Factors associated with tuberculosis treatment completion by Gender during 2014 - 2016 in Kampala, Uganda: A retrospective descriptive study

CURRENT STATUS: UNDER REVIEW

BMC Health Services Research

Etwom Alfred aetwom@gmail.com
Republic of Uganda Ministry of Health
Corresponding Author
ORCiD: 0000-0001-8956-8994

Moorine Penninah Sekadde
Ministry of Health

Aldomoro Burua
Ministry of Health

Frank Mugabe
Ministry of Health

Ismael Kawooya
Makerere University College of Health Sciences

Hannock Tweya
University of Northern Iowa

DOI: 10.21203/rs.2.20002/v1

SUBJECT AREAS
Health Economics & Outcomes Research Health Policy

KEYWORDS
tuberculosis treatment, gender
Abstract

Background

To date, limited number of studies have explored the effect of gender in treatment outcomes in Uganda. No data on disaggregated treatment outcomes and influential factors by gender has been comprehensive compiled by the existing studies.

Objective

To determine the gender differences in TB patients treatment outcomes between 2014 and 2016 in Kampala in order to inform national policy and provide targeted interventions.

Methods

A retrospective cohort study using routine data of all eligible individuals who were initiated on first-line TB therapy between 2014 and 2016. De-identified data was obtained from all the Kampala divisions electronic TB registers, cleaned and analysed using STATA version 13.

Results

Of the 18,855 patients started on treatment during the study period, only 17,461 were included in the final analysis. Males were more likely to be 35 years or older, received DOT at facility yet females were more likely to be new patients. In addition, males were more likely to be pulmonary bacteriologically confirmed than females (OR 1.08 95% CI 1.00 - 1.17). Successful treatment completion and ART uptake were similar by gender. Of all outcomes, 83% were treatment successfully, 11% died, 1% treatment failed treatment and 5% got lost to follow-up. Compared to females, males were more likely to be lost from TB care and die compared to females.
Conclusion

Among TB patients in Kampala from 2014 to 2016, we found evidence that successful treatment completion is not influenced by gender. However other factors that may be associated with successful TB treatment completion include age, disease classification, HIV status and type of patient.

Background

Tuberculosis (TB) is an airborne-transmitted infectious disease with high morbidity and mortality around the world. According to the 2017 global TB report, an estimated 10.4 million people fell ill with TB in the previous year (Global TB report 2017). TB burden is more pronounced in African countries probably due to high HIV prevalence and so the continent accounts for about 25% of TB cases (Global TB report, 2017). In the above report, approximately 1.9 times males aged 15 years and old were diagnosed with TB worldwide compared to females in 2016. While previous studies have reported gender disparities in health seeking behavior and treatment outcomes (Chandrashekhar T Sreeramareddy et al, 2014), late access to TB treatment and adherence coupled with health system challenges often lead to poor treatment outcomes and high mortality as well (Abhijit Mukherjee et al, 2012). Differences in health literacy, sociocultural factors, provider or system-level barriers, low degree TB suspicion index by health provider, the number and types of providers seen before TB diagnosis have been reported as contributing to the differences in TB clinical status at presentation, notification rates and TB treatment outcomes by gender (Dodor et al, 2005). These factors can be summarized into three broad themes: TB-related knowledge, education gender roles and status in the family. Surprisingly, despite facing more socioeconomic and cultural adversities
women are less likely to die, fail or default from TB treatment compared to men
(Jimenez-Corona ME et al, 2006).

To date, a limited number of investigators have explored the factors associated with
treatment completion by gender especially within a single cohort in Uganda. In
addition, most studies of gender and TB have been conducted in high resource
settings, and the extent to which differences in management by gender persist in
low-resource contexts is not clear.

Uganda ranked among world’s 30 countries with a high TB/HIV burden, has the TB
prevalence of about 253 per 100,000 population and the average ratio of male to
female in bacteriologically confirmed TB cases as 4.0 (Uganda TB prevalence
survey, 2015). The country has an annual average TB treatment success rate of 75%
while Kampala’s has been about 68% which is below the 85% target.

Factors associated with loss to follow up from anti-TB treatment are old age (De
Albuquerque et al. 2007), being male, and low education level (Tissera 2003).
Migration for work, perception that TB is incurable and poor knowledge about TB
also increase the risk for loss to follow up (Vijay et al. 2003), as do low income and
poor attitude of health care workers (Dodor & Afenyadu 2005; Holtz et al. 2006).

Thus knowledge of patient factors associated with unfavourable treatment outcomes
is crucial in developing strategies to improve treatment success rates. We
investigated factors associated with treatment completion by gender in Kampala,
Uganda.

Methods

Study design

This was a retrospective study of bacteriologically or clinically proven TB patients
started on anti-TB treatment in 63 health facilities in Kampala in Uganda, January 2014 to December 2016. The 63 health facilities included 2 national referral hospitals, 2 regional referral hospitals, 15 general hospitals, 7 health centre IVs, 23 health centre IIIIs, 4 health centre IIs and 10 clinics.

Settings

General settings

Kampala is Uganda’s capital city with a population of 1,583,000 people and 91% of the population stay in urban setting. TB control is supervised by the National TB and Leprosy control Program (NTLP) under Ministry of Health. TB diagnosis and treatment services are integrated into the general health care. TB diagnosis was based on clinical examination, sputum smear microscopy, chest radiography, GeneXpert®, and other investigations as appropriate for extra-pulmonary disease. Providers documented patient’s demographic and clinical information in a unit TB registers at treatment initiation and drug dispensing information during treatment follow-up. TB patients were initiated on treatment on in-and out-patient’s basis. Treatment consisted of a 2-month intensive phase of Rifampicin, Isoniazid, Pyrazinamide and Ethambutol followed by a 4-month continuation phase of Rifampicin and Isoniazid. Patients were scheduled to pick-up TB drugs at bi-weekly in intensive and monthly in continuation phases respectively. Upon completion of the treatment and the necessary follow up investigation, treatment outcomes were assigned according to the WHO’s definition. Certificates were given to patients who successfully completed the treatment.

