Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model

JAN BALDEAUX* & ALEXANDER BADRAN**

*Finance Discipline Group, University of Technology, Sydney, NSW 2007, Australia, **School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

(Received 11 June 2012; in revised form 16 October 2013)

ABSTRACT The paper demonstrates that a pure-diffusion 3/2 model is able to capture the observed upward-sloping implied volatility skew in VIX options. This observation contradicts a common perception in the literature that jumps are required for the consistent modelling of equity and VIX derivatives. The pure-diffusion model, however, struggles to reproduce the smile in the implied volatilities of short-term index options. The pronounced implied volatility smile produces artificially inflated fitted parameters, resulting in unrealistically high VIX option implied volatilities. To remedy these shortcomings, jumps are introduced. The resulting model is able to better fit short-term index option implied volatilities while producing more realistic VIX option implied volatilities, without a loss in tractability.

KEY WORDS: Stochastic volatility plus jumps model, 3/2 model, VIX derivatives

1. Introduction

The Chicago Board Options Exchange Volatility Index (VIX) provides investors with a mechanism to gain direct exposure to the volatility of the S&P500 index without the need for purchasing index options. Consequently, the trading of VIX derivatives has become popular amongst investors. In 2004, futures on the VIX began trading and were subsequently followed by options on the VIX in 2006. Furthermore, since the inception of the VIX, volatility indices have been created to provide the same service on other indices, in particular, the VDAX and the VSTOXX, which are based on the DAX and the Euro STOXX 50 indices, respectively. Since derivative products are traded on both the underlying index and the volatility index, it is desirable to employ a model that can simultaneously reproduce the observed characteristics of products on both indices. Models that are capable of capturing these joint characteristics are known as consistent models.

A growing body of literature has been devoted to the joint modelling of equity and VIX derivatives. The literature can generally be classed in terms of two approaches. In the first approach, once the instantaneous dynamics of the underlying index are...
specified under a chosen pricing measure, the discounted price of a derivative can be expressed as a local martingale. This is the approach adopted in Lian and Zhu (2013), Sepp (2008), Zhang and Zhu (2006) and Zhu and Lian (2012). Zhang and Zhu (2006) derived an analytic formula for VIX futures under the assumption that the S&P500 is modelled by a Heston diffusion process (Heston, 1993). A more general result was obtained in Lian and Zhu (2013). Through a characteristic function approach these authors provided exact solutions (dependent upon a Fourier inversion) for the price of VIX derivatives when the S&P500 is modelled by a Heston diffusion process with simultaneous jumps in the underlying index and the volatility process. A square-root stochastic variance model with variance jumps and time-dependent parameters was considered for the evolution of the S&P500 index in Sepp (2008). The author provided formulae for the pricing and hedging of a variety of volatility derivatives. Alternatively, there is the ‘market-model’ approach, where variance swaps are modelled directly, as is done in Bergomi (2005) and Cont and Kokholm (2013). The latter authors proposed a flexible market model that is capable of efficiently pricing realized-variance derivatives, index options and VIX derivatives. Realized-variance derivatives were priced using Fourier transforms, index derivatives were priced using a mixing formula, which averages Black–Scholes model prices, and VIX derivatives were priced, subject to an approximation, using Fourier-transform methods.

Models considered under the first approach generally yield (quasi-) closed-form solutions for derivative prices, which by definition are tractable. The challenge lies in ensuring that empirically observed facts from the market data, i.e. characteristic features of the joint dynamics of equity and VIX derivatives, are captured. On the other hand, the market-model approach ensures by construction that models accurately reflect observed empirical characteristics. The challenge remaining is to obtain an acceptable level of tractability when pricing derivative products. In this paper, we follow the first approach and consider the joint modelling of equity and VIX derivatives when the underlying index follows a 3/2 process (Carr & Sun, 2007; Heston, 2012; Itkin & Carr, 2010; Lewis, 2000) with jumps in the index only (henceforth called the 3/2 plus jumps model). The model presented here is more parsimonious than competing models from its class; it is able to accurately capture the joint dynamics of equity and VIX derivatives, while retaining the advantage over market models of analytic tractability. We point out that this model was used in the context of pricing target volatility fund derivatives in Meyer-Dautrich and Vierthauer (2011).

