Characterization of browning during CO2 deastringency treatment in astringent persimmon fruit

Weijuan Han1,2,3 · Kun Cao1,2,3 · Songfeng Diao1,2,3 · Peng Sun1,2,3 · Huawei Li1,2,3 · Yini Mai1,2,3 · Yujing Suo1,2,3 · Jianmin Fu1,2,3

Received: 20 January 2021 / Accepted: 18 July 2021 / Published online: 25 February 2022 © The Author(s) 2022

Abstract
Deastringency treatment with CO2 is an effective and convenient method for improving the marketability of persimmon fruit. However, the main persimmon cultivars in China turn brown very quickly following exposure to a high-CO2 atmosphere, causing significant economic loss. However, the mechanisms of persimmon browning under CO2 treatment remain largely unknown. In this study, we evaluated components and enzymes related to persimmon fruit browning. The results revealed that astringency was alleviated by simultaneous reduction of soluble tannin content and accumulation of insoluble tannin. During persimmon browning, fruit firmness, total phenolic content, and phenylalanine ammonia lyase (PAL) activity decreased significantly, whereas malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO) activity increased significantly, suggesting that reactive oxygen species (ROS)-scavenging enzymes and non-enzymatic antioxidants cannot effectively maintain redox reaction balance to protect cell membranes from oxidative damage during CO2 treatment. An untargeted metabolomics analysis identified 19 polyhydroxyphenols that were downregulated in CO2-treated fruit, suggesting that phenolics may act as a substrate for persimmon browning. We also identified 11 metabolites associated with abiotic stress. Together, these results study provide valuable information on the mechanism of persimmon fruit browning induced by CO2 treatment and will contribute to the ongoing development of the persimmon fruit industry.

Keywords Astringent persimmon · Browning · CO2 deastringency · Enzyme activity · Metabolites

Introduction
Persimmon (Diospyros kaki Thunb.: Ebenaceae) is a deciduous plant that is well adapted to tropical, subtropical, and temperate areas. As a food source and an alternative to the predominant fruit crops, persimmon is one of the most important fruit crops with high commercial value in Asian countries [1]. In pomology, persimmon cultivars are classified into four types: pollination-variant and astringent, pollination-variant and non-astringent, pollination-constant and astringent, pollination-constant and non-astringent [2]. Persimmon fruit are believed to have originated in China [3], and approximately 1,000 varieties of D. kaki have been found in China thus far. Interestingly, besides a few PCNA germplasms found in Luotian County, Hubei Province, the rest of the varieties in China are considered the PCA type [4]. In addition, astringent persimmon is the largest cultivated species of persimmon in the world because of its high yield, strong resistance, large fruit, and smooth flesh.

According to the Food and Agriculture Organization of the United Nations, the fruit production of persimmon in China was approximately 4,216,400 tons in 2018, accounting for 73.32% of total production worldwide. The majority of persimmon production is PCA cultivars, which
are usually harvested for the fresh-fruit market when the fruit are still astringent [5]. It is necessary to remove the astringency of these fruit to make them palatable before consumption. Traditional methods to remove astringency at harvest involve over-ripening by treating the fruit with ethephon or ethylene, which is usually accompanied by a dramatic loss of fruit firmness. This handling limitation shortens the postharvest life of the fruit [6]. Thus, it is necessary and urgent to explore a novel and effective method to overcome the deficiencies of the traditional deastringency treatment in persimmon fruit.

Compared to traditional methods, CO₂ treatment is the most widely used deastringency technology due to its efficiency and convenience when preserving high levels of fruit firmness [7, 8]. The effectiveness of this treatment is based on its ability to insolubilize soluble tannins through the mediation of acetaldehyde generated during anaerobic respiration, which is triggered when fruit are exposed to a high-CO₂ atmosphere [9, 10]. However, our previous studies showed that most main persimmon cultivars in China, especially those with good flavor, such as ‘Mopan’, ‘Houjing’, ‘Zhongshi No. 1’, and ‘Gongcheng’, were susceptible and turned brown very easily after CO₂-deastringency treatment. The browning rate reached more than 50% when 100 astringent persimmon cultivars were treated under the optimal CO₂ deastringent conditions. Fruit browning is a physiological disorder that occurs in the fruit of many species such as apple, pear, pineapple, lychee, and persimmon [11–15]; it is characterized by darkened tissues near the fruit surface [13]. Browning significantly affects the economic value of the fruit and greatly limits the application of CO₂ deastringency technology in China.

