Land Use Specific Ammonia Deposition Velocities: a Review of Recent Studies (2004–2013)

Frederik Schrader · Christian Brümmer

Received: 28 May 2014 / Accepted: 7 August 2014 / Published online: 13 September 2014
© Springer International Publishing Switzerland 2014

Abstract Land use specific deposition velocities of atmospheric trace gases and aerosols—particularly of reactive nitrogen compounds—are a fundamental input variable for a variety of deposition models. Although the concept is known to have shortcomings—especially with regard to bi-directional exchange—the often limited availability of concentration data and meteorological input variables make it a valuable simplification for regional modeling of deposition fluxes. In order to meet the demand for an up-to-date overview of recent publications on measurements and modeling studies, we compiled a database of ammonia (NH₃) deposition velocities published from 2004 to 2013. Observations from a total of 42 individual studies were averaged using an objective weighing scheme and classified into seven land use categories. Weighted average and median deposition velocities are 2.2 and 2.1 cm s⁻¹ for coniferous forests, 1.5 and 1.2 cm s⁻¹ for mixed forests, 0.9 and 0.7 cm s⁻¹ for deciduous forests, 0.7 and 0.6 cm s⁻¹ for semi-natural sites, 0.7 and 0.8 cm s⁻¹ for urban sites, 0.7 and 0.6 cm s⁻¹ for water surfaces, and 1.0 and 0.4 cm s⁻¹ for agricultural sites, respectively. Thus, values presented in this compilation were considerably lower than those found in former studies (e.g., VDI 2006). Reasons for the mismatch were likely due to different land use classification, different averaging methods, choices of measurement locations, and improvements in measurement and in modeling techniques. Both data and code used for processing are made available as supplementary material to this article.

Keywords NH₃ · Ammonia · Deposition velocity · Review

1 Introduction

Atmospheric ammonia (NH₃) has long been recognized as a major airborne pollutant. It can act as a precursor for aerosols, and its deposition has a significant impact on soil acidification, ecosystem eutrophication and, consequently, changes in species composition and biodiversity (Sutton et al. 2011). In order to assess the impact of ammonia emissions and transport, mainly caused by livestock and fertilization (Bouwman et al. 1997), some air quality models (e.g., the AUSTAL2000 model of Janicke 2002) use a so-called inferential method; that is, the deposition flux \(F \) (g m⁻² s⁻¹) is calculated as the product of the concentration of a compound at a certain reference height, \(c_{zR} \) (µg m⁻³), and a proportionality constant, the deposition velocity \(v_d \) (cm s⁻¹) (Wesely and Hicks 2000). In addition, land use specific average deposition velocities may be used for quick estimates of N deposition to an ecosystem, or to verify plausibility of flux measurements and model results.

Conceptually, using tabulated deposition velocities for a certain land use category is based on strongly simplified assumptions about the relationship between near-ground NH₃ concentrations and the respective deposition flux; however, for now, this simplification is
still often necessary once we leave the single plot scale. The deposition of NH₃ involves a large number of complex processes, especially due to the high reactivity of the compound, strong water solubility, formation of particulate matter in the form of ammonium nitrate (NH₄NO₃) in the presence of nitric acid (HNO₃), bi-directional transport paths and canopy-dependent compensation points, non-stomatal uptake, co-deposition of NH₃ and SO₂, and other factors (Sutton et al. 2007, 2011; Flechard et al. 2013). In practice, it is not always possible to resolve these processes in regional models, primarily due to limited availability of spatial input data. In the recent past, many formulations for bi-directional, compensation point based dry deposition models have arisen in the literature (Bajwa et al. 2008; Neiryck and Ceulemans 2008; Personne et al. 2009; Massad et al. 2010; Zhang et al. 2010). However, necessary input parameters for these models may not always be available for larger areas. Therefore, many of these processes and characteristics are sometimes aggregated in a single reference value of the deposition velocity per land use type. For example, in Germany, a set of three reference values compiled by the Association of German Engineers (Verein Deutscher Ingenieure, VDI) based on data from 10 years ago and earlier (VDI 2006) is commonly used in regional model applications.

The ongoing intensification of agricultural practices, as well as increasing traffic volume and industrial processes, calls for a periodic update of these land use specific values. Furthermore, flux measurement and modeling techniques have greatly improved, and a number of large monitoring studies were carried out in the last few years. Measurements covered by this literature study were carried out using a number of different methods, including the aerodynamic gradient technique (Phillips et al. 2004), relaxed eddy accumulation (Meyers et al. 2006), chamber methods (Jones et al. 2007), and N deposition estimation using biomonitoring (Russow and Weigel 2000; Weigel et al. 2000; Russow and Bohme 2005; Sommer et al. 2009; Tauchnitz et al. 2010) or synthetic surrogate surfaces (Anatolaki and Tsitouridou 2007). Additionally, inferential (Hicks et al. 1987; Wesely and Hicks 2000) and chemical transport models (Builtjes et al. 2011) were used to simulate deposition fluxes. The aim of this study is to incorporate these new measurement and model approaches into an up-to-date database of ammonia deposition velocities published in the preceding decade. These are presented in a generalized form as weighted annual averages and median values for different land use types. Both the data and IPython code that was used for the calculation of these new reference numbers are published as supplementary material of this article for re-use and modification by other researchers.

