Image simulations for strong and weak gravitational lensing

Andrés A. Plazas
aplazas@astro.princeton.edu

Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ, USA

Abstract

Gravitational lensing has been identified as a powerful tool to address fundamental problems in astrophysics at different scales, ranging from exoplanet identification to dark energy and dark matter characterization in cosmology. Image simulations have played a fundamental role in the realization of the full potential of gravitational lensing by providing a means to address needs such as systematic error characterization, pipeline testing, calibration analyses, code validation, and model development. We present a general overview of the generation and applications of image simulations in strong and weak gravitational lensing.

1. Introduction

Gravitational lensing is defined as the bending of light due to the curvature of spacetime caused by any mass-energy distribution, and it is explained by the theory of General Relativity (GR) (e.g., Einstein (1917); Misner et al. (1973); Carroll (2004)). Lensing phenomena are diverse and depend on the mass-energy distribution of the lens or deflector (e.g., galaxies, cluster of galaxies, the dark matter large scale structure, etc.), as well as on the relative geometric configuration between the source (e.g., distant galaxies, quasars, or even the cosmic microwave background), the lens, and the observer. It is therefore useful and customary to identify several regimes of lensing depending on the particular configuration of the system at hand (Dodelson 2017; Schneider et al. 1992). The case in which multiple images and arcs are produced is known as strong lensing (Oguri 2019; Treu 2010), whereas the less dramatic—but much more common—case, in which the lensing signal is so subtle that it can only be detected statistically, is known as weak lensing (Bartelmann and Maturi 2017; Schneider 2005; Bartelmann and Schneider 2001). A third regime known as microlensing uses the magnification of the image of a source star when it is aligned with another lensing star along the line of sight. If the lensing star hosts a planet, its lensing effects can also be measured. This technique is used to discover planets at large distances from the Earth (Tsapras 2018; Mao 2012; Gaudi 2012). In this paper we will focus on image simulations for strong and weak gravitational lensing.

The astrophysical applications of gravitational lensing are numerous. In cosmology, it is a central technique to test the current concordance model (ΛCDM, a cosmological
constant as a form of dark energy plus cold dark matter) that is supported by several independent lines of evidence (ranging from scales from the cosmic microwave background to galaxies). This successful model, however, calls for the existence of unknown components—dark matter and dark energy—that, together, constitute about 95% of the contents of the Universe (Weinberg et al. 2013; Huterer and Shafer 2017; Abbott et al. 2018; Planck Collaboration et al. 2018). Strong lensing, in particular, is used to study the distribution of dark matter in galaxies and clusters of galaxies, as well as substructures in dark matter halos, and to probe the distribution of total mass (baryonic and non-baryonic) at small scales (Dalal and Kochanek 2002; Vegetti et al. 2012; Nierenberg et al. 2017; Hezaveh et al. 2016; Gilman et al. 2020; Hsueh et al. 2020). The number of strong lensing systems and of giant arcs in them can also be used as a cosmological probe, and measurements of time delays of the multiple images of supernovae and quasars can be used to probe the geometry of the universe and its kinematics through cosmography measurements. In general, strong lensing allows for the determination of cosmological parameters such as the Hubble-Lemaître parameter (H_0) (and to study the current H_0 tension, e.g., (Bernal et al. 2016; Pandey et al. 2019; Shajib et al. 2019; Wong et al. 2019)), the dark energy equation of state (w), and the total mass density (Ω_m), and for testing alternatives to the standard cosmological model and GR (Jullo et al. 2010; Magaña et al. 2015; Caminha et al. 2016; Acebron et al. 2018; Grillo et al. 2018). Massive clusters also act as cosmic telescopes, and, through strong lensing magnification, allow for the identification and study of distant galaxies from the early universe, black holes, and quasars and active galactic nuclei that otherwise would not be detected with the native instrument resolutions (Johnson et al. 2017b,a; Livermore et al. 2017). As probe of both the growth of structure and the expansion history of the Universe, weak lensing of the large-scale structure or cosmic shear has been used to investigate the cause of the observed accelerated expansion of the universe (a form of dark energy or models beyond GR) (Aylor et al. 2019; Poulin et al. 2019; Di Valentino et al. 2017; Abbott et al. 2018; Kilbinger 2015; MUNSHI et al. 2008; Hoekstra and Jain 2008; Gunn 1967)).

While lensing is important for many different applications and its theoretical foundations are well understood, measurement of the signal in each regime is subject to several challenges. Multiple-imaging due to strong lensing is a relatively rare phenomenon as it only affects a small fraction of distant sources (Press and Gunn 1973). The measurements usually also require subarcsecond resolutions, and, depending on the applications, knowledge of the redshifts of the source and the deflector. When redshift information is necessary and it is not possible to obtain it via spectroscopy, photometric redshifts are often used as estimates. However, these are difficult to calculate in crowded fields due to the mixing of light from the foreground object with the background source (Treu 2010; Jouvel et al. 2014; Molino et al. 2017). Moreover, in some cases they might prove to be not accurate enough for the applications at hand (González et al. 2018).

Weak gravitational lensing, on the other hand, is fundamentally limited by shape noise—the standard deviation of the intrinsic galaxy shape distribution—requiring imaging a large number of galaxies to statistically reduce it. In order to address this limitation,

1The microlensing regime has been used to set constraints on extended dark matter candidates (Alcock et al. 2000) and to identify exoplanets, as mentioned before.
several current (e.g., the Kilo Degree Survey, KiDS2), the Hyper Suprime Cam survey (HSC3), the Dark Energy Survey (DES4) and future (e.g., the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al. 2016), the Prime Focus Spectrograph (PFS, Takada et al. 2014), the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) (LSST5, Ivezić et al. 2019), Euclid6 (Laureijs et al. 2011), and the Wide Field Infrared Survey Telescope, WFIRST7 (Spergel et al. 2015)) projects have and are being designed to collect large amounts of data over large fields of view, reaching a point in which systematic errors are comparable or even dominant over statistical errors. Large data sets will also present an opportunity to increase the number of strong lensing systems found (including more complex systems with multiple sources and deflectors).

Image simulations play a central role in addressing the observational and systematic challenges faced during the measurement of strong and weak gravitational lensing. In general, simulations with known inputs are a fundamental tool for important tasks such as software testing and validation, systematic error characterization, requirement validation, model testing and developing, calibration, analysis testing, etc. Depending on the objective at hand and the computational resources available, there is usually a trade-off between realism and efficiency that results in simulations with varying degrees of complexity (e.g., end-to-end simulations vs simulations where single parameters are changed one at a time).

The structure of this paper is as follows. Section §2 briefly reviews the basic theory of gravitational lensing (for more detailed reviews, see e.g., (Schneider 2005; Hoekstra and Jain 2008; Bartelmann 2010; Kilbinger 2015)). Section §3 provides an overview of image simulations in for strong and weak gravitational lensing studies. Simulations of multiple images and giant arcs in strong lensing by galaxy clusters via ray-tracing is explained, as well as how pipelines for strong lensing can be used to simulate observation through any particular instrument. We discuss the use of simulation in assessing lensing inversion codes for mass modeling, and we also point out the increasing use of simulated strong lensing systems as training sets in finding codes that are based on machine learning techniques. We also discuss the role of simulations in redshift distribution estimations, weak lensing systematic errors characterization, and the creation of mock images that include gravitational lensing effects in the context of observations from large astronomical surveys. We conclude in Section §4.

2. Gravitational lensing basics

Photons from background sources travel along null-geodesics in spacetime. When passing a nearby mass density concentration, their trajectories are bent by an amount determined by the deflection angle, ˆα. The deflection angle can be derived by considering

\begin{itemize}
 \item 2http://www.astro-wise.org/projects/KIDS/
 \item 3http://www.naoj.org/Projects/HSC/HSCProject.html
 \item 4http://www.darkenergysurvey.org/
 \item 5https://www.lsst.org/
 \item 6https://sci.esa.int/web/euclid
 \item 7https://wfirst.gsfc.nasa.gov/
the trajectory of a photon in a weakly (assuming that $\Phi/c^2 \ll 1$ and $\dot{\Phi} = 0$, where Φ can be thought of as the scalar Newtonian potential that obeys Poisson’s equation) perturbed Friedmann-Lemaître-Robertson-Walker metric and solving the perturbed geodesic equation. Alternatively, it can be derived by using Fermat’s Principle and assuming that light is traveling through a medium with effective refraction index $n = 1 - 2\Phi/c^2$. The deflection angle is thus given by:

$$\hat{\alpha} = \frac{2}{c^2} \int \nabla_\perp \Phi ds$$ (1)

For a point mass—with a gravitational potential given by $\Phi(r) = -GM/r$—the deflection angle is given by $4GM/c^2 b$, where b is known as the impact parameter or the distance of closest approach to the lens or deflector. For most situations of astrophysical interest, the spatial scales of the lens itself are much smaller than the angular diameter distances between the source and the deflector (D_d) and between the deflector and the observer (D_s). Under these circumstances, it is possible to use the thin lens approximation, where the 3D mass distribution of the deflector is projected to a 2D plane—the lens plane—perpendicular to the line-of-sight and characterized by its surface-mass density (with ξ as the vector in the lens plane):

$$\Sigma(\xi) = \int \rho(\xi,s) ds$$ (2)

The deflection angle at any point ξ is given by the sum of the the contributions due to each individual mass element in the plane:

$$\hat{\alpha} = \frac{4G}{c^2} \int \left(\frac{\xi - \xi'}{\xi - \xi' \cdot 2} \right) \Sigma(\xi') d^2 \xi'$$ (3)

The line-of-sight defines the optical axis between the observer, the lens plane, and the source plane. For a source at an angular position β that emits a ray of light with an impact parameter $\xi = \bar{\theta} D_d$ on the lens plane, the general mapping between β and θ is given by the the lens equation:

$$\bar{\theta} = \bar{\beta} - \frac{D_d}{D_s} \hat{\alpha} \left(D_d \bar{\theta} \right) = \bar{\theta} - \hat{\alpha}(\bar{\theta})$$ (4)

The lens equation is, in general, non-linear and can have multiple solutions (this is formally the strong lensing regime). The second part of Eq. 4 defines the reduced deflection angle $\hat{\alpha}$, which can be written as $\hat{\alpha} = \nabla_\perp \left(\frac{2D_d}{D_s c^2} \int \Phi ds \right)$. The lens equation thus implies that $(\bar{\theta} - \bar{\beta})$ can be expressed as the gradient of a potential $\psi(\bar{\theta})$, known as the lensing potential, that is a scaled projection of the 3D Newtonian potential Φ

$$\psi(\bar{\theta}) = \frac{2D_d}{D_s D_s} \int \Phi \left(D_d \bar{\theta}, s \right) ds$$ (5)

Defining $\nabla_{\bar{\theta}} = D_d \nabla_\perp$ as the angular gradient, the lens equation can be written as

$$\nabla_{\bar{\theta}} \left(\frac{1}{2} (\bar{\theta} - \bar{\beta})^2 - \psi \right) = 0$$ (6)

Eq. 6 is Fermat’s Principle, $\nabla_{\bar{\theta}} t(\bar{\theta}, \bar{\beta}) = 0$, with the time delay surface $t(\bar{\theta})$ defined as:

$$t(\bar{\theta}, \bar{\beta}) = \frac{1}{c} \frac{D_d D_s}{D_s} \left(\frac{1}{2} (\bar{\theta} - \bar{\beta})^2 - \psi \right)$$ (7)
The time delay surface consists of a geometric term and a gravitational time delay term known as Shapiro delay. Multiple images are manifested as the stationary points of the surface, and their arrival time difference will depend on the Hubble-Lemaître constant through the angular diameter distances. For a point mass, the lens equation reads

\[\beta = \theta - \frac{D_s}{D_d D_s} \frac{4GM}{c^2} \theta. \]

When the source and the lens are aligned, the image formed is a ring with an Einstein radius of

\[\theta_E = \sqrt{\frac{4GM}{c^2}} \frac{D_s}{D_d D_s}. \] (8)

The Laplacian of the lensing potential is proportional to the surface-mass density of the lens:

\[\nabla_\theta \psi = \frac{2 \Sigma(D_d \theta)}{\Sigma_c} \equiv 2 \kappa \] (9)

The term \(\kappa \) is known as the convergence, and the critical surface mass density is defined as

\[\Sigma_c \equiv \frac{c^2 D_{ds}}{4\pi G D_s D_d}. \] In the case when the images of the lensed sources are small compared to the spatial scales in which the deflection angle varies considerably, the lens equation can be linearized to obtain local information of the mapping. Its Jacobian is given by

\[A_{ij} = \frac{\partial^2 \beta}{\partial \theta_j \partial \theta_i} = \delta_{ij} - \frac{\partial \alpha}{\partial \theta_j}, \] and can be written as

\[A = \begin{pmatrix} 1 - \kappa & 0 \\ 0 & 1 - \kappa \end{pmatrix} + \begin{pmatrix} -\gamma_1 & \gamma_2 \\ \gamma_2 & \gamma_1 \end{pmatrix} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix} \] (10)

where the complex shear \(\gamma = \gamma_1 + i\gamma_2 \) is defined in terms of the derivatives of the lensing potential as \(\gamma_1 \equiv \frac{1}{2} (\partial_1 \partial_1 \psi - \partial_2 \partial_2 \psi) \) and \(\gamma_2 \equiv \partial_1 \partial_2 \psi \), and the reduced shear \(g \) is defined as \(\gamma/(1 - \kappa) \). The inverse of the Jacobian in Eq. 10 is known as the magnification tensor, and its determinant represents the local magnification \(\mu \) in the limit of a point source:

\[\frac{1}{\mu} = \left| \frac{\partial^2 \beta}{\partial^2 \theta} \right| = |\det A| = (1 - \kappa^2) - \gamma^2 \] (11)

The curves in the image plane for which the magnification is formally equal to infinity \((\det A = 0)\) are known as critical curves. The corresponding curves in the source plane are known as caustics. In practice, the magnification is never infinite and the finite size of extended sources and other optical effects become important (Schneider et al. 1992). However, if a source lies close to a caustic curve, it will be highly magnified and distorted, producing images such as giant arcs in cluster, for example.