Fruit and vegetable browning can be divided mainly into two categories: non-enzymatic and enzymatic browning. Non-enzymatic browning is caused by various non-enzymatic chemical reactions, such as auto-oxidation and polymerization of polyphenols that produce brown tissues. Enzymatic browning is caused by the oxidation and polymerization of phenolic compounds produced by the catalysis of enzymes such as phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) [16, 17]. Although the effects of fresh-cut processing, mechanical damage, and hot water treatment have been well studied in persimmon fruit [5, 15, 18], the mechanisms of browning during CO₂ deastringency treatment have not yet been reported.

In this study, we evaluated the browning-related components and enzymes of the cultivar ‘Zhongshi No. 1’, which was found to be extremely susceptible to browning in our previous study. The results will provide valuable information on the mechanism of browning during CO₂ deastringency treatment.

Materials and methods

Plant materials

The persimmon cultivar ‘Zhongshi No. 1’ was harvested at the commercial maturity stage on October 8, 2018, in Mengzhou County (34°51′38″N, 112°42′58″E), Henan Province, China. We randomly collected 40 fruits from six healthy 10-year-old persimmon trees, with three biological replicates per sample. After harvest, each replicate was transported to the laboratory, and the samples were divided into control (CK) and CO₂-deastringency treatment groups. Fruit in the control group were stored at 25 °C without treatment for 48 h. Fruit in the CO₂ treatment group were placed in sealed containers containing 99.9999% food-grade CO₂ at 25°C and 90% relative humidity for 24 h, subjected to deastringency treatment, and then maintained at 25 °C for another 24 h. Both the control and treated fruit were then peeled after fruit firmness measurement, and the flesh was immediately frozen in liquid nitrogen and stored at −80 °C until further analysis.

Determination of firmness and ascorbic acid, total phenolic, total flavonoid, tannin, and malondialdehyde (MDA) content

Before the fruit were peeled, sample firmness was measured using a firmness tester (GY-4; Zhejiang Tuopu, Ningbo, China) with a 8 mm plunger; the results are expressed as pressure (N). Ascorbic acid content was determined using high-performance liquid chromatography (HPLC) [19, 20]. Total phenolic content was determined according to the Folin–Ciocalteu method of Li et al. [21]. Total flavonoid content was measured using the AlCl₃ (HAc-NaAc) method according to Fan [22]. Soluble and insoluble tannin content was measured using the Folin–Ciocalteu method, as described by Oshida et al. [23]. Malondialdehyde (MDA) content was measured using the thiobarbituric acid method, as described by Cao et al. [24].

Assay of enzymatic activities related to fruit browning

For PPO and POD extraction, 5 g of frozen tissue was homogenized with 10 mL of sodium acetate buffer (0.1 mol/L, pH 5.5) containing 1 mmol/L polyethylene glycol (PEG), 1% Triton X-100, and 4% (w/v) polyvinyl-pyrrolidone (PVPP). For superoxide dismutase (SOD) and catalase (CAT) extraction, 5 g of frozen tissue was homogenized in 10 mL of cold 50 mmol/L K-phosphate buffer (pH 7.8) containing 5% (w/v) PVPP and 5 mmol/L DL-dithiothreitol (DTT). For PAL extraction, 5 g of
Characterization of browning during CO2 deastringency treatment in astringent persimmon

A portion (100 mg) of each collected sample was extracted with 120 µL of precooled 50% methanol, vortexed for 1 min, and incubated at room temperature for 10 min. The extraction mixture was then stored overnight at −20 °C. After centrifugation at 4000×g for 20 min, the supernatants were transferred into new 96-well plates. The samples were stored at −80 °C prior to liquid chromatography–mass spectrometry (LC–MS) analysis. In addition, pooled quality control (QC) samples were prepared by combining 10 µL of each extraction mixture.

A 4-µL sample was injected into an ultra-performance liquid chromatography (UPLC) system (SCIEX, Macclesfield, UK) equipped with an ACQUITY UPLC T3 column (100 mm × 2.1 mm, 1.8 µm; Waters, Milford, MA, USA) for the reversed-phase separation. The column oven was maintained at 35 °C. The flow rate was 0.4 mL/min, and the mobile phase consisted of solvent A (water, 0.1% formic acid) and solvent B (acetonitrile, 0.1% formic acid).

Gradient elution conditions were set as follows: 0–0.5 min, 5% B; 0.5–7 min, 5–100% B; 7–8 min, 100% B; 8–8.1 min, 100–5% B; 8.1–10 min, 5% B.

A high-resolution tandem mass spectrometer TripleTOF-5600plus (SCIEX) was used to detect metabolites in both positive and negative ion modes. The QC sample was used to evaluate the stability of the LC–MS system throughout data acquisition.

