CONSERVATION PRIORITIES FOR WOODY MEDICINAL PLANTS IN AN INDIGENOUS COMMUNITY IN A SAVANNA AREA OF THE NORTHERN BRAZILIAN AMAZON

Rodrigo Leonardo Costa de Oliveira - Universidade Estadual de Roraima/UERR (https://orcid.org/0000-0003-4429-5296)
Luís Felipe Paes de Almeida - Universidade Federal de Roraima/Instituto Insikiran (http://lattes.cnpq.br/0432634481179950)
Veridiana Vizoni Scudeller - Universidade Federal do Amazonas/UFAM (https://orcid.org/0000-0002-7649-5818)
Reinaldo Imbrozio Barbosa - Instituto Nacional de Pesquisas da Amazônia/INPA (http://orcid.org/0000-0002-7482-346X)

Abstract: The pressure for native wood use is a point of great interest for ethnobotanical studies, since these species are indispensable for local communities’ survival in different environmental conditions of the world. In this context, this study aimed to indicate the conservation priorities for useful woody medicinal plants in Darora indigenous community, part of the Makuxi people, which live in the savanna of Roraima State, Northern Brazilian Amazon. Ethnobotanical indexes associated with species ecological data were used, and semi structured interviews conducted among 60 inhabitants (36 men and 24 women) ranging from 18 to 84 years of age. The results indicated that from 33 woody medicinal plants, 24 were also associated with timber use. The conservation priority index indicated that Palicourea rigida, Anadenanthera peregrina, Copaifera pubiflora and Leptolobium nitens are highly prioritized species for local conservation. Our results indicated the need for actions on conservation, beyond ex-situ conservation techniques, such as germplasm bank and cultivation. These actions are necessary to protect the most threatened woody medicinal species which are also used as different timber artifacts by the indigenous population living in the Darora Community.

Keywords: Conservation priority index, Makuxi ethnicity, Ethnobotany, Local knowledge.

DOI: https://doi.org/10.24979/ambiente.v14i3.953
1. INTRODUCTION

Native woody species are indispensable for traditional communities’ survival in different regions around the world (Prance et al., 1987; Milliken et al., 1992; Thomas, 2012). The use of plants by people has resulted in a large and growing number of studies regarding the use and valuation of a set of species, or even their potential use (Lucena et al. 2012). The recognition of local overexploited group of species is based on multiple uses and higher local availability, corroborating the hypothesis of ecological apparency already analyzed in different environments (Torre-Cuadros e Islebe 2003; Guèze et al. 2014; Oliveira et al. 2019a). The main objective of ethnobotanical studies is not only to recognize the most important plant species in a locality, but also which species may have overexploitation in relation to their availability, and to establish priority species for conservation (Cunninghan 1993; Dezerefos and Witkowski 2001; Yaoitcha et al. 2015; Santos et al. 2017).

The study of local societies brings us important information about the dynamics of vegetation which support the management strategies, sustainable use and resource conservation (Lykke, 2004). This statement also highlights the success of establishing local priorities influenced by the communities themselves, since they recognize and emphasize their experiences and perceptions in the process. In this way, ethnobotany has developed real quantitative indexes based on cultural and ecological diagnoses. The quantitative indexes are important in establishing conservation priorities that can be adopted by different traditional communities and/or emerging as a basis for conservation policies adopted by public authorities (Albuquerque et al 2011).

Different studies have been establishing conservation priorities based on individual approaches of use. Usually, studies establishing conservation priorities have shown great efficiency when focused only on medicinal species (Dhar et al. 2000, Dzerefos and Witkowski 2001, Oliveira et al. 2007). However, there is a strong need to expand this species criterion since medicinal species have other associated uses, such as timber (Albuquerque et al. 2011; Yaoitcha et al. 2015; Lokonon et al. 2017).

In this perspective, the aim of this study is to indicate priority conservation species using ethnobotanical indexes associated with ecological data for useful woody medicinal species in an indigenous community living in a savanna area of the Northern Brazilian Amazon.

2 MATERIAL AND METHODS

2.1 STUDY AREA

The study was carried out in Darora indigenous community located on the right bank of the Tacutu river, in the São Marcos Indigenous Land (3º10’42” N and 60º 23’34” W), about 90 km away from, Boa Vista, capital of Roraima, with access through BR 174 and RR 319 highways, crossing the Uraricoera river through a ferry and continuing driving in a dirt road.