2 Materials and Methods

2.1 Literature Survey

We performed an iterative, snowball-type literature research: In a first step, the citation indexing service Thomson Reuters Web of Science (formerly ISI Web of Knowledge) was queried using they keywords \textit{ammonia+deposition+veloc*}. Search results were limited to the period from 2004 to 2013. The query yielded a total of 90 international publications, which were then screened for obviously unrelated articles, e.g., such articles that only deal with the deposition velocity of other trace gases in detail. We only used sources in our further analysis that either directly report measured, modeled, or otherwise researched deposition velocities or that include measurements of deposition fluxes and corresponding NH₃ concentrations that could be used to calculate deposition velocities. Consequently, studies that only discuss the concept of deposition velocities in general were disregarded. All sources were reviewed for (i) measurement method, (ii) NH₃ deposition velocities (directly reported, or calculated by the authors of this article), (iii) reference height, (iv) NH₃ concentrations at the reference height, (v) descriptions of the measurement site and land use, and (vi) temporal coverage (how many seasons do the measurements cover and how long did the authors measure during these respective seasons). In a second step, the references cited in the results from the initial database query were screened for further potentially useful articles published in the time frame of interest. These were then again treated as described above and likewise screened for further
relevant studies. This process was repeated until no additional literature could be obtained. In the end, this approach led to a collection of 42 suitable sources that were used for statistical analysis and classification into different land use types.

2.2 Data Processing

Most of the studies cited here report their findings on NH3 deposition velocities either directly in the text or as tabulated values. If in the studies cited NH3 deposition velocity values were not directly reported in the text or in tables, we determined \(v_d \) from deposition fluxes and concentrations at the reference height. In a few studies, \(v_d \) could only be visually estimated from figures. In those cases when only a range of measured deposition velocities was reported, the center of this range was taken as an estimate for the average deposition velocity for the respective site. When multiple values of \(v_d \) were reported, e.g., as a result of data syntheses, modeling studies, or literature surveys, these were grouped by land use class, arithmetically averaged, and used as a single study in the further analysis.

The results were categorized into seven land use classes: deciduous-, coniferous-, and mixed forests, semi-natural sites (e.g., grasslands or peatlands), urban sites, agricultural sites, and water surfaces. Studies were classified as unspecified when the site description was unclear (e.g., remote site) or when deposition velocities were reported as one for multiple land use categories. Two statistics were calculated as a means of aggregation: the median, as a robust estimator for the central tendency, and a weighted average of the respective groups.

The former was calculated as follows:

\[
\tilde{v}_d = \begin{cases}
 v_{d,\frac{n}{2}+1}, & \text{if } n \text{ is odd}, \\
 \frac{1}{2} \left(v_{d,\frac{n}{2}} + v_{d,\frac{n}{2}+1}\right), & \text{if } n \text{ is even},
\end{cases}
\]

where \(\tilde{v}_d \) (cm s\(^{-1}\)) is the median deposition velocity of one land use class and \(v_{d,i} \) (cm s\(^{-1}\)) is the deposition velocity at the \(i \)th position of a sorted array of \(v_d \) for the respective category.

Weights for the latter were derived from the temporal coverage of the corresponding studies: For each season (i.e., spring, summer, fall, and winter) of the year where the measurements were conducted (regardless of the number of years), a study was assigned one point, as well as additional points for the measurement duration during these seasons (i.e., 0 to 3 weeks of a season: one point; 3 to 6 weeks: two points, 6 to 9 weeks: three points, 9 weeks and more: four points). Consequently, each study would be weighted with a minimum of two points (1 day to 3 weeks of measurement during one season) and a maximum of eight points (average of 9 weeks of measurements or more for each of four seasons). The weighted average deposition velocity for one land use class \(v_d \) (cm s\(^{-1}\)) was then calculated by multiplication of the individual studies’ \(v_{d,i} \) with the weights for the number of seasons \(w_{s,i} \) and the coverage of these seasons \(w_{c,i} \) (−) and division by the total sum of weights assigned for all \(v_{d,i} \) of one land use class:

\[
\bar{v}_d = \frac{\sum_{i=1}^{n} \left(v_{d,i} w_{c,i} + v_{d,i} w_{s,i} \right)}{\sum_{i=1}^{n} \left(w_{c,i} + w_{s,i} \right)}.
\]

