Temporal Reduction in COVID-19-Associated Fatality Among Kidney Transplant Recipients: The Brazilian COVID-19 Registry Cohort Study

Tainá Veras de Sandes-Freitas1,2,3*, Marina Pontello Cristelli4, Lucio Roberto Requião-Moura4,5,6, Luis Gustavo Modelli de Andrade7, Laila Almeida Viana4, Valter Duro Garcia6, Claudia Maria Costa de Oliveira2, Ronaldo de Matos Esmeraldo8, Paula Roberta de Lima9, Ida Maria Maxima Fernandes Charpiot9, Teresa Cristina Alves Ferreira10, Rodrigo Fontanive Franco11, Kellen Micheline Alves Henrique Costa12, Denise Rodrigues Simão13, Gustavo Fernandes Ferreira14, Viviane Brandão Bandeira de Mello Santana15, Ricardo Augusto Monteiro de Barros Almeida7, Luciane Monica Deboni16, Anita Leme da Rocha Saldanha17, Irene de Lourdes Noronha17,18, Lívia Cláudio de Oliveira19, Deise De Boni Monteiro de Carvalho20, Reinaldo Barreto Oriá1, Jose Osmar Medina-Pestana4,5 and Helio Tedesco-Silva Junior4,5 on behalf of the COVID-19 KT Brazil Study Group

1Programa de Pós-Graduação em Ciências Médicas, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil, 2Hospital Universitário Walter Cantídio, Fortaleza, Brazil, 3Hospital Geral de Fortaleza, Fortaleza, Brazil, 4Hospital do Rim, Fundação Oswaldo Ramos, São Paulo, Brazil, 5Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil, 6Unidade de Transplante Renal, Hospital Israelita Albert Einstein, São Paulo, Brazil, 7Departamento de Medicina Interna, Universidade Estadual Paulista-UNESP, Botucatu, Brazil, 8Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil, 9Hospital de Base, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil, 10Universidade Federal do Maranhão, São Luiz, Brazil, 11Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 12Divisão de Nefrologia e Transplante Renal, Hospital Universitário Onofre Lopes (HOUl), Natal, Brazil, 13Hospital Santa Isabel, Blumenau, Brazil, 14Santa Casa de Misericórdia de Juiz de Fora, Juiz de Fora, Brazil, 15Hospital de Base do Distrito Federal, Brasília, Brazil, 16Hospital Municipal São José (HMSJ), Joinville, Brazil, 17Hospital Beneficência Portuguesa de São Paulo (BFP), São Paulo, Brazil, 18Divisão de Nefrologia, Hospital das Crianças, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil, 19Unidade de Transplantes, Hospital Universitário de Brasília, Universidade de Brasília (UnB), Brasília, Brazil, 20Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil

Data from the general population suggest that fatality rates declined during the course of the pandemic. This analysis, using data extracted from the Brazilian Kidney Transplant COVID-19 Registry, seeks to determine fatality rates over time since the index case on March 3rd, 2020. Data from hospitalized patients with RT-PCR positive SARS-CoV-2 infection from March to August 2020 (35 sites, 878 patients) were compared using trend tests according to quartiles (Q1: <72 days; Q2: 72–104 days; Q3: 105–140 days; Q4: >140 days after the index case). The 28-day fatality decreased from 29.5% (Q1) to 18.8% (Q4) (p for trend = 0.004). In multivariable analysis, patients diagnosed in Q4 showed a 35% reduced risk of death.

Abbreviations: AKI, Acute kidney injury; AUC-ROC, Area Under the Receiver Operating Curve; COVID-19, Coronavirus disease 2019; eGFR, Glomerular filtration rate; ESKD, End-stage kidney disease; GLMM, Generalized Linear Mixed Models; IQR, Interquartile range; IRB, Institutional Review Board; KT, Kidney transplant; rATG, Antithymocyte globulin; RT-PCR, Reverse-transcription polymerase chain reaction; sCr, Serum creatinine; ST, Steroid; ΔsCr, Delta serum creatinine.
The trend of reducing fatality was associated with a lower number of comorbidities (20.7–10.6%, \(p_{\text{for-trend}} = 0.002 \)), younger age (55–53 years, \(p_{\text{for-trend}} = 0.062 \)), and better baseline renal function (43.6–47.7 ml/min/1.73 m\(^2\), \(p_{\text{for-trend}} = 0.060 \)), and were confirmed by multivariable analysis. The proportion of patients presenting dyspnea (\(p_{\text{for-trend}} = 0.001 \)) and hypoxemia (\(p_{\text{for-trend}} < 0.001 \)) at diagnosis, and requiring intensive care was also found reduced (\(p_{\text{for-trend}} = 0.038 \)). Despite possible confounding variables and time-dependent sampling differences, we conclude that COVID-19-associated fatality decreased over time. Differences in demographics, clinical presentation, and treatment options might be involved.

Keywords: Sars-CoV-2, Covid-19, kidney transplant, coronavirus, renal transplantation

INTRODUCTION

Over the past year, the coronavirus disease 2019 (COVID-19) global pandemic has been responsible for more than 126 million cases of severe acute respiratory syndrome worldwide and over 2.76 million deaths. With large numbers of COVID cases, Brazil has become an epicenter of the COVID-19 outbreak in the world (1, 2). Among many specific vulnerable groups affected by SARS-CoV-2 infection, transplant immunocompromised recipients represent a recognized high-risk group for this infection (3).

