771	0.547	0.295			
223.717				*			
224.89	0.087	0.489	0.369				
233.99		0.449	0.201				
240.91		0.335	0.216				
241.91		0.299	0.216				
257.88		0.349	0.349				
258.77		0.709	0.783	2.059			
260.97		1.216	1.046	1.539			
263.92	0.577	0.401	0.489				
264.8				*			
274.72	0.501	0.391	1.022				
279.1		0.549	0.348	0.165			
280.92		0.292	0.349	0.865			
282.95	0.562	1.024	2.270	Glutamyl-Asparagine+Na	21		
289.892				*			
292.86		0.242	0.189	0.135			
294.9		0.232	0.253	0.279			
296.91		0.314	0.417	0.898			
298.92	1.288		2.787	Glutamyl-Asparagine+K	27		

S-20
303.907	-	-	-	-
305.13	0.366	0.293	0.278	*
306.892	-	-	-	*
307.13	0.443	0.397	0.203	
314.9	0.280	0.696	1.487	
320.9	0.305	0.211	0.226	
322.87	0.150	0.155	0.175	
327.07	0.295	0.405	0.569	
335.11	0.289	0.250	0.169	
336.95	0.217	0.199	0.141	
340.88	0.140	0.069	0.004	
343.06	0.145	0.306	0.214	
351.08	0.343	0.259	0.367	
355.14	0.165	0.213	0.139	
363.14	0.287	0.150	0.080	
367.06	0.242	0.125	0.047	
369.83	-	-	-	*
393.175	-	-	-	*
407.18	1.696	0.360	0.582	
409.21	15.746	6.786	7.994	
410.21	4.020	1.577	1.928	
413.13	0.094	0.042	0.027	
415.11	0.178	0.067	0.089	
417.13	0.178	0.065	0.018	
425.18	1.090	0.553	0.617	
429.12	0.126	0.065	0.019	
431.12	0.171	0.045	0.058	
439.18	0.253	0.093	0.051	
441.12	0.494	0.243	0.190	
453.08	0.254	0.094	0.078	
457.19	0.521	0.148	0.057	
459.14	0.210	0.071	0.006	
465.13	0.259	0.198	0.195	
469.02	0.189	0.092	0.078	
481.11	0.116	0.067	0.085	
495.19	0.118	0.043	0.042	
497.07	0.126	0.105	0.052	
502.17	0.203	0.112	0.065	
551.25	0.151	0.098	0.089	
564.16	0.121	0.107	0.055	
586.45	0.277	0.144	0.110	
------	-----	-----	-----	
588.46	0.439	0.339	0.346	
592.18	0.272	0.283	0.220	
604.43	0.101	0.079	0.064	
617.43	0.616	0.270	1.650	
630.18	0.109	0.156	0.037	
633.42	0.200	0.115	0.245	
655.4	0.233	0.152	0.238	
667.52	1.483	0.897	4.515	
683.46	0.393	0.259	0.562	
691.48	0.205	0.140	0.364	
697.45	0.176	0.128	0.137	
701.38	0.178	0.160	0.127	
707.47	0.173	0.103	0.114	
711.46	0.198	0.140	0.122	
713.42	0.174	0.141	0.218	
723.51	0.527	0.297	0.201	
740.47	0.444	0.416	0.260	
766.61	2.754	2.969	1.924	
772.54	0.388	0.710	0.831	
774.58	0.250	0.410	0.490	
778.49	0.764	1.014	1.120	
782.58	0.942	1.350	0.946	
784.55	0.588	0.775	0.527	
788.57	0.690	1.747	2.049	
790.56	0.607	1.604	1.797	
792.57	0.695	0.748	0.772	
794.67	2.612	2.330	1.173	
802.53	0.322	0.523	0.546	
804.59	0.520	1.319	1.485	
806.6	1.311	2.246	3.058	
807.55	0.357	0.872	1.214	
808.58	0.813	1.076	1.521	
809.49	0.770	1.000	1.013	
810.57	0.974	1.602	1.269	
811.6	0.715	0.833	0.601	
812.58	0.804	1.405	1.595	
814.55	0.469	0.831	0.752	
816.57	0.501	1.028	0.956	
818.62	0.609	0.953	0.710	
820.69	1.250	1.191	0.326	
822.72	20.355	22.901	16.706	
m/z	Intensity	Charge 1	Charge 2	
------	-----------	----------	----------	
824.55	3.655	4.443	3.970	
826.49	0.518	0.839	0.892	
828.59	0.368	1.286	2.329	
830.55	0.776	1.178	1.030	
832.75	5.830	11.035	7.467	
834.65	0.656	1.412	0.877	
836.73	11.053	13.412	10.642	
837.58	3.880	5.202	4.485	
838.67	7.797	10.591	8.178	
840.53	1.806	1.984	0.950	
844.55	0.375	1.110	1.871	
846.57	0.306	0.341	0.472	
848.73	8.926	16.396	11.044	
849.73	2.612	5.512	3.708	
850.73	7.836	10.570	7.178	
851.74	3.461	4.427	2.865	
852.59	4.499	6.522	6.640	
856.59	0.086	0.152	0.211	
864.7	2.824	4.656	3.450	
865.72	0.954	1.687	1.185	
866.72	3.205	4.463	3.413	
867.75	0.749	1.285	0.884	
868.6	0.689	0.919	1.094	
884.61	0.179	0.149	0.167	
1268.44	0.093	0.095	0.058	
1336.53	0.092	0.089	0.034	