The first occupation in Darora occurred in 1941, when some families from the Xumina Community migrated to the region due to lack of agricultural areas. Currently, most inhabitants are descendants and relatives of Mr. Augusto, the first ethnic inhabitant to occupy the area. The community has strong aptitude towards animal husbandry and agriculture, understood by them as a necessity for food security.

The climate is tropical marked by savanna (Aw) subtype according to the Köppen classification, with an average annual temperature of 27.8º C, and an average annual rainfall of ~1,650 mm, with the driest season concentrated between December and March (± 9% annual precipitation), and the rainiest between May and August (± 70% annual precipitation) (Barbosa, 1997; Barni et al., 2020). The vegetation ranges from savanna grasslands, parklands with trees, and forest environments as riparian forest, Mauritia swamp (“buritizal”) and forest islands (Barbosa et al., 2007; Oliveira et al., 2017a).

2.2 ETHNOBOTANICAL SURVEY / LEGAL AND ETHICAL ASPECTS

Semi-structured interviews were carried out considering the methodology described by Albuquerque et al. (2014). The interviews were carried out with 60 inhabitants (36 men and 24 women) between from 18 and 84 years of age between November/2014 and September/2015. All the interviews took place at their respective homes with 18 years old inhabitants or older. Only savanna native woody species were considered for this study,
including forest and non-forest environments. The data were recorded to compose the conservation priority index (CPI).

This research was developed as part of PhD studies of the first author in Botany graduation Program at National Institute of Amazonian Research (INPA) and State University of Roraima (UERR), entitled “Uso e conservação dos recursos vegetais de comunidades indígenas no Norte de Roraima” authorized by FUNAI (National Foundation for Indigenous Affairs): Process 08620.002869 / 2014-15; by IPHAN: Process 01450.001678 / 2014-88; and by CEP-INPA/CONEP: consubstantiated opinion 814.370. The Informed Consent Form was presented as an ethical measure in all interviews held, and whose transcription was duly authorized and signed by all respondents. However, not all informants allowed their data to be publicized.

2.3 PHYTOSOCIOLOGICAL SURVEY

The CPI (Conservation Priority Index) requires data from the phytosociological parameters as relative density and relative frequency of native woody species. Eight plots of 0.25 ha each were installed at different distances from the Community: four plots were installed in a typical savanna area (non-forest) and four others in forest environments (two in the riparian area of the Tacutu river, one in the Mauritia swamp (buriti palm) area at Maracajá stream, and the last one in a forest island, totaling 1 ha in each ecosystem (forest and non-forest). In the non-forest plots, all native woody individuals (trees and shrubs) with base diameter ≥ 2 cm at the 2 cm high from the ground (DAB2cm ≥ 2 cm) were measured following methodology suggested by Miranda et al. (2003) and Barbosa et al. (2005). In the forest plots, all native wood individuals with diameter ≥ 10cm at the breast height – DBH (1.3 m above the ground) were measured. Total height was visually estimated for each woody individual. Individuals with multi stems had all branches measured in length and included if at least one of the stems had a minimum DBH of 10 cm. They were all added together to obtain the basal area. Each plot was previously established in meetings with inhabitants according to the use and availability of plant resources at the community.

Species samples were collected, and taxonomic identification was performed through comparisons, consulting parabotanists (expert “mateiros” in botanical identification), specialists and specific bibliographies (Ribeiro et al. 1999, Melo and Barbosa 2007, Flores and Rodrigues 2010, Wittmann et al. 2010). The samples were sent to the Federal University of Roraima - UFRR herbarium collection. The taxonomic classification was checked on the APG IV (2016) system.

2.4 CONSERVATION PRIORITY INDEX (CPI)

The CPI of locally available medicinal plants was calculated according to Dzerefos and Witkowski (2001). The CPI was calculated according to the formula: CPI = 0.5 (BS) + 0.5 (RU), where the biological score (BS) was calculated with the relative density of each taxon: BS = D x 10, where D = value obtained based on the relative density of each taxon (RDi). For relative density calculation, including intact living individuals and those who presented partially cut trunk, but still with conditions to offer products. The highest value between the local importance value (L) and the use diversity (V) will determine the use value (U), together with the harvesting risk value (H) will provide the use risk score (RU), which reaches the maximum value of 100. The utilization risk score (RU) is obtained by the following formula: RU = 0.5 (H) + 0.5 (U) x 10. All criteria and scores to calculate CPI are presented in Table 1.

