Abstract

Background: Symmetrically inverted or biphasic T waves in anterior precordial leads, Wellens’ sign, have been shown to represent impending infarction of left anterior descending (LAD) territory among unstable angina patients in the studies published more than 3 decades ago, when non-ST-segment elevation myocardial infarction (NSTEMI) was not a recognized entity. The clinical implication of Wellens’ sign in the contemporary NSTEMI cohort has not been clarified.

Methods: We performed a retrospective analysis of all NSTEMI patients who underwent coronary angiography between January 2013 and June 2014. Wellens’ sign was defined as either symmetrically inverted T waves (≥ 0.10 mV) or biphasic T waves in both leads V2 and V3. Coronary angiograms were reviewed and culprit lesions were determined for each patient.

Results: A total of 274 patients were included in the final analysis, of whom 24 (8.8%) had Wellens’ sign. Among these 24 patients, 16 had a LAD culprit (eight proximal), two had a non-LAD culprit, and six had non-obstructive coronary artery disease. Patients with Wellens’ sign were more likely to have LAD culprit (66.7% vs. 19.6%, P < 0.001) and proximal LAD culprit (33.3% vs. 14.4%, P = 0.035) than those without it. Wellens’ sign had a sensitivity of 24.6% and a specificity of 96.2% to predict LAD culprit.

Conclusions: Our study revealed that: 1) Wellens’ sign was seen in 8.8% of the patients with NSTEMI; 2) Two-thirds of patients with Wellens’ sign had LAD culprit and one-third had proximal LAD culprit; and 3) Sensitivity and specificity of Wellens’ sign to predict LAD culprit were 24.6% and 96.2%, respectively.

Keywords: Wellens’ sign; NSTEMI; LAD culprit

Introduction

Electrocardiogram plays a fundamental role in the diagnosis and risk-stratification in patients with acute myocardial infarction. Acute myocardial infarction due to a culprit lesion in the left anterior descending (LAD) artery, which supplies a large territory of the left ventricle, results in wide-spread myocardial injury leading to worse clinical outcomes [1, 2]. Therefore, it is crucial to promptly identify patients with LAD culprit lesion who are at an increased risk for adverse events.

Unlike in patients with ST-segment elevation myocardial infarction, the identification of the infarct-related artery is often challenging in non-ST-segment elevation acute coronary syndrome since the location of ST-segment changes generally does not correlate with infarct location. Nevertheless, the presence of either symmetrically inverted or biphasic T waves in anterior precordial leads, so-called Wellens’ sign, has been reported to predict LAD culprit lesion in patients with unstable angina in the studies published almost 3 decades ago when sensitive biomarker cardiac troponin was not available [3-5]. Although it is assumed that some of the patients with unstable angina in these studies would have had troponin elevation and been diagnosed with non-ST-elevation myocardial infarction (NSTEMI) if cardiac troponin had been available, the prevalence of Wellens’ sign and its predictive value for LAD culprit lesion have not been clarified in a contemporary NSTEMI cohort.

In this context, we aimed to evaluate the prevalence of Wellens’ sign and its predictive value for LAD culprit lesion in patients with NSTEMI who underwent coronary angiography.

Materials and Methods

We performed a retrospective analysis on 481 consecutive NSTEMI patients who underwent coronary angiography within 5 days from presentation between January 2013 and June 2014. Myocardial infarction was diagnosed in accordance with the European Society of Cardiology and American College of Cardiology criteria [6]. Inclusion criteria were: 1) Troponin I level greater than the 99th percentile reference value before cardiac catheterization; 2) Chest pain (or anginal equivalent) or ischemic change on electrocardiogram including horizontal or down-sloping ST-segment depression (≥ 0.05 mV) or T-wave inversion (≥ 0.10 mV) in two or more contiguous leads; and
3) The absence of ST-segment elevation on electrocardiogram. We excluded patients with complete bundle branch block (n = 49), those with ventricular paced rhythm (n = 8), those with electrocardiographic left ventricular hypertrophy (n = 99), and those with pathologic Q wave in leads V2 and V3 (n = 5). In addition, we excluded patients with history of coronary artery bypass grafting (CABG) (n = 31) since identification of the culprit lesion in those patients is often difficult. We also excluded patients with more than one presumed culprit lesions (n = 15).

The present study complied with the Declaration of Helsinki and was approved by the institutional review board.

