Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway

Soudeh Ghafouri-Fard1, Tayyebeh Khoshbakht2, Bashdar Mahmud Hussen3,4, Mohammad Taheri5,6* and Majid Samsami7*

Abstract

Sonic Hedgehog (Shh) signaling cascade is one of the complex signaling pathways that control the accurately organized developmental processes in multicellular organisms. This pathway has fundamental roles in the tumor formation and induction of resistance to conventional therapies. Numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. Many of the Shh-interacting ncRNAs are oncogenes whose expressions have been increased in diverse malignancies. A number of Shh-targeting miRNAs such as miR-26a, miR-1471, miR-129-5p, miR-361-3p, miR-26b-5p and miR-361-3p have been found to be down-regulated in tumor tissues. In addition to malignant conditions, Shh-interacting ncRNAs can affect tissue regeneration and development of neurodegenerative disorders. XIST, LOC101930370, IncRNA-Hh, circBCBM1, SNHG6, LINC-PINT, TUG1 and LINC01426 are among long non-coding RNAs/circular RNAs that interact with Shh pathway. Moreover, miR-424, miR-26a, miR-1471, miR-125a, miR-210, miR-130a-5p, miR-199b, miR-155, let-7, miR-30c, miR-326, miR-26b-5p, miR-9, miR-132, miR-146a and miR-425-5p are among Shh-interacting miRNAs. The current review summarizes the interactions between ncRNAs and Shh in these contexts.

Keywords: Shh signaling, Sonic Hedgehog signaling, Long non-coding RNA, miRNA

Introduction

Sonic Hedgehog (Shh) signaling cascade is one of the complicated signaling pathways that administrate the accurately controlled developmental processes in multicellular organisms. It has an important role in the establishment of the outlines of cellular differentiation to regulate multifaceted organ formation. This pathway affects these cellular processes via a cascade that changes the equilibrium between activator and repressor types of glioma-associated oncogene (Gli) transcription factors. A number of Hedgehog (Hh) ligands as well as Patched receptors, Smoothened receptor, Suppressor of fused homolog, KiF7, PKA and cAMP participate in the transfer of signals to the Gli transcription factors. Transfer of the activator form of Gli to the nucleus and its binding with the promoters of target genes lead to the stimulation of the transcription of these genes [1]. Hh gene has been firstly discovered about four decades ago via genetic screen experiments in Drosophila [2].

Shh participates in the tissue regeneration processes and repair mechanism in the post-embryonic period. This pathway has a crucial role in the induction of diverse populations of neurons in the central nervous system, governing several morphogenetic processes in this system [3].

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Abnormal regulation of these signals has been shown to be associated with congenital malformations, aberrant tissue regeneration, stem cell renewal and carcinogenesis [4]. Expression, cellular uptake and translocation of the Shh protein as a key Hh ligand precursor have important effects in the regulatory function of Shh signaling [5]. Two other Hedgehog homologues, namely Desert (Dhh) and Indian (Ihh) have been identified in mammals.

Functional studies have shown the importance of Shh signaling in ventral cell type induction. Moreover, disruption of this pathway and recessive mutations have led to cyclopia and severe holoprosencephaly in mice, respectively [6]. In human, heterozygote mutations in Shh have been associated with different clinical features of holoprosencephaly [7].

Shh signaling is also implicated in the regulation of function of normal adult stem cells as well as cancer stem cells [8]. Dysregulation of the Hh signaling pathway has been linked with developmental abnormalities including Gorlin syndrome [9] and cancer [10, 11]. Abnormal activity of this pathway is also involved in the tumor formation and induction of resistance to radio/chemotherapy [12]. Thus, efforts have been made to find novel Shh signaling inhibitors to combat these features [12].

More recently, numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. The current review summarizes the interactions between ncRNAs and Shh in these contexts. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) are three main regulatory ncRNAs which are discussed in this context. lncRNAs are transcripts with sizes more than 200 nt that regulate expression of genes at different levels. They can regulate chromatin function, influence the assemblage and functions of membraneless nuclear bodies, control the stability and expression of cytoplasmic mRNAs and interfere with signaling pathways [13]. miRNAs have about 22 nt and mainly affect gene expression at post transcriptional level [14]. Finally, circRNAs are made by either typical spliceosome-mediated or lariat-type splicing. They can regulate expression of genes through different mechanisms [15].

For the purpose of preparation of the current review, we searched Google Scholar and PubMed databases with the key words “Shh signaling” OR “Sonic Hedgehog” AND “lncRNA” OR “miRNA” OR “circRNA”. Then, we assessed the abstract of retrieved articles to validate their relevance with the topic. We included studies that assessed function of ncRNAs in cell lines, animal model or clinical samples. A total of 50 studies were included in this review article.

Cell line studies
Non-malignant disorders
The importance of interactions between ncRNAs and Shh pathway has been assessed in different cell lines. This type of interaction has been found to be implicated in the pathophysiology of alopecia. This speculation is based on the results of three-dimensional culture of dermal papilla cells, a group of cells that induce regeneration of hair follicles. Experiments in this type of culture have verified up-regulation of XIST IncRNA and Shh and down-regulation of miR-424. Mechanistically, XIST has been found to sponge miR-424 to increase Shh expression. XIST silencing has led to inhibition of activity of dermal papilla cells, suppression of their proliferation and reduction of ALP activity. In fact, XIST silencing has inhibited Shh mediated hedgehog signals through affecting expression of miR-424 [16].

Human development
Shh-interacting ncRNAs are also involved in the developmental processes. For instance, serum response factor (SRF) controls lineage specification of embryonic stem cell progenitor cells through miR-210-mediated gene silencing. Up-regulation of miR-210 in murine embryonic stem cells-originated embryoid bodies has suppressed cell growth and blocked expression of cardiac progenitor proteins Nkx2.5 and Gata4 and terminal differentiated contractile markers Mlc2v and βMHC. On the other hand, miR-210 silencing has led to activation of cardiac progenitor gene. The effect of miR-210 is exerted through decreasing activity of Shh signaling, which nurtures the cardiac progenitor program. Mechanistically, miR-210 silences Shh activity through targeting 3’ UTR of Shh transcript [17]. Activation of Shh/Gli1 signaling pathway through miR-130a-5p/Foxa2 axis has been shown to affect development of fetal lung, thus being involved in the pathogenesis of congenital diaphragmatic hernia [18]. miR-199 is another miRNA that participate in craniofacial development through modulation of Shh pathway [19].

