Epidemic Microclusters of Blood-Culture Proven Sepsis in Very-Low-Birth Weight Infants: Experience of the German Neonatal Network

Christoph Härtel1*, Kirstin Faust1, Stefan Avenarius2, Bettina Bohnhorst3, Michael Emeis4, Corinna Gebauer5, Peter Groneck6, Friedhelm Heitmann7, Thomas Hoehn8, Mechthild Hubert9, Angela Kribs10, Helmut Küster11, Reinhard Laux12, Michael Mögel13, Dirk Müller14, Dirk Olbertz15, Claudia Roll16, Jens Siegel17, Anja Stein18, Matthias Vochem19, Ursula Weller20, Axel von der Wense21, Christian Wieg22, Jürgen Wintgens23, Claudia Hemmelmann24, Arne Simon25, Egbert Herting1, Wolfgang Göpel3 for the German Neonatal Network (GNN)

1Department of Pediatrics at the University of Magdeburg, Magdeburg, Germany, 2Department of Pediatrics at the University of Leipzig, Leipzig, Germany, 3Department of Pediatrics at the University of Cologne, Cologne, Germany, 4Department of Neonatology, Vivantes-Klinikum Neukölln, Berlin, Germany, 5Department of Pediatrics at the University of Leipzig, Leipzig, Germany, 6Department of Neonatology, Klinikum Leverkusen, Leverkusen, Germany, 7Department of Neonatology, Klinikum Dortmund, Dortmund, Germany, 8Department of Pediatrics at the University of Düsseldorf, Düsseldorf, Germany, 9Department of Neonatology, Klinikum Siegen, Siegen, Germany, 10Department of Pediatrics at the University of Cologne, Cologne, Germany, 11Department of Pediatrics at the University of Göttingen, Göttingen, Germany, 12Department of Neonatology, Asclepios Klinik Barmbek, Hamburg, Germany, 13Department of Pediatrics at the University of Dresden, Dresden, Germany, 14Department of Neonatology, Klinikum Kassel, Kassel, Germany, 15Department of Neonatology, Südostklinik Rostock, Rostock, Germany, 16Department of Neonatology, Vestische Klinik, Datteln, Germany, 17Department of Neonatology, Krankenhaus Aud der Bult, Hanover, Germany, 18Department of Pediatrics at the University of Essen, Essen, Germany, 19Department of Neonatology, Olga-Hospital, Stuttgart, Germany, 20Department of Neonatology, Klinikum Bielefeld, Bielefeld, Germany, 21Department of Neonatology, Altanaer Kinderkrankenhaus, Hamburg, Germany, 22Department of Neonatology, Klinikum Aschaffenburg, Aschaffenburg, Germany, 23Department of Neonatology, Städtisches Klinikum Rheydt, Mönchengladbach, Germany, 24Institute of Biometry and Medical Statistics at the University of Lübeck, Lübeck, Germany, 25Department of Pediatric Hematology and Oncology at Saarland University Hospital, Homburg, Germany

Abstract

Introduction: We evaluated blood culture-proven sepsis occurring in microclusters in very-low-birth-weight infants born in the German Neonatal Network (GNN) during 2009–2010.

Methods: Thirty-seven centers participated in GNN; 23 centers enrolled ≥50 VLBW infants in the study period. Data quality was approved by on-site monitoring. Microclusters of sepsis were defined as occurrence of at least two blood-culture proven sepsis events in different patients of one center within 3 months with the same bacterial species. For microcluster analysis, we selected sepsis episodes with typically cross-transmitted bacteria of high clinical significance including gram-negative rods and Enterococcus spp.

Results: In our cohort, 12/2110 (0.6%) infants were documented with an early-onset sepsis and 235 late-onset sepsis episodes (≥72 h of age) occurred in 203/2110 (9.6%) VLBW infants. In 182/235 (77.4%) late-onset sepsis episodes gram-positive bacteria were documented, while coagulase negative staphylococci were found to be the most predominant pathogens (48.5%, 95%CI: 42.01–55.01). Candida spp. and gram-negative bacilli caused 10/235 (4.3%, 95%CI: 1.68%–6.83%) and 43/235 (18.5%) late-onset sepsis episodes, respectively. Eleven microclusters of blood-culture proven sepsis were detected in 7 hospitals involving a total 26 infants. 16/26 cluster patients suffered from Klebsiella spp. sepsis. The median time interval between the first patient’s Klebsiella spp. sepsis and cluster cases was 14.1 days (interquartile range: 1–27 days). First patients in the cluster, their linked cases and sporadic sepsis events did not show significant differences in short term outcome parameters.

