Abstract. Motivated by Barría-Halmos’s [6, Question 19] and Halmos’s [22, Problem 237], we explore projections in Toeplitz algebra on the Hardy space. We show that the product of two Toeplitz (Hankel) operators is a projection if and only if it is the projection onto one of the invariant subspaces of the shift (backward shift) operator. As a consequence one obtains new proofs of criterion for Toeplitz operators and Hankel operators to be partial isometries. Furthermore, we completely characterize when the self-commutator of a Toeplitz operator is a projection. This provides a class of nontrivial projections in Toeplitz algebra.

1. Introduction

Let \mathbb{D} be the open disk in the complex plane and \mathbb{T} its boundary. The Hardy space H^2 is the subspace of $L^2 = L^2(\mathbb{T})$ consisting of functions whose Fourier coefficients corresponding to negative integers vanish. A function $\vartheta \in H^2$ is called an inner function if $|\vartheta(e^{i\theta})| = 1$ a.e.

For φ in $L^\infty = L^\infty(\mathbb{T})$, the Toeplitz operator T_φ with symbol φ and the Hankel operator H_φ with symbol φ are defined on H^2 as the following:

$$T_\varphi f = P(\varphi f),$$

$$H_\varphi f = (I - P)(\varphi f), \quad f \in H^2,$$

where P is the orthogonal projection of L^2 onto H^2. The Toeplitz algebra \mathfrak{T}_{L^∞} is the C^*-algebra generated by $\{T_\varphi, \varphi \in L^\infty\}$. We say that a bounded operator Q on a Hilbert space is a projection if Q satisfies

$$Q = Q^* = Q^2.$$

The study of projections, and applications of such study to illuminate structure of C^*-algebras, have been an enduring theme in operator algebra. In particular, progresses on projections in Toeplitz algebra will shed new light on the structure of \mathfrak{T}_{L^∞}, for instance, compact perturbation or essential commutant problem [4, 13, 19, 11, 30], when a Hankel operator is in $\mathfrak{T}_{L^\infty}[5, 10]$, is Cesàro operator in $\mathfrak{T}_{L^\infty}[23]$?, etc.

In [6, Question 19], J. Barría and P. R. Halmos raised a problem:

“Which projections belong to \mathfrak{T}_{L^∞}?”
They remarked that although the question is vague, it “might give a hint to a suitably general context in which Toeplitz theory can be embedded”, and in which problems in Toeplitz theory become “more manageable”. To better understand this problem, we first observe that if T is a finite rank diagonal operator with diagonal entries equal to 0 or 1, then $T \in T\ell_\infty$, by the formula
\[I - Tz_{n+1}T\bar{z}_{n+1} = z^n \otimes z^n (n \geq 0). \]
Are there any other projections in $T\ell_\infty$? For a unital C^*-algebra, the projections 0 and I are trivial. The purpose of the current paper is to find more nontrivial projections in $T\ell_\infty$, and classify them in some sense.

It is easy to see that all finite sums of finite products of Toeplitz operators form a dense set in $T\ell_\infty$. For J. Barría and P. R. Halmos’ problem, we should find a condition for the operator
\[\sum_{i=1}^{m} \prod_{j=1}^{n} T_{\varphi_{ij}} \]
A projection in $T\ell_\infty$. A. Brown and R. Douglas in [8, Theorem 2.6].

The central role in this work is played by the following theorem (see[14, 7.11] or[15, Theorem 2]):

Symbol mapping. Every operator in $T\ell_\infty$ is of the form
\[T = Tf + S, \quad f \in L^\infty, S \in \mathcal{S} \]
where \mathcal{S} is the semicommutator ideal generated by all semicommutators $Tfg - TfTg$, $f, g \in L^\infty$.

Since a Toeplitz operator is a projection if and only if it is 0 or I [9, Corollary 5]. In the view of the symbol mapping theorem and the following important formula
\[Tfg - TfTg = H_f^*H_g, \quad f, g \in L^\infty, \quad (1.1) \]
in what follows we shall consider that for which functions f and g, $H_f^*H_g$ is a projection?

Let ϑ be a nonconstant inner function, the corresponding model space K_ϑ^2 is defined to be
\[K_\vartheta^2 = H^2 \ominus \vartheta H^2. \]
Moreover, K_ϑ^2 is a nontrivial invariant subspace of T^*_z. In section 4, we show that if $H_f^*H_g$ is a projection, then it must be a projection onto a model space. This result covers the description of the partially isometric Hankel operators [25, Theorem 2.6].

For an operator T on a separable Hilbert space \mathcal{H}, the self-commutator of T is defined by $T^*T - TT^*$. The study of self-commutator has attracted much interest. For example, every self-adjoint operator on an infinite dimensional Hilbert space is the sum of two self-commutators [21] and Berger-Shaw’s theorem [7], etc. P. R. Halmos [22, Problem 237] asked that can $T^*T - TT^*$ be a projection, and, if so, how? He also proved that if T is an abnormal operator (i.e., operators that have
no normal direct summands) and $\|T\| = 1$, such that self-commutator of T is a projection, then T is an isometry. It is still an interesting question for Toeplitz operator. Note that the self-commutator of T_f is in \mathcal{Z}_{L^∞}.

In section 5, we give the necessary and sufficient condition for the self-commutator of T_f to be a projection when T_f remains unrestricted. There are several difficulties in proving this result. One is that the symbol mapping theorem is fail to get the information of symbol f, since the corresponding symbol of $T_f^*T_f - T_fT_f^*$ is zero. Another is to obtain the range of $T_f^*T_f - T_fT_f^*$. We overcome these obstacles by linking hyponormal Toeplitz operators and truncated Toeplitz operators.

In section 6, we describe the C^*—algebra generated by $T_uT_{\bar{u}}$ for all inner functions u. We can now state our main results.

Theorem 3.4 If $f, g \in L^\infty(\mathbb{T})$, then the following statements are equivalent.

1. T_fT_g is a nontrivial projection;
2. T_fT_g is a projection, and its range is a nontrivial invariant subspace of the shift operator T_z;
3. There exist a nonconstant inner function θ and a nonzero constant a such that $f = a\theta$ and $g = \frac{\theta}{\bar{a}}$.

Theorem 4.1 If $f, g \in L^\infty(\mathbb{T})$, then the following statements are equivalent.

1. $H^2_fH_g$ is a nontrivial projection operator;
2. The range of $H^2_fH_g$ is a model space K^2_θ, where θ is an inner function;
3. $\bar{f} + \bar{\mu}\bar{\theta}, g + \frac{\bar{\mu}}{\mu} \in H^2$, where $\mu \in \mathbb{C} \setminus \{0\}$.

Theorem 5.8 If $\varphi \in L^\infty(\mathbb{T})$, then $T_\varphi T_\varphi^* - T_\varphi T_\varphi^*$ is a nontrivial projection operator if and only if one of following conditions holds

1. The range of $T_\varphi^*T_\varphi - T_\varphi T_\varphi^*$ is a model space, and $\varphi = a\theta + b\bar{\theta} + c$, where θ is an inner function, a, b and c are constant with $|a|^2 - |b|^2 = 1$;
2. The range of $T_\varphi^*T_\varphi - T_\varphi T_\varphi^*$ is not a model space, and $\varphi = uv + \bar{v} + c$, where u is inner, c is constant, $v \in H^2$ with $|v|^2 = Re(uh + 1)(h \in H^2)$.

2. **Self-adjointness of $T_fT_g + T_gT_f$**

As a preparation, we obtain a necessary and sufficient condition for self-adjointness of $T_fT_g + T_gT_f$. The main tool is finite rank operators.

Given vectors f and g in a separable Hilbert space \mathcal{H}, we define the rank-one operator $f \otimes g$ mapping \mathcal{H} into itself by

$$(f \otimes g)h = \langle h, g \rangle f. \quad (2.1)$$

The following properties of rank-one operators are well known.

Lemma 2.1. Given vectors f and g in a separable Hilbert space \mathcal{H},

1. If $f \otimes g = 0$ if and only if either $f = 0$ or $g = 0$;
2. $(f \otimes g)^* = g \otimes f$;
3. For bounded operators A and B, $A(f \otimes g)B = (Af) \otimes (B^*g)$.

Lemma 2.2. Given vectors f and g in a separable Hilbert space. If nonzero operator $f \otimes g$ is self-adjoint if and only if there is a nonzero real constant λ such that $f = \lambda g$.

