Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Buyang Huanwu Decoction in the treatment of Ischemic Stroke

Qiang Gao
Beijing University of Chinese Medicine

Danfeng Tian
Beijing University of Chinese Medicine

Zhenyun Han
Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang)

Jingfeng Lin
Beijing University of Chinese Medicine

Ze Chang
Beijing University of Chinese Medicine

Dandan Zhang
Beijing University of Chinese Medicine

Dayong Ma (ponymdy@163.com)
https://orcid.org/0000-0003-3962-6572

Research

Keywords: Network pharmacology, Buyang Huanwu Decoction, Ischemic stroke, Molecular docking, Chinese medicine

Posted Date: July 21st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-41446/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Evidence-Based Complementary and Alternative Medicine on February 28th, 2021. See the published version at https://doi.org/10.1155/2021/8815447.
Abstract

Background and objective: With the exact clinical efficacy, Buyang Huanwu decoction (BHD) is a classical prescription for the treatment of ischemic stroke (IS). Here, we aimed to investigate the pharmacological mechanisms of BHD in treating IS using systems biology approaches.

Methods: The bioactive components and potential targets of BHD were screened by TCMSP, BATMAN-TCM, ETCM, and SymMap databases. Besides, compounds that failed to find the targets from the above databases were predicted through STITCH, SWISS, and SEA. Moreover, six databases were searched to mine targets of IS. The intersection targets were obtained, and analyzed by GO and KEGG enrichment. Furthermore, BHD-IS PPI network, compound-compound target-IS network and pathway of drug-compound target-IS network were constructed by Cytoscape 3.6.0. Finally, AutoDock was used for molecular docking verification.

Results: A total of 253 putative targets were obtained from 60 active compounds in BHD. Among them, 62 targets were related to IS. PPI network showed that the top ten key targets were IL6, TNF, VEGFA, and AKT1, etc. The enrichment analysis demonstrated candidate BHD targets were more frequently involved TNF, PI3K-Akt, and NF-kappa B signaling pathway. Network topology analysis showed that Radix Astragali was the main herb in BHD, and the key components were quercetin, beta-Sitosterol, kaempferol, and stigmasterol, etc. The results of molecular docking showed the active components in BHD had a good binding ability with the key targets.

Conclusions: This study firstly adopted the methods of network pharmacology and molecular docking to reveal the relationships among herbs in BHD, the putative targets and IS-related pathways.

Introduction

The prevalence of ischemic stroke (IS) is particularly high and survivors have more or less neurological function deficits, which brings about a large burden on society and patients’ families. With high mortality and morbidity rate, stroke has been the third most common cause of death following by coronary heart disease and cancer in the world [1]. IS accounts for 70%-80% of all stroke, which is the most common type of stroke in clinic [2]. At present, thrombolysis is the fastest and most effective treatment for IS, but the clinical effect of thrombolysis therapy is limited due to strict indications, a short time window, high risk of bleeding and reperfusion injury[3]. A large number of experimental studies and clinical observations have confirmed that Chinese medicine has unique advantages in treating IS. Various empirical prescriptions, single drugs and active ingredient extracts have been shown clear neuroprotective effects on IS [4–6].

Buyang Huanwu Decoction (BHD) is a classical prescription for the treatment of IS. This prescription is mainly composed of Huangqi(Radix Astragali), Honghua(Carthami Flos), Taoren(Persicae Semen), Chishao(Radix paeoniae Rubra), Danggui(Angelicae Sinensis Radix), Chuangxiong(Chuanxiong Rhizoma), and Dilong(Pheretima). Among them, Radix Astragali is the most widely used in the original
prescription, which is the monarch drug in BHD. A systematic review and meta-analysis of nineteen RCTs with 1580 individuals showed that BHD could significantly improve the neurological deficit score and the ability of self-care of patients with IS [7]. BHD could promote angiogenesis, attenuate infiltration of natural killer cells, and facilitate neurorehabilitation through an improvement of synaptic plasticity after cerebral ischemia/reperfusion injury. It could significantly decrease cerebral edema and rat neurological function scores, and reduce brain infarct volume [8–12]. Pharmacological researches have shown that *Radix Astragali* has the function of dilating blood vessels and improving microcirculation, which can significantly increase the brain's ability to withstand periods of severe hypoxia and/or ischemia [13, 14]. *Carthami Flos, Persicae Semen, Radix paeoniae Rubra, Angelicae Sinensis Radix*, and *Chuanxiong Rhizoma* can effectively improve the microcirculation of the body, significantly inhibit the proliferation of fibrous tissue, and reduce the inflammatory response [15–17].

However, the molecular mechanism of BHD has not been certainly clear. The clinical effect of the decoction is a comprehensive result of the complex biological process in human body. Network pharmacology, based on system biology and multi-directional pharmacology, integrates the contents of computer biology and network analysis [18]. It explains the integrity and systematization of drug, target and disease interaction from the perspective of multi-component, multi-target and multi-channel, which is consistent with the holistic view of Chinese medicine [19]. Therefore, it provides a method for the study of multi-component mechanism of Chinese medicine [20, 21]. In this paper, network pharmacology was used to explore the molecular mechanism of BHD against IS. The detailed workflow of the study is shown in Fig. 1.

Materials And Methods

Chemical ingredients collection and active compounds screening

Traditional Chinese Medicine Systems Pharmacology Database (TCMSP, http://lsp.nwsuaf.edu.cn)[22], BATMAN-TCM (http://bionet.ncpsb.org/batman-tcm/index.php/Home/Index/index) [24], ETCM (http://www.tcmip.cn/ETCM/index.php/Home/index/index.html) and SymMap (https://www.symmap.org/) [25] was used to collect the compounds of BHD. In addition, those compounds which didn't meet the requirements but had significant pharmacological activities and high contents were also opt to the next research through text mining. Next, ADME analysis was carried out by collecting the main components of BHD according to the condition parameters (OB ≥ 30%, DL ≥ 0.18, Caco-2 ≥ 0.4) [23]. Through ADME analysis, the potential active components were screened out for further analysis.

Target identification

TCMSP, BATMAN-TCM, ETCM, and SymMap databases were used to screen the targets of all the components of BHD. If related targets of components of BHD could not be found from the above databases, further target prediction was carried out in the STITCH (http://stitch.embl.de/) [26], Swiss
Target Prediction (SWISS, http://www.swisstargetprediction.ch/) [27], and Similarity Ensemble Approach (SEA, http://sea.bkslab.org/) [28] database.

Targets related to IS were derived from six public databases, including DisGeNET (http://www.disgenet.org/) [29], OMIM (https://omim.org/) [28], TTD (http://bidd.nus.edu.sg/group/cjttd/), DrugBank (https://www.drugbank.ca/), PharmGKB (http://www.pharmgkb.org/) and MalaCards (https://www.malacards.org/) [30] with key words “ischemic stroke”.

The targets were normalized to the official gene symbols using UniProt database (https://www.uniprot.org/) [31] with the species limited to “Homo sapiens”. Finally, the intersection targets of BHD active component targets and IS targets were obtained and drawn using Venn Diagram.

