Математическое описание электросинтеза композитов окси-гидроксисоединений кобальта с переокисленным полипирролом

Электросинтез композита переокисленного полипиррола с окси-гидроксисоединениями кобальта в сильнокислой среде был описан математически, с использованием линейной теории устойчивости и бифуркационного анализа. Были описаны условия устойчивости стационарного состояния, а также автоколебательной и монотонной неустойчивости. Поведение системы было сравнено с поведением других систем с переокислением, электрополимеризацией гетероциклических соединений, а также электросинтезом окси-гидроксисоединений кобальта.

Ключевые слова: кобальт, полипиррол, переокисление, автоколебания, устойчивое стационарное состояние.

© Ткач В., де Оливейра С. С., Майя Ж., Гюнтер Соарес Б., Ожани Р., Ягодинец П. И., 2016

Введение

Электропроводящие или проводящие полимеры (ПП) являются одними из наиболее изучаемых материалов на протяжении последних 50 лет [1–4], что связано с их способностью соединять в себе свойства пластмасс (гибкость и противокоррозионную устойчивость) с металлической проводимостью, благодаря чему их называют синтетическими металлами. Другим их преимуществом является легкость в модификации, благодаря чему у них широкий и богатый спектр применения, начиная от противокоррозионных покрытий и заканчивая сенсорами и биосенсорами [5–12].

С другой стороны, кобальт – один из наиболее часто применяемых мета-
таллов [13–14]. Его окси-гидроксисоединения в форме пленок могут применяться в качестве противокоррозионных покрытий, а также в качестве поверхностей-носителей для фотоэлектрокатализа, благодаря своему интенсивно черному цвету [15–16], поэтому их композиты с проводящими полимерами также должны проявлять интересные свойства.

Однако окисление соединений двухвалентного кобальта до трехвалентного происходит при довольно высоком потенциале (от +1,6 В), при котором некоторые проводящие полимеры, такие как полипиррол [17–18], проходят процесс так называемого «переокисления», то есть смены конфигурации сопряженной системы в полимере согласно следующему механизму:

![Diagram](1-2)

При этом переокисленный полипиррол проводит ток хуже, чем непереокисленный. Другой проблемой являются электрохимические неустойчивости – автоколебательная и (или) монотонная, которые могут сопровождать процессы электроокисления как малых органических молекул, в том числе электрополимеризацию [19–28], так и проводящих полимеров [29–32]. Автоколебания также сопровождают процесс образования CoO(OH) [15–16]. Изучение их причин является одним из ключевых этапов определения наиболее вероятного механизма данного процесса.

До сих пор такие явления получали исключительно феноменологическую трактовку, которая, хоть и может исходить из логических убеждений, не имеет твердых теоретических обоснований, которые могут быть даны только с помощью анализа математической модели, способной адекватно описать процесс, что и будет показано в данной работе.

Этот анализ может объяснить поведение подобных систем (как следствие из теоремы Кирпичева – Гухмана), а также сравнить их с другими аналогичными системами, описанными, например в [33–49].

Система и ее модель

Для математического описания потенциостатического электросинтеза композита переокисленного полипиррола с CoO(OH) из обычного полипиррола в сильнокислой среде без ионов фтора введем три переменные: с – концентрация ионов двухвалентного кобальта в приповерхностном слое; θ – степень заполнения поверхности переокисленным полипирролом; h – концентрация протонов в приповерхностном слое.

С целью упрощения модели мы вводим допущения того, что реактор находится при постоянном перемешивании, а фоновый электролит находится в избытке, что позволяет пренебречь влиянием конвективного и миграционного потока. При этом толщина приповерхностного слоя, концентрационный профиль солей ко-
балта и протонов в котором по допущению является линейным, постоянна и равна δ.

