Hepatic miR-192-3p reactivation alleviates steatosis by targeting glucocorticoid receptor

Authors
Zhangting Wang, Kai-Kei Miu, Xueyan Zhang, Angel Tsz-Yau Wan, Gang Lu, Hoi-Hung Cheung, Heung-Man Lee, Alice Pik-Shan Kong, Juliana Chung-Ngor Chan, Wai-Yee Chan

Correspondence
chanwy@cuhk.edu.hk (W.-Y. Chan).

Graphical abstract

Highlights

- Liver-specific knockdown of miR-192-3p recapitulated functional loss of the miRNA as in mice with diabetes.
- This knockdown was characterised by pronounced hepatic micro-vesicular steatosis coupled to insulin resistance.
- In vivo overexpression of miR-192-3p alleviated hepatic steatosis in mice with diabetes and wild-type mice with excessive fructose consumption.
- Glucocorticoid receptor (also known as NR3C1) was discovered as the immediate target of miR-192-3p in regulating hepatic lipid turnover and storage.

Lay summary

The potential regulatory activity of star strand micro-RNA (miRNA) species has been substantially underestimated. In this study, we investigate the role and mechanism of an overlooked star strand miRNA (miR-192-3p) in regulating hepatic steatosis and insulin signalling in the livers of mice with diabetes and mice under excessive carbohydrate consumption.

https://doi.org/10.1016/j.jhepr.2020.100179
Hepatic miR-192-3p reactivation alleviates steatosis by targeting glucocorticoid receptor

Zhangting Wang,1,7 Kai-Kei Miu,1,3 Xueyan Zhang,1,2 Angel Tsz-Yau Wan,1 Gang Lu,1 Hoi-Hung Cheung,1 Heung-Man Lee,3 Alice Pik-Shan Kong,3,4,5 Juliana Chung-Ngor Chan,3,4,5 Wai-Yee Chan1,6,*

1School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; 2Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Zhejiang, China; 3Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; 4Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; 5Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; 6CUHK_GDL Advanced Institute for Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China

JHEP Reports 2020. https://doi.org/10.1016/j.jhepr.2020.100179

Background & Aims: The paradox of hepatic insulin resistance describes the inability for liver to respond to bioenergetics hormones in suppressing gluconeogenesis whilst maintaining lipid synthesis. Here, we report the deficiency of miR-192-3p in the livers of mice with diabetes and its role in alleviating hepatic steatosis.

Methods: As conventional pre-microRNA (miRNA) stem-loop overexpression only boosts guiding strand (i.e. miR-192-5p) expression, we adopted an artificial AAV(DJ)-directed, RNA Pol III promoter-driven miRNA hairpin construct for strand-specific overexpression in the liver. Liver steatosis and insulin resistance markers were evaluated in primary hepatocytes, mice with diabetes, and mice with excessive carbohydrate consumption.

Results: Functional loss of miR-192-3p in liver exacerbated hepatic micro-vesicular steatosis and insulin resistance in either mice with diabetes or wild-type mice with excessive fructose consumption. Liver-specific overexpression of miR-192-3p effectively halted hepatic steatosis and ameliorated insulin resistance in these mice models. Likewise, hepatocytes over-expressing miR-192-3p exhibited improved lipid accumulation, accompanied with decreases in lipogenesis and lipid-accumulation-related transcripts. Mechanistically, glucocorticoid receptor (GCR, also known as nuclear receptor subfamily 3, group C, member 1 [NR3C1]) was demonstrated to be negatively regulated by miR-192-3p. The effect of miR-192-3p on mitigating micro-vesicular steatosis was ablated by the reactivation of NR3C1.

Conclusions: The star strand miR-192-3p was an undermined glycerolipid regulator involved in controlling fat accumulation and insulin sensitivity in liver through blockade of hepatic GCR signalling; this miRNA may serve as a potential therapeutic option for the common co-morbidity of diabetic mellitus and fatty liver disease. © 2020 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Hepatic steatosis; Diabetes mellitus; MicroRNA; Glucocorticoid receptor; Transcription repressor; High carbohydrate consumption.

Received 11 March 2020; received in revised form 28 July 2020; accepted 18 August 2020; available online 6 September 2020

Introduction
Liver, muscle, and adipose tissues are 3 major peripheral effector tissues in response to insulin—the essential bioenergetics endocrine that governs the entry and storage of glucose in normal starved-fed cycles.1,2 Unlike the other 2 insulin-responsive tissues, liver is a central hub for nutrient homeostasis, which includes synthesising glycogen from glucose after a meal or effectively converting excessive glucose to fatty acids (FAs) as precursor for triglyceride (TAG) synthesis via de novo lipogenesis (DNL).3 Liver is therefore critical for its unique niche in energy homeostasis and the de facto effector in balancing blood glucose levels.

