The importance of diffusion apparent diffusion coefficient values in the evaluation of soft tissue sarcomas after treatment

Elif Aktas1A,B,C,D,E,F, Sefik M. Arikan2B,D, Fisun Ardıç3B,D,E, Burcu Savran4A,B,D,E, Alaettin Arslan5E, Güray Toğral6D,F, Jale Karakaya7C, Bilgin K. Aribas8D,E

1Department of Radiology, Kayseri City Hospital, Kayseri, Turkey
2Department of Orthopaedics and Traumatology, Gazi University Medical School, Ankara, Turkey
3Department of Pathology, Ankara Oncology Education and Research Hospital, Ankara, Turkey
4Department of Radiology, Ankara Oncology Education and Research Hospital, Ankara, Turkey
5Department of Radiation Oncology, Kayseri City Hospital, Kayseri, Turkey
6Department of Orthopaedics and Traumatology, Ankara Oncology Education and Research Hospital, Ankara, Turkey
7Department of Biostatistics, Hacettepe University Medical School, Ankara, Turkey
8Department of Radiology, Bülent Ecevit University Medical School, Zonguldak, Turkey

Abstract

\textbf{Purpose}: In our study, we aimed to show the efficiency of diffusion-weighted images at different b-values and apparent diffusion coefficient (ADC) values in the differentiation of recurrent tumours from post-treatment tissue changes.

\textbf{Material and methods}: The conventional and diffusion magnetic resonance images (MRIs) of 42 patients operated for soft tissue sarcomas between June 2012 and March 2015 followed up with MRIs that were evaluated by 2 radiologists retrospectively: Diffusion MRIs were acquired at 4 different b-values (50, 400, 800, 1000 s/mm^2). The lesions were classified according to conventional MRI findings as post-treatment changes and recurrent tumours.

\textbf{Results}: When the patient group with recurrent tumours was compared with the patient group with postoperative changes the ADC calculations were statistically significantly lower for the recurrent tumours at all b-levels ($p < 0.001$ for all b-levels). The sensitivity of b-50 values lower than 3.01×10^3 mm^2/s in showing recurrent tumours was 100% and the specificity was 77.78%. The sensitivity of b-400 values lower than 2.1×10^3 mm^2/s in showing recurrent tumours was 80% and the specificity was 96.3%. The sensitivity of b-800 values lower than 2.26×10^3 mm^2/s in showing recurrent tumours was 100% and the specificity was 88.89%. The sensitivity of b-1000 values lower than 2×10^3 mm^2/s in showing recurrent tumours was 93.3% and the specificity was 92.5%.

\textbf{Conclusions}: The ADC values obtained from diffusion-weighted images have high sensitivity and specificity in differentiating recurring soft tissue sarcomas during monitoring after treatment from postoperative changes.

\textbf{Key words}: MR imaging, diffusion-weighted magnetic resonance imaging, soft tissue tumours, recurrent sarcomas, posttreatment changes.

Introduction

Soft tissue sarcomas account for less than 1% of all adult malignancies [1,2]. Despite combined and aggressive treatment methods, including radiotherapy, chemotherapy, and surgical treatment, local relapse rates of soft tissue sarcomas are between 5 and 35% [2]. Most relapses develop within the first 2 years after surgery [3]. For this reason, postoperative follow-up must be done every 36 months with imaging. The lesion size, location, histological grade, surgical resection efficiency, and response to adjuvant treatments are important risk factors for the
development of local recurrence [2]. Benign changes like haematoma, seroma, fibrosis, and granulation tissue that develop in the operation lodge after surgical treatment and radiotherapy may confuse local recurrence on magnetic resonance image (MRI) scans. In cases where a definite differentiation is not possible, the clinical approach is MRI follow-up or evaluation with positron emission tomography [4-6]. Diffusion MRI is currently routinely used in radiology clinics to identify fibrosis and tumours; it is a non-invasive method that generates contrasted images of the molecular movement of water. The diffusion sensitivity may vary at different b-values of diffusion. Images with low b-values are less diffusion weighted and use lower gradients. The diffusion sensitivity is also affected by perfusion at low b-values. Higher b-value images are more diffusion weighted and have low signal-to-noise ratios. For a meaningful evaluation of diffusion MRIs, they must be obtained with at least 2 separate b-values. Mistakes in apparent diffusion coefficient (ADC) calculations can be prevented by obtaining more than one b-value [7,8]. There is no common consensus about the b-value and the number of different b-values required to be used in the MRI evaluations of the muscular-skeletal system.

