On the automorphism group of the m-coloured random graph

Peter J. Cameron and Sam Tarzi

School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London E1 4NS, UK
p.j.cameron@qmul.ac.uk

Abstract

Let R_m be the (unique) universal homogeneous m-edge-coloured countable complete graph ($m \geq 2$), and G_m its group of colour-preserving automorphisms. The group G_m was shown to be simple by John Truss. We examine the automorphism group of G_m, and show that it is the group of permutations of R_m which induce permutations on the colours, and hence an extension of G_m by the symmetric group of degree m. We show further that the extension splits if and only if m is odd, and in the case where m is even and not divisible by 8 we find the smallest supplement for G_m in its automorphism group.

AMS classification: 20B27, 05C25
Keywords: random graph, outer automorphism group, supplement
1 Introduction

Fix an integer $m \geq 2$, and let R_m be the unique homogeneous universal m-edge-colouring of the countable complete graph (see Truss [6]). (Universality means that any m-edge-coloured finite or countable complete graph is embeddable in R_m, and homogeneity means that every colour-preserving isomorphism between finite subgraphs extends to an automorphism of R_m. The uniqueness is a special case of Fraïssé’s theory of countable homogeneous structures. The graph R_m is the ‘random m-edge-coloured complete graph’: that is, we colour edges independently at random, we obtain R_m with probability 1. More relevant to us is the fact that the isomorphism class of R_m is residual in the set of all m-coloured complete graphs on a fixed countable vertex set. See [1] for discussion.)

Let $\text{Aut}(R_m)$ be the group of permutations of the vertex set fixing all the colours. Truss [6] showed that $\text{Aut}(R_m)$ is a simple group.

For any permutation π of the set of colours, let R_m^π be the graph obtained by applying π to the colours. Then R_m^π is universal and homogeneous, and hence isomorphic to R_m. This means that, if $\text{Aut}^*(R_m)$ is the group of permutations of the vertex set which induce permutations of the colours, then $\text{Aut}^*(R_m)$ induces the symmetric group $\text{Sym}(m)$ on the colours; so $\text{Aut}^*(R_m)$ is an extension of $\text{Aut}(R_m)$ by $\text{Sym}(m)$.

The first question we consider here is: when does this extension split? That is, when is there a complement for $\text{Aut}(R_m)$ in $\text{Aut}^*(R_m)$ (a subgroup of $\text{Aut}^*(R_m)$ isomorphic to $\text{Sym}(m)$ which permutes the colours)? We also show that $\text{Aut}^*(R_m)$ is the automorphism group of the simple group $\text{Aut}(R_m)$ (so that the outer automorphism group of this group is $\text{Sym}(m)$).

Theorem 1 The group $\text{Aut}^*(R_m)$ splits over $\text{Aut}(R_m)$ if and only if m is odd.

Theorem 2 The automorphism group of $\text{Aut}(R_m)$ is $\text{Aut}^*(R_m)$.

2 Proof of Theorem 1

We show first that the extension does not split if m is even. Suppose that a complement exists, and let s be an element of this complement acting as $(1,2)(3,4)\cdots(m-1,m)$ on the colours. Then s maps the subgraph with
colours 1, 3, ..., \(m - 1\) to its complement. But this is impossible, since the edge joining points in a 2-cycle of \(s\) has its colour fixed.

Now suppose that \(m\) is odd; we are going to construct a complement.

First, we show that there exists a function \(f\) from pairs of distinct elements of Sym\((m)\) to \(\{1, \ldots, m\}\) satisfying

\[
\begin{align*}
&\bullet f(x, y) = f(y, x) \text{ for all } x \neq y; \\
&\bullet f(xg, yg) = f(x, y)^g \text{ for all } x \neq y \text{ and all } g.
\end{align*}
\]

To do this, we first define \(f(1, y)\) for \(y \neq 1\) arbitrarily subject to the condition \(f(1, x^{-1}) = f(1, x)^{x^{-1}}\). Note that this condition requires \(f(1, s)^s = f(1, s)\) whenever \(s\) is an involution; but this is possible, since any involution has a fixed point (as \(m\) is odd). Then we extend to all pairs by defining \(f(x, y) = f(1, yx^{-1})^x\). A little thought shows that no conflict arises.

Now we take a countable set of vertices, and let Sym\((m)\) act semiregularly on it. Each orbit is naturally identified with Sym\((m)\); we let \(x_i\) denote the element identified with \(x\) in the \(i\)th orbit, as \(i \in \mathbb{N}\) (where orbits are indexed by natural numbers). Then we colour the edges within each orbit by giving \(\{x_i, y_i\}\) the colour \(f(x, y)\). For edges between orbits \(i\) and \(j\), with \(i < j\), we colour \(\{x_i, 1_j\}\) arbitrarily, and then give \(\{y_i, z_j\}\) the image of the colour of \(\{(yz^{-1})_i, 1_j\}\) under \(z\).

Clearly the group Sym\((m)\) permutes the colours of the edges consistently, the same way as it permutes \(\{1, \ldots, m\}\).

Next we show that a residual set of the coloured graphs we obtain are isomorphic to \(R_m\). We have to show that, given \(m\) finite disjoint sets of vertices, say \(U_1, \ldots, U_m\), the set of graphs containing a vertex \(v\) joined by edges of colour \(i\) to all vertices in \(U_i\) (for \(i = 1, \ldots, m\)) is open and dense. The openness is clear. To see that it is dense, note that the \(m\) finite sets are contained in the union of a finite number of orbits (say those with index less than \(N\)); then, for any \(i \geq N\), we are free to choose the colours of the edges joining these vertices to \(1_i\) arbitrarily.