Study population

All TB patients diagnosed between January 2014 to December 2016 in Kampala were
included in the study. However patients diagnosed and initiated on treatment from outside Kampala excluded because it was difficult to gather their complete records. Also non-transferred out patients whose final treatment outcomes could not established were excluded from the study as health workers did not know what happened to them.

Data management and Analysis

Data was extracted from TB electronic registers of 63 health facilities into STATA version 13. Independent variables were chosen from the registers based on plausibility and previous evidence of association from the literature. Data was checked for consistency, completeness, clarity and accuracy before analysis. Descriptive statistics included calculating the mean, median and mean age, and proportions of different patient characteristics. Comparative bivariate tests Pearson’s chi-square and two sample t-test was used for categorical variables to evaluate associations between dependent and independent variables. All variables with a p-value less or equal to 0.20 at the bi-variable analysis stage were included in a logistic regression to identify factors associated with treatment completion by gender.

In addition, collinearity and confounding elements among factors were checked and removed from the final model. The association was considered significant between predictor variables with the dependent variable if the p-value was < 0.05. Odds ratios and their corresponding 95% confidence interval (CI) were reported as the measures of association.

Ethical considerations

Prior to data collection, ethical approval was obtained from the School of Medicine
Research and Ethics Committee – Makerere University College of Health Sciences and Uganda National Council of Science and Technology. No patient identifier information was collected as a way of maintaining confidentiality.

Aim of the study

To explore factors associated with treatment completion among TB patients initiated on first line TB therapy between 2014 and 2016 in Kampala city (Uganda).

The study will inform national policy and provide targeted gender based interventions aimed at reducing disproportionate TB burden in the country.

Specific Objectives

1. To calculate proportions of TB patients who successfully completed treatment by gender of TB patients initiated on first-line TB therapy during 2014- 2016 in 63 health facilities in Kampala.

2. To assess gender related factors affecting TB treatment completion of patients initiated on first line TB therapy during 2014- 2016 in 63 health facilities in Kampala.

Results

Between 2014 and 2016, 18,855 TB patients were registered for treatment in the 63 health facilities in Kampala. A total of 1394 patients were excluded from the study; because 1,111 (6%) started treatment at facilities outside Kampala and 283 (2%) had no treatment outcomes. The remaining 17,461 were included in the study for analysis. Of these, 10,877 (62%) were males. The median age at treatment registration was 30 years (interquartile range (IQR) 24 - 40) with 35% of the patients aged 35 years and above.
While patients were proportionately distributed by level of care and gender, about 65% of the patients were treated from government owned health facilities. While the rest of patients were distributed in the facilities located in the 5 administrative divisions of Kampala, 39.1% were treated from Mulago which is the national referral hospital for the country.

Table 1 shows distribution of baseline characteristics by gender. Males were more likely to be 35 years or older, received DOT at facility yet females were more likely to be new patients. In addition, males were more likely to be pulmonary bacteriologically confirmed than females (OR 1.08 95% CI 1.00 - 1.17).

All patients were tested for HIV, 48.9% of them were found to be TB/HIV co-infected and 92.7% of those co-infected were initiated on ART at the beginning of TB treatment. However males were less likely to be diagnosed HIV positive and being new TB patients at diagnosis than females (HIV positive: OR 0.70 95% CI 0.65 - 0.74; New TB patients: OR 0.58 95% CI 0.49-0.68).

Successful treatment completion and ART uptake were similar by gender. Of all outcomes, 83% were treatment successfully, 11% died, 1% treatment failed treatment and 5% got lost to follow-up. Compared to females, males were more likely to be lost from TB care and die compared to females (p<0.001).

A logistic regression model (see table 2) showed that clinically and extra-pulmonary diagnosed patients were likely to successfully complete treatment compared to bacteriologically confirmed patients for both males and females. Across both gender, new patients were more likely to successfully complete treatment compared to their previously treated patients. Also between both males and females, having negative HIV status was significantly associated with successful treatment completion compared to having positive HIV status.
On the other hand, young age among males was found to be significantly associated with successful treatment completion compared to female counterparts. Compared to males aged between 0 – 14 years old, age categories between 5 – 14 years (Adj. OR 2.02 95% CI 1.26 – 3.24), 15 – 24 years (Adj. OR 1.91 95% CI 1.34 – 2.71) and 25 – 34 years (Adj. OR 1.39 95% CI 1.00 – 1.94) supported above finding.

Patients treated from general hospitals, health centres IVs and IIIs were significantly more likely to successfully complete treatment across gender compared their counterparts treated from the 2 national referral hospitals. Furthermore, female patients treated from private clinics had a higher odds (Adj. OR 2.04 95% CI 1.04 - 4.01) of compared to their counterparts at the national referral hospitals.

Discussion

Among TB patients in Kampala from 2014 to 2016, we found evidence that successful treatment completion is not influenced by gender. Although impact of gender on treatment outcomes of TB patients has been evaluated in previous studies, has revealed inconsistent results. This finding is consistent with studies carried out in Brazil and Egypt (Kamel Ml, et al 2003).

However in those with unfavorable treatment outcomes, more males got lost to follow up compared to females. The similarities observed in our setting were consistent with the international literature (J. –Y Yeng et al, 2012, K. Dale et al, 2015). Overall, these observations are consistent with the hypothesis that under normal circumstances, males and females have the same chance of successfully completing TB treatment in Kampala.

We found that while more females were TB/HIV co-infected and new on TB treatment, males were more likely to be pulmonary bacteriologically confirmed
compared to counterparts. These findings are consistent with other studies carried out in cities and urban settings like Kampala (Abhijit Mukherjee, et al 2012). Strengthening health provider-initiated TB screening capacity using the NTLP recommended job aid may provide opportunity for early TB case finding and prompt treatment initiation.

On the other hand, socioeconomic barriers may also exist and hinder healthcare-seeking behavior in women. Therefore under-diagnosis of TB in women is a pivotal issue in TB management and should be carefully evaluated in Uganda and other under developed countries. Regarding clinical presentations, females were found to be less symptomatic as compared with male patients just like in the Uganda prevalence survey report. Also a national tuberculosis survey in Bangladesh described a lower awareness of symptoms among female TB patients (Hamid Salim MA, 2004). The absence of respiratory and constitutional symptoms may lead to a delay in seeking medical assistance. Less advanced radiographic findings also make it less likely that health workers will suspect pulmonary TB. Although details about delays in diagnosis were not collected in the present study, all of these factors may contribute to a delayed or low diagnosis of bacteriologically confirmed TB in women as suggested by this study.

