Cogenesis of Baryon Asymmetry and Gravitational Dark Matter from Primordial Black Holes

Basabendu Barman, a Debasish Borah, b Suruj Jyoti Das, b and Rishav Roshan c

a Centro de Investigaciones, Universidad Antonio Nariño
Carrera 3 este # 47A-15, Bogotá, Colombia
b Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India
c Department of Physics, Kyungpook National University, Daegu 41566, Korea
E-mail: basabendu88barman@gmail.com, dborah@iitg.ac.in, suruj@iitg.ac.in, rishav.roshan@gmail.com

Abstract. We propose a scenario where dark matter (DM) with a wide mass range from a few keV to PeV can be produced solely from evaporating primordial black holes (PBH), while being consistent with the required free streaming length for structure formation. If DM does not have any other interactions apart from gravity and the universe has a PBH dominated phase at early epoch, then PBH evaporation typically leads to overproduction of DM in this mass range. By incorporating this gravitational DM within a Type-I seesaw scenario with three right handed neutrinos (RHN), we bring the abundance of PBH generated DM within observed limits by late entropy injection due to decay of one of the RHNs, acting as the diluter. The diluter, due to its feeble coupling with the bath particles, gets produced primarily from the PBH evaporation thereby leading to the second stage of early matter domination after the end of PBH dominated era. The other two RHNs contribute to the origin of light neutrino mass and also lead to the observed baryon asymmetry via leptogenesis with contributions from both thermally and PBH generated RHNs. The criteria of DM relic and baryon asymmetry can be satisfied simultaneously if DM mass gets restricted to a ballpark in the MeV-GeV regime with the requirement of resonant leptogenesis for heavier DM mass in order to survive the large entropy dilution at late epochs.
1 Introduction

Observational evidences from astrophysics and cosmology based experiments suggest that we live in a baryon asymmetric universe whose matter content is dominated by a non-luminous, non-baryonic form of matter known as dark matter (DM) [1, 2]. The observed baryon asymmetry of the universe (BAU) is quantitatively quoted in terms of the ratio of excess baryons over antibaryons and photons [2]

\[\eta_B = \frac{n_B - n_{\bar{B}}}{n_\gamma} \simeq 6.2 \times 10^{-10}. \] (1.1)

Such an asymmetry needs to be generated dynamically as any pre-existing asymmetry is likely to be wiped out by the exponential expanding phase during cosmic inflation. However, the Standard Model (SM) fails to satisfy the criteria, known as Sakharov’s conditions [3], for dynamical generation of BAU requiring the presence of beyond standard model (BSM) physics. On the other hand, the particle nature of DM is not yet known with none of the SM particles being fit to be DM candidate. Among different BSM proposals for generating BAU, baryogenesis via leptogenesis [4] is one of the most popular scenarios. In such a scenario, a non-zero asymmetry is first created in the lepton sector, and then gets converted into baryon asymmetry via \((B + L)\)-violating electroweak sphaleron transitions [5]. Interestingly, most leptogenesis framework can also accommodate non-zero neutrino mass and mixings [1], another observed phenomena which the SM fails to address. Similarly, among different BSM proposals for DM, the weakly interacting massive particle (WIMP) paradigm is one of the most well studied scenarios. In WIMP framework, a particle having mass and interactions around the electroweak ballpark can lead to the observed DM abundance after undergoing thermal freeze-out in the early universe [6].
While leptogenesis remains a high scale phenomena with limited observational scopes\(^1\), WIMP DM has promising direct detection prospects due to sizeable interactions among DM and SM particles. However, no such signatures have been found in direct detection experiments so far, motivating the particle physics community to explore other viable alternatives. It is also important to note that all the observational evidences supporting the presence of DM in the universe are based on purely gravitational interactions only. Thus, it is appealing to consider the possibility of DM production in the early universe via a mechanism relying on gravitational interactions only [8]. DM production via minimal coupling to gravity has been discussed in several works [9–17]. Similarly, non-minimal coupling to gravity can also lead to DM production, as discussed already in several works including [18–28]. In this work, we consider another alternative: production of gravitational DM from evaporation of primordial black holes (PBH) assuming the latter to dominate the energy density of the universe at some stage. Contrary to earlier works where either light or superheavy DM production from evaporating PBH was shown, here we show the possibility of a much wider range allowing the intermediate mass DM: from a few keV to PeV. This is achieved by considering the presence of three heavy right handed neutrinos (RHN) which also takes part in Type-I seesaw mechanism [29–32] of neutrino mass generation. DM with mass in the intermediate regime mentioned above usually gets overproduced from PBH evaporation and can be brought within Planck limits by late entropy injection from one of the right handed neutrinos which is long-lived and couples feebly to SM neutrinos resulting in vanishingly small lightest active neutrino mass. The other two RHNs can not only reproduce neutrino oscillation data via Type-I seesaw but also can produce the baryon asymmetry of the universe via leptogenesis.

This paper is organised as follows. In section 2, we briefly discuss our basic setup consisting of three right handed neutrinos, a particle DM candidate with only gravitational interactions and a PBH dominated phase. In section 3, we provide some analytical estimates for PBH generated DM and leptogenesis from PBH generated RHN decay. In section 4, we discuss the details of our numerical analysis followed by brief discussion on production of DM and RHN from gravity mediated scatterings in section 5. Finally, we conclude in section 6.

2 The Basic Framework

As mentioned before, we consider a simple BSM framework where the SM is extended by three generations of right handed neutrinos \(N_i\) (\(i = 1, 2, 3\)) and a dark matter particle, all of which are singlets under the SM gauge symmetry. Although three copies of RHNs are considered in typical Type-I seesaw model, two are sufficient to fit light neutrino data. However, we require three copies to realise the cogenesis of DM and baryon asymmetry as we discuss in upcoming sections. The interaction Lagrangian reads

\[
-\mathcal{L} \supset \frac{1}{2} M_N \bar{N} \gamma^\mu \gamma^\mu N + y_N N \tilde{H} \ell + \text{h.c.},
\]

where we have suppressed the generation index and the RHNs are supposed to be mass diagonal. The SM leptons are denoted by \(\ell\), while \(\tilde{H} \equiv i \sigma_2 H^*\), \(H\) being the SM Higgs and \(\sigma_i\) are the Pauli spin matrices. The Dirac Yukawa coupling of neutrinos get fixed via Casas-Ibarra parametrisation (see Appendix. C), after using the best-fit values of light neutrino parameters [1]. Since DM is assumed to have only gravitational interactions, it only has a

\(^1\)Probing high scale leptogenesis via stochastic gravitational wave observations is possible in certain scenarios, as pointed out in [7].
mass term, the exact form of which depends on the particle nature of DM particle. In our
numerical analysis, for simplicity, we will consider a real singlet scalar S of mass m_{DM}, to
be a potential DM candidate which is produced purely from PBH evaporation. One of the
RHNs, N_3 in the present scenario, is considered to be long lived such that its decay rate is
suppressed compared to the other two RHNs. As a consequence, the universe undergoes a
N_3-dominated epoch even after PBH is completely evaporated. The other two RHNs, namely
$N_{1,2}$ can undergo CP-violating out of equilibrium decay, producing lepton asymmetry which
can then be converted into the baryon asymmetry of the universe, thanks to the electroweak
sphaleron transition. Sphaleron interactions are in equilibrium in the temperature range
between ~ 100 GeV and 10^{12} GeV, and they convert a fraction of a non-zero $B-L$ asymmetry
into a baryon asymmetry via

$$Y_B \simeq a_{\text{sph}} Y_{B-L} = \frac{8 N_F + 4 N_H}{22 N_F + 13 N_H} Y_{B-L},$$

(2.2)

where N_F is the number of fermion generations and N_H is the number of Higgs doublets,
which in our case $N_F = 3, N_H = 1$ and a_{sph} turns out to be $28/79$. In leptogenesis, where
purely a lepton asymmetry is generated, $B-L = -L$. This is converted into the baryon
asymmetry via sphaleron transition [33, 34]. Finally, the observed baryon asymmetry of the
universe is given by [35]

$$\eta_B = \frac{n_B - n_{\gamma}}{n_{\gamma}} \simeq 6.2 \times 10^{-10}, Y_B \simeq 8.7 \times 10^{-11}.$$ (2.3)

During the decay of N_3 entropy is injected into the radiation bath [36] leading to dilution of

![Figure 1](image)

Figure 1. Dominant component of the energy density of the universe at different epoch (time runs
from left to right).

the DM and baryon number density produced from PBH. Role of such late entropy injection
in tackling DM over-abundance has been studied by several authors in different contexts [37–
45]. In Fig. 1 we schematically show the components that dominate the energy density of
the universe at different epoch. As the time flows from the left to the right, hence, as expected,
the Universe is radiation dominated (RD) at the end of reheating. Once the PBH formation
happens, the PBH energy density can dominate, which ends as the PBH evanescence is
complete. The universe is then dominated by RHN produced from the PBH. Finally, as
the RHN decays away, the usual radiation domination era again commences. Note that, in
addition to DM, the diluter N_3 is also dominantly produced from PBH evaporation as its
coupling with SM leptons is tiny due to the requirement of its long-lifetime.