Proof. Assume that $f \otimes g$ is self-adjoint, we have $f \otimes g = g \otimes f$, and therefore
\[
(f \otimes g)g = (g \otimes f)g,
\]
\[
\langle g, g \rangle f = \langle g, f \rangle g,
\]
\[
f = \frac{\langle g, f \rangle}{\langle g, g \rangle} g.
\]
If $\langle g, f \rangle = 0$, then f is the zero vector. By Lemma 2.1(1), this contradict that $f \otimes g$ is a nonzero operator. Let $\lambda = \frac{\langle g, f \rangle}{\langle g, g \rangle} \neq 0$. Substituting $f = \lambda g$ into $f \otimes g = g \otimes f$,
\[
\lambda g \otimes g = \bar{\lambda} g \otimes g.
\]
(2.2)
Hence, λ is a nonzero real number. The converse follows easily from (2.2). □

Lemma 2.3. Given vectors f, g, ϕ and ψ in a separable Hilbert space. If operator $f \otimes g + \phi \otimes \psi$ is zero if and only if one of following statement hold
(1) either f or g is the zero vector and either ϕ or ψ is the zero vector;
(2) f, g, ϕ and ψ are all nonzero vectors, $f = \lambda \phi$ and $\psi = -\bar{\lambda} g$, λ is a nonzero constant.

Proof. If one of four vectors f, g, ϕ and ψ is zero, it is easy to see condition (1) hold, by Lemma 2.1(1).

Suppose that f, g, ϕ and ψ are all nonzero vectors and $f \otimes g = -\phi \otimes \psi$, we have
\[
(f \otimes g)g = -(\phi \otimes \psi)g
\]
\[
\langle g, g \rangle f = -\langle g, \psi \rangle \phi
\]
\[
f = -\frac{\langle g, \psi \rangle}{\langle g, g \rangle} \phi.
\]
Let $\lambda = -\frac{\langle g, \psi \rangle}{\langle g, g \rangle}$, since f is a nonzero vector, $\lambda \neq 0$. Write $f = \lambda \phi$, we have,
\[
f \otimes g + \phi \otimes \psi = \lambda \phi \otimes g + \phi \otimes \psi
\]
\[
= \phi \otimes (\bar{\lambda} g + \psi) = 0.
\]
Since ϕ is a nonzero vector and Lemma 2.1, $\bar{\lambda} g + \psi = 0$. It is easy to check that the converse is true. □

Lemma 2.4. Given vectors f, g, ϕ and ψ in a separable Hilbert space \mathcal{H}. If $f \otimes g + \phi \otimes \psi$ is self-adjoint, then $\{f, g\}$ is linearly dependent if and only if $\{\phi, \psi\}$ is linearly dependent.

Proof. If one of $\{f, g, \phi, \psi\}$ is a nonzero vector, by Lemma 2.2, $\{f, g\}$ and $\{\phi, \psi\}$ are both linearly dependent.

Assume that f, g, ϕ and ψ are four nonzero vectors and $\{f, g\}$ is linearly dependent, then there exist a nonzero constant λ, such that
\[
f = \lambda g.
\]
(2.3)
Since $f \otimes g + \phi \otimes \psi$ is self-adjoint,
\[
f \otimes g + \phi \otimes \psi = g \otimes f + \psi \otimes \phi,
\]
(2.4)
Substituting (2.3) into (2.4), we have
\[(\lambda - \bar{\lambda})g \otimes g = \psi \otimes \phi - \phi \otimes \psi.\] \hspace{1cm} (2.5)

If \(\lambda\) is real, Lemma 2.1(2) implies \(\psi \otimes \phi\) is self-adjoint, by Lemma 2.2, we have \(\{\phi, \psi\}\) is linearly dependent.

When \(\lambda \neq \bar{\lambda}\), assume that \(\{\phi, \psi\}\) is linearly independent, by Gram-Schmidt procedure, there exist two nonzero vectors \(x\) and \(y\) such that
\[\langle x, \phi \rangle = 1, \langle x, \psi \rangle = 0,\]
\[\langle y, \psi \rangle = 1, \langle y, \phi \rangle = 0.\]

Applying operator equation (2.5) to \(x\) and \(y\) give
\[(\lambda - \bar{\lambda})\langle x, g \rangle g = \psi,\]
\[(\lambda - \bar{\lambda})\langle y, g \rangle g = -\phi.\]

Since \(\phi\) and \(\psi\) are nonzero vectors,
\[(\lambda - \bar{\lambda})\langle x, g \rangle \neq 0,\]
\[(\lambda - \bar{\lambda})\langle y, g \rangle \neq 0.\]

This contradicts our assumption (\(\{\phi, \psi\}\) is linearly independent). The rest of proof is the same as the above reasoning. \(\square\)

Lemma 2.5. Given nonzero vectors \(f, g, \phi, \psi\) in a separable Hilbert space. \(f \otimes g + \phi \otimes \psi\) is a nonzero self-adjoint operator if and only if one of following statement holds

1. \(f = \lambda g\) and \(\phi = \mu \psi\), where \(\lambda, \mu \in \mathbb{R} \setminus \{0\}\);
2. \(f = \lambda g, \phi = \mu \psi, \) and \(\psi = -ag\), where \(\lambda, \mu, a \in \mathbb{C} \setminus \{0\}, Im(\lambda) \neq 0, Im(\mu) \neq 0, |a|^2 \frac{Im(\mu)}{Im(\lambda)} = -1.\)
3. Both \(\{f, g\}\) and \(\{\phi, \psi\}\) are linearly independent,

 \[\phi = a_{11}f + a_{12}g\]
 \[\psi = a_{21}f + a_{22}g,\]

 where \(a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{C}.\ a_{11}a_{21}, a_{12}a_{22} \in \mathbb{R}, a_{12}a_{21} - a_{11}a_{22} = 1.\)

Proof. By Lemma 2.4, there are two cases to consider.

Case I

Assume that \(\{f, g\}\) and \(\{\phi, \psi\}\) are both linearly dependent, there are two nonzero constants \(\lambda\) and \(\mu\) such that
\[f = \lambda g, \quad \phi = \mu \psi.\] \hspace{1cm} (2.6)

Since \(f \otimes g + \phi \otimes \psi\) is self-adjoint,
\[f \otimes g + \phi \otimes \psi = g \otimes f + \psi \otimes \phi\] \hspace{1cm} (2.7)

Substituting (2.6) into (2.7), we have
\[(\lambda - \bar{\lambda})g \otimes g = (\bar{\mu} - \mu)\psi \otimes \psi.\] \hspace{1cm} (2.8)
This means that $\lambda = \bar{\lambda}$ if and only if $\bar{\mu} = \mu$. If $Im(\lambda) = Im(\mu) = 0$, then

$$f \otimes g + \phi \otimes \psi = \lambda g \otimes g + \mu g \otimes \phi,$$

and $f \otimes g + \phi \otimes \psi$ is a self-adjoint operator. If $Im(\lambda)$ and $Im(\mu)$ both are nonzero, (2.8) becomes

$$g \otimes g + \frac{Im(\mu)}{Im(\lambda)} \psi \otimes \psi = 0.$$

By Lemma 2.3, we have

$$g = a \frac{Im(\mu)}{Im(\lambda)} \psi, \psi = -ag, a \in \mathbb{C} \setminus \{0\},$$

and $|a| \left(\frac{Im(\mu)}{Im(\lambda)} \right) = -1$.

Case II

If both \{f, g\} and \{\phi, \psi\} are linearly independent, by Gram-Schmidt procedure, there exist two nonzero vectors x and y such that

$$\langle y, \psi \rangle = 1, \langle y, \phi \rangle = 0,$$

$$\langle x, \phi \rangle = 1, \langle x, \psi \rangle = 0.$$

Applying operator equation (2.7) to x and y give

$$\phi = -\langle y, g \rangle f + \langle y, f \rangle g,$$

$$\psi = \langle x, g \rangle f - \langle x, f \rangle g.$$

Let $a_{11} = -\langle y, g \rangle, a_{12} = \langle y, f \rangle, a_{21} = \langle x, g \rangle$ and $a_{22} = -\langle x, f \rangle$. Write

$$\begin{pmatrix} \phi \\ \psi \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}. \tag{2.9}$$

Substituting (2.9) into (2.7), we have

$$f \otimes g + (a_{11} f + a_{12} g) \otimes (a_{21} f + a_{22} g)$$

$$= g \otimes f + (a_{21} f + a_{22} g) \otimes (a_{11} f + a_{12} g).$$

After simplifying we get

$$(a_{11} \bar{a}_{21} - a_{11} a_{21}) f + (a_{12} \bar{a}_{21} - a_{11} a_{22} - 1) g) \otimes f$$

$$= (a_{12} \bar{a}_{22} - a_{12} \bar{a}_{22} + (a_{12} a_{21} - a_{11} a_{22} - 1) f) \otimes g.$$

Since \{f, g\} is linearly independent and Lemma 2.3,

$$a_{11} \bar{a}_{21} - a_{11} a_{21} = 0,$$

$$a_{12} \bar{a}_{22} - a_{12} \bar{a}_{22} = 0,$$

$$\bar{a}_{12} a_{21} - a_{11} \bar{a}_{22} = 1.$$

The converse follows immediately from the above reasoning. □

Define an operator V on L^2 by

$$V f(w) = \overline{w} f(w)$$
for \(f \in L^2 \). It is easy to check that \(V \) is anti-unitary. The operator \(V \) satisfies the following properties [29, Lemma 2.1]:

\[
V^2 = I, \\
VPV = (I - P), \\
VH_f V = H_f^*.
\]

Lemma 2.6. If \(f \) and \(g \) are in \(L^\infty \), then

\[
T_z T_f T_g T_z - T_f T_g = (V H_f 1) \otimes (V H_g 1).
\]

Proof. By the following identity:

\[
I - T_z T_f T_g T_z = 1 \otimes 1,
\]

we have

\[
T_z T_f T_g T_z = T_z T_f (1 \otimes 1 + T_z T_z) T_g T_z \\
= T_z T_f (1 \otimes 1) T_g T_z + T_z T_f T_z T_g T_z \\
= T_z T_f (1 \otimes 1) T_g T_z + T_f T_g \\
= (T_z f 1) \otimes (T_z g 1) + T_f T_g.
\]

On the other hand, one easily verifies that

\[
T_z f 1 = P z f 1 = PV \bar{f} = VP_{-} \bar{f} = VH_f 1,
\]

Thus,

\[
T_z T_f T_g T_z - T_f T_g = (V H_f 1) \otimes (V H_g 1).
\]

\(\square \)

Next, we present a proof of the result of K. Stroethoff [28, Theorem 4.4].