3. Image simulations

3.1. Lensing by galaxy clusters

The lens equation in Eq. 4 is, in general, non-linear, and it will have multiple solutions if the mass of the deflector is large enough and there is a geometrical alignment between the deflector and the background sources. Multiple images and giant arcs can be produced by systems such as galaxy clusters—the largest gravitationally bound objects in the Universe. In order to generate simulated images that include the effects of lensing by systems like these, a mass distribution of the deflector must be produced. For this purpose, analytical models such as a single isothermal sphere or an elliptical power law (Tessore and Metcalf 2015) can be used, with the advantage of being computationally fast,
but with the limitation of being too idealized. This limitation can be partially overcome by the use of semi-analytical algorithms such as MOKA (Giocoli et al. 2012), in which each component of the system (e.g., host dark matter halo, central galaxy, and satellites) is modelled analytically but in which information from state-of-the-art numerical simulations is also used.

The use of full N-body and hydro-dynamical simulations is an approach to model cluster lenses, with the lensing effects later incorporated through ray-tracing algorithms. In N-body simulations, a box is filled with N massive particles that interact only through gravity (e.g., Millennium (Springel et al. 2005), Millennium-XXL (Angulo et al. 2012), Dark Sky (Skillman et al. 2014), OuterRim (Habib et al. 2016), EuclidFlagship (Potter et al. 2016)). Hydro-dynamical simulations, in turn, attempt to provide a more accurate description of the properties observed in galaxy clusters by also including physical properties such as gas cooling, heating, and feedback, in addition to dark matter (e.g., Illustris (Vogelsberger et al. 2014), EAGLE (Schaye et al. 2014), MUFASA (Davé et al. 2016), APOSTLE (Sawala et al. 2016), RomulusC (Tremmel et al. 2018)). For a comprehensive review, see Vogelsberger et al. (2019).

Numerical simulations provide models for the distribution of dark matter and gas in clusters (Gardini et al. 2004; Rasia et al. 2004). The lensing properties of dark matter halos generated through numerical simulations can be studied by the use of the ray tracing technique, in which the trajectory of each individual photon is propagated and followed through the system, assuming that the photons emitted from the source are independent (Killedar et al. 2011; Meneghetti et al. 2008, 2010; Plazas et al. 2019; Li et al. 2016; Metcalf and Petkova 2014; Petkova et al. 2014). A large number of light rays is sent through the mass distribution of the lens, where the deflection of their trajectories is computed and the distorted and magnified images of the background sources are reconstructed. Since each ray is independent, this approach lends itself to computational parallelization.

Lens models using numerical methods provide information on positions and masses, which can be used to calculate the deflection angle of any light ray that intercepts the lens plane at a given normalized, dimensionless position \(\vec{x} \equiv \vec{\xi}/\xi_0 \) (for some characteristic distance \(\xi_0 \) in the lens plane) by summing the contribution from all the possible lens particles in a system with \(N \) particles:

\[
\vec{\alpha}(\vec{x}) = \sum_{i=1}^{N} m_i \frac{\vec{x} - \vec{x}_i}{|\vec{x} - \vec{x}_i|^2} \quad (12)
\]

The computational time of this direct approach is of the order of \(N^2 \). A more efficient approach projects the lens particle positions to a regular grid of size \(M \times M \), and the mass in each cell is calculated by summing the masses of the particles that belong to that particular cell. A bundle of rays is traced through another regular grid that covers the lens plane, and the deflection angle for each ray \((i,j)\) is computed by adding up the contributions from each cell \((k, l)\) in the grid:

\[
\vec{\alpha}_{ij} = \vec{\alpha}(\vec{x}_{ij}) = \sum_{k=1}^{M} \sum_{l=1}^{M} m_{kl} \frac{\vec{x}_{ij} - \vec{x}_{kl}}{|\vec{x}_{ij} - \vec{x}_{kl}|^2} \quad (13)
\]

Comparing Eq.13 with the definition of convergence, it can be seen that the deflection
angle can be written as a convolution of the convergence with the kernel:

$$\vec{K}(\vec{x}) \equiv \frac{1}{\pi |\vec{x}|^2}$$

(14)

The deflection angle can be obtained by applying the convolution theorem in Fourier space \((\tilde{\alpha}(\vec{k}) = 2\pi \tilde{\kappa}(\vec{k}) \tilde{K}(\vec{k}))\), where the tilde indicates the Fourier transform. Working in Fourier space offers speed advantages (provided that specific boundary and periodicity conditions are met), although the deflection angle can also be obtained by means of direct calculations using tree methods (Meneghetti et al. 2010; Rasia et al. 2012; Metcalf and Petkova 2014). Once the deflection angles are calculated, lensing properties such as shear and magnification can be obtained through the Jacobian of the lens equation (Eq. 10). In the case that multiple deflectors are considered, the lens equation can be generalized to include multiple lens planes, \(N_p\):

$$\vec{\beta} = \vec{\theta} - \sum_{i=0}^{N_p} \frac{D_{ls}}{D_s} \hat{\gamma}_i(\theta)$$

(15)

Analogously, multiple source planes can also be included to provide a more accurate representation of the system at hand. For example, in the case of an isolated lens such as a galaxy cluster the source planes are generated to account for the redshift dependence of the geometric factor \(D_{ds}/D_s\): source objects are divided into a certain number of redshift bins with centers equally spaced in lensing distance, each one defining a source plane.

3.1.1. Observation pipelines

Using the ray-tracing formalism to include lensing effects, a model of a galaxy cluster or multiple clusters, a given a distribution of sources, and information on observational conditions (e.g., bandpass, detector parameters, integration time, etc.), it is possible to construct an observation pipeline (e.g., Skylens (Meneghetti et al. 2008, 2010; Plazas et al. 2019), PICS (Li et al. 2016)) that produces simulated images of systems observed through any particular instrument. The pipeline Skylens, for example, generates source galaxies as denoised postage stamps after drawing from the galaxy sample of the Hubble eXtreme Deep Field (HXDF (Illingworth et al. 2013)), and implements the capability to use multiple source and lens planes. Lens models are produced through the use of the semi-analytic code MOKA, although any analytical dark matter halo model or numerical simulation can be used as well. Input parameters such as exposure time \((t_{\text{exp}})\), the total throughput function \((T(\lambda)\), which includes the quantum efficiency of the detector, the mirror reflectivity, the transmission curve of the filters and the lenses in the optical system, and the total extinction function), sky coordinates, effective telescope diameter \((D)\), detector gain \((g)\), readout and Poisson noise, and pixel scale \((p)\) must be specified by the user in order to prepare a virtual observation through a chosen instrument and telescope, and calculate the measured flux of a galaxy with a given spectral energy distribution. Following the discussion and formulas in Grazian et al. (2004) (see also Plazas et al. (2019)), the total photon counts on the detector (in analog-to-digital units, ADU, or digital numbers, DN) from a source with surface brightness \(I(\vec{x}, \lambda)\) (erg s\(^{-1}\)cm\(^{-2}\)Hz\(^{-1}\)arcsec\(^{-2}\)), is given by

$$\text{ADU}_{\text{total}}(\vec{x}) = \frac{n_{\gamma}(\vec{x}) + n_{\text{sky}} + n_{\text{dark}}}{g}$$

(16)
where

\begin{align}
 n_{\gamma}(\vec{x}) &= \frac{\pi D^2 t_{\text{exp}} b^2}{4h} \int I(\vec{x}, \lambda) \frac{T(\lambda)}{\lambda} d\lambda \\
 n_{\text{sky}} &= \frac{\pi D^2 t_{\text{exp}} b^2}{4h} \int \frac{T(\lambda) S(\lambda)}{\lambda} d\lambda
\end{align}

are the contributions from the source and the sky, respectively (with \(h \) as Planck’s constant and \(S(\lambda) \) is the sky flux per square arcsec), and \(n_{\text{dark}} \) is the dark current. The zero point of the image, in the AB system, can be calculated as (Grazian et al. 2004)

\[ZP = 2.5 \log \left(\frac{\pi D^2 t_{\text{exp}}}{4hg} \int \frac{T(\lambda)}{\lambda} d\lambda \right) - 48.6 \]

Fig. 1.— Color composite from images produced by the ray-tracing simulation code Skylens. The image was produced by combining simulated observations taken with the Hubble Space Telescope Advance Camera for Surveys Wide Field Channel in the F475W, F625W, and F775W filters. Taken from Plazas et al. (2019)

3.1.2. Ray tracing

Once the telescope, the detector, and the deflector (or deflectors) have been defined, Skylens accounts for the tidal effect of matter along the line of sight by using Equation (15) and reconstructs the images of the sources. The images are then convolved by the instrumental PSF, and different sources of noise and sky background are added according to the parameters of the simulated observation. Fig. 1 shows an example of an image
simulation of the Hubble Space Telescope (HST) Advance Camera for Surveys Wide Field Channel generated by Skylens through the combination of three different filters.

3.2. Image simulations in weak and strong lensing mass modeling

One of the most important applications of strong and weak lensing by galaxy clusters is constraining of the total mass distribution of the lens, dominated by dark matter (Jullo et al. 2007; Caminha et al. 2019). Strong lensing observables such as flux ratios, relative image positions, and time delays are used in combination with weak lensing, galactic kinematics, and x-ray information to constrain the matter distributions of clusters via a lens inversion process. Knowledge of the matter profile of galaxy clusters is crucial in the understanding of the interplay between dark matter and baryons, as well as the process of large-scale structure formation, and to test the predictions of the standard ΛCDM cosmological model. High-resolution images of galaxy clusters taken with the Hubble Space Telescope (e.g., CLASH (Postman et al. 2012), the HST Frontier Fields (Lotz et al. 2017; Koekemoer et al. 2016)) have enabled the community to develop and test different inversion algorithms that, however, do not always result in consistent reconstructions, even when applied to the same systems (see, for example, the analyses of the system MACS J1149.5+2223 by Smith et al. (2009) and Zitrin and Broadhurst (2009)). The process of mass modeling is subject to many challenges, and in this context, image simulations provide a valuable tool to assess the performance of inversion codes, to find ways to improve them, and to identify the properties of lenses that are mostly impacted by errors during the construction of a lens model (e.g., cluster ellipticities and dynamics, substructures, baryonic physics, etc.). For example, Meneghetti et al. (2017) use MOKA and Skylens to simulate strong lensing observations through galaxy clusters with the characteristics of the HST Frontier Fields. The simulations were used to test several lensing inversion methods (parametric, non-parametric or free-form, and hybrid) by different groups.

Simulations with Skylens have also been used to test the robustness of estimating cluster masses by using information from weak lensing, and to study hydrostatic biases by comparing with simulated x-rays observations (Meneghetti et al. 2010; Rasia et al. 2012).

3.3. Strong lensing simulations and machine learning methods

Image simulations of strong lensing systems have been used to predict that current and future wide-field galaxy surveys (e.g., DES, HSC survey, KiDS, LSST, Euclid, and WFIRST) will produce several to hundreds of thousands of galaxy-galaxy strong lensing systems (Collett 2015). Many efforts have recently focused on employing techniques from computer vision and machine learning to go beyond traditional approaches such as visual searches of "blue" arcs near "red" galaxies (Diehl et al. 2017), goodness of fit examinations after fitting a model to all candidates (Marshall et al. 2009; Chan et al. 2015), and public science challenges (Marshall et al. 2015; More et al. 2015) to discover new strong lensing systems in the large datasets. Neural networks have demonstrated to be able to distinguish between simulated lenses and non-lenses (Lanusse et al. 2017; Hezaveh et al. 2017). Jacobs et al. (2019a,b, 2017) have used convolutional neural networks (CNNs, (LeCun et al. 1989)) to produce a catalog of galaxy-galaxy strong lenses (including high-redshift systems) using
data from the Dark Energy Survey, and Petrillo et al. (2017, 2019) have correspondingly found hundreds of candidates in KiDS data. Jacobs et al. (2019b) use the LENSPOP (Collett 2015) code to generate a training set that consists of hundreds of thousands of labeled simulated examples to train a CNN that classifies lenses and non-lenses. Metcalf et al. (2019) use N-body (Millenium) and ray-tracing (GLAMER, Metcalf and Petkova (2014); Petkova et al. (2014)) simulations to analyze a variety of methods including CNN’s, visual inspection, and arc finders to assess their efficiency and completeness, and identify biases in the face of large future datasets.