Data preprocessing and pretreatment

LC-MS raw file data were converted into mzXML format after the pretreatments using XCMS software and then processed by the XCMS, CAMERA and metaX toolbox implemented with the R software [29–31]. Each ion was identified by combining retention time (RT) and m/z data. The online KEGG and HMDB databases were used to annotate the metabolites. An in-house fragment spectrum library of metabolites was used to validate the metabolite identification.

The pre-processed dataset was used to perform principal component analysis (PCA) for outlier detection and batch effects evaluation. Supervised PLSDA was conducted to discriminate the different variables between groups through metaX, and the VIP value was calculated. Student’s t-tests were conducted to detect differences in metabolite concentrations between two phenotypes, adjusting P for multiple tests according to the false discovery rate, as determined by the Benjamini–Hochberg test.

Statistical analyses

All experiments were performed using an absolutely randomized design and the results are expressed on a fresh weight basis. All data were analyzed using the SPSS v23.0 software (SPSS Inc., Chicago, IL, USA). Duncan’s
multiple comparisons test was used to test for significant differences. Significance was evaluated at a level of $P < 0.05$.

Results

Physiological parameters related to browning caused by CO$_2$ deastringency treatment

The phenotype of CO$_2$-treated persimmon fruit is shown in Fig. 1. Visible browning on the fruit surface demonstrated that ‘Zhongsh, No. 1’ was susceptible to browning due to CO$_2$ deastringency treatment. Fruit firmness was also affected by CO$_2$ treatment (Fig. 2A), with significant differences detected between the control (74.14 ± 5.88 N) and treated (11.77 ± 2.60 N) fruit.

Tannins are substrates in enzymatic browning reactions with many biological activities for fruit and vegetable quality, and they are closely associated with astringency and enzymatic activity [32–35]. Soluble tannin content decreased from 14.31 ± 0.06 to 1.19 ± 0.02 g/kg after deastringency treatment (Fig. 2B, C), perhaps because soluble tannins were accumulated and converted to insoluble tannins, followed by acetaldehyde generation within the fruit during CO$_2$ deastringency treatment [10, 36]. These results also demonstrate that the CO$_2$ deastringency treatment used in this study was effective, as the threshold soluble tannin content value for astringency is 2 g/kg [37]. The insoluble tannin contents of the control and treated samples were 1.64 ± 0.13 and 9.22 ± 0.22 g/kg.

![Fig. 1 Phenotype of CO$_2$-treated persimmon fruit](image1)

Fig. 1 Phenotype of CO$_2$-treated persimmon fruit

![Fig. 2 Physiological parameters of control (CK) and CO$_2$-treated (TB) persimmon fruit](image2)

Fig. 2 Physiological parameters of control (CK) and CO$_2$-treated (TB) persimmon fruit. Data are mean ± standard deviation (SD). Different letters indicate significant differences between CK and TB ($P < 0.05$)
kg; this increase in insoluble tannins is likely attributable to the transformation of soluble to insoluble tannins.

Phenolics are substrates of enzymatic browning reactions; PAL is involved in the biosynthetic pathway of phenolic compounds and may accelerate browning [16, 38, 39]. In this study, the total phenolic content showed a downward trend after CO2 treatment, from 13.19 ± 0.90 to 7.24 ± 0.047 g/kg (Fig. 2D), and PAL activity decreased significantly from 175.33 ± 4.03 U/g in the control group to 136.83 ± 5.06 U/g in the treatment group fruit (Fig. 2E).

In normal cell tissues, PPO is located in the organelles and polyphenol compounds are located in vacuoles; compartmentalization of the intracellular membrane plays an important role in the browning process. PPO activity was 3.94 ± 0.33 U/g in the control group and 22.22 ± 0.14 U/g in the treatment group (Fig. 2F). MDA is an indicator of cell membrane integrity [40]. In this study, MDA content increased from 3.08 ± 0.38 umol/kg in the control group to 6.09 ± 0.41 umol/kg in the treatment group (Fig. 2G), suggesting that browning caused by CO2 deastringency treatment damaged cell membrane structure and intracellular membrane compartmentalization, leading to the reaction of phenolic substrates and PPO.

CO2 deastringency treatment affects oxidative stress in fruit, and has been reported to rapidly increase fruit ROS levels [41]. Effective ROS destruction requires the participation of several ROS-scavenging enzymes, such as SOD, POD, and CAT [14], as well as non-enzymatic antioxidants such as ascorbic acid and flavonoids [41]. In this study, CO2 deastringency treatment induced significant increases in persimmon fruit SOD (1.12 ± 0.024 to 2.91 ± 0.074 U/g), POD (0.49 ± 0.011 to 22.79 ± 0.91 U/g), and CAT (1.33 ± 0.05 to 53.00 ± 0.99 U/g) activity (Fig. 2H, I, J). Ascorbic acid and flavonoid levels were significantly increased following CO2 deastringency treatment, by approximately 1.93- and 1.28-fold, respectively (Fig. 2K, L).