2We assume the strength of the portal interaction $S^2 |H|^2$ is absent by construction to ensure only gravita-
tional production of DM. Considering DM with a different spin does not alter the outcome of our analysis.
3 PBH and Cogenesis

Primordial black holes, originally proposed by Hawking [46, 47], can have very interesting cosmological signatures [48, 49] (a recent review of PBH may be found in [50]). While PBH with suitable mass range can itself be a DM candidate, we are interested in its ultra light mass regime where it is not long-lived enough to be DM but can play non-trivial role in production of DM as well as baryon asymmetry. Role of PBH evaporation on DM genesis has been studied in several works [51–75]. Similarly, the role of PBH evaporation on baryogenesis was first pointed out in [46, 49] and has been studied subsequently by several authors in different contexts [51, 76–87]. In a few related works, the possibility of both DM and RHN production from PBH evaporation was considered [51, 59, 61, 70, 71, 78, 80, 82, 83, 88–90]. In the present work, we consider DM production solely from PBH evaporation and prevent it from being overproduced by late entropy dilution from one of the RHNs while the other two RHNs produce the baryon asymmetry via leptogenesis. Before proceeding to the detailed numerical analysis, we first show the key features of DM and RHN production from PBH evaporation to set the motivation clear.

We assume PBHs to have formed after inflation during the era of radiation domination. Assuming radiation domination, the mass of the black hole from gravitational collapse is typically close to the value enclosed by the post-inflation particle horizon and is given by [61, 78]

\[m_{\text{BH}}^{\text{in}} = \frac{4}{3} \pi \gamma \left(\frac{1}{\mathcal{H}(T_{\text{in}})} \right)^{\frac{3}{2}} \rho_{\text{rad}}(T_{\text{in}}) \]

with

\[\rho_{\text{rad}}(T_{\text{in}}) = \frac{3}{8 \pi} \mathcal{H}(T_{\text{in}})^2 M_{\text{pl}}^2 \]

where \(\mathcal{H}\) is the Hubble parameter, \(M_{\text{pl}}\) is the Planck mass and \(\gamma \simeq 0.2\) is a numerical factor which contains the uncertainty of the PBH formation. As mentioned earlier, PBHs are produced during the radiation dominated epoch, when the SM plasma has a temperature \(T = T_{\text{in}}\) which is given by

\[T_{\text{in}} = \left(\frac{45 \gamma^2}{16 \pi^3 g_*(T_{\text{in}})} \right)^{1/4} \sqrt{\frac{M_{\text{pl}}}{m_{\text{BH}}(T_{\text{in}}) M_{\text{pl}}}}. \]

Once formed, PBH can evaporate by emitting Hawking radiation [46, 47]. A PBH can evaporate efficiently into particles lighter than its instantaneous temperature \(T_{\text{BH}}\) defined as [47]

\[T_{\text{BH}} = \frac{1}{8 \pi G m_{\text{BH}}} \approx 1.06 \left(\frac{10^{13} \text{ g}}{m_{\text{BH}}} \right) \text{ GeV}, \]

where \(G\) is the universal gravitational constant. The mass loss rate can be parametrised as [91]

\[\frac{d m_{\text{BH}}(t)}{dt} = -\mathcal{G} g_*(T_{\text{BH}}) \frac{M_{\text{pl}}^4}{30720 \pi} \frac{m_{\text{BH}}^{m_{\text{BH}}}(t)^2}{m_{\text{BH}}^{m_{\text{BH}}}(t)^2}, \]

where \(\mathcal{G} \sim 4\) is the grey-body factor. Here we ignore the temperature dependence of \(g_*\) during PBH evolution, valid in the pre-sphaleron era. On integrating Eq. (3.5) we end up with the PBH mass evolution equation as

\[m_{\text{BH}}(t) = m_{\text{BH}}(T_{\text{in}}) \left(1 - \frac{t - t_{\text{in}}}{\tau}\right)^{1/3}, \]

\[\tau \] is the PBH lifetime.
with
\[\tau = \frac{10240 \pi m_{\text{in}}^3}{G g_\star (T_{\text{BH}}) M_{\text{pl}}^3}, \]
as the PBH lifetime. Here onward we will use \(m_{\text{in}}(T_{\text{in}}) \) simply as \(m_{\text{in}} \). The evaporation temperature can then be computed taking into account \(H(T_{\text{evap}}) \sim \frac{1}{\tau} \sim \rho_{\text{rad}}(T_{\text{evap}}) \) as
\[T_{\text{ev}} \equiv \left(\frac{45 M_{\text{pl}}^2}{16 \pi^3 g_\star (T_{\text{evap}}) \tau^2} \right)^{1/4}. \]
(3.8)

However, if the PBH component dominates at some point the total energy density of the universe, the SM temperature just after the complete evaporation of PBHs is: \(T_{\text{evap}} = 2/\sqrt{3} T_{\text{evap}} \) [53].

The initial PBH abundance is characterized by the dimensionless parameter \(\beta \) that is defined as
\[\beta \equiv \frac{\rho_{\text{BH}}(T_{\text{in}})}{\rho_{\text{rad}}(T_{\text{in}})}, \]
(3.9)
that corresponds to the ratio of the initial PBH energy density to the SM energy density at the time of formation. Note that, \(\beta \) steadily grows until PBH evaporation since the PBH energy density scales like non-relativistic matter \(\sim a^{-3} \), while the radiation energy density scales as \(\sim a^{-4} \). Therefore, an initially radiation-dominated universe will eventually become matter-dominated if the PBHs are still around. The condition of PBH evanescence during radiation domination can be expressed as [61]
\[\beta < \beta_{\text{crit}} \equiv \gamma^{-1/2} \sqrt{\frac{G g_\star (T_{\text{BH}})}{10640 \pi}} \frac{M_{\text{pl}}}{m_{\text{in}}}, \]
(3.10)
where \(\beta_{\text{crit}} \equiv \beta_{\text{crit}} \) is the critical PBH abundance that leads to early matter-dominated era. Note that for simplicity, we consider a monochromatic mass function of PBHs implying all PBHs to have identical masses. Additionally, the PBHs are assumed to be of Schwarzschild type without any spin and charge. The gravitational waves (GW) induced by large-scale density perturbations laid by PBHs could lead to a backreaction problem [53, 92], that can be avoided if the energy contained in GWs never overtakes the one of the background universe or in other words if\(^\text{3}\)
\[\beta < 10^{-4} \left(\frac{10^5 \text{g}}{m_{\text{in}}} \right)^{1/4}. \]
(3.11)

Since PBH evaporation produces all particles, including radiation that can disturb the successful predictions of BBN, hence we require \(T_{\text{evap}} > T_{\text{BBN}} \approx 4 \text{ MeV} \). This can be translated into an upper bound on the PBH mass. On the other hand, a lower bound on PBH mass can be obtained from the CMB bound on the scale of inflation [35]: \(H_I \equiv H(T_{\text{in}}) \leq 2.5 \times 10^{-5} M_{\text{pl}} \), where \(H(T_{\text{in}}) = \frac{1}{2t_{\text{in}}} \) with \(t(T_{\text{in}}) = \frac{m_{\text{in}}}{M_{\text{pl}} \gamma} \) (as obtained from Eq. (3.1)). Using these BBN and CMB bounds together, we have a window for allowed initial mass for PBH that reads \(0.1 \text{ g} \lesssim m_{\text{in}} \lesssim 3.4 \times 10^8 \text{ g} \). The range of PBH masses between these bounds is at present generically unconstrained [50]. While PBH can evaporate by Hawking radiation, it can be stable on cosmological scales if sufficiently heavy, potentially giving rise to some or all of DM [94]. In order not to spoil the structure formation, a DM candidate which is part of

\(^{3}\)More recent analysis [93] shows \(8 \times 10^{-4} \gtrsim \beta \gtrsim 6 \times 10^{-6} \) for PBH of mass \(\sim 1 \text{ g} \), while \(5 \times 10^{-10} \gtrsim \beta \gtrsim 10^{-14} \) for PBH of mass \(\sim 5 \times 10^8 \text{ g} \).
the thermal bath or produced from the thermal bath should have mass above a few keV in order to give required free-streaming of DM as constrained from Lyman-α flux-power spectra [95–97]. Such light DM of keV scale leads to a warm dark matter (WDM) scenario having free-streaming length within that of cold and hot DM. If such light DM is also produced from PBH evaporation, it leads to a potential hot component in total DM abundance, tightly constrained by observations related to the CMB and baryon acoustic oscillation (BAO) leading to an upper bound on the fraction of this hot component with respect to the total DM, depending on the value of DM mass [98]. The lower bound on DM mass from Lyman-α can be found in Appendix B. We consider DM of spin s with only gravitational interaction

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The DM is over-abundant in the blue shaded region, for $\zeta = \xi = 1$ (left) and in the blue (orange) shaded $\zeta = \xi = 10(100)$ (right) considering the DM to be scalar. The grey shaded regions are discarded due to limits on PBH mass from CMB (lower limit), BBN (upper limit) and Lyman-α (see text). Observed DM relic is achievable only in the white region in the top right corner (left), whereas non-zero values of ξ opens up a window in the bottom (right).}
\end{figure}

such that it can be produced solely from PBH evaporation. Along with the DM, the PBH also emits right handed neutrinos N_i with $i \in 1, 2, 3$. The number of any particle X radiated during the evaporation of a single PBH

$$N_X = \frac{g_{X,H}}{g_{*,H}(T_{BH})} \begin{cases} \frac{4\pi}{3} \left(\frac{m_{m}}{M_{pl}} \right)^2 & \text{for } m_X < T_{BH}^{in} \,, \\ \frac{1}{48\pi} \left(\frac{M_{pl}}{m} \right)^2 & \text{for } m_X > T_{BH}^{in} \,, \end{cases}$$

(3.12)

where

$$g_{*,H}(T_{BH}) \equiv \sum_i \omega_i g_{i,H} ; g_i,H = \begin{cases} 1.82 & \text{for } s = 0 \,, \\ 1.0 & \text{for } s = 1/2 \,, \\ 0.41 & \text{for } s = 1 \,, \\ 0.05 & \text{for } s = 2 \,. \end{cases}$$

