Leaf nutrient homeostasis and maintenance of photosynthesis integrity contribute to adaptation of the pea mutant SGECd1 to cadmium

A.A. BELIMOV1*, I.C. DODD2, V.I. SAFRONOVA1, and K.-J. DIETZ3

All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608, Saint-Petersburg, Russia1
Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, United Kingdom2
Biochemistry and Physiology of Plants, Bielefeld University, D-33501, Bielefeld, Germany3

Abstract

Cadmium (Cd) is a highly toxic and widespread soil pollutant, which negatively affects various aspects of plant growth and physiology. Here, the role of photosynthesis in response to Cd was investigated in the Cd-tolerant pea (\textit{Pisum sativum} L.) mutant SGECd1. The wild type SGE and the mutant SGECd1 were grown in a hydroponic solution supplemented with 1, 3, or 4 \textmu{}M CdCl\textsubscript{2} for 12 d. Root and shoot biomasses of the Cd-treated SGECd1 were significantly higher than of SGE. Cadmium had little effect on the quantum yield of photosystem II (\textit{\phi}PSII) and chlorophyll content of intact leaves of both pea genotypes. However, when leaf slices were taken from Cd-exposed plants and incubated with high Cd concentrations, the SGECd1 mutant showed 1.5 - 2 times higher \textit{\phi}PSII values than SGE, with genotypic differences maximal at 0.1 and 1 mM CdCl\textsubscript{2}. In contrast, when leaf slices were taken from plants previously unexposed to Cd, both pea genotypes exhibited similar \textit{\phi}PSII values. Cadmium content in leaves and mesophyll protoplasts of Cd-treated SGECd1 were about 2 - 3 times higher than in SGE ones. The mutant leaves and mesophyll protoplasts had also higher Ca, Mg, Mn, and Zn content. Thus, SGECd1 acclimated to Cd during growth in the Cd-supplemented nutrient solution by developing a molecular mechanism related to photosynthetic integrity. A higher foliar nutrient content likely allows enhanced photosynthesis by counteracting the damage of leaves caused by Cd.

Additional key words: calcium, chlorophyll, magnesium, manganese, protoplast, quantum yield of photosystem II, zinc.

Introduction

Cadmium (Cd) is one of the most toxic and widely spread soil pollutants. Cd affects plant growth and metabolism and inhibits photosynthesis in various plants (Krupa et al. 1993, Böddi et al. 1995, Ouzounidou et al. 1997, Haag-Kerwer et al. 1999, Baryla et al. 2001, Pietrini et al. 2003, Drążkiewicz et al. 2003, Krevésan et al. 2004, Zhou and Qui 2005) including pea (Sandalo et al. 2001, Balakhnina et al. 2005). Cd-induced inhibition of photosynthesis is apparent from various photosynthesis-related processes, in particular lowered chlorophyll \textit{a} fluorescence (e.g. in pea, see Balakhnina et al. 2005), inhibited rates of photosynthetic electron transport (Küpper et al. 2007) and Calvin cycle reactions (Krupa et al. 1993), decreased chlorophyll biosynthesis (Böddi et al. 1995), impaired integration of chlorophyll into proteins (Horvath et al. 1996), inhibition of photosynthetic enzymes (Krupa et al. 1995, Siedlecka et al. 1998) and substitution of Mg2+ in chlorophyll (Shaul 2002). Thus, various photosynthesis-related markers can indicate Cd toxicity in plants.

Plants have evolved a number of mechanisms to tolerate and/or avoid toxic effects of Cd (Sanita di Topp and Gabrielli 1999, Hasan et al. 2009, Lin and Aarts 2012). Genetics offers powerful tools to study mechanisms protecting plants against Cd and other toxic heavy metals. Several mutants with increased heavy metal sensitivity have been described. The Cd-sensitive mutants \textit{cad}1 and \textit{cad}2 of \textit{Arabidopsis thaliana} are deficient in phytochelatin synthase (Höwden et al. 1995, Ha et al. 1999) and \textit{\gamma}-glutamyleysteine synthetase (Cobbet et al. 1998), respectively, demonstrating the important role of phytochelatins in Cd detoxification. Increased Cd uptake rates of the Cd-sensitive rice mutant significantly inhibited growth (He et al. 2007). Important roles of the ascorbate-glutathione cycle, antioxidant enzymes, and phytochelatins in tolerance and accumulation of Cd by plants were revealed in the Cd-tolerant rice mutant

Submitted 28 October 2019, last revision 9 April 2020, accepted 21 April 2020.

Abbreviations: \textit{\phi}PSII - quantum yield efficiency of photosystem II; SGE - wild type pea line; SGECd1 - Cd-tolerant pea mutant.

Acknowledgements: We are very grateful to Ms. Elfriede Reisberg for ICP-AES measurements of elements in mesophyll protoplasts. The hydroponic experimental work was supported by the INTAS (project 01-2170 PC 2001) and the Royal Society (project IJP-2009/R4). Elemental analysis of leaves was supported by the Russian Science Foundation (project 19-16-00097).

