Fabrication, physical, structure characteristics, neutron and radiation shielding capacity of high-density neodymium-cadmium lead-borate glasses: Nd$_2$O$_3$/CdO/PbO/B$_2$O$_3$/Na$_2$O

Hesham M. H. Zakaly1,2 · H. O. Tekin3,4 · Shams A. M. Issa2,5 · A. M. A. Henaish1,6 · Emad M. Ahmed7 · Y. S. Rammah8

Received: 19 April 2022 / Accepted: 12 May 2022 / Published online: 3 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022

Abstract
High-density glasses of neodymium-cadmium lead borate of chemical composition xNd$_2$O$_3$/20CdO/20PbO/(57-x)B$_2$O$_3$/3Na$_2$O, where (0 ≤ x ≤ 5) wt% have been fabricated by a melt quenching process. Physical, structure properties as well as gamma-radiation and neutron shielding effectiveness in wide photon energy range 0.015–15 MeV have been examined. The amorphous nature of xNd-glasses was confirmed, where there was a lack of their crystallinity. Density was gradually increased from 5.006 g/cm3 for 0Nd-glass sample to 5.245 g/cm3 for 5Nd-glass sample. In terms of the mass attenuation coefficient (MAC), introducing Nd$^{3+}$ ions in the glass matrix has a direct constructive influence on the obtained values of MAC. Generally, the MAC trend follows the order (MAC)$_{5Nd}$ > (MAC)$_{4Nd}$ > (MAC)$_{3Nd}$ > (MAC)$_{2Nd}$ > (MAC)$_{1Nd}$ > (MAC)$_{0Nd}$. The linear attenuation coefficient (LAC) has a similar trend as MAC for all xNd-glasses. In terms of the half-value layer ($T_{1/2}$), the 5Nd-glasses possessed the minimum $T_{1/2}$ values (0.004 cm at 15 keV to 4.301 cm at 15 MeV). Therefore, the $T_{1/2}$ of the fabricated xNd-glasses has an inverse behavior of the MAC and LAC. Thus, ($T_{1/2}$)$_{5Nd}$ > ($T_{1/2}$)$_{4Nd}$ > ($T_{1/2}$)$_{3Nd}$ > ($T_{1/2}$)$_{2Nd}$ > ($T_{1/2}$)$_{3Nd}$ > ($T_{1/2}$)$_{1Nd}$ > ($T_{1/2}$)$_{0Nd}$. The effective atomic number (Z_{eff}) parameter follows the order (Z_{eff})$_{5Nd}$ > (Z_{eff})$_{4Nd}$ > (Z_{eff})$_{3Nd}$ > (Z_{eff})$_{2Nd}$ > (Z_{eff})$_{1Nd}$ > (Z_{eff})$_{0Nd}$. In the energies preferred for radiation applications, 5Nd-glasses possess very low exposure (EBF) and energy absorption (EABF) buildup factor values. The fast neutron removal cross-section (FNRC) of the fabricated glasses is improved as the Nd$^{3+}$ content increases in the glass matrix.

Keywords Glasses · Photon · Neutron · Mass attenuation coefficient · Radiation shielding

1 Introduction

Due to the fact that glasses are transparent materials, low in price, ease in fabrication, light in weight, tough, non-toxic, and radiation resistant, the use of different glasses for radiation shielding applications has more attention from several researchers and engineers [1–9]. In addition, the interesting physical, mechanical, thermal characteristics of glasses, several glass compositions have been suggested and investigated for their optical, mechanical, thermal, electrical, and radiation shielding capacity through different experimental and theoretical treatments [10–16].

The most common oxide that can act as a glass base is boron oxide (B$_2$O$_3$). Borate-based glasses are particularly advantageous due to their physical and chemical properties, which include a low melting point and good transparency [17, 18]. To make a series of glasses with promising optical and radiation shielding properties, the chemical structure of the glasses must be flexible, allowing for doping with
new elements or radicals, and changing the stoichiometry of atomic components of glasses. This has necessitated a large number of glass series, each with its own set of properties. A large number of studies have investigated the ability of various metal oxides (B, Li, Cd, Zn, Ca, and others) and rare earth elements (Gd₂O₃, Sm₂O₃, Y₂O₃, La₂O₃, Nd₂O₃, and others) in the glass matrix, such as to improve photon and charged particle radiation shielding coefficients [19, 20]. Kilic [21] studied the influence of Nd³⁺ ions on structural, optical, and thermal characterization of V₂O₅–TeO₂–(B₂O₃/Nd₂O₃) glasses and concluded that Nd³⁺ ions makes changing in the glass network and acts as a modifier leads to improve the optical and thermal properties. Rammah et al. [22] investigated the optical features of the prepared bismuth borotellurite glasses doped with NdCl₃. They reported that the optical properties were enhanced as NdCl₃ content increases. Abdel-Aziz et al. [23] reported that Nd³⁺ and Er³⁺ ions enhanced the physical, structure, mechanical, and dielectric characteristics of calcium lead-borate glasses. In terms of radiation shielding field, Mahmoud et al. [24] investigated the gamma-ray shielding capacity of glasses doped with Nd³⁺ ions rare earth using MCNP-5 code, they claimed that the insertion of Nd³⁺ ions in the glass matrix leads to enrich their radiation shielding capacity. Hegazy et al. [25] studied the nuclear shielding properties of borate glasses modified with Nd³⁺ ions; they reported that increasing Nd³⁺ ions content in the glass matrix helps to enhance the radiation attenuation capacity. Recently, Rammah et al. [26] and Zakaly et al. [27] reported that the insertion of Nd³⁺ ions in the fabricated cadmium lead-borate glasses has a direct improvement in their physical, structural, and optical features.

This paper reports about:

(i) Fabrication of high-density neodymio-cadmium leads borate glasses.
(ii) XRD patterns and physical properties of the fabricated glasses have been measured.
(iii) Investigating the significant role of neodymium (Nd³⁺) ions content in the fabricated glasses on the photon and neutron shielding efficacy.
(iv) Comparing between our findings and that of some commercial radiation shielding materials such as concrete and glasses.