Protein-protein interaction data

String 11.0 (https://string-db.org/) [32] is a database for storing known and predicted protein interactions, including direct and indirect protein interactions. It scores each protein interaction. A higher score means a higher confidence of protein interaction.

The selected intersection targets were imported into String for protein interaction analysis, and the protein interaction network was obtained with the species limited to “Homo sapiens” and a confidence score > 0.7. The protein interaction data were imported into Cytoscape 3.6.0 (https://cytoscape.org/) to construct the PPI network.

Gene Ontology (GO) and Pathway Enrichment

DAVID (https://david.ncifcrf.gov/) [33] database integrates various types of database resources, and uses the improved Fisher precision test algorithm to analyze the enrichment of gene sets, providing P and false discovery rate (FDR) of enrichment analysis results. GO annotation and KEGG pathway analysis were carried out for the intersection genes. Finally, we could get the pathway maps from KEGG PATHWAY Database (https://www.kegg.jp/) [34].

Network construction and cluster

Network construction

Network construction was performed as follows: (1) BHD-IS PPI network; (2) Compound-compound target-IS network; (3) Pathway of drug-compound target-IS network.

All networks can be constructed via utilizing the network visualization software Cytoscape, which displays network graphically. It supplies a basic set of features for data integration, analysis, and visualization for complicated network analysis. In the network diagram, "node" represents the active component and target in BHD, and "edge" represents the relationship between active component and target. The “Degree” parameter, presenting the number of connections between the nodes in the network, was used to evaluate important targets [30].
Cluster of BHD-IS PPI network

The closely related regions in protein-protein interaction networks is defined as topological modules or clusters. This cluster or functional modules can put nodes of similar or related function together in a same network. By MCODE, a plug-in of Cytoscape, we can get clusters.

Molecular docking verification

To validate the compound-target association, AutoDock software (version 4.2) was used to perform the molecular docking program[35]. RCSB PDB (http://www.rcsb.org/) [36] was used to retrieve and download the 3D structure files of key target proteins. 3D structure files of compounds were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/) [37]. Finally, AutoDock platform was used for molecular docking verification[38]. The binding energy was calculated to evaluate binding interactions between the compounds and their targets. The binding energy less than “-5” indicates a good binding interactions between the compounds and their targets[39].

Results

Active compounds

775 compounds were ultimately reserved: 87 in Radix Astragali, 189 in Chuanxiong Rhizoma, 119 in Radix paeoniae Rubra, 125 in Angelicae Sinensis Radix, 66 in Persicae Semen, 189 in Carthami Flos, and 4 in Pheretima. After ADME screening, 78 potential compounds (OB ≥ 30%, DL ≥ 0.18, Caco-2 ≥ 0.4) of seven herbal medicines in BHD were identified, including 16 from Radix Astragali, 6 from Chuanxiong Rhizoma, 20 from Radix Paeoniae Rubra, 2 from Angelicae Sinensis Radix, 13 from Persicae Semen, 21 from Carthami Flos, and 0 from Pheretima. The details of candidate ingredients are described in Table 1. Radix Astragali, Chuanxiong Rhizoma, Radix paeoniae Rubra, Angelicae Sinensis Radix, Persicae Semen and Carthami Flos are simplified as RA, CR, RPR, ASR, PS, and CF respectively.

Targets of BHD

As 18 compounds of BHD had no targets in TCMSP, SymMap and TCM-MESH, Canonical SMILES of these compounds were found in Pubchem. Based on chemical structural similarity, we used databases like STITCH, SWISS and SEA, to predict their targets. These compounds were excluded because of the targets score less than 50% eventually. These compounds were isoflavanone, senkyunone, paeoniflorin_qt, Albiflorin_qt, Paeo niflorgenone, 9-ethyl-neo-paeoniaflorinA_qt, evofolinB, 1-o-beta-d-glucopyranosylpaeonisuffrone_qt, 4-ethyl-paeoniflorin_qt, 4-o–methyl-pa eoniflorin_qt, GA122, Populoside_qt, Flavoxanthin, lupeol-palmitate, Phytoene, phytofluene, 6-Hydroxynaring enin, and 1-o-beta-d-glucopyranosyl-8-o–benzoylpaeo nisuffrone_qt. In brief, 235 targets were adopted in this research.

By means of the six available resources, namely, DisGeNET, OMIM, TTD, DrugBank, PharmGKB and MalaCards databases, we obtained 460 IS-related targets.
Based on targets of the candidate ingredients and IS intersection targets were got by R software. 62 intersection genes were found eventually, shown as Fig. 3A. The details of intersection targets are described in Table 2.

Gene Ontology and Pathway Enrichment Analysis

Gene Ontology

GO analysis of 62 candidate targets for BHD against IS was performed using the DAVID database to understand the relationship between functional units and their underlying significance in the biological system networks. The result was divided into three parts, biological processes, cellular component, and molecular function, as shown in Fig. 2 A, B, and C.

We found that biological processes were related to inflammatory response, negative regulation of apoptotic process, response to estradiol, lipopolysaccharide-mediated signaling pathway, positive regulation of nitric oxide biosynthetic process, positive regulation of protein phosphorylation, positive regulation of NF-kappa B transcription factor activity, response to hypoxia, immune response and MAPK cascade. The cellular component was related to extracellular space, extracellular region, plasma membrane, cell surface, extracellular exosome, cytosol, nucleus, nucleoplasm, cytoplasm and integral component of plasma membrane. Finally, molecular function was related to cytokine activity, enzyme binding, protein binding, heme-binding, steroid hormone receptor activity, peroxidase activity, transcription factor binding, calcium ion binding, metalloproteidase activity and kinase activity.

Pathway Enrichment

Through comprehensive analysis, we obtained an integrated IS pathway based on our current knowledge of IS pathogenesis to illuminate the integral role of BHD in treating IS. TOP 10 KEGG signaling pathways of BHD were obtained and constructed based on P-Value.

Based on this systems-level picture, we picked and constructed ten therapeutic pathways of TNF signaling pathway, PI3K-Akt signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, Complement and coagulation cascades, T cell receptor signaling pathway, Toll-like receptor signaling pathway, HIF-1 signaling pathway, Estrogen signaling pathway and VEGF signaling pathway, as shown in Fig. 2D.

BHD-IS PPI network analysis

BHD-IS PPI network

62 intersection targets were imported into the String database, and TSV text showing the interaction relationship was obtained, as shown in Fig. 3B. Then, the network topology analysis was applied by the software of Cytoscape 3.6.0. By integrating IS network and compound-compound target network, we could get BHD-IS network, as shown in Fig. 3C. This network contained 59 nodes and 664 edges. In this
network, the rose red nodes had higher degrees. The number of those nodes’ edges was 36 in IL6, 31 in
TNF, 29 in VEGFA, 28 in AKT1, 27 in MMP9, 26 in IL1B, 23 in MAPK1, 22 in ICAM1, 22 in PTGS2 and 20 in
IL10 respectively. This suggested that these genes might be the key or central genes in IS development.
Bar graph of all protein nodes degree related to the targets is shown in Fig. 3D. The target proteins in the
PPI network were modularized and analyzed by using the plug-in of cluster maker of the software
Cytoscape 3.6.0. The results showed that 62 targets were divided into four modules, including 24 in
module one, 18 in module two, 11 in module three and 9 in module four, as shown in Fig. 3E.