Discussion: Microclusters of infection are an important phenomenon for late-onset sepsis. Most gram-negative cluster infections occur within 30 days after the first patient was diagnosed and Klebsiella spp. play a major role. It is essential to monitor epidemic microclusters of sepsis in surveillance networks to adapt clinical practice, inform policy and further improve quality of care.

Citation: Härtel C, Faust K, Avenarius S, Bohnhorst B, Emeis M, et al. (2012) Epidemic Microclusters of Blood-Culture Proven Sepsis in Very-Low-Birth Weight Infants: Experience of the German Neonatal Network. PLoS ONE 7(6): e38304. doi:10.1371/journal.pone.0038304

Editor: Irwin Reiss, Erasmus University Rotterdam, The Netherlands

Received March 27, 2012; Accepted May 7, 2012; Published June 29, 2012

Copyright: © 2012 Härtel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the German Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: haertel@paedia.ukl.mu-luebeck.de
Introduction

Sepsis is still one of the leading causes of mortality, long-term morbidity including CNS and lung disease and prolonged stay in hospital in very low-birth-weight (VLBW) infants [1–3]. According to data from the NICHD network, blood-culture-proven late-onset sepsis affected 21% of VLBW infants, with many more neonates receiving empirical antibiotic treatment for presumed or possible sepsis. Late-onset sepsis incidence varies considerably among centers involving 11 to 32% of infants at risk [4–5], even after adjustment for known risk factors such as gestational age, outborn status, parenteral nutrition or mechanical ventilation [6]. The implication is that this variation may be associated with differences in clinical practices and NICU settings. In line with this, periodic overcrowding (high bed occupancy) and understaffing (low nurse: patient ratio) are well documented risk factors for nosocomial infections and occurrence of outbreaks [7–10]. Monitoring the epidemiology of late-onset sepsis including the spectrum of pathogens in blood cultures and antibiotic resistance patterns over time is essential for design and implementation of prevention [11]. Infection surveillance networks are well established in many countries including USA [NICHD; Vermont-Oxford [1], Israel [2], Australasia [12], Canada [6], England [NeonIn; [13]] and Germany [NeoKiss, [14]]. Despite these efforts it is still unknown to what extent late-onset sepsis occurs in epidemic microclusters and which impact sepsis clusters may have on outcome of VLBW infants [15]. This is of particular importance for gram-negative sepsis clusters which are less prevalent but associated with increased mortality (19–36%, [1,16]).

The German Neonatal Network (GNN) is a prospective cohort study with the focus on long term development of VLBW infants. The multicenter collaboration currently includes 46 tertiary level neonatal units in Germany and provides a platform for benchmarking practice, intervention trials and the investigation of genetic and clinical risk factors of VLBW infants. In a previous study of our group (2003–2008; 16 participating centers), we noted a total sepsis risk of 16.8% in 2995 VLBW infants and a risk of 14.8% to suffer from late-onset sepsis with center-to-center variation from 4–26%. More than 80% of late-onset sepsis episodes occurred between day 4 and day 30 of life [2]. This report describes results of the German Neonatal Network (GNN) in the study period 2009–2010. We specifically determined cases of blood-culture proven clinical sepsis with typical cross-transmitted gram-negative rods and Enterococci which occurred in timely association in the same NICU (epidemic microcluster). We also evaluated outcome of cluster-involved patients compared to single cases with sepsis.