Lemma 2.7. If \(f, g, \phi \) and \(\psi \) are in \(L^\infty (\mathbb{T}) \), then \(T_f T_g + T_\phi T_\psi \) is a Toeplitz operator if and only if

\[
(V H_f 1) \otimes (V H_g 1) + (V H_\phi 1) \otimes (V H_\psi 1) = 0
\]

if and only if one of the following cases holds:

1. either \(\bar{f} \) or \(g \) is analytic and either \(\bar{\phi} \) or \(\psi \) is analytic;
2. \(f - \lambda \phi \in \overline{H^2}, \psi + \lambda g \in H^2 \), where \(\lambda \in \mathbb{C} \setminus \{0\} \).

In this case, \(T_f T_g + T_\phi T_\psi = T_{fg + \phi \psi} \).

Proof. By [9, Theorem 6] and Lemma 2.6 we get that \(T_f T_g + T_\phi T_\psi \) is a Toeplitz operator if and only if

\[
T_z (T_f T_g + T_\phi T_\psi) T_z = T_f T_g + T_\phi T_\psi.
\]

if and only if

\[
(V H_f 1) \otimes (V H_g 1) + (V H_\phi 1) \otimes (V H_\psi 1) = 0.
\]

(2.10)

If (2.10) holds, Lemma 2.3 yields

1. either \(\bar{f} \) or \(g \) is analytic and either \(\bar{\phi} \) or \(\psi \) is analytic; or
2. \(f - \lambda \phi \in \overline{H^2}, \psi + \lambda g \in H^2 \), where \(\lambda \) is a constant.
Conversely, if either \tilde{f} or g is analytic and either $\tilde{\phi}$ or ψ is analytic, by [9, Theorem 8], we have
\[T_f T_g + T_{\phi} T_{\psi} = T_{fg + \phi \psi}. \]

An easy computation gives
\begin{equation}
T_f T_g + T_{\phi} T_{\psi} = T_f T_g - T_f g + T_f g + T_{\phi} \psi + T_{\phi} T_{\psi}
= -H_f^* H_g - H_{\phi}^* H_{\psi} + T_{fg + \phi \psi}.
\end{equation}

If $f - \lambda \phi \in \overline{H^2}$, $\psi + \lambda g \in H^2$, where λ is a constant, then
\begin{align*}
- H_f^* H_g - H_{\phi}^* H_{\psi} \\
= - H_{\phi}^* H_{\phi} - H_{\phi}^* H_{\lambda g} \\
= - \lambda H_{\phi}^* H_g + \lambda H_{\phi}^* H_g = 0.
\end{align*}

\begin{lemma}
If f, g, ϕ and ψ are in L^∞, then $T_f T_g + T_{\phi} T_{\psi}$ is not a Toeplitz operator and is self-adjoint if and only if one of the following cases holds:
\begin{enumerate}
\item either f or $g \in H^2$, $\tilde{\phi} \notin H^2$ and $\psi \notin H^2$, $\tilde{\phi} - a \psi \in H^2$, $a \in \mathbb{R} \setminus \{0\}$, $fg + \phi \psi$ is real-valued.
\item either ϕ or $\psi \in H^2$, $f \notin H^2$ and $g \notin H^2$, $\tilde{f} - bg \in H^2$, $b \in \mathbb{R} \setminus \{0\}$, $fg + \phi \psi$ is real-valued.
\item $\tilde{f}, g, \tilde{\phi}$ and ψ are not in H^2, $fg + \phi \psi$ is real-valued.
\begin{enumerate}
\item $\tilde{f} - \lambda g \in H^2$ and $\tilde{\phi} - \mu \psi \in H^2$. where $\lambda, \mu \in \mathbb{C} \setminus \{0\}$;
\item $\text{Im}(\lambda) = \text{Im}(\mu) = 0$;
\item $\text{Im}(\lambda) \neq 0$ and $\text{Im}(\mu) \neq 0$, $\psi + cg \in H^2$, $c \in \mathbb{C} \setminus \{0\}$, $|c|^2 \frac{\text{Im}(\mu)}{\text{Im}(\lambda)} = -1$.
\item $\tilde{\phi} - a_{11} \tilde{f} - a_{12} g \in H^2$, and $\psi - a_{21} \tilde{f} - a_{22} g \in H^2$, where a_{11}, a_{12}, a_{21} and a_{22} are constant, $a_{11} a_{21}$ and $a_{12} a_{22}$ are real numbers, $a_{12} a_{21} - a_{11} a_{22} = 1$.
\end{enumerate}
\end{enumerate}
\end{lemma}

\begin{proof}
Assume that $T_f T_g + T_{\phi} T_{\psi}$ is not a Toeplitz operator and is self-adjoint, we have
\begin{align*}
T_f T_g + T_{\phi} T_{\psi} &= T_f T_g + T_{\phi} T_{\psi} \\
= T_f T_g + T_{\phi} T_{\psi}. \\
T_f T_g + T_{\phi} T_{\psi} &= T_f T_g + T_{\phi} T_{\psi}.
\end{align*}
By symbol map [14, 7.11] and [15, Theorem 2], we have $fg + \phi \psi$ is real-valued. By Lemma 2.6 and [9, Theorem 6] we get
\begin{align*}
(VH_f 1) \otimes (VH_g 1) + (VH_{\phi} 1) \otimes (VH_{\psi} 1)
= (VH_g 1) \otimes (VH_f 1) + (VH_{\psi} 1) \otimes (VH_{\phi} 1),
\end{align*}
and
\begin{align*}
T_f T_g + T_{\phi} T_{\psi} &= T_f T_g + T_{\phi} T_{\psi} \\
T_f T_g + T_{\phi} T_{\psi} &= T_f T_g + T_{\phi} T_{\psi}.
\end{align*}
Hence,
\begin{align*}
(VH_f 1) \otimes (VH_g 1) + (VH_{\phi} 1) \otimes (VH_{\psi} 1)
\end{align*}
is a nonzero self-adjoint operator.
If either $VH_f 1$ or $VH_g 1$ is the zero vector, and $VH_{\phi} 1$ and $VH_{\psi} 1$ are both nonzero vectors, then either $\tilde{f} \in H^2$ or $g \in H^2$, and $\tilde{\phi} \notin H^2$ and $\psi \notin H^2$. Thus
\((VH_{\bar{\phi}}1) \otimes (VH_{\psi}1)\) is a nonzero self-adjoint operator. By Lemma 2.2, we have \(\bar{\phi} - a\psi \in H^2, a \in \mathbb{R} \setminus \{0\}\).

Similarly, if either \(VH_{\bar{\phi}}1\) or \(VH_{\psi}1\) is the zero vector, and if both \(VH_f1\) and \(VH_g1\) are nonzero vectors, then either \(\bar{\phi}\) or \(\psi \in H^2, \bar{f} \notin H^2\) and \(g \notin H^2, \bar{f} - bg \in H^2, b \in \mathbb{R} \setminus \{0\}\).

If \(VH_f1, VH_g1, VH_{\bar{\phi}}1,\) and \(VH_{\psi}1\) are nonzero vectors, Lemma 2.5 now gives

(I) \(\bar{f} - \lambda g \in H^2\) and \(\bar{\phi} - \mu \psi \in H^2\). where \(\lambda, \mu \in \mathbb{C} \setminus \{0\}\);

(i) \(\lambda\) and \(\mu\) are real;

(ii) \(\text{Im}(\lambda) \neq 0\) and \(\text{Im}(\mu) \neq 0\), \(\psi + cg \in H^2, c \in \mathbb{C} \setminus \{0\}\), \(|c|\frac{2\text{Im}(\mu)}{\text{Im}(\lambda)} = -1\).

