Prognostic factors in the surgical treatment of caudate lobe hepatocellular carcinoma

Peng Liu, Jia-Mei Yang, Wen-Yang Niu, Tong Kan, Feng Xie, Dian-Qi Li, Ye Wang, Yan-Ming Zhou

Abstract

AIM: To evaluate the short- and long-term outcomes of liver resection for caudate lobe hepatocellular carcinoma (HCC).

METHODS: We retrospectively analyzed 114 consecutive patients with HCC, originating from the caudate lobe, who underwent resection between January 2001 and January 2007. Univariate and multivariate analyses were performed on several clinicopathologic variables to determine the factors affecting long-term outcome and intrahepatic recurrence.

RESULTS: Overall mortality and morbidity were 0% and 18%, respectively. After a median follow-up of 31 mo (interquartile range, 11-66 mo), tumor recurrence had occurred in 76 patients (66.7%). The 1-, 3-, and 5-year disease-free survival rates were 65.7%, 38.1%, and 18.4%, respectively. The 1-, 3-, and 5-year overall survival rates were 76.1%, 54.7%, and 31.8%, respectively. Univariate analysis showed that subsegmental location of the tumor (45.7% vs 16.2%, P = 0.01), liver cirrhosis (12.3% vs 47.9%, P = 0.03), surgical margin (18.5% vs 54.6%, P = 0.04), vascular invasion (37.9% vs 23.2%, P = 0.04) and extended caudate resection (42.1% vs 15.4%, P = 0.04) were related to poorer long-term survival. Multivariate analysis showed that only subsegmental location of the tumor, liver cirrhosis and surgical margin affected long-term survival.

CONCLUSION: Hepatectomy was an effective treatment for HCC in the caudate lobe. The subsegmental location of the tumor, liver cirrhosis and surgical margin affected long-term survival.

© 2010 Baishideng. All rights reserved.

Key words: Hepatectomy; Hepatocellular carcinoma; Caudate lobe; Prognostic factors

Peer reviewer: Dr. Robert Obermaier, Professor, MD, Department of General and Digestive Surgery, Albert-Luswigs University Freiburg, University Hospital, Hugstetter Str. 55, Freiburg 79106, Germany

Liu P, Yang JM, Niu WY, Kan T, Xie F, Li DQ, Wang Y, Zhou YM. Prognostic factors in the surgical treatment of caudate lobe hepatocellular carcinoma. World J Gastroenterol 2010; 16(9): 1123-1128 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i9/1123.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i9.1123

INTRODUCTION

Refined surgical and anesthetic techniques, a better understanding of liver anatomy[1,2], and improvements in postoperative management have increased the indications for hepatectomy in patients with hepatocellular carcinoma (HCC) in the caudate lobe. Hepatic resections can now
be performed in high-volume centers with an acceptable morbidity of 50%-60% and no mortality[15,16]. Caudate HCC has a poorer prognosis than HCC originating from other lobes due to its proximity to the portal trunk and inferior vena cava, which facilitates intrahepatic and systemic spread early in the disease[5,6]. Although some surgeons have reported successful surgical treatment of caudate HCC with transarterial chemoembolization (TACE)[7,8] or local ablation[9-11], hepatic resection has been considered to be the treatment of first choice[12-14]. The most important factor currently limiting the disease-free interval is the high rate of tumor recurrence, which ranges from 50%-60% at 3 years[15,16]. In order to improve surgical outcome, it is necessary to evaluate the potential risk factors for long-term survival and to establish guidelines for the appropriate use of hepatectomy for caudate lobectomy. We therefore retrospectively evaluated 114 consecutive patients who underwent hepatic resection for HCC originating in the caudate lobe, in order to assess the influence of common clinicopathologic variables on recurrence and long-term survival.

