KÄHLER CLASSES ON UNIVERSAL MODULI SPACES AND VOLUMINA OF QUOT SPACES

CHRISTIAN OKONEK AND ANDREI TELEMAN

ABSTRACT. We study the natural Kähler metrics on moduli spaces of stable oriented pairs in a very general framework, and we prove a universal formula expressing the Kähler class of such a moduli space in terms of characteristic classes of the universal bundle. We use these results to compute explicitly the volumina of certain Quot spaces.

CONTENTS

1. Introduction 1
2. General theory 8
 2.1. Donaldson’s quotient connection 8
 2.2. A pushforward formula in equivariant cohomology 10
 2.3. Sections in Hamiltonian fibre bundles 12
 2.4. Families of connections and sections 14
3. Applications 18
 3.1. Kähler forms of canonical Hermitian metrics and tautological classes 18
 3.2. Volumina of Abelian Quot spaces 24
 3.3. Volumina of moduli spaces of twisted matrix divisors 29
References 35

1. Introduction

Let \((X, g)\) be compact Hermitian manifold and \(E\) a \(C^\infty\) Hermitian bundle on \(X\). Recall that a Hermitian connection \(A\) on \(E\) is called Hermite-Einstein if its curvature \(F_A\) is of type \((1,1)\) and satisfies the Hermite-Einstein equation

\[
iA_g F_A = c \text{id}_E,
\]

for a constant \(c \in \mathbb{R}\).

The classical version of the Kobayashi-Hitchin correspondence states that a holomorphic bundle \(E\) over a compact Gauduchon manifold \((X, g)\) is stable if and only if it admits a Hermitian metric \(h\) such that the associated Chern connection \(A_{E,h}\) is Hermite-Einstein and irreducible. This statement has first been proved by Donaldson [Do1] for projective-algebraic surfaces and for projective manifolds endowed with Hodge metrics [Do2], later by Uhlenbeck and Yau for Kähler manifolds [UY1], [UY2], and finally by Li and Yau for arbitrary compact complex manifolds endowed with Gauduchon metrics ([LY], [LT1]).

This statement, which gives a differential geometric characterization of stability, can be interpreted as an isomorphism between moduli spaces; more precisely, it
yields a real analytic isomorphism
\[\mathcal{M}^\text{HE}(E)^* \xrightarrow{KH_a} \mathcal{M}^\text{st}(E), \]
where \(\mathcal{M}^\text{HE}(E)^* \) is the moduli space of irreducible Hermite-Einstein connections on \(E \), and \(\mathcal{M}^\text{st}(E) \) denotes the moduli space of stable holomorphic structures on \(E \). This geometric interpretation of the original Kobayashi-Hitchin correspondence found important applications in differential topology: it allowed Donaldson to describe explicitly certain instanton moduli spaces on algebraic surfaces and to compute the first Donaldson invariants. A second fundamental application of the classical Kobayashi-Hitchin correspondence was Donaldson’s non-vanishing theorem for his polynomial invariants on algebraic surfaces. This result was based on the fundamental fact that the Kähler class of the canonical metric of the moduli space can be identified with a tautological cohomology class \([DK]\). One of the motivations of this article is to show that this phenomenon holds in great generality.

Donaldson theory for PU(2)-connections leads naturally to moduli spaces of projectively anti-selfdual unitary connections with fixed determinant on Riemannian 4-manifolds (see \[\text{Do3}\]). More precisely, let \(E \) be a Hermitian vector bundle of rank 2 on a Riemannian 4-manifold \((M, g)\), \(a \in \mathcal{A}(\text{det}(E)) \) a fixed Hermitian connection. Denote by \(\mathcal{A}^{\text{ASD}}_{a}(E) \) the space of connections \(A \) on \(E \) inducing \(a \) on \(\text{det}(E) \) which satisfy the projective anti-selfduality equation
\[(\mathcal{F}^0_A)^+ = 0. \]
Here \(\mathcal{F}^0_A \) is the trace-free part of the curvature \(\mathcal{F}_A \), and \((\cdot)^+\) denotes the projection onto the self-dual summand \(iA^2_{\mathbb{C}} \). The moduli space which is relevant in Donaldson theory is the quotient
\[\mathcal{M}^{\text{ASD}}(E) := \mathcal{A}^{\text{ASD}}_{a}(E)/\Gamma(M, \text{SU}(E)). \]

On complex surfaces equation (2) coincides with the projective Hermite-Einstein equation
\[i\Lambda_g\mathcal{F}^0_A = 0, \quad \mathcal{F}_{A}^{0,2} = 0, \]
which makes sense on arbitrary Hermitian complex manifolds and Hermitian bundles. In this case the fixed connection \(a \in \mathcal{A}(\text{det}(E)) \) is chosen such that \(\mathcal{F}_{a}^{0,2} = 0 \), so that it defines a holomorphic structure \(D \) on the line bundle \(\text{det}(E) \). If the metric \(g \) is Gauduchon one has again an isomorphism of moduli spaces
\[\mathcal{M}^\text{HE}_{a}(E)^* \xrightarrow{KH_a} \mathcal{M}^\text{st}_{a}(E), \]
where \(\mathcal{M}^\text{HE}_{a}(E)^* \) is the moduli space of irreducible projective Hermite-Einstein connections on \(E \) inducing \(a \) on \(\text{det}(E) \), modulo the real gauge group \(\mathcal{G} := \Gamma(X, \text{SU}(E)) \), and \(\mathcal{M}^\text{st}_{a}(E) \) is the moduli space of stable holomorphic structures on \(E \) inducing \(D \) on \(\text{det}(E) \), modulo the complex gauge group \(\mathcal{G}^C := \Gamma(X, \text{SL}(E)) \).

The isomorphism \(KH_a \) is an important refined version of the original Kobayashi-Hitchin correspondence \(KH \). Indeed, on one hand one uses gauge groups associated with subgroups \((\text{SU}(r), \text{SL}(r)) \) of the structure groups, on the other hand one fixes some of the data \((a, D)\). The procedure of taking subgroups and fixing some of the data is called orientation \([\text{LT2}]\).

Another important generalization of the classical Kobayashi-Hitchin correspondence concerns moduli spaces of pairs consisting of (oriented) connections or holomorphic structures coupled with sections in associated bundles. For instance, in the theory of Hitchin pairs \([\text{Hi}]\) one considers a differentiable Hermitian vector bundle
E, a holomorphic structure \mathcal{D} on $\det(E)$, and a fixed holomorphic bundle \mathcal{E}_0 on X. The complex geometric problem in this case is the classification of pairs (\mathcal{E}, φ) consisting of a holomorphic structure \mathcal{E} on E inducing \mathcal{D} on $\det(E)$, and a section $\varphi \in H^0(\text{End}(\mathcal{E}) \otimes \mathcal{E}_0)$, modulo the complex gauge group $G^C = \Gamma(X, \text{SL}(E))$. In the classical case one takes $\mathcal{E}_0 := \Omega^1_X$.

Let a be the Chern connection of the holomorphic structure \mathcal{D} on the Hermitian line bundle $\det(E)$. The corresponding gauge theoretical problem concerns the moduli space of pairs (A, φ) consisting of a Hermitian connection A on E inducing a on $\det(E)$ and a section $\varphi \in A^0(\text{End}(E) \otimes \mathcal{E}_0)$ such that the following Hermitian-Einstein type equation is satisfied:

$$i \Lambda F^0_A + \frac{1}{2} [\Phi, \Phi^* h] = 0, \quad F^0_A = 0$$

Defining stability of Hitchin pairs in an appropriate way one obtains again a Kobayashi-Hitchin correspondence

$$\mathcal{M}^\text{HF}_a(E, \mathcal{E}_0) \xrightarrow{K_{a, \mathcal{E}_0}} \mathcal{M}^\text{st}_\mathcal{D}(E, \mathcal{E}_0).$$

Many other important gauge theoretical problems fit into this concept, for instance:

1. Moduli spaces of vortices [Br], [GP], [HL], [Th].
2. Moduli spaces of oriented pairs [OT1], [Te].
3. Moduli spaces of Witten triples [W], [Bi], [Dü].

All these Kobayashi-Hitchin type correspondences can be interpreted, at least at a formal level, as infinite dimensional versions of the fundamental isomorphism between symplectic quotients (defined by a moment map) and GIT quotients (corresponding to a suitable stability condition) [Kt].

The idea of a universal Kobayashi-Hitchin correspondence, which specializes to all these isomorphisms of moduli spaces is therefore very natural and important. General versions have been obtained by Banfield [Ban] for connections in principal bundles over Kähler manifolds coupled with sections in associated vector bundles, and by Mundet i Riera [Mu] for connections in principal bundles over Kähler manifolds coupled with sections in associated Kählerian fibre bundles. The universal Kobayashi-Hitchin correspondence of [LT2] deals with (oriented) pairs on Gauduchon manifolds, and identifies the complex geometric stability concept corresponding to the gauge theoretical equations. The final result is a universal isomorphism $K\mathcal{H} : \mathcal{M}^* \to \mathcal{M}^\text{st}$ between a gauge theoretic moduli space \mathcal{M}^* of irreducible (oriented) Hermite-Einstein pairs and a complex geometric moduli space \mathcal{M}^st of stable (oriented) pairs.

In this very general framework it is shown that the moduli space \mathcal{M}^* comes with a natural metric, which is Hermitian with respect to the complex structure induced by the Kobayashi-Hitchin isomorphism $K\mathcal{H}$ and is strongly KT, i.e., its Kähler form Ω satisfies the equation $\partial \bar{\partial} \Omega = 0$. The idea of the proof is to show that Ω can be written as a sum $\Omega = \Omega_1 + \Omega_2$ of two terms, each term Ω_i being obtained by fibre integration. More precisely

$$\Omega_1 = p_{\mathcal{M}^*}(\alpha_1 \wedge \rho^*_X(\omega^2 g^{-1})),$$

$$\Omega_2 = (n - 1)! p_{\mathcal{M}^*}(\alpha_2 \wedge \rho^*_X(\text{vol}_g)),$$

where α_1 and α_2 are closed forms on $\mathcal{M}^* \times X$. Note that α_1 is a characteristic form of the universal bundle \mathbb{P} on $\mathcal{M}^* \times X$, hence the first term Ω_1 is constructed in the same way as the de Rham representatives of the Donaldson tautological classes.
The first goal of this article is to prove that, under very general assumptions, the closed form α_2 is also a characteristic form of P and to identify the corresponding characteristic class explicitly. This is a highly non-trivial result whose proof is based on a push-forward formula in equivariant cohomology. A similar, but less general result, has been obtained with different methods by Baptista [Bap].

Therefore, assuming that $d(\omega_n^{-1}) = 0$ (i.e., g is semi-Kähler) one obtains a canonical Kähler metric on M^* whose Kähler form is the de Rham representative of the sum of two Donaldson type classes. This result can be regarded as a universal generalization of formulae obtained by Manton–Nasir [MN] and Perutz [P] in the case of vortices on Riemann surfaces.

In order to formulate our main results, we recall briefly the formalism introduced in [LT2] in the special case of Kähler manifolds, which suffices for our purposes.

Suppose that (X, J, g) is an n-dimensional Kähler manifold and $\pi : P \to X$ is a principal K-bundle on X, with K a compact Lie group. We fix an epimorphism $r : K \to K_0$ of compact Lie groups, and denote by N its kernel. Let $P_0 := P \times_K K_0$ be the associated K_0-bundle and fix a connection $A_0 \in \mathcal{A}(P_0)$ of type $(1, 1)$.

Suppose we are given a left K-action on a Kähler manifold (F, J_F, g_F) by holomorphic isometries, and a moment map μ_F for this action on the corresponding symplectic manifold (F, ω_F). We fix a K-invariant inner product k on k and we denote by $m_F : F \to k$ the k-valued map defined by $\mu_F = k(m_F, \cdot)$. Let $p_n : k \to n$ be the k-orthogonal projection onto the Lie algebra n of N. The symmetric bilinear form $h : k \times k \to \mathbb{R}$ defined by

$$h(x, y) := k(p_n(x), p_n(y))$$

is K-invariant and non-degenerate on n.

Let $E := P \times_K F$ be the associated bundle. The gauge group

$$\mathcal{G} := \Gamma(X, P \times_K N)$$

acts from the left on the space of A_0-oriented pairs $A_{A_0}(P) \times \Gamma(X, E)$. This space has a natural Kähler metric depending on the triple (k, g, g_F) whose Kähler form is given by the formula ([LT2] p. 66):

$$\Omega((\alpha, \psi), (\beta, \chi)) := \int_X h(\alpha \wedge \beta) \wedge \omega_g^{n-1} + (n - 1)! \int_X \omega_F(\psi, \chi) \operatorname{vol}_g$$

The fundamental object associated with these data is the moduli space \mathcal{M}^* of equivalence classes of irreducible oriented pairs $(A, \varphi) \in A_{A_0}(P) \times \Gamma(X, E)$ satisfying the generalized vortex equations

$$\begin{cases}
F_A^{02} = 0 \\
p_n [A_0 F_A + m_F(\varphi)] = 0.
\end{cases}$$

In the third equation we used the same symbol for the vector bundle epimorphism $P \times_K \mathfrak{k} \to P \times_K n$ induced by $p_n : \mathfrak{k} \to n$.

Denote by $\omega_{\mathcal{M}^*}$ the Kähler form of this canonical Kähler metric on the moduli space \mathcal{M}^* of irreducible A_0-oriented pairs. Using a standard construction one defines a principal K-bundle \mathcal{P} over $\mathcal{M}^* \times X$ and a tautological K-equivariant map $\Phi : \mathcal{P} \to F$, which can be regarded as a universal section in the associated F-bundle.

Our main results are:
Theorem 3.1. The canonical Hermitian metric on \mathcal{M}^* is Kähler and its Kähler form is

$$\omega_{\mathcal{M}^*} = p_{\mathcal{M}^*} \cdot \left[-\frac{1}{2} [h(\Omega_\lambda \wedge \Omega_\lambda)] \wedge p_X^* (\omega_g^* - 1) \eta \wedge p_X^* (\text{vol}_g) \right],$$

where Ω_λ denotes the curvature of the universal connection, and η is the horizontal part of $\Phi^* (\omega_g^*) - (\mu_F \circ \Phi, \Omega_\lambda)$; η is a closed 2-form. If μ_F can be written as $\mu_F = \mu_0 + \tau$, where μ_0 is an exact moment map and $\tau \in \mathfrak{t}^\prime$ is K-invariant, then the de Rham cohomology class $[\omega_{\mathcal{M}^*}]_{\text{DR}}$ is given by

$$[\omega_{\mathcal{M}^*}]_{\text{DR}} = p_{\mathcal{M}^*} \cdot \left[-\frac{1}{2} [h(\Omega_\lambda \wedge \Omega_\lambda)] \wedge p_X^* (\omega_g^* - 1) \eta \wedge p_X^* (\text{vol}_g) \right].$$

For the linear case we obtain a more precise result. If the chosen unitary representation $\rho : K \to U(F)$ satisfies a technical condition (similar to a condition in [Bap]), then one obtains an equality between forms (not just de Rham classes).

Theorem 3.2. Let F be a Hermitian vector space, and $\rho : K \to U(F)$ a unitary representation. For a K-invariant linear form $\tau \in \mathfrak{t}^\prime$ put $\mu_F := \mu_0 + \tau$, where μ_0 is the standard moment map for the K-action on F.

Suppose there exists a K-invariant element $a_0 \in \mathfrak{n}$ such that $\rho_* (a_0) = \text{id}_F$. Then the Kähler form $\omega_{\mathcal{M}^*}$ is given by

$$\omega_{\mathcal{M}^*} = p_{\mathcal{M}^*} \cdot \left[-\frac{1}{2} [h(\Omega_\lambda \wedge \Omega_\lambda)] \wedge p_X^* (\omega_g^* - 1) \eta \wedge p_X^* (\text{vol}_g) \right],$$

hence it coincides with fiber integration of a characteristic form of the connection κ on the universal bundle \mathcal{F}.

The second goal of our article is to use these theoretical results to compute explicitly the volumina of certain interesting moduli spaces with respect to the canonical metric induced by the Kobayashi-Hitchin correspondence.

The computation of these volumina is not only an interesting mathematical problem, but is also important from a physical point of view. The first computation of such volumina is due to Manton and Nasir [MN]. These authors consider the vortex equation with fixed parameter $\tau = \frac{1}{2}$ on a Riemann surface (X, g) of genus g. Assuming $\text{Vol}_g (X) > 4\pi d$ the symmetric power $X^{(d)}$ can be identified with the moduli spaces of vortices of degree d. Their main result is the computation of the volumina of $X^{(d)}$ with respect to the induced metric (see [MN], (3.22)):

$$\text{Vol}_\omega (X^{(d)}) = \sum_{i=0}^{\min(d, g)} (4\pi)^i \binom{g}{i} \frac{1}{(d-i)!} \text{Vol}_g(X) - 4\pi d^{d-i}.$$

A partial generalization of this result is due to Baptista, who computed the volumina of the moduli spaces of semi-local Abelian vortices when the degree d is larger than $2g - 2$ (see [Bap] (32)).

Both formulae are (up to normalization factors) special cases of the formulae which we prove in this article (see section 3):

Let X be a compact complex manifold of dimension n, \mathcal{E}_0 a locally free sheaf of rank r_0 on X, and E a differentiable vector bundle on X. We denote by $\text{Quot}^E_{\mathcal{E}_0}$ the Quot space of equivalence classes of quotients $q : \mathcal{E}_0 \to \mathcal{Q}$ with locally free kernel.
of differentiable type E. When E is of rank 1 and $m := c_1(E) \in \text{NS}(X)$ we put $\text{Quot}^E_\mathcal{E}_0 = \text{Quot}^E_{\mathcal{E}_0}$.

We fix a Hermitian metric h_0 on \mathcal{E}_0 and denote by A_0 the associated Chern connection. Let g be a Kähler metric on X, $t \in \mathbb{R}$ a parameter and put $t := \frac{(n-1)!\text{Vol}_X}{2\pi^2}$. The moduli space $\mathcal{M}_t^\mathcal{E}(E, A_0)$ of irreducible t-vortices of type (E, A_0) can be identified via the Kobayashi-Hitchin correspondence with the moduli space $\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0)$ of t-stable pairs of type (E, \mathcal{E}_0), and for sufficiently large t the latter can be identified with the Quot space $\text{Quot}^E_{\mathcal{E}_0}$ [OT2]. In this way we obtain natural metrics on $\text{Quot}^E_{\mathcal{E}_0}$.