Liver steatosis is a sign of lipid overload in the organ either when there is an oversupply of lipid or when there is a failure in lipid breakdown, frequently associated with impaired insulin signalling.4 Lipid overload manifests in a blend of 2 major forms (i.e. macro- and micro-vesicular steatoses).5 The former relates to a benign, largely asymptomatic form of steatotic liver. In contrast, the latter is adversely associated with metabolic disorder, inflammation, and hepatic fibrosis.6 Intriguingly, there is an overt linkage between non-alcoholic fatty liver disease (NAFLD) and diabetes, in which NAFLD is prevalent in up to 70% of patients with diabetes,7 and the reported prevalence of non-alcoholic steatohepatitis in patients with type 2 diabetes mellitus (T2DM) is up to 20%.8

Even with the clear close ties, many morbidly obese individuals remain non-diabetic. In line with this clinical observation, leptin-deficient obese (ob/db) mice usually exhibited a benign hepatic steatosis, whereas leptin-receptor-defective (db/db) mice with diabetes commonly developed inflammation upon
consumption of high carbohydrates.9 It is concretely confirmed that ob/ob mice developed macro-vesicular, while that of db/db mice is predominantly micro-vesicular steatosis instead. Indeed, patients with diabetes manifest hepatic micro-vesicular steatosis with exacerbated neurovascular complications.10

MicroRNAs (miRNAs) are naturally occurring non-coding RNAs that bind to the 3’-untranslated regions (3’-UTR) of target mRNAs, leading to either their degradation or translational repression.11 Given their critical roles exemplified in metabolism control, miRNAs are frequently studied as a target for disease interventions (\textit{i.e.} human cancers11 and metabolic diseases12). Of note, some miRNAs are regulators of liver metabolism (\textit{e.g.} miR-206, which inhibits lipid and glucose production by facilitating insulin signalling13). In addition, miR-192 and miR-193b were presumed as proxy diabetes biomarkers, where their abundance was found significantly increased in glucose-intolerant mice and in people with prediabetes.14 Despite the circulating levels of miR-192 (5p, the guiding strand) were refuted both as a reliable marker for liver damage15 and diabetic nephropathy,16 its linkage to diabetic liver condition remains unclear.

In the current study, we found that mice with diabetes with apparent micro-vesicular nature exhibited a substantial loss of the star strand of miR-192 (\textit{i.e.} miR-192-3p). Overexpression (OE) of the sponge against the star strand mimicked the \textit{de facto} functional loss of miR-192-3p-aggravated liver steatosis of micro-vesicular nature in wild-type mice given excessive fructose consumption, recapitulating conditions of impaired insulin response. Alternatively, we adopted an unconventional short hairpin RNA (shRNA) stem-loop construct for the specific OE of the star strand miRNA alone. Indeed, liver-specific OE of miR-192-3p significantly alleviated hepatic steatosis and improved insulin resistance in both mice with diabetes and those given excessive carbohydrates. Finally, our study pinpointed nuclear receptor subfamily 3, group C, member 1 (NR3C1), the glucocorticoid receptor (GCR), as a direct target of miR-192-3p to alleviate liver steatosis and insulin resistance.

Materials and methods

Full details of methods can be found in the supplementary information.

Human serum sample collection

Human serum samples were obtained from the Prince of Wales Hospital, Hong Kong Special Administrative Region, China. Details of patients are listed in Table S1. Studies using human serum were approved by the joint Chinese University of Hong Kong/ New Territories East Cluster Clinical Research Ethics Committee. Informed consent was obtained from all participants.

Animal, treatment, and sample collection

All animals were supplied by the Laboratory Animal Service Centre at the Chinese University of Hong Kong. The animals were housed with controlled temperature (25 ± 1°C), a 12-h light–dark cycle, and 55 ± 5% humidity. All procedures were approved by the Animal Experimentation Ethics Committee, Chinese University of Hong Kong under the regulations of the Hong Kong Special Administrative Region government.

A mice fatty liver disease model was established by feeding male mice either with a high-fat diet (HFD; rodent diet with 45 kcal% fat; D12451; Research Diets, New Brunswick, NJ, USA) for 8–12 weeks starting at the age of 4 weeks, or high-fructose drink (HFrD; water supplemented with fructose 30%) for 8–12 weeks starting at the age of 4 weeks, whereas mice in the control group were maintained on a normal chow diet (2018SX; ENVIGO, USA). Food and water were provided \textit{ad libitum}. The mice were tail vein injected with adeno-associated virus (AAV) of DJ serotype (AAV DJ) expressing miR-192-3p sponge or miR-192-3p OE for different periods, and then serum and different tissues were collected for further analysis.

