THE DIAGRAMMATIC SOERGEL CATEGORY AND $sl(N)$-FOAMS, FOR $N \geq 4$

MARCO MACKAAY AND PEDRO VAZ

Abstract. For each $N \geq 4$, we define a monoidal functor from Elias and Khovanov’s diagrammatic version of Soergel’s category of bimodules to the category of $sl(N)$ foams defined by Mackaay, Stošić and Vaz. We show that through these functors Soergel’s category can be obtained from the $sl(N)$ foams.

1. Introduction

In [13], Soergel categorified the Hecke algebra using bimodules. Just as the Hecke algebra is important for the construction of the HOMFLY-PT link polynomial, so is Soergel’s category for the construction of Khovanov and Rozansky’s HOMFLY-PT link homology [10], as explained by Khovanov in [7]. Elias and Khovanov [2] constructed a diagrammatic version of the Soergel category with generators and relations, which Elias and Krasner [3] used for a diagrammatic construction of Rouquier’s complexes associated to braids.

In [1], Bar-Natan gave a new version of Khovanov’s [5] original link homology, also called the $sl(2)$ link homology, using 2d-cobordisms modulo certain relations, which we will call $sl(2)$ foams. Using 2d-cobordisms with a particular sort of singularity modulo certain relations, which we will call $sl(3)$ foams, Khovanov constructed the $sl(3)$ link homology [6]. Khovanov and Rozansky [9] then constructed the $sl(N)$ link homologies, for any $N \geq 1$, using matrix factorizations. These link homologies are closely related to the HOMFLY-PT link homology by Rasmussen’s spectral sequences [12], with E_1-page isomorphic to the HOMFLY-PT homology and converging to the $sl(N)$ homology, for any $N \geq 1$. In [11] Mackaay, Stošić and Vaz gave an alternative construction of these $sl(N)$ link homologies, for $N \geq 4$, using $sl(N)$ foams, which are 2d-cobordisms with two types of singularities satisfying relations determined by a formula from quantum field theory, originally obtained by Kapustin and Li [4] and later adapted by Khovanov and Rozansky [8].

Khovanov and Rozansky in [9] and [10] and Rasmussen in [12] used matrix factorizations for their constructions. Therefore, the question arises whether their results can be understood in diagrammatic terms and what could be learned from that. In [15] Vaz constructed functors from Elias and Khovanov’s diagrammatic version of Soergel’s category to the categories of $sl(2)$ and $sl(3)$ foams. In this paper we construct the analogous functors from the same version of Soergel’s category to the category of $sl(N)$ foams for $N \geq 4$. To complete the picture, one would like to construct the analogues of Rasmussen’s spectral sequences in this setting. But for that, one would first have to understand the Hochschild homology of bimodules in diagrammatic terms, which has not been accomplished yet. However for this, one would first have to understand the Hochschild homology of bimodules in diagrammatic terms, which has not been accomplished yet. Hochschild homology plays an integral part of the construction. Nevertheless, there is an interesting result which can already be shown using the functors in this paper. In a certain technical
sense, which we will make precise in Proposition 4.2. Soergel’s category can be obtained from the \(sl(N)\) foams, and therefore from the Kapustin-Li formula, using our functors. This result should be compared to Rasmussen’s Theorem 1 in \[12\].

We have tried to make the paper as self-contained as possible, but the reader should definitely leaf through \[2\], \[3\], \[11\] and \[15\] before reading the rest of this paper.

In Section 2 we recall Elias and Khovanov’s version of Soergel’s category. In Section 3 we review \(sl(N)\) foams, as defined by Mackaay, Stošić and Vaz. Section 4 contains the new results: the definition of our functors, the proof that they are indeed monoidal, and a statement on faithfulness in Proposition 4.2.

2. Elias and Khovanov’s version of Soergel’s category

This section is a reminder of the diagrammatics for Soergel categories introduced by Elias and Khovanov in \[2\]. Actually we give the version which they explained in Section 4.5 of \[2\] and which can be found in detail in \[3\].