3 Results

A total of 42 studies were deemed relevant and reliable and were, except for two duplicate values (Neirynck et al. 2005, 2007; Neirynck and Ceulemans 2008), consequently used in the calculation of average and median \(v_d \) for the seven land use classes. Since a subset of these studies were compilations of results from large measurement campaigns, or literature studies themselves, a higher number (61) of individual values for the ammonia deposition velocity could be extracted. Only one value per land use class (if based on the same measurement technique) of an individual study was used in the averaging process; some studies, such as Flechard et al. (2011), are actually based on data syntheses from more than 50 sites. Broken down into land use classes, we were able to use six, four, four, 19, five, three, 18, and two individual values for coniferous forests, mixed forests, deciduous forests, semi-natural sites, urban sites, water surfaces, agricultural sites, and unspecified sites, respectively (Table 1). Studies conducted at semi-natural and agricultural sites were clearly found to be dominant.
Median deposition velocities were highest for coniferous forests and lowest for agricultural sites. Weighted averages show a slightly different order, with the highest values again from coniferous forest sites, but the lowest from urban sites and water surfaces (Fig. 1).

While many studies (75%) covered all four seasons, 18% of all studies only measured during one season. Two thirds of v_d values are based on continuous measurements; however, 21 and 11% of all studies only covered up to 3 or up to 6 weeks per season, respectively.

Table 1 Medians, weighted averages, and ranges of ammonia deposition velocities categorized by land use

Land use	n (−)	Min	Max	Median	Weighted avg
Coniferous forest	6	0.5	3.3	2.1	2.2
Mixed forest	4	0.4	3.0	1.2	1.5
Deciduous forest	4	0.3	1.8	0.9	1.1
Semi-natural	19	0.1	1.8	0.7	0.9
Urban	5	0.1	1.1	0.8	0.7
Water	3	0.5	0.9	0.6	0.7
Agricultural	18	0.2	7.1	0.4	1.0
Unspecified	2				

n is the number of individual data for each category

4 Discussion and Concluding Remarks

We presented a compilation of ammonia deposition velocities (Table 2 in the Appendix) as a function of land use based on measurements, modeling studies, and literature survey results from the period 2004 to 2013. In total, 61 individual v_d values (not including duplicates) were extracted from 42 studies. Two studies were omitted because they appeared to be reanalysis studies of the same data set, and two values could not unambiguously be attributed to a specific land use class.

Staelens et al. (2012) compiled a literature review of deposition velocities for NH$_3$, NO$_2$, and SO$_2$ from the period 1972 to 2006. They report v_d of 1.14 cm s$^{-1}$ (min 0.65, max 1.71, $n=7$) for grassland and 1.56 cm s$^{-1}$ (min 0.80, max 2.20, $n=6$) for heathland, both thereby slightly higher but in the same range as our figure for semi-natural ecosystems of 0.9 cm s$^{-1}$ (median 0.7, min 0.1, max 1.8, $n=19$). Their average numbers for deciduous forests, 1.54 cm s$^{-1}$ (min 0.81, max 2.20, $n=4$), and coniferous forests, 2.91 cm s$^{-1}$ (min 2.00, max 3.80, $n=12$), are likewise higher than ours of 1.1 cm s$^{-1}$ (median 0.9, min 0.3, max 1.8, $n=4$) and 2.2 cm s$^{-1}$ (median 2.1, min 0.5, max 3.3, $n=6$) for deciduous and coniferous forests, respectively. The Association of German Engineers (VDI 2006) reports a deposition velocity of 1.5 cm s$^{-1}$ for grass and 2.0 cm s$^{-1}$ for forests, which is, again, slightly higher, but not inconsistent with our
findings. Reasons for the mismatch might be the specific choices of categories for aggregation and the averaging procedure. In addition, one may want to calculate individual metrics for central tendency, e.g., a truncated mean, a weighted median, or include outlier corrections, e.g., for the agricultural data set. Therefore, all data used in this study are made available as supplementary material, supported by a thoroughly commented IPython notebook that shows all analysis steps and may be modified by all users. Further reasons for the significantly lower values found in more recent studies remain a matter of speculation. On the one hand, the choice of tower position, e.g., central vs. edge spot within a homogeneous fetch, might have had a considerable effect on NH₃ concentration measurements. Studies like Flechard et al. (2011) report data from sites where the positions of determination were almost exclusively located in central position in order to represent the chosen land use as good as possible. In a number of former studies, however, research aims were more focused on local transport and dispersion away from point sources such as cattle urine patches, cattle sheds, and slurry tanks. Thus, higher values of NH₃ concentration formed the base for the derivation of deposition velocities. On the other hand, improvements in both measurement and modeling techniques could have also led to a lowered deposition regime. Optical devices such as absorption spectrometers (von Bobrutzki et al. 2010) use short and heated inlet tubes, thereby avoiding more efficiently wall surface reactions and memory effects. Consequently, more accurate input data generates better parameterizations for canopy resistances in surface-atmosphere exchange schemes.