3.4. Image simulations for weak lensing systematic errors characterization

Recent years have seen the rapid advances in astronomical instrumentation and technology enabling the production of large data sets for astronomical investigations. The decrease in statistical uncertainties in these large data sets results in more stringent requirements to control, characterize, and correct for systematic errors. Weak gravitational lensing of the large-scale structure (cosmic shear) plays a central role in these galaxy surveys as a tool to probe the validity of the standard cosmological model and the nature of the dark sector of the Universe. In turn, the understanding and correction of systematic errors lies at the heart of weak gravitational lensing. Systematic errors include shape measurement precision, PSF measurement and deconvolution, instrument signatures, detector (e.g., charge-couple devices and near-infrared sensors) effects, measurement of photometric redshifts, intrinsic alignments, deblending, etc. (for a comprehensive review see Mandelbaum (2018)). Image simulations with weak gravitational lensing effects have been used to understand these errors and correct for them to the precision required by current and future experiments. End-to-end simulations have been created to bring together the weak lensing community under a common framework and produce challenges such as the Shear TEsting Programme (STEP, (Heymans et al. 2006)) and GRavitational LEnsing Accuracy Testing (GREAT, (Brindle et al. 2010)). Further iterations of these community-wide challenges (GREAT10 (Kitching et al. 2012) and GREAT3 (Mandelbaum et al. 2014)) focused on simulations in which one parameter a time in the simulation pipeline could be controlled, allowing for a more detailed look at each step in the process of shape galaxy measurement for cosmic shear. The simulations tools to create the images in GREAT3 are publicly available as the modular image simulation code GalSim⁸ (Rowe et al. 2015), which has been used extensively to study the impact of systematic effects on weak lensing measurements (e.g., (Plazas et al. 2016; Plazas et al. 2017; Plazas et al. 2018; Kannawadi et al. 2015; Gruen et al. 2015; Lin et al. 2019; Kamath et al. 2019)) or as part of pipelines that create mock images where the selection function of the system is directly measured by inserting simulated objects into real data (e.g., Balrog (Suchyta et al. 2016), SynPipe (Huang et al. 2017)). Simulations have also played a central role in the development, testing, and validation of shear estimation methods (e.g., (Sheldon et al. 2019; Samuroff et al. 2018; Bernstein et al. 2016; Plazas 2012)). In the context of the future WFIRST weak lensing program, Troxel et al. (Troxel et al. 2019) use GalSim to render images for a simulation suite designed to carefully study weak lensing systematic errors relevant for WFIRST’s High-latitude Imaging Survey (Doré et al. 2018).

Fig. 2 shows examples of

⁸https://github.com/GalSim-developers/GalSim
Fig. 2.— Examples of the types of images that can be generated by GalSim. **Top:** Image of a portion of the focal plane of LSST Camera using realistic parameters, including lensing effects. The image was produced with the publicly available configuration file https://github.com/GalSim-developers/GalSim/blob/master/examples/lsst.yaml. **Bottom:** Objects with Gaussian surface brightness profiles arranged in a rectangular grid as well-separated postage stamps.
images produced with GalSim.

3.5. Synthetic sky images and catalogs

Ray tracing techniques (3.1.2)—in conjunction with full or approximate N-body simulations (*e.g.*, COLA (Tassev et al. 2013; Izard et al. 2017))—are also used in studies of cosmic shear. For example, DeRose et al. (2019) use the ADDGALS algorithm to populate dark matter simulations with galaxies, and include gravitational lensing effects via the curved-sky ray-tracing code CALCLENS (Becker 2013). They produce a set of 18 synthetic DES Year 1 catalogs to $z = 2.35$ and to a depth of $r \approx 26$ that include galaxy properties (*e.g.*, position, ellipticities, magnitude), photometric errors, and galaxy cluster catalogs (by applying finders such as RedMapper (Rykoff et al. 2014). These simulations have been used to calculate cosmological observables and tests, including quantities relevant for weak gravitational lensing analyses such as correlation functions (galaxy-galaxy, galaxy-shear, and position-position correlation functions; or 3×2 correlation analyses (Abbott et al. 2018)) and photometric redshift distributions. Simulations such as MICE (Fosalba et al. 2015) use a similar approach to DeRose et al. (2019), but assume different approximations in the lensing calculation with ray-tracing. Other simulations more focused on weak-lensing statistics using full ray-tracing have also recently been released (Takahashi et al. 2017; Harois-Deraps et al. 2013).

Simulated wide-field images are also used to study systematic errors for weak lensing in a more comprehensive framework that includes data to calibrate the images. Bruderer et al. (2016); Tortorelli et al. (2020) use the Ultra Fast Image Generator (UFIG, Bergé et al. (2013)) to produce an implementation of the Monte Carlo Control Loops (MCCL, Refregier and Amara (2014)) framework for weak lensing systematic errors studies and apply it to DES data from science verification (*e.g.*, (Abbott et al. 2016)) data. More recently, Kacprzak et al. (2019) apply MCCL to DES year 1 data for cosmic shear studies.

Alternative approaches to forward-modeling simulation codes such as UFIG include methodologies that use machine learning methods such as Generative Adversarial Networks (GANs) to let the machine infer both the astrophysical and the instrumentation properties of a data set (Smith and Geach 2019)

The Dark Energy Science Collaboration of LSST (LSST DESC⁹) also uses wide-field simulations to prepare for the new challenges that the large and complex dataset produced by the LSST of the Rubin Observatory (approximately 40 billion objects and 50 Pb of raw data (Jurić et al. 2017; Ivezic et al. 2008)) will generate. The latest of these efforts is referred to as Data Challenge 2 (DC2), the second of three planned synthetic datasets (Sánchez et al. 2020) designed to develop and validate data reduction methodologies and to study the impact of systematic effects on LSST data. DC2 includes the production, validation, and analysis of a 5000 sq-deg mock extragalactic catalogs and 300 sq-deg end-to-end simulation. The extragalactic catalog is produced by the CosmoDC2 pipeline (Korytov et al. 2019), and includes the N-body simulation Outer Rim of 1 trillion particles up to $z = 10$, produced with the Hybrid/Hardware Accelerated Cosmology Code (HACC) (Habib

⁹https://lsstdesc.org/
et al. 2016). The simulations include a lensing pipeline that uses particle data from Outer Rim to generate light cones, project the particles in redshift shells and uses a ray-tracing algorithm to produce curved-sky lensing maps. The final available information of objects in the catalogs include positions, sizes, shapes, shear, magnification, convergence, magnitudes, etc. The DC2 image simulations uses a subset of the extragalactic catalogs (300 sq-deg) and implements two approaches to produce the images: the Monte Carlo photon shooting code PhoSim (Peterson et al. 2015) and the code ImSim10 which relies on GalSim to produce the images passing specific LSST information.

3.6. Image simulations to assess the accuracy of photometric redshifts

The determination of accurate galaxy redshift distributions is a key requirement in weak lensing for precision cosmology, especially for the level of requirements needed for the next generation ("stage IV" experiments (Albrecht et al. 2006)) galaxy survey projects that will use weak and strong lensing such as LSST, Euclid, and WFIRST (Hoyle et al. 2018). As such, image simulations constitute a valuable tool to test new algorithms and characterize any biases. Bellagamba et al. (2012), for example, use Skylens to generate mock images of ground- and spaced-base surveys in the different bands in the optical and the near-infrared wavelengths, and test the performance of template fitting methods of redshift estimation (e.g., BPZ (Benítez 2000)) under different parameters (such as seeing and depth). Bonnett et al. (2016) use simulations created with UFIG to calibrate and validate both template fitting and training methods (where a set of galaxies with known spectroscopic methods is used to train machine-learning algorithms, e.g., TPZ (Carrasco Kind and Brunner 2013), ArborZ (Gerdes et al. 2010)) in the context of the DES science verification data.

4. Conclusion

We have presented a general overview with some examples of the role that image simulations play in strong and weak gravitational lensing. After 100 years of the formulation of General Relativity, gravitational lensing has positioned itself as one of the most important tools in different areas of astrophysics. In particular, the strong and weak regimes of lensing have become central techniques in current and future experiments that seek to learn more about fundamental problems such as the nature of dark matter and dark energy, the processes of galaxy formation and evolution, the formation of the large-scale structure of the Universe, and the validity of alternative theories of gravity. Many efforts are focused on the understanding, characterization, and correction of systematic errors and measurement biases in both regimes. Thanks to efforts like these, cosmic shear surveys such as DES have produced the most precise constraints on cosmology from a ground-based survey (Abbott et al. 2018) (with a precision comparable to cosmic microwave background observations), measuring the combination $\sigma_8 (\Omega_m/0.3)^{0.5}$ to a precision of about 3.5% (Troxel et al. 2018). With the advent of stage IV weak lensing surveys with lower statistical errors such as LSST, WFIRST, and Euclid, the constraints on cosmological parameters will keep improving (Schaan et al. 2017), but only if systematic errors can be controlled. These

10https://github.com/LSSTDESC/imSim
wide-field surveys will also increase the number of non-transient (e.g., double source plane lenses) and transient (e.g., lensed quasars and supernovae) strong lensing events, which will help place constraints on the dark energy equation of state parameter and on the current H_0 tension. In this context, the creation of simulated images with known inputs is an invaluable tool to achieve the increased required accuracy demanded by these projects and fulfill their scientific potential.

Acknowledgments

We thank Massimo Meneghetti for useful discussions and suggestions to improve earlier versions of this manuscript, and Solný A. Aðalsteinsson for proof-reading its final version. We thank the Department of Physics of Washington University in St. Louis for their hospitality during the preparation of this paper. This research has made use of NASA’s Astrophysics Data System Bibliographic Services.

This paper is dedicated to the memory of Colombian astrophysicist Paul D. Nuñez.

REFERENCES

T. Abbott, F.B. Abdalla, S. Allam, A. Amara, J. Annis, R. Armstrong, D. Bacon, M. Banerji, A.H. Bauer, E. Baxter, and et al. Cosmology from cosmic shear with dark energy survey science verification data. Physical Review D, 94(2), Jul 2016. ISSN 2470-0029. doi: 10.1103/physrevd.94.022001. URL http://dx.doi.org/10.1103/PhysRevD.94.022001.

T. M. C. Abbott, F. B. Abdalla, A. Alarcon, J. Aleksić, S. Allam, S. Allen, A. Amara, J. Annis, J. Asorey, S. Avila, D. Bacon, E. Balbinot, M. Banerji, N. Banik, W. Bahcall, M. Baumer, E. Baxter, K. Bechtol, M. R. Becker, A. Benoit-Lévy, B. A. Benson, G. M. Bernstein, E. Bertin, J. Blazek, S. L. Bridle, D. Brooks, D. Brout, E. Buckley-Geer, D. L. Burke, A. Campos, D. Capozzi, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, R. Castander, R. C. Chang, N. Chen, M. Childress, A. Choi, C. Conselice, R. Crittenden, M. Crocce, C. E. Cunha, C. B. D’Andrea, L. N. da Costa, R. Das, T. M. Davis, C. Davis, J. De Vicente, D. L. DePoy, J. DeRose, S. Desai, H. T. Diehl, J. P. Dietrich, S. Dodelson, P. Doel, A. Drlica-Wagner, T. F. Eifler, A. E. Elliott, F. Elsner, J. Elvin-Poole, J. Estrada, A. E. Evrard, Y. Fang, E. Fernandez, A. Ferté, D. A. Finley, B. Flaugher, P. Fosalba, O. Friedrich, J. Frieman, J. García-Bellido, M. García-Fernandez, M. Gatti, E. Gaztanaga, D. W. Gerdes, T. Giannantonio, M. S. S. Gill, K. Glazebrook, D. A. Goldstein, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, S. Hamilton, W. G. Hartley, S. R. Hinton, K. Honscheid, B. Hoyle, D. Huterer, B. Jain, D. J. James, M. Jarvis, T. Jeltema, M. D. Johnson, M. W. G. Johnson, T. Kacprzak, S. Kent, A. G. Kim, A. King, D. Kirk, N. Kokron, A. Kovacs, E. Krause, C. Krawiec, A. Kremin, K. Kuehn, S. Kuhlmann, N. Kuromatin, F. LaViolette, O. Lahav, T. S. Li, A. R. Liddle, C. Lidman, M. Lima, H. Lin, N. MacCrann, M. A. G. Maia, M. Makler, M. Manera, M. March, J. L. Marshall, P. Martini, R. G. McMahon, P. Melchior, F. Menanteau, R. Miquel, V. Miranda, D. Mudd,
J. Muir, A. Möller, E. Neilsen, R. C. Nichol, B. Nord, P. Nugent, R. L. C. Ogando, A. Palmese, J. Peacock, H. V. Peiris, J. Peoples, W. J. Percival, D. Petravick, A. A. Plazas, A. Porredon, J. Prat, A. Pujol, M. M. Rau, A. Refregier, P. M. Ricker, N. Roe, R. P. Rollins, A. K. Romer, A. Roodman, R. Rosenfeld, A. J. Ross, E. Rozo, E. S. Rykoff, M. Sako, A. I. Salvador, S. Samuroff, C. Sánchez, E. Sanchez, B. Santiago, V. Scarpine, R. Schindler, D. Scolnic, L. F. Secco, S. Serrano, I. Sevilla-Noarbe, E. Sheldon, R. C. Smith, M. Smith, J. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, M. A. Troxel, D. L. Tucker, B. E. Tucker, S. A. Uddin, T. N. Varga, P. Vielzeuf, V. Vikram, A. K. Vivas, A. R. Walker, M. Wang, R. H. Wechsler, J. Weller, W. Wester, R. C. Wolf, B. Yanny, F. Yuan, A. Zenteno, B. Zhang, Y. Zhang, J. Zuntz, and Dark Energy Survey Collaboration. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. *Phys. Rev. D*, 98(4):043526, Aug 2018. doi: 10.1103/PhysRevD.98.043526.

Ana Acebron, Nathália Cibirka, Adi Zitrin, Dan Coe, Irene Agulli, Keren Sharon, Maruša Bradač, Brenda Frye, Rachael C. Livermore, Guillaume Mahler, Brett Salmon, Keiichi Umetsu, Larry Bradley, Felipe Andrade-Santos, Roberto Avila, Daniela Carrasco, Catherine Cerny, Nicole G. Czakon, William A. Dawson, Austin T. Hoag, Kuang-Han Huang, Traci L. Johnson, Christine Jones, Shotaro Kikuchihara, Daniel Lam, Lorenzo Lovisari, Ramesh Mainali, Pascal A. Oesch, Sara Ogaz, Masami Ouchi, Matthew Past, Rachel Paterno-Mahler, Avery Peterson, Russell E. Ryan, Irene Sendra-Server, Daniel P. Stark, Victoria Strait, Sume Toft, Michele Trenti, and Benedetta Vulcani. RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9-40.7. *ApJ*, 858(1):42, May 2018. doi: 10.3847/1538-4357/aabe29.

