THE EULER PRODUCT EXPRESSIONS OF THE ABSOLUTE TENSOR PRODUCTS OF THE DIRICHLET L-FUNCTIONS

HIDENORI TANAKA

Abstract. In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992.

1. Introduction

In 1992 Kurokawa [1] defined the absolute tensor products (Kurokawa tensor products). The definition is given by

$$(Z_1 \otimes \cdots \otimes Z_r)(s) := \prod_{\rho_1, \cdots, \rho_r \in \mathbb{C}} ((s - \rho_1 - \cdots - \rho_r))^\mu(\rho_1, \cdots, \rho_r)$$

for some zeta functions $Z_j(s)$ ($j = 1, \cdots, r$), where the symbol \prod, which was introduced by Deninger [2], represents the zeta regularized product (see below) and the integer $\mu(\rho_1, \cdots, \rho_r)$ is defined by

$$\mu(\rho_1, \cdots, \rho_r) := \mu_1(\rho_1) \cdots \mu_r(\rho_r) \times \begin{cases}
1 & (\Im(\rho_1), \cdots, \Im(\rho_r) \geq 0), \\
(-1)^{r-1} & (\Im(\rho_1), \cdots, \Im(\rho_r) < 0), \\
0 & \text{(otherwise),}
\end{cases}$$

where $\mu_j(\rho)$ denotes the order of ρ which is a zero of $Z_j(s)$; now, we regard the poles of $Z_j(s)$ as the zeros with negative orders in this paper. Here the zeta regularized products are defined by

$$\prod_{n=1}^{\infty} ((s - a_n))^{b_n} := \exp \left(-\lim_{w \to 0} \frac{Z_{a,b}(w, s)}{w^2} \right)$$

where $a := \{a_n\}_{n=1}^{\infty}$ and $b := \{b_n\}_{n=1}^{\infty}$ are complex sequences such that $Z_{a,b}(w, s) := \sum_{n=1}^{\infty} b_n (s - a_n)^{-w}$ converges locally, uniformly and absolutely in some s-region included in $\mathbb{C} - a$ for $\Re(w) > C$ with some constant $C \in \mathbb{R} > 0$ and is a meromorphic function of w at $w = 0$. If $b \subset \mathbb{Z}$ then $\prod_{n=1}^{\infty} ((s - a_n))^{b_n}$ is a meromorphic function of s in the whole \mathbb{C} and has zeros only at $s = a_n$. The integer b_n contributes to the order of a_n. See [3] for more details concerning the zeta regularized products. The factors of the zeta regularized products are derived from the summands of $Z_{a,b}(w, s)$, so we call $Z_{a,b}(w, s)$ the “factors series” in this paper.

In [1] Kurokawa also predicted that the absolute tensor product of r arithmetic zeta functions which have the expression by the Euler product over primes would have the Euler product over r-tuples (p_1, \cdots, p_r) of primes. The validity of Kurokawa’s prediction has been confirmed in some cases, for example, the cases of the Hasse zeta functions of finite fields by Koyama and Kurokawa [4] for $r = 2$, by
Akatsuka [5] for $r = 3$ and by Kurokawa and Wakayama [6] for general r. Also, the case of the Riemann zeta function for $r = 2$ was first proved by Koyama and Kurokawa [4], and then by Akatsuka [7] in a different way.

In this paper, according to Akatsuka’s method in [7], we will reach the Euler product expression of the absolute tensor product $(L_{\chi_1} \otimes L_{\chi_2})(s)$, where $L_{\chi_1}(s) := L(s, \chi_j) (j \in \mathbb{Z}_{>0})$ denotes the Dirichlet L-function corresponding to a primitive Dirichlet character χ_j to the modulus N_j with $N_j \in \mathbb{Z}_{>2}$. The key item which leads to our goal is an equation which links the “factors series” of $(L_{\chi_1} \otimes \cdots \otimes L_{\chi_r})(s)$ to r-tuples of prime numbers (see Theorem 4.1 below). We name such equation the “key equation”. Letting $r = 1$, where r is a parameter in the “key equation”, we obtain the zeta regularized product expression of $L(s, \chi_1)$:

Theorem 1.1. Let ρ_{χ_1} denote the imaginary zeros of $L(s, \chi_1)$ counted with multiplicity, and let $\tau_{\chi_1}^{(0)}$ be a possible real number with $0 < \tau_{\chi_1}^{(0)} < \frac{1}{2}$ and $L \left(\frac{1}{2} \pm \tau_{\chi_1}^{(0)} \right) = 0$. Then $L(s, \chi_1)$ has the following expression:

$$
L(s, \chi_1) = \prod_{\Im(\rho_{\chi_1}) \neq 0} \left((s - \rho_{\chi_1}) \prod_{n=1}^{\infty} \left(s + 2n - \frac{3 + \chi_1(-1)}{2} \right) \right)
\times \left(s - \frac{1}{2} - \tau_{\chi_1}^{(0)} \right)^{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})} \left(s - \frac{1}{2} + \tau_{\chi_1}^{(0)} \right)^{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})} \right),
$$

where $\mu_{\chi_1}(\tau_{\chi_1}^{(0)})$ and $\mu_{\chi_1}(0)$ denote the order of $\frac{1}{2} \pm \tau_{\chi_1}^{(0)}$ and the order of $\frac{1}{2}$ respectively.

Remark 1.2. As Theorem 1.1, define $\tau_{\chi_j}^{(0)}$ by $0 < \tau_{\chi_j}^{(0)} < \frac{1}{2}$ and $L \left(\frac{1}{2} \pm \tau_{\chi_j}^{(0)} \right) = 0$ for $j \in \mathbb{Z}_{>0}$. It is well known that the orders of $\frac{1}{2} \pm \tau_{\chi_j}^{(0)}$ are equal and at most one. For convenience, if $\mu_{\chi_j}(\tau_{\chi_j}^{(0)}) = 0$ then we define $\tau_{\chi_j}^{(0)} := \frac{1}{2}$.

Let ρ_{χ_j} denote the imaginary zeros of $L(s, \chi_j)$. From (1.1) and the definition of the absolute tensor products, we find that $(L_{\chi_1} \otimes L_{\chi_2})(s)$ has the following expression:

$$
(L_{\chi_1} \otimes L_{\chi_2})(s)
= \prod_{\Im(\rho_{\chi_1}), \Im(\rho_{\chi_2}) < 0} \left(s - \rho_{\chi_1} - \rho_{\chi_2} \right)^{-1} \prod_{\Im(\rho_{\chi_1}), \Im(\rho_{\chi_2}) > 0} \left(s - \rho_{\chi_1} - \rho_{\chi_2} \right)
\times \prod_{(a,b) \in \{1,2\} \times \{1,2\}} \left(s - \rho_{\chi_a} + 2n - \frac{3 + \chi_b(-1)}{2} \right)^{\mu_{\chi_b}(\tau_{\chi_b}^{(0)})}
\times \prod_{\Im(\rho_{\chi_a}) > 0} \left(s - \rho_{\chi_a} - \frac{1}{2} + \tau_{\chi_a}^{(0)} \right)^{\mu_{\chi_a}(\tau_{\chi_a}^{(0)})}
\times \prod_{\Im(\rho_{\chi_a}) > 0} \left(s - \rho_{\chi_a} - \frac{1}{2} - \tau_{\chi_a}^{(0)} \right)^{\mu_{\chi_a}(\tau_{\chi_a}^{(0)})}
\times \prod_{\Im(\rho_{\chi_a}) > 0} \left(s - \rho_{\chi_a} - \frac{1}{2} \right)^{\mu_{\chi_a}(0)}
$$
Now, let p, q be primes and j, m, n be positive integers, and let α be any fixed number with $0 < \alpha < 1$. For the complex numbers τ_{x_j} with $\rho_{x_j} = \frac{1}{2} + i\tau_{x_j}$, we define $\tau_{x_j}^{(1)} := \min\{\Re(\tau_{x_j}) > 0\}$; we fix ϵ_j arbitrarily with $0 < \epsilon_j < \min\{\tau_{x_j}^{(1)}, \tau_{x_j}^{(1)}\}$. Also, we define $\epsilon^{(r)} := \min_{j \in \{1, \ldots, r\}} \{\epsilon_j\}$. Define that

\begin{align*}
E_1(w, s, \{\chi_j\}) &:= \frac{i}{2\pi} \sum_p \sum_{m=1}^{\infty} \chi_1(p^m)\chi_2(p^m)p^{-ms}(m \log p)^{w-2} \log p^2 + \frac{i(s-2)}{2\pi} \sum_p \sum_{m=1}^{\infty} \chi_1(p^m)\chi_2(p^m)p^{-ms}(m \log p)^{w-1} \log p^2,

E_2(w, s, \{\chi_j\}) &:= \frac{i}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p, m, q, n, p^m \neq q^n} \chi_a(p^m)\chi_b(q^n)p^{-m(s-1)q^{-n}(m \log p)^w \log p} \frac{\chi(qn)p^{-m(s+\alpha)q^{-n(1+\alpha)}}}{n(m \log p + n \log q)} \log p,

E_3(w, s, \{\chi_j\}) &:= \frac{1}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p, m, q, n} \chi_a(p^m)\chi_b(q^n)p^{-m(s+\alpha)q^{-n(1+\alpha)}}n(m \log p + n \log q)^w \log p,

E_4(w, s, \{\chi_j\}) &:= -\frac{1}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p, m, n} \chi_a(-1)\chi_b(p^m)p^{-m(s+\alpha)}q^{-n(1+\alpha)}n(m \log p + n \log q)^w \log p,

E_5(w, s, \{\chi_j\}) &:= \frac{i}{2} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p, m} \chi_a(p^m)p^{-m(1-\chi_b(-1))} \sin(im \log p) \log p^w \log p,

E_6(w, s, \{\chi_j\}) &:= \frac{i}{2} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p, m} \chi_a(p^m)p^{-m(1-\chi_b(-1))} \sin(im \log p) \log p^{w-1} \log p,
\end{align*}
Then, letting \(r = 2 \) in the “key equation”, we can deduce the Euler product expression of \((L_{\chi_1} \otimes L_{\chi_2})(s)\) as follows:

Theorem 1.3. In \(\Re(s) > 2 \) we have

\[
(L_{\chi_1} \otimes L_{\chi_2})(s) = \exp \left(\sum_{k=1}^{10} E_k(s, \{\chi_j\}^2_{j=1}) \right),
\]
where \(E_k(s, \{ \chi_j \}^2_{j=1}) := E_k(0, s, \{ \chi_j \}^2_{j=1}) \), that is,

\[
E_1(s, \{ \chi_j \}^2_{j=1}) := -\frac{i}{2\pi} \sum_{p,m} \chi_1(p^m) \chi_2(p^m) p^{-ms} + \frac{i(s - 2)}{2\pi} \sum_{p,m} \chi_1(p^m) \chi_2(p^m) p^{-ms} \log p,
\]

\[
E_2(s, \{ \chi_j \}^2_{j=1}) := \frac{i}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p,m,q,n} \chi_a(p^m) \chi_b(q^n) p^{-m(s-1)} q^{-n} \log p, \quad n(n \log p - n \log q),
\]

\[
E_3(s, \{ \chi_j \}^2_{j=1}) := \frac{1}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p,m,q,n} \chi_a(p^m) \chi_b(q^n) p^{-m(s+\alpha)} q^{-n(1+\alpha)} \log q, \quad n(m \log p + n \log q),
\]

\[
E_4(s, \{ \chi_j \}^2_{j=1}) := \frac{i}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p,m,n} \chi_a(-1) \chi_b(p^m) p^{-m(s+\alpha)} e^{-i\alpha \pi} m^2 m(\log p - n\pi) \log p,
\]

\[
E_5(s, \{ \chi_j \}^2_{j=1}) := \frac{i}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \sin(\log p),
\]

\[
E_6(s, \{ \chi_j \}^2_{j=1}) := \frac{i}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \int_{S^1} \sum_{p,m} p^{-m(s-u)} (\log p) \chi_a(p^m) \log L(u, \chi_b) du,
\]

\[
E_7(s, \{ \chi_j \}^2_{j=1}) := \frac{1}{2\pi} \sum_{(a,b) \in \{(1,2),(2,1)\}} \left(\log \left(\frac{\chi_a(-1) \Gamma(1+\alpha) N^a G(\chi_a)}{(2\pi)^{1+\alpha}} \right) + \gamma + \log \left(\frac{2\pi}{N^a} + \frac{\pi i}{2} \right) \right) \times \sum_{p,m} \chi(b(p^m) p^{-m(s+\alpha)} m^2 \log p
\]

\[
+ \sum_{a=1}^2 \left(-\frac{1+\alpha}{4} \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \right) m
\]

\[
+ \frac{i}{2\pi} \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \int_0^\infty \frac{1}{e^u - 1} \frac{u + m(\log p)(1 - e^{-\alpha \pi})}{u + m \log p} du\right),
\]

\[
E_8(s, \{ \chi_j \}^2_{j=1}) := \sum_{(a,b) \in \{(1,2),(2,1)\}} \mu_{\chi_a} (\chi_b) \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \frac{1}{m},
\]

\[
E_9(s, \{ \chi_j \}^2_{j=1}) := \sum_{(a,b) \in \{(1,2),(2,1)\}} \mu_{\chi_a} (\chi_b) \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \frac{1}{m},
\]

\[
E_{10}(s, \{ \chi_j \}^2_{j=1}) := \sum_{(a,b) \in \{(1,2),(2,1)\}} \mu_{\chi_a} (0) \sum_{p,m} \chi_a(p^m) p^{-m(s+\alpha)} \frac{1}{m}.
\]

The proofs of Theorem 1.1 and Theorem 1.3 are given in Section 5 and Section 6 respectively. The contents of the other sections are as follows. In Section 2 some lemmas are proved which are made use of in Section 3 or later. In Section 3 a series
is introduced which includes information on the zeros of the Dirichlet L-functions and some properties of the series is shown. In Section 4 the “key equation” is deduced.

Acknowledgements

I really thank Shin-ya Koyama for his giving me the opportunity to study this theme and much useful advice and Ki-ichiro Hashimoto for his special support. I also thank Hirotaka Akatsuka for his showing me the beneficial information for this study.

2. Lemmas

In this section, we prove some lemmas which are used later.