A conservative 10 % upper bound on such hot dark matter (HDM) component [53] can lead to similar constraints on DM mass along with PBH initial fraction.
with $\omega_i = 2 s_i + 1$ for massive particles of spin s_i, $\omega_i = 2$ for massless species with $s_i > 0$ and $\omega_i = 1$ for $s_i = 0$. At temperatures $T_{\text{BH}} \gg T_{\text{EW}} \simeq 160$ GeV, PBH evaporation emits the full SM particle spectrum according to their $g_{*,H}$ weights, while at temperatures below the MeV scale, only photons and neutrinos are emitted. For $T_{\text{BH}} \gg 100$ GeV (corresponding to $m_{\text{BH}} \ll 10^{11}$ g), the particle content of the SM corresponds to $g_{*,H} \simeq 108$. The DM yield produced by evaporation is directly related to the BH abundance at evaporation as

$$Y_{\text{DM}}(T_0) = \frac{n_{\text{DM}}}{s} \bigg|_{T_0} = N_X \frac{n_{\text{BH}}}{s} \bigg|_{T_{\text{ev}}}. \tag{3.14}$$

Now, PBH abundance at evaporation for PBH domination can be obtained using the first Friedmann equation as

$$n_{\text{BH}}(T_{\text{ev}}) = \frac{1}{6\pi} \frac{M_{\text{pl}}^2}{m_{\text{in}}^2 s^2} \equiv \frac{1}{6\pi} \left(\frac{G g_{*,H}}{10640 \pi} \right)^2 \frac{M_{\text{pl}}^{10}}{m_{\text{in}}^7}. \tag{3.15}$$

Then, the DM relic abundance $\Omega_{\text{DM}} h^2 = \frac{m_{\text{DM}} s}{\rho_c} Y_{\text{DM}}(T_0)$, in the present epoch reads

$$\Omega_{\text{DM}} h^2 = \mathcal{C}(T_{\text{ev}}) \begin{cases} \frac{1}{\pi^2} \sqrt{\frac{M_{\text{pl}}}{m_{\text{in}}}} m_{\text{DM}} & \text{for } m_{\text{DM}} < T_{\text{BH}}^{\text{in}}, \\ \frac{1}{64\pi^2} \left(\frac{M_{\text{pl}}}{m_{\text{DM}}} \right)^{5/2} \frac{M_{\text{pl}}^2}{m_{\text{in}}^{11/2}} & \text{for } m_{\text{DM}} > T_{\text{BH}}^{\text{in}}, \end{cases} \tag{3.16}$$

with $\mathcal{C}(T_{\text{ev}}) = \frac{s_0}{\rho_c} \frac{1}{\xi} \frac{g_{*,H}}{g_{*,H}^{(T_{\text{ev}})}} \left(\frac{\pi^3 g_{*,H}(T_{\text{ev}})}{3} \right)^{3/4} \frac{\sqrt{\rho_{g_{*,H}}}}{10640 \pi}$. Here ξ parametrizes a possible entropy production after PBH evaporation until now, i.e., $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}}$. Note that, for the heavy DM case relic abundance has an inverse dependence on the DM mass, implying heavy DM leads to underabundance. The overabundant region for DM with spin $s = 0$ produced from PBH evaporation is shown in the left panel of Fig. 2 for $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}} = 1$, i.e., considering no entropy injection at any given epoch, where ξ is defined in Appendix B and for our scenario $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}} = 0$. Here we would like to mention that for DM with different spins this overabundant region only slightly changes. Particularly, the low DM mass region is in conflict with the WDM limit. An obvious way to overcome this tension is to consider that the DM produced from PBH evaporation does not constitute the whole DM abundance. But since we are considering PBH is the only source of all of the DM, therefore this tension can be alleviated by considering entropy non-conservation [61, 78]. This is shown in the right panel of Fig. 2, where $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}} = 100$ (in blue) and $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}} = 100$ (in yellow) is assumed. Here we see the low DM mass window can be resurrected simply because $\Omega_{\text{DM}} \propto \xi^{-1} m_{\text{DM}}$. The RHNs emitted during PBH evaporation can undergo CP-violating decays, generating lepton asymmetry. This lepton asymmetry is then further converted into the observed baryon asymmetry of the Universe via sphaleron transition [78]. It is possible to analytically derive the mass range of RHNs emitted from PBH evaporation that can provide the observed baryon asymmetry. In the Type-I seesaw mechanism, the quantity ϵ has an upper bound [99, 100]

$$\epsilon \lesssim \frac{3}{16\pi} \frac{M_1 m_{\nu_{\text{max}}}}{v^2}, \tag{3.17}$$

Another way is to significantly increase $g_{*,H}$ as mentioned in [61].

For simplicity we consider $\xi = \frac{m_{\text{BH}}}{m_{\text{in}}} = 0$, which is, of course not a mandate.
where $v = 246$ GeV is the SM Higgs VEV and $m_{\nu,\text{max}}$ is the mass of the heaviest light neutrino. On the other hand, the final asymmetry produced from PBH evaporation is given by

$$Y_B^{\text{obs}} = Y_B^{\text{obs}} \equiv \frac{n_B}{s} \Bigg|_{T_0} = \frac{1}{3} N_X e a_{\text{sph}} Y_B \bigg|_{T_{\text{evap}}} \simeq 8.7 \times 10^{-11} [35],$$

where $a_{\text{sph}} \simeq 1/3$ and T_0 is the present temperature of the Universe. These together constrain the mass of the RHN produced from PBH evaporation both from above and from below [78]

$$M_1 \begin{cases} > \frac{4 g_{*}H(T_{\text{BH}})}{g_{X} a_{\text{sph}}} \zeta \frac{Y_{B}^{\text{obs}}}{Y_B} \frac{v^2 M_{pl}^2}{m_{\nu} m_{\text{in}}^2} & \text{for } M_1 < T_{\text{BH}}, \\ < \frac{4 g_{*}H(T_{\text{BH}})}{g_{X} a_{\text{sph}}} \zeta \frac{Y_{B}^{\text{obs}}}{Y_B} \frac{M_{\nu}^2 m_{\nu}}{v^2} & \text{for } M_1 > T_{\text{BH}}. \end{cases}$$

(3.18)

To ensure non-thermal production of baryon asymmetry it is also necessary to consider $M_1 > T_{\text{evap}}$ [78] that leads to

$$M_1 \gtrsim 3 \times 10^{-3} \left[g^2 g_{*}(T_{\text{evap}}) \left(\frac{M_{pl}^5}{m_{\text{in}}^3} \right) \right]^{1/4},$$

(3.19)

otherwise for $M_1 < T_{\text{evap}}$, the RHNs produced from PBH evaporation are in thermal bath and then washout processes are in effect. Finally, in order for lepton asymmetry to be sufficiently generated from RHNs produced from PBH evaporation, one requires evaporation to be over before sphaleron transition $T_{\text{evap}} \gtrsim T_{\text{EW}}$, which translates into $m_{\text{in}} \lesssim 3 \times 10^5$ g. In Fig. 3 we summarize the bounds on RHN mass, required to produce the observed baryon asymmetry. The tiny triangular white part is the only window where $Y_B = Y_B^{\text{obs}}$. This region typically corresponds to $0.1 \lesssim m_{\text{in}} \lesssim 20$ g and $10^{12} \lesssim M_1 \lesssim 10^{17}$ GeV when entropy is assumed to be conserved, i.e., $\zeta = 1$. Note that, this region shrinks for larger $\xi = 10$, as shown in the right panel. This is however expected since a larger ζ allows a larger entropy injection (from T_{evap} to T_0), diluting the asymmetry produced. Thus, while a larger ζ can provide breathing space for lighter DM (cf., Fig. 2), but in turn tightens the allowed parameter space for observed baryon asymmetry. It is therefore clear, satisfying both of them simultaneously.

Figure 3. Constraints on RHN mass from the requirement of obtaining Y_B^{obs} considering $\zeta = 1$ (left) and $\zeta = 10$ (right). All the coloured regions are discarded from the bounds derived in Eq. (3.18). The vertical black dashed line corresponds to (from left to right) the bound from the scale of inflation (CMB), sphaleron transition and BBN. The cyan dashed diagonal straight line corresponds to $T_{\text{BH}} = m_{\text{in}}$. The white triangular region in the middle is the region that is allowed (see text).
needs a careful choice of \(\zeta \), i.e., the entropy injection, such that not only right DM abundance for lighter DM is obtained, but baryon asymmetry should also not get too much diluted. It is interesting to note that the heavy DM mass (\(\gtrsim 10^{10} \) GeV) region although remains viable even in the absence of entropy injection, it is not possible to satisfy the observed asymmetry in those regions as they typically correspond to massive PBH (\(\gtrsim 10^4 \) g), leading to under production of asymmetry (cf. Fig. 3).

4 Numerical Analysis

To this end we have analytically established that in order to open up the low mass DM window (which is otherwise over abundant) it is necessary to have a substantial entropy injection (\(\gtrsim \mathcal{O}(10) \)). However, the same entropy injection reduces the viable parameter space for observed baryon asymmetry. Thus, it is rather difficult to satisfy both DM abundance and correct asymmetry together, and one has to stick to the region of comparatively lighter PBH mass to achieve both. In this section we will investigate the viability of the analytical results by solving a set of coupled Boltzmann equations (BEQ) numerically.

