Redefining *Humicola sensu stricto* and related genera in the Chaetomiaceae

X.W. Wang1,2,3, F.Y. Yang4*, M. Meijer3, B. Kraak3, B.D. Sun4, Y.L. Jiang5, Y.M. Wu6, F.Y. Bai7, K.A. Seifert7, P.W. Crous3,8,9, R.A. Samson5, and J. Houbraken*

1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China; 2Grassland Institute, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100192, China; 3Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 4China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; 5Department of Plant Pathology, Guizhou University, Guiyang 550025, China; 6Department of Plant Pathology, Shandong Agricultural University, Tai'an 271018, China; 7Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; 8Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; 9Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

*Correspondence: J. Houbraken, j.houbraken@westerdijkinstitute.nl; F.Y. Yang, yfyuyu@126.com

Abstract: The traditional concept of the genus *Humicola* includes species that produce pigmented, thick-walled and single-celled spores laterally or terminally on hyphae or minimally differentiated conidiophores. More than 50 species have been described in the genus. Species commonly occur in soil, indoor environments, and compost habitats. The taxonomy of *Humicola* and morphologically similar genera is poorly understood in modern terms. Based on a four-locus phylogeny, the morphological concept of *Humicola* proved to be polyphyletic. The type of *Humicola*, *fuscoatra*, belongs to the Chaetomiaceae. In the Chaetomiaceae, species producing humicola-like thick-walled spores are distributed among four lineages: *Humicola sensu stricto*, *Mycothermus*, *Staphylotrichum*, and *Trichocladium*. In our revised concept of *Humicola*, asexual and sexually reproducing species both occur. The re-defined *Humicola* contains 24 species (seven new and thirteen new combinations), which are described and illustrated in this study. The species in this genus produce conidia that are lateral, intercalary or terminal on hyphae, and conidiphores are not formed or are minimally developed (micronematous). The ascospores of sexual *Humicola* species are limoniform to quadrangular in face view and bilaterally flattened with one apical germ pore. Seven species are accepted in *Staphylotrichum* (four new species, one new combination). Thick-walled conidia of *Staphylotrichum* species usually arise either from hyphae (micronematous) or from apically branched, seta-like conidiophores (macronematous). The sexual morph represented by *Staphylotrichum longicoleum* (= *Chaetomium longicoleum*) produces acasmoda with long necks composed of a fused basal part of the terminal hairs, and ascospores that are broad limoniform to nearly globose, bilaterally flattened, with an apical germ pore. The *Trichocladium* lineage has a high morphological diversity in both asexual and sexual structures. Phylogenetic analysis revealed four subclades in this lineage. However, these subclades are genetically closely related, and no distinctive phenotypic characters are linked to any of them. Fourteen species are accepted in *Trichocladium*, including one new species, twelve new combinations. The type species of *Gilmaniella*, *humicola*, belongs to the polyphyletic family *Lasiosphaeriaceae* (Sordariales), but *G. macrospora* phylogenetically belongs to *Trichocladium*. The thermophilic genus *Mycothermus* and the type species *M. thermophilum* are validated, and one new *Mycothermus* species is described. Phylogenetic analyses show that *Remersonia*, another thermophilic genus, is sister to *Mycothermus* and two species are known, including one new species. Thermomyces verrucosus produces humicola-like conidia and is transferred to *Botryotrichum* based on phylogenetic affinities. This study is a first attempt to establish an inclusive modern classification of *Humicola* and humicola-like genera of the Chaetomiaceae. More research is needed to determine the phylogenetic relationships of “*humicola*-like species outside the Chaetomiaceae.

Key words: *Humicola*, *Mycothermus*, Phylogeny, *Remersonia*, Sexual morphs, *Staphylotrichum*, *Trichocladium*, 43 Taxonomic novelties. Taxonomic novelties: new genus: Mycothermus D.O. Natvig et al. ex X. Wei Wang, Houbraken & D. O. Natvig; new species: *Humicola atrubrunnea* X. Wei Wang, Houbraken, Y.L. Jiang & T.Y. Zhang, *Humicola christenseni* X. Wei Wang & Houbraken, *Humicola degenerans* X. Wei Wang & Houbraken, *Humicola leptodermospora* X. Wei Wang & Houbraken, *Humicola mutabilis* X. Wei Wang & Houbraken, *Humicola pulvericola* X. Wei Wang, Houbraken & Seifert, *Humicola quadrangularis* X. Wei Wang & Houbraken, *Mycothermus thermophooides* X. Wei Wang & Houbraken, *Remersonia tenuis* X. Wei Wang, Houbraken & Seifert, *Staphylotrichum acaciaicola* X. Wei Wang & Houbraken, *Staphylotrichum brevistipitatum* X. Wei Wang & Houbraken, *Staphylotrichum microacssporicum* X. Wei Wang & Houbraken, *Staphylotrichum torditum* X. Wei Wang & Houbraken, *Trichocladium amorphum* X. Wei Wang & Houbraken, *Trichocladium distortum* (L.M. Ames) X. Wei Wang & Houbraken, *Humicola floriformis* (Gené & Guarro) X. Wei Wang & Houbraken, *Humicola homopila* (Omvik) X. Wei Wang & Houbraken, *Humicola malaysiensis* (D. Hawksw.) X. Wei Wang & Houbraken, *Humicola pinnata* (L.M. Ames) X. Wei Wang & Houbraken, *Humicola seminuda* (L.M. Ames) X. Wei Wang & Houbraken, *Humicola semipapillata* (Udagawa and Cain) X. Wei Wang & Houbraken, *Humicola sphaerulis* (Chivers) X. Wei Wang & Houbraken, *Humicola subspiralis* (Chivers) X. Wei Wang & Houbraken, *Humicola udagawae* (Sergejeva ex Udagawa) X. Wei Wang & Houbraken, *Humicola wangi* (J.A. Mey. & Lanneau) X. Wei Wang & Houbraken, *Humicola thermophilus* (Cooney & R. Emers.) X. Wei Wang, Houbraken & D. O. Natvig, *Staphylotrichum longicoleum* (Kremien. & Badura) X. Wei Wang & Houbraken, *Trichocladium acropullum* (X.Wei Wang) X. Wei Wang & Houbraken, *Trichocladium antarcticum* (Stschigel & Guarro) X. Wei Wang & Houbraken, *Trichocladium arxii* (Benny) X. Wei Wang & Houbraken, *Trichocladium crispatum* (Puckel) X. Wei Wang & Houbraken, *Trichocladium gracile* (Traaen) X. Wei Wang & Houbraken, *Trichocladium heterothallicum* (Yu Zhang & L. Cai) X. Wei Wang & Houbraken, *Trichocladium jilongense* (Y.M. Wu & T.Y. Zhang) X. Wei Wang & Houbraken, *Trichocladium nigrospermum* (Schwein.) X. Wei Wang & Houbraken, *Trichocladium seminis-citriulli* (Sergejeva) X. Wei Wang & Houbraken, *Trichocladium uniseriatum* (Yu Zhang & L. Cai) X. Wei Wang & Houbraken; Nomen novum: *Trichocladium beniowskiae* (M.D. Mehrotra) X. Wei Wang & Houbraken, *Trichocladium gilmaniellae* (Moustafa) X. Wei Wang & Houbraken.

Available online 7 August 2018; https://doi.org/10.1016/j.stimyc.2018.07.001.
INTRODUCTION

Identification and classification of morphologically little-differentiated hyphomycetes have always been challenging. Species producing chlamydospores or similar propagules offer few morphological characters to guide taxonomists. The traditional Saccardoan approach to delimiting genera by the pigmentation and septation of spores and the cells that produce them, and the further refinements offered by studies of conidium ontogeny (including conidial secession) and cultural characteristics, provide additional information. The occurrence of synanamorphs or sexual stages also offers clues.

Phylogenetic studies using DNA provide clarity about relationships and give clues as to what phenotypic characters might be phylogenetically informative, facilitating the integration of morphologically depauperate hyphomycetes among more differentiated, often teleomorph-based taxa. Based on SSU and ITS sequence data, Hambleton et al. (2005) attempted to correlate differences in the details of conidium development with phylogenetic relationships among species with chlamydospores or aleuriconidia. Their definitions for chlamydospores and aleuriconidia were based on those from the first Kananskis conference (Kendrick 1971). Chlamydospores were defined as “thick-walled, thallic, terminal or intercalary spores” formed on vegetative mycelium which “are not dispersed and do not secede until the adjacent hyphal cells dissolve away”, and hence are functionally a kind of “resting spores”. Aleuriconidia were defined as solitary, holothallic or monoblastic conidia produced on somewhat differentiated conidiophores or from conidigenous cells, which are propagules and can be dispersed. Two relatively large hyphomycete genera that are central to the question of the phylogenetic analysis of LSU sequences. In that study, the three Farrovia species clustered closely with C. homopilatum species = Chaetomium longicolleum), F. seminuda (= Chaetomium seminudum) and F. malaysiensis (= Chaetomium malaysiense). Farrovia was characterized by ascomata with synchronously produced terminal hairs arising from elongated cells that fused to form a “distinct neck-like structure” below the perithecial apex (Hawksworth 1975). However, Farrovia was not accepted in subsequent monographs (Carter 1982, von Arx et al. 1986), although Untereiner et al. (2001) accepted the genus on the basis of the phylogenetic analysis of LSU sequences. In that study, the three Farrovia species clustered closely with C. homopilatum, C. floriforme, and C. spherae, which produce a humicola-like morph and ascomata lacking conspicuous necks.

Detailed multi-locus molecular studies on the relationship and taxonomy of species producing chaetomium-like ascomata and/ or humicola-like asexual structures are lacking.

Other species with similar thick-walled conidia, classified in various hyphomycete genera, have a similar ecology and may also be associated with Chaetomiaceae. A few genera with more developed conidiophores, but similar conidia and conidio genesis to Humicola, are also relevant to the phylogenetic reevaluation of asexual members of Chaetomiaceae presented in this paper. Botryotrichum, with its setose, macronematous conidiophores bearing clusters of thick-walled conidia, has long been associated with Chaetomiaceae, following the association of the type species B. piluliferum with its sexual state (Daniels 1961). Two other genera were not previously associated with Chaetomium sexual states but were revealed to partly belong to Chaetomiaceae by our phylogenetic studies. Gilmaniella was separated from Humicola and Botryotrichum by its branched conidiophores and the conidia with a conspicuous germ pore (Barron 1964). The conidiophores of Strophylotrichum species are also similar to those of Botryotrichum but do not terminate in setae (Nonaka et al. 2012).

Just because a species is morphologically simple, it does not mean it is biologically or economically unimportant. Most Humicola species are isolated from soil, while some are from compost, rotting plant materials, indoor environments or even fur of cats (Cooney & Emerson 1964, Tiscornia et al. 2009, Betancourt et al. 2013, Wang et al. 2016b). Some Humicola...
species have potential as bio-organic fertilisers or as biological control organisms of plant diseases, such as Verticillium wilt of cotton and Phytophthora blight of pepper (Ko et al. 2011, Lang et al. 2012, Yang et al. 2014a,b). The invalidly named thermophilic species Mycothermus thermophilus (≡Scytalidium thermophilum = Humicola insolens) attracts considerable attention for its remarkable ability to produce thermostable enzymes used to decompose polymeric carbohydrates (Salles et al. 2005, Ghatore et al. 2006, Du et al. 2013, Souza et al. 2013, Yang et al. 2014a,b, Xia et al. 2015). This fungus also contributes to mushroom production by promoting the growth of Agaricus bisporus mycelium (Straatsma & Samson 1993). Some species are reported to have a negative effect on human health (Betancourt et al. 2013, Mejia et al. 2014). Humicola species can cause allergic reactions, and in two reports Humicola species are mentioned as the causal agent of peritonitis (Wang et al. 2011, Ogawa et al. 2002, Kita et al. 2003, Burns et al. 2015).

Earlier research started the reevaluation of Humicola- and Trichocladium-like species that are not associated with Chaetomiaceae. Table 2 in Hambleton et al. (2005) summarized the phylogenetic relationships, conidial characters, and synanamorphs of several chlamydosporic or “aleurioconidial” genera associated with Hypocreales, Pezizales, and Eurotiales. They described the new genus Leohumicola in the order Leotiomycetes, which exhibits an intermediate morphology between Humicula and Trichocladium, with lateral or terminal conidia with a dark brown terminal cell and a paler basal cell. One species of Trichocladium, T. opacum, was transferred to a new genus Plectotrichocladium in the Melanommataceae (Pleosporales) based on the phylogenetic analyses of SSU, LSU and ITS sequences (Hernández-Restrepo et al. 2017). These preliminary steps indicate that the classification of species and genera with humicola-like or trichocladium-like conidia needs a complete taxonomic update.

In this study, the generic delimitation of Chaetomiaceae members that produce humicola- or trichocladium-like asexual spores was re-evaluated using a four-locus phylogeny and morphological data. The phylogenetic relationships of Humicola, the core group of Trichocladium, and related genera are clarified, and the species in these genera are (re-)described and illustrated.

MATERIALS AND METHODS

Isolates

Strains producing humicola- or trichocladium-like thick-walled spores were obtained from 1) the CBS culture collection housed at the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands, 2) the China General Microbiological Culture Collection Centre, Institute of Microbiology, Beijing, China (CGMCC) and 3) the Herbarium of Shandong Agricultural University, Plant Pathology (HSAUP), Shandong, China. Some strains were isolated from house dust by dilution to extinction, as described by Visagie et al. (2014). Furthermore, a preliminary phylogenetic analysis was made based on LSU sequences from previous studies (Wang et al. 2016a,b) combined with sequences from the in-house database of the Westerdijk Institute. Additional strains were selected based on the results of this analysis. All the isolates used in this study are listed in Table 1, except for those selected from Wang et al. (2016b).

DNA isolation, sequencing and phylogeny

Genomic DNA was extracted from fungal mycelium grown on oatmeal agar (OA) using the DNeasy® UltraClean® Microbial Kit (Qiagen, Germany) following the manufacturer’s instructions. The following primers were used for PCR amplification: rpβ2-5F2 (Sung et al. 2007) & rpβ2AM-7R (Miller & Huhndorf 2005) for the second largest subunit of DNA-directed RNA polymerase II (rpβ2) gene region; ITS5 (White et al. 1990) & NL4 (O’Donnell 1993) for the internal transcribed spacer regions (ITS), including 5.8S rRNA gene region and the D1/D2 domains of the 28S rDNA (LSU); T1 (O’Donnell & Cigelnik 1997) & TUB4Rd (Groenewald et al. 2013) for the partial beta-tubulin (tub2) gene region. To study the phylogenetic relationships of the Remersonia species, a larger fragment of the beta-tubulin (tub2) gene region was amplified using the primers pairs TUB2Fd & TUB3Rd (Groenewald et al. 2013) and TUB4Fd & TUB2Rd (Groenewald et al. 2013). The PCR conditions were the same as those described by Wang et al. (2016a,b). Each of the amplicons was sequenced in both directions using the PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) following the manufacturer’s instructions. Sequencing was performed with an ABI PRISM 3730XL DNA Analyzer (Applied Biosystems, CA, USA). Consensus sequences for each locus were assembled using MEGA v. 6 (Tamura et al. 2013). Novel sequences generated in this study were deposited in ENA (European Nucleotide Archive, http://www.ebi.ac.uk/ena, Table 1).

Sequences of representative species belonging to the Chaetomiaceae were obtained from Wang et al. (2016b), the reference rpβ2 sequences of non-chaetomiaceae species in the Sordariales were from Miller & Huhndorf (2005). Phylogenetic analyses were based on Bayesian inference (BI), Maximum Likelihood (ML) and Maximum Parsimony (MP) as described previously (Wang et al. 2016a). For BI, the best evolutionary model for each locus was determined using MrModeltest v. 2.0 (Nylander 2004). Obtained trees were viewed in FigTree v. 1.1.2 (Rambaut 2009) and subsequently visually prepared and edited in Adobe® Illustrator® CS6.

Morphology

Colony morphology was examined on four different media: OA, commeal agar (CMA), malt extract agar (MEA) and potato carrot agar (PCA). Media were prepared as described by Crous et al. (2009). Cultures were inoculated in a three-point fashion and incubated in the dark at 25 °C, or 37 °C for thermophilic isolates. Colony diameters were measured after 7 d. Colony photos were taken when mature reproductive structures appeared, and the colony colour was described according to the mycological colour charts of Rayner (1970). Microscopic observations were performed using the methodology described previously (Wang et al. 2016a). Morphological descriptions are mainly based on cultures grown on OA. For the measurements of bilaterally flattened ascospores, the size was reported as “length × width in front view” × “width in lateral view”. To study the asexual spore development, slides were prepared using the inclined coverslip method (Kawato & Shinobu 1999, revised in Nugent et al. 2006). In short, two sterilized coverslips were placed under a 45° angle in the agar medium. Subsequently, inoculations were made, and after growth, the coverslip was mounted on a microscope glass.
Species	Culture accession number	Previous name	Origin	ENA accession numbers
Botryotrichum verrucosum	CBS 116.64 T	Thermomyces verrucosus	Salt-marsh soil, mature dunes, UK	LT993567 LT993486 LT993648
Humicola ampulliella	CBS 116735 T	Chaetomium ampullillum	Discarded sock, China	LT993568 LT993487 LT993649
	CBS 116736		Soil, China	LT993569 LT993488 LT993650
H. atrobrunnea	HSAUP100-1004 T		Soil, China, Guizhou	LT993570 LT993489 LT993651
H. christensii	CBS 127760 T	Chaetomium cuyabanensis	Rain forest, Ecuador	LT993573 LT993492 LT993654
	CGMCC 3.08497		Soil, USA, Minnesota	LT993571 LT993490 LT993652
			Substrate unknown, China	LT993572 LT993491 LT993653
H. cuyabanensis	CBS 398.97 T		Soil under mixed forest, Canada,	LT993574 LT993493 LT993655
			Ontario	
	CBS 780.71		Termite mound, Angola	LT993575 LT993494 LT993656
	CBS 12734		Soil, USA	LT993576 LT993495 LT993657
H. distorta	CBS 417.66 T	Chaetomium distortum	Populus tremuloides dead leaf, USA,	LT993577 LT993496 LT993658
			Iowa	
H. floriformis	CBS 815.97 T	Chaetomium floriforme	Fallen leaves, Thailand, Sukhothai	LT993578 LT993497 LT993659
H. fuscoatra	CBS 118.14 T		Soil, Norway	LT993579 LT993498 LT993660
	CGMCC 3.13428		Soil, China, Tibet	LT993580 LT993499 LT993661
H. fuscospiroidea	CGMCC 3.13790 T	Chaetomium fuscospiroidea	Soil, China, Shennongia	LT993581 LT993500 LT993662
H. homopilata	CBS 157.55 T	Chaetomium homopilatum	Filter paper in soil, Norway	LT993582 LT993501 LT993663
	CBS 338.68		Unknown substrate, unknown country	LT993583 LT993502 LT993664
H. leptodermostropha	CBS 120095 T	Chaetomium leptodermostropha	Forestal soil, Brazil	LT993584 LT993503 LT993665
H. malaysiensis	CBS 399.97	Chaetomium malaysiensense	Elaeis guineensis, Myliasys, Selangor	LT993585 LT993504 LT993667
	CBS 760.83		Soil, Ivory Coast, Kaprémé	LT993587 LT993505 LT993668
	CBS 167.61		Soil, Japan	LT993585 LT993504 LT993666
H. mutabilis	CBS 779.71 T	Chaetomium mutabilis	Soil, Israel	LT993588 LT993507 LT993669
H. olivacea	CBS 142031 T	Chaetomium olivaceae	Dust, USA	LT993589 LT993508 LT993670
H. pinnata	CBS 467.66 T	Chaetomium pinnatum	Dead wood, USA, Coronado National	LT993590 LT993509 LT993671
			Forest, USA	
H. pulvericola	CBS 144165 T	Chaetomium pulvericola	Dust, Mexico	LT993591 LT993510 LT993672
	CBS 144166		Dust, South Africa	LT993592 LT993511 LT993673
H. quadrangulata	CBS 111771 T	Chaetomium quadrangulata	Soil, Brazil	LT993593 LT993512 LT993674
H. seminuda	CBS 368.84 T	Chaetomium seminum	Soil, Canada, Ontario	LT993594 LT993513 LT993675
	CBS 153.59		Leaf fragment in soil, China, Lushan	LT993595 LT993514 LT993676
	CBS 549.69		Soil under Thuja occidentals, Canada,	LT993596 LT993515 LT993677
			Ontario	
H. semispiralis	CBS 723.97 T	Chaetomium semispirale	Paper, Canada, Toronto	LT993597 LT993516 LT993678
H. sphaeralea	CBS 985.87 T	Chaetomium sphaerale	Soil, France	LT993598 LT993517 LT993679
H. subspirale	CBS 148.58	Chaetomium subspirale	Leaf fragments in soil, China	LT993599 LT993518 LT993680
	CBS 119768		Soil, China	LT993600 LT993519 LT993681
H. udagawae	CBS 337.68 T	Chaetomium udagawae	Unknown substrate, unknown country	LT993601 LT993520 LT993682
H. wallefii	CBS 147.67 T	Chaetomium wallefii	Soil, Zaire	LT993602 LT993521 LT993683
Mycothermus thermophiloides	CBS 183.81 T		Soil, USA, Indiana	LT993603 LT993522 LT993684
M. thermophilum	CBS 625.91 T	Chaetomium thermophilum	Chicken nest straw, USA, Nevada	LT993604 LT993523 LT993685
	CBS 625.91		Rotting guarule shrub, USA, California	LT993605 LT993524 LT993686
	CBS 627.91		Dung of elephant, USA, California	LT993606 LT993525 LT993687
	CBS 226.63		Mushroom compost, Switzerland	LT993607 LT993526 LT993688
	CBS 392.69		Unknown substrate, USA, California	LT993608 LT993527 LT993689
Remersonia tenuis	CBS 784.85 T		Dung of horse, India	LT993609 LT993528 LT993690
R. thermophila	CBS 643.91		Compost, Netherlands	LT993610 LT993529 LT993691
	CBS 645.91		Compost, Netherlands	LT993611 LT993530 LT993692
	CBS 540.69		Mushroom compost, Switzerland	LT993612 LT993531 LT993693
Staphylotrichum acaciicola	CBS 281.65 T	Chaetomium acaciicola	Acacia karroo leaf litter, South	LT993613 LT993532 LT993694
	CBS 554.89		Africa	LT993614 LT993533 LT993695
	CBS 127289		Rain forest soil, Brazil	LT993615 LT993534 LT993696
with lactic acid. Alternatively, slides were made using transparent adhesive tape (Titan Ultra Clear Tape, Conglom Inc., Toronto, Canada) (Bensch et al. 2010).

RESULTS

Phylogeny

Delimitation of Chaetomiaceae

A phylogram based on rpb2 sequence data was constructed to delimit the Chaetomiaceae and to show the relationship of the species and genera investigated in this study (Fig. 1). Our rpb2 sequences were combined with available sequence data generated from (reference) strains belonging to the Chaetomiaceae, Lasiosphaeriaceae and Sordariaceae in the Sordariales.

In total, 207 isolates representing 155 taxa were studied, including 91 strains of 13 other Chaetomiaceae genera (Wang et al. 2016b). Microasus trigonosporus CBS 218.31 (Microascales) was selected as an outgroup. The alignment consisted of 901 characters including gaps. Of these, 345 characters were constant, 506 characters were parsimony-informative, and 50 characters were parsimony-uninformative. For the Bayesian inference, the GTR+I+G model was selected based on the results of the MrModel Test. Species producing humicola-like or trichocladium-like conidia fell into four clades: the *Humicola* lineage (ML-BS = 100 %; MP-BS = 100 %; PP = 1.00), the *Mycothermus* lineage (ML-BS = 100 %; MP-BS = 100 %; PP = 1.00) forms a sister to the *Humicola* lineage (ML-BS = 100 %; MP-BS = 100 %; PP = 1.00), the *Thermomyces* lineage (ML-BS = 78 %; MP-BS < 70 %; PP = 1.00), the *Staphylotrichum* lineage (ML-BS = 70 %; MP-BS = 100 %; PP = 0.98) and the *Trichocladium* lineage (ML-BS = 97 %; MP-BS = 100 %; PP = 1.00). The *Remersonia* lineage (ML-BS 100 %; MP-BS < 70 %; PP = 1.00) forms a sister to the *Mycothermus* lineage (ML-BS 100 %; MP-BS = 100 %; PP = 1.00) and this lineage includes species that produce conidia on synnemata rather than on hyphae or hypha-like co-nidiophores like those in the other four lineages. *Thermomyces verrucosus* clustered within the genus *Botryotrichum*. *Gilmaniella humicola*, the type species of this genus, falls in one of the clades in the polyphyletic Lasiosphaeriaceae. However, CBS 388.75, the type of *Gilmaniella macrospora*, belongs to the *Trichocladium* lineage.

Table 1. (Continued).

Species	Culture accession number	Previous name	Origin	ENA accession numbers
				ITS & LSU rpb2 tub2
S. boninense	CBS 112059		twig, Brazil	LT993616 LT993535 LT993697
S. brevistipitatum	CBS 294.55	Soil, Zaire	LT993618 LT993537 LT993699	
S. coccosporum	CBS 408.67	Eucalyptus leaf litter, South Africa	LT993619 LT993538 LT993700	
S. longicolleum	CBS 364.58	Soil, Zaire	LT993620 LT993539 LT993701	
S. microascosporum	CBS 119.57	Chaetomium longicolleum	Soil, Madagascar	LT993621 LT993540 LT993702
S. tortipillum	CBS 562.80	Woodland soil, Jamaica	LT993622 LT993541 LT993703	
S. micacum	CBS 100950	Leaf litter, Venezuela	LT993623 LT993542 LT993704	
T. arxii	CBS 184.79	Soil from Mangifer a orchard, Sudan	LT993624 LT993543 LT993705	
T. antarcticum	CBS 103.79	Dung of pine vole, USA, North Carolina	LT993625 LT993544 LT993706	
Trichocladium acropullum	CBS 114580	Chaetomium acropullum	Soil, China	LT993626 LT993545 LT993707
T. amorphum	CBS 127.34	Leaf of Hordeum vulgare, Iran	LT993627 LT993546 LT993708	
T. antarctica	CBS 135867	Thielavia antarctica	LT993630 LT993549 LT993711	
T. asperum	CBS 123565	Unknown substrate, unknown country	LT993633 LT993552 LT993714	
T. asperum	CBS 146.58	Chaetomium crispatum	LT993632 LT993551 LT993713	
T. beniowskii	CBS 757.74	Beniowskiia macrolepis	Grass, India	LT993635 LT993554 LT993716
T. crispatum	CBS 149.58	Chaetomium crispatum	LT993636 LT993555 LT993717	
T. griseum	CBS 693.71	Agricultural soil, Netherlands	LT993637 LT993556 LT993718	
T. griseus	CBS 388.75	Gilmaniella macrospora	Slat-marsh soil, Kuwait	LT993638 LT993557 LT993719
T. jilongense	CBS 119.14	Humicola grisea var grisea	LT993639 LT993558 LT993720	
T. jilongens	CBS 217.34	Unknown substrate, Germany	LT993640 LT993559 LT993721	
T. jilongensis	CGMCC 3.1388	Soil, China, Jilin	LT993641 LT993560 LT993722	
T. jilongensis	HSAUAPI07 1485	Humicola jilongensis	Mountain soil, China, Tibet	LT993642 LT993561 LT993723
T. jilongensis	CBS 195.87	Soil, Germany	LT993643 LT993562 LT993724	
T. nigrospermum	CBS 103.36	Monodictys nigrosperma	Meal, Netherlands	LT993644 LT993563 LT993725
T. seminis-citrulli	CBS 143.58	Chaetomium seminis-citrulli	Dung of fox, Turkmenistan	LT993645 LT993564 LT993726
T. seminis-citrulli	CBS 637.83	Soil, China	LT993646 LT993565 LT993727	
Trichocladium sp.	CBS 351.77	Chaetomium tetrasporum	Wheat field soil, Germany	LT993647 LT993566 LT993728

Remarks: T and eT denote ex-type and ex-epitype cultures, respectively.