2 Materials and methods

2.1 Preparation of xNd-glasses

A series of high-density neodymio-cadmium lead-borate glasses of chemical composition xNd₂O₃/20CdO/20PbO/(57-x)B₂O₃/3Na₂O, where (0 ≤ x ≤ 5 wt%) have been fabricated by a melt quenching process. The fabricated process was achieved using high purity (99%) for all oxides which supplied from Strem chemicals and Riedel-De Haën Company. Precursors were weighed and thoroughly mixed to obtain a homogeneous composite mixture and finely divided additions, which were then placed in porcelain crucibles and stored inside an electric melting furnace at temperature 1050 °C for about 25 min. Then, the prepared glasses quickly pressed with a steel plate to place in a preheated oven at 250 °C and leave to cool to room temperature inside the oven. The code of the fabricated glasses is abbreviated as xNd-glasses: 0 (0Nd), 1 (1Nd), 2 (2Nd), 3 (3Nd), 4 (4Nd), and 5 (5Nd). A photo of the fabricated glasses is shown in (Fig. 1).

The amorphous state of the fabricated xNd-glasses was examined using X-ray diffraction (XRD) technique with Cu Kα radiation source (λ = 1.54 nm), Philips model (PW-1729) step size 0.02 °C; time per step: 21 s.

Density (ρglass) of the fabricated xNd-glasses was measured experimentally by Archimedes’ principle with Xylene as an immersion liquid medium with density (ρXylene = 0.863 g/cm³). Weigh each glass sample in air (WAir) and in Xylene (WXylene) and the density of every xNd-glass samples was calculated using the next relation:

\[\text{Density (ρglass)} = \frac{W_{\text{Air}} - W_{\text{Xylene}}}{V_{\text{displaced}}} \]

\[V_{\text{displaced}} = \frac{W_{\text{Air}} - W_{\text{Xylene}}}{\rho_{\text{Xylene}}} \]

Fig. 1 X-ray diffraction patterns of glasses with different Nd₂O₃ content
\[\rho_{\text{glass}} = \frac{W_{\text{Air}}}{(W_{\text{Air}} - W_{\text{Xylene}}) \times \rho_{\text{Xylene}}} \]

(1)

Table 1 shows codes, chemical compositions, and density of the xNd-glasses.

2.2 XCOM software and FLUKA code for γ-photons

In the current work, FLUKA simulation code was used to examine the gamma-ray shielding characteristics of the prepared xNd-glasses [28]. Figure 2 displays the needed geometry for investigating γ-ray transmission via the prepared glasses. A mono-energetic gamma source emits an initial number of γ-photons about \(10^6\) photons to incident directly on the glass sample. The ratio of initial and passed photons used to evaluate the linear attenuation coefficient \(\text{LAC} = \mu\) for each glass sample. Then, the mass attenuation coefficients \(\text{MAC} = \mu/\rho = \mu_m\) (\(\rho\) is the glass density) based on the following expression [29–34]:

\[\frac{\mu}{\rho} = \frac{\mu_m}{\rho} = \sum W_i \left(\frac{\mu}{\rho} \right)_i \]

(1)

The obtained results of FLUKA code were compared with the theoretical values obtained via XCOM platform [35]. Furthermore, the values \(\mu\) and \(\mu/\rho\) were used to examine the half-value layer (HVL, \(T_{1/2}\)), mean free path (MFP, \(\lambda\)), and effective atomic number \(Z_{\text{eff}}\) as follows [29–34, 36]:

\[T_{1/2} = \frac{0.693}{\mu}, \quad \lambda = \frac{\mu}{\rho}^{-1} \]

(2)

\[Z_{\text{eff}} = \frac{\sum f_i A_i \left(\frac{\mu}{\rho} \right)_i}{\sum \left(\frac{A_i}{Z_i} \right)} \]

(3)

where \(A_i\) and \(f_i\) are the atomic mass and molar fraction of ith constituent pure element in the glass. The exposure buildup factor (EBF) and energy absorption buildup factor (EABF) of the fabricated xNd-glasses also examined using the G–P fitting coefficients (b, c, a, Xk and d) as in Ref. [37].

2.3 Calculation of fast neutron removal cross section

Inelastic collisions occur when a fissile/fast neutron collides with any non-hydrogenous material. The fast neutron removal cross-section is the statistical probability that a fast neutron interacts in such a way that it is no longer categorized as fast \((FNRC - \Sigma_R)\). For fast neutrons with energy ranging from 2 to 12 MeV, this is the macroscopic cross-section. The \((FNRC)\) may be calculated for materials (xNd-glasses) according to the following expression [38]:

\[\sum R = \rho \sum w_i (MRCS)_i \]

(4)

where \(\rho\), \((MRCS)_i\), and \(w_i\) are the mass density of the interacting medium, mass removal cross-section, and weight fraction of the \(i^{th}\) element.

Table 1 Codes, chemical compositions, and density of the xNd-glasses: \(x=0, 1, 2, 3, 4,\) and \(5\) wt%

Code	Chemical compositions (Wt %)	Density, \(\rho_{\text{glass}}\) (g/cm³) ± 0.001
0Nd	\(0\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/57\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.006
1Nd	\(1\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/56\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.054
2Nd	\(2\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/55\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.101
3Nd	\(3\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/54\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.150
4Nd	\(4\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/53\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.200
5Nd	\(5\text{Nd}_2\text{O}_3/20\text{CdO}/20\text{PbO}/52\text{B}_2\text{O}_3/3\text{Na}_2\text{O}\)	5.245

Fig. 2 A demonstration of simulation setup for mass attenuation coefficients calculation.
3 Results and discussion

3.1 Density property and XRD analysis

Through relation (1), the densities of the fabricated xNd-glasses were measured and listed in Table 1. Results of densities showed a gradual slightly increase in the sample’s density with Nd2O3 addition. This trend may be attributed to the systematic increase in the molecular mass of the glass samples due to the addition of the higher molecular weight Nd2O3 (336.48 g/mol) at the expense of the lighter molecular weight B2O3 (69.6 g/mol). Another equally valid interpretation is that the density of xNd-glasses increased as the gradual replacement of the lower density B2O3 (2.46 g/cm³) by the higher density Nd2O3 (7.24 g/cm³).

Figure 1 illustrates the XRD patterns of the fabricated xNd-glasses. As shown in (Fig. 1), the XRD patterns confirm the amorphous phase for all fabricated glasses. Furthermore, the characteristic diffraction peak was defined and sharp at around 29°, confirming the amorphous state. In addition, the absence of strong diffraction peaks and the presence of hump can be seen in all XRD patterns for all samples.