* Corresponding author; e-mail: belimov@rambler.ru
cadvH-5 (Shen et al. 2012). The increased Cd and Pb tolerance of the *A. thaliana* mutant *cdhr-1D* was explained by low metal accumulation due to active expression of *AtPDR8/AtPDR12* genes, encoding transporters responsible for excluding these metals from the cytoplasm, as well as by activating glutathione biosynthesis (Wang et al. 2011). Three *A. thaliana* mutants showed distinctly different Cd responses: the mutant *MRC-32* exhibited enhanced tolerance to and accumulation of Cd, *MRC-22* showed a Cd-phobic response of roots, and *MRC-26* accumulated less Cd in the shoot (Watanabe et al. 2010). However, the mechanisms causing these phenotypic changes need to be elucidated. Enhanced copper accumulation in plant tissues caused greater Cu sensitivity of the *A. thaliana* mutant *cup1* (Van Vliet et al. 1995). The pea mutant *E107* (brz) had greater Fe (Welch and LaRue 1990) and Pb (Chen and Huang 2007) accumulation and decreased Al tolerance (Guinel and LaRue 1993) due to acidification of the rhizosphere. Active formation of root cell wall material binding Pb caused increased Pb accumulation in the *Brassica juncea* mutant *7/15-1* (Schulman et al. 1999).

The pea mutant SGECoC*4* carries a recessive mutation in one gene and shows increased Cd tolerance and Cd accumulation (Tsyganov et al. 2007). Although the mutated gene in SGECoC*4* is still not found, the proposed mechanisms involved in its Cd tolerance were related to maintenance of biochemical and nutrient homeostasis (Tsyganov et al. 2007, Belimov et al. 2016), water relations (Belimov et al. 2015) and proper root growth and function (Belimov et al. 2018) under Cd stress. Therefore, an important next step was to study the effects of Cd on plant photosynthesis using this pea mutant and to determine its photosynthetic activity in order to better understand the mechanisms involved in plant response to toxic heavy metals. Whether the enhanced Cd accumulation of this mutant induced cellular tolerance mechanisms was investigated by comparing the photosynthetic responses to Cd in tissues from control (previously not exposed to Cd) and Cd-treated plants *in vitro*.

Materials and methods

Plants and cultivation: The laboratory pea (*Pisum sativum L.*) line SGE and its Cd-tolerant mutant SGECoC*4* (Tsyganov et al. 2007) originated from the collection of the All-Russia Research Institute for Agricultural Microbiology were propagated by the authors.

Seeds were surface-sterilised and scarified by treatment with 98 % (m/v) *H*2*SO*4 for 30 min, rinsed carefully with tap water, and germinated on filter paper at 25 °C in the dark for 3 d. Seedlings were transferred to plastic pots (2 pots with 3 seeds per genotype and treatment) containing 500 cm3 of nutrient solution [µM]: KH2PO4, 110; Ca(NO3)2, 50; MgSO4, 400; KCl, 300; CaCl2, 70; NaCl, 5; Fe-tartrate, 2; H2BO3, 1; MnSO4, 1; ZnSO4, 1; Na2MoO4, 0.03; CuSO4, 0.8; pH 5.5. CdCl2 was added to the solution the next day in final concentrations of 0, 1, 3, or 4 µM. Experiments with 0 and 3 µM CdCl2 were performed at Bielefeld University (Bielefeld, Germany) and experiments with 0, 1 and 4 µM CdCl2 performed at Lancaster University (Lancaster, UK). The plants were cultivated for 12 d in a growth chamber at a 12-h photoperiod, a photon flux density of 200 µmol (photons) m-2 s-1, day/night temperatures of 23/18 °C, and a relative humidity between 50 and 60 %. The non-aerated nutrient solution was replaced twice, after 5 and 8 d of Cd exposure. Protoplasts were isolated from leaves of plants treated with 3 µM CdCl2. Chlorophyll content of second true leaves were determined as described by Dietz et al. (1992). The root and shoot fresh mass (FM) and dry mass (DM) were determined for each plant.

Quantum yield efficiency of photosystem (PS) II: Second true leaves were sliced into pieces (about 1 × 6 mm) with a sharp razor, and floated on solutions of increasing Cd-concentrations in the dark (0, 0.1, 1, and 10 mM CdCl2). Chlorophyll a fluorescence emission was used to calculate the quantum yield efficiency of PS II (ϕPSII) after 6-h Cd-treatment (Cho et al. 2003). Three experiments were performed with 18 determinations for each genotype and treatment using the pulse amplitude-modulated chlorophyll fluorescence meter PAM 100 (Heinz Walz, Effeltrich, Germany). The same method was used for ϕPSII determination of intact leaves the day before harvest in two experiments with about 100 determinations for each genotype and treatment using the plant efficiency analyser (Hansatech Instruments, King’s Lynn, Norfolk, UK).

Protoplast isolation and analysis: Protoplasts were isolated as described by Tsyganov et al. (2007). Briefly, leaves were sliced into 2-mm sections with a sharp razor and vacuum-infiltrated with 10 cm3 of sorbitol medium with 400 mM sorbitol, 20 mM KCl, 10 mM CaCl2 and 20 mM MES (pH 5.7) supplemented with 1.5 % (v/v) cellulase *Onozuka R10* and 0.4 % (v/v) *Macerzyme R10*, and incubated in Petri dishes at 30 °C in the dark for 2.5 h. The released protoplasts were filtered and layered on top of 1 cm3 of Percoll® medium (400 mM sorbitol, 20 mM KCl, 10 mM CaCl2, 20 mM MES, pH 5.7). A discontinuous gradient was formed by successively layering 40 %, 30 %, and 20 % Percoll medium and sorbitol medium on top. After centrifugation at 4 °C for 3 min each at 800 g and 3000 g, the protoplast fraction was collected from the interface at 40 % and 30 % Percoll. Chlorophyll content in protoplast suspensions was determined as by Dietz et al. (1992).