1 The new species described in this study are highlighted in bold.
Fig. 1. Phylogenetic tree inferred from a Maximum-Likelihood analysis of the rpb2 gene region alignment. The confidence values are indicated at the notes: bootstrap proportions from the ML analysis (before the backslash), the MP analysis (after the backslash) above branches, and the posterior probabilities from the Bayesian analysis below branches. The "-" means lacking statistical support (<70 % for bootstrap proportions from ML or MP analyses; <0.95 for posterior probabilities from Bayesian analyses). The branches with full statistical support (ML-BS = 100 %; MP-BS = 100 %; PP = 1.0) are highlighted by thickened branches. Genus and species clades are discriminated with boxes of different colours. The scale bar shows the expected number of changes per site. The tree is rooted with Microascus trigonosporus strain CBS 218.31.
Four-locus phylogeny

The concatenated alignment included 173 isolates representing 125 taxa, including 91 representatives of 13 other genera in the family. The alignment contained 3,264 characters (including gaps) and is composed of four partitions: 864 characters for *rpb2*, 1,212 characters for *tub2*, 701 characters for ITS and 574 characters for the D1/D2 regions of LSU. Of them, 1,215 characters were constant, 1,584 were parsimony-informative, and 465 were parsimony-uninformative. For the Bayesian inference, the GTR+I+G model was selected as optimal for all four partitions based on the results of the MrModel Test. All of the five lineages recognised in the *rpb2* alignment were supported with robust support: the *Humicola* lineage (ML-BS = 82 %, MP-BS = 100 %, PP = 0.95), the *Mycothermus* lineage (ML-BS = 100 %, MP-BS = 100 %, PP = 1.00), the *Remersonia* lineage (ML-BS = 99 %, MP-BS = 100 %, PP = 1.00), the *Staphylotrichum* lineage (ML-BS = 98 %, MP-BS = 100 %, PP = 0.99) and the *Trichocladium* lineage (ML-BS = 99 %, MP-BS = 100 %, PP = 0.96) (Fig. 2). The *rpb2* and the concatenated phylogenetic analyses recognised the species inside in the five target lineages with robust statistical support (> 70 % BS, > 0.95 PP). Twenty-three species clades were recognised in the *Humicola* lineage, including the type species *Humicola fuscoatra*. In the *Trichocladium* lineage, thirteen species clades were recognised. Among the species recognised on the traditional morphology-based concept of *Trichochladium*, only the type species *T. asperum* is retained here in this *Trichocladium* lineage. Seven clades are present in the *Staphylotrichum* lineage. The known species *S. coccosporum*, *S. boninense*, the sexually reproducing species *S. longicolleum* (= *Chaetomium longicolleum*) and four new species belong to this lineage. The type species and a potentially novel taxon were distinguished in both the *Mycothermus* lineage and the *Remersonia* lineage.

Mycothermus and Remersonia (tub2 phylogeny)

Remersonia was originally proposed as a monotypic genus. In our *rpb2* phylogeny and four-locus phylogeny, two distinctive taxa were identified. The (ex)-type material of *R. thermophila* is no longer available for this study, and in order to compare and combine our sequence data with that of Natvig et al. (2015), another longer fragment of *tub2* region needed to be analysed. Five *Remersonia* sequences and twelve *Mycothermus* sequences were included in the alignment, and the length of the data set was 1,815 characters including gaps. Of these characters, 1,303 were constant, 349 were parsimony-informative, and 163 were parsimony-uninformative. For the Bayesian inference, the HKY+G model was selected based from the results of the MrModel Test. Similar to the four-locus phylogeny, the *tub2* analysis revealed the presence of two distinct clades in the *Remersonia* lineage and two distinctive clades in the *Mycothermus* lineage (Fig. 3). The isolates CBS 784.85 and CBS 183.81 were confirmed to be potentially new taxa.

TAXONOMY

The three mesophilic genera *Humicola sensu stricto*, *Staphylotrichum* and *Trichocladium* are re-defined, and the thermophilic genus *Mycothermus* is validated below. In addition, the morphological diversity of the thermophilic genus *Remersonia* is presented, and *Thermomyces verrucosus* is combined in *Botryotrichum*. Forty-six species are (re-)described and illustrated, including 14 new species and 28 new combinations (incl. two new names).

Botryotrichum verrucosum (Pugh, Blakeman & Morgan-Jones) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824410. Fig. 4.

Basionym: *Thermomyces verrucosus* Pugh, Blakeman & Morgan-Jones, Trans. Brit. Mycol. Soc. 47: 116. 1964.

Micromorphology: Somatic hyphae hyaline, 1.5–4.5 μm wide. Conidiophores producing laterally from hyphae, unbranched, occasionally branched once, cylindrical, hyaline to slightly pigmented, septate, often conspicuously thickened and pigmented at septa, 4–45(–65) × 2.5–4 μm. Conidiogenous cells subhyaline to pale brown, cylindrical or slightly swollen as doliiform, holothallic. Conidia solitary, oliveaceous brown, globose to subglobose, conspicuously warted. (12.5–)14–15.5(–17) μm.

Culture characteristics: Colonies on OA 28–32 mm diam after 7 d at 25 °C; edge entire; hyaline, obverse white because of aerial hyphae, fuscous black near the edge when old; reverse uncoloured. Colonies on CMA 30–36 mm diam after 7 d at 25 °C; edge entire; obverse white because of aerial hyphae; reverse uncoloured. Colonies on MEA 17–23 mm diam after 7 d at 25 °C; edge entire; texture floccose because of aerial hyphae; obverse white with mouse grey centre and edge; reverse dark mouse grey. Colonies on PCA 24–30 mm diam after 7 d at 25 °C; edge entire; obverse white because of hyaline aerial hyphae; reverse uncoloured.

Material examined

England, Lincolnshire, isolated from salt-marsh soil of mature dunes, Jan 1962, G. Morgan-Jones, ex-type culture CBS 116.64 = ATCC 22222 = IMI 096466 = MUCL 30985 = VKM F-3968.

Notes: This species was originally classified in *Thermomyces* (Pugh et al. 1964). *Thermomyces verrucosus* is a mesophile, and earlier studies show that this species belongs to the Chaetomiaceae (Mouchacca 1997, Houbraken et al. 2014), but the exact taxonomic position within the family remained unknown. Our phylogenetic analyses (Figs 1, 2) indicated that *Th. verrucosus* resides in a clade with *Botryotrichum piluliferum*, *B. atrogriseum* and *B. perevianum*. It lacks the branched conidiophores and sterile setae typically observed in *B. piluliferum* or *B. perevianum*.

Humicola Traaen, Nytt Mag. Naturvidensk. 52: 31. 1914. MycoBank MB8566.

Type species: *Humicola fuscoatra* Traaen.

Asexual morphs producing conidia arising laterally, intercalary or terminally from hyphae without differentiated conidiophores, sometimes together with acremonium-like conidiophores, occasionally only acremonium-like conidiophores present. *Ascomata* absent or present, when present superficial, or covered by aerial hyphae, ostiolate. *Terminal hairs* seta-like, flexuous, undulate, coiled or arcuate with apices incurved to coiled. Asci clavate, with 8 biseriate or irregularly arranged ascosporangia, evanescent before ascospores become mature. Ascosporangia limoniform to quadranular, bilaterally flattened, with an apical germ pore.

Notes: *Humicola* is re-defined and re-established here centred around species phylogenetically allied with the type species, *H. fuscoatra*. Fifteen *Humicola* species produce ascomata together with asexual morphs. Of the eight species that now only
Fig. 2. Phylogenetic tree resulting from a Maximum-Likelihood analysis of the concatenated \(rpb2, tub2, \) ITS and LSU gene region alignment, with the confidence values indicated at the notes same to the \(rpb2 \) phylogenetic tree (Fig. 1). The '-' means lacking statistical support (<70% for bootstrap proportions from ML or MP analyses; <0.95 for posterior probabilities from Bayesian analyses). The branches with full statistical support (MP-BS = 100%; ML-BS = 100%; PP = 1.0) are highlighted by thickened branches. Genus and species clades are discriminated with boxes of different colours. The scale bar shows the expected number of changes per site. The tree is rooted with *Microascus trigonosporus* strain CBS 218.31.
Fig. 2. (Continued).

Remersonia thermophila CBS 643.91
Remersonia thermophila CBS 645.91
Remersonia thermophila CBS 540.69
Remersonia thermophila ATCC 22073 (KF958004) T
Remersonia tenuis CBS 784.85

Remersonia

Mycothermus thermophiloides CBS 183.81
Mycothermus thermophiloides CBS 623.91
Mycothermus thermophiloides CBS 621.91
Mycothermus thermophilus CBS 226.63
Mycothermus thermophilus CBS 627.91 (KF958003)
Mycothermus thermophilus CBS 626.91 (KF958002)
Mycothermus thermophilus CBS 392.69
Mycothermus thermophilus CBS 622.91 (KF958000)
Mycothermus thermophilus CBS 625.91 (KF957998) T

Mycothermus

Remersonia thermophila CBS 540.69
Remersonia thermophila CBS 643.91
Remersonia tenuis CBS 784.85

Microascus trigonosporus CBS 218.31 T

Humicola

Staphylochartium

Fig. 3. An unrooted phylogenetic tree from ML analysis for the identification of species in Remersonia and Mycothermus based on the longer tub2 alignment. The confidence values are indicated at the notes same to Fig. 1. The scale bar shows the expected number of changes per site.
Fig. 4. Botryotrichum verrucosum (CBS 116.64, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B–E. Hyphae, conidiophores and conidia. Scale bars = 10 μm.

REDEFINING *HUMICOLA* SENSU STRICTO
exhibit an asexual morph in culture, three originally were deposited in the CBS collection under their sexual morph name: CBS 815.97 (ex-type of *Humicola floriformis*, deposited as *Chaetomium floriforme*), CBS 120095 (as *Chaetomium longicoleum*) and CBS 147.67 (ex-type of *H. walleii*, as *Ch. walleii*). *Humicola sensu stricto* is characterised by the presence of conidia on hyphae without differentiation of conidiophores, and the co-occurrence of an acremonium-like morph in some species. Ascospores, if present, are limoniform or pyriform, occasionally in clusters, fawn, (6.5–7.5) × 3.5–4.5 μm long, with an apical germ pore. *Humicola christensenii* is characterised by the presence of conidia on hyphae without differentiation of conidiophores, and the co-occurrence of an acremonium-like morph in some species. Ascospores, if present, are lime to orange or brown when mature, 1–4 μm wide. *Conidia* produced laterally on the side of vegetative hyphae, occasionally terminally on the short branches of hyphae, single-celled, olivaceous with dark brown thick wall, solitary, sometimes 2–3 in chain or several in cluster, smooth, globose, subglobose to oblate, occasionally obovoid or pyriform, (7–)8–11 (–13.5) μm high, (7–)8–10 (–10.5) μm wide.

Humicola atrobrunnea X. Wei Wang, Houbraken, Y.L. Jiang & T.Y. Zhang, sp. nov. MycoBank MB824420. Fig. 6.

Etymology: The epithet refers to the dark brown conidia of this species.

Micromorphology: Somatic hyphae hyaline, 1–4 μm wide. *Conidia* produced laterally on the side of vegetative hyphae, occasionally terminally on the short branches of hyphae, single-celled, olivaceous with dark brown thick wall, solitary, sometimes 2–3 in chain or several in cluster, smooth, globose, subglobose to oblate, occasionally obovoid or pyriform, (7–)8–11 (–13.5) μm high, (7–)8–10 (–10.5) μm wide.

Culture characteristics: Colonies on OA 30–36 mm diam after 7 d at 25 °C; edge entire; aerial hyphae thin, obverse white, becoming olivaceous along the edge because of the formation of conidia; reverse uncoloured. Colonies on CMA 28–34 mm diam after 7 d at 25 °C; morphology similar to those on OA. Colonies on MEA 29–35 mm diam after 7 d at 25 °C; edge entire or slightly lobate, obverse white; texture floccose because of the hyaline aerial hyphae; reverse uncoloured. Colonies on PCA 29–35 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse or absent, obverse olivaceous around the centre; reverse olivaceous around the centre.

Material examined: China, Guizhou, isolated from garden soil, 2004, Y.L. Jiang (holotype CBS H-23481, culture ex-type HSAUP1004 = CBS 114167).

Notes: This species is morphologically similar to *H. fuscoatra*, but can be distinguished by its more thick-walled and darker conidia.

Humicola christensenii X. Wei Wang & Houbraken, sp. nov. MycoBank MB824422. Fig. 7.

Etymology: Named in memory of Dr Martha Christensen, who isolated the ex-type culture of this species.

Micromorphology: Ascomata superficial, ostiolate, black with white luteous to amber hairs in reflected light, elongate obpyriform, obclavate or ampulliform below, apically attenuated with pale luteous to amber hairs in reflected light, elongate conical or short cylindrical neck, 160–260 μm high, 65–130 μm diam at the widest part, with the neck part about 40–120 μm long, 29–45 μm wide in the middle part. Ascospores, if present, are limoniform to quadrangular and sometimes biseriate or uniseriate ascospores, evanescent. Ascospores rust brown when mature, limoniform, prominently umbonate at both ends, bilaterally flattened, (6.5–7–8.5 (–9.5) × 5.5–6.5 (–7.5) × 3.5–4.5 μm, with an apical germ pore. *Conidia* usually oblate, ellipsoidal or subglobose, sometimes obovoid to pyriform, arising laterally or terminally from the hyaline aerial hyphae, solitary, sometimes two cells in chains or several in clusters, fawn, (7–)8–12 (–14) × (6–7–9 (–9.5) μm.

Culture characteristics: Colonies on OA 33–39 mm diam after 7 d at 25 °C; edge entire or slightly crenate; obverse showing leaden black mature ascomata mixed with young ascomata covered by pale luteous to amber ascomata hairs, and sparse white aerial hypha; soluble pigment absent; reverse uncoloured. Colonies on CMA similar to those on OA, 31–37 mm diam after 7 d at 25 °C. Colonies on MEA 29–35 mm diam after 7 d at 25 °C; edge entire, obverse showing a thin layer of white aerial mycelium mixed with sparse ascomata; reverse saffron to ochreous. Colonies on PCA 27–33 mm diam after 7 d at 25 °C; edge entire; translucent; aerial hyphae absent; soluble pigment absent; reverse uncoloured.

Material examined: China, Fujian province, Wuyi Mountain, isolated from a discarded sock, Aug 2003, X. W. Wang, ex-type culture CBS 116735 = CGMCC 3.6696; Hunan province, Changsha, isolated from soil under a tree, X. W. Wang, Jun 2003, culture CBS 116736 = CGMCC 3.6697.

Notes: This species can easily be distinguished from other species by the production of delicate ostiolar hairs, narrowly clavate to cylindrical asci, limoniform ascospores that are prominently umbonate at both ends and oblate to ellipsoidal conidia.

Humicola atrobrunnea X. Wei Wang, Houbraken, Y.L. Jiang & T.Y. Zhang, sp. nov. MycoBank MB824420. Fig. 6.

Etymology: The epithet refers to the dark brown conidia of this species.

Micromorphology: Somatic hyphae hyaline, 1–4 μm wide. *Conidia* produced laterally on the side of vegetative hyphae, occasionally terminally on the short branches of hyphae, single-celled, olivaceous with dark brown thick wall, solitary, sometimes 2–3 in chain or several in cluster, smooth, globose, subglobose to oblate, occasionally obovoid or pyriform, (7–)8–11 (–13.5) μm high, (7–)8–10 (–10.5) μm wide.

Culture characteristics: Colonies on OA 30–36 mm diam after 7 d at 25 °C; edge entire; aerial hyphae thin, obverse white, becoming olivaceous along the edge because of the formation of conidia; reverse uncoloured. Colonies on CMA 28–34 mm diam after 7 d at 25 °C; morphology similar to those on OA. Colonies on MEA 29–35 mm diam after 7 d at 25 °C; edge entire or slightly lobate, obverse white; texture floccose because of the hyaline aerial hyphae; reverse uncoloured. Colonies on PCA 29–35 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse or absent, obverse olivaceous around the centre; reverse olivaceous around the centre.

Material examined: China, Guizhou, isolated from garden soil, 2004, Y.L. Jiang (holotype CBS H-23481, culture ex-type HSAUP1004 = CBS 114167).

Notes: This species is morphologically similar to *H. fuscoatra*, but can be distinguished by its more thick-walled and darker conidia.

Humicola christensenii X. Wei Wang & Houbraken, sp. nov. MycoBank MB824422. Fig. 7.

Etymology: Named in memory of Dr Martha Christensen, who isolated the ex-type culture of this species.

Micromorphology: Ascomata superficial, ostiolate, black with honey hairs in reflected light, ovoid, obpyriform or oblacruate below, apically attenuated to an elongate conical or short cylindrical neck, 160–260 μm high, 65–130 μm diam at the widest part, with the neck part about 40–120 μm long, 29–45 μm wide in the middle part. Ascospores, if present, are limoniform to quadrangular and sometimes biseriate or uniseriate ascospores, evanescent. Ascospores rust brown when mature, limoniform, prominently umbonate at both ends, bilaterally flattened, (6.5–7–8.5 (–9.5) × 5.5–6.5 (–7.5) × 3.5–4.5 μm, with an apical germ pore. *Conidia* usually oblate, ellipsoidal or subglobose, sometimes obovoid to pyriform, arising laterally or terminally from the hyaline aerial hyphae, solitary, sometimes two cells in chains or several in clusters, fawn, (7–)8–12 (–14) × (6–7–9 (–9.5) μm.

Culture characteristics: Colonies on OA 33–39 mm diam after 7 d at 25 °C; edge entire or slightly crenate; obverse showing leaden black mature ascomata mixed with young ascomata covered by pale luteous to amber ascomata hairs, and sparse white aerial hypha; soluble pigment absent; reverse uncoloured. Colonies on CMA similar to those on OA, 31–37 mm diam after 7 d at 25 °C. Colonies on MEA 29–35 mm diam after 7 d at 25 °C; edge entire, obverse showing a thin layer of white aerial mycelium mixed with sparse ascomata; reverse saffron to ochreous. Colonies on PCA 27–33 mm diam after 7 d at 25 °C; edge entire; translucent; aerial hyphae absent; soluble pigment absent; reverse uncoloured.

Material examined: China, Fujian province, Wuyi Mountain, isolated from a discarded sock, Aug 2003, X. W. Wang, ex-type culture CBS 116735 = CGMCC 3.6696; Hunan province, Changsha, isolated from soil under a tree, X. W. Wang, Jun 2003, culture CBS 116736 = CGMCC 3.6697.

Notes: This species can easily be distinguished from other species by the production of delicate ostiolar hairs, narrowly clavate to cylindrical asci, limoniform ascospores that are prominently umbonate at both ends and oblate to ellipsoidal conidia.
Fig. 5. Humicola ampulliella (CBS 116735, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Mature ascomata on OA, top view. C. Mature ascomata on OA, side view. D–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Asci. I. Ascospores. Scale bars: D–F = 20 μm; G–I = 10 μm.
Fig. 6. *Humicola atrobrunnea* (HSAUPII05-1004, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–C. Hyphae and conidia. Scale bars = 10 μm.
Fig. 7. Humicola christensenii (CBS 117760, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 5 wk incubation. B. Part of the colony on OA. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E = 20 μm; F = 50 μm; G–K = 10 μm.
absent; reverse cinnamon to fuscous black. Colonies on PCA 26–32 mm diam after 7 d at 25 °C; edge entire; obverse showing sparse aerial hyphae; translucent; soluble pigment absent; reverse uncoloured.

Material examined: USA, Minnesota, isolated from soil, unknown date, M. Christensen (holotype CBS H-23482, culture ex-type CBS 127760 = RMF 9051).

Notes: Humicola christensenii can be distinguished from Humicola homopilata (= Chaetomium homopilatum) by the production of terminal hairs that are undulate or loosely coiled in the upper part, and by smaller ascosporae (6.5–7.5 × 5.5–6 × 3.5–4.5 μm vs 8–9 × 6–7 × 4–5.5 μm).

Humicola cuyabenoensis (Decock & Hennebert) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824423. Fig. 8. Basionym: Chaetomium cuyabenoensis Decock & Hennebert, Mycol. Res. 101: 309. 1997.

Synonym: Farrowia cuyabenoensis (Decock & Hennebert) D. Hawksw., Syst. Ascomycetum 16: 52. 1998.

Micromorphology: Ascomata superficial, ostiolate, leaden black in reflected light, elongate obpyriform, obclavate or ampulliform below, apically attenuated to a cylindrical, thread-like neck with a truncate apex, (550–)1000–1500(–2400) μm high, 55–100 μm diam at the widest part, with the neck part usually (760–)950–1360(–2300) μm long, 20–27.5 μm wide. Ascomatal wall brown, composed of angular cells or elongated to cylindrical cells at the neck part in surface view. Terminal hairs arising from the extension of the adjacent ostiolar cells with pointed tips and forming a fimbriate apex of ascoma, smooth, 1.5–3.5 μm diam near the base, less than 80 μm long. Lateral hairs sparse, scattered on the whole ascoma including the side of the neck, seta-like, tapering and fading towards the tips. Asci narrowly clavate to clavate, occasionally cylindrical, with spore-bearing part 17–29 × 9–9.5 μm and stalks 7–17 μm long, with 8 biseriate ascospores, evanescent. Ascospores oливaceous brown when mature, broad limoniform, umbonate at both ends, bilaterally flattened, 6–7 × 5.5–6.5 × 3.5–4.5 μm, with an apical germ pore. Conidia globose to subglobose, sometimes piniform or clavate, usually 6.5–10.5 μm diam.

Culture characteristics: Colonies on OA 26–32 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse or absent; soluble pigment Absent; reverse ochraceous or ochraceous grey because of a great number of ascospores released and gathered on the top of each of the ascomata; aerial hyphae Absent; soluble pigment honey to ochreous; reverse uncoloured or oливaceous grey because of a number of ascomata immersed in the medium. Colonies on CMA similar to those on OA, 37–43 mm diam after 7 d at 25 °C. Colonies on MEA 33–39 mm diam after 7 d at 25 °C; edge entire; obverse mouse grey with white flocosse aerial hyphae near the central area; reverse sienna caused by soluble pigment diffusing into the medium. Colonies on PCA 32–38 mm diam after 7 d at 25 °C; edge entire; aerial hyphae Absent; soluble pigment Absent; reverse uncoloured.

Material examined: Angola, Rio Chipin vilá Rob. Williaose, isolated from a termite mound, unknown date, E. Müller, culture CBS 780.71. Canada, Ontario, Oueph, isolated from soil under mixed forest, Aug 1964, G.L. Barron (holotype CBS H-23463, culture ex-type CBS 232.65 = IMI 109880 = OAC 10275). USA, Kansas, isolated from soil, unknown date and collector, culture CBS 127324.

Notes: This species is similar to Humicola seminuda and can be distinguished by the apical structures of ascomata, which are usually hyaline with rare terminal hairs. The morphology of CBS 780.71 (Fig. 10) differs from the type (Fig. 9): the ascomata are smaller (55–95 μm vs 110–145 μm high, 35–60 μm vs 45–80 μm diam), aggregated and often immersed or sub-immersed in the medium, with transparent ascomatal wall and only a few ascii inside. Based on phylogenetic data, both strains are identified as Humicola degenerans.

Humicola distorta (L.M. Ames) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824427. Fig. 11. Basionym: Chaetomium distortum L.M. Ames, Monograph Chaetomiaceae: 21. 1963.

Micromorphology: Ascomata superficial, ostiolate, citrine or greenish oливaceous in reflected light because of ascomatal hairs, subglobose or ovate, 100–150 μm high, (60–)75–120 μm diam. Ascomatal wall brown, textura angularis in surface view. Terminal hairs straight or arculate, apically incurved, cinerate to coiled, slightly verrucose, brown, closely septate, 2–3.5 μm diam near the base. Lateral hairs flexuose or recurved. Asci clavate, with spore-bearing portion 20–25 × 8.5–10.5 μm and stalks 7–12 μm long, with 8 irregularly arranged ascospores, evanescent. Ascospores oливaceous brown when mature, limoniform, biapiculate or umbonate at both ends, bilaterally flattened, (6–)6.5–7.5(–8) × 5–6(–6.5) × 3.5–4.5 μm, with an apical germ pore. Conidia globose to oblate, sometimes obovoid or pyriform,
Fig. 8. Humicola cuyabenoensis (CBS 336.97, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Mature ascomata on OA, top view. C. Mature ascomata on OA, side view. D. Apical structure of the ascoma. E–G. Ascomata mounted in lactic acid. H. Hyphae and conidia. I. Structure of ascomatal wall in surface view. J. Asci. K. Ascospores. Scale bars: D = 20 μm; E–G = 100 μm; H–K = 10 μm.
Fig. 9. *Humicola degenerans* (CBS 232.65, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B. Mature ascomata on OA, top view. C. Mature ascomata on OA, side view. D–E. Ascomata mounted in lactic acid. F. Hyphae and conidia. G. Asci. H. Ascosporas. Scale bars: D–F = 20 μm; G–H = 10 μm.
Fig. 10. Morphological variety of *Humicola degenerans* (CBS 780.71). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E. Ascomata mounted in lactic acid. F. Hyphae and conidia. G. An ascoma showing structures of the apex and ascomatal wall in surface view. H. Asci. I. Ascospores. Scale bars: E, G = 20 μm; F, H, I = 10 μm.
Fig. 11. *Humicola distorta* (CBS 417.66, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E. Ascomata mounted in lactic acid. F. Hyphae and conidia. G. Structure of ascomatal wall in surface view. H. Terminal ascomatous hairs. I. Asci. J. Ascospores. Scale bars: E = 50 μm; F–J = 10 μm.
hyaline or subhyaline, produced laterally, or terminally on the hyphae or short branches of hyphae, solitary, 6.5–14.5 μm high, 7–9 μm diam.