Compound-compound target-IS network analysis

This network was composed of 284 nodes (253 compound target nodes and 49 compound nodes) and
1192 edges. In this network we could find that one target could be hit by several compounds (central
nodes, such as IL6, MMP9, TNF, AKT1, ICAM1, IL1B, PTGS2, IL-10, VEGFA, and MAPK1), but some were
modulated by only one compound in this network. Furthermore, one potential active compound could
correspond to multiple targets. Top ten compounds with high degree were Quercetin, beta-Sitosterol,
Kaempferol, Stigmasterol, Baicalein, Luteolin, Hederagenin, 7-O-methylis omicron ulatol, Formononetin,
Isorhamnetin, and Myricanone. It could be seen that the neuroprotective mechanism of BHD had the
characteristics of multi-component, multi-target and multi mechanism. The compound-compound target-IS
network is shown in Fig. 4.

Pathway of drug-compound target-IS network

By importing all targets into DAVID, we could get 20 IS-related pathways. Radix Astragali and Carthami
Flos had the highest degree, which means that the two herbs might be the main herbs in treating IS.
Meanwhile, TNF signaling pathway showed the highest degree, followed by PI3K-Akt signaling pathway,
MAPK signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, and T cell
receptor signaling pathway respectively. The pathway of drug-compound target-IS network is shown in
Fig. 5.

Molecular docking verification

Compound-target interactions with binding energy less than -5.0 kcal/mol are shown in Fig. 6, including
IL6 with Luteolin(A), MMP9 with Luteolin(B), TNF with Kaempferol(C), AKT1 with Kaempferol(D), ICAM1
with Kaempferol(E), IL1B with Quercetin(F), PTGS2 with Quercetin(G), IL-10 with Quercetin(H), VEGFA with
Baicalein(I), and MAPK1 with 7-O-methylisomucronulatol(J).

Target path analysis

The pathway map of BHD in treating IS was obtained from KEGG PATHWAY Database, as shown in Fig. 7.
The related pathways were marked in red, and the targets of BHD in treating IS were marked in rose red.
The results showed that the main pathways of BHD in treating IS included TNF signaling pathway, MAPK
signaling pathway, NF-kB signaling pathway and PI3K/AKT signalling pathway.
Discussion

In our study, we found the molecular mechanism of BHD’s neuroprotection effect against IS using network pharmacology strategy. The network pharmacology strategy is helpful to clarify the mechanism of TCM’s function from a systematic viewpoint [40–41]. Furthermore, this method provide a multi-dimensional research strategy for a complicated decoction. At present, the application of network pharmacology to study the mechanism of Chinese medicine has become a research hotspot. In this study, we found that 60 active components of BHD could act on 62 targets related to IS. Further analysis showed that BHD could act on many biological processes of IS and had an influence on the outcome of stroke through TNF, PI3K-Akt, MAPK, and NF-kappa B signaling pathway. It further confirmed that BHD had the characteristics of multi-component, multi-channel and multi-target.

Core ingredients with the highest degree in compound-compound target-IS network were considered to be responsible for neuroprotection, including quercetin, beta-Sitosterol, kaempferol, stigmasterol, baicalein, luteolin, hederagenin, 7-O-methylisorcimontol, formononetin, isorhamnetin, and myricanone. Six of these components belong to Radix Astragali and Carthami Flos. The results of network topology analysis showed that the degree of Radix Astragali and Carthami Flos were the highest in BHD. As the core herb in BHD, the dosage of Radix Astragali is the highest, indicating that the results of network pharmacology are consistent with the clinical application of Chinese medicine. Quercetin and kaempferol are common components of Radix Astragali and Carthami Flos. It was found that quercetin could pass through the blood-brain barrier with the highest passage rate [42]. A research showed that quercetin had effects of antioxidant stress and promoting autophagy, which was helpful for the prevention and treatment of stroke [43, 44]. In addition, quercetin could also regulate protein phosphorase 2A subunit B (PP2A) to produce significant neuroprotective effects on rats with cerebral ischemia-reperfusion injury and HT22 cell model of glutamate injury [45]. Lu et al found that quercetin could inhibit the expression and release of many inflammatory factors such as TNF - α, IL-1 β and IL6 by reducing the production of NF – κB in elderly mice [46]. Kaempferol, a common flavonoid, has been widely concerned because of its anti-inflammatory, antioxidant, antibacterial and antiviral effects. It has been reported that kaempferol has neuroprotective effect in the acute phase of cerebral infarction [47, 48]. One study confirmed that kaempferol inhibited oxygen-glucose deprivation (OGD) induced cell viability decline, oxidative stress, mitochondrial dysfunction and apoptosis [49]. These findings suggested that kaempferol might be a promising choice for the intervention of IS. Baicalein is a common component of Carthami Flos and Radix paeoniae Rubra. As an important flavonoids, it has many pharmacological activities, such as antioxidant stress, anti-inflammatory, anti-excitatory toxicity, anti-apoptosis, stimulating neurogenesis and promoting the expression of neuroprotective factors [50–52]. Liu et al found that baicalein had protective effect on transient middle cerebral artery occlusion model rats, and could significantly reduce the apoptosis of ischemic penumbra cells around the ischemic infarct of middle cerebral artery occlusion (MCAO) model rats [53]. As an ingredient of Carthami Flos, luteolin could down regulate the expression of TLR4, TLR5, NF-κ B and P-P38MAPK, up regulate the expression of p-ERK, and protect cerebral ischemia in rats [54]. Experiments performed in vivo also demonstrated that luteolin reduced the infarct volume. It was suggested that luteolin had potential in the treatment of IS through inhibiting MMP9 and activating...
PI3K/Akt signaling pathway [55]. Beta-sitosterol and stigmasterol are the common components of *Carthami Flos, Persicae Semen, Radix paeoniae Rubra*, and *Angelicae Sinensis Radix*. They are both sterol compounds, mainly with the functions of reducing blood fat, anti-oxidation and anti-inflammation [56].