Methods

Ethical Approval

Ethical approval was given for all study parts by the University of Lübeck Ethical Committee1,2,4 and by all local ethical committees at the participating study centers. Specifically: Ethical Board of the University of Magdeburg14, Ethical Board of the Medical School Hannover3,12, Ethical Board of the University of Leipzig2, Ethical Board of the University of Düsseldorf8, Ethical Board of the University of Cologne16, Ethical Board of the University of Göttingen11, Ethical Board of the University of Dresden15, Ethical Board of the University of Essen16, Ethical Board of the Medical Chamber of Berlin4, Ethical Board of the Medical Chamber of the North Rhine region6,7,21, Ethical Board of the Medical Chamber of the Westphalia-Lippe region5,20, Ethical Board of the Medical Chamber of Hamburg12,21, Ethical Board of the Medical Chamber of the federal state of Hessen14, Ethical Board of the University of Rostock15, Ethical Board of the University of Witten-Herdecke16, Ethical Board of the Medical Chamber of the federal state of Baden-Württemberg19, Ethical Board of the Medical Chamber of the federal state of Bavaria22 and Monchengladbach25, Ethical Board of the Saar University25.

Informed written consent was given by all parents (as legal representative) on behalf of their infants.

Study Population

We prospectively determined the primary outcome data in 2384 VLBW infants enrolled in GNN by 37 level III neonatal intensive care units during the study period January 2009 until December 2010. The inclusion criteria were: birth weight <1500 g and gestational age ≤36+6 weeks. After informed written parental consent of infants, a predefined clinical data set of 220 parameters is recorded for each patient on clinical record files. In all infants born in GNN centers but not enrolled in GNN a basic data set including the parameter “blood-culture proven sepsis” was documented.

Definitions

The centers were asked to document clinical episodes of infection as defined by NeoKISS criteria (2 clinical signs, 1 laboratory sign, 5 days of antibiotic therapy; [14,17]) and blood-culture proven clinical sepsis. In this report, we focused on the sepsis definition of “clinical sepsis with positive blood culture” (bloodstream infection). Late-onset sepsis was defined as blood-culture proven clinical sepsis occurring ≥72 hours of age.

Microclusters of sepsis were defined as occurrence of at least two blood-culture proven sepsis events in one center within 3 months with the same bacterial species in different patients. For microcluster analysis, we selected sepsis episodes with typical cross-transmitted bacteria of high clinical significance incl. gram-negative rods and Enterococcus spp.

Data quality was approved by regular on-site monitoring of participating centers by a physician trained in neonatology including cross-check of local microbiological read-outs.

Data Entry

All data were entered in an Access database by health record administrators at the main GNN-office at the University of Lübeck. After discharge, clinical record files of the participating hospitals are sent to the study centre.

Statistical Analysis

Data analysis was performed using the SPSS 20.0 data analysis package (Munich, Germany) and SAS 9.3. Hypotheses were evaluated with Fisher’s exact test and Mann-Whitney U test. Furthermore, the generalized estimating equations with an independent working correlation structure were used for the estimates of the proportions and the corresponding confidence intervals. A p value <0.05 was considered as statistically significant for single tests.

Results

Epidemiology of Blood-culture Proven Sepsis

3661 VLBW infants were eligible for enrolment in the GNN study period 2009/2010. Of these, 416 (11.4%) had at least one episode of blood-culture proven sepsis. 2384/3661 (65.1%) VLBW
infants were recruited in 37 GNN centers and had a total rate of blood-culture proven sepsis of 10.5% (250/2384; 0.6% of infants had an early-onset sepsis, 9.9% suffered from a late-onset sepsis).

In order to analyse microclusters of sepsis, we decided to exclude all infants born in those centers who had recruited less than 50 VLBW infants in the study period, therefore 2110 VLBW infants born in 23 centers remained for further analysis. In this cohort, the incidence density for sepsis was 1.7/1000 patient days. 12/2110 (0.6%) infants had an early-onset sepsis. With regard to late-onset sepsis, 235 episodes occurred in 203/2110 (9.6%) VLBW infants. In table 1, the clinical characteristics of infants stratified to occurrence of late-onset sepsis are given. We noted a lower gestational age and birth weight in the late-onset sepsis group. Furthermore, infants with late-onset sepsis were more likely to be born by spontaneous vaginal delivery (16.3% vs. 7.9%) and emergency Caesarean section (15.3% vs. 8.5%) and had less frequent coverage with antenatal steroids (86.9 vs. 91.8%) than infants without late-onset sepsis (table 1).

