by Surendra P. Verma¹ and M. Abdelaly Rivera-Gómez²

Computer programs for the classification and nomenclature of igneous rocks

¹Departamento de Sistemas Energéticos, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco s/no., Centro, Apartado Postal 34, Temixco, Mor., 62580, México. E-mail: spv@ier.unam.mx
²Posgrado en Ingeniería, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco s/no., Centro, Apartado Postal 34, Temixco, Mor., 62580, México. E-mail: mariq@ier.unam.mx

We review the most important computer programs for the classification of igneous rocks and point out those that follow the recommendations of the International Union of Geological Sciences (IUGS). A new program “Igneous Rock Classification System” (IgRoCS), written in Visual Basic, is then described in detail. IgRoCS allows the user to follow strictly the IUGS classification and nomenclature scheme for igneous rocks. The special rocks are first classified, then plutonic rocks are named after the IUGS mineralogical classification, next high-Mg and picritic volcanic rocks are identified from the IUGS mineralogical classification, next high-Mg and picritic volcanic rocks are classified according to the TAS diagram and CIPW norm. The chemical classification of volcanic rocks can also be achieved directly without going through the classification of other rock types. The IgRoCS program incorporates the revised standard igneous norm. Thus, the use of this new software is encouraged for a strict application of the IUGS recommendations for igneous rock classification and nomenclature.

Introduction

For several decades, the International Union of Geological Sciences (IUGS) has been concerned with an appropriate classification scheme for igneous rocks. Under the umbrella of the IUGS, numerous renowned scientists, such as Albert Streckeisen, Bruno Zanettin, Mike Le Bas, Bernard Bonin, and Roger Le Maitre, among others, have pursued the goal of putting forth a standard procedure for igneous rock classification, which should be followed by everyone.

Thus, on the recommendation of Professor T.F.W. Barth, the Sub-commission on the Systematics of Igneous Rocks was constituted under the IUGS Commission on Petrology, which commenced its work back in 1970.

The Sub-commission commenced with the plutonic rocks and gave its final recommendations as a monumental paper by Streckeisen (1976), which has been highly used, with around 1030 citations in SCI-indexed international journals, as confirmed by us on September 1st, 2012 in the Science Citation Index (SCI) database of the Institute for Scientific Information (ISI), Philadelphia. The large number of citations in different international journals gives a clear-cut idea of the worldwide use of such work.

The attention of the Sub-commission then shifted to volcanic rocks. Among the several short documents, the most noticeable has been the highly cited publication by Le Bas et al. (1986) specifically geared for the classification of volcanic rocks (with over 1800 citations in international journals SCI-ISI, as on September 1st, 2012). The well-known TAS (Total Alkalis versus Silica) classification, although improperly used by most scientists even today, was the most important outcome of this joint effort. The classification scheme for the high-Mg and picritic volcanic rocks prior to the TAS classification was also put forth by Le Bas (2000), with around 160 citations in international journals.

Similarly, the classification of pyroclastic, carbonatitic, alkaline and other rocks was also considered, and the Sub-commission realized it to be of utmost importance to present the results of classification and nomenclature as a book whose first edition was by Le Maitre et al. (1989), which has been a highly used and cited document (with around 1500 citations). Then appeared the second edition of this book (Le Maitre et al., 2002), with around 460 citations.

In spite of so many citations of the IUGS proposals and recommendations, it appears that the rock classification as practiced by most scientists lacks the rigor suggested by the IUGS proponents. For example, for volcanic rock classification the TAS scheme practiced by most people does not take into account the Fe-oxidation and 100% anhydrous basis adjustments, because the measured SiO₂ and Na₂O+K₂O values are simply plotted, without any thoughts on the interdependency of compositional data and closure problems (Chayes, 1960; Aitchison, 1986; Verma, 2010). It is well known that the sum of the measured major elements (or oxides) is seldom 100% and volatile components may constitute a significant part of this total. Besides, more importantly, both oxidation states (Fe₂O₃ and FeO) are seldom separately measured. Therefore, by the use of measured crude compositions of SiO₂ and Na₂O+K₂O, the recommendations of Le Bas et al. (1986) or Le Maitre et al. (1989, 2002) are not really taken into account in the TAS diagram. Similarly, not all CIPW norm schemes lead to the same answer (Middlemost, 1989; Le Maitre, 2002; Verma et al., 2003). These considerations, therefore, should be a major issue to be addressed, if we were to count on a common “language” for the nomenclature of volcanic rocks.

Existing computer programs

We will concentrate on the characteristics of the existing software
for igneous rock classification and nomenclature, but will not comment on other applications, such as several kinds of simple bivariate, ternary, multi-element normalized, or discrimination diagrams popular among the Earth scientists. The readers can explore these aspects themselves in the computer programs cited in this review, or elsewhere, e.g. Rollinson (1993, a popular book with around 1180 citations in SCI-ISI journals).

WINROCK (1997-2012)

This computer program, initially proposed in 1997, was updated extensively in 2012 (R.A. Kanen; http://www.geologynet.com). WINROCK is commercially available as a single user version for AU $399.00 (http://www.geologynet.com/order.htm). It is capable of providing a wide range of IUGS diagrams for rock classification. However, WINROCK does not classify all special rocks suggested by Le Maitre et al. (2002). The program does not validate data for the QAPF diagram. Similarly, for volcanic rock classification the program requires the user to input the Fe-oxidation ratio, because the program does not include the calculation scheme proposed by Le Maitre (1976a) or Middlemost (1989).