Demographic, hemodynamic and laboratory data

Electronic medical records were reviewed and following patients’ demographic data such as age, gender, body mass index, history of hypertension, history of diabetes mellitus, history of hyperlipidemia, history of chronic kidney disease, personal and family history of coronary artery disease (CAD), current smoking status, and previous myocardial infarction were abstracted. Thrombolysis in myocardial infarction (TIMI) risk score was calculated and classified into three groups: low risk (0 - 2), intermediate risk (3 - 4), and high risk (5 - 7). Initial presenting vital signs such as systolic blood pressure, diastolic blood pressure, and heart rate were recorded. In addition, the presence of chest pain at emergency department was recorded.

Laboratory data on admission including white blood cell count, hemoglobin level, and estimated glomerular filtration rate (eGFR) were recorded. Cardiac troponin I was measured using the second-generation VITROS® troponin I assay (Ortho-Clinical Diagnostics Inc., NJ, USA). The upper limit of normal for cardiac troponin I was 0.034 µg/L, which represented the 99th percentile reference value.

Transthoracic echocardiography was performed in a standard manner during hospitalization. Left ventricular ejection fraction was obtained using either the Teichholz or biplane Simpson’s method.

Electrocardiogram

Standard 12-lead electrocardiograms (25 mm/s and 10 mm = 1 mV) were obtained from all patients at the time of presentation to the emergency department and were reviewed by two independent reviewers in a blinded fashion. In the event of any discrepancy in the assessments, the two reviewers reached a consensus through discussion.

Wellens’ sign was present when there are either symmetrically inverted T waves (≥ 0.10 mV) or biphasic T waves in both leads V2 and V3 along with previous studies [3, 4]. Example electrocardiograms with symmetrically inverted T waves (≥ 0.10 mV) (Fig. 1a) and biphasic T waves in both leads V2 and V3 (Fig. 1b) are presented in Figure 1. In patients with symmetrically inverted T waves, a depth of T-wave inversion was measured from T-P segment as the baseline. ST-segment deviations were measured at the J point. ST-segment depression ≥ 0.05 mV in more than two contiguous leads was recorded.

The cut-off of ≥ 0.05 mV was chosen in line with current universal definition of myocardial infarction [6]. The location of ST-segment depression was recorded as anterior (V1 - V4), lateral (I, aVL,V5, and V6), and inferior (II, III, and aVF).

Left ventricular hypertrophy defined by Sokolow-Lyon voltage amplitude criteria $S_{V1} + R_{V5}$ or $V6$ ≥ 3.5 mV and Cornell voltage criteria $S_{V3} + R_{aVL} ≥ 2.8$ mV in men and ≥ 2.0 mV in women [7, 8]. In patients with left anterior hemi-block, left ventricular hypertrophy was defined by $S_{III} +$ maximal precordial R + S ≥ 3.0 mV [9].

Coronary angiography

All patients underwent coronary angiography within 5 days from presentation. An independent cardiologist blinded to the clinical data reviewed all coronary angiography, and the assessment was compared to the primary assessment by the treating cardiologist. In the event of a discrepancy between the assessments, a third investigator made the final interpretation. Obstructive CAD was defined as stenosis ≥ 50% in the left main coronary artery and ≥ 70% in any other epicardial coronary arteries. The culprit lesion was determined based on the echocardiographic and angiographic findings including previous coronary angiography, if available. Proximal LAD artery was defined as that proximal to the first septal branch. Revascularization procedures including percutaneous coronary intervention (PCI) and CABG were performed at the discretion of the treating physician. In addition, coronary blood flow was graded according to TIMI criteria [10].

End points

The primary end point was the prevalence of LAD culprit. In addition, in-hospital mortality and recurrent myocardial infarction were recorded.

Statistic analyses

Data was expressed as either a number (percentage) or median (interquartile range). Continuous variables were compared using
the Wilcoxon rank sum test. Dichotomous variables were compared using the Chi-square test or Fisher’s exact test. Two-sided P values < 0.05 were considered statistically significant. All statistical analyses were performed using R software (version 3.0.1).

