Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Development and validation of a prediction model for severe respiratory failure in hospitalized patients with SARS-CoV-2 infection: a multicentre cohort study (PREDI-CO study)

Michele Bartoletti, Maddalena Giannella, Luigia Scudeller, Sara Tedeschi, Matteo Rinaldi, Linda Bussini, Giacomo Fornaro, Renato Pascale, Livio Pancaldi, Zeno Pasquini, Filippo Trapani, Lorenzo Badia, Caterina Campoli, Marina Tedolini, Luciano Attard, Massimo Puoti, Marco Merli, Cristina Mussini, Marianna Menozzi, Mariana Meschiari, Mauro Codeluppi, Francesco Cristini, Annalisa Saracino, Alberto Licci, Silvia Rapuano, Tommaso Tonetti, Paolo Gaibani, Vito M. Ranieri, Pierluigi Viale on behalf of the PREDICO study group

Methods: We performed a multicentre cohort study among hospitalized patients diagnosed with COVID-19 from 22 February to 3 April 2020, at 11 Italian hospitals. Patients were divided into derivation and validation cohorts according to random sorting of hospitals. SRF was assessed from admission to hospital discharge and was defined as: SpO2 <93% with 100% FiO2, respiratory rate >30 breaths/min or respiratory distress. Multivariable logistic regression models were built to identify predictors of SRF. β-coefficients were used to develop a risk score. Trial Registration NCT04316949.

Results: We analysed 1113 patients (644 derivation, 469 validation cohort). Mean (±SD) age was 65.7 (±15) years, 704 (63.3%) were male. SRF occurred in 189/644 (29%) and 187/469 (40%) patients in the derivation and validation cohorts, respectively. At multivariate analysis, risk factors for SRF in the derivation cohort assessed at hospitalization were age ≥70 years (OR 2.74; 95% CI 1.66–4.50), obesity (OR 4.62; 95% CI 2.78–7.70), body temperature ≥38°C (OR 1.73; 95% CI 1.30–2.29), respiratory rate ≥22 breaths/min (OR 3.75; 95% CI 2.01–7.01), lymphocytes <900 cells/μL (OR 2.69; 95% CI 1.60–4.51), creatinine ≥1 mg/dL (OR 2.38; 95% CI 1.59–3.56), C-reactive protein ≥10 mg/dL (OR 5.91; 95% CI 4.88–8.95).
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated coronavirus disease 2019 (COVID-19) has gripped the world in a pandemic, challenging its culture, economy and healthcare system. The virus was first reported in China in December 2019 and has subsequently spread worldwide.

The clinical spectrum of COVID-19 is broad with the majority of infected individuals experiencing only mild or subclinical illness, especially in the early phase of disease [1]. However, approximately 14%–30% of hospitalized patients diagnosed with COVID-19 develop a severe respiratory failure (SRF) requiring intensive care [2–4].

To date, no therapy has proven effective, so supportive care aimed to protect multi-organ function represents the main resource to reduce mortality [5]. The capacity of the system is limited, prompting the need of rationing decisions [6], but a resource to reduce mortality [5]. The capacity of the system is limited, prompting the need of rationing decisions [6], but aresource to reduce mortality [5].

Methods

Design and setting

We performed a retrospective multicentre cohort study of prospectively collected data from patients with laboratory-confirmed SARS-CoV-2 infection, hospitalized from 22 February through 3 April, 2020. Last follow-up date was 23 April 2020.

Eleven hospitals from four Italian regions, including four tertiary teaching hospitals, five non-teaching tertiary hospitals and two secondary hospitals, participated in the study (see Supplementary material, Fig. S1).

Diagnostic testing for COVID-19 and hospitalization were performed according to local policy and clinical judgement, and were not dictated by a study protocol. The local microbiology laboratory information and management systems were used to identify patients. Clinical charts and hospital electronic records were used as data sources. De-identified data were collected and managed using REDCap electronic data capture tools, Alma Mater University of Bologna [8,9].