Culture characteristics: Colonies on OA 26–32 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous because of the formation of a large number of conidia; texture floccose because of a thick layer of hyaline aerial hyphae; reverse uncoloured. Colonies on CMA similar to those on OA, 40–46 mm diam after 7 d at 25 °C; aerial hyphae relatively thin. Colonies on MEA 42–46 mm diam after 7 d at 25 °C; edge entire; texture floccose because of a thick layer of hyaline aerial hyphae; reverse fawn to olivaceous. Colonies on PCA 40–46 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse; reverse uncoloured.

Material examined: Thailand, Sukhothai, isolated from fallen leaves, 10 Aug. 1994, J. Gené, ex-type culture CBS 815.97 = MUCL 40181.

Notes: The holotype of *H. floriformis* (IMI 368520) was isolated from fallen leaves in Sukhothai (Thailand) by J. Gené on 10 Aug. 1994 and the species was described in 1996 (Gené & Guarro 1996). This isolate was deposited in MUCL by J. Gené in 1997, and subsequently sent from the MUCL to CBS. Based on the information from MUCL (locality, substrate and collector), CBS 815.97 should represent the ex-type of the species. The examined culture is degenerated and produces only the asexual morph. According to the original description, this species produces ascomata together with conidia and no acromonium-like synanamorph was described. We observed the same conidia as described in the original publication; however, acromonium-like conidiophores and conidia were also present in CBS 815.97.

Humicola fuscoatra Traaen, Nytt Mag. Naturvidensk 52: 33. 1914. MycoBank MB188714. Fig. 13.

Micromorphology: Somatic hyphae hyaline, 1–2.5 μm wide. **Conidia** numerous, produced laterally on the hyphae, sometimes terminally on the short branches of hyphae, smooth, single-celled, olivaceous brown to brown, globose, subglobose, obovoid or pyriform, solitary, often densely in bunch around the hyphae, (6–)7.5–9.5(–12) μm high, (4.5–)6–8(–9) μm wide. **Acremonium-like conidiophores** arising laterally from hyphae, hyaline, phialidic, unbranched, 5.5–23 μm long, 1.5–3.5 μm wide near the base. **Acremonium-like conidia** formed basipetally in chains, aseptate, obovoid, ellipsoidal, with a truncate base and a rounded apex, 2.5–3.5 × 1–2 μm. **Sexual morph fide Gené & Guarro (1996)**: Ascomata discrete, superficial, metallic or pale grey in reflected light, obovate, oistolate, 230–320 × 190–260 μm; **Ascomatal wall** dark brown, **textura angularis** in surface view, partly covered by brown and interwoven hyphae. **Ascomatal hairs** unbranched, brown, thick-walled, gradually tapering and paling to a rounded tip, regularly septate, prominently constricted at the septa, appearing articulate and readily breaking into cylindrical segments of variable length. **Terminal hairs** numerous, incurved and forming a dense tuft around the ostiule, with the upper part undulate to loosely coiled, nearly smooth toward the base and finely verrucose toward the tip, 4–7 μm diam near the base, up to 400 μm long. Lateral hairs straight or undulate, finely verrucose, constricted at the septa, gradually tapering and paling to a rounded tip, up to 250 μm long. **Asci** numerous, clavate, stalked, 8-spored, evanescent, 30–45 × 8.5–11 μm. **Ascospores** broadly limoniform to nearly spherical, laterally flattened, slightly biaxialulate, hyaline and not dextrinoid when young, pale grey at maturity, dark grey in mass, smooth- and rather thick-walled, 7–8.5 × 6–7 × 5–6 μm, with an apical or slightly subapical germ pore.

Culture characteristics: Colonies on OA 40–46 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous because of the formation of a large number of conidia; texture floccose because of a thick layer of hyaline aerial hyphae; reverse uncoloured. Colonies on CMA similar to those on OA, 40–46 mm diam after 7 d at 25 °C; aerial hyphae relatively thin. Colonies on MEA 42–46 mm diam after 7 d at 25 °C; edge entire; texture floccose because of a thick layer of hyaline aerial hyphae; reverse fawn to olivaceous. Colonies on PCA 40–46 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse; reverse uncoloured.

Material examined: China, Tibet, isolated from soil, May 2008, Y. Hao CGMCC 3.13428. **Norway**, isolated from soil, 1914, A.E. Traaen, ex-type culture CBS 118.14 = ATCC 22721 = MUCL 8010 = VKM F-3001.

Notes: *Humicola fuscoatra* and *H. grisea* (= *Trichocladium gris-eum*) are the first two species described in *Humicola* (Traaen 1914). Based on the original descriptions, *Humicola fuscoatra* produces an acromonium-like synanamorph. In this study, an acromonium-like synanamorph was observed in the culture of *H. grisea* rather than *H. fuscoatra*, indicating that production of an acromonium-like morph is a variable characteristic.
Figure 12. *Humicola floriformis* (CBS 815.97, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–C. Hyphae and conidia. D. Hyphae, conidia and aceremonium-like synanamorph. Scale bars = 10 μm.
Humicola fuscogrisea Y.L. Jiang & T.Y. Zhang. Mycosystema 28: 649. 2009. MycoBank MB513355. Fig. 14.

Micromorphology: Somatic hyphae hyaline, 1–2.5 μm wide. Conidia produced laterally on the side of vegetative hyphae, occasionally terminally on the short branches of hyphae, single-celled, olivaceous, with dark brown thick wall, solitary, sometimes 2–3(-8) in a chain or several in a cluster, smooth, oblate to subglobose, (6–)6.5–8(-8.5) μm high, (7–)7.5–9(-9.5) μm wide.

Fig. 13. *Humicola fuscoatra* (CBS 118.14, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B–F. Hyphae and conidia. Scale bars = 10 μm.

Humicola fuscogrisea Y.L. Jiang & T.Y. Zhang. Mycosystema 28: 649. 2009. MycoBank MB513355. Fig. 14.

Micromorphology: Somatic hyphae hyaline, 1–2.5 μm wide. Conidia produced laterally on the side of vegetative hyphae, occasionally terminally on the short branches of hyphae, single-celled, olivaceous, with dark brown thick wall, solitary, sometimes 2–3(-8) in a chain or several in a cluster, smooth, oblate to subglobose, (6–)6.5–8(-8.5) μm high, (7–)7.5–9(-9.5) μm wide.
Fig. 14. *Humicola fuscogrisea* (CGMCC 3.13790, ex-type culture). **A.** Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. **B–C.** Hyphae and conidia. Scale bars = 10 μm.
Redefining Humicola sensu stricto

Culture characteristics: Colonies on OA 29–35 mm diam after 7 d at 25 °C; edge entire; obverse greenish black because of the formation of conidia; aerial hyphae absent; reverse greenish black. Colonies on CMA similar to those on OA, 31–37 mm diam after 7 d at 25 °C; edge crenate. Colonies on MEA 35–41 mm diam after 7 d at 25 °C; edge entire; about, obverse showing a relatively thin layer of white to buff aerial hyphae; reverse cinnamon. Colonies on PCA 27–33 mm diam after 7 d at 25 °C; edge entire; aerial hyphae absent, obverse olivaceous grey because of the formation of conidia; reverse olivaceous to olivaceous grey.

Material examined: China. Hubei, isolated from soil, 2000, T.Y. Zhang, ex-type culture CGMCC 3.13790.

Notes: This species is similar to *H. atrobrunnea* but can be distinguished by relatively pale, thin-walled and smaller conidia (6.5–9 μm diam vs 8–11 μm diam), and its greenish black colonies on OA and CMA.

Humicola homopilata (Omvik) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824432. Fig. 15.

Basionym: Chaetomium homopilatum Omvik, Mycologia 47: 749. 1955.

Synonym: Chaetomium amesii Sergejeva, Nov. Syst. Plant. non vasc. P.112. 1965.

Micromorphology: Ascomata superficial, often covered by white aerial hyphae, with pale luteous to amber ascomatal hairs in reflected light, ovoid or obpyriform, ostiolate, with a short conical or cylindrical ostiolar head, 150–210 μm high, 110–160 μm diam. Ascomatal wall brown, textura angularis in surface view, often elongated and radially arranged around the basal cells of the lateral hairs. **Terminal hairs** seta-like, straight or slightly undulate or flexuous, usually unbranched, closely septate, slightly granulate, olivaceous brown, tapering and fading towards the tips, 3–4.5 μm diam near the base. **Lateral hairs** similar to the terminal hairs, but relatively sparse and short. Asci clavate, with spore-bearing part 20.5–32 × 9–13 μm and stalks 7–16 μm long, with 8 biseriate ascosporae, evanescent. Ascosporae olivaceous brown when mature, luteous, bilaterally flattened, umbonate at both ends, (7.5–8)–9–(9.5) × 6–7 × 4–5.5 μm, with an apical germ pore. **Conidia** globose to subglobose, occasionally obvoid or obpyriform, hyaline, pale olivaceous, lateral, or terminal on the hyphae or short branches of hyphae, occasionally intercalary, solitary, sometimes two in chains or a few in clusters, (6–)7–8.5(–10) μm long, 7–8.5(–9) μm wide.

Culture characteristics: Colonies on OA 42–48 mm diam after 7 d at 25 °C; edge entire; obverse white; texture floccose because of aerial hyphae; soluble pigment fuscous black; reverse olivaceous grey to iron grey. Colonies on CMA similar to those on OA, 40–46 mm diam after 7 d at 25 °C. Colonies on MEA 46–52 mm diam after 7 d at 25 °C; edge entire; texture floccose because of a thick layer of white aerial mycelium; soluble pigment dark mouse grey; reverse ochreous to fuscous black. Colony on PCA 41–47 mm diam after 7 d at 25 °C; edge entire; obverse showing white aerial mycelium in the central area; soluble pigment absent; reverse uncoloured.

Material examined: Brazil. Estado do Paraná, isolated from forest soil, Mar 2005, J. Guarro & A.M. Stichigl (holotype CBS H-23448, culture ex-type CBS 120095).

Notes: The ex-type culture of *H. leptotermospora* was deposited as Chaetomium longicolleum in CBS, indicating that this species is able to produce ascomata with a long neck. Chaetomium longicolleum (= Staphylotrichum longicolleum) was revealed to be the sexual morph of Staphylotrichum in this study. In our phylogenetic analyses (Figs 1, 2), *H. leptotermospora* belongs to Humicola rather than Staphylotrichum, implying its ascomata should not be staphylotrichum-like (see “Staphylotrichum” part below for details). The culture is now degenerated and only produces conidia.

Humicola malayensiis (D. Hawksw.) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824437. Fig. 17.

Basionym: Fannowia malayensiis D. Hawksw., Persoonia 8: 178. 1975.

Synonym: Chaetomium malaysiense (D. Hawksw.) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824435. Fig. 16.

Remarks: The epithet refers to the relatively thin-walled conidia of this fungus.

Micromorphology: Somatic hyphae hyaline, 1–5 μm wide. Conidia produced laterally or intercalary on the side of vegetative hyphae, sometimes terminally on the short hyphal branches, single-celled, hyaline when young, then pale olivaceous, solitary, smooth, subglobose, sometimes obovoid, pyriform or irregular-shaped, often wrinkled because of the relatively thin cell walls, (7–)8.5–11–(12.5) μm long, (6–)6.5–(8–8.5) μm diam.

Culture characteristics: Colonies on OA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse showing white floccose aerial hyphae; reverse fawn to olivaceous black. Colonies on CMA similar to those on OA, 36–42 mm diam after 7 d at 25 °C. Colonies on MEA 37–43 mm diam after 7 d at 25 °C; edge entire or crenate; obverse showing white floccose aerial hyphae; reverse olivaceous to olivaceous black. Colony on PCA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous because of the formation of conidia; aerial mycelium sparse; reverse uncoloured.

Material examined: Norway, isolated from filter paper in soil, unknown date, A. Omvik, ex-type culture CBS 157.55. Unknown country, unknown substrate, unknown date, L.M. Ames, culture ex-isotype of Chaetomium amesii CBS 338.68.

Notes: Omvik (1955, Fig. 1–c) observed some tuberculate projections on the surface of the ascomatal hairs, which we did not see in this study. Perhaps the material from which the tuberculate projections are made is soluble in lactic acid. Von Arx et al. (1986) adopted a broad concept for C. homopilatum and accepted a large variability in the ascomatal hairs of this species. Our phylogenetic study did not support *C. homopilatum sensu* von Arx, and the available ex-type cultures of the synonymized species were re-examined. Several species, such as *C. distortum*, *C. pinnatum*, *C. wallefii* and *C. udagawae* are resurrected and are transferred to *Humicola* in this paper.

Humicola leptotermospora X. Wei Wang & Houbraken, sp. nov. MycoBank MB824435. Fig. 16.

Etymology: The epithet refers to the relatively thin-walled conidia of this fungus.

Micromorphology: Somatic hyphae hyaline, 1–5 μm wide. Conidia produced laterally or intercalary on the side of vegetative hyphae, sometimes terminally on the short hyphal branches, single-celled, hyaline when young, then pale olivaceous, solitary, smooth, subglobose, sometimes obovoid, pyriform or irregular-shaped, often wrinkled because of the relatively thin cell walls, (7–)8.5–11–(12.5) μm long, (6–)6.5–(8–8.5) μm diam.

Culture characteristics: Colonies on OA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse showing white floccose aerial hyphae; reverse fawn to olivaceous black. Colonies on CMA similar to those on OA, 36–42 mm diam after 7 d at 25 °C. Colonies on MEA 37–43 mm diam after 7 d at 25 °C; edge entire or crenate; obverse showing white floccose aerial hyphae; reverse olivaceous to olivaceous black. Colony on PCA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous because of the formation of conidia; aerial mycelium sparse; reverse uncoloured.

Material examined: Brazil. Estado do Paraná, isolated from forest soil, Mar 2005, J. Guarro & A.M. Stichigl (holotype CBS H-23448, culture ex-type CBS 120095).

Notes: The ex-type culture of *H. leptotermospora* was deposited as Chaetomium longicolleum in CBS, indicating that this species is able to produce ascomata with a long neck. Chaetomium longicolleum (= Staphylotrichum longicolleum) was revealed to be the sexual morph of Staphylotrichum in this study. In our phylogenetic analyses (Figs 1, 2), *H. leptotermospora* belongs to Humicola rather than Staphylotrichum, implying its ascomata should not be staphylotrichum-like (see “Staphylotrichum” part below for details). The culture is now degenerated and only produces conidia.

Humicola malayensiis (D. Hawksw.) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824437. Fig. 17.

Basionym: Fannowia malayensiis D. Hawksw., Persoonia 8: 178. 1975.

Synonym: Chaetomium malaysiense (D. Hawksw.) v. Arx, Nova Hedwigia, Beih. 84: 38. 1986.

Micromorphology: Ascomata superficial, ostiolate, greenish black in reflected light, elongate obpyriform, obclavate or ampulliform below, apically attenuated to an elongate conical or short cylindrical neck, 185–365 μm high, 60–90 μm diam at the widest part, with the neck part about 55–125 μm long, 15–25 μm wide in the mid. Ascomatal wall brown, composed of angular and irregular cells and elongated to cylindrical cells in the neck part in surface view. **Terminal hairs** arising from the extension of the adjacent ostiolar cells with round tips, smooth, partly finger-like,
Fig. 15. *Humicola homopilata* (CBS 157.55, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B. Part of the colony on OA. C. Mature ascomata on OA, side view. D. Mature ascomata on OA, top view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia together with an ascoma initial. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Ascii. K. Ascospores. Scale bars: E–G = 20 μm; H–K = 10 μm.
Fig. 16. *Humicola leptodermospora* (CBS 120095, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B–E. Hyphae and conidia. Scale bars = 10 μm.
Fig. 17. *Humicola malaysiensis* (CBS 780.83). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Asci. I. Ascospores. Scale bars: E–F = 20 µm; G–I = 10 µm.
partly long and seta-like, sometimes simply branched, 3–4.5 μm diam near the base. *Lateral hairs* similar to terminal ones, scattered on the whole ascomata including the side of the neck. Asci narrowly clavate to clavate, occasionally cylindrical, with spore-bearing part 19–28.5 × 8.5–12 μm and stalks about 6–13.5 μm long, with 8 biseriate ascospores, evanescent. Ascospores olivaceous brown when mature, limoniform, biapiculate or slightly obovate at both ends, bilaterally flattened, 7.5–9 × (6–)6.5–7.5(–8) × 5–6 μm, with an apical germ pore. *Conidia* globose to subglobose, sometimes obovoid or pyriform, subhyaline to olivaceous, lateral or terminal on hyaline hyphae or short branches of hyphae, solitary, 6–12.5 μm diam.

Culture characteristics: Colonies on OA 43–49 mm diam after 7 d at 25 °C; edge entire; aerial hyphae sparse and branching irregularly; soluble pigment honey to isabelline; reverse olivaceous grey to dark mouse grey caused by soluble pigment and immersed conidia with a large number of dark conidia in the medium. Colonies on CMA similar to those on OA, 43–49 mm diam after 7 d at 25 °C; obverse showing relatively dense aerial hyphae which distributed radially from the centre; soluble pigment honey to isabelline; reverse olivaceous grey to dark mouse grey. Colonies on MEA 41–47 mm diam after 7 d at 25 °C; edge entire or crenate; obverse primrose to buff, texture floccose; sporulation absent, reverse sienna caused by soluble pigment and immersed conidia in the medium. Colonies on PCA 39–46 mm diam after 7 d at 25 °C; edge entire; aerial hyphae absent; soluble pigment similelline; reverse isabelline to dark mouse grey.

Material examined: Israel, Mt. Carmel, isolated from soil, unknown date, T. Leisinger (*holotype* CBS H-23485, culture ex-type CBS 779.71).

Notes: The ex-type strain of *H. mutabilis* was deposited in CBS as *Chaetomium seminundum*. *Humicola mutabilis* is morphologically similar to *H. seminund* (= *C. seminundum*) and *H. degenerans*. This species can be distinguished by its asomata that often possess 2–3 ostiole pores and appear variable in shape, and by its buff or amber coloured hairs (in reflected light) that mainly arise from wall cells around the beak. The asomata of *H. seminund* and *H. degenerans* rarely possess more than one ostiole pore and are regular in shape. The terminal ascomatal hairs of *H. seminund* arise from the extension of the adjacent ostiolar cells and are limited in length, while terminal ascomatal hairs of *H. degenerans* are absent or sparsely produced.

Humicola olivacea X. Wei Wang & Samson, Stud. Mycol. 84: 203. 2016. MycoBank MB818848. Fig. 19.

Micromorphology: Somatic hyphae hyaline, subhyaline, pale olivaceous to honey or greyish sepia, 1–2.5 μm wide. *Conidia* produced laterally or intercalary on hyphae, or terminally on the short branches of hyphae, single-celled, olivaceous to dark brown, with brown thick wall when old, solitary, sometimes 2(–8) in chains or in cluster, globose, subglobose or broad obovate, (7.5–)8–9.5(–11) × (7–)7.5–9(–10) μm.

Culture characteristics: Colonies on OA 39–45 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous; aerial mycelium thin, smoke grey; reverse mouse grey. Colonies on CMA similar to those on OA, 38–44 mm diam after 7 d at 25 °C. Colonies on MEA 42–48 mm diam after 7 d at 25 °C; edge entire; aerial mycelium white; texture floccose; reverse pale luteous to greyish sepia. Colonies on PCA 34–40 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse, white to pale luteous; reverse slightly pale luteous.

Material examined: USA, isolated from dust, 2009, E. Whifford & K. Mwange, culture ex-type CBS 142031 = DTO 319-C7.

Notes: The ex-type of *H. olivacea* was examined using the inclined coverslip culture method to determine how the conidia arise from the hyphae. Pigmented aerial hyphae were observed.
Fig. 18.

Humicola mutabilis (CBS 779.71, ex-type culture).

A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation.

B. Mature ascomata on OA, top view.

C. Mature ascomata on OA, side view.

D. Hyphae and conidia.

E–F. Ascomata together with conidia mounted in lactic acid.

G–H. Structures of the apices of ascomata.

I. Asci.

J. Ascospores. Scale bars: E–F = 20 μm; G–I = 10 μm.
Fig. 19. *Humicola olivacea* (CBS 142031, ex-type culture). **A.** Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. **B–E.** Hyphae and conidia. Scale bars = 10 μm.
in H. olivacea. The majority of Humicola species usually only produce hyaline aerial hyphae. The conidia were produced laterally, intercalary on hyphae, or terminally on the short branches on hyphae. These short branches on hyphae become slightly pigmented (Fig. 19-E) and these are similar to the pigmented hyphae present in aerial mycelium (Fig. 19-D, E).

Humicola pinnata (L.M. Ames) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824440. Fig. 20.

Basionym: Chaetomium pinnatum L.M. Ames, Monograph Chaetomiaceae: 33. 1963.

Micromorphology: Ascomata superficial, ostiolate, olivaceous buff to cintrine green in reflected light because of ascomatal hairs, subglobose, ovoid or obpyriform, 80–195 μm high, 45–130 μm diam, usually with a short conical to short cylindrical ostiolar beak. **Ascomatal wall** brown, **textura angularis** in surface view. **Terminal hairs** flexuous, distinctly septate, 2–3 μm diam near the base, multichained in the upper part, forming a net to keep the ascospores masses, with the branches strongly constricted at the septa, appearing to be composed of a chain of fusiform or cymbiform hyaline to subhyaline cells. **Lateral hairs** seta-like or flexuous. **Asci** clavate to fusiform, with spore-bearing portion 21.5–27.5 × 8–11.5 μm and stalks 5–12.5 μm long, with 8 biseriate ascospores, evanescent before ascospores mature. Ascospores olivaceous brown when mature, limoniform, biapiculate or umbonate at both ends, bilaterally flattened, (6.5–) 7–8 × 5–6(–6.5) × (3.5–)4–5 μm, with an apical germ pore. **Conidia** globose to oblate, sometimes ovoid, hyaline to subhyaline, lateral, intercalary or terminal on the hyphae or short branches of hyphae, without conidiophore differentiation, solitary, 6.5–9.5 μm diam.

Culture characteristics: Colonies on OA 38–44 mm diam after 7 d at 25 °C; edge entire; obverse honey to greenish olivaceous because of ascomatal hairs mixed with ascospore masses, aerial hyphae absent; soluble pigment absent; reverse olivaceous buff. Colonies on CMA similar to those on OA, 36–42 mm diam after 7 d at 25 °C. Colonies on MEA 39–45 mm diam after 7 d at 25 °C; edge entire; aerial mycelium thin; soluble pigment absent; reverse ochreous to fulvous. Colony growth on PCA 31–37 mm diam after 7 d at 25 °C; edge entire; aerial hyphae absent; soluble pigment absent; reverse uncoloured.

Material examined: **USA,** Arizona, Colorado National Forest, isolated from dead wood, unknown date, G.W. Martin, ex-type culture CBS 467.66.

Notes: von Arx et al. (1986) reduced this species to a synonym of Chaetomium homopilatum (classified as Humicola homopilata in this paper). *Humicola pinnata* produces asci and ascospores that are similar to those of *Humicola homopilata.* However, the terminal hairs of *H. pinnata* are multi-branched in the upper part with the branches strongly constricted at the septa, while the ascomatal hairs of *H. homopilata* are distinctively different and usually unbranched, seta-like, or slightly undulate or flexuous. The four-gen phylogeny clearly shows that *H. pinnata* is a separate species, distinct from *H. homopilata.*

Humicola quadrangulata X. Wei Wang & Houbraken, sp. nov. MycoBank MB825446. Fig. 22.

Etymology: The epithet refers to the quadrangular ascospores of this fungus.

Micromorphology: Ascomata superficial, ostiolate, usually covered by thick aerial hyphae, leaden black in reflected light, elongate obpyriform, obclavate or ampulliform below, apically attenuated to a cylindrical, thread-like neck with a slightly conical apex, 290–610 μm high, 55–110 μm diam at the widest part, with the neck part usually 160–450 μm long, 18–32 μm wide in the mid. **Ascomatal wall** brown, composed of angular and irregular cells or elongated to cylindrical cells at the neck part in surface view. **Terminal hairs** arising from the limited extension of the adjacent ostiolar cells with pointed tips, smooth, the majority less than 50 μm long, 2–3 μm diam near the base, usually with one of them extending to up to 260 μm long and 3–4 μm diam near the base. **Lateral hairs** sparse, seta-like, tapering and fading towards the tips. **Asci** narrowly clavate to clavate, occasionally cylindrical, with spore-bearing part 23–39 × 10.5–15(–17) μm and stalks 5–20 μm long, with 8 biseriate ascospores, evanescent. Ascospores olivaceous brown when mature, quadrangular or nearly so in face view, bilaterally flattened, (9.5–)10–10.5 × (8.5–)9–10(–10.5) × 5.5–6.5 μm, with an apical germ pore. **Conidia** globose or subglobose, abundant, usually arising laterally from the aerial hyphae, hyaline to subhyaline, 5.5–14 μm diam.
Culture characteristics: Colonies on OA 28–34 mm diam after 7 d at 25 °C; edge fimbriate to crenate; aerial hyphae thick, white; soluble pigment mouse grey to dark mouse grey; reverse partly mouse grey to dark mouse grey. Colonies on CMA similar to those on OA, 21–27 mm diam after 7 d at 25 °C. Colonies on MEA 25–31 mm diam after 7 d at 25 °C; edge entire or slightly crenate; aerial mycelium thick, white; sporulation absent; reverse partly dark brick to sepia. Colony on PCA 24–30 mm diam after 7 d at 25 °C; edge fimbriate to crenate; about, aerial mycelium relatively sparse; soluble pigment absent; reverse uncoloured.

Fig. 20. Humicola pinnata (CBS 467.66, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B. Part of the colony on OA. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E–F = 20 μm; G–K = 10 μm.
Material examined: Brazil, Corcorvado, isolated from soil, unknown date, R.F. Castaneda-Ruiz (holotype CBS H-23487, culture ex-type CBS 111771).

Notes: The ex-type strain was deposited as Chaetomium cuyabenoensis in CBS. Humicola quadrangulata can be easily distinguished from Humicola cuyabenoensis (Fig. 8) by the production of quadrangular ascospores without umbonate ends and ascomata with a shorter neck without lateral hairs.
Fig. 22. *Humicola quadrangulata* (CBS 111771, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Part of the colony showing immersed ascomata above which aerial mycelium was removed. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Asci. I. Ascospores. Scale bars: E = 50 μm; F = 20 μm; G–I = 10 μm.
Humicola seminuda (L.M. Ames) X. Wei Wang & Houbraken, *comb. nov.* MycoBank MB824447. Fig. 23.
Basionym: Chaetomium seminudum Ames, Mycologia 41: 642. 1949.
Synonym: Farrowia seminuda (Ames) D. Hawksw., Persoonia 8: 181. 1975.