Because the program was not published in an international journal, it is not easy to check the impact of this software in terms of total citations in international journals.

IUGSTAS software package (2002)

In Appendix C of the book by Le Maitre et al. (2002), Le Maitre (2002) described a collection of C++ programs (IUGSTAS software package) for implementing the TAS classification for volcanic rocks (Le Bas et al., 1986). According to Le Maitre (2002), this software corrected the then prevailing common mistakes and rounding errors in the CIPW norm (Cross et al., 1902) calculation schemes (Johannsen, 1931; Kelsey, 1965).

This program is available from the Cambridge University Press, as a part of the book by Le Maitre et al. (2002). Although the author stated that he extensively used this code in the CLAIR data system (Le Maitre, 1973, 1976b), its use by others has been rather limited, with the unfortunate consequence that the problem of the incorrect use of the TAS classification still persists.

SINCLAS (2002)

This computer program “Standard Igneous Norm and Volcanic Rock CLAssification System” (SINCLAS; Verma et al., 2002, 2003), written in Visual Basic, was meant for the classification of volcanic rocks fully consistent with the IUGS recommendations (Le Bas et al., 1986), including the special high-Mg and picritic rocks (Le Bas, 2000), such as meimechite, komatiite, picrite, and boninite. SINCLAS corrects the measured concentrations to 100% on an anhydrous basis after proper Fe-oxidation adjustment (Le Maitre, 1976a; Middlemost, 1989). It also allows the use of actually measured Fe$_2$O$_3$ and FeO concentrations. Because Le Bas et al. (1986) also proposed the use of normative minerals for volcanic rock subroot names, SINCLAS allows precise and accurate norm calculations according to the standard igneous norm (a revised CIPW norm) scheme proposed by Verma et al. (2003). Furthermore, this program provides information on the magma type (ultrabasic, basic, intermediate, or acid) from the adjusted compositions. This information has been used for multi-dimensional tectonomagmatic discrimination diagrams recently proposed for igneous rocks (e.g., Verma, 2010, 2012; Verma and Agrawal, 2011; Verma et al., 2012).

SINCLAS (Verma et al., 2002) is freely available on request to the first author. It has been used in the literature for the TAS diagram and volcanic rock nomenclature (with around 80 citations in SCI-ISI international journals for rock classification purposes). A few years ago, Pruseth (2009) proposed new formulae for the calculation of the CIPW norm and claimed that they performed better than the SINCLAS computer program.

IgPet (2006-2007)

First introduced by Carr (1995), its current updated version (2006-2007) version can be purchased as a single user version for US $199.00 from RockWare Inc., Golden, CO 80401, USA (http://www.rockware.com). This program facilitates the TAS classification and CIPW norm calculations, as well as allows the use of some mineralogical diagrams, although the latter do not seem to be those required by the IUGS classification scheme for plutonic rocks. Further, it is not clear if IgPet allows different types of Fe-oxidation adjustments as readily available in SINCLAS.

GCDKit (2003-2011)

GeoChemical Data ToolKit (GCDKit; http://www.gcdkit.org), written in language R and first reported by Janousek et al. (2006), has its updated version 3.0 available in 2011 (Janousek et al., 2011). This freely available program is capable of providing the QAPF classification for plinian (Streckeisen, 1974) and volcanic (Streckeisen, 1978) rocks, TAS diagram (Le Bas et al., 1986; Middlemost, 1994), and the CIPW norm calculations. Other IUGS recommendations such as those for the classification of special rocks are not considered. GCDKit in its first documentation in an international journal (Janousek et al., 2006) did not mention the prior existence of the SINCLAS computer program. Nevertheless, mainly for the purpose of other tasks and not for rock classification, GCDKit has been cited in more than 70 papers in SCI-ISI journals.

PetroGraph (2005)

This freely available software permits rock classification from the TAS diagram, both for volcanic (Le Bas et al., 1986) and plutonic (Cox et al., 1979) rocks. The IUGS recommendations for plutonic rock nomenclature, such as the use of the QAPF double-triangle, cannot be followed. Further, it is not clear if the program allows for the prior adjustment of measured compositions on an anhydrous basis, nor is there any mention of Fe-oxidation ratio adjustment. The authors failed to acknowledge the prior computer program SINCLAS for this purpose. Although not specifically used for rock classification, this program has been cited in around 20 papers included in SCI-ISI journals.

New computer program IgRoCS (2012)

IgRoCs (Igneous Rock Classification System; this work), written in Visual Basic and Net Framework, strictly follows all IUGS recommendations for the classification and nomenclature of igneous rocks (Le Maitre et al., 2002). Figure 1 provides a schematic flow
Diagram for IgRoCS, which is self-explanatory. All results, including the rock nomenclature, can be saved in Excel output files.

Before classifying the conventional plutonic or volcanic rocks, the program first allows the classification of special rocks, namely, pyroclastic, carbonatite, melilitic-bearing rock, kalsilite-bearing rock, kimberlite, lamproite, leucite-bearing rock, lamprophyre, and charnockite. Thus, all these nomenclatures strictly follow the IUGS recommendation. This nomenclature was achieved from Howarth et al. (2011; see R.H. Mitchell’s 1995 book citation in this paper).

For plutonic rocks, other ternary diagrams for modal classification of gabbroic and ultramafic rocks follow the QAPF double-triangle scheme. IgRoCS validates these modal data for internal consistency.