Cancer
The interaction between ncRNAs and Shh signaling pathway has also been assessed in cancer cell lines. For instance, the tumor suppressor miRNA miR-26a has been found to be down-regulated in breast cancer cell lines. Up-regulation of miR-26a has led to blockade of cell proliferation, clone formation capacity and metastatic aptitude of breast cancer cells, and induction of sensitivity to docetaxel. miR-26a could directly target FAM98A. Up-regulation of this miRNA has resulted in down-regulation of FAM98A, SHH, SMO and GLI1. Taken together, miR-26a suppresses
breast carcinogenesis through inhibiting expression of FAM98A, and decreasing activity of Shh pathway [20]. miR-1471 is another down-regulated Shh pathway [20]. miR-1471 is another down-regulated miRNA in breast cancer cells. This miRNA has been found to be sponged by LOC101930370. LOC101930370 silencing has suppressed progression of breast cancer, while inhibition of miR-1471 has increased aggressive and metastatic abilities of MCF-7 cells. Furthermore, expression levels of SHH and Gli-1 have been significantly decreased following LOC101930370 silencing, and increased by miR-1471 inhibition. Cumulatively, LOC101930370 has been found to increase expression of SHH through sponging miR-1471 [21]. Another study has revealed dysregulation of several IncRNAs in Twist-positive mammosphere cells in breast cancer cell lines. Notably, the Shh-GLI1-related IncRNA-Hh has been among these IncRNAs. Expression of this IncRNA is regulated by Twist. Moreover, IncRNA-Hh can directly target GAS1 to induce Hh activity, which in turn enhances expression of GLI1, and increases SOX2 and OCT4 levels to regulate maintenance of cancer stem cells. The latter is reflected in enhancement of mammosphere-formation efficiency and self-renewal ability in cell lines. Knock down of IncRNA-Hh in Twist-positive breast cancer cells has attenuated activity of Shh-GLI1 signaling and decreased levels of SOX and OCT4 [22]. CircBCBM1 is another example of ncRNAs that can promote metastatic ability of breast cancer cells through acting as a molecular sponge for miR-125a and modulating expression of BRD4. This circRNA also up-regulate MMP9 levels through enhancing activity of Shh pathway [23]. Figure 1 shows the role of Shh-interacting ncRNAs in breast cancer.

In pancreatic cancer cell lines, miR-132 expression has been found to be up-regulated parallel with down-regulation of Shh levels. Besides, miR-132 mimics could significantly decrease expression of Shh at both transcript and protein levels, facilitating proliferation of pancreatic cancer cells, which has been accompanied by down-regulation of Cyclin-D1, cleaved Caspase-3/9, and suppression of cell apoptosis [24]. Shh-interacting ncRNAs can also affect the pathogenesis of brain tumors. For instance, miR-326 can effectively suppress proliferation, and induce apoptosis in glioma cells via attenuating the activation of the SHH/GLI1 pathway [25]. Moreover, miR-9 via targeting PTCH1 and enhancing expression of GLI1 can trigger the activation of Shh cascade and affect expression of drug efflux transporters, MDR1 and ABCG2 in glioblastoma cells, therefore enhancing Temozolomide resistance in tumor cells [26]. Figure 2 shows the role of Shh-interacting miRNA in glioma/glioblastoma.

Additional in vitro studies have revealed participation of Shh-related ncRNAs in several developmental processes as well as carcinogenic processes (Table 1).

### Animal studies

Animal studies have shown participation of Shh-related ncRNAs in a variety of non-neoplastic disorders, namely acute myocardial infarction, alopecia, cerebrovascular disorders, diabetes mellitus, inflammatory bowel disease, lung fibrosis, osteoporosis, Parkinson’s disease and trigeminal neuralgia as well as different types of cancers (Table 2). For instance, knock-down of miR-802-5p has resulted in reduction of cell apoptosis after myocardial infarction through enhancing activity of Shh signaling, thus decreasing myocardial injury and improving cardiac function [57]. Moreover, experiments in animal models have shown up-regulation of XIST increases dermal papilla cells-mediated hair follicle regeneration via targeting miR-424 to promote Shh expression, thus activating hedgehog signaling [16]. Moreover, miR-153 has been found to decrease expression of PTCH expression and enhance activity of Shh signaling pathway to increase angiogenesis in a rat model of cerebral ischemic injury [58].

Experiments in animal models of breast cancer have verified that knock-down of IncRNA-Hh [22] and circBCBM1 [23] can led to reduction of tumor growth. Meanwhile, miR-326 has been shown to increase effects of curcumin in animal models of glioblastoma through modulation of Shh/GLI1 signaling pathway [25].

### Studies in clinical samples

Expression assays in clinical samples from a variety of tumor types have indicated down-regulation of Shh-targeting miRNAs such as miR-26a [20] and miR-1471 [21] in breast cancer, miR-129-5p in cervical cancer [28], miR-361-3p in retinoblastoma, miR-26b-5p in gallbladder carcinoma [33], and miR-361-3p in retinoblastoma [53]. In gallbladder cancer, dysregulation of miR-26b-5p has been associated with age and sex of patients, tumor invasion, differentiation degree, tumor location, and TNM stage [33]. Conversely, an expression assay in pancreatic cancer samples has shown up-regulation of miR-132 and down-regulation of Shh [24]. In neuroblastoma samples, down-regulation of CDON and up-regulation of miR-181-a and miR-181-b have been associated with poor overall survival, higher tumor stage and more aggressive phenotype [64].

Shh-related IncRNAs are also involved in the process of keloid formation. Expression assays in keloid tissues and adjacent normal skin epidermis have shown differential expression of 30 IncRNAs and 33 mRNAs between these two sets of samples. Dysregulated
IncRNAs included up-regulated IncRNAs AK055628, MIAT, MIR31HG, RP11-264F23.3, and AC073257.2, and downregulated IncRNAs RP11-12M9.3, XLOC_007437, XLOC_009485, RP5-104218.7, and HNF1A-AS1 [66].

Table 3 summarizes dysregulation of Shh signaling-related ncRNAs and in clinical samples.