Micromorphology: Ascomata superficial, obpyriform or ovoid, osiotolate, with a short conical to short cylindrical ostiolar beak, usually apically converging, 130–200 μm high, 50–90 μm diam.
Ascomatal wall brown, **textura angularis** with the beak part composed of vertically elongated cells in surface view. Terminal hairs arising from the limited extension of the adjacent ostiolar cells with pointed or round tips, 1.5–3 μm diam near the base. Lateral hairs sparse, seta-like, and relatively long near the ostioles. Asci clavate to fusiform, with spore-bearing part 20–35 × 11–16.5 μm and stalks 3.5–10 μm long, with 8 irregularly arranged ascosporues, evanescent before ascospores become mature. Ascosporues ovoidal brown when mature, limoniform, bilaterally flattened, apiculate to umbo at both ends, (8–) 8.5–9.5 × (7.5–)8.5 × (4.5–)5–6 μm, with an apical germ pore. Conidia globose to subglobose, sometimes ellipsoidal or obovoid, subhyaline to pale ovoidal, lateral, or terminal on the hyphae or short branches of hyphae, solitary, sometimes two in chains, 8–10.5(–11) μm diam, up to 12 μm long when obvoid.

Culture characteristics: Colonies on OA 36–42 mm diam after 7 d at 25 °C; edge entire; aerial mycelium irregularly distributing, thick, white; texture cottony; soluble pigment ochreous to umber; reverse pale luteous, ochreous to umber. Colonies on CMA similar to those on OA, 37–43 mm diam after 7 d at 25 °C. Colonies on MEA 39–45 mm diam after 7 d at 25 °C; edge entire; non-sporeulating, aerial mycelium thick, buff to ochreous; texture floccose; reverse apricot to sienna caused by soluble pigment. Colony on PCA 34–40 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse; soluble pigment absent; reverse uncoloured.

Material examined: Canada, isolated from herbarium specimen of the type of *C. semispirale* by A. Carter, culture ex-isotype CBS 723.97. The type of *C. semispirale* was originally isolated from contaminated filter paper, 1998, S. Udagawa & R.F. Cain.

Notes: van Arx *et al.* (1986) considered Chaetomium semispiala (= Humicola semispiralis) to be a synonym of Chaetomium sphaerale. Based on the original descriptions and our examination of these two species, *H. semispiralis* can be easily distinguished from *H. sphaerale* by its larger ascosporues (8.5–9.5 × 6.5–8 × 4.5–5.5 μm vs 7–7.5 × 5.5–6.5 × 4–4.5 μm), and by the characters of its terminal hairs.

Two groups of species of Humicola described by de Bertoldi (1976), i.e. i) *H. aurea*, *H. lutea*, *H. piriforme* and *H. repens*, and ii) *H. glauca*, *H. nivea* and *H. sardinae*, are closely related to *H. semispiralis* based on its ITS sequences and are discussed in the “Doubted or excluded species” section below. Other strains and other ITS sequences deposited in GenBank and identified as *H. fuscoatra* (e.g. KU945926) also seem to belong to this complex. Multigene and morphological analyses of these strains must be completed to determine whether these are synonyms of *H. semispiralis*, or whether this is a phylogenetic species complex.

Humicola sphaerale (Chivers) X. Wei Wang & Houbraken, *comb. nov.* MycoBank MB824449. Fig. 25.
Basionym: Chaetomium sphaerale Chivers, Proc. Amer. Acad. Arts 48: 84. 1912.

Micromorphology: Ascomata superficial, osiotolate, with ascomatal hairs pale buff to olive-brown buff in reflected light, spheridal, ellipsoidal to ovoid, 270–380 μm high, 190–320 μm diam. Ascomatal wall brown, composed of angular to irregular cells in surface view. Terminal hairs partly straight to flexuous, partly spirally coiled in the upper part, septate, verrucose, 2.5–4.5 μm diam near the base. Lateral hairs straight or flexuous. Asci clavate, with spore-bearing portion 22–30 × 8–13 μm and stalks about 12–26 μm long, with 8 biseriate ascospores, evanescent. Ascosporues ovoidal brown to brown when mature, limoniform, umbo at both ends, bilaterally flattened, (8–) 8.5–9.5(–10) × (6–)8.5–8 × 4.5–5.5(–6) μm, with an apical germ pore. Conidia globose to oblate, sometimes ovoid, hyaline, subhyaline to ovoidal, usually lateral on the hyphae or short branches of hyphae, without conidiophore differentiation, solitary, (8.5–)9–11 μm diam.

Culture characteristics: Colonies on OA 36–42 mm diam after 7 d at 25 °C; edge entire; aerial mycelium irregularly distributing, thick, white; texture cottony; soluble pigment ochreous to umber; reverse pale luteous, ochreous to umber. Colonies on CMA similar to those on OA, 37–43 mm diam after 7 d at 25 °C. Colonies on MEA 39–45 mm diam after 7 d at 25 °C; edge entire; non-sporeulating, aerial mycelium thick, buff to ochreous; texture floccose; reverse apricot to sienna caused by soluble pigment. Colony on PCA 34–40 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse; soluble pigment absent; reverse uncoloured.

Material examined: Canada, isolated from herbarium specimen of the type of *C. sphaerale* by A. Carter, culture ex-isotype CBS 723.97. The type of *C. semispirale* was originally isolated from contaminated filter paper, 1998, S. Udagawa & R.F. Cain.

Notes: von Arx *et al.* (1986) considered Chaetomium semispiala (= Humicola semispiralis) to be a synonym of Chaetomium sphaerale. Based on the original descriptions and our examination of these two species, *H. semispiralis* can be easily distinguished from *H. sphaerale* by its larger ascosporues (8.5–9.5 × 6.5–8 × 4.5–5.5 μm vs 7–7.5 × 5.5–6.5 × 4–4.5 μm), and by the characters of its terminal hairs.

Two groups of species of Humicola described by de Bertoldi (1976), i.e. i) *H. aurea*, *H. lutea*, *H. piriforme* and *H. repens*, and ii) *H. glauca*, *H. nivea* and *H. sardinae*, are closely related to *H. semispiralis* based on its ITS sequences and are discussed in the “Doubted or excluded species” section below. Other strains and other ITS sequences deposited in GenBank and identified as *H. fuscoatra* (e.g. KU945926) also seem to belong to this complex. Multigene and morphological analyses of these strains must be completed to determine whether these are synonyms of *H. semispiralis*, or whether this is a phylogenetic species complex.
Fig. 23. *Humicola seminuda* (CBS 368.84, ex-epitype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B. Mature ascomata on OA, top view. C. Mature ascomata on OA, side view. D. Hyphae and conidia. E. Ascomata together with conidia mounted in lactic acid. F. Structures of the apex of an ascoma. G. Asci. H. Ascospores. Scale bars: D, F = 20 μm; E, G, H = 10 μm.
Fig. 24. *Humicola semispiralis* (CBS 723.97, ex-isotype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E–F = 50 μm; G–K = 10 μm.
Fig. 25. *Humicola sphaeralis* (CBS 985.87, ex-epitype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E–F = 50 μm; G–K = 10 μm.
evanescent. Ascospores olivaceous brown to brown when mature, limoniform, umbonate at both ends, bilaterally flattened, (6.5–) 7–7.5(–8) × 5.5–6.5 × 4–4.5 μm, with an apical germ pore. Conidia globose to oblate, sometimes ovoid, hyaline, subhyaline to olivaceous, usually lateral on the hyphae or short branches of hyphae, without conidiophore differentiation, solitary, 9–12 μm diam.

Culture characteristics: Colonies on OA 42–48 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; soluble pigment buff to honey or absent; reverse isabelline. Colonies on CMA similar to those on OA, 42–48 mm diam after 7 d at 25 °C. Colonies on MEA 45–51 mm diam after 7 d at 25 °C; edge entire; non-sporulating; aerial mycelium thick, white to pale luteous; texture floccose; reverse fuscous black caused by soluble pigment. Colony on PCA 37–43 mm diam after 7 d at 25 °C; edge entire; about, aerial mycelium sparse or absent; soluble pigment absent; reverse uncoloured.

Material examined: France, isolated from soil, unknown date, F. Seigle-Murandi, culture CBS 985.87. USA, Reading, Mass., isolated from a culture of caterpillars, unknown date, A.H. Chivers (holotype, New York Botanical Garden Specimen ID 01050446).

Notes: CBS 985.87 was deposited as Chaetomium semispirale, however, its relatively small ascospores, flexuous to undulate and branched, but never spirally coiled ascomatal hairs correspond well with the characters of the type of C. sphaerale. Chivers (1912) described C. sphaerale producing ascospores measuring 7.3–8.1 × 6.4 μm. von Arx et al. (1986) re-described C. sphaerale, and in his description, the ascospores were 7.5–9 × 6–7 × 4–5 μm, which is larger than in the original description. Our measurement of the type (6–7.5 × 5–6.5 × 4–4.5 μm) confirmed that the size of the ascospores of C. sphaerale is less than 8 × 6.5 μm in face view. The holotype was originally collected in the USA, and epitypification of this species awaits recollection from the type locality.

Humicola subspiralis (Chivers) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824450. Fig. 26.

Basionym: Chaetomium subspirale Chivers, Proc. Amer. Acad. Arts 48: 84. 1912.

Micromorphology: Ascomata superficial, ostiolate, grey white in reflected light because of the ascomatal hairs, spherical, ellipsoidal to ovoid, 240–320 μm high, 185–260 μm diam. Ascosomal wall brown, composed of angular to irregular cells in surface view. Terminal hairs straight or slightly flexuous, undulate to spirally coiled and attenuated in the upper part, septate, 2.5–4.5 μm diam near the base. Lateral hairs similar to the terminal ones, but shorter. Ascclavate, with spore-bearing portion 18–25 × 6–9 μm and stalks 8–25(–31) μm long, with 8 biseriate ascospores, evanescent. Ascospores olivaceous brown when mature, limoniform, biapiculate or umbonate at both ends, bilaterally flattened, 5–6.5(–7) × 4.5–5.5(–6) × 3–4 μm, with an apical germ pore. Conidia absent. Acremonium-like conidiophores unbranched, occasionally branched, aseptate or septate, 6–24 × 1.2–3 μm, with phialidic conidiogenous cells. Conidia in bispelatal chains, sometimes in false heads, hyaline, aseptate, smooth, obvoid, usually with a truncated apex, 2–3.5 × 1–1.5 μm.

Culture characteristics: Colonies on OA 34–40 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; soluble pigment violaceous black to olivaceous black or absent; reverse leaden black. Colonies on CMA similar to those on OA, 34–40 mm diam after 7 d at 25 °C. Colonies on MEA 30–36 mm diam after 7 d at 25 °C; edge entire; non-sporulating; aerial mycelium pale smoke grey; texture floccose; soluble pigment umber; reverse fuscous black. Colonies on PCA 32–38 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; soluble pigment; reverse uncoloured.

Material examined: China, Chungking, isolated from leaf fragments in soil, 8 Feb 1958, G. Sörgel, culture CBS 148.58. Guangdong Pro., isolated from soil, Aug 2004, X.W. Wang, culture CBS 119768. USA, New England, isolated from cow dung, unknown date A.H. Chiver (holotype, New York Botanical Garden Specimen ID 01050446).

Notes: According to Chivers (1912), the diagnostic characters of Chaetomium subspirale (= Humicola subspiralis) are the ascomatal hairs, especially its lateral hairs, which are different from those of most other species in being undulate to spirally coiled. No asexual stage of this species was mentioned by Chivers. In two subsequent studies, thick-walled conidia were found (Carter 1982, von Arx et al. 1986). In our study, rather than thick-walled conidia, an acremonium-like synanamorph was observed in both cultures. von Arx et al. (1986) pointed out that thick-walled conidia could occasionally be absent in CBS 148.58. Humicola subspiralis can potentially produce both thick-walled conidia and an acremonium-like synanamorph. Further study may find out which factors determine its anamorph type.
Fig. 26. *Humicola subspiralis* (CBS 148.58). A. Colonies from left to right on OA, CMA, MEA and PCA after 3 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae, conidiophores and conidia of acremonium-like synanamorph. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E–F = 50 μm; G–K = 10 μm.
Fig. 27. *Humicola udagawae* (CBS 337.68, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B. Part of the colony. C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Hyphae and conidia. H. Structure of ascomatal wall in surface view. I. Terminal ascomatal hairs. J. Asci. K. Ascospores. Scale bars: E–F = 50 μm; G–K = 10 μm.
Notes: This species is characterised by obovoid ascomata without ostiolar beak, and inconspicuous ostiolar openings.

Humicola wallei (J.A. Mey. & Lanneau) X. Wei Wang & Houbraken, **comb. nov.** MycoBank MB824452. Fig. 28. *Basionym: Chaetomium wallei* J.A. Mey. & Lanneau, Bull. Soc. Mycol. France. 83: 320. 1967.

Micromorphology: Somatic hyphae hyaline, 1–3 μm wide. Conidia usually originating on the side of vegetative hyphae, single-celled, solitary, sometimes two in a chain or a few in a cluster, usually slightly tuberculate, olivaceous brown, globose, subglobose or oblate, (7–)7.5–9.5(–13) μm high, (7–)17.5–9.5(–10) μm wide. Sexual morph degenerated in the culture examined in this study. *Fide Meyer & Lanneau* (1967): Ascomata ostiolate, dark brown, subglobose or ovoid, solitary, 150–280 × 100–180 μm, setifera, grey-green or dark grey-brown. Ascomatal hairs flexuose to undulate, septate, 2–2.5 μm diam. Ascii clavate, up to 50 × 7–8 μm, with 8 ascospores, evanescent. Ascospores light brown, limoniform, bilaterally flattened, biapiculate, 6.5–8 × 4.5–6.5 μm, with an apical germ pore.

Culture characteristics: Colonies on OA more than 70 mm diam after 7 d at 37 °C; edge entire; aerial hyphae sparse or absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to pale smoke grey. Colonies on CMA similar to those on OA, more than 70 mm diam after 7 d at 37 °C. Colonies on MEA more than 70 mm diam after 7 d at 37 °C; edge central, aerial hyphae white to smoke grey; obverse floccose; reverse greyish sepia. Colonies on PCA more than 70 mm diam after 7 d at 37 °C; edge central or lobate; aerial hyphae absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to olivaceous grey.

Material examined: USA, Indiana, isolated from soil, unknown date, M.R. Tansey (holotype CBS H-23489, culture ex-type CBS 183.81).

Mycothermus thermophilus (Cooney & R. Emers.) X. Wei Wang, Houbraken & D. O. Natvig, **comb. nov.** MycoBank MB824454. Fig. 30. *Basionym: Torula thermophila* Cooney & R. Emers., Thermophilic Fungi: 92. 1964. **Synonyms:** *Scytalidium thermophilum* (Cooney & R. Emers.) Austwick, New Zealand J. Agric. Res. 19: 29. 1976. **Mycothermus thermophilus** (Cooney & R. Emers.) D.O. Natvig et al., *Mycologia* 107: 321. 2015, nom. inval. (Art. 42.1). *Humicola insolens* Cooney & R. Emers., Thermophilic Fungi: 72. 1964. *Humicola grisea* var. thermoides Cooney & R. Emers., Thermophilic Fungi: 72. 1964.

Micromorphology: Somatic hyphae hyaline, 1–6(–7) μm wide. Chlamydospores holothallc, thick-walled, brown, superficial or immersed, produced laterally on hyphae, or terminally on the short side branches of hyphae, single-celled, occasionally 2-celled, solitary, sometimes two in chains, smooth to spinose, globose, subglobose, oblate or obovoid, (9.5–)11–15(–19) × (9–)10.5–12(–16) μm. **Culture characteristics:** Colonies on OA more than 70 mm diam after 7 d at 37 °C; edge entire; aerial hyphae sparse or absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to pale smoke grey. Colonies on CMA similar to those on OA, more than 70 mm diam after 7 d at 37 °C. Colonies on MEA more than 70 mm diam after 7 d at 37 °C; edge central, aerial hyphae white to smoke grey; obverse floccose; reverse greyish sepia. Colonies on PCA more than 70 mm diam after 7 d at 37 °C; edge central or lobate; aerial hyphae absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to olivaceous grey.

Material examined: Unknown country, unknown substrate, unknown date, K.S. Sergejeva, culture ex-type CBS 337.68.

Notes: This species is characterised by obovoid ascomata without ostiolar beak, and inconspicuous ostiolar openings.

Humicola wallei (J.A. Mey. & Lanneau) X. Wei Wang & Houbraken, *comb. nov.* MycoBank MB824452. Fig. 28. *Basionym: Chaetomium wallei* J.A. Mey. & Lanneau, Bull. Soc. Mycol. France. 83: 320. 1967.

Micromorphology: Somatic hyphae hyaline, 1–3 μm wide. Conidia usually originating on the side of vegetative hyphae, single-celled, solitary, sometimes two in a chain or a few in a cluster, usually slightly tuberculate, olivaceous brown, globose, subglobose or oblate, (7–)7.5–9.5(–13) μm high, (7–)17.5–9.5(–10) μm wide. Sexual morph degenerated in the culture examined in this study. *Fide Meyer & Lanneau* (1967): Ascomata ostiolate, dark brown, subglobose or ovoid, solitary, 150–280 × 100–180 μm, setifera, grey-green or dark grey-brown. Ascomatal hairs flexuose to undulate, septate, 2–2.5 μm diam. Ascii clavate, up to 50 × 7–8 μm, with 8 ascospores, evanescent. Ascospores light brown, limoniform, bilaterally flattened, biapiculate, 6.5–8 × 4.5–6.5 μm, with an apical germ pore.

Culture characteristics: Colonies on OA more than 70 mm diam after 7 d at 25 °C; edge entire; aerial mycelium white; texture floccose; reverse isabelline to brown vinaceous. Colonies on CMA similar to that on OA, 32–38 mm diam after 7 d at 25 °C; reverse primrose to straw. Colonies on MEA 35–41 mm diam after 7 d at 25 °C; aerial mycelium white; texture floccose; reverse pale fuscous to ochreous. Colonies on PCA 28–34 mm diam after 7 d at 25 °C; edge entire; about, translucent, aerial mycelium white, sparse, reverse uncoloured.

Material examined: Zaire, Lumbumbashi, isolated from soil, unknown date, J. Meyer, ex-type culture CBS 147.67 = IMI 126039.

Notes: This species originally produced ascomata and was treated as a synonym of *Chaetomium homopilatum* (von Arx et al. 1986). The ex-type culture of *Humicola wallei* at CBS only produces conidia. The conidia of *H. wallei* are slightly tuberculate, while they are smooth in most other *Humicola* species.

Mycothermus D.O. Natvig et al. ex X. Wei Wang, Houbraken & D. O. Natvig, *gen. nov.* MycoBank MB824453.

Type species: *Mycothermus thermophilus* (Cooney & R. Emers.) X. Wei Wang, Houbraken & D. O. Natvig.

Micromorphology: Somatic hyphae hyaline to subhyaline, Chlamydospores holothallc, thick-walled, brown, produced intercalary, laterally or terminally, solitary or in chains or clusters, smooth to verrucose, doliiform, globose, subglobose, oblong or obovoid. Thermophilic.

Notes: The genus *Mycothermus* and its type species were invalidly published (Art. 42.1) with a single identifier (MB 807382) (Natvig et al. 2015). Here we validate these two names. Based on rpb2 sequence data as well as a multi-gene phylogeny, this genus represents a sister lineage to *Remersonia*.

Mycothermus thermophiloides X. Wei Wang & Houbraken, *sp. nov.* MycoBank MB824455. Fig. 29.

Etymology: The epithet to the phenotypic similarity of this species to *My. thermophilus*.

Micromorphology: Somatic hyphae hyaline, 1.5–6(–7) μm wide. Chlamydospores holothallc, thick-walled, brown, superficial or immersed, produced laterally on hyphae, or terminally on the short side branches of hyphae, single-celled, occasionally 2-celled, solitary, sometimes two in chains, smooth to spinose, globose, subglobose, oblate or obovoid, (9.5–)11–15(–19) × (9–)10.5–12(–16) μm. **Culture characteristics:** Colonies on OA more than 70 mm diam after 7 d at 37 °C; edge entire; aerial hyphae sparse or absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to pale smoke grey. Colonies on CMA similar to those on OA, more than 70 mm diam after 7 d at 37 °C. Colonies on MEA more than 70 mm diam after 7 d at 37 °C; edge central, aerial hyphae white to smoke grey; obverse floccose; reverse greyish sepia. Colonies on PCA more than 70 mm diam after 7 d at 37 °C; edge central or lobate; aerial hyphae absent; obverse pale mouse grey to mouse grey because of the formation of chlamydospores; reverse uncoloured to olivaceous grey.

Material examined: USA, Indiana, isolated from soil, unknown date, M.R. Tansey (holotype CBS H-23489, culture ex-type CBS 183.81).
Fig. 28. *Humicola wallei* (CBS 147.67, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B–E. Hyphae and conidia. Scale bars = 10 μm.
Fig. 29. Mycothermus thermophiloides (CBS 83.81 ex-type). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–G. Hyphae and chlamydospores. Scale bars: B–D = 20 μm; E–G = 10 μm.
Fig. 30. Mycothermus thermophilus (A–C: CBS 625.91, ex-type culture; D–F: CBS 626.91 ex-type of Humicola insolens; CBS 627.91 ex-type of Humicola grisea var. thermoëtes). A, D, G. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–C, E–F, H–I. Hyphae, and chlamydospores. Scale bars = 20 μm.
Material examined: Switzerland, Zürich, Gossau, isolated from mushroom compost, 10 Apr. 1963, C.L. Fergus, culture CBS 226.63. USA, Nevada, isolated from chicken nest straw, 1950, D.G. Cooney, holotype of *Torula thermophila*, UC 1206525, culture ex-type CBS 625.91 = ATCC 16463; California, isolated from rotting guayule shrub, 1944, P.J. Allen, J. Naghsri & S.R. Hoover, culture ex-type of *Humicola insolens* CBS 629.91 = ATCC 16454; California, isolated from dung of elephant dung, 1948, D.G. Cooney, culture ex-type of *Humicola grisea* var. *thermoidea* CBS 627.91 = ATCC 16453; California, Berkeley, unknown substrate, unknown date, R.E. Smith, culture CBS 392.69.

Notes: The three isolates noted above were designated as types of three different taxa by Cooney & Emerson (1964). The ex-type culture CBS 625.91 of *Torula thermophila* has relatively thick vegetative hyphae, 1–7 μm wide. Its chlamydospores usually form from the swelling of the cells of superficial hyphae, appear intercalary in chains, doliform, oblong or subglobose, (5.5–7.5)–12(–16) × (4.5–6)–9.5(–11) μm. CBS 626.91, the ex-type culture of *Humicola insolens*, produces similar hyphae, 1–6 μm wide. The chlamydospores are intercalary or lateral on superficial or immersed hyphae, solitary or in chains, globose, subglobose, doliform, oblong or obovoid, (6–)7–14(–22) × (5.5–)7–11 (–16) μm. CBS 627.91, the ex-type culture of *Humicola grisea* var. *thermoidea* produces relatively thin hyphae, 1–4 μm wide. Its chlamydospores are usually produced laterally or terminally on short side branches of superficial or immersed hyphae, commonly solitary, globose, subglobose, or obovoid, (8–)9–11.5 (–13) × (7–)6–10.5 (–12) μm. Germ pores were observed on some spores of CBS 626.91 and CBS 627.91. Each isolate produces thick-walled cells intercalary within the hyphae, a common character.

Natvig et al. (2015) noticed the close phylogenetic relationship of the ex-type cultures of *Torula thermophila* (basionym of *Mycothermus thermophilus*), *Humicola insolens* and *Humicola grisea* var. *thermoidea*. In their description of *My. thermophilus*, they quoted the original description of *Torula thermophila* and did not incorporate the morphological diversity of the newly recognised *My. thermophilus* (as shown in Fig. 30).

Remersonia Samson & Seifert, Can. J. Bot. 75: 1160. 1997. MycoBank MB27809.

Type species: *Remersonia thermophila* (Fergus) Seifert & Samson.

Synonym: *Synnmukerjiomyces* K. R. Aneja & R. Kumar, Adv. Microbial Biotech. (in: J.P. Teware et al.): 2. 1999. nom. inval. Art. 37.1, fide Seifert et al. (2011), based on the protologue.

Notes: The type species of *Remersonia* was originally described as *Stilbella thermophila* (Fergus 1964). *Stilbella* is a typical synnematosus hyphomycete with phialidic conidiogenous cells and slimy conidia, which is considered to be an anamorphic form in *Hypocreales*, *Hypocreae* (Seifert et al. 2011). Based on a detailed study of the type and supplementary isolates, *Remersonia* was proposed by Seifert et al. (1997) for this species. *Remersonia* is different from *Stilbella* in its thermotolerant growth and percurrently-extending conidiogenous cells. Their sequence data of 18S and 28S ribosomal DNA showed that this genus belonged to the *Sordariales*. The synonymous genus *Synnmukerjiomyces* was described two years after *Remersonia*, apparently based on the same species (as *S. thermophilus* "[Lindau]" K. R. Aneja & R. Kumar, apparently confusing the original author of the genus *Stilbella* Lindau as the author of the species epithet *thermophilus*).

The four *Remersonia* isolates studied here belong to two different species (Figs 1, 2). Unfortunately, the ex-type culture of *R. thermophila* in the CBS collection is no longer viable. Natvig et al. (2015) showed, based on a phylogenetic analysis of a combined sequence dataset (ITS, *tub2*, *mcm7*, *rpb1* and *rpb2*), that *R. thermophila*, represented by the ex-type, is a close relative of *Mycothermus* in the *Chaetomiaceae*. To supplement their data, we sequenced the the same fragment of *tub2* for our four *Remersonia* isolates and six isolates of *My. thermophilus*, including the ex-type culture of *My. thermophilus* and two more representatives that were used in the study of Natvig et al. (2015). Three of our four isolates (Fig. 3) are conspecific with *R. thermophila*, and CBS 784.85 is a novel species which is described below. The close relationship between *Remersonia* and *Mycothermus* is also confirmed.

Remersonia tenuis X. Wei Wang, Houbraken & Seifert, sp. nov. MycoBank MB824456. Fig. 31.

Etymology: The epithet refers to the relatively narrow conidia of this species.

Micromorphology: Synnemata on OA 250–520 μm tall, scattered, sparse, often forming between two colonies, cylindrical and capitulate, unbranched, slender, hyaline. Stipe 10–37 μm wide, smooth. Hyphae of stipe 1.5–2.5 μm wide, parallel and interweaving with each other through most of stipe. Conidiophores unbranched or branched once. Conidiogenous cells 13–110 μm long, 3–4.5 μm wide, proliferating percurrently and forming nodose annellations, 1–4.5 μm between annellations. Conidial mass measures (50–)100–400 μm in diam, slimy, hyaline to straw, globose to subglobose when wet, becoming dry and pyriform or fusiform in a few minutes, with columns of laterally adhered conidia tending to poke out of the conidial mass. Conidia (9.5–)11.5–16.5(–18.5) × (2.5–)3.5–4.5 (–5) μm, hyaline, oblong, clavate or ellipsoidal, sometimes slightly curved, with a truncate base and rounded apex.