Liver-specific AAV delivery of transgenes and \textit{in vivo} imaging

To specifically deliver either miR-192-3p or its sponge into mice livers, AAV DJ carrying transgenes of either constructs was tail vein injected, and repeated injections were performed once every 3 weeks. Alternatively, shNR3C1 construct was subcloned into pSicoR-mCherry vector (Addgene, USA; #31845). Lentivirus carrying pSicoR-shNR3C1 was i.v. injected into 4-week-old mice with diabetes, followed by AAV-pgk-Cre (Addgene; #24593) 2 weeks later. These mice were then sacrificed after 2 months. Red fluorescent signal intensity was detected by the In-Vivo Xtreme Imaging System (Bruker, USA).

Statistical analysis

Statistical analysis was performed using GraphPad Prism Software8. Data derived from cell line or mouse experiments were presented as mean ± standard deviation and assessed by a 2-tailed Student’s t test or one-way analysis of variance test. A p value <0.05 was considered statistically significant.

Results

Functional loss of star strand miR-192-3p in the liver manifested as hepatic micro-vesicular steatosis

Each pre-miRNA stem loop can produce up to 2 mature miRNAs on either strand with relative expression biases in different tissues. Our previous work had demonstrated that both mature miR-192 guiding strand (miR-192-5p) and its star strand miR-192-3p (miR-192*) (Fig. 1A) were enriched as top candidate differentiation regulators along the hepatic lineage.17 Interestingly, we found that miR-192-3p rather than miR-192-5p was lost in the liver of db/db mice with diabetes when compared with heterozygous lean control (Fig. 1A). The deregulated expression of star strand miRNA instead of the guiding strand in liver pinpointed the necessity to showcase their relative expression in different organs of mice with diabetes.

It was noted that the relative expression bias between the strands (ratio of miR-192-3p/miR-192-5p) is within 2-fold. However, there was a noticeable decrease in ratio for both liver and kidney, while the ratio was increased in mesenteric visceral adipose tissues (VATs) (Fig. 1B). Such relative expression biases in liver, kidney, and VATs were in line with previous reports, which discussed the potential functions in either of these strands.15,18,19 In addition, the expression of miR-192-3p, albeit much less than its guiding counterpart, remained significantly higher in the liver than in other organs (Fig. S1A and B).

Given its described suppressive effect in lipid storage in adipose tissues, we therefore proposed that miR-192-3p loss is related to liver steatosis, a frequent co-morbidity of diabetes. To assay for the effects of functional loss in hepatic miR-192-3p, we transduced miR-192-3p sponge (a construct that overexpressed 3 times perfect complementary sponge repeats linked to enhanced green fluorescent protein) against miR-192-3p by AAV of liver targeting DJ serotype (AAV DJ) \textit{in vivo} (Fig. S1C and D). As...
As miR-192-3p was implicated in fatty tissue differentiation, loss of this miRNA may impact the role of liver as a key hub for lipid metabolism. We screened the expression of some predicted targets of miR-192-3p in the mice with diabetes, and observed a decrease in the expression of miR-192-5p. This suggests a potential role for miR-192-3p in regulating lipid homeostasis in hepatocytes.

Overexpressed miR-192-3p altered lipid homeostasis in hepatocytes

As miR-192-3p was implicated in fatty tissue differentiation, loss of this miRNA may impact the role of liver as a key hub for lipid metabolism. We screened the expression of some predicted targets of miR-192-3p in the mice with diabetes, and observed a decrease in the expression of miR-192-5p. This suggests a potential role for miR-192-3p in regulating lipid homeostasis in hepatocytes. Of note, the expression of miR-192-3p in the liver was significantly lower in diabetic mice compared to control mice, further supporting its role in liver metabolism.
remarkably higher gene expression of Scd and Vldlr, and a modest increase in Lpin1 in their liver (Fig. S2A). Concurrently, FA translocase Cld36/Scarb3 and DNL enzyme Fasn expression were also found higher (Fig. S2A).

Subsequently, hepatic normal human cell line L02 was transfected with this miR-192-3p sponge and stably selected by puromycin to delineate the underlying mechanism of the action of miR-192-3p. Two separate RNA-Seq libraries of non-targeting (NT) and miR-192-3p sponge (S) were constructed. Of the 1562 genes differentially expressed, more than 400 genes were predicted to be direct miR-192-3p targets or their redundant genes deduced from TargetScan (Fig. 2A). P13K-Akt signalling, FoxO signalling, adipocytokine signalling, and insulin-resistance-associated pathways were enriched by the Kyoto Encyclopedia of Genes and Genomes catalogue, reinstating the involvement of miR-192-3p in bioenergetics homeostasis (Fig. 2B and C). Gene set enrichment analysis further identified processes associated with lipid, FA, steroid, and monocarboxylic acid metabolism affected by miR-192-3p functional depletion (Fig. 2D and S2B). In addition, lipogenesis- and gluconeogenesis-associated genes were also significantly enriched in the analysis (Fig. 2E).