Протоны попадают в диффузионный приповерхностный слой вследствие диффузии и образуются в результате процесса переокисления, их концентрация в приповерхностном слое уменьшается из-за протонной атаки переокисленного полипиррола. Таким образом, учитывая первый закон Фика и коэффициент моделирования, относящийся к двойному электрическому слою (ДЭС), уравнение баланса концентрации протонов будет выглядеть как:

$$\frac{dh}{dt} = -\frac{D}{\delta} \left(h_0 - h \right) + r_o - r_a,$$

где h_0 – это концентрация протонов в объеме раствора, r_o – скорость процесса переокисления, r_a – скорость протонной атаки переокисленного полимера.

Обычный проводящий полимер, который в начале реакции занимает весь электрод, переокисляется. При этом переокисленный полимер взаимодействует с солью кобальта, образуя композит с продуктом ее окисления, а также атакуется протонами. Таким образом, балансовое уравнение для концентрации переокисленного полимера запишется как:

$$\frac{d\theta}{dt} = \frac{1}{\Gamma} \left(r_o - r_a - r_c \right).$$

где r_c – реакция образования композита, а Γ – максимальная поверхностная концентрация полимера.

Соль кобальта диффундирует к аноду, а потом окисляется на переокисленном полипирроле с образованием его композита с продуктом переокисления. Таким образом, уравнение баланса ее концентрации в приповерхностном слое запишется как:

$$\frac{dc}{dc} = \frac{2}{\delta} \left(\Delta \left(c_0 - c \right) - r_c \right),$$

где c_0 – концентрация соли кобальта в объеме раствора.

Скорости соответствующих реакций можно вычислить как:

$$r_o = k_o (1 - \theta) h \exp \left(\frac{n F \varphi_0}{RT} \right) \frac{r_o}{k} \theta,$$

$$r_c = k_c \theta_c \exp \left(\frac{n F \varphi_0}{RT} \right),$$

где параметры k отображают константы скоростей соответствующих реакций, параметры n – количество электронов, переданных в электрочимических процессах, φ_0 – перепад потенциала ДЭС, по сравнению с потенциалом нулевого заряда, $F = N_A \cdot e$ – число Фарадея.

Дифференциальные уравнения (1–3) напоминают по виду уравнения систем, описанных как для случая переокисления полипиррола в сильнокислой среде [33], так и для случая электросинтеза окси-гидроксисоединений кобальта [34], что, можно сказать, подтверждает действие третьей теоремы подобия. Однако для того, чтобы доказать подобное поведение систем, нужно сопоставить исследования указанных систем и системы уравнений (1–3), что будет показано ниже.

Результаты и обсуждение

Чтобы исследовать поведение системы с потенциостатическим электросинтезом композита CoO(OH) – переокисленный полипиррол в силь-
нокислой среде, нужно разобрать систему дифференциальных уравнений (1–3) с учетом алгебраических соотношений (4–6) с помощью линейной теории устойчивости. Функциональная матрица Якоби, элементы которой вычислены для стационарного состояния представляется в виде:

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix},
\]

где

\[
a_{11} = \frac{2}{\delta} \left(-\frac{D}{\delta} + k_o (1 - \theta) \exp \left(\frac{n_1 F \phi_0}{RT} \right) - k_2 \theta \right).
\]

\[
a_{12} = \frac{2}{\delta} k_o h \exp \left(\frac{n_1 F \phi_0}{RT} \right) + k_o h \alpha \exp \left(\frac{n_1 F \phi_0}{RT} \right) - k_o h.
\]

\[
a_{13} = 0.
\]

\[
a_{21} = \frac{1}{\Gamma} \left(k_o (1 - \theta) \exp \left(\frac{n_1 F \phi_0}{RT} \right) - k_o \theta \right).
\]

\[
a_{22} = \frac{1}{\Gamma} \left(k_o h \exp \left(\frac{n_1 F \phi_0}{RT} \right) + k_o h \alpha \exp \left(\frac{n_1 F \phi_0}{RT} \right) - k_o h - k_o \alpha \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) \right).
\]

\[
a_{23} = \frac{1}{\Gamma} \left(-k_o \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) \right).
\]

\[
a_{31} = 0.
\]

\[
a_{32} = \frac{2}{\delta} \left(-k_o \alpha \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) - k_o \alpha \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) \right).
\]

\[
a_{33} = \frac{2}{\delta} \left(-k_o \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) - \frac{\Delta}{\delta} \right).
\]