PPI analysis showed that IL6, TNF, VEGFA, AKT1, MMP9, IL1B, MAPK1, ICAM1, PTGS2 and IL10 were the top ten targets with high degree. Followed by cluster of the PPI network, the network could be divided into four modules, which were related to angiogenesis, inflammation, coagulation and blood brain barrier. Inflammation plays a critical role in the pathological process of stroke [57]. IL1B, IL10, TNF, IL6, and ICAM1 are closely related to the inflammatory response after stroke, among which IL-10 is an important anti-inflammatory factor, while L1B, TNF and IL6 are pro-inflammatory factors. ICAM1 is an important adhesion molecule mediating the adhesion reaction, which plays an important role in stabilizing the interaction between cells and promoting the migration of leukocytes and endothelial cells. Ischemic cascade reaction leads to microglial activation, which will promote the release of pro-inflammatory cytokines (TNF-α, IL1B, and IL6) and anti-inflammatory cytokines (IL10 and TGF-β) [58]. MMP-9 is a kind of matrix metalloproteinases (MMPs) closely related to the development of IS, which promotes embryo development, inflammation, atherosclerosis and other biological functions. Under the stimulation of cerebral ischemia and hypoxia, microglia and astrocytes produce part of MMP-9 under the guidance of inflammatory factors. By hydrolyzing the tight junction protein on the basement membrane of cerebrovascular, the integrity of blood-brain barrier is destroyed [59]. VEGF is a double-edged sword in the development of cerebral infarction. In the hyperacute stage of cerebral infarction, the increase of VEGF concentration will increase the permeability of blood-brain barrier, lead to brain edema and aggravate clinical symptoms. In the post infarction recovery stage, the high content of VEGF is conducive to the establishment of collateral circulation of ischemic focus and penumbra and the damage and repair of neurons [60]. AKT1 is one of serine/threonine-protein kinases (AKT1, AKT2 and AKT3), and it regulates many processes including metabolism, proliferation, cell survival, growth and angiogenesis. AKT1 gene deletion induces dysfunction of vascular endothelial cells, migration and survival of vascular smooth muscle cells [61].

Pathway enrichment analysis results showed that TNF signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and NF-kappa B signaling pathway are the main pathways. TNF signaling pathway is an important inflammatory pathway. As an important cytokine, TNF can induce apoptosis, cell survival, inflammation, immunity and other intracellular signaling pathways. TNFR1 signal transduction can induce the activation of many genes, which are mainly controlled by NF-kappa B and MAPK cascade. TNFR2 signal activated PI3K and JNK pathway. In this present study, TNF, IL-1B, MYC and TGFB1 were potential targets of BHD, suggesting that BHD plays a neuroprotective role against ischemia-reperfusion injury through TNF signaling pathway. PI3K / Akt signaling pathway is one of the important pathways of cerebral ischemia and neuronal apoptosis. A study found that activating PI3K / Akt signal pathway could inhibit the apoptosis of nerve and reduce the occurrence of blood-borne brain edema. A series of studies have shown that many Chinese herbal extracts play a protective role in IS through this pathway [62, 63]. Another study found that Baicalein also decreased the LC3-II/LC3-I ratio and promoted phosphorylation of the PI3K/Akt/mTOR signaling pathway which implied inhibition of autophagy. The reduction of
phosphorylation Akt and glycogen synthase kinase-3beta (GSK3beta) induced by OGD was restored by Baicalein, which was associated with preserved levels of phosphorylation of PTEN, the phosphatase that negatively regulates Akt [64, 65]. It was reported that baicalein could activate PI3K/AKT pathway, inhibit caspase activation and reduce cerebral infarct volume in MCAO rats [66]. Besides, formononetin mediated neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway [67]. MAPK signaling pathways may be a therapeutic targets for stroke[68]. Researches showed that suppressing the NF-κB and MAPK signaling pathways would down regulate the expression of proinflammatory factors. MAPK pathways could be a promising candidate for future applications in CNS injury treatment [69], BHD alleviated pressure overload induced cardiac remodeling by suppressing TGF-β/Smads and MAPKs signaling activated fibrosis [70].

However, our research also has some limitations. For example, the accuracy and integrity of existing databases need further verification. Higher quality databases of traditional Chinese medicine and more accurate background network databases are needed. Moreover, the results of network pharmacology needs experimental support.

The application of network pharmacology in the study of Chinese Medicine is just in its start-up step. We need to promote the interdisciplinary researches integrating network science, bioinformatics, computer science, mathematics, and pharmacology in the future.

Conclusion

In this study, we explored and discussed the characteristic of “multi-component, multi-target and multi-channel” of BHD-mediated IS treatment through the method of network pharmacology and molecular docking. In the future, we should provide experimental evidence for the neuroprotective effect of BHD against IS according to the results of network pharmacology research.

Declarations

Authors' contributions

Qiang Gao: Conceptualization, Writing - original draft. Zhenyun Han: Supervision, Writing - review & editing. Danfeng Tian: Software, Data curation. Jingfeng Lin: Methodology, Software. Ze Chang: Methodology, Software. Dandan Zhang: Supervision. Dayong Ma: Supervision, Funding acquisition, Writing - review & editing.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81704049) and and “Young talents” project of Dongzhimen Hospital of Beijing University of Chinese medicine (Grant No. DZMYS-201803).
Competing interests

All of authors declare no conflicts of interest.

Availability of data and materials

All data obtained or analyzed during this study are available from the published article and supplementary material.

References

1. Ng T. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81. https://doi.org/10.1016/S0140-6736(14)60460-8.

2. Moretti A, Ferrari F, Villa RF. Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol Ther. 2015;146:23–34. https://doi.org/10.1016/j.pharmthera.2014.09.003.

3. Macrez R, Ali C, Toutirais O, Mauff BL, Defer G, Dirnagl U, Vivien D, Stroke and the immune system: from pathophysiology to new therapeutic strategies, 10(5) (2011) 471–480. https://doi.org/10.1016/s1474-4422(11)70066-7.

4. Maati HMO, Borsotto M, Chatelain F, Widmann C, Heurteaux C. Activation of ATP-sensitive potassium channels as an element of the neuroprotective effects of the Traditional Chinese Medicine MLC901 against oxygen glucose deprivation, Neuropharmacology 63(4) (2012) 692–700. https://doi.org/10.1016/j.neuropharm.2012.05.035.

5. Dong XZ, Wang DX, Bing-Ying YU, Liu P, Yuan HU, Kai-Xin-San, a traditional Chinese medicine formulation, exerts antidepressive and neuroprotective effects by promoting pCREB upstream pathways, Experimental and therapeutic medicine 12(5) (2016) 3308–3314. https://doi.org/0.3892/etm.2016.3773.

6. Liu LF, Song JX, Lu JH, Huang YY, Zeng Y, Chen LL, Durairajan SSK, Han QB, Li M. Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson's disease, Sci Rep 5 (2015) 16862. https://doi.org/10.1038/srep16862.

7. Hao C, Wu F, Shen J, Lu L, Fu D, Liao W, Zheng G. Clinical efficacy and safety of buyang huanwu decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med. 2012;2012(3–4):630124. https://doi.org/10.1155/2012/630124.

8. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X. Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol. 2019;242:112051. https://doi.org/10.1016/j.jep.2019.112051.