To evaluate the role of miR-192-3p in liver steatosis, we designed an artificial construct comprising shRNAs,20 with miR-192-3p sequence in the anti-sense strand and scramble manipulated sense strand. This miR-192 stem loop was then transiently transfected into HEK293T cells and lead to a significant 30-fold upregulation of miR-192-3p, without altering the expression of the guiding strand miR-192 (Fig. 2F).

Furthermore, we transfected miR-192-3p mimics into primary mouse hepatocytes and studied genes responsible for FA mobilisation. As expected, genes, such as Srebf1, Fasn, Acc, Cd36, and Ffar4, were decreased by the mimics (Fig. 2G), suggesting that miR-192-3p might have altered the mobilisation of FAs in hepatocytes.

miR-192-3p inhibited lipid accumulation in human hepatic cell line

Among the major bioenergetic pathways enriched from the panel of differentially expressed genes (DEGs) mentioned previously were mitochondrial aerobic oxidation and pyruvate metabolism, both of which are closely related to FA metabolism. Therefore, we validated the action of miR-192-3p on FA oxidation (FAO) by the Seahorse XF Cell Mito Stress Test. Stable cell clones overexpressing miR-192-3p (miR-192-3p OE) tended to consume more palmitate-bovine serum albumin (PA-BSA) as substrate for FAO when compared with an NT cell line (Fig. 3A). The increase in oxygen consumption rate in miR-192-3p OE cells suggested significantly induced oxidative metabolism, indicating the dissipation of lipids by maximising FAO (Fig. 3B and C). This inductive effect was further blocked by carnitine palmityltransferase (CPT) inhibitor etomoxir treatment (Fig. 3B and C).

In addition, miR-192-3p increased the expression of FAO genes encoding CPT1 alpha, long-chain acyl-CoA dehydrogenase, acyl-coenzyme A oxidase 1, hydroxacyl-CoA dehydrogenase-alpha, and peroxisome-proliferator-activated receptor alpha in cells treated with PA-BSA (Fig. 3D). With reports showing close ties between malfunctioned beta-oxidation to micro-vesicular steatosis,21 it suggested that miR-192-3p OE shall restore fatty liver in a relatively benign form.

We then examined the role of miR-192-3p in preventing lipid accumulation. OE of miR-192-3p alleviated oleic acid (OA)-induced lipid accumulation in L02 cells (Fig. 3E). Fluorescent staining of neutral lipids showed that lipid spot area per cell was significantly reduced in miR-192-3p OE cells incubated with OA (Fig. 3E), with an obviously reduced intracellular TAG level (Fig. 3F). In addition, overexpressing miR-192-3p also suppressed both mRNA and protein levels of lipogenesis genes, including FA synthase (FASN), CD36, stearoyl-CoA desaturase-1 (SCD1), and SREBP1 (Fig. 3G–I).

Liver-specific expression of miR-192-3p exhibited robust therapeutic effects on liver steatosis in mice

To assess the functional contribution of miR-192-3p to the hepatosteatosis and hyperglycaemia in mice, a liver-specific miR-192-3p expression set-up was generated using AAV DJ. Injection of AA-miR-192-3p into mice led to high levels of miR-192-3p in liver other than other tissues (Fig. S3A and B). Early adenoviral injection of miR-192-3p to 4-week-old mice with diabetes effectively prevented body weight gain (Fig. 4A and B) and reduced the daily food intake (Fig. S3C–E) when compared with NT control sacrificed 2 months later. Such liver-specific OE of miR-192-3p also attenuated hepatic lipid accumulation and hyperlipidaemia (Fig. 4C), which was further confirmed by the reduction of TAG level in mice treated with miR-192-3p (Fig. 4D). OGTT pattern and HOMA-IR indices were also improved by the OE of miR-192-3p (Fig. 4E and F). Consistently, miR-192-3p significantly suppressed the mRNA and protein levels of genes associated with the synthesis and uptake of FA, alongside induction in those genes responsible for FAO (Fig. 4G–I and S3F).

Delivery of miR-192-3p into HFrD-fed mice also resulted in significant body and liver weight loss (Fig. 4J and K). Consistent with the ability of miR-192-3p in turning over lipid content, H&E and Oil Red O staining showed that liver-specific OE of miR-192-3p reduced hepatic lipid accumulation compared with the NT control (Fig. 4L and M). In addition, hepatic miR-192-3p OE mitigated HFrD-induced glucose intolerance, as evidenced by the OGTT pattern and HOMA-IR index (Fig. 4N and O). The mRNA expression level of lipogenesis-related genes was also found to be downregulated by the long-term treatment of miR-192-3p (Fig. 4P).

miR-192-3p directly targeted GCR in regulating liver glycerolipid homeostasis

To identify potential target genes of miR-192-3p, which may be responsible for its action in liver, we screened the DEGs according to 3 criteria:

- genes must be conserved in the 3′-UTR along predicted domains;
- gene expression should be regulated following miR-192-3p change; and
- the selected genes are implicated in fatty liver diseases.