The selection of a 3/2 model for the underlying index is motivated by several observations in recent literature. There is both empirical and theoretical evidence suggesting that the 3/2 model is a suitable candidate for modelling instantaneous variance. Bakshi, Ju, and Yang (2006) conducted an empirical study on the time-series properties of instantaneous variance by using S&P100 implied volatilities as a proxy. The authors found that a linear drift was rejected in favour of a non-linear drift and estimated that a variance exponent of approximately 1.3 was required to fit the data. In a separate study, Carr and Sun (2007) proposed a new framework for pricing variance swaps and were able to support the findings of Bakshi et al. (2006) using a purely theoretical argument. Furthermore, the excellent results obtained by Drimus (2012), who employed the 3/2 model to price realized-variance derivatives, naturally encourage the application of the 3/2 framework to VIX derivatives. Despite
having a qualitative advantage over other stochastic volatility models (Drimus, 2012),
the 3/2 model, or any augmented version of this model, is yet to be applied to the
consistent pricing of equity and VIX derivatives. The final motivating factor is the
claim that jumps must be included in the dynamics of the underlying index to capture
the upward-sloping implied volatility skew of VIX options (Sepp, 2008).

In related literature, the only mention of the 3/2 model in the context of VIX
derivatives is in Goard and Mazur (2013), where the problem is approached from the
perspective of directly modelling the VIX. Closed-form solutions are found for VIX
derivatives under the assumption that the VIX follows a 3/2 process. In this paper, a
markedly different approach is adopted. Rather than specifying dynamics for the
untradable VIX, without providing a connection to the underlying index, we follow
the approach from Lian and Zhu (2013), where the dynamics of the underlying index
are specified and an expression for the VIX is later derived. Our approach is
markedly different to that of Goard and Mazur (2013); issues of consistency are
addressed directly and the model lends itself to a more intuitive interpretation.

The main contribution of this paper is the derivation of quasi-closed-form solutions
for the pricing of VIX derivatives under the assumption that the underlying index
follows the 3/2 model. The newly found solutions retain the analytic tractability
enjoyed by those found in the context of realized-variance products (Drimus, 2012).
The formulae derived in this paper allow for a numerical analysis to be performed to
assess the appropriateness of the 3/2 framework for consistent modelling. Upon
performing the analysis, we find that the pure-diffusion 3/2 model is capable of
producing the commonly observed upward-sloping skew for VIX options. This con-
tradicts the previously made claims that pure-diffusion stochastic volatility models
cannot consistently model VIX and equity derivatives (Sepp, 2008). This desirable
property distinguishes the 3/2 model from competing pure-diffusion stochastic vola-
tility models. We compare the 3/2 model to the Heston model and find that the latter
produces downward-sloping implied volatilities for VIX options, whereas the former
produces upward-sloping implied volatilities for VIX options.

Pure-diffusion volatility models, however, fail to capture features of implied vola-
tility in equity options for short maturities (Gatheral, 2006). To remedy this, short-
coming jumps are introduced in the underlying index. The resulting 3/2 plus jumps
model is consequently studied in detail: first, by following the approach used for the
pure-diffusion 3/2 model, we derive the conditions that ensure that the discounted
stock price is a martingale under the pricing measure. The novelty of this result is that
we discuss whether a stochastic volatility model that allows for jumps is a martingale.
So far in the literature (Bayraktar, Kardaras, & Xing, 2012; Drimus, 2012; Lewis,
2000; Mijatović & Urusov, 2012) these results have been provided for pure-diffusion
processes only, as they are based on Feller explosion tests (Karatzas and Shreve,
1991). Next, we produce the joint Fourier–Laplace transform of the logarithm of the
index and the realized variance, which allows for the pricing of equity and realized-
variance derivatives. Though the 3/2 model is not affine, we find that the joint
Fourier–Laplace transform is exponentially affine in the logarithm of the stock
price. This allows for the simultaneous pricing of equity options across many strikes
via the use of the Fourier-cosine expansion method of Fang and Osterlee (2008). Such
a finding is expected to significantly speed up the calibration procedure. The
approach used in this paper is not restricted to the 3/2 plus jumps model and can
be extended to a more general setting. In fact, we use this approach to obtain a closed-form solution for VIX options in the stochastic volatility plus jumps (SVJ) model, see Bates (1996), resulting in a small extension of the stochastic-volatility pricing formula presented in Lian and Zhu (2013).

The paper is structured as follows: in Section 2, we introduce the pure-diffusion 3/2 model and present the empirical result which illustrates that this model is able to capture the joint characteristics of equity and index options. We compare the pure-diffusion 3/2 model with the Heston model to highlight the difference in shape of the VIX implied volatilities. The rest of the paper is concerned with the 3/2 plus jumps model. Section 3 introduces the 3/2 plus jumps model and establishes the conditions which ensure that the discounted stock price is a martingale under the assumed pricing measure. Next, characteristic functions for the logarithm of the index and the realized variance are derived. Finally, a quasi-analytic formula for call and put options on the VIX is derived. Conclusions are stated in Section 4.