(II) \(\bar{\phi} - a_{11}\bar{f} - a_{12}g \in H^2, \psi - a_{21}\bar{f} - a_{22}g \in H^2\), where \(a_{11}, a_{12}, a_{21}\) and \(a_{22}\) are constant, \(a_{11}a_{21}\) and \(a_{12}a_{22}\) are real numbers, \(a_{11}a_{21} - a_{11}a_{22} = 1\).

To verify condition (1), an easy computation gives

\[
T_fT_g + T_{\bar{\phi}}T_{\psi} = T_{fg + \phi\psi} - T_{\phi\psi} + T_{\phi\psi} = T_{fg + \phi\psi} - H_{\phi}^*H_{\psi} = T_{fg + \phi\psi} - aH_{\psi}^*H_{\psi},
\]

\(T_{fg + \phi\psi} - aH_{\psi}^*H_{\psi}\) is self-adjoint, and condition (1) is verified.

Condition (2) is verified in the same way as condition (1).

To verify condition (3)(a)(i), using (5.3) we obtain

\[
T_fT_g + T_{\phi}T_{\psi} = T_{fg + \phi\psi} - H_f^*H_g - H_{\phi}^*H_{\psi} = T_{fg + \phi\psi} - \lambda H_g^*H_g - \mu H_{\psi}^*H_{\psi},
\]

therefore, \(T_{fg + \phi\psi} - \lambda H_g^*H_g - \mu H_{\psi}^*H_{\psi}\) is self-adjoint, and Condition (3)(a)(i) is verified.

To verify condition (3)(a)(ii): \(\bar{f}, g, \bar{\phi}\) and \(\psi\) are not in \(H^2, fg + \phi\psi\) is real-valued. \(\bar{f} - \lambda g \in H^2\) and \(\bar{\phi} - \mu \psi \in H^2\). where \(\lambda, \mu \in \mathbb{C} \setminus \{0\}\); \(\text{Im}(\lambda) \neq 0\) and \(\text{Im}(\mu) \neq 0\), \(\psi + cg \in H^2, c \in \mathbb{C} \setminus \{0\}\), \(|c|\frac{2\text{Im}(\mu)}{\text{Im}(\lambda)} = -1\). Again using (5.3) we obtain

\[
T_fT_g + T_{\phi}T_{\psi} = T_{fg + \phi\psi} - H_f^*H_g - H_{\phi}^*H_{\psi} = T_{fg + \phi\psi} - \lambda H_g^*H_g - \mu H_{\psi}^*H_{\psi} = T_{fg + \phi\psi} - (\bar{\lambda} + \bar{\mu}|c|^2)H_g^*H_g
\]

Since \(|c|^2\frac{2\text{Im}(\mu)}{\text{Im}(\lambda)} = -1, \bar{\lambda} + \bar{\mu}|c|^2\) is a real constant, \(T_{fg + \phi\psi} - (\bar{\lambda} + \bar{\mu}|c|^2)H_g^*H_g\) is self-adjoint, Condition (3)(a)(ii) is verified.

To verify condition (3)(b): \(\bar{\phi} - a_{11}\bar{f} - a_{12}g\) and \(\psi - a_{21}\bar{f} - a_{22}g\) are in \(H^2\), where \(a_{11}, a_{12}, a_{21}\) and \(a_{22}\) are constant, \(a_{11}a_{21}\) and \(a_{12}a_{22}\) are real numbers, \(a_{11}a_{21} -
that either subset \(E \) or \(T \) is unbounded.

Proof. Suppose \(T \) is a projection. Then \(T \) must be 0 and \(\phi = 0 \).

Lemma 3.1. Let \(R \) be a Hankel operator on \(H^2 \).

(1) \(\ker R \) is an invariant subspace of \(T_z \);

(2) \(R \) has nontrivial kernel if and only if the symbol of \(R \) has the form \(\bar{\theta} \phi \) where \(\theta \) is some inner function and \(\phi \in H^\infty \). Furthermore:

(a) \(\ker H_{\bar{\theta}\phi} = \theta H^2 \;
\)(b) \(H^*_{\bar{\theta}\phi} = z\theta H^2 \);

(c) \(\ker \left\{ \text{Range}(H^*_{\bar{\theta}\phi}) \right\} = (\ker H_{\bar{\theta}\phi})^\perp = H^2 \ominus \theta H^2 = K^2_\theta \).

Lemma 3.2. Let \(f, g \in L^\infty(\mathbb{T}) \). If \(T_fT_g \) is a nontrivial idempotent, then \(fg = 1 \) a.e. on \(\mathbb{T} \).

Proof. Suppose \(T_fT_g \) is a nontrivial idempotent, namely, \((T_fT_g)^2 = T_fT_g \). By symbol map \(\{14, \text{Theorem 7.11}\} \), we have \((fg)^2 = fg \). Then there exists a measurable subset \(E \) of \(\mathbb{T} \) such that

\[
(fg)(e^{i\theta}) = \begin{cases}
1, & e^{i\theta} \notin E, \\
0, & e^{i\theta} \in E.
\end{cases}
\]

If \(m(E) > 0 \), then there exists a subset \(E_1 \) of \(E \) with positive measure, such that either \(f|_{E_1} = 0 \) or \(g|_{E_1} = 0 \).

If \(f|_{E_1} = 0 \), by Guo’ Lemma \(\{20, \text{Lemma 1}\} \), then \(\ker T_f = \ker T_f = \{0\} \).

Since \(T_fT_g \) is a nontrivial idempotent, \(\ker T_fT_g \neq \{0\} \). For any nonzero vector \(x \in \ker T_fT_g \), we have \(T_gx = 0 \), hence \(\ker T_g \neq \{0\} \). By Coburn’ Lemma \(\{14, \text{7.24}\} \), \(\ker T_g^* = \ker T_g = \{0\} \).

Since \(T_fT_g \) is a nontrivial idempotent, \((T_fT_g)^* = T_gT_f \) is also a nontrivial idempotent. Hence \(\ker T_gT_f \neq \{0\} \), it is a contradiction.

If \(g|_{E_1} = 0 \), same considerations apply to \(T_gT_f \), we can also get a contradiction. Hence \(m(E) = 0 \).

Lemma 3.3. If a Toeplitz operator is a projection, it must be 0 and 1.

Proof. By \(\{9, \text{Corollary 5}\} \), the only idempotent Toeplitz operators are 0 and 1.

Hence, a Toeplitz operator cannot be a nontrivial projection.
Theorem 3.4. If \(f, g \in L^\infty(\mathbb{T}) \), then the following statements are equivalent.

1. \(T_f T_g \) is a nontrivial projection;
2. \(T_f T_g \) is a projection, and its range is a nontrivial invariant subspace of the shift operator \(T_z \);
3. There exist a nonconstant inner function \(\theta \) and a nonzero constant \(a \) such that \(f = a\theta \) and \(g = \overline{\theta}a \).

Proof. (1) \(\Rightarrow \) (2): Suppose \(T_f T_g \) is a nontrivial projection, by Lemma 2.8 (2), we have \(\overline{f} = \lambda g + h, \lambda \in \mathbb{R} \setminus \{0\}, h \in H^2 \). \(T_f T_g \) is a nontrivial projection if and only if \(I - T_f T_g \) is a nontrivial projection. By Lemma 3.2, we have \(I = T_f T_g \). Hence

\[
I - T_f T_g = T_f g - T_f T_g
= H_f^* H_g
= (\lambda H_g^* + H_h) H_g
= \lambda H_g^* H_g,
\]

thus \(\lambda H_g^* H_g \) is a nontrivial projection.

By Lemma 3.1 (1), \(\ker H_g \) is an invariant subspace of shift operator \(T_z \). Moreover,

\[
\ker H_g = \ker H_g H_g = \ker \lambda H_g^* H_g = \ker (I - T_f T_g) = \text{Range}(T_f T_g).
\]

Therefore, the range of \(T_f T_g \) is a nontrivial invariant subspace of the shift operator \(T_z \).

(2) \(\Rightarrow \) (3): By Beurling’s theorem [14, 6.11], \(\text{Range}(T_f T_g) = \theta H^2 \) for some nonconstant inner function \(\theta \). \(T_\theta T_\theta \) is the orthogonal projection of \(L^2 \) onto \(\theta H^2 \). Hence

\[
T_f T_g = T_\theta T_\theta.
\]

By Lemma 2.7, we have

\[
f - a\theta \in \overline{H^2}, \overline{\theta} - ag \in H^2, a \in \mathbb{C} \setminus \{0\}.
\]

Note that

\[
T_{\overline{a}f} T_{ag} = T_f T_g,
\]

let

\[
F \triangleq \frac{1}{a} f = \theta + \varphi,
G \triangleq ag = \psi + \bar{\theta}, \tag{3.1}
\]

where \(\varphi \) and \(\psi \) are in \(H^\infty \). Since Lemma 3.2, \(FG = 1, \overline{\theta} F \theta G = 1 \) and \(\theta \bar{F} \theta G \) is an inner function.