In order to compute the final lepton (baryon) and DM yield, we numerically solve the set of coupled BEQs in Appendix A. Since we are interested in PBHs with mass \(\lesssim \mathcal{O}(1) \) g (where leptogenesis from PBH dominates), with typical evaporation temperature \(T_{\text{evap}} \lesssim \mathcal{O}(10^{11}) \) GeV, we do not include the \(\Delta L = 2 \) washout processes in the BEQ as such processes go out of equilibrium at temperatures \(T \lesssim 6 \times 10^{12} \) GeV as shown in [86] and thus have no influence on final asymmetry\(^7\). We consider \(\beta = 10^{-3} \), such that PBH dominate the energy density at some epoch and particle production takes place during PBH domination. The temperature of the thermal bath as a function of the scale factor is shown in the left panel of Fig. 4, where we can clearly see the effect of entropy dilution in two different epochs. The first one takes place at \(a \sim 10^6 \) when the PBH evaporation is completed, while the second one at a later epoch corresponding to \(a \sim 10^{13} \) when the decay of \(N_3 \) is completed. Note that, prior to \(N_3 \) domination, the universe is again dominated by radiation energy density for a brief period of time. This is clearly visible from the right panel plot where we have shown the energy density of radiation (red), PBH (blue) and \(N_3 \) (black) as functions of the scale factor \(a \). The cyan-shaded regions indicate the two different epochs of early matter domination. Here one can see that the PBH energy density falls sharply at \(a \sim 10^6 \) denoting the end of PBH domination. Afterward the Universe goes through radiation domination, that is being overtaken by the \(N_3 \) energy density (second matter dominated era) at \(a \sim 10^9 \). Finally that ends at \(a \sim 10^{15} \) with the complete decay of \(N_3 \) into radiation. It is important to clarify that in these plots we have fixed the \(N_3 \) mass and adjusted its decay width accordingly such that it never achieves equilibrium with the SM bath (hence long-lived) by tuning the lightest active neutrino mass that we consider to be a free parameter.

As advocated in the last section, DM overproduced from PBH evaporation gets diluted to right abundance by introducing entropy injection at late epochs. In this case \(N_3 \) decay is responsible for adequate entropy dilution. The effect of entropy injection on the DM and baryon yield is demonstrated in Fig. 5, considering two different PBH masses. In the left panel we see DM is first overproduced at the end of PBH evaporation around \(a \sim 10^6 \). The DM yield then starts diminishing once \(N_3 \) starts decaying at later epoch near \(a \sim 10^{12} \). Once \(N_3 \) decay is complete, the DM yield saturates close to the Planck 2018 limit for \(m_{\text{DM}} = 1 \)

\(^7\)In the standard radiation dominated early Universe, if the lightest RHN mass exceeds \(\sim 10^{15} \) GeV and heaviest active neutrino mass is greater than \(\sim 0.1 \) eV, \(\Delta L = 2 \) washout processes erase the lepton asymmetry.
Figure 4. Evolution of temperature of the thermal bath T as a function of the scale factor a (left) and energy densities of radiation, PBH and N_3 as a function of the scale factor (right). We take $m_{in} = 1 \text{ g}$, $M_1 = 10^{13} \text{ GeV}$, $M_3 = 10^{12} \text{ GeV}$, $m_{\text{DM}} = 1 \text{ GeV}$, with N_3 decay width adjusted to be $\Gamma_3 = 1.3 \times 10^{-11} \text{ GeV}$ (see text).

Figure 5. Evolution of DM (left) and baryon yield (right panel) for two different values of PBH masses shown in two different colours. We consider $m_{\text{DM}} = 1 \text{ GeV}$, $M_1 = 10^{13} \text{ GeV}$, $M_3 = 10^{12} \text{ GeV}$, while keeping N_3 decay $\Gamma_3 = 1.3 \times 10^{-11} \text{ GeV}$ to be fixed.

GeV. As we already noticed in Fig. 3, entropy injection has a destructive effect on the baryon asymmetry since it dilutes the asymmetry generated from RHN decay as well. This is again established in the right panel, where we see the generated yield for asymmetry becomes under-abundant after the completion of N_3 decay for a fixed M_3. For a fixed PBH mass the effect of varying M_3 is shown in Fig. 6, where in the left panel we see that a heavier M_3 is capable of producing the right DM abundance for a fixed DM mass since a heavier N_3 results in larger entropy dilution. This affects Y_B as well, as one can see from the right panel of Fig. 6. Therefore, one has to make a careful choice of PBH and diluter mass in order to satisfy both DM abundance and right baryon asymmetry. In Fig. 7 we show a specific benchmark point which gives rise to right asymptotic yield for the DM and that of baryon asymmetry simultaneously, in agreement with observations. Here we choose a DM of mass $m_{\text{DM}} = 1 \text{ MeV}$, while $M_3 = 10^8 \text{ GeV}$ with a PBH of mass 1 g. The entropy released due to
Figure 6. Evolution of DM (left) and baryon yield (right panel) for two different M_3 values, shown in two different colours. We consider $m_{\text{DM}} = 1 \text{ GeV}$, $m_{\text{in}} = 1 \text{ g}$, and the decay width $\Gamma_3 = 1.3 \times 10^{-11} \text{ GeV}$ is kept fixed.

Figure 7. Evolution of DM yield (left panel) and baryon asymmetry yield (right panel) for choice of parameters which together satisfy observed DM relic and baryon asymmetry. We choose $m_{\text{DM}} = 1 \text{ MeV}$, $M_1 = 10^{13} \text{ GeV}$, $M_3 = 10^8 \text{ GeV}$, $m_{\text{in}} = 1 \text{ g}$, and $\Gamma_3 = 4 \times 10^{-15} \text{ GeV}$.

The decay of long-lived heavy N_3 can be expressed analytically as \cite{36, 38}

$$\Delta S \simeq \left[1 + 2.95 \left(\frac{2 \pi^2 g_* s(T)}{45} \right)^{\frac{3}{2}} \left(\frac{Y^2_3 M^2_3}{M_{\text{Pl}} \Gamma_3} \right)^{\frac{1}{2}} \right]^{\frac{3}{2}}, \quad (4.1)$$

where $Y_3 = n_{N_3}/s$ is the initial yield of N_3 before the onset of the second matter dominated era due to N_3 and Γ_3 is its decay width. Note that the amount of entropy injection is inversely proportional to Γ_3 as expected. Now, Γ_3 cannot be arbitrarily small as N_3 has to decay before BBN. This gives an upper bound on ΔS, around 10^{11}, which translates into an upper bound on the dark matter mass, $m_{\text{DM}} \lesssim 10^6 \text{ GeV}$. This is nevertheless a significant improvement as DM masses all the way till $m_{\text{DM}} \sim 10^{10} \text{ GeV}$, if solely produced from PBH evaporation, remain disallowed in the usual scenario without late entropy injection, either due to overproduction or WDM limits, as shown in the left panel plot of Fig. 2. It is important to specify here that ΔS can be related to the lightest neutrino mass m^1_{ν}, since the value
Figure 8. Left: Parameter space allowed by relic density in $\Delta S - m_{\text{DM}}$ plane, where PBH mass is scanned over the range: \{0.5-5\} g. The colour code is with respect to Y_B, considering vanilla high scale leptogenesis. The black vertical dashed line corresponds to the conservative bound from WDM. The green arrows denote the net allowed parameter space. Right: Same as left, but considering resonant leptogenesis.

of the N_3 Yukawas are determined by m_1^ν. For instance, we find that for $m_{\text{in}} = 1$ g, and $M_3 < T^\text{in}_{\text{BH}}$, $1 \lesssim \Delta S \lesssim 10^6$ typically corresponds to lightest neutrino mass in the range 10^{-10} eV $\lesssim m_1^\nu \lesssim 10^{-24}$ eV. Such tiny values of the lightest neutrino mass and hence tiny Dirac Yukawa couplings of N_3 are expected since N_3 has to be sufficiently long-lived. Now, in order to explore the viable parameter space we perform a numerical scan over the DM mass m_{DM} in keV-GeV range and on the PBH mass m_{in} : \{0.5 – 5\} g, fixing the leptogenesis scale M_1 at 10^{13} GeV. In the left panel of Fig. 8 we show the relic density allowed parameter space in $\Delta S - m_{\text{DM}}$ plane. DM particles with large velocity, i.e., warm DM, are constrained by observations because their large free-streaming length prevents structure formation of the universe. The formation of structures in WDM is suppressed for perturbations of comoving size $\lesssim \lambda_{\text{DM}} \propto m^{-4/3}_{\text{WDM}}$ [101, 102]. The signature of such WDM would thus be the suppression of the matter power spectrum (MPS) at scales below their free-streaming horizon. From cosmological data at large scales (CMB and galaxy surveys) we know that such a suppression should be sought at comoving scales well below a Mpc. The Lyman-α forest has been used for measuring the matter power spectrum at such scale [103, 104]. This lower bound on the mass of a thermal early decoupled WDM can be translated into a lower bound on the present velocity of a generic WDM. As already established earlier, light DM with mass below $\lesssim 3$ keV [105, 106] is disallowed from the Lyman-α bound on WDM\(^8\), which are shown by the red points on the left side of black vertical dashed line. However, a substantial amount of entropy injection can improve this situation as already shown in the right panel plot of Fig. 2. Thus, DM mass $m_{\text{DM}} \gtrsim \mathcal{O}(\text{MeV})$ is allowed for $\Delta S \gtrsim \mathcal{O}(10)$. The parameter space is also capable of explaining the observed baryon asymmetry in vanilla leptogenesis framework for $10 \lesssim \Delta S \lesssim 100$, which agrees with earlier observations in [78]. We project the most conservative WDM bound that disallows DM mass $m_{\text{DM}} \lesssim 0.3$ MeV. Note that, as foretold, with the increase in ΔS, the baryon asymmetry decreases (cf. Fig. 3). Thus, cogenesis of right DM abundance and baryon asymmetry is possible with an entropy production of the order of $\Delta S \lesssim \mathcal{O}(100)$.