Plant elemental analysis: The protoplasts were digested in 10 % HNO3 (v/v) at 165 °C under pressure. The extracts were analysed for Cd and nutrients content with an inductively coupled plasma atomic emission spectrometer (Jobin Yvon JY 70, Instruments S.A., Longjumeau, France). Leaves were dried, ground and digested in a mixture of concentrated HNO3; and 38 % H2O2 at 70 °C using DigiBlock (LabTech, Sorisole, Italy). Concentrations of elements in digested leaves were determined using an inductively coupled plasma atomic emission spectrometer ICPE-9000 (Shimadzu, Kyoto, Japan).

Statistical analysis and data calculations: The data were processed by analysis of variance (MANOVA) using
the software STATISTICA v. 10.0 (TIBCO Software Inc., Palo Alto, CA, USA). Standard errors (SEs) and standard deviations (SDs) were calculated. The Fisher’s least significant difference test (one way ANOVA) was used to evaluate differences between means.

The estimated distribution of elements in the mesophyll protoplasts relative to leaves was calculated as a relative share of element (RSE) using a formula: RSE = [(E_{MP} \times Cd) / (E_i \times Cd_{ap})] \times PL_{Cd}, where E_{MP} is element content in mesophyll protoplasts, E_i is element content in leaves, Cd_{ap} is Cd content in mesophyll protoplasts, Cd_i is Cd content in leaves, PL_{Cd} is assumed percent localization of Cd in mesophyll protoplasts. Two scenarios were calculated based on the assumption of 100 % PL_{Cd} or 75 % PL_{Cd}. Cadmium was chosen in this formula because it was the element with the highest relative abundance in the mesophyll protoplasts. By this way, the estimated distribution (relative share) of elements in the mesophyll protoplasts was obtained in the percentage of total.

Results and discussion

Treatment with 3 µM Cd significantly reduced root length and biomass of both pea genotypes (Table 1). Cd-treated SGECd mutant had 1.8-fold longer roots and 2.4-fold more biomass than SGE. Cd also inhibited shoot growth of SGE by 35 %, whereas shoot biomass of SGECd was not affected. These data agree with our previous results where plants were cultivated at 3 µM Cd (Tsyganov et al. 2007). In the second set of experiments, two Cd concentrations were chosen resulting in similar growth inhibition of SGE at 1 µM Cd and SGECd at 4 µM Cd, in aiming to induce the same physiological reactions in both genotypes (Table 2).

When the plants were grown at 3 µM Cd, the φPSII of intact leaves (measured in the afternoon) was slightly decreased only in the mutant by 4 % and no genotypic differences were observed in the presence or absence of Cd (Table 1). Treatment with 1 µM Cd slightly decreased φPSII of intact SGE leaves measured in the morning and afternoon by 3 % (Table 3). SGECd treated with 1 µM Cd showed slightly increased φPSII by 3 % as compared to SGE treated with 4 µM Cd. Although the described differences between treatments or genotypes were statistically significant, they did not exceed 5 %.

Using chlorophyll a fluorescence emission to study Cd effects on photosynthesis gives variable results depending on Cd concentration, exposure time, and plant species. A short (2 h) exposure of pea roots to high Cd concentration (1 mM) halved the variable fluorescence (Fv) in leaves (Balakhnina et al. 2005). However, a long exposure (about 10 d) to relatively low Cd concentrations (up to 50 µM depending on plant species) had no effect on chlorophyll a fluorescence in leaves of various species, such as Phaseolus vulgaris (Krupa et al. 1993), Triticum aestivum (Ouzounidou et al. 1997), Brassica juncea (Haag-Kerwer et al. 1999), Phragmites australis (Pietrini et al. 2003), Zea mays (Drazkiewicz et al. 2003), and the Cd-hyperaccumulating plant Sedum alfredii (Zhou and Qui 2005). Overall the effects of Cd on chlorophyll a fluorescence were small.

A detailed study of chlorophyll fluorescence parameters using the hyperaccumulating plant Thlaspi caerulescens showed that Cd inhibited the photosynthetic light reactions more than the Calvin cycle (Kupper et al. 2007). Chlorophyll a fluorescence of the legume crop P. vulgaris measured in dark-acclimated leaves was not affected by Cd, whereas in constant irradiance with open photosystem II reaction centres it was inhibited (Krupa et al. 1993). Therefore, the authors concluded that the Calvin cycle reactions were more likely than photosystem II to be the primary targets of Cd toxicity. However, in our experiments with pea the effect of Cd on intact leaves was independent of time of day for both genotypes. Therefore, the activity of photosynthesis in intact leaves was approximately the same in both genotypes in the presence or absence of Cd.