Due to missing information in many studies, it was not possible to derive a robust dependency of deposition velocity on reference height. It is well known that concentration profiles are usually not strictly linear; therefore, a constant concentration gradient governing the deposition process is not always a valid assumption. However, a large number of authors did not report the respective reference height. If it was provided, in many cases, no details, e.g., on the consideration of zero plane displacement height were reported. The same holds true for reporting uncertainty estimates. Due to inconsistent use of terminology, omission of details on the uncertainty estimation techniques and on the nature of reported uncertainties (standard deviations, standard errors, confidence intervals, ranges), or simply no mention of uncertainty at all, it was not possible for us to do an error propagation and report more than ranges for the aggregated values of \(v_d \).

Note that we did not distinguish agricultural sites by different management practices. Some authors, e.g., Cui et al. (2011), explicitly report \(v_d \) during different phases of management and include fertilization periods in the annual average. In other cases, such as the data synthesis of Flechard et al. (2011), fertilization periods were excluded from dry deposition velocity estimates. Furthermore, many authors did not report whether average \(v_d \) values were obtained from long-term average concentrations and fluxes, or as an average of multiple individual (e.g., daily or hourly) \(v_d \) estimates, which may lead to differences in the significance of singular events, like emission periods shortly after fertilization, with regard to the average deposition velocity.

It is worth noting that more than half of the values for the ammonia deposition velocity are the results of inferential modeling or the use of chemical transport models and not of direct flux measurements, like those using aerodynamic gradient techniques, which may play a role regarding the fact that our \(v_d \) values are lower than those of comparable studies. However, recent technical improvements, both in the area of modeling (Flechard et al. 2013) and in measurement (von Bobrutzki et al. 2010), especially in the field of optical techniques such as open path DOAS (e.g., Volten et al. 2012) or QCL spectroscopy (e.g., Ferrara et al. 2012, based on the concept of Nelson et al. 2004), may lead to an increase of or at least to more reliable ammonia exchange studies in the near future.

Funding for this study was provided by the Federal Environmental Agency of Germany (Umweltbundesamt, UBA) under project number 29965 and by the Federal Ministry of Education and Research (BMBF) within the framework of the junior research group NITROSHERE under support code FKZ 01LN1308A. We greatly acknowledge advice and valuable comments from Jakob Frommer and Markus Geupel.
Appendix

Table 2 List of ammonia deposition velocities sorted by land use category

Reference	Method	Specific	Mean	Comment	Weights
					w_s
					w_c
Coniferous forests					
Builtjes et al. (2011)	CTM	1.6	2.1	Annual mean at $z_R=25$ m	4
			2.3	Annual mean at $z_R=2.5$ m	4
			2.0	Mean over all z_R	
Kirchner et al. (2005)	LIT	0.8–4.5	2.2	Literature research ($n=1$)	4
				Center of range	
Mohr et al. (2005)	INF	1.6		Annual mean	4
Staelens et al. (2012)	LIT	2.9		Literature research ($n=12$)	4
Zhang et al. (2009)	INF	0.5		Mean of two sites	3
Zimmermann et al. (2006)	INF	3.3		Annual mean	4
Deciduous forests					
Builtjes et al. (2011)	CTM	1.4	1.9	Annual mean at $z_R=25$ m	4
			2.1	Annual mean at $z_R=2.5$ m	4
			1.8	Mean over all z_R	
Fan et al. (2009)	INF	0.3		Annual mean	4
Staelens et al. (2012)	LIT	1.5		Literature research ($n=4$)	4
Zhang et al. (2009)	INF	0.3		Mean of two sites	2
Mixed forests					
Endo et al. (2011)	INF	0.5–0.9	0.7	Range of ten sites	4
				Center of range	
Flechard et al. (2011)	INF	1.7		Mean of 29 sites	4
Neirynek et al. (2005)	AGM	3.5	2.4	Daytime	4
			2.9	Nighttime	4
			1.5	High NH₃ daytime	4
			3.7	Low NH₃ daytime	4
			2.6	Low NH₃ nighttime	4
			3.0	Annual mean	
Neirynek and Ceulemans (2008)	AGM	3.0		Annual mean	4
Neirynek et al. (2007)	AGM	3.2	2.8	Winter	4
			3.4	Summer	4
			1.7	Summer daytime	4
			3.6	Winter nighttime	4
			3.0	Winter nighttime	4
			3.0	Annual mean	
Zhang et al. (2009)	INF	0.4		Mean of three sites	4