The harvesting risk value (H) is based on the biological consequences of harvesting according to the plant part removed (Table 1). The local importance value (L) is determined by the percentage of the number of informants who indicated a particular species as medicinal, and the diversity in use (V) is based on the number of uses attributed to a species, varying its score from 1 to 10 (Table 1). The conservation priority was calculated for each of the sampled areas. Subsequently, the average conservation priority score was calculated, which consists on the arithmetic mean between the conservation priority scores in the two areas (non-forest and forest environments). The score allows the classification of medicinal plants into three categories: (i) category 1, with CPI ≥ 85, where species that require high conservation priority and the collection should be associated with recovery alternatives, (ii) category 2, which includes species with CPI values ranging from 60 to 85 values, with the potential to be collected according to the location.
and with specific recovery rates, and (iii) category 3, CPI ≤ 60, suitable for high impact collections.

Table 1: Criteria and scores used to assess woody medicinal species for conservation priority at Darora Community, Boa Vista, Roraima (Albuquerque et al. 2011, adapted from Dzeresos and Witkowski, 2001).

Criteria	Scores
A. Relative Density in the plot (RDI)	
Not registered – very low (0-1).	10
Low (1 < 3.5).	7
Medium (3.5 < 7).	4
High (≥ 7).	1
B. Harvesting Risk (H)	
Destructive harvesting of the plant, or over-exploitation of the roots or bark. The collection represents the removal of the individual.	10
Harvesting affects perennial structures such as bark and roots, and removal of part of the stem for extraction of latex. Collections without causing the individual’s death.	7
Harvesting affects permanent aerial structures such as leaves, which are removed. Harvesting that can affect the energy investment of plants, and its long-term reproductive success.	4
Harvesting affects transitory aerial portions of the plants (flowers and fruits), which are removed. The long-term regeneration of the population may be affected by seed loss, but individuals are not affected.	1
C. Local use (L)	
High (cited by > 75% of local informants).	10
Moderately high (cited by 50 - 75%).	7
Moderately low (cited by 25-50%).	4
Very low (cited by < 25% of local informants).	1
D. Use diversity (V)	
One point for each use, maximum 10 points	1 - 10

3 RESULTS AND DISCUSSION

Thirty-three woody medicinal species belonging to 16 botanical families were registered, and within these species, 24 were also tagged with timber utilities for construction, fuel, and technology (Table 2).

3.1 CONSERVATION PRIORITIES

The results indicated that *Palicourea rigida*, *Anadenanthera peregrina*, *Copaefera pufilora* and *Leptolobium nitens* are highly prioritized species for conservation (Table 3). These species were found at forest environments in the Darora Community. In category 2, 20 species were included, with emphasis on Bauhinia sp.1, *Roupala montana* and *Spondias* sp. with 80 points (Table 3). In category 3, species with few individuals and which have few medicinal uses

Table 2: Medicinal species indicated by the Darora Community and their associated timber use. UFRR - voucher at the herbarium of the Federal University of Roraima, NHC - non herborized collection; PR - photographic record; NC - no collection. According to Oliveira et al. (2019a).