The study was approved by the Ethics Committee of the promoting centre (Comitato Etico Indipendente di Area Vasta Emilia Centro, n.283/2020/Oss/AOUBo). A waiver of informed consent was granted by the Ethics Committee due to safety risk. The study protocol was registered on clinicaltrials.gov with the number NCT04316949.

Participants

All consecutive adults (≥18 years) diagnosed with SARS-CoV-2 infection during the study period were included.

Exclusion criteria were hospital discharge within 24 hours of admission to Emergency Department and occurrence of SRF within 24 hours of hospitalization.

Participants were divided into two cohorts: the derivation cohort consisted of patients admitted to hospitals C, D(a, c) and I, the validation cohort consisted of patients admitted to hospitals A, B, D(b), E, F, G and H (see Supplementary material, Fig. S1). Hospitals were sorted randomly and assigned initially to the derivation cohort. Once 50% of participants with a new assignment was reached, the remaining centres were assigned to the validation cohort.

Variables and definitions

Microbiological diagnosis of SARS-CoV-2 infection was defined as a positive RT-PCR test on nasopharyngeal swabs.

The end-point variable was occurrence of SRF. Occurrence SRF was assessed through review of the collected data from admission to hospital discharge by a blinded investigator (ST). SRF was defined according to WHO criteria as: SpO2 <93% with 100% FiO2 (reservoir mask or continuous positive airway pressure ventilation or other non-invasive ventilation), respiratory rate >30 breaths/minute, or respiratory distress [10].

Exposure variables were assessed at hospital admission and included: age, older age (>70 years), sex, body mass index, being obese (body mass index >30 kg/m²). Underlying conditions were recorded according to the Charlson co-morbidity index [11]. Hypertension was defined as history of permanent increase of systolic blood pressure over 140 mmHg, and a diastolic increase to more than 90 mmHg. Immunosuppression included neutropenia (neutrophil count <500/mm³), solid organ transplantation, haematopoietic stem cell transplantation, corticosteroid therapy at a dosage higher then or equivalent to prednisone 16 mg/day ≥15 days, uncontrolled human immunodeficiency virus infection (<200 CD4/mm³). Regarding the SARS-CoV-2 infection, symptoms at onset and hospitalization, vital signs and laboratory tests were collected. Severity of illness at hospitalization was recorded according to sequential organ failure assessment (SOFA) score, quickSOFA (qSOFA), CURB-65 score and Modified Early Warning Score (MEWS).
End-point variables were assessed from hospital admission to discharge. In addition to SRF, we collected in-hospital all-cause mortality and date of hospital discharge.

Microbiological testing

The presence of SARS-CoV-2 was detected by RT-PCR assay. Briefly, UTM-RT swab specimens (Copan, Brescia, Italy) were immediately tested or stored at 4°C until processed, no more than 48 hours. Total genomic DNA/RNA was extracted from 280 µL of the clinical sample by Nuclisens EasyMag (BioMérieux, Marcy l’Étoile, France) following the manufacturer’s instructions. Detection of SARS-CoV-2 was performed by real time RT-PCR following the WHO and/or CDC protocol in a QuantStudio S5 Real-time PCR system (ThermoFisher, Waltham, MA, USA). Microbiological analysis was not performed in a centralized laboratory.

Study size

For the sample size calculation we followed recent recommendations from Riley et al. [12]. We aimed to enroll at least 370 patients in the derivation cohort, with an expected number of events of 148 (an expected 40% rate, based on preliminary raw observations) and a maximum eight binary variables in the model, using the pmsampsize procedure in Stata 10 [12]. For the validation cohort, we aimed for a similar sample size.

Statistical analysis

For descriptive analysis, categorical variables are presented as counts and percentages. Continuous variables as mean and standard deviation if normally distributed or as median and interquartile range (IQR) if non-normally distributed.