Springer
Reference	Method	Specific	Mean	Comment	w_s	w_c
Semi-natural sites						
Bajwa et al. (2008)	CTM	1.0		Summer, daytime	4	1
		0.1		Summer, nighttime		
		1.7		Spring, daytime		
		0.1		Spring, nighttime		
		0.8		Fall, daytime		
		0.1		Fall, nighttime		
		0.5		Winter, daytime		
		0.1		Winter, nighttime		
				0.6 Annual mean	4	4
Benedict et al. (2013)	INF	0.1–2.3		Annual range	4	4
		1.2		Center of range		
Cape et al. (2008)	CHA + INF	1.6		Annual mean	4	4
		0.3		Annual mean, fumigated		
Endo et al. (2011)	INF	0.2–0.6		Range of ten sites	4	4
		0.4		Center of range		
Flechard et al. (2011)	INF	0.6		Annual mean of 17 sites	4	4
Hole et al. (2008)	AGM	0.1		Annual mean from measurements	4	4
	INF	0.3		Model results for scenario “Grass”		
		0.6		Model results for scenario “Tundra”		
Horvath et al. (2005)	AGM	1.1		Vegetation period, daytime	4	4
		1.0		Vegetation period, nighttime		
		1.1		Vegetation period, whole day		
		0.7		Dormant season, daytime		
		0.9		Dormant season, nighttime		
		1.0		Dormant season, whole day		
				1.0 Annual mean	4	4
Hurkuck et al. (in print)	AGM	0.7		Annual mean	4	4
Jones et al. (2007)	CHA	0.4–0.6		Range during spring	1	1
		0.5		Center of range		
Kirchner et al. (2005)	LIT	0.5–2.2		Literature research ($n=3$)	4	4
		1.4		Center of range		
Milford et al. (2009)	AGM	0.2		Summer	1	1
Myles et al. (2011)	LIT	1.8		Literature research ($n=4$)	4	4
Nemitz et al. (2004)	AGM	0.6		Daytime, dry	1	2
		0.7		Nighttime, dry		
		1.8		Daytime, wet		
		1.6		Nighttime, wet		
		1.2		Spring mean		
Phillips et al. (2004)	AGM	3.9		Summer, daytime	4	1
		0.8		Summer, nighttime		
		2.9		Spring, daytime		
		0.6		Spring, nighttime		
Table 2 (continued)

Reference	Method	Specific	Mean	Comment	Weights	w_s (−)	w_c (−)
				2.8 Fall, daytime			
				0.1 Fall, nighttime			
				2.4 Winter, daytime			
				0.2 Winter, nighttime			
Staelens et al. (2012)	LIT	1.4		Literature research (n=13)	4	4	
Trebs et al. (2006)	INF	1.0		Fall	1	2	
Water				1.7 Annual mean			
Biswas et al. (2005)	AGM	0.4		Monsoon	4	4	
				0.6 Pre-monsoon			
				0.5 Post-monsoon			
				0.7 Annual mean at z_R=25 m	4	4	
Builtjes et al. (2011)	CTM	0.7		Annual mean at z_R=2.5 m	4	4	
				1.0 Annual mean at z_R=1.0 m	4	4	
				0.9 Mean over all z_R	4	4	
Smith et al. (2007)	INF	0.6		Summer	1	2	
Urban sites				0.8 Annual mean	4	4	
Anatolaki and Tsitouridou	SUS	0.8		Annual mean	4	4	
(2007)				0.7 Annual mean at z_R=25 m	4	4	
Builtjes et al. (2011)	CTM	0.7		Annual mean at z_R=2.5 m	4	4	
				0.9 Annual mean at z_R=1.0 m	4	4	
				0.8 Mean over all z_R	4	4	
Hayashi and Yan (2010)	LIT	0.5		Annual mean from data synthesis	4	4	
Poor et al. (2006)	CTM	1.1		Annual mean	4	4	
Yang et al. (2010)	INF	0.1		Annual mean	4	1	
Agricultural sites				0.3 Spring	4	4	
Baek et al. (2006)	AGM	6.3		Summer	1	1	
Builtjes et al. (2011)	CTM	1.2		Annual mean at z_R=25 m	4	4	
				1.7 Annual mean at z_R=2.5 m	4	4	
				1.9 Annual mean at z_R=1.0 m	4	4	
				1.6 Mean over all z_R	4	4	
Cui et al. (2010)	INF	0.3		Spring	4	4	
				0.2 Summer	4	4	
				0.2 Fall	4	4	
				0.3 Winter	4	4	
				0.3 Annual mean	4	4	
Cui et al. (2011)	INF	0.3		Annual mean	4	4	
	LIT	0.4		Literature research (n=3)	4	4	
Delon et al. (2012)	INF	0.3		Annual mean of five sites	4	4	
Flechard et al. (2011)	INF	0.2		Annual mean of eight sites	4	4	
Hayashi et al. (2012)	AGM	0.6		Winter, fallow, daytime	2	1	
				0.2 Winter, fallow, nighttime	2	1	
References

Anatolaki, C., & Tsitouridou, R. (2007). Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki. *Greece Atmospheric Research, 85*(4), 413–428.

Baek, B. H., Todd, R., Cole, N. A., & Koziel, J. A. (2006). Ammonia and hydrogen sulfide flux and dry deposition velocity estimates using vertical gradient method at a commercial beef cattle feedlot. *International Journal of Global Environmental Issues, 6*(1), 189–203.

Bajwa, K. S., Arya, S. P., & Aneja, V. P. (2008). Modeling studies of ammonia dispersion and dry deposition at some hog farms in North Carolina. *Journal of the Air & Waste Management Association, 58*, 1198–1207.

Benedict, K. B., Carrico, C. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., & Collett, J. L., Jr. (2013). A seasonal nitrogen deposition budget for Rocky Mountain National Park. *Ecological Applications, 23*(5), 1156–1169.