Lemma 2.1. Let $c \in \mathbb{C} - \{0\}$ and $\delta \in \mathbb{R}_{>0}$ be any fixed numbers.

(i) Suppose that $f(u)$ satisfies $f(u) = O(1) (u \to 0)$, $O(u^{-\delta}) (u \to \infty)$ and is holomorphic on $\mathbb{C} - \{0\}$. Define

$$F_1(z) := \int_0^\infty \frac{f(u)}{u - cz} du \quad (\Im(cz) < 0).$$

Then $F_1(z) + f(cz) \log z$ is a single-valued meromorphic function of z on $\mathbb{C} - \{0\}$.

(ii) Suppose that $f(u)$ satisfies $f(u) = O(1) (u \to 0)$, $O(u^{1-\delta}) (u \to \infty)$ and is holomorphic on $\mathbb{C} - \{0\}$. Define

$$F_2(z) := \int_0^\infty \frac{f(u)}{u^2 - (cz)^2} du \quad (\Im(cz) < 0).$$

Then $F_2(z) + \frac{f(cz) - f(-cz)}{2cz} \log z$ is a single-valued meromorphic function of z on $\mathbb{C} - \{0\}$.

Proof of Lemma 2.1. (i) If cz is in the fourth quadrant, then by Cauchy’s theorem we have

$$\lim_{X \to \infty} \int_{P_1 \cup P_2} \frac{f(u)}{u - cz} du = 0, \quad (2.1)$$

where

$$P_1 := \{u \in \mathbb{R} \mid 0 \leq u \leq X\},$$

$$P_2 := \left\{ X e^{i\phi} \mid 0 \leq \phi \leq \frac{3\pi}{2} \right\} \cup \{u \in \mathbb{C} \mid \Re(u) = 0, -X \leq \Im(u) \leq 0\}$$

for $X \in \mathbb{R}_{>0}$ and we go around the integral path in the counterclockwise direction. It follows from (2.1) that

$$F_1(z) = -\lim_{X \to \infty} \int_{P_1 \cup P_2} \frac{f(u)}{u - cz} du. \quad (2.2)$$

Since the integral path in the right-hand side of (2.2) doesn’t include the positive real axis, (2.2) remains holomorphic while cz moving from the fourth quadrant into the first one across that axis. Therefore, (2.2) gives the analytic continuation of $F_1(z)$ with cz in the first quadrant. On the other hand, when cz is in the first quadrant, by Cauchy’s theorem we have

$$\lim_{X \to \infty} \int_{P_1 \cup P_2} \frac{f(u)}{u - cz} du = 2\pi i f(cz).$$

From this and (2.2) it follows that

$$F_1(z) = -2\pi i f(cz) + \int_0^\infty \frac{f(u)}{u - cz} du. \quad (2.3)$$
Rem 2.2. If \(\Im(\text{cz}) > 0 \) then we have
\[
F_2(z) = -\pi i \frac{h(\text{cz})}{\text{cz}} + \int_0^\infty \frac{h(u)}{u^2 - (\text{cz})^2} du.
\]
We use this in the proof of Lemma 2.6.

Define that
\[
H(t) := \frac{1}{t} \int_0^\infty \frac{1}{e^u - 1} \frac{u - it(1 - e^{-in})}{u - it} du \quad (\Re(t) < 0), \tag{2.4}
\]
\[
I_j(t) := \frac{1}{t} \int_0^\infty \frac{u^{2j} e^{(1+2j)u}}{(e^u - 1)(a^2 + 4t^2)} du \quad (\Re(t) > 0), \tag{2.5}
\]
\[
J_j(t) := I_j(t) + \frac{\log t}{4\sin^2 \frac{u}{2}} \tag{2.6}
\]
for \(j \in \mathbb{Z}_{>0} \). For these functions, we show the following two lemmas: Lemma 2.4 and Lemma 2.6.

Rem 2.3. In the following, it is found that \(H(t) \), \(I_j(t) \) and \(J_j(t) \) has the analytic continuations, and let the same symbols denote those continuations respectively.

Lemma 2.4. (i) \(H(t) \) has the following asymptotic behavior at \(t = 0 \) :
\[
H(t) = -\frac{e^{-i(\alpha + \frac{1}{2})t}}{2\sin \frac{u}{2}} \log t + O(1).
\]
(ii) \(H(t) + \frac{e^{-i(\alpha + \frac{1}{2})t}}{2\sin \frac{u}{2}} \log t \) is a single-valued meromorphic function on \(t \in \mathbb{C} \).
(iii) \(H(t) \) has the simple pole at \(t = 2n\pi \) (\(n \in \mathbb{Z} - \{0\} \)) with residue
\[
\omega_n e^{-\omega_n 2\alpha \pi i} \left(\arg t - \frac{1 - \omega_n}{2} \right),
\]
where \(\omega_n := \frac{n}{|m|} \).

Rem 2.5. If \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \) and the argument lies in \(\left(-\frac{\pi}{2}, \frac{3\pi}{2} \right) \), it follows from Lemma 2.4 (ii) that \(H(t) \) is a meromorphic function because \(\frac{e^{-i(\alpha + \frac{1}{2})t}}{2\sin \frac{u}{2}} \log t \) is such one.

Proof of Lemma 2.4. (i) (2.4) is equivalent to
\[
tH(t) = \left(\int_0^1 + \int_1^\infty \right) \frac{1}{e^u - 1} \frac{u - it(1 - e^{-in})}{u - it} du \quad (\Re(t) < 0), \tag{2.7}
\]
The second integral is holomorphic on \(t \in \mathbb{C} - i\mathbb{R}_{\leq 1} \) and particularly at \(t = 0 \) becomes
\[
\int_1^\infty \frac{1}{e^u - 1} du. \tag{2.8}
\]
Next, we consider the first integral of the right-hand side of (2.7). For $|u| < 2\pi$, we have

$$\frac{u - it(1 - e^{-\alpha u})}{e^u - 1} = \sum_{n=0}^{\infty} a_n(t)u^n$$

(2.9)

and then by the binomial theorem the right-hand side of (2.9) becomes

$$\sum_{n=0}^{\infty} a_n(t)(u - it)^n$$

$$= \sum_{n=0}^{\infty} a_n(t)(it)^n + \sum_{n=1}^{\infty} a_n(t)(u - it)^n + \sum_{n=2}^{\infty} a_n(t) \sum_{k=1}^{n-1} \binom{n}{k} (u - it)^{n-k}(it)^k$$

so

(the first integral of the right-hand side of (2.7))

$$= \sum_{n=0}^{\infty} a_n(t)(it)^n \int_0^1 \frac{1}{u - it} du + \sum_{n=1}^{\infty} a_n(t) \int_0^1 (u - it)^{n-1} du$$

$$+ \sum_{n=2}^{\infty} a_n(t) \sum_{k=1}^{n-1} \binom{n}{k} (it)^k \int_0^1 (u - it)^{n-k-1} du.$$

(2.10)

The third term of (2.10) is holomorphic for $|t| < 1$ and vanishes at $t = 0$. The second term of (2.10) is equal to

$$\int_0^1 \sum_{n=1}^{\infty} a_n(0)u^{n-1} du = \int_0^1 \left(\frac{1}{e^u - 1} - \frac{1}{u} \right) du$$

(2.11)

at $t = 0$, where we use $a_0(0) = 1$ because we have

$$\frac{u}{e^u - 1} = \sum_{n=0}^{\infty} a_n(0)u^n$$

from (2.9). Then, the first term of (2.10) is equal to

$$\sum_{n=0}^{\infty} a_n(t)(it)^n(\log(1 - it) - \log(-it)) = -\frac{ite^{-i\alpha t}}{e^{it} - 1} \log t + h_1(t)$$

for $|t| < 1$, where $h_1(t)$ is a power series which converges for $|t| < 1$. Noting that by Cramér [8, p. 117, (20)] it was shown that

$$(\text{the right-hand side of (2.11)}) + (2.8) = 0,$$

it follows that

$$H(t) = -\frac{ie^{-i\alpha t}}{e^{it} - 1} \log t + h_2(t) = -\frac{e^{-i(\alpha + \frac{3\pi}{2})t}}{2\sin \frac{3\pi}{2}} \log t + h_2(t),$$

(2.12)

where $h_2(t)$ is a power series which converges in $|t| < 1$. The proof of (i) is complete.

(ii) We find that $H(t) + \frac{e^{-i(\alpha + \frac{3\pi}{2})t}}{2\sin \frac{3\pi}{2}} \log t$ is holomorphic for $|t| < 1$ from (2.12) and is a single-valued function on $t \in \mathbb{C} - \{0\}$ from Lemma 2.1 (i). The proof of (ii) is complete.

(iii) By (2.4) it is easily found that $H(t)$ is holomorphic if $\arg t \in \left(-\frac{\pi}{2}, \frac{3\pi}{2} \right)$. From this and Lemma 2.4 (ii) we can obtain the desired result. □
Lemma 2.6. \(J_j(t) \) has the following properties:
(i) \(J_j(t) \) is a single-valued meromorphic function on \(t \in \mathbb{C} - \{0\} \).
(ii) \(J_j(t) \) satisfies that for \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \)
\[
J_j(t) + J_j(-t) = \begin{cases}
-\pi i e^{-\frac{\chi_{j(-1)}i}{2}t} - \frac{i\pi}{2\sin t} & (\Re(t) < 0), \\
\pi i e^{\frac{\chi_{j(-1)}i}{2}t} + \frac{i\pi}{2\sin t} & (\Re(t) > 0),
\end{cases}
\]
where the argument lies in \((-\frac{\pi}{2}, \frac{3\pi}{2})\).

Proof of Lemma 2.6. (i) We should use Lemma 2.1 (ii) as
\[
c = -2t, \; z = t \quad \text{and} \quad f(u) = \frac{ue^{\frac{1+\chi_j(-1)}{4}u} (\frac{u}{2} \cos \frac{u}{2} - t \sin \frac{u}{2})}{t(e^u - 1)}.
\]
(ii) Let \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \) and the argument lie in \((-\frac{\pi}{2}, \frac{3\pi}{2})\). Then, since \(\frac{\log t}{4\sin \frac{t}{2}} \) is meromorphic, by Lemma 2.6 (i) we find that \(I_j(t) \) is as well.

Now, by Remark 2.2, for \(\Re(t) < 0 \) we have
\[
I_j(t) = -\pi i \frac{e^{-\frac{\chi_{j(-1)}i}{2}t}}{\sin t} + \frac{1}{t} \int_0^\infty \frac{ue^{\frac{1+\chi_j(-1)}{4}u} (\frac{u}{2} \cos \frac{u}{2} - t \sin \frac{u}{2})}{(e^u - 1)(u^2 + 4t^2)} du.
\]
Adding \(\frac{\log t}{4\sin \frac{t}{2}} \) to the both sides of (2.14), we obtain
\[
J_j(t) = (\text{the right-hand side of (2.14)}) + \frac{\log t}{4\sin \frac{t}{2}} \quad (\Re(t) < 0). \tag{2.15}
\]
On the other hand, from (2.5) and (2.6) we can obtain the following equations: for \(\Re(t) < 0 \)
\[
J_j(-t) = I_j(-t) - \frac{\log(-t)}{4\sin \frac{t}{2}}
= -\frac{1}{t} \int_0^\infty \frac{ue^{\frac{1+\chi_j(-1)}{4}u} (\frac{u}{2} \cos \frac{u}{2} - t \sin \frac{u}{2})}{(e^u - 1)(u^2 + 4t^2)} du - \frac{\log t}{4\sin \frac{t}{2}} - \frac{i\pi}{4\sin \frac{t}{2}}. \tag{2.16}
\]
From (2.15) and (2.16) it is follows that
\[
J_j(t) + J_j(-t) = -\pi i \frac{e^{\frac{1+\chi_{j(-1)}i}{4}t}}{\sin t} - \frac{i\pi}{4\sin \frac{t}{2}} \quad (\Re(t) < 0), \tag{2.17}
\]
which is (2.13) with \(\Re(t) < 0 \). By replacing \(t \) with \(-t\) in (2.17), we obtain (2.13) with \(\Re(t) > 0 \).

\(\square \)

Lemma 2.7 was proved by Akatsuka [7].

Lemma 2.7. (i) [7, Lemma 2.5] For any \(X, Y \in \mathbb{R}_{>0} \) satisfying \(X < Y \)
\[
\log Y - \log X \geq \frac{Y - X}{Y}.
\]
(ii) [7, Remark 2.1] \(\sum_p \sum_{m=1}^\infty \frac{p^{-m}}{m^2 \log p} < \infty. \)
(iii) [7, p639, (4.4)] For any fixed \(\delta \in \mathbb{R}_{>0} \) and any \(A \in \mathbb{R} \)
\[
\sum_p \sum_{m=1}^\infty p^{-m(1+\delta)}(m \log p)^A \log p < \infty.
\]

We prove a formula for the gamma function in the following lemma.
Lemma 2.8. Let any fixed $\psi \in \mathbb{R}$ satisfy $-\frac{\pi}{2} < \psi < \frac{\pi}{2}$ and let $\arg \nu \in (-\psi - \frac{\pi}{2}, -\psi + \frac{\pi}{2})$ and $\Re(w) > 0$. Then, we have

$$\frac{\Gamma(w)}{\nu^w} = \int_0^{\infty} e^{\nu t} \frac{dt}{t}.$$

Proof of Lemma 2.8. For any fixed $\psi \in \mathbb{R}$ satisfying $-\frac{\pi}{2} < \psi < \frac{\pi}{2}$, let $\arg \nu = -\psi$. Then, we have

$$\frac{\Gamma(w)}{\nu^w} = \int_0^{\infty} e^{-\nu t} \left(\frac{t}{\nu} \right)^w \frac{dt}{t} = \int_0^{\infty} e^{-\nu t} \frac{dt}{t} = \int_0^{\infty} e^{-\nu t} \frac{dt}{t}. $$

When w is fixed in $\Re(w) > 0$, the both sides are holomorphic in

$$\{ \nu \in \mathbb{C} \mid \Re(\nu e^{i\psi}) > 0 \} = \{ \nu \in \mathbb{C} \mid -\psi < \arg \nu < \frac{\pi}{2} - \psi \}.$$

This completes the proof. □

3. Properties of a series concerning the zeros of the Dirichlet L-functions

For a series $\theta(t) := \sum \Re(\tau) e^{-\tau t} (\Re(t) > 0)$ where $\tau \in \mathbb{C}$ with $\rho = \frac{1}{2} + it$ for the imaginary zeros ρ of the Riemann zeta function, Cramér [8] deduced the explicit formula and then Guinand [9] obtained the meromorphic continuation and the poles by proving the functional equation and derived the approximate behavior. Akatsuka [7] introduced $\theta^*(t) := \theta(t) - e^{-t} (t \in \mathbb{C} - i\mathbb{R}_{\leq 0})$ and proved the properties on the basis of the results of Cramér and Guinand.