9. Zheng XW, Shan CS, Xu QQ, Wang Y, Shi YH, Wang Y, Zheng GQ. Buyang Huanwu Decoction Targets SIRT1/VEGF Pathway to Promote Angiogenesis After Cerebral Ischemia/Reperfusion Injury, Frontiers in neuroscience 12 (2018) 911. https://doi.org/10.3389/fnins.2018.00911.
10. 10.1159/000494587
Dou B, Zhou W, Li S, Wang L, Wu X, Li Y, Guan H, Wang C, Zhu S, Ke Z, Buyang Huanwu Decoction Attenuates Infiltration of Natural Killer Cells and Protects Against Ischemic Brain Injury, Cellular physiology and biochemistry:international journal of experimental cellular physiology, biochemistry, and pharmacology 50(4) (2018) 1286–1300. https://doi.org/10.1159/000494587.

11. Chen ZZ, Gong X, Guo Q, Zhao H, Wang L. Bu Yang Huan Wu decoction prevents reperfusion injury following ischemic stroke in rats via inhibition of HIF-1 α, VEGF and promotion β-ENaC expression. J Ethnopharmacol. 2019;228:70–81. https://doi.org/10.1016/j.jep.2018.09.017.

12. Pan RH, Cai J, Zhan LC, Guo YH, Huang RY, Xiong L, Zhou MC, Xu DD, Zhan J, Chen HC. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats, BMC Complement Altern Med 17(1)(2017)173. https://doi.org/10.1186/s12906-017-1680-9.

13. Ryu M, Kim EH, Chun M, Kang S, Shim B, Yu YB, Jeong G, Lee JS. Astragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk. J Ethnopharmacol. 2008;115(2):0–193. https://doi.org/10.1016/j.jep.2007.09.027.

14. Kim HG, Lee JS, Choi MK, Han JM, Son CG. Ethanolic Extract of Astragali Radix and Salviae Radix Prohibits Oxidative Brain Injury by Psycho-Emotional Stress in Whisker Removal Rat Model. Plos One. 2014;9:e98329. https://doi.org/10.1371/journal.pone.0098329.

15. Tu YH, Xue YR, Guo DD, Sun LN, Guo ML. Carthami os: a review of its ethnopharmacology, pharmacology and clinical applications. Revista Brasileira de Farmacognosia. 2015. https://doi.org/10.1016/j.bjp.2015.06.001.

16. Yang Z, Zhou HF, Zhou P, Yang JH, Zhang YY. Effects of compatibility of main components from Chuanxiong Rhizoma and Astragali Radix on hypoxia damaged brain microvascular endothelial cells. Chinese Traditional Herbal Drugs. 2015;46(9):1326–32. https://doi.org/10.7501/j.issn.0253-2670.2015.09.013.

17. Chen R, Wu P, Cai Z, Fang Y, Zhou H, Lasanajak Y, Tang L, Ye L, Hou C, Zhao J. Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers. J Nutr Biochem. 2019;65:101–14. https://doi.org/10.1016/j.jnutbio.2018.12.004.

18. Patwardhan B, Tillu G, Mehendale N, Chandran U. Network Pharmacology of Ayurveda Formulation Triphala with Special Reference to Anti-Cancer Property. Comb Chem High Throughput Screening. 2015;18(9):846–54. https://doi.org/10.2174/1386207318666151019093606.

19. Li S, Zhang B, Zhang NB. Network target for screening synergistic drug combinations with application to traditional Chinese medicine, BMC systems biology (2011) 10. https://doi.org/10.1186/1752-0509-5-s1-s10.

20. Hasan S, Bonde BK, Buchan NS, Hall MD. Network analysis has diverse roles in drug discovery. Drug Discovery Today. 2012;17:15–6. 869–874. https://doi.org/10.1016/j.drudis.2012.05.006.
21. Zhang YQ, Xia M, Guo QY, Na L, Shao L. Network Pharmacology-based Approaches Capture Essence of Chinese Herbal Medicines. Chinese Herbal Medicines. 2016;008(2):107–16. https://doi.org/10.1016/S1674-6384(16)60018-7.

22. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. https://doi.org/10.1186/1758-2946-6-13.

23. Yang W, Feilong Z, Kuo Y, ShuangSang F, Dechao B, Hui L, Liang S, Hairuo H, Kuo G, Wei W. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2018;D1:D1. https://doi.org/10.1093/nar/gky1021.

24. 10.1186/s13040-020-00212-z

YJie-Shu,LiChen-Yue,Chen Wei, et al. A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao.[J].BioData Min, 2020, 13: 2. https://doi.org/10.1186/s13040-020-00212-z.

25. Shi XQ, Yue SJ, Tang YP, Chen YY, Zhou GS, Zhang J, Zhu ZH, Liu P, Duan JA. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. J Ethnopharmacol. 2019;235:227–42. https://doi.org/10.1016/j.jep.2019.01.027.

26. Zhang M, Yuan Y, Zhou W, Qin Y, Xu K, Men J, Lin M. Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease. Comput Biol Chem. 2020;86:107248. https://doi.org/10.1016/j.compbiolchem.2020.107248.

27. A GD,G, D. A WM, O M. Z. V, SwissTargetPrediction: a web server for target prediction of bioactive small molecules, Nucleic acids research 42 (2014) W32-8. https://doi.org/10.1093/nar/gku2 93.

28. Keiser MJ, Roth BL, Armbruster BN, Emnberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry, Nat Biotechnol 25(2) (2007) 197–206. https://doi.org/10.10 38/nbt1284.

29. Queralt-Rosinach N, Kuhn T, Chichester C, Dumontier M, Furlong LI. Publishing DisGeNET as nanopublications, Semantic Web 7(5) (2016) 519–28. https://doi.org/ 10.3233/SW-150189.

30. 10.1155/2019/1056708

Zhu J, Yi X, Zhang Y, Pan Z, Zhong L, Huang P, Systems Pharmacology-Based Approach to Comparatively Study the Independent and Synergistic Mechanisms of Danhong Injection and Naoxintong Capsule in Ischemic Stroke Treatment, Evidence Based Complementary & Alternative Medicine 2019 (2019) 1–17. https://doi.org/10.1155/2019/1056708.

31. Consortium UP. UniProt: a hub for protein information. Nucleic Acids Res. 2014;D1:D1.

32. D FA,S, M FS,K, A SM,R, J L, P M, P B, C vM. J. LJ, STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research. 2013;41:D808-15. https://doi.org/10.1093/nar/gku293.

33. 10.1155/2018/2582843

Xu T, Ma C, Fan S, Deng N, Lian Y, Tan L, Du W, Zhang S, Liu S, Ren B, Systematic Understanding of the Mechanism of Baicalin against Ischemic Stroke through a Network Pharmacology Approach,
34. Shen L, Chen W, Zhang B, Liu L, Cao Y. Integrating network pharmacology and bioinformatics analysis to explore the mechanism of Yupingfengsan in treating lung adenocarcinoma. European Journal of Integrative Medicine. 2019;31:100967. https://doi.org/10.1016/j.eujim.2019.100967.

35. Kaur K, Kaur P, Mittal A, Nayak SK, Khatik GL. Design and molecular docking studies of novel antimicrobial peptides using autodock molecular docking software. Asian Journal of Pharmaceutical Clinical Research. 2017;10(16):28. https://doi.org/10.22159/ajpcr.2017.v10s4.21332.

36. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK. The RCSB PDB "Molecule of the Month": Inspiring a Molecular View of Biology. Plos Biology. 2015;13(5):e1002140. https://doi.org/10.1371/journal.pbio.1002140.

37. Vrontaki E, Melagraki G, Mavromoustakos T, Afantitis A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening, J Enzyme Inhib Med Chem 31(1) (2015) 1–15. https://doi.org/10.3109/14756366.2014.1003925.

38. Morris GM, Huey R, Lindstrom W, Sanner MF, Olson AJ. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. 2009;30(16):2785–91. https://doi.org/10.1002/jcc.21256.

39. Gaillard T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark, J Chem Inf Model 58(8) (2018) 1697–706. https://doi.org/10.1021/acs.jcim.8b00312.

40. Chen C, Li HL, Yi Y, Fan HJ, Chen C. Network pharmacology-based study on the active substances and mechanisms of Nao An Capsule in treatment of ischemic stroke. European Journal of Integrative Medicine. 2019;31:100976. https://doi.org/10.1016/j.eujim.2019.100976.

41. Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chinese Journal of Integrative Medicine. 2020;26(1):72–80. https://doi.org/10.1007/s11655-019-3064-0.

42. Tan C, Wang H, Gao X, Xu R, Zeng X, Cui Z, Zhu J, Wu Q, Xia G, Zhou H, He Y, Yin J. Dynamic Changes and Prognostic Value of Gut Microbiota-Dependent Trimethylamine-N-Oxide in Acute Ischemic Stroke. Front Neurol. 2020;11:29. https://doi.org/10.3389/fneur.2020.00029.

43. Yamagata K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease, Curr Pharm Des 25(22) (2019) 2443–58. https://doi.org/10.2174/138161282566190722100504.

44. Chirumbolo S, Vella A, Bjorklund G. Quercetin Might Promote Autophagy in a Middle Cerebral Artery Occlusion-Mediated Ischemia Model: Comments on Fawad-Ali Shah et al. Neurochem Res. 2019;44(2):297–300. https://doi.org/10.1007/s11064-018-2692-7.

45. PARK DJ, KANG JB, SHAH MA, KOH PO. Quercetin alleviates the injury-induced decrease of protein phosphatase 2A subunit B in cerebral ischemic animal model and glutamate-exposed HT22 cells. J Vet Med Sci. 2019;81(7):1047–54. https://doi.org/10.1292/jvms.19-0094.
46. Lu J, Wu DM, Zheng YL, Hu B, Wang YJ. Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol. 2010;222(2):199–212. https://doi.org/10.1002/path.2754.

47. Lu Y, Chu C, Wang LF, Xi K, Ke L, Hao Z, Du JR, Borlongan CV. Neuroprotective Effect of Kaempferol Glycosides against Brain Injury and Neuroinflammation by Inhibiting the Activation of NF-κB and STAT3 in Transient Focal Stroke, Plos One 8(2) (2013) e55839. https://doi.org/10.1371/journal.pone.0055839.

48. Wu B, Luo H, Zhou X, Cheng CY, Lin L, Liu BL, Liu K, Li P, Yang H. Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol, Biochimica Et Biophysica Acta Molecular Basis of Disease Bba1863(9) (2017) 2307–2318. https://doi.org/10.1016/j.bbadis.2017.06.011.

49. Zhou YP, Li GC. Kaempferol Protects Cell Damage in In Vitro Ischemia Reperfusion Model in Rat Neuronal PC12 Cells, BioMed research international 2020 (2020) 2461079. https://doi.org/10.1155/2020/2461079.

50. Zhao WZ, Wang HT, Huang HJ, Lo YL, Lin MY. Neuroprotective Effects of Baicalein on Acrolein-induced Neurotoxicity in the Nigrostriatal Dopaminergic System of Rat Brain. Mol Neurobiol. 2018;55(1):130–7. https://doi.org/10.1007/s12035-017-0725-x.

51. Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu C, Du G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage, Biomedicine pharmacotherapy 117 (2019) 109102. https://doi.org/10.1016/j.biopha.2019.109102.

52. Liang W, Huang X, Chen W. The Effects of Baicalin and Baicalein on Cerebral Ischemia: A Review. Aging disease. 2017;8(6):850–67. https://doi.org/10.14336/ad.2017.0829.

53. Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway, J Neurochem 112(6) (2010) 1500–12. https://doi.org/10.1111/j.1471-4159.2009.06561.x.

54. 10.1016/j.brainres.2012.02.003
Qiao H, Zhang X, Zhu C, Dong L, Wang L, Zhang X, Xing Y, Wang C, Ji Y, Cao X, Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia, Brain Research 1448(none) (2012) 71–81. https://doi.org/10.1016/j.brainres.2012.02.003.

55. 10.1016/j.brainres.2012.02.003
Luo S, Li H, Mo Z, Lei J, Zhu L, Huang Y, Fu R, Li C, Huang Y, Liu K. Connectivity map identifies luteolin as a treatment option of ischemic stroke by inhibiting MMP9 and activation of the PI3K/Akt signaling pathway, Exp Mol Med 51(3) (2019)1–11. https://doi.org/10.1038/s 12 276-019-0229-z.

56. Liu Y, Kong C, Gong L, Zhang X, Zhu Y, Wang H, Qu X, Gao R, Yin F, Liu X, Qin H. The Association of Post-Stroke Cognitive Impairment and Gut Microbiota and its Corresponding Metabolites. J Alzheimers Dis. 2020;73(4):1455–66. https://doi.org/10.3233/JAD-191066.
57. Angel C. John, Hallenbeck, The harms and benefits of inflammatory and immune responses in vascular disease, Stroke37(2) (2006) 291–3. https://doi.org/10.1161/01.STR.0000200561.69611.f8.

58. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006;66(3):0–245. https://doi.org/10.1016/j.surneu.2005.12.028.

59. 10.1016/j.drudis.2011.06.009
Dejonckheere E, Vandenbroucke RE, Libert C, Matrix metalloproteinases as drug targets in ischemia/reperfusion injury, Drug Discovery Today 16 (2011) 762 – 78. https://doi.org/10.1016/j.drudis.2011.06.009.

60. Bao Y, Qin L, Kim E, Bhosle S, Guo H, Febbraio M, Haskew-Layton RE, Ratan R, Cho S. CD36 is involved in astrocyte activation and astroglial scar formation. J Cereb Blood Flow Metab. 2012;32(8):1567–77. https://doi.org/10.1038/jcbfm.2012.52.

61. 10.1161/ATVBAHA.109.196394
Fernándezhernando C, József L, Jenkins D, Lorenzo AD, Sessa WC, Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis, Arteriosclerosis Thrombosis & Vascular Biology 29(12) (2009) 2033. https://doi.org/10.1161/ATVBAHA.109.196394.