Note that our moduli spaces come with a natural symmetry, since any morphism of complex Lie groups $G \to \text{Aut}(\mathcal{E}_0)$ induces a natural holomorphic G-action on the moduli spaces $\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0)$ and $\text{Quot}^E_{\mathcal{E}_0}$. Our formalism yields a natural G-equivariant lift
\[
[\omega_1]^G \in H^2_G(\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0), \mathbb{R})
\]
of the Kähler class $[\omega_1]$ in terms of equivariant Chern classes of the universal bundle.

Theorem 3.6. Let \mathcal{E} be the universal bundle on $\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0) \times X$. For any morphism of Lie groups $G \to \text{Aut}(\mathcal{E}_0)$, the class
\[
\left\{ -4\pi^2 \text{ch}_2^G(\mathcal{E}) \cup p_X^* [\omega_g^{n-1}] - 2\pi(n - 1) t c_1^G(\mathcal{E}) \cup p_X^* [\text{vol}_g] \right\} / [X]
\]
is a lift of the Kähler class $[\omega_1]$ to $H^2_G(\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0), \mathbb{R})$.

This general result is very useful for explicit computations of volumes of moduli spaces using localization methods.

In the case when E is a line bundle with $c_1(E) = m$ we have a natural identification $\mathcal{M}_t^\mathcal{E}(E, \mathcal{E}_0) = \text{Quot}^E_{\mathcal{E}_0}$ for any $t > -\text{deg}(E)$, and
\[
\frac{1}{4\pi^2} [\omega_{\mathcal{M}_t^\mathcal{E}}] = \theta + (\text{deg}(E) + t) \gamma ,
\]
where θ is the pull-pack of the theta class of $\text{Pic}^m(X)$, and $\gamma = -c_1(\mathcal{E} \text{Quot}^E_{\mathcal{E}_0} \times \{x_0\})$.

Formula (3) specializes to a result obtained by Perutz for $r_0 = 1$ and $n = 1$ (see [P] Theorem 3).

When X is a Riemann surface and $r_0 = 1$, the Quot space $\text{Quot}^m_{\mathcal{E}_0}$ can be identified with the symmetric power $X^{(d)}$, $d := \text{deg}(\mathcal{E}_0) - \text{deg}(E)$. Using known identities for the intersection numbers $\langle \theta^i \gamma^j, [X^{(d)}] \rangle$ we obtain
\[
\text{Vol}_\omega(\text{Quot}^E_{\mathcal{E}_0}) = (4\pi^2)^d \sum_{i=1}^\text{min}(d,0) \binom{d}{i} \frac{1}{(d-i)!} (\text{deg}(E) + t)^{d-i} ,
\]
which (up to the normalization factor π^2) specializes to the Manton-Nasir formula.

Our second application concerns the volume of the Abelian Quot spaces $\text{Quot}^E_{\mathcal{E}_0}$ for arbitrary $r_0 \geq 1$, $n \geq 1$. We will say that a pair (m, \mathcal{E}_0) acyclic if $H^i(\mathcal{E}_0 \otimes \mathcal{E}_0) = 0$ for all $i > 0$ and all $[\mathcal{L}] \in \text{Pic}^m(X)$. If this is the case then $\text{Quot}^E_{\mathcal{E}_0}$ is a projective bundle over $\text{Pic}^m(X)$, and we obtain an explicit formula for its volume:
\[
\text{Vol}_\omega(\text{Quot}^E_{\mathcal{E}_0}) = \frac{(4\pi^2)^N}{N!} \left(\sum_{k=R-1}^N \binom{N}{k} (\text{deg}(E) + t)^{N-k} \right) .
\]
spaces for a class of twisted matrix divisors. In this formula (h_1, \ldots, h_{2q}) is a basis of $H^1(X, \mathbb{Z})$ compatible with its natural orientation, $R := \chi(\mathcal{L}^0 \otimes \mathcal{E}_0)$, and $N := R + q(X) - 1$ is the dimension of $\text{Quot}^E_{\mathcal{E}_0}$. The classes $C_i \in H^{2i}(X, \mathbb{Q})$ are defined by the identity $\text{ch}(\mathcal{E}_0) |_{\mathcal{L}}(X) = \sum_i C_i$, and for a class $c \in H^{2n-k}(X, \mathbb{Q})$ we denote by $\kappa_c \in \text{Alt}^k(H^1(X, \mathbb{Z}), \mathbb{Q})$ the form defined by

$$
\kappa_c(x_1, \ldots, x_k) := \langle x_1 \cup \cdots \cup x_k \cup c, [X] \rangle.
$$

In the special case when $n = 1$ and $\mathcal{E}_0 = \mathcal{O}_X^{2r_0}$, formula (4) specializes to Baptista’s result mentioned above.

The last section concerns the computation of the volumina of non-Abelian Quot spaces $\text{Quot}^E_{\mathcal{E}_0}$ on Riemann surfaces in the case $r = r_0$. These moduli spaces are always smooth and projective, but their cohomology algebra is unknown. Since for $\mathcal{E}_0 = \mathcal{O}_X^{2r_0}$ one obtains precisely Weil’s moduli spaces of matrix divisors, we call them moduli spaces of twisted matrix divisors. For fixed data (E, t, g) the volume of $\text{Quot}^E_{\mathcal{E}_0}$ depends only on the topological type of \mathcal{E}_0, hence we can suppose that $\mathcal{E}_0 = \bigoplus_{i=1}^{r_0} \mathcal{L}_i$ splits as a direct sum of holomorphic line bundles \mathcal{L}_i. In this case one obtains a natural action of $[C^*]^{r_0}$ on $\text{Quot}^E_{\mathcal{E}_0}$ and the computation of the volume of this moduli space can be reduced — using localization techniques — to an integration over the fixed point locus of this action. For our computations we will use the C^*-action on $\text{Quot}^E_{\mathcal{E}_0}$ induced by the morphism $C^* \to [C^*]^{r_0}$ associated with a system (w_1, \ldots, w_r) of pairwise distinct weights. With this choice we obtain

$$
[\text{Quot}^E_{\mathcal{E}_0}]^{C^*} = \prod_{d \in I(d)} \prod_{i=1}^r \text{Quot}^1_{\mathcal{L}_i}^{l_i - d_i},
$$

where $d := \text{deg}(\mathcal{E}_0) - \text{deg}(\mathcal{E})$, $l_i := \text{deg}(\mathcal{L}_i)$ and

$$
I(d) := \{d = (d_1, \ldots, d_r) \in \mathbb{N}^r \mid \sum_{i=1}^r d_i = d\}.
$$

Using Theorem 3.6 we obtain an explicit expression for the the equivariant restrictions

$$
[\omega]^{C^*} \bigg| \prod_{i=1}^r \text{Quot}^1_{\mathcal{L}_i}^{l_i - d_i},
$$

In order to apply the localization formula we also need the equivariant Euler class of the normal bundles of the components $\prod_{i=1}^r \text{Quot}^1_{\mathcal{L}_i}^{l_i - d_i}$ of $[\text{Quot}^E_{\mathcal{E}_0}]^{C^*}$ in $\text{Quot}^E_{\mathcal{E}_0}$. For this purpose we follow closely similar computations of Marian and Oprea [MO2].

We obtain a complicated general formula for $\text{Vol}_{\omega}^a(\text{Quot}^E_{\mathcal{E}_0})$, which is non-explicit because it implicitly involves the coefficients of the Taylor expansion of a transcendental function in $2r$ variables. However, it gives an algorithm which produces closed formulae for small r, d. Deriving a general closed formula in terms of the topological data (g, d, l, r) and $\text{Vol}_g(X)$ is an interesting combinatorial problem.

Note that the computation of the volume of $\text{Quot}^E_{\mathcal{E}_0}$ gives a purely algebraic geometric result: The moduli spaces $\text{Quot}^E_{\mathcal{E}_0}$ of twisted matrix divisors come with natural Grothendieck embeddings

$$
j_n : \text{Quot}^E_{\mathcal{E}_0} \hookrightarrow \mathbb{P}(V_n)$$
in projective spaces (for \(n \gg 0 \)). The Kähler class \(c_1(j_p^*(\mathcal{O}_{V_g}(1))) \) can be identified with a multiple of our Kähler class \([\omega_t]\) for a suitable choice of the parameter \(t \), more precisely

\[
c_1(j_p^*(\mathcal{O}_{V_g}(1))) = \frac{1}{4\pi^2} \left[\frac{\omega_{2t(g-\rho)}^{2t}(\omega_0)}{\text{Vol}_{\omega_1}(\mathcal{O}_{V_g}(1))} \right].
\]

Therefore our computation of \(\text{Vol}_{\omega_1}(\text{Quot}_{E_r}) \) yields in particular the degrees of the images of the Quot spaces \(\text{Quot}_{E_r} \) under the Grothendieck embeddings.

We illustrate all this with explicit formulae in the case \(r = 2 \) and \(d \in \{1, 2\} \).

2. General theory

2.1. Donaldson’s quotient connection. Suppose we have a \(G \)-equivariant principal \(K \)-bundle \(\pi : P \to M \), where \(G \) is a Lie group acting freely on \(M \). By definition this means that \(G \) acts on \(P \) by \(K \)-bundle automorphisms covering the action on \(M \). Suppose that the quotient \(\bar{M} := M/G \) has a manifold structure such that the projection \(q : M \to \bar{M} \) is a submersion. This implies that \(q \) is a principal \(G \)-bundle over \(\bar{M} \).

In this situation the quotient \(\bar{P} := P/G \) has a natural structure of a principal \(K \)-bundle over \(\bar{M} \). This bundle \(\bar{\pi} : \bar{P} \to \bar{M} \) will be called the \(G \)-quotient of \(\pi \).

Let \(A \) be a \(G \)-invariant connection on \(P \). The aim of this appendix is to construct a quotient connection \(\bar{A} \) on \(\bar{P} \) and to compute its curvature. The construction depends on the choice of an auxiliary connection \(\Gamma \) on the \(G \)-bundle \(\bar{q} : \bar{M} \to \bar{P} \), i.e., a \(G \)-invariant distribution on \(\bar{M} \) which is horizontal with respect to the projection \(\bar{q} : \bar{M} \to \bar{M} \) \(\footnote{Note that \(G \) acts on \(M \) from the left so, using the standard terminology of [KN], \(\Gamma \) is a connection in the principal \(G \)-bundle obtained by endowing \(M \) with the right action \(m \cdot g := g^{-1}m \).}

The construction of this quotient connection follows the method explained in [DK] for linear connections, and later in the general framework of the universal Kobayashi-Hitchin correspondence in [LT2]. We believe that the general construction of the quotient connection and the computation of its curvature in the general framework of quotient of principal bundles is of independent interest, so we explain it briefly here.

We denote by \(\theta_A \in A^1(P, \mathfrak{p}) \) the connection form of \(A \) and by \(\Gamma^A \) the horizontal distribution associated with \(A \). The intersection \((\pi_\ast)^{-1}(\Gamma) \cap \Gamma^A \) defines a distribution on \(P \) which is invariant with respect to both the \(K \)-action and the \(G \)-action, and is horizontal with respect to the projection \(P \to \bar{M} \). Let \(q : P \to \bar{P} \) be the natural projection covering \(q : M \to \bar{M} \).

Definition 2.1. The quotient connection \(\bar{A} \) on the bundle \(\bar{P} \to \bar{M} \) is the connection associated with the distribution \(\Gamma^A := q_\ast((\pi_\ast)^{-1}(\Gamma) \cap \Gamma^A)) \).

The curvature of \(\bar{A} \) can be computed as follows: Let \(\xi, \eta \) be vector fields on \(\bar{M} \) and let \(\xi, \eta \) be their \(G \)-horizontal lifts on \(M \). The Lie bracket \([\xi, \eta] \) can be decomposed as the sum \([\xi, \eta]^h + [\xi, \eta]^v\) of its \(\Gamma \)-horizontal and \(\Gamma \)-vertical components, and one has

\[
[\xi, \eta]^v = \Omega_{\Gamma}(\xi, \eta)^\#_{\bar{M}}.
\]

In this formula we use the notation \(a_{\bar{M}}^\# \) for the vector field on \(M \) corresponding to an element \(a \in \mathfrak{g} \) via the given (left) action, whereas \(\Omega_{\Gamma} \) is the curvature of the connection defined by \(\Gamma \) in the \(G \)-principal bundle \(q : M \to \bar{M} \) constructed using
the right action corresponding to the original left action on M. This explains why there is no $-$ sign in front of the right hand side.

Let ξ, η be the A-horizontal lifts of ξ, η to P. These vector fields are obviously sections of $\pi^{-1}(\Gamma) \cap \Gamma^A$. Let $m \in M$ and let $p \in P_m$ be a lift of m in P. The A-horizontal and A-vertical components of the bracket $[\xi, \eta]$ in p are:

$$[\xi, \eta]^h_p = [\xi, \eta]^\sim_p = \{[\xi, \eta]^h_p\} + \{[\xi, \eta]^v_p\} = \{\Omega_T(\xi, \eta)^{\#}_{M,m}\}_{\Gamma}^\sim_p,$$

$$[\xi, \eta]^v_p = -\Omega_A(\xi, \eta)^{\#}_{P,p}.$$

On the other hand, since $\pi : P \to M$ is a morphism of left G-manifolds, it follows that for every $\alpha \in \mathfrak{g}$ one has $\pi_\ast(\alpha^{\#}_P) = \alpha^{\#}_{M,m}$, so that the A-horizontal component of $\alpha^{\#}_{P,p}$ is $\{\alpha^{\#}_{M,m}\}_{\Gamma}^\sim_p$. The A-vertical component of $\alpha^{\#}_{P,p}$ is $\{\theta_A(\alpha^{\#}_{P,p})\}_{P,p}$.

By definition of the connection form θ_A. Therefore

$$\{\alpha^{\#}_{M,m}\}_{\Gamma}^\sim_p = \alpha^{\#}_{P,p} - \{\theta_A(\alpha^{\#}_{P,p})\}_{P,p}.$$

Applying this formula to $\alpha = \Omega_T(\xi, \eta)^{\#}_{M,m}$ and using (2.1) we get

$$[\xi, \eta]^h_p = \{\Omega_T(\xi, \eta)^{\#}_{M,m}\}_{\Gamma}^\sim_p + \{\theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m})\}_{P,p} - \Omega_A(\xi, \eta)^{\#}_{P,p}.$$

Now we take the image of both sides of this equality via the differential of the projection $q : P \to \tilde{P}$ at p. Put $\tilde{p} := q(p)$, and let $\tilde{\xi}, \tilde{\eta}$ be the \tilde{A}-horizontal lifts of ξ and η. One easily sees that the push-forwards $q_\ast(\xi)$ and $q_\ast(\eta)$ are defined and equal to $\tilde{\xi}$ and $\tilde{\eta}$ respectively. From this one shows that $q_\ast(\tilde{\xi}, \tilde{\eta}) = [\tilde{\xi}, \tilde{\eta}]$. On the other hand $q_\ast(\Omega_T(\xi, \eta)^{\#}_{M,m}) = 0$, because the vector field $\Omega_T(\xi, \eta)^{\#}_{M,m}$ is tangent to the G-orbits. Finally $q_\ast([\xi, \eta]^h_p]$ is \tilde{A}-horizontal, because $\{\xi, \eta]^h_p$ belongs to $\pi^{-1}(\Gamma) \cap \Gamma^A$. Therefore

$$[\xi, \eta]^h_p = q_\ast\{[\xi, \eta]^h_p]\}_{\Gamma}^\sim_p - q_\ast\{\theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m})_{P,p}\} = \{\Omega_A(\xi, \eta)_{P,p}\}^{\#}_{P,p}.$$

Since q is K-equivariant we have

$$q_\ast\{\theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m})_{P,p}\}_{\Gamma}^\sim_p + \Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p}^{\#}_{P,p} = \{\theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m})_{P,p}\}_{P,p} + \Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p}^{\#}_{P,p}.$$

But $q_\ast([\xi, \eta]^h_p]_{\Gamma}$ is \tilde{A}-horizontal and $\Omega_A(\tilde{\xi}, \tilde{\eta})^{\#}_{P,p} = -[\tilde{\xi}, \tilde{\eta}]^{\#}_{P,p}$. Hence we obtain

$$\{\Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p}\}_{P,p}^{\#}_{P,p} = \{\Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p} + \theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m})_{P,p}\}_{P,p}^{\#}_{P,p}.$$

This proves

Proposition 2.2. Let $m \in M, p \in P_m, m := q(m), \tilde{\xi}, \tilde{\eta} \in \tilde{T}_m \tilde{M}$, $\xi, \eta \in T_m M$ their Γ-horizontal lifts, $\tilde{\xi}, \tilde{\eta} \in \tilde{T}_P \tilde{P}$ the A-horizontal lifts of ξ, η, and $\xi, \eta \in T_P \tilde{P}$ the A-horizontal lifts of ξ, η at the point $\tilde{p} := q(p)$. The curvature of the quotient connection \tilde{A} is given by the formula

$$\Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p} = \Omega_A(\tilde{\xi}, \tilde{\eta})_{P,p} + \theta_A(\Omega_T(\xi, \eta)^{\#}_{M,m}).$$
2.2. A pushforward formula in equivariant cohomology. Let K be a compact Lie group, and F a differentiable manifold endowed with a left K-action. The Cartan algebra of the K-manifold F (see [GGK] p. 198) is the differential graded \mathbb{R}-algebra $A_K^*(F) := [\mathbb{R}[\mathfrak{t}] \otimes \Lambda^*(F)]^K$ of K-invariant $\Lambda^*(F)$-valued polynomials on the Lie algebra \mathfrak{t}; the grading given by $\deg(f \otimes \eta) := 2\deg(f) + \deg(\eta)$, and the differential is
\begin{equation}
 d_K(\alpha)(a) := d(\alpha(a)) + \iota_{a \#}(\alpha(a)) ,
\end{equation}
for any $\alpha \in \mathbb{R}[\mathfrak{t}] \otimes \Lambda^*(F)$ regarded as a polynomial map $\mathfrak{t} \to \Lambda^*(F)$. Here $a \in \mathfrak{t}$ and $a \#$ stands for the vector field on F associated with a. The cohomology $H_K^*(F)$ of this algebra is canonically isomorphic to the real equivariant cohomology $H_K^*(F, \mathbb{R})$.