\(^8\)A more conservative bound on WDM mass has been derived in [102].
In order to overcome the large entropy dilution at late epochs, we also check if the lepton asymmetry can be significantly overproduced. It is well established that the requirement on the heavy neutrino mass scale for successful leptogenesis can be significantly relaxed if (at least) two of the mass eigenvalues M_i, say for $i = 1, 2$ are quasi-degenerate, i.e., $\Delta M = M_2 - M_1 \ll \overline{M} = (M_1 + M_2)/2$ [107, 108]. In such a case of resonant leptogenesis, the CP-violating decay asymmetry originating from the interference of tree and self-energy contributions—the so-called ϵ-type or indirect CP violation is resonantly enhanced, and dominates over the contribution from vertex-corrections, or the so-called ϵ'-type or direct CP violation. Since a larger CP asymmetry results in larger baryon asymmetry, hence in this case one can allow larger entropy injection compared to the standard vanilla leptogenesis scenario. This in turn helps in relaxing the bound on DM mass, allowing heavier masses compared to the vanilla leptogenesis scenario. This is what we can see from the right panel of Fig. 8, where we find the allowed parameter space corresponds to $\Delta S \gtrsim O(100)$. Note that for $\Delta S \gtrsim 100$, the WDM limit becomes relatively relaxed and thus the whole parameter space opens up for correct DM relic.

5 Production from Gravity Mediated Scattering

Apart from PBH, pure gravitational production of DM can also take place from the 2-to-2 scattering of the bath particles via s-channel mediation of massless graviton. The interaction rate density for such a process reads [15, 28, 109–112]

$$\gamma(T) = \alpha \frac{T^8}{M_{pl}^4} ,$$

with $\alpha \simeq 1.9 \times 10^{-4}$ (real scalar), $\alpha \simeq 1.1 \times 10^{-3}$ (Dirac fermion) or $\alpha \simeq 2.3 \times 10^{-3}$ (vector boson). This kind of production is unavoidable due to universal coupling between the gravity and the stress-energy tensor involving the matter particles. The BEQ governing the time evolution of DM number density is thus given by

$$\dot{n}_{DM} + 3 H n_{DM} = \gamma .$$

For temperatures much lower than the reheat temperature i.e., $T \ll T_{rh}$, the DM yield can be analytically obtained by integrating Eq. (5.2)

$$Y_0 = \frac{45 \alpha}{2 \pi^3 g_{*s}} \sqrt{\frac{10}{g_*}} \left(\frac{T_{rh}}{M_{pl}} \right)^3 ,$$

where we define the DM yield as $Y \equiv n_{DM}/s$, with $s = \frac{2\pi^2}{45} g_{*s} T^3$ and consider $m_{DM} \ll T_{rh}$. On the other hand, if the DM mass is such that $T_{rh} \ll m_{DM} \ll T_{max}$, where T_{max} corresponds to the maximum temperature during reheating, then the DM can be produced during but not after the reheating. In the case the DM yield can be obtained by integrating Eq. (5.2) for $T_{max} \geq m_{DM} \geq T_{rh}$

$$Y_0 = \frac{45 \alpha}{2 \pi^3 g_{*s}} \sqrt{\frac{10}{g_*}} \frac{T_{rh}^{\gamma}}{M_{pl}^4 m_{DM}^4} .$$

Here we would like to mention that if the DM is produced during the transition from matter to radiation domination via an interaction rate that scales like $\gamma(T) \propto T^n$, for $n > 12$ the DM abundance is enhanced by a boost factor proportional to $(T_{max}/T_{rh})^{n-12}$ [113], whereas
Figure 9. Left: The black thick line corresponds to right DM relic abundance via gravitational UV freeze-in. Along the contour we have $T_{rh} = T_{in}$. We consider no effect from entropy dilution (see text). Here the solid contour corresponds to $\beta = 10^{-4}$ and the dashed one for $\beta = 10^{-6}$. The straight vertical broken lines correspond to $\beta = \beta_c$. Right: The black solid and dashed contours correspond to observed baryon asymmetry for $\beta = 10^{-4}$ and $\beta = 10^{-6}$ respectively (the two contours overlap with each other and hence can not be distinguished). The coloured shaded regions are same as those in Fig. 3.

for $n \leq 12$ the results for the standard UV freeze-in calculation differ only by an $\mathcal{O}(1)$ factor from calculations taking into account of non-instantaneous reheating.

Now, the DM produced via gravitational UV freeze-in shall undergo dilution due to evaporation of the PBH, that can be quantified as [71, 114]

$$S(T_{in}) S(T_{evap}) \sim T_{evap} \simeq 10^{-2} \left(\frac{M_{pl}}{m_{in}} \right)^{\frac{2}{3}} \frac{M_{pl}}{\beta T_{in}},$$

(5.5)

for $\beta > \beta_c$, where we define $S = a^3 s(T)$. The temperature T_{peq} is defined as the epoch of equality between SM radiation and the PBH energy densities $\rho_R(T_{peq}) = \rho_{BH}(T_{peq})$, and is given by

$$T_{peq} = \beta T_{in} \left(\frac{g_{*s}(T_{in})}{g_{*s}(T_{in})} \right)^{\frac{1}{3}}.$$

(5.6)

The observed DM abundance can then be achieved

$$m_{DM} Y_0 \frac{S(T_{in})}{S(T_{evap})} = \Omega_{DM} \, h^2 \, 1 \, \frac{\rho_c}{h^2} \simeq 4.3 \times 10^{-10} \text{ GeV},$$

(5.7)

with ρ_c being the critical density of the universe. In Fig. 9 the black thick contour in the left panel satisfies correct DM relic abundance via gravitational UV freeze-in, considering $T_{rh} = T_{in}$. To the left of the contour, DM is over produced due to gravitational UV freeze-in. From this plot, it is clear that in the region of DM mass we are interested in (see Fig. 8), the DM production from the gravitational UV freeze-in remains under-abundant.
Similar to the case of DM, it is also possible to have leptogenesis from the decay of the RHNs, that are gravitationally produced from the SM bath via massless graviton mediated scatterings [115, 116]. Following the same methodology as above, in the right panel of Fig. 9 we show the contour corresponding to right baryon asymmetry, using

\[Y_B = \epsilon a_{\text{sph}} Y_B \Bigg|_{T_{\text{evap}}}, \]

with \(a_{\text{sph}} = 28/79 \) and \(\epsilon \) is defined following Eq. (3.17), where the RHN yield follows from Eq. (5.3) and Eq. (5.4). Note that, the gravitational leptogenesis can dominate the production from PBH only for very light PBH which are already excluded from CMB bounds.

6 Conclusions

We have proposed a scenario where gravitational dark matter is produced from evaporating primordial black holes. Except for the superheavy mass window \(m_{\text{DM}} \gtrsim 10^{10} \) GeV, DM production solely from PBH evaporation leads to overabundance if PBH dominates the energy density of the universe at early epochs. While lighter mass window \(m_{\text{DM}} \lesssim \mathcal{O}(1) \) keV gives correct relic, it faces severe constraints from the requirement of structure formation. We particularly focus on this keV to \(10^{10} \) GeV mass window of gravitational DM and incorporate it within a Type-I seesaw framework with three right handed neutrinos responsible for generating light neutrino masses. While DM in this mass window gets overproduced from PBH evaporation, late entropy injection from decay of one of the RHNs (acting as a diluter) can bring the DM abundance within observed limits. As the late entropy dilution must occur before the epoch of BBN in order not to disturb the successful prediction for light nuclei abundance, we impose the upper bound on diluter lifetime which gets translated into an upper bound on entropy injection, allowing DM mass upto ~ 1 PeV. Along with DM, the diluter also gets dominantly produced from PBH evaporation as its couplings to the SM particles remain suppressed from the requirement of long lifetime needed for sufficient entropy release due to its decay. This effectively leads to two different stages of early matter domination: first from PBH and then from the diluter. The other two RHNs can have sizeable couplings with SM leptons thereby generating the required neutrino mass and mixing. We consider the production of these RHNs both from the bath as well as PBH and show that their subsequent CP violating out-of-equilibrium decays can lead to successful leptogenesis as well. Since the lepton asymmetry is required to be overproduced initially in order to survive the subsequent entropy dilution, the DM parameter space gets squeezed from a few keV-PeV window to a smaller range around MeV-GeV ballpark from the requirement of producing both DM relic as well as the baryon asymmetry of the universe, with PBH mass \(m_{\text{BH}} \lesssim 5 \) g. The long-lived nature of \(N_3 \) necessarily pushes the lightest active neutrino mass \(m_1^{\nu} \) to vanishingly small values (\(\lesssim 10^{-10} \) eV). Thus, the effective neutrino mass will be very much out of reach from ongoing tritium beta decay experiments like KATRIN [117], whereas any positive detection of \(m_1^{\nu} \) in future experiments might be able to falsify our scenario. While gravitational DM has no scope of direct detection, the required PBH mass as well as multiple stages of early matter domination can have interesting observable consequences, specially in the context of gravitational wave observations [45, 92, 118–123], which we leave for future studies.
A Coupled Boltzmann Equations