Mortality in TB patients is mainly affected by age, disease classification, ART uptake and health facility level of care. This means that younger, clinically diagnosed or extra-pulmonary who are treated from lower levels of care are prone to death. Providing ART to TB/HIV co-infected immediately during TB treatment reduces the risk of dying or getting lost to follow up. These findings disclose the differences between male and female TB patients with regards to clinical characteristics and possible impact on treatment outcomes. We did not divide deaths as being TB
related or non-TB related due to the difficulties in evaluating the impact of TB on mortality. All-cause mortality is more objective and applicable in clinical practice.

Conclusions

Furthermore the study was performed in an underdeveloped country with a high HIV prevalence, and ART initiation may have not been prompt and routine among all TB/HIV co-infected patients. This may limit the ability of our findings to be applied to high to middle-income countries or low HIV endemic areas.

Since getting lost to follow up during TB treatment was influenced by male gender and patient type, instituting gender-specific strategies in TB management like getting family or community support for male patients could reduce unfavourable treatment outcomes. Integration of TB and HIV services especially for counselling may also allow for efficient delivery of important information to patients. Further studies focusing on immunological characteristics are also warranted to elucidate gender related factors other than socio-cultural and clinical factors.

There are several limitations to this study. The duration of presenting symptoms or extent of disease before diagnosis was not recorded in our patients, yet this may influence outcomes. Study hospitals included a national referral hospital where patients with a higher severity or co-morbidities may have been included.

We also acknowledge that interpretation of the strength of our findings should be considered in the context of multiple statistical comparisons, and that the potential for type-1 errors exists. The differences that we reported were generally small-to-moderate in magnitude, and caution should be taken in ascribing too much importance to any single finding.
Abbreviations

TB Tuberculosis

OR Odds Ratio

ART Antiretroviral Therapy

HIV Human Immunodeficiency Virus

NTLP National TB and Leprosy control Program

WHO World Health Organization

CI Confidence Interval

DOT Directly Observed Therapy

Declarations

Ethics approval and consent to participate:

Ethics approval was obtained from the Makerere University College of Health sciences research ethics review board. As secondary data were used, the need for informed patient consent was waived.

Consent for publication

Not applicable

Availability of data and material

The data collected and used for the study is available and there is no objection from Uganda Ministry of Health to share this data

Competing interests

Authors declare no competing interest

Funding

Not applicable
Authors' contributions

(EA, MPS, AB, FM, IK & HT are initials e.g. Hannock Tweya -> HT)

EA conceived the study; EA designed the study protocol; EA, MPS, AB, FM and HT implemented the study. EA and HT carried out analysis and interpretation of these data. EA and HT drafted the manuscript; MPS, AB, FM & IK critically revised the manuscript for intellectual content. All authors read and approved the final manuscript. EA and HT are guarantors of the paper.

Acknowledgements

We are grateful to the patients, the clinic personnel and the data personnel of Kampala Capital City Authority for their vital contribution to this study.

References

1. Abhijit Mukherjee, et al Gender differences in notification rates, clinical forms and treatment outcome of tuberculosis patients under the RNTCP, 2012.

2. Chakraborty AK. Epidemiology of tuberculosis: Current status in India. Indian J Med Res 2004; 120:248-76.

3. Chandrashekhar T Sreeramareddy, et al Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Yang (2014) Barriers and Delays in Tuberculosis Diagnosis and Treatment Services: Does Gender Matter?

4. De Albuquerque MdeF, Ximenes RA, Lucena-Silva N et al. (2007) Factors associated with treatment failure, dropout, and death in a cohort of tuberculosis patients in Recife, Pernambuco State, Brazil. Cadernos de Sau´ de Pu´ blica 23, 1573-1582.

5. Dereje, H., Woldaregay, E. A., Mulugeta B. Childhood tuberculosis and its treatment outcomes in Addis Ababa: 5 -year’s retrospective study. BMC
6. Dodd, P. J., Yuen, C. M., Sismanidis, C., Seddon, J. A., & Jenkins HE. The global burden of tuberculosis mortality in children: a mathematical modelling study. Lancet Glob Heal. 2017; e898-906.

7. Dodor EA & Afenyadu GY (2005) Factors associated with tuberculosis treatment default and completion at the Effia-Nkwanta Regional Hospital in Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 827-832.

8. Enane, L. A., Lowenthal, E. D., Arscott-Mills, T., Mathare, M., Smallcomb, L. S., Kgwaadira, B., Steenhoff AP. Loss to follow-up among adolescents with tuberculosis in Gabarone, Botswana. Int J Tuberc Lung Dis. 2016; 1320–5.

9. Engelbrecht, M. C., Kigozi, N. G., Chikobvu, P., Botha S. Unsuccessful TB treatment outcomes with a focus on HIV co-infected cases: a cross-sectional retrospective record review in a high-burdened province of South Africa. BMC Heal Serv Res. 2017;

10. Forssbohm M, ZwahlenM, Loddenkempe R, Rieder HL. Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. Eur Respir J 2008;31:99-105

11. Gender differences in notification rates, clinical forms and treatment outcome of tuberculosis patients under the RNTCP.

12. Gender differences in tuberculosis diagnosis, treatment and outcomes in Victoria, Australia, 2002-2015.

13. Hamid Salim MA, Declercq E, Van Deun A, Saki KA. Gender differences in tuberculosis: a prevalence survey done in bangladesh. Int JTuberc Lung Dis 2004.
14. Holtz TH, Lancaster J, Laserson KF et al. (2006) Risk factors associated with default from multidrug-resistant tuberculosis treatment, South Africa, 1999-2001. The International Journal of Tuberculosis and Lung Disease 10, 649-655.

