Mutations of Hydrophobic Residues in the N-terminal Domain of Troponin C Affect Calcium Binding and Exchange with the Troponin C-Troponin I\textsubscript{96–148} Complex and Muscle Force Production*

Received for publication, December 23, 2003, and in revised form, February 4, 2004
Published, JBC Papers in Press, February 16, 2004, DOI 10.1074/jbc.M314095200

Jonathan P. Davis†‡, Jack A Rall, Catalina Alionte, and Svetlana B. Tikanova
From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210

Interactions between troponin C and troponin I play a critical role in the regulation of skeletal muscle contraction and relaxation. We individually substituted 27 hydrophobic Phe, Ile, Leu, Val, and Met residues in the regulatory domain of the fluorescent troponin CF29W with polar Gln to examine the effects of these mutations on: (a) the calcium binding and dynamics of troponin CF29W complexed with the regulatory fragment of troponin I (troponin I\textsubscript{96–148}) and (b) the calcium sensitivity of force production. Troponin I\textsubscript{96–148} was an accurate mimic of intact troponin I for measuring the calcium dynamics of the troponin CF29W-troponin I\textsubscript{complexes.}

The calcium affinities of the troponin CF29W-troponin I\textsubscript{96–148} complexes varied 243-fold, whereas the calcium association and dissociation rates varied 38- and 33-fold, respectively. Interestingly, the effect of the mutations on the calcium sensitivity of force development could be better predicted from the calcium affinities of the troponin CF29W-troponin I\textsubscript{96–148} complexes than from that of the isolated troponin CF29W mutants. Most of the mutations did not dramatically affect the affinity of calcium-saturated troponin CF29W for troponin I\textsubscript{96–148}. However, the Phe\textsubscript{26} to Gln and Ile\textsubscript{62} to Gln mutations led to 10-fold lower affinity of calcium-saturated troponin CF29W for troponin I\textsubscript{96–148} causing a drastic reduction in force recovery, even though these troponin CF29W mutants still bound to the thin filaments. In conclusion, elucidating the determinants of calcium binding and exchange with troponin C in the presence of troponin I provides a deeper understanding of how troponin C controls signal transduction.

Troponin C (TnC)3 regulates striated muscle contraction and relaxation through the binding and release of Ca2+ (for review see Refs. 1–3). Skeletal muscle TnC (18 kDa) consists of globular N- and C-terminal domains connected by a 31-residue \alpha-helix (for review see Refs. 4 and 5). Both domains bind two Ca2+ ions through a pair of EF hand Ca2+-binding motifs. Each pair of EF hands interacts with one another through a short antiparallel \beta-sheet connecting the two Ca2+-binding loops (Ref. 6 and references within). The EF hands are numbered I–IV, and the helices flanking the loops are designated A–H, with an additional N-terminal 14-residue \alpha-helix (Fig. 1, N-helix), which is absent in the closely related EF hand Ca2+-binding protein calmodulin.

Much is known about the cation binding properties of TnC in solution. Each EF hand system binds Ca2+ and Mg2+ competitively, with the two C-terminal EF hands possessing higher Ca2+ and Mg2+ affinities (6–8). In fact, the Ca2+-binding sites of the C-domain of TnC possess 10-fold higher Ca2+ affinity with a greater than 100-fold slower Ca2+ dissociation rate compared with those in the N-domain (6, 9). In part because of its high Ca2+ and Mg2+ affinities and slow Ca2+ exchange rates (as compared with the kinetics of muscle contraction and relaxation), the C-domain is thought to play a structural role in muscle function by anchoring TnC into the Tn complex. In contrast, the Ca2+ exchange rates of the N-domain of TnC are rapid enough to be involved in the dynamic Ca2+-dependent regulation of muscle mechanics (for review see Refs. 3 and 10).

Skeletal muscle contraction begins when cytoplasmic [Ca2+]a rises and binds to the N-terminal EF hands of TnC. The entire N-domain of TnC subsequently undergoes a large tertiary conformational change, in which helices B and C move away as a unit from helices N, A, and D, exposing a buried hydrophobic pocket to the solvent (Ref. 5 and references within). The newly formed hydrophobic pocket is thought to allow the N-domain of TnC to interact with the C-terminal of TnI transferring the inhibitory domain of TnI away from actin (11). Concurrently or subsequently, tropomyosin changes its position on the actin filament and myosin then binds cyclically to actin causing muscle contraction (for review see Refs. 1–3). As cytoplasmic [Ca2+]a lowers, the sequence of events above reverses (not necessarily in the same order), and the muscle relaxes. One of the steps that may influence the rate of muscle relaxation is Ca2+ dissociation from the N-domain of TnC.

The influence that TnC has on the kinetics of muscle relaxation is controversial and incompletely understood (Ref. 12 and references within). The actual rate that Ca2+ dissociates from TnC in muscle fibers has not been measured and thus must be inferred. Ca2+ dissociates from the regulatory domain of isolated TnC 20–30 times faster than skeletal muscle relaxation and thus has been speculated to be too rapid to influence the muscle relaxation process.
Ca$^{2+}$ Binding and Exchange with TnC in the Presence of TnI

rate of relaxation (for review see Ref. 3). However, the antiparallel binding of TnI to TnC increases the Ca$^{2+}$ sensitivity of the N-domain of TnC to 10-fold and slows the Ca$^{2+}$ dissociation rate to 30-fold, with little additional change upon the formation of the whole Tn complex (Refs. 8 and 13–16; for review see Ref. 10). Thus, the rate of Ca$^{2+}$ dissociation from the Tn complex and not TnC alone may be the more meaningful rate when considering factors that control muscle relaxation kinetics. Consistent with this idea, exchanging a TnC mutant with an -2-fold slower N-terminal Ca$^{2+}$ dissociation rate into skeletal muscle fibers slowed the rate at which the fibers relaxed -2-fold (12). However, in the same study exchange of an -1.5-fold faster TnC mutant into muscle did not statistically increase the rate of relaxation. Clearly, a broader range of Ca$^{2+}$ dissociation rates from TnC mutants is required to further probe the role of TnC in tuning the rate of striated muscle relaxation.

To better understand the regulation of muscle mechanics, it is important to elucidate the Ca$^{2+}$-dependent interactions of TnC with TnI because TnC regulates muscle contraction as a part of the Tn complex and not in isolation. TnI residues 96–116 (TnI$_{96-116}$) bind actin and are primarily responsible for the ability of TnI to inhibit the ATPase activity of actomyosin, which can be reversed upon TnC-Ca$^{2+}$ binding to TnI$_{96-116}$ (17–19). In conjunction with residues 96–116, residues 117–148 of TnI are required for the complete inhibitory activity and regulatory interactions with actin and TnC (20–23). Furthermore, the complete enhancement of the Ca$^{2+}$ sensitivity and the slowing of the Ca$^{2+}$ dissociation rate from the regulatory domain of TnC in the presence of intact TnI were mimicked by a peptide of TnI corresponding to residues 96–148 (TnI$_{96-148}$) (8). Thus, the Ca$^{2+}$-dependent binding of the regulatory domain of TnC to TnI$_{96-148}$ may be a good model system to study the Ca$^{2+}$-dependent interactions between TnI and TnC that regulate muscle mechanics.

Recently, we investigated the effect of hydrophobic residue substitutions on the Ca$^{2+}$ binding properties of the regulatory domain of TnC with the Phetrp mutation (TnC$_{Phetrp}$). The global N-terminal Ca$^{2+}$ affinities of the TnC$_{Phetrp}$ mutants varied 2340-fold, whereas the Ca$^{2+}$ association and dissociation rates varied less than 70-fold and more than 45-fold, respectively (6). In the present study we have therefore determined how these mutations affect the Ca$^{2+}$ binding properties and dynamics of the TnC$_{Phetrp}$-TnI$_{96-116}$ complex and located hydrophobic residues essential for high affinity binding of TnI$_{96-116}$. Furthermore, we have tested whether the TnC$_{Phetrp}$-TnI$_{96-116}$ complex is a better predictor than isolated TnC$_{Phetrp}$ for the Ca$^{2+}$ binding properties of the Tn complex in muscle and the potential for a particular TnC$_{Phetrp}$ mutant to support force production.