2. Pure-Diffusion 3/2 Model Applied to the VIX

In this section, we introduce the pure-diffusion 3/2 model and present numerical results to illustrate that this model is able to produce upward-sloping implied volatility skews in VIX options. On a probability space \((\Omega, \mathcal{F}, \mathbb{Q})\), we introduce the risk-neutral dynamics for the stock price and the variance processes

\[
\begin{align*}
 dS_t &= S_t \left(rt + \rho \sqrt{V_t} dW_{1t}^1 + \sqrt{1 - \rho^2} \sqrt{V_t} dW_{2t}^2 \right), \\
 dV_t &= \kappa V_t (\theta - V_t) dt + \epsilon (V_t^{3/2}) dW_{1t}^1, \\
\end{align*}
\]

starting at \(S_0 > 0\) and \(V_0 > 0\), respectively, where \(W = (W^1, W^2)\) is a two-dimensional Brownian motion under the risk-neutral measure. All stochastic processes are adapted to a filtration \((\mathcal{F}_t)_{t \in [0,T]}\) that satisfies the usual conditions with \(\mathcal{F}_0\) being the trivial sigma field. Furthermore, \(r\) denotes the constant risk-free interest rate and \(\rho\) the instantaneous correlation between the return on the index and the variance process. As per usual, \(\rho\) satisfies \(-1 \leq \rho \leq 1\) and \(\kappa, \theta\) and \(\epsilon\) are assumed to be strictly positive. It is worth noting that unlike the Heston model, the above model has a non-linear drift. The speed of mean reversion is not constant, as is the case for the Heston model, but is now a stochastic quantity and is proportional to the instantaneous variance.

Throughout this paper, we follow Lian and Zhu (2013) and Zhang and Zhu (2006) and define the VIX via

\[
VIX_t^2 := -\frac{2}{\tau} E \left(\ln \left(\frac{S_{t+\tau}}{S_0 e^{\rho \tau}} \right) \bigg| \mathcal{F}_t \right) \times 100^2, \tag{1}
\]

where \(\tau = \frac{30}{365}\). We again emphasize that this approach is conceptually different to that of Goard and Mazur (2013). Instead of modelling the VIX directly, without providing a connection to the underlying index, the expression for the VIX in Equation (1) is derived directly from the dynamics of the underlying index.
Implied volatilities of VIX options exhibit a positive volatility skew, as stated in Sepp (2011). The author asserts that ‘SV [stochastic volatility models] without jumps are not consistent with the implied volatility skew observed in options on the VIX…’ and that ‘…only the SV [stochastic volatility] model with appropriately chosen jumps can fit the implied VIX skew’. To assess these statements, we calculate implied volatilities under the pure-diffusion 3/2 model.

In order to provide the reader with parameters that are verifiable, we use the parameters provided in Drimus (2012) for realized-variance derivatives. Using the forthcoming Proposition 3.4 and the parameters

\[V_0 = 0.2450^2, \kappa = 22.84, \theta = 0.4669^2, \epsilon = 8.56 \text{ and } \rho = -0.99, \]

we price VIX options for \(T = 3 \) months and \(T = 6 \) months. Then using Black’s formula we find an implied volatility, \(\zeta \), such that

\[E((VIX_T - K)^+) = E(VIX_T)N(d_1) - K N(d_2), \]

where

\[d_1 = \frac{\log(E(VIX_T)/K) + \zeta^2 T}{\zeta \sqrt{T}} \quad \text{and} \quad d_2 = d_1 - \sqrt{T} \zeta, \]

and \(N(\cdot) \) denotes the cumulative standard normal probability distribution function. The positive skew of the implied volatility of VIX options is shown in Figure 1 for maturities \(T = 3 \) months and \(T = 6 \) months, demonstrating that the dynamics of the pure-diffusion 3/2 model are, in fact, rich enough to fit the implied VIX skew. These observations support the findings of Bakshi et al. (2006), Carr and Sun (2007) and Drimus (2012) who suggest that the 3/2 model is a good candidate for the pricing of volatility derivatives.

![Figure 1. Implied volatilities of call options on the VIX using the 3/2 model parameters obtained in Drimus (2012) with \(T = 3 \) months (left) and \(T = 6 \) months (right).](image)
Next, we compare the results produced by the 3/2 model to the Heston model, which is commonly used for the pricing VIX derivatives (Lian & Zhu, 2013; Sepp, 2008; Zhang & Zhu, 2006; Zhu & Lian, 2012). A priori this seems to be a fair comparison; both models are stochastic volatility models, and they have the same number of parameters and enjoy the same level of analytical tractability. To compute VIX option prices and the corresponding implied volatilities, we use the pricing formula provided by Lian and Zhu (2013) (see their Proposition 3). Again, we use the following parameters obtained in Drimus (2012) for the Heston model,

\[V_0 = 0.2556^2, \kappa = 3.8, \theta = 0.3095^2, \epsilon = 0.9288 \text{ and } \rho = -0.7829. \]

The result is shown in Figure 2. Unlike for the 3/2 model, the implied volatilities are downward sloping, which is not consistent with market data.