For volcanic rocks, the standard IUGS scheme is strictly followed. First, IgRoCS identifies the high-Mg and pricritic volcanic rocks from the criteria summarized by Le Bas (2000). The program contains an updated and corrected version of SINCLAS. IgRoCS now provides highly accurate values of normative minerals according to the revised CIPW norm scheme (Verna et al., 2003). We corrected some minor errors in the revised norm of Verna et al. (2003). These are as follows: (a) instead of using fixed molecular weights for diopside (clinoferrosilite) and pyrite (pr), variable weights were calculated and used; (b) in step 16, the third line should read nS instead of nFeO; (c) in step 39, the crystallization index (C.I.) was calculated from the corrected equation 47, in which the final term should be hy-Mg instead of hy-Fe; and (d) the EN_NORM and FS_NORM variables in the SINCLAS output were changed to DIM_NORM (Mg-type normative diopside) and DIF_NORM (Fe-type normative diopside), respectively.

IgRoCS provides accurately calculated normative mineral abundances in the excel output (rather than the rounded values for reports in MS Word). With these corrections in the revised CIPW norm, IgRoCS provides an almost perfect (100% sum) results for the normative minerals.

For IgRoCS, one complete file for the newer version of Excel (Data_IUGS.xlsx) or two example files for older version of Excel (DataMin_IUGS.x1s and DataChem_IUGS.x1s) are provided. The complete data file contains 444 columns, whereas the two older version files contain 245 and 242 columns, respectively. The data file is validated before its use in rock classification. These example files (or part of them) can be used to practice and familiarize with the program. Three templates (Template_IUGS.xlsx, TemplateMin_IUGS.xlsx and TemplateChem_IUGS.xlsx) are also available for inputting data for specific applications. Similarly, simpler example files in excel (xls) format for the mineralogical classification of a given rock type are specific applications. Similarly, simpler example files in excel (xls) format for the mineralogical classification of a given rock type are available from any of the authors. These files are as follows: 01DataPyro_IUGS, artificial data prepared to illustrate the use of the program; 02DataCarbo_IUGS, data from Le Bas (1999); Houzar and Novák (2002), and Woodard and Hölltü (2005); 03DataMel_IUGS, data from Dunworth and Bell (1998) and Dunworth and Wilson (1998); 04DataKals_IUGS, data from Bellezza et al. (2004); 05DataKimb_IUGS, data from Becker and Le Roex (2006) and Howarth et al. (2011); 06DataLamp_IUGS, data from Altherr et al. (2004); 07DataLeuc_IUGS, data from Lloyd et al. (1991); 08DataLamprop_IUGS, data from Tappe et al. (2004); 09DataChar_IUGS, data from Beard et al. (1994); and 10DataPlut_IUGS, data from Gomes and Neiva (2005) and Antunes et al. (2009).

As an application of the IgRoCS program for volcanic rock
classification, we compiled in the DataChem_IUGS.xls file geochemical data for 467 representative samples of mostly volcanic rocks. Some intrusive rocks were also included to highlight the use of IgRoCS when the mineralogical information is not available or when the user is interested in deciphering the magma equivalent for their rock samples, particularly for their use in appropriate tectonomagmatic discrimination diagrams (e.g. Verma et al., 2006, 2012; Verma and Agrawal, 2011). Similarly, some older rocks were also included, because no reliable proposal for their classification is yet available (see Verma et al., 2010, for the poor performance of such classification diagrams). Therefore, the TAS and CIPW norm classification can be tentatively used until new multi-dimensional diagrams currently under preparation by S.P. Verma and collaborators are proposed.