A differentiable equivariant map $F \to F'$ defines a morphism of differential graded \mathbb{R}-algebras $\varphi_K^*: A_K^*(F') \to A_K^*(F)$ (given by pullback of forms), and the assignment $F \to A_K^*(F)$ defines a contravariant functor on the category of K-manifolds with values in the category of differential graded \mathbb{R}-algebras.

In order to extend the functoriality of the assignment $F \to A_K^*(F)$ to right K-manifolds and equivariant maps between a right and a left K-manifold, one introduces the Cartan algebra associated with a right K-manifold P by endowing the graded \mathbb{R}-algebra $A_K^*(P) := [\mathbb{R}[\mathfrak{t}] \otimes \Lambda^*(P)]^K$ with the differential
\begin{equation}
 d_K(\alpha)(a) := d(\alpha(a)) - \iota_{a \#}(\alpha(a)) .
\end{equation}

With this definition, any differentiable equivariant map $\varphi : F \to F$ from a right K-manifold to a left K-manifold (i.e. any differentiable map $\varphi : F \to F$ satisfying the identity $\varphi(pk) = k^{-1}\varphi(p)$) induces a morphism $\varphi_K^*: A_K^*(F) \to A_K^*(P)$ of differential graded \mathbb{R}-algebras defined by pull-back of forms. In order to see this one uses the identity
\begin{equation}
 \varphi_*(a_p^\#) = -a_p^\# \forall p \in P \forall a \in \mathfrak{t}
\end{equation}

\begin{equation}
 \varphi_*(a_p^\#) = a_p^\# \forall p \in P \forall a \in \mathfrak{t}
\end{equation}

to show that for such a map φ one has $\varphi^* \circ \iota_{a \#} = -\iota_{a \#} \circ \varphi^*$ as maps from $A^*(F)$ to $A^*(P)$.

Let now $\pi : P \to B$ be a principal K-bundle on B. We have the standard \mathbb{R}-algebra isomorphism
\[H_K^*(\pi) : H^*(B, \mathbb{R}) \xrightarrow{\cong} H_K^*(P, \mathbb{R}) . \]
Using the de Rham algebra of B and the Cartan algebra of the right K-manifold P, the isomorphism $H_K^*(\pi)$ corresponds to the map $H_K^*(\pi) : H^*_\text{DR}(B) \to H_K^*(P)$ defined by
\[H_K^*(\pi)([\eta]_\text{DR}) = [\pi^*(\eta)]_C . \]

Here $\pi^*(\eta)$ is regarded as a constant, K-invariant $\Lambda^*(P)$-valued polynomial map on \mathfrak{t}, and $[\cdot]_C$ denotes the Cartan cohomology class.

We will show that, choosing a connection A on the principal bundle P, one can give an explicit formula for the inverse map $H_K^*(\pi)^{-1} : H_K^*(P) \to H^*_\text{DR}(B)$.

Fix a connection A on P. We recall that a k-form β on P is called horizontal if $\iota_X \beta = 0$ for any vertical tangent vector field X, and is called basic if is horizontal and K-invariant. The algebra $A^*(P)_{ba}$ of basic forms on P is d-invariant, and the differential graded algebra $(A^*(P)_{ba}, d)$ can be identified with the differential graded algebra $(A^*(B), d)$ in the obvious way.

Denote by $(\cdot)^h$ the projection $T_P \to \Gamma_A$ of the tangent space of P on the horizontal distribution $\Gamma_A \subset T_P$ defined by A. We will use the same symbol for the
linear operator which maps a differential form on P to the corresponding horizontal form, i.e.,

$$
\beta^h(X_1, \ldots, X_k) := \beta(X_1^h, \ldots, X_k^h).
$$

Proposition 2.3. Let A be a connection on P and $\Omega_A \in A^2(P, \mathfrak{g})$ its curvature form. For any $\alpha \in A^k_N(P)$ the form $\alpha(\Omega_A)^h \in A^*(P)$ is basic, the map $\alpha \mapsto \alpha(\Omega_A)^h$ defines a morphism of differential graded \mathbb{R}-algebras

$$
\pi^A_* : A^k_N(P) \to A^*(P)_{ba} = A^*(B),
$$

and the induced map $H(\pi^A_*) : H^*_{\text{DR}}(P) \to H^*_{\text{DR}}(B)$ coincides with $H_K(\pi)^{-1}$.

This statement is similar to Proposition 7.34 in [BGV] for completeness we include a short proof based on the same method.

Proof. The fact that $\alpha(\Omega_A)^h$ is basic follows from the invariance properties of α and Ω_A. The differential $d(\alpha(\Omega_A)^h)$ is automatically basic, so it suffices to compute it on horizontal vector fields, in other words it is sufficient to compute the covariant derivative $D_A(\alpha(\Omega_A))$, where $D_A : A^*(P) \to A^*(P)$ is defined by $D_A(\sigma) = (d(\sigma^h))^h$.

Fixing a basis $(a_i)_i$ in \mathfrak{g}, putting $\Omega_A = \Omega^i_a a_i$, and using Lemma 7.31 in [BGV] we obtain for a tensor product $f \otimes \beta \in \mathbb{R}[\mathfrak{g}] \otimes A^*(P)$

$$
D_A((f \otimes \beta)(\Omega_A)) = D_A(f(\Omega_A) \wedge \beta) = \left\{d(f(\Omega_A) \wedge \beta) - \Omega^j_A \epsilon_{a^j}(f(\Omega_A) \wedge \beta)\right\}^h.
$$

Since $(d\Omega_A)^h = 0$ by Bianchi’s identity and $\epsilon_{a^i} \Omega_A = 0$ (because Ω_A is a horizontal form), we obtain

$$
D_A((f \otimes \beta)(\Omega_A)) = \left\{f(\Omega_A) \wedge d\beta - \Omega^j_A (f(\Omega_A) \wedge \epsilon_{a^j} \beta)\right\}^h
$$

$$
= \left\{f(\Omega_A) \wedge (d\beta - \Omega^j_A \wedge \epsilon_{a^j} \beta)\right\}^h = \left\{d_K(f \otimes \beta)(\Omega_A)\right\}^h.
$$

Therefore, for every $\alpha \in \mathbb{R}[\mathfrak{g}] \otimes A^*(P)$ (K-invariant or not) one has

$$
D_A(\alpha(\Omega_A)) = \left\{(d_K(\alpha))(\Omega_A)\right\}^h.
$$

This implies

$$
(d \circ \pi^A_*)(\alpha) = (\pi^A_* \circ d_K)(\alpha)
$$

for every $\alpha \in \left[\mathbb{R}[\mathfrak{g}] \otimes A^*(P)\right]^K$. The fact that the induced map $H(\pi^A_*) : H^*_K(P) \to H^*_{\text{DR}}(B)$ coincides with $H_K(\pi)^{-1}$ is now obvious, since for any form $\eta \in A^*(B)$, the basic form $\pi^A_*(\pi^*(\eta))$ coincides with $\pi^*(\eta)$, so the corresponding form in $A^*(B)$ is η.

Remark 2.4. The Chern-Weil morphism $\mathbb{R}[\mathfrak{g}]^K \to Z^*_{\text{DR}}(B)$ can be obtained as the composition $\pi^A_* \circ j_K^P$, where $j_K^P : \mathbb{R}[\mathfrak{g}]^K \hookrightarrow A^*_K(P)$ is the obvious embedding. For an invariant polynomial $f \in \mathbb{R}[\mathfrak{g}]^K$, the cohomology class $[\pi^A_*(f)]_{\text{DR}}$ is the characteristic class c_f associated with f.

2Note however that, with conventions introduced in section 7.1 of [BGV], there is a sign error in Proposition 7.34 and its proof. The proof uses the same formula (9) for both left and right actions, and does not take into account the sign change (10).

KÄHLER CLASSES ON UNIVERSAL MODULI SPACES AND VOLUMINA 11
2.3. Sections in Hamiltonian fibre bundles. Let $\pi : P \to B$ be a principal K-bundle on B, F a manifold endowed with left K-action, and let $E := P \times_K F$ be the associated bundle with fiber F. In this section we study the morphism $H^*_K(F) \to H^*_\text{DR}(B)$ defined by a section $\varphi \in \Gamma(B, P \times_K F)$.

It is well known that the data of a section φ in E is equivalent to the data of a K-equivariant map $P \to F$. We will denote the two objects by the same symbol. Using the formalism and the results of section 2.2 we obtain a morphism $H_K(\varphi^*_K) : H^*_K(F) \to H^*_K(P)$, hence a morphism

$$H_K(\pi)^{-1} \circ H_K(\varphi^*_K) : H^*_K(F) \to H^*_\text{DR}(B).$$

This morphism coincides with $H(\pi^A) \circ H_K(\varphi^*_K)$, and is given explicitly by the formula

$$[\alpha]_C \mapsto \{[\varphi^*_K(\alpha)(\Omega_A)]^h \}$$

via the identification $A^*(B) = A^*(P)_{ba}$. The following result was stated in an equivalent way in [LT2] section 6.2.2, where it was proved without using equivariant cohomology as a special case of the so-called the “generalized symplectic reduction”.

Proposition 2.5. Let ω be a K-invariant symplectic form on F, and $\mu : F \to \mathfrak{e}^\vee$ a moment map for the K-action on the symplectic manifold (F, ω). Denote by the same symbol also the associated comoment map $\mathfrak{e} \to A^0(F)$, which is an invariant $A^0(F)$-valued linear map on \mathfrak{e}. Then:

1. $d_K(\omega - \mu) = 0$, hence $\omega - \mu$ defines a cohomology class $[\omega - \mu]_C \in H^2_K(F)$.
2. The basic 2-form

$$\{\varphi^*(\omega) - \{\mu \circ \varphi, \Omega_A\}\}^h$$

is closed and represents the de Rham class

$$H_K(\pi)^{-1} \circ H_K(\varphi^*_K)([\omega - \mu]_C) \in H^2_{\text{DR}}(B).$$

Proof. One has $d_K(\omega - \mu)(a) = d(\{\omega - \mu\}(a)) + i_{a^\#}((\omega - \mu)(a)) = -d\mu^a + i_{a^\#}(\omega) = 0$. The second statement follows from Proposition 2.3.

Suppose now that

$$\omega = d\theta,$$

where θ is a K-invariant 1-form on F.

In this case one has a natural moment map μ_θ for the K-action on (F, ω) defined by

$$\langle \mu_\theta, a \rangle := -i_{a^\#}\theta \quad \forall a \in \mathfrak{e}.$$

Such a moment map is called exact (see [GGK] Example 2.8 p. 18). Note that θ defines an element of $A^1_K(F)$ and formulae (11), (12) are equivalent to

$$d_K(\theta) = \omega - \mu_\theta.$$

Therefore the cohomology class $[\omega - \mu_\theta]_C \in H^2_K(F)$ hence also its image in $H^2_{\text{DR}}(B)$ vanishes. More precisely we have

3This happens for instance when (F, ω) is a Hermitian vector space endowed with the canonical Kählerian form, or when F is the cotangent bundle of a K-manifold endowed with the canonical symplectic structure.
Corollary 2.6. With the notations and assumptions of Proposition 2.3, suppose that \(\omega = d\theta \), for a K-invariant 1-form on \(F \), and let \(\mu_\theta \) be the corresponding exact moment map. Then \(\varphi^*(\theta)^h \) is a basic 1-form on \(P \) and
\[
d((\varphi^*(\theta)^h) = \{ \varphi^*(\omega) - (\mu_\theta \circ \varphi, \Omega_A) \}^h,
\]
Proof. Using (13) we obtain
\[
d_K(\varphi^*\theta) = \varphi^*\omega - \mu_\theta \circ \varphi \quad \text{in} \quad A_K(P),
\]

hence \(\pi_A(d_K(\varphi^*\theta)) = \pi_A(\varphi^*\omega - \mu_\theta \circ \varphi) \). The right hand term coincides with \(\{ \varphi^*(\omega) - (\mu_\theta \circ \varphi, \Omega_A) \}^h \), and the left hand term coincides with \(d((\varphi^*(\theta)^h) \) by Proposition 2.3.

Suppose now that:

- \(B \) and \(F \) are complex manifolds and \(A \) is a (1,1)-connection on \(P \), i.e., the curvature \(F_A \in \mathbb{A}^2(B, \text{ad}(P)) \) has type (1,1). This condition is equivalent to the integrability of the almost complex structure \(J_A \) on the complexification \(Q := P \times_K \mathbb{C} \) (see [12] Appendix 7.1).
- The \(K \)-action on \(F \) is induced by a holomorphic action of the complex reductive group \(K \).

If these conditions are satisfied, we define:

Definition 2.7. A section \(\varphi : P \to F \) is called \(A \)-holomorphic if one of the following equivalent conditions is satisfied:

- \((d\varphi)^h : \Gamma_A \to T_F \) commutes with the almost complex structure induced via \(\pi_* : \Gamma_A \to T_B \) on the horizontal distribution \(\Gamma_A \) of \(A \).
- \(K^C \)-equivariant map \(Q \to F \) induced by \(\varphi \) is \(J_A \)-holomorphic.

Suppose now that \(\omega = \frac{1}{4}dd^c\nu \), where \(\nu \) is a \(K \)-invariant real function on \(F \), and the operator \(d^c \) is defined as \(d^c := i(\tilde{\partial} - \partial) = J^{-1}dJ \). For a tangent vector \(X \) and a smooth function \(\sigma \) one has \(d^c(\sigma)(X) = -d\sigma(JX) \).

In this case we obtain an obvious integral of \(\omega \) – namely \(\theta_\nu := \frac{1}{4}d^c\nu \) – hence also an associated exact moment map \(\mu_\nu \) which we simply denote by \(\mu_\nu \).

For an equivariant map \(\varphi : P \to F \) we denote by \(\nu(\varphi) \in \mathbb{A}^0(B) \) the real function defined by \(\nu(\varphi) \circ \pi = \nu \circ \varphi \). If now \(\varphi : P \to F \) is \(A \)-holomorphic, we obtain
\[
\{ \varphi^*(d^c\nu) \}^h = \pi_A(\nu(\varphi))
\]
by evaluating both sides on a horizontal tangent vector.

Corollary 2.8. With the notations and under the assumptions above suppose that \(\omega = \frac{1}{4}dd^c\nu, A \) is a (1,1)-connection on \(P \), and \(\varphi \) is \(A \)-holomorphic. Then
\[
\frac{1}{4}dd^c(\nu(\varphi)) = \{ \varphi^*(\omega) - (\mu_\nu \circ \varphi, \Omega_A) \}^h,
\]
where the basic form on the right has been regarded as a 2-form on \(B \).

Example: Let \((F, h_F) \) be a Hermitian vector space, and \(\nu_F : F \to \mathbb{R} \) the \(U(F) \)-invariant real function defined by \(\nu_F(v) := h_F(v, v) \). The Kähler form \(\omega_F \) associated with \(h_F \) can be written as
\[
\omega_F = \frac{i}{2} \partial \bar{\partial} \nu_F = \frac{1}{4}dd^c\nu_F.
\]
Put $\theta_F := \frac{i}{2} d F$. Note that θ_F is $U(F)$-invariant and

$$\omega_F = d \theta_F .$$

Let now $\rho : K \to U(F)$ be a unitary representation, and let $\langle \cdot, \cdot \rangle_\mathfrak{k}$ be an ad-invariant inner product on the Lie algebra \mathfrak{k} of K. The standard moment map $\mu_0 : F \to \mathfrak{k}^\vee$ for the K-action on F defined by ρ is the exact moment map associated with the K-invariant form θ_F, i.e., it is given by

$$\langle \mu_0, a \rangle = - i a \cdot \theta_F \forall a \in \mathfrak{k} .$$

A simple computation shows that

$$\mu_0(v)(a) = \langle \rho^* \left(-\frac{i}{2} v \otimes v^* \right), a \rangle_{\mathfrak{k}} = \left\langle \frac{i}{2} v \otimes v^*, \rho_\ast (a) \right\rangle_{u(F)} ,$$

where the adjoint is computed with respect to $\langle \cdot, \cdot \rangle_{\mathfrak{k}}$ and the standard inner product $\langle \cdot, \cdot \rangle_{u(F)}$ on the Lie algebra $u(F)$ of skew-Hermitian endomorphisms of F.

Definition 2.9. A unitary representation $\rho : K \to U(F)$ is said to contain the homotheties of F if there exists a K-invariant element $a_0 \in \mathfrak{k}$ such that $\rho_\ast (a_0) = i id_F$.

For such an element a_0 one has

$$\mu_0(v)(-2a_0) = \langle v \otimes v^*, i id_F \rangle_{u(F)} = h_F(v,v) = \nu_F(v) .$$

2.4. Families of connections and sections. Let \mathcal{C} be a manifold and \mathcal{G} a Lie group with a free action on \mathcal{C} such that the quotient manifold $\mathcal{B} := \mathcal{C}/\mathcal{G}$ exists and the projection $\mathcal{C} \to \mathcal{B}$ becomes a principal \mathcal{G}-bundle. We allow both \mathcal{C} and \mathcal{G} to be infinite dimensional. Fix a connection Γ_0 in this principal bundle.

Let X be a closed d-dimensional manifold, P a principal K-bundle on X, and

$$u : \mathcal{G} \to Aut(P) = \Gamma(X, P \times_{Ad} K)$$

a morphism of Lie groups. It is important that u is not supposed to be surjective; in many interesting examples \mathcal{G} is the subgroup of $Aut(P)$ associated with a normal subgroup of K.

Definition 2.10. A smooth \mathcal{G}-equivariant family of connections on P is a smooth map $a : \mathcal{C} \to \mathcal{A}(P)$ given by a family $(A_c)_{c \in \mathcal{C}}$ such that

$$A_{gc} = u(g)_\ast (A_c) \ \forall g \in \mathcal{G} \ \forall c \in \mathcal{C} .$$

Examples: 1. Let E, E_0 be Hermitian vector bundles or rank r, r_0 on X and A_0 a fixed connection on A_0. A pair of type (E, E_0) is a pair (A, φ) consisting of a Hermitian connection on E and a section $\varphi \in A^0(X, E^\vee \otimes E_0)$. In [OT2] we gave a gauge theoretical construction of certain Quot spaces. In this construction we used as configuration space the space of irreducible pairs of type (E, E_0), i.e., the subspace of pairs $(A, \varphi) \in \mathcal{A}(E) \times A^0(X, E^\vee \otimes E_0)$ with trivial stabilizer with respect to the gauge group $\mathcal{G} := \Gamma(X, U(E))$.