Fix a positive integer \(n\). The category \(SC_1\) is the category whose objects are finite length sequences of points on the real line, where each point is colored by an integer between 1 and \(n\). We read sequences of points from left to right. Two colors \(i\) and \(j\) are called adjacent if \(|i - j| = 1\) and distant if \(|i - j| > 1\). The morphisms of \(SC_1\) are given by generators modulo relations. A morphism of \(SC_1\) is a \(C\)-linear combination of planar diagrams constructed by horizontal and vertical gluings of the following generators (by convention no label means a generic color \(j\)):

- Generators involving only one color:
 - EndDot
 - StartDot
 - Merge
 - Split

It is useful to define the cap and cup as

- Generators involving two colors:
 - The 4-valent vertex, with distant colors,
 - and the 6-valent vertex, with adjacent colors \(i\) and \(j\)
read from bottom to top. In this setting a diagram represents a morphism from the bottom boundary to the top. We can add a new colored point to a sequence and this endows SC_1 with a monoidal structure on objects, which is extended to morphisms in the obvious way. Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.

"Isotopy" relations:

(1) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation1.png}
\end{array}
\]

(2) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation2.png}
\end{array}
\]

(3) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation3.png}
\end{array}
\]

(4) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation4.png}
\end{array}
\]

(5) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation5.png}
\end{array}
\]

The relations are presented in terms of diagrams with generic colorings. Because of isotopy invariance, one may draw a diagram with a boundary on the side, and view it as a morphism in SC_1 by either bending the line up or down. By the same reasoning, a horizontal line corresponds to a sequence of cups and caps.

One color relations:

(6) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation6.png}
\end{array}
\]

(7) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation7.png}
\end{array}
\]

(8) \[
\begin{array}{c}
\includegraphics[width=1cm]{relation8.png}
\end{array}
\]
Two distant colors:

\[
\begin{align*}
(9) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color1} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color2} \end{array} \\
(10) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color3} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color4} \end{array} \\
(11) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color5} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{distant_color6} \end{array}
\end{align*}
\]

Two adjacent colors:

\[
\begin{align*}
(12) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color1} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color2} \end{array} + \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color3} \end{array} \\
(13) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color4} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color5} \end{array} - \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color6} \end{array} \\
(14) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color7} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color8} \end{array} \\
(15) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color9} \end{array} = \frac{1}{2} \left(\begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color10} \end{array} - \begin{array}{c} \includegraphics[width=0.2\textwidth]{adjacent_color11} \end{array} \right)
\end{align*}
\]

Relations involving three colors: (adjacency is determined by the vertices which appear)

\[
\begin{align*}
(16) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{three_color1} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{three_color2} \end{array} \\
(17) & \quad \begin{array}{c} \includegraphics[width=0.2\textwidth]{three_color3} \end{array} = \begin{array}{c} \includegraphics[width=0.2\textwidth]{three_color4} \end{array}
\end{align*}
\]
Furthermore, we also have a useful implication of relation (8)

\[(19) \quad \frac{1}{2} \left(\begin{array}{c} + \\ \end{array} \right) = \frac{1}{2} \left(\begin{array}{c} + \\ \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} + \\ \end{array} \right)
\]

Introduce a q-grading on SC_1 declaring that dots have degree 1, trivalent vertices have degree -1 and 4- and 6-valent vertices have degree 0.

Definition 2.1. The category SC_2 is the category containing all direct sums and grading shifts of objects in SC_1 and whose morphisms are the grading preserving morphisms from SC_1.

Definition 2.2. The category SC is the Karoubi envelope of the category SC_2.

Elias and Khovanov’s main result in [2] is the following theorem.

Theorem 2.3 (Elias-Khovanov). The category SC is equivalent to the Soergel category in [13].

From Soergel’s results from [13] we have the following corollary.

Corollary 2.4. The Grothendieck algebra of SC is isomorphic to the Hecke algebra.

Notice that SC is an additive category but not abelian and we are using the (additive) split Grothendieck algebra.

In Subsection 4 we will define a family of functors from $SC_{1,n}$ to the category of $sl(N)$ foams, one for each $N \geq 4$. These functors are grading preserving, so they obviously extend uniquely to $SC_{2,n}$. By the universality of the Karoubi envelope, they also extend uniquely to functors between the respective Karoubi envelopes.

3. Foams

3.1. Pre-foams. In this section we recall the basic facts about foams. For the definition of the Kapustin-Li formula, for proofs of the relations between foams and for other details see [11] and [14]. The foams in this paper are composed of three types of facets: simple, double and triple facets. The double facets are coloured and the triple facets are marked to show the difference. Intersecting such a foam with a generic plane results in a web, as long as the plane avoids the singularities where six facets meet, such as on the right in Figure 1.