Metabolite identification

To explore the changes in metabolites after browning due to CO2 treatment, we performed untargeted metabolomic analysis in both positive (ESI+) and negative (ESI−) modes. PCA was performed to evaluate the repeatability and stability of the metabolic profiles obtained by UPLC–MS, and to detect differences among samples. Both positive and negative electron spray ionization (ESI) models clearly divided the samples into two groups, and grouped samples from the same treatment together, demonstrating the high quality of the data (Fig. 3). This result indicates that CO2 deastringency treatment had a significant effect on metabolite variation.

Partial least-squares discriminant analysis (PLSDA) clearly distinguished between the control and treatment groups (Fig. 4). No significant outliers were found according to the PLSDA scores, suggesting that the samples were of high quality. The R²Y and Q²Y data supported the predictive accuracy of the model and reliability of the data.

We obtained 12,009 and 8,012 ion features using the positive and negative models, respectively; among these, 8271 and 4205 were annotated. The important metabolites were identified based on thresholds of the variable importance in projection score (VIP > 1.0), fold change (FC > 2.0 or FC < 0.5), and P < 0.05. A total of 689 and 1573 metabolites were upregulated and downregulated, respectively, in positive mode, and 588 and 1,182 metabolites were upregulated and downregulated, respectively, in...
Moreover, 30 metabolites were found to be associated with abiotic stress and phenolics (Table 2). Browning is caused by the enzymatic oxidation of phenolic compounds by PPO to \(o\)-quinones, which are very reactive, forming brown polymers [12]. The levels of 19 polyhydroxyphenols including manniflavanone, quercitrin, procyanidin_B4, proanthocyanidin_A2, and sciadopitysin, are listed in Table 2. Polyhydroxyphenols clearly decreased following treatment; these results were consistent with those for total phenolics (Fig. 2D); enzymatic reaction of phenolic substances produce substrates with PPO, which were significantly more abundant in the treatment group. We also identified 11 compounds associated with abiotic stress: valine, tyrosine, lysine, succinic acid, phenylalanine, trehalose, allose, D-glucose, mannitol, D-sorbitol, and spermidine.

Discussion

When persimmon fruit were exposed to an atmosphere with high CO\(_2\) and low O\(_2\) concentrations, the local anoxic conditions caused oxidative stress and changes in normal cellular metabolism, impairing fruit quality and leading to browning [6, 41, 42]. Browning induced by CO\(_2\) deastringency treatment of ‘Zhongshi No. 1’ fruit is a physiological disorder of the internal flesh that is visible at the fruit surface, significantly impacting the economic value of the fruit.

SOD, POD, and CAT are ROS-scavenging enzymes in plants. SOD constitutes the first enzymatic line of defense against ROS, catalyzing the dismutation of O\(_2^-\) to non-toxic O\(_2\) and less toxic H\(_2\)O\(_2\), whereas POD and CAT remove H\(_2\)O\(_2\). Ascorbic acid and flavonoids are potent and versatile antioxidants in plants, effectively quenching free radicals and protecting cell membranes and intracellular proteins from oxidative damage [43, 44]. In this study, persimmon fruit SOD, POD, and CAT activity rapidly increased following CO\(_2\) treatment. CO\(_2\) deastringency treatment increased SOD activity by 2.60-fold compared with the control; a similar study reported higher SOD activity in the ‘Rojo Brillante’ persimmon cultivar following CO\(_2\) deastringency treatment [42]. Under oxidative stress conditions, the contents of ascorbic acid and flavonoids, which function as antioxidants in persimmon fruit, increase to maintain the redox reaction balance within the fruit.

MDA is the main product of membrane lipid peroxidation; its accumulation level can be used as an indicator of tissue cell damage and physiological aging [40]. In this study, the MDA content of browning fruit increased following treatment with high concentrations of CO\(_2\), enhancing...
membrane lipid peroxidation. PPO is found in most higher plants and plays a central role in fruit browning [45]; the levels of total phenolics and 19 phenolic compounds decreased significantly as those of PPO activity significantly increased in treated fruit, suggesting that browning damages cell membrane structure and of intracellular membrane compartmentalization, leading to the reaction of phenolic substrates and PPO. These results suggest that ROS-scavenging enzymes and non-enzymatic antioxidants in ‘Zhongshi No. 1’ fruit could not effectively maintain the redox reaction balance to protect cell membranes and intracellular proteins from oxidative damage during CO2 deastringency treatment.