3. The 3/2 plus Jumps Model

The previous section demonstrated that the pure-diffusion 3/2 model is capable of capturing the upward-sloping features of VIX option implied volatilities. Pure diffusion volatility models, however, fail to capture features of equity implied volatility for short expirations. To demonstrate this, we calibrate the pure-diffusion 3/2 model to short-maturity S&P500 option data from 8 March 2012. In Figure 3, we present implied volatilities for S&P500 options with a maturity of 9 days and for VIX options with a maturity of 44 days. The data set clearly exhibits a volatility smile. The pure-diffusion 3/2 model is able to capture the negative skew; however, it struggles to capture the smile. Moreover, the pronounced volatility smile produces artificially inflated fitted parameter values, resulting in unrealistically high VIX implied volatilities.

This observation motivates the extension of the model to allow for jumps in the underlying index in order to obtain better fit for short expirations. Consider the dynamics for the underlying index given by
\[dS_t = S_t \left((r - \lambda \mu) dt + \rho \sqrt{V_t} dW_t^1 + \sqrt{1 - \rho^2} \sqrt{V_t} dW_t^2 + (e^\xi - 1) dN_t \right), \]
\[dV_t = \kappa V_t (\theta - V_t) dt + \epsilon (V_t^{3/2}) dW_t^1, \]

where we denote by \(N \) a Poisson process at constant rate \(\lambda \), by \(e^\xi \) the relative jump size of the stock and \(N \) is adapted to a filtration \((\mathcal{F}_t)_{t \in [0,T]} \). The distribution of \(\xi \) is assumed to be normal with mean \(\mu \) and variance \(\sigma^2 \). The parameters \(\mu, \bar{\mu} \) and \(\sigma \) satisfy the following relationship:

\[\mu = \log(1 + \bar{\mu}) - \frac{1}{2} \sigma^2. \]

All other stochastic processes and parameters have been introduced in Section 2. Integrating Equation (2) yields

\[S_t = \tilde{S}_t \prod_{j=1}^{N_t} e^{\tilde{\xi}_j}, \]

where

\[\tilde{S}_t = S_0 \exp \left((r - \lambda \bar{\mu}) t - \frac{1}{2} \int_0^t V_s ds + \rho \int_0^t \sqrt{V_s} dW_s^1 + \sqrt{1 - \rho^2} \int_0^t \sqrt{V_s} dW_s^2 \right), \]

and we use \(\tilde{\xi}_j \) to denote the logarithm of the relative jump size of the \(j \)th jump. Since the model in Equations (2) and (3) is not affine, Equation (4) gives us an important starting point for our analysis. In particular, one can now determine if the discounted stock price is a martingale under our assumed pricing measure.

Proposition 3.1. Let \(S \) and \(V \) be given by Equations (2) and (3) respectively. Then the discounted stock price \(\tilde{S}_t = \frac{S_t}{S_0} \) is a martingale under \(Q \) if and only if
\[\kappa - \varepsilon \rho \geq - \frac{\epsilon^2}{2}. \]

Proof. We compute

\[
E(\tilde{S}_T | \mathcal{F}_t) = \tilde{S}_t E \left(\exp \left(- \frac{1}{2} \int_t^T V_s ds + \rho \int_t^T \sqrt{V_s} dW_s^1 + \sqrt{1 - \rho^2} \int_t^T \sqrt{V_s} dW_s^2 \right) \right) \mathcal{F}_t
\]

\[\times E \left(\prod_{j=N_t+1}^{N_T} e^{\hat{\xi}_j} \right) e^{-\frac{\epsilon^2}{2} \mathcal{E}(T-t)}
\]

\[= \tilde{S}_t E \left(\exp \left(- \frac{1}{2} \int_t^T V_s ds + \rho \int_t^T \sqrt{V_s} dW_s^1 + \sqrt{1 - \rho^2} \int_t^T \sqrt{V_s} dW_s^2 \right) \right) \mathcal{F}_t \].