The relevant coupled Boltzmann equations (BEQ) in the present framework reads [81, 83, 85]
\[
\frac{dm_{BH}}{da} = -\frac{\kappa}{a \mathcal{H}} \epsilon(m_{BH}) \left(\frac{1g}{m_{BH}} \right)^2, \\
\frac{d\tilde{\rho}_R}{da} = -\frac{\epsilon_{SM}(m_{BH})}{\epsilon(m_{BH})} \frac{a}{m_{BH}} \frac{dm_{BH}}{da} \tilde{\rho}_{BH} + \frac{a}{\mathcal{H}} \Gamma_3 M_3 \tilde{n}_{N_3}^{BH}, \\
\frac{d\tilde{\rho}_{BH}}{da} = \frac{1}{m_{BH}} \frac{dm_{BH}}{da} \tilde{\rho}_{BH}, \\
a \mathcal{H} \frac{d\tilde{n}_{N_1}^{T}}{da} = -\left(\tilde{n}_{N_1}^{T} - \tilde{n}_{N_1}^{eq} \right) \Gamma_{N_1}^{T}, \\
a \mathcal{H} \frac{d\tilde{n}_{N_1}^{BH}}{da} = -\tilde{n}_{N_1}^{BH} \Gamma_{N_1}^{BH} + \Gamma_{BH \rightarrow N_1}^{BH} \tilde{\rho}_{BH} / m_{BH},
\]

(A.1)

along with
\[
\frac{a \mathcal{H} d\tilde{N}_{B-L}}{da} = \epsilon_{\Delta L} \left[\left(\tilde{n}_{N_1}^{T} - \tilde{n}_{N_1}^{eq} \right) \Gamma_{N_1}^{T} + \tilde{n}_{N_1}^{BH} \Gamma_{N_1}^{BH} \right] - W \tilde{N}_{B-L}, \\
a \mathcal{H} \frac{d\tilde{n}_{N_3}^{BH}}{da} = \Gamma_{BH \rightarrow N_3}^{BH} \tilde{\rho}_{BH} / m_{BH} - \Gamma_3 \tilde{n}_{N_3}^{BH}, \\
a \mathcal{H} \frac{d\tilde{n}_{DM}^{BH}}{da} = \Gamma_{BH \rightarrow DM}^{BH} \tilde{\rho}_{BH} / m_{BH} \\
\frac{dT}{da} = -\frac{T}{\Delta} \left[\frac{1}{a} + \frac{\epsilon_{SM}(m_{BH})}{\epsilon(m_{BH})} \frac{1}{m_{BH}} \frac{dm_{BH}}{da} \frac{\tilde{g}_s(T)}{\tilde{g}_s(T)} \frac{\tilde{\rho}_{BH}}{4 \tilde{\rho}_R} + \frac{\Gamma_3 M_3}{3 \mathcal{H} s a} \tilde{n}_{N_3}^{BH} \right].
\]

(A.2)

Here, \(\tilde{\rho}_R \) and \(\tilde{\rho}_{BH} \) denotes the comoving energy density of radiation and PBH, \(\mathcal{H} \) is the Hubble parameter, whereas \(\tilde{n}_{N_1}, \tilde{n}_{N_3} \) and \(\tilde{n}_{DM} \) represent the comoving number densities of \(N_1, N_3 \) and DM respectively with \(\epsilon_{\Delta L} \) being the CP-asymmetry parameter and \(W \) the term responsible for washout. Suffix ‘T’ and ‘BH’ denotes the thermal and non-thermal contributions respectively. Note that we are considering a scenario of DM with only gravitational interactions, hence it doesn’t get produced from the thermal bath. Also, as we will see, \(N_3 \) plays the role of diluting the DM relic and hence have to be long-lived. This results in suppressed Yukawas and hence no thermal production. Finally, \(\tilde{N}_{B-L} \) indicates the comoving B-L asymmetry.

B Lyman-\(\alpha \) Constraint

Due to their large initial momentum, DM particles could have a large free-streaming length leading to a suppression on the structure formation at small scales. In the present scenario where DM has no interactions with the SM or with itself, the DM momentum simply redshifts, and its value \(p_0 \) at present is [78]
\[
p_0 = \frac{a_{evap}}{a_q} p_{evap} \approx \frac{a_{evap}}{a_{eq}} \frac{\Omega_R}{\Omega_m} \langle E_{evap} \rangle = \langle E_{eq} \rangle \frac{\Omega_R}{\Omega_m},
\]

(B.1)

with
\[
\langle E_{eq} \rangle = \langle E_{evap} \rangle \frac{a_{evap}}{a_{eq}} = \frac{T_{BH}^{eq}}{\xi} \frac{Teq}{T_{evap}} \left[\frac{g_{s,s}(Teq)}{g_{s,s}(T_{evap})} \right]^{\frac{1}{3}},
\]

(B.2)
where in the last line we have assumed entropy injection from PBH evaporation at $T = T_{\text{evap}}$ to matter-radiation equality at $T = T_{\text{eq}}$ as $\xi (sa)_{\text{evap}} = (sa)_{\text{eq}}$ \[61\]. Note that the average kinetic energy of the emitted particles depend on the Hawking temperature, and is given by $\langle E_{\text{evap}} \rangle = 6 T_{\text{in}}^{BH}$ \[78\]. However, a more refined calculation shows the factor 6 to be approximately 1.3 \[61\]. A lower bound on the DM mass can be obtained from the upper bound on a typical velocity of warm DM at the present time. Taking $v_{\text{DM}} \lesssim 1.8 \times 10^{-8}$ \[61\] for $m_{\text{DM}} \simeq 3.5$ keV \[95\], we obtain

$$
m_{\text{DM}} \gtrsim 10^4 \langle E_{\text{eq}} \rangle \equiv 10^4 \frac{T_{\text{eq}}}{\xi \frac{T_{\text{in}}^{BH}}{T_{\text{evap}}}} \left[\frac{g_{*,s}(T_{\text{eq}})}{g_{*,s}(T_{\text{evap}})} \right]^{\frac{1}{2}} \approx 2 \times 10^4 \frac{T_{\text{eq}}}{\xi \sqrt{m_{\text{in}}^{BH} M_{\text{pl}} \left[\frac{g_{*,s}(T_{\text{eq}})}{g_{*,s}(T_{\text{evap}})} \right]^{\frac{1}{2}}}} ,
$$

(B.3)

where $a_{\text{eq}} \equiv \frac{\Omega_{\text{R}}}{\Omega_{\text{m}}} \simeq 1.8 \times 10^{-4}$ and $T_{\text{eq}} \simeq 0.75$ eV.

C Casas-Ibarra Parametrization

As the neutral component of the SM Higgs doublet acquires a VEV leading to the spontaneous breaking of the SM gauge symmetry, neutrinos in the SM obtain a Dirac mass that can be written as

$$
m_D = \frac{y_N}{\sqrt{2}} v.
$$

(C.1)

The Dirac mass m_D together with the RHN bare mass M_N, can explain the nonzero light neutrino masses with the help of Type-I seesaw \[29, 31\] where the light-neutrino masses can be expressed as,

$$
m_\nu \simeq m_D^2 M^{-1} m_D.
$$

(C.2)

The mass eigenvalues and mixing are then obtained by diagonalising the light-neutrino mass matrix as

$$
m_\nu = U^* m_\nu^d U^\dagger,
$$

(C.3)

with $m_\nu^d = \text{dia}(m_1, m_2, m_3)$ consisting of the mass eigenvalues and U representing the Pontecorvo-Maki-Nakagawa-Sakata matrix \[1\]^9. One can parameterise the complex structure of the neutrino Yukawa matrix that is required for generating the CP violating decays of the RHNS using Casas-Ibarra (CI) parametrisation \[124\] as,

$$
y_N = \frac{\sqrt{2}}{v} \sqrt{M} \Re \sqrt{m_\nu^d} U^\dagger,
$$

(C.4)

where \Re is a complex orthogonal matrix $\Re^T \Re = I$, which we choose as

$$
\Re = \begin{pmatrix}
0 & \cos z & \sin z \\
0 & -\sin z & \cos z \\
1 & 0 & 0
\end{pmatrix},
$$

(C.5)

\(^9\)The charged lepton mass matrix is considered to be diagonal.
where \(z = a + ib \) is a complex angle. The diagonal light neutrino mass matrix \(m^d_\nu \) is calculable using the best fit values of solar and atmospheric mass obtained from the latest neutrino oscillation data \cite{1}. Now, the elements of Yukawa coupling matrix \(y_N \) for a specific value of \(z \), can be obtained for different choices of the heavy neutrino masses. For example, with \(M_1 = 10^{13} \text{ GeV} \), \(M_2 = 50 M_1 \), \(M_3 = 10^9 \text{ GeV} \), \(m^1_\nu = 10^{-15} \text{ eV} \) and \(\{a, b\} = \{2.77, 0.36\} \) we obtain the following structure

\[
y_N = \begin{pmatrix}
-0.037 - 0.007i & -0.002 - 0.031i & 0.064 - 0.026i \\
-0.033 + 0.197i & -0.682 + 0.0126i & -0.592 - 0.152i \\
1.508 \times 10^{-10} & -6.764 \times 10^{-11} - 1.313 \times 10^{-11}i & 7.30 \times 10^{-11} - 1.490 \times 10^{-11}i
\end{pmatrix},
\]

which satisfies the light neutrino mass, as well as produces desired CP asymmetry.

Acknowledgements

BB received funding from the Patrimonio Autónomo - Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (MinCiencias - Colombia) grant 80740-465-2020. This project has received funding/support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 860881-HIDDeN. RR was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2020R1C1C1012452).