Family/Species	Vernacular name (Portuguese)	Timber use	UFRR
ANACARDIACEAE			
Spondias sp.	taperebi	x	NHC
APOCYNACEAE			
Himatanthus dracicus (Mart.) Purunel	sucuba	x	8487
ARECACEAE			
Euterpe precatoria Mart.	acáí	x	PR
BIGNONIACEAE			
Handroanthus sp.	pau d’arco	x	NHC
Ceereus sp.	mandacara	PR	
CHRYSOBOLANACEAE			
Couepia multiflora Benth.	uixi		8450
DILLENIACEAE			
Carinella americana L.	cainbé	x	8446
FABACEAE			
Anadenanthera peregrina (L.) Spec.	angico	x	8475
Andira sp.	marga-braba	x	8465
Bauhinia sp. 1	escada-de-jabuti	NC	
Bauhinia sp. 2	meroró	x	8688
Bowdichia virgilliflora Kunth	paracaraná	x	8471
Cassia mosschata Kunth	mari-mari	x	8452
Copaifera pubiflora Benth.	copaita	x	8454
Fabaceae sp. 3	umba-de-guto	x	8670
Leptolobium nitens Vogel	darora	x	NC
HYPERICACEAE			
Vismia cayennensis AUBL.	lacre	x	8670
MALPIGHIACEAE			
Brysosmina crucifolia (L.) Kunth	mirixi	x	8482
Brysosmina coccolobifolia Kunth		x	8483
Brysosmina sp.	mirixi-de-galega	x	8443
Brysosmina verbesachelia (L.) DC.	oreilha-de-urro	x	8480
MYRISTICACEAE			
Virola mollissima (Poepp. ex. A. DC.) Warb.	ucuba	x	8430
Virola saracenensis (Rol. ex Roth.) Warb.		x	8635
MYRTACEAE			
Eugenia paniculata (Kunth) DC.	piment-de-raposão	x	8682
Myrciaria dubia (Kunth) McVaugh	caçari	x	8698
Psidium sp. 1	aracá-do-lavrado	x	8689
Psidium sp. 2	aracá-do-beira-do-río	x	NC
PROTEACEAE			
Roupala montana AUBL.	congona	x	8484
RUBIACEAE			
Genipa americana L.	jenipapo	x	8488
Genipa duckeri Steyerm.	jenipapo-bravo	x	8488
Palicourea rigida Kunth	douradão	x	8489
SALICACEAE			
Cassia vorax Sw.	canela-de-véio	x	8631
URTICACEAE			
Cecropia sp.	embaíba	x	8680
VERBENACEAE			
Vitis cinerea Hetero ex Spreng.	maria-preta	x	8470
Indeterminate	areia	x	8664

DOI: https://doi.org/10.24979/ambiente.v14i3.953
were included (Table 3). The nanches (mirixis), Byrsonima coccolobifolia and B. crassifolia, are species that present higher number of medicinal uses, and also high importance use as fuel (Oliveira et al., 2017b). However, they are a very well-established species at the savannas with a high-density value. Euterpe precatoria, despite being the least compromised species for conservation, also presents associated wood use that can compromise the population structure, since its stem is used as construction material for houses and shelters.

Using the ecological apparency hypothesis proposed by Feeny (1976), Oliveira et al. (2019a), Oliveira et al. (2019b), Oliveira et al. (2019c) reported that Copaifera pubiflora, Anadenanthera peregrina and Leptolobium nitens were highly priority conservation species at the same study area. This observation can be provisionally explained due to heavy exploration in the past, because these species also have high timber potential, which could have caused decrease in local availability.

Based on results obtained, we emphasize the statement of Albuquerque et al. (2011), indicating that species with timber use have 10 points added to the CPI value, which would cause an increase in number of species of category 1. We also emphasize that the values presented at Darora may indicate a direction for future and more accurate studies on population structure of the associated medicinal and timber species. In addition, we also pointed that estimating values for priority species for conservation is an important tool to assist communities in making decisions to conserve natural resources, as previous work by Dhar et al. (2000), Dzerefos and Witkowski (2001), Oliveira et al. (2007), Albuquerque et al. (2011) and Santos et al. (2017). The species Palicourea rigida, Anadenanthera peregrina, Copaifera pubiflora and Leptolobium nitens registered in Darora Community should receive maximum attention in future research for their domestication and conservation measures, including their reproduction and ex-situ conservation techniques, such as germplasm bank and cultivation.

4 CONCLUSIONS

Inhabitants of Darora Community have important knowledge about the tree species occurring in their region. The studied area has an important number of medicinal trees and shrubs species that have priority for conservation, such as Palicourea rigida, an exclusively medicinal species, as well as Anadenanthera peregrina, Copaifera pubiflora and Leptolobium nitens, which also have associated timber use. These species should receive maximum attention in future research for their domestication and conservation measures, including their reproduction and ex-situ conservation techniques.

5 ACKNOWLEDGMENTS

The Darora indigenous community allowed fieldwork in their area of use. Coordination for the Improvement of Higher Education Personnel (CAPES) awarded a graduation scholarship to R. L. C. Oliveira. The National Council for Scientific and Technological Development (CNPq) awarded a research productivity grant to R.I. Barbosa (CNPq 304204 / 2015-3).

Table 3: Priority conservation index of medicinal woody species at Darora community, Boa Vista, Roraima.

