Research Article

Serum and Intestinal Tissue Zonulin Levels in the Evaluation of Intestinal Permeability in Rats with Acute Pancreatitis

Abdullah YILDIZ 1,a Berrin Papila KUNDAKTEPE 2b Sema YUKSEKDAG 1,c Sinem DURMUS 3,d Zuhal Gus SILAV 4,e Remise GELISGEN 3,f Ethem UNAL 5,g Hafize UZUN 6,h (*)

1 Health Sciences University, Umraniye Training and Research Hospital, Department of General Surgery, TR-34764 Istanbul - TÜRKİYE
2 Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of General Surgery, TR-34096 Istanbul - TÜRKİYE
3 Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, TR-34096 Istanbul - TÜRKİYE
4 Health Sciences University, Istanbul Haydarpasa Numune Training and Research Hospital, Department of Pathology, TR-34668 Istanbul - TÜRKİYE
5 Health Sciences University, Sancaktepe Şehit Prof. Dr. Ilhan Varank Training and Research Hospital, Department of General Surgery, TR-34408 Istanbul - TÜRKİYE
6 Istanbul Health Sciences University, Department of Medical Biochemistry, TR-34408 Istanbul - TÜRKİYE

Abstract: To evaluate the effects on malondialdehyde (MDA), superoxide dismutase (SOD), lipid hydroperoxide (LOOH), glutathione (GSH) levels as oxidative stress markers, zonulin levels, and histopathological findings of experimental acute pancreatitis (AP). This study was conducted three groups of Sprague-Dawley rats (seven animals in every group). First group was evaluated as control group (sham laparotomy). Group 2 (AP, 48% ethyl alcohol) and group 3 (severe pancreatitis (SP), 80% ethyl alcohol) was performed. The effects of pancreatitis were evaluated by comparing these groups according to histopathological results of polimorphismunclear leukocytes, infiltration, oedema, haemorrhagie, apoptosis, aciner cellular degeneration in pancreatic and intestinal tissue. In the SP group, completely flattened mucosal surface and severe villi loss (total villous atrophy), disorganization and hyperplasia in the crypts in the lamina propria were detected. MDA, LOOH and zonulin levels in serum and intestinal tissue were found to be significantly higher in the SP group compared to the control group. The serum and intestinal tissue SOD and GSH were found to be significantly lower than the control group. In the AP group, while LOOH and zonulin in tissues were significantly higher than control, only zonulin levels in serum were found higher than control. Zonulin and oxidative stress is basically involved in the pathogenesis of pancreatitis. Biochemical results are also supported by histopathological improvement in intestinal and pancreas tissue. Patients with pancreatitis may be more exposed to impaired gut barrier function. Serum zonulin levels can be used in the evaluation of intestinal permeability in AP.

Keywords: Experimental acute pancreatitis, Intestinal permeability, Lipid hydroperoxide, Malondialdehyde, Zonulin

Akut Pankreatitli Sıçanlarda Bağırsak Geçirgenliğinin Değerlendirilmesinde Serum ve Bağırsak Dokusu Zonulin Düzeyleri