In this case we have $K = U(r) \times U(r_0)$, $P := P_E \times_X P_{E_0}$ is the product of the frame bundles associated with E and E_0, and u is the obvious embedding of \mathcal{G} in $Aut(P)$. The map a sends a pair (A, φ) to the product connection $A \times A_0$. The configuration space and gauge group of the classical vortex equation is obtained
as special case of this construction taking \((E_0, A_0)\) to be the trivial Hermitian line bundle endowed with the trivial connection.

2. With the same notations as above let now \(a_0\) be a fixed connection on the determinant \(U(1)\)-bundle \(\text{det}(E)\). We denote by \(A_{a_0}(E)\) the space of \(a_0\)-oriented connections on \(E\), i.e., the space of Hermitian connections on \(E\) inducing \(a_0\) on \(\text{det}(E)\). In the theory of master spaces [OT] one considers as configuration space the space of irreducible \(a_0\)-oriented pairs of type \((E, E_0)\), i.e., the subspace of pairs \((A, \varphi) \in A_{a_0}(E) \times \Gamma(X, E^\nu \otimes E_0)\) with trivial stabilizer with respect to the natural action of the gauge group \(G := \Gamma(X, SU(E))\).

Put \(\mathcal{P} := \mathcal{C} \times P\) and note that the projection \(\pi : \mathcal{P} \to \mathcal{C} \times X\) is a principal \(K\)-bundle. We define left \(G\)-actions on \(\mathcal{C} \times X\) and \(\mathcal{P}\) by

\[
g(c, x) := (gc, x), \quad g(c, p) := (gc, u(g)(p)) .
\]

The bundle \(\mathcal{P}\) comes with a tautological connection \(\mathfrak{A}\) whose horizontal space at a point \((c, p) \in \mathcal{P}\) is \(T_c \mathcal{C} \times \Gamma_P\). In other words \(\mathfrak{A}\) agrees with the trivial (product) connection in the \(c\) direction (in which \(\mathcal{P}\) is trivial), and for every \(c \in \mathcal{C}\) its restriction to \(\{c\} \times P\) coincides with \(A_c\). Consider points \(c \in \mathcal{C}, x \in X, p \in P_x\) and tangent vectors \(\alpha_1, \alpha_2 \in T_c \mathcal{C}, v_1, v_2 \in T_x X\). Denote by \(\tilde{v}_1, \tilde{v}_2 \in T_p P\) the \(A_c\)-horizontal lifts of \(v_1, v_2\). Then one has

\[
\Omega_{\mathfrak{A}}((\alpha_1, \tilde{v}_1), (\alpha_2, \tilde{v}_2)) = \Omega_{A_c}(\tilde{v}_1, \tilde{v}_2) + \iota_{\tilde{v}_2} a_+ (\alpha_1) - \iota_{\tilde{v}_1} a_+ (\alpha_2) .
\]

The equivariance property [13] implies that \(\mathfrak{A}\) is \(G\)-invariant. On the other hand, the fixed connection \(\Gamma_0\) on the principal \(G\)-bundle \(C \to \mathcal{B}\) defines a connection \(\Gamma\) on the principal \(G\)-bundle \(\mathcal{C} \times X \to \mathcal{B} \times X\), whose horizontal distribution is given by \(\Gamma_{c,x} := \Gamma_{0,c} \otimes T_x X\). The curvature of \(\Gamma\) is

\[
\Omega_{\Gamma}((\alpha_1, v_1), (\alpha_2, v_2)) = \Omega_{\Gamma_0}((\alpha_1, \alpha_2)) \quad \forall \alpha_1, \alpha_2 \in \Gamma_{0,c}, \quad \forall v_1, v_2 \in T_x X .
\]

Denote by \(\mathfrak{P}\) the quotient bundle \(\mathfrak{P} := \mathfrak{P}/\mathfrak{A}\) on the quotient manifold \(\mathcal{B} \times X\). As explained in section 2.1 the connection \(\Gamma\) can be used to define the quotient connection \(\mathfrak{A} = \mathfrak{A}/\mathcal{P}\) on the quotient bundle \(\mathfrak{P}: \mathfrak{P} \to \mathcal{B} \times X\), whose curvature is given by Proposition 2.22. In order to write down explicitly this curvature, we need an explicit formula for the second term of the right hand side in (17).

Remark 2.11. Let \(\nu \in \text{Lie}(G), u_* (\nu) \in A^0 (P \times \text{ad} \mathfrak{k})\) the corresponding infinitesimal automorphism of \(P\), \(\nu^\#\) the induced vector field on \(\mathfrak{P} = \mathcal{C} \times P\), and let \(p = (c, p) \in \mathfrak{P}\). Then

\[
\theta_{\mathfrak{A}}(\nu^\#_{\mathfrak{P}, p}) = u_* (\nu)_p ,
\]

where on the right \(u_* (\nu)\) has been regarded as a \(K\)-equivariant map \(P \to \mathfrak{k}\) and \(u_* (\nu)_p \in \mathfrak{k}\) is the value of this map at \(p\).

Proof. Indeed, \(\nu^\#_{\mathfrak{P}, p} = (\nu_{c,c}^\#, u_* (\nu)_p^\#) = (\nu_{c,c}^\#, (u_* (\nu)_p)^\#)\). Since \((\nu_{c,c}^\#, 0)\) is \(\mathfrak{A}\)-horizontal and \(\theta_{\mathfrak{A}}\) agrees with the connection form \(\theta_{A_c}\) on \(\{c\} \times P\), the claim follows from the properties of a connection form. \(\blacksquare\)

Applying Proposition 2.22 to our situation we get
Proposition 2.12. Let $c \in C$, $[c]$ its image in B. Let $a_1, a_2 \in T([c])B$, and denote by α_i the corresponding Γ_0-horizontal lifts. Consider points $x \in X$, $p \in P$, tangent vectors v_1, $v_2 \in T_pX$, and let $\tilde{v}_i \in \Gamma_{A_c}^p$ be their A_c-horizontal lifts. Put

$$\xi_i := (a_i, v_i) \in T([c], x)(B \times X)$$

and denote by $\tilde{\xi}_i \in T([c], p)P$ their Λ-horizontal lifts. Then

$$\Omega_\Lambda(\tilde{\xi}_1, \tilde{\xi}_2) = \Omega_{A_c}(\tilde{v}_1, \tilde{v}_2) + \iota_{v_2}a_\ast(\alpha_1) - \iota_{v_1}a_\ast(\alpha_2) + \{u_\ast \Omega_{\Gamma_0}(\alpha_1, \alpha_2)\}_p.$$

Proof. Indeed, Proposition 2.2 together with Remark 2.11 gives

$$\Omega_\Lambda(\tilde{\xi}_1, \tilde{\xi}_2) = \Omega_{A_c}(\alpha_1, v_1, \alpha_2, v_2) + \theta_{A_c}(\Omega_{\Gamma_0}((\alpha_1, v_1), (\alpha_2, v_2))) = \Omega_{A_c}(\alpha_1, v_1, \alpha_2, v_2) + \{u_\ast \Omega_{\Gamma_0}((\alpha_1, v_1), (\alpha_2, v_2))\}_p.$$

Now use (19) and (20).

As a corollary we obtain the following formula which computes characteristic forms of degree 2 of the connection Λ.

Corollary 2.13. Let $h : \frak{\mathfrak{e}} \times \frak{\mathfrak{e}} \to \mathbb{R}$ be an ad-invariant symmetric bilinear form. Let $c \in C$, $x \in X$, $p \in P$, $a_1, a_2 \in T_{[c]}B$, $v_1, v_2 \in T_pX$, and let $\alpha_i \in \Gamma_{[c], v_i}$, $v_i \in \Gamma_{A_c}^p$ be horizontal lifts of α_i, v_i with respect to the connections Γ_0, A_c respectively. Denote by $h(\Omega_\Lambda \wedge \Omega_\Lambda) \in A^4(B \times X)$ the characteristic form obtained from Ω_Λ by coupling the wedge square with h. Then:

$$-\frac{1}{2}h(\Omega_\Lambda \wedge \Omega_\Lambda)(\alpha_1, \alpha_2, v_1, v_2) = h(a_\ast(\alpha_1) \wedge a_\ast(\alpha_2))(v_1, v_2) - h(u_\ast \Omega_{\Gamma_0}(\alpha_1, \alpha_2), \Omega_{A_c})(\tilde{v}_1, \tilde{v}_2).$$

Proof. See [DK, LT2].

Note that the term $h(u_\ast \Omega_{\Gamma_0}(\alpha_1, \alpha_2), \Omega_{A_c})(\tilde{v}_1, \tilde{v}_2)$ is independent of the choice of p in the fibre P, so we can omit the symbol p in this expression and write $h(u_\ast (\Omega_{\Gamma_0}(\alpha_1, \alpha_2), \Omega_{A_c}))(v_1, v_2)$. With this convention the formula above yields the following identity in $A^2(X)$:

$$\frac{1}{2}h(\Omega_\Lambda \wedge \Omega_\Lambda)(\alpha_1, \alpha_2)\big|_{([c]) \times X} = h(a_\ast(\alpha_1) \wedge a_\ast(\alpha_2)) - h(u_\ast \Omega_{\Gamma_0}(\alpha_1, \alpha_2), \Omega_{A_c}).$$

Let now be F be a differentiable manifold endowed with a left K-action and let $E := P \times_K F$ be the associated bundle with fibre F. Let $(\varphi_c)_{c \in C}$ be a G-equivariant family of sections in E parameterized by our configuration space C, i.e., a smooth map $\phi : C \to \Gamma(X, E)$ such that

$$\varphi_{gc} = u(g)_\ast(\varphi) \quad \forall g \in G, \forall c \in C.$$

Here we denote by $u(g)_\ast : \Gamma(X, E) \to \Gamma(X, E)$ the push-forward map associated with g. Identifying sections in E with the corresponding K-equivariant maps $P \to F$, we can write

$$u(g)_\ast(\varphi) = \varphi \circ g^{-1}.$$

Note that such a family ϕ defines a G-invariant, K-equivariant map $C \times P \to F$ given by $(c, p) \mapsto \varphi_c(p)$. This map descends to a K-equivariant map $\mathbb{P} = C \times P/G \to F$, i.e., to a section Φ in the universal F-bundle $\mathbb{E} := \mathbb{P} \times_K F$ over $B \times X$, which will be called the universal section of the family.
Suppose now that ω_F is a symplectic form on F, the K-action on F is symplectic and admits a moment map $\mu_F : F \to \mathfrak{g}^\vee$.

By Proposition 2.13 applied to the universal section Φ and the quotient connection \mathcal{A} on the principal K-bundle $\tilde{\pi} : \mathbb{P} \to \mathcal{B} \times X$ it follows that the basic form

$$\{ \Phi^*(\omega_F) - (\mu_F \circ \Phi, \Omega_h) \}^h$$

is closed and represents the cohomology class

$$H_K(\tilde{\pi})^{-1} \circ H_K(\Phi)([\omega_F - \mu_F]_C) \in H^2_{BR}(\mathcal{B} \times X).$$

Let $\eta = \eta(\phi, \omega_F, \mu_F) \in Z^2_{DR}(\mathcal{B} \times X)$ be the closed form on $\mathcal{B} \times X$ which corresponds to this basic form. For tangent vectors $a_i \in T_{[c]}\mathcal{B}$, horizontal lifts $\alpha_i \in \Gamma_{0,c}$ of a_i, and $p \in P$ we have

$$\eta(\{[c],z\}(a_1,a_2) = \omega_F(\Phi_{s}(\alpha_1),\Phi_{s}(\alpha_2)) - (\mu_F(\varphi_{c}(p)),u_*\Omega_{\Gamma_U}(\alpha_1,\alpha_2)p). \tag{23}$$

For a fixed point $x \in X$ the term $(\mu(\varphi_{c}(p)), u_*\Omega_{\Gamma_U}(\alpha_1,\alpha_2)p)$ is independent of the choice of $p \in P_x$, so we can omit the symbol p and interpret the expression $(\mu(\varphi_{c}), u_*\Omega_{\Gamma_U}(\alpha_1,\alpha_2))$ as a smooth function on X. With this convention, formula (23) above becomes

$$\eta(\{[c],z\}X = \omega_F(\Phi_{s}(\alpha_1),\Phi_{s}(\alpha_2)) - (\mu_F(\varphi_{c}), u_*\Omega_{\Gamma_U}(\alpha_1,\alpha_2)). \tag{24}$$

Now we fix forms $w \in A^{d-2}(X)$, $v \in A^d(X)$, and a K-invariant symmetric bilinear form h on \mathfrak{k}. Define G-invariant closed 2-forms $\omega_v, \omega_w \in A^2(\mathfrak{g})$ by

$$\omega_w(\alpha_1,\alpha_2) := \int_X h(a_1, a_2) \wedge w, \quad \omega_v(\alpha_1,\alpha_2) := \int_X \omega_F(\Phi_{s}(\alpha_1),\Phi_{s}(\alpha_2))v. \tag{22}$$

The horizontal projections ω_w^h, ω_v^h with respect to the connection Γ are basic forms on the G-bundle $\mathcal{C} \to \mathcal{B}$, so they can be interpreted as 2-forms on the base \mathcal{B} of this bundle. Note that general these forms are not closed.

We define $\mu_{v,w} : \mathcal{C} \to \text{Lie}(G)^\vee$ by

$$\langle \mu_{v,w}(c), s \rangle := \int_X h(u_{*}(s), \Omega_{A_*} \wedge w) + \langle \mu_F(\varphi_{c}), u_{*}(s) \rangle v. \tag{23}$$

When w is closed, this map satisfies the axioms of a moment map for the G-action on \mathcal{C} with respect to the closed form $\omega_{v,w} := \omega_w + \omega_v$ which of course can be degenerate in general.

Denote by $p_{B*} : A^*(\mathcal{B} \times X) \to A^*(\mathcal{B})$ fibre integration associated with the projection $p_B : \mathcal{B} \times X \to \mathcal{B}$. Using formulae (22), (24) and the definition of $\mu_{v,w}$ we obtain the following important identity:

$$\omega_{v,w}^h = p_{B*}\left[-\frac{1}{2}h(\Omega_h \wedge \Omega_h) \right] p_X^*(w) + \eta \wedge p_X^*(v) + p_{B*}(\mu_{v,w}, \Omega_{\Gamma_U}). \tag{25}$$

This proves:

Theorem 2.14. The restriction of the form $\omega_{v,w}^h$ to the quotient $\mathcal{N} := Z(\mu_{v,w})/G$ is closed and is given by

$$\omega_{v,w}^h|_\mathcal{N} = p_{\mathcal{N}*}\left[-\frac{1}{2}h(\Omega_h \wedge \Omega_h) \right] p_X^*(w) + \eta \wedge p_X^*(v).$$
By Corollary 2.4 we know that the form η is exact when the moment map μ_F is exact. Hence:

Corollary 2.15. Suppose w is closed, $\mu_F = \mu_0 + \tau$, where μ_0 is exact and $\tau \in \mathfrak{k}^{\vee}$ is K-invariant. The one has

$$[\omega^k_{\mathfrak{c}, w}|_N] = p_N^* \left[-\frac{1}{2} [h(\Omega_\mathfrak{k} \wedge \Omega_\mathfrak{k}) \cup p_X^* [w] - [\tau(\Omega_\mathfrak{k})] \cup p_X^* [v]] \right]$$

in $H^2_{\text{DR}}(N)$.

Note that each term of the right hand side of this formula can be written as the slant product of a characteristic class of the bundle P with a homology class of X.

3. Applications

3.1. Kähler forms of canonical Hermitian metrics and tautological classes.

3.1.1. The general setting. We now apply the results obtained in section 2.4 to the families of connections and sections associated with the universal gauge theoretical problem introduced in section 1. We will obtain the main theorems Theorem 3.1 and Theorem 3.2 stated in the introduction as corollaries of Theorem 2.14 above.

Let $r : K \to K_0$ be an epimorphism of compact Lie groups with kernel N. Fix a K-invariant product k on \mathfrak{k} and denote by $p_n : \mathfrak{k} \to n$ the k-orthogonal projection onto the Lie algebra \mathfrak{n} of N. The symmetric bilinear form $h : \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$ defined by

$$h(x, y) := k(p_n(x), p_n(y))$$

is K-invariant and non-degenerate on \mathfrak{n}. Suppose we are given a left K-action on a Kähler manifold (F, J_F, g_F) by holomorphic isometries, and a moment map μ_F for this action on the corresponding symplectic manifold (F, ω_F). We denote by $m_F : F \to \mathfrak{k}$ the \mathfrak{k}-valued map defined by $\mu_F = k(m_F, \cdot)$.

Let now (X, J, g) be a n-dimensional Kähler manifold, $\pi : P \to X$ a principal K-bundle on X and $P_0 := P \times_K K_0$ the associated K_0-bundle. We fix a connection $A_0 \in \mathcal{A}(P_0)$ of type $(1,0)$ (our “orientation data”).

Let $E := P \times_K F$ be the associated bundle with fiber F. The gauge group of our moduli problem is

$$\mathcal{G} := \Gamma(X, P \times_K N)$$

and acts from the left on the space of A_0-oriented pairs $\mathcal{A}_{A_0}(P) \times \Gamma(X, E)$. This space has a natural Kähler metric depending on the triple (k, g, g_F) whose Kähler form is given by the formula (LT2 p. 66):

$$\Omega((\alpha, \psi), (\beta, \chi)) := \int_X h(\alpha \wedge \beta) \wedge \omega_g^{n-1} + (n-1)! \int_X \omega_F(\psi, \chi) \text{vol}_g .$$

In order to avoid technical problems we will concentrate on the configuration space of irreducible oriented pairs. Let $\mathcal{C}^* := [\mathcal{A}_{A_0}(P) \times \Gamma(X, E)]^*$ be the open subspace of irreducible oriented pairs, i.e., of pairs $(A, \varphi) \in \mathcal{A}_{A_0}(P) \times \Gamma(X, E)$ with trivial stabilizer with respect to the \mathcal{G}-action. After suitable Sobolev completions the projection $\mathcal{C}^* \to \mathcal{B}^* := \mathcal{C}^*/\mathcal{G}$ becomes a principal \mathcal{G}-bundle. We endow this bundle with the connection Γ_0 defined by L^2-orthogonality to the \mathcal{G}-orbits\footnote{The construction can be extended to the non-Kählerian framework and yields a strongly KT Hermitian metric on the moduli space, but one has to use a different connection Γ_0 [LT1, LT2].}.
Note that we have a tautological family \((A_c)_{c \in C^*}\) of connections, and a tautological family \((\varphi_c)_{c \in C^*}\) of sections parameterized by \(C^*\). The corresponding maps \(a, \phi\) are given by the projections onto the two factors.