Plant metabolomics examines the role of metabolite change in various tissues [46]. As metabolites are the final products of cell biological regulation process, metabolite changes and their levels are regarded as the ultimate response of plants to environmental stresses [47]. Phenolics act as substrates of enzymatic browning reactions; in this study, the levels of total phenolics and 19 phenolic compounds decreased significantly in the treated samples, suggesting that phenolics similarly acted as a substrate for browning in ‘Zhongshi No. 1’ persimmon fruit.

Many amino acids also play significant roles in plant growth and various stress responses, including as regulatory and signaling molecules [48, 49]. Several studies have demonstrated that amino acids accumulate to high levels under abiotic stress [50–53]. In this study, the levels of valine, tyrosine, lysine, succinic acid, and phenylalanine were increased under high concentration CO2; a possible reason for this is that high-concentration CO2 could induce the synthesis of amino acids and the degradation of proteins in persimmon fruit. In addition, the results also indicated that soluble sugars such as trehalose, allose, and D-glucose, which accumulate under stress responses caused by abiotic

Table 2

Metabolites	Fold change	P value	VIP	RT	M/Z	KEGG ID	Up/Down
Valine	2.14	1.67E-03	1.09	1.01	118.09	C00183	Up
Tyrosine	3.11	1.57E-08	1.48	1.114	182.08	C00082	Up
Lysine	4.61	9.46E-07	1.75	0.771	147.11	C00047	Up
Succinic acid	3.44	1.53E-06	1.5	1.122	117.02	C00042	Up
Phenylalanine	2.26	0.001047	1.21	2.432	166.09	C00079	Up
Trehalose	4.23	2.87E-08	1.62	0.899	387.11	C01083	Up
Allose	2.33	3.73E-06	1.2	0.863	225.06	C01487	Up
D-Glucose	3.21	1.77E-03	1.4	2.089	203.05	C00031	Up
Mannitol	0.14	3.75E-05	1.72	0.919	181.07	C00392	Down
D-sorbital	0.05	3.49E-08	2.26	0.972	183.09	C00794	Down
Spermidine	0.42	2.22E-02	1.17	8.387	146.16	C00315	Down
Mannilflavanone	0.01	7.80E-07	2.89	0.94	613.10	C09763	Down
Cyanind-3-O-(6''-O-malonyl-2''-O-glucuronyl)glucoside	0.02	6.24E-06	2.74	1.95	729.17	C16373	Down
Delphinidin 3-glucoside 5-caffoyl-glucoside	0.04	1.01E-03	2.40	1.16	788.18	C16313	Down
Cyanind 3-O-(6-O-malonyl-beta-D-glucoside)	0.12	9.03E-05	1.98	2.48	553.14	C12643	Down
Delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3''-O-beta-glucoside	0.15	2.06E-06	1.94	1.11	714.17	C16304	Down
Sciodapitysin	0.14	3.84E-05	1.88	0.92	579.13	C10239	Down
Cinnamattannin_A1	0.13	1.36E-04	1.87	2.55	889.19	C17624	Down
Delphinidin 3-(p-coumaroyl)-rutinoside-5-glucoside	0.19	5.73E-05	1.80	1.11	942.24	C16294	Down
Asebogenin	0.14	2.45E-07	1.74	0.91	287.09	C09471	Down
Procyanidin_B4	0.19	7.85E-06	1.65	0.92	549.12	C10238	Down
ent-Fisetinindol-(4beta->8)-catechin-(6->4beta)-ent-fisetindol	0.24	5.81E-04	1.63	1.05	873.18	C10225	Down
Proanthocyanidin_A2	0.25	1.26E-04	1.59	2.49	577.14	C10237	Down
Cyanind 3-O-(6-O-p-coumaroyl)glucoside	0.31	3.70E-04	1.47	2.47	596.15	C12095	Down
Quercitrin	0.33	3.67E-03	1.43	2.02	471.09	C01750	Down
Robinin	0.33	4.61E-04	1.39	2.47	763.20	C01078	Down
Cyanind 3,5,3’-tri-O-glucoside	0.42	1.66E-03	1.27	1.56	791.24	C08629	Down
Galloctechin-(4alpha->8)-epigalloctechin	0.44	7.31E-04	1.17	1.82	611.14	C10227	Down
Delphinidin 3-O-sophoroside	0.45	1.44E-02	1.06	1.02	666.12	C16307	Down
6-Prenylnaringenin	0.40	4.27E-06	1.02	2.61	339.12	C09832	Down

VIP, variable importance for the projection; RT, retention time; KEGG (Kyoto Encyclopedia of Genes and Genomes)
stress, may also contribute to sustaining osmotic pressure and protecting the plasma membrane and proteins, as previously reported [53–55]. Polymamines belonging to the aliphatic series can also protect plant cell membranes and reduce oxidative damage of plant cells [56]. Sugar alcohols have been reported to sustain the stability of macromolecules, scavenge ROS in cells, and prevent peroxidation of fatty acids in cell membranes [57]. In this study, the levels of spermidine, mannitol, and D-sorbitol were decreased in CO₂-treated ‘Zhongshi No. 1’ fruit, which may have led to browning.

