S1 Results from Independence Simulation Settings

The simulation results under the independence setting for stepwise procedures comparisons are shown in this section. Tables S1, S2 and Tables S3, S4 respectively provide the results of numerical comparisons of single-step procedures using Fisher and Binomial Exact Tests (as plotted in Figures 1 and 2).
Table S1: Simulated FWER comparisons for single-step procedures with independent \(p \)-values generated from Fisher’s Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

\(m = 5 \)	\(\pi_0 = 0.2 \)	\(\pi_0 = 0.4 \)	\(\pi_0 = 0.6 \)	\(\pi_0 = 0.8 \)
\(N = 25 \)	MBonf 0.0045	MBonf 0.0025	MBonf 0.0005	MBonf 0.0050
Tarone 0.0030	Tarone 0.0025	Tarone 0.0015	Tarone 0.0025	Tarone 0.0015
Bonf 0.0005				
Sidak 0.0005				
\(N = 50 \)	MBonf 0.0060	MBonf 0.0030	MBonf 0.0040	MBonf 0.0050
Tarone 0.0060	Tarone 0.0030	Tarone 0.0040	Tarone 0.0050	Tarone 0.0040
Bonf 0.0003				
Sidak 0.0005				
\(N = 75 \)	MBonf 0.0075	MBonf 0.0035	MBonf 0.0045	MBonf 0.0055
Tarone 0.0075	Tarone 0.0035	Tarone 0.0045	Tarone 0.0055	Tarone 0.0045
Bonf 0.0015				
Sidak 0.0015				
\(N = 100 \)	MBonf 0.0075	MBonf 0.0035	MBonf 0.0045	MBonf 0.0055
Tarone 0.0075	Tarone 0.0035	Tarone 0.0045	Tarone 0.0055	Tarone 0.0045
Bonf 0.0015				
Sidak 0.0015				
\(N = 125 \)	MBonf 0.0075	MBonf 0.0035	MBonf 0.0045	MBonf 0.0055
Tarone 0.0075	Tarone 0.0035	Tarone 0.0045	Tarone 0.0055	Tarone 0.0045
Bonf 0.0015				
Sidak 0.0015				
\(N = 150 \)	MBonf 0.0075	MBonf 0.0035	MBonf 0.0045	MBonf 0.0055
Tarone 0.0075	Tarone 0.0035	Tarone 0.0045	Tarone 0.0055	Tarone 0.0045
Bonf 0.0015				
Sidak 0.0015				
Table S2: Simulated minimal power comparisons for single-step procedures with independent p-values generated from Fisher’s exact test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

$m = 5$	$N = 25$	$N = 50$	$N = 75$	$N = 100$	$N = 125$	$N = 150$	
$\pi_0 = 0.2$	MBonf 0.2550	0.5060	0.6855	0.8195	0.9145	0.9505	
	Tarone 0.1945	0.3900	0.5775	0.7680	0.8655	0.9275	
	Bonf 0.1125	0.3825	0.5765	0.7680	0.8655	0.9275	
	Sidak 0.1125	0.3825	0.5850	0.7680	0.8710	0.9340	
$m = 5$	$\pi_0 = 0.4$	MBonf 0.2110	0.4085	0.5785	0.7405	0.8375	0.9025
	Tarone 0.1605	0.3110	0.4715	0.6705	0.7695	0.8625	
	Bonf 0.0880	0.3000	0.4700	0.6705	0.7695	0.8625	
	Sidak 0.0880	0.3000	0.4770	0.6705	0.7765	0.8680	
$m = 5$	$\pi_0 = 0.6$	MBonf 0.1550	0.3130	0.4320	0.5835	0.7025	0.7845
	Tarone 0.1180	0.2365	0.3370	0.5145	0.6255	0.7245	
	Bonf 0.0605	0.2190	0.3355	0.5145	0.6255	0.7245	
	Sidak 0.0605	0.2190	0.3420	0.5145	0.6330	0.7345	
$m = 5$	$\pi_0 = 0.8$	MBonf 0.0945	0.1800	0.2570	0.3595	0.4660	0.5050
	Tarone 0.0740	0.1330	0.1920	0.2955	0.3950	0.4850	
	Bonf 0.0330	0.1190	0.1920	0.2955	0.3950	0.4850	
	Sidak 0.0330	0.1190	0.1955	0.2955	0.4025	0.5005	
$m = 10$	$\pi_0 = 0.2$	MBonf 0.3155	0.6130	0.8090	0.9110	0.9765	0.9930
	Tarone 0.2075	0.4695	0.7220	0.8550	0.9415	0.9820	
	Bonf 0.1575	0.4660	0.7220	0.8550	0.9415	0.9820	
	Sidak 0.1575	0.4660	0.7220	0.8595	0.9425	0.9830	
$m = 10$	$\pi_0 = 0.4$	MBonf 0.2700	0.5220	0.7180	0.8455	0.9440	0.9750
	Tarone 0.1770	0.3905	0.6065	0.7720	0.8905	0.9505	
	Bonf 0.1235	0.3795	0.6065	0.7720	0.8905	0.9505	
	Sidak 0.1235	0.3795	0.6065	0.7775	0.8920	0.9575	
$m = 10$	$\pi_0 = 0.6$	MBonf 0.2050	0.4030	0.5615	0.7300	0.8450	0.9035
	Tarone 0.1330	0.2990	0.4525	0.6315	0.7590	0.8525	
	Bonf 0.0800	0.2825	0.4525	0.6315	0.7590	0.8525	
	Sidak 0.0800	0.2825	0.4525	0.6375	0.7615	0.8585	
$m = 10$	$\pi_0 = 0.8$	MBonf 0.1115	0.2440	0.3500	0.4775	0.6140	0.6935
	Tarone 0.0760	0.1680	0.2645	0.3810	0.5165	0.6060	
	Bonf 0.0390	0.1555	0.2645	0.3810	0.5165	0.6060	
	Sidak 0.0390	0.1555	0.2645	0.3880	0.5170	0.6185	
$m = 15$	$\pi_0 = 0.2$	MBonf 0.3370	0.6715	0.8820	0.9495	0.9915	0.9965
	Tarone 0.2520	0.4995	0.7530	0.8910	0.9765	0.9895	
	Bonf 0.1390	0.4870	0.7515	0.8910	0.9765	0.9895	
	Sidak 0.1390	0.4870	0.7515	0.8960	0.9765	0.9895	
$m = 15$	$\pi_0 = 0.4$	MBonf 0.2880	0.5815	0.7910	0.9025	0.9635	0.9830
	Tarone 0.2110	0.4105	0.6475	0.8050	0.9335	0.9745	
	Bonf 0.1030	0.3870	0.6460	0.8050	0.9335	0.9745	
	Sidak 0.1030	0.3870	0.6460	0.8125	0.9335	0.9745	
$m = 15$	$\pi_0 = 0.6$	MBonf 0.2135	0.4485	0.6570	0.7925	0.8840	0.9500
	Tarone 0.1495	0.3070	0.5085	0.6730	0.8315	0.9140	
	Bonf 0.0700	0.2760	0.5065	0.6730	0.8315	0.9140	
	Sidak 0.0700	0.2760	0.5065	0.6790	0.8315	0.9140	
$m = 15$	$\pi_0 = 0.8$	MBonf 0.1205	0.2635	0.4270	0.5490	0.6710	0.7780
	Tarone 0.0830	0.1785	0.3050	0.4295	0.5890	0.7020	
	Bonf 0.0335	0.1480	0.3040	0.4290	0.5890	0.7020	
	Sidak 0.0335	0.1480	0.3040	0.4345	0.5895	0.7020	
Table S3: Simulated FWER comparisons for single-step procedures with independent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