Fig. 1 A schematic diagram of the role of several ncRNAs in triggering the Sonic Hedgehog signaling cascade in Breast Cancer. Mounting researches suggest that dysregulation of sonic hedgehog signaling pathway can play a key role in tumorigenesis in breast cancer cells. As an illustration, the recent study has detected that overexpression of IncRNA-Hh can activate Shh-GLI1 signaling and promote the expression levels of SOX2 and OCT4, thereby enhancing cancer stem cells generation in Twist-positive breast cancer cells [22]. Further experiment has validated that IncRNA LOC101930370 can significantly elevate SHH and Gli-1 expression via sponging miR-1471, therefore promoting cell proliferation and metastasis in breast cancer cells by modulating the hedgehog cascade [21]. Moreover, another research has pointed out that miR-26a has a remarkable part in suppressing breast cancer cell proliferation and invasion via downregulating the expression levels of FAM98A, SHH, SMO and GlI1, thereby inactivating the sonic hedgehog pathway in tumor cells [20].

Discussion
Shh signaling is involved in a variety of cellular functions, including tissue development and regeneration, stem cell functions and carcinogenesis. Thus, it is not surprising that ncRNAs that regulate activity of this pathway are implicated in the pathogenesis of a wide range of human disorders. In fact, this pathway represents a
prototype of shared pathways between embryogenesis and carcinogenesis.

In the context of malignant disorders, Shh-interacting ncRNAs not only affect cancer progression, but also determine response of cancer cells to a variety of anti-cancer therapies. Both functions can be explained by the crucial roles of this pathway in the induction of stemness. However, at least in some types of cancers, Shh signaling seems to have protective effects against carcinogenesis. For instance, in pancreatic cancer, expression of the Shh-targeting miRNA miR-132 has been found to be up-regulated parallel with down-regulation of Shh levels [24].
| Tumor/Disease type or cellular mechanism | Targets/ regulators and signaling pathways | Cell line | Function | References |
|-----------------------------------------|------------------------------------------|-----------|----------|------------|
| Alopecia                                | XIST, miR-424                            | 3D-cultivated DP cells | ↑↑ XIST: ↑ DP mediated hair follicle regeneration via targeting miR-424 to increase Shh expression | [16] |
| Breast cancer                           | miR-26a, FAM98A, SHH, SMO and GLI1       | SK-BR-3, BT474, MDA-MB-231, MDA-MB-468, MCF-7, and MCF-10A | ↑↑ miR-26a: ↓ proliferation, clone formation and metastasis, but ↑ sensitivity cells to docetaxel via targeting FAM98A, and reducing SHH, SMO and GLI1 expression levels | [20] |
|                                         | LOC101930370, miR-1471, and GLI-1        | MCF-7, MDA-MB-231, BT-474, SKBR3 | ∆ LOC101930370. ↓ cells progression via increasing miR-1471 and inhibiting SHH and GLI-1 expression | [21] |
| Breast cancer brain metastasis          | circBCBM1, miR-125a/BRD4 axis, MMP9      | 231-BR cells | ↑↑ circBCBM1: ↑ breast cancer brain metastasis via regulating miR-125a/BRD4 axis | [23] |
| Cardiopoesis                            | miR-210                                  | embryonic stem cells | ↑↑ SRF-dependent miR-210 expression: ↓ Shh signaling pathway activity via targeting of Shh, thus ↓ proliferation and cardiomyocyte progenitor differentiation | [17] |
| Cervical cancer                         | miR-129-5p, ZIC2                         | C-33A cell line and Hela | ↑↑ miR-129-5p: ↓ invasion, migration and tumor angiogenesis via targeting ZIC2 and downregulating the Hedgehog signaling pathway | [28] |
| Congenital diaphragmatic hernia         | miR-130a-5p, Foxa2                       | lung explant culture, HEK293T and BEAS-2B cells | ∆ miR-130a-5p: ↓ CDH-associated abnormal branching morphogenesis | [18] |
| Craniofacial development                | miR-199b, HIF1A, MAP3K4                  | chicken embryonic fibroblasts (DF-1 cells) | ↑↑ miR-199b: ↓ SHH expression in the FEZ and craniofacial malformations via targeting HIF1A and MAP3K4 | [19] |
| Diabetic foot ulcer                     | miR-155; PTCH1 axis                      | EPCs | High glucose condition: ↑ miR-155, ↑↑ miR-155: ↑ impaired EPCs function by targeting PTCH1 (a receptor of shh signaling pathway) | [29] |
| Embryonal tumors                        | LIN28A, let-7, Wnt and Shh signaling    | ETMRs | ↑↑ LIN28A: ↓ maturation of let-7 microRNAs, thus modulating Wnt and Shh signaling let-7a-miRNA could target Gli1, Gli2, and Gli3 mRNAs Wnt and Shh signaling pathways are able to induce ETMR-like tumors | [30] |
| Tumor/Disease type or cellular mechanism | Targets/ regulators and signaling pathways | Cell line | Function | References |
|----------------------------------------|-------------------------------------------|-----------|----------|------------|
| Embryonic cardiac malfunctions         | miR-30c, Gli2 and Ptc1 (Shh signaling pathway) | P19 cells | ↑↑ miR-30c ↑ proliferation by promoting cell entry into S phase but also ↓ apoptosis, and ↓ dimethyl sulfoxide-induced differentiation of P19 cells via targeting Gli2 and Ptc1, thus inhibiting the Shh signaling pathway | [31] |
| Embryonic lung development              | miR-326, Arrestin β1                      | embryonic lung mesenchymal cells | Levels of miR-326 and its host gene, Arrestin β1, are increased in embryonic lung mesenchymal cells and Shh activity influences it miR-326: ↓ Shh signaling via directly targeting Smo and Gli2 | [32] |
| Gallbladder carcinoma                   | SNHG6/miR-26b-5p axis                    | GBC-SD and NOZ | Δ SNHG6: ↑ cell apoptosis, ↓ growth, and EMT via upregulation of miR-26b-5p, thus inhibiting Gli1, Gli2, Shh, Smo, N-cadherin, vimentin and Snail, and promoting Gli3 and E-Cadherin expression | [33] |
| Glioblastoma Multiiforme                | miR-9, PTCH1, Gli 1                      | U87, T98G, HEK293, CCL64, BT145 and BT164 | ↑↑ miR-9: ↓ PTCH1 (via a SHH-independent method for TMZ resistance) and ↑ Gli 1 levels, thus activating the SHH pathway and also ↑ drug efflux transporters, MDR1 and ABCG2 | [26] |
|                                      | miR-326 and SHH/GLI1 pathway              | U87 and U251 | ↑↑ miR-326: ↓ sensitivity of cells to curcumin via inhibiting SHH/GLI1 pathway | [25] |
| Glioblastoma                           | miR-137, RTVP-1, CXCR4, Shh and Nanog    | U87, HF2354, HF2355 and HF2414 | ↑↑ miR-137: ↓ stemness of GSCs via targeting RTVP-1 | [34] |
| Gioma                                  | miR-338-5p                               | U87 and H5683 glioma cells | Chidamide: ↓ glioma cells via increasing oxidative stress by the miR-338-5p regulation of Hedgehog signaling | [27] |
| Hepatocellular carcinoma               | TUG1/ miR-132/shh axis                   | LM3, HepG2, Hep3B, Huh7, SMMC7721 and MHCC97H, and LO2 | ↑↑ miR-132: ↓ proliferation but ↑ apoptosis via targeting shh | [35] |
|                                      | NOD2, miR-146a, and NUMB                 | macrophages | NOD2-induced miR-146a activates SHH signaling via targeting NUMB NOD2-iNOS/NO-miR-146a-mediated SHH Signaling increases expression of inflammatory genes | [36] |
| Laryngeal cancer                       | LINC-PINT/ miR-425-5p/PTCH1 axis         | HEp-2 | ↑↑ LINC-PINT: ↓ cisplatin resistance and stemness via targeting miR-425-5p and upregulating PTCH1 (a protein of the Hedgehog pathway) | [37] |
| Tumor/Disease type or cellular mechanism | Targets/ regulators and signaling pathways | Cell line | Function | References |
|-----------------------------------------|------------------------------------------|-----------|----------|------------|
| Liver fibrosis                          | miR-200a/Gli2 axis                       | HSCs from male Sprague–Dawley rats | ↑↑ miR-200a: ↓ proliferation and ↓ EMT via targeting Gli2 | [38] |
| Lung cancer                             | miR-506/SHH axis                         | HCC4006   | ↑↑ miR-506-3p: ↑ sensitivity EGFR-TKI-resistant cells to Erlotinib-induced cell death, ↑ E-cadherin expression, but ↓ SHH signaling, ↓ vimentin, thus ↓ the EMT-mediated chemoresistance | [39] |
|                                        | BLCAT1                                   | A549 and PC9 cells | ↑↑ BLCAT1: ↑ proliferation, migration and invasion via activating shh signaling pathway, by inducing shh, Gli-1 and Smo expression | [40] |
|                                        | LINC01426, USP22                         | HBE, H1299, A549, PC-9, Calu3 | ↓ LINC01426: ↓ proliferation, migration, EMT, and stemness; ↑↑ LINC01426: ↓ LUAD progression via recruiting USP22 to stabilize SHH protein | [41] |
| Lung fibrosis                           | miR-193a, PI3K/Akt/mTOR and hedgehog signaling | A549 cells | ↑↑ miR-193a: ↑ p-Akt, Beclin1 and LC3-II levels, thus ↑ autophagy | [42] |
| M. bovis BCG infection of DCs           | COX-2, PD-L1, miR-324-5p and miR-338-5p | Dendritic cells | SHH signaling is required for Treg expansion in DCs via increasing COX-2 and PD-L1 and inhibiting miR-324-5p and miR-338-5p PD-L1 was a direct target of miR-324-5p and miR-338-5p | [43] |
| Medulloblastoma                         | Arrb1, miR-326, Hh/Gli pathway          | CSCs | ↑↑ miR-326: ↓ proliferation and self-renewal by decreasing Smo and Gli2 | [44] |
|                                        | Shh/Gli2/Nkx2-2as axis                  | Daoy and D341 Med, and HEK293 T | Shh/Gli2 reduces Nkx2-2as levels by transcriptionally activating FoxD1 | [45] |
| Myocardial ischemic/reperfusion (I/R) injury | SNHG6/miR-135a-5p/HIF1AN axis and Shh/Gli1 signaling | H/R-induced cardiomyocytes | ↑↑ SNHG6: ↑ H/R-induced apoptosis in cardiomyocytes via regulating miR-135a-5p/HIF1AN axis and inactivating Shh/Gli1 signaling | [46] |
| Neuroblastoma                           | miR181-a and –b, CDON                   | MYCN, SH-SY-5Y, SK-N-AS, IGR-N-91, NIH-3T3 | ↑↑ CDON: ↑ apoptosis; CDON (a receptor for SHH) is regulated by miR181-a and –b | [47] |
| Osteoarthritis                          | miR-602, miR-608                        | Chondrocytes and HEK 293 cells | ↑↑ miR-602 and miR-608: ↓ activity of pMIR-REPORT-Luc-SHH reporter vector and ↓ IL-1β-induced endogenous SHH mRNA and protein expression in OA chondrocytes | [48] |
Table 1 (continued)