Öz: DeneySEL akut pankreatit (AP) histopatolojik bulguları ile zonulin düzeyleri ve oksidatif stres belirteçleri olan malondialdehit (MDA), süperoksid dismutaz (SOD), lipid hidroperoksit (LOOH) ve glutatyon (GSH) düzeyleri arasındaki iliştirini değerlemlerimi amaçlamıştır. Bu çalışmaya, üç grup olarak şekilde Sprague-Dawley sıçanı (her grupta yedi hayvan) alınmıştır. Birinci grub kontrol grubu (sham laparotomi) olarak belirlendi. Grup 2 (%48 etil alkol) AP grub ve grup 3 (%68 etil alkol) ağır (şiddetli) pankreatit (SP) olarak tasarlandı. Pankreatit etkileri, pankreas ve bağırsak dokusunda bu gruplar karşılıklı olarak histopatolojik sonuçlara göre polimorfonükleer lökositler, infiltrasyon, oedema, hemorajii, apoptosis, asiner hücresel dejenereasyon değerlendirildi. SP grubunda tamamen düzleşmiş mukoza villus kaybı (total villus atrofisi), lamina propria kriptlerde deorganizasyon ve hiperplazi tespit edildi. Serum ve bağırsak dokusunda MDA, LOOH ve zonulin düzeyleri kontrol grubuna göre SP grubunda anlamlı olarak yüksek. Serum ve bağırsak dokusu SOD ve GSH değerleri kontrol grubuna göre anlamlı düşük bulundu. AP grubunda desteklenir LOOH ve zonulin düzeyleri kontrol grubuna göre anlamlı yüksek bulunrken, sadece serum zonulin düzeyleri kontrolde daha yüksek saptanmıştır. Zonulin ve oksidatif stres vücut üzerindeki pankreatit patogenezinde rol oynar. Biyokimyasal sonuçlar ayrıca bağırsak ve pankreas dokusunda histopatolojik ifadeyle ile de desteklenmektedir. Pankreatit hastalar bozulmuş bağrsak bariyer fonksiyonuna daha fazla maruz kalabilirler. AP'de bağrsak geçirgenliğinin değerlendirilmesinde serum zonulin düzeyleri kullanılabılır.

Anahtar sözcükler: Bağırsak geçirgenliği, DeneySEL akut pankreatit, Lipid hidroperoksit, Malondialdehit, Zonulin

How to cite this article: Yildiz A, Kundaktepe BP, Yükselkag D, Durmus S, Silav ZK, Gelisen R, Unal E, Uzun H: Serum and intestinal tissue zonulin levels in the evaluation of intestinal permeability in rats with acute pancreatitis. Kafkas Univ Vet Fak Derg, 28 (2): 247-254, 2022.

DOI: 10.9775/kvfd.2021.26832

(*) Corresponding Author
Tel: +90 535 542 1147
E-mail: hazun59@hotmail.com (H. Uzun)
INTRODUCTION

Acute pancreatitis (AP) is an inflammatory disease of the pancreas associated with tissue damage and necrosis, its incidence continues to increase worldwide and is the leading cause of hospitalizations [1-3]. AP has a mild form involving only the pancreas and a severe form that results in extra pancreatic organ failure associated with systemic inflammatory response syndrome and even death [4]. In addition, it is known that recurrent AP may cause chronic pancreatitis and as a result, exocrine and endocrine insufficiency may develop [5]. However, today, there are no therapeutic agents that can change the course of the disease [6]. At the same time, our knowledge about the etiology and pathogenesis of the disease is limited. One reason for the limited information about pathogenesis is that lack of access to the human pancreatic organ during illness [7,8]. Nevertheless, significant advances have been made in recent years in elucidating the pathophysiological mechanisms of acute pancreatitis. Studies conducted in this context indicate that intestinal permeability increases in acute pancreatitis, but it is not clear whether this is a mechanism that causes AP or a just a consequence of the disease [9-11].

Epithelial tight junctions prevent allergens, toxins, and pathogens from entering the interstitial tissue through the epithelium in various organ systems. In the gastrointestinal tract, disruption of tight junctions and loss of epithelial barrier function increases intestinal permeability to harmful factors that cause inflammation and mucosal damage [9]. It is emphasized that systemic inflammatory syndrome and bacterial translocation developing in AP may develop after intestinal permeability increase [8].

The protein, zonulin, has been identified as an important regulator of intestinal permeability. When bound to surface receptors, intracellular actin filaments polymerize, and this process causes opening of tight junctions and increased intestinal permeability [10]. Dysregulation of the zonulin pathway followed by “intestinal leakage” due to increased intestinal permeability has been associated with the pathogenesis of many gastrointestinal, autoimmune, inflammatory and neoplastic diseases [11].

Another factor that may cause impairment of intestinal permeability is free oxygen radicals, mostly form of reactive oxygen species (ROS). ROS modulate multiple signaling pathways and disrupt tight junctions and damage the epithelial and endothelial barrier [9]. In an animal study, it was reported that in the early stage of acute pancreatitis, free radicals derived from cytotoxic oxygen can contribute to the improvement of changes in intestinal permeability and absorption function [12].