In our study, we aimed to show the efficacy of diffusion-weighted images at different b-levels and ADC values in the differentiation of recurrent and residual tumours.

Material and methods

Patient selection

Fifty-six patients who had undergone surgery with the diagnosis of soft tissue sarcomas between June 2012 and March 2015 that were followed-up with MRIs were evaluated. After the surgery, 5 patients with positive surgical margins and residual disease, 5 patients with detected lung metastases, and 2 patients with a history of a second primary cancer (one was colon cancer, the other was papillary thyroid cancer) were excluded from the trial. In addition, 2 patients with a groin localized tumour and a hip prosthesis were excluded from the trial to avoid artifacts. Forty-two patients who underwent extensive resection and had clean surgical margins, who attended their MRI follow-ups at month 6 and later were included in the trial. The study was approved by our institutional review board, and all patients gave their informed consent. The patient MRI findings were re-evaluated by radiologists with 8 years of experience (BS) and 10 years of experience (EA) in musculoskeletal MRI, respectively. The signal characteristics, contrast enhancement patterns, locoregional distribution of the postoperative tissue areas, and suspicious lesions were evaluated. The haematoma, seroma, and areas of postsurgical or postradiotherapy soft tissue changes and the masses that may relapse were identified based on the study by Garner et al. according to the T1, T2, and contrasting patterns observed in the patients [6].Lesions hyperintense in T1-weighted and T2-weighted images that did not demonstrate significant contrast enhancement following IV contrast administration were classified as haematoma (Figure 1A-D); lesions with hypointense signal characteristics in T1-weighted images and hyperintense in T2-weighted images that did not enhance with contrast after IV contrast administration or contrasted peripherally were classified as seroma (Figure 1E-H); areas with hypointense signal characteristics in T1-weighted images and hyperintense in T2-weighted images that were mildly enhanced with contrast after IV contrast administration were classified as changes after operation and radiotherapy (Figure 1I-L); and lesions that were T1 hypointense, T2 hyperintense, and enhanced with contrast after IV contrast administration were classified as potential recurrent masses (Figure 1M-P, Figure 2, Table 1).

Magnetic resonance imaging analysis and data collection

All images were transferred to a workstation (Advantage Windows version 4.2_07, GE Healthcare) and the DWI sequence was post-processed with commercial software (FuncTool, GE Healthcare) to obtain ADC maps (black/white and colour, the latter with a Puh-thallium colour scheme, ranging from black, diffusion restriction, to red, no diffusion restriction). The ADC maps of each lesion were calculated using four b-values (50, 400, 800, and 1000 s/mm²). The scanner software provided the mean value within the ROI, which equaled the ADC value (multiplied by 10^{-3}).

The MRI findings were re-evaluated by radiologists with 8 years of experience (BS) and 10 years of experience (EA) in musculoskeletal MRI, respectively. The signal characteristics, contrast enhancement patterns, locoregional distribution of the postoperative tissue areas, and suspicious lesions were evaluated. The haematoma, seroma, and areas of postsurgical or postradiotherapy soft tissue changes and the masses that may relapse were identified based on the study by Garner et al. according to the T1, T2, and contrasting patterns observed in the patients [6].Lesions hyperintense in T1-weighted and T2-weighted images that did not demonstrate significant contrast enhancement following IV contrast administration were classified as haematoma (Figure 1A-D); lesions with hypointense signal characteristics in T1-weighted images and hyperintense in T2-weighted images that did not enhance with contrast after IV contrast administration or contrasted peripherally were classified as seroma (Figure 1E-H); areas with hypointense signal characteristics in T1-weighted images and hyperintense in T2-weighted images that were mildly enhanced with contrast after IV contrast administration were classified as changes after operation and radiotherapy (Figure 1I-L); and lesions that were T1 hypointense, T2 hyperintense, and enhanced with contrast after IV contrast administration were classified as potential recurrent masses (Figure 1M-P, Figure 2, Table 1).
In diffusion-weighted images, 1 cm² ROIs were placed in postoperative tissue areas with hyperintense areas in T2-weighted images and 3 different areas with an appearance suspicious of recurrent masses, and the mean ADC values were calculated. ADC calculation was not done in the hypointense areas in T1-T2-weighted images and were considered as fibrosis. After MRI examinations, biopsies were obtained from the suspicious lesions with wire localization biopsies in 2 patients, and 13 patients underwent total excision. The mean diameter of the lesions excised was measured as 4.3 ± 1.5 cm (range 2-8 cm). Patients regarded as post-treatment tissue changes according to the T1, T2, and contrasting characteristics were followed up for a mean period of 17.8 ± 6.7 months (range, 8-32 months).
Figure 2. In month 12 magnetic resonance imaging (MRI) follow-up of a 67-year-old patient operated for a liposarcoma located in the proximal of the groin the lesions (A) hypointense in T1-weighted images, (B) hyperintense in T2-weighted images and (C) that enhanced with contrast after IV contrast administration were primarily regarded as recurrent masses and (D) were hyperintense in diffusion weighted images and the ADC value was calculated as 1.3×10^{-3} mm2/s in the apparent diffusion coefficient (ADC) map.