For establishing the DataChem_IUGS.xls file, numerous sources were considered to achieve a worldwide representation of all rock types, but at the same time, limiting the total number of samples so that in a TAS diagram the data could be easily visualized. Their sources were as follows (listed alphabetically for the authors): Abdel-Rahman et al. (1994); Barrat et al. (2003); Bayat and Torabi (2011); Beccaluva et al. (2009); Ban et al. (2007); Barker et al. (2009); Barling et al. (2004); Albrecht and Goldstein (2000); Aldanmaz et al. (2000, 2005); Albrecht and Goldstein (2000); Aldanmaz et al. (2000, 2005); Ali et al. (2002); Arce et al. (2008); Arrobas et al. (2002); Arpa et al. (2008); Avanzinelli et al. (2008); Avellan et al. (2012); Ayabe et al. (2012); Ayalew et al. (2006); Aydar et al. (2003); Aydin et al. (2008); Bachmann et al. (2002); Bagci et al. (2008); Bailey et al. (2009); Ban et al. (2007); Barker et al. (2009); Barling et al. (1994); Barrat et al. (2003); Bayat and Torabi (2011); Beccaluva et al. (2002); Beier et al. (2006, 2008); Benotti et al. (2002); Bergmanise et al. (2000); Blatterand Hammersley (2010); Blatter et al. (2002); Beier et al. (2006, 2008); Bodoen et al. (2011, 2012); Bruni et al. (2008); Bryan (2006); Bryant et al. (2006); Cadoux and Pinti (2010); Calmus et al. (2003, 2010); Carmichael et al. (2006); Carn and Pyle (2001); Carrasco-Núñez et al. (2010); Chadwick et al. (2007); Chakrabarti et al. (2009); Chang et al. (2009); Chen et al. (2012); Churikova et al. (2001); Conly et al. (2005); Conticelli et al. (2009); Coogan et al. (2001); Corgne et al. (2001); Couzens et al. (2003); Čučukuć et al. (2012); Cucchiello et al. (2011); Cunningham et al. (2009); de Lima et al. (2011); Deering et al. (2011, 2012); Dilek et al. (2010); Ding et al. (2003); Dini et al. (2002); Doucelfance et al. (2003); Elburg et al. (2003); Elitok et al. (2010); Ferlito et al. (2009); Fontijn et al. (2010); Fretzdorffand Haase (2002); Frey et al. (2000); Gao et al. (2010); García Tovar (2009); Geldmacher and Hoernle (2000); Goring and Kay (2001); Guzman et al. (2011); Haase et al. (2002, 2004); Hanyu et al. (2011); Harper (2003); Hawkins and Ishizuka (2009); Hekinian et al. (2003); Hoke and Lamb (2007); Holm et al. (2006); Horz et al. (2004); Hou et al. (2004); Hsu et al. (2000); Ilbeyli et al. (2004); Ireland et al. (2009); Ishizuka et al. (2002); Jian et al. (2009); Jorgensen and Holm (2002); Jutzeler et al. (2010); Karsli et al. (2008); Kawabata et al. (2011); Kerrich and Manikyamba (2012); Kim et al. (2008); Kimm et al. (2001); Koprobasi and Aldanmaz (2004); Krochert and Buchner (2009); Ma et al. (2011); Maho et al. (2009); Manikyamba et al. (2005); Marshall et al. (2009); Martynov et al. (2010); Massaferrro et al. (2006); Melluso et al. (2010); Nikogosian and Van Bergen (2010); Nonnotte et al. (2011); Ortiz-Hernández et al. (2003); Owen (2008); Özdemir et al. (2011); Pappalardo et al. (2008); Patino et al. (2003); Pecce rillo et al. (2003); Perrini et al. (2004); Polat et al. (2002); Price et al. (2003); Ren et al. (2004); Robin et al. (2009); Rogers et al. (2004); Rolland et al. (2009); Rollinson et al. (2007); Rosa et al. (2004, 2006); Schaaf et al. et al. (2005); Scuth et al. (2004, 2009); Shane et al. (2005); Sheth and Melluso et al. (2008); Sheth et al. (2003); Shinjo et al. et al. (2005); Siebert and Cassarco (2002); Spatth et al. (2001); Srivastava et al. (2006); Srug et al. et al. (2005); Tamura et al. (2009); Tatar et al. (2007); Taylor et al. (1994); Tian et al. (2011); Torabi (2009); Turner et al. (2012); Upton et al. (2000); Verma (2000); Vigouroux et al. (2008); Wang et al. (2009); Watanabe et al. (2008); Wang et et al. (2005); Marshall et al. (2009); Martynov et al. (2010); Massaferrro et al. (2006); Melluso et al. (2010); Nikogosian and Van Bergen (2010); Nonnotte et al. (2011); Ortiz-Hernández et al. (2003); Owen (2008); Özdemir et al. (2011); Pappalardo et al. (2008); Patino et al. (2003); Pecce rillo et al. (2003); Perrini et al. (2004); Polat et al. (2002); Price et al. (2003); Ren et al. (2004); Robin et al. (2009); Rogers et al. (2004); Rolland et al. (2009); Rollinson et al. (2007); Rosa et al. (2004, 2006); Schaaf et al. et al. (2005); Scuth et al. (2004, 2009); Shane et al. (2005); Sheth and Melluso et al. (2008); Sheth et al. (2003); Shinjo et al. et al. (2005); Siebert and Cassarco (2002); Spatth et al. (2001); Srivastava et al. (2006); Srug et al. et al. (2005); Tamura et al. (2009); Tatar et al. (2007); Taylor et al. (1994); Tian et al. (2011); Torabi (2009); Turner et al. (2012); Upton et al. (2000); Verma (2000); Vigouroux et al. (2008); Wang et

Figure 2. The TAS diagram for the samples compiled in DataChem_IUGS.xls file. See text for the literature source of data. Filled black circles show the high-Mg and picritic rocks, whereas symbols used for other rock types are self-explanatory. The abbreviations used are the same as in Verma et al. (2002): A = Andesite, B = Basalt, BA = Basaltic andesite, BSN = Basanite, BTA = Basaltic trachyandesite, D = Dacite, FOI = Foidite, PB = Picrobasalt, PH = Phonolite, PHT = Phonotephrite, R = Rhyolite, T = Trachyte, TA = Trachyandesite, TB = Trachybasalt, TD = Trachydacite, TEP = Tephrite, and TPH = Tephriphonolite.

June 2013
al. (2012); Watts et al. (2011); Zaitsev et al. (2012); Zellmer and Turner (2007); Zellmer et al. (2000); Zhang et al. (2003); Zongfeng et al. (2009); and Zou et al. (2003, 2008).

IgRoCS automatically classified all samples and assigned appropriate IUGS rock names to them. The resulting TAS diagram is presented in Fig. 2. The choice of samples confirmed that all rock types were represented in this example file (DataChem_IUGS.xls).

IgRoCS can automatically process any number of samples in a single run, which is an advantage over SINCLAS when one is interested in processing large databases. IgRoCS, therefore, provides an unparalleled advantage for the IUGS igneous rock classification as compared to all existing computer programs. IgRoCS is available on request to any of the authors.