![Figure 1: Some elementary pre-foams](image-url)
Definition 3.1. Let s_{γ} be a finite oriented closed 4-valent graph, which may contain disjoint circles and loose endpoints. We assume that all edges of s_{γ} are oriented. A cycle in s_{γ} is defined to be a circle or a closed sequence of edges which form a piece-wise linear circle. Let Σ be a compact orientable possibly disconnected surface, whose connected components are simple, double or triple, denoted by white, coloured or marked. Each component can have a boundary consisting of several disjoint circles and can have additional decorations which we discuss below. A closed pre-foam u is the identification space Σ/s_{γ} obtained by glueing boundary circles of Σ to cycles in s_{γ} such that every edge and circle in s_{γ} is glued to exactly three boundary circles of Σ and such that for any point $p \in s_{\gamma}$:

1. if p is an interior point of an edge, then p has a neighborhood homeomorphic to the letter Y times an interval with exactly one of the facets being double, and at most one of them being triple. For an example see Figure 1.
2. if p is a vertex of s_{γ}, then it has a neighborhood as shown in Figure 1.

We call s_{γ} the singular graph, its edges and vertices singular arcs and singular vertices, and the connected components of $u - s_{\gamma}$ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black dots (\bullet), a double facet can also have white dots (\circ), and a triple facet besides black and white dots can have double dots (\bigcirc). Dots can move freely on a facet but are not allowed to cross singular arcs.

Note that the cycles to which the boundaries of the simple and the triple facets are glued are always oriented, whereas the ones to which the boundaries of the double facets are glued are not, as can be seen in Figure 1. Note also that there are two types of singular vertices. Given a singular vertex v, there are precisely two singular edges which meet at v and bound a triple facet: one oriented toward v, denoted e_1, and one oriented away from v, denoted e_2. If we use the “left hand rule”, then the cyclic ordering of the facets incident to e_1 and e_2 is either $(3, 2, 1)$ and $(3, 1, 2)$ respectively, or the other way around. We say that v is of type I in the first case and of type II in the second case. When we go around a triple facet we see that there have to be as many singular vertices of type I as there are of type II for the cyclic orderings of the facets to match up. This shows that for a closed pre-foam the number of singular vertices of type I is equal to the number of singular vertices of type II.

We can intersect a pre-foam u generically by a plane W in order to get a closed web, as long as the plane avoids the vertices of s_{γ}. The orientation of s_{γ} determines the orientation of the simple edges of the web according to the convention in Figure 2. Suppose that for all but a finite number of values $i \in [0, 1]$, the plane $W \times i$ intersects u generically. Suppose also that $W \times 0$ and $W \times 1$ intersect u generically and outside the vertices of s_{γ}. Furthermore, suppose that $D \subset W$ is a disc in W and $C \subset D$ its boundary circle, such that $C \times [0, 1] \cap u$ is a disjoint union of vertical line segments. This means that we are assuming that s_{γ} does not intersect $C \times [0, 1]$. We call $D \times [0, 1] \cap u$ an open pre-foam between the open webs $D \times \{0\} \cap u$ and $D \times \{1\} \cap u$. Interpreted as morphisms we read open pre-foams from bottom to top, and their composition consists of placing one pre-foam on top of the other, as long as their boundaries are isotopic and the orientations of the simple edges coincide.

Definition 3.2. Let Pfoam be the category whose objects are webs and whose morphisms are \mathbb{Q}-linear combinations of isotopy classes of pre-foams with the obvious identity pre-foams and composition rule.
The diagrammatic Soergel category and $sl(N)$-foams, for $N \geq 4$

We now define the q-degree of a pre-foam. Let u be a pre-foam, u_1, u_2 and u_3 the disjoint union of its simple and double and marked facets respectively and $s_\gamma(u)$ its singular graph. Furthermore, let b_1, b_2 and b_3 be the number of simple, double and marked vertical boundary edges of u, respectively. Define the partial q-gradings of u as

$$q_i(u) = \chi(u_i) - \frac{1}{2}\chi(\partial u_i \cap \partial u) - \frac{1}{2}b_i, \quad i = 1, 2, 3$$

$$q_{s_\gamma}(u) = \chi(s_\gamma(u)) - \frac{1}{2}\chi(\partial s_\gamma(u)).$$

where χ is the Euler characteristic and ∂ denotes the boundary.

