Structure, Biosynthesis, and Localization of Dipeptidyl Aminopeptidase B, an Integral Membrane Glycoprotein of the Yeast Vacuole

Christopher J. Roberts, Gabriele Pohlig, Joel H. Rothman, and Tom H. Stevens
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403

Abstract. We have characterized the structure, biogenesis, and localization of dipeptidyl aminopeptidase B (DPAP B), a membrane protein of the yeast vacuole. An antibody specific for DPAP B recognizes a 120-kD glycoprotein in yeast that behaves like an integral membrane protein in that it is not removed from membranes by high pH Na2CO3 treatment. Inspection of the deduced amino acid sequence of DPAP B reveals a hydrophobic domain near the NH2 terminus that could potentially span a lipid bilayer. The in vitro enzymatic activity and apparent molecular weight of DPAP B are unaffected by the allelic state of PEP4, a gene essential for the proteolytic activation of a number of soluble vacuolar hydrolases. DPAP B is synthesized as a glycosylated precursor that is converted to the mature 120-kD species by carbohydrate addition. The precursor form of DPAP B accumulates in sec mutants (Novick, P., C. Field, and R. Schekman. 1980. Cell. 21:205-215) that are blocked at the ER (sec18) or Golgi apparatus (sec7), but not at secretory vesicles (sec1). Immunolocalization of DPAP B in wild-type or sec7 mutant cells shows that the protein resides in the vacuolar membrane. However, it is present in non-vacuolar compartments in sec18 and sec7 cells, confirming that the delivery of DPAP B is blocked in these mutants. Interestingly, DPAP B appears to stain the nuclear envelope in a sec18 mutant, which is consistent with the accumulation of DPAP B in the ER membrane at the restrictive temperature. These results suggest that soluble and membrane-bound vacuolar proteins use the same stages of the secretory pathway for their transport.

The vacuole of the yeast Saccharomyces cerevisiae is considered to be the equivalent of the lysosome of mammalian cells because it contains a large number of hydrolytic enzymes and has an acidic pH (reviewed in Rothman and Stevens, 1988). The biosynthesis and sorting of soluble vacuolar hydrolases, such as carboxypeptidase Y (CPY) and proteinase A, have been examined. The localization of soluble proteins to the vacuole requires the early stages of the secretory pathway; i.e., ER and Golgi apparatus (Stevens et al., 1982). In addition, localization determinants on CPY and proteinase A, as well as genes necessary for the efficient sorting of these proteins, have been identified (Valls et al., 1987; Johnson et al., 1987; Klionsky et al., 1988; Rothman and Stevens, 1986; Bankaitis et al., 1986; Robin-son et al., 1988; Rothman et al., 1989).

Much less is known about the sorting of membrane proteins to the vacuole. Studies on mammalian cells indicate that soluble and membrane-bound lysosomal proteins are sorted by distinct mechanisms (von Figura and Hasilik, 1986). Several lysosomal membrane proteins have been identified (Chen et al., 1985; Lewis et al., 1985; Barriocanal et al., 1986; Lippincott-Schwartz and Fambrough, 1986; Waheed et al., 1988), and of those examined, none possess the mannose-6-phosphate moiety required for sorting soluble lysosomal proteins (von Figura and Hasilik, 1986). Furthermore, several membrane proteins are found at normal levels in the lysosomes of I-cell fibroblasts, which missort soluble lysosomal hydrolases to the cell surface.

Several activities associated with the vacuolar membrane of yeast have been characterized (Rothman and Stevens, 1988), including transport systems for Ca2+ (Ohsumi and Anraku, 1981) and basic amino acids (Ohsumi and Anraku, 1983), a protein-translocating ATPase (Uehida et al., 1985; Kane et al., 1989), an α-mannosidase (Opheim, 1978), and dipeptidyl aminopeptidase (DPAP) B (Suarez Rendueles et al., 1981; Julius et al., 1983; Bordallo et al., 1984). Nothing is known about the transport or posttranslational modifications for any of the vacuolar membrane proteins. Analysis of the localization of α-mannosidase and DPAP B in yeast mutants that missort soluble vacuolar proteins suggested that most of these mutants do not missort membrane-bound vacuolar proteins (Bankaitis et al., 1986; Rothman and

1. Abbreviations used in this paper: CPY, carboxypeptidase Y; DPAP, dipeptidyl aminopeptidase; endo F, endoglycosidase F; N-linked, asparagine-linked.
Stevens, 1986; Robinson et al., 1988; Rothman and Stevens, unpublished results). Thus, soluble and membrane-bound proteins appear to be directed to the vacuole by distinct mechanisms.

As a first step in the study of vacuolar membrane protein sorting and transport, we have characterized the structure, biogenesis, and localization of DPAP B. We show that DPAP B is an integral membrane protein that, like soluble vacuolar proteins, uses the early stages of the secretory pathway for its transport to the vacuole.

Materials and Methods

Strains, Growth Conditions, and Materials

The genotypes of the Escherichia coli and S. cerevisiae strains used in these studies are listed in Table I. Yeast cultures were grown in minimal medium supplemented with the appropriate nutrients as previously described (Stevens et al., 1986).

Restriction endonucleases and other enzymes used for cloning and sequencing were from New England Biolabs (Beverly, MA), Bethesda Research Laboratories (Gaithersburg, MD), Pharmacia Fine Chemicals (Piscataway, NJ), or Boehringer Mannheim Biochemicals (Indianapolis, IN).₁₂₅I-protein A was from Amersham Corp. (Arlington Heights, IL) and carrier-free ³⁵S-H₂SO₄ was from ICN Biomedicals Inc. (Irvine, CA). IgG Sorb was from The Enzyme Center (Boston, MA), endoglycosidase F (endo F) was from Boehringer Mannheim Biochemicals, and FITC-conjugated sheep anti-rabbit IgG was from Cappel Laboratories (Malvern, PA). All other reagents used in these experiments were from Sigma Chemical Co. (St. Louis, MO).

Plasmid Constructions, Recombinant DNA Methodology, and DNA Sequence Analysis

Restriction endonuclease and Bal 31 exonuclease digestions and ligations were performed as recommended by the suppliers. Plasmid purification, agarose gel electrophoresis, and DNA-mediated transformation of E. coli were performed according to standard procedures (Maniatis et al., 1982). Plasmids were introduced into yeast cells by the lithium acetate transformation method (Ito et al., 1983). E. coli strain MC1061 was used for all plasmid manipulations and JM103 was used for M13 phage work.