| Tumor/Disease type or cellular mechanism | Targets/ regulators and signaling pathways | Cell line | Function | References |
|----------------------------------------|------------------------------------------|-----------|----------|------------|
| Osteogenesis                           | miR-342-3p/Sufu axis, TGF-β signaling pathway | HUCMSCs   | ↑↑ miRNA-342-3p; ↑ expression of osteogenic genes, ↑ osteogenic differentiation of hUCMSCs and ↑ TGF-β signaling pathway via targeting Sufu | [49] |
| Osteogenic differentiation             | miR-342-3p/Sufu axis                      | UCMSCs    | ↑↑↑ miR-342-3p; ↑ osteogenic differentiation via targeting Sufu and activating Shh signaling pathway | [50] |
| Osteonecrosis of the femoral head       | miR-378-ASCs-Exos, Sufu                   | BMSCs and HUVECs | ↑↑↑ miR-378-ASCs-Exos; ↑ osteogenesis and angiogenesis via targeting Sufu to increase the Shh signaling pathway, thus reducing GC-induced ONFH development | [51] |
| Pancreatic cancer                      | miR-132                                   | MiaPaCe-2a | ↑↑ miR-132; ↑ proliferation and apoptosis via targeting Shh | [24] |
| Retina injury                          | Shh Signaling/lin28a/let-7 axis           | BrdU + and BrdU − and HEK293T | Downregulation of let-7 by lin28a is necessary for the regulation of Shh signaling as a part of positive feedback loop induced via the Ascl1a-lin28a axis, in turn is essential for retina regeneration | [52] |
| Retinoblastoma                         | miR-361-3p/ GLI1/3 (shh signaling) axis   | Y79 and Weri-Rb-1 | ↑↑ miR-361-3p; ↓ proliferation and stemness via targeting GLI1 and GLI3 | [53] |
| Skin wound healing                     | VEGF, miR-200 family, E-cadherin          | mouse ESCs | ↑↑ shh; ↑ migration and skin wound healing via increasing VEGF and negatively regulating the transcription of the miR-200 family, thus downregulating E-cadherin | [54] |
| Stroke                                 | miR17-92 cluster                          | SVZ neural progenitor cells from adult mice | ↑↑ miR17-92 Cluster; ↑ proliferation and survival of SVZ neural progenitor cells miR17-92 cluster expression is mediated by Shh signaling | [55] |
| Thyroid cancer                         | miR-141-3p, BRD4, and PI3K/AKT pathways   | Nthy-ori 3–1 and TPC-1 | Propofol treatment; ↓ proliferation, migration, and invasion via ↑ miR-141-3p, and in turn ↓ BRD4, thus inhibiting the activity of SHH and PI3K/AKT pathways | [56] |

