On the cohomology of orbit space of free \mathbb{Z}_p-actions on lens spaces

HEMANT KUMAR SINGH and TEJ BAHADUR SINGH

Department of Mathematics, University of Delhi, Delhi 110 007, India
E-mail: tej--singh@yahoo.com

MS received 11 November 2005; revised 12 August 2006

Abstract. Let $G = \mathbb{Z}_p$, p an odd prime, act freely on a finite-dimensional CW-complex X with mod p cohomology isomorphic to that of a lens space $L^{2m-1}(\xi_1, \ldots, \xi_m)$. In this paper, we determine the mod p cohomology ring of the orbit space X/G, when $p^2 \nmid m$.

Keywords. Lens space; free action; cohomology algebra; spectral sequence.

1. Introduction

Let p be an odd prime and $m > 1$ an integer. Consider the $(2m-1)$-sphere $S^{2m-1} \subset \mathbb{C} \times \cdots \times \mathbb{C}$ (m-times). Given integers q_1, \ldots, q_m relatively prime to p, the map $(\xi_1, \ldots, \xi_m) \rightarrow (\xi_1^{q_1}, \xi_2^{q_2}, \ldots, \xi_m^{q_m})$, where $\xi = e^{2\pi i/p^2}$, defines a free action of $G = \langle \xi \rangle$ on S^{2m-1}. The orbit spaces of G and the subgroup $N = \langle \xi^p \rangle$ are the lens spaces $L^{2m-1}(p^2; q_1, \ldots, q_m)$ and $L^{2m-1}(p; q_1, \ldots, q_m)$, respectively. Thus, we have a free action of \mathbb{Z}_p on $L^{2m-1}(p; q_1, \ldots, q_m)$ with the orbit space $L^{2m-1}(p^2; q_1, \ldots, q_m)$. By a mod p cohomology lens space, we mean a space X whose Čech cohomology $H^*(X; \mathbb{Z}_p)$ is isomorphic to that of a lens space $L^{2m-1}(p; q_1, \ldots, q_m)$. We will write $X \sim_p L^{2m-1}(p; q_1, \ldots, q_m)$ to indicate this fact. If $G = \mathbb{Z}_p$ acts on a mod p cohomology lens space X, then the fixed point set of G on X has been investigated by Su [4]. In this paper, we determine the cohomology ring (mod p) of the orbit space X/G, when G acts freely on X. The following theorem is established.

Theorem. Let $G = \mathbb{Z}_p$ act freely on a finite-dimensional CW-complex $X \sim_p L^{2m-1}(p; q_1, \ldots, q_m)$. If $p^2 \nmid m$, then $H^*(X/G; \mathbb{Z}_p)$ is one of the following graded commutative algebras:

(i) $\mathbb{Z}_p[x,y,z,u_1,u_3,\ldots,u_{2p-3}]/I$, where I is the homogeneous ideal

\[
\langle x^2, y^p, z^n, u_h - A_h y^{(h+1)/2}, u_h u_{2p-h}, u_h u_{h'} - B_{hh'} z u_{h+h'-1},
- C_{hh'} y^{(h+h')/2}, u_h u_{h'} - B'_{hh'} z u_{h+h'-2p-1} - C'_{hh'} y^{(h+h'-2p)/2}, \rangle,
\]

$m = np$, $\deg x = 1$, $\deg y = 2$, $\deg z = 2p$, $\deg u_h = h$, $\beta_p(x) = y$, and $0 = B_{hh'} = C_{hh'} = B'_{hh'} = C'_{hh'}$ when $h = h'$. (β_p is the mod-p Bockstein homomorphism associated with the sequence $0 \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p^2 \rightarrow \mathbb{Z}_p \rightarrow 0$).

(ii) $\mathbb{Z}_p[x,z]/\langle x^2, z^m, \rangle$, where $\deg x = 1$ and $\deg z = 2$.

287
2. Preliminaries

In this section, we recall some known facts which will be used in the proof of our theorem. Given a G-space X, there is an associated fibration $X \xrightarrow{\iota} X_G \xrightarrow{\pi} B_G$, and a map $\eta: X_G \to X/G$, where $X_G = (E_G \times X)/G$ and $E_G \to B_G$ is the universal G-bundle. When G acts freely on X, $\eta: X_G \to X/G$ is homotopy equivalence, so the cohomology rings $H^*(X_G)$ and $H^*(X/G)$ (with coefficients in a field) are isomorphic. To compute $H^*(X_G)$, we exploit the Leray–Serre spectral sequence of the map $\pi: X_G \to B_G$. The E_2-term of this spectral sequence is given by