Chlorophyll content did not differ between genotypes for untreated plants and for plants treated with 1 µM Cd. However, 1 µM Cd decreased chlorophyll a+b content by 11 % and 4 µM Cd decreased chlorophyll b content by 8 % (Table 3). However, 4 µM Cd decreased chlorophyll b content more in the SGECd mutant (by 13 %) than in SGE, perhaps related to the faster shoot growth of SGECd in the presence of toxic Cd, since its shoot biomass was twice that of SGE (Table 2).

![Fig. 1. Cadmium effect on quantum yield efficiency of photosystem II (φPSII) in leaf slices of wild type (SGE, ○) and mutant (SGECd, ●) pea. The plants were grown in a nutrient solution in the absence or presence of 3 µM CdCl2 for 10 d. The leaf slices were treated with 0, 0.1, 1, or 10 mM CdCl2 for 6 h. Data are means ± SDs of three experiments with six determinations each.](Image 1 to 547x478)
Table 1. Effect of cadmium (3 µM CdCl₂) on plant growth parameters and quantum yield efficiency of photosystem II (φPSII) in intact leaves of wild type (SGE) and mutant (SGECd) pea. Data are means ± SEs of three experiments; for growth parameters n = 36, for φPSII n = 75. Measurements were performed in the afternoon (3-4 pm). Different letters show significant differences between genotypes and treatments (Fisher’s least significant difference test, P ≤ 0.05).

Treatment	Genotype	Root length [cm]	Biomass [mg (plant f.m.)⁻¹]	φPSII [dF/Fm × 10⁻³]		
			Root	shoot		
Untreated plants	SGE	21 ± 0.6ᵇ	480 ± 21ᶜ	581 ± 15ᵇ	734 ± 6ᵇ	
	SGECd	22 ± 0.6ᶜ	450 ± 18ᵈ	569 ± 16ᵇ	749 ± 5ᵇ	
Treated with 3 µM CdCl₂	SGE	11 ± 0.4ᵃ	109 ± 7ᵃ	379 ± 13ᵃ	717 ± 7ᵃ	
	SGECd	20 ± 0.6ᵇ	265 ± 14ᵇ	540 ± 19ᵇ	717 ± 6ᵇ	

Table 2. Effect of cadmium (1 and 4 µM CdCl₂) on growth of wild type (SGE) and mutant (SGECd') pea. Data are means ± SEs of two experiments. Different letters show significant differences between genotypes and treatments (Fisher’s least significant difference test, P ≤ 0.05, n = 20).

Treatment	Genotype	Root length [cm]	Biomass [mg (plant d.m.)⁻¹]	φPSII [F/Fm × 10⁻³]		
			Root	shoot		
Untreated plants	SGE	15 ± 0.4ᵇ	63 ± 2ᵈ	175 ± 6ᵈ		
	SGECd	14 ± 0.4ᵇ	60 ± 2ᵈ	172 ± 5ᵈ		
Treated with 1 µM CdCl₂	SGE	14 ± 0.5ᵇ	42 ± 2ᵇ	145 ± 7ᶜ		
	SGECd	14 ± 0.3ᵇ	54 ± 1ᶜ	157 ± 4ᶜ		
Treated with 4 µM CdCl₂	SGE	5 ± 0.1ᵃ	11 ± 1ᵃ	72 ± 2ᵇ		
	SGECd	14 ± 0.4ᵃ	46 ± 1ᵇ	138 ± 3ᶜ		

Table 3. Effect of cadmium (1 and 4 µM CdCl₂) on leaf chlorophyll content and photosynthesis in intact leaves of wild type (SGE) and mutant (SGECd) pea. Data are means ± SEs of two experiments. For chlorophyll content n = 9, φPSII - quantum yield efficiency of PS II in intact leaves (n = 25); it was measured in the morning (9-10 am) and in the afternoon (3-4 pm). Different letters show significant differences between genotypes and treatments (Fisher’s least significant difference test, P ≤ 0.05).

Treatment	Genotype	Chlorophyll content [µg mg⁻¹(leaf f.m.)]	φPSII [F/Fm × 10⁻³]			
		chlorophyll a	chlorophyll b	chlorophyll a+b	morning	afternoon
Untreated plants	SGE	0.71 ± 0.03ᵇ	0.77 ± 0.03ᵇ	1.48 ± 0.06ᵇ	857 ± 3ᶜ	822 ± 6ᵇ
	SGECd	0.68 ± 0.02ᶜ	0.73 ± 0.02ᵃ	1.41 ± 0.03ᵇ	856 ± 3ᶜ	821 ± 7ᵇ
Treated with 1 µM CdCl₂	SGE	0.68 ± 0.02ᶜ	0.71 ± 0.02ᵃ	1.39 ± 0.03ᵃ	829 ± 3ᵃ	797 ± 8ᵇ
	SGECd	0.62 ± 0.03ᵃ	0.64 ± 0.02ᵃ	1.26 ± 0.05ᵃ	859 ± 2ᶜ	824 ± 5ᵇ
Treated with 4 µM CdCl₂	SGE	0.62 ± 0.02ᵃ	0.76 ± 0.03ᵇ	1.38 ± 0.04ᵇ	854 ± 3ᵇ	807 ± 4ᵇ
	SGECd	0.63 ± 0.03ᵃ	0.66 ± 0.03ᵃ	1.30 ± 0.06ᵃ	848 ± 3ᵇ	807 ± 8ᵇ