MGPC Müller glia-derived progenitor cells, DCs dendritic cells, OA Osteoarthritis, EMT epithelial-mesenchymal transition, Δ knock-down, deletion, TCRV triacyl resveratrol, TMZ temozolomide, MFE mammosphere-formation efficiency, LUAD lung adenocarcinoma
| Tumor/disease type or cellular mechanisms | Animal models | Results | References |
|-----------------------------------------|---------------|---------|------------|
| Acute myocardial infarction             | 6–8-week-old male Sprague Dawley (SD) rats (Rat MI Model) | ∆ miR-802-5p: ↓ apoptosis after MI via activating Shh signaling pathway via targeting PTCH1, thus decreasing myocardial injury and improving heart function | [57] |
| Alopecia                                | DP sphere xenograft to nude mice | ↑↑ XIST: ↑ DP mediated hair follicle regeneration via targeting miR-424 to promote Shh expression, thus activating hedgehog signaling | [16] |
| Breast cancer                           | 5 weeks-old athymic nude mice | ∆ lncRNA-Hhv: ↓ tumor growth | [22] |
| Breast cancer brain metastasis          | 6-week-old female BALB/c nu/nu mice | ∆ circBCBM1: ↓ tumor volumes and weights | [23] |
| Cerebrovascular disease                 | rat cerebral ischemic injury model | miR-153 expression was decreases ↑↑ miR-153: ↓ PTC expression and ↑ activation of Shh signaling pathway and angiogenesis | [28] |
| Cervical cancer                         | 4-week-old SPF female BALB/c nude mice | ↑↑ microRNA: ↓ tumor growth and tumor angiogenesis via targeting ZIC2 and down-regulating the Hedgehog signaling pathway | [29] |
| Diabetes mellitus                       | Sprague–Dawley male rats | mir-9 and mir-29a: ↓ activation of SHH signaling pathway via ISL1, nociception threshold and peripheral nerve conduction velocity miR-9 and mir-29a rise AR activity and disease activity by reducing ISL1 | [31] |
| Glioblastoma multiforme                 | 5-week-old female BALB/c-nude mice | ↑↑ mir-326 combined with curcumin treatment: ↓ tumor growth | [25] |
| Hepatocellular carcinoma                | 4-week-old male athymic BALB/c nu/nu mice | ↑↑ TUG1: ↓ tumor growth via targeting miR-132 | [32] |
| Inflammatory bowel disease              | C57BL/6 wild-type (WT) and iNOS−/− mice | NOD2–iNOS/NO-miR-146a-mediated SHH Signaling is necessary for inflammatory responses | [36] |
| Liver regeneration                      | carbon tetrachloride (CCl4)-treated rats transplanted with human CP-MSCs (Tx) or saline (non-Tx) | ↑↑ miR-125b from CP-MSCs: ↓ activation of Hh signaling, thus ↑↑ the reduced fibrosis | [33] |
| Lung cancer                             | 6-week-old female BALB/C nude mice | ∆ BLACAT1: ↓ tumor growth and metastasis | [40] |
| Lung cancer                             | 4-week-old BALB/c nude female mice | ∆ LINC01426: ↓ tumor size, volume, and weight | [41] |
| Lung fibrosis                           | 6-week-old female C57BL/6 mice | ↑↑ miR-193a: ↑ autophagy and ↓ PQ-induced pulmonary fibrosis Ligustrazin: ↑ autophagy and ↓ paraquat-induced pulmonary fibrosis | [42] |
| Medulloblastoma                         | Ptc1± mice, C57BL/6 and PtenFloxp/Floxp mice, GFAP-Cre mice | The effects of miR-183~96~182 to maintain cell proliferation depends on hedgehog signaling activation | [61] |
| Neuroblastoma                           | Athymic nude mice | ↑↑ Nkx2-2as: ↓ tumor growth GlI2/FoxD1/Nkx2-2as axis was found to be involved in the pathogenesis of Shh subtype MB | [45] |
| Osteonecrosis of the femoral head       | 17-day-old chick embryos | ↑↑ CDON: ↓ tumor size | [47] |
| Osteoporosis                            | a rat model of GC-induced ONFH | ↑↑ miR-378-ASCs-Exos: ↑ osteogenesis via targeting Sufu to increase the Shh signaling pathway | [51] |
| Osteoporosis                            | Wistar female rats | Levels of SUFU were upregulated bet levels of miR-874, Shh, Ptc1, Smo, BMP2, Runx2, and PCNA were downregulated ↑↑ miR-874: ↑ proliferation and differentiation of via targeting SUFU and activating of Hedgehog signaling pathway | [62] |
Shh pathway can also induce epithelial-to-mesenchymal transition in gastric, pancreatic, and bladder cancers [67–69]. Thus, Shh-interacting ncRNAs might also affect this feature.

It is estimated that one-third of malignancies are correlated with abnormal activity of the Hh signaling pathway [70]. Dysregulation of Hh signaling can contribute to the imitation, growth, metastasis, and apoptosis of several types of cancers. In fact, three patterns of induction of the Hh signaling cascade have been identified in several cancers. These patterns are ligand independent onco -genic Hh pathway, autocrine or juxtacrine and paracrine or reverse paracrine patterns [70].

Moreover, there are several examples of interactions between two classes of ncRNAs in the context of regulation of activity of Shh signals. XIST/miR-424, LOC101930370/miR-1471, circBCBM1/miR-125a, TUG1/miR-132, SNHG6/miR-26b-5p, LINC-PINT/miR-425-5p, and SNHG6/miR-135a-5p are examples of LncRNA/miRNA or circRNA/miRNA pairs that cooperatively regulate activity of Shh pathway. The regulatory impact of these axes on function of Shh pathway should be assessed in different cellular and disease contexts to find whether they act in a context-specific manner or a ubiquitous manner. This has importance in design of novel therapies for each disorder in which abnormal function of Shh signaling cascade have been identified in several cancers. These patterns are ligand independent onco -genic Hh pathway, autocrine or juxtacrine and paracrine or reverse paracrine patterns [70].