	\(\pi_0 = 0.2 \)	\(\pi_0 = 0.4 \)	\(\pi_0 = 0.6 \)	\(\pi_0 = 0.8 \)		
\(m = 5 \)	\(\alpha = 0.05 \)	MBonf	0.0020	0.0060	0.0075	0.0165
		Tarone	0.0010	0.0030	0.0055	0.0105
		Bonf	0.0010	0.0020	0.0025	0.0030
		Sidak	0.0010	0.0020	0.0025	0.0030
\(m = 10 \)	\(\alpha = 0.05 \)	MBonf	0.0010	0.0045	0.0130	0.0160
		Tarone	0.0000	0.0010	0.0050	0.0115
		Bonf	0.0000	0.0005	0.0025	0.0025
		Sidak	0.0000	0.0005	0.0025	0.0025
\(m = 15 \)	\(\alpha = 0.05 \)	MBonf	0.0010	0.0065	0.0045	0.0150
		Tarone	0.0000	0.0010	0.0020	0.0070
		Bonf	0.0000	0.0005	0.0000	0.0000
		Sidak	0.0000	0.0005	0.0000	0.0000
\(m = 5 \)	\(\alpha = 0.1 \)	MBonf	0.0070	0.0125	0.0200	0.0365
		Tarone	0.0020	0.0065	0.0110	0.0285
		Bonf	0.0020	0.0055	0.0065	0.0130
		Sidak	0.0020	0.0055	0.0065	0.0130
\(m = 10 \)	\(\alpha = 0.1 \)	MBonf	0.0040	0.0080	0.0275	0.0350
		Tarone	0.0000	0.0030	0.0165	0.0195
		Bonf	0.0000	0.0015	0.0055	0.0060
		Sidak	0.0000	0.0015	0.0055	0.0060
\(m = 15 \)	\(\alpha = 0.1 \)	MBonf	0.0060	0.0155	0.0185	0.0315
		Tarone	0.0005	0.0060	0.0045	0.0200
		Bonf	0.0000	0.0010	0.0020	0.0025
		Sidak	0.0000	0.0010	0.0020	0.0025
Table S4: Simulated minimal power comparisons for single-step procedures with independent p-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

Procedure	$\pi_0 = 0.2$	$\pi_0 = 0.4$	$\pi_0 = 0.6$	$\pi_0 = 0.8$
$m = 5$				
MBonf	0.9205	0.8805	0.7845	0.5565
Tarone	0.8815	0.8240	0.7395	0.5235
Bonf	0.8735	0.8055	0.6610	0.4045
Sidak	0.8735	0.8055	0.6610	0.4045
$\alpha = 0.05$				
$m = 10$				
MBonf	0.9850	0.9635	0.9035	0.7390
Tarone	0.9470	0.9240	0.8630	0.6855
Bonf	0.9315	0.8635	0.7050	0.4775
Sidak	0.9315	0.8635	0.7050	0.4775
$\alpha = 0.05$				
$m = 15$				
MBonf	0.9925	0.9810	0.9555	0.8210
Tarone	0.9825	0.9500	0.9095	0.7845
Bonf	0.9820	0.9475	0.8560	0.6135
Sidak	0.9820	0.9475	0.8560	0.6135

Tables S5 and S6 provide numerical results of step-down procedures comparisons using Fisher Exact Test, which are also plotted as Figures S1 and S2. Tables S7 and S8 provide numerical results of step-up procedures comparisons using Fisher Exact Test, which are plotted as Figures S3 and S4.
Table S5: Simulated FWER comparisons for step-down procedures with independent \(p \)-values generated from Fisher’s Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

	\(N = 25 \)	\(N = 50 \)	\(N = 75 \)	\(N = 100 \)	\(N = 125 \)	\(N = 150 \)
\(m = 5 \)						
\(\pi_0 = 0.2 \)	MHolm 0.0030	0.0090	0.0065	0.0115	0.0150	0.0150
	TH 0.0015	0.0045	0.0030	0.0075	0.0090	0.0140
	Holm 0.0010	0.0045	0.0030	0.0075	0.0090	0.0140
\(m = 5 \)						
\(\pi_0 = 0.4 \)	MHolm 0.0055	0.0155	0.0135	0.0230	0.0225	0.0225
	TH 0.0030	0.0080	0.0080	0.0185	0.0140	0.0180
	Holm 0.0020	0.0075	0.0080	0.0185	0.0140	0.0180
\(m = 5 \)						
\(\pi_0 = 0.6 \)	MHolm 0.0100	0.0215	0.0215	0.0290	0.0305	0.0320
	TH 0.0065	0.0115	0.0115	0.0220	0.0185	0.0205
	Holm 0.0030	0.0110	0.0115	0.0220	0.0185	0.0205
\(m = 5 \)						
\(\pi_0 = 0.8 \)	MHolm 0.0155	0.0285	0.0285	0.0360	0.0375	0.0440
	TH 0.0115	0.0145	0.0160	0.0260	0.0240	0.0270
	Holm 0.0050	0.0140	0.0160	0.0260	0.0240	0.0270