Pathogenic Spectrum of Late-onset Sepsis Episodes

In table 2 the pathogenic spectrum of blood-culture proven sepsis episodes is summarized. In 182/235 (77.4%) late-onset sepsis episodes gram-positive bacteria were documented, while coagulase negative staphylococci were found to be the most predominant pathogens (48.5%, 95%CI: 42.01–55.01). No Methicillin-resistant Staphylococcus aureus (MRSA) sepsis was documented. 10/235 (4.3%, 95%CI: 1.68% –6.83%) late-onset sepsis episodes were caused by Candida spp and 43/235 (18.3%) episodes were caused by gram-negative bacilli. We noted that Klebsiella spp played a major role as causative agent accounting for 22/43 gram-negative late-onset sepsis episodes followed by Enterobacter spp (10/43) and E. coli (9/43). This prompted us to further investigate whether microclusters (linked cases with the same bacterium within three months) occur within the low-risk setting of the GNN cohort.

Microclusters of Late-onset Sepsis

4 out of 23 centers had no case of sepsis with gram-negative bacilli or Enterococcus spp in the study period. Of the remaining 19

Table 1. Clinical characteristics of the VLBW cohort stratified to occurrence of late-onset sepsis (LOS).

	No LOS	LOS patients	p#	total
Number of infants	1907	203		2110
Gestational age (mean/median, weeks)	28.9/28.9	26.9/26.7	<0.001	28.7/28.7
Birth weight (mean/median, grams)	1077/1100	878/810	<0.001	1058/1090
Gender (male, %)	49.8	50.7	0.8	49.9
Multiples (%)	32.8	28.6	0.22	32.4
Inborn (%)	97.5	97	0.68	97.5
Mode of delivery, vaginal (%)	7.9	16.3	<0.001	8.7
Elective C/section (%)	83.7	68.3	<0.001	82.2
Emergency C/section (%)	8.5	15.3	<0.001	9.1
PPROM (%)	29.6	28.5	0.75	29.5
SGA (%)	18.5	18.2	0.9	18.4
Antenatal steroids (%)	91.8	86.6	0.013	91.3
Maternal descendance, Germany (%)	73.2	63.7	0.059	72.3
Europe/Russia (%)	10	14.9		10.5
Middle East/Turkey (%)	10.8	14.9		11.2
Asia (%)	1.9	2		1.9
Africa (%)	2.6	2		2.5

Legend: PPROM Preterm premature rupture of membranes, C/section Caesarean section, SGA small-for-gestational-age (<10th Voigt percentile).

*# p-values were derived from chi-square test if not otherwise indicated (** Mann-Whitney-U test).

doi:10.1371/journal.pone.0038304.t001

Table 2. Pathogenic spectrum of blood-culture proven sepsis episodes.

Pathogen	Late-onset sepsis	Total
	n; Estimate (95% CI)*	n; Estimate (95% CI)*
Klebsiella species	22; 9.36 (5.34–13.38)	22; 8.91 (4.48–13.33)
Escherichia coli	9; 3.83 (1.38–6.28)	14; 5.67 (2.48–8.86)
Enterobacter cloacae	10; 4.26 (1.69–6.82)	10; 4.05 (1.41–6.68)
Enterococcus species	15; 6.38 (3.26–9.51)	16; 6.48 (3.01–9.95)
Staphylococcus aureus	47; 19.03 (12.23–25.83)	47; 19.03 (12.23–25.83)
CoNS	114; 48.51 (42.01–55.01)	114; 48.51 (42.01–55.01)
Group B streptococci	5; 2.13 (0.28–3.97)	7; 2.83 (0.64–5.02)
Other streptococci	1; 0.43 (0.41–1.2)	2; 0.81 (0.33–1.95)
Serratia	1; 0.43 (0.41–1.2)	1; 0.4 (0.39–1.2)
Pseudomonas aer.	1; 0.43 (0.41–1.2)	2; 0.81 (0.33–1.95)
Listeria monocytogenes	1; 0 (0–0)	1; 0.4 (0.39–1.2)
Candida	10; 4.26 (1.68–6.83)	11; 4.45 (1.66–7.24)
Total	235	247

*Estimate: estimated risk for specific pathogen/100 cases of blood-culture proven sepsis.

doi:10.1371/journal.pone.0038304.t002
centers, 7 hospitals (36.8%) were documented with a total of 11 microclusters. These microclusters were noted in 26 infants including 2 multiples (3 microclusters with 2 linked cases, 2 microclusters with 3 linked cases and 1 microcluster with 4 linked cases). Microclusters occurred in 16/22 cases caused by *Klebsiella* spp., 4/9 cases caused by *E. coli*, 2/8 cases caused by *Enterobacter* spp. and 4/13 cases caused by *Enterococcus* spp.