3.2 γ-radiation shielding characteristics

The ionizing radiation shielding effectiveness of the fabricated xNd-glasses is controlled, governed, and examined using the linear (LAC = µ) and mass attenuation coefficient (MAC = µm). The LAC and MAC mainly depends on both the nature of glasses (compositions) and incident photon energy and not depends on thickness of glasses. Physically, the MAC is considered as the sum of the probability of photons interaction mechanism with the material (i.e. photoelectric effect (PE), Compton scattering (CS), and pair production (PP) processes).

In the current work, the MAC of the fabricated xNd-glasses with their elemental compositions and density is estimated as a function of the photon energy (E) in the range 0.015–15 MeV via XCOM programs [35] and simulated via FLUKA code [28]. The obtained values of 0Nd, 1Nd, 2Nd, and 2Nd glasses are listed in Table 2 and for 3Nd, 4Nd, and 5Nd glasses are listed in Table 3. The variation of mass attenuation coefficient (MAC = µm) values as a function of photon energy (E) of xNd-glasses is illustrated in (Fig. 3). The relative deviation between the computed and simulated values has been calculated and depicted in (Fig. 4), it was in the range from –8 to 8% for 0Nd-glasses, while in the range of –7 to 8% for 5Nd-glasses. Therefore, the simulated and computed values were in well agreement.

As shown in (Fig. 3), introducing Nd³⁺ ions in the glass matrix has a direct constructive influence on the obtained values of MAC. It is observed that the MAC enriched with the increase of the Nd³⁺ ions content in the fabricated glasses. Therefore, the 5Nd-glasses possess the highest MAC and the 0Nd-glasses possess the lowest values. The minimum MAC at 15 MeV were 0.027 cm²/g, 0.027 cm²/g, 0.030 cm²/g, 0.030 cm²/g, and 0.030 cm²/g for 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses, respectively. The maximum of MAC at 0.015 MeV were 25.780 cm²/g, 26.051 cm²/g, 26.177 cm²/g, 26.737 cm²/g, 26.963 cm²/g, and 30.322 cm²/g for 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses, respectively. Generally, the MAC trend follows the order (MAC)5Nd > (MAC)4Nd > (MAC)3Nd > (MAC)2Nd > (MAC)1Nd > (MAC)0Nd which confirms the influence of Nd³⁺ ions in glass matrix. The obtained trend of the MAC explained as: in the lowest photon energy, the behavior of the MAC exhibits due to the photoelectric effect (PE) that variation is directly with Z² of absorbing material and inversely with the E⁴ of the photon energy. In the intermediate region, the Compton Scattering (CS) varies directly with (Z/A) and inversely with energy (E). In the highest energy region, pair production (PP) interaction changes with the second power of Z. In conclusion, the MAC has the highest values depending on the higher (Z) and density of the absorber.

In terms of the MAC parameter, the 5Nd-glasses (5 wt% of Nd³⁺ ions) with high density (5.245 g/cm³) possessed the greatest MAC values, while 0Nd-glasses (free of Nd³⁺ ions) with low density (5.006 g/cm³) possessed the minimum MAC values.

Dependence of linear attenuation coefficient (LAC = µ) in cm⁻¹ versus photon energy (E) for the fabricated xNd-glasses is shown in (Fig. 5). As it was observed in (Fig. 5), the LAC has a similar trend of MAC, i.e. the 5Nd-glasses possessed the highest LAC values, while 0Nd-glasses possessed the lowest LAC values. Therefore, the LAC trend follows the order (LAC)5Nd > (LAC)4Nd > (LAC)3Nd > (LAC)2Nd > (LAC)1Nd > (LAC)0Nd.

Dependence of the half-value layer T₁/₂ in cm with photon energy (E) of the fabricated xNd-glasses is depicted in (Fig. 6). The variation of T₁/₂ with low energy region is small and their values tend close together, because of the (PE) cross-section dominance in this region. By increasing of (E), the T₁/₂ improved and values more differ from sample to another due to the dominance of both (CS) and (PP) interactions processes. As 5Nd-glasses with high density (5.245 g/cm³) possessed the minimum T₁/₂ values and it varied from 0.004 cm at 15 keV to 4.301 cm at 15 MeV. Furthermore, 0Nd-glasses with low density (5.006 g/cm³) possessed the maximum T₁/₂ values changes from 0.005 cm at 15 keV to 4.719 cm at 15 MeV. Therefore, the T₁/₂ of the fabricated xNd-glasses has an inverse behavior of the MAC and LAC. Thus, (T₁/₂)5Nd > (T₁/₂)4Nd > (T₁/₂)3Nd > (T₁/₂)2Nd > (T₁/₂)1Nd > (T₁/₂)0Nd. Regarding to the obtained results of MAC, LAC,
Fabrication, physical, structure characteristics, neutron and radiation shielding capacity...

and $T_{1/2}$, one can conclude that 5Nd-glasses can be considered as superior in radiation shielding capacity among all fabricated glasses.

Figure 7 shows a comparison of the HVL of 5Nd sample with some commercial radiation shielding materials such as Ordinary concrete (OC) [39], Hematite-Serpentine concrete (HSC) [39], (ILmenite-Limonite concrete (ILC) [39], Basalt-Magnitite concrete (BMC) [39], Imenite concrete (IC) [39], Steel-Scrap concrete (SSC) [39], and glasses [40]. From (Fig. 7), it was observed that the currently fabricated 5Nd-glasses is superior as radiation shielding material than several commercial ones.

In terms of mean free path (λ), the variations of λ with the incident photon (E) for xNd-samples is depicted in (Fig. 8). As shown in (Fig. 8), there was negative effect of Nd$^{3+}$ ions content on the trend of λ. Consequently, 5Nd-glass has the lowest values of $\lambda = 0.006$ cm at photon energy 15 keV and 6.205 cm at photon energy 15 MeV, while the 0Nd-glass has the highest values of $\lambda = 0.007$ cm and 6.808 cm at photon energy 15 MeV, respectively.