	\(N = 25 \)	\(N = 50 \)	\(N = 75 \)	\(N = 100 \)	\(N = 125 \)	\(N = 150 \)
\(m = 10 \)						
\(\pi_0 = 0.2 \)	MHolm 0.0020	0.0070	0.0125	0.0130	0.0160	0.0185
	TH 0.0005	0.0040	0.0070	0.0080	0.0115	0.0125
	Holm 0.0005	0.0040	0.0070	0.0080	0.0115	0.0125
\(m = 10 \)						
\(\pi_0 = 0.4 \)	MHolm 0.0050	0.0155	0.0200	0.0215	0.0280	0.0265
	TH 0.0025	0.0090	0.0125	0.0125	0.0200	0.0175
	Holm 0.0025	0.0090	0.0125	0.0125	0.0200	0.0175
\(m = 10 \)						
\(\pi_0 = 0.6 \)	MHolm 0.0095	0.0250	0.0285	0.0290	0.0360	0.0350
	TH 0.0060	0.0150	0.0185	0.0155	0.0220	0.0215
	Holm 0.0045	0.0140	0.0185	0.0155	0.0220	0.0215
\(m = 10 \)						
\(\pi_0 = 0.8 \)	MHolm 0.0175	0.0340	0.0360	0.0380	0.0420	0.0405
	TH 0.0090	0.0215	0.0235	0.0195	0.0255	0.0230
	Holm 0.0055	0.0190	0.0225	0.0195	0.0255	0.0230

	\(N = 25 \)	\(N = 50 \)	\(N = 75 \)	\(N = 100 \)	\(N = 125 \)	\(N = 150 \)
\(m = 15 \)						
\(\pi_0 = 0.2 \)	MHolm 0.0045	0.0070	0.0070	0.0140	0.0125	0.0120
	TH 0.0025	0.0035	0.0030	0.0090	0.0060	0.0085
	Holm 0.0005	0.0030	0.0030	0.0090	0.0060	0.0085
\(m = 15 \)						
\(\pi_0 = 0.4 \)	MHolm 0.0095	0.0165	0.0145	0.0255	0.0255	0.0285
	TH 0.0060	0.0080	0.0075	0.0160	0.0175	0.0165
	Holm 0.0010	0.0070	0.0075	0.0160	0.0175	0.0165
\(m = 15 \)						
\(\pi_0 = 0.6 \)	MHolm 0.0165	0.0260	0.0215	0.0345	0.0350	0.0345
	TH 0.0090	0.0130	0.0105	0.0190	0.0215	0.0195
	Holm 0.0020	0.0105	0.0100	0.0190	0.0215	0.0195
\(m = 15 \)						
\(\pi_0 = 0.8 \)	MHolm 0.0215	0.0350	0.0315	0.0415	0.0465	0.0390
	TH 0.0120	0.0170	0.0165	0.0225	0.0290	0.0260
	Holm 0.0020	0.0135	0.0165	0.0225	0.0290	0.0260
Table S6: Simulated minimal power comparisons for step-down procedures with independent p-values generated from Fisher's Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

	$N = 25$	$N = 50$	$N = 75$	$N = 100$	$N = 125$	$N = 150$	
$m = 5$							
$\pi_0 = 0.2$	MHolm	0.2555	0.5070	0.6855	0.8200	0.9145	0.9505
	TH	0.1945	0.3905	0.5780	0.7680	0.8660	0.9280
	Holm	0.1130	0.3830	0.5770	0.7680	0.8660	0.9280
$m = 5$							
$\pi_0 = 0.4$	MHolm	0.2120	0.4090	0.5790	0.7405	0.8375	0.9030
	TH	0.1605	0.3115	0.4725	0.6705	0.7695	0.8630
	Holm	0.0880	0.3005	0.4710	0.6705	0.7695	0.8630
$m = 5$							
$\pi_0 = 0.6$	MHolm	0.1555	0.3150	0.4330	0.5855	0.7035	0.7855
	TH	0.1185	0.2365	0.3375	0.5160	0.6265	0.7260
	Holm	0.0605	0.2190	0.3360	0.5160	0.6265	0.7260
$m = 5$							
$\pi_0 = 0.8$	MHolm	0.0950	0.1815	0.2585	0.3615	0.4690	0.5530
	TH	0.0745	0.1330	0.1920	0.2965	0.3960	0.4860
	Holm	0.0330	0.1190	0.1920	0.2965	0.3960	0.4860
$m = 10$							
$\pi_0 = 0.2$	MHolm	0.3160	0.6130	0.8095	0.9120	0.9765	0.9930
	TH	0.2075	0.4700	0.7220	0.8550	0.9415	0.9820
	Holm	0.1575	0.4660	0.7220	0.8550	0.9415	0.9820
$m = 10$							
$\pi_0 = 0.4$	MHolm	0.2705	0.5220	0.7185	0.8455	0.9445	0.9750
	TH	0.1770	0.3905	0.6065	0.7720	0.8905	0.9505
	Holm	0.1235	0.3795	0.6065	0.7720	0.8905	0.9505
$m = 10$							
$\pi_0 = 0.6$	MHolm	0.2010	0.4035	0.5615	0.7300	0.8450	0.9035
	TH	0.1330	0.2990	0.4525	0.6315	0.7590	0.8525
	Holm	0.0800	0.2825	0.4525	0.6315	0.7590	0.8525
$m = 10$							
$\pi_0 = 0.8$	MHolm	0.1115	0.2440	0.3500	0.4780	0.6145	0.6935
	TH	0.0760	0.1680	0.2645	0.3810	0.5175	0.6065
	Holm	0.0390	0.1555	0.2645	0.3810	0.5175	0.6065
$m = 15$							
$\pi_0 = 0.2$	MHolm	0.3375	0.6715	0.8820	0.9495	0.9915	0.9965
	TH	0.2520	0.4995	0.7530	0.8910	0.9765	0.9895
	Holm	0.1390	0.4870	0.7515	0.8910	0.9765	0.9895
$m = 15$							
$\pi_0 = 0.4$	MHolm	0.2885	0.5825	0.7915	0.9025	0.9635	0.9830
	TH	0.2110	0.4105	0.6475	0.8055	0.9335	0.9745
	Holm	0.1030	0.3870	0.6460	0.8055	0.9335	0.9745
$m = 15$							
$\pi_0 = 0.6$	MHolm	0.2135	0.4495	0.6575	0.7930	0.8840	0.9500
	TH	0.1495	0.3070	0.5085	0.6730	0.8315	0.9140
	Holm	0.0700	0.2760	0.5065	0.6730	0.8315	0.9140
$m = 15$							
$\pi_0 = 0.8$	MHolm	0.1205	0.2645	0.4280	0.5495	0.6730	0.7780
	TH	0.0835	0.1785	0.3055	0.4295	0.5890	0.7030
	Holm	0.0335	0.1480	0.3045	0.4290	0.5890	0.7030
Figure S1: Simulated FWER comparisons for different step-down procedures based on FET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).
Figure S2: Simulated minimal power comparisons for different step-down procedures based on FET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).
Table S7: Simulated FWER comparisons for step-up procedures with independent p-values generated from Fisher’s Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