DNA sequencing was performed by the chain termination method of Sanger et al. (1977) using M13mp18 and mp19 vectors (Yanisch-Perron et al., 1985). In one case, sequencing was primed using a synthetic oligonucleotide corresponding to nucleotides 441-459 of DAP2 (see Fig. 2), prepared at the University of Oregon Biotechnology Laboratory on a DNA synthesizer (model 380B; Applied Biosystems, Inc., Foster City, CA) as described (Ito et al., 1982). DNA and amino acid sequence analyses were performed using the sequence analysis software package (version 4) of the University of Wisconsin Genetics Computer Group.

Plasmid pRG1 was constructed by inserting the 4.7-kb Bam HI-Pst I (blunt-ended by treating with T4 DNA polymerase) DAP2 fragment (Fig. 1), isolated from the original DAP2 plasmid YEpl3 GS13-4 (Julius et al., 1983), into the Bam HI-Sma I sites of pUC12. Plasmid pGP3, a multicopy 2-μm plasmid containing the DAP2 gene, was constructed by inserting the 4.7-kb Bam HI-Pst I (blunt-ended) fragment from pRG1 into the Bam HI-Pvu II sites of YEp24.

A chromosomal DAP2 deletion was constructed by transplacing the genomic copy with the cloned gene into which the LEU2 gene was inserted in place of 1.3 kb of the DAP2 coding region (Rothstein, 1983; Fig. 1). Plasmid pRG1 was digested with BstE II and Kpn I, treated with T4 DNA polymerase to make blunt ends, and ligated with a 2.1-kb Hpa I fragment containing the LEU2 gene. The resulting plasmid (pDP2) was cut with Bam HI and Pst I and used to transform the yeast strain JHRY20-2C (leu2-3, 1eu2-112). Stable LEU⁺ transformants were purified and screened for the lack of thermolabile dipeptidyl aminopeptidase activity, assayed as described previously (Julius et al., 1983).

Plasmid pCRJ6, a multicopy 2-μm yeast vector containing the DAPB coding region fused to the GAL/ promoter, was constructed by inserting a 400-bp Eco RI-Hind III GAL/promoter fragment (Johnston and Davis, 1984) into the Eco RI and Hind III sites of pSEYS, and subsequently subcloning into the Hind III site of this plasmid (pCRJ6) the 2.9 kb Hind III fragment of DAP2 (Fig. 1), resulting in the fusion of the GAL/ promoter at position -90 of DAP2.

DPAP B antigen for production of antiserum was made in E. coli by fusing a portion of the DAP2 coding region into the E. coli expression vector pH5e5, which contains the T4 phage lysozyme gene under the control of the TAC promoter (Muchmore et al., 1988; kindly provided by R. Dahlquist, University of Oregon). Plasmid pRG1 was digested with Sst I, treated briefly with Bal 31 exonuclease, and further digested with Hind III. Fragments of ~1,650 bp were cloned into the Sna BI-Hind III sites of pCRJ6.

Table I. Strains Used in This Study

Yeast strain	Genotype	Source or reference
X2180-1AL1	MA^{Ta} gal2 lys2 mal mel	Derived from X2180
HMSF176	MA^{Ta} sec18 gal2	Novick et al., 1980
SF294-2B	MA^{Ta} sec7 gal2	Novick and Schekman, 1983
HMSF1	MA^{Ta} sec1 gal2	Novick et al., 1980
SEY5186	MA^{Ta} sec18 ura3-52 leu2-3 leu2-112	Emr et al., 1984
CJRY21-3BA1	MA^{Ta} sec18 ura3-52 leu2-3 leu2-112	This study
CJRY22-6BA1	MA^{Ta} sec18 ura3-52 leu2-3 leu2-112	This study
CJRY23-2A1	MA^{Ta} sec18 ura3-52 leu2-3 leu2-112	This study
JHRY20-1A1	MA^{Ta} ura3-52 leu2-3 leu2-112	Rothman, 1988
JHRY20-2C	MA^{Ta} ura3-52 leu2-3 leu2-112	Rothman, 1988
JHRY20-2CA2	MA^{Ta} ura3-52 leu2-3 leu2-112	Derived from JHRY20-2C
JHRY20-2CA3	MA^{Ta} ura3-52 leu2-3 leu2-112	Derived from JHRY20-2C
E. coli	MA^{Ta}	Casadaban and Cohen, 1980
MC1061	F[−] hsdR hsdM^{T+} araD139 (araABOIC-leu7679 lacX74 galU galK rpsL	Messing, 1983
JM103	F[−] (lac pro) thi strA endA sbcB15 supE4 traD36 proAB lacY1 lacZ1M15	
resulting in the production of a hybrid protein consisting of the NH2-terminal seven residues of T4 phage lysozyme fused to the COOH-terminal half of DPAP B. Transformants were screened for an isopropyl-β-D-thiogalactopyranoside- (IPTG) inducible protein species by SDS-PAGE (Laemmli, 1970) of total E. coli cell extracts. A plasmid was isolated (p82G2) which produced a large amount (>5% of total cell protein) of a 55-kD species upon induction with isopropyl-β-D-thiogalactopyranoside.

Production of DPAP B Antigen and Generation of DPAP B Antisera

E. coli cells containing plasmid p82G2 were grown in LB broth plus ampicillin to saturation, then diluted 1:100 in 250 ml of fresh medium, and grown for 1 h at 37°C. Isopropyl-β-D-thiogalactopyranoside was added to 1 mM, and incubation was continued for 3 h before collecting the cells by centrifugation. The cells were lysed and the fusion protein was isolated from the insoluble fraction essentially as previously described (Kleid et al., 1981). An SDS-PAGE gel slice containing the fusion protein was reconstituted, and the protein was precipitated by adding 4 vol of acetone, incubating for 30 min at -80°C, and centrifuging at 12,000 g for 10 min. The supernatant was saved, and the pellet was resuspended in 5 ml of elution buffer and treated as above. The supernatants were combined, and the protein was precipitated by adding 4 vol of acetone, incubating for 30 min at -80°C, and centrifuging at 15,000 g for 10 min.

A DPAP B–specific antigen was prepared by injecting DPAP B antigen into New Zealand White Rabbits (250 μg DPAP B antigen per rabbit per injection) essentially as described (Vaitukaitis, 1981). These antibodies were affinity purified as previously described (Stevens et al., 1982). Antisera to phosphoglycerate kinase was prepared as described (Rothman et al., 1986).

