NEW RECORDS OF LEPTACANTHICHTHYS GRACILISPINIS AND MICROLOPHICHTHYS MICROLOPHUS (ACTINOPTERYGI: LOPHIIFORMES: ONEIRODIDAE) FROM THE SUBARCTIC ATLANTIC OCEAN, INCLUDING NEW LOPHIIFORM BARCODING DATA AND A RARE OBSERVATION OF A COPEPOD PARASITE IN CERATIOID ANGLERFISHES

Jan Y. POULSEN1, 2*

1Greenland Institute of Natural Resources, Nuuk, Greenland
2Fish Section, Australian Museum, Sydney NSW, Australia

Poulsen J.Y. 2019. New records of Leptacanthichthys gracilispinis and Microlophichthys microlophus (Actinopterygi: Lophiiformes: Oneirodidae) from the subarctic Atlantic Ocean, including new lophiiform barcoding data and a rare observation of a copepod parasite in ceratioid anglerfishes. Acta Ichthyol. Piscat. 49 (4): 403–414.

Abstract. In an ongoing effort to document and/or validate taxonomic identifications and monitor fishes in the subarctic Atlantic Oceans, including the production of pragmatic identification material, two new distributional records of ceratioid anglerfishes are presented: Leptacanthichthys gracilispinis (Regan, 1925) and Microlophichthys microlophus (Regan, 1925) of the dreamer family Oneirodidae. The former belongs to the relatively rarely observed “long-pectoraled” subgroup whereas the latter is a relatively common species distributed circumglobally in temperate and tropical waters. Both species were recorded for the first time off Greenland and the specimens could be expatriates although the diversity of deep-sea pelagic fishes in the subarctic Atlantic Ocean is not well known. In addition, molecular barcoding Cox1 DNA sequences of subarctic Atlantic lophiiform taxa are included, where the material was available, many being produced as part of the Greenland fishes barcoding program, a continuous effort to register and barcode all Greenland fish species. The program has currently barcoded 220 taxa of approximately 300 known fish species observed in Greenland waters, with the ceratioid anglerfishes constituting one of the most problematic fish groups in the region in terms of sampling, identification, and taxonomic assignments using integrative taxonomy. Taxonomic issues based on molecular OTUs** are reported for the genera Caulophryne, Cryptopsaras, and Dolopichthys based on Cox1 data. Finally, a relatively large copepod parasite in the family Pennellidae was found on L. gracilispinis and constitutes one of only two copepod parasites recorded on ceratioid anglerfishes.

Keywords: Ceratioidei, Greenland fishes, Monitoring of subarctic fishes, diversity, Cox1

INTRODUCTION

Anglerfishes of the suborder Ceratioidei are the deep-sea component of the order Lophiiformes, otherwise associated with mostly shallow-water benthic frog- and toadfishes (Pietsch and Orr 2007, Miya et al. 2010). Ceratioids exhibit extraordinary adaptations to the deep-sea pelagic habitats. All females of the 169 ceratioid species (Bahon et al. 2019), with the exception of two species in the family Caulophrynidae and the monotypic Neoceratias spinifer Pappenheim, 1914, are mimetic aggressive anglers showing a modified first dorsal fin that have evolved into a long shaft (the illicium) with a distal bioluminescent bulb (the esca) (Lütken 1871, Bertelsen 1951, Pietsch 2009). The esca of metamorphosed females contains bioluminescent-producing bacteria (Hansen and Herring 1977, Munk et al. 1998) that have co-evolved with the host ceratioid species (Haygood et al. 1992). As a consequence, the co-evolving bacteria possess reduced genomes as compared to free-living relatives (Hendry et al. 2018). Both illicium and esca vary between the majority of species and therefore are important taxonomic characters (Parr 1927) and represent the basic knowledge needed to comprehend communication biology of these fishes. Bioluminescence in ceratioids is not fully understood although it is believed to function at least in attracting prey as well as in reproductive signalling (Pietsch 2009). However, as males are usually levels of magnitudes smaller than the females, and possess large olfactory organs, pheromones working within close range could be as important as the light for the latter function.

* Correspondence: Dr Jan Yde Poulsen, Pinnagoritralerfik, Postbox 570, 3900 Nuuk, Greenland, phone: (299) 36 12 00, fax: (299) 36 12 12, e-mail: janypoulsen@deepseafish.eu.

** Operational taxonomic unit.
The extraordinary sexual reproductive system in ceratioids varies between deep-sea anglerfish lineages;
• Males never attach to females,
• Males attach temporarily,
• Males are facultative or obligate “parasites”.

When “parasitism” is noted, a fusion of the two sexes is taking place and the male is attached for life and nourished by the female (Pietsch 1976, 2005, Pietsch and Orr 2007). Males showing temporary attachment (or pre-fusion if facultative “parasites”) have a “denticular apparatus” suitable for attachment and feeding (Bertelsen 1951).

Ceratioid anglerfishes in the subarctic North Atlantic are, in general, rare occurrences with the majority of species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.

This study describes new records of *Leptacanthichthys gracilispinis* (Regan, 1925) and *Microlophichthys microlophus* (Regan, 1925) from the subarctic Atlantic, including a description of their morphologies. Barcoding *Cox1* molecular data is included for all available subarctic oneirodidae taxa with many newly constructed as part of the Greenland fishes barcoding program (Poulsen et al. 2018). Barcoding data indicate taxonomic issues in some ceratioid genera. In addition, a large crustacean parasite, rarely observed in ceratioid anglerfishes, is reported herewith. The new records and molecular data presented are part of a larger continuous taxonomic and monitoring effort off Greenland, a region that has witnessed many new species distributions the last 10 years, with the caveat that species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.

This study describes new records of *Leptacanthichthys gracilispinis* (Regan, 1925) and *Microlophichthys microlophus* (Regan, 1925) from the subarctic Atlantic, including a description of their morphologies. Barcoding *Cox1* molecular data is included for all available subarctic oneirodidae taxa with many newly constructed as part of the Greenland fishes barcoding program (Poulsen et al. 2018). Barcoding data indicate taxonomic issues in some ceratioid genera. In addition, a large crustacean parasite, rarely observed in ceratioid anglerfishes, is reported herewith. The new records and molecular data presented are part of a larger continuous taxonomic and monitoring effort off Greenland, a region that has witnessed many new species distributions the last 10 years, with the caveat that species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.

This study describes new records of *Leptacanthichthys gracilispinis* (Regan, 1925) and *Microlophichthys microlophus* (Regan, 1925) from the subarctic Atlantic, including a description of their morphologies. Barcoding *Cox1* molecular data is included for all available subarctic oneirodidae taxa with many newly constructed as part of the Greenland fishes barcoding program (Poulsen et al. 2018). Barcoding data indicate taxonomic issues in some ceratioid genera. In addition, a large crustacean parasite, rarely observed in ceratioid anglerfishes, is reported herewith. The new records and molecular data presented are part of a larger continuous taxonomic and monitoring effort off Greenland, a region that has witnessed many new species distributions the last 10 years, with the caveat that species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.

This study describes new records of *Leptacanthichthys gracilispinis* (Regan, 1925) and *Microlophichthys microlophus* (Regan, 1925) from the subarctic Atlantic, including a description of their morphologies. Barcoding *Cox1* molecular data is included for all available subarctic oneirodidae taxa with many newly constructed as part of the Greenland fishes barcoding program (Poulsen et al. 2018). Barcoding data indicate taxonomic issues in some ceratioid genera. In addition, a large crustacean parasite, rarely observed in ceratioid anglerfishes, is reported herewith. The new records and molecular data presented are part of a larger continuous taxonomic and monitoring effort off Greenland, a region that has witnessed many new species distributions the last 10 years, with the caveat that species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.

This study describes new records of *Leptacanthichthys gracilispinis* (Regan, 1925) and *Microlophichthys microlophus* (Regan, 1925) from the subarctic Atlantic, including a description of their morphologies. Barcoding *Cox1* molecular data is included for all available subarctic oneirodidae taxa with many newly constructed as part of the Greenland fishes barcoding program (Poulsen et al. 2018). Barcoding data indicate taxonomic issues in some ceratioid genera. In addition, a large crustacean parasite, rarely observed in ceratioid anglerfishes, is reported herewith. The new records and molecular data presented are part of a larger continuous taxonomic and monitoring effort off Greenland, a region that has witnessed many new species distributions the last 10 years, with the caveat that species registered and known only from a single or a few stray specimens (Jónsson and Pálsson 1999, 2013, Møller et al. 2010). Many more ceratioid species have been observed south of the Sub Polar Front (SPF), e.g., in the western central Atlantic (Pietsch 2002). The SPF is an important topographic and oceanographic species barrier between the temperate and subarctic North Atlantic (Sutton et al. 2013) although depth dependent (Vecchione et al. 2015). In fact, Sutton et al. (2017) defined the subarctic western Atlantic as a distinct mesopelagic eco-region that holds primarily cold-water biodiversity assemblages. New records of anglerfishes, and other mid-water taxa could, therefore, provide important information on distributional shifts although the rarity of ceratioids and insufficient knowledge of their true distributions at present makes any trends difficult to detect.
and single posterior compressed appendage containing no bioluminescent dark tissue (Fig. 1D). Reproductive state: Ovaries 6 mm in lengths, flaccid, suggesting spent or previous larger eggs present now gone; minute eggs present, largest 0.1 mm diameter in ovary walls along its entire length.

Microlophichthys Regan et Trewavas, 1932
Microlophichthys microlophus (Regan, 1925) (Table 1, Fig. 2A–E)

Description. (Based on specimen ZMUC P2395464): Sphenotic spines present, large symphysial spine present ventrally, no discernible spine dorsally on lower jaws; quadrate spine robust; opercle notched posteriorly; pectoral fin lobe large, approximately equal in length to fin rays or slightly shorter, that are situated somewhat dorsoposterior on lobe; dorsal fin in advance of anal-fin origin; teeth on lower jaws variable in size on whole jaw; teeth on premaxillaries in multiple rows, variable in size only in the anterior parts; skin smooth, although most skin lost on specimen; subopercle distally expanded and rounded; esca with appendage without bioluminescent tissue, red bulb under bioluminescent tissue in esca (Fig. 2D); stomach content white mass, items indiscernible. Morphological characters similar to those described by Pietsch (2009) and not included for further descriptions (Table 1). Reproductive state: Ovaries 6.2 mm in lengths, red coloured, no eggs visible.

Cox1 DNA barcoding sequences. In order to support a more comprehensive comparison of _Cox1_ barcodes of ceratioids in general, I included here all subarctic Atlantic taxa that have barcoding data available. Ceratioid observations in the subarctic regions are based on the presently reported study, Pietsch (2009), Möller et al. (2010), Jónsson and Pálsson (2013), and the Global Biodiversity Information Facility (Anonymous 2012). All specimens included for the _Cox1_ barcode in this study are metamorphosed females. A Kimura-2-Parameter (K2P) (Kimura 1980) model was employed for the analysis of the dataset consisting of 55 specimens including a total of 22 subarctic Atlantic distributed taxa (Table 2). The resulting topology is shown in Fig. 3. Three taxonomic results based on _Cox1_ barcodes related to the genera _Dolopichthys_, _Cryptopsaras_, and _Caulophryne_ are discussed below. Besides that, the _Cox1_ barcoding results are not discussed further due to the inclusion of only subarctic Atlantic taxa and the focus on molecular taxonomy of ceratioids in the subarctic Atlantic.

The copepod parasite attached to _L. gracilispinis_ (Fig. 1B) was photo-identified as a taxon, within the family _Leptacanthichthys gracilispinis_ and _Microlophichthys microlophus_, caught off south-western and south-eastern Greenland respectively during the presently reported study (ZMUC specimens), compared to specimens examined by Pietsch (2009).

Parameters	_Leptacanthichthys gracilispinis_	_Microlophichthys microlophus_		
Specification	ZMUC P922698	Pietsch (2009) 24 specimens	ZMUC P2395464	Pietsch (2009) 94 specimens
Distribution	64.04°N, 057.37°W	Circumglobal	61.57°N, 040.16°W	Circumglobal
Parameters				
Specification	ZMUC P922698	Pietsch (2009) 24 specimens	ZMUC P2395464	Pietsch (2009) 94 specimens
Distribution	64.04°N, 057.37°W	Circumglobal	61.57°N, 040.16°W	Circumglobal
SL [mm]	62.1	22.0–56.0	112.7	11.5–112
Head	38.5	29.1–33.3	43.7	31.1–39.2
Lower jaw	27.4	26.7–34.1	29.2	34.9–46.8
Premaxillary	23.3	22.0–24.6	23.3	28.8–31.9
Illicium	20.0	19.2–24.1	9.7	8.3–10.3
Pectoral lobe	7.7	7.7–10.0		
Sphenotic spine	4.3	3.6–4.9		
Quadrade spine	4.8	2.8–4.5		
Mandibular spine	6.9	4.6–6.8		
Head depth	28.5	30.9–34.9	39.0	35.8–43.2
Dorsals	5	4–6 (5)	7	5–7
Analts	5	5–6 (5)	5	4–6 (5)
Pectorals	20	18–21 (21)	14	17–20
Caudals	9	9		
Vertebral	22		22	
Dentition Vomer	5 + 5	3+3–6+6	5 + 5	4–12
Dentition Upper jaw	40	52–154	180[1]	160–320
Dentition Lower jaw	70	44–106	100[1]	100–180

ZMUC = Zoological Museum University of Copenhagen; SL = standard length of fish; numbers in parentheses are the most common meristic counts for the particular characters; [1]vertebral counts include the posterior urostyle and the most anterior “half-vertebra” connecting the vertebral column to the cranium, [1]jaw teeth counts are approximate as numerous small teeth are present.
Pennellidae, possibly *Sarcotretes scopeli* Jungersen, 1911 by Geoffrey A. Boxshall at the British Museum of Natural History (BMNH).