	$N = 25$	$N = 50$	$N = 75$	$N = 100$	$N = 125$	$N = 150$	
$m = 5$							
$\pi_0 = 0.2$	MHoch	0.0030	0.0090	0.0070	0.0115	0.0150	0.0155
	Roth	0.0020	0.0045	0.0040	0.0085	0.0115	0.0155
	Hoch	0.0015	0.0045	0.0040	0.0085	0.0115	0.0155
$\pi_0 = 0.4$	MHoch	0.0060	0.0155	0.0140	0.0235	0.0230	0.0245
	Roth	0.0035	0.0080	0.0085	0.0185	0.0160	0.0200
	Hoch	0.0025	0.0075	0.0085	0.0185	0.0160	0.0200
$\pi_0 = 0.6$	MHoch	0.0105	0.0215	0.0215	0.0290	0.0305	0.0325
	Roth	0.0065	0.0115	0.0115	0.0220	0.0195	0.0215
	Hoch	0.0030	0.0110	0.0115	0.0220	0.0195	0.0215
$\pi_0 = 0.8$	MHoch	0.0160	0.0285	0.0285	0.0360	0.0380	0.0445
	Roth	0.0115	0.0145	0.0160	0.0265	0.0245	0.0280
	Hoch	0.0050	0.0140	0.0160	0.0265	0.0245	0.0280
$m = 10$							
$\pi_0 = 0.2$	MHoch	0.0025	0.0070	0.0125	0.0140	0.0170	0.0200
	Roth	0.0005	0.0040	0.0070	0.0080	0.0120	0.0135
	Hoch	0.0005	0.0040	0.0070	0.0080	0.0120	0.0135
$\pi_0 = 0.4$	MHoch	0.0055	0.0155	0.0200	0.0225	0.0290	0.0275
	Roth	0.0025	0.0090	0.0125	0.0125	0.0200	0.0185
	Hoch	0.0025	0.0090	0.0125	0.0125	0.0200	0.0185
$\pi_0 = 0.6$	MHoch	0.0095	0.0250	0.0285	0.0290	0.0360	0.0350
	Roth	0.0060	0.0150	0.0185	0.0155	0.0220	0.0215
	Hoch	0.0045	0.0140	0.0185	0.0155	0.0220	0.0215
$\pi_0 = 0.8$	MHoch	0.0180	0.0340	0.0360	0.0380	0.0420	0.0405
	Roth	0.0095	0.0210	0.0235	0.0195	0.0255	0.0235
	Hoch	0.0055	0.0190	0.0225	0.0195	0.0255	0.0235
$m = 15$							
$\pi_0 = 0.2$	MHoch	0.0045	0.0070	0.0070	0.0140	0.0125	0.0130
	Roth	0.0020	0.0035	0.0030	0.0090	0.0060	0.0095
	Hoch	0.0005	0.0030	0.0030	0.0090	0.0060	0.0095
$\pi_0 = 0.4$	MHoch	0.0100	0.0165	0.0145	0.0255	0.0255	0.0290
	Roth	0.0060	0.0080	0.0075	0.0160	0.0175	0.0165
	Hoch	0.0010	0.0070	0.0075	0.0160	0.0175	0.0165
$\pi_0 = 0.6$	MHoch	0.0175	0.0260	0.0215	0.0345	0.0350	0.0345
	Roth	0.0090	0.0130	0.0105	0.0190	0.0220	0.0195
	Hoch	0.0020	0.0105	0.0100	0.0190	0.0220	0.0195
$\pi_0 = 0.8$	MHoch	0.0215	0.0350	0.0315	0.0415	0.0465	0.0390
	Roth	0.0120	0.0170	0.0165	0.0225	0.0290	0.0265
	Hoch	0.0020	0.0135	0.0165	0.0225	0.0290	0.0265
Table S8: Simulated minimal power comparisons for step-up procedures with independent p-values generated from Fisher’s Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

m	π_0	MHoch	Roth	Hoch
5	0.2	0.2600	0.1975	0.1170
		0.5075	0.3915	0.3845
		0.6885	0.5820	0.5810
		0.8240	0.7685	0.7685
		0.9170	0.8695	0.8695
		0.9525	0.9300	0.9300
5	0.4	0.2155	0.1630	0.0885
		0.4105	0.3115	0.3010
		0.5810	0.4755	0.4740
		0.7410	0.6705	0.6705
		0.8400	0.7715	0.7715
		0.9055	0.8660	0.8660
5	0.6	0.1580	0.1200	0.0605
		0.3155	0.2365	0.2190
		0.4340	0.3380	0.3365
		0.5860	0.5165	0.5165
		0.7045	0.6280	0.6280
		0.7875	0.7275	0.7275
5	0.8	0.0955	0.0745	0.0330
		0.1815	0.1330	0.1190
		0.2585	0.1920	0.1920
		0.3615	0.2970	0.2970
		0.4695	0.3965	0.3965
		0.5535	0.4870	0.4870
10	0.2	0.3215	0.2080	0.1580
		0.6155	0.4685	0.4660
		0.8110	0.7225	0.7225
		0.9130	0.8555	0.8555
		0.9765	0.9420	0.9420
		0.9930	0.9820	0.9820
10	0.4	0.2735	0.1770	0.1240
		0.5245	0.3840	0.3795
		0.7200	0.6070	0.6065
		0.8465	0.7720	0.7720
		0.9450	0.8920	0.8920
		0.9755	0.9510	0.9510
10	0.6	0.2030	0.1335	0.0800
		0.4045	0.2910	0.2825
		0.5615	0.4525	0.4525
		0.7310	0.6315	0.6315
		0.8450	0.7600	0.7600
		0.9045	0.8530	0.8530
10	0.8	0.1135	0.0765	0.0390
		0.2440	0.1625	0.1555
		0.3500	0.2645	0.2645
		0.4780	0.3810	0.3810
		0.6150	0.5175	0.5175
		0.6935	0.6075	0.6075
15	0.2	0.3405	0.2520	0.1390
		0.6720	0.5010	0.4875
		0.8830	0.7545	0.7535
		0.9505	0.8910	0.8910
		0.9915	0.9765	0.9765
		0.9965	0.9900	0.9900
15	0.4	0.2895	0.2110	0.1030
		0.5830	0.4115	0.3870
		0.7925	0.6485	0.6470
		0.9025	0.8060	0.8060
		0.9635	0.9335	0.9335
		0.9830	0.9745	0.9745
15	0.6	0.2150	0.1495	0.0700
		0.4500	0.3080	0.2760
		0.6595	0.5095	0.5075
		0.7935	0.6730	0.6730
		0.8845	0.8320	0.8320
		0.9505	0.9150	0.9150
15	0.8	0.1210	0.0835	0.0335
		0.2645	0.1785	0.1480
		0.4285	0.3055	0.3045
		0.5500	0.4295	0.4290
		0.6730	0.5895	0.5895
		0.7780	0.7035	0.7035
Figure S3: Simulated FWER comparisons for different step-up procedures based on FET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).
Figure S4: Simulated minimal power comparisons for different step-up procedures based on FET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).