Our aim in this study is to investigate the possible dysfunction in the zonulin-tight junction mechanism and also possible role of oxidative stress markers as malondialdehyde (MDA), lipid hydroperoxide (LOOH), Cu, Zn-superoxide dismutase (Cu-Zn-SOD) and glutathione (GSH) in acute pancreatitis. In addition, possible changes in serum zonulin levels in the early stages of these diseases may bring clinical use as a biomarker. Level changes in later stages may guide the follow-up of the disease in chronic stages.

MATERIAL AND METHODS

Ethical Statement

This study was approved by the Yeditepe University Animal Experiments Local Ethics Committee (Approval no: 2019/10-3).

Animals

Care and handling of the animals was in accordance with the Helsinki Declaration of 1975, as revised in 2000. Animals were housed in individual cages in a temperature-controlled room (23±1°C) and a light-dark cycle-controlled environment (12 h) with free access to food and water. Experiments were performed on 21 Sprague-Dawley rats with an average body weight of 250-320 g.

Experimental Design

In this study, a total of 21 rats, 7 in each group, were used. Groups were determined as group 1 (control, sham laparotomy), group 2 (acute pancreatitis (AP), 48% ethyl alcohol), and group 3 (severe pancreatitis (SP), 80% ethyl alcohol). AP and SP were performed adhering to the experimental model previously created by us [13]. Our study was carried out in accordance with the Animal Care and Use Committee (ACUC) criteria. Animals were fed with standard lab diet and ad libitum water before and after surgery. Animals had access to standard laboratory feed and water ad libitum and were not subjected to any restrictions.

Surgical Procedure

After anesthesia, 48% ethyl alcohol was injected into one group at a dose of 1 cm³ with a fine dental needle into the suspended biliopancreatic duct to be opened with a midline incision after anesthesia, and 80% ethyl alcohol was injected into the other group. All groups were sacrificed on the 3rd postoperative day. Maximum blood was taken by abdominal midline exploration and cardiac puncture under anesthesia, and in all groups, the 5-6 cm segment of pancreatic tissues, distal ileum and transverse colon were excised. The tissues were divided into two, fixed in 10% buffered formalin, embedded in paraffin for standard histologic examinations and immediately frozen at -80°C for biochemical analysis.

Tissue Preparation and Biochemical Analysis

The intestinal tissue sample was diluted to a 20% w/v solution...
in 20 mM ice-cold Tris HCl (pH 7.4) and homogenized with a Bosch Scintilla SA (Switzerland). The homogenate was centrifuged at 5000×g for 10 min; all biochemical parameters were determined in the same supernatant fraction of each homogenized pancreatic sample.

Assay of Zonulin

Determination of zonulin levels in intestinal tissue and serum samples were done using double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) technique (Sunred Biological Technology®, Shanghai, China) according to the manufacturer's protocol. Assay range and sensitivity for zonulin levels were 0.3-90 ng/mL and 0.287 ng/mL, respectively.

Assay of Malondialdehyde (MDA)

One of the end products of lipid peroxidation is MDA. MDA levels were determined as previously described by Ohkawa et al. [14] with a minor modification. The intra- and inter-assay CV values were 3.1% (n=20) and 4.0% (n=20), respectively.

Assay of Lipid Hydroperoxide (LOOH)

LOOH levels were determined spectrophotometrically according to the method of ferrous oxidation with xylene orange version 2 (FOX2) [15]. The intra- and inter-assay CV values were 3.5% (n=20) and 4.3% (n=20), respectively.

Assay of Cu, Zn, Superoxide Dismutase (Cu, Zn-SOD)

Cu, Zn-SOD activity were determined in terms of the inhibition of nitroblue tetrazolium (NBT) reduction, with xanthine/xanthine oxidase used as a superoxide generator [16]. The intra- and inter-assay CV values were 3.6% (n=20) and 4.8% (n=20), respectively.

Assay of Glutathione (GSH)

Intestinal tissue GSH levels were measured as per the method of Beutler et al. [17]. The intra- and inter-assay CV values were 3.2% (n=20) and 4.4% (n=20), respectively.