EXPERIMENTAL PROCEDURES

Materials—Phenyl-Sepharose CL-4B and EGTA were purchased from Sigma. Quin-2 was purchased from Calbiochem (La Jolla, CA). All other chemicals were of analytical grade. The TnL$_{96-148}$ peptide was synthesized and purified by the Alberta Peptide Institute (Edmonton, Canada).

Protein Mutagenesis and Purification—The construction and expression of intact chicken skeletal TnC$_{Phetrp}$ in pET3a has been described (24). Chicken skeletal fast TnI was prepared as described for the rabbit protein (25). The TnC$_{Phetrp}$ mutants were constructed from the TnC$_{Phetrp}$ plasmid by primer based site-directed mutagenesis using a Stratagene QuickChange site-directed mutagenesis kit. The mutations were confirmed by DNA sequence analysis. The plasmids for TnC$_{Phetrp}$ and its mutants were transformed into E. coli BL21(DE3)pLysS cells (Novagen) and purified as described previously (6). Aliquots of TnC$_{Phetrp}$ and B29TnC$_{Phetrp}$ were labeled with the Cys-specific fluorescent probe 5-(iodoacetamido)-2-naphthalenesulfonyl chloride (IAEDANS) at position Cys161 for the myofibril studies. Each TnC was reacted with 3–5-fold molar excess of IAEDANS for 6 h at room temperature with constant shaking in 50 mM Tris, 90 mM KCl, 1 mM EGTA, 6 mM urea, pH 7.5. The labeling reaction was stopped by the addition of 2 mM DTT, and the labeled proteins were exhaustively dialyzed against 10 mM MOPS, 90 mM KCl, pH 7.0, at 4 °C to remove unreacted label.

Determination of Ca$^{2+}$ Affinities—All state of fluorescence measurements were performed using a Perkin-Elmer LS5 Spectrofluorimeter at 15 °C. Trp fluorescence was excited at 275 nm and monitored at 345 nm as microliter amounts of CaCl$_2$ were added to 1 ml of each TnC$_{Phetrp}$ mutant (0.3 mM plus TnI$_{96-116}$ (3 mM) in 200 mM MOPS (to prevent pH changes upon the addition of metal), 90 mM KCl, 2 mM EGTA, 1 mM DTT, pH 7.0, at 15 °C. The [Ca$^{2+}$]$_{free}$ was calculated using the program ECGA02 developed by Robertson and Potter (26). The Ca$^{2+}$ affinities are reported as dissociation constants (K$_{d}$). Each K$_{d}$ represents the mean of 3–5 titrations fit with a logistic sigmoid function and is expressed mathematically equivalent to the Hill equation, as previously described (6).

Determination of Tn$_{96-148}$ Peptide Affinities—Trp fluorescence was monitored as described in the previous paragraph. Microliter amounts of TnL$_{96-148}$ were added to 1 ml of each TnC$_{Phetrp}$ mutant (0.6 mM) in 200 mM MOPS, 90 mM KCl, 2 mM EGTA, 1 mM [Ca$^{2+}$]$_{free}$, 1 mM DTT, pH 7.0, at 15 °C. Each peptide affinity, reported as a dissociation constant, represents the mean of three to five titrations fit to the root of a quadratic equation for binary complex formation as previously described (27).

Calculation of Ca$^{2+}$ Association Rates—The Ca$^{2+}$ association rates (k$_{on}$) were calculated using the simple relationship k$_{on}$ = k$_{off}$/(K$_{d}$), where k$_{off}$ represents the concerted release of two Ca$^{2+}$ ions, and K$_{d}$ represents the binding event of two Ca$^{2+}$ ions to the N-domain of TnC in the presence of TnI$_{96-148}$, as previously described (8).

Muscle Fiber Experiments—Single fibers were isolated the day of use from bundles of rabbit psoas muscle that had been stored in a glycerinating solution at -20 °C for no longer than 1 month. Solutions and the mechanical setup utilized for force measurements were as previously described (28). Briefly, a single fiber was soaked in relaxing solution containing 1% (v/v) Triton X-100 for 5 min to remove any residual sarclemma and sarcoplastic reticulum. The fiber was then tied down in troughs attached to a servo-controlled DC torque motor (Cambridge Technologies, Watertown, MA) and an isolating solution containing 1% (v/v) Triton X-100 for 5 min to remove any residual sarclemma and sarcoplastic reticulum. The [Ca$^{2+}$]$_{free}$ was also measured using the fluorescent Ca$^{2+}$-chelator Quin-2 (6, 8). Quin-2 was excited at 330 nm with its emission monitored through a 510-nm broad band pass interference filter (Oriel, Stratford, CT). The buffer used in all stopped flow experiments was 10 mM MOPS, 90 mM KCl, 1 mM DTT, pH 7.0.

Calculation of Ca$^{2+}$ Association Rates—The Ca$^{2+}$ association rates (k$_{on}$) were calculated using the simple relationship k$_{on}$ = k$_{off}$/(K$_{d}$), where k$_{off}$ represents the concerted release of two Ca$^{2+}$ ions, and K$_{d}$ represents the binding event of two Ca$^{2+}$ ions to the N-domain of TnC in the presence of TnI$_{96-148}$, as previously described (8).

Muscle Fiber Experiments—Single fibers were isolated the day of use from bundles of rabbit psoas muscle that had been stored in a glycerinating solution at -20 °C for no longer than 1 month. Solutions and the mechanical setup utilized for force measurements were as previously described (28). Briefly, a single fiber was soaked in relaxing solution containing 1% (v/v) Triton X-100 for 5 min to remove any residual sarclemma and sarcoplastic reticulum. The fiber was then tied down in troughs attached to a servo-controlled DC torque motor (Cambridge Technologies, Watertown, MA) and an isolating solution containing 1% (v/v) Triton X-100 for 5 min to remove any residual sarclemma and sarcoplastic reticulum. The [Ca$^{2+}$]$_{free}$ was also measured using the fluorescent Ca$^{2+}$-chelator Quin-2 (6, 8). Quin-2 was excited at 330 nm with its emission monitored through a 510-nm broad band pass interference filter (Oriel, Stratford, CT). The buffer used in all stopped flow experiments was 10 mM MOPS, 90 mM KCl, 1 mM DTT, pH 7.0.
fibrils were prepared and stored as previously described (31). Endoge-
nous TnC was extracted from a sample of the stock myofibrils by first
washing the myofibrils three times in a myofibril TnC extraction solu-
tion (10 mM MOPS, 90 mM KCl, 5 mM EDTA, 2 mM DTT, 0.02% Tween
20, pH 8.0) to remove any residual glycerol. The myofibrils were then
soaked in the TnC extraction solution for approximately 10 min at room
temperature, pelleted, and resuspended in fresh TnC extraction solu-
tion an additional three times. The TnC extracted myofibrils were then
extracted myofibrils in the
the myofibrils was determined (31). 0.1 mg/ml aliquots of the TnC

isolation but as part of the Tn complex, primarily interacting
characterized (6). However, TnC does not function in muscle in
residues that were individually mutated
D). The
the various helices (N

FIG. 1. Cartoon representation of
the regulatory domain of TnCF29W.
The cartoon depicts the amino acids in the
regulatory domain of TnCF29W that form
the two Ca$^{2+}$-binding sites I and II) and
the various helices (N–D). The black
amino acids represent the hydrophobic
residues that were individually mutated to Gln, excluding Trp29.

spectra of the other TnC29W mutants were similar to TnC29W
(data not shown) except for I37QTnC29W. The addition of
TnI$_{96-148}$ to apo I37QTnC29W increased the Trp fluorescence
\sim1.3-fold, which subsequently decreased \sim1.3-fold upon the
addition of 1 mM [Ca$^{2+}$]$_{free}$ at 345 nm with a similar blue shift in
the maximum fluorescence as observed with TnC29W. The
reason for this atypical behavior of I37QTnC29W is currently
unknown. Ile37 is part of the first Ca$^{2+}$-binding loop located in
the middle of the small β-sheet connecting the two N-terminal
EF hands. Thus, Ile37 may be critical for proper Ca$^{2+}$
binding and coordination of subsequent structural changes.