Автоколебательная неустойчивость в данной системе возможна, так как могут выполняться необходимые условия бифуркации Хопфа. Они выполняются в случае наличия в главной диагонали якобына положительных элементов. В данной системе есть три положительных элемента:

\[
k_o (1 - \theta) \exp \left(\frac{n_1 F \phi_0}{RT} \right) > 0,
\]

в случае сильных влияний процесса перекисления на ДЭС, приводящих к самоускоренному заполнению поверхности электрода перекисленным полипирролом. Это может произойти, если данное производное полипиррола является сильным восстановителем, и таким образом могут образовываться колебания

\[
k_o h \exp \left(\frac{n_1 F \phi_0}{RT} \right) > 0,
\]

ввиду возможности автокаталитического образования протонов в процессе перекисления полипиррола. Этот фактор рассматривался как фактор автоколебательного поведения при перекислении полипиррола в [33, 35–36] и в данной системе он тоже присутствует.

\[
-k_o \alpha \theta \exp \left(\frac{n_1 F \phi_0}{RT} \right) > 0,
\]

в случае сильных влияний на ДЭС процесса окисления соли кобальта до окси-гидроксисоединения, что, кстати, уже было описано и в [15, 16, 34].

При этом ввиду большей возможности положительной обратной связи, вероятность автоколебаний в данной системе будет выше, чем в случае простого потенциостатического перекисления полипиррола или анодного окисления соли кобальта.

Устойчивость стационарного состояния анализируем по критерiu Руаса – Гурвица. Для этого, чтобы
избежать появления громоздких выражений, вводим новые параметры таким образом, что определитель матрицы Якоби запишется как:

\[
\begin{vmatrix}
\frac{4}{\delta^2} \left[-\kappa_1 + X \Sigma - \Sigma \Lambda - \Lambda \right] \\
X \Sigma - \Sigma_3 - \Lambda \\
0 - \Sigma_3 - \Lambda - \kappa_2
\end{vmatrix}.
\] (17)

Используя условие \(\text{Det} J < 0 \), которое можно вывести из критерия Раяса – Гурвица, мы получим условие устойчивости стационарного состояния в виде неравенства, которое можно разрешить относительно параметра диффузии соли кобальта \(\kappa_2 \):

\[
-\kappa_2 < \frac{\Lambda \Sigma_3 (X - \kappa_1)}{\Sigma \kappa_1 - \Sigma \kappa_1 - X \Sigma_3}.
\] (18)

или:

\[
\kappa_2 > \frac{\Lambda \Sigma_3 (X - \kappa_1)}{\Sigma \kappa_1 - \Sigma \kappa_1 - X \Sigma_3} - \Lambda.
\] (18)

Таким образом, устойчивость стационарного состояния поддерживается более быстрой диффузией соли кобальта, чем протонов, а также высокой скоростью ее окисления, которая смещает правую часть неравенства в сторону более отрицательных значений (при этом левая часть неравенства остается положительной). При этом при высокой концентрации соли кобальта рН-зависимость устойчивости стационарного состояния резко убывает. Таким образом, для оптимального синтеза композита нужно использовать концентрацию соли кобальта с небольшим запасом относительно концентрации пиррола и рН, однако в композите будет довольно значительная доля окси-гидроксисоединения кобальта.