S2 Results from Dependence Simulation Settings

In this section, we provide the details for simulating the block dependent binomial exact test (BET) statistics and the simulation results for the stepwise procedures comparisons. The following steps illustrate how to generate the dependent BET statistics and corresponding p-values.

Step 1. Generate dependent Poisson observed counts for each group

In order to generate m dependent BET statistics T_i, we use the following algorithm to generate m dependent Poisson random variables within each group, noting that the Poisson random variables between two groups are independent.

1. Let $\lambda_{i1} = 2$ for $i = 1, \ldots, m$, generate m independent Poisson random variable
\[Y_{1i} \sim \text{Poi}((1 - \rho)\lambda_{i1}) \text{ and one } Y_{01} \sim \text{Poi}(2\rho). \]

2. Let \(X_{i1} = Y_{i1} + Y_{01} \) for \(i = 1, \ldots, m \), then \(X_{i1} \sim \text{Poi}(2) \) and the correlation between \(X_{i1} \) and \(X_{j1} \) is \(\frac{\text{Cov}(X_{i1}, X_{j1})}{\sqrt{\text{Var}(X_{i1})}\sqrt{\text{Var}(X_{j1})}} = \frac{\text{Var}(Y_{01})}{\sqrt{2}\sqrt{2}} = \frac{2\rho}{2} = \rho \) for \(i, j = 1, \ldots, m \) and \(i \neq j \).

3. Let \(\lambda_{i2} = 2 \) for \(i = 1, \ldots, m_0 \) and \(\lambda_{i2} = 10 \) for \(i = m_0 + 1, \ldots, m \), generate \(m \) independent Poisson random variable \(Y_{i2} \sim \text{Poi}((1 - \rho)\lambda_{i2}) \) for \(i = 1, \ldots, m \), one \(Y_{02} \sim \text{Poi}(2\rho) \), and one \(Y_{02}' \sim \text{Poi}(10\rho) \).

4. Let \(X_{i2} = Y_{i2} + Y_{02} \) for \(i = 1, \ldots, m_0 \) and \(X_{i2} = Y_{i2} + Y_{02}' \) for \(i = m_0 + 1, \ldots, m \), then \(X_{i2} \sim \text{Poi}(2) \) for \(i = 1, \ldots, m_0 \) and \(X_{i2} \sim \text{Poi}(10) \) for \(i = m_0 + 1, \ldots, m \). For \(i, j = 1, \ldots, m_0 \) and \(i \neq j \), the correlation between \(X_{i2} \) and \(X_{j2} \) is \(\frac{\text{Cov}(X_{i2}, X_{j2})}{\sqrt{\text{Var}(X_{i2})}\sqrt{\text{Var}(X_{j2})}} = \frac{\text{Var}(Y_{02})}{\sqrt{2}\sqrt{2}} = \frac{2\rho}{2} = \rho \). Similarly, for \(i, j = m_0 + 1, \ldots, m \) and \(i \neq j \), the correlation between \(X_{i2} \) and \(X_{j2} \) is also equal to \(\rho \); for \(i = 1, \ldots, m_0 \) and \(j = m_0 + 1, \ldots, m \), the correlation between \(X_{i2} \) and \(X_{j2} \) is equal to zero.

Step 2. Obtain the conditional test statistics

Since the generated Poisson random variables between two groups are independent, we can directly conduct BET for each hypothesis. After generating Poisson observed counts \(x_{i1} \) and \(x_{i2} \), let \(c_i = x_{i1} + x_{i2} \) be the total observed count for two groups. Then the test statistics \(T_i \) is conditional test statistics \(X_{i1} \) given \(X_{i1} + X_{i2} = c_i \) and the critical value is the observed count \(x_{i1} \) for Group 1.

Step 3. Conditional distribution of the test statistics

Based on the conditional inference in Lehmann and Romano [1], which is the BET in our paper, the conditional distribution of \(X_{i1} \) given \(X_{i1} + X_{i2} = c_i \) is Binomial, \(\text{Bin}(c_i, p_i) \), where \(p_i = \frac{\lambda_{i1}}{\lambda_{i1} + \lambda_{i2}} \).

Step 4. Calculate available \(p \)-value \(P_t \) and attainable \(p \)-values

When \(H_i \) is true, i.e., \(\lambda_{i1} = \lambda_{i2}, p_i = 0.5 \). Thus, \(X_{i1}|X_{i1} + X_{i2} = c_i \sim \text{Bin}(c_i, 0.5) \) under \(H_i \). Therefore, the available conditional \(p \)-value for \(H_i \) can be calculated by

\[
P_t = \Pr_{H_i}\{X_{i1} \geq x_{i1}|X_{i1} + X_{i2} = c_i\} = \sum_{j=x_{i1}}^{c_i} \binom{c_i}{j} 0.5^j (1 - 0.5)^{c_i - j} = \sum_{j=x_{i1}}^{c_i} \binom{c_i}{j} 0.5^{c_i}.
\]

The corresponding attainable \(p \)-values can be calculated by

\[
\Pr_{H_i}\{X_{i1} \geq x|X_{i1} + X_{i2} = c_i\} = \sum_{j=x}^{c_i} \binom{c_i}{j} 0.5^{c_i} \text{ for } x = 0, 1, \ldots, c_i.
\]
The simulation results under the above simulation setting for stepwise procedures comparisons are shown in Tables S9 - S14 and Figures S5 - S8. It is easy to see that in such block dependence simulation setting, the p-values calculated based on the Poisson outcomes satisfies the PRDS Assumption 2.2, since $\rho \geq 0$ and the tests are one-sided.

