Floristic Composition and Structural Diversity of Shasha Forest Reserve in Ile-Ife, Southwestern Nigeria

Damilare Stephen AKINYEMI*, Samson Olajide OKE

Olufoemi Awolowo University Ile-Ife, Department of Botany, Nigeria; aakinyemi@oauife.edu.ng (*corresponding author); soke@oauife.edu.ng

Abstract

The floristic composition and structural diversity were studied in two plots, 25 m x 25 m each, in three different sites of varying vegetation physiognomy: Taungya system, Regrowth forest and Gmelina arborea plantation (TS, RF and GA respectively) of Shasha forest reserve in Ile-Ife southwestern Nigeria. A total of 119 plant species belonging to 51 families and 100 genera were identified in the forest reserve. Woody species represented the most diverse life form. Plant species diversity was higher in the GA ($H'=3.5$) compared to the RF ($H'=3.4$) and TS ($H'=2.9$). Woody plant species density also differed significantly ($p < 0.05$) among the different physiognomy. Mean basal area and mean girth size were higher in RF compared to TS and GA. Species evenness was also quantitatively higher in the TS ($E=0.12$) compared to RF ($E=0.09$) and GA ($E=0.08$). Sorensen index of similarity were 12.12% (TS and RF), 19.71% (TS and GA) and 20.20% (RF and GA), which is an indication of the heterogeneity of the three different sites, as a result of different management systems of the sites. The knowledge about species composition in the forest reserve will go a long way in identifying important elements of plant diversity, protecting and preserving threatened plant species, monitoring and providing effective management of the forest reserve.

Keywords: density, flora, heterogeneity, physiognomy, structure, woody species

Introduction

Worldwide the degradation, fragmentation and conversion of forest ecosystems is progressing rapidly (Abramovitz, 1998). Globally, concerns are raised over the rapid loss of biodiversity in all its forms and at all levels. Habitat destruction is the main cause of the biodiversity loss. Habitats can either disappear completely or they may be degraded and/or fragmented, both causing serious impacts on species development, as well as lack of balance between ecosystems' processes (Raghubanshi and Tripathi, 2009). Presently, many forests persist as forest fragments and there is a growing interest in quantifying habitat characteristics such as forest structure, floristic composition and plant species richness in intact and degraded forest fragments and forest landscapes (Bierregaard et al., 1992; Myers et al., 2000). Knowledge of the floristic composition and structure of forest reserves is critical to understanding the dynamics of forest ecosystems and for identifying important elements of plant diversity, protecting threatened or economic species and monitoring the state of reserves, and it is with this data that management practices can be applied. The effective management of such ecosystems requires the understanding of their functioning, not only for their improvement, but also to arrest their further degradation (Oke and Isichei, 1997). Thus, the study of floristic composition and structure of tropical forest becomes more imperative in the face of ever increasing threat to the forest ecosystem.

Studies have shown that composition and structure of forests are influenced by a number of factors (Klinge et al., 1995; Haugaasen et al., 2003; Wittmann and Junk, 2003). One of these factors are disturbances which cause local species variation within forests based on their intensity, scale and frequency (Hill and Curran, 2003; Laidlaw et al., 2007). Disturbance regimes dominated by natural and anthropogenic factors may alter composition, diversity and structure of the forest. There have been massive deforestation and forest degradation of forest reserves in Nigeria as a result of human activities and inadequate or lack of effective management of the reserves. This endangers the forest reserves and the services (socio-economic and ecological) they render. The Shasha forest reserve was one of the forest reserves established in Nigeria, generally believed to be ecologically rich and biologically abundant with forest tree species. Shasha forest reserve was originally created in 1925 and has witnessed a rapid rate of destruction from excessive logging, conversion to plantations and farming (Field Trip Earth, 2008). Deforestation is widespread, leaving no section untouched (Salami et al., 2007). For the conservation status of the Shasha forest reserve to be known and to allow effective management of the forest reserve there is a need for proper documentation of its plant species. Knowledge of the current floristic composition and structure of the Shasha forest reserve is thus invaluable. Floristic data obtained in this regard would be useful for the application of sound management practices in the forest. This study was therefore carried out to determine the composition, structure and assess the soil status of the forest reserve.
Materials and methods