Conclusions

Several computer programs, viz., WINROCK, IUGSTAS, SINCLAS, IgPet, GCDKit, PetroGraph, and IgRoCS, are available specifically for the IUGS classification and nomenclature of igneous rocks, of which IgRoCS presented in this paper seems to be the most versatile and useful program for strictly following the IUGS recommendations. WINROCK and IgPet are commercial software, whereas IUGSTAS, SINCLAS, GCDKit, PetroGraph, and IgRoCS are freely available.

Acknowledgements

We gratefully acknowledge a minor nomenclature error in the output of SINCLAS software kindly pointed out by Huang Jinxiang, Altherr (2007); Zellmer and Turner (2007); Zellmer et al. (2000); and IgRoCS programs.

References

Abdel-Rahman, A.-F.M., and Lease, N.A., 2011, Petrogenesis of Cenozoic mafic–ultramafic alkaline lavas from the Tigris volcanic field, NE Syria: Geological Magazine, v. 149, no. 1, pp. 1-18.
Agostini, S. 2003. Il magmatismo post-collisionale dell’anatolia occidentale: caratteri geochimici e petrologici, distribuzione spazio-temporale, quadro geodinamico. Ph.D. thesis. Università di Pisa, Pisa. 269 pp.
Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., Manetti, P., Di Vincenzo, G., and Montanari, D., 2006, Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlin and Alahuachapán geothermal areas: Geothermics, v. 35, no. 4, pp. 368-408.
Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S., and Savascin, M.Y., 2007, The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area, in Beccaluva, L., Bianchini, M., and Wilson, M., eds, Cenozoic volcanism in the Mediterranean Area: Boulder, Colorado, Geologic Society of America, pp. 1-15.
Agostini, S., Torcaer, M., and Savascin, M.Y., 2010, Volcanic rocks from Foça-Karaburan and Avvalik-Levos grabens (western Anatolia) and their petrogenetic-geodynamic significance: Turkish Journal of Earth Sciences, v. 19, no. 2, pp. 157-84.
Aguirre-Díaz, G.J., and McDowell, F.W., 2000, Volcanic evolution of the Amealco caldera, Central Mexico, in Delgado-Granados, H., Aguirre-Díaz, G., and Stock, J.M., eds, Cenozoic tectonics and volcanism of Mexico, GSA, pp. 179-93.
Agustín-Flores, J., Siebe, C., and Guilbaud, M.-N., 2011, Geology and geochemistry of Pelagatos, Cerrro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichmanztin Volcanic Field, south of México City: Journal of Volcanology and Geothermal Research, v. 201, no. 1-4, pp. 143-62.
Ahmad, T., Tanaka, T., Suchan, H.K., Asahara, Y., Islam, R., and Khanna, P.P., 2008, Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh India: implications for the Neo-Tethyan subduction along the Indus suture zone: Tectonophysics, v. 451, no. 1-4, pp. 206-24.
Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghobari, M.R., Emami, M.H., and Murata, M., 2009, High magmatic flux during Alpine-Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran: Geological Society of America Bulletin, v. 121, no. 5/6, pp. 857-86.
Aitchison, J., 1986, The statistical analysis of compositional data: London, New York, Chapman and Hall, 416 pp.
Akal, C., 2003, Mineralogy and geochemistry of melilitic leucitites, Balikchisar, Afyon (Turkey): Turkish Journal of Earth Sciences, v. 12, no. 3, pp. 215-39.
Alam, M.A., Chandrasekharam, D., Vaselli, O., Capacioni, B., Manetti, P., and Santo, P.B., 2004, Petrology of the Neogene alkaline lavas beneath the Barren reed, Andaman sea, Indian ocean: Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), v. 113, no. Special Issue, pp. 715-22.
Albrecht, A., and Goldstein, S.L., 2000, Effects of basement composition and age on silicic magmas across an accreted terrane-Precambrian crust boundary, Sierra Madre Occidental, Mexico: Journal of South American Earth Sciences, v. 13, no. 3, pp. 255-73.
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000, Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, v. 102, no. 1-2, pp. 67-95.
Aldanmaz, E., Koprübaşi, N., Güür, Ö.F., Kaymakci, N., and Gourgau, A., 2006, Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes: Lithos, v. 86, no. 1, pp. 50-76.
Aldanmaz, E., Yalnızz, M.K., Gucuktin, A., and Goncuoglu, M.C., 2008, Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: implications fro heterogeneous source contribution during variable stages of ocean crust generation: Geological Magazine, v. 145, no. 1, pp. 37-54.
Alici, P., Temel, A., and Gourgau, A., 2002, Pb-Nd–Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case study of Kula region (western, Turkey): Journal of Volcanology and Geothermal Research, v. 115, no. 3-4, pp. 487-510.
Altherr, R., Meyer, H.-P., Holz, A., Volker, F., Ailbert, C., McCulloch, M.T., Mayer, V., and 2004, Geochemical and Sr-Nd-Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia): Contributions to Mineralogy and Petrology, v. 147, no. 1, pp. 58-73.
Antunes, I.M.H.R., Neiva, A.M.R., Silva, M.M.V.G., and Corfu, F., 2009, The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, central Iberian zone (central Portugal): Lithos, v. 111, no. 3-4, pp. 168-85.
Arce, J.L., Macías, R., García Palomo, A., Capra, L., Macías, J.L., Layer, P., and Rueda, H., 2008, Late Pleistocene flank collapse of Zempolaca volcano (central Mexico) and the role of fault reactivation: Journal of Volcanology and Geothermal Research, v. 177, no. 4, pp. 944-58.
Arnórsson, S., Gunnarsrsson, I., Stefánsson, A., Andrésdóttir, A., and Svenhjörnisdóttir, A.E., 2002, Major element chemistry of surface- and ground waters in basaltic terrain, N-Iceland, I. Primary mineral saturation: Geochemica et Cosmochemica Acta, v. 66, no. 23, pp. 4015-46.
Arpa, M.C.B., Patino, L.C., and Vogel, T.A., 2008, The basaltic to trachydacitic upper Diliman tuff in Manila: petrogenesis and comparison with deposits from Taal and Laguna calderas: Journal of Volcanology and Geothermal Research, v. 177, no. 4, pp. 1020-34.
Avanzinelli, R., Elliott, T., Tommasin, S., and Conticelli, S., 2008, Constraints on the genesis of the potassium-rich Italian volcanic rocks from U-Th disequilibrium: Journal of Petrology, v. 49, no. 2, pp. 195-223.
Avellán, D.R., Macías, J.L., Pardo, N., Scolamacchia, T., and Rodríguez, D., 2012, Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua: Journal of Volcanology and Geothermal Research, v. 213-214, no. 51-71.
Ayabe, M., Takanashi, K., Shuto, K., Ishimoto, H., and Kawabata, H., 2012, Petrology and geochemistry of adakitic dacites and high-MgO andesites, and related calc-alkaline arc lavas from the miocene Okoppe volcanic field, N Hokkaido, Japan: Journal of Petrology, v. 53, no. 3, pp. 547-88.
Aylawar, D., Ebinger, C., Bourdon, E., Wofotenfeld, E., Yirgu, G., and Grassineau, N., 2006, Temporal compositional variation of syn-rift
Churikova, T., Dorendorf, F., and Wörner, G., 2001, Sources and fluids in the Conly, A.G., Brenan, J.M., Bellon, H., and Scott, S.D., 2005, Arc to rift transition: Chemical Geology, v. 178, no. 1, pp. 1-22.

