Local melting attracts grain boundaries in colloidal polycrystals

Caitlin E. Cash, Jeremy Wang, Maya M. Martirosyan, B. Kemper Ludlow, Alejandro E. Baptista, Nina M. Brown, Eli J. Weissler, Jatin Abacousnac, and Sharon J. Gerbode

Department of Physics, Harvey Mudd College, Claremont, CA

(Dated: February 21, 2022)

We find that laser-induced local melting attracts and deforms grain boundaries in 2D colloidal crystals. When a melted region in contact with the edge of a crystal grain recrystallizes, it deforms the grain boundary — this attraction is driven by the multiplicity of deformed grain boundary configurations. Furthermore, the attraction provides a method to fabricate artificial colloidal crystalline grains of arbitrary shape, enabling new experimental studies of grain boundary dynamics and ultimately hinting at a novel approach for fabricating materials with designer microstructures.

Grain boundaries, the disordered interfaces between neighboring crystal grains, play a vital role in phase changes such as melting \[1, 2\], and determine important material properties ranging from yield strength to electrical conductivity \[3, 4\]. While measurements of the atom-scale dynamics of grain boundaries are limited in solid state crystals, experimental studies of grain boundaries in colloidal crystals have offered a particle-scale view of thermal grain boundary fluctuations \[5, 7\] and responses to macroscopic mechanical perturbation \[8, 9\]. Furthermore, self-assembled crystals of colloidal particles are interesting in their own right; such systems promise to be a useful avenue for fabricating microstructured materials such as photonic crystals \[10\]. The presence of grain boundaries in such colloidal materials can influence performance, so the ability to rearrange individual grain boundaries could allow for detailed tuning of materials properties. For example, a layered grain structure could create an elastically anisotropic material, with a compliant axis and a stiff axis, reminiscent of behavior in multilayered thin film crystals \[11, 12\]. Here we report experiments in which a focused laser beam causes local melting within colloidal polycrystals. We find that local melting attracts grain boundaries, allowing grain boundary manipulation and enabling the fabrication of arbitrarily shaped grains (Fig. 1). We systematically study the attraction by conducting a simple experiment in which a grain boundary is locally deformed, and use a lattice model to explain the resulting deformation. Ultimately, our discovery hints at a new approach for engineering materials using internal grain manipulation to create designer microstructures.

We prepare colloidal suspensions of silica spheres, diameter 1.2 μm (Sekisui Micropearl Spacers, Dana Enterprises International, CA), in dimethyl sulfoxide. The suspension is pipetted into a wedge-shaped cell constructed from two glass coverslides as previously described \[13\]. The cell is tilted to allow the particles to sediment into the gap between the coverslides, where they form an effectively 2D crystalline monolayer. At visible wavelengths, the refractive index of the silica spheres is approximately 1.424, while that of dimethyl sulfoxide is 1.477. Because the refractive index of the particles is less than that of the fluid, a standard optical tweezer setup (800 mW, 1064 nm laser focused through a 100X Zeiss Plan-Apochromat objective) yields repulsive forces on the particles – “optical blasting” rather than optical trapping.

Optical blasting within a 2D colloidal crystal displaces particles within the plane radially outward from the laser focus, creating a hole (Figs. 2(a) and 2(b)). When the laser is turned off, particles diffuse back into the hole to form a locally melted region (white outline in Fig. 2(c)), which ultimately recrystallizes (Fig. 2(d)). Preliminary experiments reveal the same behavior in 3D colloidal crystals, though confocal microscopy is needed to further study this effect.

We determine the degree of disorder of the particles within the melted region using the local orientational or-
FIG. 2. Optical blasting causes local melting in a 2D colloidal crystal (scale bar: 5 μm). A crystal is shown (a) before blasting, (b) during the blast, (c) melted after the blast, and (d) recrystallized. The melted region is outlined in white. The same region is shown in (e) - (h), with particles colored by modified dynamic Lindemann parameter γ_L, which quantifies local fluctuations in particle separations (color bar in (h) applies to (e) - (h)). (i) Time series of the average values of $|\Psi_6|$ (blue dots) and γ_L (red triangles), measured within the white outline over the entire experiment (error bars: SEM). The shaded region denotes when the laser is on, and the asterisks indicate the frames shown in (a) – (d).

The deformation of the grain boundary proceeds through two distinct attraction mechanisms. The first occurs while the laser is on, and the grain boundary is attracted upward to the hole, which acts like an immobile impurity (see Supplemental Material for a detailed analysis). This attraction is reminiscent of previously reported interactions between grain boundaries and large impurities in colloidal crystals [15, 16] and is not the main focus of this manuscript. When the laser is turned off and particles fill the hole, the grain boundary relaxes downward slightly, reaching the bottom of the melted region for a net upward displacement of y_{imp} due to this “impurity effect” (Fig. 3(c)). We find that on average over the 94 experiments, $y_{imp} = 1.3 \pm 0.1$ LC (mean ± SEM).