It was previously shown that Cd caused dramatic shoot ABA accumulation only in SGE thereby causing partial stomatal closure (Belimov et al. 2015). The lack of ABA accumulation in Cd-treated SGECd likely maintained photosynthesis, allowing continued shoot biomass accumulation. Total chlorophyll accumulation in mutant leaves at 4 µM Cd was also about twice that of SGE leaves (calculated as mg per plant using the data for shoot biomass (Table 2) and chlorophyll content given in Table 3). Although Cd decreased content of chlorophyll in leaves of various plant species (Krupa et al. 1993, Böddi et al. 1995, Baryla et al. 2001, Kevrešan et al. 2004), others found no effect of this metal on chlorophyll content in leaves of Sedum alfredii treated with up to 1 000 µM Cd for 20 d (Zhou and Qui 2005). Cadmium can decrease chlorophyll biosynthesis (Böddi et al. 1995) and/or disturb the integration of chlorophyll into stable chlorophyll-protein complexes (Horvath et al. 1996). In our experiments, Cd scarcely affected leaf chlorophyll content of both pea genotypes, suggesting that this parameter was not involved in Cd tolerance of SGECd.

Leaf slices of both pea genotypes grown without Cd exhibited similar responses of φPSII to treatment with different Cd concentrations during an experiment of 6 h duration (Fig. 1). The φPSII of the leaf slices treated with water or 0.1 mM CdCl₂ was unaffected in both genotypes. Treatment with 1 or 10 mM CdCl₂ decreased φPSII. For plants grown in the presence of Cd, φPSII of SGE leaf slices was 1.5 to 2-times lower and decreased more rapidly during Cd exposure (Fig. 1). SGE and SGECd leaf slices
Table 4. Cadmium and nutrient content of leaves and mesophyll protoplasts of Cd-treated wild type (SGE) and mutant (SGECd) pea. The plants were grown in nutrient solution in the presence of 1, 3 or 4 µM CdCl₂ for 12 days. Data are means ± SEs of one experiment with four determinations for leaves and two determinations for protoplasts. Different letters show significant differences between treatments within each treatment (Fisher’s least significant difference test, P ≤ 0.05). Asterisks show significant differences between plants treated with 1 and 4 µM CdCl₂; for the same pea genotype (Fisher’s least significant difference test, P ≤ 0.05).

Genotype and treatment	Cd	Ca	Mg	Mn	Zn
Leaves of plants grown in the presence of 3 µM CdCl₂ [µg g⁻¹(d.m.)]					
SGE	3.1 ± 0.8 a	332 ± 16 a	1382 ± 23 a	13 ± 1 a	29 ± 2 a
SGECd	7.7 ± 0.9 b	405 ± 18 b	1938 ± 58 b	17 ± 1 b	40 ± 2 b
Mesophyll protoplasts grown in the presence of 3 µM CdCl₂ [µg g⁻¹(chlorophyll)]					
SGE	0.5 ± 0.2 a	115 ± 18 a	130 ± 27 a	0.8 ± 0.04 a	1.5 ± 0.2 a
SGECd	1.8 ± 0.1 b	150 ± 23 b	242 ± 3 b	1.4 ± 0.10 b	3.5 ± 0.1 b
Leaves of plants grown in the presence of 1 µM CdCl₂ [µg g⁻¹(d.m.)]					
SGE	2.3 ± 0.2 a	341 ± 9 a	1118 ± 43 a	14 ± 1 a	36 ± 1 a
SGECd	3.0 ± 0.5 a	362 ± 10 a	1317 ± 40 a	16 ± 1 a	39 ± 2 a
Leaves of plants grown in the presence of 4 µM CdCl₂ [µg g⁻¹(d.m.)]					
SGE	5.5 ± 0.6 a**	298 ± 8 a**	1049 ± 46 a	11 ± 1 a **	28 ± 1 a **
SGECd	12.1 ± 0.8 b**	355 ± 14 b**	1247 ± 67 b**	15 ± 1 b **	33 ± 2 b **

Table 5. Distribution of elements between mesophyll protoplasts and the whole leaf in wild type (SGE) and mutant (SGECd) pea grown in the presence of 3 µM Cd. Calculations assume a 100 or 75 % distribution of Cd (see Materials and methods for calculation details).

Genotype	Relative share of elements in mesophyll protoplasts [%]	Cd	Mg	Mn	Zn
Cd solely localized in mesophyll protoplasts					
SGE	100	58	37	32	
SGECd	100	53	34	37	
75 % of leaf Cd localized in mesophyll protoplasts					
SGE	75	44	28	24	
SGECd	75	40	26	28	

showed substantial differences at 0.1 and 1 mM CdCl₂. To significantly inhibit φPSII in this short term experiment, higher Cd concentrations (in the mM range) were needed, exceeding those supplied in the nutrient solution (1 - 4 µM CdCl₂) almost a thousand-fold. This is not surprising since shoot metabolism is less sensitive than root growth, and in line with published data on Cd-treated leaf slices from Arabidopsis (Cho et al. 2003). Thus assessing the response of leaf tissue to Cd in situ revealed increased tolerance of the SGECd mutant grown in Cd-supplemented nutrient solution only, indicating that tissue tolerance is not entirely dependent on the whole plant. Instead, a molecular mechanism related to photosynthetic integrity appears to be induced by Cd, and this mechanism allows mutant tissue, pre-adapted to the presence of Cd in the nutrient solution, to tolerate higher Cd concentrations in situ. At higher Cd concentrations, the difference between wild type and mutant response was lost suggesting a limitation of this tolerance mechanism.