Study area

The study was carried out in the Shasha forest reserve in Ife south Local government Area of Osun state, southwestern Nigeria (Fig. 1). The forest reserve lies between latitude 7°8′ and 7°10′ N and longitude 4°20′ and 4°40′ E. The study site has a land area of 310798 km²/31079.85 ha (Salami et al., 2007). The vegetation is part of the tropical rainforest ecosystem in Southwest Nigeria. The altitude of the forest is 122 m, with a mean annual rainfall of 1421 mm (Adekunle, 2006). It is an area with high relative humidity. There are two prominent seasons: dry and rainy season. The dry season lasts from November to March, while the rainy season is from April to October. The soil of the site is ferruginous tropical soil on crystalline acid rock, the topography gently undulating plain. The study was specifically carried out in three distinct study sites, namely a Taungya system (TS), cultivated site consisting of arable crops and woody species- a natural Regrowth forest (RF) and a mono-culture plantation of Gmelina arborea (GA), which were all selected from the forest reserve based on their physiognomy. The reserve has witnessed some form of disturbance such as logging and farming activities.

Data collection and analysis

The data was collected in March (dry season month). Two sample plots of 25 m x 25 m in each being identified vegetation physiognomy (sites TS, RF and GA). The sites were laid out using a measuring tape and demarcated with wooden pegs for the study. In all three sites, all woody plants that were greater than (or about) one meter in height were enumerated and identified to species level. The diameter at breast height (dbh) of all the identified woody species was measured. The identification followed the Flora of West Africa (Hutchinson and Dalziel, 1954-1972). The species whose identities were in doubt were collected and taken to IFE herbarium where proper identification was carried out. Floristic composition, densities, diversity and distribution of the plant species were determined using the following parameters: species richness, diversity indices, Shannon – Wiener index, Sorenson’s index and species evenness (E).

Floristic composition, densities, diversity and distribution of the plant species were determined using the following parameters: species richness, diversity indices, Shannon – Wiener index, Sorenson’s index and species evenness (E).

Results and discussion

Floristic composition

A total of 119 plant species were identified in the three selected sites in the Shasha forest reserve. These belonged to 51 families and 100 genera (Tab. 1). Euphorbiaceae, Moraceae, Papilionaceae and Rubiaceae were the overall diverse families (in terms of species richness) of the adult species, contributing 28.5% of all the species in the study (Fig. 2). Trees (39.5%) were the most dominant life forms, followed by herbs (22.7%), shrubs (21.8%) climbers (12.6%) and grasses (3.4%) (Fig. 3). Euphorbiaceae and Moraceae were the most diverse families in the TS, whereas Euphorbiaceae and Rubiaceae constituted the most diverse families in RF. The most important family in GA was Rubiaceae (Fig. 4). Generally, 26 woody species were encountered in TS, 41 woody species in RF and 42 woody species in GA. Woody species common to the three sites include Deinbollia pinnata, Ficus exasperata, Milicia excelsa, Rauwolfia vomitora, Rinorea dentata and Terminalia superba.
Tab. 1. List of plant species encountered in the three study sites in Shasha forest reserve