We define a following series :

$$l_{\chi_j}(t) := \sum_{\Re(\tau_{\chi_j}) > 0} e^{-\tau_{\chi_j} t} (\Re(t) > 0).$$

for $j \in \mathbb{Z}_{>0}$. With reference to the methods of the above three mathematicians we research in this series.

We define the complete Dirichlet L-function $\hat{L}(s, \chi_j)$ by

$$\hat{L}(s, \chi_j) := \left(\frac{\pi}{N_j} \right)^{\left(\frac{s}{2} + \frac{1}{4} - \frac{\chi_j}{2} \right)} \Gamma \left(\frac{s}{2} + \frac{1 - \chi_j}{4} \right) L(s, \chi_j)$$

and define that

$$\xi(s, \chi_j) := \hat{L} \left(s + \frac{1}{2}, \chi_j \right).$$

It is well known that $\frac{\xi'}{\xi}(s, \chi_j)$ satisfies the functional equation :

$$\frac{\xi'}{\xi}(-s, \chi_j) = -\frac{\xi'}{\xi}(s, \chi_j).$$

First, we prove the meromorphic and the functional equation of $l_{\chi_j}(t)$.

Theorem 3.1. $l_{\chi_j}(t)$ has a meromorphic continuation to $\mathbb{C} - i\mathbb{R}_{\leq 0}$ for which

$l_{\chi_j}(t) + l_{\chi_j}(-t)$

$$= \begin{cases}
\frac{ie^{-\chi_j(-1)i\frac{t}{2}}}{2 \sin t} - \mu_{\chi_j}(\tau_{\chi_j}^{(0)}) (e^{i\chi_j(0)t} + e^{-i\chi_j(0)t}) - \mu_{\chi_j}(0) & (\Re(t) < 0), \\
\frac{ie^{-\chi_j(-1)i\frac{t}{2}}}{2 \sin t} - \mu_{\chi_j}(\tau_{\chi_j}^{(0)}) (e^{i\chi_j(0)t} + e^{-i\chi_j(0)t}) - \mu_{\chi_j}(0) & (\Re(t) > 0),
\end{cases}$$

where the argument lies in $(-\frac{\pi}{2}, \frac{3\pi}{2})$.

10 H. TANAKA
Proof of Theorem 3.1. If \(\Re(t) > 0 \), then by Cauchy’s theorem we have

\[
I_{\chi_j}(t) = \frac{1}{2\pi i} \int_{C_1 \cup C_{2,j} \cup C_3} e^{ist} \frac{\zeta'(s)}{\zeta(s)} \zeta(s, \chi_j) ds
\]

where

\[
C_1 := \{ s \in \mathbb{C} \mid \Re(s) = -\frac{1}{2}, \Im(s) \geq 0 \}
\]

\[
C_{2,j} := \left\{ \frac{1}{2} \cos \varphi + i \varepsilon_j \sin \varphi \mid 0 \leq \varphi \leq \pi \right\}
\]

\[
C_3 := \{ s \in \mathbb{C} \mid \Re(s) = \frac{1}{2}, \Im(s) \geq 0 \}
\]

and we go around the integral path in the counterclockwise direction.

First, we consider the integral of the path \(C_1 \). It becomes

\[
\int_{C_1} = \int_{-\infty}^{0} e^{i(\frac{1}{2} + iy)} \frac{\zeta'(s)}{\zeta(s)} \left(-\frac{1}{2} + iy, \chi_j\right) dy
\]

\[
= -ie^{-\frac{\pi i}{4}} \int_{0}^{\infty} e^{-yt} \frac{\zeta'(s)}{\zeta(s)} \left(\frac{1}{2} - iy, \chi_j\right) dy
\]

\[
= ie^{-\frac{\pi i}{4}} \int_{0}^{\infty} e^{-yt} \left(-\frac{1}{2} \log \left(\frac{\pi}{N_j}\right) + \frac{1}{2} \Gamma' \left(\frac{3 - \chi_j(-1)}{4} - \frac{iy}{2}\right) + \frac{L'}{L}(1 - iy, \chi_j)\right) dy.
\]

The term concerning (3.4) becomes

\[
-\frac{i}{2} e^{-\frac{\pi i}{4}} \log \left(\frac{\pi}{N_j}\right) \int_{0}^{\infty} e^{-yt} dy = -\frac{i}{2t} e^{-\frac{\pi i}{4}} \log \left(\frac{\pi}{N_j}\right).
\]

Concerning (3.5), since

\[
\frac{\Gamma'}{\Gamma}(s) = \int_{0}^{\infty} \left(\frac{e^{-u} - e^{-(s-1)u}}{e^u - 1}\right) du \quad (\Re(s) > 0),
\]

it follows that

\[
\frac{i}{2} \int_{0}^{\infty} e^{-yt} \int_{0}^{\infty} \left(\frac{e^{-u}}{u} - \frac{e^{-u(s-1) + \frac{iy}{2}}}{e^u - 1}\right) du dy
\]

\[
= \frac{i}{2} e^{-\frac{\pi i}{4}} \int_{0}^{\infty} \left(\frac{e^{-u} - e^{-(s-1)u}}{e^u - 1}\right) \int_{0}^{\infty} e^{-yt} dy du
\]

\[
= \frac{i}{2} e^{-\frac{\pi i}{4}} \int_{0}^{\infty} \left(\frac{e^{-u}}{u} - \frac{1 + \chi_j(-1)}{t(t - \frac{iy}{2})}\right) du.
\]

Concerning (3.6), since the Euler product \(\prod_p (1 - \chi_j(p)p^{-s})^{-1} = L(s, \chi_j) \) converges uniformly on \(\Re(s) = 1 \), we have

\[
ie^{-\frac{\pi i}{4}} \int_{0}^{\infty} e^{-yt} \left(-\sum_{p} \sum_{m=1}^{\infty} \chi_j(p^m) \log p \frac{p^{-m(1-iy)}}{p^{-m(1-iy)}}\right) dy
\]
\[= -ie^{-i\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t - im \log p} \int_0^\infty e^{(-t + im \log p)y} dy\]
\[= -ie^{-i\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t - im \log p}.\]

Similarly, we can calculate the integral of the path \(C_3\) in (3.3) and obtain the following result:

\[\int_{C_3} = -\frac{ie^{-i\frac{\pi}{4}}}{2t} \log \left(\frac{\pi}{N}\right)\]

\[+ \frac{i}{2} \int_0^\infty \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{i}u} \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{t + im \log p}} \right) \right) du \]
\[= -ie^{-i\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t + im \log p}.\]

Noting that

\[(3.7) + (3.8)\]

\[= \frac{i}{2} \left(\frac{2 \cos \frac{\pi}{4}}{t} \int_0^\infty e^{-u} du - \int_0^\infty e^{\frac{1 + \xi_j(-1)}{i}u} \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{t + im \log p}} \right) du \right)\]

\[= \frac{i}{2} \left(\frac{2 \cos \frac{\pi}{4}}{t} \int_0^\infty \left(e^{-u} - \int_0^\infty e^{\frac{1 + \xi_j(-1)}{i}u} e^{\frac{1 + \xi_j(-1)}{t + im \log p}} du \right) du \right)\]

\[= \frac{i}{2} \left(\frac{2 \cos \frac{\pi}{4}}{t} \int_0^\infty \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{i}u} - e^{\frac{1 + \xi_j(-1)}{t + im \log p}} \right) du \right)\]

we can deduce that for \(\Re(t) > 0\)

\[l_{x_j}(t) = -\frac{\cos \frac{\pi}{4}}{2\pi t} \log \left(\frac{\pi}{N_{x_j}}\right) + \frac{\cos \frac{\pi}{4}}{2\pi t} \int_0^\infty \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{i}u} \right) du + \frac{1}{\pi} I_j(t)\]

\[- \frac{1}{2\pi} e^{-\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t - im \log p} - \frac{1}{2\pi} e^{-\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t + im \log p}\]

\[+ \frac{1}{2\pi} \int_{C_{2,x}(\pi \to 0)} e^{im\xi(s, x_j)} ds.\]

Adding \(\log t\) to the both sides, we have

\[l_{x_j}(t) + \frac{\log t}{4\pi \sin \frac{\pi}{4}}\]

\[= -\frac{\cos \frac{\pi}{4}}{2\pi t} \log \left(\frac{\pi}{N_{x_j}}\right) + \frac{\cos \frac{\pi}{4}}{2\pi t} \int_0^\infty \left(e^{-u} - e^{\frac{1 + \xi_j(-1)}{i}u} \right) du + \frac{1}{\pi} I_j(t)\]

\[- \frac{1}{2\pi} e^{-\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t - im \log p} - \frac{1}{2\pi} e^{-\frac{\pi}{4}} \sum_0^{\infty} \sum_{m=1}^{\infty} \chi_j(p^m)\frac{p^{-m}}{t + im \log p}\]

\[+ \frac{1}{2\pi} \int_{C_{2,x}(\pi \to 0)} e^{im\xi(s, x_j)} ds.\]

(3.9)
Theorem 3.2. Define $S_j := \{ \frac{1}{2\pi} \cos \varphi + i \frac{1}{2} \sin \varphi + \frac{1}{2} \varphi \mid 0 \leq \varphi \leq \pi \}$. (i) $l_{\chi_j}(t)$ has the following expression for $\Re(t) > 0$:

$$l_{\chi_j}(t)$$
where

\[l_{\chi_j}(t) = \frac{it}{2\pi} e^{\pm \frac{1}{2} \sum_{m=1}^{\infty} \chi_j(p^m)p^{-m}} e^{-i(\alpha + \frac{1}{4})t} \left(\int \sum_{m=1}^{\infty} \frac{\chi_j(p^m)p^{-m(1+\alpha)}}{m(t + im \log p)} + i \log \left(\frac{\chi_j(-1)\Gamma(1+\alpha)N^\alpha jG(\chi_j)}{(2\pi)^{1+\alpha}} \right) - \frac{(1+\alpha)\pi}{2} \right) \left\{ \begin{array}{c} \chi_j(-1)e^{-\alpha \pi m} \frac{1}{m(t-m\pi)} + i \log \left(\frac{\chi_j(-1)\Gamma(1+\alpha)N^\alpha jG(\chi_j)}{(2\pi)^{1+\alpha}} \right) - \frac{(1+\alpha)\pi}{2} \\
+ \frac{1}{t} \left(\gamma + \log \left(\frac{2\pi}{N_j} \right) + \frac{\pi i}{2} \right) - \frac{t}{2\pi} e^{-\frac{1}{2} \int_{S_j(\pi \to 0)} e^{-ist} \log L(s, \chi_j)ds} \\
- \frac{1}{2\sin t} \mu_{\chi_j}(\tau^{(0)}_{\chi_j})(e^{\nu_{\chi_j}(\tau^{(0)}_{\chi_j})t} + e^{-\nu_{\chi_j}(\tau^{(0)}_{\chi_j})t}) - \mu_{\chi_j}(0) \end{array} \right. \right\} \right. \tag{3.12} \]

(ii) \(l_{\chi_j}(t) \) has the following expression for \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \):

\[l_{\chi_j}(t) = \left. \begin{array}{c} \frac{\log t}{2\pi t} - \frac{1}{2\pi t} \left(\log \left(\frac{2\pi}{N_j} \right) + \gamma + \frac{3\pi i}{2} \right) + O(1) \end{array} \right. \]

(\(\gamma \)) - (iv), the argument lies in \((-\frac{\pi}{2}, \frac{3\pi}{2}) \).

Proof of Theorem 3.2 (i) If \(\Re(t) > 0 \), then by Cauchy’s theorem

\[l_{\chi_j}(t) = \frac{1}{2\pi i} \int_{R_1 \cup S_j \cup R_2} e^{(s+\frac{1}{2})t} \frac{L'}{L}(s, \chi_j)ds, \tag{3.13} \]

where

\[R_1 := \{ s \in \mathbb{C} \mid \Re(s) = -\alpha, \ \Im(s) \geq 0 \}, \]

\[R_2 := \{ s \in \mathbb{C} \mid \Re(s) = 1, \ \Im(s) \geq 0 \}, \]

and we go around the integral path in the counterclockwise direction. By the partial integration, (3.13) becomes

\[l_{\chi_j}(t) = -\frac{t}{2\pi} e^{-\frac{1}{2} t} \left(\int_{R_1} + \int_{S_j} + \int_{R_2} \right) e^{ist} \log L(s, \chi_j)ds. \tag{3.14} \]

By using the functional equation

\[L(s, \chi_j) = \frac{N^s_j}{(2\pi)^{1-s}} G(\chi_j) \Gamma(1-s)(e^{-\frac{\pi i}{2}(1-s)} + \chi_j(-1)e^{\frac{\pi i}{2}(1-s)})L(1-s, \chi_j), \]
the integral of the path R_1 becomes
\[
\int_{R_1} = \int_{0}^{\infty} e^{i(-\alpha + iy)t} \log L(-\alpha + iy, \chi_j) idy
\]
\[
= ie^{-i\alpha t} \int_{0}^{\infty} e^{-yt} \left(\log \left(\frac{N^\alpha G(\chi_j)}{(2\pi)^{1+\alpha}} \right) + iy \log \left(\frac{2\pi}{N_j} \right) + \log \Gamma(1 + \alpha - iy) + \log(e^{-\frac{\pi}{2}(1+\alpha-iy)} + \chi_j(-1)e^{\frac{\pi}{2}(1+\alpha-iy)}) + \log L(1 + \alpha - iy, \bar{\chi}_j) \right) dy. \tag{3.15}
\]

The integrals concerning (3.15) and (3.16) become
\[
\int_{0}^{\infty} e^{-yt} \log \left(\frac{N^\alpha G(\chi_j)}{(2\pi)^{1+\alpha}} \right) dy = \frac{-1}{t} \log \left(\frac{N^\alpha G(\chi_j)}{(2\pi)^{1+\alpha}} \right) \tag{3.20}
\]
and
\[
i \left(\log \left(\frac{2\pi}{N_j} \right) \right) \int_{0}^{\infty} ye^{-yt} dy = -\frac{i}{t} \log \left(\frac{2\pi}{N_j} \right). \tag{3.21}
\]

respectively. By the partial integration the integral concerning (3.17) is equal to
\[
\int_{0}^{\infty} e^{-yt} \log \Gamma(1 + \alpha - iy) dy
\]
\[
= \left[-\frac{1}{t} e^{-yt} \log \Gamma(1 + \alpha - iy) \right]_{0}^{\infty} - \frac{i}{t} \int_{0}^{\infty} e^{-yt} \frac{\Gamma'(s)}{\Gamma(s)}(1 + \alpha - iy) dy
\]
\[
= -\frac{1}{t} \log \Gamma(1 + \alpha) + \frac{i\gamma}{t} \int_{0}^{\infty} e^{-yt} dy - \frac{i}{t} \int_{0}^{\infty} e^{-yt} \int_{0}^{\infty} \frac{1 - e^{(-\alpha + iy)u}}{e^u - 1} du dy \tag{3.22}
\]
because
\[
\frac{\Gamma'(s)}{\Gamma(s)} = -\gamma + \int_{0}^{\infty} \frac{1 - e^{(1-s)u}}{e^u - 1} du \quad (\Re(s) > 0).
\]
The integral in the third term of (3.22) becomes
\[
\int_{0}^{\infty} \frac{1}{e^u - 1} \int_{0}^{\infty} (e^{-yt} - e^{-\alpha u + (-t+i)uy}) dy du
\]
\[
= \int_{0}^{\infty} \frac{1}{e^u - 1} \left(\frac{1}{t} + \frac{e^{-\alpha u}}{t - iu} \right) du
\]
\[
= -\frac{1}{t} \int_{0}^{\infty} \frac{1}{e^u - 1} \cdot \frac{u + it(1 - e^{-\alpha u})}{u + it} du.
\]
Hence,
\[
(3.22) = -\frac{1}{t} \log \Gamma(1 + \alpha) - \frac{i\gamma}{t^2} + \frac{i}{t^2} \int_{0}^{\infty} \frac{1}{e^u - 1} \cdot \frac{u + it(1 - e^{-\alpha u})}{u + it} du. \tag{3.23}
\]
The integral concerning (3.18) is equal to
\[
\int_{0}^{\infty} e^{-yt} \log(e^{-\frac{\pi}{2}(1+\alpha-iy)} + \chi_j(-1)e^{\frac{\pi}{2}(1+\alpha-iy)}) dy
\]
\[= \int_{\infty}^{0} e^{-yt} \log \chi_j(-1) dy + \int_{\infty}^{0} \frac{\pi i}{2} (1 + \alpha - iy) e^{-yt} dy + \int_{\infty}^{0} e^{-yt} \log(1 + \chi_j(-1) e^{-\pi i(1 + \alpha - iy)}) dy. \]

(3.24)

Since the third term of (3.24) becomes

\[\sum_{m=1}^{\infty} \left(\frac{-1}{m} \right)^{m-1} \chi_j(-1)^m e^{-im\pi(1 + \alpha)} \int_{\infty}^{0} e^{-(t + m\pi)} dy = \sum_{m=1}^{\infty} \frac{\chi_j(-1)^m e^{-im\pi}}{m(t + m\pi)}, \]

we have

\[(3.24) = -\frac{1}{t} \log \chi_j(-1) - \frac{(1 + \alpha) \pi i}{2t} - \frac{\pi}{t^2} + \sum_{m=1}^{\infty} \frac{\chi_j(-1)^m e^{-im\alpha}}{m(t + m\pi)}. \]

(3.25)

The integral concerning (3.19) becomes

\[\int_{\infty}^{0} e^{-yt} \log L(1 + \alpha - iy, \chi_j) dy = \sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m)}{m} p^{-m(1 + \alpha)} \int_{\infty}^{0} e^{-(t + im \log p)y} dy \]

\[= -\sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m) p^{-m(1 + \alpha)}}{m(t - im \log p)}. \]

(3.26)

The integral of the path \(R_2 \) of (3.14) becomes

\[\int_{0}^{\infty} e^{i(1 + \gamma)t} \log L(1 + iy, \chi_j) dy = ie^{it} \sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m)}{m} p^{-m} \int_{0}^{\infty} e^{-(t + im \log p)y} dy \]

\[= ie^{it} \sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m) p^{-m}}{m(t + im \log p)}. \]

(3.27)

Applying (3.20), (3.21), (3.23), (3.25), (3.26) and (3.27) to (3.14), we obtain the desired result.

(ii) \(\text{By Theorem 3.2 (i), we find that for } \Re(t) < 0 \)

\[l_{\chi_j}(-t) \]

\[= -\frac{it}{2\pi} e^{-\frac{\pi i}{2}} \sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m) p^{-m}}{m(t - im \log p)} + \frac{e^{i(\alpha + \frac{1}{2})t}}{2\pi} \left(\frac{i}{t} \sum_{p} \sum_{m=1}^{\infty} \frac{\chi_j(p^m) p^{-m(1 + \alpha)}}{m(t + im \log p)} \right) \]

\[- it \sum_{m=1}^{\infty} \frac{\chi_j(-1)^m e^{im\pi}}{m(t - m\pi)} + i \log \left(\frac{\chi_j(-1) \Gamma(1 + \alpha) N_j^\alpha G(\chi_j)}{(2\pi)^{1+\alpha}} \right) - \frac{(1 + \alpha)\pi}{2} \]

\[+ \frac{1}{t} \left(\gamma + \log \left(\frac{2\pi}{N_j} \right) + \frac{\pi i}{2} \right) - H(t) + \frac{t}{2\pi} e^{it} \int_{S(\pi \to 0)} e^{-ist} \log L(s, \chi_j) ds. \]

By using the equation for \(l_{\chi_j}(t) \) deduced in Theorem 3.1, we obtain (3.12) for \(\Re(t) < 0 \). Since the right-hand side of (3.12) is meromorphic for \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \) if the argument lies in \(\left(-\frac{\pi}{2}, \frac{3\pi}{2} \right) \), the proof of (ii) is completed.

In the following, let \(t \in \mathbb{C} - i\mathbb{R}_{\leq 0} \) and the argument lie in \(\left(-\frac{\pi}{2}, \frac{3\pi}{2} \right) \).

(iii) \(\text{By Theorem 3.2 (ii) and Lemma 2.4 (i), we find that} \)

\[l_{\chi_j}(t) = -\frac{1}{2\pi t} \left(\gamma + \log \left(\frac{2\pi}{N_j} \right) + \frac{\pi i}{2} \right) - \frac{log t}{4\pi \sin \frac{t}{2}} - \frac{ie^{-i\frac{\pi}{2}t}}{2\sin t} + O(1) \quad (t \to 0) \]

\[= -\log t \frac{1}{2\pi t} \left(\gamma + \log \left(\frac{2\pi}{N_j} \right) + \frac{3\pi i}{2} \right) + O(1) \quad (t \to 0). \]

(iv) \(\text{By (3.1), we find trivially that } l_{\chi_j}(t) \text{ is holomorphic for } \Re(t) > 0. \) From this and the expression obtained in Theorem 3.2 (ii), the desired result follows. \(\square \)
We consider the bounds of \(l_{x, j}(t) \) which is needed later.

Lemma 3.3. (i) For \(\Re(t) \geq 1 \)

\[
l_{x, j}(t) = O(e^{-\varepsilon_j \Re(t) + \frac{1}{2} |\Im(t)|}).
\]

(ii) For \(\Re(t) \leq -1 \)

\[
l_{x, j}(t) = \frac{e^{-\varepsilon_j \Re(t)}}{e^{-t} - e^{-it}} + O(e^{\varepsilon_j \Re(t) + \frac{1}{2} |\Im(t)|}) + e^{\varepsilon_j |\Im(t)|}.
\]

(iii) If \(t = \sigma + iU \) with \(U \geq 2 \) and \(-U \leq \sigma \leq U \), then

\[
l_{x, j}(t) = \frac{it}{2\pi} e^{-\frac{it}{2}} \sum_{p, m < e^{|U|}} \frac{\chi_j(p^m) p^{-m}}{m(t - im \log p)} + O(U e^{\varepsilon_j + \frac{1}{2} U}).
\]

Proof of Lemma 3.3. (i) If \(\Re(t) \geq 1 \), then we have

\[
l_{x, j}(t) = \sum_{\Re(\tau_j) > \varepsilon_j} e^{-\tau_j t}
\]

from (3.1). Since

\[
\left| \sum_{\Re(\tau_j) > \varepsilon_j} e^{-\tau_j t} \right| \leq \sum_{\Re(\tau_j) > \varepsilon_j} |e^{-\tau_j t}| = \sum_{\Re(\tau_j) > \varepsilon_j} e^{-\Re(\tau_j) \Re(t) + \Im(\tau_j) \Im(t)}
\]

\[
\leq e^{\frac{1}{2} |\Im(t)|} \sum_{\Re(\tau_j) > \varepsilon_j} e^{-\Re(\tau_j) \Re(t)}
\]

\[
= e^{\frac{1}{2} |\Im(t)|} e^{-\varepsilon_j \Re(t)} \sum_{\Re(\tau_j) > \varepsilon_j} e^{-\Re(\tau_j) - \varepsilon_j} \Re(t)
\]

\[
= O(e^{-\varepsilon_j \Re(t) + \frac{1}{2} |\Im(t)|}),
\]

we obtain the desired result.

(ii) For \(\Re(t) \leq -1 \), we have

\[
l_{x, j}(t) = -l_{x, j}(-t) - \frac{it}{2\sin t} - \mu_{x, j}(\tau_j(0)) (e^{i\tau_j(0)t} + e^{-i\tau_j(0)t}) - \mu_{x, j}(0)
\]

\[
= - \sum_{\Re(\tau_j) > \varepsilon_j} e^{\tau_j t} + \frac{it}{2\sin t} - \mu_{x, j}(\tau_j(0)) (e^{i\tau_j(0)t} + e^{-i\tau_j(0)t}) - \mu_{x, j}(0)
\]

(3.28)

by Theorem 3.1. Concerning the first and third term of the right-hand side of (3.28), we have

\[
\left| \sum_{\Re(\tau_j) > \varepsilon_j} e^{\tau_j t} \right| \leq \sum_{\Re(\tau_j) > \varepsilon_j} |e^{\tau_j t}| = \sum_{\Re(\tau_j) > \varepsilon_j} e^{\Re(\tau_j) \Re(t) - \Im(\tau_j) \Im(t)}
\]

\[
\leq e^{\frac{1}{2} |\Im(t)|} \sum_{\Re(\tau_j) > \varepsilon_j} e^{\Re(\tau_j) \Re(t)}
\]

\[
= e^{\frac{1}{2} |\Im(t)|} e^{-\varepsilon_j \Re(t)} \sum_{\Re(\tau_j) > \varepsilon_j} e^{\Re(\tau_j) - \varepsilon_j} \Re(t)
\]

\[
= O(e^{-\varepsilon_j \Re(t) + \frac{1}{2} |\Im(t)|}).
\]
and
\[|e^{ix_j(t)} + e^{-ix_j(t)}| \leq e^{-\epsilon x_j(\sigma - 1)} + e^{x_j(\sigma - 1)} = O(e^{x_j(\sigma - 1)}) \]
respectively. Hence, we obtain the desired result.

(iii) When \(t = \sigma + iU \) with \(U \geq 2 \) and \(-U \leq \sigma \leq U \), we have
\[
l_{x_j}(t) = \frac{it}{2\pi} e^{-\frac{\pi}{2}U} \sum_{p,m} \frac{\chi_j(p^m)p^{-m}}{m(mU + im\log p)} + O(Ue^{(\frac{1}{2} + \epsilon)U})
\]
by estimating trivially each term of the right-hand side of (3.12) in Theorem 3.2 except the first term.

If \(p^m \geq e^{2U} \), then \(U \leq \frac{\log p}{2} \), so \(m \log p - U \geq \frac{m \log p}{2} \). Therefore, we have
\[
|\chi_j(p^m)p^{-m}| \leq \frac{\sum_{p,m} p^{-m}}{m(m \log p - U)} \leq \frac{4Ue^{\frac{U}{2}}}{m^2 \log p} \sum_{p,m} \frac{p^{-m}}{m^2 \log p}
\]
\[
\leq 4Ue^{\frac{U}{2}} \sum_{p,m} \frac{p^{-m}}{m^2 \log p} = O(Ue^{\frac{U}{2}}).
\]
In the last equation, we use Lemma 2.7 (ii). This completes the proof. \(\square \)

Now, we fix \(\theta_j \) arbitrarily with \(0 < \theta_j < \frac{\pi}{4} \) and \(\tan \theta_j < \epsilon_j \).

Corollary 3.4. (i) For \(u \geq \frac{1}{\cos \theta_j} \)
\[
l_{x_j}(ue^{-i\theta_j}) = O(e^{-\frac{\pi}{4} \sin \theta_j}),
\]
\[
l_{x_j}(ue^{i(\pi - \theta_j)}) = O(e^{x_j(\sin \theta_j)}).
\]
(ii) If \(R \geq 1 \) and \(-R \tan \theta_j \leq y \leq R \tan \theta_j \) then
\[
l_{x_j}(R + iy) = O(e^{\frac{\pi}{2}}).
\]
(iii) If \(\sigma \in \mathbb{R}, M \in \mathbb{Z} \geq 100\) and \(U := \log (M + \frac{1}{2}) \) then
\[
l_{x_j}(\sigma + iU) = \begin{cases} O(e^{\frac{\pi}{2}}) & (\sigma \geq 1), \\ O(U^2 e^{(\epsilon_j + \frac{1}{2})U}) & (-1 \leq \sigma \leq 1), \\ O(e^{\epsilon_j \sigma + \frac{\pi}{2}} + e^{(\epsilon_j)U}) & (\sigma \leq -1). \end{cases}
\]

Proof of Corollary 3.4. (i) First, by Lemma 3.3 (i) we find
\[
l_{x_j}(ue^{-i\theta_j}) = O(e^{-\epsilon_j \Re(ue^{-i\theta_j}) + \frac{1}{2} \Re(ue^{-i\theta_j})})
\]
\[
= O(e^{-\epsilon_j (\cos \theta_j - \frac{1}{2} \sin \theta_j)})
\]
\[
= O(e^{-\frac{1}{2} \epsilon_j \sin \theta_j}).
\]
In the last equation we use the fact that \(\frac{1}{2} \sin \theta_j < \epsilon_j \cos \theta_j - \frac{1}{2} \sin \theta_j \) because \(\tan \theta_j < \epsilon_j \). Hence, (3.30) has been proved.

Next, by Lemma 3.3 (ii) we have
\[
l_{x_j}(ue^{i(\pi - \theta_j)}) = \frac{e^{-\frac{x_j(\epsilon_j)}{2} \Re(ue^{i(\pi - \theta_j)})}}{e^{x_j(\epsilon_j) \Re(ue^{i(\pi - \theta_j)})}} - e^{-iue^{i(\pi - \theta_j)}}
\]
\[
+ O(e^{\epsilon_j \Re(ue^{i(\pi - \theta_j)}) + \frac{1}{2} \Re(ue^{i(\pi - \theta_j)})} + e^{x_j(\epsilon_j) \Re(ue^{i(\pi - \theta_j)})} + e^{x_j(\epsilon_j) \Re(ue^{i(\pi - \theta_j)})}).
\]
Now,

\[|(the \ first \ term \ of \ the \ right-hand \ side \ of \ (3.32))| \leq \frac{e^{\frac{1}{2}u \sin \theta_j}}{e^{u \sin \theta_j} - e^{-u \sin \theta_j}} = O(e^{-\frac{1}{2}u \sin \theta_j}). \]

Hence, we can deduce

\[l_{\chi_j}(ue^{i(\pi - \theta_j)}) = O(e^{-\frac{1}{2}u \sin \theta_j} + e^{-u(\varepsilon_j \cos \theta_j - \frac{1}{2} \sin \theta_j)} + e^{\tau_{ij}u \sin \theta_j}), \]

where in the last equation we use the fact that \(\varepsilon_j \cos \theta_j - \frac{1}{2} \sin \theta_j > 0 \) because \(\tan \theta_j < \varepsilon_j \). Hence, (3.31) holds.

(ii) From Lemma 3.3 (i) and \(\tan \theta_j < \varepsilon_j \), we can easily deduce the desired result.

(iii) If \(\sigma \geq 1 \) (respectively \(\sigma \leq -1 \)) then we can trivially deduce the desired result from Lemma 3.3 (i) (respectively Lemma 3.3 (ii)).

If \(-1 \leq \sigma \leq 1 \) then we can derive

\[l_{\chi_j}(\sigma + iU) = \frac{i(\sigma + iU)}{2\pi}e^{-\frac{1}{2}(\sigma + iU)} \sum_{p^m < e^{2U}} \bar{X}_j(p^{2m}p^{-m}) \sum_{p^m < e^{2U}} \frac{p^{-m}}{m(\sigma + iU - im \log p)} + O(Ue^{(\varepsilon_j + \frac{1}{2})U}) \]

from Lemma 3.3 (iii). Concerning the first term of the right-hand side, we find that

\[\left| (\sigma + iU)e^{-\frac{1}{2}(\sigma + iU)} \right| = O(Ue^{\frac{1}{2}}), \]

\[\sum_{p^m < e^{2U}} \bar{X}_j(p^{2m}p^{-m}) \sum_{m(\sigma + iU - im \log p)} \left| \frac{p^{-m}}{U - m \log p} \right| \leq \sum_{p^m < e^{2U}} \frac{p^{-m}}{U - m \log p} \]

\[= \sum_{p^m < M + \frac{1}{2}} \frac{p^{-m}}{U - m \log p} + \sum_{M + \frac{1}{2} \leq p^m < (M + \frac{1}{2})^2} \frac{p^{-m}}{m \log p - U} \]

and that by Lemma 2.7 (i)

\[(the \ first \ term \ of \ (3.33)) \leq \left(M + \frac{1}{2} \right) \sum_{p^m < M + \frac{1}{2}} \frac{p^{-m}}{M + \frac{1}{2} - p^m} \]

\[\leq \left(M + \frac{1}{2} \right) \sum_{n = 0}^{M} \frac{1}{n \left(M + \frac{1}{2} - n \right)} \]

\[= \sum_{n = 0}^{M} \frac{1}{n} + \sum_{n = 0}^{M} \frac{1}{M + \frac{1}{2} - n} \]

\[\ll \log M \ll U, \]

\[(the \ second \ term \ of \ (3.33)) \leq \sum_{p^m < (M + \frac{1}{2})^2} \frac{p^{-m}}{m \log p - U} \]

\[\leq \sum_{p^m < (M + \frac{1}{2})^2} \frac{1}{p^m - (M + \frac{1}{2})}. \]
Hence, we can obtain
\[l_x(r + iU) = O(U^2e^{\frac{r}{2}} + Ue^{(r^2 + \frac{1}{2})U}) = O(U^2e^{(r^2 + \frac{1}{2})U}). \]

This completes the proof. \(\square \)

4. The “key equation”

In this section, we prove an equation which links the "factors series" of \((L_{x_j} \otimes \cdots \otimes L_{x_j})(s)\) to \(r\)-tuples of prime numbers \((r \in \mathbb{Z}_{\geq 1})\).

Define that
\[
\vartheta^{(r)} := \min_{j \in \{1, \ldots, r\}} \{ \theta_j \}, \\
\tau^{(0)}_r := \max_{j \in \{1, \ldots, r\}} \{ \tau^{(0)}_x \}, \\
D_{\vartheta^{(r)}, \tau^{(0)}_r} := \left\{ (w, z) \in \mathbb{C}^2 \mid -\frac{r}{2}\sin\vartheta^{(r)} < \Re(ze^{-i\vartheta^{(r)}}) < -r\tau^{(0)}_r\sin\vartheta^{(r)} \right\}, \\
= \left\{ (w, z) \in \mathbb{C}^2 \mid -\frac{r}{2}\tan\vartheta^{(r)} < \Re(z) + \Im(z)\tan\vartheta^{(r)} < -r\tau^{(0)}_r\tan\vartheta^{(r)} \right\},
\]

where \(L^{(1)}_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}) := \frac{1}{\Gamma(w)} \int_0^{\infty e^{-is^{(r)}}} e^{zt} \prod_{j=1}^{r} l_{x_j}(t)t^{w-1}dt, \)

\(L^{(2)}_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}) := (-1)^{r-1} \frac{e^{\pi i w}}{\Gamma(w)} \int_0^{\infty e^{-is^{(r)}}} e^{zt} \prod_{j=1}^{r} \left(l_{x_j}(t) + \sum_{n=1}^{\infty} e^{-(2n - 1 - \chi^{(r)}_j)t} \right) \bigg|_{t^{w-1}dt}, \)

\(R_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}) := \frac{2\pi i}{\Gamma(w)} \lim_{N \to \infty} \sum_{p, m < N + 1/2} \text{Res}_{t=\text{ir}m\log p} e^{-zt} \prod_{j=1}^{r} l_{x_j}(t)t^{w-1}. \)

Then, we show

Theorem 4.1 (The "key equation"). Let \((w, z) \in D_{\vartheta^{(r)}, \tau^{(0)}_r}\) satisfy \(\Im(z) < -\left(\frac{1}{2} + \varepsilon^{(r)}\right)r\) and \(\text{Re}(w) > r\). Then,

\[L^{(1)}_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}) + L^{(2)}_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}) = R_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}). \]

Proof of Theorem 4.1. Let \(\lambda\) be any fixed real number with \(0 < \lambda < \log 2\) and we define

\[F_{\vartheta^{(r)}}(w, z, \{x_j\}^{r}_{j=1}: \lambda) := \frac{1}{\Gamma(w)} \int_{V_{\lambda, \vartheta^{(r)}}} e^{zt} \prod_{j=1}^{r} l_{x_j}(t)t^{w-1}dt, \]

where \(V_{\lambda, \vartheta^{(r)}}\) is the union of \(V_1(\infty \to \lambda), V_2(\pi - \vartheta^{(r)} \to -\vartheta^{(r)})\) and \(V_3(\lambda \to \infty)\) when

\[V_1 := \{ \nu e^{i(\pi - \vartheta^{(r)})} \mid \nu \geq \lambda \}, \]

\[V_2 := \{ \lambda e^{i\varphi} \mid -\vartheta^{(r)} \leq \varphi \leq \pi - \vartheta^{(r)} \}. \]
Therefore, \(F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r): \) converges absolutely and uniformly on any compact subset of \(D_{\theta^{(r)}, \pi^{(r)}} \).

Now, when \((w, z) \in D_{\theta^{(r)}, \pi^{(r)}}\) and \(0 < \eta < \lambda\), we have

\[
F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r; \lambda) = F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r; \eta)
\]

by Theorem 3.2 (iv) and Cauchy's theorem, where

\[
W_{\eta, \lambda, \theta^{(r)}} := \{\lambda e^{it} \mid \theta^{(r)} \leq \varphi \leq \pi - \theta^{(r)}\} \cup \{\nu e^{-j\theta^{(r)}} \mid \nu \leq \lambda\}
\]

and we go around the integral path in the counterclockwise direction. If \(\Re(w) > r\), then by Theorem 3.2 (iii) we have

\[
F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r; \lambda) = \lim_{\eta \downarrow 0} F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r; \eta)
\]

By replacing \(t\) with \(-t\), using Theorem 3.1 and taking note of

\[
\frac{ie^{x-it}}{2 \sin t} = -\frac{e^{(2x-1)-it}}{1 - e^{-2it}} = -\sum_{n=1}^{\infty} e^{-2(n-1)-it}
\]

we find that the first term of (4.4) is equal to

\[
(-1)^{r-1} \frac{e^{x-it}}{\Gamma(w)} \int_{0}^{\infty} e^{-j\theta^{(r)}} \prod_{j=1}^{r} \left(t_{\chi_j} + \sum_{n=1}^{\infty} e^{-2n-1 - \frac{1}{2} \lambda^{(r)}} t_{\chi_j} \right) t^{w-1} dt.
\]

Hence, we have

\[
F_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^r; \lambda) = L_{\theta^{(r)}}^{(1)}(w, z, \{\chi_j\}_{j=1}^r) + L_{\theta^{(r)}}^{(2)}(w, z, \{\chi_j\}_{j=1}^r).
\]

Next, we define that \(U := \log |M + \frac{1}{2} X| \) for \(M \in \mathbb{Z}_{\geq 100} \) and let \((w, z) \in D_{\theta^{(r)}, \pi^{(r)}}\) with \(\Im(z) < -\frac{1}{2} + \varepsilon^{(r)} r\) and \(R \in \mathbb{R}\) with \(R \tan \theta^{(r)} \geq U\). By Theorem 3.2 (iv) and the residue theorem, we have

\[
\int_{P_{1} \cup P_{2} \cup P_{3}} e^{-zt} \prod_{j=1}^{r} l_{\chi_j}(t) t^{w-1} dt = 2\pi i \sum_{m, p, m} \operatorname{Res}_{t = \im \log p} e^{-zt} \prod_{j=1}^{r} l_{\chi_j}(t) t^{w-1}.
\]
where
\[
P_1 := \left\{ -u + iu \tan \theta^{(r)} \left| \frac{U}{\tan \theta^{(r)}} \leq u \leq \lambda \cos \theta^{(r)} \right. \right\}
\cup \left\{ \lambda e^{i\varphi} \mid -\theta^{(r)} \leq \varphi \leq \pi - \theta^{(r)} \right\}
\cup \left\{ u - iu \tan \theta^{(r)} \mid \lambda \cos \theta^{(r)} \leq u \leq R \right\},
\]
\[
P_2 := \{ R + iy \mid -R \tan \theta^{(r)} \leq y \leq U \},
\]
\[
P_3 := \left\{ \sigma + iU \left| -\frac{U}{\tan \theta^{(r)}} \leq \sigma \leq R \right. \right\}
\]
and we go around the integral path in the counterclockwise direction. First, we consider the limit of (4.5) as \(R \to \infty \). Concerning the integral of the path \(P_2 \), we have
\[
\left| \int_{-R \tan \theta^{(r)}}^{-R \tan \theta^{(r)}} e^{-z(R+iy)} \prod_{j=1}^{r} l_{\lambda_j}(R + iy)(R + iy)^{-w-1} dy \right|
\leq R^{(w)-1} e^{-\Re(z)R} \int_{-R \tan \theta^{(r)}}^{R \tan \theta^{(r)}} e^{(\Im(z)+\frac{\pi}{2})y} dy
\leq R^{(w)-1} e^{-\Re(z)R} \frac{\Im(z)}{\Im(z) + \frac{\pi}{2}}
\leq \frac{R^{(w)-1}}{\Im(z) + \frac{\pi}{2}} e^{-\Re(z)\Im(\theta^{(r)}) + \frac{\pi}{2} \tan \theta^{(r)}R}, \tag{4.6}
\]
where in the last inequality we use the fact that \(\Im(z) + \frac{\pi}{2} < 0 \). From \(\Re(z) + \Im(z) \tan \theta + \frac{\pi}{2} \tan \theta > 0 \) because \((w, z) \in D_{\theta^{(r)}, r^{(0)}} \), it follows that (4.6) vanishes as \(R \to \infty \). Hence, we have
\[
\int_{P_1 \cup P_3} e^{-z} \prod_{j=1}^{r} l_{\lambda_j}(t)t^{-w-1} dt = 2\pi i \sum_{p = 0 \text{ mod } M} \text{Res}_{t = im \log p} e^{-z} \prod_{j=1}^{r} l_{\lambda_j}(t)t^{-w-1}, \tag{4.7}
\]
where
\[
P_3 := \left\{ -u + iu \tan \theta^{(r)} \left| \frac{U}{\tan \theta^{(r)}} \leq u \leq \lambda \cos \theta^{(r)} \right. \right\}
\cup \left\{ \lambda e^{i\varphi} \mid -\theta^{(r)} \leq \varphi \leq \pi - \theta^{(r)} \right\}
\cup \left\{ u - iu \tan \theta^{(r)} \mid u \geq \lambda \cos \theta^{(r)} \right\},
\]
and we go around the integral path in the counterclockwise direction. Next, we consider the limit of (4.7) as \(M \to \infty \). Concerning the integral of the path \(P_3 \), we have
\[
\left| \int_{P_3} \right| = \left| \int_{\Re(z) = 0}^{\Re(z) = \infty} e^{-z} \prod_{j=1}^{r} l_{\lambda_j}(\sigma + iU)(\sigma + iU)^{-w-1} d\sigma \right|
\leq \int_{\Re(z) = 0}^{\Re(z) = \infty} e^{-\Re(z)\sigma + \Im(z)U} \prod_{j=1}^{r} l_{\lambda_j}(\sigma + iU) \left| \max \{ |\sigma|, U \} \right|^{\Re(z)-1} d\sigma
\]
we have

\begin{equation}
(4.8)
\end{equation}

About the first term of (4.8), by using Corollary 3.4 (iii) we can deduce

\begin{align*}
\int_{-1}^{1} U_{\tan \theta(c)} e^{-U(z)\sigma + \Im(z)U}(e^{\epsilon(z)r} + e^{\epsilon(z)\theta(c)r})\sigma & \lesssim e^{\Im(z)U} \left(\frac{U}{\tan \theta(c)} \right)^{\Im(Uw)} d\sigma \\
& + \int_{-1}^{1} e^{-U(z)\sigma + \Im(z)U}(e^{\epsilon(z)r} + e^{\epsilon(z)\theta(c)r})U_{\Im(Uw)} d\sigma \\
& \leq e^{\Im(z)U} \left(\frac{U}{\tan \theta(c)} \right)^{\Im(Uw)} \\
& \quad \times \int_{-1}^{1} (e^{\epsilon(z)r} + e^{-U(z)\sigma + \Im(z)U}) d\sigma \\
& + e^{\Im(z)U} \left(\frac{U}{\tan \theta(c)} \right)^{\Im(Uw)} \int_{-1}^{1} (e^{\epsilon(z)r} + e^{-U(z)\sigma + \Im(z)U}) d\sigma \\
& = e^{\Im(z)U} \left(\frac{U}{\tan \theta(c)} \right)^{\Im(Uw)} \int_{-1}^{1} (e^{\epsilon(z)r} + e^{-U(z)\sigma + \Im(z)U}) d\sigma.
\end{align*}

(4.9)

Since

\begin{equation}
\int_{-1}^{1} e^{A\sigma} d\sigma \ll A \begin{cases}
1 & (A > 0), \\
\frac{U}{\tan \theta(c)} & (A = 0), \\
e^{-\frac{U}{\tan \theta(c)}} & (A < 0)
\end{cases} \ll \frac{U}{\tan \theta(c)} \left(1 + e^{-\frac{U}{\tan \theta(c)}} \right),
\end{equation}

we have

\begin{align*}
(4.9) & \ll \left(\frac{U}{\tan \theta(c)} \right)^{\Im(Uw)} \left(\frac{U}{\tan \theta(c)} \right) \\
& \quad \times \left(e^{\Im(z)+\frac{U}{\tan \theta(c)}} + e^{\Im(z)+\Im(z)\tan \theta(c)+\frac{U}{\tan \theta(c)}} \right) \\
& \quad + e^{\Im(z)\tan \theta(c)} \left(\Im(z) + \Im(z)\tan \theta(c) + \frac{U}{\tan \theta(c)} \right) \\
& \to 0 \quad (M \to \infty),
\end{align*}

where in the last limit we use the fact that

\begin{equation}
\Im(z) + \Im(z)\tan \theta(c) + \frac{r}{2} < 0 \quad (4.10)
\end{equation}
and
\[
\begin{aligned}
\Re(z) + \Im(z) \tan \theta(r) + \frac{r}{2} \tan \theta(r) - \varepsilon(r) r < 0, \\
\Re(z) + \Im(z) \tan \theta(r) + r r_t^{(0)} \tan \theta(r) < 0
\end{aligned}
\]

because \((w, z) \in D_{\theta(r), r_t^{(0)}}\) and \(\tan \theta(r) < \varepsilon(r)\). About the second term of (4.8), by using Corollary 3.4 (iii) we have
\[
\begin{aligned}
\int_{-1}^{1} \ll_r \int_{-1}^{1} e^{-\Re(z) \sigma + \Im(z) U} (U^{2} e^{(\varepsilon(r) + \frac{r}{4})} U)^{r} U^{\Re(w)-1} d\sigma \\
\ll_z U^{\Re(w)+2r-1} e^{(\Im(z) + \frac{1}{2} + \varepsilon(r)) U} \\
\rightarrow 0 \ (M \rightarrow \infty),
\end{aligned}
\]

where in the last limit we use \(\Im(z) + (\frac{1}{2} + \varepsilon(r)) r < 0\). About the third term of (4.8), by Corollary 3.4 (iii) we have
\[
\begin{aligned}
\int_{1}^{\infty} \ll_r \int_{-1}^{1} e^{-\Re(z) \sigma + \Im(z) U} e^{\frac{r}{r_t^{(0)}} \max \{|\sigma|, U\}^{\Re(w)-1}} d\sigma \\
= e^{(\Im(z) + \frac{1}{2}) U} \left(\int_{1}^{U} e^{-\Re(z) \sigma} U^{\Re(w)-1} d\sigma + \int_{U}^{\infty} e^{-\Re(z) \sigma} U^{\Re(w)-1} d\sigma \right) \ (4.11)
\end{aligned}
\]

\[
\ll_z U^{\Re(w)-1} + 1 \ (4.12)
\]

\(\rightarrow 0 \ (M \rightarrow \infty),\)

where in transforming (4.11) into (4.12) we use \(\Re(z) > -(\Im(z) + \frac{1}{2}) \tan \theta(r) > 0\) because \((w, z) \in D_{\theta(r), r_t^{(0)}}\), and in the last limit we use (4.10). Hence, we obtain
\[
F_{\theta(r)}(w, z, \{\chi_j\}_{j=1}^{r}; \lambda) = R_{\theta(r)}(w, z, \{\chi_j\}_{j=1}^{r}).
\]

This completes the proof.

In the following sections, it is necessary that the left-hand side of (4.3) be a meromorphic function of \(w = w_0\). To obtain the property we show a lemma. It is the generalization of the lemma proved by Hirano, Kurokawa and Wakayama [10, Lemma 1].

Let \(\psi \in (-\pi, \pi]\) be any fixed real number and \(f(t)\) be a locally integrable function on \(\{re^{i\psi} \mid r \in (0, \infty)\}\). We define
\[
M_{\phi}[f : w] := \int_{0}^{\infty} e^{i\psi} f(t) t_{w-1} dt.
\]

Now, assume that \(f(t)\) satisfies
\[
f(t) = \begin{cases}
O(t^{-a+\varepsilon}) & (t \rightarrow 0), \\
O(t^{-b-\varepsilon}) & (t \rightarrow \infty e^{i\psi})
\end{cases}
\]

for \(a, b \in \mathbb{R}\) with \(a < b\) and \(M_{\phi}[f : w]\) converges absolutely, so is an analytic function, in \(a < \Re(w) < b\). Then, the following lemma holds.

Lemma 4.2. Suppose that \(f(t)\) has the following approximate behaviors as \(t \rightarrow 0\) and \(t \rightarrow \infty e^{i\psi}\) :
\[
f(t) \sim \begin{cases}
\sum_{k=0}^{\infty} \sum_{n=0}^{N_1(k)} A_{1}(n, k)(\log t)^{n} t^{a_1(k)} & (t \rightarrow 0), \\
\sum_{k=0}^{\infty} \sum_{n=0}^{N_2(k)} A_{2}(n, k)(\log t)^{n} t^{a_2(k)} & (t \rightarrow \infty e^{i\psi}),
\end{cases}
\]

(4.13)
where $N_1(k)$ are non-negative and finite integers for each k and $a_1(k)$ and $a_2(k)$ are complex sequences with $\Re(a_1(k))$ and $\Re(a_2(k))$ monotonically increasing. Then $M_\omega[f : w]$ has a meromorphic continuation into $w \in \mathbb{C}$ with poles at $w = -a_1(k)$ and $w = -a_2(k)$ for each k. Especially the poles at $s = -a_i(k)$ are simple if $N_i(k) = 0$.

Proof of Lemma 4.2. First we define $f_m(t)$ as

$$f_m(t) := f(t) - \sum_{n=0}^{m} a_1(n,k)(\log t)^n t^{a_1(k)}.$$

Then, in $a < \Re(w) < b$, we have

$$M_\omega[f : w] = \int_{0}^{e^{i\omega}} f_m(t) t^{w-1} dt + \int_{0}^{e^{i\omega}} \sum_{n=0}^{m} a_1(n,k)(\log t)^n t^{a_1(k)+w-1} dt$$

$$+ \int_{e^{i\omega}}^{\infty} f(t) t^{w-1} dt. \tag{4.14}$$

The first and third terms of the right-hand side of (4.14) are analytic function of w in $-\Re(a_1(m+1)) < \Re(w)$ and in $\Re(w) < b$ respectively. The second term becomes

$$\sum_{n=0}^{m} a_1(n,k) \int_{0}^{e^{i\omega}} (\log t)^n t^{a_1(k)+w-1} dt,$$

and then by partial integration we can transform it into

$$\sum_{n=0}^{m} \sum_{r=0}^{N_1(k)n} a_1(n,k) \frac{(-1)^r n(n-1) \cdots (n-r+1)(i\omega)^{n-r} e^{i\omega(w+1)}}{w + a_1(k)r+1}.$$

Hence, we see that $M_\omega[f : w]$ is a meromorphic function of w with having poles at $w = -a_1(k)$ in $-\Re(a_1(m+1)) < \Re(w) < b$, especially the orders of which at $s = -a_1(k)$ are simple if $N_1(k) = 0$. Since $\Re(a_1(m+1)) \to \infty (m \to \infty)$, it is shown that the meromorphy of $M_\omega[f : w]$ in the left half plane $\Re(w) < b$.

In a similar way, we can obtain a meromorphic continuation into the right half plane $b \leq \Re(w)$. \hfill \Box

From Lemma 4.2 the meromorphy of the left-hand side of (4.3) follows.

Corollary 4.3. If $\left(\frac{1}{2} + r^{(0)}\right) r \tan \theta^{(r)} < \Re(s) \tan \theta^{(r)} - \Im(s) < r \tan \theta^{(r)}$ and $\Re(s) > r(1 + \varepsilon^{(r)})$, then $L^{(1)}_{\theta^{(r)}}(w, -i(s - \frac{1}{2}), \{\chi_j\}_{j=1}^{r})$ and $L^{(2)}_{\theta^{(r)}}(w, -i(s - \frac{1}{2}), \{\chi_j\}_{j=1}^{r})$ are meromorphic functions of w on the whole \mathbb{C}.

Proof of Corollary 4.3. By the consideration about $F^{(r)}_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^{r}; \lambda)$ in the proof of Theorem 4.1, $L^{(1)}_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^{r})$ and $L^{(2)}_{\theta^{(r)}}(w, z, \{\chi_j\}_{j=1}^{r})$ are holomorphic functions of w under the assumption that

$$(w, z) \in D_{\theta^{(r)}, r^{(0)}}, \Re(z) < -\left(\frac{1}{2} + \varepsilon^{(r)}\right) r \text{ and } \Re(w) > r.$$

We can remove $\Re(w) > r$ because it follows from Theorem 3.2 (iii) that

$$e^{-zt} \prod_{j=1}^{r} f_{\chi_j}(t)$$
and
\[
e^{zt} \prod_{j=1}^{r} \left(l(x_j(t)) + \sum_{n=1}^{\infty} e^{-\left(2n-1-\frac{s}{2}\right) t} + \mu(x_j)(\tau(0)) e^{i\theta(0) t} + \mu(x_j)(0) \right)
\]

which appear in \(L_{\theta(1)}^{(i)}(w, z, \{ \tau \}) \) \((i = 1, 2)\) satisfy the condition concerning \(t \to 0 \) in (4.13). By putting \(z = -i \left(s - \frac{1}{2} \right) \) we obtain the desired results. \(\square \)

5. The zeta regularized product expression of \(L(s, \chi_1) \)

Our goal in this section is to prove Theorem 1.1. We obtain an equation which links the “factors series” of \(L(s, \chi_1) \) to prime numbers by calculating the both sides of (4.3) with \(r = 1 \) and then prove Theorem 1.1.

5.1. The “key equation” for \(r = 1 \).

Lemma 5.1. Let \((w, z) \in D_{\theta(1), \tau(0)}\) satisfy \(\Im(z) < -\left(\frac{1}{2} + \varepsilon(1) \right) \) and \(\Re(w) > 1 \). Then,
\[
L_{\theta(1)}^{(1)}(w, z, \chi_1) = \sum_{\Re(\tau(1)) > 0} \frac{1}{(z + \tau(1)) \Re(w)},
\]
\[
L_{\theta(1)}^{(2)}(w, z, \chi_1) = e^{\pi i w} \left(\sum_{\Re(\tau(1)) > 0} \frac{1}{(\tau(1) - z) \Re(w)} \sum_{n=1}^{\infty} \frac{1}{(z + \left(2n - 1 - \frac{\tau(1)}{2}\right) \Re(w))} \right) + \frac{\mu(\tau(0))}{(-z - i \tau(0)) \Re(w)} + \frac{\mu(\tau(0))}{(-z + i \tau(0)) \Re(w)}.
\]

Proof of Lemma 5.1. Since \((w, z) \in D_{\theta(1), \tau(0)}\) and \(\Re(\tau(1)) > \varepsilon(1) > \tan \theta(1) \), we have
\[
\Re(z + \tau(1)) + \Im(z + \tau(1)) \tan \theta(1) > \varepsilon(1) - \tan \theta(1) > 0,
\]
and from this we find \(\arg(z + \tau(1)) \in \left(\theta(1) - \frac{\pi}{2}, \theta(1) + \frac{\pi}{2} \right) \). Therefore, by using Lemma 2.8 as \(\psi = -\theta(1) \) we obtain
\[
L_{\theta(1)}^{(1)}(w, z, \chi_1) = \frac{1}{\Gamma(w)} \sum_{\Re(\tau(1)) > 0} \int_{0}^{\infty} e^{-\left(z + \tau(1)\right) t \Re(w) - t} dt
\]
\[
= \sum_{\Re(\tau(1)) > 0} \frac{1}{(z + \tau(1)) \Re(w)}.
\]

In a similar way as \(L_{\theta(1)}^{(2)}(w, z, \chi_1) \) we can reach the desired result concerning \(L_{\theta(1)}^{(2)}(w, z, \chi_1) \).

Lemma 5.2. If \(\left(\frac{1}{2} + \tau(0) \right) \tan \theta(1) < \Re(s) \tan \theta(1) - \Im(s) < \tan \theta(1) \), \(\Re(s) > 1 + \varepsilon(1) \) and \(\Re(w) > 1 \) then we have
\[
L_{\theta(1)}^{(1)} \left(w, -i \left(s - \frac{1}{2} \right), \chi_1 \right) = e^{\pi i w} \sum_{\Re(\tau(1)) < 0} \frac{1}{(s - \rho(1)) \Re(w)}.
\]

(5.1)
Proof of Lemma 5.2. Putting \(z = -i(s - \frac{1}{2}) \) in Lemma 5.1, we obtain the conditions concerning \((w, s)\) and have

\[
L_{\theta(1)}^{(1)} \left(w, -i \left(s - \frac{1}{2} \right), \chi_1 \right) = \sum_{\Re(\tau_{\chi_1}) > 0} \frac{1}{(-i(s - \frac{1}{2}) + \tau_{\chi_1})^w} + \sum_{n=1}^{\infty} \frac{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}{(s + 2n - \Re(\tau_{\chi_1})(-1))^w}
\]

where the argument lies in \((-\frac{\pi}{2}, \frac{\pi}{2})\). The serieses in (5.1) and (5.2) converge absolutely, locally and uniformly in the given \((w, s)\)-region above.

Proof of Lemma 5.3. By Theorem 3.2 (ii) and (iv), we find that the residue in

\[
R_{\theta(1)} \left(w, -i \left(s - \frac{1}{2} \right), \chi_1 \right) = \sum_{p,m} \chi_1(p^m)p^{-ms}(m \log p)^{w-1} \log p.
\]

The series converges absolutely and uniformly on any compact subset of \(\{ (w, s) \in \mathbb{C}^2 \mid \Re(s) > 1 \} \).
Theorem 5.4. If \(\frac{1}{2} + \tau_1^{(0)} \) tan \(\theta^{(1)} \) < Re(s) tan \(\theta^{(1)} - \Im(s) < \tan \theta^{(1)} \), Re(s) > 1 + \varepsilon^{(1)} \) and Re(w) > 1, we have

\[
\begin{align*}
\sum_{\Im(p_{\chi_1}) \neq 0} \frac{1}{(s - p_{\chi_1})^w} &+ \sum_{n=1}^{\infty} \frac{1}{(s + 2n - \frac{3 + \chi_1(-1)}{2})^w} \\
+ \frac{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}{(s - \frac{1}{2} - \tau_{\chi_1}^{(0)})^w} + \frac{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}{(s - \frac{1}{2} + \tau_{\chi_1}^{(0)})^w} + \frac{\mu_{\chi_1}(0)}{(s - \frac{1}{2})^w} \\
= -\frac{1}{\Gamma(w)} \chi_1(p^m)p^{-ms}(m \log p)^{w-1} \log p.
\end{align*}
\]

Proof of Theorem 5.4. We put \(r = 1 \) and \(z = -i \left(1 \right) \) in Theorem 4.1 and then by applying Lemma 5.2 and 5.3 we have

\[
\begin{align*}
\sum_{\Im(p_{\chi_1}) \neq 0} \frac{1}{(s - p_{\chi_1})^w} &+ \sum_{n=1}^{\infty} \frac{1}{(s + 2n - \frac{3 + \chi_1(-1)}{2})^w} \\
+ \frac{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}{(s - \frac{1}{2} - \tau_{\chi_1}^{(0)})^w} + \frac{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}{(s - \frac{1}{2} + \tau_{\chi_1}^{(0)})^w} + \frac{\mu_{\chi_1}(0)}{(s - \frac{1}{2})^w} \\
= -\frac{1}{\Gamma(w)} \chi_1(p^m)p^{-ms}(m \log p)^{w-1} \log p,
\end{align*}
\]

under the conditions that

\[
\left(\tau_{\chi_1}^{(0)} + \frac{1}{2} \right) \tan \theta^{(1)} < \Re(s) \tan \theta^{(1)} - \Im(s) < \tan \theta^{(1)},
\]

\(\Re(s) > 1 + \varepsilon^{(1)} \) and \(\Re(w) > 1 \).

Then, replacing \(\chi_1 \) with \(\chi_1 \) in (5.5), we obtain (5.4). \(\square \)

5.2. Proof of Theorem 1.1.

Proof. The left-hand side of (5.4) is a meromorphic function of \(w \) on the whole \(\mathbb{C} \) by Corollary 4.3. Hence, by using the definition of the zeta regularized product we have

\[
\exp \left(-\text{Res}_{w=0} \left(\frac{\text{the left-hand side of (5.4)}}{w^2} \right) \right) = \prod_{\Im(p_{\chi_1}) \neq 0} (s - p_{\chi_1}) \prod_{n=1}^{\infty} \left(s + 2n - \frac{3 + \chi_1(-1)}{2} \right)^{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}(s - \frac{1}{2} - \tau_{\chi_1}^{(0)})^{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}(s - \frac{1}{2} + \tau_{\chi_1}^{(0)})^{\mu_{\chi_1}(\tau_{\chi_1}^{(0)})}(s - \frac{1}{2})^{\mu_{\chi_1}(0)},
\]

(5.6)
On the other hand, since \(\frac{1}{1(w)} = w + O(w^2) \) \((w \to 0) \), we have

\[
\exp \left(-\operatorname{Res}_{w=0} \left(\frac{\text{the right-hand side of (5.4)}}{w^2} \right) \right) = \exp \left(\sum_{p,m} \frac{\chi_1(p^m)p^{-ms}}{m} \right) = \prod_p (1 - \chi_1(p)p^{-s})^{-1}.
\]

By the property of the zeta regularized products, (5.6) is a meromorphic function on the whole \(\mathbb{C} \). Hence (1.1) holds. \(\square \)

6. The Euler product expression of \((L_{X_1} \otimes_{F_1} L_{X_2})(s)\)

In a similar way as section 5, we show Theorem 1.3.

6.1. The “key equation” for \(r = 2 \).

Lemma 6.1. If \((2z_2^{(0)} + 1) \tan \theta^{(2)} < \Re(s) \tan \theta^{(2)} - \Im(s) < 2 \tan \theta^{(2)}, \Re(s) > 2(1 + \varepsilon^{(2)}) \) and \(\Re(w) > 2 \) then we have

\[
L^{(1)}_{\theta^{(2)}}(w, -i(s - 1), \{ \chi_j \}_{j=1}^2) = e^{\frac{\pi i}{24}} \sum_{\chi(\rho_{x_1}), \chi(\rho_{x_2}) < 0} \frac{1}{(s - \rho_{x_1} - \rho_{x_2})^w}.
\]

\[
L^{(2)}_{\theta^{(2)}}(w, -i(s - 1), \{ \chi_j \}_{j=1}^2)
= -e^{\frac{\pi i}{24}} \sum_{\chi(\rho_{x_1}), \chi(\rho_{x_2}) > 0} \frac{1}{(s - \rho_{x_1} - \rho_{x_2})^w}
+ \sum_{(a,b) \in \{(1,2), (2,1)\}} \left(\sum_{\chi(\rho_{x_1}) > 0} \sum_{n=1}^{\infty} \frac{\mu_{x_1}(\rho_{x_1})}{(s - \rho_{x_1} - \frac{1}{2} - \tau_{x_1})^w} \right)
+ \sum_{\chi(\rho_{x_1}) > 0} \left(\sum_{n=1}^{\infty} \frac{\mu_{x_1}(\rho_{x_1})}{(s + 2n - 2 - \frac{\chi(1)}{2} + \tau_{x_1})^w} \right)
+ \sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{\mu_{x_1}(\rho_{x_1})}{(s + 2n - 2 - \frac{\chi(1)}{2} - \tau_{x_1})^w} \right)
+ \sum_{n_1=1}^{\infty} \sum_{n_2=1}^{\infty} \frac{1}{(s + 2n_1 + 2n_2 - 3 - \frac{\chi(1) + \chi(2)}{2})^w}\]

\[
+ \frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 - \tau_{x_1} - \tau_{x_2})^w} + \frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 + \tau_{x_1} + \tau_{x_2})^w} + \frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 - \tau_{x_1} + \tau_{x_2})^w} + \frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 + \tau_{x_1} - \tau_{x_2})^w} + \sum_{(a,b) \in \{(1,2), (2,1)\}} \left(\frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 - \tau_{x_1})^w} + \frac{\mu_{x_1}(\rho_{x_1}) \mu_{x_2}(\rho_{x_2})}{(s - 1 + \tau_{x_1})^w} \right).
\]

The serieses which appear here converge absolutely, locally and uniformly in the given \((w,s)\)-region above.
Proof of Lemma 6.1. In a similar way as Lemma 5.1 and 5.2 we can prove these.

Lemma 6.2. If \((2\varepsilon_2^{(0)} + 1) \tan \theta^{(2)} < \Re(s) \tan \theta^{(2)} - \Im(s) < 2 \tan \theta^{(2)}, \Re(s) > 2(1 + \varepsilon^{(2)})\) and \(\Re(w) > 2\) then we have

\[
R_{\theta^{(2)}}(w, -i(s - 1), \{\chi_j\}_{j=1}^{2}) = \frac{e^{\frac{\pi i w}{2}}}{\Gamma(w)} \sum_{k=1}^{10} E_k(w, s, \{\chi_j\}_{j=1}^{2}). \tag{6.1}
\]

Proof of Lemma 6.2. Let \(p\) and \(m\) be any fixed prime number and positive integer respectively. By Theorem 3.2 (ii) we have

\[
l_{\chi_1}(t) \cdot l_{\chi_2}(t) = \tilde{\chi}_1(p^m) \tilde{\chi}_2(p^m) \left(\frac{ite^{-\frac{it}{2}p^{-m}}}{2\pi m(t - im \log p)} \right)^2 + \sum_{(a,b) \in \{(1,2),(2,1)\}} \frac{ite^{-\frac{it}{2}a(p^m)b^{-m}}}{2\pi m(t - im \log p)} \left(-\frac{it}{2\pi} \sum_{p^m \neq q^m} \frac{\tilde{\chi}_1(q^n)q^{-n}}{n(t - in \log q)} \right.
\]

\[
- \frac{e^{i(\alpha + \frac{1}{2})\pi \gamma}}{2\pi} \left(\frac{it}{2} \sum_{q,n} \frac{\tilde{\chi}_1(q^n)q^{-n(1+\alpha)}}{n(t + in \log q)} - \frac{it}{2} \sum_{n=1}^{\infty} \frac{\tilde{\chi}_1(-1)e^{-i(\alpha \pi)}}{n(t - n\pi)} \right.
\]

\[
+ i \log \left(\frac{\chi_b(-1)\Gamma(1 + \alpha)N_b^2 G(\chi_b)}{(2\pi)^{1+\alpha}} \right) - \frac{(1 + \alpha)\pi}{2} + \frac{1}{t} \left(\gamma + \log \left(\frac{2\pi}{N_b} \right) + \frac{\pi i}{2} \right) - \frac{1}{t} \int_{0}^{\infty} \frac{1}{e^u - 1} \cdot \frac{u - it(1 - e^{-\alpha \pi})}{u - it} \, du \right)
\]

\[
- \frac{t}{2\pi} \frac{e^{\frac{it}{2}}}{{\sin t}} \int_{S(\varepsilon^{(2)} \to 0)} e^{-ist} \log L(s, \chi_b) \, ds - \frac{ie^{\frac{\pi i (\alpha - 1) \gamma}{2\sin t}}}{{\sin t}} \left(\mu_{\chi_b}((e^{i\alpha \pi}))L(s, \chi_b) - e^{-i\alpha \pi}(\mu_{\chi_b}(t)) \right)
\]

+ (the holomorphic parts at \(t = im \log p\)).

Applying this to

\[
R_{\theta^{(2)}}(w, -i(s - 1), \{\chi_j\}_{j=1}^{2}) = \frac{2\pi i}{\Gamma(w)} \sum_{p,m} \text{Res}_{t=im \log p} \left(e^{\frac{i(s-1)t}{2}}l_{\chi_1}(t) \cdot l_{\chi_2}(t)t^{w-1} \right)
\]

leads to (6.1).
Lemma 6.3. For \(k \in \{1, 2, \cdots, 10\} \), \(E_k(w, s, \{\chi_j\}_{j=1}^2) \) converges absolutely and uniformly on any compact subset of \(\{(w, z) \in \mathbb{C}^2 \mid \Re(s) > \beta_k\} \), where

\[
\beta_k = \begin{cases}
1 & (k = 1), \\
2 & (k = 2, 6), \\
1 - \alpha & (k = 3, 4, 7), \\
\max\left\{ \frac{1 - \chi_2(-1)}{2}, \frac{1 - \chi_2(-1)}{2} \right\} & (k = 5), \\
\frac{\delta}{2} + \frac{\epsilon(0)}{\tau^2} & (k = 8), \\
\frac{\delta}{2} - \frac{\epsilon(0)}{\tau^2} & (k = 9), \\
\frac{\delta}{2} & (k = 10).
\end{cases}
\]

Proof of Lemma 6.3. The desired results follow from Lemma 2.7 (iii) immediately except for \(E_2(w, s, \{\chi_j\}_{j=1}^2) \), \(E_3(w, s, \{\chi_j\}_{j=1}^2) \) and \(E_4(w, s, \{\chi_j\}_{j=1}^2) \).

Concerning \(E_4(w, s, \{\chi_j\}_{j=1}^2) \), we can easily prove its absolute and locally uniform convergence by Lemma 2.7 (iii).