The gauge theoretical moduli space \(\mathcal{M}^*\) corresponding to the data above is the space of equivalence classes of pairs \((A, \varphi) \in C^*\) satisfying the generalized vortex equations
\[
\left\{ \begin{array}{l}
F^0_{A} = 0 \\
p_n F_A + m_F(\varphi) = 0
\end{array} \right. \quad (V)
\]
In the third equation we used the same symbol for the bundle epimorphism \(P \times_K T \to P \times_K n\) induced by \(p_n : T \to n\).

Taking \(w = \omega_g^{n-1}\) and \(v = (n-1)! \text{vol}_g = \frac{1}{n} \omega_g^n\), we obtain for \(s \in \text{Lie}(G) = A^0(P \times_K n)\)
\[
\langle \mu_{v,w}(A, \varphi), s \rangle = \int_X h(s, F_A \wedge \omega_g^{n-1}) + (n-1)! \langle \mu_F(\varphi), s \rangle \text{vol}_g
\]
\[
= \int_X h(s, F_A \wedge \omega_g^{n-1}) + (n-1)! k(s, m_F(\varphi)) \text{vol}_g
\]
\[
= (n-1)! \int_X \{ h(s, p_n A_g) + k(s, p_n (m_F(\varphi))) \} \text{vol}_g
\]
\[
= (n-1)! \int_X \{ h(s, p_n A_g) + h(s, p_n (m_F(\varphi))) \} \text{vol}_g
\]
This shows that the third equation in \((V)\) is equivalent to the vanishing of the moment map \(\mu_{v,w}\) introduced above. On the other hand, using the fact that the restriction of \(h\) to \(n \times n\) is an inner product one can prove easily that the restriction of the form \(\omega_{v,w}^h\) on \(\mathcal{M}^*\) is non-degenerate. This form coincides with the Kähler form of the standard Hermitian metric \(g_{\mathcal{M}^*}\) on \(\mathcal{M}^*\) associated with the pair \((h|_{n \times n}, g_F)\) (see [1.1.2]). Therefore, using Theorem 2.1.1 and Corollary 2.1.5 we obtain

Theorem 3.1. The canonical Hermitian metric on \(\mathcal{M}^*\) is Kähler and its Kähler form is
\[
\omega_{\mathcal{M}^*} = p_{\mathcal{M}^*,*} \left[-\frac{1}{2} [h(\Omega_{\mathcal{A}} \wedge \Omega_{\mathcal{A}})] \wedge p_{\mathcal{X}}^* (\omega_g^{n-1}) + (n-1)! \eta \wedge p_{\mathcal{X}}^* (\text{vol}_g) \right],
\]
with \(\eta := \{ \Phi^* (\omega_F) - \langle \mu_F \circ \Phi, \Omega_{\mathcal{A}} \rangle \}^h\), which is a closed 2-form. If \(\mu_F\) can be written as \(\mu_F = \mu_0 + \tau\), where \(\mu_0\) is an exact moment map and \(\tau \in \mathfrak{k}^*\) is \(K\)-invariant, then the de Rham cohomology class \([\omega_{\mathcal{M}^*}]_{\text{DR}}\) is given by
\[
[\omega_{\mathcal{M}^*}]_{\text{DR}} = p_{\mathcal{M}^*,*} \left[-\frac{1}{2} [h(\Omega_{\mathcal{A}} \wedge \Omega_{\mathcal{A}})] \cup p_{\mathcal{X}}^* [\omega_g]^{n-1} - (n-1)! [\tau(\Omega_{\mathcal{A}})] \cup p_{\mathcal{X}}^* [\text{vol}_g] \right].
\]

Note that, by formula \((23)\) the term \(\tau(\Omega_{\mathcal{A}})\) coincides with \(\tau(\Omega_{\Gamma_0})\), hence this term depends only on the restriction \(\tau|_{\mathfrak{k}}\).
Theorem 3.2. Let \(F \) be a Hermitian vector space, and \(\rho : K \to \text{U}(F) \) a unitary representation. For a \(K \)-invariant linear form \(\tau \in \mathfrak{k}^\vee \) put \(\mu_F := \mu_0 + \tau \), where \(\mu_0 \) is the standard moment map for the \(K \)-action on \(F \).

Suppose there exists a \(K \)-invariant element \(a_0 \in \mathfrak{n} \) such that \(\rho_\ast(a_0) = \text{id}_F \). Then the Kähler form \(\omega_M^* \) is given by

\[
\omega_M^* = p_{M^\ast,\ast} \left[-\frac{1}{2} h(\Omega_A \wedge \Omega_A) \wedge p_X^\ast(\omega_g)^{n-1} - (n-1)! \tau(\Omega_A) \wedge p_X^\ast(\text{vol}_g) \right],
\]

hence it coincides with fiber integration of a characteristic form of the connection \(\mathcal{A} \) on the universal bundle \(\mathcal{P} \).

Proof. Since \(\mu_F = \mu_0 + \tau \) and the form \(\eta \) depends linearly on \(\mu_F \) one has

\[
\omega_M^* - p_{M^\ast,\ast} \left[-\frac{1}{2} h(\Omega_A \wedge \Omega_A) \wedge p_X^\ast(\omega_g)^{n-1} - (n-1)! \tau(\Omega_A) \wedge p_X^\ast(\text{vol}_g) \right]
= (n-1)! p_{M^\ast,\ast} (\eta_0 \wedge p_X^\ast(\text{vol}_g)),
\]

where

\[
\eta_0 = \{ \Phi^\ast(\omega_F) - \langle \mu_0 \circ \Phi, \Omega_A \rangle \}^h.
\]

By Corollary 2.8 we obtain on \(B^* \times X \) the identity

\[
\eta_0 = \frac{1}{4} dd^c |\Phi|^2,
\]

where the universal section \(\Phi \) has been regarded as a section in the Hermitian vector bundle \(E := \mathcal{P} \times_K F \) on \(B^* \times X \). Therefore it suffices to prove that

\[
p_{M^\ast,\ast} (dd^c |\Phi|^2 \wedge p_X^\ast(\text{vol}_g)) = 0.
\]

Since the operators \(d,\ d^c \) commute with the fibre integration associated with a holomorphic map we have

\[
p_{M^\ast,\ast} (dd^c |\Phi|^2 \wedge p_X^\ast(\text{vol}_g)) = dd^c \left\{ p_{M^\ast,\ast} (|\Phi|^2 \wedge p_X^\ast(\text{vol}_g)) \right\}.
\]

Since \(a_0 \in \mathfrak{n} \) is \(K \)-invariant by assumption, it defines a section \(\tilde{a}_0 \in A^0(P \times_K \mathfrak{n}) \). Taking the \(L^2 \) inner product of the third equation in (V) with \(\tilde{a}_0 \) we compute

\[
0 = \langle A F_A, \tilde{a}_0 \rangle_{L^2} + \langle m_0(\varphi), \tilde{a}_0 \rangle_{L^2} + \tau(a_0) \text{Vol}_g.
\]

The first term is a characteristic number of \(P \), so is a constant. On the other hand by formula (17) we obtain:

\[
\langle m_0(\varphi), \tilde{a}_0 \rangle_{L^2} = -\frac{1}{2} \int_X |\varphi|^2 \text{vol}_g.
\]

This implies that the map

\[
[A, \varphi] \mapsto \int_X |\varphi|^2
\]

is constant on \(M \). But this map coincides with \(p_{M^\ast,\ast} (|\Phi|^2 \wedge p_X^\ast(\text{vol}_g)) \).

\[\blacksquare\]
Remark 3.4. Let \((B, s) \in \mathcal{A}(E) \times A^0(\text{Hom}(E, E_0)) \) solving the \(t \)-vortex equation:

\[
\begin{align*}
F^2_B &= 0 \\
\overline{\partial}_{B,A,s} s &= 0 \\
i \Lambda F_A - \frac{1}{2} s^* \circ s + \text{tr} E &= 0
\end{align*}
\]

modulo the gauge group \(\mathcal{G} := \Gamma(X, U(E)) \). This moduli problem can be obtained as a special case of the universal moduli problem (V) considered in Theorem 3.2 by taking \(K = U(r) \times U(r_0), N = U(r), F := \text{Hom}(C^r, C^{r_0}) \) with the obvious unitary representation \(\rho : K \to U(F) \), with bundle \(P := P_E \times_X P_{E_0} \), and moment map

\[
m_F(f) = \left(\frac{i}{2} f^* \circ f - i \text{id}_{C}, \right)
\]

Note that the space \(\mathcal{A}_{A_0}(P) \) can be identified with the space \(\mathcal{A}(E) \) of Hermitian connections on \(E \). We put \(C^*: = [\mathcal{A}(E) \times A^0(\text{Hom}(E, E_0))]^* \) and use the quotient construction to define a universal connection \(\mathcal{B} \) on the universal vector bundle

\[
\mathcal{E} := C^* \times E / \mathcal{G}
\]

over \(\mathcal{B} \times X \).

We use the standard inner product \(k((a, a_0), (b, b_0)) = -\text{Tr}(ab) - \text{Tr}(a_0b_0) \) on \(u(r) \oplus u(r_0) \). With this choice we get \(h((a, a_0), (b, b_0)) = -\text{Tr}(ab) \) and \(\mu_F = \mu_0 + \tau \), where \(\tau(a, a_0) = i\text{Tr}(a) \). This yields

\[
\tau(\Omega) = 2\pi t c_1(\mathcal{B}) + h(\Omega \wedge \Omega) = -\text{Tr}(\Omega \wedge \Omega) = 4\pi^2 c_1(\mathcal{B})^2 - 2c_2(\mathcal{B}) = 8\pi^2 c_2,
\]

where \(c_2 := \frac{1}{2} c_1^2 - c_2 \) stands for the second component of the Chern character. Theorem 3.2 gives

Proposition 3.3. The natural Kähler form on the moduli space

\[
\mathcal{M}_t^* = \mathcal{M}_t^*(E, E_0, A_0)
\]

of irreducible solutions of \((V_t) \) is given by

\[
(26) \quad \omega_{\mathcal{M}_t^*} = p_{\mathcal{M}_t^*} \left[-4\pi^2 c_2(\mathcal{B}) \wedge p_X^*(\omega^{n-1}) - 2t\pi(n-1)c_1(\mathcal{B}) \wedge p_X^*(\text{vol}_g) \right],
\]

where \(\mathcal{B} \) denotes the universal connection on the universal bundle \(\mathcal{E} := C^* \times E / \mathcal{G} \) on \(\mathcal{M}_t^* \times X \).

Remark 3.4. Let \(\mathcal{L}_0 \) be a holomorphic line bundle on \(X \) of Chern class \(l_0 \in \text{NS}(X) \), \(\chi_0 \) a Hermite-Einstein metric on \(\mathcal{L}_0 \), \(a_0 \) the corresponding Hermite-Einstein connection on the Hermite line bundle \((L_0, \chi_0) \), and \(\gamma_0 \) the first Chern form of \(a_0 \). Then the moduli spaces \(\mathcal{M}_t^*(E, E_0, A_0) \) and \(\mathcal{M}_{t-2\pi l_0(0)}^*(E \otimes L_0, E_0 \otimes L_0, A_0 \otimes a_0) \) can be identified via the map \([B, s] \mapsto [B \otimes a_0, s \otimes id_{L_0}] \) and the Kähler forms given by formula (26) correspond via this identification.

Proof. Let \(C^*, \tilde{C}^* \) be the configuration spaces of irreducible pairs associated with the two data systems \((E, E_0), (E \otimes L_0, E_0 \otimes L_0)\) respectively, \(\mathcal{B}^*, \tilde{\mathcal{B}}^* \) the corresponding quotients, \(\mathcal{E} \to \mathcal{B}^* \times X, \tilde{\mathcal{E}} \to \tilde{\mathcal{B}}^* \times X \) the corresponding universal bundles, and \(\mathcal{B}, \tilde{\mathcal{B}} \) the corresponding universal connections. Using the formula

\[
i \Lambda F_{B \otimes a_0} = i \Lambda F_B + 2\pi \Lambda \gamma_0
\]
we see that the map $j : C^* \to \tilde{C}^*$ given by $j(B, s) = (B \otimes a_0, s \otimes id_{L_0})$ maps the space of solutions of the equation $(V_t(E, E_0, A_0))$ bijectively onto the space of solutions of the equation $(V_{t-2\pi A_0}(E \otimes L_0, E_0 \otimes L_0, A_0 \otimes a_0))$. We have
\[(|j| \times id_X)^*(\tilde{E}) = \mathbb{E} \otimes p_X^*(L_0), \quad (|j| \times id_X)^*(\tilde{B}) = \mathbb{B} \otimes p_X^*(a_0),\]
\[(|j| \times id_X)^*(c_1(\tilde{B})) = c_1(\mathbb{B}) + rp_X^*(\gamma_0),\]
\[(|j| \times id_X)^*(2c_2(\tilde{B}) - c_1^2(\tilde{B})) = (2c_2(\mathbb{B}) - c_1^2(\mathbb{B})) - 2c_1(\mathbb{B}) \wedge p_X^*(\gamma_0) - rp_X^*(\gamma_0^2).\]
The statement follows now by direct computation.

Let $\tilde{A}(E)$ be the space of semi-connections on $E, \tilde{C}^* := [\tilde{A}(E) \times A^0(\text{Hom}(E, E_0))]^s$ the space of \textit{simple pairs} of type (E, E_0) endowed with the natural action of the complex gauge group $G^C := \Gamma(X, GL(E))$, and \tilde{B}^* the quotient
\[\tilde{B}^* := \tilde{C}^*/G^C\]
(see [OT2] p. 559 for details). After suitable Sobolev completions (which will again be omitted) this quotient becomes an infinite dimensional complex space. As in the real gauge theoretical framework we obtain a universal bundle
\[\mathcal{S} := \tilde{B}^* \times X\]
of rank r on the product $\tilde{B}^* \times X$. Fixing a holomorphic structure \mathcal{E}_0 on E_0 we obtain a finite dimensional complex subspace
\[\mathcal{M}^s = \mathcal{M}^s(E, E_0) \subset \tilde{B}^*,\]
called the moduli space of simple holomorphic pairs of type (E, \mathcal{E}_0) and the restriction of \mathcal{S} to $\mathcal{M}^s \times X$ is holomorphic.

Choosing \mathcal{E}_0 to be the holomorphic structure on E_0 defined by the semi-connection $\tilde{\partial}_{A_0}$, we obtain a map $KH : \mathcal{B}^* \to \tilde{B}^*$ induced by $(B, s) \mapsto (\mathcal{E}_{\tilde{\partial}_{B}}, s : \mathcal{E}_{\tilde{\partial}_{B}} \to \mathcal{E}_0)$.

Note that one has an obvious isomorphism
\[(KH \times id_X)^*(\mathcal{S}) \cong \mathbb{E}\]
and an obvious inclusion $KH(\mathcal{M}^s_1) \subset \mathcal{M}^s_0$. The image of this inclusion is given by the Kobayashi-Hitchin correspondence for twisted holomorphic pairs (see Theorem 2.7 [OT2]):

\[\textbf{Theorem 3.5.} \text{ The map } (B, s) \mapsto (\mathcal{E}_{\tilde{\partial}_{B}}, s : \mathcal{E}_{\tilde{\partial}_{B}} \to \mathcal{E}_0) \text{ induces a real analytic isomorphism } \]
\[KH : \mathcal{M}^s_0(E, E_0, A_0) \cong \mathcal{M}^s_1(E, \mathcal{E}_0) \text{ onto the moduli space of t-stable pairs of type } (E, \mathcal{E}_0) \text{ with } t := \frac{\text{Vol}(X)}{4\pi}.\]

In order to save on notations we will denote by the same symbol ω_t the Kähler form $\omega_{\mathcal{M}^s_1}$ defined above and also its image under the isomorphism KH.

Let $G \to \text{Aut}(\mathcal{E}_0)$ be a morphism of Lie groups. Then G acts naturally on the space $\tilde{A}(E) \times A^0(\text{Hom}(E, E_0))$ of pairs of type (E, \mathcal{E}_0) leaving invariant the holomorphy, the simplicity, and the t-stability conditions. Since this action commutes with the action of the complex gauge group G^C, it induces a G-action on \tilde{B}^* leaving invariant the finite dimensional subspaces \mathcal{M}^s and $\mathcal{M}^s_1(E, \mathcal{E}_0)$.

Our Proposition 3.3 combined with the Kobayashi-Hitchin correspondence given by Theorem 3.5 and the isomorphism (27) has an important consequence: the Kähler class \(\omega_t \) has a natural lift in equivariant cohomology.

Theorem 3.6. For any morphism of Lie groups \(G \to \text{Aut}(E_0) \) the class

\[
\{-4\pi^2c_1^G(\mathcal{E}) \cup p_X^*[\omega_t^{n-1}] - 2t\pi(n-1)c_t^G(\mathcal{E}) \cup p_X^*[\text{vol}_g]\}/[X]
\]

is a lift of the Kähler class \([\omega_t] \) to \(H^2_T(M^*_t(E,E_0)) \).

Proof. Put \(M^*_t := M^*_t(E,E_0) \). Using the trivial action on the second factor the product \(M^*_t \times X \) becomes a \(G \)-space, and one has natural isomorphisms

\[
H^*_G(M^*_t \times X,\mathbb{R}) \cong H^*_G((EG \times_G M^*_t) \times X,\mathbb{R}) \cong H^*_G(M^*_t,\mathbb{R}) \otimes H^*(X,\mathbb{R}).
\]

Therefore the slant product with the fundamental class \([X]\) is well defined on both cohomology algebras \(H^*_G(M^*_t \times X,\mathbb{R}) \), \(H^*_G(M^*_t,\mathbb{R}) \), and defines a commutative diagram

\[
\begin{array}{c}
H^*_G(M^*_t \times X,\mathbb{R}) \longrightarrow H^1(M^*_t \times X,\mathbb{R}) \\
/[X] \bigg\downarrow \quad \quad \\nH^*_G(M^*_t,\mathbb{R}) \longrightarrow H^j(\mathbb{R})
\end{array}
\]

for any \(j \in \mathbb{N} \). Since the equivariant Chern classes \(c_k^G(\mathcal{E}) \) are lifts of the classes \(c_k(\mathcal{E}) \) to equivariant cohomology, and fiber integration \(p^*_M \) induces the morphism \([X]\) in de Rham cohomology, the result follows from formula (26).

\[\blacksquare\]

In [OT2] we have also shown that, for sufficiently large \(t \), the moduli space \(M^*_t(E,E_0) \) can be identified with the Quot space \(\text{Quot}^E_{E_0} \) of quotients of \(E_0 \) with locally free kernel of \(C^\infty \)-type \(E \).