Cousens, B.L., Clague, A., and Sharp, W.D., 2003, Chronology, chemistry and origin of trachyandesites from Hualalai volcano, Hawaii: Geochimica et Cosmochimica Acta, v. 67, no. 19, pp. 3717-3731.

Cross, W., Iddings, J.P., Pirsson, L.V., and Washington, H.S., 1902, A petrologic study of volcanic rocks from the point triple du Chili (46°-47° lat. S): doneées complémentaires et implications sur les conditions de la subduction: Comptes Rendus de L'Académie des Sciences du Paris/Earth and Planetary Sciences, v. 333, no. 7, pp. 363-71.

Cousens, B.L., Clague, A., and Sharp, W.D., 2003, Chronology, chemistry and origin of trachyandesites from Hualalai volcano, Hawaii: Geochimica et Cosmochimica Acta, v. 67, no. 19, pp. 3717-3731.

Cox, K.G., Bell, J.D., and Pankhurst, R.J., 1979, The interpretation of igneous rocks: Journal of Geology, v. 10, no. 6, pp. 555–690.

Cubukçu, H.E., Ulusoy, I., Aydar, E., Ersoy, O., Sen, E., Gougarida, A., and Guillou, H., 2012, NMR on volcanic rocks in Turkey: Journal of Geophysical Research, v. 117, B01, doi:10.1029/2011JB008509.

Cunningham, H.S., Turner, S.P., Patia, A.D., Eggnings, S.M., and Arculus, R.J., 2009, Temporal variations in U-series disequilibria in an active caldera, Rabaul, Papua New Guinea: Journal of Petrology, v. 50, no. 3, pp. 507-29.

Ding, L., Kapp, P., Zhong, D., and Deng, W., 2003, Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction: Journal of Petrology, v. 44, no. 10, pp. 1833-65.

Dini, A., Innocenti, F., Rocchi, S., Tonarini, S., and Westerman, D.S., 2002, The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy: Geological Magazine, v. 139, no. 3, pp. 257-79.

Doucelance, R., Escrig, S., Moreira, M., Gariépy, C., and Kurz, M.D., 2003, Pb-Sr-He isotope and trace element geochemistry of the Cape Verde archipelago: Geochemica et Cosmochimica Acta, v. 67, no. 39, pp. 3717-10.

Dunworth, E.A., and Bell, K., 1998, Melilitolites: a new scheme of classification: Canadian Mineralogist, v. 36, no. 3, pp. 895-903.

Dunworth, E.A., and Wilson, M., 1998, Olivine melilitolites of the SW German Tertiary volcanic province: mineralogy and petrogenesis: Journal of Petrology, v. 39, no. 10, pp. 1805-36.

Elburg, M.A., van Leeuwen, T., Foden, J., and Muhardjo, 2003, Spatial and temporal isotopic domains of contrasting igneous suites in Western and Northern Sulawesi, Indonesia: Chemical Geology, v. 199, no. 3-4, pp. 243-76.

Elliot, O., Ouzg, N., Drüppel, K., Dilek, Y., Platevoet, B., Guillou, H., Potissson, A., Scaillet, S., Satir, M., and Siebel, W., 2010, Origin and genetic and geochemical evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey: International Geology Review, v. 52, no. 4-6, pp. 454-504.

Ferlito, C., Colotorti, M., Cristofolini, R., and Giacomoni, P.P., 2009, The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event, Mt. Etna, Italy: Bulletin of Volcanology, v. 71, no. 5, pp. 575-87.

