SMOOTH TORIC FANO FIVE-FOLDS OF INDEX TWO

HIROSHI SATO

Abstract. In this paper, we classify smooth toric Fano 5-folds of index 2. There exist exactly 10 smooth toric Fano 5-folds of index 2 up to isomorphisms.

CONTENTS

1. Introduction 1
2. Preliminaries 2
3. Classification 4
4. Example 6
References 8

1. Introduction

For a smooth Fano d-fold X, the index i_X of X is defined as follows:

$$i_X := \max \{ m \in \mathbb{Z}_{\geq 1} \mid -K_X = mH \text{ for a Cartier divisor } H \}.$$

There is a famous result of [KO] which say $1 \leq i_X \leq d+1$ and a smooth Fano d-fold of index $d+1$ or d is isomorphic to \mathbb{P}^d or Q^d, respectively, where Q^d is the d-dimensional quadric. A smooth Fano d-fold of index $d-1$ or $d-2$ is called a del Pezzo manifold or a Mukai manifold, respectively, and there are classifications for these manifolds (see [Fj], [Mc], and [Mu]).

So, the next problem is the classification of smooth Fano d-folds of index $d-3$. If $d \geq 6$ and the Picard number is greater than 1, there is the classification (see [W]). For the case $d = 5$, there are some partial classifications (see [CO] and [NO]). Toward the general classification, in this paper, we classify smooth toric Fano 5-folds of index 2. We show that there exist exactly 10 smooth toric Fano 5-folds of index 2.

2000 Mathematics Subject Classification. Primary 14M25; Secondary 14E30, 14J45.

Key words and phrases. Toric variety, Fano variety, Fano index.

The author is partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Science, Sports and Culture, Japan.
2. PRELIMINARIES

In this section, we explain some basic facts of the toric geometry. See [Ba1], [Ba2], [FS], [Fl1], [O] and [S1] for the detail.

Let Σ be a nonsingular complete fan in $\mathbb{N} := \mathbb{Z}^d$, $M := \text{Hom}_{\mathbb{Z}}(\mathbb{N}, \mathbb{Z})$ and $X = X_\Sigma$ the associated smooth complete toric d-fold over an algebraically closed field k. Let $G(\Sigma)$ be the set of primitive generators of 1-dimensional cones in Σ. A subset $P \subset G(\Sigma)$ is called a primitive collection if P does not generate a cone in Σ, while any proper subset of P generates a cone in Σ. We denote by $\text{PC}(\Sigma)$ the set of primitive collections of Σ. For a primitive collection $P = \{x_1, \ldots, x_m\}$, there exists the unique cone $\sigma(P)$ in Σ such that $x_1 + \cdots + x_m$ is contained in its relative interior since Σ is complete. So, we obtain an equality

$$x_1 + \cdots + x_m = b_1 y_1 + \cdots + b_n y_n,$$

where y_1, \ldots, y_n are the generators of $\sigma(P)$, that is, $\sigma(P) \cap G(\Sigma) = \{y_1, \ldots, y_n\}$, and b_1, \ldots, b_n are positive integers. We call this equality the primitive relation of P. By the standard exact sequence

$$0 \to M \to \mathbb{Z}^{G(\Sigma)} \to \text{Pic}(X) \to 0$$

for a smooth toric variety, we have

$$A_1(X) \simeq \text{Hom}_{\mathbb{Z}}(\text{Pic}(X), \mathbb{Z}) \simeq \text{Hom}_{\mathbb{Z}}(\mathbb{Z}^{G(\Sigma)}/M, \mathbb{Z})$$

$$\simeq M^\perp \subset \text{Hom}_{\mathbb{Z}}(\mathbb{Z}^{G(\Sigma)}, \mathbb{Z}),$$
where \(A_1(X) \) is the group of 1-cycles on \(S \) modulo rational equivalences, and hence

\[
A_1(X) \simeq \left\{ (b_x)_{x \in G(\Sigma)} \in \text{Hom}_\mathbb{Z}(\mathbb{Z}^{G(\Sigma)}, \mathbb{Z}) \left| \sum_{x \in G(\Sigma)} b_x x = 0 \right. \right\}.
\]

Thus, by the equality \(x_1 + \cdots + x_m - (b_1 y_1 + \cdots + b_n y_n) = 0 \), we obtain an element \(r(P) \) in \(A_1(X) \) for each primitive collection \(P \in \text{PC}(\Sigma) \). We define the degree of \(P \) as \(\deg P := (-K_X \cdot r(P)) = m - (b_1 + \cdots + b_n) \).