Measurement of Ca$^{2+}$-Binding Affinities for the N-terminal
Domains of TnC29W and Mutants in the Presence of TnI$_{96-148}$
at 15 °C—The Ca$^{2+}$-binding affinities (K_d) for TnC29W and
each hydrophobic mutant were measured by following the
Ca$^{2+}$-induced changes in Trp fluorescence in the presence of TnI$_{96-148}$.
Examples of the Ca$^{2+}$-dependent increases in N-
terminal TnC29W and mutant TnC fluorescence are shown in
Fig. 3 for L49QTnC29W (1), TnC29W (1), M81QTnC29W (1),
I73QTnC29W (1), and F26QTnC29W (1). Table I summarizes
the Ca$^{2+}$-binding data for these and the remaining TnC29W
mutants. In the presence of TnI$_{96-148}$, TnC29W exhibited a
half-maximal increase in its Trp fluorescence upon the addition of
Ca$^{2+}$ at 267 ± 3 nM. The Ca$^{2+}$ affinities for the mutants
ranged from 70 ± 1 nM for L49QTnC29W to 17 ± 3 μM for
F26QTnC29W. Therefore, substitution of hydrophobic residues
with polar Gln produced N-domain TnC29W mutants that
exhibited 243-fold variation in their Ca$^{2+}$ affinities in the presence
of TnI$_{96-148}$. The Hill coefficients for all but two of the
TnC29W.TnI$_{96-148}$ mutant complexes (F26QTnC29W and
I37QTnC29W) were between 1.6 and 2.8 (see Table I), implying
cooperative binding of Ca$^{2+}$ and TnI$_{96-148}$ to TnC29W and
its mutants.

Similar to the binding of TnI to TnC, the binding of TnI$_{96-148}$
to TnC29W increases the Ca$^{2+}$ sensitivity of the regulatory
do mains of TnC29W—12-fold (Table I and Refs. 8 and 13–15).
On average, the Ca$^{2+}$ sensitivity of the TnC29W mutants
increased \sim11-fold (Table I). However, the Ca$^{2+}$ sensitivities of
F26QTnC29W, V80QTnC29W, and M81QTnC29W increased
\geq23-fold, whereas for F22QTnC29W, L42QTnC29W,
V45QTnCP29W, M46QTnCP29W, L49QTnCP29W, I61QTnCP29W, F78QTnCP29W, and M82QTnCP29W, the Ca$^{2+}$ sensitivities increased 5.5-fold when compared with the isolated TnCP29W mutant (Table I and Ref. 6). Thus, the hydrophobic to Gln mutations in TnCP29W not only affect the overall Ca$^{2+}$ sensitivity of the TnCP29W-TnI96–148 complex but also modulate the effectiveness of TnI96–148 to increase the Ca$^{2+}$ affinity of the regulatory domain of TnCP29W.

Fig. 2. Effect of Ca$^{2+}$ on the fluorescence spectra of TnCP29W and I37QTnCP29W in the presence of TnI96–148. Fluorescence emission spectra for TnCP29W (A) or I37QTnCP29W (B) are shown in the apo (solid lines), apo + TnI96–148 (dashed lines), and Ca$^{2+}$ + TnI96–148 (dotted lines) states. The Trp fluorescence spectra were recorded with an excitation wavelength of 275 nm in 200 mM MOPS, 90 mM KCl, 2 mM EGTA, 1 mM DTT, pH 7.0, at 15°C. The concentrations of the TnCP29W proteins, TnI96–148 peptide and [Ca$^{2+}$]free were 0.3 μM, 3 μM, and 1 mM, respectively.

Measurement of TnI96–148 Binding Affinities for the Ca$^{2+}$-saturated N-terminal Domains of TnCP29W and Mutants at 15°C—The binding of TnI96–148 to Ca$^{2+}$-saturated TnCP29W and its mutants caused on average a 26.6 ± 0.4% decrease in the Trp fluorescence (excluding I37QTnCP29W, which displayed a 23 ± 1% increase), which can be utilized to determine the peptide binding affinity (8, 20). Examples of the TnI96–148-dependent decrease in N-terminal TnCP29W and mutant Trp flu-
Fig. 3. Ca\(^{2+}\) binding to TnC\(^{\text{F29W}}\) and its mutants in the presence of TnI\(_{96-148}\). The Ca\(^{2+}\)-dependent increases in Trp fluorescence are shown for L49QTnC\(^{\text{F29W}}\) (), TnC\(^{\text{F29W}}\) (▲), M81QTnC\(^{\text{F29W}}\) (□), I73QTnC\(^{\text{F29W}}\) (△), and F26QTnC\(^{\text{F29W}}\) (○) as a function of \(-\log[\text{Ca}^{2+}]\). Microliter amounts of Ca\(^{2+}\) were added to 1 ml of each protein (0.3 μM) plus TnI\(_{96-148}\) (3 μM) in the same buffer and temperature as described in the legend of Fig. 2. Trp fluorescence emission was monitored at 345 nm with excitation at 275 nm. 0% Trp fluorescence corresponds to the apo state fluorescence, whereas 100% Trp fluorescence corresponds to the highest fluorescent state in the presence of Ca\(^{2+}\) for each individual TnC\(^{\text{F29W}}\) protein. Each data point represents the mean ± S.E. of three to five titrations fit with a logistic sigmoid equation.

Table I

Mutant protein	Ca\(^{2+}\)	Hill coefficient	ΔCa\(^{2+}\) sensitivity	\(k_{d}\)	\(k_{a} \times 10^{7}\)	Peptide	K_d
TnC\(^{\text{F29W}}\)	267 ± 3	2.76 ± 0.07	12.3	0.16 ± 0.02	4.3	146 ± 19	
M3QTnC\(^{\text{F29W}}\)	312 ± 6	2.13 ± 0.07	9.6	11.57 ± 0.06	3.7	188 ± 12	
F13QTnC\(^{\text{F29W}}\)	211 ± 4	2.21 ± 0.09	11.8	7.66 ± 0.05	3.6	133 ± 34	
L14QTnC\(^{\text{F29W}}\)	885 ± 34	2.3 ± 0.02	6.7	14.5 ± 0.1	1.6	155 ± 25	
M18QTnC\(^{\text{F29W}}\)	296 ± 10	2.3 ± 0.02	6.6	8.9 ± 0.3	3.0	189 ± 24	
I19QTnC\(^{\text{F29W}}\)	417 ± 4	2.21 ± 0.09	10.6	14.2 ± 0.4	3.4	186 ± 15	
F22QTnC\(^{\text{F29W}}\)	321 ± 6	2.38 ± 0.09	3.1	12.4 ± 0.1	3.9	443 ± 37	
F28QTnC\(^{\text{F29W}}\)	17000 ± 3000	1.0 ± 0.2	23.2	169 ± 4	1.0	1473 ± 83	
M28QTnC\(^{\text{F29W}}\)	327 ± 5	1.96 ± 0.05	11.6	15.2 ± 0.1	4.7	194 ± 22	
L37QTnC\(^{\text{F29W}}\)	6600 ± 950	0.39 ± 0.03	12.2	98 ± 0.6	1.5	326 ± 48	
L42QTnC\(^{\text{F29W}}\)	6284 ± 240	2.0 ± 0.1	1.0	15.9 ± 0.1	0.3	221 ± 19	
V45QTnC\(^{\text{F29W}}\)	87 ± 1	2.16 ± 0.06	2.0	8.3 ± 0.2	9.5	259 ± 57	
M48QTnC\(^{\text{F29W}}\)	288 ± 7	1.81 ± 0.07	3.1	12.6 ± 0.2	4.4	315 ± 11	
M49QTnC\(^{\text{F29W}}\)	246 ± 7	2.4 ± 0.1	13.0	10.7 ± 0.1	4.3	183 ± 28	
L49QTnC\(^{\text{F29W}}\)	70 ± 1	2.10 ± 0.07	2.4	8.01 ± 0.02	11.4	241 ± 10	
L58QTnC\(^{\text{F29W}}\)	441 ± 15	2.0 ± 0.1	9.1	11.9 ± 0.1	2.7	204 ± 15	
I61QTnC\(^{\text{F29W}}\)	495 ± 16	2.5 ± 0.2	5.2	22 ± 0.1	4.5	268 ± 13	
H62QTnC\(^{\text{F29W}}\)	2628 ± 47	1.59 ± 0.04	14.2	102 ± 2	3.9	2075 ± 116	
V65QTnC\(^{\text{F29W}}\)	592 ± 17	2.4 ± 0.2	13.5	10.2 ± 0.2	1.7	268 ± 23	
I73QTnC\(^{\text{F29W}}\)	1824 ± 31	2.42 ± 0.09	12.5	29.3 ± 0.2	1.6	147 ± 10	
F75QTnC\(^{\text{F29W}}\)	598 ± 16	1.61 ± 0.06	7.4	24.9 ± 0.5	4.2	230 ± 18	
F78QTnC\(^{\text{F29W}}\)	5084 ± 97	2.5 ± 0.1	5.3	16.1 ± 0.1	0.3	128 ± 22	
L79QTnC\(^{\text{F29W}}\)	6549 ± 20	2.4 ± 0.2	14.9	14.0 ± 0.1	2.1	234 ± 41	
V80QTnC\(^{\text{F29W}}\)	788 ± 13	2.24 ± 0.08	27.9	16.1 ± 0.2	2.0	149 ± 20	
M81QTnC\(^{\text{F29W}}\)	335 ± 10	2.4 ± 0.2	56.7	5.15 ± 0.02	1.5	256 ± 13	
M82QTnC\(^{\text{F29W}}\)	149 ± 1	2.07 ± 0.04	4.6	5.8 ± 0.1	3.9	382 ± 17	
V83QTnC\(^{\text{F29W}}\)	517 ± 19	2.4 ± 0.2	7.2	15.4 ± 0.3	3.0	210 ± 25	
M88QTnC\(^{\text{F29W}}\)	420 ± 10	2.4 ± 0.1	6.2	13.4 ± 0.1	3.2	294 ± 34	