* Peak is observed in this m/z.

a Peak identities are assigned using the precise molecular masses determined by FTICR MS.
Table S3. Tukey test results for all of the data points presented in Figure 2.

X axis of two data sets	P values of two data sets by Tukey test								
	m/z 152.1	m/z 588.5	m/z 298.9	m/z 822.5	m/z 409.2	m/z 828.5	m/z 667.5	m/z 804.5	m/z 136.1
CA1									
DA1-DA0	0.2818	1	0.9176	1	1	0.9049	0.9851	0.9285	0.9981
DA4-DA0	0.0002	0.00005	0.002	0.8236	0.0457	0.00005	0.5138	0.0168	0.9957
DA4-DA1	0.0342	0.00007	0.0272	0.896	0.0807	0.0007	0.0128	0.1885	0.4655
CA3									
DA4-DA0	0.0011	0.00009	0.00004	0.9555	0.02	0.000002	0.456	0.0322	0.8943
DA4-DA1	0.06	0.000003	0.001	0.9782	0.0481	0.00003	0.5973	0.2278	0.9995
DA1-DA0	0.5885	0.9968	0.7131	1	0.9997	0.85	0.9951	0.9728	0.2956
CC									
DA1-DA0	0.91	1	0.1188	0.0831	0.9996	0.9938	1	0.2639	0.6837
DA4-DA0	0.1057	0.8239	0.00002	0.00002	0.004	0.3171	0.00000005	0.0006	0.1856
DA4-DA1	0.6924	0.8657	0.004	0.0105	0.0125	0.7871	0.0000006	0.1171	0.4367

Abbreviations: CA1, region I of hippocampus proper; CA3, region III of hippocampus proper; CC, corpus callosum. TiO$_2$ sub-micron particles, (DA0); TiO$_2$-DA sub-micron particles, (DA1); and TiO$_2$-DA monoliths (DA4).
Table S4. List of identified or putatively identified analytes detected in mouse brain using TiO$_2$-DA monolith-assisted LDI MS, DHB-assisted MALDI MS, and 9-AA assisted MALDI MS. Precise m/z and mass errors (Δppm) of measurements are reported. Due to the use of precise molecular masses and/or molecular fragmentation patterns for characterization of the listed analytes, different levels of confidence in their identification are stated (see footnotes for the table).