Conclusions

High CO₂ concentrations induced oxidative stress, and damaged cell membrane structure and intracellular membrane decompartmentalization, leading to reactions among phenolic substrates and PPO. ROS scavenging enzymes (SOD, POD, and CAT) and non-enzymatic antioxidants (ascorbic acid and flavonoids) were unable to effectively maintain redox reaction balance and protect cell membranes from oxidative damage during CO₂ treatment. We identified 19 polyhydroxyphenols that showed decreased content in treated fruit, suggesting that phenolics act as a substrate in the enzymatic browning reaction of ‘Zhongshi No. 1’ persimmon fruit. We also identified 11 metabolites associated with abiotic stress. The findings of this study provide valuable information on the mechanism of browning under CO₂ deastringency treatment, and will contribute to the ongoing development of the persimmon fruit industry.

Funding This work was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF in China (CAFYBB2019MA005), and Scientific and technological project of Henan province, (182102110076).

Declarations

Conflict of interest There are no competing interests in this paper, and the authors do not have any possible conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Y. Liang, W. Han, P. Sun, J. Liang, T. Wuyun, F. Li, J. Fu, Sci. Hortic. 186, 180–189 (2015). https://doi.org/10.1016/j.scienta.2015.02.015
2. A. Sugiuira, Acta Hortic. 685, 177–187 (2005). https://doi.org/10.17660/actahortic.2005.685.20
3. K. Yonemori, A. Sugiuira, M. Yamada, in Plant Breeding Reviews. ed. by B.J. Janick (Springer, Boston, 2000), pp. 191–225. https://doi.org/10.1002/9780470760517.ch6
4. Z. Luo, R. Wang, Adv. Hortic. Sci. 22(4), 239–243 (2008). http://digital.csalini.it/10.1400/100648
5. O. Khademi, A. Salvador, Z. Zabiollah, C. Besada, Food Bioproc. Technol. 6(11), 3038–3046 (2013). https://doi.org/10.1007/s11947-012-0959-6
6. C. Besada, A. Salvador, in Postharvest Biology and Technology of Temperate Fruits. ed. by S.A. By, M. Mir, M.M. Shah, Mir (Springer, Berlin, 2018), pp. 371–393. https://doi.org/10.1007/978-3-319-76843-4_16
7. A. Salvador, L. Arnal, C. Besada, V. Larrea, A. Quiles, I. Pérez-Munuera, Postharvest. Biol. Technol. 46, 181–188 (2007). https://doi.org/10.1016/j.postharvbio.2007.05.003
8. D. Min, L. Dong, P. Shu, X. Cui, X. Zhang, F. Li, Sci. Hortic. 229, 201–206 (2018). https://doi.org/10.1016/j.scienta.2017.11.012
9. T. Matsu, S. Itoo, Agric. Biol. Chem. 46, 683–689 (1982). https://doi.org/10.1080/00016-6
10. T. Matsu, S. Itoo, R. Benarie, J. Jpn. Soc. Hortic. Sci. 60, 437–442 (1991). https://doi.org/10.2530/jjshs.60.437
11. D. Hatoum, M.L. Hertog, A.H. Geeraerd, B.M. Nicolaï, Postharvest Biol. Technol. 111, 106–116 (2016). https://doi.org/10.1016/j.postharvbio.2015.08.004
12. C. Franck, J. Lammertyn, Q.-T. Ho, P. Verbelen, B. Verlinden, B.M. Nicolaï, Postharvest Biol. Technol. 43(1), 1–13 (2007). https://doi.org/10.1016/j.postharvbio.2006.08.008
13. K. Luengwili, D.M. Beckles, U. Roessner, D.A. Dias, V. Lui, J. Siriphanich, Postharvest Biol. Technol. 137, 56–65 (2018). https://doi.org/10.1016/j.postharvbio.2017.11.013