\(\Delta\text{Ca}^{2+}\) sensitivity is the quotient of the Ca\(^{2+}\) affinity of the protein in isolation (6) divided by the Ca\(^{2+}\) affinity of the protein in the presence of TnI\(_{96-148}\).
dependent binding of TnC to Ca$^{2+}$-saturated TnCF$_{29W}$ and its mutants. The Tn$_{96,-148}$-dependent decreases in Trp fluorescence are shown for Ca$^{2+}$-saturated L49QTnC$_{29W}$ (), TnC$_{29W}$ (), M81QTnC$_{29W}$ (), I73QTNc$_{29W}$ (), and F26QTnC$_{29W}$ () as a function of Tn$_{96,-148}$ concentration. Microtiter amounts of Tn$_{96,-148}$ were added to each TnC (0.6 μM) in the same buffer and temperature as in Fig. 2 in the presence of 1 mM [Ca$^{2+}$]$_{in}$ (or 10 mM [Ca$^{2+}$]$_{in}$ in the case of F26QTnC$_{29W}$). 100% Trp fluorescence corresponds to the Ca$^{2+}$-saturated state, whereas 0% represents the Ca$^{2+}$-Tn$_{96,-148}$-saturated state for each individual TnC$_{29W}$ protein. Each data point represents the mean ± S.E. of three to five titrations fit to the root of a quadratic equation for binary complex formation.

M81QTnC$_{29W}$ (5 s$^{-1}$), L49QTnC$_{29W}$ (8 s$^{-1}$), TnC$_{29W}$ (11 s$^{-1}$), I73QTNc$_{29W}$ (29 s$^{-1}$), and F26QTnC$_{29W}$ (169 s$^{-1}$) complexed with Tn$_{96,-148}$. The rates of Ca$^{2+}$ dissociation for the remaining mutant complexes fell between that of M81QTnC$_{29W}$ and that of F26QTnC$_{29W}$ (Table I). Therefore, substitution of hydrophobic residues with polar Gln in the regulatory domain of TnC$_{29W}$ increased (~16-fold) and decreased (~2-fold) the Ca$^{2+}$ dissociation rate from the TnC$_{29W}$-Tn$_{96,-148}$ complex, creating an ~33-fold variation. To verify that the time course of the EGTA-induced Trp fluorescence decreases for the TnC$_{29W}$-Tn$_{96,-148}$ complexes followed Ca$^{2+}$ dissociation and not a slower structural change, Ca$^{2+}$ dissociation was also measured using the fluorescent Ca$^{2+}$ chelator Quin-2. Whereas the fluorescence of Trp was selective for the events of N-terminal Ca$^{2+}$ dissociation, Quin-2 fluorescence reported Ca$^{2+}$ dissociation from both the N- and C-domains of TnC$_{29W}$ and its mutants complexed with Tn$_{96,-148}$. However, the Ca$^{2+}$ dissociation rates from the N-terminal domain of TnC$_{29W}$ and its mutants were easily distinguished from the rates of Ca$^{2+}$ dissociation from the C-terminal domain (on average 0.159 ± 0.007 s$^{-1}$) because the latter rates were ~30-fold slower in the presence of Tn$_{96,-148}$ or intact TnC. Fig. 5B demonstrates that for all of the mutants, the Ca$^{2+}$ dissociation rate reported by Trp was in excellent agreement with the N-terminal rate determined by Quin-2. Therefore, the fluorescent Trp signal accurately reports Ca$^{2+}$ binding and dissociation from the TnC$_{29W}$-Tn$_{96,-148}$ mutant complexes.

To verify that Tn$_{96,-148}$ is a satisfactory model system for the regulatory domain binding of TnC to TnI, stopped flow studies were also conducted with intact chicken skeletal TnI. Fig. 5C shows the time course of the increases in Quin-2 fluorescence as Ca$^{2+}$ was dissociated from the N-terminal domains of M81QTnC$_{29W}$ (4 s$^{-1}$), L49QTnC$_{29W}$ (5 s$^{-1}$), TnC$_{29W}$ (9 s$^{-1}$), I73QTNc$_{29W}$ (22 s$^{-1}$), and F26QTnC$_{29W}$ (135 s$^{-1}$) complexed with intact TnI. The Ca$^{2+}$ dissociation rates measured from the regulatory domain of TnC$_{29W}$ and its mutants in the presence of Tn$_{96,-148}$ were similar to that measured in the presence of intact TnI. Therefore, the TnC$_{29W}$, Tn$_{96,-148}$ complex is a good model system to study the regulatory mechanisms of the Ca$^{2+}$-dependent binding of TnC to TnI.

Calculation of Ca$^{2+}$ Association Rates—The Ca$^{2+}$ association rates to TnC$_{29W}$ and its mutants in the presence of Tn$_{96,-148}$ were calculated using the Ca$^{2+}$ K_a and k_{off} values determined by Trp ($k_{on} = k_{off}/K_a$; Table I). The calculated k_{on} for TnC$_{29W}$ in the presence of Tn$_{96,-148}$ was ~4.5 × 106 M$^{-1}$ s$^{-1}$, which was ~2.4-fold slower than the k_{on} calculated or measured in the absence of the peptide (6, 8). In the presence of Tn$_{96,-148}$, k_{on} varied ~38-fold between the TnC$_{29W}$ mutants with L49QTnC$_{29W}$ (~1.1 × 106 M$^{-1}$ s$^{-1}$) exhibiting the fastest k_{on} and L42QTnC$_{29W}$ (~3 × 105 M$^{-1}$ s$^{-1}$) exhibiting the slowest k_{on}. Clearly, some of the hydrophobic mutations in the regulatory domain of TnC$_{29W}$ significantly alter the Ca$^{2+}$ association rate in the presence of Tn$_{96,-148}$.