MATERIALS AND METHODS

Between January 2001 and January 2007, 114 consecutive patients with HCC in the caudate lobe underwent hepatic resection at the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University. Computed tomography (spiral-CT), detection of serum α-fetoprotein level (AFP), and hepatic ultrasound-guided fine-needle biopsy were used for preoperative diagnosis of HCC. Needle biopsy was not performed in patients with an elevated serum level of AFP and typical imaging of HCC, to avoid needle tract seeding of tumor cells. Clinicopathologic and follow-up data for each patient were recorded in a computerized database, regularly updated for tumor recurrence and survival status. Resection was considered “extended” if the caudate lobe as well as other lobes or segments were removed, according to Couinaud’s classification. Intraoperative ultrasound was routinely performed in all patients, in order to detect tumor invasion into the major branches of the portal vein and hepatic veins, or the presence of lesions in the contralateral lobe. Tumor clearance at the resection margins of at least 5 mm was considered adequate to define the surgical procedures as curative (R0)[8,9]. Hospital mortality was defined as death within 30 d after operation, including operative deaths. Tumor recurrence was considered as evidence of hepatic tumoral lesions after a curative resection. All patients discharged were followed-up at our department every 3 mo in the first year, every 6 mo in the second year, and every 6 mo thereafter. The follow-up consisted of physical examination, blood tests, serologic liver function test, detection of serum AFP level and liver ultrasound or CT scan.

Liver resection was carried out using a clamp-crushing technique in all patients. Intraoperative ultrasonography was routinely used to locate the carcinoma, exclude daughter nodules, and identify the relationship of the tumor with the major vessels, so minimizing blood loss and avoiding injury to the main trunk vessels. We used multiple occlusion techniques, including continuous or intermittent Pringle maneuver, hemihepatic vascular clamping, or total hepatic vascular exclusion, determined on a case-by-case basis.

Statistical analysis

Continuous data were expressed as medians and interquartile ranges. Survival curves were calculated using the Kaplan-Meier method and compared using the log-rank test. For comparison of survival, continuous variables were dichotomized using the respective medians as the cut-off values. Only the variables that were significant in univariate analysis were entered into a Cox regression model to identify the clinicopathologic factors with independent prognostic significance. Patients with hospital mortality (within 30 d) were excluded from the evaluation of these factors with regard to long-term and disease-free survival. Statistical analysis was carried out using SPSS computer software (SPSS Inc., Chicago, IL, USA). Differences were considered significant if the P value was < 0.05.

RESULTS

The clinicopathologic characteristics of the 114 resected patients are shown in Table 1. There were 87 males (76%) and 27 females (24%). The median age was 49 years. The Child-Pugh grading system for the prognosis of liver cirrhosis was applied in all patients. All patients were classified as Child-Pugh grade A. Data regarding serum AFP levels were available for all patients, and 90 patients (79%) were AFP-positive. The median preoperative AFP level was 195 ng/mL. Seventy-eight (68.4%) patients had undergone isolated caudate lobectomy and 36 (31.6%) had undergone extended caudate lobectomy (Table 2).

A curative resection (surgical margin > 5 mm) was achieved in 59% of cases (67 patients). Histopathologic examination showed that 84% of patients had a differentiated tumor (74% trabecular type, 1% fibrolamellar type, and 9% mixed type), while 16% had undifferentiated tumors. Vascular invasion was found in 38% of patients. There was no postoperative mortality. The hospital morbidity rate was 18% (21 patients). The most frequent complications were infections (abdominal abscess, pleural effusion and bronchopneumonia), liver failure, hemorrhage, ascites and mild lower limb edema.

The median follow-up period was 31 mo (interquartile range, 11-66 mo). A total of 65 patients (57.0%) died during the follow-up period. Eight patients (7.0%) were lost to follow-up at 4, 7, 9, 18, 30, 42, 50 and 54 mo. Up to the last follow-up date (January 2007), 41 patients (36.0%) were alive, of whom, 21 were disease-free (18.4%). Tumor recurrence occurred in 49 patients (75.4%), and disease progression was the leading cause of death in 65 patients (57.0%). The 1-, 3-, and 5-year disease-free survival rates were 65.7%, 38.7%, and 18.8%, respectively. The 1-, 3-, and 5-year overall survival rates were 76.1%, 54.7%, and 31.8%, respectively (Figure 1).