S/N	Woody species	Family	S/N	Woody species	Family
1	Althea syriaca	Mimosaceae	62	Spindola momin	Anacardiaceae
2	Albourea cordifolia	Euphorbiaceae	63	Sterculia rhinoptata	Sterculiaceae
3	Alstonia boonei	Apocynaceae	64	Sterculia trigancanta	Sterculiaceae
4	Allamanda floribunda	Guttiferae	65	Teucria gratus	Verbenaceae
5	Allophylus africans	Sapindaceae	66	Terminalia ivorensis	Combretaceae
6	Amphispononcophyaid	Ceasalpinaceae	67	Terminalia superba	Combretaceae
7	Angonocyclus zonkeri	Papilionaceae	68	Trema guineensis	Ulmaceae
8	Anisochetae djalouensis	Loganiaceae	69	Trichilia praecoxa	Malvaceae
9	Anisochetae macrophylla	Caesalpinaceae	70	Trichilia avicennae	Malvaceae
10	Anisochetae macrophylla	Caesalpinaceae	71	Vernonia amygdalina	Asteraceae
11	Anisochetae macrophylla	Caesalpinaceae	72	Voacanga africana	Apocynaceae
12	Blighia unijugata	Sapindaceae	73	Xylea spp	Annonaceae
13	Bridelia ferruginea	Euphorbiaceae	74	Xylopia spp	Annonaceae
14	Bridelia micrantha	Euphorbiaceae	75	Xylopia spp	Annonaceae
15	Bulbocastor curvisera	Capparidaceae	76	Xylopia spp	Annonaceae
16	Ceiba pentandra	Bombiacaceae	77	Xylopia spp	Annonaceae
17	Celtis mildbraidi	Ulmaceae	78	Xylopia spp	Annonaceae
18	Celtis zenkeri	Ulmaceae	79	Xylopia spp	Annonaceae
19	Chausalia kolly	Rubiaceae	80	Xylopia spp	Annonaceae
20	Clausena anisata	Rutaceae	81	Xylopia spp	Annonaceae
21	Cleistophila patens	Annonaceae	82	Xylopia spp	Annonaceae
22	Cunntis ferruginea	Connaraceae	83	Xylopia spp	Annonaceae
23	Colua gigantea	Sterculiaceae	84	Xylopia spp	Annonaceae
24	Deinobilia pinnata	Sapindaceae	85	Xylopia spp	Annonaceae
25	Dicyandra spp	Rubiaceae	86	Xylopia spp	Annonaceae
26	Dialpnoe mohutetanus	Ebenaceae	87	Xylopia spp	Annonaceae
27	Endrophanoga angulina	Meliaceae	88	Xylopia spp	Annonaceae
28	Euphroia macrophylla	Rutaceae	89	Xylopia spp	Annonaceae
29	Ficus exasperata	Moraceae	90	Xylopia spp	Annonaceae
30	Ficus micrus	Moraceae	91	Xylopia spp	Annonaceae
31	Funstonia elatica	Apocynaceae	92	Xylopia spp	Combretaceae
32	Glypha brevis	Tiliaceae	93	Xylopia spp	Combretaceae
33	Gmelina arbores	Verbenaceae	94	Xylopia spp	Combretaceae
34	Hymalium alpineri	Simaroubbieae	95	Xylopia spp	Combretaceae
35	Ixania triaetha	Icacinaceae	96	Xylopia spp	Combretaceae
36	Jatrotha geospiloid	Euphorbiaceae	97	Xylopia spp	Combretaceae
37	Kentia solitaria	Rubiaceae	98	Xylopia spp	Combretaceae
38	Lonciodocidae capunoides	Sapindaceae	99	Xylopia spp	Combretaceae
39	Loncicarpus cyanescens	Papilionaceae	100	Xylopia spp	Combretaceae
40	Macaranga barberris	Euphorbiaceae	101	Xylopia spp	Combretaceae
41	Macaranga spp	Euphorbiaceae	102	Xylopia spp	Combretaceae
42	Maguirea dixleodus	Euphorbiaceae	103	Xylopia spp	Combretaceae
43	Massularia macrophyllyia	Rubiaceae	104	Xylopia spp	Combretaceae
44	Microdemis pueberia	Pandaceae	105	Xylopia spp	Combretaceae
45	Milicia excelsa	Moraceae	106	Xylopia spp	Combretaceae
46	Momordora tomentosa	Annonaceae	107	Xylopia spp	Combretaceae
47	Morinda lucida	Rubiaceae	108	Xylopia spp	Combretaceae
48	Musanga crenopoides	Moraceae	109	Xylopia spp	Combretaceae
49	Myristaceus arbores	Moraceae	110	Xylopia spp	Combretaceae
50	Oxanthus spp	Rubiaceae	111	Xylopia spp	Combretaceae
51	Pycnanthum angulennis	Myristicaceae	112	Xylopia spp	Combretaceae
52	Rausolva comitioria	Apocynaceae	113	Xylopia spp	Combretaceae
53	Rinorea dentata	Violaceae	114	Xylopia spp	Combretaceae
54	Rinorea velutiflora	Violaceae	115	Xylopia spp	Combretaceae
55	Rhusmania unifoli	Rubiaceae	116	Xylopia spp	Combretaceae
56	Sabico africana	Rubiaceae	117	Xylopia spp	Combretaceae
57	Salacia pallescens	Calatraceae	118	Xylopia spp	Combretaceae
58	Senna berrata	Ceasalpinaceae	119	Xylopia spp	Combretaceae
59	Senna occidentalis	Ceasalpinaceae	120	Xylopia spp	Combretaceae
60	Solanum verbascifolium	Solanaceae	121	Xylopia spp	Combretaceae
61	Sphenocnemum jolynsum	Menispermaeae	122	Xylopia spp	Combretaceae
More herbaceous species were recorded in TS (14) than in the GA (12) and RF (7) sites, whereas climber species richness was greater in the GA (8) in relation to the other vegetation physiognomy TS (7) and RF (4). The herbaceous species common to the three sites is

Composition of plant species in the various life forms identified in the study sites in Shasha forest reserve

Structure

There were a total of 2628/ha individuals of woody species (excluding other life forms) identified in the three different physiognomies. Woody species density was highest in GA (1192/ha) followed by RF (1092/ha) and least in TS (344/ha) (Tab. 2). Shannon-Wiener index was higher in the GA (H = 3.5) compared to the RF (H = 3.4) and TS (H = 2.9) (Tab. 3). Density of woody species differed significantly between the forest types (p < 0.05). In all, Gmelina arborea and Terminalia superba were the most abundant species accounting for an average 26% and 10% respectively of stems in all the three sites. In terms of basal area, Alchornea cordifolia had the highest basal area in TS, contributing with 33% of the total, in RF Alstonia boonei had the highest values contributing 65% of the total, while in GA Gmelina arborea had the highest basal area contributing 35% of the total.

On physiognomy basis, Celtis zeneri, Ficus exasperata, Gmelina arborea and Spindras manhim were the dominant species in the TS (Tab. 2). In the case of RF, Ficus exasperata, Rauwolfa vomitoria, Senna hirsuta, Terminalia superba and Trichilia preureana were the dominant species. In GA, Blighia unijugata, Chassalia kolly, Funtumia elastica, Gmelina arborea and Rauwolfa vomitoria were the species that dominated the woody flora.

In terms of size, majority of the trees were of the smaller diameter class (0-20 cm) (Fig. 4). The number of individual trees in the categories decreased with increasing size of the trees. Larger diameter trees (< 100 cm) were very low in TS and GA, but not found in RF. Mean basal area recorded in the RF (5.8±2.1 m²/ha) was higher compared with that of GA (2.5±0.2 m²/ha) and TS (0.1±0.05 m²/ha). The result of species evenness showed that evenness was quantitatively higher in TS (E =0.1) compared with RF (E =0.07) and GA (E = 0.08) (Tab. 3).
Tab. 2. Mean density of woody species (per hectare) in the three sites of the Shasha forest reserve

S/N	Species	Family	TS	RF	GA
1	Albizia stygia	Mimosaceae	24	24	
2	Albizzia candiflora	Euphorbiaceae	8	8	8
3	Alstonia bumia	Apocynaceae	16	16	
4	Allamanda floribunda	Onagraceae	16	8	8
5	Allium africanaus	Sapindaceae	32		
6	Annona pyriformis	Caricaceae	8	32	8
7	Anogeissus celebensis	Papilionaceae	16		
8	Antidesma lanceolatum	Loganiaceae	8		
9	Annona squamosa	Caricaceae	32		
10	Annona reticulata	Moraceae	8	16	8
11	Paphia nitida	Papilionaceae	16		
12	Baphia stipulata	Sapindaceae	40±8	16	8
13	Bridelia ferruginea	Euphorbiaceae	8		8
14	Bridelia micrantha	Euphorbiaceae	24		
15	Bulnesia soroea	Combretaceae	32	8	
16	Ceiba pentandra	Bombacaceae	32		
17	Celtis mildbraedi	Ulmaceae	8	16	8
18	Celtis zeyheri	Ulmaceae	24±8	24	
19	Clusia wrightii	Rubiaceae	8	48	
20	Clusia contorta	Rubiaceae	8	16	
21	Clusia sp.	Annonaceae	32		
22	Croton malagashina	Commelinaceae	8	8	8
23	Cola gigantea	Sterculiaceae	24	8	8
24	Dioscorea picta	Sapindaceae	16	8	8
25	Diospyros officinalis	Rubiaceae	8		
26	Diospyros stenophylla	Ebenaceae	8		
27	Eucalyptus grandis	Myrtaceae	8		
28	Ficus exasperata	Moraceae	3216	40±8	24±8
29	Ficus pschidla	Moraceae	8	16	8
30	Ficus macrocarpa	Moraceae	8	16	8
31	Ficus natalensis	Moraceae	32	8	8
32	Glyphos brevis	Tiliaceae	8	48	
33	Gmelina arborea	Verbenaceae	32	320±8	
34	Homalium glaucum	Simaroubaceae	8		
35	Isoëtes latifolia	Isoëtaceae	8		
36	Jacaranda gymnophylla	Euphorbiaceae	8		
37	Koompassia excelsa	Moraceae	8	8	8
38	Koompassia tomentosa	Moraceae	8	8	8
39	Lannea coromandelica	Moraceae	3216	16	8
40	Maesopsis emodii	Euphorbiaceae	8		
41	Maesopsis monosperma	Euphorbiaceae	8		
42	Magnoliaceae didieri	Euphorbiaceae	16	8	8
43	Manihot esculenta	Euphorbiaceae	24		
44	Morinda peregrina	Moraceae	24		
45	Milicia excelsa	Moraceae	8	16	8
46	Mussaenda tessellata	Annonaceae	32		
47	Morinda lucida	Rubiaceae	8	16	
48	Musanga crassipes	Moraceae	8		
49	Myristica arborescens	Moraceae	8	8	8
50	Oxyanthus spp	Rubiaceae	24±8		
51	Pterocarpus angolensis	Myristicaceae	8	8	8
52	Ravenala madagascariensis	Acanthaceae	16	32±8	48
53	Rioua densata	Vi厥ceae	32±8	16	8
54	Rioua velutina	Vi厥ceae	32		
55	Rhus copallifer	Rubiaceae	24		
56	Sabia africana	Rubiaceae	24		
57	Salacia pallens	Celastraceae	8	16	8
58	Senna bicolor	Cassia	32		
59	Senna occidentalis	Caricaceae	8	8	8
60	Selasman veracissimum	Selasmanaceae	16		
61	Simmondsia chinensis	Simmondsiaceae	16	16	16
62	Speciosus mombin	Anacardiaceae	24		
63	Sterculia rhomboidea	Sterculiaceae	16	24	
64	Sterculia trigynocarpa	Sterculiaceae	24±8		
65	Tetraganodes	Verbenaceae	16		
66	Terminalia lucida	Combretaceae	32		
67	Terminalia superba	Combretaceae	16	24±8	
68	Tetrastigma	Ulmaceae	8		
69	Tetracha pruinosae	Moraceae	8	8	8
70	Tetradium glabrum	Sterculiaceae	24		
71	Veronica angolensis	Anacardiaceae	8	8	8
72	Veronica arborea	Apocynaceae	16	16	16
73	Xylopia spp	Annonaceae	8		

TS – Taungya system
RF – Regrowth forest
GA – Gmelina arborea plantation
agreement with Tripathi and Bajrang (2009) who observed Oberhauser, 1997) as observed in this study. This is in agreement with the results of White (1985) who noted that species richness at ground layer was higher in forest plantation than in natural re-growth forest. It has been observed that pure stands (i.e. deciduous or coniferous) could support, in some cases, a richer understory vegetation than mixed- species stands and that species richness was generally greater in deciduous stands than in coniferous stands (Barbier et al., 2008). Furthermore, some conifer plantations may have greater plant species richness than broad-leaved secondary forests (Nagaïke, 2002).

Grass species were present in both TS and GA, but not in RF. This observation could be as a result of open canopy in the plantations versus closed canopy in Regrowth forest. The observations in this study regarding the re-growth forest is in agreement with the results of White (1985) who noted that in a forest the ground layer is often sparse or absent, as grasses are absent or if present are localized or inconspicuous. The low similarity index observed among the three study sites is an indication of the heterogeneity in species composition in the standing vegetation of the three sites. Species similarity indices were 12.12 % (TS and RF), 19.71% (TS and GA) and 20.20% (RF and GA). Similarity index showed that similarity is highest between Regrowth forest and Gmelina arborea plantation and lowest between Taungya system and Regrowth forest. This may be due to the different system of management in the three sites. TS is a vegetation of tree species and arable crop species, while RF is a natural re-growth forest and GA is a mono - culture plantation of Gmelina arborea, Shannon-Wiener diversity index (H’) followed the order Gmelina arborea > Regrowth forest >
Addo-Adekunle VAJ (2006). Conservation of tree species diversity in rainforest sites in Nigeria (Adekunle, 2006) is similar to that of RF and GA, but higher than that of TS. The high species diversity of RF (3.47) and GA (3.49) is a reflection of the presence of high number of species found in these sites. Our results revealed that species evenness was low in all the three study sites. This might be due to the different disturbance in form of human activities such as slash and burn agriculture and gathering of wood for fuel in TS, logging in RF and GA where certain species are preferred than others. In rainforests from India, tree species richness decreased with the increase in intensity of forest disturbance (Nath et al., 2005).

Tree size class distribution can be used as indicators of changes in population structure and species composition (Newbery and Gartlan, 1996). The distribution of the girth size class has shown that TS, RF and GA were characterized by small and young tree species whose girths were mostly 0-20 cm, 21-40 cm and 41-60 cm. Most species in the study plots followed reverse J-shaped distribution with greater number of individuals in small size classes. Such a trend has also been reported in the forests of Great Andaman groups (Padalia et al., 2004). This might be as a result of selective felling and logging of larger girth size classes’ trees, hence most of the tree species are secondary forest re-growth species. It also indicates that the forest sites are disturbed and they are in their early successional stages. Moreover, the basal area of the woody species (8 × 10^3-4.5524 m^2) further shows that the sites were characterized by recovery from disturbance. The general small basal area of most species, respectively small girth size, is an evidence of disturbance and degradation in the three study sites of Shasha forest reserve.

Conclusion

The study revealed that Shasha forest reserve has a reasonably good tree and shrub species composition and richness in the face of logging and slash and burn agriculture in the forest. Anthropogenic disturbances have affected the floristic composition of the forest reserve to an extent. Logging affected the structural composition of the forest reserve through the removal of large and tall trees. Thus, there is need to control human activities in the forest reserve so as to protect the plant species for effective management and utilization.

References

Abramovitz J (1998). Putting a value on Nature's free services, Nature’s Hidden Economy Worldwatch Institute, 11(1).

Addo-Fordjour P, Obeng S, Anning AK Addo, MG (2009).
Florestric composition, structure and natural regeneration in a moist deciduous forest following anthropogenic disturbances and plant invasion. International journal of biodiversity and conservation 1(2):21-27.

Adekunle VAJ (2006). Conservation of tree species diversity in tropical rainforest ecosystem of South-west Nigeria. Journal of Tropical Forest Science 18(2):91-101.

Allen RB, Platt KH, Coker REJ (1995). Understorey species composition patterns in a Pinus radiata plantation on the central North Island Volcanic Plateau, New Zealand. Journal of Forestry Science 25(3):301-315.

Aubin I, Messier C, Bouchard A (2008). Can plantations develop understory biological and physical attributes of naturally regenerated forests. Journal of Biodiversity Conservation 14(1):2461-2476.

Barbier B, Gosselin, FS, Balandier P (2008). Influence of tree species on understory vegetation, diversity and mechanism involved a critical review for temperate and boreal forest. Forest ecology and management 254:1-15.

Bierregaard Jr RO, Lovejoy TE, Kapos V, dos Santos AA, Hutchings RW (1992). The biological dynamics of tropical rain-forest fragments. Bioscience 42:859-866.

Field Trip Earth (2008). Surveying Wildlife in Nigerian Forest.

Gustav N, Jens D, Vanclay JK (2001). Structure and floristic composition of flood plain forests in the Peruvian Amazon II. The understory of Restinga forests. Journal of Forest Ecology and Management doi: 10.1016/s0378-1127(00)00681-2.