For group comparison, Student’s t test, Mann—Whitney U test and analysis of variance, or Kruskal—Wallis test were used for normally distributed quantitative variables, skewed distributed quantitative variables and more than two groups, respectively. Pearson’s χ² test (Fisher exact test where appropriate) for categorical variables. Shapiro Wilk’s and Kolmogorov—Smirnov test, as well as visual methods, were applied to test for normality.

To develop and validate the score, analyses were initially performed on the derivation cohort and repeated identically in the validation cohort.

Univariate and multivariate mixed logistic regression models were performed to identify risk factors for SRF. Variables were included in the multivariable model according the following strategy: clinically relevant variables, significance at the univariable analysis (p < 0.10), lack of co-linearity (in case of co-linearity, the model with lower Akaike Information Criterion was chosen), missing data in <10% of cases (i.e. we performed a complete case analysis). Overall goodness of fit was analysed by Akaike’s Information Criteria and Nagelkerke’s R². Discrimination of the model was assessed by receiver-operator characteristics (ROC) curve of the predicted probability, Brier score and Somers’ D. Calibration of the model was assessed by comparing predicted probability with actual probability of SRF in deciles of risk. Cluster-robust variance was used, to take into account within-hospital correlation.

To develop the risk score (PREDI-CO score), variables in the multivariate logistic regression model regardless of their significance were assigned a point value corresponding to the β-coefficient (fixed effects) rounded to the nearest integer; the total score was obtained by summation of the individual variables scores.

The discrimination of PREDI-CO score towards SRF was then analysed by non-parametric analysis of ROC curve under covariates, using bootstrap (1000 replications), with clustering per hospital. An optimal cut-point was then assigned using the Youden’s J statistic, and performance characteristics at the cut-point (sensitivity, specificity, positive and negative likelihood, diagnostic accuracy, positive and negative predictive values) were calculated with the corresponding 95% CI.

In the validation cohort, the slope and intercept of the linear predictor were also assessed. The results of multivariable analysis in the validation cohort were not used to change the model obtained in the derivation cohort.
All statistical tests were two-sided. Stata computer software version 16.0 (Stata Corp., College Station, TX, USA) was used for statistical analysis.

Results

The initial population consisted of 1265 individuals: 739 in the derivation cohort and 526 in the validation cohort. One-hundred and fifty-two individuals were excluded according to eligibility criteria. Of the 1113 participants analysed: 644 were in the derivation cohort and 526 in the validation cohort. One-hundred and fifty-two individuals were excluded according to eligibility criteria. Of the 1113 participants analysed: 644 were in the derivation cohort and 526 in the validation cohort. The median time from onset of symptoms to hospitalization was 13 days (IQR 8–21 days). The two cohorts were different in several patient characteristics (Table 1).

Three-hundred and seventy-six individuals (33%) developed SRF after ≥24 hours of admission. Median time to SRF in this group was 4 (IQR 2–7) days from hospital admission and 10 (7–13) days from onset of symptoms. The rates of SRF were 29% (189/644) and 40% (187/469) in the derivation and validation cohorts, respectively.

There were several differences between individuals with and without SRF in the derivation (Table 2) and validation (Table 3) cohorts.

In the derivation cohort, multivariate analysis showed that age ≥70 years, obesity, fever at hospitalization (body temperature ≥38°C), respiratory rate ≥22 breaths/minute, lymphocytes ≤900 cells/μL, creatinine ≥1 mg/dL, C-reactive protein ≥10 mg/dL and lactate dehydrogenase ≥350 UI/L were independent risk factors for developing SRF (Table 4). The model was highly discriminant: area under the ROC 0.90 (Fig. 2a), Brier score 0.11, Somers’ D 0.79 (95% CI 0.73–0.85), Calibration (Fig. 2b) and fitting (Fig. 2c) of the model were also good. In the validation cohort the model performed similarly in terms of discrimination, calibration (Fig. 2d,e) and distribution (see Supplementary material, Fig. S2b). Area under the ROC curve was 0.84 with Brier score 0.16 and Somers’ D 0.68 (95% CI 0.60–0.76).
Linear prediction coefficient in the validation cohort was 0.79 (95% CI 0.73–0.95).