Alkaline Sodium Carbonate Fractionation

Yeast cells containing plasmid pJP3 were grown in minimal medium at 30°C to mid-log phase. 12 OD600 units of cells (1.2 × 109 cells) were spheroplasted as described previously (Stevens et al., 1986), lysed in 50 mM sodium phosphate, pH 7.5, 2 mM EDTA, and 0.5 mM PMSF, and diluted 100-fold in ice-cold 100 mM sodium carbonate, pH 11.5. An aliquot representing the whole extract fraction was removed, and after 30 min on ice the lysate was centrifuged for 3 h at 100,000 g. The supernatant and whole extract fractions were neutralized with 1 N acetic acid, then precipitated in 5% TCA on ice. Precipitated protein was pelleted, washed twice in diethyl ether, dried, resuspended in sample buffer, and heated at 70°C until dissolved. The pellet fraction was homogenized in 50 mM Tris-HCl, pH 6.8, and solubilized by addition of SDS to a final concentration of 4%. The sample was incubated at 60°C until complete solubilization had occurred; i.e., the suspension became completely transparent. Sample buffer (without reducing agent) was added (0.5-1.0 μCi) and cells were labeled and then chased with 10 mM 35S-H2SO4 for 5 min at 37°C or 30 min at 100°C. 35S-H2SO4 was added (0.5-1.0 mCi) and cells were labeled and then chased with 10 mM 35S-H2SO4 for 5 min at 37°C or 30 min at 100°C. The cells were centrifuged at 12,000 g for 30 min. Isopropyl-β-D-thiogalactopyranoside was added to 1 mM, and centrifugation was repeated. Sample buffer was added to the final IgG Sorb pellet and the samples were heated at 100°C and centrifuged. Supernatant fractions were transferred to new tubes and aliquots (normalized for the amount of 35S-H2SO4 incorporated) were analyzed by SDS-PAGE and fluorography as described previously (Stevens et al., 1986).

Endo F treatment (Elder and Alexander, 1982) was carried out on immunoprecipitated samples of DPAP B essentially as described (Stevens et al., 1986). A time course of endo F treatment was performed by adding 300 μl of endo F to DPAP B immunoprecipitated from SEY5266 cells containing plasmid pGP3 and withdrawing aliquots at the times indicated in Fig. 6.

Immunofluorescence Microscopy

Yeast cells containing a disruption of the chromosomal DAP2 locus and transformed with the plasmid pCJR6 were grown in minimal media plus 2% raffinose to an OD600 of 1.0, and galactose was added directly to the cultures to a final concentration of 3%. The cultures were then incubated at either 34°C (SEC+, secB, and secC) or 38°C (SEC- and secC) for 2 h and the cultures were put on ice. The cells were fixed with formaldehyde, spheroplasted, and prepared for immunofluorescence as described (Kilmartin and Adams, 1984; Adams and Pringle, 1984; Wittenberg et al., 1987). In some cases, fixed spheroplasts were treated with SDS by resuspending in 1 ml of 1 M sorbitol/PBS (prepared as described by Adams and Pringle, 1984) plus 5% SDS, mixed gently, centrifuged at 8,000 g, and washed twice in 1 M sorbitol. FITC-conjugated sheep anti-rabbit IgG second antibody was used for staining DPAP B antibody. Nuclei were stained with 4′,6-diamidino-2-phenyl-indole (DAPI) as described (Kilmartin and Adams, 1984).

Cells were viewed and photographed using a Zeiss Axiosplan Photomicroscope (equipped for epifluorescence at excitation wavelengths appropriate for DAPI and FITC fluorescence) and film and developer (TMAX-400; Eastman Kodak Co.). Photomicrographs are shown at a magnification of 1,000.

Results

The DAP2 Gene Encodes DPAP B

Yeast cells contain two membrane-associated DPAP activities that differ in their subcellular locations and thermal stabilities (Suarez Rendueles et al., 1981; Julius et al., 1983). DPAP B is a thermolabile enzyme associated with the vacuolar membrane (Bordallo et al., 1984). DPAP A, the STE13 gene product, is a nonvacuolar, heat-stable enzyme that participates in the proteolytic maturation of the mating pheromone α-factor (Fuller et al., 1988). The STE13 gene was cloned by complementation of the mating defect of a MATα

![Figure 1](https://via.placeholder.com/150)

Figure 1. Restriction map and nucleotide sequencing strategy of the DAP2 gene. A linear map of the DAP2 gene is depicted, with the horizontal arrows indicating direction and extent of sequence determination. The arrow originating in a solid circle corresponds to sequence analysis are indicated: B, Bam HI; H, Hind III; A, Acc I; Bst, BstE II; S, Stu I; K, Kpn I; E, Eco RI; Hc, Hinc II; P, Pst I.
The nucleotide and corresponding amino acid sequence of the DAP2 gene. Nucleotide residues are numbered in the 5'-to-3' direction,
ste13 mutant (Sprague, G., and Ira Herskowitz, unpublished results; Julius et al., 1983). Another gene, called STE13 (also called DPP2), was cloned by its ability to complement the α-factor maturation defect of a ste13 mutant when expressed from a high copy number plasmid (Sprague, G., and I. Herskowitz, unpublished results; Julius et al., 1983). The gene dosage of DPP2 had a direct effect on the specific activity of DPAP B in extracts of yeast cells (Julius et al., 1983; Sprague, G., unpublished results). Strains transformed with a multicopy plasmid containing DPP2 on a 4.7-kb Bam HI-Pst I fragment (Fig. 1) showed a 10–20-fold increase in DPAP B activity, whereas strains carrying a disrupted genomic copy of DPP2 (dpp2-Δ2::LEU2, see Materials and Methods; see Fig. 4) showed no measurable DPAP B activity in assays of whole cell extracts (data not shown). Also, a dpp2-Δ2::LEU2/DPP2 diploid strain had ~50% of the DPAP B activity of a DPP2/DPP2 diploid (data not shown).