Table 1. Magnetic resonance imaging findings after treatment of soft-tissue sarcomas

	T1 WI	T2 WI	CE	DWI
Haematoma	Hypo-hyperintense1	Hypo-hyperintense1	No contrast	Hyper-hyperintense1
Seroma	Hypointense	Hyperintense	No contrast or contrasted peripherally	Hyperintense
Post-treatment fibrous changes	Hypointense	Hyperintense	Mildly enhanced	Hyperintense
Recurrent mass	Hypointense	Hyperintense	Enhanced	Hyperintense

1Age dependent

No relapse or change in the tissue areas was identified during follow-up.

Pathology

One patient underwent surgery for an alveolar rhabdomyosarcoma, 1 for embryonal rhabdomyosarcoma, 8 for fibrosarcomas, 6 for leiomyosarcomas, 8 for pleomorphic liposarcomas, 6 for myxoid liposarcomas, 2 for angiosarcomas, 1 for a malign schwannoma, 4 for pleomorphic sarcomas, 1 for a myxofibrosarcoma, 3 for synovial sarcomas, and 1 for soft tissue osteosarcoma. Among the tumours that relapsed, 1 was an alveolar rhabdomyosarcoma, 3 were fibrosarcomas, 2 were leiomyosarcomas, 3 were pleomorphic liposarcomas, 1 was a myxoid liposarcoma, 2 were angiosarcomas, 1 was a malignant schwannoma, 1 was a synovial sarcoma, and 1 was soft tissue osteosarcoma. Five (11.9%) of the sarcomas were grade 1, 21 (50%) were grade 2, and 16 (38.1%) were grade 3.

Statistical analysis

Descriptive statistics were expressed as mean ± standard deviation for continuous variables, and count and percentage for categorical variables. A χ^2 test was used to compare differences between groups for categorical variables.
Recurrent tumours were identified in 15 of the 42 patients included in the study. Out of these patients, 6 (40%) were female and 9 (60%) were male. Out of the 27 patients classified as postoperative tissue changes, 14 (51.8%) were female and 12 (48.1%) were male. There was no statistical difference with respect to gender between the 2 groups ($p = 0.183$). The mean age of patients with recurrent tumours identified was 51.6 ± 19.5 years, and the mean age of patients with postoperative tissue changes was 51.07 ± 13.7 years. No significant difference was identified between the groups with respect to age ($p = 0.909$) (Table 2).

Table 2. Comparison of demographic characteristics and apparent diffusion coefficients values between groups

	Recurrent tumour, $n = 15$	Postoperative inflammation, $n = 25$	p
Age (year)	51.66 ± 19.5	51.07 ± 14.1	0.909
Gender, n (%)			
Female	6 (40)	14 (52)	0.342
Male	9 (60)	13 (48)	
b-50 (× 10⁻³ mm²/s)	2.10 ± 0.57	3.28 ± 0.49	< 0.001
b-400 (× 10⁻³ mm²/s)	1.73 ± 0.52	3.02 ± 0.55	< 0.001
b-800 (× 10⁻³ mm²/s)	1.49 ± 0.54	2.90 ± 0.55	< 0.001
b-1000 (× 10⁻³ mm²/s)	1.44 ± 0.59	2.72 ± 0.57	< 0.001
Mean ADC value of adjacent tissue (× 10⁻³ mm²/s)	2.66 ± 0.57	2.86 ± 0.72	< 0.350