Histopathological Examination

Tissue samples were routinely %10 formalin-fixed and paraffin-embedded. For histological evaluation each 5 µm section prepared and stained with H&E in Health Sciences University Haydarpaşa Numune Training and Research Hospital Pathology Laboratory.

Statistical Analysis

Results of biochemical parameters were expressed as mean ± standard deviation. For comparing three groups comparison, one-way ANOVA test and post-hoc Tukey test were applied. Relationships between variables were assessed with Pearson's correlation coefficient. A P value equal to or lower than 0.05 was considered statistically significant. All analyzes were performed with the SPSS 22.0 (IBM Corp., Armonk, USA) statistical package program.

RESULTS

Biochemical Findings

Oxidative stress parameters (MDA, LOOH, Cu, Zn-SOD and GSH) and zonulin levels were examined in intestinal tissue and serum samples belonging to the experimental groups. Biochemical results in control, AP and SP groups were shown in Table 1.

In correlation analysis, it was found that the correlations in both AP and SP groups were largely in the same direction. Correlations of biochemical parameters in AP and SP were documented in Table 2 and Table 3.

Histopathological Findings

As a result of histopathological examinations of pancreatic tissues belonging to the control groups, it was found that there were densely packed pancreatic acinar glands

Table 1. Biochemical results in control, acute and severe pancreatitis group

Parameters	Control (n=7)	Acute pancreatitis (n=7)	Severe pancreatitis (n=7)
	Mean ± S.D.	Mean ± S.D.	Mean ± S.D.
Tissue			
MDA (µmol/g wet tissue)	57.31±8.46	68.28±6.64	72.71±9.62 a**
LOOH (nmol/g wet tissue)	2.14±0.42	2.62±0.26 a*	2.88±0.32 a**
Cu-Zn SOD (U/g wet tissue)	28.80±2.77	24.35±3.75	20.00±3.54 a***
GSH (µmol/g wet tissue)	66.36±5.44	60.96±4.49	54.74±5.26 a***
Zonulin (ng/g wet tissue)	3.38±0.84	11.37±1.76 a***	14.66±3.02 a***, b*
Serum			
MDA (µmol/mL)	3.17±0.37	3.53±0.45	3.95±0.45 a**
LOOH (nmol/mL)	0.47±0.08	0.58±0.09	0.76±0.13 a***, b*
Cu-Zn SOD (U/mL)	20.16±2.49	17.53±1.99	16.27±2.05 a**
Zonulin (ng/mL)	13.84±2.11	17.55±2.73 a*	20.47±2.37 a***, b*

MDA: Malondialdehyde; LOOH: Lipid hydroperoxide; Cu, Zn-SOD: Cu, Zn-superoxide dismutase; GSH: Glutathione

* P<0.05, ** P<0.01, *** P<0.001; a: Compared to Control, b: Compared to Acute pancreatitis
in the AP group, focal segmental fibrosis among intact parenchymal areas were selected. Plasma cell-predominant moderate inflammatory cell infiltration in which rare eosinophil leukocytes and ductal proliferation, disorganization, irregularity was observed in the fibrosis area in the pancreatic ducts. Regenerative changes were also detected in the ductal epithelium (Fig. 2). In the SP group, distinct acinar atrophy, extensive fibrosis, hemorrhage, intense inflammation which rich in polymorphous leukocytes, fat necrosis and acinar necrosis were seen in the parenchyma (Fig. 3).

As a result of the histopathological examinations of the intestinal tissues, evenly distributed villi on the luminal surface and mucosal layers of usual morphology were observed in the control group (Fig. 4). In the AP group,