Time intervals (median; 25th/75th percentile in days) between occurrence of the first patient’s sepsis in the cluster and the linked cases were as follows: *Klebsiella* spp. (14.1; 1–27 days), *E. coli* (23.5; 8–39 days), *Enterobacter* spp. (26 days), all gram-negative bacilli (23.0, 5–27 days), *Enterococcus* spp. (36.5; 43–70).

Discussion

In the GNN study period 2009/2010 an overall risk for blood-culture proven sepsis of 11.4% was documented for all eligible infants. Infants enrolled in GNN centers with recruitment of ≥50 infants during the study period had an overall risk of 10.2% and late-onset sepsis risk of 9.6% with birth weight, gestational age and lack of antenatal steroid coverage being major risk factors. In comparison with previous data of our network (14.8 vs. 9.6% of late-onset sepsis) we were able to confirm that participation in a multicenter surveillance system reduces neonatal nosocomial bloodstream infections [10]. The pathogenic spectrum of late-onset sepsis episodes with predominance of gram-positive bacteria as causative agent in >70% and an 18% rate of gram-negative sepsis is comparable with the results of other infection surveillance networks [1–2,18–19]. The NeonIN surveillance network in England documented sepsis episodes in all newborns not only restricted to VLBWs cared for in tertiary level units [13]. In the English cohort, the rate of gram-negative late-onset sepsis was higher (42%). While *Klebsiella* spp. played a major role in our cohort (22/43; 51.1% of gram-negative episodes), only 20% (37/177 cases) of gram-negative sepsis were associated with *Klebsiella* spp. in the NeonIN surveillance report.

So far, data on epidemic clusters of sepsis are limited to a few reports on outbreaks with common cross-transmitted pathogens. Modern molecular methods allow for the identification of a common source in at about one half of all outbreaks [15,20]. In other examples, however, epidemiological surveys failed to identify the causes of the emergence of outbreak strains in NICU settings [9]. Therefore it is essential to collate data on the significance of epidemic microclusters of sepsis in surveillance networks to adapt clinical practice, inform policy and further improve quality of care. In order to do that, an adequate, internationally accepted definition of “cluster of sepsis” is needed. In this study, we decided to use the timeframe of 90 days to define timely linked sepsis cases in one center with the same bacterial spp. (microcluster). Using this definition the significant number of 11 epidemic microclusters of blood-culture proven sepsis in 7 NICUs (9/11 with gram-negative bacteria, 2/11 with *Enterococi*) is the main finding of this report. Even if we modified the definition with regard to timeframe of linkage to 30 days, 7/11 microclusters would have been detected, all of them involving gram-negative bacilli. In line with this, the second important experience in our cohort is that the time interval between occurrence of the first patient’s *Klebsiella* spp. sepsis in the cluster and the linked cases event was a median of 14.1 days (25th/75th percentile: 1–27 days).

Table 3. Outcome of patients in microclusters of blood-culture proven sepsis.

	Sporadic cases	Linked cases	First patient in cluster	total	p
Number of infants	26	15	11	52	
Gestational age	26.4/26.2	27.9/27.7	26.4/25.9	26.8/26.5	0.16*
Birth weight	840/790	986/1140	810/755	876/790	0.11*
IVH (%)	34.6	20	36.4	30.8	0.56
Grade 1	11.5	6.7	0	7.7	
Grade 2	15.4	0	18.2	11.5	
Grade 3	0	0	0	0	
Grade 4	7.7	13.3	18.2	11.5	
Surgery PDA (%)	4	0	18.2	5.9	0.13
Surgery NEC/FIP (%)	24	20	27.3	23.5	0.9
Treatment ROP (%)	8.3	0	10	6.1	0.49
BPD (%)	44.4	28.6	18.2	33.3	0.34
Severe complication	34.6	46.7	63.6	44.2	0.26
or death (%)	7.7	20	30	15.7	0.26

