INTRODUCTION

Cancer was become a very scary disease because of high amount new and death cases occurred in the world. Pancreatic cancer was a type of disease that continued to develop in the world. It was a type of cancer that attack human’s organ called pancreas. Around 400 thousand new cases occurred in 2018, with 331 thousand case leaded a death every year. Lack of data about pancreatic cancer, the absence of specific symptoms, fast metastasis and resistance incidence of chemotherapeutics were the causes of high death cases by pancreatic cancer.

Efforts to treated pancreatic cancer can be done with some method such as surgery, radiotherapy and chemotherapeutic. Traditional medicine that was rich a Phytochemical compounds such as alkaloid, glycoside, polyphenol, saponin and steroid/ triterpenoid can used as alternative drug to pancreatic cancer. Vernonia amygdalina Delile (VAD) was an Asteraceae plant, used as vegetable by west and center Africa people. Some research has done against VAD to find out the benefits in a health field between antimicrobial activity, antidiabetic activity and anticancer activity. As a anticancer, VAD has been tested in vitro and in vivo, among others against nasofaring cancer cell, skin cancer cell, prostate cancer cell and breast cancer cell.

VAD activity for inhibit development some kind of cancer was a reason to do screening Phytochemical compounds.
in VAD. Phytochemical compounds in VAD can use as a drug cancer, especially for pancreatic cancer. As a potential pancreatic cancer drug, VAD must through some tests. Cytotoxic test, cell cycle inhibition and spur apoptosis into a test that can be done to determined the anticancer activity against pancreatic cancer cell.

MATERIAL AND METHODS

Material

All chemicals and reagents were procured from certified suppliers and were of the highest analytical standard. The pancreatic cancer cell (PANC-1) was obtained from Laboratory of Parasitology, Universites Gadjah Mada, Yogyakarta, Indonesia.

Sample Preparation and Extraction

The leaves of Vernonia amygdalina Delile collected from garden of medical plants Faculty of Pharmacy, Universities Sumatera Utara, Medan, Indonesia. 1000 g of powdered were extracted by cold maceration with n-hexane (3 x 3 d, 7.5 L). The filtrate was collected and the evaporated under reduced pressure to give a viscous extract and then freeze-dried to give a dried extract.13-14

Phytochemical Screening

Phytochemical screening to determine alkaloids, glycosides, flavonoids, saponins, steroid/ triterpenoids and tannins were carried out according to standard procedures.10

Cytotoxicity Test

PANC-1 cell line was grown in DMEM medium containing 10% Fetal Bovine Serum (Gibco), 1% penicillin-streptomycin (Gibco) and fungizone 0.5% (Gibco) in a flask with condition a humidified atmosphere (5% CO2) at 37°C. The inoculums seeded at 1 x 105 cells/mL at an optimal volume of 0.1 mL per well. After 24 h incubated, the medium was discharged and treated by nHE. After 24 h incubated, the cells were incubated with 0.5 mg/mL MTT for 4 h at 37°C. Viable cells reacted with MTT to produce purple formazan crystals. After 4 h, SDS 10% as a stopper (Sigma) in 0.01N HCl (Merck) was added to dissolve the formazan crystals. The cells were incubated for 24 h in room temperature and protected from light. After incubated, the cells were shaken and absorbance was measured using microplate reader at 595 nm. The data which were absorbed from each well were converted to the percentage of viable cells.13-17

Cell Cycle Inhibition Test

PANC-1 cells (1 x 106 cells/well) were seeded into 6-well plate and incubated for 24 h. After that, the cells were treated nHE with IC50 concentration and incubated for 24 h. The cells were collected in a conical tube using trypsin 0,025% and were washed with PBS, after that centrifugated at 2500 rpm for 5 min. The sediment was collected and fixed in cold 70% ethanol in PBS at 4°C for 1 h. After that, the cells were washed with cold PBS and resuspended the centrifuged at 3000 rpm for 3 min and PI kit. The sediment was re suspended and incubated at 37°C for 30 min. The samples were analyzed using FAC Scan flowctometry. The percentage of cells were calculated using Mod Fit LIt 3.0.x 13, 18, 20.