R-package for MHTdiscrete: R-package MHTdiscrete [3] contains R code to implement our proposed methods and several existing FWER controlling procedures for discrete data, which are described in this paper. The package can be downloaded from https://cran.r-project.org/web/packages/MHTdiscrete.

Web Application for MHTdiscrete: A web application containing the proposed procedures and several comparable procedures can be accessed at https://allen.shinyapps.io/MTPs.

References

[1] Lehmann, E. L. and Romano, J. P. (2005). *Testing Statistical Hypotheses, 3rd Edition*. Springer.

[2] R Development Core Team (2018). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing.

[3] Zhu, Y. and Guo, W. (2017). *MHTdiscrete: Multiple Hypotheses Testing for Discrete Data*. R package version 1.0.0.
Table S9: Simulated FWER comparisons for single-step procedures with dependent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

\(\rho \)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
\(m = 5 \)	MBonf	0.0045	0.0050	0.0035	0.0045	0.0025	0.0055	0.0025	0.0080	0.0045	0.0040
	Tarone	0.0015	0.0010	0.0005	0.0020	0.0010	0.0030	0.0005	0.0040	0.0010	0.0005
	Bonf	0.0015	0.0010	0.0005	0.0015	0.0010	0.0025	0.0005	0.0035	0.0000	0.0005
	Sidak	0.0015	0.0010	0.0005	0.0015	0.0010	0.0025	0.0005	0.0035	0.0000	0.0005
\(\pi_0 = 0.4 \)											
\(m = 5 \)	MBonf	0.0125	0.0145	0.0155	0.0160	0.0115	0.0135	0.0110	0.0060	0.0105	0.0045
	Tarone	0.0060	0.0025	0.0060	0.0050	0.0050	0.0045	0.0045	0.0055	0.0040	0.0025
	Bonf	0.0025	0.0015	0.0020	0.0035	0.0020	0.0010	0.0010	0.0000	0.0020	0.0010
	Sidak	0.0025	0.0015	0.0020	0.0035	0.0020	0.0010	0.0010	0.0000	0.0020	0.0010
\(\pi_0 = 0.6 \)											
\(m = 5 \)	MBonf	0.0035	0.0005	0.0020	0.0015	0.0025	0.0025	0.0025	0.0010	0.0025	0.0000
	Tarone	0.0005	0.0005	0.0010	0.0005	0.0010	0.0000	0.0005	0.0005	0.0005	0.0005
	Bonf	0.0005	0.0005	0.0010	0.0005	0.0010	0.0000	0.0005	0.0005	0.0005	0.0005
	Sidak	0.0005	0.0005	0.0010	0.0005	0.0010	0.0000	0.0005	0.0005	0.0005	0.0005
\(\pi_0 = 0.8 \)											
\(m = 5 \)	MBonf	0.0080	0.0065	0.0095	0.0095	0.0065	0.0035	0.0025	0.0055	0.0070	0.0030
	Tarone	0.0020	0.0030	0.0060	0.0050	0.0020	0.0020	0.0010	0.0030	0.0030	0.0025
	Bonf	0.0000	0.0015	0.0020	0.0015	0.0000	0.0010	0.0005	0.0010	0.0010	0.0005
	Sidak	0.0000	0.0015	0.0020	0.0015	0.0000	0.0010	0.0005	0.0010	0.0010	0.0005
\(m = 10 \)	MBonf	0.0185	0.0105	0.0115	0.0135	0.0135	0.0150	0.0100	0.0090	0.0050	0.0085
	Tarone	0.0120	0.0080	0.0075	0.0095	0.0075	0.0100	0.0065	0.0030	0.0040	0.0045
	Bonf	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0010	0.0010
	Sidak	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0010	0.0010
Table S10: Simulated minimal power comparisons for single-step procedures with dependent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

\(\rho \)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
\(m = 5 \)	\(\pi_0 = 0.4 \)	MBonf	0.9095	0.8880	0.8580	0.8455	0.8135	0.7745	0.7545	0.7295	0.6840	0.6305
		Tarone	0.8500	0.8350	0.8000	0.7945	0.7585	0.7070	0.6815	0.6630	0.6130	0.5605
		Bonf	0.7530	0.7465	0.7010	0.6920	0.6750	0.6205	0.5930	0.5675	0.5260	0.4685
		Sidak	0.7530	0.7465	0.7010	0.6920	0.6750	0.6205	0.5930	0.5675	0.5260	0.4685
\(m = 5 \)	\(\pi_0 = 0.6 \)	MBonf	0.8150	0.8020	0.7755	0.7740	0.7655	0.7195	0.7255	0.6790	0.6750	0.6260
		Tarone	0.7635	0.7435	0.7210	0.7075	0.7185	0.6775	0.6815	0.6425	0.6255	0.5865
		Bonf	0.6135	0.5985	0.5740	0.5615	0.5725	0.5410	0.5270	0.5070	0.4715	0.4365
		Sidak	0.6135	0.5985	0.5740	0.5615	0.5725	0.5410	0.5270	0.5070	0.4715	0.4365
\(m = 5 \)	\(\pi_0 = 0.8 \)	MBonf	0.5965	0.6055	0.5955	0.5925	0.6075	0.6095	0.5960	0.5960	0.6075	0.6120
		Tarone	0.5635	0.5730	0.5675	0.5600	0.5755	0.5880	0.5730	0.5730	0.5935	0.5985
		Bonf	0.3825	0.3845	0.3805	0.3760	0.3875	0.4000	0.3960	0.3735	0.3820	0.3810
		Sidak	0.3825	0.3845	0.3805	0.3760	0.3875	0.4000	0.3960	0.3735	0.3820	0.3810
\(m = 10 \)	\(\pi_0 = 0.4 \)	MBonf	0.9760	0.9460	0.9175	0.8925	0.8570	0.8250	0.7885	0.7270	0.6895	0.6090
		Tarone	0.9470	0.8940	0.8535	0.8295	0.7875	0.7585	0.7120	0.6525	0.6040	0.5260
		Bonf	0.8805	0.8260	0.7625	0.7500	0.6845	0.6695	0.6075	0.5550	0.5045	0.4410
		Sidak	0.8805	0.8260	0.7625	0.7500	0.6845	0.6695	0.6075	0.5550	0.5045	0.4410
\(m = 10 \)	\(\pi_0 = 0.6 \)	MBonf	0.9250	0.9125	0.8845	0.8425	0.8300	0.7920	0.7470	0.7160	0.6590	0.6180
		Tarone	0.8820	0.8630	0.8370	0.7705	0.7680	0.7285	0.6925	0.6645	0.6090	0.5745
		Bonf	0.7420	0.7260	0.7030	0.6220	0.6285	0.5710	0.5425	0.4995	0.4440	0.4155
		Sidak	0.7420	0.7260	0.7030	0.6220	0.6285	0.5710	0.5425	0.4995	0.4440	0.4155
\(m = 10 \)	\(\pi_0 = 0.8 \)	MBonf	0.7675	0.7595	0.7390	0.7330	0.7320	0.6975	0.6865	0.6665	0.6340	0.6160
		Tarone	0.7145	0.7055	0.6910	0.6860	0.6885	0.6540	0.6445	0.6310	0.5925	0.5875
		Bonf	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495
		Sidak	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495
Table S11: Simulated FWER comparisons for step-down procedures with dependent p-values generated from Binomial Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