15. Jimenez-Corona ME, Garcia-Garcia L, DeRiemer K, Ferreyra-Reyes L, Bobadilla-del-Valle M, Cano-Arellano B, et al. Gender differentials of pulmonary tuberculosis transmission and reactivation in an endemic area. Thorax. 2006

16. Kamel MI, Rashed S, Foda N, Mohie A, Loutfy M. Gender differences in health care utilization and outcome of respiratory tuberculosis in Alexandria. East Mediterr Health J 2003.

17. Kiwanuka JP. Tuberculosis in children at Mbarara University Teaching Hospital Uganda: diagnosis and outcome of treatment. Afr Heal Sci, 2002; 82-8.

18. Nabukeera- Barungi, N., Wilmshurst, J., Rudzani, M., & Nuttall J. Presentation and outcome of tuberculous meningitis among children: experiences from a tertiary children’s hospital. Afr Heal Sci. 2014.

19. National Tuberculosis and Leprosy Program. Annual report 2016/2017. 2017.

20. National Tuberculosis and Leprosy Program. The Uganda national population based Tuberculosis prevalence survey. 2016.

21. Ncube, R. T., Takarinda, K. C., Zishiri, C., Van den Boogaard, W., Miilo, N., Chiteve, C., Sandy C. Age-stratified tuberculosis treatment outcomes in Zimbabwe: are we paying attention to the most vulnerable? Public Heal Action.

22. TisseraW(2003) Non compliance with anti tuberculosis treatment at Colombo Chest Clinic. NTI Bulletin 39, 5-9.

23. Vijay S, Balasangameswara VH, Jagannatha PS, Saroja VN & Kumar P (2003) Defaults among TB patients treated under DOTS in Bangalore city: a search for solutions. Indian Journal of Tuberculosis 50, 185-195.
24. World Health Organization. Definitions and reporting framework for tuberculosis - 2013 revision. 2014.

25. World Health Organization. Gender and tuberculosis control: Towards a strategy for research and action. WHO/CDS/TB/2000.280

26. World Health Organization. Global Tuberculosis report. 2017;

27. World Health Organization. The END TB Strategy. 2014.

Tables

Table 1: Characteristics of TB patients treated from Kampala 2014 - 2016 (n = 17,461)

Variables	Sex													
	Total	Male	Total	Male	Total	Male								
	Number	Percent	Number	Percent	Number	Percent								
Age category (Years)														
0 - 4	497	2.8	270	2.5										
5 - 14	525	3.0	265	2.4										
15 - 24	3,538	20.3	1,890	17.4	1,648	18.7								
25 - 34	6,125	35.1	3,766	34.6	2,359	26.2								
35 - 44	3,991	22.9	2,771	25.5	1,220	14.9								
45 - 54	1,880	10.8	1,312	12.1										
55 - 64	586	3.4	405	3.7										
65 +	319	1.8	198	1.8										
Health division														
Mulago national referral Hospital	6832	39.1	4130	38.0										
Kawempe division	1951	11.2	1164	10.7										
Rubaga division	2277	13.0	1405	12.9										
Makindye division	2162	12.4	1339	12.3										
Nakawa division	1572	9.0	1069	9.8										
Central division	2667	15.3	1770	16.3										
Health Facility Ownership														
Government	11297	64.7	7142	65.7										
Health Facility Level of Care	Private Not For Profit	Private For Profit	National Referral Hospital	Regional Referral Hospital	General Hospital	Health Centre IV	Health Centre III	Health Centre II	Clinic	Health Centre II	Community Based DOT	Facility Based DOT	Not Recorded	Treatment outcomes
---	------------------------	--------------------	-----------------------------	---------------------------	------------------	------------------	------------------	------------------	--------	------------------	---------------------	---------------------	--------------	---------------------
	4829	1335	7053	754	3177	1660	4323	242	252	242	12448	411	4602	Cured
	27.7	7.6	40.4	4.3	18.2	9.5	24.8	1.4	1.4	2.4	71.3	2.4	26.4	45.1
	2933	802	4278	497	1999	1134	2673	138	158	309	7657	309	2911	4947
	27.0	7.4	39.3	4.6	18.4	10.4	24.6	1.3	1.5	2.8	70.4	2.8	26.8	45.5
Health Centre Level	1	1	2		1	4	1							
Type of Tuberculosis														
Pulmonary Bacteriologically Confirmed	10418													
	59.7													
Pulmonary Clinically diagnosed	4053													
	23.2													
Extra-Pulmonary	2990													
	17.1													
Type of TB patient														
New on TB treatment	16154													
	92.5													
Return after relapse	885													
	5.1													
Return after lost to follow up	314													
	1.8													
Return after Failure	107													
	0.6													
Treatment History Unknown	1													
	0.0													
HIV Status														
Positive	8540													
	48.9													
Negative	8921													
	51.1													
ART given														
Yes	7919													
	92.7													
No	621													
	7.3													
DOT status														
Facility Based DOT	411													
	2.4													
Community Based DOT	12448													
	71.3													
Not Recorded	4602													
	26.4													
Treatment outcomes														
Cured	7879													
	45.1													
Treatment Completed	6611													
	37.9													
Died	1867													
	10.7													
Failure	166													
	1.0													
Table 2: A logistic regression of Treatment completion and patients factors by gender among TB patients, Kampala 2014 - 2016 (n = 17,461)