Definition 3.3. Let u be a pre-foam with d_\bullet dots of type \bullet, d_\circ dots of type \circ and d_Θ dots of type Θ. The q-grading of u is given by

$$q(u) = -\sum_{i=1}^{3} i(N-i)q_i(u) - 2(N-2)q_{s_\gamma}(u) + 2d_\bullet + 4d_\circ + 6d_\Theta. \quad (20)$$

The following result is a direct consequence of the definitions.

Lemma 3.4. $q(u)$ is additive under the gluing of pre-foams.

We denote a simple facet with i dots by $\begin{array}{c} i \end{array}$.

Recall that the two-variable Schur polynomial $\pi_{k,m}$ can be expressed in terms of the elementary symmetric polynomials $\pi_{1,0}$ and $\pi_{1,1}$. By convention, the latter correspond to \bullet and \circ on a double facet respectively, so that

$$\begin{array}{c} (k,m) \end{array}$$

is defined to be the linear combination of dotted double facets corresponding to the expression of $\pi_{k,m}$ in terms of $\pi_{1,0}$ and $\pi_{1,1}$. Analogously we can express the three-variable Schur polynomial $\pi_{p,q,r}$ in terms of the elementary symmetric polynomials $\pi_{1,0,0}$, $\pi_{1,1,0}$ and $\pi_{1,1,1}$ By convention, the latter correspond to \bullet, \circ and Θ on a triple facet respectively, so we can make sense of

$$\begin{array}{c} (p,q,r) \end{array}.$$
3.2. Foams. In [11, 14] we gave a precise definition of the Kapustin-Li formula, following Khovanov and Rozansky’s work [8]. We will not repeat that definition here, since it is complicated and unnecessary for our purposes in this paper. The only thing one needs to remember is that the Kapustin-Li formula associates a number to any closed prefoam and that those numbers have very special properties, some of which we will recall below. By $\langle u \rangle_{KL}$ we denote the Kapustin-Li evaluation of a closed prefoam u.

Definition 3.5. The category Foam_N is the quotient of the category Pfoam by the kernel of $\langle \rangle_{KL}$, i.e. by the following identifications: for any webs Γ, Γ' and finite sets $f_i \in \text{Hom}_{\text{Pfoam}}(\Gamma, \Gamma')$ and $c_i \in \mathbb{Q}$ we impose the relations
$$\sum_i c_i f_i = 0 \iff \sum_i c_i \langle f_i \rangle_{KL} = 0,$$
for any fixed way of closing the f_i, denoted by $\overline{f_i}$. By “fixed” we mean that all the f_i are closed in the same way. The morphisms of Foam_N are called foams.

In the next proposition we recall those relations in Foam_N that we need in the sequel. For their proofs and other relations we refer to [11].

Proposition 3.6. The following identities hold in Foam_N:

* (The dot conversion relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram1} \\
\includegraphics[width=0.1\textwidth]{diagram2} \\
\end{array}
\end{align*}
\]

is equal to 0 if $i \geq N$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram3} \\
\includegraphics[width=0.1\textwidth]{diagram4} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram5}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram6} \\
\includegraphics[width=0.1\textwidth]{diagram7} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram8}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram9} \\
\includegraphics[width=0.1\textwidth]{diagram10} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram11}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram12} \\
\includegraphics[width=0.1\textwidth]{diagram13} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram14}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram15} \\
\includegraphics[width=0.1\textwidth]{diagram16} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram17}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram18} \\
\includegraphics[width=0.1\textwidth]{diagram19} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram20}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram21} \\
\includegraphics[width=0.1\textwidth]{diagram22} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram23}$.

* (The dot migration relations)

\[
\begin{align*}
\begin{array}{c}
\includegraphics[width=0.1\textwidth]{diagram24} \\
\includegraphics[width=0.1\textwidth]{diagram25} \\
\end{array}
\end{align*}
\]

is equal to $\includegraphics[width=0.1\textwidth]{diagram26}$.
THE DIAGRAMMATIC SOERGEL CATEGORY AND $sl(N)$-FOAMS, FOR $N \geq 4$

(The neck cutting relations)

\[
\begin{align*}
&= \sum_{i=0}^{N-1} i \quad (NC_1) \\
&= - \sum_{0 \leq j \leq i \leq N-2} \quad (NC_2) \\
&= - \sum_{0 \leq k \leq j \leq i \leq N-3} \quad (NC_*)
\end{align*}
\]