Biswas, H., Chatterjee, A., Mukhopadhyya, S. K., De, T. K., Sen, S., & Jana, T. K. (2005). Estimation of ammonia exchange at the land-ocean boundary condition of Sundarban mangrove, northeast coast of Bay of Bengal. *India Atmospheric Environment, 39*(24), 4489–4499.

von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., Blom, M., Coe, H., Gallagher, M., Ghalaeny, M., McGillen, M. R., Percival, C. J., Whitehead, J. D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., Janninen, H., Rantanen, S., Sutton, M. A., & Nemitz, E. (2010). Field inter-comparison of eleven atmospheric ammonia measurement techniques. *Atmospheric Measurement Techniques, 3*, 91–112.

Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W., & Olivier, J. G. J. (1997). A global high-

Reference	Method	Specific	Mean	Comment	w_s	w_c
Katata et al. (2013)	INF	0.4–0.8	0.6	Center of ranges	2	1
Meyers et al. (2006)	REA		4.7	Summer	1	1
Myles et al. (2007)	REA	1.3		Daytime mean	1	1
Myles et al. (2011)	AGM	7.1		Fall	1	1
Sommer et al. (2009)	LIT	2.2		Literature research ($n=4$)	4	4
Yang et al. (2010)	INF	0.2		Annual mean	4	4
Zhang et al. (2009)	INF	0.3		Spring	1	1
Zhou et al. (2010)	INF	0.3		Spring	4	4

Values listed under the column “Mean” were used in calculating weighted averages and medians, with the exception of duplicate values in Neirynck et al. (2007) and Neirynck and Ceulemans (2008).

CTM chemical transport model, *LIT* literature study, *INF* inferential modeling, *AGM* aerodynamic gradient technique, *BIO* biomonitoring, *SUS* surrogate surfaces, *CHA* chamber measurements.
resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11(4), 561–587.

Builjtjes, P., Banzhaf, S., Gauger, T., Hendriks, E., Kerschbaumer, A., Koenen, M., Nagel, H.-D., Schaap, M., Scheuschner, & T., Schlutow, A. (2011). Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland (in German language). Report of the German Federal Environmental Agency (UBA), FKZ 3707 64 200.

Cape, J. N., Jones, M. R., Leith, I. D., Sheppard, L. J., van Dijk, N., Sutton, M. A., & Fowler, D. (2008). Estimate of annual NH₃ dry deposition to a fumigated ombrotrophic bog using concentration-dependent deposition velocities. Atmospheric Environment, 42, 6637–6646.

Cui, J., Zhou, J., & Yang, H. (2010). Atmospheric inorganic nitrogen in dry deposition to a typical red soil agroecosystem in southeastern China. Journal of Environmental Monitoring, 12, 1287–1294.

Cui, J., Zhou, J., Yang, H., He, Y., & Chan, A. (2011). Atmospheric NO₃ and NH₄ deposition into a typical agroecosystem in Southeast China. Journal of Environmental Monitoring, 13, 3216–3221.

Delon, C., Galy-Lacaux, C., Adon, M., Liousses, C., Serca, D., Diop, B., & Akpo, A. (2012). Nitrogen compounds emission and deposition in West African ecosystems: comparison between wet and dry savanna. Biogeoosciences, 9, 385–402.

Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Izumi, N., & Kiyoshi, S. (2011). Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008. Atmospheric Environment, 45, 1259–1267.

Fan, J.-L., Hu, Z.-Y., Wang, T.-J., Zhou, J., Wu, C.-Y.-H., & Xia, X. (2009). Atmospheric inorganic nitrogen deposition to a typical red soil forestland in southeastern China. Environmental Monitoring and Assessment, 159, 241–253.

Ferrara, R. M., Loubet, B., Di Tommasi, P., Bertolini, T., Magliulo, V., Cellier, P., Eugster, W., & Rana, G. (2012). Eddy covariance measurement of ammonia fluxes: comparison of high frequency correction methodologies. Agricultural and Forest Meteorology, 158–159, 30–42.

Flechard, C. R., Massad, R.-S., Loubet, B., Personne, E., Simpson, D., Bash, J. O., Cooter, E. J., Nemitz, E., & Sutton, M. A. (2013). Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. Biogeoosciences, 10, 5183–5225.

Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., & Sutton, M. A. (2011). Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmospheric Chemistry and Physics, 11, 2703–2728.

Hayashi, K., Ono, K., Tokida, T., Takimoto, T., Masaooshi, M., Miyata, A., & Kazuhide, M. (2012). Atmosphere-rice paddy exchanges of inorganic particles and relevant gases during a week in winter and a week in summer. Journal of Agricultural Meteorology, 68, 55–68.

Hayashi, K., & Yan, Y. X. (2010). Airborne nitrogen load in Japanese and Chinese agroecosystems. Soil Science & Plant Nutrition, 56, 2–18.

Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P. Jr., & Matt, D. R. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 36, 311–330.