Mass to charge ratio (m/z)	Mass error (Δppm)	Compounds	Detected ions	Analyte chemical class	Ref.
TiO$_2$-DA-assisted LDI MS					
170.03272	0.7	Creatine	[M+K]$^+$	Alkaloid	3,5
172.037	0.6	5,6-dihydroxyindole	[M+Na]$^+$	Alkaloid	6,7c
180.0422a	0.5	Arecaidine	[M+K]$^+$	Alkaloid	3c
295.07237	0.2	5-S-Cysteinyldopamine	[M+Na]$^+$	Alkaloid	9,10c
136.04855	3	Creatinine	[M+Na]$^+$	Alkaloid	11c
152.02295a	5	Creatinine	[M+K]$^+$	Alkaloid	11c
216.042a	0.8	5-Hydroxytryptophol	[M+K]$^+$	Alkaloid	12c
225.20538a	1	Spermine	[M+Na]$^+$	Alkaloid	3,13
241.17888a	3	Spermine	[M+K]$^+$	Alkaloid	
139.08317a	7	Aminopentanamide	[M+Na]$^+$	Amino acids	14d
142.02682	2	Aminobutanoic acid	[M+K]$^+$	Amino acids	3,15
154.02049	38	Proline	[M+K]$^+$	Amino acids	16,17
167.0219	1	2-amino-4-cyano-butanolic acid	[M+K]$^+$	Amino acids	18,21
168.0057a	0.6	Pyroglutamic acid	[M+K]$^+$	Amino acids	21,22c
169.0585	0.6	Glutamine	[M+Na]	Amino acids	16,23
186.01661a	1	Glutamate	[M+K]$^+$	Amino acids	16
196.00076	0.3	Amino-muconic acid	[M+K]$^+$	Amino acids	24d
198.08906	0.2	Amino-octanoic acid	[M+K]$^+$	Amino acids	25d
234.07355a	0.6	Methoxytyrosine	[M+Na]$^+$	Amino acids	15
586.4919	42	Cer(d36:2)	[M+K]$^+$	Cer	26
598.53436a	2	Cer(d36:1)	[M+Na]$^+$	Cer	26
604.5066	7	Cer(d36:1)	[M+K]$^+$	Cer	26
429.23852	3	Hydroxy-oxo-cholan-oic Acid	[M+K]$^+$	CL	27,28c
439.29546	4	OH-7-Dehydrocholesterol	[M+K]$^+$	CL	29
465.33124	5	Cholesta-6,8(14)-dien-3beta,5alpha-diol	[M+K]$^+$	CL	d
691.58617a	19	18:0 Cholesteryl ester	[M+K]$^+$	CL	30,31
409.34237a	4	Cholesterol	[M+Na]$^+$	CL	32,36
425.31629	5	Cholesterol	[M+K]	CL	
667.53166	10	DAG(38:4)	[M+Na]$^+$	DAG	37c
683.49536a	8	DAG(38:4)	[M+K]$^+$	DAG	
711.5751a	20	DAG(41:3)	[M+Na]$^+$	DAG	d
617.51259a	7	DAG(34:1)	[M+Na]$^+$	DAG	38
633.48768	3	DAG(34:1)	[M+K]$^+$	DAG	
655.46536a	6	DAG(36:4)	[M+K]$^+$	DAG	d
259.05220	10	Met-Ala	[M+K]$^+$	Di-peptides	39c
277.0617	1	Gly-Tyr	[M+Na]$^+$	Di-peptides	40c
283.06917	0.2	Pro-Glu	[M+K]$^+$	Di-peptides	36c
m/z	Adduct	Molecule	Intensity	Type	
-----------	--------	---	-----------	------	
299.04309	Glu-Asn	[M+K]$^+$ Di-peptides	27		
279.22797	Palmitic acid	[M+Na]$^+$ FA	1		
293.18727	FA16:1	[M+K]$^+$ FA	1		
295.20288	FA14:0	[M+K]$^+$ FA	1		
337.21264	Hydroxy-oleic acid	[M+K]$^+$ FA	3		
341.1872	FA20:5	[M+K]$^+$ FA	1		
355.25968	Docosatetraenoic acid (22:4)	[M+Na]$^+$ FA	2		
363.2657	FA21:1	[M+K]$^+$ FA	0.8		
351.4999	FA36:4	[M+Na]$^+$ FA	36		
305.244	FA18:1	[M+Na]$^+$ FA	3		
321.2177	FA18:1	[M+K]$^+$ FA	4		
307.26049	Stearic acid (fa18:0)	[M+Na]$^+$ FA	1		
323.23377	Stearic acid (fa18:0)	[M+K]$^+$ FA	2		
327.22878	Arachidonic acid	[M+Na]$^+$ FA	2		
343.20437	Arachidonic acid	[M+K]$^+$ FA	2		
351.22846	Docosahexaenoic acid	[M+Na]$^+$ FA	3		
367.202	Docosahexaenoic acid	[M+K]$^+$ FA	3		
774.59036	GalCer(d38:3)	[M+Na]$^+$ GlcCer	6		
810.58796	GlcCer(d38:1)	[M+K]$^+$ GlcCer	2		
848.62954	GlcCer(d42:2)	[M+K]$^+$ GlcCer	9		
1268.718	M(IP)2C(d36:0)	[M+K]$^+$ M(IP)2C	69		
1336.818	M(IP)2C(d42:0)	[M+K]$^+$ M(IP)2C	82		
417.23857	PA(P-16:0)	[M+Na]$^+$ PA	2		
441.2377	CPA(18:1)	[M+Na]$^+$ PA	0.3		
701.44678	PA(33:0)	[M+K]$^+$ PA	7		
707.49624	PA(O-36:3)	[M+Na]$^+$ PA	3		
713.44677	PA(34:1)	[M+K]$^+$ PA	7		
723.48923	PA(36:2)	[M+Na]$^+$ PA	5		
415.22086	PA(16:0)	[M+Na]$^+$ PA	2		
431.1935	PA(16:0)	[M+K]$^+$ PA	5		
782.56108	PC(34:1)	[M+Na]$^+$ PC	7		
826.56495	PC(36:1)	[M+K]$^+$ PC	8		
844.46889	PC(38:6)	[M+K]$^+$ PC	66		
864.62704	PC(P-41:2)	[M+K]$^+$ PC	3		
866.64113	PC(O-40:2)	[M+K]$^+$ PC	1		
784.5217	PC(33:1)	[M+K]$^+$ PC	4		
832.66687	PC(38:4)	[M+Na]$^+$ PC	4		
848.55262	PC(38:4)	[M+K]$^+$ PC	4		
740.47886	PE(34:1)	[M+K]$^+$ PE	1		
772.52012	PE(35:0)	[M+K]$^+$ PE	6		
778.4763	PE(36:4)	[M+K]$^+$ PE	3		
790.52275	PE(p-38:4)	[M+K]$^+$ PE	10		
802.47473	PE(38:6)	[M+K]$^+$ PE	4		
804.4907	PE(38:6)	[M+K]$^+$ PE	4		
806.50434	PE(38:4)	[M+K]$^+$ PE	6		
814.51051	PE(P-40:6)	[M+K]$^+$ PE	5		
828.48788	PE(40:7)	[M+K]$^+$ PE	7		