Culture characteristics: Colonies on OA more than 70 mm diam in 7 d at 37 °C; edge entire; obverse uncoloured, occasionally fawn; aerial mycelium absent; reverse uncoloured. Colonies on CMA more than 70 mm diam in 7 d at 37 °C; edge entire; obverse uncoloured or olivaceous buff; aerial mycelium absent; reverse uncoloured. Colonies on MEA 37–43 mm diam in 7 d at 37 °C; edge entire; obverse olivaceous buff, with radiating furrows, producing numerous synnemata; reverse ochreous. Colonies on PCA more than 70 mm diam in 7 d at 37 °C; edge entire; aerial mycelium absent; reverse uncoloured.

Material examined: India, Hyderabad, isolated from dung of horse, unknown date, M.N. Rao (holotype CBS H-18610, culture ex-type CBS 784.85 = IMI 295313 = JCM 10546).

Notes: This species can be distinguished from *R. thermophila* by smaller conidia (11.5–16 × 3.5–4.5 μm vs 13–22.5 × 5–7 μm), and its faster growth rate at 37 °C (Table 2). Figs. 3–8 in Seifert et al. (1997) are the ex-type strain and thus represent *R. tenuis* rather than *R. thermophila* as labelled; the difference in conidial size and conidiophore branching is also evident from that figure.

Remersonia thermophila (Fergus) Seifert & Samson, Canad. J. Bot. 75: 1160. 1997. MycoBank MB437277. Figs 32–34.

Basionym: *Stilbella thermophila* Fergus, Mycologia 56: 277. 1964.

Micromorphology: Synnemata on OA 170–1100 μm tall, scattered to gregarious, cylindrical to clavate, capitulate, unbranched, hyaline, sometimes fulvous to sepia when old. Stipe 5–320 μm wide in the mid part, smooth. Hyphae of stipe 1.5–3.5 μm wide, parallel and interweaving with each other through most of stipe.
Fig. 31. Remersonia tenuis (CBS 784.85). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B. Part of the colony on OA. C–D. Synnemata on OA. E–G. Synnemata mounted in lactic acid. H–I. Conidiogenous cells. J. Conidia. Scale bars: B = 500 μm; C–D = 200 μm; E–F = 50 μm; G = 20 μm; H–J = 10 μm.
Conidiophores unbranched or simply branched once to twice. Conidiogenous cells 14–90 μm long, 3.5–6.5 μm wide, proliferating percurrently and forming nodose annellations, 1.5–26.5 μm between annellations. Conidial mass 50–1300 μm in diam, slimy, hyaline, straw or pure yellow, globose or subglobose when wet, becoming dry and pyriform or fusiform in a few minutes. Conidia (10.5–13–22.5(–26.5) × (4.5–5–7(–9) μm, hyaline, oblong, clavate or ellipsoidal, occasionally pyriform, sometimes slightly curved, with a truncate base and rounded apex.

Culture characteristics: Colonies on OA 36–55 mm diam in 7 d at 37 °C; edge entire to lobate or crenate; obverse smoke grey to cinnamon, or ochreous to cinnamonian, usually globose, subglobose or obovoid. Colony diam on MEA 26–46 mm diam in 7 d at 37 °C; edge entire, lobate or crenate; obverse fawn, or pale isabelline; aerial hyphae; reverse uncoloured, or ochreous to cinnamon, or fulvous to umber. Colonies on CMA 26–39 mm diam in 7 d at 37 °C; edge entire, lobate or crenate; obverse fawn, or pale isabelline; aerial mycelium absent; reverse fawn, olivaceous or isabelline. Colonies on CMA 26–46 mm diam in 7 d at 37 °C; edge entire, lobate, crenate or filbrirate; obverse buff, fawn to vinaceous grey, producing numerous synnemata and often mixed with aerial hyphae; reverse uncoloured, or ochreous to cinnamon, or fulvous to umber. Colonies PCA 10–38 mm diam in 7 d at 37 °C; edge lobate, crenate or filbrirate; aerial mycelium absent; reverse buff or uncoloured.

Material examined: Netherlands. Horst, isolated from compost, Apr. 1987, G. S. Straatsma, culture CBS 643.91; Horst, isolated from compost, Jun. 1981, G. S. Straatsma, culture CBS 645.91. Switzerland. Gossau-Zürich, isolated from mushroom compost during peak heating, 1962, C.L. Fergus, culture CBS 540.69 = MUCIL 15081.

Notes: This species exhibit a high morphological diversity in colony characters, synnemata, conidiophores and conidiogenous cells, but conidial size and shape are consistent between different isolates (Figs 32–34, Table 2).

Staphylotrichum J.A. Mey. & Nicot, Bull. Soc. Mycol. France 72: 322. 1957. MycoBank MB10065.

Type species: Staphylotrichum coccosporum J.A. Mey. & Nicot.

Micromorphology: Asexual morphs usually of two types: type one macronematous, possessing conidiophores arising from an intercalary, thick-walled, pigmented foot cell, usually pigmented and thick-walled in the lower part, tapering and fading towards the tips, apically branched, with denticle-like conidiogenous cells terminally on the tops of the branches; type two micronematous, with cylindrical or denticulate conidiogenous cells arising directly from hyphae rather than apical branches of macronematous conidiophores. Conidia holoblastic, solitary, single-celled, smooth or slightly verrucose, hyaline to pale brown, usually globose, subglobe or obvoid. Sexual morph absent or present. Ascomata superficial, or covered by aerial hyphae, ostiolate, elongate obpyriform, obclavate, to ampulliform below, usually apically attenuated to a cylindrical, thread-like neck which is composed of fused basal part of the terminal hairs. Terminal hairs seta-like or whip-like, fused at the lower part to form a channel through which a column of ascospores emerges from the ascoma, smooth. Asci clavate to fusiform, with 8 irregularly-arranged ascospores, evanescent. Ascospores broad limoniform to nearly globose, often somewhat biapiculate, bilaterally flattened, with an apical germ pore.

Notes: Staphylotrichum is well known for its apically branched macronematous conidiophores (Fig. 58G–I). Our observations showed that micromatous formation of conidia on hyphae (Fig. 58F) is also a very common character in the asexual Staphylotrichum species. Eight Staphylotrichum isolates were selected for this study, including the ex-type strain of the type species, all originally deposited as S. coccosporum in CBS. In the rpb2 and four-locus phylograms, the “Chaetomium longicolleum” clade split the “S. coccosporum” clade into two separate subclades, indicating a close relationship between these sexual and asexual organisms. Production of micronematous, occasionally even macronematous asexual morphs in sexually reproducing species is additional morphological support that the “Chaetomium longicolleum” clade represents the sexual morph of Staphylotrichum. Fig. 43 shows the colony morphology of the asexual species in the genus.

Staphylotrichum acacicola X. Wei Wang & Houbraken, sp. nov. MycoBank MB824457. Fig. 35.

Etymology: The epithet refers to Acacia karroo, the substrate from which the type strain was isolated.

Micromorphology: Somatic hyphae hyaline or subhyaline, producing macronematous conidia mixed with micronematous ones. Macronematous conidiophores arising from a thick-walled L-shaped or cylindrical, brown to dark brown foot cell, brown to

| Table 2. Morphological differences between Remersonia isolates. |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| R. thermophila, CBS 540.69 (Fig. 32) | R. thermophila, CBS 643.91 (Fig. 33) | R. thermophila, CBS 645.91 (Fig. 34) | R. tenuis, CBS 784.85 (Fig. 31) |
| Height of synnema on OA | 300–1 100 μm | 170–550 μm | 330–900 μm | 300–520 μm |
| Width of synnema stipes | 5–20.5 μm | 13–85 (–145) μm | 26–320 μm | 12–37 μm |
| Conidiogenous cells | 30–90 × 4.5–6.5 μm | 15–70 × 4–5.5 μm | 14–55 × 3.5–6 μm | 13–110 × 3–4.5 μm |
| Distance between annellations | 6–26.5 μm | 2–8.5 μm | 1.5–4.5 μm | 1–4.5 μm |
| Diam of conidial masses | 50–230 μm | 70–500 μm | 170–1300 μm | 100–400 μm |
| Dimensions conidia | (11–)15–22.5(–26.5) × (4.5–5–7(–9) μm | (10.5–)13–20(–26) × (4.5–5–6.5(–7) μm | (10.5–)13–18(–22.5) × 5–(6–7) μm | (10.5–)13–18(–22.5) × 5–(6–7) μm |
| Colony diam on OA (7 d, 37 °C) | 49–55 mm | 44–50 mm | 36–42 mm | > 70 mm |
| Colony diam on CMA (7 d, 37 °C) | 33–39 mm | 26–32 mm | 26–32 mm | > 70 mm |
| Colony diam on MEA (7 d, 37 °C) | 40–46 mm | 28–34 mm | 26–32 mm | 37–43 mm |
| Colony diam on PCA (7 d, 37 °C) | 32–38 mm | 24–30 mm | 10–16 mm | > 70 mm |
Fig. 32. *Remersonia thermophila* (CBS 540.69). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–C. Synnemata on OA, top view. D. Synnemata on OA, side view. E. Synnemata mounted in lactic acid. F. Conidiogenous cells. G. Conidia. Scale bars: B–C = 500 μm; D = 100 μm; E–G = 10 μm.
Fig. 33. Remersonia thermophila (CBS 643.91). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B. Part of the colony on OA. C–D. Synnemata on OA. E–G. Synnemata mounted in lactic acid. H. Parts of conidiophores and conidiogenous cells with conidia. I. Conidia. Scale bars: B = 500 μm; C, D = 200 μm; E–G = 50 μm; H–I = 10 μm.
Fig. 34. Remersonia thermophila (CBS 645.91). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B. Part of the colony on OA. C. Synnemata on OA, top view. D–E. Synnemata on OA, side view. F–H. Synnemata mounted in lactic acid. I. Conidiogenous cells. J. Conidia. Scale bars: B = 1000 μm; C, E = 200 μm; D = 100 μm; F–H = 20 μm; I–J = 10 μm.
dark brown and thick-walled in the lower part, tapering and fading towards the tips, 210–500(–800) μm long, 3–5(–6.5) μm wide near the base, apically branched. **Conidiogenous cells** hyaline, denticle-like to cylindrical, 2–13.5(–15) × 1–3 μm. **Conidia** pale olivaceous, smooth, single-celled, globose, subglobose or obovoid, (6.5–)7.5–11.5(–14.5) × (7–)7.5–10(–12.5) μm. **Sexual morph** not observed.

Culture characteristics: Variation in culture characteristics were observed among isolates (Fig. 43). Colonies on OA 50–56 mm diam after 7 d at 25 °C; edge entire; obverse pale olivaceous grey (CBS 281.65) or amber with sparse to dense aerial hyphae (CBS 554.89); reverse uncoloured to buff (CBS 281.65), or ochreous (CBS 554.89). Colonies on CMA 46–52 mm diam after 7 d at 25 °C; edge entire; obverse white to pale olivaceous grey (CBS...
281.65) or amber with white to salmon aerial hyphae (CBS 554.89); reverse buff (CBS 281.65) or pale luteous (CBS 554.89). Colonies on MEA 49–55 mm diam after 7 d at 25 °C; edge entire; obverse floccose and white to buff white (CBS 281.65) or pale luteous because of aerial hyphae (CBS 554.89); reverse fulvous to sepiya (CBS 281.65) or sienna (CBS 554.89). Colonies on PCA 48–54 mm diam after 7 d at 25 °C; edge entire; obverse translucent, buff and loosely floccose because of the formation of conidioaphores; aerial hyphae absent; reverse uncoloured.

Material examined: Brazil, isolated from rainforest soil, unknown date, L. Pfennig, culture CBS 554.89. South Africa, Potchefstroom, isolated from leaf litter of Acacia karroo, unknown date, M.C. Papendorf (holotype CBS H-23490, culture ex-type CBS 281.65). USA, Kansas, isolated from soil, unknown date, M. Christensen, culture CBS 127289.

Notes: Staphylotrichum acaciicola is phylogenetically closely related to S. ccocsporum. This species can be distinguished by the production of numerous conidia from micronematous conidiophores; aerial hyphae are often predominant. Phylogenetically, S. boninense and S. brevistipitatum are more closely related to the sexual species S. microascosporum, S. tortipilum than to S. acaciicola and S. ccocsporum (Fig. 1).

Staphylotrichum brevistipitatum X. Wei Wang & Houbraken, sp. nov. MycoBank MB824458. Fig. 37.

Etymology: The epithet refers to the short conidiophores of this fungus.

Micromorphology: Somatic hyphae hyaline or nearly so, producing macronematous conidia mixed with micronematous ones. Macronematous conidiophores arising from a thick-walled T-shaped to oblong and brown to dark brown foot cell, brown to dark brown and thick-walled in the lower part, tapering and fading towards the tips, 70–230 μm long; 2.5–5 μm wide near the base, apically branched. Conidiogenous cells hyaline, denticle-like to cylindrical, 3–11.5(–19) × 1.5–3 μm. Conidia olivaceous, single-celled, smooth to slightly verrucose, globose, subglobose, obvoid or pyriform, (8.5–)9.5–12(–14.5) × (7.5–)9–11.5(–13.5) μm. Sexual morph not observed.

Culture characteristics: Variations of culture characteristics were observed among isolates. Colonies on OA 42–48 mm diam after 7 d at 25 °C; edge entire; obverse grey olivaceous and floccose because of aerial hyphae mixed with conidiophores (CBS 408.67) or greenish black without aerial hyphae (CBS 294.55); reverse greenish black. Colonies on CMA 42–48 mm diam after 7 d at 25 °C; edge entire; obverse floccose, greyish white to greyish yellow-green, grey olivaceous at the edge (CBS 408.67), or dark grey olivaceous without aerial hyphae (CBS 294.55); reverse olivaceous black. Colonies on MEA 49–55 mm diam after 7 d at 25 °C; edge entire; obverse floccose and smoke grey to greyish sepia (CBS 408.67), or dark mouse grey with grey mouse aerial hyphae (CBS 294.55); reverse fuscous (CBS 408.67) or chestnut to sepia (CBS 294.55). Colonies on PCA 40–46 mm diam after 7 d at 25 °C; edge entire; obverse transparent, greyish sepia without aerial hyphae; reverse smoke grey or greyish sepia.

Material examined: South Africa, Zaoeloeland, Empangeni, isolated from leaf litter of Eucalyptus, unknown date, A. Eckler (holotype CBS H-18521, culture ex-type CBS 408.67). Zaire, isolated from soil, unknown date, J.A. Meyer, culture CBS 294.55.

Notes: Staphylotrichum brevistipitatum is phylogenetically closely related to S. boninense, but can be distinguished by the production of shorter seta-like conidiophores (70–230 μm vs 410–780 μm).

Staphylotrichum coccosporum J.A. Mey. & Nicot. Bull. Soc. Mycol. France 72: 323. 1957. MycoBank MB824458. Fig. 38.

Micromorphology: Asexual morph predominantly producing conidia macronematously from seta-like conidiophores on OA and CMA. Somatic hyphae hyaline or nearly so. Macronematous conidiophores arising from a thick-walled L-shaped or T-shaped brown to dark brown foot cell, brown to dark brown and thick-walled in the lower part, tapering and fading towards the tips, 250–780 μm long, (3.5–)4.5–9 μm wide near the base, apically branched. Conidiogenous cells hyaline, denticle-like to cylindrical, 2–13 × 1.5–3 μm. Conidia pale olivaceous, single-celled, smooth, globose, subglobose, occasionally obvoid or pyriform, (7.5–)8.5–11.5(–13.5) × (7.5–)8–10(–11) μm. Sexual morph not observed.

Culture characteristics: Colonies on OA 39–45 mm diam after 7 d at 25 °C; edge entire; obverse smoke grey to greyish sepia,
Staphylotrichum boninense (CBS 112059).

A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation.

B–E. Micronematous conidia arising from hyphae and a few conidiophores with macronematous conidia. F. Micronematous conidia arising from hyphae. Scale bars = 20 μm.

Fig. 36. Staphylotrichum boninense (CBS 112059). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–E. Micronematous conidia arising from hyphae and a few conidiophores with macronematous conidia. F. Micronematous conidia arising from hyphae. Scale bars = 20 μm.
floccose because of the formation of numerous conidiophores; reverse uncoloured, buff or umber when old. Colonies on CMA similar to those on OA, 35–41 mm diam after 7 d at 25 °C. Colonies on MEA 43–49 mm diam after 7 d at 25 °C; edge entire; obverse buff and floccose; reverse ochreous to apricot. Colonies on PCA 42–48 mm diam after 7 d at 25 °C; edge entire; obverse transparent, without aerial hyphae; reverse uncoloured.

Fig. 37. Staphylotrichum brevispitiatum (CBS 408.67, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–D. hyphae and micronematous conidia. E–H. Conidiophores with macronematous conidia and hyphae with micronematous conidia. Scale bars: B–D = 10 μm; E–H = 20 μm.

Material examined: Zaire, Yangambi, isolated from soil, unknown date, J.A. Meyer, culture ex-type CBS 364.58.

Notes: Although S. coccosporum predominantly produces conidia macronematously from conidiophores, especially on OA and CMA, the micronematously-produced conidia on hyphae are easy to observe in slides cultures prepared using the inclined coverslip method. Micronematously-produced conidia are common in both sexual and asexual species in Staphylotrichum.
Fig. 38. Spathylotrichum coccosporum (CBS 364.58, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–G. Macronematous conidia. Scale bars: B–G = 20 μm.
Staphylotrichum longicolleum (Krzemien. & Badura) X. Wei

W. Wang & Houbraken, _comb. nov._ MycoBank MB824459. Figs 39, 40.

Basionym: *Chaetomium longicolleum* Krzemien. & Badura, Acta Soc. Bot. Pol. 23: 748. 1954.

Synonyms: *Chaetoceratostoma longirostre* Farrow, Mycologia 47: 418. 1955.

Notes: *Chaetomium longirostre* was separated from _C. longicolleum_ by its much longer ascomatal neck (<800 μm vs >1 000 μm) and a narrower spore exit channel (Amites 1963). The holotype of _Ch. longicolleum_ seems to be lost. Hawksworth (1975) designated a slide from Krzemieniowska & Badura (BPI—A 121) as lectotype. This slide is unavailable for study. Hawksworth (1975) observed that the ascomatal neck varied considerably, even within a single isolate. Our examination confirmed Hawksworth’s observation that the ascomatal necks can be (110–200–1 100 μm high and 20–45 μm wide. The size of ascospores and the width of terminal hairs near the base are diagnostic characters in this species. The holotype was originally collected in Poland. Epitypification of the species is deferred until a culture is reisolated from the type locality.

Staphylotrichum microascosporum X. Wei Wang & Houbraken, _sp. nov._ MycoBank MB824460. Fig. 41.

Etymology: The epithet refers to the small ascospores of this species.

Micromorphology: _Ascomata_ superficial, often covered by aerial hyphae, ostiolate, leaden black in reflected light, elongate obpyriform, obclavate or ampulliform below, apically attenuated to a cylindrical, thread-like neck which is composed of fused basal part of the terminal hairs, 65–125 μm diam at the widest part, (300–) 550–1 300 μm high till the neck excluding the top parts of terminal hairs where the hairs separate with each other, of which, the neck part usually (110–) 200–1 100 μm high, 25–45 μm wide. _Ascomatal wall_ brown, composed of angular cells or elongated to cylindrical cells at the neck part in surface view. _Terminal hairs_ seta-like or whip-like, fused at the lower part to form a channel through which a column of ascospores emerge from the ascomata, smooth, brown, septate, 2.5–6 μm diam near the separating base, tapering and fading towards the tips. _Lateral hairs_ very sparse, seta-like, tapering and fading towards the tips. _Asci_ clavate to fusiform, with spore-bearing part 22.5–34 × 13–20 μm and stalks 6–16 μm long, with 8 irregularly-arranged ascospores, evanescent. _Ascospores_ olive-brown when mature, broad limoniform to nearly globose, biapiculate, bilaterally flattened, 9–11 μm wide. _Ascomatal wall_ brown, composed of angular cells or elongated to cylindrical cells at the neck part in surface view. _Terminal hairs_ seta-like or whip-like, fused at the lower part to form a channel through which a column of ascospores emerge from the ascomata, smooth, brown, septate, (3–) 4.5–6.5 μm diam near the separated base, tapering and fading towards the tips. _Lateral hairs_ very sparse, seta-like, tapering and fading towards the tips. _Asci_ clavate to fusiform, with spore-bearing part 22–29 × 13–18.5 μm and stalks 6–18 μm long, with 8 irregularly-arranged ascospores, evanescent. _Ascospores_ olive-brown when mature, broad limoniform to nearly globose, biapiculate, bilaterally flattened, 8–9.5 μm diam.

Material examined: Madagascar, isolated from soil under _Theobroma cacao_ and _Piper nigrum_, unknown date, D. Douget, culture CBS 119.57. _Jamaica_, Ocho Rios, isolated from woodland soil, unknown date, A. Carter, culture CBS 562.80 = TRTC 45836. _Panama_, Barro Colorado Island, isolated from soil, 1952.

Culture characteristics: Colonies on OA 44–53 mm diam after 7 d at 25 °C; edge entire; aerial mycelium white, yellow, luteous or amber; soluble pigment saffron, salmon to vinaceous or brick; reverse colourless, or saffron, salmon, cinnamon. Colonies on CMA similar to those on OA, 40–50 mm diam after 7 d at 25 °C; but aerial mycelium relatively thick, producing more ascomata. Colonies on MEA 46–52 mm diam after 7 d at 25 °C; edge entire; non-sporulated, aerial mycelium white to saffron; texture floccose; soluble pigment absent, or vinaceous to brick along the edge; reverse saffron, apricot to violaceous black. Colonies on PCA 43–55 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse, white to honey or absent; soluble pigment rosy buff to rosy vinaceous or absent; reverse uncoloured or pale vinaceous.
Fig. 39. Staphylotrichum longicolleum (CBS 119.57). A. Colonies from left to right on OA, CMA, MEA and PCA after 5 wk incubation. B–D. Ascomata mounted in lactic acid. E. Part of the colony on OA showing mature ascomata from top view. F. Mature ascomata on OA, side view. G. Micronematous conidia arising from short sides of hyphae (denticales). H. Asci. I. Ascospores. Scale bars: B = 20 μm; C–D = 50 μm; G–I = 10 μm.
Fig. 40. *Staphylotrichum longicolleum* (CBS 100950). A. Colonies from left to right on OA, CMA, MEA and PCA after 5 wk incubation. B–C. Ascomata and macronematous conidiophores attached to neck and terminal hairs of ascomata mounted in lactic acid. D. A macronematous conidiophore and conidia. E. Micronematous conidia. F. Part of the colony on OA showing mature ascomata from top view. G. Mature ascomata on OA, side view. H. Ascii. I. Ascospores. Scale bars: B = 100 μm; C = 20 μm; D, E, H, I = 10 μm.
Fig. 41. Staphylotrichum microascosporum (CBS 184.79, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Micronematous conidia. C–D. Ascomata mounted in lactic acid. E. Part of the colony. F. Mature ascomata on OA, side view. G. Asci. H. Ascospores. Scale bars: C = 100 μm; D = 20 μm; B, G–H = 10 μm.
Material examined: Sudan. White Nile Island, isolated from soil from Mangifera orchard, unknown date, B.P.R. Vittal (holotype CBS H-12643, culture ex-type CBS 184.79).

Notes: Staphylochlorium microascosporum produces smaller ascospores than the other known Staphylochlorium species (8–9.5 × 7.5–9 × 6–7 μm vs 9–11 × 8.5–10.5 × 6.5–7.5 μm).

Staphylochlorium tortipilum X. Wei Wang & Houbraken, sp. nov. MycoBank MB824461. Fig. 42.

Etymology: The epithet refers to the slightly twisted terminal hairs of this species.

Micromorphology: Ascomata superficial, ostiolate, leaden black in reflected light, elongate obpyriform, obluritate or amphuriform below, apically attenuated to a cylindrical, thread-like neck which is composed of fused basal part of the terminal hairs, (60–) 85–140 μm diam at the widest part, 530–1330 μm high till the neck excluding the top parts of terminal hairs where the hairs separate with each other, of which, the neck part usually 340–1050 μm high, 22–36 μm wide. Ascomatal wall brown, composed of angular cells or elongated to cylindrical cells at the neck part in surface view. Terminal hairs seta-like or whip-like, fused at the lower part to form a channel through which a column of ascospores emerge from the ascoma, smooth, brown, septate, 4.5–8 μm diam near the separating base, often twisted in the lower part, tapering and fading towards the tips. Lateral hairs sparse, seta-like, tapering and fading towards the tips. Ascii clavate to fusiform, with spore-bearing part 28–35 × 14.5–18.5 μm and stalks 6.5–14.5 μm long, with 8 irregularly-arranged ascospores, evanescent. Ascospores olivaceous brown when mature, broad limoniform to nearly globose, biapiculate, bilaterally flattened, 10–10.5 (–11) × (8.5–)9–10(–10.5) × 6.5–7.5(–8) μm, with an apical germ pore. Conidiogenous cell arising from the hyphae, denticle-like to cylindrical, hyaline, occasionally intercalary. Conidia globose, subglobose, sometimes broad obovoid or pyriform, hyaline, subhyaline to pale olivaceous, lateral or terminal on the hyphae or short branches of hyphae, solitary, (8.5–)10.5–14 μm diam, up to 16.5 μm long when pyriform.

Culture characteristics: Colonies on OA 37–43 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse, white to pale luteous or salmon; soluble pigment pale luteous to ochreous; reverse fulvous. Colonies on CMA similar to those on OA, 35–41 mm diam after 7 d at 25 °C; reverse fulvous, orange or apricot. Colonies on MEA 36–43 mm diam after 7 d at 25 °C; edge crenate; non-sporulated; aerial mycelium thick, white to salmon; texture floccose; reverse rust to chestnut caused by soluble pigment. Colonies on PCA 31–37 mm diam after 7 d at 25 °C; edge entire; aerial mycelium rare; soluble pigment absent; reverse uncoloured.

Material examined: USA. North Carolina, isolated from dung of Pine vole, 20 Jul. 1976, G.L. Benny (holotype CBS H-12642, culture ex-type CBS 103.79).

Notes: Staphylochlorium tortipilum can be distinguished from S. longicolleum and S. microascosporum by larger ascomata (85–140 μm vs 55–125 μm diam at the widest part) and broader terminal hairs (4.5–8 μm vs 2.5–6.5 μm diam near the separated base), which are often twisted in the lower part.