Results

Baseline, hemodynamic, and laboratory data

After excluding 207 patients who met the exclusion crite-
ria, a total of 274 patients with NSTEMI who underwent coronary angiography were included, of whom 24 patients (8.8%) had Wellens’ sign. Baseline demographic and clinical characteristics are summarized in Table 1. Baseline clinical characteristics are comparable between patients with or without Wellens’ sign except for that patients with Wellens’ sign were more likely to be female. Majority of patients with or without Wellens’ sign had chest pain at emergency department. Patients with Wellens’ sign had a lower left ventricular ejection fraction than those without it, whereas peak troponin I values were comparable between the two groups.

| Table 1. Demographic, Hemodynamic, and Laboratory Characteristics of Patients With and Without Wellens’ Sign |
|--|--|----------------------------------|
| Demographics | Wellens’ sign (n = 24) | Control (n = 250) |
| Age (years) | 68 (58 - 79) | 64 (55 - 72) |
| Female | 15 (62.5) | 97 (38.8) |
| Body mass index (kg/m²) | 26.3 (24.6 - 28.9) | 27.5 (24.1 - 30.8) |
| Hypertension | 15 (62.5) | 177 (70.8) |
| Diabetes mellitus | 6 (25.0) | 82 (32.8) |
| Hyperlipidemia | 10 (41.7) | 141 (56.4) |
| Chronic kidney disease | 7 (29.2) | 59 (23.6) |
| History of coronary artery disease | 6 (25.0) | 50 (20.0) |
| Family history of coronary artery disease | 3 (12.5) | 61 (24.4) |
| Current smoker | 4 (16.7) | 68 (27.2) |
| Previous myocardial infarction | 1 (4.2) | 31 (12.4) |
| Thrombolysis in myocardial infarction risk score | | |
| Low risk (0 - 2) | 8 (33.3) | 54 (21.6) |
| Intermediate risk (3 - 4) | 12 (50.0) | 147 (58.8) |
| High risk (5 - 7) | 4 (16.7) | 49 (19.6) |
| Symptom, presence of chest pain at emergency room | 19 (79.2) | 219 (87.6) |
| Hemodynamic and laboratory data | | |
| Systolic blood pressure (mm Hg) | 141 (122 - 159) | 140 (123 - 156) |
| Diastolic blood pressure (mm Hg) | 76 (73 - 98) | 80 (72 - 91) |
| Heart rate (beat/min) | 82 (64 - 88) | 75 (66 - 89) |
| Hemoglobin (g/L) | 13.0 (12.1 - 14.3) | 13.5 (12.2 - 14.5) |
| White blood cell count (10³/L) | 8.2 (6.9 - 11.0) | 8.5 (6.7 - 10.3) |
| eGFR (mL/min/1.73 m²) | 69 (54 - 88) | 80 (61 - 93) |
| Elevated first troponin | 22 (91.7) | 212 (84.8) |
| Peak troponin I (µg/L) | 0.67 (0.11 - 4.36) | 0.94 (0.14 - 6.45) |
| Killip class on admission | | |
| Killip class I on admission | 21 (87.5) | 229 (91.6) |
| Killip class II on admission | 1 (4.2) | 18 (7.2) |
| Killip class III on admission | 1 (4.2) | 2 (0.8) |
| Killip class IV on admission | 1 (4.2) | 1 (0.4) |
| Left ventricular ejection fraction (%) | 53 (45 - 60) | 60 (55 - 65) |

Data are expressed as a number (percent) or median (interquartile range). eGFR: estimated glomerular filtration rate.
Electrocardiographic characteristics

Electrocardiographic characteristics are summarized and presented in Table 2. Among the 24 patients with Wellens’ sign, 10 patients had biphasic T waves in both leads V2 and V3, and 14 patients had symmetrically inverted T waves (≥ 0.10 mV) in both leads V2 and V3. Among the 14 patients with symmetric T-wave inversion, 11 had T-wave inversion (≥ 0.20 mV) and four had T-wave inversion (≥ 0.30 mV) in both leads V2 and V3. Among the 24 patients with Wellens’ sign, 14 patients had similar T-wave abnormalities in lead V1, 18 patients in lead V4, 12 patients in lead V5, and eight patients in lead V6. Patients with Wellens’ sign were less likely to have concomitant ST depression.

The sensitivity and specificity of electrocardiographic findings predicting for LAD culprit are presented in Table 3. Wellens’ sign (presence of either symmetrically inverted T waves (≥ 0.10 mV) or biphasic T waves in both leads V2 and V3) had a sensitivity of 24.6% and a specificity of 99.0% for LAD culprit lesion. Biphasic T waves in both leads V2 and V3 had a sensitivity of 12.3% and a specificity of 97.1%. As the cut-off of T-wave inversion increases, a sensitivity fell to 9.2% for T-wave inversion (≥ 0.20 mV) and 3.1% for T-wave inversion (≥ 0.30 mV) with specificity of 97.6% for T-wave inversion (≥ 0.20 mV) and 99.0% for T-wave inversion (≥ 0.30 mV), respectively.