Although to date there is still no specific treatment for COVID-19, several pharmacological and non-pharmacological strategies have been explored to improve the clinical outcomes. Among these strategies, the following are noteworthy: 1) the use of prehospital pulse oximetry to early detect silent hypoxemia (4); 2) the important role of non-invasive mechanical ventilation often avoiding unnecessary early intubation (5); 3) prone position to improve oxygenation in intubated and non-intubated patients with COVID-19-related acute respiratory distress syndrome (6, 7); 4) anticoagulant treatment in patients with coagulopathy (8); and 5) corticosteroids in patients with severe disease (9).

Data from the general population suggest an improvement in survival rates during the pandemic, mainly among critically ill patients (10–13). Multicenter national studies have reported COVID-19-related fatality rates varying from 20.5 to 32% among hospitalized kidney transplant (KT) patients (14–18), but no study evaluated the impact of the timing on deaths in this population.

In this analysis of the multicenter national Brazilian registry of SARS-CoV-2 infection study, we aimed to assess fatality rates...
over the first 6 months of pandemic and to explore whether demographics, clinical profile, and in-hospital management of COVID-19 were associated with trends in the outcomes.

MATERIALS AND METHODS

Study Design

This is an ongoing multicenter national Brazilian registry of SARS-CoV-2 infection among kidney transplant recipients (ClinicalTrials.gov: NCT04494776) (19). For this analysis, we extracted data of patients with COVID-19-related signs and symptoms and SARS-CoV-2 detected by reverse-transcription polymerase chain reaction (RT-PCR) of a respiratory sample, between 3rd March and 31st August 2020, who required hospitalization, totalizing 878 patients from 35 transplant centers of four Brazilian Regions (615 from the Southeast, 124 Northeast, 111 South, and 28 from the Midwest). Patients were followed for 3 months after the diagnosis or until death or graft loss, and the end-of-study data was 30th November 2020.

Variables

Patient age, gender, ethnicity, and body mass index were collected and included in the analysis. Comorbidities comprised the following conditions: hypertension, diabetes, cardiovascular, pulmonary, neurological or hepatic diseases, current or previous neoplasia, and autoimmune disease. The following clinical presentation parameters were also included in the analysis: fever and/or chills, cough, dyspnea, myalgia, diarrhea, headache, fatigue and or/asthenia, runny nose, and nausea and/or vomiting. Data related to KT such as donor source, end-stage kidney disease (ESKD) etiology, time after transplantation, baseline renal function, maintenance immunosuppressive (IS) drugs, steroid (ST) pulse therapy <3 months, use of rabbit antithymocyte globulin (rATG) <3 months were analyzed.

The following laboratory exams at admission were recorded: lymphocytes count, hemoglobin, platelets count, C-reactive protein, lactic dehydrogenase, aspartate transaminase; alanine transaminase; creatine phosphokinase, serum sodium, ferritin, serum creatinine. Chest radiography and/or computed tomography at admission were used to classify pulmonary abnormalities.

The following treatments available in the registry were analyzed: antibiotics, particularly azithromycin, high-dose steroids, prophylactic or therapeutic use of anticoagulants, and use of oseltamivir, ivermectin, and chloroquine or hydroxychloroquine.

The analysis of outcomes in COVID-19 transplant recipients across time was carried out considering fatality rates and the following variables: invasive mechanical ventilation, intensive care unit admission, and development of AKI with dialysis requirement.

Definitions

The COVID-19-associated fatality rate was defined as the percentage of deaths that occurred in patients with confirmed SARS-CoV-2 infection. Hospital admission criteria and the use of pharmacological and non-pharmacological treatments were at the discretion of each of the participating centers. The definition of “high-dose steroids” was at the center discretion, according to their local practices.

We considered as the index case the first KT patient diagnosed with COVID-19 and included in the Brazilian Kidney Transplant COVID-19 Registry (March 3rd, 2020). The sample was divided into quartiles, as demonstrated in Figure 1: Q1: patients diagnosed <72 days after the index case (n = 227); Q2: 72–104 days (n = 214); Q3: 105–140 days (n = 219); Q4: >140 days (n = 218).

Baseline serum creatinine (sCr) was defined as the last three available sCr measurements before COVID-19 infection. Glomerular filtration rate (eGFR) was estimated by the CKD-EPI formula. Delta sCr (ΔsCr) was the difference between admission and baseline sCr values. Acute kidney injury (AKI) was defined as a rise in sCr of ≥50% from its baseline value (20). Graft loss was defined as the return to long-term dialysis therapy or retransplantation.

Statistical Analysis

Categorical variables were presented as frequency and percentage. All continuous variables were non-normally distributed and were summarized as median and interquartile range (IQR). Trend analyses comparing data across the quartiles were performed using Cochran–Armitage test for categorical variables, and Jonckheere-Terpstra test for numerical variables. Survival curves were obtained using Kaplan-Meier method and compared using the log-rank test. Univariable and multivariable analyses to identify independent risk factors associated with death were performed using Cox regression, with center-based random effects (frailty model). Collinear variables, and those poorly associated with death in univariable analysis (p > 0.15) were excluded from the multivariable model. No variable exceeded 5% of missing
results

Demographic Characteristics Across the Quartiles

The baseline demographic characteristics at COVID-19 diagnosis are shown in Table 1. Changes in patients’ clinical profile occurred over time, with a significant reduction in age, and in the percentage of patients with ≥3 comorbidities.