Moreover, there are several examples of interactions between two classes of ncRNAs in the context of regulation of activity of Shh signals. XIST/miR-424, LOC101930370/miR-1471, circBCBM1/miR-125a, TUG1/miR-132, SNHG6/miR-26b-5p, LINC-PINT/miR-425-5p, and SNHG6/miR-135a-5p are examples of LncRNA/miRNA or circRNA/miRNA pairs that cooperatively regulate activity of Shh pathway. The regulatory impact of these axes on function of Shh pathway should be assessed in different cellular and disease contexts to find whether they act in a context-specific manner or a ubiquitous manner. This has importance in design of novel therapies for each disorder in which abnormal function of Shh signaling cascade have been identified in several cancers. These patterns are ligand independent onco -genic Hh pathway, autocrine or juxtacrine and paracrine or reverse paracrine patterns [70].

A number of anti-cancer agents such as propofol have been found to exert their effects through modulation of Shh-related ncRNAs. This agent has been found to simultaneously decrease activity of Shh and PI3K/AKT pathways [48]. Therefore, modulation of expression of Shh-related ncRNAs is a promising anticancer strategy.

Taken together, the data presented above indicates contribution of several ncRNAs in the regulation of Shh pathway and their involvement in the pathogenesis of several disorders. However, this data has some limitations. No comprehensive assessments of different types of ncRNAs using next generation sequencing techniques have been performed. Thus, the interactive networks between different types of ncRNAs and Shh signaling components have not been identified yet.

A number of Hh inhibitors, namely Smo antagonist, Cyclopamine, Sulforaphane, Baicalein, Sangunarine, GANT61, Sonidegib, and PF-04449913 have been used for inhibition of cancer stem cells [77]. Meanwhile, activity of cancer stem cells has been shown to be affected by a number of mentioned ncRNAs. Therefore, combination of mentioned therapeutic modalities with ncRNA-tar -geted therapies might be regarded as effective options for eradication of cancer stem cells.

Since Shh-related ncRNAs have fundamental roles in the pathogenesis of human disorders, it is possible to down-regulate or up-regulate their expression in order to alter the pathological events in the course of disease evolution. In order to translate the basic science about the role of ncRNAs in the regulation of Shh pathway into clinical application, the following steps should be followed: (1) comprehensive assessment of expression of different classes of ncRNAs in clinical samples; (2) application of system biology methods for analysis of the acquired data; (3) understanding the complex net -work between different classes of ncRNAs and compo -nents of Shh pathway; (4) establishment of in vitro and

| Tumor/disease type or cellular mechanisms | Animal models | Results | References |
|----------------------------------------|--------------|--------|------------|
| Parkinson’s disease | male specific pathogen-free C57BL/6 mice | ↑↑ miR-124: ↑ proliferation and ↓ apoptosis by downregulating EDN2 through activating the Hedgehog signaling pathway | [63] |
| The transition of dividing neuroepithelial progenitors to differentiated neurons and glia | zebrafish | Δ miR-219: ↑ growth of primary cilia via elevating Shh signaling | [64] |
| Trigeminal neuralgia | rat model of CCI-Ion | Upregulation of miR-195 and downregulation of Patched1 were seen | [65] |

Δ knock-down, deletion, AR aldose reductase, MI myocardial infarction, SPF specific pathogen free, MB Medulloblastoma
in vivo models for assessment of the function of each module and (5) finding novel modalities for influencing the expression and activity of these modules.

**Abbreviations**
Shh: Sonic Hedgehog; Gli: Glioma-associated oncogene; Hh: Hedgehog; cAMP: Cyclic adenosine 3', 5'-monophosphate; Dhh: Desert hedgehog; Ihh: Indian hedgehog; SRF: Serum response factor; lncRNAs: Long non-coding RNAs; miRNAs: MicroRNAs; circRNAs: Circular RNAs; GEO: Gene Expression Omnibus; DM: Diabetes mellitus; OA: Osteoarthritis; GBM: Glioblastoma Multiforme; TNM: Tumor-node-metastasis.

**Acknowledgements**
This study was financially supported by Grant from Medical School of Shahid Beheshti University of Medical Sciences.

**Author contributions**
SGF wrote the manuscript and revised it. MT supervised and designed the study. TK, MS and BMH collected the data and designed the figures and tables. All authors read and approved the final manuscript.

**Funding**
Not applicable.

**Table 3** Dysregulation of Shh signaling-related ncRNAs and in clinical samples

| Tumor/Disease type or different Cellular Mechanisms | samples | Expression (Tumor vs. Normal) | Kaplan–Meier analysis (impact of Shh regulators dysregulation) | Association of dysregulation of Shh regulators with clinical characteristics | References |
|---------------------------------------------------|---------|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|
| Breast cancer                                     | 13 pairs of tumor/nearby tissues | Down-regulation of miR-26a | – | – | [20] |
|                                                   | 15 pairs of tumor/nearby tissues | Down-regulation of miR-1471 | – | – | [21] |
| Cervical cancer                                   | 87 pairs of tumor/nearby tissues | Down-regulation of miR-129-5p, and activated Hedgehog signaling pathway | – | – | [28] |
| Diabetes mellitus                                | GEO database (GSE27382 and GSE95849) 30 patients with DM | Up-regulation of miR-9 and miR-29a | – | – | [59] |
| Gallbladder carcinoma                             | 68 gallbladder cancer patients and 70 healthy controls | Up-regulation of SNHG6 and down of miR-26b-5p | – | age, sex, tumor invasion, differentiation degree, tumor location, and TNM staging | [33] |
| Glioblastoma Multiforme                          | TCGA dataset with > 500 different GBM samples | Up-regulation of miR-9 | – | – | [26] |
| Hepatocellular carcinoma                         | 20 pairs of tumor/nearby tissues | Up-regulation of SHH and down of miR-132 | – | – | [35] |
| Laryngeal cancer                                 | 24 pairs of tumor/nearby tissues | Down-regulation of LINC-PINT and up of miR-423-5p | – | stemness | [37] |
| Lung cancer                                       | 20 pairs of tumor/nearby tissues | Up-regulation of BLA-CAT1 | – | – | [40] |
| Neuroblastoma                                     | GEPIA database: 483 tumor tissues and 347 normal tissues | Up-regulation of LINC01426 | – | – | [41] |
| Neuroblastoma                                     | 226 NB patients | Down-regulation of CDON and up-regulation of miR-181-a and miR-181-b | Poor OS | higher-staged, more aggressive tumors | [64] |
| Osteoarthritis                                    | 46 OA patients | Up-regulation of SHH and its signaling targets | – | – | [48] |
| Pancreatic cancer                                 | 23 pancreatic adenocarcinomas, 18 adjacent benign pancreatic specimens and 25 normal pancreatic specimens | Up-regulation of miR-132 and down-regulation of Shh | – | – | |
| Retinoblastoma                                    | 10 patients with RB and 10 healthy controls | Down-regulation of miR-361-3p | – | – | [53] |