Assignment of points on the basis of the β coefficient for these eight independent variables generated an individual risk score for each patient ranging from 0 to 9 (Table 4). Median PREDI-CO score was 4 (IQR 2–7) (see Supplementary material, Fig. S3a).

In the derivation cohort, the area under the ROC curve of the PREDI-CO score was 0.89 (95% CI 0.86–0.92). At a risk score of >3, the sensitivity, specificity, positive predictive value and negative predictive value were 72% (65%–79%), 86% (89%–92%), 74% (67–80%) and 89% (85%–91%), respectively. The positive and negative likelihood ratios associated with a >3 score cut-off were 6.73 (95% CI 5.1–8.9) and 0.31 (95% CI 0.25–0.39), respectively (see Supplementary material, Table S1).

In the validation cohort, the PREDI-CO score showed an area under the ROC curve of 0.85 (95% CI 0.81–0.88). At risk score of >3, the sensitivity, specificity, positive predictive value and negative predictive value, and postive likelihood ratio 3.30 (2.65–4.11), negative likelihood ratio 0.27 (0.20–0.36) (Supplementary material, Table S1).

Finally, according to the ROC curve analysis the prediction ability for SRF of our score was higher than that of SOFA, qSOFA, CURB-65 and MEWS scores in both the derivation (Fig. 3a) and validation (Fig. 3b) cohorts.

All the models and overall score performance were revaluated after this initial period. A predictive model was built and validated, providing independent validation.

The rate of SRF in our cohort of hospitalized patients with COVID-19 was higher than that in initial reports [4,13], but was in line with more recent findings [14,15]. Demographic characteristics of population, socio-cultural issues and local strategies for diagnostic testing have been appointed among the factors contributing to the different severity of COVID-19 across countries [14]. Indeed, the mean age of our patients was 65.7 years, compared with 47 and 49 years in the cohorts from Singapore and China, respectively [4,13].

Discussion

We developed and independently validated a simple individual risk score (the PREDI-CO score) to identify at the time of hospitalization individuals with COVID-19 who were at high risk of developing SRF during hospitalization. We found that of the individuals hospitalized with COVID-19 on the wards for at least 24 hours, a high percentage (33%) developed worsening of symptoms with SRF after this initial period. A predictive model was built and validated, using age >70 years, obesity, fever at hospitalization, respiratory rate ≥22 breaths/minute, lymphocyte count ≤900 cells/mm³, creatinine ≥1 mg/dL, C-reactive protein ≥10 mg/dL and lactate dehydrogenase ≥350 IU/L. Our model and risk score performed similarly even in different cohorts, as defined by different hospitals, providing independent validation.

The rate of SRF in our cohort of hospitalized patients with COVID-19 was higher than that in initial reports [4,13], but was in line with more recent findings [14,15]. Demographic characteristics of population, socio-cultural issues and local strategies for...
It is worth mentioning that in most of the published prognostic studies on COVID-19, demographic characteristics (older age and male sex), underlying co-morbidities and altered laboratory tests (e.g., C-reactive protein, lactate dehydrogenase and lymphocyte counts) correlated with poor outcome, as in our study [16,17]. The strongest underlying condition influencing outcome in our analysis was obesity, as observed for other severe viral pneumonia, like H1N1 flu [18]. Recently, a similar score was developed and validated in Chinese hospitals [19]. This score compared with ours requires an online calculator so it could be less applicable in emergency situations and some of the included variables like haemoptysis were rarely reported in our cohort. This may represent differences between populations and settings.

Our study has a number of limitations. First, being a retrospective study, several variables were not systematically collected across all centres, especially in these times of increased clinical duties and stresses of the health-care system. This might introduce bias if patients with more severe clinical conditions had a higher chance of missed information. For example, interleukin-6 and D-dimer previously showed a significant correlation with disease progression [20], but were not available in this study. However, the strict correlation between interleukin-6

Table 3
Univariate analysis for severe respiratory failure among patients with SARS-CoV-2 pneumonia: validation cohort

Demographics	Cases with available data	Severe respiratory failure (n = 187)	No severe respiratory failure (n = 282)	OR (95% CI)
Age (years), mean (±SD)	469	72.4 (±12.3)	65.8 (±14.6)	1.04 (1.02–1.05)
Sex, male	469	145 (77)	183 (64)	1.87 (1.23–2.85)
Underlying diseases				
Obesity	469	42 (22)	32 (11)	2.26 (1.37–3.74)
BMI (kg/m²), median (IQR)	195	28 (25–31)	25 (24–28)	1.13 (1.04–1.23)
Hypertension	469	114 (61)	144 (51)	1.51 (1.04–2.23)
Diabetes mellitus	469	17 (9)	5 (2)	4.1 (1.27–13.13)
Coronary artery disease	469	17 (9)	10 (3)	2.72 (1.22–6.08)
Congestive heart failure	469	24 (13)	17 (6)	2.3 (1.19–4.4)
Cerebrovascular disease	469	22 (12)	27 (10)	1.26 (0.69–2.29)
Peripheral vascular disease	469	46 (25)	30 (11)	2.74 (1.66–4.54)
Chronic kidney disease (moderate to severe)	469	30 (16)	24 (9)	2.05 (1.16–3.64)
COPD	469	29 (16)	26 (9)	1.81 (1.03–3.2)
Immunosuppression	469	14 (7)	7 (2)	3.18 (1.26–8.01)
Charlson index (median, IQR)	461	5 (3–7)	3 (1–5)	1.25 (1.16–1.33)
Symptoms at onset				
Fever ≥38°C	469	115 (61)	150 (53)	0.99 (0.5–1.95)
Abbreviations: CRP, C-reactive protein; LDH, lactate dehydrogenase; OR, odds ratio; RR, respiratory rate.

Individuals with SARS-CoV-2-positive nasopharyngeal swabs; the considered laboratory parameters’ score could reduce its applicability. Second, we included only non-tertiary hospitals. The inclusion of such parameters in our algorithm may have been affected by local policies [14]. Additionally, interleukin-6 is not available in most laboratories, which could contribute to a selection bias. In fact, the testing algorithm may have been affected by local policies [14]. Third, individuals with SRF within the first 24 hours after admission were excluded; we made this choice because we considered the suboptimal sensitivity of nasopharyngeal swabs [22]. Lastly, our score was developed and validated in Italian hospitals; even if restricted to single-country analysis, local care practices might have a strong impact on SRF rates. However, the PREDI-CO score performed similarly in different cohorts, providing external validation.

Table 3 (continued)

Cases with	Severe respiratory failure (n = 187)	No severe respiratory failure (n = 282)	OR (95% CI)	
Cough	469	98 (52)	157 (98)	0.93 (0.64–1.35)
Dyspnoea	469	77 (41)	63 (122)	2.55 (1.7–3.8)
Time to hospital admission (days), median (IQR)	451	6 (2–9)	6 (2–9)	0.94 (0.90–1.09)*

Symptoms at hospitalization

Fever ≥38°C	469	91 (48)	96 (34)	1.85 (1.26–2.7)
Cough	469	91 (48)	142 (59)	0.94 (0.65–1.35)
Dyspnoea	469	108 (57)	142 (50)	2.26 (1.57–3.29)

Vital signs at hospitalization

GCS (median, IQR)	446	15 (15–15)	15 (15–15)	0.56 (0.32–0.98)*
MAP (median, IQR)	461	90.7 (83–96)	91.4 (83–96)	0.97 (0.31–3.00)*
PR (median, IQR)	468	87 (79–99)	85 (75–93)	1.02 (1.00–1.03)*
RR (median, IQR)	459	22 (16–22)	20 (16–22)	1.12 (1.07–1.16)*
Sato2, on ambient air (%) (median, IQR)	416	95 (93–97)	97 (95–98)	0.91 (0.86–0.96)*

