Influência do fator de aprendizagem na análise perceptivo-auditiva

Learning factor influence on the perceptual-auditory analysis

RESUMO

Objetivo: Investigar o fator de aprendizagem durante uma tarefa perceptivo-auditiva para três grupos diferentes em uma tarefa não usual. Método: 269 ouvintes, divididos em três grupos: 73 no grupo dos fonoaudiólogos especialistas em voz (GE), 84 no grupo dos fonoaudiólogos não especialistas em voz (GNE) e 112 no grupo leigo (GL), dos não fonoaudiólogos. Todos foram submetidos a uma sessão de escuta que incluiu 18 vozes humanas e 18 vozes sintetizadas com diferentes tipos e graus de desvio, mais 50% de repetição para avaliar a consistência intraindivíduo. A tarefa era classificar as vozes como humana ou sintetizada. Analisou-se o fator de aprendizagem pela comparação da porcentagem de erros do começo, primeiras 18 vozes, e do final, últimas 18 vozes, da sessão de escuta. Resultados: O GE foi submetido ao fator de aprendizagem, apresentando menos erros no final da tarefa (25,5%), do que no começo (28,6%), com diferença estatística (p = 0,024). O GNE e o GL não apresentaram diferença da porcentagem de erros no começo e no final da tarefa (GNE começo = 36,5%; GNE final = 35,3%; GL começo = 38,3%; GL final = 37,7%). Conclusão: O GE foi o único grupo que apresentou indícios evidentes do fator de aprendizagem. Parece que a experiência profissional influencia de modo positivo a análise perceptivo-auditiva, reforçando o impacto de um treinamento para se tornar um especialista em voz. Ainda, o especialista em voz parece estar mais preparado e mais suscetível a utilizar estratégias de aprendizagem para melhorar sua performance durante uma tarefa perceptivo-auditiva mesmo que pouco usual.

ABSTRACT

Purpose: To investigate the learning factor during a perceptual-auditory analysis of an unusual task in three different groups. Methods: 269 listeners, divided into three groups: 73 voice specialists Speech Language Pathologists (EG), 84 voice specialists Speech Language Pathologists (NEG); and 112 non-speech pathologists in the Lay Group (LG). They all completed a listening session that included 18 synthesized and 18 human voices with different types and degrees of deviation (50% of repetition for intra-rater consistency analysis). The task was to classify the voices as human or synthesized. We analyzed the learning factor by comparing the initial error percentage, first 18 voices, with the final, last 18 voices. Results: EG presented less error towards the end of the task (25.5%) than at the beginning (28.6%) with statistical difference (p = 0.024). The error percentage of the beginning and the end of the task did not differ for the NEG and LG (NEG beginning = 36.5%; NEG final = 35.3%; LG beginning = 38.3%, end = 37.7%). Conclusion: The EG was the only group to present evidence of learning factor. Therefore, it seems that professional experience positively influences the perceptual-auditory analysis, which reinforces the impact of its training to become a voice specialist. Moreover, the voice specialists seem to be more prepared and more susceptible to use learning strategies to improve their performance during a perceptual-auditory analysis task, even if unusual.
INTRODUÇÃO

A análise auditiva da qualidade vocal é considerada padrão-ouro na avaliação dos distúrbios vocais, sendo utilizada para diagnóstico, mensuração de resultados de tratamentos e avaliação de provas terapêuticas. No entanto, a avaliação auditiva da qualidade vocal é considerada subjetiva, o que faz com que a confiabilidade interindivíduos varie e produza inconsistência na avaliação da voz.

Ouvintes com experiências auditivas semelhantes, ou seja, que atuam em especialidades similares, apresentam maior confiabilidade interindivíduos. Dessa forma, é necessário estabelecer especificações básicas e/ou treinamento prévio à avaliação vocal a fim de se reduzir essa grande variabilidade interindivíduos. Ainda, avaliadores experientes, ou seja, indivíduos que tiveram um treinamento auditivo durante sua formação e possuem uma experiência clínica relevante, apresentam melhor confiabilidade intradivíduo. Tal fato, reforça ainda mais o treinamento prévio como fator essencial antes de realizar uma avaliação perceptivo-auditiva da voz, uma vez que os resultados obtidos ficam mais consistentes.

Sabe-se que a aprendizagem acontece quando uma nova informação se ancore em conceitos relevantes pré-existentes. Em outras palavras, é necessário que o aprendiz tenha sido apresentado anteriormente ao conceito em questão e que o tenha considerado relevante e útil, para favorecer o processo de aprendizagem.

Considerando-se tal informação, pode-se afirmar que, para se evidenciar de fato o fator de aprendizagem, é necessário apresentar os conceitos e/ou informações de determinado tema inicialmente ao indivíduo. Posteriormente, conceitos diversos e novas informações referentes a esse mesmo assunto devem ser novamente apresentados e acrescidos dessas novas informações, de forma que, nesse momento, sejam de fato retidos e aprendidos pelos indivíduos.

Com isso em mente, para que a avaliação perceptivo-auditiva seja aprimorada, independente do tipo de estímulo vocal analisado, quanto mais treino, melhor. Sendo assim, quanto mais o indivíduo for exposto a essa atividade, com variabilidade de tipos de estímulos e graus de desvios diversos, mais ele terá chance de aprender sobre ela e com ela. Logo, mais apto ele estará para realizar uma avaliação perceptivo-auditiva independente do estímulo alvo em questão.

Sem necessariamente se levar em consideração a real relevância desse conceito de fator de aprendizado relacionado ao treino, comumente, já se usa o treinamento auditivo como uma das estratégias para diminuir a falta de confiabilidade da avaliação perceptivo-auditiva. Ainda, o treino é considerado de extrema importância para os profissionais que forem atuar com a voz humana. Assim sendo, indivíduos considerados experientes nessa área, ou seja, especialistas em voz com uma formação específica para essa função e experiência clínica relevante, possivelmente terão maior confiabilidade e maior facilidade na avaliação perceptivo-auditiva de estímulos diversos, uma vez que ancoraram tal experiência a informações e conceitos aos quais foram apresentados anteriormente, possivelmente durante sua formação para se tornar um especialista em voz.

Isto posto, o objetivo da presente pesquisa foi investigar o fator de aprendizagem durante uma tarefa perceptivo-auditiva não usual para três grupos de ouvintes com experiências auditivas diferentes.

MÉTODO

Trata-se de um estudo retrospectivo que realizou uma nova análise do banco de dados de uma pesquisa publicada anteriormente e aceita no Comitê de Ética e Pesquisa sob número de parecer consubstanciado 1.281.837, em que todos os indivíduos envolvidos assinaram o Termo de Consentimento Livre e Esclarecido. Essa nova análise focou questões não abordadas no estudo anterior que tinha como objetivo avaliar a qualidade de vozes sintetizadas. O presente estudo, por sua vez, teve o objetivo de analisar o fator de aprendizagem na análise perceptivo-auditiva da voz em grupos de ouvintes com diferentes níveis de treinamento perceptivo-auditivo.

O banco de vozes para a análise auditiva foi composto por 18 vozes humanas e 18 vozes sintetizadas com 50% de repetição para teste da confiabilidade intradivíduo. O estímulo utilizado foi a vogal “é” com 1 segundo de duração.

As vozes humanas utilizadas na pesquisa foram provenientes de um banco de vozes de uma clínica fonoaudiológica que possui mais de 1000 registros controlados de pacientes. Por consenso, três fonoaudiólogos especialistas em voz escolheram exemplos representativos dos três principais tipos de desvio: rugosidade, soprosidade e tensão, com três níveis de alteração: leve, moderado e intenso. Evitaram-se vozes com qualidade mista, como rugosa e soprosa ou rugosa e tensa, apesar de serem comuns na clínica vocal, pela complexidade inerente a esses estímulos. O arquivo de vozes humanas foi composto por seis vozes para cada parâmetro, três para cada gênero, com três níveis de alteração, totalizando 18 estímulos. Todas as vozes eram de indivíduos adultos brasileiros.

As vozes sintetizadas foram selecionadas a partir de um banco de vozes de aproximadamente 200 estímulos, previamente produzidas por um sintetizador baseado-em-física, o VoiceSim. Esse sintetizador contém a representação do trato vocal na forma de tubos concatenados pelo qual se propaga uma onda acústica, incluindo modelo de traqueia, caixa da voz e seios paranasais. O trato vocal em questão era representativo da vogal “é” e a excitação do trato foi gerada por um modelo de pregas vocais que considera seu movimento como uma onda superficial que se propaga através da mucosa, induzida pelo fluxo de ar. A simulação das alterações vocais foi feita por meio da manipulação de diferentes parâmetros acústicos: jitter, relação sinal-ruído, quociente de abertura, quociente espectral e frequência fundamental. Dessa forma, o estímulo das vozes sintetizadas foi pareado com as vozes humanas, considerando gênero, tipo e grau de desvio vocal.

Os mesmos três fonoaudiólogos que selecionaram as vozes humanas, segundo seu tipo e grau de desvio vocal, selecionaram as vozes sintetizadas a fim de corresponder às alterações das vozes humanas previamente selecionadas, totalizando também 18 estímulos sintetizados.

Participaram da pesquisa 269 ouvintes, todos adultos maiores de 18 anos de idade e convidados a participarem da pesquisa. Os ouvintes foram divididos em três grupos de acordo com sua experiência auditiva baseada em sua formação e experiência na área de voz.

O grupo considerado experiente (GE) foi composto por 73 ouvintes fonoaudiólogos (5 homens e 68 mulheres) especialistas em voz, que possuíam uma média de 11,5 anos de formados e 35,3 anos de idade. O grupo considerado não experiente (GNE) foi composto por 84 ouvintes fonoaudiólogos (3 homens e 81 mulheres) que possuíam uma média de 11,5 anos de formados e 35,3 anos de idade.
especialistas em voz, com atuação em qualquer outra área da fonoaudiologia; eles possuíam uma média de 6,2 anos de formados e de 29,5 anos de idade. O terceiro grupo, grupo leigo (GL), foi composto por 112 ouvintes não fonoaudiólogos (52 homens e 60 mulheres) de diversas profissões e que se voluntariaram para participar do estudo; esse grupo possuía uma média de idade de 32,4 anos. A tarefa auditiva dos 269 ouvintes era classificar cada uma das 54 vozes como sendo humana ou sintetizada. Esse mesmo banco de vozes e a tarefa auditiva foram utilizados em pesquisa relacionada que enfatizou outras análises\(^{(13)}\). De acordo com o objetivo do presente estudo, os grupos foram renomeados a fim de representarem melhor o enfoque da investigação atual: analisar o fator de aprendizagem para os ouvintes de acordo com seu grau de experiência em relação à análise perceptivo-auditiva de estímulos vocais.

Inicialmente foi realizada uma triagem para verificar a consistência de resposta dos indivíduos. Foram considerados consistentes os ouvintes que identificaram igualmente no mínimo 13 das 18 vozes repetidas, ou seja, se a voz 2 fosse repetição da voz 37, ambas deveriam ter a mesma resposta, independentemente de ser ou não correta. Portanto, para ser considerado consistente, cada indivíduo deveria obter uma porcentagem de respostas iguais, de consistência, acima de 72,2%.

As respostas de 99 indivíduos foram inconsistentes e, portanto, excluídas da análise final, tanto do estudo anterior\(^{(13)}\) como do presente estudo. O GE, grupo dos especialistas em voz e, portanto, com mais experiência na análise perceptivo-auditiva da voz, foi o grupo com menos ouvintes excluídos (20,5%); p<0,05 – Teste-T student pareado). O GNE, grupo dos fonoaudiólogos não especialistas em voz, teve 39,2% de excluídos e o GL, o dos não fonoaudiólogos, teve 45,5% de excluídos (GE X GNE p = 0,011; GE X GL p = 0,001; GNE X GL p = 0,382). Dessa forma, não especialistas em voz e leigos foram igualmente inconsistentes e excluídos da análise final.

Mantiveram-se 170 indivíduos, sendo 58 do GE (2 homens e 56 mulheres; média de 11,7 anos de formado; média de 34,9 anos de idade), 51 do GNE (3 homens e 48 mulheres; média de 5,4 anos de formado; média de 29,2 anos de idade) e 61 do GL (31 homens e 30 mulheres; média de 30,3 anos de idade). A resposta desses 170 ouvintes apresentou o Índice de Concordância de Kappa; considerados estatisticamente significantes e com valores regulares para todos os grupos (GE = 0,523; GNE = 0,595; e GL = 0,592).

As respostas de cada grupo foram analisadas segundo o fator de aprendizagem. Para essa análise, avaliou-se a ocorrência de erros intraindivíduo no começo da tarefa auditiva - primeiras 18 vozes (avaliação) - em comparação com a ocorrência de erros no final da tarefa auditiva - últimas 18 vozes (reavaliação). Foi considerado erro, sempre que o ouvinte classificasse uma voz humana como sendo sintetizada e vice-versa.

Já havia sido observado\(^{(13)}\) que os indivíduos dos grupos denominados não experientes e do grupo leigo erravam mais na distinção das vozes humanas e sintetizadas. No entanto, não foi analisado se, durante a tarefa auditiva, esses grupos melhoraram ou não sua ocorrência de erros, tampouco quais os elementos ou estratégias que o grupo aqui referido como grupo experiente usou para apresentar melhor resultado na identificação de vozes humanas e sintetizadas. Por este motivo, analisou-se a ocorrência de erros no início e no final da análise perceptivo-auditiva, buscando-se, assim, entender se houve fator de aprendizagem para cada um dos grupos de ouvintes, em especial o grupo dos especialistas.

RESULTADO

O GE foi o único grupo que demonstrou ter sido submetido ao fator de aprendizagem, apresentando menos erros no final, na reavaliação, da tarefa auditiva (Tabela 1).

### Tabela 1. Fator de aprendizagem por grupo

|        | porcentagem de erros | p-valor |
|--------|----------------------|---------|
| GE     | 28,6                 | 0,024*  |
| Reavaliação GNE | 35,5                 | 0,363   |
| GL     | 38,3                 | 0,649   |
| Reavaliação Total | 34,5                 | 0,036*  |

\(^*\) Valores significativos (p<0,050) - Teste T-Student Pareado;
Legenda: GE = Grupo experiente; GNE = Grupo não experiente; GL = Grupo leigo; Avaliação = primeiras 18 vozes; Reavaliação = últimas 18 vozes.

DISCUSSÃO

A avaliação de vozes é um fenômeno perceptivo\(^{(14)}\), que sofre influência do treinamento e da experiência dos ouvintes\(^{(14,17,18)}\). A fim de garantir melhor confiabilidade dessa avaliação, utilizam-se estratégias como o treinamento perceptivo-auditivo ou uso de estímulo âncora\(^{(10,15)}\).

Na triagem realizada para se verificar a consistência dos ouvintes, observou-se a vantagem de ouvintes com treinamento, uma vez que o GE teve menos indivíduos excluídos por inconsistência de respostas. Pode-se dizer que o GE foi capaz de manter respostas mais consistentes provavelmente devido à maior redundância intrínseca de seu sistema de referência interno\(^{(15,18)}\), formado durante seu estudo para se tornar um especialista em voz. Os GNE e GL selecionaram respostas aleatórias mais frequentemente.

Para análise do fator de aprendizagem, a porcentagem de erro foi calculada para as primeiras vozes da tarefa auditiva e comparada com a porcentagem de erro das últimas vozes. O GE apresentou menos erros no final da sessão de escuta (Tabela 1), sendo assim, pode-se inferir que houve um provável fator de aprendizagem para quem já tinha alguma experiência na tarefa de análise perceptivo-auditiva. Isso foi também observado no grupo Total, no entanto, possivelmente, o resultado do GE foi o que impactou de modo positivo a análise desse grupo, considerando que GNE e GL não apresentaram tal resultado (Tabela 1).

Classificar uma voz como sendo humana ou sintetizada não é uma tarefa habitual e não faz parte da clínica fonoaudiológica. Mesmo assim, os especialistas em voz foram capazes de concluir a tarefa com melhor performance. Eles apresentaram menos erros de identificação das vozes humanas e sintetizadas em relação aos outros ouvintes\(^{(13)}\) e, ainda, parecem ter sido submetidos ao...
fator de aprendizagem, apresentando menos erros no final da sessão de escuta, como evidenciado na presente pesquisa. Para
concluir a tarefa solicitada, mesmo que ela não fosse habitual, é possível que eles tenham se beneficiado de estratégias de
aprendizagem específicas para a tarefa auditiva - certamente adquiridas durante o processo de sua especialização em voz.
Com isso em consideração, podemos sugerir que os especialistas foram aprendizes autorregulados.

A aprendizagem autorregulada depende de fatores motivacionais, cognitivos e metacognitivos\(^{17,19}\). Ainda, o uso de estratégias de
aprendizagem exige esforço, sendo assim, são usadas somente quando o indivíduo acredita na relevância e no objetivo a ser
alcançado\(^{19}\). Dessa forma, pode-se supor que as estratégias de aprendizagem só foram utilizadas pelo grupo de especialistas,
pois esse grupo entende a importância e a utilidade de uma avaliação perceptivo-auditiva, esforçando-se mais durante a
execução dessa tarefa.

Adicionalmente a isso, sabe-se que a repetição, a motivação e a presença de emoção associada beneficiam a aprendizagem\(^{20-22}\).
Uma estratégia da motivação é criar a intenção de aprender\(^ {17}\). O especialista em voz, buscou essa especialização, sendo assim,
estava motivado para aprender esse assunto. Ainda, ele possui a experiência, que lhe traz a repetição, aumentando a redundância
intrínseca do cérebro em seu acervo de referências auditivas, formando um sistema de referência interno mais robusto para
identificar vozes\(^ {17,19}\). A redundância intrínseca diz respeito ao sinal acústico que chega no cérebro envolvendo os caminhos
que o transmitem e as conexões que o transformam\(^ {25}\). Quanto mais essa via auditiva, que começa com o sinal acústico e vai
até o sistema auditivo nervoso central, é estimulada, maior será a redundância. Tal redundância garante ao especialista mais
estratégias para aprender durante a tarefa e resgatar memórias auditivas melhorando sua performance, conforme evidenciado
nessa pesquisa.

Há diversas pesquisas que estudam as teorias dos estilos de aprendizagem, destacando que cada indivíduo aprende de
maneira diferente e que direcionar a maneira de ensino para o estilo do indivíduo potencializa sua performance. No entanto, as
pesquisas que buscam comprovar tal teoria possuem metodologias falhas ou não conseguem de fato evidenciar sua existência\(^ {24}\).

Em contrapartida, independentemente do estilo de aprendizagem, sabe-se que para aprender tarefas relacionadas com, por
exemplo, geometria, o melhor treinamento é com atividades visuoespeciais\(^ {24}\). Assim sendo, para aprender a realizar uma
avaliação perceptivo-auditiva, o melhor treinamento é com atividades auditivas, ou seja, ouvindo vozes.

Nessa pesquisa, nenhum tipo de treinamento ou orientação específica para a tarefa foi dado. Os indivíduos deveriam
simplesmente classificar a voz como sendo de um ser humano ou de um sintetizador, sem maiores informações e sem nenhum
treinamento prévio específico.

Sabe-se que alunos mais aptos apresentam melhores resultados com instruções menos estruturadas em comparação
a alunos menos aptos, e alunos menos aptos apresentam melhor performance com instruções mais estruturadas\(^ {25}\). Vale ressaltar
ainda que aprendizes autorregulados são mais independentes na execução de uma tarefa\(^ {17}\). Com isso em consideração, parece que
os especialistas em voz são mais aptos e reforça-se a suposição feita anteriormente de que eles são aprendizes autorregulados.

Conforme comentado anteriormente, essa pesquisa não ofereceu nenhum tipo de treinamento ou instrução em relação a
começar a realizar a tarefa. É possível que, se o tivesse feito, o grupo de não especialistas e leigos também tivesse aprendido
durante a tarefa e não haveria diferença no resultado entre os grupos. É importante que essa hipótese seja testada, inclusive
para estimar o tempo necessário de treinamento para que um sujeito seja considerado apto a realizar uma avaliação
perceptivo-auditiva considerada válida, o que poderá inclusive ser incorporado aos cursos de especialização ou residência em voz. De todo modo, é nítido que o treinamento auditivo é essencial, uma vez que fornece estratégias de aprendizagem para garantir melhor avaliação perceptivo-auditiva. Ainda, tal
análise, quando feita por alguém sem treinamento, ou seja, menos apto e mais dependente, é menos confiável.

Os dados dessa pesquisa reforçam a importância de se realizar um treinamento perceptivo-auditivo na formação do especialista
em voz, uma vez que o treinamento prévio dá ao avaliador possibilidade de utilizar estratégias de aprendizagem e maior
flexibilidade cognitiva na identificação de desafios auditivos. Tais estratégias facilitam que o avaliador aprenda durante a
realização da tarefa e melhore sua performance ao longo da execução, mesmo sendo ela pouco usual, nova e considerada
difícil pela maioria dos ouvintes.

**CONCLUSÃO**

O fonoaudiólogo especialista em voz, o grupo experiente, foi o único grupo que apresentou indícios evidentes do fator de
aprendizagem. Sendo assim, parece que a experiência profissional influencia de modo positivo a análise perceptivo-auditiva,
reforçando o impacto de um treinamento para se tornar um especialista em voz. Ainda, o especialista em voz parece estar
mais preparado e mais suscetível a utilizar estratégias de aprendizagem para melhorar sua performance durante uma tarefa
perceptivo-auditiva, mesmo que esta seja nova e pouco usual.

**REFERÊNCIAS**

1. Oates J. Auditory-perceptual evaluation of disordered vocal quality: pros, cons and future directions. Folia Phoniatr Logop. 2009;61(1):49-56. [dx.doi.org/10.1159/000200768]. PMid:19204393.
2. Gerratt BR, Kreiman J, Antonanzas-Barroso N, Berke GS. Comparing internal and external standards in voice quality judgments. J Speech Hear Res. 1993;36(1):14-20. [http://dx.doi.org/10.1044/jshr.3601.14]. PMid:8450655.
3. Yiu EM, Murdoch B, Hird K, Lau P, Ho EM. Cultural and language differences in voice quality perception: a preliminar investigation using synthesized signals. Folia Phoniatr Logop. 2008;60(3):107-19. [http://dx.doi.org/10.1159/000119746]. PMid:18332632.
4. Roy N, Barkmeier-Kraemer J, Eadie T, Sivasankar MP, Mehta D, Paul D, et al. Evidence-based clinical voice assessment: a systematic review. Am J Speech Lang Pathol. 2013;22(2):212-26. [http://dx.doi.org/10.1044/1058-0360(2012-0014)]. PMid:23184134.
5. Sellar CS, Stanton AE, McConnachie A, Dunnet CP, Chapman LM, Bucknall CE, et al. Reliability of perceptions of voice quality: evidence from a problem asthma clinic population. J Laryngol Otol. 2009;123(7):755-63. [http://dx.doi.org/10.1017/S0022215109004605]. PMid:19250586.
17. Boekaerts M. Self-regulated learning at the junction of cognition and motivation. Eur Psychol. 1996;1(2):100-12. http://dx.doi.org/10.1027/1016-9040.1.2.100.

18. McWhaw K, Abrami PC. Student goal orientation and interest: effects on students’ use of self-regulated learning strategies. Contemp Educ Psychol. 2001;26(3):311-29. http://dx.doi.org/10.1006/ceps.2000.1054. PMid:11414723.

19. Souza LFNI. Estratégias de aprendizagem e fatores motivacionais relacionados. Educar Ed UFPR. 2010;36:95-107.

20. Eccles J, Wigfield A. Motivational beliefs, values and goals. Annu Rev Psychol. 2002;53(1):109-32. http://dx.doi.org/10.1146/annurev.psych.53.100901.135153. PMid:11752481.

21. Cardoso L, Brunecck JA. Motivação no ensino superior: metas de realização e estratégias de aprendizagem. Psicol Esc Educ. 2004;8(2):145-55. http://dx.doi.org/10.1590/S1413-85572004000200003.

22. Pally R. The predicting brain: unconscious repetition, conscious reflection and therapeutic change. Int J Psychoanal. 2007;88(4):861-81. http://dx.doi.org/10.117516.B328-8P54-2870-P703. PMid:17681897.

23. Ferre JM. Processing Power: a guide to CAPD assessment and management. San Antonio: Communication Skill Builder; 1997. 186 p.

24. Pashler H, McDaniel M, Rohrer D, Bjork R. Learning styles: concepts and evidence. Psychol Sci Public Interest. 2008;9(3):105-19. http://dx.doi.org/10.1111/j.1539-6053.2009.01038.x. PMid:26162104.

25. Frebody P, Tirel WC. Achievement outcomes of two Reading programmes: an instance of aptitude-treatment interaction. Br J Educ Psychol. 1985;55(1):53-60. http://dx.doi.org/10.1111/j.2044-8279.1985.tb02606.x.