Equation (7) is clearly independent of the jump component of \(S \). Hence \(\tilde{S} \) is a martingale under \(Q \) if and only if the corresponding discounted pure-diffusion model, \(\tilde{S}_t e^{\frac{\epsilon t}{\mathcal{E}(T-t)}} \), is a martingale under \(Q \). Since this question was answered in Drimus (2012), see his Equation (4), the desired result follows. \(\Box \)

Starting with Sin (1998), there has been a growing body of literature dealing with the question of whether the discounted stock price in a particular stochastic volatility model is a martingale or a strict local martingale under the pricing measure, e.g. Andersen and Piterbarg (2007), Bayraktar et al. (2012), Lewis (2000) and Mijatović and Urusov (2012). The specification of the model, in particular Equation (4), allows for the application of the above results, which were all formulated for pure-diffusion processes. We remark that Condition (6) is the same as the one presented in Drimus (2012). Besides analysing the martingale property of the model in Equations (2) and (3), we also compute functionals, which are required for the pricing of equity and VIX derivatives.

3.1 Equity and Realized-Variance Derivatives

In this subsection, we derive formulae for the pricing of equity and realized-variance derivatives under the 3/2 plus jumps model. We demonstrate that by adding jumps to the 3/2 model a better fit to the short-term smile can be obtained without incurring a loss in analytic tractability. Consider \(X_t := \log(S_t), t \geq 0 \), and define the realized variance as the quadratic variation of \(X \), i.e.

\[RV_T := \int_0^T V_s ds + \sum_{j=1}^{N_T} (\hat{\xi}_j)^2, T \geq 0, \]

where \(RV_T \) denotes realized variance and \(T \) denotes the maturity of interest. We have the following result, which is the analogue of Proposition 2.2 in Drimus (2012).
Proposition 3.2. Let \(u \in \mathbb{R} \) and \(l \in \mathbb{R}^+ \). In the \(3/2 \) plus jumps model, the joint Fourier-Laplace transform of \(X_T \) and \((RV_T - RV_i) \) is given by

\[
E(\exp(iuX_T - l(RV_T - RV_i))|X_t, V_t)
\]

\[
= \exp(iu(X_t + (r - \lambda \bar{\mu})(T - t))) \frac{\Gamma(\gamma - \alpha)}{\Gamma(\gamma)} \left(\frac{2}{\epsilon^2 y(t, V_t)} \right)^\alpha \times M\left(\alpha, \gamma, \frac{-2}{\epsilon^2 y(t, V_t)} \right) \exp(\lambda(T - t)(a - 1)),
\]

where

\[
y(t, V_t) = V_t \frac{e^{\theta(T - t)} - 1}{\kappa \theta},
\]

\[
\alpha = -\left(\frac{1}{2} - \frac{p}{e^2} \right) + \sqrt{\left(\frac{1}{2} - \frac{p}{e^2} \right)^2 + 2 \frac{q}{e^2}}, \quad \gamma = 2(\alpha + 1 - \frac{p}{e^2}), \quad p = -\kappa + iepu,
\]

\[
q = l + \frac{iu}{2} + \frac{u^2}{2} \quad \text{and} \quad a = \frac{\exp \left(-\frac{2\mu^2 - 2imu + \sigma^2 u^2}{2 + 4l\sigma^2} \right)}{\sqrt{1 + 2l\sigma^2}},
\]

and \(M(a, b, c) \) denotes the confluent hypergeometric function.

Proof. The proof is completed by noting that

\[
E(\exp(iuX_T - l(RV_T - RV_i))|X_t, V_t)
\]

\[
= \exp(iuX_t)E\left(\exp \left(iu \log \left(\frac{\tilde{S}_T}{\tilde{S}_t} \right) - l \int_t^T V_s ds \right) \bigg| V_t \right)
\]

\[
E\left(\exp \left(iu \sum_{j=N_t+1}^{N_T} \tilde{\xi}_j - l \sum_{j=N_t+1}^{N_T} (\tilde{\xi}_j)^2 \right) \right).
\]

The first conditional expectation was computed in Carr and Sun (2007) and Lewis (2000) and is given by

\[
E\left(\exp \left(iu \log \left(\frac{\tilde{S}_T}{\tilde{S}_t} \right) - l \int_t^T V_s ds \right) \bigg| V_t \right) = \exp(iu(r - \lambda \bar{\mu})(T - t)) \frac{\Gamma(\gamma - \alpha)}{\Gamma(\gamma)} \left(\frac{2}{\epsilon^2 y(t, V_t)} \right)^\alpha \times M\left(\alpha, \gamma, \frac{-2}{\epsilon^2 y(t, V_t)} \right).
\]

Furthermore, it can be seen that
\[E \left(\exp \left(iu \tilde{\xi}_j - l \tilde{\xi}^2_j \right) \right) = \frac{\exp \left(-\frac{2l\mu^2 - 2i\mu u + \sigma^2 u^2}{2 + 4l\sigma^2} \right)}{\sqrt{1 + 2l\sigma^2}}, \]

and for \(c > 0 \)

\[E(c^{N_T - N_t}) = \exp(\lambda(T - t)(c - 1)). \]