After the laser is turned off and particles have refilled the hole, the resulting melted region pulls the grain boundary even further upward. This second attraction mechanism is the primary focus of this paper as it provides the ability to move grain boundaries and tailor...
grain size and shape. On average, as the melted region recrystallizes, the grain boundary rises by an additional 2.2 ± 0.2 LC, for a total displacement of y measured to the peak of the protrusion, relative to the initial grain boundary position (Fig. 3(d)). This attraction of the grain boundary into the melted region seems counterintuitive: one might expect the melted region to recrystallize back into the surrounding upper crystal’s orientation. To understand why the grain boundary shifts up, we use a lattice model to describe the recrystallization of the melted region and ultimately predict how far the lower crystal will protrude into the previously melted region. We model the melted region as a square of side length L and find all possible grain boundary segments that remain within the square and are bounded at the bottom corners. To define a single grain boundary segment with peak height y_{melt}, we place particles (circles in Fig. 4(a)) on lattice sites corresponding to the lower grain’s orientation. The lattice vectors are v_1, v_2, and v_3, with v_2 oriented at an angle θ relative to the bottom edge of the melted region (Fig. 4(a)).

The top layer of particles, adjacent to the grain boundary segment (red, Fig. 4(a)), can be represented by a sequence of lattice vectors (blue arrows, Fig. 4(a)). These vectors form a path corresponding to a grain boundary segment that starts at the bottom left corner of the melted region and ends at the bottom right corner. The path of vectors is bounded by the lattice sites below these corners (asterisks, Fig. 4(a)). Because the vectors represent a path between particle centers, while the grain boundary segment lies along particle edges, we approximate the arclength s of a grain boundary segment (in LC) as the number of lattice vectors, plus one.

The Read-Shockley formula for the energetic cost per unit arclength of a 2D grain boundary is $\gamma_0 \phi (A - \ln \phi)$, where ϕ is the misorientation angle between the two grains, γ_0 has dimensions of energy per length, and both A and γ_0 depend on θ and the elastic moduli [17]. We define $s_0 = k_B T / [\gamma_0 \phi (A - \ln \phi)]$ so that the energy of a grain boundary of arclength s may be written simply as $E(s) = s / s_0 k_B T$. We take each possible grain boundary segment to be a unique microstate m of the system, with arclength s_m and peak height $y_{\text{melt},m}$. The partition function is computed as

$$Z = \sum_m e^{-E(s_m)/k_B T} = \sum_m e^{-s_m/s_0}. \quad (1)$$

Using this model, the expected value of y_{melt} is

$$\langle y_{\text{melt}} \rangle = \frac{1}{Z} \sum_m (y_{\text{melt},m}) e^{-s_m/s_0}. \quad (2)$$

We consider the $\theta = 0$ case to provide intuition: at zero temperature, $\langle y_{\text{melt}} \rangle$ would equal zero, because a straight grain boundary segment is the lowest energy configuration. However, at finite temperature, $\langle y_{\text{melt}} \rangle > 0$ because...
there are more deformed than straight grain boundary configurations.

We measure the experimental values of the parameters s_0 and L to directly compare the model prediction with experimental data. To determine the value of s_0 from our experiments, we collect images of flat, unperturbed grain boundaries undergoing thermal fluctuations. The probability of a single grain boundary point fluctuation of height h is proportional to the Boltzmann factor $e^{-s(h)/s_0}$, where $s(h)$ is the arclength added by the vertical fluctuation. The distribution of fluctuation heights can therefore be inverted to obtain the value of s_0. Using more than 250,000 individual grain boundary fluctuation measurements, we find that $s_0 = 0.33 \pm 0.03$ LC for our experiments. See Supplemental Material for a description of these experiments and their analysis.

We measure the average lengthscale L in the optical blasting experiments to be 4.6 ± 0.1 LC. To compare experiments with different L values and relate them to model predictions, we divide $\langle y_{\text{melt}} \rangle$ by L. In the model, we find that $\langle y_{\text{melt}} \rangle / L$ is not sensitive to the value of L over the range from $L = 2$ to $L = 6$ (details in Supplemental Material). Using the experimental values for s_0 and L, we compute $\langle y_{\text{melt}} \rangle / L$ for values of θ spaced at 1° intervals over the entire range from -30° to 30°, finding that the mean value of $\langle y_{\text{melt}} \rangle / L$ is $\langle y_{\text{melt}} \rangle / L = 0.22$ (vertical dashed line in Fig. 4(b)).