DISCUSSION

A few morphometric characters of the new subarctic record ZMUC P922698 (*Leptacanthichthys gracilispinis*) show values outside previously reported, such as the mandibular- and quadrate spine lengths (Table 1). However, morphometric values are generally close to the ranges noted by Pietsch (1978). Similarly, the distinct illicium and esca show similar morphology to what has been reported for other specimens of *L. gracilispinis*; the illicium is very thin compared to other ceratioids and the esca have only one large appendage without bioluminescent tissue (Fig. 1E). A peculiar feature of *L. gracilispinis* is the long pectoral fin lobe showing the fin rays on the dorsal margin (Fig. 1E). This is a unique configuration of the pectoral fins and is only found in a small four-genera subgroup of dreamers in the family Oneirodidae (see Pietsch 1978): *L. gracilispinis; Puck pinnata* Pietsch, 1978; *Ctenochirichthys longimanus* Regan et Trewavas.

Fig. 1. *Leptacanthichthys gracilispinis* ZMUC P922698: (A) newly caught off south-western Greenland 2009; (B) digital radiograph image; (C) alcohol preserved; note the large mandibular (almost vertical) and quadrate (horizontal) spines designating *Leptacanthichthys* although base broken and both spines are rotated compared to their natural positions; a large copepod parasite can be seen on the freshly caught and the alcohol preserved specimen; (D) illustration of esca (Redrawn based on the Greenland specimen and based on R. Nielsen in Pietsch 2009); (E) illustration of the specimen; note the slender illicium on the specimen and the dark streak on the dorsal margin including a large flattened appendage containing no bioluminescent tissue on the esca.
Table 2

Cox1 DNA barcoding data of subarctic Atlantic ceratioid (suborder Ceratioidei of Lophiiformes) taxa used in the presently reported study

Species	Museum	Field ID	BOLD	NCBI	Coordinates	Depth [m]	Region/date	Sampler/identifier	Reference
Lophiidae									
Lophius piscatorius	ZMUC (uncat.)	JYP#8030	GLF092	GC455696	62.18°N, 40.49°W	615	SE Greenland 2008	J.Y. Poulsen	This study
Lophius piscatorius	MT02950	MT02950	BNSF529-12	KJ04939	60.37°N, 02.48°E	100	North Sea off Norway 2011	T. Knebelsberger	Knebelsberger et al. 2014
Lophius americanus	ARC 26420	06-764	SCABFB543-07	KC015569	Gulf of St. Lawrence, Canada	D. Archambault	McCusker et al. 2013		
Lophius budegassa	MCFS06-074	FCFMT074-07	KJ098804	35.57°N, 15.27°E	250	Malta, Mediterranean, 2006	M. Dimech	Landi et al. 2014	
Lophius budegassa	EU683980	GBGC8825-09	EU683980						
Ceratiidae									
Ceratias holboelli	ZMUC (uncat.)	JYP#8473	GLF097	LC455698	63.29°N, 54.24°W	1130	SW Greenland 2008	J.Y. Poulsen	This study
Ceratias holboelli	ZMUB 21907	JYP#9855	GLF106	LC455681	65.38°N, 30.19°W	410	SE Greenland 2013	J.Y. Poulsen	This study
Ceratias holboelli	ZMUB (uncat.)	JYP#1531	GLF207	LC455682	62.03°N, 40.19°W	1408	SE Greenland 2013	J.Y. Poulsen	This study
Cryptopsaras couesii	GBMTG1715-16	AB282850					Off Shikoku Island, Japan	Miya et al. 2010	
Cryptopsaras couesii	ZMUB 17873	ME-6992	MAECO417-09	49.20°N, 28.72°W	Mid-Atlantic Ridge 2004	MAR-ECO	Unpublished		
Caulophrynidae									
Caulophryne jordani	ZMUC P922691	JYP#8155	GLF100	LC455691	65.49°N, 30.04°W	345	SE Greenland 2009	J.Y. Poulsen	This study
Caulophryne jordani	HUMZ 189336	GBMTG296-16	AP004417	739	Off Peru	T.W. Pietsch	Miya et al. 2003		
Caulophryne pelagica	CBM-ZF 12209	GBMTG2488-16	GB282836	13	Off South Africa 2010	T.W. Pietsch	Miya et al. 2010		
Caulophryne pelagica	ADC10-738	DSLAG439-10	30.33°S, 30.75°W	13	Off South Africa 2010	A.D. Connell	Unpublished		
Himantolophidae									
Himantolophus groenlandicus	MNHN-2003-1066	BPS-0114	GBMTG1732-16	AB282840	56.45°N, 13.00°W	930	North Atlantic 2003	T.W. Pietsch	Miya et al. 2010
Himantolophus albinares	MCZ 138064	2004-055_HAL	GBMTG1727-16	AB282839	39.09°N, 72.46°W	1098	Atlantic U.S.	Miya et al. 2010	
Oneirididae									
Chaenophryne draco	ZMUC (uncat.)	JYP#1667	GLF315	LC455688	64.20°N, 57.23°W	813	SW Greenland 2015	J.S. Sorensen	This study
Chaenophryne draco	ZMUC P922696	JYP#8129	GLF247	LC455694	63.51°N, 57.02°W	1172	SW Greenland 2009	J.Y. Poulsen	This study
Chaenophryne draco	ZMUB (uncat.)	JYP#1591	GLF226	LC455683	65.01°N, 34.32°W	458	SE Greenland 2014	J.Y. Poulsen	This study
Chaenophryne longiceps	ZMUC P2394154	JYP#1653	GLF301	LC455687	64.48°N, 33.35°W	1426	SE Greenland 2015	J.Y. Poulsen	This study
Dolopichthys karsteni	ZMUC 16707	ME-7651	MAECO423-09	51.92°N, 30.42°W	Mid-Atlantic Ridge 2004	MAR-ECO	Unpublished	K. Hartel	Unpublished
Dolopichthys karsteni	MCZ 165969	KUT 8149	UKFB1167-08	39.76°N, 67.54°W	George Bank, NW Atlantic 2006	Unpublished			
Dolopichthys karsteni	MNCN_ICTIO 291.453	ACRAT007	GBMTG1732-16	47.80°N, 43.82°W	Falmouth Cap 2017	R. Bañón	Unpublished		
Dolopichthys karsteni	MNCN_ICTIO 291.465	ACRAT019	GBMTG1727-16	45.03°N, 48.80°W	Grand Banks 2015	R. Bañón	Unpublished		
Dolopichthys cf. karsteni	ZMUC P922539	#7201	GLF268	LC455684	65.11°N, 56.32°W	784	SW Greenland 2004	P.R. Moller	This study
Dolopichthys cf. karsteni	ZMUC P922544	#8703	GLF270	LC455685	64.02°N, 56.10°W	784	SW Greenland 2005	S.W. Knudsen	This study

Table continues on next page.
Table 3 cont.