Energy (MeV)	0Nd	1Nd	2Nd			
	FLUKA µm	XCOM µm	FLUKA µm	XCOM µm	FLUKA µm	XCOM µm
0.015	25.78	27.96	26.05	28.61	26.18	29.26
0.02	18.16	19.15	18.85	19.45	18.81	19.75
0.03	11.15	12.03	11.64	12.13	11.60	12.22
0.04	6.00	5.67	5.81	5.71	5.88	5.75
0.05	3.33	3.15	3.47	3.28	3.61	3.42
0.06	2.09	1.96	2.18	2.04	2.27	2.12
0.07	1.42	1.32	1.47	1.38	1.54	1.43
0.08	1.02	0.95	1.07	0.99	1.11	1.03
0.09	1.78	1.73	1.81	1.76	1.84	1.78
0.10	1.39	1.33	1.41	1.36	1.44	1.38
0.15	0.55	0.53	0.56	0.53	0.57	0.54
0.20	0.31	0.30	0.32	0.30	0.32	0.30
0.30	0.17	0.16	0.17	0.16	0.17	0.16
0.40	0.12	0.12	0.12	0.12	0.12	0.12
0.50	0.10	0.10	0.10	0.10	0.10	0.10
0.60	0.09	0.09	0.09	0.09	0.09	0.09
0.70	0.08	0.08	0.08	0.08	0.08	0.08
0.80	0.07	0.07	0.07	0.07	0.07	0.07
0.90	0.07	0.07	0.07	0.07	0.07	0.07
1.00	0.06	0.06	0.06	0.06	0.06	0.06
1.02	0.06	0.06	0.06	0.06	0.06	0.06
1.50	0.05	0.05	0.05	0.05	0.05	0.05
2.00	0.04	0.04	0.04	0.04	0.04	0.04
2.04	0.04	0.04	0.04	0.04	0.04	0.04
3.00	0.04	0.04	0.04	0.04	0.04	0.04
4.00	0.03	0.03	0.03	0.03	0.03	0.03
5.00	0.03	0.03	0.03	0.03	0.03	0.03
6.00	0.03	0.03	0.03	0.03	0.03	0.03
7.00	0.03	0.03	0.03	0.03	0.03	0.03
8.00	0.03	0.03	0.03	0.03	0.03	0.03
9.00	0.03	0.03	0.03	0.03	0.03	0.03
10.00	0.03	0.03	0.03	0.03	0.03	0.03
11.00	0.03	0.03	0.03	0.03	0.03	0.03
12.00	0.03	0.03	0.03	0.03	0.03	0.03
13.00	0.03	0.03	0.03	0.03	0.03	0.03
14.00	0.03	0.03	0.03	0.03	0.03	0.03
15.00	0.03	0.03	0.03	0.03	0.03	0.03
energy 0.015 MeV and 15 MeV, respectively. Therefore, $(\lambda)_{3\text{Nd}} > (\lambda)_{1\text{Nd}} > (\lambda)_{2\text{Nd}} > (\lambda)_{3\text{Nd}} > (\lambda)_{4\text{Nd}} > (\lambda)_{5\text{Nd}}$. Results of the λ confirm that the 5Nd-glasses have the best shielding capacity among all xNd-glasses.

Figure 9 depicts the dependence of the effective atomic number (Z_{eff}) on photon energy (E) for all xNd-glasses. According to (Fig. 9), the increasing of the Nd$_2$O$_3$ content in the fabricated glass matrix has a positive influence for

Energy (MeV)	3Nd FLUKA	3Nd XCOM	Δ	4Nd FLUKA	4Nd XCOM	Δ	5Nd FLUKA	5Nd XCOM	Δ
0.015	26.74	29.91	-0.11	27.96	30.56	-0.08	30.32	31.21	-0.03
0.02	18.49	20.95	-0.08	20.03	20.96	-0.02	19.97	20.63	-0.07
0.03	11.43	12.32	-0.07	12.08	12.42	-0.03	12.09	12.51	-0.03
0.04	6.00	5.79	0.04	6.06	5.84	-0.04	6.15	5.88	0.05
0.05	3.77	3.56	0.06	3.91	3.69	0.06	4.09	3.83	0.07
0.06	2.35	2.21	0.06	2.44	2.29	0.06	2.52	2.38	0.06
0.07	1.59	1.49	0.07	1.65	1.54	0.07	1.71	1.60	0.07
0.08	1.14	1.06	0.08	1.19	1.10	0.08	1.23	1.14	0.08
0.09	1.87	1.81	-0.03	1.90	1.84	-0.03	1.93	1.87	-0.04
0.10	1.46	1.40	-0.04	1.48	1.42	-0.04	1.50	1.44	-0.05
0.15	0.57	0.55	-0.05	0.58	0.55	-0.05	0.59	0.56	-0.05
0.20	0.32	0.31	-0.05	0.33	0.31	-0.05	0.33	0.31	-0.06
0.30	0.17	0.16	-0.04	0.17	0.16	-0.04	0.17	0.17	-0.05
0.40	0.12	0.12	-0.03	0.12	0.12	-0.03	0.12	0.12	-0.04
0.50	0.10	0.10	-0.02	0.10	0.10	-0.03	0.10	0.10	-0.02
0.60	0.09	0.09	-0.02	0.09	0.09	-0.02	0.09	0.09	-0.01
0.70	0.08	0.08	-0.02	0.08	0.08	-0.01	0.08	0.08	-0.02
0.80	0.07	0.07	-0.00	0.07	0.07	-0.00	0.07	0.07	-0.01
0.90	0.07	0.07	-0.01	0.07	0.07	-0.00	0.07	0.07	-0.00
1.00	0.06	0.06	-0.01	0.06	0.06	-0.01	0.06	0.06	-0.00
1.02	0.06	0.06	0.00	0.06	0.06	0.01	0.06	0.06	0.00
1.50	0.05	0.05	0.00	0.05	0.05	0.01	0.05	0.05	0.00
2.00	0.04	0.04	-0.01	0.04	0.04	0.00	0.04	0.04	0.00
2.04	0.04	0.04	-0.00	0.04	0.04	0.01	0.04	0.04	0.00
3.00	0.04	0.04	0.00	0.04	0.04	0.00	0.04	0.04	0.00
4.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
5.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
6.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
7.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
8.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
9.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
10.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
11.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
12.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
13.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
14.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
15.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00
enriching the Z_{eff}. The Z_{eff} is strongly dependent on the glass density. Results confirm that the Z_{eff} parameter follows the order $(Z_{\text{eff}})^{5\text{Nd}} > (Z_{\text{eff}})^{4\text{Nd}} > (Z_{\text{eff}})^{3\text{Nd}} > (Z_{\text{eff}})^{2\text{Nd}} > (Z_{\text{eff}})^{1\text{Nd}} > (Z_{\text{eff}})^{0\text{Nd}}$.