Proposition 2.1 ([Ba1] and [R]). Let \(X = X_\Sigma \) be a smooth projective toric variety. Then, the Mori cone of \(X \) is described as

\[
\text{NE}(X) = \sum_{P \in \text{PC}(\Sigma)} \mathbb{R}_{\geq 0} r(P) \subset A_1(X) \otimes \mathbb{R}.
\]

A primitive collection \(P \) is said to be extremal if \(r(P) \) is contained in an extremal ray of \(\text{NE}(X) \).

Remark 2.2. If \(x_1 + \cdots + x_m = b_1 y_1 + \cdots + b_n y_n \) is an extremal primitive relation, then \(m + n \leq d + 1 \), because \(r(P) \) corresponds to an irreducible torus invariant curve.

Corollary 2.3. Let \(X = X_\Sigma \) be a smooth projective toric variety. Then, \(X \) is Fano if and only if \(\deg P > 0 \) for any extremal primitive collection \(P \in \text{PC}(\Sigma) \).

For extremal primitive relations, we need the following proposition and definition for the classification.

Proposition 2.4 ([C] and [S1]). Let \(X = X_\Sigma \) be a smooth projective toric variety and \(P \) an extremal primitive collection. Then, for any \(P' \in \text{PC}(\Sigma) \setminus \{P\} \) such that \(P \cap P' \neq \emptyset \),

\[
(P \setminus P') \cup (\sigma(P) \cap G(\Sigma))
\]

contains a primitive collection.

Definition 2.5 ([Ba1]). Let \(X = X_\Sigma \) be a smooth complete toric variety. Then, \(\Sigma \) is a splitting fan if \(P \cap P' = \emptyset \) for any \(P, P' \in \text{PC}(\Sigma) \) such that \(P \neq P' \).

If \(\Sigma \) is a splitting fan, then there exists a sequence of smooth complete toric varieties

\[
X = X_\Sigma =: X_s \xrightarrow{i_1} X_{s-1} \xrightarrow{i_2} \cdots \xrightarrow{i_{s-1}} X_2 \xrightarrow{i_2} X_1 \simeq \mathbb{P}^l,
\]

where \(X_i \xrightarrow{i} X_{i-1} \) is a toric projective space bundle and \(l \in \mathbb{Z}_{\geq 1} \). We remark that \(s \) is the Picard number of \(X \). The number of the primitive collections of \(\Sigma \) is also \(s \).
3. Classification

We start the classification.

Let $X = X_{\Sigma}$ be a smooth toric Fano 5-fold of index 2. In this case, \(\deg P\) is an even number for any \(P \in \text{PC}(\Sigma)\). Then, by Remark 2.2 and Corollary 2.3, the type of any extremal primitive relation is one of the following:

1. \(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0\),
2. \(x_1 + x_2 + x_3 + x_4 + x_5 = y_1\),
3. \(x_1 + x_2 + x_3 + x_4 + x_5 = 3y_1\),
4. \(x_1 + x_2 + x_3 + x_4 = 0\),
5. \(x_1 + x_2 + x_3 + x_4 = 2y_1\),
6. \(x_1 + x_2 + x_3 + x_4 = y_1 + y_2\),
7. \(x_1 + x_2 + x_3 = y_1\) and
8. \(x_1 + x_2 = 0\),

where \(\{x_1, x_2, x_3, x_4, x_5, x_6, y_1, y_2\} \subset G(\Sigma)\).

First of all, the existence of an extremal primitive relation of type (1) imply that $X \cong \mathbb{P}^5$, but \(\mathbb{P}^5\) is of index 6. So, there does not exist an extremal primitive relation of type (1).