Family	Genus	Species	Code	Location	Collector	Year	Metadata	Source
Dolopichthys	karsteni	1490 Dolopichthys karsteni	DPND1530	27.46°N, 87.47°W	DEEPEND	2015		Unpublished
Dolopichthys	pullatus	22862 Dolopichthys pullatus	PS2654_G133	27.01°N, 90.00°W	Mexico	2011		Unpublished
Dolopichthys	pullatus	1490 Dolopichthys pullatus	FN221-06	New Zealand				Unpublished
Leptocanthichthys	gracilispinis	ZMUC P922698 Leptocanthichthys gracilispinis	JYP18126	64.04°N, 57.37°W	Mexican	2009		J.Y. Poulsen This study
Lophodolos	acanthognathus	ZMUB 21443 Lophodolos acanthognathus	JYP10045	65.12°N, 32.54°W	SE	2012		J.Y. Poulsen This study
Lophodolos	acanthognathus	ZMUB 16719 Lophodolos acanthognathus	ME-1269	42.81°N, 27.88°W	MAR-ECO			Unpublished
Microlophichthys	microphorus	ZMUC P2 395464 Microlophichthys microphorus	JYP1862	61.57°N, 40.16°W	SE	2017		J.Y. Poulsen This study
Microlophichthys	microphorus	ZMUC 18902 Microlophichthys microphorus	ME-5707	42.79°N, 29.39°W	Mid-Atlantic Ridge	2004		MAR-ECO Unpublished
Microlophichthys	microphorus	20576 Microlophichthys microphorus	G051	27.94°N, 88.59°W	Mexican	2011		DEEPEND Unpublished
Oneirodes	cf. macrosteus	ZMUB 23271 Oneirodes cf. macrosteus	JYP1642	65.12°N, 32.54°W	MAR-ECO			J.Y. Poulsen This study
Oneirodes	cf. macrosteus	ZMUC P922695 Oneirodes cf. macrosteus	JYP1828	63.52°N, 56.47°W	SW	2009		J.Y. Poulsen This study
Oneirodes	cf. eschrichtii	CSIRO 7 34 3 0 Oneirodes cf. eschrichtii	BW-1 22 2 1		SW	2009		Unpublished
Oneirodes	cf. eschrichtii	CSIRO 7 34 4 0 Oneirodes cf. eschrichtii	BW-1 22 2 2		SW	2009		Unpublished
Oneirodes	cf. eschrichtii	ZMUC P922758 Oneirodes cf. eschrichtii	JYP1840	61.57°N, 40.16°W	SE	2017		J.Y. Poulsen This study
Gigantactinidae	vanhoeffeni	ZMUC P 2 39358 Gigantactinidae vanhoeffeni	JYP1888	64.15°N, 54.57°W	SW	2017		J.Y. Poulsen This study
Gigantactinidae	vanhoeffeni	UW 047213 Gigantactinidae vanhoeffeni	GBMTG1731-16	39.09°N, 72.46°W	Atlantic	2010		E.O. Wiley Miya et al. 2010
Linophrynidae	mollis	ZMUC (uncat.) Linophrynidae mollis	JYP1669	63.16°N, 54.38°W	SW	2015		J.S. Sorensen This study
Linophrynidae	mollis	MNHN 2004 0811 Linophrynidae mollis	NC-045	63.16°N, 54.38°W	SW	2015		Myia et al. 2010
Linophrynidae	bicornis	ZMUC P922693 Linophrynidae bicornis	JYP1831	63.07°N, 54.04°W	SW	2009		J.Y. Poulsen This study
Linophrynidae	bicornis	ZMUC P922693 Linophrynidae bicornis	JYP1831	63.07°N, 54.04°W	SW	2009		J.Y. Poulsen This study
Linophrynidae	brevibarbata	DPN2645 Linophrynidae brevibarbata	PS2749-G184	27.66°N, 88.41°W	Gulf of Mexico	2010		DEEPEND Unpublished
Linophrynidae	pennibarbata	DPN2647-17 Linophrynidae pennibarbata	PS0315-T-053	27.66°N, 88.41°W	Gulf of Mexico	2010		DEEPEND Unpublished
Melanocetidae	johnsonii	ZMUC (uncat.) Melanocetida johnsonii	JYP1847	64.32°N, 56.09°W	SW	2008		J.Y. Poulsen This study
Melanocetidae	johnsonii	HUMZ 18 5308 Melanocetida johnsonii	GTMTG1728-16	976 Off Peru	SW	2008		Myia et al. 2010
Melanocetidae	murrayi	ASIZP0914893 Melanocetida murrayi	GBMIN120376-17		Taiwan	Chang et al. 2016		
Melanocetidae	murrayi	GBMTG297-16 Melanocetida murrayi	GBMTG297-16	976 Off Peru	SW	2008		Myia et al. 2003

The table contains only valid names of fishes, which may sometimes differ for names listed in individual papers; the Cox1 DNA sequences were either determined for the presently reported study (GLF records), downloaded from public accessible BOLD barcoding projects, or granted use from unpublished barcoding projects; metadata included if known; the taxonomic identification of ceratioids is difficult, hence the identifiers are included for specimens if known.
1932; and *Chirophryne xenolophus* Regan et Trewavas, 1932. The specimen observed off Greenland shows 100% *Cox1* DNA sequence similarity to a specimen from the Flemish Cap (table 2 and fig. 3 of Bañón et al. 2019). The *L. gracilispinis* shows an uncorrected DNA sequence distance of 97% to several species within the Oneirodidae (data not shown), supporting a close association of longpectoraled dreamers within this family as already noted from morphology (Pietsch 1974, 1978, Pietsch and Orr 2007) and mitogenomic data (Miya et al. 2010). A currently unresolved phylogenetic relation of the longpectoraled genus *Puck* to *Thaumatichthys* as found by Miya et al. (2010) needs verification with additional taxa. The latter study also found multiple non-coding regions in the mitogenomes of oneirodids—characters proved very useful in elucidating phylogenetic relation (Poulsen et al. 2013). New unpublished mitogenomic data (J.Y. Poulsen data, data not shown) confirms this feature in some oneirodids.