Fifty-four predicted target genes were enriched from the adopted prediction databases, including TargetScan, miRDB, DIANA, and TargetMiner (Fig. 5A), and then clustered with DEGs from previous RNA-Seq (Fig. 5A). Of note, NR3C1, the gene encoding GCR, is of high interest, as GCR signalling was enriched as top candidate pathways by the Ingenuity Pathway Analysis (Fig. 5A).

Luciferase report assay in HEK293T showed that miR-192-3p mimics significantly reduced luciferase activity of NR3C1 3′-UTR when compared with control mimics (Fig. 5B). The mRNA and protein levels of NR3C1 were also downregulated in human
Fig. 2. miR-192-3p altered metabolic homeostasis in hepatocytes. (A) DEGs were overlapped with predicted miR-192-3p targets collected from the TargetScan database in the Venn diagram. The scatter plots indicating relative gene expression profile between groups as indicated, with log2 (fold change) less than -0.585 and larger than 0.585. (B) Clustering images showing global sample expression profiles and relationships analysed by hierarchical clustering. (C–D) KEGG pathway enrichment analysis and GSEA of DEGs identified lipid-metabolism-associated processes. (E) Volcano plots and expression profile of lipogenesis- and gluconeogenesis-associated genes in the S and NT groups. (F) Artificial hairpin structure of miR-192-3p (miR-192-3p OE) specifically increased the expression of miR-192 in HEK293T without altering miR-192 expression. (G) The mRNA expression levels of lipid-metabolism-associated genes in mouse primary hepatocytes transfected with miR-192-3p OE. Data are represented as mean ± SD; n = 3. *p < 0.05, **p < 0.01, ***p < 0.001. Two-tailed Student’s t test. DEG, differentially expressed gene; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NT, non-targeting control; OE, overexpression; S, miR-192-3p sponge.
hepatocytes overexpressed with miR-192-3p (Fig. 5C), reinforcing that miR-192-3p is able to inhibit expression of NR3C1 by interacting with its 3′-UTR.

As the aberrant glucocorticoid signalling is tightly related to metabolic disorders, including obesity, hyperglycaemia, and insulin resistance, we tested whether NR3C1 mediates the role of miR-192-3p in regulating liver steatosis. Oil Red O and Nile Red staining of newly synthesised lipid indicated that there is a reduction of lipid accumulation and TAG level under miR-192-3p OE in L02 cells when incubated with OA, which was blocked by forced NR3C1 expression (Fig. 5Da n dE). F u r t h e r m o r e , s u c h a c t i o n b e t w e e n m i R - 1 9 2 - 3 p a n d NR3C1 contributed to the pathogenesis of hepatosteatosis.

miR-192-3p target GCR to regulate glycerolipid homeostasis in mice with diabetes

To investigate whether NR3C1 mediates the inhibitory effects of miR-192-3p on hepatic lipid accumulation, a lentiviral transgene. However, in the presence of liver-targeting Cre, there was a clear reduction of those signals specifically in the liver after Cre recombination (Fig. 6A).

The constitutive knockdown of NR3C1 before Cre activation prevented fat liver accumulation in age-matched mice with diabetes compared with NT control. These mice phenocopied N R 3 C 1 shR N A w a s r e i n t r o d u c e d t o 4 - w e e k - o l d m i c e w i t h d i a b e t e s . 2 2 L e n t i v i r a l OE of the shRNA in pSicoR was eliminated by the AAV(DJ)-pgk-Cre. In vivo imager detected substantial fluorescent signal in the liver, lung, and fat, demonstrating an accumulation of lentiviral induction in the body driving the transgene. However, in the presence of liver-targeting Cre, there was a clear reduction of those signals specifically in the liver after Cre recombination (Fig. 6A).

The constitutive knockdown of NR3C1 before Cre activation prevented fat liver accumulation in age-matched mice with diabetes compared with NT control. These mice phenocopied lentiviral OE of the shRNA in pSicoR was eliminated by the AAV(DJ)-pgk-Cre. In vivo imager detected substantial fluorescent signal in the liver, lung, and fat, demonstrating an accumulation of lentiviral induction in the body driving the transgene. However, in the presence of liver-targeting Cre, there was a clear reduction of those signals specifically in the liver after Cre recombination (Fig. 6A).