Equity and realized-variance derivatives can now be priced using Proposition 3.2. For equity derivatives, pricing requires the performance of a numerical Fourier inversion, such as those presented in Carr and Madan (1999) and Lewis (2000). Furthermore, since the characteristic function of \(X_T \) is exponentially affine in \(X_t \), we can apply the Fourier-cosine expansion method as described in Section 3.3 in Fang and Osterlee (2008). This allows for the simultaneous pricing of equity options across many strikes, which is expected to significantly speed up the calibration procedure. For realized-variance derivatives one can employ a numerical Laplace inversion, see Carr, Geman, Madan, and Yor (2005), or the more robust control variate method developed in Drimus (2012). We comment that implied volatility approximations for small log-forward moneyness and time to maturity for the 3/2 plus jumps model can be obtained from Medvedev and Scaillet (2007), as their Proposition 3 covers the 3/2 plus jumps model.

This section is concluded with a calibration of the 3/2 plus jumps model to short-maturity S&P500 option data. The inclusion of jumps improves the fit significantly, as illustrated when comparing Figures 3 and 4. The values for \(\nu_0 \) and \(\theta \) decrease significantly when we allow for jumps, resulting in more realistic VIX option implied volatilities. Also, the parameters for the jump component are roughly in line with those obtained for SVJ models (see for example Gatheral (2006)).

![Figure 4](image-url)

Figure 4. Fit of the 3/2 plus jumps model to 9-day S&P500 implied volatilities (left) and 44-day VIX implied volatilities (right) on 8 March 2012. Model parameters obtained \(\epsilon = 50.56, \nu_0 = 0.0822^2, \kappa = 30.84, \theta = 0.10^2, \rho = -0.57, \lambda = 0.18, \mu = -0.30, \sigma = 0.39. \)
3.2 VIX Derivatives

In this subsection, we provide a general pricing formula for (European) call and put options on the VIX by extending the results of Zhang and Zhu (2006). The newly found formula is then used for the pricing of VIX derivatives when the index follows a $3/2$ plus jumps process. Of course, the results shown in Section 2 are obtained by setting the jump intensity λ equal to 0. We recall the definition of the VIX in Equation (1),

$$VIX_t^2 := \frac{2}{\tau} E \left(\ln \left(\frac{S_{t+\tau}}{S_t e^{r\tau}} \right) \right) \times 100^2,$$

where $\tau = \frac{30}{365}$. The following result, which is an extension of Proposition 1 in Zhang and Zhu (2006), allows for the derivation of a pricing formula for VIX options.

Lemma 3.3. Let S, V, and VIX^2 be defined by Equations (2), (3) and (1). Then

$$VIX_t^2 = \left(\frac{g(V_t, \tau)}{\tau} + 2\lambda (\bar{\mu} - \mu) \right) \times 100^2, \quad t \geq 0,$$

where

$$g(x, \tau) = -\frac{\partial}{\partial l} E \left(\exp \left(-l \int_t^{t+\tau} V_s ds \right) \bigg| V_t = x \right) \bigg|_{l=0}.$$

Lemma 3.3 is useful as it shows that the distribution of VIX_t^2 can be obtained via the distribution of V_t, for $t \geq 0$. Consequently, the problem of pricing VIX derivatives is reduced to the problem of finding the transition density function for the variance process. In the following proposition, we present the Zhang–Zhu formula for the futures price and a formula for call options.

Proposition 3.4. Let S, V, and VIX be given by Equations (2), (3) and (1). We obtain the following Zhang–Zhu formula for futures on the VIX

$$e^{-rT} E(VIX_T) = e^{-rT} \int_0^\infty \sqrt{\left(\frac{g(y, \tau)}{\tau} + 2\lambda (\bar{\mu} - \mu) \right) \times 100^2 f_{V_t|V_0}(y) dy}, \quad T > 0,$$

and the following formula for a call option

$$e^{-rT} E((VIX_T - K)^+)$$

$$= e^{-rT} \int_0^\infty \sqrt{\left(\frac{g(y, \tau)}{\tau} + 2\lambda (\bar{\mu} - \mu) \right) \times 100^2 - K} f_{V_t|V_0}(y) dy, \quad T > 0,$$

where $f_{V_t|V_0}(y)$ denotes the transition density of V starting from V_0 at time 0 and being at y at time T.
An expression for VIX put options can be obtained via the put–call parity relation for VIX options, namely
\[e^{-rT}E((K - VIX_T)^+) = e^{-rT}E((VIX_T - K)^+) + Ke^{-rT} - e^{-rT}E(VIX_T), \]
see Equation (25) in Lian and Zhu (2013).