Laboratory tests at hospitalization

CRP (mg/dL), median (IQR)	468	0.72 (0.51–0.98)	0.96 (0.73–1.34)	0.25 (0.15–0.41)*
LDH (IU/L), median (IQR)	454	11.2 (6.19–15.8)	3.5 (1.8–6.5)	1.27 (1.21–1.33)*
Glucose (mg/dL), median (IQR)	406	398 (309–476)	278 (228–355)	1.01 (1.00–1.01)*
Creatinine (mg/dL), median (IQR)	412	124 (110–155)	112 (101–129)	1.00 (1.00–1.01)*
Sodium (mmol/L), median (IQR)	460	11.2 (8.9–13.9)	0.99 (0.82–1.15)	2.46 (1.63–3.71)*
Potassium (mmol/L), median (IQR)	403	136 (133–139)	137 (134–139)	1.00 (0.98–1.02)*
Bilirubin (mg/dL), median (IQR)	381	3.9 (3.5–4.3)	3.9 (3.7–4.2)	1.18 (0.8–1.73)*

All values given are n (%) unless otherwise stated.

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; ESLD, end-stage liver disease; GCS, Glasgow coma scale; HRCT, high-resolution computed tomography; IQR, interquartile range; LDH, lactate dehydrogenase; MAP, mean arterial pressure; PR, pulse rate.

* For each year/day, point or unit increase.

Table 4

Multivariate analysis of risk factors for respiratory failure in derivation and validation cohort, and score development

Derivation cohort	Validation cohort							
OR	95% CI	p	coefficient	Points	OR	95% CI	p	
Age ≥70 years	2.74	1.66–4.50	<0.001	1.01	1	2.25	1.45–3.49	<0.001
Obesity	4.62	2.78–7.70	<0.001	1.53	1	1.07	0.72–1.60	0.73
Fever ≥38°C at hospitalization	1.73	1.30–2.29	<0.001	0.55	1	1.87	0.99–3.52	0.05
RR ≥22 breaths/min	3.75	2.01–7.01	<0.001	1.32	1	2.44	1.41–4.21	0.001
Lymphocytes ≤0.9 × 10^9/L	2.69	1.60–4.51	<0.001	0.99	1	1.94	1.15–3.27	0.01
CRP ≥10 mg/dL	5.91	4.88–7.17	<0.001	1.78	2	8.44	4.72–15.07	<0.001
LDH ≥350 IU/L	2.39	1.11–5.11	0.025	0.87	1	3.34	2.51–4.44	<0.001
Creatinine ≥1 mg/dL	2.38	1.59–3.56	<0.001	0.87	1	1.35	1.16–1.57	<0.001

Abbreviations: CRP, C-reactive protein; LDH, lactate dehydrogenase; OR, odds ratio; RR, respiratory rate.
Authors’ contribution

PV, MB, MG, LS, ST, MT, VMR and TT contributed to conceptualization; MB, LS, MG, MR, MT and TT to methodology; LB, GF, RP, LP, ZP, FT, LB, CC, LA, MMer, MMen, MMes, AL, SR and PG to investigations; and MB, MG and LS to the formal analysis. MG and MB wrote the original draft and LS, PV, TT, FB and VMR contributed to reviewing and editing. FB, MC, MP; CM, FC and PV supervised the work.

Transparency declaration

The authors declare that they have no conflicts of interest. No external funding was received for the present study.

Acknowledgement

We would like to acknowledge Prof. Russell Lewis (Department of Medical and Surgical Sciences, Alma Mater Studiorum, University
of Bologna) for his advice on methodology. No funding was available for this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cmi.2020.08.003.