62. Ou B, Tao W, Yang S, Feng J, Mei Z. The Antiapoptosis Effect of Geum japonicum Thunb. var. chinense Extracts on Cerebral Ischemia Reperfusion Injury via PI3K/Akt Pathway, Evidence Based Complementary & Alternative Medicine 2018(1) (2018) 1–13. https://doi.org/10.1155/2018/7290170.

63. Zhang H, Song Y, Feng C. Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metabolic brain disease. 2020. https://doi.org/10.1007/s11011-020-00575-6.

64. Rice MW, Pandya JD, Shear DA. Gut Microbiota as a Therapeutic Target to Ameliorate the Biochemical, Neuroanatomical, and Behavioral Effects of Traumatic Brain Injuries. Front Neurol. 2019;10:875. https://doi.org/10.3389/fneur.2019.00875.

65. Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway, Journal of neurochemistry 112(6) (2010) 1500–12. https://doi.org/10.1111/j.1471-4159.2009.06561.x.

66. Li WH, YangYL, Cheng X, Liu M, Zhang SS, Wang YH, Du GH. Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis: an international journal on programmed cell death. 2020;25:354–69. https://doi.org/10.1007/s10495-020-01600-w.

67. Liang K, Ye Y, Wang Y, Zhang J, Li C. Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci. 2014;344(1–2):100–4. https://doi.org/10.3389/fnmol.2020.00016.
68. Zhang J, Li Y, Wang C, Wang Y, Zhang Y, Huang L, Zhang Z. Lysophosphatidic Acid Induces Apoptosis of PC12 Cells Through LPA1 Receptor/LPA2 Receptor/MAPK Signaling Pathway. Front Mol Neurosci. 2020;13:16. https://doi.org/10.3390/cells8070739.

69. Tan L, Li J, Wang Y, Tan R. Anti-Neuroinflammatory Effect of Alantolactone through the Suppression of the NF-κB and MAPK Signaling Pathways, Cells 8(7) (2019). https://doi.org/10.3390/cells8070739.

70. Chen H, Song H, Liu X, Tian J, Tang W, Cao T, Zhao P, Zhang C, Guo W, Xu M. Buyanghuanwu Decoction alleviated pressure overload induced cardiac remodeling by suppressing Tgf-β/Smads and MAPKs signaling activated fibrosis. Biomedicine pharmacotherapy. 2017;95:461–8. https://doi.org/10.1016/j.biopha.2017.08.102.