A. Albrecht, G. Bernstein, R. Cahn, W. L. Freedman, J. Hewitt, W. Hu, J. Huth, M. Kamionkowski, E. W. Kolb, L. Knox, J. C. Mather, S. Staggs, and N. B. Suntzeff. Report of the Dark Energy Task Force. *ArXiv Astrophysics e-prints*, September 2006.

C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennett, K. H. Cook, N. Dalal, A. J. Drake, K. C. Freeman, M. Geha, K. Griest, M. J. Lehner, S. L. Marshall, D. Minnit, C. A. Nelson, B. A. Peterson, P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, A. B. Tomaney, T. Vand ehei, and D. Welch. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. *ApJ*, 542(1):281–307, Oct 2000. doi: 10.1086/309512.

R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins, C. M. Baugh, and C. S. Frenk. Scaling relations for galaxy clusters in the Millennium-XXL simulation. *MNRAS*, 426(3):2046–2062, Nov 2012. doi: 10.1111/j.1365-2966.2012.21830.x.

Kevin Aylor, Mackenzie Joy, Lloyd Knox, Marius Millea, Srinivasan Raghunathan, and W. L. Kimmy Wu. Sounds discordant: Classical distance ladder and Λcdmbased determinations of the cosmological sound horizon. *The Astrophysical Journal*, 874 (1):4, Mar 2019. ISSN 1538-4357. doi: 10.3847/1538-4357/ab0898. URL http://dx.doi.org/10.3847/1538-4357/ab0898.

M. Bartelmann and P. Schneider. Weak gravitational lensing. *Phys. Rep.*, 340:291–472, January 2001. doi: 10.1016/S0370-1573(00)00082-X.
Matthias Bartelmann. Gravitational lensing. *Classical and Quantum Gravity*, 27(23):233001, Nov 2010. ISSN 1361-6382. doi: 10.1088/0264-9381/27/23/233001. URL http://dx.doi.org/10.1088/0264-9381/27/23/233001.

Matthias Bartelmann and Matteo Maturi. Weak gravitational lensing. *Scholarpedia*, 12(1):32440, Jan 2017. doi: 10.4249/scholarpedia.32440.

Matthew Rand Becker. *CALCLENS: Weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra*. PhD thesis, The University of Chicago, Jan 2013.

F. Bellagamba, M. Meneghetti, L. Moscardini, and M. Bolzonella. Accuracy of photometric redshifts for future weak lensing surveys from space. *MNRAS*, 422(1):553–562, May 2012. doi: 10.1111/j.1365-2966.2012.20632.x.

Narciso Benítez. Bayesian Photometric Redshift Estimation. *ApJ*, 536(2):571–583, Jun 2000. doi: 10.1086/308947.

Joel Bergé, Lukas Gamper, Alexandre Réfrégier, and Adam Amara. An Ultra Fast Image Generator (UFIG) for wide-field astronomy. *Astronomy and Computing*, 1:23–32, Feb 2013. doi: 10.1016/j.ascom.2013.01.001.

José Luis Bernal, Licia Verde, and Adam G. Riess. The trouble with h0. *Journal of Cosmology and AstropARTICLE Physics*, 2016(10):019–019, Oct 2016. ISSN 1475-7516. doi: 10.1088/1475-7516/2016/10/019. URL http://dx.doi.org/10.1088/1475-7516/2016/10/019.

Gary M. Bernstein, Robert Armstrong, Christina Krawiec, and Marisa C. March. An accurate and practical method for inference of weak gravitational lensing from galaxy images. *Monthly Notices of the Royal Astronomical Society*, 459(4):4467–4484, Apr 2016. ISSN 1365-2966. doi: 10.1093/mnras/stw879. URL http://dx.doi.org/10.1093/mnras/stw879.

C. Bonnett, M. A. Troxel, W. Hartley, A. Amara, B. Leistedt, M. R. Becker, G. M. Bernstein, S. L. Bridle, C. Bruderer, M. T. Busha, and et al. Redshift distributions of galaxies in the dark energy survey science verification shear catalogue and implications for weak lensing. *Physical Review D*, 94(4), Aug 2016. ISSN 2470-0029. doi: 10.1103/physrevd.94.042005. URL http://dx.doi.org/10.1103/PhysRevD.94.042005.

Sarah Bridle, Sreekumar T. Balan, Matthias Bethge, Marc Gentile, Stefan Harmeling, Catherine Heymans, Michael Hirsch, Reshad Hosseini, Mike Jarvis, Donnacha Kirk, and et al. Results of the great08 challenge: an image analysis competition for cosmological lensing. *Monthly Notices of the Royal Astronomical Society*, page no–no, May 2010. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2010.16598.x. URL http://dx.doi.org/10.1111/j.1365-2966.2010.16598.x.

Claudio Bruderer, Chihway Chang, Alexandre Refregier, Adam Amara, Joel Bergé, and Lukas Gamper. Calibrated Ultra Fast Image Simulations for the Dark Energy Survey. *ApJ*, 817(1):25, Jan 2016. doi: 10.3847/0004-637X/817/1/25.
G. B. Caminha, C. Grillo, P. Rosati, I. Balestra, W. Karman, M. Lombardi, A. Mercurio, M. Nonino, P. Tozzi, A. Zitrin, A. Biviano, M. Girardi, A. M. Koekemoer, P. Melchior, M. Meneghetti, E. Munari, S. H. Suyu, K. Umetsu, M. Annunziatella, S. Borgani, T. Broadhurst, K. I. Caputi, D. Coe, C. Delgado-Correal, S. Ettori, A. Fritz, B. Frye, R. Gobat, C. Maier, A. Monna, M. Postman, B. Sartoris, S. Seitz, E. Vanzella, and B. Ziegler. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography.

A&A, 587:A80, Mar 2016. doi: 10.1051/0004-6361/201527670.

G. B. Caminha, P. Rosati, C. Grillo, G. Rosani, K. I. Caputi, M. Meneghetti, A. Mercurio, I. Balestra, P. Bergamini, A. Biviano, and et al. Strong lensing models of eight clash clusters from extensive spectroscopy: Accurate total mass reconstructions in the cores.

Astronomy and Astrophysics, 632:A36, Nov 2019. ISSN 1432-0746. doi: 10.1051/0004-6361/201935454. URL http://dx.doi.org/10.1051/0004-6361/201935454.

Matias Carrasco Kind and Robert J. Brunner. Tpz: photometric redshift pdfs and ancillary information by using prediction trees and random forests.

Monthly Notices of the Royal Astronomical Society, 432(2):1483–1501, May 2013. ISSN 1365-2966. doi: 10.1093/mnras/stt574.

URL http://dx.doi.org/10.1093/mnras/stt574.

Sean M. Carroll. Spacetime and geometry. An introduction to general relativity. 2004.

James H. H. Chan, Sherry H. Suyu, Tzihong Chiueh, Ampreeta More, Philip J. Marshall, Jean Coupon, Masamune Oguri, and Paul Price. Chitah: Strong-gravitational-lens Hunter in Imaging Surveys.

ApJ, 807(2):138, July 2015. doi: 10.1088/0004-637X/807/2/138.

T. E. Collett. The Population of Galaxy-Galaxy Strong Lenses in Forthcoming Optical Imaging Surveys.

ApJ, 811:20, September 2015. doi: 10.1088/0004-637X/811/1/20.

Neal Dalal and Christopher S. Kochanek. Strong Lensing Constraints on Small-Scale Linear Power.

arXiv e-prints, art. astro-ph/0202290, Feb 2002.

Romeel Davé, Robert Thompson, and Philip F. Hopkins. mufasa: galaxy formation simulations with meshless hydrodynamics.

Monthly Notices of the Royal Astronomical Society, 462(3):3265–3284, Jul 2016. ISSN 1365-2966. doi: 10.1093/mnras/stw1862.

URL http://dx.doi.org/10.1093/mnras/stw1862.

Joseph DeRose, Risa H. Wechsler, Matthew R. Becker, Michael T. Busha, Eli S. Rykoff, Niall MacCrann, Brandon Erickson, August E. Evrard, Andrey Kravtsov, Daniel Gruen, Sahar Allam, Santiago Avila, Sarah Bridle, David Brooks, Elizabeth Buckley-Geer, Aurelio Carnero Rosell, Matias Carrasco Kind, Jorge Carretero, Francisco J. Castander, Ross Caughlan, Martin Croteau, Luiz N. da Costa, Christopher Davis, Juan De Vicente, Jörg P. Dietrich, Peter Doel, Alex Drlica-Wagner, Pablo Fosalba, Josh Frieman, Juan Garcia-Bellido, Gaston Gutierrez, Will G. Hartley, Devon L. Hollowood, Ben Hoyle, David J. James, Elisabeth Krause, Kyler Kuehn, Nikolay Kuropatkin, Marcos Lima, Marcio A. G. Maia, Felipe Menanteau, Christopher J. Miller, Ramon Miquel, Ricardo L. C. Ogando, André Plazas Malagón, A. Kathy Roman, Eusebio Sanchez, Rafe Schindler, Santiago Serrano, Ignacio Sevilla-Noriega, Mathew Smith, Eric Suchyta, Molly E. C. Swanson, Gregory
Tarle, and Vinu Vikram. The Buzzard Flock: Dark Energy Survey Synthetic Sky Catalogs. *arXiv e-prints*, art. arXiv:1901.02401, Jan 2019.
Eleonora Di Valentino, Alessandro Melchiorri, and Olga Mena. Can interacting dark energy solve the h_0 tension? Physical Review D, 96(4), Aug 2017. ISSN 2470-0029. doi: 10.1103/physrevd.96.043503. URL http://dx.doi.org/10.1103/PhysRevD.96.043503.

Doré, Olivier, Christopher Hirata, Yun Wang, David Weinberg, Ivano Baronechelli, Andrew Benson, Peter Capak, Ami Choi, Tim Eifler, Shoubaneh Hemmati, Shirley Ho, Albert Izard, Bhuvnesh Jain, Mike Jarvis, Alina Kiessling, Elisabeth Krause, Elena Massara, Dan Masters, Alex Merson, Hironao Miyatake, Andres Plazas Malagon,
Rachel Mandelbaum, Lado Samushia, Chaz Shapiro, Melanie Simet, David Spergel, Harry Teplitz, Michael Troxel, Rachel Bean, James Colbert, Chen He Heinrich, Katrin Heitmann, George Helou, Michael Hudson, Eric Huff, Alexie Leauthaud, Niall MacCrann, Nikhil Padmanabhan, Alice Pisani, Jason Rhodes, Eduardo Rozo, Mike Seiffert, Kendrick Smith, Masahiro Takada, Anja von der Linden, Robert Lupton, Naoki Yoshida, Hao-Yi Wu, and Ying Zu. Wfirst science investigation team "cosmology with the high latitude survey" annual report 2017, 2018.

Albert Einstein. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. *Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin),* pages 142–152, Jan 1917.

P. Fosalba, M. Crocce, E. Gaztañaga, and F. J. Castander. The mice grand challenge lightcone simulation – i. dark matter clustering. *Monthly Notices of the Royal Astronomical Society,* 448(4):2987–3000, Mar 2015. ISSN 0035-8711. doi: 10.1093/mnras/stv138. URL http://dx.doi.org/10.1093/mnras/stv138.

A. Gardini, E. Rasia, P. Mazzotta, G. Tormen, S. De Grandi, and L. Moscardini. Simulating chandra observations of galaxy clusters. *Monthly Notices of the Royal Astronomical Society,* 351(2):505–514, Jun 2004. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2004.07800.x. URL http://dx.doi.org/10.1111/j.1365-2966.2004.07800.x.

B. S. Gaudi. Microlensing Surveys for Exoplanets. *ARA&A,* 50:411–453, September 2012. doi: 10.1146/annurev-astro-081811-125518.

David W. Gerdes, Adam J. Sypniewski, Timothy A. McKay, Jiangang Hao, Matthew R. Weis, Risa H. Wechsler, and Michael T. Busha. Arborz: Photometric redshifts using boosted decision trees. *The Astrophysical Journal,* 715(2):823–832, May 2010. ISSN 1538-4357. doi: 10.1088/0004-637x/715/2/823. URL http://dx.doi.org/10.1088/0004-637x/715/2/823.

Daniel Gilman, Simon Birrer, Anna Nierenberg, Tommaso Treu, Xiaolong Du, and Andrew Benson. Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. *MNRAS,* 491(4):6077–6101, Feb 2020. doi: 10.1093/mnras/stz3480.

C. Giocoli, M. Meneghetti, M. Bartelmann, L. Moscardini, and M. Boldrin. MOKA: a new tool for strong lensing studies. *MNRAS,* 421:3343–3355, April 2012. doi: 10.1111/j.1365-2966.2012.20558.x.

J. D. Remolina González, K. Sharon, and G. Mahler. An evaluation of 10 lensing models of the frontier fields cluster m0416.1-2403. *The Astrophysical Journal,* 863 (1):60, Aug 2018. ISSN 1538-4357. doi: 10.3847/1538-4357/aacf8e. URL http://dx.doi.org/10.3847/1538-4357/aacf8e.

A. Grazian, A. Fontana, C. De Santis, S. Gallozzi, E. Giallongo, and F. Di Pangrazio. The Large Binocular Camera Image Simulator. *PASP,* 116:750–761, August 2004. doi: 10.1086/423123.

C. Grillo, P. Rosati, S. H. Suyu, I. Balestra, G. B. Caminha, A. Halkola, P. L. Kelly, M. Lombardi, A. Mercurio, S. A. Rodney, and T. Treu. Measuring the Value of
the Hubble Constant “à la Refsdal”. *ApJ*, 860(2):94, June 2018. doi: 10.3847/1538-4357/aac2c9.

D. Gruen, G. M. Bernstein, M. Jarvis, B. Rowe, V. Vikram, A. A. Plazas, and S. Seitz. Characterization and correction of charge-induced pixel shifts in DECam. *Journal of Instrumentation*, 10:C05032, May 2015. doi: 10.1088/1748-0221/10/05/C05032.