TABLE 1	Demographic characteristics of kidney transplanted patients at COVID-19 diagnosis across quartiles of time.						
	Non-missing cases	Total	Q1	Q2	Q3	Q4	Pfor-trend
	N = 878	N = 227	N = 214	N = 219	N = 218		
Age (years-old)	878	54 (45–62)	56 (46–64)	54 (44–61)	54 (45–61)	53 (44–62)	0.062
Male gender	878	535 (60.9)	146 (64.3)	131 (61.2)	134 (61.2)	124 (56.9)	0.127
Ethnicity	878	0.204					
Caucasian	878	483 (55.0)	111 (48.9)	108 (50.5)	125 (57.1)	139 (63.8)	
Mixed race	878	259 (29.0)	79 (34.8)	68 (31.8)	63 (28.8)	45 (20.6)	
Afro-Brazilian	878	112 (12.8)	28 (12.3)	28 (13.1)	24 (11.0)	32 (14.7)	
Asian	878	14 (1.6)	6 (2.6)	3 (1.4)	4 (1.8)	1 (0.5)	
Indian	878	1 (0.1)	0 (0)	0 (0)	1 (0.5)	0 (0)	
Not available	878	13 (1.5)	3 (1.3)	7 (3.3)	2 (0.9)	1 (0.5)	
BMI (kg/m²)	842	26.5 (23.6–30.0)	26.4 (23.3–29.5)	26.0 (22.9–29.7)	27.3 (24.4–30.9)	26.8 (23.9–29.9)	0.031
Donor source	878	0.084					
KT - LD	878	3.1 (2.0–11.2)	6.9 (2.5–11.8)	5.6 (2.1–10.3)	6.1 (2.0–11.7)	5.7 (2.5–11.2)	0.541
KT - DD	878	0.002					
Combined KT	878	18 (2.1)	6 (0.7)	1 (0.1)	6 (0.7)	5 (0.6)	
ESKD etiology	878	0.230					
Unknown	878	266 (30.3)	57 (25.1)	80 (37.4)	69 (31.5)	60 (27.5)	
Diabetes	878	174 (19.8)	53 (23.3)	41 (19.2)	38 (17.4)	42 (19.3)	
Chronic GN	878	151 (17.2)	33 (14.5)	30 (14.0)	51 (23.3)	37 (17.0)	
Hypertension	878	103 (11.7)	34 (15.0)	22 (10.3)	20 (9.1)	27 (12.4)	
PKD	878	73 (8.3)	20 (8.8)	14 (6.5)	19 (8.7)	20 (9.2)	
Urological	878	14 (1.6)	4 (1.8)	4 (1.9)	3 (1.4)	3 (1.4)	
Other	878	97 (11.0)	26 (11.5)	23 (10.7)	19 (8.7)	29 (13.3)	
Time after KT (years)	878	6.1 (2.2–11.2)	6.9 (2.5–11.8)	5.6 (2.1–10.3)	6.1 (2.0–11.7)	5.7 (2.5–11.2)	0.541
Comorbidities	878	22 (2.5)	11 (4.8)	2 (0.9)	6 (2.7)	3 (1.4)	0.062
No. of comorbidities	878	111 (12.6)	23 (10.1)	26 (12.1)	31 (14.2)	31 (14.2)	0.002
1–2	878	644 (73.3)	157 (69.2)	161 (75.2)	162 (74.0)	164 (75.2)	
3 or more	878	123 (14.0)	47 (20.7)	27 (12.6)	26 (11.9)	23 (10.6)	
Maintenance IS drugs	872	691 (79.2)	170 (74.9)	170 (79.8)	180 (83.3)	171 (79.2)	0.172
CNI	878	653 (74.9)	163 (71.8)	152 (71.4)	167 (77.3)	171 (79.2)	0.033
MPA or AZA	878	135 (15.5)	40 (17.9)	42 (19.7)	26 (12.2)	267 (12.7)	0.038
mTORi	878	826 (94.7)	212 (93.4)	203 (94.9)	202 (92.2)	209 (95.9)	0.496
ST	878	294 (33.9)	74 (32.6)	65 (30.4)	76 (34.7)	79 (36.2)	0.787
RAAS blockade	866	30 (3.6)	8 (3.3)	6 (2.8)	7 (3.2)	9 (4.1)	0.222
ST pulse therapy <3 months	859	44.5 (28.7–60.9)	43.6 (25.4–57.9)	46.3 (30.0–61.1)	40.9 (27.3–59.3)	47.7 (31.9–66.7)	0.060

Trend analysis for categorical and continuous data were performed using Cochran-Armitage test and Jonckheere-Terpstra test, respectively. BMI, body mass index; KT, kidney transplant; LD, living donor; DD, deceased donor; CNI, calcineurin inhibitor; MPA, mycophenolate; mTORi, mammalian target of rapamycin inhibitor; RAAS, renin-angiotensin-aldosterone system; ST, steroids; rATG, rabbit antithymocyte globulin; ESKD, end-stage kidney disease; GN, glomerulonephritis; PKD, polycystic kidney disease; IS, immunosuppressive; eGFR, estimated glomerular filtration rate.

Bold values denote statistical significance at the p < 0.05 level.

*Simultaneous pancreas-kidney = 8; simultaneous liver-kidney = 6; kidney after liver = 3; simultaneous heart-kidney = 1.

values and Multiple Imputation by Chained Equation (MICE) was used to replace missing data values, as follows: 1) generating replacement values (“imputations”) for missing data and repeating this procedure 10 times, 2) analyzing the 10 imputed data sets, and 3) combining (pooling) the results using Rubin’s Rules (21). A significantly statistical difference was assumed when the p-value was less than 0.05. Statistical analysis was performed using the IBM SPSS 25 and R 4.0.2.
The Clinical Presentation Across the Quartiles

The analysis across quartiles showed a decrease in the proportion of patients with dyspnea and hypoxemia at diagnosis, whereas myalgia, diarrhea, and headache progressively increased. Although the time from the onset of COVID-19 symptoms to diagnosis remained stable over time (median 6 days; IQR 3–9), a longer time until hospitalization since symptoms onset was observed, increasing from Q1 (median 5 days, IQR 2–9) to Q4 (median 6 days, IQR 3–10) ($p_{\text{for-trend}} = 0.005$) (Figure 2).

Laboratory data and chest radiological findings at COVID-19 diagnosis are shown in Supplementary Table S1. An increase in the percentage of patients with normal chest radiological evaluation was observed from Q1 (2.1%) to Q4 (6.7%) ($p_{\text{for-trend}} = 0.015$).
Immunosuppression and Pharmacological Treatment Across the Quartiles

Complete immunosuppressive drug withdrawal decreased from Q1 to Q4 (from 43.6 to 30.3%, $p_{\text{for-trend}} = 0.003$), while no significant changes were observed in the percentage of patients submitted to withdrawal or reduction of the antiproliferative or calcineurin inhibitors agents, or no intervention on the immunosuppressive regimen (Figure 3A).

Regarding the pharmacological treatments, there was an increase in the use of antibiotics, high-dose steroids, prophylactic use of anticoagulants, and ivermectin, while the use of azithromycin, oseltamivir, chloroquine, or hydroxychloroquine decreased from Q1 to Q4 (Figure 3B).

FIGURE 3 | Management of immunosuppressive drugs (A) and pharmacological treatments (B) across the quartiles. Legend: IS, immunosuppressive drugs; CNI, calcineurin inhibitor; ATB, antibiotics; AZI, azithromycin; ST, steroids. Trend analyses were performed using Cochran–Armitage test. Therapeutic-dose anticoagulants was empirically used for critically ill patients with high d-dimer values, regardless of thrombosis events.

FIGURE 4 | Cumulative incidence of deaths of SARS-CoV-2-infected kidney transplant patients within 28 days. (A) and 28-day fatality rates (B) across the quartiles.
The Outcomes Across the Quartiles

The 28-day fatality rate was 24.6% ($n = 216$), with a significant downward trend over time, from 29.5% in Q1 to 18.3% in Q4 (\log-rank = 0.027, $p_{\text{for-trend}} = 0.004$) (Figures 4A,B).

Causes of death within 28 days included septic shock (60.2%), acute respiratory failure (21.8%), cardiovascular or embolic event (5.1%), and in 13% the cause of death was not clearly defined nor registered. No difference in the distribution of the causes of death occurred from Q1 to Q4 ($p_{\text{for-trend}} = 0.677$). Although 69.5% of deaths occurred in the first 28 days, the median time from COVID-19 diagnosis to death increased from 17 days (Q1) to 25 days (Q4) ($p_{\text{for-trend}} = 0.035$). Within the 90-day follow-up, the overall fatality rate was 35.4% ($n = 311$), with a non-significant downward trend from 39.2 to 31.2% (\log-rank = 0.208, $p_{\text{for-trend}} = 0.073$) (Supplementary Figure S1). Causes of death within 90 days were similar to that described for 28 days.

No changes were observed in the percentage of patients receiving invasive mechanical ventilation. However, the time from the onset of symptoms to orotracheal intubation increased from 8 to 11 days in median ($p_{\text{for-trend}} = 0.001$), and fewer patients were admitted to intensive care units (ICU) over time (from 62.1 to 49.5%, $p_{\text{for-trend}} = 0.038$) (Figures 5A,B). No significant trend was observed in the percentage of patients requiring dialysis therapy (Figure 5C).

Fourteen (1.6%) patients lost the graft within the 90 days follow-up, most of them with advanced chronic kidney disease at the time of COVID-19 diagnosis (median baseline eGFR 16.9 ml/min/1.73 m2, IQR, 9.5–24.3) (Supplementary Table S2). Figure 5D shows the 28 and 90-day fatality rates in patients requiring dialysis therapy, ICU admission, and invasive mechanical ventilation.

Patients with COVID-19 diagnosis 140 days after the index case (Q4) showed a 35% reduction risk in 28-day mortality (HR 0.65, 95% CI 0.44–0.97, $p = 0.037$). Each month after March 3rd was associated with 10% reduction in the fatality (HR 0.90, 95% CI 0.82–0.99, $p = 0.024$). Age and presence of three or more comorbidities in addition to chronic kidney disease were also risk factors associated with increased risk of death, whereas the use of mTOR inhibitor and the increasing baseline glomerular filtration rate were associated with decreased risk of death (Table 2; Supplementary Table S3). The impact of timing on 90-day fatality was not clearly demonstrated (Supplementary Table S4).