For the 3/2 model, instead of using Lemma 3.3 we could alternatively use Theorem 4 in Carr and Sun (2007). However, our approach is not restricted to the 3/2 model, and it applies to all stochastic volatility models for which the Laplace transform of the realized variance is known. Furthermore, in the case of the 3/2 model, it is well known that \(V_t \) is the inverse of a square-root process (Baldeaux, 2012; Carr & Sun, 2007; Drimus, 2012; Goard & Mazur, 2013).

Lemma 3.5. Let \(V \) be defined as in Equation (3), then the transition density \(f \) of \(V \) is given by
\[f_{VT|V_t}(y) = \frac{1}{y^2 c(T - t)} p\left(\delta, \alpha, \frac{e^{\theta(T-t)}}{ye^{T-t}}\right), \quad T > t \geq 0, \]
where \(\delta = \frac{4(\kappa + \varepsilon^2)}{\kappa^2}, \quad \alpha = \frac{1}{\sqrt{c(T - t)}}, \quad c(t) = e^2(\exp(\kappa \theta t) - 1)/(4\kappa \theta) \) and \(p(v, \beta, \cdot) \) denotes the probability density function of a non-central chi-squared random variable with \(v \) degrees of freedom and non-centrality parameter \(\beta \).

Proof. As indicated above, we introduce the process \(X \) via \(X_t = \frac{1}{V_t} \), whose dynamics are given by
\[dX_t = (\kappa + \varepsilon^2 - \kappa \theta X_t)dt - \varepsilon \sqrt{X_t}dW_t^1. \]
Given \(X(t) \), we note from Jeanblanc, Yor, and Chesney (2009) that
\[X_T \frac{e^{\theta(T-t)}}{c(T - t)} \sim \chi^2(\delta, \alpha), \quad T > t \geq 0, \]
where \(\chi^2(v, \beta) \) denotes a non-central chi-squared random variable with \(v \) degrees of freedom and non-centrality parameter \(\beta \).

Since we have an expression for the transition density of \(V \), Proposition 3.4 can be used to price derivatives on the VIX as a discounted expectation.

To further demonstrate that the methodology presented in this section is not restricted to the 3/2 plus jumps model, consider the stochastic volatility plus jumps model (Bates, 1996; Duffie, Pan, & Singleton, 2000) given by
\[d\tilde{S}_t = \tilde{S}_{t-} \left((r - \lambda \tilde{\mu})dt + \sqrt{\tilde{V}_t}(\rho dW_t^1 + \sqrt{1 - \rho^2}dW_t^2) + (\varepsilon - 1)dN_t \right), \quad (8) \]
\[d\tilde{V}_t = \tilde{\kappa}(\tilde{\theta} - \tilde{V}_t) + \tilde{\varepsilon}\sqrt{\tilde{V}_t}dW_t^1, \quad (9) \]
where \(r, \rho, \lambda, \tilde{\mu}, \mu \) and \(\sigma \) are as defined for the 3/2 model, and \(\tilde{\kappa}, \tilde{\theta} \) and \(\tilde{\varepsilon} > 0 \). Using Lemma 3.3, we have
VIX_t^2 = \left(\frac{g(\bar{V}_t, \tau)}{\tau} + 2\lambda(\bar{\mu} - \mu) \right) \times 100^2,

where

\[g(x, \tau) = ax + b, \quad a = \frac{1 - e^{-\kappa \tau}}{\kappa}, \quad b = \dot{\theta}(\tau - a). \]

As mentioned previously, it is well known that the transition density of a square-root process is non-central chi-squared. Therefore, Proposition 3.4 can be used to price options on the VIX in the setting of Equations (8) and (9). This result is a small extension of Proposition 3 in Lian and Zhu (2013), as our result allows for jumps in the index.

4. Conclusion

We derive general formulae for the pricing of equity and VIX derivatives. The newly found formulae allow for an empirical analysis to be performed to assess the appropriateness of the 3/2 framework for the consistent pricing of equity and VIX derivatives. Empirically, the pure-diffusion 3/2 model performs well, that is, the model is able to reproduce upward-sloping implied volatilities in VIX options, while a competing model of the same complexity and analytical tractability cannot. The pure-diffusion 3/2 model struggles, however, to capture the index option implied volatility smile for short time to expiry. The pronounced implied volatility smile produces artificially inflated fitted parameters, resulting in unrealistically high VIX option implied volatilities. To remedy these shortcomings jumps are introduced. The resulting model is able to better fit short-term index option implied volatilities while producing more realistic VIX option implied volatilities, without a loss in tractability. These observations make the 3/2 plus jumps model a suitable candidate for the consistent modelling of equity and VIX derivatives.