Haugaasen T, Barlow J, Veres CA (2003). Surface wildfires in central Amazonia: Short-term impact on forest structure and carbon loss. For Ecol Manage 179:321-333

Hill JL, Curran PJ (2003). Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation forest area. J Biogeogr 30:1391-1403.

Hutchinson J, Dalziel JM (1954). Flora of West Tropical Africa 1(1):34-54. Keenan R, Lamb D, Woldring O, Irvine TJR (1997). Restoration of plant biodiversitybeneath tropical tree plantations in Northern Australia. Journal of Forest Ecology and Management 99:117-131.

Klinge H, Adis J, Worbes M (1995). The vegetation of a seasonal várzea in the lower Solimões river, Brazilian Amazon. Acta Amazonica 25:201-220.

Laidlaw M, Kitching R, Goodall K, Small A, Stork N (2007). Temporal and spatial variation in an Australian tropical rainforest. Austral Ecol 32:10-20.

Mishra RK, Upadhyay VP, Mohanty RC (2008). Vegetation ecology of the Similipal Biosphere Reserve, Orissa, India. Appl Ecol Environ Res 6:89-99.

Mohandass D, Priya Davidar (2009). Floristic structure and diversity of a tropical and montane and evergreen forest (shola) Nilgiri mountains southern India. Tropical Ecology 50(2):219-229.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000). Biodiversity hotspots for conservation priorities. Nature 403:853-858.

Nagaite T (2002). Differences in plant species diversity between conifer (Larix kaempferi) plantations and broad leaved (Quercus crispula) secondary forests in Central Japan. Forest Ecology and Management 168:111-123.

Nath PC, Arunachalam A, Khan ML, Arunachalam K, Barbhuinya AR (2005). Vegetation analysis and tree population structure of tropical wet evergreen forests in and around Namdapha National Park, Northeast India.
Biodiversity and Conservation 14:2109-2136.
Newbery D, Gartlan JS (1996). A structural analysis of rain forests at Korup and Douala-Edea, Cameroon. Proceedings of Royal Society Edinburgh 104B:107-224.
Newmaster SG, Bell FW, Roosenboom CR, Cole HA, Towill WD (2006). Restoration of floral diversity through plantations on abandoned agricultural land. Can For Res 36:1218-1235.
Oberhauser U (1997). Secondary forest regeneration beneath pine (Pinus keiija) plantations in the Northern Thai highlands: a chronosequence study. Journal Forest Ecology and Management 256:114-120.
Oke SO, Isichei AO (1997). Floristic and structure of the fallow vegetation in the Ile-Ife Area of South Western Nigeria Journal of Botany Vol 10:30-50.
Padalia H, Chauhan N, Porwal MC, Roy PS (2004). Phytosociological observations on tree species diversity of Andaman Islands, India. Current Science 87:799-806.
Parthasarathy N (2001). Changes in forest composition and structure in three sites of tropical evergreen forest around Sengaltheri, Western Ghats Curr Sci 80:389-393.
Raghubanshi AS, Tripathi Anshuman (2009). Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Tropical Ecology 50(1):57-69.
Salami AT, Balogun BO, Oloyede- Kosoko SOA (2007). Geospatial data application in the assessment of population impact on a tropical lowland rainforest of Southwest Nigeria. Geo Observer 16:31-37.
Ssegawa P, Nkuutu DN (2006). Diversity of Vascular plants on Sese Islands in Lake Victoria Central Uganda. Afri J Ecol 44:22-29.
Tilman D (1988). Plant strategies and the dynamics and structure of plant communities. Princeton University Press. Princeton, New Jersey.
Tripathi KP, Bajrang Singh (2009). Species diversity and vegetation structure across various strata in natural and plantation forests in Katerniaoghat Wildlife Sanctuary, North India. Tropical Ecology 50(1):191-200.
White PS, Pickett STA (1985). Natural disturbance and patch dynamics: an introduction, 3-13p. In Picket STA and White PS, (Eds.). The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, Florida.
Wittmann F, Junk WJ (2003). Sapling communities in Amazonian whitewater forests. J Biogeogr 30:1533-1544.