Mutants deficient in DPAP B activity have been previously described (Suarez Rendueles and Wolf, 1987). These mutants, including one with an exceptionally thermolabile DPAP B activity, harbored mutations that fell into a single complementation group, called DAP2, and failed to complement the dpp2-Δ2 mutation. Thus, DPP2 and DAP2 define the same locus, which encodes DPAP B. Henceforth, DAP2 will denote the gene encoding DPAP B. No phenotype other than the lack of DPAP B was observed in strains disrupted at the DAP2 locus (Sprague, G., unpublished results; data not shown), consistent with the results of Suarez Rendueles and Wolf (1987).

Primary Structure of DPAP B Deduced from the DAP2 Sequence

We deduced the primary structure of DPAP B by sequencing DAP2. Fig. 1 shows the restriction map of DAP2 and the sequencing strategy for the 3,135-bp Bam HI-Acc I fragment. The complete nucleotide and deduced amino acid sequences are presented in Fig. 2. 459 bp of 5’ and 153 bp of 3’ flanking sequences are included in addition to the 2,523 bp of coding sequence.

Translation of DPAP B is predicted to initiate at the methionine codon numbered 1 (Fig. 2). The sequenced region contains a long open reading frame coding for a protein of 841 amino acids, with eight canonical sites for asparagine-linked (N-linked) glycosylation. A 24-bp segment located from −210 to −187 relative to the putative translation initiation codon may function as a reiterated TATA-like box for initiation of transcription. An identical sequence is found in a similar location upstream of the yeast STE3 gene (Hagen et al., 1986). The predicted molecular mass from the deduced amino acid sequence is 96,429 D, which is similar to the apparent molecular mass of DPAP B after removal of N-linked carbohydrate (see below).

Hydropathy analysis of the amino acid sequence (Kyte and Doolittle, 1982; Fig. 3 A) reveals a single hydrophobic domain, beginning 30 residues from the NH2 terminus, of sufficient length and hydrophobicity to span a lipid bilayer (Adams and Rose, 1985; Davis and Model, 1985). Thus, the predicted topology of DPAP B is that of a type II (or group B; Fig. 3 B) integral membrane protein (Garoff, 1982; Singer et al., 1987), with an NH2-terminal cytoplasmic domain and a luminal COOH terminus. The hydrophobic domain presumably functions as both an ER-targeting signal and a membrane anchor, as is true of other type II integral membrane proteins, such as the neumaminidase of influenza virus (Bos et al., 1984) and the transferrin receptor (Zerial et al., 1986). Further support for this disposition of DPAP B in the membrane is the observation that DPAP B is a glycoprotein (see below), and that all sites for N-linked glycosylation are included in the COOH-terminal domain, which therefore must be the luminal domain.

No significant sequence similarity has been found between DPAP B and any other vacuolar or lysosomal protein for which sequence information is available. However, strong homology has been found between DPAP B and DAP A, the product of the STE13 gene (Flanagan, C., and J. Thorner, personal communication; see below).

DPAP B Is a 120-kD Integral Membrane Protein

To facilitate the biochemical characterization of DPAP B, a DPAP B–specific antibody was prepared (see Materials and Methods). Lanes 1 and 2 of Fig. 4 show that the antibody is specific for the DAP2 gene product in yeast. Isogenic DAP2 and dap2-Δ2 cells were labeled with 35S-H2SO4 for 30 min and chased for 30 min in the presence of 10 mM Na2SO4, and immunoprecipitations were performed from cell extracts. Two species were precipitated from the DAP2 strain (Fig. 4, lane 2): a major species of ~120 kD and a lesser amount of a 110-kD form. Both of these bands were absent from the dap2-Δ2 strain (lane I), indicating that they represent the products of the DAP2 locus.
Figure 4. Immunoprecipitations of DPAP B. (Lanes 1 and 2) JHRY20-2CΔ3 (∆) and JHRY20-2C (+) cells were 35S labeled for 30 min and chased 30 min in the presence of Na2SO4. (Lanes 3-10) JHRY20-2C cells were pulse labeled for 5 min and chased in unlabeled Na2SO4, cysteine, methionine, and cycloheximide for the times indicated. Labeled cells were collected, converted to spheroplasts, lysed in 1% SDS, and immunoprecipitated with DPAP B antibody. Immunoprecipitates were analyzed on 6% polyacrylamide SDS gels without (-Endo F) or with (+Endo F) earlier treatment with endo F.

The deduced amino acid sequence predicts that DPAP B is an integral membrane protein. To test this prediction biochemically, yeast spheroplasts were treated with 100 mM sodium carbonate, pH 11.5, and centrifuged at 100,000 g. Under these conditions, only intrinsic membrane proteins pellet with membranes, whereas soluble and peripheral membrane proteins are recovered in the supernatant (Steck and Yu, 1973; Fujiki et al., 1982). Fig. 5 shows western blot analysis of the total, pellet, and supernatant fractions using DPAP B–specific and phosphoglycerate kinase (PGK) specific antibodies. The DPAP B antigen was found in the membrane fraction, whereas the soluble protein PGK did not sediment with membranes. These data confirm that DPAP B is an integral membrane protein.

DPAP B Is Synthesized as a Glycosylated Precursor

The soluble vacuolar proteins analyzed to date, such as CPY, are synthesized as glycoproteins (Rothman and Stevens, 1988). CPY first appears as a glycosylated precursor which receives further glycosyl residues in the Golgi apparatus before being proteolytically cleaved to the mature form upon delivery to the vacuole (Stevens et al., 1982). To follow the biosynthesis of DPAP B, a culture of DAP2 cells was pulse labeled for 5 min in 35S-H2SO4 and chased for 0, 5, 10, and 30 min (Fig. 4, lanes 3-6). DPAP B initially appeared as two distinct bands of 110 and 113 kD (lane 3) which chased to the broad 120-kD species seen in lane 2. A small amount of the 110-kD form remained after a 30-min chase (lanes 2 and 6). Longer times of up to 60 min were required to convert this species to the fully mature 120-kD form (data not shown).

Treatment of the immunoprecipitated samples with endo F (Fig. 4, lanes 7-10), which removes N-linked glycosyl residues, showed that the only detectable difference in the species seen in lanes 3-6 is in the amount of N-linked carbohydrate present on DPAP B. At each chase time point, labeled DPAP B migrated as a 96-kD species after endo F treatment, which is very close to the molecular mass predicted from the deduced amino acid sequence. A small amount of a 99-kD species was also detected in lanes 8-10; this appears to correspond to one residual carbohydrate chain remaining on DPAP B since it disappears upon longer incubation with endo F (see Fig. 6). Thus, DPAP B is modified in a manner similar to soluble vacuolar proteins, such as CPY, in that its carbohydrate moieties undergo only modest extension in the Golgi apparatus, and do not receive the extensive outer chain mannose residues found on secreted proteins such as invertase (Esmon et al., 1981; Runge, 1988).