Cadmium content in leaves of SGECd treated with 3 and 4 µM Cd was about 2.5-times higher than SGE leaves (Table 4). Mesophyll protoplasts of SGECd treated with 3 µM Cd also contained 3.6-times more Cd. These data correspond well with previous reports on increased Cd content in intracellular leaf tissue and washing fluid, and mesophyll protoplasts of Cd-treated SGECd (Tsyganov et al. 2007, Belimov et al. 2015, 2016). Thus, foliar Cd accumulation did not prevent the mutant from maintaining active photosynthesis as indicated by unchanged φPSII. This observation confirmed our previous conclusion that SGECd is Cd insensitive (see references above). Although more detailed investigation is needed, it was proposed that increased water and nutrient transport from root to shoot is involved in Cd accumulation and tolerance to Cd of SGECd (Belimov et al. 2015, 2016). Reciprocal grafting experiments demonstrated that increased Cd tolerance required the presence of the trait in the roots (Belimov et al. 2018), indicating that root mechanisms are involved in photosynthetic adaptation to the toxic effects of Cd.

Nutrient (Ca, Mg, Mn, and Zn) content was higher in SGECd leaves compared to SGE (Table 4), consistent with observations that this mutant can counteract inhibition of nutrient uptake caused by Cd (Tsyganov et al. 2007, Belimov et al. 2016). Moreover, here we report for the first time that cell wall-free mesophyll cells (protoplasts) of SGECd mutant contained more Mg, Mn, and Zn after
treatments with Cd. Since Ca$^{2+}$ was a constituent of the media used for protoplast preparation, the Ca$^{2+}$ content measured in protoplasts may exceed the mesophyll content in the leaves in vivo. However, it should be noted, that plasma membrane Ca$^{2+}$-ATPases export Ca$^{2+}$ from the cytosol to the apoplast, thus the Ca$^{2+}$ influx is expected to be slow and low. Calcium in chloroplasts can regulate photosynthetic electron flow and light-dependent metabolism, trigger downstream signal transduction, and control xanthophyll cycle-dependent non-photochemical quenching (Brand and Becker 1984, Hochmal et al. 2015, Wang et al. 2019). Calcium may also mediate Cd-induced physiological or metabolic changes in plants as it is chemically similar to Cd (Huang et al. 2017). It may be hypothesized that the efficient Mg, Mn, and Zn homeostatic mechanisms of SGECd also maintained photosynthetic function. Efficient Mg homeostasis may (1) prevent Cd substitution for Mg in chlorophyll, (2) counteract the inhibition of photosynthetic enzyme activities (e.g. Rubisco having Mg$^{2+}$ as a required factor for activation), and (3) diminish oxidative stress (Krupa et al. 1995, Siedlecka et al. 1998, Sandalio et al. 2001, Shaul 2002). Manganese is required to form the Mn-Ca-cluster in PS II, which catalyses the water-oxidation process within the oxygen-evolving complex (Kalystyan et al. 2012, Yruela 2013). The important micronutrient Zn is involved in protecting plants against oxidative stress, e.g., by being part of the catalytic centre of Cu/Zn superoxide dismutase (Cakmak 2000). Oxidative stress is associated with Cd toxicity in various plants including pea (Sandalio et al. 2001, Metwally et al. 2005). Zn is also a cofactor of chloroplastic β-carbonic anhydrase and Zn-finger proteins located in thylakoid membranes (Kimber and Pai 2000, Yruela, 2013). Although there were no genotypic differences in the contents of Fe, K, P, and S in leaves and in protoplasts (data not shown), both Cd-untreated pea genotypes had similar leaf content of these elements (data reported in Tsyganov et al. 2007 and Belimov et al. 2016). Based on the nutrient content in leaves and mesophyll protoplasts, elemental distribution can be estimated (Table 5). Cadmium was the element with the highest relative abundance in the mesophyll protoplasts. Dividing leaf Cd content by protoplast Cd content gave a factor of 6.2 in SGE and 4.3 in SGECd. The same approach applied to the other elements indicates that relative mesophyll compartmentation of Mg and Mn is lower in SGECd than in SGE. However, this is compensated by the higher total element content in SGECd. Interestingly, the distribution was reversed for Zn$^{2+}$ such that more was in the mesophyll of SGECd than SGE. These results suggest that Cd and Zn homeostasis may be affected by both root transport processes (Belimov et al. 2018) but also in the leaf mesophyll processes that affect vacuolar deposition. The latter property can play an important role in detoxifying Cd to allow stable photosynthesis in the cytoplasm of SGECd.