Hole, L. R., Brunner, S. H., Hanssen, J. E., & Zhang, L. (2008). Low cost measurements of nitrogen and sulphur dry deposition velocities at a semi-alpine site: gradient measurements and a comparison with deposition model estimates. Environmental Pollution, 154, 473–481.

Horvath, L., Asztalos, M., Führer, E., Meszaros, R., & Weidinger, T. (2005). Measurement of ammonia exchange over grassland in the Hungarian Great Plain. Agricultural and Forest Meteorology, 130, 282–298.

Hurkuck, M., Brümmer, C., Mohr, K., Grünhage, L., Flessa, H., & Kutsch, W. L. (in print). Determination of atmospheric nitrogen deposition to a semi-natural peat bog site in an intensively managed agricultural landscape. Atmos. Environ.

Janicke, L. (2002). Lagrangian dispersion modelling. Landbauforsch Völkenrode, 235, 37–41.

Jones, M. R., Leith, I. D., Fowler, D., Raven, J. A., Sutton, M. A., Nemitz, E., Cape, J. N., Sheppard, L. J., Smith, R. I., & Theobald, M. R. (2007). Concentration-dependent NH₃ deposition processes for mixed moorland semi-natural vegetation. Atmospheric Environment, 41, 2049–2060.

Katata, G., Hayashi, K., Ono, K., Nagai, H., Miyata, A., & Mano, M. (2013). Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere-soil-vegetation model. Agricultural and Forest Meteorology, 180, 1–21.

Kirchner, M., Jakobi, G., Feicht, E., Bernhardt, M., & Fischer, A. (2005). Elevated NH₃ and NO₂ air concentrations and nitrogen deposition rates in the vicinity of a highway in Southern Bavaria. Atmospheric Environment, 39, 4531–4542.

Loubet, B., Laville, P., Lehuger, S., Lamanou, E., Mascher, N., Gerneront, S., Roche, R., Ferrara, R. M., Stella, P., Personne, E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N., Gabrielle, B., Schrumpf, M., & Cellier, P. (2011). Carbon, nitrogen and greenhouse gases budgets over a four years crop rotation in northern France. Plant and Soil, 343, 109–137.

Massad, R.-S., Nemitz, E., & Sutton, M. A. (2010). Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere. Atmospheric Chemistry and Physics, 10, 10359–10368.

Meyes, T. P., Luke, W. T., & Meisinger, J. J. (2006). Fluxes of ammonia and sulfate over maize using relaxed eddy accumulation. Agricultural and Forest Meteorology, 136, 203–213.

Milford, C., Theobald, M. R., Nemitz, E., Hargreaves, K. J., Horvath, L., Raso, J., Dämmgen, U., Neftel, A., Jones, S. K., Hensen, A., Loubet, B., Cellier, P., & Sutton, M. A. (2009). Ammonia fluxes in relation to cutting and fertilisation of an intensively managed grassland derived from an inter-comparison of gradient measurements. Biogeoosciences, 6, 819–834.

Mohan, K., Meesenburg, H., Horvath, B., Meiwes, K. J., Schaaf, S., & Dämmgen, U. (2005). Bestimmung von Ammoniak-Einträgen aus der Luft und deren Wirkungen auf Waldökosysteme (in German language). Report of the German Federal Environmental Agency (UBA), FKZ 200 88 213.

Myles, L., Kochendorfer, J., Heuer, M. W., & Meyers, T. P. (2011). Measurement of trace gas fluxes over an unfertilized...
agricultural field using the flux-gradient technique. *Journal of Environmental Quality*, 40, 1359–1365.

Myles, L., Meyers, T. P., & Robinson, L. (2007). Relaxed eddy accumulation measurements of ammonia, nitric acid, sulfur dioxide and particulate sulfate dry deposition near Tampa, FL. *USA Environmental Research Letters*, 2, 34004.

Neirynck, J., & Ceulemans, R. (2008). Bidirectional ammonia exchange above a mixed coniferous forest. *Environmental Pollution*, 154, 424–438.

Neirynck, J., Kowalski, A. S., Carrara, A., Genouw, G., Berghmans, P., & Ceulemans, R. (2007). Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources. *Environmental Pollution*, 149, 31–43.

Neirynck, J., Kowalski, A. S., Carrara, A., & Ceulemans, R. (2005). Driving forces for ammonia fluxes over mixed forest subjected to high deposition loads. *Atmospheric Environment*, 39, 5013–5024.

Nelson, D. D., McManus, B., Urbanski, S., Herndon, S., & Neirynck, J., Kowalski, A. S., Carrara, A., Genouw, G., Sommer, S. G., Ostergard, H. S., Lofstrom, P., Andersen, H. V., & Poor, N., Pollman, C., Tate, P., Begum, M., Evans, M., & Campbell, S. (2006). Nature and magnitude of atmospheric fluxes of total inorganic nitrogen and other inorganic species to the Tampa Bay watershed, FL, USA. *Water Air and Soil Pollution*, 170, 267–283.