DPAP B Receives Variable Numbers of N-linked Glycosyl Residues

The appearance of two distinct DPAP B species at the earliest times in its biogenesis is similar to that seen with invertase, which is initially synthesized as several discrete species that differ in the number of N-linked glycosyl chains added per protein molecule (Esmon et al., 1981). To determine how many of the eight potential sites for N-linked glycosylation are modified on DPAP B, limited endo F digestion was performed using DPAP B from CJRY21-3BA1 (sec18) cells containing DAP2 on a multicopy 2-μm plasmid after 35S labeling for 30 min. Samples were digested with endo F for the times indicated (ON, overnight). The different glycosylated species are marked, with the corresponding number of glycosyl residues shown.

Figure 5. DPAP B is an integral membrane protein. JHRY20-1AA1 cells containing the DAP2 gene on a multicopy plasmid were converted to spheroplasts, lysed, and diluted into 100 mM sodium carbonate, pH 11.5. A portion of the total extract (Tot) was saved, and the rest was separated into membrane (Mb) and soluble (Sol) fractions by centrifugation at 100,000 g for 3 h. The three fractions were subjected to SDS-PAGE, and the gel was analyzed by immunoblotting with DPAP B and phosphoglycerate kinase antibodies and subsequent incubation with 125I–protein A. An autoradiogram of the immunoblots is shown, with the positions of the protein molecular mass standards indicated.

Figure 6. Time course of endo F digestion. DPAP B was immunoprecipitated from CJRY21-3BA1 (sec18) cells containing DAP2 on a multicopy 2-μm plasmid after 35S labeling for 30 min. Samples were digested with endo F for the times indicated (ON, overnight). The different glycosylated species are marked, with the corresponding number of glycosyl residues shown.
formed on the precursor, which was immunoprecipitated from a sec18 mutant at 34°C (see below). Fig. 6 suggests that the precursor forms seen in lane 3 of Fig. 4 correspond to DPAP B with six and seven glycosyl residues added, although forms with five and eight oligosaccharide chains can also be seen (Fig. 6, 0-min time point). Therefore, DPAP B can be modified at all eight or as few as five sites, but the majority of molecules receive six or seven glycosyl chains.

DPAP B Is Not Affected by the Allelic State of PEP4

The *PEP4* gene function is necessary for the activation of a number of vacuolar hydrolases (Jones et al., 1982). Mutations at this locus result in the failure to proteolytically process the large molecular mass, inactive forms of soluble vacuolar proteins such as CPY (Rothman and Stevens, 1988). Suarez Rendueles et al. (1981) showed that total DPAP (DPAP A and DPAP B) activity was similar in a wild-type strain and a pep4-3 mutant. To examine further the effect of a *pep4* mutation on DPAP B, enzyme assays and immunoprecipitations of DPAP B were performed using isogenic *PEP4* and *pep4-Δ2* strains. No significant effect on the activity of DPAP B was detected in the *pep4-Δ2* strain as compared to the *PEP4* strain (data not shown), confirming that DPAP B is not synthesized as an inactive precursor. This result is consistent with the observation that DPAP B which had accumulated in the ER of sec18 cells (see below) was enzymatically active (data not shown). Fig. 7 shows that DPAP B immunoprecipitated from isogenic *PEP4* and *pep4-Δ2* strains comigrates before and after digestion with endo F, although a minor breakdown product, not seen in the *pep4-Δ2* strain, was detected in the *PEP4* strain after endo F treatment. These data argue that the biogenesis of DPAP B is independent of the allelic state of the *PEP4* gene.

Early-blocked sec Mutants Accumulate the Precursor Form of DPAP B

The temperature-sensitive *sec* mutations define sequential steps in the secretory pathway in yeast, since cells carrying these mutations are blocked for protein secretion at distinct stages (Novick et al., 1980; Novick et al., 1981). The localization of CPY to the vacuole is prevented in *sec* mutants that are blocked at either the ER or Golgi apparatus (*sec18* and *sec7*, respectively; Stevens et al., 1982), and the protein accumulates as an inactive precursor that lacks Golgi-mediated carbohydrate modifications. *sec1* cells, which at 37°C are blocked at a late secretory vesicle stage of the pathway, transport CPY to the vacuole at all temperatures. Thus, secretory and soluble vacuolar proteins diverge after the *sec7*-defined block and before the *sec1*-blocked stage. To determine if the maturation of DPAP B was affected in these mutants, DPAP B was immunoprecipitated after labeling the cells at the nonpermissive temperature of 34°C (Salminen and Novick, 1987), except for the *sec7* mutant, whose restrictive temperature is 38°C (data not shown). Wild-type cells contained the 120-kD mature form of DPAP B at either 34°C (Fig. 8) or 38°C (data not shown). *sec1* cells also contained mature DPAP B, whereas *sec18* cells accumulated the DPAP B precursor. Thus, the precursor form seen after a short labeling period (Fig. 4, lane 3) is the ER-form of DPAP B. The *sec7* strain accumulated a mixture of core-glycosylated and mature forms of DPAP B. This suggests that the block in transport is at an early stage within the Golgi apparatus such that DPAP B is only partially processed by the mannosyl transferases (Runge, 1988). This phenotype is similar to that seen with invertase, which accumulates as a heterogeneous population of core- and hyper-glycosylated forms in *sec7* cells at the restrictive temperature (Esmon et al., 1981).

The accumulation of the DPAP B precursor in *sec18* and *sec7* cells was thermoreversible: after labeling cells at the restrictive temperature, shifting the cultures to 23°C, and chasing for 3 h in the absence of new protein synthesis, DPAP B was completely converted to the mature 120-kD form (data not shown). This result, which was also observed with CPY accumulated in *sec18* and *sec7* cells (Stevens et al., 1982), suggests that the accumulated DPAP B precursor resides early in the pathway and is able to transit the Golgi apparatus upon shifting to the permissive temperature.