$$E_2^{k,j} \cong H^k(B_G; \mathcal{A}^l(X))$$

(where $\mathcal{A}^l(X)$ is a locally constant sheaf with stalk $H^l(X)$ and group G) and it converges to $H^*(X_G)$, as an algebra. The cup product in E_{r+1} is induced from that in E_r via the isomorphism $E_{r+1} \cong H^r(X)$. When $\pi_1(B_G)$ operates trivially on $H^*(X)$, the system of local coefficients is simple (constant) so that

$$E_2^{k,j} \cong H^k(B_G) \otimes H^l(X).$$

In this case, the restriction of the product structure in the spectral sequence to the subalgebras $E_2^{0,j}$ and $E_2^{j,0}$ gives the cup products on $H^*(B_G)$ and $H^*(X)$ respectively. The edge homomorphisms

$$H^p(B_G) = E_2^{p,0} \to E_2^{p,0} \to \cdots \to E_2^{p,0} = E_2^{p,0} \subseteq H^p(X_G)$$

and

$$H^q(X_G) \to E_2^{0,q} = E_2^{0,q} \subseteq \cdots \subseteq E_2^{0,q} = H^q(X)$$

are the homomorphisms

$$\pi^*: H^p(B_G) \to H^p(X_G) \quad \text{and} \quad t^*: H^q(X_G) \to H^q(X),$$

respectively.

The above results about spectral sequences can be found in [3]. We also recall that

$$H^*(B_G; \mathbb{Z}_p) = \mathbb{Z}_p[s,t]/(s^2) = \Lambda(s) \otimes \mathbb{Z}_p[t],$$

where $\deg s = 1$, $\deg t = 2$ and $\beta_p(s) = t$.

The following fact will be used without mentioning it explicitly.

PROPOSITION.

*Suppose that $G = \mathbb{Z}_p$ acts on a finite-dimensional CW-complex space X with the fixed point set F. If $H^j(X; \mathbb{Z}_p) = 0$ for $j > n$, then the inclusion map $F \to X$ induces an isomorphism

$$H^j(X_G; \mathbb{Z}_p) \to H^j(F_G; \mathbb{Z}_p)$$

for $j > n$ (see Theorem 1.5 in Chapter VII of [1]).*

3. Proof

The example of free action of $G = \mathbb{Z}_p$ on the lens space $L^{2m-1}(p; q_1, \ldots, q_m)$ described in the introduction is a test case for the general theorem. All cohomology groups in the
The orbit space of free \(\mathbb{Z}_p \)-actions on lens spaces

proof should be considered to have coefficients in \(\mathbb{Z}_p \). Since \(\pi_1(B_G) = G \) acts trivially on \(H^*(X) \), the fibration \(X \xrightarrow{i} X_G \xrightarrow{\pi} B_G \) has a simple system of local coefficients on \(B_G \). So the spectral sequence has

\[
E_2^{k,l} \cong H^k(B_G) \otimes H^l(X).
\]

Let \(a \in H^1(X) \) and \(b \in H^2(X) \) be generators of the cohomology ring \(H^*(X) \). As there are no fixed points of \(G \) on \(X \), the spectral sequence does not collapse at the \(E_2 \)-term. Consequently, we have either \(d_2(1 \otimes a) = t \otimes 1 \) and \(d_2(1 \otimes b) = 0 \) or \(d_2(1 \otimes a) = 0 \) and \(d_2(1 \otimes b) = t \otimes a \).

If \(d_2(1 \otimes a) = 0 \) and \(d_2(1 \otimes b) = t \otimes a \), then we have \(d_2(1 \otimes b^q) = qt \otimes ab^q \) and \(d_2(1 \otimes ab^q) = 0 \) for \(1 \leq q \leq m - 1 \). So \(0 = d_2((1 \otimes b^{m-1}) \cup (1 \otimes b)) = mt \otimes ab^{m-1} \), which is true iff \(p \mid m \). Suppose that \(m = np \). Then

\[
d_2^p: E_2^{k,0} \rightarrow E_2^{k,0}.
\]