For radiation shielding evaluating, exposure and energy absorption buildup factors (EBF and EABF) are urgent. They are considered as parameters to study the effect of multiple scatterings in the construction of new shielding...
glasses. Figures 10, 11a–f) present the variation of the EBF and EABF as a function of photon energy (E) at distinct mean free paths (0.5–40 mfp) for xNd-glasses, respectively. The EBF and EABF G–P fitting coefficients (b, c, a, Xk and d) of the fabricated 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses are tabulated in (Tables 4, 5, 6, 7, 8, 9). As shown in (Figs. 11, 12), at low penetration depths, EBFs and EABFs are small. Secondary scatterings take place as the depth of penetration increases, thus the photon buildup becomes greater at 10–40 mfp. At higher energies, both EBFs and EABFs begin to enhance due to the possibility of photons interacting with the glasses in this energy region changes with Z^2 (where PP interaction is dominant in this energy zone). In the energies preferred for radiation applications, 5Nd-glasses possess very low EBF and EABF values. This ensures that 5Nd-glasses have more effectiveness among all other glasses in absorbing photons.
Fig. 10 (a–f) Variation of exposure buildup factor (EBF) against Photon energy for all studied materials
Fig. 11 (a–f) Variation of energy absorption buildup factor (EABF) against Photon energy for all studied materials.
3.3 Fast neutron removal cross-section (FNRC)

The fast neutron shielding capacity of the fabricated xNd-glasses is evaluated by their fast neutron removal cross-section (FNRC). The obtained values of FNRC of the xNd-glasses are presented in (Fig. 12). Values of the FNRC were 0.1684, 0.1686, 0.1687, 0.1688, 0.1689, and 0.1690 cm⁻¹ for 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses, respectively. The result reveals that 0Nd-glasses (free with Nd³⁺ ions) include the optimum content of glass constituents that achieves the best neutron shielding ability. Compared to recently studied glass, graphite (FNRC = 0.077 cm⁻¹), S30 (FNRC = 0.0506) [40], and OC (FNRC = 0.094 cm⁻¹) [39], the fast neutron absorbing capacity of xNd-glasses is superior to that of other materials.

4 Conclusion

A series of six samples with high density of neodymium-cadmium lead-borate glasses of chemical composition xNd₂O₃/20CdO/20PbO/(57-x)B₂O₃/3Na₂O, where (0 ≤ x ≤ 5) wt% have been fabricated by a melt quenching process. Physical, structure characteristics as well as gamma-radiation and neutron shielding effectiveness in wide photon energy range 0.015–15 MeV have been examined. The amorphous nature of xNd-glasses was confirmed, where there was a lack of their crystallinity. Density of the fabricated xNd-glasses was gradually increased from 5.006 g/cm³ for 0Nd-glass sample with free of Nd³⁺ ions to 5.245 g/cm³ for 5Nd-glass sample enrich with Nd³⁺ ions. In terms of the MAC, introducing Nd³⁺ ions in the glass matrix has a direct constructive influence on the
obtained values of MAC. The minimum MAC at 15 MeV were 0.027 cm²/g, 0.027 cm²/g, 0.030 cm²/g, 0.030 cm²/g, and 0.030 cm²/g for 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses, respectively. The maximum of MAC at 0.015 MeV were 25.780 cm²/g, 26.051 cm²/g, 26.177 cm²/g, 26.737 cm²/g, 26.963 cm²/g, and 30.322 cm²/g for 0Nd, 1Nd, 2Nd, 3Nd, 4Nd, and 5Nd glasses, respectively. Generally, the MAC trend follows the order (MAC)_{5Nd} > (MAC)_{4Nd} > (MAC)_{3Nd} > (MAC)_{2Nd} > (MAC)_{1Nd} > (MAC)_{0Nd}. The LAC has a similar trend as MAC for all xNd-glasses. In terms of the $T_{1/2}$, the 5Nd-glasses with high density (5.245 g/cm³) possessed the minimum $T_{1/2}$ values and it varied from 0.004 cm at 15 keV to 4.301 cm at 15 MeV. Furthermore, 0Nd-glasses with low density (5.006 g/cm³) possessed the maximum $T_{1/2}$ values changes from 0.005 cm at 15 keV to 4.719 cm at 15 MeV. Therefore, the $T_{1/2}$ of the fabricated

Energy (MeV)	Z_{eq}	G-P fitting parameters for EBF	G-P fitting parameters for EABF								
		a	b	c	d	X_k	a	b	c	d	X_k
0.015	6.47	0.158	1.312	0.508	−0.079	14.290	0.158	1.319	0.506	−0.078	14.493
0.020	6.49	0.105	1.708	0.658	−0.051	15.775	0.105	1.727	0.658	−0.051	15.670
0.030	6.49	0.014	3.054	0.993	−0.016	14.305	0.014	3.205	0.994	−0.015	14.358
0.040	6.50	0.090	4.580	1.504	0.037	13.739	−0.088	4.507	1.495	0.036	13.945
0.050	6.50	−0.140	5.838	1.864	0.061	14.085	−0.136	5.229	1.839	0.058	14.209
0.060	6.51	−0.175	6.318	2.149	0.079	14.084	−0.168	5.277	2.094	0.074	14.193
0.080	6.51	−0.210	6.058	2.475	0.094	13.836	−0.194	4.889	2.349	0.083	14.078
0.100	6.52	−0.213	5.525	2.550	0.093	14.395	−0.195	4.495	2.388	0.080	14.666
0.150	6.52	−0.226	4.159	2.643	0.100	14.124	−0.196	3.645	2.387	0.078	14.663
0.200	6.52	−0.219	3.558	2.541	0.097	14.126	−0.187	3.277	2.273	0.076	14.786
0.300	6.53	−0.194	3.046	2.265	0.084	14.219	−0.171	2.821	2.089	0.068	14.550
0.400	6.53	−0.176	2.765	2.076	0.074	13.788	−0.152	2.624	1.910	0.062	14.494
0.500	6.53	−0.157	2.592	1.914	0.069	14.157	−0.138	2.459	1.792	0.058	14.989
0.600	6.53	−0.142	2.468	1.788	0.059	13.881	−0.122	2.379	1.672	0.048	14.573
0.800	6.53	−0.121	2.273	1.630	0.056	13.927	−0.107	2.200	1.553	0.045	14.151
1.000	6.53	−0.102	2.154	1.505	0.047	13.885	−0.089	2.099	1.443	0.038	14.486
1.500	5.79	−0.072	2.023	1.323	0.036	13.707	−0.060	1.940	1.277	0.027	14.302
2.000	5.76	−0.045	1.911	1.197	0.022	14.089	−0.038	1.841	1.171	0.015	14.442
3.000	5.76	−0.015	1.760	1.061	0.007	12.153	−0.011	1.715	1.051	0.003	14.154
4.000	5.75	0.004	1.660	0.984	−0.007	23.669	0.003	1.627	0.989	−0.002	13.315
5.000	5.75	0.017	1.581	0.938	−0.011	14.604	0.015	1.566	0.945	−0.008	14.767
6.000	5.75	0.026	1.529	0.907	−0.015	14.490	0.029	1.520	0.901	−0.018	12.541
8.000	5.75	0.037	1.442	0.869	−0.032	16.393	0.035	1.435	0.877	−0.017	11.884
10.000	5.75	0.042	1.375	0.855	−0.020	12.606	0.040	1.381	0.858	−0.022	14.365
15.000	5.75	0.046	1.278	0.838	−0.028	14.969	0.047	1.286	0.837	−0.031	15.470
Fabrication, physical, structure characteristics, neutron and radiation shielding capacity...

