SOME COMPUTATIONS OF GENERALIZED HILBERT-KUNZ FUNCTION AND MULTIPLICITY

HAILONG DAO AND KEI-ICHI WATANABE

Abstract. Let R be a local ring of characteristic $p > 0$ which is F-finite and has perfect residue field. We compute the generalized Hilbert-Kunz invariant (studied in \cite{7, 8}) for certain modules over several classes of rings: hypersurfaces of finite representation type, toric rings, F-regular rings.

Contents

1. Introduction 1
2. Dimension two 2
3. The finite representation type case 3
4. The toric case 4
5. The F-regular case 5
References 7

1. Introduction

Let R be a local ring of characteristic $p > 0$ which is F-finite and has perfect residue field. Let M a finitely generated R-module. Let $F^n_R(M) = M \otimes_R F^n$ denote the n-fold iteration of the Frobenius functor given by base change along the Frobenius endomorphism. Let $\dim R = d$ and $q = p^n$. This paper constitutes a further study of the following:

$$f_{gHK}^M(n) := \ell(H^0_m(F^n(M)))$$

and

$$e_{gHK}(M) := \lim_{n \to \infty} \frac{f_{gHK}^M(n)}{p^{nd}},$$

which are called the generalized Hilbert-Kunz function and generalized Hilbert-Kunz multiplicity of M, respectively. These notions were first defined by Epstein-Yao in \cite{5} and were studied in details in \cite{7}. For instance, it is now known that $e_{gHK}(M)$ exists for all modules over a Cohen-Macaulay isolated singularity.

Date: March 4, 2015.

1991 Mathematics Subject Classification. Primary: 13A35; Secondary: 13D07, 13H10.

Key words and phrases. Frobenius endomorphism, generalized Hilbert-Kunz multiplicity, toric rings, isolated singularity.

The first author is partially supported by NSF grant 1104017. The second author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) Grant Number 26400053.
It is a non-trivial and interesting problem to compute even the classical Hilbert-Kunz multiplicity. In this note we focus on computing f_M^{gHK} and the limit $e_{gHK}(M)$ for certain modules in a number of cases: when R is a normal domain of dimension 2 (section 2), a hypersurface of finite representation type (section 3) and when R is a toric ring (section 4). We also point out a connection between the generalized Hilbert-Kunz limits and tight closure theory in section 5. Namely, over F-regular rings, these limits detect depths of the module M and all of its pull-back along iterations of Frobenius.

Acknowledgments. The authors would like to thank Jack Jeffries and Jonathan Montaño for some helpful discussions on the subject of j-multiplicity. We also thank MSRI and Nihon University for providing excellent environment for our collaboration.

2. Dimension two

In this section, we prove certain preliminary facts about behavior of f_M^{gHK} when R is normal and $M = R/I$ where I is reflexive. We then apply them to give a formula for $e_{gHK}(R/I)$ when I represents a torsion element in the class group of R.

Lemma 2.1. Let R be a local normal domain of dimension at least 2 and I a reflexive ideal that is locally free on the punctured spectrum. Then

$$\ell(H^0_m(R/I^{[q]})) = \ell(I^{[q]}/I^q) + \ell(I^q/I^{[q]})$$

Proof. Apply local cohomology functor to the sequence:

$$0 \to I^{[q]} \to R \to R/I \to 0.$$

Note that $H^0_m(R/I^{[q]}) = 0$ and $\ell(I^{[q]}/I^q), \ell(I^q/I^{[q]}) < \infty$ as the ideals coincide on the punctured spectrum.

Proposition 2.2. Let R be a local normal domain of dimension 2 and I be a reflexive ideal. Then $e_{gHK}(R/I) = 0$ if and only if I is principal.

Proof. Only one direction needs to be checked. Suppose $e_{gHK}(R/I) = 0$. Let $\mu()$ denote the minimal number of generators of an R-module. We have that $\ell(H^0_m(R/I[^q])) \geq \ell(H^0_m(R/I^q))$ by Lemma 2.1. It follows that $\limsup_{\mu} \frac{\ell(H^0_m(R/I^{[q]}))}{q^2} = 0$, so I has analytic spread one by [10, Theorem 4.7], thus $[I]$ is principal.

Remark 2.3. The number $\limsup_{\mu} \frac{\ell(H^0_m(R/I^{[q]}))}{q^2} = 0$ is known as the epsilon multiplicity of I, $\epsilon(I)$. It has now been proved to exist as a limit under mild conditions, it see [4]. Lemma 2.1 says that $e_{gHK}(R/I) \geq \epsilon(I)$.