Remark 3.7. The natural identification \(M^*_t(E,E_0) = \text{Quot}^E_{E_0} \) (for \(t \gg 0 \)) is equivariant with respect to the \(\text{Aut}(E_0) \)-actions on the two spaces. Via this identification the restriction of the universal bundle \(\mathcal{E} \) to \(\text{Quot}^E_{E_0} \times X \) coincides (as an \(\text{Aut}(E_0) \)-bundle) with the universal bundle associated with this Quot space.

In order to save on notations we denote the restrictions of the universal bundles \(\mathcal{E} \) and \(E \) to \(M^*_t(E,E_0) \times X \) and \(M^*_t(E,E_0,A_0) \times X \) respectively by the same symbols. Using Theorem 3.5 and the isomorphism (27) we obtain

Remark 3.8. Suppose that \(t \) is sufficiently large such that the isomorphism \(KH \) defines a real analytic isomorphism

\[
K : M^*_t(E,E_0,A_0) \to \text{Quot}^E_{E_0}.
\]

Via this isomorphism the underlying \(C^\infty \)-bundle of the pull-pack of the universal kernel \(\mathcal{E} \) on \(\text{Quot}^E_{E_0} \times X \) can be identified with the universal bundle \(E \) on \(M^*_t(E,E_0,A_0) \times X \).

In the case \(r = 1 \) the identification \(M^*_t(E,E_0) = \text{Quot}^E_{E_0} \) holds for \(t > -\frac{\deg_\mathcal{E}(E)}{\text{rk}(E)} \) [OT2], and we get a more explicit formula for the Kähler class \([\omega_M] \). Denote by \(\mathcal{B}(E) \) the space of gauge classes of Hermitian connections on the Hermitian line
bundle E. Recall that $\mathcal{B}(E)$ can be identified with the total space of a vector bundle over the torus of Yang-Mills connections on E (which can be identified via the classical Kobayashi-Hitchin correspondence with $\text{Pic}^E(X)$).

Therefore we have a well defined isomorphism $\delta : H_1(X,\mathbb{Z})/\text{Tors} \to H^1(\mathcal{B}(E),\mathbb{Z})$, which can be regarded as an element of $H^1(\mathcal{B}(E),\mathbb{Z}) \otimes H^1(X,\mathbb{Z})$. Denote by ν the natural map $\mathcal{B}^t \to \mathcal{B}(E)$. The Künneth decomposition of $c_1(\mathcal{E})$ is

$$c_1(\mathcal{E}) = -\gamma \otimes 1 + (\nu \times \text{id}_X)^* \delta + 1 \otimes c_1(E),$$

where $\gamma = -c_1(E|_{\mathbb{P}^r \times \{x_0\}})$ for a fixed point $x_0 \in X$. Let (h_i) be a basis of the free \mathbb{Z}-module $H_1(X,\mathbb{Z})/\text{Tors}$, (h^i) the dual basis of $H^1(X,\mathbb{Z})$ and

$$h_{ij} := \langle h^i \cup h^j \cup [\omega_g^{-1}], [X] \rangle.$$

Then

$$[p_{\mathcal{B}^t}]* (c_1^2(\mathcal{E}) \cup p_X^*([\omega_g^{-1}]) = -2\nu^*(\theta) - 2\deg g(E)\gamma,$$

where

$$\theta := \sum_{i<j} h_{ij} \delta(h_i) \cup \delta(h_j).$$

With this notations we get

$$[\omega_{\mathcal{M}_r^t}] = \left\{ 4\pi^2 (\nu^*(\theta) + \deg g(E)\gamma) + 2t\pi(n-1)\text{Vol}_g(X)\gamma \right\}_{\mathcal{M}_r^t}.$$

In order to save on notations, from now on we agree to denote by the same symbols the restrictions of the classes θ, γ to $\text{Pic}^E(X)$ and \mathcal{M}_r^t respectively. We also agree to use the same symbol θ for the pull-back of this class via ν. With this convention we obtain the simple formula

$$\frac{1}{4\pi^2} [\omega_{\mathcal{M}_r^t}] = \theta + (\deg g(E) + t)\gamma,$$

which specializes to a formula obtained by Perutz (see Theorem 3 [P]) for $r_0 = 1$ and $n = 1$.

3.2. Volume of Abelian Quot spaces. Let X be compact complex manifold, let \mathcal{E}_0 be a locally free sheaf of rank r_0 on X, and let E be a differentiable vector bundle of rank r. As above we denote by $\text{Quot}^E_{\mathcal{E}_0}$ the Quot space of quotients $q : \mathcal{E}_0 \to Q$ of \mathcal{E}_0 with locally free kernel C^∞-isomorphic to E. Since locally-freeness is an open condition in flat families it follows that $\text{Quot}^E_{\mathcal{E}_0}$ is an open subspace of the Douady space $\text{Quot}^{\mathcal{E}_0}$. This Quot space is characterized by obvious universal properties.

For $r = 1$ the bundle E is a differentiable line bundle, hence its differentiable isomorphism type is determined by its Chern class. Therefore in this case is convenient to fix $m \in \text{NS}(X)$ and to denote by $\text{Quot}^m_{\mathcal{E}_0}$ the Quot space of quotients $q : \mathcal{E}_0 \to Q$ of \mathcal{E}_0 with locally free kernel of rank 1 and Chern class m. We will give an explicit description of certain Quot spaces of this type. We begin with a simple flatness criterion:

Lemma 3.9. Let $\pi : X \to B$ be a morphism of complex spaces, and let $F \to \mathcal{E}$ be a morphism of coherent sheaves on X such that \mathcal{E} is flat over B. Then the following two conditions are equivalent:

(i) For every $b \in B$ the restriction $j_b : F_{X_b} \to \mathcal{E}_{X_b}$ of j to the fibre X_b of π is a sheaf monomorphism.

(ii) j is a monomorphism and the quotient $Q := \mathcal{E}/j(F)$ is flat over B.
Proof. For \(b \in B \) and \(x \in X_b \) the natural morphism
\[
j^b_x : F_x \otimes O_b \to E_x \otimes O_b \, .
\]
induced by \(j \) is just the morphism induced by \(j_b \) between these stalks. Therefore (i) is equivalent to the injectivity of \(j^b_x \) for every \(b \in B, x \in X_b \). Fix \(b \in B, x \in X_b \) and note that \(E_x \) is a flat \(O_b \)-module by assumption. By Corollary 1.5 p. 165 [BS] \(j^b_x \) is a monomorphism if and only if \(j_x : F_x \to E_x \) is a monomorphism and \(\text{coker}(j_x) \) is a flat \(O_b \)-module.

Remark 3.10. The hypothesis of Lemma 3.9 and condition (i) of this lemma are satisfied when \(\pi \) is a flat morphism, \(F, \mathcal{E} \) are locally free, and for any \(b \in B \) the following two conditions hold:

(i) the fiber \(X_b \) is smooth,
(ii) the restriction \(j_b : F_{X_b} \to \mathcal{E}_{X_b} \) is a generically injective morphism of vector bundles over \(X_b \).

Therefore, by Lemma 3.9 in this case \(Q := \mathcal{E} / j(F) \) is flat over \(B \).

Note that the statement holds even if the total space \(X \) is not reduced.

Now we come back to our situation: let \(X \) be a compact complex manifold.

Definition 3.11. A pair \((m, \mathcal{E}_0)\) consisting of a class \(m \in \text{NS}(X) \) and a holomorphic bundle \(\mathcal{E}_0 \) of rank \(r_0 \) on \(X \) is called acyclic if
\[
h^i(L^\vee \otimes \mathcal{E}_0) = 0 \quad \forall i > 0 \, , \forall [L] \in \text{Pic}^m(X) \, .
\]

Examples: 1. Suppose that \(X \) is a smooth projective manifold, \(H \) an ample divisor on \(X \) and \((m, \mathcal{E}_0)\) is a pair consisting of a class \(m \in \text{NS}(X) \) and a holomorphic vector bundle \(\mathcal{E}_0 \). Using Serre’s vanishing theorem and the compactness of \(\text{Pic}^m(X) \) one shows easily that for all sufficiently large \(k \in \mathbb{N} \) the pair \((m, \mathcal{E}_0(kH))\) is acyclic.

2. Suppose now that \(X \) is a curve, \(m \in \mathbb{Z} \) and \(\mathcal{E}_0 \) is a polystable bundle on \(X \) with \(\text{deg}(\mathcal{E}_0) > r_0m + 2r_0(g(X) - 1) \). Then for every \([L] \in \text{Pic}^m(X)\) the bundle \(K \otimes \mathcal{E}_0^\vee \otimes L \) admits a Hermite-Einstein metric with negative Einstein constant, so that \(H^0(K \otimes \mathcal{E}_0^\vee \otimes L) = 0 \). Using Serre duality we see that the pair \((m, \mathcal{E}_0)\) is acyclic.

Let \(L_m \) be a Poincaré line bundle on \(\text{Pic}^m(X) \times X \) normalized with respect to \(x_0 \in X \). Denote by \(\pi, p \) the projections
\[
\pi : \text{Pic}^m(X) \times X \to \text{Pic}^m(X) \, , \, p : \text{Pic}^m(X) \times X \to X \, .
\]
When the pair \((m, \mathcal{E}_0)\) is acyclic \(\text{Quot}^m_{E_0} \) can be identified with a projective bundle over \(\text{Pic}^m(X) \). The proof is based on the universal property of a Quot space.

Proposition 3.12. Suppose the pair \((m, \mathcal{E}_0)\) is acyclic.

(i) The sheaf \(\mathcal{V} := R^0\pi_*(L_m^\vee \otimes p^*(\mathcal{E}_0)) \) on \(\text{Pic}^m(X) \) is locally free.
(ii) \(\text{ch}(\mathcal{V}) = \pi_*(\text{ch}(L_m^\vee \otimes p^*(\mathcal{E}_0)) \cup p^*(\text{td}(X))) \).
(iii) Let \(\nu : \mathbb{P}(\mathcal{V}) \to \text{Pic}^m(X) \), \(p_X : \mathbb{P}(\mathcal{V}) \times X \to X \), \(\rho : \mathbb{P}(\mathcal{V}) \times X \to \mathbb{P}(\mathcal{V}) \) be the natural projections, and let

\[
\mathcal{E} := (\nu \times \text{id})^*(\mathcal{L}_m) \otimes \rho^*(\mathcal{O}_{\mathcal{V}}(-1)).
\]

There exists a tautological monomorphism \(j : \mathcal{E} \to p_X^*(\mathcal{E}_0) \) such that the corresponding quotient \(\mathcal{Q} \) of \(p_X^*(\mathcal{E}_0) \) is flat over \(\mathbb{P}(\mathcal{V}) \).

(iv) The obtained epimorphism \(u : p_X^*(\mathcal{E}_0) \to \mathcal{Q} \) defines an isomorphism

\[
\mathbb{P}(\mathcal{V}) \cong \text{Quot}_{\mathcal{E}_0}^m.
\]

Proof. Since the pair \((m, \mathcal{E}_0)\) is acyclic we have \(h^0(\mathcal{L}_m \otimes \mathcal{E}_0) = \chi(\mathcal{L}_m \otimes \mathcal{E}_0) \), which is a topological invariant of the pair \((m, \mathcal{E}_0)\), hence it is constant with respect to \([\mathcal{L}] \in \text{Pic}^m(X)\). The first statement follows from Grauert’s locally freeness theorem. The second statement is a consequence of the Grothendieck-Riemann-Roch theorem for families taking into account that \(R^i\pi_* (\mathcal{L}_m \otimes \mathcal{E}_0) = 0 \) for \(i > 0 \). For the third statement note that the evaluation morphism

\[
ev : \mathcal{L}_m \otimes \pi^*(\mathcal{V}) \to p_X^*(\mathcal{E}_0)
\]
on \text{Pic}^m(X) \times X \) can be regarded as an element of

\[
H^0(\mathcal{L}_m \otimes \pi^*(\mathcal{V}) \otimes p_X^*(\mathcal{E}_0)) = H^0((\nu \times \text{id}_X)_*(\nu \times \text{id}_X)^*(\mathcal{L}_m) \otimes \mathcal{O}_X(1) \otimes p_X^*(\mathcal{E}_0))
\]

\[
= H^0(\text{Hom}((\nu \times \text{id}_X)^*(\mathcal{L}_m) \otimes \mathcal{O}_X(-1), p_X^*(\mathcal{E}_0)))
\]
hence it defines a morphism \((\nu \times \text{id}_X)^*(\mathcal{L}_m) \otimes \mathcal{O}_X(-1) \to p_X^*(\mathcal{E}_0)\) of sheaves on \(\mathbb{P}(\mathcal{V}) \times X \). Using Remark 3.10 Lemma 3.9 it follows that the corresponding morphism

\[
j : (\nu \times \text{id}_X)^*(\mathcal{L}_m) \otimes \mathcal{O}_X(-1) \to p_X^*(\mathcal{E}_0)
\]
is a sheaf monomorphism and the corresponding quotient \(\mathcal{Q} \) is flat over \(\mathbb{P}(\mathcal{V}) \).

The fourth statement is a consequence of the third. It suffices to prove that the quotient epimorphism \(p_X^*(\mathcal{E}_0) \to \mathcal{Q} \) satisfies the universal property of the tautological quotient over \(\text{Quot}_{\mathcal{E}_0}^m \).

Let \(Y \) be an arbitrary complex space and \(q_X : Y \times X \to X \), \(q_\mathcal{V} : Y \times X \to Y \) the projections on the two factors. Let \(\nu : q_X^*(\mathcal{E}_0) \to \mathcal{Q} \) be an epimorphism of coherent sheaves on \(Y \times X \), such that \(\mathcal{Q} \) is flat over \(Y \) and the kernel \(\mathcal{F} := \text{ker}(\nu) \) is fiberwise locally free of rank 1 and with Chern class \(m \). Since \(\mathcal{Q} \) is flat over \(Y \) it follows that \(\mathcal{F} \) is flat over \(Y \) as well. Therefore \(\mathcal{F} \) is a line bundle over \(Y \times X \) and, using the universal property of the Picard group, there exists a morphism \(\alpha : Y \to \text{Pic}^m(X) \), a line bundle \(\mathcal{M} \) on \(Y \) and a line bundle isomorphism

\[
\beta : \mathcal{F} \to q_X^*(\mathcal{M}) \otimes (\alpha \times \text{id}_X)^*(\mathcal{L}_m)
\]
on \(Y \times X \). Since the base change property holds for \(R^0\pi_* (\mathcal{L}_m \otimes \mathcal{E}_0) \), we obtain isomorphisms

\[
\alpha^*(\mathcal{V}) \simeq (q_\mathcal{V})_*((\alpha \times \text{id})^*(\mathcal{L}_m) \otimes \mathcal{Q}_X^*(\mathcal{E}_0)) \simeq (q_\mathcal{V})_*((\alpha \times \text{id})^*(\mathcal{L}_m)^\vee \otimes q_X^*(\mathcal{E}_0)) \ .
\]

On the other hand, the monomorphism \(\iota : \mathcal{F} \hookrightarrow q_X^*(\mathcal{E}_0) \) defines a section \(\sigma \) in \(\mathcal{F}^\vee \otimes q_X^*(\mathcal{E}_0) \) which is fiberwise non-trivial by Lemma 3.9. Using the isomorphism \(\beta \) we obtain a fiberwise non-trivial section

\[
s \in H^0(q_X^*(\mathcal{M})^\vee \otimes (\alpha \times \text{id})^*(\mathcal{L}_m)^\vee \otimes q_X^*(\mathcal{E}_0)) ,
\]
hence a nowhere vanishing section \((q_\mathcal{V})_*((\alpha \times \text{id})^*(\mathcal{L}_m)^\vee \otimes q_X^*(\mathcal{E}_0)) \in \mathcal{M}^\vee \otimes (q_\mathcal{V})_*((\alpha \times \text{id})^*(\mathcal{L}_m)^\vee \otimes q_X^*(\mathcal{E}_0)) \)
\(\mathcal{M}^\vee \otimes \alpha^*(\mathcal{Y}) \).

Therefore \((q_Y)_*(s) \) identifies \(\mathcal{M} \) with a line subbundle of \(\alpha^*(\mathcal{Y}) \). This line subbundle induces a morphism \(\lambda : Y \to \mathbb{P}(\mathcal{Y}) \) with \(\nu \circ \lambda = \alpha \). It is now easy to see that the epimorphism \(\nu \) can be identified with the pull-back of \(\nu \) via \(\lambda \), and that \(\lambda \) is the unique morphism \(Y \to \mathbb{P}(\mathcal{Y}) \) which induces such an identification.