Fontijn, K., Ernst, G.G.J., Elburg, M.A., Williamson, D., Abdallah, E., Kewlwa, S., Mbede, E., and Jacobs, F., 2010, Holocene explosive eruptions in the Runwe Volcanic Province, Tanzania: Journal of Volcanology and Geothermal Research, v. 196, no. 1-2, pp. 91-110.

Fretzendorf, S., and Haase, K.M., 2002, Geochemistry and petrology of lavas from the submarine flanks of Réunion Island (western Indian Ocean): implications for magma genesis and the mantle source: Mineralogy and Petrology, v. 75, no. 3-4, pp. 153-84.

Frey, F.A., Weis, D., Yang, H.-J., Nocloaysen, K., Leyrit, H., and Giret, A., 2000, Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen plume: Chemical Geology, v. 164, no. 1, pp. 61-80.

Gao, Y., Yang, Z., Santosh, M., Hao, Z., Wei, R., and Tian, S., 2010, Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet: Lithos, v. 119, no. 3-4, pp. 651-63.

García Tovar, GP. 2009. Caracterización geológica, geoquímica e isotópica de las lavas del estratovolcán Teléfon, Sierra Nevada, México. M.S. thesis. UNAM, México.

Geldmacher, J., and Hoeren, K., 2000, The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of Paleozoic (≤ 500 Ma) oceanic lithosphere: Earth and Planetary Science Letters, v. 183, no. 1-2, pp. 73-92.

Gomes, M.E.P., and Neiva, A.M.R., 2005, Geochemistry of granitoids and their minerals from Rebordelo-Agrochão area, northern Portugal: Lithos, v. 81, no. 1-4, pp. 235-54.

Gorrill, M.L., and Kay, S.M., 2001, Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina: Journal of Petrology, v. 42, no. 6, pp. 1067-94.

Harman, S., Petrinovic, I.A., Brod, I.A., Honig, F.D., Seggiaro, R.E., Montero, C., Carniel, R., Dantas, E.L., and Sudo, M., 2011, Petrology of the Luinga caldera (SE margin of the Puna plateau): A middle Miocene window of the arc–back arc configuration: Journal of Volcanology and Geothermal Research, v. 200, no. 3-4, pp. 171-91.

Harra, K.M., Wurtzington, T., Hofmann, T., Stoffers, P., Garbe-Schönberg, D., and Wright, I., 2002, Mantle dynamics, element recycling, and magma genesis beneath the Kermadec arc-Havre Trough: Geochemistry Geophysics Geosystems, v. 3, no. 11, pp. 1071, doi:10.1029/2002GC00035.

Haase, K.M., Goldschmidt, B., and Garbe-Schönberg, C.-D., 2004, Petrogenesis of Tertiary continental intra-plate lavas from the Westernward region, Germany: Journal of Petrology, v. 45, no. 5, pp. 883-905.

Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., Takahashi, T., Kawabata, H., and Suzuki, K., 2011, Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle: Geochemistry Geophysics Geosystems, v. 12, no. 2, pp. 1-30.

Harper, G.D., 2003, Tectonic implications of bocanite, arc tholeiite, and MORB
Maipo volcano complex in the southern Andes of Argentina (34°10’S): Journal of South American Earth Sciences, v. 19, no. 4, pp. 399-414.

Streckeisen, A.L., 1974, Classification and Nomenclature of Plutonic Rocks. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks: Geologische Rundschau. Internationale Zeitschrift für Geologie Stuttgart, v. 63, no. 5, pp. 773-785.

Streckeisen, A., 1976, To each plutonic rock its proper name: Earth Science Reviews, v. 12, no. 1, pp. 1-33.

Streckeisen, A.L., 1976, IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilitine Rocks. Recommendations and Suggestions: Neues Jahrbuch für Mineralogie, Abhandlungen, v. 141, no. 1, pp. 1-14.

Tamura, Y., Gill, J.B., Tollstrup, D., Kawabata, H., Shukuno, H., Chang, Q., Miyazaki, T., Takahashi, T., Hirahara, Y., Kodaira, S., Ishizuka, O., Suzuki, T., Kido, Y., Fiske, R.S., and Tatsuini, Y., 2009, Silicic magmas in the Izu-Bonin oceanic arc and implications for crustal evolution: Journal of Petrology, v. 50, no. 4, pp. 685-723.

Tappe, S., Jenner, G.A., Foley, S.F., Heaman, L., Besserer, D., Kjarsgaard, B.A., and Ryan, B., 2004, Tornagut ultramafic lamprophyres and their relation to the North Atlantic alkaline province: Lithos, v. 76, no. 1-4, pp. 491-518.

Tatar, O., Yurtmen, S., Temiz, H., Gursoy, H., Kocbulut, F., Mesci, B.L., and Guzou, J.C., 2007, Intracontinental Quaternary volcanism in the Niskar pull-apart basin, North Anatolian Fault Zone, Turkey: Turkish Journal of Earth Sciences, v. 16, no. 4, pp. 417-440.

Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B., and Croudace, I.W., 1994, Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan: Journal of Petrology, v. 35, no. 3, pp. 577-617.

Tian, L., Castillo, P.R., Lon aldale, P.F., Hahn, D.M., and Hilton, D.R., 2011, Petrology and Sr-Nd-Pb isotopic geochemistry of postspreading lavas on fossil spreading axes off Baja California Sur, Mexico: Geochemistry Geophysics Geosystems, v. 12, no. 2, doi:10.1029/2010GC003319.

Torabi, G., 2009, Subduction-related Eocen-Quaternary basanites from the Cenozoic Urumche-Dokhtar magmatic arc (Qaleh-Khargooshi area, western Yazd province, Iran): Turkish Journal of Earth Sciences, v. 18, no. 4, pp. 583-613.