GEO Gene Expression Omnibus, DM Diabetes mellitus, OA Osteoarthritis, GBM Glioblastoma Multiforme, TNM Tumor-node-metastasis.
Availability of data and materials
The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent forms were obtained from all study participants. The study protocol was approved by the ethical committee of Shahid Beheshti University of Medical Sciences. All methods were performed in accordance with the relevant guidelines and regulations.

Consent of publication
Not applicable.

Competing interests
The authors declare they have no conflict of interest.

Author details
1 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq. 3Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq. 4Institute of Human Genetics, Jena University Hospital, Jena, Germany. 5Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 6Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Received: 28 May 2022 Accepted: 4 September 2022
Published online: 13 September 2022

References
1. Skoda AM, Simovic D, Karin V, Kardum V, Irancic S, Serman L. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8.
2. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801.
3. Choudhry Z, Rikani AA, Choudhry AM, Tariq S, Zakaria F, Ashgar MW, et al. Sonic hedgehog signalling pathway: a complex network. Ann Neurosci. 2014;21(1):28–31.
4. Beatty PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;428(7159):324–31.
5. Toftgård R. Hedgehog signalling in cancer. Cell Mol Life Sci CMLS. 2000;57(12):1720–31.
6. Chiang C, Littington Y, Lee E, Young KE, Corden JL, Westphal H, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383(6599):407–13.
7. Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Altaba AR, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog expressed by the notochord. Cell. 1994;76(4):761–75.
8. Campbell V, Copland M. Hedgehog signalling in cancer stem cells: a focus on hematological cancers. Stem Cells Cloning Adv Appl. 2015;8:27.
9. Onodera S, Nakamura Y, Azuma T, Gorlin syndrome: recent advances in genetic testing and molecular and cellular biological research. Int J Mol Med. 2020;41(2):579.
10. Fattahi S, Nikolaishvili N, Ranaei M, Sabour D, Akhavan-Niahi H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep. 2021;11(1):1–12.
11. Zhang J, Fan J, Zeng X, Nie M, Luan J, Yang Y, et al. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharmaceutica Sinica B. 2021;11(5):609–20.
12. Carballo GB, Honoreato JR, de Lopes GPF. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16(1):1–15.
13. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.
14. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–61.
15. Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 2019;20(16):3926.
16. Lin B-J, Zhu J-Y, Ye J, Lu S-D, Liao M-D, Meng X-C, et al. LncRNA-XIST promotes dermal papilla-induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cell Signal. 2020;72:109623.
17. Zheng G, Tao Y, Yu W, Schwartz RJ. Brief report: SRF-dependent MiR-210 silences the sonic hedgehog signaling during cardiogenesis. Stem Cells. 2013;31(10):2279–85.
18. Li X, Liu H, Lu Y, Yu W, Liu X, Liu C. MiR-130a-5p/Foxa2 axis modulates fetal lung development in congenital diaphragmatic hernia by activating the Shh/Gli1 signaling pathway. Life Sci. 2020;241:117666.
19. Richbourg HA, Hu DP, Xu Y, Barczak AJ, Marcucio RS. miR-199 family contributes to regulation of sonic hedgehog expression during craniofacial development. Dev Dyn. 2020;249(9):1062–76.
20. Liu T, Wang Z, Dong M, Wei J, Pan Y. MicroRNA-26a inhibits cell proliferation and invasion by targeting FAM98A in breast cancer. Oncol Lett. 2021;21(5):1–9.
21. Liu X, Zhao T, Bai X, Li M, Ren J, Wang M, et al. LOC101930370/MiR-1471 axis modulates the hedgehog signaling pathway in breast cancer. Cell Physiol Biochem. 2018;48(3):1139–50.
22. Zhou M, Hou Y, Yang G, Zhang H, Tu G, Du Y-Y, et al. LncRNA-Hh strengthens cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells. 2016;34(1):55–66.
23. Fu B, Liu W, Zhu C, Li P, Wang L, Pan L, et al. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int J Biol Sci. 2021;17(12):3104.
24. Zhao D, Hou Y, Sun F, Han B, Li S. Effects of miR-132 on proliferation and apoptosis of pancreatic cancer cells via Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(S):1978–85.
25. Yin S, Du W, Wang F, Han B, Cui Y, Yang D, et al. MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/Gli1 signaling pathway. Cancer Biol Ther. 2018;19(14):260–70.
26. Munoz JL, Rodriguez-Cruz V, Ramkisson SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190.
27. Zhou H, Han L, Wang H, Wei J, Guo Z, Li Z. Chidamide inhibits glioma cells by increasing oxidative stress via the miRNA-338–5p regulation of Hedgehog signaling. Oxidative Med Cell Longevity. 2020;2020:1.
28. Wang Y-F, Yang H-Y, Shi X-Q, Wang Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther. 2018;19(12):1162–73.
29. Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, et al. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res. 2018;366(1):55–62.
30. Neumann JE, Wefers AF, Lambso B, Bianchi E, Bockstaller M, Dorostkar MM, et al. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med. 2017;23(10):1191–202.
31. Liu X, Li M, Peng Y, Hu X, Xu J, Zhu S, et al. miR-30c regulates proliferation, apoptosis and differentiation via the Shh signaling pathway in P19 cells. Exp Mol Med. 2016;48(7):e248-e.
32. Jiang Z, Cushing L, Ai X, Liu J. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened. Am J Respir Cell Mol Biol. 2014;51(2):273–83.
33. Liu X, Wang K, Du H. LncRNA SNHG6 regulating Hedgehog signaling and affects the biological function of glioblastader cancer cells through targeting miR-26b-5p. Eur Rev Med Pharmacol Sci. 2020;24:7598–61.
35. Li J, Zhang Q, Fan X, Mo W, Dai W, Feng J, et al. The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget. 2017;8(39):65952.