Observation of Apoptosis

PANC-1 cells (1 x 105 cells/well, 24 -well plate) were plated on cover slips and incubated for 24 h. After that, the cells were treated nHE with IC50 concentration and incubated for 24 h. The medium was removed and washed using PBS. Cover slips were taken and put on glass slide before added with 10μL acridine orange-ethidium bromide and incubated for 15 minutes. Then were observed under the confocal microscope.20

Statistical analysis

All data were analyzed with regression analysis using SPSS.22

RESULT AND DISCUSSION

VAD activity as anticancer agent was reported. In this study was showed nHE can inhibit development of pancreatic cancer. nHE was obtained steroids/triterpenoids metabolite secondary. Phytochemicals content of simplex VAD and nHE can be seen on Table 1. Steroids/ triterpenoids were indentified active as inhibited the development cell cancers.21-23 This was supported by cytotoxic nHE activity, the ability to inhibit the cell cycle and trigger apoptosis of PANC-1 cells.

Table 1 Phytochemicals content of simplex VAD and nHE

| No | Metabolite secondary | Simplex | nHE |
|----|----------------------|---------|-----|
| 1  | Alkaloids            | -       | -   |
| 2  | Flavonoid            | +       | -   |
| 3  | Glycoside            | +       | -   |
| 4  | Steroid/triterpenoid | +       | +   |
| 5  | Saponin              | +       | -   |
| 6  | Tannin               | +       | -   |

Description: (+) shows that the simplicia VA and nHE contains secondary metabolite. VA: Vernonia amygdalina. nHE: Extract n-hexane Vernonia amygdalina. Phytochemical compounds in simplex VA and nHE were different.

Cytotoxic effect of nHE against PANC-1 cells was carried out by MTT method.13-15 PANC-1 cells were treated with some nHE concentrations (500 ug/mL, 250 ug/mL, 125 ug/mL, 61.5 ug/mL and 31.25 ug/mL). After that, IC50 were measured using a microplate reader at 595 nm. The result of IC50 can be seen in the Table 2. nHE was showed have cytotoxic activity. nHE has an IC50 114, 80 ± 1, 21 ug/mL against PANC-1 cell. nHE was declared less active as anticancer because the IC50 < 100 ug/mL. However, nHE can still be developed as an anticancer because it has an IC50 value < 500 ug/mL (22).

Table 2 IC50(ug/mL) nHE against PANC-1 cell

| Sample | IC50(ug/mL) |
|--------|-------------|
| nHE    | 114.80 ± 1.21 |

Description: IC50 was measured using MTT method. nHE: Extract n-hexane Vernonia amygdalina.
nHE cytotoxic activity was also showed by changes in PANC-1 cells morphology and viability data after treatment. PANC-1 cells morphology and viability data can be seen in figure 1 and figure 2. When viewed from figure 1, nHE leaded death in PANC-1 cell. Cell morphology was changed and having damaged. If concentration of nHE was increased, then it will cause percentage of viability will decreased. Figure 2 showed, an increased in nHE concentration caused decreased percentage of viability at 85.66%, 83.33%, 48.33%, 17.66% and 3.57%.

**Figure 1:** The cytotoxic effect of the sample on PANC-1 cell. The observation was performed under inverted microscope with 100x magnification.

The (blue arrows) showed normal cells and (black arrows) signs of morphological changes. A: nHE 500 ug/mL, B: nHE 31.25 ug/mL, C: Control Cell

![Image](image1.jpg)

**Figure 2:** Percentage of viability Extract *n*-hexane *Vernonia amygadina* (500 ug/mL, 250 ug/mL, 125 ug/mL, 62.5 ug/mL and 31.25 ug/mL) on PANC-1 cell.