Angiographic characteristics and revascularization procedures

Angiographic characteristics are presented in Table 4. Among the 24 patients with Wellens’ sign, 16 patients had a LAD culprit (eight proximal and eight mid LAD), two had a non-LAD culprit (circumflex lesions), and six had non-obstructive CAD. Patients with Wellens’ sign were more likely to have LAD culprit compared to those without it (66.7% vs. 19.6%, P < 0.001). Among the 16 patients with Wellens’ sign and LAD culprit, one patient had 100% occlusion, seven patients had 99% stenosis, five patients had 90% stenosis, and three patients had
75% stenosis. Patients with Wellens’ sign were less likely to have pre-procedural TIMI flow 0/1 compared with those without it (4.2% vs. 20.0%, P = 0.058). Patients with Wellens’ sign were less likely to have left main and/or three-vessel disease (4.2% vs. 20.4%, P = 0.057). The rate of non-obstructive CAD was comparable between the two groups (25.0% vs. 21.6%, P = 0.70).

The rates of revascularization procedures such as PCI and CABG are comparable between patients with or without Wellens’ sign. Except for one patient with three-vessel disease who underwent CABG, all of the patients with Wellens’ sign and LAD culprit received PCI to LAD during the index admission.

Endpoints

In-hospital clinical outcomes are summarized in Table 4. In our cohort of patients with NSTEMI, one patient died during the index admission and one patient suffered from recurrent myocardial infarction. The rate of in-hospital mortality and recurrent myocardial infarction were similar between the two groups.

Discussion

Our study revealed that: 1) Wellens’ sign, defined as the presence of either symmetrically inverted T waves (≥ 0.10 mV) or biphasic T waves in both leads V2 and V3, was seen in 8.8% of the patients with NSTEMI; 2) Two-thirds of the NSTEMI patients with Wellens’ sign had LAD culprit lesion and one-third had proximal LAD culprit lesion; and 3) Sensitivity and specificity of Wellens’ sign to predict LAD culprit lesion were 24.6% and 96.2%, respectively.

More than 3 decades ago, de Zwaan et al were the first to...
describe symmetrically inverted or biphasic T waves in precor-
dial leads in patients with unstable angina, which later became
to be known as Wellens’ sign [3]. In their study, 17.9% of
the patients with unstable angina had this electrocardiographic
finding. Among the patients with Wellens’ sign who underwent
coronary angiography, 69.2% of them had either total occlu-
sion or high-grade stenosis in proximal LAD. During the index
admission, 7.5% of the patients with Wellens’ sign who did
not undergo coronary angiography developed extensive anteri-
or wall myocardial infarction. Subsequently, de Zwaan et al re-
evaluated Wellens’ sign in a large cohort of 1,260 patients with
unstable angina and reported the prevalence of Wellens’ sign
as 16.2% [4]. Coronary angiography was performed in 88.2%
of the patients with Wellens’ sign and 29% of the patients with
Wellens’ sign had either total occlusion or high-grade steno-
sis of proximal LAD. Among patients with Wellens’ sign who
did not undergo early revascularization, 30.3% of them devel-
oped acute myocardial infarction during follow-up, suggesting
that Wellens’ sign identifies high-risk patients with impending
LAD occlusion [3, 4].

These pioneer studies were performed before the wide-
spread use of sensitive biomarker cardiac troponin [5] and it
can be assumed that some of the unstable angina patients in
these studies would have been diagnosed with NSTEMI if car-
diac troponin had been available. The clinical implication of
Wellens’ sign in a contemporary NSTEMI cohort has not been
evaluated. Our study revealed that Wellens’ sign was seen in
8.8% of NSTEMI patients and that 66.7% of the patients with
Wellens’ sign had LAD culprit lesion and one-third had proximal
LAD culprit, which was consistent with the result of prior study
[4]. The presence of Wellens’ sign had a predictive value for LAD culprit with a sensitivity of 24.6% and a
specificity of 96.2%. Notably, despite its high specificity of
Wellens’ sign for LAD lesion, it was also observed in patients
with non-LAD culprit lesions and non-obstructive CAD. It has
been reported that Wellens’ sign can be seen in a patient with
normal coronary artery, mitral valve prolapse, and Prinzmert-
al’s angina [3].