If \(\theta \bar{F} \theta G \neq 1 \), then \(\text{Re}(1 - \theta \bar{F} \theta G) > 0 \), by [24, Part A. 4.2.2], we have \(1 - \theta \bar{F} \theta G \) is outer. Using (3.1), then

\[
1 - \theta \bar{F} \theta G = 1 - \theta (\bar{\theta} + \varphi) \theta (\bar{\theta} + \psi)
= 1 - (1 + \theta \varphi)(1 + \theta \psi)
= -\theta (\varphi + \psi + \varphi \psi),
\]
it is a contradiction. Hence $\theta F \theta G = 1$. Note that θF and θG are in H^∞, by [14, 6.20], θF and θG are outer functions. Since $\theta F \theta G = 1 = \bar{\theta} F \theta G$, $\theta F = \frac{1}{\bar{\theta} G}$, $\theta F = (\frac{1}{\bar{\theta} G})$, and θF and θG are real-valued functions in H^∞, there exists a nonzero real constant c such that

$$F = c\theta \quad \text{and} \quad G = \frac{\bar{\theta}}{c}.$$

Combining this with (3.1), we arrive at

$$(c - 1)\theta = \varphi \quad \text{and} \quad \frac{1}{c} - 1)\bar{\theta} = \psi.$$

Since θ is not a constant, $c = 1$, it follows that

$$F = \theta \quad \text{and} \quad G = \bar{\theta}.$$

From (3.1), we have

$$f = a\theta \quad \text{and} \quad g = \frac{\bar{\theta}}{a}.$$

(3) \Rightarrow (1): Suppose $f = a\theta$ and $g = \frac{\theta}{a}$. Then

$$T_f T_g = T_\theta T_{\bar{\theta}}.$$

Hence $T_f T_g$ is a nontrivial projection operator. \hfill \Box

Remark 3.5. Widom [14, 7.46] proved that the spectrum of a Toeplitz operator is a connected subset of complex plane. It is natural to ask whether the spectrum of the product of two Toeplitz operator is connected? Since the spectrum of a projection operator is $\{0, 1\}$, by Theorem 3.3, the answer to the question is negative.

Lemma 3.6. [16, Theorem 7.22] Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, and A an operator in $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ Then the following are equivalent:

1. A is a partial isometry;
2. A^* is a partial isometry;
3. AA^* is an orthogonal projection, $AA^* = P_{(\ker A^*)^\perp}$;
4. A^*A is an orthogonal projection, $A^*A = P_{(\ker A)^\perp}$.

Using Theorem 3.4, we present a new proof of the result of A. Brown and R. Douglas [8].

Corollary 3.7. If $f \in L^\infty$ then the following statements are equivalent.

1. T_f is a partial isometry;
2. T_f^* is a partial isometry;
3. either f or \bar{f} is inner.

Proof. Using Lemma 3.6 and Theorem 3.4. \hfill \Box
4. The product of two Hankel operators is a projection

Theorem 4.1. If \(f, g \in L^\infty \) then the following statements are equivalent.

1. \(H_f^*H_g \) is a nontrivial projection operator;
2. The range of \(H_f^*H_g \) is a model space \(K^2_\theta \), where \(\theta \) is an inner function;
3. \(\bar{f} + \bar{\theta} \bar{g} + \frac{\bar{\theta}}{\mu} g \in H^2 \), where \(\mu \in \mathbb{C} \setminus \{0\} \).

Proof. (1) \(\Rightarrow \) (2): We can suppose \(T_{fg} - T_f T_g \) is a nontrivial projection because \(H_f^*H_g = T_{fg} - T_f T_g \). By Lemma 2.8(2), we have

\[
\bar{f} = \lambda g + h, \quad \lambda \in \mathbb{R} \setminus \{0\}, \quad h \in H^2.
\]

Moreover,

\[
T_{fg} - T_f T_g = H_f^*H_g = (\lambda H_g^* + H_h) H_g = \lambda H_g^* H_g.
\]

Hence,

\[
\ker(H_f^*H_g) = \ker(\lambda H_g^* H_g) = \ker H_g.
\]

By Lemma 3.1 (1), \(\ker H_g \) is an invariant subspace of shift operator \(T_z \), by Beurling’s theorem [14, 6.11], \(\ker(H_f^*H_g) = \theta H^2 \) for some nonconstant inner function \(\theta \). \(T_\theta T_\bar{\theta} \) is the orthogonal projection of \(L^2 \) onto \(\theta H^2 \). Hence

\[
\lambda H_g^* = I - T_\theta T_\bar{\theta},
\]

\[
\lambda(T_{\theta g} - T_\theta T_{\bar{\theta} g}) = I - T_\theta T_\bar{\theta},
\]

\[
T_{\lambda |\theta|^2 - 1} = T_{\theta g} - T_\theta T_{\bar{\theta} g}.
\]

Since projection operator is positive, \(\lambda > 0 \). By Lemma 2.7, we have

\[
\lambda g + \mu \theta \in \overline{H^2}, \quad \bar{\theta} + \mu g \in H^2, \quad \mu \in \mathbb{C} \setminus \{0\}.
\]

(4.2)

Hence,

\[
(\lambda - |\mu|^2)g \in H^2.
\]

If \(\lambda \neq |\mu|^2 \), then \(g \in H^2 \) and \(H_g = 0 \). By assumption \(T_{fg} - T_f T_g = \lambda H_g^* H_g \) is a nontrivial projection, so \(\lambda = |\mu|^2 \). Using (4.2), we have

\[
g + \frac{\bar{\theta}}{\mu} \in H^2.
\]

(4.3)

Combining (4.3) with (4.1) gives

\[
f + \mu \theta \in \overline{H^2}.
\]

(4) \(\Rightarrow \) (1): Suppose \(f + \mu \theta \in \overline{H^2} \), \(g + \frac{\bar{\theta}}{\mu} \in H^2 \), \(\mu \in \mathbb{C} \setminus \{0\} \). Then

\[
H_f^*H_g = H_f^* H_\mu H_{\bar{\mu}}
\]

\[
= H_\theta H_{\bar{\theta}}
\]

\[
= I - T_\theta T_{\bar{\theta}}.
\]
We next derive an alternative proof of [25, Theorem 2.6].

Corollary 4.2. If $f \in L^\infty$ then H_f is a partial isometry if and only if \bar{f} is inner.

Proof. Using Lemma 3.6 and Theorem 4.1. □

5. **Projection as self-commutators of Toeplitz operators**

The problem 237 in Paul R. Halmos’s famous text: A Hilbert space problem book [22] states: can $T^*T - TT^*$ be a projection and, if so, how? He discusses the following two cases.

(a) If T is an abnormal operator of norm 1, such that $T^*T - TT^*$ is a projection, then T is an isometry.

(b) Does the statement remain true if the norm condition is not assumed?

In particular, if T is a Toeplitz operator. Let $f \in L^\infty(T)$, we consider that when is $T_f^*T_f - T_fT_f^*$ a projection?

Define

$$Q = T_f^*T_f - T_fT_f^*.$$

Example 5.1. Corresponding case (a), we next show that if there is a constant λ such that $\|T_{f+\lambda}\| \leq 1$ and Q is a nontrivial projection, then $T_{f+\lambda}$ is an isometry. Note that

$$T_{f+\lambda}T_{f+\lambda} - T_{f+\lambda}T_{f+\lambda}^* = T_f^*T_f - T_fT_f^*, \quad \lambda \in \mathbb{C}.$$

Using the idea of [22, Solution 237] and $\|T_f\| = \|f\|_\infty$ we have

$$\|h\|^2 \geq \|T_{f+\lambda}h\|^2 = \langle T_{f+\lambda}^*T_{f+\lambda}h, h \rangle = \langle T_{f+\lambda}^*T_{f+\lambda}h, h \rangle + \langle Qh, h \rangle$$

$$= \|T_{f+\lambda}^*h\|^2 + \|Qh\|^2.$$

Replace h by $Qx(x \in H^2)$ in the above formula, we have $T_{f+\lambda}^*Q = 0$ and $T_{f+\lambda}$ is quasinormal. A Theorem in [3] tells us that a quasinormal Toeplitz operator is either normal or analytic and $f + \lambda = c\theta$, where c is a constant and θ is an inner function. Q is a nontrivial projection, we have $f + \lambda = c\theta$. Hence,

$$Q = T_f^*T_f - T_fT_f^*$$

$$= T_f^2 - T_fT_f$$

$$= H_f^*H_f$$

$$= |c|^2 H_{\bar{\theta}}^*H_{\bar{\theta}}.$$

Since Q is an idempotent, $|c| = 1$. By [9, Corollary 3], $T_{f+\lambda}$ is an isometry if and only if $f + \lambda$ is an inner function. In this case, $Q = H_{\bar{\theta}}^*H_{\bar{\theta}}$ is the projection onto model space K_{θ}^2.

Example 5.2. Let us recall Abrahamse’s theorem [1]. If

1. f or \bar{f} is of bounded type;
2. T_f is hyponormal;
3. $\ker Q$ is invariant for T_f.
then T_f is normal or analytic.