(The sphere relations)

\[
\begin{align*}
\iota(i) &= \begin{cases}
1, & i = N - 1 \\
0, & \text{else}
\end{cases} \quad (S_1) \\
\iota(j,k) &= \begin{cases}
-1, & i = j = N - 2 \\
0, & \text{else}
\end{cases} \quad (S_2) \\
\iota(i,j,k) &= \begin{cases}
-1, & i = j = k = N - 3 \\
0, & \text{else}
\end{cases} \quad (S_*)
\end{align*}
\]

(The Θ-foam relations)

\[
\begin{align*}
\iota_{N-1} &= -1 = - \iota_{N-2} \quad (\Theta) \quad \text{and} \quad \iota_{N-3,N-3} &= -1 = - \iota_{N-3,N-3,N-3} \quad (\Theta_*).
\end{align*}
\]

Inverting the orientation of the singular circle of (Θ_*) inverts the sign of the corresponding foam. A theta-foam with dots on the double facet can be transformed into a theta-foam with dots only on the other two facets, using the dot migration relations.

(The Matveev-Piergalini relation)

\[
\begin{align*}
\text{(MP)}
\end{align*}
\]

(The disc removal relations)

\[
\begin{align*}
\text{(RD}_1) & \quad \begin{align*}
\iota_{N-1} &= \begin{cases}
0, & i = N - 1 \\
\iota, & \text{else}
\end{cases} \\
\end{align*} \\
\text{(RD}_2) & \quad \begin{align*}
\iota_{N-1} &= \begin{cases}
0, & i = N - 1 \\
\iota, & \text{else}
\end{cases}
\end{align*}
\]

\(^1\text{These were called cutting neck relations in} \ [11,14].\)
(The digon removal relations)

\[(\text{DR}_1)\]

\[(\text{DR}_3_1)\]

\[(\text{DR}_3_2)\]

(The square removal relations)

\[(\text{SqR}_1)\]

\[(\text{SqR}_2)\]

\[
\begin{array}{ll}
(p,q,r) & \\
\text{if } & p = N - 3 - i \\
\text{if } & r = N - 1 - i \\
\text{if } & q = N - 2 - i \\
\text{else} & 0 \\
\end{array}
\]

\[
\begin{array}{ll}
(i-1,j) & \\
\text{if } & i > j \geq 0 \\
(j-1,i) & \\
\text{if } & j > i \geq 0 \\
0 & \\
\end{array}
\]
4. The functors $\mathcal{F}_{N,n}$

Let $n \geq 1$ and $N \geq 4$ be arbitrary but fixed. In this section we define a monoidal functor $\mathcal{F}_{N,n}$ between the categories $\text{SC}_{1,n}$ and Foam_N.

On objects: $\mathcal{F}_{N,n}$ sends the empty sequence to 1_n and the one-term sequence (j) to w_j:

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
1 & 2 & \cdots & n \\
\end{array}
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow \\
(\emptyset) & (j) & \\
\end{array}
\]

with $\mathcal{F}_{N,n}(jk)$ given by the vertical composite $w_j w_k$.

On morphisms:

- The empty diagram is sent to n parallel vertical sheets:

\[
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
1 & 2 & \cdots & n \\
\end{array}
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow \\
\rightarrow & \rightarrow & \rightarrow \\
(\emptyset) & \\
\end{array}
\]

- The vertical line coloured j is sent to the identity cobordism of w_j:

\[
\begin{array}{c}
\text{StartDot} \\
\text{EndDot} \\

j \quad j + 1 \\
\end{array}
\begin{array}{c}
\text{StartDot} \\
\text{EndDot} \\

j \quad j + 1 \\
\end{array}
\]

The remaining $n - 2$ vertical parallel sheets on the r.h.s are not shown for simplicity, a convention that we will follow from now on.