$P < 0.05$ was statistically significant

No statistical difference was present between the tumour types with respect to the ADC calculations at all b-values. There was no meaningful correlation between the histopathological grade and ADC values. Twenty-two of the tumours were located in the thigh. Of the other tumours, 5 were in the leg, 3 in the popliteal fossa, 3 in the forearm, 2 neighbouring the knee, 2 in the shoulder, 2 in the arm, 1 in the antecubital fossa, 1 neighbouring the hip, and 1 in the elbow. Among the lesions considered as post-treatment tissue changes, 4 were fluid collections; 3 were postoperative haematoma. The other 18 lesions were T1 hypointense and T2 hyperintense and enhanced minimally following IV contrast administration.

When the group of recurrent tumour patients was compared to the postoperative changes group, the ADC calculations were statistically significantly lower at all b-levels ($p < 0.001$) (Table 2). The ADC values of recurrent tumours, areas of postoperative tissue change, and adjacent healthy muscular tissues measured at different b-values are summarized in Table 2. The sensitivity of b-50 values lower than 3.01 × 10⁻³ mm²/s in showing recurrent tumours was 100% and the specificity was 77.78%. The sensitivity of b-400 values lower than 2.1 × 10⁻³ mm²/s in showing recurrent tumours was 80% and the specificity was 96.3%. The sensitivity of b-800 values lower than 2.26 × 10⁻³ mm²/s in showing recurrent tumours was 100% and the specificity was 88.89%. The sensitivity of b-1000 values lower than 2.05 × 10⁻³ mm²/s in showing recurrent tumours was 93.3% and the specificity was 92.5% (Table 3, Figure 3). No significant difference was identified among the b-50, b-400, b-800, and b-1000 b-levels.

Table 3. Area under the receiver operating characteristics curve (AUC) and criteria (apparent diffusion coefficient – ADC) observed to maximize sensitivity and specificity for predicting recurrent tumour ($n = 42$)

b-value	AUC	Prediction of recurrent tumour		
ADC criteria (mm²/s)	Sensitivity (%)	Specificity (%)		
50	0.951	≤ 3.01	100	77.78
400	0.947	≤ 2.10	80	96.30
800	0.981	≤ 2.26	100	88.89
1000	0.937	≤ 2.00	93.33	92.59

Discussion

Our study identified that the ADC calculations obtained from diffusion-weighted images at different b-levels are highly sensitive and specific in the differentiation of soft tissue sarcoma recurrence and postoperative benign changes.
tions are delivered radiotherapy and chemotherapy after sur-
erative evaluation of soft tissue sarcomas. However, once pa-
currence can be differentiated from post-treatment tissue
postoperative haematomas. Therefore, the tumour re-
Tumours with haemorrhagic components may be confused
components may be confused with postoperative scar tissue [2].

tumours can be confused with postoperative seroma because
[14]. The sensitivity of dynamic evaluation has been reported
as 87% and the positive predictive value as 70% [15]. Myxoid
hers following radiotherapy are hyperintense in T2-weighted
quences, and most tumour recurrences also appear hyper-
tensity in T2-weighted sequences [9-12]. Vanel et al. showed
hypointense signal changes in T2-weighted images have
consistency of 96% in ruling out tumour recurrence and resi-
dues [11]. In addition, the preservation of the muscle texture
sign finding in T1-weighted images can also be used to
rule out tumours [13]. In dynamic evaluations, the areas of
post-treatment tissue changes enhance with contrast in the
later stage, and tumour recurrence enhances in earlier stages
[14]. The sensitivity of dynamic evaluation has been reported
as 87% and the positive predictive value as 70% [15]. Myxoid
hums can be confused with postoperative seroma because
of their high signal intensities in T2-weighted images [16,17].
Tumours that contain high mineralization and fibrous com-
ponents may be confused with postoperative scar tissue [2].
Tumours with haemorrhagic components may be confused
with postoperative haematomas. Therefore, the tumour re-
currence can be differentiated from post-treatment tissue
changes to a limited extent in some tumours [10]. In cases
where conventional methods fall short, and if contrast is
not administered to the patient, new imaging methods are
needed to differentiate recurrent tumours from postoperative
tissue changes and to guide the surgery.