DISCUSSION

This national multicenter cohort suggests that COVID-19-associated fatality decreased over the first 6 months after the beginning of the pandemic. Changes in the demographic profile of infected patients, in the clinical presentation at diagnosis, and in pharmacological and non-pharmacological treatment options might explain this result.

The overall fatality rate was high and similar to that described in international published cohorts (15, 16, 18, 22). As a novelty, this cohort showed that the cumulative incidence of death within 28 days after diagnosis significantly decreased over time, and deaths occurred later. Changes in the demographic profile, mainly the reduction in the percentage of patients with multiple comorbid conditions, probably contributed to this finding, since the number of comorbidities was an independent risk factor for death (3). Despite the statistically
TABLE 2 | Risk factors for 28-days fatality after COVID-19 infection in KT recipients.

N = 878	Univariable HR (95%CI), p value	Multivariable HR (95%CI), p value
Age (>10 years-old)	1.49 (1.31–1.69), <0.001	1.50 (1.32–1.70), <0.001
Male gender	0.78 (0.57–1.00), 0.050	0.76 (0.58–1.03), 0.051
BMI (kg/m²)	1.01 (0.98–1.04), 0.443	–
Afro-Brazilian or mixed-race ethnicity	0.92 (0.69–1.22), 0.568	–
Living donor	0.83 (0.57–1.19), 0.307	–
Timer after KT (years)	1.01 (0.98–1.03), 0.627	–
Number of comorbidities	–	–
None	REF	REF
≥3	1.81 (1.00–3.28), 0.050	1.96 (1.10–3.48), 0.022
IS regimen – ST	0.72 (0.42–1.25), 0.248	–
IS regimen – CNI	0.90 (0.49–1.65), 0.722	–
IS regimen – MPA/AZA	1.15 (0.63–2.08), 0.649	–
IS regimen – mTORi	0.44 (0.26–0.75), 0.003	0.44 (0.27–0.72), 0.001
ST pulse therapy ≤3 months	1.55 (0.68–3.57), 0.297	–
rATG ≤3 months	1.10 (0.39–3.05), 0.860	–
RAS blockade	1.22 (0.89–1.67), 0.209	–
Baseline eGFR (×10 ml/min/1.73 m²)	0.88 (0.82–0.94), <0.001	0.87 (0.82–0.93), <0.001
Quartiles of time after index case	–	–
Q1: <72 days	REF	REF
Q2: 72–104 days	1.03 (0.72–1.48), 0.863	1.04 (0.73–1.48), 0.843
Q3: 104–140 days	0.76 (0.52–1.10), 0.145	0.80 (0.56–1.16), 0.228
Q4: >140 days	0.60 (0.40–0.90), 0.014	0.65 (0.44–0.97), 0.037

BMI, body mass index; KT, kidney transplant; IS, immunosuppressive; ST, steroid; MPA, mycophenolate; AZA, azathioprine; CNI, calcineurin inhibitor; mTORi, mammalian target of rapamycin inhibitor; rATG, rabbit anti-thymocyte globulin; RAS, renin-angiotensin system; eGFR, estimated glomerular filtration rate; HR, hazard ratio; CI, confidence interval; REF, reference. Bold values denote statistical significance at the p < 0.05 level.

significant trend for higher BMI over time, we believe that this finding is not clinically relevant. The reasons for the changes in the demographic profile over the months are not clear. The wide dissemination of the worst prognosis on the elderly, and patients with comorbidities might have resulted in intensification of protective measures in these individuals.

Other factors that might have impacted outcomes were the changes in the recommendations of the health care organizations, the higher availability of diagnostics tests, and the learning curve about disease diagnosis and management, leading to earlier and broader diagnosis, properly referred hospitalization, or better management of pharmacological and non-pharmacological interventions. In fact, the reduction in the percentage of patients with dyspnea, hypoxemia, and radiological chest findings suggest earlier demand for medical assistance, earlier clinical suspicion and diagnosis, and/or earlier hospitalization. The median time until intubation was prolonged by 3 days, suggesting improvements in the optimal use of non-invasive ventilation techniques. Unfortunately, we did not capture information about ventilatory management before invasive mechanical ventilation. Noteworthy, the interpretation of the downward trend in ICU admission must be cautious, since the availability of ICU beds is not uniform across the country’s centers and regions (2).

Interestingly, the improvement in the 90-day fatality was not evident. We believe that the 28-day mortality rate reflects disease severity, and prompt and proper diagnosis and treatment. In turn, 90-day mortality also seems to reflect intra-hospital care, such as preventing nosocomial infections, thromboembolic events, and other adverse events related to health care, malnutrition, and immobilization. Although these processes have probably also improved over the period, our study was not empowered to show this trend.

A clear change in the pharmacological supporting treatments was observed, which might also have impacted outcomes, mainly the higher use of high-dose steroids and anticoagulants (8, 9). The retrospective nature of a registry study, the absence of data on the onset of all interventions, and the diversity of COVID-19 management protocols in our continental country preclude any definitive conclusion about the efficacy of these strategies. We could not access information of patients who did not have access to medical care. The overwhelmed health system during the peaks of the pandemic could have hindered the arrival of more severe COVID-19 patients at the hospital, leading to deaths before hospitalization. In addition, despite the homogeneous number of patients in each quartile, groups have different duration, potentially hampering to capture the workload of periods with a higher incidence of cases and the effect of overwhelmed hospitals.

As another limitation, this study was limited to the first wave of the pandemic in Brazil, and reflected the pre-vaccination period. We do not have information on the viral genotype, which also might influence the clinical presentation and outcomes. However, at that time, the variants of concern leading to potential changes in the clinical profile and patients outcomes had not been identified yet (23). The imprecise definition of death cause in more than 10% of patients also impaired a better understanding of the reasons behind the reduction in fatality rates, as well as hampered the precise distinction between related and non-related COVID deaths.
It is also notable that a lower percentage of patients had their immunosuppressive regimen completely withdrawn over the study time. Despite plenty of in vitro studies suggesting the potential benefit of immunosuppressive drugs on the clinical outcomes of coronavirus infection (24–29), no clinical study supports robust conclusions. In the multivariable analysis, the use of mTOR inhibitors in the maintenance immunosuppressive regimen was associated with lower death risk. The reduction in SARS-CoV-2 replication after the inhibition of the Akt/mTOR/HIF-1 signaling pathway was previously demonstrated by a recently published in vitro study (29). However, no conclusion in this regard is feasible considering the limitation of the study design. Finally, despite the statistically significant linearly increasing trend through time, complex dynamics observed in some variables, such as the time between COVID-19 diagnosis and hospitalization, do not necessarily reflect clinically relevant changes.

Notwithstanding the above-mentioned limitations, inherent to registry data analysis, our study has important strengths: to the best of our knowledge, this is one of the largest multicenter national registers on COVID-19 in KT patients; the national representation is consistent with site activities and with COVID-19 forms, makes our sample more homogeneous as to the initial severity criterion.

In conclusion, this study suggests that the COVID-associated fatality in KT patients requiring hospitalization improved over the first six months of the pandemic. Prospective studies are of utmost needed to better understand the impact of each intervention on outcomes.

CAPSULE SENTENCE SUMMARY

This multicenter national Brazilian study accessed the fatality rates of COVID-19 among kidney transplanted patients over the first 6 months after the beginning of the pandemic. Using trend analysis, we could observe a decrease in the fatality rates from March to August 2020. A center-adjusted analysis was performed to explore the reasons for the improvement in the outcomes. Differences in demographics, clinical presentation, and treatment options might be involved in this trend.

THE COVID-19-KT BRAZIL STUDY GROUP

Beyond the authors, the COVID-19-KT Brazil Study Group includes the following participants: Roger Kist, Aline Lima Cunha Alcântara, Maria Luiza de Mattos Brito Oliveira Sales, Mario Abbud Filho, Katia Cronenberge Sousa, Roberto Ceratti Manfrino, Tomás Pereira Júnior, Maria Eduarda Heinzen de Almeida Coelho, Marilda Mazzali, Marcos Vinícius de Sousa, Juliana Bastos Campos, Nicole Gomes Campos Rocha, Tania Leme da Rocha Martinez, João Egidio Romao Júnior, Maria Regina Teixeira Araújo, Síbele Lessa Braga, Marcos Alexandre Vieira, Elen Almeida Romão, Miguel Moysés Neto, Juliana Aparecida Zanocco, Auro Buffani Claudino, Gustavo Guilherme Queiroz Arimatea, Tereza Azevedo Matuck, Alexandre Tortoza Bignelli, Maria Ferneda Puerari, José Hermógenes Rocco Suassuna, Suzimar da Silveira Rioja, Rafael Lage Madeira, Sandra Simone Vilaça, Carlos Alberto Chalabi Calazans, Daniel Costa Chalabi Calazans, Patricia Malafaonfrez, Luiz Antonio Miorin, Larissa Guedes da Fonte Andrade, Filipe Carrilho de Aguiar, Fabiana Loss de Carvalho Contieri, Karoline Sesui Mahers, Helady Sanders Pinheiro, Emilia Spadartoto Sertório, André Barreto Pereira, David Jose, Barro Machado, Carolina Maria Pozzi, Leonardo Viliano Kroth, Lauro Monteiro Vasconcellos Filho, Rafael Fabio Maciel, Amanda Maira Damasceno Silva, Ana Paula Maia Baptista, Pedro Augusto Macedo de Souza, Marcus Lasmari, Luciana Tanajura Santamaria, Saber, Lilian Palma, Hospital de Clínicas da Universidade de Campinas-UNICAMP, Campinas, SP, Brazil; Divisão de Nefrologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMERP-USP), Ribeirão Preto, SP, Brazil; Hospital Santa Marcelina, São Paulo, SP, Brazil; Hospital Universitário Caju, Curitiba, PR, Brazil; Hospital Universitário Pedro Ernesto, Rio de Janeiro, RJ, Brazil; Hospital Felício Rocho, Belo Horizonte, BH, Brazil; Hospital de Clínicas da Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil; Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil; Hospital das Clínicas da UFPE Universidade Federal de Pernambuco, Recife, PE, Brazil; Hospital de Rocio, Campo Largo, PR, Brazil; Hospital Universitário da Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil; Hospital Marieta Konder Bornhausen, Itajai, SC, Brazil; Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil; Hospital Evangelico, Curitiba, PR, Brazil; Hospital São Lucas da PUCRS, Porto Alegre, RS, Brazil; Hospital Meridional, Cariacica, ES, Brazil; Hospital Nossa Senhora das Neves, João Pessoa, PB, Brazil; Hospital Antonio Targino, Campina Grande, PB, Brazil; Hospital São Rafael, Salvador, BA, Brazil; Hospital Santa Casa das Misericórdias de Belo Horizonte, Belo Horizonte, MG, Brazil; Hospital Universitário Ciências Médicas, Belo Horizonte, MG, Brazil; Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, SP, Brazil; Centro Médico de Campinas, Campinas, SP, Brazil.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Institutional Review Board (IRB) of the Hospital do Rim/Fundação Oswaldo Ramos, from where the study was coordinated and for the National Commission for Research Ethics (approval number 4.033.525). All participating centers also obtained local IRB approval before data collection. Informed consent or its exemption followed specific national legislations,
the local IRB recommendations, and the guidelines of the Declaration of Helsinki. Patient records and information were anonymized and de-identified before the analysis.

AUTHOR CONTRIBUTIONS

Participated in research design, in the performance of the research, in the writing of the paper, and data analysis and analytic tools: TS-F, MC, LR-M, LA, LV, JM-P, HT. Participated in the performance of the research and in the reviewing of the paper: VG, CO, RE, PL, IC, TF, RF, KC, DS, GF, VS, RA, LD, AS, IN, LO, DC, RO.

FUNDING

This study was partially supported by Novartis Pharma Brazil, and it also received funding support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), Finance Code 88881.507066/2020-01, Editorial 11/2020.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

REFERENCES

1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/ (Accessed March 28, 2021).
2. Ranzani OT, Bastos LSL, Gelli JGM, Marchesi JF, Baião F, Hamacher S, et al. Characterisation of the First 25000 Hospital Admissions for COVID-19 in Brazil: A Retrospective Analysis of Nationwide Data. Lancet Respir Med (2021). 9(4):407–18. doi:10.1016/S2213-2600(20)30560-9
3. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature (2020). 584(7821):430–6. doi:10.1038/s41586-020-2521-4
4. Jouffroy R, Jost D, Prunet B Prehospital Pulse Oximetry: a Red Flag for Early Detection of Silent Hypoxemia in COVID-19 Patients. Crit Care (2020). 24(1): 313. doi:10.1186/s13054-020-03036-9
5. Walker J, Dolly S, Ng L, Prior-Ong M, Sabapathy K The Role of CPAP as a Potential Bridge to Invasive Ventilation and as a Ceilin-of-Care for Patients Hospitalized with Covid-19-An Observational Study. PLoS One (2020). 15(12): e0244857. doi:10.1371/journal.pone.0244857
6. Alhazzani W, Møller MH, Arabi YM, Loebe M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med (2020). 46(3):854–87. doi:10.1007/s00134-020-06202-5
7. Sztajnbok J, Maselli-Schoueri JH, Cunha de Resende Brasil LM, Farias de Sousa L, Cordeiro CM, Sansão Borges LM, et al. Prone Positioning to Improve Oxygenation and Relieve Respiratory Symptoms in Awake, Spontaneously Breathing Non-intubated Patients with COVID-19 Pneumonia. Respir Med Case Rep (2020). 30:101906. doi:10.1016/j.rmcr.2020.101906
8. Tang N, Bhi H, Chen X, Gong J, Li D, Sun Z Anticoagulant Treatment is Associated with Decreased Mortality in Severe Coronavirus Disease 2019 Patients with Coagulopathy. J Thromb Haemost (2020). 18(5):1094–9. doi:10.1111/jth.14817
9. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in Patients with Covid-19 - Preliminary Report. N Engl J Med (2020). 84(8):693–704. doi:10.1056/NEJMc2021436
10. Horwitz LL, Jones SA, Cerfolio RJ, Francois F, Greco J, Rudy B, et al. Trends in COVID-19 Risk-Adjusted Mortality Rates. J Hosp Med (2021). 16(2):90–2. doi:10.12788/jhm.3552
11. Auld SC, Cardi-Scheible M, Robichaux C, Coopersmith CM, Murphy DJ, Emory COVID-19 Quality and Clinical Research Collaborative. Declines in Mortality over Time for Critically Ill Adults with Coronavirus Disease 2019. Crit Care Med (2020). 48(12):e1382–e1384. doi:10.1097/ccm.0000000000004687
12. Dennis JM, McGovern AP, Voller SJ, Mateen BA Improving Survival of Critical Care Patients With Coronavirus Disease 2019 in England: A National Cohort Study, March to June 2020. Crit Care Med (2021). 49(2):209–14. doi:10.1097/ccm.0000000000004747
13. Garcia-Vidal C, Córax-Llistó A, Meira F, Dueñas G, Puerta-Alcalde P, Cilloniz C, et al. Trends in Mortality of Hospitalised COVID-19 Patients: A Single centre Observational Cohort Study from Spain. Lancet Reg Health Eur (2021). 3:100041. doi:10.1016/j.lanrepe.2021.100041
14. Cravedi P, Mothi SS, Azzi Y, Havery M, Farouk SS, Pérez-Sáez MJ, et al. COVID-19 and Kidney Transplantation: Results from the TANGO International Transplant Consortium. Am J Transpl (2020). 20(11):3140–8. doi:10.1111/ajt.16185
15. Caillard S, Anglicheau D, Matignon M, Durrbach A, Greze C, Frimat L, et al. An Initial Report from the French SOT COVID Registry Suggests High Mortality Due to COVID-19 in Recipients of Kidney Transplants. Kidney Int (2020). 98(6):1549–58. doi:10.1016/j.kint.2020.08.005
16. Favà A, Cucchiari D, Montero N, Toapanta N, Centellas FJ, Vila-Santandreu C, et al. Clinical Characteristics and Risk Factors for Severe COVID-19 in Hospitalized Kidney Transplant Recipients: A Multicentric Cohort Study. Am J Transpl (2020). 20(11):3030–41. doi:10.1111/ajt.16246
17. Hilibands LB, Duivenvoorden R, Varti P, Fransen CFM, Hennemelder MH, Jager KJ, et al. COVID-19-Related Mortality in Kidney Transplant and Dialysis Patients: Results of the ERACODA Collaboration. Nephrol Dial Transpl (2020). 35(11):1973–83. doi:10.1093/ndt/gfaa261
18. Kates OS, Haydel RM, Florman SS, Rana MM, Chaudhry ZS, Ramesh MS, et al. COVID-19 in Solid Organ Transplant: A Multi-Center Cohort Study. Clin Infect Dis (2020). 73(11):e4090–e4099. doi:10.1093/cid/ciaa1097