ρ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
$m = 5$											
$\pi_0 = 0.4$	MHolm	0.0085	0.0090	0.0070	0.0090	0.0105	0.0120	0.0095	0.0150	0.0115	0.0055
	TH	0.0055	0.0060	0.0040	0.0050	0.0065	0.0100	0.0040	0.0130	0.0095	0.0045
	Holm	0.0025	0.0040	0.0035	0.0035	0.0055	0.0015	0.0075	0.0040	0.0035	
$m = 5$											
$\pi_0 = 0.6$	MHolm	0.0170	0.0095	0.0125	0.0140	0.0125	0.0095	0.0160	0.0150	0.0090	0.0065
	TH	0.0110	0.0065	0.0095	0.0095	0.0090	0.0070	0.0115	0.0125	0.0075	0.0055
	Holm	0.0030	0.0020	0.0035	0.0055	0.0040	0.0030	0.0045	0.0025	0.0040	0.0030
$m = 5$											
$\pi_0 = 0.8$	MHolm	0.0160	0.0205	0.0200	0.0190	0.0170	0.0175	0.0135	0.0075	0.0120	0.0070
	TH	0.0110	0.0145	0.0120	0.0150	0.0120	0.0120	0.0115	0.0065	0.0100	0.0060
	Holm	0.0035	0.0015	0.0020	0.0015	0.0025	0.0025	0.0025	0.0010	0.0025	0.0000
$m = 10$											
$\pi_0 = 0.4$	MHolm	0.0130	0.0150	0.0115	0.0095	0.0090	0.0100	0.0115	0.0130	0.0095	0.0090
	TH	0.0060	0.0030	0.0075	0.0040	0.0040	0.0075	0.0080	0.0105	0.0070	0.0075
	Holm	0.0005	0.0005	0.0015	0.0005	0.0015	0.0015	0.0010	0.0030	0.0010	0.0010
$m = 10$											
$\pi_0 = 0.6$	MHolm	0.0160	0.0150	0.0185	0.0165	0.0175	0.0105	0.0125	0.0130	0.0140	0.0055
	TH	0.0055	0.0085	0.0115	0.0100	0.0125	0.0075	0.0065	0.0100	0.0125	0.0045
	Holm	0.0000	0.0020	0.0025	0.0000	0.0015	0.0005	0.0015	0.0025	0.0005	
$m = 10$											
$\pi_0 = 0.8$	MHolm	0.0230	0.0160	0.0195	0.0195	0.0200	0.0215	0.0145	0.0120	0.0090	0.0130
	TH	0.0160	0.0130	0.0145	0.0130	0.0145	0.0165	0.0130	0.0100	0.0075	0.0120
	Holm	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0010	0.0010
Table S12: Simulated minimal power comparisons for step-down procedures with dependent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

\(\rho \)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
\(\pi_0 = 0.4 \)	MHolm	0.9095	0.8880	0.8580	0.8455	0.8135	0.7745	0.7545	0.7300	0.6840	0.6305
m = 5	TH	0.8500	0.8350	0.8000	0.7945	0.7585	0.7070	0.6815	0.6630	0.6130	0.5605
Holm	0.7535	0.7465	0.7010	0.6920	0.6750	0.6205	0.5930	0.5675	0.5260	0.4690	
\(\pi_0 = 0.6 \)	MHolm	0.8155	0.8020	0.7755	0.7740	0.7655	0.7195	0.7255	0.6795	0.6750	0.6260
m = 5	TH	0.7640	0.7440	0.7210	0.7080	0.7185	0.6775	0.6815	0.6425	0.6255	0.5865
Holm	0.6135	0.5985	0.5750	0.5615	0.5725	0.5415	0.5270	0.5070	0.4715	0.4365	
\(\pi_0 = 0.8 \)	MHolm	0.5980	0.6060	0.5975	0.5930	0.6080	0.6095	0.5965	0.5960	0.6080	0.6125
m = 5	TH	0.5640	0.5740	0.5685	0.5600	0.5755	0.5880	0.5735	0.5730	0.5940	0.5990
Holm	0.3830	0.3845	0.3805	0.3760	0.3875	0.4000	0.3690	0.3735	0.3820	0.3810	
\(\pi_0 = 0.4 \)	MHolm	0.9760	0.9460	0.9175	0.8925	0.8570	0.8250	0.7885	0.7270	0.6895	0.6090
m = 10	TH	0.9470	0.8940	0.8535	0.8295	0.7875	0.7585	0.7120	0.6525	0.6040	0.5260
Holm	0.8805	0.8260	0.7625	0.7500	0.6845	0.6695	0.6075	0.5550	0.5045	0.4410	
\(\pi_0 = 0.6 \)	MHolm	0.9265	0.9125	0.8845	0.8425	0.8300	0.7920	0.7470	0.7160	0.6590	0.6180
m = 10	TH	0.8820	0.8630	0.8380	0.7705	0.7680	0.7285	0.6925	0.6645	0.6090	0.5745
Holm	0.7420	0.7260	0.7030	0.6220	0.6285	0.5710	0.5425	0.4995	0.4440	0.4155	
\(\pi_0 = 0.8 \)	MHolm	0.7680	0.7600	0.7390	0.7330	0.7325	0.6975	0.6870	0.6665	0.6340	0.6160
m = 10	TH	0.7165	0.7060	0.6925	0.6865	0.6895	0.6540	0.6450	0.6310	0.5925	0.5875
Holm	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495	
Table S13: Simulated FWER comparisons for step-up procedures with dependent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