Russow, R., & Bohme, F. (2005). Determination of the total nitrogen deposition by the 15N isotope dilution method and problems in extrapolating results to field scale. *Geoderma*, 127, 62–70.

Russow, R., & Weigel, A. (2000). Ammonigen N-Eintragen in Boden und Pflanzen am Standort Bad Lauchstädt. Ergebnisse aus 15N-gestützten Direktmessungen (ITNI-System) im Vergleich zur indirekten Quantifizierung aus N-Bilanzen der Statischen Dauerdüngungsversuche (in German language). *Arch Acker Pfl. Boden*, 45, 399–416.

Smith, A. M., Keene, W. C., Maben, J. R., Pszenny, A. A. P., Fischer, E., & Stohl, A. (2007). Ammonia sources, transport, transformation, and deposition in coastal New England during summer. *Journal of Geophysical Research*, 112, D10S08.

Sommer, S. G., Ostergard, H. S., Lofstrom, P., Andersen, H. V., & Jensen, L. S. (2009). Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition. *Atmospheric Environment*, 43, 915–920.

Staelens, J., Wuyts, K., Adriaenssens, S., Van Avermaet, P., Buisse, H., Van den Bril, B., Rockens, E., Ottley, J.-P., Verheyen, K., Thas, O., & Descheppe, E. (2012). Trends in atmospheric nitrogen and sulphur deposition in northern Belgium. *Atmospheric Environment*, 49, 186–196.

Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., & Grizzetti, B. (2011). The European nitrogen assessment: sources, effects and policy perspectives. New York: Cambridge University Press.

Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Butterbach-Bahl, K., Cellier, P., de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P., Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J., Gallagher, M. W., Nefel, A., Flechard, C. R., Herrmann, B., Calanca, P. L., Schjoerring, J. K., Dammgen, U., Horvath, L., Tang, Y. S., Emmett, B. A., Tietema, A., Penuelas, J., Kesik, M., Brueggenmann, N., Pilegaard, K., Vesa, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R., Levy, P., Mobbs, D. C., Milne, R., Niroy, N., Vuiuchard, N., Smith, J. U., Smith, P., Bergamaschi, P., Fowler, D., & Reis, S. (2007). Challenges in quantifying biosphere-atmosphere exchange of nitrogen species. *Environmental Pollution*, 150, 125–139.

Tauchnitz, N., Meissner, R., Bernsdorf, S., & Wegener, U. (2010). Nitrogen fluxes of a slope mire in the German Harz Mountains. *Water, Air, and Soil Pollution*, 205, 107–112.

Trebs, I., Lara, L. L., Zer, L. M. M., Gatti, L. V., Artaxo, P., Dlugi, R., Slania, J., Andreae, M. O., & Meixner, F. X. (2006). Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondonia, Brazil). *Atmospheric Chemistry and Physics*, 6, 447–469.

Verein Deutscher Ingenieure (VDI). (2006). *VDI-Guideline 3782 Part 5: Environmental meteorology - Atmospheric dispersion models - Deposition parameters*. Berlin: Beuth Verlag.

Volten, H., Bergwerff, J. B., Haaima, M., Lolkema, D. E., Berkhout, A. J. C., van der Hoff, G. R., Potma, C. J. M., Wichink Kruit, R. J., van Pul, W. A. J., & Swart, D. P. J. (2012). Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere. *Atmospheric Measurement Techniques*, 5, 413–427.

Weigel, A., Russow, R., & Körschens, M. (2000). Quantification of airborne N-input in long-term field experiments and its validation through measurements using 15N isotope dilution. *Journal of Plant Nutrition and Soil Science*, 163, 261–265.

West, M. L., & Hicks, B. B. (2000). A review of the current status of knowledge on dry deposition. *Atmospheric Environment*, 34, 2261–2282.

Yang, R., Hayashi, K., Zhu, B., Feiyue, L., & Yan, X. Y. (2010). Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China. *Science of Total Environment*, 408, 4624–4632.

Zhang, L., Vei, R., O’Brien, J. M., Mihele, C., Liang, Z., & Wiebe, A. (2009). Dry deposition of individual nitrogen species at eight Canadian rural sites. *Journal of Geophysical Research*, 114, D02301.
Zhang, L., Wright, L. P., & Asman, W. A. H. (2010). Bi-directional air-surface exchange of atmospheric ammonia: a review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models. *Journal of Geophysical Research, 115*, D20310.

Zhou, J., Cui, J., Fan, J. L., Liang, J. N., & Wang, T. J. (2010). Dry deposition velocity of atmospheric nitrogen in a typical red soil agro-ecosystem in Southeastern China. *Environmental Monitoring and Assessment, 167*, 105–113.

Zimmermann, F., Plessow, K., Queck, R., Bernhofer, C., & Matschullat, J. (2006). Atmospheric N- and S-fluxes to a spruce forest—comparison of inferential modelling and the throughfall method. *Atmospheric Environment, 40*, 4782–4796.