As an anticancer, nHE must be able to inhibit the cell cycle. PANC-1 cell cycle inhibition activity of nHE was do flowcycotometry method. PANC-1 cell was treated with nHE concentration 115 ug/mL. Cell cycle inhibition effect can be seen in Figure 3. PANC-1 cell was treated with nHE concentration 115 ug/mL. nHE leaded inhibition of PANC-1 cell cycle in M1 phase with cell accumulation at 67.39% and cell control at 17.32%. This report was followed with decreasing cell cycle accumulation in G0-G1 phase, nHE at 19.36% and cell control at 50.51%. This percentage was showed that the nHE can lead cell cycle inhibition in M1 phase. In the cell cycle analysis, nHE can decrease cell cycle accumulation in G0-G1 phase if compared with cell control. nHE can increased cell cycle accumulation in M1 phase if compared with cell control. M1-M5 phase was a phase who showed apoptosis accumulation of PANC-1 cell. Based on the cell cycle inhibition tested, then the nHE can leaded apoptosis in PANC-1 cell.

Apoptosis can be defined as a process of programmed cell death and this process depend on biochemical mechanism of cell. In this study, Figure 4 showed nHE was spurred apoptosis. Apoptosis PANC-1 cells was observation used confocale microscope. PANC-1 cell was treated with nHE concentration 115 ug/mL. Before observation, the sample was first staining with 10 μL. acridine orange-ethidium bromide and incubated for 15 minutes.
CONCLUSION
The activity shown by nHE in inhibiting the development of PANC-1 cells was good. There needs to be further exploration of the nHE mechanism as an anticancer pancreas. Exploring of the effect nHE in inhibiting gene expression associated with the cell cycle and apoptosis like p53, cyclin D, PI3K/Akt/mTOR is an interesting thing to do. By examining gene expression, it will show the nHE mechanism of action.

ACKNOWLEDGEMENT
This research was funding by Ministry of Research Technology and Higher Education through “Hibah Penelitian Tesis Magister 2018”.

REFERENCES
1. World Health Organization, International Agency for Research on Cancer, GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence World Wide in 2012
2. Darmawan G and Simaidibrama M. Pancreatic Cancer: Review Of Etiology, Clinical Features, Diagnostic Procedures, Treatment And Mesothelin Role. The Indonesian Journal of Gastroenterology Hepatology and Digestive Endoscopy. 2011; 4(1):44.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. A Cancer Journal for Clinicians. 2018; 68(6):1.
4. Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincon M. Autocrine Production of Interleukin 6 Causes Multi Drug Resistance In Breast Cancer Cells. Cancer Research. 2001; 61(24):8851.
1. Fauzan, F., Owoeye, O. Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia bignonioid. Int J Environ Res Public Health. 2011; 8:2358.

2. Johnson, W., Tchounwou, P.B., Yedjou, C.G. Therapeutic Mechanisms of Vernonia amygdalina Delile in the Treatment of Prostate Cancer. Molecules. 2017; 22:1594.

3. Wong, F.C., Woo, C.C., Hsu, A., Tan, B.K.H. The Anti-Cancer Activities of Vernonia amygdalina Extract in Human Breast Cancer Cell Lines Are Mediated through Caspase-Dependent and p53-Independent Pathways. Plos One. 2013; 8(10):1.

4. Satria, D., Fauzan, M., Hadisaputra, S., Rosidah. Combinational Effects of Ethylacetate Extract of Picraria fel-terrace Lour. and Doxorubicin on T47D Breast Cancer Cells. J Pharm Pharm Sci. 2015; 7:74.

5. Satria, D., Silalahi, J., Haro, G., Ilyas, S., Hasibuan, P.A.G. Chemical Analysis and Cytotoxic Activity of N-Hexane Fraction of Zanthoxylum acanthopodium DC. Fruits. Rasayan J Chem. 2019; 12(2):803-808.

6. Harahap, H., Hasibuan, P.A.Z., Sitorus, P., Afrian N., Satria D. Antimigration Activity of an Ethylacetate Fraction of Zanthoxylum acanthopodium DC. Fruits. Asian Pacific Journal of Cancer Prevention. 2018; 19(2):565-589.

7. Harbome, J.B., Phytochemical Method, Chapman and Hall Ltd, London; 1984:151-152.

8. Hasibuan, P.A.Z., Jessy, C., Satria D. Combination Effect of Ethylacetate Extracts of Elecraunus anbonicus (Lour.) Spreng against Doxorubicin on T47D Breast Cancer Cells. J Pharm Pharm Sci. 2015; 7:158.