Species	N reports	E	B	R	U	CPI
Palicourea rigida	19	100	10	4	10	100
Copaifera peregrina	8	100	7	1	10	10
Leptolobium nitens	29	100	7	1	10	10
Anadenanthera peregrina	46	100	7	1	10	10
Byrsonima coccolobifolia	26	100	7	1	10	10
Byrsonima crassifolia	6	100	7	1	10	10
Euterpe precatoria	11	100	7	1	10	10
Byrsonima sp. 2	2	100	7	1	10	10
Anadenanthera peregrina	29	100	7	1	10	10
Copaifera peregrina	36	100	7	1	10	10
Leptolobium nitens	29	100	7	1	10	10
Anadenanthera peregrina	46	100	7	1	10	10
Byrsonima coccolobifolia	26	100	7	1	10	10
Byrsonima crassifolia	6	100	7	1	10	10
Euterpe precatoria	11	100	7	1	10	10

DOI: https://doi.org/10.24979/ambiente.v14i3.953
6 REFERENCES

ALARCÓN, J.G.S.; PEIXOTO, A.L. Use of terra firme Forest by Caicubi Caboclos, Middle Rio Negro, Amazonas, Brazil. A quantitative study. Economic Botany, 62(1): 60-73, 2008.

ALBUQUERQUE U.P.; SOLDATI G.T.; SIEBER S.S.; MEDEIROS P.M.; SÁ J.C.; SOUZA L.C. 2011. Rapid ethnobotanical diagnosis of the Fulni-ô Indigenous lands (NE Brazil): floristic survey and local conservation priorities for medicinal plants. Environ Dev Sustain 13: 277-292.

ALBUQUERQUE, U.P.; LUCENA, R.F.P.; LINSNETO, E.M.F. 2014. Selection of research participants. In: ALBUQUERQUE, U.P.; CUNHA, L.V.F.C.; LUCENA, R.F.P.; ALVES, R.R.N. (ed.) Methods and techniques in Ethnobiology and Ethnoecology New York: Springer Protocols Handbooks, p. 1-13.

APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.

BARBOSA, R.I. 1997. Distribuição das chuvas em Roraima. In: BARBOSA, R.I., FERREIRA, E.J., CASTELLON, E.G. (eds.) Homem, Ambiente e Ecologia no Estado de Roraima. Instituto Nacional de Pesquisas da Amazônia. Manaus, Amazonas, p. 325 – 335.

BARBOSA, R.I.; CAMPOS, C.; PINTO, F.; FEARNSIDE, P.M. 2007. The “Lavrados” of Roraima: Biodiversity and Conservation of Brazil’s Amazonian Savannas. Functional Ecosystems and Communities 1(1): 29-41.

BARBOSA, R.I.; NASCIMENTO, S.P.; AMORIM, P.A.F.; SILVA, R.F. 2005. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta Botanica Brasilia, 19: 323-329.

BARNI, P.E.; BARBOSA, R.I.; XAUD, H.A.M.; XAUD, M.R.; FEARNSIDE, P.M. 2020. Precipitação no extremo norte da Amazônia: distribuição espacial no estado de Roraima, Brasil. Sociedade & Natureza, 32: 439-456.

CUNNINGHAM, A.B., 1993. African medicinal plants. Setting priorities at the interface between conservation and primary health care. People and Plants Working Paper. UNESCO.

DALLE, S.P.; POTVIN, C.P. 2004. Conservation of useful plants: an evaluation of local priorities from two indigenous communities in eastern Panama. Economic Botany, 58(1), 38-57.

DHAR, U.; RAWAL, R. S.; UPRETI, J. 2000. Setting priorities for conservation of medicinal plants - a case study in the Indian Himalaya. Biological Conservation, v.95, p.57-65.

DZEREFOS, C.M.; WITKOWSKI, E.T.F. 2001. Density and potential utilization of medicinal grassland plants from Abe Bailey Nature Reserve, South Africa. Biodiversity and Conservation, 10, 1875-1896.

FEENY, P. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry (eds J.W. Wallace & R.L. Mansell), pp. 1–40. Plenum Press, New York.

FLORES A.S.; RODRIGUES R.S. 2010. Diversidade de Leguminosae em uma área de savana do estado de Roraima, Brasil. Acta Botanica Brasilia, 24: 175-183.

GUÉZE, M.; LUZ, A.C.; PANEQUE-GÁLVEZ, J.; MACÍA, M.J.; ORTA-MARTÍNEZ, M.; PINO, J.; REYSGARCÍA, V. Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Economic Botany, 20: 1-15, 2014.