\(\rho \)	\(\pi_0 = 0.4 \)	\(m = 5 \)	MHoch	Roth	Hoch						
0	0.0085	0.0090	0.0070	0.0090	0.0105	0.0120	0.0110	0.0175	0.0130	0.0130	0.0080
0.1	0.0060	0.0070	0.0050	0.0065	0.0075	0.0095	0.0060	0.0140	0.0105	0.0070	
0.2	0.0025	0.0040	0.0035	0.0035	0.0035	0.0060	0.0020	0.0090	0.0055	0.0060	
0.3	0.0170	0.0100	0.0125	0.0160	0.0130	0.0105	0.0165	0.0170	0.0120	0.0120	
0.4	0.0120	0.0075	0.0095	0.0110	0.0085	0.0070	0.0125	0.0140	0.0095	0.0105	
0.5	0.0030	0.0020	0.0035	0.0055	0.0040	0.0030	0.0050	0.0050	0.0050	0.0075	
0.6	0.0165	0.0210	0.0200	0.0200	0.0170	0.0180	0.0135	0.0095	0.0140	0.0115	
0.7	0.0110	0.0145	0.0130	0.0150	0.0115	0.0130	0.0100	0.0075	0.0120	0.0085	
0.8	0.0035	0.0015	0.0020	0.0015	0.0025	0.0025	0.0030	0.0010	0.0030	0.0035	
0.9	0.0145	0.0165	0.0115	0.0100	0.0105	0.0105	0.0135	0.0155	0.0110	0.0125	

\(\rho \)	\(\pi_0 = 0.6 \)	\(m = 5 \)	MHoch	Roth	Hoch					
0	0.0145	0.0165	0.0115	0.0100	0.0105	0.0105	0.0135	0.0155	0.0110	0.0125
0.1	0.0075	0.0045	0.0080	0.0035	0.0045	0.0075	0.0095	0.0120	0.0080	0.0115
0.2	0.0005	0.0005	0.0015	0.0010	0.0015	0.0015	0.0015	0.0015	0.0025	0.0060
0.3	0.0165	0.0150	0.0185	0.0165	0.0185	0.0115	0.0150	0.0155	0.0190	0.0085
0.4	0.0060	0.0070	0.0110	0.0100	0.0110	0.0070	0.0070	0.0105	0.0135	0.0070
0.5	0.0000	0.0020	0.0020	0.0025	0.0005	0.0015	0.0010	0.0020	0.0045	0.0015
0.6	0.0235	0.0170	0.0205	0.0200	0.0210	0.0225	0.0165	0.0140	0.0105	0.0170
0.7	0.0145	0.0120	0.0125	0.0130	0.0155	0.0155	0.0130	0.0075	0.0080	0.0110
0.8	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0100	0.0035
Table S14: Simulated minimal power comparisons for step-up procedures with dependent \(p \)-values generated from Binomial Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

\(\rho \)	\(m = 5 \)	\(m = 10 \)	\(\pi_0 \)	\(m = 5 \)	\(m = 10 \)	\(\pi_0 \)	\(m = 5 \)	\(m = 10 \)	\(\pi_0 \)	
\(\pi_0 = 0.4 \)										
MHoch	0.9110	0.8905	0.8595	0.8490	0.8155	0.7780	0.7595	0.7370	0.6985	0.6525
Roth	0.8565	0.8430	0.8075	0.8020	0.7640	0.7200	0.6945	0.6755	0.6300	0.5955
Hoch	0.7640	0.7555	0.7105	0.7025	0.6835	0.6310	0.6050	0.5860	0.5435	0.4945

\(m = 5 \) \(\pi_0 = 0.6 \)

MHoch	0.8165	0.8065	0.7785	0.7775	0.7690	0.7255	0.7290	0.6880	0.6835	0.6425
Roth	0.7670	0.7515	0.7245	0.7115	0.7250	0.6845	0.6840	0.6505	0.6325	0.5990
Hoch	0.6210	0.6045	0.5780	0.5665	0.5800	0.5460	0.5345	0.5140	0.4845	0.4530

\(m = 5 \) \(\pi_0 = 0.8 \)

MHoch	0.8165	0.8065	0.7785	0.7775	0.7690	0.7255	0.7290	0.6880	0.6835	0.6425
Roth	0.7670	0.7515	0.7245	0.7115	0.7250	0.6845	0.6840	0.6505	0.6325	0.5990
Hoch	0.6210	0.6045	0.5780	0.5665	0.5800	0.5460	0.5345	0.5140	0.4845	0.4530

\(m = 10 \) \(\pi_0 = 0.4 \)

MHoch	0.9770	0.9465	0.9205	0.8945	0.8630	0.8300	0.7925	0.7380	0.7055	0.6305
Roth	0.9495	0.8980	0.8595	0.8325	0.7910	0.7610	0.7190	0.6605	0.6190	0.5625
Hoch	0.8815	0.8260	0.7630	0.7520	0.6850	0.6705	0.6095	0.5565	0.5075	0.4485

\(m = 10 \) \(\pi_0 = 0.6 \)

MHoch	0.9285	0.9155	0.8855	0.8475	0.8340	0.7985	0.7540	0.7235	0.6735	0.6405
Roth	0.8870	0.8650	0.8425	0.7760	0.7735	0.7335	0.7000	0.6700	0.6145	0.5875
Hoch	0.7425	0.7260	0.7030	0.6225	0.6290	0.5710	0.5430	0.5000	0.4465	0.4205

\(m = 10 \) \(\pi_0 = 0.8 \)

MHoch	0.7725	0.7625	0.7400	0.7380	0.7350	0.6995	0.6890	0.6710	0.6400	0.6285
Roth	0.7200	0.7055	0.6945	0.6895	0.6905	0.6515	0.6460	0.6365	0.5970	0.5965
Hoch	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495
Figure S5: Simulated FWER comparisons for different step-down procedures based on the blocking dependent BET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).
Figure S6: Simulated minimal power comparisons for different step-down procedures based on the blocking dependent BET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).
Figure S7: Simulated FWER comparisons for different step-up procedures based on the blocking dependent BET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).
Figure S8: Simulated minimal power comparisons for different step-up procedures based on the blocking dependent BET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).