Using the above theorem, if

1. f or \bar{f} is of bounded type;
2. Q is a nontrivial projection;
3. $\ker Q$ is invariant for T_f,

then f is analytic. Hence,

$$Q = T_f^*T_f - T_fT_f^* = T_{|f|^2} - T_f T_{\bar{f}} = H_f^*H_{\bar{f}}.$$

By Theorem 4.1, there is a constant c such that $f = \theta + c$, where θ is an inner function. In this case, $Q = H_{\bar{\theta}}^*H_{\bar{\theta}}$ is the projection onto model space K_{θ}^2.

From the above two examples, we need to consider two things: if Q is a non-trivial projection,

1. when is the range of Q a model space?
2. is the range of Q necessarily a model space?

Lemma 5.3. If $\varphi \in L^\infty$ then $T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^*$ is the projection on to a model space K_{θ}^2 if and only if $\varphi = a\theta + b\bar{\theta} + c$, where a, b and c are constant with $|a|^2 - |b|^2 = 1$.

Proof. If $\varphi = a\theta + b\bar{\theta} + c$, where a, b and c are constant with $|a|^2 - |b|^2 = 1$, then

$$T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^* = T_{\varphi}^*T_{\varphi} - T_{\varphi}\bar{\varphi} + T_{\varphi}\bar{\varphi} - T_{\varphi}T_{\varphi}^* = H_{\varphi}^*H_{\varphi} - H_{\varphi}^*H_{\varphi} = (|a|^2 - |b|^2)H_{\bar{\theta}}^*H_{\bar{\theta}} = H_{\bar{\theta}}^*H_{\bar{\theta}}.$$

Conversely, suppose $T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^*$ is the projection on to a model space $K_{\bar{\theta}}^2$, then

$$T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^* = I - T_{\theta}T_{\bar{\theta}}.$$

Write $\varphi = f + \bar{g}$, f and g in H^2, using Lemma 2.6, we have

$$(VH_{\theta}1) \otimes (VH_{\bar{\theta}}1) - (VH_f1) \otimes (VH_{\bar{f}}1) = -(VH_{\bar{\theta}}1) \otimes (VH_{\bar{\theta}}1).$$

Case 1.

Assume that $\{H_{\bar{\theta}}1, H_f1\}$ is linearly dependent, there are two constants k_1 and k_2 such that

$$k_1H_{\bar{\theta}}1 + k_2H_f1 = 0.$$

If k_1 is not zero, let $\lambda = \frac{k_2}{k_1}$, then $\bar{g} - \lambda\bar{f} \in H^2$ and

$$T_{\varphi}^*T_{\varphi} - T_{\varphi}T_{\varphi}^* = H_{\varphi}^*H_{\varphi} - H_{\varphi}^*H_{\varphi} = H_f^*H_f - H_{\bar{\theta}}^*H_{\bar{\theta}} = (1 - |\lambda|^2)H_f^*H_f.$$
Then \((1 - |\lambda|^2)H_f^*H_f = H_\theta^*H_\theta\) is a projection, and \(1 - |\lambda|^2 > 0\). By Theorem 4.1, we have \(f + \frac{\mu}{\sqrt{1 - |\lambda|^2}} \theta \in \mathcal{H}^2, \mu\) is unimodular constant. Therefore, \(\varphi = -\frac{\mu}{\sqrt{1 - |\lambda|^2}} \theta - \frac{\lambda \mu}{\sqrt{1 - |\lambda|^2}} \theta + c\), where \(c\) is a constant. Let \(a = -\frac{\mu}{\sqrt{1 - |\lambda|^2}}\) and \(b = -\frac{\lambda \mu}{\sqrt{1 - |\lambda|^2}}\), we have
\[
\varphi = a\theta + b\bar{\theta} + c, \tag{5.2}
\]
where \(|a|^2 - |b|^2 = 1\). If \(k_2\) is not zero, repeating the previous reasoning, we can prove the same equality (5.2) hold.

Case 2.

Assume that \(\{H_{\bar{g}}, H_f\}\) is linearly independent. Since \(V\) is anti-unitary, \(\{VH_{\bar{g}}, VH_f\}\) is linearly independent, by Gram-Schmidt procedure, there exist a nonzero function \(x_0\) in span \(\{VH_{\bar{g}}, VH_f\}\) such that
\[
\langle VH_{\bar{g}}, x_0 \rangle = 1, \quad \langle VH_f, x_0 \rangle = 0.
\]
Applying operator equation (5.1) to \(x_0\) gives
\[
VH_{\bar{g}} = - \langle x_0, VH_{\bar{g}} \rangle VH_{\bar{g}}, \quad VH_f = - \langle VH_{\bar{g}}, x_0 \rangle H_{\bar{g}}.
\]
Let \(b = -\langle x_0, VH_{\bar{g}} \rangle\), thus \(g - b\theta \in \mathcal{H}^2\), and \(g - b\theta\) is a constant.

Similarly, there exists a constant \(a\) such \(f - a\theta\) is a constant. Therefore,
\[
T_\varphi^*T_\varphi - T_\varphi T_\varphi^* = H_f^*H_f - H_{\bar{g}}^*H_{\bar{g}} = (|a|^2 - |b|^2)H_{\bar{g}}^*H_{\bar{g}},
\]
and \(|a|^2 - |b|^2 = 1\). \(\square\)

Recall the definition of truncated Toeplitz operator. For \(\varphi\) in \(L^2(\mathbb{T})\), the truncated Toeplitz operator \(A_\varphi^\theta\) is densely defined on \(K_\varphi^\theta\) by
\[
A_\varphi^\theta f = (P - T_\theta T_\varphi)(\varphi f).
\]
The algebraic properties of truncated Toeplitz operator will play key role in the following Lemma.

Lemma 5.4. If \(\varphi \in L^\infty\) then \(T_\varphi^*T_\varphi - T_\varphi T_\varphi^*\) is a nontrivial projection operator and its range is not a Model space if and only if \(\varphi = uv + \bar{v} + a\), where \(u\) is inner, \(v \in \mathcal{H}^2\) with \(|v|^2 - 1 \in u\mathcal{H}^2 + u\mathcal{H}^2\) and \(a\) is constant.

Proof. Assume that \(T_\varphi^*T_\varphi - T_\varphi T_\varphi^*\) is a projection. Since projection is positive, \(T_\varphi^*T_\varphi - T_\varphi T_\varphi^*\) is positive and \(T_\varphi\) is hyponormal. We recall the characterization of Hyponormality of Toeplitz operators form Carl C. Conwen [12]. The theorem can be stated as follows:

If \(\varphi\) is in \(L^\infty(\mathbb{T})\), where \(\varphi = f + \bar{g}\) for \(f\) and \(g\) in \(\mathcal{H}^2\), then \(T_\varphi\) is hyponormal if and only if
\[
g = c + T_uf \tag{5.3}
\]
for some constant \(c\) and some function \(u\) in \(H^\infty\) with \(\|u\|_\infty \leq 1\).
According to Conwen’s Theorem, if Q is a nontrivial projection, using (5.3), we have

$$Q = H^*_f(I - S_u S_u)^{1/2} H_f,$$

$$= H^*_f(I - S_u S_u)^{1/2} H_f,$$

$$= H^*_f(I - S_u S_u)^{1/2} H_f,$$

$$= H^*_f(I - S_u S_u) H_f,$$

$$= H^*_f(I - S_u S_u) H_f,$$

$$= H^*_f(I - S_u S_u) H_f,$$

where $S_u x = P_+(ux), x \in (H^2)^\perp$.

Since $\|u\|\infty \leq 1$ and $\|S_u\| = \|u\|\infty, S_u$ is a contraction, we have $I - S_u S_u$ is positive, and $\ker(I - S_u S_u) = \ker(I - S_u S_u)^{1/2}$.

We claim that if $I - S_u S_u$ is not injective, then u is an inner function. To see this, let x be a nonzero vector such that $(I - S_u S_u)x = 0$.

Hence,

$$\langle (I - S_u S_u)x, x \rangle = \langle x, x \rangle - \langle S_u x, S_u x \rangle$$

$$= \|x\|^2 - \|S_u x\|^2 = 0$$

and

$$\int_T |x|^2 dm = \|x\|^2 = \|S_u x\|^2 = \|P_- ux\|^2 \leq \|ux\|^2 = \int_T |ux|^2 dm.$$

Since $\|u\|\infty \leq 1$,

$$|ux|^2 - |x|^2 = (|u|^2 - 1)|x|^2 \leq 0.$$

But $\int_T (|u|^2 - 1)|x|^2 dm \geq 0$, thus $(|u|^2 - 1)|x|^2 = 0.a.e$ on T. Hence, $|u| = 1.a.e$ on T, and u is an inner function.