Early-blocked sec Mutants Accumulate DPAP B in Nonvacuolar Compartments

To determine whether the accumulation of the DPAP B precursor in *sec18* and *sec7* mutants was correlated with a failure to deliver the protein to the vacuole, DPAP B was localized by indirect immunofluorescence microscopy. For these studies, DPAP B synthesis was placed under the control of the inducible *GALI* promoter (Johnston and Davis, 1984), allowing analysis of nascent DPAP B synthesis after shifting to the nonpermissive temperature. A multicopy plasmid containing the *GALI-DAP2* gene fusion was transformed into wild-type and *sec* mutant strains which had been disrupted at the chromosomal *DAP2* locus. Transformed strains were then shifted to the restrictive temperatures in galactose-containing media and incubated for 2 h. This procedure typically resulted in a 4–10-fold induction of DPAP B activity relative to a strain containing a single genomic copy of *DAP2* (data not shown). No DPAP B activity or antigen was detected when these strains were grown in the absence of galactose (data not shown). The cells were fixed in formaldehyde, spheroplasted, and incubated with affinity-purified DPAP B.
Figure 9. DPAP B localization by immunofluorescence microscopy. Strains JHRY20-1A (SEC*), CJRY21-3BΔ1 (sec8), CJRY23-2AΔ1 (sec7), and CJRY22-6BΔ1 (sec1), each containing the GAL1-DAP2 gene fusion on a multicopy plasmid, were shifted to their respective nonpermissive temperatures and treated for induction of the GAL1 promoter for 2 h as described in Materials and Methods. The cells were fixed, converted to spheroplasts, and stained with DAPI and affinity-purified DPAP B antibody. Cells were viewed by Nomarski differential interference optics (A, D, G, and J), and under DAPI (B, E, H, and K) and FITC (C, F, I, and L) excitation wavelengths.

antibody, followed by FITC-conjugated sheep anti-goat antibody (Fig. 9). Nomarski optics revealed the position of the vacuole, and the nucleus was localized by DAPI staining. Wild-type cells grown at either 34°C (Fig. 9, A–C) or 38°C (data not shown) exhibited fluorescent labeling of DPAP B around the perimeter of the vacuole, consistent with the fact that DPAP B is a vacuolar membrane protein. A similar labeling pattern was seen in sec1 cells (Fig. 9, J–L), indicating that the sec1 block is later in the secretory pathway than the point at which sorting of vacuolar membrane proteins occurs. The staining pattern seen in sec8 (Fig. 9, D–F) and sec7 (Fig. 9, G–I) cells was distinctly nonvacuolar. Interestingly, the sec8 strain showed DPAP B staining around the nucleus, apparently in the nuclear envelope, which probably reflects the fact that the nuclear envelope and the ER are continuous membranes. These data indicate that transport of
Discussion

DPAP B is the first protein of the yeast vacuolar membrane whose structure and biosynthesis has been characterized. Of the vacuolar membrane-associated activities that have been described in yeast, only the proton-translocating ATPase (Uchida et al., 1985; Kane et al., 1989) and α-mannosidase (Yoshihisa et al., 1988) have been extensively characterized biochemically. The proton-translocating ATPase is a multimeric enzyme consisting of both integral and peripheral membrane proteins (Kane et al., 1989). α-Mannosidase, which is frequently used as a marker for the vacuolar membrane, is efficiently removed from membranes by treatment with high-pH sodium carbonate, suggesting that it is peripherally associated with the vacuolar membrane (Yoshihisa et al., 1988). Thus, DPAP B appears to be a more appropriate marker for intrinsic vacuolar membrane proteins.

In a previous biochemical study, DPAP B was reported to be a 40-kD protein (Garcia Alvarez et al., 1985). In the present work we have found that DPAP B is a 120-kD glycoprotein, that this species is absent from a strain with a disruption at DAP2, and that the DAP2 sequence encodes a protein predicted to have a molecular mass of 96,429 D, which corresponds closely to that actually observed for deglycosylated DPAP B. The 40-kD species seen previously may have been a contaminating protein or a proteolytic fragment of DPAP B.

As is the case for the soluble vacuolar protein CPY (Stevens et al., 1982), the delivery of DPAP B to the vacuole is blocked in sec mutants that affect the early stages of the secretory pathway. sec8 (ER-blocked) and sec7 (Golgiblocked) cells accumulate DPAP B in nonvacular compartments at the restrictive temperature. However, sec1 cells, which are blocked at a late secretory vesicle stage, transport DPAP B to the vacuole at all temperatures, indicating that DPAP B is transported directly from the Golgi apparatus to the vacuole. This rules out models in which vacuolar membrane proteins are first delivered to the plasma membrane, and suggests that, in yeast, soluble and membrane-bound proteins traverse the same compartments of the secretory pathway en route to the vacuole (Stevens et al., 1982), as is the case for the delivery of proteins to the lysosome in mammalian cells (Griffiths et al., 1988).

The activity and apparent molecular mass of DPAP B are unaffected by a null mutation at the PEP4 locus. DPAP B is active at all stages of its transport and does not appear to undergo proteolytic cleavage upon delivery to the vacuole. In this respect, DPAP B differs from the soluble vacuolar hydrolyses studied thus far, which are synthesized aszymogens and are activated in a PEP4-dependent fashion (Rothman and Stevens, 1988). Interestingly, the other vacuolar membrane activities that have been examined, i.e., α-mannosidase (Jones et al., 1982) and the proton-translocating ATPase (Yamashiro, C., and T. Stevens, unpublished results), are also PEP4 independent.

Overproduction of the soluble vacuolar proteins CPY and proteinase A results in their secretion, presumably due to the saturation of a component of the sorting apparatus (Stevens et al., 1986; Rothman et al., 1986). This observation provided a means of isolating mutations that disrupt the sorting process, both linked and unlinked to the structural genes of the soluble vacuolar proteins (Vails et al., 1987; Rothman and Stevens, 1986; Bankaitis et al., 1986; Robinson et al., 1988; Rothman et al., 1989). 20-fold overproduction of DPAP B does not result in increased cell surface activity of this enzyme (our unpublished results). However, at this level of expression DPAP B does suppress the defect in α-factor maturation of a MATα stel3 mutant (Sprague, G., and I. Herskowitz, unpublished observation; Julius et al., 1983). A reasonable interpretation of this result is that DPAP B is mislocalized into the late secretory pathway when overproduced, allowing it to encounter and process the α-factor precursor to the mature form. Based on this assumption, mutations have been isolated that result in secretion of mature α-factor in a stel3 background. These mutants do not cause DPAP B to be overproduced, and may define genes that encode components of the sorting apparatus for vacuolar membrane proteins (Pohlig, G., and T. Stevens, unpublished results).