The new subarctic record of *Microlophichthys microlophus* off south-eastern Greenland shows most characters within the ranges noted by Pietsch (2009) and are therefore not given much discussion. However, head length and measurements of the jaws fall outside the ranges noted in Pietsch (2009; table 1, fig. 2). The Greenland specimen is relatively large compared to previous observations (Table 1) and the small differences could be due to allometric growth changes. The *Cox1* barcode shows the Greenland specimen to have 100% DNA sequence similarity to specimens from the Mid-

Fig. 2. *Microlophichthys microlophus* ZMUC P922698: (A) newly caught off south-eastern Greenland 2017; (B) digital radiograph image; (C) alcohol preserved; (D) illustration of esca; redrawn based on the Greenland specimen and based on Bertelsen (1951; cited by Pietsch 2009); (E) illustration of the specimen; note the short illicium and many minute teeth in the jaws.
Fig. 3. K2P topology of subarctic Atlantic ceratioids based on the CoxI barcoding DNA sequences; three species of Lophius were employed as the operational outgroup; all subarctic Atlantic species in the suborder Ceratioidei with barcoding data available are included (produced as part of the Greenland fishes barcoding program; Poulsen et al. 2018); note the one OTU in Dolopichthys karsteni and Caulophryne contrary to two OTUs in Cryptopsaras cf. couesi.

Atlantic Ridge. My personal observations combined with barcoding data produced as part of the Greenland fishes barcoding project (Poulsen et al. 2018), has shown that oneirodid identification (and hence onboard sampling of specimens) off Greenland problematic for an extensive period of time. The two new records presented in this study are possible examples of such past sampling and identification errors, and the word expatriate is trivial at best at the moment.

The new L. gracilispinis specimen off Greenland provides one of approximately 35 female specimens recorded, from both the Atlantic and Pacific (Anonymous 2012), and extends the distribution into the western subarctic Atlantic at 64°N close to the Arctic Circle. The most northern Atlantic record previously observed was caught during pelagic trawling during the MAR-ECO cruises in 2004 at 52.89°N, 030.59°W (ZMUB 16711) that also showed several more records from approximately 50°N (I. Byrkjedal, MAR-ECO data). Previously, R/V Walter Herwig fishing in 1982 at similar latitudes as the MAR-ECO cruises, has a record at 48.90°N, 027.48°W (ISH 619) measuring 60 mm (R. Thiel data). Expatriate specimens are often showing large body size (Poulsen 2015a), and even though the Greenland specimen is 62 mm SL and therefore relatively large compared to presently described material, L. gracilispinis can apparently grow to 103 mm SL (Pietsch 2009). However, a status as expatriate of L. gracilispinis in the subarctic Atlantic is by no means substantiated, as the pelagic deep-sea realm in this region is poorly known due to a variety of factors (Bertelsen and Krefft 1965, Poulsen 2015b, Poulsen et al. 2018). The four long-pectoral taxa show circumglobal distributions, although not observed in the Indian Ocean as yet (Pietsch 2009). Leptacanthichthys gracilispinis is the most commonly observed of the four long-pectoral anglerfishes and indications are that it is widely distributed in the North Atlantic. The new record of M. microlophus off Greenland is unsurprising as it is relatively common in all major oceans and the temperate Atlantic (Pietsch 2009).

Greenland waters are considered too cold for ceratioid reproduction, based on comprehensive data by Bertelsen (1951) and Pietsch (2009). However, several ceratioid species are regularly observed off south-western and south-eastern Greenland (J.Y. Poulsen, personal observation): Ceratias holboelli Kroyer, 1845; Oneirodes eschrichtii Lütken, 1871; Oneirodes macrosteus Pietsch, 1974; Chaenophryne longiceps Regan, 1925; Lophodolos acanthognathus Regan, 1925; and Melanocetus johnsonii Günther, 1864. The species Linophryne corona Parr, 1927 appears to be more common off Iceland than Greenland (Bertelsen 1976, Bahón et al. 2006, Jónsson and Pálsson 2013), although this knowledge is based on few specimens only. The remaining 31 species registered in the subarctic waters of the North Atlantic are, on the contrary, rare occurrences, known only from one or a few stray specimens (Møller et al. 2010, Jónsson and Pálsson 2013). In fact, 2009 witnessed yet another rare ceratioid specimen off south-western Greenland, the sixth specimen of Linophryne bicornis Parr, 1927 known,
Ceratioids in the subarctic North Atlantic

specimens is reminiscent of those observed by Collett, 1886, and documented in Goode et Bean, 1996. The large volume pelagic deep-sea water masses off the Labrador Sea (south-western Greenland) and the Irminger Sea (south-eastern Greenland) remain poorly studied, and deep-sea pelagic fishing efforts would certainly result in many new discoveries in these regions considering that benthic distributions are continuously being extended (Poulsen et al. 2018) and new recent pelagic species have been discovered (Poulsen 2015b). Future fish records in these regions should elucidate the subarctic north-western eco-region as delimited by Sutton et al. (2017). Few ceratioid species with males attached (Pietsch 2009), and, for example, Linophryne lucifer Collett, 1886, have been observed north of the SPF. Free-living male ceratioids seem restricted to the tropical and subtropical zones between 40°N and 40°S (Bertelsen 1976; Bertelsen 1986), have been observed south of the SPF. Most male ceratioids are free-living, although these types of modified parasites have only been observed in association with deep-sea fishes (Klimpel et al. 2001).

Regardless, and in respect to other ceratioid OTUs (Fig. 3), the variation between COI barcode sequences at present, as many species show almost identical DNA sequences indicating taxonomic identifications problematic. This is evident in, for example, the family Oneirodidae, a difficult group of fishes in which damage is often present in species-defining characters, and therefore difficult to identify. Future works using COI comparisons should provide and validate identifications and metadata associated with records used (Table 2). Although several ceratioid species recorded from the subarctic Atlantic is missing for their COI barcode in the presently reported study, many are rare and no tissues available, three taxonomic issues can be noted from the barcoding results in the presently reported study (Fig. 3). Thorough morphological examinations of these three genera are beyond this study.