Table 2. Correlations of biochemical parameters in acute pancreatitis

Parameters	Tissue LOOH	Tissue Cu, Zn-SOD	Tissue GSH	Tissue Zonulin	Serum MDA	Serum LOOH	Serum Cu, Zn-SOD	Serum Zonulin
Tissue MDA	r 0.926**	-0.865'	-0.860'	0.810'	0.935**	0.929**	-0.912'	0.815'
p 0.003	0.012	0.013	0.027	0.002	0.003	0.004	0.025	
Tissue LOOH	r -	-0.861'	-0.945**	0.752	0.904**	0.855'	-0.918'	0.761'
p -	0.013	0.001	0.051	0.005	0.014	0.004	0.047	
Tissue Cu, Zn-SOD	r -	0.907**	-0.940'	-0.887**	-0.976'	0.938'	-0.972'	
p -	0.005	0.002	0.008	0.000	0.002	0.000		
Tissue GSH	r -	-0.823'	-0.820'	-0.869'	0.872'	-0.816		
p -	0.023	0.024	0.011	0.010	0.025			
Tissue Zonulin	r -	-	0.799'	0.926'	-0.884'	0.976'		
p -	0.031	0.003	0.008	0.000				
Serum MDA	r -	-	-0.910'	-0.898'	0.819'			
p -	0.004	0.006	0.006	0.024				
Serum LOOH	r -	-	-0.941'	0.960'				
p -	0.002	0.001						
Serum Cu, Zn-SOD	r -	-	-0.920'	0.997'				
p -	0.003	0.003						

MDA: Malondialdehyde; **LOOH**: Lipid hydroperoxide; **Cu, Zn-SOD**: Cu, Zn-speroxide dismutase; **GSH**: Glutathione; *P<0.05 **P<0.01 ***P<0.001

Table 3. Correlations of biochemical parameters in severe pancreatitis

Parameters	Tissue LOOH	Tissue Cu, Zn-SOD	Tissue GSH	Tissue Zonulin	Serum MDA	Serum LOOH	Serum Cu, Zn-SOD	Serum Zonulin
Tissue MDA	r 0.929**	-0.773'	-0.976'	0.722	0.831'	0.962'	-0.935'	0.798'
p 0.002	0.041	0.000	0.067	0.020	0.001	0.002	0.031	
Tissue LOOH	r -	-0.673	-0.939'	0.699	0.838'	0.899'	-0.759'	0.809'
p -	0.097	0.002	0.081	0.019	0.006	0.048	0.028	
Tissue Cu, Zn-SOD	r -	0.816'	-0.939'	-0.904'	-0.792'	0.764'	-0.930'	
p -	0.025	0.002	0.005	0.034	0.045	0.002		
Tissue GSH	r -	-0.822'	-0.920'	-0.985'	0.910'	-0.888'		
p -	0.023	0.003	0.000	0.004	0.008			
Tissue Zonulin	r -	0.940'	0.814'	-0.692	0.979'			
p -	0.002	0.026	0.085	0.000				
Serum MDA	r -	-0.879'	-0.764'	0.982'				
p -	0.009	0.046	0.000					
Serum LOOH	r -	-0.918'	0.863'					
p -	0.004	0.012						
Serum Cu, Zn-SOD	r -	-	-0.718'					
p -	0.069	0.001						

MDA: Malondialdehyde; **LOOH**: Lipid hydroperoxide; **Cu, Zn-SOD**: Cu, Zn-speroxide dismutase; **GSH**: Glutathione; *P<0.05 **P<0.01 ***P<0.001
moderately blunting of the villus size, moderate degeneration and desquamation in the intestinal epithelium and loss of intestinal epithelial cells, irregularity and disorganization in the crypts in the lamina propria were detected. Mild inflammatory cell increase accompanied by eosinophil leukocytes in the lamina propria was observed (Fig. 5). In the SP group, completely flattened mucosal surface and severe villi loss (total villous atrophy), disorganization and hyperplasia in the crypts in the lamina propria were detected (Fig. 6).
ROS and reactive nitrogen species (RNS), which play an active role in the early and late stages of AP, cause deterioration in cell membrane and functions by direct action on lipids and proteins, and damage in pancreatic cells with the release of lysosomal enzymes in experimental and human studies [18-20]. However, to date no information about the possible dysfunction in the zonulin-tight junction mechanism in AP has been reported. The main findings of this study were that (i) in the AP group, while LOOH and zonulin levels in intestinal tissues were significantly