Понижение рН приводит к увеличению значения дроби в правой части неравенства и, при относительно малых концентрациях соли кобальта и уменьшении вероятности стабилизации стационарного состояния, включая даже выход системы из стационарного состояния, который отображается в точке монотонной неустойчивости, условие появления которой:

\[
\kappa_2 > \frac{\Lambda \Sigma_3 (X - \kappa_1)}{\Sigma \kappa_1 - \Sigma \kappa_1 - X \Sigma_3} - \Lambda.
\] (19)

Для обычной системы с потенциостатическим переокислением полипиррола, в отличие от данной системы, она невозможна.

Факторы ДЭС тоже сильно влияют на устойчивость стационарного состояния в данной системе. Например, в случае сильных вставок электроокисления соли кобальта на структуру ДЭС, параметр \(\Lambda \) будет иметь отрицательные значения, которые приведут к выходу стационарного состояния из области устойчивости. Этот фактор присутствует и в других подобных системах.

Присутствие ионов фтора. Как известно, окси-гидроксисоединение кобальта неустойчиво в присутствии ионов фтора, ибо растворяется с образованием комплекса \([\text{CoF}_6]^{3–}\) по суммарному уравнению:

\[
\text{CoO(OH)} + 6\text{HF} \rightarrow \text{H}_2[\text{CoF}_6] + 2\text{H}_2\text{O}.
\] (20)

В таком случае данная модель уже не описывает поведение композита. Устойчивость композита в присутствие ионов фтора будет рассмотрена в одной из наших следующих работ.
Выводы

Устойчивость стационарного состояния для данной системы поддерживается относительно высоким рН и высокой концентрацией ионов кобальта в приповерхностном слое, а также общим для всех подобных систем фактором отсутствия сильных влияний электрохимических процессов на ДЭС.

Автоколебательное поведение для данной системы является возможным, будучи вызванным не только автокатализитическим образованием протонов, как для общего случая переокисления проводящих полимеров, но и влиянием на ДЭС электрохимических реакций – переокисления и окисления соли кобальта.

Монотонная неустойчивость для данной системы реализуется при относительно низких рН и сильных влияниях электрохимических реакций на ДЭС.

1. Sadki S. Scotland Ph., Brodie N., Saboraud G. The mechanisms of pyrrole electropolymerization. *Chem. Soc. Rev.* 2000;29(5):283–289.
2. Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization and applications. *Chem. Rev.* 1992;92(4):711–738.
3. Bodnaryuk-Lupshak N., Aksimentyeva O. I. *Vopr. Khim. Khim. Techn.* 1998;50:1.
4. Yamamoto T. Molecular assembly and properties of polythiophenes. *NPG Asia Materials.* 2010;2(2):54–60. doi: 10.1038/asiamat.2010.37.
5. Ojani R., Raoof J. B., Ahmady A., Hosseini S. R. *Casp. J. Chem.* 2013;2:45.
6. de Andrade V. M. Confecção de biosensores através da imobilização de biocomponentes por eletropolimerização de pirrol. Tesis, Porto Alegre, 2006. Tosar Rovira J. P. Estudio de la inmovilización de oligonucleótidos a electrodos modificados de oro:polipirrol, y detección electroquímica de secuencias complementarias. Tesis. Lic. Bioquím., Universidad de la República, Montevideo, 2008.
7. Tosar Rovira J. P. Estudio de la inmovilización de oligonucleótidos a electrodos modificados de oro: polipirrol, y detección electroquímica de secuencias complementarias. Tesis. Lic. Bioquím., Universidad de la República, Montevideo, 2008.
8. Ramanavicius A., Ramanaviciene A., Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole. *Electrochim. Acta.* 2006;51(27):6025–6037. doi: 10.1016/j.electacta.2005.11.052.
9. Singh R. P. Prospects of Organic Conducting Polymer Modified Electrodes: Enzymosensors. *Int. J. Electrochem.* 2012;502707. URL: http://dx.doi.org/10.1155/2012/502707.
10. Zane D., Appetecchi G. B., Bianchini C., Passerini S., Curulli A. An impedimetric glucose biosensor based on overoxidized polypyrrole thin film. *Electroanalitica.* 2011;23(5):1134–1141. doi: 10.1002/elen.201000576.
11. McQuade T., Pullen A., Swager T. M. Conjugated polymer based chemical sensors. *Chem. Rev.* 2000;100(7):2537–2574. doi: 10.1021/cr9801014.
12. Ojani R., Raoof J. B., Rahemi V. A simple and efficient electrochemical sensor for electrocatalytic reduction of nitrite based on poly94-aminoacetanilide) film using carbon paste electrode. *J. Chin. Chem. Soc.* 2011;58(2):247–254.
13. Sargentelli V., Ferreira A. P. Magnetic nanoparticles: The cobalt. *Ecletica Química*. 2010;35(4):153–163. doi: 10.1590/S0100-46702010000400020.