Ca$^{2+}$ Binding to TnC$_{29W}$ in the Presence of Tn$_{96,-148}$ as a Predictor for the Ca$^{2+}$ Dependence of Force Development in Skeletal Muscle—Fig. 6A shows that V45QTnC$_{29W}$ and M46QTnC$_{29W}$ possess ~19- and 6.6-fold higher Ca$^{2+}$ affinity than TnC$_{29W}$ in the absence of Tn$_{96,-148}$, respectively (Table II and Ref. 6). On the other hand, M81QTnC$_{29W}$ and F78QTnC$_{29W}$ display ~6-fold higher Ca$^{2+}$ affinity than TnC$_{29W}$ in the absence of Tn$_{96,-148}$, respectively (Table II and Ref. 6). However, Fig. 6B shows that only the Ca$^{2+}$ sensitivities of V45QTnC$_{29W}$ and F78QTnC$_{29W}$ in the presence of the Ca$^{2+}$-saturated TnC$_{29W}$ mutants complexed with Tn$_{96,-148}$, were not the same. To test which TnC$_{29W}$ system (with or without Tn$_{96,-148}$) better represents the Ca$^{2+}$ sensitivity of force production in muscle, the endogenous TnC in psoas muscle fibers was extracted and then replaced with TnC$_{29W}$ or its mutants, and force versus pCa was measured. After TnC extraction, the average force generated by the single skinned muscle fibers was 2.3 ± 0.5% of the maximal force (data not shown). Subsequent reconstitution of the muscle fibers with V45QTnC$_{29W}$, M46QTnC$_{29W}$, TnC$_{29W}$, M81QTnC$_{29W}$, or F78QTnC$_{29W}$ recovered 82 ± 5, 73 ± 4, 90 ± 3, 65 ± 8, and 80 ± 2% of the maximal force at pCa 4, respectively. Fig. 6C demonstrates that the Ca$^{2+}$ dependence of force generation with TnC$_{29W}$ or its mutants followed qualitatively more closely to the Ca$^{2+}$ sensitivities of the mutant TnC$_{29W}$, Tn$_{96,-148}$ complexes and not to that of the isolated TnC$_{29W}$ proteins (see also Table II). Thus, the qualitative and quantitative changes in N-terminal Ca$^{2+}$ sensitivities for several of the TnC$_{29W}$ mutants compared with TnC$_{29W}$ in the presence of Tn$_{96,-148}$ were not the same.
Fig. 5. Rates of Ca\(^{2+}\) dissociation from TnC\(^{F29W}\) and its mutants in the presence of TnI\(_{96-148}\) or intact TnI. A shows the time course of decrease in Trp fluorescence as Ca\(^{2+}\) was removed by EGTA from the regulatory Ca\(^{2+}\)-binding sites of M81QTnC\(^{F29W}\), L49QTnC\(^{F29W}\), TnC\(^{F29W}\), I73QTnC\(^{F29W}\), and F26QTnC\(^{F29W}\) in the presence of TnI\(_{96-148}\). Each TnC\(^{F29W}\) protein (0.6 \(\mu\)M) plus TnI\(_{96-148}\) (6 \(\mu\)M) in 10 mm MOPS, 90 mm KCl, 1 mm DTT, pH 7.0, plus 100 \(\mu\)M Ca\(^{2+}\) was rapidly mixed with an equal volume of the same buffer plus 10 mm EGTA at 15 °C. Trp fluorescence was monitored through a UV-transmitting black glass filter (UG1 from Oriel) with excitation at 275 nm. B shows the time course of increase in Quin-2 fluorescence as Ca\(^{2+}\) was removed by Quin-2 from the regulatory Ca\(^{2+}\)-binding sites of M81QTnC\(^{F29W}\), L49QTnC\(^{F29W}\), TnC\(^{F29W}\), I73QTnC\(^{F29W}\), and F26QTnC\(^{F29W}\) in the presence of TnI\(_{96-148}\). Each TnC\(^{F29W}\) protein (3 \(\mu\)M) plus TnI\(_{96-148}\) (30 \(\mu\)M) in 10 mm MOPS, 90 mm KCl, 1 mm DTT, pH 7.0, plus 30 \(\mu\)M Ca\(^{2+}\) was rapidly mixed with an equal volume of the same buffer plus 150 \(\mu\)M Quin-2 at 15 °C. Quin-2 fluorescence was monitored through a 510-nm broad band pass interference filter with excitation at 330 nm. C shows the time course of increase in Quin-2 fluorescence as Ca\(^{2+}\) was removed by Quin-2 from the regulatory Ca\(^{2+}\)-binding sites of M81QTnC\(^{F29W}\), L49QTnC\(^{F29W}\), TnC\(^{F29W}\), I73QTnC\(^{F29W}\), and F26QTnC\(^{F29W}\) in the presence of intact TnI. Each TnC\(^{F29W}\) protein (3 \(\mu\)M) plus intact TnI (30 \(\mu\)M) in 10 mm MOPS, 90 mm KCl, 1 mm DTT, pH 7.0, plus 30 \(\mu\)M Ca\(^{2+}\) was rapidly mixed with an equal volume of the same buffer plus 150 \(\mu\)M Quin-2 at 15 °C. All of the traces have been staggered and normalized for clarity. Each trace is an average of at least 15 traces fit with a single exponential equation (variance < 2 \(\times\) 10\(^{-4}\)). The kinetic traces were triggered at time 0 with the first ~2 ms of premixing time shown (the apparent lag phase). The traces were fit after the mixing time was complete.
Fig. 6. Comparison of the Ca\(^{2+}\) binding properties of TnC and mutants in the absence and presence of TnI\(_{96-148}\) with their Ca\(^{2+}\) dependence of skeletal muscle force generation. A shows the Ca\(^{2+}\)-dependent increases in Trp fluorescence for V45Q TnC\(_{F29W}\) (●), M46Q TnC\(_{F29W}\) (■), TnC\(_{F29W}\) (▲), M81Q TnC\(_{F29W}\) (□), and F78Q TnC\(_{F29W}\) (○) as a function of -Log[Ca\(^{2+}\)]. The data have been adapted from Tikunova et al. (6). Because these data were collected under identical experimental conditions as were used here, we have for comparative purposes reproduced these data in this figure and Table II. Microliter amounts of Ca\(^{2+}\) were added to 1 ml of each protein (0.3 μM) in the same buffer and temperature as described in the legend to Fig. 2. Trp fluorescence was monitored as described in the legend to Fig. 3. The data sets were normalized individually for each mutant. B shows the Ca\(^{2+}\)-dependent increases in Trp fluorescence in the presence of TnI\(_{96-148}\) for V45Q TnC\(_{F29W}\) (●), M46Q TnC\(_{F29W}\) (■), TnC\(_{F29W}\) (▲), M81Q TnC\(_{F29W}\) (□), and F78Q TnC\(_{F29W}\) (○) as a function of -Log[Ca\(^{2+}\)]. The experimental details are identical to those described in the legend to Fig. 3. C shows the Ca\(^{2+}\) dependence of isometric force generation in single skinned psoas fibers reconstituted with V45Q TnC\(_{F29W}\) (●), M46Q TnC\(_{F29W}\) (■), TnC\(_{F29W}\) (▲), M81Q TnC\(_{F29W}\) (□), and F78Q TnC\(_{F29W}\) (○) as a function of -Log[Ca\(^{2+}\)]. The experimental conditions are described under “Experimental Procedures.” Each data point represents the mean ± S.E. from at least three separate fibers individually normalized and fit with a logistic sigmoid equation mathematically equivalent to the Hill equation.
Another effect observed in the reconstituted muscle, which could not be predicted by the Ca²⁺-binding properties of the isolated TnC, was the maximal amount of force recovered by a particular mutant. Fig. 7A shows the Ca²⁺-dependent increases in force recovered by TnCF_{29W} (▲), L42QTnCF_{29W}(●), I73QTnCF_{29W}(●), and I62QTnCF_{29W}(●). At pCa 4.0, TnCF_{29W}, L42QTnCF_{29W}, I73QTnCF_{29W}, and I62QTnCF_{29W} recovered 90 ± 3, 79 ± 3, 45 ± 6, and 12 ± 4% of the force generated by the endogenous TnC prior to extraction, respectively. Similar to I62QTnCF_{29W}, I37QTnCF_{29W} and F26QTnCF_{29W} also recovered force poorly at 15 ± 1 and 13 ± 1% of the maximal amount of force generated by the fiber prior to endogenous TnC extraction, respectively (data not shown). Thus, the amount of maximal force sustained by the TnCF_{29W} mutants was variable, with three of the mutants only marginally allowing any force production. As will be discussed, the binding of Tn₉₆ to the Ca²⁺-saturated TnCF_{29W} mutants may offer clues as to why some of the mutants support little force.