James E. Gunn. On the Propagation of Light in Inhomogeneous Cosmologies. I. Mean Effects. *ApJ*, 150:737, Dec 1967. doi: 10.1086/149378.

Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann, David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, and et al. Hacc: Simulating sky surveys on state-of-the-art supercomputing architectures. *New Astronomy*, 42:49–65, Jan 2016. ISSN 1384-1076. doi: 10.1016/j.newast.2015.06.003. URL http://dx.doi.org/10.1016/j.newast.2015.06.003.

J. Harnois-Deraps, U.-L. Pen, I. T. Iliev, H. Merz, J. D. Emberson, and V. Desjacques. High-performance p3m n-body code: Cubep3m. *Monthly Notices of the Royal Astronomical Society*, 436(1):540–559, Sep 2013. ISSN 1365-2966. doi: 10.1093/mnras/stt1591. URL http://dx.doi.org/10.1093/mnras/stt1591.

Catherine Heymans, Ludovic Van Waerbeke, David Bacon, Joel Berge, Gary Bernstein, Emmanuel Bertin, Sarah Bridle, Michael L. Brown, Douglas Clowe, Håkon Dahle, and et al. The shear testing programme – i. weak lensing analysis of simulated ground-based observations. *Monthly Notices of the Royal Astronomical Society*, 368(3):1323–1339, Apr 2006. ISSN 1365-2966. doi: 10.1111/j.1365-2966.2006.10198.x. URL http://dx.doi.org/10.1111/j.1365-2966.2006.10198.x.

Yashar D. Hezaveh, Neal Dalal, Daniel P. Marrone, Yao-Yuan Mao, Warren Morningstar, Di Wen, Roger D. Bland ford, John E. Carlstrom, Christopher D. Fassnacht, Gilbert P. Holder, Athol Kemball, Philip J. Marshall, Norman Murray, Laurence Perreault Levasseur, Joaquin D. Vieira, and Risa H. Wechsler. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. *ApJ*, 823(1):37, May 2016. doi: 10.3847/0004-637X/823/1/37.

Yashar D. Hezaveh, Laurence Perreault Levasseur, and Philip J. Marshall. Fast automated analysis of strong gravitational lenses with convolutional neural networks. *Nature*, 548(7669):555–557, Aug 2017. ISSN 1476-4687. doi: 10.1038/nature23463. URL http://dx.doi.org/10.1038/nature23463.

H. Hoekstra and B. Jain. Weak gravitational lensing and its cosmological applications. *Annual Review of Nuclear and PARTICLE Systems*, 58:99–123, 2008.

B Hoyle, D Gruen, G M Bernstein, M M Rau, J De Vicente, W G Hartley, E Gaztanaga, J DeRose, M A Troxel, C Davis, and et al. Dark energy survey year 1 results: redshift distributions of the weak-lensing source galaxies. *Monthly Notices of the Royal Astronomical Society*, 478(1):592–610, Apr 2018. ISSN 1365-2966. doi: 10.1093/mnras/sty957. URL http://dx.doi.org/10.1093/mnras/sty957.

J. W. Hsueh, W. Enzi, S. Vegetti, M. W. Auger, C. D. Fassnacht, G. Despali, L. V. E. Koopmans, and J. P. McKean. SHARP - VII. New constraints on the dark matter
free-streaming properties and substructure abundance from gravitationally lensed quasars. *MNRAS*, 492:3047–3059, Jan 2020.

Song Huang, Alexie Leauthaud, Ryoma Murata, James Bosch, Paul Price, Robert Lupton, Rachel Mandelbaum, Claire Lackner, Steven Bickerton, Satoshi Miyazaki, and et al. Characterization and photometric performance of the hyper suprime-cam software pipeline. *Publications of the Astronomical Society of Japan*, 70(SP1), Dec 2017. ISSN 2053-051X. doi: 10.1093/pasj/psx126. URL http://dx.doi.org/10.1093/pasj/psx126.

Dragan Huterer and Daniel L Shafer. Dark energy two decades after: observables, probes, consistency tests. *Reports on Progress in Physics*, 81(1):016901, Dec 2017. ISSN 1361-6633. doi: 10.1088/1361-6633/aa997e. URL http://dx.doi.org/10.1088/1361-6633/aa997e.

G. D. Illingworth, D. Magee, P. A. Oesch, R. J. Bouwens, I. Labbé, M. Stiavelli, P. G. van Dokkum, M. Franx, M. Trenti, C. M. Carollo, and V. Gonzalez. The HST eXtreme Deep Field (XDF): Combining All ACS and WFC3/IR Data on the HUDF Region into the Deepest Field Ever. *ApJS*, 209:6, November 2013. doi: 10.1088/0067-0049/209/1/6.

Z. Ivezic, J. A. Tyson, B. Abel, E. Acosta, R. Allsman, Y. AlSayyad, S. F. Anderson, J. Andrew, R. Angel, G. Angeli, R. Ansari, P. Antilogus, K. T. Arndt, P. Astier, E. Aubourg, T. Axelrod, D. J. Bard, J. D. Barr, A. Barrau, J. G. Bartlett, B. J. Bauman, S. Beaumont, A. C. Becker, J. Becla, C. Beldica, S. Bellavia, G. Blanc, R. D. Blandford, J. S. Bloom, J. Bogart, K. Borne, J. F. Bosch, D. Boutigny, W. N. Brandt, M. E. Brown, J. S. Bullock, P. Burchat, D. L. Burke, G. Cagnoli, D. Calabrese, S. Chandrasekharan, S. Chesley, E. C. Cheu, J. Chiang, C. F. Claver, A. J. Connolly, K. H. Cook, A. Cooray, K. R. Covey, C. Cribbs, W. Cui, R. Cutri, G. Daubard, G. Danes, F. Delgado, S. Digel, P. Doherty, R. Dubois, G. P. Dubois-Felsmann, J. Durech, M. Eracleous, H. Ferguson, J. Frank, M. Freemon, E. Gangler, E. Gawiser, J. C. Geary, P. Gee, M. Geha, R. R. Gibson, D. K. Gilmore, T. Glanzman, I. Goodenow, W. J. Gressler, P. Gris, A. Guyonnet, P. A. Hascall, J. Haupt, F. Hernandez, C. Hogan, D. Huang, M. E. Huffer, W. R. Innes, S. H. Jacoby, B. Jain, J. Jee, J. G. Jernigan, D. Jevremovic, K. Johns, R. L. Jones, C. Juramy-Gilles, M. Juric, S. M. Kahn, J. S. Kalirai, N. Kallivayalil, B. Kalmbach, J. P. Kantor, M. M. Kasliwal, R. Kessler, D. Kirkby, L. Knox, I. Kotov, V. L. Krabbendam, S. Kruglova, P. Kubanek, J. Kuczewski, S. Kulkarni, R. Lambert, L. Le Guillou, D. Levine, M. Liang, K. Lim, C. Lintott, R. H. Lupton, A. Mahabal, P. Marshall, S. Marshall, M. May, R. Mckrcher, M. Migliore, M. Miller, D. J. Mills, D. G. Monet, M. Moniez, D. R. Neil, J. Nief, A. Nomerotski, M. Nordby, P. O’Connor, J. Oliver, S. S. Olivier, K. Olsen, S. Ortiz, R. E. Owen, R. Pain, J. R. Peterson, C. E. Petry, F. Pierfederici, S. Pietrowicz, R. Pike, P. A. Pinto, R. Plante, S. Plate, P. A. Price, M. Prouza, V. Radeka, J. Rajagopal, A. Rasmussen, N. Regnault, S. T. Ridgway, S. Ritz, W. Rosing, C. Rochele, M. J. Rumore, S. Russo, A. Saha, B. Sassolas, T. L. Schalk, R. H. Schindler, D. P. Schneider, G. Schumacher, J. Sebag, G. H. Sembroski, L. G. Seppala, I. Shipsey, N. Silvestri, J. A. Smith, R. C. Smith, M. A. Strauss, C. W. Stubbs, D. Sweeney, A. Szalay, P. Takacs, J. J. Thaler, R. Van Berg, D. Vanden Berk, K. Vetter, F. Virieux, B. Xin, L. Walkowicz, C. W. Walter,
D. L. Wang, M. Warner, B. Willman, D. Wittman, S. C. Wolff, W. M. Wood-Vasey, P. Yoachim, H. Zhan, and for the LSST Collaboration. LSST: from Science Drivers to Reference Design and Anticipated Data Products. *ArXiv e-prints*, May 2008.

Željko Ivezić, Steven M. Kahn, J. Anthony Tyson, Bob Abel, Emily Acosta, Robyn Allsman, David Alonso, Yusra AlSayyad, Scott F. Anderson, John Andrew, James Roger P. Angel, George Z. Angeli, Reza Ansari, Pierre Antilogus, Constanza Araujo, Robert Armstrong, Kirk T. Arndt, Pierre Astier, Éric Aubourg, Nicole Auza, Tim S. Axelrod, Deborah J. Bard, Jeff D. Barr, Aurelian Barrau, James G. Bartlett, Amanda E. Bauer, Brian J. Bauman, Sylvain Baumont, Ellen Bechtol, Keith Bechtol, Andrew C. Becker, Jacek Becla, Cristina Beldica, Steve Bellavia, Federica B. Bianco, Rahul Biswas, Guillaume Blanc, Jonathan Blazek, Roger D. Blandford, Josh S. Bloom, Joanne Bogart, Tim W. Bond, Michael T. Booth, Anders W. Boggland, Kirk Borne, James F. Bosch, Dominique Boutigny, Craig A. Brackett, Andrew Bradshaw, William Nielsen Brandt, Michael E. Brown, James S. Bullock, Patricia Burchat, David L. Burke, Gianpietro Cagnoli, Daniel Calabrese, Shawn Callahan, Alice L. Callen, Jeffrey L. Carlin, Erin L. Carlson, Srinivasan Chandrasekharan, Glenaver Charles-Emerson, Steve Chesley, Elliott C. Cheu, Hsin-Fang Chiang, James Chiang, Carol Chirino, Derek Chow, David R. Ciardi, Charles F. Claver, Johann Cohen-Tanugi, Joseph J. Cockrum, Rebecca Coles, Andrew J. Connolly, Kem H. Cook, Asantha Cooray, Kevin R. Covey, Chris Cribbs, Wei Cui, Roc Cutri, Philip N. Daly, Scott F. Daniel, Felipe Daruich, Guillaume Daubard, Greg Daues, William Dawson, Francisco Delgado, Alfred Dellapenna, Robert de Peyer, Miguel de Val-Borro, Seth W. Digel, Peter Doherty, Richard Dubois, Gregory P. Dubois-Felsmann, Josef Durech, Frossie Economou, Tim Eifler, Michael Eracleous, Benjamin L. Emmons, Angelo Fausti Neto, Henry Ferguson, Enrique Figueroa, Merlin Fisher-Levine, Warren Focke, Michael D. Foss, James Frank, Michael D. Freeman, Emmanuel Gangler, Eric Gawiser, John C. Geary, Perry Gee, Marla Geha, Charles J. B. Gessner, Robert R. Gibson, D. Kirk Gilmore, Thomas Glanzman, William Glick, Tatiana Goldina, Daniel A. Goldstein, Iain Goodenow, Melissa L. Graham, William J. Gressler, Philippe Gris, Leanne P. Guy, Augustin Guyonnet, Gunther Haller, Ron Harris, Patrick A. Hascall, Justine Haupt, Fabio Herrandez, Sven Herrmann, Edward Hileman, Joshua Hoblitt, John A. Hodgson, Craig Hogan, James D. Howard, Dajun Huang, Michael E. Huffer, Patrick Ingram, Walter R. Innes, Suzanne H. Jacoby, Bhuvnesh Jain, Fabrice Jamies, M. James See, Tim Jenness, Garrett Jernigan, Darko Jevremović, Kenneth Johns, Anthony S. Johnson, Margaret W. G. Johnson, R. Lynne Jones, Claire Juramy-Gilles, Mario Jurjić, Jason S. Kalirai, Nitya J. Kalivayalil, Bryce Kalmbach, Jeffrey P. Kantor, Pierre Karst, Mansi M. Kasliwal, Heather Kelly, Richard Kessler, Veronica Kinney, David Kirkby, Lloyd Knox, Ivan V. Kotov, Victor L. Krabbenhoff, K. Simon Krughoff, Petr Kubánek, John Kuczewski, Shri Kulkarni, John Ku, Nadine R. Kurita, Craig S. Lage, Ron Lambert, Travis Lange, J. Brian Langton, Laurent Le Guillou, Deborah Levine, Ming Liang, Kian-Tat Lim, Chris J. Lintott, Kevin E. Long, Margaux Lopez, Paul J. Lotz, Robert H. Lupton, Nate B. Lust, Lauren A. MacArthur, Ashish Mahabal, Rachel Mand elbaum, Thomas W. Markiewicz, Darren S. Marsh, Philip J. Marshall, Stuart Marshall, Morgan May, Robert McKercher, Michelle McQueen, Joshua Meyers, Myriam Migliore, Michelle Miller, David J.
Mills, Connor Miraval, Joachim Moeyens, Fred E. Moolekamp, David G. Monet, Marc Moniez, Serge Monkewitz, Christopher Montgomery, Christopher B. Morrison, Fritz Mueller, Gary P. Muller, Freddy Muñoz Arancibia, Douglas R. Neill, Scott P. Newbry, Jean-Yves Nef, Andrei Nomertotski, Martin Nordby, Paul O’Connor, John Oliver, Scot S. Olivier, Knut Olsen, William O’Mullane, Sandra Ortiz, Shawn Osier, Russell E. Owen, Reynald Pain, Paul E. Palecek, John K. Parejko, James B. Parsons, Nathan M. Pease, J. Matt Peterson, John R. Peterson, Donald L. Petervick, M. E. Libby Petrick, Cathy E. Petry, Francesco Pierfederici, Stephen Pietrowicz, Rob Pike, Philip A. Pinto, Raymond Plante, Stephen Plate, Joel P. Plutchak, Paul A. Price, Michael Prouza, Veljko Radeka, Jayadev Rajagopal, Andrew P. Rasmussen, Nicolas Regnault, Kevin A. Reil, David J. Reiss, Michael A. Reuter, Stephen T. Ridgway, Vincent J. Riot, Steve Ritze, Sean Robinson, William Roby, Aaron Roodman, Wayne Rosing, Cecille Roucelle, Matthew R. Rumore, Stefano Russo, Abhijit Saha, Benoit Sassolas, Terry L. Schalk, Pim Schellart, Rafe H. Schindler, Samuel Schmidt, Donald P. Schneider, Michael D. Schneider, William Schoening, German Schumacher, Megan E. Schwamb, Jacques Sebag, Brian Selvy, Glenn H. Sembroski, Lynn G. Seppala, Andrew Serio, Eduardo Serrano, Richard A. Shaw, Ian Shipsey, Jonathan Sick, Nicole Silvestri, Colin T. Slater, J. Allyn Smith, R. Chris Smith, Shahram Sobjhani, Christine Soldahl, Lisa Storrie-Lombardi, Edward Stover, Michael A. Strauss, Rachel A. Street, Christopher W. Stubbs, Ian S. Sullivan, Donald Sweeney, John D. Swinbank, Alexander Szalay, Peter Takacs, Stephen A. Tether, Jon J. Thaler, John Gregg Thayer, Sandrine Thomas, Adam J. Thornton, Vaikunth Thukral, Jeffrey Tice, David E. Trilling, Max Turri, Richard Van Berg, Daniel Vanden Berk, Kurt Vetter, Francoise Virieux, Tomislav Vucina, William Wahl, Lucianne Walkowicz, Brian Walsh, Christopher W. Walter, Daniel L. Wang, Shin-Yawn Wang, Michael Warner, Oliver Wiecha, Beth Willman, Scott E. Winters, David Wittman, Sidney C. Wolff, W. Michael Wood-Vasey, Xiuqin Wu, Bo Xin, Peter Yoachim, and Hu Zhan. LSST: From Science Drivers to Reference Design and Anticipated Data Products. ApJ, 873(2):111, Mar 2019. doi: 10.3847/1538-4357/ab042c.