- The StartDot and EndDot morphisms are sent to the zip and the unzip respectively:

\[
\begin{array}{c}
\text{StartDot} \\
\text{EndDot} \\

j \quad j + 1 \\
\end{array}
\begin{array}{c}
\text{StartDot} \\
\text{EndDot} \\

j \quad j + 1 \\
\end{array}
\]
• Merge and Split are sent to cup and cap cobordisms:

\[
\begin{array}{c}
\begin{array}{c}
\text{j} \\
\text{j} \quad \text{j+1}
\end{array} \\
\begin{array}{c}
\text{Y} \\
\text{j} \quad \text{j+1}
\end{array}
\end{array}
\]

• The 4-valent vertex with distant colors. For \(j + 1 < k \) we have:

\[
\begin{array}{c}
\begin{array}{c}
\text{k} \\
\text{j}
\end{array} \\
\begin{array}{c}
\text{j} \quad \text{j+1} \\
\text{\ldots} \\
\text{k} \quad \text{k+1}
\end{array}
\end{array}
\]

The case \(j > k + 1 \) is given by reflexion around a horizontal plane.

• For the 6-valent vertices we have:

The case with the colors switched is given by reflection in a vertical plane. Notice that \(\mathcal{F}_{N,n} \) respects the gradings of the morphisms.

Proposition 4.1. \(\mathcal{F}_{N,n} \) is a monoidal functor.

Proof. The assignment given by \(\mathcal{F}_{N,n} \) clearly respects the monoidal structures of \(\mathcal{SC}_{1,n} \) and \(\text{Foam}_N \). So we only need to show that \(\mathcal{F}_{N,n} \) is a functor, i.e. it respects the relations (1) to (18) of Section 2.

Isotopy relations: Relations (1) to (5) are straightforward to check and correspond to isotopies of their images under \(\mathcal{F}_{N,n} \). For the sake of completeness we show the first equality in (1). We have

\[
\mathcal{F}_{N,n}(\begin{array}{c}
\text{j} \\
\text{j} \quad \text{j+1}
\end{array}) = \mathcal{F}_{N,n}(\begin{array}{c}
\text{j} \\
\text{j} \quad \text{j+1}
\end{array}) = \mathcal{F}_{N,n}(\begin{array}{c}
\text{j} \\
\text{j} \quad \text{j+1}
\end{array})
\]
One color relations: For relation (6) we have

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\end{array} \right) \approx \mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\end{array} \right) \approx \mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\end{array} \right) \]

where the first equivalence follows from relations (1) and (3) and the second from isotopy of the foams involved.

For relation (7) we have

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\end{array} \right) = 0 \quad \text{by Equation (23)}. \]

Relation (8) requires some more work. We have

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet}
\end{array} \right) = 0 \quad \text{where the second equality follow from the (DR)} \]

\[\text{relation. We also have} \]

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet}
\end{array} \right) = 2 \quad \text{and} \]

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet}
\end{array} \right) = -2 \]

Using (21) we obtain

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet}
\end{array} \right) = 2 \quad \text{and} \]

\[\mathcal{F}_{N,n} \left(\begin{array}{c}
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet} \\
\text{\scriptsize \textbullet}
\text{\scriptsize \textbullet}
\end{array} \right) = -2 \]

and
and, therefore, we have that
\[F_{N,n}(\begin{array}{c}
| \\
\end{array}) + F_{N,n}(\begin{array}{c}
| \\
\end{array}) = 2 F_{N,n}(\begin{array}{c}
| \\
\end{array}). \]

Two distant colors: Relations (9) to (11) correspond to isotopies of the foams involved and are straightforward to check.

Adjacent colors: We prove the case where “blue” corresponds to \(j \) and “red” corresponds to \(j+1 \). The relations with colors reversed are proved the same way. To prove relation (12) we first notice that using the (MP) move we get
\[F_{N,n}(j \begin{array}{c}
| \\
\end{array} j+1 \begin{array}{c}
| \\
\end{array} j+2) \sim \ast. \]

Apply (SqR) to the simple-double square tube perpendicular to the triple facet to obtain two terms. The first term contains a double-triple digon tube which is the left hand side of the (DR) relation rotated by 180° around a vertical axis. Next apply the (DR) relation and use (MP) to remove the four singular vertices which results in simple-triple bubbles (with dots) in the double facets. Using Equation (22) to remove these bubbles gives
\[\sum_{a+b+c+d=N-3} \]
which is \(F_{N,n}(\begin{array}{c}
\end{array}) \). The second term contains
behind a simple facet with \(d \) dots (notice that all dots are on simple facets). Using the \(\text{(MP)} \) relation to get a simple-triple bubble in the double facet, followed by \(\text{(RD}_2 \rangle \) and \(\text{(S}_1 \rangle \) we obtain

\[
\begin{align*}
\mathcal{F}_{N,n}(\begin{array}{c}
\text{j} \\
\text{j} + 1 \\
\text{j} + 2
\end{array}) &= \mathcal{F}_{N,n}(\begin{array}{c}
\text{F}_N(\begin{array}{c}
\text{j} \\
\text{j} + 1 \\
\text{j} + 2
\end{array})
\end{array}) \\
&= \mathcal{F}_{N,n}(\begin{array}{c}
\text{F}_N(\begin{array}{c}
\text{j} \\
\text{j} + 1 \\
\text{j} + 2
\end{array})
\end{array})
\end{align*}
\]

which equals \(\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \).