The \((T_{1/2})^0_{\text{Nd}} > (T_{1/2})^1_{\text{Nd}} > (T_{1/2})^2_{\text{Nd}} > (T_{1/2})^3_{\text{Nd}} > (T_{1/2})^4_{\text{Nd}} > (T_{1/2})^5_{\text{Nd}}\), the \(Z_{\text{eff}}\) parameter follows the order \((Z_{\text{eff}})_{5\text{Nd}} > (Z_{\text{eff}})_{4\text{Nd}} > (Z_{\text{eff}})_{3\text{Nd}} > (Z_{\text{eff}})_{2\text{Nd}} > (Z_{\text{eff}})_{1\text{Nd}} > (Z_{\text{eff}})_{0\text{Nd}}\). In the energies preferred for radiation applications, \(5\text{Nd}-\text{glasses}\) possess very low EBF and EABF values. This ensures that \(5\text{Nd}-\text{glasses}\) have more effectiveness among all other glasses in absorbing photons. The FNRC of the fabricated glasses is improved as the \(\text{Nd}^{3+}\) content increases in the glass matrix. The obtained results confirm that the \(5\text{Nd}-\text{glasses}\) have more capacity compared to other proposed glasses in absorbing photons.

Energy (MeV)	\(Z_{\text{eq}}\)	G-P fitting parameters for EBF	G-P fitting parameters for EABF								
	\(a\)	\(b\)	\(c\)	\(d\)	\(X_k\)	\(a\)	\(b\)	\(c\)	\(d\)	\(X_k\)	
0.015	6.25	0.153	1.346	0.522	−0.075	14.299	0.156	1.355	0.515	−0.078	14.459
0.020	6.26	0.093	1.784	0.692	−0.046	16.135	0.092	1.805	0.694	−0.045	16.027
0.030	6.27	−0.004	3.260	1.065	−0.005	13.637	−0.005	3.439	1.065	−0.004	13.553
0.040	6.27	−0.107	4.886	1.612	0.046	13.816	−0.105	4.759	1.603	0.044	14.015
0.050	6.27	−0.154	6.227	1.974	0.066	14.199	−0.149	5.393	1.941	0.063	14.331
0.060	6.27	−0.185	6.717	2.254	0.083	14.284	−0.176	5.343	2.180	0.076	14.402
0.080	6.28	−0.217	6.373	2.571	0.097	14.105	−0.199	4.877	2.411	0.083	14.404
0.100	6.28	−0.225	5.687	2.671	0.098	14.397	−0.201	4.411	2.459	0.081	14.761
0.150	6.29	−0.235	4.257	2.741	0.103	14.131	−0.200	3.591	2.433	0.079	14.794
0.200	6.29	−0.225	3.642	2.610	0.101	14.547	−0.191	3.231	2.313	0.076	14.779
0.300	6.29	−0.201	3.090	2.330	0.089	14.303	−0.173	2.811	2.107	0.069	14.730
0.400	6.29	−0.183	2.799	2.129	0.077	13.649	−0.152	2.626	1.917	0.062	14.646
0.500	6.29	−0.163	2.620	1.957	0.074	14.171	−0.138	2.458	1.796	0.060	15.453
0.600	6.29	−0.146	2.501	1.816	0.060	13.758	−0.121	2.388	1.668	0.047	14.751
0.800	6.29	−0.126	2.290	1.657	0.059	13.871	−0.108	2.199	1.557	0.045	14.124
1.000	6.29	−0.106	2.171	1.522	0.050	13.839	−0.091	2.094	1.451	0.039	14.361
1.500	5.71	−0.073	2.028	1.328	0.037	13.714	−0.061	1.939	1.278	0.027	14.306
2.000	5.69	−0.046	1.915	1.198	0.023	14.120	−0.038	1.840	1.172	0.016	14.414
3.000	5.69	−0.015	1.762	1.061	0.007	12.204	−0.012	1.715	1.051	0.003	14.046
4.000	5.68	0.005	1.662	0.984	−0.007	23.109	0.003	1.627	0.989	−0.002	13.456
5.000	5.68	0.017	1.582	0.937	−0.011	14.634	0.015	1.566	0.944	−0.008	14.687
6.000	5.68	0.026	1.530	0.907	−0.015	14.527	0.029	1.521	0.901	−0.017	12.594
8.000	5.68	0.037	1.442	0.869	−0.031	16.206	0.036	1.436	0.876	−0.018	11.823
10.000	5.68	0.042	1.376	0.854	−0.020	12.674	0.040	1.381	0.858	−0.022	14.377
15.000	5.68	0.047	1.279	0.838	−0.028	14.889	0.047	1.287	0.837	−0.031	15.352
Energy (MeV)	\(Z_{eq} \)	G-P fitting parameters for EBF	G-P fitting parameters for EABF								
-------------	----------------	--------------------------------	--------------------------------								
	\(a \)	\(b \)	\(c \)	\(d \)	\(X_k \)	\(a \)	\(b \)	\(c \)	\(d \)	\(X_k \)	
0.015	6.57	0.161	1.297	0.502	−0.080	14.287	0.159	1.303	0.502	−0.078	14.508
0.020	6.57	0.109	1.679	0.645	−0.054	15.639	0.110	1.698	0.644	−0.054	15.535
0.030	6.57	0.020	2.984	0.969	−0.020	14.532	0.020	3.125	0.969	−0.019	14.632
0.040	6.57	−0.084	4.481	1.469	0.035	13.715	−0.082	4.426	1.461	0.033	13.922
0.050	6.57	−0.136	5.716	1.830	0.059	14.049	−0.133	5.178	1.807	0.056	14.171
0.060	6.58	−0.172	6.197	2.117	0.078	14.024	−0.165	5.257	2.068	0.073	14.130
0.080	6.58	−0.207	5.966	2.446	0.093	13.757	−0.193	4.893	2.330	0.083	13.983
0.100	6.58	−0.210	5.497	2.515	0.091	14.394	−0.193	4.519	2.367	0.080	14.639
0.150	6.59	−0.224	4.132	2.615	0.099	14.122	−0.195	3.660	2.374	0.078	14.626
0.200	6.59	−0.218	3.534	2.522	0.096	14.010	−0.186	3.290	2.262	0.076	14.788
0.300	6.59	−0.192	3.034	2.247	0.083	14.196	−0.171	2.824	2.084	0.068	14.501
0.400	6.59	−0.174	2.755	2.062	0.073	13.825	−0.152	2.623	1.908	0.061	14.454
0.500	6.60	−0.156	2.584	1.903	0.068	14.153	−0.138	2.460	1.791	0.058	14.866
0.600	6.60	−0.141	2.459	1.781	0.059	13.913	−0.122	2.377	1.673	0.048	14.526
0.800	6.60	−0.120	2.268	1.623	0.055	13.941	−0.107	2.200	1.551	0.044	14.158
1.000	6.60	−0.101	2.150	1.501	0.047	13.897	−0.089	2.100	1.441	0.037	14.519
1.500	6.08	−0.068	2.007	1.307	0.032	13.790	−0.060	1.940	1.275	0.027	14.298
2.000	6.06	−0.044	1.895	1.191	0.020	13.987	−0.037	1.842	1.168	0.014	14.492
3.000	6.05	−0.014	1.750	1.058	0.006	12.996	−0.011	1.715	1.050	0.003	14.401
4.000	6.05	−0.004	1.652	0.986	−0.008	25.086	0.003	1.626	0.989	−0.002	12.903
5.000	6.05	0.017	1.574	0.939	−0.011	14.450	0.014	1.564	0.946	−0.007	14.966
6.000	6.05	0.026	1.525	0.908	−0.015	14.258	0.029	1.518	0.902	−0.018	12.607
8.000	6.05	0.038	1.439	0.869	−0.034	16.805	0.033	1.430	0.883	−0.016	12.106
10.000	6.04	0.042	1.372	0.856	−0.021	12.440	0.040	1.377	0.860	−0.022	14.320
15.000	6.05	0.046	1.276	0.841	−0.030	15.259	0.047	1.282	0.838	−0.033	15.865