ADC mapping in diffusion MRI evaluations is used to
prove the levels of cellularity in different areas
of the body. Diffusion-weighted images can be used to
differentiate tumour recurrence from posttreatment soft
tissue changes. Low ADC values are obtained in malign
tumours with high cellularity, fibromuscular tissue, and
fat tissue; high ADC levels are obtained from tumours
with low cellularity, lesions with fluid content, necrot-
ic regions, and acellular regions [7,9]. Most of our pa-
tients included in the study had high-grade sarcomas
that demonstrated high cellularity. However, we could
not identify a meaningful correlation between the histo-
pathological grades and the ADC values. The ADC values
of relapsed massive lesions were lower when compared
to the areas of benign changes. When the ADC values
of benign changes like haematoma, seroma, edema, and
inflammatory changes that develop after treatment were
compared with recurrent tumours, they were higher, and
these results are consistent with the literature. Low ADC
values are obtained in the development of fibrous tissue
change [18]. In the study conducted by Del Grande et al.
it was shown that lower ADC values were obtained from
fibrous tissue areas than the tumour tissues. This is why
we did not perform calculations in the areas we regarded
as fibrous tissue that had hypointense signal characteristics
in T1-T2 weighted images and did not enhance with
contrast after IV contrast administration in our study.
Baur et al. reported that ADC mapping can be used to
identify sarcoma recurrence and that diffusion ADC
mapping is effective in differentiating muscular edema
and postoperative seroma from recurrent tumours [19].
In the study conducted by Grande et al., with a small
number of patients, using a 3 tesla MRI, they found that
the ADC values obtained from diffusion-weighted MRIs
were statistically significantly different for recurrence,
postoperative scar tissue, and haematoma. They identified
that the mean ADC for recurrence was 1.08 × 10⁻³ mm²/s,
0.9 × 10⁻³ mm²/s for postoperative scar tissue, and 0.9 × 10⁻³
mm²/s for haematoma [18]. We calculated the mean ADC
value of relapsed masses as 1.69 × 10⁻³ mm²/s and as 2.98 × 10⁻³
mm²/s for areas of post-treatment tissue changes. Because
we did not measure the ADC values of fibrous tissues in
our study, we may have calculated a higher ADC value
for post-treatment changes than the ADC value calculated
by Grande et al. for postoperative scar tissue. When the
hums in our study were evaluated according to the hist-
ological subtypes, it was seen that 2 angiosarcomas had
higher ADC values than the other soft tissue sarcoma re-
currences (mean 2.7 × 10⁻³ mm²/s). The ADCs obtained
might be higher because of the different histological con-
tent of angiosarcomas like haemorrhages.

The role of different b-values in showing soft tissue sarcomas and sarcoma recurrences has not been inves-
tigated before [18,20]. Different b-values can change the
sensitivity of the diffusion. At lower b-values, a signal de-
crease may occur in water molecules that have high levels
of motion similar to intravascular space. This is why ADC
is significantly affected by vascular perfusion. At high
b-values, the signal-to-noise ratio decreases, which also
affects ADC calculations [19-24]. Due to this, to obtain
accurate ADC values, calculations must be done with at
least 3 different b-values [20]. We performed 4 different

![Figure 3. ROC (receiver operating characteristic) curves of different b-values are shown](image_url)
ADC calculations in our study. The mean ADC calculations at b-values of 50 ($2.10 \times 10^{-7} \pm 0.57, p < 0.01$) were higher when compared to other b-values, but we found meaningful results in showing recurrence just as in other b-values. We found that all b-values had high sensitivity and specificity and identified that the sensitivity and specificity were highest at b-1000 values. To avoid artifacts, it may be sufficient to shorten the duration and carry out evaluations at 2 different b-values.

Because the signal-to-noise ratio is lower in diffusion-weighted images, more artifacts may be present, especially in the postoperative period, compared to conventional sequences [19,20]. We did not include patients who had prostheses or operation material that cause artifacts in the study.