Two specimens identified as Dolopichthys longicornis Parr, 1927, the only species in the genus noted from the subarctic Atlantic (Møller et al. 2010, Jónsson and Pálsson 2013), show identical COI DNA sequences to several specimens identified as Dolopichthys karsteni Leipertz et Pietsch, 1987 that were collected from different Atlantic localities such as the Mid-Atlantic Ridge and Georges Bank (Table 2). However, Pietsch (2009) noted no presence of either species in the subarctic Atlantic. I leave these results as presented for future studies employing barcoding COI data and note that Dolopichthys allector Garman, 1899 from the North Atlantic Ocean was found to be closely related to D. karsteni (Fig. 3).

Cryptopsaras couesii Gill, 1883 show two relatively divergent Operational Taxonomic Units (OTUs) with an uncorrected distance of 5.4% (Kenchington et al. 2017). A total of 37 substitutions are observed in 688 base pairs of the COI fragment of which only two are not observed in the third codon positions (one synonymous C–T transition and one non-synonymous A–G transition in first codon positions). Seven of the 37 substitutions are transversions and three are non-synonymous. This variation between C. couesii specimens is reminiscent of substitutional variations observed in mid-water and deep-sea taxa delimited also from solid morphological characters (Brykjedal et al. 2011, Poulsen et al. 2016). Unfortunately, no COI barcode of a C. couesii specimen off Greenland could be included, as this species has not been observed for more than a decade in the region, contrary to Ceratias holboelli Krayen, 1845 that is caught annually (J.Y. Poulsen, personal observation, Fig. 3).

Caulophryne jordani Goode et Bean, 1996 and Caulophryne pelagica (Brauer, 1902) show highly similar DNA sequences, based on four specimens barcoded from the Atlantic and Pacific Oceans (Table 2). There is no structure in the few substitutions present indicating one OTU (Fig. 3). The few differences observed are mostly associated with fragment end-regions that could be caused by primer attachment artefacts in the replication process during the PCR amplification and sequencing. These primer attachment sites (usually about 20 base pairs in the end regions) are unfortunately not always removed before the COI DNA sequences are uploaded to the BOLD repository (J.Y. Poulsen, personal observation). This is an issue when comparing COI barcodes if not assessing the locations of the variations observed. Regardless, and in respect to other ceratioid OTUs (Fig. 3), the variation between C. jordani and C. pelagica is not supporting two distinct OTUs (see Miyata et al. (2010) for specimen identifications).

A plethora of crustacean parasites are found in association with deep-sea fishes (Klimpel et al. 2001) although these types of modified parasites have only been observed once in ceratioid anglerfishes (Prokofiev 2014). Therefore, the copepod parasite attached to L. gracilispinis off Greenland is the second external parasite recorded in deep-sea anglerfishes (Fig. 1A, 1C) with a hydroid...
(Hydrozoa) *Hydrichthys pietschi*, reported on the skin of *Ceratias holboelli* by Martin (1975). The parasite, presently reported from *L. gracilispinis*, is a copepod in the family Pennellidae and likely represents the species *Sarcotretes scopeli* (see G.A. Boxshall, personal comment) that has also been recorded from various other mid-water fishes. *Sarcotretes scopeli* is a common fish ectoparasite in the North Atlantic showing a low host-specificity (Boxshall 1998). It is reminiscent of the parasite shown by Prokofiev (2014) on *Chaeonophryne melanorhabdus* Regan et Trewavas, 1932, although no identification was provided. Copepod parasites are regularly observed in deep-sea fishes (Boxshall 1998). The observation of only few copepod parasites observed in ceratioids is noteworthy (T. Pietsch, personal comment), although demersal species are observed much more frequent to be parasitized than meso- and bathypelagic species in the Arctic (Klimpel et al. 2006). Relatively large mesoparasitic copepod parasites (families Pennellidae and Sphyriidae), featuring an internal holdfast and the majority of the body protruding outside the fish (Piascecki and Avenant-Oldewage 2008), are common observations on various fishes off subarctic Greenland, across phylogenetically independent fish lineages (J.Y. Poulsen, personal observation).

ACKNOWLEDGEMENTS

The author of this paper expresses his thanks to J.S. Sørensen, the crew of R/V *Pâmiut* and the staff (Greenland Institute of Natural Resources, Greenland) associated with annual surveys off Greenland, Mr. Kape and the F/V *Sisimuit* for sampling in Greenland waters, H. Siegstad and N.H. Arboe (GINR) for logistics, R. Thiel (Zoological Museum Hamburg, Germany) for catch and specimen information, S. Ahyong, K. Graham, A. Hay, J. King, M. Lockett, M. McGrouther, and S. Reader (Australian Museum Sydney, Australia) for help with X-rays, photography and logistics, I. Byrkjedal, G. Langhelle (Natural History Collections Bergen, Norway) for shipping specimens and information, D.B. Garcia, R. Bahón, and A. de Carlos (Universidade de Vigo) for access to sequences and specimen information, K. Conway (University of Texas) for specimen examination, J. Pogonoski, A. Graham, B. Ward, and S. Appleyard (Commonwealth Scientific and Industrial Research Organisation, Australia), T. Sutton, A. Bernard, R. Eytan, M. Shivji (DEEPEND project’), and T. Elliott, R. Hanner and D. Steinke (Boldsystems.org) for access to sequences, A.M. Prokofiev (Severtsov Institute of Ecology and Evolution) for information, S.W. Knudsen for DNA samples and M.A. Krag (Zoological Museum University of Copenhagen, Denmark) for X-rays, catalogue numbers, and shipping the specimen. I owe a special thanks to J.R. Paxton (Australian Museum Sydney, Australia), G.A. Boxshall (British Museum of Natural History, U.K.), J. Hildberg (private, www.fauna.is, Iceland), and T.W. Pietsch (Burke Museum University of Washington, U.S.) T.P. Satoh (The Kyoto University Museum, Japan) for advice, barcodes, specimen examinations, or help with illustrations. I thank reviewers for constructive comments. This research received no specific grant from any funding agency, commercial or not-for-profit sectors (part of a larger effort to register the biodiversity and facilitate onboard fish identification in Greenland and subarctic Atlantic waters).

REFERENCES

Anonymous 2012. Free and open access to biodiversity data. GBIF; Global Biodiversity Information Facility. [Accessed on 1 March 2017.] https://www.gbif.org

Bañón R., Arronte J.C., Vázquez-Dorado S., Del Río J.L., De Carlos A. 2013. DNA barcoding of the genus *Lepidion* (Gadiformes: Morididae) with recognition of *Lepidion eques* as a junior synonym of *Lepidion lepidion*. Molecular Ecology Resources 13 (2): 189–199. DOI: 10.1111/1755-0998.12045

Bañón R., Barros-García D., Arronte J.C., Comeña A.S., Sánchez-Ruïlola L., de Carlos A. 2019. Deep sea anglerfishes (Lophiiformes: Ceratioidei) from the western North Atlantic: Testing the efficacy of DNA barcodes. Journal of Zoological Systematics and Evolutionary Research 57 (3): 606–622. DOI: 10.1111/jzs.12281

Bañón R., Pietsch T.W., Piñeiro C.-G. 2006. New record of *Linophryne coronata* (Lophiiformes, Linophynidae) from the North-eastern Atlantic Ocean. Cybium 30 (4): 385–386.