The constitutive knockdown of NR3C1 before Cre activation prevented fat liver accumulation in age-matched mice with diabetes compared with NT control. These mice phenocopied lentiviral OE of the shRNA in pSicoR was eliminated by the AAV(DJ)-pgk-Cre. In vivo imager detected substantial fluorescent signal in the liver, lung, and fat, demonstrating an accumulation of lentiviral induction in the body driving the transgene. However, in the presence of liver-targeting Cre, there was a clear reduction of those signals specifically in the liver after Cre recombination (Fig. 6A).

The constitutive knockdown of NR3C1 before Cre activation prevented fat liver accumulation in age-matched mice with diabetes compared with NT control. These mice phenocopied lentiviral OE of the shRNA in pSicoR was eliminated by the AAV(DJ)-pgk-Cre. In vivo imager detected substantial fluorescent signal in the liver, lung, and fat, demonstrating an accumulation of lentiviral induction in the body driving the transgene. However, in the presence of liver-targeting Cre, there was a clear reduction of those signals specifically in the liver after Cre recombination (Fig. 6A).
Fig. 4. Delivery of miR-192-3p into livers alleviated hepatic steatosis in mice. Mice with diabetes were injected i.v. with AAV-DJ-miR-192-3p (miR-192-3p OE) or the NT and fed on ND for 8 weeks. C57/BL6 mice were tail i.v. injected with AAV-miR-192-3p OE or NT, and given HFrD for additional 12 weeks. (A–B) Impaired liver and body weight gain of mice with diabetes with miR-192-3p OE. (C) H&E and Oil Red O staining of liver sections showed miR-192-3p OE alleviated hepatic lipid accumulation and steatosis. (D) Hepatic triglyceride levels in the indicated groups. (E–F) OGTT pattern and HOMA-IR index of mice in the indicated groups were profiled by 8 weeks. (G–I) The mRNA and protein levels of lipogenesis-related genes were measured in the mice livers of the 2 groups. (J–K) Liver and body
miR-192-3p was partially ablated by DEX, as demonstrated by the GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NR3C1, nuclear receptor subfamily 3, group C, member 1; OE, overexpression; miR-192-3p OE + NR3C1. Student miR-192-3p OE construct were co-transfected into HEK293T cells; luciferase activity was normalised to the activity of GAPDH. Data are represented as mean ± SD; n = 3. **p < 0.01, ***p < 0.001, miR-192-3p OE vs. miR-192-3p OE + NR3C1. Student’s t test and one-way analysis of variance were used for statistical analyses. HOMA-IR index were assayed in mice of miR-192-3p OE and NT groups fed on HFrD. (P) The mRNA levels of lipogenesis-related genes were measured in the mice livers of the indicated groups. Data are represented as mean ± SD; n = 5. *p < 0.05, **p < 0.01, ***p < 0.001, NT vs. miR-192-3p OE; #p < 0.05, ##p < 0.01, ###p < 0.001, miR-192-3p OE vs. miR-192-3p OE + NR3C1. Student’s t test and one-way analysis of variance with Tukey’s test were used for statistical analyses. DEG, differentially expressed gene; GADD, glyceraldehyde 3-phosphate dehydrogenase; NR3C1, nuclear receptor subfamily 3, group C, member 1; OE, overexpression; 3'-UTR, 3'-untranslated region.

To rescue NR3C1 activity in mice injected with AAV-miR-192-3p, mice were given additional intraperitoneal injection of dexamethasone (DEX), an agonist of NR3C1/GCR. The gene components of the NR3C1-regulated lipogenesis in liver of 3 groups (NT, miR-192-3p OE, and miR-192-3p OE + DEX) were analysed (Fig. 6C–F and Fig. S5F–H). The anti-lipogenesis role of miR-192-3p was partially ablated by DEX, as demonstrated by the recovery of hepatic lipid accumulation, TAG level, and insulin resistance (Fig. 6E and F). Livers of mice treated with miR-192-3p OE had significantly reduced lipogenic gene expression while enhancing NR3C1 activity restored their suppressed levels (Fig. 6G–I). Taken together, the results showed that miR-192-3p reduced lipogenesis by interacting with NR3C1 mRNA, which subsequently alleviated liver steatosis in mice with diabetes.
Fig. 6. NR3C1 mediated the inhibitory effects of miR-192-3p on hepatic steatosis in mice. (A) Diagram of liver-specific knockdown of NR3C1 by Cre-LoxP system. Lentiviral of psicoR-shNR3C1 was i.v. injected into 4-week-old mice with diabetes; liver-specific reactivation of NR3C1 was achieved by i.v. injection of AAV-Cre. Fluorescence signalling was shown in different tissues. (B) Representative images of H&E, Oil Red O, and Nile Red staining of liver sections in the indicated groups; n = 4. (C) Histological analysis of liver sections in mice treated with NT, miR-192-3p OE, combinational use of miR-192-3p, and DEX 1 mg/kg/day, twice every week for 2 months. (D–F) Body weight gain, hepatic triglyceride levels, and HOMA-IR index was assayed in the 3 indicated groups. (G–I) Real-time PCR and Western blotting analysis of lipogenesis-associated genes in the 3 indicated groups. Both the mRNA and protein levels were normalised to GAPDH. Data are represented as mean ± SD; n = 5. *p < 0.05, **p < 0.01, ***p < 0.001, NT vs. mir-192-3p OE; *p < 0.05, **p < 0.01, ***p < 0.001, mir-192-3p OE vs. mir-192-3p OE + DEX. One-way analysis of variance with Tukey’s t test. DEX, dexamethasone; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; H&E, haematoxylin and eosin; HOMA-IR, homeostasis model assessment of insulin resistance; NR3C1, nuclear receptor subfamily 3, group C, member 1; NT, non-targeting control; OE, overexpression.
Serum miR-192-3p is detected in patients with diabetes mellitus

