A note on the automorphism group of Schubert varieties

Fernando L. Piñeiro

January 10, 2017

Abstract

In [1], the authors determined that the automorphisms of a Schubert divisor are those automorphisms which fix a particular subspace. In this work we extend those results to all Schubert varieties. We study the Schubert conditions which define a Schubert variety and the action upon these conditions by the automorphism group of the Grassmannian variety. We conclude that the automorphisms of the Grassmannian which map a Schubert variety to itself if and only if it fixes the subspaces which do not give redundant conditions used to define the Schubert variety.

1 Introduction

In this article we let $V = \mathbb{F}_q^m$ with its usual \mathbb{F}_q–linear vector space structure. We denote by $[a] := \{0,1,2,\ldots,a\}$. We also consider a subset $\alpha \subseteq [m]$ as an ordered tuple. That is $\alpha = (a_1 < a_2 < \ldots < a_\ell)$.

Definition 1. A flag of V is a sequence of nested subspaces

$$\mathcal{A} := A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_\ell \subseteq V,$$

For $\alpha = (a_1, a_2, \ldots, a_\ell)$ be a subset of $[m]$ we denote the flag

$$\mathcal{A} := A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_\ell \subseteq V$$

as an α–flag if $\dim A_i = a_i$.

Note that in the case of an α–flag, there exists a basis a_1, a_2, \ldots, a_m such that A_i is spanned by $\{a_j \mid 1 \leq j \leq a_i\}$.

Definition 2. The ℓ–Grassmannian of \mathbb{F}_q^m is the set of all subspaces of \mathbb{F}_q^m whose dimension is ℓ that is:

$$G_{\ell,m} := \{W \leq \mathbb{F}_q^m \mid \dim W = \ell\}.$$

Lemma 3. A matrix $M \in GL_m(\mathbb{F}_q)$ acts on a row vector $x \in \mathbb{F}_q^m$ by mapping x to the vector xM. This action is extended to a subspace $W \leq \mathbb{F}_q^m$ as follows: If $W = \langle w_1, w_2, \ldots, w_r \rangle$, then M maps W to $M(W) := \langle w_1 M, w_2 M, \ldots, w_r M \rangle$.
Lemma 4. Let θ be a field automorphism of \mathbb{F}_q. This automorphism θ acts on the space \mathbb{F}_q^m by mapping the vector $(x_1, x_2, \ldots, x_m) = x \in \mathbb{F}_q^m$ to the vector $x^{\theta} := (\theta(x_1), \theta(x_2), \ldots, \theta(x_m)) \in \mathbb{F}_q^m$. This is extended to a subspace $W \leq \mathbb{F}_q^m$ as follows: If $W = \langle w_1, w_2, \ldots, w_r \rangle$, then the automorphism θ maps W to $W^{\theta} := \langle w_1^{\theta}, w_2^{\theta}, \ldots, w_r^{\theta} \rangle$.

Definition 5. For $\alpha \subseteq [m]$, we denote the set $m - \alpha := \{m - a_i \mid a_i \in \alpha\}$.

W.L. Chow proved the following:

Proposition 6. [3, Chow]

Let $1 < \ell < m - 1$. The permutations of $G_{\ell,m}$ which map lines to lines is given by the group $\Gamma L(F_q)$. That is, these permutations are given by compositions of the following permutations:

- The permutation σ_M where $\sigma_M(W) = W.M$ for $M \in GL_m(F_q)$.
- The permutation σ_θ where $\sigma_\theta(W) = W^{\theta}$ for θ a field automorphism of F_q.
- If $\ell = m - \ell$, the permutation σ_\perp where $\sigma_\perp(W) = W^\perp$ where W^\perp is the orthogonal complement of W.

With an orthogonal basis for V, the permutation σ_\perp is also given by the Hodge star operator on $\bigwedge^\ell V$. Although the relation between $\bigwedge^\ell V$ and $G_{\ell,m}$ is well known, for our purposes, we need only to consider the permutations of $G_{\ell,m}$ onto itself given by the elements of $\Gamma L(F_q)$. Note that σ_\perp maps $G_{\ell,m}$ onto $G_{m-\ell,m}$. As such we will also consider $\Gamma L(F_q)$ acting on $\bigcup_{i=1}^{m-1} G_{i,m}$. This action is extended to flags as follows.