Proposition 3.1. Let $X = X_{\Sigma}$ be a smooth toric Fano 5-fold of index 2. If X has an extremal primitive relation of type (2) or (3), then X is isomorphic to either

\[\mathbb{P}_{\mathbb{P}^4} (\mathcal{O}_{\mathbb{P}^4} \oplus \mathcal{O}_{\mathbb{P}^4}(1))\] or \[\mathbb{P}_{\mathbb{P}^4} (\mathcal{O}_{\mathbb{P}^4} \oplus \mathcal{O}_{\mathbb{P}^4}(3)).\]

Proof. In this case, X has a divisorial contraction whose image of the exceptional divisor is a point. So, only we have to do is to check the classified list in [Bo]. \(\square\)

Proposition 3.2. Let $X = X_{\Sigma}$ be a smooth toric Fano 5-fold of index 2. If X has an extremal primitive relation of type (4), then X is isomorphic to either

\[\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^3\] or \[\mathbb{P}_{\mathbb{P}^2} (\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1)).\]

Proof. In this case, X is a \(\mathbb{P}^3\)-bundle over a toric del Pezzo surface. By checking the classification of toric del Pezzo surfaces, we can prove this proposition. \(\square\)

Proposition 3.3. Let $X = X_{\Sigma}$ be a smooth toric Fano 5-fold of index 2. If X has an extremal primitive relation of type (5), then X is isomorphic to

\[\mathbb{P}^1 \times \mathbb{P}_{\mathbb{P}^3} (\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(2)).\]
Proof. In this case, X has a divisorial contraction whose image of the exceptional divisor is a curve. So, only we have to do is to check the classified list in [S3]. □

Proposition 3.4. Let $X = X_\Sigma$ be a smooth toric Fano 5-fold of index 2. If X has an extremal primitive relation of type (8), then X has a \mathbb{P}^1-bundle structure. In this case, there exist exactly 9 such smooth toric Fano 5-folds of index 2 (see Theorem 3.6).

Proof. By the classified list of smooth toric Fano 4-folds (see [Ba2] and [S2]), we have exactly 8 smooth toric Fano 4-folds whose indices are at least 2. It is an easy exercise to construct toric \mathbb{P}^1-bundles which are smooth toric Fano 5-folds of index 2 over them. □

Thus, we may assume that every extremal primitive relation of X is of type (6) or (7). However, there is no such variety as follows.

Lemma 3.5. Let $X = X_\Sigma$ be a smooth toric Fano 5-fold of index 2. Then, X has a primitive relation of type other than (6) and (7).

Proof. Suppose that every extremal primitive relation of X is of type (6) or (7).

First of all, we claim that there is no primitive collection $P \in \text{PC}(\Sigma)$ such that $\#P = 2$. This is obvious because P has to be an extremal primitive collection. Namely, its primitive relation is of type (8).

Suppose that there exists an extremal primitive relation $x_1 + x_2 + x_3 + x_4 = y_1 + y_2$. If the Picard number of X is two, then X has at least one Fano contraction. So, we may assume that there exist two distinct elements $z_1, z_2 \in G(\Sigma) \setminus \{x_1, x_2, x_3, x_4, y_1, y_2\}$. Thus, we have two extremal primitive relations

$$y_1 + y_2 + z_1 = w_1 \text{ and } y_1 + y_2 + z_2 = w_2,$$

where $w_1, w_2 \in G(\Sigma)$. However, Proposition 2.4 says that $\{z_1, w_2\}$ and $\{z_2, w_1\}$ are primitive collections, and this is a contradiction.

Finally, we may assume that every extremal primitive relation of X is of type (7).

As above, for any distinct extremal primitive collections $P_1, P_2 \in \text{PC}(\Sigma)$, we have $\#(P_1 \cap P_2) \neq 1$. So, let $\#(P_1 \cap P_2) = 1$, and let $x_1 + x_2 + x_3 = y_1$ and $x_1 + x_4 + x_5 = y_2$ be the corresponding primitive relations. Then, Proposition 2.4 imply that $\{x_2, x_3, y_2\}$ is a primitive collection. This primitive collection is extremal. So, the corresponding primitive relation is $x_2 + x_3 + y_2 = z$ for some $z \in G(\Sigma)$. By applying Proposition 2.4 again, $\{x_1, z\}$ is a primitive collection. This is a contradiction. Therefore, $P_1 \cap P_2 = \emptyset$.