S-26
m/z	Intensity	Charge State	Mass/Charge	Description
830.50526	5	M+K	PE(40:6)	
834.53751	4	M+K	PE(40:4)	
836.66568 a	13	M+Na	PE(42:9)	
852.48229	13	M+K	PE(42:9)	
884.49514	69	M+K	PE(44:7)	
782.5631 a	21	M+K	PE(O-37:2)	
794.61321 a	5	M+Na	PE(P-39:1)	
810.58796	2	M+K	PE(P-39:1)	
824.46241 a	36	M+Na	PE(40:9)	
822.64786	60	M+Na	PE(40:2)	
838.6233 a	60	M+K	PE(40:2)	
697.47287	6	M+K	PE-Cer(d34:2)	Cer-PE
413.12415	3	M+K	Cys Gly Pro Val	Peptides
453.17582	2	M+K	Gly Glu Pro Ile	Peptides
457.20921	0.2	M+Na	Met Leu Ala Thr	Peptides
459.22234	2	M+Na	Thr Leu Gly Phe	Peptides
469.14905	1	M+K	Glu Trp Pro	Peptides
481.20686	1	M+K	Asp Val Leu Pro	Peptides
495.1643	0.6	M+K	Gly Phe Ala Tyr	Peptides
497.17951	1	M+Na	Asn Asn Pro Met	Peptides
502.2659	4	M+Na	Ser Phe Val Lys	Peptides
564.2442	2	M+Na	Val Tyr Asn Phe	Peptides
592.23942	2	M+Na	Phe Glu Phe Gln	Peptides
630.19389	6	M+K	Phe Cys Trp His	Peptides
DHB-assisted MALDI MS				
606.848	19	M+H	Cer(d39:2)	Cer
369.35762	13	M+H-2H2O	5beta-Cholestane-3alpha,12alpha-diol	CL
391.29314/390.887	2	M+H-2H2O	(23S)-3α,7β,23-Trihydroxy-5β-cholan-24-oic Acid	CL
551.51348	1	M+H-H2O	12:0 Cholesteryl ester	CL
577.52959	9	M+H-H2O	14:1 Cholesteryl ester	CL
790.55310	7	M+K	GalCer(d38:3)	GalCer
958.59544 a	9	M+H-H2O	MIPC(d34:0(2OH))	MIPC
734.58424	16	M+H	PC(32:0)	PC
756.56601	21	M+H	PC(34:3)	PC
760.6013 a	20	M+H	PC(34:1)	PC
762.61858 a	14	M+H	PC(34:0)	PC
782.58283	19	M+H	PC(36:4)	PC
784.59648 a	21	M+H	PC(36:3)	PC
788.63513 a	2	M+H	PC(O-37: 1)	PC
804.56972	20	M+H	PC(38:7)	PC
806.52966 a	23	M+K	PC(P-36:3)	PC
808.60317	17	M+Na	PC(P-37:1)	PC
810.6161	19	M+H	PC(38:4)	PC
812.62343	23	M+H	PC(38:3)	PC
814.55575 a	20	M+K	PC(35:0)	PC
820.54448	21	M+Na	PC(36: 4)	PC
Mass	Charge	Type	Confirmation	Supplemental Notes
826.59089	8	PC(P-37:0) [M+K]^+	PC	55
828.57068	18	PC(36:0) [M+K]^+	PC	
830.53114	33	PC(P-38:5) [M+K]^+	PC	
832.60197	22	PC(38:4) [M+Na]^+	PC	55
836.53845	20	PC(37:3) [M+K]^+	PC	
844.54491	19	PC(38:6) [M+K]^+	PC	
846.55926	17	PC(38:5) [M+K]^+	PC	
856.60328	20	PC(38:0)[U] [M+K]^+	PC	
872.57700	20	PC(40:0) [M+K]^+	PC	
896.50257	18	PC(41:1) [M+K]^+	PC	
672.43388	22	PC(26:0) [M+Na]^+	PC	
688.42946	20	PC(26:0) [M+K]^+	PC	
734.58424	10	PC(32:0) [M+H]^+	PC	55
772.54151	6	PC(32:0) [M+K]^+	PC	
798.55817	16	PC(34:1) [M+K]^+	PC	
800.56994	20	PC(34:0) [M+K]^+	PC	
848.57717	21	PC(38:4) [M+K]^+	PC	
852.51184	14	PI-Cer(34:0(2OH)) [M+K]^+	Cer-PI	
351.15263	4	Ser Thr Ser Gly [M+H]^+ Peptide		
383.14284	8	Pro Asp Gly Met [M+H-2H2O]^+ Peptide		
511.27947	5	Cys Tyr Cys Thr [M+Na]^+ Peptide		
518.31127	2	Lys Asp Lys Lys [M+H]^+ Peptide		
731.62011	5	TG(43:3)[iso3] [M+H]^+ TG		
753.60379	8	TG(43:3)[iso6] [M+Na]^+ TG		
769.57901	6	TG(39:3)[iso3] [M+K]^+ TG		
932.58000	15	TH-Cer (d30:1) [M+H-2H2O]^+ TH-Cer		
199.00045	23	3-Phospho-D-erythronate [M+H-H2O]^+ Lipid fragments		
206.05814	1	N-Acetylpseudophosphothricin [M+H-H2O]+ Lipid fragments		
222.03249	14	Phosphocholine [M+K]^+ Lipid fragments		
230.94900	10	2,3-Bisphospho-D-glycerate [M+H-2H2O]^+ Lipid fragments		
329.01119	20	D-glycero-D-manno-Heptose 1-phosphate [M+K]^+ Lipid fragments		