The sorting signal(s) that directs membrane proteins to the vacuole has yet to be defined. The sorting information could reside in any of three distinct domains; i.e., the cytoplasmic, membrane, and/or luminal domains. Moreover, each of these domains has been shown to be important for proper intracellular targeting of particular membrane proteins. The luminal domains of the influenza virus hemagglutinin and vesicular stomatitis virus G protein have been implicated as important for the polarized secretion of these proteins to the apical and basolateral membranes, respectively (Roth et al., 1987; McQuen et al., 1987). Retention of the coronavirus E1 glycoprotein in the Golgi apparatus requires a specific transmembrane region (Machamer and Rose, 1987), and an intact cytoplasmic tail is necessary for endocytosis of the LDL and transferrin receptors (Davis et al., 1986; Rothman et al., 1987). Preliminary experiments have shown that the cytoplasmic tail and transmembrane region of DPAP B contain vacular sorting information; i.e., fusion of the NH2-terminal 47 residues of DPAP B to the NH2 terminus of the cytoplasmic form of invertase results in the delivery of this hybrid protein to the vacuolar membrane (Roberts, C., and T. Stevens, unpublished observation). This approach has been previously used to map the sorting domains of CPY (Johnson et al., 1987) and proteinase A (Klionsky et al., 1987) proteins.
1988). Further experiments are aimed at the identification of the specific amino acid residues in this region that are necessary for targeting DPAP B to the vacuole.

The DNA sequence of the STE3 gene, which encodes DPAP A (Julius et al., 1983), has recently been determined (Flanagan, C., and J. Thorner, personal communication). The deduced amino acid sequence predicts a protein of 931 amino acids with striking similarities to DPAP B (Fig. 10). Both proteins are predicted to have type II membrane topologies, with short cytoplasmic tails and ∼800 amino acid luminal domains. The luminal domains of these proteins are very similar; in particular, the COOH-terminal 240 amino acids are 48% identical, presumably reflecting the similar enzymatic functions of these proteins in vitro and in vivo (Julius et al., 1983). However, the cytoplasmic and transmembrane domains are unrelated, possibly reflecting the different subcellular addresses of DPAP A and DPAP B. This sorting signal hypothesis can be tested by exchanging these segments of the two proteins, an approach that has been useful in studying the sorting of membrane proteins in polarized cells (Roth et al., 1987; McQueen et al., 1987).

We would like to thank George Sprague for the gift of the plasmid containing the DAP2 clone and for many useful discussions; Jeremy Thorner for communicating results before publication; Rick Dahlquist for providing the plasmid pHeSe5; Ruskin Gould for excellent technical assistance; Harry Howard for expert assistance with the fluorescence microscopy; and Christopher Raymond, Nicholas Davis, Karen Moore, and Patricia Kane for comments on the manuscript.

This work was supported by National Institutes of Health Predoctoral Traineeships to C. J. Roberts and J. H. Rothman, a Deutsche Forschungsgemeinschaft Postdoctoral Fellowship to G. Pohlig, and by grants from the National Institutes of Health (PHS 38006) and the Chicago Community Trust Searle Scholars Program to T. H. Stevens.

Received for publication 20 December 1988.

References

Adams, A. E., M. C. Willingham, C. Bordallo, S. Gascon, and P. Suarez Rendueles. 1985. Purification and characterization of a thermosensitive X-prolyl dipetidyl aminopeptidase from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 832:119–125.

Casadaban, M. F., and S. N. Cohen. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138:179–207. Full text available.

Chen, J. W., T. L. Murphy, M. C. Willingham, I. Pastan, and J. T. August. 1985. Identification of two lysosomal membrane glycoproteins. J. Cell Biol. 101:95–95. Full text available.

Davis, C. G., M. A. Lehrman, D. W. Russell, R. G. W. Anderson, M. S. Brown, and G. Goltzstein. 1996. The J. D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impairs internalization of LDL receptors. Cell. 45:15–24.

Elder, J. H., and S. Alexander. 1982. Endo-β-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc. Natl. Acad. Sci. USA. 79:4540–4544.

Emr, S. D., J. I. Schauer, W. Hansen, P. Esmon, and R. Schekman. 1984. Inversion of β-galactosidase hybrid proteins fails to be transported from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2347–2355.

Esmon, B., P. Novick, and R. Schekman. 1981. Compartmentalization of oligosaccharides on exported glycoprotein in yeast. Cell. 25:451–460.

Fujiki, Y., A. L. Hubbard, S. Fowler, and P. B. Lazarow. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93:97–102.

Fuller, R. S., R. E. Stern, and J. Thorner. 1988. Enzymes required for yeast prohormone processing. Annu. Rev. Physiol. 50:345–362.

Garcia Alvarez, N., C. Bordallo, S. Gascon, and P. Suarez Rendueles. 1985. Purification and characterization of a thermosensitive X-prolyl dipetidyl aminopeptidase (dipeptidyl aminopeptidase yscV) from Saccharomyces cerevisiae. Mol. Cell. Biol. 5:1297–1307.

Hagen, D. C., G. McCaffrey, and G. F. Sprague, Jr. 1986. Evidence that the STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA. 83:1418–1422.

Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

Ito, H., Y. Ike, S. Ikuta, and K. Itakura. 1982. Solid phase synthesis of polynucleotides VI. Further studies on polystyrene copolymers for the solid support. Nucleic Acids Res. 10:1755–1769.

Johnson, L. M., V. A. Bankaitis, and S. D. Emr. 1987. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protein. Cell. 48:875–883.

Johnson, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoters in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.

Jones, E. W., G. S. Zuberko, and R. R. Parker. 1982. PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics. 102:665–677.

Julius, D., L. Blair, A. Blake, G. F. Sprague, Jr., and J. Thorner. 1983. Yeast α factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipetidyl aminopeptidase. Cell. 32:839–852.

Kane, P. M., C. T. Yamashiro, J. H. Rothman, and T. H. Stevens. 1989. Protein sorting in yeast: the role of the vacuolar proton-translocating ATPase. J. Cell Biol. In press.

Klimant, J. V., and A. E. M. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 98:922–933.

Kleid, D. S., S. Gascon, and P. Suarez Rendueles. 1985. Localization of the thermosensitive X-prolyl dipetidyl aminopeptidase in the vacuolar membrane of Saccharomyces cerevisiae. FEBS Lett. 173:199–203.