To correlate circulating miR-192-3p level to clinical features, we quantified the serum miR-192-3p in obese individuals (body mass index >34; Fig. 7A). Among these 8 individuals, only 4 were diagnosed with diabetes mellitus (DM). We then performed TaqMan® miRNA real-time PCR assay to screen for the presence of the star strand miRNA in their serum samples. Intriguingly, miR-192-3p can be only detected in individual diagnosis with DM, indicating the predictive relevance of miR-192-3p with DM (Fig. 7B). Accordingly, patients with DM exhibited increased levels of fasting glucose (Fig. 7C; p < 0.01) and haemoglobin A1c (Fig. 7D; p < 0.05), decreased HDL level (Fig. 7E; p < 0.01), and also significantly higher corticosterone level (Fig. 7F; p < 0.05). The serum TAG, total cholesterol, and LDL levels were also simultaneously examined (Fig. 7G–I).

Discussion

The human body relies on glucose as an immediate energy source to deal with strenuous movements. Being metabolised less efficiently, FAs are the major energy reserve with the prerequisite of a series of oxidation for its release.23 Liver, muscle, and adipose tissues are the major effector tissues in response to the bioenergetics endocrine via modulating the entry and storage of glucose. Of note, muscle cells are privileged in a lack of glucose-6-phosphatase, therefore refrained from glycolgen breakdown to supply glucose to other somatic cells when insulin is low.24 Adipose tissues respond to insulin by synthesising TAG for compact storage. Liver is therefore the only metabolic hub, which modulates circulating levels of nutrient supply to other tissues. Furthermore, liver is also the major site for cholesterol synthesis in response to metabolic demand tightly regulated by insulin and glucose at the transcription level,25 highlighting how defective insulin signalling may affect lipid synthesis and storage.

NAFLD is recognised as the predominant form of chronic liver disease associated with metabolic disorders, such as T2DM, obesity, and hyperlipidaemia.26 NAFLD was caused by the inability of insulin to suppress hepatic glucose production in obese people with diabetes, with NAFLD further promoting diabetes; paradoxically, fat overproduction by this runaway hepatic TAG synthesis in the liver continues unabated. There is ample evidence to demonstrate impairment in hepatic carbohydrate utilisation leading to lipid dysregulation.27 Recent efforts have focused on modulating genes along the lipogenic pathway in the liver, which demonstrated marked reduction in hepatic steatosis and even confer resistance to obesity.28,29

Our previous study pinpointed that both miR-192-5p and its star strand miR-192-3p (*) were enriched as top regulators along hepatic lineage differentiation.30 The guiding strand was important in inhibiting transforming growth factor beta signalling in diabetic nephropathy.28 In our study, only miR-192-3p rather than its guiding strand miR-192-5p was downregulated in the liver of mice with diabetes. This spontaneous loss of miR-192-3p in mice with diabetes further facilitated the runaway hepatic TAG synthesis and promoted hepatic steatosis.

Micro-vesicular steatosis is characterised by functionally defective hepatocytes filled up with foamy cytoplasm and small lipid vesicles, while macro-vesicular steatosis is manifested with a single, large vacuole of lipid that occupies most of the volume in hepatocytes coupled with a displaced nucleus, a detrimental form preceding tissue inflammation.6,30 Interestingly, our attempts in replenishing miR-192-3p in mice with diabetes not only partially reduced lipid accumulation, but also effectively mediated the storage condition for lipids from the microvesicular to the macro-vesicular form. Accordingly, we observed an increase of serum tumour necrosis factor alpha in HFD-fed mice treated with miR-192-3p sponge, implicating the critical role of miR-192-3p along the pathogenesis of liver inflammation (data not shown).