9-AA assisted MALDI MS

Mass	Charge	Type	Confirmation	Supplemental Notes
716.09b	1	PE(34:1) [M-H]^- PE	60	
744.100b	1	PE(36:1) [M-H]^- PE	60	
746.96b	1	PE(P-38:6) [M-H]^- PE	60	
762.89b	1	PE(38:6) [M-H]^- PE	60	
766.93b	1	PE(38:4) [M-H]^- PE	60	
794.80b	1	PE(40:4) [M-H]^- PE	60	
774.91b	1	PS (p36:0) [M-H]^- PS	60	
788.86b	1	PS(36:1) [M-H]^- PS	60	
834.75 b	1	PS(40:6) [M-H]^- PS	60	
806.81b	1	ST(d18:1/18:0) [M-H]^- ST	61	
822.76b	1	ST(d18:1/18:0OH) [M-H]^- ST	61	
m/z	Molecular Formula	Charge State	Abbreviation	Reference
---------	-------------------	--------------	--------------	-----------
850.72	ST(d18:1/h20:0OH)	[M-H]	ST	60
860.71	ST(d18:1/22:1)	[M-H]	ST	
862.73	ST(d18:1/22:0)	[M-H]	ST	61
874.68	ST(d18:1/22:2OH)	[M-H]	ST	
878.70	ST(d18:1/h22:0OH)	[M-H]	ST	60
888.70	ST(d18:1/24:1)	[M-H]	ST	60,61
904.60	ST(d18:1/24:1OH)	[M-H]	ST	60

a Molecules in the m/z column that had their precise molecular masses determined by FTICR MS and their fragmentation patterns acquired using MALDI-TOF/TOF MS/MS.

b Molecules in the m/z column that did not have their precise molecular masses determined by FTICR MS but their fragmentation patterns were acquired using MALDI-TOF/TOF MS/MS.