References

\cite{1} Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.
\cite{2} Planck collaboration, Planck 2018 results. VI. Cosmological parameters, 1807.06209.
\cite{3} A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.
\cite{4} M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B174 (1986) 45.
\cite{5} V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. 155B (1985) 36.
\cite{6} E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1.
\cite{7} J.A. Dror, T. Hiramatsu, K. Kohri, H. Murayama and G. White, Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves, Phys. Rev. Lett. 124 (2020) 041804 [1908.03227].
\cite{8} L.H. Ford, Gravitational Particle Creation and Inflation, Phys. Rev. D 35 (1987) 2955.
\cite{9} D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett. 81 (1998) 4048 [hep-ph/9805473].
\cite{10} D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998) 023501 [hep-ph/9802238].
\cite{11} V. Kuzmin and I. Tkachev, Ultrahigh-energy cosmic rays, superheavy long living particles, and matter creation after inflation, JETP Lett. 68 (1998) 271 [hep-ph/9802304].
[12] V. Kuzmin and I. Tkachev, *Matter creation via vacuum fluctuations in the early universe and observed ultrahigh-energy cosmic ray events*, Phys. Rev. D 59 (1999) 123006 [hep-ph/9809547].

[13] B.R. Greene, T. Prokopec and T.G. Roos, *Inflaton decay and heavy particle production with negative coupling*, Phys. Rev. D 56 (1997) 6484 [hep-ph/9705357].

[14] D.J. Chung, E.W. Kolb and A. Riotto, *Production of massive particles during reheating*, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453].

[15] M. Garny, M. Sandora and M.S. Sloth, *Planckian Interacting Massive Particles as Dark Matter*, Phys. Rev. Lett. 116 (2016) 101302 [1511.03278].

[16] A. Ahmed, B. Grzadkowski and A. Socha, *Gravitational production of vector dark matter*, JHEP 08 (2020) 059 [2005.01766].

[17] E.W. Kolb and A.J. Long, *Completely dark photons from gravitational particle production during the inflationary era*, JHEP 03 (2021) 283 [2009.03828].

[18] G. Alonso-Álvarez and J. Jaeckel, *Lightish but clumpy: scalar dark matter from inflationary fluctuations*, JCAP 10 (2018) 022 [1807.09785].

[19] G. Alonso-Álvarez, T. Hugle and J. Jaeckel, *Misalignment \& Co.: (Pseudo-)scalar and vector dark matter with curvature couplings*, JCAP 02 (2020) 014 [1905.08936].

[20] T. Markkanen and S. Nurmi, *Dark matter from gravitational particle production at reheating*, JCAP 02 (2017) 008 [1512.07288].

[21] M. Fairbairn, K. Kainulainen, T. Markkanen and S. Nurmi, *Despicable Dark Relics: generated by gravity with unconstrained masses*, JCAP 04 (2019) 005 [1808.08236].

[22] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, *Gravitational particle production in oscillating backgrounds and its cosmological implications*, Phys. Rev. D 94 (2016) 063517 [1604.08898].

[23] Y. Ema, K. Nakayama and Y. Tang, *Production of Purely Gravitational Dark Matter*, JHEP 09 (2018) 135 [1804.07471].

[24] J.A.R. Cembranos, L.J. Garay and J.M. Sánchez Velázquez, *Gravitational production of scalar dark matter*, JHEP 06 (2020) 084 [1910.13937].

[25] D.J.H. Chung, E.W. Kolb and A.J. Long, *Gravitational production of super-Hubble-mass particles: an analytic approach*, JHEP 01 (2019) 189 [1812.00211].

[26] E. Babichev, D. Gorbunov and S. Ramazanov, *Gravitational misalignment mechanism of Dark Matter production*, JCAP 08 (2020) 047 [2004.03410].

[27] D. Borah, S. Jyoti Das and A.K. Saha, *Gravitational origin of dark matter and Majorana neutrino mass with non-minimal quartic inflation*, Phys. Dark Univ. 33 (2021) 100858 [2011.02489].

[28] B. Barman, N. Bernal, A. Das and R. Roshan, *Non-minimally coupled vector boson dark matter*, JCAP 01 (2022) 047 [2108.13447].

[29] R.N. Mohapatra and G. Senjanovic, *Neutrino Mass and Spontaneous Parity Violation*, Phys. Rev. Lett. 44 (1980) 912.

[30] T. Yanagida, *HORIZONTAL SYMMETRY AND MASSES OF NEUTRINOS*, Conf. Proc. C7902131 (1979) 95.

[31] M. Gell-Mann, P. Ramond and R. Slansky, *Complex Spinors and Unified Theories*, Conf. Proc. C790927 (1979) 315 [1306.4669].

[32] S.L. Glashow, *The Future of Elementary Particle Physics*, NATO Sci. Ser. B 61 (1980) 687.
[33] W. Buchmuller, P. Di Bari and M. Plumacher, *Leptogenesis for pedestrians*, *Annals Phys.* **315** (2005) 305 [hep-ph/0401240].

[34] W. Buchmuller, R.D. Peccei and T. Yanagida, *Leptogenesis as the origin of matter*, *Ann. Rev. Nucl. Part. Sci.* **55** (2005) 311 [hep-ph/0502169].

[35] PLANCK collaboration, *Planck 2018 results. X. Constraints on inflation*, *Astron. Astrophys.* **641** (2020) A10 [1807.06211].

[36] R.J. Scherrer and M.S. Turner, *Decaying particles do not “heat up” the universe*, *Phys. Rev. D* **31** (1985) 681.

[37] M. Nemevsek, G. Senjanovic and Y. Zhang, *Warm Dark Matter in Low Scale Left-Right Theory*, *JCAP* **07** (2012) 006 [1205.0844].

[38] F. Bezrukov, H. Hettmansperger and M. Lindner, *keV sterile neutrino Dark Matter in gauge extensions of the Standard Model*, *Phys. Rev. D* **81** (2010) 085032 [0912.4415].

[39] D. Borah and A. Dasgupta, *Left–right symmetric models with a mixture of keV–TeV dark matter*, *J. Phys. G* **46** (2019) 105004 [1710.06170].

[40] M. Cirelli, Y. Gouttenoire, K. Petraki and F. Sala, *Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays*, *JCAP* **02** (2019) 014 [1811.03608].

[41] J.A. Dror, D. Dunsby, L.J. Hall and K. Harigaya, *Sterile Neutrino Dark Matter in Left-Right Theories*, *JHEP* **07** (2020) 168 [2004.09511].

[42] M. Dutra, V. Oliveira, C.A. de S. Pires and F.S. Queiroz, *A model for mixed warm and hot right-handed neutrino dark matter*, *JHEP* **10** (2021) 005 [2104.14542].

[43] G. Arcadi, J.P. Neto, F.S. Queiroz and C. Siqueira, *Roads for right-handed neutrino dark matter: Fast expansion, standard freeze-out, and early matter domination*, *Phys. Rev. D* **105** (2022) 035016 [2108.11398].

[44] D. Borah, S.J. Das and A.K. Saha, *Thermal keV neutrino dark matter in minimal gauged B-L model with cosmic inflation*, 2110.13927.

[45] D. Borah, S.J. Das, A.K. Saha and R. Samanta, *Probing Miracle-less WIMP Dark Matter via Gravitational Waves Spectral Shapes*, 2202.10474.

[46] S.W. Hawking, *Black hole explosions*, *Nature* **248** (1974) 30.

[47] S.W. Hawking, *Particle Creation by Black Holes*, *Commun. Math. Phys.* **43** (1975) 199.

[48] G.F. Chapline, *Cosmological effects of primordial black holes*, *Nature* **253** (1975) 251.

[49] B.J. Carr, *Some cosmological consequences of primordial black-hole evaporations*, *Astrophys. J.* **206** (1976) 8.

[50] B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, *Constraints on Primordial Black Holes*, 2002.12778.

[51] L. Morrison, S. Profumo and Y. Yu, *Melanopogenesis: Dark Matter of (almost) any Mass and Baryonic Matter from the Evaporation of Primordial Black Holes weighing a Ton (or less)*, *JCAP* **05** (2019) 005 [1812.10606].

[52] P. Gondolo, P. Sandick and B. Shams Es Haghi, *Effects of primordial black holes on dark matter models*, *Phys. Rev. D* **102** (2020) 095018 [2009.02424].

[53] N. Bernal and O. Zapata, *Dark Matter in the Time of Primordial Black Holes*, *JCAP* **03** (2021) 015 [2011.12306].

[54] A.M. Green, *Supersymmetry and primordial black hole abundance constraints*, *Phys. Rev. D* **60** (1999) 063516 [astro-ph/9903484].
[55] M.Y. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, *Class. Quant. Grav.* **23** (2006) 1875 [astro-ph/0406621].

[56] D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, *JCAP* **06** (2009) 023 [0904.3331].

[57] R. Allahverdi, J. Dent and J. Osinski, Nonthermal production of dark matter from primordial black holes, *Phys. Rev. D* **97** (2018) 055013 [1711.10511].

[58] O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black Hole Genesis of Dark Matter, *JCAP* **04** (2009) 009 [0904.3331].

[59] D. Hooper, G. Krnjaic and S.D. McDermott, Dark Radiation and Superheavy Dark Matter from Black Hole Domination, *JHEP* **08** (2019) 001 [1905.01301].

[60] A. Chaudhuri and A. Dolgov, PBH evaporation, baryon asymmetry, and dark matter, *2001.11219*.

[61] I. Masina, Dark matter and dark radiation from evaporating primordial black holes, *Eur. Phys. J. Plus* **135** (2020) 552 [2004.04740].

[62] I. Baldes, Q. Decant, D.C. Hooper and L. Lopez-Honorez, Non-Cold Dark Matter from Primordial Black Hole Evaporation, *JCAP* **08** (2020) 045 [2004.14773].

[63] N. Bernal and O. Zapata, Gravitational dark matter production: primordial black holes and UV freeze-in, *Phys. Lett. B* **815** (2021) 136129 [2011.02510].

[64] N. Bernal and O. Zapata, Self-interacting Dark Matter from Primordial Black Holes, *JCAP* **03** (2021) 007 [2010.09725].