Statistical analysis

The prognostic influences of the clinicopathologic char-
characteristics are shown in Table 3. There were no associations between age or sex and survival rate. No significant differences in survival rate were noted between patients with AFP levels > or \(\leq \) 200 ng/dL, with tumor sizes \(\leq \) or > 5 cm, with or without capsulated tumors, or among patients with well-differentiated or poorly-differentiated HCC. The extent of the hepatic resection (isolated vs extended) did not influence the long-term survival. The effect of tumor subsegmental location was also investigated and it was shown that there was a significant survival difference between patients with tumors in the Spiegel lobe compared to the paracaval portion and caudate process (\(P < 0.01 \)). There was no significant difference in 3-year survival between solitary and multiple tumors, but a significant difference in overall survival was observed between patients with or without liver cirrhosis. The 5-year survival rate of patients without cirrhosis was significantly higher than in patients with viral cirrhosis (47.9% vs 12.3%, \(P = 0.03 \)). The presence or absence of vascular invasion was also a significant prognostic factor for survival; patients without vascular invasion had significantly higher 5-year survival rates than those with vascular invasion (37.9% vs 23.2%, \(P = 0.05 \)).

In multivariate analysis, only subsegmental location, liver cirrhosis and surgical margin were confirmed as independent prognostic factors for overall survival (Table 4). None of the clinicopathologic factors analyzed were significantly correlated with disease-free survival (Table 5).

DISCUSSION

Although HCC arising from the caudate lobe has been reported to be relatively rare, its surgical treatment...
Table 3 Overall survival: univariate analysis of prognostic clinicopathologic factors

Clinicopathologic Factors	3-yr survival (%)	5-yr survival (%)	P-value
Age (yr)			
≤ 65	52.8	34.2	0.24
> 65	63.1	52.0	
Gender			
Male	56.1	38.4	0.41
Female	60.6	50.0	
Cirrhosis			
Yes	35.0	12.3	0.03
No	60.6	47.9	
Serum AFP (ng/mL)			
≤ 200	55.9	34.6	0.57
> 200	55.4	45.5	
Tumor location			
Spiegel lobe	63.1	45.7	0.01
Paracaval portion	22.9	16.2	
Caudate process	25.2	14.9	
Tumor size (cm)			
≤ 5	58.4	43.3	0.48
> 5	57.0	39.4	
Pringle maneuver			
No	67.7	42.1	0.73
Yes	62.5	37.9	
Surgical margin (mm)			
≤ 5	20.4	18.5	0.02
> 5	60.7	54.6	
Surgical treatment			
Isolated caudate lobectomy	52.1	42.1	0.04
Extended hepatectomy	27.9	15.4	
Histologic grading			
Differentiated	57.7	33.6	0.79
Undifferentiated	52.2	29.4	
Capsule			
No	65.3	41.5	0.70
Yes	56.1	35.9	
Vascular invasion			
No	52.4	37.9	0.05
Yes	29.2	23.2	
Daughter nodules			
No	56.1	36.8	0.38
Yes	45.3	25.0	

Table 4 Overall survival: multivariate analysis of prognostic clinicopathologic factors

Clinicopathologic Factors	Hazard ratio	95% CI	P-value
Location of tumor	0.176	0.046-0.701	0.02
Liver cirrhosis	4.874	1.107-19.339	0.04
Surgical margin	1.36	0.210-2.375	0.04

Table 5 Disease-free survival: univariate analysis of prognostic clinicopathologic factors

Clinicopathologic Factors	3-yr survival (%)	5-yr survival (%)	P-value
Age (yr)			
≤ 62	46.7	21.7	0.76
> 62	38.2	31.4	
Gender			
Male	49.4	26.4	0.43
Female	25.1	20.7	
Cirrhosis			
Yes	42.6	37.2	0.19
No	51.9	29.3	
Serum AFP (ng/mL)			
≤ 200	36.5	20.1	0.66
> 200	32.4	29.7	
Tumor location			
Spiegel lobe	50.5	34.4	0.07
Paracaval portion	36.9	20.6	
Caudate process	41.0	26.2	
Tumor size (cm)			
≤ 5	40.6	23.0	0.69
> 5	44.0	26.4	
Pringle maneuver			
No	40.4	22.6	0.66
Yes	36.1	19.8	
Surgical margin			
Positive	42.6	22.8	0.08
Negative	55.2	30.7	
Surgical treatment			
Isolated caudate lobectomy	43.4	24.0	0.35
Extended hepatectomy	41.7	35.8	
Histologic grading			
Differentiated	42.1	24.2	0.42
Undifferentiated	33.9	28.7	
Capsule			
No	36.3	19.0	0.65
Yes	43.8	26.3	
Vascular invasion			
No	45.0	29.7	0.25
Yes	34.0	21.3	
Daughter nodules			
No	56.1	36.8	0.09
Yes	45.3	25.0	