Molecules not marked in the m/z column had their precise molecular masses determined by FTICR MS. However, their fragmentation patterns were not acquired.

c Labeled references in the Ref. column report detection of the listed molecules in either rat or mouse brains with methods other than MALDI MS or LDI MS.

d Labeled references in the Ref. column describe listed molecules, but these molecules are not detected in the rodent brains.

References without labeling in the Ref. column describe detection of the listed molecules in either the rat or mouse brain with MALDI MS or LDI MS.

e The marked peptides in the Ref. column have structures of representative isomer of all the possible candidates for this precise m/z shown.

Abbreviations:

PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; PA, Phosphatidic acid; CPA, cyclic phosphatidic acid; Cer-PE, Ceramide phosphoethanolamine; Cer-PI, Ceramide phosphoinositol; DAG, Diacylglycerol; TG, Triglyceride; Cer, Ceramide; GlcCer, Glucosylceramide; GalCer, Galactoceramide; THCer, Trihexosylceramide; M(IP)2C, Mannose-(inositol-P)2-ceramide; MIPC, Mannose-inositol-P-ceramide; FA, Fatty acid; DHA, Docosahexaenoic acid; AA, Arachidonic acid; CL, Cholesterol; PS, Phosphatidylinerine; ST, Sulfatide. **Amino Acids:** Ala, Alanine; Asn, Asparagine; Asp, Aspartate; Cys, Cysteine; Glu, Glutamate; Gln, Glutamine; Gly, Glycine; His, Histidine; Ile, Isoleucine; Leu, Leucine; Lys, Lysine; Met, Methionine; Phe, Phenylalanine; Pro, Proline; Ser, Serine; Thr, Threonine; Trp, Tryptophan; Tyr, Tyrosine; Val, Valine
Table S5. ANOVA results for data presented in Figure 5C and Figure S12B.

Hippocampal region	Factors	p values determined by ANOVA for different compounds					
	arecaidine	creatinine	cholesterol	DAG(34:1)	DAG(38:4)	PC(38:6)	
CC	Interaction	0.1	0.62	0.81	0.13	0.1	6.41E-04
	age	0.02	0.002	0.37	0.01	0.005	7.04E-04
DG	interaction	0.66	0.83	0.89	0.62	0.24	0.04
	age	0.025	0.008	0.83	0.28	0.4	0.01
CA3	interaction	0.36	0.1476	1.33E-04	1.39E-05	0.0026	0.0012
	age	0.000428	3.33E-05	0.000122	3.77E-05	0.001	2.84E-06
CA1	interaction	0.52	0.2	0.11	0.91	0.42	0.62
	age	0.0061	0.0035	0.25	0.05	0.09	0.88

a Interaction is a change in the simple main effect of age over levels of paired comparison. If the value is <0.05, the interaction between age and paired comparison batch is significant.

b Effect of aging on the compound’s average peak area. If the value is <0.05, the effect of aging is significant.

Abbreviations: CC, corpus callosum; DG, dentate gyrus; CA3, region III of hippocampus proper; CA1, region I of hippocampus proper.
References