Albert Izard, Pablo Fosalba, and Martin Crocce. Ice-cola: fast simulations for weak lensing observables. Monthly Notices of the Royal Astronomical Society, 473(3):3051–3061, Oct 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx2544. URL http://dx.doi.org/10.1093/mnras/stx2544.

C. Jacobs, K. Glazebrook, T. Collett, A. More, and C. McCarthy. Finding strong lenses in cfhtls using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 471(1):167–181, Jun 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx1492. URL http://dx.doi.org/10.1093/mnras/stx1492.

C. Jacobs, T. Collett, K. Glazebrook, E. Buckley-Geer, H. T. Diehl, H. Lin, C. McCarthy, A. K. Qin, C. Odden, M. Caso Escudero, and et al. An extended catalog of galaxy–galaxy strong gravitational lenses discovered in des using convolutional neural networks. The Astrophysical Journal Supplement Series, 243(1):17, Jul 2019a. ISSN 1538-4365. doi: 10.3847/1538-4365/ab26b6. URL http://dx.doi.org/10.3847/1538-4365/ab26b6.

C Jacobs, T Collett, K Glazebrook, C McCarthy, A K Qin, T M C Abbott, F B Abdalla,
A. Carnero Rosell, M. Carrasco Kind, J. Carretero, L. N. da Costa, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, J. García-Bellido, E. Gaztanaga, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. J. James, M. Jarvis, M. Lima, M. A. G. Maia, J. L. Marshall, P. Melchior, F. Menanteau, R. Miquel, F. Paz-Chinchón, A. A. Plazas, E. Sanchez, V. Scarpine, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, V. Vikram, and J. Weller. Monte Carlo Control Loops for cosmic shear cosmology with DES Year 1. *arXiv e-prints*, art. arXiv:1906.01018, Jun 2019.

Sowmya Kamath, Joshua E. Meyers, and Patricia R. Burchat. Shear measurement bias due to spatially varying spectral energy distributions in galaxies, 2019.

A. Kannawadi, C. A. Shapiro, R. Mandelbaum, C. M. Hirata, J. W. Kruk, and J. D. Rhodes. The Impact of Interpixel Capacitance on WFIRST PSFs. *ArXiv e-prints*, December 2015.

M. Kilbinger. Cosmology with cosmic shear observations: a review. *Reports on Progress in Physics*, 78(8):086901, July 2015. doi: 10.1088/0034-4885/78/8/086901.

M. Killedar, P. D. Lasky, G. F. Lewis, and C. J. Hu. Gravitational lensing with three-dimensional ray tracing. *Monthly Notices of the Royal Astronomical Society*, 420(1):155–169, Dec 2011. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2011.20023.x. URL http://dx.doi.org/10.1111/j.1365-2966.2011.20023.x.

T. D. Kitching, S. T. Balan, S. Bridle, N. Cantale, F. Courbin, T. Eifler, M. Gentile, M. S. S. Gill, S. Harmeling, C. Heymans, and et al. Image analysis for cosmology: results from the great10 galaxy challenge. *Monthly Notices of the Royal Astronomical Society*, 423(4):3163–3208, Jun 2012. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2012.21095.x. URL http://dx.doi.org/10.1111/j.1365-2966.2012.21095.x.

Anton M. Koekemoer, Jennifer Mack, Jennifer M. Lotz, Jay Anderson, Roberto J. Avila, Elizabeth A. Barker, David Borncamp, Heather C. Gunning, Bryan Hilbert, Harish G. Khandrika, Ray A. Lucas, Sara Ogaz, Blair Porterfield, Ben Sunnquist, Norman A. Grogin, Massimo Robberto, Kenneth Sembach, Kathryn Flanagan, Matt Mountain, and HST Frontier Fields Team. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and for the Last 2 Clusters Currently in Progress. In *American Astronomical Society Meeting Abstracts #228*, volume 228 of *American Astronomical Society Meeting Abstracts*, page 315.02, Jun 2016.

Danila Korytov, Andrew Hearin, Eve Kovacs, Patricia Larsen, Esteban Rangel, Joseph Hollowed, Andrew J. Benson, Katrin Heitmann, Yao-Yuan Mao, Anita Bahmanyar, Chihway Chang, Duncan Campbell, Joseph Derose, Hal Finkel, Nicholas Frontiere, Eric Gawiser, Salman Habib, Benjamin Joachimi, François Lanusse, Nan Li, Rachel Mandelbaum, Christopher Morrison, Jeffrey A. Newman, Adrian Pope, Eli Rykoff, Melanie Simet, Chun-Hao To, Vinu Vikraman, Risa H. Wechsler, and Martin White. CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST. *arXiv e-prints*, art. arXiv:1907.06530, Jul 2019.

François Lanusse, Quanbin Ma, Nan Li, Thomas E. Collett, Chun-Liang Li, Siamak Ravanbaklsh, Rachel Mandelbaum, and Barnabás Póczos. Cmu deeplens: deep learning
for automatic image-based galaxy–galaxy strong lens finding. *Monthly Notices of the Royal Astronomical Society*, 473(3):3895–3906, Jul 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx1665. URL http://dx.doi.org/10.1093/mnras/stx1665.

R. Laureijs, J. Amiaux, S. Arduini, J. L. Auguères, J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet, B. Garilli, P. Gondoin, L. Guzzo, J. Hoar, H. Hoekstra, R. Holmes, T. Kitching, T. Maciaszek, Y. Mellier, F. Pasian, W. Percival, J. Rhodes, G. Saavedra Criado, M. Sauvage, R. Scaramella, L. Valenziano, S. Warren, R. Bender, F. Castander, A. Cimatti, O. Le Fèvre, H. Kurkisuonio, M. Levi, P. Lilje, G. Meylan, R. Nichol, K. Pedersen, V. Popa, R. Rebolo Lopez, H. W. Rix, H. Rottgering, W. Zeilinger, F. Grupp, P. Hudelot, R. Massey, M. Meneghetti, L. Miller, S. Paltani, S. Paulin-Henriksson, S. Pires, C. Saxton, T. Schrabback, G. Seidel, J. Walsh, N. Aghanim, L. Amendola, J. Bartlett, C. Baccigalupi, J. P. Beaulieu, K. Benabed, J. G. Cuby, D. Elbaz, P. Fosalba, G. Gavazzi, A. Helmi, I. Hook, M. Irwin, J. P. Kneib, M. Kunz, F. Mannucci, L. Moscardini, C. Tao, R. Teysier, J. Weller, G. Zamorani, M. R. Zapatero Osorio, O. Boulade, J. J. Foumond, A. Di Giorgio, P. Guttridge, A. James, M. Kemp, J. Martignac, A. Spencer, D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto, C. Cerna, L. Corcione, E. Fabron, K. Jahnke, S. Ligori, F. Madrid, L. Martin, M. Morgante, T. Pampolina, E. Prieto, M. Riva, R. Toledo, M. Trifoglio, F. Zerbi, F. Abdalla, M. Douspis, C. Grenet, S. Borgani, R. Bouwens, F. Courbin, J. M. Delouis, P. Dubath, A. Fontana, M. Frailis, A. Grazian, J. Koppenhöfer, O. Mansutti, M. Melchior, M. Mignoli, J. Mohr, C. Neissner, K. Nodde, M. Poncet, M. Scodeggi, S. Serano, N. Shane, J. L. Starck, C. Surace, A. Taylor, G. Verdoes-Kleijn, C. Vuerli, O. R. Williams, A. Zacchei, B. Altieri, I. Escudero Sanz, R. Kohley, T. Oosterbroek, P. Astier, D. Bacon, S. Bardelli, C. Baugh, F. Bellagamba, C. Benoist, D. Bianchi, A. Biviano, E. Branchini, C. Carbone, V. Cardone, D. Clements, S. Colombi, C. Conselice, G. Cresci, N. Deacon, J. Dunlop, C. Fedeli, F. Fontanot, P. Franzetti, C. Giocoli, J. Garcia-Bellido, J. Gow, A. Heavens, P. Hewett, C. Heymans, A. Holland, Z. Huang, O. Ilbert, B. Joachimi, E. Jennins, E. Kerins, A. Kiessling, D. Kirk, R. Kotak, O. Krause, O. Lahav, F. van Leeuwen, J. Lesgourgues, M. Lombardi, M. Magliocchetti, K. Maguire, E. Majerotto, R. Maoli, F. Marulli, S. Maurogordato, H. McCracken, R. McLure, A. Melchiorri, A. Merson, M. Moreno, M. Nonino, P. Norberg, J. Peacock, R. Pello, M. Penny, V. Pettorino, C. Di Porto, L. Pozzetti, C. Quercellini, M. Rassat, A. Rassat, N. Roche, S. Ronayette, E. Rossetti, B. Sartoris, P. Schneider, E. Semboloni, S. Serjeant, F. Simpson, C. Skordis, G. Smadja, S. Smartt, P. Spano, S. Spie, M. Sullivan, A. Tilquin, R. Trotta, L. Verde, Y. Wang, G. Williger, G. Zhao, J. Zoubian, and E. Zucca. Euclid definition study report, 2011.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1:541–551, 1989.

N. Li, M. D. Gladders, E. M. Rangel, M. K. Florian, L. E. Bleem, K. Heitmann, S. Habib, and P. Fasel. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters. *ApJ*, 828:54, September 2016. doi: 10.3847/0004-637X/828/1/54.

Chien-Hao Lin, Brent Tan, Rachel Mandelbaum, and Christopher M. Hirata. The impact of light polarization effects on weak lensing systematics, 2019.
R. C. Livermore, S. L. Finkelstein, and J. M. Lotz. Directly Observing the Galaxies Likely Responsible for Reionization. *ApJ*, 835:113, February 2017. doi: 10.3847/1538-4357/835/2/113.

J. M. Lotz, A. Koekemoer, D. Coe, N. Grogin, P. Capak, J. Mack, J. Anderson, R. Avila, E. A. Barker, D. Borncamp, and et al. The frontier fields: Survey design and initial results. *The Astrophysical Journal*, 837(1):97, Mar 2017. ISSN 1538-4357. doi: 10.3847/1538-4357/837/1/97. URL http://dx.doi.org/10.3847/1538-4357/837/1/97.

Juan Magaña, V. Motta, Víctor H. Cárdenas, T. Verdugo, and Eric Jullo. A Magnified Glance into the Dark Sector: Probing Cosmological Models with Strong Lensing in A1689. *ApJ*, 813(1):69, November 2015. doi: 10.1088/0004-637X/813/1/69.

Rachel Mandelbaum. Weak Lensing for Precision Cosmology. *ARA&A*, 56:393–433, Sep 2018. doi: 10.1146/annurev-astro-081817-051928.

Rachel Mandelbaum, Barnaby Rowe, James Bosch, Chihway Chang, Frederic Courbin, Mandeep Gill, Mike Jarvis, Arun Kannawadi, Tomasz Kaprザク, Claire Lackner, and et al. The third gravitational lensing accuracy testing (great3) challenge handbook. *The Astrophysical Journal Supplement Series*, 212(1):5, Apr 2014. ISSN 1538-4365. doi: 10.1088/0067-0049/212/1/5. URL http://dx.doi.org/10.1088/0067-0049/212/1/5.

Shude Mao. Astrophysical applications of gravitational microlensing. *Research in Astronomy and Astrophysics*, 12(8):947–972, Aug 2012. doi: 10.1088/1674-4527/12/8/005.