ACKNOWLEDGMENTS

The authors thank Associação Brasileira de Transplantes de Órgãos (ABTO) for the support; Mônica Rika Nakamura for the assistance during regulatory process; and the Gerência de Ensino e Pesquisa (GEP)/Complexo Hospitalar da Universidade Federal do Ceará (CH-UFC), notably Antonio Brazil Viana Junior, for enabling the use of the REDcap. Authors also thank all the patients who participated in the study and the health professionals who assisted them.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontierspartnerships.org/articles/10.3389/fi.2022.10205/full#supplementary-material
19. Requião-Moura LR, Sandes-Freitas TVd., Viana LA, Cristelli MP, Andrade LGMd., Garcia VD, et al. High Mortality Among Kidney Transplant Recipients Diagnosed with Coronavirus Disease 2019: Results from the Brazilian Multicenter Cohort Study. *PLoS One* (2021). 16(7):e0254822. doi:10.1371/journal.pone.0254822

20. Khwaja A KDIGO Clinical Practice Guidelines for Acute Kidney Injury. *Nephron* (2012). 120(4):c179–c184. doi:10.1159/000339789

21. Rubin DB. *Multiple Imputation for Nonresponse in Surveys.* New York: John Wiley & Sons (1987).

22. Cravedi P, Suraj SM, Azzi Y, Haverly M, Farouk S, Perez-Saez MJ, et al. COVID-19 and Kidney Transplantation: Results from the TANGO International Transplant Consortium. *Am J Transpl* (2020). 20(11):3140–8. doi:10.1111/ajt.16185

23. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Emergence of a SARS-CoV-2 Variant of Concern with Mutations in Spike Glycoprotein. *Nature* (2021). 592:438–43. doi:10.1038/s41586-021-03402-9

24. Chen X, Chou C-Y, Chang G-G Thiopurine Analogue Inhibitors of Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Protease, a Deubiquitinating and deISGylating Enzyme. *Antivir Chem Chemother* (2009). 19(4):151–6. doi:10.1177/095632020901902

25. Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-β and Mycophenolic Acid Are Potent Inhibitors of Middle East Respiratory Syndrome Coronavirus in Cell-Based Assays. *J Gen Virol* (2014). 95(3):571–7. doi:10.1099/vir.0.061911-0

26. Carbayo-Lozoya J, Müller MA, Kalles S, Thié V, Drosten C, von Brunn A. Replication of Human Coronavirus SARS-CoV, HCoV-NL63 and HCoV-229E is Inhibited by the Drug FK506. *Virus Res* (2012). 165(1):112–7. doi:10.1016/j.viruses.2012.02.002

27. Carbayo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahler V, Prell E, et al. Human Coronavirus NL63 Replication is Cyclophilin A-Dependent and Inhibited by Non-immunosuppressive Cyclosporine A-Derivatives Including Alisporivir. *Virus Res* (2014). 184:44–53. doi:10.1016/j.viruses.2014.02.010

28. Pfefferle S, Schöpf J, Kogl M, Friedel CC, Müller MA, Carbayo-Lozoya J, et al. The SARS-CoV-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors. *PLoS Pathog* (2011). 7(10):e1002331. doi:10.1371/journal.ppat.1002331

29. Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F, Saccon E, et al. Dysregulation in Akt/mTOR/HIF-1 Signaling Identified by Proteo-Transcriptomics of SARS-CoV-2 Infected Cells. *Emerg Microbes Infect* (2020). 9(1):1748–60. doi:10.1080/22221751.2020.1799723

Copyright © 2022 Sandes-Freitas, Cristelli, Requião-Moura, Modelli de Andrade, Viana, Garcia, de Oliveira, Esmeraldo, de Lima, Charpiot, Ferreira, Franco, Costa, Simão, Ferreira, Santana, Almeida, Deboni, Saldanha, Noronha, Oliveira, Carvalho, Oriú, Medina-Pestana and Tedesco-Silva Junior. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.