36. Ghosepade DS, Sinha AV, Holla S, Singh V, Balaji KN. NOD2-nitric oxide-responsive microRNA-146a activates Sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem. 2013;288(46):33037–48.

37. Yuan Z, Xiu C, Liu D, Zhou G, Yang H, Pei R, et al. Upregulation of LINC01426 accelerates liver cancer cell migration and invasion via sponging miR-200b-5p. Cancer Lett. 2015;368(1):114–21.

38. Yu F, Zheng Y, Hong W, Chen B, Dong P, Zheng J. MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Mol Reprod Dev. 2015;82(1):121–31.

39. Haque I, Kawar J, Hatef H, Sharma M, Banerjee S, Banerjee SK, et al. Downregulation of miR-506-3p facilitates EGRF-TR resistance through induction of sonic hedgehog signaling in non-small-cell lung cancer cells. Int J Mol Sci. 2020;21(23):9307.

40. Sun J, Ji A, Yuan W, Liu S, Wang W, Ge L, et al. LncRNA BLACAT1 accelerates epithelial-mesenchymal transition via sponging of miR-218. Mol Biosyst. 2019;15(11):2396–406.

41. Liu X, Yin Z, Xu L, Zhou H, Liu J, Liu S, et al. Upregulation of LINC01426 promotes the proliferation and stemness in lung adenocarcinoma by enhancing the level of SHH protein to activate the hedgehog pathway. Cell Death Dis. 2021;12(2):1–13.

42. Liu M-w, Su M-x, Tang D-y, Hao L, Xun X-H, Huang Y-q. MicroRNA-200a suppresses epithelial-to-mesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Mol Reprod Dev. 2015;82(1):121–31.

43. Gibert B, Delloye-Bourgeois C, Gattolliat C-H, Meurette O, Guernevel A. MicroRNA-195 regulates sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem. 2013;288(46):33037–48.

44. Yuan Z, Xiu C, Liu D, Zhou G, Yang H, Pei R, et al. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis. J Cell Physiol. 2019;243(4):2311–22.

45. Zhang Z, Zhang J, Sun Y, Zhao H, Wang Y. Inhibition of microRNA-802-5p inhibits myocardin apoptosis after myocardial infarction via Sonic Hedgehog signaling pathway by targeting PTCH1. Eur Rev Med Pharmacol Sci. 2021;25(1):326–34.

46. Wang B, Xu J, Hu J, Hu M, Huang J, Zhu X. Effects of miR-153 on angiogenesis in MCAO rats through Shh signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(2):732–9.

47. Sun Q, Zeng L, Liu Y, Chen J, Zeng Q-C, Chen Y-Q, et al. microRNA-9 and Fli1 regulate the progression of colorectal cancer through targeting Hedgehog signaling. Mol Cancer. 2020;19(1):1–16.

48. Zhang Z, Lu S, Cheng Y. The miR-183~1~96~1~82 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J Biomed Res. 2013;27(2):486.

49. Lin J-C, Liu Z-G, Yu B, Zhang X-R. MicroRNA-874 targeting SUFU involves in osteoblast proliferation and differentiation in osteoporosis rats through the Hedgehog signaling pathway. Biochem Biophys Res Commun. 2018;506(1):194–203.

50. Wang J, Wang W, Zhai H. MicroRNA-124 enhances dopamine receptor expression and neuronal proliferation in mouse models of Parkinson's disease via the hedgehog signaling pathway by targeting EDN2. NeuroImmunomodulation. 2019;26(4):174–87.

51. Hudish LL, Galati DP, Ravaneili AM, Pearson CG, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143(13):2292–304.

52. Wang X, Wang H, Zhang T, Li M, Liang H, Wang H, et al. Inhibition of MicroRNA-195 alleviates neuropathic pain by targeting Patched1 and inhibiting SHH signaling pathway activation. Neurochem Res. 2019;44(7):1690–702.

53. Wang X, Wang H, Zhang T, Li M, Liang H, Wang H, et al. Inhibition of MicroRNA-195 alleviates neuropathic pain by targeting Patched1 and inhibiting SHH signaling pathway activation. Neurochem Res. 2019;44(7):1690–702.

54. Zhang J, Wang W, Zhai H. MicroRNA-124 enhances dopamine receptor expression and neuronal proliferation in mouse models of Parkinson's disease via the hedgehog signaling pathway by targeting EDN2. NeuroImmunomodulation. 2019;26(4):174–87.

55. Hudish LL, Galati DP, Ravaneili AM, Pearson CG, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143(13):2292–304.

56. Wang X, Wang H, Zhang T, Li M, Liang H, Wang H, et al. Inhibition of MicroRNA-195 alleviates neuropathic pain by targeting Patched1 and inhibiting SHH signaling pathway activation. Neurochem Res. 2019;44(7):1690–702.

57. Wang X, Wang H, Zhang T, Li M, Liang H, Wang H, et al. Inhibition of MicroRNA-195 alleviates neuropathic pain by targeting Patched1 and inhibiting SHH signaling pathway activation. Neurochem Res. 2019;44(7):1690–702.

58. Xie X, Zhou Y, Xie C, Wei S, Gan H, He S, et al. Genome-wide screening reveals an EMT molecular network mediated by Sonic hedgehog-Gli1 signaling in pancreatic cancer cells. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0043119.

59. Islam S, Mokhtar R, Noman A, Uddin M, Rahman M, Azadi M, et al. Sonic hedgehog (SHH) signaling promotes tumorogenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55(5):537–51.

60. Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, et al. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer. 2022;21(1):115.

61. Wang Y. The limited role of most circRNAs as sponges for microRNAs. Cell Mol Life Sci. 2022;79(6):299.

62. Wang Y. Comment on "Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett. 2020;2020(473):139–47.

63. Wang Y. Letter to the Editor: the limited functions and mechanisms of CircASAP1 as a Sponge of Onco-microRNAs. Hepatology (Baltimore, Md). 2021;73(6):2610.

64. Wang Y. Letter to the Editor: the limited function of most circRNAs as a microRNA sponge. Hepatology. 2022. https://doi.org/10.1002/hep.32657.
75. Wang YZ. Comment on “Regulation of nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? [Cancer Lett. 509 (2021 May 2) 63-80]. Cancer Lett. 2021;516:99–100.
76. Wang Y. Letter to the editor: issues of circular RNAs as MicroRNA Sponges. Hepatology (Baltimore, Md). 2020;72(1):365.
77. Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells. Cells. 2018;7(11):208.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.