Conclusions

The results showed that when leaf tissue was taken from plants grown in Cd-containing nutrient solution (but not those previously unexposed to Cd) and incubated in vitro with Cd, SGECd revealed an increased tolerance of the photosynthetic quantum yield ϕ_{PSII}. We suggest that the tolerance mechanism is induced only in the presence of Cd. The improved acclimation ability of SGECd leaves likely is related to the higher foliar nutrient content, allowing better functioning of the photosynthetic apparatus and maintenance of photosynthetic integrity by counteracting substitution of nutrient elements and development of leaf damage caused by Cd.

References

Balakhchina, T.I., Kosobryukhov, A.A., Ivanov, A.A., Kreslavskii, V.D.: The effect of cadmium on CO$_2$ exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. - Russ. J. Plant Physiol. 52: 15-20, 2005.

Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M.: Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. - Planta 212: 696-709, 2001.

Belimov, A.A., Dodd, I.C., Safronova, V.I., Malkov, N.V., Davies, W.J., Tikhonovich I.A.: The cadmium tolerant pea (Pisum sativum L.) mutant SGECd is more sensitive to mercury: assessing plant water relations. - J. exp. Bot. 66: 2359-2369, 2015.

Belimov, A.A., Malkov, N.V., Puhalsky, J.V., Safronova, V.I., Tikhonovich, I.A.: High specificity in response of pea mutant SGECd to toxic metals: growth and element composition. - Environ. exp. Bot. 128: 91-98, 2016.

Belimov, A.A., Malkov, N.V., Puhalsky, J.V., Tsyganov, V.E., Bodysagina, K.B., Safronova, V.I., Dietz, K.-J., Tikhonovich, I.A.: The crucial role of roots in increased Cd-tolerance and Cd-accumulation in the pea (Pisum sativum L.) mutant SGECd. - Biol. Plant. 62: 543-550, 2018.

Boödi, B., Oravecz, A.R., Lehoczki, E.: Effect of cadmium on organization and photoReduction of protoclorophyllide in dark-grown leaves and etioplasts of inner membrane preparations of wheat. - Photosynthetica 31: 411-420, 1995.

Brand, J.J., Becker, D.W.: Evidence for direct roles of calcium in photosynthesis. - J. Bioenerg. Biomembr. 16: 239-249, 1984.

Cakmak, I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. - New Phyto14. 186: 205-200, 2000.

Chen, J., Huang, J.W.: Increased lead accumulation in a single gene mutant of pea (Pisum sativum L.). - Bull. Environ. Contam. Toxicol. 79: 25-28, 2007.

Cho, M., Chardonnens, A.N., Dietz, K.J.: Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. - New Phyto14. 158: 287-293, 2003.

Cobett, C.S., May, M.J., Howden, R., Rolls, B.: The glutathione-deficient, cadmium sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. - Plant J. 16: 73-78, 1998.

Dietz, K.-J., Schramm, M., Betz, M., Busch, H., Zink, C., Martinoia, E.: Characterization of the epidermis of barley primary leaves. 1. Isolation of epidermal protoplasts. - Planta 187: 425-430, 1992.

Drazkiewicz, M., Tukendorf, A., Baszynski, T.: Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation.
- J. Plant Physiol. **160**: 247-254, 2003.
Guinel, F.C., LaRue, T.A.: Excessive aluminium accumulation in pea mutant E107 (brz). - Plant Soil **157**: 75-82, 1993.
Haag-Kerwer, A., Schafer, H.J., Heiss, S., Walter, C., Rausch, T.: Cadmium exposure in *Brassica juncea* causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. - J. exp. Bot. **50**: 1827-1835, 1999.

Haas, S.B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S., O’Connell, M.J., Goldsborough, P.B., Cobbett, C.S.: Phytodegradation of *Arabidopsis* and the yeast *Schizosaccharomyces pombe*. - Plant Cell **11**: 1153-1164, 1999.

Hasan, S.A., Fairdulddin, Q., Ali, B., Hayat, S., Ahmad, A.: Cadmium: toxicity and tolerance in plants. - J. environ. Biol. **30**: 165-174, 2009.

He, J.Y., Zhu, C., Ren, Y.F., Jiang, D.A., Sun, Z.X.: Root morphology and cadmium uptake kinetics of the cadmium-sensitive rice mutant. - Biol. Plant. **51**: 791-794, 2007.

Hochmal, A.K., Schulze, S., Trompelt, K., Hippler, M.: Calcium-dependent regulation of photosynthesis. - BBA Bioenergetics **1847**: 993-1003, 2015.

Horvath, G., Droppa, M., Oravecz, A., Raskin, V.I., Marder J.B.: Calcium-dependent regulation of photosynthesis during greening of cadmium-poisoned barley leaves. - Planta **199**: 238-243, 1996.

Howden, R., Goldsborough, P.B., Andersen, C.R., Cobbett, C.S.: Cadmium-sensitive cad1 mutants of *Arabidopsis thaliana* are phytochelatins deficient. - Plant Physiol. **107**: 1059-1066, 1995.

Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P., Chen, M., Wan, J.: Effects of calcium at toxic concentrations of cadmium in plants. - Planta **245**: 863-873, 2017.

Kalstyan, A., Robertazzi, A., Knapp, E.W.: Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. - J. amer. chem. Soc. **134**: 7442-7449, 2012.