Philip J. Marshall, David W. Hogg, Leonidas A. Moustakas, Christopher D. Fassnacht, Maruša Bradac, Tim Schrabback, and Roger D. Blandford. Automated Detection of Galaxy-Scale Gravitational Lenses in High-Resolution Imaging Data. *ApJ*, 694(2):924–942, April 2009. doi: 10.1088/0004-637X/694/2/924.

Philip J. Marshall, Chris J. Lintott, and Leigh N. Fletcher. Ideas for citizen science in astronomy. *Annual Review of Astronomy and Astrophysics*, 53(1):247–278, Aug 2015. ISSN 1545-4282. doi: 10.1146/annurev-astro-081913-033959. URL http://dx.doi.org/10.1146/annurev-astro-081913-033959.

M. Meneghetti, P. Melchior, A. Grazian, G. De Lucia, K. Dolag, M. Bartelmann, C. Heymans, L. Moscardini, and M. Radovich. Realistic simulations of gravitational lensing by galaxy clusters: extracting arc parameters from mock DUNE images. *A&A*, 482:403–418, May 2008. doi: 10.1051/0004-6361:20079119.

M. Meneghetti, E. Rasia, J. Merten, F. Bellagamba, S. Ettori, P. Mazzotta, K. Dolag, and S. Marri. Weighing simulated galaxy clusters using lensing and X-ray. *A&A*, 514:A93, May 2010. doi: 10.1051/0004-6361/200913222.

M. Meneghetti, P. Natarajan, D. Coe, E. Contini, G. De Lucia, C. Giocoli, A. Acebron, S. Borgani, M. Bradac, J. M. Diego, A. Hoag, M. Ishigaki, T. L. Johnson, E. Jullo, R. Kawamata, D. Lam, M. Limousin, J. Liesenborghs, M. Oguri, K. Sebesta, K. Sharon, L. L. R. Williams, and A. Zitrin. The Frontier Fields lens modelling comparison project. *MNRAS*, 472:3177–3216, December 2017. doi: 10.1093/mnras/stx2064.
R. B. Metcalf, M. Meneghetti, C. Avestruz, F. Bellagamba, C. R. Bom, E. Bertin, R. Cabanac, F. Courbin, A. Davies, E. Decencière, and et al. The strong gravitational lens finding challenge. *Astronomy and Astrophysics*, 625:A119, May 2019. ISSN 1432-0746. doi: 10.1051/0004-6361/201832797. URL http://dx.doi.org/10.1051/0004-6361/201832797.

R. Benton Metcalf and Margarita Petkova. glamer – i. a code for gravitational lensing simulations with adaptive mesh refinement. *Monthly Notices of the Royal Astronomical Society*, 445(2):1942–1953, Oct 2014. ISSN 0035-8711. doi: 10.1093/mnras/stu1859. URL http://dx.doi.org/10.1093/mnras/stu1859.

C. W. Misner, K. S. Thorne, and J. A. Wheeler. *Gravitation*. 1973.

A. Molino, N. Benítez, B. Ascaso, D. Coe, M. Postman, S. Jouvel, O. Host, O. Lahav, S. Seitz, E. Medezinski, and et al. Clash: accurate photometric redshifts with 14 hst bands in massive galaxy cluster cores. *Monthly Notices of the Royal Astronomical Society*, 470(1):95–113, May 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx1243. URL http://dx.doi.org/10.1093/mnras/stx1243.

Anupreeta More, Aprajita Verma, Philip J. Marshall, Surlud More, Elisabeth Baeten, Julianne Wilcox, Christine Macmillan, Claude Cornen, Amit Kapadia, Michael Parrish, and et al. Space warps– ii. new gravitational lens candidates from the cfhtls discovered through citizen science. *Monthly Notices of the Royal Astronomical Society*, 455(2):1191–1210, Nov 2015. ISSN 0035-8711. doi: 10.1093/mnras/stv1965. URL http://dx.doi.org/10.1093/mnras/stv1965.

D MUNSHI, P VALAGEAS, L VANWAERBEKE, and A HEAVENS. Cosmology with weak lensing surveys. *Physics Reports*, 462(3):67–121, Jun 2008. ISSN 0370-1573. doi: 10.1016/j.physrep.2008.02.003. URL http://dx.doi.org/10.1016/j.physrep.2008.02.003.

A. M. Nierenberg, T. Treu, G. Brammer, A. H. G. Peter, C. D. Fassnacht, C. R. Keeton, C. S. Kochanek, K. B. Schmidt, D. Sluse, and S. A. Wright. Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism. *MNRAS*, 471(2):2224–2236, Oct 2017. doi: 10.1093/mnras/stx1400.

Masamune Oguri. Strong gravitational lensing of explosive transients. *arXiv e-prints*, art. arXiv:1907.06830, Jul 2019.

Shivam Pandey, Marco Raveri, and Bhuvnesh Jain. A model independent comparison of supernova and strong lensing cosmography: implications for the hubble constant tension, 2019.

J. R. Peterson, J. G. Jernigan, S. M. Kahn, A. P. Rasmussen, E. Peng, Z. Ahmad, J. Bankert, C. Chang, C. Claver, D. K. Gilmore, and et al. Simulation of astronomical images from optical survey telescopes using a comprehensive photon monte carlo approach. *The Astrophysical Journal Supplement Series*, 218 (1):14, May 2015. ISSN 1538-4365. doi: 10.1088/0067-0049/218/1/14. URL http://dx.doi.org/10.1088/0067-0049/218/1/14.
Margarita Petkova, R. Benton Metcalf, and Carlo Giocoli. glamer – ii. multiple-plane gravitational lensing. *Monthly Notices of the Royal Astronomical Society*, 445(2): 1954–1966, Oct 2014. ISSN 0035-8711. doi: 10.1093/mnras/stu1860. URL http://dx.doi.org/10.1093/mnras/stu1860.

C. E. Petrillo, C. Tortora, S. Chatterjee, G. Vernardos, L. V. E. Koopmans, G. Verdoes Kleijn, N. R. Napolitano, G. Covone, P. Schneider, A. Grado, and et al. Finding strong gravitational lenses in the kilo degree survey with convolutional neural networks. *Monthly Notices of the Royal Astronomical Society*, 472(1): 1129–1150, Aug 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx2052. URL http://dx.doi.org/10.1093/mnras/stx2052.

C E Petrillo, C Tortora, G Vernardos, L V E Koopmans, G Verdoes Kleijn, M Bilicki, N R Napolitano, S Chatterjee, G Covone, A Dvornik, and et al. Links: discovering galaxy-scale strong lenses in the kilo-degree survey using convolutional neural networks. *Monthly Notices of the Royal Astronomical Society*, 484(3):3879–3896, Jan 2019. ISSN 1365-2966. doi: 10.1093/mnras/stz189. URL http://dx.doi.org/10.1093/mnras/stz189.

Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulier, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, J. Carron, A. Challinor, H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J. M. Delouis, E. Di Valentino, J. M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Fraiis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R. T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gruppuso, J. E. Guzmán, J. Hamann, W. Handley, F. K. Hansen, D. Herranz, S. R. Hildebrandt, E. Hivon, Z. Huang, A. H. Jaffe, W. C. Jones, A. Karacbek, E. Keihänen, R. Keski-Siikalo, K. Kivier, J. Kim, T. S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. López-Camino, P. M. Lubin, Y. Z. Ma, J. F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P. G. Martin, M. Martinelli, E. Martinez-González, S. Matarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P.Natoli, H. U. Norgaard-Nielsen, L. Pagano, D. Paololetti, B. Partridge, G. Patanchon, H. V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J. L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J. A. Rubin-Martin, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E. P. S. Shellard, C. Sirignano, G. Sirri, L. D. Spencer, R. Sunyaev, A. S. Suur-Uski, J. A. Tauber, D. Tavagnacco, M. Tent, L. Toffolati, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa,
N. Vittorio, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Zacchei, and A. Zonca. Planck 2018 results. VI. Cosmological parameters. arXiv e-prints, art. arXiv:1807.06209, Jul 2018.

A. A. Plazas, C. Shapiro, A. Kannawadi, R. Mandelbaum, J. Rhodes, and R. Smith. The effect of detector nonlinearity on first psf profiles for weak gravitational lensing measurements. Publications of the Astronomical Society of the Pacific, 128(968):104001, Sep 2016. ISSN 1538-3873. doi: 10.1088/1538-3873/128/968/104001. URL http://dx.doi.org/10.1088/1538-3873/128/968/104001.

A. A. Plazas, C. Shapiro, R. Smith, J. Rhodes, and E. Huff. Nonlinearity and pixel shifting effects in HXRG infrared detectors. Journal of Instrumentation, 12(4):C04009, April 2017. doi: 10.1088/1748-0221/12/04/C04009.

A. A. Plazas, C. Shapiro, R. Smith, E. Huff, and J. Rhodes. Laboratory measurement of the brighter-fatter effect in an h2rg infrared detector. Publications of the Astronomical Society of the Pacific, 130(988):065004, Apr 2018. ISSN 1538-3873. doi: 10.1088/1538-3873/aab820. URL http://dx.doi.org/10.1088/1538-3873/aab820.

A. A. Plazas, M. Meneghetti, M. Maturi, and J. Rhodes. Image simulations for gravitational lensing with SKYLENS. MNRAS, 482(2):2823–2832, Jan 2019. doi: 10.1093/mnras/sty2737.

Andres Alejandro Plazas. Weak gravitational lensing systematic errors in the dark energy survey. PhD thesis, University of Pennsylvania, January 2012.

Marc Postman, Dan Coe, Narciso Benítez, Larry Bradley, Tom Broadhurst, Megan Donahue, Holland Ford, Or Graur, Genevieve Graves, Stephanie Jouvel, Anton Koekemoer, Doron Lenzze, Elinor Medezinski, Alberto Molino, Leonidas Moustakas, Sara Ogaz, Adam Riess, Steve Rodney, Piero Rosati, Keiichi Umetsu, Wei Zheng, Adi Zitrin, Matthias Bartelmann, Rychard Bouwens, Nicole Czakon, Sunil Golwala, Ole Host, Leopoldo Infante, Saurabh Jha, Yolanda Jimenez-Teja, Daniel Kelson, Ofer Lahav, Ruth Lazkoz, Yuri Maoz, Curtis McCully, Peter Melchior, Massimo Meneghetti, Julian Merten, John Moustakas, Mario Nonino, Brandon Patel, Enikő Regös, Jack Sayers, Stella Seitz, and Arjen Van der Wel. The Cluster Lensing and Supernova Survey with Hubble: An Overview. ApJS, 199(2):25, Apr 2012. doi: 10.1088/0067-0049/199/2/25.

Douglas Potter, Joachim Stadel, and Romain Teyssier. Pkdgrav3: Beyond trillion particle cosmological simulations for the next era of galaxy surveys, 2016.

Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski. Early dark energy can resolve the hubble tension. Physical Review Letters, 122(22), Jun 2019. ISSN 1079-7114. doi: 10.1103/physrevlett.122.221301. URL http://dx.doi.org/10.1103/PhysRevLett.122.221301.

William H. Press and James E. Gunn. Method for Detecting a Cosmological Density of Condensed Objects. ApJ, 185:397–412, Oct 1973. doi: 10.1086/152430.

E. Rasia, P. Mazzotta, S. Borgani, L. Moscardini, K. Dolag, G. Tormen, A. Diaferio, and G. Murante. Mismatch between x-ray and emission-weighted temperatures in galaxy
clusters: Cosmological implications. *The Astrophysical Journal*, 618(1):L1–L4, Dec 2004. ISSN 1538-4357. doi: 10.1086/427554. URL http://dx.doi.org/10.1086/427554.

E. Rasia, M. Meneghetti, R. Martino, S. Borgani, A. Bonafede, K. Dolag, S. Ettori, D. Fabjan, C. Giocoli, P. Mazzotta, J. Merten, M. Radovich, and L. Tornatore. Lensing and x-ray mass estimates of clusters (simulations). *New Journal of Physics*, 14(5): 055018, May 2012. doi: 10.1088/1367-2630/14/5/055018.

Alexandre Refregier and Adam Amara. A way forward for Cosmic Shear: Monte-Carlo Control Loops. *Physics of the Dark Universe*, 3:1–3, Apr 2014. doi: 10.1016/j.dark.2014.01.002.

B. T. P. Rowe, M. Jarvis, R. Mandelbaum, G. M. Bernstein, J. Bosch, M. Simet, J. E. Meyers, T. Kacprzak, R. Nakajima, J. Zuntz, H. Miyatake, J. P. Dietrich, R. Armstrong, P. Melchior, and M. S. S. Gill. GALSIM: The modular galaxy image simulation toolkit. *Astronomy and Computing*, 10:121–150, April 2015. doi: 10.1016/j.ascom.2015.02.002.

E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, J. Hao, B. P. Koester, A. Leauthaud, B. Nord, and et al. redmapper. i. algorithm and sdss dr8 catalog. *The Astrophysical Journal*, 785(2):104, Apr 2014. ISSN 1538-4357. doi: 10.1088/0004-637x/785/2/104. URL http://dx.doi.org/10.1088/0004-637x/785/2/104.

S. Samuroff, S. L. Bridle, J. Zuntz, M. A. Troxel, D. Gruen, R. P. Rollins, G. M. Bernstein, T. F. Eifler, E. M. Huff, T. Kacprzak, E. Krause, N. MacCrann, F. B. Abdalla, S. Alam, J. Annis, K. Bechtol, A. Benoît-Lévy, E. Bertin, D. Brooks, E. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Crocce, C. B. D’Andrea, L. N. da Costa, C. Davis, S. Desai, P. Doel, A. Fausti Neto, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, D. W. Gerdes, R. A. Gruendl, J. Gschwend, G. Gutierrez, K. Honscheid, D. J. James, M. Jarvis, T. Jeltema, D. Kirk, K. Kuehn, S. Kuhlmann, T. S. Li, M. Lima, M. A. G. Maia, M. March, J. L. Marshall, P. Martini, P. Melchior, F. Menanteau, R. Miquel, B. Nord, R. L. C. Ogando, A. A. Plazas, A. Roodman, E. Sanchez, V. Scarpine, R. Schindler, M. Schubnell, I. Sevilla-Noarbe, E. Sheldon, M. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, D. L. Tucker, and DES Collaboration. Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE. *MNRAS*, 475(4):4524–4543, April 2018. doi: 10.1093/mnras/stx3282.