Appendix

PREDICO study group

Luigi Raumer, Luca Guerra, Fabio Tumietto, Alessandra Casca-villa, Eleonora Zamparini, Gabriella Verucchi, Simona Coladonato, Arianna Rubin, Stefano Ianniruberto, Eugenia Francalanci, Francesca Volpato, Giulio Virgili, Nicolò Rossi, Elena Rosselli Del Turco, Viola Guardigni, Giovanni Fasulo, Nicola Dentale, Ciro Fulguro, Giorgio Legnani, Emanuele Campaci, Cristina Basso, Alberto Zuppiroli, Almalia Sanna Passino, Giulia Tesini, Adriana Badea, Agostino Rossi, Giulia Santangelo, Flovia Dauti, Vidak Koprivika, Nicholas Roncagali, Ioannis Tzimas, Guido Maria Liuzzi, Irid Baxhaku, Letizia Pasinelli, Mattia Neri, Tommaso Zanaboni, Francesco Dell'Omo, Oana Vatamanu, Alice Gori, Elisa Fronti; Infectious Diseases Unit, Policlinico di Bari, Bologna, Italy.

Sandro Zuccotti, Giacomo Urbinati, Agnese Pratelli, Alberto Sarti, Francesco Dell'Omo, Oana Vatamanu, Alice Gori, Idina Zavatta, Badeanu, Agostino Rossi, Giulia Santangelo, Flovia Dauti, Vidak Koprivika, Nicholas Roncagali, Ioannis Tzimas, Guido Maria Liuzzi, Irid Baxhaku, Letizia Pasinelli, Mattia Neri, Tommaso Zanaboni, Francesco Dell'Omo, Oana Vatamanu, Alice Gori, Elisa Fronti; Infectious Diseases Unit, Policlinico Sant'Omobono, Bologna, Italy.

Giacinto Pizzilli, Elisabetta Pierucci; Intensive Care Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola, Bologna, Italy.

Giada Rossini, Caterina Vocale: Centro di riferimento regionale per le emergenze microbiologiche (CRREM), Clinical Microbiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Policlinico Sant'Orsola, Bologna, Italy.

Lorenzo Marconi; Infectious Diseases Unit, Rimini-Forlì-Cesena Hospitals, Rimini, Italy.

Maria Cristina Leoni, Elisa Fronti; Infectious Diseases Unit, “Guglielmo da Saliceto” Hospital, Piacenza, Italy.

Giovanni Guaraldi; Infectious Diseases Unit, Policlinico di Modena, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.

Davide Bavaro, Paola Laghetti, Lucia Diella Infectious Disease Unit - Department of Biomedical Sciences and Human Oncology, University of Bari, Policlinico di Bari, Italy.

References

[1] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020. epub ahead of print.

[2] Richardson S, Hirsch JS, Narasimhan M, Crawford JJ, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020. epub ahead of print.

[3] Grasselli G, Pesenti A, Cecconi M. Critical Care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 2020. epub ahead of print.

[4] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.

[5] Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med 2020. epub ahead of print.

[6] White DB, Lo B. A framework for rationing ventilators and critical care beds during the COVID-19 pandemic. JAMA 2020. epub ahead of print.

[7] Sanders JM, Monogue ML, Jodlowski TZ, Cuthrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020. epub ahead of print.

[8] Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.

[9] Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019;95:103208.

[10] WHO. Clinical management of COVID-19. Available at: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(2019-ncov)-infection-is-suspected; 2020.

[11] Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–83.

[12] Riley RD, Ensor J, Snell KIE, Harrell Jr FE, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020;368:m441.

[13] Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020. epub ahead of print.

[14] Onder G, Rezza G, Brusafiero S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020. epub ahead of print.

[15] Grasselli G, Zangrillo A, Antonelli N, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020. epub ahead of print.

[16] Wyant L, Van Calster B, Bonten MJ, Collins GS, Debray T, De Vos M, et al. Systematic review and critical appraisal of prediction models for diagnosis and prognosis of COVID-19 infection. BMJ 2020. epub ahead of print.

[17] Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL Score. Clin Infect Dis 2020. epub ahead of print.

[18] Rubin R. Obesity and in inflammation. N Engl J Med 1999;340:468–54.

[19] Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. He, Development and validation of a clinical prediction model. BMJ 2020. epub ahead of print.

[20] Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. Am J Roentgenol 2020;1–6.

[21] Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448–54.

[22] Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020. epub ahead of print.