is an isomorphism if \(l \) is even and \(2p \not| \ l \), and \(d_2 = 0 \) if \(l \) is odd or \(2p \mid l \). So \(E_2^{k,l} = E_2^{k,l} \) for all \(k \) if \(l = 2ap \) or \(2(q + 1)p - 1 \), where \(0 \leq q < n \); \(k = 0, 1 \) if \(l \) is odd and \(2p \not| \ (l + 1) \), and \(E_2^{k,l} = 0 \), otherwise. It is easily seen that \(d_3 = 0 \), for example, if \(u \in E_3^{0,2(q+1)p+1} \) and \(d_3(u) = A[st \otimes ab^{(q+1)p-1}](A \in \mathbb{Z}_p) \), then, for \(v = [t \otimes 1] \in E_3^{2,0} \), we have \(0 = d_3(u \cup v) = A[st^2 \otimes ab^{(q+1)p-1}] \Rightarrow A = 0 \). A similar argument shows that the differentials \(d_4, \ldots, d_{2p-1} \) are all trivial. If

\[
d_2^{2p}: E_2^{0,2p-1} \rightarrow E_2^{2p,0}
\]

is also trivial, then

\[
d_2^{2p}: E_2^{k,l} \rightarrow E_2^{k+2p,l-2p+1}
\]

is trivial for every \(k \) and \(l \), because every element of \(E_2^{k,2l} \) can be written as the product of an element of \(E_2^{k,2p} \) by \(1 \otimes ab^{p-1} \in E_2^{0,2p-1} \) and

\[
d_2^{2p}: E_2^{k,2l+p-1} \rightarrow E_2^{k+2p,2l+p+1}
\]

is obviously trivial. If \(n = 1 \), then \(E_\infty = E_2 \), where the top and bottom lines survive. This contradicts our hypothesis; so \(n > 1 \). If \(d_{2p+1}^{2p+1} = [st^p \otimes 1] \), then it can be easily verified that

\[
d_{2p+1}^{2p+1} = q[s^{2p} \otimes b^{(q+1)p-1}]
\]

and

\[
d_{2p+1}^{2p+1} = q[s^{2p} \otimes ab^{(q+1)p-1}]
\]

for \(1 \leq q < n \). Consequently,

\[
0 = d_{2p+1}^{2p+1}((1 \otimes ab^{p-1}) \cup (1 \otimes b^p)) = n(st^p \otimes ab^{np-1}),
\]

which is not true for \((n, p) = 1 \). On the other hand, if

\[
d_{2p+1}^{2p}: E_2^{0,2p} \rightarrow E_2^{2p+1,0}
\]
is trivial, then

\[d_{2p+1}^{2p+1} : E_{2p}^{k,l} \rightarrow E_{2p}^{k+2p+1,l-2p} \]

is also trivial for every \(k \) and \(l \), as above. Now \(d_r = 0 \) for every \(r > 2p + 1 \), so several lines of the spectral sequence survive to infinity. This contradicts our hypothesis. Therefore,

\[d_{2p} : E_{2p}^{0,2p-1} \rightarrow E_{2p}^{2p,0} \]

must be non-trivial. Assume that \(d_{2p}[1 \otimes ab^{p-1}] = [t \otimes 1] \). Then

\[d_{2p} : E_{2p}^{k,l+2p-1} \rightarrow E_{2p}^{k+2p,l} \]

is an isomorphism for \(l = 2qp, 0 \leq q < n \), and is trivial homomorphism for other values of \(l \). Accordingly, we have \(E_n = E_{2p+1} \), and hence

\[H^n(X_G) = \begin{cases} \mathbb{Z}_p, & j = 2qp, 2(q + 1)p - 1, 0 \leq q < n; \\ \mathbb{Z}_p \oplus \mathbb{Z}_p, & 2qp < j < 2(q + 1)p - 1, 0 \leq q < n; \\ 0, & j > 2np - 1. \end{cases} \]

The elements \(1 \otimes b^{p} \in E_2^{0,2p} \) and \(1 \otimes ab^{(h-1)/2} \in E_2^{0,h} \), for \(h = 1, 3, \ldots, 2p - 3 \) are permanent cocycles; so they determine elements \(z \in E_2^{0,2p} \) and \(w_h \in E_2^{0,h} \), respectively. Obviously, \(t^*(z) = b^{p}, z^0 = 0 \) and \(w_h w_{h'} = 0 \). Let \(x = \pi^*(s) \in E_1^{0,1} \) and \(y = \pi^*(t) \in E_1^{2,0} \). Then \(x^2 = 0, y^p = 0 \), and, by the naturality of the Bockstein homomorphism \(\beta_p \), we have \(\beta_p(x) = y \) and \(yw_h = 0 \) but \(xw_h \neq 0 \). It follows that the total complex \(\text{Tot} E_{\ast,n}^* \) is the graded commutative algebra

\[\text{Tot} E_{\ast,n}^* = \mathbb{Z}_p[x, y, z, w_1, w_3, \ldots, w_{2p-3}] / \langle x^2, y^p, z^n, w_hw_{h'}, w_h y \rangle, \]