Lemma 2.4. Let R be a local normal domain of dimension 2 and I a reflexive ideal. Assume that $[I]$ is torsion in $\text{Cl}(R)$. Then $\ell(H^0_m(R/I^n))$ has quasi-polynomial behavior for n large enough.

Proof. Let r be some integer such that of $r[I] = 0$ in $\text{Cl}(R)$. Then $I^r = I_1 \cap I_2$, where I_1 is the determinant of I^r and thus principal, and I_2 is m-primary. Let $I_1 = (x)$ we then have
$I^r = xJ$ where $J = I_2 : x$. Note that J is m-primary. For any integer n, let $n = ar + b$. We have that $I^n = I^{ar+b} = x^aJ^b$. Then

$$H^0_m(R/I^n) \cong H^1_m(I^n) \cong H^1_m(J^bI^b) \cong H^0_m(R/J^aI^b)$$

To calculate the last term we use:

$$0 \to I^b/J^aI^b \to R/J^aI^b \to R/I^b \to 0$$

The leftmost term has finite length, thus what we want is equal to $\ell(I^b/J^aI^b) + \ell(H^0_m(R/I^b))$. Since b is periodic and a grows linearly with n, what we claimed follows. Note that the limit if $\ell(H^0_m(R/I^n))/n^2$ is equal to $e(J)/2r^2$.

\[\square\]

3. The finite representation type case

We now describe how to compute $e_{gHK}(M)$ when M is a module of positive depth over a Gorenstein local ring of finite Cohen-Macaulay type. We first need some definitions.

Definition 3.1. Let R be a Gorenstein complete local ring of finite Cohen-Macaulay type with perfect residue field (in particular, R must be a hypersurface singularity, see [15]). Let X_1, \ldots, X_n be all the indecomposable non-free Cohen-Macaulay modules.

We define the stable Cohen-Macaulay type of M to be the vector (u_1, \ldots, u_n) with $X = \oplus X_i^{u_i}$, here X is a Cohen-Macaulay approximation $0 \to M \to N \to X \to 0$ where pd$_R N < \infty$. This is well-defined since R is complete. As R is also a hypersurface, by taking syzygy one can see that X is stably equivalent to the e-syzygy of M where $e = 2 \dim R$.

We also define $v_j = \lim_{n \to \infty} \frac{\#(nR, X_j)}{q^n}$, where $\#(nR, X_j)$ is the number of copies of X_j in the decomposition of nR. This limit exists by [13, 14].

Proposition 3.2. Using the set up of Definition 3.1. Let M be an R-module of positive depth. One has:

$$e_{gHK}(M) = \sum_{1 \leq i, j \leq n} u_i v_j \ell(Tor^R_1(X_i, X_j)) = \sum_{1 \leq i, j \leq n} u_i v_j \ell(Tor^R_2(X_i, X_j))$$

Proof. Take a MCM approximation $0 \to M \to N \to X \to 0$ and tensor with nR, we get

$$0 \to Tor^R_1(X, nR) \to M \otimes nR \to N \otimes nR$$

Note that depth$(N \otimes nR) = \text{depth } N = \text{depth } M > 0$ and Tor$_1^R(X, nR)$ has finite length as R must have isolated singularity, we get that $\ell(H^0_m(M \otimes nR) = \ell(\text{Tor}^R_1(X, nR))$. The first equality is now obvious.

For the second equality we just need that $\ell(\text{Tor}^R_1(X, nR)) = \ell(\text{Tor}^R_2(X, nR))$ by [5].

\[\square\]

Example 3.3. Let $R = k[[x, y, z]]/(xy - z^r)$ where k is a perfect field of characteristic $p > 0$. R has finite type with $X_i = (x, z^i)$, $1 \leq i \leq r - 1$. It is not hard to check that $\ell(\text{Tor}^R_1(X_i, X_j)) = \min\{i, j, r - i, r - j\}$. Also, it is known that $v_j = 1/r$. So for a module M with positive depth and stable CM type (u_1, \ldots, u_n) one gets:

$$e_{gHK}(M) = \frac{1}{r} \sum_{1 \leq i, j \leq r - 1} u_i \min\{i, j, r - i, r - j\}$$
4. THE TORIC CASE

In this section, we show how to compute the generalized Hilbert-Kunz multiplicity of R/I, where R is a normal toric ring and I is an of R generated by monomials. We fix the following notation.