Discussion

ROS and reactive nitrogen species (RNS), which play an active role in the early and late stages of AP, cause deterioration in cell membrane and functions by direct action on lipids and proteins, and damage in pancreatic cells with the release of lysosomal enzymes in experimental and human studies [18-20]. However, to date no information about the possible dysfunction in the zonulin-tight junction mechanism in AP has been reported. The main findings of this study were that (i) in the AP group, while LOOH and zonulin levels in intestinal tissues were significantly
higher than control, only zonulin levels in serum samples were found higher than control, (ii) while zonulin levels in intestinal tissue samples of the SP group were found to be significantly higher compared to the AP group, in serum samples, only LOOH levels were found to be significantly higher, (iii) the serum zonulin could be used to distinguish AP from SP was serum zonulin. Zonulin is basically involved in the pathogenesis of pancreatitis. Patients with pancreatitis may be more exposed to impaired gut barrier function [21]. Zonulin can be used as a biomarker with pancreatitis may be more exposed to impaired gut barrier function [22]. Zonulin secretion seems to be one of the most important causes of increased intestinal permeability in AP and SP. Fishman et al.’s study.

In the SP group, distinct acinar atrophy, extensive fibrosis, hemorrhage, intense inflammation which rich in polymorphous leukocytes, fat necrosis and acinar necrosis were seen in the parenchyma in pancreatic tissues. In the SP group, completely flattened mucosal surface and severe villi loss (total villous atrophy), disorganization and hyperplasia in the crypts in the lamina propria were detected in intestinal tissue. Our biochemical findings are also supported by histopathological improvement in pancreatic and intestinal tissues. These results suggest that breakdown of intestinal mucosa via intense inflammation and necrosis may increase in intestinal permeability in AP and SP.

The severity of disease, high zonulin, LOOH, and MDA, low GSH and Cu, Zn-SOD activity are associated with increased intestinal permeability in early phase of AP. The inflammatory signaling and response in pancreatitis is mediated in part through ROS as important mediators of oxidative stress. Serum zonulin levels may be a promising clinical marker for differentiation AP and SP in clinical practice. Patients with pancreatitis may be more exposed to impaired gut barrier function. Serum zonulin levels can be used in the evaluation of intestinal permeability in acute pancreatitis. In order to use our results in clinical practice, clinical studies showing the relationship between impaired intestinal permeability in pancreatitis and zonulin are also required.

Available Data and Materials
The datasets during and/or analyzed during the current study available from the corresponding author (H. Uzun) on reasonable request.

Financial Support
There is no funding source.

Competing Interest
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of paper.

Author Contributions
AY, BPK, AT, RG, EU and HU conceived and supervised the study. AY, SY, SD and ZKS collected and analyzed data. SD made laboratory measurements. ZKS applied the histopathological examination of the study. All authors contributed to the critical revision of the manuscript and have read and approved the final version.
Zonulin and Pancreatitis

References

1. Habtezion A, Gukovskaya AS, Pandol SJ: Acute pancreatitis: A multifaceted set of organelle and cellular interactions. Gastroenterology, 156 (7): 1941-1950, 2019. DOI: 10.1053/j.gastro.2018.11.082

2. Habtezion A: Inflammation in acute and chronic pancreatitis. Curr Opin Gastroenterol, 31 (5): 395-399, 2015. DOI: 10.1097/MOG.0000000000000195

3. Lee PJ, Papachristou GI: New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol, 16 (8): 479-496, 2019. DOI: 10.1038/s41575-019-0158-2

4. Braganza JM, Lee SH, McCloy RF, McMahon MJ: Chronic pancreatitis. Lancet, 377 (9772): 1184-1197, 2015. DOI: 10.1016/S0140-6736(10)61852-1

5. Witt H, Apte MV, Keim V, Wilson JS: Chronic pancreatitis: Challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology, 132 (4):1557-1573, 2007. DOI: 10.1053/j.gastro.2007.03.001

6. Sonika U, Goswami P, Thakur B, Yadav R, Das P, Ahuja V, Saraya A: Mechanism of increased intestinal permeability in acute pancreatitis: alteration in tight junction proteins. J Clin Gastroenterol, 51 (5): 461-466, 2017. DOI: 10.1097/MCG.0000000000000612