To test whether I62QTnCF_{29W} was actually binding to the thin filaments in the TnC-extracted muscle fibers, additional TnC exchange experiments were performed on the muscle. Fig. 7B at time 0 shows the maximal force recovered by TnCF_{29W} at pCa 4.0 in a reconstituted muscle fiber. The fiber was then transferred to a relaxing solution containing 16.7 mM I62QTnCF_{29W}, and the force generated at pCa 4.0 was measured at several time intervals. The amount of force production decreased with time, eventually reaching a value similar to that generated by fibers solely reconstituted with I62QTnCF_{29W}. The data indicate that I62QTnCF_{29W} was able to bind to the thin filaments and competitively displace TnCF_{29W} from the Tn complex. Furthermore, when a muscle fiber was initially reconstituted with I62QTnCF_{29W} (Fig. 7B, time 0, □) and then competitively displaced with 16.7 mM TnC in solution, maximal force increased with a time course similar to that at which I62QTnCF_{29W} inhibited the force generated with TnCF_{29W}. When the TnC-binding sites in the fiber were vacant (i.e. after endogenous TnC extraction), the addition of TnC at the concentration used for the competitive binding studies caused force to be maximal within 2 min (data not shown). Results similar to that of I62QTnCF_{29W} were obtained in the displacement studies when I37QTnCF_{29W} or F26QTnCF_{29W} were tested (data not shown). Thus, the data supports the hypothesis that the TnCF_{29W} mutants that minimally support force (<15%) bind to the thin filament and form the Tn complex.

To directly visualize whether I62QTnCF_{29W} was able to incorporate into the TnC-depleted muscle fiber, both TnCF_{29W} and I62QTnCF_{29W} were labeled with the extrinsic fluorescent probe IAE-DANS and reconstituted into psosas myofibrils. Fig. 7C shows representative phase contrast images of TnCF_{29W}, IAE-DANS (top left panel) and I62QTnCF_{29W}-IAE-DANS (top right panel) reconstituted myofibrils. As can be seen from the fluorescent images (Fig. 7C, bottom left panel for TnCF_{29W}, IAE-DANS and bottom right panel for I62QTnCF_{29W}-IAE-DANS), both IAE-DANS-labeled TnC proteins incorporate into the myofibril at the myosin-actin filament overlap and non-overlap space. Thus, as predicted from the physiological competition experiments, I62QTnCF_{29W} binds to the thin filament at a similar location, as does TnCF_{29W}, and forms the Tn complex, albeit in an inactive state.

DISCUSSION

The goal of the present study was to examine the effect of the hydrophobic mutations on the Ca²⁺- binding properties of the TnCF_{29W}, Tn₉₆-₁₄₈ complex and on the affinity of TnCF_{29W} for Tn₉₆-₁₄₈. Furthermore, we wanted to examine whether the effect of hydrophobic mutations on the Ca²⁺ sensitivity of force development could be better predicted by the Ca²⁺ and Tn₉₆-₁₄₈ binding properties of the TnCF_{29W} mutants than by that of the isolated TnCF_{29W}. Because the regulatory domain of chicken TnC is spectroscopically silent, the Phe²⁹ → Trp mutation was utilized to follow the structural changes in the N-domain of TnC induced by changes in Ca²⁺ concentration (6, 8, 9, 12, 24, 33–35). In our previous study, all 27 Phe, Ile, Leu, Val, and Met residues were individually mutated to polar Gln to examine the role of hydrophobic residues in Ca²⁺ binding and exchange with the regulatory domain of intact TnCF_{29W} in isolation (6). The hydrophobic TnCF_{29W} mutants exhibited ~340-fold variation in their Ca²⁺ binding affinities. Indicative of the Ca²⁺ affinity changes, the hydrophobic TnCF_{29W} mutants also exhibited less than 70-fold and more than 45-fold variation in their Ca²⁺ association rates and dissociation rates, respectively (6). The data indicated that the local side chain interactions of the hydrophobic residues within the tertiary structures of the apo and Ca²⁺-bound regulatory domain of TnCF_{29W} played an important role in dictating the Ca²⁺ binding properties of the protein.

The Ca²⁺ affinities of the mutant TnCF_{29W}–Tn₉₆-₁₄₈ complexes varied −243-fold. However, the variation in the Ca²⁺ sensitivity of the mutants in the absence of Tn₉₆-₁₄₈ was an order of magnitude larger (6). It would appear that Ca²⁺ binding is optimized when the regulatory domain of TnC is in the open state (helices B and C swing away from helices N, A, and D) (6). The binding of TnI or C-terminal peptides of TnI to the regulatory domain of TnC helps to lock TnC into the open state and thus enhance the Ca²⁺ binding affinity of TnC−_{10−12}-fold (8, 13–15). The high Ca²⁺ affinity mutants of TnCF_{29W} (F22QTnCF_{29W}, V45QTnCF_{29W}, M46QTnCF_{29W}, L49QTnCF_{29W}, and M82QTnCF_{29W}) may mimic TnI binding to TnC by shifting the decreased variation in the Ca²⁺ binding affinities of the TnCF_{29W}, Tn₉₆-₁₄₈ mutant complexes.

On the other hand, hydrophobic mutations to polar Gln in the regulatory domain of TnCF_{29W} that may impede the forma-

Protein	In isolation	+ Tn₉₆-₁₄₈	In muscle				
	Ca²⁺ K_d	ΔCa²⁺ sensitivity	Ca²⁺ K_d	ΔCa²⁺ sensitivity	Hill coefficient		
V45QTnCF_{29W}	0.17 ± 0.02	↑ 19	87 ± 1	↑ 3.1	253 ± 31	↑ 2.3	1.9 ± 0.1
M46QTnCF_{29W}	0.88 ± 0.06	↑ 7.6	288 ± 7	↑ 11.1	625 ± 50	↑ 1.1	2.5 ± 0.1
TnCF_{29W}	3.2 ± 0.2	1.0	267 ± 3	1.0	568 ± 40	1.0	2.4 ± 0.2
M81QTnCF_{29W}	19 ± 4	↑ 5.9	335 ± 10	↑ 1.3	996 ± 52	↑ 1.8	2.5 ± 0.2
F78QTnCF_{29W}	27 ± 4	↑ 8.4	5084 ± 97	↑ 19	2405 ± 190	↓ 4.2	2.6 ± 0.1

TABLE II

Comparison of the Ca²⁺ binding properties of TnCF_{29W} and mutants in the absence and presence of Tn₉₆-₁₄₈ with their Ca²⁺ dependence of skeletal muscle force generation.
Fig. 7. Comparison of TnCF29W and mutants with varied maximal force recoveries in TnC reconstituted muscle fibers and myofibrils. A shows the Ca$^{2+}$ dependence of isometric force generation in single skinned psoas fibers reconstituted with TnCF29W (), L42QTnCF29W (), I62QTnCF29W (), 173QTnCF29W (), and 162QTnCF29W () as a function of $-\log$([Ca$^{2+}$]). The experimental conditions are described under “Experimental Procedures.” Each data point represents the mean ± S.E. from at least three separate fibers fit with a logistic sigmoid equation mathematically equivalent to the Hill equation. Information regarding the parameters of the fit for TnCF29W can be found in Table II. L42QTnCF29W displayed half-maximal isometric force at 1.3 ± 0.2 μM Ca$^{2+}$ with a Hill coefficient of 2.1 ± 0.2. L42QTnCF29W displayed half-maximal isometric force at 3.2 ± 0.4 μM Ca$^{2+}$ with a Hill coefficient of 1.0 ± 0.1. 162QTnCF29W displayed half-maximal isometric force at 1.6 ± 0.1 μM Ca$^{2+}$ with a Hill coefficient of 1.2 ± 0.1. B, the open squares show the time course decay of maximal isometric force as 162QTnCF29W displaces TnCF29W from single skinned psoas fibers (t$_{1/2}$ = 3.3 ± 0.4 min). Time 0 represents the maximal isometric force generated in the pCa 4.0 solution for TnCF29W reconstituted muscle fibers. Subsequently the fibers were soaked in a resting solution containing 16.7 μM 162QTnCF29W and periodically contracted in a pCa 4.0 solution every 3 min for the first 12 min then every 5 min thereafter. The closed squares show the time course increase of maximal isometric force as TnC displaces 162QTnCF29W from single skinned psoas fibers (t$_{1/2}$ = 2.2 ± 0.1 min). Time 0 represents the maximal isometric force generated in the pCa 4.0 solution for 162QTnCF29W reconstituted muscle fibers. Subsequently the fibers were soaked in a resting solution containing 16.7 μM TnC and periodically contracted in a pCa 4.0 solution every 3 min for the first 12 min then every 5 min thereafter. Each data point represents the mean ± S.E. from three separate fibers fit with a single exponential equation. C shows the phase contrast (top panels) and IAE-DANS fluorescence (bottom panels) images obtained from TnC extracted rabbit psoas myofibrils reconstituted with TnCF29W, IAE-DANS (left panels) or 162QTnCF29W, IAE-DANS (right panels). The vertical line designates the location of the Z lines, and the horizontal lines designate the locations of the A bands (actin-myosin filament overlap).
side chain interaction. Consistent with this idea, analysis of the NMR structure of the Ca2+/H\textsubscript{11001}-TnC-TnI\textsubscript{115–131} complex (36) or a modeled structure of TnC-TnI (37) indicates that there are nine different hydrophobic residue side chains within the N-domain of TnC that come within 4 Å of six different hydrophobic side chains within TnI\textsubscript{115–131}. All of the high Ca2+ affinity mutant hydrophobic residue side chains (Phe\textsubscript{22}, Val\textsubscript{45}, Met\textsubscript{46}, Leu\textsubscript{49}, and Met\textsubscript{82}) come in close contact to TnI\textsubscript{115–131} and modestly decrease TnI\textsubscript{96–148} binding 1.7–3-fold. However, as mentioned above, neither Phe\textsubscript{26} nor Ile\textsubscript{62} come in close contact with TnI but interact with the Ca2+-binding loop \beta-sheet residues Ile\textsubscript{37} and Ile\textsubscript{62} (Fig. 8). Thus, Phe\textsubscript{26} and Ile\textsubscript{62} may help maintain the open state in such a way as to allow high affinity TnI\textsubscript{96–148} binding to the regulatory domain of TnC F\textsubscript{29W}. Consistent with this idea, inhibiting the Ca2+-dependent opening of the regulatory domain of TnC by the introduction of a disulfide bond between the NAD and BC units decreased the affinity of TnI binding −15-fold (38).