Notation 4.1. Let k be a field of characteristic p and $M \cong \mathbb{Z}^d$ be a lattice and $M_{\mathbb{R}} = M \otimes \mathbb{R}$. Let $\sigma \subset M_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and $R = k[\sigma \cap M] = k[\{X^m \mid m \in \sigma \cap M\}]$ be a normal toric ring. Let $I = (X^{m_1}, \ldots, X^{m_s})$ be a monomial ideal of R. We put Γ_I the convex hull of $\bigcup_{i=1}^s [m_i + \sigma]$ and $W_I = \bigcup_{i=1}^s [m_i + \sigma]$. We define a subset LC_I of $M_{\mathbb{R}}$ by

$$m \in \text{LC}_I \iff \lfloor m + \sigma \rfloor \cap \lfloor m + \sigma \rfloor \cap W_I \text{ has finite volume}$$

Proposition 4.2. With the notation above:

1. For $m \in M$, $x^m \in I$: J^∞ (where J is the maximal ideal) if and only if $m \in \text{LC}_I$.
2. $\text{LC}_{I^{(q)}} = q\text{LC}_I$ and $W_{I^{(q)}} = qW_I$.
3. $\text{LC}_I \setminus W_I$ is a bounded region in $M_{\mathbb{R}}$.

Proof. It is clear from the definition that $m \in \text{LC}_I$ iff $x^m J^t \subseteq I$ for $t \gg 0$. (2) is also clear. For (3), note that the region in question is defined by finitely many half planes. Thus, if it has infinite volume, there will be q big enough such that $\text{LC}_I \setminus W_I$ contains infinitely many points in $\frac{1}{q} \mathbb{Z}^d$. In other words, there are infinitely many integral points in $\text{LC}_{I^{(q)}} \setminus W_{I^{(q)}}$. But the integral points in that region simply correspond to the monomials in $H^0_m(R/I^{(q)})$, a contradiction. □

Remark 4.3. In the picture below, $\text{LC}_I \setminus W_I$ can be seen as the combination of the red and green regions.

Theorem 4.4. Let R and I be as above. Then $e_{gHK}(R/I) = \text{vol}(\text{LC}_I \setminus W_I)$. In particular, $e_{gHK}(R/I) \in \mathbb{Q}$.

Proof. The previous Proposition tells us that $m \in \text{LC}_{I^{(q)}}$ iff $m/q \in \text{LC}_I$, from which the result follows. □

We demonstrate the ideas of the last Theorem with two concrete examples.
Proposition 4.5. Let \(R = k[[x^r, x^{r-1}y, \ldots, y^r]] \) be isomorphic to the \(r \)-Veronese of \(k[[x, y]] \) and \(I_m = (x^r, x^{r-1}y, \ldots, x^{r-m}y^m) \subset R \) be the one of the reflexive ideals of \(R \) (note that \(I \) corresponds to the element \(m \in \mathbb{Z}/(r) \equiv \text{Cl}(R) \)). Then
\[
e_{\text{gHK}}(R/I_m) = \frac{m(m+1)}{2r}
\]

Proof. Let \(I = I_m \). Note that \(I^r = (x^r, x^{r-1}y, x^{r-m}y^m) = x^{(r-m)m} \). We use Lemmas 2.1 and 2.4 to calculate the relevant lengths. It follows that \(\lim \ell(R^m(R/I^q))/(q^d) = e(m^m)/2r^2 = m^2/2r \).

The second part involves \(\ell(I^q/I^{[d]}q) \). The monomials that are in \(I^q \) but not in \(I^{[d]}q \) are contained in the right triangles whose hypotenuses are the intervals \((iq, (r-i)q), ((i-1)q, (r-i+1)q)\) with \(i = r, \ldots, r-m+1 \). It is clear that the number of such monomials, which is the length we want, is of order \(mq^2/2r \). So the second term contribute \(m/2r \) to the limit. We conclude that:
\[
e_{\text{gHK}}(R/I) = m^2/2r + m/2r = m(m+1)/2r
\]

\(\square \)

Proposition 4.6. Let \(R = k[[x, y, z]]/(xy - z^r) \) and \(I_m = (x, z^m) \subset R (m < r) \). Then
\[
e_{\text{gHK}}(R/I_m) = \frac{m(r-m)}{r}
\]

Proof. Let \(I = I_m \). Note that \(I^r = x^m(x^{r-m}, x^{r-m-1}z^m, \ldots, z^{r-m}y^{m-1}, y^m) = x^mJ \). We again use Lemmas 2.1 and 2.4.