To isolate the effect of the attraction mechanism that occurs after the melted region has formed, we plot the distribution of $(y - y_{\text{imp}}) / L$ measured from the optical blasting experiments (gray bars, Fig. 4(b)). The distance $(y - y_{\text{imp}})$ is equivalent to y_{melt}; it is the displacement into the melted region caused by the second attraction. As shown in Fig. 4(b), the predicted value $\langle y_{\text{melt}} \rangle / L$ is consistent with the measured values of $(y - y_{\text{imp}}) / L$, indicating that the attraction to the melted region is driven by the greater multiplicity of curved grain boundary segments, despite their extra energetic cost.

This attraction to the melted region also drives the more dramatic grain boundary manipulations we use to sculpt artificial grains. A detailed description of the procedure we employ to fabricate grains, as well as videos of the process, are provided in Supplemental Material.

In conclusion, we have introduced optical blasting, a new experimental technique for perturbing 2D colloidal polycrystals. We have discovered that local melting induced by optical blasting attracts nearby grain boundaries and ultimately can be harnessed to create artificial grains of arbitrary shape. This technique can be used for new experimental investigations of colloidal grain boundaries. Optical blasting provides the ability to perturb a grain boundary to measure physical properties such as mobility and stiffness, which determine the dynamics of grain boundary migration. Such studies could explore the open questions of how and why these depend sensitively on the presence of impurities and whether the out of equilibrium values that are commonly measured in solid state crystals are equivalent to the values measured from equilibrium thermal fluctuations [6, 7, 18–20]. Furthermore, the unprecedented ability to create grains of arbitrary shape opens up an exciting new direction for colloidal experiments. Previously, holographic optical tweezer arrays have been used to nudge grain boundary segments, and to create circular grains in 2D colloidal crystals [21], but such techniques can only generate a limited set of grain shapes. The creation of custom grains enables investigations of phenomena ranging from dislocation pileup at grain boundaries to grain coalescence in polycrystals.

Finally, our results suggest that local melting, caused by a heat source such as a focused ion beam, could be used to deform and sculpt grains in solid state crystals of atoms. In contrast to existing "outside in" techniques like work hardening, such local grain-shaping could enable internal tuning of material properties, ushering in a new paradigm for materials processing.

This work was funded by the Research Corporation for Science Advancement through a Cottrell Scholar award to SJG. We thank Elizabeth Connolly and Paul Jerger for assistance with the experimental setup.
[1] S. T. Chui, Phys. Rev. B 28, 178 (1983).
[2] B. Li, F. Wang, D. Zhou, Y. Peng, R. Ni, and Y. Han, Phys. Rev. B 28, 178 (1983).
[3] M. Meyers, A. Mishra, and D. Benson, Prog. in Mat. Sci. 51, 427 (2006).
[4] K. Kreuer, Ann. Rev. Mat. Res. 33, 333 (2003).
[5] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendof, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011).
[6] T. O. E. Skinner, D. G. A. L. Aarts, and R. P. A. Dullens, Phys. Rev. Lett. 105, 168301 (2010).
[7] S. Gokhale, K. H. Nagamanasa, R. Ganapathy, and A. K. Sood, Soft Matter 9, 6634 (2013).
[8] Q. H. Wei and X. L. Wu, Phys. Rev. E 70, 020401 (2004).
[9] I. Buttinoni, M. Steinacher, H. T. Spanke, J. Pokki, S. Bahmann, B. Nelson, G. Foffi, and L. Isa, Phys. Rev. E 95, 012610 (2017).
[10] S.-H. Kim, W. C. Jeong, H. Hwang, and S.-M. Yang, Angew. Chem. Int. Ed. 50, 11649 (2011).
[11] R. W. Armstrong, Journal of Materials Research 28, 17921798 (2013).
[12] R. W. Armstrong and A. K. Head, Acta Metallurgica 13, 759 (1965).
[13] S. J. Gerbode, S. H. Lee, C. M. Liddell, and I. Cohen, Phys. Rev. Lett. 101, 058302 (2008).
[14] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
[15] V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveeld, J. H. Scherff, W. K. Kegel, and H. N. W. Lekkerkerker, Science 309, 1231 (2005).
[16] V. W. A. de Villeneuve, L. Derendorp, D. Verboekend, E. C. M. Vermolen, W. K. Kegel, H. N. W. Lekkerkerker, and R. P. A. Dullens, Soft Matter 5, 2448 (2009).
[17] W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).
[18] M. Upmanyu, D. Srolovitz, L. Shvindlerman, and G. Gottstein, Acta Materialia 47, 3901 (1999).
[19] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, UK, 2004).
[20] S. Hu, J. Nozawa, H. Koizumi, K. Fujiwara, and S. Uda, Crystal Growth & Design 15, 5685 (2015).
[21] W. T. M. Irvine, A. D. Hollingsworth, D. G. Grier, and P. M. Chaikin, Proc. Nat. Acad. Sci. 110, 15544 (2013).