Now by construction, the group Sym\((m)\) we have constructed meets Aut\((R_m)\) in the identity; so it is the required complement.

How close can we get when \(m\) is even? The construction in the second part can easily be modified to show that, if there is a group \(G\) which acts as Sym\((m)\) on the set \(\{1, \ldots, m\}\), in such a way that all involutions in \(G\) have fixed points on \(\{1, \ldots, m\}\), then \(G\) is a supplement for Aut\((R_m)\) in
$\text{Aut}^\ast(R_m)$ (that is, $G, \text{Aut}(R_m) = \text{Aut}^\ast(R_m)$), and $G \cap \text{Aut}(R_m)$ is the kernel of the action of G on $\{1, \ldots, m\}$. We simply replace $\text{Sym}(m)$ by G in the construction, and in place of $f(xg, yg) = f(x, y)^g$ we require that $f(xg, yg) = f(x, y)^{\phi g}$, where ϕ is the action of G on $\{1, \ldots, m\}$.

If m is even but not a multiple of 8, then there is a double cover of $\text{Sym}(m)$, for m even, in which the fixed-point-free involutions lift to elements of order 4. (There are two double covers of $\text{Sym}(n)$ for $n \geq 4$, described in [3] Chapter 2] and called there \tilde{S}_m and \hat{S}_m. In \tilde{S}_m, the product of r disjoint transpositions lifts to an element of order 4 if and only if $r \equiv 1$ or 2 mod 4, while in \hat{S}_m, the condition is that $r \equiv 2$ or 3 mod 4.) This shows that there is a supplement meeting $\text{Aut}(R_m)$ in a group of order 2 for m even but not divisible by 8.

What happens in the remaining case, when m is a multiple of 8? Is there a finite supplement, and what is the smallest such?

3 Proof of Theorem 2

Since $\text{Aut}(R_m)$ is primitive and not regular, its centraliser in the symmetric group is trivial; so $\text{Aut}^\ast(R_m)$ acts faithfully on $\text{Aut}(R_m)$ by conjugation. We have to show that there are no further automorphisms.

A permutation group G of countable degree is said to have the small index property if any subgroup H satisfying $|G : H| < 2^\aleph_0$ contains the pointwise stabiliser of a finite set; it has the strong small index property if any subgroup H satisfying $|G : H| < 2^\aleph_0$ lies between the pointwise and setwise stabiliser of a finite set.

Step 1 R_m has the strong small index property.

This is proved by a simple modification of the arguments for the case $m = 2$. The small index property is proved by Hodges et al. [3], using a result of Hrushovski [5]; the strong version is a simple extension due to Cameron [2].

Hrushovski showed that any finite graph X can be embedded into a finite graph Z such that all isomorphisms between subgraphs of X extend to automorphisms of Z. Moreover, the graph Z is vertex-, edge- and nonedge-transitive. He uses this to construct a generic countable sequence of automorphisms of R. To extend this to R_m is comparatively straightforward. It is necessary to work with $(m-1)$-edge-coloured graphs (regarding the mth
Now the arguments of Hodges et al. and Cameron go through essentially unchanged.

Step 2 Since $\text{Aut}(R_m)$ acts primitively on the vertex set, with permutation rank $m+1$, the vertex stabilisers are maximal subgroups of countable index with $m+1$ double cosets. Moreover, any further subgroup of countable index has more than $m + 1$ double cosets.

For let H be a maximal subgroup of countable index. By the strong SIP, H is the stabiliser of a k-set X. If g maps X to a disjoint k-set, then HgH determines the colours of the edges between X and X^g, up to permutations of these two sets. By universality, there are at least $m^{k^2}/(k!)^2$ such double cosets. Now it is not hard to prove that $m^{k^2}/(k!)^2 > m$ for $k \geq 2$. Hence we must have $k = 1$.

Step 3 It follows that any automorphism permutes the vertex stabilisers among themselves, so is induced by a permutation of the vertices which normalises $\text{Aut}(R_m)$. To finish the proof, we show that the normaliser of $\text{Aut}(R_m)$ in the symmetric group is $\text{Aut}^*(R_m)$.

This is straightforward. A vertex permutation which normalises $\text{Aut}(R_m)$ must permute among themselves the $\text{Aut}(R_m)$-orbits on pairs of vertices, that is, the colour classes; so it belongs to $\text{Aut}^*(R_m)$.

References

[1] P. J. Cameron, *Oligomorphic Permutation Groups*, London Math. Soc Lecture Notes 152, Cambridge University Press, Cambridge, 1990.

[2] P. J. Cameron, The random graph has the strong small index property, *Discrete Math.* 291 (2005), 41–43.

[3] W. A. Hodges, I. M. Hodkinson, D. Lascar and S. Shelah, The small index property for ω-stable ω-categorical structures and for the random graph, *J. London Math. Soc.* (2) 48 (1993), 204–218.

[4] P. N. Hoffman and J. F. Humphreys, *Projective Representations of the Symmetric Groups*, Clarendon Press, Oxford, 1992.
[5] E. Hrushovski, Extending partial isomorphisms of graphs, *Combinatorica* 12 (1992), 411–416.

[6] J. K. Truss, The group of the countable universal graph, *Math. Proc. Cambridge Philos. Soc.* 98 (1985), 213–245.