Age category (Ref = 0 - 4 Years)	Male gender	Female gender	Male gender	Female gender				
	Univariate	Multivariate	Univariate	Multivariate				
	OR (95% CI)	P-value	OR (95% CI)	P-value				
5 - 14 Years	1.96 (1.23 - 3.13)	0.004	2.02 (1.26 - 3.24)	0.003	1.40 (0.83 - 2.36)	0.211	1.33 (0.78 - 2.28)	0.297
15 - 24 Years	2.34 (1.69 - 3.23)	<0.001	1.91 (1.34 - 2.71)	<0.001	1.27 (0.86 - 1.87)	0.75	1.34 (0.75 - 2.47)	0.545
25 - 34 Years	1.41 (1.04 - 1.90)	0.026	1.39 (1.00 - 1.94)	0.047	0.93 (0.63 - 1.35)	0.689	1.15 (0.76 - 1.73)	0.514
35 - 44 Years	1.23 (0.91 - 1.67)	0.181	1.32 (0.95 - 1.84)	0.102	0.78 (0.53 - 1.15)	0.210	1.07 (0.70 - 1.63)	0.758
45 - 54 Years	0.95 (0.70 - 1.31)	0.778	1.03 (0.73 - 1.46)	0.845	0.65 (0.43 - 0.97)	0.037	0.83 (0.53 - 1.29)	0.401
55 - 64 Years	1.05 (0.72 - 1.53)	0.004	1.06 (0.71 - 1.58)	0.758	0.49 (0.30 - 0.80)	0.004	0.56 (0.33 - 0.94)	0.029
65 + Years	0.76 (0.50 - 1.17)	0.219	0.69 (0.44 - 1.08)	0.107	0.37 (0.22 - 0.62)	<0.001	0.33 (0.19 - 0.58)	<0.001
Disease classification (Pulmonary Bacteriologically Confirmed)								
Pulmonary	0.61 (0.55 - 0.67)	<0.001	0.67 (0.59 - 0.76)	<0.001	0.60 (0.52 - 0.71)	<0.001	0.67 (0.56 - 0.79)	<0.001
Clinically diagnosed	0.90 (0.86 - 1.00)	<0.001	0.86 (0.83 - 0.93)	<0.001	0.86 (0.79 - 0.94)	<0.001	0.90 (0.82 - 0.99)	<0.001
Extra-pulmonary	0.54 (0.47 - 0.69)	<0.001	0.60 (0.53 - 0.69)	<0.001	0.46 (0.39 - 0.54)	<0.001	0.58 (0.49 - 0.69)	<0.001
Patient type (Previously treated)								
New patient	1.65 (1.29 - 2.13)	<0.001	1.58 (1.34 - 1.86)	<0.001	1.65 (1.29 - 2.13)	<0.001	1.65 (1.27 - 2.14)	<0.001
HIV status (HIV Positive)								
HIV Negative	1.86 (1.68 - 2.06)	<0.001	1.70 (1.52 - 1.90)	<0.001	2.61 (2.26 - 3.01)	<0.001	2.58 (2.20 - 3.02)	<0.001
Health Facility Level of Care (National referral Hospital)								
Regional	1.22 (0.96 - 1.57)	0.107	1.15 (0.88 - 1.50)	0.314	1.65 (1.14 - 2.39)	0.007	1.38 (0.93 - 2.06)	0.108
Referral Hospital	1.66 (1.43 - 2.07)	<0.001	1.71 (1.46 - 2.00)	<0.001	1.95 (1.60 - 2.40)	<0.001	1.89 (1.53 - 2.38)	<0.001
Health Centre	1.93	<0.001	2.00	0.015	2.38	<0.001	2.32	<0.001
IV	(1.19 - 1.70)	(1.04 - 1.51)	(1.50 - 2.64)	(1.35 - 2.42)				
Health Centre	1.22	0.002	1.32	<0.001	1.34	<0.001	1.52	<0.001
III	(1.08 - 1.39)	(1.15 - 1.50)	(1.14 - 1.57)	(1.28 - 1.80)				
Health Centre	1.18	0.461	1.02	0.925	1.33	0.284	1.38	0.248
II	(0.76 - 1.85)	(0.65 - 1.61)	(0.79 - 2.26)	(0.80 - 2.38)				
Clinic	1.46	0.097	1.33	0.216	2.19	0.020	2.04	0.039
(0.93 - 2.29)	(0.84 - 2.11)	(1.13 - 4.25)	(1.04 - 4.01)					
Health Facility ownership (Government)								
Private not for profit	1.16	0.013	1.28	0.001				
	(1.03 - 1.30)	(1.10 - 1.48)						
Private for profit	1.50	<0.001	1.61	0.001				
	(1.21 - 1.86)	(1.22 - 2.11)						
Directly Observed Therapy (Facility DOT)								
Community Based DOT	0.90	0.542	1.26	0.364				
	(0.65 - 1.25)	(0.76 - 2.09)						

Annex 1: Operational Definition

According to the standard definitions adopted from WHO, the following clinical case and treatment outcome operational terms will be used:

Pulmonary Bacteriologically Confirmed TB patient (P-BC)

A patient with Genexpert sputum test results MTB detected or at least one sputum specimen which with positive for acid fast bacilli (AFB) by microscopy.

Pulmonary Clinically Diagnosed TB patient (P-CD)

A patient who does not fulfil the criteria for bacteriological confirmation but has been diagnosed with active TB by a clinician or other medical practitioner who has decided to give the patient a full course of TB treatment. This includes cases diagnosed on the basis of X-ray abnormalities or suggestive histology and Extra Pulmonary cases without laboratory confirmation.

Extra Pulmonary TB patient (EPTB)

This is a patient with TB in the organs other than the lungs, such as lymph nodes, abdomen, genitourinary tract, skin, joints and bones, the meninges and others.
According to WHO, treatment outcomes were categorized into, successful treatment completion is if TB patient cured (negative smear microscopy at the end of treatment and on at least one previous follow-up test) or completed treatment with resolution of symptoms. Unsuccessful treatment completion on the other hand is if treatment resulted in treatment failure (remaining smear-positive after 5 months of treatment), getting lost to follow up (patients who interrupted their treatment for two consecutive months or more after registration), or died.

Aim of the study

To explore factors associated with treatment completion among TB patients initiated on first line TB therapy between 2014 and 2016 in Kampala city (Uganda). The study will inform national policy and provide targeted gender based interventions aimed at reducing disproportionate TB burden in the country.

Specific Objectives

1. To calculate proportions of TB patients who successfully completed treatment by gender of TB patients initiated on first-line TB therapy during 2014-2016 in 63 health facilities in Kampala.

2. To assess gender related factors affecting TB treatment completion of patients initiated on first line TB therapy during 2014-2016 in 63 health facilities in Kampala.

Results

Between 2014 and 2016, 18,855 TB patients were registered for treatment in the 63 health
facilities in Kampala. A total of 1394 patients were excluded from the study; because 1,111 (6%) started treatment at facilities outside Kampala and 283 (2%) had no treatment outcomes. The remaining 17,461 were included in the study for analysis. Of these, 10,877 (62%) were males. The median age at treatment registration was 30 years (interquartile range (IQR) 24 - 40) with 35% of the patients aged 35 years and above.