Since the Picard number of X is at least 3, there exist at least three extremal primitive collections P_1, P_2 and P_3. Thus, $\# G(\Sigma) \geq 9$ and the Picard number of X is at least 4. So, we have a new extremal primitive collection P_4 and $\# G(\Sigma) \geq 12$. We can continue this process endlessly. This is impossible. \hfill \Box

By Propositions 3.1, 3.2, 3.3, 3.4 and Lemma 3.5, we complete the classification:

Theorem 3.6. Let $X = X_\Sigma$ be a smooth toric Fano 5-folds of index 2. Then, X is one of the following:

1. $\mathbb{P}^2 (\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1))$.
2. $\mathbb{P}^4 (\mathcal{O}_{\mathbb{P}^4} \oplus \mathcal{O}_{\mathbb{P}^4}(1))$.
3. $\mathbb{P}^4 (\mathcal{O}_{\mathbb{P}^4} \oplus \mathcal{O}_{\mathbb{P}^4}(3))$.
4. $\mathbb{P}^1 \times \mathbb{P}^3$.
5. $\mathbb{P}^1 \times \mathbb{P}^3 (\mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(2))$.
6. \mathbb{P}^1-bundle over $\mathbb{P}^2 (\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(2))$ whose primitive relations are $x_1 + x_2 + x_3 = x_4$, $x_4 + x_5 + x_6 = x_7$ and $x_7 + x_8 = 0$, where $G(\Sigma) = \{x_1, \ldots, x_8\}$.
7. \mathbb{P}^1-bundle over $\mathbb{P}^2 \times \mathbb{P}^2$ whose primitive relations are $x_1 + x_2 + x_3 = x_7$, $x_4 + x_5 + x_6 = x_7$ and $x_7 + x_8 = 0$, where $G(\Sigma) = \{x_1, \ldots, x_8\}$.
8. \mathbb{P}^1-bundle over $\mathbb{P}^2 \times \mathbb{P}^2$ whose primitive relations are $x_1 + x_2 + x_3 = x_7$, $x_4 + x_5 + x_6 = x_8$ and $x_7 + x_8 = 0$, where $G(\Sigma) = \{x_1, \ldots, x_8\}$.
9. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2 (\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1))$.
10. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

Remark 3.7. As in Theorem 3.6, the fan of every smooth toric Fano 5-fold of index 2 is a splitting fan. Moreover, if $d \leq 5$ and $p \geq 2$, then the fan of every smooth toric Fano d-fold of index p is a splitting fan. In section 4, we show higher dimensional examples of toric Fano manifolds of higher indices which admit no projective space bundle structure.

4. Example

In this section, we give an example of a toric Fano manifold of index 2 which admits no projective space bundle structure.

Let $X = X_\Sigma$ be a smooth complete toric d-fold. For any $x \in G(\Sigma)$ and $p \in \mathbb{Z}_{\geq 2}$, we construct a new toric manifold $H(x;p)(X)$ as follows.

Put $\overline{N} := N \oplus \mathbb{Z}^{p-1}$ and let $\{e_1, \ldots, e_d, e_{d+1}, \ldots, e_{d+p-1}\}$ be the standard basis for \overline{N}. Put $z_1 := e_{d+1}, \ldots, z_{p-1} := e_{d+p-1}$ and $z_p := x - (z_1 + \cdots + z_{p-1})$. We define a fan $\overline{\Sigma}$ in \overline{N} as follows: The maximal
cones of Σ are $\sigma + \mathbb{R}_{\geq 0}z_{i_1} + \cdots + \mathbb{R}_{\geq 0}z_{i_{p-1}}$, where σ is any maximal cone in Σ and $1 \leq i_1 < \cdots < i_{p-1} \leq p$. Namely,

$$X_\Sigma = \mathbb{P}_X \left(\bigoplus_{x \in \Sigma} \mathcal{O}_X(D_x) \right),$$

where D_x is the toric prime divisor corresponding to x. Then, obviously, we have an extremal primitive relation $z_1 + \cdots + z_p = x$ of X_Σ. So, we obtain a smooth complete toric $(d + p - 1)$-fold $H_{(x,p)}(X)$ by the corresponding blow-down. It is obvious that the Picard number of $H_{(x,p)}(X)$ is same as X. Moreover, $H_{(x,p)}(X)$ has the following blow-up property:

Proposition 4.1. The primitive collections of $H_{(x,p)}(X)$ are

1. $P \in \text{PC}(\Sigma)$, where $x \not\in P$, and
2. $(P \setminus \{x\}) \cup \{z_1, \ldots, z_p\}$, where $P \in \text{PC}(\Sigma)$ and $x \in P$.

Moreover, if $x + x_1 + \cdots + x_m = b_1y_1 + \cdots + b_ny_n$ is a primitive relation of X, then $z_1 + \cdots + z_p + x_1 + \cdots + x_m = b_1y_1 + \cdots + b_ny_n$ is a primitive relation of $H_{(x,p)}(X)$, while if $x_1 + \cdots + x_m = bx + b_1y_1 + \cdots + b_ny_n$ is a primitive relation of X, then $x_1 + \cdots + x_m = bz_1 + \cdots + bz_p + b_1y_1 + \cdots + b_ny_n$ is a primitive relation of $H_{(x,p)}(X)$.