If we assign point \(x \to (r, -1), y \to (0, 1), z \to (1, 0) \), the points corresponding to \((x^{r-m}, x^{r-m-1}z^m, \ldots, z^{r-m}y^{m-1}, y^m)\) are \((r(r-m), -(r-m)), \ldots, (r-m, m-1), (0, m)\), lying on a line of slope \(1/(r-m)\). This line and the cone defined by \(x \geq 0 \) and \(y \geq -x/r \) form a triangle of area \(r(r-m)/2 \), this means the multiplicity of the ideal \(J \) is \(rm(r-m) \). Hence, \(\lim \ell(R^m(R/I^q))/(q^d) = m(r-m)/2r \).

On the other hand, \(\ell(I^q/I^{[d]}q) \) corresponds to the triangle whose vertices are \((qm, 0), (qr, -q)\) and \((qr, -q(r-m)/r)\). The area is \(m(r-m)q^2/r \). Summing up we have \(e_{\text{gHK}}(R/I) = m(r-m)/r \).

\(\square \)

5. The F-regular case

Lastly, we study a connection between generalized Hilbert-Kunz multiplicity and tight closure theory. We first recall the following criterion for tight closure due to Hochster-Huneke.

Lemma 5.1. Let \(R \) be equidimensional and either complete or essentially of finite type over a field and \(N \subseteq L \subseteq G \) be finitely generated \(R \)-modules such that \(L/N \) has finite length. Then \(e_{\text{gHK}}(G/N) \geq e_{\text{gHK}}(G/L) \), and equality occurs if and only if \(L \subseteq N^*_G \).

We now want to show:

Proposition 5.2. Let \(R \) be F-regular (i.e, all ideals are tightly closed) and \(M \) be a finitely generated \(R \)-module. The following are equivalent:

1. \(e_{\text{gHK}}(M) = 0 \).
(2) depth $F^n(M) > 0$ for all $n \geq 0$.

Proof. We only need to show (1) implies (2). It is harmless to complete R and M (see Exercise 4.1 in [9]). Suppose there exists $n \geq 0$ such that depth $F^n(M) = 0$, we need to prove that $e_{gHK}(M) > 0$. Replacing M by $F^n(M)$ if necessary, we may assume depth $M = 0$. Now take a short exact sequence $0 \to N \to G \to M \to 0$ where G is free. Let $x \in G$ represent an element in the socle of M, we know that $L = (N,x) \not\subseteq N = N_G^*$, thus $e_{gHK}(M) > e_{gHK}(G/L) \geq 0$ by Lemma 5.1. □

Remark 5.3. When R is strongly F-regular, one can prove the above Proposition as follows. The assumption means that we have decompositions of R-modules $nR = R^{a_i} \oplus M_q$ and $c = \lim_{n \to \infty} \frac{a_n}{q^n} > 0$. Then it is clear that $e_{gHK}(M) \geq c\ell(H^0_m(M))$, so the non-trivial direction (1) implies (2) is now easy to see.

Corollary 5.4. Let R be F-regular of dimension at least 2 and I be a reflexive ideal that is locally free on the punctured spectrum. Then $e_{gHK}(R/I) = 0$ if and only if I is principal.

Proof. By Proposition 5.2 we only need to show that depth $R/I^{[q]} = 0$ for some q. But suppose it is not the case, then Lemma 2.1 implies that $I^q = I^{[q]}$ for all q, thus the analytic spread is one. □

Before moving on we recall the following limits studied in [7]. Let $i \geq 0$ be an integer. Let

$$e_{gHK}^i(M) := \lim_{n \to \infty} \frac{\ell(H^i_m(F^n(M)))}{p^{nd}}$$

Let IPD(M) denote the set of prime ideals p such that pd$_{R_p} M_p = \infty$.

Lemma 5.5. Let R be of depth d. Let N be an R-module such that IPD(N) $\subseteq \{m\}$. Let M be a t-syzygy of N. Then $H^i_m(F^n(M)) \cong H^i_m(F^n(N))$ for $0 \leq i \leq d - t - 1$.

Proof. We begin with tensoring the exact sequence $0 \to \text{syz} N \to F \to N \to 0$ with nR to get

$$0 \to \text{Tor}^R_1(N, nR) \to F^n(\text{syz} N) \to F^n(N) \to 0$$

which we break into:

$$0 \to \text{Tor}^R_1(N, nR) \to F^n(\text{syz} N) \to C \to 0$$

and

$$0 \to C \to F^n(F) \to F^n(N) \to 0$$

Note that Tor$_1^n(N, nR)$ has finite length, so the long sequence of local cohomology for the first sequence gives $H^i_m(F^n(\text{syz} N)) \cong H^i_m(C)$ for $i > 0$. For the second sequence, we have that $H^i_m(F^n(N)) \cong H^i_{m+1}(C)$ for $0 \leq i \leq d - 2$. Thus

$$H^i_m(F^n(N)) \cong H^{i+1}_m(F^n(\text{syz} N))$$

for $0 \leq i \leq d - 2$. A simple induction finishes the proof. □
Theorem 5.6. Let R be F-regular of dimension $d \geq 2$ and $0 \leq a \leq b \leq d - 1$ be integers. Let M be an R-module that is locally free on the punctured spectrum and depth $M \geq a$. The following are equivalent:

1. $e_{gHK}^i(M) = 0$ for $a \leq i \leq b$.
2. $H_m^n(F^a(M)) = 0$ for all $a \leq i \leq b$ and all $n \geq 0$.

Proof. We use induction on $b - a$. It is enough to prove the case $b = a$, since the conclusion implies that depth $M \geq a + 1$, and we can replace a by $a + 1$. As depth $M \geq a$, we can pushforward a times and write M as syz$^a N$ for some module N. Proposition 5.2 and Lemma 5.5 finish the proof.

Corollary 5.7. Let R be F-regular and I be a reflexive ideal that is locally free on the punctured spectrum. If $[I]$ is torsion in the class group of R then I is Cohen-Macaulay.

Proof. We can assume R has dimension is at least 3. We just note that the double dual of $F^n(I)$, $F^n(I)^{**}$, is isomorphic to $I^{(q)}$, which corresponds to the element $q[I]$ in $\text{Cl}(R)$. The natural map $F^n(I) \to F^n(I)^{**}$ has kernel and cokernel of finite length. It follows that $H_m^n(F^n(I)) \cong H_m^n(F^n(I)^{**}) \cong H_m^n(I^{(q)})$ for $i \geq 2$. But the isomorphism classes of $I^{(q)}$ will be periodic as $[I]$ is torsion. Thus $e_{gHK}^i(I) = 0$ for $2 \leq i \leq d - 1$, and by Theorem 5.6 $H_m^n(I) = 0$ for $2 \leq i \leq d - 1$, which is all we need to prove.

Remark 5.8. If the order of $[I]$ is prime to the characteristic of R, the result was first proved, without condition that I is locally free on the punctured spectrum, for strongly F-regular rings in [16]. The condition on the order of $[I]$ was removed in [12, Corollary 3.3]. All of these results will be extended in [6], with a more direct approach.

References

1. M. Auslander, R. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Colloque en l'honneur de Pierre Samuel (Orsay, 1987), Mem. Soc. Math. France (N.S) 38 (1989), 5–37.
2. H. Brenner, The Hilbert-Kunz function in graded dimension two, Comm. Algebra 35 (10) (2007), 3199-3213.
3. L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72(1972), 369–373.
4. S. D. Cutkosky, Multiplicities of graded families of linear series and ideals, arXiv:1301.5613, preprint.
5. H. Dao, Decent intersection and Tor-rigidity for modules over local hypersurfaces, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2803–2821.
6. H. Dao, T. Se, Finite F-type and F-abundant modules, preprint.
7. H. Dao, I. Smirnov, On generalized Hilbert-Kunz function and multiplicity, arxiv:1305.1833, preprint.
8. N. Epstein, Y. Yao, Some extensions of Hilbert-Kunz multiplicity, arXiv:1103.4730, preprint.
9. C. Huneke, Tight Closure and its Applications, CBMS Lecture Notes 88 (1996), American Mathematical Society, Providence.
10. J. Validashti, D. Katz, Multiplicities and Rees Valuations, Collectanea Math. 61 (2010), 1–24.
11. J. Jeffries, J. Montaño, The j-multiplicity of Monomial Ideals, Math. Res. Lett., 20 (2013) no. 4, 729–744.
12. Z. Patakfalvi, K. Schwede, Depth of F-singularities and Base Change of Relative Canonical Sheaves, J. Inst. Math. Jussieu 13 (2014), no. 1, 43–63.
13. G. Seibert, The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Archiv der Math. 69 (1997), 286–296.
14. Y. Yao, Modules with finite F-representation type, J. London Math. Soc. (2) 72 (2005), no. 1, 53–72.
15. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series 146, Cambridge University Press, Cambridge, 1990.
16. K. Watanabe, *F-regular and F-pure normal graded rings*, Journal of Pure and Applied Algebra 71 (1991), 341–350.

Department of Mathematics, University of Kansas, Lawrence, KS 66045-7523 USA

E-mail address: hdao@ku.edu

Department of Mathematics, College of Human and Science, Nihon University, Setagaya, Tokyo, 156-0045, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp