Controlling Lexical Substitution in Computer Text Generation
Robert Granville
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, Massachusetts 02139

Abstract
This report describes Paul, a computer text generation system designed to create cohesive text through the use of lexical substitutions. Specifically, this system is designed to deterministically choose between pronounization, superordinate substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery for each of the lexical substitutions, and matches them against the strength of potential antecedence of each element in the text to select the proper substitutions for these elements.

1. Introduction
This report describes Paul, a computer text generation system designed to create cohesive text through the use of lexical substitutions. Specifically, this system is designed to deterministically choose between pronounization, superordinate substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery for each of the lexical substitutions, and matches them against the strength of potential antecedence of each element in the text to select the proper substitutions for these elements.

Paul is a natural language generation program initially developed at IBM's Thomas J. Watson Research Center as part of the ongoing Epistle project [5, 6]. The emphasis of the initial work reported here is in the research of discourse phenomena, the study of cohesion and its effects on multi-sentential text [3, 9]. Paul accepts as input LISP knowledge structures consisting of case frame [1] formulas representing each sentence to be generated. These knowledge structures are translated into English, with the appropriate lexical substitutions being made at this time. No attempt is made by the system to create these knowledge structures.

2. Cohesion
The purpose of communication is for one person (the speaker or writer) to express her thoughts and ideas so that another (the listener or reader) can understand them. There are many restrictions placed on the realization of these thoughts into language so that the listener may understand. One of the most important requirements for an utterance is that it seem to be unified; that it form a text. The theory of text and what distinguishes it from isolated sentences that is used in Paul is that of Halliday and Hasan [3].

One of the items that enhances the unity of text is cohesion. Cohesion refers to the linguistic phenomena that establish relationships between sentences, thereby tying them together. There are two major goals that are accomplished through cohesion that enhance a passage's quality of text. The first is the obvious desire to avoid unnecessary repetition. The other goal is to distinguish new information from old, so that the listener can fully understand what is being said.

(1) The room has a large window. The room has a window facing east.
(1) appears to be describing two windows, because there is no device indicating that the window of the second sentence is the same as the window of the first sentence. If in fact the speaker meant to describe the same window, she must somehow inform the listener that this is indeed the case. Cohesion is a device that will accomplish this goal.

Cohesion is created when the interpretation of an element is dependent on the meaning of another. The element in question cannot be fully understood until the element it is dependent on is identified. The first presupposes [3] the second in that it requires for its understanding the existence of another. An element of a sentence presupposes the existence of another when its interpretation requires reference to another. Once we can trace those references to their sources, we can correctly interpret the elements of the sentences.

The very same devices that create these dependencies for interpretation help distinguish old information from new. If the use of a cohesive element presupposes the existence of another reference of the element for its interpretation, then the listener can be assured that the other reference exists, and that the element in question can be understood as old information. Therefore, that act of associating sentences through reference dependencies helps make the text unambiguous, and cohesion can be seen to be a very important part of text.

3. Lexical Substitution
In [3], Halliday and Hasan catalog and discuss many devices used in English to achieve cohesion. These include reference, substitution ellipsis, and conjunction. Another family of devices they discuss is known as lexical substitution. The lexical substitution devices incorporated into Paul are pronounization, superordinate substitution, and definite noun phrase reiteration.

Superordinate substitution is the replacement of an element with a noun or phrase that is a more general term for the element. As an example, consider Figure 1, a sample hierarchy the system uses to generate sentences.

```
| ANIMAL |
|--------|
| MAMMAL |
| REPTILE |
| POSSUM  |
| SKUNK   |
| TURTLE  |
| POGO    |
| HEPZIBAH|
| CHURCHY |
```

Figure 1a

1. POSUM IS A MALE POSSUM.
2. HEPZIBAH IS A FEMALE SKUNK.
3. CHURCHY IS A MALE TURTLE.
4. POSSUMS ARE SMALL, GREY MAMMALS.
5. SKUNKS ARE SMALL, BLACK MAMMALS.
6. TURTLES ARE SMALL, GREEN REPTILES.
7. MAMMALS ARE FURRY ANIMALS.
8. REPTILES ARE SCALED ANIMALS.

Figure 1b: A Sample Hierarchy for Paul
In this example, the superordinate of **POGO** is **POSSUM**, that of **POSSUM** is **MAMMAL**, and again for **MAMMAL** the superordinate is **ANIMAL**. Superordinates can continue for as long as the hierarchical tree will support.

The mechanics for performing superordinate substitution is fairly easy. All one needs is an array to create a list of superordinates by tracing up the hierarchical tree, and ultimately choose from this list. However, there are several rules that must be added to prevent superordinate substitution from being ambiguous or moving erroneous conclusions. The erroneous conclusions occur if the list of superordinates is allowed to extend too long. An example will make this clear. Let us assume that we have a hierarchy in which there is an entry like this. The superordinate of **FRED** is **MAM**, **MAM** **HUMAN**, **HUMAN** **ANIMAL**, and **ANIMAL** **THING**. Therefore, the superordinate list for **FRED** is **MAM** **HUMAN** **ANIMAL** **THING**.

While performing some substitution, it is actually violating the capacity of personal pronoun is strictly grammatical. Once the syntactic case, the number, and the gender of the element are known, the correct pronoun is dictated by the language.

The final lexical substitution available to Paul is the definite noun phrase, the use of a definite article, the in English, as opposed to an indefinite article, a or an. The definite article clearly marks an item as one that has been previously mentioned, and is therefore old information. The indefinite article similarly marks an item as not having been previously mentioned, and therefore is new information. This capacity of the definite noun phrase matches its use required with superordinates.

(2) My collie is smart. The dog fetches my newspaper every day.

My collie is smart. A dog fetches my newspaper every day.

While the mechanisms for performing the various lexical substitutions are conceptually straightforward, they do not solve the entire problem of using lexical substitution. Nothing has been said about how the system chooses which lexical substitution to use. This is a serious issue because lexical substitution devices are not interchangeable. This is true because lexical substitution devices, as with cohesive devices, create text by using presuppositional devices for their interpretations, as we have seen. If those presupposed elements do not exist, or if it is not possible to correctly identify which of the many possible elements is the one presupposed, then it is impossible to correctly interpret the element, and the only possible result is confusion. A computer text generation system that incorporates lexical substitution in its output must ensure that the presupposed element exists, and that it can be readily identified by the reader.

Paul controls the selection of lexical substitution devices by conceptually viewing the problem into two tasks. The first is to identify the strength of antecedence recovery of the lexical substitution devices. The second is to identify the strength of potential antecedence of each element in the passage, and determine which if any lexical substitution would be appropriate.

4. Strength of Antecedence Recovery

Each time a cohesive device is used, a presupposition dependency is created. The item that is being presupposed must be correctly identified for the correct interpretation of the element. The relative ease with which one can recover this presupposed item from the cohesive element is called the strength of antecedence recovery. The stronger an element's strength of antecedence recovery, the easier it is to identify the presupposed element.

The lexical substitution with the highest strength of antecedence recovery is the definite noun phrase, which is actually a repetition of the original item, with a definite article to mark the fact that it is old information. There is no real need to refer to the presupposed element, since all the information is being repeated.

Superordinate substitution is the lexical substitution with the next highest strength of antecedence recovery. Presupposition recovery genuinely does exist with the use of superordinates, because some information is lost. When we move up the semantic hierarchy, all the traits that are specific to the element in question are lost. To recover this and fully understand the reference at hand, we must trace back to the original element in the hierarchy. Fortunately, the manner in which Paul performs superordinate substitution facilitates this recovery. By ensuring that the superordinate substitution will never be ambiguous, the system only generates superordinate substitutions that are readily recoverable.

The third device used by Paul, the personal pronoun, has the lowest strength of antecedence recovery. Pronouns genuinely are nothing more than place holders, variables that maintain the location of the elements they are replacing. A pronoun contains no real semantic information, and the only readily available pieces of information from a pronoun are the syntactic role in the current sentence, the gender, and the number of the replaced item. Thus, pronouns are the hardest to recover of the substitutions discussed.

5. Strength of Potential Antecedence

While the forms of lexical substitution provide clues (to various degrees) that aid the reader in recovering the presupposed element, the actual way in which the element is currently being used, how it was previously used, its circumstances within the current sentence and within the entire text, can provide additional clues. These factors combine to give the specific reference a strength of potential antecedence. Some elements, by nature of their current and previous usage, will be easier to recover independently of the lexical substitution device selected.

Strength of potential antecedence involves several factors. One is the syntactic role the element is playing in the current sentence, as well as in the previous references. Another is the distance of the previous reference from the current. More distance is defined as the number of clauses between the references, and Paul arbitrarily uses a distance of no more than two clauses as an acceptable distance. The current expected
focus of the text also affects an element's potential strength of antecedence. In order to identify the current expected focus, Paul uses the detailed algorithm for focus developed by Sidner [10].

Paul identifies five classes of potential antecedence strength. Class I being the strongest and Class V the weakest, as well as a sixth "non-class" for elements being mentioned for the first time. These five classes are shown in Figure 2.

Class I:

1. The sole referent of a given gender and number (singular or plural) last mentioned within an acceptable distance, OR

2. The focus or the head of the expected focus list for the previous sentence.

Class II:

The last referent of a given gender and number last mentioned within an acceptable distance.

Class III:

An element that filled the same syntactic role in the previous sentence.

Class IV:

1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned within an acceptable distance.

Class V:

A referent that is known to be a part of a previously mentioned item.

Figure 2: The Five Classes of Potential Antecedence

Once an element's class of potential antecedence is identified, the selection of the proper lexical substitution is easy. The stronger an element's potential antecedence, the weaker the antecedence of the lexical substitution. Figure 3 illustrates the mappings from potential antecedence to lexical substitution devices. Note that Class III elements are unusual in that the device used to replace them can vary. If the previous instance of the element was of Class I, if it was replaced with a pronoun, then the current instance is replaced with a pronoun, too. Otherwise, Class III elements are replaced with superordinates, the same as Class II.