Barros-García D., Bañón R., Arronte J.C., Fernández-Peralta L., García R., Iglesias S.P., Sellos D.Y., Barreiros J.P., Comeña Á.S., De Carlos A. 2018. New insights into the systematics of North Atlantic *Gaidropsarus* (Gadiformes, Gadidae): Flagging synonyms and hidden diversity. Marine Biology Research 14(1): 17–29. DOI: 10.1080/17551000.2017.1367403

Bertelsen E. 1951. The ceratioid fishes. Ontogeny, taxonomy, distribution and biology. Dana Reports 39: 1–276.

Bertelsen E. 1976. Records of parasitic males in three species of *Linophryne* (Pisces, Ceratoidei). Steenstrupia 4: 7–18.

Bertelsen E. 1986. Ceratoidei. Pp. 1371–1414. In: Whitehead P.J.P., Bauchot M.-L., Hureau J.-C., Nielsen J., Tortonese E. (eds.) Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 3. UNESCO, Paris.

Bertelsen E., Krefft G. 1965. On a rare ceratioid fish, *Linophryne lucifer* Collett, 1886. Videnskabelige Meddelelser fra den Naturhistoriske forening i Kjøbenhavn 128: 293–301.

Boxshall G.A. 1998. Host specificity in copepod parasites of deep-sea fishes. Journal of Marine Systems 15 (1–4): 215–223. DOI: 10.1016/S0924-7963(97)00058-4

Chang C.-H., Shao K.-T., Lin H.-Y., Chiu Y.-C., Lee M.-Y., Liu S.-H., Lin P.-L. 2017. DNA barcodes of the

1 This research was made possible in part by a grant from The Gulf of Mexico Research Initiative. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (DOI: 10.7266/N7R49NTN, DOI: 10.7266/N709P0X3T).
Ceratioids in the subarctic North Atlantic

natural ray-finned fishes in Taiwan. Molecular Ecology Resources 17 (4): 796–805. DOI: 10.1111/1755-0998.12601

Espíñeira M., González-Lavin N., Vieites J.M., Santaclara F.J. 2008. Authentication of anglerfish species (Lophius spp) by means of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and forensically informative nucleotide sequencing (FINS) methodologies. Journal of Agricultural and Food Chemistry 56 (22): 10594–10599. DOI: 10.1021/jf01728aq

Gaemers P.A., Poulsen J.Y. 2017. Recognition and distribution of two North Atlantic Gadculus species, G. argenteus and G. thorii (Gadidae), based on otolith morphology, larval pigmentation, molecular evidence, morphometrics and meristics. Fishes 2 (3): e15. DOI: 10.3390/fishes2030015

Hansen K., Herring P.J. 1977. Dual bioluminescent systems in the anglerfish genus Linophryne (Pisces: Ceratioidei). Journal of Zoology 182 (1): 103–24. DOI: 10.1111/j.1469-7989.1977.tb04144.x

Haygood M.G., Distel D.L., Herring P.J. 1992. Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. Journal of the Marine Biological Association of the United Kingdom 72 (1): 149–159. DOI: 10.1017/S0025315400048852

Hendry T.A., Freed L.L., Fader D., Fenolio D., Sutton T.T., Lopez J.V. 2018. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio 9 (3): e01033-18. DOI: 10.1128/mBio.01033-18

Jónsson G. 1967. Sjaldséður fiskur veiðist við Grøenland. [A rare fish caught off Greenland.] Ægir 60 (17): 316–317. [In Icelandic.]

Jónsson G., Pálsson J. 1999. Fishes of the suborder Ceratioidei (Pisces: Lophiiformes) in Icelandic and adjacent waters. Rit Fiskideildar 16: 197–207.

Jónsson G., Pálsson J. 2013. Íslenskri Fiskar. [Icelandic fishes.] 2nd edn. Mál og menning, Reykjavík, Iceland. [In Icelandic.]

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2): 111–120. DOI: 10.1007/BF01731581

Klimpel S., Palm H.W., Busch M.W., Kellermanns E., Rückert S. 2006. Fish parasites in the Arctic deep-sea: Poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish. Deep Sea Research Part I: Oceanographic Research Papers 53 (7): 1167–1181. DOI: 10.1016/j.dsr.2006.05.009

Klimpel S., Seehagen A., Palm H.W., Rosenthal H. 2001. Deep-water metazoan fish parasites of the world. Logos Verlag, Berlin, Germany.

Knebelserberger T., Landi M., Neumann H., Klopffmann M., Sell A.F., Campbell P.D., Laakmann S., Raupach M.J., Carvalho G.R., Costa F.O. 2014. A reliable DNA barcode reference library for the identification of the north European shelf fish fauna. Molecular Ecology Resources 14 (5): 1060–1071. DOI: 10.1111/1755-0998.12238

Kenchington E.L., Baillie S.M., Kenchington T.J., Bentzen P. 2017. Barcoding Atlantic Canada’s mesopelagic and upper bathypelagic marine fishes. PLoS ONE 12 (9): e0185173. DOI: 10.1371/journal.pone.0185173

Landi M., Dimech M., Arculeo M., Biondo G., Martins R., Carneiro M., Carvalho G.R., Brutto S.L., Costa F.O. 2014. DNA barcoding for species assignment: The case of Mediterranean marine fishes. PLoS One 9 (9): e106135. DOI: 10.1371/journal.pone.0106135

Lütken C. 1871. Oneirodes Eschrichtii Ltk. en ny grønlandsk Tudselskif. [Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider i Aaret 1871. Pp. 56–74. Oneirodes Eschrichtii nouveau poisson du Grønland de la famille des Baudrioides. Résommée du Bulletin de la Société Royale Danoise des Sciences pour l’année 1871. Pp. 9–18. [In Danish and French.]

Martin W.E. 1975. Hydrichthys pietshi, new species, (Coelenterata) parasitic on the fish, Ceratias holboelli. Bulletin of the Southern California Academy of Sciences 74 (1): 1–5.