While patients were proportionately distributed by level of care and gender, about 65% of the patients were treated from government owned health facilities. While the rest of patients were distributed in the facilities located in the 5 administrative divisions of Kampala, 39.1% were treated from Mulago which is the national referral hospital for the country.

Table 1 shows distribution of baseline characteristics by gender. Males were more likely to be 35 years or older, received DOT at facility yet females were more likely to be new patients. In addition, males were more likely to be pulmonary bacteriologically confirmed than females (OR 1.08 95% CI 1.00 - 1.17).

All patients were tested for HIV, 48.9% of them were found to be TB/HIV co-infected and 92.7% of those co-infected were initiated on ART at the beginning of TB treatment. However males were less likely to be diagnosed HIV positive and being new TB patients at diagnosis than females (HIV positive: OR 0.70 95% CI 0.65 - 0.74; New TB patients: OR 0.58 95% CI 0.49-0.68).

Successful treatment completion and ART uptake were similar by gender. Of all outcomes, 83% were treatment successfully, 11% died, 1% treatment failed treatment and 5% got lost to follow-up. Compared to females, males were more likely to be lost from TB care and die compared to females (p<0.001).

A logistic regression model (see table 2) showed that clinically and extra-pulmonary diagnosed patients were likely to successfully complete treatment compared to bacteriologically confirmed patients for both males and females. Across both gender, new patients were more
likely to successfully complete treatment compared to their previously treated patients. Also between both males and females, having negative HIV status was significantly associated with successful treatment completion compared to having positive HIV status.

On the other hand, young age among males was found to be significantly associated successful treatment completion compared to female counterparts. Compared to males aged between 0 – 14 years old, age categories between 5 – 14 years (Adj. OR 2.02 95% CI 1.26 – 3.24), 15 – 24 years (Adj. OR 1.91 95% CI 1.34 – 2.71) and 25 – 34 years (Adj. OR 1.39 95% CI 1.00 – 1.94) supported above finding.

Patients treated from general hospitals, health centres IVs and IIIIs were significantly more likely to successfully complete treatment across gender compared to their counterparts treated from the 2 national referral hospitals. Furthermore, female patients treated from private clinics had a higher odds (Adj. OR 2.04 95% CI 1.04 – 4.01) of compared to their counterparts at the national referral hospitals.

Discussion

Among TB patients in Kampala from 2014 to 2016, we found evidence that successful treatment completion is not influenced by gender. Although impact of gender on treatment outcomes of TB patients has been evaluated in previous studies, has revealed inconsistent results. This finding is consistent with studies carried out in Brazil and Egypt (Kamel MI, et al 2003).

However in those with unfavorable treatment outcomes, more males got lost to follow up compared to females. The similarities observed in our setting were consistent with the international literature (J. -Y Yeng et al, 2012, K. Dale et al, 2015). Overall, these observations are consistent with the hypothesis that under normal circumstances, males and females have the same chance of successfully completing TB treatment in Kampala.
We found that while more females were TB/HIV co-infected and new on TB treatment, males were more likely to be pulmonary bacteriologically confirmed compared to counterparts. These findings are consistent with other studies carried out in cities and urban settings like Kampala (Abhijit Mukherjee, et al 2012). Strengthening health provider-initiated TB screening capacity using the NTLP recommended job aid may provide opportunity for early TB case finding and prompt treatment initiation.

On the other hand, socioeconomic barriers may also exist and hinder healthcare-seeking behavior in women. Therefore under-diagnosis of TB in women is a pivotal issue in TB management and should be carefully evaluated in Uganda and other under developed countries. Regarding clinical presentations, females were found to be less symptomatic as compared with male patients just like in the Uganda prevalence survey report. Also a national tuberculosis survey in Bangladesh described a lower awareness of symptoms among female TB patients (Hamid Salim MA, 2004). The absence of respiratory and constitutional symptoms may lead to a delay in seeking medical assistance. Less advanced radiographic findings also make it less likely that health workers will suspect pulmonary TB. Although details about delays in diagnosis were not collected in the present study, all of these factors may contribute to a delayed or low diagnosis of bacteriologically confirmed TB in women as suggested by this study.

Mortality in TB patients is mainly affected by age, disease classification, ART uptake and health facility level of care. This means that younger, clinically diagnosed or extra-pulmonary who are treated from lower levels of care are prone to death. Providing ART to TB/HIV co-infected immediately during TB treatment reduces the risk of dying or getting lost to follow up. These findings disclose the differences between male and female TB patients with regards to clinical characteristics and possible impact on treatment outcomes. We did not divide deaths as being TB related or non-TB related due to the difficulties in evaluating the impact of
TB on mortality. All-cause mortality is more objective and applicable in clinical practice.

Conclusions

Furthermore, the study was performed in an underdeveloped country with a high HIV prevalence, and ART initiation may have not been prompt and routine among all TB/HIV co-infected patients. This may limit the ability of our findings to be applied to high to middle-income countries or low HIV endemic areas.

Since getting lost to follow up during TB treatment was influenced by male gender and patient type, instituting gender-specific strategies in TB management like getting family or community support for male patients could reduce unfavourable treatment outcomes. Integration of TB and HIV services especially for counselling may also allow for efficient delivery of important information to patients. Further studies focusing on immunological characteristics are also warranted to elucidate gender related factors other than socio-cultural and clinical factors.

There are several limitations to this study. The duration of presenting symptoms or extent of disease before diagnosis was not recorded in our patients, yet this may influence outcomes. Study hospitals included a national referral hospital where patients with a higher severity or co-morbidities may have been included.

We also acknowledge that interpretation of the strength of our findings should be considered in the context of multiple statistical comparisons, and that the potential for type-1 errors exists. The differences that we reported were generally small-to-moderate in magnitude, and caution should be taken in ascribing too much importance to any single finding.

Abbreviations

TB Tuberculosis

OR Odds Ratio
Declarations

Ethics approval and consent to participate:

Ethics approval was obtained from the Makerere University College of Health sciences research ethics review board. As secondary data were used, the need for informed patient consent was waived.