Figure 3: Mapping of Potential Antecedence Classes to Lexical Substitutions

6. An Example

To see the effects of controlled lexical substitution, and to help clarify the ideas discussed, an example is provided. The following is an actual example of text generated by Paul. The domain is the so-called children's story, and the example discussed here is one about characters from Walt Kelly's Pogo comic strip, as shown in Figure 1 above.

Figure 4 contains the semantic representation for the example story to be generated, in the syntax of NLP [4] records.

Figure 4: NLP Records for Example Story

If the story were to be generated without any lexical substitutions at all, it would look like the following:

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES A ROSE TO HEPZIBAH, WHICH PLEASES HEPZIBAH. HEPZIBAH DOES NOT WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY HITS POGO. POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES A ROSE TO HEPZIBAH, PETALS DROP OFF. THIS UPSETS HEPZIBAH. HEPZIBAH CRIES.

While this version of the story would be unacceptable as the final product of a text generator, and it is not the text Paul would produce from the input of Figure 4, it is shown here so that the reader can more easily understand the story represented semantically in Figure 4.

To go to the other extreme, uncontrolled pronominalization would be at least as unacceptable as no lexical substitutions at all.

POGO LIKES HEPZIBAH. CHURCHY CARES FOR HER, TOO. HE GIVES A ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT HIS ROSE. HE IS JEALOUS. HE SLUGS HIM. HE GIVES A ROSE TO HER. PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

Again, this is unacceptable text, and the system would not generate it, but it is shown here to dramatize the need for control over lexical substitutions.

The text that Paul actually does produce from the input of Figure 4 is the following story.

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES A ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT HER ROSE. SHE IS JEALOUS. SHE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH. THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

2For a discussion of the implementation of NLP for Paul see [2].
7. Conclusions

The need for good text generation is rapidly increasing. One requirement for generated output to be considered text is to exhibit cohesion. Lexical substitution is a family of cohesive devices that help provide cohesion and achieve the two major goals of cohesion, the avoiding of unnecessary repetition and the distinguishing of old information from new. However, uncontrolled use of lexical substitution devices will produce text that is unintelligible and nonsensical. Paul is the first text generation system that incorporates lexical substitutions in a controlled manner, thereby producing cohesive text that is understandable. By identifying the strength of antecedence recovery for each of the lexical substitutions, and the strength of potential antecedence for each element in the discourse, the system is able to choose the appropriate lexical substitutions.

8. Acknowledgments

I would like to thank Pete Srakovits and Bob Berwick for their advice and encouragement while supervising this work. I would also like to thank George Heidorn and Karen Jensen for originally introducing me to the problem addressed here, as well as their expert help at the early stages of this project.

9. References

1. Fillmore, Charles J. The Case for Case. In Universals in Linguistic Theory. E. Becker and Robert T. Harms, Eds., Holt, Rinehart and Winston, Inc., New York, 1968.

2. Granville, Robert Alan. Cohesion in Computer Text Generation: Lexical Substitution. Tech. Rep. MIT/LCS/TR-310, MIT, Cambridge, 1983.

3. Halliday, M. A. K., and Ruquaiya Hasan. Cohesion in English. Longman Group Limited, London, 1976.

4. Heidorn, George E. Natural Language Inputs to a Simulation Programming System. Tech. Rep. NPS-551 ID72101A, Naval Postgraduate School, Monterey, Cal., 1972.

5. Heidorn, G. E., K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow. The Epistle Text-Critiquing System. IBM Systems Journal 21, 3 (1982).

6. Jensen, Karen, and George E. Heidorn. The Fitted Parse: 100% Parsing Capability in a Syntactic Grammar of English. Tech. Rep. RC 9720 (# 42958), IBM Thomas J. Watson Research Center, 1982.

7. Jensen, K. R. Ambrosio, R. Granville, M. Kluger, and A. Zvarico. Computer Generation of Topic Paragraphs: Structure and Style. Proceedings of the 16th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 1981.

8. Mann, William C., Madeleine Bates, Barbara J. Grosz, David D. McDonald, Kathleen R. McKeown, and William R. Swartout. Text Generation: The State of the Art and the Literature. Tech. Rep. ISI/RR-81-101. Information Sciences Institute, Marina del Rey, Cal., 1981. Also University of Pennsylvania MS-CIS-81-9.

9. Quirk, Randolph; Sidney Greenbaum, Geoffrey Leech, and Jan Svartik. A Grammar of Contemporary English. Longman Group Limited, London, 1972.

10. Sidner, Candace Lee. Towards a Computational Theory of Definite Anaphora Comprehension in English Discourse. Tech. Rep. AI-TR 537, MIT, Cambridge, 1979.