A Note on the Representation Power of GHHs

Zhou Lu*
Princeton University
zhoul@princeton.edu
January 2021

Abstract
In this note we prove a sharp lower bound on the necessary number of nestings of nested absolute-value functions of generalized hinging hyperplanes (GHH) to represent arbitrary CPWL functions. Previous upper bound states that $n+1$ nestings is sufficient for GHH to achieve universal representation power, but the corresponding lower bound was unknown. We prove that n nestings is necessary for universal representation power, which provides an almost tight lower bound. We also show that one-hidden-layer neural networks don’t have universal approximation power over the whole domain. The analysis is based on a key lemma showing that any finite sum of periodic functions is either non-integrable or the zero function, which might be of independent interest.

1 Introduction
We consider the complexity of representing continuous piecewise linear functions using the generalized hinging hyperplane model Wang and Sun [2005]. We begin with a short review on these two notions.

1.1 Continuous Piecewise Linear (CPWL) Functions
Continuous piecewise linear (CPWL) functions play an important role in non-linear function approximation, such as nonlinear circuit or neural networks. We introduce the definition of CPWL functions borrowed from Chua and Deng [1988].

Definition 1.1 (CPWL function). A function $f(x) : R^n \rightarrow R$ is said to be a CPWL function iff it satisfies:

1): The domain space R^n is divided into a finite number of polyhedral regions by a finite number of disjunct boundaries. Each boundary is a subset of a hyperplane and takes non-zero measure (standard lebesgue measure) on the hyperplane (as R^{n-1}).

2): The restriction of $f(x)$ on each polyhedral region is an affine function.

3): $f(x)$ is continuous on R^n.

1.2 Generalized Hinging Hyperplanes (GHH)
The model of hinging hyperplanes (HH) is a sum of hinges like

$$\pm \max\{w_1^\top x + b_1, w_2^\top x + b_2\}$$

*This work is done during LZ’s visit to SQZ institution.
where $w_1, w_2 \in \mathbb{R}^n$ and $b_1, b_2 \in \mathbb{R}$ are parameters. The HH model (in fact equivalent to a one hidden-layer ReLU network) can approximate any continuous function over a compact domain to arbitrary precision as the number of hinges go infinity Breiman [1993].

However, this model can’t exactly represent all CPWL function as pointed out in He et al. [2018], which brings doubt on its approximation efficiency. To overcome this problem, Wang and Sun [2005] first proposed a generalization of HH model, called GHH which allows more than 2 affine functions within the nested maximum operator:

Definition 1.2 (n-order hinge). A n-order hinge is a function of the following form:

$$\pm \max\{w_1^\top x + b_1, w_2^\top x + b_2, \cdots, w_{n+1}^\top x + b_{n+1}\}$$

(2)

where $w_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ are parameters.

A linear combination of a finite number of n-order hinges is called a n-order hinging hyperplane (n-HH) model. Such model has universal representation power over all CPWL functions, as formalized in the theorem below:

Theorem 1.3 (Theorem 1 in Wang and Sun [2005]). For any positive integer n and CPWL function $f(x) : \mathbb{R}^n \to \mathbb{R}$, there exists a n-HH which exactly represents $f(x)$.

The question is whether we can give a sharp lower bound on the necessary number of affine functions within the nested maximum operator. Wang and Sun [2005] conjected that $(n-1)$-HH can’t represent all CPWL functions, but this open problem is left unanswered for more than a decade. In the following section we will prove our main result that $(n-2)$-HH can’t represent all CPWL functions, yielding an almost tight lower bound.

2 Main Result

Observe that any $(n-2)$-order hinge depends on only $n-1$ affine transforms of x, thus there always exists a direction in which the value of the $(n-2)$-order hinge remains the same. We make such observation precise by introducing the definition of low-dimensional and periodic functions.

Definition 2.1 (Low-dimensional/periodic function). A function $f(x) : \mathbb{R}^n \to \mathbb{R}$ is said to be low-dimensional, if there exists a vector $v \neq 0$, such that for any $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have that $f(x) = f(x + cv)$. If we have only $f(x) = f(x + v)$ then f is said to be periodic (a weaker notion). v is called an invariant vector of f.

Any $(n-2)$-order hinge is a low-dimensional function on \mathbb{R}^n, so our problem is reduced to proving the class of finite sum of low-dimensional functions has limited representation power. The following key lemma actually proves (a stronger result) that finite sum of periodic functions can’t represent any non-trivial integrable functions.