The −12-fold increase in TnC\textsuperscript{F\textsubscript{29W}} Ca2+ affinity upon binding of TnI or TnI\textsubscript{96–148} is primarily reflected by an −30-fold slower rate of Ca2+ dissociation from the TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complex (8). Hydrophobic residue substitutions to polar Gln in the regulatory domain of TnC\textsuperscript{F\textsubscript{29W}} varied the Ca2+ dissociation rates from the TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complex 33-fold. This broad range in Ca2+ dissociation rates is primarily reflected by the ability of some of the hydrophobic mutations to speed the rate of Ca2+ dissociation, up to −15-fold compared with the TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complex. Consistent with the inability of TnI\textsubscript{96–148} to enhance the Ca2+ sensitivity of the TnC\textsuperscript{F\textsubscript{29W}} mutants with increased Ca2+ affinity, the Ca2+ dissociation rate from the mutant TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complexes could only be slowed −2-fold.

The TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complex may be a good model system to study how different Tn complexes respond to changes in Ca2+ concentration in muscle. Interestingly, the rate of Ca2+ dissociation from the TnC\textsuperscript{F\textsubscript{29W}}-TnI\textsubscript{96–148} complex, and not isolated TnC\textsuperscript{F\textsubscript{29W}}, is similar to the rate of fast twitch skeletal muscle relaxation (Fig. 9). Previous experiments with TnC mutants in which the Ca2+ sensitivity of the regulatory domain in solution was increased or decreased demonstrated similar
qualitative shifts in the force-pCa relationship upon reconstitution in skeletal muscle fibers (8, 12, 34, 35, 39, 40). This may be the case only in those circumstances when the Ca$^{2+}$ sensitivity of the isolated TnC and the TnC-TnI complex are shifted in a similar direction. To test this hypothesis we reconstituted skinned rabbit psoas fibers with TnC F29W mutants that displayed the same qualitative changes in Ca$^{2+}$ sensitivities in the absence or presence of TnI,6–148 (V45Q TnC F29W and F78Q TnC F29W) and two that did not (M46Q TnC F29W and M81Q TnC F29W). Comparison of the effects of these mutations on the force-pCa relationship suggests that the TnC F29W-TnI,6–148 complex is a better predictor than isolated TnC F29W for how changes in Ca$^{2+}$ binding to TnC modulate the Ca$^{2+}$ sensitivity of force production. For instance, even though both Val16 → Gln and Met46 → Gln mutations increase the Ca$^{2+}$ affinity of isolated TnC F29W, only the Val16 → Gln mutation increased the Ca$^{2+}$ sensitivity of force development. These results are consistent with the fact that only Val15 → Gln, but not Met46 → Gln increases the Ca$^{2+}$ affinity of the TnC F29W-TnI,6–148 complex.

Furthermore, the Ca$^{2+}$ sensitivity of force development generated with F78Q TnC F29W was dramatically lower than that generated with M81Q TnC F29W or TnC F29W, even though both Phe78 → Gln and Met81 → Gln mutations in isolated TnC F29W decreased the Ca$^{2+}$ sensitivity of the regulatory domain to a similar extent (6). These results are consistent with the fact that the Phe78 → Gln but not Met81 → Gln mutation leads to a dramatic decrease in Ca$^{2+}$ affinity of the TnC F29W-TnI,6–148 complex. However, the Phe78 → Gln mutation appears to have a larger effect on the Ca$^{2+}$ affinity of the TnC F29W-TnI,6–148 complex than on the Ca$^{2+}$ sensitivity of force development. Thus, the Ca$^{2+}$ binding properties of the TnC-TnI complex are not the only determinants of Ca$^{2+}$ sensitivity of force development. There is evidence that skeletal troponin T, tropomyosin, and actomyosin can modulate the Ca$^{2+}$ sensitivity of muscle mechanics either directly through TnC or through mechanisms yet to be explained (for review see Ref. 3).

A striking result observed with I62Q TnC F29W was the dramatic reduction of force production generated by muscle fibers reconstituted with this mutant, even though the data shows it is able to bind to the thin filament. The near lack of force production cannot be explained by the low Ca$^{2+}$ sensitivity of the I62Q TnC F29W-TnI,6–148 complex because the F78Q TnC F29W-TnI,6–148 complex has a 2-fold lower Ca$^{2+}$ sensitivity but is able to produce ~80% of maximal force. However, Ca$^{2+}$-saturated I62Q TnC F29W has an ~14-fold decreased affinity for TnI,6–148 as compared with TnC F29W. The large decrease in TnI,6–148 binding affinity for I62Q TnC F29W is the likely reason why this mutant is unable to support force. It appears that Ca$^{2+}$-I62Q TnC F29W in the fiber might not effectively compete with actin binding to the regulatory domain of TnI, thus keeping the muscle fiber in a state of inactivation. Consistent with this interpretation, F26Q TnC F29W, which had an ~10-fold lower affinity for TnI,6–148, also produced only ~13% of the maximal force upon reconstitution in the muscle fibers (data not shown). The exact opposite effect occurred when the regulatory regions of TnC and TnI were cross-linked, causing a regulated thin filament system to be permanently activated even in the absence of Ca$^{2+}$ (41). However, Ca$^{2+}$-saturated I37Q TnC F29W (a β-sheet mutant) bound TnI,6–148 with only an ~2-fold lower affinity than TnC F29W but still only produced ~15% maximal force upon reconstitution in the muscle fibers (data not shown). Furthermore, Ca$^{2+}$-saturated I73Q TnC F29W, another β-sheet mutant, bound TnI,6–148 with an affinity nearly identical to that of TnC F29W but only produced ~45% maximal force. Again, this points out that additional events besides Ca$^{2+}$ binding and subsequent TnI binding are involved in the signal pathway of force production.

Thus, the Ca$^{2+}$-saturated TnC with a decreased skeletal troponin T affinity (but similar affinity for TnI) has been implicated in a loss of reconstituted thin filament ATPase activity (27). However, another mutant TnC with apparently normal Ca$^{2+}$, TnI, and skeletal troponin T binding also displayed a diminished reconstituted thin filament ATPase activity through an unidentified mechanism apparently important for the Ca$^{2+}$-dependent regulation of signal transduction (42).