We consider \(E_3(w, s, \{\chi_j\}_{j=1}^2) \). Let \((w, s) \in \mathbb{C}^2 \) satisfy \(\Re(s) > 1 - \alpha + \delta \) and \(A \leq \Re(w) \leq B \) for any fixed real numbers \(\varepsilon, A \) and \(B \) with \(\delta > 0 \) and \(A < B \).

Then, for any prime numbers \(p, q \) and any \(m, n \in \mathbb{Z}_{\geq 1} \) we have

\[
\frac{\chi_a(p^m)\chi_b(q^n)p^{-m(s+\alpha)}q^{-n(m \log p + \log q)}}{n(m \log p + n \log q)} \leq \begin{cases}
\frac{2^{-(1+\delta)}q^{-n(\log 2)^{A+1}}}{n^2 \log q} & (p = 2, m = 1), \\
\frac{p^{-m(1+\delta)}q^{-n(m \log p + \log q)}}{n^2 \log q} & (otherwise),
\end{cases}
\]

where \((a, b) \in \{(2, 1), (2, 1)\} \). From Lemma 2.7 (ii) we have

\[
\sum_{q, n} \frac{2^{-(1+\delta)}q^{-n(\log 2)^{A+1}}}{n^2 \log q} < \infty.
\]

From Lemma 2.7 (ii), (iii) we have

\[
\sum_{p, m, q, n} p^{-m(1+\epsilon)}q^{-n(m \log p + \log q)} \leq \left(\sum_{p, m} p^{-m(1+\epsilon)}(m \log p) \log p \right) \left(\sum_{q, n} \frac{q^{-n}}{n^2 \log q} \right) < \infty.
\]

Hence, we find that \(E_3(w, s, \{\chi_j\}_{j=1}^2) \) converges absolutely and uniformly on any compact subset of \(\{(w, s) \in \mathbb{C}^2 \mid \Re(s) > 1 - \alpha\} \).

We consider \(E_2(w, s, \{\chi_j\}_{j=1}^2) \). Let \((w, s) \in \mathbb{C}^2 \) satisfy \(\Re(s) > 2 + \delta \) and \(A \leq \Re(w) \leq B \) for any fixed real numbers \(\delta, A \) and \(B \) with \(\delta > 0 \) and \(A < B \). Then, for any prime numbers \(p, q \) and any \(m, n \in \mathbb{Z}_{\geq 1} \) we have

\[
\frac{\chi_a(p^m)\chi_b(q^n)p^{-m(s-1)}q^{-n(m \log p + \log q)}}{n(m \log p - n \log q)} \leq \begin{cases}
\frac{2^{-(1+\delta)}q^{-n(\log 2)^{A+1}}}{n^2 \log q} & (p = 2, m = 1), \\
\frac{p^{-m(1+\delta)}q^{-n(m \log p + \log q)}}{n^2 \log q} & (otherwise),
\end{cases}
\]

where \((a, b) \in \{(2, 1), (2, 1)\} \). From Lemma 2.7 (ii) we have

\[
\sum_{q, n} \frac{2^{-(1+\delta)}q^{-n(\log 2)^{A+1}}}{n^2 \log q} < \infty.
\]

From Lemma 2.7 (ii), (iii) we have

\[
\sum_{p, m, q, n} p^{-m(1+\epsilon)}q^{-n(m \log p + \log q)} \leq \left(\sum_{p, m} p^{-m(1+\epsilon)}(m \log p) \log p \right) \left(\sum_{q, n} \frac{q^{-n}}{n^2 \log q} \right) < \infty.
\]

Hence, we find that \(E_2(w, s, \{\chi_j\}_{j=1}^2) \) converges absolutely and uniformly on any compact subset of \(\{(w, s) \in \mathbb{C}^2 \mid \Re(s) > 1 - \alpha\} \).
where \((a, b) \in \{(1, 2), (2, 1)\}\). In the case of \((p, m) = (2, 1)\), from \(\log x - \log 2 \geq (1 - \frac{\log 2}{\log 3}) \log x\) for any \(x \in \mathbb{R}_{\geq 3}\) and Lemma 2.7 (ii) it follows that

\[
\sum_{q^n \geq 3} \frac{2^{-(1+\delta)} q^{-n} (\log 2)^{A+1}}{n(n \log q - \log 2)} \leq \frac{2^{-(1+\delta)} (\log 2)^{A+1}}{1 - \frac{\log 2}{\log 3}} \sum_{q,n} q^{-n} \log q < \infty.
\]

In the case of \((p, m) \neq (2, 1)\), we have

\[
\sum_{p,m,q,n} \frac{p^{-m(1+\delta)} q^{-n} (m \log p)^B \log p}{n|m \log p - n \log q|} \leq \sum_{p,m,q,n} \frac{p^{-m(1+\delta)} q^{-n} (m \log p)^B \log p}{n|m \log p - n \log q|}
\]

\[
= \sum_{p,m,q,n} \left(\sum_{p^m < q^n < p^{2m}} + \sum_{p^m < q^n < p^{2m}} + \sum_{p^m < q^n \geq p^{2m}} \right) \quad (6.2)
\]

Concerning the third term of (6.2), we have \(n \log q - m \log p \geq \frac{n \log 2}{2}\) because \(2m \log p \leq n \log q\). Therefore, from Lemma 2.7 (ii), (iii) we have

\[
\text{(the third term of (6.2))} \leq 2 \left(\sum_{p,m} p^{-m(1+\delta)} (m \log p)^B \log p \right) \left(\sum_{q,n} q^{-n} \right) \frac{\log q}{n^2 \log q} < \infty.
\]

Concerning the second term of (6.2), from Lemma 2.7 (i) we have

\[
\sum_{q^n < p^{2m}} \frac{q^{-n}}{n|m \log p - n \log q|} \leq \sum_{q^n < p^{2m}} \frac{q^{-n}}{q^n - p^n} \leq \sum_{l=1}^{p^{2m} - p^n - 1} \frac{1}{(p^m + l) - p^m} \ll m \log p.
\]

Hence, from Lemma 2.7 (iii) we find

\[
\text{(the second term of (6.2))} \ll \sum_{p,m} p^{-m(1+\delta)} (m \log p)^{B+1} \log p < \infty. \quad (6.4)
\]

Concerning the first term of (6.2), from Lemma 2.7 (i) we have

\[
\sum_{q^n < p^m} \frac{q^{-n}}{n|m \log p - n \log q|} \leq \sum_{q^n < p^m} \frac{q^{-n}}{p^m - q^n} \leq p^m \sum_{l=1}^{p^m - 1} \frac{1}{l(p^m - l)} = \sum_{l=1}^{p^m - 1} \frac{1}{l} + \sum_{l=1}^{p^m - 1} \frac{1}{p^m - l} \ll m \log p.
\]
Hence, from Lemma 2.7 (iii) we find
\[
(\text{the first term of } 6.2) \ll \sum_{p \leq m} p^{-m(1+\varepsilon)} (m \log p)^{B+1} \log p < \infty. \quad (6.5)
\]

From (6.3), (6.4) and (6.5) it follows that (6.2) converges. This completes the proof.

From Lemma 6.1, Lemma 6.2 and Lemma 6.3 we derive the “key equation” for \(r = 2 \).

Theorem 6.4. If \((2\tau_2^{(0)} + 1) \tan \theta(2) < \Re(s) \tan \theta(2) - \Im(s) < 2 \tan \theta(2), \Re(s) > 2(1 + \varepsilon(2)) \) and \(\Re(w) > 2 \) then the following equation holds:

\[
- \sum_{\chi \neq \chi_0} \sum_{(a,b) \in \{(1,2),(2,1)\}} \left(\sum_{\chi = \chi_0} \mu_{\chi_0} \left(\frac{\theta(0)}{s} \right) \sum_{n=1}^{\infty} \frac{1}{n} \left(s - \frac{\tau_1 + \tau_2}{2} \right)^n \right)
+ \sum_{\chi \neq \chi_0} \sum_{(a,b) \in \{(1,2),(2,1)\}} \left(\sum_{\chi = \chi_0} \mu_{\chi_0} \left(\frac{\theta(0)}{s} \right) \sum_{n=1}^{\infty} \frac{1}{n} \left(s - \frac{\tau_1 + \tau_2}{2} \right)^n \right)
+ \sum_{\chi \neq \chi_0} \sum_{(a,b) \in \{(1,2),(2,1)\}} \left(\sum_{\chi = \chi_0} \mu_{\chi_0} \left(\frac{\theta(0)}{s} \right) \sum_{n=1}^{\infty} \frac{1}{n} \left(s - \frac{\tau_1 + \tau_2}{2} \right)^n \right)
+ \sum_{\chi \neq \chi_0} \sum_{(a,b) \in \{(1,2),(2,1)\}} \left(\sum_{\chi = \chi_0} \mu_{\chi_0} \left(\frac{\theta(0)}{s} \right) \sum_{n=1}^{\infty} \frac{1}{n} \left(s - \frac{\tau_1 + \tau_2}{2} \right)^n \right)
= -\frac{1}{\Gamma(w)} \sum_{k=1}^{10} E_k(w, s, \{\chi_j\}_{j=1}^2).
\]

Proof of Theorem 6.4. We put \(r = 2 \) and \(z = -i(s - 1) \) in Theorem 4.1 and then by applying Lemma 6.1 and Lemma 6.2 and replacing \(\chi \) with \(\chi \) we obtain the desired result.

6.2. **Proof of Theorem 1.3.**

Proof. The left-hand side of the formula in Theorem 6.4 is a meromorphic function of \(w \) on the whole \(\mathbb{C} \) by Corollary 4.3. Hence, by using the definition of zeta
regularized products we have

\[
\exp \left(- \operatorname{Res}_{w=0} \left(\frac{\text{the left-hand side of the formula in Theorem 6.4}}{w^2} \right) \right) \\
= \prod_{\mathfrak{A}(\rho_{x_1}) > 0} \left(\left(s - \rho_{x_1} - \rho_{x_2} \right)^{-1} \prod_{\mathfrak{A}(\rho_{x_1}) > 0} \left(s - \rho_{x_1} - \rho_{x_2} \right) \right) \\
\times \prod_{(a,b) \in \{(1,2),(2,1)\}} \left(\prod_{\mathfrak{A}(\rho_{x_1}) > 0, n \geq 1} \left(s - \rho_{x_a} + 2n - \frac{3 + \chi_b(-1)}{2} \right) \right) \\
\times \prod_{\mathfrak{A}(\rho_{x_a}) > 0} \left(s - \rho_{x_a} - \frac{1}{2} - \tau_{x_a}^{(0)} \right) \mu_{x_a}(\tau_{x_a}^{(0)}) \\
\times \prod_{\mathfrak{A}(\rho_{x_a}) > 0} \left(s - \rho_{x_a} - \frac{1}{2} + \tau_{x_a}^{(0)} \right) \mu_{x_a}(\tau_{x_a}^{(0)}) \\
\times \prod_{n \geq 1} \left(s + 2n + \frac{3 + \chi_b(-1)}{2} \right) \mu_{x_a}(\tau_{x_a}^{(0)}) \\
\times \prod_{n \geq 1} \left(s + 2n + \frac{3 + \chi_b(-1)}{2} \right) \mu_{x_a}(\tau_{x_a}^{(0)}) \\
\times \prod_{n_{1, n_2} \geq 1} \left(s + 2n_{1} + 2n_{2} - \chi_1(-1) + \chi_2(-1) \right) \\
\times \left(s - 1 - \tau_{x_1}^{(0)} - \tau_{x_2}^{(0)} \right) \left(s - 1 - \tau_{x_1}^{(0)} + \tau_{x_2}^{(0)} \right) \\
\times \left(s - 1 + \tau_{x_1}^{(0)} - \tau_{x_2}^{(0)} \right) \left(s - 1 + \tau_{x_1}^{(0)} + \tau_{x_2}^{(0)} \right) \mu_{x_1}(\tau_{x_1}^{(0)}) \mu_{x_2}(\tau_{x_2}^{(0)}) \\
\times \prod_{(a,b) \in \{(1,2),(2,1)\}} \left(s - 1 - \tau_{x_1}^{(0)} - \tau_{x_2}^{(0)} \right) \left(s - 1 + \tau_{x_1}^{(0)} + \tau_{x_2}^{(0)} \right) \mu_{x_a}(\tau_{x_a}^{(0)}) \mu_{x_b}(\tau_{x_b}^{(0)}) \\
\times (s - 1) \mu_{x_1}(0) \mu_{x_2}(0) \\
= (L_{x_1} \otimes L_{x_2})(s).
\]

On the other hand, by Theorem 6.4 and noting that \(\frac{1}{w} = w + O(w^2) \ (w \to 0) \), we have

\[
\exp \left(- \operatorname{Res}_{w=0} \left(\frac{\text{the right-hand side of the formula in Theorem 6.4}}{w^2} \right) \right) \\
= \exp \left(\sum_{k=1}^{10} E_k(0, s, \{\chi_j\}_{j=1}^{2}) \right)
\]
for \(\Re(s) > 2 \). This completes the proof. \(\square \)
References

[1] N. Kurokawa, *Multiple zeta functions: an example*, Adv. Stud. Pure Math. 21 (1992), 219-226.

[2] C. Deninger *Local L-factors of motives and regularized*, Invent. Math. 107 (1992), 135-150.

[3] N. Kurokawa and M. Wakayama, *Zeta Regularizations*, Acta Appl. Math. 81 (2004), 147-166.

[4] S. Koyama and N. Kurokawa, *Multiple Euler products*, Amer. Math. Soc. Transl. Ser. 2 218 (2006), 101-140.

[5] H. Akatsuka, *Euler product expression of triple zeta functions*, Internat. J. Math. 16 (2005), 111-136.

[6] N. Kurokawa and M. Wakayama, *Absolute Tensor Products*, Int. Math. Res. Not. 2004(5) (2004), 249-260.

[7] H. Akatsuka, *The double Riemann zeta function*, Commun. Number Theory Phys. vol. 3, no. 4 (2009), 619-653.

[8] H. Cramér, *Studien über die Nullstellen der Riemannschen Zetafunktion*, Math. Z. 4 (1919), 104-130.

[9] A. P. Guinand, *Fourier reciprocities and the Riemann zeta-function*, Proc. London Math. Soc. (2) 51 (1950), 401-414.

[10] M. Hirano, N. Kurokawa and M. Wakayama, *Half zeta function*, J. Ramanujan Math. Soc. 18 (2003), 195-209.