Ko, L. Y., A. R. Davis, and D. P. Nayak. 1984. NH2-terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation. Proc. Natl. Acad. Sci. USA. 81:2327–2331.

Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157:105–132.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 270:687–700.

Lewis, V., S. A. Green, M. Marsh, P. Vilko, A. Helenius, and I. Mellman. 1985. Glycoproteins of the lysosomal membrane. J. Cell Biol. 100:1839–1849.

Lippincott-Schwartz, J., and D. Fambrough. 1986. Lysosomal membrane dynamics: structure and interorganelle movement of a major lysosomal mem- brane protein. J. Cell Biol. 102:1593–1605.

MacKichan, C. E., and J. K. Rothman. 1987. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 105:1205–1214.

Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 545 pp.

McQueen, N. L., D. P. Nayak, E. B. Stephens, and R. W. Combs. 1987. Basolateral expression of a chimeric protein in which the transmembrane and cytoplasmic domains of vesicular stomatitis virus G protein have been replaced by those of the influenza virus hemagglutinin. J. Biol. Chem. 262:16233–16240.

Munro, J. 1987. New M13 vectors for cloning. Methods Enzymol. 101:20–78.

Munro, D. C. L., P. McIntosh, C. B. Russell, D. E. Anderson, and F. W. Dahlquist. 1988. Expression and 1H labeling of proteins for proton and nitrogen-15 NMR. Methods Enzymol. In press.

Novick, P., C. Forro, and R. Schekman. 1981. Order of events in the yeast secretory pathway. Cell. 25:461–469.

Novick, P. C., and R. Schekman. 1980. Identification of 23 compleмен-
tation groups required for post-translational events in the yeast secretory pathway. Cell. 21:205–215.
Novick, P., and R. Schekman. 1983. Export of major cell surface proteins is blocked in yeast secretory mutants. J. Cell Biol. 96:541–547.
Ohsumi, Y., and Y. Anraku. 1981. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 256:2079–2082.
Ohsumi, Y., and Y. Anraku. 1983. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 258:5614–5617.
Opheim, D. J. 1978. ct-D-mannosidase.
Ohsumi, Y., and Y. Anraku. 1983 Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 258:5614–5617.
Roth, M. G., D. Gunderson, N. Patil, and E. Rodriguez-Boulan. 1987. The large external domain is sufficient for the correct sorting of secreted or chimeric influenza virus hemagglutinins in polarized monkey kidney cells. J. Cell Biol. 104:769–782.
Rothenberger, S., B. J. Lacopetta, and L. C. Kuhn. 1987. Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell. 49:423–431.
Rothman, J. H. 1988. Protein sorting in yeast. Ph. D. thesis. University of Oregon, Eugene, OR.
Rothman, J. H., and T. H. Stevens. 1986. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell. 47:1041–1051.
Rothman, J. H., and T. H. Stevens. 1988. Protein sorting and biogenesis of the lysosome-like vacuole in yeast. In Protein Transfer and Organelle Biogenesis. R. Das and P. Robbins, editors. Academic Press, Inc., San Diego, CA. 159–208.
Rothman, J. H., C. P. Hunter, L. A. Valls, and T. H. Stevens. 1986. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl. Acad. Sci. USA. 83:3248–3252.
Rothman, J. H., J. Howald, and T. H. Stevens. 1989. Characterization of genes required for protein sorting, vacuolar function, and endocytosis in the yeast Saccharomyces cerevisiae. EMBO (Eur. Mol. Biol. Organ.) J. In press.
Rothstein, R. K. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.
Runge, K. W. 1988. Post-translational modification during protein secretion. In Protein Transfer and Organelle Biogenesis. R. Das and P. Robbins, editors. Academic Press, Inc., San Diego, CA. 317–362.
Salminen, A., and P. J. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 49:527–538.
Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.
Singer, S. J., P. A. Maher, and M. P. Yaffe. 1987. On the transfer of integral membrane proteins into membranes. Proc. Natl. Acad. Sci. USA. 84:1960–1964.
Steck, T. L., and J. Yu. 1973. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J. Supramol. Struct. 1:220–248.
Stevens, T. H., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell. 30:439–448.
Stevens, T. H., J. H. Rothman, G. S. Payne, and R. Schekman. 1986. Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J. Cell Biol. 102:1551–1557.
Suarez Rendueles, M. P., J. Schwembke, N. Garcia Alvarez, and S. Gascon. 1981. A new X-prolyl-dipeptidyl aminopeptidase from yeast associated with a particulate fraction. FEBS (Fed. Eur. Biochem. Soc.) Lett. 131:296–300.
Suarez Rendueles, P., and D. H. Wolf. 1987. Identification of the structural gene for dipeptidyl aminopeptidase yscV (DAP2) of Saccharomyces cerevisiae. J. Bacteriol. 169:4041–4048.
Uchida, E., Y. Ohsumi, and Y. Anraku. 1985. Purification and properties of H+-translocating, Mg²⁺-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 260:1090–1095.
Vaitukaitis, J. L. 1981. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol. 73:46–52.
Valls, L. A., C. P. Hunter, J. H. Rothman, and T. H. Stevens. 1987. Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell. 48:887–897.
von Figura, K., and A. Hasilik. 1986. Lysosomal enzymes and their receptors. Annu. Rev. Biochem. 55:167–193.
Waheed, A., S. Gottschalk, A. Hille, C. Krentler, R. Pohlmann, T. Braulke, H. Hauser, H. Geuze, and K. von Figura. 1988. Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO (Eur. Mol. Biol. Organ.) J. 7: 2351–2358.
Wittenberg, C., S. L. Richardson, and S. I. Reed. 1987. Subcellular localization of a protein kinase required for cell cycle initiation in Saccharomyces cerevisiae: evidence for an association between the CDC28 gene product and the insoluble cytoplasmic matrix. J. Cell Biol. 105:1527–1538.
Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp19 and pUC19 vectors. Gene. 33:103–119.
Yoshihisa, T., Y. Ohsumi, and Y. Anraku. 1988. Solubilization and purification of α-mannosidase, a marker enzyme of vacuolar membranes in Saccharomyces cerevisiae. J. Biol. Chem. 263:5158–5163.
Zerial, M., P. Melancon, C. Schneider, and H. Garoff. 1986. The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO (Eur. Mol. Biol. Organ.) J. 5:1543–1550.