Sipunculans are spiralian unsegmented marine worms with 147 species and 17 genera (Schulze et al. 2005). The majority of species are relatively large and more than 50% of the species live in shallow-water inhabitants which makes them easy to collect and study. Moreover, 25 of 147 species belong to the genus Phascolosoma which are well characterized morphologically (Saiz et al. 2014; Johnson and Schulze 2016; WoRMS Editorial Board 2017). However, morphological similarity within the Sipuncula inhibits the developing phylogenetically informative characters for cladistics analyses (Schulze et al. 2005). In this content, analysing complete mitogenome might be useful to overcome these difficulties. However, there are only two complete mitogenomes recorded from the genus Phascolosoma which are Phascolosoma pacificum (Keferstein, 1866) and Phascolosoma sp. (Sung et al. 2009). In order to improve the insufficient genomic studies, complete mitochondrial genome of P. pacificum is analysed and reported. This is the third complete mitogenome record of the genus.

The specimen has been collected from the sea grass area of Weno Island, Chook Lagoon, Federated States of Micronesia (7°26’41.0”N 151°53’S 57.7”E) on February 2015 and identified morphologically. It has been deposited in the Marine Biodiversity Institute of Korea (MABIK IV00155507) with 97% ethanol preservation. Analysing mitogenome and reconstruction of phylogenetic tree have been described in our previous study (Karagozlu et al. 2016).

Mitochondrial genome of P. pacificum was 16,039 bp in length (GenBank accession number KU820989). In comparison within the genus, mitogenome size of P. pacificum was between P. esculenta (15,494 bp) and Phascolosoma sp. (16,571 bp) and the gene order was similar with the other records. The complete mitochondrial genome was composed of 13 protein coding genes, two ribosomal RNA genes, and 23 tRNA genes. All the genes were located on the major strand and the distribution of the mitogenome was 69% protein coding genes, 11.8% rRNA genes, 9.3% tRNA genes, and 19.9% non-coding area. The longest intergenic sequence was located between tRNA-Gly and tRNA-Val (1,203 bp). This region was A-T rich region and most probably it contains control region.

Trochozoa is a clade of Invertebrata that has unique larval development stage. This group consists of Sipuncula, Mollusca, Annelida, Nemertea, and Brachiopoda phyla. Although several studies focused on Trochozoan, the phylogenetic relationships of Sipuncula and Annelida are not confirmed (Bleidorn 2008; Haugsdor et al. 2010). Due to reconstructed phylogenetic tree, Phascolosoma sp. is the closest species to P. pacificum (Figure 1). The pairwise distance between two species is 0.16 while same value is 0.951 between P. pacificum and outgroup species. The other phascolosoma species P. esculenta has the same distance to P. pacificum and Phascolosoma sp (0.26). The monophyly of Phascolosomatidae was decelerated previously by nuclear and mitochondrial markers based study (Kawauchi et al. 2012; Sung et al. 2017). The phylogenetic tree also showed that there are some Annelida species which were early branched than sipunculans. The close relationships of these two groups were mentioned by previous study (Shen et al. 2009). This study provides additional data for molecular systematic studies of the genus Phascolosoma.

ARTICLE HISTORY

Received 20 August 2017

Accepted 24 August 2017

KEYWORDS

Sipuncula; Phascolosomatida; Phascolosomatidea; complete mitogenome; Phascolosoma pacificum

CONTACT

Chang-Bae Kim

evodevo@smu.ac.kr
Department of Biomaterial Engineering, Sangmyung University, Seoul 03016, Korea

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Acknowledgements

We thank the Department of Marine Resources, State of Chuuk, Federated States of Micronesia, for allowing marine organism research.

Disclosure statement

The authors report no conflict of interest.

Funding

This research was a part of the project titled ‘Development of overseas marine bioresources and a system for their utilization’, funded by the Ministry of Oceans and Fisheries, Korea (Grant PM 59120).

References

Bleidorn C. 2008. Lophotrochozoan relationships and parasites. A snapshot. Parasite. 15:329–332.
Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I. 2010. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Biol Evol. 55:1121–1127.
Johnson ND, Schulze A. 2016. Genetic structure in two Phascolosoma species in the Pacific Ocean. Mar Biol Res. 12:739–747.
Karagozlu MZ, Sung JM, Lee JH, Kwon T, Kim CB. 2016. Complete mitochondrial genome sequences and phylogenetic relationship of Elysia ornata (Swainson, 1840) (Mollusca, Gastropoda, Heterobranchia, Sacoglossa). Mito DNA B. Res. 1:230–232.
Kawauchi GY, Sharma PP, Giribet G. 2012. Sipunculan phylogeny based on six genes, with a new classification and the descriptions of two new families. Zool Scripta. 41:186–210.
Saiz JL, Cartes J, Mamouridis V, Mecho A, Pancucci-Papadopoulo MA. 2014. New records of Phascolosoma turnerae (Sipuncula: Phascolosomatidae) from the Balearic Basin, Mediterranean Sea. Mar Biodivers Rec. 7:e16.
Schulze A, Cutler EB, Giribet G. 2005. Reconstructing the phylogeny of the Sipuncula. Hydrobiologia. 535:277–296.
Shen X, Ma X, Ren J, Zhao F. 2009. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics. 10:136.
Sung JM, Karagozlu MZ, Kim CB. 2017. Complete mitochondrial genome analysis of Phascolosoma sp. (Sipuncula, Phascolosomatida, Phascolosomatidea) from Micronesia. Mitochondrial DNA B. 2:264–265.
WoRMS Editorial Board. 2017. World Register of Marine Species; [accessed 2017 Aug 14]. http://www.marinespecies.org.

Figure 1. Reconstructed phylogenetic tree of Phascolosoma pacificum (KU820989). Three individual species from every Trochozoa phyla selected and their records retrieved from the GenBank. The species belongs to the phylum Rotifera selected as the representative of outgroup.