We now prove relation (13). We have an isotopy equivalence

\[
\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \cong \mathcal{F}_{N,n}(\begin{array}{c}
\text{j} + 1 \\
\text{j} + 2
\end{array})
\]

Notice that \(\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \) is the l.h.s. of the \(\text{(SqR}_2 \rangle \) relation. The first term on the r.h.s. of \(\text{(SqR}_2 \rangle \) is isotopic to \(-\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \). For the second term on the r.h.s. of \(\text{(SqR}_2 \rangle \) we notice that \(\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \) contains

\[
\text{(27)}
\]

Applying \(\text{(DR}_3 \rangle \) followed by \(\text{(MP)} \) to remove the singular vertices creating simple-simple bubbles on the two double facets and using Equation (23) to remove these bubbles we get that \(\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \) is the second term on the r.h.s. of \(\text{(SqR}_2 \rangle \).

We now prove relation (14) in the form

\[
\begin{align*}
\mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) &= \mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array}) \\
&= \mathcal{F}_{N,n}(\begin{array}{c}
\text{j}
\end{array})
\end{align*}
\]
The image of the l.h.s. also contains a bit like the one in Equation (27). Simplifying it like we did in the proof of (13) we obtain the $F_{N,n}$ reduces to

\begin{equation}
- \quad j \quad j + 1 \quad j + 2
\end{equation}

For the r.h.s. we have

Using (DR$_3$) on the vertical digon, followed by (MP) and the Bubble relation (23), we obtain (28).

Relation (15) follows from straightforward computation and is left to the reader.

Relations involving three colors: Relations (16) and (17) follow from isotopies of the foams involved. To show that $F_{N,n}$ respects relation (18) we use a different type of argument. First of all, we note that the images under $F_{N,n}$ of both sides of relation (18) are multiples of each other, because the graded vector space of morphisms in Foam$_N$ between the bottom and top webs has dimension one in degree zero. Verifying this only requires computing the coefficient of $q^{-(4N-4)}$ (this includes the necessary shift!) in the MOY polynomial associated to the web

which is a standard calculation left to the reader. To see that the multiplicity coefficient is equal to one, we close both sides of relation (18) simply by putting a dot on each open end. Using relations (10) and (12) to reduce these closed diagrams, we see that both sides give the same non-zero sum of disjoint unions of coloured StartDot-EndDot diagrams. Note that we have already proved that $F_{N,n}$ respects relations (10) and (12). By applying foam relation (24) to the images of all non-zero terms in the sum, we obtain a non-zero sum of dotted sheets. This implies that both sides of (18) have the same image under $F_{N,n}$. □
We have now proved that \(F_{N,n} \) is a monoidal functor for all \(N \geq 4 \). Our main result about the whole family of these functors, i.e. for all \(N \geq 4 \) together, is the proposition below. It implies that all the defining relations in Soergel’s category can be obtained from the corresponding relations between \(sl(N) \) foams, when all \(N \geq 4 \) are considered, and that there are no other independent relations in Soergel’s category corresponding to relations between foams.

Proposition 4.2. Let \(i, j \) be two arbitrary objects in \(SC_{1,n} \), and let \(f \in \text{Hom}(i, j) \) be arbitrary. If \(F_{N,n}(f) = 0 \) for all \(N \geq 4 \), then \(f = 0 \).