Lemma 2.2. Any finite sum of periodic functions is either non-integrable or the zero function, i.e. given periodic functions $f_i(x), i = 1, \ldots, m$, then $f(x) = \sum_{i=1}^m f_i(x)$ satisfies

$$\int_{\mathbb{R}^n} |f| = \infty \quad \text{or} \quad f \equiv 0$$

(3)

Proof. We prove Lemma 2.2 by induction. Suppose each f_i has an invariant vector v_i, base case $m = 1$ is trivial since if we denote the orthogonal hyperplane $H_i = \{x | x^\top v_i = 0\}$, we have

$$\int_{\mathbb{R}^n} |f| = \int_{\mathbb{R}} \int_{H_i} |f|$$

(4)
thus \(\int_{R^n} |f| < \infty \) if and only if \(\int_{H} |f| = 0 \). Assume \(f = \sum_{i=1}^{m} f_i \) is integrable, then \(g(x) \triangleq f(x + v_m) - f(x) \) is also integrable. We make the following decomposition of \(g \):

\[
g(x) = \sum_{i=1}^{m} f_i(x + v_m) - f_i(x) = \sum_{i=1}^{m-1} f_i(x + v_m) - f_i(x)
\]

where each \(f_i(x + v_m) - f_i(x) \) is periodic (with invariant vector \(v_i \)) as well. By induction we have \(g \equiv 0 \) and \(f \) is also a periodic function (with invariant vector \(v_m \)). Using the base case on \(f \) again concludes our proof.

Our main result is a direct corollary of Lemma 2.2, as stated below:

Theorem 2.3. For any positive integer \(n \geq 2 \), there exists a CPWL function \(g(x) : R^n \rightarrow R \), such that no \((n-2)\)-HH can exactly represent \(g(x) \).

Proof. Let \(g(x) \triangleq \max\{0, 1 - ||x||_{\infty}\} \). It’s straightforward to check that \(g(x) \) is a CPWL function with at most \(2^{n+1} \) affine polyhedral regions, and meanwhile is an integrable function with positive integral. As any \((n-2)\)-HH can be written as a finite sum of low-dimensional functions, it can’t represent \(g(x) \) by Lemma 2.2.

Theorem 2.3 implies that in order to achieve universal representation power over all CPWL functions, a \((n-1)\)-HH model is necessary which provides an almost tight lower bound corresponding to the upper bound in Theorem 1.3.

3 Implications on Universal Approximation of ANNs

Traditional universal approximation theorems of artificial neural networks (ANN) Cybenko [1989], Hornik et al. [1989], Barron [1994] typically states that an ANN with one hidden layer and unbounded width can approximate any measurable function with arbitrary precision on a compact set. Our result demonstrates that the compact set assumption is indeed necessary for ANNs with traditional activation (composition of an affine transform and a fixed univariate function \(\sigma \)):

Corollary 3.1. Given an integrable function \(f \) on \(R^n \) \((n \geq 2)\), for any one-hidden-layer neural network \(g \) with traditional activation \(\sigma(w^\top x + b) \), we have that

\[
\int_{R^n} |f - g| = \infty \quad \text{or} \quad \int_{R^n} |f - g| = \int_{R^n} |f|
\]

Proof. Any unit \(\sigma(w^\top x + b) \) is obviously a low-dimensional function when \(n \geq 2 \), thus by Lemma 2.2 we finish our proof.

Corollary 3.1 reveals a fundamental gap of representation power between one-hidden layer neural networks and deeper ones, as Theorem 1.3 indicates a neural network with \(\lceil \log_2(n + 1) \rceil \) hidden layers can represent any CPWL function He et al. [2018], showing the benefits of depth in universal approximation Lu et al. [2017].
4 Conclusion

In this note we give a sharp lower bound on the necessary number of nestings of nested absolute-value functions of generalized hinging hyperplanes (GHH) to represent arbitrary CPWL functions, which is the first non-trivial lower bound to the best of our knowledge. Our results fully characterizes the representation power (and limit) of the GHH model.

Our result also has implications on ANNs, a much more popular model in machine learning. It shows that one-hidden-layer neural networks with traditional activation can’t control the approximation error on the whole domain despite existing universal approximation theorems, a fundamental gap between one-hidden-layer networks and deeper ones. We conject similar depth-separation results should hold for deeper networks and the \(\lceil \log_2(n+1) \rceil \) bound should be tight in representing CPWL functions. Instead of low-dimensional (periodic), other properties need to be discovered for deeper networks.

Acknowledgements

The author would like to thank Fedor Petrov for giving an elegant proof of Lemma 2.2 on Mathoverflow.

References

Andrew R Barron. Approximation and estimation bounds for artificial neural networks. *Machine learning*, 14(1):115–133, 1994.

Leo Breiman. Hinging hyperplanes for regression, classification, and function approximation. *IEEE Transactions on Information Theory*, 39(3):999–1013, 1993.

Leon O Chua and A-C Deng. Canonical piecewise-linear representation. *IEEE Transactions on Circuits and Systems*, 35(1):101–111, 1988.

George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, 2(4):303–314, 1989.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite elements. *arXiv preprint arXiv:1807.03973*, 2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. *Neural networks*, 2(5):359–366, 1989.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A view from the width. *arXiv preprint arXiv:1709.02540*, 2017.

Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. *IEEE Transactions on Information Theory*, 51(12):4425–4431, 2005.