McCusker M.R., Denti D., Guelpen L., Kenchington E., Bentzen P. 2013. Barcoding Atlantic Canada’s commonly encountered marine fishes. Molecular Ecology Resources 13 (2): 177–188. DOI: 10.1111/1755-0998.12043

Miya M., Pietsch T.W., Orr J.W., Satoh T.P., Shedlock A.M., Ho H.-C., Shimazaki M., Yabe M., Nishida M. 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): A mitogenomic perspective. BMC Evolutionary Biology 10: e58. DOI: 10.1186/1471-2148-10-58

Miya M., Takeshima H., Endo H., Ishiguro N.B., Inoue J.G., Mukai T., Yamaguchi M., Kawauchi A., Mabuchi K., Shirai S.M., Nishida M. 2003. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26 (1): 121–38. DOI: 10.1016/S1055-7903(02)00332-9

Møller P.R., Nielsen J.G., Knudsen S.W., Poulsen J.Y., Sünkens K., Jorgensen O.A. 2010. A checklist of the fish fauna of Greenland waters. Zootaxa 2378 (1): 1–84.

Munk Ö., Hansen K., Herring P.J. 1998. On the development and structure of the escal light organ of some melanocetid deep sea anglerfishes (Pisces: Ceratioidei). Journal of the Marine Biological Association of the United Kingdom 78 (4): 1321–1335. DOI: 10.1017/S0025315400044520

Parr A.E. 1927. Ceratioidei. Scientific results of the third oceanographic expedition of the “Pawnee” 1927. Bulletin of the Bingham Oceanographic Collection Yale University 3: 1–34.
Piasecki W., Avenant-Oldewage A. 2008. Diseases caused by Crustacea. Pp. 1115–1200. In: Eras J., Segner H., Wahli T., Kapoor B.G. (eds.) Fish diseases. Science Publishers, Enfield NH, USA.

Pietsch T.W. 1974. Osteology and relationships of ceratioid anglerfishes of the family Oneirodidae, with a review of the genus Oneirodes Lütken. Science Bulletin [Natural History Museum, Los Angeles County] No. 18: 1–113.

Pietsch T.W. 1976. Dimorphism, parasitism and sex: Reproductive strategies among deepsea ceratioid anglerfishes. Copeia 1976 (4): 781–793. DOI: 10.2307/1443462

Pietsch T.W. 1978. A new genus and species of ceratoid anglerfish from the North Pacific Ocean with a review of the allied genera Ctenochirichthys, Chiropryne and Leptacanthichthys. Natural History Museum of Los Angeles County Contributions in Science No. 297: 1–25.

Pietsch T.W. 2002. Lophiiformes. Pp. 1043–1070. In: Carpenter K.E. (ed.) The living marine resources of the Western Central Atlantic. Volume 2: Bony fishes part 1 (Acipecideridae to Grammatidae). FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication 5. Rome.

Pietsch T.W. 2005. Dimorphism, parasitism, and sex revisited: Modes of reproduction among deep-sea ceratioid anglerfishes (Teleostei: Lophiiformes). Ichthyological Research 52 (3): 207–236. DOI: 10.1007/s10228-005-0286-2

Pietsch T.W. 2009. Oceanic anglerfishes. Extraordinary diversity in the deep sea. University of California Press, Berkeley and Los Angeles, London.

Pietsch T.W., Orr J.W. 2007. Phylogenetic relationships of deep-sea anglerfishes of the suborder Ceratioidei (Teleostei: Lophiiformes) based on morphology. Copeia 2007 (1): 1–34.

Poulsen J.Y. 2015a. Fifth confirmed record and North Atlantic range expansion of the rare pelagic bobtail snipe eel genus Neocyema (Cymatinidae, Elopomorpha). Marine Biodiversity Records 8: e53. DOI: 10.1007/s12526-015-0024X

Poulsen J.Y. 2015b. A new species of pencil smelt Nansenella boreacrassicauda (Microstomatidae, Argentiniformes) from the North Atlantic Ocean. Zootaxa 4020 (3): 517–532. DOI: 10.11646/zootaxa.4020.3.6

Poulsen J.Y., Byrkjedal I., Willassen E., Rees D., Takeshima H., Satoh T.P., Shinohara G., Nishida M., Miya M. 2013. Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of Myctophiformes (Neoteleostei). BMC Evolutionary Biology 13: e111. DOI: 10.1186/1471-2148-13-111

Poulsen J.Y., Sado T., Hahn C., Byrkjedal I., Moku X., Miya M. 2016. Preservation obscures pelagic deep-sea fish diversity: Doubling the number of sole-bearing opisthoproctids and resurrection of the genus Monocoa (Opisthoproctidae, Argentiniformes). PLoS One 11 (8): e0159762. DOI: 10.1371/journal.pone.0159762

Poulsen J.Y., Thorildsen S., Arboe N.H. 2018. Identification keys to halosaurs and notacanthids (Notacanthiformes, Elopomorpha) in the subarctic Atlantic Ocean including three new distributional records and multiple molecular OTUs of Notacanthus cf. chemnitzii. Marine Biodiversity 48 (2): 1009–1025. DOI: 10.1007/s12526-017-0762-8

Prokofiev A.M. 2014. New species and new records of deepsea anglerfish of the family Oneirodidae. Journal of Ichthyology 54 (8): 602–607. DOI: 10.1134/S0032945214050075

Ratnasingham S., Hebert P.D.N. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7 (3): 355–364. DOI: 10.1111/j.1471-8286.2007.01678.x

Sutton T.T., Clark M.R., Dunn D.C., Halpin P.N., Rogers A.D., Guinotte J., Bograd S.J., Angel M.V., Perez J.A.A., Wishner K., Haedrich R.L., Lindsay D.J., Drazen J.C., Vereshchaka A., Piatkowski U., Morato T., Blachowiak-Samolyk K., Robison B.H., Gjerde K.M., Pierrot-Bults A., Bernal P., Reygondeau G., Heino M. 2017. A global biogeographic classification of the mesopelagic zone. Deep Sea Research Part I: Oceanographic Research Papers 126: 85–102. DOI: 10.1016/j.dsr.2017.05.006

Sutton T.T., Letessier T.B., Bardarson B. 2013. Midwater fishes collected in the vicinity of the Sub-Polar Front, Mid-North Atlantic Ocean, during ECOMAR pelagic sampling. Deep Sea Research Part II: Topical Studies in Oceanography 8649.2008.02080.x

Vecchione M., Falkenhaug T., Sutton T., Cook A., Gislason A., Hansen H., Piatkowski U., Porteiro F., Søiland H., Bergstad O.A. 2015. The effect of the North Atlantic Subpolar Front as a boundary in pelagic biogeography decreases with increasing depth and organism size. Progress in Oceanography 138 (Part A): 105–115. DOI: 10.1016/j.pocean.2015.08.006

Ward R.D., Hanner R., Hebert P.D. 2009. The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology 74 (2): 329–356. DOI: 10.1111/j.1095-8649.2008.02080.x

Received: 17 January 2019
Accepted: 31 March 2019
Published electronically: 15 December 2019