Definition 7. Let $M \in GL_m(F_q)$ and θ be a field automorphism. Suppose $\alpha = (a_1, a_2, \ldots, a_\ell)$. Let $A := A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \subseteq A_\ell$ be an α–flag. Then we define:

- The linear transformation M maps the α–flag A to the α–flag:
 $$M(A) := M(A_1) \subseteq M(A_2) \subseteq \cdots \subseteq M(A_\ell).$$

- The field automorphism θ maps the α–flag A to the α–flag
 $$A^\theta := A_1^\theta \subseteq A_2^\theta \subseteq \cdots \subseteq A_\ell^\theta.$$

- The orthogonal complement, \perp maps the α–flag A to the $m - \alpha$–flag
 $$A^\perp := A_\ell^\perp \subseteq \cdots \subseteq A_1^\perp.$$
2 Schubert Varieties

Schubert varieties are special subvarieties of $G_{\ell,m}$. By considering Schubert subvarieties, one can answer many geometrical questions about projective spaces in general and study the Grassmannian as well. The classical reference to Schubert varieties is [2].

Definition 8. Let
\[\alpha = (a_1 < a_2 < \cdots < a_\ell) \subseteq [m]. \]

Let \mathcal{A} be an α–flag. The Schubert variety is defined as
\[\Omega^\mathcal{A}_\alpha := \{ W \in G_{\ell,m} \mid \dim(W \cap A_i) \geq i \}. \]

We have included the α–flag \mathcal{A} in the notation for the Schubert variety $\Omega^\mathcal{A}_\alpha$ because we shall consider what happens to the Schubert varieties when the flag is changed. For any two α–flags, \mathcal{A} and \mathcal{B}, the varieties $\Omega^\mathcal{A}_\alpha$ and $\Omega^\mathcal{B}_\alpha$ are isomorphic. However, the choice of flag may change the Schubert variety.

Some of the Schubert conditions $\dim(W \cap A_i) \geq i$ may be redundant. Suppose $\alpha \subseteq [m]$ has two consecutive elements, say $a_i = a_{i-1} + 1$. Each $W \in \Omega^\mathcal{A}_\alpha$ satisfies $\dim(W \cap A_i) \geq i$. As $\dim A_i = a_i$ and $\dim A_{i-1} = \dim A_{i-1}$, the inequality $\dim(W \cap A_i) \geq i$ implies $\dim(W \cap A_{i-1}) \geq i - 1$. Therefore the condition $\dim(W \cap A_{i-1}) \geq i - 1$ is redundant. This motivates the following definition.

Definition 9. Let $\alpha \subseteq [m]$. We define the nonconsecutive subset of α as
\[\alpha_{nc} := \{ a_i \mid a_i + 1 \notin \alpha \}. \]

The previous discussion implies the following.

Lemma 10. Let $\alpha = (a_1, a_2, \ldots, a_\ell) \subseteq [m]$. Suppose
\[\mathcal{A} := A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \subseteq A_\ell \subseteq V \]
and
\[\mathcal{B} := B_1 \subseteq B_2 \subseteq B_3 \subseteq \cdots \subseteq B_\ell \subseteq V \]
are two α–flags.

If $A_i = B_i \ \forall i \in \alpha_{nc}$, then
\[\Omega^\mathcal{A}_\alpha = \Omega^\mathcal{B}_\alpha. \]

Proof. As we have discussed, the conditions given by A_i and B_i where $\dim A_i = \dim B_i \in \alpha_{nc}$ imply the remaining conditions. By hypothesis, $A_i = B_i$ whenever $\dim A_i = \dim B_i \in \alpha_{nc}$. Equality follows. \qed

Laksov and Kleiman [2] proved that two Schubert varieties are isomorphic if and only if they have the same dimension sequence. Therefore we have stated that proposition as follows.
Theorem 12. Let $\alpha = (a_1, a_2, \ldots, a_\ell) \subseteq [m]$. Let \mathcal{A} and \mathcal{B} be two α–flags. Then

$$\Omega^A_\alpha = \Omega^B_\beta \text{ if and only if } A_i = B_i, \forall a_i \in \alpha_{nc}.\]$$

Proof. From the previous discussion, the veracity of the only if direction is clear.