Kevrešan, S., Cirin-Novta, V., Kuhajda, K., Kandrač, J., Petrović, N., Grbović, L., Kevrešan, Z.: Alleviation of cadmium toxicity by naphthenate treatment. - Biol. Plant. **48**: 453-455, 2004.

Kimber, M.S., Pai, E.F.: The active site architecture of *Pisum sativum* beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. - EMBO J. **19**: 1407-1418, 2000.

Krupa, Z.: Cadmium against higher plant photosynthesis – a variety of effects and where do they possibly come from? - Z. Naturforsch. C. **54**: 723-729, 1999.

Krupa, Z., Baszyriski, T.: Some aspects of heavy metal toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. - Acta Physiol. Plant. **17**: 177-190, 1995.

Krupa, Z., Oquist, G., Huner, N.P.A.: The effects of cadmium on photosynthesis of *Phaseolus vulgaris* – a fluorescence analysis. - Physiol. Plant. **88**: 626-630, 1993.

Küpper, H., Šetlik, I., Spiller, M., Küpper, F.C., Präsil, O.: Heavy metal-induced inhibition of photosynthesis: targets of *in vivo* heavy metal chlorophyll formation. - J. Phycol. **38**: 429-441, 2002.

Lin, Y.F., Aarts, G.M.: The molecular mechanism of zinc and cadmium stress response in plants. - Cell Mol. Life Sci. **69**: 3187-3206, 2012.

Metwally, A., Safronova, V.I., Belimov, A.A., Dietz K.J.: Genotypic variation of the response to cadmium toxicity in *Pisum sativum* L. - J. exp. Bot. **56**: 167-178, 2005.

Ouzounidou, G., Moustakas, M., Eleftheriou, E.P.: Physiological and ultrastructural effects of cadmium on wheat (*Triticum aestivum* L.) leaves. - Arch. Environ. Contam. Toxicol. **32**: 154-160, 1997.

Pierniri, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of *Phragmites australis* (Cav.) Trin. ex Steudel. - Plant Physiol. **133**: 829-837, 2003.

Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants. - J. exp. Bot. **52**: 2115-2126, 2001.

Sanita di Toppî, L., Gabrielli, R.: Response to cadmium in higher plants. - Environ. exp. Bot. **41**: 105-130, 1999.

Schulman, R.N., Salt, D.E., Raskin, I.: Isolation and partial characterization of lead-accumulating *Brassica juncea* mutant. - Theor. appl. Genet. **99**: 398-404, 1999.

Shaul, O.: Magnesium transport and function in plants: the tip on the iceberg. - BioMetals **15**: 309-323, 2002.

Shen, G.M., Zhu, C., Shangguan, L.-N., Du, Q.Z.: The Cd-tolerant rice mutant *cadH-3* is a high Cd accumulator and shows enhanced antioxidant activity. - J. Plant Nutr. Soil Sci. **175**: 309-318, 2012.

Siedlecka, A., Samuelsson, G., Gardeström, P., Kleczkowski, L.A., Krupa, Z.: The “activatory model” of plant response to moderate cadmium stress – relationship between carbonic anhydrase and Rubisco. - In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Pp. 2677-2680. Kluwer Academic Publishers, Dordrecht - Boston - London 1998.

Sytyganov, V.E., Belimov, A.A., Borisov, A.Y., Safronova, V.I., Georgi, M., Dietz, K.-J., Tikhonovich, I.A.: A chemically induced new pea (*Pisum sativum* L.) mutant SGECd with increased tolerance to and accumulation of cadmium. - Ann. Bot. **99**: 227-237, 2007.

Van Vliet, C., Anderson, C.R., Cobbett, C.S.: Copper-sensitive mutant of *Arabidopsis thaliana*. - Plant Physiol. **109**: 871-878, 1995.

Wang, Q., Yang, S., Wan, S., Li, X.: The significance of calcium in photosynthesis. - Int. J. mol. Sci. **20**: 1533, 2019.

Wang, Y., Zong, K., Jiang, L., Sun, J., Ren, Y., Sun, Z., Wen, C., Chen, X., Cao, S.: Characterization of an *Arabidopsis* cadmium-resistant mutant *cdr3-1D* reveals a link between heavy metal resistance as well as seed development and flowering. - Plant Sci. **233**: 697-706, 2011.

Watanabe, A., Ito, H., Chiba, M., Ito, A., Shimizu, H., Fuji, S., Nakamura, S., Hattori, H., Chino, M., Satoh-Nagasawa, N., Takahashi, H., Sakurai, K., Akagi, H.: Isolation of novel types of *Arabidopsis* mutants with altered reactions to cadmium: cadmium-gradient agar plates are an effective screen for the heavy metal-related mutants. - Plant Sci. **232**: 825-836, 2010.

Welch, R.M., LaRue, T.A.: Physiological characteristics of Fe accumulation in the ‘Bronze’ mutant of *Pisum sativum* L. cv ‘Sparkle’ E107 (brz brz). - Plant Physiol. **93**: 723-729, 1990.

Yruela, I.: Transition metals in plant photosynthesis. - Int. J. mol. Sci. **9**: 250-275, 2008.

Zhou, W., Qiu, B.: Effects of cadmium hyperaccumulation on physiological characteristics of *Sedum alfredii* Hance (*Crassulaceae*). - Plant Sci. **169**: 737-745, 2005.