Let again \((h_i) \) be a basis of \(H_1(X, \mathbb{Z})/\text{Tors} \), and let \(\delta : H_1(X, \mathbb{Z})/\text{Tors} \to H^1(\text{Pic}^m(X), \mathbb{Z}) \) be the natural isomorphism. Put \(\lambda_i := \delta(h_i) \in H^1(\text{Pic}^m(X), \mathbb{Z}) \). Then one has \(\delta = \sum \lambda_i \otimes h^i \). Now put \(h^I := h^{i_1} \cup \cdots \cup h^{i_k}, \lambda_I := \lambda_{i_1} \cup \cdots \cup \lambda_{i_k} \in H^k(\text{Pic}^m(X), \mathbb{Z}) \). Then a simple computation shows that

\[
\delta^k = (-1)^{k(k-1)/2} \sum_{I \subset \{1, \ldots, b\}, |I| = k} \lambda_I \otimes h^I.
\]

Therefore, for any class \(c \in H^{2n-k}(X, \mathbb{Z}) \) one can write

\[
\pi_*(\delta^k \cup p^*(c)) = (-1)^{k(k-1)/2} \pi_* \left\{ \sum_{I \subset \{1, \ldots, b\}, |I| = k} \lambda_I \otimes (h^I \cup c) \right\} = (-1)^{k(k-1)/2} \sum_{I \subset \{1, \ldots, b\}, |I| = k} (h^I \cup c, [X])\lambda_I.
\]

In particular

\[
\pi_*(\delta^2 \cup p^*(\omega^{-1}_g)) = - \sum_{i,j} (h^i \cup h^j \cup [\omega^{-1}_g], [X]) = -2\theta.
\]

Identifying \(H^*(\text{Pic}^m(X), \mathbb{Z}) = \text{Alt}^*(H^1(X, \mathbb{Z}), \mathbb{Z}) \) we have

\[
\lambda_I(h^{i_1}, \ldots, h^{i_k}) = \epsilon_I^J,
\]

\[
\pi_*(\delta^k \cup p^*(c))(h^{i_1}, \ldots, h^{i_k}) = (-1)^{k(k-1)/2} \sum_{I \subset \{1, \ldots, b\}, |I| = k} (h^I \cup c, [X])\epsilon_I^J.
\]

Note that

\[
\sum_{I \subset \{1, \ldots, b\}, |I| = k} h^I \epsilon_I^J = k! \ h^J.
\]

This proves:

Remark 3.13. For a class \(c \in H^{2n-k}(X, \mathbb{Z}) \) define \(\xi_c \in \text{Alt}^k(H^1(X, \mathbb{Z}), \mathbb{Z}) \) by

\[
\xi_c(x^{i_1}, \ldots, x^k) := (x^{i_1} \cup \cdots \cup x^k \cup c, [X])
\]

Using the canonical identification \(\text{Alt}^k(H^1(X, \mathbb{Z}), \mathbb{Z}) = H^k(\text{Pic}^m(X), \mathbb{Z}) \) one has

\[
\pi_*(\delta^k \cup p^*(c)) = (-1)^{k(k-1)/2} k! \ \xi_c.
\]
Let \(\omega \) be the Kähler form induced on \(\text{Quot}^n_{E_0} \) via the Kobayashi-Hitchin correspondence \(KH \). Using Remark 8.8 and formula 3.40 we obtain a formula for the cohomology class \([\omega] \) in terms of the classes \(\gamma \) and \(\theta \) defined in section 3.1.

In our case, by Proposition 3.12 (iii) we get \(\gamma = c_1(\mathcal{O}_Y(1)) \), hence

\[
[\omega] = 4\pi^2 (\nu^*(\theta) + m \gamma) + 2\pi(n-1)!\text{Vol}_g(X) \gamma \\
= 4\pi^2 \nu^*(\theta) + (4\pi^2 m + 2\pi(n-1)!\text{Vol}_g(X)) \gamma ,
\]

with

\[
m := (m + [\omega])^{n-1}, [X] = \text{deg}(E) , \quad \theta = \sum_{i<j} h_{ij} \delta(h_i) \cup \delta(h_i) \in H^2(\text{Pic}^m(X)) ,
\]

\[
h_{ij} := \langle h^i \cup h^j \cup [\omega]^{n-1}, [X] \rangle .
\]

Put

\[
A := 4\pi^2, \quad B_t := 4\pi^2 m + 2\pi(n-1)!\text{Vol}_g(X) , \quad R := \text{rk}(\mathcal{Y}) , \quad q := \frac{b_1(X)}{2} , \quad N := q + R - 1 .
\]

The volume \(V_t \) of the Kähler manifold \((\text{Quot}^n_{E_0}, \omega_t) \) is

\[
V_t = \frac{1}{N!} \int_{\mathcal{Y}} \langle [\nu^*(\theta) + B_t \gamma]^N \rangle .
\]

Projecting onto \(\text{Pic}^m(X) \) and using formula (4.3) of [ACGH] we get

\[
V_t = \frac{1}{N!} \sum_{R-1 \leq k \leq N} \binom{N}{k} A^k B_t^{N-k} \left(\theta^k \cup s_{N-k}(\mathcal{Y}), [\text{Pic}^m(X)] \right)
\]

\[
(32) = \frac{1}{N!} \sum_{R-1 \leq k \leq N} \binom{N}{k} A^k B_t^{N-k} \left(\theta^k \cup s_{N-k}(\mathcal{Y}), [\text{Pic}^m(X)] \right) ,
\]

where \(s_j(\mathcal{Y}) \) denotes the \(j \)-th Segre class of \(\mathcal{Y} \). The classes \(\text{ch}_i(\mathcal{Y}) \) can be computed using Proposition 3.12 (ii) and the result is

\[
\text{ch}_i(\mathcal{Y}) = \pi_* \left(\frac{1}{(2i)!} \theta^{2i} \cup \nu^*(e^{-m} \cup \text{ch}(\mathcal{E}_0) \text{td}(X))^{(n-i)} \right) .
\]

Now decompose

\[
\text{ch}(\mathcal{E}_0) \text{td}(X) = \sum C_i
\]

with \(C_i \in H^{2i}(X, \mathbb{Q}) \). Then, using Remark 3.13 we obtain

\[
\text{ch}_i(\mathcal{Y}) = \frac{1}{(2i)!} \sum_{s=0}^{n-i} \frac{(-1)^s}{s!} \pi_* \left(\theta^{2i} \cup \nu^*(m^s C_{n-i-s}) \right) = \sum_{s=0}^{n-i} \frac{(-1)^{i+s}}{s!} t_{m^s C_{n-i-s}} .
\]

Using formula (1.2) p. 156 in [ACGH] we see that the Chern polynomial of \(\mathcal{Y} \) is given by

\[
1 + \sum c_i(\mathcal{Y}) = \exp \left(\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} \text{ch}_i(\mathcal{Y}) \right) ,
\]

hence the Segre polynomial is

\[
1 + \sum s_i(\mathcal{Y}) = \exp \left(\sum_{i=1}^{\infty} \frac{(-1)^i}{i} \text{ch}_i(\mathcal{Y}) \right) = \exp \left(\sum_{i=1}^{q} \sum_{s=0}^{n-i} \frac{(-1)^s}{is!} t_{m^s C_{n-i-s}} \right) .
\]

Suppose now that the basis \((h_i) \) of \(H^1(X, \mathbb{Z})/\text{Tors} \) was chosen such that the image in \(H^1(X, \mathcal{O}) \) of the dual basis \((h^i) \) is compatible with the complex orientation. With
this choice the linear form \(\langle \cdot, [\Pic^m(X)] \rangle \) on \(H^{2q}(\Pic^m(X), \Z) \) corresponds to the linear form
\[
\phi \to \phi(h^1, \ldots, h^{2q})
\]
on \(\Alt^{2q}(H^1(X, \Z), \Z) \). Using (32) and noting \(A^k B_t^{N-k} = (4\pi^2)^N (\deg(E) + t)^{N-k} \) we obtain
\[
V_t = \frac{(4\pi^2)^N}{N!} \left\{ \sum_{k=0}^{N} \binom{N}{k} (\deg(E) + t)^{N-k} \theta^k \right\} \wedge
\]
\[
\wedge \exp \left(\sum_{i=1}^{q} \sum_{s=0}^{n-i} \frac{(-1)^s}{s!} \epsilon_s t_{m^s c_{n-s}} \right) (h_1, \ldots, h_{2q}) .
\]

This shows that \(V_t \) is a polynomial function in \(t \) whose coefficients are determined by the cohomology classes \([\omega_g], m, \ch_1(\E_0), \text{and } td_1(X)\).

3.3. Volumina of moduli spaces of twisted matrix divisors.

In this section we will compute the volume of a Quot space \(\Quot^E_\Eo \) in the special case when \(r = r_0 \) and the base \(X \) is a complex curve of genus \(g \). Since \(X \) is a curve, \(\mathcal{C}^\infty \) bundles of rank \(r_0 \) on \(X \) are classified up to isomorphism by their degree, hence the Quot space \(\Quot^E_\Eo \) is the space of coherent subsheaves \(\E \hookrightarrow \Eo \) with \(\rk(\E) = r_0 \) and \(\deg(\E) = \deg(E) \). An element \((\E \hookrightarrow \Eo) \in \Quot^E_\Eo \) defines a sheaf monomorphism \(\wedge^r (\E) \hookrightarrow \wedge^r (\Eo) \), hence \(\Quot^E_\Eo = \emptyset \) for \(\deg(\Eo) < \deg(E) \) and \(\Quot^E_\Eo \) reduces to the singleton \(\{ \id_{\Eo} \} \) when \(\deg(\Eo) = \deg(E) \). We put \(d := \deg(\Eo) - \deg(E) \) and we suppose that \(d \geq 0 \).

Recall the following well known result:

Proposition 3.14. Let \(X \) be a complex curve, \(\Eo \) (respectively \(E \)) a holomorphic (respectively differentiable) vector bundle of rank \(r_0 \) on \(X \). Denote by \(\E \) and \(\DO \) the universal kernel and the universal quotient on \(\Quot^E_\Eo \times X \). The space \(\Quot^E_\Eo \) is smooth of dimension \(rd \), and there is a canonical identification
\[
\mathcal{T}_{\Quot^E_\Eo} \xrightarrow{\rho} \rho_*(\E^\vee \otimes \DO) ,
\]
where \(\rho : \Quot^E_\Eo \times X \to \Quot^E_\Eo \) denotes the projection onto the first factor.

3.3.1. The Abelian case.

With the notations and under the conditions above suppose that \(r = r_0 = 1 \). In this case the Quot space \(\Quot^E_\Eo \) can be identified with the symmetric power \(X^{(d)} \) and, via this identification, the universal kernel \(\E \) and the universal quotient \(\DO \) on \(\Quot^E_\Eo \times X \) can be identified with \(\mathcal{O}(-\Delta) \otimes p_\mu^*(\Eo) \) and \(p_\nu^*(\Eo) \otimes \mathcal{O}_\Delta \) respectively. Here \(\Delta \) is the tautological divisor of \(X^{(d)} \times X \). By Proposition 3.14 we obtain a canonical isomorphism
\[
\mathcal{T}_{\Quot^E_\Eo} \xrightarrow{\rho} \rho_*(\mathcal{O}(\Delta)_\Delta) .
\]

By formula (28) the K"unneth decomposition of \(c_1(\E) \) reads
\[
c_1(\E) = -\gamma \otimes 1 + \delta + \deg(E) \otimes \{ X \} ,
\]
where \(\{ X \} \in H^2(X, \Z) \) stands for the cohomological fundamental class of \(X \) and we denote by the same symbol the pull-back of \(\delta \) via the map
\[
\nu \times \id_X : \Quot^E_\Eo \times X \to \Pic^{\deg(E)}(X) \times X .
\]
Furthermore, formula (29) gives

\[c_2^\omega(X) = -2\theta - 2\deg(E)\gamma, \]

where we use the same symbol for the pull-back of \(\theta \in H^2(\text{Pic}^{\deg(E)}(X), \mathbb{Z}) \) via the morphism \(\nu : \text{Quot}^E_{\mathcal{E}_0} \rightarrow \text{Pic}^{\deg(E)}(X) \).

The numbers obtained by evaluating the classes \(\gamma^{d-j}\theta^j \) on the fundamental class of \(\text{Quot}^E_{\mathcal{E}_0} \) can be computed explicitly, and the result is:

\[\langle \gamma^{d-j}\theta^j, [\text{Quot}^E_{\mathcal{E}_0}] \rangle = \begin{cases} \frac{\delta}{(d-j)!} & \text{for} \quad 0 \leq j \leq \delta \\
0 & \text{for} \quad j > \delta \end{cases} \]

This is the classical Poincaré formula (see for instance [ACGH] p. 343), but can also be obtained as a special case of Theorem 3.8 in [OT2] by interpreting these numbers as gauge theoretical Gromov-Witten invariants. Using this formula and our formula (31) for the Kähler class \([\omega]\) on Abelian moduli spaces we obtain for the volume of \(\text{Quot}^E_{\mathcal{E}_0} \) the formula:

\[V_t(\text{Quot}^E_{\mathcal{E}_0}) = (4\pi^2)^d \sum_{i=1}^{\min(d,\delta)} \binom{\delta}{i} \frac{1}{(d-i)!}(\deg(E) + t)^{d-i} \]

Up to the normalization factor \(\pi^2 \) it specializes to the Manton-Nasir formula [MN] for the volume of \(X^{(d)} \) when \(\mathcal{E}_0 = \mathcal{O}_X \) and \(t = \frac{1}{2} \).

Let now \(E_i, L_i \ (i \in \{1, 2\}) \) be differentiable, respectively holomorphic line bundles on \(X \), and let \(\mathcal{Q}_i := \text{Quot}^{E_i}_{\mathcal{E}_0} \), \(\mathcal{L}_i \) and \(\mathcal{Z}_i \) be the associated, Quot spaces, universal kernels and universal quotients. Put \(l_i := \deg(L_i), m_i := \deg(E_i), d_i := \deg(L_i) - \deg(E_i) \).

Consider the product \(\mathcal{Q}_{12} := \mathcal{Q}_1 \times \mathcal{Q}_2 \) and denote by \(\rho_{12} : \mathcal{Q}_{12} \times X \rightarrow \mathcal{Q}_{12}, p_i : \mathcal{Q}_{12} \rightarrow \mathcal{Q}_i, q_i := p_i \times \text{id}_X : \mathcal{Q}_{12} \times X \rightarrow \mathcal{Q}_i \times X \) the natural projections. For later computations we will need the characteristic classes of the push-forward:

\[N_{12} := (\rho_{12})_*(q_1^*(\mathcal{L}_1)^{\gamma_1} \otimes q_2^*(\mathcal{L}_2)), \]

which is a locally free sheaf of rank \(d_2 \) on \(\mathcal{Q}_{12} \). Since the higher direct images of the right hand sheaf on \(\mathcal{Q}_{12} \) vanish, we obtain by the Grothendieck-Riemann-Roch theorem

\[\text{ch}(N_{12}) = (-\delta + l_2 - m_1 - \theta_1)e^{\gamma_1} + (\delta + m_1 - m_2 + (\theta_1 + \theta_2 + \sigma_{12}))e^{\gamma_1 - \gamma_2}, \]

where \(\theta_i, \gamma_i \) stand for the pull-backs of the corresponding classes on \(\mathcal{Q}_i \) and

\[\sigma_{12} := (\rho_{12})_*(q_1^*(\delta_1) \cup q_2^*(\delta_2)). \]

Since \(\mathcal{Q}_{12} \) has torsion-free integral cohomology, formula (38) implies

\[c_4(N_{12}) = \frac{(1 + t\gamma_1)^{-\delta + l_2 - m_1} e^{-\frac{\delta}{1 + t\gamma_1}}}{(1 + t(\gamma_1 - \gamma_2))^{-\delta + m_1 + m_2} e^{-\frac{\delta}{1 + t(\gamma_1 - \gamma_2)}}}. \]
3.3.2. The Grothendieck embedding. We begin with a simple result which shows that the Kähler classes associated with any Grothendieck embedding of Quot_E in a projective space coincides (up to a universal factor) with the Kähler class induced from the moduli space $M_t(\mathcal{E}, E_A, A_0)$ via the Kobayashi-Hitchin correspondence for a suitable choice of the parameter t. Therefore our computation will also give the degree of this Quot space with respect to the corresponding Grothendieck embedding.

Fix $x_0 \in X$, and let $n \in \mathbb{N}$ be sufficiently large so that $h^1(\mathcal{E}_0(nx_0)) = h^1(\mathcal{E}(nx_0)) = 0$ for every $\mathcal{E} \subset \mathcal{E}_0$ with deg(\mathcal{E}) = m. Put

$$V := H^0(\mathcal{E}_0(nx_0)),$$

$$s := \text{deg}(E) + r_0(n - \tilde{g} + 1).$$

We obtain a holomorphic map $\iota_n : \text{Quot}_E^E \to \text{Gr}_s(V)$ given by

$$\iota_n(\mathcal{E} \subset \mathcal{E}_0) := H^0(\mathcal{E}(nx_0)) \subset V.$$

The map ι_n is an embedding for sufficiently large $n \in \mathbb{N}$, hence composing with the Plücker embedding $Pl : \text{Gr}_s(V) \to \mathbb{P}(\wedge^s(V))$ we obtain a projective embedding

$$j_n := Pl \circ \iota_n : \text{Quot}_E^E \to \mathbb{P}(\wedge^s(V)).$$

Denote by \mathcal{U} the tautological subbundle of $\text{Gr}_s(V)$. We have obvious isomorphisms

$$Pl^*(\mathcal{O}_{\wedge^s(\mathcal{V})}(1)) \simeq \det(\mathcal{U})^\vee, \quad \iota_n^*(\mathcal{U}) \simeq \rho_\ast(\mathcal{E}(nx_0)).$$

Here we used the notation $\mathcal{E}(nx_0) := \mathcal{E} \otimes p_X^\ast(\mathcal{O}(nx_0))$. Therefore

$$c_1(\iota_n^*(\mathcal{O}_{\wedge^s(\mathcal{V})}(1))) = -c_1(\rho_\ast(\mathcal{E}(nx_0))).$$

Denote by $\{X\} \in H^3(X, \mathbb{Z})$ the cohomological fundamental class of X and put $\tilde{g} := g - 1$. Since $R^1\rho_\ast(\mathcal{E}(nx_0)) = 0$, we obtain using the Grothendieck-Riemann-Roch theorem:

$$c_1(\iota_n^*(\mathcal{O}_{\wedge^s(\mathcal{V})}(1))) = -c_1(\rho_\ast(\mathcal{E}(nx_0))) =$$

$$-\rho_\ast\left\{\text{ch}(\mathcal{E})p_X^\ast(e^n(X) \cup (1 - \tilde{g}\{X\}))\right\}^{(2)} = -\rho_\ast\{\text{ch}(\mathcal{E})p_X^\ast(1 + (n - \tilde{g})\{X\})\}^{(2)} =$$

$$\rho_\ast(-\text{ch}_2(\mathcal{E}) - (n - \tilde{g})c_1(\mathcal{E}) \cup p_X^\ast(\{X\}))$$

On the other hand, by formula (26) the class of the Kähler metric ω_t on Quot_E^E induced from the moduli space $M_t(\mathcal{E}, E_A, A_0)$ via the Kobayashi-Hitchin correspondence (see Remark 3.8) is

$$[\omega_t] = 4\pi^2\rho_\ast\left[-\text{ch}_2(\mathcal{E}) - \frac{t\text{Vol}_4(X)}{2\pi}c_1(\mathcal{E}) \wedge \{X\}\right].$$

Here g is a Kähler metric on X. This proves:

Proposition 3.15. The Kähler class $c_1(\iota_n^*(\mathcal{O}_{\wedge^s(\mathcal{V})}(1)))$ of the Grothendieck embedding $j_n : \text{Quot}_E^E \to \mathbb{P}(\wedge^s(V))$ compares to the Kähler class $[\omega_t]$ induced from the moduli space $M_t(\mathcal{E}, E_A, A_0)$ via the Kobayashi-Hitchin correspondence as follows:

$$c_1(\iota_n^*(\mathcal{O}_{\wedge^s(\mathcal{V})}(1))) = \frac{1}{4\pi^2}\left[\frac{t\text{Vol}_4(X)}{\text{Vol}_3(X)}\right].$$
3.3.3. Localization. Suppose that \(\mathcal{E}_0 \) decomposes as
\[
\mathcal{E}_0 = \oplus_{i=1}^{r} \mathcal{L}_i ,
\]
where \(\mathcal{L}_i \) are line bundles on \(X \). Putting \(l_i := \deg(\mathcal{L}_i) \) we have
\[
l := \sum_{i=1}^{r} l_i = \deg(\mathcal{E}_0) .
\]

Let
\[
I(d) := \{ d = (d_1, \ldots, d_r) \in \mathbb{N}^r | \sum_{i=1}^{r} d_i = d \}
\]
be the set of weak length \(r \) decompositions of \(d \). For every \(d \in I(d) \) define
\[
\mathbb{Q}^d := \prod_{i=1}^{r} \text{Quot}^i_{\mathcal{L}_i}^{-d_i} .
\]

Note that we have an obvious embedding
\[
j_d : \mathbb{Q}^d \to \text{Quot}^E_{\mathcal{E}_0}
\]
defined by
\[
j_d(\mathcal{E}_1, \ldots, \mathcal{E}_r) := \bigoplus_{i=1}^{r} \mathcal{E}_i
\]
for every system \((\mathcal{E}_1, \ldots, \mathcal{E}_r) \) of rank 1 subsheaves \(\mathcal{E}_i \subset \mathcal{L}_i \) with \(\deg(\mathcal{E}_i) = l_i - d_i \).