where \(h, h' = 1, 3, \ldots, 2p - 3 \). Choose \(u_h \in H^h(X_G) \) representing \(w_h \) for \(h = 1, 3, \ldots, 2p - 3 \). Then \(t^*(u_h) = ab^{(h-1)/2}, u_h^2 = 0 \) and \(u_h u_{2p-h} = 0 \). It follows that

\[H^*(X_G) = \mathbb{Z}_p[x, y, z, u_1, u_3, \ldots, u_{2p-3}] / I, \]

where \(I \) is the ideal generated by the homogenous elements

\[x^2, y^p, z^n, yu_h = A_h yx^{(h+1)/2}, u_h u_{2-p-h} = B_{h} xu_{h+h'-1} = C_{h} x y^{(h+h')/2} \]

and \(u_h u_{h'} = B_{h} x u_{h'+2p-1} = C_{h} x y^{(h+h'-2p)/2} \).

Here \(\deg x = 1, \deg y = 2, \deg z = 2p, \deg u_h = h \) and, when \(h = h' \), \(0 = B_{h} = C_{h} \).

If \(p \nmid m \), then we must have \(d_2(1 \otimes a) = t \otimes 1, d_2(1 \otimes b) = 0 \). It can be easily observed that

\[d_2 : E_2^{k,l} \rightarrow E_2^{k+2,l-1} \]

is a trivial homomorphism for \(l \) even and an isomorphism for \(l \) odd. It is now easy to see that \(d_r = 0 \) for every \(r > 2 \). So \(E_{\ast,n} = E_3^k = \mathbb{Z}_p \) for \(k < 2 \) and \(l = 0, 2, 4, \ldots, 2m - 2 \). Therefore, we have

\[H^*(X_G) = \begin{cases} \mathbb{Z}_p, & 0 \leq j \leq 2m - 1; \\ 0, & \text{otherwise}. \end{cases} \]
If \(x \in H^1(X_G) \) is determined by \(s \otimes 1 \in E_2^{1,0} \), then \(x^2 \in E_2^{2,0} = 0 \). The multiplication by \(x \)

\[
x \cup (\cdot): E_\infty^{0,l} \to E_\infty^{1,l}
\]

is an isomorphism for \(l \) even. The element \(1 \otimes b \in E_2^{0,2} \) is a permanent cocycle and determines an element \(z \in E_2^{0,2} = H^2(X_G) \). We have \(t^*(z) = b \) and \(z^m = 0 \). Therefore, the total complex \(\text{Tot } E_\infty^{*,*} \) is the graded commutative algebra

\[
\text{Tot } E_\infty^{*,*} = \mathbb{Z}_p [x, z]/\langle x^2, z^m \rangle.
\]

Notice that \(H^i(X_G) \) is \(E_\infty^{0,i} \) for \(j \) even and \(E_\infty^{1,j-1} \) for \(j \) odd. Hence,

\[
H^i(X_G) = \mathbb{Z}_p [x, z]/\langle x^2, z^m \rangle,
\]

where \(\deg x = 1 \) and \(\deg z = 2 \). This completes the proof. \(\square \)

4. Example

We realize here the second case of our theorem. Recall that \(G = \mathbb{Z}_p \) acts freely on \(L^{2m-1}(p^2; q_1, \ldots, q_m) \) with the orbit space \(L^{2m-1}(p^2; q_1, \ldots, q_m) / K \). We claim that

\[
H^i(K; \mathbb{Z}_p) = \mathbb{Z}_p [x, z]/\langle x^2, z^m \rangle,
\]

where \(\deg x = 1 \), \(\deg z = 2 \). It is known that \(K \) is a CW-complex with 1-cell of each dimension \(i = 0, 1, \ldots, 2m - 1 \) and the cellular chain complex of \(K \) is

\[
0 \to C_{2m-1} \xrightarrow{0} C_{2m-2} \times \mathbb{Z}^p \to C_{2m-3} \to \cdots \to C_2 \times \mathbb{Z}^p \xrightarrow{C_1 \to 0} C_0,
\]

where each \(C_i = \mathbb{Z} \). Accordingly, the co-chain complex of \(K \) with coefficients in \(\mathbb{Z}_p \) is

\[
0 \to \mathbb{Z}_p \to \mathbb{Z}_p \to \cdots \to \mathbb{Z}_p \to \mathbb{Z}_p \to 0,
\]

where each coboundary operator is the trivial homomorphism. Therefore

\[
H^i(K; \mathbb{Z}_p) = \begin{cases}
\mathbb{Z}_p, & \text{for } 0 \leq j \leq 2m - 1; \\
0, & \text{for } j \geq 2m.
\end{cases}
\]