Write

$$Q = H^*_f(I - S_u S_u)^{1/2} (I - S_u S_u)^{1/2} H_f,$$

$$= ((I - S_u S_u)^{1/2} H_f)^* (I - S_u S_u)^{1/2} H_f,$$

note that $\ker Q = \ker((I - S_u S_u)^{1/2} H_f)$. According to the above claim, we have that if u is not an inner function, then $\ker((I - S_u S_u)^{1/2} = \ker(I - S_u S_u) = \{0\}$ and $\ker Q = \ker H_f$. By Lemma 3.1(1), H_f is an invariant subspace of T_z. Hence, the range of Q is a model space, it is a contradiction.

It remains to consider the case that u be an inner function. Write

$$Q = H^*_f(I - S_u S_u) H_f$$

$$= H^*_f(S_uu - S_u S_u) H_f$$

$$= H^*_f H_uH^*_u H_f.$$

By Gu’s theorem [18, Theorem 1.1], for two Hankel operators H_u and H_f, either $\ker H^*_u H_f = \ker H_f$ or $\ker H^*_f H_u = \ker H_u$.
If \(\ker H_\alpha^* H_f = \ker H_f \), then \(\ker Q = \ker H_\alpha^* H_f = \ker H_f \). By Lemma 3.1 (1), \(\ker H_f \) is an invariant subspace of \(T_z \). Hence, the range of \(Q \) is a model space, it is a contradiction.

By Lemma 3.6, \(H_\alpha^* H_a H_\alpha^* H_f \) is an orthogonal projection, then \(H_\alpha^* H_f H_\alpha^* H_a \) is an orthogonal projection.

If \(\ker H_f H_a = \ker H_a = uH^2 \) (Lemma 3.1 (2)(a)), then
\[
H_\alpha^* H_f H_\alpha^* H_a f = H_\alpha^* H_a. \tag{5.4}
\]

Using the property \(V \), we have
\[
VH_\alpha^* H_f H_\alpha^* H_a V = H_\alpha H_f H_\alpha^* H_a,
\]
\[
VH_\alpha^* H_a V = H_\alpha H_a^*.
\]

Hence
\[
H_\alpha H_f H_\alpha^* H_a = H_\alpha H_a^*. \tag{5.5}
\]

Note that \(\ker H_a^* = \overline{zuH^2} \) (Lemma 3.1 (2)(a)) and \(\overline{zH^2} \oplus \overline{zuH^2} = \overline{zK^2_u} = \overline{\bar{u}K^2_u} \).

For every \(h \in K^2_u \), we have \(H_\alpha^* \bar{u}h = P(u\bar{u}h) = h \), and
\[
\langle H_\alpha^* H_f H_\alpha^* \bar{u}h, \bar{u}h \rangle = \langle H_\alpha H_\alpha^* \bar{u}h, \bar{u}h \rangle,
\]
\[
\langle H_\alpha^* H_f H_\alpha^* \bar{u}h, H_\alpha^* \bar{u}h \rangle = \langle H_\alpha^* \bar{u}h, H_\alpha^* \bar{u}h \rangle,
\]
\[
\langle H_f H_f h, h \rangle = \langle h, h \rangle.
\]

Hence
\[
P_{K^2_u}(H_\alpha^* H_f)|_{K^2_u} = I_{K^2_u},
\]
where \(P_{K^2_u} \) is the orthogonal projection onto \(K^2_u \) and \(I_{K^2_u} \) is the identity operator on \(K^2_u \).

An easy computation gives
\[
P_{K^2_u} H_f H_f h = P_{K^2_u} P f(I - P) \tilde{f} h
\]
\[
= P_{K^2_u} f(I - P) \tilde{f} h
\]
\[
= P_{K^2_u} f \tilde{f} h - P_{K^2_u} f P \tilde{f} h
\]
\[
= P_{K^2_u} f \tilde{f} h - P_{K^2_u} f(P - uP \bar{u} + uP \bar{u}) \tilde{f} h
\]
\[
= P_{K^2_u} f \tilde{f} h - P_{K^2_u} f(P_{K^2_u} + uP \bar{u}) \tilde{f} h
\]
\[
= P_{K^2_u} f \tilde{f} h - P_{K^2_u} f P_{K^2_u} \tilde{f} h
\]
\[
= A_{\tilde{f}h}^u - A^u_{\tilde{f}h}.
\]

Hence
\[
A_{\tilde{f}h}^u - A^u_{\tilde{f}h} = I_{K^2_u}, \tag{5.6}
\]
\[
A^u_{\tilde{f}h} = A^u_{\tilde{f}h - 1}.
\]

Since \(f \) is analytic, using N. A. Sedlock’ theorem [27, Theorem 5.2] leads to \(A^u_{\tilde{f}} = cI_{K^2_u} \), where \(c \) is a constant, and \(A^u_{\tilde{f} - c} \) is the zero operator, then \(f - c \in uH^2 \) [26, Theorem 3.1]. There is a function \(v \in H^2 \), such that \(f = c + uv \). Since (5.3), \(\varphi = uv + \bar{v} + a \), where \(a \) is a constant.
Substituting \(f = c + uv \) into (5.4), we have

\[
H_{\bar{a}}^*H_{\bar{u}\bar{v}}H_{\bar{a}}^*H_{\bar{a}} = H_{\bar{a}}^*H_{\bar{a}}. \tag{5.7}
\]

Repeating the above reasoning form (5.5) again, we have

\[
A_{uv}^uA_{uv}^u = A_{\|v\|^2-1}^u.
\]

Note that \(A_{uv}^u = A_{f-c}^u = 0 \), hence \(A_{\|v\|^2-1}^u \) is zero operator, using [26, Theorem 3.1] again, we have \(\|v\|^2 - 1 \in uH^2 + \overline{uH^2} \).

Conversely, if \(\varphi = uv + \bar{v} + c \), where \(u \) is inner, \(v \in H^2 \) with \(\|v\|^2 - 1 \in uH^2 + \overline{uH^2} \) and \(c \) is constant, by Lemma 5.3, the range of \(Q \) is not a model space. An easy computation gives

\[
T_{\bar{v}}T_{\bar{v}} - T_{\bar{v}}T_{\bar{v}} = H_{\bar{u}}^*H_{\bar{u}} - H_{\bar{u}}^*H_{\bar{u}} = T_{uv\bar{u}} - T_{uv\bar{u}} = (T_{v\bar{u}} - T_{vT\bar{v}})
\]

\[
= T_{v\|v\|^2 - 1} - T_{v\|v\|^2 - 1} = T_{v} - T_{vT\bar{v}}
\]

\[
= T_{v}(I - T_{u\bar{u}}T_{\bar{v}}
\]

\[
= T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}}.
\]

Note that \(T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}} = (H_{\bar{u}}T_{\bar{v}})^*H_{\bar{u}}T_{\bar{v}} \) is positive, must be self-adjoint.

It remains to show that \(T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}} \) is an idempotent. Since \(v \) is analytic,

\[
T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}}T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}} = T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\|v\|^2}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}}.
\]

let \(\|v\|^2 = uh + \bar{u}h + 1 \), \(h, h_1 \in H^2 \), for every \(k \) in \(K_{\bar{u}} \), we have

\[
H_{\bar{u}}^*H_{\bar{u}}T_{\|v\|^2}k = H_{\bar{u}}^*H_{\bar{u}}P(uh + \bar{u}h + 1)k
\]

\[
= H_{\bar{u}}^*H_{\bar{u}}P(uhk + \bar{u}h_1k + k)
\]

\[
= H_{\bar{u}}^*H_{\bar{u}}(uhk + k)
\]

\[
= k.
\]

Since \(\text{Range}(H_{\bar{u}}^*H_{\bar{u}}) = K_{\bar{u}} \), \(T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}}T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}} = T_{v}H_{\bar{u}}^*H_{\bar{u}}T_{\bar{v}}. \)

Remark 5.5. In fact, \(\|h\|_{\infty} = 1 \). Since \(\ker Q \) is nontrivial, there is a nonzero vector \(x \) such that

\[
H_{\bar{f}}^*H_{\bar{f}}x = H_{\bar{f}}^*H_{\bar{f}}x \neq 0, \quad \|H_{\bar{f}}x\| = \|H_{\bar{f}}x\|
\]

and \(\|H_{\bar{f}}x\| = \|S_{\bar{h}}H_{\bar{f}}x\| \leq \|S_{\bar{h}}\|\|H_{\bar{f}}x\|. \) Hence \(\|S_{\bar{h}}\| = \|h\|_{\infty} \geq 1 \).