14. Jamison T. F., Shambayati S., Crowe W. E., Schreiber S. L. Tandem use of cobalt-mediated reactions to synthesize (+)-epoxydictyteme, a diterpene containing a trans-fused 5-5 ring system. *J. Am. Chem. Soc.* 1997;119(19):4353–4363. doi: 10.1021/ja970022u.

15. Stadnik O. Ph.D. Thesis. Kiev. 2011.

16. Stadnik O. et al. *Int. Electrochem. Soc. Meeting*. Abstract # 2240, 2010.

17. Ansari R. Polypryrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. *E-J. Chem.* 2006;3(4):186–206. LINK: http://downloads.hindawi.com/journals/chem/2006/860413.pdf

18. Ba-Shammakh M. S., Rahman S. U., Abul-Hamayel M. A., Kahraman R. Thermal effects on the process of electropolymerization of pyrrole on mild steel. 203rd ECS Meeting, April 27-May 2, 2003, Paris, France. AC1. Organic and Bioorganic Electrochemistry General Session. No. 2468. LINK: http://www.electrochem.org/ma/203/pdfs/2468.pdf

19. Liu A. S., Oliveira M. A. S. Electrodeposition of polypyrrole films on aluminum from tartrate aqueous solution. *J. Braz. Chem. Soc.* 2007;18(1):143–152.

20. Sazou D. The dynamical behavior of the electrochemical polymerization of indole on Fe in acetonitrile-water mixtures. *Synthetic Metals*. 2002;130(1):45–54. doi: 10.1016/S0379-6779(02)00110-8.

21. Das I., Goel N., Agrawal N. R., Gupta S. K. Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono- and mixed surfactants. *J. Phys. Chem.-B.* 2010;114(40):12888–12896. doi: 10.1021/jp105183q.

22. Bazzou M., Bazzou E. A., Martins L., Martins J. I. Electropolymerization of pyrrole on zinc-lead-silver alloys electrodes in acidic and neutral organic media. *Synthetic Metals*. 2002;130(1):73–83. doi: 10.1016/S0379-6779(02)00101-7.

23. Das I., Goel N., Gupta S. K., Agrawal N. R. Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants. *J. Electroanal. Chem.* 2012;670(1):1–10. doi: 10.1016/j.jelechem.2012.01.023.

24. Aoki K., Mukoyama I., Chen J. Competition between polymerization and dissolution of poly(3-methylthiophene) films. *Russ. J. Electrochem.* 2004;40(3):280–285. doi: 10.1023/B:RUEL.0000019665.59805.4c.

25. Das I., Agrawal N. R., Ansari S. A., Gupta S. K. Pattern formation and oscillatory electropolymerization of thiophene. *Ind. J. Chem.-A.* 2008;47(12):1798–1803.

26. Ba-Shammakh M. S. Electropolymerization of pyrrole on mild steel for corrosion protection. Thes. Ph. D. King Fahd University of Petroleum and Minerals. Dharan, Saudi Arabia, 2002.