Turner, S., Caulfield, J., Rushmer, T., Turner, M., Cronin, S., Smith, I., and Handley, H., 2012, Magma evolution in the primitive, Intra-oceanic Tonga Arc: rapid petrogenesis of dacites at Fonualei volcano: Journal of Petrology, v. 53, no. 6, pp. 1231-53.

Upton, B.G.J., Semet, M.P., and Joron, J.-L., 2000, Cumulate clasts in the central Mexican Volcanic Belt, in Delgado-Granados, H., Aguirre-Díaz, M., eds., Geological and Petrological Studies of the Central Mexican Volcanic Belt, in Delgado-Granados, H., Aguirre-Díaz, M., eds., Geological and Petrological Studies of the Central Mexican Volcanic Belt: Comunicaciones Geológicas, v. 99, no. 2, pp. 79-93.

Verma, S.P., and Agrawal, S., 2011, New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes: Revista Mexicana de Ciencias Geológicas, v. 28, no. 1, pp. 24-44.

Verma, S.P., Torres-Alvarado, I.S., and Sotelo-Rodríguez, Z.T., 2002, SINCLAS: standard igneous norm and volcanic rock classification system: Computers & Geosciences, v. 28, no. 5, pp. 711-715.

Verma, S.P., Torres-Alvarado, I.S., and Velasco-Tapia, F., 2003, A revised CIPW norm: Schweizerische Mineralogische und Petrographische Mitteilungen, v. 83, no. 2, pp. 197-216.

Verma, S.P., Guevara, M., and Agrawal, S., 2006, Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data: Journal of Earth System Science, v. 115, no. 5, pp. 485-528.

Verma, S.P., Rodríguez-Ríos, R., and González-Ramírez, R., 2010, Statistical evaluation of classification diagrams for altered igneous rocks: Turkish Journal of Earth Sciences, v. 19, no. 2, pp. 239-265.

Vignou, R., Wallace, P.J., and Kent, A.J.R., 2008, Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes: Journal of Petrology, v. 49, no. 9, pp. 1589-618.

Wang, X.-C., Li, Z.-X.-., Li, X.-H., Li, J., Liu, Y., Long, W.-G., Zhou, J.-B., and Wang, F., 2012, Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?: Journal of Petrology, v. 53, no. 1, pp. 177-233.

Watts, K.E., Bindeman, I.N., and Schmitt, A.K., 2011, Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: insights from the Kilgore tuff of the Heise volcanic field, Idaho, with comparison to Yellowstone and Bruneau-Jarbidge rhyolites: Journal of Petrology, v. 52, no. 5, pp. 857-90.

Woodard, J., and Holtïa, P., 2005, The Naantali alkavite vein-dikes: a new carbonatite in southwestern Finland: Geological Survey of Finland Special Paper, v. 38, no. 8, pp. 5-10.

Zaitsev, A.N., Marks, M.A.W., Wenzel, T., Spratt, J., Sharygin, V.V., Strekopytov, S., and Markl, G., 2010, Mineralogy, geochemistry and petrology of the phonolitic to nephelinitic Sadiman volcano, Crater Highlands, Tanzania: Lithos, doi:10.1016/j.lithos.2012.03.001, in press.

Zellmer, G.F., and Turner, S.P., 2007, Arc dacite genesis pathways: Evidence from mafic enclaves and their hosts in Aegean lavas: Lithos, v. 95, no. 3-4, pp. 346-62.

Zellmer, G., Turner, S., and Hawkesworth, C., 2000, Time scales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc: Earth and Planetary Science Letters, v. 174, no. 3-4, pp. 265-81.

Zhang, Q., Wang, Y., Zhou, G.Q., Qian, Q., and Robinson, P.T., 2003, Ophiolites in China: their distribution, ages and tectonic settings, in Dlek, Y., and Robinson, P.T., eds., Ophiolites in Earth History: Bath, U.K., Geological Society of London, pp. 541-66.

Zongfeng, Y., Zhaohua, L., Huafeng, Z., Yongmei, Z., Fan, H., Chenguang, W., Zengbo, W., Zeng, Z., and Zhang, Q., 2003, U-Th systematics of dispersed young carbonatite in southwestern Finland: Geological Survey of Finland Special Paper, v. 38, no. 8, pp. 5-10.

Zou, H., Fan, Q., and Yao, Y., 2008, U-Th disequilibrium on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data: Chemical Geology, v. 200, no. 1-2, pp. 189-201.

Zou, H., Fan, Q., and Yao, Y., 2008, U-Th systematics of dispersed young volcanic rocks in NE China: Astronoscope upwelling caused by plating up and upward thickening of stagnant Pacific slab: Chemical Geology, v. 255, no. 1-2, pp. 134-42.

Surendra P. Verma is a senior scientist at the Universidad Nacional Autónoma de México. He received PhD degree from Indian Institute of Science, Bangalore, India in 1971. He has published more than 200 papers. His scientific interest includes igneous and sedimentary rock geochemistry, computer programming, Monte Carlo simulations and statistics.

M. Abedaly Rivera-Gómez completed her Master’s degree in Energy Engineering at the Universidad Nacional Autónoma de México in 2010. She is currently applying for scholarship to pursue her doctoral studies in Energy Engineering. She holds a Bachelor degree in Computer Programming (2007), which has been an asset in the development of IgRoCS software outlined in this review.