Our study had some limitations. Our study was retrospective, and we worked with a heterogeneous patient group. Because the tumours were located in different areas of the body, the imaging protocols differed accordingly. Because we used 4 different b-values, the imaging duration was prolonged, and movement artifacts were more common.

Another limitation was the number of patients. Both the overall number of patients and the number of relapse patients were low (15/40). Further research, with more patients, directed to the ADC evaluation of specific sarcoma diagnoses and research that evaluates the ADC calculations of benign neoplasias like low-grade tumours and fibromatosis that have high recurrence rates are necessary.

Conclusions

The ADC values obtained from diffusion-weighted images have high sensitivity and specificity in differentiating recurring soft tissue sarcomas during monitoring after treatment from postoperative changes. The highest sensitivity and specificity were obtained at the b-1000 level.

Conflict of interest

The authors report no conflict of interest.

References

1. Landis SH, Wurray T, Bolden S, et al. Cancer statistics 1999. Cancer J Clin 1999; 49: 8-31.
2. James SL, Davies AM. Postoperative imaging of soft tissue sarcomas. Cancer Imaging 2008; 8: 8-18.
3. Potter DA, Glenn J, Kinsella T, et al. Patterns of recurrence in patients with highgrade soft tissue sarcomas. J Clin Oncol 1985; 3: 353-366.
4. Lewis JJ, Leung D, Heslin M, et al. Association of local recurrence with subsequent survival in extremity soft tissue sarcoma. J Clin Oncol 1997; 15: 646-652.
5. Cormier JN, Pollock RE. Soft tissue sarcomas. Cancer J Clin 2004; 54: 94-109.
6. Garner HW, Kransdorf MJ, Bancroft LW, et al. Benign and malignant softtissue tumors: posttreatment MR imaging. Radiographics 2009; 29: 119-134.
7. Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 2011; 40: 665-681.
8. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188: 1622-1635.
9. Panicek DM, Schwartz LH, Heelan RT, Caravelli JF. Non-neoplastic causes of high signal intensity at T2-weighted MR imaging after treatment for musculoskeletal neoplasm. Skeletal Radiol 1995; 24: 185-190.
10. Vanel D, Shapeero LG, De Baere T, et al. MR imaging in the follow up of malignant and aggressive soft tissue tumors: results of 511 examinations. Radiology 1994; 190: 263-268.
11. Vanel D, Lacombe MJ, Couanet D, et al. Musculoskeletal tumors: follow up with MR imaging after treatment with surgery and radiation therapy. Radiology 1987; 164: 243-245.
12. Shapeero LG, Vanel D. MR imaging in the followup evaluation of aggressive soft tissue tumors. Semin Musculoskelet Radiol 1999; 3: 197-205.
13. Biondetti PR, Ehman RL. Soft tissue sarcomas: use of textural patterns in skeletal muscle as a diagnostic feature in postoperative MR imaging. Radiology 1992; 183: 845-848.
14. Shapeero LG, Vanel D, Verstraete KL, et al. Dynamic contrast enhanced MR imaging for soft tissue sarcomas. Semin Musculoskelet Radiol 1999; 3: 101-113.
15. Einarsdottir H, Soderlund V, Skoog L, et al. Dynamic MRI and fine needle aspiration cytology in the evaluation of soft tissue lesions. Skeletal Radiol 2003; 32: 695-700.
16. Peterson KK, Renfrew DL, Feddersen RM, et al. Magnetic resonance imaging of myxoid containing tumors. Skeletal Radiol 1991; 20: 245-250.
17. Davies AM, Vanel D. Followup of musculoskeletal tumors. Eur Radiol 1998; 8: 791-799.
18. Del Grande F, Subhawong T, Weber K, et al. Detection of softtissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014; 271: 499-511.
19. Baur A, Huber A, Arbogast S, et al. Diffusion weighted imaging of tumor recurrences and posttherapeutical softtissue changes in humans. Eur Radiol 2001; 11: 828-833.
20. Fayad LM, Jacobs MA, Wang X, et al. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265: 340-356.
21. Einarsdottir H, Karlsson M, Wejde J, Bauer HC. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 2004; 14: 959-963.
22. Chenevert TL, Meyer CR, Moffat BA, et al. Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 2002; 1: 336-343.
23. Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 2014; 34: 1163-1177.
24. Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusionweighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 2014; 203: 560-572.