A joint calibration of S&P500 and VIX option data would be an interesting extension of this current work, however, in performing such a calibration care must be taken when selecting the option strikes and expiries. In order to jointly fit both volatility surfaces, an extension of the current model would be required (see Bergomi (2009) for a more in-depth discussion of this issue). Given the encouraging results found in this paper, we believe that the 3/2 plus jumps model would to be a good starting point for such an extension.

Note

The method is applicable to all conditionally Gaussian stochastic volatility models for which the Laplace transform of realized variance is known explicitly.

References

Andersen, L. B. G., & Piterbarg, V. (2007). Moment explosions in stochastic volatility models. *Finance and Stochastics, 11*, 29–50.
Bakshi, G., Ju, N., & Yang, H. (2006). Estimation of continuous time models with an application to equity volatility. *Journal of Financial Economics*, 82, 227–249.

Baldeaux, J. (2012). Exact simulation of the 3/2 model. *International Journal of Theoretical and Applied Finance*, 15, 1–13.

Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. *Review of Financial Studies*, 9, 69–107.

Bayraktar, E., Kardaras, C., & Xing, H. (2012). Valuation equations for stochastic volatility models. *SIAM Journal of Financial Mathematics*, 3, 351–373.

Bergomi, L. (2005). Smile dynamics III. *Risk*, 18, 67–73.

Bergomi, L. (2009). Smile dynamics IV. *Risk*, (December), 94–100.

Carr, P., Geman, H., Madan, D., & Yor, M. (2005). Pricing options on realized variance. *Finance and Stochastics*, 9, 453–475.

Carr, P., & Madan, D. (1999). Option pricing using the fast Fourier transform. *Journal of Computational Finance*, 4, 61–73.

Carr, P., & Sun, J. (2007). A new approach for option pricing under stochastic volatility. *Review of Derivatives Research*, 10, 87–150.

Cont, R., & Kokholm, T. (2013). A consistent pricing model for index options and volatility derivatives. *Mathematical Finance*, 23, 248–274.

Drimus, G. G. (2012). Options on realized variance by transform methods: A non-affine stochastic volatility model. *Quantitative Finance*, 12, 1679–1694.

Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusion. *Econometrica*, 68, 1343–1376.

Fang, F., & Osterlee, K. (2008). A novel pricing method for European options based on Fourier-cosine series expansions. *SIAM Journal of Scientific Computing*, 31, 826–848.

Gatheral, J. (2006). *The volatility surface: A practitioner’s guide*. Hoboken, NJ: Wiley Finance.

Goard, J., & Mazur, M. (2013). Stochastic volatility models and the pricing of VIX options. *Mathematical Finance*, 23(3), 439–458.

Heston, S. L. (1993). *A closed-form solution for options with stochastic volatility with applications to bond and currency options*. *Review of Financial Studies*, 6, 327–343.

Heston, S. L. (2012). A simple new formula for options with stochastic volatility, Working paper Washington University of St. Louis, St Louis, MO.

Itkin, A., & Carr, P. (2010). Pricing swaps and options on quadratic variation under stochastic time change models –8 discrete observations case. *Review of Derivatives Research*, 13, 141–176.

Jeanblanc, M., Yor, M., & Chesney, M. (2009). *Mathematical methods for financial markets*. Berlin: Springer Finance, Springer.

Karatzas, I., & Shreve, S. (1991). *Brownian motion and stochastic calculus*. New York, NY: Springer-Verlag.

Lewis, A. L. (2000). *Option valuation under stochastic volatility*. Newport Beach, CA: Finance Press.

Lian, G. H., & Zhu, S. P. (2013). Pricing VIX options with stochastic volatility and random jumps. *Decisions in Economics and Finance*, 36(1), 71–88.

Medvedev, A., & Scaillet, O. (2007). Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. *Review of Financial Studies*, 20, 427–459.

Meyer-Dautrich, S., & Vierthauer, R. (2011, December). *Pricing target volatility Fund derivatives*. Quantitative methods in finance conference presentation, Sydney.

Mijatović, A., & Urusov, M. (2012). On the martingale property of certain local martingales. *Probability Theory and Related Fields*, 152, 1–30.

Sepp, A. (2008). VIX option pricing in a jump-diffusion model. *Risk*, (April), 84–89.

Sepp, A. (2011, November). Parametric and non-parametric local volatility models: Achieving consistent modeling of VIX and equity derivatives. Quant Congress Europe, London conference presentation, London.

Sin, C. A. (1998). Complications with stochastic volatility models, *Advances in Applied Probability*, 30, 256–268.

Zhang, J. E., & Zhu, Y. (2006). VIX futures. *Journal of Futures Markets*, 26, 521–531.

Zhu, S. P., & Lian, G. H. (2012). An analytical formula for VIX futures and its applications. *Journal of Futures Markets*, 32(2), 66–190.