Proof. The primitive collections of Σ are the primitive collections of Σ and $\{z_1, \ldots, z_p\}$. Then, we can calculate the primitive collections of $H_{(x,p)}(X)$ easily (see Corollary 4.9 in [1]). \square

Now, we can describe an example of a toric Fano manifold of index 2 which admits no projective space bundle structure.

Example 4.2. Let $X = X_\Sigma$ be the del Pezzo surface of degree 7. The primitive relations of Σ are $x_1 + x_3 = x_2$, $x_1 + x_4 = 0$, $x_2 + x_4 = x_3$, $x_2 + x_5 = x_1$ and $x_3 + x_5 = 0$, where $G(\Sigma) = \{x_1, x_2, x_3, x_4, x_5\}$. Put

$$Y = Y_{\Sigma} := H_{(x_1,2)} \left(H_{(x_2,2)} \left(H_{(x_3,2)} \left(H_{(x_4,2)} \left(H_{(x_5,2)}(X) \right) \right) \right) \right).$$

Then, the primitive relations of $\tilde{\Sigma}$ are

$$x_1 + x'_1 + x_3 + x'_3 = x_2 + x'_2, \quad x_1 + x'_1 + x_4 + x'_4 = 0,$$

$$x_2 + x'_2 + x_4 + x'_4 = x_3 + x'_3, \quad x_2 + x'_2 + x_5 + x'_5 = x_1 + x'_1$$

and

$$x_3 + x'_3 + x_5 + x'_5 = 0,$$

where $G(\tilde{\Sigma}) = \{x_1, x_2, x_3, x_4, x_5, x'_1, x'_2, x'_3, x'_4, x'_5\}$. We remark that Y is a smooth toric Fano 7-fold of index 2, the Picard number of Y is 3 and Y has no projective space bundle structure.

Remark 4.3. Similarly as in Example 1.2 for any $p \in \mathbb{Z}_{\geq 2}$, we can construct a toric Fano manifold of index p which has no projective space bundle structure.
References

[Ba1] V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. 43 (1991), 569–585.

[Ba2] V. Batyrev, On the classification of toric Fano 4-folds, Algebraic Geometry, 9, J. Math. Sci. (New York) 94 (1999), 1021–1050.

[Bo] L. Bonavero, Toric varieties whose blow-up at a point is Fano, Tohoku Math. J. 54 (2002), 593–597.

[C] C. Casagrande, Contractible classes in toric varieties, Math. Z. 243 (2003), 99–126.

[CO] E. Chierici and G. Occhetta, Fano fivefolds of index two with blow-up structure, math.AG/0607034.

[FS] O. Fujino and H. Sato, Introduction to the toric Mori theory, Mich. Math. J. 52 (2004), 649–665.

[Fj] T. Fujita, Classification theory of polarized varieties, London Math. Soc. Lecture Notes Series, vol. 155, Cambridge Univ. Press, Cambridge, 1990.

[Fl] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.

[KO] S. Kobayashi and T. Ochiai, Characterization of complex projective space and hyperquadrics, J. Math. Kyoto Univ. 13 (1972), 31–47.

[Me] M. Mella, Existence of good divisors on Mukai varieties, J. Algebraic Geom. 8 (1999), 197–206.

[Mu] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1989), 3000–3002.

[NO] C. Novelli and G. Occhetta, Ruled Fano fivefolds of index two, math.AG/0511386.

[O] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 15, Springer-Verlag, Berlin, 1988.

[R] M. Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol.II, 395–418, Progr. Math., 36, Birkhäuser Boston, MA, 1983.

[S1] H. Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. 52 (2000), 383–413.

[S2] H. Sato, Studies on toric Fano varieties, Tohoku Math. Publ. 23 (2002).

[S3] H. Sato, Toric Fano varieties with divisorial contractions to curves, Math. Nachr. 261-262 (2003), 163-170.

[W] J. Wiśniewski, A report on Fano manifolds of middle index and $b_2 \geq 2$, Projective geometry with applications (Dekker, New York), Lecture Notes in Pure and Appl. Math., vol. 166, 1994, 19–26.