Let a_s be the largest element in α_{nc} such that $A_s \neq B_s$. Let a_{r_1} be the next smallest index in α_{nc} and let A_{r_2} be the next largest index in α_{nc}. The choice of s implies $A_r = B_r$ for any index in α_{nc} greater than s.

As \mathcal{A} and \mathcal{B} are α–flags, there exists a_1, a_2, \ldots, a_m such that A_i is spanned by $\{a_j \mid 1 \leq j \leq a_i\}$, and there exists b_1, b_2, \ldots, b_m such that B_i is spanned by $\{b_j \mid 1 \leq j \leq a_i\}$.

If $a_s = a_\ell$ is the largest element, there exists $x \in A_\ell \setminus B_\ell$. The vector space W spanned by $a_1, a_2, \ldots, a_{\ell-1}$ and x is in Ω^A_α but not in Ω^B_β. Thus $\Omega^A_\alpha \neq \Omega^B_\beta$.

If a_s is not the largest element in α_{nc}. Note that $A_s \neq B_s$ but

$$A_{r_1} = B_{r_1} \subseteq A_s, B_s \subseteq A_{r_2} = B_{r_2}.\]$$

Let $x \in A_s \setminus B_s$. In this case consider the vector space W spanned by the set $\{a_u \mid 1 \leq u \leq \ell, u \neq s\} \cup \{x\}$. In this case $\dim W \cap A_u = u$ for each $u \in \alpha_{nc}$, but $\dim W \cap B_s = s - 1$. Therefore $W \in \Omega^A_\alpha$ but not in Ω^B_β. \qed

Now we aim find the automorphism group of Ω^A_α.

Lemma 13. Let $\alpha = (a_1, a_2, \ldots, a_\ell) \subseteq [m]$. Suppose

$$A := A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_\ell \subsetneq V$$

is an α–flag. Let $\tau \in \text{Aut}(\mathcal{G}_{\ell,m}))$. Suppose τ preserves the dimension of any linear subspace of V. Then $\tau(\Omega^A_\alpha) = \Omega^\tau(\mathcal{A})$.

Proof. The Schubert variety Ω^A_α is defined by

$$\{W \in \mathcal{G}_{\ell,m} \mid \dim W \cap A_i \geq i\}.\]$$

The automorphism $\tau \in \text{Aut}(\mathcal{G}_{\ell,m})$ maps Ω^A_α to

$$\tau(\Omega^A_\alpha) = \{\tau(W) \in \mathcal{G}_{\ell,m} \mid \dim \tau(W \cap A_i) \geq i\}.\]$$

In this case, $\tau(W \cap A_i) = \tau(W) \cap \tau(A_i)$. As τ is a permutation of the Grassmannian, we change the indexing variable to $\tau(W) = U$. Now the Schubert variety has the form:

$$\tau(\Omega^A_\alpha) = \{U \in \mathcal{G}_{\ell,m} \mid \dim U \cap \tau(A_i) \geq i\}.\]$$

The right hand side is clearly $\Omega^{\tau(\mathcal{A})}_\alpha$ and equality follows. \qed
Theorem 14. Let $\alpha = (a_1, a_2, \ldots, a_{\ell}) \subseteq [m]$. Suppose
$$A := A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_{\ell} \subsetneq V$$
is an α–flag. Let $\tau \in \text{Aut}(G_{\ell,m})$. Suppose τ preserves the dimension of any linear subspace of V. Then $\tau \in \text{Aut}(\Omega^A_\alpha)$ if and only if $\tau(A_i) = A_i \forall a_i \in \alpha_{nc}$.