In summary, we utilized TnC F29W to study Ca$^{2+}$ binding and exchange with a series of hydrophobic N-domain TnC mutants in the presence of TnI,6–148 and intact TnI. The TnC F29W-TnI,6–148 mutant complexes exhibited ~243-fold variation in their Ca$^{2+}$ binding affinities, ~38-fold variation in their Ca$^{2+}$ association rates, and ~33-fold variation in their Ca$^{2+}$ dissociation rates. The regulatory peptide of TnI, TnI,6–148 was an accurate mimic of intact TnI for measuring Ca$^{2+}$ dissociation rates from the TnC-TnI complexes. Furthermore, the effect of hydrophobic mutations on the Ca$^{2+}$ sensitivity of force development could be better predicted from the Ca$^{2+}$ affinities of the TnC F29W-TnI,6–148 mutant complexes than from that of the isolated TnC F29W mutants. Interestingly, TnC F29W mutants with >10-fold lower TnI,6–148 affinities in the presence of saturating Ca$^{2+}$, compared with that of TnC F29W, were able to bind to the thin filaments but led to dramatic reduction of force recovery in reconstituted muscle fibers. Thus, not just Ca$^{2+}$-binding to TnC but the changes in the interactions with other regulatory proteins are critical in the pathway of signal transduction of force development. In conclusion, elucidating the determinants of Ca$^{2+}$ binding and exchange with TnC in the presence of its target protein TnI may provide a deeper understanding of how TnC and other closely related EF hand proteins respond to Ca$^{2+}$ and control signal transduction.

Acknowledgments—We thank Dr. Lawrence Smillie for the generous gifts of the chicken fast twitch skeletal muscle TnC F29W plasmid and TnI protein and for help in obtaining the TnI,6–148 peptide. Dr. Peter Reiser for the expert advice and training pertaining to the physiological muscle fiber experiments as well as use of his equipment, Dr. Darl Swartz for the expert advice and training pertaining to the myofibril imaging experiments as well as use of his equipment, and Zenhui Yang for help and training in preparing the myofibril samples.

REFERENCES

1. Farah, C. S., and Reinach, F. C. (1995) FASEB J. 9, 755–767
2. Squire, J. M., and Morris, E. P. (1998) FASEB J. 12, 761–771
3. Gordon, A. M., Homsher, E., and Regnier, M. (2000) Physiol. Rev. 80, 853–924
4. Nelson, M. R., and Chazin, W. J. (1998) Biometals 11, 287–318
5. Filatov, V. L., Katrukha, A. G., Bulargina, T. V., and Gusev, N. B. (1999) Biochemistry (Moscow) 64, 969–985
6. Tikhonova, S. B., Rall, J. A., and Davis, J. P. (2002) Biochemistry 41, 6697–6705
7. Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628–4633
8. Davis, J. P., Rall J. A., Beiser, P. J., Smillie, I. B., and Tikhonova, S. B. (2002) J. Biol. Chem. 277, 49716–49726
9. Johnson, J. D., Nakakita, R. J., Vasilkova, C., and Smillie, L. B. (1994) J. Biol. Chem. 269, 8919–8923
10. Potter, J. D., and Johnson, J. D. (1982) in Calcium and Cell Function (Chuang, W. Y., ed) Vol. II, pp. 145–173, Academic Press, New York
11. Tao T., Gong B. J., and Leavis P. C. (1997) J. Biol. Chem. 272, 6705–6709
12. Farah, C. S., Miyamoto, C. A., Ramos, C. H., da Silva, A. C., Quaggio, R. B., Fujimori, K., Smillie, L. B., and Reinach, F. C. (1994) J. Biol. Chem. 269, 5320–5329
13. Cobayaishi, T., Tao, T., Gergely, J., and Collins, J. H. (1994) J. Biol. Chem. 269, 5725–5729
14. Nishio, T., and Ino, T. (1983) J. Biochem. 94, 745–754
15. Szymańska, H., Wilkinson, J. M., Grand, R. J., and Perry, S. V. (1976) Biochem. J. 153, 375–377
16. Talbot, J. A., and Hodges, R. S. (1979) J. Biol. Chem. 254, 3720–3723
17. Talbot, J. A., and Hodges, R. S. (1981) J. Biol. Chem. 256, 2786–2792
18. Pearlstone, J. R., Sykes, B. D., and Smillie, L. B. (1997) Biochemistry 36, 7601–7606
19. Van Eyk, J. E., Thomas, L. T., Tripepi, B., Wiesner, R. J., Pearlstone, J. R., Farah, C. S., Reinach, F. C., and Hodges, R. S. (1997) J. Biol. Chem. 272,

Ca$^{2+}$ Binding and Exchange with TnC in the Presence of TnI

10529–10537
22. Tripet, B., Van Eyk, J. E., and Hodges, R. S. (1997) J. Mol. Biol. 271, 728–750
23. McKay, R. T., Tripet, B. P., Pearlstone, J. R., Smillie, L. B., and Sykes, B. D. (1999) Biochemistry 38, 5478–5489
24. Li, M. X., Chandru, M., Pearlstone, J. R., Racher, K. I., Trigo-Gonzalez, G., Borgford, T., Kay, C. M., and Smillie, L. B. (1994) Biochemistry 33, 917–925
25. Mak, A. S., Golosinska, K., and Smillie, L. B. (1983) J. Biol. Chem. 258, 14330–14334
26. Robertson, S., and Potter, J. D. (1984) Methods Pharmacol. 5, 63–75
27. Kobayashi, T., Zhao, X., Wade, R., and Collins, J. H. (1999) Biochemistry 38, 5386–5391
28. Greaser, M. L., Moss, R. L., and Reiser P. J. (1988) J. Physiol. 406, 85–98
29. Moss, R. L. (1979) J. Physiol. 292, 177–192
30. Metzger, J. M., Greaser, M. L., and Moss, R. L. (1989) J. Gen. Physiol. 93, 855–883
31. Swartz, D. R., Moss, R. L., and Greaser, M. L. (1997) Biophys. J. 73, 293–305
32. Zhang, D., Yancey, K. W., and Swartz, D. R. (2000) Biophys. J. 78, 3103–3111
33. Pearlstone, J. R., Borgford, T., Chandru, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklots, A., Reinach, F. C., and Smillie, L. B. (1992) Biochemistry 31, 6545–6553
34. Regnier, M., Rivera, A. J., Chase, P. B., Smillie, L. B., and Sorenson, M. M. (1999) Biophys. J. 76, 2664–2672
35. Chandra, M., da Silva, E. F., Sorenson, M. M., Ferro, J. A., Pearlstone, J. R., Nash, B. E., Borgford, T., Kay, C. M., and Smillie, L. B. (1994) J. Biol. Chem. 269, 14988–14994
36. Mercier, P., Ferguson, R. E., Irving, M., Corrie, J. E., Trentham, D. R., and Sykes, B. D. (2003) Biochemistry 42, 4333–4348
37. Tung, C. S., Wall, M. E., Gallagher, S. C., and Trewhella, J. (2000) Protein Sci. 9, 1312–1326
38. Grabarek, Z., Tan, R. Y., Wang, J., Tao, T., and Gergely, J. (1990) Nature 345, 132–135
39. da Silva, A. C., de Araujo, A. H., Herzberg, O., Moult, J., Sorenson, M., and Reinach, F. C. (1990) Nature 345, 182–184
40. Fujimori, K., Sorenson, M., Herzberg, O., Moult, J., and Reinach, F. C. (1990) Nature 345, 182–184
41. Luo, Y., Li, B., Yang, G., Gergely, J., and Tao, T. (2002) Biochemistry 41, 12891–12896
42. Ramakrishnan, S., and Hitchcock-DeGregori, S. E. (1996) Biochemistry 35, 15515–15521
43. Slupszy, C. M., and Sykes, B. D. (1995) Biochemistry 34, 15855–15864
44. Sayle, R. A., and Milner-White, E. J. (1996) Trends Biochem. Sci. 20, 374–376
Mutations of Hydrophobic Residues in the N-terminal Domain of Troponin C Affect Calcium Binding and Exchange with the Troponin C-Troponin I96–148 Complex and Muscle Force Production

Jonathan P. Davis, Jack A Rall, Catalina Alionte and Svetlana B. Tikunova

J. Biol. Chem. 2004, 279:17348-17360.
doi: 10.1074/jbc.M314095200 originally published online February 16, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M314095200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 43 references, 14 of which can be accessed free at http://www.jbc.org/content/279/17/17348.full.html#ref-list-1