Remark 3.16. For every \(d \in I(d) \) there is a canonical isomorphism
\[
\mathcal{E}' |_{\mathbb{Q}^d} \simeq \bigoplus_{i=1}^{r} (\mathcal{I}_i^d \times \text{id}_X)^* (\mathcal{E}^d_i) ,
\]
where \(\mathcal{I}_i^d : \mathbb{Q}^d \to \text{Quot}^i_{\mathcal{L}_i}^{-d_i} \) denotes the projection onto the \(i \)-th factor, and \(\mathcal{E}^d_i \) stands for the universal kernel on \(\text{Quot}^i_{\mathcal{L}_i}^{-d_i} \times X \).

Endow now the moduli space \(\text{Quot}^E_{\mathcal{E}_0} \) with the \(\mathbb{C}^* \)-action associated with the morphism \(\mathbb{C}^* \to \text{Aut}(\mathcal{E}_0) \) given by \(z \mapsto \oplus_{i=1}^{r} z^{w_i} \text{id}_{\mathcal{L}_i} \) (see Remark 3.6). Note that for every \(d \in I(d) \) one has \(\mathbb{Q}^d \subset [\text{Quot}^E_{\mathcal{E}_0}]^{\mathbb{C}^*} \) and, endowing the universal kernel \(\mathcal{E}^d_i \) with the \(\mathbb{C}^* \)-action \(z \mapsto z^{w_i} \text{id}_{\mathcal{L}_i} \), the isomorphism (41) becomes an isomorphism of \(\mathbb{C}^* \)-bundles over the trivial \(\mathbb{C}^* \)-space \(\mathbb{Q}^d \). We will need the equivariant first Chern class of the right hand summands. Via the standard isomorphism \(H^*_{\mathbb{C}^*}(\mathbb{Q}^d, \mathbb{R}) \simeq H^*(\mathbb{Q}^d, \mathbb{R})[u] \) we get by (35), (36) formulae of the form:

\[
\gamma^d_1, \delta^d_1, \Theta^d_1 \text{ are the classes associated with the Quot space } \text{Quot}^E_{\mathcal{L}_i}^{-d_i} \text{ as explained in section 3.3.1. On the other hand, by Theorem 3.6 and Remarks 3.7, 3.8 we know that the class }
\]
\[
\Omega_d := \left[-\text{ch}^2_2(\mathcal{E}) - \frac{t \text{Vol}_q(X)}{2 \pi} \mathcal{C}_1^*(\mathcal{E}) \cup \{X\} \right] / [X]
\]
is a lift of \(\frac{1}{2\pi} [\omega_1] \) in \(H^2_{\mathbb{C}^*}(\text{Quot}^E_{\mathcal{E}_0}, \mathbb{R}) \).
Using Remark 3.16 and the additivity of the equivariant Chern character with respect to direct sums we obtain

\[
\Omega_{|Q^d} = \sum_{i=1}^{r} \left(\frac{d_i}{|P_i^d|} \right)^* \left\{ \left[-\frac{1}{2} c^*_1 (\s^*_E)^2 - \frac{t \operatorname{Vol}_g(X)}{2\pi} c^*_1 (\s^*_E) \cup \{X\} \right] / [X] \right\}
\]

(44)

\[
= \sum_{i=1}^{r} \left(s_i^d \frac{\s_i^d}{|P_i^d|} + \theta^d_i \right) - s_{ij}^d w_i u \ ,
\]

where

\[
s_i^d := t \frac{\operatorname{Vol}_g(X)}{2\pi} + (l_i - d_i) \ ,
\]

and on the right we have omitted the symbol \((p_i^d)^*\) in front of \((s_i^d + \theta^d_i)^*\) to save on notations.

We will also need the equivariant Euler class of the normal bundle \(N_{Q^d}\) of \(Q^d\) in \(\text{Quot}_E\). Using the isomorphism \((33)\) together with cohomology and base change we obtain the direct sum decompositions

\[
T_{\text{Quot}_E} |_{Q^d} = \bigoplus_{i,j} (P_i^d)^* N_{Q^d} \text{ , } N_{Q^d} = \bigoplus_{i,j} (P_i^d)^* N_{Q^d}^d .
\]

(45)

Here \(N_{Q^d}^d\) denotes the rank \(d_j\) bundle on the product \(\text{Quot}_{L_i}^{l_i-d_i} \times \text{Quot}_{L_j}^{l_j-d_j}\) studied in section 3.3.1 and \(P_i^d\) denotes the projection of \(Q^d\) onto this product. These decompositions are \(C^*\)-invariant and \(C^*\) acts with weight \(w_j - w_i\) on the summand \(N_{Q^d}^d\). Using \((33)\) we obtain

\[
e^{C^*} (N_{Q^d}^d) = ((w_j - w_i)u)^{d_j} e^{-\frac{\theta^d_j}{(w_j - w_i)u}} (N_{ij})
\]

\[
= ((w_j - w_i)u)^{d_j} \left[1 + \frac{1}{(w_j - w_i)u} \left(\frac{\theta^d_j}{(w_j - w_i)u} \right) \right]^{-\theta^d_j - l_i + d_i - l_j} e^{-\frac{\theta^d_j}{(w_j - w_i)u} + \gamma_i} \ .
\]

(46)

By \((46)\) this gives

\[
e^{C^*} (N_{Q^d}) = \prod_{i \neq j} \frac{((w_j - w_i)u + \gamma_i)^{-\theta^d_j - l_i + d_i - l_j} e^{-\frac{\theta^d_j}{(w_j - w_i)u + \gamma_i}}}{((w_j - w_i)u + \gamma_i)^{-\theta^d_j - l_i + d_i - l_j} e^{-\frac{\theta^d_j}{(w_j - w_i)u + \gamma_i}}} (w_j - w_i)u + (\gamma_i - \gamma_j)\)

\[
= (-1)^{\sum (r_j + (r - 1)(l - d))} \prod_{i < j} ((w_j - w_i)u + \gamma_i)^{-\theta^d_j - l_i + d_i - l_j} e^{-\frac{\theta^d_j}{(w_j - w_i)u + \gamma_i}} \prod_{i < j} ((w_j - w_i)u + (\gamma_i - \gamma_j))^{-2\theta^d_j} \ .
\]

From now on we suppose that the weights \(w_i\) are pairwise distinct. This implies

\[
\{\text{Quot}_E\}^C = \prod_{d \in \mathbb{Z}(d)} Q^d ,
\]
so that we can use the integration formula (3.3.3) to compute the volume V_l of $\text{Quot}^E_{\xi_0}$ with respect to the Kähler form $\frac{1}{2\pi} \omega_l$:

$$V_l = \frac{1}{(rd)!} \sum_{d \in I(d)} \left\langle \left(\frac{([\Omega])^{rd}}{e^{C^* (N_{Qd})}} \right), [Qd] \right\rangle$$

Here the expression $\frac{([\Omega])^{rd}}{e^{C^* (N_{Qd})}}$ is regarded as an element in the ring $H^* (Q_d, \mathbb{R})[[u, u^{-1}]]$. The degree with respect to u of the terms with coefficients in $H^{2d} (Q_d, \mathbb{R})$ is 0, hence the formula above yields a real number.

Using our formulae for $[\Omega]$ and $e^{C^* (N_{Qd})}$ we obtain the following formula for the volume V_l:

$$V_l = (-1)^{\frac{r(r+1)}{2} + (r-1)(l-d)} \frac{1}{(rd)!} \sum_{d \in I(d)}$$

$$\left(\sum_{i=1}^{r} \left(\frac{s_i^d x_i + y_i}{l_i} - s_i^d w_i u \right) \right)^{rd} \prod_{i \neq j} \left((w_j - w_i) u + \gamma_j^d \right)^{g+l_i - d_i - l_j} e^{(w_j - w_i) u + \gamma_j^d}$$

$$\prod_{i < j} \left((w_j - w_i) u + (\gamma_i^d - \gamma_j^d)^2 \right)^{2g}, [Qd]$$

where

$$s_i^d = l \frac{\text{Vol}_d (X)}{2\pi} + l_i - d_i.$$

Formula (3.3.3) provides an algorithm which generates explicit formulae for V_l:

- For $d \in I(d)$, $w = (w_1, \ldots, w_r) \in \mathbb{C}^r$ (with $w_i \neq w_j$ for $i \neq j$) and $u \in \mathbb{C}^*$ put

 $$F^d_{\omega_l} (x_1, y_1, \ldots, x_r, y_r) :=$$

 $$\left(\sum_{i=1}^{r} \left(\frac{s_i^d x_i + y_i}{l_i} - s_i^d w_i u \right) \right)^{rd} \prod_{i \neq j} \left((w_j - w_i) u + x_i \right)^{g+l_i - d_i - l_j} e^{u w_j - w_i u + x_i}$$

 $$\prod_{i < j} \left((w_j - w_i) u + (x_i - x_j)^2 \right)^{2g},$$

 and write explicitly the multi-homogeneous part

 $$\sum_{\alpha_1 + \beta_1 = d_1} [F^d_{\omega_l}]_{\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r} x_1^{\alpha_1} y_1^{\beta_1} \ldots x_r^{\alpha_r} y_r^{\beta_r}$$

 of multi-degree (d_1, \ldots, d_r) in the Taylor expansion of $F^d_{\omega_l}$ at 0. This expression has degree 0 with respect to u, hence we omitted u in the notation of the coefficients.

- Write

 $$V_l = \frac{1}{(rd)!} \sum_{d \in I(d)} \sum_{\alpha_1 + \beta_1 = d_1} [F^d_{\omega_l}]_{\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r} \prod_{i=1}^{r} \theta (g - 1) \ldots (g - \beta_i + 1).$$
This final result is independent of the (pairwise distinct) weights w_i. One can use the freedom to choose the weights w_i in order to simplify the computations (see for instance [MO2]).

Using this algorithm to produce a closed formula for arbitrary r, d and l seems to be difficult. We have computed the following examples:

Examples: Let $r = 2$ and put $\mu := \mu(E_0) = \frac{1}{2}$, $t = \frac{\Vol(X)}{2\pi}$.

1. $d = 1$:
 $V_t = t + \mu + \tilde{g}$.

2. $d = 2$, l even:
 $V_t = \frac{1}{4!} \left\{ 4(t + \mu + \tilde{g}) \left[3(t + \mu + \tilde{g}) - 4 \right] - 6\tilde{g} \right\}$.

For $t_n = \frac{2\pi(n-\tilde{g})}{\Vol(X)}$ (or, equivalently, $t_n := n - \tilde{g}$) one gets the degree of the image of the Grothendieck embedding $j_n : \text{Quot}_{E_0} \rightarrow \mathbb{P} (\wedge^4(V))$.

1. $d = 1$:
 $\deg(j_n(\text{Quot}_{E_0})) = 2n + l$.

2. $d = 2$, l even:
 $\deg(j_n(\text{Quot}_{E_0})) = (2n + l)[3(2n + l) - 8] - 6\tilde{g}$.

References

[AB] M. Atiyah, R. Bott: *The moment map and equivariant cohomology*, Top. 23, p. 1-28 (1984).

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, J. D. Harris: Geometry of Algebraic Curves, Vol. I, Grundlehren der mathematischen Wissenschaften, Vol. 267, Springer, New York, 1984.

[Ban] D. Banfield: *The geometry of coupled equations in gauge theory*, D. Phil. Thesis, University of Oxford (1996).

[Bap] J. M. Baptista: *On the L^2-metric of vortex moduli spaces*, Nucl. Phys. B 844 (2011) 308-333.

[BGV] N. Berline, E. Getzler, M. Vergne: *Heat kernels and Dirac operators*, Springer, Berlin, 1992.

[Bi] O. Biquard: *Les équations de Seiberg-Witten sur une surface complexe non kählerienne*, Comm. Anal. Geom. 6, no. 1, 173-197 (1998).

[Br] S. B. Bradlow: *Special metrics and stability for holomorphic bundles with global sections*, J. Diff. Geom. 33, 169-214 (1991).

[BS] C. Bănică, O. Stănescu: *Algebraic methods in the global theory of complex spaces* Wiley, New York, 1976.

[DK] S. Donaldson; P. Kronheimer: *The Geometry of Four-Manifolds*, Oxford Univ. Press, 1990.

[Do1] S. Donaldson: *Anti self-dual connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. 50, 1-26 (1985).

[Do2] S. Donaldson: *Infinite determinants, stable bundles and curvature*, Duke Math. J. 54, 231-247 (1987).

[Do3] S. Donaldson: *Floer homology groups in Yang-Mills theory*, Cambridge University Press, 2004.

[Dü] M. B. Dürr: *Seiberg-Witten theory and the C^∞-classification of complex surfaces*, Ph. D. Thesis, Zürich University (2002).

[GGK] V. Ginzburg, V. Guillemin, and Y. Karshon: *Moment Maps, Cobordisms, and Hamiltonian Group Actions*, Mathematical Surveys and Monographs, Vol. 98, 2002.

[GP] O. García Prada: *The Geometry of the Vortex Equation*, University of Oxford, 1991.
[Hi] N. J. Hitchin: *The self-duality equations on a Riemann surface*, Proc. London Math. Soc. (3) 55 , no. 1, 59-126 (1987).

[HL] D. Huybrechts, M. Lehn: *Stable pairs on curves and surfaces*, J. Alg. Geom. Vol. 4 , 67-104 (1995).

[Ki] F. C. Kirwan: *Cohomology of quotients in symplectic and algebraic geometry*, Math. Notes, Princeton University Press, 1984.

[KN] S. Kobayashi, K. Nomizu: Foundations of differential geometry I, Interscience Tracts in Pure and Applied Math., No. 15. John Wiley and Sons, Inc., New York, 1963.

[LL] M. Lübke, P. Lupascu: Isomorphy of the gauge theoretical and the deformation theoretical moduli space of simple holomorphic pairs, preprint, Zürich University (2001).

[LT1] M. Lübke, A. Teleman: *The Kobayashi-Hitchin correspondence*, World Sci. Pub., 1995.

[LT2] M. Lübke, A. Teleman: *The universal Kobayashi-Hitchin correspondence on Hermitian manifolds*, Memoirs of the AMS, Vol. 183, No. 863, 2006.

[LY] J. Li, S. T. Yau: *Hermitian Yang-Mills connections on non-Kähler manifolds*, in *Math. aspects of string theory* (S.-T. Yau ed.), World Scient. Publ. (1987).

[MO1] A. Marian, D. Oprea: *On the intersection theory of the moduli spaces of rank two vector bundles*, Topology 45, 531-541 (2006).

[MO2] A. Marian, D. Oprea: *Virtual intersections on the Quot scheme and Vafa-Intriligator formulas*, Duke Mathematical Journal 136, 81-131 (2007).

[Mu] I. Mundet i Riera: *A Hitchin-Kobayashi correspondence for Kähler fibrations*, J. Reine Angew. Math. 528, 41-80 (2000).

[OT1] Ch. Okonek; A. Teleman: *Master spaces and the coupling principle: from Geometric Invariant Theory to Gauge Theory*, Commun. Math. Phys. 205, 437-458 (1999).

[OT2] Ch. Okonek; A. Teleman: *Gauge Theoretical Equivariant Gromov-Witten Invariants and the Full Seiberg-Witten Invariants of Ruled Surfaces*, Commun. Math. Phys. 227, 551-585, (2002).

[OT3] Ch. Okonek; A. Teleman: *Abelian Yang-Mills theory on Real tori and theta divisors of Klein surfaces*, Commun. Math. Phys, to appear.

[P] T. Perutz: *Symplectic fibrations and the abelian vortex equations*, Commun. Math. Phys. 278, 289-306 (2008).

[Si] C. T. Simpson: *Higgs bundles and local systems*, Inst. Hautes Études Sci. Publ. Math. No. 75, 5-95 (1992).

[Te] A. Teleman: *Non-abelian Seiberg-Witten theory and stable oriented pairs*, Internat. J. Math. 8, no. 4, 507-535 (1997).

[Th] M. Thaddeus: *Stable pairs, linear systems and the Verlinde formula*, Invent. math. 116, 181-205 (1994).

[UY1] K. Uhlenbeck, S. T. Yau: *On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure Appl. Math., 39, 257-293 (1986).

[UY2] K. Uhlenbeck, S. T. Yau: *A note on our previous paper: On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure Appl. Math. 42, 703-707 (1989).