Consent for publication

Not applicable

Availability of data and material

The data collected and used for the study is available and there is no objection from Uganda Ministry of Health to share this data

Competing interests

Authors declare no competing interest

Funding

Not applicable

Authors' contributions

(EA, MPS, AB, FM, IK & HT are initials e.g. Hannock Tweya -> HT)

EA conceived the study; EA designed the study protocol; EA, MPS, AB, FM and HT implemented the study. EA and HT carried out analysis and interpretation of these data. EA and HT drafted
the manuscript; MPS, AB, FM & IK critically revised the manuscript for intellectual content. All authors read and approved the final manuscript. EA and HT are guarantors of the paper.

Acknowledgements

We are grateful to the patients, the clinic personnel and the data personnel of Kampala Capital City Authority for their vital contribution to this study.

References

1. Abhijit Mukherjee, et al Gender differences in notification rates, clinical forms and treatment outcome of tuberculosis patients under the RNTCP, 2012.

2. Chakraborty AK. Epidemiology of tuberculosis: Current status in India. Indian J Med Res 2004; 120:248-76.

3. Chandrashekhar T Sreeramareddy, et al Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Yang (2014) Barriers and Delays in Tuberculosis Diagnosis and Treatment Services: Does Gender Matter?

4. De Albuquerque MdeF, Ximenes RA, Lucena-Silva N et al. (2007) Factors associated with treatment failure, dropout, and death in a cohort of tuberculosis patients in Recife, Pernambuco State, Brazil. Cadernos de Saúde Pública 23, 1573-1582.

5. Dereje, H., Woldaregay, E. A., Mulugeta B. Childhood tuberculosis and its treatment outcomes in Addis Ababa: 5-year’s retrospective study. BMC Pediatr. 2014; 14(61).

6. Dodd, P. J., Yuen, C. M., Sismanidis, C., Seddon, J. A., & Jenkins HE. The global burden of tuberculosis mortality in children: a mathematical modelling study. Lancet Glob Heal. 2017; e898-906.

7. Dodor EA & Afenyadu GY (2005) Factors associated with tuberculosis treatment default and completion at the Effia-Nkwanta Regional Hospital in Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 827-832.
8. Enane, L. A., Lowenthal, E. D., Arscott-Mills, T., Mathare, M., Smallcomb, L. S., Kgwaadira, B., Steenhoff AP. Loss to follow-up among adolescents with tuberculosis in Gabarone, Botswana. Int J Tuberc Lung Dis. 2016; 1320–5.

9. Engelbrecht, M. C., Kigozi, N. G., Chikobvu, P., Botha S. Unsuccessful TB treatment outcomes with a focus on HIV co-infected cases: a cross-sectional retrospective record review in a high-burdened province of South Africa. BMC Heal Serv Res. 2017;

10. Forssbohm M, Zwahlen M, Loddenkempe R, Rieder HL. Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. Eur Respir J 2008;31:99-105

11. Gender differences in notification rates, clinical forms and treatment outcome of tuberculosis patients under the RNTCP.

12. Gender differences in tuberculosis diagnosis, treatment and outcomes in Victoria, Australia, 2002-2015.

13. Hamid Salim MA, Declercq E, Van Deun A, Saki KA. Gender differences in tuberculosis: a prevalence survey done in bangladesh. Int J Tuberc Lung Dis 2004.

14. Holtz TH, Lancaster J, Laserson KF et al. (2006) Risk factors associated with default from multidrug-resistant tuberculosis treatment, South Africa, 1999–2001. The International Journal of Tuberculosis and Lung Disease 10, 649–655.

15. Jimenez-Corona ME, Garcia-Garcia L, DeRiemer K, Ferreyra-Reyes L, Bobadilla-del-Valle M, Cano-Arellano B, et al. Gender differentials of pulmonary tuberculosis transmission and reactivation in an endemic area. Thorax. 2006

16. Kamel MI, Rashed S, Foda N, Mohie A, Loutfy M. Gender differences in health care utilization and outcome of respiratory tuberculosis in Alexandria. East Mediterr Health J 2003.

17. Kiwanuka JP. Tuberculosis in children at Mbarara University Teaching Hospital Uganda: diagnosis and outcome of treatment. Afr Heal Sci, 2002; 82–8.
18. Nabukeera- Barungi, N., Wilmshurst, J., Rudzani, M., & Nuttall J. Presentation and outcome of tuberculous meningitis among children: experiences from a tertiary children’s hospital. Afr Heal Sci. 2014.

19. National Tuberculosis and Leprosy Program. Annual report 2016/2017. 2017.

20. National Tuberculosis and Leprosy Program. The Uganda national population based Tuberculosis prevalence survey. 2016.

21. Ncube, R. T., Takarinda, K. C., Zishiri, C., Van den Boogaard, W., Mlilo, N., Chiteve, C., Sandy C. Age-stratified tuberculosis treatment outcomes in Zimbabwe: are we paying attention to the most vulnerable? Public Heal Action.

22. Tissera W(2003) Non compliance with anti tuberculosis treatment at Colombo Chest Clinic. NTI Bulletin 39, 5–9.

23. Vijay S, Balasangameswara VH, Jagannatha PS, Saroja VN & Kumar P (2003) Defaults among TB patients treated under DOTS in Bangalore city: a search for solutions. Indian Journal of Tuberculosis 50, 185–195.