Due to the lack of large series of patients with HCC in the caudate lobe, studies have produced conflicting reports on the effect of this surgery and prognosis following liver resection. During the late 1980s to early 1990s, several groups reported that HCCs originating in the caudate lobe easily produced intrahepatic metastases because of the corresponding short portal veins, giving these patients a poor prognosis. Others during the late 1990s[6,16,22], however, reported comparable survival rates for patients with HCCs in the caudate lobe and those with HCCs in other parts of the liver. Our results were in accord with the former findings. In this study, we performed multivariate analysis and calculated survival rates for patients with caudate HCC after resection, in relation to clinicopathologic factors. Our data showed that long-term survival of patients with HCC after hepatectomy depended on the background of cirrhosis, subsegmental location of HCC, surgical resection margin, and extended caudate resection. The overall survival rates in our group after resection of HCC of the caudate lobe were 76.1% at 1 year, 54.7% at 3 years and 31.8% at 5 years. The disease-free survival rates were...
been found at some distance from the tumor, it is usually the size of the surgical margin is controversial, particularly in those located in the caudate lobe. Although we aimed to preserve a wide margin where possible in the current series, it measured < 5 mm in 44% of patients. After analysis of 209 consecutive liver resections in patients with HCC, Tralhão et al failed to identify any factors significantly predictive of a thin surgical margin, but thin margins were more common in patients with large tumors, and particularly in those with centrally located tumors. Even in patients with small but centrally located tumors, surgical margins of > 10 mm were infrequent. In our study, 64% of tumors were > 5 cm and related to the paracaval portion, which may be the main reason for the lower incidence of negative margins. Although extensive hepatectomy can obtain a high negative margin rate, only 32% of patients in this study underwent extended caudate lobectomy due to the presence of liver cirrhosis and underlying hepatitis. These results support the prognostic significance of surgical margin and extended resection for overall survival, and suggest that efforts should be made to increase the tumor-free margin. Extended caudate lobectomy is recommended, so long as acceptable liver function is maintained. It has been suggested that adjuvant intraarterial chemotherapy and/or preoperative TACE may reduce the risk of tumor recurrence and improve long-term survival following liver resection for caudate HCC. However, this was not confirmed in our study. Prospective, randomized clinical trials are needed to investigate the role of perioperative TACE for caudate HCC.

In conclusion, hepatectomy was an effective treatment for HCC in the caudate lobe. The subsegmental location of the tumor, presence of liver cirrhosis and the surgical margin affected long-term survival.

BACKGROUND

Hepatic resection is considered, in principle, to be the first choice for treatment of hepatocellular carcinoma (HCC) in the caudate lobe. However, the surgical treatment for HCC in the caudate lobe presents a major challenge and is associated with high risks for the surgeon, due to its unique anatomic location and complicated relationship with the major vasculature. Until now, the prognosis for patients following resection of caudate lobe HCC has not been fully determined.

RESEARCH FRONTIERS

Caudate HCC has a poorer prognosis than HCC originating from other lobes, due to its proximity to the portal trunk and inferior vena cava, which facilitate its intrhepatic and systemic spread early in the disease. A large number of studies have confirmed that liver disease, tumor grade, tumor size, tumor margin, blood loss and other factors influence the incidence of tumor recurrence and long-term survival after resection of HCC.

 innovations and breakthroughs

Hepatectomy was an effective treatment for HCC in the caudate lobe. The subsegmental location of the tumor, presence of liver cirrhosis and surgical margin affected long-term survival.

APPLICATIONS

The results of this research suggest that surgeons should make every effort to increase the tumor-free margin. Extended caudate lobectomy is recommended, so long as liver function can be maintained.

Terminology

The caudate lobe is generally divided into three regions: the left Spiegel, the
Peer review

The authors report a series of 114 liver resections in patients with HCC in the caudate lobe. The peripatetic data, complications and outcome were analyzed. This study addressed an important and interesting issue.