LOKONON, B. E., MANGAMANA, E. T., KAKAI, R. G., & SINSIN, B. 2017. Assessing local conservation priorities of useful woody species within agroforestry systems along Ouémé catchment in Benin (West Africa). Ethnobiology and Conservation, 6. https://doi.org/10.15451/ec2017-04-6.4-1-19

LYKKE, A. M.; KRISTENSEN, M. K.; GANABA, S. 2004. Valuation of local use and dynamics of 56 woody species in the Sahel. Biodiversity and conservation 13: 1961-1990.

MELO, M.C.; BARBOSA, R.I. 2007. Árvores e arbustos das savanas de Roraima – Guia de Campo Ilustrado. 1ª ed. PMBV/CONSEMMA, Boa Vista, 36p.

MIRANDA, I.S., ABSY, M.L.; REBÉLO, G.H. 2003. Community Structure of Woody Plants of Roraima Savannas, Brazil. Plant Ecology, 164, 109-123.

OLIVEIRA, R. L. C.; FARIAS, H. L. S.; PERDIZ, R. O.; SCUDELLER, V. V.; BARBOSA, R. I. 2017a. Structure and tree species composition in different habitats of savanna used by indigenous people in the Northern Brazilian Amazon. Biodiversity Data Journal. https://doi.org/10.3897/BDJ.5.e20044

DOI: https://doi.org/10.24979/ambiente.v14i3.953
OLIVER, R.L.C.; SCUDELLER, V.V.; BARBOSA, R.I. 2017b. Use and traditional knowledge of Byrsonima crassifolia and B. coccologifolia (Malpighiaceae) in a Makuxi community of the Roraima savanna, northern Brazil. Acta Amazonica, 47(2): 133 - 140

OLIVER, R.L.C., LINS-NETO, E.M.F., ARAUJO, E.J.; ALBUQUERQUE, U.P. 2007. Conservation priorities and population structure of woody medicinal plants in an area of Caatinga vegetation (Pernambuco State, NE Brazil). Environmental Monitoring and Assessment, 132, 189–206.

OLIVER, R.L.C.; ALMEIDA, L.F.P.; DURIGAN, M.F.B.; SCUDELLER, V.V.; BARBOSA, R.I. 2019a. Aparência ecológica e conservação de espécies lenhosas pelos Makuxis nas Savanas de Roraima, Amazônia brasileira. Ethnoscientia, v. 4 n. 1. DOI: http://dx.doi.org/10.22276/ethnoscientia.v0i0.213.

OLIVER, R.L.C., BRITO, S.O., ALMEIDA, L.F.P., SCUDELLER, V.V., BARBOSA, R.I. 2019b. Uso e extrativismo do angico numa Comunidade indígena na savana de Roraima, Norte da Amazônia brasileira. Ambiente: Gestão e Desenvolvimento, v. 12, n. 1, p. 47–52, DOI: 10.24979/193.

OLIVER, R.L.C.; ALMEIDA, L.F.P.; DURIGAN, M.F.B.; SCUDELLER, V.V.; BARBOSA, R.I. 2019c. Conhecimento tradicional e usos de copaíba pela comunidade Makuxi Darora na Savana de Roraima. Gaia Scientia, v. 13, n. 2, DOI: 10.22478/ufpb.1981-1268.2019v13n2.46242.

RIEIRO, J.E.L.S.; HOPKINS, M.J.G.; VICENTINI A.; SOTHERS, C.A.; COSTA, M.A.S.; BRITO, J.M.; SOUZA, M.A.D.; MARTINS, L.H.P.; LOHMANN, L.G.; ASSUNÇÃO, P.A.C.L.; PEREIRA, E.C.; SILVA, C.F.; MESQUITA, M.R.; PROCÓPIO, L.C. 1999. Flora da Reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Manaus, INPA/DFID.

SANTOS, M.O. et al. 2017. The conservation of native priority medicinal plants in a Caatinga area in Ceará, northeastern Brazil. An. Acad. Bras. Ciênc., Rio de Janeiro, v. 89, n. 4, phttps://doi.org/10.1590/0001-3765201720160633.

TORRES-CUADROS, M.L.A.; ISLEBE, G.A. Traditional ecological knowledge and use of vegetation in southeastern Mexico: a case study from Solferino, Quintana Roo. Biodiversity and Conservation, 12: 2455-2476, 2003.