9. Anggraini, R., Hadisaputra, S., Silalahi, J. Combinational Effects of Ethylacetate Extracts of Zanthoxylum acanthopodium DC. With Doxorubicin on T47D Breast Cancer Cells. International Journal of Pharm Tech Research. 2014; 6(7):2034.

10. Nurrochmad, A., Lukitaningsih, E., Metyanto E. Anticancer Activity of Ruden Tuber (Thyphonium flagelliforme (Lodd.)) Blume On Human Breast Cancer T47D Cells. International Journal of Phytomedicine. 2011; 3:140.

11. Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 2007; 35(4):495-516.

12. Yeap, S.K., Ho, W.Y., Beh, B.K., Liang, W.S., Ky, H., Your, A.H.N. Vernonia amygdalina, an Ethnoveterinary and Ethnomedical Used Green Vegetable with Multiple Bioactivities. J Med Plant Res. 2010; 4(25):2796.

13. Ilian, C., Basyuni D., Wati, R., Hasibuan P.A.Z. Polyisoprenoids from Avicennia marina and Avicennia lanata Inhibit WiDr Cells Proliferation. Plos Mag. 2018; 14(58):516-518.

14. Sari, D.P., Basyuni, M., Hasibuan, P.A.Z., Wati, R. The Inhibition of Polyisoprenoids from Nypa fruticans Leaves on Cyclooxygenase 2 Expression of WiDr Colon Cancer Cells. Asian J Pharm Clin Res. 2018; 11(8):156.

15. Chekuri, S., Panjala, S., Anupalli RR. Cytotoxic activity of Acalypha indica L. Hexane Extract on Breast Cancer Cell Lines (MCF-7). The Journal of Phytopharmacology. 2017; 6(5):266-267.

16. Setywati, E.P., Pratiwi, S.T.U., Purwatiningsih, I., Purwantini. In-vitro Cytotoxicity and Apoptosis Mechanism of Ethyl Acetate Extract from Trichoderma reesei strain TV221 Associated with Marine Sponge: Styliella flagelliformis. Journal of Applied Pharmaceutical Science. 2018; 8(09):153.

17. Mutiah, R., Indradmojo, C., Dwi, H.H., Griana, T.P., Listyana, A., Ramdhani R. Induction of Apoptosis and Phase-Cell Cycle Inhibition of G0-G1, S, G2-M of T47D Breast Cancer Cells on Treatment with Ethyl Acetate Fraction of Jack Fruit Parasite Leaves (Macroson cochinensis). Journal of Applied Pharmaceutical Science. 2017; 7(10):141.

18. R. Mutiah, A., Listiyana, A., Suryadinata, R., Annisa, A., Hakim, W., Anggraini, R., Susilowati. Activity of Inhibit the Cell Cycle and Induce Apoptosis in HeLa Cancer Cell with Combination of Sabrang Onion (Eluetheria palmifolia (L.)) Merr) and Starfruit Mistletoe (Macroson cochinensis (Lour.) Tiegh). Journal of Applied Pharmaceutical Science. 2018; 8(10):124.

19. Satria, D., Silalahi, J., Haro, G., Syafuddin, I., HasibuanPAZ. Cell Cycle Inhibition of Ethylacetate Fraction of Zanthoxylum Acanthopodium DC. Fruit against T47D Cells. Macdonian Journal of Medical Sciences. 2019; 7(5):178.

20. Kennedy, J. J., Marchesi, A. D., Dobson. Metagenomic Approaches to Exploit the Biotechnological Potential of the Microbial Consortia of Marine Sponges. Applied Microbiology and Biotechnology. 2007; 75(1):11-20.

21. Fink, S.L., Cookson, B.T. Apoptosis, Pyroptosis and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect Immun. 2005; 73(4):495-516.

22. Dogan, S.M., Ercvit, A.P., Altun, Z., DursunD., Aktas S. Gene Expression Characteristic of Breast Cancer Stem Cell. JBUON. 2015; 20:1304-1313.