Lemma 5.6. If \(v \in H^2 \) and \(u \) is inner, \(\|v\|^2 - 1 \in uH^2 + \overline{uH^2} \) if and only if there is a function \(h \in H^2 \) such that \(\|v\|^2 = Re(uh + 1) \).
Proof. Since
\[Re(uh + 1) = \frac{1}{2}(uh + 1 + \bar{u}h + 1) = u\left(\frac{1}{2}h\right) + \bar{u}\left(\frac{1}{2}h\right) + 1, \]

\[|v|^2 = Re(uh + 1) \implies |v|^2 - 1 \in uH^2 + \bar{u}H^2. \]

Suppose \(|v|^2 - 1 \in uH^2 + \bar{u}H^2\), then there exist \(F, G \in H^2\) such that \(|v|^2 - 1 = uF + \bar{u}G\), and \(uF + \bar{u}G\) is real-valued, \(uF + \bar{u}G = \bar{u}F + uG\). Hence,
\[u(F - G) = \bar{u}(\bar{F} - G). \]

The left-hand side of the above equation is analytic, the right-hand side is conjugate analytic, \(u(F - G)\) is equals to a constant \(\lambda\). If \(\lambda\) is not zero, then \(u\frac{1}{\lambda}(F - G) = 1\), and \(u\) is outer [14, 6.20], that is a contradiction. Thus \(\lambda = 0, F = G\), and \(|v|^2 = Re(u(2F) + 1)\). \(\square\)

Remark 5.7. The set \(\Theta = \{v : v \in H^2, |v|^2 - 1 \in uH^2 + \bar{u}H^2\}\) is not empty. It is easy to see that if \(v\) is inner, \(v \in \Theta\). Using (5.8), we have \(Q = T_vT_{\bar{v}} - T_{uv}T_{\bar{uv}}\), and the range of \(Q\) is \(vH^2 \oplus vuH^2 = vK^2\). Moreover, \(u \pm 1 \in \Theta\).

The following theorem summarizes Lemma 5.3, Lemma 5.4 and Lemma 5.6.

Theorem 5.8. If \(\varphi \in L^\infty\) then \(T^*_\varphi T_{\varphi} - T_{\varphi}T^*_\varphi\) is a nontrivial projection operator if and only if one of following conditions holds

1. The range of \(T^*_\varphi T_{\varphi} - T_{\varphi}T^*_\varphi\) is a model space, and \(\varphi = ab + b\bar{\theta} + c\), where \(\theta\) is an inner function, \(a, b\) and \(c\) are constant with \(|a|^2 - |b|^2 = 1\);

2. The range of \(T^*_\varphi T_{\varphi} - T_{\varphi}T^*_\varphi\) is not a model space, and \(\varphi = uv + \bar{v} + c\), where \(u\) is inner, \(c\) is constant, \(v \in H^2\) with \(|v|^2 = Re(uh + 1)(h \in H^2)\).

6. Further discussion

Now we study the \(C^*\)-algebra \(\mathcal{T}_u\) generated by \(\{T_uT_{\bar{u}} : u\) is an inner function\}. Since the symbol mapping of every element in \(\mathcal{T}_u\) is constant, \(\mathcal{T}_u\) is a proper subalgebra of \(\mathcal{S}_{L^\infty}\). The following theorem will give some information of the structure of \(\mathcal{T}_u\).

Theorem 6.1. \(\mathcal{T}_u\) is irreducible and contains all compact operators.

Proof. Suppose that \(\mathcal{T}_u\) is reducible. Then there exists a nontrivial projection \(E\) which commutes with each \(T_uT_{\bar{u}}\) for all inner function \(u\). If \(u\) is a Möbius transform
\[u = \varphi_z(w) = \frac{z - w}{1 - \bar{z}w}, \]
and \(k_z\) denote the normalized reproducing kernel at \(z : k_z(w) = \frac{\sqrt{1-|z|^2}}{1-\bar{z}w}\). We have the following identity:
\[I - k_z \otimes k_z = T_{\varphi_z}T_{\varphi_z}, \tag{6.1} \]
the identity can be found in [31, p.480]. Hence,

\[E(k_z \otimes k_z) = (k_z \otimes k_z)E \]

\[(Ek_z) \otimes k_z = k_z \otimes (Ek_z) \]

\[(Ek_z, k_z)Ek_z = (Ek_z, Ek_z)k_z \]

\[\|Ek_z\|^2 Ek_z = \|Ek_z\|^2 k_z. \]

If \(Ek_z \) is not a zero vector, we have \(Ek_z = k_z \). Thus unit disc \(\mathbb{D} \) is the disjoint union of two sets, say \(\mathbb{D} = \Sigma_1 \cup \Sigma_2 \), where \(\Sigma_1 = \{ z \in \mathbb{D} : Ek_z = 0 \} \) and \(\Sigma_2 = \{ z \in \mathbb{D} : Ek_z = k_z \} \). So, at least one of \(\Sigma_1 \) and \(\Sigma_2 \) is an uncountable set. at least of \(\{ k_z : z \in \Sigma_1 \} \) and \(\{ k_z : z \in \Sigma_2 \} \) is dense in \(H^2 \). Hence, \(E \) is zero operator or identical operator, which is a contradiction. Using (6.1), we have \(T_u \) contains at least one nonzero compact operator. By [14, 5,39], \(T_u \) contains all compact operators.

Acknowledgement.

References

[1] M. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Mathematical Journal 43 (1976) 597–604.
[2] A. Aleman, D. Vukotic, Zero products of Toeplitz operators, Duke Mathematical Journal 148 (2009) 373–403.
[3] I. Amemiya, T. Ito, T. K. Wong, On quasinormal Toeplitz operators, Proceedings of the American Mathematical Society (1975) 254–258.
[4] S. Axler, S. Y. A. Chang, D. Sarason, Products of Toeplitz operators, Integral Equations and Operator Theory 1 (1978) 285–309.
[5] J. Barría, On Hankel operators not in the Toeplitz algebra, Proceedings of the American Mathematical Society (1996) 1507–1511.
[6] J. Barría, P. Halmos, Asymptotic Toeplitz operators, Transactions of the American Mathematical Society 273 (1982) 621–630.
[7] C. Berger, B. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bulletin of the American Mathematical Society 79 (1973) 1193–1199.
[8] A. Brown, R. Douglas, Partially isometric Toeplitz operators, Proceedings of the American Mathematical Society 16 (1965) 681–682.
[9] A. Brown, P. Halmos, Algebraic Properties of Toeplitz operators., Journal für die reine und angewandte Mathematik 213 (1964) 89–102.
[10] X. Chen, F. Chen, Hankel operators in the set of essential Toeplitz operators, Acta Mathematica Sinica 6 (1990) 354–363.
[11] X. Chen, K. Guo, K. Izuchi, D. Zheng, Compact perturbations of Hankel operators, Journal für die reine und angewandte Mathematik 2005 (2005) 1–48.
[12] C. C. Cowen, Hyponormality of Toeplitz operators, Proceedings of the American Mathematical Society 103 (1988) 809–812.
[13] K. R. Davidson, On operators commuting with Toeplitz operators modulo the compact operators, Journal of Functional Analysis 24 (1977) 291–302.
[14] R. G. Douglas, Banach algebra techniques in operator theory, vol. 179, Springer Science & Business Media, 2012.
[15] M. Engliš, Toeplitz operators and the Berezin transform on H2, Linear algebra and its applications 223 (1995) 171–204.
[16] E. Fricain, J. Mashreghi, The theory of H (b) spaces, vol. 1, Cambridge University Press, 2016.
[17] C. Gu, Products of several Toeplitz operators, Journal of Functional Analysis 171 (2000) 483–527.
[18] C. Gu, Separation for kernels of Hankel operators, Proceedings of the American Mathematical Society 129 (2001) 2353–2358.
[19] C. Gu, On operators commuting with Toeplitz operators modulo the finite rank operators, Journal of Functional Analysis 215 (2004) 178–205.
[20] K. Y. Guo, A problem on products of Toeplitz operators, Proceedings of the American Mathematical Society (1996) 869–871.
[21] P. R. Halmos, Commutators of operators, American Journal of Mathematics 74 (1952) 237–240.
[22] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, 1978.
[23] R. A. Martínez-Avendaño, Essentially Hankel operators, Journal of the London Mathematical Society 66 (2002) 741–752.
[24] N. K. Nikolski, Operators, Functions, and Systems-An Easy Reading: Hardy, Hankel, and Toeplitz, vol. 1, American Mathematical Soc., 2009.
[25] V. V. Peller, Hankel operators and their applications, Springer-Verlag., 2003.
[26] D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 4 (2007).
[27] N. A. Sedlock, Algebras of truncated Toeplitz operators, Operators and Matrices 5 (2011) 309–326.
[28] K. Stroethoff, Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform, Function Spaces (1999) 313–319.
[29] D. Xia, D. Zheng, Products of Hankel operators, Integral Equations and Operator Theory 29 (1997) 339–363.
[30] J. Xia, On the essential commutant of T(QC), Transactions of the American Mathematical Society 360 (2008) 1089–1102.
[31] D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, Journal of Functional Analysis 138 (1996) 477–501.

1 College of Mathematics, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
E-mail address: danhuimath@gmail.com

2 School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, P.R. China.
E-mail address: xuanhaod@qq.com

3 School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China.
E-mail address: kyguo@fudan.edu.cn

3 School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, P.R. China.
E-mail address: sangyq@swufe.edu.cn