Proof. Lemma 13 implies $\tau \in \text{Aut}(G_{\ell,m})$ maps Ω^A_α to $\Omega^{\tau(A)}_\alpha$. Theorem 12 implies $\Omega^A_\alpha = \Omega^{\tau(A)}_\alpha$ if and only if $\tau(A_i) = A_i \forall a_i \in \alpha_{nc}$. \qed

When $\ell \neq m - \ell$ the only line preserving bijections are those which preserve the dimension. On the remainder of the article, we shall assume $\ell = m - \ell$. Now we shall determine what happens when $\tau \in \text{Aut}(G_{\ell,m})$ is a contravariant mapping. That is when $\dim \tau$ change. Now we study how α maps the C subspace of each dimension. That is a complete flag is a sequence of nested C linear subspace of V. Then $\tau \in \text{Aut}(\Omega^A_\alpha)$ if and only if $\tau(A_i) = A_i \forall a_i \in \alpha_{nc}$.

Theorem 14. Let $\alpha = (a_1, a_2, \ldots, a_{\ell}) \subseteq [m]$. Suppose $\tau \in \text{Aut}(G_{\ell,m})$. Suppose τ preserves the dimension of any linear subspace of V. Then $\tau \in \text{Aut}(\Omega^A_\alpha)$ if and only if $\tau(A_i) = A_i \forall a_i \in \alpha_{nc}$.

When $\ell \neq m - \ell$ the only line preserving bijections are those which preserve the dimension. On the remainder of the article, we shall assume $\ell = m - \ell$. Now we shall determine what happens when $\tau \in \text{Aut}(G_{\ell,m})$ is a contravariant mapping. That is when $\dim \tau$ change. Now we study how τ might change the conditions $\dim A_i \cap W \geq i$ might change. Now we study how τ might change the conditions $\dim A_i \cap W \geq i$. In this case we shall make use of the notion of a complete flag.

Definition 15. A complete flag is a $[m]$–flag. That is, it is a flag which contains a subspace of each dimension. That is a complete flag is a sequence of nested subspaces $C = C_0 = \{0\} \subsetneq C_1 \subsetneq C_2 \subsetneq \cdots \subsetneq C_m = F^m_q$ where $C_i = i$.

If a complete flag C contains the subspaces A_i where
$$A := A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_{\ell} \subsetneq V$$
then A is known as a subflag of C.

Lemma 16. Let $\tau \in \text{Aut}(G_{\ell,m})$ be a contravariant mapping. Let $\tau(\Omega^A_\alpha)$ be the image of Ω^A_α. Then $\tau(\Omega^A_\alpha) = \Omega^{\tau(A)}_{\beta}$ where $\beta = \{m + 1 - j | j \notin \alpha\}$.

Proof. Let $A = A_1 \subsetneq A_2 \subsetneq A_3 \subsetneq \cdots \subsetneq A_{\ell} \subsetneq V$ be an α–flag. Suppose $C = C_0 = \{0\} \subsetneq C_1 \subsetneq C_2 \subsetneq \cdots \subsetneq C_m$ is a complete flag with A as a subflag.

The Schubert conditions $\dim A_i \cap W \geq i$ can be extended to the subspaces of C Simply note that for $A_i \subseteq C_s \subseteq A_{i+1}$ the condition $\dim C_s \cap W \geq i$ holds. Now we have the following Schubert conditions on the complete flag C.
$$\dim C_s \cap W \geq i, \text{ for } a_i \leq s < a_{i+1}.$$

Thus given α, an α–flag A and a complete flag C containing A we may rewrite the conditions as follows: Let $w_0, w_1, w_2, \ldots, w_m$ be a sequence of integers such that $w_s = i$ for $a_i \leq s < a_{i+1}$. Then
$$\dim C_s \cap W \geq w_s.$$

Note that w_i increases by 1 only on the positions corresponding to α. That is
$$\alpha = \{s | n_s = n_{s-1} - 1\}.$$

Now we shall apply τ to $\dim C_s \cap W \geq w_s$. The Schubert conditions become
$$\dim \tau(C_s \cap W) \leq m - w_s.$$
As \(\tau(\mathcal{C}_s \cap W) \) is the vector space spanned by \(\tau(\mathcal{C}_s) \) and \(\tau(W) \), we have the conditions
\[
\dim \tau(\mathcal{C}_s) + \tau(W) \leq m - w_s.
\]