Tables

Table1 Active compounds of BHD and their parameters
Herb	Mol ID	Molecule Name	OB (%)	Caco-2	DL
RA	MOL000211	Mairin	55.38	0.73	0.78
RA	MOL000239	Jaranol	50.83	0.61	0.29
RA	MOL000296	hederagenin	36.91	1.32	0.75
RA	MOL000333	(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[[(2R,5S)-5-propan-2-yloctan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol	36.23	1.45	0.78
RA	MOL000354	isorhamnetin	49.6	0.31	0.31
RA	MOL000371	3,9-di-O-methylnissolin	53.74	1.18	0.48
RA	MOL000378	7-O-methylisomucronulatol	74.69	1.08	0.3
RA	MOL000380	(6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol	64.26	0.93	0.42
RA	MOL000387	Bifendate	31.1	0.15	0.67
RA	MOL000392	formononetin	69.67	0.78	0.21
RA	MOL000398	isoflavanone	109.99	0.53	0.3
RA	MOL000417	Calycosin	47.75	0.52	0.24
RA	MOL000422	kaempferol	41.88	0.26	0.24
RA	MOL000438	(3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol	67.67	0.96	0.26
RA	MOL000442	1,7-Dihydroxy-3,9-dimethoxy pterocarpene	39.05	0.89	0.48
RA	MOL000098	quercetin	46.43	0.05	0.28
CR	MOL001494	Mandenol	42	1.46	0.19
CR	MOL002135	Myricanone	40.6	0.67	0.51
CR	MOL002140	Perlolyrine	65.95	0.88	0.27
CR	MOL002151	senkyunone	47.66	1.15	0.24
CR	MOL002157	wallichilide	42.31	0.82	0.71
CR	MOL000359	sitosterol	36.91	1.32	0.75
RPR	MOL001918	paeoniflororgenone	87.59	-0.09	0.37
RPR	MOL001925	paeoniflorin_qt	68.18	-0.34	0.4
---------	------------	--------------------------	-------	-------	------
RPR	MOL002714	baicalein	33.52	0.63	0.21
RPR	MOL000358	beta-sitosterol	36.91	1.32	0.75
RPR	MOL000359	sitosterol	36.91	1.32	0.75
RPR	MOL004355	Spinasterol	42.98	1.44	0.76
RPR	MOL000449	Stigmasterol	43.83	1.44	0.76
RPR	MOL000492	(+)-catechin	54.83	0.03	0.24
RPR	MOL006992	(2R,3R)-4-methoxyl-distylin	59.98	0.17	0.3
RPR	MOL006994	1-o-beta-d-glucopyranosyl-8-o-benzoypaeonisuffrone_qt	36.01	-0.03	0.3
RPR	MOL006996	1-o-beta-d-glucopyranosylpaeonisuffrone_qt	65.08	-0.05	0.35
RPR	MOL006999	stigmast-7-en-3-ol	37.42	1.32	0.75
RPR	MOL007005	Albiflorin_qt	48.7	-0.38	0.33
RPR	MOL007008	4-ethyl-paeoniflorin_qt	56.87	-0.17	0.44
RPR	MOL007012	4-o-methyl-paeoniflorin_qt	56.7	0.4	0.43
RPR	MOL007016	Paeoniflorigenone	65.33	-0.13	0.37
RPR	MOL007018	9-ethyl-neo-paeoniaflorin A_qt	64.42	-0.01	0.3
RPR	MOL007022	evofolinB	64.74	0	0.22
RPR	MOL002883	Ethyl oleate (NF)	32.4	1.4	0.19
RPR	MOL005043	campest-5-en-3beta-ol	37.58	1.32	0.71
ASR	MOL000358	beta-sitosterol	36.91	1.32	0.75
ASR	MOL000449	Stigmasterol	43.83	1.44	0.76
PS	MOL001323	Sitosterol alpha1	43.28	1.41	0.78
PS	MOL001328	2,3-didehydro GA70	63.29	-0.27	0.5
PS	MOL001339	GA119	76.36	-0.12	0.49
PS	MOL001340	GA120	84.85	0.38	0.45
PS	MOL001342	GA121-isolactone	72.7	-0.26	0.54
PS	MOL001343	GA122	64.79	-0.17	0.5
PS	MOL001344	GA122-isolactone	88.11	-0.18	0.54
PS	MOL001351	Gibberellin A44	101.61	-0.13	0.54
	MOL001358	gibberellin 7			
	PS	73.8	-0.18	0.5	
	MOL001371	Populoside_qt	108.89	0.49	0.2
	PS	hederagenin	36.91	1.32	0.75
	PS	beta-sitosterol	36.91	1.32	0.75
	PS	campesterol	37.58	1.31	0.71
	CF	poriferast-5-en-3beta-ol	36.91	1.45	0.75
	CF	Flavoxanthin	60.41	0.97	0.56
	CF	4-[(E)-4-(3,5-dimethoxy-4-oxo-1-cyclohexa-2,5-dienylidene)-but-2-enylidene]-2,6-dimethoxy-2,5-dien-1-one	48.47	0.81	0.36
	CF	lignan	43.32	0.42	0.65
	CF	lupeol-palmitate	33.98	1.52	0.32
	CF	Phytoene	39.56	2.22	0.5
	CF	phytofluene	43.18	2.29	0.5
	CF	Pyrethrin II	48.36	0.53	0.35
	CF	6-Hydroxykaempferol	62.13	0.16	0.27
	CF	baicalein	33.52	0.63	0.21
	CF	qt_carthamone	51.03	-0.31	0.2
	CF	6-Hydroxynaringenin	33.23	0.27	0.24
	CF	quercetagetin	45.01	-0.06	0.31
	CF	7,8-dimethyl-1H-pyrimido[5,6-g]quinoxaline-2,4-dione	45.75	0.06	0.19
	CF	beta-carotene	37.18	2.25	0.58
	CF	beta-sitosterol	36.91	1.32	0.75
	CF	kaempferol	41.88	0.26	0.24
	CF	Stigmasterol	43.83	1.44	0.76
	CF	luteolin	36.16	0.19	0.25
	CF	CLR	37.87	1.43	0.68
	CF	quercetin	46.43	0.05	0.28
Target Information	BHD Related to IS				
-------------------	------------------				
UniProt ID	Protein name	Gene name			
------------	--------------	-----------			
Q9UNQ0	ABCG2	ATP-binding cassette sub-family G member 2			
P35348	ADRA1A	Alpha-1A adrenergic receptor			
P07550	ADRB2	Beta-2 adrenergic receptor			
P31749	AKT1	RAC-alpha serine/threonine-protein kinase			
P18054	ALOX12	Arachidonate 12-lipoxygenase, 12S-type			
P09917	ALOX5	Arachidonate 5-lipoxygenase			
P10275	AR	Androgen receptor			
O15392	BIRC5	Baculoviral IAP repeat-containing protein 5			
P42574	CASP3	Caspase-3			
P24385	CCND1	G1/S-specific cyclin-D1			
P29965	CD40LG	CD40 ligand			
P42771	CDKN2A	Cyclin-dependent kinase inhibitor 2A			
P02741	CRP	C-reactive protein			
P99999	CYCS	Cytochrome c			
Q9NRD8	DUOX2	Dual oxidase 2			
P03372	ESR1	Estrogen receptor 1			
Q92731	ESR2	Estrogen receptor 2			
P00742	F10	Coagulation factor Xa			
P00734	F2	Thrombin			
P13726	F3	Tissue factor			
P08709	F7	Coagulation factor VII			
P42262	GRIA2	Glutamate receptor 2			
P09601	HMOX1	Heme oxygenase 1			
P05362	ICAM1	Intercellular adhesion molecule 1			
O14920	IKBKB	Inhibitor of nuclear factor kappa-B kinase subunit beta			
P22301	IL10	Interleukin-10			
P01583	IL1A	Interleukin-1A			
P01584	IL1B	Interleukin-1B			
P05112	IL4	Interleukin-4			
--------	------	--------------			
P05231	IL6	Interleukin-6			
P35968	KDR	Vascular endothelial growth factor receptor 2			
P09960	LTA4H	Leukotriene A-4 hydrolase			
P11137	MAP2	Microtubule-associated protein 2			
P28482	MAPK1	Mitogen-activated protein kinase 1			
P03956	MMP1	Matrix metalloproteinase-1			
P09238	MMP10	Matrix metalloproteinase-10			
P08253	MMP2	Matrix metalloproteinase-2			
P08254	MMP3	Matrix metalloproteinase-3			
P14780	MMP9	Matrix metalloproteinase-9			
P05164	MPO	Myeloperoxidase			
P01106	MYC	Myc proto-oncogene protein			
Q16236	NFE2L2	Nuclear factor erythroid 2-related factor 2			
P25963	NFKBIA	NF-kappa-B inhibitor alpha			
P29474	NOS3	Nitric oxide synthase, endothelial			
P15559	NQO1	NAD(P)H dehydrogenase [quinone] 1			
P08235	NR3C2	Mineralocorticoid receptor			
P78380	OLR1	Oxidized low-density lipoprotein receptor 1			
P12004	PCNA	Proliferating cell nuclear antigen			
P00750	PLAT	Tissue-type plasminogen activator			
P00749	PLAU	Urokinase-type plasminogen activator			
P27169	PON1	Serum paraoxonase/arylesterase 1			
P37231	PPARG	Peroxisome proliferator activated receptor gamma			
P23219	PTGS1	Prostaglandin G/H synthase 1			
P35354	PTGS2	Prostaglandin G/H synthase 2			
P16581	SELE	E-selectin			
P05121	SERPINE1	Plasminogen activator inhibitor 1			
P10451	SPP1	Osteopontin			
Figures

Figure 1

The flowchart of the whole study design.
Figure 2

GO and KEGG pathway enrichment analysis for targets of BHD related to IS. Notes: A: Biological processes, B: Cellular component, C: Molecular function, D: Bubble chart of KEGG pathway analysis. The order of importance was ranked by -Log10 (P-Value) and gene number.
Figure 3

Topological analysis of the target proteins of BHD related to IS. Notes: A: Venn diagram showing shared and unique targets of IS and BHD. B: The protein-protein interaction (PPI) network diagram constructed by the String database. C: BHD-IS PPI network constructed by Cytoscape. D: Bar graph of all protein nodes degree related to the targets. E: Cluster of PPI network.
Figure 4

Compound-compound target-IS network. Notes: Lilac circles stand for IS genes and rose red one stand for genes related to BHD. The red, yellow, green, navy blue, light blue, purple circle stand for compounds of Radix Atragali, Chuanxiong Rhizoma, Radix paeoniae Rubra, Persicae Semen, Angelicae Sinensis Radix, Carthami Flos.
Figure 5

Pathway of drug-compound target-IS network.
Figure 6

The conformations of some important compounds and key targets. Notes: A: IL6 with Luteolin (Binding energy=-8.12), B: MMP9 with Luteolin (Binding energy=-6.9), C: TNF with Kaempferol (Binding energy=-7.67), D: AKT1 with Kaempferol (Binding energy=-7.96), E: ICAM1 with Kaempferol (Binding energy=-8.5), F: IL1B with Quercetin (Binding energy=-8.32), G: PTGS2 with Quercetin (Binding energy=-9.29), H: IL-10 with Quercetin (Binding energy=-7.55), I: VEGFA with Baicalein (Binding energy=-6.67), J: MAPK1 with 7-O-methylisomucronulatol (Binding energy=-6.7).
Figure 7

Pathway map of BHD against IS. Notes: The key targets of BHD in the treatment of IS are shown rose red in the TNF signal pathway.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable2.xlsx
- SupplementaryTable1.xlsx