Proof. Let us first suppose that \(i = j = \emptyset \). Suppose also that \(f \) has degree \(2d \) and that \(N \geq \max\{4, d + 1\} \). Recall that, as shown in Corollary 3 in \([3]\), we know that \(\text{Hom}(\emptyset, \emptyset) \) is the free commutative polynomial ring generated by the StartDot-EndDots of all possible colors. So \(f \) is a polynomial in StartDot-EndDots, and therefore a sum of monomials. Let \(m \) be one of these monomials, no matter which one, and let \(m_j \) denote the power of the StartDot-EndDot with color \(j \) in \(m \). Close \(F_{N,n}(f) \) by glueing disjoint discs to the boundaries of all open simple facets (i.e. the vertical ones with corners in the pictures). For each color \(j \), put \(N - 1 - m_j \) dots on the left simple open facet corresponding to \(j \) and also put \(N - 1 \) dots on the rightmost simple open facet. Note that, after applying \([\text{RD}_1]\), we get a linear combination of dotted simple spheres. Only one term survives and is equal to \(\pm 1 \), because only in that term each sphere has exactly \(N - 1 \) dots. This shows that \(F_{N,n}(f) \neq 0 \), because it admits a non-zero closure.

Now let us suppose that \(i = \emptyset \) and \(j \) is arbitrary. By Corollaries 4.11 and 4.12 in \([2]\), we know that \(\text{Hom}(\emptyset, j) \) is the free \(\text{Hom}(\emptyset, \emptyset) \)-module of rank one generated by the disjoint union of StartDots coloured by \(\emptyset \). Closing off the StartDots by putting dots on all open ends gives an element of \(\text{Hom}(\emptyset, \emptyset) \), whose image under \(F_{N,n} \) is non-zero for \(N \) big enough by the above. This shows that the generator of \(\text{Hom}(\emptyset, j) \) has non-zero image under \(F_{N,n} \) for \(N \) big enough, because \(F_{N,n} \) is a functor.

Finally, the general case, for \(i \) and \(j \) arbitrary, can be reduced to the previous case by Corollary 4.12 in \([2]\). □

Acknowledgements The authors were supported by the Fundação para a Ciência e a Tecnologia (ISR/IST plurianual funding) through the programme “Programa Operacional Ciência, Tecnologia, Inovação” (POCTI) and the POS Conhecimento programme, cofinanced by the European Community fund FEDER.

Pedro Vaz was also financially supported by the Fundação para a Ciência e a Tecnologia through the post-doctoral fellowship SFRH/BPD/46299/2008.

REFERENCES

[1] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms, *Geom. Topol.* 9 (2005), 1443-1499.

[2] B. Elias and M. Khovanov, Diagrammatics for Soergel categories, arXiv: 0902.4700v1 [math.RT].

[3] B. Elias and D. Krasner, Rouquier complexes are functorial over braid cobordisms, arXiv: 0906.4762v2 [math.RT].

[4] A. Kapustin and Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, *Adv. Theor. Math. Phys.* 7 (2003), 727-749.

[5] M. Khovanov, A categorification of the Jones polynomial. *Duke Math. J.* 101(3) (2000), 359-426.

[6] M. Khovanov, sl(3) link homology, *Algebr. Geom. Topol.* 4 (2004), 1045-1081.
[7] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, *Int. Journal of Math.*, 18(8) (2007), 869-885.

[8] M. Khovanov and L. Rozansky, Topological Landau-Ginzburg models on the world-sheet foam, *Adv. Theor. Math. Phys.* 11(2) (2007), 233-259.

[9] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, *Fund. Math.* 199(1) (2008), 1-91.

[10] M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, *Geom. Topol.* 12(3) (2008), 1387-1425.

[11] M. Mackaay, M. Stošić, P. Vaz, sl(N)-link homology (N ≥ 4) using foams and the Kapustin-Li formula, *Geom. Topol.* 13 (2009), 1075-1128.

[12] J. Rasmussen, Some differentials on Khovanov-Rozansky homology, arXiv: 0607544 [math.GT].

[13] W. Soergel, The combinatorics of Harish-Chandra bimodules, *Journal Reine Angew. Math.* 429 (1992), 49-74.

[14] P. Vaz, A categorification of the quantum sl(N)-link polynomials using foams, PhD Thesis, Univ. Algarve (2008) arXiv: 0807.2658v1 [math.GT].

[15] P. Vaz, The diagrammatic Soergel category and sl(2) and sl(3) foams, arXiv: 0909.3495 [math.QA].

Departamento de Matemática, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal and CAMGSD, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

E-mail address: mmackaay@ualg.pt

Institut de Mathématiques de Jussieu, Université Paris 7, 175 Rue du Chevaleret, F-75013 Paris, France and CAMGSD, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

E-mail address: pfortevaz@ualg.pt