Trichocladium Harz. Bull. Soc. Imp. Naturalistes. Moscou 44: 125. 1871. MycoBank MB10278.

Lectotype species: Trichocladium asperum Harz, fide Clements & Shear (1931).

Micromorphology: Asexual morphs diverse, with conidium from hyaline to pigmented on differentiated conidiophores or from conidiogenous cells, sometimes with acremonium-like conidia, or with hyaline micro-sclerotia, or absent. Ascomata superficial or immersed in the thick mycelium, ostiolate to nonostiolate. Asci typically cylindrical with 8 (4) uniseriate ascospores, sometimes clavate to fusiform with 8 biseriate ascospores, evanescent. Ascospores typically broadly ovate, bilaterally flattened, sometimes ellipsoidal and non-flattened, with an apical germ pore.

Notes: In a synopsis of the hyphomycete concept of Trichocladium (Goh & Hyde 1999), 18 species were accepted on the basis of morphological characters. Although the type specimens of only three species were available for our study, two (T. ismaillense, T. pyriforme) proved to be outside the Chaetomiaceae (data not shown). Trichocladium is morphologically diverse as phylogenetically delimited here (Figs 1, 2), including four closely related subclades, each encompassing a high diversity in morphology. Subclade 1 includes the lectotype species T. asperum, which produces pigmented, solitary, monoblastic (1–2) (– multi-celled) conidia on somewhat differentiated conidiophores, and conidial succession is easily observed in old cultures. Subclades 2 and 3 only contain sexual species that produce ostiolate ascomata, such as Trichocladium crispatum (= Chaetomium crispatum), T. acropilum (= Chaetomium acropilum) or non-ostiolate ascomata, such as T. antarcticum (= Thielavia antarctica) and T. arxii (= Chaetomidium arxii). Species in subclade 4 produce hyaline asexual structures (conidia), like those produced by T. beniowskiae (= Beniowskaia macrorastra), or only poorly differentiated structures, such as those of T. amorplum. Sexual stages are present (e.g. T. seminis-citrulli) or absent in subclade 4.

In the dual nomenclature era, Trichocladium was used for strictly asexually reproducing hyphomycetes. Here, six new combinations are proposed based on sexually reproducing species (previously classified in Chaetomiidium, Chaetornium, Thielavia). Five asexually reproducing species were originally described in other genera (Beniowskaia, Gilmaniella, Humicola, Monodictys) and those species lack typical trichocladium-like conidiophores and conidia. It is unlikely that these sexually reproducing species and the species described in the genera mentioned above would have earlier described names in Trichocladium itself. The new Trichocladium species described here produce thick-walled intercalary cells and microsclerotia-like structures. These structures are also atypical for Trichocladium.

Trichocladium acropilum (X. Wei Wang) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824462. Fig. 44.

Basionym: Chaetomium acropilum X. Wei Wang, Nova Hedwigia 80: 414. 2005.

Micromorphology: Ascomata superficial, sometimes covered by sparse aerial hyphae, nearly spherical to oblate, ostiolate, 170–260 μm high, 150–280 μm diam. Ascomatal wall around the apical ostiolar pore composed of angular and thick-walled dark brown cells, in the lower part dextrinoid, translucent and pale yellowish brown, cellular structure indistinct at first, then becoming yellowish brown to brown, with angular or irregular cells (textura angularis) when mature. Terminal hairs arising around the ostiole, regularly spirally coiled with flexuous lower part, punctulate or verrucose, 3–4.5 μm diam near the base. Lateral hairs seta-like or flexuous, tapering and fading towards the tips. Asci cylindrical, with
Fig. 42. Staphylotrichum tortipilum (CBS 103.79, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B. Ascomata mounted in lactic acid. C. Terminal ascomatal hairs. D. Part of the colony on OA showing mature ascomata in top view. E. Mature ascomata on OA, side view. F. Micronematous conidia. G. Asci. H. Ascospores. Scale bars: B = 100 μm; C = 20 μm; F–H = 10 μm.
Fig. 43. Diversity of colony morphology in Staphylotrichum. From left to right on OA, CMA, MEA and PCA. From top to bottom CBS 281.65 (S. acaciicola), CBS 554.89 (S. acaciicola); CBS 112543 (S. boninense); CBS 408.67 (S. brevistipitatum), CBS 294.55 (S. brevistipitatum); CBS 364.58 (S. cocusporum).
Fig. 44. Trichocladium acropullum (CBS 114580, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 6 wk incubation. B. Part of the colony. C. Mature ascma on OA, top view. D. Mature ascma on OA, side view. E–G. Ascma mounted in lactic acid. H. Hyphae and chlamydospore-like structures on hyphae. I. Structure of ascma wall in surface view. J. Terminal ascma hairs. K. Asci. L. Ascospores. Scale bars: E–G = 50 μm; H–L = 10 μm.
spore-bearing part 36–49 × 6–7 μm and stalks 8.5–19 μm long, with 8 uniseriate ascospores, evanescent. Ascospores olivaceous to olivaceous brown when mature, subglobose to ellipsoidal, or ovate in face view, bilaterally flattened, (5.5–)6–7.5(–10) × (5–)5.5–6.5(–7) × 4–5(–5.5) μm, with an apical and often slightly protuberant germ pore. Conidia formed laterally or apically on a substrate hyphae, hyaline to subhyaline, clavate, ovate, subglobose or irregularly shaped, often two or more in chains, 5–17 × 3–6(–7.5) μm.

Culture characteristics: Colonies on OA 26–32 mm diam after 7 d at 25 °C; edge entire; aerial mycelium thin or thick, white, irregularly distributed; texture cottony; soluble pigment absent; reverse uncoloured. Colonies on CMA similar to those on OA, 26–32 mm diam after 7 d at 25 °C. Colonies on MEA 24–30 mm diam after 7 d at 25 °C; edge lobate; non-sporulating; aerial mycelium thick, white to sulphur yellow; texture floccose; soluble pigment absent; reverse uncoloured. PCA 24–30 mm diam after 7 d at 25 °C; edge entire or slightly crenate, aerial mycelium sparse; soluble pigment absent; reverse uncoloured.

Material examined: China, Hubei, Shennongjia, isolated from garden soil, June 2003, X.W. Wang, ex-type culture CBS 114580. Iran, East Azerbaijan Prov., Bostanabad, isolated from leaf of Hordeum vulgare, 4 Jun. 2005, B. Asgari, culture CBS 126783.

Notes: The asexual structures of this species are similar to those observed in the cultures of T. seminis-citrulli (= Chaetomium seminis-citrulli) and T. amorphum (see below), supporting their close relationships.

Trichocladium amorphum X. Wei Wang & Houbraken, sp. nov. MycoBank MB824463. Fig. 45.

Etymology: The epithet reflects the poorly differentiated asexual structure of this species.

Micromorphology: Somatic hyphae hyaline, 1.5–6 μm wide. Asexual structures appearing cylindrical arthroconidia or swollen chlamydospores at the earlier stage, intercalary in hyphae, composed of hyaline, thick-walled cells, which can be solitary or in pairs or chains, later appearing several subglobose cells in clusters, or a mass of subglobose to angular cells like a hyaline microscerotium, with the cells 6–25 × 2–6 μm when cylindrical, 4.5–11 μm diam when subglobose to angular. Sexual morph not observed.

Culture characteristics: Colonies on OA 47–53 mm diam after 7 d at 25 °C; edge entire; with aerial mycelium thin and white; texture loosely floccose; soluble pigment absent; reverse uncoloured. Colonies on CMA similar to those on OA, 45–51 mm diam after 7 d at 25 °C. Colonies on MEA 44–50 mm diam after 7 d at 25 °C; edge entire; aerial mycelium relatively thick, white; texture floccose; soluble pigment absent; reverse uncoloured. Colonies on PCA 41–47 mm diam after 7 d at 25 °C; edge entire; aerial mycelium thin or absent; soluble pigment absent; reverse uncoloured.

Material examined: USA, Laramie, Wyoming, isolated from greenhouse soil, unknown date, M. Christensen (holotype CBS H-23491, culture ex-type CBS 127763).

Notes: The ex-type culture was deposited as Sporoderaena sp. in CBS, and the investigated culture could represent a contaminant of the original specimen. Trichocladium seminis-citrulli and T. amorphum produce similar asexual structures. The close relationship of these two species is also supported by the four-gene phylogeny. The poor development of the structures in the cultures of these two species could reflect unmet nutritional requirements in the media employed.

Trichocladium antarcticum (Stchigel & Guarro) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824464. Fig. 46. Basionym: Thielavia antarctica Stchigel & Guarro, Mycologia 95: 1225. 2003.

Micromorphology: Ascomata superficial, often immersed in thick aerial mycelium, solitary to aggregated, non-ostiolate, glabrous, dark brown, globose, 150–360 μm diam. Ascomatal wall texture epidermoidea to intrincata. Asci numerous, cylindrical to elongate clavate, with spore-bearing part 25–51 × 8.5–16.5 μm, without conspicuous stalks, with 8 uniseriate or biseriate ascospores. Ascospores brown, broadly ovoid, bilaterally flattened, (7.5)8–9.5(10.5) × 7–9(10) × 4.5–6.5 μm, with an apical germ pore at the attenuated end. Acremonium-like conidiophores arising laterally or terminally from aerial hyphae, unbranched or simply branched, hyaline, aseptate or septate, 4–31 × 2–4.5 μm, with phialidic conidiogenous cells. Conidia in false heads or in basipetal chains, one-celled, smooth, obovoid, usually with a truncated base and a rounded apex, 2.5–4.5 × 2–3.5 μm.

Culture characteristics: Colonies on OA 30–36 mm diam after 7 d at 25 °C; edge lobate; with thick and white aerial mycelium; texture floccose; soluble pigment absent; reverse uncoloured. Colonies on CMA similar to those on OA, 30–36 mm diam after 7 d at 25 °C. Colonies on MEA 31–37 mm diam after 7 d at 25 °C; edge lobate; with thick aerial mycelium; white or yellowish white; texture floccose; reverse luteous to saffron. Colonies on PCA 27–33 mm diam after 7 d at 25 °C; edge undulate or lobate; aerial mycelium thin or absent; soluble pigment absent; reverse uncoloured.

Material examined: Antarctica, isolated from Unsneas cf. auranto-atra, Nov. 1996, A.M. Stchigel, culture ex-type CBS 123565 = FMR 7920; CBS 135876 = FMR 7290.

Notes: The cultures of T. antarcticum remained sterile at 25 °C in dark. Incubation of the culture near the window at a temperature around 20 °C and a day-night rhythm induced sporulation. When compared to the original description (Stchigel et al. 2003), the size of ascomata (150–380 μm vs 250–450 μm diam) and ascospores (8–9.5 × 7–9 × 4.5–6.5 μm vs 9–11 × 8–10 × 6.5–7 μm) of the ex-type were slightly smaller in this study. In the original publication, cylindrical asci with uniseriate ascospores were described; however, we observed elongate clavate or broad cylindrical asci with biseriate ascospores as well (Fig. 46b). All the other morphological characters fit with the original description. This species was described in Thielavia, but phylogenetic analysis clearly showed that it belongs to Trichocladium.

Trichocladium arxii (Benny) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824465. Fig. 47. Basionym: Chaetomium arxii Benny, Mycologia 80: 832. 1980.

Micromorphology: Ascomata superficial, non-ostiolate, greenish black, with numerous grey olivaceous to olivaceous grey ascomatal hairs in reflected light, spherical or nearly so, 130–230 μm diam. Ascomatal walls consisting of cephalothecoid plates which are composed of radially elongated cells and surrounded by lines of dehiscence in surface view. Ascomatal hairs dark brown, seta-like and covering the whole ascomata, smooth, 2.5–4 μm near
Asci clavate or fusiform, with spore-bearing part 34–50 × 18–20.5 μm and stalks 10.5–25 μm long, with 8 biseriate ascospores, evanescent. Ascospores olivaceous brown when mature, ellipsoidal, (10.5–)12.5–14(–17) × (8–)9–11(–12) μm, with an apical germ pore. Asexual morph not observed.

Culture characteristics: Colonies on OA 36–42 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; soluble pigment buff to pale luteous; reverse buff to pale luteous. Colonies on CMA 36–42 mm diam after 7 d at 25 °C; edge entire; aerial mycelium sparse; soluble pigment pale luteous; reverse pale luteous. Colonies on MEA 29–35 mm diam after 7 d at 25 °C; edge entire; aerial mycelium white; texture floccose; reverse apricot to sienna. Colony growth on PCA 34–40 mm diam after 7 d at 25 °C; edge entire, aerial mycelium absent; soluble pigment absent; reverse uncoloured.

Material examined: USA. California, isolated from dung of kangaroo rat, 29 Jul. 1974, G.L. Benny, ex-type CBS 104.79.

Notes: The genus Chaetomidium was synonymised with Chaetomium, and three Chaetomidium species were transferred to Chaetomium, including the type species C. fimeti (Wang et al. 2016a). In the study of Hernández-Restrepo (2017), Chaetomidium arxii clustered with Trichocladium asperum in their LSU tree. This is confirmed in our study using a larger data set. The phylogenetic placement of T. arxii in Trichocladium confirmed the polyphyly of the traditional “Chaetomidium” first shown by Greif et al. (2009). More study is needed to determine the phylogenetic relationships of the other “Chaetomidium” species.
Fig. 46. Trichocladium antarcticum (FMR 7920 = CBS 123565, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B. Part of the colony. C. Mature ascomata immersed in mycelium on OA, top view. D. Conidiophores and conidia. E–G. Ascomata mounted in lactic acid. H. A ruptured young ascoma, showing ascomatal wall structure in surface view and masses of asci flooding from the rupture. I. Asci. J. Ascospores. Scale bars: D, I, J = 10 μm; E = 50 μm; F–H = 20 μm.
Fig. 47. Trichocladium arxii (CBS 104.79, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 4 wk incubation. B–C. Mature ascomata on OA, top view. D. Mature ascomata on OA, side view. E–F. Ascomata mounted in lactic acid. G. Part of a terminal ascomatal hair together with two ascospores. H. Asci. I. Ascospores. Scale bars: E–F = 100 μm; G–I = 10 μm.
Trichocladium asperum Harz, Bull. Soc. Imp. Naturalistes. Moscou 44: 125. 1871. MycoBank MB171452. Figs 48, 49. Synonyms: Sporidesmium asperum Corda, Icon. fung. 2: 6. 1838.

Dicoccum asperum (Corda) Sacc., Syll. fung. 4: 342. 1886.

Monodictys aspera (Corda) S. Hughes, Canad. J. Bot. 36: 785. 1958.

Piricauda aspera (Corda) R.T. Moore, Rhodora 61: 96. 1959.

Micromorphology: Somatic hyphae hyaline, 1.5–3.5 μm wide. Conidiophores hyaline, originating laterally or terminally from the hyphae, cylindrical, unbranched or branched 1–2 times, sometimes verticillate, 2–4.5 μm wide, up to 21.5 μm long, sometimes reduced to intercalary conidiogenous loci in the hyphae. Conidia solitary, 1- to 2-celled, occasionally 3-celled, usually with germ pore in each cell, obovate, pyriform, ellipsoid, constricted at the septa, conspicuously warted, (10.5–)14–21.5(–26) × (9–)10–19.5(–20) μm, olivaceous brown to dark brown, sometimes with a basal cell paler than the others, seceding from the mycelium when manure usually together with a part of conidiogenous cell.

Culture characteristics: Colonies on OA 43–49 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous black, with grey white to smoke grey, sparse floccose aerial hyphae; reverse olivaceous grey to greenish black. Colonies on CMA similar to those on OA similar; 41–53 mm diam after 7 d at 25 °C; reverse buff to pale luteous. Colonies on MEA 47–42 mm diam after 7 d at 25 °C; edge entire; obverse iron grey; aerial mycelium sparse, pale mouse grey; texture floccose; reverse cinnamon. Colonies on PCA 44–50 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous grey to iron grey; aerial mycelium sparse, pale mouse grey; reverse olivaceous grey to dark mouse grey.

Material examined: Lectotype re-designated here: tab II Fig. 1 illustrated by Harz in Bull. Soc. Imp. Moscou 44, 1871, reproduced here as Fig. 48. MBT 380604. Belgium, Kontich, isolated from agricultural soil, 28 Jan. 1964. G.L. Hennebert, culture CBS 112.67 = MUCL 6092. Germany, Edersee, Nieder-Werbe, isolated from acidic soil, unknown date, E. Falk, ex-epitype culture CBS 903.85. The Netherlands, unknown substrate, unknown date, C.M. Berkhout, culture CBS 140.21. Unknown country, unknown substrate, unknown date, O. da Fonseca, culture CBS 157.22.

Notes: In 1871, Harz published the generic name Trichocladium for three species, but did not designate the type species for the genus. In 1931, Clements & Shear lectotypified Trichocladium asperum as the type species of Trichocladium (followed by Hughes 1952). The descriptions of T. asperum Harz and Sporidesmium asperum Corda are based on different specimens, and the latter should therefore not be regarded as the basionym of T. asperum. For this reason, an illustration in the protologue of Trichocladium asperum Harz is reproduced and re-designated here as the lectotype of T. asperum (Fig. 47). This lectotype replaces the lectotype designated in error by Hernández-Restrepo et al. (2017), which is based on the illustration of Sporidesmium asperum Corda (MBT375510).

Hambleton et al. (2005) found that ITS sequences of Humicola grisea and Trichocladium asperum were identical. In a phylogenetic study based on LSU sequences, Humicola grisea clustered together with Trichocladium asperum (Hernández-Restrepo et al. 2017). This study confirms the close relationship between T. griseum (=H. grisea) and T. asperum; however, they are regarded as separate species based on their distinct morphology and differences in other genes.

Trichocladium beniowskiae (M.D. Mehrotra) X. Wei Wang & Houbraken, nom. nov. MycoBank MB824466. Fig. 50. Basionym: Beniowskia macrospora M.D. Mehrotra, Sydowia 17: 149. 1964.

Etymology: The epithet refers to the genus Beniowskia, from which the species is transferred.

Micromorphology: Somatic hyphae hyaline, 2–6 μm wide. Conidiophores hyaline, originating laterally or terminally from the hyphae, hypha-like in the lower part, often consisting of swollen cells in chains or branched chains in the upper part, 2–5 μm wide near the base, up to 220 μm long, with the top swollen conidiogenous cells 5–10 μm wide. Conidia solitary to in short chains, single-celled, smooth, hyaline, globose or subglobose, (10–)14–20.5(–29.5) μm diam.

Culture characteristics: Colonies on OA 56–62 mm diam after 7 d at 25 °C; edge entire; obverse luteous to orange caused by soluble pigment; aerial mycelium white, irregularly distributing;
Fig. 49. *Trichocladium asperum* (CBS 903.85, ex-epitype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B–F. Hyphae, conidiophores and conidia. Scale bars = 10 μm.
texture floccose; reverse pale luteous to saffron. Colonies on CMA similar to those on OA, 56–62 mm diam after 7 d at 25 °C. Colonies on MEA 61–67 mm diam after 7 d at 25 °C; edge entire; aerial mycelium white, texture floccose; reverse luteous to orange. Colonies on PCA 47–53 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; reverse uncoloured.

Material examined: India, isolated from dried leaves of an unidentified grass, unknown date, M.D. Mehrotra, ex-type culture, CBS 757.74 = IMI 099625.
Notes: The type species of Beniowskia, B. sphaeroidea, is a grass pathogen that produces monoblastic conidia on sporodochia (Hanlin 1987) ornamented with coiled hyphae. Beniowskia macrospora (=Trichocladium beniowskiae) differs from B. sphaeroidea by the absence of coiled ornamenting hyphae on its sporodochia, the pattern of conidiophore branching, and its larger conidia (Mehrotra 1984). Although considered a synonym of B. sphaeroidea (Index Fungorum; http://www.indexfungorum.org, Aug. 2015), the differences in morphological characters make this unlikely. Hanlin (1987) noted that his attempts to culture B. sphaeroidea failed, in contrast to the ability of B. macrospora to grow in vitro. In our examination of CBS 757.74, no sporodochia were observed on any of the four media. Phylogenetic analyses clearly indicated that B. macrospora is a member of the Trichocladium lineage, but it remains uncertain whether this species is actually congeneric with the type of Beniowskia. Unfortunately, no type material of B. sphaeroidea was available for study and the phylogenetic position of the genus Beniowskia remains unknown. The name Trichocladium macrospora already exists, and therefore a new species epithet is required.

Trichocladium crispatum (Fuckel) X. Wei Wang & Houbraken, comb. nov. MycoBank MB824467. Figs 51, 52. Basionym: Sphaeria crispa Fuckel, Fungi Rhenani no. 2022. 1867. Synonym: Chaetomium crispatum Fuckel, Symb. Mycol. P. 90. 1870.

Micromorphology: Ascomata superficial on the aerial mycelium, mouse grey in reflected light because of the ascomatal hairs, nearly spherical to ovoid, ostiolate, 150–320 μm high, 140–280 μm diam. Ascomat al wall brown, composed of angular to irregular cells in surface view. Terminal hairs arising around the ostiole, regularly spirally coiled with circinate to coiled apex and straight to flexuous lower part, occasionally with coiled branches, strongly verrucose or warty, 3–4.5 μm diam near the base, 5–8 μm diam in the coiled part. Lateral hairs seta-like or flexuous, tapering and fading towards the tips. Asci cylindrical, with spore-bearing part 52–66 × 6.5–9.5 μm and stalks 18–31 μm long, with 8 uniseriate ascospores, evanescent. Ascospores obovate to obovate brown when mature, broad ovate to limoniform in face view, often slightly biapiculate, bilaterally flattened, (8.5–)9–10(–11) × (7–)7.5–8.5 × 5–6.5 μm, with an apical germ pore at the attenuated end. Asexual morph not observed.

Culture characteristics: Colonies on OA 42–48 mm diam after 7 d at 25 °C; edge entire; obverse mouse grey to iron grey; aerial mycelium grey white to pale olivaceous grey; texture floccose; reverse paler olivaceous grey. Colonies on CMA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous grey to iron grey; aerial mycelium grey white to pale olivaceous grey; texture floccose; reverse paler olivaceous grey. Colonies on MEA 40–46 mm diam after 7 d at 25 °C; edge entire or slightly undulate; aerial mycelium pale olivaceous grey to olivaceous grey; texture floccose; reverse dark mouse grey. Colonies on PCA 33–39 mm diam after 7 d at 25 °C; edge entire; obverse iron grey to greenish black, greyish sepia to olivaceous in the centre; aerial mycelium sparse, smoke grey; reverse iron grey.

Material examined: Kuwait, isolated from salt-marsh soil, 1973, A.F. Moustafa, culture ex-type CBS 388.75.

Notes: The genus Gilmaniella was considered incertae sedis in Pezizomycotina and characterized by somewhat differentiated conidiophores and aseptate, pigmented conidia with a conspicuous germ pore (Barron 1964, Kirk et al. 2008). The type species G. humicola was described with simple to branched, often inflated conidiophores and having sympodial conidiogenous cells with denticles on which conidia arise (Barron 1964). Trichocladium gilmaniellae (= Gilmaniella macrospora) produces conidia on monoblastic conidiogenous cells or even on undifferentiated hyphal cells. Furthermore, the conidiogenous cells lack denticles. The species appears very similar to the classic morphological concept of Humicola grisea, although the ‘germ pores’ are more obvious. Phylogenetically, Trichocladium gilmaniellae resides in a clade with T. asperum. The type species of Gilmaniella, G. humicola, is not a member of the Chaetomiaceae (Fig. 1). The epithet macrospora is already occupied in Trichocladium, namely T. macrospora P.M. Kirk, and a new name is therefore proposed.
Fig. 51. Trichocladium crispatum. Holotype and illustration no. 2022 made by Fuckel, kept in Conservatoire et Jardin botaniques de la Ville de Genève, Switzerland.
Fig. 52. *Trichocladium crispatum* (CBS 149.58, ex-epitype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 5 wk incubation. B. Part of the colony. C. A mature ascoma on OA, top view. D. A mature ascoma on OA, side view. E–F. Ascomata mounted in lactic acid. G. Structure of ascomatal wall in surface view. H. Lower part of a terminal ascomatal hair. I. Upper part of a terminal ascomatal hair. J. Asci. K. Ascospores. Scale bars: E–F = 100 μm; G–K = 10 μm.

REDEFINING *HUMICOLA SENSU STRICTO*
Fig. 53. *Trichocladium gilmaniellae* (CBS 388.75, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B. Hyphae, conidiophores and conidia. C–E. Conidia. Scale bars = 10 μm.
Trichocladium griseum (Traaen) X. Wei Wang & Houbraken, **comb. nov.** MycoBank MB824469. Fig. 54. Basionym: *Humicola grisea* Traaen, Nytt Mag. Naturvidensk 52: 34. 1914.

Micromorphology: Two types of asexual spores are observed in the culture on OA. Somatic hyphae hyaline, 1.2–3 μm wide. Conidiophores hyaline or subhyaline, usually pale brown below spores, unbranched, cylindrical, or swelling on the top, 2.5–50 μm long, 2–5 μm wide near top, sometimes lacking where the spores arising from an undifferentiated intercalary conidiogenous cell (a hyphal cell). *Conidia* single-celled, solitary, sometimes 2(–4) in chains or a few in clusters, olivaceous brown to dark olivaceous brown, smooth or slightly verruculose, globose or subglobose, (8–)12–16.5(–18) μm high, (7.5–)12–16(–17.5) μm wide. *Acremonium-like conidiophores* phialidic, formed laterally from hyphae, hyaline, unbranched, 9–21 μm long, 2–2.5 μm wide near the base. *Acremonium-like conidia* formed basipetally in chains, aseptate, obovoid, ellipsoidal, with a truncated base and a rounded apex, 2.5–3.5 × 2–2.5 μm.

Culture characteristics: Colonies on OA 42–48 mm diam after 7 d at 25 °C; edge entire; aerial mycelium pale olivaceous grey to mouse grey; texture floccose; reverse greenish black because of the immersed conidia and soluble pigment. Colonies on CMA similar to those on OA, 39–45 mm diam after 7 d at 25 °C. Colonies on MEA 41–47 mm diam after 7 d at 25 °C; edge entire; aerial mycelium olivaceous grey; texture floccose; reverse greenish black because of the immersed conidia and soluble pigment. Colonies on PCA 37–43 mm diam after 7 d at 25 °C; edge entire; obverse greyish sepia, olivaceous to greenish black; aerial mycelium sparse, grey white; reverse olivaceous black.

Material examined: China, Jilin, isolated from soil, Oct. 2009, T.Y. Zhang, CGMCC 3.13888. Germany, unknown substrate, unknown date, H.W. Wollenweber, CBS 217.34. Norway, isolated from soil, 1914, A.E. Traaen, MBT381347 (designated here as neotype, CBS H-23493, ex-neotype culture CBS 119.14 = ATCC 22724 = IMI 075664 = MUCL 8008).