24. World Health Organization. Definitions and reporting framework for tuberculosis – 2013 revision. 2014.

25. World Health Organization. Gender and tuberculosis control: Towards a strategy for research and action. WHO/CDS/TB/2000.280

26. World Health Organization. Global Tuberculosis report. 2017;

27. World Health Organization. The END TB Strategy. 2014.

Tables

Table 1: Characteristics of TB patients treated from Kampala 2014 - 2016 (n = 17,461)

Variables	Sex					
		Total	Male	Female		
		Number	Percent	Number	Percent	Number

28
Age category (Years)	0 - 4							
	497	2.8	270	2.5	227			
	525	3.0	265	2.4	260			
	3,538	20.3	1,890	17.4	1,648			
	6,125	35.1	3,766	34.6	2,359			
	3,991	22.9	2,771	25.5	1,220			
	1,880	10.8	1,312	12.1	568			
	586	3.4	405	3.7	181			
	319	1.8	198	1.8	121			
Health division								
Mulago national referral Hospital	6832	39.1	4130	38.0	2702			
Kawempe division	1951	11.2	1164	10.7	787			
Rubaga division	2277	13.0	1405	12.9	872			
Makindye division	2162	12.4	1339	12.3	823			
Nakawa division	1572	9.0	1069	9.8	503			
Central division	2667	15.3	1770	16.3	897			
Health Facility Ownership								
Government	11297	64.7	7142	65.7	4155			
Private Not For Profit	4829	27.7	2933	27.0	1896			
Private For Profit	1335	7.6	802	7.4	533			
Health Facility Level of Care								
National Referral Hospital	7053	40.4	4278	39.3	2775			
Regional Referral Hospital	754	4.3	497	4.6	257			
General Hospital	3177	18.2	1999	18.4	1178			
Health Centre IV	1660	9.5	1134	10.4	526			
Health Centre III	4323	24.8	2673	24.6	1650			
Health Centre II	242	1.4	138	1.3	104			
Clinic	252	1.4	158	1.5	94			
Type of Tuberculosis								
Pulmonary Bacteriologically Confirmed	10418	59.7	6625	60.9	3793			
Pulmonary Clinically diagnosed	4053	23.2	2520	23.2	1533			
Extra-Pulmonary	2990	17.1	1732	15.9	1258			
Type of TB patient								
New on TB treatment	16154	92.5	9926	91.3	6228			
Return after relapse	885	5.1	633	5.8	252			
	Male gender	Female gender						
------------------------------------	-------------	---------------						
	Univariate	Multivariate	Univariate	Multivariate				
	OR (95% CI)	P-value	Adjusted OR (95% CI)	P-value	OR (95% CI)	P-value	Adjusted OR (95% CI)	P-value
Age category (Ref = 0 - 4 Years)								
5 - 14 Years	1.96	0.004	2.02	0.003	1.40	0.211	1.33	0.29
	(1.23 - 3.13)		(1.26 - 3.24)		(0.83 - 2.36)		(0.78 - 2.28)	
15 - 24 Years	2.34 (1.69 - 3.23)	<0.001	1.91 (1.34 - 2.71)	<0.001	1.27 (0.86 - 1.87)	0.230	1.34 (0.75 - 1.74)	0.54
25 - 34 Years	1.41 (1.04 - 1.90)	0.026	1.39 (1.00 - 1.94)	0.047	0.93 (0.63 - 1.35)	0.689	1.15 (0.76 - 1.73)	0.51

Table 2: A logistic regression of Treatment completion and patients factors by gender among TB patients, Kampala 2014 – 2016 (n = 17,461)
Disease classification (Pulmonary Bacteriologically Confirmed)

Age Group	Pulmonary	Clinically diagnosed	Extra-Pulmonary	\(p \) Value
35 - 44 Years	0.61	<0.001	0.54	<0.001
(0.55 - 0.69)	(0.55 - 0.76)		(0.47 - 0.62)	
45 - 54 Years	0.60	<0.001	0.46	<0.001
(0.52 - 0.71)	(0.52 - 0.71)		(0.39 - 0.54)	
55 - 64 Years	0.60	<0.001	0.46	<0.001
(0.52 - 0.71)	(0.52 - 0.71)		(0.39 - 0.54)	
65+ Years	0.67	<0.001	0.58	<0.001
(0.67 - 0.76)	(0.67 - 0.76)		(0.49 - 0.69)	

Patient type (Previously treated)

Type	\(OR \)	\(p \) Value
New patient	1.65 (1.29 - 2.13)	<0.001
HIV Negative	1.86 (1.68 - 2.06)	<0.001
HIV Positive	1.65 (1.29 - 2.13)	<0.001

Health Facility Level of Care (National referral Hospital)

Facility Level of Care	\(OR \)	\(p \) Value
Regional Referral Hospital	1.22 (0.96 - 1.57)	0.007
General Hospital	1.66 (1.43 - 1.93)	<0.001
Health Centre IV	1.42 (1.19 - 1.70)	<0.001
Health Centre III	1.22 (1.08 - 1.39)	<0.001
Health Centre II	1.18 (0.76 - 1.85)	0.284
Clinic	1.46 (0.93 - 2.29)	0.020

Health Facility ownership (Government)

Ownership	\(OR \)	\(p \) Value
Private not for profit	1.16 (1.03 - 1.30)	1.28
Private for profit	1.50 (1.21 - 1.86)	1.61

Directly Observed Therapy (Facility DOT)

Community Based DOT	\(OR \)	\(p \) Value
	0.90 (0.65 - 1.25)	1.26

Annex 1: Operational Definition

According to the standard definitions adopted from WHO, the following clinical case and
treatment outcome operational terms will be used:

Pulmonary Bacteriologically Confirmed TB patient (P-BC)

A patient with Genexpert sputum test results MTB detected or at least one sputum specimen which with positive for acid fast bacilli (AFB) by microscopy.

Pulmonary Clinically Diagnosed TB patient (P-CD)

A patient who does not fulfil the criteria for bacteriological confirmation but has been diagnosed with active TB by a clinician or other medical practitioner who has decided to give the patient a full course of TB treatment. This includes cases diagnosed on the basis of X-ray abnormalities or suggestive histology and Extra Pulmonary cases without laboratory confirmation.

Extra Pulmonary TB patient (EPTB)

This is a patient with TB in the organs other than the lungs, such as lymph nodes, abdomen, genitourinary tract, skin, joints and bones, the meninges and others.

According to WHO, treatment outcomes were categorized into, successful treatment completion is if TB patient cured (negative smear microscopy at the end of treatment and on at least one previous follow-up test) or completed treatment with resolution of symptoms. Unsuccessful treatment completion on the other hand is if treatment resulted in treatment failure (remaining smear-positive after 5 months of treatment), getting lost to follow up (patients who interrupted their treatment for two consecutive months or more after registration), or died.