[65] B.C. Lacki and J.F. Beacom, Primordial Black Holes as Dark Matter: Almost All or Almost Nothing, *Astrophys. J. Lett.* **720** (2010) L67 [1003.3466].

[66] S.M. Boucenna, F. Kuhnel, T. Ohlsson and L. Visinelli, Novel Constraints on Mixed Dark-Matter Scenarios of Primordial Black Holes and WIMPs, *JCAP* **07** (2018) 003 [1712.06383].

[67] J. Adamek, C.T. Byrnes, M. Gosenca and S. Hotchkiss, WIMPs and stellar-mass primordial black holes are incompatible, *Phys. Rev. D* **100** (2019) 023506 [1901.08528].

[68] B. Carr, F. Kuhnel and L. Visinelli, Black holes and WIMPs: all or nothing or something else, *Mon. Not. Roy. Astron. Soc.* **506** (2021) 3648 [2011.01930].

[69] I. Masina, Dark matter and dark radiation from evaporating Kerr primordial black holes, *2103.13825*.

[70] N. Bernal, Y.F. Perez-Gonzalez, Y. Xu and O. Zapata, ALP Dark Matter in a Primordial Black Hole Dominated Universe, *2110.04312*.

[71] N. Bernal, F. Hajkarim and Y. Xu, Axion Dark Matter in the Time of Primordial Black Holes, *Phys. Rev. D* **104** (2021) 075007 [2107.13575].

[72] R. Samanta and F.R. Urban, Testing Super Heavy Dark Matter from Primordial Black Holes with Gravitational Waves, *2112.04836*.

[73] P. Sandick, B.S. Es Haghi and K. Sinha, Asymmetric reheating by primordial black holes, *Phys. Rev. D* **104** (2021) 083523 [2108.08329].

[74] A. Cheek, L. Heurtier, Y.F. Perez-Gonzalez and J. Turner, Primordial Black Hole Evaporation and Dark Matter Production: II. Interplay with the Freeze-In/Out Mechanism, *2107.00016*.

[75] A. Cheek, L. Heurtier, Y.F. Perez-Gonzalez and J. Turner, Primordial Black Hole Evaporation and Dark Matter Production: I. Solely Hawking radiation, *2107.00013*.
[76] D. Baumann, P.J. Steinhardt and N. Turok, *Primordial Black Hole Baryogenesis*, hep-th/0703250.

[77] A. Hook, *Baryogenesis from Hawking Radiation*, *Phys. Rev. D* **90** (2014) 083553 [1404.0113].

[78] T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, *Baryon asymmetry, dark matter, and density perturbation from primordial black holes*, *Phys. Rev. D* **89** (2014) 103501 [1401.1909].

[79] Y. Hamada and S. Iso, *Baryon asymmetry from primordial black holes*, *PTEP* **2017** (2017) 033B02 [1610.02586].

[80] D. Hooper and G. Krnjaic, *GUT Baryogenesis With Primordial Black Holes*, *Phys. Rev. D* **103** (2021) 043504 [2010.01134].

[81] Y.F. Perez-Gonzalez and J. Turner, *Assessing the tension between a black hole dominated early universe and leptogenesis*, *Phys. Rev. D* **104** (2021) 103021 [2010.03565].

[82] S. Datta, A. Ghosal and R. Samanta, *Baryogenesis from ultralight primordial black holes and strong gravitational waves from cosmic strings*, *JCAP* **08** (2021) 021 [2012.14981].

[83] S. Jyoti Das, D. Mahanta and D. Borah, *Low scale leptogenesis and dark matter in the presence of primordial black holes*, *JCAP* **11** (2021) 019 [2104.14496].

[84] N. Smyth, L. Santos-Olmsted and S. Profumo, *Gravitational Baryogenesis and Dark Matter from Light Black Holes*, 2103.08823.

[85] B. Barman, D. Borah, S.J. Das and R. Roshan, *Non-thermal origin of asymmetric dark matter from inflation and primordial black holes*, *JCAP* **03** (2022) 031 [2111.08034].

[86] N. Bernal, C.S. Fong, Y.F. Perez-Gonzalez and J. Turner, *Rescuing High-Scale Leptogenesis using Primordial Black Holes*, 2203.14979.

[87] G. Domènch, C. Lin and M. Sasaki, *Gravitational wave constraints on the primordial black hole dominated early universe*, *JCAP* **04** (2021) 062 [2012.08151].

[88] B. Carr and F. Kuhnel, *Primordial Black Holes as Dark Matter: Recent Developments*, *Ann. Rev. Nucl. Part. Sci.* **70** (2020) 355 [2006.02838].

[89] V. Iršič et al., *New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data*, *Phys. Rev. D* **96** (2017) 023522 [1702.01764].

[90] G. Ballesteros, M.A.G. Garcia and M. Pierre, *How warm are non-thermal relics? Lyman-α bounds on out-of-equilibrium dark matter*, *JCAP* **03** (2021) 101 [2111.08034].
[99] S. Davidson and A. Ibarra, *A Lower bound on the right-handed neutrino mass from leptogenesis*, Phys. Lett. B535 (2002) 25 [hep-ph/0202239].

[100] R. Samanta, A. Biswas and S. Bhattacharya, *Non-thermal production of lepton asymmetry and dark matter in minimal seesaw with right handed neutrino induced Higgs potential*, 2006.02960.

[101] M. Drewes et al., *A White Paper on keV Sterile Neutrino Dark Matter*, JCAP 01 (2017) 025 [1602.04816].

[102] A. Garzilli, O. Ruchayskiy, A. Magalich and A. Boyarsky, *How warm is too warm? Towards robust Lyman-α forest bounds on warm dark matter*, 1912.09397.

[103] R.A.C. Croft, D.H. Weinberg, M. Bolte, S. Burles, L. Hernquist, N. Katz et al., *Towards a precise measurement of matter clustering: Lyman alpha forest data at redshifts 2-4*, Astrophys. J. 581 (2002) 20 [astro-ph/0012324].

[104] A. Garzilli, A. Boyarsky and O. Ruchayskiy, *Cutoff in the lyman-α forest power spectrum: Warm igm or warm dark matter?*, Physics Letters B 773 (2017) 258.

[105] M. Viel, G.D. Becker, J.S. Bolton and M.G. Haehnelt, *Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data*, Phys. Rev. D 88 (2013) 043502 [1306.2314].

[106] J. Baur, N. Palanque-Delabrouille, C. Yèche, C. Magneville and M. Viel, *Lyman-alpha Forests cool Warm Dark Matter*, JCAP 08 (2016) 012 [1512.01981].

[107] A. Pilaftsis and T.E.J. Underwood, *Resonant leptogenesis*, Nucl. Phys. B692 (2004) 303 [hep-ph/0309342].

[108] P.S.B. Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, *Resonant enhancement in leptogenesis*, Int. J. Mod. Phys. A33 (2018) 1842003 [1711.02863].

[109] Y. Tang and Y.-L. Wu, *On Thermal Gravitational Contribution to Particle Production and Dark Matter*, Phys. Lett. B 774 (2017) 676 [1708.05138].

[110] M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, *Theory and Phenomenology of Planckian Interacting Massive Particles as Dark Matter*, JCAP 08 (2018) 027 [1709.09688].

[111] N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso and M. Pierre, *Spin-2 Portal Dark Matter*, Phys. Rev. D 97 (2018) 115020 [1803.01866].

[112] B. Barman and N. Bernal, *Gravitational SIMPs*, JCAP 06 (2021) 011 [2104.10699].

[113] M.A.G. Garcia, Y. Mambrini, K.A. Olive and M. Peloso, *Enhancement of the Dark Matter Abundance Before Reheating: Applications to Gravitino Dark Matter*, Phys. Rev. D 96 (2017) 103510 [1709.01549].

[114] N. Bernal, Y.F. Perez-Gonzalez and Y. Xu, *Superradiant Production of Heavy Dark Matter from Primordial Black Holes*, 2205.11522.

[115] N. Bernal and C.S. Fong, *Dark matter and leptogenesis from gravitational production*, JCAP 06 (2021) 028 [2103.06896].

[116] R.T. Co, Y. Mambrini and K.A. Olive, *Inflationary Gravitational Leptogenesis*, 2205.01689.

[117] KATRIN collaboration, *Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN*, Phys. Rev. Lett. 123 (2019) 221802 [1909.06048].

[118] R. Anantua, R. Easther and J.T. Giblin, *GUT-Scale Primordial Black Holes: Consequences and Constraints*, Phys. Rev. Lett. 103 (2009) 111303 [0812.0825].

[119] R. Saito and J. Yokoyama, *Gravitational wave background as a probe of the primordial black hole abundance*, Phys. Rev. Lett. 102 (2009) 161101 [0812.4339].
[120] D. Hooper, G. Krnjaic, J. March-Russell, S.D. McDermott and R. Petrossian-Byrne, *Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe*, 2004.00618.

[121] J. Kozaczuk, T. Lin and E. Villarama, *Signals of primordial black holes at gravitational wave interferometers*, 2108.12475.

[122] N. Bernal and F. Hajkarim, *Primordial Gravitational Waves in Nonstandard Cosmologies*, *Phys. Rev. D* **100** (2019) 063502 [1905.10410].

[123] H.-K. Guo, K. Sinha, D. Vagie and G. White, *Phase Transitions in an Expanding Universe: Stochastic Gravitational Waves in Standard and Non-Standard Histories*, 2007.08537.

[124] J.A. Casas and A. Ibarra, *Oscillating neutrinos and $\mu \rightarrow e, \gamma$*, *Nucl. Phys. B* **618** (2001) 171 [hep-ph/0103065].