Although the exact mechanism of Wellens’ sign has not
been fully understood, a probable explanation is a brief tran-
sient episode of myocardial ischemia [4]. It has been reported
that, during an attack of chest pain, patients with Wellens’ sign
lose their characteristic T-wave abnormalities or develop ST-
segment elevation [4]. In our present study, almost all patients
with Wellens’ sign had pre-procedural TIMI flow 2 or 3. This
suggests that Wellens’ sign represents impending but canalized
LAD culprit lesion in patients with NSTEMI.

In our present study, we chose cut-off of ≥ 0.10 mV for
symmetrically inverted T waves. This is because as the cut-off
of T-wave inversion increases, a sensitivity for LAD culprit
falls to 9.2% for T-wave inversion (≥ 0.20 mV) and 3.1% for T-
wave inversion (≥ 0.30 mV) with a similar specificity of 97.6%
for T-wave inversion (≥ 0.20 mV) and 99.0% for T-wave inver-
sion (≥ 0.30 mV). In addition, it was reported that the depth of
inverted T waves did not carry a prognostic significance in de
Zwaan’ study [3].

This study has several limitations, including a retrospec-
tive design, a relatively small number of patients, and the lack
of data on long-term clinical outcomes. We only included pa-
tients who underwent coronary angiography, and thus general-
izability of our findings is limited. In addition, since follow-up
electrocardiograms were available in a limited number of pa-
tients, we do not know if Wellens’ sign improved after revascular-
ization. However, prior studies demonstrated the resolution
of those T-wave abnormalities after revascularization [3, 4].
Finally, the prognostic value of Wellens’ sign for predicting short-
and long-term outcomes is subject to further studies in
larger cohorts.

Conclusions

The present study demonstrated that Wellens’ sign was seen in
8.8% patients with NSTEMI. Two-thirds of the NSTEMI pa-
tients with Wellens’ sign had LAD culprit lesion and one-third
had proximal LAD culprit lesion. Wellens’ sign had a predic-
tive value for LAD culprit with a sensitivity of 24.6% and a
specificity of 96.2%.

Acknowledgments

None.

Financial Disclosure

None.

Conflict of Interest

None.

Informed Consent

Not applicable.

Author Contributions

All the authors contributed to the institutional review board
application process, data collection, analysis of the data, and
writing of the manuscript.

References

1. Haim M, Hod H, Reisin L, Kornowski R, Reicher-Reiss
H, Goldbourt U, Boyko V, et al. Comparison of short-
and long-term prognosis in patients with anterior wall
versus inferior or lateral wall non-Q-wave acute myocar-
dial infarction. Secondary Prevention Reinfarction Israeli
Nifedipine Trial (SPRINT) Study Group. Am J Cardiol.
1997;79(6):717-721.

2. Behar S, Rabinowitz B, Zion M, Reicher-Reiss H, Ka-
plinsky E, Abinader E, Agmon J, et al. Immediate and long-term prognostic significance of a first anterior versus first inferior wall Q-wave acute myocardial infarction. Secondary Prevention Reinfarction Israeli Nifedipine Trial (SPRINT) Study Group. Am J Cardiol. 1993;72(18):1366-1370.

3. de Zwaan C, Bar FW, Wellens HJ. Characteristic electrocardiographic pattern indicating a critical stenosis high in left anterior descending coronary artery in patients admitted because of impending myocardial infarction. Am Heart J. 1982;103(4 Pt 2):730-736.

4. de Zwaan C, Bar FW, Janssen JH, Cheriex EC, Dassen WR, Brugada P, Penn OC, et al. Angiographic and clinical characteristics of patients with unstable angina showing an ECG pattern indicating critical narrowing of the proximal LAD coronary artery. Am Heart J. 1989;117(3):657-665.

5. Hamm CW, Ravkilde J, Gerhardt W, Jorgensen P, Peheim E, Ljungdahl L, Goldmann B, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med. 1992;327(3):146-150.

6. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Joint ESCAHAHAWHTFfUDoMI, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581-1598.

7. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J. 1949;37(2):161-186.

8. Casale PN, Devereux RB, Kligfield P, Eisenberg RR, Miller DH, Chaudhary BS, Phillips MC. Electrocardiographic detection of left ventricular hypertrophy: development and prospective validation of improved criteria. J Am Coll Cardiol. 1985;6(3):572-580.

9. Gertsch M, Theler A, Foglia E. Electrocardiographic detection of left ventricular hypertrophy in the presence of left anterior fascicular block. Am J Cardiol. 1988;61(13):1098-1101.

10. Timi Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med. 1985;312(14):932-936.