Notes: Strain CBS 119.14 is designated here as the neotype of *H. grisea*. This culture was deposited by A.E. Traaen, who also described *H. grisea*. Two cultures were deposited, CBS 119.14 and ex-type of *H. fuscoatra*, CBS 118.14. A.E. Traaen (1914) didn’t designate a type in his paper, and CBS 119.14 is the only extant culture of this species from the original author. *Acremonium-like synanamorphs* were observed in the culture of CBS 119.14, although this structure was not mentioned in the original description of *H. grisea*. The formation of an *Acremonium-like synanamorph* is not a stable character and could explain the difference between the original description and our observations (Domsch et al. 2007).

Trichocladium heterothallicum (Yu Zhang & L. Cai) X. Wei Wang & Houbraken, **comb. nov.** MycoBank MB824470. Basionym: *Chaetomium heterothallicum* Yu Zhang & L. Cai, Fungal Biol. 121: 29. 2017.

Micromorphology: *Fide* Zhang et al. (2017a) Ascomata ostiolate, dark brown, immersed, covered by the aerial mycelium, spherical or nearly so, 160–260 μm diam. *Ascomatal wall brown*, composed of *textura angularis* or *irregularis*. *Ascomatal hairs* numerous, 4–5.5 μm wide near the base, slightly straight below, spirally coiled in the upper part, dark brown, unbranched, nearly smooth. *Asci* cylindrical, with 8 uniseriate ascospores, short-stalked, 60–75 × 7.5–9.5 μm. Ascospores light brown, globose or subglobose, 8.5–11 × 7–9 μm, without distinct germ pore. Heterothallic. *Chlamydospores* present, subhyaline, generally globose, 6–9 μm in diameter, produced in intercalary chains.

Culture characteristics: *Fide* Zhang et al. (2017a). Colonies up to 52 mm diam. on PDA after 6 d at 25 °C; aerial mycelium abundant, lanose, yellow; soluble pigment orange or absent; reverse yellowish or orange brown.

Notes: Comparison of the sequences from Zhang et al. (2017a) with our dataset revealed a close relationship with *T. amorphum* and the most closely related sexual species is *T. seminis-citrulli* (= *Ch. seminis-citrulli*). *Trichocladium heterothallicum* produces intercalary chlamydospores in chains or in clusters (Zhang et al. 2017a), as do *T. amorphum* and *T. seminis-citrulli*. *Trichocladium heterothallicum* produces cylindrical asci and subglobose ascospores; the asci of *T. seminis-citrulli* are clavate and the ascospores broad ovoid or broad pyriform (Fig. 55).

Trichocladium jilongense (Y.M. Wu & T.Y. Zhang) X. Wei Wang & Houbraken, **comb. nov.** MycoBank MB824471. Fig. 55. Basionym: *Humicola jilongensis* Y.M. Wu & T.Y. Zhang, Mycotaxon 121: 148. 2012.

Micromorphology: Somatic hyphae hyaline to brown, 1.5–3.5 μm wide. Conidiophores unbranched, septate with a hyaline and cylindrical basal cell, or aseptate pale brown, ellipsoidal to doliiform, sometimes reduced to intercalary conidiogenous loci in the hyphae, cylindrical, originating laterally or terminally from the hyphae, 0–9(–32) μm long. *Conidiogenous cell* pale brown, terminal on conidiophores or intercalary in hyphae, 3–6.5 μm diam. *Conidia* solitary, smooth, olivaceous brown, 1–2(–3) μm, pale brown, subglobose, brown, ellipsoidal, constricted at the septa, 10–28 × 9.5–15 μm.

Culture characteristics: Colonies on OA 31–37 mm diam after 7 d at 25 °C; edge entire; aerial mycelium thick, greyish white, forming 3–6 concentric and crenate rings; texture floccose; reverse cinnamon to dark brick. Colonies on CMA similar to those on OA, 31–37 mm diam after 7 d at 25 °C. Colonies on MEA 32–38 mm diam after 7 d at 25 °C; edge created; aerial mycelium pale vinaceous buff to smoke grey; texture cottony; reverse sepia to purple slate. Colonies on PCA 28–34 mm diam after 7 d at 25 °C; edge entire; aerial mycelium smoke grey to greenish olivaceous; texture floccose; reverse grey olivaceous.

Material examined: China, Tibet, isolated from mountain soil, Sept 2007, Y.M. Wu, culture ex-type HSAUP II 01485. Germany, isolated from straw-meal-amended field soil, 1984, G.J. Wirth & G. Wolf, culture CBS 195.87.

Notes: This species sometimes produces conidia laterally from conidiogenous loci that are intercalary in the hyphae, similar to what is observed in *Humicola* species. However, the somewhat differentiated conidiophores are easily observed in the culture.

Trichocladium nigrosporum (Schweinitz) X. Wei Wang & Houbraken, **comb. nov.** MycoBank MB824472. Fig. 56. Basionym: *Acremonium nigrosporum* Schweinitz, Trans. Amer. philos. Soc. 4: 283. 1832. Synonyms: *Monodictys nigrospora* (Schwein.) W. Gams Cephalosporium-artige Schimmelpilze: 214. 1971.

Micromorphology: *Somatic hyphae* hyaline, 1.5–4 μm wide. *Conidiophores* hyaline, cylindrical, unbranched, originating laterally or terminally from the hyphae, 2–3.5 μm wide, up to...
Fig. 54. Trichocladium griseum (CBS 119.14, ex-neotype culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B, D, G. Hyphae, conidiophores, thick-walled conidia and acremonium-like synanamorph. C, E, F. Hyphae, conidiophores and aleurioconidia. H–I. Hyphae, conidiophores and conidia of acremonium-like synanamorph. Scale bars = 10 μm.
18.5 μm long, sometimes reduced to intercalary conidiogenous loci in the hyphae. Conidia solitary, muriform, obovate, pyriform, ellipsoid, quadrangular or subglobose, constricted at the septa, (9–13.5–19.5(–22.5) × (9–)12.5–17(–19) μm, olivaceous brown to dark brown, sometimes with a basal cell paler than the others.

Culture characteristics: Colonies on OA 36–42 mm diam after 7 d at 25 °C; edge entire; observe greenish black; aerial mycelium pale mouse grey, sparse; reverse greenish black. Colonies on CMA similar to those on OA, 33–39 mm diam after 7 d at 25 °C. Colonies on MEA 36–42 mm diam after 7 d at 25 °C; edge entire; obverse iron grey; aerial mycelium pale mouse grey, sparse; reverse dark mouse grey to violaceous black. Colonies on PCA 32–38 mm diam after 7 d at 25 °C; edge entire; obverse olivaceous grey to iron grey; with aerial mycelium pale mouse grey, sparse, or absent; reverse olivaceous grey.

Material examined: The Netherlands, Utrecht, isolated from meal, unknown date, De Graaff, culture CBS 103.36. Spain, Galicia, isolated from forest soil, unknown date, M. Hernández-Restrepo, CBS 132489 = FMR 11941.

Notes: Traditionally, Monodictys was characterised by brown muriform conidia produced from monoblastic cylindrical conidiogenous cells (Ellis 1971). From a certain perspective, these can be considered a dictyoconidial analogue to the traditional concepts of the ameroconidial Humicola and phragmoconidial Trichocladium. Species with such dictyoconidia and ontogeny, originally classified in Monodictys, are now scattered over

Fig. 55. Trichocladium jilongensis (HSAUP II 071485, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 1 wk incubation. B–I. Hyphae, conidiophores and conidia. Scale bars = 10 μm.
Fig. 56. Trichocladium nigrosporum (CBS 103.36). A. Colonies from left to right on OA, CMA, MEA and PCA after 2 wk incubation. B–E. Hyphae, conidiophores and conidia. Scale bars = 10 μm.
different classes, i.e. Dothideomycetes, Sordariomycetes and Leotiomycetes (Tanaka et al. 2015, Hernández-Restrepo et al. 2017). Phylogenetic evidence based on partial LSU sequences (Hernández-Restrepo et al. 2017) assigned Monodictys nigro-sperma to the Chaetomiaceae with a close relationship to Tri-chocladium. The four-locus phylogenetic analysis in this study shows that this species belongs to Trichocladium. Typification of this species is deferred until representative material from the type locality (USA) is collected.

Trichocladium seminis-citrulli (Sergeeva) X. Wei Wang & Houbaken, comb. nov. MycoBank MB824473. Fig. 57. Basionym: Chaetomium seminis-citrulli Sergeeva, Not. Syst. Sect. Crypt. Inst. Bot. Acad. Sci. USSR 11: 113. 1956.

Micromorphology: Ascomata usually immersed in thick aerial hyphae, ostiolate, subglobose to broad ovate, mouse grey to dark mouse grey because of the ascomatal hairs, 120–230 μm high, 120–200 μm diam. Ascomatal wall translucent, ochreous to brown, composed of angular or irregular cells. Ascomatal hairs mainly arising around the ostiole, numerous, spirally coiled with flexuous lower part, 2.5–3.5 μm diam near the base. Ascii clavate or fusiform, with spore-bearing part 35–48 × 16.5–19 μm and stalks 11–25 μm long, with 8 biseriate ascospores, evanescent. Ascospores rust brown, broad ovoid or broad pyriform, bilaterally flattened, (11.5–)12–13.5(–15) × (9–)10–11(–12) × (7.5–)8–9.5(–10) μm, with an apical and often protuberant germ pore. Chlamydospore-like structures intercalary formed in chains or clusters, subglobose or ellipsoidal, hyaline, cylindrical, doliform, 5–12.5 μm diam.

Culture characteristics: Colonies on OA 40–46 mm diam after 7 d at 25 °C; edge entire or lobate; aerial mycelium thick, white to primrose or sulphur yellow, irregularly distributing; soluble pigment ochreous to fulvous; reverse ochreous to apricot. Colonies on CMA similar to those on OA, 35–41 mm diam after 7 d at 25 °C; aerial mycelium thicker than those on OA and covering the whole colonies. Colonies on MEA 35–41 mm diam after 7 d at 25 °C; edge lobate to radially striated; aerial mycelium thick, white; reverse orange caused by soluble pigment. Colonies on PCA 34–40 mm diam after 7 d at 25 °C; edge entire; aerial mycelium absent; soluble pigment; reverse uncoloured.

Material examined: Israel, isolated from dung of goat, unknown date, M. Drey-fuss, culture CBS 637.83. Turkmenistan, isolated from dung of fox, unknown date, K.S. Sergeeva, ex-isotype culture CBS 143.58 = IMI 074953 = VKM F-1952.

Notes: The asexual structures of this species were overlooked in the study by von Arx et al. (1986). They are very similar to those found in T. amorphum, confirming their close relationship; however, T. amorphum does not produce sexual spores (Fig. 45).

Trichocladium uniseriatum (Yu Zhang & L. Cai) X. Wei Wang & Houbaken, comb. nov. MycoBank MB824475. Basionym: Chaetomium uniseriatum Yu Zhang & L. Cai, Fungal Biol. 121: 33. 2017.

Micromorphology: Fide Zhang et al. (2017a). Ascomata ostiolate, dark grey to black, immersed and covered by the aerial mycelium, spherical or nearly so, 170–270 μm diam. Ascomatal wall brown, composed of textura angularis or irregularis. Ascomatal hairs slightly straight below, spirally coiled in the upper part, dark brown, unbranched, nearly smooth 2.5–3.5 μm wide near the base. Ascii cylindrical, with 8 uniseriate ascospores, short-stalked, 52–63 × 8–11 μm. Ascospores arranged uniseriately in the ascus, pale brown, ovate or nearly spherical, 8.5–13 × 8–11.5 × 7–9 μm, without distinct germ pore. Chlamydospores present, subhyaline, globose or subglobose, 9–11 μm diam, usually in intercalary chains.

Culture characteristics: Fide Zhang et al. (2017a). Colonies up to 50 mm diam on PDA after 6 d at 25 °C; aerial mycelium abundant, lanose, yellow; soluble pigment orange or absent; reverse yellow or orange brown.

Notes: Comparison of sequences from Zhang et al. (2017a) with our dataset revealed a close relationship between T. uniseriatum and T. heterothallicum. These species cluster closely with T. amorphum. Trichocladium heterothallicum and T. uniseriatum produce cylindrical ascii and intercalary chlamydospores in chains or clusters (Zhang et al. 2017a), providing the morphological evidence that both species are related and belong both to the redefined Trichocladium.

Doubted or excluded species

Although we have not completed a thorough revision of types of described species of Humicola and Trichocladium, we are able to provide some data and insight on the following species. The paper by De Bertoldi (1976) was one of the larger studies of Humicola, with thirteen new species described, with several species being distinguished by the then-exotic character of DNA base composition (GC %). The ex-types of several of these species are discussed below. Many Chinese Humicola species are not included here; most need to be re-collected from their type localities and cultured to reevaluate their phylogenetic relationships. Many older species remain to be reconsidered in modern terms.

Chaetomium tetrasporeum S. Hughes, Trans. Brit. Mycol. Soc. 29: 70. 1946. MycoBank 285138.

Notes: CBS 351.77 (ex wheat field soil, Germany) was originally identified as Chaetomium tetrasporeum and forms a unique lineage in Trichocladium (Figs 1, 2), sister to T. antarcticum and T. crispatum. This culture is sterile, as mentioned by von Arx et al. (1986), and the identity could not be confirmed using phenotypic characters. The ex-type strain of C. tetrasporeum (IMI 005639) was not included in our study, and the taxonomic position of this taxon therefore remains uncertain.

Humicola asteroides Udagawa & Y. Horie, Bulletin of the National Science Museum Tokyo 14: 528. 1971. MycoBank MB504753.

Notes: Based on ITS (GenBank MH444281) and rpb2 (GenBank MH444284) sequences from the ex-type culture CBS 561.71 (= ATCC 24018 = NHL 2453, isolated from Coriolus sp. in Papua New Guinea), this species is remote from the Chaetomiaceae, but closely related to some species of Melanospora and Sphaerodes. The status of this name should be reconsidered in future revisions of Ceratostomataceae, Melanosporales.

Humicola aurea De Bert., Canad. J. Bot. 54: 2757. 1976. MycoBank MB315239.

Notes: This species belongs to the Chaetomiaceae and shares the same ITS sequence (GenBank MH444277, from the ex-type culture CBS 461.76, isolated from nematode-infested soil in Italy)
Fig. 57. **Trichocladium seminis-citrulli** (CBS 143.58, ex-type culture). A. Colonies from left to right on OA, CMA, MEA and PCA after 5 wk incubation. B. Part of the colony. C. Mature ascocarps on OA, top view. D. Mature ascocarps on OA, side view. E–F. Ascocarps mounted in lactic acid. G. Terminal ascocarpic hairs. H. Structure of ascocarpial wall in surface view. I. Hyphae and chlamydospore-like structures on hyphae. J. Asci. K. Ascospores. Scale bars: E–F = 100 μm; G–K = 10 μm.
with the ex-type cultures of \textit{H. lutea}, \textit{H. repens} and \textit{H. piniforme} (see below). See notes under \textit{H. semispiralis}.

\textbf{Humicola brunnea var. africana} Fassat., Česká Mykol. 21: 84. 1967. MycoBank MB332023.

\textbf{Notes:} Our ITS sequence of the ex-type strain (CBS 402.67, CBS 402.67 = ATCC 22630 = CCF 986 GenBank MH494028) is 93 \% similar to \textit{Atrocalyx bambusae} (MFLU 11-0190, GenBank KX672149). This is an insufficient match to suggest a genus for this taxon, but its classification should be reconsidered in future studies of the family \textit{Lophiotremataceae}, \textit{Pleosporales}.

\textbf{Humicola glauca} De Bert., Canad. J. Bot. 54: 2757. 1976. MycoBank MB315242.

\textbf{Notes:} This species belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here, and is probably a synonym of \textit{H. semispiralis}, based on ITS (GenBank MH444273) and \textit{tub2} (GenBank MH444286) sequences from the ex-type culture CBS 462.76 (= MUCL 19429, isolated from nematode-infested soil in Italy). A \textit{rpb2} sequence is necessary to confirm this tentative synonymy. Identical ITS sequences were obtained from the ex-type cultures of \textit{H. nivea} and \textit{H. sardiniae}. See also notes under \textit{H. semispiralis} under Taxonomy.

\textbf{Humicola koreana} Hyang B. Lee & T.T.T. Nguyen, Fungal Diversity 78: 94. 2016. MycoBank MB814402.

\textbf{Notes:} \textit{Humicola koreana} produces typical micromematous conidia on denticle-like to cylindrical conidiogenous cells, similar to other \textit{Staphylotrichum} species (Li et al. 2016). Only LSU and ITS sequences are available in GenBank. Comparison of these sequences confirmed its morphological affinity \textit{Staphylotrichum}. Typical seta-like conidiophores were not observed in this species, and this might be because of the used growth medium, PDA. More morphological and phylogenetic research is needed to determine the position of \textit{H. koreana}.

\textbf{Humicola limonisporum} Z.F. Zhang & L. Cai, Persoonia 39: 15. 2017. MycoBank MB818248.

\textbf{Notes:} Comparison of the deposited sequences of \textit{H. limonisporum} with our sequence data set indicates that \textit{H. limonisporum} isn’t related to \textit{Humicola sensu stricto} as defined in this study (data not shown). The \textit{tub2} and ITS sequence data resolve \textit{H. limonisporum} at the root to the \textit{Staphylotrichum} clade. Based on the \textit{rpb2} sequence dataset, \textit{H. limonisporum} is located at the root of the superclade in which \textit{Staphylotrichum}, \textit{Mycothermus} and \textit{Remersonia} are located. The ascomata of \textit{H. limonisporum} were described to have an “inconspicuous neck” and were covered by undulate to spirally coiled terminal hairs. This ascomata type is not observed in \textit{Staphylotrichum}. The original description of \textit{H. limonisporum} did not give any information about the conidia ontology. More research is needed to determine the phylogenetic placement of \textit{H. limonisporum}.

\textbf{Humicola lutea} De Bert., Canad. J. Bot. 54: 2759. 1976. MycoBank MB315246.

\textbf{Notes:} This species belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here, and is a close relative of \textit{H. semispiralis} based on the ITS (GenBank MH444276) and \textit{tub2} (GenBank MH444288) sequences from the ex-type culture CBS 460.76 (isolated from soil in a Quercus forest in Italy). ITS sequences are identical to those of \textit{H. aurea}, \textit{H. repens} and \textit{H. piniforme}. See notes for \textit{H. semispiralis} under Taxonomy.

\textbf{Humicola nigrescens} Omvik, Mycologia 47: 748. 1955. MycoBank MB298523.

\textbf{Notes:} Based on the ITS (GenBank MH444280) and \textit{rpb2} (GenBank MH444283) sequences from the ex-type culture CBS 208.85 (= ATCC 22714 = IMI 045938 = MUCL 21867, isolated from soil in potato field in Norway), this species belongs to the \textit{Chaetomiaceae} and is probably a synonym of \textit{Trichocladium griseum}. A \textit{tub2} sequence is necessary to confirm this synonymy.

\textbf{Humicola nivea} De Bert., Canad. J. Bot. 54: 2766. 1976. MycoBank MB315248.

\textbf{Notes:} The ex-type culture CBS 469.76 (= MUCL 19436, isolated from the gastroenteric cavity of \textit{Talitrus saltator} in Italy) shares the same ITS sequence (GenBank MH444274) as \textit{H. semispiralis} and the ex-type cultures of \textit{H. glauca} and \textit{H. sardiniae}, suggesting that this species belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here. Sequences of \textit{tub2} and \textit{rpb2} are needed for a conclusive determination of synonymy with \textit{H. semispiralis} (see notes under Taxonomy).

\textbf{Humicola parvispora} Gambogi, G. bot. ital., n.s. 103: 38. 1969. MycoBank MB332028.

\textbf{Notes:} Our ITS sequence of the ex-type strain of \textit{H. parvispora} (CBS 953.68 = ATCC 22715 = MUCL 11820, isolated from forest soil in Italy), but shows that this fungus belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here. The ITS sequence is identical to those of \textit{H. aurea}, \textit{H. lutea} and \textit{H. repens}. More work is needed to determine the status of this name. See also notes under \textit{H. semispiralis} in the Taxonomy section.

\textbf{Humicola piriformis} De Bert., Canad. J. Bot. 54: 2759. 1976. MycoBank MB315249.

\textbf{Notes:} Only the ITS sequence (GenBank MH444278) is available from the ex-type culture CBS 470.76 (isolated from uncultivated soil in Italy), but shows that this fungus belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here. The ITS sequence is identical to those of \textit{H. aurea}, \textit{H. lutea} and \textit{H. repens}. More work is needed to determine the status of this name. See also notes under \textit{H. semispiralis} in the Taxonomy section.

\textbf{Humicola repens} De Bert., Canad. J. Bot. 54: 2761. 1976. MycoBank MB315250.

\textbf{Notes:} This species belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here, and is sister to \textit{H. lutea}, mentioned above, based on the ITS (GenBank MH444275) and \textit{tub2} (GenBank MH444287) sequences from the ex-type culture CBS 458.76 (isolated from wheat field soil in Italy). The ITS sequence is identical to those of \textit{H. aurea}, \textit{H. lutea} and \textit{H. piniforme}. \textit{Tub2} sequences showed that \textit{H. repens} is probably a separate species from \textit{H. lutea}. See notes under \textit{H. semispiralis} under Taxonomy.

\textbf{Humicola sardiniae} De Bert., Canad. J. Bot. 54: 2761. 1976. MycoBank MB315252.

\textbf{Notes:} This species belongs to the \textit{Chaetomiaceae} and the revised concept of \textit{Humicola} adopted here, and is suggested to be
a synonym of *H. semispiralis*, the same as *H. glauca* mentioned above, based on the ITS (GenBank MH444272) and tub2 (GenBank MH444285) sequences from the ex-type culture CBS 456.76 (= MUCL 19430, isolated from vineyard soil in Italy). A *rpb2* sequence is awaited for the final determination of synonymy. The ex-type strains of *H. glauca* and *H. nivea* have identical ITS sequences to *H. sardinae*. See also notes under *H. semispiralis*.

Humicola veronae De Bert., Canad. J. Bot. 54: 2766. 1976. MycoBank MB315255.

Notes: Only an ITS sequence (GenBank MH444279) is available now from the ex-type culture CBS 459.76 (= MUCL 19434, isolated from soil from Quercus forest in Italy), suggesting that this species belongs to the *Chaetomiaceae* and the revised concept of *Trichocladium* adopted here, where it is in the same subclade with *T. griseum*. Additional sequences and morphological analysis are needed to confirm a robust concept for this species.

Microdochiaceae (Ts. Watan.) de Hoog & Herm.-Nijh. Stud. Mycol. 15: 215. 1977. MycoBank MB317670.

Basionym: *Humicola tainanensis* Ts. Watan., Trans. Mycol. Soc. Japan 16: 168. 1975.

Notes: The phylogenetic study of Hernández-Restrepo et al. (2016) confirmed the classification of this species in *Microdochiaceae* (Microdochiobacteriales).

Staphylotrichum indicum Neeta N Nair, Swapna S & Lini K Mathew, J. Chem. Pharm. Res. 7: 1. 2015. MycoBank MB815841.

Notes: The production of thin-walled conidiophores with ornamented conidia was reported on PDA in the original description. The ex-type strains of *H. glauca* and *H. nivea* have identical ITS sequences to *H. sardinae*. See also notes under *H. semispiralis*.

Staphylotrichum subramanianii Udagawa, Tropical Mycology: 150. 1997. MycoBank MB442384.

Notes: This species differs significantly from the other *Staphylotrichum* species by the production of ornamented conidia with several spiral bands (Udagawa 1997). Sequence data are needed to compare this species with the other species in the genus, and the morphology on PCA remained to be studied.

Staphylotrichum botryotrichum like conidia are thick-walled and have an irregularly encrusted surface (Domsch et al. 2007). In *B. piluliferum*, these conidia are produced on branched conidiophores terminating or intermixed with sterile setae (Wang et al. 2016b: Figs 10, 11). The combination of these structures is not observed in any species of *Humicola* and related genera. The term “botryotrichum-like” is therefore not useful to describe the thick-walled spores of *Humicola* and morphologically similar genera in *Chaetomiaceae*.

Based on the discussion in the “Introduction”, the thick-walled spores produced by all species of the redefined genera *Humicola*, *Trichocladium* and *Staphylotrichum* in this study could be considered conidia. In *Humicola*, lateral conidia that arise from a hyphal cell (intercalary conidiogenous cell) are common in each of the investigated species (Fig. 58A–E), which are distinguishable from those in the other genera (Fig. 58 F–N). Such lateral conidia can be used as the diagnostic structures for *Humicola*. Occasionally, *Humicola* conidia can also be produced terminally on the short branches of hyphae which could be interpreted as minimally-differentiated (i.e. micromatous) conidiophores. These short branches show no difference from vegetative hyphae. We can also find spores that are morphologically almost identical to the lateral ones but are intercalary in hyaline vegetative hyphae (such as those in *H.atrobrunnea*, Fig. 6B–C), fitting the usual concept of chlamydospores. Similar conidia are found in several genera and species, including *Trichocladium*, *Staphylotrichum* and *Botryotrichum verrucosum* (= *Thermomyces verrucosum*), where the distinction from the usual concept of chlamydospores is usually clearer. In *Trichocladium*, conidium production is mainly present in “subclade 1” (Figs 1, 2) and this subclade includes the type species *T. asperum*. *Trichocladium* conidiophores are usually pigmented, at least at the upper part, and their conidia are more pigmented and have thicker cell walls than the conidia of *Humicola*. All the *Staphylotrichum* species investigated in this study can also produce conidia on denticule-like conidiogenous cells that arise directly from hyphae (micromatous) in addition to their more

DISCUSSION

The majority of taxonomic studies of *Chaetomiaceae* focus on sexually reproducing species (von Arx et al. 1986, 1988, Wang et al. 2016b, Zhang et al. 2017a,b). In this study, we focused on integrating hyphomycete genera into the taxonomic outline of this important fungal family. The most important contribution is the linkage of these asexual species to their sexual relatives, more detailed study of the asexual states accompanying perithelial states, and the delimitation of *Humicola*, *Staphylotrichum* and *Trichocladium* as genera including both sexual and asexual species. This is a first step to establish monophyletic concepts for *Humicola* and *Trichocladium* as defined by their type species. The taxonomic positions of other species traditionally classified in *Humicola* and *Trichocladium* but phylogenetically placed outside *Chaetomiaceae* are in a preliminary state and should be a subject for future research; a few names known not to belong to *Chaetomiaceae* are noted above. In addition to these hyphomycetes that lack conidiophores or have micromatous conidiophores, we also studied species of *Botryotrichum*, *Staphylococcum* and *Gilmanniella*, which have similar conidia but more differentiated, branched conidiophores.