14. X. Chen, Q. Wu, Z. Chen, T. Li, Food Res. Int. 120, 339–351 (2019). https://doi.org/10.1016/j.foodres.2019.02.046
15. P. Novillo, A. Salvador, E. Llorca, I. Hernando, C. Besada, Food Chem. 145, 454–463 (2014). https://doi.org/10.1016/j.foodchem.2013.08.054
16. Y. Jiang, X. Duan, H. Qu, S. Zheng, Encyclopedia of Food and Health (Elsevier, New York, 2016), pp. 508–514. https://doi.org/10.1016/b978-0-12-384947-2.00080-8
17. J.A. Rufián-Henares, S. Pastoriza, Encyclopedia of Food and Health (Elsevier, New York, 2016), pp. 515–521. https://doi.org/10.1016/b978-0-12-384947-2.00089-1
18. H.S. Chung, H.S. Kim, Y.G. Lee, J.H. Seong, Food Chem 166 C, 192–197 (2015). https://doi.org/10.1016/j.foodchem.2014.06.015
19. A.O. Rudenko, L.A. Kartsova, J. Anal. Chem. 65(1), 71–76 (2010). https://doi.org/10.1134/s1061934810010132
20. J. Zhang, P. Sun, D. Zhou, Y. Zhang, J. Fu, Comput. Appl. Chem. 30(11), 1379–1382 (2013). https://doi.org/10.11719/com.app.chem20131131
21. X. Li, X. Wu, L. Huang, Molecules 14(12), 5349–5361 (2009). https://doi.org/10.3390/molecules14125349
22. J. Fan, Study on the extraction and separation of the active components in the leaves of Diospyros kaki. Ph. D. thesis. Zhejiang University, Hangzhou, China, 2006
23. M. Oshida, K. Yonemori, A. Sugiuira, Postharvest Biol. Technol. 8(4), 317–327 (1996). https://doi.org/10.1016/0925-5214(96)00016-6
24. J. Cao, W. Jiang, Y. Zhao, *Physiological and Biochemical Experiment Guidance of Postharvest Fruits and Vegetables*, 1st edn. (China Light Industry Press Ltd, Beijing, 2007), pp. 101–155
25. D.M. Gibson, A.H.J. Ullah, *Arch. Biochem. Biophys.* **260**(2), 503–513 (1988). https://doi.org/10.1016/0003-9861(88)90475-4
26. A. Kumar, S. Dutt, G. Bagler, P.S. Ahuja, S. Kumar, *Sci. Rep.* **2**, 347–351 (2012). https://doi.org/10.1038/srep00387
27. X. Duan, T. Liu, D. Zhang, X. Su, H. Lin, Y. Jiang, *Food Res. Int.* **44**(7), 1905–1911 (2011). https://doi.org/10.1016/j.foodres.2010.10.027
28. R.K. Astaneh, S. Bolandnazar, F.Z. Nahandi, S. Oustan, *Inform.* **31**, B. Wen, Z. Mei, C. Zeng, S. Liu, *BMC Bioinformatics* **30**, C.A. Smith, E.J. Want, G. O'Maille, R. Abagyan, G. Siuzdak, *Cell Environ* **34**, 283–289 (2012). https://doi.org/10.1021/ac202450g
30. C.A. Smith, E.J. Want, G. O'Maille, R. Abagyan, G. Siuzdak, *Anal. Chem.* **78**, 779–787 (2006). https://doi.org/10.1021/ac051437y
31. B. Wen, Z. Mei, C. Zeng, S. Liu, *BMC Bioinformatics* **18**, 183 (2017). https://doi.org/10.1186/s12859-017-1579-y
32. K.T. Chung, T.Y. Wong, C. Wei, Y. Huang, Y. Lin, *Crit. Rev. Food Sci. Nutr.* **38**(6), 421–464 (1998). https://doi.org/10.1080/0003-9861.1998.104086998912742723
33. F.A. Tomas-Barberan, J.C. Espin, *J. Sci. Food Agr.* **347–351**(2012). https://doi.org/10.1038/srep00387
34. Y.K. Park, H.M. Kim, Y.H. Kang, *Korean J. Food Nutr.* **37**(5), 837–841 (2010). https://doi.org/10.1016/j.foodres.2010.12.019
35. H. Less, G. Galli, *Plant Physiol.* **146**, 316–330 (2008). https://doi.org/10.1104/pp.108.115733
36. R. Lugan, M. Niogret, L. Leport, J. Guégan, F.R. Larher, A. Savouré, J. Kopka, A. Bouchereau, *Plant J.* **64**(2), 215–229 (2010). https://doi.org/10.1111/j.1365-313x.2010.04323.x