Table 7 (EBF and EABF) G–P fitting coefficients \((b, c, a, X_k, d)\) of 4Nd sample
Table 9 (EBF and EABF) G–P fitting coefficients (b, c, a, Xk and d) of 5Nd sample

Energy (MeV)	Z_{eq}	G-P Fitting Parameters for EBF	G-P Fitting Parameters for EABF								
		a	b	c	d	Xk	a	b	c	d	Xk
0.015	6.61	0.162	1.290	0.499	-0.081	14.285	0.159	1.296	0.500	-0.078	14.515
0.020	6.62	0.111	1.665	0.640	-0.055	15.576	0.113	1.684	0.637	-0.055	15.472
0.030	6.61	0.023	2.951	0.957	-0.022	16.393	0.023	3.087	0.958	-0.020	14.761
0.040	6.61	-0.081	4.434	1.452	0.033	13.703	-0.079	4.387	1.444	0.031	13.911
0.050	6.61	-0.134	5.657	1.814	0.058	14.032	-0.131	5.154	1.792	0.055	14.153
0.060	6.61	-0.170	6.137	2.102	0.077	13.994	-0.164	5.247	2.055	0.073	14.098
0.080	6.62	-0.206	5.920	2.432	0.093	13.717	-0.193	4.894	2.321	0.083	13.935
0.100	6.62	-0.208	5.455	2.497	0.091	14.394	-0.192	4.532	2.357	0.079	14.625
0.150	6.62	-0.222	4.117	2.601	0.099	14.121	-0.195	3.668	2.368	0.078	14.607
0.200	6.62	-0.217	3.522	2.512	0.095	13.950	-0.185	3.296	2.256	0.076	14.789
0.300	6.63	-0.191	3.027	2.238	0.082	14.184	-0.170	2.825	2.082	0.068	14.475
0.400	6.63	-0.173	2.750	2.054	0.073	13.846	-0.152	2.623	1.908	0.061	14.432
0.500	6.63	-0.155	2.580	1.897	0.068	14.151	-0.138	2.460	1.791	0.058	14.798
0.600	6.63	-0.140	2.454	1.777	0.059	13.931	-0.122	2.376	1.674	0.048	14.500
0.800	6.63	-0.119	2.266	1.619	0.054	13.949	-0.106	2.201	1.551	0.044	14.161
1.000	6.63	-0.101	2.147	1.499	0.046	13.903	-0.088	2.101	1.440	0.037	14.538
1.500	6.64	-0.066	2.000	1.301	0.031	13.971	-0.060	1.938	1.276	0.026	14.313
2.000	6.64	-0.043	1.889	1.188	0.020	13.981	-0.038	1.841	1.169	0.015	14.394
3.000	6.64	-0.014	1.744	1.059	0.006	12.436	-0.011	1.713	1.052	0.003	14.052
4.000	6.64	0.004	1.648	0.987	-0.007	23.349	0.004	1.627	0.988	-0.003	13.164
5.000	6.64	0.017	1.572	0.939	-0.011	14.289	0.016	1.565	0.943	-0.009	14.697
6.000	6.65	0.027	1.523	0.906	-0.016	13.926	0.027	1.514	0.908	-0.018	13.443
8.000	6.65	0.037	1.436	0.872	-0.031	15.853	0.035	1.430	0.881	-0.018	12.094
10.000	6.65	0.041	1.370	0.859	-0.021	12.770	0.040	1.375	0.861	-0.022	14.322
15.000	6.65	0.046	1.275	0.841	-0.031	15.218	0.047	1.281	0.838	-0.033	15.705