7. Rahman SH, Ammori BJ, Holmfield J, Larvin M, McMahon MJ: Intestinal hyperperfusion contributes to gut barrier failure in severe acute pancreatitis. J Gastrointest Surg. 7 (1): 26-36, 2003. DOI: 10.1016/S1091-255X(02)00090-2

8. Flint RS, Windsor JA: The role of the intestine in the pathophysiology and management of severe acute pancreatitis. HPB (Oxford), 5 (2): 69-85, 2003. DOI: 10.1080/13651820310001108

9. Rao R: Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci. 13, 7210-7226, 2008. DOI: 10.2741/s22

10. Wang XG, Wang Q, Andersson R, Ihse I: The effect of intestinal permeability and endotoxemia on intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Scand J Gastroenterol, 35 (12): 1314-1318, 2000. DOI: 10.1080/00365520453683

11. Szabolcs A, Reiter RJ, Letoha T, Hegyi P, Papai G, Varga I, Jarmay K, Kaszaki J, Sari R, Rakonczay Z Jr, Lonovics J, Takacs T: Effect of melatonin on the severity of the L-arginine-induced experimental acute pancreatitis in rats. World J Gastroenterol, 12 (2): 251-258, 2006. DOI: 10.3748/wjg.v12.i2.251

12. Wengler FA, Kilian M, Heukamp I, Foritzik T, Jacobi CA, Guski H, Schimek I, Muller JM: Effects of octreotide in acute hemorrhagic necrotizing pancreatitis in rats. J Gastroenterol Hepatol, 22 (11): 1872-1876, 2007. DOI: 10.1111/j.1440-1746.2006.04627.x

13. Cao S, Bian Y, Zhou X, Yuan Q, Wei S, Xue L, Yang F, Dong Q, Wang W, Zheng B, Zhang J, Wang Z, Han Z, Yang K, Rui H, Zhang Y, Xu F, Chen Y: A small-molecule activator of mitochondrial aldehyde dehydrogenase 2 reduces the severity of cerulein-induced acute pancreatitis. Biochem Biophys Res Commun, 522 (2): 518-524, 2020. DOI: 10.1016/j.bbrc.2019.11.128

14. Buzcu H, Ozbuyli D, Yusuf M, Cilingir Kaya OT, Kasimay Cakir O: Nesfatin-1 protects from acute pancreateicitis: Role of melanocortin receptors. J Physiol Pharmacol, 70 (6): 839-848, 2019. DOI: 10.2402/jpp.2019.06.03

15. Liu H, Liu W, Wang X, Li J, Yu W: Early gut mucosal dysfunction in patients with acute pancreatitis. Pancreas, 36 (2): 192-196, 2008. DOI: 10.1097/MPA.0b013e31815a399f

16. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK: Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond), 132(6):701-718, 2018. DOI: 10.1042/CS20180087

17. Ammori BJ, Leeder PC, King RF, Barclay GR, Martin IG, Larvin M, McMahon MJ: Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg, 3 (3): 252-262, 1999. DOI: 10.1016/s1091-255x(99)00067-5

18. Koh YY, Jeon WK, Cho YK, Kim HJ, Chung WG, Chon CU, Oh TY, Shin JH: The effect of intestinal permeability and endotoxemia on the prognosis of acute pancreatitis. Gut Liver, 6 (4): 505-511, 2012. DOI: 10.5009/gnl.2012.6.4.505

19. Schieltoma M, Pessia B, Carlei F, Mariani P, Sista F, Amicucci G: Intestinal permeability and systemic endotoxemia in patients with acute pancreatitis. Ann Ital Chir, 87, 138-144, 2016.

20. Cesnitz S: The role of antioxidant and antiinflammatory parameters in the ischemic diseases: A systematic literature review. Kafkas Univ Vet Fak Derg, 26 (6): 849-858, 2020. DOI: 10.9775/kvd.2020.24618

21. Fishman JE, Levy G, Alli V, Zheng X, Mole DJ, Deitch EA: The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis. Shock, 42 (3): 264-270, 2014. DOI: 10.1097/SHK.0000000000000209