37. K. Maruyama, K. Urano, K. Yoshiwara, Y. Morishita, N. Sakurai, H. Suzuki, M. Kojima, H. Sakakibara, D. Shibata, K. Saito, K. Shinozaki, K. Yamaguchi-Shinozaki, *Plant Physiol.* **164**, 1759–1771 (2014). https://doi.org/10.1104/pp.113.231720
38. J. Zhang, W. Luo, Y. Zhao, Y. Xu, S. Song, K. Chong, *New Phytol.* **211**(4), 1295–1310 (2016). https://doi.org/10.1111/nph.14011
39. H. Du, Z. Wang, W. Yu, Y. Liu, B. Huang, *Physiol. Plantarum* **141**(3), 251–264 (2011). https://doi.org/10.1111/j.1399-3054.2010.01432.x
40. B. Usadel, O.E. Blasing, Y. Gibon, F. Poree, M. Höhne, M. Günter, R. Tretheway, B. Kamlage, H. Poorter, M. Stitt, *Plant Cell Environ* **31**(4), 518–547 (2008). https://doi.org/10.1111/j.1365-3040.2007.01763.x
41. P. Novillo, A. Salvador, T. Magalhaes, C. Besada, *Postharvest Biol. Tec.* **92**, 16–22 (2014). https://doi.org/10.1016/j.postharvbio.2013.12.019
42. J. Robak, R.J. Gregglewski, *Biochem. Pharmacol.* **37**(5), 837–841 (1988). https://doi.org/10.1016/0006-2952(88)90169-4
43. A.L. Webb, E. Villamor, *Nutr. Rev.* **65**(5), 181–217 (2007). https://doi.org/10.1111/j.1753-4877.2007.tb00298.x
44. T.S. Chang, *Int. J. Mol. Sci.* **10**(6), 2440–2475 (2009). https://doi.org/10.3390/ijms10062440
45. Y. Li, J. Fang, X. Qi, M. Lin, Y. Zhong, L. Sun, W. Cui, *Int. J. Mol. Sci.* **19**(5), 1471 (2018). https://doi.org/10.3390/ijms19051471
46. D. Balmer, V. Flors, G. Glauser, B. Mauch-Mani, *Front. Plant Sci.* **4**, 82–94 (2013). https://doi.org/10.3389/fpls.2013.00082
47. V.K. Rai, *Biol. Planarum* **45**(4), 481–487 (2002)
48. H. Less, G. Galli, *Plant Physiol.* **147**, 316–330 (2008). https://doi.org/10.1104/pp.108.111733
49. R. Lugin, M. Niogret, L. Leport, J. Guégan, F.R. Larher, A. Savouré, J. Kopka, A. Bouchereau, *Plant J.* **64**(2), 215–229 (2010). https://doi.org/10.1111/j.1365-313x.2010.04323.x
50. H. Less, G. Galli, *Plant Physiol.* **164**, 1759–1771 (2014). https://doi.org/10.1104/pp.113.231720
51. K. Maruyama, K. Urano, K. Yoshiwara, Y. Morishita, N. Sakurai, H. Suzuki, M. Kojima, H. Sakakibara, D. Shibata, K. Saito, K. Shinozaki, K. Yamaguchi-Shinozaki, *Plant Physiol.* **164**, 1759–1771 (2014). https://doi.org/10.1104/pp.113.231720
52. J. Zhang, W. Luo, Y. Zhao, Y. Xu, S. Song, K. Chong, *New Phytol.* **211**(4), 1295–1310 (2016). https://doi.org/10.1111/nph.14011
53. H. Du, Z. Wang, W. Yu, Y. Liu, B. Huang, *Physiol. Plantarum* **141**(3), 251–264 (2011). https://doi.org/10.1111/j.1399-3054.2010.01432.x
54. B. Usadel, O.E. Blasing, Y. Gibon, F. Poree, M. Höhne, M. Günter, R. Trethewey, B. Kamlage, H. Poorter, M. Stitt, *Plant Cell Environ* **31**(4), 518–547 (2008). https://doi.org/10.1111/j.1365-3040.2007.01763.x
55. I. Couee, C. Sulmon, G. Gouesbet, A.E. Amrani, J. Exp. Bot. **57**(3), 449–459 (2006). https://doi.org/10.1093/jxb/erj027
56. R. Alcázar, J.C. Cuevas, J. Planas, X. Zarza, C. Bortolotti, P. Carasco, J. Salinas, A.F. Tiburcio, T. Altabella, *Plant Sci.* **180**(1), 31–38 (2011). https://doi.org/10.1016/j.plantsci.2010.07.022
57. L. Hu, Q. Xu, *Crop Res.* **28**(4), 428–434 (2014). https://doi.org/10.3969/j.issn.1001-5280.2014.04.24

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.