This is equivalent to
\[
\dim \tau(\mathcal{C}_s) + \dim \tau(W) - \dim \tau(\mathcal{C}_s) \cap \tau(W) \leq m - w_s.
\]

In order to simplify our notation we shall set \(r = m+1-s, D_r = \tau(C_{m+1-s}), \tau(W) = U \), and \(u_r = m-w_s \). Note that \(\tau \) maps \(\mathcal{G}_{\ell,m} \) to itself so \(U \) also represents any element of the Grassmannian. The Schubert conditions become
\[
\dim D_r + \dim U - \dim D_r \cap U \leq u_r.
\]

As \(\dim D_r = r, \dim U = \ell \) we rearrange the terms and obtain:
\[
\dim D_r \cap U \geq r + \ell - u_r.
\]

Let \(n_r = r + \ell - u_r \). Now we determine \(\beta = \{ j \in [m] \mid n_{j+1} = n_j + 1 \} \).

Recall that these are the entries where \(\dim D_j \cap U > \dim D_{j-1} \cap U \). In this case there are some stringent conditions on \(\beta \) from the equality \(\tau(\Omega^A_\alpha) = \Omega^\tau(\mathcal{A})_\beta \) and Proposition [11]

Suppose \(n_r = n_{r+1} \). In this case \(r + \ell - u_r = r + 1 + \ell - u_{r+1} \). From the definition of \(r \) and \(u_r \) we have that \(m+1-s+\ell = (m-w_{m+1-s}) = m-s+\ell-(m-w_{m-s}) \). Therefore increases in \(\dim D_r \cap U \) do not occur for \(w_{m-s} + 1 = w_{m-s+1} \). Likewise \(\dim D_r \cap U \) increases when \(w_{m-s} = w_{m-s+1} \). Therefore the set \(\{ j \in [m] \mid n_{j+1} = n_j + 1 \} = \{ m+1-i \mid i \not\in \alpha \} \). Thus \(\tau(\Omega^A_\alpha) = \Omega^\tau(\mathcal{A})_\beta \).

For a contravariant mapping \(\tau \in \text{Aut}(\mathcal{G}_{\ell,m}) \) we find when \(\tau(\Omega^A_\alpha) = \Omega^A_\alpha \).

Lemma 17. Let \(\tau \in \text{Aut}(\mathcal{G}_{\ell,m}) \) be a contravariant mapping, \(\alpha = (a_1, a_2, \ldots, a_t) \subseteq [m] \) and \(\mathcal{A} \) an \(\alpha \)-flag. Then \(\tau(\Omega^A_\alpha) = \Omega^\tau(\mathcal{A})_\alpha \) and only if \(\alpha = \{ m+1-j \mid j \not\in \alpha \} \) and the sets \(\{ \tau(A_i) \mid a_i \in \alpha_{nc} \} = \{ A_i \mid a_i \in \alpha_{nc} \} \) are equal.

Proof. Lemma [10] and Proposition [11] imply that \(\tau(\Omega^A_\alpha) = \Omega^\tau(\mathcal{A})_\alpha \). Theorem [12] states that \(\Omega^\tau(\mathcal{A})_\alpha = \Omega^A_\alpha \) if and only if they have the same subspaces in for the nonconsecutive indices. \(\square \)

Theorem 18. An automorphism of \(\mathcal{G}_{\ell,m} \) is an automorphism of \(\Omega^A_\alpha \) if and only if it maps the set \(\{ A_i \mid a_i \in \alpha_{nc} \} \) to itself.

Proof. It follows from Theorem [14] and Lemma [17] \(\square \)
References

[1] Sudhir R. Ghorpade and Krishna V. Kaipa. Automorphism groups of Grassmann codes *Finite Fields and Their Applications*, 23(0):80 – 102, 2013.

[2] S.L. Kleiman and D. Laksov. Schubert Calculus *The American Mathematical Monthly*, 79(1):1061–1082, 1972.

[3] W.-L. Chow On the geometry of algebraic homogeneous spaces *Ann. of Math* (2)50(1949) 32–67