Legend: IVH intraventricular haemorrhage; Surgery for PDA Patent Ductus arteriosus, NEC necrotizing enterocolitis, FIP focal intestinal perforation, ROP retinopathy of prematurity (kryo- or laser therapy); BP bronchopulmonary dysplasia; severe complication: IVH grade IV, posthaemorrhagic hydrocephalus with need for VP shunt, periventricular leukomalacia, surgery for NEC/FIP or ROP and BP; p-values were derived from chi-square test if not otherwise indicated (* Mann-Whitney-U test comparing linked cases vs. first patient in cluster.

doi:10.1371/journal.pone.0038304.t003
These data suggest that there is a highly vulnerable time window of sepsis clustering after the first infant has been diagnosed even in a low-risk setting such as GNN. Therefore immediate reinforcement of strict adherence to hand hygiene policies, rigorous environmental hygiene, cohorting and isolation of other colonized individuals is imperative. Given the proactive containment approach the epidemic microcluster seems to be crucial [9,21]. Further sepsis prevention must include evaluation of workload and adaptation of resources in the NICU on a regular basis, especially at a time when nursing staff is being reduced in stressed, high-throughput systems due to economical restrictions [11,22].

We also evaluated the outcome data of sporadic sepsis patients in a NICU compared to sepsis patients in clusters and found no differences. When we restricted the analysis to gram-negative sepsis only, we noted a trend to a lower gestational age and a higher rate of severe complications or death in the first patient of the cluster compared to either their linked cases or independent sporadic sepsis cases. This observation merits further investigation in a larger epidemiological study. Our approach is limited by the fact that we are not able to provide data on the genotypic concordance of sepsis strains in one cluster as it has been demonstrated with pulsed-field gel electrophoresis in single or multicenter investigations [9,23]. The strength of our approach is the on-site monitoring and approval of clinical and microbiological data by a neonatologist which may be advantageous over computer/web-based surveillance systems without monitoring [24].

In summary, there is probably an underestimation of microclusters of gram-negative sepsis even in low-risk settings. The dramatic consequences of infections underline the need for additional research on the microbiomic constitution of the flora of VLBW and the mode of acquisition gram-negative bacteria. Future surveillance networks therefore require the combined effort of clinical and molecular epidemiology providing information of both, the pathogen (antimicrobial resistance patterns) and the host (whether colonized or infected) to elucidate its interaction in the cluster situation.

Acknowledgments
We thank all the Collaborators from the German Neonatal Network, specifically: from the Departments of Pediatrics at the Universities of Bochum (Norbert Teig), Greiswald (Matthias Heckmann), Homburg/Saar (Ludwig Gortner), Kiel (Werner Nikisch) and Münster (Esther Rieger-Fackeldy); from the Departments of Neonatology at the Childrens Hospitals in Freiburg (Michael Diederichmann), Frankfurt (Bürgerhospital, Silke Ehlers); Heide (Reinhard Jensen), Mannheim (Steffen Hien), Nürnberg (Holger Schifflmann), Regensburg (St. Hedwig; Hugo Segerer), Saarbrücken (Jens Möller), Schwerin (Olaf Kaunitz).

Author Contributions
Conceived and designed the experiments: C. Hartel KF EH WG. Performed the experiments: C. Hartel KF WG. Analyzed the data: C. Hartel C. Hemmelmann WG. Contributed reagents/materials/analysis tools: C. Hartel KF SA BB ME CR JS AS MV UW AvW CW JW C. Hemmelmann AS EH WG. Wrote the paper: C. Hartel WG.

References
1. Stoll BJ, Hansen NI, Chapman I, Fanaroff AA, Hinte SR, et al. (2004) Neurodevelopmental and growth impairment among extremely low birthweight infants with neonatal infection. JAMA 292: 2357-2365.

2. Makhoul IR, Sujov P, Smolkin T, Lusky A, Reichman B (2003) Pathogen-specific early mortality in very low birthweight infants with late-onset sepsis: a national survey. Clin Infect Dis 40: 218-224.

3. Faust K, Gipsel W, Herting E, Hartel C (2011) Sepsis bei Frühgeborenen mit einem sehr niedrigen Geburtsgewicht. Chemotherapie Journal 29: 1-10.

4. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, et al. (2005) Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110: 205-291.

5. Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, et al. (2006) The association of third-generation cephalosporin use and invasive candidiasis in extremely low birthweight infants. Pediatrics 118: 717-722.

6. Aziz K, McMillan DD, Andrews W, Pendlay M, Qiu Z, et al. (2005) Variations in rates of nosocomial infection among Canadian neonatal intensive care units may be practice-related. BMC Pediatr 5: 22.

7. Harbarth S, Sudre P, Dharian S, Cadenas M, Pittet D (1999) Outbreak of Enterobacter cloacae related to under staffing, overcrowding, and poor hygiene practices. Infect Control Hosp Epidemiol 20: 598-603.

8. Andersen BM, Lindemann R, Bergh K, Nesheim BI, Sveen LV, et al. (2002) Spread of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit associated with under staffing, overcrowding and mixing of patients. J Hosp Infect 50:18-24.

9. Talon D, Menet P, Thouvenel M, Thiriez G, Glaudi Guilhou H, et al. (2004) Emergence of Enterobacter cloacae as a common pathogen in neonatal units: pulsed-field gel electrophoresis analysis. J Hosp Infect 57: 119-25.

10. Curry S, Honeycutt M, Goin G, Gilliam G (2009) Catheter-associated bloodstream infections in the NICU: getting to zero. Neonatal Netw 28:151-5.

11. Schwab F, Geffers G, Barwolff S, Roden H, Gastmeier P (2007) Reducing neonatal nosocomial bloodstream infections through participation in a national surveillance system. J Hosp Infect 65: 319-325.

12. Gastmeier P, Losi A, Stamm-Baldjordt S, Hansen S, Zuschuld I, et al. (2007) Outbreaks in neonatal intensive care units - they are not like others. Am J Infect Control 35:172-6.

13. Schwab F, Geffers G, Barwolff S, Roden H, Gastmeier P (2008) Incidence of healthcare-associated infections in high-risk neonates: results from the German surveillance system for very-low-birth-weight infants. J Hosp Infect 68: 214-21.

14. Cordero L, Rau R, Taylor D, Ayers LW (2004) Enteric gram-negative bacilli bloodstream infections: 17 years’ experience in a neonatal intensive care unit. Am J Infect Control 32:189-95.

15. Smith A, Saiman L, Zhou J, Della-Latta P, Jia H, et al. (2010) Concordance of Gastrointestinal Tract Colonization and Subsequent Bloodstream Infections With Gram-negative Bacilli in Very Low Birth Weight Infants in the Neonatal Intensive Care Unit. Pediatr Infect Dis J: 29: 831-5.

16. Reiss I, Borkhardt A, Füsele R, Szüögéti A, Gortner L (2008) Disinfectant contaminated with Klebsiella oxytoca as a source of sepsis in babies. Lancet 363: 310.

17. Clyne S, Herson V, Duncan A, Harr J, Brender J, et al. (2005) Is bloodstream infection preventable among premature infants? A tale of two cities. Pediatrics 115: 1513-1518.

18. Cimino JP, Haas J, Saiman L, Larson EL (2006) Impact of staffing on bloodstream infections in the neonatal intensive care unit. Arch Pediatr Adolesc Med 160: 832-836.

19. Graham PL 3rd, Lutwick S, Haas J, Saiman L, Shulman RJ (2001) Are infections in neonatal intensive care units preventable among premature infants? A tale of two cities. Pediatrics 1115: 1515-1518.

20. Cimino JP, Haas J, Saiman L, Larson EL (2006) Impact of staffing on bloodstream infections in the neonatal intensive care unit. Arch Pediatr Adolesc Med 160: 832-836.

21. Graham PL 3rd, Lutwick S, Haas J, Saiman L (2001) Are infections in neonatal intensive care units preventable among premature infants? A tale of two cities. Pediatrics 1115: 1515-1518.

22. Cimino JP, Haas J, Saiman L, Larson EL (2006) Impact of staffing on bloodstream infections in the neonatal intensive care unit. Arch Pediatr Adolesc Med 160: 832-836.

23. Graham PL 3rd, Lutwick S, Haas J, Saiman L (2001) Are infections in neonatal intensive care units preventable among premature infants? A tale of two cities. Pediatrics 1115: 1515-1518.