27. Pagitsas M., Dimitra S. The improved Franck-FitzHung model for the electrodissolution of iron in sulphuric acid solutions: linear stability and bifurcation analysis. Derivation of the kinetic equations for the forced franck-FitzHung models. *Electrochimica Acta*. 1991;36(8):1301–1308. doi: 10.1016/0013-4686(91)80009-w.
28. Pearlstein A. J., Johnson J. A. Global and conditional stability of the steady and periodic solutions of the Franck-FitzHugh model of electrodissolution of Fe in H₂SO₄. *J. Electrochem. Soc.* 1989;136(5):1290–1299.

29. Ogüz Güler M. et al. 7th Turkish Nanoscience and Nanotechnology Conference, 2011, 24.

30. Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization and applications. *Chem. Rev.* 1992;92(4):711–738.

31. Lemos Castagno K. R. Tés. D. Sc. UFRS., Porto Alegre, 2006.

32. Mostany J., Scharifker B. R. Impedance spectroscopy of undoped, doped and overoxidized polypryrole films. *Synthetic Metals.* 1997;87(3):179–185.

33. Tkach V., Nechyporuk V., Yagodynets P., Rusnak P. I. *Orbital. Elec. J. Chem.*, 2012;4:136.

34. Tkach V., Nechyporuk V., Slipenyuk O. *Ecl. Quím.* 2012;37:72.

35. Ткач В. В., да Роша Ал. М. Наук. Вісник ЧНУ. 2013;658:132.

36. Tkach V., Nechyporuk V., Yagodynets P. Electropolymerization of heterocyclic compounds. Mathematical models. *Ciencia e Tecnología dos Materials.* 2012;24(1–2):54–58.

37. Tkach V., Nechyporuk V., Yagodynets. *Proc. Quím.* 2014;8:49

38. Tkach V., Nechyporuk V., Yagodynets´ P., Hryhoryak M. The investigation of electrochemical behavior during the electroreductive synthesis of conductive polymers in presence of metal cations. *Cien. Tecn. Mat.* 2012;24(1-2):50-53.

39. Tkach V., Nechyporuk V., Yagodynets P. *Técn. Met. Mat. Min.* 2013;10:249

40. Tkach V., Nechyporuk V., Yagodynets P. Description matematica de la sintesis electroquimica de polimeros conductores en la presencia de surfactants. *Avances en Química.* 2013;8(1):9–15.

41. Tkach V., Nechyporuk V., Yagodynets´ P. *Avan. Quím.* 2013;8:97.

42. Tkach V., Nechyporuk V., Yagodynets P. The mathematical stability investigation in the electrochemical polymerization of heterocyclic compounds in the oxidants’ presence. *Afinidad.* 2013;70(561):70–74.

43. Ткач В. В., Нечипорук В. В., Ягодинец П. И., де Оливейра С. С., да Роша А. М. Математическое описание электрополимеризации электрохимически модифицированных мономеров в гальваностатическом режиме. *Журн. Сиб. фед. ун-та. Химия.* 2014;7(3):403. URL: http://elib.sfu-kras.ru/handle/2311/13421.

44. Tkach V., Nechyporuk V., Yagodynets´ P. Anais do 10o Encontro Brasileiro sobre Adsortção, Guarujá, SP, 27–30 de abril de 2014. N. 122-1

45. Tkach V., Nechyporuk V., Yagodynets´ P. *Med. J. Chem.* 2015;3:1122.

46. Tkach V., Nechyporuk V., Yagodynets P. The mathematical stability study of the work of isomerization sensors, based on conduction polymers. *Anal. Bioanal. Electrochem.* 2014;6(3):273–283.

47. Tkach V., Kumara Swamy B., Ojani R., Blanes M., Yagodynets´ P. *Orbital Elec. J. Chem.* 2015;7:1.

48. Tkach V., Ojani R., Nechyporuk V., Yagodynets P. *Rev. Colomb. Cien. Quím. Farm.* 2014;43:35.

49. Tkach V., Ojani R., Nechyporuk V., Yagodynets´ P. *Orbital. Elec. J. Chem.* 2014;6:142.