Fig. 12 Variation neutron removal cross section of the prepared xNd-glasses

Acknowledgements Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author contributions All authors contribute in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, visualization.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

References

1. M.S. Al-Buriahi, F.I. El-Agawany, C. Srimunkum, H. Akyildirim, H. Arslan, B.T. Tonguc, Y.S. Rammah, Influence of Bi_{2}O_{3}/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica. B 581, 411946 (2020)

2. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al_{2}O_{3} and Na_{2}O. Appl. Phys. A 125(10), 717 (2019)

3. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of
barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.049

4. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96 (2014), 153–157 (2014). https://doi.org/10.1016/j.radphyschem.2013.09.015

5. M.A. Marzouk, H.A. ElBatal, A.M. Abdelghany, F.M. Ezz Eldin, Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. J. Mol. Struct. 979 (1–3), 94–102 (2011)

6. F.H. El-Batal, E.M. Khalil, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. SILICON 2(1), 41–47 (2010)

7. W.I. Mortada, I.M.M. Kenawy, A.M. Abdelghany, A.M. Ismail, A.F. Donia, K.A. Nabihe, Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater. Sci. Eng., C 52, 288–296 (2015)

8. A.H. Hammad, A.M. Abdelghany, Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J. Non-Cryst. Solids 433, 14–19 (2016)

9. A.M. Abdelghany, Y.S. Rammah, Transparent aluminum lithium borate glass-ceramics: Synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym Mater. 31, 2560–2568 (2021)

10. I.O. Olaniranye, F.I. El-Agawany, A. El-Adawy, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O5–MoO3 semiconductor glasses. Ceram. Int. 46, 23134–23144 (2020). https://doi.org/10.1016/j.ceramint.2020.06.093

11. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

12. F.I. El-Agawany, E. Kavaz, U. Perišanoğlu, M.S. Al-Buriahi, Y.S. Rammah, Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2-ZnO glasses. Appl. Phys. A 125(12), 838 (2019)

13. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma shielding features of bismuth borate glasses. Appl. Phys. A 124, 824–832 (2018)

14. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.S. Abdel-Aziz, M.A. Morsi, Effect of gamma-irradiation on biosynthesized gold nanoparticles using chenopodium murale leaf extract. J. Saudi Chem. Soc. 21(5), 528–537 (2017)

15. E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. SILICON 2(1), 49–60 (2010)

16. A.M. Abdelghany, The elusory role of low level doping transition metals in lead silicate glasses. SILICON 2(3), 179–184 (2010)

17. K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul, P. Limswuan, Gamma-rays shielding properties of xPbO:(100–x) B2O3 glasses system at 662 keV. Ann. Nucl. Energy. 36, 1360–1365 (2009)

18. P. Yasaka, N. Pattanaboonme, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy. 68, 4–9 (2014)

19. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taheer, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nanometal oxides. J. Non. Cryst. Solids. 528, 119754 (2020)

20. A.M.A. Henaish, H.M.H. Zakaly, H.A. Saudi, A.M. Issa, H.O. Tekin, M.M. Hessein, Y.S. Rammah, Thermal and optical characteristics of synthesized sand/CeO2 glasses: Experimental approach. J. Electron. Mater. 2022, 1–7 (2022)

21. G. Klici, Role of Nd3+ ions in TeO2-V2O5-(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization. J Mater Sci: Mater Electron. 2021. 109819 (2022). https://doi.org/10.1007/s10984-021-06521-1

22. K.M. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B 577, 411756 (2020). https://doi.org/10.1016/j.physb.2019.411756

23. H.H. Hegazy, M.S. Al-Buriahi, F.I. Faisal Alsheshedi, C.S. El-Agawany, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3+Bi2O3+SrO glasses modified with Nd2O3: Theoretical and simulation studies. Ceram Int 47, 2772–2780 (2021). https://doi.org/10.1016/j.ceramint.2020.09.131

24. Y.S. Rammah, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, H.A. Saudi, A.M.A. Henaish, Fabrication, physical, structural, and optical investigation of cadmium lead-borate glasses doped with Nd3+ ions: An experimental study. J. Mater. Sci. Mater. Electron. 33, 1877–1887 (2022). https://doi.org/10.1007/s10984-021-07387-z

25. H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, H.A. Ali Badawi, A.M.A. Saudi, Y.S.R. Henaish, An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater. Res. Bull. 151, 111828 (2022)

26. G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, P.R. Sala, The FLUKA code: Description and benchmarking AIP conference proceedings. AIP (2007). https://doi.org/10.1063/1.2720455

27. U. Perišanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass systems in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 2019.10.023

28. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Opt. Mater. (Amst). 114, 110942 (2021). https://doi.org/10.1016/j.optmat.2021.110942

29. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2069-4

30. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borosilicate glasses: Nonlinear optical, mechanical, characteristic and gamma radiation protection characteristics. Radiat Phys Chem 190, 109819 (2022). https://doi.org/10.1016/j.radphyschem.2021.109819

31. H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessein, Y.S. Rammah, A.M.A. Henaish, Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2/sand reinforced borate glasses: Experimental and simulation studies.
34. A.S. Abouhaswa, F.I. El-Agawany, Emad M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B$_2$O$_3$–BaF$_2$–Na$_2$O–V$_2$O$_5$. Radiat. Phys. Chem. 192, 109922 (2022). https://doi.org/10.1016/j.radphyschem.2021.109922

35. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, XCOM: photon cross sections database. NIST Stand. Ref. Database 8, 87–3597 (1998)

36. E. Şakar, E., Ö. F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem 166, 108496 (2020)

37. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

38. I. Kashif, A. Ratep, S.K. El-Mahy, Structural and optical properties of lithium tetraborate glasses containing chromium and neodymium oxide. Mater. Res. Bull. 89, 273–279 (2017). https://doi.org/10.1016/j.materresbull.2017.02.006

39. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

40. V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem 41, 276–283 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.