REFERENCES

1 Abdalla EK, Vauthey JN, Couinaud C. The caudate lobe of the liver: implications of embryology and anatomy for surgery. Surg Oncol Clin N Am 2002; 11: 835-848
2 Kogure K, Kuwano H, Fujimaki N, Makuuchi M. Relation among portal segmentation, proper hepatic vein, and external notch of the caudate lobe in the human liver. Ann Surg 2000; 231: 223-228
3 Hawkins WG, DeMatteo RP, Cohen MS, Jarnagin WR, Fong Y, D’Angelica M, Gonen M, Blumgart LH. Caudate hepatectomy for cancer: a single institution experience with 150 patients. J Am Coll Surg 2005; 200: 345-352
4 Tanaka S, Shimada M, Shirabe K, Maehara S, Tsujita E, Taketomi A, Maehara Y. Surgical outcome of patients with hepatocellular carcinoma originating in the caudate lobe. Ann J Surg 2005; 190: 451-455
5 Takayasu K, Muramatsu Y, Shima Y, Goto H, Moriyama K. Isolated caudate lobectomy by anterior approach for malignant tumors of the caudate lobe for primary and recurrent hepatocellular carcinomas. J Am Coll Surg 1997; 184: 83-88
6 Saad H, Louissaint A, Farges O, Reau E, Pichot V, Jian Y, Winter et al. Surgical outcomes of isolated caudate lobe resection: a single series of 19 patients. Surgery 2002; 132: 697-708, discussion 708-709
7 Ikai I, Ariti S, Koijiro M, Ichida T, Makuuchi M, Matsuyama Y, Nakamura Y, Okita K, Omata M, Takayasu K, Yamaoka Y. Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma originating in a Japanese nationwide survey. Cancer 2004; 101: 796-802
8 Asahara T, Dohi K, Hino H, Nakahara H, Katayama K, Itamato T, Ono E, Moriwaki K, Yuge O, Nakashima T, Kitamoto M. Isolated caudate lobectomy by anterior approach for hepatocellular carcinoma originating in the paracaval portion of the caudate lobe. Hepatobiliary Pancreat Surg 1996; 5: 416-421
9 Portolani N, Conigliaro A, Ghidoni S, Giovannielli M, Benetti A, Tiberio GA, Giulini SM. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg 2006; 242: 229-235
10 Taura K, Ikai I, Hatano E, Yasukicha K, Nakajima A, Tada M, Seo S, Machimoto T, Uemoto S. Influence of coexisting cirrhosis on outcomes after partial hepatectomy for hepatocellular carcinoma: an analysis of 239 patients. Surgery 2007; 142: 685-694
11 Jaeck D, Bacheller P, Oussoultzoglou E, Weber JC, Wolf P. Surgical resection of hepatocellular carcinoma. Post-operative outcome and long-term results in Europe: an overview. Liver Transpl 2004; 10: 558-563
12 Ercolani G, Grazi GL, Ravaiol M, Del Gaudio M, Cardini A, Cescon M, Varotti G, Cetta F, Cavallanti A. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg 2003; 237: 536-543
13 Lee SG, Hwang S, Jung JP, Lee YJ, Kim KH, Ahn CS. Outcome of patients with huge hepatocellular carcinoma after primary resection and treatment of recurrent lesions. Br J Surg 2007; 94: 320-326
14 Lei HJ, Chau GY, Lui WY, Tsay SH, King KL, Loong CC, Wu CW. Prognostic value and clinical relevance of the 6th Edition 2002 American Joint Committee on Cancer staging system in patients with resectable hepatocellular carcinoma. J Am Coll Surg 2006; 203: 426-435
15 John AR, Khan S, Mirza DF, Mayer AD, Buckels JA, Bramhall SR. Multivariate and univariate analysis of prognostic factors following resection in HCC: the Birmingham experience. Dig Surg 2006; 23: 103-109
16 Laurent C, Blanc JF, Nobili S, Sa Cunha A, Le Bail B, Bioulac-Sage P, Balabaud C, Capron M, Saric J. Prognostic factors and long-term survival after hepatic resection for hepatocellular carcinoma originating from noncirrhotic liver. J Am Coll Surg 2005; 201: 656-662
17 Tralhão JG, Kayal S, Dagher I, Sahnueza M, Vons C, Franco D. Resection of hepatocellular carcinoma: the effect of surgical margin and blood transfusion on long-term survival. Analysis of 209 consecutive patients. Hepatogastroenterology 2007; 54: 1200-1206