1. J. A. Hankin, R. M. Barkley and R. C. Murphy, *J. Am. Soc. Mass Spectrom.*, 2007, **18**, 1646-1652.
2. E. J. Lanni, S. J. B. Dunham, P. Nemes, S. S. Rubakhin and J. V. Sweedler, *J. Am. Soc. Mass Spectrom.*, 2014, **25**, 1897-1907.
3. K. Shrivas, T. Hayasaka, Y. Sugiu and M. Setou, *Anal. Chem.*, 2011, **83**, 7283-7289.
4. E.-M. Ratai, L. Annamalai, T. Burdo, C.-G. Joo, J. P. Bombardier, R. Fell, R. Hakimelahi, J. He, M. R. Lentz, J. Campbell, E. Curran, E. F. Halpern, E. Masliah, S. V. Westmoreland, K. C. Williams and R. G. González, *Magn. Reson. Med.*, 2011, **66**, 625-634.
5. B. Shrestha, P. Nemes, J. Nazarian, Y. Hathout, E. P. Hoffman and A. Vertes, *Analyst*, 2010, **135**, 751-758.
6. M. Bisaglia, S. Mammi and L. Bubacco, *J. Biol. Chem.*, 2007, **282**, 15597-15605.
7. A. Napolitano, O. Crescenzi, A. Pezzella and G. Prota, *J. Med. Chem.*, 1995, **38**, 917-922.
8. S. Giri, J. R. Idle, C. Chen, T. M. Zabriskie, K. W. Krausz and F. J. Gonzalez, *Chem. Res. Toxicol.*, 2006, **19**, 818-827.
9. E. Rosengren, E. Lindereliasson and A. Carlsson, *J. Neural Transm.*, 1985, **63**, 247-253.
10. B. Fornstedt, I. Bergh, E. Rosengren and A. Carlsson, *J. Neurochem.*, 1990, **54**, 578-586.
11. J. R. Zgoda-Pols, S. Chowdhury, M. Wirth, M. V. Milburn, D. C. Alexander and K. B. Alton, *Toxicol. Appl. Pharmacol.*, 2011, **255**, 48-56.
12. R. D. Johnson, R. J. Lewis, D. V. Canfield and C. L. Blank, *J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.*, 2004, **805**, 223-234.
13. P. Liu, N. Gupta, Y. Jing and H. Zhang, *Neuroscience*, 2008, **155**, 789-796.
14. D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner and A. Scalbert, *Human Metabolome Database*, 2009, **3.0**.
15. M. Shariatgorji, A. Nilsson, R. J. A. Goodwin, P. Kallback, N. Schintu, X. Q. Zhang, A. R. Crossman, E. Bezard, P. Svenningsson and P. E. Andren, *Neuron*, 2014, **84**, 697-707.
16. C. Esteve, E. A. Tolner, R. Shyti, A. van den Maagdenberg and L. A. McDonnell, *Metabolomics*, 2016, **12**.
17. Y. Xing, X. Li, X. Guo and Y. Cui, *Anal. Bioanal. Chem.*, 2016, **408**, 141-150.
18. A. F. Steulet, H. J. Mobius, S. J. Mickel, K. Stocklin and P. C. Waldmeier, *Biochem. Pharmacol.*, 1996, **51**, 613-619.
19. S. Kaul, M. D. Faiman and C. E. Lunte, *Electrophoresis*, 2011, **32**, 284-291.
20. C. D. Schmoutz, G. F. Guerin, S. P. Runyon, S. Dhungana and N. E. Goeders, *Behav. Brain Res.*, 2015, **291**, 108-111.
21. K. Inoue, Y. Miyazaki, K. Unno, J. Z. Min, K. Todoroki and T. Toyo'o, *Biomed. Chromatogr.*, 2016, **30**, 55-61.
22. H. L. Wang, K. Q. Lian, B. Han, Y. Y. Wang, S. H. Kuo, Y. Geng, J. Qiang, M. Y. Sun and M. W. Wang, *J. Alzheimer's Dis.*, 2014, **39**, 841-848.
23. S. Kolbaev and A. Draguhn, *Eur. J. Neurosci.*, 2008, **28**, 535-545.
24. A. Ichiyama, S. Nakamura, H. Kawai, T. Honjo, Nishizuk.Y, O. Hayaishi and S. Senoh, *J. Biol. Chem.*, 1965, **240**, 740-749.
Carbone, C. Criscuolo, J. L. Yau, J. R. Seckl, R. Schule, L. Schols, A. W. Sailer, J. Kuhle, M. J. Fraidakis, J. A. Gustafsson, K. R. Steffensen, I. Bjorkhem, P. Ernfors, J. Sjovall, E. Arenas and Y. Q. Wang, *J. Clin. Invest.*, 2014, **124**, 4829-4842.

28. J. I. Jung, A. R. Price, T. B. Ladd, Y. Ran, H. J. Park, C. Ceballos-Diaz, L. A. Smithson, G. Hochhaus, Y. F. Tang, R. Akula, S. Ba, E. H. Koo, G. Shapiro, K. M. Felsenstein and T. E. Golde, *Mol. Neurodegener.*, 2015, **10**, 29.

29. L. B. Xu, M. Kliman, J. G. Forsythe, Z. Korade, A. B. Hmelo, N. A. Porter and J. A. McLean, *J. Am. Soc. Mass Spectrom.*, 2015, **26**, 924-933.