Till Sawala, Carlos S. Frenk, Azadeh Fattahi, Julio F. Navarro, Richard G. Bower, Robert A. Crain, Claudio Dalla Vecchia, Michelle Furlong, John. C. Helly, Adrian Jenkins, and et al. The apostle simulations: solutions to the local group’s cosmic puzzles. *Monthly Notices of the Royal Astronomical Society*, 457(2):1931–1943, Feb 2016. ISSN 1365-2966. doi: 10.1093/mnras/stw145. URL http://dx.doi.org/10.1093/mnras/stw145.

Emmanuel Schaan, Elisabeth Krause, Tim Eifler, Olivier Doré, Hironao Miyatake, Jason Rhodes, and David N. Spergel. Looking through the same lens: Shear calibration for lsst, euclid, and wfirst with stage 4 cmb lensing. *Physical Review D*, 95(12), Jun
Joop Schaye, Robert A. Crain, Richard G. Bower, Michelle Furlong, Matthieu Schaller, Tom Theuns, Claudio Dalla Vecchia, Carlos S. Frenk, I. G. McCarthy, John C. Helly, and et al. The eagle project: simulating the evolution and assembly of galaxies and their environments. *Monthly Notices of the Royal Astronomical Society*, 446(1):521–554, Nov 2014. ISSN 0035-8711. doi: 10.1093/mnras/stu2058. URL http://dx.doi.org/10.1093/mnras/stu2058.

P. Schneider, J. Ehlers, and E. E. Falco. *Gravitational Lenses*. 1992. doi: 10.1007/978-3-662-03758-4.

Peter Schneider. Weak Gravitational Lensing. *arXiv e-prints*, art. astro-ph/0509252, Sep 2005.

A. J. Shajib, S. Birrer, T. Treu, A. Agnello, E. J. Buckley-Geer, J. H. H. Chan, L. Christensen, C. Lemon, H. Lin, M. Millon, J. Poh, C. E. Rusu, D. Sluse, C. Spiniello, G. C. F. Chen, T. Collett, F. Courbin, C. D. Fassnacht, J. Frieman, A. Galan, D. Gilman, A. More, T. Anguita, M. W. Auger, V. Bonvin, R. McMahon, G. Meylan, K. C. Wong, T. M. C. Abbott, J. Annis, S. Avila, K. Bechtol, D. Brooks, D. Brout, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, M. Costanzi, L. N. da Costa, J. De Vicente, S. Desai, J. P. Dietrich, P. Doel, A. Drlica-Wagner, A. E. Evrard, D. A. Finley, B. Flaugher, P. Fosalba, J. García-Bellido, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. Huterer, D. J. James, T. Jeltema, E. Krause, N. Kuropatkin, T. S. Li, M. Lima, N. MacCrann, M. A. G. Maia, J. L. Marshall, P. Melchior, R. Miquel, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, D. Scolnic, S. Serrano, I. Sevilla-Noarbe, M. Smith, M. Soares-Santos, E. Suchyta, G. Tarle, D. Thomas, A. R. Walker, and Y. Zhang. STRIDES: A 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. *arXiv e-prints*, art. arXiv:1910.06306, Oct 2019.

Erin S. Sheldon, Matthew R. Becker, Niall MacCrann, and Michael Jarvis. Metadetection: Mitigating Shear-dependent Object Detection Biases with Metacalibration. *arXiv e-prints*, art. arXiv:1911.02055, November 2019.

Samuel W. Skillman, Michael S. Warren, Matthew J. Turk, Risa H. Wechsler, Daniel E. Holz, and P. M. Sutter. Dark sky simulations: Early data release, 2014.

Graham P. Smith, Harald Ebeling, Marceau Limousin, Jean-Paul Kneib, A. M. Swinbank, Cheng-Jiun Ma, Mathilde Jauzac, Johan Richard, Eric Jullo, David J. Sand, Alastair C. Edge, and Ian Smail. Hubble Space Telescope Observations of a Spectacular New Strong-Lensing Galaxy Cluster: MACS J1149.5+2223 at z = 0.544. *ApJ*, 707(2):L163–L168, December 2009. doi: 10.1088/0004-637X/707/2/L163.

Michael J. Smith and James E. Geach. Generative deep fields: arbitrarily sized, random synthetic astronomical images through deep learning. *arXiv e-prints*, art. arXiv:1904.10286, Apr 2019.
D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue, A. Dressler, B. S. Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N. J. Kasdin, B. Macintosh, W. Moos, S. Perlmutter, M. Postman, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg, D. Benford, M. Hudson, W.-S. Jeong, Y. Mellier, W. Traub, T. Yamada, P. Capak, J. Colbert, D. Masters, M. Penny, D. Savransky, D. Stern, N. Zimmerman, R. Barry, L. Bartusek, K. Carpenter, E. Cheng, D. Content, F. Dekens, R. Demers, K. Grady, C. Jackson, G. Kuan, J. Kruk, M. Melton, B. Nemati, B. Parvin, I. Poberezhskiy, C. Peddie, J. Ruffa, J. K. Wallace, A. Whipple, E. Wollack, and F. Zhao. Wide-Field Infrared Survey Telescope—Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. ArXiv e-prints, March 2015.

Volker Springel, Simon D. M. White, Adrian Jenkins, Carlos S. Frenk, Naoki Yoshida, Liang Gao, Julio Navarro, Robert Thacker, Darren Croton, John Helly, John A. Peacock, Shaun Cole, Peter Thomas, Hugh Couchman, August Evrard, Jörg Colberg, and Frazer Pearce. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435(7042):629–636, Jun 2005. doi: 10.1038/nature03597.

E. Suchyta, E. M. Huff, J. Aleksic, P. Melchior, S. Jouvel, N. MacCrann, A. J. Ross, M. Crocce, E. Gaztanaga, K. Honscheid, B. Leistedt, H. V. Peiris, E. S. Rykoff, E. Sheldon, T. Abbott, F. B. Abdalla, S. Allam, M. Banerji, A. Benoit-Lévy, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. E. Cunha, C. B. D’Andrea, L. N. da Costa, D. L. DePoy, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, T. F. Eifler, J. Estrada, A. E. Evrard, B. Flaugher, P. Fosalba, J. Frieman, D. W. Gerdes, D. Gruen, R. A. Gruendl, D. J. James, M. Jarvis, K. Kuehn, N. Kuropatkin, O. Lahav, M. Lima, M. A. G. Maia, M. March, J. L. Marshall, C. J. Miller, R. Miquel, E. Neilsen, R. C. Nichol, B. Nord, R. Ogando, W. J. Percival, K. Reil, A. Roodman, M. Sako, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, M. E. C. Swanson, G. Tarle, J. Thaler, D. Thomas, V. Vikram, A. R. Walker, R. H. Wechsler, Y. Zhang, and DES Collaboration. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. MNRAS, 457(1):786–808, March 2016. doi: 10.1093/mnras/stv2953.

F. Javier Sánchez, Chris W. Walter, Humna Awan, James Chiang, Scott F. Daniel, Eric Gawiser, Tom Glanzman, David P. Kirkby, Rachel Mandelbaum, Anže Slosar, W. Michael Wood-Vasey, Yusra AlSayyad, Colin J. Burke, Seth W. Digel, Mike Jarvis, Tony Johnson, Heather Kelly, Simon Krugoff, Robert H. Lupton, Phil J. Marshall, John R. Peterson, Paul A. Price, Glenn Sembroski, Brian Van Klaveren, Matthew P. Wiesner, Bo Xin, and for the LSST Dark Energy Science Collaboration. The lsst desc data challenge 1: Generation and analysis of synthetic images for next generation surveys, 2020.

Masahiro Takada, Richard S. Ellis, Masashi Chiba, Jenny E. Greene, Hiroaki Aihara, Nobuo Arimoto, Kevin Bundy, Judith Cohen, Olivier Doré, Genevieve Graves, James E. Gunn, Timothy Heckman, Christopher M. Hirata, Paul Ho, Jean-Paul Kneib, Olivier Le Fèvre, Lihwai Lin, Surhud More, Hitoshi Murayama, Tohru Nagao, Masami Ouchi, Michael Seiffert, John D. Silverman, Laerte Sodré, David N. Spergel, Michael A. Strauss, Hajime Sugai, Yasushi Suto, Hideki Takami, and Rosemary Wyse. Extragalactic science, cosmology, and Galactic archaeology
with the Subaru Prime Focus Spectrograph. *PASJ*, 66(1):R1, Feb 2014. doi: 10.1093/pasj/pst019.

Ryuichi Takahashi, Takashi Hamana, Masato Shirasaki, Toshiya Namikawa, Takahiro Nishimichi, Ken Osato, and Kosei Shiroyama. Full-sky gravitational lensing simulation for large-area galaxy surveys and cosmic microwave background experiments. *The Astrophysical Journal*, 850(1):24, Nov 2017. ISSN 1538-4357. doi: 10.3847/1538-4357/aa943d. URL http://dx.doi.org/10.3847/1538-4357/aa943d.

Svetlin Tassev, Matias Zaldarriaga, and Daniel J Eisenstein. Solving large scale structure in ten easy steps with cola. *Journal of Cosmology and Astroparticle Physics*, 2013(06):036–036, Jun 2013. ISSN 1475-7516. doi: 10.1088/1475-7516/2013/06/036. URL http://dx.doi.org/10.1088/1475-7516/2013/06/036.

Nicolas Tessore and R. Benton Metcalf. The elliptical power law profile lens. *A&A*, 580: A79, August 2015. doi: 10.1051/0004-6361/201526773.

Luca Tortorelli, Martina Fagioli, Jörg Herbel, Adam Amara, Tomasz Kacprzak, and Alexandre Refregier. Measurement of the B-band Galaxy Luminosity Function with Approximate Bayesian Computation. *arXiv e-prints*, art. arXiv:2001.07727, January 2020.

M Tremmel, T R Quinn, A Ricarte, A Babul, U Chadayammuri, P Natarajan, D Nagai, A Pontzen, and M Volonteri. Introducingromulusc: a cosmological simulation of a galaxy cluster with an unprecedented resolution. *Monthly Notices of the Royal Astronomical Society*, 483(3):3336–3362, Dec 2018. ISSN 1365-2966. doi: 10.1093/mnras/sty3336. URL http://dx.doi.org/10.1093/mnras/sty3336.

Tommaso Treu. Strong Lensing by Galaxies. *ARA&A*, 48:87–125, Sep 2010. doi: 10.1146/annurev-astro-081309-130924.

M. A. Troxel, H. Long, C. M. Hirata, A. Choi, M. Jarvis, R. Mandelbaum, K. Wang, M. Yamamoto, S. Hemmati, and P. Capak. A synthetic wfirst high-latitude imaging survey: Simulation suite and the impact of wavefront errors on weak gravitational lensing, 2019.

M.A. Troxel, N. MacCrann, J. Zuntz, T.F. Eifler, E. Krause, S. Dodelson, D. Gruen, J. Blazek, O. Friedrich, S. Samuroff, and et al. Dark energy survey year 1 results: Cosmological constraints from cosmic shear. *Physical Review D*, 98(4), Aug 2018. ISSN 2470-0029. doi: 10.1103/physrevd.98.043528. URL http://dx.doi.org/10.1103/PhysRevD.98.043528.

Yiannis Tsapras. Microlensing Searches for Exoplanets. *Geosciences*, 8(10):365, Sep 2018. doi: 10.3390/geosciences8100365.

S. Vegetti, D. J. Lagattuta, J. P. McKean, M. W. Auger, C. D. Fassnacht, and L. V. E. Koopmans. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. *Nature*, 481(7381):341–343, Jan 2012. doi: 10.1038/nature10669.

M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird, D. Nelson, and L. Hernquist. Properties of galaxies reproduced by a hydrodynamic
simulation. *Nature*, 509(7499):177–182, May 2014. ISSN 1476-4687. doi: 10.1038/nature13316. URL http://dx.doi.org/10.1038/nature13316.

Mark Vogelsberger, Federico Marinacci, Paul Torrey, and Ewald Puchwein. Cosmological simulations of galaxy formation, 2019.

D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo. Observational probes of cosmic acceleration. *Phys. Rep.*, 530:87–255, September 2013. doi: 10.1016/j.physrep.2013.05.001.

Kenneth C. Wong, Sherry H. Suyu, Geoff C. F. Chen, Cristian E. Rusu, Martin Millon, Dominique Sluse, Vivien Bonvin, Christopher D. Fassnacht, Stefan Taubenberger, Matthew W. Auger, Simon Birrer, James H. H. Chan, Frederic Courbin, Stefan Hilbert, Olga Tihhonova, Tommaso Treu, Adriano Agnello, Xuheng Ding, Inh Jee, Eiichiro Komatsu, Anowar J. Shajib, Alessandro Sonnenfeld, Roger D. Blandford, Leon V. E. Koopmans, Philip J. Marshall, and Georges Meylan. H0LiCOW XIII. A 2.4% measurement of H_0 from lensed quasars: 5.3σ tension between early and late-Universe probes. *arXiv e-prints*, art. arXiv:1907.04869, Jul 2019.

Adi Zitrin and Tom Broadhurst. Discovery of the largest known lensed images formed by a critically convergent lensing cluster. *The Astrophysical Journal*, 703(2):L132–L136, Sep 2009. ISSN 1538-4357. doi: 10.1088/0004-637x/703/2/l132. URL http://dx.doi.org/10.1088/0004-637x/703/2/L132.