To determine the cup product in \(H^j(K; \mathbb{Z}_p) \), we first observe that the inclusion \(K^{(2i-1)} \to K^{(2i+1)} \) induces isomorphism \(H^j(K^{(2i-1)}; \mathbb{Z}_p) \cong H^j(K^{(2i+1)}; \mathbb{Z}_p) \) for \(j \leq 2i - 1 \) so that we can identify them. For \(j < 2i - 1 \), this follows from the cohomology exact sequence of the pair \((K^{(2i+1)}, K^{(2i-1)})\). The exact cohomology sequence of the pairs \((K^{(2i+1)}, K^{(2i-1)})\) and \((K^{(2i)}, K^{(2i-1)})\) show that \(H^{2i-1}(K^{(2i+1)}; \mathbb{Z}_p) \cong H^{2i-1}(K^{(2i)}; \mathbb{Z}_p) \)

and \(H^{2i}(K^{(2i+1)}; \mathbb{Z}_p) \cong H^{2i}(K^{(2i)}; \mathbb{Z}_p) \); the latter because the homomorphism \(H^j(K^{(2i)}; \mathbb{Z}_p) \to H^{2j}(K^{(2i)}; \mathbb{Z}_p) \) is surjective.

Now, we choose generators \(x \in H^1(K; \mathbb{Z}_p) \) and \(z \in H^2(K; \mathbb{Z}_p) \). Then obviously \(x^2 = 0 \) and \(z^m = 0 \). We can assume, by induction, that \(z^i \) and \(xz^i \) generate \(H^i(K; \mathbb{Z}_p) \) and \(H^{i+1}(K; \mathbb{Z}_p) \), respectively, for \(i \leq m - 2 \). Then, there is an element \(kxz^{m-2} \) such that \(z \cup kxz^{m-2} = kxz^{m-1} \) generates \(H^{2m-1}(K; \mathbb{Z}_p) \) (see Corollary 3.39 of [2]). We must have \((k, p) = 1 \), otherwise the order of \(kxz^{m-1} \) would be less than \(p \). Thus \(xz^{m-1} \) generates \(H^{2m-1}(K; \mathbb{Z}_p) \), and this is true only if \(z^{m-1} \) generates \(H^{2m-2}(K; \mathbb{Z}_p) \). Hence our claim.
5. Remarks

(i) It is clear from the proof of the theorem that if \(p \nmid m \), then only the second possibility of the theorem holds. Furthermore, if \(X \sim_p L^{2m-1}(p; q_1, \ldots, q_m) \) and \(\pi_1(X) = \mathbb{Z}_p \), then there exists a simply connected space \(Y \) with a free action of \(\Delta = \mathbb{Z}_p \) such that \(Y \sim_p S^{2m-1} \) and \(Y/\Delta \approx X \) (Theorems 3.11 and 2.6 of \([4]\)). If \(G = \mathbb{Z}_p \) acts freely on \(X \), then the liftings of transformations (on \(X \)) induced by the elements of \(G \) form a group \(\Gamma \) of order \(p^2 \) which acts freely on \(Y \) and hence \(\Gamma \) must be cyclic. It is clear that \(\Gamma \) contains the group \(\Delta \) of deck transformations of the covering \(Y \rightarrow X \), and \(G = \Gamma/\Delta \). So \(X/G \approx Y/\Gamma \). Since \(Y \sim_p S^{2m-1} \), the mod \(p \) cohomology algebra of \(Y/\Gamma \) is a truncation of \(H^*(B\Gamma; \mathbb{Z}_p) \). Thus, in this case also, only the second possibility of the theorem holds irrespective of the condition whether or not \(p|m \).

(ii) We recall that a paracompact Hausdorff space \(X \) is called finitistic if every open covering of \(X \) has a finite dimensional open refinement (see p. 133 of \([1]\)). Our theorem and its proof go through for finitistic spaces.

Acknowledgement

We would like to thank the referee for his/her valuable suggestions which have improved exposition of the paper.

References

[1] Bredon G, Introduction to Compact Transformation Groups (New York, USA: Academic Press) (1972)
[2] Hatcher A, Algebraic Topology (Cambridge, UK: Cambridge University Press) (2002)
[3] McCleary J, User’s Guide to Spectral Sequences (Wilmington, Delaware, USA: Publish or Perish) (1985)
[4] Su J C, Transformation groups on cohomology projective spaces, Trans. Am. Math. Soc. 106 (1963) 305–318