Asexual spores in *Humicola* and related genera are produced on vegetative hyphae or on minimally differentiated conidiophores and are usually thick-walled. In the past, several names were used for the description of these thick-walled spores, such as chlamydospores and aleurioconidia (Hamleton et al. 2005), botryotrichum-like conidia (Hawksworth 1975, Decock & Hennebert 1997) and conidia (Wu & Zhang 2012, Hernández-Restrepo et al. 2017). Typical “botryotrichum-like” conidia are thick-walled and have an irregularly encrusted surface (Domsch et al. 2007). In *B. piluliferum*, these conidia are produced on branched conidiophores terminating or intermixed with sterile setae (Wang et al. 2016b: Figs 10, 11). The combination of these structures is not observed in any species of *Humicola* and related genera. The term “botryotrichum-like” is therefore not useful to describe the thick-walled spores of *Humicola* and morphologically similar genera in *Chaetomiaceae*.

Based on the discussion in the “Introduction”, the thick-walled spores produced by all species of the redefined genera *Humicola*, *Trichocladium* and *Staphylotrichum* in this study could be considered conidia. In *Humicola*, lateral conidia that arise from a hyphal cell (intercalary conidiogenous cell) are common in each of the investigated species (Fig. 58A–E), which are distinguishable from those in the other genera (Fig. 58 F–N). Such lateral conidia can be used as the diagnostic structures for *Humicola*. Occasionally, *Humicola* conidia can also be produced terminally on the short branches of hyphae which could be interpreted as minimally-differentiated (i.e. micromatous) conidiophores. These short branches show no difference from vegetative hyphae. We can also find spores that are morphologically almost identical to the lateral ones but are intercalary in hyaline vegetative hyphae (such as those in *H.atrobrunnea*, Fig. 6B–C), fitting the usual concept of chlamydospores. Similar conidia are found in several genera and species, including *Trichocladium*, *Staphylotrichum* and *Botryotrichum verrucosum* (= *Thermomyces verrucosum*), where the distinction from the usual concept of chlamydospores is usually clearer. In *Trichocladium*, conidium production is mainly present in “subclade 1” (Figs 1, 2) and this subclade includes the type species *T. asperum*. *Trichocladium* conidiophores are usually pigmented, at least at the upper part, and their conidia are more pigmented and have thicker cell walls than the conidia of *Humicola*. All the *Staphylotrichum* species investigated in this study can also produce conidia on denticule-like conidiogenous cells that arise directly from hyphae (micromatous) in addition to their more
conspicuous conidia on macronematous conidiophores. Both kinds of conidia are almost identical in shape and size (Figs 35–42, 58F–I). These conidia are usually hyaline or nearly so with relatively thin cell walls, morphologically resembling the conidia of *Humicola*. *Staphylotrichum* conidia easily secede from the conidiogenous cells that produce them, while conidia of *Humicola* often do not.

Ascospore morphology is a diagnostic character of sexual *Humicola* species. Ascospores of *Humicola* are limoniform to quadrangular, bilaterally flattened, and have one apical germ pore. They resemble those of *Chaetomium sensu stricto* and of one subclade in *Collariella* (Wang et al. 2016b). No species in the latter genus produces conidia as do the species in *Humicola*.

Furthermore, the limoniform ascospores of *Collariella* species are produced in ascomata with a darkened collar around the ostiolar pore. Perhaps all *Humicola* species are genetically capable of producing both conidia and ascospores. However, some may easily lose their sexual structures after long preservation, may require specific culture conditions, or may be heterothallic, as observed in other genera of Chaetomiaceae (e.g. *Myceliophthora*, *Thielavia* and *Trichocladium*).

Acremonium-like synanamorphs were reported in a few *Chaetomium* species, such as *C. elatum* and *C. rectangulare* (Wang et al. 2016a). This study confirmed the occurrence of an acremonium-like morph in several *Humicola* and *Trichocladium* species (e.g. *H. floriciformis*, *H. pulvericola*, *H. subspiralis*,...
T. griseum). These acremonium-like structures are usually produced together with thick-walled conidia. There is evidence that some *Humicola* species are able to produce ascospores together with thick-walled conidia and acremonium-like conidia, for example, *H. floriformis* (= *Chaetomium floriforme*) (Gené & Guarro 1996). However, we failed to find ascomata in the degenerated cultures of this species. The acremonium-like morphs are phylogenetically scattered in *Chaetomiaceae* and are not an informative character for delimiting clades. Often sparsely produced in culture and hidden by ascomata or more conspicuous pigmented conidia, they are difficult to observe and are often missed. We found the inclined coverglass culturing method helpful for observing those structures. But the lack of diagnostic characters associated with this simple morph, combined with their sparseness, makes them of limited value as a taxonomic character.

The connection of asexual *Staphylotrichum* species to the sexual species *S. longicolleum* (= *Chaetomium longicollum*) is clearly supported by our morphological and molecular data. The micronematously produced conidia (Fig. 56F) are formed in all investigated sexual *Staphylotrichum* species together with ascomata and ascospores (Figs 35–42). On the other hand, the typical macronematous conidiophores were observed together with sexual structures in one strain of *S. longicolleum* (CBS 100950, Fig. 40C–D). Another noteworthy observation is that the agar medium influences the mode of conidia formation. For example, cultures on PCA produce conidia on typical conidiophores (macronematous), while cultures on OA or CMA often produce numerous micronematous conidia mixed with macronematous ones. The morphological similarity of thick-walled conidia of *Humicola* and micronematous conidia of *Staphylotrichum* can easily result in confusion. Recently, *Humicola koreana* was described without reference to *Staphylotrichum* (Li et al. 2016). Comparison of LSU and ITS sequences deposited in GenBank indicated that this species belongs to *Staphylotrichum* instead of *Humicola*.

Our concept of *Trichocladium* includes a high degree of morphological diversity. Four well-supported subclades occur in *Trichocladium* (Figs 1, 2). There is no morphological rationale for splitting the subclades into separate genera in the *Trichocladium* lineage. Subclade 1 includes species (including the type of the genus, *T. asperum*) that produce thick-walled conidia and these can have a large morphological diversity (Fig. 58J–K). The other three subclades contain species that reproduce sexually. The hyaline asexual structures observed in *T. amorpha* (Fig. 45) and *T. seminis-citrulli* (Fig. 55) might be the undeveloped ascomata. Species with cylindrical asci and ovoid ascospores are found in the subclades 2 and 4, and this character links these two subclades. The phylogenetic distance between the different subclades is low, and this also supports our decision to treat these subclades as one genus.

The redefined concept of *Botryotrichum* (Wang et al. 2016b) results in another example of a group that exhibits highly diverse morphology. *Botryotrichum* included asexual species such as *B. piluliferum*, *B. atrogriseum*; sexual species producing ostiolate ascomata such as *B. murorum* (= *Chaetomium murorum*) and sexual species producing non-ostiolate ascomata such as *B. spiriotrichum* (= *Emilhuemelia spiriotricha*). In this study, the asexual species *B. verrucosum* (= *Thermomyces verrucosus*) was added to *Botryotrichum*. This species produces conidiophores and conidia that are distinct from other *Botryotrichum* species. Six species were originally described in *Thermomyces*: *T. dupontii*, *T. ibadanensis*, *T. lanuginosus*, *T. piniformis*, *T. stellatus* and *T. verrucosus* (many of these epithets also classified by some authors in *Humicola*, see Index Fungorum; http://www.indexfungorum.org, Aug. 2015). Later phylogenetic analyses revealed that *Thermomyces* is polyphyletic. Houbraken & Samson (2011) showed a close relationship between *Talaromyces thermophilus* (= *T. dupontii*) and *T. lanuginosus* (*Trichocomaceae*, *Eurotiales*), the type species of the genus. *Thermomyces ibadanensis* shared ITS sequences with *T. lanuginosus* and might be a synonym of the latter species. *Thermomyces stellatus* belongs to the *Microascaceae* (*Microascales*) and the taxonomic position of *T. piniformis* is unclear (Houbraken et al. 2014).

Correct identification of a strain is an important step in biotechnological research. The name *Mycothermus thermophilus* was introduced in 2015 (Nativig et al.), and *Humicola insolens* and *Scytalidium thermophilum* are commonly used synonyms of that species. This species attracts attention in biotechnology because of its capability to produce thermostable enzymes and its positive effect in *Agaricus bisporus* cultivation. The older names *H. insolens* and *S. thermophilum* are still frequently used in publications (e.g. Carneil et al. 2017, Meleiro et al. 2017, 2018), leading to confusion among researchers unaware that they are actually working with the organism (e.g. Meleiro et al. 2017, 2018). Furthermore, identification of *My. thermophilus* isolates as *H. insolens* or *S. thermophilum* incorrectly suggest a close relationship with other *Humicola* or *Scytalidium* (*Leotiomycetes*) species, which could lead to incorrect assumptions in comparative studies. Besides using the correct name, identification can also be hampered because of the use of an insufficiently precise identification marker. Although ITS is the main fungal barcode, different *Chaetomiaceae* species can share the same ITS sequence (e.g. *Trichocladium asperum* and *T. griseum*, Hambleton et al. 2005) and this locus is therefore not always suitable for species identification (Schoch et al. 2012, Wang et al. 2016a). Wang et al. (2016a) evaluated six loci (LSU, ITS, *tub2, rpb1, rpb2, tef1*) for species of the *Chaetomium globosum* complex, and the *tub2* regions provided the best species resolution (Wang et al. 2016b). Identification using partial *tub2* sequences (600–700 bp; primer pairs T1 & TUB4Rd) is recommended here as the alternative identification marker for all *Chaetomiaceae*. Besides having a good species resolution, this gene also has a high PCR success rate, and public sequence databases (GenBank) are well stocked with beta-tubulin reference sequences. For phylogenetic studies, we recommend sequencing and analysing at least a part of the *rpb2* and *tub2* region. In our experience, the phylogenetic signal in ITS and LSU is low, and these genes are less appropriate for delimiting genera (and species) in *Chaetomiaceae*. Selecting reliable reference sequences is also very important. For example, *Humicola koreana* was described using ITS and LSU sequencing and compared only with *Humicola* species (Li et al. 2016). However, this species belongs to *Staphylotrichum* based on our phylogenetic analyses (data not shown).

Species of *Chaetomiaceae* reported to produce the carcinogenic mycotoxin sterigmatocystin include *Botryotrichum piluliferum*, *Chaetomium cellulolyticum*, *C. longicollum*, *C. malaysiense*, *C. utagawae*, *C. virescens* and *Humicola fuscoatra* (Rank et al. 2011). The taxonomy of the *Chaetomiaceae* changed significantly in recent years (Wang et al. 2016a,b).
Using the latest taxonomic knowledge, none of the reported sterigmatocystin producers belongs to Chaetomium sensu stricto. Sterigmatocystin producing species in Chaetomiaceae are distributed over four genera and seven species: Botryotrichum piluliferum (= Ch. piluliferum), Collariella virescens (= Ch. cellulolyticum, Ch. virescens), Humicola fuscoatra, H. malaysiensis (= Ch. malaysiensis), H. udagawae (= Ch. udagawae), Staphylotrichum longicoleum (= Ch. longicoleum) and S. tortipilum (CBS 103.79, listed by Rank et al. 2011 under Ch. longicoleum). Based on a poorly understood Chaetomiaceae taxonomy, Rank et al. (2011) speculated that the sterigmatocystin biosynthetic pathway in the Chaetomiaceae evolved independently two times. Based on our updated taxonomy and the phylogenetic relationship among the sterigmatocystin producing species (Figs 1, 2), it is tempting to suggest that the pathway evolved at least four times independently. Alternatively, all Chaetomiaceae may have part of or the whole sterigmatocystin gene cluster, i.e. the gene cluster is vertically inherited (Rank et al. 2011). The immediate precursor for aflatoxin, O-methylsterigmatocystin, is produced by species of Humicola, Collariella and Staphylotrichum, which indicates the potential of Chaetomiaceae to produce aflatoxin. Future genome sequencing combined with extrolite analysis of a large set of Chaetomiaceae species will give insight into the distribution and origin of the sterigmatocystin pathway and the potential of each of the Chaetomiaceae species to produce aflatoxin.

The delimitation of the five genera in this study contributes to an integrated phylogeny of the family Chaetomiaceae. The eighteen monophyletic genera currently accepted in the Chaetomiaceae are statistically supported in the rpb2 and the four-locus phylogeny (Figs 1, 2). Trichocladium is a sister genus of Ovatospora and Chaetomium, while Myceliophthora and Dichotomopilus are closely related to each other. The thermophilic genera Mycothermus and Remersonia are phylogenetically related. Further studies are needed to establish a comprehensive modern classification of the Chaetomiaceae and to give better insight into the evolutionary relationships among the species and genera in the family.

ACKNOWLEDGEMENTS
This study was financially supported by the National Natural Science Foundation of China (Project No. 31770021) and the National Key R&D Program of China: Research on the key technology of supplying high-quality forage and recycling of cultivation and husbandry (Project No. 2017YFD0502100). Isolation and taxonomic study of strains from house dust was supported by grants to K. Seifert and R.A. Samson from the Alfred P. Sloan Foundation Program on the Microbiology of the Built Environment, from this project; Dr. K. Mwange and Mr Ed Whitfield isolated two of the species described here. The authors are grateful to Dr Konstanze Bensch for her kind help in naming the novel taxa and in nomenclature issues. We acknowledge the fungal collection at the Westerdijk Fungal Biodiversity Institute, the curator Gerard Verkley and the technical staff Trix Merx, Diana Vos, Yda Vlug and Arien van Iperen for providing strains from the culture collection, for their help in the loan of herbarium specimens and for the deposit of herbarium material, and Mr. Gerry Louis-Seize for sequencing the ITS of De Bertoldi’s species. Dr Yu Guang Zhou (CGMCC, China) is acknowledged for providing some Chinese cultures. We thank New York Botanical Garden Herbarium for the loan of the holotypes and the Conservatoire et Jardin Botaniques de la Ville de Genève for the permission to reproduce Fückel’s illustration of Chaetomium crispatum. We also thank Dr Alberto Miguel Stchigel Glikman for the specimens sent for study. The first author would like to thank Dr Adrian Carter, Dr Ewald Groenewald, Dr Marcelo Sandoval and Dr Margarita Ines Hernández-Restrepo for their valuable suggestions during this study.

REFERENCES
Ames LM (1963). A monograph of the Chaetomiaceae. U.S. Army Research and Development. Series 2.
Barron GL (1964). A new genus of the Hypomyces from soil. Mycologia 56: 514–518.
Bensch K, Groenewald JZ, Djiksterhuis, et al. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Daldiniaeciales, Capnodiales). Studies in Mycology 72: 1–401.
De Beer ZW, Seifert KA, Wingfield MJ (2013). A nomenclator for ophistomatoxigenes genera and species in the Ophistomatales and Microascales. Ophistomatoxigenes fungi: Expanding Frontiers. In: CBS Biodiversity Series, 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht: 261–268.5.
De Bertoldi M (1976). New species of Humicola: an approach to genetic and biochemical classification. Canadian Journal of Botany 54: 2755–2768.
Betancourt O, Zoror L, Senn C (2013). Isolation of filamentous fungi from haircoat cats without skin lesions in Temuco, Chile. Revista Científica- facultad de Ciencias Veterinarias 23: 380–387.
Bums N, Arthur I, Leung M, et al. (2015). Humicola sp. as a cause of peritoneal dialysis-associated peritonitis. Journal of Clinical Microbiology 53: 3081–3085.
Carniel A, Valoni É, Nicomedes Jr Jr., et al. (2017). Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry 59 (Part A): 84–90.
Carter A (1982). A taxonomic study of the ascomycete genus Chaetomium Kunze. PhD thesis. Department of Botany, University of Toronto, Toronto, Ontario.
Chiwers AH (1912). Preliminary diagnoses of new species of Chaetomium. Proceedings of the American Academy of Arts and Sciences 48: 83–88.
Clements FE, Shear CL (1931). Genera of fungi. HW Wilson Company, New York.
Cooney DG, Emerson R (1964). Thermophilic fungi: An account of their biology, activities and classification. W.H. Freeman & Co., San Francisco and London.
Crous PW, Verkley GJJM, Groenewald JZ, et al. (2009). Fungal biodiversity. In: CBS Laboratory Manual Series, 1. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 1–269.
Daniels J (1961). Chaetomium piluliferum sp. nov., the perfect state of Botryotrichum piluliferum. Transactions of the British Mycological Society 44: 79–86.
Decock C, Hennebert GL (1997). A new species of Chaetomium from Ecuador. Mycological Research 101: 309–310.
Domsch KH, Gams W, Anderson T-H (2007). Compendium of soil fungi. IHW-Verlag, Eching, Germany.
Du YL, Shi PJ, Huang HQ, et al. (2013). Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresource Technology 130: 161–167.
Ellis MB (1971). Demataceous hyphomycetes. Commonwealth Mycological Institute, Kew, UK.
Fergus CL (1964). Thermophilic and thermoditerant molds and actinomycetes of mushroom compost during peak heating. Mycologia 56: 267–284.
Gams W (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). Gustav Fisher Verlag, Germany.
Gené J, Guaro J (1996). A new Chaetomium from Thailand. Mycological Research 100: 1005–1009.
Ghatora SK, Chadha BS, Saini HS, et al. (2006). Diversity of plant cell wall esterases in thermophilic and thermoditerant fungi. Journal of Biotechnology 126: 434–445.
Goh T-K, Hyde KD (1999). A synopsis of Trichocladium species, based on the literature. Fungal Diversity 2: 101–118.
Greif MD, Stichgel AM, Huhndorf SM (2009). A re-evaluation of genus Chaetomium based on molecular and morphological characters. Mycologia 101: 554–564.
Groenewald JZ, Nakashima C, Nishikawa J, et al. (2013). Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115–170.
Hambledon S, Nickerson NL, Seifert KA (2005). Leuhumicola, a new genus of heat-resistant hyphomycetes. Studies in Mycology 53: 29–52.
Hanlin RT (1987). Beniowskia and its synonym Clathrotrichum. Mycologia 28: 219–231.
Harz CO (1971). Einige neue Hyphomyceten. Bulletin de la Société Impériale de Naturalistes de Moscou 44: 88–147.
Hawksworth DL (1975). Farlowia, a new genus in the Chaetomiaceae. Persoonia 8: 167–185.
Hernández-Restrepo M, Gené J, Castañeda-Ruiz RF, et al. (2017). Phylogeny of saprobic microfungi from Southern Europe. Studies in Mycology 86: 53–97.
Hernández-Restrepo M, Groenewald JZ, Crous PW (2016). Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idrisella. Persoonia 36: 57–82.
Houbraken J, Samson RA (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70: 1–51.
Houbraken J, de Vries RP, Samson RA (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology 86: 199–249.
Hughes SJ (1946). An undescribed species of Chaetomium with four-spored asc. Transactions of the British Mycological Society 29: 70–73.
Hughes SJ (1952). Trichocladium Harz. Transactions of the British Mycological Society 35: 152–157.
Jiang YL, Wu YM, Xu J, et al. (2016). Four new Humicola species from soil in China. Mycotaxon 131: 269–275.
Kawato M, Shimbou R (1959). On Streptomycyes herbaricolor, nov. sp., supple- ment: a simple technique for the microscopic observation. Memoirs of Osaka University the Liberal Arts and Education. Series B. Natural Sciences 8: 114–119.
Kendrick B (1971). Taxonomy of Fungi Imperfecti. University of Toronto Press, Toronto, Canada.
Kirk PM, Cannon PF, Minter DW, et al. (2001). Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed. CAB, UK.
Kita T, Nishi K, Fujimura M, et al. (2003). A case of hypersensitivity pneumonitis caused by Humicola fuscotoa. Respiratory 8: 95–96.
Ko WH, Yang CH, Lin MJ, et al. (2007). Humicola philipomum sp. nov. from soil with potential for biological control of plant diseases. Botanical Studies 52: 197–202.
Lang JJ, Hu J, Ran W, et al. (2012). Control of cotton Verticilium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biology and Fertility of Soils 48: 191–203.
Li GJ, Hyde KD, Zhao RL, et al. (2016). Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78: 1–237.
Mehrotra MD (1964). A new species of Beniowksi from India. Sydowia 17: 148–150.
Mejia EJ, Loveridge ST, Stepan G, et al. (2014). Study of marine natural products including resorcyclic acid lactones from Humicola fuscotoa that reactivate latent HIV-1 expression in an in vitro model of central memory CD4+ T cells. Journal of Natural Products 77: 618–624.
Meleiro LP, Carli S, Fonseca-Maldonado R, et al. (2018). Oeverexpression of a cellulobiose-glucose-halotolerant endoglucanase from Scytalidium thermophilum. Applied Biochemistry and Biotechnology 185: 316–333.
Meleiro LP, Salgado JCS, Maldonado RF, et al. (2017). Engineering the GH1 3-glucosidase from Humicola insolens: insights on the stimulation of activity by glucose and xylose. PLoS One 12: e0182554.
Meyer JA, Lanneau C (1997). Deux nouvelles especes de Chaetomium de sols Africains. Bulletin Trimestriel de la Societe Mycologique France 83: 318–323.
Miller AN, Huhndorf SM (2005). Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Molecular phylogenetics and Evolution 35: 76–70.
Mouchacca J (1997). Thermophilic fungi: biodiversity and taxonomic status. Cryptogamie Mycologie 18: 19–69.
Nair NN, Swapan S, Mathew LK (2015). Addition of new Staphylotrichicum indicum species in fungal diversity of aeromyco from Thalak Hospital, Thiruvalla, Pathanamthitta district of Kerala, India. Journal of Chemical and Pharmaceutical Research 7: 1–3.
Nahig DO, Taylor JW, Tsang A, et al. (2015). Mycothermus thermophilus gen. et comb. nov., a new home for the thermophilic mycophyllum Thielaulia thermo- phila [Torula thermophila, Mycologia 107: 319–327.
Nicoll RM, Russo A (1974). Le genre Humicola Traen et les genres voisins (Hypomycetes). Nova Hedwigia 25: 737–789.
Nonaka K, Miyazaki H, Iwatsuki M, et al. (2012). Staphylotrichum boninense, a new hypomyctome (Chaetomiaceae) from soils in the Bonin Islands, Japan. Mycoscience 53: 312–316.
Nugent LK, Sanguivich E, Shanthopp H, et al. (2006). A revised method for the observation of condigenous structures in fungi. Mycologist 20: 111–114.
Nylander JAA (2004). MrModeltest v. 2. Programme distributed by the author. Evolutionary Biology Centre, Uppsala University.
O’Donnell K (1993). Fusarium and its near relatives. In: The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics (Reynolds R, Taylor JW, eds). CABI: UK: 225–233.
O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonhomologous. Molecular Phylogenetics and Evolution 7: 103–116.
Ogawa H, Fujimura M, Tofuku Y (2002). Isolated chronic cough with spumona eosinophilia caused by Humicola fuscsotoa antigen: the importance of environmental survey for fungus as an etologic agent. Journal of Asthma 39: 331–336.
Olmv K (1955). Two new species of Chaetomium and one new Humicola species. Mycologia 47: 748–757.
Pugh GJF, Blakeman JP, Morgan-Jones G (2003). Thermomyces venosus sp. nov. and T. lanuginosus. Transactions of the British Mycological Society 47: 85–121.
Rambaut A (2009). FigTree v. 1.3.1. Computer program and documentation distributed by the author at. http://tree.bio.ed.ac.uk/software/.
Rank C, Nielsen KF, Larsen TO, et al. (2011). Distribution of sterigmatocystin in filamentous fungi. Fungal Biology 115: 406–420.
Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey, UK.
Salles BC, Mederros RG, Biao SN, et al. (2005). Effect of cellulase-free xylanases from Acrophilohoria naniana and Humincola griesa var. thermoidea on eucalyptus Kraft pulp. Process Biochemistry 40: 343–349.
Schoch CL, Seifert K, Huhndorf S, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246.
Seifert K, Morgan-Jones G, Gams W, et al. (2011). The genera of Hyphomycetes. In: CBS Biodiversity Series, 9. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
Seifert KA, Samson RA, Broekhout T, et al. (1997). Remersonia, a new genus for Stibellina thermophilum, a thermophilic mould from compost. Canadian Journal of Botany 75: 1158–1165.
Souza FHM, Innocenties RF, Warda JR, et al. (2013). Glucose and xylose stimulation of a β-glucosidase from the thermophilic fungus Humicola insolens: A kinetic and biophysical study. Journal of Molecular Catalysis B: Enzymatic 94: 119–128.
Stichig AM, Guarro J, Crowe MW (2003). Aiposordaria antarctica and Thielaviaantarctica, two new ascomycetes from Antarctica. Mycologia 95: 1218–1226.
Stratmsa G, Samson A (1993). Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycological Research 97: 321–328.
Sung GH, Sung JM, Hywel-Jones NL, et al. (2007). Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204–1223.
Tanaka M, Kojima K, Stecher G, Peterson D, et al. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.
Tanaka K, Hirayama K, Yonezawa H, et al. (2015). Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136.
Tiscornia S, Segal C, Bettucci L (2009). Composition and characterization of fungal communities from different composted materials. Cryptogamie Mycologie 30: 363–375.
Traen AE (1914). Untersuchungen über Bodenpilze aus Norwegen. Nyt Magasin for Naturvidenskab 52: 19–139.
Udagawa S, Cain RF (1969). Some new or noteworthy species of the genus Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology 78: 63–139.
von Arx JA, Figueras MJ, Guarro J (1988). Sordariaceous ascomycetes without ascometal ejaculation. Beihfelte zur Nova Hedwigia 94: 1–104.
Wang ET AL.
Wang P, Xie XL, Wang H, et al. (2011). A case of fungal peritonitis caused by Humicola fuscoatra. Chinese Journal of Mycology 6: 40–42.

Wang XW, Houbraken J, Groenewald JZ, et al. (2016b). Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Studies in Mycology 84: 145–224.

Wang XW, Lombard L, Groenewald JZ, et al. (2016a). Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36: 83–133.

Wang XW, Zheng RY (2005a). Chaetomium ampullillum sp nov (Chaetomiaceae, Ascomycota) and similar species from China. Nova Hedwigia 81: 247–255.

Wang XW, Zheng RY (2005b). Chaetomium acropullum sp nov (Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwigia 80: 413–417.

White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, et al., eds). Academic Press, New York, USA: 315–322.

Wu YM, Zhang TY (2012). Three new species of Humicola from Qinghai-Tibet Plateau Area, China. Mycotaxon 122: 171–175.

Xia W, Shi PJ, Xu XX, et al. (2015). High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose. PLoS One 10: e0117578.

Yang CH, Lin MJ, Su HJ, et al. (2014a). Multiple resistance-activating substances produced by Humicola phialophoroides isolated from soil for control of Phytophthora blight of pepper. Botanical Studies 55: 40.

Yang XZ, Shi PJ, Huang HQ, et al. (2014b). Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry 148: 381–387.

Zhang Y, Wu WP, Cai L (2017a). Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species. Fungal Biology 121: 21–43.

Zhang ZF, Liu F, Liu XZ, et al. (2017b). Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39: 1–31.