Fig. 7. Serum miR-192-3p is detectable only in patients diagnosed with diabetes mellitus. (A) All human samples exhibited obesity with BMI exceeding normal range. (B) Serum miR-192-3p levels in patients diagnosed with DM or not (N-DM). (C) Fasting glucose, (D) HbA1c, (E) HDL, (F) corticosterone, (G) tri-glyceride, (H) total cholesterol, and (I) LDL in each group. Data are represented as mean ± SD; n = 4. Two-tailed Student’s t test. BMI, body mass index; DM, diabetes mellitus; HbA1c, haemoglobin A1c; N-DM, no diabetes mellitus.
Conventional miRNA OE relies pre-miRNA stem loop; therefore OE only produces mature guiding strand. Nonetheless, we believed their strand counterparts are useful in targeting an alternative myriad of mRNAs. To single out star-strand activation, we adopted the shRNA OE system and successfully overexpressed mature miR-192-3p in vivo. Further functional study found that OE of this miR-192-3p effectively prevented hepatic steatosis through restoring insulin sensitivity, which facilitated FAO. To further investigate whether this new OE system is applicable for any mature miRNA strand, we constructed the miR-206, a guiding strand miRNA responsible for lipogenesis, which recapitulated its anti-lipogenesis and anti-glucogenesis role in hepatocytes (Fig. S6A–C).

Glucocorticoid signalling was central to modulate the activation of AMPK and represented an important crosstalk to liver responsiveness to insulin. The GCR (also known as NR3C1) was reported to control the metabolism of glucose, protein, and lipid homeostasis, complementing the action of insulin, which recapitulated its anti-lipogenesis and insulin resistance. In our study, we found that manipulating miR-192-3p levels affected the expression of NR3C1, which in turn modulated insulin sensitivity.

In parallel, we observed that shNR3C1 effectively phenocopied the OE of miR-192-3p, while combinational treatment of miR-192-3p and DEX ablated the anti-steatotic actions of miR-192-3p. We therefore propose that the hepato-protective effect of miR-192-3p/NR3C1 axis may arise from both regulation of glucocorticoid signalling and the inter-conversion between these lipid storage forms in hepatocytes, which unleashed a promising lead for the palliative care of the fatty liver disease in patients with diabetes. Notably, miR-192-3p is only detectable in obese patients with diabetes, with heightened corticosterone level in their serum.

In summary, the present study establishes the molecular crosstalk between miR-192-3p and NR3C1 in the regulation of insulin-regulated lipid metabolism and liver steatosis (Fig. 8). Approaches that improve lipid metabolism by manipulating a more distal signal modulator, such as increasing miR-192-3p OE, might rebalance lipid uptake and oxidation through modulating insulin sensitivity, thus making miR-192-3p an attractive drug target for carbohydrate malnutrition and related metabolic disorders, such as liver steatosis, T2DM, and lipogenesis-related diseases.
support from the Health and Medical Research Fund (project number 06170996) of the Food and Health Bureau, Hong Kong Special Administrative Region Government; Research Grants Council General Research Fund (project number 14103418); 973 Scheme from the Ministry of Science and Technology, China (2015CB946700); and 2018 Shenzhen Virtue University Park Laboratory Support Special Fund (YFGJS1.0) for Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base).

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhepr.2020.100179.

References

Author names in bold designate shared co-first authorship

[1] Saloranta C, Koivisto V, Widen E, Falholt K, DeFronzo RA, Harkonen M, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993;264:E599–E605.

[2] Marcellino H, Veyrat-Durebex C, Summermatter S, Sarafian D, Miles-Chan J, Arsenevic J, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2013;62:362–372.

[3] Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol 2017;8:1–8.

[4] Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW, Unalp-Arikan D, Miles-Chan J, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993;264:E599–E605.

[5] Li L, Miu KK, Gu S, Cheung HH, Chan WY. Comparison of multi-lineage differentiation of hiPSCs reveals novel miRNAs that regulate lineage commitment. Gene 2016;589:100–105.

[6] Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, et al. Widespread conservation of microRNA* species. PLoS One 2012;7:e41504.

[7] Lewis PJS, Dear J, Platt V, Simpson KJ, Craig DGN, Antoine DJ, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 2011;54:1767–1776.

[8] Marcellino H, Veyrat-Durebex C, Summermatter S, Sarafian D, Miles-Chan J, Arsenevic J, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2013;62:362–372.

[9] Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol 2017;8:1–8.

[10] Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW, Unalp-Arikan D, Miles-Chan J, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993;264:E599–E605.

[11] Marcellino H, Veyrat-Durebex C, Summermatter S, Sarafian D, Miles-Chan J, Arsenevic J, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2013;62:362–372.

[12] Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol 2017;8:1–8.

[13] Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW, Unalp-Arikan D, Miles-Chan J, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993;264:E599–E605.