30. S. Vascellari, S. Banni, C. Vacca, V. Vetrugno, F. Cardone, M. A. Di Bari, P. La Colla and A. Pani, *Lipids Health Dis.*, 2011, **10**, 132.

31. N. E. Manicke, M. Nefliu, C. P. Wu, J. W. Woods, V. Reiser, R. C. Hendrickson and R. G. Cooks, *Anal. Chem.*, 2009, **81**, 8702-8707.

32. A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle and C. Duyckaerts, *Acta Neuropathol.*, 2013, **125**, 133-144.

33. S. Sole-Domenech, P. Sjovall, V. Vukojevic, R. Fernando, A. Codita, S. Salve, N. Bogdanovic, A. H. Mohammed, P. Hammarström, K. P. R. Nilsson, F. M. LaFerla, S. Jacob, P. O. Berggren, L. Gimenez-Llort, M. Schalling, L. Terenius and B. Johansson, *Acta Neuropathol.*, 2013, **125**, 145-157.

34. M. Dufresne, A. Thomas, J. Breault-Turcot, J. F. Masson and P. Chaurand, *Anal. Chem.*, 2013, **85**, 3318-3324.

35. C. Bich, D. Touboul and A. Brunelle, *Int. J. Mass Spectrom.*, 2013, **337**, 43-49.

36. M. Lorenz, O. S. Ovchinnikova, V. Kertesz and G. J. Van Berkel, *Rapid Commun. Mass Spectrom.*, 2013, **27**, 1429-1436.

37. K. Yang, C. M. Jenkins, B. Dilthey and R. W. Gross, *Anal. Bioanal. Chem.*, 2015, **407**, 5199-5210.

38. L. Muller, A. Kailas, S. N. Jackson, A. Roux, D. C. Barbacci, J. A. Schultz, C. D. Balaban and A. S. Woods, *Kidney Int.*, 2015, **88**, 186-192.

39. S. Bobba, G. E. Resch and W. G. Gutheil, *Anal. Biochem.*, 2012, **425**, 145-150.

40. S. Himmelseher, E. Pfenninger and P. Herrmann, *J. Parenter. Enteral. Nutr.*, 1996, **20**, 281-286.

41. M. Igarashi, K. Ma, F. Gao, H.-W. Kim, S. I. Rapoport and J. S. Rao, *J. Alzheimers Dis.*, 2011, **24**, 507-517.

42. T. B. Angerer, M. D. Pour, P. Malmberg and J. S. Fletcher, *Anal. Chem.*, 2015, **87**, 4305-4313.

43. G. B. Wells, R. C. Dickson and R. L. Lester, *J. Biol. Chem.*, 1998, **273**, 7235-7243.

44. P. A. Sutton and D. A. Buckingham, *Acc. Chem. Res.*, 1987, **20**, 357-364.

45. H. Kettling, B. Johansson and J. Lausmaa, *Appl. Surf. Sci.*, 2006, **252**, 6966-6974.

46. H. Kettling, S. Vens-Cappell, J. Soltwisch, A. Pirkl, J. Haier, J. Muthing and K. Dreisewerd, *Anal. Chem.*, 2014, **86**, 7798-7805.
55. J. A. Fernández, B. Ochoa, O. Fresnedo, M. T. Giralt and R. Rodríguez-Puertas, *Anal. Bioanal. Chem.*, 2011, **401**, 29-51.
56. R. Weng, S. Shen, L. Yang, M. Li, Y. Tian, Y. Bai and H. Liu, *Rapid Commun. Mass Spectrom.*, 2015, **29**, 1491-1500.
57. T. Houjou, K. Yamatani, M. Imagawa, T. Shimizu and R. Taguchi, *Rapid Commun. Mass Spectrom.*, 2005, **19**, 654-666.
58. E. J. Ahn, H. Kim, B. C. Chung, G. Kong and M. H. Moon, *J. Chromatogr.* , 2008, **1194**, 96-102.
59. S. N. Jackson, H.-Y. J. Wang and A. S. Woods, *Anal. Chem.*, 2005, **77**, 4523-4527.
60. C. D. Cerruti, F. Benabdellah, O. Lapevote, D. Touboul and A. Brunelle, *Anal. Chem.*, 2012, **84**, 2164-2171.
61. A. Thomas, J. L. Charbonneau, E. Fournaise and P. Chaurand, *Anal. Chem.*, 2012, **84**, 2048-2054.